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Abstract: The principal object of this paper is to introduce two variable Shivley’s matrix polynomials
and derive their special properties. Generating matrix functions, matrix recurrence relations,
summation formula and operational representations for these polynomials are deduced. Finally,
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1. Introduction

Generalized Laguerre polynomials (GLP) are defined explicitly

La
n(x) =

n

∑
r=0

(−1)r (1 + a)n xr

r! (n − r)! (1 + a)r
, (1)

where a is a real -valued parameter, (a)r is the Pochhammer symbol

(a)r =

{
a(a + 1) . . . (a + (r − 1)), r ≥ 1,
1, r = 0.

In confluent hypergeometric notation, we have

La
n(x) =

(1 + a)n

n! 1F1
(− n; a + 1; x

)
. (2)

These polynomials satisfy the second-order linear differential equation (see, for example, [1]
p. 298)

x D2La
n(x) + (1 + a − x) DLa

n(x) + nLa
n(x) = 0, D =

d
dx

. (3)

The so-called Shively’s pseudo-Laguerre polynomials Rn(a, x) are defined by (see, [2])

Rn(a, x) =
(a)2n

(a)n n! 1F1
(− n; a + n; x

)
, (4)

Symmetry 2019, 11, 151; doi:10.3390/sym11020151 www.mdpi.com/journal/symmetry1
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which are related to the proper simple Laguerre polynomial (see, [2])

Ln(x) = 1F1
(− n; 1; x

)
, (5)

Rn(a, x) =
1

(a − 1)n

n

∑
r=0

(a − 1)n+r Ln−r(x)
r!

. (6)

Shivley deduced the generating function for pseudo Laguerre polynomials of one variable as
(see, [2])

e2t
0F1
(−;

a
2
+

1
2

; t2 − xt
)
=

∞

∑
n=0

Rn(a, x) tn

( a
2 + 1

2 )n
. (7)

Now, owing to the significance of the earlier mentioned work related to Laguerre polynomials,
we find record that many authors became interested to study the scalar cases of the classical sets of
Laguerre polynomials into Laguerre matrix polynomials. Of those authors, we mention [3–7].

Recently, the matrix versions of the classical families orthogonal polynomials such as Jacobi,
Hermite, Chebyshev, Legendre, Gegenbauer, Bessel and Humbert polynomials of one variables and
some other polynomials were introduced by many authors for matrices in CN×N and various properties
satisfied by them were given from the scalar case. Rather than giving an exhaustive list of references,
we refer the reader to the article [8]. Theory of generalized and multivariable orthogonal matrix
polynomials has provided new means of analysis to deal with the majority of problems in mathematical
physics which find broad practical applications. In [9,10], Subuhi Khan and others introduced the
2-variable forms of Laguerre and modified Laguerre matrix polynomials and generalized Hermite
matrix based polynomials of two variables and Lie algebraic techniques. Furthermore, several papers
concerning the orthogonal matrix polynomials for two and multivariables have become more and
more relevant, see for example [11–17].

The section-wise treatment is as follows. In Section 2, we deals with some basic facts, notations
and results to that are needed in the work. In Section 3, we define Shivleys matrix polynomials of two
variables and to study their properties. The generating matrix functions, matrix recurrence relations,
summation formula and operational representations these new matrix polynomials are obtained.
Some special cases of the established results are also underlined as corollaries. Finally, we give some
concluding remarks in Section 4.

Throughout this paper, for CN denote the N-dimensional complex vector space and CN×N denote
all square matrices with N rows and N columns with entries are complex numbers, Re(z) and Im(z)
denote the real and imaginary parts of a complex number z, respectively. For any matrix A in CN×N ,
σ(A) is the spectrum of A, the set of all eigenvalues of A, which will be denoted by ‖A‖, is defined by

||A|| = sup
x �=0

||Ax||2
||x||2 ,

where for a vector y in CN , ||y||2 = (yHy)
1
2 is Euclidean norm of y. I and 0 stand for the identity matrix

and the null matrix in CN×N , respectively.

2. Preliminaries

We shall adopt in this work a somewhat different notation and facts from that used throughout
this work.

For A ∈ CN×N , the matrix version of the symbol is

(A)(n) = (A)(A − I) · · · (A − (n − 1)I), n ≥ 1,

2
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and the Pochhammer symbol (the shifted factorial) is

(A)n = A(A + I) · · · (A + (n − 1)I), n ≥ 1; (A)0 ≡ I.

Note that if A = −jI, where j is a positive integer, then (A)n = 0 whenever n > j (cf. [18]).
The reciprocal scalar Gamma function denoted by Γ−1(z) = 1

Γ(z) is an entire function of the

complex variable z. Thus, for any A ∈ CN×N , Riesz-Dunford functional calculus [18–20] shows that
Γ−1(A) is well defined and is, indeed, the inverse of Γ(A). Furthermore, if

A + nI is invertible for all integer n ≥ 0, (8)

then

(A)n = Γ(A + nI)Γ−1(A). (9)

Form (9), it is easily to find that

(A)2n = 22n(
1
2
(A + I))n(

1
2
(A))n,

and

(A)n+k = (A)n(A + nI)k.

In 1731, Euler defined the derivative formula

Dν
x xα =

Γ(α + ν)

Γ(α − ν + 1)
xα−ν, Dx ≡ d

dx
,

where α and ν are arbitrary complex numbers. By application of the matrix functional calculus to this
definition, for any matrix A ∈ CN×N , one gets (see [5,18])

Dn
t [t

A+mI ] = (A + I)m[(A + I)m−n]
−1 tA+(m−n)I , Dt =

d
dt

, n = 0, 1, 2, 3, ...

On other hand, if Dz =
∂
∂z , Dz =

∂
∂w and Dv = ∂

∂v the trinomial expansion for (Dz + Dw + Dv)n

is given by (see [21,22])

(Dz + Dw + Dv)
n =

n

∑
r=0

n−r

∑
s=0

(−1)r+s (−n)r+s

r! s!
Dn−r−s

z Dr
w Ds

v, (10)

operating (10) on F(z, w, v), we get

(Dz + Dw + Dv)
nF(z, w, v) =

n

∑
r=0

n−r

∑
s=0

(−1)r+s (−n)r+s

r! s!
Dn−r−s

z Dr
w Ds

vF(z, w, v),
(11)

in particular, if F(z, w, v) = f (z)g(w)h(v), then (11) gives

(Dz + Dw + Dv)
n
{

f (z)g(w)h(v)
}

=

n

∑
r=0

n−r

∑
s=0

(−1)r+s (−n)r+s

r! s!
Dn−r−s

z f (z) Dr
wg(w) Ds

vh(v).
(12)

3
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Similarly,

(DzDw + DzDv + DwDv)
n
{

f (z)g(w)h(v)
}

=

n

∑
r=0

n−r

∑
s=0

(−1)r+s (−n)r+s

r! s!
Dn−s

z f (z) Dn−r
w g(w) Dr+s

v h(v).
(13)

Moreover, if A ∈ CN×N , and z is any complex number, then the matrix exponential eAz is defined
to be

eAz = I + Az + ... +
An

n!
zn + ...,

dn

dzn [e
Az] = An eAz = eAz An, n = 0, 1, 2, 3, ....

Let A, B and C be matrices in CN×N and C satisfy condition (8), then the hypergeometric matrix
function of 2-numerator and 1-denominator for |z| < 1 is defined by the matrix power series (see [20,23])

2F1(A, B; C; z) = ∑
n≥0

(A)n(B)n[(C)n]−1

n!
zn, (14)

For an arbitrary matrix A ∈ CN×N , satisfy condition (8) then the n-th Laguerre matrix polynomials
LA

n (z) is defined by (see [8])

LA
n (z) =

(A + I)n

n! 1F1(−nI; A + I; z). (15)

Therefore, the Shively’s pseudo Laguerre matrix polynomials are reduced in the form

RA
n (z) =

(A)2n [(A)n]−1

n! 1F1(−nI; A + nI; z). (16)

For matrices A(k, n) and B(k, n) are matrices in CN×N for n ≥ 0, k ≥ 0, the following relations
are satisfied (see [24])

∞

∑
n=0

∞

∑
k=0

A(k, n) =
∞

∑
n=0

[ 1
2 n]

∑
k=0

A(k, n − 2k) (17)

and

∞

∑
n=0

∞

∑
k=0

B(k, n) =
∞

∑
n=0

n

∑
k=0

B(k, n − k). (18)

Similarly, we can write

∞

∑
n=0

[ 1
2 n]

∑
k=0

A(k, n) =
∞

∑
n=0

∞

∑
k=0

A(k, n + 2k), (19)

and

∞

∑
n=0

n

∑
k=0

B(k, n) =
∞

∑
n=0

∞

∑
k=0

B(k, n + k). (20)

4
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3. Two Variables Shivley’s Matrix Polynomials

In this section we define two variables Shively’s matrix polynomials and several properties for
these polynomials as given below:

Definition 1. For an arbitrary matrix A ∈ CN×N , with A + mI invertible for every integer m ≥ 1, then the
m-th Shively’s matrix polynomials of two variables RA

m(z, w) is defined by

RA
m(z, w) =

(A + mI)m

m!

m

∑
n=0

m−n

∑
k=0

[(A + mI)k]
−1 (−mI)n+k

zk wn

n! k!
. (21)

Remark 1. For simplicity, we consider only two complex variables Shively’s matrix polynomials, though the
results can easily be extended to several complex variables.

3.1. Generating Functions and Recurrence Relations

Two more basic properties of two variables Shively’s matrix polynomials are developed in this
subsection. The generating matrix functions which is obtained from Theorem 1 and with the help of
Definition 1. Also, some matrix recurrence relations for two variables Shively’s matrix polynomials
are given.

Theorem 1. The generating matrix function of RA
m(z, w) is given by

∞

∑
m=0

RA
m(z, w) [(

A + I
2

)m]
−1 tm = e2t

0F1

(
−;

A + I
2

; t2(1 − w)− tz
)

. (22)

Proof. From Definition 1 in the left hand side of (22), we get

∞

∑
m=0

RA
m(z, w) [(

A + I
2

)m]
−1 tm =

∞

∑
m=0

[(
A + I

2
)m]

−1 tm (A + mI)m

m!

×
m

∑
n=0

m−n

∑
k=0

[(A + mI)k]
−1 (−mI)n+k

zk wn

n! k!

=
∞

∑
m=0

22m (
A
2
)m (

A + I
2

)m [(A)m]
−1 [(

A + I
2

)m]
−1 tm

×
m

∑
n=0

m−n

∑
k=0

[(A + mI)k]
−1 (−mI)n+k

zk wn

n! k!

=
∞

∑
m=0

∞

∑
n=0

∞

∑
k=0

(
A
2
)n (

A
2
+ nI)m+k [(A)2n]

−1 [(A + 2n)m+k]
−1

× (−1)n+kznwk(4t)m+n+k

m!n!k!

=e2t
∞

∑
m=0

∞

∑
n=0

[(
A + I

2
)m+n]

−1 (t2(1 − w))m (−zt)n

m! n!
.

(23)

Further simplification yields

∞

∑
m=0

RA
m(z, w) [(

A + I
2

)m]
−1 tm = e2t

∞

∑
m=0

[(
A + I

2
)m]

−1
(
t2(1 − w)− zt

)m

m!

=e2t
0F1

(
−;

A + I
2

; t2(1 − w)− tz
)

.

(24)

5
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This completes the proof of Theorem 1.

Theorem 1 leads to the following corollaries:

Corollary 1. The generating matrix function for the Shively’s pseudo Laguerre matrix polynomials RA
m(z) is

given by

∞

∑
m=0

RA
m(z) [(

A + I
2

)m]
−1 tm = e2t

0F1

(
−;

A + I
2

; t2 − tz
)

. (25)

Proof. Follows by successive application of Theorem 1.

Corollary 2. From the generating matrix function (22), we can deduce that

RA
m(0, w) =

1
m 2F1

(
− m

2
I,
−m + 1

2
I; I − (

A
2
+ mI); w

)
. (26)

Proof. By putting z = 0 in (22), we find

∞

∑
m=0

RA
m(0, w) [(

A + I
2

)m]
−1 tm

=e2t
0F1

(
−;

A + I
2

; t2(1 − w)
)

=e2t
∞

∑
m=0

[(
A + I

2
)m]

−1 t2m (1 − w)m

m!

=e2t
∞

∑
m=0

[(
A + I

2
)m]

−1 t2m

m!

m

∑
k=0

(−mI)k wk

k!
.

Further simplification yields

∞

∑
m=0

RA
m(0, w) [(

A + I
2

)m]
−1 tm

=
∞

∑
m=0

[(
A + I

2
)m]

−1 tm 1
m 2F1

(
− m

2
I,
−m + 1

2
I; I − (

A
2
+ mI); w

)
,

(27)

and the relation (27) evidently leads us to the required result.

Among the infinitely many recurrence relations for two variables Shively’s matrix polynomials,
we list the following two as being the most useful or interesting ones.

ARA
m(z, w) + zDz RA

m(z, w) = (A + mI) RA−I
m (z, w), (28)

(A + mI) RA
m−1(z, w) + (zDz + wDw) RA

m(z, w) = m RA−I
m (z, w), Dz ≡ ∂

∂z
, Dw ≡ ∂

∂w
. (29)

It can be easily verifying these relations from the Definition 1.

3.2. Summation Formulas and Operational Representation

We are now in a position to obtain some series expansion formulae involving partial derivatives
for the RA

m(z, w), these series expansion formulae are given by the following theorem:

6
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Theorem 2. Suppose that A is a matrix in CN×N satisfying (8) and u ∈ C. Then the Shively’s matrix
polynomials of two variables has the following summation formulas

m

∑
k=0

uk

k!
Dk

z RA
m(z, w) = RA

m(z + u, w), (30)

m

∑
k=0

uk

k!
Dk

w RA
m(z, w) = RA

m(z, w + u), (31)

m

∑
k=0

[(A + I)m−k]
−1 (−u)k

k!
Dk

w RA−kI
m (z, w)

= (1 + u)m [(A + I)m]
−1 RA

m(
z

1 + u
,

w
1 + u

),

(32)

m

∑
k=0

(−u)k((m + k)!)2(−mI)−k
k!

Dk
z Dk

w RA−kI
m+k (z, w)

= m! (1 + u)m RA
m(

z
1 + u

,
w

1 + u
),

(33)

n

∑
k=0

(
n
k

)
[(I + A − nI)k]

−1 zk Dk
z RA

m(z, w)

=(A + I)m [(I + A − nI)m]
−1 RA−nI

m (z, w); n ≤ m.

(34)

Proof. Taking the left hand side of (30) and substituting the value of RA
m(z, w) from (21), we get

m

∑
k=0

uk(A + I)m

m!k!
Dk

z

m

∑
n=0

m−n

∑
r=0

[(A + mI)r]
−1 (−mI)n+r

zr wn

n! r!

=
(A + I)m

m!

m

∑
n=0

m−n

∑
r=0

[(A + mI)r]
−1 (−mI)n+r

zr wn

n! r!

m

∑
k=0

(−r)k(
−u
z )k

k!

=
(A + I)m

m!

m

∑
n=0

m−n

∑
r=0

[(A + mI)r]
−1 (−mI)n+r

(z + u)r wn

n! r!
= RA

m(z + u, w).

(35)

This completes the proof of (30). Similarly, we can prove (31).
Taking the left hand side of (32), substituting the value of Shively’s matrix polynomials of two

variables from (21) and differentiating, we get

m

∑
k=0

[(A + I)m−k]
−1 (−u)k

k!
Dk

w RA−kI
m (z, w)

=
1

m!

m

∑
k=0

(−u)k[(A + I)−k]
−1

k!

m

∑
n=0

m−n

∑
r=0

[(I + A − kI)r]
−1 (−mI)n+r

zr−k wn

n! (r − k)!
.

(36)

Putting r = μ + k where μ is new parameter of summation and changing the order of summation
so that the first summation becomes last,

7
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m

∑
k=0

[(A + I)m−k]
−1 (−u)k

k!
Dk

w RA−kI
m (z, w)

=
1

m!

m

∑
n=0

m−n

∑
μ=0

[(I + A − kI)μ]
−1 (−mI)n+μ

zν wn

n! μ!

×
m−n−μ

∑
k=0

(−m + n + μ)(−u)k

k!

=
1

m!

m

∑
n=0

m−n

∑
μ=0

[(I + A − kI)μ]
−1 (−mI)n+μ

zν wn

n! μ!
(1 + u)(m−n−μ),

(37)

which in view of (21), gives us the right hand-side of assertion (32).
Also, from the left hand side of (33) and substituting the value of Shively’s matrix polynomials of

two variables from (21), we obtain

m

∑
k=0

(−u)k(−mI)−k(I + A − kI)m+k
k!

Dk
z Dk

w

×
m+k

∑
n=0

m+k−n

∑
r=0

[(I + A − kI)r]
−1 (−mI − kI)n+r

zr wn

n! r!
.

(38)

Now, differentiating and substituting p = r − k, q = n − k, we have

(A + I)m

m

∑
k=0

m−k

∑
q=0

m+k−q

∑
p=0

[(A + I)p]
−1 (−u)k(−mI)p+q+k

k!
zp wq

p! q!

=(A + I)m

m

∑
q=0

m−q

∑
p=0

[(A + I)p]
−1 (−mI)p+q zp wq

p! q!
(1 + u)m−p−q.

(39)

Again, using the expression (21), we arrive at the right-hand side of (33).
Consider the series

n

∑
k=0

(n

k

)
[(I + A − nI)k]

−1 zk Dk
z RA

m(z, w)

=
(A + I)m

m!

n

∑
k=0

(n

k

)
[(I + A − nI)k]

−1

×
m

∑
n=0

m−n

∑
r=0

[(A + mI)r]
−1 (−mI)n+r

zr wn

n! (r − k)!

=
(A + I)m

m!

m

∑
n=0

m−n

∑
r=0

[(A + mI)r]
−1 (−mI)n+r

zr wn

n! (r!)2 2F1

(
− rI,−nI; I + A − nI; 1

)
.

In light of the relationship (see, [25])

F(−nI, B : C; 1) = Γ(C)Γ(C − B + nI)Γ−1(C + nI)Γ−1(C − B), (40)

where B, C ∈ CN×N , we obtain the required result in (34).

Remark 2. Setting n = 1 in (34) we have the recurrence relations for the RA
m(z, w) in (28).

8
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Next, according to (13), we have the following operational representation for the RA
m(z, w):

(
Dz Dw + Dz Dv + Dw Dv

)m
{

zA+(2m−1)I wm e−v

}

=
m

∑
n=0

m−n

∑
k=0

(−1)n+k (−mI)n+k
n! k!

×Dm−k
z
(
zA+(2m−1)I) Dm−n

w
(
wm) Dn+k

v
(
e−v)

=
(m!)2

n!
zA+(m−1)I e−v

{ (A + mI)m

m!

m

∑
n=0

m−n

∑
k=0

[(A + kI)k]
−1(−mI)n+k zkwn

n!k!

}
=
(m!)2

n!
zA+(m−1)I e−v RA

m(z, w),

(41)

thus, we get

(
Dz Dw + Dw Dv + Dv Dz

)m
{

zA+(2m−1)I wm e−v

}

=
(m!)2

n!
zA+(m−1)I e−v RA

m(z, w).

(42)

Summarizing, the following result has been obtained:

Theorem 3. Let RA
m(z, w) be given in (21). The operational representation in (42) holds true.

4. Concluding Remarks

This paper is to define a new matrix polynomial, say, Shivley’s matrix polynomials of two complex
variables and to study their properties. Some formulas related to an explicit representation, generating
matrix functions, matrix recurrence relations, series expansion and operational representations are
deduced. Also, some interested particular cases and consequences of our results have been discussed.
Within such a context, new matrix polynomial structures emerge with wide possibilities of applications
in physics and engineering. Therefore, the results of this work are variant, significant and so it is
interesting and capable to develop its study in the future.
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1. Introduction

Many researchers have studied about the degenerate Bernoulli numbers and polynomials,
degenerate Euler numbers and polynomials, degenerate Genocchi numbers and polynomials,
degenerate tangent numbers and polynomials (see [1–7]). Recently, some generalizations of the
Bernoulli numbers and polynomials, Euler numbers and polynomials, Genocchi numbers and
polynomials, tangent numbers and polynomials are provided (see [6,8–13]). In this paper we define
the degenerate Carlitz-type (p, q)-Euler polynomials and numbers and study some theories of the
degenerate Carlitz-type (p, q)-Euler numbers and polynomials.

Throughout this paper, we use the notations below: N denotes the set of natural numbers, Z
denotes the set of integers, Z+ = N ∪ {0} denotes the set of nonnegative integers. We remind that
the classical degenerate Euler numbers En(λ) and Euler polynomials En(x, λ), which are defined by
generating functions like (1), and (2) (see [1,2])

2

(1 + λt)
1
λ + 1

=
∞

∑
n=0

En(λ)
tn

n!
, (1)

and
2

(1 + λt)
1
λ + 1

(1 + λt)
x
λ =

∞

∑
n=0

En(x, λ)
tn

n!
, (2)

respectively.
Carlitz [1] introduced some theories of the degenerate Euler numbers and polynomials. We recall

that well-known Stirling numbers of the first kind S1(n, k) and the second kind S2(n, k) are defined by
this (see [2,7,14])

(x)n =
n

∑
k=0

S1(n, k)xk and xn =
n

∑
k=0

S2(n, k)(x)k,

Symmetry 2019, 11, 830; doi:10.3390/sym11060830 www.mdpi.com/journal/symmetry11
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respectively. Here (x)n = x(x − 1) · · · (x − n + 1). The numbers S2(n, m) is like this

∞

∑
n=m

S2(n, m)
tn

n!
=

(et − 1)m

m!
.

We also have
∞

∑
n=m

S1(n, m)
tn

n!
=

(log(1 + t))m

m!
.

The generalized falling factorial (x|λ)n with increment λ is defined by

(x|λ)n =
n−1

∏
k=0

(x − λk)

for positive integer n, with (x|λ)0 = 1; as we know,

(x|λ)n =
n

∑
k=0

S1(n, k)λn−kxk.

(x|λ)n = λn(λ−1x|1)n for λ �= 0. Clearly (x|0)n = xn. The binomial theorem for a variable x is

(1 + λt)x/λ =
∞

∑
n=0

(x|λ)n
tn

n!
.

The (p, q)-number is defined as

[n]p,q =
pn − qn

p − q
= pn−1 + pn−2q + pn−3q2 + · · ·+ p2qn−3 + pqn−2 + qn−1.

We begin by reminding the Carlitz-type (p, q)-Euler numbers and polynomials (see [9–11]).

Definition 1. For 0 < q < p ≤ 1 and h ∈ Z, the Carlitz-type (p, q)-Euler polynomials En,p,q(x) and

(h, p, q)-Euler polynomials E(h)
n,p,q(x) are defined like this

∞

∑
n=0

En,p,q(x)
tn

n!
= [2]q

∞

∑
m=0

(−1)mqme[m+x]p,qt,

∞

∑
n=0

E(h)
n,p,q(x)

tn

n!
= [2]q

∞

∑
m=0

(−1)mqm phme[m+x]p,qt,
(3)

respectively (see [9–11]).

Now we make the degenerate Carlitz-type (p, q)-Euler number En,p,q(λ) and (p, q)-Euler
polynomials En,p,q(x, λ). In the next section, we introduce the degenerate Carlitz-type (p, q)-Euler
numbers and polynomials. We will study some their properties after introduction.

2. Degenerate Carlitz-Type (p, q)-Euler Polynomials

In this section, we define the degenerate Carlitz-type (p, q)-Euler numbers and polynomials and
make some of their properties.

12
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Definition 2. For 0 < q < p ≤ 1, the degenerate Carlitz-type (p, q)-Euler numbers En,p,q(λ) and polynomials
En,p,q(x, λ) are related to the generating functions

Fp,q(t, λ) =
∞

∑
n=0

En,p,q(λ)
tn

n!
= [2]q

∞

∑
m=0

(−1)mqm(1 + λt)
[m]p,q

λ , (4)

and

Fp,q(t, x, λ) =
∞

∑
n=0

En,p,q(x, λ)
tn

n!
= [2]q

∞

∑
m=0

(−1)mqm(1 + λt)
[m + x]p,q

λ , (5)

respectively.

Let p = 1 in (4) and (5), we can get the degenerate Carlitz-type q-Euler number En,q(x, λ) and
q-Euler polynomials En,q(x, λ) respectively. Obviously, if p = 1, then we have

En,p,q(x, λ) = En,q(x, λ), En,p,q(λ) = En,q(λ).

When p = 1, we have

lim
q→1

En,p,q(x, λ) = En(x, λ), lim
q→1

En,p,q(λ) = En(λ).

We see that

(1 + λt)
[x + y]p,q

λ = e
[x + y]p,q

λ
log(1+λt)

=
∞

∑
n=0

(
[x + y]p,q

λ

)n
(log(1 + λt))n

n!

=
∞

∑
n=0

(
n

∑
m=0

S1(n, m)λn−m[x + y]mp,q

)
tn

n!
.

(6)

By (5), it follows that

∞

∑
n=0

En,p,q(x, λ)
tn

n!

= [2]q
∞

∑
m=0

(−1)mqm(1 + λt)
[m + x]p,q

λ

= [2]q
∞

∑
m=0

(−1)mqm

×
∞

∑
n=0

n

∑
l=0

S1(n, l)λn−l ∑l
j=0 (

l
j)(−1)j p(x+m)(l−j)q(x+m)j

(p − q)l
tn

n!

=
∞

∑
n=0

⎛⎝[2]q
n

∑
l=0

l

∑
j=0

S1(n, l)λn−l(l
j)(−1)jqxj px(l−j)

(p − q)l
1

1 + qj+1 pl−j

⎞⎠ tn

n!
.

(7)

By comparing the coefficients tn

n! in the above equation, we have the following theorem.

13



Symmetry 2019, 11, 830

Theorem 1. For 0 < q < p ≤ 1 and n ∈ Z+, we have

En,p,q(x, λ) = [2]q
n

∑
l=0

l

∑
j=0

S1(n, l)λn−l(l
j)(−1)jqxj px(l−j)

(p − q)l
1

1 + qj+1 pl−j

= [2]q
∞

∑
m=0

n

∑
l=0

S1(n, l)λn−l(−1)mqm[x + m]lp,q,

En,p,q(λ) = [2]q
n

∑
l=0

l

∑
j=0

S1(n, l)λn−l(l
j)(−1)j

(p − q)l
1

1 + qj+1 pl−j

= [2]q
∞

∑
m=0

n

∑
l=0

S1(n, l)λn−l(−1)mqm[m]lp,q.

We make the degenerate Carlitz-type (p, q)-Euler number En,p,q(λ). Some cases are

E0,p,q(λ) = 1,

E1,p,q(λ) =
[2]q

(p − q)(1 + pq)
− [2]q

(p − q)(1 + q2)
,

E2,p,q(λ) = − [2]qλ

(p − q)(1 + pq)
+

[2]q
(p − q)2(1 + p2q)

+
[2]qλ

(p − q)(1 + q2)

− 2[2]q
(p − q)2(1 + pq2)

+
[2]q

(p − q)2(1 + q3)
,

E3,p,q(λ) =
2[2]qλ2

(p − q)(1 + pq)
− 3[2]qλ

(p − q)2(1 + p2q)
+

[2]q
(p − q)3(1 + p3q)

− 2[2]qλ2

(p − q)(1 + q2)
+

6[2]qλ

(p − q)2(1 + pq2)
− 3[2]q

(p − q)3(1 + p2q2)

− 3[2]qλ

(p − q)2(1 + q3)
+

3[2]q
(p − q)3(1 + pq3)

− [2]q
(p − q)3(1 + q4)

.

We use t instead of
eλt − 1

λ
in (5), we have

∞

∑
m=0

Em,p,q(x)
tm

m!
=

∞

∑
n=0

En,p,q(x, λ)

(
eλt − 1

λ

)n 1
n!

=
∞

∑
n=0

En,p,q(x, λ)λ−n
∞

∑
m=n

S2(m, n)λm tm

m!

=
∞

∑
m=0

(
m

∑
n=0

En,p,q(x, λ)λm−nS2(m, n)

)
tm

m!
.

(8)

Thus we have the following theorem.

Theorem 2. For m ∈ Z+, we have

Em,p,q(x) =
m

∑
n=0

En,p,q(x, λ)λm−nS2(m, n).
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Use t instead of log(1 + λt)1/λ in (3), we have

∞

∑
n=0

En,p,q(x)
(

log(1 + λt)1/λ
)n 1

n!

= [2]q
∞

∑
m=0

(−1)mqm(1 + λt)
[m + x]p,q

λ

=
∞

∑
m=0

Em,p,q(x, λ)
tm

m!
,

(9)

and
∞

∑
n=0

En,p,q(x)
(

log(1 + λt)1/λ
)n 1

n!

=
∞

∑
m=0

(
m

∑
n=0

En,p,q(x)λm−nS1(m, n)

)
tm

m!
.

(10)

Thus we have the below theorem from (9) and (10).

Theorem 3. For m ∈ Z+, we have

Em,p,q(x, λ) =
m

∑
n=0

En,p,q(x)λm−nS1(m, n).

We have the degenerate Carlitz-type (p, q)-Euler polynomials En,p,q(x, λ). some cases are

E0,p,q(x, λ) = 1,

E1,p,q(x, λ) =
[2]q px

(p − q)(1 + pq)
− [2]qqx

(p − q)(1 + q2)
,

E2,p,q(x, λ) = − [2]qλpx

(p − q)(1 + pq)
+

[2]q p2x

(p − q)2(1 + p2q)
+

[2]qλqx

(p − q)(1 + q2)

− 2[2]q pxqx

(p − q)2(1 + pq2)
+

[2]qq2x

(p − q)2(1 + q3)
,

E3,p,q(x, λ) =
2[2]qλ2 px

(p − q)(1 + pq)
− 3[2]qλp2x

(p − q)2(1 + p2q)
+

[2]q p3x

(p − q)3(1 + p3q)

− 2[2]qλ2qx

(p − q)(1 + q2)
+

6[2]qλpxqx

(p − q)2(1 + pq2)
− 3[2]q p2xqx

(p − q)3(1 + p2q2)

− 3[2]qλq2x

(p − q)2(1 + q3)
+

3[2]q pxq2x

(p − q)3(1 + pq3)
− [2]qq3x

(p − q)3(1 + q4)
.

We introduce a (p, q)-analogue of the generalized falling factorial (x|λ)n with increment λ. The
generalized (p, q)-falling factorial ([x]p,q|λ)n with increment λ is defined by

([x]p,q|λ)n =
n−1

∏
k=0

([x]p,q − λk)

for positive integer n, where ([x]p,q|λ)0 = 1.
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By (4) and (5), we get

− [2]q(−1)nqn
∞

∑
l=0

(−1)lql(1 + λt)
[l + n]p,q

λ

+ [2]q
∞

∑
l=0

(−1)lql(1 + λt)
[l + n]p,q

λ

= [2]q
n−1

∑
l=0

(−1)lql(1 + λt)
[l]p,q

λ .

Hence we have

(−1)n+1qn
∞

∑
m=0

Em,p,q(n, λ)
tm

m!
+

∞

∑
m=0

Em,p,q(λ)
tm

m!

=
∞

∑
m=0

(
[2]q

n−1

∑
l=0

(−1)lql([l]p,q|λ)m

)
tm

m!
.

(11)

By comparing the coefficients of tm

m! on both sides of (11), we have the following theorem.

Theorem 4. For n ∈ Z+, we have

n−1

∑
l=0

(−1)lql([l]p,q|λ)m =
(−1)n+1qnEm,p,q(n, λ) + Em,p,q(λ)

[2]q
.

We get that

(1 + λt)

[x + y]p,q

λ

= (1 + λt)
py[x]p,q

λ (1 + λt)
qx[y]p,q

λ

=
∞

∑
m=0

(py[x]p,q|λ)m
tm

m!
elog(1+λt)

qx[y]p,q

λ

=
∞

∑
m=0

(py[x]p,q|λ)m
tm

m!

∞

∑
l=0

(
qx[y]p,q

λ

)l log(1 + λt)l

l!

=
∞

∑
m=0

(py[x]p,q|λ)m
tm

m!

∞

∑
l=0

(
qx[y]p,q

λ

)l ∞

∑
k=l

S1(k, l)λk tk

k!

=
∞

∑
n=0

(
n

∑
k=0

k

∑
l=0

(
n
k

)
(py[x]p,q|λ)n−kλk−lqxl [y]lp,qS1(k, l)

)
tn

n!
.

(12)
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By (5) and (12), we get

∞

∑
n=0

En,p,qζ(x, λ)
tn

n!

= [2]q
∞

∑
m=0

(−1)mqm(1 + λt)
[m + x]p,q

λ

= [2]q
∞

∑
m=0

(−1)mqm
∞

∑
n=0

(
n

∑
k=0

k

∑
l=0

(
n
k

)
(pm[x]p,q|λ)n−kλk−lqxl [m]lp,qS1(k, l)

)
tn

n!

=
∞

∑
n=0

(
[2]q

∞

∑
m=0

n

∑
k=0

k

∑
l=0

(
n
k

)
(−1)mqm(pm[x]p,q|λ)n−kλk−lqxlS1(k, l)

)
tn

n!
.

By comparing the coefficients of tn

n! in the above equation, we have the theorem below.

Theorem 5. For 0 < q < p ≤ 1 and n ∈ Z+, we have

En,p,q(x, λ) = [2]q
∞

∑
m=0

n

∑
k=0

k

∑
l=0

(
n
k

)
(−1)mqm(pm[x]p,q|λ)n−kλk−lqxlS1(k, l).

3. Symmetric Properties about Degenerate Carlitz-Type (p, q)-Euler Numbers and Polynomials

In this section, we are going to get the main results of degenerate Carlitz-type (p, q)-Euler numbers
and polynomials. We also make some symmetric identities for degenerate Carlitz-type (p, q)-Euler
numbers and polynomials. Let w1 and w2 be odd positive integers. Remind that [xy]p,q = [x]py ,qy [y]p,q

for any x, y ∈ C.

By using w1x + w1i
w2

instead of x in Definition 2, use p by pw2 , use q by qw2 and use λ by
λ

[w2]p,q
,

respectively, we can get

∞

∑
n=0

(
[2]qw1 [w2]

n
p,q

w2−1

∑
i=0

(−1)iqw1iEn,pw2 ,qw2

(
w1x +

w1i
w2

,
λ

[w2]p,q

))
tn

n!

= [2]qw1

w2−1

∑
i=0

(−1)iqw1i
∞

∑
n=0

En,pw2 ,qw2

(
w1x +

w1i
w2

,
λ

[w2]p,q

)
([w2]p,qt)n

n!

= [2]qw1

w2−1

∑
i=0

(−1)iqw1i[2]qw2

∞

∑
n=0

(−1)nqw2n

×
(

1 +
λ

[w2]p,q
[w2]p,qt

) [w1x + w1i
w2

+ n]pw2 ,qw2

λ
[w2]p,q

= [2]qw1

w2−1

∑
i=0

(−1)iqw1i[2]qw2

∞

∑
n=0

(−1)nqw2n

× (1 + λt)

[w1w2x + w1i + nw2]p,q

λ .

17
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Since for any non-negative integer n and odd positive integer w1, there is the unique non-negative
integer r such that n = w1r + j with 0 ≤ j ≤ w1 − 1. So this can be written as

[2]qw1 [2]qw2

w2−1

∑
i=0

(−1)iqw1i
∞

∑
n=0

(−1)nqw2n

× (1 + λt)

[w1w2x + w1i + nw2]p,q

λ .

= [2]qw1 [2]qw2

w2−1

∑
i=0

(−1)iqw1i
∞

∑
w1r+j=0

0≤j≤w1−1

(−1)w1r+jqw2(w1r+j)

× (1 + λt)

[w1w2x + w1i + (w1r + j)w2]p,q

λ .

= [2]qw1 [2]qw2

w2−1

∑
i=0

(−1)iqw1i
w1−1

∑
j=0

∞

∑
r=0

(−1)w1r(−1)jqw2w1rqw2 j

× (1 + λt)

[w1w2x + w1i + w1w2r + w2 j]p,q

λ

= [2]qw1 [2]qw2

w2−1

∑
i=0

w1−1

∑
j=0

∞

∑
r=0

(−1)i(−1)r(−1)jqw1iqw2w1rqw2 j

× (1 + λt)

[w1w2x + w1i + w1w2r + w2 j]p,q

λ .

We have the below formula using the above formula

∞

∑
n=0

(
[2]qw2 [w2]

n
p,q

w2−1

∑
i=0

(−1)iqw1iEn,pw2 ,qw2

(
w1x +

w1i
w2

,
λ

[w2]p,q

))
tn

n!

= [2]qw1 [2]qw2

w2−1

∑
i=0

w1−1

∑
j=0

∞

∑
r=0

(−1)i(−1)r(−1)jqw1iqw2w1rqw2 j

× (1 + λt)

[w1w2x + w1i + w1w2r + w2 j]p,q

λ .

(13)

From a similar approach, we can have that

∞

∑
n=0

(
[2]qw2 [w1]

n
p,q

w1−1

∑
i=0

(−1)iqw2iEn,pw1 ,qw1

(
w2x +

w2i
w1

,
λ

[w1]p,q

))
tn

n!

= [2]qw1 [2]qw2

w1−1

∑
i=0

w2−1

∑
j=0

∞

∑
r=0

(−1)i(−1)r(−1)jqw2iqw1w1rqw1 j

× (1 + λt)

[w1w2x + w2i + w1w2r + w1 j]p,q

λ .

(14)

Thus, we have the following theorem from (13) and (14).

18
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Theorem 6. Let w1 and w2 be odd positive integers. Then one has

[2]qw1 [w2]
n
p,q

w2−1

∑
i=0

(−1)iqw1iEn,pw2 ,qw2

(
w1x +

w1i
w2

,
λ

[w2]p,q

)

= [2]qw2 [w1]
n
p,q

w1−1

∑
j=0

(−1)jqw2 jEn,pw1 ,qw1

(
w2x +

w2 j
w1

,
λ

[w1]p,q

)
.

Letting λ → 0 in Theorem 6, we can immediately obtain the symmetric identities for Carlitz-type
(p, q)-Euler polynomials (see [10])

[2]qw1 [w2]
n
p,q

w2−1

∑
i=0

(−1)iqw1iEn,pw2 ,qw2

(
w1x +

w1i
w2

)

= [2]qw2 [w1]
n
p,q

w1−1

∑
j=0

(−1)jqw2 jEn,pw1 ,qw1

(
w2x +

w2 j
w1

)
.

It follows that we show some special cases of Theorem 6. Let w2 = 1 in Theorem 6, we have the
multiplication theorem for the degenerate Carlitz-type (p, q)-Euler polynomials.

Corollary 1. Let w1 be odd positive integer. Then

En,p,q(x, λ) =
[2]q[w1]

n
p,q

[2]qw1

w1−1

∑
j=0

(−1)jqjEn,pw1 ,qw1

(
x + j
w1

,
λ

[w1]p,q

)
. (15)

Let p = 1 in (15). This leads to the multiplication theorem about the degenerate Carlitz-type
q-Euler polynomials

En,q(x, λ) =
[2]q[w1]

n
q

[2]qw1

w1−1

∑
j=0

(−1)jqjEn,qw1

(
x + j
w1

,
λ

[w1]q

)
. (16)

Giving q → 1 in (16) induce to the multiplication theorem about the degenerate Euler polynomials

En(x, λ) = wn
1

w1−1

∑
j=0

(−1)jEn

(
x + i
w1

,
λ

w1

)
. (17)

If λ approaches to 0 in (17), this leads to the multiplication theorem about the Euler
polynomials(see [15])

En(x) = wn
1

w1−1

∑
j=0

(−1)jEn

(
x + i
w1

)
.

Let x = 0 in Theorem 6, then we have the following corollary.

Corollary 2. Let w1 and w2 be odd positive integers. Then it has

[2]qw1 [w2]
n
p,q

w2−1

∑
i=0

(−1)iqw1iEn,pw2 ,qw2

(
w1i
w2

,
λ

[w2]p,q

)

= [2]qw2 [w1]
n
p,q

w1−1

∑
j=0

(−1)jqw2 jEn,pw1 ,qw1

(
w2 j
w1

,
λ

[w1]p,q

)
.

By Theorem 3 and Corollary 2, we have the below theorem.
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Theorem 7. Let w1 and w2 be odd positive integers. Then

n

∑
l=0

S1(n, l)λn−l [w2]
l
p,q[2]qw1

w2−1

∑
i=0

(−1)iqw1iEl,pw2 ,qw2

(
w1

w2
i
)

=
n

∑
l=0

S1(n, l)λn−l [w1]
l
p,q[2]qw2

w1−1

∑
j=0

(−1)jqw2 jEl,pw1 ,qw1

(
w2

w1
j
)

.

We get another result by applying the addition theorem about the Carlitz-type (p, q)-Euler
polynomials En,p,q(x).

Theorem 8. Let w1 and w2 be odd positive integers. Then we have

n

∑
l=0

l

∑
k=0

(
l
k

)
S1(n, l)λn−l pw1w2xk[2]qw1 [w1]

k
p,q[w2]

l−k
p,q E(k)

l−k,pw2 ,qw2 (w1x)Sl,k,pw1 ,qw1 (w2)

=
n

∑
l=0

l

∑
k=0

(
l
k

)
S1(n, l)λn−l pw1w2xk[2]qw2 [w2]

k
p,q[w1]

l−k
p,q E(k)

l−k,pw1 ,qw1 (w2x)Sl,k,pw2 ,qw2 (w1),

where Sl,k,p,q(w1) = ∑w1−1
i=0 (−1)iq(l−k+1)i[i]kp,q is called as the (p, q)-sums of powers.

Proof. From (3), Theorems 3 and 6, we have

[2]qw1 [w2]
n
p,q

w2−1

∑
i=0

(−1)iqw1iEn,pw2 ,qw2

(
w1x +

w1i
w2

,
λ

[w2]p,q

)

= [2]qw1 [w2]
n
p,q

w2−1

∑
i=0

(−1)iqw1i
n

∑
l=0

El,pw2 ,qw2

(
w1x +

w1i
w2

)(
λ

[w2]p,q

)n−l
S1(n, l)

= [2]qw1

n

∑
l=0

S1(n, l)λn−l [w2]
l
p,q

w2−1

∑
i=0

(−1)iqw1i
l

∑
k=0

qw1(l−k)i pw1w2xk

× E(k)
l−k,pw2 ,qw2 (w1x)

(
[w1]p,q

[w2]p,q

)k

[i]kpw1 ,qw1

= [2]qw1

n

∑
l=0

S1(n, l)λn−l
l

∑
k=0

(
l
k

)
pw1w2xk[w1]

k
p,q[w2]

l−k
p,q pw1w2xlE(k)

l−k,pw2 ,qw2 (w1x)

×
w2−1

∑
i=0

(−1)iqw1iq(l−k)w1i[i]kpw1 ,qw1 .

Therefore, we induce that

[2]qw1 [w2]
n
p,q

w2−1

∑
i=0

(−1)iqw1iEn,pw2 ,qw2

(
w1x +

w1i
w2

,
λ

[w2]p,q

)

=
n

∑
l=0

l

∑
k=0

(
l
k

)
S1(n, l)λn−l pw1w2xk[2]qw1 [w1]

k
p,q[w2]

l−k
p,q pw1w2xl

× E(k)
l−k,pw2 ,qw2 (w1x)Sl,k,pw1 ,qw1 (w2),

(18)
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and

[2]qw2 [w1]
n
p,q

w1−1

∑
j=0

(−1)jqw2 jEn,pw1 ,qw1

(
w2x +

w2 j
w1

,
λ

[w1]p,q

)

=
n

∑
l=0

l

∑
k=0

(
l
k

)
S1(n, l)λn−l pw1w2xk[2]qw2 [w2]

k
p,q[w1]

l−k
p,q

× E(k)
l−k,pw1 ,qw1 (w2x)Sl,k,pw2 ,qw2 (w1).

(19)

By (18) and (19), we make the desired symmetric identity.
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1. Introduction

Many (p, q)-extensions of some special functions such as the hypergeometric functions, the gamma
and beta functions, special polynomials, the zeta and related functions, q-series, and series
representations have been studied (see [1–6]). In our paper, we always make use of the following
notations: Z+ = N∪ {0} is the set of nonnegative integers, and the notation

∞

∑
m1,··· ,mr=0

is used instead of
∞

∑
m1=0

· · ·
∞

∑
mr=0

.

The (p, q)-number is defined as

[n]p,q =
pn − qn

p − q
= pn−1 + pn−2q + pn−3q2 + · · ·+ p2qn−3 + pqn−2 + qn−1.

Much research has been conducted in the area of special functions by using (p, q)-number (see [1–6]).
The classical Stirling numbers of the first kind S1(n, k) and the second kind S2(n, k) are related to each
other like this (see [7–10])

(x)n =
n

∑
k=0

S1(n, k)xk and xn =
n

∑
k=0

S2(n, k)(x)k,

respectively, where (x)n = x(x − 1) · · · (x − n + 1). The generalized (p, q)-falling factorial ([x]p,q|λ)n

with increment λ is defined by

([x]p,q|λ)n =
n−1

∏
k=0

([x]p,q − λk)

Symmetry 2019, 11, 1432; doi:10.3390/sym11121432 www.mdpi.com/journal/symmetry23
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for positive integer n, with the convention ([x]p,q|λ)0 = 1; we also write

([x]p,q|λ)n =
n

∑
k=0

S1(n, k)λn−k[x]kp,q.

Clearly, ([x]p,q|0)n = [x]np,q. We also have the binomial theorem: for a variable x,

(1 + λt)
[x]p,q

λ =
∞

∑
n=0

([x]p,q|λ)n
tn

n!
.

We introduced Carlitz-type degenerate Euler numbers En(λ) and Euler polynomials En(x, λ)

using (p, q)-number (see [4]). For 0 < q < p ≤ 1, En,p,q(λ) and polynomials En,p,q(x, λ) are defined by
the generating functions

∞

∑
n=0

En,p,q(λ)
tn

n!
= [2]q

∞

∑
m=0

(−1)mqm(1 + λt)
[m]p,q

λ ,

and
∞

∑
n=0

En,p,q(x, λ)
tn

n!
= [2]q

∞

∑
m=0

(−1)mqm(1 + λt)
[m + x]p,q

λ ,

respectively (see [4]).
Hwang and Ryoo [11] discussed some properties for Carlitz-type higher-order (p, q)-Euler

numbers and polynomials. For r ∈ N and 0 < q < p ≤ 1, the Carlitz-type higher-order (p, q)-Euler
polynomials E(r)

n,p,q(x) are defined by the generating function:

∞

∑
n=0

E(r)
n,p,q(x)

tn

n!
= [2]rq

∞

∑
m1,··· ,mr=0

(−1)m1+···+mr qm1+···+mr e[m1+···+mr+x]p,qt. (1)

When x = 0, E(r)
n,p,q = E(r)

n,p,q(0) are called the Carlitz-type higher-order (p, q)-Euler numbers E(r)
n,p,q

(see [11]). Furthermore, we obtain

E(r)
n,p,q(x) = [2]rq

∞

∑
m1,··· ,mr=0

(−1)m1+···+mr qm1+···+mr [m1 + · · ·+ mr + x]np,q. (2)

For 0 < q < p ≤ 1, h ∈ Z, and r ∈ N, Carlitz-type higher-order (h, p, q)-Euler polynomials
E(r,h)

n,p,q(x) are defined using generating function

∞

∑
n=0

E(r,h)
n,p,q(x)

tn

n!
= [2]rq

∞

∑
k1,··· ,kr=0

(−1)k1+···+kr qk1+···+kr ph(k1+···+kr)e[k1+···+kr+x]p,qt.

When x = 0, E(r,h)
n,p,q = E(r,h)

n,p,q(0) are called the Carlitz-type higher-order (h, p, q)-Euler

numbers E(r,h)
n,p,q.

The following diagram shows the variations of the different types of degenerate Euler polynomials
and Euler polynomials. Those polynomials in the first row and the third row of the diagram are
studied by Hwang and Ryoo [4,11], Carlitz [7], Cenkci and Howard [9], Wu and Pan [12], Luo [13],
and Srivastava [14], respectively. The study of these has produced beneficial results in combinatorics
and number theory (see [4,7,9,12–18]). The motivation of this paper is to investigate some explicit
identities and symmetric identities for Carlitz-type higher-order degenerate (p, q)-Euler polynomials
in the second row of the diagram.
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∑∞
n=0 En(x, λ) tn

n!

=

(
2

(1+λt)
1
λ +1

)
(1+λt)

x
λ

(degenerate Euler polynomials)

∑∞
n=0 En,p,q(x, λ) tn

n! = [2]q ∑∞
m=0(−1)m

×qm(1+λt)

[m+ x]p,q

λ

( Carlitz-type degenerate (p, q)-Euler polynomials)

∑∞
n=0 E(r)n (x, λ) tn

n!

=

(
2

(1+λt)
1
λ +1

)r
(1+λt)

x
λ

(higher-order degenerate Euler polynomials)

∑∞
n=0 E(r)n,p,q(x, λ)

tn

n!
= [2]rq ∑∞

m1,··· ,mr=0(−1)m1+···+mr

×qm1+···+mr(1+λt)

[m1 + · · ·+mr + x]p,q

λ

( Carlitz-type higher-order degenerate (p, q)-Euler polynomials)

∑∞
n=0 E(r)

n (x)
tn

n!

=

(
2

et + 1

)r
ext

(higher-order Euler polynomials)

∑∞
n=0 E(r)

n,p,q(x)
tn

n!
= [2]rq ∑∞

m1,··· ,mr=0(−1)m1+···+mr

×qm1+···+mre[m1+···+mr+x]p,qt

(Carlitz-type higher-order (p, q)-Euler polynomials)

The goal of this paper is that new generalizations of the Carlitz-type degenerate (p, q)-Euler
numbers and polynomials is introduced and studied. Each section has the following contents.
In Section 2, Carlitz-type higher-order degenerate (p, q)-Euler numbers and polynomials are defined.
We induce some of their properties involved distribution relation, explicit formula, and so on.
In Section 3, we make several symmetric identities about Carlitz-type higher-order degenerate
(p, q)-Euler numbers and polynomials.

2. Carlitz-Type Higher-Order Degenerate (p, q)-Euler Numbers and Polynomials

At first, the Carlitz-type higher-order degenerate (p, q)-Euler numbers and polynomials are
defined like this:

Definition 1. For positive integer n and r ∈ N, the classical higher-order Euler numbers E (r)
n (λ) and Euler

polynomials E (r)
n (x, λ) are defined by using generating functions

(
2

(1 + λt)
1
λ + 1

)r

=
∞

∑
n=0

E (r)
n (λ)

tn

n!
,

and (
2

(1 + λt)
1
λ + 1

)r

(1 + λt)
x
λ =

∞

∑
n=0

E (r)
n (x, λ)

tn

n!
,

respectively (see [9,12]).
Now, new generalizations of the Carlitz-type degenerate (p, q)-Euler numbers and polynomials

are introduced. As we have done so far, the Carlitz-type higher-order (p, q)-Euler polynomials can be
defined as:

Definition 2. For r ∈ N, the Carlitz-type higher-order degenerate (p, q)-Euler numbers E (r)
n,p,q(λ) and

polynomials E (r)
n,p,q(x, λ) are defined by using generating functions, where 0 < q < p ≤ 1.
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∞

∑
n=0

E (r)
n,p,q(λ)

tn

n!
= [2]rq

∞

∑
m1,··· ,mr=0

(−1)m1+···+mr qm1+···+mr (1 + λt)
[m1 + · · ·+ mr]p,q

λ ,

and

∞

∑
n=0

E (r)
n,p,q(x, λ)

tn

n!
= [2]rq

∞

∑
m1,··· ,mr=0

(−1)m1+···+mr qm1+···+mr (1 + λt)
[m1 + · · ·+ mr + x]p,q

λ ,

respectively.
Observe that, if p = 1, q → 1, then E (r)

n,p,q(λ) → E (r)
n (λ) and E (r)

n,p,q(x, λ) → E (r)
n (x, λ). Note that,

if r = 1, then E (r)
n,p,q(λ) = En,p,q(λ) and E (r)

n,p,q(x) = En,p,q(x). If λ = 0, we have the Carlitz-type

higher-order (p, q)-Euler polynomials E(r)
n,p,q(x).

By binomial theorem, we note that

(1 + λt)
[m1 + · · ·+ mr + x]p,q

λ

=
∞

∑
k=0

(
[m1 + · · ·+ mr + x]p,q

k

)
λktk

=
∞

∑
k=0

(
1
λ
[m1 + · · ·+ mr + x]p,q

)
k

λk tk

k!

=
∞

∑
k=0

(
1
λ
[m1 + · · ·+ mr + x]p,q

)(
1
λ
[m1 + · · ·+ mr + x]p,q − 1

)

· · ·
(

1
λ
[m1 + · · ·+ mr + x]p,q − (k − 1)

)
λk tk

k!

=
∞

∑
k=0

(
[m1 + · · ·+ mr + x]p,q

) (
[m1 + · · ·+ mr + x]p,q − λ

)
· · · ([m1 + · · ·+ mr + x]p,q − (k − 1)λ

) tk

k!

=
∞

∑
k=0

(
[m1 + · · ·+ mr + x]p,q|λ

)
k

tk

k!
,

(3)

where generalized (p, q)-falling factorial
(
[x]p,q|λ

)
k = [x]p,q([x]p,q − λ) · · · ([x]p,q − (k − 1)λ).

By Definition 2, we have the theorem below.

Theorem 1. If r ∈ N, we have

E (r)
n,p,q(x, λ) = [2]rq

∞

∑
m1,··· ,mr=0

(−1)m1+···+mr qm1+···+mr
(
[m1 + · · ·+ mr + x]p,q|λ

)
n .

Proof. By (3), we have

∞

∑
l=0

E (r)
l,p,q(x, λ)

tl

l!
= [2]rq

∞

∑
m1,··· ,mr=0

(−1)m1+···+mr qm1+···+mr (1 + λt)
[m1 + · · ·+ mr + x]p,q

λ

=
∞

∑
l=0

(
[2]rq

∞

∑
m1,··· ,mr=0

(−1)m1+···+mr qm1+···+mr
(
[m1 + · · ·+ mr + x]p,q|λ

)
l

)
tl

l!
.
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The first part of the theorem follows when we compare the coefficients of tl

l! in the above equation.
We prove Theorem 1.

Note that

(
[m1 + · · ·+ mr + x]p,q|λ

)
n =

n

∑
l=0

S1(n, l)λn−l [m1 + · · ·+ mr + x]lp,q, (4)

where S1(n, l) is the Stirling numbers of the first kind.
The relation between Carlitz-type high order degenerate (p, q)-Euler polynomials E (r)

n,p,q(x, λ) and

Carlitz-type high order (p, q)-Euler polynomials E(r)
n,p,q(x) is given by the below theorem.

Theorem 2. For r ∈ N and n ∈ Z+, we have

E (r)
n,p,q(x, λ) =

n

∑
l=0

S1(n, l)λn−lE(r)
l,p,q(x), E (r)

n,p,q(λ) =
n

∑
l=0

S1(n, l)λn−lE(r)
l,p,q.

Proof. By Theorem 1, (2), and (4), we get

E (r)
n,p,q(x, λ) =

n

∑
l=0

S1(n, l)λn−l [2]rq
∞

∑
m1,··· ,mr=0

(−1)m1+···+mr qm1+···+mr [m1 + · · ·+ mr + x]lp,q

=
n

∑
l=0

S1(n, l)λn−lE(r)
l,p,q(x).

One can obtain the desired result immediately.

The Carlitz-type higher-order degenerate (p, q)-Euler number En,p,q(λ) can be determined
explicitly. A few of them are

E (r)
0,p,q(λ) = 1,

E (r)
1,p,q(λ) =

[2]rq
p − q

(
1

1 + pq

)r
− [2]q

p − q

(
1

1 + q2

)r
,

E (r)
2,p,q(λ) = − [2]rqλ

p − q

(
1

1 + pq

)r
+

[2]q
(p − q)2

(
1

1 + p2q

)r
+

[2]rqλ

p − q

(
1

1 + q2

)r

− 2[2]rq
(p − q)2

(
1

1 + pq2

)r
+

[2]rq
(p − q)2

(
1

1 + q3

)r
,

E (r)
3,p,q(λ) =

2[2]rqλ2

(p − q)

(
1

1 + pq

)r
− 3[2]rqλ

(p − q)2

(
1

1 + p2q

)r
+

[2]rq
(p − q)3

(
1

1 + p3q

)r

− 2[2]rqλ2

(p − q)

(
1

1 + q2

)r
+

6[2]rqλ

(p − q)2

(
1

1 + pq2

)r
− 3[2]rq

(p − q)3

(
1

1 + p2q2

)r

− 3[2]rqλ

(p − q)2

(
1

1 + q3

)r
+

3[2]rq
(p − q)3

(
1

1 + pq3

)r
− [2]rq

(p − q)3

(
1

1 + q4

)r
.

By using computer, Carlitz-type higher-order degenerate (p, q)-Euler number E (r)
n,p,q(λ) can be

determined explicitly. The first few E (r)
n,p,q(λ) and E(r)

n,p,q are listed in Table 1.
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Table 1. The first few numbers E (r)
n,p,q(λ) and E(r)

n,p,q.

Degree n E(2)
n,1/2,1/3

(
9

10

)
E(2)

n,1/2,1/3

(
1

10

)
E(2)

n,1/2,1/3

(
1

100

)
E(2)

n,1/2,1/3

1 − 984
1225

− 984
1225

− 984
1225

− 984
1225

2 − 6149664
53382875

−283179072
373680125

−1550969286
1868400625

−2505564
2989441

3
43455323971646694
520267306514580625

−334418269722928746
520267306514580625

−11096966497657123158
13006682662864515625

−152830161504
174034980625

Note that the limit of E (2)
n,1/2,1/3 (λ) is E(2)

n,1/2,1/3 as λ approaches 0 (see Table 1).

Again, we give a relation between Carlitz-type higher-order (p, q)-Euler polynomials E(r)
n,p,q(x)

and Carlitz-type higher-order degenerate (p, q)-Euler polynomials E (r)
n,p,q(x, λ) in the theorem below.

Theorem 3. For m ∈ Z+, we have

E(r)
m,p,q(x) =

m

∑
n=0

E (r)
n,p,q(x, λ)λm−nS2(m, n).

Proof. We use t instead of
eλt − 1

λ
in Definition 2, we have

∞

∑
m=0

E(r)
m,p,q(x)

tm

m!
= [2]rq

∞

∑
m1,··· ,mr=0

(−1)m1+···+mr qm1+···+mr e[m1+···+mr+x]p,qt

=
∞

∑
n=0

E (r)
n,p,q(x, λ)

(
eλt − 1

λ

)n 1
n!

=
∞

∑
n=0

E (r)
n,p,q(x, λ)λ−n

∞

∑
m=n

S2(m, n)λm tm

m!

=
∞

∑
m=0

(
m

∑
n=0

E (r)
n,p,q(x, λ)λm−nS2(m, n)

)
tm

m!
.

Use t instead of log(1 + λt)1/λ in (1), we have

∞

∑
n=0

E(r)
n,p,q(x)

(
log(1 + λt)1/λ

)n 1
n!

= [2]rq
∞

∑
m1,··· ,mr=0

(−1)m1+···+mr qm1+···+mr (1 + λt)
[m1 + · · ·+ mr + x]p,q

λ

=
∞

∑
m=0

E (r)
m,p,q(x, λ)

tm

m!
,

(5)

and
∞

∑
n=0

E(r)
n,p,q(x)

(
log(1 + λt)1/λ

)n 1
n!

=
∞

∑
m=0

(
m

∑
n=0

E(r)
n,p,q(x)λm−nS1(m, n)

)
tm

m!
. (6)

Thus, we have the theorem below from (5) and (6).

Theorem 4. For m ∈ Z+, we have
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E (r)
m,p,q(x, λ) =

m

∑
n=0

E(r)
n,p,q(x)λm−nS1(m, n).

We note that

(1 + λt)

[m1 + · · ·+ mr + x]p,q

λ

= (1 + λt)
px[m1 + · · ·+ mr]p,q

λ (1 + λt)
qm1+···+mr [x]p,q

λ

=
∞

∑
m=0

(px[m1 + · · ·+ mr]p,q|λ)m
tm

m!
elog(1+λt)

qm1+···+mr [x]p,q

λ

=
∞

∑
m=0

(px[m1 + · · ·+ mr]p,q|λ)m
tm

m!

∞

∑
l=0

(
qm1+···+mr [x]p,q

λ

)l log(1 + λt)l

l!

=
∞

∑
m=0

(px[m1 + · · ·+ mr]p,q|λ)m
tm

m!

∞

∑
l=0

(
qm1+···+mr [x]p,q

λ

)l ∞

∑
k=l

S1(k, l)λk tk

k!

=
∞

∑
n=0

(
n

∑
k=0

k

∑
l=0

(
n
k

)
(px[m1 + · · ·+ mr]p,q|λ)n−kλk−lq(m1+···+mr)l [x]lp,qS1(k, l)

)
tn

n!
.

(7)

By Definition 2 and (7), we get

∞

∑
n=0

E (r)
n,p,qζ(x, λ)

tn

n!

= [2]rq
∞

∑
m1,··· ,mr=0

(−1)m1+···+mr qm1+···+mr (1 + λt)

[m1 + · · ·+ mr + x]p,q

λ

= [2]rq
∞

∑
m1,··· ,mr=0

(−1)m1+···+mr qm1+···+mr

×
∞

∑
n=0

(
n

∑
k=0

k

∑
l=0

(
n
k

)
(px[m1 + · · ·+ mr]p,q|λ)n−kλk−lq(m1+···+mr)l [x]lp,qS1(k, l)

)
tn

n!
.

When we compare the coefficients of tn

n! in the above equation, we have the theorem below.

Theorem 5. For 0 < q < p ≤ 1, r ∈ N, and n ∈ Z+,

E (r)
n,p,q(x, λ) = [2]rq

∞

∑
m1,··· ,mr=0

n

∑
k=0

k

∑
l=0

(
n
k

)
(−1)m1+···+mr qm1+···+mr

× (px[m1 + · · ·+ mr]p,q|λ)n−kλk−lq(m1+···+mr)l [x]lp,qS1(k, l).
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From (4) and Theorem 2, we get this:

∞

∑
n=0

E (r)
n,p,q(x, λ)

tn

n!

= [2]rq
∞

∑
m1,··· ,mr=0

(−1)m1+···+mr qm1+···+mr (1 + λt)

[m1 + · · ·+ mr + x]p,q

λ

= [2]rq
∞

∑
m1,··· ,mr=0

(−1)m1+···+mr qm1+···+mr

×
∞

∑
n=0

n

∑
l=0

S1(n, l)λn−l ∑l
j=0 (

l
j)(−1)j px(l−j)qxj

(p − q)l p(l−j)(m1+···+mr)qj(m1+···+mr) tn

n!

=
∞

∑
n=0

⎛⎝[2]rq
n

∑
l=0

l

∑
j=0

S1(n, l)λn−l(l
j)(−1)jqxj px(l−j)

(p − q)l

(
1

1 + qj+1 pl−j

)r
⎞⎠ tn

n!
.

When we compare the coefficients tn

n! in the above equation, we get the theorem.

Theorem 6. For r ∈ N and n ∈ Z+,

E (r)
n,p,q(x, λ) = [2]rq

n

∑
l=0

l

∑
j=0

S1(n, l)λn−l(l
j)(−1)jqxj px(l−j)

(p − q)l

(
1

1 + qj+1 pl−j

)r
,

E (r)
n,p,q(λ) = [2]rq

n

∑
l=0

l

∑
j=0

S1(n, l)λn−l(l
j)(−1)j

(p − q)l

(
1

1 + qj+1 pl−j

)r
.

The Carlitz-type high order degenerate (p, q)-Euler polynomials En,p,q(x, λ) can be determined
explicitly. Here are a few of them:

E (r)
0,p,q(x, λ) = 1,

E (r)
1,p,q(x, λ) =

[2]rq px

p − q

(
1

1 + pq

)r
− [2]rqqx

p − q

(
1

1 + q2

)r
,

E (r)
2,p,q(x, λ) = − [2]rqλpx

p − q

(
1

1 + pq

)r
+

[2]rq p2x

(p − q)2

(
1

1 + p2q

)r
+

[2]rqλqx

p − q

(
1

1 + q2

)r

− 2[2]rq pxqx

(p − q)2

(
1

1 + pq2

)r
+

[2]rqq2x

(p − q)2

(
1

1 + q3

)r
,

E (r)
3,p,q(x, λ) =

2[2]rqλ2 px

p − q

(
1

1 + pq

)r
− 3[2]rqλp2x

(p − q)2

(
1

1 + p2q

)r
+

[2]rq p3x

(p − q)3

(
1

1 + p3q

)r

− 2[2]rqλ2qx

p − q

(
1

1 + q2

)r
+

6[2]rqλpxqx

(p − q)2

(
1

1 + pq2

)r
− 3[2]rq p2xqx

(p − q)3

(
1

1 + p2q2

)r

− 3[2]rqλq2x

(p − q)2

(
1

1 + q3

)r
+

3[2]rq pxq2x

(p − q)3

(
1

1 + pq3

)r
− [2]rqq3x

(p − q)3

(
1

1 + q4

)r
.

3. Some Symmetric Identities for Carlitz-Type Higher-Order Degenerate (p, q)-Euler Numbers
and Polynomials

Let w1 ≡ 1 (mod 2), w2 ≡ 1 (mod 2) for w1, w2 ∈ N. For r ∈ N and n ∈ Z+, we obtain certain
symmetry identities for Carlitz-type higher-order degenerate (p, q)-Euler numbers and polynomials.

Theorem 7. Let w1 ≡ 1 (mod 2), w2 ≡ 1 (mod 2) for w1, w2 ∈ N. Then, we obtain
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[w1]
n
p,q[2]

r
qw2

w1−1

∑
j1,··· ,jr=0

(−1)j1+···+jr qw2(j1+···+jr)

× E (r)
n,pw1 qw1

(
w2x +

w2

w1
(j1 + · · ·+ jr),

λ

[w1]p,q

)

= [w2]
n
p,q[2]

r
qw1

w2−1

∑
j1,··· ,jr=0

(−1)j1+···+jr qw1(j1+···+jr)

× E (r)
n,pw2 ,qw2

(
w1x +

w1

w2
(j1 + · · ·+ jr),

λ

[w2]p,q

)
.

(8)

Proof. Note that [xy]p,q = [x]py ,qy [y]p,q for any x, y ∈ C. In Definition 2, we induce the next

result by substituting w1x +
w1

w2
(j1 + · · · + jr) instead of x and replace q, p, and λ by qw2 , pw2 ,

and
λ

[w2]p,q
, respectively:

∞

∑
n=0

(
[w2]

n
p,q[2]

r
qw1

w2−1

∑
j1,··· ,jr=0

(−1)∑r
l=1 jl qw1(∑r

l=1 jl)E (r)
n,pw2 ,qw2

(
w1x +

w1

w2
(

r

∑
l=1

jl),
λ

[w2]p,q

))
tn

n!

= [2]rqw1

w2−1

∑
j1,··· ,jr=0

(−1)∑r
l=1 jl qw1(∑r

l=1 jl)
∞

∑
n=0

E (r)
n,pw2 ,qw2

(
w1x +

w1

w2
(

r

∑
l=1

jl),
λ

[w2]p,q

)
([w2]p,qt)n

n!

= [2]rqw1

w2−1

∑
j1,··· ,jr=0

(−1)∑r
l=1 jl qw1(∑r

l=1 jl)[2]rqw2

∞

∑
m1,··· ,mr=0

(−1)m1+···+mr qw2(m1+···+mr)

×
(

1 +
λ

[w2]p,q
[w2]p,qt

)
[

w1x + w1x +
w1

w2
(j1 + · · ·+ jr) + m1 + · · ·+ mr

]
pw2 ,qw2

λ
[w2]p,q

= [2]rqw1

w2−1

∑
j1,··· ,jr=0

(−1)∑r
l=1 jl qw1(∑r

l=1 jl)[2]rqw2

∞

∑
m1,··· ,mr=0

(−1)m1+···+mr qw2(m1+···+mr)

× (1 + λt)

[w1w2x + w1(j1 + · · ·+ jr) + w2(m1 + · · ·mr)]p,q

λ .
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Since there exists the unique non-negative integer n such that m = wn + i with 0 ≤ i ≤ w − 1 for
any non-negative integer m and odd positive integer w, this can be written

[2]rqw1 [2]
r
qw2

w2−1

∑
j1,··· ,jr=0

(−1)∑r
l=1 jl qw1(∑r

l=1 jl)
∞

∑
m1,··· ,mr=0

(−1)m1+···+mr qw2(m1+···+mr)

× (1 + λt)

[w1w2x + w1(j1 + · · ·+ jr) + w2(m1 + · · ·mr)]p,q

λ

= [2]rqw1 [2]
r
qw2

w2−1

∑
j1,··· ,jr=0

(−1)∑r
l=1 jl qw1(∑r

l=1 jl)

×
∞

∑
w1n1+i1,··· ,w1nr+ir=0

0≤ik≤w1−1
1≤k≤r

(−1)w1n1+i1+···+w1nr+ir qw2(w1n1+i1+···+w1nr+ir)

× (1 + λt)

[w1w2x + w1(j1 + · · ·+ jr) + w2w1(n1 + · · ·+ nr) + w2(i1 + · · ·+ ir)]p,q

λ

= [2]rqw1 [2]
r
qw2

w2−1

∑
j1,··· ,jr=0

(−1)∑r
l=1 jl qw1(∑r

l=1 jl)

×
w1−1

∑
i1,··· ,ir=0

∞

∑
n1,··· ,nr=0

(−1)∑r
l=1 nl (−1)∑r

l=1 il qw2(∑r
l=1 il)qw1w2(∑r

l=1 nl)

× (1 + λt)

[w1w2x + w1(j1 + · · ·+ jr) + w2w1(n1 + · · ·+ nr) + w2(i1 + · · ·+ ir)]p,q

λ .

We obtain the following formula using the formula above:

∞

∑
n=0

(
[w2]

n
p,q[2]

r
qw1

w2−1

∑
j1,··· ,jr=0

(−1)∑r
l=1 jl qw1(∑r

l=1 jl)E (r)
n,pw2 ,qw2

(
w1x +

w1

w2
(

r

∑
l=1

jl),
λ

[w2]p,q

))
tn

n!

= [2]rqw1 [2]
r
qw2

∞

∑
n1,··· ,nr=0

w2−1

∑
j1,··· ,jr=0

w1−1

∑
i1,··· ,ir=0

(−1)∑r
l=1 jl (−1)∑r

l=1 nl (−1)∑r
l=1 il

× qw1(∑r
l=1 jl)qw2(∑r

l=1 il)qw1w2(∑r
l=1 nl)

× (1 + λt)

[w1w2x + w1(j1 + · · ·+ jr) + w2w1(n1 + · · ·+ nr) + w2(i1 + · · ·+ ir)]p,q

λ .

(9)
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From a similar approach, we also have that

∞

∑
n=0

(
[w1]

n
p,q[2]

r
qw2

w1−1

∑
j1,··· ,jr=0

(−1)∑r
l=1 jl qw2(∑r

l=1 jl)E (r)
n,pw1 ,qw1

(
w2x +

w2

w1
(

r

∑
l=1

jl),
λ

[w1]p,q

))
tn

n!

= [2]rqw2 [2]
r
qw1

∞

∑
n1,··· ,nr=0

w1−1

∑
j1,··· ,jr=0

w2−1

∑
i1,··· ,ir=0

(−1)∑r
l=1 jl (−1)∑r

l=1 nl (−1)∑r
l=1 il

× qw2(∑r
l=1 jl)qw1(∑r

l=1 il)qw1w2(∑r
l=1 nl)

× (1 + λt)

[w1w2x + w2(j1 + · · ·+ jr) + w2w1(n1 + · · ·+ nr) + w1(i1 + · · ·+ ir)]p,q

λ .

(10)

Therefore, by (9) and (10), we can obtain the desired result.

Taking w2 = 1 in Theorem 7, we obtain the following multiplication theorem for Carlitz-type
higher-order degenerate (p, q)-Euler polynomials.

Theorem 8. Let w1 ≡ 1 (mod 2) for w1 ∈ N. For r ∈ N and n ∈ Z+, we obtain

E (r)
n,p,q (w1x, λ) =

[2]rq
[2]rqw1

[w1]
n
p,q

w1−1

∑
j1,··· ,jr=0

(−1)j1+···+jr qj1+···+jr

× E (r)
n,pw1 ,qw1

(
x +

j1 + · · ·+ jr
w1

,
λ

[w1]p,q

)
.

(11)

Taking λ = 0 in (11), we get the multiplication theorem for Carlitz-type high order (p, q)-Euler
polynomials (see [11]).

Corollary 1. Let w1 ≡ 1 (mod 2) for w1 ∈ N. For n ∈ Z+ and r ∈ N, we get

E(r)
n,p,q(w1x) =

[2]rq
[2]rqw1

[w1]
n
p,q

w1−1

∑
j1,··· ,jr=0

(−1)j1+···+jr qj1+···+jr

× E(r)
n,pw1 ,qw1

(
x +

j1 + · · ·+ jr
w1

)
.

For r = 1 in (10), we have the multiplication theorem for Carlitz-type degenerate (p, q)-Euler
polynomials (see [4]).

Corollary 2. Let w1 ≡ 1 (mod 2) for w1 ∈ N. For n ∈ Z+,

En,p,q(w1x, λ) =
[2]q
[2]qw1

[w1]
n
p,q

w1−1

∑
j=0

(−1)jqjEn,pw1 ,qw1

(
x +

j
w1

,
λ

[w1]p,q

)
.

If p = 1, q → 1 in Corollary 2, then we get the corollary.

Corollary 3. Let m ≡ 1 (mod 2) for m ∈ N. For n ∈ Z+,
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En(x, λ) = mn
m−1

∑
j=0

(−1)jqjEn

(
x + j

m
,

λ

m

)
. (12)

If λ approaches to 0 in (12), this leads to the distribution relation for Euler polynomials

En(x) = mn
m−1

∑
j=0

(−1)jEn

(
x + i

m

)
.

By Theorem 2 and Theorem 7, it follows the theorem below.

Theorem 9. Let w1 and w2 be odd positive integers. Then, it has

n

∑
l=0

S1(n, l)λn−l [w1]
l
p,q[2]

r
qw2

×
w1−1

∑
j1,··· ,jr=0

(−1)j1+···+jr qw2(j1+···+jr)E(r)
l,pw1 ,qw1

(
w2x +

w2

w1
(j1 + · · ·+ jr)

)

=
n

∑
l=0

S1(n, l)λn−l [w2]
l
p,q[2]

r
qw1

×
w2−1

∑
j1,··· ,jr=0

(−1)j1+···+jr qw1(j1+···+jr)E(r)
l,pw2 ,qw2

(
w1x +

w1

w2
(j1 + · · ·+ jr)

)
.

We get another symmetry identity by using the addition theorem about the Carlitz-type
higher-order degenerate (p, q)-Euler polynomials E (r)

n,p,q(x). Let

A(r)
n,k,p,q(w) =

w−1

∑
j1,··· ,jr=0

(−1)∑r
i=1 ji q(n−k+1)(∑r

i=1 ji)[j1 · · ·+ jk]kp,q

for each integer n ≥ 0. The A(k)
n,k,p,q(w) is called as the alternating (p, q)-sums of powers.

Theorem 10. Let w1, w2 ∈ N with w1 ≡ 1 (mod 2), w2 ≡ 1 (mod 2). For r ∈ N and n ∈ Z+, we obtain

n

∑
l=0

l

∑
k=0

(
l
k

)
S1(n, l)λn−l pw1w2xk[2]qw1 [w1]

k
p,q[w2]

l−k
p,q E(r,k)

l−k,pw2 ,qw2 (w1x)A(r)
l,k,pw1 ,qw1 (w2)

=
n

∑
l=0

l

∑
k=0

(
l
k

)
S1(n, l)λn−l pw1w2xk[2]qw2 [w2]

k
p,q[w1]

l−k
p,q E(r,k)

l−k,pw1 ,qw1 (w2x)A(r)
l,k,pw2 ,qw2 (w1).
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Proof. Now, we use the addition theorem about the Carlitz-type higher-order degenerate (p, q)-Euler
polynomials (see [10]). We derive

w1−1

∑
j1,··· ,jr=0

(−1)∑r
i=1 ji qw2(∑r

i=1 ji)E(r)
l,pw1 ,qw1

(
w2x +

w2

w1
(j1 + · · ·+ jk)

)

=
w1−1

∑
j1,··· ,jr=0

(−1)∑r
i=1 ji qw2(∑r

i=1 ji)

×
l

∑
k=0

(
l
k

)
qw2(l−k)(∑r

i=1 ji)pw1w2xkE(r,k)
l−k,pw1 ,qw1 (w2x)

[
w2

w1
(j1 + · · ·+ jr)

]k

pw1 ,qw1

=
w1−1

∑
j1,··· ,jr=0

(−1)∑r
i=1 ji qw2(∑r

i=1 ji)

×
l

∑
k=0

(
l
k

)
qw2(l−k)(∑r

i=1 ji)pw1w2xkE(r,k)
l−k,pw1 ,qw1 (w2x)

(
[w2]p,q

[w1]p,q

)k

[j1 + · · ·+ jr]
k
pw2 ,qw2 .

By Theorem 12, then we have

n

∑
l=0

S1(n, l)λn−l [w1]
l
p,q[2]

r
qw2

×
w1−1

∑
j1,··· ,jr=0

(−1)j1+···+jr qw2(j1+···+jr)E(r)
l,pw1 ,qw1

(
w2x +

w2

w1
(j1 + · · ·+ jr)

)

=
n

∑
l=0

l

∑
k=0

(
l
k

)
S1(n, l)λn−l [w1]

l−k
p,q [w2]

k
p,q[2]

r
qw2 pw1w2xkE(r,k)

l−k,pw1 ,qw1 (w2x)

×
w1−1

∑
j1,··· ,jr=0

(−1)∑r
i=1 ji qw2(l−k+1)(∑r

i=1 ji) [j1 + · · ·+ jr]
k
pw2 ,qw2

=
n

∑
l=0

l

∑
k=0

(
l
k

)
S1(n, l)λn−l [w1]

l−k
p,q [w2]

k
p,q[2]

r
qw2 pw1w2xkE(r,k)

l−k,pw1 ,qw1 (w2x)A(k)
l,k,pw2 ,qw2 (w2).

(13)

Similarly, we have

n

∑
l=0

S1(n, l)λn−l [w2]
l
p,q[2]

r
qw1

×
w2−1

∑
j1,··· ,jr=0

(−1)j1+···+jr qw1(j1+···+jr)E(r)
l,pw2 ,qw2

(
w1x +

w1

w2
(j1 + · · ·+ jr)

)

=
n

∑
l=0

l

∑
k=0

(
l
k

)
S1(n, l)λn−l [w2]

l−k
p,q [w1]

k
p,q[2]

r
qw1 pw1w2xkE(r,k)

l−k,pw2 ,qw2 (w1x)

×
w2−1

∑
j1,··· ,jr=0

(−1)∑r
i=1 ji qw1(l−k+1)(∑r

i=1 ji) [j1 + · · ·+ jr]
k
pw1 ,qw1

=
n

∑
l=0

l

∑
k=0

(
l
k

)
S1(n, l)λn−l [w2]

l−k
p,q [w1]

k
p,q[2]

r
qw1 pw1w2xkE(r,k)

l−k,pw2 ,qw2 (w1x)A(k)
l,k,pw1 ,qw1 (w2).

(14)

By (13) and (14), we make the desired symmetric identity.

By Theorem 10, we have the symmetric identity for the Carlitz-type high order (h, p, q)-Euler
numbers E(r,h)

n,p,q in complex field.
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Corollary 4. Let w1 ≡ 1 (mod 2), w2 ≡ 1 (mod 2), where w1, w2 ∈ N . For r ∈ N and n ∈ Z+, we obtain

n

∑
l=0

l

∑
k=0

(
l
k

)
S1(n, l)λn−l [2]qw1 [w1]

k
p,q[w2]

l−k
p,q A(r)

l,k,pw1 ,qw1 (w2)E(r,k)
l−k,pw2 ,qw2

=
n

∑
l=0

l

∑
k=0

(
l
k

)
S1(n, l)λn−l [2]qw2 [w2]

k
p,q[w1]

l−k
p,q A(r)

l,k,pw2 ,qw2 (w1)E(r,k)
l−k,pw1 ,qw1 .

4. Conclusions

In our previous paper [4], we studied some identities of symmetry on the Carlitz-type degenerate
(p, q)-Euler polynomials. The motivation of this paper is to investigate some explicit identities for the
Carlitz-type higher-order degenerate (p, q)-Euler polynomials in the second row of the diagram at page
3. Thus, we defined the Carlitz-type higher-order degenerate (p, q)-Euler polynomials in Definition 2
and obtained the formulas (explicit formula (Theorem 6), multiplication theorem (Theorem 8), and
distribution relation (Corollary 2, Corollary 3)). In Theorem 7, we gave some symmetry identities for the
Carlitz-type higher-order degenerate (p, q)-Euler polynomials. We also obtained the explicit identities
related to the Carlitz-type higher-order (p, q)-Euler polynomials, the alternating (p, q)-sums of powers,
and Stirling numbers (see Theorem 10 and Corollary 4). In particular, these results generalized
some well-known properties relating degenerate Euler numbers and polynomials, degenerate Stirling
numbers, alternating sums of powers, multiplication theorem, distribution relation, falling factorial,
symmetry properties of the degenerate Euler numbers and polynomials (see [7–18]). In addition, in
this paper, if we take r = 1, then [4] is the special case of this paper.
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Abstract: In this paper, we present a Durrmeyer type generalization of parametric Bernstein operators.
Firstly, we study the approximation behaviour of these operators including a local and global
approximation results and the rate of approximation for the Lipschitz type space. The Voronovskaja
type asymptotic formula and the rate of convergence of functions with derivatives of bounded
variation are established. Finally, the theoretical results are demonstrated by using MAPLE software.

Keywords: Bernstein operators; rate of approximation; Voronovskaja type asymptotic formula

1. Introduction

A first fundamental result in approximation theory was Weierstrass approximation theorem [1]
which forms the solid foundation of Approximation Theory. The proof of the theorem was quite
long and difficult. So there were several proofs given by different famous mathematicians. One of
them was given by Bernstein [2] which was easy and elegant, which also motivated the researchers
to construct operators to deal with the approximation problems in different settings. Here, we give
a Durrmeyer type generalization of parametric Bernstein operators. Let C(j) be the space of all real
valued continuous functions S on the interval j = [0, 1]. For S ∈ C(j), Chen et al. [3] introduced a new
family of generalized Bernstein operators depending upon a non-negative real parameter 0 ≤ θ ≤ 1,
which is given as follows:

T(θ)
m (S ; x) =

m

∑
s=0

p(θ)m,s(x)S
( s

m

)
, x ∈ j, (1)

where

p(θ)m,s(x) =
[(

m − 2
s

)
(1 − θ)x +

(
m − 2
s − 2

)
(1 − θ)(1 − x) +

(
m
s

)
θx(1 − x)

]
xs−1(1 − x)m−s−1,

m ≥ 2, p(θ)1,0 (x) = 1 − x, p(θ)1,1 (x) = x. For θ = 1, it reduces to original Bernstein operators.
Several types of such operators have been studied so far, for example, Kajla and Acar [4] gave

the integral variant of the operators (1) and studied the approximation properties of these operators.
Genuine Bernstein–Durrmeyer type operators were defined and studied in [5]. Abel and Heilmann [6]
studied the complete asymptotic expansion of the Bernstein–Durrmeyer operators. Cárdenas–Morales
and Gupta [7] considered a two-parameter family of summation-integral type operators involving
Pólya–Eggenberger distribution. In 2015, Abel et al. [8] presented the Durrmeyer type modification of

Symmetry 2020, 12, 1141; doi:10.3390/sym12071141 www.mdpi.com/journal/symmetry39
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the Stancu operators and obtained some approximation theorems. Agrawal et al. [9] defined Stancu
type Kantorovich modification of q-Bernstein-Schurer operators and studied some approximation
theorems on uniform convergence as well as A-statistical convergence. Ansari et al. in [10] proposed
Jakimovski–Leviatan–Durrmeyer type operators based on Appell polynomials and obtained some
approximation results, e.g.,Voronovskaja type asymptotic formula, rate of convergence and weighted
approximation of these operators. Acar et al. [11] presented a general class of linear positive
operators and established Voronovskaya type theorems. In 2019, Mursaleen et al. [12] considered
Stancu–Jakimovski–Leviatan–Durrmeyer type operators and studied simultaneous approximation
and A-statistical approximation properties of these operators.

Acu and Kajla [13] established θ-Bernstein operators depend on parameters ρ1, ρ2 ∈ N ∪ {0}
as follows:

B(θ)
m,ρ1,ρ2(S ; x) =

m−ρ1ρ2

∑
μ=0

p(θ)m−ρ1ρ2,μ(x)
ρ2

∑
s=0

p(θ)ρ2,s(x)S
(

μ + sρ1

m

)
. (2)

If ρ1 = ρ2 = 0, these operators reduces to the operators T(θ)
m .

For S ∈ C(j), we introduce a Durrmeyer type modification of the operators (2) as follows:

U(θ)
m,ρ1,ρ2(S ; x) = (m + 1)

m−ρ1ρ2

∑
μ=0

p(θ)m−ρ1ρ2,μ(x)
ρ2

∑
s=0

p(θ)ρ2,s(x)
∫ 1

0
pm,μ+sρ1(t)S(t)dt. (3)

The aim of this paper is to derive approximation properties for the operators (3) by working on
Korovkin’s results [14]. We also compute the rate of convergence involving modulus of smoothness
and Lipschitz type function.

2. Auxiliary Results

In this section, we derive some auxiliary results which will be used in proving our main results of
subsequent sections. First, we determine moments and central moments for the operators (3).

Lemma 1. Let ei(t) = ti, i = 0, 1, 2 · · · . For the operators U(θ)
m,ρ1,ρ2 , we have

(i) U(θ)
m,ρ1,ρ2(e0; x) = 1;

(ii) U(θ)
m,ρ1,ρ2(e1; x) =

mx + 1
(m + 2)

;

(iii) U(θ)
m,ρ1,ρ2(e2; x) =

x2 (m2 − m − 2 + ρ1ρ2 − ρ2
1(ρ2 − 2θ + 2) + 2θ

)
(m + 3)(m + 2)

+
x
(
2 + 4m − ρ1ρ2 + ρ2

1(ρ2 − 2θ + 2)− 2θ
)

(m + 3)(m + 2)
+

2
(m + 3)(m + 2)

;

(iv) U(θ)
m,ρ1,ρ2(e3; x) =

x3

(m + 4)(m + 3)(m + 2)

[
m3 − 3m2 − 4m + ρ1ρ2(3m − 2) + 2ρ3

1(ρ2 − 6θ + 6)

− 3mρ2
1(2 + ρ2 − 2θ)− 12(θ − 1) + 6mθ

]
+

x2

(m + 4)(m + 3)(m + 2)

[
9m2 + 9ρ1ρ2 − 3m − 3mρ1ρ2 − 3ρ3

1(6 + ρ2 − 6θ)− 6ρ2
1(2 + ρ2 − 2θ)

+ 3mρ2
1(2 + ρ2 − 2θ) + 30(θ − 1)− 6mθ

]
+

x
(
18m − 7ρ1ρ2 + ρ3

1(ρ2 − 6θ + 6) + 6ρ2
1(2 + ρ2 − 2θ)− 18(θ − 1)

)
(m + 4)(m + 3)(m + 2)

+
6

(m + 4)(m + 3)(m + 2)
;

(v) U(θ)
m,ρ1,ρ2 (e4; x) =

x4

(m + 5)(m + 4)(m + 3)(m + 2)

[
54m − m2 − 6m3 + m4 − 6ρ1ρ2 − 14mρ1ρ2 + 3ρ2

1ρ2
2 − 6ρ3

1ρ2
2 +

3ρ4
1ρ2

2 − 6m2ρ1(−ρ2 + ρ1(2 + ρ2)) + 8mρ3
1(6 + ρ2 − 6θ) + 6ρ4

1ρ2(1 − 2θ) + 6mρ2
1(2 + ρ2 − 2θ) + 72(−1 + θ) +

40



Symmetry 2020, 12, 1141

72ρ4
1(−1 + θ)− 12ρ2

1ρ2(−1 + θ) + 12ρ3
1ρ2(−1 + θ) + 24ρ2

1(−1 + θ)2 − 60mθ + 12m2 (1 + ρ2
1
)

θ + 12ρ1ρ2θ

]
+

x3

(m + 5)(m + 4)(m + 3)(m + 2)

[
16m3 − 124m − 36m2 − 8ρ1ρ2 + 54mρ1ρ2 + 32ρ3

1ρ2 − 6ρ2
1ρ2

2 + 12ρ3
1ρ2

2 −
6ρ4

1ρ2
2 + 6m2ρ1(−ρ2 + ρ1(2 + ρ2)) − 12mρ3

1(6 + ρ2 − 6θ) − 12ρ4
1ρ2(1 − 2θ) − 42mρ2

1(2 + ρ2 − 2θ) − 264(−1 +

θ) − 120ρ3
1(−1 + θ) − 144ρ4

1(−1 + θ) + 24ρ2
1ρ2(−1 + θ) − 12ρ3

1ρ2(−1 + θ) − 48ρ2
1(−1 + θ)2 + 156mθ −

12m2 (1 + ρ2
1
)

θ − 24ρ1ρ2θ − 12ρ3
1ρ2θ

]
+

x2

(m + 5)(m + 4)(m + 3)(m + 2)

[
24m + 72m2 + 60ρ1ρ2 − 40mρ1ρ2 −

35ρ2
1ρ2 − 42ρ3

1ρ2 − ρ4
1ρ2 + 3ρ2

1ρ2
2 − 6ρ3

1ρ2
2 + 3ρ4

1ρ2
2 + 4mρ3

1(6 + ρ2 − 6θ) + 6ρ4
1ρ2(1 − 2θ) + 36mρ2

1(2 + ρ2 − 2θ) +

336(−1 + θ) + 70ρ2
1(−1 + θ) + 180ρ3

1(−1 + θ) + 86ρ4
1(−1 + θ) − 12ρ2

1ρ2(−1 + θ) + 24ρ2
1(−1 + θ)2 − 96mθ +

12ρ1ρ2θ + 12ρ3
1ρ2θ

]
+

x
(
96m − 46ρ1ρ2 + 35ρ2

1ρ2 + 10ρ3
1ρ2 + ρ4

1ρ2 − 144(−1 + θ)− 70ρ2
1(−1 + θ)− 60ρ3

1(−1 + θ)− 14ρ4
1(−1 + θ)

)
(m + 5)(m + 4)(m + 3)(m + 2)

+
24

(2 + m)(3 + m)(4 + m)(5 + m)
.

Let Θ(θ),m
m,ρ1,ρ2 := U(θ)

m,ρ1,ρ2((t − x)m; x), m = 1, 2, 4 be the central moments of U(θ)
m,ρ1,ρ2 .

Lemma 2. For the operators U(θ)
m,ρ1,ρ2 , we get

(i) Θ(θ),1
m,ρ1,ρ2(x) =

(
1 − 2x
2 + m

)
;

(ii) Θ(θ),2
m,ρ1,ρ2(x) =

2
(2 + m)(3 + m)

+
x(2m − ρ1(ρ2 − ρ1(2 + ρ2 − 2θ))− 2(2 + θ))

(2 + m)(3 + m)

+
x2(−2m + ρ1(ρ2 − ρ1(2 + ρ2 − 2θ)) + 2(2 + θ))

(2 + m)(3 + m)
.

Lemma 3. For m ∈ N, we have

U(θ)
m,ρ1,ρ2((t − x)2; x) ≤ W (θ)

ρ1,ρ2 x(1 − x)
(m + 2)

= δ
(θ)
m,ρ1,ρ2(x), ∀x ∈ j,

where W (θ)
ρ1,ρ2 is a positive constant depending on ρ1, ρ2 and θ.

Proof. This lemma is established by direct computation and the details are missing.

Remark 1. For the operators U(θ)
m,ρ1,ρ2 , we get

lim
m→∞

m Θ(θ),1
m,ρ1,ρ2(x) = (1 − 2x),

lim
m→∞

m Θ(θ),2
m,ρ1,ρ2(x) = 2x(1 − x),

lim
m→∞

m2 Θ(θ),4
m,ρ1,ρ2(x) = 12x2(1 − x)2.

Lemma 4. For S ∈ C(j), we have
‖U(θ)

m,ρ1,ρ2(S ; x)‖ ≤ ‖S‖.

Proof. From Lemma 1 and Equation (3), we obtain

‖U(θ)
m,ρ1,ρ2‖ ≤ (m + 1)

m−ρ1ρ2

∑
μ=0

p(θ)m−ρ1ρ2,μ(x)
ρ2

∑
s=0

p(θ)ρ2,s(x)
∫ 1

0
pm,μ+sρ1(t)|S(t)|dt

≤ ‖S‖U(θ)
m,ρ1,ρ2(e0; x) = ‖S‖.
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Theorem 1. Suppose that S ∈ C(j). Show that lim
m→∞

U(θ)
m,ρ1,ρ2(S ; x) = S(x), uniformly in j.

Proof. Since U(θ)
m,ρ1,ρ2(1; x) = 1, U(θ)

m,ρ1,ρ2(t; x) → x, U(θ)
m,ρ1,ρ2(t

2; x) → x2 as m → ∞, uniformly in j.

By Korovkin’s results, it follows that U(θ)
m,ρ1,ρ2(S ; x) converges to S(x) uniformly on j.

3. Voronovskaja Type Theorems

Here, we establish the Voronovskaja, Grüss-Voronovskaja type theorems and related results.

Theorem 2. Suppose that S ∈ C(j). If S′,S′′ exists at a point x ∈ j then

lim
m→∞

m
(

U(θ)
m,ρ1,ρ2(S ; x)− S(x)

)
= (1 − 2x)S′(x) + x(1 − x)S′′(x), (4)

Further, if S′′ ∈ C(j) then (4) holds uniformly in j.

Proof. Applying the application of Taylor’s theorem, we have

S(t) = S(x) + (t − x)S′(x) +
1
2
(t − x)2S′′(x) + ρ1(t, x)(t − x)2, (5)

where ρ1(t, x) → 0 as t → x and is a continuous function on j. Applying U(θ)
m,ρ1,ρ2 to (5), we get

U(θ)
m,ρ1,ρ2 (S ; x)− S(x) = S′(x)U(θ)

m,ρ1,ρ2 ((t − x); x) +
1
2
S′′(x)U(θ)

m,ρ1,ρ2 ((t − x)2; x) + U(θ)
m,ρ1,ρ2 (ρ1(t, x)(t − x)2; x),

lim
m→∞

m
(

U(θ)
m,ρ1,ρ2 (S ; x)− S(x)

)
= (1 − 2x)S′(x) + x(1 − x)S′′(x) + lim

m→∞
mU(θ)

m,ρ1,ρ2 (ρ1(t, x)(t − x)2; x).

Since ρ1(t, x) → 0 as t → x, for a given ε > 0, there exists δ > 0 such that |ρ1(t, x)| < ε whenever

|t − x| < δ. For |t − x| ≥ δ, we have |ρ1(t, x)| ≤ M (t−x)2

δ2 , for some M > 0. Let χδ(t) denote the
characteristic function of the interval (x − δ, x + δ). In view of Remark 1, we have

|U(θ)
m,ρ1,ρ2 (ρ1(t, x)(t − x)2; x)| ≤ U(θ)

m,ρ1,ρ2 (|ρ1(t, x)|(t − x)2χδ(t); x) + U(θ)
m,ρ1,ρ2 (|ρ1(t, x)|(t − x)2(1 − χδ(t)); x)

< ε U(θ)
m,ρ1,ρ2 ((t − x)2; x) +

M
δ2 U(θ)

m,ρ1,ρ2 ((t − x)4; x)

= ε O
(

1
m

)
+ O

(
1

m2

)
.

which implies that lim
m→∞

mU(θ)
m,ρ1,ρ2(ρ1(t, x)(t − x)2; x) = 0, due to the arbitrariness of ε > 0.

This complete the first half of the theorem.

To show the uniformity postulation, by the definition of uniformly continuity of S in j, the δ must
be independent of x and all the other estimates hold uniformly in x ∈ j.

In [15], Acar et al. obtained a Grüss type approximation result and a Grüss-Voronovskaja-type
result for linear and positive operators. Many authors have established in this direction so that we
refer the authors to [16–18] and references therein.

The next result is the Grüss–Voronovskaja type theorem for U(θ)
m,ρ1,ρ2 .

Theorem 3. Let S , h̄ ∈ C2(j) . Then, for each x ∈ j,

lim
m→∞

m
{

U(θ)
m,ρ1,ρ2((S h̄); x)− U(θ)

m,ρ1,ρ2(S ; x)U(θ)
m,ρ1,ρ2(h̄; x)

}
= S′(x)h̄′(x)2x(1 − x).

42



Symmetry 2020, 12, 1141

Proof. The following relation holds

U(θ)
m,ρ1,ρ2 (S h̄; x)− U(θ)

m,ρ1,ρ2 (S ; x)U(θ)
m,ρ1,ρ2 (h̄; x)=U(θ)

m,ρ1,ρ2 (S h̄; x)−S(x)h̄(x)−(S h̄)′(x)Θ(θ),1
m,ρ1,ρ2 (x)− 1

2
(S h̄)′′(x)Θ(θ),2

m,ρ1,ρ2 (x)

− h̄(x)
{

U(θ)
m,ρ1,ρ2 (S ; x)− S(x)− S′(x)Θ(θ),1

m,ρ1,ρ2 (x)− 1
2
S′′(x)Θ(θ),2

m,ρ1,ρ2 (x)
}

− U(θ)
m,ρ1,ρ2 (S ; x)

{
U(θ)

m,ρ1,ρ2 (h̄; x)− h̄(x)− h̄′(x)Θ(θ),1
m,ρ1,ρ2 (x)− 1

2
h̄′′(x)Θ(θ),2

m,ρ1,ρ2 (x)
}

+
1
2

Θ(θ),2
m,ρ1,ρ2 (x)

{
S(x)h̄′′(x) + 2S′(x)h̄′(x)− h̄′′(x)U(θ)

m,ρ1,ρ2 (S ; x)
}
+ Θ(θ),1

m,ρ1,ρ2 (x)
{
S(x)h̄′(x)− h̄′(x)U(θ)

m,ρ1,ρ2 (S ; x)
}

.

Now, by using Theorem 1, Theorem 2 and Remark 1, we get

lim
m→∞

m
{

U(θ)
m,ρ1,ρ2(S h̄; x)− U(θ)

m,ρ1,ρ2(S ; x)U(θ)
m,ρ1,ρ2(h̄; x)

}
= lim

m→∞
mS′(x)h̄′(x)Θ(θ),2

m,ρ1,ρ2(x) + lim
m→∞

1
2

mh̄′′(x)
{
S(x)− U(θ)

m,ρ1,ρ2(S ; x)
}

Θ(θ),2
m,ρ1,ρ2(x)

+ lim
m→∞

mh̄′(x)
{
S(x)− U(θ)

m,ρ1,ρ2(S ; x)
}

Θ(θ),1
m,ρ1,ρ2(x) = S′(x)h̄′(x)2x(1 − x).

Lipschitz-type space with two parameters α1 ≥ 0, α2 > 0 is defined in [19] as below:

Lip(α1,α2)
M (σ) :=

{
S ∈ C(j) : |S(t)− S(x)| ≤ M

|t − x|σ
(t + α1x2 + α2x)

σ
2

; t ∈ j, x ∈ (0, 1]

}
,

where 0 < σ ≤ 1.

Theorem 4. Suppose that S ∈ Lip(α1,α2)
M (σ). Prove that

∣∣∣U(θ)
m,ρ1,ρ2(S ; x)− S(x)

∣∣∣ ≤ M

⎛⎝Θ(θ),2
m,ρ1,ρ2(x)

α1x2 + α2x

⎞⎠σ/2

, ∀x ∈ (0, 1].

Proof. Using the application of Holder’s inequality and Lemma 2, we may write

∣∣∣U(θ)
m,ρ1,ρ2 (S ; x)− S(x)

∣∣∣ ≤ (m + 1)
m−ρ1ρ2

∑
μ=0

p(θ)m−ρ1ρ2,μ(x)
ρ2

∑
s=0

p(θ)ρ2,s(x)
∫ 1

0
|S(t)− S(x)| pm,μ+sρ1 (t)dt

≤ (m + 1)
m−ρ1ρ2

∑
μ=0

p(θ)m−ρ1ρ2,μ(x)
ρ2

∑
s=0

p(θ)ρ2,s(x)
(∫ 1

0
|S(t)− S(x)| 2

σ pm,μ+sρ1 (t)dt
) σ

2

≤
{
(m + 1)

m−ρ1ρ2

∑
μ=0

p(θ)m−ρ1ρ2,μ(x)
ρ2

∑
s=0

p(θ)ρ2,s(x)
∫ 1

0
|S(t)− S(x)| 2

σ pm,μ+sρ1 (t)dt

} σ
2

×
(
(m + 1)

m−ρ1ρ2

∑
μ=0

p(θ)m−ρ1ρ2,μ(x)
ρ2

∑
s=0

p(θ)ρ2,s(x)
∫ 1

0
pm,μ+sρ1 (t)dt

) 2−σ
2

=

(
(m + 1)

m−ρ1ρ2

∑
μ=0

p(θ)m−ρ1ρ2,μ(x)
ρ2

∑
s=0

p(θ)ρ2,s(x)
∫ 1

0
|S(t)− S(x)| 2

σ pm,μ+sρ1 (t)dt

) σ
2

≤ M

(
(m + 1)

m−ρ1ρ2

∑
μ=0

p(θ)m−ρ1ρ2,μ(x)
ρ2

∑
s=0

p(θ)ρ2,s(x)
∫ 1

0

(t − x)2

(t + α1x2 + α2x)
pm,μ+sρ1 (t)dt

) σ
2

≤ M

(α1x2 + α2x)
σ
2

(
(m + 1)

m−ρ1ρ2

∑
μ=0

p(θ)m−ρ1ρ2,μ(x)
ρ2

∑
s=0

p(θ)ρ2,s(x)
∫ 1

0
(t − x)2 pm,μ+sρ1 (t)dt

) σ
2

=
M

(α1x2 + α2x)
σ
2

U(θ)
m,ρ1,ρ2 ((t − x)2; x)

σ
2

=
M

(α1x2 + α2x)
σ
2
(Θ(θ),2

m,ρ1,ρ2 (x))
σ
2 .
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Theorem 5. For S ∈ C1(j) and x ∈ j, we have∣∣∣U(θ)
m,ρ1,ρ2(S ; x)− S(x)

∣∣∣ ≤ ∣∣∣∣ 1 − 2x
(m + 2)

∣∣∣∣ |S′(x)|+ 2
√

Θ(θ),2
m,ρ1,ρ2(x)ω

(
S′,
√

Θ(θ),2
m,ρ1,ρ2(x)

)
. (6)

Proof. Let S ∈ C1(j). For any t, x ∈ j, we have

S(t)− S(x) = S′(x)(t − x) +
∫ t

x

(S′(u)− S′(x)
)

du.

Using U(θ)
m,ρ1,ρ2(·; x) on both sides of the above relation, we have

U(θ)
m,ρ1,ρ2(S(t)− S(x); qm, x) = S′(x)U(θ)

m,ρ1,ρ2(t − x; x) + U(θ)
m,ρ1,ρ2

(∫ t

x

(S′(u)− S′(x)
)

du; x
)

Applying |S(t)− S(x)| ≤ ω(S , δ)
( |t−x|

δ + 1
)

, δ > 0, we have

∣∣∣∣∫ t

x

(S′(u)− S′(x)
)

du
∣∣∣∣ ≤ ω(S′, δ)

(
(t − x)2

δ
+ |t − x|

)
,

it follows that∣∣∣U(θ)
m,ρ1,ρ2 (S ; x)− S(x)

∣∣∣ ≤ |S′(x)| |U(θ)
m,ρ1,ρ2 (t − x; x)|+ ω(S′, δ)

{
1
δ

U(θ)
m,ρ1,ρ2 ((t − x)2; x) + U(θ)

m,ρ1,ρ2 (|t − x|; x)
}

.

Applying Cauchy–Schwarz inequality, we get∣∣∣U(θ)
m,ρ1,ρ2 (S ; x)− S(x)

∣∣∣ ≤ |S′(x)| |U(θ)
m,ρ1,ρ2 (t − x; x)|

+ω(S′, δ)

{
1
δ

√
U(θ)

m,ρ1,ρ2 ((t − x)2; x) + 1
}√

U(θ)
m,ρ1,ρ2 ((t − x)2; x).

Now, taking δ =
√

Θ(θ),2
m,ρ1,ρ2(x), we get (6).

4. Local Approximation

In this section, we study the local approximation property for our operators with the help of
K-functional.

The K-functional is given by:

K2(S , δ) = inf{||S − h̄||+ δ||h̄′′|| : h̄ ∈ W2} (δ > 0),

where W2 = {h̄ : h̄′′ ∈ C(j)} and uniform norm on C(j) is denoted by ||.||. By [20] there will be a
positive constant M > 0 such that

K2(S , δ) ≤ Mω2(S ,
√

δ), (7)

where the second order modulus of continuity for S ∈ C(j) is defined as

ω2(S ,
√

δ) = sup
0<h≤√

δ

sup
x,x+2h∈j

|S(x + 2h)− 2S(x + h) + S(x)|.
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We define the usual modulus of continuity for S ∈ C(j) as

ω(S , δ) = sup
0<h≤δ

sup
x,x+h∈j

|S(x + h)− S(x)|.

Theorem 6. For the operators U(θ)
m,ρ1,ρ2 , there exists a constant M > 0 such that

| U(θ)
m,ρ1,ρ2(S ; x)− S(x) |≤ Mω2

(
S , (m + 2)−1/2

√
δ
(θ)
m,ρ1,ρ2(x)

)
+ ω

(
S ,
∣∣∣∣1 − 2x

m + 2

∣∣∣∣) ,

where S ∈ C(j), θ ∈ j, δ
(θ)
m,ρ1,ρ2(x) = ϕ2(x) + 1

(m+2) and x ∈ j.

Proof. We define the auxiliary operators as follows:

U(θ)
m,ρ1,ρ2

(S ; x) = U(θ)
m,ρ1,ρ2(S ; x) + S(x)− S

(
mx + 1
m + 2

)
.

Then, we can easily check that

U(θ)
m,ρ1,ρ2

(1; x) = 1 and U(θ)
m,ρ1,ρ2

(t; x) = x.

By the application of Taylor’s theorem and taking t ∈ j and h̄ ∈ W2, we get

h̄(t) = h̄(x) + (t − x)h̄′(x) +
∫ t

x
(t − u)h̄′′(u)du.

The operator U(θ)
m,ρ1,ρ2

is applied in the above equation on both sides, we obtain

U(θ)
m,ρ1,ρ2

(h̄; x) = h̄(x) + U(θ)
m,ρ1,ρ2

(∫ t

x
(t − u)h̄′′(u)du

)
= h̄(x) + U(θ)

m,ρ1,ρ2

(∫ t

x
(t − u)h̄′′(u)du, x

)
−
∫ mx+1

(m+2)

x

(
mx + 1
m + 2

− u
)

h̄′′(u)du.

Hence

| U(θ)
m,ρ1,ρ2

(h̄; x)− h̄(x) | ≤ U(θ)
m,ρ1,ρ2

(∣∣∣∣ ∫ t

x
|t − u||h̄′′(u)|du

∣∣∣∣, x
)
+

∣∣∣∣ ∫ mx+1
(m+2)

x

∣∣∣∣mx + 1
m + 2

− u
∣∣∣∣|h̄′′(u)|du

∣∣∣∣
≤
{

U(θ)
m,ρ1,ρ2 ((t − x)2; x) +

(
mx + 1
m + 2

− x
)2 }

||h̄′′ ||

=

{
U(θ)

m,ρ1,ρ2 ((t − x)2; x) +
(

1 − 2x
m + 2

)2 }
||h̄′′ ||. (8)

From Lemma 3, we have

U(θ)
m,ρ1,ρ2((t − x)2; x) +

(
1 − 2x
m + 2

)2
≤ 2

(m + 2)
δ
(θ)
m,ρ1,ρ2(x) +

(
1 − 2x
m + 2

)2

≤ 2
(m + 2)

δ
(θ)
m,ρ1,ρ2(x) +

1
(m + 2)2

≤ 3
(m + 2)

δ
(θ)
m,ρ1,ρ2(x). (9)
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Thus, by (8) we have

| U(θ)
m,ρ1,ρ2

(h̄; x)− h̄(x) |≤ 3
(m + 2)

δ
(θ)
m,ρ1,ρ2(x)||h̄′′||, (10)

where x ∈ j. Furthermore, by Lemma 4, we have

| U(θ)
m,ρ1,ρ2

(S ; x) | ≤ 3||S||, (11)

for all S ∈ C(j) and x ∈ j.

Now, for S ∈ C(j) and h̄ ∈ W2, using (10) and (11) we obtain that

| U(θ)
m,ρ1,ρ2(S ; x)− S(x) | ≤

∣∣∣∣U(θ)
m,ρ1,ρ2

(S ; x)− S(x) + S
(

mx + 1
m + 2

)
− S(x)

∣∣∣∣
≤ |U(θ)

m,ρ1,ρ2
(S − h̄; x)|+ |U(θ)

m,ρ1,ρ2
(h̄; x)− h̄(x)|+ |h̄(x)− S(x)|

+

∣∣∣∣S (mx + 1
m + 2

)
− S(x)

∣∣∣∣
≤ 4||S − h̄||+ 3

(m + 2)
δ
(θ)
m,ρ1,ρ2(x)||h̄′′||+ ω

(
S ,
∣∣∣∣1 − 2x

m + 2

∣∣∣∣) .

Using the property of infimum on the right hand side over all h̄ ∈ W2, we have

| U(θ)
m,ρ1,ρ2(S ; x)− S(x) |≤ 4K2

(
S ,

1
(m + 2)

δ
(θ)
m,ρ1,ρ2(x)

)
+ ω

(
S ,
∣∣∣∣1 − 2x

m + 2

∣∣∣∣) .

Now by examining the relation (7), we get

| U(θ)
m,ρ1,ρ2(S ; x)− S(x) |≤ Mω2

(
S , (m + 2)−1/2

√
δ
(θ)
m,ρ1,ρ2(x)

)
+ ω

(
S ,
∣∣∣∣1 − 2x

m + 2

∣∣∣∣) .

5. Global Approximation

The following result provides the global approximation using the modulus of continuity of
Ditzian–Totik and the related K-functional.

Suppose that S ∈ C(j) and ϕ(x) is defined as
√

x(1 − x), x ∈ j. The second order modulus of
continuity which is given by Ditzian-Totik

ω
ϕ
2 (S ,

√
δ) = sup

0<h≤√
δ

sup
x±hϕ(x)∈j

| S(x + hϕ(x))− 2S(x) + S(x − hϕ(x)) |,

and related K-functional is defined as,

K̃2,ϕ(x)(S , δ) = inf{||S − h̄||+ δ||ϕ2h̄′′||+ δ2||h̄′′|| : h̄ ∈ W2(ϕ)}, (δ > 0),

where W2(ϕ) = {h̄ ∈ C(j) : h̄′ ∈ ACloc j, ϕ2h̄′′ ∈ C(j)} and h̄′ ∈ ACloc j means that h̄ is derivable and
h̄′ is absolutely continuous on every closed interval [a, b] ⊂ (0, 1). By ([21],Theorem 1.3.1) we can say
that ∃ M > 0, such that

K̃2,ϕ(x)(S , δ) ≤ Mω
ϕ
2 (S ,

√
δ). (12)
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The first order Ditzian–Totik modulus is defined as

−→ωψ(S , δ) = sup
0<h≤δ

sup
x± h

2 ψ(x)∈j

∣∣∣∣S (x +
h
2

ψ(x)
)
− S

(
x − h

2
ψ(x)

)∣∣∣∣ ,
where ψ : j → R is an admissible step-weight function.

Now we state our next main theorem.

Theorem 7. Let S ∈ C(j) and 0 ≤ θ ≤ 1. Then, for x ∈ j,

||U(θ)
m,ρ1,ρ2S − S|| ≤ Mω

ϕ
2 (S , (m + 2)−1/2) +−→ωψ

(
S , (m + 2)−1

)
+ ω

(
S ; (m + 2)−1

)
,

where ϕ2(x) = x(1 − x) and ψ(x) =

{
1 − 2x x ∈ [0, 1/2]
2x − 1 x ∈ [1/2, 1]

.

Proof. The auxiliary operators is considered as

U(θ)
m,ρ1,ρ2

(S ; x) = U(θ)
m,ρ1,ρ2(S ; x) + S(x)− S

(
mx + 1
m + 2

)
.

Let h̄ ∈ W2(ϕ) then by expanding h̄ using Taylor’s theorem and as given in the proof of Theorem 6, we get

| U(θ)
m,ρ1,ρ2

(h̄; x)− h̄(x) |≤ U(θ)
m,ρ1,ρ2

(∣∣∣∣ ∫ t

x
|t − u||h̄′′(u)|du

∣∣∣∣, x
)
+
∫ mx+1

(m+2)

x

∣∣∣∣mx + 1
m + 2

− u
∣∣∣∣|h̄′′(u)|du. (13)

Setting u = βx + (1 − β)t, β ∈ j, and also applying the concavity of δ
(θ)
m,ρ1,ρ2 , we have

| t − u |
δ
(θ)
m,ρ1,ρ2(u)

=
β | t − x |

δ
(θ)
m,ρ1,ρ2(βx + (1 − β)t)

≤ β | t − x |
δ
(θ)
m,ρ1,ρ2(x)β + δ

(θ)
m,ρ1,ρ2(t)(1 − β)

≤ | t − x |
δ
(θ)
m,ρ1,ρ2(x)

. (14)

Thus, using (14) in the inequality (13)

| U(θ)
m,ρ1,ρ2

(h̄; x)− h̄(x) | ≤ U(θ)
m,ρ1,ρ2

(∣∣∣∣ ∫ t

x

|t − u|
δ
(θ)
m,ρ1,ρ2 (u)

du
∣∣∣∣, x

)
||δ(θ)m,ρ1,ρ2 h̄′′ ||+

⎛⎜⎜⎝∫ mx+1
(m+2)

x

∣∣∣∣mx+1
m+2 − u

∣∣∣∣
δ
(θ)
m,ρ1,ρ2 (u)

du

⎞⎟⎟⎠ ||δ(θ)m,ρ1,ρ2 h̄′′ ||.

≤ 1

δ
(θ)
m,ρ1,ρ2 (x)

||δ(θ)m,ρ1,ρ2 h̄′′ ||
[

U(θ)
m,ρ1,ρ2 ((t − x)2; x) +

(
1 − 2x
m + 2

)2 ]
. (15)

Now, using the inequality (9), we get

| U(θ)
m,ρ1,ρ2

(h̄; x)− h̄(x) | ≤ 3
(m + 2)

||δ(θ)m,ρ1,ρ2 h̄′′ ||

≤ 3
(m + 2)

(
||ϕ2h̄′′ ||+ 1

(m + 2)
||h̄′′ ||

)
.

Applying (11) and (15), we have for S ∈ C(j),

| U(θ)
m,ρ1,ρ2 (S ; x)− S(x) | ≤| U(θ)

m,ρ1,ρ2
(S − h̄, x) | + | U(θ)

m,ρ1,ρ2
(h̄; x)− h̄(x) | + | h̄(x)− S(x) |

+

∣∣∣∣S (mx + 1
m + 2

)
− S(x)

∣∣∣∣
≤ 4||S − h̄||+ 3

(m + 2)
||ϕ2h̄′′ ||+ 3

(m + 2)2 ||h̄′′ ||+
∣∣∣∣S (mx + 1

m + 2

)
− S(x)

∣∣∣∣
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For all h̄ ∈ W2(ϕ) using the property of infimum on the right hand side, we have

| U(θ)
m,ρ1,ρ2(S ; x)− S(x) |≤ 4K̃2,ϕ

(
S ,

1
m + 2

)
+

∣∣∣∣S (mx + 1
m + 2

)
− S(x)

∣∣∣∣. (16)

Also, ∣∣∣∣S (mx + 1
m + 2

)
− S(x)

∣∣∣∣ = ∣∣∣∣S (x +
1 − 2x
m + 2

)
− S(x)

∣∣∣∣
≤
∣∣∣∣S (x +

(1 − 2x)
m + 2

)
− S

(
x − (1 − 2x)

m + 2

) ∣∣∣∣+ ∣∣∣∣S (x − (1 − 2x)
m + 2

)
− S(x)

∣∣∣∣
≤ −→ωψ

(
S , (m + 2)−1

)
+ ω

(
S ; (m + 2)−1

)
. (17)

Hence, combining (12), (16) and (17), the desired relation is immediate.

6. Rate of Approximation

In this section, we study the rate of convergence of functions with derivatives of bounded
variation.

The class of all absolutely continuous functions S is denoted by DBV(j), defined and having a
derivative S′ on j, analogous to a bounded variation function on j.

The representation of functions S ∈ DBV(j) is

S(x) =
∫ x

0
h̄(t)dt + S(0)

where h̄ is a bounded variation function on j.
The operators U(θ)

m,ρ1,ρ2(S ; x) also admit the integral representation

U(θ)
m,ρ1,ρ2(S ; x) =

∫ 1

0
N (θ)

m,ρ1,ρ2(x, t)S(t)dt, (18)

where the kernel N (θ)
m,ρ1,ρ2(x, t) is given by

N (θ)
m,ρ1,ρ2(x, t) = (m + 1)

m−ρ1ρ2

∑
μ=0

p(θ)m−ρ1ρ2,μ(x)
ρ2

∑
s=0

p(θ)ρ2,s(x)pm,μ+sρ1(t).

Lemma 5. For a fixed x ∈ (0, 1) and sufficiently large m, we have

(i) λ
(θ)
m,ρ1,ρ2(x, y) =

∫ y

0
N (θ)

m,ρ1,ρ2(x, t)dt ≤ W (θ)
ρ1,ρ2

(m + 2)
x(1 − x)
(x − y)2 , 0 ≤ y < x,

(ii) 1 − λ
(θ)
m,ρ1,ρ2(x, z) =

∫ 1

z
N (θ)

m,ρ1,ρ2(x, t)dt ≤ W (θ)
ρ1,ρ2

(m + 2)
x(1 − x)
(z − x)2 , x < z < 1,

where W (θ)
ρ1,ρ2 is given in Lemma 3.

Proof. (i) From Lemma 3, we get

λ
(θ)
m,ρ1,ρ2(x, y) =

y∫
0

N (θ)
m,ρ1,ρ2(x, t)dt ≤

∫ y

0

(
x − t
x − y

)2

N (θ)
m,ρ1,ρ2(x, t)dt

= U(θ)
m,ρ1,ρ2((t − x)2; x)(x − y)−2 ≤ W (θ)

ρ1,ρ2

(m + 2)
x(1 − x)
(x − y)2 .

The (ii) can be proved in the same way hence the details are skipped.
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Theorem 8. Suppose that S ∈ DBV(j). Then for every x ∈ (0, 1) and sufficiently large m, we have

|U(θ)
m,ρ1,ρ2(S ; x)− S(x)| ≤ (1 − 2x)

(m + 2)
|S′(x+) + S′(x−)|

2
+

√√√√W (θ)
ρ1,ρ2 x(1 − x)
(m + 2)

|S′(x+)− S′(x−)|
2

+
W (θ)

ρ1,ρ2(1 − x)
(m + 2)

[
√

m]

∑
s=1

x∨
x−(x/s)

(S′
x) +

x√
m

x∨
x−(x/

√
m)

(S′
x)

+
W (θ)

ρ1,ρ2 x
(m + 2)

[
√

m]

∑
s=1

x+((1−x)/s)∨
x

(S′
x) +

(1 − x)√
m

x+((1−x)/
√

m)∨
x

(S′
x),

where
∨d

c (S′
x) denotes the total variation of S′

x on [c, d] and S′
x is defined by

S′
x(t) =

⎧⎪⎨⎪⎩
S′(t)− S′(x−), 0 ≤ t < x

0, t = x
S′(t)− S′(x+) x < t < 1.

(19)

Proof. This theorem can be proved in the same way as in ([4], Theorem 7). Hence, the proof of this
theorem is skipped.

7. Numerical Examples

In the following examples, we demonstrate the theoretical results by graphs.

Example 1. Let m = 10, ρ1 = ρ2 = 1 and θ = 0.5, 0.6, 0.7, 0.8, 1.0. The convergence of the operators

U(0.5)
10,1,1(S ; x), U(0.6)

10,1,1(S ; x), U(0.7)
10,1,1(S ; x), U(0.8)

10,1,1(S ; x) and U(1.0)
10,1,1(S ; x) to the function S(x) = x2e

x3
x+5 is

illustrated in Figure 1.

Figure 1. Approximation Process.

Example 2. Let m = 50, ρ1 = ρ2 = 1 and θ = 0.5, 0.6, 0.7, 0.8, 1.0. The convergence of the operators

U(0.5)
50,1,1(S ; x), U(0.6)

50,1,1(S ; x), U(0.7)
50,1,1(S ; x), U(0.8)

50,1,1(S ; x) and U(1.0)
50,1,1(S ; x) to the function S(x) = x3e

x2
x+10 is

illustrated in Figure 2.
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Figure 2. Approximation Process.

8. Conclusions

We have introduced generalized Bernstein–Durrmeyer type operators depending on non-negative
integers. We developed many approximation properties such as local and global approximation,
the rate of approximation for the Lipschitz type space, Voronovskaja type asymptotic formula and the
rate of convergence of functions with derivatives of bounded variation. The constructed operators
have better flexibility and rate of convergence which are depending on the selection of the ρ1, ρ2 and θ.
Graphical representations of our operators for different selections of ρ1, ρ2 and θ are also given.
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Abstract: In this article, a collocation method using radial polynomials (RPs) based on the multiquadric
(MQ) radial basis function (RBF) for solving partial differential equations (PDEs) is proposed. The new
global RPs include only even order radial terms formulated from the binomial series using the Taylor
series expansion of the MQ RBF. Similar to the MQ RBF, the RPs is infinitely smooth and differentiable.
The proposed RPs may be regarded as the equivalent expression of the MQ RBF in series form
in which no any extra shape parameter is required. Accordingly, the challenging task for finding
the optimal shape parameter in the Kansa method is avoided. Several numerical implementations,
including problems in two and three dimensions, are conducted to demonstrate the accuracy and
robustness of the proposed method. The results depict that the method may find solutions with high
accuracy, while the radial polynomial terms is greater than 6. Finally, our method may obtain more
accurate results than the Kansa method.

Keywords: multiquadric; radial basis function; radial polynomials; the shape parameter; meshless;
Kansa method

1. Introduction

Recently, the meshless approach has raised extensive attention due to its computational efficiency
as well as simple collocation scheme. Many varieties of the radial basis functions (RBFs) have been
developed for dealing with partial differential equations (PDEs) [1–3]. Most popular RBFs, such as
the Gaussian [4–6], multiquadric (MQ) [7,8], and inverse multiquadric (IMQ) [9–11], require the
shape parameter. Among them, the Kansa method [12] is recognized as one of the most popular
domain-type meshfree approaches for solving PDEs. The MQ RBF adopted by the Kansa method
becomes the well-known RBF, which has been successfully adopted for solving numerous engineering
problems [13,14]. Despite the success of the Kansa method, limitations regarding to the accuracy
affecting by the shape parameter still remain. The MQ RBF depends on the shape parameter that
plays an important role for remaining the RBF as a smooth and non-singular function for solving
PDEs. Attempts regarding for identifying proper value for the shape parameter of the MQ RBF have
been widely studied, such as the LOOCV optimization technique [15–17]. The question of finding the
optimal shape parameter in the MQ RBF, however, is still very challenging.

In this study, we propose radial polynomials (RPs) rooted in the MQ RBF for solving PDEs.
Formulated from the binomial series using the Taylor series expansion of the MQ RBF, the new global
RPs include only even order radial terms. The proposed RPs may be regarded as the equivalent
expression of the MQ RBF in series form. Not only are the RPs infinitely smooth and differentiable in
nature, but the proposed RPs do not require any extra shape parameters. Therefore, the challenging
task for finding the optimal shape parameter in the Kansa method is avoided. Several numerical
implementations, including two- and three-dimensional problems, are conducted to verify the accuracy

Symmetry 2020, 12, 1419; doi:10.3390/sym12091419 www.mdpi.com/journal/symmetry53
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and robustness of the proposed RPs. The structure of this article is organized as follows: In Section 2,
formulation of the radial polynomial basis function is presented. To verify the proposed RPs, we conduct
a convergence analysis in Section 3. Section 4 is devoted to present several numerical examples in
two and three dimensions. The discussion of this paper is addressed in Section 5. Conclusions are
given finally.

2. Formulation of the Radial Polynomials

Considering a region, Ω, with the boundary, ∂Ω, the governing equation for the three-dimensional
PDE can be expressed as follows.

Δu(x) + D
∂u(x)
∂x

+ E
∂u(x)
∂y

+ F
∂u(x)
∂z

+ Gu(x) = H in Ω, (1)

u(x) = g(x) on ∂ΩD, (2)

∂u(x)
∂n

= f (x) on ∂ΩN, (3)

in which Δ represents Laplace operator, x = (x, y, z), u(x) is the unknown, D, E, F, G and H are given
functions. Ω is a bounded domain with boundary ∂ΩD and ∂ΩN. ∂ΩD denotes boundary subjected
to Dirichlet data, ∂ΩN denotes boundary subjected to Neumann data, g(x) and f (x) represent given
boundary data. The meshless method using the MQ RBF is often named the Kansa method, where the
RBFs are directly implemented for the approximation of the solution of partial differential equations.
We may express the unknown by the RBF as follows.

u(x) =
Mc∑
j=1

λ jϕ(rj), (4)

where rj is the radial distance, rj =
∣∣∣x− s j

∣∣∣, ϕ(rj) represents the RBF which is the distance of x and s j,
s j is the center, x denotes an arbitrary point inside the domain, λ j is the coefficient to be solved and Mc

is the number of the center points. The MQ RBF may be expressed as follows.

ϕ(rj) =
√

rj2 + c2. (5)

With the introduction of the shape parameter, the MQ RBF becomes a smooth and non-singular
function. Because the Kansa method is a domain-type method, it has to discretize the governing
equation inside the domain using the MQ RBF. We may insert the above equation into Equation (1).
After obtaining the MQ RBF derivatives, we may obtain the following equation in two-dimensions.

Mc∑
j=1

λ j
rj

2 + 2c2(
rj2 + c2

)1.5
+

Mc∑
j=1

λ j
D
(
x− xj

)
+ E
(
y− yj

)
(
rj2 + c2

)0.5 + G
Mc∑
j=1

λ j
(
rj

2 + c2
)0.5

= H in Ω. (6)

The above equation demonstrates that the derivatives of the MQ basis function may become
singular at the center point (rj = 0) if the shape parameter is zero. It is obvious that the MQ RBF
is infinitely differentiable depending on the shape parameter. To avoid the singularity, the shape
parameter must not be equal to zero. In this study, we propose RPs based on the MQ RBF without
the shape parameter. For the mathematical formulation of the RPs, we may start from the MQ RBF.
Equation (5) can be rewritten as follows.

ϕ(rj) = c
√
(rj/c)2 + 1. (7)
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Using the binomial series from the Taylor series of Equation (7), we have

c
√
(rj/c)2 + 1 = c

∞∑
k=0

(
α
k

)(
(rj/c)2

)k
, (8)

where
(
α
k

)
:= α(α−1)(α−2)···(α−k+1)

k! and α = 1/2.

Using the finite terms, Mn, to approximate the solution, we may express the MQ RBF in series
form as follows.

ϕ(rj) = c
Mn∑
k=0

(
0.5
k

)(1
c

)2k

r2k
j , (9)

where Mn is the order of the radial polynomials. In this study, we propose a novel meshless method to
approximate the solution in terms of the RPs as follows.

u(x) =
Mc∑
j=1

ajϕ(rj), (10)

where Mc represents the center point number. The above equation proves that the MQ RBF can be
expressed as a radial polynomial with only even order terms. Equation (8) can be regarded as the
equivalent series form of the MQ RBF. Inserting Equation (8) into Equation (10), we have

u(x) ≈
Mc∑
j=1

ajc
Mn∑
k=0

(
0.5
k

)(1
c

)2k

r2k
j . (11)

Combining the constants in the above equation, we obtain

u(x) ≈
Mc∑
j=1

Mn∑
k=0

bj,kr2k
j , (12)

in which bj,k are the coefficients to be solved. Using Equation (12) for the discretization of Equation (1),
we may obtain the following equation:

Mc∑
j=1

Mn∑
k=0

bj,kL1crj
2k−2 +

Mc∑
j=1

Mn∑
k=0

bj,k2kL2crj
2k−2 + G

Mc∑
j=1

Mn∑
k=0

bj,krj
2k = H in Ω, (13)

where L1c = 4k2, L2c = (D(x− xj) + E(y− yj)) and L1c = 4k2 + 2k, L2c = (D(x− xj) + E(y− yj) + F(z−
zj)) are in two and three dimensions, respectively. To determine the unknown coefficients, we apply
the approximate solution with the boundary data at collocation points to satisfy the governing equation.
We may get the system of simultaneous equations.

Ab = R, (14)

where b is the unknown coefficient with the size of N × 1 to be evaluated, R is the known function with
the size of M× 1, A is an M×N matrix where M = Mi + Mb and N = Mc ×Mn. The above equation
can be written as follows: [

AI

AB

]
[b] =

[
RI

RB

]
. (15)

In the preceding equations, AI represents the Mi ×N submatrix from the inner collocation points,
AB represents the Mb ×N submatrix from the boundary collocation points, RI is the vector of function
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values at the inner points which is a Mi × 1 vector, RB is the data at the boundary points which is an
Mb × 1 vector, Mb is the boundary point number, Mi is the inner point number. The root mean square
error (RMSE) is adopted to evaluate the accuracy which is defined by

Root mean square error =

√√√
1

Mm

Mm∑
i=1

(û(xi) − u(xi))
2, (16)

in which Mm represents the number of the measuring points with uniform distribution; u(xi) and û(xi)

are the exact and approximate solutions at the ith collocation point, respectively.

3. Accuracy and Convergence Analysis

We first investigate a Laplacian problem in two dimensions enclosed by an irregular domain.
The governing equation is

Δu(x) = 0, (x) ∈ Ω. (17)

The star–like object boundary in two dimensions can be expressed in the following form:

∂Ω =
{
(x, y)

∣∣∣∣x = ρ(θ) cosθ, y = ρ(θ) sinθ,ρ(θ) = sec (3θ)sin(6θ), 0 ≤ θ ≤ 2π
}
. (18)

The exact solution of Equation (17) is designated as

u(x) = ex cos(y) + ey sin(x). (19)

To verify the accuracy and convergence, we conduct a series of testing cases for the radial
polynomial terms in which all cases adopt the same configurations of the boundary, center and inner
points as shown in Figure 1. In the analysis, Mb, Mi and Mc are 1208, 151, and 151, respectively.
The number of the RPs terms, Mn, needs to be given for the proposed method. As shown in Figure 2,
for the RPs, it is found that the RMSE decreases with the increase in the number of RPs terms in which
solutions with high accuracy may be found with the radial polynomial terms from 6 to 12.

Figure 1. Layout of the collocation points.
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Figure 2. The convergence analysis for the Kansa method and the RPs.

On the other hand, other testing cases using the Kansa method for considering different shape
parameters are conducted. Figure 2 shows different shape parameters versus the RMSE. The optimal
shape parameter is found within a narrow range of 0.5 to 1. We may also observe that the shape
parameter is very sensitive to the accuracy in the Kansa method, such that attempts regarding for
identifying proper values for the shape parameter of the Kansa method may be important. It is
apparent that the minimums of the RMSE for the Kansa method and the RPs are in the order of 10−9

and 10−12, respectively.
In addition, to investigate the accuracy, another convergence analysis for investigating the

boundary and inner point number is carried out. Table 1 shows the comparison of this study with the
Kansa method. We find that very high accurate results may be obtained using the proposed RPs.

Table 1. Results comparison between this study and the Kansa method with the optimal shape parameter.

Mb Mi Mc

RMSE Condition Number

This Study
The Kansa Method

(Optimal Shape Parameter)
This Study The Kansa Method

736 92 92 3.77× 10−12 2.96× 10−9 (c = 0.70) 8.33× 1022 5.32× 1020

1208 151 151 7.29× 10−12 2.44× 10−9 (c = 0.95) 1.09× 1023 2.63× 1020

1792 224 224 7.06× 10−12 7.53× 10−9 (c = 1.05) 4.52× 1023 7.30× 1021

2480 310 310 5.90× 10−12 5.70× 10−9 (c = 1.05) 3.86× 1024 4.21× 1020

3240 405 405 5.31× 10−12 9.42× 10−9 (c = 1.30) 1.81× 1024 1.52× 1021

4115 514 514 4.77× 10−12 7.52× 10−9 (c = 1.25) 1.18× 1024 2.87× 1021

4. Numerical Examples

To investigate the applicability of the proposed RPs, four numerical examples are conducted,
in which Sections 4.1 and 4.2 are steady-state linear two-dimensional PDEs, Section 4.3 is
the three-dimensional modified Helmholtz equation, and Section 4.4 is the three-dimensional
Poisson equation.

4.1. A Two-Dimensional Ameoba-Shaped Problem

We first consider the following two-dimensional PDEs.

Δu(x) + D
∂u(x)
∂x

+ E
∂u(x)
∂y

+ F
∂u(x)
∂z

+ Gu(x) = H, x ∈ Ω, (20)
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where D = y cos(x), E = − sin h(x), F = 0, G = x2 + y2. The function, H, can be directly derived from
the exact solution as follows:

H =
(
−π2 + 1

)
[sin(πx) cosh(y)] +

(
π2 − 1

)
[cos(πx)sinh(y)]

+(πy cos(x) − sinh(x))[sin(πx)sinh(y)] + (πy cos(x) + sinh(x))[cos(πx) cosh(y)]
+
(
x2 + y2

)
[sin(πx) cosh(y) − cos(πx)sinh(y)]

(21)

The amoeba-like object boundary in two dimensions is defined as

∂Ω =
{
(x, y)

∣∣∣∣x = ρ(θ) cosθ, y = ρ(θ) sinθ,ρ(θ) = e(sinθ sinθs)2
+ e(cosθ cosθc)2

, 0 ≤ θ ≤ 2π
}
. (22)

Both Dirichlet and Neumann boundary conditions are considered as follows:

u(x) = sin(πx) cosh(y) − cos(πx)sinh(y), (x, y) ∈ ∂ΩD, (23)

∂u(x)
∂n

= [∇(sin(πx) cosh(y) − cos(πx)sinh(y))] ·⇀n , (x, y) ∈ ∂ΩN. (24)

In this example, the Kansa method and the proposed RPs are examined. Figure 3 depicts the
configuration of the collocation points. The over-specified Dirichlet as well as Neumann boundary data
are imposed on the whole boundary. In the analysis, Mb, Mi and Mc are 1750, 500 and 500, respectively.
The analysis of convergence for the RPs terms is conducted, as shown in Figure 4. According to
Figure 4, it is found that highly accurate solutions may be solved with the radial polynomial terms
from 7 to 12. Consequently, the terms of the RPs are set to 9. The result comparison for the Kansa
method and the proposed RPs is shown in Table 2. Table 2 demonstrates that highly accurate results
are obtained in which the RMSE of the proposed method is within the order of 10−8. On the other
hand, the minimum RMSE for the Kansa method with the optimal shape parameter can only reach to
the order of 10−4. Figure 4 demonstrates results of the convergence analysis in which it is found that
solutions with high accuracy may be obtained with the radial polynomial terms from 6 to 11. Moreover,
it is clear that the number of terms is not very sensitive to the result. Figure 5 depicts the numerical
solution is identical to the exact solution.

Figure 3. Layout of the collocation points.
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Figure 4. The terms of the RPs versus the RMSE.

Table 2. The RMSE of the RPs and the Kansa method.

Mb Mi Mc
RMSE

This Study The Kansa Method (Optimal Shape Parameter)

1050 300 300 7.65× 10−8 5.46× 10−4 (c = 1.00)
1400 400 400 8.89× 10−8 4.72× 10−4 (c = 0.95)
1750 500 500 6.77× 10−8 4.14× 10−4 (c = 1.05)
2100 600 600 6.26× 10−8 3.79× 10−4 (c = 1.05)
2450 700 700 5.80× 10−8 3.56× 10−4 (c = 1.30)
2800 800 800 5.41× 10−8 3.45× 10−4 (c = 1.25)

Figure 5. Result comparison between numerical and the analytical solutions.
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4.2. A Two-Dimensional Star-Shaped Problem

The second example is a problem enclosed by a star-shaped boundary in two dimensions.

Δu(x) + D
∂u(x)
∂x

+ E
∂u(x)
∂y

+ F
∂u(x)
∂z

+ Gu(x) = H, x ∈ Ω, (25)

where D = y2 sin(x), E = xey, F = 0, G = sin(x) + cos(y). The function, H, can be directly derived
from the exact solution as follows:

H =
(
−π2y sin(πx) −π2x cos(πy)

)
+
(
y2 sin(x))[πy cos(πx) + cos(πy)]

+(xey)[sin(πx) −πx sin(πy)] + (sin(x) + cos(y))[y sin(πx) + x cos(πy)]
(26)

The star-like object boundary in two dimensions is defined as

∂Ω =
{
(x, y)

∣∣∣x = ρ(θ) cosθ, y = ρ(θ) sinθ,ρ(θ) = 1 + (cos 4θ)2, 0 ≤ θ ≤ 2π
}
. (27)

The Dirichlet boundary conditions are considered as follows:

u(x) = y sin(πx) + x cos(πy), (x, y) ∈ ∂ΩD. (28)

In this example, the Dirichlet data are applied on the whole boundary using Equation (28). In the
analysis, Mb, Mi and Mc are 1800, 200 and 200, respectively. We conduct the convergence analysis
for the RPs terms. Figure 6 displays the configuration of the boundary, inner and center collocation
points. Figure 7 displays the terms of the RPs versus the RMSE in which we may find that solutions
with high accuracy in the order of 10−8 may be found with the radial polynomial terms from 7 to 12.
Consequently, the terms of the RPs are set to 9.

Figure 6. Layout of the collocation points.
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Figure 7. The terms of the RPs versus the RMSE.

Figures 8 and 9 demonstrate the RMSE versus the boundary and inner point numbers, respectively.
We may find that promising solutions may be found while the boundary and inner point numbers are
greater than 500 and 100, respectively. Figure 10 demonstrates the comparison of the analytical and the
numerical solutions. It can be found that the results agree with the analytical solutions.

Figure 8. The convergence analysis for the boundary point number.

Figure 9. The convergence analysis for the inner point number.
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Figure 10. Result comparison between numerical and the analytical solutions.

4.3. A Three-Dimensional Modified Helmholtz Problem

Consider a three-dimensional modified Helmholtz equation. The equation is written as follows.

Δu(x) + Gu(x) = H, x ∈ Ω, (29)

where D = E = F = 0, G = −λ2, H = (1 − λ2)(ex + ey + ez) + xyz, λ represents wave number and
λ = 100. The domain in three dimensions can be expressed in the following form.

∂Ω =
{
(x, y, z)

∣∣∣x = ρ(θ) sinθ cosϕ, y = ρ(θ) sinθ sinϕ, z = ρ(θ) cosϕ
}
, (30)

where ρ(θ,ϕ) = 1 + 1/8 sin(10 θ) sin(9 ϕ), 0 ≤ θ ≤ 2, 0 ≤ ϕ ≤ π. The Dirichlet boundary data are
applied on ∂Ω using the following exact solution.

u(x) = ex + ey + ez − xyz/λ2, (x, y) ∈ ∂ΩD. (31)

In this example, the layout of the domain is depicted in Figure 11. The Dirichlet data are applied
on the whole boundary using Equation (31). In the analysis, Mb, Mi and Mc are 7569, 800 and 800,
respectively. Figure 12 demonstrates solutions with high accuracy in the order of 10−8 may be found
with the radial polynomial terms from 8 to 11. Consequently, the terms of the RPs are set to 9. The result
comparison for the Kansa method and the proposed RPs is shown in Table 3. Table 3 demonstrates
that highly accurate results are obtained in which the RMSE is within the order of 10−11. On the other
hand, the best RMSE for the Kansa method with the optimal shape parameter can only reach to the
order of 10−7.
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Figure 11. Layout of the three-dimensional modified Helmholtz equation.

Figure 12. The terms of the RPs versus the RMSE.

Table 3. The RMSE of the RPs and the Kansa method.

Mb Mi Mc
RMSE

This Study The Kansa Method (Optimal Shape Parameter)

6724 700 700 4.28× 10−11 1.10× 10−6 (c = 1.30)
7569 800 800 2.32× 10−11 8.48× 10−7 (c = 1.30)
8100 900 900 4.40× 10−11 1.01× 10−6 (c = 1.90)
9025 1000 1000 5.99× 10−11 1.08× 10−6 (c = 1.10)

10,000 1100 1100 5.03× 10−11 7.88× 10−7 (c = 1.30)
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4.4. A Three-Dimensional Poisson Problem

The last example under consideration is a three-dimensional Poisson equation enclosed by an
irregular domain. The governing equation is expressed as follows.

Δu(x) = H, x ∈ Ω, (32)

where D = E = F = G = 0 and H = − sin x − cos y − sin z. The domain in three dimensions can be
expressed in the following parametric equation.

∂Ω =
{
(x, y, z)

∣∣∣x = ρ(θ) cosθ, y = ρ(θ) sinθ sinϕ, z = ρ(θ) sinθ cosϕ
}
, (33)

where ρ(θ) =
[
cos(3θ) +

√
8− sin2(3θ)

]1/3

. The Dirichlet boundary data are assigned on ∂ΩD using

the following exact solution.

u(x) = sin(x) + cos(y) + sin(z), (x, y) ∈ ∂ΩD. (34)

The layout of the domain is depicted in Figure 13. The Dirichlet boundary conditions are given on
the irregular domain in three dimensions using Equation (34). In the analysis, Mb, Mi and Mc are 7357,
756 and 756, respectively. Figure 14 shows the RMSE versus the terms of the RPs. It is apparent that
the promising numerical solution in the order of 10−8 may be obtained while the Mn is greater than 6.
Consequently, the terms of the RPs is set to 9. Additionally, several cases for evaluating the number of
the collocation points to the accuracy are conducted in Table 4. According to Table 4, it depicts that the
accuracy can reach up to the order of 10−10.

Table 4. The RMSE of the RPs.

Mb Mi Mc
RMSE

This Study

5706 630 630 1.75× 10−10

7357 756 756 1.82× 10−10

9208 882 882 1.87× 10−10

11,259 1008 1008 1.92× 10−10

13,510 1134 1134 1.94× 10−10

Figure 13. Layout of the three-dimensional Poisson equation.

64



Symmetry 2020, 12, 1419

Figure 14. The terms of the RPs versus the RMSE.

5. Discussion

This study presents a collocation method using RPs which is regarded as the equivalent expression
of the MQ RBF in series form for PDEs. The conception of the new global RPs includes only even order
radial terms formulated from the binomial series using the Taylor series expansion of the MQ RBF.
The discussions for this study are as follows.

The MQ RBF adopted by the Kansa method becomes one of the most successful RBFs for solving
numerous problems. With the introduction of the shape parameter, the MQ RBF becomes a smooth and
non-singular function. Even though the MQ RBF and its derivatives are smooth and global infinitely
differentiable, the discretization of the governing equation may become singular while c = 0 at rj = 0.
It is obvious the shape parameter plays a role for shifting from the singularity while the center point is
coincided with the inner point. However, the near singular effects still remain. This may explain that
the accuracy in the Kansa method is strongly affected by the shape parameter.

To deal with the issue, we adopt the RPs as the basis function in which the proposed RPs are the
equivalent expression of the MQ RBF in series form. It is advantageous that the proposed RPs and
their derivatives are infinitely smooth and differentiable in nature without using the shape parameter.
Because RPs are a non-singular series function, there are no near singular or singular effects at all.
Accordingly, the method may obtain more accurate solutions than the Kansa method in our numerical
implementations. In addition, accurate results can be directly obtained without using the tedious
procedure for finding the optimal shape parameter.

Even though the shape parameter is not required in the proposed method, the radial polynomial
terms have to be decided in advance. From the numerical implementations, solutions with high
accuracy in the order of 10−8 may be found with radial polynomial terms from 6 to 12. The radial
polynomial terms are selected to be 9 in our numerical examples. It demonstrates that the radial
polynomial terms are considerably less significant to the accuracy than the shape parameter. In the
numerical examples, it is found that satisfactory solutions could be obtained while the terms of the RPs
are within the range of 6 to 12.

6. Conclusions

A mathematical formulation of the RPs from the binomial series using the Taylor series expansion
of the MQ RBF is presented. We prove that the proposed RPs are an equivalent expression of the
MQ RBF in series form. Highly accurate results can be directly obtained without using the tedious
procedure for finding the optimal shape parameter. Additionally, numerical comparisons reveal that
the presented RPs could obtain better accurate solutions than those of the MQ RBF, even with the
optimal shape parameter for solving multi-dimensional PDEs.
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1. Introduction

Let K be a field. If f (x) ∈ K[x] has degree at least 2, we say that f (x) is decomposable over the field K

if we can write f (x) = f1( f2(x)) for some nonlinear polynomial f1(x), f2(x) ∈ K[x]. Otherwise, we say
that f (x) is indecomposable over K. Two decompositions f (x) = f1( f2(x)) and f (x) = F1(F2(x)) are said
to be equivalent over the field K, written f1 ◦ f2 ∼K F1 ◦ F2, if there exists a linear polynomial l(x) ∈ K[x]
such that

f1(x) = F1(l(x)) and F2(x) = l( f2(x)).

For a given f (x) ∈ K[x] with degree at least 2, a complete decomposition of f (x) over K is a
decomposition f = f1 ◦ · · · ◦ fk, where the polynomials fi ∈ K[x] are indecomposable over K for
i = 1, . . . , k. A polynomial of degree greater than 1 always has a complete decomposition, but it does not
need to be unique even up to equivalence.

Euler polynomials are defined by the following generating function

∞

∑
k=0

Ek(x)
tk

k!
=

2etx

(et + 1)
.

These polynomials play a central role in various branches of mathematics; for example, in various
approximation and expansion formulas in discrete mathematics and in number theory (see for
instance [1,2]), in p-adic analyis (see [3], Chapter 2), in statistical physics as well as in semi-classical
approximations to quantum probability distributions (see [4–7]).

There are several results connected to the decomposability of an infinite family of polynomials, see
for instance [8–12]. Bilu, Brindza, Kirschenhofer, Pintér and Tichy [13] gave all the decompositions of
Bernoulli polynomials. Kreso and Rakaczki [14] characterized the all possible decomposations of Euler
polynomials with degree even, moreover they showed that every Euler polynomial with odd degree is

Symmetry 2019, 11, 739; doi:10.3390/sym11060739 www.mdpi.com/journal/symmetry
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indecomposable. It is harder to obtain similar results for the sum of polynomials. Pintér and Rakaczki [15]
describe the complete decomposition of linear combinations of the form

Rn(x) = Bn(x) + cBn−2(x)

of Bernoulli polynomials, where c is an arbitrary rational number. Later, Pintér and Rakaczki in [16]
proved that for all odd n > 1 integer and for all rational number c the polynomials En(x) + cEn−2(x)
are indecomposable.

The main purpose of this paper is to prove that under certain conditions a linear combination with
rational coefficients of two Euler polynomials with odd degrees is always indecomposable. We have

Theorem 1. Let Pn,m(x) = En(x) + cEm(x), where c = A/B is an arbitrary rational number, where B �= 2a,
a ∈ N∪ {0}, n, m are odd integers with n > m > n/3. Then the polynomials Pn,m(x) are indecomposable over C.

2. Auxiliary Results

In the first lemma we collect some well known properties of the Euler polynomials which will be
used in the sequel, sometimes without particular reference.

Lemma 1. (a) En(x) = (−1)nEn(1 − x);
(b) En(x + 1) + En(x) = 2xn;
(c) E′

n(x) = nEn−1(x);
(d) E2n−1(1/2) = E2n(0) = E2n(1) = 0 for n ∈ N;
(e) En(x) = ∑n

k=0 (
n
k)Ek(0)xn−k;

Proof. See [2].

The following result is a general theorem from the theory of decomposability.

Lemma 2 (Kreso and Rakaczki [14]). Let F(x) ∈ K[x] be a monic polynomial such that deg F is not divisible by
the characteristic of the field K. Then for every nontrivial decomposition F = F1 ◦ F2 over any field extension L of K,
there exists a decomposition F = F̃1 ◦ F̃2 such that the following conditions are satisfied

• F̃1 ◦ F̃2 and F1 ◦ F2 are equivalent over L,
• F̃1(x) and F̃2(x) are monic polynomials with coefficients in K,
• coeff (xdeg F̃1−1, F̃1(x)) = 0.

Moreover, such decomposition F̃1 ◦ F̃2 is unique.

Lemma 3. Let h(x) ∈ Q[x] with deg h(x) ≥ 4. If h(x) is decomposable over Q then we can write the polynomial
h(x) in the form h(x) = u

v f (g(x)), where u and v �= 0 are relative prime integers, f (x) and g(x) ∈ Z[x] are
primitive polynomials. Moreover, if h(x) is a monic polynomial, then u = 1.

Proof. Suppose that h(x) = F(G(x)), where F(x), G(x) ∈ Q[x]. Let

F(x) = bkxk + bk−1xk−1 + · · ·+ b1x + b0,

G(x) = ctxt + ct−1xt−1 + · · ·+ c1x + c0.

68



Symmetry 2019, 11, 739

Every polynomial with rational coefficients can be written uniquely as a product of a rational number and
a primitive polynomial. Hence, we can assume that

G(x) =
c
d

g(x), where g(x) is a primitive polynomial, c, d �= 0 ∈ Z

and so

F(G(x)) = bk

( c
d

)k
g(x)k + bk−1

( c
d

)k−1
g(x)k−1 + · · ·+ b1

c
d

g(x) + b0.

The polynomial

F1(x) = bk

( c
d

)k
xk + bk−1

( c
d

)k−1
xk−1 + · · ·+ b1

c
d

x + b0 ∈ Q[x]

can be written in the from u
v f (x), where f (x) ∈ Z[x] is a primitive polynomial, u > 0, v �= 0 are relative

prime integers. However, then we have

h(x) = F(G(x)) = F1(g(x)) =
u
v

f (g(x)). (1)

If the polynomial h(x) is monic, then comparing the leading coefficients in (1) one can deduce that
v = u fkgk

t , where fk and gt denotes the leading coefficient of the polynomial f (x) and g(x), respectively.
This means that u divides v that is u = 1.

Let
S+ = { f (x) ∈ C[x] | f (x) = f (1 − x)}

and
S− = { f (x) ∈ C[x] | f (x) = − f (1 − x)} .

From these definitions it is easy to see that S+ and S− are subspaces in the vector space C[x].

Lemma 4. Let P(x) ∈ Q[x] be a monic polynomial. Assume that P(x) ∈ S− and P(x) = f (g(x)), where f (x),
g(x) ∈ Q[x] and deg( f (x)), deg(g(x)) > 1. Then we can assume that f (x), g(x) are monic, g(x) ∈ S− and
f (x) = − f (−x).

Proof. See [16].

The following Lemma is a simple combination of Lemmas 3 and 4.

Lemma 5. Let P(x) ∈ Q[x] be a monic polynomial. Assume that P(x) ∈ S− and P(x) = F(G(x)), where F(x),
G(x) ∈ Q[x] and deg(F(x)) > 1, deg(G(x)) > 1. Then we can assume that P(x) = 1

v f (g(x)), where v �= 0 is
an integer, f (x) and g(x) are primitive polynomials, g(x) ∈ S− and f (x) = − f (−x).

Proof. From Lemma 4 we can assume that G(x) ∈ S− and F(x) = −F(−x). Using the proof of Lemma 3
and the fact that S− is a subspace of C[x] we get the assertion of our Lemma.

Lemma 6. Let g(x) = ctxt + ct−1xt−1 + · · ·+ c1x + c0 ∈ S−. Then

− 2cs =

(
s + 1

s

)
cs+1 +

(
s + 2

s

)
cs+2 + · · ·+

(
t − 1

s

)
ct−1 +

(
t
s

)
ct (2)

for even index 0 ≤ s ≤ t − 1.
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Proof. Since g(x) ∈ S− we have that −g(x) = g(1 − x). Computing the coefficient of xs on the both sides
we obtain that

−cs = (−1)s
(

cs +

(
s + 1

s

)
cs+1 +

(
s + 2

s

)
cs+2 + · · ·+

(
t − 1

s

)
ct−1 +

(
t
s

)
ct

)
.

Lemma 7. Let
f (x) = bkxk + bk−2xk−2 + bk−3xk−3 + · · ·+ b1x + b0,

g(x) = ctxt + ct−1xt−1 + · · ·+ c1x + c0 ∈ Q[x].

If k, t ≥ 2 then the coefficient of the monomial xkt−2 in the polynomial f (g(x)) is

bk

(
kck−1

t ct−2 +

(
k
2

)
ck−2

t c2
t−1

)
.

Proof. It is easy to see that the monomial xkt−2 occurs only in the term bkg(x)k. Expanding g(x)k we
simply get the assertion.

3. Proof of the Theorem

Let n, m be odd positive integers with n − 2 > m > n/3, B is an arbitrary integer which is not a
power of two. The case of m = n − 2 was treated in [16]. Suppose that Pn,m(x) is decomposable over
C. From Lemmas 2 and 5 we can assume that Pn,m(x) = 1

v f (g(x)), where v �= 0 is an integer, f (x),
g(x) ∈ Z[x] are primitive polynomials and g(x) ∈ S−, f (x) = − f (−x). Let

f (x) = bkxk + bk−2xk−2 + bk−4xk−4 + · · ·+ b3x3 + b1x,

g(x) = ctxt + ct−1xt−1 + · · ·+ c1x + c0.

Using (b) of Lemma 1 one can deduce that

1
v

f (g(x + 1)) +
1
v

f (g(x)) = Pn,m(x + 1) + Pn,m(x) = 2xn + 2cxm. (3)

Since Pn,m(x) ∈ S− thus Pn,m(x + 1) = −Pn,m(−x). From (3) we infer that the polynomial g(x)− g(−x)
divides the polynomial Pn,m(x)− Pn,m(−x) = 2xn + 2cxm, that is

g(x)− g(−x) = dxsh(x), (4)

where d ∈ Q, 0 ≤ s ≤ m and the polynomial h(x) divides the polynomial xn−m + c in Q[x]. We know that

g(x)− g(−x) = 2ctxt + 2ct−2xt−2 + · · ·+ 2c3x3 + 2c1x. (5)

If the polynomial h(x) is a constant polynomial then we have t = s and so ct−2 = 0. It follows from
Pn,m(x) = En(x) + cEm(x) and (d), (e) of Lemma 1 that the coefficient of xn−2 in Pn,m(x) equals 0. Applying
now Lemma 7 we get that

bk

(
k
2

)
ck−2

t c2
t−1 = 0,

which is impossible since −2ct−1 = tct by Lemma 6.
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In the case when h(x) = xn−m + c we get s + n − m = t, d = 2ct and g(x)− g(−x) = 2ctxs+n−m +

2ctcxs = 2ctxt + 2ctcxt−(n−m). Since by assumption n − m > 2, we obtain again that ct−2 = 0, which is
not possible.

Next suppose that 1 ≤ deg h(x) < n − m. In this case one can deduce that s is odd and h(x) = h(−x).
Consider first when 1 < s. Then c1 = c3 = · · · = cs−2 = 0 and cs �= 0. Let G(x) = g(x) − g(0) and
F(x) = f (x + g(0)). Then f (g(x)) = F(G(x)), G(0) = 0 and

G(x)− G(−x) = g(x)− g(−x) = 2ctxt + 2ct−2xt−2 + · · ·+ 2csxs.

Let
F(x) = akxk + ak−1xk−1 + · · ·+ a2x2 + a1x + a0.

Since s < t ≤ n/3 < m we have that s + 4 ≤ m.
Investigate the coefficients of xs and xs+2 in

vPn,m(x) = F(G(x)) = akG(x)k + ak−1G(x)k−1 + · · ·+ a1G(x) + a0. (6)

Since s + 2 < m in the polynomials vPn.m(x) = En(x) + cEm(x) these coefficients are 0. On the other hand,
one can observe that xs occurs only in the term a1G(x) and so a1cs = 0. This means that a1 = 0 and so

vPn,m(x) = F(G(x)) = akG(x)k + · · ·+ a3G(x)3 + a2G(x)2 + a0. (7)

Since xs+2 appears only in the term a2G(x)2 thus 2a2c2cs = 0.
If a2 = 0 we obtain from (7) that the coefficients of x5, x4, x3, x2 and x in F(G(x)) are zero. This yields

that P(i)
n,m(0) = 0 for i = 1, . . . , 5. Further, by Lemma 1

P(j)
n,m(0) = P(j)

n,m(1) = 0, if j is odd and j �= m, n;

P(j)
n,m

(
1
2

)
= 0, if j is even.

Applying the above, we can study the number of zeros of the polynomials P(j)
n,m(x) in the interval [0,1] for

j = 1, 2, . . . , m + 1. In the following table we use only the Rolle’s theorem.

zeros of P′
n,m(x) � �

0 11
2

zeros of P′′
n,m(x) �� �

0 11
2

zeros of P′′′
n,m(x) � �� �

α1 α20 11
2

zeros of P(4)
n,m(x) �� �� �

β1 β20 11
2

zeros of P(5)
n,m(x) � �� � � �

γ1 γ2 γ3 γ40 11
2

zeros of P(6)
n,m(x) ��� ��

δ2δ1 δ4δ30 11
2
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zeros of P(7)
n,m(x) � ��� � �

ε1 ε2 ε3 ε40 11
2

...

P(m−1)
n,m (x) ��� ��

ζ2ζ1 ζ4ζ30 11
2

P(m)
n,m (x) �� � �

η1 η2 η3 η40 11
2

P(m+1)
n,m (x) �� �

θ1 θ20 11
2

But
P(m+1)

n,m (x) =
n!

(n − m − 1)!
En−m−1(x)

whose the only zero in the interval [0, 1] is 1/2. This contradiction gives that a2 �= 0.
If c2 = 0 then from G(x) = ctxt + · · ·+ c3x3 and (7) one can deduce that

P(j)
n,m(0) for j = 1, 2, 3, 4, 5.

The above argument that we used in the case a2 = 0 shows that this impossible.
Finally, consider the case when s = 1. Let c = A/B, where A and B �= 0 are relatively prime integers.

From (4) we know that

g(x)− g(−x) = 2ctxt + 2ct−2xt−2 + · · ·+ 2c3x3 + 2c1x = dxh(x), (8)

where the polynomial h(x) is even and divides the polynomial Bxn−m + A in Q[x]. If we write h(x) as a
product of a rational number a/b and a primitive polynomial H(x) = hrxr + hr−2xr−2 + · · ·+ h2x2 + h0

we have that
Bxn−m + A = H(x)u(x), (9)

where u(x) = uqxq + uq−2xq−2 + · · ·+ u2x2 + u0 is a primitive polynomial. We obtain from (8) and (9) that

(2ctxt + 2ct−2xt−2 + · · ·+ 2c3x3 + 2c1x)u(x) =
a
b

d(Bxn−m+1 + Ax). (10)

Let ct = wc′t, ct−2 = wc′t−2, . . . , c3 = wc′3 and c1 = wc′1, where w denotes the greatest common divisor of
the integers ct, ct−2, . . . , c3, c1. Then

2w(c′txt + c′t−2xt−2 + · · ·+ c′3x3 + c′1x)u(x) =
a
b

d(Bxn−m+1 + Ax), (11)

which yields that 2w = (a/b)d and

(c′txt + c′t−2xt−2 + · · ·+ c′1x)(uqxq + uq−2xq−2 + · · ·+ u0) = Bxn−m+1 + Ax. (12)
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It follows from Lemma 6 that if p is an odd prime which divides w then p divides ct, ct−1, . . . , c2, c1, c0

which is not possible since g(x) is a primitive polynomial. Thus w = 2a for some non-negative integer a.
Now assume that p is a prime which divides c′t and j ≥ 1 is the greatest odd index for which

p|c′t, c′t−2, . . . , c′j+2 and p � c′j. (13)

On the right hand side of (12) the coefficient of xα equals 0 apart from when α = q + t = n − m + 1 or
α = 1. Thus

c′juq + c′j+2uq−2 + c′j+4uq−4 + · · · = 0

which means that p|uq.
Similarly,

c′j−2uq + c′juq−2 + c′j+2uq−4 + · · · = 0

from which we get that p|uq−2. Continuing the process one can deduce that

p|uq, uq−2, . . . , u2.

Further, if j > 1 then
c′ju0 + c′j−2u2 + . . . = 0

and so p|u0 contradicting that the polynomial u(x) is a primitive polynomial. It follows from the above
that j must be 1 and so

p|c′t, c′t−2, . . . , c′3, uq, uq−2, . . . , u2 and p � c′1, u0. (14)

If p is an odd prime then from the above and Lemma 6 we have that

p|ct, ct−1, ct−2 . . . , c3, c2 and p � c1, c0. (15)

Now let U(x) = ctxt + ct−1xt−1 + · · ·+ c2x2 and V(x) = c1x + c0. Then g(x) = U(x) + V(x) and for
j = 0, 1, . . . , k

g(x)j =
j

∑
i=0

(
j
i

)
U(x)j−iV(x)i ≡ V(x)j mod (p). (16)

We know that m > n/3 ≥ k and so the coefficients of xk, xk−2, . . . , x3, x are zeros in Pn,m(x) and so in

f (g(x)) = bkg(x)k + bk−2g(x)k−2 + · · ·+ b3g(x)3 + b1g(x), too. (17)

Now one can infer from (16) and (17) that 0 ≡ bkck
1 mod (p) which yields p|bk. Comparing coefficient of

xk−2 we have that 0 ≡ bk−2ck−2
1 mod (p) from which we obtain p|bk−2. Continuing the process it is easy to

see that p|bk−4, . . . , b3, b1 which contradicts the fact that f (x) is a primitive polynomial. This means that c′t
and ct must be powers of two.

Now suppose that p is a prime with p|uq and p � c′t. Using again that on the right hand side of (12)
the coefficient of xα equals 0 apart from when α = n − m + 1 or 1. From uqc′t−2 + uq−2c′t = 0 we obtain
p divides uq−2. From uqc′t−4 + uq−2c′t−2 + uq−4c′t = 0 we obtain p divides uq−4. It follows similarly that
p|uq−6, . . . , u2. Finally, from c′tu0 + c′t−2u2 + · · · = 0 we get that p divides u0 which contradicts that the
polynomial u(x) is a primitive polynomial. This means that uq must be a power of two. Since B = c′tuq

this contradicts to our assumption that B is not a power of two.

4. Concluding Remarks

It is a very hard problem to characterize the general decomposition of an infinite sequence of
polynomials fn(x). The first theorem was proved for Bernoulli polynomials. For other results see our
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Introduction. A harder question is to describe the decomposition of the sum of two polynomials. There are
only a few results in this direction, mainly for the rational linear combination of two Bernoulli and Euler
polynomials in the form Bn(x) + cBn−2 and En(x) + cEn−2(x), respectively. This paper contains the first
theorem concerning the decomposition of the linear combination of two Euler polynomials Emx + cEn(x)
with “almost” independent parameters m and n.
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using (p, q)-analogues of (x + a)n. Based on these polynomials, we discover basic properties and
identities. Moreover, we determine special properties using (p, q)-trigonometric functions and verify
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1. Introduction

In 1991, (p, q)-calculus including (p, q)-number with two independent variables p and q, was first
independently considered [1,2]. Throughout this paper, the sets of natural numbers, integers,
real numbers and complex numbers are denoted by N,Z,R and C, respectively.

For any n ∈ N, the (p, q)-number is defined by the following:

[n]p,q =
pn − qn

p − q
, where |p/q| < 1, (1)

which is a natural generalization of the q-number. From Equation (1), we note that [n]p,q = [n]q,p.
Many physical and mathematical problems have led to the necessity of studying (p, q)-calculus. Since

1991, many mathematicians and physicists have developed (p, q)-calculus in several different research
areas. For example, in 1994, [3] introduced (p, q)-hypergeometric functions. Three years later, [3,4]
derived related preliminary results by considering a more general (p, q)-hypergeometric series and
Burban’s (p, q)-hypergeometric series, respectively. In 2005, based on the (p, q)-numbers, [5] studied
about (p, q)-hypergeometric series and discovered results corresponding to the (p, q)-extensions of
known q-identities. Moreover, [6] established properties similar to the ordinary and q-binomial
coefficients after developing the (p, q)-hypergeometric series in 2008. About seven years later, [7]
introduced (p, q)-gamma and (p, q)-beta functions, which are generalizations of the gamma and
beta functions.

The different variations of Bernoulli polynomials, q-Bernoulli polynomials and (p, q)-Bernoulli
polynomials are illustrated in the diagram below. Kim, Ryoo and many mathematicians have studied
the first and second rows of the polynomials in the diagram(see [8–12]). These studies began producing
valuable results in areas related to number theory and combinatorics.

Symmetry 2020, 12, 885; doi:10.3390/sym12060885 www.mdpi.com/journal/symmetry75
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The main idea is to use property of (p, q)-numbers and combine (p, q)-trigonometric functions.
From this idea, we construct (p, q)-cosine and (p, q)-sine Bernoulli polynomials. Investigating the
various explicit identities for (p, q)-cosine and (p, q)-sine Bernoulli polynomials in the diagram’s third
row is the main goal of this paper.

t
et − 1

etx = ∑∞
n=0 Bn(x) tn

n!

( Bernoulli polynomials)

t
et − 1

etx cos(ty) = ∑∞
n=0 B(C)

n (x, y) tn

n!

( cosine Bernoulli polynomials)
t

et − 1
etx sin(ty) = ∑∞

n=0 B(S)
n (x, y) tn

n!

( sine Bernoulli polynomials)

t
eq(t)− 1

eq(tx) = ∑∞
n=0 Bn,q(x)

tn

n!
( q-Bernoulli polynomials)

t
eq(t)− 1

eq(tx)COSq(ty) = ∑∞
n=0 CBn,q(x, y)

tn

n!
(q-cosine Bernoulli polynomials)

t
eq(t)− 1

eq(tx)SINq(ty) = ∑∞
n=0 SBn,q(x, y)

tn

n!
(q-sine Bernoulli polynomials)

t
ep,q(t)− 1

ep,q(tx) = ∑∞
n=0 Bn,p,q(x)

tn

n!
( (p, q)-Bernoulli polynomials)

t
ep,q(t)− 1

ep,q(tx)COSp,q(ty) = ∑∞
n=0 CBn,p,q(x, y)

tn

n!
((p, q)-cosine Bernoulli polynomials)

t
ep,q(t)− 1

ep,q(tx)SINp,q(ty) = ∑∞
n=0 SBn,p,q(x, y)

tn

n!
((p, q)-sine Bernoulli polynomials)

Due to their importance, the classical Bernoulli, Euler, and Genocchi polynomials have been
studied extensively and are well-known. Mathematicians have studied these polynomials through
various mathematical applications including finite difference calculus, p-adic analytic number theory,
combinatorial analysis and number theory. Many mathematicians are familiar with the theorems
and definitions of classical Bernoulli, Euler, and Genocchi polynomials. Based on the theorems
and definitions, it is significant to study these properties in various ways by the combining with
Bernoulli, Euler, and Genocchi polynomials. Mathematicians are studying the extended versions of
these polynomials and are researching new polynomials by combining mathematics with other fields,
such as physics or engineering (see [9–14]). The definition of Bernoulli polynomials combined with
(p, q)-numbers follows:

Definition 1. The (p, q)-Bernoulli numbers, Bn,p,q, and polynomials, Bn,p,q(z), can be expressed as follows
(see [8])

∞

∑
n=0

Bn,p,q
tn

[n]p,q!
=

t
ep,q(t)− 1

,
∞

∑
n=0

Bn,p,q(z)
tn

[n]p,q!
=

t
ep,q(t)− 1

ep,q(tz). (2)

In [11], we confirmed the properties of q-cosine and q-sine Bernoulli polynomials. Their definitions
and representative properties are as follows.

Definition 2. The q-cosine Bernoulli polynomials CBn,q(x, y) and q-sine Bernoulli polynomials SBn,q(x, y)
are defined by the following:

∞

∑
n=0

CBn,q(x, y)
tn

n!
=

t
eq(t)− 1

eq(tx)COSq(ty),
∞

∑
n=0

SBn(x, y)
tn

n!
=

t
eq(t)− 1

eq(tx)SINq(ty). (3)
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Theorem 1. For x, y ∈ R, we have the following:

(i)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CBn,q((x ⊕ r)q, y) + SBn,q((x � r)q, y)

= ∑n
k=0

[
n
k

]
q

q(
n−k

2 )rn−k
(

CBk,q(x, y) + (−1)n−k
SBk,q(x, y)

)
SBn,q((x ⊕ r)q, y) + CBn,q((x � r)q, y)

= ∑n
k=0

[
n
k

]
q

q(
n−k

2 )rn−k
(

SBk,q(x, y) + (−1)n−k
CBk,q(x, y)

)

(ii)

{
∂

∂x CBn,q(x, y) = [n]qCBn−1,q(x, y), ∂
∂y CBn,q(x, y) = −[n]qSBn−1,q(x, qy)

∂
∂x SBn,q(x, y) = [n]qSBn−1,q(x, y), ∂

∂y SBn,q(x, y) = [n]qCBn−1,q(x, qy)

(4)

The main goal of this paper is to identify the properties of (p, q)-cosine and (p, q)-sine Bernoulli
polynomials. In Section 2, we review some definitions and theorem of (p, q)-calculus. In Section 3,
we introduce (p, q)-cosine and (p, q)-sine Bernoulli polynomials. Using the properties of exponential
functions and trigonometric functions associated with (p, q)-numbers, we determine the various
properties and identities of the polynomials. Section 4 presents the investigation of the symmetric
properties of (p, q)-cosine and (p, q)-sine Bernoulli polynomials in different forms and based on the
symmetric polynomials, we check the symmetric structure of the approximate roots.

2. Preliminaries

In this section, we introduce definitions and preliminary facts that are used throughout this paper
(see [6,12–20]).

Definition 3. For n ≥ k, the Gaussian binomial coefficients are defined by the following:[
m
r

]
p,q

=
[n]p,q!

[n − k]p,q![k]p,q!
, (5)

where m and r are non-negative integers.

We note that [n]p,q! = [n]p,q[n − 1]p,q · · · [2]p,q[1]p,q, where n ∈ N. For r = 0, the value of
the equation is 1, because both the numerator and denominator are empty products. Moreover,
(p, q)-analogues of the binomial formula exist, and this definition has numerous properties.

Definition 4. The (p, q)-analogues of (x − a)n and (x + a)n are defined by the following:

(i) (x � a)n
p,q =

{
1, if n = 0

(x − a)(px − qa) · · · (pn−1x − qn−1a), if n ≥ 1

(ii) (x ⊕ a)n
p,q =

{
1, if n = 0

(x + a)(px + qa) · · · (pn−2x + qn−2a)(pn−1x + qn−1a), if n ≥ 1

=
n

∑
k=0

[
n
k

]
p,q

p(
k
2)q(

n−k
2 )xkan−k.

(6)

Definition 5. We express the two forms of (p, q)-exponential functions as follows:

ep,q(x) =
∞

∑
n=0

p(
n
2)

xn

[n]p,q!
, Ep,q(x) =

∞

∑
n=0

q(
n
2)

tn

[n]p,q!
. (7)
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From Equation (7), we determine an important property, ep,q(x)Ep,q(−x) = 1. Moreover, Duran,
Acikgos, and Araci defined ẽp,q(x) in [17] as follows:

ẽp,q(x) =
∞

∑
n=0

xn

[n]p,q!
. (8)

From Equations (8) and (6), we remark ep,q(x)Ep,q(y) = ẽp,q(x ⊕ y)p,q.

Definition 6. For x �= 0, the (p, q)-derivative of a function f with respect to x is defined by the following:

Dp,q f (x) =
f (px)− f (qx)

(p − q)x
, (9)

where (Dp,q f )(0) = f ′(0), which prove that f is differentiable at 0. Moreover, it is evident that
Dp,qxn = [n]p,qxn−1.

Definition 7. Let i =
√−1 ∈ C. Then the (p, q)-trigonometric functions are defined by the following:

sinp,q(x) =
ep,q(ix)− ep,q(−ix)

2i
, SINp,q(x) =

Ep,q(ix)− Ep,q(−ix)
2i

cosp,q(x) =
ep,q(ix) + ep,q(−ix)

2
, COSp,q(x) =

Ep,q(ix) + Ep,q(−ix)
2

,
(10)

where, SINp,q(x) = sinp−1,q−1(x) and COSp,q(x) = cosp−1,q−1(x).

In the same way as well-known Euler expressions using exponential functions, we define the
(p, q)-analogues of hyperbolic functions and find several formulae (see [3,5,17]).

Theorem 2. The following relationships hold:

(i) sinp,q(x)COSp,q(x) = cosp,q(x)SINp,q(x)

(ii) ep,q(x) = coshp,q(x)sinhp,q(x)

(iii) Ep,q(x) = COSHp,q(x)SINHp,q(x).

(11)

From Definition 7 and Theorem 2, we note that coshp,q(x)COSHp,q(x)− sinhp,q(x)
SINHp,q(x) = 1.

3. Several Basic Properties of (p, q)-Cosine and (p, q)-Sine Bernoulli Polynomials

We look for Lemma 1 and Theorem 3 in order to introduce (p, q)-cosine and (p, q)-sine Bernoulli
polynomials. From the definitions of the (p, q)-cosine and (p, q)-sine Bernoulli polynomials, we search
for a variety of properties. We also find relationships with other polynomials using properties of
(p, q)-trigonometric functions or other methods.

Lemma 1. For y ∈ R and i =
√−1, we have the following:

(i) Ep,q(ity) = COSp,q(ty) + iSINp,q(ty),

(ii) Ep,q(−ity) = COSp,q(ty)− iSINp,q(ty).
(12)
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Proof.

(i) Ep,q(ity) can be expressed using the (p, q)-cosine and (p, q)-sine functions as

Ep,q(ity) =
Ep,q(ity) + Ep,q(−ity)

2
+

Ep,q(ity)− Ep,q(−ity)
2

= COSp,q(ty) + iSINp,q(ty).
(13)

(ii) By substituting −ity instead of (i), we obtain the following:

Ep,q(−ity) =
Ep,q(−ity) + Ep,q(−ity)

2
− Ep,q(−ity)− Ep,q(−ity)

2
= COSp,q(ty)− iSINp,q(ty).

(14)

Therefore, we complete the proof of Lemma 1.

We note the following relations between ep,q, Ep,q and ẽp,q.

(i) ep,q(x)Ep,q(y) =
∞

∑
n=0

(x ⊕ y)n
p,q

[n]p,q!
= ẽp,q(x ⊕ y)p,q,

(ii) ep,q(x)Ep,q(−y) =
∞

∑
n=0

(x � y)n
p,q

[n]p,q!
= ẽp,q(x � y)p,q.

(15)

Theorem 3. Let x, y ∈ R, i =
√−1, and |q/p| < 1. Then, we have

(i)
∞

∑
n=0

n

∑
k=0

[
n
k

]
p,q

(
(x ⊕ iy)k

p,q + (x � iy)k
p,q

2

)
Bn−k,p,q

tn

[n]p,q!

=
t

ep,q(t)− 1
ep,q(tx)COSp,q(ty),

(ii)
∞

∑
n=0

n

∑
k=0

[
n
k

]
p,q

(
(x ⊕ iy)k

p,q − (x � iy)k
p,q

2i

)
Bn−k,p,q

tn

[n]p,q!

=
t

ep,q(t)− 1
ep,q(tx)SINp,q(ty).

(16)

Proof.

(i) We note that
∞

∑
n=0

Bn,p,q
tn

[n]p,q!
=

t
ep,q(t)− 1

. (17)

We find the following by multiplying ẽp,q
(
t(x ⊕ y)p,q

)
in both sides of Equation (17).

∞

∑
n=0

Bn,p,q
tn

[n]p,q!
ẽp,q
(
t(x ⊕ y)p,q

)
=

t
ep,q(t)− 1

ẽp,q
(
t(x ⊕ y)p,q

)
. (18)

The left-hand side of Equation (18) can be changed into

∞

∑
n=0

Bn,p,q
tn

[n]p,q!
ẽp,q
(
t(x ⊕ y)p,q

)
=

∞

∑
n=0

Bn,p,q
tn

[n]p,q!

∞

∑
n=0

(x ⊕ y)n
p,q

tn

[n]p,q!

=
∞

∑
n=0

⎛⎝ n

∑
k=0

[
n
k

]
p,q

(x ⊕ y)k
p,qBn−k,p,q

⎞⎠ tn

[n]p,q!
,

(19)
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and by using Lemma 1 (i) on the right-hand side of Equation (18), we yield

t
ep,q(t)− 1

ẽp,q
(
t(x ⊕ y)p,q

)
=

t
ep,q(t)− 1

ep,q(x)Ep,q(y)

=
tep,q(x)

ep,q(t)− 1
(
COSp,q(ty) + iSINp,q(ty)

)
.

(20)

From Equations (19) and (20), we derive the following:

∞

∑
n=0

⎛⎝ n

∑
k=0

[
n
k

]
p,q

(x ⊕ y)k
p,qBn−k,p,q

⎞⎠ tn

[n]p,q!
=

tep,q(x)
ep,q(t)− 1

(
COSp,q(ty) + iSINp,q(ty)

)
. (21)

We obtain the equation below for (p, q)-Bernoulli numbers using a similar method.

∞

∑
n=0

⎛⎝ n

∑
k=0

[
n
k

]
p,q

(x � iy)k
p,qBn−k,p,q

⎞⎠ tn

[n]p,q!
=

tep,q(tx)
ep,q(t)− 1

(
COSp,q(ty)− iSINp,q(ty)

)
. (22)

By using Equations (21) and (22), we have

∞

∑
n=0

n

∑
k=0

[
n
k

]
p,q

(
(x ⊕ iy)k

p,q + (x � iy)k
p,q

2

)
Bn−k,p,q

tn

[n]p,q!
=

t
ep,q(t)− 1

ep,q(tx)COSp,q(ty) (23)

and

∞

∑
n=0

n

∑
k=0

[
n
k

]
p,q

(
(x ⊕ iy)k

p,q − (x � iy)k
p,q

2i

)
Bn−k,p,q

tn

[n]p,q!
=

t
ep,q(t)− 1

ep,q(tx)SINp,q(ty). (24)

Therefore, we can conclude the required results.

Thus, we are ready to introduce (p, q)-cosine and (p, q)-sine Bernoulli polynomials using Lemma 1
and Theorem 3.

Definition 8. Let |p/q| < 1 and x, y ∈ R. Then (p, q)-cosine and (p, q)-sine Bernoulli polynomials are
respectively defined by the following:

∞

∑
n=0

CBn,p,q(x, y)
tn

[n]p,q!
=

t
ep,q(t)− 1

ep,q(tx)COSp,q(ty),

and
∞

∑
n=0

SBn,p,q(x, y)
tn

[n]p,q!
=

t
ep,q(t)− 1

ep,q(tx)SINp,q(ty). (25)

From Definition 8, we determine q-cosine and q-sine Bernoulli polynomials when |q| < 1 and
p = 1. In addition, we observe cosine Bernoulli polynomials and sine Bernoulli polynomials for q → 1
and p = 1.
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Corollary 1. From Theorem 3 and Definition 8, the following holds

(i) CBn,p,q(x, y) =
n

∑
k=0

[
n
k

]
p,q

(
(x ⊕ iy)k

p,q + (x � iy)k
p,q

2

)
Bn−k,p,q,

(ii)SBn,p,q(x, y) =
n

∑
k=0

[
n
k

]
p,q

(
(x ⊕ iy)k

p,q − (x � iy)k
p,q

2i

)
Bn−k,p,q,

(26)

where Bn,p,q denotes the (p, q)-Bernoulli numbers.

Example 1. From Definition 8, a few examples of CBn,p,q(x, y) and SBn,p,q(x, y) are the follows:

CB0,p,q(x, y) = 0

CB1,p,q(x, y) = px

CB2,p,q(x, y) = p2x2 − qy2

CB3,p,q(x, y) = p3x3 − pq(p2 + pq + q2)xy2

CB4,p,q(x, y) = p4x4 − p2q(p2 + q2)(p2 + pq + q2)x2y2 + q6y4,

· · · .

(27)

and
SB0,p,q(x, y) = 0

SB1,p,q(x, y) =
y

p + q

SB2,p,q(x, y) =
pxy

p2 + pq + q2

SB3,p,q(x, y) =
y
(

p2x2

p2+q2 − q3y2
)

p + q

SB4,p,q(x, y) = p(p − q)xy
(

p2x2

p5 − q5 +
q3(p2 + q2)y2

−p3 + q3

)
,

· · · .

(28)

Definition 9. Let |p/q| < 1. Then, we define

∞

∑
n=0

Cn,p,q(x, y)
tn

[n]p,q!
= ep,q(tx)COSp,q(ty),

∞

∑
n=0

Sn,p,q(x, y)
tn

[n]p,q!
= ep,q(tx)SINp,q(ty). (29)

Theorem 4. Let k be a nonnegative integer and |p/q| < 1. Then, we have

(i) CBn,p,q(x, y) =
n

∑
k=0

[
n
k

]
p,q

Bn−k,p,qCk,p,q(x, y),

(ii) SBn,p,q(x, y) =
n

∑
k=0

[
n
k

]
p,q

Bn−k,p,qSk,p,q(x, y),

(30)

where Bn,p,q is the (p, q)-Bernoulli numbers.
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Proof.

(i) Using the generating function of the (p, q)-cosine Bernoulli polynomials and Definition 9,
we find

∞

∑
n=0

CBn,p,q(x, y)
tn

[n]p,q!
=

∞

∑
n=0

Bn,p,q
tn

[n]p,q!

∞

∑
n=0

Cn,p,q(x, y)
tn

[n]p,q!

=
∞

∑
n=0

⎛⎝ n

∑
k=0

[
n
k

]
p,q

Bn−k,p,qCn,p,q(x, y)

⎞⎠ tn

[n]p,q!
.

(31)

Through comparison of the coefficients of both sides for Equation (31), we obtain the desired
results immediately.

(ii) By applying a method similar to (i) in the generating function of the (p, q)-sine Bernoulli
polynomials, we complete the proof of Theorem 4 (ii).

Theorem 5. For a nonnegative integer n, we derive

(i) [n]p,qCn−1,p,q(x, y) =
n

∑
k=0

[
n
k

]
p,q

p(
n−k

2 )
CBk,p,q(x, y)− CBn,p,q(x, y),

(ii) [n]p,qSn−1,p,q(x, y) =
n

∑
k=0

[
n
k

]
p,q

p(
n−k

2 )
SBk,p,q(x, y)− SBn,p,q(x, y).

(32)

Proof.

(i) Suppose that ep,q(t) �= 1 in the generating function of the (p, q)-cosine Bernoulli polynomials.
Then, we have

∞

∑
n=0

CBn,p,q(x, y)
tn

[n]p,q!
(ep,q(t)− 1) = tep,q(tx)COSp,q(ty). (33)

We write the left-hand side of Equation (33) as follows:

∞

∑
n=0

CBn,p,q(x, y)
tn

[n]p,q!
(ep,q(t)− 1)

=
∞

∑
n=0

CBn,p,q(x, y)
tn

[n]p,q!

(
∞

∑
n=0

p(
n
2)

tn

[n]p,q!
− 1

)

=
∞

∑
n=0

⎛⎝ n

∑
k=0

[
n
k

]
p,q

p(
n−k

2 )
CBk,p,q(x, y)− CBn,p,q(x, y)

⎞⎠ tn

[n]p,q!
,

(34)

and we transform the right-hand side into the following:

tep,q(tx)COSp,q(ty) =
∞

∑
n=0

Cn,p,q(x, y)
tn+1

[n]p,q!

=
∞

∑
n=0

[n]p,qCn−1,p,q(x, y)
tn

[n]p,q!
.

(35)

Therefore, we obtain the following:

n

∑
k=0

[
n
k

]
p,q

p(
n−k

2 )
CBk,p,q(x, y)− CBn,p,q(x, y) = [n]p,qCn−1,p,q(x, y). (36)
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By calculating the left-hand side of Equation (36), we investigate the required result.

(ii) We do not include the proof of Theorem 5 (ii) because the proving process is similar to that
of Theorem 5 (i).

Corollary 2. Setting p = 1 in Theorem 5, the following equations hold

(i) [n]qCn−1,q(x, y) =
n

∑
k=0

[
n
k

]
q

CBk,q(x, y)− CBn,q(x, y)

(ii) [n]qSn−1,q(x, y) =
n

∑
k=0

[
n
k

]
q

SBk,q(x, y)− SBn,q(x, y),

(37)

where CBn,q(x, y) represents the q-cosine Bernoulli polynomials and SBn,q(x, y) denotes the q-sine
Bernoulli polynomials.

Corollary 3. Assigning p = 1 and q → 1 in Theorem 5, the following holds:

(i) nCn−1(x, y) =
n−1

∑
k=0

(
n
k

)
CBn(x, y)

(ii) nSn−1(x, y) =
n−1

∑
k=0

(
n
k

)
SBn(x, y),

(38)

where CBn(x, y) represents the cosine Bernoulli polynomials and SBn(x, y) represents the sine
Bernoulli polynomials.

Theorem 6. Let |p/q| < 1. Then, we have

(i) CBn,p,q(1, y) =
n

∑
k=0

[
n
k

]
p,q

(−1)n−kq(
n−k

2 )
(
[k]p,qCk−1,p,q(x, y) + CBk,p,q(x, y)

)
xn−k,

(ii) SBn,p,q(1, y) =
n

∑
k=0

[
n
k

]
p,q

(−1)n−kq(
n−k

2 )
(
[k]p,qSk−1,p,q(x, y) + SBk,p,q(x, y)

)
xn−k.

(39)

Proof.

(i) If we put 1 instead of x in the generating function of the (p, q)-cosine Bernoulli polynomials,
we find the following:

∞

∑
n=0

CBn,p,q(1, y)
tn

[n]p,q!
=

t
ep,q(t)− 1

(
ep,q(t)− 1 + 1

)
COSp,q(ty)

= tCOSp,q(ty) +
t

ep,q(t)− 1
COSp,q(ty).

(40)
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Using a property of the (p, q)-exponential function, ep,q(x)Ep,q(−x) = 1, in Equation (40),
we obtain the following:

∞

∑
n=0

CBn,p,q(1, y)
tn

[n]p,q!

=

(
tep,q(tx)COSp,q(ty) +

t
ep,q(t)− 1

ep,q(tx)COSp,q(ty)
)

Ep,q(−tx)

=
∞

∑
n=0

(
[n]p,qCn−1,p,q(x, y) + CBn,p,q(x, y)

) tn

[n]p,q!

∞

∑
n=0

q(
n
2)(−x)n tn

[n]p,q!

=
∞

∑
n=0

⎛⎝ n

∑
k=0

[
n
k

]
p,q

(−1)n−kq(
n−k

2 )([k]p,qCk−1,p,q(x, y) + CBk,p,q(x, y))xn−k

⎞⎠ tn

[n]p,q!
,

(41)

and we immediately derive the results.
(ii) By applying a similar process for proving (i) to the (p, q)-sine Bernoulli polynomials, we find

Theorem 6 (ii).

Corollary 4. Setting p = 1 in Theorem 6, the following holds:

(i) CBn,q(1, y) =
n

∑
k=0

[
n
k

]
q

(−1)n−kq(
n−k

2 )
(
[k]qCk−1,q(x, y) + CBk,q(x, y)

)
xn−k

(ii) SBn,q(1, y) =
n

∑
k=0

[
n
k

]
q

(−1)n−kq(
n−k

2 )
(
[k]qSk−1,q(x, y) + SBk,q(x, y)

)
xn−k,

(42)

where CBn,q(x, y) denotes the q-cosine Bernoulli polynomials and SBn,q(x, y) denotes the q-sine
Bernoulli polynomials.

Corollary 5. Setting p = 1 and q → 1 in Theorem 6, the following holds:

(i) CBn(1, y) =
n

∑
k=0

(
n
k

)
(−1)n−k (kCk−1(x, y) + CBk(x, y)) xn−k

(ii) SBn(1, y) =
n

∑
k=0

(
n
k

)
(−1)n−k (kSk−1(x, y) + SBk(x, y)) xn−k,

(43)

where CBn(x, y) is the cosine Bernoulli polynomials and SBn(x, y) is the sine Bernoulli polynomials.

Theorem 7. For a nonnegative integer k and |p/q| < 1, we investigate

Bn,p,q(x) =
[ n

2 ]

∑
k=0

[
n
2k

]
p,q

(−1)k p(2k−1)ky2k
CBn−k,p,q(x, y)

+
[ n−1

2 ]

∑
k=0

[
n

2k + 1

]
p,q

(−1)k p(2k+1)ky2k+1
SBn−(2k+1),p,q(x, y),

(44)

where Bn,p,q(x) is the (p, q)-Bernoulli polynomials and [x] is the greatest integer not exceeding x.
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Proof. In [9], we observe the power series of (p, q)-cosine and (p, q)-sine functions as follows:

cosp,q(x) =
∞

∑
n=0

(−1)n p(2n−1)n x2n

[2n]p,q!
, sinp,q(x) =

∞

∑
n=0

(−1)n p(2n+1)n x2n+1

[2n + 1]p,q!
. (45)

Let us consider (p, q)-cosine Bernoulli polynomials. If we multiply (p, q)-cosine Bernoulli
polynomials and the (p, q)-cosine function to determine the relationship between (p, q)-Bernoulli
polynomials and, combined (p, q)-cosine Bernoulli polynomials, and (p, q)-sine Bernoulli polynomials,
we have

∞

∑
n=0

CBn,p,q(x, y)
tn

[n]p,q!
cosp,q(ty) =

t
ep,q(t)− 1

ep,q(tx)COSp,q(ty)cosp,q(ty). (46)

The left-hand side of Equation (46) is transformed as

∞

∑
n=0

CBn,p,q(x, y)
tn

[n]p,q!
cosp,q(ty)

=
∞

∑
n=0

CBn,p,q(x, y)
tn

[n]p,q!

∞

∑
n=0

(−1)n p(2n−1)ny2n t2n

[n]p,q!

=
∞

∑
n=0

⎛⎝ n

∑
k=0

[
n + k

2k

]
p,q

(−1)k p(2k−1)ky2k
CBn−k,p,q(x, y)

⎞⎠ tn+k

[n + k]p,q!

=
∞

∑
n=0

⎛⎝ [ n
2 ]

∑
k=0

[
n
2k

]
p,q

(−1)k p(2k−1)ky2k
CBn−k,p,q(x, y)

⎞⎠ tn

[n]p,q!
.

(47)

From Equations (46) and (47), we derive the following:

∞

∑
n=0

⎛⎝ [ n
2 ]

∑
k=0

[
n
2k

]
p,q

(−1)k p(2k−1)ky2k
CBn−k,p,q(x, y)

⎞⎠ tn

[n]p,q!

=
t

ep,q(t)− 1
ep,q(tx)COSp,q(ty)cosp,q(ty),

(48)

where [x] is the greatest integer that does not exceed x.
From now on, let us consider the (p, q)-sine Bernoulli polynomials in a same manner of

(p, q)-cosine Bernoulli polynomials. If we multiply SBn,p,q(x, y) and sinp,q(ty), we obtain

∞

∑
n=0

SBn,p,q(x, y)
tn

[n]p,q!
sinp,q(ty) =

t
ep,q(t)− 1

ep,q(tx)SINp,q(ty)sinp,q(ty). (49)

The left-hand side of Equation (49) can be changed as the following.

∞

∑
n=0

SBn,p,q(x, y)
tn

[n]p,q!
sinp,q(ty)

=
∞

∑
n=0

SBn,p,q(x, y)
tn

[n]p,q!

∞

∑
n=0

(−1)n p(2n+1)ny2n+1 t2n+1

[n]p,q!

=
∞

∑
n=0

⎛⎝[ n−1
2 ]

∑
k=0

[
n

2k + 1

]
p,q

(−1)k p(2k+1)ky2k+1
SBn−(2k+1),p,q(x, y)

⎞⎠ tn

[n]p,q!
.

(50)
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From Equations (49) and (50), we have the following:

∞

∑
n=0

⎛⎝[ n−1
2 ]

∑
k=0

[
n

2k + 1

]
p,q

(−1)k p(2k+1)ky2k+1
SBn−(2k+1),p,q(x, y)

⎞⎠ tn

[n]p,q!

=
t

ep,q(t)− 1
ep,q(tx)SINp,q(ty)sinp,q(ty),

(51)

where [x] is the greatest integer that does not exceed x.
Here, we recall that (

COSp,q(x)cosp,q(x) + SINp,q(x)sinp,q(x)
)
= 1. (52)

Using Equations (48) and (51) and applying the property of (p, q)-trigonometric functions, we find
(p, q)-Bernoulli polynomials as follows:

∞

∑
n=0

⎛⎝ [ n
2 ]

∑
k=0

[
n
2k

]
p,q

(−1)k p(2k−1)ky2k
CBn−k,p,q(x, y)

⎞⎠ tn

[n]p,q!

+
∞

∑
n=0

⎛⎝[ n−1
2 ]

∑
k=0

[
n

2k + 1

]
p,q

(−1)k p(2k+1)ky2k+1
SBn−(2k+1),p,q(x, y)

⎞⎠ tn

[n]p,q!

=
t

ep,q(t)− 1
ep,q(tx)

(
COSp,q(ty)cosp,q(ty) + SINp,q(ty)sinp,q(ty)

)
=

∞

∑
n=0

Bn,p,q(x)
tn

[n]p,q!
,

(53)

where Bn,p,q(x) is the (p, q)-Bernoulli polynomials.
By comparing the coefficients of both sides of tn, we produce the desired result.

Corollary 6. Setting p = 1 in Theorem 7, the following holds:

Bn,q(x) =
[ n

2 ]

∑
k=0

[
n
2k

]
q

(−1)ky2k
CBn−k,q(x, y)

+
[ n−1

2 ]

∑
k=0

[
n

2k + 1

]
q

(−1)ky2k+1
SBn−(2k+1),q(x, y),

(54)

where Bn,q(x) is the q-Bernoulli polynomials, CBn,q(x, y) denote the q-cosine Bernoulli polynomials, and
SBn,q(x) denote the q-sine Bernoulli polynomials.

Corollary 7. Setting y = 1 in Theorem 7, one holds:

Bn,p,q(x) =
[ n

2 ]

∑
k=0

[
n
2k

]
p,q

(−1)k p(2k−1)k
CBn−k,p,q(x, 1)

+
[ n−1

2 ]

∑
k=0

[
n

2k + 1

]
p,q

(−1)k p(2k+1)k
SBn−(2k+1),p,q(x, 1),

(55)

where Bn,p,q(x) is the (p, q)-Bernoulli polynomials and [x] is the greatest integers that does not exceed x.
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Theorem 8. For a nonnegative integer k and |p/q| < 1, we derive

[ n−1
2 ]

∑
k=0

[
n

2k + 1

]
p,q

(−1)k p(2k+1)ky2k+1
CBn−(2k+1),p,q(x, y)

=
[ n

2 ]

∑
k=0

[
n
2k

]
p,q

(−1)k p(2k−1)ky2k
SBn−k,p,q(x, y),

(56)

where [x] is the greatest integer not exceeding x.

Proof. If we multiply CBn,p,q(x, y) and sinp,q(ty), then we find

∞

∑
n=0

CBn,p,q(x, y)
tn

[n]p,q!
sinp,q(ty) =

t
ep,q(t)− 1

ep,q(tx)COSp,q(ty)sinp,q(ty), (57)

and the left-hand side of Equation (57) can be transformed as

∞

∑
n=0

CBn,p,q(x, y)
tn

[n]p,q!
sinp,q(ty)

=
∞

∑
n=0

CBn,p,q(x, y)
tn

[n]p,q!

∞

∑
n=0

(−1)n p(2n+1)ny2n+1 t2n+1

[2n + 1]p,q!

=
∞

∑
n=0

⎛⎝[ n−1
2 ]

∑
k=0

[
n

2k + 1

]
p,q

(−1)k p(2k+1)ky2k+1
CBn−(2k+1),p,q(x, y)

⎞⎠ tn

[n]p,q!
.

(58)

Similarly, we multiply the (p, q)-sine Bernoulli polynomials and (p, q)-cosine function as
the follows:

∞

∑
n=0

SBn,p,q(x, y)
tn

[n]p,q!
cosp,q(ty) =

t
ep,q(t)− 1

ep,q(tx)SINp,q(ty)cosp,q(ty). (59)

The left-hand side of Equation (59) can be changed as

∞

∑
n=0

SBn,p,q(x, y)
tn

[n]p,q!
cosp,q(ty)

=
∞

∑
n=0

SBn,p,q(x, y)
tn

[n]p,q!

∞

∑
n=0

(−1)n p(2n−1)ny2n t2n

[2n]p,q!

=
∞

∑
n=0

⎛⎝[ n−1
2 ]

∑
k=0

[
n
2k

]
p,q

(−1)k p(2k−1)ky2k
SBn−k,p,q(x, y)

⎞⎠ tn

[n]p,q!
.

(60)

In here, we recall that sinp,q(x)COSp,q(x) = cosp,q(x)SINp,q(x). From Equations (58) and (60),
and the above property of (p, q)-trigonometric functions, we investigate

∞

∑
n=0

⎛⎝[ n−1
2 ]

∑
k=0

[
n

2k + 1

]
p,q

(−1)k p(2k+1)ky2k+1
CBn−(2k+1),p,q(x, y)

⎞⎠ tn

[n]p,q!

−
∞

∑
n=0

⎛⎝ [ n
2 ]

∑
k=0

[
n
2k

]
p,q

(−1)k p(2k−1)ky2k
SBn−k,p,q(x, y)

⎞⎠ tn

[n]p,q!

=
t

ep,q(t)− 1
ep,q(tx)

(
COSp,q(ty)sinp,q(ty)− SINp,q(ty)cosp,q(ty)

)
(61)
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From Equation (61), we complete the proof of Theorem 8.

Corollary 8. Putting y = 1 in Theorem 8, we have the following:

[ n−1
2 ]

∑
k=0

[
n

2k + 1

]
p,q

(−1)k p(2k+1)k
CBn−(2k+1),p,q(x, 1)

=
[ n

2 ]

∑
k=0

[
n
2k

]
p,q

(−1)k p(2k−1)k
SBn−k,p,q(x, 1),

(62)

where [x] is the greatest integer not exceeding x.

Corollary 9. Setting p = 1 in Theorem 8, the following holds:

[ n−1
2 ]

∑
k=0

[
n

2k + 1

]
q

(−1)ky2k+1
CBn−(2k+1),q(x, y) =

[ n
2 ]

∑
k=0

[
n
2k

]
q

(−1)ky2k
SBn−k,q(x, y), (63)

where CBn,q(x, y) is the q-cosine Bernoulli polynomials and SBn,q(x, y) is the q-sine Bernoulli polynomials.

Corollary 10. Let p = 1 and q → 1 in Theorem 8. Then one holds

[ n−1
2 ]

∑
k=0

(
n

2k + 1

)
(−1)ky2k+1

CBn−(2k+1)(x, y) =
[ n

2 ]

∑
k=0

(
n
2k

)
(−1)ky2k

SBn−k(x, y), (64)

where CBn(x, y) is the cosine Bernoulli polynomials and SBn(x, y) is the sine Bernoulli polynomials.

4. Several Symmetric Properties of the (p, q)-Cosine and (p, q)-Sine Bernoulli Polynomials

In this section, we point out several symmetric identities of the (p, q)-cosine and (p, q)-Bernoulli
polynomials. Using various forms that are made by a and b, we obtain a few desired results regarding
the (p, q)-cosine and (p, q)-sine Bernoulli polynomials. Moreover, we discover other relations of
different Bernoulli polynomials by considering certain conditions in theorems. We also find the
symmetric structure of the approximate roots based on the symmetric polynomials.

Theorem 9. Let a and b be nonzero. Then, we obtain

(i)
n

∑
k=0

[
n
k

]
p,q

an−k−1bk−1
CBn−k,p,q

( x
a

,
y
a

)
CBk,p,q

(
X
b

,
Y
b

)

=
n

∑
k=0

[
n
k

]
p,q

bn−k−1ak−1
CBn−k,p,q

( x
b

,
y
b

)
CBk,p,q

(
X
a

,
Y
a

)
,

(ii)
n

∑
k=0

[
n
k

]
p,q

an−k−1bk−1
SBn−k,p,q

( x
a

,
y
a

)
SBk,p,q

(
X
b

,
Y
b

)

=
n

∑
k=0

[
n
k

]
p,q

bn−k−1ak−1
SBn−k,p,q

( x
b

,
y
b

)
SBk,p,q

(
X
a

,
Y
a

)
.

(65)
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Proof.

(i) We consider form A as follows:

A :=
t2ep,q(tx)ep,q(tX)COSp,q(ty)COSp,q(tY)(

ep,q(at)− 1
) (

ep,q(bt)− 1
) (66)

From form A, we find

A =
t

ep,q(at)− 1
ep,q(tx)COSp,q(ty)

t
ep,q(bt)− 1

ep,q(tX)COSp,q(tY)

=
∞

∑
n=0

an−1
CBn,p,q

( x
a

,
y
a

) tn

[n]p,q!

∞

∑
n=0

bn−1
CBn,p,q

(
X
b

,
Y
b

)
tn

[n]p,q!

=
∞

∑
n=0

⎛⎝ n

∑
k=0

[
n
k

]
p,q

an−k−1bk−1
CBn−k,p,q

( x
a

,
y
a

)
CBk,p,q

(
X
b

,
Y
b

)⎞⎠ tn

[n]p,q!
,

(67)

and form A of Equation (66) can be transformed into the following:

A =
t

ep,q(bt)− 1
ep,q(tx)COSp,q(ty)

t
ep,q(at)− 1

ep,q(tX)COSp,q(tY)

=
∞

∑
n=0

⎛⎝ n

∑
k=0

[
n
k

]
p,q

bn−k−1ak−1
CBn−k,p,q

( x
b

,
y
b

)
CBk,p,q

(
X
a

,
Y
a

)⎞⎠ tn

[n]p,q!
.

(68)

Using the comparison of coefficients in Equations (67) and (68), we find the desired result.
(ii) If we assume form B as follows:

B :=
t2ep,q(tx)ep,q(tX)SINp,q(ty)SINp,q(tY)(

ep,q(at)− 1
) (

ep,q(bt)− 1
) , (69)

then, we find Theorem 9 (ii) in the same manner.

Corollary 11. Setting a = 1 in Theorem 9, the following holds:

(i)
n

∑
k=0

[
n
k

]
p,q

bk−1
CBn−k,p,q (x, y) CBk,p,q

(
X
b

,
Y
b

)

=
n

∑
k=0

[
n
k

]
p,q

bn−k−1
CBn−k,p,q

( x
b

,
y
b

)
CBk,p,q (X, Y) ,

(ii)
n

∑
k=0

[
n
k

]
p,q

bk−1
SBn−k,p,q (x, y) SBk,p,q

(
X
b

,
Y
b

)

=
n

∑
k=0

[
n
k

]
p,q

bn−k−1
SBn−k,p,q

( x
b

,
y
b

)
SBk,p,q (X, Y) .

(70)
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Corollary 12. If p = 1 in Theorem 9, then we have

(i)
n

∑
k=0

[
n
k

]
q

an−k−1bk−1
CBn−k,q

( x
a

,
y
a

)
CBk,q

(
X
b

,
Y
b

)

=
n

∑
k=0

[
n
k

]
q

bn−k−1ak−1
CBn−k,q

( x
b

,
y
b

)
CBk,q

(
X
a

,
Y
a

)
,

(ii)
n

∑
k=0

[
n
k

]
q

an−k−1bk−1
SBn−k,q

( x
a

,
y
a

)
SBk,q

(
X
b

,
Y
b

)

=
n

∑
k=0

[
n
k

]
q

bn−k−1ak−1
SBn−k,q

( x
b

,
y
b

)
SBk,q

(
X
a

,
Y
a

)
,

(71)

where CBn,q(x, y) denotes the q-cosine Bernoulli polynomials and SBn,q(x, y) denotes the q-sine
Bernoulli polynomials.

Corollary 13. Putting p = 1 and q → 1, one holds:

(i)
n

∑
k=0

(
n
k

)
an−k−1bk−1

CBn−k

( x
a

,
y
a

)
CBk

(
X
b

,
Y
b

)
=

n

∑
k=0

(
n
k

)
bn−k−1ak−1

CBn−k

( x
b

,
y
b

)
CBk

(
X
a

,
Y
a

)
,

(ii)
n

∑
k=0

(
n
k

)
an−k−1bk−1

SBn−k

( x
a

,
y
a

)
SBk

(
X
b

,
Y
b

)
=

n

∑
k=0

(
n
k

)
bn−k−1ak−1

SBn−k

( x
b

,
y
b

)
SBk

(
X
a

,
Y
a

)
,

(72)

where CBn(x, y) is the cosine Bernoulli polynomials and SBn(x, y) is the sine Bernoulli polynomials.

Theorem 9 is a basic symmetric property of (p, q)-cosine and (p, q)-sine Bernoulli polynomials.
We aim to find several symmetric properties by mixing (p, q)-cosine and (p, q)-sine Bernoulli polynomials.

Theorem 10. For nonzero integers a and b, we have

n

∑
k=0

[
n
k

]
p,q

an−k−1bk−1
CBn−k,p,q

( x
a

,
y
a

)
SBk,p,q

(
X
b

,
Y
b

)

=
n

∑
k=0

[
n
k

]
p,q

bn−k−1ak−1
CBn−k,p,q

( x
b

,
y
b

)
SBk,p,q

(
X
a

,
Y
a

)
.

(73)

Proof. We assume form C by mixing the (p, q)-cosine function with the (p, q)-sine function, such as
the following:

C :=
t2ep,q(tx)ep,q(tX)COSp,q(ty)SINp,q(tY)(

ep,q(at)− 1
) (

ep,q(bt)− 1
) . (74)

90



Symmetry 2020, 12, 885

Form C of the above equation can be changed into

C =
t

ep,q(at)− 1
ep,q(tx)COSp,q(ty)

t
ep,q(bt)− 1

ep,q(tX)SINp,q(tY)

=
∞

∑
n=0

an−1
CBn,p,q

( x
a

,
y
a

) tn

[n]p,q!

∞

∑
n=0

bn−1
SBn,p,q

(
X
b

,
Y
b

)
tn

[n]p,q!

=
∞

∑
n=0

⎛⎝ n

∑
k=0

[
n
k

]
p,q

an−k−1bk−1
CBn−k,p,q

( x
a

,
y
a

)
SBk,p,q

(
X
b

,
Y
b

)⎞⎠ tn

[n]p,q!
,

(75)

or, equivalently:

C =
t

ep,q(bt)− 1
ep,q(tx)COSp,q(ty)

t
ep,q(at)− 1

ep,q(tX)SINp,q(tY)

=
∞

∑
n=0

⎛⎝ n

∑
k=0

[
n
k

]
p,q

bn−k−1ak−1
CBn−k,p,q

( x
b

,
y
b

)
SBk,p,q

(
X
a

,
Y
a

)⎞⎠ tn

[n]p,q!
.

(76)

By comparing transformed Equations (75) and (76), we determine the result of Theorem 10.

Corollary 14. If a = 1 in Theorem 10, then we find

n

∑
k=0

[
n
k

]
p,q

bk−1
CBn−k,p,q (x, y) SBk,p,q

(
X
b

,
Y
b

)

=
n

∑
k=0

[
n
k

]
p,q

bn−k−1
CBn−k,p,q

( x
b

,
y
b

)
SBk,p,q (X, Y) .

(77)

Corollary 15. Setting p = 1 in Theorem 10, one holds:

n

∑
k=0

[
n
k

]
q

an−k−1bk−1
CBn−k,q

( x
a

,
y
a

)
SBk,q

(
X
b

,
Y
b

)

=
n

∑
k=0

[
n
k

]
q

bn−k−1ak−1
CBn−k,q

( x
b

,
y
b

)
SBk,q

(
X
a

,
Y
a

)
,

(78)

where CBn,q(x, y) is the q-cosine Bernoulli polynomials and SBn,q(x, y) is the q-sine Bernoulli polynomials.

Corollary 16. Assigning p = 1 and q → 1 in Theorem 10, the following holds:

n

∑
k=0

(
n
k

)
an−k−1bk−1

CBn−k

( x
a

,
y
a

)
SBk

(
X
b

,
Y
b

)
=

n

∑
k=0

(
n
k

)
bn−k−1ak−1

CBn−k

( x
b

,
y
b

)
SBk

(
X
a

,
Y
a

)
,

(79)

where CBn(x, y) is the cosine Bernoulli polynomials and SBn(x, y) is the sine Bernoulli polynomials.
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Theorem 11. Let a and b be nonzero integers. Then, we derive

n

∑
k=0

[
n
k

]
p,q

an−k−1bk−1
CBn−k,p,q

(
bx,

y
a

)
SBk,p,q

(
aX,

Y
b

)

=
n

∑
k=0

[
n
k

]
p,q

bn−k−1ak−1
CBn−k,p,q

(
ax,

y
b

)
SBk,p,q

(
bX,

Y
a

)
.

(80)

Proof. Let us consider form D containing a and b in the (p, q)-exponential functions as

D :=
t2ep,q(abtx)ep,q(abtX)COSp,q(ty)SINp,q(tY)(

ep,q(at)− 1
) (

ep,q(bt)− 1
) . (81)

From the above form D , we can obtain

D =
t

ep,q(at)− 1
ep,q(abtx)COSp,q(ty)

t
ep,q(bt)− 1

ep,q(abtX)SINp,q(tY)

=
∞

∑
n=0

an−1
CBn,p,q

(
bx,

y
a

) tn

[n]p,q!

∞

∑
n=0

bn−1
SBn,p,q

(
aX,

Y
b

)
tn

[n]p,q!

=
∞

∑
n=0

⎛⎝ n

∑
k=0

[
n
k

]
p,q

an−k−1bk−1
CBn−k,p,q

(
bx,

y
a

)
SBk,p,q

(
aX,

Y
b

)⎞⎠ tn

[n]p,q!
,

(82)

and
D =

t
ep,q(bt)− 1

ep,q(abtx)COSp,q(ty)
t

ep,q(at)− 1
ep,q(abtX)SINp,q(tY)

=
∞

∑
n=0

⎛⎝ n

∑
k=0

[
n
k

]
p,q

bn−k−1ak−1
CBn−k,p,q

(
ax,

y
b

)
SBk,p,q

(
bX,

Y
a

)⎞⎠ tn

[n]p,q!
.

(83)

By observing Equations (82) and (83) which are made by form D, we prove Theorem 11.

Corollary 17. Setting a = 1 in Theorem 11, the following holds:

n

∑
k=0

[
n
k

]
p,q

bk−1
CBn−k,p,q (bx, y) SBk,p,q

(
X,

Y
b

)

=
n

∑
k=0

[
n
k

]
p,q

bn−k−1
CBn−k,p,q

(
x,

y
b

)
SBk,p,q (bX, Y) .

(84)

Corollary 18. If p = 1 in Theorem 11, then we obtain

n

∑
k=0

[
n
k

]
q

an−k−1bk−1
CBn−k,q

(
bx,

y
a

)
SBk,q

(
aX,

Y
b

)

=
n

∑
k=0

[
n
k

]
q

bn−k−1ak−1
CBn−k,q

(
ax,

y
b

)
SBk,q

(
bX,

Y
a

)
,

(85)

where CBn,q(x, y) is the q-cosine Bernoulli polynomials and SBn,q(x, y) is the q-sine Bernoulli polynomials.
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Corollary 19. Let p = 1 and q → 1 in Theorem 11. Then one holds

n

∑
k=0

(
n
k

)
an−k−1bk−1

CBn−k

(
bx,

y
a

)
SBk

(
aX,

Y
b

)
=

n

∑
k=0

(
n
k

)
bn−k−1ak−1

CBn−k

(
ax,

y
b

)
SBk

(
bX,

Y
a

)
,

(86)

where CBn(x, y) is the cosine Bernoulli polynomials and SBn(x, y) is the sine Bernoulli polynomials.

Next, we investigate the structure of approximate roots in (p, q)-cosine and (p, q)-sine Bernoulli
polynomials. Based on the theorems above, (p, q)-cosine and (p, q)-sine Bernoulli polynomials have
symmetric properties. Thus, we assume that the approximate roots of (p, q)-cosine and (p, q)-sine
Bernoulli polynomials also have symmetric properties as well. We aim to identify the stacking structure
of the roots from the specific (p, q)-cosine and (p, q)-sine Bernoulli polynomials found in Section 3.

First, the structure of approximate roots in the (p, q)-cosine Bernoulli polynomials is illustrated in
Figure 1 when y = 5, q = 0.9, and the value of p changes. Figure 1 reveals the pattern of the roots in
the (p, q)-cosine Bernoulli polynomials when p = 0.5. In addition, the approximate roots appear when
n changes from 1 to 30. The red points become closer together when n is 30 and n becomes smaller
as illustrated by the blue points. Based on the graphs with real and imaginary axes, the (p, q)-cosine
Bernoulli polynomials are symmetric.

Figure 1. Stacking structure of approximate roots in the (p, q)-cosine Bernoulli polynomials when
p = 0.5, q = 0.9, and y = 5.

Here, we aim to confirm that changes in the value of the (p, q)-cosine Bernoulli polynomials
changes the structure of the approximate roots as the value changes. The structure of the approximate
roots in polynomials when p = 1 and q changes, can be found in the q-cosine Bernoulli polynomials
(see [11]).

Figure 2 below illustrates the stacking structure of the approximate roots of the (p, q)-cosine
Bernoulli polynomials fixed at p = 0.1, q = 0.5 and y = 5 when 1 ≤ n ≤ 30. Compared with Figure 1,
Figure 2 displays a wider distribution of the approximate roots. The range of the left picture in Figure 1
is −15 < Re x < 15 and the range of the left picture in Figure 2 is −50 < Re x < 50. The structure of
the approximate roots of p = 0.1 when n = 30 is wider on the real axis compared to when p = 0.5.
The right-hand graphs in Figures 1 and 2 also reveal the same distribution. In addition, as n increases,
the structure of the approximate roots appears symmetric.

Figure 2. Stacking structure of approximate roots in the (p, q)-cosine Bernoulli polynomials when
p = 0.1, q = 0.9, and y = 5.
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Next, we examine the stacking structure of the approximate roots in the (p, q)-sine Bernoulli
polynomials. The conditions are confirmed by equating them to the conditions of the (p, q)-cosine
Bernoulli polynomials. The stacking structure of the approximate roots of the (p, q)-sine Bernoulli
polynomials when p = 0.5, q = 0.9, and y = 5 can be checked in Figure 3. At 1 ≤ n ≤ 30,
the distribution range of the approximate roots appears wider in the values on the real axis than
in the imaginary axis, as shown in the left picture in Figure 3. Figure 3 reveals that, as the value of n
becomes larger, the approximate roots become more symmetric, and the approximate form approaches
a circular shape, including the origin.

10
30

Figure 3. Stacking structure of approximate roots in the (p, q)-sine Bernoulli polynomials when
p = 0.5, q = 0.9, and y = 5 in 3D.

When we change the value of p, the structure of the approximate roots of the (p, q)-sine Bernoulli
polynomials when p = 0.1 under the same conditions as in Figure 3 is presented in Figure 4.
In comparison with Figure 3, the area of the real and the imaginary axes in Figure 4 is greater, and the
approximate roots have a wider distribution than observed in Figure 3. This property is common
in the approximate roots of the (p, q)-cosine and (p, q)-sine Bernoulli polynomials. This indicates
that, as the value of p decreases, the approximate roots of the (p, q)-cosine and (p, q)-sine Bernoulli
polynomials spread wider. In addition, as displayed in Figure 4, the structure of the approximate roots
of the (p, q)-sine Bernoulli polynomials is symmetric as the value of n increases.

Figure 4. Stacking structure of approximate roots in the (p, q)-sine Bernoulli polynomials when
p = 0.1, q = 0.9, and y = 5 in 3D.

5. Conclusions and Future Directions

In this paper, we explained about the (p, q)-cosine and (p, q)-sine Bernoulli polynomials,
their basic properties, and various symmetric properties. Based on the above contents, we identified
the structures of the approximate roots of the (p, q)-cosine and (p, q)-sine Bernoulli polynomials.
As a result, we observed that the above polynomials obtain a structure of approximate roots, which has
certain patterns and has a symmetric property under the given circumstances.

Further study is needed regarding whether the structure of approximate roots for the (p, q)-cosine
and (p, q)-sine Bernoulli polynomials have symmetric properties under different circumstances.
Furthermore, we think researching theories related to this topic is important to mathematicians.
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binomial theorem. We investigate the approximate roots of q-cosine Euler polynomials that help us
understand these polynomials. Moreover, we display the approximate roots movements of q-cosine
Euler polynomials in a complex plane using the Newton method.

Keywords: q-cosine Euler polynomials; q-sine Euler polynomials; q-trigonometric function;
q-exponential function

MSC: 11B68; 11B75; 33A10

1. Introduction

In 1990, Jackson who published influential papers on the subject introduced the q-number and its
notation stems, see [1]. Floreanini and Vinet found that some properties of q-orthogonal polynomials
are connected to the q-oscillator algebra in [1–4]. We begin by introducing several definitions related to
q-numbers used in this paper, see [3,5–8].

Throughout this paper, the symbols, N,Z,R and C denotes the set of natural numbers, the set of
integers, the set of real numbers and the set of complex numbers, respectively.

For a ∈ C, n ∈ N and |q| < 1, the q-shifted factorial is defined by

(a; q)0 = 1, (a; q)n =
n−1

∏
j=0

(1 − qja), (a; q)∞ =
∞

∏
j=0

(1 − qja). (1)

It is well known that

(a; q)n =
n

∑
k=0

[
n
k

]
q

q(1/2)k(k−1)(−1)kak. (2)

Let x, q ∈ R with q �= 1. The number

[x]q =
1 − qx

1 − q
(3)

is called q-number. We note that limq→1[x]q = x. In particular, for k ∈ Z, [k]q is a q-integer.
After the appearance of q-numbers, many mathematicians have studied topics such as

q-differential equations, q-series, and q-trigonometric functions. Of course, mathematicians also
constructed and researched q-Gaussian binomial coefficients, see [2–4,7–11].

Symmetry 2020, 12, 1247; doi:10.3390/sym12081247 www.mdpi.com/journal/symmetry97
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Definition 1. For r ≤ m and m, r ∈ N, the q-Gaussian binomial coefficients are defined by[
m
r

]
q

=
(q; q)m

(q; q)m−r(q; q)r
. (4)

For r = 0, we note that

[
m
0

]
q

= 0 with 0 ≤ r ≤ m, and also, we note that [n]q! = [n]q · · · [2]q[1]q
and [0]q!=1.

Definition 2. Let 0 < |q| < 1 and |z| < 1
|1−q| . Then, the q-exponential function is defined by

eq(z) =
∞

∑
n=0

zn

[n]q!
=

∞

∏
k=0

1
(1 − (1 − q)qkz)

. (5)

For 0 < q < 1 and |z| < 2
1−q , the other form of q-exponential function can be defined as

Eq(z) = eq−1(z) =
∞

∑
n=0

q(
n
2)

zn

[n]q!
=

∞

∏
k=0

(1 + (1 − q)qkz). (6)

We note that limq→1 eq(z) = ez. Exponential function is expanded to the power series expressions
of the two q-exponential functions by combining with q-numbers. Also, q-derivatives and q-integrals
were extensively studied by many mathematicians, see [1,5,12]. Following the determination of the
limit formulas for q-exponential functions taken from Rawlings [10], several other interesting q-series
expansions were presented in the classical book by Andrews [5].

Theorem 1. From Definition 2, we note that

(i) eq(x)eq(y) = eq(x + y), if yx = qxy.

(ii) eq(x)Eq(−x) = 1.
(7)

The proof of Theorem 1 and more properties of q-exponential functions can be found in [2,13].

Definition 3. For real variable function f where x �= 0, the q-derivative operator is defined as

Dq f (x) =
f (x)− f (qx)
(1 − q)x

. (8)

We note that Dq f (0) = f ′(0). It is possible to prove that f is differentiable at 0 and it is clear that
Dqxn = [n]qxn−1.

In 2002, Kac and Pokman published a book about quantum calculus including q-derivatives and
q-analogue of (x − a)n and q-trigonometric functions, see [14].
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Definition 4. Let n be a nonnegative integer. The q-analogues of subtraction and addition are defined by

(i) (x � a)n
q =

{
1 if n = 0

(x − a)(x − qa) · · · (x − qn−1a) if n ≥ 1

=
n

∑
k=0

[
n
k

]
q

(−1; q)k(−1; q)n−k
2n xkan−k,

(ii) (x ⊕ a)n
q =

{
1 if n = 0

(x + a)(x + qa) · · · (x + qn−1a) if n ≥ 1

=
n

∑
k=0

[
n
k

]
q

(−1; q)k(−1; q)n−k
2n xk(−a)n−k,

respectively.

(9)

Definition 5. Let x ∈ R and i =
√−1. Then, the q-trigonometric functions are defined by

sinq(x) =
eq(ix)− eq(−ix)

2i
, SINq(x) =

Eq(ix)− Eq(−ix)
2i

cosq(x) =
eq(ix) + eq(−ix)

2
, COSq(x) =

Eq(ix) + Eq(−ix)
2

,
(10)

where SINq(x) = sinq−1(x), COSq(x) = cosq−1(x).

Theorem 2. Using Theorem 1 (ii) and applying the chain rule, we have

(i) COSq(x)cosq(x) + SINq(x)sinq(x) = 1.

(ii)

⎧⎪⎨⎪⎩
Dqsinq(x) = cosq(x), DqSINq(x) = COSq(x),

Dqcosq(x) = −sinq(x), DqCOSq(x) = −SINq(x).

(11)

Moreover, we note Theorem 2 (i) is the q-analogue of the identity sin2x + cos2x = 1, see [3,4,7].

In 2004, Gasper and Rahman introduced a comprehensive account of the basic q-hypergeometric
series, see [4]. During the last three decades, one of the bridges between science and applied
mathematics has been q-calculus, see [10]. Based on the above concepts, many mathematicians
explored various fields of mathematics including q-differential equations, q-series, q-hypergeometric
functions, and q-gamma and q-beta functions. Moreover, various discrete distributions combining
q-numbers can be found in [2]. Therefore, q-calculus plays an important role in many different areas of
mathematics.

Many researchers who studied the Bernoulli, Euler, and Genocchi polynomials in various fields
realized the important role of q-calculus in mathematics. For a long time, the topics of Bernoulli,
Euler, and Genocchi polynomials have been extensively researched in many mathematical applications
including analytical number theory, combinatorial analysis, p-adic analytic number theory, and other
fields. Therefore, many mathematicians have started researching Bernoulli, Euler, and Genocchi
polynomials combining q-numbers, see [9,13,15–21].

The following diagram briefly explains the relation between the various types of degenerate
Euler polynomials, Euler polynomials, and q-Euler polynomials. The polynomials in the first row are
researched by Calitz [21], Kim and Ryoo [16], respectively. The study of the second row of the diagram
has brought about beneficial results in combinatorics and number theory. In particular, the cosine
and sine Euler polynomials in the second row of the diagram contain a motive in this paper. This is
because we hold several questions regarding what is a definition form of q-cosine and q-sine Euler
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polynomials and what is different properties between the q-cosine, q-sine Euler polynomials and the
cosine, sine Euler polynomials.

The main subject of this paper is to construct q-cosine and q-sine Euler polynomials using
Definitions 4 and 5. Also, we derive identities and properties for these polynomials in the third row of
the diagram.

2

(1+λt)
1
λ +1

(1 + λt)
x
λ = ∑∞

n=0 En,λ(x) tn

n!

( degenerate Euler polynomials)

2

(1+λt)
1
λ +1

(1 + λt)
x
λ cos(ty) = ∑∞

n=0 E(C)
n,λ (x, y) tn

n!

( degenerate cosine Euler polynomials)
2

(1+λt)
1
λ +1

(1 + λt)
x
λ sin(ty) = ∑∞

n=0 E(S)
n,λ(x, y) tn

n! .

( degenerate sine Euler polynomials)

2
et + 1

ext = ∑∞
n=0 En(x) tn

n!

( Euler polynomials)

2
et + 1

ext cos(ty) = ∑∞
n=0 E(C)

n (x, y) tn

n!

( cosine Euler polynomials)
2

et + 1
ext sin(ty) = ∑∞

n=0 E(S)
n (x, y) tn

n!

( sine Euler polynomials)

2
eq(t) + 1

eq(xt) = ∑∞
n=0 En,q(x)

tn

n!
( q-Euler polynomials)

2
eq(t) + 1

eq(xt)COSq(ty) = ∑∞
n=0 CEn,q(x, y)

tn

n!
(q-cosine Euler polynomials)

2
eq(t) + 1

eq(xt)SINq(ty) = ∑∞
n=0 SEn,q(x, y)

tn

n!
(q-sine Euler polynomials)

The definition of q-Euler polynomials of the third row are as follows.

Definition 6. The q-Euler numbers and polynomials are defined respectively as (see [19])

∞

∑
n=0

En,q
tn

n!
=

2
eq(t) + 1

,
∞

∑
n=0

En,q(z)
tn

n!
=

2
eq(t) + 1

eq(tz). (12)

Recently, Kim and Ryoo introduced the basic concepts of cosine and sine Euler polynomials.
In [16], the definitions and representative properties of cosine and sine Euler polynomials are as follows.

Definition 7. The cosine Euler polynomials E(C)
n (x, y) and the sine Euler polynomials E(S)

n (x, y) are defined
by means of the generating functions

∞

∑
n=0

E(C)
n (x, y)

tn

n!
=

2
et + 1

etxcos(ty),
∞

∑
n=0

E(S)
n (x, y)

tn

n!
=

2
et + 1

etxsin(ty). (13)

In this paper, we denote that E(C)
n (x, y) = CEn(x, y) and E(S)

n (x, y) = SEn(x, y).
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Theorem 3. For n ≥ 1, we have

(i) E(C)
n (x + 1, y)− E(C)

n (x, y) = 2Cn(x, y),

(ii) E(S)
n (x + 1, y)− E(S)

n (x, y) = 2Sn(x, y).
(14)

Based on [16], which contains Definition 7 and Theorem 3, many researchers found various
expanded numbers and polynomials and their identities, see [15,20].

The main goal of this paper is to find various properties of q-cosine and q-sine Euler polynomials
such as addition theorem, partial q-derivative, basic symmetric properties so on. In Section 2,
we construct q-cosine and q-sine Euler polynomials. Then, using q-calculus, we identify basic properties
of these polynomials. Section 3 presents an investigation of the special properties of q-cosine and q-sine
Euler polynomials such as the identity of q-sine Euler polynomials using q-analogues of subtraction
and addition. This is based on the properties of q-trigonometric and q-exponential functions. Moreover,
we derive relationships between q-cosine and q-sine Euler polynomials and q-cosine and q-sine
Bernoulli polynomials. In Section 4, we display the structure of approximate roots for q-cosine and
q-sine Euler polynomials and find properties of these polynomials. We present some figures of the
approximate roots of these polynomials in a complex plane using Newton’s method.

2. Some Basic Properties of q-cosine and q-sine Euler Polynomials

In this section, we construct the q-cosine and q-sine Euler polynomials by using Theorem 4.
From the generating functions of these polynomials, we obtain some basic properties and identities.
Moreover, we derive symmetric properties and partial q-derivatives for q-cosine and q-sine Euler
polynomials.

Definition 8. The generating functions of q-cosine Euler polynomials and q-sine Euler polynomials are
correspondingly defined by

∞

∑
n=0

CEn,q(x, y)
tn

[n]q!
=

2
eq(t) + 1

eq(tx)COSq(ty)

and
∞

∑
n=0

SEn,q(x, y)
tn

[n]q!
=

2
eq(t) + 1

eq(tx)SINq(ty).

(15)

From Definition 8, q-sine Euler polynomials can be confirmed as the following:

SE0,q(x, y) = 0,

SE1,q(x, y) = − y
1 + q

,

SE2,q(x, y) = − (1 + q + q2 − 2x)y
2(1 + q + q2)

,

SE3,q(x, y) = −y(1 + 2x + 2qx − 4x2 + q2(1 + 2x) + q5(−1 + 4y2) + q3(−1 + 2x + 4y2))

4(1 + q)(1 + q2)
,

· · · .

We will introduce the certain form of q-cosine Euler polynomials in Section 4. The motivation
to derive the definition of q-cosine Euler polynomials and q-sine Euler polynomials can be found in
Theorem 4.
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Theorem 4. For x, y ∈ R and i =
√−1, we have

(i)
∞

∑
n=0

(En,q((x ⊕ iy)q) + En,q((x � iy)q)

2

)
tn

[n]q!
=

2
eq(t) + 1

eq(tx)COSq(ty),

(ii)
∞

∑
n=0

(En,q((x ⊕ iy)q)− En,q((x � iy)q)

2i

)
tn

[n]q!
=

2
eq(t) + 1

eq(tx)SINq(ty).
(16)

Proof. (i) We defined the generating function of q-Euler polynomials in Definition 6. Let us substitute
(x ⊕ iy)q instead of z in the q-Euler polynomials. By using a property of q-analogues of the sine and
cosine functions and by using Definition 1, we can find

∞

∑
n=0

En,q((x ⊕ iy)q)
tn

[n]q!
=

2
eq(t) + 1

∞

∑
n=0

(x ⊕ iy)n
q

tn

[n]q!

=
2

eq(t) + 1

∞

∑
n=0

⎛⎝ n

∑
k=0

[
n
k

]
q

q(
n−k

2 )xk(iy)n−k

⎞⎠ tn

[n]q!

=
2

eq(t) + 1
eq(tx)Eq(ity)

=
2

eq(t) + 1
eq(tx)

(
COSq(ty) + iSINq(ty)

)
.

(17)

By using a similar method as when finding Equation (17), we can also obtain

∞

∑
n=0

En,q((x � iy)q)
tn

[n]q!
=

2
eq(t) + 1

eq(tx)Eq(−ity)

=
2

eq(t) + 1
eq(tx)

(
COSq(ty)− iSINq(ty)

)
.

(18)

(ii) We can prove Theorem 4 (ii) through Equations (17) and (18).

Remark 1. From the Theorem 4 and Definition 8, the following holds

(i) CEn,q(x, y) =
En,q((x ⊕ iy)q) + En,q((x � iy)q)

2

(ii) SEn,q(x, y) =
En,q((x ⊕ iy)q)− En,q((x � iy)q)

2i
.

(19)

In [15], Cn,q(x, y) and Sn,q(x, y) are defined as follows:

(i)
∞

∑
n=0

Cn,q(x, y)
tn

[n]q!
= eq(tx)COSq(ty),

(ii)
∞

∑
n=0

Sn,q(x, y)
tn

[n]q!
= eq(tx)SINq(ty).

(20)

Theorem 5. For any real numbers x, y, we have

(i) CEn,q(x, y) =
n

∑
k=0

[
n
k

]
q

Ek,qCn−k,q(x, y),

(ii) SEn,q(x, y) =
n

∑
k=0

[
n
k

]
q

Ek,qSn−k,q(x, y),

(21)
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where En,q is the q-Euler numbers.

Proof. (i) From the generating function of q-cosine Euler polynomials, we can find a relation between
the q-Euler numbers and Cn,q(x, y) as follows.

∞

∑
n=0

CEn,q(x, y)
tn

[n]q!
=

∞

∑
n=0

CEn,q
tn

[n]q!

∞

∑
n=0

Cn,q(x, y)
tn

[n]q!

=
∞

∑
n=0

⎛⎝ n

∑
k=0

[
n
k

]
q

Ek,qCn−k,q(x, y)

⎞⎠ tn

[n]q!
,

(22)

and we obtain the required result of Theorem 5 (i).
(ii) We also find a relation between the q-Euler numbers and Sn,q(x, y) in a similar way as in the

proof of (i) and we have the required result.

Theorem 6. For a nonnegative integer k and |q| < 1, we derive

(i) CEn,q(x, y) =
[ n

2 ]

∑
k=0

[
n
2k

]
q

(−1)kq(2k−1)ky2kEn−2k,q(x),

(ii) SEn,q(x, y) =
[ n−1

2 ]

∑
k=0

[
n

2k + 1

]
q

(−1)kq(2k+1)ky2k+1En−(2k+1),q(x),

(23)

where [x] is the greatest integer not exceeding x and En,q(x) is the q-Euler polynomials.

Proof. (i) From the generating function of q-Euler polynomials, we can change the q-cosine Euler
polynomials as follows

∞

∑
n=0

CEn,q(x, y)
tn

[n]q!
=

∞

∑
n=0

En,q(x)
tn

[n]q!
COSq(ty). (24)

By using the power series of COSq(x), the right-hand side of Equation (24) is transformed as

∞

∑
n=0

En,q(x)
tn

[n]q!

∞

∑
n=0

(−1)nq(2n−1)ny2n t2n

[2n]q!

=
∞

∑
n=0

⎛⎝ n

∑
k=0

[
n + k

2k

]
q

(−1)kq(2k−1)ky2kEn−k,q(x)

⎞⎠ tn+k

[n + k]q!

=
∞

∑
n=0

⎛⎝ [ n
2 ]

∑
k=0

[
n
2k

]
q

(−1)kq(2k−1)ky2kEn−2k,q(x)

⎞⎠ tn

[n]q!
,

(25)

and we complete the proof of Theorem 6 (i).
(ii) By applying the power series of SINq(x) in the generating function of q-sine Euler polynomials,

we have

∞

∑
n=0

SEn,q(x, y)
tn

[n]q!
=

∞

∑
n=0

En,q(x)
tn

[n]q!

∞

∑
n=0

(−1)nq(2n+1)ny2n+1 t2n+1

[2n + 1]q!

=
∞

∑
n=0

⎛⎝[ n−1
2 ]

∑
k=0

[
n

2k + 1

]
q

(−1)kq(2k+1)ky2k+1En−2(k+1),q(x)

⎞⎠ tn

[n]q!
,

(26)
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and we finish the proof of Theorem 6 (ii).

Corollary 1. Let y = 1 in Theorem 6. Then, the following holds

(i) CEn,q(x, 1) =
[ n

2 ]

∑
k=0

[
n
2k

]
q

(−1)kq(2k−1)kEn−2k,q(x),

(ii) SEn,q(x, 1) =
[ n−1

2 ]

∑
k=0

[
n

2k + 1

]
q

(−1)kq(2k+1)kEn−(2k+1),q(x),

(27)

where [x] is the greatest integer not exceeding x and En,q(x) is the q-Euler polynomials.

Theorem 7. Let x, y ∈ R, |q| < 1, and eq(t) �= −1. Then, we have

(i) Cn,q(x, y) =
1
2

⎛⎝ n

∑
k=0

[
n
k

]
q

CEk,q(x, y) + CEn,q(x, y)

⎞⎠ ,

(ii) Sn,q(x, y) =
1
2

⎛⎝ n

∑
k=0

[
n
k

]
q

SEk,q(x, y) + SEn,q(x, y)

⎞⎠ .

(28)

Proof. (i) When eq(t) �= −1, we can consider the generating function of the q-cosine Euler polynomials
to be

∞

∑
n=0

CEn,q(x, y)
tn

[n]q!
(eq(t) + 1) = 2eq(tx)COSq(ty). (29)

The left-hand side of Equation (29) is changed as follows.

∞

∑
n=0

⎛⎝ n

∑
k=0

[
n
k

]
q

CEk,q(x, y) + CEn,q(x, y)

⎞⎠ tn

[n]q!
=

∞

∑
n=0

CEn,q(x, y)
tn

[n]q!
(eq(t) + 1). (30)

The right-hand side of (29) is transformed as

2eq(tx)COSq(ty) = 2
∞

∑
n=0

Cn,q(x, y)
tn

[n]q!
. (31)

By using Equations (30) and (31), we find the required result.
(ii) In a similar method as in the proof of (i), we have

∞

∑
n=0

SEn,q(x, y)
tn

[n]q!
(eq(t) + 1) = 2eq(tx)SINq(ty). (32)

Then, we obtain

∞

∑
n=0

⎛⎝ n

∑
k=0

[
n
k

]
q

SEk,q(x, y) + SEn,q(x, y)

⎞⎠ tn

[n]q!
= 2

∞

∑
n=0

Sn,q(x, y)
tn

[n]q!
. (33)

Therefore, we finish the proof of Theorem 7 (ii).
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Corollary 2. If q → 1 in Theorem 7, we have

(i) Cn(x, y) =
1
2

(
n

∑
k=0

(
n
k

)
CEk(x, y) + CEn(x, y)

)
,

(ii) Sn(x, y) =
1
2

(
n

∑
k=0

(
n
k

)
SEk(x, y) + SEn(x, y)

)
,

(34)

where CEn(x, y) is the cosine Euler polynomials and SEn(x, y) is the sine Euler polynomials.

Theorem 8. For any real number x, y and |q| < 1, we have

(i)
∂

∂x CEn,q(x, y) = [n]qCEn−1,q(x, y),
∂

∂y CEn,q(x, y) = −[n]qSEn−1,q(x, qy).

(ii)
∂

∂x SEn,q(x, y) = [n]qSEn−1,q(x, y),
∂

∂y SEn,q(x, y) = [n]qCEn−1,q(x, qy).
(35)

Proof. (i) For any real number x, we can find the partial q-derivative for q-cosine Euler polynomials as

∞

∑
n=0

∂

∂x CEn,q(x, y)
tn

[n]q!
=

2
eq(t) + 1

COSq(ty)
∂

∂x
eq(tx) =

2t
eq(t) + 1

eq(tx)COSq(ty). (36)

Using the q-derivative of the q-cosine function, we find

DqCOSq(ty) = −tSINq(qty). (37)

From Equation (37), we get

∞

∑
n=0

∂

∂y CEn,q(x, y)
tn

[n]q!
=

2
eq(t) + 1

eq(tx)
∂

∂y
COSq(ty) = − 2t

eq(t) + 1
eq(tx)SINq(qty) (38)

and we obtain the required results.
(ii) We also consider the partial q-derivative of q-sine Euler polynomials as

∞

∑
n=0

∂

∂x SEn,q(x, y)
tn

[n]q!
=

2t
eq(t) + 1

eq(tx)SINq(ty), (39)

and note that DqSINq(ty) = tCOSq(qty). Then, we obtain the results of Theorem 8.

In [18], Liu and Wang studied some symmetric properties of the Bernoulli and Euler polynomials.
Based on the above paper, we observe some symmetric properties of the q-cosine and q-sine Euler
polynomials. Moreover, symmetric properties can be found in the cosine and sine Euler polynomials.
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Theorem 9. For any integers a, b, we have

(i)
n

∑
k=0

[
n
k

]
q

an−kbk
CEn−k,q(bx, by)CEk,q(ax, ay)

=
n

∑
k=0

[
n
k

]
q

bn−kak
CEn−k,q(ax, ay)CEk,q(bx, by),

(ii)
n

∑
k=0

[
n
k

]
q

an−kbk
SEn−k,q(bx, by)SEk,q(ax, ay)

=
n

∑
k=0

[
n
k

]
q

bn−kak
SEn−k,q(ax, ay)SEk,q(bx, by).

(40)

Proof. (i) To find a symmetric property, we assume form A such that

A :=
4
(
eq(abtx)COSq(abty)

)2

(eq(at) + 1)(eq(bt) + 1)
. (41)

By considering the generating function of q-cosine Euler polynomials in Equation (41), we can
find the following equation:

A =
2

eq(at) + 1
eq(abtx)COSq(abty)

2
eq(bt) + 1

eq(abtx)COSq(abty)

=
∞

∑
n=0

⎛⎝ n

∑
k=0

[
n
k

]
q

an−kbk
CEn−k,q(bx, by)CEk,q(ax, ay)

⎞⎠ tn

[n]q!
,

(42)

and
A =

2
eq(bt) + 1

eq(abtx)COSq(abty)
2

eq(at) + 1
eq(abtx)COSq(abty)

=
∞

∑
n=0

⎛⎝ n

∑
k=0

[
n
k

]
q

bn−kak
CEn−k,q(ax, ay)CEk,q(bx, by)

⎞⎠ tn

[n]q!
.

(43)

From Equations (42) and (43), we can find the required result.
(ii) In a similar way as with form A, we can make form A′ such that

A′ :=
4
(
eq(abtx)SINq(abty)

)2

(eq(at) + 1)(eq(bt) + 1)
, (44)

and we can find Theorem 9 (ii) in a same manner as (i).

Corollary 3. Assume a = 1 in Theorem 9. Then, the following holds

(i)
n

∑
k=0

[
n
k

]
q

bk
CEn−k,q(bx, by)CEk,q(x, y) =

n

∑
k=0

[
n
k

]
q

bn−k
CEn−k,q(x, y)CEk,q(bx, by),

(ii)
n

∑
k=0

[
n
k

]
q

bk
SEn−k,q(bx, by)SEk,q(x, y) =

n

∑
k=0

[
n
k

]
q

bn−k
SEn−k,q(x, y)SEk,q(bx, by).

(45)
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Corollary 4. Assume q → 1 in Theorem 9. Then, the following holds

(i)
n

∑
k=0

(
n
k

)
an−kbk

CEn−k(bx, by)CEk(ax, ay) =
n

∑
k=0

(
n
k

)
bn−kak

CEn−k(ax, ay)CEk(bx, by),

(ii)
n

∑
k=0

(
n
k

)
an−kbk

SEn−k(bx, by)SEk(ax, ay) =
n

∑
k=0

(
n
k

)
bn−kak

SEn−k(ax, ay)SEk(bx, by),
(46)

where CEn is the cosine Euler polynomials and SEn is the sine Euler polynomials.

Theorem 10. For any integers a, b, and |q| < 1. Then, we obtain

n

∑
k=0

[
n
k

]
q

an−kbk
CEn−k,q(bx, by)SEk,q(ax, ay)

=
n

∑
k=0

[
n
k

]
q

bn−kak
CEn−k,q(ax, ay)SEk,q(bx, by).

(47)

Proof. To derive a symmetric relation mixing the q-cosine Euler polynomials and the q-sine Euler
polynomials, we take form B as the following.

B :=
4COSq(abty)SINq(abty)(eq(abtx))2

(eq(at) + 1)(eq(bt) + 1)
. (48)

From form B, we can find the following equations:

B =
2

eq(at) + 1
eq(abtx)COSq(abty)

2
eq(bt) + 1

eq(abtx)SINq(abty)

=
∞

∑
n=0

⎛⎝ n

∑
k=0

[
n
k

]
q

an−kbk
CEn−k,q(bx, by)SEk,q(ax, ay)

⎞⎠ tn

[n]q!
,

(49)

and
B =

2
eq(bt) + 1

eq(abtx)COSq(abty)
2

eq(at) + 1
eq(abtx)SINq(abty)

=
∞

∑
n=0

⎛⎝ n

∑
k=0

[
n
k

]
q

bn−kak
CEn−k,q(ax, ay)SEk,q(bx, by)

⎞⎠ tn

[n]q!
.

(50)

From (49) and (50), we can immediately complete the proof of Theorem 10.

Corollary 5. Suppose q → 1 in Theorem 10. Then the following holds

n

∑
k=0

(
n
k

)
an−kbk

CEn−k(bx, by)SEk(ax, ay) =
n

∑
k=0

(
n
k

)
bn−kak

CEn−k(ax, ay)SEk(bx, by). (51)

3. Some Special Properties of q-cosine Euler Polynomials and q-sine Euler Polynomials

In this section, we obtain some special properties of q-cosine and q-sine Euler polynomials using
the properties of q-trigonometric functions, (x ⊕ y)q, and so on. Moreover, we find various types of
relationships between q-cosine, sine Euler polynomials and other polynomials.
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Theorem 11. For |q| < 1, we obtain

(i) CEn,q(1, y) =
n

∑
k=0

[
n
k

]
q

(−1)n−kq(
n−k

2 )
(

2Ck,q(x, y)− CEk,q(x, y)
)

xn−k,

(ii) SEn,q(1, y) =
n

∑
k=0

[
n
k

]
q

(−1)n−kq(
n−k

2 )(2Sk,q(x, y)− SEk,q(x, y))xn−k.

(52)

Proof. (i) When x = 1 in the generating function of q-cosine Euler polynomials, CEn,q(x, y), we have

∞

∑
n=0

CEn,q(1, y)
tn

[n]q!
= 2COSq(ty)− 2

eq(t) + 1
COSq(ty). (53)

Using eq(x)Eq(−x) = 1 and [n]q−1 ! = q−(n
2)[n]q!, the left-hand side of Equation (53) can be written

as the following:

∞

∑
n=0

CEn,q(1, y)
tn

[n]q!
=

(
2eq(tx)COSq(ty)− 2

eq(t) + 1
eq(tx)COSq(ty)

)
Eq(−tx)

=
∞

∑
n=0

(2Cn,q(x, y)− CEn,q(x, y))
tn

[n]q!

∞

∑
n=0

(−1)nq(
n
2)xn tn

[n]q!

=
∞

∑
n=0

⎛⎝ n

∑
k=0

[
n
k

]
q

(−1)n−kq(
n−k

2 )(2Ck,q(x, y)− CEk,q(x, y))xn−k

⎞⎠ tn

[n]q!
.

(54)

Comparing the both sides of Equation (54), we obtain the required result.
(ii) By using the same method as in the proof of (i), we have the proof of Theorem 11 (ii).

Corollary 6. When q → 1 in Theorem 11, the following holds

(i) CEn(1, y) =
n

∑
k=0

(
n
k

)
(−1)n−k ((2Ck(x, y)− CEk(x, y)) xn−k,

(ii) SEn(1, y) =
n

∑
k=0

(
n
k

)
(−1)n−k (2Sk(x, y)− SEk(x, y)) xn−k,

(55)

where CEn(x, y) is the cosine Euler polynomials and SEn(x, y) is the sine Euler polynomials.

Lemma 1. For |q| < 1 and a real number r, we have

(i) CEn,q((x ⊕ r)q, y) =
n

∑
k=0

[
n
k

]
q

q(
n−k

2 )
CEk,q(x, y)rn−k,

(ii) CEn,q((x � r)q, y) =
n

∑
k=0

[
n
k

]
q

(−1)n−kq(
n−k

2 )
CEk,q(x, y)rn−k,

(iii) SEn,q((x ⊕ r)q, y) =
n

∑
k=0

[
n
k

]
q

q(
n−k

2 )
SEk,q(x, y)rn−k,

(iv) SEn,q((x � r)q, y) =
n

∑
k=0

[
n
k

]
q

(−1)n−kq(
n−k

2 )
SEk,q(x, y)rn−k.

(56)
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Proof. (i) By substituting (x ⊕ r)q instead of x in the generating function of q-cosine Euler polynomials
and using q-exponential functions, we derive

∞

∑
n=0

CEn,q((x ⊕ r)q, y)
tn

[n]q!
=

2
eq(t) + 1

eq(tx)COSq(ty)Eq(tr)

=
∞

∑
n=0

⎛⎝ n

∑
k=0

[
n
k

]
q

q(
n−k

2 )
CEk,q(x, y)rn−k

⎞⎠ tn

[n]q!
,

(57)

Thus, we find the required result immediately.
(ii) Putting (x � r)q into x in the generating function of q-cosine Euler polynomials and using

q-exponential functions, we have

∞

∑
n=0

CEn,q((x � r)q, y)
tn

[n]q!
=

2
eq(t) + 1

eq(tx)COSq(ty)Eq(−tr). (58)

We find the required result in a similar way as in the proof of (i).
(iii) We consider that

∞

∑
n=0

SEn,q((x ⊕ r)q, y)
tn

[n]q!
=

2
eq(t) + 1

eq(tx)SINq(ty)Eq(tr). (59)

Then, we have the following result.
(iv) If we set (x � r) in x in the generating function of q-sine Euler polynomials, then we have

∞

∑
n=0

SEn,q((x � r)q, y)
tn

[n]q!
=

2
eq(t) + 1

eq(tx)SINq(ty)Eq(−tr). (60)

From Equation (60), we obtain the desired result.

Theorem 12. Let |q| < 1 and r, x, y ∈ R. From the Lemma 1, we have

(i) CEn,q((x ⊕ r)q, y) + CEn,q((x � r)q, y)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

2 ∑n
k=0

[
n

2k + 1

]
q

q(
n−(2k+1)

2 )
CE2k+1,q(x, y)rn−(2k+1), if n=odd

2 ∑n
k=0

[
n
2k

]
q

q(
n−2k

2 )
CE2k,q(x, y)rn−2k, if n=even

.

(ii) SEn,q((x ⊕ r)q, y) + SEn,q((x � r)q, y)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

2 ∑n
k=0

[
n

2k + 1

]
q

q(
n−(2k+1)

2 )
SE2k+1,q(x, y)rn−(2k+1), if n=odd

2 ∑n
k=0

[
n
2k

]
q

q(
n−2k

2 )
SE2k,q(x, y)rn−2k, if n=even

.

(61)

Proof. (i) By using Lemma 1 (i) and (ii), we obtain

CEn,q((x ⊕ r)q, y) + CEn,q((x � r)q, y)

=
n

∑
k=0

[
n
k

]
q

q(
n−k

2 )
(

CEk,q(x, y) + (−1)n−k
CEk,q(x, y)

)
rn−k.

(62)
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If n is an odd or even number, then we derive the required result.
(ii) We omit the proof of Theorem 12 (ii) because we obtain the desired result in the

same manner.

Corollary 7. Let r = 1 in Theorem 12. Then, we have

(i) CEn,q((x ⊕ 1)q, y) + CEn,q((x � 1)q, y)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

2 ∑n
k=0

[
n

2k + 1

]
q

q(
n−(2k+1)

2 )
CE2k+1,q(x, y), if n=odd

2 ∑n
k=0

[
n
2k

]
q

q(
n−2k

2 )
CE2k,q(x, y), if n=even

,

(ii) SEn,q((x ⊕ 1)q, y) + SEn,q((x � 1)q, y)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

2 ∑n
k=0

[
n

2k + 1

]
q

q(
n−(2k+1)

2 )
SE2k+1,q(x, y), if n=odd

2 ∑n
k=0

[
n
2k

]
q

q(
n−2k

2 )
SE2k,q(x, y), if n=even

.

(63)

Corollary 8. Let q → 1 in Theorem 12. Then, we have

(i) CEn(x + r, y) + CEn(x − r, y)

=

⎧⎪⎨⎪⎩
2 ∑n

k=0 (
n

2k+1)CE2k+1(x, y)rn−(2k+1), if n=odd

2 ∑n
k=0 (

n
2k)CE2k(x, y)rn−2k, if n=even

,

(ii) SEn(x + r, y) + SEn(x − r, y)

=

⎧⎪⎨⎪⎩
2 ∑n

k=0 (
n

2k+1)SE2k+1(x, y)rn−(2k+1), if n=odd

2 ∑n
k=0 (

n
2k)SE2k(x, y)rn−2k, if n=even

.

(64)

Corollary 9. From Lemma 1, one holds

(i) CEn,q((x ⊕ r)q, y) + SEn,q((x ⊕ r)q, y)

=
n

∑
k=0

[
n
k

]
q

q(
n−k

2 )
(

CEk,q(x, y) + CEk,q(x, y)
)

rn−k,

(ii) CEn,q((x � r)q, y) + SEn,q((x � r)q, y)

=
n

∑
k=0

[
n
k

]
q

(−1)n−kq(
n−k

2 )
(

CEk,q(x, y) + CEk,q(x, y)
)

rn−k.

(65)

Theorem 13. For |q| < 1, we have the following relation:

En,q(x) =
[ n

2 ]

∑
k=0

[
n
2k

]
q

(−1)ky2k
CEn−k,q(x, y) +

[ n−1
2 ]

∑
k=0

[
n

2k + 1

]
q

(−1)ky2k+1
SEn−(2k+1),q(x, y), (66)

where En,q(x) is the q-Euler polynomials and [x] is the greatest integer not exceeding x.
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Proof. (i) We consider a multiplication between the generating function of q-cosine Euler polynomials
and the q-cosine function such as

∞

∑
n=0

CEn,q(x, y)
tn

[n]q!
cosq(ty) =

2
eq(t) + 1

eq(tx)COSq(ty)cosq(ty). (67)

By using the power series of a q-cosine function, the left-hand side of Equation (67) is written as

∞

∑
n=0

CEn,q(x, y)
tn

[n]q!
cosq(ty) =

∞

∑
n=0

CEn,q(x, y)
tn

[n]q!

∞

∑
n=0

(−1)ny2n t2n

[2n]q!

=
∞

∑
n=0

⎛⎝ n

∑
k=0

[
n + k

2k

]
q

(−1)ky2k
CEn−k,q(x, y)

⎞⎠ tn+k

[n + k]q!

=
∞

∑
n=0

⎛⎝ [ n
2 ]

∑
k=0

[
n
2k

]
q

(−1)ky2k
CEn−k,q(x, y)

⎞⎠ tn

[n]q!
.

(68)

From Equations (67) and (68), we have

∞

∑
n=0

⎛⎝ [ n
2 ]

∑
k=0

[
n
2k

]
q

(−1)ky2k
CEn−k,q(x, y)

⎞⎠ tn

[n]q!
=

2
eq(t) + 1

eq(tx)COSq(ty)cosq(ty). (69)

In a similar way, we find the multiplication between the q-sin Euler polynomials and the q-sin
function as follows.

∞

∑
n=0

SEn,q(x, y)
tn

[n]q!
sinq(ty) =

2
eq(t) + 1

eq(tx)SINq(ty)sinq(ty). (70)

Applying the power series of a q-sine function, the left-hand side of Equation (70) is obtained as

∞

∑
n=0

SEn,q(x, y)
tn

[n]q!
sinq(ty) =

∞

∑
n=0

SEn,q(x, y)
tn

[n]q!

∞

∑
n=0

(−1)ny2n+1 t2n+1

[2n + 1]q!

=
∞

∑
n=0

⎛⎝[ n−1
2 ]

∑
k=0

[
n

2k + 1

]
q

(−1)ky2k+1
SEn−(2k+1),q(x, y)

⎞⎠ tn

[n]q!
.

(71)

We can find (72) by using cosq(ty)COSq(ty) + sinq(ty)SINq(ty) = 1, which is a property of
q-trigonometric functions.

∞

∑
n=0

⎛⎝ [ n
2 ]

∑
k=0

[
n
2k

]
q

(−1)ky2k
CEn−k,q(x, y) +

[ n−1
2 ]

∑
k=0

[
n

2k + 1

]
q

(−1)ky2k+1
SEn−(2k+1),q(x, y)

⎞⎠ tn

[n]q!

=
2

eq(t) + 1
eq(tx)

(
cosq(ty)COSq(ty) + sinq(ty)SINq(ty)

)
=

∞

∑
n=0

En,q(x)
tn

[n]q!
.

(72)

From Equation (72), we can find the required result of Theorem 13.
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Corollary 10. If q → 1 in Theorem 13, then we have

En(x) =
[ n

2 ]

∑
k=0

(
n
2k

)
(−1)ky2k

CEn−k(x, y) +
[ n−1

2 ]

∑
k=0

(
n

2k + 1

)
(−1)ky2k+1

SEn−(2k+1)(x, y). (73)

Corollary 11. Setting y = 1 in Theorem 13, one holds

En,q(x) =
[ n

2 ]

∑
k=0

[
n
2k

]
q

(−1)k
CEn−k,q(x, 1) +

[ n−1
2 ]

∑
k=0

[
n

2k + 1

]
q

(−1)k
SEn−(2k+1),q(x, 1). (74)

Corollary 12. From the Theorem 13 and Corollary 11, we have

[ n
2 ]

∑
k=0

[
n
2k

]
q

(−1)k
(

y2k
CEn−k,q(x, y)− CEn−k,q(x, 1)

)

=
[ n−1

2 ]

∑
k=0

[
n

2k + 1

]
q

(−1)k
(

SEn−(2k+1),q(x, 1)− y2k+1
SEn−(2k+1),q(x, y)

)
.

(75)

To find a relationship between the q-cosine Euler polynomials and the q-cosine Bernoulli
polynomials, we recall the definitions of q-cosine and q-sine Bernoulli polynomials, see [15].
The q-cosine Bernoulli polynomials CBn(x, y) and q-cosine Bernoulli polynomials SBn(x, y) are defined
by means of the generating functions

∞

∑
n=0

CBn,q(x, y)
tn

n!
=

t
eq(t)− 1

eq(tx)COSq(ty),

∞

∑
n=0

SBn,q(x, y)
tn

n!
=

t
eq(t)− 1

eq(tx)SINq(ty).
(76)

Theorem 14. Let x, y ∈ R and |q| < 1. Then we derive

(i) [n]qCEn−1,q(x, y) + 2CBn,q(x, y)

=
n

∑
k=0

[
n
k

]
q

(
2CBk,q(x, y)− [k]qCEk−1,q(x, y)

)
,

(ii) [n]qSEn−1,q(x, y) + 2SBn,q(x, y)

=
n

∑
k=0

[
n
k

]
q

(
2SBk,q(x, y)− [k]qSEk−1,q(x, y)

)
,

(77)

where CBn,q(x, y) is the q-cosine Bernoulli polynomials and SBn,q(x, y) is the q-sine Bernoulli polynomials.

Proof. (i) We substitute the generating function of q-cosine Euler polynomials with an expression that
is related to the q-cosine Bernoulli polynomials as

∞

∑
n=0

CEn,q(x, y)
tn

[n]q!
=

2(eq(t)− 1)
t(eq(t) + 1)

∞

∑
n=0

CBn,q(x, y)
tn

[n]q!
. (78)

From Equation (78), we have

∞

∑
n=0

CEn,q(x, y)
tn+1

[n]q!

(
∞

∑
n=0

tn

[n]q!
+ 1

)
= 2

∞

∑
n=0

CBn,q(x, y)
tn

[n]q!

(
∞

∑
n=0

tn

[n]q!
− 1

)
. (79)
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We replace the left-hand side of (79) with the following equation.

∞

∑
n=0

CEn,q(x, y)
tn+1

[n]q!

(
∞

∑
n=0

tn

[n]q!
+ 1

)

=
∞

∑
n=0

[n]qCEn−1,q(x, y)
tn

[n]q!

(
∞

∑
n=0

tn

[n]q!
+ 1

)

=
∞

∑
n=0

⎛⎝ n

∑
k=0

[
n
k

]
q

[k]qCEk−1,q(x, y) + [n]qCEn−1,q(x, y)

⎞⎠ tn

[n]q!
.

(80)

Then, the right-hand side of (79) is transformed as

2
∞

∑
n=0

CBn,q(x, y)
tn

[n]q!

(
∞

∑
n=0

tn

[n]q!
− 1

)
= 2

∞

∑
n=0

⎛⎝ n

∑
k=0

[
n
k

]
q

CBk,q(x, y)− CBn,q(x, y)

⎞⎠ tn

[n]q!
. (81)

By comparing Equations (80) and (81), we investigate a relation between the q-cosine Euler
polynomials and q-cosine Bernoulli polynomials and complete the proof of Theorem 14.

(ii) By using a similar method as in (i), we derive the required result.

Corollary 13. When q → 1 in Theorem 14, the following holds

(i) nCEn−1(x, y) + 2CBn(x, y) =
n

∑
k=0

(
n
k

)
(2CBk(x, y)− kCEk−1(x, y)) ,

(ii) nSEn−1(x, y) + 2SBn(x, y) =
n

∑
k=0

(
n
k

)
(2SBk(x, y)− kSEk−1(x, y)) ,

(82)

where CBn(x, y) is the cosine Bernoulli polynomials, and SBn(x, y) is the sine Bernoulli polynomials.

4. Symmetric Structures of Approximate Roots for q-cosine Euler Polynomials and Their
Application

In this section, we show the actual forms for q-cosine and q-sine Euler polynomials using the
theorems from Section 2 and the Mathematica program. We observe the structure of the approximate
roots of these polynomials and find some properties. We also show examples of q-cosine Euler
polynomials using Newton’s method.

First, we discuss q-cosine Euler polynomials. A few forms of q-cosine Euler polynomials are as
follows:
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CE0,q(x, y) = 1,

CE1,q(x, y) = −1
2
+ x,

CE2,q(x, y) =
1
4
(−1 + q − 2x − 2qx + 4x2 − 4qy2),

CE3,q(x, y) =
1
8
(−1 + 2q + 2q2 − q3 − 2x + 2q3x − 4x2 − 4qx2 − 4q2x2 + 8x3)

−1
8
(4q(1 + q + q2)(−1 + 2x)y2),

CE4,q(x, y) =
1
16

(−1 + 3q + 3q2 − 3q4 − 3q5 + q6 − 2x + 2qx + 6q2x + 4q3x + 6q4x)

+
1
16

(2q5x − 2q6x − 4x2 − 4q2x2 + 4q3x2 + 4q5x2 − 8x3 − 8qx3 − 8q2x3)

− 1
16

(8q3x3 − 16x4 + 4q(1 + q2)(1 + q + q2)(1 − q + 2(1 + q)x − 4x2)y2)

+ q6y4,

· · · .

(83)

Next, we show the approximate roots table of q-cosine Euler polynomials. Based on Equation (83),
we construct Table 1 for the approximate roots of q-cosine Euler polynomials. In Table 1, we vary the
values of p and n when y = 7. Then, we obtain only real roots with 1 ≤ n ≤ 7 in q = 0.5 and q = 0.9.

From Table 1, we can consider two previews:

(1) When n increases, the absolute values of the real roots approach to approximately 2.345 and 1 for
q = 0.1.

(2) When q approaches 1, the approximate root distribution of q-cosine Euler polynomials are spread
and most of them appear as real roots.

Figure 1 shows the structure of the approximate roots for q-cosine Euler polynomials. Let y = 7
and 1 ≤ n ≤ 30. The left graph in Figure 1 is q=0.99, the middle graph is q = 0.9, and the right graph
is q = 0.8. The blue color denotes that n is small, and the red color denotes that n is 30. In Figure 1,
we show that the approximate roots of q-cosine Euler polynomials include all real numbers in q = 0.99
when n = 30. In addition, we conject that the approximate roots of q-cosine Euler polynomials show a
circle structure near 0 when q approaches 0 and n continues to increase.

Figure 1. Stacking structure of approximation roots in q-cosine Euler polynomials when q = 0.99, 0.9,
and 0.8 and y = 7.
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Table 1. Approximate zeros of En,q(x, 7) .

n q = 0.1 q = 0.5 q = 0.9

1 0.5 0.5 0.5

2 −2.00549, −4.60151, −6.18463,
2.55549 5.35151 7.13463

3
−2.3461, −6.3923, −10.5354,
0.457296, 0.496385, 0.499698,
2.44381 6.77091 11.3907

4 −2.33937, −0.271276, −7.20113, −0.610105, −14.1519, −2.0322,
0.795233, 2.37091 1.36484, 7.3839 2.98714, 14.9165

5

−2.34547, −7.58727, −1.07425, −17.2997, −3.75091,
−0.185877 − 0.259313i, 0.403015, 0.497805,
−0.185877 + 0.259313i, 1.55082, 7.67644 4.617, 17.9833

0.92226, 2.35051

6

−2.34484, −0.335526, −7.77643, −1.22901, −20.0834, −5.08688,
−0.0397254 − 0.350112i, −0.200224, 0.852848, −1.00794, 1.96854,
−0.0397254 + 0.350112i, 1.51678, 7.82041 5.85703, 20.6955

0.969307, 2.34607

7

−2.345, −7.87012, −1.28288, −22.5628, −6.18568,
−0.293507 − 0.196006i, −0.40639, 0.14643, −2.10138,
−0.293507 + 0.196006i, 1.10906, 1.40412, 0.493322,
0.0774528 − 0.366718i, 7.89196 2.98756,
0.0774528 + 0.366718i, 6.86617, 23.1113

0.98748, 2.34519

...
...

...
...

Figure 2 shows the 3D structure of Figure 1 under the same conditions. The left shape is the
approximate roots of q-cosine Euler polynomials when q = 0.99, y = 7, and 1 ≤ n ≤ 30. This shape
indicates that all the approximate roots are located on an imaginary axis. The middle shape in Figure 2
shows the approximate roots of q-cosine Euler polynomials when q = 0.9, y = 7, and 1 ≤ n ≤ 30.
Here, we can observe the movement of the approximate roots. When q = 0.8 and y = 7, we can see the
right shape of Figure 2. The shape variation in Figure 2 implies that the approximate roots change to
imaginary numbers from real numbers and that the root structure for q-cosine Euler polynomials vary
according to q.

Figure 2. Stacking structure of the approximation roots in q-cosine Euler polynomials when q = 0.99, 0.9,
and 0.8 and y = 7 in 3D.

Conjecture 1. If n increases and q → 0, then the approximate roots of q-cosine Euler polynomials display a
circle shape near the origin except for some zeros.
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In Figure 3, q = 0.99 and y = 7 when 1 ≤ n ≤ 30. Under these conditions, we observe that
the approximate roots of q-cosine Euler polynomials have a symmetric property and include all real
numbers. By observing the right graphs in Figures 1 and 3, we can consider Conjecture 2.

Figure 3. Stacking structure of the approximate roots in q-cosine Euler polynomials when q = 0.99 and
y = 7.

Conjecture 2. Prove that CEn,q(x, y) is reflection symmetry analytic complex functions which has
Re(x) = 1/2 in addition to the usual Im(x) = 0, when y is a fixed point in real numbers.

By using the Newton’s method(see [22]), we see the following Example 1. The equation of
the left figure in Example 3 is 1.1965181875000004 + 2.912903125000001x − 5.745637500000002x2 −
0.5555x3 + x4, that is q = 0.1. In Table 1, we note that the approximate roots are
−2.33937,−0.271276, 0.795233, and 2.37091, where q = 0.1 and y = 7. When we choose −4 ≤
Re(x) ≤ 4 and −4 ≤ Im(x) ≤ 4, we obtain the left figure in a complex plane. The complex numbers
in the red, violet , yellow, and sky-blue ranges move to −2.3397, −0.271276, 0.795233, and 2.37091,
respectively. The right figure in Example 3 illustrates the 4-th q-cosine Euler polynomials when q = 0.5
and y = 7. Numbers of the red, violet, yellow, and sky-blue ranges in the complex plane become
−7.20113, −0.610105, 1.36484, and 7.3839, respectively (Figure 4).

Example 3. The 4-th q-cosine Euler polynomials display the following figures in a complex plane:

Figure 4. The 4-th q-cosine Euler polynomials for q = 0.1 and y = 7.

5. Conclusions

In this paper, we have identified several properties of q-cosine Euler polynomials and q-sine
Euler polynomials. In addition, the relationship between polynomials was confirmed according to
the various conditions of the variables. We were able to assume the structure of the approximate
roots of the q-cosine Euler polynomials and the q-sine Euler polynomials and finally, produce some
speculations. The structure of the approximate roots will come out in various ways depending on the
condition of the variables, and new methods and theorems related to approaching this needs to be
created and proved.
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Abstract: In this paper, the class of the twice-iterated 2D q-Appell polynomials is introduced.
The generating function, series definition and some relations including the recurrence relations and
partial q-difference equations of this polynomial class are established. The determinant expression for the
twice-iterated 2D q-Appell polynomials is also derived. Further, certain twice-iterated 2D q-Appell and
mixed type special q-polynomials are considered as members of this polynomial class. The determinant
expressions and some other properties of these associated members are also obtained. The graphs and
surface plots of some twice-iterated 2D q-Appell and mixed type 2D q-Appell polynomials are presented
for different values of indices by using Matlab. Moreover, some areas of potential applications of the
subject matter of, and the results derived in, this paper are indicated.
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1. Introduction, Definitions and Preliminaries

The subject of q-calculus leads to a new method for computations and classifications of q-series
and q-polynomials. In fact, the subject of q-calculus was initiated in the 1920s. However, it has gained
considerable popularity and importance during the last three decades or so. In the past decade, q-calculus
was developed into an interdisciplinary subject and it served as a bridge between mathematics and physics.
The field has been expanded explosively due mainly to its applications in diverse areas of physics such as
cosmic strings and black holes [1], conformal quantum mechanics [2], nuclear and high energy physics [3],
fluid mechanics, combinatorics, having connection with commutativity relations, number theory, and Lie
algebra. The definitions and notations of the q-calculus reviewed here are taken from [4] (see also [5,6]).

The q-analogue of the Pochhammer symbol (α)m, which is also called the q-shifted factorial, defined by

(α; q)0 = 1 and (α; q)m =
m−1

∏
r=0

(1 − αqr) (m ∈ N; α ∈ C). (1)

Symmetry 2019, 11, 1307; doi:10.3390/sym11101307 www.mdpi.com/journal/symmetry
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The q-analogues of a complex number α and of the factorial function are defined as follows:

[α]q =
1 − qα

1 − q
(q ∈ C \ {1}; α ∈ C) (2)

and

[m]q =
m

∑
s=1

qs−1, [0]q = 0, [m]q! =
m

∏
s=1

[s]q = [1]q[2]q[3]q · · · [m]q and [0]q! = 1

(m ∈ N; q ∈ C \ {0, 1}),
(3)

where N is the set of positive integers.
The q-binomial coefficients [ms ]q are defined by

[
m
s

]
q
=

(q; q)m

(q; q)s(q; q)m−s
=

[m]q!
[s]q! [m − s]q!

(s = 0, 1, 2, · · · , m). (4)

The q-analogue of the classical derivative D f or d
dt f of a function f at a point t ∈ C\{0} is defined by

Dq f (t) =
f (t)− f (qt)
(1 − q)t

(0 < |q| < 1; t �= 0). (5)

We also note that

(i) lim
q→1

Dq f (t) =
d f (t)

dt
, where

d
dt

denotes the classical ordinary derivative,

(ii) Dq
(
a1 f (t) + a2 g(t)

)
= a1Dq f (t) + a2Dqg(t),

(iii) Dq( f g)(t) = f (qt)Dqg(t) + g(t)Dq f (t) = f (t)Dqg(t) + Dq f (t)g(qt),

(vi) Dq

(
f (t)
g(t)

)
=

g(t)Dq f (t)− f (t)Dqg(t)
g(t)g(qt)

=
g(qt)Dq f (t)− f (qt)Dqg(t)

g(t)g(qt)
.

The two familiar q-analogues of the exponential function et are given by

eq(t) :=
∞

∑
m=0

tm

[m]q!
=

1(
(1 − q)x; q

)
∞

, 0 < |q| < 1, |x| < |1 − q|−1 (6)

and

Eq(t) :=
∞

∑
m=0

q
1
2 m(m−1) tm

[m]q!
= (−(1 − q); q)∞ (0 < |q| < 1; t ∈ C). (7)

The above-defined q-exponential functions eq(t) and Eq(t) satisfy the following properties:

Dqeq(t) = eq(t), DqEq(t) = Eq(qt), (8)

eq(t)Eq(−t) = Eq(t)eq(−t) = 1. (9)

The class of Appell polynomials was introduced and characterized completely by Appell [7] in 1880.
Further, Throne [8], Sheffer [9] and Varma [10] studied this class of polynomials from different points of
view. For some subsequent and recent developments associated with the Appell polynomials, one may
refer to the works [11–14].

In the year 1954, Sharma and Chak [15] introduced a q-analogue of the Appell polynomials and called
this sequence of polynomials as q-Harmonics. Later, in the year 1967, Al-Salam [16] introduced the class
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of the q-Appell polynomials {Am,q(x)}∞
m=0 and studied some of their properties. Some characterizations

of the q-Appell polynomials were presented by Srivastava [17] in the year 1982. These polynomials arise
in numerous problems of applied mathematics, theoretical physics, approximation theory and many
other branches of the mathematical sciences [7,18–20]. The polynomials Am,q(x) (of degree m) are called
q-Appell polynomials, provided that they satisfy the following q-differential equation:

Dq,x{Am,q(x)} = [m]qAm−1,q(x) (m ∈ N0 = N∪ {0}; q ∈ C; 0 < |q| < 1). (10)

Recently, Keleshteri and Mahmudov [21] introduced the 2D q-Appell polynomials (2DqAP){Am,q(x1, x2)
}∞

m=0 which are defined by means of the following generating function:

Aq(t) eq(x1t)Eq(x2t) =
∞

∑
m=0

Am,q(x1, x2)
tm

[m]q!
(0 < q < 1), (11)

where

Aq(t) =
∞

∑
m=0

Am,q
tm

[m]q!
, Aq(t) �= 0 and A0,q = 1. (12)

We write
Am,q := Am,q(0, 0),

where Am,q denotes the 2D q-Appell numbers.
For x2 = 0, the 2DqAP Am,q(x1, x2) reduce to the q-Appell polynomials Am,q(x) (see,

for example, [16,17,22]), that is,
Am,q(x1, 0) = Am,q(x1), (13)

where Am,q(x) are defined by

Aq(t) eq(xt) =
∞

∑
m=0

Am,q(x)
tm

[m]q!
(0 < q < 1) (14)

and Am,q given by
Am,q := Am,q(0)

denotes the q-Appell numbers.
The explicit form of the 2DqAP Am,q(x1, x2) in terms qAP Am,q(x) is given as follows (see [21]):

Am,q(x1, x2) =
m

∑
s=0

[
m
s

]
q

q
1
2 (m−s)(m−s−1)As,q(x1)xm−s

2 . (15)

The function Aq(t) may be called the determining function for the set Am,q(x1, x2). Based on suitable
selections for the function Aq(t), the following different members belonging to the family of the 2D
q-Appell polynomials Am,q(x1, x2) can be obtained:

I. If Aq(t) = t
eq(t)−1 , the 2DqAP Am,q(x1, x2) reduce to the 2D q-Bernoulli polynomials (2DqBP)

Bm,q(x1, x2) (see [23,24]), that is,

Am,q(x1, x2) = Bm,q(x1, x2),
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where Bm,q(x1, x2) are defined by

t
eq(t)− 1

eq(x1t)Eq(x2t) =
∞

∑
m=0

Bm,q(x1, x2)
tm

[m]q!
(16)

and Bm,q given by
Bm,q := Bm,q(0, 0)

denotes the 2D q-Bernoulli numbers.

II. If Aq(t) = 2
eq(t)+1 , the 2DqAP Am,q(x1, x2) reduce to the 2D q-Euler polynomials (2DqEP) Em,q(x1, x2)

(see [23,24]), that is,
Am,q(x1, x2) = Em,q(x1, x2),

where Em,q(x1, x2) are defined by

2
eq(t) + 1

eq(x1t)Eq(x2t) =
∞

∑
m=0

Em,q(x1, x2)
tm

[m]q!
(17)

and Em,q given by
Em,q := Em,q(0, 0)

denotes the 2D q-Euler numbers.

III. If Aq(t) = 2t
eq(t)+1 , the 2DqAP Am,q(x1, x2) reduce to the 2D q-Genocchi polynomials (2DqGP)

Gm,q(x1, x2) (see [23,24]; see also [25]), that is,

Am,q(x1, x2) = Gm,q(x1, x2),

where Gm,q(x1, x2) are defined by

2t
eq(t) + 1

eq(x1t)Eq(x2t) =
∞

∑
m=0

Gm,q(x1, x2)
tm

[m]q!
(18)

and Gm,q := Gm,q(0, 0) denotes the 2D q-Genocchi numbers.

We recall here that, in a recent paper, Khan and Riyasat [26] introduced the twice-iterated q-Appell
polynomials A[2]

m,q(x) which are defined by means of the following generating function:

Ȧq(t)Äq(t) eq(xt) =
∞

∑
m=0

A[2]
m,q(x)

tm

[m]q!
(0 < q < 1). (19)

In this paper, the class of the twice-iterated 2D q-Appell polynomials is introduced by means of
generating functions, recurrence relations, partial q-difference equations, and series and determinant
expressions. Further, several results are obtained for the members corresponding to this polynomial
family. In Section 2, the twice-iterated 2D q-Appell polynomials are introduced by means of the generating
functions and series definition. Also, the recurrence relation and q-difference equations involving the
twice-iterated 2D q-Appell polynomials are derived. In Section 3, a determinant expression for the
twice-iterated 2D q-Appell polynomials is established. In Section 4, the determinant expressions and some
other properties of the members belonging to the family of the twice-iterated 2D q-Appell polynomials
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are obtained. Section 5 provides several graphical representations and surface plots associated with
several members of families of q-polynomials which have investigated in this paper. Finally, in Section 6,
we present some concluding remarks and observations.

2. Twice-Iterated 2D q-Appell Polynomials

In order to introduce the twice-iterated 2D q-Appell polynomials (2I2DqAP), we consider two different
sets of the 2D q-Appell polynomials Ȧm,q(x1, x2) and Äm,q(x1, x2) such that

Ȧq(t) eq(x1t)Eq(x2t) =
∞

∑
m=0

Ȧm,q(x1, x2)
tm

[m]q!
(0 < q < 1), (20)

where

Ȧq(t) =
∞

∑
m=0

Ȧm,q
tm

[m]q!
, Ȧq(t) �= 0 and Ȧ0,q = 1; (21)

Äq(t) eq(x1t)Eq(x2t) =
∞

∑
m=0

Äm,q(x1, x2)
tm

[m]q!
(0 < q < 1), (22)

where

Äq(t) =
∞

∑
m=0

Äm,q
tm

[m]q!
, Äq(t) �= 0 and Ä0,q = 1; (23)

Äq(t) eq(x1t) =
∞

∑
m=0

Äm,q(x1)
tm

[m]q!
(0 < q < 1). (24)

The generating function for the 2I2DqAP is asserted by the following result.

Theorem 1. The generating function for the twice-iterated 2D q-Appell polynomials A[2]
m,q(x1, x2) is given by

Ȧq(t)Äq(t) eq(x1t)Eq(x2t) =
∞

∑
m=0

A[2]
m,q(x1, x2)

tm

[m]q!
(0 < q < 1). (25)

Proof. By expanding the first q-exponential function eq(x1t) in the left-hand side of the Equation (20)
and then replacing the powers of x, that is, x0

1, x1, x2
1, · · · , xm

1 by the polynomials Ä0,q(x1), Ä1,q(x1),
Ä2,q(x1), · · · , Äm,q(x1) in the left-hand side and x1 by Ä1,q(x1) in the right-hand side of the resultant
equation, we have

Ȧq(t)
(

1 + Ä1,q(x1)
t

[1]q !
+ Ä2,q(x1)

t2

[2]q !
+ · · ·+ Äm,q(x1)

tm

[m]q !
+ · · ·

)
Eq(x2t) =

∞

∑
m=0

Ȧm,q(Ä1,q(x1), x2)
tm

[m]q !
. (26)

Moreover, by summing up the series in the left-hand side and then using the Equation (24) in the
resulting equation, we get

Ȧq(t) Äq(t) eq(x1t)Eq(x2t) =
∞

∑
m=0

Ȧm,q(Ä1,q(x1), x2)
tm

[m]q!
. (27)

Finally, denoting the resulting 2I2DqAP in the right-hand side of the above equation by A[2]
m,q(x1, x2),

that is,
Ȧm,q(Ä1,q(x1), x2) = A[2]

m,q(x1, x2), (28)

the assertion (25) of Theorem 1 is proved.
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Remark 1. For x2 = 0, the 2I2DqAP A[2]
m,q(x1, x2) reduce to the twice-iterated q-Appell polynomials (see [26])

such that
A[2]

m,q(x1) := A[2]
m,q(x1, 0). (29)

It is also noted that
Am,q := Am,q(0) = Am,q(0, 0). (30)

We next give the series definition for the 2I2DqAP A[2]
m,q(x1, x2) by proving the following result.

Theorem 2. The twice-iterated 2D q-Appell polynomials A[2]
m,q(x1, x2) are given by the following series expression:

A[2]
m,q(x1, x2) =

m

∑
s=0

[
m
s

]
q
Ȧs,qÄm−s,q(x1, x2). (31)

Proof. In view of the Equations (21) and (22), the Equation (25) can be written as follows:

∞

∑
s=0

Ȧs,q
ts

[s]q!

∞

∑
m=0

Äm,q(x1, x2)
tm

[m]q!
=

∞

∑
m=0

A[2]
m,q(x1, x2)

tm

[m]q!
, (32)

which, on using the Cauchy product rule, gives

∞

∑
m=0

m

∑
s=0

[
m
s

]
q
Ȧs,q Äm−s,q(x1, x2)

tm

[m]q!
=

∞

∑
m=0

A[2]
m,q(x1, x2)

tm

[m]q!
. (33)

Equating the coefficients of like powers of t in both sides of the above equation, we arrive at the
assertion (31) of Theorem 2.

Remark 2. For x2 = 0, the series expression (31) becomes

A[2]
m,q(x1) =

m

∑
s=0

[
m
s

]
q
Ȧs,qÄm−s,q(x1), (34)

which is a known result [26] (p. 5, Equation (2.8)).

We now state and prove the following result.

Theorem 3. The following relation between the twice-iterated 2D q-Appell polynomials A[2]
m,q(x1, x2) and the

twice-iterated q-Appell polynomials Am,q(x1) holds true:

A[2]
m,q(x1, x2) =

m

∑
s=0

[
m
s

]
q

q
1
2 s(s−1)xs

2 A[2]
m−s,q(x1). (35)

Proof. Using the Equations (7) and (19) in the left-hand side of the generating function (25), we get

∞

∑
m=0

A[2]
m,q(x1, x2)

tm

[m]q!
=

(
∞

∑
m=0

A[2]
m,q(x1)

tm

[m]q!

)(
∞

∑
m=0

q
1
2 m(m−1) (x2t)m

[m]q!

)
, (36)
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which, on applying the Cauchy product rule in the left-hand side, yields

∞

∑
m=0

A[2]
m,q(x1, x2)

tm

[m]q!
=

∞

∑
m=0

m

∑
s=0

[
m
s

]
q
q

1
2 s(s−1)xs

2 A[2]
m−s,q(x1)

tm

[m]q!
. (37)

Finally, equating the coefficients of like powers of t on both sides of this last equation, we obtain the
assertion (35) of Theorem 3.

Remark 3. By taking x2 = 1 in the result (35), we get

A[2]
m,q(x1, 1) =

m

∑
s=0

[
m
s

]
q

q
1
2 s(s−1) A[2]

m−s,q(x1). (38)

Remark 4. The following statements are equivalent:

(a) A[2]
m,q(x1,−x2) = (−1)mA[2]

m,q(0, x2) (39)

and
(b) A[2]

m,q(x1) = (−1)mA[2]
m,q(0) (40)

In order to derive the q-recurrence relations and the q-difference equations for the twice-iterated
2D q-Appell polynomials by using the lowering operators that are, in fact, the q-derivative operator Dq,
we first prove the following lemma.

Lemma 1. The twice-iterated 2D q-Appell polynomials A[2]
m,q(x1, x2) satisfy the following operational relations:

Dq,x1

(A[2]
m,q(x1, x2)

)
= [m]q A[2]

m−1,q(x1, x2), (41)

Dq,x2

(A[2]
m,q(x1, x2)

)
= [m]q A[2]

m−1,q(x1, qx2), (42)

A[2]
m−s,q(x1, x2) =

[m − s]q!
[m]q!

Ds
q,x1

A[2]
m,q(x1, x2) (43)

and

q
s(s−1)

2 A[2]
m−s,q(x1, qsx2) =

[m − s]q!
[m]q!

Ds
q,x2

A[2]
m,q(x1, x2). (44)

Proof. In view of the Equation (25), the proof of the above lemma requires a direct use of the identity (5).
We, therefore, skip the details involved.

We now derive the q-recurrence relations for the 2I2DqAP A[2]
m,q(x1, x2).

Theorem 4. The twice-iterated 2D q-Appell polynomials A[2]
m,q(x1, x2) satisfy the following linear homogeneous

recurrence relation:

A[2]
m,q(qx1, x2) =

1
[m]q

m

∑
s=0

[
m
s

]
q
qm−s(αs + x2βs + γs)A[2]

m−s,q(x1, x2) + x1qm A[2]
m−1,q(x1, x2), (45)

125



Symmetry 2019, 11, 1307

where

t
Äq(t)Dq,tȦq(t)
Ȧq(qt)Äq(qt)

=
∞

∑
m=0

αm
tm

[m]q!
, t

Ȧq(t)Äq(t)
Ȧq(qt)Äq(qt)

=
∞

∑
m=0

βm
tm

[m]q!
,

t
Dq,tÄq(t)
Äq(qt)

=
∞

∑
m=0

γm
tm

[m]q!
.

(46)

Proof. Consider the following generating function:

Gq(qx1, x2, t) = Ȧq(t)Äq(t) eq(qx1t)Eq(x2t) =
∞

∑
m=0

A[2]
m,q(qx1, x2)

tm

[m]q!
. (47)

By taking the q-derivative of the Equation (47) partially with respect to t, we get

Dq,t
(
Gq(qx1, x2, t)

)
= x2Ȧq(t)Äq(t) eq(qxt) Eq(qx2t) + qx1Ȧq(qt) Äq(qt) eq(qxt) Eq(qx2t)

+
(

Dq,tȦq(t)
)Äq(t)eq(qxt) Eq(qx2t) + Ȧq(qt)

(
Dq,tÄq(t)

)
eq(qxt) Eq(qx2t).

(48)

Thus, upon factorizing Gq(qx1, x2, t) occurring in the left-hand side and multiplying both sides of the
identity (48) by t, we find that

tDq,t
(
Gq(qx1, x2, t)

)
= Gq(qx1, x2, t)

(
t
Äq(t)Dq,tȦq(t)
Ȧt(qt)Äq(qt)

+ x2t
Ȧq(t)Äq(t)
Ȧq(qt)Äq(qt)

+ t
Dq,tÄq(t)
Äq(qt)

+ qtx1

)
.

(49)

In view of the assumption (46) and the Equation (47), the Equation (49) becomes

∞

∑
m=0

[m]q A[2]
m,q(qx1, x2)

tm

[m]q!

=
∞

∑
m=0

qmA[2]
m,q(x1, x2)

tm

[m]q!

(
∞

∑
m=0

αm
tm

[m]q!
+ x2

∞

∑
m=0

βm
tm

[m]q!
+

∞

∑
m=0

γm
tm

[m]q!
+ qx1

)
,

(50)

which, on using the Cauchy product rule, gives

∞

∑
m=0

[m]q A[2]
m,q(qx1, x2)

tm

[m]q!

=
∞

∑
m=0

m

∑
s=0

[
m
s

]
q
qm−s(αs + x2βs + γs)A[2]

m−s,q(x1, x2)
tm

[m]q!

+ x1

∞

∑
m=0

[m]qqmA[2]
m−1,q(x1, x2)

tm

[m]q!
.

(51)

Finally, upon equating the coefficients of like powers of t on both sides of the above equation and
dividing both sides of the resulting equation by [m]q, we get the assertion (45) of Theorem 4.

We now state and prove the following result.
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Theorem 5. The following recurrence relation for the twice-iterated 2D q-Appell polynomials A[2]
m,q(x1, x2)

holds true:

A[2]
m,q(qx1, x2) = qm−1

(
Äq(t)Dq,tȦq(t)
Ȧq(qt)Äq(qt)

+ x2
Ȧq(t)Äq(t)

Ȧq(qt) Äq(qt)
+

Dq,tÄq(t)
Äq(qt)

+ qx1

)
A[2]

m−1,q(x1, x2). (52)

Proof. We first use the Equation (47) in both sides of the Equation (49). Then, after some simplification,
by equating the coefficients of like powers of t on both sides of the resulting equation, we arrive at the
assertion (52) of Theorem 5.

We next derive the q-difference equations which are satisfied by the twice-iterated 2D q-Appell
polynomials.

Theorem 6. The twice-iterated 2D q-Appell polynomials A[2]
m,q(x1, x2) are the solutions of the following

q-difference equations:(
m

∑
s=0

qm−s

[s]q
(αs + x2βs + γs)Ds

q,x1
+ x1qmDq,x1

)
A[2]

m,q(x1, x2)− [m]qA[2]
m,q(qx1, x2) = 0 (53)

or
m

∑
s=0

qm−s

[s]q

(
αs + x2

βs

qs + γs

)
Ds

q,x2
A[2]

m,q

(
x1,

x2
qs

)
+ x1qmDq,x2A[2]

m,q

(
x1,

x2
q

)
− [m]qA[2]

m,q(qx1, x2) = 0. (54)

Proof. The proof of the assertions (53) and (54) of Theorem 6 would follow directly upon using the
Equations (43) and (44), respectively, in the recurrence relation (45).

In the next section (Section 3 below), the determinant forms for the 2I2DqAP are established.

3. The Twice-Iterated 2D q-Appell Polynomials from the Determinant Viewpoint

One of the important aspects of the study of any polynomial system is to find its potentially
useful determinant representation. Recently, Keleshteri and Mahmudov [21] introduced the determinant
definitions for the q-Appell polynomials and the 2D q-Appell polynomials. These polynomials are useful in
finding the solutions of some general linear interpolation problems and can also be used for computational
purposes. Khan and Riyasat [26], on the other hand, established the determinant expressions for the
twice-iterated q-Appell polynomials. This fact provides motivation for us to establish the determinant
definitions and the determinant expressions for the twice-iterated 2D q-Appell polynomials 2I2DqAP by
proving the following result.
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Theorem 7. The 2I2DqAP A[2]
m,q(x1, x2) of degree m are defined by

A[2]
0,q(x1, x2) =

1
B0,q

, (55)

A[2]
m,q(x1, x2) =

(−1)m

(B0,q)m+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 Ä1,q(x1, x2) Ä2,q(x1, x2) · · · Äm−1,q(x1, x2) Äm(x1, x2)

B0,q B1,q B2,q · · · Bm−1,q Bm,q

0 B0,q [21]qB1,q · · · [m−1
1 ]qBm−2,q [m1 ]qBm−1,q

0 0 B0,q · · · [m−1
2 ]qBm−3,q [m2 ]q Bm−2,q

...
...

...
. . .

...
...

0 0 0 · · · B0,q [ m
m−1]qB1,q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (56)

Bm,q = − 1
Ȧ0,q

(
m

∑
s=1

[
m
s

]
q
Ȧs,qBm−s,q

)
(m ∈ N),

where B0,q �= 0, B0,q = 1
Ȧ0,q

and Äm,q(x1, x2) (m ∈ N0) are the q-Appell polynomials of degree m.

Proof. Consider A[2]
m,q(x1, x2) as a sequence of the 2I2DqAP defined by the Equation (25). Also let Ȧm,q and

Bm,q be two numerical sequences (the coefficients of the q-Taylor series expansions of functions) such that

Ȧq(t) = Ȧ0,q + Ȧ1,q
t

[1]q!
+ Ȧ2,q

t2

[2]q!
+ · · ·+ Ȧm,q

tm

[m]q!
+ · · · (m ∈ N0; Ȧ0,q �= 0) (57)

and
ˆ̇Aq(t) = B0,q + B1,q

t
[1]q!

+ B2,q
t2

[2]q!
+ · · ·+ Bm,q

tm

[m]q!
+ · · · (m ∈ N0; B0,q �= 0), (58)

also satisfying the following condition:
Ȧq(t) ˆ̇Aq(t) = 1. (59)

On using the Cauchy product rule for the two-series product Ȧq(t) ˆ̇Aq(t), we get

Ȧq(t) ˆ̇Aq(t) =
∞

∑
m=0

Ȧm,q
tm

[m]q!

∞

∑
m=0

Bm,q
tm

[m]q!

=
∞

∑
m=0

m

∑
s=0

[
m
s

]
q
Ȧs,q Bm−s,q

tm

[m]q!
.

Consequently, we have
m

∑
s=0

[
m
s

]
q
Ȧs,qBm−s,q =

{
1, i f m = 0,

0, i f m ∈ N.
(60)

that is, ⎧⎪⎪⎪⎨⎪⎪⎪⎩
B0,q = 1

Ȧ0,q
;

Bm,q = − 1
Ȧ0,q

(
∑m

s=1 [
m
s ]q Ȧs,q Bm−s,q

)
(m ∈ N0).

(61)

Next, upon multiplying both sides of the Equation (25) by ˆ̇Aq(t), we get

Ȧq(t)
ˆ̇Aq(t) Äq(t) eq(x1t)Eq(x2t) = ˆ̇Aq(t)

∞

∑
m=0

A[2]
m,q(x1, x2)

tm

[m]q!
. (62)
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Further, in view of the Equations (22), (58) and (59), the above Equation (62) becomes

∞

∑
m=0

Äm,q(x1, x2)
tm

[m]q!
=

∞

∑
m=0

Bm,q
tm

[m]q!

∞

∑
m=0

A[2]
m,q(x1, x2)

tm

[m]q!
. (63)

Now, on using the Cauchy product rule for the two series in the right-hand side of the Equation (63),
we obtain the following infinite system for the unknowns A[2]

m,q(x1, x2):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B0,q A[2]
0,q(x1, x2) = 1;

B1,q A[2]
0,q(x1, x2) + B0,q A[2]

1,q(x1, x2) = Ä1,q(x1, x2),

B2,q A[2]
0,q(x1, x2) + [21]qB1,q A[2]

1,q(x1, x2) + B0,q A[2]
2,q(x1, x2) = Ä2,q(x1, x2),

...

Bm−1,q A[2]
0,q(x1, x2) + [m−1

1 ]qBm−2,q A[2]
1,q(x1, x2) + · · ·+ B0,q A[2]

m−1,q(x1, x2) = Äm−1,q(x1, x2),

Bm,q A[2]
0,q(x1, x2) + [m1 ]q Bm−1,q A[2]

1,q(x1, x2) + · · ·+ B0,q A[2]
m,q(x1, x2) = Äm,q(x1, x2),

...

(64)

Obviously, the first equation of the system (64) leads to our first assertion (55). The coefficient matrix
of the system (64) is lower triangular, so this helps us to obtain the unknowns A[2]

m,q(x1, x2) by applying the
Cramer rule to the first m + 1 equations of the system (64). Accordingly, we can obtain

A[2]
m,q(x1, x2) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

B0,q 0 0 · · · 0 1

B1,q B0,q 0 · · · 0 Ä1,q(x1, x2)

B2,q [21]qB1,q B0,q · · · 0 Ä2,q(x1, x2)

...
...

...
. . .

...
...

Bm−1,q [m−1
1 ]qBm−2,q [m−1

2 ]qBm−3,q · · · B0,q Äm−1,q(x1, x2)

Bm,q [m1 ]qBm−1,q [m2 ]qBm−2,q · · · [ m
m−1]qB1,q Äm,q(x1, x2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

B0,q 0 0 · · · 0 1

B1,q B0,q 0 · · · 0 0

B2,q [21]qB1,q B0,q · · · 0 0

...
...

...
. . .

...
...

Bm−1,q [m−1
1 ]qBm−2,q [m−1

2 ]qBm−3,q · · · B0,q 0

Bm,q [m1 ]qBm−1,q [m2 ]qBm−2,q · · · [ m
m−1]qB1,q B0,q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (65)
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where m ∈ N. Thus, upon expanding the determinant in the denominator and taking the transpose of the
determinant in the numerator, we get

A[2]
m,q(x1, x2) =

1
(B0,q)m+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

B0,q B1,q B2,q · · · Bm−1,q Bn,q

0 B0,q [21]qB1,q · · · [m−1
1 ]qBm−2,q [m1 ]qBm−1,q

0 0 B0,q · · · [m−1
2 ]qBm−3,q [m2 ]qBm−2,q

...
...

...
. . .

...
...

0 0 0 · · · B0,q [ m
m−1]qB1,q

1 Ä1,q(x1, x2) Ä2,q(x1, x2) · · · Äm−1,q(x1, x2) Äm,q(x1, x2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (66)

Finally, after m circular row exchanges, that is, after moving the jth row to the (j + 1)st position for
j = 1, 2, 3, · · · , m − 1, we arrive at our assertion (56) of Theorem 7.

Theorem 8. The following identity for the 2I2DqAP A[2]
m,q(x1, x2) holds true:

A[2]
m,q(x1, x2) =

1
B0,q

(
Äm,q(x1, x2)−

m−1

∑
s=0

[
m
s

]
q
Bm−s,q A[2]

s,q(x1, x2)

)
(m ∈ N). (67)

Proof. Expanding the determinant in the Equation (56) with respect to the (m + 1)st row, we get

A[2]
m,q(x1, x2) =

(−1)m

(B0,q)m+1

[
m

m − 1

]
q
B1,q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 Ä1,q(x1, x2) Ä2,q(x1, x2) · · · · · · Äm−1,q(x1, x2)

B0,q B1,q B2,q · · · · · · Bm−1,q

0 B0,q [21]qB1,q · · · · · · [m−1
1 ]qBm−2,q

0 0 B0,q · · · · · · [m−1
2 ]qBm−3,q

...
...

...
. . .

...
...

0 0 0 · · · B0,q [m−1
m−2]qB1,q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+
(−1)m

(B0,q)m+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 Ä1,q(x1, x2) Ä2,q(x1, x2) · · · · · · Äm−2,q(x1, x2) Äm,q(x1, x2)

B0,q B1,q B2,q · · · · · · Bm−1,q Bm−1,q

0 B0,q [21]qB1,q · · · · · · [m−2
1 ]qBm−3,q [m−1

1 ]qBm−2,q

0 0 B0,q · · · · · · [m−2
2 ]qBm−4,q [m−1

2 ]qBm−3,q

...
...

...
. . .

...
...

...

0 0 0 · · · · · · B0,q [m−1
m−2]qB1,q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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=
−1
B0,q

[
m

m − 1

]
q
B1,qA[2]

m−1,q(x1, x2) +
(−1)m

(B0,q)m∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 Ä1,q(x1, x2) Ä2,q(x1, x2) · · · · · · Äm−2,q(x1, x2) Äm,q(x1, x2)

B0,q B1,q B2,q · · · · · · Bm−1,q Bm−1,q

0 B0,q [21]qB1,q · · · · · · [m−2
1 ]qBm−3,q [m−1

1 ]qBm−2,q

0 0 B0,q · · · · · · [m−2
2 ]qBm−4,q [m−1

2 ]qBm−3,q

...
...

...
. . .

...
...

...

0 0 0 · · · · · · B0,q [m−1
m−2]qB1,q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Next, by applying the same argument for the last determinant, we find that

A[2]
m,q(x1, x2) =

−1
B0,q

[
m

m − 1

]
q
B1,qA[2]

m−1,q(x1, x2) +
(−1)m

(B0,q)m

[
m − 1
m − 2

]
q
B2,q∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 Ä1,q(x1, x2) Ä2,q(x1, x2) · · · · · · Äm−3,q(x1, x2) Äm−2,q(x1, x2)

B0,q B1,q B2,q · · · · · · Bm−3,q Bm−2,q

0 B0,q [21]qB1,q · · · · · · [m−3
1 ]qBm−4,q [m−2

1 ]qBm−3,q

0 0 B0,q · · · · · · [m−3
2 ]qBm−5,q [m−2

2 ]qBm−4,q

...
...

...
. . .

...
...

...

0 0 0 · · · · · · B0,q [m−2
m−3]qB1,q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+
(−1)m+2

(B0,q)m B0,q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 Ä1,q(x1, x2) Ä2,q(x1, x2) · · · · · · Äm−3,q(x1, x2) Äm,q(x1, x2)

B0,q B1,q B2,q · · · · · · Bm−3,q Bm−1,q

0 B0,q [21]qB1,q · · · · · · [m−3
1 ]qBm−4,q [m1 ]qBm−2,q

0 0 B0,q · · · · · · [m−3
2 ]qBm−5,q [m2 ]qBm−2,q

...
...

...
. . .

...
...

...

0 0 0 · · · · · · B0,q [m−1
m−2]qB2,q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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=
−1
B0,q

[
m

m − 1

]
q
B1,qA[2]

m−1,q(x1, x2)− −1
(B0,q)

[
m − 1
m − 2

]
q
B2,qA[2]

m−2,q(x1, x2) +
(−1)m−2

(B0,q)m−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 Ä1,q(x1, x2) Ä2,q(x1, x2) · · · · · · Äm−3,q(x1, x2) Äm,q(x1, x2)

B0,q B1,q B2,q · · · · · · Bm−3,q Bm−1,q

0 B0,q [21]qB1,q · · · · · · [m−3
1 ]qBm−4,q [m1 ]qBm−2,q

0 0 B0,q · · · · · · [m−3
2 ]qBm−5,q [m2 ]qBm−2,q

...
...

...
. . .

...
...

...

0 0 0 · · · · · · B0,q [m−1
m−2]qB2,q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Again, we apply the same technique recursively until we arrive at the following consequence:

A[2]
m,q(x1, x2) =

−1
B0,q

[
m

m − 1

]
q
B1,qA[2]

m−1,q(x1, x2)− 1
(B0,q)

[
m − 1
m − 2

]
q
B2,qA[2]

m−2,q(x1, x2)

− · · · − 1
(B0,q)2

∣∣∣∣∣∣∣
1 Än,q(x1, x2)

B0,q Bm,q

∣∣∣∣∣∣∣
=

−1
B0,q

[
m

m − 1

]
q
B1,qA[2]

m−1,q(x1, x2)− 1
(B0,q)

[
m − 1
m − 2

]
q
B2,qA[2]

m−2,q(x1, x2)

− · · · − 1
(B0,q)

Bm,qA[2]
0,q(x1, x2) +

1
B0,q

Än,q(x1, x2). (68)

Finally, upon summing up the series in the left-hand side of the Equation (68), we arrive at the
assertion (67) of Theorem 8.

Corollary 1. The following identity for the 2DqAP Än,q(x1, x2) holds true:

Äm,q(x1, x2) =
m

∑
s=0

[
m
s

]
q
Bm−s,q A[2]

k,q(x1, x2) (m ∈ N). (69)

4. Several Members of the Twice-Iterated 2D q-Appell Polynomials

During the last two decades, much research work has been done for different members of the
family of the q-Appell polynomials and the 2D q-Appell polynomials. By making suitable selections for
the functions Ȧq(t) and Äq(t), the members belonging to the family of the twice-iterated 2D q-Appell

polynomials A[2]
k,q(x1, x2) can be obtained. The 2D q-Bernoulli polynomials Bm,q(x1, x2), the 2D q-Euler

polynomials Em,q(x1, x2) and the 2D q-Genocchi polynomials Gm,q(x1, x2) are important members of the 2D
q-Appell family. Therefore, in this section, we first introduce the 2D q-Euler based Bernoulli polynomials
(2DqEBP) EBm,q(x1, x2) and the 2D q-Genocchi based Bernoulli polynomials (2DqGBP) GBm,q(x1, x2) by
means of their respective generating functions and series definitions. We then explore other properties of
these members.
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4.1. The 2D q-Euler–Bernoulli Polynomials

Since, for

Aq(t) =
2

eq(t) + 1
and Aq(t) =

t
eq(t)− 1

,

the 2DqAP Am,q(x1, x2) reduce to the 2DqEP Em,q(x1, x2) and the 2DqBP Bm,q(x1, x2), respectively.
Therefore, for the same choices of Aq(t), that is,

Ȧq(t) =
2

eq(t) + 1
and Äq(t) =

t
eq(t)− 1

,

the 2I2DqAP reduce to 2DqEBP EBm,q(x1, x2) and are defined by means of generating functions as follows:

2t(
eq(t) + 1

)(
eq(t)− 1

) eq(x1t)Eq(x2t) =
∞

∑
m=0

EBm,q(x1, x2)
tm

[m]q!
(0 < q < 1). (70)

The 2DqEBP EBm,q(x1, x2) of degree m are defined by the following series:

EBm,q(x1, x2) =
m

∑
s=0

[
m
s

]
q
Bs,qEm−s,q(x1, x2). (71)

The following relation between the 2DqEBP EBm,q(x1, x2) and the qEBP EBm,q(x1) holds true:

EBm,q(x1, x2) =
m

∑
s=0

[
m
s

]
q

q
1
2 s(s−1)xs

2 EBm−s,q(x1), (72)

which, for x2 = 1, yields

EBm,q(x1, 1) =
m

∑
s=0

[
m
s

]
q

q
1
2 s(s−1) EBm−s,q(x1). (73)

The 2DqEBP EBm,q(x1, x2) satisfy the following recurrence relation:

EBm,q(qx1, x2) = qm−2

·
(

t
(
eq(qt)− 1

)(
x2
(
eq(qt) + 1

)− eq(t)
)
+
(
eq(t)− teq(t)− 1

)(
eq(t) + 1

)
t
(
eq(t) + 1

)(
eq(t)− 1

) + q2x1

)
EBm−1,q(x1, x2). (74)

Further, by taking
B0,q = 1,

Bj,q =
1

[j + 1]
(j ∈ N)

and
Äm,q(x1, x2) = Em,q(x1, x2)

in the Equation (56), we obtain the determinant definition of the 2DqEBP EBm,q(x1, x2) as given below.
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Definition 1. The 2D q-Euler–Bernoulli polynomials EBm,q(x1, x2) of degree m are defined by

EB0,q(x1, x2) = 1, (75)

EBm,q(x1, x2) = (−1)m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 E1,q(x1, x2) E2,q(x1, x2) · · · Em−1,q(x1, x2) Em(x1, x2)

1 1
[2]q

1
[3]q

· · · 1
[m]q

1
[m+1]q

0 1 [21]q
1

[2]q
· · · [m−1

1 ]q
1

[m−1]q
[m1 ]q

1
[m]q

0 0 1 · · · [m−1
2 ]q

1
[m−2]q

[m2 ]q
1

[m−1]q

...
...

...
. . .

...
...

0 0 0 · · · 1 [ m
m−1]q

1
[2]q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(76)

(m ∈ N),

where Em,q(x1, x2) (m ∈ N0) are the 2D q-Euler polynomials of degree m.

4.2. The 2D q-Genocchi–Bernoulli Polynomials

Since, for

Aq(t) =
2t

eq(t) + 1
and Aq(t) =

t
eq(t)− 1

,

the 2DqAP Am,q(x1, x2) reduce to the 2DqGP Gm,q(x1, x2) and the 2DqBP Bm,q(x1, x2), respectively.
Therefore, for the same choices of Aq(t), that is,

Ȧq(t) =
2t

eq(t) + 1
and Äq(t) =

t
eq(t)− 1

,

the 2I2DqAP reduce to 2DqGBP GBm,q(x1, x2) and are defined by means of generating functions as follows:

2t2(
eq(t) + 1

)(
eq(t)− 1

) eq(x1t)Eq(x2t) =
∞

∑
m=0

GBm,q(x1, x2)
tm

[m]q!
(0 < q < 1). (77)

The 2DqGBP GBm,q(x1, x2) of degree m are defined by the following series:

GBm,q(x1, x2) =
m

∑
s=0

[
m
s

]
q
Bs,q Gm−s,q(x1, x2). (78)

The following relation between the 2DqGBP GBm,q(x1, x2) and the qGBP GBm,q(x1) holds true:

GBm,q(x1, x2) =
m

∑
s=0

[
m
s

]
q

q
1
2 s(s−1)xs

2 GBm−s,q(x1), (79)

which, for x2 = 1, gives

GBm,q(x1, 1) =
m

∑
s=0

[
m
s

]
q

q
1
2 s(s−1) GBm−s,q(x1). (80)
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The 2DqGBP GBm,q(x1, x2) satisfy the following recurrence relation:

GBm,q(qx1, x2) = qm−3 ·
((

eq(qt) + 1
)(

eq(t)− teq(t) + 1 + x2t
(
eq(qt) + 1

))
t
(
eq(t) + 1

)(
eq(t)− 1

)
+

q
(
eq(t)− teq(t)− 1

)(
eq(t) + 1

)
t
(
eq(t) + 1

)(
eq(t)− 1

) + q3x1

)
GBm−1,q(x1, x2). (81)

In the next section (Section 5 below), we give some graphical representations and the surface plots of
some of the members of the twice-iterated 2D q-Appell polynomials.

5. Graphical Representations and Surface Plots

Here, in this section, the graphs of the q-Euler–Bernoulli polynomials (qEBP) EBm,q(x), q-Genocchi-
Bernoulli polynomials (qGBP) GBm,q(x) and the surface plots of the 2DqEBP EBm,q(x1, x2) and the 2DqGBP

GBm,q(x1, x2) are presented.
To draw the plot of the qEBP EBm,q(x) and the qGBP GBm,q(x), we choose q = 1

2 and consider
the values of the first four q-Euler–Bernoulli polynomials and of the first four q-Genocchi–Bernoulli
polynomials, the expressions of these polynomials are given in Table 1.

Table 1. Expressions of the first four EBm, 1
2
(x) and GBm, 1

2
(x).

m 0 1 2 3 3

EBm, 1
2
(x) 1 x − 7

6 x2 − 7
4 x + 79

168 x3 − 49
24 x2 + 79

96 x + 379
2880 x4 − 35

16 x3 + 145
192 x2 + 379

1536 x + .0213

GBm, 1
2
(x) 0 1 3

2 x − 7
4

7
4 x2 − 49

16 x + 121
96

15
8 x3 − 45

16 x2 + 815
256 x + 379

1536

Further, by setting m = 4 and q = 1
2 in the series definitions (72) and (79) of EBm, 1

2
(x1, x2) and

GBm,q(x1, x2) and using the particular values of EBm, 1
2
(x) and GBm, 1

2
(x) from Table 1, we find that

EB4, 1
2
(x1, x2) =x4

1 −
35
16

x3
1 +

145
192

x2
1 +

379
1536

x1 + 0.0213 +
15
8

x3
1x2 − 245

64
x2

1x2 +
395
256

x1x2

+
379

1536
x2 +

35
32

x2
1x2

2 −
245
128

x1x2
2 +

395
768

x2
2 +

15
64

x1x3
2 −

35
128

x3
2 +

1
64

x4
2

(82)

and

GB3, 1
2
(x1, x2) =

15
8

x3 − 45
16

x2 +
815
256

x +
379
1536

+
105
32

x2
1x2 − 735

128
x1x2 − 605

256
x2

+
105
64

x1x2
2 −

245
128

x2
2 +

15
64

x3
2.

(83)

Next, by using the expression given in Table 1 and the Equations (82) and (83), with the help of Matlab,
we get the Figures 1–4 below.
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Figure 1. Shape of EBm, 1
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(x).
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Figure 2. Shape of GBm, 1
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(x).
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Figure 3. Surface plot of EB4, 1
2
(x1, x2).
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Figure 4. Surface plot of GB4, 1
2
(x1, x2).

Further, with the help of Matlab, we compute the real and complex zeros of EBm, 1
2
(x) and GBm, 1

2
(x)

for m = 1, 2, 3, 4 and x ∈ C. These zeros are mentioned in Tables 2 and 3.

Table 2. Real zeros of EBm, 1
2
(x) and GBm, 1

2
(x).

m EBm, 1
2
(x) GBm, 1

2
(x)

1 1.1667 0
2 0.3315, 1.4185 1.1667
3 −0.1213, 0.7910, 1.3719 0.6620, 1.0880
4 0.7878, 1.6239 −0.0726

Table 3. Complex zeros of EBm, 1
2
(x) and GBm, 1

2
(x).

m EBm, 1
2
(x) GBm, 1

2
(x)

1 − −
2 − −
3 − −
4 −0.1121 − 0.0639i,−0.1121 + 0.0639i 0.7863 − 1.0926i, 0.7863 + 1.0926i

Also, with the help of Matlab, the zeros mentioned in Tables 2 and 3 are shown in the Figures 5 and 6.
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Figure 5. Zeros of EBm, 1
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(x).
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Figure 6. Zeros of GBm, 1
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(x).

6. Concluding Remarks and Observations

As long ago as 1910, Jackson [27] studied the q-definite integral of an arbitrary function f (t), which is
defined as follows: ∫ a

0
f (t) dqt = (1 − q)a

∞

∑
m=0

qm f (aqm) (0 < q < 1; a ∈ R) (84)

and ∫ b

a
f (t)dqt =

∫ b

0
f (t)dqt −

∫ a

0
f (t) dqt. (85)

We note also that

Dq

∫ t

0
f (x)dqx = f (t). (86)
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Applying the double q-integral to both sides of the Equation (42), that is,∫ x1

0

∫ x2

0
[m]q A[2]

m−1,q(t1, qt2) dqt1 dqt2 =
∫ x1

0

∫ x2

0
Dq,t2A[2]

m,q(t1, t2) dqt1 dqt2, (87)

we have
[m]q

∫ x1

0

∫ x2

0
A[2]

m−1,q(t1, qt2) dqt1 dqt2 =
∫ x1

0

(A[2]
m,q(t1, x2)−A[2]

m,q(t1, 0)
)

dqt1. (88)

In view of the Equation (41), the above Equation (88) yields

[m]q

∫ x1

0

∫ x2

0
A[2]

m−1,q(t1, qt2) dqt1dqt2

=
∫ x1

0

1
[m + 1]q

(
Dq,t1A[2]

m+1,q(t1, x2)− Dq,t1A[2]
m+1,q(t1, 0)

)
dqt1 (89)

=
1

[m + 1]q

(
A[2]

m+1,q(x1, x2)−A[2]
m+1,q(0, x2)−A[2]

m+1,q(x1, 0) +A[2]
m+1,q(0, 0)

)
,

which, on using the Equations (13) and (39), becomes∫ x1
0

∫ x2
0 A[2]

m,q(t1, qt2) dqt1dqt2

= 1
[m+1]q [m+2]q

(
A[2]

m+2,q(x1, x2)− (−1)mA[2]
m+2,q(x1,−x2)−A[2]

m+2,q(x1) +A[2]
m+2,q

)
.

(90)

Further, in view of the Equations (31) and (34), the Equations (90) yields

∫ x1
0

∫ x2
0 A[2]

m,q(t1, qt2) dqt1dqt2 = 1
[m+1]q [m+2]q

·∑m+2
s=0 [m+2

s ]qȦs,q

(
Äm+2−s,q(x1, x2)− (−1)mÄm+2−s,q(x1, x2)− Äm+2−s,q(x1) + Äm+2−s,q

)
.

(91)

In conclusion, we choose to reiterate the now well-understood fact that the results for the q-analogues,
which we have considered in this article for 0 < q < 1, can easily be translated into the corresponding
results for the so-called (p, q)-analogues (with 0 < q < p � 1) by applying some obviously trivial
parametric and argument variations, the additional parameter p being redundant. In fact, the so-called
(p, q)-number [n]p,q is given (for 0 < q < p � 1) by (see also [28])

[n]p,q :=

⎧⎪⎪⎨⎪⎪⎩
pn − qn

p − q
(n ∈ {1, 2, 3, · · · })

0 (n = 0)

=: pn−1 [n] q
p
,

(92)

where, for the classical q-number [n]q, we have

[n]q :=
1 − qn

1 − q

= p1−n
(

pn − (pq)n

p − (pq)

)
= p1−n [n]p,pq.

(93)
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Consequently, any claimed extensions of most (including the present) investigations involving
the classical q-calculus to the corresponding obviously straightforward investigations involving the
(p, q)-calculus are truly inconsequential.

Further investigations along the lines presented in this paper, which are associated with the various
recent generalizations and extensions of the Apostol type Bernoulli, Euler and Genocchi polynomials
introduced by, for example, Srivastava et al. (see [29,30]) may be worthy of consideration by the
targeted readers.
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