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Abstract. This article first provides a historical and detailed introduc-
tion to the image formation models for diluted pupils array and their
densified versions called hypertelescopes. We propose in particular an
original derivation showing that densification using a periscopic setting
like in Michelson’s 20− foot interferometer, or using inverted Galilean
telescopes are fully equivalent. After a review based on previous refer-
ence studies (Tallon & Tallon-Bosc 1992; Labeyrie 1996; Aime 2008 and
Aime et al. 2012), the introductory part ends with a tutorial section for
simulating optical interferometric images produced by cophased arrays.
We illustrate in details how the optical image formation model can be
used to simulate hypertelescopes images, including sampling issues and
their effects on the observed images.

In a second part of the article, we address the issue of restoring
hypertelescope images and present numerical illustrations obtained for
classical (constrained Maximum Likelihood) methods. We also pro-
vide a detailed survey of more recent deconvolution methods based
on sparse representations and of their spread in interferometric image
reconstruction.

The last part of the article is dedicated to two original and numer-
ical studies. The first study shows by Monte Carlo simulations that
the restoration quality achieved by constrained ML methods applied
to photon limited images obtained from a diluted array on a square
grid, or from a densified array (without spectral aliasing) on a grid,
are essentially equivalent. The second study shows that it is possible
to recover in hypertelescopes images quasi point sources that are not
only far outside the clean field, but also superimposed on the replicas
of other objects. This is true at least for the considered pupil array
and in the limit of vanishing noise.
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1 Introduction

The History of Science is that of a continuous quest for a better understanding of
Nature. In particular, the history of Astronomy reflects the breakthroughs which
have lead to our modern conception of the Universe.

As researchers, the participants of the Fréjus School are probably all aware of
the uncountable efforts that must be spent on various tasks − huge bibliographical
studies, long and difficult theoretical calculations or ultra sensitive, and thus ultra
irritating instrumental experiments − in order to obtain a single useful, correct
and well understood result. These efforts constitute an invisible but necessary
sand, which is paved by the bright success stories published in the official History
of Sciences.

Success stories often exert on researchers the ambiguous attraction of perfect
things: their essence is so bright, exemplary and rare that it appears often dis-
couraging, not to say ridiculous, to imagine any comparison between such major
achievements and research of its own. On the other hand, these stories tell us that
research efforts need to sum up substantially before major works really happen to
culminate. Besides, past successes constantly diffuse, as a constant background
Moon for research groping in the darkness, a faint light of scientific glory that
shines down into the deepest and most obscure offices of every research labora-
tory. We start with two such stories, which are connected to the topics of this
article, Hypertelescopes.

One of the fundamental concern of Astronomy, of which we can find traces in
Mesopotamian, Egyptian, Greek and Arabic Astronomy, is that of high angular
resolution. A higher resolution of celestial objects means that the objects can
be better understood because they are better seen. High resolution once allowed
Mankind to discover that the celestial objects change and move. But Mankind had
to wait a very long time before it was able to prove by observations that planets do
not move in perfect circles, and that stars are not fixed on an hypothetic celestial
sphere beyond which, as Aristotle once wrote, nothing shall exists, not even space
or time. This brings us to our first story.

Probably because his own observations of the stars’ positions relatively to each
other did not match those of his predecessors, and because he had guessed that
stars’ positions and magnitudes could be variable3, the Greek astronomer and
mathematician Hipparchus (2nd Century BC) collected the positions and apparent
magnitudes of about a thousand stars. This catalogue, which constitutes one of the
most audacious legacy to future research, was transmitted to Arabic and European
astronomers via copies of the Almagest of Ptolemy.

This major book4 was written four centuries after Hipparchus’ time, in the 2nd

Century AD. After the prestigious, several-century-old Library of Alexandria was

3According for instance to Halley (1715).
4Ptolemy’s geocentric model of the Universe, using spheres and epicycles, was based on pre-

vious models from Eudoxus of Cnidus (4th Century BC), Appolonius of Perga (3rd Century BC)
and Hipparchus. This model constituted the standard model and was continuously made more
complex until N. Copernic (1473-1543).
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definitively destroyed, the Almagest was copied, studied and enriched in various
places and epochs during one millenium, from the new capital Constantinopolis of
the Orient Roman Empire, through Arabic observatories as Maragha or the active
translation centers of Andalousia.

Quite a few years after Hipparchus’ times − in the 1710 s − the British as-
tronomers Halley and Flamsteed could show, by comparing their observations to
those of Hipparchus, that the position of Sirius in the sky had moved (by proper
motion) of an angle of about one lunar diameter since the Hellenistic period (as well
as Arcturus and Aldebaran (Mignard & Martin 1997)). After almost 2000 years,
Hipparchus had won his bet: his observations had finally served his successors in
proving facts he could only suspect. Patient and repeated high angular resolution
observations eventually forced the minds to open on a Universe totally different
from what the most brilliant scientists of the Antiquity could imagine.

The history of Hipparchus’ catalog is not a success, it is an absolute and multi-
ple triumph. First, contributing to the observational evidence that stars could be
moving and variable was bringing strong arguments against the old vivid idea that
they were inherently immobile and ever lasting; this discovery had deep, cosmo-
logical and philosophical implications about the size and nature of the Universe.
Second, the careful attention paid by each link of this long chain to the knowl-
edge of his predecessors (Hipparchus to the Mesopotamian tables, Ptolemy to
Hipparchus, Al-Tusi, many other Arabic astronomers, Halley and Flamsteed to
Ptolemy) examplifies how new science may succeed in building carefully on the
experience of the past. Third, the project realized by Hipparchus with his cat-
alogue comes as a striking remembrance that research thought in the long term
(several centuries in this case) is not necessarily wasted research.

The second story is also about breakthroughs in experimental high angular
resolution and about progressive accumulation of knowledge. It starts one day
of 1868, at the Academy of Sciences in Paris, where H. Fizeau reports about a
treatise on the “directions of ether vibrations in polarized light”.

At the end of his reading, Fizeau mentions that interference fringes can arise
from two interfering apertures only if the source has a very small angular dimen-
sion. “Hence”, Fizeau pursues, “to mention this briefly, we might hope that by
using this principle, and by forming, for instance by means of two large separated
slits, interference fringes in the focal plane of instruments aimed at observing stars,
it might become possible to obtain some new insights on the angular diameter of
these stars”5 (Fizeau 1868). The name of the author of the treatise reported by
Fizeau was covered, and it is not reported in the Comptes-Rendus of the Academy.
The treatise was deposed under the title: Sine experientia nihil sufficienter sciri
potest − without experience, nothing can be known sufficiently.

Five years later, in a letter to Fizeau communicated by the same Academy,
É. Stephan (1874) textually recalls Fizeau words quoted above, in which he rec-
ognizes “a totally new path that might lead to results otherwise inaccessible to

5The english translation is ours.
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the methods currently available in Astronomy”. He formalizes the principle of the
corresponding experiment and reports the first tentative measurements of the di-
ameter of Sirius (undertaken at Marseille). The following year, in 1874, Stephan re-
ports to the same assembly extensive measurements from which he concludes that
all observed stars have diameter (much) less than 158 milliarcseconds (158 mas,
Stephan 1874). These experiments were achieved by placing two slits on an 80 cm
aperture telescope. Fizeau’s 1868 comment had lead to the first generation of
stellar interferometers.

As early as in the 1880 s, A. Michelson had used an interferometer of Fizeau’s
type to measure the diameters of four satellites of Jupiter (≈100 mas, Michelson
1891). But according to Michelson later on, the method was not tested on stellar
objects for the thirty following years, probably for two reasons. First, the success of
such experience was supposed to require ideal seeing conditions. Second, diameters
of the order of 10 mas would have required a distance between the apertures of
10 meters or more − a size entirely out of question at that time (Michelson 1920).

In 1919 however, A. Michelson discovers by tests that fringes can be obtained
even with bad seeing conditions (Michelson 1920); and J. Anderson manages in
1920 to measure the separation of two components of Capella’s system (54 mas)
on a 100−inch (2.5 m) reflector (Anderson 1920). Stimulated by these results,
Michelson proposes in the same article to use a setting that is similar to that of
Fizeau, but where a periscopic mounting is introduced. In this Michelson stellar
interferometer, the holes or slits of the Fizeau-Stephan mask are replaced by aper-
tures that can be moved on the same mounting, allowing much larger separations
than Fizeau’s setting. The apertures’ beams are redirected on a smaller telescope,
in the focal plane of which the interferences fringes appear.

The experimental discovery that relatively steady fringes could be obtained,
along with the successes of the experiments of 1920 led to the building of the famous
20−foot (about 6 m) Michelson stellar interferometer at Mount Wilson. This
second generation interferometer allowed to determine the diameter of Betelgeuse
as 47 mas, within 10% (Michelson 1921).

About 50 years later, at the Observatory of Nice, a third generation of in-
terferometers appeared when A. Labeyrie obtained for the first time, using two
independent telescopes separated by 12 m, optical interference fringes on Vega
(Labeyrie 1975). This experimental success ignited the modern developments of
optical high angular resolution interferometry, whose most exploited instruments
are today the Very Large Telescope Interferometer (VLTI) in Chile and the Cen-
ter for High Angular Resolution Astronomy (CHARA) array at Mount Wilson.
These systems allow to create interference fringes from 4 to 6 independent tele-
scopes, which are cophased pairwise.

The high angular resolution optical systems described in this paper inherit from
the characteristics of the stellar interferometers mentioned above, of which they
constitute a further evolution. These systems use a possibly very large number
of apertures (an array), which are simultaneously cophased. The interference
pattern of the whole array is recorded so as to allow direct imaging of the objects.
They can be used either in Fizeau mode (in which case the array can be seen
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as a huge masked aperture) or in Michelson mode (where the relative size of the
apertures is changed with respect to their separation by the periscopic setting, a
process called subpupil densification). Densification can also be obtained by using
inverted Galilean telescopes. Hypertelescopes (Labeyrie 1996) refer generically to
densified interferometers.

Our second story, which started in 1868, is thus not over yet. Actually, it even
reaches a critical point because next generation high angular resolution interfer-
ometric arrays are currently subject to in in depth comparative studies. These
studies will allow to choose which observing technology should be pushed in the
next decades.

Three main types of next generation optical interferometric arrays emerge, the
apertures’ number and configurations of which will tend to be similar to current
radioastronomical arrays (see M. Bremer’s article on radiointerferometry in these
proceedings). First, a direct extension of the VLTI system: few (possibly ex-
tremely) large telescopes that remain relatively compactly disseminated (in the
102 m range). Second, few relatively large (8 m) telescopes separated by kilo-
metric distances. Third, a large number (in the hundreds) of small telescopes
disseminated on kilometric distances.

In the three cases, such optical systems are expected to reduce our uncertainty
and maybe to solve questions whose cosmological and philosophical implications
are comparable to those evoked at the beginning of this Introduction. The first of
those is the existence of life in distant stellar systems, but many other fields can
reveal important discoveries, like stellar physics (through spatio-spectral studies
of their atmospheres), or Active Galactic Nuclei (see on these issues the articles
of A. Labeyrie, D. Mourard, M. Hadjara and J. Kluska in these proceedings).

The paper continues with issues and topics that are also echoed in several other
articles of this volume. Section 2 describes more precisely the differences in the
optical models of Fizeau and hypertelescopes configurations. We address in this
section Michelson’s periscopic interferometer. The Appendix derives the densifi-
cation operated by inverted Galilean telescopes, and uses for that purposes results
from the theory of light propagation that are detailed in the article of Aime in
this Volume. Section 3 can be seen as a tutorial to numerically simulate these
systems. Section 4 turns to methods aimed at improving the images recorded in
the focal plane of such instruments, and proposes a survey of restoration methods
based on sparse representations. Articles of these proceedings connected to op-
timization issues arising in image restoration are those of M. Bertero, C. Theys,
and É. Thiébaut. A substantial part of A. Bijaoui’s article is in addition dedicated
to methods based on sparsity. Section 5 proposes a comparison of Fizeau versus
hypertelescopes configurations in a specific case. Section 6 presents original sim-
ulations aimed at detecting an object that is small, faint, and far from a central
object. The last section summarizes and concludes the paper.

2 The Fizeau and hypertelescopes configurations

In a Fizeau configuration, the ratio between the distance between any subpupil
and their diameter is the same for the input and the output pupil (input and
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output pupils are homothetic). In hypertelescopes this ratio is allowed to change.
This is illustrated in Figure 1. In the hypertelescope configuration using inverted
Galilean telescopes, the diameter of the output pupils is magnified relatively to
their separations, which remain unchanged. In the “periscopic Michelson” hyper-
telescope configuration, the diameters are unchanged but the relative separation
is smaller. Indeed, all three configurations are unchanged by applying a global
arbitrary scaling factor.

Fig. 1. Illustration of Fizeau (top) and hypertelescopes (bottom) configurations.

We will consider in this paper that the subpupils are all the same: circular, with
diameter D. We will also consider that the atmospheric turbulence is negligible,
and that the plane wave is monochromatic with wavelength λ.

We shall now see for both systems how we model the intensity distribution
in the focal plane (the Image) that is obtained from a given celestial scene. The
perfect (geometric) image of the celestial scene is called the Object. This section
considers the continuous model (spatial and frequency variables are continuous).
The discrete setting comes into play when images are sampled, and in numerical
simulations of optical systems. Discretization will be addressed in Section 3.

The synthesis proposed below is a summary of Tallon & Tallon-Bosc (1992),
Aime (2008) and Aime et al. (2012), papers to which we refer for a detailed
treatment of the periscopic Michelson mode. The hyperterlescope mode using
inverted Galilean telescopes is detailed in the Appendix and leads to the same
results.

2.1 Fizeau configuration

The image formation mechanism in Fizeau mode is described by the general and
standard equations of convolutional optics. The Point Spread Function
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(PSF, denoted by R) in its normalized form (i.e., summing to one) can be written
as a function of the angular coordinates β(βx, βy) on the sky as:

R(β) =
1

Sλ2

∣∣∣∣P̂ (
β

λ

)∣∣∣∣2 , (2.1)

where superscript ̂ denotes the Fourier Transform (FT), P̂ (β
λ ) is the scaled FT

of the telescope aperture transmission P (r) with r(rx, ry) the vector of position,
λ is the light wavelength, S is the total surface of the telescope aperture. As
for classical (monolithic) telescope, the cophased optical system acts as a linear
(bandpass) filter in the Fourier space. The transfer function T of this filter is the
FT of the PSF. By the Wiener-Kintchine theorem, T corresponds to the spatial
autocorrelation function of the input diluted pupil. If we denote by u(u, v) the
angular frequency vector, the normalized optical transfer function (OTF) T (u) is
defined by

T (u) =
1
S

∫ ∫
P (r)P ∗(r − λu)dr. (2.2)

The Object-Image relation, relating the object O to the image IF in the Fizeau
mode, is a convolution in the direct space

IF (β) = O(β) � R(β)︸ ︷︷ ︸
Angular Convolution

, (2.3)

and a multiplication in the Fourier space

ÎF (u) = Ô(u) T (u) .︸ ︷︷ ︸
Frequency Filtering

(2.4)

Let us have a close look at the structure of the transfer function in the case of a
diluted pupil composed of K subpupils of diameter D. In this case, the normalized
OTF of each subpupil T0(u) (see Eq. (7.8)) corresponds to the autocorrelation
function of a disk, which is sometimes called a “chinese hat” function. The support
of T0(u) is a disk of diameter 2D/λ.

Let the centers of the K subpupils be at spatial positions rk, k = 1, . . . , K.
The autocorrelation function of the centers defines a set of central frequencies
ukl = (rk − rl)/λ. The optical system composed of the diluted pupil samples
frequencies located within a disk of radius 2D/λ around the central frequencies
ukl. The transfer function of the diluted pupil can thus be written as

T (u) = T0(u) +
1
K

K∑
l=1

K∑
k �=l

T0(u− ukl), (2.5)

where the double sum collects the contributions around the frequencies ukl, k �= l.
The Fizeau image has frequency content

ÎF (u) = Ô(u)T (u) = Ô(u) T0(u) +
1
K

K∑
l=1

K∑
k �=l

Ô(u) T0(u− ukl). (2.6)
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The image IF formed in the focal plane of a Fizeau interferometer is the inverse
FT of (2.6). Clearly, a lot of information about O is missing in IF because a
lot of frequencies are zero in ÎF (u). While for monolithic telescopes the missing
frequencies are the high frequencies (at low frequencies, the transfer function has
no “hole” or zero value), for a diluted pupil the Fourier coverage may present
voids in any frequency region. In the Fourier space, the transfer function may be
seen as an “archipelago of emerged islands” in the middle of a black sea where no
measurement is available (see Fig. 2, bottom images).

Here appears an aspect that is crucial for the comprehension of this problem:
we see precisely what IF is missing to be O. This calls for five remarks.

– 1. For a given frequency sampling (i.e. for a given pupil array) the problem
of recovering O is both an interpolation and an extrapolation problem in
the Fourier space. This suggests that the image restoration methods can be
designed, or least interpreted, as methods controlling the way the voids of
the Fourier space are filled in, while preserving the observed frequencies.

– 2. The restoration quality will be object- and sampling- dependent. To see
this, imagine two objects observed via the same pupil array (fixed sampling).
Assume the first object has the most energetic part of its frequency content
in the support of T (u), while the most energetic part of the second object
falls in the “sea” (that is, outside the support of T (u)). Clearly, this array is
good for the first object but bad for the second, or the first object is good for
this sampling but not the second object. This dependance is true in general
but fortunately, it cannot be arbitrarily uncontrollable. The reason is that
most natural objects have their frequency contents mostly located at low
frequencies. Hence, ensuring a fair coverage at low frequencies guarantees
that at least some useful information will be sampled for most objects.

– 3. To best sample the object we would like to maximize the Fourier coverage
of the pupil array (or, to refer back to our image, to minimize the area of
the black sea). Hence, for a fixed number K, we would like to maximize
the frequency support of T (u) (ignoring the effects of noise). This leads to
configurations that are called non redundant (Kopilovich & Sodin 2001): no
spatial frequency is sampled more than once (expect from the 0 frequency).

– 4. How many objects have the same frequency contents as that of IF ? Re-
mark that any object that has, outside the zero frequency, frequency content
only “in the sea”, that is, outside the support of T (u) create a totally flat
(constant) image. Stated differently, this means that not only O leads to
the observed image IF , but also scaled versions of O plus any object that
has frequency content outside the support of T (u). This shows another very
important point regarding the restoration we can hope to make from IF : if
we make no additional assumption on the geometrical properties of O, we
can construct infinitely many different instances of objects that create the
image IF . Using the sole knowledge of IF , the object remains thus unknown.

– 5. The informative frequency content that has been collected by T (u) is
(2.6), and the image that we obtain is the inverse FT of it. How many
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Fig. 2. Illustration of the Fizeau and hypertelescopes imaging properties in Fourier space.

Top left (resp., right): absolute value (resp. phases) of the Fourier spectrum of the object.

The white circles represent the boundaries of the elementary transfer function T0, i.e.,

the zones inside which the spectral information is sampled by both systems. Middle left:

the Fourier content of the Fizeau image. In the black region, no frequency is available.

The centers of the circles are located at spatial frequencies ukl (see text). Middle right:

the Fourier content of a Michelson image (i.e., densified by a factor γ, full spectral

densification is shown). The frequency content of each sampled disk of the Fizeau image

has been translated by block, phases and moduli untouched. The centers of the circles

are now located at spatial frequencies u′
kl = ukl/γ. Bottom: the frequency sampling

obtained with densification using inverted Galilean telescopes is a dilated (and thus fully

equivalent) version of the Michelson mode with periscopic densification.

images contain the same contents of information about O as IF ? To answer
this, imagine that the frequency contents of IF is modified in a reversible way,
which preserves hermitian symmetry (thus ensuring that the corresponding
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image is real) and which is further such that the resulting image is posi-
tive. For instance, appropriately permute the contents of some “islands”,
or attribute the content of such island to an empty zone, and set the cor-
responding frequency content of the island to 0. There is a large number
of such transformations: all transformations resulting in an OTF which is
an autocorrelation function will work. From all the corresponding images
(which will be very different from each other), we can take the FT (opti-
cally or numerically) and then numerically undo the transformation. We
recover by doing so the originally sampled spectrum, and we can reproduce
the image IF . The Michelson densification by a factor γ in periscopic mode
is one among such transformations: it leads to an image IP

γ that is differ-
ent from IF , but the informational contents is the same, and the image IF

can be recovered from IP
γ (at least for values of γ that are not too large).

The Appendix shows that the densified image IG
γ obtained using inverted

Galilean telescopes has the same property.

2.2 Michelson configuration: Hypertelescopes

The Michelson configuration corresponds to a “densification” of the pupil because
the diameters of the subpupils can be increased relatively to their separation.
The degree of densification can be quantified by a densification factor called γ
(Labeyrie 1996). We consider here the periscopic mode, in which the diameter of
the subpupils D is fixed (see the Appendix for the case where the densification is
obtained by dilation of the subpupils by a factor γ). The densification factor can in
this case be defined as the ratio of the minimal distance between the subapertures
before and after the densification: γ = d/d′. In the extreme case of maximal
densification, some subpupils touch each other and are thus separated by a distance
of d′ = D, in which case γ = d/D.

The image formation model for the Michelson stellar interferometer in periscopic
mode has been analyzed by Tallon & Tallon-Bosc (1992). The most important dif-
ference with the Fizeau configuration is that the image formation model is not a
convolution anymore. In the Fourier space, the Michelson configuration involves
a filtering corresponding to the diluted aperture before densification, followed by
a translation of the frequency contents corresponding to the densification. Dur-
ing this translation, the spatial frequencies that are sampled by the input diluted
aperture in a disk of width 2D/λ around frequency ukl are subsequently carried
away, phase and modulus untouched, into a disk of same diameter but centered
around the lower center frequencies u′

kl = ukl/γ (see Fig. 2).
The Fourier spectrum of the densified image IP

γ is now (compare to (2.5)
and (2.6))

ÎP
γ (u) = Ô(u) T0(u) +

1
K

K∑
l=1

K∑
k �=l

Ô(u− u′
kl + ukl) T0(u− u′

kl), (2.7)
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where the term T0(u) is, as in Section (2.1) the elementary transfer function cor-
responding to one subaperture and K is the total number of subapertures. Each
term of the double sum corresponds to the filtering, by the elementary transfer
function centered at frequency u′

kl = ukl/γ, of the object’s spectrum translated
by u′

kl − ukl.
Again, the description in the Fourier space makes some important issues very

clear:

– 1. We see that this frequency translation is a perfectly revertible transform6

as long as the zones around the new frequencies u′
kl do not intersect. Hence,

the Fizeau and Michelson images are actually equivalent. One difference
arises however in presence of sampling: as visible in Figure 2, the densified
image has a lower cut-off frequency than the Fizeau image. Hence, by the
Shannon theorem, it may be sampled with less pixels than the Fizeau image.

– 2. When the translated frequency zones intersect, several frequencies melt
into a single one at each point of the intersection zone. In this case, the
transformation is not invertible, since there not a one-to-one mapping from
the initial to the final frequency content. Because the disks corresponding
to T0 around ukl have width 2D/λ, the lower center frequencies u′

kl cannot
be separated less than 2D/λ to avoid frequency overlap (aliasing). This
means that the minimum separation d′ between two subapertures in the
densified pupil must not be less than 2D (d′/λ ≥ 2D/λ⇔ d′ ≥ 2D) to avoid
information loss. The limiting case d′ = 2D is called FSP for Full Spectrum
Densification in the literature. The case d′ = D (subpupils touching each
other) is called FAD for Full Aperture Densification. This case indeed leads
to frequency aliasing.

3 Numerical simulations of Fizeau and hypertelescopes interferometric
images

3.1 Discretization and periodicity

Sampling and numerical simulations involve discrete approximations of continuous
phenomena. We provide here a description of sampling issues which mostly relies
on handy notions of Fourier analysis. A rigorous description of sampling theory
requires to use distributions and Lebesgue integration, see e.g. Chap. 2, 3 and 5
of Mallat (2008).

The physical reference object is considered as constant (or sufficiently slowly
varying) in time and as a continuous function of its space (or angle) variables.
This object is of infinite resolution (the size of the smallest details in the object is
vanishingly small).

6Hypertelescopes are an instance of transformations conserving the positivity while changing
the image. Studying general properties of such transformations is an interesting point which is
left out of the scope of this article.
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In simulation, the discrete reference object we will consider is an approximation
of this ideal reference. We shall assume that the discrete reference object has been
obtained by a fine regular sampling from the reference. Let τr be the spatial
sampling step. The discrete object is the multiplication of the continuous object
by a Dirac comb of period τr. The numerical representation of the object assigns
one number to each sampling cell τr × τr, which is the pixel size. The discrete
object is thus often represented as a “staircase” version of the ideal reference
object, although a continuous version of the discrete object is indeed possible
using other standard interpolation functions. This is illustrated in Figure 3.

a) Moon b) Moon HR c) Moon HR: Zoom

Fig. 3. The discrete reference object (middle) is represented as a staircase (pixel) version

of the ideal (continuous) reference (left). The approximation is visible when zooming

(right): no detail smaller than the pixel size can be distinguished.

The discretization has indeed very deep implications on the image represen-
tations and processing. Let us think of the Fourier spectrum of the continuous
reference object. This spectrum possess arbitrarily high frequencies because the
smallest spatial structures can be arbitrarily small. Now let us consider the dis-
crete reference object, obtained by multiplication of the continuous object with a
Dirac comb. What is the Fourier spectrum of this object? By the convolution the-
orem, multiplication in one space translates to convolution in the dual space. The
spectrum of the sampled object is the convolution of the true (infinite resolution)
spectrum by the FT of the spatial sampling comb, that is, a Dirac comb of period
Tν = 1/τr. The Fourier spectrum of the discrete object is periodic, its frequency
period is Tν = 1/τr.

At this point we see that a discrete object has a continuous Fourier spectrum
that is periodic. But, of course, this continuous spectrum cannot be stored as
such in a numerical environment: it must be sampled. Well, the same reasoning
as above can be applied to the periodic continuous spectrum. This spectrum is
sampled with a step τν in frequency, so it undergoes a multiplication by a Dirac
comb with period τν . What is the image corresponding to the resulting discrete,
periodic spectrum? The multiplication by a Dirac comb in frequency results in a
convolution by a Dirac comb in space, with period Tr = 1/τν . Hence, if we consider
discretization obtained by regular sampling, we end up with images and spectra
that are periodic. Each period is sometimes called the “principal interval” (see
Fig. 5). The Discrete FT (DFT) and its inverse compute the representations of
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a) Moon: image and Fourier spectrum b) Moon HR: image and Fourier spectrum

Fig. 4. a) Continuous-space reference object and corresponding continuous-frequency

spectrum. The spectrum of the reference object is represented only for frequencies u(u, v):

|u| < Tν/2, |v| < Tν/2 although of course the spectrum spreads at much higher frequen-

cies. The discretized object and the corresponding (continuous) spectrum are shown in

b). The spectrum is periodic: the Fourier space is paved with squares of size Tν ×Tν that

replicate the same continuous spectrum. Note that the continuous spectra in each such

period are not equal to the continuous reference spectrum of the left figure, because the

replicas on the right are obtained by superimposition of the spectrum of the left. Since

the reference spectrum has no reason to be band-limited in a square of size Tν (i.e. to

be zero outside this square), higher frequencies contaminate the replica in the spectrum

of the right (this is another instance of aliasing). If Tν is high enough however, the

continuous object will have little frequency content beyond Tν , so that the replica of the

periodic spectrum will be a good approximation of the reference spectrum at frequencies

lower than Tν . In all figures, the origin (0, 0) in space and frequency variables are at the

center of the image.

the object in both principal intervals. The DFT assumes that the discrete object
and its spectrum are periodic, with a period of N points along each axis. The Fast
FT (FFT) allows to compute the DFT in O(N log2 N) instead of N2 additions
and multiplications for monodimensional signals.

3.2 Numerical simulations of Fizeau and hypertelescopes images

The distinction made above between the continuous and discrete cases requires
to differentiate the corresponding notation. In the following, a function that is
continuous in its variable will be denoted by f(t), and a discrete function by f [n].

The first step is to choose a reference object. As we have seen above, this
object must be discrete to be numerically manipulated, and is consequently an ap-
proximation of the corresponding continuous object. Anyhow, this discrete object
(say, O) will become our reference. This object is composed of N ×N pixels, with
N = 1024 in all experiments below.

We now turn to the simulation of Equations (2.5) and (2.6) in the Fizeau
mode, and of (2.7) in the Michelson (hypertelescope) mode7. To do this, we need
to choose the subpupils of the array. They will be circular, with some diameter D.

7The numerical setting detailed here is essentially the same as that of Aime et al. (2012).



226 New Concepts in Imaging: Optical and Statistical Models

Principal interval in image space Principal interval in Fourier space

Fig. 5. The principal interval of a discrete reference object in the direct (left) and Fourier

(right) space. Discrete objects of finite spatial and spectral extensions are made periodic

when both spaces are related by the DFT. The size of the square cell in the direct space Tr

is related to the numerical resolution in frequency (sampling step): Tr = 1/τν . The size

of the square cell in the Fourier space Tν is related to the numerical resolution in space

(sampling step): Tν = 1/τr . The number of points N along each axis is N = Tr
τr

= Tν
τν

.

The center positions of the subpupils in the array are shown in Figure 7, along
with their autocorrelation function which gives the central frequencies ukl defined
in Section (2.1). In the Fourier domain, we have seen that the spectra are sampled
on a square grid of step-size τν . The transfer function of an elementary circular
pupil is the continuous-frequency function T0(u). When sampled at step-size τν ,
this function becomes a set of weighted discrete Dirac. In the present case, the
support of T0 spreads essentially over 9 samples (Fig. 7, bottom).

In the considered space-continuous array, the centers of the subpupils are lo-
cated on the nodes of an integer grid, so the spatial frequencies ukl defined in
Section (2.1) remain, once sampled, on a regular grid. While this may generally
not be the case in practice, this setting makes the modeling of the densification
easy.

Figure 8, top row, shows the locations where the Fourier samples of images are
nonzero in Fizeau mode (left), in Michelson mode with full spectral densification
(subpupils’ centers are at least separated by 2D), and in almost full aperture
densification (some subpupils are almost touching each other). All samples are
located on a 2-dimensional square grid with step-size τν . A white sample means a
nonzero sample. A fully white map would indicate that the N2 samples of the DFT
are available, so that the discrete reference object would be perfectly recovered by
direct Fourier inversion.

Figure 8 is an illustration of what Equations (2.5)-(2.6) and (2.7) become in
our setting. This Figure shows the discrete equivalent of Figure 2. The top left
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Fig. 6. Top: example of a (zoomed) reference object O[α]. Bottom, left: moduli of Ô[u].

Bottom, right: phases of Ô[u].

figure shows the support of T (u) in Equation (2.5), once sampled. The sampling
“islands” discussed in Section 2.2 for the Fizeau mode are visible in the figures of
the second row, as little light squares in the middle of a dark sea of zero samples.
These islands correspond to the frequencies sampled around the frequencies ukl

and u′
kl by the elementary OTFs (disks, which once sampled give rise to sets of 9

samples).
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Fig. 7. Top, left: position of the centers of the subpupils in the array. These centers are

all located at nodes of an integer grid. Top right: autocorrelation function of the centers

of the subpupils. This function gives the central frequencies ukl defined in Section 2.1.

Bottom: sampled OTF T0[u] of an elementary aperture.

In the Michelson mode (hypertelescopes), the nonzero frequency contents are
moved block-wise towards the frequency origin, and the center frequencies ukl

become u′
kl = ukl/γ. In the considered Fizeau mode the minimum separation be-

tween two center frequencies ukl is 7τν . In the FSD mode, for which the translated
contributions of the elementary transfer function touch each other, the minimum
separation in frequency between the u′

kl is 3τν , so γ = 7/3. If we increase the
densification, the contributions of the elementary transfer function overlap. In the
considered (quasi)FAD case, γ = 7/2. The densification factors can easily been
translated in terms of subpupilar distance. In the FSD mode, d′ = 2D and in the
(quasi)FAD mode d′ = 4/3D (some subpupils almost touch each other). Figure 9
summarizes the principle for simulating the formation of hypertelescope images.

We see that starting on integer grid for the Fizeau configuration allows easily
to obtain the frequency content for a set of Michelson configurations by simply
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Fizeau FSD (quasi) FAD

Fig. 8. Top row: compared locations of the nonzero Fourier samples that create the

observed images in the three settings (Fizeau: left column; Michelson FSD: center column;

Michelson FAD: right column). Middle row: zooms of the central parts of the top images.

Bottom row: response to a point source on the optical axis (PSF).

removing the appropriate lines and columns of zeros. In the FSD example, the
frequency content in each interval of the FSD image is obtained by removing 3
consecutive lines out of 7, and this process is repeated periodically in the rows [u]
and the columns [v] with a period of 7. The outer region of each interval is then
zero-padded so that the total number of N2 samples is conserved. The samples of
the densified image are thus again on an integer frequency grid (of same frequency
resolution τν).

3.3 Worked-out examples

Examples of images corresponding to the three considered sampling schemes are
shown in Figure 10.
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Fig. 9. Simulation of hypertelescope images. The discrete FT of a discrete reference

object (left: moduli and phases, principal intervals are shown) is multiplied by the transfer

function of the pupil array. The densification leads to the frequency contents (moduli

and phases) shown on the right. The corresponding images are obtained by inverse DFT.

Fig. 10. Examples of images formed in the focal plane for 25 pupils on a grid. Left:

Fizeau configuration. Middle: Michelson FSD. Right: Michelson quasi FAD.

There are several important aspects to be noted here.

– 1. First, all images are darker in the outer region. This is caused by the
elementary contribution of each subaperture (which are all the same here).
Let us consider the Fizeau image. In the Fourier space, the transfer func-
tion T is obtained by convolving the autocorrelation function of the pattern
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created by Dirac impulsions (Fig. 7, top right) with the elementary transfer
function T0. This convolution acts in the image space as a multiplication by
the FT of T0, that is, by the PSF of the subapertures. What we see here is
the diffraction envelope corresponding to the subapertures: imaging is done
inside the pupils’ PSF.

The width of this diffraction envelope defines the total field, which is a
disk with diameter about 2.4λ/D. In the Michelson mode this diffraction
envelope is obviously visible as well.

In the numerical modeling/sampling, the principal interval should thus
have extension Tr = 1/τν that is about this size, 2.4λ/D, since this is the
zone we are interested in.

– 2. A striking particularity of these images is the presence of replicated pat-
terns that resemble the reference object. The reason is that the pupils centers
are located on a grid. The elementary OTF are in turn located on nodes
of the frequency grid, which are here separated by 7 units, that is, by 7τν .
If there were not 25 but many more pupils, so that all these nodes would
correspond to the center of an elementary OTF, the sampling function would
consist in a Dirac comb (of period 7τν) convolved by the elementary OTF T0.
We see that the effect of this system would be, in the image space, to convolve
the object intensity distribution with a Dirac comb of period 1/(7τν) = Tr/7
(and the diffraction envelope would further tapper the result). The effect of
this convolution would be to create, in a zone of extension Tr×Tr, 7 replicas
in both horizontal and vertical dimensions. This is essentially what we see
in the Fizeau image of Figure 10. The difference is that for the Fizeau mode
there are only 25 pupils. In this case, the Fizeau sampling function can be
seen as the previous one multiplied by a function of ones and zeros which
kills the frequencies where Fizeau’s transfer function has no contribution,
and leaves the others unchanged. This function is shown of Figure 8, top
left, where the 1 are in white and the 0 in black. It has no regular shape.
The Fizeau image is the convolution of the 7 replicas (the image obtained
with the full grid) by the inverse FT of this function. The convolution by
this “halo function” leads to an irregular and diffuse halo which explains the
fuzziness of the Fizeau image. This halo blurs the image and removes some
frequency contents (essentially the high frequencies, but also low frequencies
in the voids of the sampling function).

– 3. Let us now turn to the Michelson configuration images. Densification
translates frequencies block-wise, and thus performs a frequency modula-
tion. This operation is not equivalent to downsampling. Downsampling by a
factor k (i.e., keep every kth other sample) contracts the frequency axis uni-
formly. Each spatial frequency u is moved to the frequency u/k, so that the
object whose spectrum is subsampled appears zoomed (and possibly aliased)
by a factor k. In densification, the frequency axis is not uniformly contracted.
Only the center frequencies u′

kl = ukl/γ are contracted by a factor γ. For
all other frequencies, the result of the translation is only approximately a
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contraction by γ. Densification is equivalent to downsampling (followed by
lowpass filtering) only in the limit of point pupils: in this case T0 tends to a
Dirac impulsion and only central frequencies u′

kl are sampled. The densified
image is not a zoomed version of the Fizeau image. It may be considered as
a zoom only in a first approximation (by neglecting the spatial extension of
the pupils). This effect nevertheless explains why the replicas appear larger
in densified images.

The magnification performed by densification is visible in the FSD image:
in the Fourier space, 3 samples out of 7 are kept in the [u] and [v] frequency
directions (see Fig. 8), resulting in a magnification of approximately 7/3
(≈2.3) of the size of the replicated pattern. Needless to say, this magnifica-
tion zoom comes with no gain in resolution at all (the frequency information
about the reference objet is the same in both cases, as visible in Figure 2,
and in Figure 8, middle left and middle center figures).

The number of replicas is decreased by the same amount γ = 7/3, be-
cause the nodes of the grid on which the frequencies u′

kl = ukl/γ fall are
now γ = 7/3 closer than in the Fizeau case (they are separated by 3τν in-
stead of 7τν). Thus, the corresponding periodicity in the image space is now
1/(3τν) = Tr/3: 3 replicas are visible in the vertical and horizontal direc-
tions. As in the Fizeau case, the sampling does not yield elementary OTF
centered at all the nodes of the frequency grid of step 3τν . Hence, the repli-
cas are convolved by the inverse FT of the 0/1 function shown Figure 8, top
middle. This function is not a scaled (contracted) version of the correspond-
ing Fizeau sampling function, unless the subpupils have negligible diameter.
So, we see that the densification by a factor γ yields an image which, only
in the limit of very small subpupil diameters, corresponds in the diffraction
enveloppe to a zoomed (magnified) version of the Fizeau image.

– 4. In the FAD image finally, mainly one replica is visible in the center
(actually two halves exist in the borders). This case seems to be a straight-
forward limiting case of the middle image: increased densification, larger
magnification of the center replica, almost total disappearance of off-axis
replicas. This is however not the case. The frequency contents in FAD mode
has been modified (reduced) because of the too strong spectral densification
(Fig. 8, right). During the FAD operation, some frequency cells have col-
lapsed. Overlapping spatial frequencies have been melted, and the overall
support size is smaller in the FAD than in the Fizeau/FSD cases. This op-
eration is not invertible. Because of these reasons, it seems better for both
purposes of direct imaging and of image restoration to stop the densification
at the FSD limit. For direct imaging, FAD and quasi FAD produce images
of reduced fidelity with respect to the object. For restoration purpose, FAD
increases the difficulty of the inversion, because it adds un-invertibility to
the imaging system.

– 5. The left figure in Figure 10 is the convolution of the reference object
(Fig. 6) by the PSF shown in Figure 8, bottom left. However, as discussed
in Section 2.2, the FSD and quasi FAD images are not the convolution of the
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reference object by the PSF shown in Figure 8, bottom center and bottom
right. A convolution may be retrieved in the FSD mode only in the limit
of vanishingly small diameters (infinite fields of view). This suggests two
regimes for densification (hypertelescopes), depending on wether the diam-
eter D is much smaller than the smallest subpupil separation d or not. For
hypertelescopes made of very large bases (in the kilometer range) and of
many small telescopes (centimeters), D << d, and a convolution model may
be a good approximation, at least close to the optical axis. For VLTI-like
hypertelescopes, made of moderately large bases (in the hundreds of meter)
and of a few large telescopes (in the tens of meters), D ≈ d, and the image
formation models strongly departs from convolution.

3.4 Noise

Real images will be affected by several perturbations. Effects caused by perturba-
tions on the phase and by chromaticity are not addressed here. We consider two
types of noise: Poisson noise (the number of detected photons in a pixel receiving
a constant light flux is Poisson distributed), and Gaussian noise (which usually
models the detector read-out noise, or approximates the Poisson distributed in
the limit of larges fluxes). The Figure below shows examples of simulated noisy
data images that would be obtained for a hypertelescope. The image in FSD mode
(left) is sampled on a 1024×1024 pixels CCD detector. The average flux falling on
each pixel corresponds to 0.8 photons. The middle image is what the detector sees
with Poisson noise (the recorded number of photons in a pixel is the realization of
a Poisson process having for mean and variance the noiseless flux on this pixel).
In this case the detector noise is negligible with respect to the photon noise. On
the other hand, the right image is an instance of what the detector records with a
zero mean Gaussian noise having a standard deviation of 1 photon.

Fig. 11. Left: noiseless FSD hypertelescope image. Middle: corresponding photonized

image. Right: noisy image with Gaussian noise.

Clearly, the data images in these cases are quite degraded versions of the noise-
less image. However, this visual quality loss is partly illusory, because the noise
component in the middle and right images have frequencies in the whole Fourier
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space − while we know that our imaging system has measured only the frequencies
that belong to the support of the transfer function T . Hence, we can safely (and
numerically) filter out all the frequencies outside this support without any degra-
dation of the astrophysical information. This is simply achieved by a DFT (or
FFT) of the noisy image, multiplication the result by the corresponding indicator
function of Figure 8, top row, and inverse FFT. We obtain the images of Figure 12.

Fig. 12. Top row, left: filtered version of the photonized FSD hypertelescope im-

age of Figure 11, middle. Top row, right: corresponding numerically rediluted image.

Bottom row, left: filtered version of the FSD hypertelescope image with Gaussian noise

of Figure 11, right. Bottom row, right: corresponding numerically rediluted image.

Clearly, the noise is much less adversarial than suggested by the data image.
Note also that a numerical post-processing allows to create, from densified im-
age, images that would have been obtained (up to the noise realization) with the
corresponding Fizeau imaging setting. This is simply achieved by computing a
FFT, translating back the frequency samples to the location they occupy in the
Fizeau sampling, and computing an inverse FFT. This is interesting because now
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the model relating the object to the rediluted data is again a convolution, and this
allows to use classical deconvolution algorithm even in the densified case.

This example shows that the image quality (i.e., its closeness to the object)
can be improved by post-processing. This is the topics of the next Section.

4 Restoration algorithms

This section focuses on methods aimed at improving the estimation of the object
from the image. What we want to do here is to infer from the data image, and from
the mathematical model of the image-object relation, which object has generated
the data. The process of finding back O from IF , IP

γ or IG
γ is sometimes given the

catchy name of “inverse crime” in the literature.
We first describe the inversion problem, and then illustrate three classical de-

convolution algorithms. The last part proposes a review of a particular class of
restoration methods that have received an increasing amount of attention in the
last decades. These methods use the notion of sparse representations.

4.1 Inversion

Because restoration algorithms involve digital data and filtering techniques, we will
consider from now on a fully discrete model. In this model, let us write the data
image and the unknown reference object as vectors y and o respectively. These
vectors are simply vectorized versions of the discrete arrays containing the intensity
values in each pixel of the image and reference object. Considering principal
intervals, the reference object and the image have N pixels, and their discrete
Fourier spectra have N frequencies. In the case of subpupils placed on an integer
grid, the sampled spatial frequencies are also on a grid. The noiseless image
formation model in the Fizeau case becomes

yf = F†TF o = Hf o, (4.1)

where F is the matrix form of the DFT, superscript† denotes conjugate transpose,
T = diag{T [1, 1] . . . T [N, N ]} is the diagonal matrix representing the transfer func-
tion of the diluted array, and Hf is a discrete circular convolution operator (a cir-
culant matrix, because the considered discrete images and spectra are N -periodic).
As we have now understood, the inversion is impossible because the solution is not
unique: an infinity of objects can lead to the data, because of the zeros of the trans-
fer function. In addition, the transfer function may be nonzero but very small at
some frequencies, and the frequency content of the object at some sampled fre-
quencies may be very small relatively to noise. In such cases, the data samples
contain essentially noise. Inverting the transfer function at such frequencies leads
in the image to fake oscillatory components that can have large amplitudes, a
phenomenon called noise amplification. For these reasons, our inversion problem
is said to be ill-posed, and the illness indeed comes from the instrument, not from
the mathematical formulation.
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The principal problem of the restoration can be seen as filling “cleverly” the ze-
ros of the transfer function. Cleverly means that the recovered frequencies should,
in some sense that remains to be defined, be close to the original frequencies of
the object.

The noiseless image formation model in the case of hypertelescopes without
spectral overlap (i.e., for densification up to FSD or less) becomes

yFSD = F†MFSDTF o, (4.2)

where T is the Fizeau transfer function, and MFSD is the operator implementing
the spectral densification (frequency modulation). This operator is a permutation
matrix whose 1 specify the positions to which the frequency samples of the input
(Fizeau) image are assigned in the Michelson image. This operator is linear, non
diagonal (each column and each row of MFSD have exactly one 1 and N−1 zeros)
and obviously invertible (M−1

FSD = Mt
FSD: transposing yields the inverse). The

operator F†MFSDTF does not correspond to a convolution because MFSD is not
diagonal (convolution is diagonalized by the Fourier transform).

If, however, we redilute the densified image

yredil = F†M−1
FSDF yFSD = F†M−1

FSD FF†︸︷︷︸
I

MFSDTF o = Hf o, (4.3)

from which we see that rediluting allows to retrieve the convolution model (4.1).
In the case of a hypertelescope with spectral overlap (or aliasing), that is, in

the range of densification from FSD to FAD, the model is

yFAD = F†MFADTF o = HFAD o, (4.4)

where MFAD is not a permutation matrix and is not invertible anymore. HFAD

is not a convolution operator, and we cannot redilute this image because MFAD

is not invertible. In the following, we consider only cases that can be described
by a convolution: the Fizeau configuration, and spectrally densified images, with-
out aliasing, and further rediluted. This model will be generically denoted by
y0 = H o, and we will consider perturbations on y0 caused by Gaussian and
Poisson noises.

We now turn to some standard methods aimed at estimating o from noisy data
y. In estimation theory, the Maximum Likelihood (ML) method is a systematic
method aimed at building estimators of parameters considered deterministic. The
likelihood of the data is assessed using the model (image-object relationship in our
case), and is defined as the probability of observing the data conditioned to the
parameters. The (unconstrained) ML method looks for the value of the parameters
(the object, in our case) that is the most likely given the data. Unconstrained ML is
extremely popular in the context of multiple measurements of the same parameter,
because it is often asymptotically (in the number of measurements n) unbiased8

8This means that if θ denotes the parameter of interest and θ̂MV [n] its ML estimate using n

measurements, limn→∞ Eθ̂MV [n] = θ.



D. Mary et al.: Restoration of Hypertelescopes Images 237

and consistent9. In addition, if an estimator that achieves the Cramer-Rao lower
bound10 exists for a finite number of measurements, the ML finds it.

In the framework of images however, the problem is not posed in terms of
multiple measurements (if the data image size increases, the number of parame-
ters increases as well). Moreover, the unconstrained ML leads generally, for non
invertible operators H, to dramatic noise amplification. Consequently, the sought
solution must somehow be constrained for the inversion to be possible. The most
obvious constraint is to impose that the object o is non-negative (∀i,oi ≥ 0). The
two following methods use this constraint, for Poisson and Gaussian data likeli-
hoods respectively. They are relatively popular in the astronomical and optical
communities where they have been published, and are synthetically exposed be-
low. A detailed and unified treatment of regularized maximum likelihood methods
with non-negativity constraint can be found in Lanteri et al. (2002a,b).

4.2 Richardson-Lucy algorithm (1972, 1974)

In the case of Poisson noise, the statistical model is y = P(Ho). The likelihood
of the data y is

L(y;o) =
N∏

i=1

([Ho]i)yi

yi!
e−[Ho]i , (4.5)

where the product comes from the independence of the components, guaranteed
by that of the noise realization from one pixel to another. By using Stirling’s
formula, maximizing the likelihood above leads to minimizing

JPoisson(o) =
N∑

i=1

[Ho]i − yi ln[Ho]i, subject to ∀i,oi ≥ 0, (4.6)

which leads to the iterations

RL: o(k+1) = o(k) ·Ht y
Hok

· (4.7)

In these iterations, the division of y by Hok is made element-wise. The results
is left multiplied by Ht (which in practice is implemented in the Fourier space
using the structure of H in (4.1)), and the multiplication by the previous estimate
o(k) is again element-wise. The question of deciding when to stop the iterations
is a difficult one, as RL (and ISRA) do not possess a natural stopping criterion.
Stopping the iterations to some number performs a kind of regularization, although
non explicit. Pseudo-codes for RL and ISRA below can be found in Thiébaut
(2005).

9i.e., limn→∞ E{θ̂MV [n] − θ}2 = 0.
10i.e., the smallest Mean Square Error that is achievable by any unbiased estimator, and that

is caused the uncertainty inherent to the stochastic perturbations.
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4.3 Image space reconstruction algorithm (1986)

When the data are spoiled by a Gaussian noise that is pixel-wise independent but
possibly non identically distributed, the model is y = Ho + b, b ∼ N (0,Σ), with
Σ =diag[σ2

1 . . . σ2
N ]. The ISRA algorithm (Daube-Witherspoon & Muehllehner

1986) produces the non-negative solution that is the most likely according to the
noise model. The likelihood of the data y is

L(y;o) = P ([y1 . . .yN ]t;o) =
N∏

i=1

(2πσ2
i )−

1
2 e
− (yi − [Ho]i)2

2σ2
i . (4.8)

Maximising this function on non-negative o is equivalent to minimize

JGauss(o) =
1
2
||y−Ho||2Σ−1 =

1
2

∑
i

(yi −Hoi)2

σ2
i

, subject to ∀i,oi ≥ 0. (4.9)

This leads to the iterations

ISRA: o(k+1) =
o(k)

HtΣ−1Ho(k)
·HtΣ−1y, (4.10)

where the division and multiplications are elemen-twise. In practice however, some
data may be negative, in which case the iterations above do not guarantee the non-
negativity of o(k) over the iterations. To overcome this problem, one should work
on a data image y′ that is shifted by its minimum value m = mini(yi) (Lanteri
et al. 2002b). If we denote by d the vector with entries di = −m, ∀i, then
y′ = y + d is non-negative and the ISRA iterations become

o(k+1) = d +
o(k) − d

HtΣ−1Ho(k)
·HtΣ−1y′. (4.11)

When the iterations are stopped at some iteration number kstop, the estimated
object is ô = o(kstop) − d.

4.4 Numerical illustrations

The following example (Fig. 13) illustrates what can typically be achieved by such
algorithms. This example shows some results of the RL deconvolution algorithm
as a function of the iterations. The considered reference object is that of Figure 6,
and the data image is a photonized version of the FSD hypertelescope (Fig. 11,
middle). Before deconvolution, we first redilute (Fig. 12, top right). We can also,
before starting the restoration, filter out the noise. This is not necessary, because
the first iteration of the RL algorithm will do it; but seeing the filtered image
indicates that the situation is not as bad as visually suggested by the data image
(Fig. 11, middle). This helps realizing that some merit should indeed be attributed
to the restoration algorithm, but not too much.
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Fig. 13. Top: best (in the euclidean distance sense) recovered object for the RL algo-

rithm. The companion is not reproduced. Bottom, left: data approximation error vs.

iteration number. Bottom, right: error with respect to the reference object vs. iteration

number.
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The restored object in Figure 13 is, with respect to the true object, quanti-
tatively and qualitatively inaccurate in the details, but rather fair in the overall
shape. The companion is not recovered, and the surface intensity on the main
planet has extremely high values. The overall flux of the solution is the same as
the flux in the data, because RL iterations structurally preserve the flux. This flux
is very close the flux of the reference object, because the 0 frequency is measured
by the optical system: the flux is thus known up to the measurement error caused
by the noise.

The two lower figures represent the data approximation error
(||y−Ho(k)||2/||y||2) and the distance with respect to the object (measured here
as ||o−o(k)||2/||o||2). The data approximation error continuously decreases. This
behavior always happens for ISRA (since ISRA iteratively reduces the convex cri-
terion JGauss(o(k))), and usually for RL as well. On the other hand, the distance of
o(k) to o decreases and then increases: the best solution in the euclidean distance
sense, which is shown in the top figure, is here obtained for an iteration number
of k ≈ 1000. The best iteration number is always impossible to know in practice,
because the object is not known. The behavior exhibited by these curves is very
general.

This example illustrates important characteristics that share RL and ISRA al-
gorithms. The positivity constraint is easily imposed (and any support constraint
could be possibly imposed as well, owing to the multiplicative form of this al-
gorithms), and their implementation is easy. On the other hand, the number of
iterations to reach an acceptable solution can be large (slow convergence), and it
is difficult to know when to stop the iterations in practice. Finally, the interpola-
tion and extrapolation that are performed in the Fourier space are very difficult
to formalize.

An uncountable number of inversion methods can be found in the literature. A
large class of those injects an explicit regularization term in the criterion coming
from the likelihood. This term reflects a priori information about the solution.
Explicitly regularized methods allow to put well defined constraints on how the
missing frequency content should be added to the data during the iterations, or
at least, to impose that the solution exhibits specifically desired properties (e.g.
smoothness, piecewise constant aspect, etc.). Another set of approaches uses the
concept of sparse representations, and a survey is proposed below.

4.5 Deconvolution based on sparse representations

4.5.1 CLEAN and sparsity

Long before the optical interferometry era, radio astronomers had devised various
techniques to recover estimates of o from y in convolution models. The ancestor of
sparsity-based techniques in the radioastronomical community is the CLEAN al-
gorithm, which is used routinely in radioastronomy since almost 40 years now. Nu-
merous variants have been developed (see Cornwell 2008), and in practice CLEAN
remains a benchmark method in radioastronomy. It is worth detailing a bit on
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this algorithm, as it can directly be applied to the deconvolution of hypertelescope
images, and because of its link with sparsity.

CLEAN was proposed by Högbom (1974), and was related to earlier methods
in Scharz (1978). See also Cornwell (2009) for a description of the wide impact
of CLEAN on Astronomy and beyond. CLEAN can be seen as a method which
essentially models o as a collection of a few (relatively to the number of pixels)
point sources. The image y is thus in turn modeled as a collection of shifted and
scaled PSFs. The algorithm subtracts iteratively scaled and shifted PSFs from the
image residual, until a stopping criterion is reached. Högbom recommended in its
1974’s paper a threshold on the maximum value of the residual. This threshold
forces a limited number of iterations, and thus a limited number of detected point
sources − this is where sparsity comes in.

This iterative process is very similar to the Matching Pursuit algorithm, which
is widely used in the signal processing community (Mallat & Zhang 1993). With
a difference, yet: at the end of the iterative deconvolution process of CLEAN,
the residual is added back to the synthesized detection map. As a matter of fact,
CLEAN works very well when only a few points sources constitute o, and thanks
to the residual trick, it remains also relatively efficient even for extended sources,
despite the apparent irrelevance of its sparse model for such sources.

The excessive simplicity of CLEAN’s “point source” model for general astro-
physical sources was nevertheless worked out in the 80 s by several researchers, who
looked for more elaborated models of extended sources. Several methods based on
multiresolution approaches followed the works by Wakker & Schwarz (1988). An
overview of CLEAN’s evolutions is given in Rau et al. (2009).

4.5.2 Analysis and synthesis sparsity

Sparse representations in dictionaries are ubiquitous in a large number of modern
signal processing methods. The reason for this is perhaps double: first, they rely
on simple (linear) statistical models; second, they naturally operate a dimension
reduction, by focusing on subspaces of reduced dimension where the information
of interest actually lies.

Sparse representations can be seen as a generalization of CLEAN’s model. In
the synthesis model, which is the most intuitive and has historically benefited from
more efforts, the object o is assumed to be well modeled by a linear combination
of a few elementary shapes (not just point sources), called atoms.

Promoting sparsity relatively to appropriate dictionaries offers a straightfor-
ward way to fill the missing frequency contents caused by the zeros of the transfer
function. Indeed, sparse methods essentially detect which atoms are present in
the data using the measured frequencies: some missing frequencies are then auto-
matically filled with the frequencies of the detected atoms.

Let us now describe in more detail the differences between analysis and synthe-
sis sparsity (Elad et al. 2007). We consider the object-image model y = Ho + n,
with n ∼ N (0, I) for simplicity. In the synthesis approach, the unknown intensity
distribution o (of size N × 1, say) is assumed to be sparsely synthesizable by a
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few atoms of a given full rank dictionary S of size N × L. Hence, we write o
as o = Sηηη, where ηηη (the synthesis coefficients vector) is sparse. This assumption
is widely used in data modeling for denoising, compression, pattern recognition
or inpainting applications for instance, because natural signals and images are
approximately sparse in appropriate spaces (Mallat 2008).

A synthesis-sparse solution to the deconvolution problem posed by y = Ho+n
can be obtained by solving:

o∗
S = S

{
argmin

ηηη

1
2
‖ HSηηη − y ‖22 +μp ‖ ηηη ‖pp

}
, (4.12)

where μp is a hyper parameter that tunes the desired sparsity degree, and ‖ ηηη ‖pp=∑
i |ηi|p, 0 ≤ p ≤ 1, is a function favoring zero values.
The solution o∗

S is also interpretable in the Bayesian framework as a Maximum
A Posteriori (MAP) solution, in which case μp is related to the parameters of a
Generalized Gaussian prior on ηηη. The �0 quasi-norm (which counts the number of
nonzero coefficients in ηηη), obtained for p = 0, is the most natural sparsity measure.
To ensure the convexity of the resulting cost function, it is often replaced by the
�1 norm || · ||1, which still promotes sparsity (and correspond to a Laplacian prior
on ηηη).

In contrast, the analysis approach consists in finding the solution o that is not
correlated with some atoms of a dictionary A of size N × L: AT o is sparse. An
analysis-sparse solution can be obtained by solving:

o∗
A = arg min

o

1
2
‖ Hx− y ‖22 +μp ‖ ATo ‖pp . (4.13)

Note that the synthesis prior is on the synthesis coefficients ηηη, while the analysis
one is on the projection a = AT o of the signal on the analysis dictionary A.

While both approaches are equivalent when A and S are square and invertible,
with A = S−1, they yield in general different solutions for overcomplete dictio-
naries (N < L). Such dictionaries are required for efficient image modeling (see
next Subsection). Since natural images can often be approximated by few atomic
elements in such dictionaries, the synthesis approach is considered as more intu-
itive. Its design simplicity (in greedy approaches like CLEAN11) has also made it
more popular in image processing applications. However, the synthesis solution is
restricted to a column subspace of the synthesis dictionary, and the significance
of each selected atom is important. On the other hand, the analysis approach
may be more robust to “false detections” since the signal is not built from a few
number of atoms. Besides, note in Equation (4.12) and (4.13) that the number
of unknown in the synthesis case (the number of atoms in the dictionary) can be
much larger than in the analysis case (where it remains in the number of pixels).

11The greediness of CLEAN is visible in the atom’s (shifted PSF) selection rule: select the
atom that is the most correlated with the data, that, is, the one that most decreases the norm
of the residual.
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Thus, analysis-based optimization strategies can be computationally much more
efficient for large dictionaries. The comparison of both models is a very active
field of research in fundamental signal processing (see the references in Gribonval
et al. 2009, 2012).

Once a sparsity promoting model is chosen, we still need to choose an appro-
priate dictionary to perform the deconvolution.

4.5.3 Dictionaries

The sparsity is expressed via dictionaries, which correspond to representation
spaces. Dictionaries express geometrical features that are likely to describe the
unknown object. In synthesis, the columns of the dictionary are simply the atoms.
In analysis, the rows may be atoms as well, or operators (gradient for instance,
leading with �1 norm to the total variation regularization). These dictionaries can
be orthonormal transforms (corresponding to orthonormal bases), or more gen-
erally redundant (overcomplete) dictionaries. A large variety of representations
has been elaborated in the image processing literature, e.g., canonical basis in-
deed (corresponding to point-like structures), Discrete Cosine Transform (DCT,
2-D plane waves), wavelets (localized patterns in time and frequency), isotropic
undecimated wavelets, curvelets, ridgelets, shapelets and many others, see Mallat
(2008) and Starck et al. (2010) for detailed reviews.

The choice of a dictionary is made with respect to a class of images. In
Astronomy, wavelets dictionaries are widely used, but they are known to fail rep-
resenting well anisotropic structures. In such cases other transforms can be used,
that have been designed to capture main features of specific classes of objects.
Among them, curvelets sparsify well curved, elongated patterns such as plane-
tary rings or thin galaxy arms for instance; shapelets sparsify well various galaxy
morphologies, etc. All these dictionaries have shown empirical efficiency for some
specific types of images.

In order to model efficiently complex images with various and different features,
several authors have proposed to concatenate dictionaries into a larger dictionary
(Chen et al. 1998; Gribonval et al. 2003). However, the efficiency of a dictionary
also critically depends on its size and on the existence of fast operators, without
which iterative algorithms cannot run in reasonable time. This is especially true in
radiointerferometry and in (possibly polychromatic) optical interferometry where
the number of Fourier samples and of pixels can be of the order of hundreds of
thousands.

4.6 CS and sparsity in astronomical deconvolution

Since the Compressed Sensing (CS) theory has emerged, providing exciting and
beautiful mathematical results about sparse recovery in various cases, the sparsity
ideas have benefited from considerable new strengths in the fields of signal and
image processing (Donoho 2006; Candès et al. 2006).

In the context of the image restoration problem posed by interferometric mea-
surements, the CS theory has provided theoretical proofs that, in idealized
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situations, exploiting sparsity is indeed useful. For instance, the CS theory ex-
plains why a few point sources may be recovered from random Fourier measure-
ments that are in number far less than specified by the sampling theorem. Of
course, this possibility is exploited and implemented in long-existing restoration
methods like CLEAN for instance; sparse methods have grown and evolved on
their own before CS. They have lead to several types of elaborated sparsity-based
algorithms, whose use evidences decades of empirical success.

As in many other applicative fields, references to CS have started hatching
in quite a few recent publications about astronomical deconvolution. Yet, one
key ingredient in that matter − sparsity − is exploited since at least Högbom’s
time. Besides, the theoretical CS proofs invoked in the introduction of many such
publications turn not to help much in the subsequently proposed restoration meth-
ods. This poses the question of the real benefits brought by CS to astronomical
deconvolution.

Let us consider the question from an operational point of view, that is, with
the concern of better estimating o from the data y. The benefits from CS with
this respect are real but indirect, and they appear to be the following. First,
CS clearly drained an increased research effort in fundamental models for sparse
representations, like those of Equations (4.12) and (4.13). This in turn lead to
improved reconstruction methods, through more elaborated statistical data mod-
els. Second, a lot of efficient optimization strategies have been designed to solve
problems of the type (4.12) and (4.13), thanks to the new strengths in this field
brought by the appealing theoretical results of CS.

In the recent years, sparsity promoting methods were used in interferometry
by Wiaux et al. (2009a,b), using Basis Pursuit DeNoising (Chen et al. 1998) with
wavelets dictionaries, and by Vannier et al. (2010), with Matching Pursuit algo-
rithms in unions of bases (wavelets/Dirac). Li et al. (2011) adopted a synthesis
approach with an IUWT (Isotropic Undecimated Wavelet Transform) synthesis
dictionary, and solved a Basis Pursuit synthesis criterion through the ISTA min-
imization algorithm (Iterative Soft-Thresholding Algorithm) and its fast version,
FISTA (Fast Iterative Shrinkage-Thresholding Algorithm, Beck & Teboulle 2009).
Carillo et al. (2012) applied a reweighted �1 analysis algorithm promoting aver-
age signal sparsity over multiple redundant dictionaries, and relying on convex
optimization techniques. Dabbech et al. (2012) have proposed an hybrid analysis-
by-synthesis approach: o is modeled using sparse synthesis priors as a sum of few
objects which, as opposed to classical synthesis-based priors, are unknown. These
atoms are iteratively estimated through analysis-based priors, the analysis being
based on an IUWT dictionary.

Note that in optical interferometry, the 2012 international Beauty Contest also
witnessed an increasing number of sparsity based methods (Baron et al. 2012).
Finally, in polychromatic optical interferometry, Thiébaut et al. (2012) proposed
to favor spatial sparsity and spectral grouping of the sources through an alternating
direction method of multipliers, a method also issued from the convex optimization
literature (see the Article of É. Thiébaut in these proceedings).
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We will not include numerical results about restoration algorithms exploiting
sparsity in this paper. Examples of results obtained with sparsity promoting meth-
ods (comparison of CLEAN, MP and BP) in the case of diluted apertures (Fizeau
configuration) can for instance be found in Section 4 of Vannier et al. (2010).

To conclude this part, we see that numerous techniques are emerging. They
offer sophisticated alternatives to the more traditional and robust constrained ML
methods. Indeed, most of these methods comply with the non-negativity con-
straint. The algorithms described above rely on recent progresses in sparse rep-
resentations and convex optimization techniques. They allow to solve large scales
optimization problems involving complex image models, and they are becoming
increasingly popular in interferometry.

We now turn to simulations results aimed at illustrating the effect of densi-
fication in the presence of photon noise. We then investigate the possibility of
recovering small objects that are far from the optical center.

5 To densify, or not to densify

Of course, the ambition of this section is not to provide a general answer to this
question, as many factors should be accounted for (for instance the number of
detector pixels, the noise level and its statistical nature, the subupil configurations,
etc.). As already emphasized, the FSD densified and the Fizeau images contain
the same frequency information. Since the densified image has a lower frequency,
it needs less detector pixels to be properly sampled than its Fizeau counterpart.
This should be an advantage of hypertelescopes, which will not be illustrated here
as this is a straightforward consequence of the sampling theorem. See for instance
Lardière et al. (2007) for useful insights on these issues.

The question on which we focus here is the following. We are given a reference
object o (the one of Fig. 6) and two sampling schemes (the previously described
Fizeau and Michelson FSD configurations, Fig. 8), leading to one-million-pixel
images that are contaminated by photon noise (Fig. 11). In these conditions,
which scheme leads statistically to the best restored images using a RL algorithm?

We propose to answer this question empirically, by running Monte Carlo sim-
ulations. We generated 50 photonized Fizeau images and the same amount of
photonized FSD images. The images of the latter set were numerically rediluted
so that the object-image model is a convolution. The difference between the two
sets of images is in the noise statistics. While it is Poissonian for the first set, this
is not the case for the set of rediluted images. These images can (and actually
do) exhibit negative values. Thus the RL algorithm, seen as a ML method, is not
justified any more because both the image positivity and the Poisson statistics
are lost. However, RL can be (as ISRA) simply taken as a deconvolution method
which minimizes some loss function between the data and convolved model (the
Kullback-Leibler divergence for RL, and the quadratic error loss for ISRA). If non-
negative restored objects are expected, care must be taken in this case that the
data images are non-negative. This is achieved by setting to 0 the negative values
of the rediluted images. We observed for the considered noise level that negative
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data values in the rediluted images are very few (typically 5 out of 106) and close
to 0 (typically less than 0.01 in absolute value). So this non-negativity precaution
causes a negligible information loss.

Fig. 14. Left: empirical distributions of the best reconstruction errors obtained by RL

for photonized Fizeau images (top) and rediluted photonized FSD images (bottom),

for 50 realizations. The average photon noise in the data images corresponds to

0.72 photon/pixel, and the images have 1024 × 1024 pixels. The vertical line shows

the empirical mean of the distribution (which is also indicated in the titles of the figures

along with the observed dispersion). Right: empirical distributions of the iteration num-

ber leading to the best reconstruction (vertical line: empirical means; values for means

and standard deviations are indicated in the titles).

The results are presented in Figure 14. It is clear from this experiment that the
results are essentially equivalent in terms of the quality of the reconstruction error
and of the optimal number of iterations. The equivalence in terms of information
that holds between Fizeau and FSD configurations appears conserved in images
affected by photon noise.

6 Noiseless recovery of a small object outside the “clean” field

6.1 Introduction: Objectives and simulation parameters

We are interested here in the restoration of noiseless images obtained in the Fizeau
configuration, or in any densified configuration without spectral aliasing. The
objective of this study is to investigate whether a quasi-point source which is
located outside the “clean” field (see below) can or not be restored by the RL
algorithm. The noise is not considered in order to focus on the effects of the
sampling.
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The “clean” field (Lardière et al. 2007) is the central zone of the image of
dimension λ/s, where s is the smallest spatial distance between two subpupils.
The global field corresponds to the diffraction envelope of the elementary pupils.

The considered sampling is the same as described in Section 3: 25 non re-
dundant circular apertures on an integer grid. These apertures have the same
diameter D, and the principal lobe of the diffraction envelope defines the global
field, which has diameter 2×1.22λ/D. For the considered array, the centers of the
elementary OTF in the Fizeau sampling are separated by 7τν . Thus, the central
part of the Fizeau image is essentially replicated 7 times in each direction, and
λ/s corresponds to 1024/7 ≈ 146 pixels (cf. Fig. 15, bottom left).

The object we consider is presented in Figure 15. The flux ratio between the
central planet and the satellite is ≈4.8 × 10−3, which corresponds to a difference
in magnitude of ≈5.8.

6.2 Recovery without spatial aliasing

In this first simulation, the small object is not located on a replica of the main
object, but it is quite far from the center (close to the limit set by the global field),
and thus highly attenuated. This source is centered around the pixel coordinates
(x = 140, y = 513), and is 373 pixels away from the centre (x = 513, y = 513) of
the object. This angular distance represents ≈ 2.5× λ/s, or ≈ 0.73× 1.22λ/D.

Figure 16 illustrates the evolution of the deconvolution along the iterations.
Interestingly, we see that the algorithm first reconstructs a satellite close to the

central object, and then transfers the flux from this position to the left by discrete
jumps of λ/s (i.e., the clean field), to finally reach the good position:

– Iteration 100: the central planet appears, the replicas and the halo have
almost disappeared. No satellite yet.

– Iteration 3500: the central planet starts being fairly well estimated, and a
quasi-point source is restored in the vicinity of the planet, at pixel
(x = 432, y = 513), i.e. at 2λ/s right of the real position of the satellite
(432 = 140 + 2× 146).

– Iteration 4500: a second point source appears at pixel (x = 286, y = 513),
i.e. at λ/s right of the real position. The flux of the first (fake) quasi-point
source has decreased with respect to iteration 3500.

– Iteration 5800: The first fake satellite at (x = 432, y = 513) has disappeared.

– Iteration 7800: A third satellite at the right position (x = 140, y = 513)
appears. The flux of the second satellite at (x = 286, y = 513) decreases.

– Iteration 30 000: The second fake satellite (x = 286, y = 513) has almost dis-
appeared. The algorithm has (almost) converged to a correct reconstruction
of the central planet and of its satellite.
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Fig. 15. Top: reference object (planet-satellite). Bottom, left: same object with the

fields shown. The global field represents 1024 pixels in each direction, and the clean field

146 pixels. The quasi-punctual source contributes flux in 28 pixels. It is 373 pixels away

from the centre, which corresponds to ≈2.5λ/s. Bottom right: image obtained with the

considered diluted pupil.
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Fig. 16. Snapshots of restored object for some iterations of the RL algorithm. In lexi-

cographic order k = 100, 3500, 4500, 5800, 7800, 30 000.
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The satellite reconstruction by jumps of extension λ/s can be followed in the
Fourier space. As illustrated below, the RL algorithm fills the Fourier space by
progressive interpolation of the spectrum around the available samples. The mod-
uli of the frequency samples where information is available are represented in
Figure 17, left, and the total spectral information to be recovered is in Figure 17,
right. Figure 18 shows the same for the phases. The satellite information appears
essentially as a modulation on the moduli and on the phases of the central planet’s
spectrum.

Fig. 17. Zoom on the moduli of the Fourier spectra. Left: available moduli (the missing

samples are in black). Right: moduli of the spectrum of the considered planet-satellite

system.

Fig. 18. Same as Figure 17, but for the phases.

As the iterations go, the “holes” at low frequencies are progressively filled, and
the high frequencies are then estimated, as illustrated in Figure 19.
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Fig. 19. Zoom on the moduli of the estimated objects for the iterations of the RL

algorithm shown in Figure 16 (in lexicographic order k = 100, 3500, 4500, 5800, 7800,

30 000).
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After 30 000 iterations, the object restored by the algorithm is relatively close
to the original, at least as far as the satellite position is concerned. The Figure 20
presents a zoom on the central planet (left column) for the reference object (top,
left) and on the deconvolved object (middle, left). Similarly, the right column
shows a zoom on the satellite of the reference object (top, right) and deconvolved
(middle, right). The total flux of the deconvolved satellite is about 60% of the
total flux of the reference satellite. Of course the deconvolution is not perfect
(and in cannot be, as too many frequency are lost by the sampling). But the
result is comparable to the direct image that would be produced by a monolithic
Extremely Large Telescope having the same diameter as the largest base of the
hypertelescope12 (Fig. 20, bottom row).

The important thing is that the point source is fairly recovered, a point which
was not obvious considering the ambiguity posed by the sampling scheme. This
result is encouraging, efforts for the quest of high angular resolution do not seem
to be vain. We may pause here to think that some day in the future, the detection
of such a faint little point in the dark corner of a real hypertelescope image might
be the origin of a great discovery for the Human civilization.

Enough dreams for now, sine experientia nihil sufficienter sciri potest: let us
come back to the prosaic reality of simulations and try a more difficult recovery.

6.3 Recovery with spatial aliasing

The considered object is still of the planet-satellite type but the satellite replicas
are superimposed on the replicas of the central object in the data image, see
Figure 21.

The point source is now at coordinates (x = 213, y = 513), which is 300 pixels
away from the centre (x = 513, y = 513). This represents ≈ 2λ/s. As visible
in Figure 21 right, this is a clear case of spatial aliasing. The results of the
deconvolution for some iterations are presented in Figure 22.

– Iteration 100: the planet starts being well restored. No satellite in the
vicinity. Note that a bright spot, of about the satellite size, is created on
the central planet. This spot comes from the spatial aliasing (replica of the
satellite superimposed on the planet).

– Iteration 3000: the reconstruction seems to stabilize on an object without
satellite, with a surface spot at the place of the satellite. It is unclear whether
the algorithm will be able to distinguish between a satellite to be placed
further away, and a bright surface spot.

– Iteration 5000: a satellite appears around pixel (x = 359, y = 513), that is,
at λ/s right of the real position. In the same time, the bright artifact at the
center is less visible than in the previous iterations.

12This ideal telescope is called “Metatelescope” in Aime et al. (2012).
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Fig. 20. Zoom on the central planet (left colum) and on the satellite (right column).

Top row: reference object. Middle row: deconvolved object after 300 000 RL iterations.

Bottom row: Image of a monolithic ELT having the same high frequency cut-off as the

diluted array.

– Iteration 40 000: a second satellite appears at the real position. The flux
attributed to the first fake satellite decreases, and the artifact at the centre
of the planet is almost not visible anymore.
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Fig. 21. Case where the satellite “falls” in a replica of the central planet. Left: considered

system planet-satellite. Right: image produced by the diluted array. The light circles

evidence the spatial aliasing on some replicas (it is the case for all of them).

– Iterations 80 000 et 200 000: the flux is progressively transferred from the
first to the second satellite, but the convergence is very slow. Figure 23
zooms on the object deconvolved at iteration 200 000: zoom on the central
planet (left) and on the satellite position (right). The flux estimated for the
satellite at the real position is still insufficient (compare to Fig. 22).

We see that although the convergence is slow, the algorithm is on the way to
find the right configuration. Figure 24 presents, for each estimated object o(k) at
iteration k, k = 1, . . . , 200 000, the normalized error in approximating the data
(left), and the normalized error with respect to the true object (right).

We see that the convergence is very slow. Note also that the error with respect
to the object is not constantly decreasing. An intermediate solution corresponding
to a local maximum (k ≈ 8000) corresponds to an estimated object with one
satellite that is too close to the planet. But this solution does not perfectly explain
the data. Some flux then starts being injected at the right position, so that the
error decreases again. These results suggest that the right configuration can be
recovered, even if the flux is not perfectly estimated, at least with negligible noise.

How is the algorithm able to find out, from data where the satellite is every-
where superimposed on the surface of the central object, that there is satellite,
and that the surface has no bright spot? The reason is that the if the central
planet had a bright surface spot, this spot should be less bright in replicas that
are further away from the center (because of the diffraction envelope). But this
is not the case for the replicas of the satellite: the brightest replicas are the ones
that are close to the true position of the satellite. This discrepancy makes the
algorithm to eventually inject the flux at the right position. In other words, it is
the diffraction envelope which saves the reconstruction here.

A last remark. To see to which solution the algorithm would eventually con-
verge, and how accurate the recovery would be in this case, there should be several



D. Mary et al.: Restoration of Hypertelescopes Images 255

Fig. 22. Estimated objects for some iterations of the RL algorithm. By lexicographic

order: k = 100, 3000, 5000, 40 000, 80 000, 200 000. At iteration k = 40 000 a source

starts being visible at the right position.

hundred thousands iterations more. This is very time consuming: 200 000 RL it-
erations on 1024×1024 images represent ≈80 h on a standard laptop. This clearly
illustrates the importance of designing fast algorithms for image restoration.
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Fig. 23. Deconvolved object in the case of spatial aliasing by RL after 200 000 iterations:

zoom on the central planet (left) and on the satellite position (right).

Fig. 24. Normalised error in approximating the data ||y−Ho(k)||2
||y||2 (left), and normalized

error with respect to the true object ||o−o(k)||2
||o||2 (right) as a function of the iteration

number.

7 Summary and conclusions

This article tried to provide a detailed introduction to the description of the im-
age formation models for diluted pupils array and their densified versions called
hypertelescopes. These optical systems represent one of the main promises for the
next generation of high angular resolution instruments.

The introduction underlined using historical elements how essential have been
high angular resolution observations, transmission of knowledge, and reliance on
long term research projects to our current representation of the Universe.
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A substantial part of the paper was devoted to the explanations of sampling
issues, of their effects on the observed images, and of possible settings that can be
used to simulate hypertelescopes images.

In the Fizeau mode (no densification), the image model is a convolution. The
densified mode corresponds to hypertelescopes and can be done using either a
periscopic setting or inverted Galilean telescopes. We showed in the Appendix
that both settings are fully equivalent. In the densified case, convolution generally
disappears because frequencies are modulated (translated block-wise), and FAD
yields information loss while FSD does not. A convolution may be retrieved in
the FSD mode only in the limit of vanishingly small subapertures (infinite fields
of view).

This suggests two modeling regimes for densification (hypertelescopes), de-
pending on whether the diameter D is much smaller than the pupil separation
d or not. For hypertelescopes made of very large bases (in the kilometer range)
and of many small telescopes (centimeters), D << d, and a convolution model
may be a good approximation, at least close to the optical axis. For VLTI-like
hypertelescopes, made of moderately large bases (in the hundreds of meter) and
of a few large telescopes (in the tens of meters), D ≈ d and the image formation
models strongly departs from convolution.

We also addressed the issue of restoring such images, and presented classical
methods of constrained ML for Gaussian and Poisson noises (RL and ISRA). Faster
and regularized deconvolution algorithms should be preferred to RL and ISRA. We
provided a detailed survey of such recent methods based on sparse representations.

The two last sections of the paper were dedicated to original studies.
The first study showed that the restoration quality achieved by constrained

ML from photon limited images obtained from a diluted array on a grid, or from
a densified (but free from spectral aliasing) array are essentially equivalent. We
still expect a gain of densified w.r.t. Fizeau images because of the relatively lower
cutoff frequency of the former, although we did not provide results supporting this
assertion.

The second study (last section) showed that it is possible to recover or at least
to “detect” in hypertelescopes (or more generally, interferometric) images quasi
point sources that are not only far outside the clean field, but also superimposed
on the replicas of other objects. This is true at least for the considered pupil array
and in the limit of no noise. Further studies should investigate the effect of noise
on the recovery, and of the magnitude difference for the satellite to be recoverable.

Appendix: Densification using Galilean inverted telescopes and recovery
of former periscopic expressions

The densification of hypertelescopes can be operated in two ways: using a periscope
as in Michelson’s stellar interferometer, or using Galilean inverted telescopes. In
the first case, the distance between the subapertures is reduced in the output
pupil with respect to the input pupil, while their diameter remains fixed. In
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the second case, the relative distances between the subapertures is conserved but
their diameter is magnified. In practice of course, the images are rescaled in both
settings. We show here, by treating in detail the image formation model of Galilean
inverted telescopes, that these two settings are equivalent.

Let us consider a monochromatic plane wave of amplitude A(β) coming from
an angular direction β (βx, βy) on the sky, and emitted by an object of intensity
O(β) = |A(β)|2. This wave produces at position r (rx, ry) in the plane of the input
pupil of a telescope an amplitude A(β) exp(2iπβ.r/λ), where the phase factor
accounts for the tilt of the wavefront and the bold dot means scalar product.

The wave Ψ1(r, β) in the input pupil plane of an interferometer made of an
array of K cophased identical apertures P0(r) centered at spatial positions rk can
thus be written as

Ψ1(r, β) = A(β)
K∑

k=1

P0(r− rk) exp
(

2iπ
β.r
λ

)

= A(β)
K∑

k=1

P0(r) exp
(

2iπ
β.r
λ

)
� δ(r− rk) exp

(
2iπ

β.rk

λ

)
, (7.1)

where the last form was first used by Tallon & Tallon-Bosc (1992) to treat the
effect of the periscopic transformation in Michelson interferometry. This form
explicits the separation between the positions and the geometry of the elementary
apertures.

For a hypertelescope, the densification using the periscopic mode basically
consists of translating the apertures images from the positions rk to the new
positions r′k = rk/γ, where γ is called the densification factor (Labeyrie 1996).
These aspects have been presented in several papers (Tallon & Tallon-Bosc 1992;
Labeyrie 1996; Lardiere et al. 2007; Aime 2008; Aime et al. 2012) and will not be
further detailed here.

In contrast to these papers, we present here the formalism for the densification
using inverted Galilean telescopes, and show that it leads to results that are iden-
tical to the periscopic technique. From a physical point of view this is expected
since the two images of the resulting apertures are identical, up to an irrelevant
magnifying factor. Nevertheless, the presentation of the theory for the inverted
Galilean telescope approach is of interest, at least from a pedagogic point of view.

Using inverted Galilean telescopes for densification amounts to applying a mag-
nification by a real factor γ > 1 of the wave on each elementary aperture, leaving
unchanged the center positions rk. In this operation the amplitude of the light
is divided by the factor γ, to keep unchanged the energy. In Equation (7.1) this
aperture reshaping consists in applying the dilation factor γ to the first term of
the convolution. Let us denotes Ψγ(r, β) this amplitude:

Ψγ(r, β) =
A(β)

γ

K∑
k=1

P0

(
r
γ

)
exp

(
2iπ

β.r
γλ

)
� δ(r− rk) exp

(
2iπ

β.rk

λ

)
. (7.2)

For γ = 1 we obviously recover the original wavefront Ψ1(r, β) of Equation (7.1).
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Now let Aγ(α, β) denote the complex amplitude of the wave in the focal plane
of the telescope, at angular position α(αx, αy) in this plane. This wave is obtained
by a scaled Fourier transform of Ψγ(r, β) (see Aime et al. in these proceedings):

Aγ(α, β) =
1
iλ

∫ ∫
Ψγ(r, β) exp

(
−2iπ

r.α
λ

)
dr

=
γA(β)

iλ

K∑
k=1

P̂0

(
γα− β

λ

)
exp

(
−2iπrk.

(
α− β

λ

))
. (7.3)

The factor γ appears now at the numerator after a change of variable in the
2D integral. The elementary intensity in the case of inverted Galilean telescopes
IG
γ (α, β) produced by the point source coming from the direction β at position α

in the focal plane can therefore be written as:

IG
γ (α, β) = |Aγ(α, β)|2 = Aγ(α, β)A∗

γ(α, β)

= O(β)
γ2

λ2

K∑
k=1

K∑
l=1

∣∣∣∣P̂0

(
γα−β

λ

)∣∣∣∣2 exp
(

2iπ(rk−rl).
(

α− β

λ

))
, (7.4)

where superscript ∗ denotes complex conjugate. IG
γ (α, β) is indeed real (the imag-

inary parts of the complex exponentials involving rk − rl and rl − rk cancel by
pairs); the notation with complex exponentials will later evidence a Fourier trans-
form that will be used in Equation (7.7).

The image in the focal plane IG
γ (α) is obtained by summing all contributions

coming from the object:

IG
γ (α) =

∫ ∫
IG
γ (α, β)dβ. (7.5)

Taking the Fourier transform of IG
γ (α), we also have:

ÎG
γ (u) =

∫ ∫
ÎG
γ (u, β)dβ, (7.6)

where u is the angular frequency associated to α.
Using the notation ukl = (rk − rl)/λ in Equation (7.4), the expression of

ÎG
γ (u, β) can be written as:

ÎG
γ (u, β) =

∫ ∫
IG
γ (α, β) exp(−2iπu.α)dα

= O(β)
K∑

k=1

K∑
l=1

exp(−2iπ
β

γ
.(u+(γ−1)ukl)

∫ ∫
|P̂0(ξ)|2 exp(−2iπξ.

1
γ

(u−ukl))dξ

(7.7)

If we denote by S the telescope area and by T0(u) the normalized optical transfer
function (OTF) defined by

T0(u) =
1
S

∫ ∫
P (r)P ∗(r− λu)dr, (7.8)
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Equation (7.7) becomes

ÎG
γ (u, β) = O(β)

K∑
k=1

K∑
l=1

exp
(
−2iπ

β

γ
.(u + (γ − 1)ukl

)
ST0

(
1
γ

(u− ukl)
)

.

(7.9)

Substituting this expression into Equation (7.6), we obtain:

ÎG
γ (u) =

K∑
k=1

K∑
l=1

Ô

(
1
γ

(u + (γ − 1)ukl)
)

ST0

(
1
γ

(u− ukl)
)

. (7.10)

This expression depends on the collecting surface of the telescope. We can get rid
of this surface by dividing by KS, which finally leads to:

ÎGγ (u) =
1

KS
ÎG
γ (u)

=
1
K

K∑
k=1

K∑
l=1

Ô

(
1
γ

(u + (γ − 1)ukl)
)

T0

(
1
γ

(u− ukl)
)

ÎGγ (u) = Ô

(
u
γ

)
T0

(
u
γ

)
+

1
K

K∑
k=1

K∑
l �=k

Ô

(
1
γ

(u + (γ − 1)ukl)
)

T0

(
1
γ

(u− ukl)
)

.

(7.11)

We see that the sampling in this case operates on a dilated version of the spectrum
Ô(u

γ ) using transfer functions that are dilated as well. Performing the change of
variable ν = u/γ, we recover the periscopic mode:

ÎP
γ (ν) = Ô(ν) T0(ν) +

1
K

K∑
k=1

K∑
l �=k

Ô

(
ν + ukl −

ukl

γ

)
T0

(
ν − ukl

γ

)
, (7.12)

which shows that images obtained by densification in periscopic mode or using
inverted Galilean telescopes are the same (compare to Eq. (2.7) and see Fig. 2).

In both cases, if we take γ = 1 we indeed recover the Fizeau mode of
Equation (2.6):

ÎG
1 (u) = ÎP

1 (u) = ÎF (u) =
K∑

k=1

K∑
l=1

Ô(u)T0(u− ukl). (7.13)
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