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Preface to ”Interfacial Dissipative Phenomena in
Tribomechanical Systems”

In the last twenty years, tribology and non-linear dynamics have reached major milestones 
in describing rough contact, friction, damping mechanisms, and dynamical behavior of non-linear 
systems, which are paving the way for the future engineering technologies. The two fields are 
largely intertwined as, among the others, contact non-linearities are almost omnipresent in any 
technical application ranging from the development of NEMS/MEMS to bioengineering, automotive, 
civil/mechanical industry, and aerospace.

The common thread in both fields is the study of interfaces, particularly of the dissipative 
phenomena that take place at the interface, providing the source of damping that is exploited to 
reduce the vibration amplitude of mechanical systems, improving their service life. Despite the 
great achievements obtained, we are still far from being able to predict the dynamical behavior of 
mechanical systems involving contact interfaces. Contamination of knowledge between tribology 
and non-linear dynamics is of outmost importance today to develop strategies to respond promptly 
to future challenges.

The current Special Issue aimed at bringing together, in the same Issue, contributions from 
world-leading scientists working in the fields of tribology and non-linear dynamics, with the aim to 
favor “contamination” of knowledge from the two fields of research.

Antonio Papangelo

Editor
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The last decade has experienced a tremendous development of several technologies
that are likely to shape our future. These comprise soft robots, humanoids, autonomous
driving, aeronautic, and space technologies. To reduce the development costs, the dy-
namical behaviour of machines, usually consisting of several jointed components, is often
simulated numerically. To ensure a good matching between numerical and experimental re-
sults it is of utmost importance to implement reliable and resilient models, which accurately
describe the interactions among the different parts of the machine. Indeed, dynamicists are
aware that the most difficult part of simulating structure dynamical behaviour is a good
understanding of its damping properties. Ensuring a certain service life often coincides
with taking care that the vibration amplitude remains below a certain admissible thresh-
old so that the component can confidently fulfil its task along with the machine lifespan.
To increase the machine damping properties, dampers are accurately positioned in the
structure so that they dissipate as much energy as possible, particularly when the machine
is excited close to one of its natural frequencies. Nevertheless, mechanical structures are
almost always constituted by several jointed components, hence, a significant share of the
energy is dissipated at the contact interfaces. Riveted and bolted joints, seals and bearings
all significantly contribute to the damping properties of the assembly and to its dynamical
behaviour due to the introduction of nonlinear interaction forces. Nevertheless, after
scrutiny of the relevant engineering literature, one finds out that scientific contributions
from tribologists rarely take into account the effect of structure dynamic excitation and,
on the other hand, dynamicists very often include interfacial characteristics through very
simplified empirical models such as the Coulomb friction coefficient and linear contact
stiffness.

This Special Issue (SI) was conceived with the intent of encouraging researchers to
submit scientific contributions where the interplay between dynamics and tribology is
evident. I am pleased to see that this Special Issue has collected seven scientific articles and
one review article, all pertaining to the themes of tribology and dynamics.

In Ref. [1] Bonari and Paggi have developed a novel interface finite element procedure
to deal with the normal and tangential contact problem of a rigid indenter with an arbitrary
profile and a viscoelastic substrate. Through numerical simulations, they have shown
that the effect of Coulomb friction and viscoelastic dissipation can be simultaneously
investigated, leading to an accurate estimate of the surface tractions, hence, of the energy
that is dissipated through the contact interface.

Ref. [2] and [3] have focused on a different source of dissipation, namely that which
occurs due to interfacial adhesion. It is well-known from physics that contacting bod-
ies interact through short-range repulsive and long-range adhesive interactions (van der
Waals forces). Commonly, adhesion at macroscopic scales is not observed as interfaces are
generally randomly rough. By exploiting a multi-asperity representation of a self-affine
randomly rough interface with Gaussian distribution of heights, Violano and Afferrante [2]
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have studied the loading and unloading behaviour of a rough interface, particularly fo-
cusing on how the pull-off detachment force and the energy dissipation depend on the
surface characteristics. Remarkably, they have shown that dissipation in a loading cycle is
proportional to the real contact area, which is in agreement with other analytical [4] and
experimental [5] results. Furthermore, they found hysteretic dissipation and pull-off force
are much more scattered for surfaces with high fractal dimension. Although roughness,
and in particular its height root mean square, is detrimental to macroscopic adhesion, there
exist special topographies [6–8] that can be exploited to enhance macroscopic adhesion.
Papangelo and Ciavarella in Ref. [3] have used the Boundary Element Method to study
the adhesive behaviour of a sphere with superposed an axisymmetric single-wavelength
roughness. This geometry has been studied by Guduru and collaborators both analyti-
cally [6] and experimentally [7], showing that the pull-off force increases by a factor of
about 20 with respect to the smooth sphere. For the Guduru theory to be valid, the contact
patch should be simply connected, without inner cracks. In Ref. [3] the contact problem has
been solved numerically, also investigating the regions where the theory’s hypotheses were
not valid. It was shown that the highest pull-off force is reached for a ratio A/λ ≈ 10−1

(A and λ being, respectively, the waviness amplitude and wavelength) as lower values
tend to the smooth sphere behaviour with small adhesion enhancement and larger values
tend to the appearance of external cracks.

Reference [9] by Zeng and Qi is a good example of how tribological problems are
indeed multiphysics, involving several lengths and time scales. Zeng and Qi [9] have
studied the process of erosion and corrosion in pipes that transport two-phase flow (gas-
solid) encountering a pipe elbow. They have used a multiphysics finite element simulation
software to couple turbulent fluid dynamics for the flow, chemical reactions for corrosion
and particle dynamics for erosion. Their results show that marked erosion mechanisms are
at play on the elbow extrados surface at 40–50◦. Furthermore, turbulence influences the
concentration of substances, which plays a role in the rate chemical reactions take place
(corrosion).

Reference [10] by Genovese et al. is a review on friction and wear test rigs. It is a
comprehensive collection of working principles and specifics that are in use to objectively
measure friction and wear data. Starting from the first concepts of Leonardo da Vinci,
dating back to the 15th century, nowadays different solutions exist, which allow imposing
a certain normal load and a relative velocity to two mating interfaces. As noted, only few
friction testers allow for temperature control, lubricated or dry contact conditions and
permit outdoor measurements to be conducted in real scenarios.

In Ref. [11] Nouira et al. have numerically and experimentally studied the propagation
of elastic waves in a mechanical assembly that presents contact interfaces. Indeed, due
to the interfacial roughness, the contact stiffness is nonlinear, often represented with a
power-law model, which introduces higher-order harmonics into the system dynamical
response. The authors have considered the case of two contacting bodies excited by
an impulsive force, which was modelled numerically and compared with experimental
measurements. Using different contact laws, the authors have shown that accurately
modelling the interfacial contact stiffness is crucial to correctly predict the system nonlinear
oscillations, proving once more the tight link between tribology and dynamics.

References [12] and [13] dealt with the problem of friction-induced vibrations, which
may trigger tedious noise in the proximity of the sliding interface. There are several mecha-
nisms that may trigger friction-induced vibrations; among others, a decaying characteristic
of the friction law with sliding velocity. In Ref. [12] Hu and Habib have considered the
use of a dynamic vibration absorber (DVA) to suppress undesired vibrations. They have
shown that the character of the bifurcation (sub- or supercritical) can be controlled by a
proper design of the nonlinear restoring force of the DVA, although the best performance,
in terms of reducing the velocity range where stick–slip vibrations occur, is obtained by
using a DVA with linear stiffness. Reference [14], by Stender et al., focused on the concept
of basin stability in nonlinear systems. Indeed, the classical concept of linear stability is of
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little help in nonlinear systems where several solutions may coexist in the same parametric
region. Linear stability is, in fact, limited to small perturbations around the equilibrium
position. On the contrary, given a finite region in the state space where initial conditions
are expected to lie, basin stability gives the likelihood for a dynamical system to converge
to a certain equilibrium state (static or dynamic). This concept was successfully applied
to frictional oscillators that present multiple co-existing stable solutions and proved to
be a valuable tool for the analysis of multi-stable systems, particularly when operating
conditions are well known.

Finally, the Guest Editor would like to express his sincere gratitude to all authors and
reviewers who contributed to this Special Issue and to the editorial staff of Lubricants for
their valuable support.
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Abstract: A computational approach that is based on interface finite elements with eMbedded Profiles
for Joint Roughness (MPJR) is exploited in order to study the viscoelastic contact problems with any
complex shape of the indenting profiles. The MPJR finite elements, previously developed for partial
slip contact problems, are herein further generalized in order to deal with finite sliding displacements.
The approach is applied to a case study concerning a periodic contact problem between a sinusoidal
profile and a viscoelastic layer of finite thickness. In particular, the effect of using three different
rheological models that are based on Prony series (with one, two, or three arms) to approximate the
viscoelastic behaviour of a real polymer is investigated. The method allows for predicting the whole
transient regime during the normal contact problem and the subsequent sliding scenario from full
stick to full slip, and then up to gross sliding. The effects of the viscoelastic model approximation
and of the sliding velocities are carefully investigated. The proposed approach aims at tackling a
class of problems that are difficult to address with other methods, which include the possibility of
analysing indenters of generic profile, the capability of simulating partial slip and gross slip due to
finite slidings, and, finally, the possibility of simultaneously investigating dissipative phenomena,
like viscoelastic dissipation and energy losses due to interface friction.

Keywords: viscoelasticity; contact mechanics; finite element method

1. Introduction

A recently developed finite element procedure is herein extended and applied to the analysis of
the transient and steady state sliding of a rigid indenter over a deformable material. In accordance with
the requirements of current industrial applications, which demand increasingly complex contacting
topologies, often down to the micro-scale, together with the analysis of concurrent interface phenomena,
like friction and wear, it is shown that the present approach is capable of dealing with arbitrarily
complex surfaces and, thanks to the flexibility of the finite element method, to account for any kind of
material law.

Indeed, real viscoelastic materials present a time-dependent mechanical response that varies across
several orders of magnitude of time and intensity. Therefore, a simple model with a linear Hookean
spring in series with a single Newtonian dashpot is far from being representative. For instance,
for Ethylene Vynil Acetate (EVA) used as an encapsulating material for photovoltaics, a power-law
decay of the Young’s modulus with time has been reported [1,2], which can be well-modelled by
a fractional viscoelastic model [3–5] as a limit of a Prony series representation with several arms.
Its approximation for engineering applications usually requires the use of at least three arms in the
Prony series, in order to provide meaningful stress analysis predictions.
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In this study, we propose an extension of the variational approach that is based on the interface
finite element with eMbedded Profile for Joint Roughness (MPJR) recently proposed in [6,7] for
frictionless normal contact problems, and further generalized in [8] in order to simulate frictional
partial slip scenarios, to accommodate also finite interface sliding displacements. The methodology,
which allows embedding any contact profile as an exact analytical function into an interface finite
element, overcomes the cumbersome procedure required by standard finite element methodologies
to explicitly discretize the geometry of the boundary exposed to contact. In the MPJR method,
the boundary is treated as flat and its actual perturbation from flatness is included as a correction to
the normal gap. Since the MPJR method is set to operate within the finite element method (FEM),
it presents all the advantages of FEM to solve linear and nonlinear boundary value problems with any
arbitrary material constitutive law and structural geometry.

A representative contact problem involving a rigid indenter with harmonic profile acting over
a viscoelastic layer of finite depth, perfectly bonded to a rigid substrate, is addressed in order to
demonstrate the capabilities of the proposed approach. The loading history will include an applied
displacement normal to the contacting interface during a first stage, with a progressive increase in
the contact area. Afterwards, the normal displacement is held constant and a horizontal far-field
displacement in the sliding direction is applied, in order to simulate the stick-slip transition and then
the steady-state sliding regime. Friction is considered along the interface and it is mathematically
treated with a regularized Coulomb frictional law. Different sliding velocities, which are relevant
for the behaviour of a viscoelastic material, are examined. Numerical simulations provide useful
insight into the distribution of the tangential tractions in all of the phases of the sliding process.
When considering different Prony series representations with a number of arms varying from one
to three, the computational approach allows for quantifying the effect of refining the viscoelastic
constitutive model by introducing additional relaxation times.

2. Materials and Methods

2.1. Proposed Solution Scheme for the Contact Problem

In order to investigate the effect of different viscoelastic models along with frictional effects,
the contact problem involving a rigid indenter that is characterised by a harmonic profile acting over a
layer made of a linear viscoelastic material is addressed. Here, is important to remark that there are
no restrictions on the shape of the indenting profile, which can be chosen as an analytical function,
or it can be provided as a discrete set of elevations. In the latter case, an external file provided by
a profilometer, with a simple two-columns data structure with sampling point coordinate and its
elevation, can be used in input. To use such data, one has to keep in mind that the boundary has to be
discretized by using MPJR interface finite elements with a uniform spacing dictated by the profilometer
resolution, to achieve a one-to-one correspondence between finite element nodes and profilometer
sampling points. The assignment of the elevation to each finite element node can be efficiently done
only once, just at the beginning of the simulation, by a simple searching algorithm looking for the
global coordinate of the finite element node that matches the coordinate stored in the external data
file. Subsequently, elevations are efficiently stored in a history variable, in order to avoid multiple
reading from external files during the Newton–Raphson iterations and in the next loading steps of the
simulation. Further details on the finite element procedure can be found in [6].

2.2. MPJR Formulation

For the solution of the contact problem, the MPJR interface finite element that is exposed in [6,8]
is employed. It consists in a 4-nodes, zero-thickness element mutuated by the Cohesive Zone Model
(CZM) and used in the context of nonlinear fracture mechanics. The framework is applied to the
problem of a rigid body with a complex boundary making contact with another deformable body
characterised by a smooth interface. The core of the approach is re-casting the original geometry of

6
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the problem into a simpler one, consisting only in the deformable bulk and a single layer of interface
elements disposed at its boundary, where contact is supposed to take place, as in Figure 1. The actual
shape of the indenter is stored nodal-wise in each interface finite element employed for the interface
discretization, and it is used to correct the normal gap function that is computed from the flat–flat
configuration, in order to account for the exact geometry. This requires a preliminary step, which
consists in mapping the indenter profile elevation in correspondence to the right node of the boundary.
If the profile has analytic expression, this can be done right at the finite element level exploiting the
global coordinates, otherwise the elevation field can be stored in a proper history variable and every
entry associated with the correct node. It has to be remarked that, in spite of the present formulation
being 2D, the proposed framework can be extended to 3D problems, provided that, for example,
a 8-nodes interface element is used to discretize a surface, instead of a profile, equipped with a suitable
friction law.

Figure 1. Profile discretization and equivalent interface definition. The interface element Γ is defined
with the lower two nodes that belong to the deformable bulk, and the others placed at a given offset
normal to the lower boundary. An abscissa s can be defined along the boundary to map the indenter’s
elevation field, which is stored inside the element and it is used to correct the normal gap.

Figure 2 shows the kinematics of the element. A vector of unknown nodal displacements u =

[u1, v1, . . . , u4, v4]
T is introduced for the evaluation of the tangential and normal gaps, collected in the

vector g = [gx, gz]T , which reads:
g = QNLu, (1)

where L is a linear operator for computing the relative displacements across the interface, N is the
shape functions matrix, and Q is a rotation matrix for transforming displacements from the global to
the local reference frame of the element defined by the unit vectors n and t. The original geometry can
be restored with a suitable correction of the normal gap, in the form:

g∗ =

[

gx

gz + h(ξ, t)

]

, (2)

where h(ξ, t) maps the profile’s shape and position in time. With respect to the formulation that is
presented in [8], here the profile shape has been made time-dependent, in order to also account for
finite sliding of the rigid indenter. For example, in the case of a flat interface, the result of the indenter
sliding with a given constant velocity v0 can be achieved by setting h(ξ, t) = h(ξ − v0t).

Figure 2. Four-nodes, zero-thickness eMbedded Profiles for Joint Roughness (MPJR) interface
finite element.

7
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The current value of t is stored at the interface element level while using a time history variable,
and it is updated every time step. A standard penalty approach is used in order to enforce the normal
contact constraint, leading to

pz =

{

αg∗z , if g∗z < 0,

0, if g∗z ≥ 0,
(3)

where α is the penalty parameter.
To deal with coupled frictional problems, a regularized Coulomb friction law [9] is used to set the

interface constitutive equation in the tangential direction:

qx = f pz tanh
(

ġx

ε̇

)

, (4)

where qx is the tangential traction and ġx is the sliding velocity, as given by the difference between the
velocity of the indenter and the horizontal velocity of the corresponding node. Finally, ε̇ is a parameter
governing the slope of the regularised friction law.

The contribution of a single interface finite element to the variational formulation of the bulk
material is expressed by its variation in terms of density of energy content, integrated over the domain
Γe that denotes the element itself:

δΠe =
∫

Γe
δg∗(v)Tp(u, u̇)dΓe, (5)

where v is the virtual displacement field, and the vector p collects the normal and tangential tractions.
As a final step, the variation can be expanded and the integral set to zero, leaving the expression of the
nonlinear residual vector, which reads:

Re(u, u̇) =
∫

Γe
LTNTQTp(u, u̇)dΓe = 0. (6)

Because of the nonlinearity of Re, the Newton–Raphson iterative method has been applied, together
with a backward Euler method for time integration.

2.3. Rheological Model

Three different Prony series models with a number of arms increasing from one to three are
examined in order to assess the effect of viscoelasticity modelling on the overall contact mechanical
response. The general equation for the shear relaxation modulus reads:

G(t)

G∞
= µ0 +

3

∑
n=1

µn exp
(

− t

τn

)

, (7)

where G∞ is the instantaneous shear modulus (evaluated at t = 0), µn are the relaxation coefficients,
and τn are the corresponding relaxation times. Equation (7) has been tuned to fit the experimental
values of EVA [4]. The model parameters for 1, 2 and 3 arms are collected in Table 1.

8
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Table 1. Rheological parameters for Ethylene Vynil Acetate (EVA), where n is the number of Prony
series’ arms.

n G∞ µ0 µn τn

[–] [Pa] [–] [–] [s]

1 568.498 0.421 0.579 0.817

2 674.606 0.306 0.398 0.212
0.296 2.458

3 749.386 0.254 0.310 0.102
0.226 0.545
0.210 4.104

The identification of the above parameters has been carried out through a regression over the
experimental data that were acquired in the time range t = 10[−1,...,+1] s. The following approach has
been pursued in order to attain a high degree of accuracy. Firstly, trial relaxation times have been
set and a preliminary linear regression has been performed involving G∞ and µi only. The objective
function to be minimised reads:

Π(x) =
N

∑
k=1

(

gk · x − Gk

)2, (8)

where, for the three arms model, gk =
[

1, e(−tk/τ1), . . . , e(−tk/τ3)
]

, Gk is the value of the objective
function at the sampling point and N is the number of samplings. The global minimiser x∗ =

arg minx Π(x) is evaluated and the values of the constants µi and G∞ are obtained according to:

G∞











µ0

µ1

µ2

µ3











= x∗, (9)

together with the condition ∑ i µi = 1, related to the shear modulus at t = 0. The obtained coefficients,
together with their respective relaxation times, have been used in order to define a vector of guess
values x0 for a second nonlinear regression, in which the relaxation times were also included in
the optimisation vector x. The problem has been solved iteratively, updating the starting vector x0

every cycle using the results that were obtained in the previous. Convergence is achieved within
5 iterations, when considering a relative error that is given by (x∗ − x0)/x0 and a tolerance ε = 10−15.
This procedure has also been repeated in the same way for the 1 and 2 arms models.

Once the parameters are identified, the Young’s relaxation modulus E(t) can be obtained from
G(t), and the behaviour of the three models can be investigated in time and frequency domains.
The analysis in the frequency domain can be performed by defining a complex modulus Ê(ω), obtained
via a Fourier transform of E(t), which can be expressed as:

Ê(ω)

E∞
= µ0 +

n

∑
i=1

µi
τ2

i ω2

1 + τ2
i ω2

+ ı
n

∑
i=1

µi
τiω

1 + τ2
i ω2

. (10)

In the expression above, ı denotes the imaginary unit and the index k defines the number of arms being
considered. It can be easily noticed that, for the single arm model, the maximum viscoelastic effect
manifests in correspondence to the critical excitation frequency ω⋆ =

√
µ0/τ1.

Figure 3a shows the plot of E(t). Figure 3b,c show the values of the loss modulus and the
storage modulus, which were obtained as the imaginary part ℑÊ(ω) and the real part ℜÊ(ω) of the
complex modulus Ê(ω), respectively. Finally, Figure 3d shows the loss tangent, given as the ratio of

9
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the imaginary part over the real part. As a comparison, the same quantities are also plotted for the
relaxation modulus obtained for a model that is based on fractional calculus, which reads:

Ef(t) =
Ef,αt−α

Γ(1 − α)
. (11)

In Equation (11), Ef,α = 814.7 Pa sα and α = 0.226 have been chosen in order to fit the experimental
data in [4], being Γ(·) the gamma function.

The simulation of the power-law viscoelastic response seen in the experiments, which is well
approximated by the fractional calculus model, is progressively improved by increasing the number
of terms in the Prony series representation. It has to be remarked that, since the Fourier transform
of a power-law is a power-law itself, both loss and storage modulus in the frequency domain are
represented, on a logarithmic scale, as straight lines.

Their trend can be satisfactory modelled with Prony series only for a narrow band of the whole
spectrum, based on the relaxation time(s) employed. Therefore, the relaxation times entering Prony
series have to be regarded as design parameters, to be chosen based on the loading history experienced
by the viscoelastic material, rather than material parameters. With the values that were chosen here,
an accurate estimation of the material response can be expected, at most, over two orders of magnitude,
centred on a frequency of 1 Hz.

(a) Relaxation modulus. (b) Loss modulus.

(c) Storage modulus. (d) Tangent modulus.

Figure 3. Relaxation modulus in time and frequency domain.
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2.4. Problem Set Up

We focus our attention onto a displacement controlled problem under plane strain assumptions
in order to highlight the capability of the proposed approach. In the first stage, a displacement linearly
increasing with time is applied along the direction normal to the finite layer, up to a given final value of
∆z,0 = 2g0, reached at time t = t0, which is then held constant. At this point, a tangential displacement
with a constant horizontal velocity is applied to the indenter, which starts sliding. The indenter profile
is analytically expressed by:

h(x, t)

g0
= 1 − cos

[

2π

λ0
(x − vt)

]

(12)

While the velocity of the application of normal load is the same for all the simulations, and
assumed to be quasi-static, for what concerns the horizontal load different sliding velocities have
been considered in the range vi = 10(i−10)/3[m/s], i = [1, . . . , 10], with their numerical value being
summarised in Table 2.

Table 2. Range of horizontal velocities employed.

v
[m/s]

1.000 × 10−03

2.154 × 10−03

4.642 × 10−03

1.000 × 10−02

2.154 × 10−02

4.642 × 10−02

1.000 × 10−01

2.154 × 10−01

4.642 × 10−01

1.000 × 10+00

A regularized Coulomb frictional law [8] is considered, with f = 0.2 being the friction coefficient.
Figure 4 lists the remaining geometric parameters that describe the problem set, together with the
rheological model that is employed for modelling viscoelasticity, which has already been thoroughly
discussed in Section 2.3: three different simulations are performed, each of them characterised
by one, two, or three terms of a Prony series used for modelling a linear viscoelastic material.
The model geometry and applied velocities are the same in all of the cases considered. Finally,
periodic boundary conditions have been introduced in correspondence of the two vertical sides of the
domain, in order to simulate a semi-indefinite contact in the horizontal direction. The simulations have
been performed using the Finite Element Analysis Program FEAP [10], where the MPJR formulation
has been implemented as a user element routine. The validation of the proposed computational
method is provided in Appendix A.

Figure 4. Sketch of the model, b = 1, λ0 = b, g0 = 5 × 10−4λ0.
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3. Results

3.1. Bulk Stresses

Figure 5 shows the results of FEM simulations for the boundary value problem shown in Figure 4.
They refer to the single arm model, but, from a qualitative point of view, the considerations that are
going to be drawn below for the bulk stresses also apply to the other two models herein considered.

Figure 5a,b display the stresses developing in the bulk at the end of the normal loading stage,
and they display three distinct areas with high stresses where the harmonic profile comes into contact.
Because of the presence of friction and, since coupling effect are fully included, an anti-symmetric
distribution of τxz arises, even in the pure normal loading stage, see Figure 5b. The following
two figures represent the same quantities at a subsequent load stage, where the normal imposed
displacement has reached its maximum, and the indenter slides at constant velocity. Figure 5c,d show
the stresses during the next stage of sliding, corresponding to a lateral shift of the harmonic profile of
about half of its wavelength. The advantage of the finite element method is evident from the possibility
to consider any finite-size problem geometry and boundary conditions, like, in this case, the output
automatically including not only contact tractions, but also bulk stresses.

(a) σz, normal loading stage. (b) τxz, normal loading stage.

(c) σz, tangential loading stage. (d) τxz, tangential loading stage.

Figure 5. Model predictions: bulk stresses during the normal approach, (a,b), and during full sliding,
(c,d), all scaled by a reference elastic modulus E f ,0 = 8.147 × 102 Pa.

3.2. Interface Tractions

Figure 6 highlights the evolution of contact tractions in time for the single arm model and selected
stages of the contact simulation. The curves in Figure 6a correspond to the purely normal loading
sequence, where normal contact tractions progressively increase along with the value of the applied
normal displacement, which linearly rises from zero up to the final value of 2g0. Black curves denote
the symmetric distribution of normal contact tractions pz(x) divided by E f ,0, while red curves represent
the anti-symmetric distribution of tangential contact tractions qx(x), scaled by f E f ,0. Points along the
interface, where ‖qx(x)‖/( f E f ,0) equals pz(x)/E f ,0, are in a state of slip, while, when the inequality
‖qx(x)‖/( f E f ,0) < pz(x)/E f ,0 holds, then there is a state of stick.

12
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Figure 6b refers to the next stage of the contact problem when, keeping the normal displacement
constant, a far-field displacement linearly increasing with time is applied in the tangential direction.
While, for the given rheological model, the results that are shown in Figure 6a are evaluated in a
condition of zero tangential velocity, Figure 6b–d are referred to v = 2.154 × 10−2 m/s. This specific
value has been chosen amid the other entries of Table 2, because it is in the middle of the range,
determining the highest viscoelastic effects, and it is also low enough for analysing the transition
from stick/slip to full sliding, Figure 6b. Here, tangential traction distributions change their shape from
the classical anti-symmetric form towards a state of increasing slip, which terminates in the full slip
condition. The transition from stick-slip to full slip is strongly affected by the velocity of the horizontal
displacement: the faster the slip, the more abrupt such a transition.

Figure 6c refers to the situation of sliding after full slip (gross sliding) and, in particular, it shows
the evolution over time of the normal contact tractions. We see a transition from the symmetric contact
traction distribution along the whole interface at the onset of full slip, as shown in black, towards other
distributions in different scales of grey shifted along the interface to the right, as long as the tangential
displacement increases. A certain degree of relaxation is observed after the onset of full slip. As the
sliding proceeds in time, virgin material is perturbed, and a recovery in stiffness takes place.

(a) pz and qx during the normal loading stage. (b) Tractions in the partial-slip regime.

(c) Normal traction during full sliding. (d) Normal traction during interaction with
an already stressed portion of the interface.

Figure 6. Selected distributions of normal and tangential contact tractions during the different stages
of loading.
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Finally, Figure 6d captures the first overlapping of a new contact zone with a previously loaded
portion of the interface. Here, the role of the relaxation time is important, since viscoelastic effects do
alter the solution that corresponds to a linear elastic material that has no memory effects.

The resultant tangential force Qx, integral of tangential contact tractions along the interface,
is plotted vs. time in Figure 7a–c for the three viscoelastic models investigated herein. In each
subfigure, different curves correspond to different far-field horizontal displacement velocities. Darker
curves correspond to slower velocities.

(a) Three arms. (b) Two arms.

(c) One arm. (d) Trend for the steady-state values at t → ∞.

Figure 7. Time evolution of the resultant tangential force Qx for different rheological models.

In all of the cases, for t/t0 ≤ 1, tangential tractions are vanishing, since, in that stage, the imposed
displacement is only acting in the normal direction. Therefore, tangential contact tractions are due
to frictional coupling effects and their sum over the whole contact zones is vanishing by definition,
since they correspond to self-equilibrated distributions. For t/t0 > 1, the indenter starts sliding
and we assist to a transition from stick-slip to full slip with an oscillatory behaviour when the contact
profile enters in contact with unrelaxed material portions. When the velocity is low, no rate effects are
evident, and the mechanical response is smooth. On the other hand, by increasing the applied velocity,
the importance of viscoelasticity increases and oscillating responses do appear.
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The integral of tangential tractions related to two linear elastic models that are characterised by
short and long term modulus are also plotted in Figure 7; for comparison, see black dash-dotted lines.
The elastic moduli are evaluated as:

Eel,∞ = lim
t→0

E(t) = E∞ Eel,0 = lim
t→∞

E(t) = E∞(1 −
n

∑
i=1

µi) (13)

The curves Qel,∞
x and Qel,0

x are evaluated under the assumption of linear elasticity, neglecting the
dynamic effects. For this reason, they lead to constant values as soon as the horizontal far-field
displacement is applied, without any oscillation. The only factor that plays a role is the velocity,
which governs the transition from stick/slip to full sliding. In the figures, only the curves that
correspond to the highest value of v are plotted. In all three models, the instantaneous (higher) and long
term (lower) curves are extreme bounds to the values that are related to viscoelastic simulations, with a
gap increasing from the single arm to the three arms model, consistent with their respective stiffness.

The steady-state solution strongly depends on the rheological properties of the material, as shown
in Figure 7d. In general, for the present case study, the higher the number of arms, the higher the total
tangential force. In all cases, the highest velocity determines the highest value of the steady state Q0

x.
This is in accordance with the fact that, in a condition of gross slip, Qx = f Nz, and for high velocities,
the material is excited in its high frequency region, thus resulting in a vertical response that is governed
by the higher glassy Young’s modulus. The increased stiffness leads to higher N0

z and, in turn, higher
Q0

x values.

4. Conclusions

In this study, a novel finite element procedure has been proposed, which allows for investigating
transient and steady state sliding of a rigid indenter over a viscoelastic continuum. In particular,
the representative problem of an indenter with harmonic profile sliding over a viscoelastic layer of
finite depth has been analysed, employing different sliding velocities together with three different
rheological models, which are characterised by Prony series with one, two, and three arms, respectively.
A regularised version of the classic Coulomb friction law has been employed for the evaluation of the
interface tangential tractions.

Numerical results pinpoint a strong dependence of the mechanical response in terms of
steady-state forces Nz and Qx on both the velocity and rheological model employed, obtaining
increasing forces for higher velocities and more relaxation terms that are involved in the
rheological approximation.

It is worth mentioning that the proposed methodology appears to be suitable for the investigation
of a class of problems for which a solution could be difficult to be found while using other techniques.
The proposed approach is capable of overcoming the limitations of other solution schemes thanks
to the capability of FEM of solving linear and nonlinear boundary value problems with arbitrary
material constitutive laws and geometries. Moreover, the use of the recently developed interface
finite element [6–8] has further advantages. First of all, the possibility of taking into account arbitrary
shapes for the indenting profile as analytical functions that are embedded into the interface element.
The ability of simulating partial slip scenarios involving finite sliding of the indenter should also
be mentioned.

Moreover, as a key advantage when compared to other models that are available in the literature
that neglect the effect of Coulomb friction, focusing on viscoelastic dissipation only, here viscoelastic
effects and frictional effects can be simultaneously investigated, since they are inherently coupled
in the formulation. Neglecting interface tangential tractions, together with their related coupling
affecting the distribution of normal tractions, could be reasonable when incompressibility conditions
are approached. On the other hand, several evidences can be found that, as the Young’s modulus
of a viscoelastic material changes with time, so does the Poisson’s ratio. Because the latter quantity
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governs the coupling between normal and tangential tractions, a fully coupled model is worth study
for fine precision engineering applications. As a final remark, the proposed interface finite element has
the further advantage of being easily extended for taking thermal effects into account. These could
be relevant not only for the analysis of temperature transfer across the interface, but also to simulate
frictional heat generation, thus leading to a thermodynamically accurate model that is capable of
investigating a wide class of realistic viscoelastic dissipative phenomena.
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Appendix A. Model Validation

The proposed framework has been tested against a Hertz indentation problem for validation.
The solution of the FEM simulation is compared with the analytical solution of the equivalent
half-plane 2D contact problem, in terms of the integral of the interface normal and tangential tractions
Pz and Qx, respectively, given the same imposed displacements history. A parabolic profile has been
used as a first order approximation of a circular rigid cylinder with unitary radius Ri. The profile
makes contact on the flat side of a linear elastic semi-disk with plane strain Young’s modulus
E∗ = 814.7 Pa and radius Rd = 5Ri, which simulates a half-plane. The load history includes two
far-field displacements, imposed to the rigid profile. First, a normal displacement is applied, starting
from zero and linearly increasing to a maximum value ∆z,0/Ri = 1 × 10−3, reached at time t0, see the
black line in Figure A1. The normal displacement is then held constant, and a harmonic tangential
displacement is applied, which increases up to a maximum f ∆z,0, being f = 0.2 the coefficient of
friction, and then makes a complete cycle, see the red line in Figure A1. Such a maximum value of
horizontal displacement is chosen to cause the incipient sliding of the cylinder, and this is indeed what
happens if the response of the system in terms of frictional reaction forces is analysed.

Figure A1. Imposed displacements.
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Appendix A.1. Evaluation of Normal Reaction Forces

For plane contact problems, displacements can only be evaluated to within an arbitrary constant
or, equivalently, in reference to a datum point. For the 2D Hertz problem, the boundary displacements
normal to the interface can be evaluated as ([11], pp. 20–24):

w(x) =







− 2Pz
πE∗
[(

x
a

)2
+c0

]

, if x ≤ a,

− 2Pz
πE∗
[

log |ψ(x)|+ 1
2ψ(x)2 +

1
2 + c0

]

, if x ≥ a,
(A1)

where c0 is the arbitrary constant, and:

ψ(x) =
x

a
+

√

( x

a

)2
−1. (A2)

An additional equilibrium equation relates the value of the load with the extension of the contact
semi-strip a:

a =

√

4PzRi

πE∗ . (A3)

If the datum is set in correspondence of the point of the boundary x = Rd, the relation between the
imposed displacement and the resultant vertical load has the form:

w(0)− w(Rd) = ∆z =
2Pz

πE∗

[

log ψ(Rd) +
1

2ψ(Rd)2 +
1
2

]

, (A4)

where w(0) is evaluated in coincidence of the point of first contact, coincident with the centre of
the semi-disk. As a final step, the inversion of Equation (A4) for a given value of ∆z gives the
desired Pz. The comparison with numerical results is shown in Figure A2, where diamond markers
representing the FEM prediction show a very good accordance with the corresponding solid black line,
that represents the analytical results.

Figure A2. Resulting integrals of surface normal tractions.

Appendix A.2. Evaluation of Tangential Reaction Forces

Finding Qx for a given displacement still requires the evaluation of the applied displacement
history with respect to a reference value, still set in correspondence of x = Rd. Since a closed form
solution is not available for the tangential tractions, an extended version of the Jäger-Ciavarella theorem
that accounts for variable normal and tangential loads have been used for evaluating the analytical
solution of the problem, according to the algorithm presented in [12]. If a load path is defined in terms
of ∆z and ∆x, then, according to the theorem, the tangential problem can be reduced to the normal
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one, since an increment in tangential forces can be evaluated as the difference between the actual
vertical force and the vertical force related to a smaller imposed vertical displacement, multiplied by
the coefficient of friction:

Qx = f
[

Pz(∆z)− Pz(∆
∗
z )
]

. (A5)

The value of ∆∗
z is a function of ∆x. For a constant normal load and an increasing tangential load, it can

be evaluated as:
∆∗

z = ∆z −
∆x

f
. (A6)

For general loading scenarios, the principle can be extended and the correct value of ∆∗
z evaluated in

terms of an equivalent path that respects both the equilibrium and the friction law. Results are shown
in Figure A3,

Figure A3. Resulting integrals of surface tangential tractions.

Where good accordance is found between the analytical solution given by the solid black line
and the numerical prediction, depicted by the red diamond markers. In the same figure, the limit
of gross slip for forward and backward sliding is shown as well by means of positive and negative
valued horizontal black dash-dotted lines, respectively. These values represent the upper and lower
threshold for the values of Qx, and this condition is approached in correspondence of the related
maximal tangential imposed displacement, cfr. Figure A1.

As a final remark, the differences between the numerical and the analytical results, for both
normal and tangential forces, are due to the effect of coupling between normal and tangential tractions,
which is not taken into account by the analytical approach. Moreover, another source of the small
difference lies in the treatment of the friction law: FEM exploits a regularised Coulomb friction law,
while the analytical approach exploits the classical one, where the stick-slip transition is abrupt.
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Abstract: It is known that in the presence of surface roughness, adhesion can lead to distinct paths of
loading and unloading for the area–load and penetration–load relationships, thus causing hysteretic
loss. Here, we investigate the effects that the surface roughness parameters have on such adhesive
hysteresis loss. We focus on the frictionless normal contact between soft elastic bodies and, for this
reason, we model adhesion according to Johnson, Kendall, and Roberts (JKR) theory. Hysteretic
energy loss is found to increase linearly with the true area of contact, while the detachment force
is negligibly influenced by the maximum applied load reached at the end of the loading phase.
Moreover, for the micrometric roughness amplitude hrms considered in the present work, adhesion
hysteresis is found to be affected by the shorter wavelengths of roughness. Specifically, hysteresis
losses decrease with increasing fractal dimension and cut-off frequency of the roughness spectrum.
However, we stress that a different behavior could occur in other ranges of roughness amplitude.

Keywords: adhesion hysteresis; rough surfaces; JKR theory

1. Introduction

The hysteretic dissipation is given by the difference between the work needed to bring
two bodies into contact and that required to detach them. Its origin may be related to
various phenomena occurring at the contact interface. The main causes of hysteresis are
viscoelasticity [1,2], plasticity [3], adhesive elastic instabilities at jump-in and jump-out
of contact [4], and surface roughness [5]. In particular, all natural and artificial surfaces
are rough at some scale. Therefore, hysteretic losses may affect several technological
applications. For example, biomedical devices [6] and structural adhesives [7] must safely
adhere to surfaces during their application, but they should be easy to remove for reuse.
Moreover, a recent challenge in soft robotics is to create climbing robots with reversible
adhesion skills [8].

In contact experiments on soft matter, velocity-dependent dissipations are usually
measured during detachment as a consequence of bulk viscoelasticity [9]. In a recent
work [5], Dalvi et al. carried out loading–unloading contact experiments between smooth
silicone hemispheres and rough nanodiamond substrates. Their experiments were per-
formed at very low velocities (60 nm/s) both for the approach and detachment. Such
choice allows the avoidance of velocity-dependent dissipations. However, great adhesion
hysteresis was still observed due to the roughness-induced increase in the true contact area.
This effect is expected to occur in compliant materials with small root mean square (rms)
roughness amplitude (hrms ≃ 1 nm) [1], when they are bring in complete contact. Moving
from the assumption of full-contact conditions, Dalvi et al. applied Persson and Tosatti
(PT) adhesion theory [10] for predicting the magnitude of adhesion hysteresis. They found
that the hysteretic dissipation increases almost linearly with the true contact area A, and it
is equal to the product between A and the intrinsic surface energy ∆γ, which depends on
the interfacial adhesive properties of contacting bodies.
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In [11], it is experimentally shown that hrms can both increase and decrease the effective
adhesive surface energy with respect to the smooth case. Moreover, numerical simulations
of continuum adhesive contacts [12] have shown that there is an optimal hrms that leads
to a maximization of the hysteretic loss and pull-off force. Such value of hrms is found
when the contact region turns from being simply connected to being multiply connected.
Similarly, in [13] it is shown that the effective surface energy ∆γeff reaches a maximum
for a certain hrms that, for vanishing applied pressure, is quite close to the value above
which the effective contact area A becomes smaller than the nominal one A0. Moreover,
the enhancement in the adhesion for small hrms is much larger for H < 0.5, where H is
the Hurst exponent, as the roughness-induced increase in the surface area is smaller when
H > 0.5.

For RMS roughness amplitudes of the order of few microns, the true area of contact is
expected to be predominantly multiply connected. In such case, partial contact conditions
occur and surface roughness leads to a reduction in the true area of contact. This in turn
destroys adhesion. However, Kesari et al. [11] found that adhesion hysteresis can also
be measured for relative large hrms. Inspired by the experimental findings in [11], Deng
and Kesari (DK) [14] developed an analytical model for estimating hysteresis losses in the
adhesive elastic contacts under the assumption of large roughness. DK’s model captures
the increase of adhesion hysteresis with the penetration, which is usually called depth-
dependent hysteresis. Moreover, in this case, a linear increase of the hysteretic dissipation
with the area of contact is observed.

Carbone et al. [15] developed a numerical code based on a Boundary Element Method
(BEM) for predicting loading–unloading hysteresis loops in the adhesive elastic contact
of fractal self-affine 1D rough profiles. Their simulations were conducted under partial
contact conditions, with A/A0 ranging from 0.25 up to 0.5. Due to adhesion hysteresis,
two distinct paths were obtained for loading and unloading curves of the area vs. load
relation. In particular, they found two sources of energy dissipation, one occurring at small
scales and the second one at large scales.

In [16,17], similar multiasperity models have been developed to estimate adhesion
hysteresis. They moved from the pioneering Greenwood and Williamson (GW) model,
in which roughness is described by a distribution of identical spherical asperities. Adhesion
is then implemented according to the classical theory of Johnson, Kendall, and Roberts
(JKR) [18]. In a loading–unloading cycle, each asperity exhibits a hysteretic dissipation,
which is due to jump-in and jump-off contact instabilities. The total adhesion hysteresis
is returned by the contribution of each asperity. However, such models are based on a
simplistic description of the surface roughness and do not take into account the elastic
coupling between contact regions.

In this work, we propose an investigation of the adhesive elastic contact of rough
surfaces, described by self-affine fractal geometries, with an advanced multiasperity model
taking into account lateral interactions of asperities according to the authors of [19,20] and
adhesion according to JKR theory. Moreover, the model takes also account of the jump-in
and jump-off contact instabilities occurring on each asperity.

2. Problem Statement

2.1. Adhesion Hysteresis of Smooth Elastic Spheres

JKR theory [18] is commonly used to predict adhesion of soft materials. In the case of
spherical contact, the fundamental equations of JKR theory give the applied load F and
penetration δ as a function of the contact radius a

F =
4
3

E∗a3

R
−
√

8πE∗∆γa3 (1)

δ =
a2

R
−
√

2πa∆γ

E∗ , (2)
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being R the radius of curvature, E∗ the composite elastic modulus of the contacting bodies
and ∆γ the interface adhesion energy.

Under controlled displacement conditions, JKR model predicts a jump into contact
at δ = 0. However, Wu [21], investigating the jump-in instability occurring in atomic
force microscopy measurements, found that jump-in instability is reached at a critical gap
δin. Such effect is due to van der Waals interactions acting between approaching bodies.
Wu proposed an empirical formula for the jump-in distance (valid for µ ≥ 2),

δin =
(

1 − 2.641µ3/7
)

ǫ (3)

where µ =
(

∆γ2R/E∗2
)1/3

/ǫ is the so-called Tabor parameter [22] and ǫ is the range of
attractive forces.

The above equation can be used to modify JKR theory to consider the jump-in critical
distance (see in [23]).

Moreover, under displacement controlled conditions and during retraction, JKR theory
predicts a jump-off instability at a critical penetration

δoff = −
(

27π2∆γ2R

64E∗2

)1/3

. (4)

Figure 1 shows the loading-unloading cycle predicted by JKR theory. The yellow area
represents the energy loss due to jumping instabilities. For smooth contact, the energy loss
is independent on the maximum penetration (or, equivalently, applied force).

Figure 1. The load–penetration curve predicted by Johnson, Kendall, and Roberts (JKR) theory. The
loading (unloading) path is denoted by green (red) arrows. Positive penetration values correspond
to indentation and compressive force. Jump into contact occurs at a penetration δin. The unloading
path overlaps the loading one, but jump out of contact occurs at a critical penetration δoff. The yellow
area denotes the hysteretic energy loss.
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2.2. Adhesion Hysteresis of Rough Elastic Surfaces

In the case of rough surfaces, multiple unstable jumps occur at the location of each as-
perity in a loading–unloading cycle. To take account of this phenomenon, Equations (3) and (4)
are implemented in a multiasperity model which in turn takes into account the elastic
coupling due to asperities lateral interactions.

Let us consider a rigid rough surface approaching an elastic half-space (Figure 2).
According to JKR formalism, the normal displacement wi of the elastic half-space at the
location of the asperity i is

wi =
a2

i

Ri
−
√

2πai∆γ

E∗ + ŵi (5)

where ŵi is the displacement due to the elastic interaction between the asperities in contact
and is given by [24]

ŵi =
nac

∑
j=1,j 6=i

a2
j

πRj





√

√

√

√

r2
ij

a2
j

− 1 +

(

2 −
r2

ij

a2
j

)

arcsin

(

aj

rij

)



 (6)

− 1
πajE∗

√

8πa3
j E∗∆γ arcsin

(

aj

rij

)

for rij > aj (7)

ŵi =
a2

j

Rj
−
√

2πaj∆γ

E∗ for rij ≤ aj (8)

where nac is the number of contact spots and rij is the distance between the asperities i
and j.

When the rough surface approaches the half-space, a new contact is formed when the
gap between an asperity and the half-space becomes smaller than δin, which is calculated
for each asperity. A first estimate of the asperity contact radius ai is done by inverting the
JKR relation (2). Then, after a further increment of the approach ∆δi = zi − wi, being zi the
height of the asperity i, the contact radius is increased by the quantity

∆ai =
∆δi

2ai/Ri −
√

π∆γ/(E∗ai)
(9)

which is obtained by differentiating Equation (2).
The total contact area and load are then obtained by summing up the contributions of

all the asperities in contact. Moreover, as a self-balanced load distribution is considered,
the interfacial mean separation ū is computed as ū0 − δ, where ū0 and δ are the initial
separation and the total approach, respectively.

Figure 2. Elastic half-space in contact with a rigid rough surface.
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3. Results

Computations have been performed on fractal self-affine isotropic surfaces. Roughness
is described by its power spectral density (PSD), which has a power law relation with
the magnitude q = |q| of the wavevector q . In this work, we consider fractal surfaces
with PSD

C(q) = C0(q/qL)
−2(H+1) for qL ≤ q < q1 (10)

and zero otherwise. We have denoted with qL = 2π/L and q1 = 2π/λ1 the short and long
frequencies cut-off, respectively. The quantity L represents the lateral size of the domain
(in this case Lx = Ly). Finally, H is the so-called Hurst exponent, which is related to the
fractal dimension Df = 3 − H. Rough surfaces are numerically generated according to the
spectral method proposed in [25,26].

In our calculations, we fixed L = 1 mm and hrms = 5 µm. Furthermore, two sets
of simulations have been performed. In the first one, we fixed H = 0.8 and q1 = ζqL,
with magnification ζ = 64, 128, 256, 512. In the second one, we fixed ζ = 128 and H = 0.45,
0.65, 0.8, 0.95.

3.1. Adhesive Hysteresis and Pull-Off Force: Effect of Loading Parameters

Figure 3A shows the normalized true contact area A/A0 as a function of the dimen-
sionless load F/(A0E∗). Calculations have been performed for H = 0.8, ζ = 128, and
hrms = 5 µm. Moreover, the curves are obtained by averaging the results of six surface
realizations. The material properties are E∗ = 1.0 MPa and ∆γ = 0.07 J/m2, which are
typical values for very soft silicon elastomers. Unloading starts from different maximum
applied loads Fmax/(E∗A0) = 0.004, 0.0071, 0.012, 0.015.

For adhesiveless rough contacts, the area–load relation is known to be linear [27–29].
However, recent studies confirm that adhesion may lead to strong non-linearity of the
F − A curve [30–32]. In our calculations, this is especially true for the unloading path in
agreement with numerical [15] and experimental [33] findings. The pull-off force is the
maximum negative load reached during retraction. Near the pull-off point, unloading paths
almost collapse on a single curve. As a result, the pull-off force Fpo is quite independent
on the maximum true area of contact reached during the approach (Figure 3B). This is in
agreement with experimental findings of Refs. [11,33].

In an approach–retraction cycle, the magnitude Θ of hysteretic losses is equal to the
area between the loading and unloading F − ∆ curves, where ∆ is the mean penetration of
the rough surface in the half-space. Figure 3C shows the evolution of the dimensionless
contact force F/(E∗A0) with the normalized penetration ∆/hrms. Recent experiments [5,11]
suggest that, in presence of surface roughness, Θ increases linearly with the penetration
∆ (or in a similar way with the true area of contact A). Such phenomenon is known in
literature as depth-dependent hysteresis. Figure 3D shows the increase of the dimensionless
energy loss Θ/(E∗A0hrms) with A/A0 corresponding to the maximum applied loads.
The model captures the linear relation between Θ and A/A0 and the analytical predictions
given by DK’s model [14], as adapted to the present case (see Appendix A), are coherent
with our numerical results.
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Figure 3. (A) The normalized area of contact A/A0 as a function of the dimensionless load F/(E∗A0). Results are obtained
on surfaces with hrms = 5 µm, H = 0.8 and ζ = 128. Loading (green dashed line) and unloading (red solid line) curves are
shown. Results are averaged on 6 surface realizations. (B) The dimensionless pull-off force Fpo/(E∗A0) as a function of the
maximum applied load at the end of the loading phase. Error bars denote the standard deviation on 6 surface realizations.
(C) The dimensionless mean penetration ∆/hrms as a function of the applied load F/(E∗A0). (D) The dimensionless energy
loss Θ/(E∗A0hrms) as a function of the normalized area of contact A/A0. Red solid and blue dashed lines refer to the
present calculations and DK’s predictions, respectively. Error bars denote the standard deviation on 6 surface realizations.

3.2. Adhesive Hysteresis and Pull-Off Force: Effect of the Fractal Parameters

Surface roughness can be described by its statistical parameters, i.e., RMS roughness
amplitude hrms, RMS gradient h′rms, and RMS curvature h′′rms. The first one is related to low
frequencies of the PSD spectrum, while RMS slope and curvature mainly depends on the
cut-off frequency q1 and therefore on the magnification ζ. Increasing ζ, the PSD spectrum is
enriched by smaller and smaller roughness wavelengths. An other important parameter is
the Hurst exponent H. Low (high) values of H correspond to high (low) fractal dimension
Df (Df = 3 − H).

Figure 4A shows the F/(E∗A0)− A/A0 relation at increasing values of the magnifi-
cation ζ (ζ = 64, 128, 256, 512) for hrms = 5 µm and H = 0.8. All curves are obtained for
a same value of the applied load F/(E∗A0) = 0.071 reached at the end of the approach,
in similar way to the experiments performed in [5]. The true area of contact decreases
with ζ as an increase in ζ corresponds to bigger rms gradient h

′
rms. In such case, sur-

face roughness is described by several length-scales and a greater load is required to create
new contact patches on smaller wavelengths. Specifically, as shown in [34], the depen-
dence of the curves on ζ (and thus on h

′
rms) is exclusively due to the contribution of the

repulsive interactions.
Figure 4B shows the dimensionless pull-off force Fpo/(E∗A0) as a function of the

magnification. A general drop in the pull-off force is observed by increasing ζ. This is
in agreement with recent numerical findings in [35], where an in-house Boundary Ele-
ment Method (BEM) has been developed for studying adhesive contact of rough surfaces,
by including full Lennard–Jones potentials and surface integration at the asperity level.
However, such results are due to the fact that we are considering surfaces with roughness
amplitude of the order of microns. In fact, as found in [13], at sufficiently high values
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of the rms roughness amplitude (and more precisely of the product q0hrms, being q0 the
roll-off frequency), for H = 0.8 a decrease in magnification ζ involves an increase in the
effective surface energy at short length scale (large ζ). This effect results from the increase
in the contact area as more a more short-wavelength roughness components are taken into
account. However, we stress that such a result works as long as q0hrms is high enough.
Indeed, at lower hrms, such effect is not observed and the adhesion seems to be governed
only by the surface roughness amplitude [36].

Figure 4. (A) The normalized area of contact A/A0 as a function of the dimensionless load F/(E∗A0). Results are obtained
on surfaces with hrms = 5 µm, H = 0.8, and ζ = 64, 128, 256, 512. Loading (green dashed line) and unloading (red solid
line) curves are shown. Results are averaged on 6 surface realizations. (B) The dimensionless pull-off force Fpo/(E∗A0) as a
function of the magnification. Error bars denote the standard deviation on 6 surface realizations. (C) The dimensionless
mean penetration ∆/hrms as a function of applied load F/(E∗A0). (D) The dimensionless energy loss Θ/(E∗A0hrms) as
a function of the magnification. Red solid and blue dashed lines refer to the present calculations and DK predictions,
respectively. Error bars denote the standard deviation on 6 surface realizations.

In fact, for large ζ and small hrms, a model based on a JKR-type approach becomes
questionable as the dimension of the contact spots decreases [37]. In such case, a DMT-type
approach, based on the assumption of long-range adhesion interactions, could be more
accurate in modeling the contact problem. In this regard, a DMT-type model is developed
in [34] with the aim of investigating the adhesive contact of surfaces with hrms of the
order of 1 nm. It is found that Fpo is almost independent of h

′
rms, i.e., the adhesion force

required for the detachment is magnification independent.This is confirmed in [38], where
a stickiness criterion [38] is derived from Persson–Scaraggi DMT theory [37]. For typical
values of the Hurst exponent (H > 0.6), the criterion suggests that adhesion is destroyed
by the long wavelengths of roughness, while ζ has negligible effects. Such result has been
corroborated by very recent experimental [39] and analytical works [40,41], according to
which the main parameter “killing” adhesion seems to be the roughness amplitude hrms.

Figure 4C shows the load-penetration relationship for increasing magnification ζ.
The corresponding hysteretic losses Θ are shown in Figure 4D. Our simulations suggest
that the magnitude of energy loss follows the same trend of the pull-off force, i.e., it reduces
with ζ. Once again, DK’s predictions, as given by the proposed modified equation in
appendix, are in agreement with our numerical calculations. The error bars in Figure 4B–D
show the standard deviation on six surface realizations. The scatter is larger for surfaces
with low magnification ζ as a result of the smaller number of surface asperities. On the
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contrary, increasing ζ, smaller and smaller asperities are added to the rough surface and
their spatial distribution is expected to be more uniform in the nominal contact region.
Moreover, as the linear size of the system is finite the PSD is not continuous and even
assuming spectral components with random phases uniformly distributed in the range
0 < φ < 2π the surface will be not ergodic, and a single realization of the surface will be
in general highly non-Gaussian, thus entailing finite-size effects related to the finite value
of the asperities heights. It follows that for surfaces without a low-wavenumber roll-off
(or cut-off) region, quantities which depend on the long wavelength roughness, such as
the average interfacial separation (and hence the hysteresis dissipation) at low contact
pressures, will vary strongly from one realization to another.

A second set of simulations has been performed on surfaces with fixed hrms = 5 µm,
ζ = 128 and different Hurst exponents H = 0.45, 0.65, 0.8, 0.95. We have fixed again
the maximum applied load F/(E∗A0) = 0.071. An increase in H leads to a decrease in
RMS gradient, thus explaining why the area increases with H for a fixed load (Figure 5A).
Figure 5B shows that the pull-off force is destroyed at low H; the same trend has been
observed in [42], where the adhesive contact between a parabolic indenter with superim-
posed roughness and an elastic half space has been studied in the JKR-limit. Figure 5C
shows how the F/(E∗A0)− ∆/hrms relation modifies with H. In particular, at H = 0.45
loading and unloading paths overlaps thus showing vanishing adhesive hysteretic loss Θ,
which is strongly affected by the Hurst exponent as shown in Figure 5D. Notice results are
more scattered for surfaces with lower fractal dimension as finite-size effects related to the
absence of a low-wavenumber roll-off (or cut-off) region are exaggerated at higher values
of H.

Figure 5. (A) The normalized area of contact A/A0 as a function of the dimensionless load F/(E∗A0). Results are obtained
on surfaces with hrms = 5 µm, ζ = 128, and H = 0.45, 0.65, 0.8. Loading (green dashed line) and unloading (red solid line)
curves are shown. Results are averaged on 6 surface realizations. (B) The dimensionless pull-off force Fpo/(E∗A0) as a
function of the Hurst exponent. Error bars denote the standard deviation on 6 surface realizations. (C) The dimensionless
mean penetration ∆/hrms as a function of applied load F/(E∗A0). (D) The dimensionless energy loss Θ/(E∗A0hrms) as
a function of the Hurst exponent. Red solid and blue dashed lines refer to the present calculations and DK predictions,
respectively. Error bars denote the standard deviation on 6 surface realizations.
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4. Discussion and Conclusions

In the adhesive contact between an elastic half-space and a rigid randomly rough
surface, loading-unloading loops can be observed as a result of adhesion hysteresis induced
by roughness. Hysteretic losses are found to be linearly increasing with the true area of
contact reached at the end of the loading path. On the contrary, the pull-off force is
negligibly influenced by the maximum contact area (and thus maximum applied load).

Pull-off force and hysteretic losses are strongly affected by roughness parameters.
Specifically, here we have investigated the effects of the Hurst exponent H and magnifica-
tion ζ.

Detachment force and hysteretic losses are observed to reduce by decreasing H and
increasing ζ. Such results are related to the increase in the RMS gradient h

′
rms occurring

when H is reduced or ζ is increased. Our outcomes are in agreement with the trends shown
by very recent numerical, experimental and analytical findings.

However, we stress that our results are obtained on surfaces with RMS roughness
amplitude of the order of few micrometers where we can reasonably expect partial con-
tact conditions occur in a wide range of applied loads. In fact, multiasperity models
become progressively less accurate moving towards full contact conditions. Moreover,
numerical models allow to consider a limited range of magnifications, while real surfaces
are characterized by roughness on several length scales (with the modern technologies
we can measure ζ ≃ 107, ranging from centimeter to nanometer scales). Despite such
limitations, the present findings help to clarify some aspects of the hysteretic phenomenon
occurring in the adhesive contact of rough soft matter.
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Appendix A. Deng and Kesari’s Model

Deng and Kesari’s model (DK) [14] is a combination of classical adhesive theories for
smooth elastic spheres and Nayak’s theory of rough surfaces [43]. In their work, DK used
both JKR [18] and Maugis–Dugdale [44] theories for estimating the energy loss in a loading–
unloading cycle of a single spherical asperity. In the limit of high Tabor parameters (µ ≥ 3),
the two theories predict the same behavior. For this reason, as our study is focused on very
soft materials, for which high Tabor numbers are expected, here we discuss DK’s model in
the framework of JKR theory.

DK gives an empirical estimate of the energy loss θ for a loading–unloading cycle of a
single asperity of radius R; in the JKR limit the value of θ is

θ = 2E∗R3θ̄ (A1)

being θ̄ ≈ 0.5262[π∆γ/(E∗R)]5/3.
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For a rough surface the energy loss of each asperity depends on the value of its radius
of curvature. Following the work in [43], the variation of curvature in the population of all
asperities contained in any unit region is

pk(t) =

√

3
4π

(t2 − 2 + 2e−t2/2)e
− 8(C2

1−C2
2 )t

2

16C1 (A2)

where t = −
√

3/m4km, being km ∈ (0, ∞) the surface’s mean curvature at the apex of an
asperity, and the constants C1 = α/(2α − 3) and C2 = C1

√
12/α are related to the Nayak

parameter α = m0m4/m2
2. The quantities m0, m2, and m4 are the spectral moments of

surface roughness PSD. In particular, they are related to the rms roughness amplitude hrms,
gradient h

′
rms and curvature h

′′
rms by hrms =

√
m0, h

′
rms =

√
2m2, and h

′′
rms =

√
8/3m4.

Substituting (A2) in (A1) and integrating on the range of variation of t, the mean
energy loss of contacting asperities can be written as

〈θ〉 = 0.5262 × 2E∗
∫ 0

−∞
dt[π∆γ/(E∗R(t))]5/3 pk(t)R(t)3 (A3)

being R(t) = (1/Rtip −
√

m4/3t)−1.In DK’s model, Rtip is the radius of the spherical
indenter that is in contact with a nominally flat surface. In our case, as contact occurs
between nominally flat surfaces, 1/Rtip → 0.

Finally, the total energy loss can be computed as

Θ = η · A · 〈θ〉 (A4)

where η = m4/(6π
√

3m2) is the asperity density in a nominal contact region of unit area.
In the original DK’s model, the contact area A is computed applying JKR theory to

the macroscopic spherical indenter of radius Rtip and neglecting roughness contribution.
In particular, A is calculated as A∆ max − A∆in, where A∆ max and A∆in are the values of the
contact area at the maximum indentation and the macroscopic jump-in instability of the
spherical tip, respectively.

In this work, as we are dealing with the contact between two nominally flat surfaces,
A∆in is interpreted as the true contact area of the first few asperities jumping into contact,
while A∆ max is the true area of contact obtained at the end of the loading phase. Moreover,
as in our calculations A∆in ≪ A∆ max, we have assumed A∆ max − A∆in ≈ A∆ max.
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Abstract: Usually, roughness destroys adhesion and this is one of the reasons why the
“adhesion paradox”, i.e., a “sticky Universe”, is not real. However, at least with some special type
of roughness, there is even the case of adhesion enhancement, as it was shown clearly by Guduru,
who considered the contact between a sphere and a wavy axisymmetric single scale roughness, in the
limit of short-range adhesion (JKR limit). Here, the Guduru’s problem is numerically solved by using
the Boundary Element Method (BEM) with Lennard–Jones interaction law, which allowed us to explore
the contact solution from the rigid to the JKR limit. It is shown that adhesion enhancement stops either
for low Tabor parameter, or by large waviness amplitudes, due to the appearance of internal cracks
within the contact patch. We do not seem to find a clear threshold for “stickiness” (complete elimination
of adhesion), contrary to other recent theories on random roughness. The enhancement effect is well
captured by an equation in terms of the Johnson parameter derived by Ciavarella–Kesari–Lew, and is
much larger than the Persson–Tosatti enhancement in terms of increase of real contact area due to
roughness. The Persson–Tosatti energetic argument for adhesion reduction seems to give a lower
bound to the effective work of adhesion.

Keywords: adhesion; roughness; adhesion enhancement; JKR model; Lennard–Jones

1. Introduction

Adhesion is a challenging topic in tribology [1–3] with relevance in several engineering
applications that range from biomimetics [4], soft matters [5], soft robots [6], grippers [7], friction [8–12].
Although roughness is usually responsible for adhesion reduction [13–15], Briggs and Briscoe [16]
showed already in 1977 that relatively small random roughness amplitude could enhance adhesion
in pull-off experiments as well as relative rolling resistance by a factor up to 2.5. Later, Guduru [17]
showed that in the contact between a rigid sphere and a soft halfspace with an axisymmetric
single wavelength waviness, adhesion could be enhanced by a factor up to 20 with respect to the
Johnson–Kendall–Roberts smooth case ([18], JKR in the following). The enhancement was first modeled
theoretically by Guduru [17] and then proved experimentally by Guduru and Bull [19]. The basic
assumptions of the Guduru [17] model are that (i) the contact area is simply connected (there are
no circular grooves within the contact patch) and that (ii) the halfspace is constituted by a soft
material (elastomer or rubber) hence adhesion can be simply modeled by JKR theory [18]. Loading
and unloading a rigid sphere from the wavy surface leads to several jump instabilities and related
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dissipation, which is responsible for the measured enhancement. Kesari et al. [20] showed that if
the roughness wavelength is substantially shorter than the sphere radius, then an envelope solution
can be obtained, which describes well the loading-unloading hysteretical behavior well known to
experimentalists (see also Kesari and Lew [21]).

Waters and coauthors in [22] developed a Maugis–Dugdale cohesive model, still based on the
assumption of simply connected contact area, to account for the transition between the rigid and JKR
limit. They showed that toughening and strengthening of the interface was mostly restricted to the
JKR regime, while, in the rigid limit, they found the Bradley [23] solution for the smooth rigid sphere.
Ciavarella [24] further discussed the assumptions of the Guduru model and the conclusions of Waters
and coauthors [22]. In particular he noticed that for hard solids (i.e., in the rigid limit) the axisymmetric
roughness should reduce the macroscopic adhesion by orders of magnitude with respect to the
smooth sphere limit. Ciavarella [24] supported his argument by considering the Rumpf–Rabinowich
model ([25–27]), which geometry is analogous but not equal to that of Guduru and is used for adhesion
of hard particles (the model neglects the elastic deformation). The Rumpf–Rabinowich model predicts
that increasing the substrate roughness the macroscopic adhesion force first decreases and then
increases again. Ciavarella [24] suggested that the Guduru and the Rumpf–Rabinowich models may be
respectively close to an upper and a lower bound for macroscopic adhesion of rough bodies (see also
Ciavarella [28]).

In this paper, we reconsider the geometry of Guduru [17] and obtain a closed form solution for
the rigid limit, which clearly shows that increasing the waviness amplitude A reduces the macroscopic
adhesion force by orders of magnitude. By using the axisymmetric Boundary Element Method (BEM)
the contact problem is solved with Lennard–Jones interaction law, for varying waviness amplitude
A and wavelength λ and for different Tabor parameters of the sphere µ, without the restrictive
assumption of a compact contact area. Numerical results are well in agreement with the theory both
in the rigid and in the JKR limit. The transition from one regime to the other is numerically studied
using the BEM code. In the JKR regime adhesion enhancement is well captured by the Johnson
parameter as derived by Ciavarella–Kesari–Lew [21,24], and is much larger than the Persson–Tosatti
enhancement [13] in terms of increase of real contact area due to roughness. It is shown that at large
Tabor parameters µ (> 3), increasing A first leads to adhesion enhancement as predicted by Guduru
theory [17], but then strongly reduces the macroscopic adhesive force due to the appearance of internal
cracks. We found that for A/λ & 10−1 the JKR solution greatly overestimates the pull-off force and the
hysteretical dissipation.

2. Guduru Contact Problem

JKR Theory

Guduru [17] considered the contact between a rigid sphere of radius R that indents and elastic
halfspace (Young modulus E, Poisson ratio ν) with an axisymmetric waviness of wavelength λ and
amplitude A (see Figure 1).

In the system of reference shown in Figure 1, the axisymmetric waviness has the form

y(r) = −A

(

1 − cos
(

2πr

λ

))

(1)

where r is the radial coordinate. Using the Hertzian approximation for the spherical profile [29] one
gets the gap function

f (r) =
r2

2R
+ A

(

1 − cos
(

2πr

λ

))

(2)

Guduru [17] solved the adhesive contact problem under the assumptions of compact contact
area (i.e., there are no axisymmetric grooves within the contact patch) and in the limit of short range
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adhesion [18], which requires soft bodies into contact with large surface energy. Ensuring the contact
area is compact requires that the gap function is strictly monotonically increasing

d f (r)

dr
> 0, r > 0 (3)

which for the gap function (2) implies
λ2

AR
> 8.5761 (4)

Figure 1. The geometry of the axisymmetric contact problem. A rigid sphere of radius R indents an
elastic halfspace with an axisymmetric waviness of wavelength λ and amplitude A. The sphere is
approximated by a Hertzian profile.

Nevertheless, condition (4) is too restrictive. Indeed, Guduru [17] analysis holds at detachment if
one requires that the normal load is increased from 0 to a value such that the contact radius a gets larger
than a critical radius rc = 2πAR/λ for which the gap function is strictly monotone and any partial
contact within the contact patch has coalesced. To this end it is evident from Johnson [30] analysis
(strictly speaking that was a 2D problem) that a simply connected contact area would be achieved
also when condition (4) is violated provided that the so-called “Johnson parameter” αKLJ =

2λwc
π2 A2E∗

is sufficiently high to ensure spontaneous snap into full contact. By using three different solution
approaches Guduru [17] obtained that the JKR adhesive solution for the geometry in Figure 1 can be
written in dimensionless form as



















W1 = 4β
[

2a3

3 + α
(

4π2a3

3 + πa
2 H1 (2πa)− π2a2H2 (2πa)

)]

W = W1 − 4
√

βa3

∆ = a2 + απ2aH0 (2πa)−
√

a
β

(5)

where the following dimensionless parameters have been defined

α =
AR

λ2 , β =
λ3E∗

2πwcR2 , W =
W

πwcR
, ∆ =

∆R

λ2 , a =
a

λ
, (6)

and Hn (·) is the Struve function of order n, E∗ = E/
(

1 − ν2) is the composite elastic modulus, wc is
the surface energy per unit area, W is the external load, W1 is the normal load in the adhesiveless
problem and ∆ is the remote approach (>0 when the punch approaches the halfspace, see also [22]).
Inspection of Equation (5) reveals that the Guduru problem, in the JKR regime, depends on two
dimensionless parameters {α, β}: α represents the degree of waviness of the surface, with large (small)
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α implying high (low) amplitude waviness, while β can be interpreted as the ratio between the elastic
and the surface energy, with large (small) β implying a stiff (compliant) material [22]. For α = 0 the
classical sphere-flat JKR solution is retrieved

W = 4β
2a3

3
− 4
√

βa3 (7)

∆ = a2 −
√

a

β
(8)

3. Numerical Solution

3.1. Axisymmetric BEM Formulation

In the previous section the JKR solution of the Guduru contact problem was briefly summarized.
Several variants of the Guduru contact problem have been studied by different authors [20–22,24,28],
nevertheless all of them assume full contact within the contact patch (a simply connected contact area).
To overcome this limitation an axisymmetric Boundary Element Method (BEM) was developed
assuming that the rigid sphere and the wavy halfspace interacts with a Lennard–Jones interaction law
(LJ in the following, see Figure 2a)

σ (h) = −8wc

3ε

[

( ε

h

)3
−
( ε

h

)9
]

(9)

where σ is the traction (σ > 0, when compressive), h is the gap and ε the equilibrium distance
(the maximum tensile stress σ0 = − 16wc

9
√

3ε
takes place at separation h = 31/6ε). BEM contact codes that

use the LJ interaction law have been derived previously by several authors to solve contact problems
similar to the one tackled here. For example Wu [31] solved the adhesive contact problem between
a sphere and a longitudinal wavy surface, while Medina and Dini [32] studied the problem of an
adhesive sphere squeezed against a rough substrate. Notice that other BEM solution strategies exist
that are based on energy minimization [33,34].

The contact problem considered is equivalent to the case of a “rough” axisymmetric rigid Hertzian
indenter squeezed against an elastic halfspace (Figure 2b). The Guduru gap function is written as

h = −∆ + ε +
r2

2R
+ A

(

1 − cos
(

2πr

λ

))

+ uz (r) (10)

where ∆ > 0 when the Hertzian profile approaches the halfspace and uz (r) is the deflection of the
elastic halfspace (see Figure 2b).

Figure 2. (a) Lennard–Jones interaction law. (b) Equivalent representation of the considered contact
problem in the undeformed configuration (grey lines) and after applying a certain remote displacement
∆ (black lines).
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For axisymmetric frictionless contact problems [35,36]

uz (r) =
1

E∗

∫

σ (s) G (r, s) sds (11)

where σ (s) is the pressure distribution, G (r, s) the Kernel function

G (r, s) =

{

4
πr K

(

s
r

)

, s < r
4

πs K
(

r
s

)

, s > r
(12)

and K (k) the complete elliptic integral of the first kind of modulus k.
After surveying the Literature on the topic [31–37], we developed an axisymmetric BEM inspired

by the works of Greenwood [35] and Feng [36]. Assume the radial domain is discretized with
N elements, so that we have M = N + 1 discretization points. To solve Equation (10) on a discrete
domain, one needs to determine the elastic deflection uz (r) . A problem arises in evaluating the
integral (11) as the kernel function G (r, s) is singular in s = r. The common approach is to discretize
Equation (11) assuming that the pressure σ (s) has a simple form over a discrete element. To this end,
the simplest approach is to assume that the pressure is constant over each element. Nevertheless,
Greenwood [35] reported that this method may lead to suspicious results, particularly in the regions
with strong pressure gradients and suggested using the method of the overlapping triangles [29],
for which the pressure σ (s) has a triangular form. Hence the deflection at point ri due to a triangular
pressure distribution being pj at r = rj and falling linearly to 0 at r = rj−1 and r = rj+1 is

uz (ri) = uz,i =
1

E∗ Gij pj (13)

where we have solved numerically the integral in Equation (11) to obtain Gij once for all. Notice that
the kernel function singularity at ri = rj−1 and ri = rj+1 is canceled by the pressure being 0 in rj−1
and rj+1, instead, for the singular point ri = rj, we considered a pressure equal to −pj at rj−1 and rj+1
rising linearly at 0 at rj superimposed to a constant pressure ring, equal to pj, in between the radii rj−1
and rj+1 for which the displacement field is known analytically (see Appendix A). By defining the
following quantities

H = h/ε − 1; u =
r

Γ
; L =

λ

Γ
; P =

pµε

wc
; Γ =

(

R2wc

E∗

)1/3

; (14)

Equation (10) is written for the normalized gap Hi (H vanishes for h = ε) at each node i as:

Hi = −∆† +
1
2

µu2
i + A†

(

1 − cos
(

2πu

L

))

+ µ
N

∑
j=1

G
′
ijPj (15)

where µ =
(

Rw2
c

E∗2ε3

)1/3
is the Tabor parameter, ∆† = ∆/ε, A† = A/ε, G

′
ij = Gij/Γ and

Pj = −8
3

µ

[

1
(

Hj + 1
)3 − 1

(

Hj + 1
)9

]

(16)

All the results that will be presented below were obtained using N = 500 discretization
elements with a constant element size, which proved to be sufficient for obtaining converged
solutions up to a Tabor parameter µ = 5. Lower values of µ did not require such a mesh
refinement, nevertheless, to avoid confusion, the same discretization was used along all the paper.
Unless differently stated, in all the simulations the overall domain length was set equal to the sphere
radius rmax = R = 100ε. The numerical code was implemented in MATLAB. Similarly to Feng [36] an
efficient pseudo-archlength continuation scheme was implemented [38], which is needed to follow the
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system solution branches. Furthermore, to make the numerical solution of the nonlinear system of
Equation (15) faster to solve, the system Jacobian was provided analytically to the numerical solver
(“fsolve” in MATLAB) that implements a Newton–Raphson scheme.

3.2. Validation of the Numerical Results

First to assess the correctness of the numerical implementation, the BEM results are validated
against those provided by Feng [36]. In Figure 3 the dimensionless normal load

W =
W

πwcR
=

2Γ2

µRε

+∞
∫

0

P(u)udu (17)

is plotted as a function of the dimensionless approach −∆† for µ = [1, 2, 3]. Markers refer to the data
reported by Feng [36] (its Figure 3) while the solid black lines were obtained numerically using the
BEM presented here. Red dots stand for the Bradley [23] rigid solution, which is compared to the
numerical solution (solid black line) obtained with µ = 0.01. All the curves are in perfect agreement.

-2 0 2 4 6 8

-2

-1.5

-1

-0.5

0

0.5

1

Figure 3. Dimensionless normal load W as a function of the approach −∆† for µ = [1, 2, 3] as reported
by Feng [36] (markers) and as obtained here numerically (solid black line). Red dots show the
Bradley [23] rigid solution, which is compared to the numerical solution (solid black line) obtained
with µ = 0.01.

Figure 4 shows the pull-off force
∣

∣W
∣

∣

pull−o f f
(panel (a)) and the approach −∆†

∣

∣

pull−o f f
(panel (b))

at pull-off as a function of µ (the pull-off force Wpull−o f f is defined as the minimum of the W(∆†) curve).
Blue stars have been obtained from Feng [36], while red squares have been obtained using the BEM
developed here. The results we obtained for both load and approach at pull-off compare very favorably
with those in [36].
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Figure 4. (a) Pull-off force
∣

∣W
∣

∣

pull−o f f and (b) approach − ∆†
∣

∣

pull−o f f at pull-off as a function of the

Tabor parameter µ = [10−2, 5]. Red squares were obtained with the presented Boundary Element
Method (BEM) scheme, while blue asterisks were obtained from Feng [36].

4. Rigid Limit

The majority of the authors, who have tackled the Guduru contact problem, have focused their
attention on the JKR limit, where it was clear since the early papers by Guduru [17] and Guduru
and Bull [19] that substantial enhancement could be obtained, with few exceptions, as the works of
Waters [22] and that of Ciavarella [24]. Waters et al. [22] developed a Maugis–Dugdale cohesive model
for the Guduru problem that showed adhesion enhancement is mostly limited to the JKR regime.
The cohesive model clearly depended on an additional parameter with respect to the JKR model,
the Tabor parameter µ. Strictly speaking, Waters et al. [22] used the parameter introduced by
Maugis [39], which anyway differs only by a small multiplicative factor from µ. Waters et al. [22]
analysis showed that for small µ the pull-off detachment force converged to the Bradley rigid solution
for the sphere, i.e.,

∣

∣WB

∣

∣ = 2. Nevertheless, this holds only for a smooth sphere in contact with a flat
halfspace. For example, let us assume λ ≈ R ≈ A, then the pull-off force in the rigid regime could be
estimated by considering the contact between the first crest of the halfspace waviness and the sphere.
The radius of curvature of the crest is

R2 =
λ2

4π2 A
≈ R

4π2 (18)

and the composite radius

R∗ =
(

1
R
+

4π2

R

)−1

≈ R

4π2 (19)

hence the pull-off force of the sphere would be reduced by about factor 1/4π2 ∼ 0.025. Indeed,
using the Rumpf–Rabinowicz model [25–27] Ciavarella [24] recognized this. Although analogous to
the Guduru problem, the Rumpf–Rabinowicz model refers to a different geometry. It considers the
contact between a large sphere of radius R and a rigid small hemisphere of radius r2 placed on a rigid
plane (see Figure 5).
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Figure 5. Left panel: simplified sketch of the Rumpf–Rabinowicz model. Right panel: simplified sketch
of the Guduru model.

Two competitive mechanisms for adhesion take place: while the radius of the hemisphere increases
macroscopic adhesion increases due to the interaction with the hemisphere but decreases as the rigid
plane gets further away from the countersurface, which, using r2 = λ2

4π2 A
, can be written as [24]

∣

∣W
∣

∣

pull−o f f
=

1
1 + 4π2α

+
1

(

1 + R†

4π2α

)2 (20)

where R† = R/ε. Similar mechanisms are expected to be at play in the Guduru problem.
Assume that the rigid sphere and the wavy halfspace interact with a Lennard–Jones interaction

law (9). From Equation (15), neglecting the elastic deformations, the dimensionless interfacial gap is

H (θ) = −∆† + A†
[

θ2

8π2α
+ (1 − cos (θ))

]

(21)

where θ = 2πr
λ has been introduced. Using Equations (16) and (17) the total load is

Wrigid =
2π

πwcR

+∞
∫

0

σ(H)rdr = − 4A†

3π2α

+∞
∫

0

[

(

1
H (θ) + 1

)3
−
(

1
H (θ) + 1

)9
]

θdθ (22)

which clarifies that at a given approach ∆† the rigid solution depends only on two parameters
{

α, A†}.
Notice that for a smooth sphere-flat contact one can use in the first integral of Equation (22)

dH = r
R dr and obtain that the rigid solution depends only on the adhesion energy and not on the

shape of the potential. This cannot be done for the Guduru gap function, which implies that the
Guduru rigid solution will be slightly affected by the shape of the interaction law used.

In Figure 6 the loading curves are shown for log10 α = [−4,−2,−1, 0, 1] and A† = 1. The solid
black lines are the theoretical predictions based on Equation (22), while the red markers have been
obtained numerically using the BEM with µ = 10−4. Numerical and theoretical predictions are in
perfect agreement, with the curve log10 α = −4 corresponding to the Bradley [23] rigid solution for the
smooth sphere (Equation (22))

WB

(

∆†
)

= −2

(

4
(

∆† − 1
)6 − 1

3 (∆† − 1)8

)

(23)

The curves dimensionless normal load W versus dimensionless approach −∆† plotted in Figure 6
show that the pull-off force is not monotonically decreasing with α and that the critical approach at
detachment is close to ∆† ≃ 0 only for the smallest values of α. Figure 7 shows the pull-off force
as a function of α for log10 A† = [−3,−0.5, 0, 1, 2, 4] (solid lines obtained as the minimum of (22),
while red markers obtained numerically

(

µ = 10−4)). All the curves start at small α from the Bradley

rigid solution
∣

∣

∣
WB,pull−o f f

∣

∣

∣ = 2 (smooth sphere), while increasing α the pull-off force decays and,
after a transition zone around α ≈ 1, reaches a limit value at large α. It is shown that at large α
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and A† the pull-off force can decrease by more than three orders of magnitude with respect to the
smooth case. To allow a comparison the predictions of the Rumpf–Rabinowicz model are reported
for log10

(

R†) = [0, 1, 2, 3, 4] (blue dashed lines in Figure 7). First notice that, while the rigid limit
of the Guduru problem depends on

{

α, A†}, the Rumpf–Rabinowicz model depends on
{

α, R†}.
Both the models show a similar decay with α, but they give two different limits for large α. In the
Rumpf–Rabinowicz model, a large α implies a very small hemisphere (R/r2 = 4π2α), hence the case
of a large sphere interacting with a smooth plane is retrieved. In the rigid Guduru model, A† and
λ† = λ/ε are not coupled, hence increasing α leads to a vanishing wavelength of the sinusoid but does
not affect A†, which gives the observed adhesion reduction.
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Figure 6. Loading curves for the rigid model. Solid lines have been obtained from Equation (22),
while red markers are numerical solutions for µ = 10−4. The curves are obtained for log10 α =

[−4,−2,−1, 0, 1] and A† = 1.
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Figure 7. Pull-off force as a function of the parameter α (log scale) obtained using the rigid solution of
the Guduru model (Equation (22), solid black line) and the Rumpf–Rabinowicz model (Equation (20),
blue dashed line), while red squares are numerical solutions for µ = 10−4. For the Guduru rigid model
the curves are obtained for log10 A† = [−3,−0.5, 0, 1, 2, 4], while for the Rumpf–Rabinowicz model
log10(R†) = [0, 1, 2, 3, 4].
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5. Numerical Results

5.1. Effect of the Tabor Parameter

In the previous subsections we have discussed two limits of the Guduru contact problem: the JKR
and the rigid limit. Here the transition from one limit to the other is investigated numerically by
using the BEM introduced in Section 3.1. Figure 8 shows the pull-off force as a function of the Tabor
parameter µ for λ† = 20, and A† = [0.1, 1, 10]. Small waviness amplitude A† = 0.1 (red circles)
slightly perturbs the solution of the smooth sphere. Indeed at low Tabor parameter the pull-off
force is equal to

∣

∣W
∣

∣

pull−o f f
≈ 1.75, while at higher µ it gets slightly larger than 1.5. In all the range

between µ = 0.01 and µ = 5 the pull-off force remains in between the rigid and JKR values (2 and 1.5
respectively). Increasing the waviness amplitude by a factor 10 (A† = 1, green squares) completely
changes the picture. Figure 8 shows that there exist three distinct regimes: (i) the rigid, (ii) the transition
and (iii) the JKR regime. The pull-off force remains very small and equal to the rigid limit (dot-dashed
line) up to µ ≈ 0.25, then starts to increase up to about

∣

∣W
∣

∣

pull−o f f
≃ 3.2 for µ ≈ 1 and for µ > 1

tends to the JKR limit (Equation (5), dashed line). By further increasing the waviness amplitude leads
to smaller pull-off forces not only in the rigid limit, but also at large Tabor parameters µ. We have
indicated in Figure 8 that at µ ≃ 5 the JKR prediction of the pull-off force is

∣

∣W
∣

∣

pull−o f f
≃ 20,

while numerical results give
∣

∣W
∣

∣

pull−o f f
≃ 1.1.
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Figure 8. Pull-off force
∣
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∣

pull−o f f (absolute value) as a function of the Tabor parameter µ for

λ† = 20, R† = 100 and A† = [0.1, 1, 10] , respectively red circles, green squares and blue triangles.
Dot-dashed lines mark the rigid limit (22) whil dashed lines the Johnson–Kendall–Roberts (JKR) limit
(5). For A† = 10 at µ = 5 the JKR limit would give

∣

∣W
∣

∣

pull−o f f ≃ 20.

Figure 9 shows respectively the dimensionless gap H (a) and the corresponding tractions P (b)
for λ† = 20, A† = 1 and µ = [0.15, 0.67, 5] (respectively solid, dotted, dot-dashed line) and A† = 10,
µ = 5 (dashed line) at the pull-off point. Focusing on the three curves corresponding at A† = 1
one recognizes that at low Tabor parameter (µ = 0.15) the maximum tensile force is reached when
the sphere first touches the waviness crest, while for high Tabor parameter (µ = 5, pink dot-dashed
line) the typical pressure spike appears at the boundary of the contact patch. In the intermediate
regime (µ = 0.67) the maximum pull-off force is reached when the second crest first touches the sphere.
Nevertheless, the material is too rigid to deform and the gap remains large at the first throat providing
small adhesive tractions. It is useful to compare the solutions obtained for

(

µ, A†) = (5, 1) with those
for

(

µ, A†) = (5, 10) . In the latter case Figure 8 showed that JKR theory highly overestimates the
pull-off force obtained numerically. Indeed, Figure 9 shows that the contact patch is clustered on the
waviness peaks and axisymmetric grooves (internal cracks) appear, which destroy the well known
enhancement mechanism of the Guduru geometry.
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Figure 9. (a) Dimensionless gap H and (b) dimensionless tractions P versus the radial coordinate r/ε

at the pull-off point for λ† = 20, R† = 100 and varying µ and A† (for both panels please refer to the
legend placed in panel (b)).

To better study the effect of the waviness amplitude A†, Figure 10 shows the dimensionless
pull-off force in absolute value as a function of the ratio A/λ for λ† = [5, 20, 30, 50], R† = [50, 100, 200]
and for a fixed µ = 3 (see legend therein). For each value of λ Equation (5) was used to determine the
pull-off force predicted by the JKR model (dashed black lines), while numerical results obtained with
BEM are reported with markers (see legend in Figure 10). For amplitude to wavelength ratio below
A/λ . 10−1 the numerical simulations and the theoretical results are in very good agreement. For very
small waviness amplitude the JKR result for the smooth sphere is obtained

(

∣

∣W
∣

∣

pull−o f f
= 1.5

)

,

while increasing A/λ adhesion enhancement takes place up to
∣

∣W
∣

∣

pull−o f f
≈ 10 for λ† = 50. It appears

that longer wavelengths foster adhesion enhancement. For A/λ & 10−1, the pull-off force suddenly
decreases and, for larger

∣

∣W
∣

∣

pull−o f f
, decays approximately with a power law, without showing a

clear threshold for “stickiness” (complete elimination of adhesion), contrary to other recent theories on
random roughness [40,41]. It is shown that the sphere radius markedly influences the pull-off decay,
but, in the parametric region explored, it slightly affects the threshold A/λ ≃ 10−1 at which the abrupt
transition from adhesion enhancement to reduction takes place.
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Figure 10. Dimensionless pull-off force in absolute value as a function of the ratio A/λ for the four
cases λ† = [5, 20, 30, 50], R† = [50, 100, 200] and for a fixed µ = 3 (see legend). Dashed lines stand
for the pull-off force predicted by the JKR model (Equation (5)), markers for BEM numerical results,
while the dot-dashed line is a guide to the eye.

In Figure 11 we have replotted the data in Figure 10 as effective adhesion energy
wc,e f f = wc,e f f /wc versus the Johnson parameter αKLJ . Indeed, based on Kesari and Lew [21]
envelope solution, Ciavarella [24] showed that in the JKR regime the effective adhesive energy at
pull-off depends only on the Johnson parameter αKLJ , i.e.,

wc,e f f =
2
3

∣

∣W
∣

∣

pull−o f f
=

(

1 +
1√

παKLJ

)2
(24)

which is shown as a solid blue line in Figure 11. On the contrary, a competitive mechanism has been
proposed by Persson and Tosatti [13], which tends to reduce the effective adhesive energy due to
surface roughness in randomly rough surfaces. Persson and Tosatti [13] criterion reads

wc,e f f = wc
Atrue

Aapp
− Uel

Aapp
(25)

where Aapp is the apparent contact area, Atrue is the real contact area, increased due to the substrate
roughness, and Uel is the elastic strain energy stored at full contact. The real contact area Atrue can be
written as [13]

Atrue = 2π
∫

Aapp

drr

(

1 +
1
2
|∇h|2

)

(26)

= 2π
∫ aapp

0
drr

(

1 +
1
2

(

2πA

λ

)2
sin2

(

2πr

λ

)

)

(27)
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where aapp is the apparent contact radius. Dividing Equation (27) by Aapp = πa2
app, it can be derived

that for large enough aapp/λ

Atrue

Aapp
≃ 1 + π

(

A

λ

)2
. (28)

In Figure 10 we obtained the largest enhancement of the pull-off force (up to a factor 10) at
about A/λ ≃ 10−1, where Equation (28) would give Atrue/Aapp ≃ 1.03 (notice that wc,e f f =
2
3

∣

∣W
∣

∣

pull−o f f
), hence, in the following, we will neglect this contribution.

For a single scale waviness

Uel

Aapp
=

E

4 (1 − ν2)

∫

d2qqC (q) =
πE

4 (1 − ν2)

A2

λ
(29)

hence
wc,e f f = 1 − 1

2π

1
α2

KLJ

(30)

which is reported as a dot-dashed red line in Figure 11. The numerical results we obtained, plotted with
markers in Figure 11, show that at large αKLJ the numerical results we obtained closely follow
Equation (24). For smaller αKLJ , instead, wc,e f f drops suddenly and decays by further reducing αKLJ

with a strong dependence on the waviness wavelength and sphere radius. Instead, the Persson–Tosatti
energetic argument for adhesion reduction seems to give a lower bound to the effective work
of adhesion.
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Figure 11. The data showed in Figure 10 are reported here as effective adhesion energy
wc,e f f = wc,e f f /∆γ versus the αKLJ for the four cases λ† = [5, 20, 30, 50], R† = [50, 100, 200] and
for a fixed µ = 3 (see legend). The dot-dashed line stands for the reduction criterion of Persson and
Tosatti [13], the solid line for the enhancement criterion of Ciavarella [24] based on the Kesari and
Lew [21] solution of the Guduru problem and the dashed line is a guide to the eye.

5.2. Hysteresis Cycle

It is well known that in adhesive contact mechanics different loading paths can be followed in
loading and unloading a contact pair, which leads also to hysteretical energy dissipation. Here we
show how this gets affected by the waviness amplitude A by proposing two representative examples.
In Figure 12 the loading curve obtained via BEM numerical simulation is plotted as a solid red line for
µ = 4, A† = 0.4, R† = 100 and λ† = 10. On the same graph, the JKR loading curve for the smooth
sphere (black dot-dashed curve) and for the Guduru geometry (blue dashed curve, Equation (5))
are plotted. Figure 12 shows that the numerical and the theoretical curves are very close each other
and the maximum adhesive force reached is about

∣

∣W
∣

∣

pull−o f f
≃ 2 giving a certain enhancement with

respect to the smooth case. A possible loading path (in displacement control) is shown by the arrows.
The jump-in and -out instability are labeled with numbers from “1” to “6” for the loading stage and
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with letters from “a” to “f” during unloading. Looking at Figure 12 one sees the hysteretical dissipation
(proportional to the area enclosed in the hysteretical loop in Figure 12), which could be well estimated
by adopting the JKR model (Equation (5)).

 

Figure 12. The dimensionless normal load W is plotted versus −∆†/µ. The curve is obtained via BEM
numerical simulation (solid red line) for µ = 4, A† = 0.4, R† = 100 and λ† = 10. The JKR curve for a
smooth sphere (dot-dashed black line) and for the Guduru geometry (blue dashed line, Equation (5))
are also shown. Loading and unloading paths are indicated by arrows and the jump-in and -out contact
points are respectively labeled by numbers from “1” to “6” and letters from “a” to “f”.

Nevertheless, the amount of dissipation is strongly influenced by the ratio A/λ and the results
obtained by the JKR model (Equation (5)) may be strongly misleading. In Figure 13 the curve
dimensionless normal load W versus −∆†/µ obtained numerically (red solid line) is plotted for
the same parameters of Figure 12 but for A† = 3. Together with the BEM numerical results the JKR
curve for the smooth sphere (black dot-dashed line) and for the Guduru geometry (blue dashed line)
are shown. One immediately recognizes that the JKR model (blue dashed line) is very far from the
actual loading curve (solid red curve). While the sphere approaches the wavy halfspace the JKR model
predicts very large fluctuations of the normal load and relative jumps from one branch to the other
that would lead to very high energy dissipation. The BEM solution, instead, gives much smaller
undulations of the loading curve and smaller jumps-in and -out contact.
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Figure 13. The dimensionless normal load W is plotted versus −∆†/µ. The curve is obtained via BEM
numerical simulation (solid red line) for µ = 4, A† = 3, R† = 100 and λ† = 10. The JKR curve for a
smooth sphere (dot-dashed black line) and for the Guduru geometry (Equation (5)) are also shown.
Loading and unloading paths are indicated by arrows and the jump-in and -out contact points are
respectively labeled by numbers from “1” to “6” and letters from “a” to “f”.
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5.3. Adhesion Map

To clarify the effect of A, λ and µ on the pull-off force
∣

∣W
∣

∣

pull−o f f
we fixed the sphere radius

R† = 100 and change µ =
[

10−1, 5
]

and A/λ = [10−3, 100]. Figures 14 and 15 shows the contour plot
of the pull-off force respectively for λ† = 20 and λ† = 5. One immediately notices that larger adhesive
forces are reached with longer wavelengths. Figure 14 shows that adhesion enhancement happens in a
limited parameter region. For very low ratio A/λ the contact problem reduces to that of the smooth
sphere on a smooth halfspace, hence by changing the Tabor parameter from µ = 0.01 to µ = 5 one
moves from the Bradley

∣

∣W
∣

∣

pull−o f f
= 2 to the JKR solution

∣

∣W
∣

∣

pull−o f f
= 1.5. Increasing A/λ for

small Tabor parameter (µ < 10−0.6 ≈ 0.25) leads to a strong reduction of the pull-off force, as indeed
we are in the range where the rigid solution of the Guduru problem holds (cfr. Section 2, Figure 7).
Notice that keeping λ constant and increasing A/λ leads to both increasing of A† and α in Figure 7
heading to very strong reduction of the macroscopic pull-off force. Instead, if A/λ is increased at large
Tabor parameter (µ & 0.25 for λ = 20), adhesion enhancement takes place and high pull-off forces
can be reached (in Figure 14 up to

∣

∣W
∣

∣

pull−o f f
≃ 4 for µ ≃ 5). Contrary to JKR theory predictions,

further increasing of the amplitude to wavelength ratio A/λ does not lead to stronger adhesive forces,
but adhesion is destroyed by roughness.
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Figure 14. Contour plot of the dimensionless pull-off force (absolute value) as a function of
µ =

[

10−1, 5
]

and A/λ = [10−3, 100] for λ† = 20.
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and A/λ = [10−2, 100] for λ† = 5.
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6. Conclusions

In this paper we have reconsidered the Guduru adhesive contact problem. The rigid solution has
been derived, which has been shown to depend only on two parameters: the dimensionless waviness
amplitude A† and the dimensionless parameter α = AR/λ2. It has been shown that increasing A†

and α reduces the macroscopic pull-off force by orders of magnitude due to the effect of roughness.
Secondly, by using a BEM numerical code with Lennard–Jones interaction law, we have investigated
the effects of the waviness wavelength, amplitude and of the sphere Tabor parameter on the adhesion
enhancement. It has been shown that adhesion enhancement is limited to a certain region of the
plane A/λ versus µ. In particular, at low Tabor parameter increasing the ratio A/λ tends to destroy
adhesion. For large Tabor parameters increasing the ratio A/λ first increases adhesion due to the
Guduru enhancement mechanism, but later, for A/λ greater than about 10−1, the waviness amplitude
gets too large, internal cracks appear and macroscopic adhesion reduces strongly. We have shown that
in this region using the JKR model to estimate both the pull-off force and the dissipated energy by
hysteresis leads to very large errors as the hypothesis of compact contact area does not hold.

The enhancement effect is well captured by the Johnson parameter as derived by
Ciavarella–Kesari–Lew [21,24], and is much larger than the Persson–Tosatti enhancement [13] in
terms of increase of real contact area due to roughness. The Persson–Tosatti energetic argument for
adhesion reduction seems to give a lower bound to the effective work of adhesion.

The axisymmetric waviness in the Guduru contact problem is highly idealized with respect to
more common randomly fractal roughness, hence it is difficult to give reasonable estimates of the
parameters we have introduced in our model for a fractal randomly rough surface. The analysis made
is intended to shed light into the problem of adhesion enhancement with a potential application to
the development of nano- and micro-mechanical systems and of bioinspired adhesives. Experimental
measurements have been reported by Santos et al. [42], which show how echinoderms’ tube feet exploit
adhesion enhancement to increase the interfacial toughness on rough substrates. Santos et al. [42]
tried to explain the interfacial toughening accounting for an increased contact area obtained when the
echinoderm feet conforms to the rough substrate. We have found that adhesion enhancement may be
obtained also when the latter effect is negligible.

When rough surfaces are idealized by spherical caps, a very small radius of curvature is
expected at the finest scale, which suggests asperity contact takes place at very low Tabor parameters,
hence adhesion enhancement seems to be very unlikely. At present, the only viable route to adhesion
enhancement seems to be the design of an ad-hoc macroscopic roughness profile.
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Appendix A. BEM Formulation with Constant Pressure Discrete Elements

Equation (10) constitutes the nonlinear problem to be solved. A problem arises in evaluating the
integral (11) as the kernel function G (r, s) is singular in s = r. The common approach is to discretize
Equation (11) assuming that the pressure σ (s) has a simple form over a discrete element. To this end
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the simplest approach is to assume that the pressure is constant over each element. For a constant
pressure p acting over the ring c1 < r < c2 the deflection at r of a single half-space is

uz (r) =
4p

πE∗ [F (c2, r)− F (c1, r)] (A1)

where from Johnson [29]

F (c, r) =

{

cE
(

r
c

)

, r ≤ c

r
[

E
(

c
r

)

−
(

1 −
(

c
r

)2
)

K
(

c
r

)

]

, r > c
(A2)

being K (k) and E (k) respectively the complete elliptic integrals of first and second kind with
modulus k.

Assume we have discretized the surface in N elements, so that we have M = N + 1
discretization points. The deflection at point ri due to a constant pressure pj ring in between the
radii rj and rj+1 is

uz (ri) =
4pj

πE∗
[

F
(

rj+1, ri

)

− F
(

rj, ri

)]

=
1

E∗ Gij pj (A3)

Gij =
4
π

[

F
(

rj+1, ri

)

− F
(

rj, ri

)]

(A4)

where the term Gij within square brackets depends only on the nodal coordinates, hence by varying
i, j = 1, ..., M all the terms can be computed once for all.
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Abstract: Stability considerations play a central role in structural dynamics to determine states that
are robust against perturbations during the operation. Linear stability concepts, such as the complex
eigenvalue analysis, constitute the core of analysis approaches in engineering reality. However,
most stability concepts are limited to local perturbations, i.e., they can only measure a state’s
stability against small perturbations. Recently, the concept of basin stability was proposed as a
global stability concept for multi-stable systems. As multi-stability is a well-known property of a
range of nonlinear dynamical systems, this work studies the basin stability of bi-stable mechanical
oscillators that are affected and self-excited by dry friction. The results indicate how the basin stability
complements the classical binary stability concepts for quantifying how stable a state is given a set of
permissible perturbations.

Keywords: nonlinear dynamics; basin of attraction; self-excitation; bi-stability; multi-stability

1. Introduction

The dynamics of systems affected by friction are most often studied in the context of
friction-excited vibrations (FIV). Prominent examples for FIV in mechanical structures and machines
range from brake systems [1–4], clutches [5], drill strings [6] to artificial hip joints [7] and others.
FIV often arise through positive energy feedback from a friction interface with the structure,
i.e., through self-excitation [8–10]. Sub-critical Hopf bifurcations [11,12] and isolated solution
branches [13–15] are a common observation in those systems, such that bi- and multi-stable systems
have been reported numerously [14,16,17]. The computation of those nonlinear responses (periodic,
quasi-period orbits, chaotic trajectories) is a well-established field of research [18–21], mostly resulting
in the identification of complicated bifurcation diagrams [11,13,22–24]. The stability of the solutions
is usually assessed by local Lyapunov-type stability metrics [25,26]. Hence, the stability statement
is often a binary one that measures the state’s robustness against small perturbations. However,
the actual size of permissible perturbations, i.e., those for which the trajectory would still return back to
the state, is not given. In a multi-stable system configuration, the long term steady-state behavior thus
depends on the choice of initial conditions or the size of instantaneous perturbations. Once the system
enters another basin of attraction, severe jumping phenomena may occur. Typically, such jumps are
related to a change from a stable steady sliding state to high-intensity periodic vibrations or stick-slip
cycles [27–29], or from one periodic solution to another periodic solution [11].

This work investigates a rather novel technique denoted as basin stability to estimate the size of
the system’s basins of attraction in a subset of the state space. The basins’ size estimation can then be
considered a global stability metric, i.e., indicating how likely the system is to end up on one of the
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co-existing stable steady-states. Therefore, those probabilities add new insights to the rather binary
stability statements derived from local perturbation-based approaches. We study a friction oscillator
excited by a falling friction slope and a second oscillator excited through binary flutter instability.
Our results indicate that the basin stability analysis is a robust and easily applicable model-agnostic
technique. It can reveal the actual picture of the long-term behavior for a given set of perturbations,
thus augmenting classical bifurcation and stability studies. Using the basin stability analysis, some
solutions can even be ruled out if one can guarantee strict control over the instantaneous perturbations
to system trajectories or operating conditions.

2. The Concept of Basin Stability

We study nonlinear dynamic systems

ẋ = f (x, t) , x ∈ R
N (1)

with the states x (t) in the N-dimensional state space. The long-term asymptotic behavior is denoted as
attractor A [30] throughout this work. Typically, the Lyapunov spectrum Λ = [λ1, . . . , λN ] is assessed to
characterize the linear stability of a state x against small perturbations. For fixed points, the Lyapunov
exponents are equivalent to the system’s eigenvalues derived from the complex eigenvalue analysis
(CEA). The real parts of the eigenvalues indicate linear stability to a small perturbation about the fixed
point. The sizes of the real parts indicate the strength of attraction (λ < 0) or rejection (λ > 0) for
stable or unstable directions in state space, respectively. However, the eigenvalues do not encode a
piece of information about the permissible size of perturbations that are still attracted by the fixed
point. While this is not an issue for systems that feature only a single stable solution, the situation is
different for systems featuring multiple stable solutions. For these systems, local stability concepts
may have only a limited validity: a non-small perturbation of a state can result in a jump to another
attractor. Hence, global stability concepts are required to assess the size of permissible perturbations,
i.e., to characterize the basins of attraction for all solutions. The basin of attraction

B (A) =

{

x0 ∈ R
N | lim

t→∞
x (t) = A, x0 = x (t = 0)

}

(2)

denotes the subset of states that converge to the same attracting set A. The basin boundaries are
related to unstable solutions of the system which represent separatrices of the basins in state space.
Depending on the size and shape of its basin, an attractor can be more or less robust against non-small
perturbations. There are multiple ways to compute the basins of attraction, e.g., through Lyapunov
functions [31]. These methods are known for some canonical, low-dimensional, and well-studied
systems. However, they are not readily available, or straight-forward to compute, for any generic
and high-dimensional nonlinear dynamical system, such as frictional oscillators which are studied in
this work.

The basin stability proposed by Menck et al. [32,33] is a global stability concept for complex
systems that aims at measuring stability against non-small perturbations by a volume-based
probabilistic approach. Conceptually, the basin stability measures the volumetric share of all basins of
attraction in a hypervolume of the state space. For a computationally feasible solution, a distribution
ρ (x) of perturbations is drawn from a reference subset Q ⊂ R

N of the state space, representing a set of
states to which the system may be pushed to through non-small perturbations with

∫

Q ρ (x) dx = 1.
For each perturbation, the steady-state behavior of the dynamical system is obtained through
time-marching integrations. Then, the fraction of perturbed states that converged to the specific
attractor A denotes an estimate for the basin stability SB (A), i.e., [32,34]

SB (A) =
∫

κB (A) (x) ρ (x)dx, κB (A) (x) =

{

1, if x ∈ B (A)

0, otherwise
. (3)
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Here, κB denotes an indicator function that classifies a steady state solution x (t) to belong to the
attractor A. Therefore, SB (A) is an estimate for the volume share of the basin of attraction BA given
the reference subset Q ⊂ R

N sampled by ρ (x) [32,35]. Naturally, for a k-multi-stable system, the basin
stability values of all k attractors add up to unity ∑

k
i SB (Ai) = 1. The size, i.e., the number of states,

of the dynamical system to be studied by the basin stability is only limited by computational power
for the Monte Carlo simulations. As the basin stability computation can be considered a repeated
Bernoulli experiment [32], the standard error of the basin stability estimate is

e =

√

SB (1 − SB)√
n

(4)

which can be used to find a subset Q that ensures a low standard error. Recently, systems with fractal,
riddled, and intermingled basin boundaries were studied [33] indicating the robustness of the basin
stability concept. All basin stability computations in this work were obtained from the open-source
package bSTAB [36] available at https://github.com/TUHH-DYN/bSTAB/tree/v1.0.

Figure 1 displays a schematic for illustrating the practical computation of basin stability values.
A nonlinear dynamical system with two states x = [x1, x2] is studied (In fact, the system is the
single-degree-of-freedom frictional oscillator to be discussed in Section 3). The system exhibits three
solutions: A stable equilibrium position (xEP), an unstable periodic orbit (xUPO), and a stable limit
cycle (xLC). The distribution of perturbations ρ (x) is chosen such that all solutions are contained in
Q and n = 100 samples are drawn uniformly at random. The trajectories starting from nEP = 37
states in the basin BEP converge towards the equilibrium position, while nLC = 63 states are located
in the basin BLC and thus converge to the stable limit cycle. As a result, the basin stability estimates
are SB (EP) = 0.37 and SB (LC) = 0.63, respectively. Because the separatrix, which is the unstable
periodic orbit, is explicitly known for the system, the basin volumes can be determined analytically.
The exact volumetric fractions of BEP and BLC in Q are 0.3275 and 0.6725, respectively. Therefore,
the basin stability computed from n = 100 samples is a good approximation for the system at hand
(Appendix A.2 indicates that n ≈ 300 samples are required for a very close approximation of the
analytical results).

xLC

xEP

x 1

x
2

l i m t→∞ x ( t ) = xEP

l i m t→∞ x ( t ) = xLC

Q ⊂ R
N

BLC

BEPBEP

SB (E P ) = nEP/ n

SB (L C ) = nLC/ n

n randomly chosen states x

Figure 1. Schematic of the basin stability calculation. In the two-dimensional state space, two stable
attractors EP (equilibrium position) and LC (limit cycle) co-exist. The respective basins of attraction BEP

and BLC are separated by an unstable periodic orbit (indicated by the dashed line). The steady-state
behaviors of n = 100 randomly sampled states are used to estimate the volume shares of the basins of
attraction in the subset Q. The resulting basin stability estimates are SB (EP) = 0.37, SB (LC) = 0.63
for this example.
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3. Bi-Stable Oscillator with Falling Friction Slope

As a first system, we study the dynamics and the stability of a single-degree-of-freedom oscillator
mẍ + cẋ + kx = F, see Figure 2a, with velocity-dependent friction as proposed by Papangelo et al. [12].
Specifically, the friction characteristic µ (vrel) is a velocity-dependent weakening function

vrel 6= 0 : F = −Nµ (vrel) sign (vrel) , vrel = ẋ − vd

vrel = 0 : |F| < µstN

µ(vrel) = µd + (µst − µd) exp
(

−|vrel|
v0

)

(5)

featuring the static friction coefficient µ (0) = µst, the dynamic friction coefficient µ (vrel → +∞) =

µd, the reference velocity v0 and the contact normal load N. The non-dimensional form of the
equations of motion is obtained through normalization (·̃) of the quantities accordingly to the work
of Papangelo et al. [12]. The velocity-dependence introduces a dynamic instability that gives rise to
friction-induced vibrations (FIV) for 0 ≤ ṽd ≤ 1.84. Moreover, the friction nonlinearity enables the
system to exhibit a bi-stable behavior, such that a stable steady sliding state and a stable stick-slip cycle
co-exist for a range of belt velocities 1.11 ≤ ṽd ≤ 1.84, see Figure 2b. At ṽd = 1.15, the steady sliding
state loses stability at a subcritical Hopf bifurcation point. In the bi-stability regime, and depending on
the initial condition or instantaneous perturbations, the system will either end up in the low-energy
steady sliding state, or on the high-intensity stick-slip cycle. Both solutions are locally stable and
attractive, i.e., robust against small perturbations.
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N

(a)
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Figure 2. (a) single-degree-of-freedom frictional oscillator, (b) bifurcation diagram for the
non-dimensional belt velocity ṽd, and (c) phase plane for ṽd = 1.5. Stable (unstable) solutions are
indicated by solid (dashed) lines. The stable steady sliding state (blue spiral trajectory) co-exists with
the unstable periodic orbit (black dashed line) and the stable stick-slip limit cycle (red trajectory).
The non-dimensional system (·̃) is evaluated for µd = 0.5, µst = 1.0, ξ = 0.005, N = 1.0 and ṽ0 = 0.5.

For this minimal system, the basin boundaries are directly accessible through the unstable periodic
orbit (UPO). However, if this knowledge was not available, the probability of arriving on one of the two
steady states would be unknown. Figure 1 displays a sampling with n = 100 points uniform at random
from Q (x, ẋ) : [−3, 3]× [−2, 2] at ṽd = 1.5, and the resulting basin stability values SB (FP) = 0.37
and SB (LC) = 0.63. Hence, for this ρ (x), it is more likely to arrive on the high-amplitude limit cycle
solution than on the steady sliding fixed point.

To complement the bifurcation diagram and the complex eigenvalue analysis, the basin stability
of the fixed point and limit cycle solution is derived along the normalized belt velocity parameter.
In particular, at each velocity value n = 1000 initial conditions are drawn from a uniform random
distribution in Q (x, ẋ) : [0.5, 2.5] × [−2, 0], i.e., positive initial displacement and negative initial
velocity. Figure 3 depicts the eigenvalue’s real part and the basin stability. As ṽd decreases, the real
part grows until it crosses into the positive plane at ṽd = 1.15. This rather smooth behavior nicely
indicates the transition into linear instability of the fixed point solution. However, the eigenvalues at
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the exemplary points ṽd = 1.3 and ṽd = 1.7 would not allow a statement about the system’s probability
to converge to this solution instead of converging to the periodic orbit. Additionally, the eigenvalue
obviously does not indicate the existence of the competing stable periodic solution in this parameter
range. At this point the basin stability analysis comes into play: Below the Hopf bifurcation point,
all trajectories converge to the periodic orbit, hence SB (LC) = 1.0, and above the bi-stability regime
all trajectories converge to the globally stable fixed point, i.e., SB (FP) = 1.0 for ṽd > 1.84. For the
chosen subset Q, the periodic orbit is the dominating behavior in the lower parameter range of the
bi-stable regime. For increasing relative velocity the probabilities, i.e., the basin stability values, are
more balanced for arriving either on the LC or the FP. For ṽd > 1.6 the fixed point is the more probable
solution to arrive at. Therefore, the basin stability values add an important insight and complement
the binary stability statements given by the eigenvalues. Using the basin stability, it is now possible
to state how stable a solution is against arbitrary and possibly non-small perturbations. For more
realistic systems, this statement may be of even larger value than the binary stability statement given
by local metrics.

0.5

1.5

2.5
stick-slip cycle

(LC)

steady sliding (FP)

bi-stability

regime

ṽlw ≤ ṽd ≤ ṽup

Â
[/
]

stable

unstable

0

0.1

eigenvalue λ of FP

ℜ
(λ
)

0 . 8 1 . 2 1 . 6 2 2 . 4

0

0 . 5

1

ṽd[/]

S
B

FP

LC

Figure 3. Bifurcation diagram (top), real eigenvalue (middle) and basin stability (bottom) of the
single-DOF friction oscillator along the relative sliding velocity.

4. Bi-Stable Oscillator with Mode-Coupling

As a second system, we study a frictional oscillator [8,11], which (in contrast to the first system)
experiences FIV through a mode-coupling instability. The system features a main oscillating mass
that is in dry Coulomb-type frictional contact with a conveyer belt. A second mass is connected to the
main mass through a nonlinear joint element in diagonal direction, thereby geometrically coupling the
vertical and horizontal movement of the main mass. The relative sliding velocity is assumed to always
be positive, such that no stick-slip cycles can arise. For the nonlinear joint element, a cubic stiffness
nonlinearity knl is chosen [11]. The equations of motion and parameter values are given in Appendix B
and the model is displayed in Figure 4.
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Figure 4. (a) Frictional oscillator with nonlinear joint and mode-coupling instability [11]. (b) Trajectories
obtained in the reference configuration (see Appendix B) for two different initial conditions of the
horizontal displacement x (all other states were kept at 0).

Previous studies have revealed the complicated bifurcation behavior of this system, including
super- and sub-critical Hopf bifurcations as well as isolated solution branches [11,13,14]. In this study,
a variation of the horizontal stiffness kx is performed. A sub-critical Hopf bifurcation point is found at
kx = 32.3, see Figure 5a. Below, a stable limit cycle and the unstable fixed point exist. Above this value
there is a bi-stable range up to kx = 33.0 with a co-existing stable limit cycle and the stable fixed point.
The eigenvalues’ real parts in Figure 5b exhibit the classical forking behavior that is related to the
mode-coupling instability mechanism in this system. At the point of instability, one eigenvalue crosses
into the positive plane. The basin stability SB of both stable solutions is computed for n = 500 random
initial conditions drawn from Q (x, ẋ) : [0, 0.5]× [0, 0.25] (all other initial conditions are fixed to 0).
Figure 5c depicts the basin stability as a function of the horizontal stiffness. In the bi-stability range
32.3 ≤ kx ≤ 33.0 the basin stability values indicate that the limit cycle solution is the dominating one
for lower stiffness values. For larger stiffness values the fixed point solution is the most probable for
our choice of Q. Hence, within this rather short bi-stability range, a minor variation of the horizontal
stiffness value would crucially affect the probability of arriving either on the low-energy steady-sliding
state, or on the high-energy limit cycle, which may cause increased wear, audible vibrations and other
effects in realistic systems. Such kind of statement about the global stability regarding non-small
perturbations would not have been easily accessible through the bifurcation diagram or the local
stability analysis.
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Figure 5. (a) bifurcation diagram for the horizontal stiffness parameter, (b) eigenvalues’ real parts and
(c) basin stability of the fixed point and limit cycle solution. x̂ denotes the maximum amplitude of x(t)

along one vibration period. Solid and dashed lines indicate stable and unstable solutions, respectively.

These results are clearly related to the shape of the unstable periodic orbit, i.e., the separatrix
of both basins of attraction. While the qualitative basin stability values for a variation in the initial
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conditions for x would have been readable from the bifurcation diagram in Figure 5a, this task quickly
becomes complex once more degrees-of-freedom (DOFs) are considered. For example, let us consider
a reference subset Q that captures certain variations for multiple DOFs, instead of variations for a
single DOF as shown before. Figure 6 displays the basin stability values for three different choices of
Q, i.e., different variations of the range of possible initial conditions:

Q1 (x, y) : [0, 0.25]× [0, 0.5]

Q2 (x, y, ẋ, ẏ) : [0, 0.25]× [0, 0.25]× [−0.1, 0.1]× [−0.2, 0.2]

Q3 (x, y, z, ẋ, ẏ, ż) : [0, 0.25]× [0, 0.25]× [0, 0.25]× [−0.1, 0.1]× [−0.1, 0.1]× [−0.1, 0.1] .

(6)

In the first case, some initial variations in the horizontal position and large variations in the vertical
displacement of the main mass are allowed. In the second case, variations in the initial velocities are
studied, and in the third case also variations in the secondary mass’ initial conditions are considered.
Such scenarios would quickly become impractical for studying permissible perturbations, i.e., the
global stability of each solution, using bifurcation diagrams and subdividing the state space by the
unstable solutions. The concept of basin stability automates this process through the Monte Carlo
sampling, allowing for a easy-scaling and consistent estimation of the relevant basin volumes.
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Figure 6. Basin stability values in the bi-stability range for the reference sets of initial conditions Q1 (a),
Q2 (b), and Q3 (c) defined in Equation (6).

In fact, even though the three reference sets are very different in their value ranges, the resulting
basin stability analysis displayed in Figure 6 does not change qualitatively. The turning point,
i.e., the point after which the FP solution dominates over the LC solution for increasing values
of kx, changes only slightly: For Q1 this point is found at kx = 32.9, while it is kx = 32.7 and kx = 32.55
for Q2 and Q3, respectively. Hence, the basin stability is not very sensitive to the choice of Q for this
system. In a situation in which the overall qualitative behavior of the basin stability values may have
seem obvious, the quantitative evaluation would have become difficult to obtain from the bifurcation
diagrams. Especially for higher-dimensional systems and specific subset choices the basin stability
analysis represents a highly robust approach to estimate the probability of arriving on either of the
competing solutions, which we will illustrate in the next section.

5. Bi-Stable Oscillator with Isolated Periodic Solution

The third dynamical system studied in this work is a weakly damped variant of the system
proposed in the previous section and sketched in Figure 4. Here, the damping parameters are reduced
by a factor of 10 to dx = dy = dz = dlin = 0.002. This system configuration has already been studied
in [13,14] where the authors found an isolated solution branch resulting from the damping variation.
Figure 7a displays the bifurcation diagram for the horizontal stiffness kx. The fixed point solution loses
stability through a sub-critical Hopf bifurcation at kx = 32.24 to a limit cycle solution, hereafter denotes

59



Lubricants 2020, 8, 105

as LC1. Interestingly, a second stable limit cycle solution is born for kx < 29.9, which is found to be
an isolated branch [14], hereafter denoted as LC2. That is, this solution is not connected to any other
solution path. As a result, the system may jump from the fixed point solution to the first limit cycle for
32.24 ≤ kx ≤ 33.0, and then from the limit cycle to the isolated branch for kx < 29.9. Hence, within a
rather narrow parameter range, two jumping phenomena between different solutions may occur. It is,
therefore, of great interest to investigate the probability of arriving on either of those solutions for
some prescribed set of initial conditions.
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Figure 7. Bifurcation diagram for the weakly damped friction oscillator exhibiting an isolated solution
branch (a) and basin stability values (b) for all three stable solutions along the horizontal stiffness kx.
Initial conditions for each solution are given in Appendix C.

Figure 7b displays the basin stability values for both periodic orbits and the fixed point solution.
For the reference subset, we arbitrarily chose Q (x, y, z, ẋ, ẏ, ż) : [0, 10] × [0, 10] × [0, 10] × [−2, 2] ×
[−2, 2] × [−2, 2] using n = 1000 sampling points. For for the bi-stability range featuring the two
periodic solutions LC1 and LC2 (kx < 29.9) the basin stability analysis reveals that LC1 is the by
far most probable solution. A maximum of 21% of the trajectories converge to the isolated solution
branch, while the remaining trajectories converge to the first periodic orbit. Particularly interesting is
the parameter regime 27.4 ≤ kx ≤ 29.9. Here, the basin stability indicates that LC1 is globally stable,
even though the stable isola still co-exists. However, due to the choice of Q, no initial conditions were
drawn for the basin related to LC2. Hence, if the range of initial conditions and perturbations can be
quantified or limited for some specific system, the basin stability analysis can also help to rule out
jumping phenomena between co-existing solutions.

Another interesting observation is the following: the basin stability values in this specific setting
do not follow the qualitative trend of the respective amplitudes reported in Figure 7a. SB (LC1) keeps
increasing along the stiffness parameter, while the corresponding amplitude of the horizontal vibration
amplitude shows a different behavior. Theoretically, it is clear that the vibration amplitudes do not
relate to the size of the basins of attraction. However, on the first sight classical bifurcation diagrams
may suggest that one solution is more attractive if it has a larger vibration amplitude. At this point,
the basin stability represents a technique to quantify the attractiveness in a highly consistent manner.

Lastly, we discuss our previous thought on the benefits of having a robust methodical approach
to estimating the basin volumes through Monte Carlo sampling irrespective of the dynamical system
at hand (so-called model-agnostic techniques). Especially for such low-dimensional systems as shown
before, one might raise the issue of using computation-heavy sampling methods, even though the
basins of attraction are readily available once the bifurcation diagram is known. Figure 8 displays the
state space of each DOF at kx = 27, hence in a configuration where the two periodic orbits co-exists.
It becomes clear that even for this 3 DOF oscillator (6 states), the analytical calculation of the basin
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volumes can quickly become a challenge. There is no straight-forward way to computing the volumes
in the six-dimensional space from the intertwined basins separated by the unstable orbits, especially
looking at the z coordinate. Therefore, the basin stability analysis is not only relevant for systems
featuring larger number of states, but also for rather low-dimensional systems.
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Figure 8. State space of all DOFs (horizontal direction in (a), vertical direction in (b) and diagonal
direction in (c)) at kx = 27.0 for the weakly damped oscillator.

6. Conclusions

This work proposed augmenting the classical local stability analysis of friction-excited oscillators
by their basin stability. The concept of basin stability allows assigning global stability metrics to
multi-stable solutions in a highly automated manner including error estimates. For three different
friction-excited systems, we show that the knowledge of global stability with respect to a specific
set of initial conditions can provide important insights into the long-term dynamics. Particularly for
well-controlled perturbations, this approach allows estimating the probabilities of arriving on either of
multiple stable solutions, and even to rule out some steady-state behavior. As a result, we suggest
to include the basin stability analysis into the toolbox of techniques that are applied to study the
nonlinear dynamics of multi-stable systems, especially when operating conditions are well-known.
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Appendix A. Single-DOF Oscillator

Appendix A.1. Equations of Motion

Using ωn =
√

k
m , ξ = c

2
√

km
, x0 = N

k , and τ = ωnt, d
dt = ωn

d
dτ we re-write Equation (5) into

¨̃x + 2ξ ˙̃x + x̃ = F̃ (A1)

where (·̃) indicates a non-dimensional quantity.

Appendix A.2. Convergence of Basin Stability Values

The number of samples n is varied to answer the question of how many samples from Q are
required for a robust approximation of the basin stability values. Figure A1 displays the convergence
of the basin stability values for the single-DOF oscillator case and the corresponding analytical values.
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Figure A1. Effect of increasing the number of samples for estimating the basin stability values at
ṽd = 1.5. For each value n, the calculation has been repeated ten times. Mean values δ and the standard
deviation σ are reported along with the analytical values.

Appendix B. Mode-Coupling Instability Oscillator

The equations of motion are given by

Mẍ + (D + G) ẋ + (K + N) x + fnl = 0, x = [x, y, z]⊤ ,

M =







m 0 0
0 m 0
0 0 m1






, D =







dx 0 0
0 dy 0
0 0 dx






, G = 0, K =







kx −0.5kyµ 0
−0.5kyµ ky 0

0 0 kz






,

N =







0 −0.5kyµ 0
0.5kyµ 0 0

0 0 0






, Fnl = uklin + u3knl + u̇dlin, fnl =







−
√

2
2

−
√

2
2

1






Fnl

(A2)

where u is the relative displacement in the joint between the main mass and the secondary mass,
given by u = −

√
2

2 x −
√

2
2 y + z. The parameter values for the reference configuration are given by

m = m1 = 1, kx = 32.5, ky = 20, kz = 100, klin = 10, knl = 5, dx = dy = dz = dlin = 0.02, µ = 0.65.
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Appendix C. Mode-Coupling Instability Oscillator with Isolated Solutions

Compared to the system configuration given in Appendix B, the damping parameter values are
set to dx = dy = dz = dlin = 0.002. Initial values on the periodic orbits at kx = 11 for the weakly
damped system configuration read

y0 =
[

−1.1366 −4.5527 −1.2077 −0.0125 0.0722 −0.0054
]⊤

LC1

y0 =
[

5.9650 −6.6938 −4.5901 0.2163 8.6960 −6.1122
]⊤

LC2 .
(A3)
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Abstract: Modelling interface interaction with wave propagation in a medium is a fundamental
requirement for several types of application, such as structural diagnostic and quality control. In order
to study the influence of a pressure-dependent interface stiffness on the nonlinear response of contact
interfaces, two nonlinear contact laws are investigated. The study consists of a complementary
numerical and experimental analysis of nonlinear vibrational responses due to the contact interface.
The laws investigated here are based on an interface stiffness model, where the stiffness property
is described as a nonlinear function of the nominal contact pressure. The results obtained by the
proposed laws are compared with experimental results. The nonlinearity introduced by the interface
is highlighted by analysing the second harmonic contribution and the vibrational time response.
The analysis emphasizes the dependence of the system response, i.e., fundamental and second
harmonic amplitudes and frequencies, on the contact parameters and in particular on contact stiffness.
The study shows that the stiffness–pressure trend at lower pressures has a major effect on the nonlinear
response of systems with contact interfaces.

Keywords: nonlinear dynamic response; second harmonics; experiments; numerical modelling;
interface stiffness

1. Introduction

Accurate contact interface modelling requires a knowledge of interfacial parameters, including
interface contact stiffness. For many applications, characterizing and understanding the contribution
of the interface to the dynamic response of the system is critical. These include robotic applications [1],
grippers [2], micro-bearings [3], adhesive surfaces [4] and, wherever dry contact occurs between
solids [5], with specific attention to lightly loaded joints. In the case of structural diagnostic, health
monitoring and quality control of components and joints, these are based on the measurement and
interpretation of wave interaction with joint interfaces or component defects [6].

Although contacts are common in practical engineering applications, there are certain aspects, such
as sensitivity to interfacial parameters, which are not fully understood and modelled. Such sensitivity
causes uncertainty in system performances and reliability predictions.
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One of the main methods used to model a contact interface is to use a spring and a viscous damper
in parallel. Contact stiffness can be obtained from analytical contact models, for instance, the Herzian
contact model for spherical contacts [7]. In the case of rough surfaces in contact, the Greenwood and
Williamson [8] statistical model and its successive reformulations [6,9–11] have been used to obtain
overall mean stiffness. Experimental values have been extracted using indirect methods [12] or system
identification methods [13].

Recently, Jin et al. [14] used a quasi-static model developed within the GW framework, in which
all the microscopic geometric features of contact interfaces are extracted directly from high-resolution
scanning electron microscopy (SEM) images of real fatigue cracks.

However, the development of increasingly sophisticated numerical models with contact interfaces
means that more reliable and fine contact parameters need to be defined. Contact stiffness has been
proved to be sensitive to contact conditions such as contact pressure [15–17], third body rheology [18]
and the true area of contact [19].

In more detail, the force is supported by surface asperities. As the force increases, more asperities
come into contact, while each asperity undergoes flattening deformation. In [20], three contact states
can be identified: total sliding, partial slip and contact loss. In the case of partial slip, roughness has
been described by Aleshin [20] using the Method of Memory Diagrams (MMD), a model developed to
describe partial slip for rough surfaces in contact. The MMD model was then extended to take into
account the other two regimes of total sliding and contact loss [21,22]. The contact interface has a further
nonlinear behaviour due to asymmetry between traction [23,24] and compression configurations.
During compression, the change in the contact interface configuration, as a function of contact pressure,
also results in nonlinearity in the interface response.

When these nonlinearities are activated by the interaction between propagating waves and the
contact interface, higher-order harmonics are then generated [25]. While these effects have been well
studied in the ultrasonic field [26], they also represent a new area of investigation from a vibrational
point of view [9]. In particular, the generation and features of second harmonics [27] deserve to be
further analysed and exploited.

In this context, the aim of this study is to present a numerical and experimental analysis to provide
a basic insight into the nonlinear vibrational response of a contact interface, as a basis for evaluating
nonlinear contact through stress-dependent stiffness in compression.

To this end, a numerical model with contact interfaces was developed, considering different
nonlinear contact models, with different stress-dependent stiffnesses. A specific contact law is proposed,
including a specific evolution of the stiffness for low pressures, and compared to a classical power law,
fitting experimental values.

An experimental campaign was then conducted on a specific test bench in order to investigate
the nonlinear response of the system, tested under a contact pressure of up to 1 MPa. By comparing
experimental and numerical nonlinear responses, the sensitivity of the system response to the contact
interface stiffness trend at low pressures was highlighted, where experimental data are missing in
the literature.

2. Materials and Methods

2.1. Description of the Approach

The study combines numerical and experimental analyses to provide basic insights into the
nonlinear dynamic response of a system with contact interfaces, under propagating waves due to an
impulsive-type force.

The nonlinear response of an experimental test bench (Figure 1) to an impulsive force is then
modelled in a one-dimensional framework, including two rough contact interfaces with nonlinear
contact stiffness.
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Figure 1. Experimental set-up.

The tested contact stiffness laws are first identified over a large contact pressure range, using
both the experimental tests and results from the literature [15,18,28]. However, there is a lack, both
experimentally and from the literature, of assessments of the stiffness trend within the lower pressure
range (less than 0.14 MPa). By comparing the nonlinear time responses of the experimental system
with the numerical results obtained by different stiffness–pressure curves, this gap is discussed.

The analysis was conducted in terms of the evolution of the amplitude of the fundamental and
second harmonics and their frequencies, as a function of the force amplitude. In fact, due to the
nonlinearity of the contact in compression, higher harmonics [26] appear in the spectrum of the
vibrational response.

The numerical results derived from a specific nonlinear law, reconstructed from the available
experimental data, are compared to other contact laws in the literature, in particular with respect to
constant linear contact stiffness [29] and the power–law relation between stiffness and pressure [15].

In this article, the system remains in compression for all the configurations throughout the
simulations. The “clapping” effect, which leads to a further strong nonlinearity [30] and denotes
intermittent loss of contact at the interface, is not studied in this work.

2.2. Experimental Set-up

The set-up used for all the experimental measurements is presented in Figure 1. The system was
designed to estimate the contact stiffness between two rough interfaces of different sample materials,
within a range of average contact pressure up to 1 MPa, in both sticking and sliding conditions [18].
The system consists of a sample in contact with a massive steel disc and loaded by the dead weights on
a guide bar, as shown in Figure 1.

The guide is maintained by an air bearing, to enable it to oscillate and not introduce further
stiffness and friction in the vertical direction.

The tested sample consists of aluminium (Al). The material properties and surface roughness are
presented in Table 1.
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Table 1. The tested aluminium sample.

Individual Sample Parameters Interface Parameter

Length (m) Contacting surface (m2) Young modulus (GPa) Density (kgm−3) Roughness (µm) Ra
0.015 1.15 × 10−4 71 2710 1

An impulsive-type force is applied by an instrumented impact hammer (Brüel and Kjær type
8202), while the dynamic response of the system is recorded by an accelerometer placed on top of the
guide bar.

All tests presented in the paper are performed on the system, with the overall weight of the guide
bar on top of the sample, generating a static equilibrium pressure σ0 = 0.14 MPa.

Measurements of the force and acceleration of the system are recorded using the acquisition
system (SIRIUS–DEWESOFT), based on DualCoreADC® technology with dual 24-bit delta-sigma
analogue to digital converter (ADC). An anti-aliasing filter on each analogue channel achieves a 160 dB
dynamic range in time and frequency domains with 200 kHz sampling rate per channel. Data are
post-processed by Matlab.

We assume that there is no interface separation between the two contact surfaces during the tests.
This assumption is supported by the numerical simulations for the levels of impulsive excitation used.

2.3. D Numerical Model

A one-dimensional numerical model of the experimental set-up was implemented (Figure 2)
consisting of the guide bar Ω1 of the experimental set-up and the tested aluminium sample Ω2,
modelled by unidimensional deformable bodies.

 

 

 

 
 

 

𝜎/ = 𝐹𝑆𝜎/
 

∂ 𝑢∂t − 𝑐 ∂ u𝜕x + ℎ ∂u∂t = 𝑔𝑢
ξ= 𝜔 ξ

Figure 2. Diagram (a) and numerical model (b) of the set-up for contact stiffness experiments.

Two contacting interfaces are considered: the first between the guide bar Ω1 and the tested sample
Ω2, and the second between the tested sample and the frame, considered as infinitely rigid in the
model (tribometer disc). The model parameters are provided in Table 2. Note that, in reality, the
cross-sections of the guide bar Ω1 and aluminium sample Ω2 are different. Numerically, an equivalent
1D-model with the same cross-section S2 is considered, corresponding to the contact surface S2.
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Table 2. Geometry and material parameters of Ω1 and Ω2 in the numerical model.

Length L (m) Mass m (Kg) Young’s Modulus E (GPa) Density (kgm−3) Contacting Surface S2 (m2)

Guide bar (Ω1) 0.229 1.61 71 2710 1.15 × 10−4

Sample (Ω2) 0.015 0.00467 71 2710 1.15 × 10−4

For both interfaces, a nonlinear contact law is introduced. This law includes a nonlinear stiffness
function of the contact pressure.

Once a force is applied to the top of the system, longitudinal waves propagate along the vertical
x-axis and excite the longitudinal modes of the system, including the mass-spring mode, where
the mass is the guide bar and the spring is due to the stiffness in series of the sample and the two
contact interfaces.

The numerical modelling assumes the following hypotheses:

• The dynamic of interest is in the vertical direction, i.e., the numerical model can be reduced to one
dimension (1D) (Figure 2b);

• The massive disc in the set-up can be considered as rigid within the frequency range of interest.
• Throughout the analysis, the interface remains in contact. Thus, no dissipation occurs at the

interface and damping at the contact is disregarded;
• The impact of the hammer can be modelled by introducing the respective force F into the boundary

conditions, measured at the tip of the instrumented hammer:

σ/x = 0 =
F

S2

where σ/x = 0 is the stress at the upper side of the guide bar.

a. Governing equations

In the absence of elastic wave, the system is assumed to be free at the upper part and subject only
to its own weight. In a first static step, the equilibrium position of the system can be calculated.

For the longitudinal waves propagating along the x-direction (longitudinal), in both the guide bar
and the aluminum sample, the equation of motion is the following

∂2u

∂t2 − c2 ∂
2u
∂x2 + h

∂u
∂t

= g (1)

where u (x,t) is the displacement in the x-direction at time t, from the non-deformed configuration, c is
the wave velocity, g is the gravity acceleration, h is the viscosity factor and t denotes the time.

The viscosity factor h is constant in the model and was determined from the damping factor
ξ = h

2mω0
, where ω0 is the angular frequency of interest. The damping factor value ξ = 0.035 was

identified experimentally by logarithm decrement at the frequency of interest, which is the frequency
of the corresponding mass-spring mode. In fact, the main mode of vibration, the focus of the analysis,
is the response of the guide mass to the stiffness obtained by the bulk stiffness of the sample in series
with the stiffness of the two contact interfaces (Figure 2).

The model is discretized in both time and space using the Euler scheme [31].
The unidimensional wave Equation (1) has been discretized using a second order centered finite

difference (FD) scheme, explicit in time, as follows

um+1
k
−2um

k
+um−1

k

δt2 −c2 um
k+1−2um

k
+um

k−1
δx2 + h

um+1
k
−um

k
δt

= g , ∀kǫ[2, n1 − 1] ∪ [n1 + 2, n1 + n2 − 1]
(2)

where the subscript k indicates the node number and m indicates the time step number, with δx and δt
corresponding, respectively, to the space and time discretisation steps. n1 and n2 are, respectively, the
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total number of nodes contained in solids Ω1 and Ω2. This second-order general scheme is conditionally
stable under the classic Courant–Friedrichs–Lewy (CFL) condition:

cδt

δx
< 1 (3)

Equation (2) can be re-written to obtain the displacement at the next time step m + 1 for each
internal node, as follows

um+1
k

= um
k

(

2(1− α1) + α2

1 + α2

)

+
α1

1 + α2

(

um
k+1 + um

k−1

)

+
1

1 + α2

(

gdt2
− um−1

k

)

(4)

∀kǫ[2, n1 − 1] ∪ [n1 + 2, n1 + n2 − 1]

where α1 = c2δt2

δx2 and α2 = h. dt

At contact interfaces (at x = xC1 between the two solids Ω1 and Ω2 and x = xC2 between Ω2 and
the frame), the contact stresses σ(x = xC1,t) and σ(x = xC2,t) has the following expression in compression

σ(xCi, t) = K(σ(xCi, t))∆uCi (5)

where K denotes the nonlinear stiffness of the contact interface depending on the contact stress and
∆uCi the gap distance at interfaces. i indicates either the contact between the two solids Ω1 and Ω2

(i = 1) or the contact between Ω2 and the frame (i = 2).
In order to evaluate properly the solution at both contact interfaces (σ(xCi, t), K(σ(xCi, t)) and

∆uCi), it is necessary to solve Equation (5), and thus apply an implicite scheme (finite difference),
using the relation between the contact pressure and the gap distance extracted from the implemented
nonlinear relation between the stiffness and the pressure, presented in what follows.

b. Contact law

Contact between two interfaces is generally modelled by a relationship between the interfacial gap
and the contact pressure. The contact laws can be extracted analytically from various statistical models
of rough surfaces. Drinkwater [11] and Baltazar et al. [32] attempted to link the roughness topography
to the contact stiffness, transmission/reflexion coefficients, measured ultrasonically, and frequency.

However, it is generally difficult to take into account all the detailed information about third
body [33] features, i.e., local deformations and interactions within a real interface and roughness [34,35].

As an alternative approach, the desired function can be modelled as a nonlinear contact stiffness,
with respect to the applied contact pressure. When two rough surfaces are pressed together, the
stiffness Kc per unit of area of the interface is given by the rate of change in nominal pressure σ with
the average interfacial gap. Contact stiffness Kc can be determined in general from [9]

Kc = −
∂σ

∂u
(6)

where σ is the nominal contact pressure and u is the average interfacial gap.
In the literature, for higher contact pressures (greater than 0.14 MPa, which is the lowest value

of pressure used for the experimental estimation of contact stiffness, see Table 2), contact stiffness is
often assumed to follow a power law [15]. This latter model gives the relationshi between the contact
stiffness and the applied pressure as follows

Kc = −
∂σ

∂u
= −Cσm (7)

where C and m are positive constants.
In this study, the contact stiffness of the tested samples was previously determined by experimental

measurements, as reported in [18]. From preliminary dynamic tests at different contact pressures, the
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contact stiffness between 0.14 and 1 MPa could be estimated. Table 3 shows the results for contact
stiffness as a function of the average contact pressure for the aluminum–aluminum interface, with a
surface roughness of Ra = 1 µm.

Table 3. Normal contact stiffness as a function of the average contact pressure in sticking condition [15].

Aluminium Ra = 1 µm

Contact pressure [MPa] P = 0.14 P = 0.35 P = 0.57 P = 1
Kc [Pa/m] 1.15 × 1012 1.75 × 1012 1.63 × 1012 2.46 × 1012

The data highlight how the contact stiffness increases with the rise in the average contact pressure.
The contact stiffness values range from 1.15 × 1012 to 2.46 × 1012 Pa/m when the contact pressure
increases from 0.14 to 1 MPa.

Even if a contact interface is expected to show hysteresis, with a slightly different stiffness
during loading and unloading phases, the authors considered this effect negligible, or at least not
measurable. The complexity of an interface, including third body particles, chemical bounds and
oxides, leads to the need for an overall approximation, which is here represented by the stiffness
parameter. Of course, such approximation can have different implications, as a function of the wished
phenomena to be investigated.

These experimental results are useful for defining the numerical contact stiffness within the
tested range of contact pressures. Nevertheless, for implementing the contact law in the numerical
simulations, it is necessary to define the stiffness for the whole pressure range [0; 1 MPa], in which the
contact pressure will vary.

A first approximation within this pressure range was obtained by approximating the experimental
measurements by a power law function, as in Equation (3). The least squares method allows a
good agreement with the experimental data (Table 3), which are available from pressure 0.14 MPa.
This agreement is obtained for C = 1.81 × 1010 Pa/m and m = 0.35. The power law (“PL” in Figure 3a)
is thus defined to approximate the experimental points (Table 3).

 

 
 

 Table 3

 

Figure 3. Normal contact stiffness as a function of contact pressure in compression conditions.
(a) Experimental results (red cross); Modified PL (blue triangle); PL (black circle). (b) Modified PL (blue
triangle) and experimental data from the literature [6] (black square)

While this power law has been built with consideration to the measurements and the literature
dealing with higher pressures, the approximation of the trend at lower pressures is completely arbitrary.
In order to model the contact stiffness trend for lower contact pressures, other experimental observations
in the literature [6] have been exploited. These experimental results show the existence of an inflexion
point for low-contact pressures (Figure 3b). From experimental results (Table 3) and the literature [6]
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it is then possible to propose a different overall contact stiffness trend, as a function of the contact
pressure, including the inflection point between 0.14 and 0 MPa (“Modified PL” in Figure 3.

Finally, the stiffness laws, which will be investigated in the following, are:

• The “PL” law, corresponding to the best approximation of experimental data (Table 3) by a
power law.

• The “Modified PL”, defined piecewise. It is equal to “PL” for pressures greater than 0.2 MPa, and
for lower pressures it accounts for the inflexion point reported in [6].

The relationship between the contact pressure and the interfacial gap can then be extracted from
the implemented nonlinear relation between stiffness and pressure. For example, the results derived
from the “Modified PL” are shown in Figure 4, highlighting the nonlinear response of the interface.

 

 Table 3

 

 
Figure 4. The corresponding contact pressure-interfacial gap trend for the ‘Modified PL’.

In the following, the experimental nonlinear response of the system to an impulsive excitation
force will be compared with the nonlinear response obtained by the simulations with the different laws
analysed. The comparison will allow for a discussion of the different laws considered to simulate the
effective interface stiffness nonlinearity.

3. Experimental and Numerical Comparison

3.1. Dynamic Response of the Contact System

The aim of this section is to compare the numerical and experimental dynamic responses of the
system (Figure 2), in time and frequency. For the sake of conciseness, the comparison of the time
signals with the experiments is first reported only for the “Modified PL”; in the following section, the
general results obtained by both laws will be compared with the experiments.

Experimentally, an impulsive force was applied to the upper side of the guide by an instrumented
hammer (PCB Piezotronics-086C03). The case presented hereafter corresponds to an impulsive force
of 32 N. The applied force and the acceleration are measured and shown in Figure 5a,b, respectively.
For the numerical model, the measured experimental force has been interpolated (see Figure 5a) and
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introduced as a boundary condition in the numerical simulation. The model presented in Section 2,
with the “Modified PL”, has been used to simulate the system response to the force.

 

 
Figure 5. (a) Force signals over time, for a single force; (b) Acceleration signals over time obtained with
‘Modified PL’. Test performed with average contact force 32 N.

Figure 5b shows the respective experimental and numerical accelerations, due to the dynamic
system response.

Experimental and numerical responses show good agreement in amplitude and time evolution.
Figure 6 shows the Frequency Response Functions (FRF) [26], which provide the response of a system
to an external excitation in the frequency domain. They are calculated from both numerical and
experimental signals, to characterize the dynamics of the system. The numerical curves shown in
Figure 6 correspond to the one obtained with a constant interface stiffness of 8.5 × 1011 Pa/m (dashed
line) and the one obtained with the “Modified PL” presented in Figure 3. The equivalent constant
stiffness of 8.5 × 1011 Pa/m was calculated to obtain the same frequency for the first harmonics of the
“Modified PL”, to highlight its nonlinear contribution to the system response.
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Figure 6. FRFs of the system (receptance, displacement/force). Numerical with nonlinear stiffness,
numerical with constant stiffness with Kc = 8.5 × 1011 Pa/m and experimental. Test performed with
average contact force 32 N.

Only the fundamental (f~800 Hz) and second harmonics (f~1600 Hz) of the mass-spring mode are
investigated here. Their results are well decoupled from the rest of the system dynamics.

The numerical spectra, obtained with either constant or nonlinear stiffness, show a peak around
frequency f1 = 800 Hz, corresponding to the fundamental frequency of the system. This is the natural
frequency of the mass-spring mode, where the mass is the guide, while the spring is the series of the
two interfaces and the sample stiffness (Figure 2). The comparison shows good agreement between
the numerical and experimental results in terms of frequency and width of the peaks, i.e., damping.
The amplitude of the fundamental is well simulated as well, with a percentage error less than 10%.

Unlike the spectra obtained with the constant stiffness, those based on nonlinear stiffness show
a peak around frequency f2 = 2 f1 = 1600 Hz, which is also recovered experimentally. This peak
represents the second harmonic and correlates with the experimental second harmonic.

The presence of the second harmonic in the spectra is due to the nonlinear nature of the contact
stiffness. This is confirmed by the absence of this harmonic in the numerical results obtained with the
constant contact stiffness (Figure 6 dashed line), and thus the occurrence of the second harmonic in
experiments can be directly correlated with the nonlinearity of the interface stiffness.

3.2. Nonlinear Response of the Interface

In order to discuss the proposed trends of numerical contact stiffness and evaluate it by comparison
with experiments, a spectrum analysis of the acceleration signals is reported in this section, as a function
of the amplitude of the impulsive force. It is assumed that an increase in the force, and then in the
system response, increases the nonlinear contribution of the interface to the system response.
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A comparison of experimental and numerical FRFs, derived from the “Modified PL”, is carried
out for different impulsive force amplitudes, ranging from 9 to 32 N (Figure 7).

 

 

Figure 7. Frequency response functions (FRFs) of the system (receptance, displacement/force).
(a) Experimental frequency response; (b) Numerical frequency response plotted with “Modified
PL”. Test performed with average contact force ranging from 9 to 32 N.

When increasing the force amplitude, the overall average stiffness at the interface decreases,
leading to a decrease in mode frequency (Figure 7). The nonlinearity of the interface stiffness is
observable by the appearance of the second harmonic (frequency from 1400 to 1800 Hz, depending on
the amplitude of the impulsive force) in the system response.

In the following, the numerical results obtained with the different contact laws, as presented in
Figure 3, are compared with the experimental results in terms of the magnitude of the fundamental
and second harmonics, as well as in terms of the frequency of the fundamental, as a function of the
applied force.

Figure 8 shows the frequency evolution of the fundamental harmonic as a function of the amplitude
of the applied force. As observed in the experimental results, a decrease in frequency was obtained in
the numerical simulations with the implemented “Modified PL”. This decrease is due to the decrease
in the effective average stiffness when the oscillation at the contact increases. Experimentally, this trend
has already been observed in [18]. It is worth mentioning that the decrease in frequency when the force
amplitude increases (Figure 8) is also recovered by the “PL”, but with a lower slope. A slight decrease
in frequency (2%) can be observed in Figure 8 for the “PL”, which is lower than for the experimental
one (5%). Conversely, the “Modified PL” introduces a greater decrease in terms of stiffness, particularly
for low contact pressures, as shown in Figure 9.
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Figure 8. Frequency of the fundamental, as a function of the force amplitude [N]. Experimental
measurements (red cross), PL (black circle) and Modified PL (blue triangle).

 

  

 

Figure 9. Numerical results for maximum force F = 32 N (red) and minimum force F = 9 N (black).
(a) Numerical contact pressure as a function of time; (b) Numerical stiffness as a function of contact
pressure. Test performed on aluminium with Modified PL.

It should also be noted that, while the trend of the frequency is correctly simulated by the proposed
laws, an error in the absolute value of the frequency, around 13%, is observed. This is due to the
non-infinite stiffness of the counterpart (tribometer disc), unlike the infinite stiffness in the simulation,
which implies a lower experimental frequency. Thanks to the numerical results, the decrease in the
frequency of the fundamental can be shown to be related to a decrease in the mean value of contact
stiffness, with the increase in the applied force

Kavr =
1
T

T
∑

t = 0

∣

∣

∣Kc(t)
∣

∣

∣ (8)
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where Kc is the stiffness and T is the time of simulation.
In order to highlight the difference in average stiffness according to the force amplitude, Figure 9a

shows the system response to two different force amplitudes, using the “Modified PL”. An applied
force of 9 N generates a maximum contact pressure of −0.078 MPa, resulting in an average contact
stiffness of 0.4 × 1012 Pa/m, while a force of 32 N generates a maximum contact pressure of −0.025 MPa
and an average contact stiffness of 0.12 × 1012 Pa/m.

Figure 10 shows the evolution of average contact stiffness Kavr for the “Modified PL” and the
“PL”. It confirms the decrease in average stiffness when the applied force is increased, which explains
the decrease in frequency (Figure 7).

 

𝐾 = 1T |𝐾 (𝑡)| 
𝐾 T

−
−

 

Figure 10. Average contact stiffness as a function of the applied forces. The test performed with average
contact force ranging from 9 to 32 N, with Modified PL (blue triangle) and PL (black circle).

Figure 11 shows the evolution of the amplitude of the fundamental, as a function of the applied
force, for the different contact laws.

Considering the mean value of the fundamental harmonic over the considered range of
pressure, the “Modified PL” produces amplitudes closer to the experimental ones for this set of
experimental measurements.

Nevertheless, as shown in Figure 11, for both of the implemented laws, the slight experimental
increase in the amplitude of the fundamental (A1), with respect to the force amplitude, is not retrieved
numerically. As mentioned above, this could be explained by the different boundary conditions
between the numerical and experimental systems. In fact, the experimental set-up is not completely
rigid, due to the deformability of the bench components (disc, shaft, bearings, etc.). Despite using
a massive disc to isolate the dynamics of the investigated system (air guide and samples in contact)
from the rest of the set-up as much as possible, a slight error is introduced by the residual flexibility of
the system.

Finally, Figure 12 shows the ratio (A2/A1) of the amplitudes of the second harmonic (A2) to the
fundamental (A1), obtained both experimentally and numerically, for both contact laws. It can be noted
that the amplitude of the second harmonic is normalized by the amplitude of the fundamental, which
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is dependent on the energy introduced by the external force at this frequency, in order to highlight the
nonlinear contribution originated by the contact interface.

 

 
Figure 11. Magnitude of the FRF of the fundamental A1, as a function of the force amplitude.
Comparison of the contact laws. Experimental measurements (red cross), Modified PL (blue triangle),
and PL (black circle).

 

 

Figure 12. Ratio of magnitudes of the FRF of the second harmonic (A2) to fundamental (A1), as a
function of the force amplitude. Experimental measurements (red cross), Modified PL (blue triangle)
and PL (black circle).
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The trends of the A2/A1 ratio, calculated for all the tested contact laws, are similar to the
experimental trend. In general, an increase in the amplitude of the applied force (x axis in Figure 12),
and consequently a higher amplitude of the system vibrational response, generates a greater nonlinear
contribution, both numerically and experimentally. In fact, a larger oscillation of the contact pressure
(especially within the low-contact pressure range, absolute value [0; 0.14 MPa]) generates a more
nonlinear response by the system, which leads to a higher distortion of the signals and then a higher
second harmonic contribution. The higher amplitude observed for the second harmonic of the
“Modified PL” is due to the higher nonlinearity of the stiffness around the equilibrium position, with
respect to the “PL”.

The overall comparison, based on the analysis reported above, highlights the fact that the
contact interface response depends heavily on the stiffness trend at lower pressures (less than 1 MPa).
This stiffness trend at lower pressures introduced by the “Modified PL” increases the nonlinearity of
the response (second harmonic amplitude) and decreases the average stiffness, i.e., the frequency of
the main harmonics.

These results demonstrate that the stiffness trend at lower pressures plays a vital role and should
be clearly identified, as it has a huge effect on the nonlinear response of mechanical systems with
contact interfaces.

4. Conclusions

The nonlinear normal stiffness of contact interfaces, due to surface roughness, is a topic of major
interest in several areas of application. A consequence of such nonlinearity is the appearance of
second harmonic terms, either in acoustic wave propagation through the interface or in the dynamic
vibrational response of systems with contact interfaces.

While contact stiffness nonlinearity at higher pressures has been widely discussed in the literature,
and generally approximated by a power law, the contact stiffness trend at lower pressures has not
been clearly identified. In this paper, a classical power law, fitted from experimental data at high
contact pressures, is compared with a modified power law implementing an inflection point at lower
pressures, where experimental data are not available. The stiffness-pressure trend within the higher
contact pressure range was approximated from experimental measurements performed on a dedicated
test bench. Within the lower contact pressure range, data from the literature were used to assume the
different possible trends.

The nonlinear response of the system, obtained experimentally when exciting a dedicated system
with an impulsive force, was analysed and compared with the nonlinear response of the numerical
model that was developed, with the contact interface modelled by the different contact laws.

From the numerical simulations it was possible to identify the effect of the contact nonlinearity on
the dynamic response of the system. The decrease in the average contact stiffness with the increase in the
impulsive force explains the appearance of the second harmonics and the decrease in the fundamental
frequency. In addition, the amplitude of the second harmonic was simulated and explained by the
stiffness trend at the contact interface during the system oscillations.

In the nonlinear system response, the key role of the contact stiffness trend within the lower
pressure range is highlighted, demonstrating the need to identify such parameters with dedicated
experimental tests. Nonlinear contact laws and their effect on the dynamics of a system ought to be
further investigated by implementing the contact laws considered here in finite element codes, in order
to consider more realistic structures and interfaces.
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Abstract: Friction-induced vibrations are a significant problem in various engineering applications,
while dynamic vibration absorbers are an economical and effective tool for suppressing various kinds
of vibrations. In this study, the archetypal mass-on-moving-belt model with an attached dynamic
vibration absorber was considered. By adopting an analytical procedure, the optimal tuning of the
absorber’s parameters was defined. Furthermore, the bifurcations occurring at the loss of stability were
analytically investigated; this analysis illustrated that a properly chosen nonlinearity in the absorber’s
stiffness permits controlling the supercritical or subcritical character of the bifurcation. However, a
numerical analysis of the system’s dynamics, despite confirming the analytical results, also illustrated
that the system’s global behavior is only slightly affected by the bifurcation character. Indeed, a dynamic
vibration absorber possessing a perfectly linear restoring force function seems to provide the optimal
performance; namely, it minimizes the velocity range for which stick–slip oscillations exists.

Keywords: friction-induced vibrations; mass-on-moving-belt; dynamic vibration absorber; tuned
mass damper; passive vibrations mitigation

1. Introduction

Friction-induced vibrations (FIVs) are a peculiar type of oscillations generated by the friction
acting between two bodies in relative motion. They consist of either the successions of stick and
slip phases between the two bodies [1], or of quasi-harmonic oscillations having an approximately
sinusoidal displacement–time relation [2,3]. Although for some specific applications these kinds
of vibrations are intentionally generated, such in the case of violin strings [4] and singing wine
glasses [5], typically they are seen as a detrimental phenomenon, as in the cases of brake squeal [6] or
earthquakes [7,8].

Several methods exist for suppressing FIVs. One possibility is to reduce the friction force at the
interface utilizing a lubricant. This method is efficient if friction is not required for the device to operate,
such as in the case of hinge squeaking; however, it cannot be adopted for brake squeal mitigation,
where high friction is strictly required. Most brake squeal suppression methods consist of increasing
the system damping, which is obtained with various techniques [6,9]. Experimental observations also
illustrated that isolating the natural frequencies of the brake system’s components at low frequencies
tends to reduce the occurrence of audible brake squeal [10]; however, in many cases, this strategy is
not effective [11]. For active methods for suppressing FIV, Cunefare and Graf [12] proposed adopting
a dither exciting the system at non-audible frequencies, which can suppress brake squeal. Papangelo
and Ciavarella [13] proposed to mitigate FIVs by normal load variation, for which they provided a
closed-form solution.
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The dynamic vibration absorber (DVA) is a practical tool for suppressing undesired vibrations
in several engineering applications. Its classical design [14] consists of a mass attached to the host
structure through a spring and a damper. By tuning its natural frequency in correspondence of
the frequency to be damped, it is able to dynamically interact with the host structure dissipating
vibration energy. It is successfully employed in several engineering fields for the suppression of
various kinds of vibrations, such as flutter instabilities [15,16], rolling motions in ships [17], helicopter
rotor oscillations [18] and machine tool vibrations [19,20]. Although DVAs are a mature technology,
which was first proposed more than one hundred years ago [17], to the authors’ knowledge, there are
only a few and relatively recent studies addressing its implementation to suppress FIVs. Popp and
Rudolph [21] numerically and experimentally analyzed the performance of a DVA for FIV suppression;
by utilizing a single-degree-of-freedom (DoF) primary system, they illustrated its beneficial effect.
Chatterjee [22] studied the stability properties of an undamped DVA attached to a two-DoF primary
system. Very recently, Niknam and Farhang [23] proposed a study similar to that of Chatterjee [22],
where they also provided some numerical simulations of the full system, missing in [22]. Despite the
promising results obtained in [21–23], a clear tuning strategy of the DVA’s parameters for maximizing
its performance is still missing. This paper aims to fill this gap by providing a precise tuning of the
absorber parameters for optimizing stability properties and studying the behavior of the host system
with the attached DVA while stability is lost.

The rest of the paper is organized as follows. In Section 2, the mechanical model, consisting of
the host mass-on-moving-belt system and the attached DVA, is introduced. In Section 3, the stability
analysis of the host system, without and with the DVA, is performed, providing explicit equations for
the optimal tuning of the absorber parameters. In Sections 4 and 5, the bifurcations occurring at the
loss of stability of the host system, without and with absorber, are analytically studied. Furthermore,
the effect of the addition of a cubic term in the absorber’s restoring force is analytically investigated;
analytical results are integrated by numerical simulation, illustrating the system’s behavior at high
amplitudes. In Section 6, conclusions about the benefits and limitations of the DVA are presented.

2. Mechanical Model

2.1. Primary System

The primary system considered in this study is the classical mass-on-moving-belt model, which is
an archetypal system for studying FIVs [1,4,21]. As shown in Figure 1, this single-DoF system consists
of a mass m1, a linear spring k1 and a linear damper c1. The mass of the system is in contact with the
belt, which moves at a constant driving speed v, while the friction coefficient µ(vrel) of the contact is a
function of the relative velocity vrel = v − ẋ1.

✻✶

✻✷

−✻✸

(a)

m1k1

c1

v

FN

x1

µ(vrel)

(b)

m1Fk1

Fc1

FN

x1

ẋ1

ẍ1

FN

FR

Figure 1. (a) The host system without absorber; and (b) free body diagram of the host system.

Figure 1b illustrates the free body diagram (FBD) of the host system. The forces acting upon the
lumped mass m1 are the normal forces FN that cancel each other; the damping and spring forces Fc1 and
Fk1, respectively; and the friction force FR. (For the represented FBD, it is assumed that vrel ≥ 0.) Based
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on Newton’s second law of motion and considering that FR = µ (vrel) FN, Fc1 = c1 ẋ1 and Fk1 = k1x1,
we obtain that the second order differential equation describing the motion of the one DoF system is

m1 ẍ1 + c1 ẋ1 + k1x1 = FR , (1)

with
{

FR = µ (vrel) FN vrel 6= 0
|FR| ≤ µsFN vrel = 0 ,

(2)

where the overdot indicates derivation with respect to the time t. The system is in stick condition
when the relative velocity is zero (vrel = 0). In this case, the friction force is smaller or equal to µsFN,
where µs is the static friction. In sliding condition (vrel 6= 0), the direction of the friction force FR

depends on the sign of the relative velocity vrel, which is included in the mathematical formulation
of µ (vrel). Additional details about the friction coefficient utilized are provided in Section 2.3. Let us
introduce the following expressions

ζ1 =
c1

2
√

m1k1
; ωn1 =

√

k1

m1
; x0 =

FN

k1
; τ = ωn1t . (3)

By dividing Equation (1) by the mass m1, applying the expressions from Equation (3) and dividing
it by ω2

n1, we obtain

x′′1 + 2ζ1x′1 + x1 =
FR

k1
, (4)

where prime ′ indicates derivation with respect to the dimensionless time τ. Then, introducing the
dimensionless displacement x̃1 = x1/x0, the system is eventually reduced to

x̃′′1 + 2ζ1 x̃′1 + x̃1 = F̃R , (5)

where F̃R = FR/FN.

2.2. Mechanical Model of the Host System with the Absorber

We now attach a DVA to the host system. The basis of the model is the same as the one mentioned
in the previous subsection. The only additional element is the absorber mass m2, which is attached to
the primary system through a spring and a linear damper. The schematic depiction of this two-DoF
system is provided in Figure 2.

✻✹

✻✺

✻✻

✻✼

✻✽

✻✾

m1k1

c1

v

FN

x1

µ(vrel)

m2k2, knl2

c2

x2

Figure 2. The host system with the attached DVA.

The absorber’s spring encompasses a linear term and a cubic term. The differential equations
describing the dynamics of the system are

85



Lubricants 2020, 8, 100

m1 ẍ1 + c1 ẋ1 + k1x1 + c2 (ẋ1 − ẋ2) + k2 (x1 − x2) + knl2 (x1 − x2)
3 = FR

m2 ẍ2 + c2 (ẋ2 − ẋ1) + k2 (x2 − x1) + knl2 (x2 − x1)
3 = 0 ,

(6)

where k2 and knl2 are the linear and cubic coefficients of the absorber stiffness, respectively, while c2 is
the linear coefficient of the absorber damping. Let us introduce the following expressions

ζ2 =
c2

2
√

m2k2
; ωn2 =

√

k2

m2
; ε =

m2

m1
; γ =

ωn2

ωn1
. (7)

By diving Equation (6) by m1, applying the expressions from (7) and (3), dividing by ω2
n1 and

utilizing the dimensionless time τ and dimensionless displacements x̃1 and x̃2 = x2/x0, we obtain

x̃′′1 + 2ζ1 x̃′1 + x̃1 + 2εζ2γ
(

x̃′1 − x̃′2
)

+ εγ2 (x̃1 − x̃2) + εκnl2 (x̃1 − x̃2)
3 = F̃R

εx̃′′2 + 2εζ2γ
(

x̃′2 − x̃′1
)

+ εγ2 (x̃2 − x̃1) + εκnl2 (x̃2 − x̃1)
3 = 0 ,

(8)

where κnl2 = knl2x2
0/ (k1ε). A variable change is performed, where x̃3 = x̃1 − x̃2 (relative displacement

of m2), hence Equation (8) transforms into

x̃′′1 + 2ζ1 x̃′1 + x̃1 + 2εζ2γx̃′3 + εγ2 x̃3 + εκnl2 x̃3
3 = F̃R

ε
(

(

x̃′′1 − x̃′′3
)

− 2ζ2γx̃′3 − γ2 x̃3 − κnl2 x̃3
3

)

= 0 .
(9)

2.3. Friction Force

The applied friction law is described by an exponential decaying function, as done for instance
in [1], i.e.,

µ(vrel) =






µd + (µs − µd) e

−
|vrel|

ṽ0






sgn (vrel) , (10)

where the relative velocity is vrel = v − x̃′1. The values assumed by µ for a range of relative velocities
for µs = 1, µd = 0.5 and v0 = 0.5 are represented in Figure 3. The values for the friction law adopted
in the present study are the same utilized in [1]. Nevertheless, as illustrated below, the optimization of
the absorber parameters does not strictly depend on the considered friction law.

- 1.5 - 1.0 - 0.5 0.0 0.5 1.0 1.5

- 1.0

- 0.5

0.0

0.5

1.0

vrel

µ
(v

re
l)

Figure 3. The weakening friction law with µs = 1, µd = 0.5, v0 = 0.5.
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3. Linear Stability Analysis

We now aim at analyzing the system’s behavior for small perturbations around the equilibrium.
Thus, we linearize it around its trivial solution and we study the stability of this trivial solution. The
analysis is performed for both the systems, with and without DVA, in order to assess the beneficial
effects of the DVA.

3.1. Linear Stability of the Host System without the DVA

We first linearize Equation (5) around its equilibrium point x1e = µ(vrel = v), obtaining

z′′1 − 2ψz′1 + z1 = 0 , (11)

where z1 = x1e + x̃1 and 2ψ = ∂µ/∂z′1
∣

∣

z′1=0 − 2ζ1. Considering the friction law adopted, we have that

∂µ

∂z′1

∣

∣

∣

z′1=0
=

µs − µd

v0
e−

v
v0 , (12)

(valid for v > 0), which is the slope of the friction force coefficient at the belt velocity v.
Equation (11) corresponds to a linear oscillator, whose trivial solution is asymptotically stable if

and only if ψ < 0. According to the friction law utilized, and considering that ψ is a monotonically
decreasing function of v, the trivial solution is stable for

v > vh,cr = v0 ln
(

µs − µd
2v0ζ1

)

. (13)

This result is well-known and better discussed, for instance, in [1]. The practical consequences
are that, if the belt moves at a speed lower than vh,cr, the equilibrium of the system is unstable and
stick–slip oscillations occur. More details about these stick–slip oscillations are provided below.

3.2. Linear Stability of the Host System with DVA

To study the stability of the system with the DVA, we linearize Equation (9) around the equilibrium
x̃1 = x1e and x̃3 = 0. By reformulating Equation (9) in explicit form with respect to x̃′′1 and x̃′′3 and by
utilizing the variables and parameters introduced in the previous subsection, we obtain











z′1
z′2
z′3
z′4











=











0 0 1 0
0 0 0 1
−1 −γ2ε 2ψ −2εζ2γ

−1 −γ2(ε + 1) 2ψ −2(ε + 1)γζ2





















z1

z2

z3

z4











= Az , (14)

where z1 = x1e + x̃1, z2 = x3, z3 = z′1 and z4 = z′2.
We analyze the characteristic exponents of the system to determine the stability. The characteristic

polynomial is
p(λ) = det (A − λI) = 0 . (15)

The characteristic polynomial is in the form of

p(λ) = a0λ4 + a1λ3 + a2λ2 + a3λ + a4 = 0 (a0 > 0) . (16)

The stability is determined based on the Liénard–Chipart conditions (LCC) [24]. For the polynomial
p(λ) to have all roots with negative real parts, it is necessary and sufficient that the coefficients of
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the polynomial are all positive (ai > 0, i = 1, . . . , 4) and that the determinant inequalities ∆1 > 0 and
∆3 > 0 (Hurwitz determinantal inequalities) are verified, which in our case means

a0 = 1 > 0 , (17)

a1 = 2 (γ (1 + ε) ζ2 − ψ) > 0 ⇐⇒ ψ < (1 + ε) γζ2 , (18)

a2 = 1 + γ (γ (1 + ε)− 4ζ2ψ) > 0 ⇐⇒ ψ <
1 + γ2 (1 + ε)

4γζ2
, (19)

a3 = 2γ (ζ2 − γψ) > 0 ⇐⇒ ψ <
ζ2

γ
, (20)

a4 = γ2
> 0 , (21)

∆1 = a1 = 2γ (1 + ε) ζ2 − 2ψ > 0 (Already present in (18)) , (22)

∆3 = a1a2a3 − a0a2
3 − a2

1a4 = −4γ
(

γ4(ε + 1)2ζ2ψ − γ3ψ2
(

4(ε + 1)ζ2
2 + ε

)

+ 2γ2ζ2ψ
(

2(ε + 1)ζ2
2 + 2ψ2 − 1

)

−γζ2
2

(

ε + 4ψ2
)

+ ζ2ψ
)

> 0 . (23)

3.2.1. Analytical Optimal Solution

Considering the stability analysis performed in the previous section, we aim at finding the
parameter values of the absorber which maximize the stable region. The linear system in Equation
(14) has the same mathematical form as the one studied in [25]. Thus, we can follow the same steps in
order to optimize the absorber.

First, we look at the curves where the coefficients and the Hurwitz determinants are zeros; these
are the boundaries where certain roots change. At certain boundaries, the stable/unstable transition
takes place. Following the steps discussed in [25], we can define specific points on these curves, which
helps us find the optimal parameters. Figure 4 shows the stability regions for different values of ζ2;
the boundary curves of the LCC are also depicted. The gray shaded region is the stable region; we
can observe that the stability boundary is not at a constant value of ψ as it is the case for the host
system without the DVA; instead, it is a function of γ, with a pronounced peak for γ ≈ 1. This is
an expected feature, considering that the DVA usually needs to be tuned at a frequency close to the
natural frequency of the primary system [14]. For different values of ζ2, the maximum value of ψ also
changes, thus we need to find the optimal combination of (ζ2, γ) such that the value of ψ generating
instabilities is maximized. For the optimization, the mass ratio ε is assumed constant; however, the
results of the analysis show that larger values of ε increase the stable region.
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✽✽

✽✾
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Figure 4. Stability diagrams for different values of ζ2 and ε = 0.05: (a) ζ2 = 0.07; (b) ζ2 =

1/2
√

ε/ (1 + ε) = 0.109109; and (c) ζ2 = 0.13.

As we can see in Figure 4a, the intersection of the curves a1 = ∆1 = 0 and a3 = 0 defines a
point that we denote with C. Its coordinates in the (ψ, γ) plane are C=

(

ζ2
√

1 + ε, 1/
√

1 + ε
)

. For low
values of ζ2, Point C marks the maximal value of ψ providing stability, which we call ψ∗. Increasing
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the value of ζ2, Figure 4c illustrates that Point C does not identify any more ψ∗ and that the stability
boundary is defined by Equation ∆3 = 0. Nevertheless, also for large damping ζ2, the value of γ which
maximizes ψ∗ is very close to the γ coordinate of Point C. Therefore, we define Point P as the point of
the curve ∆3 = 0 having the same γ coordinate as C. Substituting the γ coordinate of C, γ = 1/

√
1 + ε,

into ∆3 = 0, we obtain Point P =
(

ε/
(

4ζ2
√

1 + ε
)

, 1/
√

1 + ε
)

.
Since Points C and (approximately) P alternatively mark ψ∗, depending on the value of the

absorber damping ζ2, by choosing ζ2 such that P and C coincide, we can maximize ψ∗. Imposing
equality between the ψ coordinates of C and P, we attain

ζ2
√

1 + ε =
ε

(

4
√

1 + εζ2
) , (24)

therefore, ψ∗ is maximized for

γ = γopt =
1√

1 + ε
and ζ2 = ζ2opt =

1
2

√

ε

1 + ε
, (25)

and the corresponding maximal value of ψ∗ is

ψmax =

√
ε

2
. (26)

Accordingly, if γ = γopt and ζ2 = ζ2opt, the system is stable if 2ψ <

√
ε, or, in other words, if

µs − µd
v0

e−
v

v0 − 2ζ1 <

√
ε . (27)

Considering that ψ is a monotonically decreasing function of v, the equilibrium of the system is
stable if

v > vcr = v0 log

(

µs − µd

v0
(√

ε + 2ζ1
)

)

. (28)

The stability chart corresponding to this case is illustrated in Figure 4b. We remark that the
optimal tuning proposed here does not strictly depend on the friction law considered, which could be
modeled with alternative functions without varying γopt and ζ2opt. This represent a clear advantage in
the case of real engineering applications.

3.2.2. Numerical Validation

The optimization procedure utilized in the previous section is based on a heuristic approach,
which does not prove that γopt and ζ2opt provide the maximal possible value of ψ∗. Therefore, its
validity should be verified numerically. The numerical analysis is performed by directly computing
eigenvalues of matrix A on a grid of the (ζ2, γ, ψ) space for a fixed ε value (ε = 0.05) and identifying
the couple of values ζ2, γ which provides the maximal ψ∗. After several trials, the analysis is finally
performed on the grid described in Table 1.

Table 1. Parameter grid for the optimum search.

Parameter min max Step

ζ2 0.1 0.11 10−5

γ 0.97589 0.97591 10−6

ψ 0.1124 0.1126 10−5

This analysis provided the optimal values for ζ2 and γ, which are indicated in Table 2 and directly
compared with the optimal values obtained analytically.
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Table 2. Comparison of numerical and analytical results.

Parameter Numerical Analytical Relative Error [%]

ζ2 0.10977 0.109109 0.605867 [%]
γ 0.975899 0.975900 0.000109945 [%]
ψ 0.11247 0.111803 0.596226 [%]

vcr 1.36678 1.36883 0.364409 [%]

Although numerical and analytical optimal parameters do not coincide, their difference is minimal
and negligible for most engineering applications. In particular, the optimal γ value is practically the
same in both cases. The critical velocity, computed utilizing the parameter values indicated in Table 3,
has a difference of less than 0.4% in the two cases. We remark that the difference between numerical and
analytical computation is not related to the inaccuracy of stability estimation through the LCC, which
exactly predicts an equilibrium’s stability, but to the heuristic approach utilized for the optimization.

Table 3. Numerical input data.

µs µd v0 ε ζ1

1 0.5 0.5 0.05 0.05

Figure 5, illustrating the curve ∆3 = 0 for various values of ζ2, enables us to understand the
reason for the difference between the results obtained with the numerical and analytical approach.
The blue line in the figure corresponds to the analytical optimization, while the green line to the
numerical one. The yellow and red curves refer to values of ζ2 slightly higher and lower than the
optimal ones, respectively. The inaccuracy of the analytical procedure is due to the fact that the peak
of the ∆3 = 0 curve does not exactly lie on Point P (which has a fixed γ value and it is not represented
in the figure). However, considering the minimal difference found and the practical compactness of
Equations (24) and (25), these will be utilized in the continuation of the paper.

γ = 0.9759

ζ2 = 0.109109
ζ2 = 0.10977
ζ2 = 0.1101
ζ2 = 0.10865

0.1110 0.1115 0.1120 0.1125 0.1130 0.1135

0.9757

0.9758

0.9759

0.9760

0.9761

ψ

γ

Figure 5. Vanishing loop of the ∆3 = 0 curve. The blue line was obtained utilizing the optimal damping
as defined by the analytical procedure ζ2 = ζ2opt, the green line corresponds to the optimal solution
obtained by the numerical procedure and the yellow and red lines are obtained for ζ2 values slightly
larger and smaller, respectively, than ζ2opt.
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3.3. Evaluation of the Absorber’s Performance

We now aim at evaluating the performance of the DVA by performing various comparison
between the system with and without DVA. As mentioned above, the critical velocities for both
cases are

vh,cr = v0 ln
(

µs − µd
2v0ζ1

)

, (29)

vcr = v0 ln

(

µs − µd

v0
(√

ε + 2ζ1
)

)

. (30)

Considering the characteristics of a logarithm function, we can state that, if the argument
becomes 1, the logarithm function yields 0. Thus, there is a certain parameter set for which the critical
velocity becomes 0 (inherent stability). We define ζ1,cr as the critical primary damping parameter, for
which the critical velocity becomes 0. To obtain ζ1,cr, we solve the arguments of the logarithm functions
for 1; these yield

µs − µd
2v0ζ1h,cr

= 1 −→ ζ1h,cr =
µs − µd

2v0
, (31)

µs − µd

v0
(√

ε + 2ζ1,cr
) = 1 −→ ζ1,cr =

µs − µd − v0
√

ε

2v0
. (32)

Utilizing values in Table 3, the numerical values for the critical primary damping are

ζ1h,cr = 0.5 , (33)

ζ1,cr = 0.388197 . (34)

This shows that the application of an optimally tuned DVA with a mass of only 5% of the host
system mass enables to reduce the critical primary damping of 22%.

Considering, instead, the critical velocity as a base of comparison, we define the improvement
factor ϕ such that

ϕ :=
ṽh,cr − ṽcr

ṽh,cr
× 100% . (35)

The critical velocities for both cases and the improvement factor are plotted against the varying
ζ1 in Figure 6, utilizing the parameter values in Table 3. We can observe that the difference in critical
velocity is more significant for smaller values of ζ1, i.e., for a slightly damped host system. We also
notice that, if the host system is completely undamped, then the critical velocity is undefined, meaning
that the equilibrium is always unstable. For any value of the host system damping ζ1, the improvement
factor is almost always above 50%.

Let us also observe what happens if we vary the value of the mass ratio ε. Similar to before,
the critical velocities for both systems and the improvement factor curve are illustrated in Figure 7.
The parameter values are those indicated in Table 3. The critical velocity of the host system is
constant because it does not depend on ε; however, for the system with the DVA, the critical velocity
monotonously decreases with ε. Utilizing the parameter values in Table 3, the critical velocities for both
the host system and the system with DVA are vh,cr = 1.151 and vcr = 0.5641, hence the improvement
provided by the DVA is of ϕ = 51%.
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Figure 6. Comparison of host system with and without DVA with varying ζ1, other parameters as in
Table 3: (a) critical velocities; and (b) improvement curve.
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Figure 7. Comparison of host system with and without DVA with varying ε: (a) critical velocities; and
(b) improvement curve.

4. Bifurcation Analysis of the Host System without the DVA

The analysis performed in Section 3 refers to the system linearized around its equilibrium.
Therefore, it is able to describe its dynamics only in the vicinity of the equilibrium, while phenomena
occurring when the stability is lost are overlooked. Additionally, it provides no information about the
stable equilibrium’s robustness if the system is subject to non-small perturbations. To investigate the
system behavior at the loss of stability and correctly evaluate the DVA performance, we reintroduce the
nonlinear terms and analytically perform a bifurcation analysis of the system without and with DVA.

Considering the system in Equation (5), we first center the system around its equilibrium point
x1e by introducing the variable z1 = x1e + x̃1, and then we expand it in Taylor series up to the third
order, obtaining

[

z′1
z′3

]

=

[

0 1

−1 µd−µs

v0
e−

v
v0 − 2ζ1

] [

z1

z3

]

+





0

−
(

µd−µs

2v2
0

e−
v

v0

)

z2
3 −

(

µd−µs

6v3
0

e−
v

v0

)

z3
3



 = Ahzh + bh . (36)

For v ≈ vh,cr, matrix Ah has complex conjugate eigenvalues λ1,2h = α1h ± iω1h and eigenvectors
s1 = s̄2, which are reduced to

λ1h = i, λ2h = −i, s1 =

[

−i
1

]

, s2 =

[

i
1

]

(37)

92



Lubricants 2020, 8, 100

for v = vh,cr.
We then define the transformation matrix

Th =
[

Re (s2) Im (s2)
] ∣

∣

∣

v=vh,cr
, (38)

we apply the transformation z = Thyh and we pre-multiply Equation (36) by T−1
h , leading to

y′
h = T−1

h AhThyh + T−1
h bh = Whyh + b̃h , (39)

where

Wh =

[

α1h(v) −1
1 α1h(v)

]

and b̃h =





−
(

µd−µs

2v2
0

e−
v

v0

)

y2
2 −

(

µd−µs

6v3
0

e−
v

v0

)

y3
2

0



 . (40)

For v = vh,cr, α1h = 0, α1h is kept as a generic function of v, since α1h is the critical term causing
the instability. The system in Equation (39) is in the so-called Jordan normal form.

By performing several transformations, namely transformation in complex form, near-identity
transformation and transformation in polar coordinates, the bifurcation can be characterized through
its normal form

r′ = α1h(v)r + δhr3 , (41)

where

δh =
e−

v
v0 (µs − µd)

16v3
0

. (42)

Details of this standard procedure can be found in [26]. Non-zero real equilibrium solutions of
Equation (41) correspond to periodic motion of the system in Equation (5). Linearizing α1h(v) around
v = vh,cr, we obtain

r′ = r
(

α∗1h
(

v − vh,cr
)

+ δhr2
)

, where α∗1h =
dα1h
dv

∣

∣

∣

v=vh,cr
= −e−

v
v0

µs − µd

2v2
0

, (43)

which has solutions

r = rh0 = 0 and r = r∗h =

√

−α∗1h

(

v − vh,cr
)

δh
= 2

√

2v0
(

v − vh,cr
)

. (44)

The trivial solution rh0 exists for any value v and it is stable for v > vh,cr. Differently, r∗h is real
only if the argument of the square root in Equation (44) is non-negative, which occurs for v > vh,cr.
Since µs > µd, in all relevant cases δ is positive (see Equation (42)), which, as clearly explained in
[26], means that the bifurcation is subcritical. This implies that r∗h corresponds to unstable solutions of
Equation (41). This result is in accordance with [1].

A practical consequence of the subcritical character of the bifurcation is that the system, even
within the stable region of the equilibrium (v > vh,cr), can experience large oscillations. If the system,
while in equilibrium, is subject to a sufficiently large perturbation, which makes it cross the unstable
periodic solution in the phase space, it will leave its basin of attraction and it will reach another
attractor, which in this case consists of stick–slip oscillations.

The bifurcation diagram in Figure 8a clearly illustrates this scenario. The dashed line indicates a
branch of unstable periodic solutions generated at the bifurcation (this branch was obtained through
time reverse numerical simulations). The solid line, instead, marks the branch of stick–slip oscillation.
The thin solid red line represents the branch of unstable periodic solutions obtained from the analytical
computation. We remark on the excellent agreement of the analytically computed solution with the
numerical one at low amplitudes. For v ∈ [1.15, 1.83], the system presents two stable solutions, the
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trivial one and a stick–slip periodic solution, and an unstable periodic solution, as illustrated in Figure
8b for v = 1.3. Depending on the initial conditions, the system will either converge towards the
trivial solution (red curve in Figure 8c) or will undergo stick–slip oscillations (blue curve in Figure 8c).
Numerical solutions were computed utilizing the switch model proposed in [4].
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Figure 8. (a) bifurcation diagram for the host system without DVA; the thin red line marks analytical
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Figure 8. (a) Bifurcation diagram for the host system without DVA; the thin red line marks analytical
solutions, black lines numerical ones and dashed lines the numerical unstable solutions. (b) Steady
state solutions of the system for v = 1.3; solid line is the stable solution and dashed line is the unstable
solution. (c) Time series of the system leading to the steady state solutions represented in (b) with
initial conditions zh = [1.367, 0]T (blue line) and zh = [1.36, 0]T (red line). Other parameter values are
as in Table 3.

5. Bifurcation Analysis of the Host System with the DVA

To evaluate the DVA performance when stability is lost, we analyze the bifurcation behavior
of the system with an attached DVA. The analysis is performed assuming that γ and ζ2 are tuned
approximately according to Equation (25). An analysis of the eigenvalues of matrix A illustrates that
at the loss of stability, if γ and ζ2 are tuned approximately according to Equation (25), a couple of
complex conjugate eigenvalues leaves the left-hand side of the complex plane, meaning that their real
parts become positive. This scenario corresponds to the occurrence of a Hopf bifurcation. We also
notice that, if ζ2 ≤ ζ2opt and γ = γopt, not one, but two couples of complex conjugate eigenvalues
leave the left-hand side of the complex plane. Referring to the stability chart in Figure 4a, the entire
unstable region matrix A has only one couple of eigenvalues with positive real part, except in the
loop delimited by Points C and P, where all four eigenvalues have positive real part. This scenario
corresponds to a Hopf–Hopf (or double Hopf) bifurcation. In the following, the case of a single Hopf
bifurcation is analyzed.

The first step of the analysis consists of transforming the system in Equation (9) into first-order
form, similar to Equation (14), but including nonlinear terms up to the third order, which leads to
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(45)

In the vicinity of the loss of stability, A has two couples of complex conjugate eigenvalues
λ1,2 = α1 ± iω1 and λ3,4 = α2 ± iω2. To decouple the linear part of the system, we define the
transformation matrix

T =
[

Re (s1) Im (s1) Re (s3) Im (s3)
]

, (46)

where s1 and s3 are two of the eigenvectors of A, and we apply the transformation z = Ty, obtaining

ẏ = T−1 Ay + T−1b = Wy + b̃ , (47)
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where

W =











α1 ω1 0 0
−ω1 α1 0 0

0 0 α2 ω2

0 0 −ω2 α2











. (48)

For the sake of brevity, the explicit formulation of b̃ is omitted here.
In the case of a single Hopf bifurcation, only α1 becomes positive at the loss of stability, while

α2 remains negative. Therefore, only the first two equations of Equations (47) are linearly related to
the bifurcation, while y3 and y4 have minor local effect at the bifurcation. Next, we aim at reducing
the dynamics of the system to the so-called center manifold, which is a two-dimensional surface
tangent at the bifurcation point to the subspace spanned by the two eigenvectors s1 and s2 related
to the bifurcation. To do so, we approximate y3 and y4 by y3 = η320y2

1 + η311y1y2 + η302y2
2 and

y4 = η420y2
1 + η411y1y2 + η402y2

2, reducing the system to

y1 = α1y1 + ω1y2 + ∑
j+k=2,3

ajky
j
1yk

2 + h.o.t.

y2 = −ω1y1 + α1y2 + ∑
j+k=2,3

bjky
j
1yk

2 + h.o.t. ,
(49)

where j and k are non-negative integers (more details on this procedure can be found in [26]) and h.o.t.
stands for higher order terms.

The system in Equation (49) has the same form as Equation (39); therefore, exactly the same steps
can be performed to reduce the system to its normal form, that is

r′ = α1(v)r + δr3 , (50)

where [26]

δ =
1
8

(

1
ω1

((a20 + a02) (−a11 + b20 − b02) + (b20 + b02) (a20 − a02 + b11)) + (3a30 + a12 + b21 + 3b03)

)

. (51)

Imposing ε = 0.05, γ = γopt and ζ2 = 1.05 ζ2opt, we obtain

δ = 0.00474 + 0.68 knl2 . (52)

Proceeding as done for the host system without DVA, we have that the non-trivial solutions of
Equation (50) is given by

r = r∗ =

√

−α∗1 (v − vcr)

δ
, (53)

where α∗1 = dα1/dv|v = vcr. We notice that δ is positive if the DVA is linear (knl2 = 0), which means that
also in this case the bifurcation is subcritical, and it generates unstable periodic solutions. Analyzing
other values of ζ2 and ε, we verified that the subcritical characteristic persists for a relatively large
parameter value range. The corresponding bifurcation diagram is illustrated in Figure 9a. Comparing
Figures 9a and 8a, we notice that, although the linear DVA does not change the characteristic of the
bifurcation, the advantages in terms of vibrations suppression persist also in the nonlinear range. In
fact, for the considered parameter values, in the host system without DVA, stick–slip oscillations exist
for v ∈ (0, 1.83], while, with the addition of the absorber, they are limited to the range v ∈ (0, 0.768].
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Figure 9. Bifurcation diagrams for the host system with the DVA for parameter values as in Table
3, γ = γopt and ζ2 = ζ2opt: (a) knl2 = 0, (b) knl2 = −0.01; and (c) knl2 = 0.01. Solid lines are stable
solutions, dashed lines are unstable solutions and thin red lines are analytical solutions.

Equation (52) suggests that, if knl2 < −0.00697, δ becomes negative, making therefore the
bifurcation supercritical. This scenario is confirmed by the bifurcation diagram depicted in Figure 9b,
for knl2 = −0.01. Although at first sight it seems that the bifurcation is subcritical, the inset illustrates
that the bifurcation is indeed supercritical; however, the branch of periodic solutions bends rapidly
to the right in correspondence of a fold bifurcation, making the overall scenario similar to the case
of knl2 = 0. The figure confirms the correctness of the analytical computation; nevertheless, it also
points out that the performed local analysis is unable to capture the global behavior of the system,
which is not qualitatively affected by the variation of the nonlinear characteristic of the DVA’s spring.
Furthermore, we notice that the addition of the softening nonlinear spring enlarges the bistable range,
making stick–slip oscillations exist up to v < 0.86, instead of 0.768 as in the case of knl2 = 0.

Figure 9c illustrates the bifurcation diagram obtained for a hardening absorber’s spring
(knl2 = 0.01). In this case, the range of existence of stick–slip oscillations is further enlarged, persisting
up to v < 1.035. We also remark that increasing the value of knl2 above 0.01 or decreasing it below
−0.01 provided only worse performance than those illustrated in Figure 9. This result suggests that
any low order nonlinearity of the absorber’s stiffness is detrimental concerning the DVA effectiveness.
This finding is somehow surprising, considering that in similar applications the addition of a properly
tuned nonlinear term in the DVA’s stiffness provided some advantages [20,25,27].

Regarding Figure 9b, we notice that the branch of stick–slip oscillations presents two folds for
v ≈ 0.48. However, an analysis of the system’s steady state solutions before and after the folds did not
reveal any particular detail relevant from an engineering point of view; therefore, the phenomenon
was not analyzed in further detail. We also remark that, in Figure 9b,c, the branches of stable and
unstable solutions do not encounter each other at a well defined point, as happens in Figure 8a,
for instance. This is probably related to the fact that the branches of unstable solutions in Figure 9
were obtained adopting the shooting method (employing MatCont [28], a MATLAB-based toolbox for
numerical continuation) of the system smoothed assuming that vrel is always positive. This assumption
makes the considered system unable to exhibit stick–slip oscillations, but keeps it equivalent to the
original system for v > z3. In contrast, the stable branches were obtained from direct numerical
simulations of the full system. Therefore, inaccuracies of the smoothed system in the proximity of the
onset of stick–slip motions are possible.

As mentioned at the beginning of this section, for ζ2 < ζ2opt and γ = γopt, the system undergoes
a Hopf–Hopf bifurcation. However, acknowledging the fact that the bifurcation analysis seems to be
an inefficient tool for investigating the post-bifurcation behavior of the system, which is dominated
by large amplitude oscillations, and considering that the analysis of such a bifurcation requires a
significant analytical effort, the detailed investigation of this case is omitted in this study.

6. Conclusions

In this study, the problem of suppressing FIVs through a DVA was addressed. Possibly the
simplest system exhibiting FIVs was considered, i.e., the mass-on-moving-belt system, to which a
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classical DVA was attached. The optimal tuning of the absorber parameters was defined through an
analytical procedure, which enabled us to reduce the critical velocity by approximately 50%, with an
additional mass of only 5% of the primary system’s mass.

The post-bifurcation behavior analysis illustrated that, although a linear DVA is unable to change
the bifurcation character at the loss of stability, it can still significantly reduce the extent of the bistable
region. Globally, the area of existence of stick–slip oscillations is reduced by 58%, with a DVA mass
of only 5%. The bifurcation analysis proved that it is possible to change the bifurcation character if a
small softening term is included in the absorber. However, this has only a local beneficial effect, while,
globally, it enlarges the region of existence of stick–slip motions. The performance also worsens if an
additional hardening term is introduced, suggesting that the spring characteristic should be maintained
as linear as possible. Large order nonlinearities, such as non-smoothness, might have beneficial effects;
nevertheless, their analysis was not addressed in this study, and it is left for future developments. Other
possible future developments of the present study include the analysis of the Hopf–Hopf bifurcation
occurring at the loss of stability for ζ2 < ζ2opt and the analysis of the performance of the DVA if the
primary system has two DoF, encompassing, therefore, coupling instabilities as well [22].
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Abstract: In the production and gathering process of coal gas, the complex composition of the coal
gas, harsh environments, the complex medium, and high content of solid particles in slurry cause
the equipment malfunctions and even failure because of erosion and corrosion. In the present study,
COMSOL multi-physics finite element simulation software is used to simulate the erosion–corrosion
behaviors of elbow in key chemical equipments. The electrochemical corrosion, solid particle
erosion, chemical reaction, and turbulent flow are coupled together. The particle count method is
proposed to clarify the erosion phenomenon. The simulation results show that particles with high
turbulent intensity hit the wall of elbow directly, which forms a slanted elliptical erosion zone on the
extrados surface at 40◦–50◦. The chemical reaction in turbulence has a difference in the concentration
distribution of substances, and this phenomenon leads to different magnitudes of the corrosion
current densities in the tube. Moreover, 1/6 released particles hit the extrados surface of the elbow.
These findings are beneficial to understand the erosion–corrosion phenomena and design the elbow
in key chemical equipment.

Keywords: elbow erosion; turbulence flow; gas-solid flow; corrosion; numerical simulation

1. Introduction

Erosion-corrosion is a comprehensive type of the failure process including the mechanical and
electrochemical action [1]. The erosion–corrosion phenomena exist in many industries; however,
especially in the chemical industry, serious accidents and economic losses occur easily because of
the harsh working environments, corrosion, and other reasons. In 2016, an explosion caused by the
leakage of the oil pipeline in the southern Gulf of Mexico’s National Oil Company caused serious
casualties and economic losses. Most pipelines of the coal chemical industry are made of carbon
steel, which are seriously corroded by the working and environmental medium during operation [2].
For the erosion–corrosion problems, many researchers have conducted simulation studies. However,
researchers performed only CFD simulation analysis, and the velocity vector of the flow filed is used
to characterize the serious position of erosion [3]. In these researches, there were no comprehensive
simulated erosion failure processes, such as electrochemical corrosion through current density or mass
loss per unit area. Based on CFD model, the researchers have further simulated the failure process of
particle erosion without electrochemical corrosion and obtained the trajectory of the particles hitting
the wall [4]. Mass loss per unit area and the quantities of particles hitting the wall of elbow have
not yet been obtained. Zeng et al. [5] have simulated the corrosion current density distribution of
electrochemistry without the erosion and chemical reaction and acquired the galvanic current density.
An erosion–corrosion simulation model involving the erosion, electrochemical corrosion, and chemical
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reaction under the turbulent flow condition has been rarely reported. The reason may be that the
CFD analysis involves a difficult process and CFD coupling erosion or electrochemical corrosion is
also difficult to develop. The corrosion module in COMSOL Multiphysics features built-in interfaces,
features, and examples for modeling and analyzing these different types of corrosion. The chemical
reaction of steel and fluid is simulated by chemical corrosion module, which allows us to simulate
all electrochemical corrosion processes. A large amount of information can be obtained, including
electrochemical reactions, potentials in electrolytes and metal structures, homogeneous chemical
reactions, and unique phenomena in the corrosion process. The output of such an analysis is the
localized current density, which is used to calculate the average corrosion rate of any component over
a given period of time. It is also possible to observe the impact of environmental variables. Simulation
analysis can assist in the identification of corrosion-related problems.

The aim is to simulate the erosion-corrosion behaviors of elbow involving the erosion of particles,
electrochemical corrosions of the dissolved iron and hydrogen evolution, turbulence and chemical
reactions of carbonic acid ionization simultaneously in the present paper. The complex situations
in tube are simplified to gas-solid two-phase flow with the chemical reactions and electrochemical
reactions, and the gas is a mixture of syngas and carbon dioxide. The Finnie’s erosion model is
proposed to analyze the erosion of sulfur particles eroding wall through the probability of the quantities
of particles and mass loss per unit area. It is expected to obtain the turbulence characteristics,
substance concentration distribution, electrochemical corrosion current density, the quantities of
particles striking the wall and mass loss per unit area. The turbulent characteristics of gas in elbow
and the erosion failure process of particles hitting the elbow wall are simulated under turbulence
condition. The effect of turbulence on the substance concentration distribution and the substance
concentration distribution on the electrochemical corrosion process of hydrogen evolution reaction and
iron dissolution reaction are investigated systemically. Finally, the mechanism of different physical
and chemical fields on the key parts of high temperature and pressure pipeline during operation
is investigated, and the simulation model of the corrosion under the multi-field coupling actions is
built. The stress, temperature, and corrosion cracks of the key parts of the pipeline between corrosion
development and status are achieved, and the corrosion leakage prediction model is established and
the corrosion development trend and prediction method of leakage occurrence location is predicted.

2. Simulation Model

2.1. Simplification of Chemical Equipment

Figure 1 shows a schematic diagram about the vulnerable elbow in the coal chemical plant. First,
the coal-water slurry is reacted with oxygen to form the mixture gas of syngas (60%) and CO2 (40%) at
the temperature of 1350 ◦C. Second, the mixture gas is cooled and the temperate decreases to 250 ◦C in
the quench chamber. Finally, the mixture gas is departed from the quench chamber and introduced
into the transmission pipeline at high speed flow with solid contaminants (sulfur-containing fly ash)
eroding the wall. CO2 is dissolved in water forming the saturated carbonic acid solution that results in
the electrochemical corrosion of the pipeline under the operational service or out of service conditions.
The erosion-corrosion phenomena around the elbow may lead to the serious leakage under the harsh
working environments.

2.2. Geometry

Three-dimensional model is built to investigate the erosion–corrosion process of elbow. Figure 2
shows a planar graph of the 90◦ elbow with two straight sections, four featured edges and two featured
surfaces (without size scale). The lines with color are used to indicate the feature edges of the tube and
analyze the process of erosion–corrosion. The diameter (D) of pipeline is 600 mm. A curvature ratio of
elbow, which is the ratio of a curvature radius of the centerline to that of interior edge of the elbow,
is 1.5 (dimensionless). Flow is input into the first straight section (L1 = 3000 mm) in length at the top
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left corner of the figure, with a 90◦ elbow section and the second straight section of pipe (L2 = 3000
mm) in length in sequence.

.

Figure 1. Schematic of chemical equipment.

Figure 2. Schematic diagram of pipeline.

2.3. Mesh

The unstructured meshes are constructed in the computational domain. An example mesh of
the pipeline is shown in Figure 3. The free triangular grid is constructed the inlet boundary (0.75 D).
The sweep mesh is adopted because of the long narrow pipe structures and the grid processor along
the pipeline to generate the structured quadrangle mesh (generate hexahedron). A boundary layer
grid with 25 layers and 1.25 stretch factors is used to discretize the tube in order to ensure adequate
analysis of fluid flow and particle erosion behavior near the tube wall.

Three kinds of meshes (as shown in Table 1) are constructed for the present model to test the
dependence of the numerical simulation results on the mesh resolution at the same initial boundary
conditions and improve the accuracy of the simulation. The variation of the max fluid velocity with
the mesh resolution is examined. The results are shown in Table 1. It is found that the differences of
the calculated maximum value of fluid velocity among the three meshes are very small. Thus, the first
mesh method is used in this paper to reduce the calculation time.
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In thin film flow, the shell interface is used to solve the Reynolds equation for flow in narrow
structures and the mass and momentum balances are used to formulate with a function across
the thickness of the thin structure, which indicates that the thickness does not have to be meshed.
This functionality helps avoid meshing problems across the gap and thereby saves computation time.

Table 1. Mesh dependence tests.

Number Number of Mesh Nodes Max Fluid Velocity (m/s)

1 21,264 41.01
2 31,248 41.19
3 61,200 41.43

ε model is based on the equation model and introduce

ε mod

—
ε

uous phase of Euler’s method and discretized using P1+P1 

μ σ σ
κ ε model constant

Figure 3. Mesh profile of pipeline.

2.4. The Mathematical Simulation Model

The numerical simulation model is built by a steady state solver, and then the erosion of particles
is calculated by a transient solver. There are five physical field interfaces and two multi-physics
interfaces in the model: turbulent flow (spf ), particle tracking for fluid flow (fpt), chemistry (chem),
secondary current distribution (siec), transport of diluted species (tds), fluid-particle interaction (fpi),
and flow coupling (fc). The chem interface is a physical field interface in the numerical simulation
software, and the siec interface as same.

2.4.1. Turbulence

The motion of gas is simplified to the impressible and isothermal flow according to the process
conditions and gas characteristics. The k-ε model is based on the equation model and introduced
an equation about the turbulent dissipation rate. The calculation is small but there is more data
accumulation. It has a wide range of industrial applications with the good accuracy and good
convergence. The Reynolds-Averaged Navier-Stokes (RANS) k-ε model is used to simulate and
analyze the turbulence. The equations are solved on the basis of RANS equations for conservation of
momentum and the continuity equation for conservation of mass in the spf interface. The effects of the
turbulence flow are modeled through two equations—turbulent kinetic energy k and dissipation rate ε
with the reliability constraints. The flow near wall is described by the wall functions. Gas is represented
by a continuous phase of Euler’s method and discretized using P1+P1 method. Two advanced
algorithms of the streamline diffusion and crosswind diffusion are applied to the Navier-Stokes
equations and turbulence equations to converge the model easily. The pseudo-time stepping algorithm
is used to solve the stationary equation. The velocity of the CFL digital expression of the turbulence
variable ratio parameter is 1 m/s and the length scale factor is 0.035. The specific parameters of
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the turbulence model are Ce1 = 1.44, Ce2 = 1.92, Cµ = 0.09, σk = 1, σc = 1.3, κv = 0.41, B = 5.24.
These parameters are RANS k-ε model constants. The governing equations of the turbulent flow are
as follows.

Incompressible flow equation in steady state:

ρ(U·∇)U = ∇·[−PI + (µ+ µT)(∇U + (∇U)T)] + F (1)

ρ∇·(u) = 0 (2)

The transport equation of k:

ρ(u · ∇)k = ∇ · [(µ+
µT

σk
)∇k] + Pk − ρε (3)

where the production term and the turbulent viscosity are listed as following:

pk = µT[∇U : (∇U + (∇U)T)] µT = ρCu
k2

ε
(4)

The transport equation of ε:

ρ(U·∇)ε = ∇·[(µ+
µT

σε
)∇ε] + Cε1

ε

k
Pk −Cε2ρ

ε2

k
ε = ep (5)

where µT, µ, ρ, P, U, I, F, k, ε, σk, and Pk, stand for the eddy viscosity, viscosity, density, pressure,
velocity vector, unit matrix, volume force vector, turbulent kinetic energy, turbulent dissipation rate,
respectively. The SI unit is used.

2.4.2. Erosion

The sulfur particles are considered as the discrete phases in the fpt interface during simulation.
The movement of particles under the framework of Lagrange is governed by Newton’s second law
(6) and affected by the drag force, gravity, and brown force. The drag force (7) is generated by the
speed difference between gas and particles and controlled by stokes’ law (8). In addition, the body
force (9) formed by the effect of accelerated or decelerated particles on the movement of gas is
obtained through gas-particles interaction in the fpi interface, and then the gas velocity in the spf

interface and particles velocity in the fpt interface are coupled by gas-particles interaction. Through
sampling and analysis of the pipe ash, and in order to simplify the particle model, all sulfur particles,
releasing 500 particles per 0.08 s at the boundary of inlet, are introduced into the tube by high-speed
gas and there are the same physical properties of density (2360 kg/m3), diameter (50 µm), and shape
(sphere). The turbulent dispersion model of particles adopts discrete random walk, the variable time
step method. The turbulent kinetic energy and turbulent dissipation rate of particles are coupled
to those of gas in the spf interface. In addition, there is still no recognized universally applicable
theoretical model due to the complexity of the erosion behavior of material. To assess the interaction
between particles and pipes, Finnie erosion model is used to explain the rule of the particle erosion of
plastic materials at low impact angles, thus the classical Finnie erosion model (10) is used to describe
the impact of particles and the count method is used to count the quantities of particles hitting the wall
considering the shape of the pipeline model. The ratio of the normal and tangential force and number
multiplication factor are set to 1. The surface hardness of wall is 640 N/mm2 and the surface mass
density is 7.98 g/cm3 respectively.

Newton’s second law and drag force equation:

d(mpv)

dt
= FD + Fg + Fbrown (6)
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FD = (
1
τP

)mP(u− v) (7)

where, FD is Drag force, Fg is gravity, and Fbrown is brown force. The mp is the particle mass (SI unit: kg),
τp is the particle velocity response time (SI unit: s), V is the velocity of particle (SI unit: m/s), and U is
the fluid velocity (SI unit: m/s).

The stokes drag law for the particle response time is defined as:

τP =
ρPd2

P

18µ
(8)

where, µ is the fluid viscosity (SI unit: Pa·s), ρp is the particle density (SI unit: kg/m3), and dp is the
particle diameter (SI unit: m).

Body force of particle-to-syngas calculation equation:

FV, j = −
1

V j

N
∑

i=1

niFD,i

∫

δ(r− qi)dV (9)

where, Fv,j is the average volume force, a mesh element j with volume Vj, δ is the Dirac delta function,
FD,i is the drag force exerted on the ith particle, ni is the force multiplication factor of the ith model
particle, and N is the total number of particles.

The Finnie erosion equation is listed [6].

V = cMU2

4p(1+mr2
I )

[(cosα)2] tanα > P
2

V = cMU2

4p(1+mr2
I )

2
p [sin(2α) − 2 (sinα)2

p ] tanα ≤ P
2

(10)

where, c (dimensionless) is the fraction of particles cutting in an idealized manner; M (SI unit: kg) is the
total mass of eroding particles; U (m/s) is the magnitude of the incident particle velocity; p (Pa) is the
Vickers hardness of the material; m (SI unit: kg) is the mass of an individual particle hitting the surface;
r (SI unit: m) is the average particle radius; I (SI unit: kg/m2) is the moment of inertia of an individual
particle about its center of mass. For an isotropic sphere, I = 2 mr2/5; α (rad) is the angle of incidence,
with α = 0 tangent to the surface and α = π/2 normal to the surface; P is a dimensionless parameter,
defined as P = K/(1 + 2mr/I) and K (dimensionless) is the ratio of vertical and horizontal forces action
on the particle. The mass loss per unit area vs. time is chosen to evaluate the erosion rate of steel.

2.4.3. Chemical Reaction and Electrochemical Corrosion

The ionization reactions of carbonic acid are generated into the hydrogen ion and bicarbonate ions,
in the chem interface, and the distribution of the substance concentration is affected by diffusion and
convection in the tds interface [7]. Table 2 shows reaction equilibrium constant, positive reaction rate,
and diffusion coefficient. The convection is coupled by the turbulent mixing and affected by the motion
of gas depending on the mass balance Equation (11). Turbulent kinematic viscosity of substance under
turbulence is governed by that of turbulent gas, and turbulent Schmidt number is 0.71.

Electrochemical corrosion is described by the reactions of dissolved iron and hydrogen evolution
in the siec interface. The iron dissolution reaction (Fe2+ + 2e−→ Fe) governed by anode Tafel Equation
(12) occurred on the wall, and the hydrogen evolution reaction (2H+ + 2e− → H2) controlled by
concentration-dependent kinetic Equation (13) occurred on the inner surface of the tube. The interface
of metal/electrolyte is considered to be an electrode-electrolyte coupled wall to complete charge
transfer and charge conservation between ions and electrons. The electrolyte conductivity is
2.5 × 10−3 S/m. The temperature in the pipeline is 250 ◦C. The concentration of Fe2+ is 1 × 10−9 mol/L.
So, the concentration of H+ is calculated by the Nernst equation, the H+ concentration value is
1 × 10−6 mol/L. According to calculation, the initial potential of electrolyte is Eeq,Fe = −0.9068 V,
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and the initial potential of electrode is 0 V. The exchange current density and Tafel slope of iron
dissolved reaction are 10−3 A/m2 and 40 mV per decade [8], respectively. Normally, anodic oxidation
of iron presents a Tafel slope of less than 60 mV. The equilibrium potential depends on Equation (14).
The exchange current density of hydrogen evolution reaction is 1.1 × 10−2 A/m2. The equilibrium
potential is −0.3112 V.

Mass balance equation is:

∂ci

∂t
+ ∇ · (−D∇ci) + U · ∇ci = Ri (11)

where, Ci is the concentration of the species (SI unit: mol/m3), Di is the diffusion coefficient
(SI unit: m2/s), Ri is a reaction rate expression for the species (SI unit: mol/(m3·s)), and U is the
velocity vector (SI unit: m/s).

Anode Tafel equation:

iloc = i0 × 10
η

Aa (12)

where, iloc denotes the local charge transfer current density, i0 denotes the exchange current density,
and Aa denotes the Tafel slope.

Concentration-dependent kinetics:

iloc = i0[CR exp(
αaFη

RT
) −CO exp(

−αaFη

RT
)] (13)

where, iloc denotes the local charge transfer current density, i0 is the exchange current density, CR and
CO are dimensionless expressions, describing the dependence on the reduced and oxidized species in
the reaction.

Eeq,Fe = −0.44 + 2.303
RT
2F
× log(10−9) (14)

where, R is the gas constant, T is the absolute temperature in Kelvin, F is Faraday’s constant. The Fe2+

concentration value of 1 × 10−9 mol/L and H+ concentration value of 1 × 10−6 mol/L are measured and
calculated by coal chemical companies.

Table 2. Constant for the model.

Constant Source

Kca = 387.6× 10−(6.41−1.594×10−3·T f +8.52×10−6·T2
f
−3.07×10−5·p) mol Oddo and Tomson [9]

k f ,ca = 105.71+0.0526×Tc−2.94×10−4×T2
c+7.91×10−7×T3

c s−1 Comprehensive chemical kinetics

Kbi = 10−(10.61−4.97×10−3·T f +1.331×10−5·T2
f
−2.624×10−5·P) mol Oddo and Tomson

k f ,bi = 109 s−1 Nordsveen [10]
DH2CO3 = 2.00 × 10−9 m2/s Kvarekval [11]
DHCO3

− = 1.105 × 10−9 m2/s Newman [12]
DH
+ = 9.312 × 10−9 m2/s Newman

DCO3 = 0.92 × 10−9 m2/s Kvarekval

Note: In the table, Tf is temperature in degrees Fahrenheit, T is absolute temperature in Kelvin, Tc is temperature in
degrees Celsius, P is the absolute pressure, D is the diffusion coefficient, equilibrium (K) and forward (kf) reaction
rate coefficients.

3. Results

3.1. Turbulence Characteristics of Gas

3.1.1. Pressure, Friction Speed Characteristics, and Turbulence Intensity

Figure 4a,b shows the pressure distribution contour of the pipeline. Although the pressure in the
entire pipe is set to a constant (6.5 MPa), the pressure on the extrados surface (6.51 MPa) is higher than
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that on the intrados surface (6.49 MPa). Figure 4c,d shows the distribution of the friction speed along
the wall. The friction speed on the elbow surface is usually higher than that on the wall of straight
sections. The friction speed on the intrados surface of elbow is higher than that on the extrados surface.
The friction speed on the intrados surface of the first half of elbow is higher than that of the second half,
however, the distribution of friction speed on the extrados surface is contrasting. Figure 4e,f shows the
turbulence intensity distribution of gas. The turbulence intensity is strong and complex at the elbow
section. In addition, the turbulent intensity coil is formed into a concave shape in the second straight
section, and the coil points to the intrados surface.

 

e and formed a ε

Figure 4. Turbulence characteristic. (a,b) Pressure contour at different views; (c,d) friction velocity
distribution on the wall at different views; (e,f) turbulent strength at different views.

3.1.2. Velocity Streamline in Pipeline

Figure 5 shows the distribution of streamlines in pipeline, where the color of the streamline
indicates the velocity magnitude. From Figure 5a, the maximum flow velocity (41.01 m/s) and the
minimum flow velocity (1.609 m/s) are concentrated in the elbow section. From Figure 5b, the location
of maximum flow velocity and minimum flow velocity is close to the intrados surface. The velocity of
gas increases and then decreases near the intrados surface, however, the velocity of the gas decreases
and then increases near the extrados surface. From Figure 5b,c, the streamlines gradually were
concentrated and many flow lines were terminated in the second straight section. Furthermore,
most of streamlines are concentrated near the intrados surface and formed a ε-shape distribution.
From Figure 5d, the streamlines near the extrados in elbow are constrained by the wall and diverged
into the second straight section, and the middle streamlines has a relatively high velocity.
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Figure 5. A three-dimensional diagram of fluid velocity distribution at different views (speed in color).

3.1.3. Velocity along the Four Featured Edges

Figure 6 shows a velocity diagram that indicates the variation in velocity along the four edges of
pipeline. Near the inlet, the velocity along four edges drops from 30 m/s to about 13 m/s, and then a
small reduction in speed occurs in the first straight section. Near the elbow section, the flow velocity
on the interior edge was subject to small fluctuations. Although the velocity magnitude of interior
edge in the elbow section has increased dramatically (up to 28 m/s) and then undergoes a drastic
reduction (low as 1 m/s), the flow velocity on other three edges is increased. In the second straight
section, the speeds on the top and bottom edges decrease slightly and stay within a certain value,
while the speed on the exterior edge still maintains an increase, and then reduced and kept consistent.
On the interior edge, speed has been gradually increased to reach steady state.

 

Figure 6. Line graph of velocity magnitude along four edges of pipeline.

3.2. Electrochemical Corrosion Behavior

3.2.1. Species Concentration Distribution Characteristic

Figure 7 shows the concentration distribution of chemical substances in the pipe. The concentration
of substances is accumulated at the entrance of the elbow, especially near the intrados surface.
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Carbonic acid concentration reaches 443.84 mol/m3. Hydrogen ion concentration is maintained at
a constant value of 9.70 mol/m3. The highest concentration of carbonate ions reaches 9.71 mol/m3.
The maximum concentration of bicarbonate ion is 5.55 mol/m3. However, near the extrados surface,
the accumulation of substance concentration is relatively small. All simulations were performed by the
experimental parameters in Table 1.

 

× −

× −

− −

× −

−

Figure 7. A three-dimensional diagram of material concentration distribution. (a) Carbonic acid
concentration distribution; (b) bicarbonate concentration distribution; (c) carbonate ion concentration
distribution; (d) hydrogen ion concentration distribution.

3.2.2. Current Density Characteristic

Figure 8 shows the variations in current density of four feature edges along the wall from the inlet
to the outlet of the pipe. Figure 8a shows the total current density of the interface; Figure 8b shows the
anode current density and Figure 8c shows the cathode current density.

Total Interface Current Density of Four Edges

From Figure 8a, the current density of four edges hardly has a difference in the first straight
section. However, in the elbow section, the current density on the interior and exterior edges has
a sharp fluctuation respectively. The current density on the exterior edge has a relatively positive
fluctuation in the first half of elbow, and the current density on the interior edge has a negative and a
positive fluctuation respectively. In the second straight section, the current density of four edges has a
small fluctuation around 0 A/m2.
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Anode Current Density of the Four Edges

From Figure 8b, the anode current density of the top and bottom edges is maintained about
4.4 × 10−4 A/m2 throughout the pipeline. However, the current density on the interior and exterior
edges of the elbow section has a sharp fluctuation, especially on the interior edge. The anode current
on the interior edge increased sharply to about 6.1 × 10−4 A/m2 in the first half of the elbow, then was
maintained at about 4.4 × 10−4 A/m2, and finally decreased to 4.1 × 10−4 A/m2 in the second half of the
elbow. The anode current density on the exterior edge decreased to 3.9 × 10−4 A/m2 in the first half of
elbow, and then maintained a stable value at around 4.4 × 10−4 A/m2.
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− × −

− × −

Figure 8. The current density distribution of four featured edges on the tube. (a) Total interface current
density distribution; (b) anode current density distribution; (c) cathode current density distribution.

Cathode Current Density of the Four Edges

From Figure 8c, the cathode current density of four edges in the first straight section maintains at
about −4.4 × 10−4 A/m2. However, in the elbow section, the current density on the interior and exterior
edges has a sharp fluctuation respectively. The current density on the interior edge in the first half of
elbow has a relatively negative fluctuation (about −9.0 × 10−4 A/m2) and then in the second half of
the elbow has a relatively positive fluctuation (about −2.7 × 10−4 A/m2). The current density on the
exterior edge in the first half of elbow has a positive fluctuation (about −2.4 × 10−4 A/m2). In the second
straight section, the current density on four edges has a small fluctuation around −4.5 × 10−4 A/m2.

Current Density Distribution on the Wall

Figure 9 shows the current density distribution caused by electrochemical reactions under
turbulence throughout the pipeline. From Figure 9a, the serious part of the total interface current
density is mainly concentrated at the intersection of the elbow and the straight sections. From Figure 9b,
the most serious metal loss caused by the electrochemical corrosion is concentrated at the junction of
the elbow and the first straight section. From Figure 9c, the serious part of the cathode local current
density is similar to the part of the total interface current density.
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Figure 9. Current density 3D map on the wall. (a) Total interface current density; (b) anode local
current density; (c) cathode local current density.

3.3. Erosion Behavior

3.3.1. Particle Trajectory

Figure 10 shows the trajectory of the particle motion in the entire pipeline and Figure 11 shows
the trajectory of particle hitting the wall of the elbow, where the color of the particles indicates the
velocity. Form Figure 10a,b, particles in the first straight section basically maintained the same velocity,
except for particles with the minimum speed near the extrados surface. In addition, at the junctions of
elbow and the first straight section, the velocity of the solid particles was changed, and particles were
significantly moved toward the extrados surface. From Figure 10c, the particles in the first half of the
elbow hit the extrados surface along an approximately straight line, and particles near the extrados
surface were gradually pushed toward intrados surface. As shown in Figure 10c–e, many particles hit
the extrados surface of elbow. As shown in Figure 11, the particles hit the elbow forming a curved
distribution and bouncing off the wall. A small quantity of particles lagged near the intrados when
particles are at the junction of the elbow and the second straight section. In Figure 10f–h, the motion of
the particles in the second straight section gradually became more dispersive, and the particles formed
the cloud cluster.
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Figure 10. Three-dimensional diagram of particle trajectories in the pipeline (the color indicates the
speed). (a) t = 0.10 s particle trajectories; (b) t = 0.11 s particle trajectories; (c) t = 0.12 s particle
trajectories; (d) t = 0.14 s particle trajectories; (e) t = 0.16 s particle trajectories; (f) t = 0.18 s particle
trajectories; (g) t = 0.21 s particle trajectories; (h) t = 0.24 s particle trajectories.
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Figure 11. The trajectory of particles hitting the wall (the color indicates the speed). (a) t = 0.10 s
particle trajectories; (b) t = 0.11 s particle trajectories; (c) t = 0.12 s particle trajectories; (d) t = 0.13 s
particle trajectories; (e) t = 0.14 s particle trajectories; (f) t = 0.15 s particle trajectories; (g) t = 0.16 s
particle trajectories; (h) t = 0.17 s particle trajectories.

3.3.2. The Quantities of Particles Striking the Wall and Mass Loss Per Unit Area

Figure 12 shows the variation of quantities of particles hitting the wall. Figure 13 reveals that
the variation of mass loss per unit area caused by the erosion. During the simulation, the count
method is used to study the particles collision wall. The results are shown in Table 3. Numbers of
solid particle collisions is around 0.2 × 104 of the maximum value at the straight section, and numbers
of solid particle collisions is around 1.255 × 104 of the maximum value at the elbow. It can be
concluded that approximately 16.7% (1/6) of the total released particles hit the extrados of the elbow
and caused a serious loss of quality. As time goes on, the quantity of particles striking the wall
gradually increases, accompanied by an increase in the loss of metal quality. In addition, it can be
found that the mass loss per unit area mainly occurs between 40◦ and 50◦, with the most serious region
between 43◦ and 48◦, and gradually was spread to the surrounding area, forming oblique elliptical
erosion area. The simulation results considering the presence of acidic substances can be verified from
other papers [13].
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Figure 12. The number of solid particles hitting the wall. (a) t = 2 s number of solid particle collisions;
(b) t = 4 s number of solid particle collisions; (c) t = 6 s number of solid particle collisions; (d) t = 8 s
number of solid particle collisions; (e) t = 10 s number of solid particle collisions; (f) t = 12 s number of
solid particle collisions.

 

Figure 13. The evolution of mass loss per unit area (kg/m2). (a) t = 2 s mass loss per unit area; (b) t = 4 s
mass loss per unit area; (c) t = 6 s mass loss per unit area; (d) t = 8 s mass loss per unit area; (e) t = 10 s
mass loss per unit area; (f) t = 12 s mass loss per unit area.
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Table 3. Particle collision data over time.

Time
The Total Number
of Particles in the

Pipeline

The Number of
Particles Hitting

the Extrados

Statistical
Probability of

Collision

Maximum of Mass Loss per
Unite Area on the Extrados

(kg/m2)

2 s 12,500 2026 16.2% 9.53 × 10−7

4 s 25,000 4161 16.6% 1.96 × 10−6

6 s 37,500 6263 16.7% 2.95 × 10−6

8 s 50,000 8374 16.75% 3.94 × 10−6

10 s 62,500 10,450 16.72% 4.92 × 10−6

12 s 75,000 12,550 16.73% 5.91 × 10−6

4. Discussions

Pipeline is an important part of equipments, which is widely used in petrochemical, aerospace,
and other industrial applications, and is extremely important in safe production. There are unavoidable
erosion and corrosion during applications, which maybe lead to leakage of the pipeline because
of harsh working environments [14–18]. The main reasons of leakage are erosion, electrochemical
corrosion, turbulent and chemistry, and their interactions. Corrosion is one of the most damaging
mechanisms in many engineering materials and structures. Erosion of the pipelines may result in the
failure of the piping system, which can be extremely dangerous and expensive. Erosion may enhance
corrosion and corrosion may enhance the erosion rate through preferential dissolution and this is the
so-called synergistic effect. It is well-known that, because of the synergistic effect, the possibilities of
leakage are generally much higher than the sum of pure electrochemical corrosion and pure mechanical
erosion. Moreover, elbows are the weak parts of gathering and transferring pipelines. In studies
of erosion–corrosion there are no models available which attempt to combine the effects of particle
erosion, electrochemical corrosion, chemistry, and fluid flow [19]. Nowadays, because of a strong
demand for the analysis of erosion–corrosion problems, this study focuses on the following aspects:
numerical study on the fluid flow, erosion, and corrosion along the axial direction of the pipeline for
the real field cases and the related phenomenon of erosion–corrosion expecting to provide detailed
and reasonable analysis of the failure incurred by the erosion–corrosion.

4.1. The Correlation between Streamline and Turbulence

Although the problems caused by the synergistic effect of erosion–corrosion are serious,
the erosion–corrosion mechanism of the elbow, as influenced by the velocity and pressure, is still
not thoroughly understood because of its complexity. Numerical simulations are often used in
erosion–corrosion research [20]. The velocity difference on the four featured edges near the inlet is due
to high wall lift force. The slow decline of speed in the first straight section is attributed to the fact
that the characteristics of the boundary layer flow field and the turbulent core area is quite different.
Boundary layer has blocking effect on the fluid motion and the gradient of each flow parameter is very
large leading to the formation of lift and affects the velocity of the wall.

However, as a result of the variation of pressure and turbulent intensity, the speed on four edges
has different fluctuations throughout the elbow. The pressure variation, as shown in Figure 4a,b,
is ascribed to the cause that constraint in geometry results in the gases to accumulate in the elbow
section, and the accumulative effect exerts a relatively high pressure on the extrados and moderately
relieves the pressure on the intrados. The intense turbulent intensity are due to the truth that low
viscosity of gas causes vertical flow of gas: the fluid here produces an axial velocity and a radial velocity
perpendicular to the tangential velocity of the main gas flow under centrifugal force. Because the very
various velocity of the fluid causes different centrifugal forces in the elbow, so here the fluid exhibits
complex three-dimensional motion characteristics. The research indicates that the places of pipeline
including connection affect the erosion–corrosion behaviors [21]. The change in geometry causes a
sharp change in the direction of flow with a large variation in velocity and friction action or retardation
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on wall surface. As shown in Figure 4c,d, in the elbow section, the gases were forced to change
direction with high friction velocity, which affects the fluid motion and causes low speed near the
interior surface. The reduction in the amount of streamline may be due to the intense turbulence in the
elbow that causes the gas movement to concentrate in some streamlines in the second straight section.

In the second straight section, the effect of turbulence intensity still affects the motion of gas,
but the movement will gradually become stable along with the distance increased and the turbulence
intensity dissipated.

4.2. The Correlation of the Electrochemical Corrosion with Material Concentration Distribution

The model includes the electrolyte domain and the electrode surface. The concentration distribution
of substances produced by carbonic acid ionization reactions is mainly concentrated at the junction of
the elbow and the first straight section where turbulence intensity dramatically increased. As shown
in Figure 4e,f and Figure 7, the intense turbulent intensity at the entrance of the elbow is a barrier to
mass transfer, and the substance is difficult to transfer to intense turbulence intensity region and cause
substance to be accumulated. Furthermore, turbulent intensity is very complex and intense at the
elbow and it causes the substance to pass quickly and the remaining influence continues to the outlet
boundary. The flow field characteristics in the boundary layer play a role in retarding the transport of
the material concentration, thus causing the material to accumulate near the wall surface.

The variation in the electrochemical corrosion current density is a concentration-dependent
process in a local region, and electrochemical reaction depends on the charge transfer reaction between
the ions in the electrolyte and the electrons on the wall. The charge is conserved throughout the process.
Convection and diffusion affect the concentration distribution of substance. The electrochemical
corrosion current density is related to substance concentration distribution. Therefore, high current
density of anode on the interior edge and low current density of anode on the exterior edge of the
elbow is related to the concentration distribution of material.

4.3. Erosion in the Turbulence

It is well-known that erosion has an important role in the total erosion–corrosion rates [22].
Severe erosion occurred at elbow is caused by the impact of solid particles driven by high-speed gas.
At elbow, the direction and magnitude of gas was changed sharply because of the low viscosity and
geometric constraint, and gas has a relatively small effect on the movement of particles. When the
inertia of the solid particles is relatively large, the solid particles can pass through the streamline and
hit the wall surface almost in a near linear path. For the straight sections, the random collision and
erosion of the tube wall are caused by particles because of the influence of the pulsation of the flow
field, but this effect is small. Therefore, the most severe erosion occurred at the elbow. In addition,
the movement of the particles near the wall surface is lagged because of the boundary layer blocking
effect. The geometric constraint and the effect of inertia of particles cause the particle group to form
a curve near the extrados surface because of the boundary layer close to the tube wall and different
turbulence characteristics.

There is an elliptically eroded area on the extrados surface of the elbow due to the presence of
gravity, Brownian force, drag forces, and the turbulent intensity variations. In the first straight section,
particles are gradually affected by the nature force; the trajectories of the particles gradually offset
the line and gradually moved toward the extrados surface and the gravity direction. At the elbow,
the particles impacted the wall and reduced their kinetic energy, which resulted in the subsequent
particle group to be pushed and accumulated. In addition, the drastic changes in the flow direction,
and the increase in turbulence intensity, caused the particles in the boundary layer to hit the wall
surface and to be scratched along the wall surface, resulting in an elliptical erosion region from the
bottom area to the top area. In addition, the formation of the cloud cluster in the second straight section
is because the particles have different velocity directions and magnitudes at the entrance, which is
affected by the wall constraint and high turbulence intensity at the elbow.
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5. Conclusions

Erosion-corrosion behaviors of elbow are simulated and the model containing erosion,
electrochemistry corrosion, turbulence, and chemistry is built to describe the complicated failure
phenomena. The conclusions are summarized as follows:

1. The serious erosion of elbow occurs between 40◦ and 50◦, and gradually expanded into the
surrounding area forming a slanted erosion region under the force, boundary layer’s blocking
action and wall rebound. The particles at high speed hit the wall of the tube, especially in the
elbow section with high turbulent intensity, which caused the serious erosion area on the extrados
of elbow.

2. The particles count method is proposed to describe erosion and provide a probability prediction
of the elbow lifetime. About 16.7% particles collided the extrados surface during erosion.

3. The corrosion current density of iron is concentrated in the junction of the straight section and
elbow and the intersection of the straight section and the intrados surface of elbow. The strong
turbulent intensity in elbow and the boundary layer affects the substance concentration of
chemical reactions accumulated at the junction of the straight section and elbow.

4. The pressure on the extrados is higher than that on the intrados. However, the friction speed
on the intrados is higher than that on the extrados due to the cumulative effect of gas in pipe.
Low viscosity of gas and the geometric constraints are attributed to cause difference in the velocity
magnitude and particles hitting the wall in straight line.
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Abstract: The future evolution of autonomous mobility and road transportation will require
substantial improvements in tyre adherence optimization. As new technologies being deployed in
tyre manufacturing reduce total vehicle energy consumption, the contribution of tyre friction for
safety and performance enhancement continues to increase. For this reason, the tyre’s grip is starting
to drive the focus of many tyre developments nowadays. This is because the tread compound attitude
to maximize the interaction forces with the ground is the result of a mix of effects, involving polymer
viscoelastic characteristics, road roughness profiles and the conditions under which each tyre works
during its lifespan. In such a context, mainly concerning the automotive market, the testing, analysis
and objectivation of the friction arising at the tread interface is performed by means of specific test
benches called friction testers. This paper reviews the state of the art in such devices’ development
and use, with a global overview of the measurement methodologies and with a classification based
on the working and specimen motion principle. Most tyre friction testers allow one to manage
the relative sliding speed and the contact pressure between the specimen and the counter-surface,
while just some of them are able to let the user vary the testing temperature. Few devices can really
take into account the road real roughness, carrying out outdoor measurements, useful because they
involve actual contact phenomena, but very complex to control outside the laboratory environment.

Keywords: friction testers; tribometers; viscoelastic materials; rubber friction; tyre

1. Introduction

Tribology is the science and technology concerning the interaction of solid surfaces in relative
motion. The word tribology derives from the Greek word “tribos” that means rubbing. The topics
covered by this word are various and include the study of lubricants, lubrication, friction, wear and
bearings [1]. Leonardo Da Vinci was one of the first to carry out and to report studies in the field of
tribology, at the end of the XVth century; he had not only performed experimental studies concerning
friction but he had also developed diverse ingenious schemes for the measurement of friction. His work
remained unpublished until the twentieth century when Dowson [2] presented his monumental study
regarding the history of tribology. It is fascinating to note how the Da Vinci’s studies on friction still
remain scientifically significant today [3]. An example of Leonardo’s sketches published by Dowson is
shown in Figure 1.
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Figure 1. Sketches from Leonardo’s notebooks: (a,b) from Codex Atlanticus (Biblioteca Ambrosiana,
Milan, Italy; CA folio 532r c. 1506-8), and (c) from Codex Arundel (British Library, London, UK;
Arundel folio 41r c. 1500-05) [3].

Although this research topic has been studied for centuries, new analytical, numerical,
and experimental methods have continued to evolve and be developed due to the intrinsic difficulty of
the examination of materials’ tribological properties. Indeed, they do not only depend on the type
of material and the relative properties, but also on the geometry, surface conditions and topography.
In addition, the measurements are also affected by several working conditions such as the pressure
distribution within the contact interface, relative speed, sliding distance, temperature and relative
humidity [4–6]. Consequently, extensive experimental studies adopting the most effective and robust
methodologies become absolutely necessary for a deep understanding of tribological phenomena.
To overcome the measurement and testing difficulties, a large amount of testing devices has been
developed in the last centuries. These devices, variously called tribometers, tribotesters or friction
testers (FTs), are widely used to study the friction phenomena of completely different materials, with a
particular interest towards viscoelastic ones due to their advantageous characteristics, intrinsically
variable in different application working ranges, and therefore particularly suitable for vibration and
noise isolation or impact and impulsive shock absorption.

Starting from a particular interest in the study and in the characterization of the viscoelastic
materials, the review aims to illustrate and to discuss the experimental devices designed and
developed for the study of the rubber friction, being of crucial aspect in completely different contexts,
e.g.,: shoe soles, O-ring sealing, conveyor belt and automotive applications, where the vehicle dynamics,
the design of the apposite control systems, and the performance- and safety-focus are largely affected
by what happens at the tyre/road interface in terms of friction generation mechanisms [7–10].

The review focuses on the devices that aim to study the friction between tyres and the road.
It is worth highlighting that there is no limitation on the type of rubber that can be used for the
friction and wear tests to be carried out with such kinds of devices, but the most commonly exploited
testing conditions simulate the typical working contact conditions in the field of tyres, which are not
necessarily reflected in other fields or standards. As for the latter point, it should be noted that there
are some differences between the two main standards, the International Standards Organization (ISO)
and the International American Standard for Testing and Materials (ASTM). For example, although in
ASTM there are several indications concerning the proper selection of a method to measure the friction
properties of a generic material, there are no any particular specifications for the determination of the
rubber friction properties [11]. In ASTM G115-10, the “Standard Guide to Measure and Report Friction
Coefficients” is also included in the ASTM Friction Test Standards so that users can choose which
method may be most suitable for a particular application [12]. The methods for the determination of
rubber friction are instead described in the ISO 15113 standards. This international standard refers
to a linear movement and, unlike the previous ones, does not describe in details the test apparatus,
but rather only provides a guide on the experimental arrangement, procedures and on the parameters
to be taken into consideration to perform a robust measurement pipeline. Furthermore, the ISO
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standard gives indications about the normal loads and speeds to be used within testing, additionally
providing procedures for the preliminary preparation of sliding surfaces under analysis [13].

In the majority of theoretical studies on the frictional properties of materials, friction is represented
using the friction model developed by Amontons and Coulomb, who claim that the frictional force
is proportional to the normal force or load. However, as demonstrated initially by Bowden and
Tabor [14,15] and by other authors later, Coulomb friction models are not fully reliable in case
of viscoelastic materials like rubber [16,17]. Indeed, the main characteristics of the rubber friction,
nowadays widely accepted and experienced, are dependent on normal force and sliding speed,
temperature and a real contact area with highly-non-linear relations. These parameters play a key role
in the study of the frictional behaviour of viscoelastic materials and can be used as a classification
criterion to distinguish the devices and the studies to be conducted on rubbers and those to be
performed in the tyre field. For instance, in a great amount of studies on rubber friction, tests are
conducted at very low experimental speeds (lower than 1 mm/s) [18], so that the temperature effect in
the contact area can be neglected [19] while tests conducted within the typical tyre working conditions
should be generally performed at speeds in the order of meters per second.

Another crucial objective of a modern tribometer employable for tyre studies should consist
in giving the possibility to work with specific samples of countersurface, i.e., an asphalt sample,
since there could be a significant amount of reasons affecting the pavement characteristics: mix designs,
plant operations, existing pavement conditions, or operations of the paver. It is quite obvious that
it becomes really difficult to obtain the desired pavement characteristics in laboratory since even
particular paving operations or peculiar mixture transformation during the compaction process phase
may deeply modify the countersurface characteristics and therefore the viscoelastic behaviour of the
tyre rubbers during the tyre-road interaction. For this reason, depending on a testing facility employed,
it is always recommended to make sure to work with the pavement surface as similar as possible to the
real one, extracting samples from a real tarmac surface for indoor testing or allowing to perform the
analyses directly on track for outdoor testing with the aim to reproduce completely real test conditions.
In case the test rig is employable for outdoor testing, it should be preferred since it allows one to not
alter the geometries under study.

As already mentioned, the knowledge of the tyre friction behaviour and of the parameters
affecting the phenomenon is an important topic both for academicians and industrial researchers,
involving crucial aspects such as safety, performance, durability and environmental concerns [5].
To this end, a series of test benches have been developed by universities, research institutions and tyre
makers. The laboratory tests, in addition to being less expensive compared to outdoor tests, offer the
possibility to carry out measurements in almost completely controlled environmental conditions,
allowing one to vary sliding speed, normal load, temperature, and other parameters in wide ranges.
Another important advantage of testing tyre tread block elements in the laboratory lays in the fact that
the investigations can be made at a very early stage of the tyre development, when an eventual change
within the compound composition is still relatively cheap and can be easily performed, optimizing as a
consequence the tyre tread geometry of sipes or other design features. The goal of the test benches is
to carry out tests, not only hardly reproducible outdoors, but also representative and transferable to
large-scale tyre testing. A previous investigation of these devices was conducted by Moldenhauer [20]
in 2010 as part of his Ph.D. thesis. The work done by Moldenhauer has been deeply analysed, and, in the
authors’ opinion, further enrichment is required in order to provide a more complete analysis of the
devices developed in recent years. Furthermore, Moldenhauer’s study is limited to the description
from the constructive point of view, while this review aims to analyse also the experimental outputs
obtained, with the aid of published research references.

The paper is organized as follows: firstly, an insight on the theoretical aspects of the rubber friction
is reported to provide the reader with a panorama of the main approaches and to point out the most
critical aspects; then an overview of the experimental devices developed in the last fifteen years is
illustrated. Such an overview cannot be complete, since there is a large number of devices used in

121



Lubricants 2020, 8, 91

universities’ research departments or in the tyre industry, not always accessible, but it still represents
a quite complete report of the current techniques and methodologies, with particular reference to
dry contact conditions. Tribometers can be classify based on the contact mechanism/geometry (area,
line or point contact) of the tested material with the counter-face [21]; the type of motion of the
moving part [22] (linear, rotary/rolling, reciprocating, or a combination); the element motion-actuated.
Referring to the type of motion, Sections 3–5 are respectively dedicated to Rolling FTs, Linear FTs and
Other Types, which includes the devices that are not attributable to the other two categories.

2. Theoretical Description of Rubber Friction

The friction properties of elastomers such as rubber have been extensively studied for
decades [23–26]. The tribological properties of rubber depend on many parameters, e.g., surface
roughness, speed, normal load, lubrication, temperature and material properties. A fundamental study
in this field was conducted by Grosch in his pioneering work [25], where different types of rubber
were experimentally analysed on diverse hard surfaces, mentioning two distinct processes taking part
at the generation of the friction phenomena: the adhesion, akin to a molecular relaxation process,
and a deformation process in which energy is lost due to the cyclic stress of the rubber due to the
surface roughness [19], also known as the hysteretic component of friction. The friction coefficient
evaluations obtained from experimental studies or mathematical models are usually plotted on a graph
as a function of the sliding speed, this kind of representation is also called a “master curve”. This curve
can be also parametrized for other variables such as load and temperature. The master curve of rubber
on a rigid rough surface exhibits, in general, two distinct peaks. The first, being attributed to the
adhesive component of friction, occurs in general at low sliding velocity, whereas the second one,
referring to the hysteretic contribution occurs at higher sliding velocity [27]. A typical example of a
master curve is represented in Figure 2, where the friction coefficient for a styrene butadiene rubber
(SBR) rubber sliding on three different surfaces is reported.

 

 
Figure 2. Master curve of the friction coefficient for SBR rubber sliding on three different surfaces [25].

Subsequently, other researchers such as Greenwood and Williamson (GW) [28] introduced a
concept involving the contribution of the true contact area on friction. In particular, the formulation of
the GW theory is based on Archard’s [29] previous idea of multi-asperity contact. They approximated
the roughness of the surface as an ensemble of spheres having the same radius randomly distributed
over the mean plane to take into account of the surface statistics.

Over the years, some other studies such as the ones by Bush at al. [30,31], Heinrich, Kluppel and
others [32–34] proposed further contributions based on the original GW theory. Multi-asperity contact
models, based on Greenwood and Williamson theory, represent one of the two most used approaches
to account for the true contact area on the friction mechanisms. Another widely adopted approach has
been developed by Persson [35], whose theory, in contrast to the GW models, removes the assumption
that the true contact area is smaller than the nominal contact area [36], considering the extreme case of
full contact conditions between a rigid rough surface and an initially flat elastic half-space. Such theory
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takes partial contact into account requiring that, in case of adhesionless contacts the stress probability
distribution vanishes when the local normal surface stress is fading. It also assumes that the power
spectral density (PSD) of the deformed elastic surface is the same as the rough surface below [37].
The theory provides formulas, needing as inputs only the PSD surface and the elastic properties of
the contacting bodies. A recent study by Carbone and Bottiglione [38] compared the two different
approaches, stating that Persson’s rubber contact and friction theory, and the subsequent theories
based on it, are more accurate. Although theories on rubber friction have evolved over the years,
they still present diverse limitations associated with the adhesive and the viscoelastic component of
friction [39]. Under this light, appears evident the centrality of an experimental approach and how
important the setup of the different testing fixtures is.

3. Rolling Friction Testers

This category of devices makes use of the principles of double disc tribometers, which consist of
two discs rotating against each other. This kind of tribometers are also known with different names such
as: ring on ring, roll on roll, rolling sliding apparatus, etc. In the field of tyres, these tests equipment
reproduce, on a small scale, the design of the “tyre on drum” test machine.

Liu et al. [40,41] have developed a high-speed rolling test rig aiming to simulate the impact and
release mechanisms of tread block. As shown in Figure 3, the device consists of a small wheel with a
rubber belt coating, which drives a big wheel with a steel surface. The small wheel is mounted directly
on a solid base and is driven by an electric motor, while the big wheel is mounted on a solid base by
a moving rocking arm; lastly another couple of stiff arms are used to lock the wheel shaft position,
to obtain the desired value of interference between the two wheels and to apply a compression to the
tread block sample.

 

 

(a) (b) 

 
 

 

 
 
 

 

Figure 3. Rolling test rig (a), main component of driving wheel (b) [41].

The main elements of the driving wheel are:

• an electric motor, driven by an inverter (DF51, Moeller,)
• a rubber belt, attached around the outside surface, with a hole to allow installation of the tread

block sample
• a biaxial load cell embedded inside and interposed between the tread block and the sample holder
• a load cell amplifier
• a thermocouple placed in contact of the sample, used to measure operating temperature
• a slip ring unit

The main technical specifications are summarized in the Table 1.
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Table 1. High-speed rolling test rig technical specification.

Min Max

Speed - 600 (rpm)
Wheel interference 0.1 0.3 mm

Temperature - Amb (◦C)
Tread block sample 16 × 10 × 6.35 (mm3)

With the aim of the investigation regarding the contact forces between the tread block and the
road, the authors conducted several tests, varying both the speed (at three speed levels of 150, 300,
600 rpm), and the interferences in the 0.1–0.3 mm range.

With the high-speed rolling test rig, it is possible to simulate the impact and release mechanisms
of a tread block. The main drawback of this device is related to the use of the asphalt surface, for two
reasons: firstly, it is difficult to make a curved asphalt sample; secondly, when the big wheel is covered
by a rough surface, the tread-block sample comes in contact with the wheel only partially.

A different approach for rolling FT is proposed by Lundberg et al. [42], involving a new
experimental device that allows detailed studies of the rolling contact force between a tread block and
a relative substrate. The device, called compact internal drum (CID), aims to simulate a realistic impact
and release mechanism for the tread block-substrate contact and enables force measurements.

Figure 4 shows the core of the device, consisting of two wheels: a solid metal wheel (1) with
a cut-out window to accommodate a force link (2) interposed between the tread block sample and
the inner face of the wheel. The tread sample is obtained by cutting a tread strip from a truck tyre
re-treading material, like the one shown in Figure 5. The solid wheel rolls on the inner surface of the
second wheel (drum) (3), that can be covered by an interchangeable rough surface.

 

 

Figure 4. The core of the test rig [42].

 

 

(a) 

 

(b) 

 

(c) 

Figure 5. Truck tyre retreading material (a), tread strip (b) tread strip main dimension (c) [42].
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In Figure 6, the test rig is depicted in all its components, the highlighted (numbered) components
complete the device description. The solid wheel is driven by an electric motor (4), controlled by a
driver, which transmits the movement directly to the shaft of the solid wheel, through three belts,
and subsequently from this to the drum through the friction forces established between the rubber
mounted on the periphery of the solid wheel and on the inner surface of the drum. The drum shaft is
equipped with an automotive-derived disc brake (5), used to deaccelerate the drum; furthermore, it is
possible to vary the brake pressure by means of a manually adjustable hydraulic system (9). An optical
sensor (7) is used to measure rotation speeds, while a resistive temperature sensor is introduced into
a tread block adjacent to the sample tread block, allowing to estimate the real temperature without
damaging the reference sample. The data from the sensors are transmitted from the rotating part to
the non-rotating data acquisition system via an HBM SK12 slip ring (8). It is possible to prescribe
the desired compression load between the tread block sample and the rough surface of the drum,
by shifting vertically the shaft of the drum. The normal load between the sample of the tread block
and the rough surface of the drum is quantified by measuring the bending deformation induced in the
strain gauges mounted on the drum shaft. The test rig is mounted on a concrete block (6). The main
technical specifications of the rig are listed in Table 2.

 

 

Figure 6. Layout of the test rig [42].

Table 2. Compact internal drum technical specification.

Min Max

Speed 0 17 (m/s)
Normal force 0 300 (N)
Temperature - Amb (◦C)

Tread block sample 30 × 34 × 20 (mm3)

By adopting this kind of test rig the contact forces between tread block and roads under different
conditions can be investigated. Indeed, the test rig layout allows to vary: the velocity, the normal
load and the braking pressure, with or without driving torque. In. [42], Lundberg et al. showed the
experimental results obtained varying the main parameters involved.

The main advantage in the use of the CID lies in the possibility to operate in a wide range of speeds;
furthermore, if compared with the device analysed in the previous section, it offers the possibility
to measure the forces generated in the tyre/road contact both in free-rolling conditions or in sliding
conditions, simply varying the braking force. Again, a drawback of this layout is related to its geometry
that imposes the use of curve asphalt samples which are particularly difficult to produce.
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4. Linear Friction Testers

The first linear friction tester (LFT) was developed by Leonardo da Vinci at the end of the
fifteenth century and the concept of his device is still valid and adopted in recent studies [43,44].
Indeed, in their recent study [45], Tolpekina and Persson analysed adhesion and friction in tyre tread
compound, conducting an experimental investigation trough a LFT like the Leonardo da Vinci type.
The schematically representation of the tester is available in Figure 7.

 

 

−

 
 

 

Figure 7. Schematic representation of the Leonardo da Vinci set-up [45].

The layout of the device is as simple as smart: it consists of a table on which a substrate is fixed
and on which a rubber sample can slide. The latter can be loaded by means of a calibrated weight and
moved by adding a weight in a container connected to its free end. Nowadays this type of test rigs is
widely used, perhaps is the most used device in the study of friction and wear in tyre tread block.

In the modern era, Grosch’s tribometer is considered one of main examples of this category of
testers [25]. The device, shown in Figure 8, consists of a test sample pad of about 2.5 cm2 and 0.5 mm
thick, attached to a sample holder and pressed against the test surface by a calibrated load. To measure
the frictional force a U-spring dynamometer is connected to the holder by means of two steel wires.
The test surface is driven by a motor coupled to a multi-ratio gear box, that provides sliding speeds
ranging from 10−6 to 3 cm/s. The sample and the track surface are enclosed in a temperature and
humidity-controlled chamber.

 

−

 
 

 

Figure 8. Schematic representation of Grosch’s tribometer. (a) Specimen holder, (b) narrow tunnel for
preheating the surfaces, (c) dynamometer, (d) self-tightening drive, coupled to gear box and motor;
normal load applied at (e) [25].

Over the years, researchers have adopted various layouts to improve the friction coefficient
measurements, evolving from the principles developed by Grosch’s works. Given the wide range of
existing LFT devices for convenience, in the following, they are distinguished in two categories:

• LFT in which the moving part is the rough surface
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• LFT in which the moving part is the rubber sample/specimen

4.1. LFT Surface in Motion

The layout of LFT in which the moving part is the rough surface is a setup adopted by numerous
researchers Lorenz et al. [46,47] carried out a rubber friction study for a tread rubber sample sliding on
an asphalt road specimen taking advantages from this kind of setup.

More in detail, the friction measurements have been carried out using an in-house developed
test rig, schematically shown in Figure 9, composed by a lower steel sledge where the rough surface
sample is clamped. The sledge is moved using a voice coil actuator, capable to generate a constant
force. To control the actuator and its speed, the position of the sledge is measured using an analog
magneto-strictive linear position encoder. On the upper side of the device there is an aluminium plate
which on one side (the lower surface) allows to attach the rubber sample; on the other (upper surface),
encapsulates a heating system; in this way it is possible to ensure a homogeneous distribution of the
heat, ensured by inserting the device in a temperature-controlled chamber where the temperature
can be controlled. The nominal normal load can be varied through the application of calibrated
weights on the upper plate, allowing the contact force between tread sample and rough surface to be
changed. The friction force is measured using a bi-axial load cell mounted in line with the sample
holder. The main technical specifications are shown in Table 3.

 

− −

−
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Figure 9. Schematic representation of LFT surface in motion devices.

Table 3. Technical specification of the LFT adopted by Lorenz et al.

Min Max

Speed 5 × 10−6 1 × 10−3 (m/s)
Normal force - 26 (N)
Temperature −10 +120 (◦C)

Tread block sample 20 × 20 × 5 (mm3)

With the LFT, the authors aimed to investigate contact forces between tread blocks and road
surfaces. The tests were conducted under different sliding conditions, varying both the velocity in the
range 10−6 < v < 10−3 m/s and temperature at three different levels, −8 ◦C, 20 ◦C, 48 ◦C, respectively.
The rubber test sample is cut out from a tread compound used on summer tyres for passenger car.
The measured friction forces are then shifted according to the Williams, Landel and Ferry (WLF)
equation [48].

It is worth noting that this device allows measurements only in a small range of velocities and
loads, therefore it is not suitable to simulate the real conditions of tyre/road contact. A similar LFT
layout was adopted by Lang and Kluppel [49], designed for the experimental investigation of the
load and temperature dependences upon the dry friction behaviour of racing tyre tread compound in
contact with rough granite. The device employed for the study was constructed and developed at
IMKT, University of Hannover. The scheme of the device is shown in Figure 10.
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Figure 10. Schematic representation of the friction tester used for measurements [49].

The test rig is composed by the following main elements: An electric motor; an arm on which a
rubber specimen is housed; a force transducer, interposed between the rubber sample and the arm;
a tank, moved by the motor through an actuator, to host a road specimen; a granite road specimen
and a temperature chamber. The nominal normal force acting on the tread sample can be varied.
Through the application of different values of the load, on the upper side of the arm, it is possible to get
a different value of the contact pressure between tread sample and rough surface. The main technical
specifications of the test rig are shown in Table 4.

Table 4. IMKT, University of Hannover LFT technical specification.

Min Max

Speed 1 × 10−4 1 (m/s)
Normal force - 7 (bar)
Temperature 2 100 (◦C)

Tread block sample 20 × 20 × 8.5 (mm3)

The tests, aimed to investigate the friction coefficient, were conducted under different sliding
conditions, varying both the velocity and the temperature aspects. Measurements in different velocity
conditions from 0.1 mm/s to 300 mm/s have been carried out changing the load between 1 bar and
7 bar at six different temperatures (at 2 ◦C, 10 ◦C, 20 ◦C, 40 ◦C, 70 ◦C and 100 ◦C).

The rubber test sample was cut from a tread compound of a racing tyre and moved in sliding
contact on two different granite surfaces: coarse and fine. In [49] is reported the friction coefficient
carried out form the experimental activity, both for the coarse and for the fine granite, at different load
levels in the range 1–7 bar and for six different reference temperature.

Compared to the other FTs presented in the review, the device adopted by Lang and Kluppel
seems to be one of the most complete since it allows one to operate in both dry and wet conditions;
to investigate the effects of the utilization of interface lubricants and the use of real asphalt and
tread samples. Moreover, a wide range of applicable loads and the temperature control environment
allows measurements in almost all tyre-road contact operating conditions of passenger or racing
automotive applications.

The last device belonging to this category is reported in O’Neil et al.’s [50] studies, where the
authors performed an experimental investigation to predict tyre behaviour on different road surfaces.
To perform friction measurements, the authors have used a LFT. The device, constructed at the
University of Surrey (Guildford, UK), has a layout very similar to the previous one, reported in its
schematic representation and in the real arrangement in Figures 11–13.
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Figure 11. Schematic representation of the friction tester at University of Surrey.
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Figure 12. View of the LFT at University of Surrey [51].
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Figure 13. Internal test chamber view [51].

A direct-drive linear motor, located outside the climate chamber, moves a sledge where the test
surface is clamped. The sledge is embedded in the climate chamber and is supported by a linear rail
system. The rubber sample is placed above the test surface by a rigid frame, between the sample holder
and the frame is interposed a three-axis force sensor. The tread sample is pressed against the test
surface through the application of calibrated weights on the upper side of the sample holder; in this
way it is possible to vary the contact pressure between tread sample and rough surface. The main
technical specifications are summarized in the Table 5.

Table 5. Technical specification of the LFT at University of Surrey.

Min Max

Speed 1 × 10−6 0.05 (m/s)
Temperature −40 +180 (◦C)

Tread block sample 35 × 40 (mm2)

In [50], tests were conducted on a rubber sample cut from a passenger car tyre and driven on
sandpaper. Measurements have been carried out for different velocities from 0.03 mm/s to 10 mm/s at
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sixteen different temperatures ranging from −40 ◦C to +50 ◦C. The main technical difference between
the above test rig and the one at IMKT (University of Hannover), regards only the maximum sliding
speed reachable (about 0.05 m/s).

4.2. LFT Rubber Sample in Motion

In the current section a second family of LFT is analysed, characterized by the fact that the moving
part is the tread block sample. A first example of this kind of layout is reported in the studies conducted
by Lahayne et al. [52,53], in which the results of the friction coefficient measurements are carried out
using a LFT developed at the Institute for Mechanics of Materials and Structures at Vienna University
of Technology [54]. The schematic representation and the core of the test bench are shown in Figure 14.

 

−

−

−

Figure 14. Schematic representation of LFT at Vienna University (adapted from [55]).

The LFT consists of a rigid frame that contains both interchangeable test surfaces and a linear
motion unit. The linear unit holds and pulls a sledge that incorporates both the tread block specimen
and the test equipment. This sledge contains: a pneumatic system used to generate the normal load,
a sample holder and a piezoelectric force sensor which measures the contact force between tread
sample and rough surface. The frame was specially designed to hold a high-speed camera and a
pyrometer to acquire the deformation and the temperature of the sample during the tests. The device
is located in a climate chamber.

The main technical specifications are summarized in Table 6.

Table 6. Technical specification of the LFT at Vienna University.

Min Max

Speed 1 × 10−5 1.1 (m/s)
Normal force - 30 (bar)
Temperature −30 +40 (◦C)

Sliding distance - 300 (mm)
Tread block sample 80 × 20 × 10 (mm3)

The tests were performed by the authors under different sliding conditions, varying velocity,
temperature, rubber materials and rough surfaces. In order to know how the temperature of the tread
samples changes during the tests, an optical pyrometer pointing at the tread sample, measures the
temperature on the contact surface in the initial position; while a thermocouple introduced into the
tread block to record the temperature data during the test. In [52] are discussed the friction coefficient
measurements for six tyre materials done on concrete and asphalt at 18 ◦C and 27 ◦C. Also this test
bench offers the possibility to operate in both dry and wet conditions.
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At Aalto University of Technology (Helsinki Finland), another example of this kind of LFT,
called mini-µ-road (MMR) FT, was developed [56,57]. The MMR, presented in Figure 15, was specifically
designed for low-friction testing [58].

 

μ

−

−

Figure 15. Representation of Mini-mu-road linear friction tester (adapted from [58]).

The experimental device consists of an aluminium frame that contains both the interchangeable
test surfaces and a linear motion unit. It is equipped with a servomotor, whit a power of 4 kW, to drive
a sledge supported by a linear rail system. The sledge holds and pulls a rigid frame that incorporates
both the tread block specimen and the test equipment. This frame allows to host: a pneumatic cylinder
used to generate the normal load, a sample holder, two piezoelectric load cells which measure the
contact force between tread sample and rough surface and an amplifier module. The entire system
is located in a climate chamber and is controlled by LabView. The main technical specifications are
summarized in Table 7.

Table 7. Technical specification of mini-mu-road linear friction tester.

Min Max

Speed 0.01 1.1 (m/s)
Normal force - 1200 (N)
Temperature −14 +50 (◦C)
Sliding distance - 1000 (mm)
Tread block sample 60 × 60 × 10 (mm3)

In their paper [59] Kärkimaa, and Tuononen presented the results of a study conducted on
tread rubber sample sliding on an asphalt road specimen. The tyre tread samples were provided by
Nokian Tyres. The tests were conducted under different sliding conditions, varying the velocity and
temperature. Measurements for different velocities from 1 mm/s to 1000 mm/s have been carried out at
different temperatures with uncertainty about +/− 1 ◦C.

This device has a layout very similar to the one at Vienna University, the only technical difference is
the maximum sliding length that the device can reach, which in this case is about 1000 mm. Among the
examined devices, this is the second for sliding length.

Le Gal [60] in his Ph.D. thesis worked on a characterization of the friction coefficient by means of two
different testing methods. Previously, a stationary friction experiment was performed using a modified
Zwick universal test rig and subsequently a modified version of the MTS biaxial servo-hydraulic
testing facility was used to extend the range of measurements and to simulate the typical loads in tyre
application. Figure 16 shows a complete view of the MTS modified test facility layout.

It consists of a vertical cylinder positioned at the base of machine’s floor, connected in series with
a biaxial load cell for measures both the normal and the tangential force. An aluminium tank mounted
on the load cell holds an interchangeable test surface and allows the possibility to use a liquid in order
to simulate wet condition. A second cylinder, perpendicular to the vertical axis, on which is mounted
an aluminium plate allows both the horizontal movement, and the possibility to fix the rubber sample
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with a maximum size of 80 × 80 mm2; both axes (cylinder) are displacement controlled. The contact
pressure between the rubber sample and rough surface can be varied assigning different displacement
values to the vertical axis; on the other side, assigning different displacement time histories to the
horizontal axis, it is possible to obtain different sliding speeds. The main technical specifications are
summarized in Table 8.

 

 

(a) (b) 

Figure 16. Picture of a modified biaxial MTS testing machine for friction tests (a) and schematic
representation (b) [60].

Table 8. Technical specification of the modified biaxial MTS testing machine for friction tests.

Min Max

Speed 0.1 0.4 (m/s)
Normal force - 25 (kN)
Temperature - Amb (◦C)
Sliding distance - 50 (mm)
Tread block sample 50 × 50 × 2 (mm3)

Figure 17 depicts a typical measure of the contact forces. Figure refers to tests conducted at the
sliding speed of 4 mm/s on a styrene-butadiene rubber (SBR) sample filled with 60 phr N339 and at the
experimental pressure of 0.25 MPa between the rubber sample and the fine asphalt sample.

 

Figure 17. Measured normal and friction forces at constant velocity of 4 mm/s [60].

The high-speed tribometer developed at the Institute of Dynamics and Vibration Research (IDS)
at the Leibniz Universität Hannover [61], also belongs to the LFT rubber sample in motion category.
Such tester, also called HiLiTe, along with HSLFT manufactured by Altracon [62,63] is representative
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for a class of test rigs able to reach high velocities. The HiLiTe test machine, shown in Figure 18,
was designed and developed in such a way to be able to simulate all relevant tyre testing conditions.

 

−

−

Figure 18. HiLiTe test rig [64].

It consists of a 5 m long linear guide rail in which a carriage is driven by a servomotor with a
toothed belt and performs a linear movement. The carriage mounts all the test equipment and the
rubber sample. Embedded on the carriage is a pre-stressed helical spring by means of which it is
possible to generate the normal load between the sample and the road surface. It is actuated by a
pneumatic actuator through which it is possible to set the normal force in the range of 23–1000 N.
The carriage also contains a bi-axial piezoelectric force transducer which measures the normal and
tangential components of the contact force between the tread sample and the test surface. The track
can be equipped with any surface. The entire test bench is located in a climatic chamber so that
experimental investigations can be conducted in a temperature range from −25 ◦C to 60 ◦C. The climate
chamber also allows humidity control. The main technical specifications are summarized in Table 9.

Table 9. Technical specification of HiLiTe LFT.

Min Max

Speed - 10.0 (m/s)
Normal force 23 1000 (N)
Temperature −25 60 (◦C)
Sliding distance - 5000 (mm)
Tread block sample 80 × 20 (mm2)

The HiLiTe machine allows to use a number of different test tracks to reproduce a great variety of
outdoor environmental conditions.

The Researchers of University of Hannover have performed several experimental investigations
by means of HiLiTe [65,66] adopting concrete and asphalt tracks for dry and wet testing as well as test
tracks made from ice and snow. In their paper Rosu et al. [64] performed an experimental investigation
of the contact between an aircraft tyre rubber and rough surface. The experimental results, shown in
Figure 19, were conducted by a rubber tread sample, measuring 20 × 20 × 10 mm3, on an asphalt test
track. Measurements at fixed sliding speed of 4 m/s with varying the load, by step, at four different
temperatures have been carried out.

This is the only test rig, among those discussed in this review, with a top speed reaching 10 m/s,
and the only device with a five-meter-long test track. Its technical specifications allow to explore the
widest range conditions of contact between tyre and road.
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(b) 

Figure 19. Friction coefficient measurements, as function of the temperature (a) as function of contact
pressure (b) [64].

4.3. On Field Friction Tester

It was decided to group this type of FT into a separate category, although the type of movement of
the sample is still linear since these FTs have been specially designed to allow measurement “on field”.

The FT designed and developed at the Centre for Tire Research (CenTiRe), a consortium of tyre
and tyre-related industry members with two word-class universities (Virginia Tech and the University
of Akron), belongs to this type of tester. This innovative device is an unmanned ground vehicle [67].
The robot shown in Figure 20, aims to reproduce all relevant tyre testing conditions on any surface and
in both indoor and outdoor experiments.

 

 
(a) 

 

(b) 

Figure 20. (a) The six-wheel small ground robot (left) [68]; (b) 3D representation of sample holder
(adapted from [67]).

The device consists in a chassis with six wheels and an assembly of all the essential parts of the
device, in which, four of these wheels are driven by a brushed permanent magnet DC motors, coupled
directly to the wheels’ shafts, and the other two are nondriven wheels. Two encoders are used to
measure the rotational velocity of the wheels, one fixed to the driven wheel the other to the undriven
wheel, so that the slip of the wheels can be calculated. Attached to the chassis a dragging arm holds
and pulls the sample holder attached in series at load cell. The sample holder is built to fit a T-type
sample with different size in the range of 25.4 × 25.4 mm2 to 50.8 × 50.8 mm2.

The main technical specifications are summarized in Table 10.
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Table 10. Technical specification of the six-wheel small ground robot.

Min Max

Speed 0.1 5.0 (m/s)
Normal force - 140 (N)
Temperature - Amb (◦C)
Tread block sample 25.4 × 25.4 50.8 × 50.8 (mm2)

The six-wheel small ground robot was developed to study friction and wear of a tread block
sample on different surfaces and under different operating conditions. Emami et al. [67] showed the
results of an experimental investigation conducted on a styrene-butadiene rubber (SBR) sample sliding
on an asphalt track. The experimental results were conducted outdoor on a clean asphalt track at an
outside temperature of 24 ◦C. The SBR sample used has dimension equal to 25.4 × 25.4 mm2 and it is
loaded with a weight of about 4.5 kg which corresponds to an equivalent pressure between the sample
and the road of 81 kPa.

Although the robot was designed to perform measurements on field, it also allows indoor
measurements, but these would require very large spaces specially if high speeds are to be achieved.
The main limitation of this equipment consists of a particularly small normal load allowed.

Another type of on field FT was developed at the department of the “Forschungsgesellschaft
Kraftfahrwesen mbH Aachen (fka) and the Institut für Kraftfahrzeuge (ika)” of RWTH Aachen
University. The FT, called LiRep [69], is a portable device developed to study friction and wear of a
tread block sample on real road surfaces under different operating conditions. The device, shown in
Figure 21, consists of a four-wheeled frame to facilitate transport, therefore these wheels can be easily
lifted or removed for performing the tests. The core of the device is a ball screw linear axis driven by a
servo motor, that drags a “sensing head” (carriage/sledge) on which the tread-block sample, 3-axis
force transducer and the loading weights are mounted. The “sensing-head” allows to install samples of
a maximum size of 60 × 60 mm2, and to add a calibrated weight up to 60 kg. Depending on the contact
surface of the sample, these weights correspond to an equivalent pressure between the sample and the
road up to 3.5 bar. All data acquisition system, cables and the control unit are located on the chassis.
Furthermore, the test area can be covered with a climate chamber to study the effect of temperature on
the friction coefficient. The main technical specifications are summarized in Table 11.

 

 
 

(a) (b) 

Figure 21. (a) LiRep general view (left); (b) detail of two different road surface configurations [70].

Table 11. Technical specification of the LiRep device.

Min Max

Speed 0.001 1.2 (m/s)
Normal force - 60 (N)
Temperature - Amb (◦C)
Tread block sample 60 × 60 (mm2)
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Compared to other FT shown in this category, the main difference is that this device is not a mobile
device but rather is attached to the floor, so in this case, it is easier to carry out laboratory tests since
the speed and length of the sliding are not linked to the movement of the device.

5. Other Types

This section describes the FTs that not have a common contact mechanism or the same type of
movement, for this reason they are classified as “others”.

5.1. Pin on Disk Tribometers

The pin on disk (PoD) configuration is one of the most popular devices used to study the friction
and wear. Introduced by the ASTM standards G133 [71] and G99 [72] for wear and erosion tests,
both these devices are wide used also to study materials like tyre rubber.

Pin on disk (PoD) tribometers, in general, are designed and constructed to study the complex
friction phenomena in many engineering applications such as railway wheels, automotive and aircraft
brake systems, clutches, bearings, mechanical joints, tyre and biomedical materials. Conventional PoD
machines provide a normal contact load between a stationary pin and a revolving disk and measure
the resulting frictional force to evaluate the coefficient of friction [73–76]. PoD tests can use different
contact geometries:

• point contact using a ball;
• flat contact, often performed using a cylinder;
• line contact performed adopting a cylinder aligned in a line contact, which reduces contact

pressures a bit and increases the tested areas, but still represent a non-conformal contact and are
easier to align than flat contacts.

An example of the above equipment is reported in the studies of Carbone et al. [77], in which
the authors have investigated the friction properties of styrene-butadiene rubber (SBR) copolymer,
furnished by Pirelli Tyre, by means a ball-on-disk configuration. The friction measurement has been
carried out using the CSM Instruments Tribometer available at the Tribology Lab at the Department of
Mechanical and Industrial Engineering (Politecnico di Bari, Bari, Italy). The device, shown in Figure 22,
is composed by a rotating SBR disk in contact with a sphere made in polytetrafluoroethylene (PFTE)
fixed to the holder and unable to rotate.

 

 
 
 

 

Figure 22. The CSM- instruments HT-Tribometer [77].

The sphere is mounted on a stiff lever, designed as a frictionless force transducer, and is loaded
onto the test sample by applying calibrated weights so as to allow adjustment of the normal force in
the range 0–10 N. The friction coefficient is determined during the test by measuring the deflection of
the highly linear and precise elastic arm, with a resolution of 5 mN while wear coefficients for the ball
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and disk materials are calculated from the volume of material lost during the test. The instrument
allows one to control the velocity of the disk and the radial position of the ball.

The main technical specifications are shown in a Table 12.

Table 12. Technical specification of the CSM instruments tribometer.

Min Max

Speed 0.3 500 (rpm)
Normal force - 10 (N)
Temperature - 1000 (◦C)
Test Disk Radius 30 (mm)

With the aim to investigate the viscoelastic contribution to friction, the authors chose a PFTE
sphere to reduce friction and wear between the SBR disk and the sphere. The tests were conducted at
the sliding velocity of 6 mm/s and for different normal loads. Figure 23 shows the comparison between
experimental and numeric increase ∆µ of the friction coefficient µ as the normal load is increased from
1 N to 5 N.

 

Δμ μ

Δμ μ
Figure 23. Comparison between experimental and numeric increase ∆µ of the friction coefficient µ
as the normal load is increased from 1 N to 5 N, blue rhomboids refer to experiments, red squared to
numerical calculations [77].

This device is also designed to study friction and wear behaviour, since it allows one to vary the
interfacial friction by replacing test spheres characterized by different roughness. The device allows
measurement of friction in a small normal load range, and for this reason and also for the small contact
surface, the device is not able to simulate the tyre/road contact conditions.

5.2. Dynamic Friction Tester

The Dynamic Friction Tester, shortly called DFT, was born like an on-field tester to characterize
the paved surface frictional properties and shows a layout conceptually similar to the PoD tribometer.
The DFT is equipped with a rotating disc with three connected rubber sample and does not have the
fixed part (road surface) since this tester is usually used for friction measurements on the field, but in
any case, as shown by a study conducted by Do et al. [78], the device allows laboratory measurements.
This device designed and manufactured in Japan by the Nippo Sangyo Co., Ltd. has being used widely
not only in Japan but also in the EU, the United States and many other countries by government
agencies, construction companies, independent consulting companies, automotive manufacturers,
tyre manufacturers, research institutions and universities among many other organizations [79]. In EU
the leading user of this device is the “Institut Français des Sciences et Technologies des Transports,
de l’Aménagement et des Réseaux (IFSTTAR)”. Also, DFT has been chosen as the standard reference by
IFI (International Friction Index) ASTM international Standards [80]. The DFT is reported in the ASTM
G115 in the “vehicle pavement system” and the standard test procedure used in the United States can
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be found in the ASTM E-1911 standard [81]. The device, shown in Figure 24, looks like a box where the
bottom side has three rubber sliders mounted on the lower surface of a disk that rotates with its plane
parallel to the test surface. In the upper side there are the DC electric motor and the control unit.

 

 
(a) 

 
(b) 

 
(c) 

Figure 24. Dynamic Friction Tester, (a) upper side, (b) bottom side, (c) rubber sliders [82].

The main technical specifications are shown in a Table 13.

Table 13. Technical specification.

Min Max

Speed - 25 (m/s)
Normal force - 11.8 (N)
Temperature - Amb (◦C)
Test Disk Radius 167.5 (mm)

As mentioned, the DFT is commonly used for degeminating the road surface frictional properties,
in several states in the world. A detailed analysis of the relevant aspects including the experimental
results of pavement friction studies, using the DFT, is given by Rado et al. [83], and Kane et al. [82,84].
In the study conducted by Kane et al. [82] the results of the friction coefficient measurements conducted
using the DFT in wet condition are presented, with the goal to develop and validate by means of the
DFT a dynamic frictional contact model. During the measurement, the disk is accelerated to reach the
target speed, after which, prior to reaching the desired speed, the water is applied and maintained
during the entire measurement process through an irrigation system of the device. Once the set speed
of the rubber pads is reached, the motor is turned off and the disk with the measuring pads is lowered
in contact with the surface with a constant normal load. Each pad is loaded at 11.8 N, chosen due to
the weight of the device and the rigidity of the pad holders. The speed of the pads decreases until it
stops completely due to the friction generated between the pads and the contact surface, recorded
during the deceleration phase from the set speed up to the stop.

The main advantages in the use of the DFT lies in the possibility to operate both indoor and
outdoor, in the ease of use and in the possibility of making measurements in a wide range of speeds.
The main drawback associated with the use of a commercial machine such as the DFT lays in the fact
that it is not possible to study the friction coefficient of tyre tread compounds or to use tread blocks
obtained from a tyre, because the friction pads are provided by the manufacturer. In addition, the DFT
does not allow to vary the normal load on the sample.

5.3. British Pendulum Test Rig

The last device reported in this review is the British Pendulum (BP), widely accepted as a device
for both field and laboratory friction testing. The BP test is described in ASTM E303 [85] as a laboratory
testing method to find the skid resistance of pavement surface. It is a low-speed (<10 km/h) test
which is related to surface micro-texture of road surface. A typical commercial device is shown
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in Figure 25, with its main components. In many researches, BP is used to perform the asphalt
characterization [86,87], while this review is focused on the devices used to study the interactions
between a tread block sample and the road surface.

 

 
 
 

 
 
 
 
 

Figure 25. A typical commercial British Pendulum.

Ciaravola et al. [88], performed an experimental investigation of contact between tyre tread
and rough surfaces by means an evolved version of a standard BP, developed starting from a BP at
the Technical Centre Europe Bridgestone and customized at Department of Industrial Engineering,
University of Naples Federico II (Naples, Italy). Later, Arricale et al. [89] performed an experimental
investigation on tyre/road friction, between a tread block and real asphalt specimens by means
an improved version of the British Pendulum developed by the UniNa Vehicle Dynamic Research
Group, also called BP-EVO. The device showed in Figure 26, conserves the main components of
the classic pendulum and is also equipped with a series of sensors allowing to further enrich the
measurement dataset.

 

 

 
 
 

 
 
 
 
 

Figure 26. The British Pendulum Evo.

In detail the BP-EVO is composed by:

• an oscillating arm
• an encoder to measure the angular speed of the arm
• a tri-axial load cell, interposed between the rubber sample and the arm to measure the normal

and tangential force
• a rubber specimen cut from a tyre tread
• a tank to host a road specimen
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• a road specimen
• a pre-loading spring to vary the contact pressure at tyre/road interface
• a graduate crown located on the rigid frame of the device, in order to set the drop height, on which

the sliding speed depends
• a levelling screw to set the height of the oscillating arm from the road specimen

The main technical specifications are showed in Table 14.

Table 14. Technical specification.

Min Max

Speed 1 3.0 (m/s)
Normal force - 250 (kPa)
Temperature 25 100 (◦C)
Test Disk Sample 25 × 25 × 5 (mm3)

The initial temperature of the tread sample can be varied up to 120 ◦C by means of an industrial
heat gun and measured by an infrared pyrometer. The contact pressure can be varied using different
springs. The BP, compared to the testers shown in this review, is certainly the easiest to use and,
despite its simple layout, it offers the possibility to be employed in both dry and wet conditions
adopting real asphalt and tread samples as a counter face. Since the pendulum is not driven by a motor,
the sliding speed depends on the drop height; therefore, it is not possible making measurements in
a wide range of sliding speeds. In addition, it should be noted that the range of sliding speeds may
vary depending on the characteristics of the tread and the surface. For example, working with rough
surfaces and tyres with high performance in terms of friction value, it is impossible to perform test at
particularly low sliding speed. The reason is that, at low speed, the sample is stopped when come in
contact with the surface, not allowing the friction measurement.

6. Summary and Conclusions

In this review, the studies and the developments carried out with the aim to test and analyse
frictional and wear behaviour of viscoelastic materials, and of tyres tread in particular, were examined
by comparing the different working principles of different so-called friction testers, with an in-depth
focus on a selection of them, representative of each category.

In the authors’ research activity on tyre analysis and friction modelling, the need of a wide
overview of the state of the art in tribological testing on viscoelastic materials was experienced. Due to
the lack of such kind of information, the aim of the review is to resume devices and methodologies
developed in the far and recent past, in order to give suggestions and ideas to who could be interested to
build a friction testing bench or to evaluate the optimal methodology to get data concerning interaction
phenomena between a rigid and a viscoelastic material.

It has been found that the main variables affecting tyre friction in local contact are sliding speed,
contact pressure, tread temperature, road (or in general counter-surface) roughness and compound
viscoelastic characteristics. Consequently, most of the developed friction test benches allow to the user
to vary such variables in a range due to space and to technological constraints.

Friction coefficient is expressed as the ratio between the tangential and the normal load acting on
the tested specimen, and for this reason the rigs are usually equipped with load cells and with control
systems that guarantee stability and precision in the test setup and in the conduction of the experiments.

A key obstacle encountered in the tyre friction testing regards the possibility to vary single working
conditions, keeping the others constant. The difficulty is due to the mutual and deep interconnections
among the phenomena arising at tyre/road contact, and in many of the described applications the
solution has been fund involving very small variations in the working conditions. On the other hand,
real tyre working conditions are characterized by significant values of speed and pressure, not easily
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reachable and controllable by laboratory benches. For this reason, “on field” friction testers have been
developed, able to observe real contact conditions, despite the lower level of repeatability and precision
of the measurements linked to the noise and the random nature of the asphalt profile.

The variation of contact pressure in the indoor benches is usually controlled by the actuation of
controlled pneumatic systems, while the speed management is highly linked to the motion principle of
the bench itself (linear, rotational, etc . . . ).

Some of the illustrated devices, moreover, are installed in a climate chamber that allows a reliable
control of temperature, highly affecting the tread polymers viscoelastic behaviour. Such solution
improves the repeatability of the measurements and gives the opportunity to test the specimens also in
uncommon or hardly reachable environmental conditions, but increases significantly the cost and the
volume of the experimental setup.

Finally, some friction testers have been developed re-adapting systems conceived for different
scopes (like pin on disk benches, often adopted for hardness and wear measurements in metal-metal
sliding contact), substituting some elements with specimens of rubber to be tested.

As a final summary, a table of FT features (Table 15) has been developed, with the aim to
provide a global overview of the described benches, each with its peculiar characteristics and
advantages/disadvantages.

Table 15. Friction testers features resume.

Device Sliding Speed (m/s)
Max

Normal
Force (N)

Temperature
(◦C)

Sliding
Distance

(m)

Tread Block
Sample

(mm2)

Operating
Condition

Min Max Min Max Wet/
lubrication

Rolling test rig (Liu et al.) - 6.0 - Amb. - 16 × 10 ×

CID 0 17 300 Amb. - 30 × 34 ×

LFT (Lorenz et al.) 5 × 10−6 1×10−3 26 −10 +120 - 20 × 20 ×

LFT (A. Lang and M.
Kluppel) 1 × 10−4 1.0 280 +2 +100 - 20 × 20 X

LFT (O’Neil et al.) 1 × 10−6 0.05 - −40 +180 0.07 35 × 40 ×

LFT (O. Lahayne et al.) 1 × 10−5 1.1 4800 −30 +40 0.3 80 × 20 X

LFT, mini-µ-road (Aalto
University) 1 × 10−5 1.1 1200 −14 +50 1.0 60 × 60 X

LFT (A. Le Gal) 1 × 10−4 0.4 25,000 Amb. 0.05 50 × 50 X

LFT, HiLiTe (Leibniz
Universität Hannover) - 10 1000 −25 +60 5.0 80 × 20 X

Six-wheel small ground
robot 0.1 5.0 140 Amb. -

25.4 × 25.4
and 50.8 ×

50.8
X

LiReP 1 × 10−3 1.2 60 Amb. - 60 × 60 X

CSM Instruments
Tribometer 8 × 10−4 1.3 10 - +1000 - - X

DFT - 25 11.8 Amb. - 20 × 16 X

BP-EVO 1.0 3.0 160 Amb. 25 × 25 X

In conclusion, friction, and in particular friction between a viscoelastic material and a randomly
rough and rigid surface, still represents a field in which significant efforts in terms of research and
testing are daily spent. Each of the benches reported and analysed is useful to study some specific
aspect of very complex phenomena, but it seems that an ultimate technological solution, able to
reproduce the global effects involved in tyre/road sliding contact in a fully satisfying way, has not been
developed yet. The improvements in control systems and in the accuracy of the measurement devices
are leading to increasingly evolved benches, able to lead researchers and industries, interested in a
fundamental topic for mobility, road safety and polymers science, towards a deeper understanding of
contact mechanics.
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