
iii

HPC, Big Data, and
AI Convergence

Towards Exascale
Challenge and Vision

Edited by
Olivier Terzo

Jan Martinovič

First edition published 2022

ISBN: 978-​1-​032-​00984-​1 (hbk)
ISBN: 978-​1-​032-​00991-​9 (pbk)
ISBN: 978-​1-​003-​17666-​4 (ebk)

4
Data System and Data Management in a Federation of HPC/​Cloud Centers

Johannes Munke, Mohamad Hayek, Martin Golasowski, Rubén J. García-​Hernández,
Frédéric Donnat, Cédric Koch-​Hofer, Philippe Couvee, Stephan Hachinger,
and Jan Martinovič

(CC BY-NC-ND 4.0)

DOI: 10.1201/​9781003176664-4

59

59DOI: 10.1201/9781003176664-4

4
Data System and Data Management
in a Federation of HPC/​Cloud Centers

Johannes Munke, Mohamad Hayek, Martin Golasowski,
Rubén J. García-​Hernández, Frédéric Donnat, Cédric Koch-​Hofer,
Philippe Couvee, Stephan Hachinger, and Jan Martinovič

CONTENTS

4.1	 Introduction: Data Federation of European HPC/​Cloud
Centers... 60

4.2	 Requirements on the LEXIS DDI.. 62
4.2.1	 Unified Data Access... 62
4.2.2	 Usage and Federation of Diverse Data Backend Systems.......... 62
4.2.3	 Reliability and Redundancy... 62
4.2.4	 AAI Support.. 62
4.2.5	 APIs.. 63
4.2.6	 State-​of-​the-​art Research Data Management................................ 63

4.3	 Federation via a DDI Based on iRODS.. 63
4.3.1	 Relevant Basic Properties of iRODS.. 63
4.3.2	 iRODS HA Setup.. 64
4.3.3	 iRODS Zones Federation across Centers and Data

Movement.. 64
4.3.4	 Storage Tiering and Underlying Data Storage............................. 64
4.3.5	 Logical Structure of the DDI... 65

4.4	 Hardware... 66
4.4.1	 Storage Systems for HPC and Infrastructure-​as-​a-​

Service-​Cloud Clusters.. 66
4.4.2	 Storage Systems Dedicated to LEXIS... 67
4.4.3	 HPC–​Cloud-​Storage Interconnect and Data Node/​

Burst Buffer Concept.. 67
4.4.3.1	 SBF (Smart Bunch of Flash).. 68
4.4.3.2	 SBB.. 68

Johannes Munke et al.60

60

4.5	 Unified Access to the Platform Based on an AAI.................................... 69
4.5.1	 LEXIS Identity and Access Management (IAM)

Solution, SSO, and AAI.. 69
4.5.2	 Platform Services vs. AAI: Separation of Concerns.................... 70
4.5.3	 LEXIS DDI and IAM/​AAI System... 70

4.6	 Data Management via APIs.. 71
4.6.1	 Data Search, Upload, and Download APIs................................... 71
4.6.2	 Staging API.. 73
4.6.3	 Replication and PID Assignment API... 74
4.6.4	 Helper APIs... 74
4.6.5	 Compression/​Decompression/​Encryption/​

Decryption API... 75
4.7	 Integration with EUDAT Services.. 75

4.7.1	 EUDAT B2HANDLE.. 75
4.7.2	 EUDAT B2SAFE.. 76
4.7.3	 EUDAT B2STAGE... 76

4.8	 Conclusion... 76
Acknowledgment... 77
References.. 77

4.1 � Introduction: Data Federation of European
HPC/​Cloud Centers

The Federation of European computing centers, for science and engineering
to profit from the best-​suited computing resources regardless of location,
has been a hot topic for more than a decade. Many projects and initiatives
have been trying to realize this by large-​scale grid-​computing infrastructures
[1] like TeraGrid [2], WLCG [3], and EGI [4], to name but a few. Crucial to
ongoing approaches (see, e.g. [4,5]), building on that work, are easy usability
for multiple use cases and user-​friendly authentication and authorization
(e.g. [6,7]). To profit from the use of geographically distributed compute
resources, it is necessary to access data in an efficient way independently
of the location of the data store. To cover this demand, the EUropean DATa
(EUDAT [5]) initiative offers several tools and services for collaborative and
distributed data management.

This chapter describes our approach for the implementation of an EUDAT-​
based distributed data infrastructure (DDI) which is part of a data-​driven
computing platform enabling Large-​Scale Execution for Industry and Society
(LEXIS [8] –​ and see Chapter 2 in this volume). The platform executes
orchestrated big data workflows on European high-​performance-​/​cloud-​
computing resources in a multi-​site setup. The LEXIS project is coordinated

Data System and Data Management in a Federation of HPC/Cloud Centers 61

61

by the IT4Innovations National Supercomputing Center (IT4I, Ostrava, CZ)
which also represents one compute/​data site. The Leibniz Supercomputing
Centre (LRZ, Garching b. München, DE) is the second founding partner of
the computing and data federation, with both partners providing access
to classical high-​performance computing (HPC) and infrastructure-​as-​a-​
service-​cloud (IaaS-​cloud) resources. Both centers are representative (Tier
0/​1) sites within the PRACE federation of European HPC centers. The next
centers connecting to the platform are the European Center for Medium-
Range Weather Forecasts (ECMWF, Reading, UK) and the Irish Centre for
High-​End Computing (ICHEC, Dublin, IE).

Besides the DDI, LEXIS offers advanced workflow orchestration (Bull/​
ATOS Ystia Orchestrator [9], employing TOSCA [10] and Alien4Cloud [11]),
an accounting and billing system, and a portal for workflow and data con-
trol. The different access modalities of the compute resources are overcome
by the use of the high-​end application execution middleware (HEAppE [12]).
The infrastructure planning and development is driven by the requirements
of several pilot test cases: (1) the computational modeling of a data-​intensive
turbo-​machinery and gearbox system in aeronautics; (2) real-​time data pro-
cessing and simulation of earthquakes and tsunamis; and (3) weather and
climate models based on massive amounts of in situ data.

LEXIS draws advantage from its multisite architecture for computing and
data handling. With respect to the DDI, obvious strong points are the redun-
dancy and data safety aspects in a geo-​distributed storage/​mirroring scheme.
As a core component and data middleware for the DDI, the Integrated Rule-​
Oriented Data System (iRODS [13]) and EUDAT-​B2SAFE [14] are used and
every site is represented by one iRODS zone. iRODS holds file-​system-​like
and individual metadata for data sets in a metadata catalogue (iCAT), enab-
ling FAIR (findable, accessible, interoperable, and reusable [15]) data man-
agement. Every zone relies on an own catalogue service provider (iCAT
server), which in LEXIS is set up redundantly for eventually reaching high
availability (HA). iRODS facilitates a unified view on the user’s data from
all sites, contributing to the unified LEXIS look and feel conveyed by the
LEXIS authentication and authorization infrastructure (AAI), which provides
a single sign-​on (SSO) with Keycloak [16]. The DDI integrates with the other
components of the LEXIS platform via several REST APIs (e.g. for data
transfer). It is embedded into the European data landscape by using EUDAT
tools and federates easily with further EUDAT/​iRODS sites.

In Sections 4.2 and 4.3, we start out describing design requirements and
middleware-​based implementation of the LEXIS DDI. Section 4.4 discusses
the hardware backend of the DDI, with emphasis on the conceptually new
usage of buffering servers (burst buffers, data nodes) in order to accelerate
data transfer and conversion. Section 4.5 describes the integration of the
system with the LEXIS AAI, and Section 4.6 the REST-​API-​based integration
with other functional units of the LEXIS platform. After elaborating on the

Johannes Munke et al.62

62

European (EUDAT) integration and FAIR data aspects of the DDI (Section
4.7), we conclude (Section 4.8).

4.2  Requirements on the LEXIS DDI

Within the LEXIS federation, users and orchestration systems must be able
to retrieve data in a secure and efficient way independent of location. In
the context of the LEXIS project, this idea resulted in the following detailed
requirements to the LEXIS DDI for the design process.

4.2.1  Unified Data Access

Since user and workflow data in the distributed LEXIS platform will be used
in a cross-​site manner, it has to be uniformly accessible from everywhere.
iRODS stores files (data objects) in folders (collections) and subfolders (sub-​
collections) and thus provides a hierarchical structure comparable to a unified
file system, with data at all sites integrated into it (see [13]).

4.2.2  Usage and Federation of Diverse Data Backend Systems

Federating different HPC/​data centers means bringing storage resources
of different technological nature into line. As LEXIS is aiming at a growing
federation, the DDI must be versatile concerning different data backend
systems. In this sense, iRODS is a good choice since it acts as a middleware
and supports a variety of storage types. A description of the various hard-
ware backend systems used at IT4I and LRZ can be found in Section 4.4.

4.2.3  Reliability and Redundancy

The LEXIS project sets up reliable services in terms of availability and data
safety. High-​Availability iRODS Systems (HAIRS) are described in [17] and
[18]. Section 4.3 describes the LEXIS implementation of a redundant, geo-
graphically distributed iRODS system for the LEXIS DDI following this
approach. This offers the possibility of data mirroring and therefore fault-​tol-
erance concerning site-​specific data loss.

4.2.4  AAI Support

For a cross-​site unified user access, the DDI must be compatible with a unified,
LEXIS-​wide AAI system, which nowadays means supporting interfaces like
OpenID Connect or SAML [19, 20]. Authentication with the Keycloak-​based

Data System and Data Management in a Federation of HPC/Cloud Centers 63

63

LEXIS AAI is enabled using an adapted iRODS-​OpenID plugin, and access
rights on collections and data objects are then controlled via iRODS’s built-​in
mechanisms (see Section 4.5).

4.2.5  APIs

The immersion of the LEXIS DDI within the LEXIS platform, that is,
the connection to, for example, LEXIS Portal and LEXIS Orchestrator is
implemented with several RESTful APIs. The already existing iRODS APIs
and client toolkits are augmented with a set of custom-​designed REST APIs
specific to LEXIS (Section 4.6).

4.2.6  State-​of-​the-​art Research Data Management

To facilitate an adequate and FAIR [15] research data management and inte-
grate with the European data management landscape and standards, LEXIS
mainly makes use of EUDAT Services, as described in Section 4.7. iRODS’s
capability to hold basic metadata of data sets, in combination with PID
assignment by EUDAT’s B2HANDLE [21] is a key component for FAIR data
management.

4.3  Federation via a DDI Based on iRODS

LEXIS looked into different data management solutions that could fit our
requirements described in Section 4.2. As a result, the iRODS middleware
[13], also used by EUDAT [5], was finally chosen to be the core of the LEXIS
data system. Data ingestion, movement, and retrieval within/​from the DDI
are exclusively performed via REST APIs described in Section 4.6 in order
to ensure sanitized usage patterns and security (restriction of entry points)
within the LEXIS ecosystem. In the following sections, we summarize some
basics of iRODS and then discuss the deployment of iRODS at LRZ and IT4I
with one redundantly set-​up iRODS zone per center, and the federation of
these zones.

4.3.1  Relevant Basic Properties of iRODS

As briefly outlined in the previous sections, iRODS uses backend file systems
(or also object storage systems) to provide a unified file-​system-​like structure
of data objects and collections (similar to files and folders). To this end, an
iRODS zone –​ the smallest usable entity of an iRODS federation –​ runs one
iRODS server (provider server) with metadata catalogue iCAT, and zero or

Johannes Munke et al.64

64

more iRODS servers on machines with storage attached (consumer servers,
connected to the provider). Several iRODS zones can be federated to form
a large system. Beyond these federation capabilities, the middleware excels
through a rule engine, running scripts on certain events (like file creation),
and has the ability to store metadata with each data object or collection in an
attribute–​value–​unit tuple (AVU –​ see [13]) store. Also, iRODS offers diverse
client suites (command-​line interface, Python bindings, etc.) which enable us
to address it from our LEXIS-​specific APIs (Section 4.6).

4.3.2  iRODS HA Setup

Although the iRODS zones in LEXIS are independent entities (one per com-
puting/​data center), unavailability of one of the zones could have strong
consequences on workflows being executed. Such consequences can be a
complete failure of the workflow, or a slower execution when the orches-
trator has to get data from a different iRODS zone, far from the HPC/​cloud
resources used. To improve the reliability of each zone, we thus establish
redundancy and a failover mechanism for the iCAT server and its database.
The iRODS backend was deployed following the HAIRS concept [17,18] and
the PostgreSQL database was deployed following the concept in [22], which
is based on Pgpool-​II [23] and repmgr [24]. Figure 4.1 depicts the setup which
can reach high availability if required.

4.3.3  iRODS Zones Federation across Centers and Data Movement

An iRODS zone manages the physical storage resources at each center. It
holds metadata on stored data, users, and their access rights. All this infor-
mation is saved in the local iCAT database. LEXIS uses the iRODS federation
mechanism to connect the iRODS zones of the centers. This allows users from
a zone to access the data in a different zone while being authenticated to their
home zone. Effectively, users thus have a unified access and view to data
located at multiple centers. When data are only available in a remote zone,
it is transparently acquired on access via the internal transfer mechanisms of
iRODS. Thus, the iRODS federation covers core requirements on the LEXIS
data system.

4.3.4  Storage Tiering and Underlying Data Storage

In the setup described in Section 4.3.2, the iRODS server and its iCAT data-
base run in high-​availability mode. However, if the physical storage resource
is down or corrupted, data are either inaccessible or lost. While this can
be avoided through geographical data mirroring via the Replication API
(see Section 4.6), the iRODS storage tiering plugin [25] deployed in LEXIS
provides flexible management of backend storage, including redundancy

Data System and Data Management in a Federation of HPC/Cloud Centers 65

65

when necessary. The plugin organizes multiple storage resources into so-​
called tiers. Once data are transferred to an iRODS zone, the data are stored
automatically in the highest storage tier. The plugin sets an expiry time for
the data at each tier and once this time is exceeded, the data are moved or
replicated to the next tier.

4.3.5  Logical Structure of the DDI

Within the DDI, data are organized as so-​called data sets (corresponding
to an iRODS collection with data objects and possibly sub-​collections in it).
These data sets have a universally unique identifier (UUID) and can contain
input and output data for a specific workflow. Internally, the DDI organizes
data sets for each LEXIS computational project (see Section 4.1) and user in

LEXIS-site-
pgpool

LEXIS-site-
postgres1

LEXIS-site-
postgres2replication

LEXIS-site-
HAProxy

LEXIS-site-
iCAT1

LEXIS-site
iCAT2

access for iRODS
clients / servers

FIGURE 4.1
Redundant iCAT-​PostgreSQL system following the HAIRS concept. iRODS clients and
servers talk to a HAProxy which acts as a load balancer for iCAT1 and 2. The SQL queries
are forwarded to the postgres1 database if it is available; otherwise failover to postgres2 is
triggered. To maintain consistency, data are continuously replicated from postgres1 to 2 before
failover.

Johannes Munke et al.66

66

three different trees, according to privacy level: Inside the /​public tree, data
sets are organized by project but publicly visible. Inside the /​project tree, the
data are project-​private. Inside the /​user tree, data are finally private to each
user (here, collections containing data are organized by project and user).
This logical structure makes debugging and rights management easier.

4.4  Hardware

In this section, we discuss the storage (and computing) resources behind the
LEXIS platform, as far as relevant to the DDI (see Section 4.3.4). With IT4I,
LRZ, ICHEC, and ECMWF, LEXIS federates four European top-​level com-
puting and data centers with PRACE Tier-​0 and Tier-​1 computing resources
and an aggregate peak performance of more than 30 PFlop/​s. Besides more
than a PByte of temporary shared-​usage storage accessible by LEXIS (Section
4.4.1), resources of several 100s of TBs are exclusively available and immersed
within the DDI (Section 4.4.2). In order to access file systems faster and to pro-
vide very fast volatile storage (e.g. for data encryption or conversion), data
nodes (Section 4.4.3) have been installed within the LEXIS infrastructure. The
use of these machines is supported by the Smart Burst Buffer (SBB) and Smart
Bunch of Flash software products by ATOS, which have been adapted and
evolved in the course of the LEXIS project.

4.4.1 � Storage Systems for HPC and Infrastructure-​as-​a-​Service-​
Cloud Clusters

HPC cluster storage usually consists of several tiers, offering different eco-
nomically viable combinations of space, speed, and reliability characteristics
(where usually large space and high bandwidth anti-​correlate with reliability
and data safety). Parallel file systems such as LUSTRE [26] (at IT4I) or IBM
Spectrum Scale (ex GPFS [27], at LRZ) provide the necessary I/​O bandwidth
for parallel applications, as they are typically executed on HPC clusters. For
security reasons, access to these large (e.g. 1.4 PB on LRZ’s Linux Cluster)
storage systems from outside is restricted only to a handful of protocols such
as SSH (i.e. SCP, SFTP) or GridFTP [28].

For applications which are not relying on distributed-​memory paralleliza-
tion and fast interconnects, but rather need configurability and large run time
(or uptime in case of services), IaaS-​clouds are an optimum environment.
These environments ideally complement the HPC ecosystem, and allow for
the execution of smaller applications (pre/​postprocessing) and services. They
can be extended by container-​orchestration frameworks such as Kubernetes
as well. Consequently, LEXIS immerses OpenStack-​ and VMWare-​based

Data System and Data Management in a Federation of HPC/Cloud Centers 67

67

IaaS-​cloud resources provided by IT4I and LRZ (with several thousand CPU
cores in total), both backed by large CEPH [29] storage clusters (100 TB–​1 PB,
partially SSDs). The storage resources are usually addressed from within vir-
tual machines.

4.4.2  Storage Systems Dedicated to LEXIS

IT4I’s Cloud CEPH storage cluster provides 120 TB of raw HDD backed
storage and 40 TB of raw SSD backed storage. Via the POSIX compatible
file system CephFS, it is used as resource for IT4I’s iRODS zone. In LRZ,
iRODS uses a two-​tier (see Section 4.3.4) backend, with the high (fast) tier
being a 50 GB partition of LRZ’s Data Science Storage (DSS), based on IBM
Spectrum Scale and accessible via NFS. The lower tier (with slower network
connection) is a 150 TB LRZ-​LEXIS Experimental Storage system (legacy IBM
DS3500, being replaced and extended to 300 TB), which also hosts the LEXIS
Weather and Climate Data API (WCDA).

4.4.3 � HPC–​Cloud-​Storage Interconnect and
Data Node/​Burst Buffer Concept

In LEXIS, practically all systems at each site are interconnected with 10 Gbit
Ethernet or better (with exception of the LRZ-​LEXIS Experimental Storage).
This supports the LEXIS idea of running mixed data-​driven workflows using
HPC and IaaS-​cloud computing infrastructures, demonstrating and driving
the convergence of computing paradigms. To further optimize data flows and
implement in-​memory data encryption/​decryption, (de)compression, aug-
mentation, or preprocessing tasks, data nodes –​ that is, servers with TBytes
of NVMe-​SSD storage and Intel Optane DC NVDIMMs –​ were acquired. The
characteristics of the systems at IT4I and LRZ are given in Table 4.1. They can

TABLE 4.1

Characteristics of data node/​burst buffer servers at IT4I and LRZ

Characteristic IT4I node 1 IT4I node 2 LRZ node 1 LRZ node 2

CPU 2 Intel Skylake
Xeon Gold 6230

(2x20 cores)

Intel Skylake Xeon
Gold 6230

(2x20 cores)

Intel Skylake Xeon
Gold 6230

(2x16 cores)

Intel Skylake Xeon
Platinum 8260M
(2x24 cores)

RAM 192 GB 192 GB 384 GB 384 GB
NVMe Capacity 12.8 TB 12.8 TB 12.8 TB —​
Optane DC

NVDIMM
capacity

512 GB 512 GB 1.5 TB 3.0 TB

Accelerator card NVIDIA Quadro
RTX 6000

FPGA card
Bittware 520N
with Intel Stratix
10

NVIDIA V100 NVIDIA V100

Johannes Munke et al.68

68

be used as bare-​metal machines for data-​intensive tasks, to host a hypervisor
for virtual machines, or to run software of the project partner ATOS and
be used as SBB or Smart Bunch of Flash hosts. These two concepts are set
out below.

4.4.3.1  SBF (Smart Bunch of Flash)

The Smart Bunch of Flash component of the ATOS Flash Accelerator soft-
ware creates a persistent NVMe volume, spread over all NVMe devices,
and an XFS file system in it, which is exported to computing servers
using the NVMeOF protocol [30]. The allocation of these volumes can be
automated via SLURM or managed via OpenStack Cinder and the LEXIS
orchestration system. These fast volumes are ideal to accelerate I/​O-​bound
tasks (simple compression, conversion, encryption) when the pure net-
work speed to Data Node servers is superior to the write rate of (largely
HDD-​based) file systems. Thus, SBF volumes will, for example, be used
as a backend storage for the compression/​encryption API in LEXIS (see
Section 4.6.5).

4.4.3.2  SBB

In a parallel I/​O, HPC setting, data nodes can be used for buffering input and
output between the compute nodes of a cluster and its parallel file system
(see Section 4.4.1). As illustrated in Figure 4.2, the SBB component of the
ATOS Flash Accelerator suite is designed to implement a transparent cache
for a parallel file system such as Lustre, GPFS, or CephFS, in such use cases.
To this end, it provides:

•	 a client-​side library intercepting I/​O calls to glibc and forwarding them
to a sbbd daemon on the server side; this library (see Figure 4.2, left part)
is engaged with a simple LD_​PRELOAD, and works without modi-
fying the application –​ at least if linked dynamically –​ and without root
access; and

•	 a server-​side sbbd daemon (Figure 4.2, lower middle part) in charge of
processing the intercepted I/​O calls, managing the cache, and finally
asynchronously destaging the cached data to the parallel file system
(Figure 4.2, right part).

Likewise, before processing, a prefetching of data into the data node can
be implemented to make data available to an application (Smart Prefetch,
Figure 4.2, upper middle part). As already mentioned, within the data flow
the data node can be used for pre/​postprocessing tasks as well.

Data System and Data Management in a Federation of HPC/Cloud Centers 69

69

4.5  Unified Access to the Platform Based on an AAI

In multiuser IT services such as the LEXIS platform and DDI, authentica-
tion of users and identity management is crucial to the service provider. The
topic of authentication, authorization, and access control interplays with
legal aspects (e.g. privacy, data security, and responsibilities after a hacking
attempt), fundamentals of accounting (who to bill for services rendered), and
informational aspects (e.g. user contact data) in a complex way. A verified
identity allows the platform to identify permission classes (roles) for the users,
granting them certain access rights and enabling their actions. Distributed
data and computing infrastructures [1,2,3,4] have long promoted an iden-
tity management based on X.509 certificates, certification, and registration
authorities. Recent approaches prefer less bureaucratic solutions based on,
for example, OpenID Connect [19] or SAML [20] tokens and SSO.

4.5.1 � LEXIS Identity and Access Management (IAM) Solution,
SSO, and AAI

In this spirit, a LEXIS identity management and SSO system (LEXIS authoriza-
tion and authentication infrastructure (AAI)) grants access to all the platforms’
geographically distributed services with one login action (for a certain period

sbbd
daemon

smart
prefetch

HPC job
process

LD_PRELOAD

IO interception
library

LD_PRELOAD

IO interception
library

burst buffer node

compute nodes

rdma rdma

Hardware
accelerator
FPGA, GPU

nvme

Parallel
File System

FIGURE 4.2
ATOS SBB operation concept (for an explanation of the key architectural components (I/​O
interception library, sbbd, prefetch mechanism), refer to the text).

Johannes Munke et al.70

70

of time). Cumbersome multiple logins within our ecosystem are thus avoided.
These would not only affect the user experience, but also make users tend to reuse
IDs and passwords against common guidelines. With modern IAM solutions as
used in LEXIS, multiple organizations can federate. The AAI system itself may
be distributed, providing extra resilience to failure.

After a user is authenticated, a token is used to confirm this process,
to give the user rights, and also to allow services to perform requests on
behalf of the user. A token provides non-​tamperable proof of identity,
authentication, and authorization, with relatively short expiration time and
immediate revocation possibility, minimizing the risk of stolen credentials.
OpenID Connect (OIDC [19]) is a prime token and interfacing standard for
the interaction between services and IAM, using REST interfaces [31] and
JWT tokens [32]. To select the most suitable IAM system for the LEXIS pro-
ject, we analyzed current IAM open source solutions, taking into account
the following main criteria: clustering/​scalability, distributed/​multi-​site
setup capabilities, disaster recovery/​backup, authentication protocol, inte-
gration capabilities, and functionalities such as user/​group management
with role-​ or attribute-​based access control (RBAC/​ABAC). Finally, we
decided to use the product Keycloak [16] which RedHat also employs in
its SSO solution.

4.5.2  Platform Services vs. AAI: Separation of Concerns

The clear separation of Keycloak-​based AAI and other LEXIS services
(where communication happens via defined APIs) follows the security prin-
ciple: “Do one thing and do it well.” The user has only one identity and
different access possibilities (roles) on different systems. This also enables
proper auditing, allowing traceability, which is particularly important from
a security perspective.

4.5.3  LEXIS DDI and IAM/​AAI System

When building the LEXIS DDI, the EUDAT-​iRODS system was heavily
customized with an adapted plugin in order to provide proper support of
Keycloak’s OpenID Connect tokens. Thus, access, data privacy and data
sharing permissions can be conveniently and centrally controlled. The
iRODS data management software provides its own authentication and
authorization solution (see [13]), and controls access with an extension
to the Unix permission model (i.e. via users and groups, and permissions
to own, read, and modify data in access control lists). While it allows
authentication to be delegated, the iRODS user-​creation process has still
to be separately executed for each user in each zone’s iCAT. LEXIS users
are mapped to iRODS users, while LEXIS projects (see Section 4.1) are
mapped to iRODS groups. When a user is created and added to a project,
in each iRODS zone of LEXIS the corresponding iRODS user is created

Data System and Data Management in a Federation of HPC/Cloud Centers 71

71

and added to the relevant groups, and directories for their private data
within the projects are set up. This is at the moment a semi-​manual pro-
cess (with automated progress monitoring), handled via ticket creation in
a LEXIS trouble-​ticket system and administrators triggering appropriate
API endpoints (Section 4.6.4).

When authenticating via OpenID Connect, there are limitations to the
length of the OpenID tokens that iRODS will accept (approximately 1 kB,
which is an issue with Keycloak’s JWT tokens). We worked around this
by modifying the iRODS-​OpenID plugin architecture, such that tokens are
prevalidated and only a token hash transverses the iRODS core [33]. This
workaround, eventually to be superseded by an upstream solution within
the iRODS framework, requires changes to the client programs (e.g. iRODS
Python client).

Similar challenges have arisen when connecting the LEXIS orchestration
system to the LEXIS AAI. Due to the usage of OpenID Connect and SAML
in different orchestrator components (see Chapter 5), the LEXIS Keycloak
system had to be configured to support SAML as well.

4.6  Data Management via APIs

To facilitate automated, controlled, and secure data handling in LEXIS,
one central design principle of the LEXIS platform is that data handling,
manipulation, discovery, upload, and download are always initiated via
REST API calls. These calls can be initiated by users via the LEXIS web
portal (including a data set-​management interface), or by the LEXIS
Orchestration System within a workflow. The portal or orchestrator
authenticates on behalf of the user to the DDI using tokens from the LEXIS
AAI. In order to provide all needed functionality, APIs for metadata-​based
search, (meta)data upload and download (Section 4.6.1), data staging and
replication (Sections 4.6.2, 4.6.3), helper functions (Section 4.6.4) and finally
data (de)compression and encryption/​decryption (Section 4.6.5) have been
programmed and deployed. Details on these APIs and their endpoints are
laid out below. The LEXIS project intends to publish current versions of
API documentation and public code on its github page [34] and/​or zenodo
community page [35].

4.6.1  Data Search, Upload, and Download APIs

These APIs with their group of endpoints (Table 4.2) allow for basic data
management operations. Data sets can be searched for substrings according
to name or metadata fields (Table 4.2, lower rows). In the backend, this search
uses custom Python scripts executed on the metadata of the DDI, which is
retrieved with the iRODS Python client.

Johannes Munke et al.72

72

Further endpoints are offered to create, upload, download, and delete data
sets, and to modify these data sets by adding and removing files. In order to
make uploads and downloads convenient and feasible, file decompression/​
compression during upload/​download (i.e. upload/​download of zipped
files, with the contents appearing in the DDI) is supported on user request, as
well as resumable downloads using the TUS protocol [36]. In some cases, the
API makes use of the staging API (Section 4.6.2) as a backend. Compression/​
decompression functionalities are being expanded by a compression/​encryp-
tion API (see Section 4.6.5). For extremely large data sets, the LEXIS portal
offers the users an upload/​download link based on GridFTP/​B2STAGE (see
Section 4.7.3).

TABLE 4.2

Data search, upload/​download REST API endpoints

Endpoint Method Request body1

Response
body Comments

/​staging/​download POST source_​system,
source_​path

<file
contents>

Download from staging.

/​dataset/​download POST internalID,
access, project,
push_​method,
compress_​
method, path

<file
contents>

Download from iRODS.

/​dataset POST file, name,
internalID,
access, project,
push_​method,
compress_​
method, path,
metadata

internalID Create or update a data set
or sub-​data set.

/​dataset DELETE internalID, access,
project, path

—​ Delete data set or sub-​data
set.

/​dataset/​search/​
metadata

POST <Object with any
metadata>

<list of
{location,
metadata,
eudat}>

Return metadata of
matching data sets.

/​dataset/​search/​
metadata

DELETE <Object with any
metadata>

—​ Delete matching data sets.

/​dataset/​listing POST internalID, access,
project, path,
recursive

name, type,
size, create_​
type,
checksum,
contents

Contents provides a list
with the metadata (name,
type, …) for each file in a
directory.

1	 push_​method may be “empty” (empty data set), “directupload” (json-​encoded in file
parameter), “tus” (pre-​uploaded using TUS protocol, with path stored in file parameter).
compress_​method: “file” or “zip.” access: “user,” “project,” “public.”

Data System and Data Management in a Federation of HPC/Cloud Centers 73

73

The API group contains further endpoints which allow platform users to
add, remove, and modify additional information (metadata) regarding their
data sets, as a basis for FAIR research data management. This information
may be authorship (creator, contributor), publication (publisher, year), copy-
right (license), type (e.g. audiovisual, data set, image, interactive resource,
model, service, software, sound, text, workflow), identifiers (DOIs, PIDs),
among others. We use standard fields defined by DataCite [37] (schema: [38]),
and we allow users to define their own additional metadata and metadata
schemas, performing validation.

4.6.2  Staging API

Running workflows in the LEXIS federated environment, the orchestrator
has to trigger data movement between different computing and data systems
across different centers. Thus, input data are made available for computing
tasks, and output data are safely stored back in the DDI for later reuse. The
orchestrator performs these transfers (and necessary deletion of files) through
the staging REST API (endpoints: see Table 4.3).

By default (as, e.g. in the API set discussed in Section 4.6.1), REST APIs
are synchronous, which means the API call blocks until the task performed
is either completed successfully or has failed. However, large data transfer
between the different storage facilities requires time and the API must not
wait until the transfer is completed. To allow asynchronous calls to the
API, a distributed data scheduler connected to a message broker was thus
introduced below the REST API. When a staging API call occurs, a data

TABLE 4.3

Staging REST API endpoints

Endpoint Method Request body Response body Comments

/​stage POST source_​system,
source_​path, target_​
system, target_​
path, metadata, job_​
id(optional), task_​
id(optional)

requestID Stage data between
different data
sources.

/​stage/​<request_​
id>

GET —​ status, target_​
path

Returns the status of
the data transfer.

/​delete DELETE target_​system,
target_​path, job_​
id(optional), task_​
id(optional)

—​ Delete a data set.

/​delete/​
<request_​id>

GET —​ status Returns the status of
data deletion.

Johannes Munke et al.74

74

transfer or deletion task is pushed to the queue and the endpoint returns
an ID for the orchestrator to track the status of the operation through helper
endpoints (see Table 4.3).

Django [39] is used as REST API framework due to its robustness and
scalability. Celery [40] was chosen as a task queue and RabbitMQ [41] as a
message broker. The resulting status of transfers is saved in a PostgreSQL
database.

4.6.3  Replication and PID Assignment API

Data transfer within the DDI, that is, between different iRODS zones in
the federation, is handled differently than staging API transfers from or to
external source/​target systems. Data replication between iRODS zones in
the context of LEXIS is needed to ensure data safety and provides flexibility
for the orchestrator to choose the data source closest to the cloud or HPC
resources.

To this end, we developed a replication API, based on EUDAT B2HANDLE
[21] and B2SAFE [14]. As described in Section 4.7, B2SAFE provides a
mechanism to replicate data across iRODS zones and keeps track of replica
locations by using persistent identifiers (PIDs) assigned by B2HANDLE.
The replication API calls B2SAFE rules to trigger data replication between
two different iRODS zones. The implementation, similar to the staging API,
allows for asynchronous execution.

To adhere to FAIR [15] data principles, PIDs should be assigned to data
whether the data are replicated or not. PIDs allow long-​term identification
of data and thus serve a crucial role in data discovery. The replication API
thus offers endpoints that trigger B2HANDLE to assign PIDs and check the
assignment status.

4.6.4  Helper APIs

Several helper APIs have been programmed to address mostly administra-
tive problems, some examples of which are mentioned here. A SSHFS API
helps to export data sets via SSH to virtual machines in LRZ’s IaaS Compute
Cloud; and endpoints in the upload/​download API (Section 4.6.1) allow
for the permission management of newly created users and projects within
the DDI.

Direct access to the DDI via Globus/​GridFTP/B2STAGE for transferring
large data sets eventually uses GridFTP for data access (see Section 4.6.1),
which authenticates using certificates. A Gridmap File API allows users to
map and unmap their certificate to their LEXIS/​DDI user when needed. Also,
we set up an API returning the sizes of LEXIS data sets, which users or the
LEXIS orchestrator can use to judge whether data staging is a good option or
computations should rather take place on the site where the data are stored.

Data System and Data Management in a Federation of HPC/Cloud Centers 75

75

4.6.5  Compression/​Decompression/​Encryption/​Decryption API

Due to corporate usage, critical data have to be stored encrypted on the
LEXIS DDI, that is, on upload or staging to the DDI, encryption must take
place, with decryption being triggered on download/​reverse staging (e.g.
to HPC systems). In order to offer this functionality, and also compression/​
decompression of data sets to accelerate staging of many small files, an API
is being programmed with endpoints for data encryption/​decryption and
(de)compression. To actually execute these processes within a workflow, the
data are first staged (with the staging API) on NVMe or NVDIMM volumes
of the LEXIS data nodes (Section 4.4.3). Then, by calls to the compression/​
decompression/​encryption/​decryption API, encryption/​decryption and
(de)compression is triggered and executed in a speed-​optimized manner
before the data are sent on. This follows and expands on the ideas behind
the compression/​decompression functions in our upload/​download API
endpoints.

4.7  Integration with EUDAT Services

The EUDAT Collaborative Data Infrastructure (CDI) [5] is the result of a
growing group of organizations providing European-​scale data manage-
ment services. LEXIS aims at integrating with these services. Out of the large
EUDAT service portfolio, B2HANDLE [21] was chosen for PID assignment,
B2SAFE [14] for data safety, and B2STAGE [42] for data staging between
iRODS and HPC-​cluster file systems. The usage of further services in LEXIS
is being investigated, envisaging –​ for example –​ a connection to B2FIND [43],
the metadata-​based data discovery portal of EUDAT. Below, we go through
the EUDAT services LEXIS works with in some more detail.

4.7.1  EUDAT B2HANDLE

B2HANDLE [21] is EUDAT’s PID service. By assigning a unique identifier,
B2HANDLE helps in long-​term identification of data and helps achieving the
findability in a FAIR [15] data management system.

The B2HANDLE client is deployed as a Python library on all iRODS
machines in LEXIS. B2HANDLE is based on the Handle system [44] and
provides an interface to access it. Correspondingly, instances of the handle
server system were deployed at LRZ and IT4I. The two instances are assigned
to the same handle prefix and with one another through a built-​in mech-
anism. EUDAT offers a reverse lookup servlet [45] that enables searching
against the local B2HANDLE instance. The servlet shortens the time needed

Johannes Munke et al.76

76

to check whether a data set has already been assigned a PID, which is a pre-
requisite for using B2SAFE, B2STAGE, and B2FIND with that set.

In LEXIS, iRODS collections in the federated zones are assigned PIDs.
B2HANDLE assigns specific iRODS metadata to these collections, reflecting
the PID assignment. The collections are then findable through their identifier.

4.7.2  EUDAT B2SAFE

B2SAFE is EUDAT’s core service that ensures data safety. It provides a mech-
anism to replicate data between different iRODS zones deployed at different
centers. B2SAFE uses core iRODS rules and provides a set of high-​level
iRODS rules. It also takes advantage of B2HANDLE to maintain informa-
tion about the location of the replicated data. Once replication is triggered,
a PID is assigned to the parent data in case of absence, and a different PID
is assigned to the replicated data. B2SAFE writes iRODS metadata reflecting
the replication process, such as the data set PID and the parent PID for each
replicated data set. In LEXIS, B2SAFE is used as a backend to the Replication
REST API (Section 4.6.3).

4.7.3  EUDAT B2STAGE

B2STAGE is EUDAT’s high-​performance data transfer service. It provides
the ability to move data between a federated iRODS-​B2SAFE infrastructure
and HPC resources. B2STAGE deploys a GridFTP server on top of iRODS,
allowing any client supporting GridFTP to address it. Thus, big data sets can
reliably be staged to and from the LEXIS DDI using B2STAGE. On the one
hand, this makes B2STAGE an ideal backend to the Staging REST API for at
least part of the transfers; on the other hand, controlled data upload/​down-
load possibilities via B2STAGE can be offered to the LEXIS user for large
data sets.

4.8  Conclusion

In this chapter, we presented the LEXIS DDI, based on the iRODS and
EUDAT services. We laid out its significance as a data backend for the LEXIS
platform, a forefront infrastructure federating European top-​level HPC and
cloud systems and making these landscapes converge.

The hardware backend of the DDI consists of innovative systems like
CEPH, IBM Spectrum Scale and burst buffers relying on the latest Intel
Optane technology. iRODS and EUDAT-​B2SAFE fulfil the basic requirements
to serve as a data system for LEXIS, and make for a solid federation between
the data centers within the LEXIS platform. The real uniqueness of the LEXIS

Data System and Data Management in a Federation of HPC/Cloud Centers 77

77

DDI with respect to similar data infrastructures is however in its richness in
modern interfaces.

It connects to the LEXIS ecosystem with a number of well-​documented
HTTP-​REST APIs according to modern standards. The data search API with
its rich metadata search possibilities stands out as well as the staging API,
allowing for convenient, asynchronously handled data transfer requests.
The APIs make interfacing and automation an easy task, enabling the LEXIS
orchestration system to execute workflows in a way that optimizes data
transfer times.

Seen from the outside, the LEXIS DDI uses the EUDAT kit of tools and
services in order to immerse itself with pan-​European data infrastructures.
LEXIS data are equipped with handles from EUDAT-​B2HANDLE, assigned
metadata to follow FAIR standards, and replicated using EUDAT-​B2SAFE.
On this basis, federation with more centers and EUDAT-​driven data systems
has been efficiently accomplished. As a next step, we plan to expose public
LEXIS data via the B2FIND data search/​discovery portal.

The open and modern architecture shows its strength not only in the feder-
ation context, but also when industrial applications are executed on the LEXIS
platform. The DDI has an appropriate access-​rights management, interfaces
to meet industry standards, and is being equipped with encryption capabil-
ities for extra security. Service quality is ensured via the LEXIS trouble-​ticket
system, where also service requests (e.g. for user creation) are handled. With
all these characteristics, the LEXIS DDI not only helps to accomplish the
LEXIS mission of converging the HPC, cloud, and big data worlds, but also
drives collaboration of industry, SMEs, and scientific research in the com-
puting and data science sectors.

Acknowledgment

This work and all contributing authors are funded/​cofunded by the EU’s
Horizon 2020 Research and Innovation Programme (2014–​2020) under grant
agreement No. 825532 (Project LEXIS –​ Large-​scale EXecution for Industry
and Society).

References

[1]‌	Foster, I. and C. Kesselman, ed. 2004. The Grid 2: Blueprint for a New Computing
Infrastructure. San Francisco: Morgan Kaufmann. https://​doi.org/​10.1016/​
B978-​1-​55860-​933-​4.X5000-​7.

Johannes Munke et al.78

78

[2]‌	Pennington, R. 2002. Terascale Clusters and the TeraGrid. In Proceedings of
the 6th International Conference on High-​Performance Computing in Asia-​Pacific
Region (HPC Asia 2002), Bangalore.

[3]‌	Shiers, J. 2007. The Worldwide LHC Computing Grid (Worldwide LCG).
Computer Physics Communications 177, no. 1–​2: 219–​223. https://​doi.org/​
10.1016/​j.cpc.2007.02.021.

[4]‌	Kranzlmüller, D., J. M. de Lucas, and P. Öster. 2010. The European Grid
Initiative (EGI). In Remote Instrumentation and Virtual Laboratories, ed. F. Davoli,
N. Meyer, R. Pugliese, and S. Zappatore, 61–​66. Boston: Springer. https://​doi.
org/​10.1007/​978-​1-​4419-​5597-​5_​6.

[5]‌	EUDAT Ltd. 2020. EUDAT –​ Collaborative Data Infrastructure. www.eudat.eu
(accessed Apr. 6, 2021).

[6]‌	Solagna, P. 2014. EGI position paper for a European identity federation for
researchers. https://​docume​nts.egi.eu/​docum​ent/​2049 (accessed Apr.
6, 2021).

[7]‌	EUDAT Ltd. 2020. B2ACCESS –​ EUDAT. www.eudat.eu/​services/​b2access
(accessed April 6, 2021).

[8]‌	LEXIS consortium. 2020. LEXIS Project –​ High Performance Computing (HPC)
in Europe. https://​lexis-​proj​ect.eu (accessed Apr. 6, 2021).

[9]‌	Bull Atos. 2021. Ystia Suite. https://​ystia.git​hub.io (accessed Apr. 6, 2021).
[10]	OASIS Open. 2013. Topology and Orchestration Specification for Cloud

Applications Version 1.0 –​ OASIS Standard. http://​docs.oasis-​open.org/​
tosca/​TOSCA/​v1.0/​os/​TOSCA-​v1.0-​os.html (accessed Apr. 27, 2020).

[11]	 Bull Atos. 2021. Alien 4 Cloud. http://​alie​n4cl​oud.git​hub.io/​ (accessed Apr.
6, 2021).

[12]	Svatoň, V., J. Martinovič, J. Křenek, T. Esch, and P. Tomančák. 2019. HPCas-​a-​
Service via HEAppE Platform. In Proceedings of the 13th International Conference
on Complex, Intelligent, and Software Intensive Systems (CISIS-​2019), Sydney.
https://​doi.org/​10.1007/​978-​3-​030-​22354-​0_​26.

[13]	Xu, H., T. Russell and J. Coposky, et al. 2017. iRODS Primer 2: Integrated
Rule-​Oriented Data System. Williston: Morgan & Claypool. https://​doi.org/​
10.2200/​S00760​ED1V​01Y2​0170​2ICR​057.

[14]	EUDAT Ltd. 2020. B2SAFE –​ EUDAT. www.eudat.eu/​services/​b2safe
(accessed Apr. 13, 2020).

[15]	Wilkinson, M. D., M. Dumontier and I. J. Aalbersberg, et al. 2019. The FAIR
Guiding Principles for scientific data management and stewardship. Scientific
Data 3: 160018. https://​doi.org/​10.1038/​sdata.2016.18.

[16]	JBoss (Red Hat, Inc.). 2021. Keycloak. www.keycloak.org (accessed Apr.
6, 2021).

[17]	Kawai Y. and A. Hasan. 2010. High-​Availability iRODS System (HAIRS).
In Proceedings of the iRODS User Group Meeting 2010: Policy-​Based Data
Management, Sharing and Preservation, Chapel Hill. ISBN: 978-​1-​452813-​42–​44,
https://​irods.org/​uplo​ads/​2010/​Kawai-​HAIRS-​paper.pdf.

[18]	James, J. 2015. Configuring iRODS for High Availability. https://​irods.org/​
2015/​07/​conf​igur​ing-​irods-​for-​high-​avail​abil​ity (accessed Mar. 17, 2021).

[19]	Sakimura, N., J. Bradley, M. B. Jones, B. de Medeiros, and C. Mortimore. 2014.
OpenID Connect Core 1.0 incorporating errata set 1. https://​ope​nid.net/​
specs/​ope​nid-​conn​ect-​core-​1_​0.html (accessed Nov. 6, 2020).

Data System and Data Management in a Federation of HPC/Cloud Centers 79

79

[20]	Cantor, S., J. Kemp, R. Philpott, and E. Maler. 2005. Assertions and Protocols
for the OASIS Security Assertion Markup Language (SAML) V2.0. https://​
docs.oasis-​open.org/​secur​ity/​saml/​v2.0/​saml-​core-​2.0-​os.pdf (accessed
Nov. 6, 2020).

[21]	EUDAT Ltd. 2020. B2HANDLE –​ EUDAT. www.eudat.eu/​services/​b2handle
(accessed Apr. 13, 2021).

[22]	Depuydt, J. 2015. Jensd’s I/​O buffer –​ Setup a redundant PostgreSQL database
with repmgr and pgpool. http://​jensd.be/​591/​linux/​setup-​a-​redund​ant-​pos​
tgre​sql-​datab​ase-​with-​rep​mgr-​and-​pgp​ool (accessed Oct. 1, 2019).

[23]	SRA OSS, Inc. 2020. pgpool Wiki. www.pgpool.net/​mediawiki/​index.php/​
Main_​Page (accessed Apr. 13, 2020).

[24]	2ndQuadrant Ltd. 2020. repmgr –​ Replication Manager for PostgreSQL
clusters. https://​rep​mgr.org (accessed Apr. 13, 2020).

[25]	Russell T. 2017. SC17 Demo: Storage Tiering. https://​irods.org/​2017/​12/​
sc17-​demo-​stor​age-​tier​ing (accessed Dec. 1, 2019).

[26]	Schwan P. 2003. Lustre: Building a File System for 1,000-​node Clusters. In
Proceedings of the Linux Symposium (OLS 2003), Ottawa. www.kernel.org/​doc/​
ols/​2003/​ols2003-​pages-​380-​386.pdf.

[27]	Schmuck, F. and R. Haskin. 2002. GPFS:A Shared-​Disk File System for
Large Computing Clusters. In Proceedings of the Conference on File and Storage
Technologies (FAST ’02) –​ USENIX Association, Monterey. www.usenix.org/​
legacy/​events/​fast02/​full_​papers/​schmuck/​schmuck.pdf.

[28]	Allcock, W., J. Bresnahan, R. Kettimuthu and M. Link. 2005. The Globus Striped
GridFTP Framework and Server. In SC ’05: Proceedings of the 2005 ACM/​IEEE
Conference on Supercomputing. Seattle. https://​doi.org/​10.1109/​SC.2005.72.

[29]	Weil S. A., S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn. 2006.
Ceph: A Scalable, High-​Performance Distributed File System. In Proceedings
of the 7th USENIX Symposium on Operating Systems Design and Implementation
(OSDI ’06). Seattle. ISBN: 1-​931971-​47-​1, www.usenix.org/​legacy/​events/​
osdi06/​tech/​full_​papers/​weil/​weil.pdf.

[30]	NVM Express, Inc. 2016. NVM Express over Fabrics 1.0. https://​nvm​expr​ess.
org/​wp-​cont​ent/​uplo​ads/​NVMe_​ove​r_​Fa​bric​s_​1_​0_​Go​ld_​2​0160​605-​1.pdf
(accessed Nov. 6, 2020).

[31]	Richards R. 2006. Representational State Transfer (REST). In Pro PHP XML
and Web Services, ed. R. Richards, 633–​672. Berkeley: Apress. https://​doi.org/​
10.1007/​978-​1-​4302-​0139-​7_​17.

[32]	Jones, M., J. Bradley and N. Sakimura. 2015. JSON Web Token (JWT) –​ Internet
Engineering Task Force (IETF). https://​tools.ietf.org/​html/​rfc7​519 (accessed
Apr. 6, 2021).

[33]	García-​Hernández, R. J., M. Golasowski. 2020. Supporting Keycloak in iRODS
systems with OpenID authentication. Presentation at CS3 2020 –​ Workshop
on Cloud Storage Synchronization and Sharing Services (27–​29 January 2020),
Copenhagen. https://​ind​ico.cern.ch/​event/​854​707/​contri​buti​ons/​3681​126/​.

[34]	LEXIS consortium. 2021. GitHub –​ LEXIS: Large Scale Execution for Industry
& Society. https://​git​hub.com/​lexis-​proj​ect (accessed Apr. 6, 2021).

[35]	LEXIS consortium. 2020. Zenodo Community –​ LEXIS project. https://​zen​
odo.org/​comm​unit​ies/​lexis (accessed Apr. 6, 2021).

Johannes Munke et al.80

80

[36]	Transloadit-​II GmbH. 2018. tus –​ Open Protocol for Resumable File Uploads.
https://​tus.io/​ (accessed Apr. 6, 2021).

[37]	Brase, J. 2009. DataCite –​ A Global Registration Agency for Research Data.
In Fourth International Conference on Cooperation and Promotion of Information
Resources in Science and Technology, Beijing. https://​doi.org/​10.1109/​COI​
NFO.2009.66.

[38]	DataCite –​ International Data Citation Initiative e.V. 2021. DataCite Metadata
Schema 4.4. https://​sch​ema.datac​ite.org (accessed Apr. 5, 2021).

[39]	Django Software Foundation. 2020. Django. www.djangoproject.com (accessed
Apr. 1, 2020).

[40]	Celery Project. 2020. Celery: Distributed Task Queue. www.celeryproject.org
(accessed Apr. 1, 2020).

[41]	Pivotal Software. 2020. Messaging that just works –​ RabbitMQ. www.
rabbitmq.com (accessed Apr. 1, 2020).

[42]	EUDAT Ltd. 2020. B2STAGE –​ EUDAT. www.eudat.eu/​services/​b2stage
(accessed Apr. 13, 2020).

[43]	EUDAT Ltd. 2020. B2FIND –​ EUDAT. www.eudat.eu/​services/​b2find
(accessed Apr. 13, 2020).

[44]	Boesch, B., S. X. Sun and L. Lannom. 2003. RFC 3650 –​ Handle System –​
Internet Engineering Task Force (IETF). https://​tools.ietf.org/​html/​rfc3​650
(accessed Apr. 27, 2020).

[45]	EUDAT. 2021. B2HANDLE-​HandleReverseLookupServlet. https://​git​hub.
com/​EUDAT-​B2S​AFE/​B2HAN​DLE-​HRLS (accessed Feb. 23, 2021).

