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Introduction

The present report is aimed at combining two independent geometric con-
structions: smooth systems of smooth sections of a smooth double fibred
manifold and F–smooth spaces.

The notion of smooth systems of connections goes back to the paper
[7], where P.L. Garćıa studies the systems of principal connections of a
principal bundle and the associated “universal connection”. Indeed, this
is a fruitful geometric idea which exploits the properties of the Lie algebra
associated with the principal bundle and deserves several applications.

Later, it has been shown that the above geometric construction can be
extended to any fibred manifold, at a more basic level, regardless of a pos-
sible symmetry group, so detaching the notion of “system” from principal
bundles and their structure group (see, for instance, [2, 19, 22]). In a few
words, given a double fibred manifold G→ F → B , a “system of sections”
is defined to be a 3–plet (S, ζ, ε) , where ζ : S → B is a fibred manifold
and ε : S ×B F → G a fibred morphism over F . Thus, the fibred space
S behaves as a space of “parameters” and the “evaluation map” ε maps
sections s : B → S of the fibred manifold S → B to sections s̆ : F → G
of the fibred manifold G → F . Therefore, the choice of such a system of
sections turns out to be just a smooth selection of a distinguished family
of sections of the fibred manifold G→ F .

In particular, the above notion can be easily used to define a “system
of connections” of a fibred manifold F → B , by setting G :=T ∗B ⊗ TF .
Actually, in this basic framework, we can recover the “universal connection”
of the system, along with its properties, without explicit reference to the
structure group and its Lie algebra. In practice, the choice of the “fibred
manifold of parameters” S and of the “evaluation map” ε play the selective
role that is played by the equivariance with respect to the structure group
in the language of systems of principal connections.

The notion of F–smooth space goes back to the paper [6], where A.
Frölicher introduces a notion of “smoothness” which is alternative with
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2 Introduction

respect to standard notion. Actually, in the present report, we use a defini-
tion of F–smoothness with a mild simplification with respect to the original
one (see [25]).

In a few words, the notion of standard smoothness for a topological
manifold M is based on the choice of a family A of local charts (xi) : M →
Rn , which fulfills a standard smoothness compatibility condition. However,
the F–smoothness for any set S is based on the choice of a family C of curves
cI : I → S , which fulfills a condition of smooth re–parametrisation, but
no mutual compatibility condition.

At a first insight, it might appear that the two notions of smoothness
above be mutually dual and rather equivalent. But, it is not so. Indeed,
the F–smoothness turns out to be a rather weak condition: it is even more
feeble than continuity! Nevertheless, one can prove that in the framework
of F–smooth spaces it is possible to achieve several advanced geometric
constructions (see, for instance, [3, 4, 14, 16]). It is also worth mentioning
further deep investigation in this framework (see, for instance, [17, 21]).

In the present report, we are mainly concerned with F–smooth spaces
consisting of smooth maps between standard smooth manifolds. In our
opinion, this is a quite fruitful application of the general notion of F–
smoothness.

Accordingly, we generalise the concept of system of sections of a double
fibred manifold by replacing the smooth fibred manifold of parameters ζ :
S → B with an F–smooth fibred set ζ : S → B . In this way, we can
achieve systems of sections, which, in a sense, are infinite dimensional, by
skipping the hard methods of infinite dimensional manifolds.

At a first insight, some constructions of the present report might appear
very cumbersome. But, their core idea is quite simple and intuitive. Un-
fortunately, a detailed account requires odd subtleties; but the reader can
grasp the basic simple ideas at a first reading and go throughout details in
a second reading, when necessary.

As far as applications to mathematical physics are concerned, we have
used, in the framework of Covariant Quantum Mechanics, the smooth sys-
tems of connections and their universal connection in order to define the
“upper quantum connection”, the F–smooth systems of sections for the
definition of ”sectional quantum bundle” over time and the “F–smooth
connections” in order to regard the Schrödinger operator as a connection
of the sectional quantum bundle (see, for instance, [9, 11]).

We use the following symbols:

- given two smooth manifolds M and N , we denote the set of global
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smooth maps between the two manifolds by Map(M ,N) ,
- given a smooth fibred manifold F → B , we denote the set of global

smooth sections s : B → F by Sec(B,F ) .
- given a smooth fibred manifold F → B , we denote the sheaf of local

smooth sections s : B → F by sec(B,F ) .





Chapter 1

Smooth manifolds and
F–smooth spaces

We briefly recall the standard definition of smooth manifold and
discuss the notion of F–smooth space. Moreover, we compare these
concepts.

The reader can be interested to go back to the original literature
concerning F–smooth spaces (see [6] and [3, 4, 14, 16, 17, 25]).

1.1 Smooth manifolds

We briefly recall the standard definition of smooth manifold just
in view of a comparison with the forthcoming definition of F–smooth
space (see next Section 1.2.1).

We observe that the basic original concept of derivative and the con-
sequent concept of smoothness can be achieved in the framework of affine
spaces (see, for instance, [24]). However, for practical reasons, one usually
replaces a generic modelling affine space with Rn .

Accordingly, one can introduce the standard notion of smooth manifold
as follows.

Definition 1.1.1. A smooth manifold of dimension m is defined to be a
pair (M ,A) , where M is a topological manifold of dimension n and A is a
topological atlas whose local charts (xi) : M → Rm , fulfill “smooth transi-
tion rules” (in the sense of smoothness of affine spaces), in the intersections
of their domains, and a “maximality condition”.

5



6 Smooth manifolds and F–smooth spaces

Moreover, a map f : M →N between two smooth manifolds of dimen-
sion m and n , respectively, is said to be smooth if it yields locally “local
smooth maps” (in the sense of smoothness of affine spaces) Rm → Rn .

Thus, the standard smoothness of a manifold M involves a background
structure of topological manifold and a smoothness compatibility condition
of local topological charts. Hence, the smoothness of manifolds turns out to
be a global property achieved via a local condition of compatibility between
local topological charts.

1.2 F–smooth spaces

We discuss the notion of F–smooth space (S, C) and of F–smooth

maps f : S → Ś between F–smooth spaces.
Moreover, we compare the notions of smoothness and F–

smoothness.

1.2.1 F–smooth spaces

We introduce the notion of “F–smooth space”, with minor
changes, with respect to the original definition due to A. Frölicher
[6] (see also [4, 15, 16, 17, 25]).

Roughly speaking, an “F–smooth space” is defined to be a set
S equipped with a family C of curves c : Ic → S which fulfills a
certain feeble requirement of reparametrisation, without compatibility
conditions.

This apparently simple difference of the two concepts of smooth
manifold and F–smooth space yields great difference in their conse-
quences.

Actually, the notion of “F–smooth space” is weaker than that
of “smooth manifold”. Nevertheless, it allows us to achieve several
geometric constructions.

Indeed, any smooth manifold turns out to be an F–smooth space
in a natural way (see the forthcoming Section 1.3).

We can define the notion of “F–smooth subspace” of an F–smooth
space in a natural way. Indeed, the F–smooth spaces fulfill a re-
markable property concerning F–subspaces, which has no analogue
for topological or smooth manifolds.

The notion of “F–smooth space” provides the geometric context
suitable for the further discussions on “F–smooth systems of smooth
maps” and “F–smooth systems of smooth sections” (see the forth-
coming Section 2.2.1 and Section 3.2.1).
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Definition 1.2.1. An F–smooth space is defined to be a pair (S, C) , where
S is a non empty set and C is a family of curves, called basic curves,

C ≡ {c : Ic → S} ,

where Ic ⊂ R is an open subset, such that:
1) for each s ∈ S , there is at least one curve c : Ic → S belonging to C

and a λ ∈ Ic , such that
c(λ) = s ,

2) if c ∈ C and γ : Iγ → Ic is a smooth map defined on an open subset
Iγ ⊂ R , then

c ◦ γ ∈ C .

We have immediate consequences of the above Definition.

Proposition 1.2.1. Let (S, C) be an F–smooth space.
1) All constant curves belong to C .
2) If the curve c : Ic → S belongs to C, then its restriction c′ to any

open subset Ic′ ⊂ Ic belongs to C.

Proof. 1) Let s ∈ S . Then, in virtue of condition 1) in Definition 1.2.1, there
exists a curve c : Ic → S which belongs to C and such that, for a certain λ ∈ Ic,
we have c(λ) = s .

Moreover, let us consider any open subset Iγ ⊂ R , the above λ ∈ Ic and the
constant map γ : Iγ → Ic : µ 7→ λ . Then, according to condition 2) in Definition
1.2.1, the constant curve c ◦ γ : Iγ → S belongs to C .

2) The curve c′ : Ic′ → S can be regarded as the composition c′ = c◦γ, where

γ : Ic′ ↪→ Ic is the smooth inclusion map. QED

The families of basic curves of F–smooth spaces fulfill the following re-
markable property, which has no analogue concerning the charts of smooth
manifolds.

Proposition 1.2.2. Let us consider a set S and two families C and Ć of
S , which fulfill the requirements of Definition 1.2.1.

Then, the union C ∪ Ć of the two families of curves fulfills the require-
ments of Definition 1.2.1.

Next, we compare different F–smooth structures of a set S .

Note 1.2.1. Any non empty set S admits at least one F–smooth structure.
Even more, if S has infinitely many elements, then it admits infinitely many
F–smooth structures.



8 Smooth manifolds and F–smooth spaces

Definition 1.2.2. Given two F–smooth structures C and Ć of a set S , such
that C ⊂ Ć , then we say that Ć is finer than C .

It is worth comparing the notions of F–smooth space and smooth man-
ifold.

Remark 1.2.1. In a sense,
a) the assignment of the set of curves C for an F–smooth space plays a

role analogous to the assignment of a maximal smooth atlas A for a smooth
manifold,

b) the assignment of a set C as in the fothcoming Example 1.2.1 plays a
role analogous to the assignment of a smooth atlas Ā for a smooth manifold,

c) the conditions 1) and 2) in Definition 1.2.1 for an F–smooth space
play a role analogous to the conditions of smooth transitions for the charts
of a smooth atlas.

Eventually, we consider a few trivial or exotic examples of F–smooth
spaces, just to account for the range of the notion of F–smooth space.

Example 1.2.1. Let us consider any set S .
Moreover, let us choose any set C consisting of curves c : Ic → S

fulfilling condition 1) in Definition 1.2.1.
Furthermore, let us define the set C consisting of all curves of the type

c ◦ γ : Iγ → S , where c ∈ C ,

and where γ : Iγ → Ic is any smooth map defined in a open subset Iγ ⊂ R .
Then, the pair (S, C) turns out to be an F–smooth space.

Example 1.2.2. Let us consider any set S and the set C consisting just
of all constant curves c : Ic → S . Then, the pair (S, C) turns out to be an
F–smooth space.

In this case, all other possible F–smooth structures are finer than the
above structure.

Example 1.2.3. Let us consider the set S :=R2 , along with the natural
smooth chart (x, y) , and the set C consisting of all smooth curves c whose
coordinate expression is of the type

cx(λ) = a , cy(λ) = γ(λ) ,

where a ∈ R and γ : Iγ → R is any smooth curve.
Then, the pair (S, C) turns out to be an F–smooth space.
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Example 1.2.4. Let us consider the set S :=R and the set C consisting of
all smooth curves c : Ic → S , such that

0 ≤ |c(λ2)− c(λ1)| ≤ 1 , for each λ1, λ2 ∈ Ic .

Then, the pair (S, C) turns out to be an F–smooth space.

1.2.2 F–smooth subspaces

Further, we discuss the F–smooth subspaces of an F–smooth space
and emphasise an interesting property, which has no analogue for
topological or smooth manifolds.

Definition 1.2.3. Let (S, C) be an F-smooth space. Then, an F–smooth
subspace is defined to be a pair

(S′, C′) ⊆ (S, C) ,

where S′ ⊆ S is a non empty subset and C′ ⊆ C is the subset consisting of
all curves belonging to C and with values in S′ .

For short, we say also that S′ ⊆ S is an F–smooth subspace.

Proposition 1.2.3. Let us consider an F–smooth space (S, C) and any
non empty subset S′ ⊆ S . Then, S′ turns out to be an F–smooth space in
a natural way.

In fact, let C′ ⊆ C be the subset consisting of all curves c ∈ C , whose
image is contained in S′ . Then, the pair (S′, C′) turns out to be an F–
smooth space.

Proof. Let us check the two conditions of Definiton 1.2.1.
1) The 1st condition is fulfilled because all constant curves of S′ belong to C′ .
2) The 2nd condition is also fulfilled. In fact, let c ∈ C′ and let γ : Iγ → Ic

be a smooth map. Then, the composition c ◦ γ belongs to C and has values in

S′ . QED

Remark 1.2.2. Let us consider an F–smooth space (S, C) and any non
empty subset S′ ⊆ S .

Then, besides the above structure of F–smooth subspace (see Definition
1.2.3), the subset S′ might be equipped with other F-smooth structures
given by a further subset C′′ ⊆ C′ ⊆ C .

Thus, the above F–smooth structure C′ is the finest F–smooth structure
among those which are comparable with the F–smooth structure C of the
environmental space S .
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We exhibit an exotic example of F–smooth subspace.

Example 1.2.5. Let us consider the F–smooth space (S, C), where S :=R
and C is the set of all smooth curves of R .

Moreover, consider the subset S′ ⊂ S consisting of all irrational num-
bers.

Then, the curves belonging to C and with values in S′ are just the
constant curves with irrational image. Let C′ be the set of these curves.

Indeed, the pair (S′, C′) turns out to be an F–smooth subspace of
(S, C) .

1.2.3 F–smooth maps

We introduce the notion of “F–smooth map” between F–smooth
spaces in a natural way. According to this definition, F–smooth spaces
along with global F–smooth maps constitute a category.

Indeed, the restriction property of F–smooth maps is analogous
to a property holding for smooth maps; however a gluing property of
F–smooth maps does not hold for F–smooth spaces.

Definition 1.2.4. Let us consider two F–smooth spaces (S, C) and (S′, C′) .
Then, a (local) map

f : S → S′

(defined on a subset U ⊂ S) is said to be F–smooth if, for each c ∈ C (with
values in U) we have

c′ ≡ f ◦ c ∈ C′ .

Proposition 1.2.4. If S is an F-smooth space, then the global map

idS : S → S

is F–smooth.

Mooreover, if S, S′, S′′ are F–smooth spaces and

f : S → S′ and f ′ : S′ → S′′

are global F–smooth maps, then f ′ ◦ f : S → S′′ turns out to be a global
F–smooth map.
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Remark 1.2.3. Let us consider a set S equipped with two F–smooth
structures C and C′ , and suppose that C′ ⊂ C .

Then,

idS : (S, C′)→ (S, C)

turns out to be F–smooth, but

idS : (S, C)→ (S, C′)

is not F–smooth.

We have a restriction property of F–smooth maps analogous to a prop-
erty of smooth maps.

Proposition 1.2.5. Let us consider two F–smooth spaces (S, C) and
(S′, C′) .

If f : S → S′ is an F–smooth map, defined on a subset U ⊂ S, then
the restriction f̄ of f to a further subset Ū ⊂ U turns out to be F–smooth.

Proof. If c′ ≡ f◦c ∈ C′ , for each c ∈ C with values in U , then c′ ≡ f◦c̄ ∈ C′ ,
for each c̄ ∈ C with values in Ū . QED

The F–smooth maps do not have a gluing property analogous to the
gluing property of smooth maps.

The reason for this difference of behaviour between smooth and F–
smooth maps is due to the fact that F–smoothness of maps is a global
property, while smoothness of maps is a local property.

Remark 1.2.4. Let us consider two F–smooth spaces (S, C) and (S′, C′)
and two maps

f1 : S → S′ and f2 : S → S′ ,

defined respectively on the subsets U1 ⊂ S and U2 ⊂ S .

Clearly, if f1 = f2 on U1 ∩ U2, then f1 and f2 yield a “glued map”
f : S → S′, defined on U1 ∪U2 .

However, the hypothesis that f1 and f2 be F–smooth does not imply
that f be F–smooth.

In fact, let us provide an exotic countre–example.

Let us consider the F–smooth spaces (S, C) and (S′, C′) , where S =
S′ = R .

Suppose that C consists of all smooth curves of S and that C′ consists
of all smooth curves of S′ considered in Example 1.2.4.
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Next consider the maps

f1 = id : U1 = (0, 1)→ S′ and f2 = id : U2 = (1/2, 3/2)→ S′ .

Clearly, these maps are F–smooth and coincide in the intersection of
their domains.

However, the glued map f : S → S′ , defined in (0, 3/2) is not F–
smooth.

Next, we discuss the behaviour of F–smooth maps with respect different
smooth structures.

Proposition 1.2.6. Let S be a set equipped with two different F–smooth
structures (S, C) and (S, C) , with C ⊆ C and let (S′, C′) be another F–
smooth space.

Let

MapCC′(S, S
′) , MapCC′(S, S

′) and MapC′C(S
′, S) , MapC′C(S

′, S)

be, respectively, the sets of maps S → S′ and S′ → S , which are F–smooth
with respect to the two different F–smooth structures of S .

Then, we have

MapCC′(S, S
′) ⊆ MapCC′(S, S

′) and MapC′C(S
′, S) ⊆ MapC′C(S

′, S) .

Example 1.2.6. Let (S, C) be an F–smooth space and let C consist just
of constant curves of S (see Example 1.2.2).

Moreover, let (S′, C′) be another F–smooth space and let C′ contain also
non constant curves of S′ passing through each point of S′ .

Then, a map f : S′ → S is F–smooth if and only if it is constant.
Moreover, all maps f : S → S′ are F–smooth.

Next, we consider an exotic example of F–smooth maps, just to account
for the range of the notion of F–smooth map.

Example 1.2.7. Let us consider the set S :=R and equip it with two
different smooth structures induced respectively by the two charts (see also
Remark 2.1.1)

x : S → R : s 7→ s and x́ : S → R : s 7→ s3 .

Clearly, the 1st smooth structure is the natural one, while the 2nd one
is an exotic smooth structure. Indeed, these smooth structures are different
because the transition rule

x = (x́)1/3
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is not differentiable in s = 0 ∈ S .

Next, let us define two F–smooth structures (S, C) and (S, C′) on S ,
where, respectively, C and Ć consist of the curves c : Ic → S and ć : I ć → S
whose coordinate expressions

x ◦ c : Ic → R and x́ ◦ ć : Ic → R ,

are smooth in the standard sense, with respect to the above smooth struc-
tures of S , respectively.

Indeed, the above F–smooth structures are different. To prove this fact,
the curves with coordinate expressions

x ◦ c : Ic → R : λ 7→ λ and x́ ◦ ć : I ć → R : λ 7→ λ

belong, respectively, to C and Ć .
Actually, we have ć /∈ C , because the coordinate expression

x ◦ ć : I ć → R : λ 7→ λ1/3

is not differentiable in s = 0 ∈ S .

However, we have C ⊂ Ć , because, for each c ∈ C , the coordinate
expression

x́ ◦ c : Ic → R : λ 7→ c(λ)3

is smooth in the standard sense.

1.2.4 Cartesian product of F–smooth spaces

Eventually, we analyse the F–smooth cartesian product of F–
smooth spaces.

Proposition 1.2.7. Let (S′, C′) and (S′′, C′′) be F-smooth spaces and set

C :=
{

(c′, c′′) ∈ C′ × C′′ | Ic′ = Ic′′
}
.

Then, the pair (S′ × S′′, C) turns out to be an F–smooth space.

Moreover, the natural projections

pro′ : S′ × S′′ → S′ and pro′′ : S′ × S′′ → S′′

turn out to be F-smooth.
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Proof. 1) The pair (S′ × S′′, C) is an F–smooth space.
In fact, we can easily see that the set C fulfills the properties of Definition

1.2.1.

2) The maps

pro′ : S′ × S′′ → S′ and pro′′ : S′ × S′′ → S′′

are F–smooth.
In fact, for each F–smooth curve c := (c′, c′′) : Ic → S′ × S′′ , the curves

c′ = pro′ ◦ c and c′′ = pro′′ ◦ c

are F–smooth by hypothesis. QED

1.3 Smooth manifolds as F–smooth spaces

Each smooth manifold turns out to be an F–smooth space in a
natural way.

However, each set S might be equipped with many smooth struc-
tures; hence, these smooth manifolds turn out to be F–smooth spaces
in many ways.

Indeed, we can achieve a “universal” F–smooth structure of a set
S by taking the union of all families of basic curves of all F–smooth
structures.

Moreover, an F-smooth space S might be a smooth manifold in
many ways.

Here, we do not address the above relation between smooth struc-
tures and F–smooth structures in detail and full generality. But, we
just clarify this question by an example.

Theorem 1.3.1. Each smooth manifold M , along with the set C consisting
of all smooth curves c : Ic →M , turns out to be an F–smooth space.

Moreover, a map between smooth manifolds turns out to be F–smooth
(in the sense of the above natural F–smooth structures) if and only if it is
smooth.

Proof. The non trivial proof of this result is due to A. Frölicher [6] and is

based on the Boman’s theorem [1].QED

Definition 1.3.1. According to the above Theorem 1.3.1, for each smooth
manifold M , we define its natural F–smooth structure to be provided by
the set C consisting of all smooth curves c : Ic →M .
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Indeed, from now on, for each smooth manifold M , we shall refer to
its natural F–smooth structure.

Corollary 1.3.1. Let M be a smooth manifold. Then, a function f :
M → R is F–smooth if and only if the map f ◦ c : Ic → R is smooth for
each smooth curve c : Ic →M .

Corollary 1.3.2. Let (S, C) be an F–smooth space and c : Ic → S any
curve.

Then, c is F–smooth if and only if c ∈ C .

Proof. Let us consider Ic as a smooth manifold equipped with its natural
F–smooth structure.

1) If c ∈ C , then, in virtue of Definition 1.2.1, for each smooth curve γ : Iγ →
Ic , we have c ◦ γ ∈ C .

Hence, in virtue of Definition 1.2.4, c is F–smooth.

2) If c is F–smooth, then, in virtue of Definition 1.2.4, for each smooth curve
γ : Iγ → Ic , we have c ◦ γ ∈ C .

Hence, in particular, we have c = c ◦ idIc ∈ C . QED

Eventually, we provide an example suitable to compare different smooth
and F-smooth structures.

Example 1.3.1. Let us consider the set S :=R .
On this set S we have a “natural” smooth structure provided by the

natural global chart x := id : S → R .
Moreover, we can equip the set S with the further “exotic” smooth

structure provided by the global chart x́ :=x3 .

If we regard S as an F–smooth space according to its natural smooth
structure x , then the family of F–smooth curves Cx consists of all curves
c : Ic → S , such that the function x ◦ c : Ic → R are smooth.

If we regard S as an F–smooth space according to its exotic smooth
structure x́ , then the family of F–smooth curves Cx́ consists of all curves
c : Ic → S , such that the function x́ ◦ c : Ic → R are smooth.

Clearly, we have

Cx ⊂ Cx́ .

In an analogous way, we can equip S with other “exotic” smooth struc-
tures in infinitely many ways and regard S as an F–smooth space in in-
finitely many ways according to each smooth structure. Indeed, the union
of all families of F–smooth curves obtained in this way equips S with a
“universal” F–smooth structure.
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Thus, conversely, the above construction provides an example of an F–
smooth space, which can be regarded as a smooth manifold in infinitely
many ways.



Chapter 2

Systems of maps

First, we discuss the smooth systems (S, ε) of smooth maps f :
M → N . Here, the “space of parameters” S is a smooth manifold
and the “evaluation map” ε : S ×M →N a smooth map.

Then, we discuss the F–smooth systems (S, ε) of smooth maps
f : M → N . Here, the “space of parameters” S is an F–smooth
space and the “evaluation map” ε : S ×M →N an F–smooth map.

The above notions are intended as an introduction to the more so-
phisticated notions of systems of sections discussed in the next Chap-
ter §3.

The reader can find further discussions concerning the present
subject in [19].

2.1 Smooth systems of smooth maps

We discuss the notion of smooth system of smooth maps and the
tangent prolongations of a smooth system of smooth maps as an in-
troduction to the subsequent notions of smooth systems of smooth
sections and smooth systems of smooth connections.

2.1.1 Smooth systems of smooth maps

We start by defining the concept of smooth system of smooth maps
between two smooth manifolds.

In simple words, a “smooth system of smooth maps” is defined
to be a family {f} of global smooth maps f : M → N between two
smooth manifolds M and N , which is smoothly parametrised by the
points s ∈ S of a smooth manifold S .

17
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This simple concept will serve as an introduction to the further no-
tions of “smooth system of smooth sections” of a smooth double fibred
manifold and “smooth system of smooth connections” of a smooth fi-
bred manifold (see, later, Definition 3.1.3 and Definition 4.1.1).

Later, this concept will serve also as an introduction to the further
more sophisticated notions of “F–smooth system of smooth maps” be-
tween smooth manifolds, of “F–smooth system of fibrewisely smooth
sections” of a smooth double fibred manifold and of “F–smooth sys-
tem of fibrewisely F–smooth connections” of a smooth double fibred
manifold (see, later, Definition 2.2.1 and Definition 3.2.2).

Let us consider two smooth manifolds M and N , and denote the set
of global smooth maps between the two manifolds by Map(M ,N) :=

{
f :

M →N
}
.

Definition 2.1.1. We define a smooth system of smooth maps, between
the smooth manifolds M and N , to be a pair (S, ε) , where

1) S is a smooth manifold,

2) ε is a global smooth map, called evaluation map,

ε : S ×M →N .

Thus, the evaluation map ε yields the map

εS : S → Map(M ,N) : s 7→ s̆ ,

where, for each s ∈ S , the global smooth map s̆ is defined by

s̆ : M →N : m 7→ ε(s,m) .

Therefore, the map εS : S → Map(M ,N) provides a selection of the
global smooth maps M →N , given by the subset

MapS(M ,N) := εS(S) ⊂ Map(M ,N) .

The smooth system of smooth maps (S, ε) is said to be injective if the
map

εS : S → Map(M ,N)

is injective, i.e. if, for each s , ś ∈ S ,

εS(s) = εS(ś) ⇒ s = s′ .
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If the system is injective, then we obtain the bijection

εS : S → MapS(M ,N) : s 7→ s̆ ,

whose inverse is denoted by

(εS)−1 : MapS(M ,N)→ S : f 7→ f̂ .

Indeed, we are essentially interested in injective F–smooth systems of
smooth maps.

We denote the local smooth charts of M , N , S respectively, by

(yi) : M → RdM , (za) : N → RdN , (wA) : S → RdS .

We have the following elementary examples of smooth systems of
smooth maps.

Example 2.1.1. If M and N are vector spaces, then we obtain the injec-
tive smooth system of linear maps by setting

S := lin(M ,N) .

In this case, the smooth manifold S turns out to be a vector space of
dimension

dS = dM · dN .

The choice of a basis of M and a basis of N yields the distinguished
linear (global) charts

(yi) : M → RdM , (za) : N → RdN , (wai ) : S → RdM ·dM .

Then, the coordinate expression of ε becomes

εa = wai y
i .

Example 2.1.2. If M and N are affine spaces, then we obtain the injective
smooth system of affine maps by setting

S := aff(M ,N) .

In this case, the smooth manifold S turns out to be an affine space, of
dimension

dS = dM · dN + dN ,
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which is associated with the vector space aff(M , N̄) , where N̄ is the vector
space associated with the affine space N .

The choice of a basis and an origin of M and a basis and an origin of
N yields the distinguished affine (global) charts

(yi) : M → RdM , (za) : N → RdN , (wai , w
a) : S → RdM ·dM×RdN .

Accordingly, the coordinate expression of ε becomes

εa = wai y
i + wa .

Example 2.1.3. If M and N are affine spaces, then, analogously to the
above Example 2.1.2, we can define

- the injective smooth system of polynomial maps of a given degree r ,
with 0 ≤ r ,

- the injective smooth system of polynomial maps of any degree r , with
0 ≤ r ≤ k , where k is a given positive integer.

All examples above deal with finite dimensional smooth systems of
maps, as it is implicitly requested in Definition 2.1.1.

However, we can easily extend the concept of smooth system of smooth
maps between two smooth manifolds, by considering an infinite dimensional
system, which is the direct limit of finite dimensional systems, according
to the following Example 2.1.4. In a sense, this example is intermediate
between the finite dimensional case and the infinite dimensional case.

Example 2.1.4. If M and N are affine spaces, then we obtain the injective
(infinite dimensional) smooth system of all polynomial maps by considering
the set

S := pol(M ,N) ,

consisting of all polynomials M →N of any degree r , with 0 ≤ r <∞ .

Later, we shall see that such a smooth system has a natural F–smooth
structure (see, later, Definition 1.2.1).

Eventually we compare three simple examples in order to emphasise
further features of smooth systems of global smooth maps.

Example 2.1.5. Let us consider the smooth manifolds

M :=R , N :=R , S :=R ,
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equipped with their standard charts

(y) : M → R , (z) : N → R , (w) : S → R .

Moreover, let us consider three smooth systems of smooth maps defined,
respectively, by the following evaluation maps

ε1 : S ×M →N , ε2 : S ×M →N , ε3 : S ×M →N ,

with coordinate expressions

z ◦ ε1 = w y , z ◦ ε2 = w3 y , z ◦ ε3 = w2 y .

Then,

- (S, ε1) is the system of linear maps f : M →N ,

- (S, ε2) is the system of linear maps f : M →N ,

- (S, ε3) is the system of linear maps f : M → N with coefficients
w2 ≥ 0 .

Thus, the systems (S, ε1) and (S, ε2) select the same smooth maps,
but with different smooth parametrisations. In these cases we have as-
sumed the same smooth structure of S , but the transition between the two
parametrisations is non smooth in one way.

Moreover, the systems (S, ε1) and (S, ε2) are injective, while the system
(S, ε3) is non injective.

It is useful to compare the above systems (S, ε1) and (S, ε2) with the
system (S, ε) discussed in the forthcoming Example 2.1.7.

Eventually, we exhibit a further weird example of F–smooth systems of
smooth maps.

Example 2.1.6. Let us consider two vector spaces M and N , along with
the smooth manifold S := lin(M ,N) and the smooth map

ε : S ×M →N : (s,m) 7→ n+ s(X) ,

where n ∈N and X ∈M is a non vanishing given element.

Then, the pair (S, ε) turns out to be an injective smooth system of
smooth maps.
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2.1.2 Smooth structure of (S, ε)

In our definition of “smooth system of smooth maps” between two
smooth manifolds (see Definition 2.1.1) we have required a priori that
the set of parameters S be finite dimensional and smooth and that
the evaluation map ε be smooth as well.

On the ontrary, we might ask whether the fact that the manifolds
M and N are smooth and that the maps f : M →N selected by the
system are smooth allows us to recover uniquely the smooth structure
of S .

The answer to the above question is negative. Here, we do not
fully address this question. But, we present a simple example (see
Example 2.1.7), where we show that, if S admits a finite dimensional
smooth structure compatible with ε , then this structure needs not to
be unique.

Moreover, we observe that, if we do not assume a priori a finite
dimensional smooth structure on S , then it might be that no finite
dimensional smooth structure at all could be recovered on S . To prove
this, just consider the system (S, ε) , where S is the set of all smooth
maps f : M →N (see, later, §2.2.1).

The present question might arise also in comparison with a result
which will be achieved later, in the next Section, in the context of “F–
smooth systems of smooth maps”, where we do not assume a priori
any smooth structure of S , but we recover uniquely its F–smooth
structure (see Definition 2.2.1 and Theorem 2.2.1).

Example 2.1.7. Let us consider the following smooth system (S, ε) of
smooth maps between smooth manifolds.

Let us consider the manifolds

M :=R , N :=R , S :=R .

We consider the “natural” smooth structures of M and N induced by
their “natural” charts

y : M → R and z : N → R .

Further, we consider the “natural” smooth structure and the “exotic”
smooth structure of S given respectively by the natural and the exotic
charts

w : S → R and ẃ :=w3 : S → R .
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Moreover, let us consider the evaluation map ε : S ×M → N , whose
coordinate expression in the above charts reads, respectively, as

z ◦ ε = w3 y and z ◦ ε = ẃ y .

Indeed, the evaluation map ε turns out to be the same and smooth with
respect to the above different smooth structures of S .

It is useful to compare the previous systems (S, ε1) and (S, ε2) , discuss
in Example 2.1.5, with the above system (S, ε) .

Indeed, in the first two systems above we deal with the same smooth
structure of S and with different parametrisations of the selected global
smooth maps.

Conversely, in the third system we deal with a different smooth structure
of S .

However, these three systems select the same global smooth maps in
different ways.

2.1.3 Smooth tangent prolongation of (S, ε)

Given a smooth system of smooth maps (S, ε) between two smooth
manifolds M and N , we discuss

- the smooth system (TS, T ε) of smooth maps between the smooth
manifolds TM and TN , which is achieved via the tangent prolonga-
tion Tε of ε with respect to the both factors S and M ,

- the smooth system (TS, T1ε) of smooth maps between the
smooth manifolds M and TN , which is achieved via the tangent
prolongation T1ε of ε with respect to the 1st factor S ,

- the smooth system (S, T2ε) of smooth maps between the smooth
manifolds TM and TN , which is achieved via the tangent prolonga-
tion T2ε of ε with respect to the 2nd factor M .

We stress that, if the system (S, ε) is injective, then its tangent
prolongations (TS, T ε) and (TS, T1ε) need not to be injective.

Later (see §2.2.1), we shall be involved with a generalised concept
of system, where S is no longer a finite dimensional smooth manifold,
hence we cannot avail of the standard approach to define its tangent
space TS . Actually, we will achieve the tangent space of S by an indi-
rect procedure, via smooth maps between smooth manifolds. Indeed,
the tangent prolongations of the system (S, ε) discussed in the present
Section will be a hint for the more sophisticated cases discussed in the
next Chapter (see Section 2.2.2 and Section 3.2.3).

Let us consider two smooth manifolds M and N , and a smooth system
of smooth maps (S, ε) between these manifolds (see Definition 2.1.1).



24 Systems of maps

We denote the charts of M , N , S , TM , TN , TS respectively, by

(yi) : M → RdM , (yi, ẏi) : TM → R2dM ,

(za) : N → RdN , (za, ża) : TN → R2dN ,

(wA) : S → RdS , (wA, ẇA) : TS → R2dS .

Proposition 2.1.1. We consider the following tangent prolongations of
the system.

1) We have the total tangent prolongation of ε , which yields the smooth
map

Tε : TS × TM → TN ,

with coordinate expression

(za ◦ Tε) = εa and (ża ◦ Tε) = ∂Aε
a ẇA + ∂iε

a ẏi .

2) We have the partial tangent prolongation of ε , with respect to the 1st
factor which yield the smooth map

T1ε : TS ×M → TN ,

with coordinate expression

(za ◦ T1ε) = εa and (ża ◦ T1ε) = ∂Aε
a ẇA .

3) We have the partial tangent prolongation of ε , with respect to the 2nd
factor, which yields the smooth map

T2ε : S × TM → TN ,

with coordinate expression

(za ◦ T2ε) = εa and (ża ◦ T2ε) = ∂iε
a ẏi .

Indeed, the following diagrams commute

TS × TM
Tε
- TN TS ×M

T1ε- TN S × TM
T2ε- TN

S ×M
? ε

- N
?

S ×M
? ε

- N
?

S ×M
? ε

- N
?
.
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Thus, according to the above commutative diagrams,

- the pair (TS, T ε) turns out to be a smooth system of smooth maps
between the smooth manifolds TM and TN ,

- the pair (TS, T1ε) turns out to be a smooth system of smooth maps
between the smooth manifolds M and TN ,

- the pair (S, T2ε) turns out to be a smooth system of smooth maps
between the smooth manifolds TM and TN .

All above prolonged smooth systems project over the smooth system
(S, ε) .

Indeed, the smooth system (TS, T ε) is characterised by the smooth sys-
tem (TS, T2ε) and, conversely, the smooth system (TS, T2ε) is characterised
by the smooth system (TS, T ε) in virtue of the equalities

Tε = T1ε+ T2ε and T2ε = Tε− T1ε .

Corollary 2.1.1. If the smooth system (S, ε) is injective, then also the
smooth system (S, T2ε) turns out to be injective, in virtue of the pro-
jectability on (S, ε) .

Proposition 2.1.2. The following implications hold:

- if the smooth system (TS, T ε) is injective then the smooth system
(S, ε) is injective as well,

- if the smooth system (TS, T1ε) is injective then the smooth system
(S, ε) is injective as well.

Proof. In fact, the smooth system (S, ε) is obtained by projection of its

tangent prolongations, according to the commutative diagrams in Proposition

2.1.1. QED

Remark 2.1.1. If the smooth system (S, ε) is injective, then its tangent
prolongations (TS, T ε) and (TS, T1ε) need not to be injective.

Now, let us examine the tangent prolongations of two elementary ex-
amples of smooth systems of smooth maps.

Example 2.1.8. Let us refer to the smooth system (S, ε) of linear maps
discussed in Example 2.1.1.

Then, the coordinate expressions of the smooth systems

Tε : TS × TM → TN and T1ε : TS ×M → TN
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are

za ◦ Tε = wai y
i and ża ◦ Tε = ẇai y

i + wai ẏ
i ,

za ◦ T1ε = wai y
i and ża ◦ T1ε = ẇai y

i .

Indeed, the above coordinate expressions show that the two tangent
prolongations are injective.

Example 2.1.9. Let us refer to the smooth system (S, ε) of affine maps
discussed in Example 2.1.2.

Then, the coordinate expressions of the smooth systems

Tε : TS × TM → TN and T1ε : TS ×M → TN

are

za ◦ Tε = wai y
i + wa and ża ◦ Tε = ẇai y

i + wai ẏ
i + ẇa ,

za ◦ T1ε = wai y
i + wa and ża ◦ T1ε = ẇai y

i + ẇa .

Indeed, the above coordinate expressions show that the two tangent
prolongations are injective.

In a similar way we can define (see Example 2.1.3)

- the tangent prolongations of the smooth system of polynomial maps
of a given degree r , with 0 ≤ r ,

- the tangent prolongations of the system of polynomial maps of any
degree r , with 0 ≤ r ≤ k ,

- the tangent prolongations of the smooth system of polynomial maps
of any degree r , with 0 ≤ r ≤ ∞ .

2.2 F–smooth systems of smooth maps

We discuss the F–smooth systems (S, ε) of smooth maps f : M →
N between smooth manifolds and its F–smooth tangent prolongation
(TS, Tε) .

Moreover, we compare the F–smooth systems of smooth maps
with the smooth systems of smooth maps.
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2.2.1 F–smooth systems of smooth maps

In the previous Section 2.1, we have discussed the concept of a
“smooth system of smooth maps” (S, ε) between two smooth mani-
folds M and N (see Section 2).

Here, we introduce the generalised notion of “F–smooth system of
smooth maps” (S, ε) between two smooth manifolds M and N , by
releasing the hypotheses of smoothness and finite dimension of S .

The general concept of F–smooth space, which has been intro-
duced in the above Chapter (see Section 1.2) can be applied to a
large spectrum of contexts.

Indeed, for our purposes, the most interesting examples of F–
smooth spaces are the F–smooth spaces of smooth maps between two
smooth manifolds. Even more, this kind of examples provide the true
reason of our interest on F–smooth spaces in the present report.

To be more precise, our main interest deals with the particular
case of F–smooth systems of fibrewisely smooth sections, which will
be introduced in Section 3.2.1. Thus, here the concept of “F–smooth
system of smooth maps” is intended as an introduction to the more
sophisticated concept of “F–smooth system of fibrewisely smooth sec-
tions”.

Indeed, a geometric approach to the space of smooth maps be-
tween smooth manifolds, in terms of the standard differential geome-
try, would possibly involve subtle and hard problems concerning infi-
nite dimensional smooth manifolds. Conversely, the spaces of smooth
maps between two smooth manifolds, regarded as F–smooth spaces,
allow us to achieve several geometric results, even if the structure
of F–smooth space is weaker than that of smooth manifold (see, for
instance [3, 4, 16]).

In the next Section 2.2.2, as a starting example of such geometric
constructions, we sketch the tangent space of F–smooth spaces of
global smooth maps.

Let us consider two smooth manifolds M and N .

The following Definition provides a generalisation of the concept of
smooth system of smooth maps (see Definition 2.1.1), as here we do not
require that S be a finite dimensional smooth manifold (hence, that the
map ε be smooth).

Even more, we do not assume a priori any kind of smoothness on the set
S , but later we will uniquely recover its F–smooth structure by Theorem
2.2.1. Indeed, the specification “F–smooth” system, which is anticipated in
the following Definition 2.2.1, will be justified later by this Theorem.
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Definition 2.2.1. We define an F–smooth system of smooth maps between
the smooth manifolds M and N to be a pair (S, ε) , where

1) S is a set,
2) ε : S ×M →N is a map, called evaluation map, such that, for each

s ∈ S , the induced map

εs : M →N : m 7→ ε(s,m)

is globally defined and smooth.
Thus, the evaluation map ε yields the map

εS : S → Map(M ,N) : s 7→ s̆ ,

where, for each s ∈ S , the global smooth map s̆ is defined by

s̆ : M →N : m 7→ ε(s,m) .

Therefore, the map

εS : S → Map(M ,N)

provides a selection of the global smooth maps M → N , given by the
subset

MapS(M ,N) := εS(S) ⊂ Map(M ,N) .

The F–smooth system of smooth maps (S, ε) is said to be injective if
the map

εS : S → Map(M ,N)

is injective, i.e. if, for each s , ś ∈ S ,

εS(s) = εS(ś) ⇒ s = s′ .

If the system is injective, then we obtain the bijection

εS : S → MapS(M ,N) : s 7→ s̆ ,

whose inverse is denoted by

(εS)−1 : MapS(M ,N)→ S : f 7→ f̂ .

Indeed, we are essentially interested in injective F–smooth systems of
smooth maps.

Next, we prove that any system of smooth maps has a natural F–smooth
structure. Actually, this property justifies the fact that we have anticipated
the F–smoothness in Definition 2.2.1.
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Theorem 2.2.1. Let us consider an F–smooth system (S, ε) of global
smooth maps and let

C := {c : Ic → S} ,

be the set consisting of all curves, such that the induced map

c∗(ε) : Ic ×M →N : (λ,m) 7→ ε
(
c(λ),m

)
be smooth.

Then, the pair (S, C) turns out to be an F–smooth space.

Proof. Let us check that C fulfills the two requirements of Definition 1.2.1.
1) For each s ∈ S , the constant curve c : R→ S : λ 7→ s yields the map

c∗(ε) : Ic ×M →N : (λ,m) 7→ ε
(
c(λ),m

)
= ε(s,m) ,

which is smooth in virtue of condition 2) in Definition 2.2.1. Hence, c turns out
to be an element of C passing through s .

2) Let us consider a curve c ∈ C and a smooth curve γ : Iγ → Ic .
Then, the induced map

(c ◦ γ)∗(ε) : Iγ ×M →N : (λ,m) 7→ ε
(
c
(
γ(λ)

)
, m
)

is the composition of two smooth maps

Iγ ×M
(γ, idM )- Ic ×M

c∗(ε) - N ,

hence it turns out to be smooth. QED

Corollary 2.2.1. Let us consider an F–smooth system (S, ε) of smooth
maps.

Then, the map ε : S×M →N turns out to be F-smooth, with reference
to the F-smooth structure of S and the natural F-smooth structures of M
and N (see the above Theorem 2.2.1, Theorem 1.3.1, Definition 1.3.1 and
Proposition 1.2.7).

Proof. By definition (see Definition 1.2.4), the map ε : S ×M → N is
F–smooth if, for each F–smooth curve c : Ic → S ×M , the curve ε ◦ c : Ic →N ,
given by the commutative diagram

S ×M
ε - N

Ic

c
6

ε ◦ c - N

idN
?

,
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is smooth.
Thus, let us consider any F–smooth curve c : Ic → S ×M .
In virtue of Proposition 1.2.7 and Theorem 1.3.1, we can write

c ≡ (cS , cM ) : Ic → S ×M ,

where cS : Ic → S is an F–smooth curve and cM : Ic →M is a smooth curve.
Let us define the smooth map

c∗S(ε) : Ic ×M →N : (λ,m) 7→ ε
(
cS(λ),m

)
.

Then, the curve

ε ◦ c = ε ◦ (cS , cM ) : Ic →N : λ 7→ ε
(
cS(λ), cM (λ)

)
= c∗S(ε)(λ,m) ,

which is a composition of smooth maps according to the following digram

Ic
(id, cM )- Ic ×M

Ic

id
6

ε ◦ c - N

c∗S(ε)
?

,

turns out to be smooth hence F–smooth (see Theorem 2.2.1). QED

Now, we provide examples of F–smooth systems of smooth maps, by
starting with “infinite dimensional” examples of systems of smooth maps.

Example 2.2.1. Let us consider two smooth manifolds M and N .
Then, the set

S := Map(M ,N) :=
{
f : M →N

}
consisting of all global smooth maps f : M → N yields an F–smooth
system of smooth maps.

Example 2.2.2. Let us consider a smooth manifold M and a vector space
N .

Then, the subset

S := Mapcpt(M ,N) ⊂ Map(M ,N) :=
{
f : M →N

}
consisting of all global smooth maps f : M → N with compact support
yields an F–smooth system of smooth maps.

Indeed, this system is a subsystem of the system of all global smooth
maps M →N considered in the above Example 2.2.2.
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We can reconsider, in the present context of F–smooth spaces, “finite
dimensional” examples of systems of global smooth maps already discussed
in Section 2.1.1.

Example 2.2.3. According to Example 2.1.1, if M and N are vector
spaces, then we obtain the F–smooth system of linear maps by setting

S := lin(M ,N) .

Indeed, the F–smooth structure of S turns out to be just the natural
F–smooth structure underlying the smooth structure of S , according to
Theorem 2.2.1 and Example 2.1.1.

Example 2.2.4. According to Example 2.1.2, if M and N are affine
spaces, then we obtain the F–smooth system of affine maps by setting

S := aff(M ,N) .

Indeed, the F–smooth structure of S turns out to be just the natural
F–smooth structure underlying the smooth structure of S , according to
Theorem 2.2.1 and Example 2.1.2.

Example 2.2.5. According to Example 2.1.3, if M and N are affine
spaces, then we obtain the F–smooth systems S of polynomial maps of
a given degree r and the F–smooth system S of polynomial maps of all
degrees less than a given integer k .

Indeed, the F–smooth structures of the above systems of smooth maps
turn out to be just the natural F–smooth structures underlying the smooth
structures of S , according to Theorem 2.2.1 and Example 2.1.3.

Eventually, we revisit in the present context of F–smooth spaces the
“infinite dimensional” example of polynomial maps of any degree.

Example 2.2.6. According to Example 2.1.3, if M and N are affine
spaces, then we obtain the F–smooth system S of polynomial maps of
any degree.

Further, we consider two examples which play an intermediate role be-
tween the F–smooth systems of smooth maps and the F–smooth systems
of fibrewisely smooth sections, which will be discussed later (see §3.2.1).
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Example 2.2.7. Let us suppose that the smooth manifold N be a smooth
bundle q : N →M over the smooth manifold M .

Then, the subset

S := Sec(M ,N) ⊂ Map(M ,N)

consisting of all global smooth sections φ : M →N is an F–smooth system
of smooth maps.

Indeed, this system is a subsystem of the system of all smooth maps
M →N considered in the Example 2.2.1.

Example 2.2.8. Let us suppose that the smooth manifold N be a vector
space and a smooth bundle q : N →M over the smooth manifold M .

Then, the subset

S ⊂ Sec(M ,N) ⊂ Map(M ,N)

consisting of all global smooth sections with compact support φ : M → N
is an F–smooth system of smooth maps.

Indeed, this system is a subsystem of the above system of all global
smooth sections considered in the above Example 2.2.7.

2.2.2 F–smooth tangent prolongation of (S, ε)

Now, we consider an F–smooth system (S, ε) of smooth maps
between two smooth manifolds M and N (see Definition 2.2.1) and
introduce the concept of “F–smooth tangent space” TS of the F–
smooth space of parameters S .

Our formal construction of the tangent space TS reflects the intu-
itive idea, by which, for each s ∈ S , a tangent vector Xs ∈ TsS is to be
an “infinitesimal variation” of the global smooth map εs : M → N .
It is remarkable the fact that this construction involves only global
smooth maps between smooth manifolds, by exploiting the smooth
structures of the manifolds M and N and the smoothness of the
selected maps f : M →N of the system.

Actually, we define a tangent vector Xs of S , at s ∈ S , to be
an equivalence class of F–smooth curves ĉ : I ĉ → S , such that the
induced smooth maps between smooth manifolds ĉ ∗(ε) : Ic×M →N
have a 1st order contact in s .

The definition of 1st order contact shows that every Xs ∈ TsS
turns out to be represented by suitable smooth map Ξs : M → TN ,
or that it can, equivalently, be represented by a suitable smooth map
Ξs : TM → TN . Both Ξs and Ξs project over the smooth map
εs : M →N .
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Moreover, we show that the tangent space TS is equipped with a
natural F–smooth structure and that the natural maps

τS : TS → S and T1ε : TS ×M → TN

turn out to be F–smooth.
Indeed, the fibres of τS : TS → S are naturally equipped with a

vector structure.

This discussion on the F–smooth tangent space TS of an F–
smooth system of smooth maps between smooth manifolds is intended
as an introduction to the more sophisticated case of the tangent space
TS of an F–smooth system of fibrewisely smooth sections (see Section
3.2.3).

Thus, let us consider two smooth manifolds M and N and denote the
smooth charts of M , TN , N , TN , respectively, by

(yi) : M → RdM , (yi, ẏi) : TM → R2dM ,

(za) : N → RdN , (za, ża) : TN → R2dN .

Moreover, let us consider an F–smooth system (S, ε) of smooth maps
between the smooth manifolds M and N (see Definition 2.2.1), along with
the set of F–smooth curves C of S defined in Theorem 2.2.1.

Then, we define the F–smooth tangent space TS of the F–smooth space
of parameters S , via equivalence classes of suitable smooth maps between
smooth manifolds, in the following way.

Definition 2.2.2. We say that two F–smooth curves

ĉ 1 : I1 → S and ĉ 2 : I2 → S

have a 1st order contact in (λ1, λ2) ∈ I1 × I2 if the induced smooth maps
(see Theorem 2.2.1)

ĉ ∗1(ε) : I1 ×M →N and ĉ ∗2(ε) : I2 ×M →N

fulfill the following condition

*)
(
T1ĉ

∗
1(ε)

)
|(λ1,1) =

(
T1ĉ

∗
2(ε)

)
|(λ2,1) : M → TN ,

i.e. if, in coordinates,

ĉ ∗1(ε)a|λ1 = ĉ ∗2(ε)a|λ2 ,
∂0ĉ

∗
1(ε)a|λ1 = ∂0ĉ

∗
2(ε)a|λ2 ,
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where ∂0 denotes the partial derivative with respect to the parameter.

Clearly, the above 1st order contact yields an equivalence relation ∼ in
the set of pairs (

ĉ : I ĉ → S, λ ∈ I ĉ
)
,

where ĉ : I ĉ → S are F–smooth curves of S .

Definition 2.2.3. We define a tangent vector Xs of S , at s ∈ S , to be an
equivalence class (see the above Definition 2.2.2)

Xs :=
[
(ĉ s, λ)

]
∼

where ĉ s : Iĉ s → S are F–smooth curves, such that ĉ s(λ) = s .

Then, we define:

1) the F–smooth tangent space of S , at s ∈ S , to be the set of tangent
vectors of S , at s ,

TsS :=
{
Xs
}

2) the F–smooth tangent space of S to be the disjoint union

TS :=
⊔
s∈S

TsS .

Thus, in virtue of the above Definition 2.2.2 and Definition 2.2.3, the
tangent vectors Xs ∈ TsS can be represented through suitable smooth maps
Ξ : M → TN , as follows.

Theorem 2.2.2. Let (S, ε) be an F–smooth system of smooth maps.

Then, in virtue of Definition 2.2.2 and Definition 2.2.3, every tangent
vector

Xs := [(ĉ , λ)]∼ ∈ TsS ,

can be regarded as the smooth map

Ξs :=
(
T1(ĉ ∗(ε))

)
|(λ,1)

: M → TN ,

which projects on εs , according to the following commutative diagram

M
Ξs - TN

M

idM

? εs - N

τN
?

.
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We have the coordinate expression

(za, ża) ◦ Ξs = (εas , Ξas) , with Ξas = ∂0

(
c∗(ε)a

)
|(λ,1)

∈ map(M , R) .

Thus, in this way, we obtain a natural injective map

rs : Xs ∈ TsS 7→ Ξs : M → TN ,

which yields a representation of the tangent vectors Xs ∈ TsS , through
suitable smooth maps Ξs : M → TN , which project on εs : M →N .

The F–smooth tangent space TS can be also represented in another
equivalent way through smooth maps between smooth manifolds, as follows.

Corollary 2.2.2. The tangent vectors

Ξs ' Xs :=
[
(ĉ , λ)

]
∼ ∈ TsS

can be regarded as affine fibred morphisms over the smooth map εs : M →
N

Ξs : TM → TN ,

whose fibre derivative is equal to the smooth tangent prolongation of εs :
M →N

DΞs = T (εs) : TM → TN ,

where we have considered the natural identifications

V TM ' TM ×
M
TM and V TN ' TN ×

M
TN .

Their coordinate expressions are of the type

(za, ża) ◦ Ξs = (εas , Ξas + ∂iε
a
s ẏ

i) , with Ξas ∈ map(M , R) .

Proof. Each smooth map Ξs : M → TN , which projects over the smooth
map εs : M →N , yields the affine fibred morphism over εs : M →N

Ξs := Ξs ◦ τM + T (εs) ,

with coordinate expression

(za, ża) ◦ Ξs = (εas , Ξas + ∂iε
a
s ẏ

i) , where Ξas ∈ map(M , R) .

Conversely, each smooth affine fibred morphism over εs : M →N ,

Ξs : TM → TN ,
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whose fibre derivative is DΞs = T (εs) , yields the smooth map

Ξs := Ξs ◦ 0M , where 0M : M → TM ,

which projects over εs : M →N .

Indeed, the above correspondence

Ξs 7→ Ξs 7→ Ξs

is a bijection. QED

Remark 2.2.1. In the above Corollary 2.2.2, we have exploited the fact
that, given s ∈ S , we know the smooth map εs : M → N , along with its
smooth tangent prolongation T (εs) : TM → TN .

Note 2.2.1. By the way, by means of a reasoning analogous to that of the
above Corollary 2.2.2, a representation of TS can be obtained by consider-
ing smooth maps of the type

Ξ
k
s : T kM → T kN ,

for any order k of tangent prolongation.

In particular, the above results can be applied to the F–smooth system
of compact support global smooth maps (see Example 2.2.2).

Next, we introduce two natural maps associated with TS and show the
natural vector structure of the fibres of TS .

Lemma 2.2.1. We have the natural projection

τS : TS → S : Ξs 7→ s

and the natural evaluation map

T1ε : TS ×M → TN : (Ξs,m) 7→ Ξs(m) .

Proposition 2.2.1. The fibres of τS : TS → S are naturally equipped
with a vector structure induced by the maps

(Ξs + Ξ́s) : M → TN : m 7→ Ξs(m) + Ξ́s(m) ∈ Tε(s,m)N ,

(kΞs) : M → TN : m 7→ kΞs(m) ∈ Tε(s,m)N .
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We have not assumed a priori any kind of smoothness on the set TS ,
but we can uniquely recover its natural F–smooth structure by the following
Theorem 2.2.3.

Indeed, the specification “F–smooth” tangent space, that we have an-
ticipated in Definition 2.2.3, is justified by this Theorem.

Theorem 2.2.3. Let us define the set

TC :=
{
ĉ : I ĉ → TS

}
consisting of all curves of TS such that

1) the base curve

ĉS := τS ◦ ĉ : I ĉ → S

be F–smooth,

2) the induced map between smooth manifolds

Ξĉ : I ĉ ×M → TN : (λ,m) 7→ ΞĉS(λ)(m)

be smooth.

Then, the pair (TS, TC) turns out to be an F–smooth space and the maps

τS : TS → S and T1ε : TS ×M → TN

turn out to be F–smooth.

Proof. a) First of all, let us check that the set TC fulfills the two requirements
of Definition 1.2.1.

1) For each X ∈ TS , the constant curve ĉ : R → TS : λ 7→ X turns out to be
an element of TC passing through X .

2) Let us consider a curve ĉ ∈ TC and a smooth curve γ : Iγ → I ĉ .
Then, the induced map

Ξĉ ◦ γM : Iγ ×M → TN : (λ,m) 7→ ε(ĉ◦γ)(λ)(m)

is the composition of two smooth maps

Iγ ×M
γM := (γ, idM )- I ĉ ×M

Ξĉ - TN ,

hence it turns out to be smooth.

b) In order to prove that τS : TS → S be F–smooth, we have to show that,
for each F–smooth curve ĉ : I ĉ → TS , the induced curve ĉ S := τS ◦ ĉ : I ĉ → S
be F–smooth.
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In fact, let us consider any F–smooth curve and the associated smooth map

ĉ : I ĉ → TS and Ξĉ : I ĉ ×M → TN .

Indeed, the induced curve

ĉ S := τS ◦ ĉ : I ĉ → S

is characterised by the composition of smooth maps

τN ◦ Ξĉ : I ĉ ×M →N ,

hence it turns out to be smooth.

c) In order to prove that T1ε : TS×M → TN be F–smooth, we have to show
that, for each F–smooth curve ĉ = (ĉTS , cM ) : I ĉ → TS ×M , the induced curve
T1ε ◦ ĉ : I ĉ → TN be F–smooth.

In fact, let us consider any F–smooth curve and the associated smooth map

ĉTS : I ĉ → TS and Ξc : I ĉ ×M → TN .

Then, the curve

T1ε ◦ (ĉTS , cM ) : I ĉ → TN : λ 7→ T1ε
(
ĉTS(λ), cM (λ)

)
which is a composition of smooth maps according to the following diagram

I ĉ

(id, cM ) - I ĉ ×M

I ĉ

idIĉ
6

T1ε ◦ (ĉTS , cM ) - TN

Ξĉ
?

,

turns out to be smooth hence F–smooth (see Theorem 2.2.1). QED

We say that τS : TS → S is an F–smooth fibred set.

Eventually, we discuss the tangent prolongation of F–smooth curves of
S .

Definition 2.2.4. Let ĉ : I ĉ → S be an F–smooth curve. Then, we define
its tangent prolongation to be the curve

d ĉ : I ĉ → TS : λ 7→ dĉ (λ) := [(ĉ , λ)]∼

defined in Definition 2.2.3.

Proposition 2.2.2. If ĉ : I ĉ → S is an F–smooth curve, then its tangent
prolongation d ĉ : I ĉ → TS turns out to be F–smooth.

Proof. Let γ : Iγ → I ĉ be a smooth curve. Then, the induced map(
d (ĉ ◦ γ)

)∗
(T1ε) : Iγ ×M → TN

turns out to be the composition of smooth maps. Hence, d ĉ is F–smooth. QED
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2.3 F–smooth vs smooth systems of maps

In the above Sections 2.1.3 and 2.2.2 we have studied the smooth
tangent space TS and the F–smooth tangent space TS with reference
to a smooth system and to an F–smooth system (S, ε) of smooth maps
between two smooth manifolds, respectively.

Clearly, a smooth system is a particular case of an F–smooth
system, because a smooth system can be regarded as an F–smooth
system along with the additional assumptions on the smoothness of
S and ε .

Then, the need of a comparison between the smooth approach
to TS and the F–smooth approach to TS arises naturally, having in
mind Theorem 1.3.1.

Actually, by regarding a smooth system (S, ε) of smooth maps
as a particular F–smooth system of smooth maps, we show a natural
bijection

ı : TS → TS : X 7→ X ,

which, in terms of the representation of X via the smooth map

Ξ := r(X) : M → TN

reads as
Ξ = (T1ε)X .

Note 2.3.1. Summing up previous results, let us compare two types of
systems of smooth maps between smooth manifolds.

1) In the case of an F–smooth system (S, ε) of smooth maps f : M →
N , we make no assumptions on any kind of smoothness of the set S (see
Definition 2.2.1).

Hence, we cannot avail of a smooth structure of S and, in order to
achieve the F–smooth tangent space TS , we need to follow an indirect
abstract procedure.

In fact, we have defined the tangent vectors Xs ∈ TsS , with s ∈ S ,
as equivalence classes Xs := [(ĉ , λ)]∼ of pairs (ĉ , λ) , where ĉ : I ĉ → S are
F–smooth curves and λ ∈ I ĉ , which have a 1st order contact in s (see
Definition 2.2.3).

Here, the 1st order contact is defined through the smooth map (see
Definition 2.2.2) (

T1ĉ
∗(ε)

)
|(λ,1) : M → TN .

Then, we obtain the representation of tangent vectors Xs := [(ĉ , λ)]∼ ∈
TsS , through the smooth maps

Ξs :=
(
T1(ĉ ∗s(ε))

)
|(λ,1) : M → TN ,
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which project on εs : M →N (see Theorem 2.2.2).

2) In the case of a finite dimensional smooth system (S, ε) of smooth
maps f : M →N , we assume that S is a smooth manifold and ε a smooth
map.

Let us denote the typical smooth chart of S by (wA) .
Hence, we can avail of the assumed smooth structure of S to achieve a

direct approach of the tangent space TS .
In fact, according to a standard definition in Differential Geometry, we

define the tangent vectors Xs ∈ TsS , with s ∈ S , as equivalence classes
Xs := [(ĉ , λ)]∼ of pairs (ĉ , λ) , where ĉ : I ĉ → S are smooth curves and
λ ∈ I ĉ , which have a 1st order contact in s .

Here, the 1st order contact is defined directly through the smooth struc-
ture of S (without the need to consider the smooth map ĉ ∗(ε) : I ĉ ×M →
N).

Then, the smooth tangent map (see Section 2.2.2)

T1ε : TS ×M → TN ,

with coordinate expression

za ◦ T1ε = εa and ża ◦ T1ε = ∂Aε
a ẇA ,

provides, for each Xs ∈ TsS , the smooth map

(T1ε)Xs : M → TN .

Proposition 2.3.1. Let us consider a smooth system (S, ε) of smooth
maps f : M →N and regard it as a particular F–smooth system.

Then, in virtue of the standard definition of the smooth tangent space
TS and of the definition of the F–smooth tangent space TS (see Definition
2.2.3), we obtain a natural F–smooth map

ı : TsS → TsS : Xs 7→ Xs , for each s ∈ S .

Indeed, in terms of the smooth representation of Xs ∈ TsS , the above
map turns out to be given by the smooth map (see Theorem 2.2.2)

Ξs := r(Xs) = (T1ε)|Xs : M → TN , for each s ∈ S ,

i.e., in coordinates,

za ◦ Ξs = εas and ża ◦ Ξs = (∂Aε
a)sX

A
s .
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Proof. Each smooth curve ĉ : I ĉ → S makes the map

ĉ ∗(ε) : I ĉ ×M →N

smooth, hence ĉ : I ĉ → S turns out to be also F–smooth (see Theorem 2.2.1).

Moreover, we can easily see that, if two smooth pairs (ĉ 1, λ1) and (ĉ 2, λ2) have

a 1st order contact in s ∈ S , in the sense of smooth manifolds, then they have also

a 1st order contact in the sense of F–smooth spaces (see Definition 2.2.2). QED

In the above Proposition 2.3.1, we have assumed a given smooth struc-
ture of S . Now, we discuss what happens if we change this smooth struc-
ture.

Remark 2.3.1. We have already observed (see Example 1.3.1) that, given
a smooth system (S, ε) of smooth maps, there might exist infinitely many
possible smooth structures of S which make the map ε : S ×M → N
smooth, hence, which yield the same family of selected smooth maps f :
M →N .

Indeed, different smooth structures of S yield different F–smooth fibred
morphisms

ı : TS → TS : Xs 7→ Xs .

Therefore, the F–smooth tangent space TsS contains the images ı(Xs)
of the tangent vectors Xs ∈ TS , for all possible smooth structures of S .

Remark 2.3.2. In general, the map ı : TS → TS is not injective. We
prove this fact by means of a counter–example.

Let us consider the smooth manifolds S :=R , M :=R and N :=R ,
along with their natural smooth charts w : S → R , y : M → R and
z : N → R .

Moreover, let us consider the non–injective smooth system of smooth
maps given by the evaluation map ε : S ×M → N , with coordinate
expression

z ◦ ε = w2 y .

Let us consider the element s = 1 ∈ S and the two smooth curves

ĉ 1 : R→ S : λ 7→ λ and ĉ 2 : R→ S : λ 7→ −λ .

Then, we obtain
ĉ 1(1) = 1 = ĉ 2(−1)

and two different tangent vectors

X1 = T ĉ 1(1, 0) = (1, 1) ∈ T1S and X2 = T ĉ 2(−1, 0) = (1,−1) ∈ T1S .
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However, the pairs (ĉ 1, 1) and (ĉ 2,−1) are equivalent in the sense of
Definition 2.2.2.

In fact, we have

w ◦
(
ĉ ∗1(ε)

)
(1) = y = w ◦

(
ĉ ∗2(ε)

)
(−1)

and (
∂0(ĉ ∗1(ε))

)
|1 = 2 y =

(
∂0(ĉ ∗2(ε))

)
|−1 .

Then, we have
ι(X1) = ι(X2) .



Chapter 3

Systems of sections

First, we discuss the smooth systems (S, ζ, ε) of smooth sections
φ : F → G of a smooth double fibred manifold G → F → B .
Here, the “fibred space of parameters” ζ : S → B is a smooth fibred
manifold and the “evaluation map” ε : S ×

B
F → G a smooth fibred

morphism over B .

Then, we discuss the F–smooth systems (S, ζ, ε) of fibrewisely
smooth sections φ : F → G of a smooth double fibred manifold
G → F → B . Here, we have a weaker smoothness requirement,
as the “fibred space of parameters” ζ : S → B turns out to be an
F–smooth fibred space and the “evaluation map” ε : S ×

B
F → G an

F–smooth fibred morphism over B .

The above notions are intended as an introduction to the partic-
ular cases of systems of connections discussed in the next Chapter
§4.

The reader can find further discussions concerning the present
subject in [2, 3, 4, 5, 7, 9, 14, 15, 16, 19, 20, 23].

3.1 Smooth systems of smooth sections

We discuss the notion of smooth systems of smooth sections of a
smooth double fibred manifold.

3.1.1 Smooth systems of smooth sections

First of all, given a smooth double fibred manifold G
q→ F

p→ B ,
we define the “tubelike” smooth sections φ : F → G .

43
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Next, we discuss the notion of “smooth system of smooth sections”
of the smooth double fibred manifold.

In simple words, a “smooth system of smooth sections” is defined
to be a selected family {φ} of smooth sections φ : F → G of the
smooth fibred manifold q : G → F , which is parametrised by the
smooth sections σ : B → S of a smooth fibred manifold ζ : S → B .

The notion of smooth system of smooth sections will be used as
an introduction to the concept of “smooth system of smooth connec-
tions”, which is developed in the forthcoming Section 4.1.1.

Later, in the next Section 3.2.1, we shall revisit the notion of
system of sections in a larger context, detached from the hypothesis
of smoothness and finite dimension and approached by means of the
concept of F–smoothness (see Section 1.2.1).

Let us consider a smooth double fibred manifold G
q→ F

p→ B .

We start by introducing the preliminary notions of “tubelike subset”
and “tubelike section”.

Definition 3.1.1. We define the tubelike subsets of F and of G to be the
open subsets of the type

p−1(U) ⊂ F and (p ◦ q)−1(U) ⊂ G ,

where U ⊂ B is an open subset, according to the following commutative
diagrams

p−1(U) ⊂
⊂

- F (p ◦ q)−1(U) ⊂
⊂

- G

U

p
?
⊂

⊂
- B

p
?

U

p ◦ q
?
⊂

⊂
- B

p ◦ q
?
.

Note 3.1.1. The tubelike open subsets p−1(U) ⊂ F and (p◦q)−1(U) ⊂ G
yield a topology on F and G .

In the following, we shall usually refer to this topology.

Definition 3.1.2. A smooth section φ ∈ sec(F ,G) is said to be tubelike if
it is globally defined on a tubelike open subset p−1(U) ⊂ F .

We denote the subsheaf (with respect to the tubelike topology) of tube-
like smooth sections φ ∈ sec(F ,G) by

tub(F ,G) ⊂ sec(F ,G) .
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Then, we introduce the notion of “smooth system of smooth sections”.

Definition 3.1.3. We define a smooth system of smooth sections of the
smooth fibred manifold q : G→ F to be a 3–plet (S, ζ, ε) , where

1) ζ : S → B is a smooth fibred manifold,

2) ε : S ×
B

F → G is a smooth fibred map over F , according to the

following commutative diagram

S ×
B
F

ε
- G

F

pro2
? idF - F

q
?

.

We call ε the evaluation map of the system.

Thus, the evaluation map ε yields the sheaf morphism

εS : sec(B,S)→ tub(F ,G) : σ 7→ σ̆ ,

where, for each σ ∈ sec(B,S) , the tubelike smooth section σ̆ is defined by

σ̆ : F → G : fb 7→ ε(σ(b), fb) , for each b ∈ B .

Therefore, the map εS : sec(B,S)→ tub(F ,G) provides a selection of
the tubelike smooth sections φ : F → G , given by the subset

tubS(F ,G) := εS
(

sec(B,S)
)
⊂ tub(F ,G) .

The smooth system of smooth sections (S, ζ, ε) is said to be injective
if the map εS : sec(B,S) → tub(F ,G) is injective, i.e. if, for each σ , σ́ ∈
sec(B,S) ,

σ̆ ≡ εS(σ) = ˘́σ ≡ εS(σ́) ⇒ σ = σ́ .

If the system is injective, then we obtain the bijection

εS : sec(B,S)→ tubS(F ,G) : σ 7→ σ̆ ,

whose inverse is denoted by

(εS)−1 : tubS(F ,G)→ sec(B,S) : φ 7→ φ̂ .
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Indeed, we are essentially interested in injective smooth systems of
smooth sections.

We shall denote the local fibred smooth charts of B , S , F , G , respec-
tively, by

(xλ) : B → RdB , (xλ, wA) : S → RdS ,
(xλ, yi) : F → RdF , (xλ, yi, za) : G→ RdG .

We discuss the following elementary examples of smooth systems of
smooth sections.

Example 3.1.1. If p : F → B and p ◦ q : G → B are vector bundles,
then the family of tubelike sections σ̆ : F → G , which are linear fibred
morphisms over B , yields the injective smooth system of smooth sections

S := linB(F ,G) .

With reference to a linear fibred chart of the smooth double fibred
manifold, the coordinate expression of the tubelike sections σ̆ : F → G of
this system is of the type

xλ ◦ σ̆ = xλ , yi ◦ σ̆ = yi , za ◦ σ̆ = Ka
i y

i , with Ka
i ∈ map(B,R) .

Hence, the above fibred chart of the smooth double fibred manifold
yields a distinguished fibred chart (xλ, wai ) of S and the coordinate expres-
sion of ε becomes

εa = waj y
j .

Example 3.1.2. If p : F → B and p ◦ q : G → B are affine bundles,
then the family of tubelike sections σ̆ : F → G , which are affine fibred
morphisms over B , yields the injective smooth system of smooth sections

S := affB(F ,G) .

With reference to an affine fibred chart of the smooth double fibred
manifold, the coordinate expression of the tubelike sections σ̆ : F → G of
this system is of the type

xλ ◦ σ̆ = xλ , yi ◦ σ̆ = yi , za ◦ σ̆ = Ka
i y

i +Ka ,

with Ka
i , K

a ∈ map(B,R) .
Hence, the above fibred chart of the smooth double fibred manifold

yields the distinguished fibred chart (xλ, wai , w
a) of S and the coordinate

expression of ε becomes

εa = waj y
j + wa .
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Example 3.1.3. If p : F → B and p ◦ q : G→ B are affine bundles, then
analogously to the above Example 3.1.2, we can define

- the injective smooth system of polynomial sections of degree r , with
0 ≤ r ,

- the injective smooth system of polynomial sections of any degree 0 ≤
r ≤ k , where k is a given positive integer.

All examples above deal with finite dimensional smooth systems of
smooth sections, as it is implicitly requested by Definition 3.1.3.

However, we can easily extend the concept of smooth system of smooth
sections, by considering an infinite dimensional smooth system, which is the
direct limit of finite dimensional smooth systems, according to the following
Example 3.1.4.

Example 3.1.4. If p : F → B and p ◦ q : G→ B are affine bundles, then
we obtain the smooth system of polynomial sections by considering the
family of polynomial sections s : F → G of any degree r , with 0 ≤ r ≤ ∞ .

Later, we shall see that such a smooth system has a natural F–smooth
structure (see, later, Definition 1.2.1)

3.1.2 Smooth structure of (S, ζ, ε)

In our definition of “smooth system of smooth sections” (see Defi-
nition 3.1.3) we have required a priori that the fibred set of parameters
ζ : S → B be smooth and that the evaluation map ε be smooth as
well.

On the contrary, we might ask whether the fact that the manifold
B , the fibred manifolds p : F → B and q : G → F are smooth and
that the sections φ : F → G selected by the system are smooth allows
us to recover uniquely the smooth structure of ζ : S → B .

The answer to the above question is negative. Here we do not
fully address this problem, which is too far from the true scope of the
present report. But, we present a simple example (see Example 3.1.5),
where we show that, if S admits a finite dimensional smooth structure
compatible with ε , then this structure needs not to be unique.

Moreover, we observe that if we do not assume a priori a finite
dimensional smooth structure on ζ : S → B , then it might be that
no finite dimensional smooth structure at all could be recovered on
ζ : S → B . To prove this, just consider the system (S, ζ, ε) of all
smooth sections φ : F → G (see, later, Section 3.2.1).

The above question might arise also in comparison with a result
which will be achieved later, in the next Section, in the context of “F–
smooth systems of smooth sections”, where we do not assume a priori
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any smooth structure of the fibred set ζ : S → B , but we recover
uniquely its F–smooth structure (see Definition 3.2.2 and Theorem
3.2.1).

Analogously to Example 2.1.7, we can exhibit a system of smooth sec-
tions (S, ζ, ε) , where S is equipped with different smooth structures.

Example 3.1.5. Let us consider the following system (S, ζ, ε) of smooth
sections:

1) we consider the manifolds

B :=R , F :=R× R , G :=R× R× R ,
S :=R× R ,

equipped with their “natural” smooth structures, and denote their “natu-
ral” charts by

x : B → R , (x, y) : F → R× R , (x, y, z) : G→ R× R× R ,
(x,w) : S → R× R .

Moreover, let us consider the smooth evaluation map

ε : S ×
B
F → G ,

defined by the coordinate expression

1) (x, y; z) ◦ ε = (x, y; w y) .

Besides the above “natural” smooth structure of S , we can consider
several further smooth structures of S , which make the same evaluation
map ε smooth, hence which essentially yield the “same” system of sections.

For instance, let us consider the “exotic” smooth structure of S induced
by the fibred bijection

(x, ẃ) := (x,w3) : S → R× R .

Then, the evaluation map ε reads, in the above exotic fibred chart as

2) (x, y; z) ◦ ε = (x, y; w3 y) .

Clearly, the equalities 1) and 2) define the same evaluation map ε .
Moreover, ε turns out to be smooth with respect to both smooth structures
of S .

By the way, the system (S, ε) turns out to be injective in both cases.
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We might even ask whether we can characterise the “natural” smooth
structure of S via a suitable feature of the system; this question might
arise later if we compare “smooth systems of smooth maps” and “F–smooth
systems of smooth maps” (see, later, in the next Section 2.2.1).

Here, we skip a general answer to this question, which is too far from
the true scope of the present report.

However, we observe, as a hint, that the set of curves of S which are
smooth with respect to its natural smooth structure is smaller than the set
of curves of S which are smooth with respect to its exotic smooth structure.
The converse occurs for the sets of smooth functions.

3.1.3 Smooth lifted fibred manifold

Given a smooth double fibred manifold G
q→ F

p→ B and a
smooth system of smooth sections (S, ζ, ε) , it is useful to define the
“lifted smooth fibred manifold”

p↑ : F ↑ :=S ×
B
F → S

of the fibred manifold p : F → B .

Thus, let us consider a smooth double fibred manifold G
q→ F

p→ B
and a smooth system (S, ζ, ε) of smooth sections, where ε : S ×

B
F → G

(see Definition 3.1.3).

Definition 3.1.4. We define the lifted smooth fibred manifold of the smooth
fibred manifold p : F → B to be the fibred product over B

F ↑ :=
{

(sb, fb) ∈ S ×
B
F | sb ∈ Sb, fb ∈ F b, b ∈ B

}
= S ×

B
F ,

which can be regarded as the pullback of the smooth fibred manifold p :
F → B , with respect to the smooth projection ζ : S → B .

The natural map

p↑ : F ↑ → S : (sb, fb)→ sb

makes F ↑ a smooth fibred manifold over S .

In simple words, the smooth fibred manifold p↑ : F ↑ → S can be
regarded as the “extension” of the smooth fibred manifold p : F → B
obtained by “extending” the base space B to S .
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Then, F ↑ turns out to be also a smooth double fibred manifold

F ↑
pro2- F

p
- B ,

according to the following commutative diagram

S ×
B
F

pro2 - F

S

pro1
? ζ

- B

p
?

.

Hence, we can regard the smooth evaluation map ε : S ×
B
F → G as a

smooth fibred morphism over F

ε : F ↑ → G .

The induced fibred chart of p↑ : F ↑ → S is (xλ, wA, yi) .

3.2 F–smooth systems of smooth sections

We discuss the notions of F–smooth systems of fibrewisely
smooth sections (S, ζ, ε) and of its F–smooth tangent prolongation
(TS, Tζ, Tε) .

Moreover, we compare the F–smooth and smooth structure of S
for the particular case of a smooth system of smooth sections.

Eventually, we discuss the F–smooth differential operators.

3.2.1 F–smooth systems of smooth sections

In the previous Section 3.1.1, we have studied the smooth systems
(S, ζ, ε) of smooth sections of a smooth double fibred manifold G→
F → B .

Now, we analyse the generalised notion of F–smooth system
(S, ζ, ε) of fibrewisely smooth sections of a smooth double fibred man-
ifold G → F → B , by releasing the hypotheses of smoothness and
finite dimension of S .

Let us consider a smooth double fibred manifold G
q→ F

p→ B .
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Definition 3.2.1. We denote by (see Definition 3.1.2)

tub(F ,G) ⊂
{
s : F → G

}
the subsheaf consisting of tubelike sections s : F → G , which are fibrewise-
lyly smooth, i.e. which fulfill the following condition, without any further
local smoothness requirement,

- sb : F b → Gb is global and smooth, for each b ∈ B .
Thus, the sheaf of tubelike smooth sections turns out to be a subsheaf

(see Definition 3.1.2)

tub(F ,G) ⊂ tub(F ,G) .

The following Definition is a generalisation of Definition 3.1.3, as here
we do not require that S be a finite dimensional smooth manifold (hence,
that the maps ζ and ε be smooth).

Definition 3.2.2. We define an F–smooth system of fibrewisely smooth
sections of the smooth double fibred manifold G→ F → B to be a 3–plet
(S, ζ, ε) , where

1) S is a set,
2) ζ : S → B is a fibred set (i.e. S is a set and ζ a surjective map,

without any smoothness requirements),
3) ε : S ×

B
F → G is a fibred map over F , according to the following

commutative diagram

S ×
B
F

ε
- G

F

pro2
? idF - F

q
?

,

which fulfills the following condition:
*) for each s ∈ Sb , with b ∈ B , the induced section

εs : F b → Gb

of the restricted smooth fibred manifold qb : Gb → F b is smooth and globally
defined on F b .

The map ε : S ×
B
F → G is called the evaluation map of the system.

We denote by
sec(B,S) ⊂

{
s : B → S

}
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the subsheaf consisting of local sections s : B → S , without any smoothness
requirement.

Thus, the evaluation map ε yields the sheaf morphism

εS : sec(B,S)→ tub(F ,G) : σ 7→ σ̆ ,

where, for each σ ∈ sec(B,S) , the tubelike fibrewisely smooth section σ̆ is
defined by

σ̆ : F b → Gb : fb 7→ ε
(
σ(b), fb

)
, for each b ∈ S .

Therefore, the map εS : sec(B,S)→ tub(F ,G) provides a selection of
the tubelike fibrewisely smooth sections φ : F → G , given by the subset

tubS(F ,G) := εS
(

sec(B,S)
)
⊂ tub(F ,G) .

The smooth system of fibrewisely smooth sections (S, ζ, ε) is said to be
injective if the map εS : sec(B,S)→ tub(F ,G) is injective, i.e. if, for each
σ , σ́ ∈ sec(B,S) ,

σ̆ ≡ εS(σ) = ˘́σ ≡ εS(σ́) ⇒ σ = σ́ .

If the system is injective, then we obtain the bijection

εS : sec(B,S)→ tubS(F ,G) : σ 7→ σ̆ ,

whose inverse is denoted by

(εS)−1 : tubS(F ,G)→ sec(B,S) : φ 7→ φ̂ .

Indeed, we are essentially interested in injective F–smooth systems of
tubelike fibrewisely smooth sections.

Remark 3.2.1. We stress that we have not assumed a priori any smooth or
F–smooth structure on S . However, the specification “F–smooth” system
in the above Definition 3.2.2 will be justified later by Theorem 3.2.1.

Moreover, we stress that the local sections σ : B → S , without any
F–smoothness requirement, yield tubelike sections σ̆ : F → G , which need
not to be smooth, even if their restrictions σ̆b : F b → Gb , are smooth, for
each b ∈ B , (according to condition *) in Definition 3.2.2).

Later, we shall see that the set S is an F–smooth space in a natural
way (see Theorem 3.2.1) and that the selected fibrewisely smooth sections
σ̆ ∈ tubS(F ,G) turn out to be smooth if and only if their source sections
σ ∈ sec(B,S) are F–smooth (see Theorem 3.2.2).

This result further justifies the name “F–smooth systems of fibrewisely
smooth sections” in Definition 3.2.2.
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Let us examine some examples of F–smooth systems of fibrewisely
smooth sections.

We start by considering “infinite dimensional” examples, by following
the analogous thread of smooth systems of global smooth maps (see §3).

Example 3.2.1. For each smooth double fibred manifold G → F → B ,
the set (see Definition 3.2.1)

tubS(F ,G) := tub(F ,G)

consisting of all φ̆ ∈ tub(F ,G) yields in a natural way an injective F–
smooth system of fibrewisely smooth sections.

Example 3.2.2. For each smooth double fibred manifold G → F → B ,
where G→ F is a vector bundle, the subset

tubS(F ,G) ⊂ tub(F ,G)

consisting of all φ̆ ∈ tub(F ,G) , whose fibrewisely restrictions σ̆b : F b → Gb

have compact support for each b ∈ B , yields in a natural way an injective
F–smooth system of tubelike fibrewisely smooth sections.

Indeed, this system is a subsystem of the system of sections φ : F → G
considered in the above Example 3.2.1.

We can reconsider “finite dimensional” examples of smooth systems of
tubelike fibrewisely smooth sections in the present context of F–smooth
spaces (see Section 3.1.1).

Example 3.2.3. For each smooth double fibred manifold G → F → B ,
where F → B and G→ B are vector bundles, the subset

tubS(F ,G) ⊂ tub(F ,G)

consisting of all φ̆ ∈ tub(F ,G) , whose fibrewise restrictions σ̆b : F b → Gb

are linear maps for each b ∈ B , yields in a natural way an injective F–
smooth system of fibrewisely smooth sections.

Indeed, the F–smooth structure of S turns out to be just the natural F–
smooth structure underlying the natural smooth structure of S (see, later,
Theorem 3.2.1).

Example 3.2.4. For each smooth double fibred manifold G → F → B ,
where F → B and G→ B are affine bundles, the subset

tubS(F ,G) ⊂ tub(F ,G)
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consisting of all φ̆ ∈ tub(F ,G) , whose fibrewise restrictions s̆b : F b → Gb ,
are affine maps for each b ∈ B , yields in a natural way an injective F–
smooth system of fibrewisely smooth sections.

Indeed, the F–smooth structure of S turns out to be just the natural F–
smooth structure underlying the natural smooth structure of S (see, later,
Theorem 3.2.1).

Example 3.2.5. For each smooth double fibred manifold G → F → B ,
where F → B and G→ B are affine bundles, the subset

tubS(F ,G) ⊂ tub(F ,G)

consisting of all φ̆ ∈ tub(F ,G) , whose fibrewise restrictions φ̆b : F b → Gb

are polynomial maps of a given degree for each b ∈ B , yields in a natural
way an injective F–smooth system of fibrewisely smooth sections.

Indeed, the F–smooth structure of S turns out to be just the natural F–
smooth structure underlying the natural smooth structure of S (see, later,
Theorem 3.2.1).

We can also reconsider the “infinite dimensional” example of F–smooth
systems of polynomial sections of any degree in the present context of F–
smooth spaces (see §3).

Example 3.2.6. For each smooth double fibred manifold G → F → B ,
where F → B and G→ B are affine bundles, the subset

tubS(F ,G) ⊂ tub(F ,G)

consisting of all σ̆ ∈ tub(F ,G) , whose fibrewise restrictions σ̆b : F b → Gb ,
are polynomial maps of any degree for each b ∈ B , yields in a natural way
an injective F–smooth system of fibrewisely smooth sections.

Indeed, the F–smooth structure of S turns out to be just the natu-
ral F–smooth structure underlying the natural infinite dimensional smooth
structure of S (see, later, Theorem 3.2.1).

3.2.2 F–smooth structure of S

We show that an F–smooth system (S, ζ, ε) of fibrewisely smooth
sections turns out to have a natural F–smooth structure.

Namely, the set S has a natural F–smooth structure and the maps

ζ : S → B and ε : S ×
B
F → G
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turn out to be F–smooth.
Furthermore, we exhibit a bijection between F–smooth sections

σ : B → S and tubelike smooth sections σ̆ : F → G .

Let us consider an F–smooth system of fibrewisely smooth sections
(S, ζ, ε) .

Let us start by exhibiting a natural F–smooth structure of the set S .
Preliminarily, we need a few technical Lemmas, which provide some pull-
back objects.

Lemma 3.2.1. If c : Ic → B is a smooth curve, then we obtain the smooth
submanifold

c∗(F ) := {(λ, f) ∈ Ic × F | c(λ) = p(f)} ⊂ Ic × F ,

along with the smooth projections

c∗(p) : c∗(F )→ Ic : (λ, f) 7→ λ and c∗F : c∗(F )→ F : (λ, f) 7→ f .

Lemma 3.2.2. If c : Ic → B and γ : Iγ → Ic are smooth maps, then we
obtain the smooth map

γ∗ : (c ◦ γ)∗(F )→ c∗(F ) : (λ, f) 7→
(
γ(λ), f

)
,

which provides just a smooth reparametrisation of c∗(F ) .

Lemma 3.2.3. If ĉ : I ĉ → S is a curve, which projects on a smooth curve
c := ζ ◦ ĉ : I ĉ → B , then we obtain the map

ĉ ∗(ε) : c∗(F )→ G : (λ, f) 7→ ε
(
ĉ (λ), f

)
.

Theorem 3.2.1. Let us consider the set

C := {ĉ : I ĉ → S}

consisting of all curves ĉ : I ĉ → S , such that the following induced
maps between smooth manifolds be smooth (see the above Lemma 3.2.1 and
Lemma 3.2.3)

(a) c : I ĉ → B : λ 7→ ζ
(
ĉ (λ)

)
,

(b) ĉ ∗(ε) : c∗(F )→ G : (λ, f) 7→ ε
(
ĉ (λ), f

)
.

Then, the pair (S, C) turns out to be an F–smooth space.
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Proof. Let us prove that the pair (S, C) be an F–smooth space, by showing
that it fulfills the two conditions 1) and 2) in Definition 1.2.1.

1) For every element s ∈ S , let us consider the constant curve ĉ : I ĉ → S :
λ 7→ s , which clearly passes through s . Then, the following facts hold.

a) The induced curve c := ζ ◦ ĉ : I ĉ → B turns out to be constant as well,
hence smooth.

b) The map

ĉ ∗(ε) : c∗(F )→ G : (λ, f) 7→ ε
(
ĉ (λ), f

)
can be regarded as the map

εs : F ζ(s) → Gζ(s) ,

hence, in virtue of condition *) in Definition 3.2.2, it turns out to be smooth.
Therefore, the constant curves ĉ : I ĉ → S belong to C .
2) If γ : Iγ → I ĉ is any smooth curve, then
a) the map

c ◦ γ : I ĉ → B

is a composition of smooth maps between smooth manifolds, hence it turns out to
be smooth,

b) in virtue of the above Lemma 3.2.2, the map

(ĉ ◦ γ)∗(ε) : (c ◦ γ)∗(F )→ G : (λ, f) 7→ ε
(
ĉ
(
(γ(λ)

)
, f
)

is given by the composition of smooth maps between smooth manifolds

(c ◦ γ)∗(F )
γ∗ - c∗(F )

ĉ ∗(ε) - G :(
λ, f

c
(
γ(λ)
)) γ∗-

(
γ(λ), f

c
(
γ(λ)
)) ĉ ∗(ε)- ε

(
ĉ
(
γ(λ)

)
, f
c
(
γ(λ)
)) ,

hence it turns out to be smooth.

Therefore, according to the above conditions (a) and (b), the curves ĉ ◦ γ :

I ĉ → S belong to C . QED

Then, we show that the maps ζ and ε are F–smooth. Preliminarily, we
need a technical Lemma, which provides some pullback objects.

Lemma 3.2.4. Let us consider an F–smooth curve

(ĉ , cF ) : I ĉ → S ×
B
F ,

where

ĉ : I ĉ → S and cF : I ĉ → F
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are, respectively, an F–smooth curve and a smooth curve, which project on
the same smooth base curve c : I ĉ → B .

Then, the F–smooth curve (ĉ , cF ) : I ĉ → S ×B F factorises through a
smooth curve (see Lemma 3.2.1)

(c, cF ) : I ĉ → c∗(F ) ,

according to the following commutative diagram

I ĉ
(ĉ , cF )

- S ×
B
F

I ĉ

idI ĉ
? (idI ĉ , cF )

- c∗(F )

ĉ × idF6

.

Proof. In fact, for each λ ∈ I ĉ , the following diagram commutes

λ
(ĉ , cF )-

(
ĉ (λ), cF (λ)

)

λ

id
?

-
(
λ, cF (λ)

)ĉ × idF
6

. QED

Proposition 3.2.1. The maps

ζ : S → B and ε : S ×
B
F → G

turn out to be F–smooth.

Proof. According to Definition 1.2.4, we have to prove that ζ and ε map
F–smooth curves of the source space into F–smooth curves of the target space.

1) For each F–smooth curve ĉ : I ĉ → S , the composed map ζ ◦ ĉ : I ĉ → B
is a smooth curve, by assumption, hence it is an F–smooth curve (see Definition
1.3.1).

2) Let (ĉ , cF ) : I ĉ → S ×
B
F be an F–smooth curve, where

ĉ : I ĉ → S and cF : I ĉ → F

are, respectively an F–smooth curve and a smooth curve, which project on the
same smooth base curve c : I ĉ → B .

Then, in virtue of the above Lemma 3.2.4, the curve

ε ◦ (ĉ , c∗F ) : I ĉ → G
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turns out to be the composition of smooth curves

ε ◦ (ĉ , c∗F ) = c∗(ε) ◦ (idI ĉ , cF ) ,

according to the following commutative diagram

I ĉ
(ĉ , cF )- S ×

B
F

ε - G

I ĉ

idI ĉ
? (id, cF )- c∗(F )

ĉ × idF6

c∗(ε) - G

idG

6

,

hence it is smooth. QED

Next, we show a natural bijection between local F–smooth sections
σ : B → S and tubelike smooth sections σ̆ : F → G . Preliminarily, we
need a technical Lemma.

Lemma 3.2.5. Let us consider a section σ ∈ sec(B,S) , the induced
tubelike fibrewisely smooth section σ̆ ∈ tubS(F ,G) and a smooth curve
c : Ic → B (see Definition 3.2.2).

Then, we obtain, by pullback, the fibred morphism over F

c∗(σ̆) : c∗(F )→ G ,

given by the composition (see Lemma 3.2.1)

c∗(F )
(c∗(p), c∗F )

- Ic × F
c× idF- B × F

σ × idF- S ×
B
F

ε
- G.

We denote by

F–sec(B,S) ⊂ sec(B,S)

the subsheaf consisting of F–smooth local sections of the fibred set ζ : S →
B .

Moreover, we denote by

tubS(F ,G) := tubS(F ,G) ∩ tub(F ,G)

the subsheaf consisting of tubelike smooth sections of the smooth fibred
manifold G→ F , which are selected by the F–smooth system (S, ζ, ε) .

Theorem 3.2.2. Let σ ∈ sec(B,S) be a local section and

σ̆ := εS(σ) ∈ tubS(F ,G)
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the induced tubelike section (see Definition 3.2.2).

Then, σ̆ is smooth if and only if σ is F–smooth.

In other words, the sheaf morphism

εS : sec(B,S)→ tubS(F ,G)

restricts to a sheaf isomorphism (denoted by the same symbol)

εS : F–sec(B,S)→ tubS(F ,G) ,

according to the following diagram commutes

sec(B,S)
εS - tubS(F ,G)

F–sec(B,S)

∪
∪

6

εS - tubS(F ,G)

∪
∪

6

.

Proof. 1) Let us prove that, if σ is F–smooth, then σ̆ is smooth.
In fact, the map between smooth manifolds σ̆ : F → G is given by a com-

position of F–smooth maps, according to the following commutative diagram (see
Definition 1.3.1 and Proposition 3.2.1)

F
(p, idF )- B × F

σ × idF- S ×
B
F

ε - G

F

idF

6

σ̆ - G

idG
?

.

Hence, according to Proposition 1.2.4, σ̆ : F → G is F-smooth. Indeed, in
virtue of Definition 1.3.1 and Theorem 1.3.1, it means that the map σ̆ : F → G is
smooth.

2) Let us prove that, if σ̆ is smooth, then σ is F–smooth.
By definition of F–smooth map between F–smooth spaces (see Definition

1.2.4), we have to prove that, for smooth curve c : I ĉ → B , the composed curve

ĉ σ :=σ ◦ c : I ĉ → S

be F–smooth.
Hence, according to Theorem 3.2.1, we have to prove that the induced maps

between smooth manifolds

cσ := ζ ◦ ĉ σ : Icσ → B and (ĉ σ)∗(ε) : (cσ)∗(F )→ G ,

be smooth.
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a) The curve cσ := ζ ◦ ĉ σ : Icσ → B is F–smooth because it is just the smooth
curve cσ : I ĉ → B .

b) The map (ĉ σ)∗(ε) : (cσ)∗(F ) → G turns out to be smooth, because it is
the restriction to the smooth sub manifold over c : I ĉ → B

(cσ)∗(F ) ⊂ F ,

according to the following commutative diagram

(cσ)∗(F )
(ĉ σ)∗(ε) - G

F

(cσ)∗F
? σ̆ - G

idG
?

. QED

Remark 3.2.2. The above Theorem 3.2.2 clarifies the name “F–smooth
system of fibrewisely smooth sections” in Definition 3.2.2.

Roughly speaking, we can interpret the above Theorem 3.2.2 in the
following way.

Given a section σ ∈ sec(B,S) , the induced section σ̆ ∈ tub(F ,G) is
smooth along the fibres of the fibred manifold p : F → B in virtue of
condition *) in Definition 3.2.2.

Then, in order to check whether σ̆ ∈ tub(F ,G) is fully smooth, we
have to show that it is smooth “transversally”, i.e. along smooth curves
c : Ic → B .

However, in virtue of the definition of F-smooth map (see Definition
1.2.4), the section σ ∈ sec(B,S) is F–smooth if and only if its composition
with any smooth curve c : I ĉ → B is smooth.

Thus, to check the smoothness of both σ̆ ∈ tub(F ,G) and the F–
smoothness of σ ∈ sec(B,S) is subject to analysing the behaviour of both
sections along smooth curves c : I ĉ → B .

In the particular case when B = R , the above Theorem 3.2.2 reduces
to a tautology.

In fact, a local section σ : B → S turns out to be a local curve ĉ :=σ :
R→ S . Moreover, in this case we have locally c∗(F ) = F .

So, checking that σ̂ maps F–smooth curves of B into F–smooth curves
of S reduces to check that the fibrewisely smooth section σ : F → G be
smooth. Indeed, no other independent check is required. In other words,
in the particular case when B = R , the above Theorem reduces to say that
sec(B,S) is just, by definition, the subsheaf sec(B,S) ⊂ sec(B,S) which
yields tub(F ,G) .
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Remark 3.2.3. In our definition of “smooth system of smooth sections”
(see Definition 3.1.3), we have assumed a priori a finite dimensional smooth
structure of S , while, for our concept of “F–smooth system of fibrewisely
smooth sections” (see Definition 3.2.2), we have not assumed a priori any
smooth structure of S , but have recovered an F–smooth structure in a
unique way (see Theorem 3.2.1).

Now, the procedure we have used for F–smooth systems of fibrewisely
smooth sections to recover the F–smooth structure of S can be applied to
smooth systems of smooth sections as well and a natural question arises:
“is the assumed smooth structure of S compatible with the recovered F–
smooth structure?”

In general, the answer is negative. In fact, in Example 3.1.5, we have
shown that we can assume several smooth structures on S providing the
same system of smooth sections.

Next, we show that, in the case when the smooth fibred manifold q :
G→ F is an affine (vector) bundle, the F–smooth fibred space ζ : S → B
of an injective system (S, ζ, ε) of smooth sections φ : F → G inherits in a
natural way an affine (vector) structure.

Proposition 3.2.2. Let us suppose that the fibred manifold q : G → F
be a vector bundle and consider an injective F–smooth system (S, ζ, ε) of
fibrewisely smooth sections φ : tub(F ,G) (see Example 3.2.1).

Then, the fibres of the F–smooth fibred space ζ : S → B inherit in a
natural way a vector structure given, for each k ∈ R and s, ś ∈ Sb , with
b ∈ B , by

k s := k̂ s̆ and s+ ś := ̂̆s+ ˘́s .

Proposition 3.2.3. Let us suppose that the fibred manifold q : G → F
be an affine bundle associated with the vector bundle q̄ : Ḡ → F , and
consider an injective F–smooth system (S, ζ, ε) of fibrewisely smooth sec-
tions φ : tub(F ,G) and the associated injective F–smooth system (S̄, ζ̄, ε̄)
of fibrewisely smooth sections φ̄ : tub(F , Ḡ) .

Then, the fibres of the F–smooth fibred space ζ : S → B inherit in
a natural way an affine structure given, for each s ∈ Sb and s̄ ∈ S̄b with
b ∈ B , by

s+ s̄ := ̂̆s+ ˘̄s .
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3.2.3 F–smooth tangent prolongation of (S, ζ, ε)

Now, we consider an F–smooth system (S, ζ, ε) of fibrewisely

smooth sections of a smooth double fibred manifold G
q→ F

p→ B
(see Definition 3.2.2) and introduce the concept of “F–smooth tangent
space” TS of the F–smooth space of parameters S , which is equipped
with its family C of F–smooth curves ĉ : I ĉ → S (see Theorem 3.2.1).

Our formal construction of TS reflects the intuitive idea, by which,
for each s ∈ Sb , with b ∈ B , a tangent vector Xs ∈ TsS is to be an
“infinitesimal variation” of the global smooth map εs : F b → Gb .
It is remarkable the fact that this construction involves only smooth
maps between smooth manifolds, by taking into account the smooth

structure of the smooth double fibred manifold G
q→ F

p→ B .

Actually, we define a tangent vector Xs of S , at s ∈ S , as an
equivalence class of F–smooth curves ĉ : I ĉ → S , such that the
induced smooth maps between smooth manifolds ĉ ∗(ε) : c∗(F ) →
c∗(G) have a 1st order contact in s .

Then, we show that a tangent vector Xs can be naturally repre-
sented by a pair (u,Ξu) , where u ∈ TbB and Ξu : (TF )u → (TG)u
is a suitable smooth section.

Moreover, we show that the F–smooth tangent space TS is
equipped with a natural F–smooth structure and exhibit the natu-
ral F–smooth maps

τS : TS → S and T1ε : TS ×M → TN .

Indeed, the fibres of τS : TS → S are naturally equipped with a
vector structure.

The procedure followed to achieve the above results is partially
similar to that followed for the tangent space of the F–smooth systems
of smooth maps between two smooth manifolds (see §2.2.2). However,
the present context is more complex and requires an additional care.
In the present case, the reason of the difficulty and of the consequent
complication is due to the fact that the map ε : S×

B
F → G acts on a

fibred product S ×
B
F , not just on a product S × F . Hence, a curve

ĉ : I ĉ → S , which moves the base points of S in B , moves at the
same time also the base points of F (and of G) in B .

Let us consider a smooth double fibred manifold G
q→ F

p→ B and
denote the smooth fibred charts of G by (xµ, yi, za) .

Moreover, let us consider an F–smooth system (S, ζ, ε) of fibrewisely
smooth sections φ ∈ tub(F ,G) , along with the set C of F–smooth curves
ĉ : I ĉ → S defined in Theorem 3.2.1.
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Then, we define the tangent space of the F–smooth space (S, C) , via
equivalence classes of suitable smooth maps between smooth manifolds, in
the following way.

Lemma 3.2.6. If (c1, c2) : (I1, I2) → B is a pair of smooth curves and
the pair (λ1, λ2) ∈ I1 × I2 is an element, such that

dc1(λ1) = dc2(λ2) ∈ TB ,

then we have(
c∗1(F )

)
λ1

=
(
c∗2(F )

)
λ2

and T
(
c∗1(F )

)
λ1

= T
(
c∗2(F )

)
λ2
.

Lemma 3.2.7. If ĉ : I ĉ → S is an F–smooth curve which projects on a
smooth curve c : I ĉ → B , then we obtain the smooth map (see Theorem
3.2.1)

T
(
ĉ ∗(ε)

)
: T
(
c∗(F )

)
→ TG .

Then, we introduce the concept of 1st order contact for the F–smooth
curves of the type ĉ : I ĉ → S .

Definition 3.2.3. We say that two F–smooth curves (see Theorem 3.2.1)

ĉ 1 : I1 → S and ĉ 2 : I2 → S ,

which project, respectively, on smooth curves

c1 := ζ ◦ ĉ 1 : I1 → B and c2 := ζ ◦ ĉ 1 : I2 → B ,

have a 1st order contact in (λ1, λ2) ∈ I1 × I2 if they fulfill the following
conditions involving smooth manifolds and maps

1) dc1(λ1) = dc2(λ2) ,

2) Tλ1
(
ĉ ∗1(ε)

)
= Tλ2

(
ĉ ∗2(ε)

)
,

i.e., in coordinates,

1’a) cµ1 (λ1) = xµ(b) = cµ2 (λ2) ,

1’b) (∂0c
µ
1 )(λ1) ≡ Ξµ0 ≡ (∂0c

µ
2 )(λ2) ,
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2’a) ∂0

(
ĉ ∗1(ε)a

)
|λ1 ≡ Ξa0 ≡ ∂0

(
ĉ ∗2(ε)a

)
|λ2 ,

2’b) ∂i
(
ĉ ∗1(ε)a

)
|λ1 ≡ Ξai ≡ ∂i

(
ĉ ∗2(ε)a

)
|λ2 .

Clearly, the above 1st order contact yields equivalence relations ∼ in
the sets of pairs(

c : I ĉ → B, λ ∈ I ĉ
)

and
(
ĉ : I ĉ → S, λ ∈ I ĉ

)
,

where ĉ : I ĉ → S are F–smooth curves of S and c := ζ ◦ ĉ : I ĉ → B are
the associated smooth curves of B .

Then, we define the tangent vectors of S via 1st order equivalence classes
of F–smooth curves of ĉ : I ĉ → S (see Theorem 3.2.1).

Definition 3.2.4. We define a tangent vector of S , at s ∈ Sb , with b ∈ B ,
to be an equivalence class (see Definition 3.2.3)

Xs :=
[
(ĉ , λ)

]
∼

where ĉ : Iĉ → S are F–smooth curves, such that

ĉ (λ) = s .

Then, we define:
1) the tangent space of S , at s ∈ Sb , with b ∈ B , to be the set of

tangent vectors of S at s
TsS :=

{
Xs
}
,

2) the tangent space of S to be the disjoint union

TS :=
⊔
s∈S

TsS .

Remark 3.2.4. In order to mimic the tangent space of standard manifolds,
we call the elements Xs “tangent vectors”. However, so far, we do not know
yet that these objects are really elements of a vector space. This fact will
be proved later in Theorem 3.2.5.

Thus, in virtue of the above Definition 3.2.3 and Definition 3.2.4, the
tangent vectors Xs ∈ TsS can be represented through suitable pairs (u,Ξu) ,
consisting of a base vector u ∈ TbB and a smooth map Ξu : (TF )u →
(TG)u , as follows.
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Theorem 3.2.3. Let (S, ζ, ε) be an F–smooth system of fibrewisely smooth
sections.

Then, in virtue of the above Definition 3.2.3 and Definition 3.2.4, every
tangent vector

Xs := [(ĉ , λ)]∼ ∈ TsS ,

can be regarded as the pair (u,Ξu) , consisting of
a) the base vector

u :=
[
(c, λ)

]
∼ ∈ TbB ,

b) the smooth map

Ξu : (TF )u → (TG)u ,

which is a global smooth section of the smooth fibred manifold Tq : (TG)u →
(TF )u and an affine fibred morphisms over s∗(ε) : F b → Gb , whose smooth
fibre derivative

DΞu : (V F )b → (VG)b

fulfills the equality

DΞu = Tb
(
s∗(ε)

)
: T (F b)→ T (Gb) .

Indeed, the following diagram commutes

(TF )u
id(TF )u- (TF )u

(TF )u

idTF u

6

Ξu - (TG)u

Tq
6

F b

τF
? s∗(ε)

- Gb

τG
?

,

We have the coordinate expressions

u = uµ ∂µ ,

(xµ, yi, za) ◦ Ξu =
(
xµ(b), yi, s∗(ε)a

)
,

(ẋµ, ẏi|u, ż
a
|u) ◦ Ξu =

(
uµ, ẏi|u, Ξa

)
,

(xµ, yi, za) ◦DΞu =
(
xµ(b), yi, s∗(ε)a

)
,

(ẋµ, ẏi, ża) ◦DΞu =
(
0, ẏi, (DΞ)a

)
,
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where

uµ = (∂0c
µ)(λ) ,

Ξa = Ξa0 + ∂i
(
s∗(ε)a

)
ẏi|u , (DΞ)a = ∂i

(
s∗(ε)a

)
ẏi|0 ,

with

uµ ∈ R , Ξa0 ∈ map(F b,R) .

Thus, in this way, we obtain a natural map

rs : Xs ∈ TsS 7→ (u,Ξu) ,

where u ∈ TbB and Ξu : (TF )u → (TG)u is a smooth map as above.

For each s ∈ S , the map rs turns out to be injective.

Remark 3.2.5. With reference to the above Theorem 3.2.3, we stress
that a vector Xs := (u,Ξu) ∈ TsS is characterised, in coordinates, by its
components

uµ ∈ R and Ξa0 ∈ map(F b,R) .

Moreover, the equality

DΞu = Tb
(
s∗(ε)

)
: T (F b)→ T (Gb) .

shows that DΞu depends only on the element s ∈ Sb .

The set TS turns out to be equipped with the natural maps

τS : TS → S , Tζ : TS → TB , Tε : TS ×
TB

TF → TG .

Proposition 3.2.4. We obtain in a natural way the following maps:

1) the natural surjective map (see Theorem 3.2.3)

τS : TS → S : Xs 7→ s ,

2) the natural surjective map

Tζ : TS → TB ,

given, according to Theorem 3.2.3, by

Tζ : Xs := (u,Ξu) 7→ u , for each s ∈ Sb , with b ∈ B ,
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3) the natural fibred map

Tε : TS ×
TB

TF → TG ,

given, according to Theorem 3.2.3, by

Tε : (Xs, Y ) :=
(
(u,Ξu), Y

)
7→ Ξu(Y ) ,

for each s ∈ Sb , Y ∈ (TF )u , with u ∈ TbB .

Indeed, the following natural diagrams commute

TS
Tζ

- TB

S

τS
? ζ

- B

τB
?

,

TF
idTF - TF

TS ×
TB

TF

pro2

6

Tε
- TG

Tq

6

S ×
B
F

τS × τF
? ε

- G

τG
?

.

Moreover, the set TS turns out to be equipped with the natural subset

VS ⊂ TS .

Proposition 3.2.5. The elements of the subset

VS := (Tζ)−1(0) ⊂ TS

can be regarded as the pairs of the type

Xs = (0,Ξ0) ∈ VsS , for each s ∈ Sb ,

where
Ξ0 : (V F )b → (VG)b ,
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a) is a global smooth section of the smooth fibred manifold Tq : (VG)b →
(V F )b and an affine fibred morphisms over s∗(ε) : F b → Gb , according to
the following diagram commutative

(V F )b
id(V F )b- (V F )b

(V F )b

id(V F )b

6

Ξ0 - (VG)b

Tq
6

F b

τF
? s∗(ε)

- Gb

τG
?

,

b) whose smooth fibre derivative

DΞu : (V F )b → (VG)b

fulfills the equality

DΞu = Tb
(
s∗(ε)

)
: (V F )b → (VG)b .

We have the coordinate expression

(xµ, yi, za)◦Ξ0 =
(
xµ(b), yi, s∗b(ε)

a
)

and (ẋµ|0, ẏ
i
|0, ż

a
|0)◦Ξ0 =

(
0, ẏi|0, Ξa

)
,

where

Ξa = Ξa0 + ∂i
(
s∗(ε)a

)
ẏi|0 , with Ξa0 ∈ map(F b,R) .

Proof. The Corollary follows easily from Theorem 3.2.3 and Proposition
3.2.4 item 1).

An alternative direct proof could be obtained by rephrasing the proof of The-

orem 3.2.3, taking into account vertical F–smooth curves of S . QED

We can achieve two important simplifications in the representation of
vertical elements of TS .

In fact, we can represent such an element
1) as defined on F , instead of V F ,
2) as valued in VFG , instead of VBG .

Corollary 3.2.1. We can equivalently regard the elements of the vertical
subset

VS ⊂ TS
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as the pairs of the type

Xs = (0,Ξ0) ∈ VsS , for each s ∈ Sb ,

where

Ξ0 := Ξ0 ◦ 0F : F b → (VFG)b , with 0F : F b → (V F )b ,

is a global section of the smooth fibred manifold τF ◦ Tq : (VG)b → F b

according to the following diagram commutative

F b
�

q
(G)b

F b

idF b

6

Ξ0- (VFG)b

τG
6

(V F )b

0
? Ξ0- (VG)b

∩
?

∩

.

We have the coordinate expression

(xµ, yi, za) ◦Ξ0 =
(
xµ(b), yi, s∗b(ε)

a
)

and (ẋµ|0, ẏ
i
|0, ż

a
|0) ◦Ξ0 =

(
0, 0, Ξa

)
,

where

Ξa = Ξa0 , with Ξa0 ∈ map(F b,R) .

Proof. It follows easily from the above Proposition 3.2.5. QED

Corollary 3.2.2. Let us suppose that q : G→ F be a vector bundle and
consider the natural fibred isomorphism over F

VFG ' G×
F
G .

Then, the elemets

Xs = (0,Ξ0) ∈ VsS , for each s ∈ Sb ,

are characterised by the global smooth sections

Ξ : F b → Gb ,



70 Systems of sections

according to the following commutative diagram

F b
Ξ0 - (VFG)b

F b

idF b

? Ξ
- Gb

pro2
?

.

Hence, if the F–smooth system (S, ζ, ε) is injective, then we obtain a
natural fibred isomorphism over B

VS ' S ×
B
S .

Proof. The 1st claim follows directly from the above Corollary 3.2.1.

Further, the splitting of V S follows from the fact that the smooth sections

Ξ : F b → Gb are just the selected sections of the system (S, ζ, ε) . QED

The set TS and the associated maps

τS : TS → S , Tζ : TS → TB Tε : TS ×
TB

TF → TG

turn out to be F–smooth in a natural way, according to the following The-
orem.

Theorem 3.2.4. Let us consider the set TC consisting of all curves

dĉ : I ĉ → TS ,

given, for each ĉ ∈ C , according to Theorem 3.2.3, by

dĉ : λ 7→ Xĉ (λ) ,

Indeed, the set TC equips the set TS with an F–smooth structure.
Moreover, the maps

τS : TS → S , T ζ : TS → TB Tε : TS ×
TB

TF → TG

turn out to be F–smooth.
Thus, the 3–plet (TS, Tζ, Tε) turns out to be an F–smooth system of

fibrewisely sections of the smooth double fibred manifold

TG
Tq
- TF

Tp
- TB .
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The fibred set τS : TS → S inherits a vector structure in a natural way.
Actually, the proof of this result is not straightforward because we have

to achieve invariant linear algebraic operations on bundles which are not
vector bundles.

Theorem 3.2.5. The fibres of the F–smooth fibred set τS : TS → S inherit
a natural vector structure given, for each s ∈ Sb , with b ∈ B , by means of
the equalities

r (u,Ξu) = (r u, r ·̄ Ξu) and (u,Ξu) +̄ (ú, Ξ́u) :=
(
(u+ ú), (Ξu +̄ Ξ́u)

)
,

where the smooth maps

r ·̄ Ξu : (TF )r u → (TG)r u and Ξu +̄ Ξ́ú : (TF )u+ú → (TG)u+ú

are defined through the equivariant coordinate equalities

(r ·̄ Ξ)µ := rΞµ , (r ·̄ Ξ)i := rΞi , (r ·̄ Ξ)a0 := rΞa0 ,

(Ξ +̄ Ξ́)µ := Ξµ + Ξ́µ , (Ξ +̄ Ξ́)i := Ξi + Ξ́i , (Ξ +̄ Ξ́)a0 := Ξa0 + Ξ́a0 ,

with
(r ·̄ Ξ)i := ẏi|ru and (Ξ +̄ Ξ́)i := ẏiu+ú .

Proof. Let us consider the smooth maps

X : (TF )u → (TG)u and Y : (TF )u → (TG)u ,

with coordinate expressions

Xµ = uµ , Xi = ẏi|u , Xa = Xa
0 + φai ẏ

i
|u ,

Y µ = vµ , Y i = ẏi|v , Y a = Y a0 + φai ẏ
i
|v ,

and
Xa

0 , Y
a
0 , φ

a
i ∈ map(F ,R) .

Then, we consider their local smooth extensions to the total tangent space
TF , which are induced by the chosen smooth fibred chart (xλ, yi, za) ,

X̃ : TF → TG and Ỹ : TF → TG ,

with coordinate expressions

X̃µ = ẋµ , X̃i = ẏi , X̃a = Xa
0 + φai ẏ

i ,

Ỹ µ = ẋµ , Ỹ i = ẏi , Ỹ a = Y a0 + φai ẏ
i .
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Next, let us take into account the vector structure of the smooth bundle TG→
G , by which we can define the algebraic operations

r X̃ : TF → TG and X̃ + Ỹ : TF → TG ,

with coordinate expressions

r X̃µ = r ẋµ , r X̃i = r ẏi , r X̃a = r Xa
0 + φai r ẏ

i ,

(X̃ + Ỹ )µ = ẋµ + ẋµ , (X̃ + Ỹ )i = ẏi + ẏi ,

(X̃ + Ỹ )a = Xa
0 + Y a0 + φai (ẏi + ẏi) .

Moreover, by restricting the above maps to the zero section 0 ⊂ TF , we obtain
the smooth maps

(r X̃)(0) : F → TG and (X̃ + Ỹ )(0) : F → TG ,

with coordinate expressions

r X̃µ(0) = 0 , r X̃i(0) = 0 , r X̃a(0) = r Xa
0 ,

(X̃ + Ỹ )µ(0) = 0 , (X̃ + Ỹ )i(0) = 0 , (X̃ + Ỹ )a(0) = Xa
0 + Y a0 .

Furthermore, by taking into account the affine structure of the smooth bundle
Tq : TG→ TF , we observe that the maps X̃ and Ỹ are affine and their derivatives
are the maps

DX̃ = DỸ = Tεs : TF → VFG ,

with coordinate expression

(DX̃)µ = (DỸ )µ = ẋµ , (DX̃)i = (DỸ )i = ẏi , (DX̃)a = (DỸ )a = φai ẏ
i .

Then, the following smooth maps are well defined

r ·̄ X̃ : TF → TG : v 7→ (r X̃)(0) +DX̃(v) ,

X̃ +̄ Ỹ : TF → TG : v 7→ (X̃ + Ỹ )(0) +DX̃(v)

and have coordinate expressions

r ·̄ X̃µ = ẋµ , r ·̄ X̃i = ẏi , r ·̄ X̃a = r Xa
0 + φai ẏ

i ,

(X̃ +̄ Ỹ )µ = ẋµ , (X̃ +̄ Ỹ )i = ẏi , (X̃ +̄ Ỹ )a = Xa
0 + Y a0 + φai ẏ

i .

Further, we consider the smooth restrictions of the above smooth maps

r ·̄ X̃ : TF → TG and X̃ +̄ Ỹ : TF → TG

to the smooth subbundles (TF )ru and (TF )u+v , respectively,

(r ·̄ X̃)ru : (TF )ru → TG and (X̃ +̄ Ỹ )u+v : (TF )u+v → TG .
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We have the coordinate expressions

(r ·̄ X̃)µru = r uµ , (r ·̄ X̃)iru = ẏi , (r ·̄ X̃)aru = r Xa
0 + φai ẏ

i ,

(X̃ +̄ Ỹ )µu+v = r uµ , (X̃ +̄ Ỹ )iu+v = ẏi , (X̃ +̄ Ỹ )au+v = Xa
0 + Y a0 + φai ẏ

i .

The above coordinate expressions show that the maps

(r ·̄ X̃)ru : (TF )ru → TG and (X̃ +̄ Ỹ )u+v : (TF )u+v → TG

factorise through maps (denoted by the same symbols)

(r ·̄ X̃)ru : (TF )ru → (TG)ru and (X̃ +̄ Ỹ )u+v : (TF )u+v → (TG)u+v ,

according to the following commutative diagrams

(TF )ru
(r ·̄ X̃)ru- (TG)ru (TF )u+v

(X̃ +̄ Ỹ )u+v- (TG)u+v

(TF )ru

id
? (r ·̄ X̃)ru - TG

⊂
?

∩

(TF )u+v

id
? (X̃ +̄ Ỹ )u+v- TG

⊂
?

∩

.

Moreover, the above coordinate expressions show that the maps

(r ·̄ X̃)ru : (TF )ru → (TG)ru and (X̃ +̄ Ỹ )u+v : (TF )u+v → (TG)u+v

do not depend on the extensions X̃ and Ỹ induced by the chart, but depend only
by the original maps X and Y .

For this reason, we can write

(r ·̄ X)ru := (r ·̄ X̃)ru : (TF )ru → (TG)ru ,

(X +̄ Y )u+v := (X̃ +̄ Ỹ )u+v : (TF )u+v → (TG)u+v

Hence, the above definition of the maps (r ·̄ X)ru and (X +̄ Y )u+v is coordi-

nate free. QED

Remark 3.2.6. The fact that the algebraic operations defined in the above
Theorem 3.2.5 be coordinate free can be confirmed by the following explicit
check.

Let (x́µ, ýi, źa) be another fibred chart of G .

Then, we have the following transition formulas

X́i = ∂́µy
i uµ + ∂́jy

iXj , X́a = ∂́µz
a uµ + ∂́jz

aXj + ∂́bz
a (Xb

0 + φbj ẏ
j
|u) ,

Ý i = ∂́µy
i vµ + ∂́jy

i Y j , Ý a = ∂́µz
a vµ + ∂́jz

a Y j + ∂́bz
a (Y b

0 + φbj ẏ
j
|v) ,
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which yield also the following equalities

X́i = ∂́jy
iXj + ∂́µy

i uµ , X́a
0 = ∂́bz

aXb
0 + ∂́µz

a uµ ,

Ý i = ∂́jy
i Y j + ∂́µy

i vµ , Ý a
0 = ∂́bz

a Y b
0 + ∂́µz

a vµ .

Hence, we obtain

r X́i = ∂́µy
i (r uµ) + ∂́jy

i (r Xj) ,

r X́a
0 = ∂́bz

a (r Xb
0) + ∂́µz

a (r uµ) ,

and

X́i + Ý i = ∂́jy
i (Xj + Y j) + ∂́µy

i (uµ + vµ) ,

X́a
0 + Ý a

0 = ∂́bz
a (Xb

0 + Y b
0 ) + ∂́µz

a (uµ + vµ) .

Moreover, we have the following transition formulas

˙́yi|u = ∂́µy
i uµ + ∂́j ý

i ẏj|u and ˙́yi|v = ∂́µy
i vµ + ∂́j ý

i ẏj|v

and

˙́yi|ru = ∂́µy
i (r uµ) + ∂́j ý

i ẏj|ru and ˙́yi|u+v = ∂́µy
i (uµ + vµ) + ∂́j ý

i ẏj|u+v .

Hence, if in one chart we have

(r X)i := ẏi|ru and (X + Y )i := ẏi|u+v ,

then analogous formulas hold in the other chart.

Corollary 3.2.3. The fibred subset over S

VS ⊂ TS

turns out to be a vector fibred subset.

Corollary 3.2.4. The fibres of the F–smooth fibred set Tζ : TS → TB
inherit a natural affine structure, whose associated vector spaces are the
fibres of VS .

We can define the F–smooth tangent prolongation Tσ : TB → TS
of F–smooth sections σ ∈ F–sec(B,S) analogously to the case of smooth
systems of sections (see §3).
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Definition 3.2.5. We define the tangent prolongation of an F–smooth
section

σ ∈ F–sec(B,S)

to be the tubelike F–smooth section

Tσ : TB → TS ,

given, according to Theorem 3.2.3, by

Tσ : u ∈ TbB 7→ Tuσ :=Xσ(b) := (u,Ξu) ∈ TuS ,

where
Ξu = Tu

(
σ∗(b)(ε)

)
: (TF )u → (TG)u .

Proposition 3.2.6. For each F–smooth section σ ∈ F–sec(B,S) , the fol-
lowing diagram commutes

B
σ

- S

TB

τB
6

Tσ
- TS

τS
6

TB

id
? idB - TB

Tζ
?

.

Note 3.2.1. By a certain mild abuse of language, we can write the equality

Tσ = (Tσ)∗(Tε) .

3.2.4 F–smooth differential operators

In view of a discussion on F–smooth connections of an F–smooth
system of fibrewisely smooth sections (see the forthcoming Section
5.1), we analyse the smooth operators.

Given two injective F–smooth systems (S, ζ, ε) and (Ś, ζ́, έ) of
fibrewisely smooth sections of the smooth double fibred manifolds

G
q→ F

p→ B and Ǵ
q́→ F

p→ B a sheaf morphism

D : tub(F ,G)→ tub(F , Ǵ) ,

which is compatible with the above F–smooth systems, yields in a
natural way a sheaf morphism

D̂ : F–sec(B,S)→ F–sec(B, Ś) .
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Thus, let us consider two smooth double fibred manifolds

G
q
- F

p
- B and G′

q́
- F

p
- B .

and denote the smooth fibred charts of G and Ǵ , respectively, by

(xµ, yi, za) and (xµ, yi, źa) .

Moreover, let us consider two injective F–smooth systems of fibrewisely
smooth sections of the two smooth fibred manifolds above

(S, ζ, ε) and (Ś, ζ́, έ) .

Definition 3.2.6. A sheaf morphism

D : tub(F ,G)→ tub(F , Ǵ)

is said to be compatible with the F–smooth systems of smooth sections
(S, ζ, ε) and (Ś, ζ́, έ) if it restricts to a sheaf morphism

DS : tubS(F ,G)→ tubŚ(F , Ǵ) ,

according to the following commutative diagram

tub(F ,G)
D

- tub(F , Ǵ)

tubS(F ,G)
∪

6

DS - tubŚ(F , Ǵ)

∪

6

.

Proposition 3.2.7. Let us consider a sheaf morphism of compatible
smooth operators

D : tub(F ,G)→ tub(F , Ǵ) .

Then, in virtue of Theorem 3.2.2, we obtain the sheaf morphism

D̂ : F–sec(B,S)→ F–sec(B, Ś) : σ̂ 7→ D̂(σ) .
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3.3 F–smooth vs smooth systems of sections

In the above Section 3.2.3, we have discussed the F–smooth tan-
gent space TS of each F–smooth system S of fibrewisely smooth sec-

tions φ : F → G of a smooth double fibred manifold G
q→ F

p→ B
(see Definition 3.2.4) and studied its main properties (see Theorem
3.2.3 and Theorem 3.2.4).

However, if the set S is assumed a priory to be a finite dimensional
smooth manifold and ε to be a smooth map, then we can achieve
the tangent space TS directly in terms of the standard differential
geometry of smooth manifolds.

Thus, the need of a comparison between the F–smooth approach
to TS and the smooth approach to TS arises naturally, having in
mind Theorem 1.3.1.

Actually, by regarding a smooth system (S, ζ, ε) as a particular
F–smooth system, we obtain a natural map

ı : TS → TS : X 7→ X

and can prove that the representation of X in terms of the smooth
map

Ξu := r(Xu) : (TF )u → (TG)u

turns out to be given by the equality Ξu = T1εXu .

We leave to the reader the task to develop in detail the above
considerations, by rephrasing to the present context of F–smooth sys-
tems of fibrewisely smooth sections the considerations that we have
discussed in Section 2.3, which is devoted to such a comparison in the
context of systems of maps.

Here, in order to clarify the “odd terms” appearing in the rep-
resentation of F–smooth tangent space of an F–smooth system of
fibrewisely smooth sections, we just discuss the above items in terms
of standard smooth manifolds in the particular case of a finite dimen-
sional smooth system of linear sections.

Example 3.3.1. Let us consider two vector bundles

p : F → B and p ◦ q : G→ B

and the system (S, ζ, ε) of linear sections σ̆ ∈ tub(F ,G) , which has been
discussed in Example 3.1.1, in the framework of smooth systems of smooth
sections.

In this case, S has been assumed to be a priori a smooth manifold.
Hence, we can avail of this smooth structure to introduce and analyse the
tangent space TS .
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The smooth double fibred chart (xλ, yi, za) of G induces naturally the
smooth fibred charts (xλ, wai ) of S and (xλ, wai ; ẋλ, ẇai ) of TS .

Hence, we obtain the following coordinate expressions of the smooth
maps ζ and ε

(xλ) ◦ ζ = (xλ) and (xλ, yi, za) ◦ ε = (xλ, yi, waj y
j) .

The coordinate expressions of the smooth maps

Tζ : TS → TB and Tε : TS ×
TB

TF → TG

are

(xλ, ẋλ) ◦ Tζ = (xλ, ẋλ) ,

(xλ, yi, za; ẋλ, ẏi, ża) ◦ Tε = (xλ, yi, waj y
j ; ẋλ, ẏi, ẇaj y

j + waj ẏ
j) .

Thus, the smooth map Tε yields a natural representation of tangent
vectors of S via the smooth map, which, for each Xu ∈ (TsS)u , where
s ∈ Sb , u ∈ TbB , b ∈ B , yields the smooth section

Ξu := (Tε)Xu : (TF )u → (TG)u ,

with coordinate expression

Ξλ = Xλ = uλ , Ξi = ẏi|u , Ξa = Xa
j y

j
|b + waj ẏ

j
|u = Ξa0 + ∂jε

a ẏj|u ,

where

Xλ ∈ R , Ξa0 :=Xa
j y

j
|b .

Moreover, given r ∈ R and Xu ∈ (TsS)u , X́v ∈ (TsS)v , the natural
vector structure of the smooth vector bundle τS : TS → S yields the
standard coordinate expressions

(r Xu)λ = r uλ , (r Xu)ai = r Xa
i ,

(Xu + X́v)
λ = uλ + vλ , (Xu + X́v)

a
i = Xa

i + X́a
i ,

and the zero vector X0 := 0 ∈ TsS has coordinate expression

Xλ = 0 , Xa
i = 0 .
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However, the representation of above formulas in terms of fibred mor-
phisms turns out to read as follows

(rΞu)λ = rΞλ , (rΞu)i = rΞi ,

(rΞu)ai = rΞaj y
j
|b + waj ẏ

j
|ru ,

(Ξu + Ξ́v)
λ = Ξλ + Ξ́λ , (Ξu + Ξ́v)

i = Ξi + Ξ́i ,

(Ξu + Ξ́v)
a
i = (Ξaj + Ξ́aj ) y

j
|b + waj ẏ

j
|u+v ,

and the representation of the zero vector turns out to be

Ξλ = 0 , Ξi = ẏi|0 , Ξa0 = waj ẏ
j
|0 .

Thus, in agreement with the general results found for F–smooth systems
of sections (see Theorem 3.2.3 and Theorem 3.2.5), the “odd” term of the
type waj ẏ

j
|u appears in the representation of all vectors Xu and the zero

vector is not represented by a vanishing map but by the map waj ẏ
j
|0 .





Chapter 4

Systems of connections

We start by discussing the smooth systems (C, ζ, ε) of smooth
connections

c : F → T ∗B ⊗ TF

of a smooth fibred manifold F → B .
Indeed, such smooth systems can be regarded as be a particular

case of smooth systems of smooth sections of the smooth double fibred
manifold T ∗B ⊗ TF → F → B .

Here, the “space of parameters” ζ : C → B is a smooth space
and the “evaluation map” ε : C ×

B
F → T ∗B ⊗ TF a smooth fibred

morphism over B .
Moreover, we discuss the smooth universal connection

c↑ : F ↑ → T ∗C ⊗ TF ↑

of a smooth system of smooth connections.

Then, we discuss the F–smooth systems (C, ζ, ε) of fibrewisely
smooth connections

c : F → T ∗B ⊗ TF

of a smooth double fibred manifold G→ F → B .
Indeed, such F–smooth systems of connections can be regarded

as be a particular case of F–smooth systems of fibrewisely smooth
sections of the smooth double fibred manifold T ∗B⊗TF → F → B .

Here, the “space of parameters” ζ : C → B is an F–smooth
space and the “evaluation map” ε : C ×

B
F → G an F–smooth fibred

morphism over B .

The reader can find further discussions concerning the present
subject in [2, 3, 4, 5, 7, 14, 15, 16, 17, 19, 20, 25].

81
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4.1 Smooth systems of smooth connections

We discuss the smooth systems of smooth connections

c : F → T ∗B ⊗ TF

of a smooth fibred manifold F → B .
Moreover, we discuss the smooth universal connection

c↑ : F ↑ → T ∗C ⊗ TF ↑

of a smooth system of smooth connections and show that c↑ charac-
terises the system.

4.1.1 Smooth systems of smooth connections

Given a smooth fibred manifold p : F → B , a “smooth system of
smooth connections” is just a smooth system of smooth sections (see
Definition 3.1.3) of the smooth double fibred manifold

G :=T ∗B ⊗ TF → F → B

consisting of a selected family of smooth connections

c : F → T ∗B ⊗ TF

of the smooth fibred manifold p : F → B .
Therefore, all developments discussed in the previous Section 3.1.1

can be applied to the present Section.

Let us consider a smooth fibred manifold p : F → B and denote its
fibred charts by (xλ, yi) .

Then, we define the fibred manifold

q : T ∗B ⊗ TF → F

and obtain the smooth double fibred manifold

T ∗B ⊗ TF
q
- F

p
- B .

In the present context, it is convenient to deal with the definition of
“smooth connection” of the smooth fibred manifold p : F → B as a smooth
tangent valued form

c : F → T ∗B ⊗ TF ,
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which makes the following diagram commutative

F
c
- T ∗B ⊗ TF

B

p
? 1B- T ∗B ⊗ TB

idT ∗B ⊗Tp
?

.

Then, the coordinate expression of c is of the type

c = dλ ⊗ (∂λ + cλ
i ∂i) , with cλ

i ∈ map(F ,R) .

We denote the subsheaf of smooth tubelike connections of the fibred
manifold F → B by (see Definition 3.1.2)

cns tub(F , T ∗B ⊗ TF ) ⊂ tub(F , T ∗B ⊗ TF ) .

Definition 4.1.1. A smooth system of smooth connections is defined to be
a 3–plet (C, ζ, ε) where

1) ζ : C → B is a smooth fibred manifold,

2) ε : C ×
B
F → T ∗B ⊗ TF is a smooth fibred morphism over

idF : F → F and 1B : B → T ∗B ⊗ TB ,

according to the following commutative diagrams

C ×
B
F

ε
- T ∗B ⊗ TF C ×

B
F

ε
- T ∗B ⊗ TF

F

pro2
? idF - F

τF
?

B
? 1B - T ∗B ⊗ TB

idT ∗B ⊗Tp
?

.

We call ε the evaluation map of the system.

Thus, the evaluation map ε yields the sheaf morphism

εC : sec(B,C)→ cns tub(F , T ∗B ⊗ TF ) : γ 7→ c := γ̆ ,

where, for each γ ∈ sec(B,C) , the tubelike smooth connection c := γ̆ is
defined by

γ̆ : F → T ∗B ⊗ F : fb 7→ ε
(
γ(b), fb

)
, for each b ∈ B .
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Therefore, the map εC : sec(B,C) → tub(F , T ∗B ⊗ TF ) provides a
selection of the tubelike smooth connections c : F → T ∗B ⊗ TF , given by
the subset

tubC(F , T ∗B ⊗ TF ) := εC
(

sec(B,C)
)
⊂ cns tub(F , T ∗B ⊗ TF ) .

We have the coordinate expressions

ε = dλ ⊗ (∂λ + ελ
i ∂i) , with ελ

i ∈ map(F ↑, R) ,

γ̆ := ε∗(γ) = dλ ⊗
(
∂λ + (ελ

i ◦ γF ) ∂i
)
,

where (see Definition 3.1.4)

F ↑ :=C ×
B
F → F and γF : F → C ×

B
F : fb 7→

(
γ(b), fb

)
.

The smooth system of smooth connections (C, ζ, ε) is said to be injective
if the map εC : sec(B,C)→ cns tub(F , T ∗B ⊗ TF ) is injective, i.e. if, for
each γ , γ́ ∈ sec(B,C) ,

γ̆ ≡ ε∗(γ) = ˘́γ ≡ ε∗(γ́) ⇒ γ = γ́ .

If the system is injective, then we obtain the bijection

εC : sec(B,C)→ cns tubC(F , T ∗B ⊗ TF ) : γ 7→ γ̆ ,

whose inverse is denoted by

(εC)−1 : cns tubC(F , T ∗B ⊗ TF )→ sec(B,C) : c 7→ γ ≡ ĉ .

Let us examine a few distinguished examples of injective smooth systems
of smooth connections.

Indeed, in the case of smooth systems of linear connections, affine con-
nections and principal connections, our bundle ζ : C → B is just the
standard bundle of coefficients of such connections.

Example 4.1.1. If p : F → B is a vector bundle, then the linear connec-
tions constitute an injective smooth system (C, ζ, ε) , where ζ : C → B is
an affine subbundle

C ⊂ linB(F , T ∗B ⊗ TF ) ,

which is associated with the vector bundle

C̄ = linB(F , T ∗B ⊗ F ) .



4.1. Smooth systems of smooth connections 85

The fibred charts induced on C are of the type (xλ, wλ
i
j) and the co-

ordinate expression of ε is

ε = dλ ⊗ (∂λ + wλ
i
j y

j ∂i) .

Example 4.1.2. If p : F → B is an affine bundle, associated with the
vector bundle p̄ : F̄ → B , then the affine connections constitute an injective
smooth system (C, ζ, ε) , where ζ : C → B is an affine subbundle

C ⊂ affB(F , T ∗B ⊗ TF ) ,

which is associated with the vector bundle

C̄ = affB(F , T ∗B ⊗ F̄ ) .

The fibred charts induced on C are of the type (xλ, wλ
i
j , wλ

i) and the
coordinate expression of ε is

ε = dλ ⊗
(
∂λ + (wλ

i
j y

j + wλ
i) ∂i

)
.

Example 4.1.3. If p : F → B is an affine bundle, then analogously to the
above Example 4.1.2, we can define

- the injective smooth system of polynomial connections of degree r ,
with 1 ≤ r ,

- the injective smooth system of polynomial connections of any degree
r , with 1 ≤ r ≤ k , where k is a given positive integer.

All examples above deal with finite dimensional smooth systems of
smooth connections, as it is implicitly requested in Definition 4.1.1.

However, we can easily extend the concept of smooth system of smooth
connections, by considering an infinite dimensional system, which is the
direct limit of finite dimensional smooth systems, according to the following
Example 4.1.4.

Example 4.1.4. If p : F → B is an affine bundle, then we obtain the
smooth system of all polynomial connections by considering the family of
all polynomial connections c : F → T ∗B ⊗ TF of any degree r , with
1 ≤ r <∞ .

However, we stress that such a system has a natural infinite dimensional
smooth structure.
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Example 4.1.5. If p : F → B is a smooth left principal bundle, with
structure group G , then the smooth principal connections constitute an
injective smooth system (C, ζ, ε) , where ζ : C → B is the quotient bundle
with respect to the group of smooth fibred left actions over B

id×TLh : T ∗B ⊗ TF → T ∗B ⊗ TF , where h ∈ G .

Exercise 4.1.1. Let us consider a smooth manifold M and the trivial
smooth principal bundle F :=M ×R→ B :=M whose structure group is
the abelian group R .

Show that the system of smooth principal connections of this bundle
can be naturally identified with the family of 1–forms α : M → T ∗M .

4.1.2 Smooth universal connection

Eventually, given a smooth fibred manifold p : F → B , we discuss
the notions of reducible smooth connection and universal smooth con-
nection. Moreover, we discuss the natural bijection between smooth
systems of smooth connections and reducible smooth connections.

Namely, a smooth system of smooth connections (C, ζ, ε) yields a
distinguished smooth connection

ε↑ : F ↑ ×
C
TC → TF ↑ ,

called universal, on the pullback smooth fibred manifold

p↑ : F ↑ :=C ×
B
F → C .

Indeed, this universal connection fulfills a universal property; in
fact, all connections of the systems can be obtained from the universal
connection by pullback.

This notion was originally introduced by P.L. Garcia [7] in the
context of principal connections of a principal bundle. Later, this
theory has been generalised to any fibred manifold, detached from
any structure group of symmetries (see, for instance, [2, 3, 19]). Here,
we follow this generalised approach.

Let us consider two smooth fibred manifolds

p : F → B and ζ : C → B .

Then, we focus our attention on the fibred manifold (see Definition
3.1.4)

p↑ : F ↑ :=C ×
B
F → C .
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The fibred charts (xλ, yi) and (xλ, wA) of F and C , respectively, yield
the fibred chart (xλ, wA; yi) of F ↑ .

We recall the equality

TF ↑ = TC ×
TB

TF .

We recall that the smooth connections of the smooth fibred manifolds

p : F → B and p↑ : F ↑ → C

can be regarded equivalently
1) as smooth fibred morphisms

c : F → T ∗B ⊗ TF and c↑ : F ↑ → T ∗C ⊗ TF ↑

whose coordinate expressions are

c = dλ ⊗ (∂λ + cλ
i ∂i) ,

c↑ = dλ ⊗ (∂λ + c↑λ
i ∂i) + dA ⊗ (∂A + c↑A

i ∂i) ,

2) as smooth fibred morphisms

c : F ×
B
TB → TF and c↑ : F ↑ ×

C
TC → TF ↑ ,

whose coordinate expressions are

(xλ, yi; ẋλ, ẏi) ◦ c = (xλ, yi; ẋλ, cλ
i ẋλ) ,

(xλ, wA, yi; ẋλ, ẇA, ẏi) ◦ c↑ = (xλ, wA, yi; ẋλ, ẇA, c↑A
i ẇA + c↑λ

i ẋλ) ,

where

cλ
i ∈ map(F ,R) and c↑A

i, c↑λ
i ∈ map(F ↑,R) .

Definition 4.1.2. A smooth connection

c↑ : F ↑ ×
C
TC → TF ↑

of the smooth fibred manifold p↑ : F ↑ → C is said to be an upper connection
of the smooth system of smooth connections.

Moreover, such a smooth connection c↑ is said to be reducible if it
factorises through a smooth system (C, ζ, ε) of smooth connections of the
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smooth fibred manifold p : F → B according to the following commutative
diagram (see Definition 4.1.1)

F ↑ ×
C
TC

c↑
- TF ↑

C ×
B

(F ×
B
TB)

? ε
- TF

?
.

The above intrinsic condition can be translated in coordinates as follows.

Proposition 4.1.1. A smooth connection c↑ : F ↑×
C
TC → TF ↑ is reducible

if and only if, in coordinates,

c↑A
i = 0 .

Thus, smooth a connection c↑ : F ↑ ×
C
TC → TF ↑ is reducible if and

only if its coordinate expression is of the type

c↑ = dλ ⊗ (∂λ + c↑λ
i ∂i) + dA ⊗ ∂A .

Proof. The coordinate expression of a connection c↑ : F ↑ ×
C
TC → TF ↑ is

of the type

c↑ = dλ⊗ (∂λ+ c↑λ
i ∂i) +dA⊗ (∂A+ c↑A

i ∂i) , where c↑λ
i, c↑A

i ∈ map(F ↑,R) .

Hence, the coordinate expression of pro2 ◦ c↑ : F ↑ ×
C
TC → TF is

c↑ = dλ ⊗ (∂λ + c↑λ
i ∂i) + dA ⊗ (c↑A

i ∂i) .

Therefore, the composition of smooth maps

F ↑ ×
C
TC

c↑- TF ↑
pro2- TF

factorises through a smooth fibred morphism

ε : C ×
B

(F ×
B
TB)→ TF

over F if and only if
c↑A

i = 0 .

Indeed, the smooth fibred morphism

ε : C ×
B

(F ×
B
TB)→ TF ,
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i.e. equivalently, the smooth fibred morphism

ε : C ×
B
F → T ∗B ⊗ TF ,

turns out to be a smooth system of smooth connections. QED

Remark 4.1.1. Let us consider a generic smooth connection of a generic
smooth fibred manifold; if some symbols of the connection vanish in a chart,
they need not to vanish in another chart.

However, for each reducible connection c↑ : F ↑ ×
C
TC → TF ↑ of the

fibred manifold p↑ : F ↑ → C , we have shown the following equality, in any
fibred chart,

c↑A
i = 0 .

Indeed, this unusual vanishing property of some symbols of the connec-
tion in any fibred chart is possible because F ↑ :=C×

B
F is a fibred product

of manifolds.
Accordingly, if (xλ, wA, yi) and (x́µ, ẃB, ýj) are two fibred charts of F ↑ ,

then we have
∂Aý

j = 0 and ∂iẃ
B = 0 .

We can exhibit a natural bijection between smooth systems of smooth
connections (C, ζ, ε) of the smooth fibred manifold p : F → B and reducible
smooth connections of the smooth fibred manifold p↑ : F ↑ → C , according
to the following Proposition 4.1.2.

Even more, the reducible smooth connections fulfill a “universal prop-
erty” with respect to the smooth connections of the associated smooth
system of smooth connections, according to the following Theorem 4.1.1.

Proposition 4.1.2. We have a natural bijection between smooth systems
of smooth connections of the smooth fibred manifold p : F → B and
reducible smooth connections of the smooth fibred manifold p↑ : F ↑ → C
in the following way.

1) If ε : C×
B

(F ×
B
TB)→ TF is a smooth system of smooth connections

of the smooth fibred manifold p : F → B , then the smooth map

ε↑ : F ↑ ×
C
TC → TF ↑ = TC × TF : (f↑ , X) 7→

(
X ,

(
ε(f↑)

)(
(Tζ)(X)

))
,

with coordinate expression

ε↑ = dλ ⊗ (∂λ + ελ
i ∂i) + dA ⊗ ∂A ,
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can be regarded as a reducible smooth connection of the smooth fibred
manifold p↑ : F ↑ → C .

2) If ε↑ : F ↑ ×
C
TC → TF ↑ is a reducible smooth connection of the

smooth fibred manifold p↑ : F ↑ → C , then the factor map (see Definition
4.1.2)

ε : F ↑ ×
B
TB → TF ,

with coordinate expression

ε = dλ ⊗ (∂λ + ελ
i ∂i) ,

turns out to be a smooth system of connections of the smooth fibred man-
ifold p : F → B .

3) The above coordinate expressions exhibit a natural bijection

ε 7→ ε↑

between the smooth systems of smooth connections of the smooth fibred
manifold p : F → B and the reducible smooth connections of the smooth
fibred manifold p↑ : F ↑ → C .

Theorem 4.1.1. Let ε : C ×
B

(F ×
B
TB) → TF be a smooth system of

smooth connections of the smooth fibred manifold p : F → B .

Then, the following facts hold.

1) The smooth connection

ε↑ : F ↑ ×
C
TC → TF ↑

of the smooth fibred manifold p↑ : F ↑ → C turns out to be the “ universal
connection” of the above system, i.e. it fulfills the following “universal
property”:

- all smooth connections γ̆ of the system can be obtained as pullback of
ε↑ , through the equality

γ̆ = γ∗(ε↑) , for each γ ∈ sec(B,C) ,

where

γ∗(ε↑) ∈ fib(F ×
B
TB, TF )
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is the smooth connection of the smooth fibred manifold p : F → B defined
by the following commutative diagram

F ↑ ×
C
TC

ε↑
- TF ↑

F ×
B
TB
? γC × id

- F ↑ ×
B
TB

ε
- TF

?

F ×
B
TB

id6

γ∗(ε)↑
- TF

id
6

.

2) The smooth curvature tensor (see, for instance, [15, 23])

R[ε↑] : F ↑ ×
C

Λ2TC → VCF ↑

fulfills the following “universal property”:
- the curvature ensors R[γ̆] of all connections γ̆ of the smooth system

can be obtained as pullback of R[ε↑] through the equality

R[γ̆] = γ∗
(
R[ε↑]

)
, for each γ ∈ sec(B,C) ,

where
γ∗
(
R[ε↑]

)
∈ fib(F ×

B
Λ2TB, V F )

is defined by the following commutative diagram

F ↑ ×
C

Λ2TC
R[ε↑]

- VCF ↑

F ×
B

Λ2TB

γC × Tγ 6

γ∗
(
R[ε↑]

)
- V F

?
.

Proof. The coordinate expressions of ε↑ and γ̆ are

ε↑ = dλ ⊗ (∂λ + ελ
i ∂i) + dA ⊗ ∂A ,

γ̆ = dλ ⊗
(
∂λ + (ελ

i ◦ γλi) ∂i
)
.

Hence, the universal property of ε↑ follows from the equality

γ∗ε↑ = γ∗
(
dλ ⊗ (∂λ + ελ

i ∂i) + dA ⊗ ∂A)

= dλ ⊗
(
∂λ + (ελ

i ◦ γ) ∂i
)

= γ̆ .
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The coordinate expressions of R[ε↑] and R[γ̆] are

R[ε↑] = −2
(

(∂λεµ
i + ελ

j ∂jεµ
i
)
dλ ∧ dµ + ∂Aεµ

i dA ∧ dµ
)
⊗ ∂i ,

R[γ̆] = −2
(
∂λ(εµ

i ◦ γ) + (ελ
j ◦ γ) ∂j(εµ

i ◦ γ)
)
dλ ∧ dµ ⊗ ∂i .

Hence, by taking into account the equalities

∂λ(εµ
i ◦ γ) = (∂λεµ

i) ◦ γ + (∂Aεµ
i) ◦ γ ∂λγA and ∂j(εµ

i ◦ γ) = (∂jεµ
i) ◦ γ ,

the universal property of R[ε↑] follows from the equality

γ∗R[ε↑] = −2 γ∗
(
(∂λεµ

i + ελ
j ∂jεµ

i) dλ ∧ dµ + ∂Aεµ
i dA ∧ dµ

)
⊗ ∂i

= −2
(
(∂λεµ

i) ◦ γ + (ελ
j ◦ γ) (∂jεµ

i) ◦ γ + (∂Aεµ
i) ◦ γ ∂λγA

)
dλ ∧ dµ ⊗ ∂i

= −2
(
∂λ(εµ

i ◦ γ)− (∂Aεµ
i) ◦ γ ∂λγA + (ελ

j ◦ γ) ∂j(εµ
i ◦ γ)

+ (∂Aεµ
i) ◦ γ ∂λγ↑A

)
dλ ∧ dµ ⊗ ∂i

= −2
(
∂λ(εµ

i ◦ γ) + (ελ
j ◦ γ) ∂j(εµ

i ◦ γ)
)
dλ ∧ dµ ⊗ ∂i

= R[γ̆] . QED

Let us examine a few distinguished examples of universal connections.

Example 4.1.6. Let us refer to the smooth system of linear connections
of the vector bundle p : F → B (see Example 4.1.1).

Then, the associated universal connection of the system has coordinate
expression

ε↑ = dλ ⊗ (∂λ + ελ
i
j y

j ∂i) + dλ
i
j ⊗ ∂λij .

Example 4.1.7. Let us refer to the smooth system of affine connections
of the affine bundle p : F → B (see Example 4.1.2).

Then, the associated universal connection of the system has coordinate
expression

ε↑ = dλ ⊗
(
∂λ + (ελ

i
j y

j + ελ
i) ∂i

)
+ dλ

i
j ⊗ ∂λij + dλ

i ⊗ ∂λi .

Eventually, we show that the natural Liouville form and symplectic form
of a smooth manifold fulfill a well known property, that can be reinterpreted
in terms of universal connection and curvature tensor of a smooth system
of smooth connections.
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Exercise 4.1.2. Let us refer to the smooth system of smooth principal
connections of the trivial principal bundle M × R → M (see Exercise
4.1.1).

Then, show the following facts:

- the universal connection of the system can be naturally identified with
the Liouville form λ : T ∗M → T ∗T ∗M , with coordinate expression

λ = ẋµ d
µ .

- the universal curvature of the system can be naturally identified with
the symplectic form ω : T ∗M → Λ2T ∗T ∗M , with coordinate expression

ω := − dλ = dµ ∧ ḋµ .

- the well known universal properties of the 1–form λ and of the 2–form
ω := − dλ (see [8]) fit the universal properties of the universal connection
and of its curvature.

4.2 F–smooth systems of connections

We discuss the F–smooth systems of “fibrewisely smooth connec-
tions” of a smooth manifold (see Section 3.2.1).

The concept of universal connection that we have discussed for
smooth systems of smooth connections can be easily extended to F–
smooth systems of F–smooth connections. The reader who is inter-
ested in this subject can refer to [4].

Let us consider a smooth fibred manifold p : F → B and denote its
fibred charts by (xλ, yi) .

Then, let us consider the smooth double fibred manifold

T ∗B ⊗ TF
q
- F

p
- B .

Definition 4.2.1. We denote by (see Definition 3.1.2)

cns tub(F , T ∗B ⊗ TF ) ⊂
{
c : F → T ∗B ⊗ TF

}
the subsheaf consisting of tubelike sections c : F → T ∗B⊗TF , which fulfill
the following condition, without any further local smoothness requirement,

- cb : F b → (T ∗B ⊗ TF )b is global and smooth, for each b ∈ B ;
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- cb projects over 1b according to the following commutative diagram

F b
cb- (T ∗B ⊗ TF )b

{b}
? 1b- (T ∗B ⊗ TB)b

?
.

Thus, let us consider a tubelike connection c : F → T ∗B ⊗ TF .
We say that it is
- fibrewisely smooth if it is smooth along the fibres F b ⊂ F , for each

b ∈ B ,
- smooth if it is smooth in its full domain p−1(U) ⊂ F , for each U ∈ B .
Therefore, the sheaf of smooth tubelike connections

c : F → T ∗B ⊗ TF

of the smooth fibred manifold F → B turns out to be a subsheaf of

cns tub(F , T ∗B ⊗ TF ) ⊂ cns tub(F , T ∗B ⊗ TF ) .

The following Definition is a generalisation of Definition 4.1.1, as here
we do not require that C be a smooth finite dimensional manifold (hence,
that the maps ζ and ε be smooth).

Definition 4.2.2. We define an F–smooth system of fibrewisely smooth
connections of the smooth fibred manifold p : F → B to be a 3–plet
(C, ζ, ε) , where

1) C is a set,
2) ζ : C → B is a surjective map,
3) ε : C ×

B
F → T ∗B ⊗ TF is a fibred map over F and over 1B : B →

T ∗B ⊗ TB, according to the following commutative diagrams

C ×
B
F

ε
- T ∗B ⊗ TF C ×

B
F

ε
- T ∗B ⊗ TF

F

pro2
? idF - F

τF
?

B
? 1B - T ∗B ⊗ TB

idT ∗B ⊗Tp
?

,

which fulfills the following condition:
*) for each c ∈ Cb , with b ∈ B , the induced section

εc : F b → (T ∗B ⊗ TF )b
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of the restricted smooth fibred manifold (T ∗B⊗TF )b → F b is smooth and
globally defined on F b .

The map ε : C ×
B

F → T ∗B ⊗ TF is called the evaluation map of the

system.
We denote by

sec(B,C) ⊂
{
γ : B → C

}
the subsheaf consisting of local sections γ : B → C , without any smooth-
ness requirement.

We leave to the reader the easy task to rephrase in the present context
the notions and developments that have been previously established for
F–smooth systems of smooth sections.





Chapter 5

F–smooth connections

Given an F–smooth system (S, ζ, ε) of fibrewisely smooth sections

of a smooth double fibred manifold G
q→ F

p→ B , we discuss the “F–
smooth connections”

K : S ×
B
TB → TS

of the F–smooth fibred space ζ : S → B (see, for instance, [3, 4, 16]).

We mention that the curvature of an F–smooth connection K as
above can be defined via the generalised Frölicher–Nijenhuis bracket
on F–smooth spaces in a way analogous to the curvature of a smooth
connection on a smooth fibred manifold. The reader who is interested
in this subject can refer, for instance, to [16, 23].

5.1 F–smooth connections

Given an F–smooth system (S, ζ, ε) of fibrewisely smooth sections

of a smooth double fibred manifold G
q→ F

p→ B , we define the “F–
smooth connections”

K : S ×
B
TB → TS

of the F–smooth fibred space ζ : S → B and show that such a K is
characterised by a smooth section of a smooth bundle of the type

Ξ(s,u) : (TF )u → (TG)u , for each s ∈ S , u ∈ Tζ(s)B .

Thus, let us consider a smooth double fibred manifold G
q→ F

p→ B
and denote the typical smooth fibred chart of G by (xµ, yi, za) .

Moreover, let us consider an F–smooth system (S, ζ, ε) of fibrewisely
smooth sections of the above smooth double fibred manifold.

97
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Definition 5.1.1. We define an F–smooth connection of the F–smooth
fibred space ζ : S → B to be an F–smooth fibred morphism over S and
over TB ,

K : S ×
B
TB → TS ,

which is linear with respect to the 2nd factor TB , according to the following
commutative diagram

S
idS - S

S ×
B
TB

pro1

6

K
- TS

τS
6

TB

pro2
? idB - TB

Tζ
?

,

or, equivalently, to be an F–smooth tangent valued 1–form

K : S → T ∗B ⊗ TS ,

which projects on 1B : B → T ∗B ⊗ TB , according to the commutative
diagram

S
K
- T ∗B ⊗ TS

B

ζ
? 1B - T ∗B ⊗ TB

id⊗Tζ
?

.

By recalling the representation of TS provided by Theorem 3.2.3, the
F–smooth connection K is characterised by a map of the type

K : S ×
B
TB → TS : (s, u) 7→ Ξ(s,u) ,

where

Ξ(s,u) : (TF )u → (TG)u

is a smooth section (see Theorem 3.2.5).

Let us consider an F–smooth connection K : S → T ∗B ⊗ TS .
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Definition 5.1.2. We define the F–smooth covariant differential of an F–
smooth section σ ∈ F–sec(B,S) , with respect to the F–smooth connection
K , to be the F–smooth section

∇σ := Tσ − K ◦ σ : B → T ∗B ⊗ VS ,

according to the commutative diagram

S
(Tσ,K ◦ σ)

- (T ∗B ⊗ TS)×
S

(T ∗B ⊗ TS)

B

σ
6

∇σ
- T ∗B ⊗ VS

−S
?

.

5.2 F–smooth connections in the linear case

Next, let us further suppose that q : G → F be a vector bundle
and that the system (S, ζ, ε) be injective.

Then, we show a natural bijection

K 7→ DK

between F–smooth connections K of the F–smooth fibred space ζ :
S → B and certain smooth differential operators DK between finite
dimensional smooth manifolds (see Definition 3.2.2)

DK : tubS(F ,G)→ tub(F , T ∗B ⊗G) .

We stress that the above smooth differential operators DK , play
a role analogous to the matrix of symbols (Ki

λ) of a standard smooth
connection K of a standard smooth fibred manifold.

Thus, let us consider a smooth vector bundle G → F , an injective F–
smooth system (S, ζ, ε) of fibrewisely smooth sections of the smooth double
fibred manifold G→ F → B .

We recall that, in the linear case, the F–smooth fibred space ζ : S → B
inherits naturally a vector structure (see Proposition 3.2.2) and that there
is a natural F–smooth linear fibred isomorphism VS → S ×

B
S over S (see

Corollary 3.2.2).

Note 5.2.1. We can regard the covariant differential of a section σ ∈
F–sec(B,S) , with respect to an the F–smooth connection K , as an F–
smooth section

∇σ : B → T ∗B ⊗ S .
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The covariant differential ∇K associated with the F–smooth connection
K is a differential operator DK of a certain type. Indeed, there is a natural
bijection between these objects.

This result extends to the present F–smooth framework an analogous
result holding for standard smooth connections of smooth fibred manifolds.

Proposition 5.2.1. The following facts hold.

1) Let us consider an F–smooth connection K .

Then, there exists a unique F–smooth sheaf morphism

D ≡ D[K] : tubS(F ,G)→ tub(F , T ∗B ⊗G) : φ 7→ Dφ ,

such that, for each φ ∈ tubS(F ,G) and u ∈ TB ,

̂(Dφ)(u) = ∇u φ̂ .

The sheaf morphism D turns out to be a differential operator of hor-
izontal order 1, which, for each b ∈ B , factorises fibrewisely, through a
smooth sheaf morphism

Ďb : sec(F b,Gb)→ sec(F b, T
∗
bB ⊗Gb) ,

according to the following commutative diagram

tubS(F ,G)
D
- tub(F , T ∗B ⊗G)

secS(F b,Gb)
? Ďb- sec(F b, T

∗
bB ⊗Gb)
?

.

The coordinate expression of the sheaf morphism D is of the type

(Dφ)aλ = ∂λφ
a − Ďaλ(φ) ,

where Ďaλ are smooth sheaf morphisms

Ďaλ : tubS(F ,G)→ R ,

which, for each b ∈ B , factorise fibrewisely, through smooth sheaf mor-
phisms

Ďbaλ : secS(F b,Gb)→ R ,
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according to the following commutative diagram

tubS(F ,G)
Ďaλ - R

secS(F b,Gb)
? Ďbaλ - R

idR
?

.

2) Conversely, let us consider an F–smooth sheaf morphism

D : tubS(F ,G)→ tub(F , T ∗B ⊗G) ,

whose local coordinate expression is of the type

(Dφ)aλ = ∂λφ
a − Ďaλ(φ) ,

as in the above item 1).
Then, there exists a unique F–smooth connection K of S , such that, for

each σ ∈ sec(B,S) , the associated sheaf morphism

D ≡ D[K] : tubS(F ,G)→ tub(F , T ∗B ⊗G)

be given by
∇[K]σ = D̂ σ̆ .

Indeed, we obtain, for each σ ∈ sec(B,S) ,

K ◦ σ = dσ − D̂ σ̆ .

Definition 5.2.1. Let us suppose that the fibred manifold q : G → F be
a vector bundle. Then, the F–smooth connection K is said to be linear if
it is a linear fibred morphism over 1B : B → T ∗B⊗ TB , according to the
following commutative diagram

S
K
- T ∗B ⊗ TS

B

ζ
? 1B- T ∗B ⊗ TB

idT ∗B ⊗TτS
?

.





Chapter 6

Applications

We deal with three applications of the above general geometric
theory, which are taken in the framework of Covariant Quantum Me-
chanics (see, for instance, [9, 10, 12, 13] and literature therein).

The 1st application deals with the upper quantum connection Q↑

of the upper quantum bundle π↑ : Q↑ → J1E , which turns out to be
the universal connection of a system of observed quantum connections
Q[o] of the quantum bundle π : Q→ E .

The 2nd application deals with the F–smooth sectional quantum
bundle t̂ : Q̂→ T , whose fibres are equipped with a Hilbert structure.

The 3rd example deals with the Schrödinger operator regarded
as an F–smooth linear connection of the above F–smooth sectional
quantum bundle.

Standard Quantum Mechanics is deeply involved with Mathemat-
ical Analysis of Hilbert spaces. However, in Covariant Quantum Me-
chanics, we have a Hilbert space for each time and there is no covariant
isomorphism between these Hilbert spaces. So, besides the standard
techniques of Functional Analysis, we would need of the hard tech-
niques of infinite dimensional Differential Geometry. Actually, the
simple geometric techniques based on F–smooth spaces, that we pro-
pose here (in the above 2nd and 3rd applications), can be regarded
as useful tools in order to achieve quickly some concepts and results.

6.1 Introduction to Covariant Quantum
Mechanics

We start with a concise introduction to a few basic topics of our
approach to Covariant Quantum Mechanics, in view of the applica-
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tions discussed in the forthcoming Sections (for further details, see,
for instance, [9, 10, 12, 13] and literature therein).

0) In both Classical Mechanics and Quantum Mechanics, we explicitly
mention, at any step, the “scale dimensions” of physical objects by follow-
ing a formal mathematical language discussed in the paper [13].

Accordingly, we shall refer to the following “positive spaces”:

- the space of time intervals T ,
- the space of lengths L ,
- the space of masses M .

In particular, each charged particle has mass and charge with the fol-
lowing scale dimensions

m ∈M and q ∈ T−1 ⊗ L3/2 ⊗M1/2 ⊗ R .

Moreover, we shall be dealing with the Planck constant ~ ∈ T−1⊗L2⊗
M .

1) Spacetime is represented by an oriented 4–dimensional manifold E
equipped with a time fibring t : E → T , where T is a 1–dimensional affine
space associated with the vector space T⊗ R .

The time fibring yields the scaled time form dt : E → T ⊗ T ∗E . We
denote the fibred spacetime charts adapted to the fibring by (xλ) ≡ (x0, xi)
and the associated time unit and its dual by u0 ∈ T and u0 ∈ T∗ . The
induced bases of vector fields and forms are denoted by (∂λ) ≡ (∂0, ∂i)
and (dλ) ≡ (d0, di) . We have the natural vertical subbundle VE ⊂ TE
and horizontal subbundle H∗E ⊂ T ∗E . Vertical restriction of forms will
be denoted by the check symbol ˇ.

A motion is defined to be a section s : T → E . The velocity of s is the
section ds : T → T∗ ⊗ TE , with coordinate expression ds = u0 ⊗ (∂0 +
∂0s

i ∂i) .

We consider, as classical phase space the 1st jet space of motions J1E .
The phase space turns out to be an affine bundle J1E → E associated with
the vector bundle T∗ ⊗ VE . We denote the fibred charts of phase space
by (xλ, xi0) . We have the natural contact map and complementary contact
map

d : J1E → T∗ ⊗ TE and θ : J1E → T ∗E ⊗ VE ,

with coordinate expressions d = u0⊗ (∂0 +xi0 ∂i) and θ = (di−xi0 d0)⊗ ∂i .
An observer is defined to be a section o : E → J1E . A spacetime chart

(xλ) is said to be adapted to an observer o if oi0 :=xi0 ◦ o = 0 . For each
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observers o and ó , we can write ó = o+ v , where v : E → T∗ ⊗ VE is the
velocity of ó with respect to o . An observer o yields the observed contact
map and complementary contact map

d[o] := θ ◦ o : E → T∗ ⊗ TE and θ[o] : E → T ∗E ⊗ VE ,

with coordinate expressions d[o] = u0⊗ (∂0 +oi0 ∂i) and θ[o] = (di−oi0 d0)⊗
∂i .

2) We postulate a given galileian spacetime metric, i.e. a scaled spacelike
riemannian metric

g : E → L2 ⊗ (VE ⊗ VE) ,

with coordinate expression g = gij ď
i ⊗ ďj , where gij ∈ map(E,L2 ⊗ R) .

With reference to a particle of mass m ∈M , and to the Planck constant
~ , we define the convenient rescaled metric

G := m
~ g : E → T⊗ (VE ⊗ VE) ,

with coordinate expression G = G0
ij u0 ⊗ ďi ⊗ ďj , where G0

ij ∈ map(E,R) .
We denote the rescaled contravariant metric by

Ḡ : E → T∗ ⊗ (VE ⊗ VE)

and the musical metric isomorphisms by

g[ : VE → L2 ⊗ V ∗E and g] : V ∗E → L−2 ⊗ VE ,

G[ : VE → T⊗ V ∗E and G] : V ∗E → T∗ ⊗ VE .

The metric g and the time fibring t yield the scaled spacelike volume
form, spacetime volume form and the dual spacelike volume vector, space-
time volume vector

η : E → L3 ⊗ Λ3V ∗E and υ : E → (T⊗ L3)⊗ Λ4T ∗E ,

η̄ : E → L−3 ⊗ Λ3VE and ῡ : E → (T−1 ⊗ L−3)⊗ Λ4TE ,

with coordinate expressions

η =
√
|g| ď1 ∧ ď2 ∧ ď3 and υ =

√
|g|u0 ⊗ d0 ∧ d1 ∧ d2 ∧ d3 ,

η̄ = 1/
√
|g| ∂1 ∧ ∂2 ∧ ∂3 and ῡ = 1/

√
|g|u0 ⊗ d0 ∧ ∂1 ∧ ∂2 ∧ ∂3 .

The galileian metric yields the spacelike divergence operator acting on
projectable vector fields and the spacelike laplacian operator acting on func-
tions

divη : pro(E, TE)→ map(E,R)
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and

∆[G] : map(E,R)→ map(E,T∗ ⊗ R) ,

whose coordinate expressions are

divηX = X0 ∂0

√
|g|√
|g|

+
∂i(X

i
√
|g|)√

|g|

and

∆0[G] f = Gij0 ∂ijf +
∂i(G

ih
0

√
|g|)√

|g|
∂hf .

3) We define a galileian spacetime connection to be a spacetime con-
nection

K : TE → T ∗E ⊗ TTE ,

which fulfills the conditions

∇dt = 0 , ∇g = 0 , Riλjµ = Rjµiλ ,

where R is the curvature tensor of K .

Due to the spacelike feature of g , a galileian spacetime connection K is
not fully characterised by g .

However, the galileian metric g and an observer o , yield, in a natural
way, a certain distinguished galileian connection

K[o] : TE → T ∗E ⊗ TTE ,

whose coordinate expression, in a spacetime chart adapted to o , is

K0
i
0 = 0 ,

K0
i
h = Kh

i
0 = −1

2 G
ij
0 ∂0G

0
hj ,

Kk
i
h = Kh

i
k = −1

2 G
ij
0 (∂hG

0
jk + ∂kG

0
jh − ∂jG0

hk) .

Moreover, with reference to an observer o , every galileian spacetime
connection K yields the observed spacetime 2–form

Φ[o] := 2 Ant
(
θ[o] 2yG[(∇d[o])

)
: E → Λ2T ∗E ,

with coordinate expression, in a spacetime chart adapted to o ,

Φ[o] = −2G0
jh (K0

h
0 d

0 ∧ dj +Ki
h

0 d
i ∧ dj) .
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Actually, the condition Riλjµ = Rjµiλ fulfilled by K turns out to be
equivalent to the condition

dΦ[o] = 0 .

Hence, we obtain locally a gauge dependent and observer dependent
potential

A[b, o] : E → T ∗E , according to Φ[o] = 2 dA[b, o] ,

whose gauge is labelled by the symbol b .

Then, we set

Φ̂ [o] = Gij0 Φλj u
0 ⊗ dλ ⊗ ∂i

and, for every galileian connection K , obtain the observed splitting

K = K[o]− 1
2 (dt⊗ Φ̂ [o] + Φ̂ [o]⊗ dt) ,

with coordinate expression

K0
i
0 = −Gij0 Φ0j ,

K0
i
h = Kh

i
0 = −1

2 G
ij
0 (∂0G

0
hj + Φhj) ,

Kk
i
h = Kh

i
k = −1

2 G
ij
0 (∂hG

0
jk + ∂kG

0
jh − ∂jG0

hk) .

Indeed, given an observer o , the above observed splitting yields a bijec-
tion

K 7→ Φ[o]

between galileian spacetime connections and closed spacetime 2–forms. So,
with reference to an observer o , a galileian spacetime connection K turns
out to be generated by the 10 spacetime functions (gij , Aλ) .

Thus, we postulate a given “gravitational” spacetime connection

K\ : TE → T ∗E ⊗ TTE ,

which represents the gravitational field.

4) We postulate a given scaled electromagnetic field

F : E → (L1/2 ⊗M1/2)⊗ Λ2T ∗E ,

which fulfills the condition (1st Maxwell equation)

dF = 0 .
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Then, with reference to a particle of mass m and charge q , we set

F̂ :=Gih0 Fλh u
0 ⊗ dλ ⊗ ∂i

and define, by a minimal coupling, the joined spacetime connection

K ≡ K\ +Ke :=K\ − 1
2
q
~ (dt⊗ F̂ + F̂ ⊗ dt) : TE → T ∗E ⊗ TTE .

Indeed, this joined connection turns out to be a galileian spacetime
connection.

Then, the joined spacetime connection K yields the associated joined
spacetime 2–form and joined observed potential

Φ[o] = Φ\[o] + q
~ F : E → Λ2T ∗E

and
A[b, o] = A\[b, o] + q

~ A
e[b] : E → T ∗E .

Afterwards, in several respects, we can forget about the gravitational
and electromagnetic fields separately and deal with the joined spacetime
connection K , which encodes both of them.

The Newton law of motion of a charged particle effected by the grav-
itational and electromagnetic fields can be written, in a compact way, by
means of the joined spacetime connection K , as

∇dsds = 0 .

5) The joined spacetime connection K yields in a natural way an affine
joined phase connection of the phase space

Γ : J1E → T ∗E ⊗ TJ1E ,

whose coordinate expression is

Γ = dλ⊗(∂λ+Γλ
i
0 ∂

0
i ) , with Γλ

i
0 = Γλ

i
0

0
0+Γλ

i
0

0
j x

j
0 , Γλ

i
0

0
µ = Kλ

i
µ .

Further, the above joined phase connection Γ yields in a natural way the
joined dynamical phase connection, dynamical phase 2–form and dynamical
phase 2–vector

γ := d yΓ : J1E → T∗ ⊗ TE ,

Ω :=G y
(
ν[Γ] ∧ θ

)
: J1E → Λ2T ∗J1E ,

Λ := Ḡ y (Γ̌ ∧ ν) : J1E → Λ2TJ1E ,
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where

- ν[Γ] : TJ1E → T∗ ⊗ VE is the vertical projection associated with Γ ,

- Γ̌ : J1E → V ∗E ⊗ TJ1E is the vertical restriction of Γ ,

- ν : J1E → (T⊗V ∗E)⊗(T∗⊗VE) is the natural tensor with coordinate
expression ν = u0 ⊗ (ďi ⊗ ∂0

i ) .

We have the coordinate expressions

γ = u0 ⊗ (∂0 + xi0 ∂i + γ0
i
0 ∂

0
i ) ,

Ω = G0
ij (di0 − Γλ

i
0 d

λ) ∧ (dj − xj0 d
0) ,

Λ = Gij0 (∂i + Γi
h
0 ∂

0
h) ∧ ∂0

j ,

where γ0
i
0 = K0

i
0 + 2K0

i
k x

k
0 +Kh

i
k x

h
0 x

k
0 .

a) Indeed, the Newton law of motion can be equivalently written, by
means the dynamical connection γ , as

γ ◦ j1s = dj1s .

b) The pair (dt,Ω) equips the phase space with a cosymplectic structure,
i.e., we have

dΩ = 0 , dt ∧ Ω ∧ Ω ∧ Ω 6≡ 0 .

The cosymplectic 2–form Ω admits locally a “horizontal potential”

A↑[b] : J1E → T ∗E , according to Ω = dA↑[b] ,

whose gauge is labelled with the symbol b , with coordinate expression

A↑[b] = −(1
2 G

0
ij x

i
0 x

j
0 −A0) d0 + (G0

ij x
j
0 +Aj) d

i .

We obtain A[b, o] = o∗A↑[b] .

The cosymplectic phase 2-form yields the gauge dependent, observer
independent classical lagrangian, the gauge dependent, observer dependent
classical hamiltonian and the gauge dependent, observer dependent classi-
cal momentum

L[b] := d yA↑[b] ∈ sec(J1E, H
∗E) ,

H[b, o] := − d[o] yA↑[b] ∈ sec(J1E, H
∗E) ,

P[b, o] := θ[o] yA↑[b] ∈ sec(J1E, T
∗E) ,
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with coordinate expressions

L[b] = (1
2 G

0
ij x

i
0 x

j
0 +Aj x

j
0 +A0) d0 ,

H[b, o] = (1
2 G

0
ij x

i
0 x

j
0 −A0) d0 ,

P[b, o] = (G0
ij x

j
0 +Ai) d

i .

Further, we point out the gauge dependent and observer independent
timelike 1–form

α[b] ≡ α0 d
0 = (A0− 1

2 AiA
i
0) d0 : E → H∗E , where Ai0 :=Gij0 Aj .

c) The pair (γ,Λ) equips the phase space with a coPoisson structure,
i.e., we have

[γ,Λ] = 0 , [Λ,Λ] = 0 , γ ∧ Λ ∧ Λ ∧ Λ 6≡ 0 ,

where [ , ] denotes the Schouten bracket.

6) We postulate as quantum bundle a complex 1–dimensional bundle

π : Q→ E

equipped with scaled hermitian metric

h : Q×
E
Q→ L−3 ⊗ C .

We consider also the volume valued hermitian metric

hη :=h⊗ η : Q×
E
Q→ Λ3V ∗E ⊗ C .

We shall refer to a normalised scaled quantum basis and to the associ-
ated complex quantum chart

b :=b1 : E → L3/2 ⊗Q and z : Q→ L−3/2 ⊗ C ,

which fulfill the conditions

h(b,b) = 1 and z(b) = 1 .

Accordingly, for each quantum section Ψ ∈ sec(E,Q) , we have the
coordinate expression

Ψ = ψ b , where ψ := z ◦Ψ ∈ map(E,C) .
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By pullback, we define the upper quantum bundle

π↑ : Q↑ := J1E ×
E
Q ,

obtained by enlarging the base space E of the quantum bundle π : Q →
E to the classical phase space J1E . In a sense, we might say that the
upper quantum bundle Q↑ “incorporates” in its base space J1E all possible
observers o .

We denote the natural Liouville vector fields of the quantum bundle
and of the upper quantum bundle, respectively, by

I : Q→ VEQ and I↑ : Q↑ → VJ1EQ↑ .

6.2 System of observed quantum connections

Now, we discuss the galileian upper connection Q↑ of the upper
quantum bundle and the associated system {Q[o]} of observed quan-
tum connections as an application of the general theory of smooth
systems of connections discussed in Section §4.1.1 (for further details,
see, for instance, [9, 12] and literature therein).

1) We define a galileian upper quantum connection to be a connection
of the upper quantum bundle

Q↑ : Q↑ → T ∗J1E ⊗ TQ↑ ,

which fulfills the following conditions:
a) it is hermitian, i.e. ∇↑h = 0 ,
b) it is reducible (see Definition 4.1.2),
c) its curvature tensor fulfills the equality

R[Q↑] = −2 iΩ⊗ I↑ ,

where Ω : J1E → Λ2T ∗J1E is the classical cosymplectic phase 2–form.
We stress that the cosymplectic phase 2–form Ω is normalised through

the rescaled metric G , hence it encodes the Planck constant ~ .
Indeed, the Bianchi identity for an upper quantum connection Q↑ is

assured by the closure of the cosymplectic phase 2–form.
Chosen a quantum basis b , an upper quantum connection Q↑ can be

locally written as
Q↑ = χ↑[b] + iA↑[b]⊗ I↑ ,
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where χ↑[b] : Q↑ → T ∗J1E ⊗ TQ↑ is the flat connection of the upper
quantum bundle naturally induced by the quantum basis b and A↑[b] is
the horizontal potential of the classical cosymplectic 2–form Ω associated
with the classical gauge b .

Actually, with reference to a given upper quantum connection Q↑ , the
above formula allows us to identify the classical gauges b of the classical
potentials A↑[b] of Ω and the quantum bases b , as we have already antici-
pated for practical convenience of notation.

Moreover, chosen a quantum basis b and an observer o , an upper quan-
tum connection Q↑ can be locally written as

Q↑ = χ↑[b] + i
(
−H[b, o] + P[b, o]

)
⊗ I↑ ,

where H[b, o] is the observed classical hamiltonian and P[b, o] is the ob-
served classical momentum.

Thus, in a quantum chart adapted to b and o , we obtain the coordinate
expression

Q↑ = dλ⊗ ∂λ + di0⊗ ∂0
i + i

(
− (1

2 G
0
ij x

i
0 x

j
0−A0) d0 + (G0

ij x
j
0 +Ai) d

i
)
⊗ I↑ .

We denote by

∇↑ : sec(E,Q)→ sec(J1E, T
∗E ⊗Q) : Ψ 7→ ∇↑Ψ

the covariant differential associated with the upper quantum connection
Q↑ , whose coordinate expression is

∇↑Ψ = (∂λψ − iA↑λ ψ) dλ ⊗ b .

2) Given an upper quantum connection Q↑ , we obtain the system of
gauge independent observed quantum connections parametrised by the fam-
ily of observers o

Q[o] := o∗Q↑ : Q×
E
TE → TQ .

Every connection of this system turns out to be hermitian and fulfills
the condition

R
[
Q[o]

]
= −iΦ[o]⊗ I .

Moreover, with further reference to a quantum basis b , we have the
splitting

Q[o] = χ[b] + iA[b, o] I , with A[b, o] = o∗A↑[b] ,
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where χ[b] : Q→ T ∗E ⊗ TQ is the flat connection of the quantum bundle
naturally induced by the quantum basis b and A[b, o] is the potential of
the classical observed spacetime 2–form Φ[o] associated with the classical
gauge b .

In other words, in adapted coordinates, we have the expression

Q[o] = dλ ⊗ (∂λ + iAλ I) .

Indeed, for each observers o and ó = o+ v , we have the transition rule

Q[ó] = Q[o] + i
(
θ[o] yG[(v)− 1

2 G(v, v)
)
⊗ I ,

with coordinate expression, in a chart adapted to o ,

Q[ó] = Q[o] + i (G0
ij v

i
0 d

j − 1
2 G

0
ij v

i
0 v

j
0 d

0)⊗ I .

Thus, the galileian upper quantum connection Q↑ turns out to be the
universal connection of the system of observed connections Q[o] (see The-
orem 4.1.1).

We denote by

∇[o] : sec(E,Q)→ sec(E, T ∗E ⊗Q) : Ψ 7→ ∇[o]Ψ

the covariant differential associated with the observed quantum connection
Q[o] , whose coordinate expression, in an adapted chart, is

∇[o]Ψ = (∂λψ − iAλ ψ) dλ ⊗ b .

Further, the observed quantum connection Q[o] yields the gauge inde-
pendent spacelike observed quantum laplacian acting on quantum sections

∆[o] : sec(E,Q)→ sec(E,T∗ ⊗Q) : Ψ 7→ (∆0ψ)u0 ⊗ b ,

whose coordinate expression is

∆0ψ = Gij0 ∂ijψ+
∂i(G

ih
0

√
|g|)√

|g|
∂hψ−2 iAi0 ∂iψ− i

∂i(A
i
0

√
|g|)√

|g|
ψ−AiAi0 ψ .

2) One can prove that there exists a global galileian upper quantum
connection Q↑ if and only if the Čech cohomology class [Ω] is integer (see
[26]).

Accordingly, we suppose that the cohomology class of Ω be integer and
postulate an upper quantum connection Q↑ as our fundamental quantum
object.
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6.3 Quantum dynamics

We can derive, in a covariant way, the further main objects of
Covariant Quantum Mechanics from the above upper quantum con-
nection Q↑ , by means of a heuristic “criterion of projectability”. This
criterion is aimed at finding distinguished objects which, in principle
leave on bundles over the classical phase space J1E , but eventually
are projectable on bundles over the classical spacetime E , in order
to get rid of the family of observers encoded in J1E . In this way, we
implement our covariance requirement, by obtaining observer equiv-
ariant objects. Actually, all objects obtained via the above covariant
procedure turns out to be uniquely defined, up to an unessential mul-
tiplicative constant (for further details, see, for instance, [9, 10, 12]
and literature therein).

1) The quantum momentum can be derived from the upper quantum
connection in the following way.

For each Ψ ∈ sec(E,Q) , the following map factorises through the space-
time E (thus cancelling the dependence on classical observers), so yielding,
in a covariant way, the gauge independent and observer independent scaled
section defined on spacetime

Q[Ψ] := d⊗Ψ− iG](∇↑Ψ) ∈ sec
(
E, T∗ ⊗ (TE ⊗Q)

)
.

With reference to any observer o , we have the observed splitting (which
turns out to be observer equivariant)

Q[Ψ] = d[o]⊗Ψ− iG](∇[o]Ψ) ,

with coordinate expression

Q[Ψ] =
(
ψ ∂0 − iGij0 (∂jψ − iAj ψ) ∂i

)
⊗ u0 ⊗ b .

2) The quantum probability current can be derived from the upper quan-
tum connection in the following way.

For each Ψ ∈ sec(E,Q) , the following map factorises through the space-
time E (thus cancelling the dependence on classical observers), so yielding,
in a covariant way, the gauge independent and observer independent scaled
section defined on spacetime

J[Ψ] := d⊗ ‖Ψ‖2 − reh
(
Ψ, iG](∇↑Ψ)

)
∈ sec

(
E, L−3 ⊗ (T∗ ⊗ TE)

)
.
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With reference to an observer o , we have the observed splitting (which
turns out to be observer equivariant)

J[Ψ] = ‖Ψ‖2 d[o]− reh
(
Ψ, iG](∇[o])Ψ

)
,

with coordinate expression

J[Ψ] =
(
|ψ|2 ∂0 + (i 1

2 G
ij
0 (ψ ∂jψ̄ − ψ̄ ∂jψ)−Ai0 |ψ|

2) ∂i
)
⊗ u0 .

3) The quantum lagrangian can be derived from the upper quantum
connection in the following way.

For each Ψ ∈ sec(E,Q) , the following map factorises through the space-
time E (thus cancelling the dependence on classical observers), so yielding,
in a covariant way, the gauge independent and observer independent scaled
section defined on spacetime

L[Ψ] :=−dt∧
(

imhη(Ψ, d y∇↑Ψ)+ 1
2 (Ḡ⊗hη)(∇̌↑Ψ, ∇̌↑Ψ)

)
: E → Λ4T ∗E .

With reference to an observer o , we have the observed expression (which
turns out to be observer equivariant)

L[Ψ] = −dt ∧
(
imhη(Ψ, ∇[o]d[o]Ψ) + 1

2 (Ḡ⊗ hη) (∇[o]Ψ, ∇[o]Ψ)
)
,

with coordinate expression

L[Ψ] = 1
2

(
−Gij0 ∂iψ̄ ∂jψ + i (ψ̄ ∂0ψ − ψ ∂0ψ̄)

− iAj0 (ψ̄ ∂jψ − ψ ∂jψ̄) + 2α0 ψ̄ ψ
)
υ0 .

4) The Schrödinger operator can be derived from the upper quantum
connection in the following way.

For each Ψ ∈ sec(E,Q) , the following map factorises through the space-
time E (thus cancelling the dependence on classical observers), so yielding,
in a covariant way, the gauge independent and observer independent scaled
section defined on spacetime

S[Ψ] := 1
2

(
d y∇↑Ψ + δ↑(Q[Ψ])

)
∈ sec(E, T∗ ⊗Q) .

where δ↑ is the codifferential of vector valued forms associated with the
upper quantum connection Q↑ .

With reference to an observer o , we have the observed expression (which
turns out to be observer equivariant)

S[Ψ] = ∇[o]d[o]Ψ + 1
2 divη d[o] Ψ− i 1

2 ∆[o] Ψ .
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Moreover, we have the coordinate expression

S[Ψ] =
(
∂0ψ − 1

2 iG
ij
0 ∂ijψ − (Aj0 + 1

2 i
∂i(G

ij
0

√
|g|)√

|g|
) ∂jψ

+ 1
2

(∂0

√
|g|√
|g|
−
∂i(A

i
0

√
|g|)√

|g|
− 2 i α0

)
ψ
)
u0 ⊗ b .

Further, we can prove that the above Schrödinger operator turns out to
be the Euler–Lagrange operator associated with the quantum lagrangian.

6.4 F–smooth sectional quantum fibred set

Further, we introduce the “F–smooth sectional quantum fibred
set”

t̂ : Q̂→ T

of the double fibred manifold

Q
π- E

t- T ,

as an application of the general theory of F–smooth systems of smooth
sections discussed in Section §3.2.1 (for further details, see, for in-
stance, [9, 12] and literature therein).

Definition 6.4.1. For each t ∈ T , we define the sectional quantum space
at t , to be the subset

Q̂t := cpt(Et,Qt) ⊂ Sec(Et,Qt)

consisting of all global (fibrewise) smooth sections Ψt : Et → Qt with
compact support.

For each t ∈ T , the set Q̂t turns out to be a complex vector space, by

setting, for each Ψ̂ t,
̂́
Ψ t ∈ Q̂t and k ∈ C ,

Ψ̂ t +
̂́
Ψ t := Ψ̂t + Ψ́t and k Ψ̂ t := k̂Ψt .

Then, we define the sectional quantum space to be the disjoint union

Q̂ :=
⊔
t∈T

Q̂t .
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By definition, the sectional quantum space Q̂ is naturally equipped with
the natural surjective fibring

t̂ : Q̂→ T : Ψ̂ t → t ,

which makes Q̂ a fibred set over T .

Proposition 6.4.1. We have the natural evaluation map

ε : Q̂×
T
E → Q : (Ψ̂ , e) 7→ Ψ(e) .

For each t ∈ T , the pair (Q̂t, εt) turns out to be an F–smooth system
of smooth maps (see Definition 3.2.2).

Then, according to Theorem 3.2.1, for each t ∈ T , the set Q̂t turns out
to be an F–smooth space (see Definition 1.2.1).

The basic F–smooth curves of Q̂t are all curves c : Ic → Q̂t , such that
the induced curves

cEt : Ic ×Et → Qt : (λ, e) 7→
(
c(λ)

)
(e)

be smooth.

Then, according to Theorem 3.2.1, the set Q̂ turns out to be an F–
smooth space.

The basic F–smooth curves of Q̂ are all curves ĉ : I ĉ → Q̂ , such that
the induced curves

c := t̂ ◦ ĉ : I ĉ → T and ĉ ∗(ε) : c∗(E)→ c∗(Q)

be smooth. Moreover, the maps

t̂ : Q̂→ T and ε : Q̂×
T
E → Q

turn out to be F–smooth (see Definition 1.2.4).

Thus, t̂ : Q̂→ T turns out to be an F–smooth fibred space.

Definition 6.4.2. A tubelike quantum section is defined to be a local quan-
tum section

Ψ : E → Q ,

whose domain is of the type

D[Ψ] := t−1
(
D[Ψ]

)
⊂ E , where D[Ψ] ⊂ T is an open subset.
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A tubelike quantum section Ψ : E → Q is said to be

1) almost regular if, for each t ∈ D[Ψ] ⊂ T , its restriction Ψt : Et →
Qt is smooth (no further “transversal” smoothness assumption is required)
and with compact support,

2)regular if it is almost regular and fully smooth (i.e., also horizontally
smooth).

We denote the subsheaf of almost regular quantum sections and the
subsheaf of regular quantum sections, respectively, by

reg(E,Q) ⊂ sec(E,Q) and reg(E,Q) ⊂ reg(E,Q) ⊂ sec(E,Q) .

We denote the sheaves of local sections Ψ̂ : T → Q̂ , without any
smoothness requirement, and the subsheaf of local F–smooth sections Ψ̂ :
T → Q̂ , respectively, by

sec(T , Q̂) and sec(T , Q̂) ⊂ sec(T , Q̂) .

Theorem 6.4.1. By definition of sectional quantum space, we have natural
mutually inverse sheaf isomorphism

sec(T , Q̂)→ reg(E,Q) : Ψ̂ 7→ Ψ

and

reg(E,Q)→ sec(T , Q̂) : Ψ 7→ Ψ̂ .

Then, in virtue of Theorem 3.2.2, we have the following equivalence

Ψ : E → Q is smooth ⇔ Ψ̂ : T → Q̂ is F–smooth.

Hence, the above sheaf isomorphism restricts to mutually inverse sheaf
isomorphisms

sec(T , Q̂)→ reg(E,Q) : Ψ̂ 7→ Ψ

and

reg(E,Q)→ sec(T , Q̂) : Ψ 7→ Ψ̂ .

6.5 F–smooth sectional quantum bundle

From now on, for the sake of simplicity, we assume that the space-
time fibring be a trivial bundle with contractible type fibre, according
to the equality

E ' T × E .
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As a consequence, the quantum bundle π : Q → E turns out
to be trivialisable and the fibred set t̂ : Q̂ → T turns out to be an
F–smooth bundle.

We stress that here we have supposed spacetime to be trivialisable,
but we have not chosen any distinguished such trivialisation. As a
consequence, the sectional quantum F–smooth bundle t̂ : Q̂→ T has
no distinguished local splittings into time and a functional type fibre.
Indeed, such an F–smooth trivialisation depends on the choice of the
bundle trivialisation of spacetime and of a local quantum basis.

For each t ∈ T , let cpt(Et,L3/2⊗C) denote the space of global smooth
scaled functions with compact support.

Lemma 6.5.1. For each t ∈ T , a global smooth quantum basis bt : Et →
L−3/2 ⊗Qt yields a bijection (see Definition 6.4.1)

Q̂t → cpt(Et, L3/2 ⊗ C) : Ψ̂ t 7→ ψt .

Each trivialisation of spacetime yields a trivialisation of the sectional
quantum space t̂ : Q̂→ T .

Proposition 6.5.1. The sectional quantum fibred set

t̂ : Q̂→ T

turns out to be an F–smooth bundle, which is globally trivialisable by a
global F–smooth bundle isomorphism

Φ̂ : Q̂→ E × Q̂ ,

where, the type fibre
Q̂ := cpt(E,L3/2 ⊗ C)

is the space of all smooth scaled functions E → L3/2 ⊗ C with compact
support.

6.6 The pre–Hilbert sectional quantum bundle

The hermitian quantum metric hη equips, for each t ∈ T , the

fibres of the sectional quantum bundle t̂ : Q̂→ T , via integration on
the fibres Et of spacetime, with a pre–Hilbert fibred metric

〈 | 〉 : Q̂×
T
Q̂→ C ,
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Then, the F–smooth sectional quantum bundle can be made into
a true Hilbert bundle by a completion procedure.

Indeed, the formulation of standard Quantum Mechanics in terms
of a Hilbert space of quantum states is strictly related to the hypoth-
esis of a flat spacetime and to the choice of an inertial observer. Ac-
tually, there is no distinguished, observer independent, isomorphism
between the Hilbert spaces of quantum states at different times.

Proposition 6.6.1. For each t ∈ T , the η–hermitian quantum metric
hη equips the complex vector fibres Q̂t of the sectional quantum bundle

t̂ : Q̂→ T with the scalar product

〈 | 〉t : Q̂t × Q̂t → C : (Ψ̂ t,
̂́
Ψt) 7→ 〈Ψ̂ t | ̂́Ψt〉t :=

∫
Et

ht(Ψt, Ψ́t) ηt ,

with coordinate expression

〈Ψ̂ t | ̂́Ψt〉t =

∫
Et

ψt ψ́t

√
|g| ď1 ∧ ď2 ∧ ď3 .

Clearly, the above scale product 〈 | 〉t makes the complex vector space
Q̂t a pre–Hilbert vector space.

Indeed, the scalar product 〈 | 〉t : Q̂t × Q̂t → C turns out to be an
F–smooth map.

6.7 Schrödinger connection

Eventually, we show that the Schrödinger operator can be re-
garded in a natural way as the covariant differential operator with
respect to an F–smooth connection of the F–smooth fibred space
t̂ : Q̂ → T , as an application of the general theory of F–smooth
connections in the linear case discussed in Section §5.2.

Indeed, it is remarkable that the spacelike component of the
Schrödinger operators behave as the symbol of this “infinite dimen-
sional connection”.

Lemma 6.7.1. Each spacelike differential operator

O : sec(E,Q)→ sec(E,Q)
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factorises through a spacelike differential operator (denoted by the same
symbol)

O : reg(E,Q)→ reg(E,Q) ,

according to the following commutative diagram

sec(E,Q)
O
- sec(E,Q)

reg(E,Q)

∪
6

O
- reg(E,Q)

∪
6

.

Lemma 6.7.2. In virtue of the above Lemma 6.7.1, each spacelike quantum
differential operator

O : sec(E,Q)→ sec(E,Q) ,

yields the differential operator

Ô : sec(T , Q̂)→ sec(T , Q̂) : Ψ̂ 7→ Ô(Ψ̂ ) := Ô(Ψ) ,

hence the F–smooth fibred morphism over T (denoted by the same symbol)

Ô : Q̂→ Q̂ ,

uniquely defined by the equality

Ô
(
Ψ̂ t

)
= Ôt(Ψt) , where Ψt ∈ reg(Et,Qt) ,

for each Ψ̂ t ∈ Q̂t , with t ∈ T .

Proof. The proof follows from the bijection reg(E,Q)→ sec(T , Q̂) . QED

Lemma 6.7.3. The Schrödinger operator

S : sec(E,Q)→ sec(E,T∗ ⊗Q)

can be regarded as an F–smooth operator

Ŝ : sec(T , Q̂)→ sec(T , T∗ ⊗ Q̂) .

Proposition 6.7.1. The Schrödinger operator

Ŝ : sec(T , Q̂)→ sec(T , T∗ ⊗ Q̂)
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can be uniquely regarded as the covariant differential

∇[W] : sec(T , Q̂)→ sec(T , T∗ ⊗ Q̂)

associated with an F–smooth linear connection

W : Q̂→ T∗ ⊗ T Q̂ .

Thus, in the present infinite dimensional framework, the spacelike dif-
ferential operator acting of spacetime complex functions

ψ 7→ − 1
2 iG

ij
0 ∂ijψ − (Aj0 + 1

2 i
∂i(G

ij
0

√
|g|)√

|g|
) ∂jψ

+ 1
2

(∂0

√
|g|√
|g|
−
∂i(A

i
0

√
|g|)√

|g|
− i α0

)
ψ

is analogue to the components of standard connections in a finite dimen-
sional framework.

Proof. It follows from Proposition 5.2.1. QED
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ĉ (λ), f

)
pullback map Lem 3.2.3

c∗(σ̆) : c∗(F )→G pullback section Lem 3.2.5
T
(
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[7] P.L. Garćıa: Connections and 1-jet fibre bundle, Rend. Sem. Mat. Univ. Padova
47 (1972), 227–242.
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