
Edited by

Shallow Water
Equations
in Hydraulics
Modeling, Numerics
and Applications

Anargiros I. Delis and Ioannis K. Nikolos

Printed Edition of the Special Issue Published in Water

www.mdpi.com/journal/water

Shallow Water Equations in
Hydraulics: Modeling, Numerics and
Applications

Shallow Water Equations in
Hydraulics: Modeling, Numerics and
Applications

Editors

Anargiros I. Delis

Ioannis K. Nikolos

MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin

Editors

Anargiros I. Delis

Technical University of Crete

Greece

Ioannis K. Nikolos

Technical University of Crete

Greece

Editorial Office

MDPI

St. Alban-Anlage 66

4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal Water

(ISSN 2073-4441) (available at: https://www.mdpi.com/journal/water/special issues/Shallow

Water Hydraulics).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Volume Number,

Page Range.

ISBN 978-3-0365-3317-9 (Hbk)

ISBN 978-3-0365-3318-6 (PDF)

© 2022 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license, which allows users to download, copy and build upon

published articles, as long as the author and publisher are properly credited, which ensures maximum

dissemination and a wider impact of our publications.

The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons

license CC BY-NC-ND.

Contents

About the Editors . vii

Anargiros I. Delis and Ioannis K. Nikolos

Shallow Water Equations in Hydraulics: Modeling, Numerics and Applications
Reprinted from: Water 2021, 13, 3598, doi:10.3390/w13243598 . 1

Bobby Minola Ginting and Ralf–Peter Mundani

Comparison of Shallow Water Solvers: Applications for Dam-Break and Tsunami Cases with
Reordering Strategy for Efficient Vectorization on Modern Hardware
Reprinted from: Water 2019, 11, 639, doi:10.3390/w11040639 . 7

Shengfa Yang and Yi Xiao

2D Numerical Modeling on the Transformation Mechanism of the Braided Channel
Reprinted from: Water 2019, 11, 2030, doi:10.3390/w11102030 . 39

Xiyan Yang, Wenjie An, Wenda Li and Shanghong Zhang

Implementation of a Local Time Stepping Algorithm and Its Acceleration Effect on
Two-Dimensional Hydrodynamic Models
Reprinted from: Water 2020, 12, 1148, doi:10.3390/w12041148 . 53

Van Thinh Nguyen and Minjae Lee

Effect of Open Boundary Conditions and Bottom Roughness on Tidal Modeling around the
West Coast of Korea
Reprinted from: Water 2020, 12, 1706, doi:10.3390/w12061706 . 77

Eugene Retsinis and Panayiotis Papanicolaou

Numerical and Experimental Study of Classical Hydraulic Jump
Reprinted from: Water 2020, 12, 1766, doi:10.3390/w12061766 . 101

Louis Goffin, Benjamin Dewals, Sebastien Erpicum, Michel Pirotton and Pierre Archambeau

An Optimized and Scalable Algorithm for the Fast Convergence of Steady 1-D
Open-Channel Flows
Reprinted from: Water 2020, 12, 3218, doi:10.3390/w12113218 . 117

Isabel Echeverribar, Pablo Vallés, Juan Mairal and Pilar Garcı́a-Navarro

Efficient Reservoir Modelling for Flood Regulation in the Ebro River (Spain)
Reprinted from: Water 2021, 13, 3160, doi:10.3390/w13223160 . 135

v

About the Editors

Anargiros I. Delis is a Mathematician, Associate Professor of “Computational Mathematics” at

the School of Production Engineering & Management of the Technical University of Crete, Greece,

where he has been working since 2003. He is a graduate of the Department of Mathematics of

the University of Crete (1993); a holder of an M.Sc. in Numerical Analysis & Computing from

the University of Manchester Institute of Science & Technology (UMIST), U.K.; and received his

PhD from the University of the West of England, Bristol, U.K., in Applied and Computational

Mathematics in 1998. His research focuses on the areas of computational hydrodynamics of free

surface flows, computational fluid dynamics, and more generally in the area of scientific computing.

Ioannis K. Nikolos is a full professor with the School of Production Engineering & Management,

Technical University of Crete, Greece, and Director of the Turbomachines & Fluid Dynamics

Laboratory (TurboLab: TUC). Prof. Nikolos has obtained his Diploma (1990) from the School of

Mechanical Engineering, National Technical University of Athens (N.T.U.A.), and a Ph.D. degree

(1996) from the same school in Turbomachines (Lab. of Thermal Turbomachines, N.T.U.A.). He joined

Technical University of Crete in 1998. Prof. Nikolos has more than 30 years of experience in

R&D projects funded by the EU, industry, and the Greek State. His research work is in the fields

of computational fluid dynamics (CFD), computational heat transfer, computational engineering,

turbomachines, and engineering design optimization using AI (artificial intelligence) tools.

vii

water

Editorial

Shallow Water Equations in Hydraulics: Modeling, Numerics
and Applications

Anargiros I. Delis * and Ioannis K. Nikolos

Citation: Delis, A.I.; Nikolos, I.K.

Shallow Water Equations in

Hydraulics: Modeling, Numerics and

Applications. Water 2021, 13, 3598.

https://doi.org/10.3390/w13243598

Academic Editor: Helena M. Ramos

Received: 15 November 2021

Accepted: 14 December 2021

Published: 15 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Production Engineering & Management, Technical University of Crete, University Campus,
73100 Chania, Greece; jnikolo@dpem.tuc.gr
* Correspondence: adelis@science.tuc.gr

Abstract: This Special Issue aimed to provide a forum for the latest advances in hydraulic modeling
based on the use of non-linear shallow water equations (NSWEs) and closely related models, as well
for their novel applications in practical engineering. NSWEs play a critical role in the modeling and
simulation of free surface flows in rivers and coastal areas and can predict tides, storm surge levels
and coastline changes from hurricanes and ocean currents. NSWEs also arise in atmospheric flows,
debris flows, internal flows and certain hydraulic structures such as open channels and reservoirs.
Due to the important scientific value of NSWEs, research on effective and accurate numerical methods
for their solutions has attracted great attention in the past two decades. Therefore, in this Special issue,
original contributions in the following areas, though not exclusively, have been considered: new
conceptual models and applications; flood inundation and routing; open channel flows; irrigation
and drainage modeling; numerical simulation in hydraulics; novel numerical methods for shallow
water equations and extended models; case studies; and high-performance computing.

Keywords: shallow water equations; free surface flows; modeling; hydraulic engineering; computational
methods; simulation

1. Introduction

In hydraulic engineering, the modeling and simulation of free surface water flows
plays an important role in many real-life practical applications. An important feature of
free surface water flows is that they are unbound in space, the limits of the spatial domain
being an unknown of the problem to be solved. Problems in which the limits of the fluid
are unknown and unsteady include, among others, dam break and flooding flows, tidal
flows in coastal water regions, nearshore wave propagation with complex bathymetry
structure, tsunami wave propagation and ocean modeling. The full flow field in most
such applications can be described by Navier–Stokes equations. However, qualitative
and/or quantitative approximations of the actual solution are given by approaches based
on simplified equations. This is done in a systematic effort usually to overcome the need for
excessively demanding numerical techniques to resolve Navier–Stokes equations (possibly
supplied with appropriate turbulence closure models). A widely used approach is that of
the 2D depth-averaged models [1,2]. The 2D character of the free surface flow is usually
enforced by a horizontal length scale which is much larger than the vertical one, and by a
velocity field which is quasi-homogeneous over the water depth. This small ratio between
the vertical and horizontal length scales characterizes many engineering applications,
mainly in river and coastal engineering. As such, many geophysical flows can be modeled
by the well-known non-linear shallow water equations (NSWEs), also called Saint-Venant
(SVEs) equations, and closely related models. From a mathematical point of view, these
models constitute a system of partial differential equations, mainly of the hyperbolic type,
also referred to as hyperbolic systems of balance laws.

Despite the relative simplicity of NSWEs, the shallow water assumption is valid in
many applications in hydraulics and as such has a long tradition of providing a scientific

Water 2021, 13, 3598. https://doi.org/10.3390/w13243598 https://www.mdpi.com/journal/water

1

Water 2021, 13, 3598

basis for engineering practice. To this end, shallow water equations arise in modeling
water flows in rivers, canals, lakes, reservoirs, coastal and urban areas and many other
situations in which the water depth is much smaller than the horizontal length scale of
motion. Hence, shallow water and closely related models are widely used in oceanography
and atmospheric sciences to model, among others, flood waves and hazardous phenomena
such as hurricanes/typhoons and tsunamis. In recent years, new conceptual models and
applications based on NSWEs have emerged. These include, among others, models for
flood inundation and routing, sediment transport and morphodynamic models, avalanches,
pollutant transport in water models and dispersive wave propagation ones. Furthermore,
in recent decades, many efforts have been devoted to develop one- and two-dimensional
numerical models for unsteady free surface flows, with the most widely used mathematical
framework to be the one based on the 2D NSWEs [3]. The need for accurate and effi-
cient numerical methods has resulted in an ongoing quest for such methods that are of
higher-order spatial and temporal accuracy that can effectively predict the most relevant
physical phenomena.

In this Special Issue, we attempted to include manuscripts related to recent advances
in terms of modeling, numerical methods and applications closely related to the implemen-
tation of the NSWEs.

2. Summary of This Special Issue

In [4], the authors presented an extensive numerical investigation for studying the
accuracy and efficiency of three common shallow water finite volume solvers, namely the
HLLC, Roe, and Central-Upwind (CU) schemes. Four cases dealing with shock waves
and the wet–dry phenomenon were selected. All schemes were provided in an in-house
code NUFSAW2D, the model of which was of second-order accuracy in space wherever
the regimes were smooth and robust when dealing with strong shock waves—and of
fourth-order accuracy in time. To give a fair comparison, all source terms of the 2D
NSWEs were treated similarly for all schemes, namely the bed-slope terms were separately
computed from the convective fluxes using a Riemann-solver-free scheme—and the friction
terms were semi-implicitly computed within the framework of the RKFO method. Two
important findings were shown by the presented simulations. Firstly, highly efficient
vectorization could be applied to the three solvers on all hardware used. This was achieved
by guided vectorization, where a cell-edge reordering strategy was employed to ease the
vectorization implementations and support the aligned memory access patterns. Secondly,
it was shown that for the four cases simulated, strong agreements by all schemes were
obtained between the numerical results and observed data, where there were no significant
differences. However, in terms of efficiency, the CU scheme was able to outperform the
HLLC and Roe schemes with average factors of 1.4× and 1.25×, respectively. Finally, it was
demonstrated that the edge-driven level, especially the reconstruction technique and solver
computations, were the most time-consuming parts, which required 65–75% of the entire
simulation time. This shows that some more “aggressive” optimization techniques will still
constitute a hot topic for future studies to make shallow water simulations more efficient,
particularly in the edge-driven level. Since simulating shallow water flows—especially
complex phenomena that require performing long real-time computations as part of disaster
planning such as dam-break or tsunami cases—on modern hardware nowadays, and even
in the future, is becoming increasingly common, focusing simulations only on numerical
accuracy but ignoring the performance efficiency may not be an option anymore. Wasting
the performance is obviously undesirable the excessive time required by such long real-
time simulations. Modern hardware offers many features for gaining efficiency, one of
which is vectorization, which can be regarded as the “easiest” way for benefiting from the
vector-level parallelism, and is thus non-trivial.

The authors in [5] aimed to investigate the dynamic process of the transformation
between different channel patterns with different control variables. They proposed an
extended 2D depth-averaged numerical model which incorporates the hydrodynamic, sed-

2

Water 2021, 13, 3598

iment transport and a river morphological adjustment sub-model. The model was solved
in an orthogonal curvilinear grid system by using the Beam and Warming alternating-
direction implicit (ADI) scheme. The sediment transport sub-model includes the influence
of non-uniform sediment with bed surface armoring and a correction for the direction of
bed-load transport due to secondary flow and transverse bed slope. The bank erosion
sub-model incorporates a simple simulation method for updating bank geometry during
either degradational or aggradational bed evolution. Then, the extended 2D model was
applied to duplicate the evolution of the channel pattern with variations in flow discharge,
sediment supply and bank vegetation. Complex interactions among the flow discharge,
sediment supply and bank vegetation leads to a transition from the braided pattern to the
meandering one. The analysis of the simulation process indicated that (1) a decrease in
the flow discharge and sediment supply can lead to the transition; and (2) the riparian
vegetation helps stabilize the cut bank and bar surface but it is not key to the transition.
The results are in agreement with the criterion proposed in previous research, confirming
the 2D numerical model’s potential in predicting the transition between different channel
patterns and improving our understanding of the fluvial process. It was concluded that,
further studies are needed to research the fundamental equation that governs the evolution
of alluvial river, which has not been fully understood to ensure the availability of the
numerical model.

The research presented in [6] aimed to present improvements in the computational effi-
ciency of a 2D hydrodynamic model that can lead to a significant bearing on its engineering
applications. In the presented study, an improved 2D shallow water dynamic model apply-
ing a local time stepping (LTS) algorithm was established using a finite volume method
(FVM) on a triangular mesh. Results from the simulation and analysis of three canonical
test cases showed that the LTS scheme has a satisfactory ability for adapting real complex
applications and long simulations while meeting the required accuracy. The following
conclusions were drawn: (1) based on the FVM for unstructured grids, the implemented
LTS algorithm improved the computational efficiency of the model, while satisfying water
conservation conditions. In the anti-symmetric dam break case, a speedup ratio of 2.1 was
achieved, which saved 53% in execution time. The speedup ratio of the non-flat bottom
dam break case was 1.3, which represented a shortening of 26% in the calculation time. The
numerical simulation of the navigable flow of the river reach between the Three Gorges
and Gezhouba Dams achieved a speedup ratio of 1.9, which represented a saving of 49% in
modeling time; (2) the proportions of coarse to refined meshes on the acceleration effect of
the LTS algorithm were noticeable. It was evident that a higher speedup ratio was obtained
when the proportion of the refined mesh was minimized. When the proportion of the
refined mesh was high, the acceleration effect was not significant. It is clear that the LTS
algorithm is best suited to situations in which refinement is only required in small regions;
and (3) when using the LTS algorithm on non-uniform unstructured grids, the larger the
grid scale difference, the more obvious the grid layering became. This led to increased
acceleration effects. However, computational accuracy was slightly impaired by excessive
differences in grid mesh size. These results can provide technical guidelines for reducing
computational time for 2D hydrodynamic models on non-uniform unstructured grids.

In [7], the main goal was to use various numerical investigations to figure out the
response of coastal tides on the west coast of Korea (WCK) to the open-boundary conditions
and bottom roughness using an open source computational fluids dynamics tool—the
TELEMAC model. Three well-known assimilated tidal models were used to obtain a
detailed tidal forcing at open boundaries—the finite element solution (FES2014); the Oregon
State University TOPEX/Poseidon Global Inverse Solution Tidal Model (TPXO9.1); and
the National Astronomical Observatory of Japan (NAO.99Jb). It was shown that there
were no significant differences between the responses in tidal amplitudes in the WCK
induced by three open-boundary conditions obtained from three assimilated tidal models.
In addition, the numerical simulation of the tidal flow in the WCK should not use a uniform
bottom roughness coefficient. Due to the complicated bathymetry, indented coastlines

3

Water 2021, 13, 3598

and bed variability of the WCK, it caused strong local effects on the tides in this region.
Therefore, a non-uniform bottom roughness should be applied to the modeling whereby
the smallest value can be applied for Incheon, a larger value for Mokpo, and the largest
value for Gunsan. The largest value of the bottom roughness coefficient was applied to
the Gunsan region because its bed form was more variable than in other regions. The
numerical results showed that the accuracy of the modeling of the tidal elevation around
the WCK was strongly dependent on the bottom roughness rather than the offshore tidal
boundary conditions. Moreover, the numerical results can provide not only a better fit to
the observations but also higher spatial resolutions in comparison to the results obtained
from assimilated tidal models around the WCK. However, it should be noted that the
numerical results obtained from this study were still limited due to the coarse resolution
(30 arcs/s) of the bathymetry obtained from GEBCO2014—which was not sufficient to
capture the real geometries whose sizes were less than such resolution. Therefore, a further
study with a higher resolution is necessary in order to obtain a more precise prediction of
the tidal current and its elevation around the WCK. Furthermore, the wind forcing on the
sea surface and the tidal energy dissipation should be taken into account.

In [8], the one-dimensional Boussinesq equations were numerically solved using
the MacCormack as well as the Dissipative two–four finite difference schemes for the
simulation of hydraulic jump formation in a horizontal rectangular open channel and for
upstream Froude numbers Fr in the range of 2.44–5.38. The governing equations were
enriched with additional terms if compared to the Saint-Venant equations, to account for the
non-hydrostatic pressure distribution in the regime of rapidly varied flow. Terms related
to the energy loss and the gravity forces were also included. The initial condition was a
steady supercritical gradually varied flow along the whole length of the modeled channel.
The upstream and downstream boundary conditions regarding the flow depth remained
constant during the iteration process and equal to the values measured in experiments. The
method of specified intervals was used for the calculation of the velocity at the downstream
end, assuming that the positive characteristic through a point does not intersect with
already established grid points. The variable time step was used in every iteration according
to the CFL (Courant–Friedrichs–Lewy) stability criterion, along with artificial viscosity
for the smoothing of the oscillations occurring in the jump. The computational results
compared well with the experiments since the specific force was computed from the depth
and mean velocity at both ends of the hydraulic jump with acceptable tolerance, and the
mass conservation equation was verified for all numerical schemes and all test cases. From
such a model, one can determine the sequent depth ratio as well as the length of the jump,
results that are useful in the design of stilling basins (geometrical properties). Given a
stilling basin with a known inflow Froude number and flow depth, the engineer must
decide the end sill dimensions and the basin length, so that the hydraulic jump is contained
in the stilling basin. Finally, from the comparison of the numerical results and experiments,
it can be concluded that the aforementioned numerical modeling schemes can predict the
basic features of the classical hydraulic jump with acceptable accuracy.

In [9], the authors introduced several innovations, including the use of the non-linear
Krylov accelerator in open-channel flows, an evolutionary domain algorithm and the
use of CasADi to solve steady 1D flows using the Saint-Venant model equations. These
improvements led to an algorithm that is able to quickly solve steady open-channel flows.
Therefore, optimization problems and uncertainty analyses that require many evaluations
become more tractable. An original algorithm was implemented in order to significantly
improve the computation time of a steady 1D open-channel flow problem. This includes
two main optimizing strategies: a non-linear Krylov accelerator and an evolutionary
domain algorithm. This new algorithm was validated against the academic benchmarks
of flows over a bump. The results showed a good agreement between the numerical and
analytical values. The performance of the suggested algorithm was evaluated against the
non-linear optimization software CasADi. It showed good scalability properties. Indeed,
the execution time of the proposed algorithm linearly evolves with the number of nodes.

4

Water 2021, 13, 3598

This is not the case with other techniques when the mesh is refined and/or when the
number of nodes is increased. Finally, the capabilities of the proposed algorithm were
validated on a real-world case. The optimized algorithm was used in order to quickly
compute the initial condition required by the operational model for the Romanche River in
France. The technique was able to provide a steady-state solution to the unsteady model in
a very short period of time.

In [10], the performances of several modeling approaches were compared in order
to evaluate their results and computational requirements in a transient river flow event
in a reach of the Ebro river (Spain) that includes a reservoir covering a large area. A 2D
distributed shallow water model solved over a triangular grid and a 1D shallow water
model was used to discretize the full domain. Additionally, an aggregated volume balance
model was implemented to model a reservoir region in order to allow computational
saving. This led to a coupled 1D–0D model. Finally, a proportional–integral–derivative
(PID) control algorithm was implemented as a regulation technique at the dam location
and combined with both the 1D model and the 1D–0D model. From the comparison of the
performances of the 2D and 1D models, it was concluded that the results of the 1D model
for the recent flooding events at the considered Ebro River reach were very similar to those
provided by the 2D model. The water level and discharge data predicted by both models
follow the same trend. The cross-sections used to build the 1D model computational mesh
were carefully located to reproduce the river curvature in detail, which is important to
obtain a realistic evolution of the hydraulic variables. This effort is justified by the immense
computational saving that the use of the 1D model offers, as long as there is no interest in
representing the floodplain flow that the 1D model does not take into account. The coupling
of the 1D model for the river flow at the upstream reach and the 0D model for the reservoir
(1D–0D model) offers results very similar to those from the full 1D model. There was some
lag due to the instantaneous propagation of the hydrograph in the reservoir assumed by
the 0D model but this is acceptable considering the computational savings that the use of
this model implies compared to the full 1D model. The computational times observed with
the 1D–0D model justifies the use of this combined approach. Therefore, the coupling of a
0D model for the reservoir with the 2D model for the upstream river reach was envisaged
as future work since this will lead to high computational savings, something very positive
for simulations with 2D models as well as the possibility to simulate the floodplain flow
behavior. The PID control algorithm was implemented with the objective to ensure a
fixed-surface water level at the dam. The results showed that this target level value was
never reached despite the time variable discharge, which means that the implementation
of the control algorithm is a correct security measure to avoid exceeding certain levels in
the reservoir. It will be convenient in the future to implement an algorithm that takes into
account more realistic and complex objectives.

Author Contributions: A.I.D. and I.K.N. conceived, designed, and wrote the editorial. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: Thanks to all of the contributions to the Special Issue, the time invested by each
author, as well as to the anonymous reviewers and editorial managers who have contributed to the
development of the articles in this Special Issue.

Conflicts of Interest: The authors declare no conflict of interest.

5

Water 2021, 13, 3598

References

1. Brocchini, M.; Dodd, N.Nonlinear Shallow Water Equation Modeling for Coastal Engineering. J. Waterw. Port Coast. Ocean. Eng.
2008, 134, 104. [CrossRef]

2. Delis, A.I.; Kampanis, N.A. Numerical flood simulation by depth averaged free surface flow models. In Environmental Systems,
Encyclopedia of Life Support Systems; Sydov, A., Ed.; Developed under the Auspices of the UNESCO; Eolss Publishers: Oxford,
UK, 2009.

3. Xing, Y. Numerical Methods for the Nonlinear Shallow Water Equations. In Handbook of Numerical Analysis; Elsevier: Amsterdam,
The Netherlands, 2017; Volume 18, pp. 361–384.

4. Ginting, B.M.; Mundani, R.-P. Comparison of Shallow Water Solvers: Applications for Dam-Break and Tsunami Cases with
Reordering Strategy for Efficient Vectorization on Modern Hardware. Water 2019, 11, 639. [CrossRef]

5. Yang, S.; Xiao, Y. 2D Numerical Modeling on the Transformation Mechanism of the Braided Channel. Water 2019, 11, 2030.
[CrossRef]

6. Yang, X.; An, W.; Li, W.; Zhang, S. Implementation of a Local Time Stepping Algorithm and Its Acceleration Effect on Two-
Dimensional Hydrodynamic Models. Water 2020, 12, 1148. [CrossRef]

7. Nguyen, V.T.; Lee, M. Effect of Open Boundary Conditions and Bottom Roughness on Tidal Modeling around the West Coast of
Korea. Water 2020, 12, 1706. [CrossRef]

8. Retsinis, E.; Papanicolaou, P. Numerical and Experimental Study of Classical Hydraulic Jump. Water 2020, 12, 1766. [CrossRef]
9. Goffin, L.; Dewals, B.; Erpicum, S.; Pirotton, M.; Archambeau, P. An Optimized and Scalable Algorithm for the Fast Convergence

of Steady 1-D Open-Channel Flows. Water 2020, 12, 3218. [CrossRef]
10. Echeverribar, I.; Vallés, P.; Mairal, J.; García-Navarro, P. Efficient Reservoir Modelling for Flood Regulation in the Ebro River

(Spain). Water 2021, 13, 3160. [CrossRef]

6

water

Article

Comparison of Shallow Water Solvers: Applications
for Dam-Break and Tsunami Cases with Reordering
Strategy for Efficient Vectorization on
Modern Hardware

Bobby Minola Ginting * and Ralf-Peter Mundani

Chair for Computation in Engineering, Technical University of Munich, Arcisstr. 21, D-80333 Munich, Germany;
mundani@tum.de
* Correspondence: bobbyminola.ginting@tum.de; Tel.: +49-89-289-23044

Received: 13 February 2019; Accepted: 21 March 2019; Published: 27 March 2019

Abstract: We investigate in this paper the behaviors of the Riemann solvers (Roe and Harten-Lax-van
Leer-Contact (HLLC) schemes) and the Riemann-solver-free method (central-upwind scheme)
regarding their accuracy and efficiency for solving the 2D shallow water equations. Our model
was devised to be spatially second-order accurate with the Monotonic Upwind Scheme for
Conservation Laws (MUSCL) reconstruction for a cell-centered finite volume scheme—and be
temporally fourth-order accurate using the Runge–Kutta fourth-order method. Four benchmark cases
of dam-break and tsunami events dealing with highly-discontinuous flows and wet–dry problems
were simulated. To this end, we applied a reordering strategy for the data structures in our code
supporting efficient vectorization and memory access alignment for boosting the performance.
Two main features are pointed out here. Firstly, the reordering strategy employed has enabled
highly-efficient vectorization for the three solvers investigated on three modern hardware (AVX,
AVX2, and AVX-512), where speed-ups of 4.5–6.5× were obtained on the AVX/AVX2 machines for
eight data per vector while on the AVX-512 machine we achieved a speed-up of up to 16.7× for
16 data per vector, all with singe-core computation; with parallel simulations, speed-ups of up to
75.7–121.8× and 928.9× were obtained on AVX/AVX2 and AVX-512 machines, respectively. Secondly,
we observed that the central-upwind scheme was able to outperform the HLLC and Roe schemes 1.4×
and 1.25×, respectively, by exhibiting similar accuracies. This study would be useful for modelers
who are interested in developing shallow water codes.

Keywords: central-upwind; efficiency; finite volume; HLLC; modern hardware; Roe; shallow water
equations; vectorization

1. Introduction

Dam-break or tsunami flows cause not only potential dangers to human life, but also great losses
of property. These phenomena can be triggered by some natural hazards, such as earthquakes or heavy
rainfall. When a dam breaks, a large amount of water is released instantaneously from the dam and
will propagate rapidly to the downstream area. Similarly, tsunami waves flowing rapidly from the
ocean bring a large volume of water to coastal areas, which endangers human life as well as damages
infrastructure. Since natural hazards have very complex characteristics, in terms of the spatial and
temporal scales, they are quite difficult to predict precisely. Therefore, it is highly important to study
the evolution of such flows as a part of a disaster management, which will be useful for the related
stakeholders in decision-making. Such study can be done by developing a mathematical model based
on the 2D shallow water equations (SWEs).

Water 2019, 11, 639; doi:10.3390/w11040639 www.mdpi.com/journal/water7

Water 2019, 11, 639

Recent numerical models of the 2D SWEs rely, almost entirely, on the computations of
(approximate) Riemann solvers, particularly in the applications of the high-resolution Godunov-type
methods. The simplicity, robustness, and built-in conservation properties of the Riemann solvers,
such as the Roe and HLLC schemes, had led to many successful applications in shallow flow
simulations, see [1–5], among others. Highly discontinuous flows, including transcritical flows,
shock waves and moving wet–dry fronts were accurately simulated.

Generally speaking, a scheme can be regarded as a class of Riemann solvers if it is proposed based
on a Riemann problem. The Roe scheme was originally devised by [6] and was proposed to estimate
the interface convective fluxes between two adjacent cells on a spatially-and-temporally discretized
computational domain by linearizing the Jacobian matrix of the partial differential equations (PDEs)
with regard to its left and right eigenvectors. This linearized part contributes to the computation of
the convective fluxes of the PDEs, as a flux difference for the average value of the considered edge
taken from its two corresponding cells. Since the eigenstructure of the PDEs—which leads to an
approximation of the interface value in connection with the local Riemann problem—must be known
in the calculation of the flux difference, the Roe scheme is regarded as an approximate Riemann solver.

More than 20 years later, Toro [7] then developed a new approximate Riemann solver—HLLC
scheme—to simulate shallow water flows, which was an extended version of the Harten-Lax-van
Leer (HLL) scheme proposed in [8]. In the HLL scheme, the solution is approximated directly for
the interface fluxes by dividing the region into three parts: left, middle, and right. Both the left and
right regions correspond to the values of the two adjacent cells, whereas the middle region consists
of a single value separated by intermediate waves. One major flaw of the HLL scheme is related to
both contact discontinuities and shear waves leading to a missing contact (middle) wave. Therefore,
Toro [7] fixed this scheme in the HLLC scheme by including the computation of the middle wave
speed that now the solution is divided into four regions. There are several ways to calculate the
middle wave speed, see [9–11]. All the calculations deal with the eigenstructure of the PDEs, which is
related to the local Riemann problem, and obviously, this brings the HLLC scheme back to a class of
Riemann solvers.

Opposite to the Riemann solvers, Kurganov et al. [12] proposed the central-upwind (CU) method
as a Riemann-solver-free scheme, in which the eigenstructure of the PDEs is not required to calculate
the convective fluxes. Instead, the local one-sided speeds of propagation at every edge, which can
be computed in a straight-forward manner, are used. This scheme has been proven to be sufficiently
robust and at the same time can satisfy both the well-balanced and positivity preserving properties,
see [13–15].

To solve the time-dependent SWEs, all the aforementioned schemes must be temporally
discretized either by using an implicit or an explicit time stepping method. Despite its simplicity,
the latter may, however, suffer from a stability computational issue particularly when simulating a
very low water on a very rough bed [16,17]. The former is unconditionally stable and even is very
flexible to use a large time step. However, the computation is admittedly complex. Another way that
can be used to overcome the stability issue of the explicit method and to avoid the complexity of the
implicit method—is to perform a high-order explicit method, such as the Runge–Kutta high-order
scheme. This method is more stable than the explicit method, while the computation remains simple
and acceptably cheap as that of the explicit method.

As the high-order time stepping method is now considered, the selection of solvers included in
models must be taken into careful consideration, since such solvers—which are the most expensive
part in SWEs simulations—need to be computed several times in a single time step. For example,
the Runge–Kutta fourth-order (RKFO) method requires the updating of a solver four times to determine
the value at the subsequent time step. The more complex the algorithm of a solver is, the more CPU
time one obtains.

Nowadays, performing SWE simulations is becoming more and more common on modern
hardware/CPUs towards high-performance computing (HPC) using advanced features such as

8

Water 2019, 11, 639

AVX, AVX2, and AVX-512, which support the algorithm vectorization for executing some operations
in a single instruction—known as single instruction multiple data (SIMD)—so that a significant
computation speed-up can be achieved. Vectorization on such modern hardware employs vector
instructions, which can dramatically outperform scalar instructions, thus being quite important for
having more efficient computations. Among the other compilers’ optimizations, vectorization can even
be regarded as the common ways for utilizing vector-level parallelism, see [18,19]. Such a speed-up,
however, can only exist if the algorithm formulation is suitable for vectorization instructions either
automatically (by compilers) or manually (by users) [20].

Typically, there are three classes of vectorization: auto vectorization, guided vectorization,
and low-level vectorization. The first type is the easiest one utilizing the ability of the compiler to
automatically detect loops, which have a potential to be vectorized. This can be done at compiling time,
e.g., using the optimization flag -O2 or higher. However, some typical problems, e.g., non-contiguous
memory access and data-dependency, make vectorization difficult. For this, the second type may be
a solution utilizing some compiler hints/pragmas and array notations. This type may successfully
vectorize the loops that cannot be auto-vectorized by the compiler. However, if not used carefully,
it gives no significant performance or even the results can be wrong. The last type is probably the
hardest one since it requires deep-knowledge about intrinsics/assembly programming and vector
classes, thus not so popular.

Especially in simulating complex phenomena such as dam-break or tsunami flows as part
of disaster planning, accurate results are obviously of particular interest for modelers. However,
focusing only on numerical accuracy but ignoring performance efficiency is no longer an option.
For instance, in addition to relatively large-sized domains, most of real dam-break and tsunami
simulations require performing long real-time computations, e.g., days or even up to weeks. Wasting
the performance either due to the complexity level of the solver selected or the code’s inability to utilize
the vectorization, is thus undesirable. This becomes our focus in this paper. We compare three common
shallow water solvers (HLLC, Roe, and CU schemes) here, where two main findings are pointed out.
Firstly, to enable highly-efficient vectorization for all solvers on all the aforementioned hardware,
we employ a reordering strategy that we have recently applied in [21]. This strategy supports guided
vectorization and memory access alignment for the array loops attempted in the SWEs’ computations,
thus boosting the performance. Secondly, we observe that the CU scheme is capable of outperforming
the performance of the HLLC and Roe schemes by exhibiting similar accuracies. These findings would
be useful for modelers as a reference to select the numerical solvers to be included in their models as
well as to optimize their codes for vectorization.

Some previous studies reporting about vectorization of shallow water solvers are noted here.
In [20], the augmented Riemann solver implemented in a source code Geo Conservation Laws
(GeoCLAW) was vectorized using a low-level vectorization with SSE4 and AVX intrinsics. The average
speed-up factors of 2.7× and 4.1× (both with single-precision arithmetic) were achieved with SSE4 and
AVX machines, respectively. Also using GeoCLAW, the augmented Riemann solver was vectorized
in [22] by changing the data layouts from arrays of structs (AoS) to structs of arrays (SoA), thus
requiring a considerably huge task for rewriting the code—and then applying a guided vectorization
with !$omp simd. The average speed-up factors of 1.7× and 4.4× (both with double-precision
arithmetic) were achieved with AVX2 and AVX-512 machines, respectively. In [23], the split HLL
Riemann solver was vectorized and parallelized for the flux computation and state computation
modules of the SWEs employing low-level vectorization with SSE4 and AVX intrinsics. To the best
of our knowledge, this is the first attempt to report the efficiency comparisons of common solvers
(both Riemann and non-Riemann solvers) regarding the vectorization on the three modern hardwares
without having to perform complex intrinsic functions or to require a lot of work for rewriting the code.
We use here an in-house code of the first-author—numerical simulation of free surface shallow water
2D (NUFSAW2D). Some successful applications were shown using NUFSAW2D for varying shallow
water-type simulations, e.g., dam-break cases, overland flows, and turbulent flows, see [17,21,24,25].

9

Water 2019, 11, 639

This paper is organized as follows. The governing equations and the numerical model are briefly
explained in Section 2. An overview of data structures in our code is presented in Section 3. The model
verifications against the benchmark cases and its performance evaluations are given in Section 4.
Finally, conclusions are given in Section 5.

2. Governing Equations and Numerical Models

The 2D SWEs are written in conservative form according to [26] as

∂W

∂t
+

∂F

∂x
+

∂G

∂y
= Sb + S f , (1)

where the vectors W, F, G, Sb, and S f are expressed as

W =

⎡⎢⎣ h
hu
hv

⎤⎥⎦ , F =

⎡⎢⎢⎣
hu

huu +
gh2

2
hvu

⎤⎥⎥⎦ , G =

⎡⎢⎢⎣
hv

huv

hvv +
gh2

2

⎤⎥⎥⎦ ,

Sb =

⎡⎢⎢⎢⎢⎣
0

−gh
∂zb
∂x

−gh
∂zb
∂y

⎤⎥⎥⎥⎥⎦ , S f =

⎡⎢⎢⎢⎢⎢⎢⎣

0

−g h
n2

m u
√

u2 + v2

h4/3

−g h
n2

m v
√

u2 + v2

h4/3

⎤⎥⎥⎥⎥⎥⎥⎦ .

(2)

The water depth, velocities in x and y directions, gravity acceleration, bottom elevation,
and Manning coefficient are denoted by h, u, v, g, zb, and nm, respectively. Using a cell-centered
finite volume (CCFV) method, Equation (1) is spatially discretized over a domain Ω as

∂

∂t

∫∫
Ω

WdΩ +
∫∫

Ω

(
∂F

∂x
+

∂G

∂y

)
dΩ =

∫∫
Ω

(
Sb + S f

)
dΩ . (3)

Applying the Gauss divergence theorem, the convective fluxes of Equation (3) can be transformed
into a line-boundary integral Γ as

∂

∂t

∫∫
Ω

WdΩ +
∮

Γ

(
F nx + G ny

)
dΓ =

∫∫
Ω

(
Sb + S f

)
dΩ , (4)

leading to a flux summation for the convective fluxes by

∮
Γ

(
Fnx + Gny

)
dΓ ≈

N

∑
i=1

(
F nx + G ny

)
i ΔLi , (5)

where nx and ny are the normal vectors outward Γ, N is the total number of edges for a cell, and ΔL
is the edge length. We will investigate the accuracy and efficiency of the three solvers for solving
Equation (5). The in-house code NUFSAW2D used here implements the modern shock-capturing
Godunov-type model, which supports the structured as well as unstructured meshes by storing
the average values in each cell-center. Here we use structured rectangular meshes, hence N = 4.
The second-order spatial accuracy was achieved with the MUSCL method utilizing the MinMod
limiter function to enforce the monotonicity in multiple dimensions. The bed-slope terms were
computed using a Riemann-solution-free technique, with which the bed-slope fluxes can be computed
separately from the convective fluxes, thus giving a fair comparison for the three aforementioned

10

Water 2019, 11, 639

solvers. The friction terms were treated semi-implicitly to ensure stability for wet–dry simulations.
The RKFO method is now applied to Equation (4) as

Wp=0 = Wt , for p = 1, ... , 4 then

Wp = Wp=0 + αp

[
− Δt

A

4

∑
i=1

(
F nx + G ny

)
i ΔLi + Δt

∫∫
Ω

(
Sb + S f

)
dΩ

]p−1

,

Wt+1 = Wp=4 ,

(6)

where A is the cell area, Δt is the time step, αp is the coefficient being 1/4, 1/3 , 1/2, and 1 for p =
1–4, respectively. The numerical procedures for Equations (4) and (6) are given in detail in [17,25,26],
thus are not presented here.

3. Overview of Data Structures

3.1. General

Here we explain in detail how the data structures of our code are designed to advance the
solutions of Equation (6). Note this is a typical data structure used in many shallow water codes (with
implementations of modern finite volume schemes). As shown in Figure 1, a domain is discretized
into several sub-domains (rectangular cells). We call this step the pre-processing stage. Each cell now
consists of the values of zb and nm located at its center. Initially, the values of h, u, and v are given by
users at each cell-center.

Figure 1. Typical process in shallow flow modeling (with implementations of modern finite
volume schemes).

As our model employs a reconstruction process to spatially achieve second-order accuracy with
the MUSCL method, it requires the gradient values at cell-center. Therefore, these gradient values must
firstly be computed. This step is called the gradient level. Hereafter, one requires to calculate the values at
each edge using the values of its two corresponding cell-centers. This stage is then called the edge-driven
level. In this level, a solver, e.g., HLLC, Roe, or CU scheme, is required to compute the non-linear values

11

Water 2019, 11, 639

of F and G at edges. Prior to performing such a solver, the aforementioned reconstruction process with
the MUSCL method was employed. Note the values of Sb are also computed at the edge-driven level.
After the values of all edges are known, the solution can be advanced for the subsequent time level by
also computing the values of S f . For example, the solutions of W at the subsequent time level for a
cell-center are updated using the F, G, and Sb values from its four corresponding edges—and using S f
values located at the cell-center itself. We call this stage the cell-driven level.

Note that the edge-driven level is the most expensive stage among the others; one should thus
pay extra attention to its computation. We also point out here that we apply the computation for the
edge-driven level in an edge-based manner rather than in a cell-based one, namely we compute the
edge values only once per single calculation level. Therefore, one does not need to save the values of[

∑N
i=1

(
F nx + G ny

)
i ΔLi

]
in arrays for each cell-center; only the values of

[(
F nx + G ny

)
i ΔLi

]
are

saved corresponding to the total number of edges, instead. The values of an edge are only valid for one
adjacent cell—and such values are simply multiplied by (−1) for another cell. It is now a challenging
task to design an array structure that can ease vectorization and exploit memory access alignment in
both the edge-driven and cell-driven levels.

3.2. Cell-Edge Reordering Strategy for Supporting Vectorization and Memory Access Alignment

We focus our reordering strategy here on tackling the two common problems for vectorization:
non-contiguous memory access and data-dependency. Regarding the former, a contiguous array
structure is required to provide contiguous memory access giving an efficient vectorization. Typically,
one finds this problem when dealing with an indirect array indexing, e.g., using x(y(i)) forces the
compiler to decode y(i) for finding the memory reference of x. This is also a typical problem for a
non-unit strided access to array, e.g., incrementing a loop by a scalar factor, where non-consecutive
memory locations must be accessed in the loop. The vectorization is sometimes still possible for this
problem type. However, the performance gain is often not significant. The second problem relates to
usage of arrays identical to the previous iteration of the loop, which often destroy any possibility for
vectorization, otherwise a special directive should be used.

See Figure 2, for advancing the solution of W in Equation (1) for k, one requires F, G, and Sb from
i, where i = index_function(j) and [j ← 1-4]—and S f from k itself. Opting index_function as an
operator for defining i leads to a use of an indirect reference in a loop. This is not desired since it may
avoid the vectorization. This may be anticipated by directly declaring i into the same array to that of
k, e.g., W(k) ← [W(k+m), W(k-m), W(k+n), W(k-n)], where m and n are scalar. This, however, leads to a
data-dependency problem that makes vectorization difficult.

Figure 2. Vectorization for advancing the solution in the cell-driven level.

To avoid these problems, we have designed a cell-edge reordering strategy, see Figure 3, where
the loops with similar computational procedures are collected to be vectorized. Note that this strategy

12

Water 2019, 11, 639

is only applied once at the pre-processing stage in Figure 1. The core idea of this strategy is to build
contiguous array patterns between edges and cells for the edge-driven level as well as between cells
and edges for the cell-driven level. We point out here that we only employ 1D array configuration
in NUFSAW2D, so that the memory access patterns are straightforward, thus easing unit stride and
conserving cache entries. The first step is to devise the cell numbering following the Z-pattern, which
is intended for the cell-driven level. Secondly, we design the edge numbering for the edge-driven
level by classifying the edges into two types: internal and boundary edges in the most contiguous
way; the former is the edges that have two neighboring cells (e.g., edges 1–31), whereas the latter is
the edges with only one corresponding cell (e.g., edges 32–49). The reason for this classification is
the computational complexity between the internal and boundary edges differs from each other, e.g.,
(1) no reconstruction process is required for the latter, thus having less CPU time than the former—and
(2) due to corresponding to two neighboring cells, the former accesses more memories than does the
latter; declaring all edges only in one single loop-group therefore deteriorates the memory access
patterns, thus decreasing the performance.

Figure 3. Cell-edge reordering strategy [21] and an example of memory access patterns.

For the sake of clarity, we write in Algorithm 1 the pseudo-code of the model’s SUBROUTINE

employed in NUFSAW2D. Note that Algorithm 1 is a typical form applied in many common and
popular shallow water codes. First, we mention that seg_x = 5, seg_y = 4, and Ncells = 20

according to Figure 3, where seg_x, seg_y, and Ncells are the total number of domain segments in x
and y directions, and the total number of cells, respectively. We now explain the SUBROUTINE gradient.
The cells are now classified into two groups: internal and boundary cells. Internal cells, e.g., cells
6, 7, 10, 11, 14, and 15 are cells whose gradient computations require accessing two cell values in
each direction. For example, computing the x-gradient of W of cell 6 needs the values of W of cells 2
and 10; this is denoted by [∇Wx(6) ← W(2),W(10)] and similarly [∇Wy(6) ← W(5),W(7)]. Boundary
cells, e.g., cells 1–4, 5, 8, 9, 12, 13, 16, and 17–20, are cells affiliated with boundary edges. These cells
may not always require accessing two cell values in each direction for the gradient computation, e.g.,
[∇Wx(8) ← W(4),W(12)] but [∇Wy(8) ← W(7),W(8)] showing that a symmetric boundary condition is
applied to cell 8 in y direction. Considering the fact that the total number of internal cells is significantly
larger than that of boundary cells, we group the internal cells into a single loop and distinguish them
from the boundary cells, see Algorithm 2.

13

Water 2019, 11, 639

Algorithm 1 Typical algorithm for shallow water code (within the Runge–Kutta fourth-order (RKFO)
method’s framework)

1: for t = 1 ← [total number of time step] do
2: ! within the RKFO method from [p=1] to [p=4]
3: for p = 1 ← 4 do
4: CALL gradient
5: → compute gradient
6: CALL edge-driven_level
7: → compute MUSCL_method
8: → compute bed_slope
9: → compute shallow_water_solver

10: CALL cell-driven_level
11: → compute friction_term
12: → compute update_variables
13: end for
14: end for

Algorithm 2 Pseudo-code for SUBROUTINE gradient

1: for k=1 ← [seg_x-2] do
2: l = (seg_y+2)+(k-1)*seg_y
3: !$omp simd simdlen(VL) aligned(∇Wx,∇Wy :Nbyte)
4: for i=l ← [l+seg_y-3] do
5:
6: ∇Wx(i) ← W(i-seg_y),W(i+seg_y) ; ∇Wy(i) ← W(i-1),W(i+1)
7: end for
8: end for
9: !$omp simd simdlen(VL) aligned(∇Wx,∇Wy :Nbyte)

10: for i=1 ← [seg_y] do
11: j=Ncells-seg_y+i
12: i1=i-1 OR i1=i ; i2=i+1 OR i2=i
13: i3=j-1 OR i3=j ; i4=j+1 OR i4=j
14:
15: ∇Wx(i) ← W(i),W(i+seg_y) ; ∇Wy(i) ← W(i1),W(i2)
16: ∇Wx(j) ← W(j-seg_y),W(j) ; ∇Wy(j) ← W(i3),W(i4)
17: end for
18: !=== This loop is not vectorized due to non-unit strided access ===!
19: for i=1 ← [seg_x-2] do
20: j=i*seg_y+1 ; k=(i+1)*seg_y
21: i1=j-1 OR i1=j ; i2=j+1 OR i2=j
22: i3=k-1 OR i3=k ; i4=k+1 OR i4=k
23:
24: ∇Wx(j) ← W(j-seg_y),W(j+seg_y) ; ∇Wy(j) ← W(i1),W(i2)
25: ∇Wx(k) ← W(k-seg_y),W(k+seg_y) ; ∇Wy(k) ← W(i3),W(i4)
26: end for

Algorithm 2 shows three typical loops in the SUBROUTINE gradient. The first loop (lines 1–8)
is designed sequentially with a factor of seg_x-2 for its outer part to exclude all boundary cells.
For its inner part, this loop is constructed based on the outer loop in a contiguous way, thus
making vectorization efficient. Each element of array ∇Wx accesses two elements from array W with
the farthest alignment of seg_y, while each element of array ∇Wy also accesses two elements of
array W but only with the farthest alignment of 1. The second loop (lines 10–17) is also designed
similarly to the first one, but since this loop includes boundary cells, each element of arrays ∇Wx
and ∇Wy only accesses one array with the farthest alignment of seg_y and 1, respectively—whereas
the other elements from array W required are contiguously accessed by each element of both ∇Wx
and ∇Wy. Note in our implementation, none of these two loops can be auto-vectorized by the
compiler. Therefore, we apply a guided vectorization with OpenMP directive instead of the Intel one,
namely !$omp simd simdlen(VL) aligned(var1,var2,... :Nbyte); this will be explained later in
Section 4.5. The third loop (lines 19–26) is designed for the rest cells, which are not included in the
previous two loops. This loop is not devised in a contiguous manner, thus disabling auto vectorization
or, although a guided vectorization is possible, it still does not give any significant performance

14

Water 2019, 11, 639

improvement due to non-unit strided access. Despite being unable to be vectorized, the third loop
does not significantly decrease the performance of our model for the entire simulation as it only has an
array dimension of 2*[seg_x-2] (quite small compared to the other two loops).

We now discuss the SUBROUTINE edge-driven_level and sketch it in Algorithm 3. Note for the
sake of brevity, only the pseudo-code for internal edges is represented in Algorithm 3; for boundary
edges, the pseudo-code is similar but computed without MUSCL_method. The first loop corresponds
to the edges 1–16 and the second one to the edges 17–31. In the first loop (lines 1–7), each flux
computation accesses the array with the farthest alignment of seg_y, whereas the arrays are designed
in the second loop (lines 8–17) to have contiguous patterns. Every edge has a certain pattern for its
two corresponding cells, where no data-dependency exists, thus enabling an efficient vectorization.
Note with this pattern, both loops can be auto-vectorized; however, we still implement a guided
vectorization as it gives a better performance.

Finally, we sketch the SUBROUTINE cell-driven_level in Algorithm 4. Again, for the sake
of brevity only the pseudo-code for internal cells is given. Similar to the internal cell in the
SUBROUTINE gradient, the loop is designed sequentially with a factor of seg_x-2 for the outer part.
In the inner part the arrays access patterns are, however, different to those of the gradient computation,
where W accesses F, G, and Sb from the corresponding edges—and Sf from the corresponding cell;
in other words, more array accesses are required in this loop. Nevertheless, the vectorization gives a
significant performance improvement since the array accesses patterns are contiguous. However, there
is a part that cannot be vectorized in this cell-driven level due to non-unit strided access, similar to
that shown in Algorithm 2. Again, since the dimension of this non-vectorizable loop is considerably
smaller than the others, there is no significant performance alleviation for the entire simulation.

Algorithm 3 Pseudo-code for SUBROUTINE edge-driven_level (only for internal edges)

1: !$omp simd simdlen(VL) aligned(∇Wx, W, zb, F, G, Sb :Nbyte)
2: for i=1 ← [seg_y*(seg_x-1)] do
3: j=i ; k=i+seg_y
4:
5: compute MUSCL_method + bed_slope + shallow_water_solver[∇Wx(j),∇Wx(k),W(j),W(k),zb(j),zb(k),...,Fx

L, FxR, GxL, GxR, SbxL, SbxR
]

6: F+G(i) ← Fx
L, FxR, GxL, GxR ; Sb(i) ← Sbx

L, SbxR
7: end for
8: for l=1 ← [seg_x] do
9: m=seg_y*(seg_x-1)+1+(l-1)*(seg_y-1) ; n=m+seg_y-2 ; o=(l-1)*seg_y

10: !$omp simd simdlen(VL) aligned(∇Wy, W, zb, F, G, Sb :Nbyte)
11: for i=m ← n do

12: j=(i-m+1)+o ; k=j+1
13:
14: compute MUSCL_method + bed_slope + shallow_water_solver[∇Wy(j),∇Wy(k),W(j),W(k),zb(j),zb(k),...,Fy

L, FyR, GyL, GyR, SbyL, SbyR
]

15: F+G(i) ← Fy
L, FyR, GyL, GyR ; Sb(i) ← Sby

L, SbyR
16: end for
17: end for

Algorithm 4 Pseudo-code for SUBROUTINE cell-driven level (only for internal cells)

1: for k=1 ← [seg_x-2] do
2: j = (seg_y+2)+(k-1)*seg_y ; l = (seg_y*(seg_x-1)+seg_y)+(k-1)*(seg_y-1)
3: !$omp simd simdlen(VL) aligned(W, F, G, nm, Sb, Sf :Nbyte)
4: for i=j ← [j+seg_y-3] do
5: i1 = l+(i-j) ; i2 = i ; i3 = i1+1 ; i4=i-seg_y
6:
7: compute friction_term [W(i),nm(i),...,Sf(i)]
8: compute update_variables
9: W(i) ← F+G(i1),F+G(i2),F+G(i3),F+G(i4),Sb(i1),Sb(i2),Sb(i3),Sb(i4),Sf(i)

10: end for
11: end for

15

Water 2019, 11, 639

3.3. Avoiding Skipping Iteration for Vectorization of Wet–Dry Problems

In reality, almost all shallow flow simulations deal with wet–dry problems. To this end,
the computations of both solver and bed-slope terms in the SUBROUTINE edge-driven level must
satisfy the well-balanced and positivity-preserving properties as well, see [27,28], among others.
Similarly, the calculations of the friction terms in the SUBROUTINE cell-driven level must also
consider the wet–dry phenomena, otherwise errors are obtained. For example, in the edge-driven
level, a wet–dry or dry–dry interface of an edge may exist since one or two cell-centers consist of
no water; for both cases, the MUSCL method for achieving second-order accuracy is sometimes not
required or even if this method is still computed, it must be turned back to first-order accuracy to
ensure computational stability by simply defining the edge values according to the corresponding
centers. Another example is in the cell-driven level, where the transformation of the unit discharges
(hu and hv) back to the velocities (u and v) are required for computing the friction terms by a division
of a water depth (h); very low water depth may thus cause significant errors. To anticipate these
problems, one often employs some skipping iterations in the loops, see Algorithm 5.

Algorithm 5 Pseudo-code of some possible skipping iterations

1: !== This is a typical skipping iteration in the SUBROUTINE edge-driven level ==!
2: if [wet–dry or dry-dry interfaces at edges] then
3: NO MUSCL_method: calculate first-order scheme
4: else
5: compute MUSCL_method: calculate second-order scheme
6: if [velocities are not monotone] then
7: back to first-order scheme
8: end if
9:

10: end if
11: !== This is a typical skipping iteration in the SUBROUTINE cell-driven level ==!
12: if [depths at cell-centers > depth limiter] then
13: compute friction_term
14: else
15: unit discharges and velocities are set to very small values
16:
17: end if

Typically, the two skipping iterations in Algorithm 5 are important to ensure the correctness of
shallow water models. Unfortunately, such layouts may destroy auto vectorization—or although a
guided vectorization is possible, it does not give any significant improvement or may even decrease
the performance significantly. This is because the SIMD instructions simultaneously work only for sets
of arrays, which have contiguous positions. In our experiences, a guided vectorization was indeed
possible for both iterations; the speed-up factors, however, were not so significant. Borrowing the idea
of [22], we therefore change the layouts in Algorithm 5 to those in Algorithm 6, where the early exit
condition is moved to the end of the algorithm. Using the new layouts in Algorithm 6, we significantly
observed up to 48% more improvements of the vectorization from those given in Algorithm 5. Note
that the results given by Algorithms 5 and 6 should be similar because no computational procedure is
changed but only the layouts.

16

Water 2019, 11, 639

Algorithm 6 Pseudo-code of the solutions of the skipping iterations in Algorithm 5

1: !== A solution for the skipping iteration in the SUBROUTINE edge-driven level ==!

2: compute MUSCL_method: calculate second-order scheme
3:
4: if [velocities are not monotone] then
5: back to first-order scheme
6: end if
7:
8: if [wet–dry or dry-dry interfaces at edges] then
9: NO MUSCL_method: calculate first-order scheme

10: end if
11: !== A solution for the skipping iteration in the SUBROUTINE cell-driven level ==!

12: compute friction_term
13:
14: if [depths at cell-centers ≤ depth limiter] then
15: unit discharges and velocities are set to very small values
16:
17: end if

3.4. Parallel Computation

We explain briefly here the parallel computing implementation of NUFSAW2D according
to [21]. Our idea is to decompose and parallelize the domain based on its complexity level.
NUFSAW2D employs hybrid MPI-OpenMP parallelization, thus is applicable to parallel simulations
with multi-nodes. However, as we focus here on the vectorization, which no longer influences the
scalability beyond one node [20], we limit our study on single-node implementations and thus only
employ OpenMP for parallelization. Further, we examine the memory bandwidth effect when using
only one core or 16 cores (AVX), 28 cores (AVX2), and 64 cores (AVX-512).

In Figure 4 we show an example of the decomposition of the domain in Figure 3 using four
threads; for the sake of brevity, the illustration is given only for the edge-driven level. The parallel
directive, e.g., !$omp do, can easily be added to each loop, thus according to Algorithm 2, in the
gradient level the domain is decomposed as: thread 0 (cells 6, 7, 1, 17, 5, 8), thread 1 (cells 10, 11, 2, 18,
9, 12), thread 2 (cells 14, 15, 3, 19, 13, 16), and thread 3 (cells 4, 20). Similarly, regarding Algorithm 3 it
gives in the edge-driven level: thread 0 (edges 1–4, 17–22, 32–33, 37–38, 42, 46), thread 1 (edges 5–8,
23–25, 34, 39, 43, 47), thread 2 (edges 9–12, 26–28, 35, 40, 44, 48), and thread 3 (edges 13–16, 29–31, 36,
41, 45, 49). Meanwhile, the cell-driven level applies a similar decomposition to that of the gradient
level. One can see, the largest loop components, e.g., internal edges 1–4, 5–8, etc., are decomposed in a
contiguous pattern easing the vectorization implementation, thus efficient. Note the decomposition in
Figure 4 is based on static load balancing that causes load imbalance due to the non-uniform amount
of loads assigned to each thread; this load imbalance will become less and less significant as the
domain size increases, e.g., to millions of cells. However, another load imbalance issue—which can
only be recognized during runtime—appears, namely the one caused by wet–dry problems, where
wet cells are computationally more expensive than dry cells. For this, we have developed in [21] a
novel weighted-dynamic load balancing (WDLB) technique that was proven effective to tackle load
imbalance due to wet–dry problems. All the parallel and load balancing implementations are described
in detail in [21], thus are not explained here. We also note that we have successfully applied this
cell-edge reordering strategy in [24,25] for parallelizing the 2D shallow flow simulations using the
CU scheme with good scalability. Yet, we will show in the next section that the cell-edge reordering
strategy proposed can help in easing all the vectorization implementations.

17

Water 2019, 11, 639

Figure 4. Illustration of load distribution using static load balancing with vectorization support for the
edge-driven level based on Figure 3.

4. Results and Discussions

We validate our model against four benchmark tests: two dam-break cases and two tsunami
cases. Each case was simulated using a constant Δt that satisfies the Courant-Friedrichs-Lewy (CFL)
condition, where CFL ≤ 0.5. Our model with the HLLC, Roe, or CU scheme satisfies the well-balanced
property; also, the HLLC and CU solvers employed are positivity-preserving. We note that the Roe
scheme may in some cases produce negative depths, see [29]; however, in all implementations tested
here, we did not find any negative depth with the Roe scheme. The Δt used also fulfills the CFL
limitation required by the computations of the local one-sided propagation speeds of the CU scheme
for positivity-preserving purpose, see [13].

4.1. Case 1: Circular Dam-Break

This case is included to check the capability of our model for symmetry and shock resolution in
shallow water flow modeling. We refer to [16,30], among others. A 40 × 40 m, flat, and frictionless
domain is considered. A cylindrical wall with a radius of 2.5 m, which was centered at the domain,
separated two regions of still water; the first one inside the cylinder had a depth of 2.5 m and the second
one outside consisted of 0.5 m water. The water was assumed to be initially at rest and all boundaries
were set to wall boundary. The main features to be investigated in this case are the rarefaction wave and
the hydraulic jump (shock wave) including a transition condition from subcritical to supercritical flow.
The total simulation time was set to 4.7 s with Δt = 0.005 s, thus requiring 940 time steps. The domain
was discretized into 160,000 rectangular cells (319,200 edges).

The evolutions of the simulated free surface elevation using the CU scheme are visualized in
Figure 5. Suddenly after 0.1 s, water started to move in all directions. At 0.4 s, the circular shock wave
propagated outwards, whereas the circular rarefaction wave traveled inwards showing that this wave
almost reaches the center of the domain. This phenomenon continued until the rarefaction wave has
fully plunged into the center of the domain at approximately 0.8 s and this wave was suddenly reflected
creating a sharp gradient of water surface elevation. At 1.6 s, the circular shock wave propagated
further outwards the from domain center, whereas the reflected rarefaction wave now caused the water
to fall below the initial depth of 0.5 m. This produced a secondary circular shock wave, the depth of
which was slightly less than 0.5 m. The primary circular shock wave kept propagating outwards the
center of the domain at 3.8 s and interestingly, the secondary circular shock wave that had recently
been created traveled towards that center. At 4.7 s, it is shown that the primary circular wave almost
reached the domain boundary and at this time a very sharp gradient of water surface elevation had
been created near that boundary.

We present the comparison between the analytical and numerical results at 4.7 s in Figure 6
showing that all schemes can simulate this highly discontinuous flow properly. To point out the
difference between the three schemes more clearly, we present in Figure 7 both the depth and velocity

18

Water 2019, 11, 639

profiles near the two discontinuous areas: 20–22 m and 38–40 m, where only non-significant differences
are shown.

10 20 30 40
0

y

3.5

7

.5

4

10

20

30

40

0

y

0

20

30

40

10

x

0
20 30 40

10 x

3.5

7

10.

14

10 20 30 40
0

y

3.5

7

.5

4

10

20

30

40

0

y

0

20

30

40

10

x

0
20 30 40

10 x

3.5

7

10.

14

10 20 30 40
0

y

3.5

7

.5

4

10

20

30

40

0

y

0

20

30

40

10

x

0
20 30 40

10 x

3.5

7

10.

14

10 20 30 40
0

y

3.5

7

.5

4

10

20

30

40

0

y

0

20

30

40

10

x

0
20 30 40

10 x

3.5

7

10.

14

10 20 30 40
0

y

3.5

7

.5

4

10

20

30

40

0

y

0

20

30

40

10

x

0
20 30 40

10 x

3.5

7

10.

14

10 20 30 40
0

y

3.5

7

.5

4

10

20

30

40

0

y

0

20

30

40

10

x

0
20 30 40

10 x

3.5

7

10.

14

0.625 1.25 1.8750.000e+00 2.500e+00

Elevation (m)

Figure 5. Case 1: results of the central-upwind (CU) scheme at 0.1, 0.4, 0.8, 1.6, 3.8, and 4.7 s.

0.20

0.30

0.40

0.50

0.60

0.70

0.80

20 22 24 26 28 30 32 34 36 38 40

El
ev

at
io

n
(m

)

Distance (m)

4.7 s

Analytic HLLC Roe CU

-1.20

-0.80

-0.40

0.00

0.40

0.80

1.20

20 22 24 26 28 30 32 34 36 38 40

Ve
lo

cit
y

(m
/s

)

Distance (m)

4.7 s

Analytic HLLC Roe CU

Figure 6. Case 1: comparison between analytical and numerical results at 4.7 s.

19

Water 2019, 11, 639

0.20

0.30

0.40

0.50

0.60

0.70

20.0 20.5 21.0 21.5 22.0

El
ev

at
io

n
(m

)

Distance (m)

4.7 s

Analytic HLLC Roe CU

0.40

0.50

0.60

0.70

0.80

38.0 38.5 39.0 39.5 40.0

El
ev

at
io

n
(m

)

Distance (m)

4.7 s

Analytic HLLC Roe CU

-1.20

-1.00

-0.80

-0.60

-0.40

-0.20

0.00

0.20

0.40

20.0 20.5 21.0 21.5 22.0

Ve
lo

ci
ty

 (m
/s

)

Distance (m)

4.7 s

Analytic HLLC Roe CU

-0.20

0.00

0.20

0.40

0.60

0.80

1.00

1.20

38.0 38.5 39.0 39.5 40.0

Ve
lo

ci
ty

 (m
/s

)

Distance (m)

4.7 s

Analytic HLLC Roe CU

Figure 7. Case 1: comparison between analytical and numerical results at 4.7 s (in detail).

4.2. Case 2: Dam-Break Flow against an Isolated Obstacle

This case was done experimentally in [31]. The channel was trapezoidal; 35.8 m long and 3.6 m wide.
A 1 m wide rectangular gate separated the upstream reservoir from the downstream channel, see Figure 8.
The Manning coefficient was 0.01 s m−1/3. A 0.8 × 0.4 m obstacle was located on the downstream channel
with a position that formed an angle of 64o from the x-axis. The water was set initially to 0.4 m at the
reservoir and 0.02 m at the channel, thus the banks at downstream were dry. The upstream end of the
reservoir was a closed wall. In this paper, the domain was discretized into 143,280 rectangular cells
(285,246 edges). The simulation was set for 30 s with Δt = 0.005 s, thus requiring 6000 time steps.

Figure 8. Case 2: sketch of domain and channel shape.

20

Water 2019, 11, 639

We compared our model at four points: G1 (10.35, 2.95) m, G4 (11.7, 1.0) m, G5 (12.9, 2.1) m, and G6
(5.83, 2.9) m. Our numerical results are given in Figure 9 showing that our model is in general capable
of simulating this case properly. At G1, the maximum bore around 2 s was accurately simulated by
all schemes, where there were no significant differences shown until 9 s. However, after 9 s, the CU
scheme computed the results higher than do the other schemes, where both the HLLC and Roe schemes
show almost no different results. At G4, the first bore around 2 s was predicted with a later time of no
more than 1 s and a higher depth of no more than 2 cm, where all schemes kept producing the higher
values from 2 s to 4.5 s. At G5, no significant differences were again shown between the HLLC and
Roe schemes, but the CU scheme showed slightly different values. At G6, highly accurate results were
given by all schemes to simulate the water at the reservoir, showing that the schemes can predict the
correct incoming discharge from the upstream reservoir to the downstream channel.

0.00

0.05

0.10

0.15

0.20

0 5 10 15 20 25 30

de
pt

h
(m

)

Time (s)

G1

Observation HLLC Roe CU

0.00

0.05

0.10

0.15

0.20

0 5 10 15 20 25 30

de
pt

h
(m

)

Time (s)

G4

Observation HLLC Roe CU

0.00

0.05

0.10

0.15

0.20

0 5 10 15 20 25 30

de
pt

h
(m

)

Time (s)

G5

Observation HLLC Roe CU

0.00

0.10

0.20

0.30

0.40

0.50

0 5 10 15 20 25 30

de
pt

h
(m

)

Time (s)

G6

Observation HLLC Roe CU

Figure 9. Case 2: comparison of depths between observation and numerical results.

Some errors computed by our model are probably due to the absence of the turbulence terms.
Yu and Duan [32] showed the turbulence model was highly important for simulating flow field around
the obstacle, where the reflection waves from the obstacle and side walls have superimposed several
oblique hydraulic jumps. In Figure 10, we visualize the flood propagation at 1, 3, and 10 s using the
CU scheme.

4.3. Case 3: Tsunami Run-Up on a Conical Island

This benchmark case was conducted in a laboratory by [33] to investigate the tsunami run-up on
a conical island, the center of which was located near the middle of a 30 × 25 m basin, see Figure 11.
To produce planar solitary waves with the specified crest and length, a directional wave maker was
used. The left boundary was set as a flow boundary, and the respective water elevation and velocities
were defined as

η(0, y, t) = Ae sech2

√
3 Ae

4 He

√
g
(

He + Ae
) (

t − Te
)

,

u(0, y, t) =
η
√

g
(

He + Ae
)

η + He
, v(0, y, t) = 0 ,

(7)

21

Water 2019, 11, 639

where Ae, He, and Te are the amplitude of the incident wave, still water depth, and time, at which
the wave crest enters the domain—set to 0.032 m, 0.32 m, and 2.45 s, respectively. The other three
boundaries were closed boundaries. We compared our results with the values at five gauges located
on the domain: P-03, P-06, P-09, P-16, and P-22, whose coordinates were (6.82,13.05) m, (9.36, 13.80) m,
(10.36, 13.80) m, (12.96, 11.22) m, and (15.56, 13.80) m, respectively. The Manning coefficient was set to
zero as suggested by [34].

2.5

5

7.5

10
12.5

15

0

2

0

2

0.4
0.8

0.4

0.8

2.5
5

7.5
10

12.5
15

2.5

5

7.5

10
12.5

15

0

2

0

2

0.4
0.8

0.4

0.8

2.5
5

7.5
10

12.5
15

2.5

5

7.5

10
12.5

15

0

2

0

2

0.4
0.8

0.4

0.8

2.5
5

7.5
10

12.5
15

2.5

5

7.5

10
12.5

15

0

2

0

2

0.4
0.8

0.4

0.8

2.5
5

7.5
10

12.5
15

0.113 0.225 0.3380.000e+00 4.500e-01

Elevation (m)

Figure 10. Case 2: visualization of the flood propagation at 0, 1, 3, and 10 s using the CU scheme.

The domain was discretized into 200,704 rectangular cells (402,304 edges). The simulation time
was set to 20 s with Δt = 0.002 s leading to 10,000 time steps. One can see in Figure 12, the incident
solitary waves in front of the island, which generate a high run-up at about t = 9 s, create wet–dry
mechanisms on the conical island. Within this period, the maximum magnitude was reached. After
t = 9 s, the waves started to run down the inundated area on the conical island. Some waves were
refracted and propagated toward the lee side of the island, where two waves were trapped at each
side of the island at around t = 11 s. At t = 13 s, the second wave run-up was generated after these two
waves collided. Afterwards, these waves continued to propagate around the island.

22

Water 2019, 11, 639

Figure 11. Case 3: computational domain of solitary wave run-up.

15

30

7.5

22.5

0

12.5 256.750 18.75

15

30

7.5

22.5

0

12.5 256.750 18.75

0.1

0.2

0.3

0.000e+00

4.000e-01
Elevation (m)

15

30

7.5

22.5

12.5 250 6.75 18.75

15

30

7.5

22.5

12.5 250 6.75 18.75

0.1

0.2

0.3

0.000e+00

4.000e-01
Elevation (m)

15

30

7.5

22.5

0

12.5 256.750 18.75

15

30

7.5

22.5

0

12.5 256.750 18.75

0.1

0.2

0.3

0.000e+00

4.000e-01
Elevation (m)

15

30

7.5

22.5

12.5 250 6.75 18.75

15

30

7.5

22.5

12.5 250 6.75 18.75

0.1

0.2

0.3

0.000e+00

4.000e-01
Elevation (m)

15

30

7.5

22.5

0

12.5 256.750 18.75

15

30

7.5

22.5

0

12.5 256.750 18.75

0.1

0.2

0.3

0.000e+00

4.000e-01
Elevation (m)

15

30

7.5

22.5

12.5 250 6.75 18.75

15

30

7.5

22.5

12.5 250 6.75 18.75

0.1

0.2

0.3

0.000e+00

4.000e-01
Elevation (m)

Figure 12. Case 3: numerical results using the CU scheme at 9, 11, and 13 s.

23

Water 2019, 11, 639

Our numerical results are also compared with laboratory results during 20 s, see Figure 13.
Accurate results were produced by all schemes, where no significant differences between them were
shown. The arrival times of the highest waves were accurately detected at gauges P-03 and P-22.
All schemes rendered later times at gauges P-06, P-09, and P-16 but the differences were no more
than 1 s. At gauge P-16, our model computed the wave 1 cm higher than the one mentioned in the
laboratory data, and the wave at gauge P-22 was computed 1.3 cm higher. This was probably due to
the neglect of the dispersion effects. Note that such discrepancies were also reported in the numerical
model of [34].

0.30

0.31

0.32

0.33

0.34

0.35

0.36

4 6 8 10 12 14 16 18 20

w
at

er
 e

le
va

tio
n

(m
)

time (s)

P-03

Experimental HLLC Roe CU

0.29

0.30

0.31

0.32

0.33

0.34

0.35

0.36

2 4 6 8 10 12 14 16 18 20

w
at

er
 e

le
va

tio
n

(m
)

time (s)

P-06

Experimental HLLC Roe CU

0.28

0.30

0.32

0.34

0.36

0.38

2 4 6 8 10 12 14 16 18 20

w
at

er
 e

le
va

tio
n

(m
)

time (s)

P-09

Experimental HLLC Roe CU

0.28

0.30

0.32

0.34

0.36

0.38

2 4 6 8 10 12 14 16 18 20

w
at

er
 e

le
va

tio
n

(m
)

time (s)

P-16

Experimental HLLC Roe CU

0.28

0.30

0.32

0.34

0.36

0.38

2 4 6 8 10 12 14 16 18 20

w
at

er
 e

le
va

tio
n

(m
)

time (s)

P-22

Experimental HLLC Roe CU

Figure 13. Case 3: comparison between observation and numerical results.

4.4. Case 4: 2011 Japan Tsunami Recorded in Hawaii

This benchmark test is a real tsunami case that occurred in 2011, Japan. The data set was recorded
in Hilo Harbor, Hawaii. The raw data can be found in [35]. To avoid the phase differences of the
incident wave, the original bathymetry data should be flattened at the depth of 30 m. Interested readers
are also referred to [36] for more information. In Figure 14, the sketch of the domain is given as well
as the incident wave forcing employed at the northern part as a boundary condition. The Manning
coefficient was assumed to be uniform 0.025 s m−1/3. The observation points were the Hilo tide station

24

Water 2019, 11, 639

for elevation (3159, 3472) m, HAI1125/harbor entrance (4686, 2246) m, and HAI1126/inside harbor
(1906, 3875) m for velocities. The 1-minute de-tiding of raw data was done for the observed data.

The domain was discretized using 20 m resolution rectangular cells producing 94,600 rectangular
cells (189,200 edges). We set the simulation time to 13 h and used Δt = 0.025 s giving 1,872,000 time
steps. The results are given in Figure 15 plotted per 150 s. At the Hilo tide Station, each scheme can
detect the first incoming wave quite accurately around t = 8.2 h. The lowest water elevation was also
predicted properly at approximately t = 8.4 h but with a non-significant difference of about 0.2 m. After
that, the water level fluctuations were also computed properly. At the harbor entrance, the velocities
were in general accurately computed. Each scheme was able to compute the first incoming wave for
the x velocity at t = 8.2 h. The y velocity magnitude at that time was, however, slightly overestimated.
Inside the harbor, accurate predictions for x and y velocities were shown, where the first incoming
wave was well predicted. After 10 h, each scheme kept exhibiting accurate results at the harbor
entrance as well as inside the harbor. One can see that the water current flowed predominantly in
North–South direction at the harbor entrance, whereas inside the harbor the water current flowed
predominantly in East–West direction. Our results agree with the observed data and those simulated
by [36] as well. Although some discrepancies—which are probably due to the neglect of the tidal
current effects—still exist, our model shows overall quite accurate results for this hazard event.

-1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

-1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

7 8 9 10 11 12 13

El
ev

at
io

n
(m

)

Hours

Control Point

Measurement

0

1000

2000

3000

4000

5000

5500

y

0 1000 2000 3000 4000 5000 6000 6880
x

0

1000

2000

3000

4000

5000

5500

y

0 1000 2000 3000 4000 5000 6000 6880
x

-22.5

-15

-7.5

-3.000e+01

0.000e+00
Bed elevation

> 0.000e+00
Control Point

HAI1125

HAI1126

Tide Gage

Figure 14. Case 4: bathymetry for simulation and the boundary condition.

25

Water 2019, 11, 639

-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0

-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0

7 8 9 10 11 12 13

El
ev

at
io

n
(m

)

Hours

Tide Gage Data

Measurement HLLC Roe CU

-60

-20

20

60

-60

-20

20

60

7 8 9 10 11 12 13

x
ve

lo
ci

ty
 (c

m
/s

)

Hours

HAI1125

Measurement HLLC Roe CU

-150

-100

-50

0

50

100

150

-150

-100

-50

0

50

100

150

7 8 9 10 11 12 13

y
ve

lo
ci

ty
 (c

m
/s

)

Hours

HAI1125

Measurement HLLC Roe CU

-150

-100

-50

0

50

100

150

-150

-100

-50

0

50

100

150

7 8 9 10 11 12 13

x
ve

lo
ci

ty
 (c

m
/s

)

Hours

HAI1126

Measurement HLLC Roe CU

-120

-70

-20

30

80

-120

-70

-20

30

80

7 8 9 10 11 12 13

y
ve

lo
ci

ty
 (c

m
/s

)

Hours

HAI1126

Measurement HLLC Roe CU

Figure 15. Case 4: comparison between observation and numerical results.

In Figure 16, the visualizations of tsunami inundation are presented using the CU scheme.
It is shown at around 9.03 h, the water level reaches approximately 0.5–1 m at the harbor entrance.
Meanwhile, the water level is predicted to reach 1–1.5 m inside the harbor. At about 9.53 h, the water
level at the harbor entrance remains relatively constant for 0.5–1 m but outside the harbor (near the
breakwater) the water level becomes higher up to 2.5 m. After 14 h, the water level near the breakwater
(inside and outside the harbor) decreases to approximately −1.25 m. Complex wet–dry phenomena
near the coastline as well as the breakwater appear during the simulation time and our model has
shown to be robust for modeling such phenomena.

We show in Figure 17 a visualization of the maximum velocity magnitude captured by the HLLC,
Roe, and CU schemes during 13 h simulation time. In general, as one can see, no significant differences
are shown between all schemes. Along the outer side of the breakwater as well as near the harbor
entrance, the velocity magnitudes of more than 4.5 m/s appear. Meanwhile, considerably lower
magnitudes are shown inside the harbor. The main difference is only located near the harbor entrance,

26

Water 2019, 11, 639

where the CU scheme computes the slightly lower magnitudes. The spatial distribution of the velocity
magnitude is shown to be extremely sensitive, in agreement with that studied in [36].

2000 4000 5500m

0

0

 MSL (m)

0

2000

4000

6000
6880

 m

0

2000

4000

6000

6880

 m

2000

4000
5500

m

2000 4000 5500m

0

0

 MSL (m)

0

2000

4000

6000
6880

 m

0

2000

4000

6000

6880

 m

2000

4000
5500

m

2000 4000 5500m

0

0

 MSL (m)

0

2000

4000

6000
6880

 m

0

2000

4000

6000

6880

 m

2000

4000
5500

m

-1.25 0 1.25-2.500e+00 2.500e+00

Elevation from MSL (m)

Figure 16. Case 4: visualization of tsunami inundation using the CU scheme at 9.03, 9.53, and 11 h.

27

Water 2019, 11, 639

0

1000

2000

3000

4000

5000

5500

y

0 1000 2000 3000 4000 5000 6000 6880
x

0

1000

2000

3000

4000

5000

5500

y

0 1000 2000 3000 4000 5000 6000 6880
x

0

1000

2000

3000

4000

5000

5500

y

0 1000 2000 3000 4000 5000 6000 6880
x

0

1000

2000

3000

4000

5000

5500

y

0 1000 2000 3000 4000 5000 6000 6880
x

0

1000

2000

3000

4000

5000

5500

y

0 1000 2000 3000 4000 5000 6000 6880
x

0

1000

2000

3000

4000

5000

5500

y

0 1000 2000 3000 4000 5000 6000 6880
x

1.125 2.25 3.3750.000e+00 4.500e+00

Max. Velocity (m/s)

Figure 17. Case 4: numerical result for the maximum velocity captured during the 13 h simulation time
using the Harten-Lax-van Leer-Contact (HLLC), Roe, and CU schemes (top left, top right, bottom).

4.5. Performance Comparison

We have shown in the previous sections that the HLLC, Roe, and CU schemes are quite
accurate for simulating the test cases, where only non-significant differences are shown between
them. In this section we analyze and compare the performance of each scheme. All schemes were
written and compiled in the same code NUFSAW2D on three machines—AVX (Intel Xeon E5-2690/
Sandy-Bridge-E), AVX2 (Intel Xeon E5-2697 v3/Haswell), and AVX-512 (Intel Xeon Phi/Knights
Landing)—for a Linux operating system using Intel Fortran 19. The first computing resource
“Sandstorm” was available at our chair [37] and the last two resources “CoolMUC-2” and “CoolMUC-3”
were provided by the Leibniz Supercomputing Centre (LRZ) [38]. Each node of the AVX, AVX2,
and AVX-512 machines has a total of eight physical cores (16 logical cores), 14 physical cores (28 logical
cores), and 64 physical cores, respectively. Note that AVX-512 is built on many-core architecture that
incorporates cores with low-frequency and small memory. Therefore, in order to achieve a notable
performance, this machine relies on the vector operations on 512 bit SIMD registers.

We did not use the vectorization directive provided by Intel, e.g., !dir$ simd, since we have
experienced that this directive was not always able to vectorize the loop. Instead, we implemented the
directive !$omp simd simdlen(VL) aligned(var1,var2,... :Nbyte) provided by the OpenMP 4.0.
The first component (simdlen) was aimed to test the benefit of vectorization on our code compared to
the theoretical speed-up based on the vector width, while the second one (aligned) was employed

28

Water 2019, 11, 639

to know the benefit of the aligned memory accesses supported by the reordering strategy proposed.
Since we would like to emphasize the effect of vector width, we restricted our discussion here to
single-precision arithmetic. The variable VL was the vector length, set to eight for AVX/AVX2 and 16
for AVX-512—and Nbyte was the default alignment of the architecture, set to 32 for AVX/AVX2 and 64
for AVX-512.

Two metrics are used to denote the performance of our code: Medge/s/core (million edges per
second per core) and Mcell/s/core (million cells per second per core), which are the comparisons
between the total number of simulated edges or cells that can be achieved per unit of time using one
core. The former was used to denote the performance of the SUBROUTINE edge-driven level, whereas
the latter was used to denote the performance of the entire simulation. It is also important to note that
since the RKFO method is used, the latter is calculated after four times updating per time-level update,
not per calculation-level update. We compiled our code using the flag -O3 -qopenmp -align ’a’ ’b’

for the vectorized version, where ’a’ = array32byte for AVX/AVX2 and array64byte for
AVX-512—and ’b’ = -xAVX for AVX, -xCORE-AVX2 for AVX2, and -xCOMMON-AVX512 for AVX-512.
To only emphasize the performance increase by vectorization, we disable all possibilities for auto
vectorization by compiling with the flag -O3 -qopenmp -no-vec -align ’a’ ’b’ and by deleting all
the SIMD directives in the source code, thus giving a fair benchmark of the non-vectorized version of
our code.

As previously explained, we discuss our results using single-core and single-node computations.
We observed that for single-node computations, NUFSAW2D with OpenMP gives better performance
than MPI because the WDLB technique employed for wet–dry problems requires no communication
cost. We only performed strong scaling for all cases, where we achieved averagely 87% efficiency for
AVX/AVX2 with 16/28 cores and 88% efficiency for AVX-512 with 64 cores. When using 8/16 cores
with AVX/AVX2 or 56 cores with AVX-512, higher efficiency was even achieved by our code being
approximately 98%. Although this leads to a better performance, we still use the results with all cores
available to show the single-node performance. Note the performance degradation of 12–13% (when
using all cores) was not due to inefficient load distribution but probably because of the non-uniform
memory access (NUMA) effects, where a processor can access its memory faster than the shared
non-local memory, see [21].

4.5.1. Performance of Edge-Driven Level

Figure 18 shows the performance comparison between all solvers, in which we observe a
significant performance improvement for each solver. Note the results in Figure 18 represent the
average values from the four cases tested. We observed that there are no significant differences of the
performance (in the range of 4–5%) achieved in all cases. The worst performance was shown in case 2,
whereas the best one was achieved in case 1. This is because case 2 deals with more complex wet–dry
problems, for which the WDLB technique in this case works better than in the other cases—thus
causing more overheads—in order to balance the load units between wet and dry cells, see [21] for
detail. For the edge-driven level, each non-vectorized solver shows performance metrics with a range
of 3.42–4.54, 5.03–6.23, and 1.01–1.38 Medge/s/core for the AVX, AVX2, and AVX-512, respectively.
This shows the CU scheme was, without vectorization, averagely 1.31× and 1.26× faster than the
HLLC and Roe solvers, respectively.

As soon the guided vectorization was activated, the performances of each scheme in the
edge-driven level increased significantly. For the AVX machine (1 core), we observed significant
improvements being 5.5×, 6.5×, and 6× for the HLLC, Roe, and CU schemes, respectively; this shows
the Roe scheme experiences remarkably the benefit of the vectorization, for which the improvement
factor is larger than the others. For the AVX2 machine (1 core), the speed-up factors of 4.5×, 4.8×,
and 5× were obtained by the HLLC, Roe, and CU schemes, respectively showing that the improvement
factor of the CU scheme becomes the largest one among the others. Although significant performance
improvements have been shown, our model still cannot fully exploit the theoretical speed-up of 8×

29

Water 2019, 11, 639

from the vector widths of both the AVX and AVX2 machines used. Nevertheless, we have shown
that the data structures of our code are suitable for SIMD instructions as we are able to achieve the
efficiency of up to 81.25%. Note in the aforementioned notable works, none of the models could
achieve the performance increase of more than 52% from the theoretical speed-up of the machine
used. In [20], the average speed-up of 4.1× was achieved on AVX machine (single-precision) for
the vectorized augmented Riemann solver; therefore, this leads to the efficiency of 51.25%. In [22],
the average speed-up of 1.7× was obtained on an AVX2 machine (double-precision) for the vectorized
Riemann solver; this thus gives the efficiency of 42.5%.

3.42

18.82

5.03

22.62

1.01

16.83

3.48

22.62

5.12

24.59

1.10

17.65

4.54

27.25

6.23

31.16

1.38

22.70

0

5

10

15

20

25

30

35

No-Vec (AVX) Vec (AVX) No-Vec (AVX2) Vec (AVX2) No-Vec (AVX-512) Vec (AVX-512)

M
e
d
g
e
/
s
/
c
o
r
e

Edge-driven Level (single-core)

HLLC Roe CU

2.84

16.18

4.02

19.45

0.81

14.64

2.91

19.45

4.15

21.15

0.88

15.36

3.78

23.71

5.11

27.11

1.12

19.98

0

5

10

15

20

25

30

35

No-Vec (AVX) Vec (AVX) No-Vec (AVX2) Vec (AVX2) No-Vec (AVX-512) Vec (AVX-512)

M
e
d
g
e
/
s
/
c
o
r
e

Edge-driven Level (single-node)

HLLC Roe CU

Figure 18. Comparison of performance metrics in the edge-driven level.

For the AVX-512 machine (1 core), the vectorization has tremendously increased the performances
of the HLLC, Roe, and CU solvers by the factors of 16.68×, 16.04×, and 16.42×, respectively. This
shows that our model can comprehensively exploit the vectorization for the vector width provided,
of which the theoretical speed-up is 16×. Also, this represents that the data structures designed in
NUFSAW2D efficiently support the vector programming on this vector-computing architecture.

With parallel simulations, each non-vectorized solver exhibits the performance metrics within the
ranges of 2.84–3.78, 4.02–5.11, and 0.81–1.12 Medge/s/core for the AVX (16 cores), AVX2 (28 cores),
and AVX-512 (64 cores), respectively; compared to the non-vectorized values with 1 core, it gives about
83% efficiency. For the performance analysis of the parallelized-vectorized solvers, the values obtained
by the non-vectorized solvers with single-core are used as indicator. For the AVX machine (16 cores),
the parallelized-vectorized HLLC, Roe, and CU solvers reached 16.18, 19.45, and 23.71 Medge/s/core,
giving speed-ups of 75.7×, 89.4×, and 83.52×, respectively. Similarly, the parallelized-vectorized
HLLC, Roe, and CU solvers obtained 19.45, 21.15, and 27.11 Medge/s/core, respectively with the AVX2
machine (28 cores) leading to speed-ups of 108.4×, 115.6×, and 121.8×. The significant performance
increase was shown by the AVX-512 machine (64 cores), where the parallelized-vectorized HLLC, Roe,
and CU solvers reached 14.64, 15.36, and 19.98 Medge/s/core, respectively; this brings each scheme to
achieve speed-ups of 928.9×, 892.9×, and 924.7×.

30

Water 2019, 11, 639

The results in Figure 18 show an interesting fact, especially for the single-node performance
analysis. Without vectorization, the parallelized results of the AVX2 machine can significantly
outperform the parallelized results of the AVX-512 machine. For example, see Figure 19, on the
AVX2 machine the CU scheme shows a metric of 143.1 Medge/s with 28 cores while on the AVX-512
machine with 64 cores this scheme exhibits a metric of 71.7 Medge/s; the difference is thus almost
two-fold. However, with vectorization, the parallelized results of the AVX2 machine (759.1 Medge/s)
are now outperformed by those of the AVX-512 machine (1278.6 Medge/s), being approximately 1.7×.
This shows the vectorization is non-trivial for increasing the performance.

60.46
143.10

71.68

379.35

759.13

1278.57

0

400

800

1200

1600

AVX AVX2 AVX-512

M
e
d
g
e
/
s

Parallelized CU Scheme: Edge-driven Level

No-Vec Vec

Figure 19. Single-node performance of the non-vectorized and vectorized CU scheme with
parallelization (edge-driven level).

Based on these results, one can see although the Roe scheme experiences the largest speed-up
on the AVX machine or the HLLC scheme achieves the largest improvement factor on the AVX-512
machine, both of these schemes are still significantly outperformed by the CU scheme with average
multiplication factors of 1.4× and 1.25×, respectively. This is not so surprising since the computational
procedures of both the HLLC and Roe solvers include complex branch statements (if-then-else), thus
should theoretically be much more expensive than the CU scheme, see [17]. The HLLC scheme requires
the nested branch statements; the first one is to compute the wave speeds, which are later required
in the second branch statement for calculating the final convective fluxes. The Roe scheme needs
branchings for the intermediate variables and entropy correction computations, the computations of
which are quite complex. Such branchings may force the uses of masked operations and assignments,
thus significantly decreasing the performance. In contrast to these two solvers, the CU scheme does
not experience any branch statement. This is the beauty of this scheme in addition to being quite
simple and having no complex procedure, thus can (even) be auto-vectorized by the compiler.

4.5.2. Performance of the Entire Simulation

Prior to investigating the performance of the entire simulation, we firstly show the cost estimation
of each level in Algorithm 1 by presenting in Figure 20 a list of cost percentages: initialization, gradient,
edge-driven level and cell-driven level. The last three components indicate the same levels to those
shown in Algorithm 1, while initialization is a part required for updating the initial value for the RKFO
method per time-level update, e.g., to perform Wp=0 = Wt, see Equation (1). Note for an unbiased
representative, the values in Figure 20 are the cost percentage of a vectorized solver relatively to its
non-vectorized version. Only the cost percentage of the simulations using single-core is presented
in Figure 20; the percentage for single-node is shown to be similar. As expected, we observe that
the edge-driven level is the most time-consuming part being 65–75% of the entire simulation for
the non-vectorized code. For both AVX and AVX2 machines, the vectorization can decrease the
computational cost of the edge-driven level approximately from 71% up to 15%. Meanwhile, for the
AVX-512 machine, the vectorization is shown more effective to reduce the cost of the edge-driven level
averagely from 72% up to 5%.

31

Water 2019, 11, 639

2.22 0.73 2.25 0.74 2.72 0.88
7.82

2.25
7.96

2.30
9.66

2.77

74.70

14.88

74.32

12.46

68.81

12.4215.25

4.81

15.47

4.90

18.81

5.89

0
10
20
30
40
50
60
70
80
90

No-Vec (HLLC) Vec (HLLC) No-Vec (Roe) Vec (Roe) No-Vec (CU) Vec (CU)

R
e
l
a
t
i
v
e

C
o
s
t

(
%
)

AVX

Initialization Gradient Edge-driven Level Cell-driven Level

2.38 0.48 2.42 0.47 2.77 0.56
10.11

3.80
10.27

3.75
11.72

4.22

71.00

18.58

70.56

16.09

66.38

15.0316.51

4.54

16.75

4.73

19.13

5.31

0
10
20
30
40
50
60
70
80
90

No-Vec (HLLC) Vec (HLLC) No-Vec (Roe) Vec (Roe) No-Vec (CU) Vec (CU)

R
e
l
a
t
i
v
e

C
o
s
t

(
%
)

AVX2

Initialization Gradient Edge-driven Level Cell-driven Level

2.17 0.19 2.32 0.22 2.74 0.24
6.00

1.01
6.40

1.01
7.11

1.20

74.72

4.48

72.93

4.55

68.58

4.18

17.11

2.05

18.35

2.43

21.57

2.55

0
10
20
30
40
50
60
70
80
90

No-Vec (HLLC) Vec (HLLC) No-Vec (Roe) Vec (Roe) No-Vec (CU) Vec (CU)

R
e
l
a
t
i
v
e

C
o
s
t

(
%
)

AVX-512

Initialization Gradient Edge-driven Level Cell-driven Level

Figure 20. Components of the entire simulations for all schemes.

The second most expensive part is the cell-driven level, which consumes around 16–22% of the
total simulation time with the non-vectorized solvers. After vectorization, the cost of the cell-driven
level decreases from approximately 17% up to 5% on both the AVX and AVX2 machines. Meanwhile,
on the AVX-512 machine, the vectorization has helped by decreasing the computational time of
the cell-driven level averagely from 19% up to 3%; this again shows the vectorization works more
effectively on this machine.

We now explain the performance of our model for updating the entire simulation. For the AVX,
AVX2, and AVX-512 machines with one core, we observed for the non-vectorized solvers the metrics
of 1.27–1.56, 1.78–2.06, and 0.38–0.47 Mcell/s/core, respectively—and for the vectorized solvers by
6.37–7.79, 7.12–9.28, and 5.23–6.23 Mcell/s/core, respectively. We achieved the improvements for the
AVX machine by 5×, 5.5×, and 5× for the HLLC, Roe, and CU schemes, respectively, while for the
AVX2 machine, the speed-up factors of 4×, 4.5×, and 4.5× were obtained by the HLLC, Roe, and CU
schemes, respectively. On the AVX-512 machine we observed the speed-up factors of 13.91×, 13.11×,
and 13.18× for the HLLC, Roe, and CU schemes, respectively showing that, on this machine, our code
can achieve a better performance than those on the other two machines. However, the AVX2 machine
still gives the highest metrics among the others.

For parallel simulations with the AVX, AVX2, and AVX-512 machines, the non-vectorized solvers
achieved the metrics of 1.05–1.28, 1.42–1.67, and 0.3–0.38 Mcell/s/core, respectively—and for the
parallelized-vectorized solvers by 5.48–6.78, 6.12–8.08, and 4.55–5.48 Mcell/s/core, respectively. Similar
to the previous analysis, the values obtained by the non-vectorized solvers with single-core are used
as indicator here. According to Figure 21, the vectorized HLLC, Roe, and CU solvers on the AVX
machine (16 cores) gave the metrics of 5.48, 6.1, and 6.78 Mcell/s/core reaching speed-ups of 68.8×,
75.68×, and 69.6×, respectively. On the AVX2 machine (28 cores) we observed speed-ups of 96.3×,

32

Water 2019, 11, 639

108.4×, and 109.6× for the vectorized HLLC, Roe, and CU solvers by obtaining the metrics of 6.12,
6.98, and 8.08 Mcell/s/core, respectively. The AVX-512 machine (64 cores) shows again the significant
performance increase by allowing the parallelized–vectorized HLLC, Roe, and CU solvers to achieve
the metrics of 4.55, 4.57, and 5.48 Mcell/s/core or similar to speed-ups of 774.6×, 729.9×, and 742.1×,
respectively. Based on this fact, a similar behavior is noticed for the single-node performance in
updating the entire simulation. We take the results of the CU scheme as an example, see Figure 22.
Without vectorization, the parallelized results of the AVX2 machine with 28 cores (46.80 Mcell/s)
are about 1.93× significantly faster than those of the AVX-512 machine with 64 cores (24.22 Mcell/s).
However, the parallelized–vectorized results of the AVX-512 machine (351 Mcell/s) now outperform
the parallelized–vectorized results of the AVX2 machine (226.2 Mcell/s) by a factor of 1.55. This
again shows the vectorization is highly-important for achieving better performance. For the entire
simulation, our code with the vectorized solvers can achieve approximately 31–35% of the theoretical
peak performance (TPP) of the AVX/AVX2 machines and 26% of the TPP of the AVX-512 machine.

1.27

6.37

1.78

7.12

0.38

5.23

1.29

7.09

1.80

8.11

0.40

5.25

1.56

7.79

2.06

9.28

0.47

6.23

0

2

4

6

8

10

12

No-Vec (AVX) Vec (AVX) No-Vec (AVX2) Vec (AVX2) No-Vec (AVX-512) Vec (AVX-512)

M
c
e
l
l
/
s
/
c
o
r
e

Entire Simulation (single-core)

HLLC Roe CU

1.05

5.48

1.42

6.12

0.30

4.55

1.07

6.10

1.44

6.98

0.32

4.57

1.28

6.78

1.67

8.08

0.38

5.48

0

2

4

6

8

10

12

No-Vec (AVX) Vec (AVX) No-Vec (AVX2) Vec (AVX2) No-Vec (AVX-512) Vec (AVX-512)

M
c
e
l
l
/
s
/
c
o
r
e

Entire Simulation (single-node)

HLLC Roe CU

Figure 21. Comparison of performance metrics for the entire simulation.

20.51
46.80

24.22

108.49

226.18

350.99

0

50

100

150

200

250

300

350

400

AVX AVX2 AVX-512

M
c
e
l
l
/
s

Parallelized CU Scheme: Entire Simulation

No-Vec Vec

Figure 22. Single-node performance of the non-vectorized and vectorized CU scheme with
parallelization (entire simulation).

33

Water 2019, 11, 639

We also actually studied the effect of the cell-edge reordering strategy on conserving
the memory access patterns, where we compared the directive !$omp simd simdlen(VL)

aligned(var1,var2,... :Nbyte) with the directive !$omp simd simdlen(VL). Using the former,
we found on all machines that the HLLC, Roe, and CU schemes averagely benefited from 1.45×,
1.5×, 1.4× more speed-ups in the edge-driven level compared to the results compiled only with the
latter. Similarly, for updating the entire simulation, the HLLC, Roe, and CU solvers achieved on all
machines approximately 1.41×, 1.42×, and 1.32× more speed-ups, respectively. These results reveal
that the cell-edge reordering strategy proposed has helped in easing the aligned memory access pattern,
thus enabling a significant performance enhancement. For the sake of brevity, these findings are not
presented here.

5. Conclusions

A numerical investigation for studying the accuracy and efficiency of three common shallow
water solvers (the HLLC, Roe, and CU schemes) has been presented. Four cases dealing with
shock waves and wet–dry phenomenon were selected. All schemes were provided in an in-house
code NUFSAW2D, the model of which was of second-order accurate in space wherever the regimes
were smooth and robust when dealing with strong shock waves—and of fourth-order accurate in
time. To give a fair comparison, all source terms of the 2D SWEs were treated similarly for all
schemes, namely the bed-slope terms were computed separately from the convective fluxes using
a Riemann-solver-free scheme—and the friction terms were computed semi-implicitly within the
framework of the RKFO method.

Two important findings have been shown by our simulations. Firstly, highly-efficient vectorization
could be applied to the three solvers on all hardware used. This was achieved by guided vectorization,
where a cell-edge reordering strategy was employed to ease the vectorization implementations and
to support the aligned memory access patterns. Regarding single-core analysis, the vectorization
was shown to be able to speed-up the performance of the edge-driven level up to 4.5–6.5× on the
AVX/AVX2 machines for eight data per vector and 16.7× on the AVX-512 machine for 16 data per
vector—and to accelerate the entire simulation as well by up to 4–5.5× on the AVX/AVX2 machine
and 13.91× on the AVX-512 machine. The superlinear speed-up in the edge-driven level especially
using the AVX-512 machine could be achieved probably due to improved cache usage, thus less
expensive main memory accesses. Regarding single-node analysis, our code could reach in the
edge-driven level the improvements of 75.7–121.8× on the AVX/AVX2 machine while on the AVX-512
machine it achieved up to 928.9× speed-up. For updating the entire simulation, our code was able to
reach speed-ups of 68.8–109.6× and 774.6× on the AVX/AVX2 and AVX-512 machines, respectively.
We observed an interesting phenomenon, where without vectorization the parallelized results of
the AVX2 machine outperformed those of the AVX-512 machine in both the edge-driven level and
the entire simulation with a factor of up to 2×; the parallelized-vectorized results of the AVX-512
machine became, however, faster by achieving an average factor of 1.6×. This clearly shows that our
reordering strategy could efficiently exploit the vectorization support of such a vector-computing
machine. Supporting the aligned memory access patterns, the reordering strategy employed has
helped in gaining the performances of the “only” vectorized code by averagely 1.45× and 1.4× for the
edge-driven level and updating the entire simulation, respectively.

Secondly, we have shown that for the four cases simulated, strong agreements by all schemes
were obtained between the numerical results and observed data, where no significant differences were
shown for the accuracy. However, in the term of efficiency, the CU scheme was able to outperform
the HLLC and Roe schemes with average factors of 1.4× and 1.25×, respectively. Although the
vectorization was successful to significantly gain the performance of all solvers, the CU scheme still
became the most efficient one among the others. According to this fact, we could conclude that the CU
solver as a Riemann-solver-free scheme would in general be able to outperform the Riemann solvers
(HLLC and Roe schemes) even for simulations on the next generation of modern hardware. This is

34

Water 2019, 11, 639

because the computational procedures of the CU scheme are acceptably simple especially containing
no complex branch statements (if-then-else) such as required by the HLLC and Roe schemes.

Since simulating shallow water flows—especially complex phenomena that require performing
long real-time computations as part of disaster planning such as dam-break or tsunami cases—on
modern hardware nowadays and even in the future becomes more and more common, focusing
simulations only on numerical accuracy but ignoring the performance efficiency is not an option
anymore. Wasting the performance is obviously undesirable due to wasting too much time for
such long real-time simulations. Modern hardware offers many features for gaining efficiency,
one of which is vectorization that can be regarded as the “easiest” way for benefiting from the
vector-level parallelism, is thus non-trivial. However, this is not obtained for free; one should at
least understand and support—due to the sophisticated memory access patterns—the vectorization
concept. The cell-edge reordering strategy employed here is one of the easiest strategies to utilize
the vectorization feature of modern hardware that could easily be applied to any CCFV scheme
for shallow flow simulations, together with guided vectorization instead of explicitly by low-level
vectorization, which might be error-prone and time-consuming. It is worth pointing out that this
strategy is also applicable to any compiler with vectorization support, e.g., Gfortran. We observed
that the performance obtained with Intel compiler was typically 2–3× higher than that obtained with
Gfortran, which we believe is due to the correspondence of Intel compiler and Intel hardware.

We have also shown that the edge-driven level, especially the reconstruction technique and solver
computations, were the most time-consuming part, which required 65–75% of the entire simulation
time. This shows that some more “aggressive” optimization techniques still become a hot topic for
future studies to make shallow water simulations more efficient, particularly in the edge-driven level.
Finally, we conclude that this study would be useful as a consideration for modelers who are interested
in developing shallow water codes.

Author Contributions: B.M.G. developed the numerical code NUFSAW2D, conceived the framework of this work,
analyzed the results, and wrote the paper. R.-P.M. contributed to the practical guidance of this work and provided
some corrections, especially regarding the theoretical concepts of the vectorization and parallel computing.

Funding: The first author gratefully acknowledges the DAAD (German Academic Exchange Service) for
supporting his research in the scope of the Research Grants—Doctoral Programmes in Germany 2015/16
(57129429). This work was supported by the German Research Foundation (DFG) and the Technical University of
Munich (TUM) in the framework of the Open Access Publishing Program.

Acknowledgments: The authors appreciate the computational and data resources provided by the Leibniz
Supercomputing Centre—and are also grateful to all the anonymous reviewers, who provided many constructive
comments and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Cea, L.; Blade, E. A simple and efficient unstructured finite volume scheme for solving the shallow water
equations in overland flow applications. Water Resour. Res. 2015, 51, 5464–5486. [CrossRef]

2. Hou, J.; Liang, Q.; Zhang, H.; Hinkelmann, R. An efficient unstructured MUSCL scheme for solving the 2D
shallow water equations. Environ. Model. Softw. 2015, 66, 131–152. [CrossRef]

3. Duran, A. A robust and well-balanced scheme for the 2D Saint-Venant system on unstructured meshes with
friction source term. Int. J. Numer. Methods Fluids 2015, 78, 89–121. [CrossRef]

4. Özgen, I.; Zhao, J.; Liang, D. Hinkelmann, R. Urban flood modeling using shallow water equations with
depth-dependent anisotropic porosity. J. Hydrol. 2016, 541, 1165–1184. [CrossRef]

5. Xia, X.; Liang, Q.; Ming, X.; Hou, J. An efficient and stable hydrodynamic model with novel source term
discretization schemes for overland flow and flood simulations. Water Resour. Res. 2017, 53, 3730–3759.
[CrossRef]

6. Roe, P. Approximate Riemann solvers, parameter vectors and difference schemes. J. Comput. Phys. 1981,
135, 250–258. [CrossRef]

7. Toro, E. Shock-Capturing Methods for Free-Surface Shallow Flow; John Wiley: Chichester, UK, 2001.

35

Water 2019, 11, 639

8. Harten, A.; Lax, P.; van Leer, B. On upstream differencing and Godunov-type schemes for hyperbolic
conservation laws. SIAM Rev. 1983, 25, 35–61. [CrossRef]

9. Davis, S. Simplified second-order Godunov-type methods. SIAM J. Sci. Stat. Comput. 1988, 9, 445–473.
[CrossRef]

10. Einfeldt, B. On Godunov-type methods for gas dynamics. SIAM J. Numer. Anal. 1988, 25, 294–318. [CrossRef]
11. Toro, E.; Spruce.; M. Speares, W. Restoration of the contact surface in the HLL-Riemann solver. Shock Waves

1994, 4, 25–34. [CrossRef]
12. Kurganov, A.; Noelle, S.; Petrova, G. Semi-discrete central-upwind schemes for hyperbolic conservation

laws and Hamilton-Jacobi equations. SIAM J. Sci. Comput. 1994, 23, 707–740. [CrossRef]
13. Kurganov, A.; Petrova, G. A second-order well-balanced positivity preserving central-upwind scheme for

the Saint-Venant system. Commun. Math. Sci. 2007, 5, 133–160. [CrossRef]
14. Horváth, Z.; Waser, J.; Perdigão, R.; Konev, A.; Blöschl, G. A two-dimensional numerical scheme of dry/wet

fronts for the Saint-Venant system of shallow water equations. Int. J. Numer. Methods Fluids 2015, 77, 159–182.
[CrossRef]

15. Beljadid, A.; Mohammadian, A.; Kurganov, A. Well-balanced positivity preserving cell-vertex central-upwind
scheme for shallow water flows. Comput. Fluids 2016, 136, 193–206. j.compfluid.2016.06.005. [CrossRef]

16. Delis, A.; Nikolos, I. A novel multidimensional solution reconstruction and edge-based limiting procedure
for unstructured cell-centered finite volumes with application to shallow water dynamics. Int. J. Numer.
Methods Fluids 2013, 71, 584–633. [CrossRef]

17. Ginting, B.; Mundani, R.P. Artificial viscosity technique: A Riemann-solver-free method for 2D urban flood
modelling on complex topography. In Advances in Hydroinformatics; Gourbesville, P., Cunge, J., Caignaert, G.,
Eds.; Springer Water: Singapore, 2018; pp. 51–74, doi:10.1007/978-981-10-7218-5_4.

18. Bik, A.; Girkar, M.; Grey, P.; Tian, X. Automatic intra-register vectorization for the Intel architecture. Int. J.
Parallel Program. 2002, 2, 65–98.:1014230429447. [CrossRef]

19. Nuzman, D.; Rosen, I.; Zaks, A. Auto-vectorization of interleaved data for SIMD. In Proceedings of the 27th
ACM SIGPLAN Conference on Programming Language Design and Implementation, Ottawa, ON, Canada,
10–16 June 2006; pp. 132–143. [CrossRef]

20. Bader, M.; Breuer, A.; Hölzl, W.; Rettenberger, S. Vectorization of an augmented Riemann solver for the shallow
water equations. In Proceedings of the 2014 International Conference on High Performance Computing &
Simulation (HPCS), Bologna, Italy, 21–25 July 2014; pp. 193–201. [CrossRef]

21. Ginting, B.; Mundani, R.P. Parallel flood simulations for wet-dry problems using dynamic load balancing
concept. J. Comput. Civ. Eng. (ASCE) 2019, 33, 1–18. [CrossRef]

22. Ferreira, C.; Mandli, K.; Bader, M. Vectorization of Riemann solvers for the single- and multi-layer shallow
water equations. In Proceedings of the 2018 International Conference on High Performance Computing &
Simulation (HPCS), Orléans, France, 16–20 July 2018; pp. 415–442. [CrossRef]

23. Liu, J.Y.; Smith, M.; Kuo, F.A.; Wu, J.S. Hybrid OpenMP/AVX acceleration of a Split HLL finite volume
method for the shallow water and Euler equations. Comput. Fluids 2015, 110, 181–188. [CrossRef]

24. Ginting, B.; Mundani, R.P.; Rank, E. Parallel simulations of shallow water solvers for modelling overland
flows. In Proceedings of the 13th International Conference on Hydroinformatics (HIC 2018), EPiC Series
in Engineering, Palermo, Italy, 1–6 July 2018; La Loggia, G., Freni, G., Puleo, V., De Marchis, M., Eds.;
Volume 3, pp. 788–799. [CrossRef]

25. Ginting, B. Central-upwind scheme for 2D turbulent shallow flows using high-resolution meshes with
scalable wall functions. Comput. Fluids 2019, 179, 394–421. [CrossRef]

26. Ginting, B. A two-dimensional artificial viscosity technique for modelling discontinuity in shallow water
flows. Appl. Math. Model. 2017, 45, 653–683. [CrossRef]

27. Audusse, E.; Bouchut, F.; Bristeau, M.O.; Klein, R.; Perthame, B. A fast and stable well-balanced scheme with
hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comput. 2004, 25, 2050–2065. [CrossRef]

28. Gallouët, T.; Hérard, J.M.; Seguin, N. Some approximate Godunov schemes to compute shallow-water
equations with topography. Comput. Fluids 2003, 32, 479–513. [CrossRef]

29. Castro, M.; Gonzales-Vida, J.; Pares, C. Numerical treatment of wet/dry fronts in shallow flows with a
modified Roe scheme. Math. Model. Methods Appl. Sci. 2006, 16, 897–931. [CrossRef]

30. Yu, H.; Huang, G.; Wu, C. Efficient finite-volume model for shallow-water flows using an implicit dual
time-stepping method. J. Hydraul. Eng. (ASCE) 2015, 141, 1–12. [CrossRef]

36

Water 2019, 11, 639

31. Soarez-Frazão.; S. Zech, Y. Experimental study of dam-break flows against an isolated obstacle. J. Hydraul. Res.
2007, 45, 27–36. [CrossRef]

32. Yu, C.; Duan, J. Two-dimensional depth-averaged finite volume model for unsteady turbulent flow.
J. Hydraul. Res. 2012, 50, 599–611. [CrossRef]

33. Briggs, M.; Synolakis, C.; Harkins, G.; Green, D. Laboratory experiments of tsunami runup on a circular
island. Pure Appl. Geophys. 1995, 144, 569–593. [CrossRef]

34. Nikolos, I.; Delis, A. An unstructured node-centered finite volume scheme for shallow water flows with
wet/dry fronts over complex topography. Comput. Methods Appl. Mech. Eng. 2009, 198, 3723–3750. [CrossRef]

35. Available online: https://coastal.usc.edu/currents_workshop/index.html (accessed on 25 September 2018).
36. Arcos, M.; LeVeque, R. Validating velocities in the GeoClaw tsunami model using observations near Hawaii

from the 2011 Tohoku tsunami. Pure Appl. Geophys. 2014, 17, 849–867. [CrossRef]
37. Available online: https://sandstorm.cie.bgu.tum.de/wiki/index.php/Main_Page (accessed on

25 September 2018).
38. Available online: https://www.lrz.de (accessed on 25 September 2018).

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

37

water

Article

2D Numerical Modeling on the Transformation
Mechanism of the Braided Channel

Shengfa Yang and Yi Xiao *

National Inland Waterway Regulation Engineering Research Center, Chongqing Jiaotong University,
Chongqing 400074, China; ysf777@163.com
* Correspondence: xymttlove@163.com; Tel.: +86-023-6265-4621

Received: 25 July 2019; Accepted: 24 September 2019; Published: 28 September 2019

Abstract: This paper investigates the transformation mechanism between different channel patterns.
A developed 2D depth-averaged numerical model is improved to take into account a bank vegetation
stress term in the momentum conservation equation of flow. Then, the extended 2D model is applied
to duplicate the evolution of channel pattern with variations in flow discharge, sediment supply
and bank vegetation. Complex interaction among the flow discharge, sediment supply and bank
vegetation leads to a transition from the braided pattern to the meandering one. Analysis of the
simulation process indicates that (1) a decrease in the flow discharge and sediment supply can lead
to the transition and (2) the riparian vegetation helps stabilize the cut bank and bar surface, but is
not a key in the transition. The results are in agreement with the criterion proposed in the previous
research, confirming the 2D numerical model’s potential in predicting the transition between different
channel patterns and improving understanding of the fluvial process.

Keywords: fluvial process; bank vegetation; channel pattern; 2D numerical model

1. Introduction

Channel pattern refers to the limited reaches of the river that can be defined as straight, meandering
or braided. While long, straight rivers seldom occur in nature; meandering and braided rivers are
common [1]. The transformation of channel patterns take place in response to variations in different
variables, which can be grouped into four categories: (i) Dynamic flow, (ii) shape and characteristics
of the channel, (iii) sediment load and (iv) bed and bank material [2]. A sound understanding of the
relationship between the control variables and channel pattern is fundamental to the development
of improved management strategies in braided rivers [3]. The laboratory flume experiments have
shed much light on the dynamic behavior of a wide braided river to a single-thread channel [4–10].
Various criteria have been proposed on the response of channel morphology to control variables [11–14].
Quantitative inconsistencies in both the coefficients and exponents of discriminant functions have
resulted from the use of different measures of slope and discharge, as well as differences in the
definitions of the transition between channel patterns [15–17].

With the rapid developments of numerical and mathematics methods in fluid mechanics,
multiple-mathematics models have become important tools for investigating dynamic interactions in
evolving braid units. The development of physically based theories, which attempt to relate pattern
and process in a predictive manner, offer improved insight into the primary variables controlling
channel pattern. Models based on linearized physics-based equations [18–21] and 2D nonlinear
physics-based morphological models [22–25] have been established to simulate the braided channel
evolution. Cellular models [26–29], 2D and 3D flow-sediment numerical models [30–35] have been
developed to model braided rivers. Although various computational studies on the formation of
braided rivers are available, few preliminary numerical studies of the transformation process from the

Water 2019, 11, 2030; doi:10.3390/w11102030 www.mdpi.com/journal/water39

Water 2019, 11, 2030

braided to meandering pattern are offered [36], to discuss the interactions of multiple factors, such as
flow conditions, sediment characteristics and bank stability.

The primary objective of this study is to investigate the dynamic process of the transformation
between different channel patterns with different control variables. The original 2D numerical model
takes the vegetation term into the flow momentum equation, and is verified in the middle section
of the Yangtze River. Subsequently, a conceptual braided channel is established in the numerical
experiment, control factors as flow discharge, sediment supply and bank vegetation are considered in
the simulation of the transition from the braided to the meandering channel. The proposed criteria
were applied to discuss the transition process between the braided and meandering channel, the results
agree well with the previous research. It demonstrates that the 2D numerical model can be applied to
improve understanding of patterning processes under different scenarios.

2. Numerical Model

2.1. Model Description

The 2D numerical model incorporates the hydrodynamic, sediment transport and river
morphological adjustment sub-model. It is solved in the orthogonal curvilinear grid system by
using the Beam and Warming alternating-direction implicit (ADI) scheme. The sediment transport
submodel includes the influence of non-uniform sediment with bed surface armoring and a correction
for the direction of bed-load transport due to secondary flow and transverse bed slope. The bank
erosion submodel incorporates a simple simulation method for updating bank geometry during either
degradational or aggradational bed evolution. The details of the developed 2D model can be found
in Xiao et al. [37], and verified in the physical meandering channel and the upstream of the Yangtze
River [38].

2.2. Consideration of the Riparian Vegetation Influence

The significance of riparian vegetation as a control of river form and process is increasingly being
recognized in fluvial research. In this study, the hydrodynamic portion of the 2D numerical model was
upgraded to incorporate the effects of riparian vegetation.

The equilibrium equation for the riparian vegetation zones herein can be introduced by Ikeda and
Izumi [39] in the form:

τ
cosθ

= ρgHS−Dr +
d

dy

∫ H

0

(
−ρu′v′

)
dz, (1)

where τ is the total shear stress near the river bank (Pa); Dr is the vegetation stress term (Pa); v′, u′ are
the fluctuating velocity in the longitudinal and transverse direction (m/s), respectively; S is the slope,
H is the averaged water depth (m) and θ is the inclination of the location, often θ ≈ 0, Equation (1) can
be reduced to:

τ = ρgHS−Dr +
d

dy

∫ H
0

(
−ρu′v′

)
dz

Dr =
1
2ρCDu2 aH

cosθ
τ = τL

j + τ
T −Dr.

(2)

Let pv = Dr, substitute it to the momentum conservation equation of flow in the Cartesian
coordinate system as:

∂
∂t
(ρui) +

∂
∂xj

(ρuiuj) = ρ fi − ∂p∂xi
+
∂τi j

∂xj
− ∂p

v

∂xi
, (3)

∂pv

∂xi
=
∂
(

1
2ρCDu2 aH

cosθ

)
∂xi

=
1
2
ρCD

aH
cosθ

uui i = 1, 2, (4)

u =

√∑
i

u2
i i = 1, 2 (5)

40

Water 2019, 11, 2030

where pv should satisfy the additional condition in all directions as: pv =
2∑

i=1

(
∂pv

∂xi

)2
; u is the

depth-averaged flow velocity (m/s); ui is the flow velocity in the i-direction (m/s); a is the vegetation
density (m−1), defined as a = d/

(
lxly

)
, d is the radius of the vegetation (m) and lx and ly are the distance

of vegetation in the longitudinal and transverse directions (m).
CD is the drag coefficient of vegetation. Consider the influence range of the vegetation coefficient,

let CD = 1.5 when the vegetation zones near the river bank [39]; if the zones of vegetation are in the
river channel, we assumed the influence of vegetation was proportionate to the distance from the
channel center in the form:

CD = 0 x = l
CD = 1.5− 1.5x/l 0 < x < l

CD = 1.5 x = 0
(6)

where l is the distance from the river bank to the channel center (m); x is the distance from the computed
point to the river bank (m).

In this study, we substituted Equations (4) and (5) to the 2D depth-averaged momentum
conservation equation of flow in the orthogonal curvilinear coordinate system as follows:

∂q
∂t + β(

1
J
∂(h2qU)
∂ξ + 1

J
∂(h1pU)
∂η − pV

J
∂h2
∂ξ +

qV
J
∂h1
∂η) − f p + gH

h1

∂Z
∂ξ +

qg|q|
(CH)2 = νeH

h1

∂E
∂ξ − νeH

h2
∂F
∂η +

1
J
∂(h2D11)
∂ξ

+ 1
J
∂(h1D12)
∂η + 1

J
∂h1
∂η D12 − 1

J
∂h2
∂ξ D22 − 1

2ρCD
aH

cosθ

√
U2 + V2 yηh1U−yξh2V

J
∂p
∂t + β(

1
J
∂(h2qV)
∂ξ + 1

J
∂(h1pV)
∂η +

pU
J
∂h2
∂ξ −

qU
J
∂h1
∂η) + f q + gH

h2
∂Z
∂η +

pg|q|
(CH)2 = νeH

h2
∂E
∂η +

νeH
h1

∂F
∂ξ +

1
J
∂(h2D12)
∂ξ

+ 1
J
∂(h1D22)
∂η − 1

J
∂h1
∂η D11 +

1
J
∂h2
∂ξ D12 − 1

2ρCD
aH

cosθ

√
U2 + V2 xξh2V−xηh1U

J

(7)

where h1 and h2 are the lame coefficients in the ξ and η direction, respectively; U and V are the
depth-averaged flow velocity components in the ξ and η direction; the unit discharge vector is
q = (q, p) = (UH, VH); z is the water level relative to the reference plane; β is the correction factor for
non-uniformity of the vertical velocity profile; f is the Coriolis parameter, which was neglected in this
study; g is the gravitational acceleration; C is the Chezy coefficient; νe is the depth mean effective vortex
viscosity, zs and zb are the dependent water levels at the water surface and channel bed, respectively.

2.3. Verification

The extended 2D numerical model was applied to a 102 km long, ‘S’ shaped channel section in the
middle Yangtze River, and the bank along the river from Shashi to Shishou is protected by the riparian
vegetation. An orthogonal curvilinear coordinate system was applied with a total of 600 × 115 grids in
the computational domain and a time interval of t = 8 s (Figure 1). The angles between the ξ and η grid
lines were 88◦ and −92◦, except for some grids close to the banks. The grid spacing was 100–180 m in
the ξ direction and 35–45 m in the η direction. Observed daily water discharge and sediment load
at the inlet were used as boundary conditions and bed contour maps dated September 2002 was the
initial topography [40]. Calculation of suspended load was divided to eight group ranging from 0.005
to 1 mm in diameter (Table 1). The sediment gradation in bed materials (Table 2), transport capacity
for various size groups, and river topography were adjusted every 24 h. The thickness of active layers
were La = 15 m. A real time period of two years was simulated, and the calculated results of flow
velocity, water stage and morphological changes were compared with the measured data.

41

Water 2019, 11, 2030

(a) (b)

Figure 1. Layout of the field study reach section and its computational mesh. (a) layout of the study
river section; (b) computational mesh.

Table 1. The fraction of suspended load being simulated.

No. 1 2 3 4 5 6 7 8

Size (mm) 0.004 0.008 0.016 0.031 0.062 0.125 0.25 0.5
Proportion 30 12.7 13.4 14.6 13.1 8.2 6.5 1.5

Table 2. The fraction of bed material.

No. Group Percentage of Bed Materials D50 (mm) Year

0.004 0.008 0.016 0.03 0.062 0.125 0.25 0.5 1
% 0 0 0 0.1 1.1 13.2 55.3 30 0.3 0.193 2002

Comparison of observed and calculated cross-sectional profile of depth averaged stream-wise
velocity for various discharges in November 2003 is shown in Figure 2, calculated depth-averaged
velocities were consistent with the observed asymmetrical velocity patterns, and the relative error
near the bank vegetation area was below 6%. Figure 3 shows the comparison of the measured and
calculated water stages at two hydrometric stations during September 2002–July 2004, which indicate
good agreements between simulations and measurements.

42

Water 2019, 11, 2030

(a) (b)

Figure 2. Measured and calculated cross-sectional profiles of depth-averaged velocity. (a) cross section
S1; (b) cross section S2.

(a) (b)

Figure 3. Comparison of the water stages at two control stations. (a) Shashi station; (b) Xinchang station.

Table 3 lists the measured and calculated total amount of deposition or scour. It indicates that the
largest discrepancy between observed and calculated of results was found in the entrance section from
Taipingkou-shashi, possibly due to the uncertainties introduced by the initial and boundary conditions.
Figure 4 is a comparison between the calculated and measured scour and deposition depths. It can be
seen that except the entrance section, the predicted pattern of scour and deposition agreed well with
observations if reliable information of bank material, riparian vegetation and bed material size could
be obtained. A comparison of changes of the bed level at the typical cross sections shows that as time
progressed, the pattern of the cross sections tended to the measurements with acceptable ranges of
error (Figure 5).

Table 3. Measured and calculated volumes of deposition (+) or scour (−).

River Section
Total Distance

(km)
Section Length

(km)
Measured
(106 m3)

Calculated
(106 m3)

Taipingkou-Shashi 8.47 8.47 −827.26 −1185.91
Shashi-Haoxue 58.65 50.19 −1705.39 −1730.82

Haoxue-Xinchang 73.62 14.96 −1353.62 −924.21
Xinchang-Shishou 93.38 19.76 −1508.87 −1719.86

43

Water 2019, 11, 2030

(a) (b)

(c) (d)

(e) (f)

Figure 4. Calculated and measured scour or deposition depths of reach section (x: the distance from
the x-direction/m; y: the distance from the y-direction/m; dz: the bed level changes/m). (a) Measured;
(b) calculated; (c) measured; (d) calculated; (e) measured and (f) calculated.

(a) (b)

Figure 5. Measured and calculated bed deformation at various typical cross sections. (a) cross section
S3 and (b) cross section S4.

44

Water 2019, 11, 2030

3. Numerical Modeling on the Transformation of Braided and Meandering Channel

3.1. Formation of the Braided Channel

The conceptual channel was 10,000 m long and 300 m wide, and the grid system of 400 × 80 nodes
was generated. The initial bed was flat with a 0.4% slope, the medium grain size of the sediment supply
and the bed material was 0.1 mm. The inlet water discharge and sediment feed rate are provided in
Table 4, and the outlet water level was constant during the simulation, the repose of the sediment ϕ′ =
14, and the lateral erosion coefficient of the bank as C = 0.011. The computational time interval Δt = 6 s,
and the simulation time period was 720 days.

Table 4. The experimental conditions.

Time Period
Time

(d)
Discharge

(m3/s)
The Medium Grain Size

(mm)
Sediment Supply

(kg/m3)

1 360 150 0.1 1
2 360 300 0.1 5

Figure 6 depicts an unstable braided river pattern after 720 days. Two control factors contributed
to the formation of the braided channel: Large and sudden variation in discharge resulted in broadened
channel cross-sections; large sediment supply led to aggradation up and down in the upper section of
the stream and the initially symmetric inflow became almost asymmetrical and formed point bars or
migrating central bars. It illustrated that a fluctuation in the controls would induce changes of the
braided channel pattern to another pattern.

Figure 6. Layout of the conceptual channel after 720 days.

3.2. The Transformation of the Braided Channel under Control Variables

Based on the simulated braided river, four numerical experiments were performed including the
effect of water discharge, sediment supply and bank vegetation. The experimental conditions can be
seen in Table 5.

Table 5. The experimental conditions.

No.
Flow Discharge

(m3/s)
Sediment Supply

(kg/m3)
Bank Vegetation

Time
(d)

1 150 5 Yes 600
2 300 1 No 600
3 300 5 No 600
4 150 1 Yes 600

Figure 7 depicts the final planform of the braided river for runs No. 1, 2 and 3. In run No. 1,
reduction of the discharge led to a weak sediment transport capacity, sedimentation took place in
the branch channel and a new main channel was formed in the upper section. With time processes,
aggradation resulted in higher bed elevations above the initial bed profile in the upstream, led to an
increase of the stream power in the downstream and a broad, island braided channel was formed

45

Water 2019, 11, 2030

(Figure 7a). The braided channel in run No. 2 also transferred to a meandering channel in the upstream
with different mechanisms compared with run No. 1: A reduction of sediment load resulted in
less aggradation and bed scour in the upper part, and might be a key factor in the formation of a
straight channel pattern with no island-bars in the downstream (Figure 7b). Figure 7c shows that bank
vegetation enhanced the strength of banks, stabilized the channel, held on the sediment and the plan
view seemed like that of run No. 2. As shown in Figure 7d, the planform of run No. 4 was obtained by
the contribution of the influence of discharge, sediment supply and bank vegetation. It can be seen that
the channel transformed to a single thread channel pattern differing from the other three numerical
experiments, especially in the downstream; the reach downstream was sketched, where the wetted
and active branches were marked off.

(a) Run No.1.

(b) Run No.2.

(c) Run No.3.

(d) Run No.4.

Figure 7. Layout of the experimental channel after 600 days (HCEN: Bed level/m). (a) Run No. 1;
(b) Run No. 2; (c) Run No. 3; (d) Run No. 4.

46

Water 2019, 11, 2030

4. Discussion

4.1. The Cross Section Change

Figure 8 shows the comparison of the bed deformations between runs No. 1–3 and the initial
braided river at the 6000 m cross section. As decreasing the discharge and sediment load respectively
in run No.1 and 2, the main channel shifted to the right bank as the sand bars growing at the left
bank; the shape of the cross section transit from “W” to “U”; the width ratio was lower and the depth
of the channel in run No. 3 was deeper than that of run No. 1–2, it illustrated that the vegetation
could increase tensile and shear strength, gave adequate time and conditions for development, such
stabilization allows the existence of relatively steep cut banks, and might hinder the lateral migration
of channels [41].

Figure 8. Comparison of bed deformation at the 6000 m cross-section.

4.2. The Channel Planform Change

The quantified parameters characterizing run No. 1–4 were obtained in Table 3. “Braided -channel
ratio” B was used to describe the development of multiple channels from a channel belt as follows [42]:

B = Lctot/Lcmax, (8)

where Lctot is the sum of the mid-channel lengths of all the segments of primary channels in a reach
and Lcmax is the mid-channel length of the same channel.

Table 6 shows the braiding and meandering parameters for run No. 1–4. Due to the similar plan
view in run No. 2 and run No. 3, one could see the values of the sinuosity (P) and braided-channel
ratio (B) tended to correlate negatively with the reduction of breaches. Figure 9 presents the sketch of
the braided reach for the initial and run 1, 2 and 4. Theoretically, if a reach has only a single channel,
with no braids, the braided-channel ratio (B) would approach 1 as the sinuosity (P) of the river section
has the minimum value of unity.

Table 6. The parameters of the braided reach.

No. Number of Breaches Braided-Channel Ratio (B) Sinuosity (P)

Run No. 1 6 2.11 1.06
Run No. 2 5 1.9 1.00
Run No. 3 4 1.97 1.01
Run No. 4 2 1.22 1.35

47

Water 2019, 11, 2030

(a) (b)

(c) (d)

Figure 9. Sketch of the braided reach for initial and run 1–4. (a) Initial reach; (b) run 1; (c) run 2 and (d)
run 4.

A large portion of branches exhibited morphological activity, with seven branches in initial reach
as shown in Figure 9a, the number of branches was reduced to two in run No. 4 while the channel
pattern became the meandering (Figure 9d). The results reflected that the value of P would decrease
with the channel belts intersect each other, and the channel belts developing along the single-channel,
meandering arm had higher sinuosity. The flow field of run No. 4 was plotted in Figure 10, including
the velocity and bed elevation; it can be seen that reduction of the inlet discharge and sediment supply
led to a meandering flow path. The results demonstrate that the discharge and sediment supply played
a significant role in the transformation mechanism of channel patterns, which agreed qualitatively
with the previous work on this topic [10].

(a) T = 300 d

(b) T = 300 d

Figure 10. Temporal changes in flow field including velocity and bed elevation of Run No. 4.
(a) T = 300 d and (b) T = 300 d.

48

Water 2019, 11, 2030

4.3. Comparison with the Empirical Dimensionless Braiding Criterion

Just over 50 years ago Leopold and Wolman [4] published their classic analysis of alluvial
river patterns. The number of channel classification schemes increased rapidly in the following
decades. The single most cited component of Leopold and Wolman is the empirical expression for the
meandering-braiding threshold slope, S*:

S∗ = 0.0125×Q−0.44, (9)

where Q is the bankfull discharge (m3/s). Channel pattern is determined at least in part by both the rate
and mode of sediment transport, an obvious shortcoming of Equation (9) is the absence of bed material
size. Henderson [43] reanalyzed the Leopold and Wolman data and derived an equivalent expression:

S∗ = 0.52 ·D1.14
50 ×Q0.44, (10)

where D50 is the median bed surface grain size (m). Equation (10) can be expressed using the
dimensionless discharge defined by Parker [44]. The dimensionless discharge, Q*, is given by:

Q∗ = Q

D2
50

√
(s− 1)gD50

, (11)

where s is the specific gravity of the sediment grains. Millar [45] found that for channels where the
relative bank strength does not change appreciably with the channel size, and then combined regime
theory with a linear stability model to generate a morphodynamic power functions that describe the
threshold slope as a function of Q:

S∗ = 0.00957μ′Q∗−0.25, (12)

where μ′ is the dimensionless relative bank strength given by the ratio of the critical shear stress for
entrainment of the channel banks to the critical shear stress for the channel bed.

Figure 11 shows the temporal changes of the braiding criterion under four different simulation
conditions. It can been seen that the data of run No. 1–3 were located in the upper bound for the
braided channels, and run No. 4 data was in the lower bound for braided stream. It indicates that
the relative bank strength strongly influenced channel geometry, and so for channels where the banks
were more resistant than the bed, because of vegetation, we could expect a single-thread channel to
persist in a region where braiding would otherwise be expected to occur [46].

Figure 11. Dimensionless braid thresholds with the numerical experiment data.

49

Water 2019, 11, 2030

5. Conclusions

This paper presented research on the transformation mechanisms from a braided to meandering
pattern by a numerical approach. A 2D depth-averaged hydrodynamic model for hydrodynamic,
sediment transport and river morphological adjustment was applied in the numerical experiment.
A conceptual braided channel and its transformation with different control factors were simulated
to study the mechanics of fluvial process. It demonstrated that the tendency of the research on the
mechanisms of fluvial processes might be regarded as a combination of the theoretical study with
numerical models in future. Further studies are needed to research the fundamental equation that
governs the evolution of alluvial river, which has not been fully understood to ensure the availability
of the numerical model.

Author Contributions: Numerical model and experiment, S.Y. and Y.X.; analysis and manuscript preparation,
S.Y. and Y.X.

Funding: This research was founded by [the National Natural Science Foundation of China] grant number
[51679020].

Acknowledgments: We greatly appreciate anonymous reviewer’s constructive comments which helped to
improve the quality of our manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

τi j The shear-stress tensor
τ The total shear stress near the river bank
S The slope of the water surface
u, v The time-averaged flow velocity components in the Cartesian coordinate system
a The vegetation density
lx, ly The distance of vegetation in the longitudinal and transverse direction
ξ, η The orthogonal curvilinear coordinates
h1, h2 The Lamé coefficients
J The Jacobian of the transformation J = h1h2
Z The water level relative to the reference plane
H The averaged water depth
U, V The depth-averaged velocity components in the ξ and η directions
β The correction factor for the non-uniformity of the vertical velocity
f The Coriolis parameter
g The gravitational acceleration
C The Chezy coefficient
υe The depth mean effective vortex viscosity
D11, D12, D21, D22 The depth-averaged dispersion stress terms
zs, zb The dependent water levels for the water surface and channel bed
θ The inclination of the location
Dr The vegetation stress term
k von Karman constant
Δt The time increment
B The “braided-channel ratio”
Lctot The sum of the mid-channel lengths of all the segments of primary channels in a reach
Lcmax The mid-channel length of the same channel
S* The meandering-braiding threshold slope
Q The bankfull discharge
Q* The dimensionless discharge
D50 The median grain size

50

Water 2019, 11, 2030

References

1. Richardson, W.R.; Thorne, C.R. Multiple thread flow and channel bifurcation in a braided river:
Brahmaputra-jamuna river, Bangladesh. Geomorphology 2001, 38, 185–196. [CrossRef]

2. Biedenharn, D.S.; Watson, C.C.; Thorne, C.R. Fundaments of fluvial geomorphology. In Sediment Engineering:
Processes, Measurements. Modelling and Practice; Garcia, M.H., Ed.; ASCE: New York, NY, USA, 2008;
pp. 355–386.

3. Nicholas, A.P. Modelling bedload yield in braided gravel bed rivers. Geomorphology 2000, 36, 89–106.
[CrossRef]

4. Leopold Luna, B.; Wolman, M. Gordon. River Channel Patterns: Braided, Meandering and Straight; U.S.
Government Printing Office: Washington, DC, USA, 1957.

5. Acker, P.T.; Charlton, F.G. The geometry of small meandering streams. Proc. Inst. Civil Eng. 1971, 172,
289–317.

6. Schumm, S.A.; Khan, H.R. Experimental study of channel patterns. Geol. Soc. Am. Bull. 1972, 83, 1755–1770.
[CrossRef]

7. Ikeda, H. A study of the formation of sand bars in an experimental flume. Geogr. Rev. Jpn. 1973, 46, 435–452.
[CrossRef]

8. Ikeda, H. On the bed configuration in alluvial channels; their types and condition of formation with reference
to bars. Geogr. Rev. Jpn. 1975, 48, 712–730. [CrossRef]

9. Ashmore, P.E. Laboratory modeling of gravel braided stream morphology. Earth Surf. Process. Landf. 1982, 7,
201–225. [CrossRef]

10. Ashmore, P.E. How do gravel-bed rivers braid? Can. J. Earth Sci. 1991, 28, 326–341. [CrossRef]
11. Gill, M.K. Erosion of sand beds around spur dikes. J. Hydraul. Div. 1972, 98, 1587–1602.
12. Klingeman, P.C.; Kehe, S.M.; Owusu, Y.A. Steambank Erosion Protection and Channel Scour Manipulation Using

Rockfill Dikes and Gabions; Technical Report; Water Resources Research Institute: Corvallis, OR, USA, 1984.
13. Kuhnle, R.A.; Alonso, C.; Shields, F.D. Geometry of scour holes associated with 90 spur dikes. J. Hydraul. Eng.

1999, 125, 972–978. [CrossRef]
14. Eaton, B.C.; Millar, R.G.; Davidson, S. Channel patterns: Braided, anabranching, and single-thread.

Geomorphology 2010, 120, 353–364. [CrossRef]
15. Van den Berg, J.H. Prediction of alluvial channel pattern of perennial rivers. Geomorphology 1995, 12, 259–279.

[CrossRef]
16. Alabyan, A.M.; Chalov, R.S. Types of river channel patterns and their natural controls. Earth Surf. Process.

Landf. 1998, 23, 467–474. [CrossRef]
17. Beechie, T.J.; Liermann, M.; Pollock, M.M.; Baker, S.; Davies, J. Channel pattern and river-floodplain dynamics

in forested mountain river systems. Geomorphology 2006, 78, 124–141. [CrossRef]
18. Ikeda, S.; Parker, G.; Sawai, K. Bend theory of river meanders, 1, Linear development. J. Fluid Mech. 1981,

112, 363–377. [CrossRef]
19. Johannesson, H.; Parker, G. Linear theory of river meanders. Water Resour. Monogr. 1989, 12, 181–213.
20. Zolezzi, G.; Seminara, G. Downstream and upstream influence in river meandering. Part1: General theory

and application to overdeepening. J. Fluid Mech. 2001, 438, 183–211. [CrossRef]
21. Crosato, A. Analysis and Modelling of River Meandering. Ph.D. Thesis, Delft University of Technology,

Delft, The Netherlands, 2008.
22. Osman, A.M.; Thorne, C.R. Riverbank stability analysis, I: Theory. J. Hydraul. Eng. 1988, 114, 134–150.

[CrossRef]
23. Mosselman, E. Morphological modeling of rivers with erodible banks. Hydrol. Process. 1998, 12, 1357–1370.

[CrossRef]
24. Darby, S.E.; Alabyan, A.M.; Van de Wiel, M.J. Numerical simulation of bank erosion and channel migration

in meandering rivers. Water Resour. Res. 2002, 38, 1–21. [CrossRef]
25. Duan, J.G.; Julien, P.Y. Numerical simulation of meandering evolution. J. Hydrol. 2010, 391, 34–46. [CrossRef]
26. Murray, A.B.; Paola, C. A cellular model of braided rivers. Nature 1994, 371, 54–57. [CrossRef]
27. Murray, A.B.; Paola, C. Modelling the effect of vegetation on channel pattern in bedload rivers. Earth Surf.

Proc. Land 2003, 2, 131–143. [CrossRef]

51

Water 2019, 11, 2030

28. Paola, C. Modelling stream braiding over a range of scales. In Gravel Bed Rivers; Mosley, M.P., Ed.;
New Zealand Hydrological Society: Wellington, New Zealand, 2001; pp. 111–146.

29. Thormas, R.; Nicholas, A.P. Simulation of braided river flow using a new cellular routing scheme.
Geomorphology 2002, 43, 179–196. [CrossRef]

30. Takebayashi, H.; Okabe, T. Numerical modeling of braided streams in unsteady flow. Water Manag. 2009,
162, 189–198.

31. Bridge, J.S.; Lunt, I.A. Depositional models of braided rivers. In Braided Rivers: Process, Deposits, Ecology and
Management; Wiley: Hoboken, NJ, USA, 2009.

32. Jang, C.L.; Shimizu, Y. Numerical analysis of braided rivers and alluvial fan deltas. Eng. Appl. Comput.
Fluid Mech. 2009, 1, 390–395. [CrossRef]

33. Schuurman, F.; Kleinhans, M. Self-formed braided bar pattern in a numerical model. In River, Coastal and
Estuarine Morphodynamics; Springer: Berlin/Heidelberg, Germany, 2011.

34. Lotsari, E.; Wainwright, D.; Corner, G.D.; Alho, P.; Kayhko, J. Surveyed and modeled one-year
morphodynamics in the braided lower Tana River. Hydrol. Process. 2014, 28, 2685–2716. [CrossRef]

35. Karmaker, T.; Dutta, S. Prediction of short-term morphological change in large braided river using 2D
numerical model. J. Hydraul. Eng. 2016, 142, 04016039. [CrossRef]

36. Crosato, A.; Mosselman, E. Simple physics-based predictor for the number of river bars and the transition
between meandering and braiding. Water Resour. Res. 2009, 44, W03424. [CrossRef]

37. Xiao, Y.; Shao, X.J.; Wang, H.; Zhou, H. Formation process of meandering channel by a 2D numerical
simulation. Int. J. Sediment. Res. 2012, 3, 306–322. [CrossRef]

38. Xiao, Y.; Yang, S.F.; Su, L. Fluvial sedimentation of the permanent backwater zone in the Three Gorges
Reservoir, China. Lake Reserv. Manag. 2015, 31, 324–338. [CrossRef]

39. Ikeda, S.; Izumi, N. Width and depth of self-formed straight gravel rivers with bank vegetation. Water
Resour. Res. 1990, 26, 2353–2364. [CrossRef]

40. CWRC. Hydrological data of Changjiang River Basin. Annual Hydrological Report of P. R. China; Changjiang Water
Resources Commission: Beijing, China, 2004.

41. Bridge, J.S. The Interaction between Channel Geometry, Water Flow, Sediment Transport and Deposition in Braided
Rivers; Geological Society, Special Publications: London, UK, 1993; Volume V75, pp. 13–71.

42. Friend, P.F.; Sinha, R. Braiding and meandering parameters. In Braided Rivers; Best, J.L., Bristow, C.S., Eds.;
The Geological Society: London, UK, 1993; pp. 105–112.

43. Henderson, F.M. Stability of alluvial channels. Trans. ASCE 1963, 128, 657–686.
44. Parker, G. Hydraulic geometry of active gravel rivers. J. Hydraul. Div. ASCE 1979, 105, 1185–1201.
45. Millar, R.G. Theoretical regime equations for mobile gravel-bed rivers with stable banks. Geomorphology

2005, 64, 207–220. [CrossRef]
46. Eaton, B.C.; Giles, T.R. Assessing the effect of vegetation-related bank strength on channel morphology

and stability in gravel bed streams using numerical models. Earth Surf. Process. Landf. 2009, 34, 712–714.
[CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

52

water

Article

Implementation of a Local Time Stepping Algorithm
and Its Acceleration Effect on Two-Dimensional
Hydrodynamic Models

Xiyan Yang, Wenjie An, Wenda Li and Shanghong Zhang *

Renewable Energy School, North China Electric Power University, Beijing 102206, China;
120192211870@ncepu.edu.cn (X.Y.); 120192211845@ncepu.edu.cn (W.A.); 120192111184@ncepu.edu.cn (W.L.)
* Correspondence: zhangshanghong@ncepu.edu.cn

Received: 11 February 2020; Accepted: 7 April 2020; Published: 17 April 2020

Abstract: The engineering applications of two-dimensional (2D) hydrodynamic models are restricted
by the enormous number of meshes needed and the overheads of simulation time. The aim of this
study is to improve computational efficiency and optimize the balance between the quantity of
grids used in and the simulation accuracy of 2D hydrodynamic models. Local mesh refinement and
a local time stepping (LTS) strategy were used to address this aim. The implementation of the LTS
algorithm on a 2D shallow-water dynamic model was investigated using the finite volume method
on unstructured meshes. The model performance was evaluated using three canonical test cases,
which discussed the influential factors and the adaptive conditions of the algorithm. The results of
the numerical tests show that the LTS method improved the computational efficiency and fulfilled
mass conservation and solution accuracy constraints. Speedup ratios of between 1.3 and 2.1 were
obtained. The LTS scheme was used for navigable flow simulation of the river reach between the
Three Gorges and Gezhouba Dams. This showed that the LTS scheme is effective for real complex
applications and long simulations and can meet the required accuracy. An analysis of the influence
of the mesh refinement on the speedup was conducted. Coarse and refined mesh proportions and
mesh scales observably affected the acceleration effect of the LTS algorithm. Smaller proportions of
refined mesh resulted in higher speedup ratios. Acceleration was the most obvious when mesh scale
differences were large. These results provide technical guidelines for reducing computational time
for 2D hydrodynamic models on non-uniform unstructured grids.

Keywords: two-dimensional hydrodynamic model; local time stepping; unstructured grids; numerical
simulation; computational efficiency

1. Introduction

The numerical simulation of shallow water flow is frequently used in flood forecasting,
river regulation, and flood-control planning [1]. Given the need for better accuracy and breadth
of shallow-water simulations in engineering applications, a balance between the number of cells,
simulation accuracy, and computational time needs to be found. Addressing this issue using
optimization of the solving algorithm [2–4] has received much research attention, as has the use of
computer hardware acceleration and parallel computing technology [5–7].

The local mesh refinement technique is especially efficient for balancing the number of grids and
the accuracy of the simulation. It is flexible and allows grids to be arranged according to different
engineering concerns, while retaining a high level of refinement in regions requiring detail, such as
where flows change sharply or where there are key features. A coarse mesh is used in general or
slow-flowing areas. Consequently, the simulation accuracy can be ensured with only a small increase
in the number of grids. This technique has been broadly used in engineering applications involving

Water 2020, 12, ; doi:10.3390/w12041148 www.mdpi.com/journal/water53

Water 2020, 12,

shallow-water flow simulations [8–12]. However, the time step must strictly satisfy the model solution,
which is obtained using the Courant–Friedrichs–Lewy (CFL) stability condition. When using a locally
refined mesh, the global time stepping (GTS) size is limited by the time step of the refined mesh,
which markedly increases the overall computation time.

In response to this issue, Osher and Sanders [13] proposed a local time stepping (LTS) algorithm
for solving the one-dimensional (1D) scalar conservation equations. In each cell, a locally allowable
maximum time step satisfying the CFL stability condition was adopted to minimize the computational
time. This effectively deals with the complexity of the lag caused by the heterogeneous time step.
Tan and Huang [14] developed an efficient adaptive mesh refinement (AMR) with an LTS algorithm
for 1D nonlinear hyperbolic problems. Crossley et al. [15,16] successfully applied the LTS technique
to the modeling of open channel flows using 1D Saint-Venant equations; their results for unsteady
shallow-water equations with LTS met the required accuracy. Consequently, the use of LTS algorithms
has enabled significant progress in 1D hydrodynamic simulations. Compared with 1D models for
simulating long and wide rivers, two-dimensional (2D) hydrodynamic models are better suited to
complex terrains and provide more precise simulation results. Dazzi et al. [17,18] used AMR to
implement an LTS algorithm in the numerical simulation of 2D shallow-water flow for a steady-state
test case, a circular dam break case, and a Tacker test case. Using the time step of each cell and the CFL
condition, they evaluated whether the cell’s current time step met the CFL condition. If the condition
was not met, then the rule of degrading the time-step rank was implemented, which involved a dynamic
inspection of the time step for each cell over the whole computational domain. Wu et al. [19] adopted
the LTS technique to avoid excessive storage when modeling three-dimensional (3D) fluid dynamics
using the discontinuous finite element method. The powerful function of 3D models determines their
complex and elusive performance. At present, hydrodynamic modeling is dominated by 2D modeling,
which can provide sufficiently reliable results, such as for river navigation.

Nevertheless, recent research has paid increasing attention to this aspect with a suitable treatment
of unstructured grids and has yielded promising results. Although the numerical procedure has
unique advantages in terms of mesh generation, storage, use of elements, capturing of specific
physical phenomena, and computational efficiency, the boundaries of such regular grids are too
generalized and are not geometrically adaptable. Furthermore, the computational accuracy of the
boundaries is extremely rough and neglects terrain changes, and is thus limited in its scope. The use of
unstructured grids provides highly adaptable solutions for complex terrains. Unstructured grids can
incorporate a region’s boundaries and constraints using mesh density control in continuous regions.
Consequently, unstructured grids play a dominant role in grid generation technology. Using the
Runge–Kutta discontinuous Galerkin finite element method, Trahan and Dawson [20] applied LTS to
the shallow-water equations and incorporated rainfall, wetting, and drying into the model. Using
LTS, Hu et al. [21] established a new coupled model, which had high computational efficiency,
for sediment-laden flows. The computational domain was discretized using unstructured triangular
meshes. The inter-cell numerical fluxes were estimated using the Harten–Lax–van Leer–Contact
(HLLC) approximate Riemann solver. The model used by Hu et al. was applied to the Taipingkou
waterway of the Yangtze River and achieved a 92% reduction in computational cost without loss
of quantitative accuracy. To solve the problem of mass conservation linked to time splitting in LTS
algorithms, Michael [22] improved the finite volume method (FVM) using a deformation correction
to achieve local mass conservation, while a row-oriented sub-stepping was proposed to deal with
Courant numbers larger than one.

Despite several successful studies based on the LTS algorithm, the computation of flux at the cells
with different time-step levels has not been dealt with clearly in recent research. The calculation of the
unit variables at the interface is difficult because the use of the local time-step invariably leads to time
faults. The calculation of element variables at the interface is crucial but is difficult because of time
splitting errors in the LTS algorithm. Implementation of the LTS algorithm on unstructured grids is
also valuable for advancing the knowledge base. No specific comparison of the acceleration efficiency

54

Water 2020, 12,

of the LTS algorithm has been demonstrated in the existing research. To address these issues, the LTS
technique was applied in the establishment of a high-efficiency, 2D, shallow-water, dynamic model
using the FVM and unstructured grids. Experiments were performed to verify the flux approximation
at the interface, to assess the accuracy of the results, and to analyze the feasibility analysis of the LTS
algorithm for complex applications. Model evaluation was performed using 2D simulations of two
instantaneous dam break test cases and engineering applications that simulate the navigable flow of
the river reach between the Three Gorges and Gezhouba Dams. These tests show the acceleration
effect, influencing factors, and the adaptive conditions of the LTS algorithm.

2. Methods

2.1. Global Time Stepping Scheme

2.1.1. Governing Equation

The governing equations used herein are the 2D shallow-water equations (SWEs), written in
conservation form [23]:

∂U
∂t

+
∂F(U)

∂x
+
∂G(U)

∂y
= S0(U, x, y) + S f (U, x, y) (Ω × [0, Ts]). (1)

In the present study, the modified form of the SWEs was selected to guarantee that the scheme
was well-balanced. The variables follow from

U =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
h

hu
hv

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦, F(U) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
hu

hu2 + 1
2 gh2

huv

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦, G(U) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
hv

huv
hv2 + 1

2 gh2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦,
S0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0

−gh∂zb
∂x

−gh∂zb
∂y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, S f =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0

−gh n2u
√

u2+v2

h4/3

−gh n2v
√

u2+v2

h4/3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,
where U is the vector of conserved variables; F and G are the tensors of fluxes in the x and y directions,
respectively; S0 and S f are the bed and friction slope source terms, respectively; x and y represent the
spatial horizontal coordinates; u and v represent the average velocity components from integration of water
depth in the x and y directions, respectively; h is the flow depth; zb is the bed elevation above the datum;
g represents the acceleration related to gravity; n is Manning’s roughness coefficient; Ts is the duration.

2.1.2. Numerical Technique

Because of the nonlinear characteristics of the SWEs, the analytical solution cannot be obtained
generally but can be approximated by numerical discretization. The FVM was used to discretize
the governing equation. The computational region was discretized into several points. With these
points as the center, the whole computational domain was divided into several interconnected but
non-overlapping control volumes. By integrating the basic equation with each control volume, a set of
algebraic equations with the unknown quantity on the calculation node was obtained. A triangular
mesh was used to discretize the computational domain to adapt the boundary conditions for a complex
terrain. The cell-centered mode was used in the calculations, which means that the physical variables
are defined in the center of the control volume [24], as shown in Figure 1.

55

Water 2020, 12,

Figure 1. Schematic diagram of the two-dimensional model with finite volume discretization: physical
variables are defined at the grid center, where Ωk is the kth control volume; n is the unit normal vector;
p(i, j) is a grid point; and Δlk j is the length of a side.

Integration of Equation (1) over the area of the governing volume Ω, gives∫
Ωi

(
∂U
∂t

+ ∇·E
)
dΩ =

∫
Ωi

(
S0 + S f

)
dΩ. (2)

In Equation (2), E = [F, G] represents a 2D matrix.
The volume integral is transformed to a line integral along the edge of the control volume using

Gauss’ formula
Δuk
Δt

Δsk = −
∫

lk
E·ndl +

∫
Ωk

(
S0 + S f

)
dΩ, (3)

where Uk is the average value of the governing cell; lk is the edge of the kth control volume Ωk; Δsk is
the area of each calculation cell; n is the unit vector of the normal direction outside the edge.

After discretization of Equation (3), the following formula is obtained:

ΔU = − Δt
Δsk

3∑
j=1

(
Ekj, nkj

)
Δlk j +

Δt
Δsk

S, (4)

where Δlk j is the length of each side (using triangular grids, j = 1, 2, 3); and Ekj and nkj represent the
numerical fluxes and the external normal unit vector of edge j. S0 =

∫
Ωi

S0dΩ and S f =
∫

Ωi
S f dΩ =

ΔskS f represent the integral values of the bed and friction slope source terms in the mesh cell,

respectively. The notation
(
Ekj, nkj

)
denotes the inner product.

Commonly used approximate Riemann solvers for the discontinuous problem include the Osher,
Roe, Harten–Lax–van Leer (HLL), and HLLC schemes [25]. In the present study, the fluxes at the
interface of the governing cell were estimated using the Roe scheme. The physical variables UL and UR

on the interface of the left and right grid were determined to solve the Riemann discontinuity problem.
The flux expression is defined as follows [26–29]:

E·n =
1
2
[(F, G)R·n + (F, G)L·n− |̃J|(UR −UL)], (5)

56

Water 2020, 12,

where J̃ = ∂(E·n)
∂U is the Roe average of the Jacobian matrix. The three eigenvalues of the Jacobian matrix

are λ̃k(k = 1, 2, 3), while the related eigenvectors are ẽk. The left and right interface conservative form
variables are UL and UR, respectively.

To improve the adaptability of the model to complicated terrain conditions, the source term
reflecting the bottom topography was managed using an eigen-decomposition method, while upwind
treatment was applied to balance the interface flux [30,31]:

S0 =
3∑

j=1

3∑
k=1

[
1
2
(1− sign(λ̃k))βkẽkl j]

j
, (6)

where sign() is the sign function. In this case, β1 = − 1
2 c̃Z̃b, β2 = 0, and β3 = 1

2 c̃Z̃b. Furthermore, c̃ is
the average velocity given by the Roe scheme; and Z̃b =

1
2 [(Zb)L + (Zb)R]; while (Zb)L and (Zb)R are

the bottom elevations of the left and right side, respectively.
An explicit scheme that discretizes the frictional slope source term was carried out to increase

the stability of the computation. Eventually, the variation of the conservation after undergoing Δt
was obtained.

ΔU = I
Δt
A
[(−

3∑
j=1

E jn jl j) +
3∑

j=1

3∑
k=1

(
1
2

(
1− sign(λ̃k)

)
βkẽkl j)

j + ΔtSn
f], (7)

where I is the unit matrix. Superscripts n and n + 1 refer to the current and updated time levels,
respectively. Δt is the globally permissible time step, which must be computed according to the CFL
stability condition [32]:

Δtg
i = Cr min

j=1,2,3
(

di, j√
u2

i + v2
i +

√
ghi

), (8a)

Δt = min
(
Δtg

i

)
, (8b)

where i is the computational cell index, with values of 1, 2, . . . , Ne. The term Ne refer to the total
number of computational grid elements; di, j is the distance from the center of the cell (triangle centroid)
to the three sides; ui and vi are the velocities in the x and y directions, respectively, of cell i; hi is the
flow depth of cell i. The Courant number Cr was set to 0.8.

In the traditional GTS algorithm, the time step Δt is equal to the minimum value for the whole
computational domain and is proportional to the size of the grid elements. When the scale of each
mesh element varies markedly, the uniform time-step restriction will severely reduce the efficiency of
the model operation. Therefore, it is essential to explore an efficient method in which the time-step
changes with the mesh size and satisfies the CFL conditions.

2.2. Local Time Stepping Scheme

The key approach in the LTS algorithm is to advance each cell with a time step as close as possible
to its maximum allowable value while satisfying the stability of the CFL condition. The algorithm
reconstructs the time-step level of each cell with the aim of reducing the computational load of coarse
grids, consequently saving computational time. Figure 2 compares the implementation of GTS versus
LTS algorithms. The LTS algorithm differs in two aspects: reconstructing the local time step of each
cell (Section 2.2.1) and updating values of the conserved variables ΔU (Section 2.2.2).

57

Water 2020, 12,

Figure 2. Flow diagram showing global time stepping (GTS) and local time stepping (LTS) algorithms.
In the GTS scheme, each cell is updated with the same time step Δt, while in the LTS scheme, a locally
allowable maximum time step (Δtb

i) is used for updating variables in each cell.

2.2.1. Reconstructing the Local Time Step of Each Cell

This procedure is defined as follows:
(1) Compute the initial time step Δt∗i
The Δt∗i of each cell satisfying the CFL condition is computed via Equation (9a):

Δt∗i = Cr min
j=1,2,3

(
di, j√

u2 + v2 +
√

gh
), (9a)

where u and v are the maximum velocities in the x and y directions, respectively; and h is the maximum
water depth.

Next, calculate the minimum time step Δtr in the whole computational domain:

Δtr = min
(
Δt∗i

)
. (9b)

(2) Set an initial temporal resolution level for each cell
In terms of the CFL condition, the initial time step Δt∗i in cell i is proportional to the mesh scale di, j.

Taking the minimum time step Δtr over the whole computational domain as the reference standard,
a binary logarithmic function is selected as the conversion tool. Each cell is classified based on its initial
time step Δt∗i , with the allocation of an initial time-step level m∗i , reflecting the mesh scale and having
integer values of 1, 2, 4, 8, 16, 32, 64, . . . The initial m-level distribution map is shown in Figure 3a.

m∗i = int(log2

(Δt∗i
Δtr

)
), (10)

where the function of int() is to obtain the maximum integer that does not exceed the given number.

58

Water 2020, 12,

Figure 3. Example of the m-level assignment to each cell in the unstructured grid. (a) Distribution
showing initial values assigned by Equation (10); (b) distribution after being modified by Equation (11a),
with the reassignment of buffer zone values based on neighboring cells values.

(3) Modify the time-step level
The initial m-level distribution calculated by Equation (10) is usually scattered and broken (see

Figure 3a), especially within the transition zone between coarse and refined grids. This distribution
varies dramatically because of the large difference in mesh size. Appropriate measures need to be
taken to smooth the transition and to reduce mass and momentum errors in these zones related to
the calculation of conserved variables at interfaces between cells with different m-levels. The initial
m-levels are modified via Equation (11a), which produces a buffer zone.

mi = min
(
m∗i , mi,1, mi,2, mi,3

)
, (11a)

where mi, j(j = 1, 2, 3) is the time-step level of the three neighboring cells of cell i. The evaluation of the
time-step level mi in cell i is based on values of the neighboring cells: mi,1, mi,2, mi,3. If the time-step
level of the current cell is larger than that of the neighboring cells, then the mi value will be reduced
by one; otherwise, it will be retained. Thus, the difference between the m-levels of the current and
neighboring cells cannot exceed one. In this way, the time-step level mi (see Figure 3a) is modified via
Equation (11a), and the new m-level distribution is as shown in Figure 3b.

The maximum of time-step level mmax is given by

mmax = max(mi), (11b)

where L = mmax + 1 refers to the local time-step rank of the LTS algorithm in the computation (L =
1 represents the GTS solution). Building on the requirement of simulation accuracy, the maximum
value of the different time-step level mu is selected according to the simulation accuracy requirements,
and the restriction condition mi = min

(
mu, m∗i , mi,1, mi,2, mi,3

)
is added to Equation (11a).

In this case, the time step adopted by each calculation cell Δtb
i is

Δtb
i = 2mi Δtr. (11c)

The maximum time step Δtmax is

Δtmax = 2mmax Δtr (11d)

2.2.2. Calculation of Element Variables at the Interface

Once the local time-step level of each computation cell is reconstructed, no further cells are
updated with the same time step but are instead updated with the locally allowable time step at each

59

Water 2020, 12,

cell. The algorithm focuses on the convergence of the element variables at different time levels along
the interface. In a maximum time step Δtmax, the number of updates at each cell Ni is calculated using

Ni = 2mmax−mi . (12)

The expression for ΔU in Equation (7) is then replaced by Equation (13), in which Δtb
i from

Equation (11c) takes the place of Δtr in each computing cell. The improved expression is as follows:

ΔU = I
Δtb

i
A

[(−
3∑

j=1

E jn jl j) +
3∑

j=1

3∑
k=1

(
1
2

(
1− sign(λ̃k)

)
βkẽkl j)

j + Δtb
i Sn

f]. (13)

Then, Equation (13) is iterated Ni times, and the conserved variables of each cell are updated to
the same time level n, from which the variables at the next time level n + 1 are calculated until the
calculation time terminates.

The fluxes on the interface of the governing cell are estimated from the approximate Riemann
solution of the Roe scheme. However, the variable values of all cells at the current time level need to be
given to confirm the UR and UL values of the adjacent states on the left and right sides of the interface.
In the initial GTS model, the unified global time step Δt can meet these requirements. In the LTS
algorithm, however, when the m-level of the current and neighboring cells differ within the maximum
time step Δtmax, the update times are different, and time splitting occurs at the interface. In the present
study, the value of the missing element variable at the interface was obtained by linear interpolation of
the value of the element variable in two adjacent time layers. This is shown in Figure 4, where the
maximum time-step level mmax = 2. At the starting time of 0, we assumed that Δtr = 0.01 s. First,
the element variables of the coarse grid (m = 2) were computed only once, which consumes 0.04 s. Next,
the values for the intermediate meshes (m = 1) were calculated twice, costing 0.02 s for each calculation.
The local time step of the coarse mesh (m = 2) at the interface is, however, 0.04 s, which suggests that the
variable values at 0.02 s are missing. In the present study, the variable values U(h, u, v) were estimated
approximately using the average value of the former and the latter time step (1/2 of the variable value
at 0 and 0.04 s). Finally, the refined grids (m = 0) were calculated at four intervals, with time steps of
0.01 s. At 0.01 and 0.03 s, the values of the variables are absent at the interface of the cells having m = 1.
The above approximation method was again used. At 0.04 s, all cell variables were updated to the
same time level in preparation for the next iteration.

60

Water 2020, 12,

Figure 4. Sketch showing the calculation of element variables at an interface: the variable U(h, u, v)
refers to the water depth h, and the velocity components u and v in the x and y directions, respectively.
Within a maximum time step of Δtmax = 0.04 s, the coarse mesh areas (time-step level, m = 2) were
updated only once. The value of U1(h1, u1, v1) at 0 s was updated to U∗1

(
h∗1, u∗1, v∗1

)
after 0.04 s. The blank

value at 0.02 s was estimated using the average of the values at the former and the latter time-step

level, giving U′1
(

h1+h∗1
2 ,

u1+u∗1
2 ,

v1+v∗1
2

)
. Immediately following this, the intermediate grids (m = 1) were

updated twice over this maximum time step. The values of variables at 0.01 and 0.03 s were similarly
approximated. Finally, the refined mesh grids (m = 0) were updated four times over this interval.
All variables were ultimately updated to 0.04 s, which allowed the next time step to be performed.

3. Numerical Tests

Numerical tests were carried out to verify the reliability and adaptability of the LTS strategy
within a 2D hydrodynamic model, and to make a comparison between the effects of the novel LTS
and the original GTS strategies on the simulation results. To quantify these differences, we used the
mean-square error (MSE)

Ls(f) =

√√√
1

Ne

Ne∑
i=1

(fi,GTS − fi,L)
2, (14)

where Ls(f) refers to the MSE of variables f (such as water depth h, and velocity components u and
v in the x and y directions, respectively), and the subscript L refers to the local time-step rank of
the solutions.

The principle purpose of using the LTS algorithm instead of the GTS algorithm is to reduce the
computing time. The relative time saving ratio Tr and speedup ratio Sn were used as evaluation indices
of the computing efficiency for different L values.

The time saving ratio Tr is given by

Tr =
TGTS − TL

TGTS
× 100. (15a)

61

Water 2020, 12,

The speedup ratio Sn is given by

Sn =
TGTS

TL
, (15b)

where TGTS is the computation time of the GTS strategy, and TL is the computation time of the LTS
strategy using different local time-step rank values (L).

3.1. Anti-Symmetric Dam Break Case

A classic verification experiment that considers the anti-symmetric square dam break case has
been described by Fennema and Chaudhry [33]. The computational domain consists of a 200× 200 m
square region with a flat bottom (bed elevation of 0 m). In this problem, the dam is assumed to fail
instantaneously at a certain moment, producing an anti-symmetric breach with a width of 75 m at the
center of the calculation domain, which is 95 m from the x-axis boundary. The detailed geometry of
this problem is shown in Figure 5.

Figure 5. Sketch showing the plane geometry of an anti-symmetric dam break, with the breach
occurring in the center.

The computational domain was discretized on triangular meshes. Local mesh refinement
technology was adopted near the break to accurately reflect the important flow regions while
controlling the number of grids. The spatial resolution level varied from 6 to 1 m, with a refined
area of 5%. A total of 13,338 computing cells were generated. The LTS algorithm was applied to
shorten the computing time and improve the calculation efficiency. The m-level distribution of the
LTS strategy is presented in Figure 6. The simulation duration was Ts = 160 s. At the initial moment,
upstream water depth was set to 10.0 m, while downstream water depth was assumed to be 5.0 m.
Manning’s roughness coefficient was set to 0.03 [34].

Before making a quantitative analysis of the MSE generated by the LTS strategy, it is useful to verify
the validity of the GTS scheme applied to the original model. The numerical solution results at t = 7.2 s
were obtained using the GTS strategy; the resulting water surface profiles are shown in Figure 7a,
contours of water depth in Figure 7b, and velocity vector distribution in Figure 7c. These results
effectively simulated the dam break waves and are consistent with previous research results [34–36].

62

Water 2020, 12,

Figure 6. Details of the non-uniform unstructured meshes and time-step level (m-level) distribution for
the anti-symmetric dam break case.

Figure 7. Results of the simulation using the global time stepping strategy at dam break (t = 7.2 s).
(a) Three-dimensional visualization of the water surface; (b) contour plot of water depth; (c) velocity
vector distribution.

63

Water 2020, 12,

Table 1 shows the MSE of water depth h, as well as velocity components u and v along the x
and y directions, respectively, of the simulation results. As the value of the local time-step rank L
increased, the MSE increased accordingly. Both precision and efficiency are important when performing
hydrodynamic numerical simulations. By reducing the value of L, the calculation efficiency can be
improved when levels of high accuracy are reached. This observation agrees well with the research
results of Hu et al. [37]. In the present study, the error of the solution using the LTS algorithm was
within the 10−3 to 10−2 range. At the beginning of the calculation, the total water volume was 3 × 105

m3. When the value of L was 2, 3, and 4, the relative error of the water volume was 0.0017%, 0.0019%,
and 0.0045%, respectively, which indicates that the simulation meets the accuracy and conservation of
water volume requirements.

Table 2 shows the computing time, time-saving ratio, and speedup ratio for different values of L.
The simulation time of the dam break was 160 s. A time saving of 40% to 50% was achieved using
the LTS algorithm in the numerical experiment of the anti-symmetric square dam break. For L = 4,
a speedup ratio of 2.1 was achieved.

This clearly shows that the calculation efficiency of the numerical simulation of the anti-symmetric
square dam break is improved using the LTS technique (Figure 8). As the value of L increased,
the speedup ratio also increased, thus shortening the model operation.

Figure 8. Computational cost (s) and speedup ratios for different local time-step rank values (L) for the
anti-symmetric dam break case. As the value of L increases, the computational cost decreases and the
speedup ratio increases.

64

Water 2020, 12,

T
a

b
le

1
.

M
ea

n
sq

ua
re

er
ro

rs
of

w
at

er
de

pt
h

(h
)a

nd
ve

lo
ci

ty
co

m
po

ne
nt

s
(u

,v
)f

or
di
ff

er
en

tl
oc

al
ti

m
e-

st
ep

ra
nk

va
lu

es
(L

)i
n

th
e

an
ti

-s
ym

m
et

ri
c

da
m

br
ea

k
ca

se
.

t(
s)

L
=

2
L
=

3
L
=

4

L s
(u

)
×1

0
−2

L s
(v

)
×1

0
−2

L s
(h

)
×1

0
−2

L s
(u

)
×1

0
−2

L s
(v

)
×1

0
−2

L s
(h

)
×1

0
−2

L s
(u

)
×1

0
−2

L s
(v

)
×1

0
−2

L s
(h

)
×1

0
−2

7.
2

0.
41

0.
38

0.
22

0.
65

0.
56

0.
50

1.
07

0.
71

0.
79

15
.2

0.
34

0.
31

0.
17

0.
65

0.
64

0.
45

1.
02

0.
67

0.
87

23
.2

0.
50

0.
43

0.
39

1.
02

0.
81

1.
07

1.
84

1.
20

1.
99

31
.2

0.
66

0.
72

0.
57

1.
53

1.
45

1.
39

2.
81

2.
63

2.
62

39
.2

0.
74

0.
75

0.
29

1.
34

1.
37

0.
62

2.
43

2.
40

1.
04

47
.2

0.
55

0.
70

0.
30

0.
89

1.
24

0.
72

2.
03

3.
31

1.
63

55
.2

0.
55

0.
71

0.
36

0.
84

1.
06

0.
96

1.
72

2.
16

1.
76

63
.2

0.
51

0.
60

0.
31

0.
95

1.
18

0.
86

1.
63

3.
12

2.
14

71
.2

0.
71

0.
70

0.
30

1.
17

1.
25

0.
68

2.
82

2.
81

1.
46

79
.2

0.
64

0.
63

0.
27

1.
10

1.
05

0.
74

2.
54

2.
32

1.
50

12
0

0.
67

0.
63

0.
18

1.
33

1.
12

0.
47

2.
69

2.
26

1.
10

16
0

0.
61

0.
56

0.
24

1.
03

0.
97

0.
70

2.
35

2.
26

1.
85

av
er

ag
e

0.
57

0.
59

0.
30

1.
04

1.
06

0.
76

2.
08

2.
15

1.
56

65

Water 2020, 12,

Table 2. Computing time T (s), time-saving ratio Tr (%), speedup ratio (Sn) of different local time-step
rank values (L) for the anti-symmetric dam break case (GTS: global time stepping strategy).

Test T Tr Sn

GTS 608 - -
L = 2 349 43 1.74
L = 3 295 51 2.06
L = 4 285 53 2.13

3.2. Non-Flat Bottom Dam Break Case

In this test case, the length of the rectangular channel was 75 m, and its width was 30 m.
Three obstacles were placed on the bottom of the rectangular channel. Two obstacles had a radius of
6.5 m and a height of 1 m, and one had a radius of 8.6 m and a height of 2 m. The elevation expression
is defined as follows:

Zb(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
1− [(x− 30)2 + (y− 8)2]/42.25, (x− 30)2 + (y− 8)2 ≤ 42.25
1− [(x− 30)2 + (y− 22)2]/42.25, (x− 30)2 + (y− 22)2 ≤ 42.25
2− [(x− 52)2 + (y− 15)2]/36.89, (x− 52)2 + (y− 15)2 ≤ 73.98
0, else

.

Local mesh refinement was applied with a spatial resolution level varying from 0.5 to 3 m. The grid
generation results are shown in Figure 9. The total number of grid cells for the region was 6848.
In the calculation, a solid wall boundary condition was adopted. Manning’s roughness coefficient
was set to 0.018 [30]. The water depth for x ≤ 16 m in the computational domain was set to 2 m and
was assumed to be 0 m elsewhere. The variation of the ground level is shown in Figure 10a. In the
GTS scheme, the time step was 0.005 s, the initial total water volume was 959.841 m3, and the final
water volume was 959.978 m3. The relative error was 0.01%, which is within the discrete error range.
The model dealt well with wetting and drying fronts over the complex terrain, satisfied computational
stability, and conservation of water volume requirements, and provided results that were consistent
with previous experimental results [38,39].

Figure 9. Details of the non-uniform unstructured meshes, time-step level (m-level) distribution,
and bathymetric point arrangement for the non-flat bottom dam break case.

66

Water 2020, 12,

Figure 10. Three-dimensional visualization of the inundation process at various time points following
the dam break. (a) t = 0 s; (b) t = 10 s; (c) t = 30 s; (d) t = 100 s. (GTS: global time stepping strategy,
while L is the time-step rank value in the local time stepping strategy).

The distribution of m-values obtained by applying the LTS strategy is shown in Figure 9.
The maximum time-step level mmax is 2. The simulation of the dam break water flow was modeled for
Ts = 100 s. The inundation related to the dam break is shown in Figure 10. To observe the influence
of the LTS algorithm on the simulation results, four bathymetric measuring points were arranged
(see Figure 9 for the location of the measuring points). Figure 11 provides a comparison of water
depths generated by the LTS algorithm and the classical algorithm during the process of the dam
break. A visual inspection indicates that the simulated water depths from the two algorithms are

67

Water 2020, 12,

essentially the same. Thus, the LTS technique improves the efficiency of calculation without any
reduction in accuracy.

Figure 11. Comparison of water levels at different local time-step rank values (L) for the non-flat
bottom dam break case (GTS: global time stepping strategy).

According to the statistical results for this simulation (shown in Table 3), adopting the LTS
technology in the numerical experiment of the non-flat bottom dam break created a saving of up to
26% in computation time, and a speedup ratio of 1.3, without compromising the solution accuracy.
The best result was obtained for L = 3, which reduced the computational cost and improved the
calculation efficiency.

Table 3. Computing time T (s), time saving ratio Tr (%), speedup ratio (Sn) for different local time-step
rank values (L) for the non-flat bottom dam break case (GTS: global time stepping strategy).

Test T Tr Sn

GTS 148 - -
L = 2 115 22 1.28
L = 3 110 26 1.34

3.3. Navigable Flow Simulation Case

There are several noticeable perilous waterways between the Three Gorges Dam and the Gezhouba
Dam. The river section is about 38 km long [40,41]. Bed elevations measured in October 2008 provided
by the Three Gorges Navigation Authority were used as the initial bed topography. In the present study,
the three segments with the highest risk to shipping (the Letianxi, Liantuo, and Shipai riverways),
and the outlet of the Three Gorges Reservoir are adopted for local mesh refinement. The spatial

68

Water 2020, 12,

resolution level ranged from 10 to 100 m, and 36,297 cells and 19,011 nodes were generated. The results
of the grid generation and refined areas are shown in Figure 12.

Figure 12. Computational cells and details of refined areas for the river reach between the Three Gorges
and Gezhouba Dams.

The LTS algorithm was applied to the numerical simulation of the navigable flow of the waterway.
The results are provided in Table 4. The maximum time-step level (mmax = 4) and the minimum time
step (Δtr = 0.03 s) were calculated for the whole computational domain. The simulation duration
was set to Ts = 4 h. The absolute deviation in the water level between the calculated and measured
values was 0.06 to 0.07 m, and the relative deviation in flow velocity was between −3.8% and 4.6%.
There is no significant difference between the LTS and GTS algorithm simulation results for water
level and flow velocity. The mass errors are non-negligible for a large computational area and a long
simulation. This was addressed by adopting a smaller maximum time-step level mmax. The obvious
acceleration effect that this provides in the real application ensures that accuracy requirements are met.
It is clear that the LTS algorithm has provided obvious improvements in the execution time without
compromising the solution accuracy. This is of practical value and importance in navigation.

69

Water 2020, 12,

T
a

b
le

4
.

Si
m

ul
at

io
n

re
su

lt
s

fo
r

th
e

na
vi

ga
bl

e
flo

w
of

th
e

w
at

er
w

ay
be

tw
ee

n
th

e
Th

re
e

G
or

ge
s

an
d

G
ez

ho
ub

a
D

am
s.

D
a
ta

R
iv

e
r

R
e
a
ch

W
a
te

r
L

e
v

e
l

(m
)

F
lo

w
V

e
lo

ci
ty

(m
/s

)

O
b

se
rv

a
ti

o
n

T
im

e

D
is

ch
a
rg

e
(m

3
/s

)
M

e
a
su

re
d

C
a
lc

u
la

te
d

M
e
a
su

re
d

C
a
lc

u
la

te
d

G
T

S
L
=

2
L
=

3
L
=

4
L
=

5
G

T
S

L
=

2
L
=

3
L
=

4
L
=

5

20
08

.0
8.

20
28

,4
00

Le
tia

nx
i

V
al

ue
68

.3
2

68
.3

9
68

.3
9

68
.3

9
68

.3
9

68
.3

9
1.

56
1.

63
1.

63
1.

63
1.

63
1.

63
D

ev
ia

tio
n

-
0.

07
0.

07
0.

07
0.

07
0.

07
-

0.
07

0.
07

0.
07

0.
07

0.
07

20
08

.0
8.

20
29

,7
00

Li
an

tu
o

V
al

ue
68

.3
5

68
.4

1
68

.4
1

68
.4

1
68

.4
1

68
.4

1
2.

13
2.

16
2.

16
2.

16
2.

16
2.

16
D

ev
ia

tio
n

-
0.

06
0.

06
0.

06
0.

06
0.

06
-

0.
03

0.
03

0.
03

0.
03

0.
03

20
08

.0
9.

04
31

,7
00

Sh
ip

ai
V

al
ue

67
.8

3
67

.9
0

67
.9

0
67

.9
0

67
.9

0
67

.9
0

1.
61

1.
55

1.
55

1.
55

1.
55

1.
55

D
ev

ia
tio

n
-

0.
07

0.
07

0.
07

0.
07

0.
07

-
−0

.0
6

−0
.0

6
−0

.0
6

−0
.0

6
−0

.0
6

T
6.

65
3.

86
3.

56
3.

45
3.

39
T r

-
41

.9
6

46
.4

7
48

.0
6

48
.9

6
S n

-
1.

72
1.

87
1.

93
1.

96

G
TS

:g
lo

ba
lt

im
e

st
ep

pi
ng

st
ra

te
gy

;L
:l

oc
al

ti
m

e-
st

ep
ra

nk
in

th
e

lo
ca

lt
im

e
st

ep
pi

ng
st

ra
te

gy
;T

:e
xe

cu
ti

on
ti

m
e

(h
);

T r
:t

im
e

sa
vi

ng
ra

ti
o

(%
);

an
d

S n
:s

pe
ed

up
ra

ti
o.

70

Water 2020, 12,

4. Discussion

4.1. The Influence of the Proportion of Refined Mesh on the Acceleration Effect

In the anti-symmetric dam break case, the 75-m breach was used as the core area in which to
analyze the acceleration effect of the LTS algorithm. In this area, we set the refined area to different
proportions of the total area (4 hm2). The spatial resolution level varied from 1 to 6 m, with a minimum
resolution close to the breach of 1 m, surrounded by a smooth transition up to a maximum resolution
of 6 m in the outer domain. The mesh generation results for the refined areas for various proportions
in the anti-symmetric dam break case is shown in Figure 13. The numerical simulation was performed
for refined areas of 5%, 10%, 25%, 50%, and 75%. The impact of increasing the local refinement area on
the acceleration effect was analyzed for a time-step level of m = 0 in the refinement area, m = 2 in the
coarse grid area, and m = 1 in the buffer zone.

Figure 13. Locally refined areas of various proportions (%) in the anti-symmetric dam break case: the
refined area of (a) 5%; (b) 10%; (c) 25%; (d) 50%, (e) 75%.

The duration of the dam break Ts was kept at 160 s. Table 5 shows the number of generated grids,
computational cost, speedup ratio, and time-saving ratio for different refined area proportions. As the
refined area was increased, the total number of meshes generated by partitioning increased. The grid
number increased from 13,338 at 0.2 hm2 to 73,306 at 3 hm2, which represents an increase by a factor of
5.5. The operating time of the model rose from 608 to 3394 s, which represents an increase by a factor
of 5.6. The number of grids is a key factor determining the overhead of computing. There is a direct
positive correlation between the number of grids and computing overheads.

71

Water 2020, 12,

Table 5. Simulation results for different refined area proportions in the dam break simulation.

Refined Area
Proportion

Refined
Area (hm2)

Total Grid
Number

Test

Index GTS L = 2 L = 3

5% 0.2 13,338
T 608 467 436
Tr - 23% 28%
Sn - 1.30 1.39

10% 0.4 18,986
T 857 727 702
Tr - 15% 18%
Sn - 1.18 1.22

25% 1 32,230
T 1474 1328 1308
Tr - 9.8% 11.3%
Sn - 1.11 1.13

50% 2 48,622
T 2234 2197 2183
Tr - 1.6% 2.3%
Sn - 1.01 1.02

75% 3 73,306
T 3393 3376 3352
Tr - 0.5% 0.5%
Sn - 1.01 1.01

NB: GTS: global time stepping strategy; L: local time-step rank in the local time stepping strategy; T: execution time
(s), Tr: time-saving ratio, Sn: speedup ratio.

The speedup ratio was strongly affected by the ratio of the locally refined area to the total area.
As the proportion of the refined area increased, the speedup ratio obtained by the LTS algorithm
diminished, reducing the acceleration effect. When L = 3, the speedup ratio decreased from 1.39 times
to 1.01 times; when the refined area was increased from 5% to 75%, there was scarcely any improvement
in computational efficiency at high proportions of refined area. These patterns occurred because a high
proportion of refined area brings about an unreasonable number of refined grids (with a local time-step
level, m = 0), which reduces the number of coarse grids (m = 1, 2) that help optimize the operation.
This suggests that little improvement is gained by implementing the LTS algorithm in cases that have
a high proportion of refined grids. Conversely, when refined grids account for a small proportion of
the total number of grids, the LTS algorithm can markedly shorten the computing time and achieve
an excellent acceleration effect. Furthermore, the results in Figure 14 suggest that L has an influence on
the calculation efficiency. The acceleration ratio increased as L increased.

72

Water 2020, 12,

Figure 14. Speedup ratio for implementing the LTS algorithm for various refined area proportions
in the dam break model for different local time-step rank values (L). As the refined area increased,
the speedup ratio decreased. The acceleration effect increased with increasing L.

4.2. The Impact of the Different Scale of the Mesh on Acceleration Effect

In the case study of the anti-symmetric dam break, the test was carried out using a refinement of
5% of the breach area, as shown in Figure 13a. A grid discretization method was employed to analyze
the influence of using different grid scales on the acceleration effect while using the LTS algorithm.
The refined grid had a minimum spatial step of 1 m in the burst section, while the coarse grids had
spatial steps of 2, 3, 4, 5, and 6 m. The computational results are shown in Table 6 and Figure 15.
These results indicate that the speedup ratio improves with the increasing differences in grid resolution.
The CFL condition of Equation (9a) shows that the time step of the mesh is positively correlated with
the mesh scale difference. As the difference between the maximum and minimum scales of the grids
increases, the maximum time-step level mmax becomes higher, and a larger L can be adopted. In this
test, once the spatial step of the coarse grid was 4, 5, and 6 m, it was possible to set the L value to 3,
while the other two conditions were only subdivided into two grades. This explains why greater grid
diversity leads to a higher speedup ratio.

Table 6. Simulation results for different spatial resolutions in the dam break simulation.

Spatial Resolution Grid Number
Test

Index GTS LTS

1–2 m 35,104
T 1558 1223
Tr - 22%
Sn - 1.27

1–3 m 22,084
T 973 769
Tr - 21%
Sn - 1.26

1–4 m 17,108
T 757 589
Tr - 22%
Sn - 1.28

1–5 m 14,380
T 641 494
Tr - 23%
Sn - 1.30

1–6 m 13,338
T 608 436
Tr - 28%
Sn - 1.39

(GTS: global time stepping strategy, LTS: local time stepping strategy, T: execution time (s), Tr: time-saving ratio,
and Sn: speedup ratio).

73

Water 2020, 12,

Figure 15. Graph showing the relationship between speedup ratio and grid scale difference.

5. Conclusions

Improvements in the computational efficiency of the 2D hydrodynamic model have a significant
bearing on its engineering applications. In the present study, an improved 2D shallow-water dynamic
model applying an LTS algorithm was established using an FVM on a triangular mesh. Results from
simulation and analysis of three canonical test cases show that the LTS scheme has a satisfactory ability
for adapting real complex applications and long simulations while meeting the required accuracy.
The following conclusions were drawn:

(1) Based on the FVM for unstructured grids, an LTS algorithm was implemented that improved the
computational efficiency of the model, while satisfying water conservation conditions. In the
anti-symmetric dam break case, a speedup ratio of 2.1 was achieved, which saved 53% in execution
time. The speedup ratio of the non-flat bottom dam break case was 1.3, which represented
a shortening of 26% in the calculation time. The numerical simulation of the navigable flow of
the river reach between the Three Gorges and Gezhouba Dams achieved a speedup ratio of 1.9,
which represented a saving of 49% in modeling time.

(2) The proportions of coarse to refined meshes on the acceleration effect of the LTS algorithm were
noticeable. It was evident that a higher speedup ratio was obtained when the proportion of the
refined mesh was minimized. When the proportion of the refined mesh was high, the acceleration
effect was not significant. It is clear that the LTS algorithm is best suited to situations in which
refinement is only required in small regions.

(3) When using the LTS algorithm on non-uniform unstructured grids, the larger the grid scale
difference, the more obvious the grid layering became. This led to increased acceleration effects.
However, computational accuracy was slightly impaired by excessive differences in grid mesh size.

Author Contributions: Conceptualization, S.Z. and X.Y.; Methodology, S.Z. and X.Y.; Software, X.Y., W.A. and
W.L.; Validation, S.Z., X.Y., W.A. and W.L.; Formal Analysis, S.Z.; Investigation, X.Y. and W.A.; Resources, S.Z.;
Data Curation, X.Y. and W.A.; Writing—Original Draft Preparation, X.Y.; Writing—Review & Editing, S.Z.;
Supervision, S.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This study was supported by the National Natural Science Foundation of China (51979105, 51722901).

Acknowledgments: The authors thank Trudi Semeniuk and Paul Seward from Liwen Bianji, Edanz Editing China
(www.liwenbianji.cn/ac), for editing the English text of drafts of this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

74

Water 2020, 12,

References

1. Wang, Z.; Gang, Y.; Jin, S. Numerical modeling of 2D shallow water flow with complicated geometry and
topography. J. Hydraul. Eng. 2005, 36, 439–444. (In Chinese)

2. Jin, H.; Jespersen, D.; Mehrotra, P.; Biswas, R.; Huang, L.; Chapman, B. High performance computing using
MPI and OpenMP on multi-core parallel systems. Parallel Comput. 2011, 37, 562–575. [CrossRef]

3. Zhang, S.; Xia, Z.; Yuan, R.; Jiang, X. Parallel computation of a dam-break flow model using OpenMP on
a multi-core computer. J. Hydrol. 2014, 512, 126–133. [CrossRef]

4. Vacondio, R.; Dal Palù, A.; Ferrari, A.; Mignosa, P.; Aureli, F.; Dazzi, S. A non-uniform efficient grid type for
GPU-parallel Shallow Water Equations models. Environ. Model. Softw. 2017, 88, 119–137. [CrossRef]

5. Dawson, C. High Resolution Schemes For Conservation Laws With Locally Varying Time Steps. SIAM J. Sci.
Comput. 2000, 22, 2256–2281. [CrossRef]

6. Sanders, B.F. Integration of a shallow water model with a local time step. J. Hydraul. Res. 2008, 46, 466–475.
[CrossRef]

7. Kesserwani, G.; Liang, Q. RKDG2 shallow-water solver on non-uniform grids with local time steps:
Application to 1D and 2D hydrodynamics. Appl. Math. Model. 2015, 39, 1317–1340. [CrossRef]

8. Caboussat, A.; Boyaval, S.; Masserey, A. On the modeling and simulation of non-hydrostatic dam break
flows. Comput. Vis. Sci. 2011, 14, 401–417. [CrossRef]

9. Li, D.; Zeng, Q.; Feng, H. A P-adaptive Discontinuous Galerkin Method Using Local Time-stepping Strategy
Applied to the Shallow Water Equations. J. Inf. Comput. Sci. 2013, 10, 2199–2210. [CrossRef]

10. Tirupathi, S.; Hesthaven, J.S.; Liang, Y.; Parmentier, M. Multilevel and local time-stepping discontinuous
Galerkin methods for magma dynamics. Comput. Geosci. 2015, 19, 965–978. [CrossRef]

11. Zhou, W.; Ouyang, J.; Wang, X.; Su, J.; Yang, B. Numerical simulation of viscoelastic fluid flows using a robust
FVM framework on triangular grid. J. Non-Newton. Fluid Mech. 2016, 236, 18–34. [CrossRef]

12. Cheng, L.; Hu, C. An adaptive multi-moment FVM approach for incompressible flows. J. Comput. Phys.
2018, 359, 239–262.

13. Osher, S.; Sanders, R. Numerical approximations to nonlinear conservation laws with locally varying time
and space grids. Math. Comput. 1983, 41, 321–336. [CrossRef]

14. Tan, Z.; Huang, Y. An Adaptive Grid Method with Local Time Stepping for One Dimensional Conservation
Laws. Nat. Sci. J. Xiangtan Univ. 2003, 25, 110–116. (In Chinese)

15. Crossley, A.J.; Wright, N.G.; Whitlow, C.D. Local time stepping for modeling open channel flows. J. Hydraul.
Eng. 2003, 129, 455–462. [CrossRef]

16. Crossley, A.J.; Wright, N.G. Time accurate local time stepping for the unsteady shallow water equations.
Int. J. Numer. Methods Fluids 2005, 48, 775–799. [CrossRef]

17. Dazzi, S.; Maranzoni, A.; Mignosa, P. Local time stepping applied to mixed flow modelling. J. Hydraul. Res.
2016, 54, 145–157. [CrossRef]

18. Dazzi, S.; Vacondio, R.; Dal Palù, A.; Mignosa, P. A local time stepping algorithm for GPU-accelerated 2D
shallow water models. Adv. Water Resour. 2018, 111, 274–288. [CrossRef]

19. Wu, D.; Yu, X.; Xu, Y. A Discontinuous Galerkin Method with Local Time Stepping for Euler Equations.
Chin. J. Comput. Phys. 2016, 28, 1–9. (In Chinese)

20. Trahan, C.J.; Dawson, C. Local time-stepping in Runge–Kutta discontinuous Galerkin finite element methods
applied to the shallow-water equations. Comput. Methods Appl. Mech. Eng. 2012, 217–220, 139–152.
[CrossRef]

21. Hu, P.; Lei, Y.; Han, J.; Cao, Z.; Liu, H.; He, Z. Computationally efficient modeling of
hydro–sediment-morphodynamic processes using a hybrid local time step/global maximum time step.
Adv. Water Resour. 2019, 127, 26–38. [CrossRef]

22. Baldauf, M. Local time stepping for a mass-consistent and time split advection scheme. R. Meteorol. Soc.
2019, 145, 337–346. [CrossRef]

23. Toro, E.F. Shock-Capturing Methods for Free-Surface Shallow Flows; John Wiley: Hoboken, NJ, USA, 2001.
24. Thompson, J.F.; Warsi, Z.U.A.; Mastin, C.W. Numerical Grid Generation; North Holland: New York, NY, USA,

1985; Chapter 6; pp. 129–165.
25. Pan, C. Advanced in numerical simulation of discontinuous shallow water flows. Adv. Sci. Technol. Water

Resour. 2010, 30, 77–84. (In Chinese)

75

Water 2020, 12,

26. Zhang, D.; Li, D.; Wang, X. Numerical modeling of dam-break water flow with wetting and drying change
based on unstructured grids. J. Hydroelectr. Eng. 2008, 27, 98–102. (In Chinese)

27. Murillo, J.; García-Navarro, P. Wave Riemann description of friction terms in unsteady shallow flows:
Application to water and mud/debris floods. J. Comput. Phys. 2012, 231, 1963–2001. [CrossRef]

28. Vacondio, R.; Dal Palù, A.; Mignosa, P. GPU-enhanced Finite Volume Shallow Water solver for fast flood
simulations. Environ. Model. Softw. 2014, 57, 60–75. [CrossRef]

29. Fernández-Pato, J.; Morales-Hernández, M.; García-Navarro, P. Implicit finite volume simulation of 2D
shallow water flows in flexible meshes. Comput. Methods Appl. Mech. Eng. 2018, 328, 1–25. [CrossRef]

30. Brufau, P.; Vázquez-Cendón, M.E.; García-Navarro, P. A numerical model for the flooding and drying of
irregular domains. Int. J. Numer. Methods Fluids 2002, 39, 247–275. [CrossRef]

31. Lv, B.; Jin, S.; Ai, C. Well-balanced Roe-type scheme for 2D shallow water flow using unstructured grids.
Hydro-Sci. Eng. 2010, 2, 39–44. (In Chinese)

32. Toro, E.F. Riemann Solvers and Numerical Methods for Fluid Dynamics; Springer: Berlin/Heidelberg, Germany,
2013; pp. 87–114.

33. Fennema, R.J.; Chaudhry, M.H. Explicit methods for 2-D transient free surface flows. J. Hydraul. Eng. 1990,
116, 1013–1034. [CrossRef]

34. Wang, D. Computational Hydraulics: Theory and Application; Science Press: Beijing, China, 2011. (In Chinese)
35. Liu, H.; Zhou, J.G.; Burrows, R. Lattice Boltzmann simulations of the transient shallow water flows.

Adv. Water Resour. 2010, 33, 387–396. [CrossRef]
36. Baghlani, A. Simulation of dam-break problem by a robust flux-vector splitting approach in Cartesian grid.

Sci. Iran. 2011, 18, 1061–1068. [CrossRef]
37. Hu, P.; Han, J.; Lei, Y. Coupled modeling of sediment-laden flows based on local-time-step approach.

J. Zhejiang Univ. (Eng. Sci.) 2019, 53, 743–752. (In Chinese)
38. Kawahara, M.; Umetsu, T. Finite element method for moving boundary problems in river flow. Int. J. Numer.

Methods Fluids 1986, 6, 365–386. [CrossRef]
39. Zhang, H.; Zhou, J.; Bi, S.; Song, L.X. Two-dimensional shallow hydrodynamic model based on adaptive

structured grid. Chin. J. Hydrodyn. 2012, 27, 667–678. (In Chinese)
40. Yan, W.; Zhou, R.; Cheng, Z.; Yang, W.; Lu, H. Adaptation of fleets to the navigation discharge in the

waterway between Three Gorges Project and Gezhouba Hydroproject. J. Yangtze River Sci. Res. Inst. 2013, 6,
33–37. (In Chinese)

41. Zhang, S.; Jing, Z.; Li, W.; Wang, L.; Liu, D.; Wang, T. Navigation risk assessment method based on flow
conditions: A case study of the river reach between the Three Gorges Dam and the Gezhouba Dam. Ocean Eng.
2019, 175, 71–79. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

76

water

Article

Effect of Open Boundary Conditions and Bottom
Roughness on Tidal Modeling around the West Coast
of Korea

Van Thinh Nguyen * and Minjae Lee

Department of Civil and Environmental Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu,
Seoul 151-744, Korea; mjlee14@snu.ac.kr
* Correspondence: vnguyen@snu.ac.kr; Tel.: +82-2-880-7355

Received: 9 May 2020; Accepted: 11 June 2020; Published: 15 June 2020

Abstract: The aim of this study was to investigate the effect of open boundary conditions and bottom
roughness on the tidal elevations around the West Coast of Korea (WCK) using an open-source
computational fluids dynamics tool, the TELEMAC model. To obtain a detailed tidal forcing at
open boundaries, three well-known assimilated tidal models—the Finite Element Solution (FES2014),
the Oregon State University TOPEX/Poseidon Global Inverse Solution Tidal Model (TPXO9.1) and
the National Astronomical Observatory of Japan (NAO.99Jb)—have been applied to interpolate the
offshore tidal boundary conditions. A number of numerical simulations have been performed for
different offshore open boundary conditions, as well as for various uniform and non-uniform bottom
roughness coefficients. The numerical results were calibrated against observations to determine the
best fit roughness values for different sub-regions within WCK. In order to find out the dependence of
the tidal elevation around the WCK on the variations of open boundary forcing, a sensitivity analysis
of coastal tide elevation was carried out. Consequently, it showed that the tidal elevation around
the WCK was strongly affected by local characteristics, rather than by the offshore open boundary
conditions. Eventually, the numerical results can provide better quantitative and qualitative tidal
information around the WCK than the data obtained from assimilated tidal models.

Keywords: west coast of Korea (WCK); tidal elevation; open boundary condition; numerical modeling;
TELEMAC-2D

1. Introduction

The Yellow Sea (YS) is located between the mainland of China and the Korean Peninsula, and its
depth is about 44 m on average, with a maximum depth of 152 m. The sea bottom slope gradually rises
toward the East China coast and more abruptly toward the Korean Peninsula, and the depth gradually
increases from north to south. Southern YS is bounded by the East China Sea (ECS) along a line running
northeastward from the mouth of the Changjiang River to the southwestern tip of Korea. ECS covers
the area originating around the Taiwan Strait at about 25◦ N, extending northeastward to the Kyushu
Island, Japan, and to the Korea Strait, and bounded by the Ryukyu Island chains on the southeastern
open ocean (Figure 1). On the broad and shallow shelf under the Yellow and the East China Sea
(YECS), the flow is dominated by strong semidiurnal M2 tidal currents with the superimposition of
semidiurnal S2, diurnal K1 and O1 currents [1–4]. Approaching the WCK, the tidal amplitudes vary
from 4 to 8 m, and the speed of the tidal current may increase to more than 1.56 m/s near the coasts.

Water 2020, 12, 1706; doi:10.3390/w12061706 www.mdpi.com/journal/water77

Water 2020, 12, 1706

Figure 1. Geophysical configuration of the Yellow Sea and the East China Sea.

Along with strong tidal currents, the WCK is surrounded by lots of islands including extremely
irregular and indented coastlines, the tidal propagation and shoaling processes on the shore in this
broad flat region are very complicated and sensitive to the variation of tidal elevation.

The study on the tidal circulation in this region has been carried out by various authors, such
as Le Fevre et al. [5], Kim [6], Naimie et al. [7], and Suh [8] using 2D depth-averaged finite element
models on unstructured grids, or Choi [2], Tang [9], Kantha et al. [10], Kang et al. [11] and Lee et al. [12]
using 3-D finite difference models on structured grids. However, there are still very few authors using
data obtained from different assimilated tidal models to set up the offshore boundary conditions. Most
authors have applied a constant boundary forcing condition (BFC) or tidal charts, such as Ogura’s
chart [1,2,13,14]) and Nishida’s chart [3,15,16] or applied a very coarse observation data combined
with partly constant boundary forcing conditions [11,17]. Only Le Fevre et al. [5] and Suh [8] have
applied tidal charts from FES 94.1 and FES 2004 models for OBC. Using FVCOM, we recently applied a
tidal chart from NAO.99Jb. In principle, the tidal information around the WCK can be obtained from
assimilated global and regional tidal models [18].

In principle, the tidal information around the WCK can be obtained from assimilated global and
regional tidal models. The assimilation model, which is a combination of a dynamical model and
observed data, was actively advanced in the research group of the modern global tide model, and
pioneered by [19]. By the assimilation model, the problem of the empirical method with regard to
the resolution can be compensated by a hydrodynamic model, and any inadequate potential of the
hydrodynamic model can be recovered by observed data [20]. Recently, using the unprecedented
sea surface height data of satellite altimeter TOPEX/POSEIDON (T/P), several research groups have
developed highly accurate assimilation models especially in an open ocean ([5,20–24]). T/P was
launched on 10 August 1992, which measures sea level relative to the ellipsoid with an overall accuracy
of approximately 5 cm [25]. Due to the high accuracy of T/P altimeter data for those assimilation

78

Water 2020, 12, 1706

models, it can be used to extract relatively accurate tidal boundary conditions around the marginal sea
within YECS.

Among the global assimilation models, FES2014 (https://www.aviso.altimetry.fr/en/data/products/
auxiliary-products/global-tide-fes.html) and TPXO9.1 (http://volkov.oce.orst.edu/tides/tpxo9_atlas.
html) atlases are open to the public and can be freely downloaded. The FES2014 atlas was produced
by Legos and CLS Space Oceanography Division, and distributed by Aviso, with support from
CNES (https://datastore.cls.fr/catalogues/fes2014-tide-model/). It is distributed as a tidal chart on grid
resolution of 1/16◦ based on the dynamical finite element tide model CEFMO, and data assimilation
code CADOR. The finite element grid of the model CEFMO has about 2,900,000 computational nodes
and covered 34 tidal constituents. In addition to above two global tide models, the regional tide model
NAO.99Jb (https://www.miz.nao.ac.jp/staffs/nao99/index_En.html) was developed by Matsumoto et al.
(2000) for the region around Japan with a resolution of 1/12◦, covering from 110 to 165◦ E and from
20–65◦ N so that YECS was entirely included in this region. This model was nested with the global
model NAO.99b to provide open boundary conditions to the regional model and the assimilation was
performed with both T/P data and 219 coastal tidal gauges obtained around Japan and Korea. Most
T/P-derived altimetric tides can be inaccurate in shallow coastal oceans because the resolution enforced
on data analysis by the spatial resolution of T/P is simply inadequate near ocean margins.

Therefore, we first validated the tidal information of tidal constituents K1, O1, M2 and S2 provided
by three assimilated tidal models; FES2014, NAO99Jb and TPXO9.1 against the observation at 21 tidal
gauges along WCK. Figure 2 shows the comparison of amplitude (left) and phase (right) obtained from
the assimilated tidal models with observation data obtained from gauging stations along the WCK. It
shows that while the phases are better agreement with observation, the amplitudes obtained from
the assimilated tidal models still poorly agreed with the observed data. More detailed quantitative
comparisons between the amplitude and phase obtained from the assimilated tidal models and
observation data are shown in Table A1 (in Appendix A). Wherein it shows NAO99Jb provides a better
agreement of the amplitude for the constituents M2 and S2, while FES2014 provides a little better fit of
the amplitude for K1 and O1. It also shows the constituent M2 has the largest amplitude in comparison
with other tidal constituents; about 5–8 times, 2.5–2.8 times, and 6.6–11.8 times larger than K1, S2 and
O1 amplitudes, respectively.

In addition, the resolutions (1/6◦, 1/12◦ and 1/16◦) of three tidal models are not fine enough along
the coastlines, so they cannot provide enough detailed quantitative and qualitative tidal information
along the WCK. Therefore, in order to obtain more detail on tidal information along the WCK, an
accuracy numerical simulation with higher grid resolutions is needed.

This study is to introduce several numerical investigations using higher grid resolutions and
applying different open boundary conditions extracted from three well-known assimilated tidal models
FES2014, TPXO9.1 and NAO.99Jb then calibrated with different uniform and non-uniform bottom
roughness values for different sub-regions within WCK to investigate the effect of open boundary
condition and bottom roughness on the tidal elevations from major constituents (M2, K1, S2 and O1)
around the West Coast of Korea.

Based on the form number (F), the ratio of the amplitudes of K1, O1, M2, and S2 suggested by [26]
is shown in Equation (1).

F =
K1 + O1

M2 + S2
(1)

whereby the mixed tide is classified following the value of the form number F; if the value of F less
than 0.25 or larger than 1.25, then it is classified as semidiurnal or diurnal, respectively. Otherwise, if
the value of F is located between 0.25 and 1.25, it is considered mixed.

79

Water 2020, 12, 1706

(a) M2 (Amplitude)

(b) M2 (Phase)

(c) K1 (Amplitude)

(d) K1 (Phase)

(e) S2 (Amplitude)

(f) S2 (Phase)

(g) O1 (Amplitude)

(h) O1 (Phase)

Figure 2. Validation of amplitudes and phases obtained from assimilated tidal models (FES2014,
NAO99Jb, NAO99 and TPXO9) against observed data at tidal gauges; (a): M2’s amplitude, (b): M2’s
phase, (c): K1’s amplitude, (d): K1’s phase, (e): S2’s amplitude S2, (f): S2’s phase, (g): O1’s amplitude,
(h): O1’s phase.

80

Water 2020, 12, 1706

Figure 3 shows the values of the form number along the WCK are below 0.25 according to the data
obtained from observation at 21 tidal gauges, as well as from three assimilated tidal models, FES2014,
TPXO9.1 and NAO.99Jb; therefore, the mixed tide prevails semidiurnal in the WCK.

Figure 3. The value of the form number (F) in the WCK. Grey color in the background shows the WCK,
from left to right corresponding to north to south.

2. Numerical Modeling

As mentioned above, since the study region was quite shallow, the numerical simulation was
based on an open-source software, the TELEMAC-2D (http://www.opentelemac.org) model. It is
well-known software with an abundant history of development and application over many years in
fluvial and maritime hydraulics [27,28]. The TELEMAC-2D is capable of capturing the complicated
bathymetry and coastlines of the WCK surrounded by lots of islands including extremely irregular
and indented coastlines by using unstructured grids.

2.1. Basic Equations

The TELEMAC-2D has solved the depth-averaged Navier-Stokes equations with two-equation
turbulence closure models (k-ε) using the finite element method, as follows:

The continuity equation
∂h
∂t

+
∂(hU)

∂x
+
∂(hV)

∂y
= 0 (2)

and momentum equations

∂(hU)

∂t
+
∂(hUU)

∂x
+
∂(hUV)

∂y
= −h·g∂Z

∂x
+ h·Fx + div

(
h·νe·

→∇(U)
)

(3)

∂(hV)

∂t
+
∂(hUV)

∂x
+
∂(hVV)

∂y
= −h·g∂Z

∂y
+ h·Fy + div

(
h·νe·

→∇(V)
)

(4)

∂k
∂t

+ U
∂k
∂x

+ V
∂k
∂y

=
1
h

div
(
h· νt

σk

→∇(k)
)
+ P− ε+ Pkv (5)

∂ε
∂t

+ U
∂ε
∂x

+ V
∂ε
∂y

=
1
h

div
(
h· νt

σk

→∇(ε)
)
+
ε
k
(c1εP− c2εε) + Pεv (6)

where h is the water depth; U and V are the depth averaged velocity components;

U = 1
h

∫ Z
Z f

udz and V = 1
h

∫ Z
Z f

vdz

Z and Zf are the free surface and bottom elevations, respectively;

Fx and Fy are body forces in x and y directions including Coriolis (Fc
x, Fc

y), bottom friction F f
x , F f

y),

and surface wind Fw
x , Fw

y) forces determined as Fx = Fc
x + F f

x + Fw
x and Fy = Fc

y + F f
y + Fw

y

81

Water 2020, 12, 1706

Coriolis force; Fc
x = 2ω sin(λ)v and Fc

y = −2ω sin(λ)u; ω = 7.292 × 10−5 is angular and λ
is latitude;

Bottom friction force; F f
x = − 1

2h C f U
√

U2 + V2 and F f
y = − 1

2h C f V
√

U2 + V2, where Cf is the

bottom friction coefficient, C f =
gn2

h1/3 , n is Manning’s coefficient;
Wind forcing on the free surface is neglected; i.e., (Fw

x , Fw
y) = 0.

And νe is the effective viscosity, the summation of the molecular viscosity ν and the turbulent
viscosity νt νe = ν+ νt; where

νt = cμ
k2

ε
. (7)

The depth averaged kinetic energy k and its dissipation rate ε are:

k =
1
h

∫ Z

Z f

1
2

u′i u
′
i dz and ε =

1
h

∫ Z

Z f

ν
∂u′i
∂xj

∂u′i
∂xj

dz

where u′i is the fluctuating velocity and the overbar represents an average over time; i.e., ui = Ui + u′i ;
Ui (=U or V) is an average over time of velocity components; and P is the production term:

P = νt

(
∂Ui
∂xj

+
∂Uj

∂xi

)
∂Ui
∂xj

(8)

Pkv and Pεv are vertical shear terms: Pkv = ck
u3∗
h ; Pεv = cε

u4∗
h2 where ck =

1√
c f

and cε = 3.6
c2ε
√cμ

c f
3/4

u∗ is the friction velocity: u∗ =
√

C f
2 (U2 + V2)

The empirical constants in Equations (5) and (6) Cμ = 0.09, C1ε = 1.44, C2ε = 1.92, σk =

1.0 and σε = 1.3 of the k-εmodel are obtained from classical test cases.

2.2. Boundary Conditions

2.2.1. At the Solid Boundary

On the solid boundary, such as coastline and bottom, the no-slip condition is applied; i.e., velocity
→
U = (U, V) = (0, 0).

In this region, particularly near the shallow coastline, the effect of bottom friction becomes
prominent, the bottom friction is calculated by:

τb =
(
τbx, τby

)
= −1

2
ρC f

√
U2 + V2(U, V) (9)

The value of the coefficient Cf is obtained from the calibration procedure, which is shown in
Section 3.1 below.

The boundary condition for turbulence kinetic energy and its dissipation are defined as

kδ =
u2∗√
Cμ

+
C2ε

CεC f
u2∗ and εδ =

u3∗
κδ

+
1√
C f

u3∗
h

(10)

where δ is a distance from the wall, δ = 0.1 of a local mesh size; u∗ is friction velocity of the wall.

2.2.2. At the Free Surface

We assume the wind force on the free surface is neglected as mentioned above, i.e., Fw
x = Fw

y = 0.

82

Water 2020, 12, 1706

2.2.3. At the Open Boundary

Tidal harmonic parameters obtained from each assimilated tidal models FES2014, NAO99Jb and
TPXO9.1 were combined into the open boundary conditions, as follows: H =

∑
i Hi

Hi(M, t) = AFi(M) cos
(
2π

t
T
−ϕFi(M)

)
(11)

where Hi is the water elevation, AFi is amplitude; T is period and ϕFi is phase of each tidal constituent.
In this study, four major tidal constituents M2, K1, S2 and O1, were considered. The harmonic

constants of tidal constituents for open boundary conditions were obtained from three assimilated
tidal models; FES2014, TPXO9.1 and NAO.99Jb.

Turbulence kinetic energy and its dissipation at the open boundary were set as:

k = C2ε
P2

kv
Pεv and ε = Pkv.

2.3. Study Region

The study area covered the entire YS and most of the ECS in spherical coordinate. The bathymetry
data of 30 arc-seconds resolution was downloaded from the General Bathymetric Chart of the Ocean
(GEBCO2014: https://www.ngdc.noaa.gov/mgg/ibcm/ibcmdvc.html) as shown in Figure 4. The shorelines
with an accuracy of about 250 m were downloaded from the NOAA shoreline website (https://shoreline.
noaa.gov). This region included the flat and broad continental shelf of YECS, bounded by Taiwan
Strait (A), a line of shelf-break determined by 200 m isobaths (B), and Korea Strait (C), as shown in
Figure 5. The open boundary was expanded to the shelf edge of YECS which was advantageous to use
offshore co-oscillating tidal conditions as a boundary forcing in order to minimize disturbances by
the geographical configuration and nonlinear tidal response near-shore. Open boundaries adjacent to
the offshore also enabled the numerical results around WCK to minimize the influence of unexpected
numerical instabilities at open boundaries.

Figure 4. Bathymetry of the YECS Region.

83

Water 2020, 12, 1706

(a) Numerical grid of the YECS (b) Numerical grid of the WCK

Figure 5. Horizontal unstructured grid of the YECS (a) and an enlargement of WCK (b).

In this study, the numerical simulation applied a hybrid horizontal resolution of an unstructured grid
using a free pre-processing Blue Kenue software tool (https://nrc.canada.ca/en/research-development/
products-services/software-applications/blue-kenuetm-software-tool-hydraulic-modellers). Herein
the unstructured triangular grid had a horizontal resolution varying from 0.2 to 1 km in the WCK,
3–5 km in the East coast of China, and 9–12 km in the interior of YS and ECS. After running a number
of simulations to check for grid independence, the final grid of 203,927 grid cells was used for the
simulation in this study. Bathymetry was interpolated to each nodal point of the horizontal grid using
Blue Kenue software as well (Figure 5).

A total of 21 tidal gauges were collected around the WCK to provide the observed tidal elevation
data of semidiurnal M2 and S2 and diurnal K1 and O1 constituents in YECS. As shown in Figure 6, the
WCK can be divided into three sub-regions based on the common characteristics of their bathymetry
and coastlines—the first region was Kyunggi Bay near Incheon (I), the second region was around the
estuary of the Geum River near Gunsan (G), and the third region was around the south-western tip
near Mokpo (M). The numbers of tidal gauges located in three regions Mokpo, Gunsan and Incheon
were 2, 8 and 11, respectively. The most recent observation data in 2017 downloaded from Korea
Hydrographic and Oceanographic Agency (http://www.khoa.go.kr/koofs/kor/observation/obs_real.do)
have been selected for the calibration and validation of numerical models.

84

Water 2020, 12, 1706

Figure 6. Tidal gauge locations in the WCK selected for the evaluation of the modeling; three sub-regions:
Mokpo (M), Gunsan (G) and Incheon (I) Regions.

3. Numerical Results and Discussion

The numerical simulations were carried out on our high-performance computing cluster (http:
//cfdlabsnu.com) for the real-time simulation of 60 days with time step of 20 s. The numerical results
obtained from the last 30 days simulation were used for the following analyses.

3.1. Response of the Tide around WCK to the Bottom Roughness

3.1.1. Applying Uniform Roughness Coefficient

Previous tidal calculations in the YECS region were mostly using the quadratic bottom friction
law, in which the typical value of roughness coefficient C f was chosen as a uniform value of 0.0025,
as shown in [2,16,29,30]. We again have verified the numerical model with various uniform roughness
coefficients that ranged from 0.0015 to 0.03 for different offshore open boundary conditions (OBCs)
interpolated from three assimilated tidal models (FES2014, TPXO9.1 and NAO.99Jb).

The WCK was divided into three different sub-regions—Mokpo (M), Gunsan (G), and Incheon
(I)—as shown in Figure 7, for applying different bottom friction coefficients. The borderline of this
sub-regions was set based on a water depth contour of around 50 m. Different values of bottom friction
coefficient were applied with regards to the geographic characteristics.

85

Water 2020, 12, 1706

Figure 7. Sub-dividing regions in WCK based on roughness coefficients.

As shown in Tables A2–A4 (in Appendix A), based on the evaluation of root mean square deviation
(RMSE) of tidal amplitudes between the observation and the numerical results obtained from applying
various uniform roughness coefficients, the results show that the numerical results were very distinct
from each other. For the tidal constituent M2, the bottom roughness coefficient Cf = 0.0023 provides the
best result obtained from FES2014 and TPXO9.1, while the numerical results obtained from NAO99Jb
were not significantly different between Cf = 0.0023 and 0.0025. For the tidal constituent K1, the bottom
roughness coefficient Cf = 0.002 provides the best result obtained from NAO99Jb, while the numerical
results obtained from FES2014 were not significantly different between Cf = 0.0015 and 0.002; the
numerical results obtained from TPXO9.1 were not significantly different between Cf = 0.002, 0.0023
and 0.0025. For the tidal constituent S2, the bottom roughness coefficient Cf = 0.0015 provides the
best result obtained from all three assimilated tidal models. For the tidal constituent O1, the bottom
roughness coefficient Cf = 0.0015 provides the best result obtained from FES2014 and TPXO9.1, while
the numerical results obtained from NAO99Jb were not significantly different between Cf = 0.0015 and
0.002. In addition, based on the RMSE values in Tables A2–A4, the results show that for M2 the most
appropriate roughness values for Mokpo, Gunsan and Incheon regions were 0.0025, 0.003 and 0.0023,
respectively. Whereas, for S2, the most appropriate roughness values for Mokpo, Gunsan and Incheon
regions were 0.002, 0.0023 and 0.0015, respectively. For O1, the most appropriate roughness value for
Mokpo, Gunsan and Incheon regions was 0.0015 and for K1 the most appropriate roughness values
with FES2014 and NAO99Jb for Mokpo, Gunsan and Incheon regions were 0.0015, 0.002 and 0.002,
respectively. However, with TPXO9.1 the values for Mokpo, Gunsan and Incheon regions were 0.002,
0.0023 and 0.002, respectively.

3.1.2. Applying Non-Uniform Roughness Coefficient

As shown above, applying a uniform bottom roughness coefficient for the entire WCK was
inappropriate. According to the bathymetry data, the bottom slope was relatively milder in the
Incheon region than in Mokpo and Gunsan regions. In addition, there were lots of islands around the
Mokpo region rather than the Incheon region. We can expect that more energy dissipation occurred
in the Mokpo and Gunsan regions than in the Incheon region. The larger values of the bottom
friction coefficient were applied to Mokpo and Gunsan regions than the Incheon region. In addition,
the roughness coefficient values for the Gunsan region were set to be the largest because its bed form
was more variable than the Mokpo region.

86

Water 2020, 12, 1706

Table A5 shows the list of simulation cases applying non-uniform bottom roughness coefficients
to different sub-regions Mokpo, Gunsan, Incheon and other regions within WCK. As shown in
Tables A6–A9, once the non-uniform bottom roughness coefficients were applied, the mean RMSE
values for M2 from the varied ranged of 14–36 cm down to a value of about 11 cm with OBCs obtained
from FES2014 and TPXO9.1. These values varied from 16–41 cm down to 12–13 cm with OBCs obtained
from NAO99Jb while, there was no significant improvement for K1, S2 and O1. In the WCK, M2 was
the dominant constituent, followed by S2 and K1, as mentioned by Teague et al. (1998). In addition,
the semidiurnal tides M2 and S2, as well as the diurnal tides K1 and O1, had similar tendencies
responding to the local effects and OBCs. Therefore, M2 was presented for the semidiurnal tide, and
K1 presented for diurnal tides in most following numerical results. The comparisons of M2 and K1
amplitudes between the observations and simulation results with uniform and non-uniform bottom
roughness coefficients are shown in Figures 8 and 9. It clearly shows the simulation results obtained
from non-uniform bottom roughness coefficients have significantly improved the results for M2 and K1.

(a) M2 (FES2014)

(b) K1 (FES2014)

(c) M2 (NAO99Jb)

(d) K1 (NAO99Jb)

(e) TPXO9.1 (M2)

(f) TPXO9.1 (K1)

Figure 8. The numerical results of tidal amplitudes M2 and K1 obtained from different uniform bottom
roughness; (a), (c) and (e): M2’s amplitude; (b), (d) and (f): K1’s amplitude.

87

Water 2020, 12, 1706

(a)M2 (FES2014) (b)K1 (FES2014)

(c)M2 (NAO99Jb) (d)K1 (NAO99Jb)

(e)M2 (TPXO9.1) (f)K1 (TPXO9.1)

Figure 9. The numerical results of tidal amplitudes M2 and K1 obtained from non-uniform bottom
roughness; (a), (c) and (e): M2’s amplitude; (b), (d) and (f): K1’s amplitude.

The bottom friction coefficient is a physical parameter characteristic of bottom materials and
bathymetries. Therefore, it cannot vary following each tidal constituent. From Tables A5–A9,
an acceptable selection from all test cases, which can deliver reasonable results for all tidal constituents
(M2, K1, S2 and O1), was the case name “FES/NAO/TPX 2-4” whereby the bottom friction coefficient
Cf took a value of 0.0025 for the Mokpo region, 0.0035 for the Gunsan region, and 0.002 for Incheon
and other regions. These values are in the range suggested by [31,32] applying also for four tidal
constituents (M2, K1, S2 and O1).

3.2. Response of the Tide around the WCK to the Open Boundary

As mentioned in Section 2.2 above, the modeling region has been bounded by three different open
boundaries; A, B and C, as shown in Figure 3. Averaged tidal amplitudes at each boundary A, B and C
obtained from three tidal models are shown in Table A10, in which the nodal boundary amplitudes are
averaged with weighting by the length of each segment of boundary cells. The tidal amplitudes along
the boundary A were significantly larger than the values along the boundaries B and C. Particularly,
the tidal amplitude of M2 along the boundary A were larger than the values along the boundaries B
and C; about 3.3 times and 9.3 times, respectively. The tidal amplitudes at the boundary C were the

88

Water 2020, 12, 1706

smallest because when the tides propagated from the deep region of the East Sea (its depth was about
2000 m) through boundary C via the shallow region at the Korea Strait (its depth was less than 80 m),
the tidal amplitudes were significantly damped due to shoaling process on this shallow shelf region.

Table A11 shows the difference of the interpolated tidal amplitudes at three open boundaries (A,
B and C) obtained from two global tidal models (FES2014 and TPXO9.1) in comparison with those
obtained from the regional tidal model (NAO.99Jb). It shows that the amplitudes of M2, K1, S2 and O1
obtained from three tidal models were not substantially different at the open boundaries A, B and C.

Nevertheless, it poses a question whether the open boundary condition at A, B or C will play
a substantial role on the tide around the WCK. To identify such influence, we have evaluated the
response of coastal tide to open boundary forcing in the WCK, using the sensitivity analysis in the
following sections.

3.2.1. Sensitivity Analysis

Response of the Tide around the WCK to Individual Boundary Forcing

The first numerical test was performed to find out how the co-oscillation of each boundary effected
the tidal elevation along the WCK using uniform forcing at open boundaries A, B and C.

Assuming uniform boundary tide constituent for M2 or K1, an amplitude of 100 cm was forced
on each boundary A, B, and C, individually. The resultant amplitudes for all gauge locations obtained
from each open boundary are shown in Figure 10.

(a) M2

(b) K1

Figure 10. Computed amplitudes at gauge locations with respect to the assumed forcing with an
amplitude of 100 cm at each open boundaries A, B and C; (a): M2’s amplitude; (b): M2’s amplitude.

It shows that only the tidal wave from the open boundary B produced much higher coastal
amplitude than other incident boundary waves from open boundaries A and C. Whereby the tidal
amplitudes of M2 and K1 approached 350 and 160 cm in the Kyunggi Bay within area I, respectively;
whereas the force propagated from the boundaries A and C was damped on the way to the WCK before
it approached the coast. Defant [33] also noticed that the tidal phenomenon in the entire ECS was
almost exclusively conditioned by those water-masses which penetrated through the canals between
the Ryukyu Islands. Figure 10a, shows the trend of M2 along the WCK obtained from the forcing at
only open boundary B was similar to the results shown in Figure 9a,c,e, in which the real forcing at
all three open boundaries A, B and C was taken into account. Therefore, the accuracy of boundary
condition on B played a major role in the accuracy of the whole modeling results even when the real
tidal condition was fully specified on three boundaries. As a result, in the following section, we have
estimated the sensitivity of open boundary forcing at the boundary B on the tide around the WCK,
instead of taking all three open boundaries into consideration.

89

Water 2020, 12, 1706

Response of the Tide around the WCK to the Tidal Amplitude at Open Boundary

For the quantitative assessment of the influence of tidal amplitudes at the open boundary on the
coastal tide elevation, a mean increase of amplitude at each gauge location with respect to the variation
of open boundary amplitude was calculated by

Da,i =
ri(a2) − ri(a1)

a2 − a1
(12)

where a1 and a2 are different boundary tidal amplitudes in comparison, and ri
(
aj
)

j=1,2
is a response of

coastal amplitude at the i-th gauge location.
An increase of tidal amplitudes of constituents M2 and K1 was averaged over gauge locations

within a specified region (I, G or M). As shown in Table A12, once the boundary amplitude of M2
constituent increased from 20 to 40 cm, 40 to 60 cm, 60 to 80 cm, and 80 to 100 cm, the mean coastal
amplitude increased 3.25, 2.62, 2.01 and 1.91 cm per 1 cm increase in the open boundary amplitude,
respectively. It shows that the higher the increment of the boundary amplitude, the lower the mean
increase of the coastal amplitude per 1 cm. Meanwhile, the mean increase of the coastal amplitude
of K1 was about 1.0 cm (ranged from 0.91 to 1.10), once the boundary amplitude of K1 constituent
increased from 20 to 40 cm, 40 to 60 cm, 60 to 80 cm, and 80 to 100 cm.

Figure 11 shows the coastal M2 and K1 amplitudes at gauge locations corresponding to forcing
with increasing amplitudes of 20, 40, 60, 80 and 100 cm at open boundary B. It shows that as the
amplitudes increased at open boundary B, the M2 amplitude significantly increased once it entered the
Mokpo region (M), and held this tendency until it reached to the estuary of Geum River, then it dropped
until leaving the Gunsan region (G). Thereafter, it started to increase again when entering the Incheon
regions (I) reaching the maximum value within Kyunggi Bay, and then significantly decreased. It
means that the M2 amplitude was very sensitive within Kyunggi Bay. While K1 was linearly increased
a little when it entered the WCK.

(a) M2 (b) K1

Figure 11. M2 and K1 amplitudes at gauge locations with respect to the forcing with the amplitudes of
20, 40, 60, 80 and 100 cm at the open boundary B; (a): M2’s amplitude; (b): M2’s amplitude.

In addition, Figure 11 also shows that once the tidal amplitude of M2 at boundary B was about 20 cm,
the resultant amplitudes propagated within Kyunggi Bay had little different tendencies in comparison
with those obtained from the amplitude larger than 20 cm, since it was not remarkably damped.

Table A12 also shows that regions I and G were most sensitive to the boundary amplitude for
M2 simulation, once its amplitude was less than 60 cm. Once the amplitude of M2 increased more
than 60 cm at open boundary B, it caused less impact on the increase of M2 amplitude along the WCK,
since the value of Da did not significantly increase. Meanwhile, an increase of K1 amplitude at the
boundary B with an increment of 20 cm caused less significant change on mean Da within all three
regions of WCK.

90

Water 2020, 12, 1706

Due to the nonlinearity in the advection terms of the governing equation, and the tidal dissipation
by the nonlinear bottom shear stress on the shallow water, the increasing coastal amplitude was found
to not be proportional to the increase of offshore tidal amplitude. For a more detailed analysis of the
response of WCK to the tidal amplitude at open boundary B, the nonlinear response of tidal amplitude
within WCK was evaluated by the following sensitivity estimation:

Ra,i =
ri(a2)/ri(a1)

a2/a1
(13)

As shown in Figure 12, until the tide approached the tip of the region M, in which Ra,i was
close to 1, the M2 amplitude increased proportionally to the boundary amplitude. However, when it
propagated along the coastline, the increase of amplitude started to depress. As it was pointed out, a
substantial depression of amplitudes occurred at some locations in the region M. The sensitivity Ra,i
dropped mildly during tide propagation through the region G, then it significantly dropped in the
region I. Being different from the M2 constituent, the coastal K1 amplitude was less sensitive in the
entire WCK after the tip of region M.

(a) M2

(b) K1

Figure 12. Value Ra at tide station locations with respect to the increase of the amplitude of M2 (a) and
K1 (b) at the open boundary B; (a): Ra of M2’s amplitude; (b): Ra of K1’s amplitude.

From the sensitivity analysis in this section, we can estimate the response of coastal amplitude in
the WCK to the difference in open boundary amplitudes of the three established boundary conditions.
As shown in Table A10, the averaged amplitude obtained from three different offshore models on the
boundary B was in the range from 55.5 to 56.9 cm for M2, and from 21.4 to 21.6 cm for K1. As mentioned
in the previous section, the variation of mean coastal amplitude on total gauges was approximated from
1.91 to 3.25 cm for M2, and from 0.91 to 1.10 cm (about 1 cm) for K1 per 1 cm of boundary amplitude
variation shown in Table A12, respectively. In Table A11, the RMSE difference in tidal amplitude
between the interpolated boundary conditions by two global models (FES2014 and TPXO9.1) and
the regional model (NAO99Jb) was found to be 1.85 and 2.78 cm for M2; 0.41 and 0.42 cm for K1;
respectively at the open boundary B.

3.3. Comparison between the Numerical Results and Observations

As mentioned above, many authors such as [1–3] have carried out the tidal simulations in the
Yellow Sea and East China Sea (YECS) region using only four dominant tidal constituents; M2, K1, S2
and O1. Particularly, [4] analyzed 13 significant tidal constituents (M2, K1, S2, O1, MM, P1, MU2, N2,
MKS2, L2, K2, M4 and MS4) to conclude that M2 was the dominant constituent, followed by S2 and K1
in this region. In this study, we continued to conduct the tidal modeling for this region, taking into
account four dominant tidal constituents.

Figure 13 shows a comparison of amplitudes between the observations and numerical results
of M2 and K1 at gauge stations. It shows a great improvement in comparison to Figure 2, and the

91

Water 2020, 12, 1706

numerical results implying different OBCs obtained from three assimilated tidal models (FES2014,
TPXO9.1 and NAO.99Jb) were similar.

(a) M2 (FES2014) (b) K1 (FES2014)

(c) M2 (NAO99Jb)

(d) K1 (NAO99Jb)

(e) M2 (TPXO9.1)

(f) K1 (TPXO9.1)

Figure 13. Comparison of the amplitudes between the observation and numerical simulation at tidal
gauge stations (refer to Figure 6); (a,c,e): M2’s amplitude; (b,d,f): K1’s amplitude.

A question has arisen regarding the difference between the real water level observed around
the WCK in comparison with the water level obtained from the numerical results contributed to by
only four dominant tidal constituents. Figure 14 below shows a comparison of water level between
numerical results and observations at typical gauge stations in three different regions (Incheon, Gunsan

92

Water 2020, 12, 1706

and Mokpo). In detail, Table A14 shows a comparison of water levels between the observations and
numerical results at 21 gauge stations. Overall, it shows that the water levels obtained from the
simulation were overestimated for the neap tide, and underestimated for spring tide. Most stations
show the difference in water level was below 20%; at some specific stations located in the Incheon
Region, the difference was up to 30%. Nevertheless, as mentioned by the study of Teague et al. [4],
after analysis on the contribution of 13 significant tidal constituents on the water level in this region,
they noticed that the tides were found to account for at least 85% of the sea surface height variance
in the Yellow Sea. Therefore, the water level obtained from the numerical results was reasonable,
since its differences compared to the observations can be partly compensated with the amount of 15%
mentioned in [4].

(a) I3 (b) I5

(c) G2 (d) G5

(e) M1 (f) M2

Figure 14. A comparison of water level between numerical results and observations at typical gauge
stations; (a,b): water level at gauge station I3 and I5 (located in Incheon Region); (c,d): water level at
gauge station G3 and G5 (located in Gunsan Region); (e,f): water level at gauge station M1 and M2
(located in Mokpo Region).

93

Water 2020, 12, 1706

4. Conclusions

The main goal of this study was to use various numerical investigations to figure out the response
of coastal tides in the WCK to the open boundary conditions and bottom roughness. After the
application of three different open boundary conditions interpolated from three different assimilated
tidal models (FES2014, NAO.99Jb and TPXO9.1), it has been shown that there were no significant
differences between the responses of tidal amplitudes in the WCK induced by three open boundary
conditions obtained from three assimilated tidal models. In addition, the numerical simulation of the
tidal flow in the WCK should not use a uniform bottom roughness coefficient. Due to the complicated
bathymetry, indented coastlines and bed variability of the WCK, it caused strong local effects on the
tides in this region. Therefore, a non-uniform bottom roughness should be applied to the modeling
whereby the smallest value can be applied for Incheon, a larger value for Mokpo, and the largest
value for Gunsan. The largest value of the bottom roughness coefficient was applied to the Gunsan
region because its bed form was more variable than other regions. The numerical results show that
the accuracy of the modeling of the tidal elevation around the WCK was strongly dependent on the
bottom roughness rather than the offshore tidal boundary conditions. Moreover, the numerical results
can provide not only a better fit to the observations but also higher spatial resolutions in comparison to
the results obtained from assimilated tidal models around the WCK.

However, it should be noted that the numerical results obtained from this study were still limited
due to the coarse resolution (30 arcs/second) of bathymetry obtained from GEBCO2014, which was
not sufficient to capture the real geometries, whose sizes were less than such resolution. Therefore, a
further study with a higher resolution is necessary in order to obtain a more precise prediction of the
tidal current and its elevation around the WCK. Furthermore, the wind forcing on the sea surface and
the tidal energy dissipation should be taken into account.

Author Contributions: Conceptualization, V.T.N.; Data curation, V.T.N. and M.L.; Formal analysis, V.T.N.;
Funding acquisition, V.T.N.; Investigation, V.T.N. and M.L.; Methodology, V.T.N.; Software, V.T.N. and M.L.;
Supervision, V.T.N. All authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by the National Research Foundation Grant of Korea (NRF-2018R1D1A1A09083747).

Acknowledgments: The authors also would like to thank the anonymous reviewers for their valuable and
constructive comments to improve our manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Validation of amplitude and phase obtained from three tidal models against observation data.

Tidal
Constituent

RMSE
Range of Amplitudes and

PhasesFES2014
(1/16◦)

NAO99Jb
(1/12◦) TPXO9.1 (1/6◦)

M2
Amp (cm) 20.2 16.1 25 107.3 ÷ 295.8
Phase (◦) 8.2 5.4 6.6 36.8 ÷ 275.6

K1
Amp (cm) 4.2 4.9 6.2 21.7 ÷ 35.4
Phase (◦) 5.4 7.6 7.5 75.6 ÷ 193.1

S2
Amp (cm) 14.6 8.4 11.4 37.8 ÷ 114.1
Phase (◦) 10.9 8.8 7.1 59.6 ÷ 328.9

O1
Amp (cm) 3.8 4.8 3.9 16.3 ÷ 25
Phase (◦) 11 31.8 6.1 39 ÷ 142.9

94

Water 2020, 12, 1706

Table A2. RMSE results obtained from uniform roughness bottom for FES2014.

Tidal Model Constituent Cd
RMSE (cm)

Mokpo (M) Gunsan (G) Incheon (I) Mean

FES2014

M2

0.0015 10.17 34.83 40.18 36.30
0.002 5.67 22.87 16.62 18.63

0.0023 3.22 16.49 14.39 14.59
0.0025 2.79 12.99 19.28 16.12
0.003 6.24 10.58 35.57 26.63

K1

0.0015 0.79 1.46 2.07 1.77
0.002 0.98 1.30 2.03 1.70

0.0023 1.16 1.48 2.34 1.96
0.0025 1.29 1.70 2.64 2.21
0.003 1.67 2.35 3.51 2.97

S2

0.0015 2.63 10.94 12.21 11.15
0.002 1.29 6.92 19.21 14.55

0.0023 1.58 6.24 23.41 17.38
0.0025 2.16 6.59 26.12 19.35
0.003 3.76 8.99 31.90 23.77

O1

0.0015 1.42 1.71 1.33 1.49
0.002 1.82 2.38 1.86 2.07

0.0023 1.99 2.67 2.26 2.40
0.0025 2.10 2.86 2.53 2.63
0.003 2.43 3.38 3.27 3.24

Table A3. RMSE results obtained from uniform roughness bottom for NAO99Jb.

Tidal Model Constituent Cd
RMSE (cm)

Mokpo (M) Gunsan (G) Incheon (I) Mean

NAO99Jb

M2

0.0015 12.90 40.56 45.18 41.37
0.002 7.38 26.96 19.39 21.89

0.0023 4.14 19.93 14.16 16.06
0.0025 2.29 15.75 17.64 16.07
0.003 4.40 10.46 33.32 25.00

K1

0.0015 0.95 1.65 2.17 1.90
0.002 1.04 1.35 2.13 1.78

0.0023 1.17 1.47 2.42 2.01
0.0025 1.28 1.64 2.70 2.24
0.003 1.64 2.30 3.60 3.01

S2

0.0015 2.62 11.03 12.85 11.56
0.002 1.53 7.07 19.89 15.05

0.0023 1.82 6.39 24.02 17.84
0.0025 2.37 6.77 26.70 19.78
0.003 4.03 9.32 32.58 24.31

O1

0.0015 0.49 0.84 1.49 1.21
0.002 0.83 1.21 1.22 1.19

0.0023 1.05 1.53 1.46 1.46
0.0025 1.19 1.75 1.69 1.67
0.003 1.54 2.28 2.37 2.27

95

Water 2020, 12, 1706

Table A4. RMSE results obtained from uniform roughness bottom for TPXO9.1.

Tidal Model Constituent Cd
RMSE (cm)

Mokpo (M) Gunsan (G) Incheon (I) Mean

TPXO9.1

M2

0.0015 10.49 34.68 40.07 36.19
0.002 5.33 21.39 15.72 17.51
0.0023 3.29 15.14 14.63 14.16
0.0025 3.25 12.13 19.90 16.26
0.003 7.42 11.13 36.85 27.64

K1

0.0015 1.12 2.02 2.46 2.20
0.002 0.99 1.36 1.91 1.65
0.0023 1.01 1.21 1.93 1.62
0.0025 1.06 1.25 2.10 1.74
0.003 1.31 1.75 2.87 2.37

S2

0.0015 2.17 10.22 12.63 11.13
0.002 1.05 6.53 19.79 14.88
0.0023 1.70 6.26 24.07 17.85
0.0025 2.26 6.76 26.51 19.65
0.003 4.07 9.54 32.34 24.17

O1

0.0015 1.07 1.31 1.24 1.25
0.002 1.46 1.95 1.55 1.71
0.0023 1.70 2.33 1.98 2.10
0.0025 1.80 2.50 2.25 2.31
0.003 2.18 3.09 3.00 2.97

Table A5. List of simulation cases applying non-uniform bottom roughness coefficients to different
sub-regions of WCK.

Case Tide Model
Bottom Friction Coefficient

Mokpo Gunsan Incheon Other Sub-Region

FES 2-1 FES2014 0.0025 0.0027 0.002 0.002
FES 2-2 FES2014 0.0025 0.003 0.002 0.002
FES 2-3 FES2014 0.0025 0.0035 0.0018 0.002
FES 2-4 FES2014 0.0025 0.0035 0.002 0.002

NAO 2-1 NAO99Jb 0.0025 0.0027 0.002 0.002
NAO 2-2 NAO99Jb 0.0025 0.003 0.002 0.002
NAO 2-3 NAO99Jb 0.0025 0.0035 0.0018 0.002
NAO 2-4 NAO99Jb 0.0025 0.0035 0.002 0.002
TPX 2-1 TPXO9.1 0.0025 0.0027 0.002 0.002
TPX 2-2 TPXO9.1 0.0025 0.003 0.002 0.002
TPX 2-3 TPXO9.1 0.0025 0.0035 0.0018 0.002
TPX 2-4 TPXO9.1 0.0025 0.0035 0.002 0.002

Table A6. RMSE results obtained from non-uniform roughness bottom for M2.

Tidal Constituent Simulation Case
RMSE (cm)

Mokpo Gunsan Incheon Mean

M2

FES 2-1 3.33 12.04 11.94 11.44
FES 2-2 3.26 11.77 11.90 11.31
FES 2-3 3.29 11.61 12.12 11.37
FES 2-4 3.65 11.40 12.06 11.27

NAO 2-1 2.25 15.00 12.75 13.09
NAO 2-2 2.25 14.15 12.38 12.53
NAO 2-3 2.27 13.39 13.83 13.00
NAO 2-4 2.26 13.53 12.03 12.09
TPX 2-1 4.10 11.09 11.91 11.08
TPX 2-2 3.74 11.17 11.91 11.10
TPX 2-3 3.88 11.18 11.68 10.97
TPX 2-4 3.79 11.24 12.09 11.23

96

Water 2020, 12, 1706

Table A7. RMSE results obtained from non-uniform roughness bottom for K1.

Tidal Constituent Simulation Case
RMSE (cm)

Mokpo Gunsan Incheon Mean

K1

FES 2-1 1.28 1.75 2.32 2.04
FES 2-2 1.30 1.87 2.37 2.11
FES 2-3 1.28 2.01 2.28 2.10
FES 2-4 1.23 1.92 2.30 2.08

NAO 2-1 1.28 1.72 2.42 2.09
NAO 2-2 1.28 1.81 2.43 2.12
NAO 2-3 1.28 1.96 2.36 2.13
NAO 2-4 1.28 1.95 2.46 2.18
TPX 2-1 1.04 1.32 1.90 1.63
TPX 2-2 1.05 1.38 1.90 1.65
TPX 2-3 1.05 1.50 1.84 1.66
TPX 2-4 1.05 1.49 1.91 1.69

Table A8. RMSE results obtained from non-uniform roughness bottom for S2.

Tidal Constituent Simulation Case
RMSE (cm)

Mokpo Gunsan Incheon Mean

S2

FES 2-1 2.25 6.92 22.09 16.56
FES 2-2 2.13 7.25 22.04 16.58
FES 2-3 2.14 8.08 20.63 15.75
FES 2-4 1.94 7.81 21.98 16.63

NAO 2-1 2.38 7.03 22.60 16.94
NAO 2-2 2.39 7.52 22.91 17.23
NAO 2-3 2.37 8.29 21.31 16.27
NAO 2-4 2.37 8.31 23.28 17.62
TPX 2-1 2.38 7.10 22.36 16.78
TPX 2-2 2.34 7.61 22.72 17.12
TPX 2-3 2.30 8.40 21.09 16.14
TPX 2-4 2.31 8.43 23.03 17.48

Table A9. RMSE results obtained from non-uniform roughness bottom for O1.

Tidal Constituent Simulation Case
RMSE (cm)

Mokpo Gunsan Incheon Mean

O1

FES 2-1 2.13 2.95 2.44 2.62
FES 2-2 2.18 3.06 2.51 2.71
FES 2-3 2.14 3.09 2.48 2.70
FES 2-4 2.12 3.07 2.43 2.67

NAO 2-1 1.21 1.82 1.62 1.67
NAO 2-2 1.20 1.86 1.62 1.68
NAO 2-3 1.22 1.97 1.62 1.73
NAO 2-4 1.21 1.95 1.65 1.74
TPX 2-1 1.91 2.70 2.22 2.39
TPX 2-2 1.83 2.64 2.17 2.33
TPX 2-3 1.82 2.71 2.16 2.36
TPX 2-4 1.87 2.77 2.24 2.42

97

Water 2020, 12, 1706

Table A10. Averaged interpolated amplitudes of tidal constituents at open boundaries.

Tidal Constituent Ocean Tide Model
Mean Amplitude (cm)

A B C

M2
FES2014 188.7 55.5 21.3

NAO99Jb 186.3 56.9 20.9
TPXO9.1 191.1 55.8 20.5

K1
FES2014 27.4 21.5 3.8

NAO99Jb 30.1 21.6 4.2
TPXO9.1 26.5 21.4 3.4

S2
FES2014 55.4 23.8 10.6

NAO99Jb 57.4 24.0 10.4
TPXO9.1 52.0 23.9 10.5

O1
FES2014 22.0 16.8 4.2

NAO99Jb 21.6 17.2 4.2
TPXO9.1 22.9 17.0 3.3

Table A11. Averaged difference of interpolated amplitude on open boundaries (cm).

Tidal Constituent Ocean Tide Model
RMSE (cm)

A B C Mean

M2
FES2014 2.65 1.85 0.83 1.84
TPXO9.1 5.20 2.78 1.09 2.91

K1
FES2014 2.72 0.41 0.78 0.91
TPXO9.1 3.66 0.42 1.70 1.27

S2
FES2014 2.07 0.57 0.20 0.80
TPXO9.1 5.43 0.91 0.41 1.77

O1
FES2014 0.50 0.53 0.55 0.53
TPXO9.1 1.38 0.58 1.17 0.78

Table A12. Da per 1cm increase of offshore tidal amplitude on boundary B.

Tidal Constituent a1−a2
Da

Incheon Gunsan Mokpo Mean

M2

20–40 3.40 3.76 2.39 3.25
40–60 2.51 3.04 1.80 2.62
60–80 1.75 2.30 1.36 2.01
80–100 1.60 2.15 1.26 1.91

K1

20–40 1.27 0.99 0.81 0.91
40–60 1.51 1.20 0.97 1.09
60–80 1.48 1.20 0.99 1.10
80–100 1.30 1.07 0.91 1.00

Table A13. Da per 1 cm increase of the tidal amplitude of K1 on the open boundary B.

Tidal Constituent
Da

Incheon Gunsan Mokpo Mean

M2
10–20 2.02 2.54 1.48 2.16
20–30 1.80 2.33 1.36 1.96

K1
10–20 1.37 1.29 1.03 1.31
20–30 1.37 1.29 1.04 1.31

98

Water 2020, 12, 1706

Table A14. A comparison of water surface level at the gauge stations.

Sta. No. Station Name

Water Surface Amplitude (m)

Neap Tide Percentage
Difference

Spring Tide Percentage
DifferenceObs. Sim. Obs. Sim.

M1 Heuksando 1.18 0.9 24% 3.48 3.09 11%
M2 Mokpo 1.6 1.75 9% 4.99 4.04 19%
G1 Yeonggwang 2.06 2.43 15% 6.34 6.16 3%
G2 Wido 1.95 2.29 15% 6.2 5.95 4%
G3 Gunsan 2.08 2.64 21% 6.81 6.66 2%
G4 Janghang 2.19 2.8 22% 7.01 6.89 2%
G5 Eocheongdo 1.78 1.95 9% 5.85 5.28 10%
G6 Seocheonmaryang 2.13 2.54 16% 6.8 6.48 5%
G7 Boryeong 2.23 2.76 19% 7.15 6.14 14%
G8 Anheung X(*) 2.29 6.46 5.86 9%
I1 Taean 2.2 2.9 24% 7.2 6.52 9%
I2 Pyeongtaek 2.8 2.62 7% 9 7.39 18%
I3 Daesan 2.35 3.18 26% 7.68 6.92 10%
I4 Ansan X(*) 3.1 8.43 7.1 16%
I5 Gureopdo 2.16 2.57 16% 7.15 6.04 16%
I6 Yeongheungdo 2.54 3.41 26% 8.58 7.19 16%
I7 IncheonSongdo 2.15 3.08 30% 9.35 7.15 24%
I8 Incheon 2.23 3.26 32% 9.59 7.33 24%
I9 Yeongjongbridge 2.35 2.89 19% 9.87 7.03 29%

I10 Gyeongin 2.27 2.98 24% 8.68 7.08 18%
I11 Ganghwa 2.47 3.63 32% 7 5.73 18%

X(*): observation data were missing at this station.

References

1. Bao, X.W.; Gao, G.P.; Yan, J. Three-dimensional simulation of tide and tidal current characteristics in the East
China Sea. Oceanol. Acta 2000, 24, 135–149. [CrossRef]

2. Choi, B.H. A Tidal Model of the Yellow Sea and the East China Sea; Rep. 20–02; Korea Ocean Research and
Development Institute: Ansan, Korea, 1980.

3. Guo, X.; Yanagi, T. Three-dimensional structure of tidal current in the East China Sea and Yellow Sea.
J. Oceanogr. 1998, 54, 651–668. [CrossRef]

4. Teague, W.J.; Perkins, L.H.T.; Hallock, Z.R.; Jacobs, G.A. Current and tide observations in the southern Yellow
Sea. J. Geophys. Res. 1998, 103, 27783–27793. [CrossRef]

5. Le Fevre, F.; Le Provost, C.; Lyard, F.H. How can we improve a global ocean tide model at a regional scale?
A test on the Yellow Sea and the East China Sea. J. Geophys. Res. 2000, 105, 8707–8725. [CrossRef]

6. Kim, K.O. Tidal Simulation in the Yellow and East China Seas by Finite Element Numerical Models. Master’s,
Thesis, Sunkyunkwan University, Suwon, Korea, 2000. (In Korean).

7. Naimie, C.E.; Blain, C.A.; Lynch, D.R. Seasonal mean circulation in the Yellow Sea—A model-generated
climatology. Cont. Shelf Res. 2001, 21, 667–695. [CrossRef]

8. Suh, S.W. Reproduction of shallow tides and tidal asymmetry by using finely resolved grid on the west coast
of Korea. J. Korean Soc. Coast. Ocean. Eng. 2011, 23, 313–325. (In Korean) [CrossRef]

9. Tang, Y. Numerical modeling of the tide-induced residual current in the East China Sea. Prog. Oceanogr.
1988, 21, 417–429.

10. Kantha, L.H.; Bang, I.; Choi, J.-K.; Suk, M.-S. Shallow water tides in the seas around Korea. J. Korean
Soc. Oceanogr. 1996, 31, 123–133.

11. Kang, S.K.; Lee, S.-R.; Lie, H.-J. Fine grid tidal modeling of the Yellow and East china seas. Cont. Shelf Res.
1998, 18, 739–772. [CrossRef]

12. Lee, H.J.; Jung, K.T.; So, J.K.; Chung, J.Y. A three-dimensional mixed finite-difference Galerkin function model
for the oceanic circulation in the Yellow Sea and the East China Sea in the presence of M2 tide. Cont. Shelf Res.
2002, 22, 67–91. [CrossRef]

13. Ogura, S. The tides in the seas adjacent to Japan. Bull. Hydrogr. Dep. Imp. Jpn. Navy 1933, 7, 1–189.

99

Water 2020, 12, 1706

14. An, H.S. A numerical experiment of M2 tide in the Yellow Sea. J. Oceanogr. Soc. Jpn. 1977, 33, 103–110.
[CrossRef]

15. Nishida, H. Improved tidal charts for the western part of the North Pacific Ocean. Rep. Hydrogr. Res. 1980,
15, 55–70.

16. Yanagi, T.; Inoue, K. Tide and tidal current in the Yellow Sea/East China Sea. Lamer 1994, 32, 153–165.
17. Lee, J.C.; Jung, K.T. Application of eddy viscosity closure models for M2 tide and tidal currents in the Yellow

Sea and the East China Sea. Cont. Shelf Res. 1999, 19, 445–475. [CrossRef]
18. Lee, M.E.; Kim, G.; Nguyen, V.T. Effect of local refinement of unstructured grid on the tidal modeling in the

south-western coast of Korea. J. Coast. Res. 2013, 65, 2017–2022. [CrossRef]
19. Schwiderski, E.W. On Charting Global Ocean Tides. Rev. Geophys. 1980, 18, 243–268. [CrossRef]
20. Matsumoto, K.; Takanezawa, T.; Ooe, M. Ocean tide models developed by assimilating TOPEX/POSEIDON

altimeter data into hydrodynamical model: A global model and a regional model around Japan. J. Oceanogr.
2000, 56, 567–581. [CrossRef]

21. Kantha, L.H. Barotropic tides in the global oceans from a nonlinear tidal model assimilating altimetric tides
1. Model description and results. J. Geophys. Res. 1995, 100, 25283–25308. [CrossRef]

22. Le Provost, C.; Genco, M.L.; Lyard, F.; Vincent, P.; Canceil, P. Spectroscopy of the world ocean tides from a
finite element hydrodynamic model. J. Geophys. Res. 1994, 99, 24777–24797. [CrossRef]

23. Han, G.; Hendry, R.; Ikeda, M. Assimilating TOPEX/POSEIDON derived tides in a primitive equation model
over the Newfoundland Shelf. Cont. Shelf Res. 2000, 20, 83–108. [CrossRef]

24. Lyard, F.; Lefevre, F.; Letellier, T.; Francis, O. Modelling the global ocean tides: A modern insight from
FES2004. Ocean. Dyn. 2006, 56, 394–415. [CrossRef]

25. Fu, L.L.; Christensen, E.J.; Yamarone, C.A., Jr.; Lefebvre, M.; Menard, Y.; Dorrer, M.; Escudier, P.
TOPEX/POSEIDON mission overview. J. Geophys. Res. 1994, 99, 24369–24381. [CrossRef]

26. Dronkers, J.J. Tidal Computation in Rivers and Coastal Waters; North-Holland Publishing Company: Amsterdam,
The Netherlands, 1964; pp. 3–87.

27. Brière, C.; Abadie, S.; Bretel, P.; Lang, P. Assessment of TELEMAC system performances, a hydrodynamic
case study of Anglet, France. Coast. Eng. 2007, 54, 345–356. [CrossRef]

28. Villaret, C.; Hervouet, J.M.; Kopmann, R.; Merkel, U.; Davies, A.G. Morphodynamic modelling using the
Telemac finite element system. Comput. Geosci. 2013, 53, 105–113. [CrossRef]

29. Choi, B.C.; Ko, J.S. Modelling of tides in the East Asian Marginal Seas. J. Korean Soc. Ocean. Eng. 1994,
6, 94–108.

30. Blain, C.A. Development of a data sampling strategy for semi-enclosed seas using a shallow-water model.
J. Atmos. Ocean. Technol. 1997, 14, 1157–1173. [CrossRef]

31. Zhao, B.; Fang, G.; Chao, D. Numerical simulations of the tide and tidal current in the Bohai Sea, the Yellow
Sea and the East China Sea. Acta Oceanol. Sin. 1994, 16, 1–10.

32. Ye, A.; Mei, L. Numerical modeling of tidal waves in the Bohai Sea, the Huanghai Sea and the East China
Sea. Oceanol. Limnol. Sin. 1995, 26, 63–70. (In Chinese with English abstract)

33. Defant, A. Physical Oceanography; Pergamon Press: Oxford, UK, 1960; Volume II.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

100

water

Article

Numerical and Experimental Study of Classical
Hydraulic Jump

Eugene Retsinis * and Panayiotis Papanicolaou

School of Civil Engineering, National Technical University of Athens, 9 Iroon Polytexneiou St., 15780 Athens,
Greece; panospap@mail.ntua.gr
* Correspondence: retsinis76@hotmail.com; Tel.: +30-6944-916-187

Received: 20 May 2020; Accepted: 19 June 2020; Published: 21 June 2020

Abstract: The present work is an effort to simulate numerically a classical hydraulic jump in a
horizontal open channel with a rectangular cross-section, as far as the jump location and free surface
elevation is concerned, and compare the results to experiments with Froude numbers in the range
2.44 to 5.38. The governing equations describing the unsteady one-dimensional rapidly varied flow
have been solved with the assumption of non-hydrostatic pressure distribution. Two finite difference
schemes were used for the discretization of the mass and momentum conservation equations,
along with the appropriate initial and boundary conditions. The method of specified intervals has
been employed for the calculation of the velocity at the downstream boundary node. Artificial
viscosity was required for damping the oscillations near the steep gradients of the jump. An iterative
algorithm was used to minimize the difference of flow depth between two successive iterations that
must be less than a threshold value, for achieving steady state solution. The time interval varied in
each iteration as a function of the Courant number for stability reasons. Comparison of the numerical
results with experiments showed the validity of the computations. The numerical codes have been
implemented in house using a Matlab® environment.

Keywords: hydraulic jump; Boussinesq equations; MacCormack; Dissipative two-four; method of
specified intervals

1. Introduction

The flow in prismatic open channels as a civil engineering specialty has been studied for over
100 years via laboratory experiments, theoretical one-dimensional analysis, as well as with numerical
modeling. The flow may be characterized as a gradually varied (GVF) or a rapidly varied (RVF)
flow if changes of flow depth are gradual over a significant length or abrupt over a short length of
the channel respectively. A characteristic dimensionless parameter describing the type of flow is
the Froude number, Fr = u/

√
gh that expresses the ratio of inertia over the gravity forces, u being

the average, over a cross section velocity; g is the gravitational acceleration and D is the hydraulic
depth, i.e., the depth of the equivalent orthogonal channel with bottom width equal to the width of
free surface of the prismatic channel. When inertia forces are dominant, Fr > 1 and the flow is called
supercritical, otherwise when Fr < 1, the flow is named subcritical. Critical flow (Fr = 1) may occur,
but it is quite unstable, oscillating between a subcritical and a supercritical state. A special case of a
RVF is the hydraulic jump, which is formed in an open channel when supercritical flow turns into
subcritical, resulting in an abrupt rise of the free surface, formation of a surface roller and high energy
dissipation locally. The hydraulic jump in civil engineering applications can be used as an energy
dissipation mechanism, for mixing purposes as well as for the aeration of the flow.

Hydraulic jumps appear usually in stilling basins for energy dissipation of spillways when
required. The sequent (subcritical) depth, the length (distance between subcritical and supercritical

Water 2020, 12, 1766; doi:10.3390/w12061766 www.mdpi.com/journal/water101

Water 2020, 12, 1766

flow) and the location where the jump occurs are important parameters for the safe design of such
structures. Among the experiments performed to determine these parameters are the pioneering
works [1,2], where the one-dimensional momentum equation was derived relating the sequent depth
ratio to the upstream Froude number. Moreover, in more recent experiments on hydraulic jumps [3–7],
basic flow variables have been determined such as the sequent depth ratio, the length of the jump and
the geometry of the surface roller.

The one-dimensional depth-averaged equations of mass conservation (continuity) and momentum
(Navier–Stokes), describing the unsteady, rapidly varied open channel flow with non-hydrostatic
pressure distribution, form a two-equation system named the Boussinesq equations. Assuming parallel
flow and hydrostatics over the depth pressure distribution, the simplified system is called the Saint
Venant (shallow water) equation. In both systems of equations the variables are the depth of flow and
the average over depth velocity. A hydraulic jump can be modeled using the Boussinesq equations,
which is the main objective of this work. So far, the shallow water Saint Venant equations have been
used in several investigations for the numerical simulation of the classical hydraulic jump. For example,
the finite element method was used [8] to solve the Saint Venant equations up to the point that steady
state was reached. The assumption of hydrostatic pressure distribution employed is not valid in the
region of the hydraulic jump, because the substantial curvature of the streamlines results in vertical
accelerations that cannot be neglected. Moreover, the energy losses were neglected (weak hydraulic
jump), making questionable the validity of simulation results for practical purposes. An attempt was
made [9], to combine the knowledge regarding vorticity generation in a hydraulic jump, using the
Navier–Stokes and shallow water equations. The Saint Venant equations were also modified [10],
including terms related to turbulent shear stress and non-uniform velocity distribution, applying a
depth-averaged approach. The equations were solved by the finite element method for the location and
the profile of a hydraulic jump with upstream Froude numbers in the range 2 to 7. An effort to simulate
the classical hydraulic jump using the shallow water equations and solve them using the MacCormack
numerical scheme [11], produced results that compare well with the theoretical ones. The finite volume
method [12] has been used to solve the governing shallow water equations. This model was applied to
a hydraulic jump, and the numerical results are in agreement with experiments.

The numerical solution of Navier–Stokes equations has been widely used in modeling of the
hydraulic jump. The use of the Reynolds-Averaged Navier–Stokes (RANS) approach and the k-ε
turbulence closure model [13], was applied to study the turbulence characteristics of the hydraulic
jump, which had to be adapted to flow cases of a moving free surface by means of the partially
explicit approach. The study includes both free and forced hydraulic jumps with Froude numbers
in the range from 2.1 to 7.6. Comparison of the numerical predictions with velocity measurements
using one-dimensional Laser Doppler Anemometry, showed that the results qualitatively compare
well, regarding the mean velocity and turbulence intensity in the flow direction. RANS equations
were solved using a turbulence closure k-ε model [14], to study the hydraulic jump in a straight
horizontal channel with Froude numbers 2.0 and 4.0. The mixed Eulerian-Lagrangian method for the
calculation of the free surface of the flow is utilized to overcome the problem posed by a moving free
boundary. A detailed study of the internal and external characteristics of a hydraulic jump was made
and compared to experiments where possible. The surface roller and recirculation zone are found
to play a dominant role in turbulence generation and dissipation. The study of free and submerged
hydraulic jumps in a rectangular open channel downstream a sluice gate [15] has also been considered.
Air-water two-phase flows are considered in the numerical simulations using RANS and turbulence
closure k-ε modeling [15], and compared to velocity measurements made using Acoustic Doppler and
Particle Image Velocimetry. The numerical results concerning water depths, the hydraulic jump length
and the velocity profiles compare well with laboratory measurements. A three-dimensional model
was implemented [16], using OpenFOAM software to analyze a hydraulic jump with upstream Froude
number 6.1 in a horizontal, smooth, rectangular open channel. RANS equations were solved using
three turbulence closure models, namely the Standard k-ε, the Re-Normalization Group (RNG) k-ε,

102

Water 2020, 12, 1766

and the Shear Stress Transport (SST) k-ω model. Direct Numerical Simulation (DNS) was used [17],
in a hydraulic jump with Froude number equal 2.0, using the volume of fluid method for tracking
the free surface. Results have been produced regarding the mean velocity field, Reynolds stresses,
turbulence production and dissipation, velocity spectra and air entrainment concentration. Finally the
two recent works [18,19] present a very thorough investigation on datasets for numerical modeling
assessment of the hydraulic jump.

In summary, the shallow water one-dimensional equations are capable of modeling only some
characteristics of a transient hydraulic jump, while RANS combined with turbulence closure models or
DNS can capture the turbulent structure of a steady hydraulic jump more accurately. Implementation
of such algorithms though is limited by the Reynolds number of the flow that usually exceeds 106.
Moreover, the computational cost of such models is very high, because the computational time if a
decent computing machine is very long. For practical, mainly civil engineering applications, shallow
water modeling is much simpler to use, while the results can be acceptable. In the present work,
we will show that one-dimensional modeling of a hydraulic jump is improved using the more accurate,
unsteady, one-dimensional Boussinesq equations. They are solved numerically using the MacCormack
and the Dissipative two-four finite difference schemes. The practicality of such a model used in
applications like the design of stilling basins, has led us to choose this model for analysis. The maximum
error of the flow depth is used as an iterative parameter, for achieving the steady state solution for
the free surface profile and the location of a hydraulic jump, in a horizontal rectangular open channel
for a wide range of Froude numbers. To apply the Boussinesq model at the downstream boundary
node, the method of specified intervals was used for the evaluation of the unknown flow variables.
The results are compared to experiments performed at the Laboratory of Applied Hydraulics, School of
Civil Engineering, National Technical University of Athens, Greece, showing that such numerical
schemes can accurately simulate the classical hydraulic jump.

2. Governing Equations

The equations modeling unsteady one-dimensional rapidly varied flows are the Boussinesq
equations [20]. These include additional terms for the non-hydrostatic pressure distribution due to
curved streamlines. The basic assumptions made are: (1) the vertical velocity varies from zero at the
channel bottom to its maximum value at the free surface, (2) the velocity in the main flow direction is
uniformly distributed over the depth, (3) the velocity in the lateral direction is zero, (4) the fluid is
incompressible, (5) the channel is prismatic of a rectangular cross section with rigid bottom and sides,
(6) the longitudinal bottom slope is small, and (7) the formulas regarding energy friction slope for
steady flow can be used for the unsteady flow as well. The one-dimensional Boussinesq equations for
mass and momentum conservation are written in vector form as:

∂G
∂t

+
∂F
∂x

= S, (1)

where:

G =

[
h

uh

]
, F =

⎡⎢⎢⎢⎢⎣ uh
u2h +

(
1
2

)
gh2 −

(
1
3

)
h3E

⎤⎥⎥⎥⎥⎦, S =

[
0

gh(So − Sf)

]
(2)

E =
∂2u
∂x∂t

+ u
∂2u
∂x2 −

(
∂u
∂x

)2

, (3)

x is the longitudinal distance along the channel bottom as shown in Figure 1, t is the time, h = h(x,t)
and u = u(x,t) are the unknown flow depth and mean velocity components in the main flow direction
respectively, Sf is the energy grade line slope, So is the longitudinal bottom slope and g is the
gravitational acceleration. E = E(x,t) is the Boussinesq term, which makes the difference if compared to
the Saint Venant equations where the pressure distribution is assumed to be hydrostatic. The energy
grade slope can be computed using the Manning formula in SI, u = (R2/3S1/2)/n, where u is the mean

103

Water 2020, 12, 1766

over the wetted cross-section velocity, R is the hydraulic radius (cross sectional area over the wetted
perimeter ratio), S = Sf the energy grade slope and n the Manning friction coefficient as Sf = n2

f u2/R4/3.
Alternatively, the Darcy–Weisbach formula could be used for computing Sf, but we used the Manning
formula in order to simplify calculations since the friction coefficient is kept constant for every step
and the results are not affected.

Figure 1. Physical and computational domain of the classical hydraulic jump.

3. Numerical Schemes

The classical hydraulic jump Boussinesq equations cannot be solved analytically, therefore a
numerical method has to be implemented. In this work, the MacCormack [21] and the Dissipative
two-four [22] finite difference schemes have been employed for the solution of the flow equations with
the appropriate initial and boundary conditions. The first scheme is second order accurate both in
space and time, and the second one is fourth order accurate in space and second order in time, allowing
for proper simulation of the Boussinesq terms. The developed algorithm iterates until the change of
the flow depth between two successive iterations is less than a fixed convergence value. Then the jump
forms a part of the steady state solution.

A sketch of the jump with the computational grid is shown in Figure 1. The hydraulic jump is
formed combining the use of a sluice gate upstream with a weir downstream. The origin of the spatial
coordinate (x = 0) is set at the sluice gate location, while x is the longitudinal distance along the channel
bottom measured from the origin. The distance between the sluice gate and the weir is L (equal to
5.20 m, the region of interest where the computational solution is sought), and it is discretized by a total
number of n nodes including the boundary nodes, thus creating a uniform grid of points at distance
Δx = L/(n−1) in between. The index i denotes a spatial node, while the upstream and downstream
boundaries correspond to nodes i = 1 and i = n with flow depths denoted as hup and hdo respectively.
A brief presentation of the numerical schemes for the discretization of Equation (1) follows.

3.1. MacCormack Scheme

This scheme is a two-step algorithm. For the spatial derivatives of Equation (1) forward finite
differences are used in the predictor step and backward finite differences in the corrector step including
in the computational stencil two spatial nodes in the predictor step, the nodes i + 1, i and in the
corrector step the nodes i and i − 1 as follows:

Predictor step:
G∗i = Gk

i − λ
(
Fk

i+1 − Fk
i

)
+ ΔtSk

i , (4)

Corrector step:
G∗∗i = G∗i − λ

(
F∗i − F∗i−1

)
+ ΔtS∗i , (5)

104

Water 2020, 12, 1766

The flow variables at the next iteration level k+1, and grid point i, are given by:

Gk+1
i =

1
2

(
Gk

i + G∗∗i
)
, (6)

where λ = Δt/Δx, Δt being the time interval and the superscripts k and k + 1 refer to the two
successive levels of iteration. All variables with a single asterisk (*) refer to those computed at the
predictor step where all variables with double asterisk (**) refer to those computed at the corrector
step. The Boussinesq terms are neglected in this scheme.

3.2. Dissipative Two-Four Scheme

The Dissipative two-four scheme consists of a predictor and a corrector step, again for the spatial
derivatives of Equation (1) forward finite differences are used in the predictor step and backward finite
differences having in the corrector step, as including in the computational stencil, three spatial nodes
in the predictor step, the nodes i + 2, i + 1 and i and in the corrector step the nodes i, i − 1 and i − 2:

Predictor step:

G∗i = Gk
i +
λ
6

(
Fk

i+2 − 8Fk
i+1 + 7Fk

i

)
+ ΔtSk

i , (7)

Corrector step:

G∗∗i =
1
2

(
Gk

i + G∗i
)
+
λ
12

(
−7F∗i + 8F∗i−1 − F∗i−2

)
+

1
2

ΔtS∗i , (8)

The vector Gk+1
i at the next iteration level k + 1 and grid point i, is given by:

Gk+1
i =

1
2

(
Gk

i + G∗∗i
)
, (9)

Regarding Boussinesq terms, the second order derivative ∂2u/∂x2 is approximated using a three
point central finite difference in both steps, while for the first order derivative ∂u/∂x, forward finite
difference is used in the predictor step, and a backward finite difference in the corrector step. The partial
derivative ∂2u/∂x∂t in the Boussinesq terms is ignored, since it is zero at steady state. Regarding the
code implementation, Equations (4)–(9), have to be written in non-vector form.

Due to computational reasons in the case of the Dissipative two-four scheme, the flow equations
are discretized using Equations (7) and (8) at the interior nodes, i.e., for i = 4, 5, . . . , n−2, the Boussinesq
terms are either considered or neglected, while at nodes i = 2, 3, n−1, the MacCormack scheme is used
for discretizing Equations (4) and (5) and omitting the Boussinesq terms. Apparently, this is allowed
since the jump appears far from the boundary nodes, therefore the Boussinesq terms are not significant
since the flow is parallel.

3.3. Initial and Boundary Conditions

The appropriate initial and boundary conditions must be set in a well-posed problem. The number
of characteristics that enter the computational domain determine the auxiliary conditions to be
specified [23]. The initial condition includes steady, supercritical, gradually varied flow for the entire
length of the channel, resulting in two characteristic curves entering the computational domain,
thus two flow parameters must be specified at each grid point, the flow depth and the velocity.
The depth at each grid point can be computed by numerical integration of the first order ordinary
differential equation:

dh
dx

=
So − Sf

1− Fr2 , (10)

105

Water 2020, 12, 1766

of the steady state gradually varied flow, Fr being the Froude number, Fr = u/
√

gh. The upstream
depth hup is known (obtained from the experiments downstream of the sluice gate) and the computation
is performed with a Kutta-Merson method, beginning the calculations with the flow depth hup.

The flow conditions are fixed at the two boundaries of the channel. For a given discharge and
settings of the sluice gate upstream and the thin crested weir downstream, the flow depths are known
and take constant values hup and hdo at nodes i = 1 and i = n respectively. The mean velocity is known
at i = 1 but it has to be computed at end node i = n. Apparently, the flow is assumed to be supercritical
at node i = 1 and subcritical at node i = n.

The velocity at the end node i = n will be computed using the method of specified intervals and
the positive characteristic equation discretized by finite differences. From Figure 1, points A and B
correspond to nodes n−1 and n respectively at the known time level k, while the positive characteristic
through point P with the unknown velocity at the downstream boundary at time level k+1 is indicated.
The method of specified intervals is used to compute the velocity, the celerity and the flow depth at
point R, which is the intersection of the positive characteristic through point P with the grid line of the
known time level k using the following relationships [24]:

uR =
uB + λ(cBuA − cAuB)

1 + λ(uB − uA + cB − cA)
, (11)

cR =
cB + λuR(cB − cA)

1 + λ(cB − cA)
, (12)

hR = hB − λ(uR + cR)(hB − hA), (13)

where c =
√

gh is the celerity of a small amplitude wave propagating inside a rectangular open channel
in shallow water. The energy grade line slope at point R is estimated from the following Equation:

SfR = n2u2
R/R4/3

R , (14)

Then the velocity uk+1
n at point P can be computed from the following relationship:

uP = uk+1
n = uk

R −
g

ck
R

(
hk+1

n − hk
R

)
+ gΔt

(
So − Sf

k
R

)
, (15)

3.4. Courant Condition Artificial Viscosity

The variable time step Δt in each iteration is restricted according to the Courant criterion for
stability purposes, and it is computed from:

Δt =
cnΔx

max
(
|u|+ √

gh
) , (16)

where cn is the Courant number that must be less than or equal to 0.65 [24], and Δx is the constant
spatial step as shown in Figure 1.

To dampen the oscillations that occur around the jump region, artificial viscosity has to be added
to the numerical schemes. The formulas used are those proposed by [25].

First the parameter ξi at the computational node i is calculated:

ξi =
Δx
Δt

∣∣∣hi+1 − 2hi + hi−1
∣∣∣∣∣∣hi+1

∣∣∣+ 2|hi|+ |hi−1|
, for the nodes, i = 2, . . . , n− 1 (17)

ξi =
Δx
Δt

∣∣∣hi+1 − hi
∣∣∣∣∣∣hi+1

∣∣∣+ |hi|
, for the node, i = 1 (18)

106

Water 2020, 12, 1766

ξi =
Δx
Δt
|hi − hi−1|
|hi|+ |hi−1| , for the node, i = n (19)

Then at the center of segment i + 1/2, between nodes i and i + 1:

ξi+(1/2) = kartmax(ξi, ξi+1), (20)

Similarity between nodes i − 1 and i:

ξi−(1/2) = kartmax(ξi−1, ξi), (21)

where kart is a coefficient adjusting the amount of dissipation.
Finally the flow variables h and u, at iteration level k+1 are modified to the new ones according to

the following relationships:

fnew
k+1
i = fold

k+1
i + ξi+(1/2)

(
fold

k+1
i+1 − fold

k+1
i

)
− ξi−(1/2)

(
fold

k+1
i − fold

k+1
i−1

)
, (22)

where the variable f stands either for the flow depth or for the velocity. The numerical codes have
been implemented in house using Matlab® computational environment, while the input data for the
numerical simulations are the channel geometry, the flow depths hup, hdo and the flow rate Q.

4. Results

The experiments were performed at the Laboratory of Applied Hydraulics of the School of Civil
Engineering at the National Technical University of Athens, Greece, in a 10.50 m long flume with a
rectangular cross section 0.248 m wide and 0.50 m deep. The channel has a steel bottom and vertical
side walls made of glass. The water supply system consists of a constant head tank, a pipeline and a
regulating valve to adjust the flow rate that was measured with a Venturi meter and did not exceed
50 L/s. The flow was controlled by a sluice gate setting the supercritical flow conditions upstream,
and a thin crested weir at the end of the channel located 5.20 m downstream from the sluice gate for
controlling the tailwater, subcritical flow. The hydraulic jump formed at some location between the
sluice gate and the weir, depending upon the upstream, supercritical and tailwater, subcritical depths.
The flow depths and free surface profile of the jumps were measured by a point gauge with accuracy
±0.1 mm.

Six experiments were implemented, the flow conditions of which are shown in Table 1. In the
table appear the flow rate q, the supercritical upstream and subcritical downstream depths hup and
hdo respectively, and the Froude number of the flow, Fr, at the toe of the jump from the experimental
measurements. The six different jump cases measured, were computed using same conditions (upstream
and tailwater depths and the flow rate) and the numerical results are compared to experiments in the
following paragraphs.

Table 1. Experimental flow variables of the hydraulic jumps.

Test Case/Experiment q (L/s/m) Fr hup (m) hdo (m)

1 24.28 2.44 0.0217 0.0682
2 54.32 3.06 0.0319 0.1335
3 24.28 3.40 0.0174 0.0735
4 28.72 4.03 0.0174 0.0788
5 28.72 4.48 0.0162 0.0906
6 21.72 5.38 0.0119 0.0895

For the numerical modeling of the experiments shown in Table 1 three discretizing schemes
of the Boussinesq equations were used: (i) the Dissipative two-four scheme with the influence of
Boussinesq terms, (ii) the Dissipative two-four scheme without the influence of non-hydrostatic

107

Water 2020, 12, 1766

pressure distribution terms, and (iii) the MacCormack scheme without Boussinesq terms. The time
interval computed from Equation (16) varied in every iteration. Moreover, Equation (22) was applied
to dampen the oscillations near the jump. In all test cases 100 spatial nodes were used for discretization
(n = 100), resulting in Δx = 0.0525 m with acceptable spatial resolution. All the results regarding
the computed dimensionless flow depth h/hdo, alongside the dimensionless longitudinal distance
of the channel, x/L, for each test case are shown in Figures 2a, 3a, 4a, 5a, 6a and 7a. The measured
and computed flow profiles by the three numerical algorithms are plotted together along the channel,
and the significance of the Boussinesq terms (due to non-parallel streamlines) inside the region of
the hydraulic jump are depicted sideways in Figures 2b, 3b, 4b, 5b, 6b and 7b. Outside the jump
these terms are almost zero (small enough), thus confirming the hydrostatic pressure distribution.
From the numerical results, it must be noted that the flow depth increases from the vena contracta
downstream of the sluice gate up to the jump, due to energy losses encountered in the governing
equations. One may note that in test case 1, the dissipative behavior of the numerical results is probably
due to the artificial dissipation added in the numerical scheme. In addition, from the Boussinesq term
distribution along the channel, one may note that this term is not zero at the upstream end, therefore we
would not expect a smooth transition in free surface from supercritical to subcritical flow. Furthermore,
note that the Froude number is quite low and the hydraulic jump is characterized as weak [26], since
1.7 < Fr < 2.5, which means that it is a non-fully developed jump because of the weak surface roller
with low energy loss. From these figures we conclude that the agreement between experiments and
computations is satisfactory.

(a) (b)

Figure 2. Experimental and Numerical Results for test case 1: (a) Free surface profile; (b) Boussinesq
term versus distance.

(a) (b)

Figure 3. Experimental and Numerical Results for test case 2: (a) Free surface profile; (b) Boussinesq
term versus distance.

108

Water 2020, 12, 1766

(a) (b)

Figure 4. Experimental and Numerical Results for test case 3: (a) Free surface profile; (b) Boussinesq
term versus distance.

(a) (b)

Figure 5. Experimental and Numerical Results for test case 4: (a) Free surface profile; (b) Boussinesq
term versus distance.

(a) (b)

Figure 6. Experimental and Numerical Results for test case 5: (a) Free surface profile; (b) Boussinesq
term versus distance.

(a) (b)

Figure 7. Experimental and Numerical Results for test case 6: (a) Free surface profile; (b) Boussinesq
term versus distance.

109

Water 2020, 12, 1766

Figure 8a,b exhibit the variation of the dimensionless spatially (over a cross-section) averaged
flow velocity in the main flow direction x, u/uup, where uup is the average velocity at x = 0, with the
dimensionless longitudinal distance, x/L, for all three algorithms for test cases 1 and 6 respectively.
It is evident that the MacCormack scheme overestimates the flow velocity at the upstream end of
the channel, while the results from the other two methods are almost identical. Figure 9a,b depict
the evolution of convergence criteria of the maximum absolute change in flow depth between two
successive iterations, until a steady state is obtained for test case 2 using the Dissipative two-four
scheme with Boussinesq terms, and test case 5 using the MacCormack scheme without Boussinesq
terms respectively. Figures 10 and 11 present the temporal evolution in “computational-pseudo time”
of the free surface elevation for the Dissipative two-four scheme including the Boussinesq terms for
test cases 3 and 4 respectively, both in dimensionless form. Note that the jump moves upstream until it
is stabilized. Similar results have been produced for all other test cases.

(a) (b)

Figure 8. Variation of the mean velocity alongside the channel: (a) for test case 1; (b) for test case 6.

(a) (b)

Figure 9. Evolution of the convergence criteria: (a) for test case 2 with Dissipative scheme with
Boussinesq terms; (b) for test case 5 with MacCormack scheme without Boussinesq terms.

Figure 10. Temporal evolution of jump formation for test case 3 using the Dissipative two-four scheme
including the Boussinesq terms.

110

Water 2020, 12, 1766

Figure 11. Temporal evolution of jump formation for test case 4 using the Dissipative two-four scheme
including the Boussinesq terms.

The specific force of the flow (momentum flux per unit weight) in a channel with rectangular
cross section written as M = 0.5bh2 +

(
Q2/gbh

)
, where b is the width of the rectangular cross

section, is conserved across a hydraulic jump, or alternatively, it takes the same value upstream and
downstream of the jump. From the numerical results it turns out that the relative error of the specific
force between the two end cross-sections of the jump for all test cases and the three numerical schemes
applied ranged from 0.62 % to 12.92 %, results that are acceptable for the accurate location of the jump.
The number of iterations required to obtain a steady state with accuracy of order 10−4 m or 5 × 10−5 m,
along with the closure of continuity equation for each test case and all numerical schemes are shown in
Table 2, where the flow rate was computed from the depth and the average velocity over the cross
section. It is evident that for all test cases the MacCormack algorithm gave the highest error in mass
conservation, if compared to the other algorithms, due to the lower order of spatial accuracy.

Table 2. Required iterations for convergence and mass balance error.

Test Case Numerical Scheme Iterations Maximum Mass Conservation Error (%)

1
Dissipative with Boussinesq terms 3099 0.39

Dissipative without Boussinesq terms 3098 0.39
MacCormack without Boussinesq terms 3722 2.79

2
Dissipative with Boussinesq terms 946 0.72

Dissipative without Boussinesq terms 946 0.73
MacCormack without Boussinesq terms 1243 2.77

3
Dissipative with Boussinesq terms 3375 0.55

Dissipative without Boussinesq terms 3146 0.55
MacCormack without Boussinesq terms 3173 2.86

4
Dissipative with Boussinesq terms 2296 0.78

Dissipative without Boussinesq terms 1807 0.79
MacCormack without Boussinesq terms 2219 2.81

5
Dissipative with Boussinesq terms 2218 0.93

Dissipative without Boussinesq terms 2217 0.92
MacCormack without Boussinesq terms 2164 2.95

6
Dissipative with Boussinesq terms 2874 1.08

Dissipative without Boussinesq terms 2873 1.09
MacCormack without Boussinesq terms 2603 3.02

An iterative algorithm was implemented for both numerical schemes which converged to the
steady state solution, when the maximum value of the difference of the flow depth between two
successive iterations was smaller than a threshold value. The sequent depths as well as the location
where the jump forms for given flow and boundary conditions, resulted from the steady state solution
of the governing equations. The numerical results showed that the magnitude of the Boussinesq
terms is greater at the jump regime, whereas outside this it is almost zero, as expected. It was also
shown that the Boussinesq terms do not affect practically the location where the jump forms for test

111

Water 2020, 12, 1766

cases 1–6, so that their exclusion eases the discretization without significant error. Note that to obtain
the results presented in this paper artificial viscosity has been used. A coefficient adjusting the amount
of dissipation to reproduce the experimental measurements by a trial and error procedure was set to
the value 0.011.

5. Case Studies

For further validation of the numerical results obtained from the six test cases examined, let us
present a case study of practical interest. We consider a 100 m long and 2 m wide (narrow channel,
depth to width ratio around one) rectangular, horizontal open channel, with Manning roughness
coefficient 0.013 and flow rate 7.2 m3/s. In Figure 12a–c we present the computed dimensionless flow
depth, h/hdo, versus the dimensionless distance x/L, for three Froude numbers at the vena contracta
cross-section namely 2, 4 and 6, including or excluding the Boussinesq terms, using a dissipation
parameter equal to 0.011. In Figure 12d we demonstrate the temporal evolution of the jump until it is
stabilized, for Froude number equal to 4. In all three cases one may notice the formation of H3 and
H2 types of free surface curves upstream and downstream of the jump respectively, due to energy
loss. From Figure 12b,c it is evident that the hydraulic jump is much longer when computed using
Boussinesq terms.

(a) (b)

(c) (d)

Figure 12. Dimensionless free surface elevation for 2 m wide channel: (a) for Fr = 2; (b) for Fr = 4;
(c) for Fr = 6; (d) temporal evolution of the jump for Fr = 4.

Let us now examine the influence of the channel width on the length of the hydraulic jump,
Lj. We consider a 100 m long channel and 5 m wide (wide section, depth to width ratio smaller
than one) with orthogonal cross section conveying 10 m3/s, with same dissipation factor equal to 0.011.
In Figure 13a–c the computed dimensionless flow depth, h/hdo, is plotted versus the dimensionless
distance x/L, for three Froude numbers at the vena contracta namely 2, 4 and 6, with or without the
Boussinesq terms incorporated. The flow depth at x/L = 0 is the boundary condition, and it is the same
with and without Boussinesq terms, as indicated in Figures 12 and 13. Near the supercritical boundary
the depth deviates from that at x/L = 0, with deviation being greater when Boussinesq terms are not
included. This is probably due to numerical instability from the boundary condition, also shown clearly
in Figures 2b, 3b, 4b, 5b, 6b and 7b, where Boussinesq terms are plotted vs x/L. The non-Boussinesq

112

Water 2020, 12, 1766

terms showed greater instability because the depth near the supercritical boundary deviates more than
that with Boussinesq terms.

The length of the hydraulic jump computed with Boussinesq terms, is still greater than that
computed without incorporating Boussinesq terms, but the difference is not as sound as it was in
the previous example. In Tables 3 and 4 we present the length of the computed hydraulic jump
and compare it to that from experiments [27] (p. 14). The results in the 5 m wide channel with or
without the Boussinesq terms are in satisfactory agreement with measurements in orthogonal channels,
if compared to the results of the 2 m wide channel. The noticeable differences between the flow profiles
in Figures 12 and 13 are probably due to the non-hydrostatic pressure distribution encountered in
Boussinesq terms. The difference is sound when the hydraulic jump is “weak” for low Froude numbers,
where the transition from supercritical to subcritical flow is not as vigorous as for greater Froude
numbers. Therefore there is a smoother free surface elevation when Boussinesq terms are included,
resulting in longer jump lengths.

(a)

(b)

(c)

Figure 13. Dimensionless free surface elevation for 5 m wide channel: (a) for Fr = 2; (b) for Fr = 4;
(c) for Fr = 6.

113

Water 2020, 12, 1766

Table 3. Length of jump for 2 m wide open channel.

Fr Scheme Ljcomputed (m) Ljexperimental (m) % Difference

2
Dissipative with Boussinesq terms 10.12 8.81 14.86

Dissipative without Boussinesq terms 10.12 9.51 6.41

4
Dissipative with Boussinesq terms 15.74 13.14 19.79

Dissipative without Boussinesq terms 12.36 14.47 −14.58

6
Dissipative with Boussinesq terms 26.47 15.07 75.65

Dissipative without Boussinesq terms 8.99 17.03 −47.21

From Table 3, it is obvious that comparing the numerical results with experiments, exclusion
of Boussinesq terms leads to more accurate results concerning the length of the jump. Alternatively,
from Table 4 the opposite is true. Apparently, the flow in a “wide” orthogonal open channel is not
affected from the side walls while in a “narrow” channel, it is. Therefore, the one-dimensional shallow
water equations that are improved with Boussinesq terms can predict the characteristics of a hydraulic
jump accurately, if the channel is wide if compared to the flow depth.

Table 4. Length of jump for 5 m wide open channel.

Fr Scheme Ljcomputed (m) Ljexperimental (m) % Difference

2
Dissipative with Boussinesq terms 7.59 7.02 8.11

Dissipative without Boussinesq terms 7.59 7.56 0.40

4
Dissipative with Boussinesq terms 8.99 8.41 6.90

Dissipative without Boussinesq terms 7.87 9.69 −18.78

6
Dissipative with Boussinesq terms 9.18 10.74 −14.52

Dissipative without Boussinesq terms 6.74 12.74 −47.10

6. Conclusions

The one-dimensional Boussinesq equations have been solved numerically using the MacCormack
as well as the Dissipative two-four finite difference schemes, for the simulation of hydraulic jump
formation in a horizontal rectangular open channel and for upstream Froude numbers Fr in the range
2.44 to 5.38. The governing equations have been enriched with additional terms if compared to the
Saint Venant equations, to account for the non-hydrostatic pressure distribution in the regime of
rapidly varied flow. Terms related to the energy loss and the gravity forces have been also included.
The initial condition was a steady supercritical gradually varied flow along the whole length of the
channel modeled. The upstream and downstream boundary conditions regarding the flow depth
remained constant during the iteration process, and equal to the values measured in experiments.
The method of specified intervals was used for the calculation of the velocity at the downstream end,
assuming that the positive characteristic through a point does not intersect with already established grid
points. Variable time step was used in every iteration according to the CFL (Courant-Friedrichs-Lewy)
stability criterion, along with artificial viscosity for smoothing of the oscillations occurring in the jump.
The computational results compare well with experiments since the specific force was computed from
the depth and mean velocity at both ends of the hydraulic jump with acceptable tolerance, and the
mass conservation equation was verified for all numerical schemes and all test cases.

From such a model one can determine the sequent depth ratio as well as the length of the jump,
results that are useful in the design of stilling basins (geometrical properties). Given a stilling basin with
a known inflow Froude number and flow depth, the engineer must decide the end sill dimensions and
the basin length, so that the hydraulic jump is contained in the stilling basin. Finally, from comparison of
the numerical results and experiments, it can be concluded that the aforementioned numerical modeling
schemes can predict the basic features of the classical hydraulic jump with acceptable accuracy.

114

Water 2020, 12, 1766

Author Contributions: E.R. has performed the experimental measurements and implemented the numerical
algorithms. E.R. wrote the paper with the contribution of P.P. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors would like to thank J. Demetriou for his contribution in the implementation of
the experiments.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bidone, G. Observations Sur Le Hauteur Du Ressaut Hydraulique en 1818, Report; Royal Academy of Sciences:
Turin, Italy, 1819. (In French)

2. Belanger, J.B. Essai Sur La Solution Numeric de Quelques Problems Relatifs an Mouvement Permenent Des
Causcourantes; Carilian-Goeury: Paris, France, 1828. (In French)

3. Bradley, J.N.; Peterka, A.J. Hydraulic Design of Stilling Basins. J. Hydraul. Div. 1957, 83, 1401–1406.
4. Hager, H.W.; Bremen, R. Classical Hydraulic Jump: Sequent Depths. J. Hydraul. Res. 1989, 27, 565–583.

[CrossRef]
5. Hager, H.W.; Bremen, R.; Kawagoshi, N. Classical Hydraulic Jump: Length of Roller. J. Hydraul. Res. 1990,

28, 591–608. [CrossRef]
6. Long, D.; Rajaratnam, N.; Steffler, P.; Smy, P. Structure of Flow in Hydraulic Jumps. J. Hydraul. Res. 1991, 29,

207–218. [CrossRef]
7. Wu, S.; Rajaratnam, N. Free Jumps, Submerged Jumps and Wall Jets. J. Hydraul. Res. 1995, 11, 197–212.

[CrossRef]
8. Katopodes, N.D. A Dissipative Galerkin Scheme for Open-Channel Flow. J. Hydraul. Eng. 1984, 110, 450–466.

[CrossRef]
9. Rotunno, R.; Smolarkiewicz, K.P. Vorticity Generation in the Shallow-Water Equations as Applied to

Hydraulic Jumps. J. Atmos. Sci. 1995, 52, 320–330. [CrossRef]
10. Khan, A.A.; Steffler, M.P. Physically Based Hydraulic Jump Model for Depth-Averaged Computations.

J. Hydraul. Eng. 1996, 122, 540–548. [CrossRef]
11. Su, L.B.; Wei, L.W. Numerical Simulation of 2D Flows with Hydraulic Jump Using Shallow Water Equations.

Appl. Mech. Mater. 2011, 130–134, 3616–3619. [CrossRef]
12. Liu, L.Y.; Cai, X.Y.; Wei, L.W.; Yang, K.; Ma, Z. Numerical Simulation of Hydraulic Jump Using Eno Scheme.

J. Chem. Pharm. Res. 2014, 6, 603–607.
13. Qingchao, L.; Drewes, U. Turbulence Characteristics in Free and Forced Hydraulic Jumps. J. Hydraul. Res.

1994, 32, 877–898. [CrossRef]
14. Chippada, S.; Ramaswamy, B.; Wheeler, F.M. Numerical Simulation of Hydraulic Jump. Int. J. Numer.

Methods Eng. 1994, 37, 1381–1397. [CrossRef]
15. Castillo, G.L.; Carrillo, M.J.; García Antonio, T.J.; Rodríguez, V.A. Numerical Simulations and Laboratory

Measurements in Hydraulic Jumps. In Proceedings of the 11th International Conference on Hydroinformatics
HIC 2014, New York, NY, USA, 17–21 August 2014; pp. 1–8.

16. Barrachina, B.A.; Jimenez, A.P. Numerical Analysis of Hydraulic Jumps Using OpenFOAM. J. Hydroinform.
2015, 17, 662–678. [CrossRef]

17. Mortazavi, M.; Chenadec, V.; Moin, P.; Mani, A. Direct Numerical Simulation of a Turbulent Hydraulic Jump:
Turbulence Statistics and Air Entrainment. J. Fluid Mech. 2016, 797, 60–94. [CrossRef]

18. Valero, D.; Viti, N.; Gualtieri, C. Numerical Simulation of Hydraulic Jumps. Part 1: Experimental Data for
Modelling Performance Assessment. Water 2019, 11, 36. [CrossRef]

19. Viti, N.; Valero, D.; Gualtieri, C. Numerical Simulation of Hydraulic Jumps. Part 2: Recent Results and
Future Outlook. Water 2019, 11, 28. [CrossRef]

20. Basco, D.R. Computation of Rapidly Varied, Unsteady, Free Surface Flow; U.S. Geological Survey, Water Resources
Investigations Report No. 83-4284; Geological Service: Reston, VT, USA, 1987.

21. MacCormack, R.W. The Effect of Viscosity in Hypervelocity Impact Cratering. In Proceedings of the
AIAA Hypervelocity Impact Conference, Cincinnati, OH, USA, 30 April–2 May 1969; pp. 1–7. [CrossRef]

115

Water 2020, 12, 1766

22. Gottlieb, D.; Turkel, E. Dissipative Two-Four Methods for Time-Dependent Problems. Math. Comput. 1976,
30, 703–723. [CrossRef]

23. Szymkiewicz, R. Numerical Modeling in Open Channel Hydraulics, 1st ed.; Springer: Gdansk, Poland, 2010;
pp. 1–419. [CrossRef]

24. Chaudhry, H.M. Open-Channel Flow, 2nd ed.; Springer: New York, NY, USA, 2008; pp. 1–400. [CrossRef]
25. Fennema, R.; Chaudhry, M. Explicit Numerical Schemes for Unsteady Free-Surface Flows With Shocks.

Water Resour. Res. 1986, 22, 1923–1930. [CrossRef]
26. Chow, V.T. Open Channel Hydraulics, 30057th ed.; McGraw-Hill: New York, NY, USA, 1959; pp. 1–680.
27. Peterka, J.A. Hydraulic Design of Stilling Basins and Energy Dissipators; A Water Resources Technical Publication,

Engineering Monograph No. 25; United States Department of the Interior, Bureau of Reclamation: Denver,
CO, USA, 1984; pp. 1–222.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

116

water

Article

An Optimized and Scalable Algorithm for the Fast
Convergence of Steady 1-D Open-Channel Flows

Louis Goffin *, Benjamin Dewals, Sebastien Erpicum, Michel Pirotton and Pierre Archambeau

Hydraulics in Environmental and Civil Engineering (HECE) Research Unit, Urban and Environmental
Engineering (UEE) Department, Faculty of Applied Sciences, University of Liege (ULiege), Allée de
la Découverte, 9-4000 Liège, Belgium; b.dewals@uliege.be (B.D.); s.erpicum@uliege.be (S.E.);
michel.pirotton@uliege.be (M.P.); pierre.archambeau@uliege.be (P.A.)
* Correspondence: l.goffin@uliege.be

Received: 11 October 2020; Accepted: 11 November 2020; Published: 17 November 2020

Abstract: Calculating an open-channel steady flow is of main interest in many situations; this includes
defining the initial conditions for the unsteady simulation or the computation of the water level
for a given discharge. There are several applications that require a very short computation time
in order to envisage a large number of runs, for example, uncertainty analysis or optimization.
Here, an optimized algorithm was implemented for the fast and efficient computation of a 1-D
steady flow. It merges several techniques: a pseudo-time version of the Saint-Venant equations,
an evolutionary domain and the use of a non-linear Krylov accelerator. After validation of this
new algorithm, we also showed that it performs well in scalability tests. The computation cost
evolves linearly with the number of nodes. This was also corroborated when the execution time
was compared to that obtained by the non-linear solver, CasADi. A real-world example using a
9.5 km stretch of river confirmed that the computation times were very short compared to a standard
time-dependent computation.

Keywords: shallow water; CasADi; fast computation; 1-D

1. Introduction

Channelized flows can be simulated using 1-D, 2-D or 3-D models depending on the level of flow
detail that is required [1]. Results from hydrodynamic numerical models are used in multiple domains
including flood risk analysis [2] or real-time control of river facilities [3], for instance.

One-dimensional models are used when a dominant direction can be assumed in the velocity
field. This may be the case when the flow is restricted to the main riverbed. A 1-D model can still
be used in the case of out-of-bank flooding, although they are unable to represent complex 2-D flow
patterns in the floodplain [4]. Several practical cases have shown that flood mapping can be performed
using 1-D models [5,6] and they can also be used in other fields, such as flood routing for hydropower
plant operations [7] and mixed flows in pipes [8].

In fact, 1-D models are still used extensively even though 2-D and 3-D models are currently
widely available. There are various reasons for their use, for example, digital elevation models (DEM)
and bathymetry data are not available in some regions of the world. When only cross-section profiles
are available to represent the geometry of a riverbed, 1-D models can make direct use of such profiles
whereas they have to be interpolated to be used in 2-D or 3-D models. Besides, many applications
do not require a detailed description of the flow features in the floodplain, and thus, a 1-D modeling
approach is sufficient.

Large-scale hydraulic modeling of river networks [9–13] makes heavy use of 1-D models because
of their ability to compute long stretches of the river at a reasonable cost. To initiate a computation,
one needs boundary conditions as well as the initial condition. This initial condition is often a steady

Water 2020, 12, 3218; doi:10.3390/w12113218 www.mdpi.com/journal/water117

Water 2020, 12, 3218

water profile, which can be obtained by performing a time-dependent simulation with steady boundary
conditions over a period of time that is long enough to reach a steady solution [14]. This step may
consume a considerable amount of time before the main problem can be addressed. The initial
condition should be computed with the same numerical scheme as the one used in the unsteady model
in order to ensure the steadiness of the first step of the unsteady model. The ability of these models to
quickly obtain a steady initial solution is also of great importance.

Optimization is another field where obtaining a steady result as quickly as possible is important.
Indeed, most optimization techniques require a large number of runs in order to figure out the optimal
solution. In order to ensure that the overall computation time is as short as possible, techniques that
are quick should be utilized including parallelization [15] or the use of fast computing models.

Although 1-D simulations are known to provide results in a short period of time, accelerating the
computation of the 1-D steady solution is of great interest in the fields mentioned above. This can
be achieved by using two main strategies. The first consists of exploiting the resources of modern
computers more efficiently. Such techniques are more frequently applied to 2-D cases, which naturally
require more computing resources. Common hardware acceleration strategies include parallelizing
codes on several CPU cores [16,17] or on a GPU [18–20]. The second method consists of designing
algorithms in order to converge with less effort toward the solution. To the authors’ knowledge,
there is no such work available in the literature. Both strategies can be combined in order to obtain the
best performance.

The purpose of this paper is to propose algorithmic strategies for the fast computation of 1-D
steady solutions. First, the equations are presented. Then, we introduce two original strategies
in order to reduce the overall computation time. These strategies can easily be implemented in
other hydraulic codes. An alternative non-linear solver is introduced for comparison purposes.
Finally, the validation results, the optimal parameters for the algorithm, the performance of the model
and its application to a real-world problem are presented.

2. Materials and Methods

2.1. Equations

One-dimensional water flow is described by the St-Venant equations, which are as follows [21]:

∂A
∂t + ∂Q

∂x = ql
∂Q
∂t + ∂

∂x

(
Q2

A

)
+ gA∂zs

∂x = −gAS f + uxql
(1)

where A is the cross-section area (m2), Q is the discharge (m3/s), ql is a lateral discharge per unit
length (m2/s), g is the gravity acceleration (m/s2), Sf is the friction slope (-), ux is the velocity along
the x direction of ql (m/s) and zs is the free surface elevation (m). The numerical resolution of this set
of non-conservative equations has been shown to provide accurate results in many practical cases,
including in the presence of discontinuities [22,23].

Assuming a steady flow, temporal derivatives vanish in Equation (1). Since solving the first
equation is straightforward, the discharge distribution is known on the entire domain for a given
distribution of ql. We assume that the sign of Q is independent from x. It means that a single equation
remains with a single unknown A. In order to keep the same numerical scheme as the one used for
the unsteady system (which is important when a steady solution is used as the initial condition of
an unsteady problem and to be able to use a similar algorithmic strategy), Kerger et al. [14] added a
pseudo-temporal term (pseudo-time is τ (s)) to the steady form of Equation (1):

β
∂A
∂τ

+
∂
∂x

(
Q2

A

)
+ gA

∂zs

∂x
= −gAS f + uxql (2)

118

Water 2020, 12, 3218

where β = −sign(Q). Kerger et al. [14] justify this choice for β by analyzing the characteristic velocity
of Equation (2):

λ =
c2 − u2

β
=

c2
(
1− Fr2

)
β

(3)

where c (m/s) is the wave celerity. In subcritical flows (Fr < 1, Fr = Q/
(
gA3/b

)0.5
is the Froude

number (-), b is the width of the free surface (m)), and the sign of λ is the sign of β. If Fr > 1,
then sign(λ) = −sign(β). For critical flows (Fr = 1), the characteristic velocity is 0, independently from
β. In order to keep some form of consistency with the general model, if we choose β = −sign(Q),
an upstream boundary condition is required when Fr > 1 and a downstream boundary condition is
required when Fr < 1. This is equivalent to the position of the water depth boundary condition for the
numerical resolution of the full 1-D set of equations.

With a single boundary condition and a discharge distributed in the channel, solving Equation (2)
determines the cross-section area (and subsequently, the water depth) all along the stretch. Equation (2)
is discretized according to the finite volume method. It is solved according to the same numerical
scheme as the one used for the full unsteady model [14,24].

For a node i, Equation (2) is discretized in finite volumes as:

Q2
i+1/2/Ai+1/2 −Q2

i−1/2/Ai−1/2

Δx
+ gAi

(zs,i+1/2 − zs,i−1/2

Δx
+ S f ,i

)
− ux,iql,i ≈ −β∂A∂τ (4)

where Δx (m) is the spatial discretization step and subscripts refer to the position of variables values.
For the sake of clarity, we consider Q > 0 and a constant reconstruction of the flux at finite

volume boundaries to explicate the numerical scheme. When applying the considered upwinding
directions [14] for a node i not located next to a boundary, Equation (4) is equivalent to:

Q2
i /Ai −Q2

i−1/Ai−1

Δx
+ gAi

(zs,i+1 − zs,i

Δx
+ S f ,i

)
− ux,iql,i =

∂A
∂τ

(5)

This flux vector splitting method has been shown to be unconditionally stable [14]. For the node
located at the downstream boundary (i = N − 1), if a weak water level boundary condition zs,BC is
imposed at the border, Equation (4) becomes:

Q2
N−1/AN−1 −Q2

N−2/AN−2

Δx
+ gAN−1

(zs,BC − zs,N−1

Δx
+ S f ,N−1

)
− ux,N−1ql,N−1 =

∂A
∂τ

(6)

Without a boundary condition imposed on the value of zs at the external border, a nil zs gradient
is imposed and Equation (4) becomes:

Q2
N−1/AN−1 −Q2

N−2/AN−2

Δx
+ gAN−1S f ,N−1 − ux,N−1ql,N−1 =

∂A
∂τ

(7)

At the upstream node (i = 0), if a weak boundary condition of the water level is imposed at the
border, Equation (4) becomes:

gA0

(zs,1 − zs,BC

Δx
+ S f ,0

)
− ux,0ql,0 =

∂A
∂τ

(8)

Without a boundary condition at the upstream border, Equation (4) becomes:

gA0

(zs,1 − zs,0

Δx
+ S f ,0

)
− ux,0ql,0 =

∂A
∂τ

(9)

119

Water 2020, 12, 3218

2.2. Original Solving Strategy

Solving Equation (2) instead of Equation (1) decreases the computation time since the number of
equations and unknowns is reduced. In order to save even more time, two additional strategies were
implemented: (a) a non-linear Krylov accelerator was used to promote fast convergence and (b) the
computation was only performed on a sliding part of the full domain.

2.2.1. Non-Linear Krylov Acceleration

Numerically solving a non-linear system can be performed by different means, including Newton’s
method and Broyden’s method [25]. More sophisticated methods exist in order to solve non-linear
systems faster, such as the Jacobian-free Newton–Krylov method [26] and Anderson acceleration [27].
The Anderson acceleration method uses the results from successive iterations in order to adapt the
new approximation. Walker and Ni [28] showed that this method can be considered equivalent to the
well-known GMRES method [29] when applied to linear systems. The nonlinear Krylov acceleration
(NKA) [30,31], which is similar to Anderson acceleration, has been found to be more efficient in
some applications than more recent methods such as the Jacobian-free Newton–Krylov method [32].
NKA was used for a faster convergence of our pseudo-time model.

Since NKA only relies on the results directly produced by the hydraulic model, it can be easily
applied to other algorithms or other domains. Indeed, no gradient evaluation (nor other prerequisite)
is required before calling on the NKA algorithm.

The NKA algorithm records N (N ∈ N>0) previous moves of the root finding process. Based on
these previous moves, NKA adapts its guess for the new root. One of the main assumptions is that the
Jacobian matrix remains constant within the scope of N moves. We briefly explain the method here
and extended details can be found in [30–33].

A Newton–Raphson iteration process computes the n + 1st guess of the root based on the nth
guess xn, on the value of the function f at xn and on the invert of the Jacobian matrix J:

xn+1 = xn − J−1 f (xn) (10)

Instead of evaluating J−1 at each iteration, NKA evaluates it from N previous moves or sets it to
the identity matrix, in which case the method degenerates to the fixed-point method.

NKA takes advantage of a history of N corrections of x (denoted v) and N evolutions of f (x)
(denoted w) at iterate n:

vi = xi − xi−1

wi = f (xi) − f (xi−1)
, i = n−N + 1, . . . , n (11)

The method assumes that J is constant and invertible within the scope of the N previous iterations,
which is written as follows:

Jvi = wi
vi = J−1wi

(12)

Mathematical developments described in the references cited above lead to the expression:

vn+1 =
n∑

i=n−N+1
zivi +

(
f (xn) −

n∑
i=n−N+1

ziwi

)
xn+1 = xn + vn+1

(13)

where the coefficients zi are the solution of the projection:

z = argmina∈R0

∥∥∥∥∥∥∥ f (xn) −
n∑

i=n−N+1

aiwi

∥∥∥∥∥∥∥ (14)

Equation (13) shows that the correction of the variable x is decomposed into two components:

120

Water 2020, 12, 3218

1. The first term depicts the correction as a linear combination of previous corrections.
2. The second term is similar to the second term of a fixed-point iteration that takes into account

previous evolutions of function f.

Note that the Jacobian matrix is not used in this iterative process.

2.2.2. Evolutionary Domain

The second strategy was designed to reduce computational cost. It consists in reducing the size of
the computation domain and sliding it along the river stretch in order to evaluate the cross-section
areas from downstream to upstream.

The development of this strategy has arisen from the long history of numerical hydrodynamics
in various flow regimes. Indeed, many flows that are solved for rivers are subcritical (Fr < 1) at
downstream and upstream boundary conditions. In such a situation, the cross-section area information
is propagated from downstream to upstream. For a fixed flow direction, the upwinding direction of
the scheme takes all unknowns and properties (except those linked to the discharge) downstream.
This means that when a new node is computed, it depends only on the downstream nodes (Figure 1).
It should be noticed that when a node i is added, the upstream border of node i + 1 produces a change
in the upwinding direction of property Q and the unknown Avel (cross-section area used to compute
the velocity). The node i + 1, which was supposed to be converged, undergoes a new convergence
process that indirectly affects nodes i + 2, i + 3, . . . Theoretically, all the nodes located downstream of
node i should be kept in the computational domain.

Figure 1. Upwinding directions of the unknown and flow properties at the upstream limit of the
computation domain.

The boundary condition on the border between the node i and node i − 1 (see Figure 1) is called a
“mirror border”. On this border, all the unknowns and properties are reconstructed from the computed
inner node. This method is equivalent to reproducing the node i in i − 1, like a mirror. For node i in
Figure 1, the discretization of Equation (2) is:

gAi

(zs,i+1 − zs,i

Δx
+ S f ,i

)
− ux,iql,i = 0 (15)

The evolution of the domain relies on three strategies. First, all nodes in the computation domain
should have reached a partial residual threshold ξp (m2/s) before considering the extension of the
computation domain: ∂A/∂τ ≤ ξp. Then, the most downstream node can be removed from the partial
domain once it drops under the final residual threshold ξ f (m2/s): ∂A/∂τ ≤ ξ f . Finally, we have to
make sure that the nodes that were removed from the domain are not impacted by the computation

121

Water 2020, 12, 3218

domain in such a way that their residuals ∂A/∂τ become higher than the final precision threshold ξ f .
Dimensionless parameters are discussed further in Section 3.2.

In order to assess whether the removed nodes ∂A/∂τ remain lower than ξ f , an analytical analysis
of the discretized model is performed. Let us consider three nodes and their borders (Figure 2).
The discretized formulation of Equation (2) at node i is:[

∂A
∂τ

]
i
=

[
∂
∂x

(
Q2

A

)
+ gA∂zs

∂x + gAS f − uxql

]
i

≈
(

Q2
i

Ai
−Q2

i−1
Ai−1

)
Δx + g

A2
i+1−A2

i
Ai+1−Ai

(zs,i+1−zs,i
Δx

)
+

[
gAS f − uxql

]
i

(16)

Figure 2. Upwinding directions of the unknown and flow properties in the computation domain.

The influence of a change in the cross-section area in i− 1 on the value of ∂A/∂τ in i is given by
the derivative:

∂
∂Ai−1

([
∂A
∂τ

]
i

)
=

Q2
i−1

Δx
1

A2
i−1

(17)

From the result in (17), one can predict the evolution of the residual ∂A/∂τ of a node that is
not in the computation domain anymore. If node i is planned to be removed from the computation
domain, one can check that its ∂A/∂τ remains below the threshold ξ f even with an evolution of the
cross-section area in i− 1: [

∂A
∂τ

]
i,next

≈
[
∂A
∂τ

]
i,prev

+
Q2

i−1

Δx
1

A2
i−1

ΔAi−1 (18)

where ΔAi−1 is the evolution of the cross-section A in i− 1 from the last evaluation of [∂A/∂τ]i,prev.
If the evolution of the cross-section area in the computation domain (i− 1) implies that [∂A/∂τ]i

exceeds the threshold ξ f , then node i should be added again in the computation domain in order
to make sure it remains below the threshold until the end of the entire computation. It should be
noted that node i + 1, i + 2, . . .might also be impacted. This technique guarantees that once the sliding
domain has moved along the entire domain, all nodes have reached at least the final precision required.

As stated earlier, the method described here was designed within the framework of subcritical
flows. In order to be able to deal with a larger range of flow regimes, several adaptations were made.
When a supercritical node is detected downstream (let say at position m), it is not computed and
the computation domain is extended until a subcritical node is found upstream (say at position n).
Then, the domain starting from m to n is computed and converged. This technique avoids boundary
condition problems. Indeed, a supercritical flow requires an upstream BC since the characteristic
velocity is directed towards the downstream.

122

Water 2020, 12, 3218

2.2.3. Combination of Solving Strategies

The combined use of the sliding domain and NKA involves several specific considerations.
The use of NKA is implemented in the code with a safety coefficient that deactivates this optimizing
technique in some cases. Indeed, it was experienced that NKA could lead to some instabilities when
there was a sudden change in the cross-section area. This behavior is due to the assumption in NKA
that the Jacobian matrix is constant and invertible locally [32,33]. In order to avoid such a situation,
the accelerator is deactivated when

∣∣∣Ai+1 −Ai
∣∣∣ > ηAi+1, where Ai and Ai + 1 refer to the cross-section

area of the nodes i and i + 1 as depicted in Figure 1, and 0 < η ≤ 1 is the safety coefficient (-). After
several tests, we found that η = 0.5 provides stability with a limited impact on the computation time.

The method can be summarized with the following pseudo-code (Algorithm 1):

Algorithm 1

Initialize (computation list is empty)
Add most downstream node to computation list
While some nodes still have to be converged (∂A/∂τ > ξ f):

Initialize lastly added upstream node
While nodes of computation list not converged (∂A/∂τ > ξp):

Compute cross section change for each node
If NKA activated:

Adapt cross section change with NKA algorithm
If lastly removed downstream node significantly impacted:

Add it back to the computation list and do not expand upstream
Else:

If downstream node in computation list fully converged (∂A/∂τ ≤ ξ f):
Remove this node from computation list

If upstream nodes remain to be added to computation list:
Add 1 upstream node to the computation list

Finalize

2.3. Alternative Non-Linear Solver

Various techniques can be used to solve nonlinear Equation (2). Up to this point, we have chosen to
discretize the equation using a finite volume scheme and solve it with an explicit time scheme, which is
consistent with the unified strategy of WOLF [24]. Other techniques can be used, including finite
difference schemes and/or implicit time schemes. Another possibility is to use an optimization
algorithm for nonlinear systems. One of these is the recently developed CasADi software [34,35].

CasADi first started as an algorithmic differentiation tool. During its evolution, developers chose
to shift the focus toward optimization. From non-linear expressions, CasADi is able to generate all the
information needed by a nonlinear solver in order to return a solution to the problem. CasADi provides
interfaces to MATLAB or Python for easy use.

The purpose of using CasADi is to show how our algorithm performs compared to a
state-of-the-art solver.

The implementation in CasADi was done through Opti stack, a collection of helper functions
used for nonlinear programming problems. It is possible to define variables to optimize, parameters,
an objective function and constraints. The solving of a 1-D steady open channel flow can be done
thanks to this framework.

The constraints of the problem are discretized in Equation (2) for each node and a water depth
above 0 everywhere. The downstream boundary condition is imposed through Equation (6). If no
boundary condition is set, then a flow condition can be imposed through a constraint on the Froude
number for the downstream node and the flow head is minimized at the upstream node. If the flow

123

Water 2020, 12, 3218

presents a critical section, minimizing the head upstream is equivalent to finding the section with the
highest critical head.

Another way to solve a flow with a critical section is to prescribe a Froude number transition
fromFr < 1 to Fr > 1 at that critical section. This is done by setting a constraint on the Froude number
on the nodes upstream and downstream of the critical section. The identification of the critical section
should be done prior to the computation on the basis of a critical head analysis.

3. Results and Discussion

This section presents the validation of the results and focuses on the optimal parameters
and performance. The geometries of the tests were different in order to examine as many cases
as possible.

3.1. Validation

The validation of the models was performed on a bump placed in a straight horizontal channel,
considering three different flow conditions. The bump and channel geometry have been described
previously in [36]. The whole domain ranges from 0 to 20 m with the following bed elevation:

zb(x) =

⎧⎪⎪⎨⎪⎪⎩ 0.8
(
1− (x−10)2

4

)
8 m ≤ x ≤ 12 m

0
(19)

The channel is considered to be rectangular. The discretization step was chosen as 0.1 m.
The different flow conditions are described in Table 1. All tests were performed with ξp = 10−6 m2/s

and ξ f = 10−10 m2/s.

Table 1. Boundary conditions for three test cases.

Test Upstream BC Downstream BC

A q = 1 m2/s h = 1.7 m
B q = 0.4 m2/s h = 0.75 m
C q = 0.4 m2/s Transmissive

The objective was to show that the model is able to deal accurately with various flow regimes and
transitions. Test A simulates a fully subcritical flow with no transition. Test B creates a subcritical flow
upstream, a subcritical flow downstream and a hydraulic jump in between, downstream of the bump.
Finally, the goal of test C is to show the robustness of the method for a downstream supercritical flow
and an upstream subcritical flow.

The analytical solutions for tests A, B and C were computed from the Bernoulli principle (head
conservation) [22] and the conjugate water depth formula was used for test B. A graphical comparison
of the analytical values and numerical results obtained by our algorithm and CasADi is given in
Figures 3–5. It appears that the new algorithm and CasADi provide results that fit well with the
analytical solution. However, a small difference in energy can be noticed between the analytical
solution and the numerical results and also between both numerical methods (see Table 2). This was
quantified and explained by Bruwier et al. [22]. Moreover, a more noticeable localized difference
appears between CasADi and the new algorithm results at the hydraulic jump. Even if the numerical
scheme is the same for the new algorithm and CasADi, each method has its own convergence threshold.
Altogether, the analysis validates both models.

124

Water 2020, 12, 3218

Figure 3. Comparison between the analytical solution and the numerical results produced by the new
algorithm and CasADi for validation test A.

Figure 4. Comparison between the analytical solution and the numerical results produced by the new
algorithm and CasADi for validation test B.

Figure 5. Comparison between the analytical solution and the numerical results produced by the new
algorithm and CasADi for validation test C.

Table 2. Upstream head values for tests A, B and C and differential to the analytical value.

Test
Analytical New Algorithm CasADi

Head (m) Head (m) Diff. Head (m) Diff.

A 1.71764 1.72147 0.22% 1.71958 0.11%
B 1.18040 1.17062 −0.83% 1.16664 −1.17%
C 1.18040 1.17062 −0.83% 1.16664 −1.17%

3.2. Optimal Setting of the New Algorithm

Five test cases were defined in order to specify the optimal values for the parameters for the
new algorithm. These five tests were designed in order to induce changes in the flow characteristics

125

Water 2020, 12, 3218

due to topographic or cross-section variations. The first three tests (1 to 3) concern a channel with a
rectangular cross-section and a bed slope that follows a sine function:

z(x) = α sin(βπx) + γ (20)

with x ∈ [0; 20], α = 0.05, γ = 0.05, β = 1/2 (for tests 1 and 2) and β = 2 for test 3. Two hundred
nodes were used to discretize the 20 m long channel, resulting in a 10 cm spatial step. For test 1,
the downstream boundary condition is a free surface elevation imposed at 1.2 m. For tests 2 and 3,
the same type of boundary condition was imposed with a smaller value of 0.55 m, which results in a
higher Froude number downstream. The specific discharge was imposed upstream at 1 m2/s for tests
1 to 3. The Manning equation was used for friction in tests 1 to 3, with the Manning coefficient n =
0.04 s/m1/3.

The topography and the hydraulic solutions were found thanks to the principle of head
conservation (Bernoulli) and are shown in Figures 6–8 for tests 1 to 3. Table 3 summarizes the
characteristics of each test. The objective of tests 1 to 3 was to analyze the influence of a variation of the
bed topography on the behavior of the sliding domain. For test 1, the irregularity of the bed has only a
slight influence on the water level. For the other tests, the higher Froude number and less spaced bed
elevation variations were meant to investigate the possible influence of oscillations in the water level
on the sliding domain performance.

Figure 6. Hydraulic solution for test 1.

Figure 7. Hydraulic solution for test 2.

126

Water 2020, 12, 3218

Figure 8. Hydraulic solution for test 3.

Table 3. Summary of the 5 tests used to investigate the best parameters for the new algorithm.

Test Channel Bed Friction BC

1 z(x) = 0.05 sin(πx/2) + 0.05,
rectangular cross-section Manning, n = 0.04 s/m1/3 q = 1 m/s2, zdown = 1.2 m

2 z(x) = 0.05 sin(πx/2) + 0.05,
rectangular cross-section Manning, n = 0.04 s/m1/3 q = 1 m/s2, zdown = 0.55 m

3 z(x) = 0.05 sin(2πx) + 0.05,
rectangular cross-section Manning, n = 0.04 s/m1/3 q = 1 m/s2, zdown = 0.55 m

4 Flat bottom with a weir,
rectangular cross-section Manning, n = 0.04 s/m1/3 q = 1 m/s2, zdown = 0.7 m

5 0.2% slope, sudden change
in cross-section Manning, n = 0.04 s/m1/3 q = 1 m/s2, zdown = 0.7 m

Tests 4 and 5 were performed on regular bottoms. The discontinuities that we wanted to explore
here are linked to a change in the flow regime due to the presence of a weir (test 4) or a severe change
in the cross-section (test 5). For test 4, the topography was set at z = 0 m for all nodes except for three
of them: z = 0.5 m at x = 9.85 m and x = 10.05 m, and z = 1 m at x = 9.95 m. Friction was computed
with the Manning formula and a coefficient n = 0.04 s/m1/3. The cross-section is uniform along the
channel and is rectangular with a width of 1 m. A discharge of 1 m2/s was injected upstream and a
water depth equal to 0.7 m was imposed downstream.

Test 5 deals with a severe change in the cross-section on an inclined bottom. The channel extends
100 m, discretized with 200 nodes. The slope is 0.2%. The cross-section is trapezoidal upstream
(x ≤ 47.5 m), then suddenly becomes rectangular in the middle of the channel (47.5 m < x < 52.5 m),
and finally returns to a trapezoidal shape in the downstream part (x ≥ 52.5 m). The trapezoidal sections
have a width at the bottom of 2 m and the banks are inclined with an angle of 45◦. The rectangular
cross-sections are 1 m wide. The friction and boundary conditions are the same as in test 4.

The topography and final water levels for tests 4 and 5 are depicted in Figures 9 and 10. A summary
of these tests is given in Table 3.

127

Water 2020, 12, 3218

Figure 9. Hydraulic solution for test 4 on the entire domain (a) and zoomed on the weir (b).

Figure 10. Hydraulic solution (a) and cross-section change (b) for test 5.

Our algorithm includes many parameters that need to be specified. These parameters are the
partial residual threshold ξp, the final residual threshold ξ f , the temporal scheme to solve Equation (4)
and the coefficient for the deactivation of the nonlinear Krylov accelerator. The final and partial residuals
are two closely linked parameters. They also have a direct impact on the computation time. For a given
final residual, which has to be parametrized by the user, the partial residual influences the number of
iterates required to converge the partial domain and the size of these domains. After investigation,
the other two parameters were shown to have almost no influence on the computation time. The

128

Water 2020, 12, 3218

following results focus on the best value to use for the partial residual threshold ξp for a fixed value of
ξ f = 10−8 m2/s.

CPU times were measured on a desktop computer (Intel i7 3.5 GHz CPU) for the five tests and
various partial residual thresholds. The results are reported graphically in Figure 11. It appears that the
overall computation time decreases with an increase in the partial residual threshold. Some stagnation
appears around 10−2 m2/s for tests 3 and 5. This can be explained by the fact that the residual naturally
decreases at each iteration. Keeping some nodes in the computation domain results in a decrease in
the residual for each node included in the computation domain.

Figure 11. CPU time according to the partial residual threshold for tests 1 to 5.

In order to assess the efficiency of the new algorithm, two scalability tests were performed. The first
one consisted of extending the domain upstream, with a constant spatial discretization. The second test
consisted of keeping the same channel but refining the discretization and then increasing the number
of computation nodes.

The first test took place on a frictionless sine bed elevation described by:

z(x) = 0.05 sin(2πx) + 0.05 (21)

The downstream boundary condition is a water level imposed at 0.65 m. The discharge is
constant along the channel stretch and is equal to 1 m2/s. Cross-sections are rectangular and 1 m
wide. Four domain lengths were tested (20 m, 200 m, 2 km and 20 km) with a spatial step of 0.1 m,
meaning that these domains include 200, 2000, 20,000 and 200,000 nodes.

The computation results (Figure 12a) showed that the computation time per node decreases when
the number of nodes increase. This can be explained by the fact that when the domain gets longer,
the flow conditions upstream are smoother than downstream. Longer domains undergo fewer changes
than shorter domains, leading to shorter computation time per node. This example shows that higher
partial residual values provide the best computation times.

In order to complete this scalability study, we looked at the behavior of the algorithm when the
spatial step decreases for a given domain length. In classical explicit schemes, this case leads to a
quadratic increase in the computation time. Indeed, when the spatial step decreases, the number of
nodes increases and the time step decreases.

A 100 km-long channel with a constant 0.025% slope was chosen to illustrate the behavior of the
new algorithm. The cross-sections are trapezoidal and are described using tabular values (1 m wide
at the bottom of the section and 5 m wide at 1 m above the bottom). Friction was generated using a
Manning law with n = 0.03 s/m1/3. The downstream boundary condition is a water level set at 1 m,
and 1 m3/s is injected at the upper node and the injection of 4 m3/s is shared amongst the other nodes
(through the ql term in Equation (1), ux = 0).

129

Water 2020, 12, 3218

Figure 12. CPU time evolution with the number of nodes when (a) the spatial step is kept constant and
when (b) the domain span is fixed.

The computation times are showed in Figure 12b. The behavior is slightly different from that
observed in the previous test. Indeed, the evolution of the computation time is linear in regard to
the number of nodes (the CPU time per node is globally constant) when the partial residual is set at
10−6 and 10−8 m2/s. For partial residual values of 10−2 and 10−4 m2/s, the evolution is linear up to
50,000 nodes; however, for the finest discretization, the computation time increases in a nonlinear way.

This point was investigated further. It appears that at some moment in the computation,
the algorithm needs to increase its computation domain size without being able to reduce it quickly
(i.e., upstream nodes are added to the computation list while downstream nodes cannot be removed for
residual values reasons). This increase in the number of nodes in the computation list was nonlinear
compared to the situation with coarser discretization.

We looked at dimensionless values for parameters ξp and ξ f by dividing them by
√

gA3/4
0 , A0,

which is a characteristic cross-section area. The results obtained showed rather constant values,
suggesting that a coherent choice for ξ f /

(√
gA3/4

0

)
should be around 10−10. We also found that an

efficient ratio ξ f /ξp is around 10−6.

3.3. Performance of the Models

The test case chosen for the comparison between CasADi and our algorithm is a rectangular
channel (1 m wide) with a 100 m long sine wave bottom as shown in the following equation:

z(x) = 0.05 sin
(
π
4

x
)
+ 0.05 (22)

A Manning friction formula with n = 0.04 s/m1/3 was used to estimate friction losses.
The downstream boundary condition is a water depth equal to 0.6 m. The unit discharge is uniform
and is equal to 1 m2/s. The precision parameters are as follows: ξp = 10−6 m2/s and ξ f = 10−8 m2/s.

We compared the CPU time spent in the solving stages of our new algorithm and CasADi. The goal
was to compare the evolution of the computation time with the number of nodes, rather than comparing
absolute values. The results are given in Figure 13. They confirm that the computation time evolves

130

Water 2020, 12, 3218

almost linearly with the number of nodes when the new algorithm is used. This is not the case with
CasADi: the computation time increases following a power law Nα, α > 1. This is due to the matrix
operations that CasADi has to perform. Increasing the number of nodes leads to a non-proportional
increase in computation time. The speed up factor, which is the ratio between the CPU time spent
when using our new algorithm and the CPU time spent with CasADi, ranges from in order of 100 to in
order of 102 according to the number of nodes considered.

Figure 13. Comparison of the CPU time evolution with the number of nodes between our algorithm
and CasADi and the associated speed up factor.

3.4. Real-World Application

The Romanche River in the French Alps is currently facing a number of significant changes.
A new hydropower facility is being built in order to replace older power plants. In this context, the
dam operator needs a fast computation routine in order to operate its facilities in an optimized and
safe way. To do so, an unsteady 1-D model was implemented in Fortran and integrated in a Simulink
S-Function in order to be compatible with the operator model [7]. Our new algorithm was used for the
fast computation of an initial condition.

The studied part of the Romanche River stretches over 9.5 km (Figure 14), from the new Livet
Dam to Gavet. The geometry and the calibration of the friction coefficients are detailed in [7]. The river
was discretized with 191 nodes (50 m-long meshes). The downstream boundary condition was set at
an elevation of 436.8 m. Two discharges were tested: 10 and 40 m3/s. Since the details of the hydraulic
results are of limited interest for this paper, we focused on the execution time and showed that the
Froude number remains under 1 for both discharges (Figure 14). For the same machine as the one
used earlier, the execution times (CPU time) are 0.018 s and 0.022 s, respectively (ξ f = 10−8 m2/s and
ξp = 10−2 m2/s). In comparison, the computation time of a five-minute full simulation was about 0.2 s.
Given the length of the stretch and the celerity of a wave, the time for a wave to travel from downstream
to upstream is of the order of 80 min. This means that approximately 3.2 s of computation time are
required is order to simulate the propagation of a wave downstream to upstream. It is clear that the
gain of time offered by our original technique is significant.

131

Water 2020, 12, 3218

Figure 14. Bottom elevation and Froude number distribution for both simulated discharges.

4. Conclusions

Several innovations are introduced in this paper, including the use of the non-linear Krylov
accelerator in open-channel flows, an evolutionary domain algorithm and the use of CasADi to solve
steady 1-D flows. These improvements lead to an algorithm that is able to quickly solve steady
open-channel flows. Therefore, optimization problems and uncertainty analyses that require many
evaluations, become more tractable.

An original algorithm was implemented in order to significantly improve the computation time
of a steady 1-D open-channel flow problem. It includes two main optimizing strategies: a non-linear
Krylov accelerator and an evolutionary domain algorithm. This new algorithm was validated against
the academic benchmarks of flows over a bump. The results showed a good agreement between the
numerical and analytical values.

The performance of the suggested algorithm was evaluated against the non-linear optimization
software CasADi. It showed good scalability properties. Indeed, the execution time of the proposed
algorithm evolves linearly with the number of nodes. This is not the case with other techniques when
the mesh is refined and/or when the number of nodes increase.

Finally, we demonstrated the capabilities of our algorithm in a real-world case. We used the
optimized algorithm in order to compute quickly the initial condition required by the operational
model for the Romanche River in France. Our technique was able to provide a steady state solution to
the unsteady model in a very short period of time.

Author Contributions: Conceptualization, M.P. and P.A.; methodology, L.G. and P.A.; software, L.G. and P.A.;
validation, L.G.; writing—original draft preparation, L.G.; writing—review and editing, P.A., M.P., B.D. and S.E.;
supervision, M.P. and P.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Computer Code and Software: The following software and codes were used for this paper: (a) WOLF was
developed by the HECE research group (http://www.hece.ulg.ac.be/cms/) at the University of Liège since 2000 and
is not freely available, (b) CasADi is freely available at https://web.casadi.org/, and (c) the routines used to test
CasADi are freely available at https://gitlab.uliege.be/HECE/HydroCasADi.

132

Water 2020, 12, 3218

References

1. Proust, S.; Berni, C.; Boudou, M.; Chiaverini, A.; Dupuis, V.; Faure, J.-B.; Paquier, A.; Lang, M.;
Guillen-Ludena, S.; Lopez, D.; et al. Predicting the flow in the floodplains with evolving land occupations
during extreme flood events (FlowRes ANR project). In Proceedings of the E3S Web of Conferences,
Lyon, France, 17–21 October 2016; Volume 7.

2. Drab, A.; Riha, J. An approach to the implementation of European Directive 2007/60/EC on flood risk
management in the Czech Republic. Nat. Hazards Earth Syst. Sci. 2010, 10, 1977–1987. [CrossRef]

3. Schwanenberg, D.; Becker, B.P.J.; Xu, M. The open real-time control (RTC)-Tools software framework for
modeling RTC in water resources sytems. J. Hydroinform. 2014, 17, 130–148. [CrossRef]

4. Tayefi, V.; Lane, S.N.; Hardy, R.J.; Yu, D. A comparison of one- and two-dimensional approaches to modelling
flood inundation over complex upland floodplains. Hydrol. Process. 2007, 21, 3190–3202. [CrossRef]

5. Horritt, M.S.; Bates, P.D. Evaluation of 1D and 2D numerical models for predicting river flood inundation.
J. Hydrol. 2002, 268, 87–99. [CrossRef]

6. Cook, A.; Merwade, V. Effect of topographic data, geometric configuration and modeling approach on flood
inundation mapping. J. Hydrol. 2009, 377, 131–142. [CrossRef]

7. Goffin, L.; Dewals, B.J.; Erpicum, S.; Pirotton, M.; Archambeau, P. Non-linear optimization of a 1-D shallow
water model and integration into Simulink for operational use. In Proceedings of the Sustainable Hydraulics in
the Era of Global Change—4th European Congress of the International Association of Hydroenvironment Engineering
and Research (IAHR 2016); Liege, Belgium, 27–29 July 2016, CRC Press/Balkema: Boca Raton, FL, USA, 2016;
pp. 445–451.

8. Bourdarias, C.; Gerbi, S.; Gisclon, M. A kinetic formulation for a model coupling free surface and pressurised
flows in closed pipes. J. Comput. Appl. Math. 2008, 218, 522–531. [CrossRef]

9. Paiva, R.C.D.; Collischonn, W.; Tucci, C.E.M. Large scale hydrologic and hydrodynamic modeling using
limited data and a GIS based approach. J. Hydrol. 2011, 406, 170–181. [CrossRef]

10. Paz, A.R.; Bravo, J.M.; Allasia, D.; Collischonn, W.; Tucci, C.E.M. Large-scale hydrodynamic modeling of a
complex river network and floodplains. J. Hydrol. Eng. 2010, 15, 152–165. [CrossRef]

11. Lai, X.; Jiang, J.; Liang, Q.; Huang, Q. Large-scale hydrodynamic modeling of the middle Yangtze River Basin
with complex river-lake interactions. J. Hydrol. 2013, 492, 228–243. [CrossRef]

12. Remo, J.W.F.; Pinter, N. Retro-modeling the Middle Mississippi River. J. Hydrol. 2007, 337, 421–435. [CrossRef]
13. Biancamaria, S.; Bates, P.D.; Boone, A.; Mognard, N.M. Large-scale coupled hydrologic and hydraulic

modelling of the Ob river in Siberia. J. Hydrol. 2009, 379, 136–150. [CrossRef]
14. Kerger, F.; Archambeau, P.; Erpicum, S.; Dewals, B.J.; Pirotton, M. A fast universal solver for 1D continuous

and discontinuous steady flows in rivers and pipes. Int. J. Numer. Methods Fluids 2011, 66, 38–48. [CrossRef]
15. Sandric, I.; Ionita, C.; Chitu, Z.; Dardala, M.; Irimia, R.; Furtuna, F.T. Using CUDA to accelerate uncertainty

propagation modelling for landslide susceptibility assessment. Environ. Model. Softw. 2019, 115, 176–186.
[CrossRef]

16. Neal, J.C.; Fewtrell, T.J.; Bates, P.D.; Wright, N.G. A comparison of three parallelisation methods for 2D flood
inundation models. Environ. Model. Softw. 2010, 25, 398–411. [CrossRef]

17. Lacasta, A.; Garcia-Navarro, P.; Burguete, J.; Murillo, J. Preprocess static subdomain decomposition in
practical cases of 2D unsteady hydraulic simulation. Comput. Fluids 2013, 80, 225–232. [CrossRef]

18. Brodtkorb, A.R.; Sætra, M.L.; Altinakar, M. Efficient shallow water simulations on GPUs: Implementation,
visualization, verification, and validation. Comput. Fluids 2012, 55, 1–12. [CrossRef]

19. Petaccia, G.; Leporati, F.; Torti, E. OpenMP and CUDA simulations of Sella Zerbino Dam break on unstructured grids.
Comput. Geosci. 2016, 20, 1123–1132. [CrossRef]

20. Smith, L.S.; Liang, Q. Towards a generalised GPU/CPU shallow-flow modelling tool. Comput. Fluids 2013, 88,
334–343. [CrossRef]

21. Chaudhry, M.H. Open-Channel Flow; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007.
22. Bruwier, M.; Archambeau, P.; Erpicum, S.; Pirotton, M.; Dewals, B. Discretization of the divergence

formulation of the bed slope term in the shallow-water equations and consequences in terms of energy
balance. Appl. Math. Model. 2016, 40, 7532–7544. [CrossRef]

133

Water 2020, 12, 3218

23. Franzini, F.; Soares-Frazão, S. Efficiency and accuracy of Lateralized HLL, HLLS and Augmented Roe’s
scheme with energy balance for river flows in irregular channels. Appl. Math. Model. 2016, 40, 7427–7446.
[CrossRef]

24. Erpicum, S.; Dewals, B.; Archambeau, P.; Pirotton, M. Dam break flow computation based on an efficient flux
vector splitting. J. Comput. Appl. Math. 2010, 234, 2143–2151. [CrossRef]

25. Broyden, C.G. A class of methods for solving nonlinear simultaneous equations. Math. Comput. 1965, 19,
577–593. [CrossRef]

26. Knoll, D.A.; Keyes, D.E. Jacobian-free Newton–Krylov methods: A survey of approaches and applications.
J. Comput. Phys. 2004, 193, 357–397. [CrossRef]

27. Anderson, D.G. Iterative Procedures for Nonlinear Integral Equations. J. ACM 1965, 12, 547–560. [CrossRef]
28. Walker, H.F.; Ni, P. Anderson acceleration for fixed-point iterations. SIAM J. Numer. Anal. 2011, 49, 1715–1735.

[CrossRef]
29. Saad, Y.; Schultz, M.H. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear

systems. SIAM J. Sci. Stat. Comput. 1986, 7, 856–869. [CrossRef]
30. Carlson, N.N.; Miller, K. Design and application of a gradient-weighted moving finite element code I: In one

dimension. SIAM J. Sci. Comput. 1998, 19, 728–765. [CrossRef]
31. Carlson, N.N.; Miller, K. Design and Application of a Gradient-Weighted Moving Finite Element Code II:

In Two Dimensions. SIAM J. Sci. Comput. 1998, 19, 766–798. [CrossRef]
32. Calef, M.T.; Fichtl, E.D.; Warsa, J.S.; Berndt, M.; Carlson, N.N. Nonlinear Krylov acceleration applied to a

discrete ordinates formulation of the k-eigenvalue problem. J. Comput. Phys. 2013, 238, 188–209. [CrossRef]
33. Wang, C.; Cheng, J.; Berndt, M.; Carlson, N.N.; Luo, H. Application of nonlinear Krylov acceleration to

a reconstructed discontinuous Galerkin method for compressible flows. Comput. Fluids 2018, 163, 32–49.
[CrossRef]

34. Andersson, J.A.E.; Gillis, J.; Horn, G.; Rawlings, J.B.; Diehl, M. CasADi—A software framework for nonlinear
optimization and optimal control. Math. Program. Comput. 2018, 11, 1–36. [CrossRef]

35. Baayen, J.; Piovesan, T.; VanderWees, J. Optimization problems subject to the nonlinear semi-implicitly
discretized Saint-Venant equations have a unique solution. arXiv 2018, arXiv:1801.06507.

36. Aureli, F.; Maranzoni, A.; Mignosa, P.; Ziveri, C. A weighted surface-depth gradient method for the numerical
integration of the 2D shallow water equations with topography. Adv. Water Resour. 2008, 31, 962–974.
[CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

134

water

Article

Efficient Reservoir Modelling for Flood Regulation in the Ebro
River (Spain)

Isabel Echeverribar 1,2,*, Pablo Vallés 1, Juan Mairal 1 and Pilar García-Navarro 1

Citation: Echeverribar, I.; Vallés, P.;

Mairal, J.; García-Navarro, P. Efficient

Reservoir Modelling for Flood

Regulation in the Ebro River (Spain).

Water 2021, 13, 3160. https://

doi.org/10.3390/w13223160

Academic Editors: Anargiros I. Delis

and Ioannis K. Nikolos

Received: 22 September 2021

Accepted: 12 October 2021

Published: 9 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Fluid Mechanics, Universidad Zaragoza, I3A, Maria de Luna s/n, 50018 Zaragoza, Spain;
736453@unizar.es (P.V.); mairalascaso@unizar.es (J.M.); pigar@unizar.es (P.G.-N.)

2 Hydronia Europe, Pº Castellana 95-15, 28046 Madrid, Spain
* Correspondence: echeverribar@unizar.es

Abstract: The vast majority of reservoirs, although built for irrigation and water supply purposes,
are also used as regulation tools during floods in river basins. Thus, the selection of the most suitable
model when facing the simulation of a flood wave in a combination of river reach and reservoir is not
direct and frequently some analysis of the proper system of equations and the number of solved flow
velocity components is needed. In this work, a stretch of the Ebro River (Spain), which is the biggest
river in Spain, is simulated solving the Shallow Water Equations (SWE). The simulation model covers
the area of river between the city of Zaragoza and the Mequinenza dam. The domain encompasses
721.92 km2 with 221 km of river bed, of which the last 75 km belong to the Mequinenza reservoir. The
results obtained from a one-dimensional (1D) model are validated comparing with those provided by
a two-dimensional (2D) model based on the same numerical scheme and with measurements. The 1D
modelling loses the detail of the floodplain, but nevertheless the computational consumption is much
lower compared to the 2D model with a permissible loss of accuracy. Additionally, the particular
nature of this reservoir might turn the 1D model into a more suitable option. An alternative technique
is applied in order to model the reservoir globally by means of a volume balance (0D) model, coupled
to the 1D model of the river (1D-0D model). The results obtained are similar to those provided by
the full 1D model with an improvement on computational time. Finally, an automatic regulation is
implemented by means of a Proportional-Integral-Derivative (PID) algorithm and tested in both the
full 1D model and the 1D-0D model. The results show that the coupled model behaves correctly even
when controlled by the automatic algorithm.

Keywords: reservoir model; numerical simulation; shallow water equations; PID regulation

1. Introduction

As extreme phenomena, flood events raise concern among governments, institutions
and general society. The European Union has been developing plans and directives during
the last decades focusing on the control of their impact [1]. River overflows cause the
flooding of adjacent lands, urbanised areas and other infrastructures. Additionally, floods
can also take human lives, as reported by the UN [2], specially in areas with poor prevention
plans and a lack of predictive tools. Frequently, dams and reservoirs are present in river
basins as hydraulic elements with different functions. Not only to ensure enough water
supply for agricultural activities or energy production, but also as hydraulic structures
for discharge adjustment and control during flood events. Basin authorities manage their
operation focusing on available space in the reservoir, maximum acceptable downstream
discharges, and peak arrival times.

In this context, the development of predictive tools that provide information about
the temporal and spatial evolution of water level and discharge along a river during flood
events can help to quantify the damage caused and has been widely addressed in last
decades [3]. Some works are focused on urban areas coupling their overland models
with sewer systems [4,5]. Some others are more oriented to large scale floods quantifying

Water 2021, 13, 3160. https://doi.org/10.3390/w13223160 https://www.mdpi.com/journal/water

135

Water 2021, 13, 3160

inundated areas in crops and surrounding fields [6,7], including components such as weirs,
gates, dams and reservoirs [8,9]. Nowadays, there are even operational tools developed to
simulate extremely large domains using massive parallel algorithms [10]. In either case,
all models are then used to generate information and data for other models and tools
that analyse and classify flood-prone areas [11,12]. Fast and efficient numerical models
for the resolution of the equations that govern free surface flows in rivers have been
developed and improved in recent years [6,7,10,13–17]. However, including a reservoir
in the numerical model of the river reach is an additional difficulty. Even today, it is
widely accepted that three dimensional models (3D) are computationally expensive and
the phenomenon of a flood in a river at a large scale can be addressed by averaging
the equations vertically (2D approximation) [6,7]. However, flood event simulations
often involve large domains and long time scales, and practical applications require a
compromise between spatial resolution and computational efficiency [18,19]. To achieve
the necessary spatial resolution, in many cases quite fine computational grids are needed,
so more data storage is required, proportionally increasing the number of operations and
reducing the size of the time step allowed for explicit calculations. Therefore, flood risk
evaluations are often performed considering the average in the cross section to reduce the
phenomenon to a 1D approximation [13]. Finally, depending on terrain morphology, some
particular river reaches might transport hydrographs almost immediately, as reservoirs.

On the other hand, reservoirs can be assessed with different approximations depend-
ing on the variables of interest. Reservoirs can be solved either as part of the river reach;
this is, discretised. Alternatively, they can be considered as a storage volume with a con-
stant level [20,21]. When the detailed phenomena that might occur within a reservoir
are of interest, complex numerical models are developed. In [22], a 3D model based on
the Reynolds-Averaged Navier-Stokes equations is used to study secondary currents and
three dimensional behaviour of the velocity field. When the details of the 3D velocity
field are not required but the longitudinal profile of the water surface is of interest, they
can be incorporated as part of 1D discretised models [23]. Additionally, when some other
additional phenomena must be simulated, such as eutrophization [24] or sediment trans-
port [25], also a spatial discretisation of the reservoir is needed, whether in one or three
dimensions. An alternative is an aggregated reservoir routing where only a volume bal-
ance is considered [26–28]. This may include runoffs, evaporation and some other mass
exchanges. In any case, each reservoir must be specifically analysed. Aggregated models
may be suitable, due to the representation of the reservoir as a unique volume, providing
CPU times in the order of seconds [28], and a discretised model must compute as many
operations as grid elements, leading to higher computational times [22]. However, the
main disadvantage of these simplified approaches is that they do not represent in detail
the flow behaviour of the river and floodplains [29–31].

Concerning optimization of the reservoir as a hydraulic structure, several works have
focused on their hydropower potential. In [32], for instance, a linear optimization model
with three different objective functions was implemented to automatically manage the
reservoir in order to maximize total energy.

The aim of the present work is to couple recent research tools based on shallow
water numerical models for flood forecasting with an aggregated model for the reservoir,
developing a complete efficient simulation tool during flood events.

First, a comparison of the results obtained with a 2D and a 1D model in the middle
reach of the Ebro river is carried out for validation purposes. Both, the 2D and the 1D
model, are based on a finite volume scheme, which uses terrain data for the 2D mesh and
1D bathymetry creation. The 1D modelling is likely to lose the detail of the floodplain, but
nevertheless the computational cost is expected much lower compared to the 2D model.
Additionally, the particular nature of this reservoir, which is highly channelised, might
turn the 1D discretisation into a more suitable option than the 2D discretisation. Therefore,
the quality of the 1D results should be checked and the calculation times of both models
should be compared.

136

Water 2021, 13, 3160

Due to the particularity of the simulated section and the Mequinenza reservoir, which
transports flood waves almost immediately, an aggregated alternative technique is applied.
This approach formulates the reservoir flow globally by means of a volume balance model.
Our focus is on checking if the results obtained are similar to those provided by the fully
1D model and comparing the computation times of both simulations. This later option is
completed with a PID algorithm for regulation purposes.

2. Study Area

The Ebro River basin is one of the largest drainage areas in the Iberian Peninsula, as
seen in Figures 1a,b, where the Ebro River represents the biggest river in Spain. In this
work, a stretch of this Ebro River is simulated solving the Shallow Water Equations (SWE).
The simulation model, delimited in dashed line in Figure 1c, covers the area between the
city of Zaragoza and the Mequinenza dam, encompassing 721.92 km2. Between the inlet
and outlet locations, there are 221 km of river bed of which the last 75 km belong to the
Mequinenza reservoir, where the dynamics of the river changes to be nearly at rest. During
the entire stretch, the river descends from 208 m.a.s.l. of the elevation in Zaragoza up to
approximately 60 m.a.s.l. at the bottom of the riverbed in the Mequinenza dam, leaving an
average slope of 6 per 10,000.

(a) (b) (c)

Figure 1. Location of Spain in Europe (a); location of the Ebro River basin in Spain (b) and location
of the computational domain of the study in the basin (c).

The Ebro river is managed by the Ebro River Authority (CHE, www.chebro.es), which
controls, rules and prepares the reports of the basin (http://www.chebro.es/contenido.
visualizar.do?idContenido=14093&idMenu=3048; accessed on 20 October 2021). CHE
monitors the evolution of the flow discharge and water levels at a few control stations
along the river course storing data every 15 min. Figure 2 represents the Ebro River reach
simulated in this work. In the figure, the most important cities and the CHE gauging
stations available for data comparison are marked. The represented domain coincides with
the 2D domain used for simulations. The gauging stations in this reach are located in Pina,
Villafranca and Gelsa. Additionally, a point of estimation exist near the Mequinenza dam.
Each of these stations has an official label that can be seen in the same figure. This region
is of special interest due to its agricultural activity, and frequently suffers flooding with
important damages. It is a river reach where two different parts can be identified: the
first part of the region is characterised by marked meanders and large flooding areas; the
second part, around 75 km of the reach, is dominated by the large Mequinenza reservoir
provided with vertical walls. The dynamics of the river changes in the reservoir: its velocity
is reduced until water is practically at rest and flood waves are transported almost instantly.

The Mequinenza reservoir, the largest in the entire region, covers a surface area of
about 7540 hectares, with a maximum capacity of 1530 hm3 at a maximum normal surface
level of 121 m.a.s.l. The reservoir is exploited for hydroelectric production and irrigation to
nearby agricultural areas. At the same time, with its 124 m crest above sea level and its
6 gates, the dam is used to regulate the water storage in order to dump peak discharge
during floods and to guarantee hydroelectric generation. At the reservoir, there is only
a measurement point for water level that is transformed by CHE into a discharge value
through volume estimations. CHE uses two different approaches for discharge estimation,

137

Water 2021, 13, 3160

so that the results in the Mequinenza reservoir are compared not with observed but with 2
different estimated data.

Figure 2. Representation of the 2D simulation domain of the Ebro River with the most important
cities and gauging stations of CHE. The labels correspond to the official names of the gauging stations.

Two historical events of the Ebro River, the 2015 and the 2018 floods, have been
identified as relevant. Information concerning discharge hydrographs as well as time
evolution of the water surface level are available at the gauging stations. Additionally, the
European Emergency System (EMS) provides data of flooded area extensions, as seen in
Figure 3 (https://emergency.copernicus.eu/; accessed on 20 October 2021). This helped to
choose the domain extension setting the boundaries far enough not to interfere the flow.

Figure 3. Zoom view of an ortophoto with measured extension of the flooded area (blue) in 2018
flood event.

3. Methodology

Derived from the Navier-Stokes equations by depth averaging and assuming hydro-
static pressure, the Shallow Water Equations (SWE) can be considered to govern the free
surface flow of a river.

138

Water 2021, 13, 3160

3.1. Two Dimensional (2D) Model

The 2D model can be compactly formulated as

∂U

∂t
+

∂F(U)

∂x
+

∂G(U)

∂y
= S(U) (1)

with:

U =

⎛⎝ h
hu
hv

⎞⎠ F(U) =

⎛⎝ hu
hu2 + gh2/2

huv

⎞⎠ (2)

G(U) =

⎛⎝ hv
huv

hv2 + gh2/2

⎞⎠ S(U) =

⎛⎝ 0
gh(Sox − S f x)
gh(Soy − S f y)

⎞⎠ (3)

in terms of the water depth, h, the depth averaged unit discharges hu and hv in the x and
y directions respectively. The slopes Sox and Soy are the two components of the bottom
surface gradient zb(x, y):

Sox = −∂zb
∂x

Soy = −∂zb
∂y

; (4)

and S f x and S f y represent friction slopes, that are here formulated as:

S f x =
n2u

√
u2 + v2

h4/3 S f y =
n2v

√
u2 + v2

h4/3 (5)

where n stands for the semiempirical Manning friction coefficient ([33]).

3.2. One Dimensional (1D) Model

When the equations are averaged over the cross sectional area of the flow, a 1D model
is obtained, representing changes along the longitudinal direction of the river. The obtained
system is analogous to the 2D system, with a mass conservation equation and a linear
momentum equation along the river channel:

∂U

∂t
+

∂F(U)

∂x
= S(U) (6)

with:

U =

(
A
Q

)
F =

(
Q

Q2/A + gI1

)
S =

(
0

g[I2 + A(S0 − S f)]

)
(7)

where Q stands for transversal discharge, A is the cross section wetted area and I1, I2 are
hydrostatic pressure integrals. S0 is the bottom slope along the longitudinal coordinate of
the channel:

S0 = −∂zb
∂x

(8)

and S f is the friction slope, that is also formulated through the Manning law as:

S f =
Q2n2

A2R4/3 (9)

where R is the hydraulic radius, defined as R = A/P, being A the wetted area and P the
wetted perimeter. Finally, the Manning friction coefficient is obtained empirically ([33]).

139

Water 2021, 13, 3160

3.3. Finite Volume Model for the 1D Flow Equations

In this work, an explicit upwind first order finite volume method is used for both
systems of equations ([34–36]). The systems of Equations (1) and (6), can be generally
expressed as:

∂U

∂t
+
−→∇E = S (10)

where E =

(
F

G

)
in the 2D model, F and G are given by (2) and (3). Moreover, E = F in the

1D model, with F given by (7). When integrating (10) into a control volume or cell, Ω and
applying the divergence theorem, the following expression is obtained:

d
dt

∫
Ω

U dΩ +
∮

∂Ω
E(U) · n̂ dl =

∫
Ω

S(U) dΩ (11)

where n̂ is the outward unit vector in the normal direction to the volume Ω. From this, the
1D approach is next developed and details for the 2D approach can be found in [7,37]

Due to the hyperbolic character of the 1D equations, the numerical scheme used to
solve them is based on the Jacobian matrix of the fluxes:

J =
∂(E · n̂)

∂U

1 D−−→ J =
∂F

∂U
=

(
0 1

c2 − u2 2u

)
(12)

whose eigenvalues are:
λ1 = u − c λ2 = u + c (13)

with u and c given by:

u =
Q
A

c =
√

g A/B (14)

being A the cross section and B the free surface width. The celerity c characterizes the
speed of the infinitesimal surface deformation waves defining the dimensionless Froude
number Fr = u

c .
Following [16,35,38], the final updating scheme for a cell i of the domain in the time

tn+1 takes into account the contributions of neighbour cells containing fluxes and source
terms as:

Un+1
i = Un

i −
Δt1D
Δx

[
2

∑
m=1

(
λ̃+γ̃ẽ

)m
i−1/2 +

2

∑
m=1

(
λ̃−γ̃ẽ

)m
i+1/2

]n

(15)

being λ̃ and ẽ, respectively, the eigenvalues and eigenvectors of the Jacobian matrix of the
flux, J̃, linearised on the cell edge. Additionally, Δx stands for the cell size. The upwind
scheme sends the information to the wave propagation direction through the eigenvalues
and their sign:

λ̃±m
i+1/2 =

1
2
(λ̃ ± |λ̃|)m

i+1/2 (16)

This scheme for the ordinary computational cells must be complemented with proper
initial and boundary conditions. The numerical scheme is stabilised by dynamically
limiting the time step size, Δt1D, with the CFL condition:

Δt1D = CFL minm,k

(
Δx
|λ̃m

k |

)
(17)

where 0 < CFL ≤ 1 [39].

3.4. Reservoir Model

In the context of the 1D shallow water model, the reservoir can be modelled with
two different approaches. In both cases, sketched in Figure 4, the upstream river reach

140

Water 2021, 13, 3160

is discretised with a 1D finite volume method. However, the two approaches differ in
reservoir representation:

(a) 1D model: Fully discretised as the rest of the domain and solving the flow at each cell
(see Figure 4a).

(b) 1D-0D model: assuming a lake-at-rest condition within the reservoir and embedding
it into an aggregated model (0D) (see Figure 4b).

As depicted in Figure 4, the aim of approach (b) is to remove the computational cells
needed for the reservoir. Using the sketch as an example, while the fully 1D distributed
model encompasses from xL = 0 to xL = L, the coupled 1D-0D model has a discretised
domain only from xL = 0 to xL = L′, so that the computational cost is reduced.

(a) (b)

Figure 4. Representation of the two different approaches for reservoir representation: 1D distributed
discretisation as the rest of the domain (a); or coupling the 1D model of the river with an aggregated
0D model of the reservoir (b).

In near-rest flows, such as those in a reservoir, the velocity field is negligible so that it is
likely that the flow behaviour is properly solved only with volume balance. This represents
a 0D approximation. The Modified Puls Method [21] is based on the hypotheses that the
flow surface is always horizontal, the stored volume in the reservoir can be formulated
as a function of water level (V = V(H)) and the outlet discharge can also be expressed
as a water level function (Qout = Qout(H)). Thus, the volume variation is given by the
difference between the reservoir inlet, Qin, and outlet, Qout, as:

dV
dt

= Qin − Qout (18)

Discretising Equation (18) in time by assuming ΔV = S(Hn)(Hn+1 − Hn) with S the
free surface reservoir area (S = f (H)) leads to:

Hn+1 = Hn +
Δt

S(Hn)

(
Qn+1

in + Qn
in

2
− Qn+1

out + Qn
out

2

)
(19)

When combining this formulation with the 1D model to lead to the 1D-0D model,
the water level calculated with expression (19) is set at L′ (Figure 4b). It is important to
note, that the resolution of (18) requires knowing Qin(t) and the relation between Qout and
volume V at the reservoir. The inflow discharge to the reservoir is directly given by the
computation at the last cell of the 1D model. On the other hand, the reservoir outflow
discharge depends on the geometry and characteristics of the dam. In the present work
the downstream boundary condition, either for pure 1D or for 1D-0D model, is based on a
weir/dam law of the form [40]:

Qn+1 =
2
3

√
2gbCH4/3

w +
8

15

√
2gtan

(
θ

2

)
CH5/2

w (20)

where Hw = H − hCrest is the water depth above the weir crest. Assuming a trapezoid
shape, b is the width of the minor length of the horizontal sides of the weir and θ the

141

Water 2021, 13, 3160

opening angle of the trapezoid. Finally, C is an energy loss coefficient here taken as
C = 0.611 [9,26].

It is important to note that for both approaches, the full 1D model and the 1D-0D
model, the 1D river reach upstream the reservoir must be identically discretised, this
is, using the same Δx, so that the analysis can show the differences provoked by the
reservoir model.

3.5. PID Regulation

The Mequinenza dam gates can be manually operated at present according to energy,
agricultural or safety criteria. In this work, a control Proportional-Integral-Differential
(PID) algorithm is implemented to show the possibility to dynamically include in the
simulation model the control of the gate opening during a flood. In particular, a specific
maximum reservoir surface level is set as target in the automatic algorithm so that the gate
opening must change under discharge variations during the flood event.

The PID controller computes the error between the predicted value of the variable
water surface level and the stated reference value, and uses it to compute a change on the
free parameter, gate opening, using an algorithm based on:

• Proportional term: Expresses a proportionality between the required action and the
error.

• Integral term: The required action takes into account the time integral of the error
over a given period.

• Derivative term: The controller actuation is formulated from the time derivative of
the error.

The equation that describes those PID terms is:

hCrest(t) = K
{

e(t) +
1
Ti

∫ Ti

0
e(t) dt + Td

de(t)
dt

}
= P + I + D (21)

where e(t) is the control error (e(t) = Hre f − H(t)), Hre f is the reference value (or setpoint)
of water level and H(t) is the current water level at time t. K is the proportional coefficient,
Ti and Td are integration and derivative times, respectively.

Equation (21) is discretised as:

hCrest(tn) = α1 K
(

1 +
Ts

Ti
+

Td
Ts

)
e(tn)− α2 K

(
1 +

2Td
Ts

)
e(tn−1) + α3 K

Td
Ts

e(tn−2) (22)

where e(tn) = Hre f (tn)− H(tn), e(tn−1) = Hre f (tn−1)− H(tn−1) and e(tn−2) = Hre f (tn−2)−
H(tn−2), being n the current time step. Parameters α1, α2 and α3 are the weights given to
each of the time steps that are included on the controller operation. Parameter Ts stands
for the sampling period for the input data to the algorithm.

The values for K, Ti, Td and Ts directly affect the hCrest evolution and, thus, have an
effect on the speed at which the controlled variable (i.e. water level) reaches the setpoint.
Therefore, proper determination of those parameters is essential to optimize and stabilize
the algorithm. Otherwise, the controller could lead to extreme gate opening values hence
destabilizing the system.

4. Model Application

4.1. Discretisation of the Domain

The Ebro River reach has been first simulated to validate the 1D model comparing
with results obtained with the 2D model [7] applied to the same stretch. In both cases
the discretisation of the reservoir is included within the computational grid. The aim is
to evaluate if the 1D approach provides reliable results improving the efficiency of the
2D model. Once the 1D model is demonstrated to be reliable enough, the coupled 1D-0D
model and the control algorithm are evaluated.

142

Water 2021, 13, 3160

The domain discretisation is different depending on the numerical scheme. In the
2D model, the mesh is an unstructured triangulation of the (x, y) domain with piecewise
uniform values of terrain elevation and roughness. The triangles can be of variable size
and adapt to the terrain topography. The mesh used was generated from a DTM in
RASTER format and included 949,445 triangular elements. In the 1D model, the domain is
discretised into a set of cells separated by cross sections along the riverbed evenly spaced
at a distance Δx.

The 1D mesh was generated from topographic information of the field compound by
433 cross sections. Among them, 100 sections are within the reservoir region (as in example
in Figure 5). The lateral span of the sections must capture the shape of the river bed to avoid
losing information relevant to the evolution of the variables but avoiding overlapping. It
is of vital importance that the sections are always normal to the river in curved regions,
as seen in Figure 5. Finally, a 1D mesh of 2000 cells is obtained. Additionally, a uniform
roughness coefficient n = 0.032 is chosen ([33]). A steady flow with a discharge value that
matches the value at the initial time of the inlet hydrograph is set as initial condition. The
upstream boundary condition is a hydrograph, while the downstream boundary condition
is a spillway condition, which represents the presence of the Mequinenza dam.

Figure 5. Top view of several sections over the raster with different river meanders.

4.2. Performance Analysis of the 1D and 2D Models

Two historical events of the Ebro River, the 2015 and the 2018 floods, have been
simulated with both the 1D and the 2D models. The 2015 inlet hydrograph, obtained from
the Zaragoza gauging station (see Figure 2), is set in Zaragoza as inlet boundary condition
and can be seen in Figure 6. The comparison between results obtained with both simulation
models and real observation data for this event can be seen in Figures 7 and 8. They show,
respectively, the time evolution of discharge and water level at Gelsa (A263) station and
Mequinenza dam (E003). It is important to note that the data provided by the CHE gauging
station are for water depth (h) and not for water level (H = h + zb), and the actual bed
elevation of the station is unknown.

It can be seen in Figures 7 and 8 that the 1D and 2D simulations produce remarkably
similar data which follow the tendency of the actual data. However, neither of the two
models is able to reproduce the detail of the curves at t = 380 h. This is possibly due to
a dynamic change in the terrain such as a levee breach not included in the static terrain

143

Water 2021, 13, 3160

representation of the models owing to the lack of available information. It should be noted
that, in the first 250 h, it is the 1D model which offers data closer to the reality. This suggests
that the flow was more channeled in this period of time and the overflow is estimated by
the 2D model too early. From t = 300 h it is the 2D model which provides a behaviour
closer to the real one, possibly due to the fact that, near the peak flow, the floodplains
are inundated.

Figure 6. Inlet hydrograph for the Ebro River flood event in 2015 in Zaragoza (A011).

Figure 7. Cont.

144

Water 2021, 13, 3160

Figure 7. Discharge temporal evolution comparison between 1D model, 2D model and observa-
tion at Gelsa (A263) gauging station (upper) and comparison between models and estimations at
Mequinenza dam (E003) (lower) for 2015 event.

Figure 8. Water level temporal evolution comparison between 1D model, 2D model and observation
data at Gelsa (A263) gauging station for the 2015 event.

Figure 9 shows the 2018 inlet hydrograph used as upstream boundary condition.
Figure 10 displays the discharge time evolution as computed with the 1D and the 2D models
together with the observation at Gelsa (A263) gauging station (upper) and Mequinenza dam
(E003) (lower) for this event. The time evolution of the surface water level at Villafranca
gauging station (the only measured variable) is displayed in Figure 11. The evolution of
the water levels predicted by the two models is again quite similar to that of the real data
until approximately t = 100 h. Around this time, the measured data suffer a slight decrease
not predicted by the 2D model.

145

Water 2021, 13, 3160

Figure 9. Inlet hydrographs for the Ebro River flood event in 2018 in Zaragoza (A011).

Figure 10. Cont.

146

Water 2021, 13, 3160

Figure 10. Discharge temporal evolution comparison between the 1D model, the 2D model and the
observation at Gelsa (A263) gauging station (upper) and comparison between models and estimations
in Mequinenza dam (E003) (lower) for the 2018 event.

Figure 11. Water level temporal evolution comparison between the 1D model, the 2D model and the
observation in Gelsa (A263) gauging station for the 2018 event.

Regarding computational times, for the 2015 case the 1D model required 511 s to
compute the full event, while the 2D model took 47 h, as seen in Table 1. These computations
were performed with High Performance Computing (HPC) techniques for the 2D model.
In particular, a NVIDIA GeForce GTX 1080 Ti GPU was used to compute the 2D cases,
while a simple paralellization into 8 Intel Xeon X5650 CPU’s was necessary for the 1D
computations. For the 2018 event, which is a bit shorter, the computational time required
by the 1D model was 364 s, while that of the 2D model was 23.8 h.

147

Water 2021, 13, 3160

Table 1. Comparison of computational times for the two flood events simulated in the Ebro River.

Event Duration 2D GPU Time 1D CPU Time

2015 600 h 47 h 511 s
2018 430 h 23.8 h 364 s

4.3. Performance Analysis of the 1D and 1D-0D Models

The comparison between the full 1D model and the 1D-0D model is next carried out
for the 2015 flood event. The discretisation of the full 1D model is the same used in the
former subsection, while the 1D-0D model is characterised by a partial discretisation of the
domain embedding the reservoir zone within the outlet boundary condition. In this last
case, only the first 352 sections and 1511 mesh cells are necessary for the discretised part.
This is, following Figure 4, for the river reach from xL = 0 to xL = L’.

Figure 12 represents the river profile for different times of both the full 1D model
(fine and dark lines) and the 1D-0D model (wider and light lines). Bottom elevation, zb, as
well as water level, h + zb, profiles are represented for both models. The initial condition
can be seen at the upper picture of the figure, with a low water depth profile upstream
the reservoir area, where the level remains uniform and the water depth increases. The
middle picture corresponds to t = 300 h, when the discharge is increasing and a higher
water depth can be seen. The lower picture coincides with the discharge peak of the inlet
hydrograph (see Figure 6), reaching the highest value of water level. In the three cases, the
level reached by the last cell of the 1D-0D model is almost the same as the value of the full
1D model, which discretises the whole reservoir. Therefore, it can be said that embedding
the reservoir in the outlet boundary condition provides very similar results to those of a
full model, without the necessity of such amount of computational cells.

As illustrated in Figure 12, the section located at xL = L′ is not exactly the beginning
of the reservoir, as the length of the reservoir varies throughout the simulation depending
on the level of the water surface. For that reason, this section is chosen displaced forward
ensuring that it always belongs to the reservoir. Thus, for high level values, there is part of
the reservoir being discretised and also simulated by the 1D numerical scheme.

The temporal evolution of the water level at xL = L′ can be seen in Figure 13. Although
there is a very good agreement, the figure shows that the level of the 1D-0D model is slightly
below the value of the full model at that location (xL = L′). This is because there is not a
uniform level in the entire reservoir and the 1D model represents this behaviour. However,
the 0D model assumes a constant level in the reservoir that matches quite exactly the
level at the end of the reservoir in the 1D model (xL = L). In addition, the lag previously
obtained by the model 1D-0D is no longer present. The reservoir surface area function,
S(H), corresponds to the entire reservoir. However, as part of the reservoir is being
discretised by the 1D model, the boundary condition of the 1D-0D model causes a slower
evolution of the level, as it is considering that there is a larger modeled reservoir than there
should be and, therefore, it overestimates the value of S(H).

The computational times of these simulations can be seen in Table 2. It can be seen how
the 1D-0D model allows for considerable time reduction due to the due to the absence of the
cells representing the reservoir. These results show that the coupled model results accurate
enough to predict water levels along the river providing a performance improvement.

Table 2. Computational times for 2015 flood event simulated in the Ebro River with the 1D-0D model
and the pure 1D model.

Event Duration Pure 1D 1D-0D

2015 600 h 511 s 196 s

148

Water 2021, 13, 3160

t = 0 h

t = 300 h

t = 400 h

Figure 12. Longitudinal profile of bottom level, z, and water surface elevation (WSE) at different
times computed with the 1D model and the coupled 1D-0D model for the 2015 case.

149

Water 2021, 13, 3160

Figure 13. Comparison of computed water surface elevation (WSE) at xL=L’ using 1D model and
1D-0D model and computed WSE at xL=L using 1D model.

4.4. Performance Analysis of the 1D and 1D-0D Models Including DAM Regulation

Once the coupled 1D-0D model has been proved to perform properly, a dam regulation
algorithm is implemented in both the coupled and the full 1D model. This is, both models
include in their outlet boundary condition a PID algorithm that updates the dam crest,
hcrest, to approach or to maintain a reference water level or setpoint, regardless of the
inlet discharge.

For that purpose, both models have been discretised exactly as in the preceding section.
The parameters used in the PID controller must be first calculated and validated. In this
work, the chosen values are K = 11576, Ti = 12 s, Td = 3 s, Ts = 1000 s, α1 = 0.5, α2 = 0.3
and α3 = 0.2. Those values were obtained following [41]. The dam movement is limited
by vmax = 0.01 m per time interval and the water surface level is limited by a maximum
and minimum value of 115 m and 105 m respectively. The target water surface level is
Hre f = 112 m. The comparison is done at xL = L′ (see Figure 4).

It is worth mentioning that variations of dam crest, hcrest, are a practical representation
of variations in cross section area of spillways. In reality, dams can not change their crest,
but the gate opening of their structure. However, the discharge law implemented would be
the same and the dam crest results in a very representative parameter of the dam opening.

The Figure 14 shows the temporal variation of water level at xL = L′ for both models.
Besides that, the figure also represents the time evolution of the dam crest throughout
the simulation. At the same time, Figure 15 depicts, also for both models, the temporal
evolution of outlet discharge. It worth mentioning that this discharge is the flow rate
passing through the dam.

Figure 14 shows that, at the beginning of the simulation, the level of the reservoir is
much lower than the setpoint (Hre f = 112 m), so the dam crest is at its maximum height
preventing the water leaking (see Figure 15) and provoking an increase of water level.
Once the reference is reached, the dam crest varies to maintain a constant water level while
the inlet flow rate changes. At that time, the outflow hydrograph tends to resemble the
inflow rate.

The time evolution of hCrest displayed in Figure 14 is rather similar for both models,
reaching the target value in a short time. It is worth noting that the 1D model reaches the
objective earlier than the 1D-0D model. This is provoked by the lower level obtained with

150

Water 2021, 13, 3160

the 1D-0D model at xL=L’ (see Figure 4) in comparison with that computed with the 1D
model. This causes a delay in the reservoir filling up to the setpoint.

Figure 14. Temporal evolution of the water level and dam crest computed with the fully 1D model
and the coupled 1D-0D model for the 2015 case with the control of a PID algorithm.

Figure 15. Temporal evolution of the outlet discharge at Mequinenza dam (E003) computed with the
1D model and the coupled 1D-0D model for the 2015 case with the control of a PID algorithm.

The computational times for the model with the PID algorithm are shown in Table 3.
The same trend found for the comparison between the different approaches for the reservoir
modellization results into an improvement of the optimization when using the 1D-0D
model. Besides that, the PID algorithm does not penalize the computational time, but it
makes the model more efficient.

Table 3. Computational times for 2015 flood event simulated in the Ebro River with the 1D-0D model
and the pure 1D model, both with the dam regulated with a PID algorithm.

Event Duration Pure 1D 1D-0D

2015 600 h 484 s 176 s

151

Water 2021, 13, 3160

5. Conclusions

In this work, the performance of several modelling approaches has been compared in
order to evaluate their results and computational requirements in a transient river flow
event in a reach of the Ebro river (Spain) that includes a reservoir covering a large area.
A 2D distributed shallow water model solved over a triangular grid and a 1D shallow
water model have been used to discretise the full domain. Additionally, an aggregated
volume balance model has been implemented to model the reservoir region in order to
allow computational saving. This has led to a coupled 1D-0D model. Finally, a PID control
algorithm has been implemented as a regulation technique at the dam location and has
been combined with both the 1D model and the 1D-0D model.

From the comparison of the performance of the 2D and 1D models, it can be be
concluded that the results of the 1D model for the recent flooding events at the considered
Ebro River reach are very similar to those provided by the 2D model. The water level
and discharge data predicted by both models follow the same trend. The cross sections
used to build the 1D model computational mesh were carefully located to reproduce the
river curvature in detail, which is important to obtain a realistic evolution of the hydraulic
variables. This effort is justified by the immense computational saving that the use of the
1D model offers, as long as there is no interest in representing the floodplain flow, that the
1D model does not take into account.

The coupling of the 1D model for the river flow at the upstream reach and the 0D model
for the reservoir (1D-0D model) offers results very similar to those from the full 1D model.
There is some lag due to the instantaneous propagation of the hydrograph in the reservoir
assumed by the 0D model but this is acceptable considering the computational savings
that the use of this model implies compared to the full 1D model. The computational times
observed with the 1D-0D model justifies the use of this combined approach. Therefore, the
coupling of a 0D model for the reservoir with the 2D model for the upstream river reach is
envisaged as future work since this will lead to high computational savings, something
very positive for simulations with 2D models as well as the possibility to simulate the
floodplain flow behaviour.

The PID control algorithm has been implemented with the objective to ensure a fixed
surface water level at the dam. The results show that this target level value is never reached
despite the time variable discharge, which means that the implementation of the control
algorithm is a correct security measure to avoid exceeding certain levels in the reservoir. It
will be convenient in the future to implement an algorithm that takes into account more
realistic and complex objectives.

Author Contributions: Conceptualization, P.G.-N. and I.E.; methodology, P.G.-N. and I.E.; software,
I.E.; 2D simulations J.M.; 1D model validation, P.V., I.E. and P.G.-N.; formal analysis, I.E., P.G.-N.;
writing original draft preparation, P.V.; writing review and editing, I.E. P.G.-N.; visualization, P.V.;
supervision, P.G.-N.; project administration, P.G.-N.; funding acquisition, P.G.-N. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was partially funded by the PGC2018-094341-B-I00 research project of the
Ministry of Science and Innovation/FEDER. The authors would like to thank also the Confederación
Hidrográfica del Ebro staff for their availability and for the supply of the data. Additionally, Isabel
Echeverribar was wants to thank to the MINECO for his Research Grant DIN2018-010036.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: River measurements are available at http://www.saihebro.com/
saihebro/index.php?url=/datos/mapas/tipoestacion:A; accessed on 20 October 2021.

Acknowledgments: The authors acknowledge the CHE for the data availability and their support.
The authors also would like to thank all collaborators for their help performing the 2D simulations:
Pilar Brufau and Mario Morales.

152

Water 2021, 13, 3160

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References

1. C. o. t. E. U. European Parliament 2007 Directive 2007/60/EC of the European Parliament and of the Council of 23 October 2007 on
the assessment and management of flood risks. In EU Directive. 2007. Available online: https://eur-lex.europa.eu/legal-content/
EN/TXT/?uri=celex:32007L0060 (accessed on 10 October 2021).

2. Centre for Research on the Epidemiology of Disasters (CRED). The Human Cost of Weather Related Disasters (1995–2015); CRED:
Brussels, Belgium, 2015; pp. 1–30.

3. Tanoue, M.; Taguchi, R.; Alifu, H.; Hirabayashi, Y. Residual flood damage under intensive adaptation. Nat. Clim. Chang. 2021, 11,
823–826. [CrossRef]

4. Leandro, J.; Schumann, A.; Pfister, A. A step towards considering the spatial heterogeneity of urban key features in urban hydrology
flood modelling. J. Hydrol. 2016, 535, 356–365. [CrossRef]

5. GebreEgziabher, M.; Demissie, Y. Modeling Urban Flood Inundation and Recession Impacted by Manholes. Water 2020, 12 , 1160.
[CrossRef]

6. Vacondio, R.; Aureli, F.; Ferrari, A.; Mignosa, P.; Palù, A. Simulation of the January 2014 flood on the Secchia River using a fast and
high-resolution 2D parallel shallow-water numerical scheme. Nat. Hazards 2016, 80, 1–23. [CrossRef]

7. Echeverribar, I.; Morales-Hernández, M.; Brufau, P.; García-Navarro, P. 2D numerical simulation of unsteady flows for large scale
floods prediction in real time. Adv. Water Resour. 2019, 134, 103444. [CrossRef]

8. Morales-Hernández, M.; Murillo, J.; García-Navarro, P. The formulation of internal boundary conditions in unsteady 2-D shallow
water flows: Application to flood regulation. Water Resour. Res. 2013, 49, 471–487. [CrossRef]

9. Echeverribar, I.; Morales-Hernández, M.; Brufau, P.; García-Navarro, P. Use of internal boundary conditions for levees representation:
application to river flood management. Environ. Fluid Mech. 2019, 19, 1253–1271. [CrossRef]

10. Morales-Hernández, M.; Sharif, MD. B.; Kalyanapu, A.; Ghafoor, S.K.; Dullo, T.T.; Gangrade, S.; Kao, S.-C.; Norman, M.R.; Evans,
K.J. TRITON: A Multi-GPU open source 2D hydrodynamic flood model. Environ. Model. Softw. 2021, 141, 105034. [CrossRef]

11. Chen, J.; Hill, A.A.; Urbano, L.D. A GIS-based model for urban flood inundation. J. Hydrol. 2009, 373, 184–192. [CrossRef]
12. Ghansah, B.; Nyamekye, C.; Owusu, S.; Agyapong, E. Mapping flood prone and Hazards Areas in rural landscape using landsat

images and random forest classification: Case study of Nasia watershed in Ghana. Civil Environ. Eng. 2021, 8, 1923384.
13. Horritt, M.S.; Bates, P.D. Evaluation of 1D and 2D numerical models for predicting river flood inundation. J. Hydrol. 2002, 268,

89–99. [CrossRef]
14. Murillo, J.; García-Navarro, P.; Burguete, J.; Brufau, P. The influence of source terms on stability, accuracy and conservation in

two-dimensional shallow flow simulation using triangular finite volumes. Int. J. Numer. Methods Fluids 2007, 54, 543–590. [CrossRef]
15. Kalyanapu, A.J.; Shankar, S.; Pardyjak, E.R.; Judi, D.R.; Burian, S.J. Assessment of GPU computational enhancement to a 2D flood

model. Environ. Model. Softw. 2011, 26, 1009–1016. [CrossRef]
16. Murillo, J.; García-Navarro, P. Energy balance numerical schemes for shallow water equations with discontinuous topography.

J. Comput. Phys. 2013, 236, 119–142. [CrossRef]
17. Sampson, C.C.; Smith, A.M.; Bates, P.D.; Neal1, J.C.; Alfieri, L.; Freer, J.E. A high-resolution global flood hazard model. Water

Resour. Res. 2015, 51, 7358–7381. [CrossRef]
18. Caviedes-Voullième, D.; García-Navarro, P.; Murillo, J. Influence of mesh structure on 2D full shallow water equations and SCS

curve number simulation of rainfall/runoff events. J. Hydrol. 2012, 448, 39–59. [CrossRef]
19. Bomers, A.; Schielen, R.M.J.; Hulscher, S.J.M.H. The influence of grid shape and grid size on hydraulic river modelling performance.

Environ. Fluid Mech. 2019, 19, 1273–1294. [CrossRef]
20. Fread, D.; Hsu, K. Applicability of Two Simplified Flood Routing Methods: Level-Pool and Muskingum-Cunge. In Proceedings of

the ASCE National Hydraulic Engineering Conference, San Francisco, CA, USA, 25–30 July 1993; pp. 1564–1568.
21. Nanía, L.S.; Gómez, M. Ingeniería Hidrológica; Grupo Editorial Universitario: Granada, Spain, 2004.
22. Haun, S.; Olsen, N.R.B. Three-dimensional numerical modelling of reservoir flushing in a prototype scale. Int. J. River Basin Manag.

2012, 10, 341–349. [CrossRef]
23. Mohammad, M.E.; Al-Ansari, N.; Issa, I.E.; Knutsson, S. Sediment in Mosul Dam reservoir using the HEC-RAS model. Lakes Reserv.

Res. Manag. 2016, 21, 235–244. [CrossRef]
24. Kawara, O.; Yura, E.; Fujii, S.; Matsumoto, T. A study on the role of hydraulic retention time in eutrophication of the Asahi River

Dam reservoir. Water Sci. Technol. 1998, 37, 245–252. [CrossRef]
25. Bellos, C.; Hrissanthou, V. Numerical simulation of morphological changes in rivers and reservoirs. Comput. Math. Appl. 2003, 45,

453–467. [CrossRef]
26. Henderson, F.M. Open channel flow. In Macmillan Series in Civil Engineering; McGraw-Hill: New York, NY, USA, 1966.
27. Chow, V.T.; Maidment, D.R.; Mays, L.W. Applied Hydrology; McGraw-Hill: New York, NY, USA, 1988.
28. Fiorentini, M.; Orlandini, S. Robust numerical solution of the reservoir routing equation. Adv.Water Resour. 2013, 59, 123–132.

[CrossRef]

153

Water 2021, 13, 3160

29. Liu, Y.; Yang, W.; Wang, X. Development of a SWAT extension module to simulate riparian wetland hydrologic processes at a
watershed scale. Hydrol. Process. 2008, 22, 2901–2915. [CrossRef]

30. Dorchies, D.; Thirel, G.; Jay-Allemand, M.; Chauveau, M.; Dehay, F.; Bourgin, P.-Y.; Perrinb, C.; Joste, C.; Rizzolie, J.L.;
Demerliac, S.; et al. Climate change impacts on multi-objective reservoir management: Case study on the Seine River basin,
France. Int. J. River Basin Manag. 2014, 12, 265–283. [CrossRef]

31. Cohen Liechti, T.; Matos, J.P.; Ferràs Segura, D.; Boillat, J.-L.; Schleiss, A.J. Hydrological modelling of the Zambezi River Basin
taking into account floodplain behaviour by a modified reservoir approach. Int. J. River Basin Manag. 2014, 12, 29–41. [CrossRef]

32. Ginting, B.M.; Harlan, D.; Taufik, A.; Ginting, H. Optimization of reservoir operation using linear program, case study of Riam
Jerawi Reservoir, Indonesia. Int. J. River Basin Manag. 2017, 15, 187–198. [CrossRef]

33. Arcement, G.; Schneider, V. Guide for Selecting Manning’s Roughness Coefficients for Natural Channels and Flood Plains; No. 2339.
U.S. Geological Survey. Water-Supply Paper. USGS Publications Warehouse; 1984. Available online: https://pubs.er.usgs.gov/
publication/wsp2339 (accessed on 10 October 2021).

34. Toro, E.F. The Riemann Solver of Roe. In Riemann Solvers and Numerical Methods for Fluid Dynamics; Springer: Berlin/Heidelberg,
Germany, 1997.

35. Murillo, J.; García-Navarro, P. Weak solutions for partial differential equations with source terms: Application to the shallow water
equations. J. Comput. Phys. 2010, 229, 4327–4368. [CrossRef]

36. Morales-Hernández, M.; Petaccia, G.; Brufau, P.; García-Navarro, P. Conservative 1D–2D coupled numerical strategies applied to
river flooding: The Tiber (Rome), Appl. Math. Model. 2016, 40, 2087–2105. [CrossRef]

37. Lacasta, A.; Juez, C.; Murillo, J.; García-Navarro, P. An efficient solution for hazardous geophysical flows simulation using GPUs.
Comput. Geosci. 2015, 78, 63–72. [CrossRef]

38. Morales-Hernández, M.; García-Navarro, P.; Burguete, J.; Brufau, P. A conservative strategy to couple 1D and 2D models for
shallow water flow simulation. Comput. Fluids, 2013, 81, 26–44. [CrossRef]

39. Leveque, R. Numerical Methods for Conservation Laws Lectures in Mathematics; ETH Zürich; Birkhuser: Zürich, Switzerland; Basel,
Switzerland, 1992.

40. Sotelo, G. Hidráulica General; Limusa: Johannesburg, South Africa, 2002; Volume 1.
41. Panda, R.C. Introduction to PID Controllers; IntechOpen: London, UK, 2012.

154

MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

Tel. +41 61 683 77 34
Fax +41 61 302 89 18

www.mdpi.com

Water Editorial Office
E-mail: water@mdpi.com

www.mdpi.com/journal/water

MDPI

St. Alban-Anlage 66

4052 Basel

Switzerland

Tel: +41 61 683 77 34

Fax: +41 61 302 89 18

www.mdpi.com ISBN 978-3-0365-3318-6

	Shallow cover.pdf
	Shallow Water Equations in Hydraulics Modeling, Numerics and Applications.pdf
	Shallow cover
	空白页面

