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This Special Issue “Symmetries in Quantum Mechanics” describes research using two
of the most fundamental probes we have in nature. The 11 papers discuss phenomena
in atoms, galaxies, and people, which is a testimonial to the breadth of the influence of
symmetry and quantum mechanics. The papers can be broadly divided into four categories:
1. Fundamentals of quantum systems, 2. Algebraic methods in quantum mechanics,
3. Teleportation and scattering, and 4. Cosmology.

We offer some brief comments on these papers:
Fundamentals of Quantum Systems: In their paper “Symmetry, Transactions, and

the Mechanism of Wave Function Collapse”, Professors Cramer and Mead address per-
sistent fundamental questions in quantum mechanics using the transactional theory of
quantum mechanics [1]. This theory interprets the psi and psi* wavefunctions as retarded
and advanced waves moving in opposite time directions that meet to form a quantum
“handshake”. Applying this formalism, they carefully model the transfer of energy from
an excited H atom to a nearby H atom in its ground state as a process that evolves continu-
ously in time, without having to invoke any adhoc assumptions such as a collapse of the
wavefunction. This is a welcome milestone in understanding fundamental processes in
quantum mechanics.

Professor Jussi Lindgren and collaborator Jukka Liukkonen give a derivation of the
Uncertainty Principle that is based on the effect of the stochastic fluctuations of space-
time, described in terms of stochastic optimal control theory [2]. This innovative approach,
described in their paper, “The Heisenberg Uncertainty Principle as an Endogenous Property
of Stochastic Optimal Control Systems in Quantum Mechanics”, frees the description of
the uncertainly principle from the properties of the measuring apparatus, and makes it a
natural consequence of the approach to equilibrium for this stochastic system. The results
are generally consistent with Bohmian mechanics, but provide a simpler mechanism, and
suggest an objective, realistic interpretation of quantum mechanics.

In a unique contribution titled “Phishing for (Quantum-Like) Phools-Theory and Ex-
perimental Evidence”, Prof. Ariane Lambert-Mogiliansky and her doctoral student Adrian
Calmettes have applied quantum-like decision theory to explore the well-documented
influence of distraction from irrelevant information on decision making, and conducted an
experiment with 1253 respondents to verify their model [3]. They develop their theory us-
ing a quantum cognition model in which the quantum state represents the decision makers
representation of the world, classically the beliefs. Uncertainty is seen as a quantum effect,
and different influences, informative or distractions, are akin to complementary variables is
quantum mechanics. This paper highlights the breadth of the influence of quantum theory
in diverse fields.

Prof. Garrett Moddel and his students have built an entirely new type of optical
micro-device with the striking property of having a measurable current present with no
applied voltage that is described in their paper “Optical-Cavity-Induced Current” [4].
The metal-insulator-metal tunneling device has an optical cavity on only one side so
the MIM device is exposed to quantum vacuum fluctuations with a highly asymmetric
mode distribution on opposite sides, which may induce asymmetric hot electron currents,
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resulting in a net current. Very extensive tests were conducted over a period of several years
to eliminate a broad variety of artifacts and verify the extraordinary experimental results.
Over the years, I have seen many attempts to obtain useful energy by manipulations of
vacuum fluctuations, but this is the first device I have seen that I think may represent a
real breakthrough.

Algebraic Methods in Quantum Mechanics: Post-doctoral researcher Marisol Bermudez-
Montana and collaborators develop in their paper “Algebraic DVR Approaches Applied to
Describe the Stark Effect” two algebraic approaches using a discrete variable representa-
tions (DVR) to compute matrix representations of three dimensional Hamiltonians of the
hydrogen atom and the harmonic oscillator in a simple form [5]. The elegant methods are
applied to compute the Stark effect.

In the paper “Dynamical Symmetries of the H Atom, One of the Most Important Tools
of Modern Physics: SO(4) to SO(4,2), Background, Theory, and Use in Calculating Radiative
Shifts”, Prof. Jordan Maclay has given a clear and comprehensive presentation of the group
theory for the H atom in which all generators are manifestly Hermitean and expressed in
terms of the canonical momenta and positions and the normal inner product is used [6].
Emphasis is on the physics of the hydrogen atom. He has used a complete set of basis states
of the inverse of the coupling constant, which have the same quantum numbers as the
usual bound states, allowing a uniform treatment of the bound and scattering states. With
a new approach to calculating radiative shifts using SO(4,2) symmetries, he has derived a
novel generating function for the non-relativistic Lamb shifts for different states.

Teleportation and Scattering: Professors Carlos Cardoso-Isidoro and Francisco Del-
gado describe in “Symmetries in Teleportation Assisted by N-Channels under Indefinite
Causal Order and Post-Measurement” a method to enhance the information transfer in
quantum teleportation using a superposition of channels of indefinite causal order [7]. A
weak measurement can provide further improvement.

In their paper “Permutation Symmetry in Coherent Electron Scattering by Disordered
Media,” Professors Elena Orlenke and Fedor Orlenko compute the scattering cross section
for inelastic scattering from atoms in disordered matter, taking into account the indistin-
guishability of electrons in the atomic core and in the incident beam [8]. As a consequence,
different results are predicted for scattering from He triplet and singlet states.

Cosmology: The paper “An Invariant Characterization of the Levi-Civita Spacetimes”
by Cooper Watson, a doctoral student of Prof. Gerald Cleaver at Baylor University, and his
collaborators, reviews and analyzes different space–time solutions of Einstein’s equations
of general relativity published by Tullio Levi-Civita from 1917–19 [9]. These little known
solutions have, until now, been generally unavailable to English speaking researchers.
These results have been cast in modern language and related to other GR results. Today
these solutions may be of use in understanding aspects of gravitational waves.

Prof. Abhik Sanyal and collaborators discuss inflation in terms of a Scalar-Tensor
theory of gravity in “Inflation with the Scalar-Tensor Theory of Gravity” [10]. The pa-
rameters of scalar-tensor theories, which are generalizations of the Brans–Dicke theory,
are determined for the particular case of standard non-minimal coupling by exploiting a
symmetry associated with a conserved current. All the parameters are determined and are
shown to be consistent with the Planck survey data from 2018.

Prof. Pinto gives a careful review in “Gravitational Dispersion Forces and Gravity
Quantization” [11] of the history of electrodynamic dispersion forces, detailing the classi-
cal and semi-classical explanations and the later quantum developments, and contrasts
this development to the purely quantum discussions of gravitational dispersion forces,
which, however, can also be considered within a semi-classical framework. He sheds light
on the common assumption that the gravitational field is necessarily a quantized field,
and suggests that data do not support the conclusion that the gravitational field must
be quantized.

We thank all the authors for their important and welcome contributions to “Symme-
tries in Quantum Mechanics,” we thank all the reviewers and editors for their invaluable
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and timely help insuring the quality of the papers, and we thank the excellent and respon-
sive staff at MDPI, especially Mia Guo, for making this issue a success.
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Abstract: The Transactional Interpretation of quantum mechanics exploits the intrinsic time-symmetry
of wave mechanics to interpret the ψ and ψ* wave functions present in all wave mechanics calculations
as representing retarded and advanced waves moving in opposite time directions that form a
quantum “handshake” or transaction. This handshake is a 4D standing-wave that builds up across
space-time to transfer the conserved quantities of energy, momentum, and angular momentum in
an interaction. Here, we derive a two-atom quantum formalism describing a transaction. We show
that the bi-directional electromagnetic coupling between atoms can be factored into a matched pair
of vector potential Green’s functions: one retarded and one advanced, and that this combination
uniquely enforces the conservation of energy in a transaction. Thus factored, the single-electron wave
functions of electromagnetically-coupled atoms can be analyzed using Schrödinger’s original wave
mechanics. The technique generalizes to any number of electromagnetically coupled single-electron
states—no higher-dimensional space is needed. Using this technique, we show a worked example
of the transfer of energy from a hydrogen atom in an excited state to a nearby hydrogen atom in
its ground state. It is seen that the initial exchange creates a dynamically unstable situation that
avalanches to the completed transaction, demonstrating that wave function collapse, considered
mysterious in the literature, can be implemented with solutions of Schrödinger’s original wave
mechanics, coupled by this unique combination of retarded/advanced vector potentials, without the
introduction of any additional mechanism or formalism. We also analyze a simplified version of the
photon-splitting and Freedman–Clauser three-electron experiments and show that their results can
be predicted by this formalism.

Keywords: quantum mechanics; transaction; Wheeler–Feynman; transactional interpretation;
handshake; advanced; retarded; wave function collapse; collapse mechanism; EPR; HBT; Jaynes;
NCT; split photon; Freedman–Clauser; nonlocality; entanglement

1. Introduction

Quantum mechanics (QM) was never properly finished. Instead, it was left in an exceedingly
unsatisfactory state by its founders. Many attempts by highly qualified individuals to improve the
situation have failed to produce any consensus about either (a) the precise nature of the problem,
or (b) what a better form of QM might look like.

At the most basic level, a simple observation illustrates the central conceptual problem:
An excited atom somewhere in the universe transfers all of its excitation energy to another single

atom, independent of the presence of the vast number of alternative atoms that could have received all
or part of the energy. The obvious “photon-as-particle” interpretation of this situation has a one-way
symmetry: The excited source atom is depicted as emitting a particle, a photon of electromagnetic
energy that is somehow oscillating with angular frequency ω while moving in a particular direction.

Symmetry 2020, 12, 1373; doi:10.3390/sym12081373 www.mdpi.com/journal/symmetry5
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The photon is depicted as carrying a quantum of energy h̄ω, a momentum h̄ω/c, and an angular
momentum h̄ through space, until it is later absorbed by some unexcited atom. The emission and
absorption are treated as independent isolated events without internal structure. It is insisted that the
only real and meaningful quantities describing this process are probabilities, since these are measurable.
The necessarily abrupt change in the quantum wave function of the system when the photon arrives
(and an observer potentially gains information) is called “wave function collapse” and is considered
to be a mysterious process that the founders of QM found it necessary to “put in by hand” without
providing any mechanism. [The missing mechanism behind wave function collapse is sometimes
called “the measurement problem”, particularly by acolytes of Heisenberg’s knowledge interpretation.
In our view, measurement requires wave function collapse but does not cause it.] [Side comments will
be put in square brackets]

Referring to statistical quantum theory, which is reputed to apply only to ensembles of similar
systems, Albert Einstein [1] had this to say:

“I do not believe that this fundamental concept will provide a useful basis for the whole of physics.”

“I am, in fact, firmly convinced that the essentially statistical character of contemporary quantum
theory is solely to be ascribed to the fact that this [theory] operates with an incomplete description of
physical systems.”

“One arrives at very implausible theoretical conceptions, if one attempts to maintain the thesis that the
statistical quantum theory is in principle capable of producing a complete description of an individual
physical system ...”

“Roughly stated, the conclusion is this: Within the framework of statistical quantum theory, there is
no such thing as a complete description of the individual system. More cautiously, it might be put
as follows: The attempt to conceive the quantum-theoretical description as the complete description
of the individual systems leads to unnatural theoretical interpretations, which become immediately
unnecessary if one accepts the interpretation that the description refers to ensembles of systems and
not to individual systems. In that case, the whole ’egg-walking’ performed in order to avoid the
’physically real’ becomes superfluous. There exists, however, a simple psychological reason for the
fact that this most nearly obvious interpretation is being shunned—for, if the statistical quantum
theory does not pretend to describe the individual system (and its development in time) completely,
it appears unavoidable to look elsewhere for a complete description of the individual system. In doing
so, it would be clear from the very beginning that the elements of such a description are not contained
within the conceptual scheme of the statistical quantum theory. With this. one would admit that,
in principle, this scheme could not serve as the basis of theoretical physics. Assuming the success of
efforts to accomplish a complete physical description, the statistical quantum theory would, within the
framework of future physics, take an approximately analogous position to the statistical mechanics
within the framework of classical mechanics. I am rather firmly convinced that the development of
theoretical physics will be of this type, but the path will be lengthy and difficult.”

“If it should be possible to move forward to a complete description, it is likely that the laws would
represent relations among all the conceptual elements of this description which, per se, have nothing
to do with statistics.”

In what follows we put forth a simple approach to describing the individual system (and its
development in time), which Einstein believed was missing from statistical quantum theory and which
must be present before any theory of physics could be considered to be complete.

The way forward was suggested by the phenomenon of entanglement. Over the past few
decades, many increasingly exquisite Einstein–Podolsky–Rosen [2] (EPR) experiments [3–11] have
demonstrated that multi-body quantum systems with separated components that are subject to
conservation laws exhibit a property called “quantum entanglement” [12]: Their component wave
functions are inextricably locked together, and they display a nonlocal correlated behavior enforced
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over an arbitrary interval of space-time without any hint of an underlying mechanism or any show of
respect for our cherished classical “arrow of time.” Entanglement is the most mysterious of the many
so-called “quantum mysteries.”

It has thus become clear that the quantum transfer of energy must have quite a different symmetry
from that implied by this simple “photon-as-particle” interpretation. Within the framework of
statistical QM, the intrinsic symmetry of the energy transfer and the mechanisms behind wave function
collapse and entanglement have been greatly clarified by the Transactional Interpretation of quantum

mechanics (TI), developed over several decades by one of us and recently described in some detail
in the book The Quantum Handshake [12]. [We note that Ruth Kastner has extended her “probabilist”
variant of the TI, which embraces the Heisenberg/probability view and characterizes transactions as
events in many-dimensional Hilbert space, into the quantum-relativistic domain [13,14] and has used
it to extend and enhance the “decoherence” approach to quantum interpretation [15]].

This paper begins with a tutorial review of the TI approach to a credible photon mechanism
developed in the book Collective Electrodynamics [16], followed by a deeper dive into the
electrodynamics of the quantum handshake, and finally includes descriptions of several historic
experiments that have excluded entire classes of theories. We conclude that the approach described
here has not been excluded by any experiment to date.

1.1. Wheeler–Feynman Electrodynamics

The Transactional Interpretation was inspired by classical time-symmetric Wheeler–Feynman
electrodynamics [17,18] (WFE), sometimes called “absorber theory.” Basically, WFE assumes that
electrodynamics must be time-symmetric, with equally valid retarded waves (that arrive after they
are emitted) and advanced waves (that arrive before they are emitted). WFE describes a “handshake”
process accounting for emission recoil in which the emission of a retarded wave stimulates a future
absorber to produce an advanced wave that arrives back at the emitter at the instant of emission.
WFE is based on electrodynamic time symmetry and has been shown to be completely interchangeable
with conventional classical electrodynamics in its predictions.

WFE asserts that the breaking of the intrinsic time-symmetry to produce the electromagnetic
arrow of time, i.e., the observed dominance of retarded radiation and absence of advanced radiation
in the universe, arises from the presence of more absorption in the future than in the past. In an
expanding universe, that assertion is questionable. One of us has suggested an alternative cosmological
explanation [19], which employs advanced-wave termination and reflection from the singularity of the
Big Bang.

1.2. The Transactional Interpretation of Quantum Mechanics

The Transactional Interpretation of quantum mechanics [12] takes the concept of a WFE handshake
from the classical regime into the quantum realm of photons and massive particles. The retarded
and advanced waves of WFE become the quantum wave functions ψ and ψ*. Note that the complex
conjugation of ψ* is in effect the application of the Wigner time-reversal operator, thus representing an
advanced wave function that carries negative energy from the present to the past.

Let us here clarify what an interpretation of quantum mechanics actually is. An interpretation
serves the function of explaining and clarifying the formalism and procedures of its theory.
In our view, the mathematics is (and should be) exclusively contained in the formalism itself.
The interpretation should not introduce additional variant formalism. [We note, however, that this
principle is violated by the Bohm–de Broglie “interpretation” with its “quantum potentials” and
uncertainty-principle-violating trajectories, by the Ghirardi–Rimini–Weber “interpretation” with its
nonlinear stochastic term, and by many other so-called interpretations that take the questionable
liberty of modifying the standard QM formalism. In that sense, these are alternative variant quantum
theories, not interpretations at all.]

7
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The present work is a calculation describing the formation of a transaction that was inspired by
the Transactional Interpretation but has not previously been a part of it. In Section 12 below, we discuss
how the TI is impacted by this work. We use Schrödinger’s original wave mechanics formalism
with the inclusion of retarded and advanced electromagnetic four-potentials to describe and illuminate the
processes of transaction formation and the collapse of the wave function. We show that this approach
can provide a detailed mathematical description of a “quantum-jump” in which what seems to be
a photon is emitted by one hydrogen atom in an excited state and excites another hydrogen atom
initially in its ground state. Thus, the mysterious process of wave function collapse becomes just a
phenomenon involving an exchange of advanced/retarded electromagnetic waves between atomic
wave functions described by the Schrödinger formalism.

As illustrated schematically in Figure 1, the process described involves the initial existence in
each atom of a very small admixture of the wave function for the opposite state, thereby forming
two-component states in both atoms. This causes them to become weak dipole radiators oscillating at
the same difference-frequency ω0. The interaction that follows, characterized by a retarded-advanced
exchange of 4-vector potentials, leads to an exponential build-up of a transaction, resulting in the
complete transfer of one photon worth of energy h̄ω0 from one atom to the other. This process is
described in more detail below.

Figure 1. Model of transaction formation: An emitter atom 2 in a space-antisymmetric excited
state of energy E2 and an absorber atom 1 in a space-symmetric ground state of energy E1 both
have slight admixtures of the other state, giving both atoms dipole moments that oscillate with the
same difference-frequency ω0 = ω2 − ω1. If the relative phase of the initial small offer wave ψ and
confirmation wave ψ∗ is optimal, this condition initiates energy transfer, which avalanches to complete
transfer of one photon-worth of energy h̄ω0.

2. Physical Mechanism of the Transfer

The standard formalism of QM consists of a set of arbitrary rules, conventionally viewed as dealing
only with probabilities. When illuminated by the TI, that formalism hints at an underlying physical
mechanism that might be understood, in the usual sense of the concept understood. The first glimpse of
such an understanding, and of the physical nature of the transactional symmetry, was suggested
by Gilbert N. Lewis in 1926 [20,21], the same year he gave electromagnetic energy transfer the
name “photon”:

“It is generally assumed that a radiating body emits light in every direction, quite regardless of
whether there are near or distant objects which may ultimately absorb that light; in other words that it
radiates ’into space’...”

“I am going to make the contrary assumption that an atom never emits light except to another atom...”

8
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“I propose to eliminate the idea of mere emission of light and substitute the idea of transmission, or a
process of exchange of energy between two definite atoms... Both atoms must play coordinate and
symmetrical parts in the process of exchange...”

“In a pure geometry it would surprise us to find that a true theorem becomes false when the page
upon which the figure is drawn is turned upside down. A dissymmetry alien to the pure geometry of
relativity has been introduced by our notion of causality.”

In what follows, we demonstrate that the pair of coupled Schrödinger equations describing the
two atoms, as coupled by a relativistically correct description of the electromagnetic field, exhibit
a unique solution. This solution has exactly the symmetry of the TI and thus provides a physically
understandable mechanism for the experimentally observed behavior: Both atoms, in the words of
Lewis, “play coordinate and symmetrical parts in the process of exchange”.

The solution gives a smooth transition in each of the atomic wave functions, brought to abrupt
closure by the highly nonlinear increase in coupling as the transition proceeds. The origin of statistical
behavior and “quantum randomness” can be understood in terms of the random distribution of
wave-function amplitudes and phases provided by the perturbations of the many other potential
recipient atoms; no “hidden variables” are required. Although much remains to be done, these findings
might be viewed as a next step towards a physical understanding of the process of quantum
energy transfer.

We will close by indicating the deep, fundamental questions that we have not addressed, and that
must be understood before anything like a complete physical understanding of QM is in hand.

3. Quantum States

In 1926, Schrödinger, seeking a wave-equation description of a quantum system with mass,
adopted Planck’s notion that energy was somehow proportional to frequency together with deBroglie’s
idea that momentum was the propagation vector of a wave and crafted his wave equation for the time
evolution of the wave function Ψ [22]:

− h̄
2m i

∇2Ψ +
q V
i h̄

Ψ =
∂Ψ
∂t

. (1)

Here, V is the electrical potential, m is the electron mass, and q is the (negative) charge on the
electron. Thus, what is the meaning of the wave function Ψ that is being characterized? In modern
treatments, Ψ is called a “probability amplitude”, which has only a probabilistic interpretation. In what
follows, however, we return to Schrödinger’s original vision, which provides a detailed physical
picture of the wave function and how it interacts with other charges:

“The hypothesis that we have to admit is very simple, namely that the square of the absolute value
of Ψ is proportional to an electric density, which causes emission of light according to the laws of
ordinary electrodynamics.”

That vision has inspired generations of talented conceptual thinkers to invent solutions to technical
problems using Schrödinger’s approach. Foremost among these was Ed Jaynes who, with a number
of students and collaborators, attacked a host of quantum problems in this manner [23–30]. A great
deal of physical understanding was obtained, in particular concerning lasers and the coherent optics
made possible by them. The theory evolved rapidly and had an enabling role in the explosive progress
of that field. Indeed, the continued rapid technical progress into the present is due, in no small part,
to the understanding gained through application of the Jaynes way of thinking. A detailed review
of the progress up to 1972 was reported in a conference that year [30]. By then this class of theory
was called neoclassical (NCT) because of its use of Maxwell’s equations. While there was no question
about the utility of NCT in the conceptualization and technical realization of amazing quantum-optics
devices and their application, there was a deep concern about whether it could possibly be correct at
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the fundamental level—maybe it was just a clever bunch of hacks. The tension over this concern was a
major focus of the 1972 Third Rochester Conference on Coherence and Quantum Optics [31], and several
experiments testing NCT predictions were discussed there by Jaynes [30].

He ended his presentation this way:

“We have not commented on the beautiful experiment reported here by Clauser [32], which opens up
an entirely new area of fundamental importance to the issues facing us...”

“What it seems to boil down to is this: a perfectly harmless looking experimental fact (nonoccurence
of coincidences at 90◦), which amounts to determining a single experimental point—and with a
statistical measurement of unimpressive statistical accuracy—can, at a single stroke, throw out a
whole infinite class of alternative theories of electrodynamics, namely all local causal theories.”

“...if the experimental result is confirmed by others, then this will surely go down as one of the most
incredible intellectual achievements in the history of science, and my own work will lie in ruins.”

The experiment he was alluding to was that of Freedman and Clauser [6], and in particular to
their observaton of an essentially zero coincidence rate with crossed polarizers. The Freedman–Clauser
experiment (see Section 13.3 below), with its use of entangled photon pairs, was the vanguard
of an entire new direction in quantum physics that now goes under the rubric of Tests of Bell’s

Inequality [3,4] and/or EPR experiments [6–11]. Both the historic EPR experiment and its analysis
have been repeated many times with ever-increasing precision, and always with the same outcome:
a difinitive violaton of Bell’s inequalities. Local causal theories were dead! [Much of the literature
on violations of Bell’s inequalities in EPR experiments has unfortunately emphasized the refutation
of local hidden-variable theories. In our view, this is a regrettable historical accident attributable to Bell.
Nonlocal hidden-variable theories have been shown to be compatible with EPR results. It is locality that
has been refuted. Entangled systems exhibit correlations that can only be accomodated by quantum
nonlocality. The TI supplies the mechanism for that nonlocality.]

In fact, it was the manifest quantum nonlocality evident in the early EPR experiments of the
1970s that led to the synthesis of the transactional interpretation in the 1980s [19,33,34], designed to
compactly explain entanglement and nonlocality. This in turn led to the search for an underlying
transaction mechanism, as reported in 2000 in Collective Electrodynamics [16]. As we detail below,
the quantum handshake, as mediated by advanced/retarded electromagnetic four-potentials, provides
the effective non-locality so evident in modern versions of these EPR experiments. In Section 13,
we analyze the Freedman–Clauser experiment in detail and show that their result is a natural outcome
of our approach. Jaynes’ work does not lie in ruins—all that it needed for survival was the non-local
quantum handshake! What follows is an extension and modification of NCT using a different
non-Maxwellian form of E&M [16] and including our non-local Transactional approach. We illustrate
the approach with the simplest possible physical arrangements, described with the major goal of
conceptual understanding rather than exhaustion. Obviously, much more work needs to be done,
which we point out where appropriate.

Atoms

We will begin by visualizing the electron as Schrödinger and Jaynes did: as having a smooth
charge distribution in three-dimensional space, whose density is given by Ψ∗Ψ. There is no need for
statistics and probabilities at any point in these calculations, and none of the quantities have statistical
meaning. The probabilistic outcome of quantum experiments has the same origin as it does in all other
experiments—random perturbations beyond the control of the experimenter. We return to the topic of
probability after we have established the nature of the transaction.

For a local region of positive potential V, for example near a positive proton, the negative
electron’s wave function has a local potential energy (qV) minimum in which the electron’s wave
function can form local bound states. The spatial shape of the wave function amplitude is a trade-off
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between getting close to the proton, which lowers its potential energy, and bunching together too
much, which increases its ∇2 “kinetic energy.” Equation (1) is simply a mathematical expression of
this trade-off, a statement of the physical relation between mass, energy, and momentum in the form
of a wave equation.

A discrete set of states called eigenstates are standing-wave solutions of Equation (1) and have
the form Ψ = Re−iωt, where R and V are functions of only the spatial coordinates, and the angular
frequency ω is itself independent of time. For the hydrogen atom, the potential V = ε0qp/r, where qp

is the positive charge on the nucleus, equal in magnitude to the electron charge q. Two of the
lowest-energy solutions to Equation (1) with this potential are:

Ψ100 =
e−r
√

π
e−iω1t Ψ210 =

r e−r/2 cos(θ)
4
√

6π
e−iω2t, (2)

where the dimensionless radial coordinate r is the radial distance divided by the Bohr radius a0:

a0 ≡ 4πε0h̄2

mq2 = 0.0529 nm, (3)

and θ is the azimuthal angle from the North Pole (+z axis) of the spherical coordinate system.
The spatial “shape” of the two lowest energy eigenstates for the hydrogen atom is shown in

Figure 2. Here, we focus on the excited-state wave function Ψ210 that has no angular momentum
projection on the z-axis. For the moment, we set aside the wave functions Ψ21±1, which have +1 and
−1 angular momentum z-axis projections. Because, for any single eigenstate, the electron density is
Ψ∗Ψ = ReiωtRe−iωt = R2, the charge density is not a function of time, so none of the other properties of
the wave function change with time. The individual eigenstates are thus stationary states. The lowest
energy bound eigenstate for a given form of potential minimum is called its ground state, shown on
the left in Figure 3. The corresponding charge densities are shown in Figure 4.

Figure 2. Angular dependence of the spatial wave function amplitudes for the lowest (100, left) and
next higher (210, right) states of the hydrogen atom, plotted as unit radius in spherical coordinates
from Equation (2). The 100 wave function has spherical symmetry: positive in all directions.
The 210 wave function is antisymmetric along the z-axis, as indicated by the color change. In practice,
the direction of the z-axis will be established by an external electromagnetic field, as we shall
analyze shortly.
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Figure 3. Wave function amplitudes Ψ for the 100 and 210 states, along the z-axis of the hydrogen atom.
The horizontal axis in all plots is the position along the z-axis in units of the Bohr radius.
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Figure 4. Contribution of x − y “slices” at position z of wave function density Ψ∗Ψ to the total charge
or mass of the 100 and 210 states of the hydrogen atom. Both curves integrate to 1.

In 1926, Schrödinger had already derived the energies and wave functions for the stationary
solutions of his equation for the hydrogen atom. His physical insight that the absolute square Ψ∗Ψ
of the wave function was the electron density had enabled him to work out the energy shifts of these
levels caused by external applied electric and magnetic fields, the expected strengths of the transitions
between pairs of energy levels, and the polarization of light from certain transitions.

These predictions could be compared directly with experimental data, which had been previously
observed but not understood. He reported that these calculations were:

“...not at all difficult, but very tedious. In spite of their tediousness, it is rather fascinating to see
all the well-known but not understood “rules” come out one after the other as the result of familiar
elementary and absolutely cogent analysis, like e.g., the fact that

∫ 2π
0 cos mφ cos nφ dφ vanishes

unless n = m. Once the hypothesis about Ψ∗Ψ has been made, no accessory hypothesis is needed or
is possible; none could help us if the “rules” did not come out correctly. However, fortunately they
do [22,35].”

The Schrödinger/Jaynes approach enables us to describe continuous quantum transitions in
an intuitively appealing way: We extend the electromagnetic coupling described in Collective
Electrodynamics [16] to the wave function of a single electron, and require only the most rudimentary
techniques of Schrödinger’s original quantum theory.

4. The Two-State System

The first two eigenstates of the Hydrogen atom, from Equation (2), form an ideal two-state system.
We refer to the 100 ground state as State 1, with wave function Ψ1 and energy E1, and to the 210 excited
state as State 2, with wave function Ψ2 and energy E2 > E1:

Ψ1 = R1e−iω1t Ψ2 = R2e−iω2t, (4)
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where ω1 = E1/h̄, ω2 = E2/h̄, and R1 and R2 are real, time-independent functions of the space
coordinates. The wave functions represent totally continuous matter waves, and all of the usual
operations involving the wave function are methods for computing properties of this continuous
distribution. The only particularly quantal assumption involved is that the wave function obeys a
normalization condition: ∫

Ψ∗Ψ dvol = 1, (5)

where the integral is taken over the entire three-dimensional volume where Ψ is non-vanishing.
[Envelope functions like R1 and R2 generally die out exponentially with distance sufficiently far from
the “region of interest”, such as an atom. Integrals like this one and those that follow in principle
extend to infinity but in practice are taken out far enough that the part being neglected is within the
tolerance of the calculation.].

Equation (5) ensures that the total charge will be a single electronic charge, and the total mass will
be a single electronic mass.

By construction, the eigenstates of the Schrödinger equation are real and orthogonal:∫
R1R2 dvol = 0. (6)

The first moment 〈z〉 of the electron distribution along the atom’s z-axis is:

〈z〉 ≡
∫

Ψ∗z Ψ dvol, (7)

In statistical treatments, 〈z〉 would be called the “expectation value of z”, whereas for our
continuous distribution it is called the “average value of z” or the “first moment of z.” The electron
wave function is a wave packet and is subject to all the Fourier properties of one, as treated at some
length in Ref. [12]. Statistical QM insisted that electrons were “point particles”, so one was no longer
able to visualize how they could exhibit interference or other wave properties, so a set of rules was
constructed to make the outcomes of statistical experiments come out right. Among these was the
uncertainty principle, which simply restated the Fourier properties of an object described by waves
in a statistical context. No statistical attributes are attached to any properties of the wave function in
this treatment.

Equation (7) gives the position of the center of negative charge of the electron wave function
relative to the positive charge on the nucleus. When multiplied by the electronic charge q, it is called
the electric dipole moment q 〈z〉 of the charge distribution of the atom:

q 〈z〉 = q
∫

Ψ∗z Ψ dvol. (8)

From Equations (7) and (4), the dipole moment for the ith eigenstate is:

q 〈zi〉 = q
∫

Ψ∗
i z Ψi dvol = q

∫
R∗

i z Ri dvol = q
∫

R2
i z dvol. (9)

Pure eigenstates of the system will have a definite parity, i.e., they will have wave functions with
either even symmetry [Ψ(z) = Ψ(−z)], or odd symmetry [Ψ(z) = −Ψ(−z)]. For either symmetry,
the integral over R2z vanishes, and the dipole moment is zero. We note that, even if the wave function
did not have even or odd symmetry, the dipole moment, and all higher moments as well, would be
independent of time. By their very nature, eigenstates are stationary states and can be visualized as
standing-waves—none of their physical spatial attributes can be functions of time. In order to radiate
electromagnetic energy, the charge distribution must change with time.

The notion of stationarity is the quantum answer to the original question about atoms depicted as
electrons orbiting a central nucleus like a tiny Solar System:
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Why doesn’t the electron orbiting the nucleus radiate its energy away?
In his 1917 book, The Electron, R.A. Millikan [36] anticipates the solution in his comment about the

”. . . apparent contradiction involved in the non-radiating electronic orbit—a contradiction which
would disappear, however, if the negative electron itself, when inside the atom, were a ring of some
sort, capable of expanding to various radii, and capable, only when freed from the atom, of assuming
essentially the properties of a point charge.”

Millikan was the first researcher to directly observe and measure the quantized charge on the
electron with his famous oil-drop experiment, for which he later received the Nobel prize. Ten years
before the statistical quantum theory was put in place, he had clearly seen that a continuous, symmetric
electronic charge distribution would not radiate, and that the real problem was the assumption of a
point charge.

5. Transitions

The eigenstates of the system form a complete basis set, so any behavior of the system can be
expressed by forming a linear combination (superposition) of its eigenstates.

The general form of such a superposition of our two chosen eigenstates is:

Ψ = aeiφa R1e−iω1t + beiφb R2e−iω2t, (10)

where a and b are real amplitudes, and φa and φb are real constants that determine the phases of the
oscillations ω1 and ω2.

Using ω0 = ω2 − ω1 and φ = φa − φb, the charge density ρ of the two-component-state wave
function is:

ρ = qΨ∗ Ψ
ρ

q
=
(

ae−iφa R1eiω1t + be−iφb R2eiω2t
) (

aeiφa R1e−iω1t + beiφb R2e−iω2t
)

= a2R2
1 + b2R2

2 +
(

ae−iφa beiφb e−iω0t + be−iφb aeiφa eiω0t
)

R1R2

= a2R2
1 + b2R2

2 + ab
(

ei(φb−φa) e−iω0t + ei(φa−φb) eiω0t
)

R1R2

= a2R2
1 + b2R2

2 + ab
(

e−i(ω0t−φ) + ei(ω0t+φ)
)

R1R2

= a2R2
1 + b2R2

2 + 2abR1R2 cos(ω0t + φ).

(11)

Thus, the charge density of the two-component wave function is made up of the charge densities
of the two separate wave functions, shown in Figure 4, plus a term proportional to the product of the
two wave function amplitudes. It reduces to the individual charge density of the ground state when
a = 1, b = 0 and to that of the excited state when a = 0, b = 1. The product term, shown in green in
Figure 5, is the only non-stationary term; it oscillates at the transition frequency ω0. The integral of the
total density shown in the right-hand plot is equal to 1 for any phase of the cosine term, since there is
only one electron in this two-component state.

All the Ψ∗Ψ plots represent the density of negative charge of the electron. The atom as a whole is
neutral because of the equal positive charge on the nucleus. The dipole is formed when the center of
charge of the electron wave function is displaced from the central positive charge of the nucleus.
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Figure 5. Left: Plot of the three terms in the wave-function density in Equation (11) for an equal(
a = b = 1/

√
2
)

superposition of the ground state (R2
1, blue) and first excited state (R2

2, red) of
the hydrogen atom. The green curve is a snapshot of the time-dependent R1R2 product term,
which oscillates at difference frequency ω0. Right: Snapshot of the total charge density, which is
the sum of the three curves in the left plot. The magnitudes plotted are the contribution to the total
charge in an x − y “slice” of Ψ∗Ψ at the indicated z coordinate. All plots are shown for the time such
that cos(ω0t + φ) = 1. The horizontal axis in each plot is the spatial coordinate along the z-axis of the
atom, given in units of the Bohr radius a0. Animation here [37] (see Supplementary Materials).

The two-component wave function must be normalized, since it is the state of one electron:∫
Ψ∗ Ψ dvol = 1

=
∫ (

ae−iφa R1eiω1t + be−iφb R2eiω2t
)

(
aeiφa R1e−iω1t + beiφb R2e−iω2t

)
dvol

= a2
∫

R2
1 dvol + b2

∫
R2

2dvol

+
(

ae−iφa beiφb e−iω0t + be−iφb aeiφa eiω0t
) ∫

R1R2dvol.

(12)

Recognizing from Equations (5) and (6) that the individual eigenfunctions are normalized
and orthogonal: ∫

R2
1 dvol = 1

∫
R2

2 dvol = 1
∫

R1R2 dvol = 0. (13)

Equation (12) becomes ∫
Ψ∗ Ψ dvol = 1 = a2 + b2. (14)

Thus, a2 represents the fraction of the two-component wave function made up of the lower state
Ψ1, and b2 represents the fraction made up of the upper state Ψ2. The total energy E of a system whose
wave function is a superposition of two eigenstates is:

E = a2E1 + b2E2. (15)

Using the normalization condition a2 + b2 = 1 and solving Equation (15) for b2, we obtain:

b2 =
E − E1

E2 − E1
. (16)

In other words, b2 is just the energy of the wave function, normalized to the transition
energy, and using E1 as its reference energy. Taking E1 as our zero of energy and E0 = E2 − E1,
Equation (16) becomes:

E = E0b2 ⇒ ∂E
∂t

= E0
∂
(
b2)

∂t
. (17)
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Defining:

d12 ≡ 2q
∫

R1R2 z dvol = 2q 〈z〉max , (18)

the dipole moment q 〈z〉 of such a superposition can, from Equation (11), be written:

q 〈z〉 = d12ab cos(ω0t + φ). (19)

The factor d12 we call the dipole strength for the transition. When one R is an even function of z
and the other is an odd function of z, as in the case of the 100 and 210 states of the hydrogen atom,
then d12 is nonzero, and the transition is said to be electric dipole allowed. When both R1 and R2 are
either even or odd functions of z, d12 = 0, and the transition is said to be electric dipole forbidden.

Even in this case, some other moment of the distribution generally will be nonzero, and the
transition can proceed by magnetic dipole, magnetic quadrupole, or other higher-order moments.

For now, we will concentrate on transitions that are electric dipole allowed.
We have the time dependence of the electron dipole moment q 〈z〉 from Equation (19), from which

we can derive the velocity and acceleration of the charge:

q 〈z〉 = d12ab cos(ω0t + φ)

q
∂ 〈z〉

∂t
= −ω0d12ab sin(ω0t + φ) + d12 cos(ω0t + φ)

∂(ab)
∂t

≈ −ω0d12ab sin(ω0t + φ)

q
∂2 〈z〉

∂t2 ≈ −ω2
0d12ab cos(ω0t + φ),

(20)

where the approximation arises because we will only consider situations where the coefficients a and b
change slowly with time over a large number of cycles of the transition frequency:

(
∂(ab)

∂t � ab ω0

)
.

The motion of the electron mass density endows the electron with a momentum �p:

�p = m�v ⇒ pz = m
∂ 〈z〉

∂t
≈ −m

q
ω0d12ab sin(ω0t + φ). (21)

6. Atom in an Applied Field

Schrödinger had a detailed physical picture of the wave function, and he gave an elegant
derivation of the process underlying the change of atomic state mediated by electromagnetic coupling.
[The original derivation in Ref. [38], p. 137, is not nearly as readable as that in Schrödinger’s second
and third 1928 lectures [39], where the state transition is described in Section 9 starting at the bottom
of page 31, for which the second lecture is preparatory. There he solved the problem more generally,
including the effect of a slight detuning of the field frequency from the atom’s transition frequency.]
Instead of directly tackling the transfer of energy between two atoms, he considered the response of a
single atom to a small externally applied vector potential field �A. He found that the immediate effect
of an applied vector potential is to change the momentum p of the electron wave function:

pz = m
∂ 〈z〉

∂t
− qAz

∂pz

∂t
= m

∂2 〈z〉
∂t2 − q

∂Az

∂t
.

(22)

Thus, the quantity −q ∂Az
∂t acts as a force, causing an acceleration of the electron wave function.

This is the physical reason that − ∂Az
∂t can be treated as an electric field Ez. [At a large distance

from an overall charge-neutral charge distribution like an atom, the longitudinal gradient of the scalar
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potential just cancels the longitudinal component of ∂�A/∂t, so what is left is �E = −∂A⊥/∂t, which is
purely transverse.].

Ez = −∂Az

∂t
. (23)

In the simplest case, the qAz term makes only a tiny perturbation to the momentum over a single
cycle of the ω0 oscillation, so its effects will only be appreciable over many cycles.

We consider an additional simplification, where the frequency of the applied field is exactly equal
to the transition frequency ω0 of the atom:

Az = A cos (ω0t) ⇒ −∂Az

∂t
= Ez = ω0 A sin (ω0t). (24)

In such evaluations, we need to be very careful to identify exactly which energy we are calculating:
The electric field is merely a bookkeeping device to keep track of the energy that an electron in one

atom exchanges with another electron in another atom, in such a way that the total energy is conserved.
We will evaluate how much energy a given electron gains from or loses to the field, recognizing that
the negative of that energy represents work done by the electron on the source electron responsible
for the field. The force on the electron is just qEz. Because Ez = ω0 A sin (ω0t), for a stationary charge,
the force is in the +z direction as much as it is in the −z direction, and, averaged over one cycle of the
electric field, the work averages to zero. However, if the charge itself oscillates with the electric field,
it will gain energy ΔE from the work done by the field on the electron over one cycle:

ΔE
cycle

=
∫

qEz dz =
∫ 2π/ω0

0
qEz

∂ 〈z〉
∂t

dt, (25)

where 〈z〉 is the z position of the electron center of charge from Equation (20).
When the electron is “coasting downhill” with the electric field, it gains energy and ΔE is

positive. When the electron is moving “uphill” against the electric field, the electron loses energy and
ΔE is negative.

As long as the energy gained or lost in each cycle is small compared with E0, we can define a
continuous power (rate of change of electron energy), which is understood to be an average over many
cycles. The time required for one cycle is 2π/ω0, so Equation (25) becomes:

∂E
∂t

=
ω0ΔE

2π
=

ω0

2π

∫ 2π/ω0

0
qEz

∂ 〈z〉
∂t

dt =
1

2π

∫ 2π

0
qEz

∂ 〈z〉
∂t

d(ω0t). (26)

7. Electromagnetic Coupling

Because our use of electromagnetism is conceptually quite different from that in traditional
Maxwell treatments (including Jaynes’ NCT), we review here the foundations of that discipline
from the present perspective. [A more detailed discussion from the present viewpoint is given
in Mead, Collective Electrodynamics [16]. The standard treatment is given in Jackson, Classical
Electrodynamics, 3rd Edition, Chapter 8 [40].] It is shown in Ref. [16] that electromagnetism is of
totally quantum origin. We saw in Equation (22) that it is the vector potential �A that appears as part of
the momentum of the wave function, signifying the coupling of one wave function to one or more
other wave functions. Thus, to stay in a totally quantum context, we must work with electromagnetic
relations based on the vector potential and related quantities. The entire content of electromagnetism
is contained in the relativistically-correct Riemann–Sommerfeld second-order differential equation:(

∇2 − ∂2

∂t2

)
A = −μ0 J, (27)
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where A = [�A, V/c] is the four-potential and J = [�J, cρ] is the four-current, �A is the vector potential,
V is the scalar potential, �J is the physical current density (no displacement current), and ρ is the
physical charge density, all expressed in the same inertial frame.

Connection with the usual electric and magnetic field quantities �E and �B is as follows:

�E = −∇V − ∂�A
∂t

�B = ∇× �A. (28)

Thus, once we have the four-potential A, we can derive any electromagnetic relations we wish.
Equation (27) has a completely general Green’s Function solution for the four-potential A(t) at a

point in space, from four-current density J(r, t) in volume elements dvol at at distance r from that point:

A(t) =
μ0

4π

∫
J(r, t′)

r

∣∣∣∣t′=t± r
c

dvol, (29)

where r is the distance from element dvol to the point where A is evaluated, assumed large compared
to the size of the atomic wave functions, and c is the speed of light.

Equation (29) is the first fundamental equation of electromagnetic coupling: The vector potential,
which will appear as part of an electron’s momentum, is simply the sum of all current elements on that
electron’s light cone, each weighted inversely with its distance from that electron. The second-order
nature of derivatives in Equation (27) does not favor any particular sign of space or time. Thus,
the four-potential from a current element on the past light cone of the electron (t − r/c) will be “felt”
by the electron at later time t, and is termed a retarded field. Conversely, the four-potential from
a current element on the future light cone of the electron (t + r/c) will be “felt” by the electron at
earlier time t, and is termed an advanced field. Historically, with rare exception, advanced fields
have been discarded as non-physical because evidence for them has been explained in other ways.
We shall see that modern quantum experiments provide overwhelming evidence for their active role
in quantum entanglement.

Equation (29) can be expressed in terms of more familiar E&M quantities:

�A(t) =
μ0

4π

∫ �J(r, t′)
r

∣∣∣∣∣
t′=t± r

c

dvol V(t) =
μ0c2

4π

∫
ρ(r, t′)

r

∣∣∣∣t′=t± r
c
dvol (30)

If the current density�J is due to the movement of a small, unified “cloud” of charge, as is the case
for the wave function of an atomic electron, and the motion of the wave function is non-relativistic,
the �J integral just becomes the movement of the center of charge relative to its average position at
the nucleus:

�A(t) ≈ μ0

4π

∫
ρ�v(r, t′)

r

∣∣∣∣t′=t± r
c
dvol ≈ μ0

4π

q�v(r, t′)
r

∣∣∣∣t′=t± r
c

(31)

If, as we have chosen previously, the motion is in the z direction,

Az(t) ≈
qμ0

4πr
∂〈z(r, t′)〉

∂t′

∣∣∣∣t′=t± r
c

(32)

If we use the current element as our origin of time, the signs are reversed:

Az(t′)
∣∣t′=t∓ r

c ≈ qμ0

4πr
∂〈z(r, t)〉

∂t
(33)

In this case, t + r/c represents the retarded field and t − r/c represents the advanced field.
We shall use these two forms for the simple examples presented below.
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An important difference between standard Maxwell E&M practice and our use of the
four-potential to couple atomic wave functions is highlighted by Wheeler and Feynman [17]:

“There is no such concept as ’the’ field, an independent entity with degrees of freedom of its own.”

The field has no degrees of freedom of its own. It is simply a convenient bookkeeping device for
keeping track of the total effect of an arbitrary number of charges on a particular charge distribution in
some region of space. The general form of interaction energy E is given by:

E =
∫
(�A ·�J + ρV) dvol (34)

Equation (34) is the second fundamental equation of electromagnetic coupling. The interaction
described in Section 6 is a simplified case of this relation for a single atom. The energy minimum
created by the positive nucleus is the V, and the ρ is the charge distribution of the electron wave
function. The �A from a second atom is very small, and is assumed to not change the eigenfunctions.

From Equations (34) and (29), we see that, when applied to two atoms, what is being described is
a way to factor a bi-directional connection between them so that each can be analyzed separately by
Schrödinger’s equation as a one-electron problem, using the vector potential from the other as part of
its energy.

The fact that the four-potential field from a charge is defined everywhere on its light cone does
not imply that it is “radiating into space”, carrying energy with it. Energy is only transferred at the
position of another charge. Since all charges are the finite charge densities of wave functions, there are

no self-energy infinities in this formulation.
One widely-held viewpoint treats the “quantum vacuum” as being made up of an infinite number

of quantum harmonic oscillators. The problem with this view is that each such oscillator would have a
zero-point energy that would contribute to the energy density of space in any gravitational treatment
of cosmology. Even when the energies of the oscillators are cut off at some high value, the contribution
of this “dark energy” is 120 orders of magnitude larger than that needed to agree with astrophysical
observations. Such a disagreement between theory and observation (called the “cosmological constant
problem”), even after numerous attempts to reduce it, is many orders of magnitude worse than any other
theory-vs-observation discrepancy in the history of science! However, somehow this viewpoint remains a
central part of the standard model of particle physics and standard practice in QM.

Our approach does not suffer from this serious defect, since its vacuum has no degrees of freedom
of its own. Where, then, is radiated energy going if an atom’s excitation decays and does not interact
locally? The obvious candidate is the enormous continuum of states of matter in the early universe,
source of the cosmic microwave background, to which atoms here and now are coupled by the
quantum handshake. For independent discussions from the two of us, see Ref. [16], p. 94 and Ref. [19].

8. Two Coupled Atoms

The central point of this paper is to understand the photon mechanism by which energy is
transferred from a single excited atom (atom α) to another single atom (atom β) initially in its
ground state.

We proceed with the simplest and most idealized case of two identical atoms, where:

(1) Excited atom α will start in a state where b ≈ 1 and a is very small, but never zero because
of its ever-present random statistical interactions with a vast number of other atoms in the
universe, and

(2) Likewise, atom β will start in a state where a ≈ 1 and b is very small, but never zero for the
same reason.
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Thus, each atom starts in a two-component state that has an oscillating electrical current described
by Equation (20):

q
∂ 〈zα〉

∂t
≈ −ω0d12aαbα sin(ω0t)

q
∂
〈
zβ

〉
∂t

≈ −ω0d12aβbβ sin(ω0t + φ),
(35)

where we have taken excited atom α as our reference for the phase of the oscillations (φα = 0),
and the approximation assumes that a and b are changing slowly on the scale of ω0.

Although that random starting point will contain small excitations of a wide range of phases,
we simplify the problem by assuming the following:

All of the vector potential Aβ at atom α is supplied by atom β,
All of the vector potential Aα at atom β is supplied by atom α,
The dipole moments of both atoms are in the z direction,
The atoms are separated by a distance r in a direction orthogonal to z,

The vector potential at distance r from a small charge distribution oscillating in the z-direction is
from Equation (32):

Az(t) =
qμ0

4πr
∂ 〈z(r, t′)〉

∂t′

∣∣∣∣t′=t± r
c

. (36)

Since all electron motions and fields are in the z direction, we can henceforth omit the z subscript.
When the distance r is small compared with the wavelength, i.e., r � 2πc/ω0, the delay r/c can

be neglected. Since atomic dimensions are of the order of 10−10 m and the wavelength is of the order
of 10−7 m, this case can be accommodated. We shall find that the results we arrive at here are directly
adaptable to the centrally important case in which the atoms are separated by an arbitrarily distance,
which will be analyzed in Section 9. Using Equation (23) and (32), the vector potentials, and hence the
electric fields, from the two atoms become:

Aα ≈ qμ0

4πr
∂ 〈zα〉

∂t
⇒ Eα = −∂Aα

∂t
≈ − qμ0

4πr
∂2 〈zα〉

∂t2

Aβ ≈ qμ0

4πr
∂
〈
zβ

〉
∂t

⇒ Eβ = −
∂Aβ

∂t
≈ − qμ0

4πr
∂2 〈zβ

〉
∂t2 .

(37)

When atom α is subject to electric field Eβ and atom β is subject to electric field Eα, the energy
of both atoms will change with time in such a way that the total energy is conserved. Thus,
the superposition amplitudes a and b of both atoms change with time, as described by Equation (17)
and (26), from which:

∂Eα

∂t
≈ 1

2π

∫ 2π

0
qEβ

∂ 〈zα〉
∂t

d(ω0t) = − q2μ0

8π2r

∫ 2π

0

∂2 〈zβ

〉
∂t2

∂ 〈zα〉
∂t

d(ω0t)

∂Eβ

∂t
≈ 1

2π

∫ 2π

0
qEα

∂
〈
zβ

〉
∂t

d(ω0t) = − q2μ0

8π2r

∫ 2π

0

∂2 〈zα〉
∂t2

∂
〈
zβ

〉
∂t

d(ω0t).

(38)

From Equation (38), using the 〈z〉 derivatives from Equation (20):

∂Eα

∂t
≈ − μ0

8π2r

∫ 2π

0

(
− ω2

0d12aβbβ cos(ω0t + φ)
) (

− ω0d12aαbα sin(ω0t) d(ω0t)
)

≈ −
μ0ω3

0d2
12aβbβaαbα

8π2r

∫ 2π

0
cos(ω0t + φ) sin(ω0t) d(ω0t) =

μ0ω3
0d2

12aβbβaαbα

8πr
sin(φ)

∂Eβ

∂t
≈ − μ0

8π2r

∫ 2π

0

(
− ω2

0d12aαbα cos(ω0t)
) (

− ω0d12aβbβ sin(ω0t + φ) d(ω0t)
)

≈ −
μ0ω3

0d2
12aαbαaβbβ

8π2r

∫ 2π

0
cos(ω0t) sin(ω0t + φ) d(ω0t) = −

μ0ω3
0d2

12aαbαaβbβ

8πr
sin(φ).

(39)
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These equations describe energy transfer between the two atoms in either direction, depending
on the sign of sin(φ). For transfer from atom α to atom β, ∂Eα/∂t is negative. Since this transaction
dominated all competing potential transfers, its amplitude will be maximum, so sin(φ) = −1.

If the starting state had been atom β in the excited (b ≈ 1) state, the sin(φ) = +1 choice would
have been appropriate:

Using : sin(φ) = −1 and Pαβ ≡ μ0ω3
0d2

12
8πr

, (40)

This rate of transferred energy is calculated for two isolated atoms suspended in space. We have
no experimental data whatsoever for such a situation. All optical experiments are done with some
optical system between the two atoms. Even the simplest such arrangement couples the two atoms
orders of magnitude better than the simple 1/r dependence in Equation (40) would indicate. We take up
the enhancement due to an intervening optical system in Section 10. Any such enhancement merely
provides a constant multiplier in Pαβ. In any case, Equation (39) becomes:

∂Eα

∂t
= E0

∂b2
α

∂t
= −Pαβ aβbβaαbα

∂Eβ

∂t
= E0

∂b2
β

∂t
= Pαβ aαbαaβbβ. (41)

Remembering that our total starting energy was E0 that b2 is the energy of the electron in units of
E0 referred to the ground state, that energy is conserved by the two atoms during the transfer, and that
the wave functions are normalized:

E0

(
b2

α + b2
β

)
= E0 ⇒ b2

α + b2
β = 1 ⇒ bβ =

√
1 − b2

α

a2
α + b2

α = 1 ⇒ aα =
√

1 − b2
α = bβ

a2
β + b2

β = 1 ⇒ aβ =
√

1 − b2
β = bα,

(42)

after which substitutions Equation (41) becomes:

∂
(
b2

α

)
∂t

= b2
α

(
1 − b2

α

)
/τ, where the transition time scale is τ ≡ E0

Pαβ
. (43)

This has the solution plotted in Figure 6:

b2
α = a2

β =
1

et/τ + 1
a2

α = b2
β =

1
e−t/τ + 1

. (44)

Note that this waveform is that of an individual interaction and has no probabilistic meaning.
It was the subject of many intense discussions about NCT in general, including a quite detailed one
in [30]. We refrain from such discussion here because the dependence of the dipole moment with
superposition makeup is not the only nonlinearity in the problem. The self-focusing nature of the
matched advanced/retarded electromagnetic solutions, described in Section 11, may be an even larger
nonlinearity in many cases. Although its time dependence is much more difficult to estimate, it will
almost certainly make the individual quantum transition much more abrupt.

The direction and magnitude of the entire energy-transfer process is governed by the relative
phase φ of the electric field and the electron motion in both atoms: When the electron motion of
either atom is in phase with the field, the field transfers energy to the electron, and the field is said
to excite the atom. When the the electron motion has opposite phase from the field, the electron transfers
energy “to the field”, and the process is called stimulated emission.

21



Symmetry 2020, 12, 1373

Figure 6. Squared state amplitudes for atom α: b2
α (blue) and a2

α = b2
β (red) for the Photon transfer of

energy E0 = h̄ω0 from atom α to atom β, from Equation (44). Using the lower state energy as the zero
reference, E0b2 is the energy of the state. The green curve shows the normalized power radiated by
the atom α and absorbed by atom β, from Equation (43). The optical oscillations at ω0 are not shown,
as they are normally many orders of magnitude faster than the transition time scale τ. The time t
is in units of τ. In the next section, we will find that atoms spaced by an arbitrary distance exhibit
transactions of exactly the same form.

Therefore, for the photon transaction to proceed the field from atom α must have a phase such
that it “excites” atom β, while the field from atom β must have a phase such that it absorbs energy and
“de-excites” atom α. In the above example, that unique combination occurs when sin(φ) = −1.

This dependence on phase makes a transaction exquisitely sensitive to the frequency match
between atoms α and β. The frequency ω0 ≈ 1016/ s, so for transitions in the nanosecond range,
a mismatch of one part in 107 can cause a transaction to fail.

8.1. Competition between Recipient Atoms

As discussed at the end of Section 7, the bi-directional vector potential coupling has allowed us to
analyze the problem of two coupled atoms, which looks like a two-electron problem, as two coupled
one-electron problems, and therefore is treatable using Schrödinger’s wave mechanics. The approach
generalizes, so we can now examine the important three-atom case of a single excited atom α that is
equally coupled to two ground-state atoms β1 and β2. Recipient atoms β1 and β2 have the same level
spacing as source atom α. For atom β1, this corresponds to transition frequency ω0, and we assume
a relative phase of sin(φ) = −1. However, atom β2 is moving and has a slightly Doppler-shifted
transition frequency ω0 + Δω. We assume that β2 has the same structure and intial phase as β1 at time
t = 0. Thence, Equation (41), with the transition time scale τ ≡ E0/P0β1 = E0/P0β2, becomes:

τ
∂b2

β1

∂t
= aαbα

(
aβ1bβ1

)
τ

∂b2
β2

∂t
= aαbα

(
aβ2bβ2 cos(Δωt)

)
τ

∂b2
α

∂t
= −aαbα

(
aβ1bβ1 + aβ2bβ2 cos(Δωt)

) (45)

As with Equation (42), wave functions are normalized and energy is conserved:

a2
α + b2

α = 1 a2
β1 + b2

β1 = 1 a2
β2 + b2

β2 = 1 b2
α + b2

β1 + b2
β2 = 1. (46)

After these substitutions, we obtain two simultaneous differential equations in b2
β1 and b2

β2:

τ
∂b2

β1

∂t
=

√
b2

β1

(
1 − b2

β1

) (
1 − b2

β1 − b2
β2

) (
b2

β1 + b2
β2

)
τ

∂b2
β2

∂t
=

√
b2

β2

(
1 − b2

β2

) (
1 − b2

β1 − b2
β2

) (
b2

β1 + b2
β2

)
cos(Δω t)

(47)
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The solutions of Equation (47) are shown in Figure 7 for two very small values of Δω:
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Figure 7. Squared excited state amplitudes for recipient atoms β1 and β2: b2
β1 (blue) and b2

β2 (red),
for the photon transfer of energy E0 = h̄ω0 from atom α. The time t is in units of τ. The left plot,
for Δω = 0.3/τ, shows both recipient atoms being equally excited at the beginning, but the slip in
phase of the red β2 atom causes it to rapidly lose out, so the blue β1 atom hogs all the energy and
proceeds to become fully excited, much as if it were the “only atom in town”. Its curve is nearly
identical with that for the isolated recipient atom in Figure 6. The right plot, for Δω = 0.15/τ,
shows a totally different story. Its red β2 atom transition frequency is just close enough to that of
source atom 0 that it “hangs in there” during the transition period and ends up partially excited,
leaving blue β1 atom partially excited as well. The smaller the “slip” frequency Δω, the closer are the
post-transition excitations of the two recipient atoms. “Split-photons” of this kind are observed in the
Hanbury–Brown–Twiss Effect described in Section 13. As noted above, the frequency window for such
events is extraordinarily narrow, typically of order 10−7ω0. Doppler shift of this magnitude requires
velocity ≈ 30 m/s. Room temperature thermal velocities of gasses are typically tens to hundreds of
times this value, which would eliminate such competition. Thus, complete transactions are the most
common, with “split” transactions relatively rare and are likely to end as HBT-type four-atom events.

Here, again the transaction time scale τ is not to be confused with the time scale for initiating a
transaction after atom α is excited, which is a question of probability. We make no pretense here of
deriving probability results for a random population of atoms, but, from these results, we can imagine
what one might look like: The random starting point for the transaction involving one excited atom will
contain small excitations of a wide range of phases. Equation (43) is a highly nonlinear equation—the
amplitude of each of those excitations will initially grow exponentially at a rate proportional to its
own phase match. Thus, the excitation of a random recipient atom that happens to have sin(φ) ≈ −1
will win in the race and become the dominant partner in the coordinated oscillation of both atoms.
Thus, we have conceptualized the source of the intrinsic randomness within quantum mechanics, an aspect of
statistical QM that has been considered mysterious since its inception in the 1920s.

Each wave function will thus evolve its motion to follow the applied field to its maximum resonant
coupling and we can take sin(φ) = −1 in these expressions, which we have done in Equation (41),
Figure 6 and Equation (45). [What we have not done is to derive the full second-order nature of phase
locking in this arrangement. That analysis is rendered much more difficult by the potentially huge
amplification due to the self-focusing nature of the bi-directional electromagnetic coupling described
in Section 10. Thus, a full derivation remains open to future generations.]

From the TI point of view, all three atoms start in stable states, with each having extremely small
admixtures of the other state, so that they have very small dipole moments oscillating with angular
frequency ω0 ≈ (E2 − E1)/h̄. We assume that in source atom α this admixture creates an initial
positive-energy offer wave that interacts with the small dipole moments of absorber atoms β1 and β2
to transfer positive energy, and that in atoms β1 and β2 this admixture creates initial negative-energy
confirmation waves to the excited emitter atom α that interact with the small dipole moment of emitter
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atom α to transfer negative energy, as shown schematically in Figure 1. As a result of the mixed-energy
superposition of states as shown in Figure 5, all three atoms oscillate with very nearly the same
frequency ω0 and act as coupled dipole resonators.

Energy transferred from source atom α to both recipient atoms β1 and β2 causes an increase
in both minority states of the superposition, thus increasing the dipole moment of all three states,
thereby increasing the coupling and, hence, the initial rate of energy transfer. This behavior is
self-reinforcing for any atom that can stay in phase, giving the transition its initial exponential character.
In the usual case, only one atom is sufficiently well frequency matched to stay in phase for the entire
duration of the transition, the unfortunate runner-up is rudely driven out of the competition, and the
winner drives the transaction to its conclusion, as shown in the left panel of Figure 7.

In the presence of near-equal competition, one competitor either loses out to a competing
transaction, or, in case of a tie, results in a “split-photon”, as shown in the right panel of Figure 7.
That situation represents an intermediate state with actively oscillating dipole moments, as discussed
above, in which the two confirmation waves, in the phase at the source, can precipitate the de-excitation
of an additional excited atom to create a final HBT four-atom event.

The universe is full of similar atoms, all with slightly different transition frequencies due to
random velocities. There are also random perturbation by waves from other systems that can randomly
drive the exponential instability in either direction. This random environment is the source of the
intrinsic randomness in quantum processes. Ruth Kastner [41] attributes intrinsic randomness to
“spontaneous symmetry breaking”, which could split a “tie” in the absence of environmental factors.

We note here that the probability of the transition must depend on two things: the strength of the
electromagnetic coupling between the two states, and the degree to which the wave functions of the
initial states are superposed. The magnitude of the latter must depend on the environment, in which
many other atoms are “chattering” and inducing state-mixing perturbations. The more potential
partner atoms there are per unit energy, the greater the probability of a perfect match. Thus, we see
the emergence of Fermi’s “Golden Rule” [42], the assertion that a transition probability in a coupled
quantum system depends on the strength of the coupling and the density of states present to which
the transition can proceed. The emergence of Fermi’s Golden Rule is an unexpected gift delivered to
us by the logic of the present formalism.

It is certainly not obvious a priori that the Schrödinger recipe for the vector potential in the
momentum (Equation (22)), together with the radiation law from a charge in motion (Equation (33)),
would conspire to enable the composition of the superposed states of two electromagnetically coupled
wave functions to reinforce in such a way that, from the asymmetrical starting state, the energy of one
excited atom could explosively and completely transfer to the unexcited atom, as shown in Figure 6 and
Figure 7.

If nature had worked a slightly different way, an interaction between those atoms might have
resulted in a different phase, and no full transaction would have been possible. The fact that
transfer of energy between two atoms has this nonlinear, self-reinforcing character makes possible
arrangements like a laser, where many atoms in various states of excitation participate in a glorious
dance, all participating at exactly the same frequency and locked in phase.

Why do the signs come out that way? No one has the slightest idea, but the behavior is so remarkable
that it has been given a name: Photons are classified as bosons, meaning that they behave that way!

That remarkable behavior is not due to any “particle-like” quantization of the electromagnetic
field. Quantization of the photon energy is a result of the discrete nature of electron states in atoms.

The movement of an electron in a superposed state couples to another such electron
electromagnetically. It is essential that this electromagnetic coupling is bi-directional in space-time
to conserve energy in the transaction. The statistical QM formulation needed some mechanism to
finalize a transaction and did not recognize the inherent nonlinear positive-feedback that nature built
into a pair of coupled wave functions. Therefore, the founders had to put in wave-function collapse
“by hand”, and it has mystified the field ever since. The NCT formulations did understand the inherent
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nonlinear positive-feedback that nature built into a pair of coupled wave functions, but postulated
a unidirectional “Maxwell” treatment of the electromagnetic field that did not conserve energy, as we
now discuss.

9. Two Atoms at a Distance

We saw that for two atoms to exchange energy, the vector potential A field at atom β must come
from atom α, the A field at atom α must come from atom β, and the oscillations must stay in coherent
phase, with a particular phase relation during the entire transition. This phase relation must be maintained
even when the two atoms are an arbitrary distance apart. This is the problem we now address.

To be definite, we consider the case where the two atoms are separated along the x-axis, atom α at
x = 0 in the excited state and atom β at x = r in its ground state, so their separation r is orthogonal to
the z-directed current in the atoms. The “light travel time” from atom α to atom β is thus Δt = r/c.
What is observed is that the energy radiated by atom α at time t is absorbed by atom β at time
t′ = t + Δt:

∂Eβ(r, t′)
∂t′

∣∣∣∣∣
t′=t+Δt

= −∂Eα(0, t)
∂t

(48)

This behavior is familiar from the behavior of a “particle”, which carries its own degrees of
freedom with it: It leaves x = 0 at time t and arrives at x = r at time t′ = t + Δt after traveling at
velocity c. Thus, Lewis’s “photon” became widely accepted as just another particle, with degrees of
freedom of its own. We shall see that this assumption violates a wide range of experimental findings.

For atom β, Equation (38) becomes:

∂Eβ(r, t′)
∂t′

=
1

2π

∫ 2π

0
−qEα(r, t′)

∂
〈
zβ(r, t′)

〉
∂t′

d(t′) where t′ = t + Δt (49)

The retarded field from atom α interacts with the motion of the electron in atom β. The only
difference from our zero-delay solution is that the energy transfer has its time origin shifted by
Δt = r/c.

This result has required that we choose a positive sign for the ∓r/c in Equation (33). By doing
that, we are building in an “arrow of time”, a preferred time direction, in the otherwise even-handed
formulation. In particular, we are assuming that the retarded solution transfers positive energy. So far,
everything is familiar and consistent with commonly held Maxwell notions: A retarded solution
carrying energy with it. However, we saw that the source atom required a matched vector potential to
lose energy.

The standard picture leaves no way for atom α to lose energy to atom β. It does not conserve energy!
When energy is transferred between two atoms spaced apart on the x-axis, the field amplitude

must be “coordinate and symmetrical” as Lewis described. The field Eα(x = r) at the second atom due to
the current in the first must be exactly equal in magnitude to the the field Eβ(x = 0) at the first atom
due to the current in the second, but separated in time by Δt: For atom α, Equation (38) becomes

∂Eα(0, t)
∂t

=
∫ 2π

0
−qEβ(0, t)

∂ 〈zα〉
∂t

dt (50)

Thus, the field Eβ from atom β, which arises from the motion of its electron at time t′ = t + Δt,
must arrive at atom α at time t, earlier than its motion by Δt. The only field that fulfills this condition is
the advanced field from atom β, signified by choosing a negative sign for the ∓r/c in Equation (33).
That choice uniquely satisfies the requirement for conservation of energy. It also builds complementary
“arrows of time” into the formulation—we assume that the advanced solution transfers negative energy
to the past and the retarded solution transfers positive energy to the future. These two assumptions
create a new non-local “handshake” symmetry that is not expressed in conventional Maxwell E&M.
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Once these choices for the ∓r/c in Equation (33) are made, the resulting equations for each of
the energy derivatives in Equation (39) are unchanged when t′ = t + Δt is substituted for t in the
expression for ∂Eβ/∂t. Thus, each transition proceeds in the local time frame of its atom—for all the
world (except for amplitude) as if the other atom were local to it. This “locality on the light cone” is
the meaning of Lewis’ comment:

“In a pure geometry it would surprise us to find that a true theorem becomes false when the page
upon which the figure is drawn is turned upside down. A dissymmetry alien to the pure geometry of
relativity has been introduced by our notion of causality.”

The dissymmetry that concerned Lewis has been eliminated.
This conclusion is completely consistent with the 1909 formulation of Einstein [43],

who was critical of the common practice of simply ignoring the advanced solutions for
electromagnetic propagation:

“I regard the equations containing retarded functions, in contrast to Mr. Ritz, as merely auxiliary
mathematical forms. The reason I see myself compelled to take this view is first of all that those forms
do not subsume the energy principle, while I believe that we should adhere to the strict validity of the
energy principle until we have found important reasons for renouncing this guiding star.”

After defining the retarded solution as f1, and the advanced solution as f2, he elaborates:

“Setting f (x, y, z, t) = f1 amounts to calculating the electromagnetic effect at the point x, y, z
from those motions and configurations of the electric quantities that took place prior to the time
point t.’́ "Setting f (x, y, z, t) = f2, one determines the electromagnetic effects from the motions and
configurations that take place after the time point t.”

“In the first case the electric field is calculated from the totality of the processes producing it,
and in the second case from the totality of the processes absorbing it...
Both kinds of representation can always be used, regardless of how distant the absorbing bodies are
imagined to be.”

The choice of advanced or retarded solution cannot be made a priori: It depends upon the boundary
conditions of the particular problem at hand. The quantum exchange of energy between two atoms
just happens to require one advanced solution carrying negative energy and one retarded solution
carrying positive energy to satisfy its boundary conditions at the two atoms, which then guarantees
the conservation of energy.

Thus, the even-handed time symmetry of Wheeler–Feynman electrodynamics [17,18] and of the
Transactional Interpretation of quantum mechanics [12], as most simply personified in the two-atom
photon transaction considered here, arises from the symmetry of the electromagnetic propagation
equations, with boundary conditions imposed by the solution of the Schrödinger equation for the
electron in each of the two atoms, as foreseen by Schrödinger. We see that the missing ingredients in
previous failed attempts, by Schrödinger and others, to derive wave function collapse from the wave
mechanics formalism were that advanced waves were not explicitly used as a part of the process.

To keep in touch with experimental reality, we return to our two H atoms spaced a distance r
apart. We can estimate the "transition time” τ from Equations (41) and (40):

∂Eβ

∂t
= Pαβ aαbαaβbβ =

μ0ω3
0d2

12
8πr

aαbαaβbβ. (51)

From the green curve in Figure 5, we can estimate the dipole strength, which is q times the
“length” between the positive and negative “charge lumps”, say d12 ≈ 3qa0. At the steepest part of the
transition, all the a and b terms will be 1/

√
2, so

∂Eβ

∂t

∣∣∣∣
max

≈ μ0ω3
0(3qa0)

2

32πr
. (52)
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From any treatment of the hydrogen spectrum, we obtain, for the 210→100 transition:

E0 = h̄ω0 =
9q2

128πε0a0
(53)

so the transition time will be:

τ12 ≈ E0
∂Eβ

∂t

∣∣∣
max

≈ r
4 a3

0ω3
0ε0μ0

=
r c2

4 a3
0ω3

0
≈ r × 0.04

sec
m

, (54)

Thus, if the assumption of the 1/r dependence of the vector potential (r dependence of the
transition time) were the whole picture, it would take 1/25 of a second for a transaction to complete
if the atoms were suspended one meter apart. Such a long transition time would allow the excited
atom’s energy to be frittered away by the many possible competitive paths, thus making any modern
optical experiment virtually impossible, so no experiments are done that way! In real experiments,
atoms are coupled by some optical system, composed of lenses, mirrors, and the like. That optical
system will have some solid angle containing paths from one atom to the other. The effect of the
optical system is to replace the 1/r dependence with Solid Angle/λ, as described in Section 10. Thus,
the 0.04 s transition given by Equation (54) for two isolated atoms 1 m apart becomes 2 × 10−9 s when
a 1 steradian optical system is used.

Once again, we caution that the time estimated here is the time course of the single transaction after
a handshake is formed, which must not be confused with the probabilistic time for a transaction to be
initiated after excitation of the source atom.

10. Paths of Interaction

We have developed a simple conceptual understanding of how a single quantum h̄ω0 of energy is
transferred from one isolated atom to another by way of a “photon” transaction. Real experiments
with such transactions measure the statistics of many such events as functions of intensity, polarization,
time delay, and other variables. Much has been discovered in the process, some results quite surprising,
as described for the Freeman–Clauser experiment in Section 13. Thus, the time has come for us
to discuss, at a conceptual level, where the probabilities come from. In the wonderful little book
QED [44], our Caltech colleague the late Richard Feynman gives a synopsis of the method by which
light propagating along multiple paths initiates a transaction, which he calls an event:

“Grand Principle: The probability of an event is equal to the square of the length of an arrow called
the ’probability amplitude.’...”

“General Rule for drawing arrows if an event can happen in alternative ways: Draw an arrow for each
way, and then combine the arrows (’add’ them) by hooking the head of one to the tail of the next.”

“A ’final arrow’ is then drawn from the tail of the first arrow to the head of the last one.”

“The final arrow is the one whose square gives the probability of the entire event."

Feynman’s “arrow” is familiar to every electrical engineer as a phasor, introduced in 1894 by
Steinmetz [45,46] as an easy way to visualize and quantify phase relations in alternating-current
systems. In physics, the technique is known as the sum over histories and led to Feynman path

integrals. His “probability amplitude” is the amplitude of our vector potential, whose square is the
probability of a photon.

Feynman then illustrates his Grand Principle with simple examples how a source of light S at
one point in space and time influences a receptor of that light P at another point in space and time,
as shown in Figure 8. It is somewhat unnerving to many people to learn from these examples that the
resultant intensity is dependent on every possible path from S to P. We strongly recommend that little
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book to everyone. That discussion, as well as what follows, details the behavior of highly coherent
electromagnetic radiation with a well-defined, highly stable frequency ω and wavelength λ.

Figure 8. All the paths from coherent light source S to detector P are involved in the transfer of energy.
The solid curve on the “TIME” plot shows the propagation time, and hence the accumulated phase, of
the corresponding path. Each small arrow on the “TIME” plot is a phasor that shows the magnitude
(length) and phase (angle) of the contribution of that path to the resultant total vector potential at P.
The “sea horse” on the far right shows how these contributions are added to form the total amplitude
and phase of the resultant potential. (From Fig. 35 in Feynman’s QED).

Of course, we have all been taught that light travels in straight lines which spread out as they
radiate from the source, and so the resultant intensity decreases as 1/r2, where r is the distance
from the source S. However, if the light intensity at P depends on all of the paths, how can this 1/r2

dependence come about? Well, let’s follow Feynman’s QED logic: [If the reader does not have a
copy of QED handy, there is a condensed version in Chapter I-26 of the Feynman Lectures on Physics at
https://www.feynmanlectures.caltech.edu/I_26.html].

We can see from the “seahorse” phasor diagram at the right of Figure 8 that the vast majority of
the length of the resultant arrow is contributed by paths very close to the straight line S-M-P. Thus,
let’s make a rough estimate of how many paths there are near enough to “count.” We can see from the
diagram that, once the little arrows are plus or minus 90◦ from the phase of the straight line, additional
paths just cause the resultant to wind around in a tighter and tighter circle, making no net progress.
Thus, the uppermost and lowermost paths that “count” are about a quarter wavelength longer than the
straight line. Let’s use r for the straight-line distance S-P, λ for the wavelength, and y for the vertical
distance where the path intersects the midline above M. Then, Pythagoras tells us that the length l/2
of either segment of the path is

l
2
=

√( r
2

)2
+ y2 (55)

Therefore, the entire path length l is

l =
√

r2 + 4y2 = r

√
1 + 4

y2

r2
(56)

We are particularly interested in atoms at a large distance from each other, and will guess that this
means that y is very small compared to r, so all the paths involved are very close to the straight line.
We can check that assumption later. Since y2/r2 � 1, we can expand the square root:

l ≈ r
(

1 + 2
y2

r2

)
= r + 2

(
y2

r

)
(57)
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Thus, the outermost path that contributes is 2y2/r longer than the straight line path. We already
decided that maximum extra length of a contributing path would be about a quarter wavelength:

2
(

y2

r

)
≈ λ

4
⇒

(y
r

)2
≈ λ

8r
(58)

We can now check our assumption that y2/r2 � 1. If r = 1 m and our 210 → 100 transition has
λ ≈ 10−7 m, then y2/r2 ≈ 10−8, so our assumption is already very good, and gets better rapidly as r
gets larger.

How do we estimate the number of paths from S to P? Well, no matter how we choose the
path spacing radiating out equally in all directions from S, the number of paths that “count” will be
proportional to the solid angle subtended by the outermost such paths. Paths outside that “bundle”
will have phases that cancel out as Feynman describes. The angle of the uppermost path is y/r.
Paths also radiate out perpendicular to the page to the same extent, so the total number that “count”
goes as the solid angle = π(y/r)2. Feynman tells us that the resultant amplitude A is proportional to
the total number of paths that “count,” so we conclude from Equation (58):

A ∝ Solid Angle = π
(y

r

)2
≈ πλ

8 r
(59)

Thus, this is the fundamental origin of the 1/r law for amplitudes.

The intensity is proportional to the square of the amplitude, and therefore goes like 1/r2, as we all
learned in school. Thus, instead of lines of energy radiating out into space in all directions, Feynman’s
view of the world encourages us to visualize the source of electromagnetic waves as “connected” to
each potential receiver by all the paths that arrive at that receiver in phase. Just to convince us that all
this “path” stuff is real, Feynman gives numerous fascinating examples where the 1/r2 law doesn’t
work at all. Our favorite is shown in Figure 9:

Figure 9. Situation identical to Figure 8 but with a piece of glass added. The shape of the glass is such
that all paths from the source S reach P in phase. The result is an enormous increase in the amplitude
reaching P. (From Fig. 36 in Feynman’s QED).

The piece of glass does not alter the amplitude of any individual path very much—it might lose
a few percent due to reflection at the surfaces. However, it slows down the speed of propagation of
the light. In addition, the thickness of the glass has been tailored to slow the shorter paths more than
the longer paths, so all paths take exactly the same time. The net result is that the oscillating potential
propagating along every path reaches P in phase with all the others! Now, we are adding up all the little
phasor arrows and they all point in the same direction! The amplitude is enhanced by this little chunk of
glass by the factor:

EnhancementFactor =
Lens Solid Angle

Solid Angle from Equation (59)
≈ 8 r

πλ
Lens Solid Angle (60)
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For the arrangement shown in Figure 9, at the size it is printed on a normal-sized page, r ≈ 5 cm,
so from From Equation (59), the solid angle of the “bundle” of paths without the glass was of the order
of 10−7. The solid angle enclosing the paths through the glass lens is ≈1 steradian (sr), so the little
piece of glass has increased the potential at P by seven orders of magnitude, and the intensity of the light
by fourteen orders of magnitude! In this and the more general case, we get an important principle:

Insertion of an optical system replaces the
1

r
factor by

8
πλ

×Lens Solid Angle (61)

Returning to our two H atoms spaced 1 m apart, we found in Equation (54) that, using the
standard 1/r potential, the “transition time” for the quantum transaction was ≈0.04 s. For the ω0

wavelength the Rate Enhancement Factor with a 1st optical system is ≈2 × 107, thereby shortening the
transition time τ by a factor of ≈5 × 10−8, making τ ≈ 2 ns.

We have learned an important lesson from Feynman’s characterization of propagation phenomena:
Changing the configuration of components of the arrangement in what appear to be innocent ways
can make drastic differences to the resultant potential at certain locations. The reader will find many
other eye-opening examples in QED and FLP I-26. We will find in Section 11 that two atoms in a
“quantum handshake” form a pattern of paths that greatly increases the potential by which the atoms
are coupled, and hence can shorten the transition beyond what is possible with just the optical system.

All the results in statistical QM are probabilities because Heisenberg denied that there was any
physics in the transactions. That denial has left the field in a conceptual mess. There is no doubt that
statistical QM makes it easy to calculate probabilities of a wide variety of experimental outcomes,
and that these predicted outcomes overwhelmingly agree with reality. However that discipline is,
by design, powerless to provide reasoning for how those outcomes come about. The object of this paper
is to understand the individual transaction, not to calculate probabilities. Thus, the times quoted above are
the times required for the individual event, once initiated, not the time constant of some statistical
distribution. We deal with a realm of which statistical QM denies the existence.

11. Global Field Configuration

We are now in a position to visualize the field configuration for the quantum exchange of energy
between two atoms, as analyzed in Section 9, using the locations and coordinated defined there.
From Equations (37) and (35), and using sin(φ) = −1, the total field is composed of the sum of the
retarded solution Aα, at distance rα from atom α and the advanced solution Aβ, at distance rα from
atom β:

Aα ∝
1
rα

∂ 〈zα〉
∂t

= − 1
rα

sin
(
ω0(t − rα/c)

)
Aβ ∝

1
rβ

∂
〈
zβ

〉
∂t

∝
1
rβ

cos
(
ω0(t + Δt + rβ/c)

) (62)

Including both x and y coordinates in the distances rα and rβ from the two atoms, the vector
potentials from the two atoms anywhere in the x − y plane are

Aα(x, y, t) ∝ − 1/τ√
x2 + y2

sin

(
ω0

(
t −

√
x2 + y2)

c

))

Aβ(x, y, t) ∝
1/τ√

(x − Δx)2 + y2
cos

(
ω0

(
(t + Δt) +

√
(x − Δx)2 + y2)

c

)) (63)

An example of the total vector potential Atot = Aα + Aβ along the x-axis is shown in Figure 10.
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Figure 10. Normalized vector potential along the x-axis (in wavelength/2π) between two atoms in the
“quantum handshake” of Equation (63). The wave propagates smoothly from atom α (left) to atom β

(right). Animation here [37]. (see Supplementary Materials).

A “snapshot” of the potential of Equation (63) at one particular time for the full x − y plane is
shown in Figure 11.

Figure 11. Two atoms in the “quantum handshake” of Equation (63). Animation here [37]. (see
Supplementary Materials).

The still image in this figure looks like a typical interference pattern from two sources—a “standing
wave.” There are high-amplitude regions of constructive interference which appear light blue and
yellow on this plot. These are separated from each other by low-amplitude regions of destructive
interference, which appear green. In a standing wave, these maxima would oscillate at the transition
frequency, with no net motion. The animation, however, shows a totally different story: Instead of
oscillating in place as they would in a standing wave, the maxima of the pattern are moving steadily from
the source atom (left) to the receiving atom (right). This movement is true, not only of the maxima between
the two atoms, but of maxima well above and below the line between the two atoms. These maxima
can be thought of as Feynman’s paths, each carrying energy along its trajectory from atom α to atom β.
For those readers that do not have access to the animations, the same story is illustrated by a stream-plot
of the Poynting vector in the x-y plane, shown in Figure 12:
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Figure 12. Poynting vector stream lines of the “quantum handshake” of Equation (63).

We can get a more precise idea of the phase relations by looking at the zero crossings of the
potential at one particular time, as shown in Figure 13. Paths from atom 1 to atom 2 can be traced
through either the high-amplitude regions or the low-amplitude regions. The paths shown in Figure 13
are traced through high-amplitude regions.

Figure 13. The zero crossings of the handshake vector potential at t = 0. Paths near the axis (between
the two red lines) are responsible for the conventional 1/r dependence of the potential. Paths shown
through high-amplitude regions have an even number of zero crossings, and thus the potentials
traversing these paths all arrive in phase, thus adding to the central potential.

The central set of paths, delimited by the red lines, are responsible for the conventional 1/r
dependence of the potential, as described with respect to Equation (59). Working outward from there,
each high-amplitude path region is separated from the next by a slim low-amplitude region. It is
a remarkable property of this interference pattern that each low-amplitude path has π more phase
accumulation along it than the prior high-amplitude path and π less than the next high-amplitude path.
The low-amplitude paths are the ones that contribute to the “de-phasing” in this arrangement, but they
are very slim and of low amplitude, so they don’t de-phase the total signal appreciably. In addition,
the phases of the paths through the high-amplitude regions are separated by 2πn, where n is an integer.
All waves propagating from atom α to atom β along high-amplitude paths arrive in phase!

In Feynman’s example shown in Figure 8, there are an equal number of paths of any phase,
so every one has an opposite to cancel it out. In Figure 9, the lens makes all paths have equal time delay,
which then enables them to all arrive with the same phase.

The phase coherence of the advanced-retarded handshake creates a pattern of potentials that has a
unique property: It is not like either of Feynman’s examples in Figure 8 or Figure 9. Its high-amplitude
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paths do arrive in phase, but by a completely different mechanism. It all starts with the bundle of paths
between the red lines, which has the 1/r amplitude, just as if there were no quantum mechanism.
Then, as the handshake begins to form, additional paths are drawn into the process. The process is
self-reinforcing on two levels—the increase in dipole moment and the increase in number of paths
that arrive in phase. Paths that formerly would have cancelled the in-phase ones are “squeezed” into
extremely narrow regions, all of low amplitude, as can be seen in Figure 13. Thus, a large fraction of
the solid angle around the atoms is available for the in-phase high-amplitude paths.

For optical systems with large solid angle, the self-focusing enhancement may still be noticeable
in the shape of the transition waveform, but for one-sided systems, like an astronomical telescope,
we expect it to be be dominant.

Following Feynman’s program has led us to conclude that: The vector potential from all paths
sum to make a highly-amplified connection between distant atoms. The advanced-retarded potentials
form nature’s very own phase-locked loop, which forms nature’s own Giant Lens in the Sky!

The consequences of this fact are staggering: Once an initial handshake interference pattern
is formed between two atoms that have their wave functions synchronized, the strength grows
explosively: Not only because the dipole moment of each atom grows exponentially, but, in addition,
a substantial fraction of the possible interaction paths between the two atoms propagate through
high-amplitude regions, independent of the distance between them! Although we have not worked out the
difficult second-order dynamics of phase-locking between coupled atoms, we believe that here is the
solution to the long-standing mystery of the “collapse of the wave function” of the “photon”.

The interaction depends critically on the advanced-retarded potential handshake to keep all
paths in phase. Ordinary propagation over very long paths becomes “de-phased" due to the slightest
variations of the propagation properties of the medium. By contrast, the advanced and retarted
fields are precise negative images of each other on exactly the same light cone, so the phase of
high-amplitude handshake paths are always related by an even number of π to the phase of other
such paths. Paths having odd numbers of π phase are always of low amplitude, and do not cancel
the even-π phase paths as they would in a one-way propagating wave like Feynman used in his
illustrations. [A detailed analysis of these properties has not been done. It is a wonderful project for
the future.]

The interaction proceeds in the local time frame of each atom because they are linked with
the advanced-retarded potential. The waves carrying positive energy from emitter to absorber
are retarded waves with positive transit time; they reach the absorber after a single transit time
Δt = r/c. Once they have established a phase-coherent “handshake” connection, Lewis’ “coordinate
and symmetrical” advanced waves with negative transit time are launched toward the emitter, arriving
at the precise time and in the precise phase to withdraw energy from the emitter. During the
transaction, as long as the “handshake” connection is active, any change in the state of one atom
will be directly reflected in the state of the other. Aside from the time-of-flight propagation time to
establish the “handshake”, there is no additional “round trip” time delay in the quantum-jump process,
which proceeds as if the two atoms were local to each other.

Thus, the Transactional Interpretation allows us to conceptualize Niels Bohr’s “instantaneous”
quantum jump [47] concept that Schrödinger, who expected time-extended classical transitions, found
impossible to accept [48].

12. Relevance to the Transactional Interpretation

The calculation that we have presented here, with its even-handed treatment of advanced
and retarded four-potentials, was inspired by WFE and the Transactional Interpretation, but it also
provides interesting insights that clarify and modify the mechanism by which a transaction forms.
Wheeler–Feynman electrodynamics suggests that a retarded wave, arriving at a potential absorber,
stimulates that entity to generate a canceling retarded wave accompanied by an advanced wave. The TI
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suggests that this advanced wave arrives back at the emitter with amplitude ψψ∗, a relation suggesting
the Born rule.

However, from our calculation, we see that a slightly different process is described. Both emitter
and absorber initially have small admixtures of the opposite eigenstate, giving them dipole
moments that oscillate with the same difference-frequency ω0. The two oscillations each have an
environment-induced random phase. If the phases have the correct relation [sin(φ) ≈ −1], the dipole
moments of both atoms initially increase exponentially, the system becomes a phase-locked loop,
and it avalanches to a final state of multi-path energy transfer that satisfies all boundary conditions.
In that scenario, the initial confirmation wave is likely to have an amplitude much weaker than WFE
would suggest, and the quantity ψψ∗ becomes that used by Schrödinger to provide the electron
density function.

How can a linear system generate such nonlinear behavior? While the Schrödinger equation
is indeed linear, Equation (43) governing the evolution of transaction formation and wave function
collapse is highly nonlinear. Thus, the TI’s assertion that the offer wave “stimulates the generation
of the confirmation wave” must be modified. Rather, advanced and retarded potentials, boundary
conditions at both ends, and a fortuitous matching of phase trigger the nonlinear avalanche in both
atoms and brings about the transaction.

We also note that the advanced and retarded waves do not carry “information” in the usual
sense in either time direction, but only deliver a pair of oscillating four-potentials to the sites of a
pair of oscillating charges, leading dynamically to an initially exponential rise in coupling, a focusing
of alternative paths, the formation of a transaction, a transfer of energy, and the enforcement of
conservation laws. For the Transactional Interpretation, this phase selection process clarifies the
randomizing mechanism by which, in the first stage of transaction formation, the emitter makes a
random choice between competing offer waves arriving from many potential absorbers. The offer
wave with the best phase is likely to win, even if it comes from far away. [It is sometimes asserted that
this handshake situation is only possible in a frozen deterministic four-dimensional “block universe”
because of the two-way connections between present and future. We reject this assertion, which is
dissected in some detail in Section 9.2 of Ref. [12]. While it is true that the assumption of a block
universe would dispel or bypass many of the quantum paradoxes, it would only do so at the terrible
price of imposing complete determinism on the universe.].

We saw in the derivation of the coupling of two separated atoms that it was necessary to use
the advanced 4-potential in order to satisfy the law of conservation of energy. This, not “information
transfer”, is the role of the quantum handshake in the Transactional Interpretation. The quantum
handshakes act to enforce conservation laws and do not form unless all conserved quantities are
properly transferred and conserved. This is what is going on in quantum entanglement: the separated
parts of a quantum system are linked by conservation laws that are enforced by V-shaped three-vertex
advanced-retarded quantum handshakes [12] and cannot emerge as a completed transaction unless
those conservation laws are satisfied. In this context, we note that the Transactional Interpretation,
using such linked advanced-retarded handshakes, is able to explain in detail the behavior of over 26
otherwise paradoxical and mysterious quantum optics experiments and gedankenexperiments from the
literature. See Chapter 6 of Ref. [12]. If we cannot dismiss the plethora of competing QM interpretations
based on their failure in experimental tests, we should eliminate them when they fail to explain paradoxical
quantum optics experiments (as almost all of them do.)

13. Historic Tests

13.1. The Hanbury–Brown–Twiss Effect and Waves vs. Particles

It is often said that particles in quantum mechanics “travel as waves but arrive as particles”.
The Hanbury–Brown–Twiss effect [49] (HBT) is an example of this principle. It demonstrates that, in the
second-order interference of incoherent wave sources, photons are divisible and are not electromagnetic
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“billiard balls” that maintain individual identities. The HBT technique was first applied to the
measurement of the diameters of nearby stars, e.g., Betelguese, using intensity interferometry with
radio waves. The original experiments involved large parabolic radio dishes mounted on rail cars.

A simplified version of an HBT interference measurement is illustrated in Figure 14. Sources 1 and
2 are separated by a distance d12. Both sources emit waves of the same wavelength λ = 2πc/ω, but are
not causally connected. Radiation from the two sources is received by detectors A and B, which are
separated by a distance dAB. The line between the sources is parallel to the line between the detectors,
and the two lines are separated by a distance L. Hanbury-Brown and Twiss showed that a significant
rate of coincident detections—up to a factor of 2 larger than could be ascribed to chance—was observed
in this arrangement. For this simple configuration, the probability of a coincident detection in the
two detectors, for small dAB and very large L, is proportional to 1 + cos[2π dAB d12/(λL)], which is
maximum when dAB = 0 and falls off as the detector separation increases, the rate of falloff indicating
the value of d12.

Figure 14. Schematic diagram of the Hanbury–Brown–Twiss effect, with excited atoms 1 and 2 in distant
separated sources simultaneously exciting ground state atoms A and B in two separated detectors.

The very fact that coincidences are observed in this experiment reveals a deep truth about
electromagnetic coupling: Photons cannot be consistently described as little blobs of mass-energy
that travel uniquely from a single source point to a single detector point. In the HBT effect, a whole
photon’s worth of energy h̄ω is assembled at each detector out of fractional energy contributions from
each of the two sources.

In the TI description of the HBT event described above, a retarded offer wave is emitted by the
source 1 and travels to both detectors A and B. Similarly, a retarded offer wave is emitted by the
source 2 and travels to both detectors. Detector A receives a linear superposition of the two offer
waves and seeks to absorb the “offered” energy by producing an advanced confirmation wave. If the
phases match, as they will in a coincident event, the energy transfer begins with an exponential
increase in the dipole moment of each source atom. Atoms in detectors A and B respond similarly,
their oscillating dipole moments producing advanced confirmation waves that travel back to the two
sources, each of which responds with an increasing dipole moment that enhances the offer waves.
A four-atom transaction of the form shown in Figure 14 is formed that removes one photon’s worth of
energy h̄ω from each of the two sources 1 and 2 and delivers one photon’s worth of energy h̄ω to each
of the two detectors A and B.

Neither of the detected “photons” can be said to have originated uniquely in one of the two sources.
The energy arriving at each detector originated partly in one source and partly in the other. It might be
said that each source produced two “fractional photons" and that these fractions from two sources
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combined at the detector to make a full size “photon”. The “particles” transferred have no separate
identity that is independent from the satisfaction of the quantum mechanical boundary conditions.
The boundary conditions here are those imposed by the HBT geometry, conservation laws, and the
detection criteria.

Finally, we note that in many experiments published in the physics literature the HBT effect has
been observed and demonstrated not only for photons, but also in the detection of charged π mesons
emitted in the ultra-relativistic collision of heavy nuclei. It is observed that the detection probability
doubles when the detected particles are close in momentum and position. Furthermore, in nuclear
physics experiments with pairs of half-integer-spin neutrons or protons, a Pauli-Exclusion version of
the HBT effect has been observed, in which the detection probability drops to zero when the detected
particles are close in momentum and position [50]. All of these particle-like entities “travel as waves
but arrive as particles”.

13.2. Splitting Photons

At the 5th Solvay Conference in 1927, Albert Einstein posed a riddle, sometimes called “Einstein’s
Bubble Paradox”, to the assembled founders of quantum mechanics [12,51]. Einstein’s original
language was rather convoluted and technical (and in German), but his question can be simply stated
as follows:

A source emits a single photon isotropically, so that there is no preferred emission direction. According
to the quantum formalism, this should produce a spherical wave function Ψ that expands like an
inflating bubble centered on the source. At some later time, the photon is detected. Since the photon
does not propagate further, its wave function bubble should “pop”, disappearing instantaneously from
all locations except the position of the detector. In this situation, how do the parts of the wave function
away from the detector “know” that they should disappear, and how is it enforced that only a single
photon is always detected when only one photon is emitted?

The implication of his question is that, if a photon is an indivisible particle, it should not be possible
to divide one. However, we have already seen in the Hanbury–Brown–Twiss effect that photons are
not little indivisible billiard balls and that they can divide their energy between two receiving atoms.
How, then, is it possible that for one photon emitted there is always only one received?

A search for this hypothetical divided-photon behavior is implemented in the setup shown in the
left panel in Figure 15, which was enabled once it became possible to build sources of single photons.
The idea is that, if a photon is just a short pulse of light, half of it should go through each of the dotted
paths, and both halves should be counted at the same time, registering as a coincidence. Of course,
the original pulse must have twice the energy required to trigger a detector, so either half by itself
would have just enough. However, if the photon was indivisible, as mandated by certain versions of
QM, it would make a random decision on which path to take, and no coincidences would be observed.
In practice, the number of coincidences is counted for a certain counting period, with the time delay τ

between the two detector output pulses as a parameter. Since the photons are generated randomly,
the time between successive photons can accidentally range from zero to large, and a plot of the
number of correlator outputs vs. time delay τ gives information about the statistics of the source.

Modern versions of the experiment [52] give plots like that shown in the right panel in Figure 15.
[Early versions of this kind of experiment suffered from certain defects that made them inconclusive.
A definitive version using “heralded photons” was finally accomplished by Clauser in 1973 [53].]
Let us look at the experiment from a TI perspective: The source excites one atom, which, due to
random coupling, develops a superposition with a tiny presence of ground state and nearly unity
excited state. As described for the two-atom photon, the tiny presence in the superposition enables
the dipole moment to oscillate, thereby generating a radiating vector potential that propagates along
both dotted paths to both detectors. To find a perfectly matched partner atom is rare, but, when one
matches up, a quantum handshake grows up connecting them.
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Figure 15. Left: Schematic of the photon-splitting experiment. Right: Plot of the number of
coincidences vs. time delay between the arriving pulses. The source on average generates a photon per
≈12 nsec. The finite number counted at zero delay is consistent with the accidental presence of two
excited atoms.

There are then three possible outcomes:

1. The handshake goes to completion and the partner atom is in one of the detectors, in which case
only the chosen detector registers an output.

2. The handshake goes to completion, but the partner atom is not in one of the detectors. In this
case, no output is registered from either detector.

3. The initial stages of a handshake begins in two partner atoms, one in each detector. When the
source atom has de-excited, both of the detector atoms are left in mixed states with roughly equal
components of ground-state and excited state wave functions, as was illustrated in Figure 7.
This is not a stable configuration because both of the detector atoms have oscillating dipole
moments sending strong “unrequited” advanced confirmation waves. These waves are in phase
at and focused on the source, and they are likely to find another well-phased excited-state atom
there or nearby that will complete the four-way transaction. Thus, a four-atom HBT event
should be created, in which there are two emissions and two detections. Such an unlikely event
would register as an “accidental” case of two simultaneous emissions in the same time window.
There will never be an event with a single emission and two detections.

Thus, we see that the outcomes of the experiment predicted by TI and QM are essentially identical.
Certainly, no solid conclusion can be drawn from this experiment as to whether quantization occurs in
the field or in the transaction.

13.3. Freedman–Clauser Experiment

In our introductory discussion of Schrödinger’s visualization of his newly-invented Wave
Mechanics in Section 3, we described how Clauser and his colleagues, through experiments that
were heroic at the time, were able to show that no “local, realistic theory” was compatible with their
results [6–11]. We now describe the earliest conclusive version of these EPR experiments and show
how our TI approach gives a simple and natural explanation of the otherwise mysterious outcome.
A sketch of the arrangement is shown in Figure 16.

The atomic configuration used was the three-level system of the Ca atom, shown at the right of
the figure. The atomic wave functions were an upper 4p2 S0 state Ψ3 of frequency ω3, a middle 4p4s P1

state Ψ2 of frequency ω2, and a 4s2 S0 ground state Ψ1 of frequency ω1, so that the cascade starts and
ends in an S0 state of zero angular momentum.
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Figure 16. Left: Schematic of the polarization-correlation experiment. Right: Energy levels of the Ca
atoms used in this experiment. From Freedman and Clauser 1972 [6].

The state wave functions are of the same form as those given in Equation (2):

Ψ3 = R3(r) e−iω3t Ψ2 = f2(r) cos(θ) e−iω2t = R2(r, θ) e−iω2t Ψ1 = R1(r) e−iω1t (64)

The transition state is a superposition of these three states: The analysis is a simple extension of
that for the two-level system, starting with Equation (10):

Ψ = aeiφa R1e−iω1t + beiφb R2e−iω2t + ceiφc R3e−iω3t, (65)

The charge density of the mixed state is then:

ρ = qΨ∗ Ψ
ρ

q
=
(

ae−iφa R1eiω1t + be−iφb R2eiω2t + ce−iφc R3eiω3t
) (

aeiφa R1e−iω1t + beiφb R2e−iω2t + ceiφc R3e−iω3t
)

= a2R2
1 + b2R2

2 + c2R2
3

+ 2abR1R2 cos
(
(ω2 − ω1)t + (φb − φa)

)
+ 2acR1R3 cos

(
(ω3 − ω1)t + (φa − φc)

)
+ 2bcR2R3 cos

(
(ω3 − ω2)t + (φb − φc)

)
(66)

The dipole srength dij for the three terms is given by straightforward extension of Equation (18)

d12 = 2q
∫

R1R2z d23 = 2q
∫

R3R2z d13 = 2q
∫

R1R3z = 0 (67)

By symmetry around the (+z axis) of the spherical coordinate system, both d12 and d23 are in the
�z direction determined by the direction of the Ψ2 wave function. In general, that direction will shift
around in space depending on the coupling of the atom to others. However, in any given situation,
there is only one z-axis that defines the “North pole” direction, and both dipole moments are oscillating
in that direction. Thus, it is the Ψ2 state, shared by both transactions of the 3-state “cascade” that aligns
the linear polarizations of the two interlocking transactions.

13.3.1. Dynamics of the Transaction

The cascade atom is emitted from the oven shown at the top of the figure. It is is initially “pumped”
by the D2 arc when it is centered between the two lenses. The excitation is along the 2275Å dashed path
on the energy diagram, from which it relaxes into the 4p2 S0 excited state where a ≈ 0, b ≈ 0, c ≈ 1,
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leaving a small residual admixture of the middle and ground states. By Equation (66) and the obvious
generalization of Equation (19), the superposition begins to oscillate with dipole moment:

dipole moment = q 〈z〉 = d12ab cos(ω12t + φab) + d23bc cos(ω23t + φbc) (68)

where we have included only non-zero time-varying terms terms and have used:

ω12 = (ω2 − ω1) ω23 = (ω3 − ω2) φab = (φb − φa) φbc = (φc − φb) (69)

Because ω12 �= ω23, the two terms in the dipole moment do not interact over periods of many
cycles, and each term can couple to a separate atom to form its own quantum handshake. The analysis
has already been done starting with Equation (35) and ending with Equation (41), and applies directly
to the upper (ω23) transaction with atom we will call α, which has level spacing exactly equal to E23.

Since c and aα both start almost equal to 1 and have the same derivative, we can set c = aα.

∂Eα

∂t
= −E23

∂c2

∂t
= −E23

∂a2
α

∂t
= −Pα c b aαbα sin(φα) = −Pα c2 b

√
1 − c2 sin(φα) (70)

Similarly, we describe the fraction a2 of the superposition in the ground state due to the lower
5227Å (ω12) transaction with atom we will call β, which has level spacing exactly equal to E12.

Since a and bβ both start almost equal to 0 and have the same derivative, we can set a = bβ.

∂Eβ

∂t
= E12

∂a2

∂t
= E12

∂b2
β

∂t
= Pβ a b aβbβ sin(φβ) = Pβ a2 b

√
1 − a2 sin(φβ) (71)

These relations may then be expressed more compactly as:

∂c2

∂t
= − 1

τα
c2 b

√
1 − c2 ∂a2

∂t
=

1
τβ

a2 b
√

1 − a2 a2 + b2 + c2 = 1 (72)

where 1/τβ = Pβ sin(φβ)/E12 and 1/τα = Pα sin(φα)/E23 express the respective strength of coupling
to each atom, and the last relation constrains the superposition to contain exactly one electron.
Equation (72) is identical in form to Equation (43) with the exception of the shared state amplitude b
occurring in both derivatives.

The behavior of this arrangement, shown in Figure 17, is very instructive. To review in brief:
The cascade atom is prepared by providing the energy to promote the electron to the upper state:
c ≈ 1, a ≈ 0, b ≈ 0. The preparation is never perfect, so there is always a small residual of b and a
components in the initial superposition. The small admixture of b and c, by Equation (68), creates
an oscillating dipole moment at frequency ω23, the amplitude of which is shown as the red curve in
the right panel of Figure 17. That oscillating dipole moment initiates a vector potential “offer wave”
which propagates outward according to Equation (37). When that vector potential couples to the wave
function of another atom of the same frequency, its wave function oscillates with the vector potential
in the correct phase to withdraw energy according to Equation (50). The vector potential from that
oscillation propagates backwards in time, so it is “felt” by the cascading atom as if it had been there
all along.

The Transactional Interpretation is applied to the Freedman–Clauser experiment as shown in
Figure 18. Two-way handshakes between the source and the two polarimeters are joined at the source
and must satisfy the boundary condition, based on conservation of angular momentum in a system
that begins and ends in a state of zero angular momentum that the polarizations must match for the
two offer waves emitted back-to-back. This V-shaped transaction holds the key to understanding the
mechanism behind quantum nonlocality in EPR expertiments.
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Figure 17. Left: Superposition contributions of the upper state c2 (red), shared middle level b2 (green)
and ground state a2 (blue). Right: Amplitude of dipole oscillations due to upper transition at ω23 (red)
and lower transition at ω12 (blue), from. The horizontal axis in both plots is time in units of τα = 1.5 τβ.

Figure 18. Three-vertex transaction formed by a detection event in the Freedman–Clauser experiment.
Linked transactions between the source and the two polarimeters cannot form unless the source
boundary condition of matching polarization states is met.

It was pointed out by one of our reviewers that the kind of description just given might appeal
to readers who are not accustomed to standard relativistic space-time diagrams, on which events on
the “light cone” are local in the sense that r2 − c2t2 = 0, and that we had, in some measure, ignored
G.N. Lewis’ chiding quoted earlier “A dissymmetry alien to the pure geometry of relativity has been
introduced by our notion of causality.” Thus, let’s try it again:

A quantum handshake is an antisymmetric bidirectional electromagnetic connection between

two atoms on a light cone, whose direction of time is the direction of positive energy transfer.

Either way we look at it, the cascade atom and atom α are locked in phase and amplitude
at frequency ω23, and the locked amplitude of oscillation of the wave functions of the two atoms
is growing with time. In the process, the z-axes of both atoms becomes better and better aligned.
Meanwhile, the small superposition amplitudes b and a are growing, thus developing a growing
oscillation at ω12, shown by the blue curve in the right panel of Figure 17. Since both the upper and
lower levels are S states, they have no effect on the orientation of the oscillation, which is determined
by the shared middle level, which is a P state that has a definite direction in space. That direction
determines the direction of oscillation of any superposition involving that P state. The vector potential
from the nascent ω12 oscillation recruits a willing atom β whose level spacing is precisely match to
ω12, and forms an embryonic quantum handshake of its own whose z-axis is already determined by
the fully developed ω23 oscillation. From there, both transactions were completed, with z axes aligned,
in very much the same way we have described for a single photon.
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13.3.2. The NCT-Killer Result

The unique aspect of the Freedman–Clauser experiment was separating the back-to-back paths of
the two wave propagations with filters that selected the ω23 path to the left and the ω12 path to the
right. Each path was equipped with its own glass-plate-stack linear polarizer, whose angle could be
adjusted. The number of coincidences of signals from the left and right photomultipliers P.M.1 and
P.M.2 were plotted as a function of the angle φ between the polarization axes of the polarizers, and is
shown in Figure 19.

Figure 19. Coincidence rate vs. angle φ between the polarizers, divided by the rate with both polarizers
removed. The solid line is the prediction by quantum mechanics, calculated using the measured
efficiencies of the polarizers and solid angles of the experiment.

The key aspect of Figure 19 is that at φ = 90◦ the coincidence rate drops to essentially zero.
The graph does show a small non-zero coincidence rate at 90◦, but this is because of the imperfect
linear polarization discriminations of the glass-plate-stack polarizing filters and the finite solid angles
of the detection paths. Jaynes’ NCT approach failed to reproduce [32] this result. That failure, in the
view of most of the field, “falsified” the NCT approach to quantum phenomena and caused it to be
subsequently ignored.

We can understand this result very simply from our TI perspective, reasoning directly from
Figure 17: By the time the blue ω12 transition is just getting started, the red ω23 transition is well along,
and has connected to a partner in P.M.2 through polarizer 2. Since the polarizer only transmits a vector
potential aligned with its axis of polarization, the z axes of both the cascade atom and atom α will be
well aligned with polarizer 2. Now, as the blue oscillation just begins to build, its axis, as part of the
same P wave function, will also be aligned with polarizer 2, at rotation angle θ2.

The way that these glass-plate-stack polarizers work is that they only pass the component of
propagating vector potential along their axis of polarization, the orthogonal component being reflected
out of the direction of propagation. Thus, the fraction of θ2 polarized vector potential that can pass
through a perfect θ1 oriented polarizer 1 is just cos(θ2 − θ1). Thus, the amplitude of the nascent
ω12, θ2 polarized “offer wave” propagating outward from the cascade atom through polarizer 1 will
be proportional to cos(θ2 − θ1). By Feynman’s Grand Principle, the probability amplitude of an “offer
wave” actually forming a transaction is proportional to the amplitude of the vector potential. Since, in
this example, the ω23 transaction in P.M.2 has already formed, the slightly later formation of an ω12

transaction in P.M.1 will count as a coincidence. The probability of coincidence counts will therefore
be proportional to the square of the probably amplitude which, for this case, is cos2(θ2 − θ1) which,
when corrected as noted, gives the solid line in Figure 19 and is zero when φ = 90◦. Once again,
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the bi-directional non-local nature of the quantum handshake predicts the observed outcome of this
historic experiment.

14. Conclusions

The development of our understanding of quantum systems began with a physical insight of
deBroglie: Momentum was the wave vector of a propagating wave of some sort. Schrödinger is well
known for developing a sophisticated mathematical structure around that central idea, only a shadow
of which remains in current practice. What is less well known is that Schrödinger also developed a deep
understanding of the physical meaning of the mathematical quantities in his formalism. That physical
understanding enabled him to see the mechanism responsible for the otherwise mysterious quantum
behavior. Meanwhile, Heisenberg, dismissing visual pictures of quantum processes, had developed a
matrix formulation that dealt with only the probabilities of transitions—what he called “measurables.”
It looked for a while as if we had two competing quantum theories, until Schrödinger and Dirac
showed that they gave the same answers. However, the stark contrast between the two approaches
was highlighted by the ongoing disagreement in which Bohr and Heisenberg maintained that the
transitions were events with no internal structure, and therefore there was nothing left to be understood,
while Einstein and Schrödinger believed that the statistical formulation was only a stopgap and that a
deeper understanding was possible and was urgently needed. This argument still rages on.

Popular accounts of these ongoing arguments, unfortunately, usually focus on the 1930 Solvay
Conference confrontation between Bohr and Einstein that was centered around Einstein’s clock
paradox, a clever attempted refutation of the uncertainty principle [51]. Einstein is generally considered
to have lost to Bohr because he was “stuck in classical thinking.” However, as detailed in The
Quantum Handshake [12], Einstein’s effort was doomed from the start and was also beside the
point. The uncertainty principle is simply a Fourier-algebra property of any system described by waves.
Both parties to the Solvay argument lacked any real clarity as to how to handle the intrinsic wave
nature of matter. In the introduction, we quoted Einstein’s deepest concern with statistical QM:

There must be a deeper structure to the quantum transition.
Back in 1926, the field was faced with a choice: Schrödinger’s wave function in three-dimensional

space, or Heisenberg and Born’s matrices, in as many dimensions as you like. The choice was put forth
clearly by Hendrik Lorentz [54] in a letter to Schrödinger in May, 1926:

"If I had to choose now between your wave mechanics and the matrix mechanics, I would give the
preference to the former because of its greater intuitive clarity, so long as one only has to deal with
the three coordinates x,y,z. If, however, there are more degrees of freedom, then I cannot interpret the
waves and vibrations physically, and I must therefore decide in favor of matrix mechanics. However,
your way of thinking has the advantage for this case too that it brings us closer to the real solution of
the equations; the eigenvalue problem is the same in principle for a higher dimensional q-space as it is
for a three-dimensional space.

"There is another point in addition where your methods seem to me to be superior. Experiment
acquaints us with situations in which an atom persists in one of its stationary states for a certain time,
and we often have to deal with quite definite transitions from one such state to another. Therefore, we
need to be able to represent these stationary states, every individual one of them, and to investigate
them theoretically. Now a matrix is the summary of all possible transitions and it cannot at all be
analyzed into pieces. In your theory, on the other hand, in each of the states corresponding to the
various eigenvalues, E plays its own role.”

Thus, the real choice was between the intuitive clarity of Schrödinger’s wave function and the
ability of Heisenberg–Born matrix mechanics to handle more degrees of freedom. That ability was
immediately put to the test when Heisenberg [55] worked out the energy levels of the helium atom,
in which two electrons shared the same orbital state and their correlations could not be captured by
wave functions with only three spatial degrees of freedom. That amazing success set the field on the
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path of eschewing Schrödinger’s views and moving into multi-dimensional Hilbert space, which was
further ossified by Dirac and von Neumann. Schrödinger’s equation had been demoted to a bare
matrix equation, engendering none of the intuitive clarity, the ability to interpret the waves and vibrations
physically so treasured by Lorentz.

The matrix formulation of statistical QM, as now universally taught in physics classes, saves us
the “tedious” process of analyzing the details of the transaction process. That’s the good news. The bad
news is that it actively prevents us from learning anything about the transaction process, even if we want to!

What has been left out is, as Einstein said, any “description of the individual system”.
Thus, it was left to the more practical-minded electrical engineers and applied scientists to

resurrect, each in their own way, Schrödinger’s way of thinking because they needed a “description
of the individual system” to make progress. Electrons in conductors were paired into standing waves,
which could carry current when the propagation vector of one partner was increased and that of the
other partner decreased. Energy gaps resulted from the interaction of the electron wave functions with
the periodic crystal lattice. Those same electron wave functions can “tunnel” through an energy gap
in which they decay exponentially with distance. The electromagnetic interaction of the collective
wave functions in superconducting wires leads to a new formulation of the laws of electromagnetism
without the need for Maxwell’s equations [16]. The field of Quantum Optics was born. Conservation
of momentum became the matching of wavelengths of waves such that interaction can proceed.
When one such wave is the wave function of an electron in the conduction band and the other is
the wave function of a hole in the valence band of a semiconductor, matching of the wavelengths of
electron, hole, and photon leads to light emission near the band-gap energy.

When that emission intensity is sufficient, the radiation becomes coherent—a semiconductor
laser. These insights, and many more like them, have made possible our modern electronic technology,
which has transformed the entire world around us.

Each of them requires that, as Lorentz put it: we... represent these stationary states, every individual
one of them, and to investigate them theoretically.

Each of them also requires that we analyze the transaction involved very much the way we have
done in this paper.

What we have presented is a detailed analysis of the most elementary form of quantum transition,
indicating that the simplest properties of solutions of Schrödinger’s equation for single-electron atomic
states, the conservation of energy, and a symmetry property of relativistic laws of electromagnetic
propagation, together with Feynman’s insight that all paths should be counted, give a unique form to
the photon transaction between two atoms.

We have extended this approach to experiments involving three atoms. The reason we can treat
situations with more than one electron using a wave-mechanics Schrödinger equation that only works
for one electron is that the non-local bi-directional electromagnetic coupling between wave functions
can be factored into a retarded wave propagating forward in time and an advanced wave propagating
backward in time, the vector potential of each partner in a photon transaction being incorporated in
the opposite partner’s one-electron Schrödinger equation.

These calculations are, of course, not general proofs that in every system the offer/confirmation
exchange always triggers the formation of a transaction. They do, however, represent demonstrations
of that behavior in tractable cases and constitute prototypes of more general transactional behavior.
They further demonstrate that the transaction model is implicit in and consistent with the Schrödinger
wave mechanics formalism, and they demonstrate how transactions, as a space-time standing waves
connecting emitter to absorber, can form.

We see that the missing ingredients in previous failed attempts by others to derive wave function
collapse from the standard quantum formalism were:

1. Advanced waves were not explicitly used as part of the process.
2. The “focusing” property of the advanced-retarded radiation pattern had not been identified.

43



Symmetry 2020, 12, 1373

Although many complications are avoided by the simplicity of these two-atom and three-atom
systems, they clearly illustrate that there is internal structure to quantum transitions and that this structure
is amenable to physical understanding. Each of them is an example of Einstein’s “description of the individual
system”. Through the Transactional Interpretation, the standard quantum formalism is seen as an
ingenious shorthand for arriving at probabilities without wading through the underlying details that
Schrödinger described as “tedious”.

Although the internal mechanism detailed above is of the simplest form, it describes the
most mysterious behavior of quantum systems coupled at a distance, as detailed in [12]. All of
these behaviors can be exhibited by single-electron quantum systems coupled electromagnetically.
The only thing “mysterious” about our development is our unorthodox use of the advanced-retarded
electromagnetic solution to conserve energy and speed up the transition. Therefore, we have learned
some interesting things by analyzing these simple transactions!

This experience brings us face to face with the obvious question: What if Einstein was right?

If there is internal structure to these simple quantum transitions, there must also be internal structure to
the more complex questions involving more than one electron, which cannot be so simply factored!

In this case, we should find a way to look for it. That would require that we effectively time-travel
back to 1926 and grok the questions those incredibly talented scientists were grappling with at the time.

To face into the conceptual details of questions involving an overlapping multi-electron system is a
daunting task that has defeated every attempt thus far. We strongly suspect that the success achieved
by the matrix approach—adding three more space dimensions and one spin dimension for each
additional electron—came at the cost of being “lost in multi-dimensional Hilbert space.” Heisenberg’s
triumph with the helium atom led into a rather short tunnel that narrowed rapidly in the second row
of the periodic table.

Quantum chemists work with complex quantum systems that share many electrons in close
proximity, and thus must represent many overlapping degrees of freedom. Their primary goal is to
find the ground state of such systems. Lorentz’s hope—that the intuitive insights of Schrödinger’s
wave function in three dimensions would bring us closer to the real solution in systems with more than
one electron—actually helped in the early days of quantum chemistry: Linus Pauling visualized
chemical bonds that way, and made a lot of progress with that approach. It is quite clear that the
covalent bond has a wave function in three dimensions, even if we don’t yet have a fully “quantum”
way of handling it in three dimensions. The Hohenberg–Kohn theorems [56] demonstrate that the
ground-state of a many-electron system is uniquely determined by its electron density, which depends
on only three spatial coordinates. Thus, the chemists have a three-dimensional wave function for
many electrons! They use various approaches to minimize the total energy, which then gives the best
estimate of the true ground state.

These approaches have evolved into Density Functional Theory (DFT), and are responsible for
amazingly successful analyses of an enormous range of complex chemical problems. The original
Thomas–Fermi–Hohenberg–Kohn idea was to make the Schrödinger equation just about the 3d density.
The practical implementations do not come close to the original motivation because half-integer spin,
Pauli exclusion, and 3N dimensions are still hiding there. DFT, as it stands today, is a practical tool
for generating numbers rather than a fundamental way of thinking. Although it seems unlikely at
present that a more intuitive view of the multi-electron wave function will emerge from DFT, the right
discovery of how to adapt 3D thinking to the properties of electron pairs could be a major first step in
that direction.

When we look at even the simplest two-electron problems, we see that our present understanding
uses totally ad hoc rules to eliminate configurations that are otherwise sensible: The most outrageous
of these is the Pauli Exclusion Principle, most commonly stated as: Two electrons can only occupy the
same orbital state if their spins are anti-parallel.

It is the reason we have the periodic table, chemical compounds, solid materials, and electrical
conductors. It is just a rule, with no underlying physical understanding. We have only mathematics
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to cover our ignorance of why it is true physically. [The matrix formulation of QM has a much fancier
mathematical way of enforcing this rule. The associated quantum field theory axiom is not a physical
understanding.]

There is no shame in this—John Archibald Wheeler said it well:

"We live on an island surrounded by a sea of ignorance.

As our island of knowledge grows, so does the shore of our ignorance."

The founders made amazing steps forward in 1926.
Any forward step in science always opens new questions that we could not express previously.
However, we need to make it absolutely clear what it is that we do not yet understand:

• We do not yet understand the mechanism that gives the 3D wave function its “identity”,
which causes it to be normalized.

• We do not yet have a physical picture of how the electron’s wave function can be endowed
with half-integer “spin”, which why it requires a full 720◦ (twice around) rotation to bring the
electron’s wave function back to the same state, why both matter and electron antimatter states
exist, and why the two have opposite parity.

• We do not yet have a physical understanding of how two electron wave functions interact to
enforce Pauli’s Exclusion Principle.

However, our analysis has allowed us to understand conceptually several things that have been
hidden under the statistics: We saw that the Bose–Einstein property of photons can be understood
as arising from the symmetry of electromagnetic coupling together with the movement of electron
charge density of a superposed state. There was nothing “particle-like” about the electromagnetic
coupling. Indeed, the two-way space-time symmetry of the photon transaction cannot really be viewed
as the one-way symmetry of the flight of a “photon particle.” Thus, looking at the mechanism of
the “wave-function collapse” gives us a deeper view of the “boson” behavior of the photon: The rate
of growth of oscillation of the superposed state is, by Equation (26), proportional to the oscillating
electromagnetic field. When the oscillating currents of all the atoms are in phase, the amplitudes of
their source contributions add, and any new atom is correspondingly more likely to synchronize its
contribution at that same phase.

Thus, the “magic” bosonic properties of photons, including the quantization of energy h̄ω

and tendency to fall into the same state, are simply properties of single-electron systems coupled
electromagnetically: Their two-way space-time symmetry is in no way “particle-like.” It seems as
though there is, after all, a fundamental conceptual difference between “matter” and “coupling”.

Perhaps, it is the stubborn determination of theoretical physicists to make everything into particles
residing in a multi-dimensional Hilbert space that has delayed for so long Lorentz’s greater intuitive
clarity—a deeper conceptual, physical understanding of simple quantum systems.

Thanks to modern quantum optics, we are experimentally standing on the shoulders of giants:
We can now routinely realize radio techniques, such as phase-locked loops, at optical frequencies.
The old argument that “everything is just counter-clicks” just doesn’t cut it in the modern world!

Given the amazing repertoire of these increasingly sophisticated experiments with coherent
optical-frequency quantum systems, many of the “mysterious” quantum behaviors seem more and
more physically transparent when viewed as arising from the transactional symmetry of the interaction,
rather than from the historic “photon-as-particle” view. The bottom line is that Schrödinger wave
mechanics can easily deal with issues of quantum entanglement and nonlocality in atomic systems
coupled by matched advanced/retarded 4-potentials. It remains to be seen whether this wave-based
approach can be extended to systems involving the emission/detection of quark-composites or leptons.

Our Caltech colleague Richard Feynman left a legacy of many priceless quotations; a great one is:
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“However, the Real Glory of Science
is that we can Find a Way of Thinking
such that the Law is Evident!”

What he was describing is Conceptual Physics.
From our new technological vantage point, it is possible to develop Quantum Science in this

direction, and make it accessible to beginning students.
We urge new generations of talented researchers to take this one on.
Be Fearless—as they were in 1926!
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The following abbreviations are used in this manuscript:

DFT density functional theory
EPR experiment Einstein, Podolsky, and Rosen experiment demonstrating nonlocality
NCT neoclassical theory, i.e., Schrödinger’s wave mechanics plus Maxwell’s equations
QM quantum mechanics
TI the Transactional Interpretation of quantum mechanics [12]
WFE Wheeler–Feynman electrodynamics
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Abstract: We provide a natural derivation and interpretation for the uncertainty principle in quantum
mechanics from the stochastic optimal control approach. We show that, in particular, the stochastic
approach to quantum mechanics allows one to understand the uncertainty principle through the
“thermodynamic equilibrium”. A stochastic process with a gradient structure is key in terms of
understanding the uncertainty principle and such a framework comes naturally from the stochastic
optimal control approach to quantum mechanics. The symmetry of the system is manifested in
certain non-vanishing and invariant covariances between the four-position and the four-momentum.
In terms of interpretation, the results allow one to understand the uncertainty principle through the
lens of scientific realism, in accordance with empirical evidence, contesting the original interpretation
given by Heisenberg.

Keywords: stochastic optimal control; stochastic mechanics; thermodynamic equilibrium; uncertainty
principle

1. Introduction

This research article aims to provide an intuitive explanation for the quantum phenomenon of
measurement uncertainty and it also explains why the Born rule should hold, i.e., why the probability
of finding a test particle should be proportional to the square of the wave function. The article builds
on the basic framework presented in the authors’ recent article [1] and it improves the framework
there. The basic framework is built on the assumption that quantum mechanics should be seen
through the framework of stochastic optimal control theory; stochastic dynamic optimization in
a coordinate-invariant manner on the Minkowski spacetime. In particular, the algebraic structure
including the imaginary units can be understood through this framework. However, even though
we have shown how relativistic and non-relativistic wave equations of quantum mechanics are the
special cases of the corresponding Hamilton–Jacobi–Bellman transport equation for the value function,
little consideration was given to the Born rule and the Heisenberg uncertainty principle. In this article,
we consider these issues in more detail as an extension and follow-up.

The Heisenberg uncertainty principle is a concept in quantum mechanics that is as elusive as
it is important, as there seems to be no unanimous agreement in the literature on its real meaning,
content and implications. Originally, Werner Heisenberg linked the principle with some external
interference stemming from the measurement experiment [2]. More recently, Ozawa has linked it
more abstractly with measurement errors and disturbances, see [3]. There is also a line of research,
which relates the uncertainty principle more in line with the approach of the present authors, see,
e.g., [4]. On the other hand, Popper [5] and Ballentine [6] already promoted over 50 years ago an
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interpretation where the uncertainty principle should be seen merely as a statistical scatter relationship.
The approach by Bohm [7] is also in line with a statistical ensemble interpretation.

We argue in this article that indeed a more straightforward statistical interpretation for the
uncertainty principle is possible when one considers the conjugate variables as random vectors with
some possible linear covariance structure. In this respect, in particular, what seems to be especially
fruitful is to consider the optimal spacetime diffusions and the respective Fokker–Planck equations or
Kolmogorov forward equations for the stochastic optimal control model. The Fokker–Planck equations
determine the transport behavior of the transition probability density, as the test particle undergoes
the optimal spacetime diffusion, which minimizes the expected action.

In [1] it was shown that the optimal four-velocity is essentially a four-gradient of the value function
J, which is typical for such linear–quadratic (stochastic) optimal control problems. This optimal behavior
of the test particle is a random motion, which has a drift into the optimal direction and is disturbed
by a Brownian noise. We have argued that the diffusion model might be just a phenomenological
model in the sense that it is the spacetime itself that is fluctuating [8] and this can be modeled by vector
diffusions on the Minkowski spacetime.

We use the Einstein summation convention throughout the article so that upper indices and
lower indices represent contravariant and covariant objects, which are generally different. We use
slightly different index notation compared to [1] in order to avoid misunderstandings. We use the
normalization that the reduced Planck’s constant is unity, � = 1.

2. The Evolution of the Transition Probability Density and the Stationary Distribution

As was shown in [1] by the authors, the key equations of quantum mechanics can be obtained as
optimality equations of certain coordinate invariant stochastic optimization programs on Minkowski
spacetimes. Here, as in that model, the test particle undergoes a diffusion process on the Minkowski
spacetime; we can analyze the transition probabilities and possible stationary distributions as well.

We argue that the stationary distribution is indeed the relevant distribution in terms of falsifiable
experiments, as in order to test any predictions about observables or expectations, the distribution
must be sampled many times, by which time the ensemble distribution is the relevant probability
distribution. This is due to the property that a stochastic system with a confining potential (and other
mild technical requirements) yields a stochastic process, which is ergodic and the transition probability
converges to the Gibbs distribution exponentially fast, see [9]. A confining potential means a potential
which loosely guarantees that the test particle is “confined” due to the gradient drift of the stochastic
process. In this sense, the stochastic optimal control approach to quantum mechanics is actually quite
close conceptually to non-equilibrium and equilibrium statistical mechanics.

The basic framework of the stochastic optimal control problem is similar to the set-up in [1],
we have a spacetime diffusion for the test particle:

dXμ = uμds + σμdWμ (1)

where Xμ is the random four-position, the contravariant index μ = 0, 1, 2, 3 represents the spacetime
coordinates in the (flat) Minkowski spacetime and s is the proper time. There are four independent
standard Brownian motions dWμwith a scale σμμ = − 1

2im . We use the notation σμν = σμσν, μ = 0, 1, 2, 3,
ν = 0, 1, 2, 3 for the diffusion matrix, so it is a tensor product of two vectors. Note that in the
denominator, we have the imaginary unit i. The mass of the test particle is m. A capital letter X refers
to the random variable itself, whereas a small x refers to the realization coordinate of the random
variable. For convenience, we have used a normalization in which the speed of light is unity, c = 1.
The four-velocity is represented by uμ. We use slightly different scales (same for all μ = 0, 1, 2, 3) for
the Brownian motions compared to [1], as we believe it makes the set-up even more clear and simple.
The diffusion matrix should be chosen in such a way that the Hamilton–Jacobi–Bellman equation
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can be linearized in the simplest possible manner using the Hopf–Cole transformation, as in [1].
Utilizing Occam’s razor, the simplest such structure comes from the option:

σμμ = − 1
2im

, otherwise zero (independent Brownian motions) (2)

The functional to be optimized is given by:

S =

∫ ∫ T

τ
(

1
2

mgμνuμuν −V(x))dsp(x, s)dV. (3)

With the invariant volume form dV =
√gdcx0dx1dx2dx3 , with the metric determinant g. The metric

tensor on the Minkowski spacetime is given by gμν. The transition probability density to the
four-position x at proper time s is given by p(x, s). The Lagrangian is the four-dimensional generalization
of the usual Lagrangian in classical mechanics in a stochastic environment.

We note that the model, as in [1], has a gradient structure, as the optimal drift (necessary condition
for the optimal control problem) is given by:

uμ = − 1
im
∇μJ, (4)

where J is the value function.
The resulting nonlinear Hamilton–Jacobi–Bellman optimality equation for this system, as in [1],

is given by:
∂J
∂τ
− iV(x) − 1

2im
∇μ J∇μJ +

1
2
σ2∇μ∇μ J = 0, (5)

where σ2 = σ
μ
μ = − 1

im , which is the sum of the diagonal elements of the diffusion matrix. Note that
the Minkowski metric implies that the trace includes the minus sign when summing the elements
together. The Hamilton-Jacobi-Bellman equation can then be linearized to obtain the Stueckelberg and
Schrödinger wave equations, as in [1], when we use the Hopf–Cole transformation J = logϕ, where ϕ
is the wave function. This implies that the wave function is connected to the optimal expected action.

We then expect the respective Fokker–Planck equation for the optimal stochastic process to yield a
stationary solution, which is the well-known Gibbs distribution from equilibrium statistical mechanics
and thermodynamics. As such, we can analyze the properties of this diffusion process by indeed
considering the respective Fokker–Planck equation, which is the partial differential equation governing
the transition probability p(x, s) density, where x is the four-position. The Fokker–Planck equation for
the spacetime diffusion is given by:

∂p
∂s

= ∇μ
(
−uμp +

1
2
∇ν(σμνp)

)
, (6)

where we have used the Einstein summation convention. Although in general we cannot solve
explicitly the transition probability density for all proper times s, we can, however, in this case solve
the stationary distribution, if the value function J has some mild properties, see [9]. The stationary
distribution is obtained by setting the expression in the brackets to be zero. The more general family of
stationary distributions can be obtained by setting only the partial derivative of the transition density
with respect to proper time to zero. For our purposes, setting the expression in the brackets to zero
suffices. As the symmetric diffusion matrix

(
σμμ = − 1

2im , otherwise zero
)

is constant (no correlated
noise), we must have: 1

2∇μp = ∇μ Jp, where on the right side the gradient operates only on J, from which
we can directly deduce that the stationary distribution is indeed the Gibbs distribution:

p =
1
Z

e2J, (7)

51



Symmetry 2020, 12, 1533

where Z is a normalization constant (the partition function in statistical mechanics). Note that the value
function could be complex-valued in general and therefore we need to require additional properties
from the system as we want the stationary probability density to be real. We allow the four-position of
the test particle to be complex-valued, but we require that the probability density is real. A complex
four-position might also have interesting links with the algebra of octonions.

2.1. The Requirement that the Stationary Density is Real Leads to Born’s Rule

Remember that, as in [1], we assume a simple relationship (Hopf–Cole transformation) between
the value function J and the wave function ϕ: J = logϕ. As it holds that the complex conjugates also
have the relationship: J∗ = logϕ∗, it is straightforward to see that if the value function is of the form
J = a + ib, then:

2a = logϕϕ∗. (8)

Note now that as we need to require that the stationary distribution is purely real, then the Gibbs
distribution implies that = 1

Z ϕϕ
∗ , i.e., we can deduce that the Born rule must hold. We cannot infer

from this that the Born rule holds at all times, but we can guarantee that when sampling from the
stationary ensemble, the Born rule holds. This constructive demonstration has an interesting parable
with the quantum equilibrium hypothesis in Bohmian mechanics [7].

2.2. The Heisenberg Uncertainty Principle

In this subsection, we show how the stochastic optimal control approach to quantum mechanics
can help to understand the meaning of Heisenberg’s uncertainty principle. In terms of abstract
notions, this principle is usually derived by the assumption that the momentum and position operators
do not commute. There is no generally agreed common understanding of the principle beyond
of the assumption that conjugate variables such as position and momentum cannot be measured
simultaneously to an arbitrary degree of certainty.

If one considers the stochastic approach toquantum mechanics, the uncertainty principle can
be understood in an intuitive manner by treating the four-position and four-momentum as random
vectors. The uncertainty principle is then a statement about the covariance of these random vectors.
As such, it does not necessarily then say anything about how experiments are limited or affected by the
experimenter, but instead the principle only observes that the covariance does not vanish between
these two random vectors. In its usual form, the uncertainty principle is given as (we have used the
normalization � = 1):

σXσP ≥ 1
2

, (9)

where the sigmas are the standard deviations of the four-position X and four-momentum P, when using
the Born rule in the stationary ensemble. The key is to observe that we can use the Cauchy–Schwartz
inequality:

σXσP ≥
∣∣∣Cov(X, P)

∣∣∣. (10)

So that the uncertainty principle holds, we need to have a non-vanishing absolute covariance of
the four-position and the four-velocity (up to a scale). As covariance is defined by

Cov(X, P) = E[XP] − E[X]E[P], (11)

where E[[] is the mathematical expectation operator, we should be able to show that E[XP] � E[X]E[P]
where X is the four-position and P is the four-momentum. As we can center the random variables
without any loss of generality, it suffices to show that

E[XP] � 0. (12)
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Consider now again the stationary distribution. As testing the prediction for an expected value
of a random variable makes sense only if we can sample the distribution many times and measure
the average (law of large numbers), we argue that in terms of any proper experiment, the uncertainty
principle concerns only the stationary ensemble averages. Therefore, we calculate the covariance based
on the thermodynamical ensemble distribution, which we showed is the Gibbs distribution. This means
that all expectations from now on are calculated with respect to the stationary Gibbs distribution.

Consider first the expectation E[XP]. Remembering that Pμ = muμ = i∇μJ, we can consider
the integral:

E[XP] = i
∫

Xμ∇μ Jp√gd4x, (13)

where we integrate over the invariant volume form √gd4x . Using the implicit definition of the
stationary distribution (stationary solution for the Fokker–Planck equation) 1

2∇μp = ∇μ Jp, we have:

E[XP] = −
∫

Xμ∇μ Jpd4x = −1
2

∫
Xμ∇μpd4x. (14)

By integration by parts, we have (assuming that the probability flux vanishes at the boundary):

− 1
2

∫
Xμ∇μpd4x = 1

2

∫ ∇μXμpd4x =
1
2∇μXμ

∫
pd4x = 1

2∇μXμ � 0.

where in the last part we have used the fact that the total probability mass is unity and that the
μ : th component derivative of the μ : th position vector component spits out constants. This shows
that the covariance does not vanish and that Heisenberg’s uncertainty principle holds (up to a scale).
Note that the expectation is invariant as it is a constant.

3. Discussion and Interpretation of the Result

The uncertainty principle obtained is presented in an objective manner through the properties
of the stationary distribution and the gradient structure of the underlying stochastic process.
The epistemological limit for measuring conjugate variables, i.e., four-position and four-momentum,
can be understood intuitively through the stochastic optimal control framework. Intuitively,
the stochastic optimal control approach describes an ensemble of test particles with the optimal
gradient drift and undergoing a diffusion, which seeks to find a stationary point for the value function.
If one prepares such a system and measures the position and momentum repeatedly in order to test the
predictions about observables, one will find that the statistical spreads of the position and momentum
of the test particle have an inverse relationship. The existence of the lower limit for the product of
standard deviations for the position and momentum does not in this framework, however, preclude
the possibility of measuring the position and momentum simultaneously. Based on the present result,
it only says that when measurements are repeated, the statistical spread obeys the uncertainty principle.
Importantly, the constructive proof in this study does not require any external interference from the
measurement apparatus, merely the structure of the gradient drift and the underlying diffusion imply
the uncertainty principle.

Indeed, the linear–quadratic structure of the stochastic optimal control problem implies that the
optimal four-velocity of the test particle has a gradient structure. The gradient structure is somewhat
similar to the guidance equation of the pilot wave in the de Broglie–Bohm approach [7]. We therefore
argue that Bohmian mechanics is essentially very close to the present stochastic optimal control
approach, and that the guidance equation is close to the optimal drift velocity of the present model.
Unfortunately, when David Bohm developed his model, stochastic optimal control theory had not
been developed yet. Moreover, the quantum equilibrium in Bohmian mechanics seems to be quite
close to the stationary distribution derived in this study. Indeed, it is shown here that the stochastic
process under the optimal gradient drift converges exponentially fast to a stationary distribution
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(thermodynamical equilibrium), where one has a non-vanishing covariance between the four-position
and the four-momentum.

Whereas in Bohmian mechanics the ontology of the theory is rather complicated with pilot
waves, the present approach is more minimalistic: as the spacetime has fluctuations at small scales,
the test particle obeys a random walk with a drift in such a way that the drift is a “gradient search”,
which tries to find a dynamically optimal route for the test particle in order to make the expected
action stationary. This system results in an equilibrium distribution for the random walk, and this
“thermodynamic ensemble” is what we believe corresponds to the quantum equilibrium in Bohmian
mechanics. The model is realistic and objective in line with the inclinations of Karl Popper and the
statistical/ensemble interpretation of quantum mechanics. The reason why nature seems to obey
variational principles is nevertheless a deep question. Why the drift is a gradient search for the value
function is no more or less deep a question than why nature prefers various optimal programs, be it in
classical mechanics, electromagnetism or general relativity. In the present model, the test particle has a
drift into the direction, in which the value function decreases rapidly. These teleological questions
are equally deep and equally valid in the Hamilton–Jacobi formulation of classical mechanics. In this
sense, the particle just “knows” the direction in which the expected action decreases most rapidly.
Therefore, we do not need any “hidden variables” in quantum mechanics any more than we need such
“hidden variables” in classical or statistical mechanics. In the Hamilton–Jacobi approach of classical
mechanics, the velocity of the test particle is equivalently linked to the gradient of the value function.

Intuitively, the content of the uncertainty principle is, in the present model, that the product of the
standard deviations has a lower bound in terms of the stationary distribution due to the covariance.
If one would like to have a small standard deviation for the position, one would need to have a rather
steep value function in order to constrain and confine the particle within a small location in terms
of the stationary distribution (due to the exponential structure of the Gibbs distribution). A steep
and a localized value function J would then imply a large standard deviation for the gradient of
the value function. There is then a natural tradeoff between the localizations of four-position and
four-momentum (Figure 1). The key is the gradient structure of the stochastic process, where the test
particle tries to seek a minimum for the value function as in a “gradient search”.

 
Figure 1. The tradeoff between the localizations of four-position and four-momentum: (a) position
localized; (b) momentum localized.

Therefore, if one seeks an equilibrium system which has a very deep potential well and thus good
localization and confinement properties, one needs to accept the large variability in the gradient of the
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potential (= value) function. This understanding of the uncertainty principle then implies that the lower
bound for the product of standard deviations has nothing to do with experiments interfering with the
set-up, but it is merely a natural trade-off implied by the linear–quadratic structure of the stochastic
optimal control program. Indeed, one can see the framework through the lens of thermodynamics,
where the system relaxes towards a thermodynamic equilibrium, which is just the stationary state for
the respective Fokker–Planck equation. The results in this paper seem to therefore strongly support
the statistical or the ensemble interpretation of quantum mechanics, put forward by, for example,
Ballentine [6].

4. Conclusions

We believe that the Heisenberg uncertainty principle can be understood in a fruitful manner
by considering it as a stationarity property of stochastic or statistical mechanics. The ontological
and epistemological problems related to the uncertainty principle can be mitigated with such an
interpretation as in the stochastic optimal control framework; the tradeoff of standard deviations
between the four-position and the four-momentum can be understood intuitively through the
confinement properties of the value function. The sharp localization, and thus small standard deviation
of the test particle four-position, requires a rather steep value function locally, which naturally implies
large variability for the gradient of the value function and thus for the four-momentum. Within this
interpretation, it still holds that we cannot measure momentum and position simultaneously to an
arbitrary degree of precision repetitively, but the uncertainty principle has a new, more intuitive
meaning based on scientific realism and objectivism. The interpretation of the uncertainty principle,
in which the measurement process itself causes the interference and the uncertainty limit, should be
therefore finally abandoned.

The present model allows scientific realism and objectivism in the sense that the test particle obeys
an optimal diffusion irrespective of the observer and its position and momentum are uniquely defined
and measurable in principle at each point in spacetime, but as we repetitively measure something
such as electrons from a beam, the fluctuations of the spacetime induce such randomness to the
system that on average we can only “see” the ensemble in the “thermodynamic” equilibrium. In this
sense, we argue that this study, together with [1], is very much a constructive model of an objective
interpretation of quantum mechanics put forward by Karl Popper [5], among others. Moreover,
the interpretation given in this article implies that the uncertainty principle does not logically rule
out determinism as such. There is, however, a conceptual connection to Bohmian mechanics, due to
the gradient drift structure and the quantum equilibrium, but as we have argued, the diffusion is a
phenomenological model for the fluctuation of the spacetime itself. In a sense, the “hidden variables”
are not needed, because the medium (spacetime) is stochastic. It is a modeling paradigm, from which
one cannot, however, deduce whether the universe is deterministic or not. The optimization procedure,
which nature seems to obey, just implies that certain random variables (due to the fluctuations of
spacetime) must have a non-vanishing correlation. These conclusions are also in line with rather
recent experimental evidence; see [10,11]. The present result seems to also support the paradigm that
such uncertainty principles are general features of specific stochastic systems, as has been indicated,
for example, in [4]. The symmetries of the present framework are manifested clearly in the property
that the covariance of the four-position and the four-momentum is non-vanishing and invariant.
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Abstract: Quantum-like decision theory is by now a theoretically well-developed field (see e.g., Danilov,
Lambert-Mogiliansky & Vergopoulos, 2018). We provide a first test of the predictions of an application
of this approach to persuasion. One remarkable result entails that, in contrast to Bayesian persuasion,
distraction rather than relevant information has a powerful potential to influence decision-making.
We first develop a quantum decision model of choice between two uncertain alternatives. We derive
the impact of persuasion by means of distractive questions and contrast them with the predictions
of the Bayesian model. Next, we provide the results from a first test of the theory. We conducted
an experiment where respondents choose between supporting either one of two projects to save
endangered species. We tested the impact of persuasion in the form of questions related to different
aspects of the uncertain value of the two projects. The experiment involved 1253 respondents
divided into three groups: a control group, a first treatment group and the distraction treatment
group. Our main result is that, in accordance with the predictions of quantum persuasion but in
violation with the Bayesian model, distraction significantly affects decision-making. Population
variables play no role. Some significant variations between subgroups are exhibited and discussed.
The results of the experiment provide support for the hypothesis that the manipulability of people’s
decision-making can to some extent be explained by the quantum indeterminacy of their subjective
representation of reality.

Keywords: decision-making; uncertainty; persuasion; quantum-like; distraction

1. Introduction

Why is the famous P&G (Procter and Gamble) 2010 “Thank you, Mom” advertise-
ment [1] showing devoted mothers supporting young athletes, among the most successful
ads of all time? The pervasiveness of informationally irrelevant messaging in advertising is
stunning. In this paper, we present and provide experimental evidence for an application
of quantum-like decision-making theory that explains why distraction—i.e., addressing
informationally irrelevant issues—can be a powerful manipulation technics.

The idea that people are being influenced and manipulated by a systematic exploita-
tion of non rational psychological factors rather that by providing information that is
rationally processed, was first forcefully put forward in the seminal book of Vance Packard
(1957) “The Hidden Persuaders” [2]. His thesis is that persuador relies on psychiatric and
psychological technics to address their message to our “wild and unruly subconscious”.
Later Cialdini developed a “science of persuasion” based on a general behavioral principles
(e.g., bias for reciprocity) that can be exploited to influence people’s choice (see e.g., [3,4]).
Closer to our approach which focuses on information processing, is an early work by
Festinger and Maccoby [5]. They published the first experiment showing that distraction
can induce attitude change: a message has larger persuasion power among respondents
subjected to distraction. Their idea is that distraction in the course of information pro-
cessing makes attempts to provide counter arguments less successful. This in turn makes
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people more vulnerable to the persuador’s message. Later, we saw the development of
a broad literature in psychology showing that distraction may decrease attention, impair
learning and remembering opening up for manipulation [4,6–11]. Failures in information
processing are also a the heart of Nobel-prize winner Kahneman’s best selling book “Think-
ing Fast and Slow” [12]. In the last section, we discuss how they relate to our approach to
distraction.

More recently, Akerlof and Shiller (2015) provided loads of evidence showing that
people are systematically “phished” in economic transactions. The authors suggest that this
is due to the significance of the story people tell themselves when making decision i.e., the
“narratives” or as they also write “the focus of the mind”. They conclude “just change
people’s focus and you can change the decisions they make” (p. 173 [13]). Emphasizing
the significance of the “narratives” is closely related to a rich literature in psychology on
framing effects (see among others [14–21]).

Quantum cognition offers an approach to the concept of narratives in terms of perspec-
tives on reality [22]. Formally, a perspective is a coordinate system of a state space and there
exists a number of equally valid alternative coordinate systems. Different perspectives
can be simultaneously true but not compatible with each other. In this paper, we rely on
a formalisation of the concept of narratives in line with the general theory of quantum
decision-making. As shown in [23], that theory delivers a power of distraction in the terms
of Akerlof and Shiller. The power of distraction arises from non-Bayesian information
processing reflecting the mathematical structure of the quantum model. Experimental
evidence (see e.g., [24,25]) shows that people oftentimes systematically depart from Bayes’
rule when confronted with new information. Cognitive sciences propose a number of
alternatives to Bayesianism (see e.g., [26–29]). The attractiveness of the quantum approach
is partly due to the fact that quantum mechanics has properties that reminds of the paradox-
ical phenomena exhibited in human cognition. In addition, quantum cognition has been
successful in explaining a wide variety of behavioral phenomena such as disjunction effect,
cognitive dissonance or preference reversal (see among others [30–35]). Importantly, there
exists by now a fully developed decision theory in the context of non-classical (quantum)
uncertainty. Different formulations of that theory exist, including that by Aerts et al. [36].
In this paper, we rely on the formulation developed by Danilov et al. [37,38]. Clearly,
the mind is likely to be even more complex than a quantum system, but our view is that
the quantum cognitive approach already delivers interesting new insights in particular
with respect to persuasion.

In quantum cognition, the object of interest is the decision-maker’s mental represen-
tation of the world. It is modelled as a quantum-like system represented by its state—a
cognitive state which is the equivalent of beliefs in the classical context. In quantum
cognition, the decision relevant uncertainty is consequently of non-classical (quantum)
nature. As argued in [22] this modelling approach allows capturing widespread cognitive
limitations in information processing. The key quantum property that we use is the “Bohr
complementarity” of characteristics (properties) of the mental object (representation of the
world). The decision-maker cannot consider all properties simultaneously i.e., they cannot
have a definite value in his mind. Instead, the decision-maker processes information
sequentially moving from one perspective to the other and order matters.

As in the classical context our rational decision-maker uses new information to update
her beliefs. A rational quantum-like decision-maker is a decision-maker who has prefer-
ences over mental objects representing items (or actions). These mental objects are modelled
as quantum-like systems. Her preferences satisfy a number of axioms that secure that they
can be represented by an expected utility function. In [38] we learned that a dynamically
consistent quantum-like decision-maker updates her beliefs according to Lüder’s postulate
which in Quantum Mechanics governs state transition following the measurement of a sys-
tem. In two recent papers, important theoretical results were established. First, it is shown
in [39] that in the absence of constraints (on the number of operations that trigger updating),
full persuasion applies: Sender can always persuade Receiver to believe anything that he
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wants. Next, in [23] the same authors investigate a short sequence of operations but in the
frame of a simpler task that they call “targeting”. The object of “targeting” is the transition
of a belief state into another specified target state. The main result of relevance to our issue
is that distraction i.e., a test or question that generates irrelevant but “Bohr complementary”
information has significant persuasion power. In contrast, a Bayesian decision-maker does
not update her beliefs when the information is not relevant to her concern and thus cannot
be persuaded in this manner to change her decision.

In the present paper we first formulate a model of quantum-like decision-making
in the context of a choice between two uncertain alternatives. The model is used to
derive the impact of relevant respectively distractive information on choice behavior.
The results are contrasted with those of Bayesian persuasion. A contribution of the paper
is to provide a first (illustrative) experimental test of the model’s predictions. We opted
for a more basic treatment of the data because the quantum persuasion model is so rich
that a rigorous estimation of the relevant parameters is beyond the scope of the present
paper. The experimental situation that we consider is the following. People are invited to
choose between two projects aimed at saving endangered species (elephants and tigers).
The selected project will receive a donation of 50 euros (one randomly selected respondent
will determine the choice). We consider two perspectives of relevance for the choice:
the urgency of the cause and the honesty of the organization that manages the donations.
As a first step and in a separate experiment we establish that the two perspectives are
incompatible by exhibiting a significant order effect which is the signature of incompatible
measurements (see [40]). In the main experiment 1253 respondents are divided into three
groups: a control and two treatment groups. They all go through a presentation of the
projects and some questions about their preferences. The difference between the groups is
that the first treatment group is invited to answer a question about their beliefs of direct
relevance to their choice while the second must answer a question that distracts them
from what is relevant to their choice. We find that, at the population level, the results
are in accordance with the predictions of the quantum model: the distractive question
has a significant impact on the respondents choices as compared with both the control
group and the other treatment group. The pattern of reactions is disconnected from the
thematic content of the distractive information screen which is to be expected when the two
perspectives are incompatible. In contrast the question on decision relevant beliefs had no
significant impact compared to the control group. The data reveal some significant variation
between subgroups with respect to their responsiveness to distraction. In particular, we find
that people who care about the urgency of the cause are more responsive to distraction.
We argue that this is consistent with the quantum model under the reasonable assumption
that those people are more passionate about the issue. The quantum-like working of
the mind is expected to be more pronounced for passionate people. This is because
standard rational thinking which denies the contextuality of mental representations tends
to constrain that spontaneous drive. We conclude with a discussion on rationality in
information processing and relate our approach to other prominent behavioral theories.

This paper contributes to the economic literature on persuasion initiated by Kamenica
and Gentskow’s seminal article “Bayesian Persuasion [41]. More precisely, it contributes to
its recent development which introduces various kinds of imperfections in information
processing one example is Bloedel and Segal’s “Persuasion with rational inattention” [42],
which show how Sender optimally exploits Receiver’s inattention. Another example is Lip-
nowsky and Mathevet [43]. Their focus is on how Sender responds to Receiver’s problem
with temptation and self-control by adapting the signal structure. More closely related to
our work is Galperti “Persuasion—the art of changing worldviews” [44]. The author is
interested on how a better informed Sender can modify Receiver’s incorrect worldview
with “surprises” that trigger a change in the support of Receiver’s beliefs. Our approach
is different because we do not assume that there is a single correct worldview. As shown
in [45], a large number of non-bayesian rules systematically distort updated beliefs. How-
ever, Kamenica and Gentzkow’s concavification argument for optimal persuasion extends
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to such rules which boil down to introducing some form of bias. Kamenica and Gentzkow’s
result entails that Senders payoff is concave in Receivers’s belief so that Sender’s problem
can be formulated as the choice of Receiver’s posteriors. Our contribution departs more
fundamentally from Kamenica and Gentzkow because quantum cognition relies on non-
classical (quantum) uncertainty (contextuality) so in particular that result does not apply.
This approach reveals a powerful role for distraction in persuasion and we provide some
experimental evidence for it.

Our results also contribute to the literature in psychology by offering a novel ex-
planation for the well documented distraction-persuasion nexus. Our study provides
support to the thesis that people’s propensity to be persuaded is due to the contextual-
ity (intrinsic indeterminacy) of their representation of the world rather than to limited
cognitive capacity or to some bias. In so doing our paper contributes to the growing
literature in quantum cognition (see recent contributions in [46–49] for other examples on
how the (quantum) contextuality approach offers a new paradigm for explaining a variety
of behavioral phenomena.

The paper is organized as follows. We first briefly remind of the classical Bayesian
persuasion approach. Next we provide a quantum-like model of choice between two
uncertain alternatives. We formulate the predictions related to the impact of information
on choice behavior. In the second part of the paper, we first describe the experimental
set-up used to test the predictions. We thereafter report and inteprete the results from the
analysis of the data. We conclude with a discussion of our results in view of some of the
existing literature.

2. Quantum Persuasion

2.1. Bayesian Persuasion

Let us first briefly describe Bayesian persuasion an approach developed by Kamenica
and Gentzkow [41] in a classical uncertainty setting. The subject matter of the theory
of Bayesian persuasion is the use of an “information structure”, we shall refer to it a
“measurement” (in practical terms, it corresponds to an investigation, a test or a question),
that generates new information in order to modify a person’s state of beliefs with the intent
of making her act in a specific way.

More precisely the setting involves two players Sender and Receiver. Receiver chooses
an action among a set of alternatives with uncertain consequences. An action yields
consequences for both players. Sender may try to influence Receiver so she chooses an
action that is most valuable to him. A crucial element of the Bayesian persuasion approach
is that Sender does not choose the information Receiver obtains. If he did that would raise
issues of strategic concealment and revelation. Instead Sender chooses an “information
structure” (IS) or a measurement that is a test, an investigation or a question. Sender is
committed to truthfully reveal the outcome of the IS (e.g., he does not control the entity that
performs the study). One example is in lobbying. A pharmaceutical company commissions
to a scientific laboratory a specific study of a drug impact, the result of which is delivered
to the regulator. Another example, closer to our application here, is a question to Receiver:
do you believe (Yes or No) that politicians’ climate inaction will lead to global catastrophe
under this century? The outcome of any IS is information. In our examples above, it is
information about the impact of a drug or about the opinion (beliefs) of Receiver on the
responsibility of politicians. This information generally affects Receiver’s beliefs which in
turn may affect her evaluation of the uncertain choice alternatives and therefore the choices
she makes. Sender chooses an IS to move Receiver’s (expected) choice closest to his own
preferred choice. In the classical context Receiver updates her beliefs using Bayes rule and
therefore the power of Sender is constrained by Bayesian plausibility: the fact the expected
posteriors must equal the priors.
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2.2. The Quantum Persuasion Approach

The quantum persuasion approach has been developed in the same vein as Bayesian
persuasion: we are interested in how Sender can use an IS to influence Receiver’s choices.
A central motivation is that persuasion seems much more influential than what comes out
of the Bayesian approach. So instead of assuming that agents are classical Bayesian, it has
been proposed that their beliefs are quantum-like. A first line of justification is that people
do not make decision based on reality but based on a representation of that reality, a mental
object. In quantum cognition, the decision-maker’s mental representation is modeled as a
quantum-like system and characterized by a cognitive state. The decision relevant uncer-
tainty is therefore of a non-classical (quantum) nature. A second line of motivation is that,
as argued in e.g., [30,38], this modeling approach allows capturing widespread cognitive
limitations. In particular, the fact that people face difficulties in combining different types
of information into a stable picture. Instead, the picture (mental object) that emerges de-
pends on the order in which information is processed. The key quantum property that we
appealed to is ‘Bohr complementarity’ of attributes i.e., that some attributes (or properties)
of a mental object may be incompatible in the decision-maker’s mind: they cannot have
definite value simultaneously. A central implication is that measurements (new infor-
mation) modifies the cognitive state in a non-Bayesian well-defined manner: the mental
representation evolves in response to new information in accordance Lüder’s rule which,
as shown in [38], secures the dynamic consistency of preferences. As shown in [23,39] a
rational quantum-like decision-maker can be manipulated well beyond the limits imposed
by Bayesian plausibility. In particular, Sender can exploit the incompatibility properties of
certain attributes in Receiver’s mind by providing distracting information to modify her
representation and consequent choice.

2.3. A 2 × 2 Quantum Decision Model

We next present a simplified model that we formulate in the terms of our experiment,
that is a choice between two uncertain options with two attributes each. For a general and
detailed exposition of the formal framework of quantum-like decision making see [23].

2.3.1. The Representation of a Choice Alternative

We have two animal protection projects Tiger Forever (TF) and Elephant Crisis
Fund (ECF). The initial information is incomplete so their (utility) value is uncertain.
Our decision-maker (DM) is endowed with a cognitive state which encapsulates the prob-
ability distribution for every possible state of the world. The notion of cognitive state
is similar to the notion of belief. However, in contrast to beliefs, a cognitive state is not
an (imperfect) image of the objective world. It is a mental construct, a representation of
the objective world that evolves in a way that reflects the cognitive constraints that we
focus on: namely that our DM cannot consider all perspectives (attributes) simultaneously.
There exist perspectives that are not compatible in her mind. They are incompatible or
Bohr complementary. The notion of Bohr complementarity is a central feature of Quan-
tum Mechanics. It relates to properties of a physical system that cannot have definite
values simulatneously. In quantum cognition, it relates to properties of the mental object
(the represented choice item). When the object has a determinate value i.e., the individual
is subjectively certain about e.g., the issue of urgency of a cause, her beliefs about an incom-
patible characteristics e.g., honesty of the NGO is necessarily mixed. As a consequence,
the picture (representation) that arises depends on the order in which different pieces of
information are processed.

The DM has an initial representation of the projects. To each project we associate a vec-
tor that captures the initial representation i.e., the cognitive state with respect to that project
(hereafter we refer simply to project-state or simply state). We use Dirac’s notation which
allows easily connecting with the geometrical illustration, the initial states are denoted
|T〉 and |E〉 with T for Tiger Forever and E for Elephants Crisis Fund. The two states are
modelled as independent systems meaning that we assume that a measurement operation
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on one system has no impact on the other i.e., we have no entanglement. Each (repre-
sented) project is characterized by two properties (or characteristics) which are assumed
incompatible with each other (in the DM mind). We call them Urgency (of the cause)
and Honesty (of the NGO managing the project). The Urgency property (or perspective)
is represented by a two dimensional space spanned by pure (subjective certainty) states
|U〉, and

∣∣U⊥〉 corresponding to the property of the project being Urgent respectively
not-Urgent. The Honesty perspective is represented by an alternative basis of the same
state space (|H〉,

∣∣H⊥〉) corresponding to Honest respectively not-Honest NGO. The fact
that the two bases span the same space is the geometrical expression of the (subjective)
incompatibility of the two properties.

2.3.2. Preferences

Individual preferences are captured by the utility value attributed by the DM to the
projects in the possible pure states e.g., |U〉 or

∣∣U⊥〉. The utility of an uncertain state is
calculated as a linear combination of those values. In addition, individual preferences are
characterized by a “preferred perspective” corresponding to the (most) decision relevant
characteristics of the item for the individual (e.g., the Urgency of the cause). When two
or more perspectives are incompatible in her mind, the individual uses her preferred
perspective to evaluate the expected utility of a project. This means that whereas our
DM is capable of looking at alternative perspectives on the same item, when it comes
to evaluation, she evaluates utility from one and the same perspective throughout the
game. This secures that in any belief state, the utility value is uniquely defined while other
incompatible perspectives affect choice through their impact on the belief state (see below).
In the following, we assume that the preferred perspective is the same for the two projects.

This is illustrated in Figure 1. The two projects are represented each by two distinct
states |T〉 and |E〉.

|U>

|U >

|H >

|H>

|T>

|E>

Figure 1. Project states.

The figure reads as follows. For a DM endowed with preferences that define Ur-
gency (U) as her preferred perspective (a U-individual), the expected utility value of con-
tributing 50 euros to the Elephant Crisis Fund in project-state |E〉 is denoted u(ECF; |E〉, U).
It depends on two things: 1. her beliefs (about the cause’s urgency) encapsulated in state
|E〉 and 2. her valuation of contributing to an urgent respectively non-urgent ECF project.
We denote these values xU ∈ R respectively xU⊥ ∈ R. It is useful to express an U- individ-
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ual’s preferences as EU =

(
xU 0
0 xU⊥

)
. As shown in [38] the utility value of project ECF is

given as follows

u(ECF; |E〉, U) = Tr(EU , E) = xU · |〈E |U〉|2 + xU⊥ · |〈E |U⊥〉|2. (1)

Our DM is risk neutral: her expected utility of the project is as usual the utility
associated with the possible states multiplied by the (subjective) probability for those states.
So, for instance, with xU = 1 and xU⊥ = 0, the expected utility value of contributing to
ECF when the individual has U-preferences is equal to her subjective probability that the
elephant cause is urgent. That probability is calculated according to Born’s rule which is
the formula for calculating probability in a quantum setting. It corresponds to the square
of the correlation coefficient 〈E |U〉; also called amplitude of probability. Graphically,
the probability amplitudes are read off in the diagram as the orthogonal projection (yellow
and blue thin doted lines) of vector |E〉 on the basis vectors ( |U〉,

∣∣U⊥〉, for a U-individual).
Similarly, we have for an individual with H-preferences:

u(ECF; |E〉, H) = Tr(EH , E) = xH · |〈E |H〉|2 + xH⊥ · |〈E |H⊥〉|2 (2)

where EH the utility matrix is defined in the (preferred) (H, H⊥) basis: EH =

(
xH 0
0 xH⊥

)
.

The corresponding expected utility values of the TF project for individual having U- and
H-preferences respectively are:

u(TF; |T〉, U) = Tr(TU , T) = yU · |〈T |U〉|2 + yU⊥ · |〈T |U⊥〉|2

u(TF; |T〉, H) = Tr(TH , T) = yT · |〈T |H〉|2 + yT⊥ · |〈T |H⊥〉|2

where TU =

(
yU 0
0 yU⊥

)
(as defined in the (U, U⊥) basis) and TH =

(
yH 0
0 yH⊥

)
(as de-

fined in the (H, H⊥) basis) are the operator representing the utility value of choosing TF
for a U-individual respectively a H-individual.

2.3.3. Choice

The individual makes her choice by comparing the expected utility of each project
and selecting the one that yields the highest expected utility. For the sake of illustration
take xU = yU = 1 and xU⊥ = yU⊥ = 0, reading directly from the figure we see that

u(TF; |T〉, U) = |〈T |U〉|2 > u(ECF; |E〉, U) = |〈E |U〉|2

and similarly setting xH = yH = 1 and xH⊥ = yH⊥ = 0

u(ECF; |E〉, H) = |〈E |H〉|2 > u(TF; |T〉, H) = |〈T |H〉|2

Which means that in our example a U-individual prefers to contribute to the TF project
while a H-individual prefers to contribute to the ECF project.

2.3.4. Persuasion

Persuasion is about modifying the cognitive state, i.e., the (mental) project-states.
This is achieved by means of an informational structure (IS) which we define as an oper-
ation that triggers the resolution of (subjective) uncertainty with respect to some aspect.
This corresponds to complete (projective) measurements of the state. In a two-dimentional
case, such measurements yield maximal (but not complete) knowledge. It is important
to keep in mind that we are dealing with mental objects (represented projects). So, in our
context, an IS can be a question that the individual puts to herself (alternatively an IS is an
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investigation of the outside world that determines whether the threat of extinction is real
or not). The outcome is generally some level of conviction (subjective certainty).

In quantum persuasion, an IS is decomposed into two parts: a measurement device
(MD) and an information channel (IC) (see [23] for details). An IC translates outcomes into
signals. In the present context, we confine ourselves to trivial IC, where the signals are
the outcomes of the MD. A MD is defined by a set of possible outcomes I, a collection of
probabilities pi to reach these outcomes where pi depends on the (cognitive) project-state,
pi = Tr(PiEPi) where |E〉 is the initial belief state (our project-state),the prior and Pi is the
projector corresponding to outcome i. Upon obtaining outcome i, the belief-state transits
(is updated) into Ei =

PiEPi
pi

according to Lüders’ rule (a behavioral justification for this
rule is provided in [38]). In line with the general theory, we focus on direct (or projective)
measurements, that is, MDs whose outcomes transit the prior into a pure cognitive state,
i.e., a state of full conviction (subjective certainty with respect to some aspect).

As in the standard persuasion problem, Sender chooses the MD. In our experiment
Sender chooses the question put to Receiver. For instance “how urgent do you think it is
to protect elephants from the threat of extinction”. Such an MD is similar to a procedure
that actualizes (rather than “elicit”) the individual’s beliefs about the severity of the threat.
The distinction between eliciting and actualizing is that in the first case, it is assumed
that the beliefs pre-existed the questioning, it is simply revealed. In contrast, actualizing
means that the revealed beliefs were a potential among others which were made actual
by the operation of questioning—they did not pre-exist. The statistical distribution of
answers expresses the (mixed) beliefs. A crucial point that we emphasize here is that
simply eliciting beliefs does not provide any informational justification for modifying those
beliefs (project-state). In the classical context, belief elicitation has no impact. Yet, as we
next shall see, as Sender asks such a question Receiver’s cognitive state changes which is
the signature of its intrinsic indeterminacy.

2.3.5. The Impact of Measurements

In the development, below we focus exclusively on introspective measurements,
i.e., questions put to the decision-maker about the (represented) state of the world. This is
in accordance with the experiment that follows. We distinguish between two types of
measurements. Those that are compatible with each other, they correspond to commuting
operations on the project-state. And those that are incompatible which correspond to non-
commuting operations. In a similar way we speak of measurements that are compatible
(incompatible) with the preferred perspective.

Compatible Measurements

The performance of a measurement of the (represented) projects in the individual’s
preference perspective corresponds to actualizing decision-relevant beliefs. The U-question:
do you think that the cause is urgent YES/NO? is for a U-individual compatible with her
preferred perspective. The question is formulated as a binary choice YES/NO, the initial
mixed project state generates the probabilities for the responses.

In the classical (Bayesian) context this type of questioning is inconsequential
(see below). This contrast with the quantum context where it modifies the project-state
(beliefs). A compatible YES/NO question induces the ’collapse’ of the (mixed) state onto
one of the pure states. Consider a U-individual when questioned about her belief regarding
the urgency of the elephant cause her prior |E〉 collapses onto |E′〉 = |UE〉 with probability

|〈E |UE〉|2 and onto |E′〉 =
∣∣U⊥

E
〉

with probability
∣∣〈E

∣∣U⊥
E
〉∣∣2 and similarly if questioned

about the urgency of the Tiger cause |T〉 → |T′〉 = |UT〉 or |T′〉 =
∣∣U⊥

T
〉

where the subscript
informs about the project and are neglected when no confusion arises i.e., it is clear which
project we talk about. The measurement of the two project-states (corresponding to ECF
respectively TF) generates 4 possible combinations of project-states e.g., (|E〉, |T〉) transits
onto (|UE〉, |UT〉) with a probabilities given by |〈E |U〉|2|〈T |U〉|2.
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We can now examine the impact of a measurement on the DM’s choice in the graphical
example above. Recall that in the absence of measurement our U-individual is select-
ing TF with probability 1 and ECF with probability 0. When the choice is preceded by
the Urgency question, with probability

∣∣〈T ∣∣U⊥〉∣∣2|〈E |U〉|2 > 0 the resulting states are(
|UE〉,

∣∣U⊥
T
〉)

. In this event, she selects ECF because u(TF; |T′〉, U)T=U⊥
T
= Tr(TUU⊥

T ) =

0 < u(ECF; |E′〉, U)E=UE
= Tr(EUUT) = 1. So, we find that her choice behavior is affected

by the question. Similarly, our H-individual will, after answering the compatible question,
select TF with positive probability. Thus we have shown that even a “naive” question about
the individual’s decision relevant beliefs can induce a change in the expected revealed
preferences i.e., we already have some “persuasion”.

The impact of the mere actualization of beliefs underlines a distinction between the
quantum and the classical framework. In the quantum world measurements generally
change the state of the measured system (here the beliefs or project-states). This is an
expression of the fundamental distinction with the classical world where it is assumed
that reality preexists any measurement that merely reveals it. In the quantum world
reality is contextual which means that measurements contribute in determining the state
i.e., they do not reveal a preexisting state, they contribute in shaping that state. This is called
contextuality (see [50] for a rich collection of contributions on contextuality). Another
distinction with the classical case is the difference in the impact of compatible versus
incompatible measurements as we show next.

Incompatible Measurement: Distraction

We now turn to distraction which we define as the actualization of beliefs with respect
to features not directly relevant to decision-making i.e., belonging to a perspective that is
incompatible with the preferred perspective. Below we depict the case when addressing
a U-preference individual. Distraction corresponds to putting a H-question e.g., do you
believe WWF (managing ECF) is honest YES/NO? As in the compatible case the question
triggers the collapse of the project-state |E〉 in the basis corresponding to the question,
here

(
H, H⊥). The state |E〉 transits into |E′〉 equal to either |HE〉 or

∣∣H⊥
E
〉

and it does so

with probability |〈E |H〉|2 and
∣∣〈E

∣∣H⊥〉∣∣2. And similarly for the H-question regarding TF
(the NGO managing the Tiger project). We illustrate this in Figure 2 with the green lines for
E the cognitive state representing ECF.

In contrast with the compatible measurement case, after having answered the incom-
patible question the resulting cognitive state does not allow the DM to evaluate the expected
utility associated with the choice alternatives. She needs to project it back into her preferred
perspective. The expected utility of ECF for a U-individual in initial project-state |E〉
subjected to the H-question, is obtained by considering a sequence of two non-commuting
operations. First distraction, the state is projected onto the

(
H, H⊥) basis. Then the result-

ing state (H or H⊥) is projected back onto the preferred basis (U, U⊥) in order to evaluate
the project:

u(ECF; |E〉, U) =
[
|〈E |H〉|2|〈H |U〉|2 + |〈E |H⊥〉|2

∣∣∣〈H⊥ |U〉|2
]

xU +[
|〈E |H〉|2|〈H |U⊥〉|2 + |〈E |H⊥〉|2

∣∣∣〈H⊥ |U⊥〉|2
]

xU⊥ .

Example

Consider the following numerical example for a H-individual where we simplify the
matter by assuming |T〉 = |E〉 = |D〉, that is the two projects are represented by the same
project-state meaning that they are subjectively perceived as equally urgent and honest.
Let this state in the H-perspective be

D =

(
4/5 2/5
2/5 1/5

)
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Consider the following utility values xH = 8, xH⊥ = 7, yH = 10, yH⊥ = 4. Using the
formula in (2) we obtain:

u(ECF; |D〉, H) = 4/5 · 8 + 1/5 · 7 = 39/5

And similarly
u(TF; |D〉, H) = 4/5 · 10 + 1/5 · 4 = 44/5

Which means that this H-individual chooses to donate to TF.

|U>

|U >

|H >

|H>

|T>

|E>

Figure 2. Distraction.

Let us now consider a distraction toward the Urgency perspective that we model
for simplicity as a 45◦ rotation of the H-basis (which corresponds to the case when the

pure states are statistically uncorrelated across perspectives) U =

(
1/2 1/2
1/2 1/2

)
and U⊥ =(

1/2 −1/2
−1/2 1/2

)
.

The distractive procedure is as follows: first the H-individual in project-state |D〉 is
asked whether she thinks the Elephant respectively Tiger cause is Urgent or not Urgent
which takes the state |D〉 onto

∣∣∣UE(T)

〉
or
∣∣∣U⊥

E(T)

〉
. Then, our H-individual evaluates her

expected utility value in the
(

H, H⊥) perspective. With a 45◦ rotation the computation
simplifies greatly because whether distraction takes the states to Uor U⊥, the probability
for H respectively H⊥ is the same:

u(ECF; |D〉, H) =
[
|〈D |U〉|2 + |〈D |U⊥〉|2

]
1/2xH +

[
|〈D |U〉|2 + |〈D |U⊥〉|2

]
1/2xH⊥

= 1/2xH + 1/2xH⊥ = 4 + 3.5 = 7.5

and similarly

u(TF; |D〉, T) =
[
|〈D |U〉|2 + |〈T |U⊥〉|2

]
1/2yH +

[
|〈T |U〉|2 + |〈T |U⊥〉|2

]
1/2yH⊥

= 1/2yH + 1/2yH⊥ = 5 + 2 = 7.

So after the distraction our individual chooses to donate to the ECF project with
probability 1 instead of TF in the absence of distraction. So we note that the impact of
distraction can be a total reversal of the choice. This is in contrast with the impact of
decision-relevant belief actualization (compatible measurement) which only triggers some
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partial reversal. For a general theoretical argument on the persuasion power of a distractive
IS as compared with a compatible IS see [23].

Before moving to the experiment let us briefly remind ourselves of the classical
subjective uncertainty approach in our example.

2.3.6. The Classical Uncertainty Approach

The classical uncertainty framework is nested in the quantum setting. It corresponds to
the case when all properties of an item (perspectives) are compatible and therefore Lüder’s
rule for updating is equivalent to Bayesian updating. The individual can simultaneously
considers Urgency and Honesty and combine them to obtain her expected utility value.
Assuming a separable and additive utility function, we write

u(T) = α
(

p0
U(T)xU +

(
1 − p0

U(T)
)

xU⊥

)
+ (1 − α)

(
p0

T(T)xH +
(

1 − p0
T(T)

)
xH⊥

)
u(E) = α

(
p0

U(E)yU +
(

1 − p0
U(E)

)
yU⊥

)
+ (1 − α)

(
p0

T(E)yT +
(

1 − p0
T(E)

)
yT⊥

)
where p0

U(T) is the subjective probability in state |T〉 that the TF project is urgent (and
c
(
1 − p0

U(T)c
)

that it is not urgent) and similarly for the other probabilities. The superscript
refers to time t = 0 (initial beliefs). The α is the relative preference weight given to urgency
((1 − α) the relative weight of honesty). An individual for whom honesty is determinant is
an individual with α < 1/2 and similarly for U-individuals (α ≥ 1/2).

Recall that the measurements that we consider are exclusively introspective i.e., no in-
formation appealing to the outside world is called upon. In other words, the questions
correspond to eliciting Receiver’s beliefs.

When asked “do you believe the tiger cause is urgent YES/NO. With probability p0
U(T)

Receiver answers YES and with probability
(
1 − p0

U(T)
)

she answers NO. But her beliefs do
not change, they remain mixed. Since beliefs are unchanged so is the expected utility from
the two projects. As a consequence Receiver’s choice is not affected by Sender’s question.
To put it differently, an introspective measurement has no persuasion power whatsoever in
the classical context. The classical prediction contrasts starkly with the quantum model
where an introspective measurement with respect to both compatible and incompatible
perspectives has impact on decision-making. Those predictions appears more consistent
with numerous experimental works that exhibit a significant impact of belief elicitation on
decision-making see most recently [51]). In addition, as illustrated above, incompatible
introspective measurements have the strongest potential to affect decision-making. TIt is
precisely this prediction that we aim at testing with the next following experiment.

3. Experimental Design

Our main experiment features the choice to donate to either one of two projects
concerned with the protection of endangered species. It uses the property of Bohr com-
plementarity of mental perspectives. More precisely it relies on the hypothesis that two
perspectives on the projects are incompatible in the mind of Receiver. The two perspectives
that we consider are “the urgency of the cause” and “the honesty of the organization
that manages the funds’ (the terms “honesty” and “trustworthiness”, or “trust”, are used
interchangeably). As a first step we provided experimental support for the incompatibil-
ity hypothesis. We know that when two properties are incompatible measuring them in
different orders yields different outcomes. Therefore, we started with an experiment to
check whether order matters for the response profile obtained. Note that even in Physics,
there is no theoretical argument for establishing whether two properties are compatible or
not. This must be done empirically.

3.1. Testing for the Incompatibility of Perspectives

At the time we conducted our study, the world was confronted with a severe refugee
crisis in Myanmar. The situation actualized quite sharply the two perspectives we wanted
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to test. On the one hand, the urgency of the humanitarian crisis and, on the other hand,
the uncertainty about the reliability/honesty of the NGOs on the ground.

We recruited 295 respondents through Amazon’s Mechanical Turk, for which data
quality has been confirmed by different studies (e.g., [52,53]). The respondents completed
the short survey below on the website Typeform. They were paid $0.1 and spent on average
0:17 minutes to complete the survey.

The participants were first presented a screen with a short description of the situation
of refugees in Myanmar including a mention of the main humanitarian NGO present in
the field:

“About a million refugees (a majority of women and children) escaped persecution in
Myanmar. Most of them fled to Bangladesh. The Bengali Red Crescent is the primary
humanitarian organization that is providing help to the Rohingyas. They are in immediate
need of drinkable water, food, shelter and first medical aid.”

They were then asked to evaluate the urgency of the cause and the honesty to the NGO
on a scale from 1 (“Not urgent” or “Do not trust”) to 5 (“Extremely urgent” or “Fully trust”).
The order of presentation of the two questions was randomized so that half of participants
responded to the urgency question before trust (U-T), and the other half conversely (T-U).

We prove the existence of order effects by showing that the responses are drawn from
two different distributions. We do this using both a difference in means test (i.e., two-sample
t-test with t = −2.54 and p-value = 0.011) and a nonparametric test of the two sample dis-
tributions (i.e., two-sample Kolmogorov-Smirnov test with D = 0.11 and p-value = 0.047)
in R.

The results are consistent with the hypothesis that the two perspectives are incom-
patible in the mind of people. As well-known there exist other theories for order effects.
We observe that the value of the responses to the Trust question tend to be lower when that
question comes first (i.e., T-U), whereas the responses to the Urgency question tends to
have a higher value when that question comes first (i.e., U-T). Therefore, we can reject both
the hypothesis of a recency biais and that of a primacy bias. This strengthens our quantum
interpretation. We next proceed to the main experiment using those two perspectives.

3.2. Main Experiment

1253 participants completed the survey on the website Typeform, they were recruited
through Amazon’s Mechanical Turk. They were paid either $1 to $0.75 depending on
the condition.

The participants were divided into three groups. Two treatment groups and a control
group as explained below. All three groups were presented a screen with an introductory
message, informing them that the questionnaire is part of a research project on quantum
cognition and that they will contribute in deciding which one of two NGOs projects will
receive a �50 donation. The decision will be made by randomly selecting a respondent
and implementing his or her decision. Presumably, this created an incentive to respond
truthfully. The respondents were next asked to click on a button that randomly assigned
them to a specific condition. In all conditions, participants were shown a short text about
the situation of elephants respectively tigers and of ongoing actions of two NGOs working
for their protection the Elephant Crisis Fund (ECF) and Tiger Forever (TF). The order of
presentation of the text was reversed for half of the subjects. This aimed at isolating order
effects not relevant to our main point. The screen displayed the following two texts:

“Elephant crisis fund: A virulent wave of poaching is on-going with an elephant killed for
its tusks every 15 min. The current population is estimated to around 700,000 elephants
in the wild. Driving the killing is international ivory trade that thrives on poverty,
corruption, and greed. But there is hope. The Elephant Crisis Fund closely linked to
World Wildlife Fund (WWF) exists to encourage collaboration, and deliver rapid impact
on the ground to stop the killing, the trafficking, and the demand for ivory.”
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“Tiger Forever: Tigers are illegally killed for their pelts and body parts used in traditional
Asian medicines. They are also seen as threats to human communities. They suffer from
large scale habitat loss due to human population growth and expansion. Tiger Forever
was founded 2006 with the goal of reversing global tiger decline. It is active in 17 sites
with Non-Governmental Organizations (NGOs) and government partners. The sites
host about 2260 tigers or 70% of the total world’s tiger population”

It is worth mentioning that the descriptions were formulated so as to slightly suggest
that the elephants’ NGO (EFC) could be perceived as more trustworthy (because of its link
with of WWF, a well-known NGO). In contrast, the text about tigers suggested a higher
level of urgency (the absolute number of remaining tigers is significantly lower than the
number of remaining elephants). Thereafter, all respondents were confronted with a choice:

“When considering donating money in support of a project to protect endangered species,
different aspects may be relevant to your choice. Let us know what counts most to you:

-The urgency of the cause: among the many important issues in today’s world, does the
cause you consider belong to those that deserve urgent action? or

-The honesty of the organization to which you donate: do you trust the organization
managing the project to be reliable; i.e., do you trust the money will be used as advertised
rather than diverted.”

The objective was to elicit an element of their preferences namely their preferred
perspective, see Section 2. The rest of the questionnaire depended on which one of the
three groups the participants belonged to.

In the control condition (baseline), they were next asked whether or not they wanted
to read the first descriptions again or if they wanted to make their final decision i.e., to make
their choice between supporting the Elephant Crisis Fund or Tiger Forever both represented
by an image of an adult elephant respectively adult tiger (presented in random order on
the same screen).

In the first treatment condition, the respondents were redirected to a screen with
general information compatible with the aspect they indicated as determinant to their
choice when making a donation. Importantly, the information did not directly or indirectly
favor or disfavor any of the two projects. The information was aimed at triggering a
measurement as they were invited to determine themselves with respect to which of the
species was most urgent to save respectively which NGO was most trustworthy. We below
return to the role and expected impact of the general information screens. Those who cared
most honesty saw a screen with the following text:

“Did you know that most Elephant and Tiger projects are run by Non-Governmental
Organizations (NGOs)? But NGOs are not always honest! NGOs operating in countries
with endemic corruption face particular risks. NGOs are created by enthusiastic benev-
olent citizens who often lack proper competence to manage both internal and external
risks. Numerous scandals have shown how even long standing NGOs had been captured
by less scrupulous people to serve their own interest. So a reasonable concern is whether
Tiger Forever respectively Elephant Crisis Fund deserves our trust.”

Those who cared most for urgency saw:

“Did you know that global wildlife populations have declined 58% since 1970, primarily
due to habitat destruction, over-hunting and pollution. It is urgent to reverse the decline!

“For the first time since the demise of the dinosaurs 65 million years ago, we face a global
mass extinction of wildlife. We ignore the decline of other species at our peril–for they are
the barometer that reveals our impact on the world that sustains us.” —Mike Barrett,
director of science and policy at WWF’s UK branch. A reasonable concern is how urgent
protecting tigers or elephants actually is.”

Thereafter the respondents were offered the opportunity to read again the descriptions
before making their image choice between ECF and TF.
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In the main treatment condition (distraction), participants were redirected to a screen
with general information on the aspect they did not select as determinant to their choice;
this is what we call a distraction. So, those who selected honesty (resp. urgency) saw the
screen on global wildlife decline (resp. NGO’s scandals). Thereafter, the respondents were
offered the opportunity to read again the initial project description before making their
image choice.

Finally, information about their age, gender, education and habits of donation to
NGOs was collected before the thank-you message ending of the experiment.

Before presenting the results, we wish to address a feature of the experimental design
absent from the theoretical model.

The General Information Screens

First, we note that the theoretical model does not account for anything like a general
information screen. The connection with the model is with the questions that follow the
general information. Indeed, general information plays no role for persuasion since it
conveys no new data on the relative urgency or honesty of the specific projects. Therefore it
should not affect the choice between the two projects. So, what is the role of those screens?

Our justification for the general information screens is to be found in the quantum
approach to cognition. Quantum cognition recognizes that people consider project from
different perspectives some of which may be incompatible but not mutually exclusive.
They are Bohr complementary which implies that the questions related to those perspectives
do not commute i.e., order matters. This in turn is an expression of the fact that the cognitive
state is modified by responding to a question. Our intuition is that there can be some
inertia. Consider a person who declared that Honesty is her priority which we interpret as
her being in the Honesty perspective. If you abruptly ask whether the elephant cause is
urgent, she might not make the effort to switch perspective in order to respond faithfully.
In contrast if you softly accompany her into the switch with an engaging short text, she will
find herself capable of responding truthfully without particular effort.

Hence the point with those screens is to accompany the change in perspective. Clearly,
that is only justified in the distraction treatment, but for the sake of symmetry, we have a
similar screen in the treatment where no change of perspective is required.

Next, one may wonder why we do not, in the experiment, simply ask people for their
beliefs e.g., do you trust that NGO? But instead we suggest a questioning: “So a reasonable
concern is whether Tiger Forever respectively Elephant Crisis Fund deserves our trust”.
The reason is that we wanted to avoid that the response would influence the respondent
beyond the impact under investigation. Additional impact can be expected because of
perceived dissonance. Assume the individual cares for the urgency of the cause and since
there are only 2700 tigers left, so she is most likely to choose TF. If she is explicitly asked
whether she believes that the TF NGO is honest and decides that she does not trust them
much, then it becomes psychologically difficult to select TF. Since we do not put an explicit
question but use a general text to induce the measurement, people are expected to be
less likely to perceive dissonance and choose more spontaneously. These precautions are
among the difficult decisions we have to make in quantum cognition when trying to exhibit
quantum effect in behavior. Individuals are, in contrast with particles, thinking systems
endowed with, among other things, a drive toward consistency which can interfere with
the intrinsic indeterminacy of preferences (see e.g., [26,54]) and Discussion in Section 5).

3.3. Theoretical Predictions

Before getting into the results and their interpretation, let us remind of the main
theoretical predictions:

• The Bayesian model predicts no effect in both treatment groups.
• The quantum model predicts that the distraction treatment group should exhibit

a significantly different allocation of responses compared with the control group’s
choice profile. It also predicts some milder impact of the question in the compatible
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treatment compared with the control group. It should be emphasized that since
we lack information about the correlation coefficients between the two perspectives
and the utility values, we do not have quantitative predictions. Generally, the less
correlated two perspectives (in the example of Section 2 they were fully uncorrelated)
the larger the expected impact in terms of switching the choice for given utility values.

4. Results

4.1. Descriptive Statistics

Data were processed, cleaned and analyzed with statistical software R. The number
of acceptable observations was 1253 (114 participants were removed from the data due
to a technical error which created a risk that some participants might have responded
twice). 58.5% of all respondents were male, the average age was 35.6 years and the average
education level was undergraduate. Overall, 71.1 % of the participants declared that the
Honesty of the NGO rather than the Urgency of the cause is what counts most to their choice.
Across the three conditions, 54.4% chose to support with their donation the Elephants Crisis
Fund (ECF) and 45.6 the Tiger Forever project (TF). Looking into the different treatment
groups, we find that 59% of the respondents in the control condition chose ECF and 54%
in the compatible information treatment group. In contrast, in the distraction treatment
group, only 47% chose ECF. Conditional on revealed preferences, 50% of the respondents
who valued Urgency most chose to support TF, whereas 56% of those who valued Honesty
most chose to support ECF. Overall, 87.8% made their final decision without reading the
description of the projects a second time. They spent, on average, 1:33 minutes to complete
the experiment.

We divided up the respondents into a number of subgroups based on their preferences
and the detailed treatment they received. Figure 3 represents the number of participants
who chose TF respectively ECF conditional on their preference (Honesty vs. Urgency) and
the order of the presentation they have been exposed to (ECF-TF vs. TF-ECF). Note that
for all conditions but “Honesty-ET”, a majority of participants chose ECF in the control
condition and TF in the incompatible condition. This is particularly striking for “Honesty-
TE” and “Urgency-ET”. At first glance, we find a clear reversal in three of the subgroups.

3. TE−Urgency (n = 174) 4. ET−Honesty (n = 472)

1. TE−Honesty (n = 419) 2. ET−Urgency (n = 188)
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Figure 3. Descriptive Histograms.
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4.1.1. Data Analysis
General Results

The first set of results displayed in Table 1’s first column establishes that distraction—
i.e., the question related to the non-determinant perspective - has a statistically significant
impact on the final choice (p = 0.005). This result stands across different specifications
see Table A1 in the Appendix A). In particular, it appears that everything else being
constant, the predicted probability of choosing ECF is 11.1% lower for an individual in
the incompatible condition than for an individual in the control condition. By contrast,
there is no statistically significant impact of the compatible question on the final decision
(p = 0.173). This result is also persistent over alternative specifications. Note however that
the effect of the compatible question on the final choice is nonzero. We come back to this
later on.

Not surprisingly, there is a statistically significant impact (p = 0.046) on the final choice
of the declared determinant—i.e., Honesty versus Urgency, which captures an element of
preferences. Here again, the influence is robust to alternative specifications (see Table A1 in
the Appendix A). More precisely, the predicted probability of choosing ECF is 6.33% higher for
an individual claiming that Honesty is determinant than for someone who reported Urgency
as determinant to her choice. By contrast there is no statistically significant impact (p = 0.7)
of the order of presentation of the project descriptions on the final decision.

The correlation between covariates were not bigger than −0.13 (between Age and
Male)—hence putting aside potential issues of multicollinearity. In particular, regressing
on revealed preferences (i.e., choice between Honesty and Urgency) shows no relationship
with the order of presentation of the descriptions (ECF-TF and TF-ECF). Interestingly, none
of the variables significantly affected the revealed preferences.

Table 1. Logit Regressions on Final Choice (ECF)—Coefficients transformed.

Dependent Variable:

Decision_ECF

General Hon Urg ET TE ET-Hon TE-Hon ET-Urg TE-Urg

Compatible
condition

−0.170 −0.142 −0.231 −0.181 −0.175 −0.164 −0.154 −0.216 −0.263

t = −1.363 t = −0.938 t = −1.030 t = −1.063 t = −0.958 t = −0.807 t = −0.683 t = −0.669 t = −0.833

Incompatible
condition

−0.363 ∗∗∗ −0.336 ∗∗ −0.455 ∗ −0.249 −0.488 ∗∗∗ −0.142 −0.523 ∗∗ −0.510 ∗ −0.404

t = −2.791 t = −2.152 t = −1.953 t = −1.307 t = −2.763 t = −0.591 t = −2.563 t = −1.658 t = −1.129

Honesty 0.294 ∗∗ 0.196 0.407 ∗

t = 1.998 t = 1.007 t = 1.809

Order
(ECF-TF)

0.046 −0.014 0.209

t = 0.383 t = −0.101 t = 0.868

Reread
Descriptions

−0.088 −0.178 0.341 −0.057 −0.117 −0.139 −0.209 0.374 0.241

t = −0.502 t = −0.941 t = 0.720 t = −0.225 t = −0.467 t = −0.508 t = −0.777 t = 0.566 t = 0.354

Age 0.005 0.008 −0.002 0.006 0.003 0.002 0.015 0.019 −0.022
t = 0.894 t = 1.198 t = −0.186 t = 0.826 t = 0.394 t = 0.227 t = 1.455 t = 1.245 t = −1.513

Male −0.172 −0.128 −0.262 −0.067 −0.274 ∗ −0.086 −0.184 −0.119 −0.390
t = −1.566 t = −0.952 t = −1.348 t = −0.414 t = −1.836 t = −0.447 t = −0.968 t = −0.393 t = −1.518

Education 0.021 0.006 0.072 0.002 0.026 −0.011 0.012 0.032 0.116
t = 0.252 t = 0.064 t = 0.450 t = 0.019 t = 0.210 t = −0.085 t = 0.080 t = 0.147 t = 0.479

NGO 0.006 0.038 −0.062 0.190 −0.187 0.356 −0.272 −0.167 0.137
t = 0.051 t = 0.259 t = −0.287 t = 1.058 t = −1.154 t = 1.554 t = −1.446 t = −0.589 t = 0.392

Constant 0.068 0.251 0.317 −0.028 0.303 0.292 0.253 −0.213 1.559
t = 0.216 t = 0.617 t = 0.534 t = −0.068 t = 0.597 t = 0.528 t = 0.419 t = −0.329 t = 1.240

Observations 1211 864 347 638 573 458 406 180 167
Log
Likelihood

−825.591 −586.663 −237.452 −436.394 −385.940 −311.893 −269.413 −122.258 −112.568

Akaike Inf.
Crit.

1671.183 1191.325 492.904 890.788 789.879 639.786 554.825 260.515 241.136

Note: ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01. Coefficients are transformed as : exp(β)− 1.

72



Symmetry 2021, 13, 162

Advanced Results

As shown by Table 1, we find that the distraction effect is not homogeneous across
subgroups. First, we find that the distraction effect was stronger in the Urgency subgroup
than in Honesty subgroup: for Urgency-individuals, the predicted probability of choosing
ECF in the incompatible condition is 14.93% lower compared to the control condition
(p = 0.051); for Honesty-individuals, it is 10.05% lower (p = 0.031). Next, it appears
that the impact of distraction is most pronounced for those who were presented the Tiger
Forever project first and Elephant Crisis Fund last (TE subgroup; see Table 1). Distraction
statistically significantly affected the final choice in that group (corresponding to 50% of
the respondents). In fact, TE-participants in the incompatible condition had a predicted
probability of choosing ECF that was 16.3% lower than TE-participants in the control
condition (p = 0.006; see Table 2).

Table 2. Predicted Probability Difference between Incompatible and Control condition.

General Hon Urg ET TE ET_Hon TE_Hon ET_Urg TE_Urg

Difference −0.111 −0.101 −0.149 −0.070 −0.163 −0.037 −0.179 −0.174 −0.125
p-value 0.005 0.031 0.051 0.191 0.006 0.555 0.010 0.097 0.259

When combining the TE presentation order with the Honesty subgroup: the difference
in predicted probability to choose ECF between the incompatible condition and the control
condition is 17.9% (p = 0.01). For ET-Urgency a 17.4% change in probability can be seen
(cf. Figure 3, Tables 2 and 1), even though the effect fails to reach statistical significance
at the 5% level (p = 0.097). Note however that group only constitutes around 15% of the
sample, while the TE-Honesty subgroup represents around 34% of the data. For the other
two subgroups, distraction had no statistical significant impact (p = 0.555), but a switch of
12.5% may still be noticed for TE-Urg.

4.1.2. Interpretation

First, we note that the significance of preferences (i.e., the answer to “what is de-
terminant to your choice”) for the final choice combined with the fact that a majority of
participants who chose Honesty also chose ECF regardless of their condition, suggests that
the initial texts were generally well-understood. As explained earlier, the description of the
Elephant project was designed to suggest more trust to the NGO managing the project and
the description of the Tiger project to suggest a higher level of urgency.

The general results show with no ambiguity that the question triggered by the incom-
patible information (distraction) had a significant impact on the final choice. It induced
some extent of switch as compared to both the control group and the compatible informa-
tion group. Interestingly, the switch does not reflect the thematic content of the screens.
This is consistent with the fact that the information in the screens did not favor any one of
the projects. The quantum model provides an explanation for why Urgency individuals
made aware of corruption problems reduced their support for ECF (presumably managed
by the more reliable WWF). Distraction can induce such change. This is the case for exam-
ple when the two perspectives (Urgency and Honesty) are uncorrelated (45◦ rotation as
in the example) for a class of project-states and preferences. And it does seem reasonable
to expect no or minimal correlation between Urgency of the cause and the Honesty of
the NGO (in people’s mind). The fact that the compatible information had no statistically
significant impact supports the thesis that being simply exposed to a general information
screen does not affect the choice. Instead it is only when the appending question induces a
change in perspective that something happens.

We found significant variations between subgroups. First, we could exhibit a distinc-
tion in the reaction to distraction depending on preferences alone. On average, Urgency-
individuals have been more sensitive to distraction than Honesty-individuals. This could
be explained by a the fact that Urgency people tend to be more passionate about the situa-
tion. A passionate individual may feature a more pronounced quantum-like working of
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the mind because she is expected to be less constrained by the rational mind (see below for
further arguments).

More intriguing is the fact that when combining preference and the order of presen-
tation, we find that individuals whose preferences are congruent with the last presented
project (TE-Hon and ET-Urg) tend to be more sensitive to distraction. The order of pre-
sentation of the projects is an element of the “preparation procedure ’( in QM, the state
of a quantum system is determined by a suitable preparation procedure). One possible
explanation is that “congruent respondents” are more manipulable because both beliefs
and preferences are indeterminate. Although this paper focuses on the indeterminacy of
beliefs, both beliefs and preferences are mental objects that we expect can exhibit quantum-
like properties. Indeed a number of works in quantum cognition address preference
indeterminacy (see for instance [55]). As we discuss in the next section the rational mind
tends to constrain the quantum-like working of the mind. We can thus conjecture that
“congruent respondents” include respondents for whom the rational mind was less con-
straining. Their preferences were partly determined by the information received just before
they had to respond to “what is most important for you?”. This line of interpretation
goes outside of our quantum model which focuses on beliefs indeterminacy however.
It suggests that future research in quantum cognition should address both determinants of
decision-making simultaneously.

Even when looking more closely at the results, we find no statistically significant
impact of the compatible question. This is consistent with the Bayesian model because no
information relevant to the choice between the two projects is provided. Note however
that, despite the lack of statistical significance, the effect in the compatible condition is
nonzero. We note that in the ET-Honesty subgroup is close to the effect of the incompatible
condition. We recall that the theoretical model predicts some mild impact on the belief
state. An U-individual who chooses TF on the basis of mixed beliefs will choose ECF
with some probability if she is forced to decide for herself whether the cause is urgent
YES or NO, prior to decision (see Section 2.3.4). The same holds for those who choose
ECF while holding mixed beliefs. We conjecture that, at the sample level these effects also
counter-balance each other so the overall impact is not statistically significant.

The time for responding to the whole questionnaire was between 1 and 3 min
which is rather short. We interpret this feature as an evidence that the quantum work-
ing of the mind could be part of what Nobel prize Kahneman calls System 1—the fast,
non-rational reasoning [12]: no new information of relevance for the choice was provided
yet decision-making was affected. The respondent did not take time to reflect, they re-
acted spontaneously to the distraction. Recall that we do not elicit their preferences for
the projects but only for what is determinant in a class of situations. That choice in our
experiment was made to minimize interference from the rational mind. Nevertheless,
we found that those determinants were highly correlated with the final choice both in the
control and compatible information groups. The significance of the impact of distraction
distraction results suggest that as we had conjectured respondents were not aware of the
correlation (and the logic behind it). Therefore, they were not confronted with a (conscious)
cognitive dissonance when the distraction changed their focus and eventually affected
their decision. In the same line of thoughts the respondents overwhelmingly passed the
chance to reassess their understanding of the project before making their choice. Only 12%
used the opportunity re-read before making their choice.

An interesting finding is that the results are fully independent of population variables
which supports the hypothesis that the quantum-like structure is a general regularity of
the human mind.

5. Concluding Remarks and Discussion

In this paper, we have proposed an explanation of the manipulability of people’s
decision-making based on the intrinsic indeterminacy of the individual’s subjective rep-
resentation of the world. We first developed a simple quantum model of choice between
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two uncertain alternatives. Compared with the classical approach, the main distinction
is in the modelisation of uncertainty. Where the classical approach relies on a single in-
tegrated representation on the world, the quantum-like modelling of uncertainty allows
for a multiplicity of equally valid but subjectively incompatible perspectives on the world
which is the expression of the intrinsic indeterminacy of mental objects. We show how an
indeterminate representation of the world can be exploited to manipulate a decision-maker
by a Sender who simply asks questions. Our focus has been on introspective questions, that
is question about beliefs that bring no new information from the outside world. This allows
establishing a clear distinction between the classical model’s predictions and the quantum
one. In particular, we show with an example that the quantum model predicts that distrac-
tive questions have strong persuasion power when the classical model predicts no impact
of such questions at all.

We provided a first empirical test of that prediction in an experiment where individu-
als choose between supporting either one of two projects to save elephants respectively
tigers. In the experiment that we performed, the change of focus or of narratives brought
about by the distractive question was shown to statistically significantly affect revealed
preferences for the projects. This central result is in accordance with the predictions of
the quantum model when dealing with two incompatible perspectives here Urgency and
Honesty. Looking closer, we find some significant differences in reaction between sub-
groups, with some reacting very strongly and others much less so. While this calls for
further investigation, we find that this first experimental test was successful in providing
some support for the hypothesis that the manipulability of people may have its roots in the
indeterminacy of their subjective representation of the world.

In the real world however, a cause can simultaneously be urgent and the NGO
supporting the project dishonest. There is thus a discrepancy between the properties of the
true classical objects (the projects) and the properties of their representation, the mental
objects (project-states). When Receiver processes information about a classical object as if
it was a quantum system, she is mistaken. But as amply evidenced in Kahneman’s best
selling book “Thinking Fast and Slow”, information processing is not always disciplined
by (Bayesian) rational thinking when the brain operates quickly. The two-system approach
does also open the way for manipulation because when the individual thinks fast she makes
mistakes which could be exploited. Our view is that the quantum approach rather than
being an alternative to most behavioral explanations, provides a rigorous foundations to a
number of them. The interpretation that arises from its structure can however be different.
Quantum cognition proposes that all forms of thinking are contextual due to the intrinsic
indeterminacy of mental objects including beliefs and preferences. Conscious thinking may
however interfere and constrain contextuality. Galberti [44] relies on a similar argument to
explain Receiver’s resistance to change worldview. The reason is that individuals have a
resistance to changing their mind without a “good reason” due to drive toward consistency.
This drive needs not be related to true rationality however but instead to an entrenched
attachment to a stable identity or ego. The existence of a stable identity has been questioned
by numerous experimental results (see e.g., self-perception theory and [56]). Those studies
are consistent with a contextual and thus unstable identity [56]. As in the two-system
approach the extent of conscious thinking matters. This is because the drive toward
maintaining a coherent ego is more effectual when the individual is conscious about her
instability. As argued in [55] cognitive dissonance and its resolution is an expression of
that drive in face of instability (arising from intrinsic indeterminacy). We close this short
discussion by suggesting that the quantum-like nature of mental objects needs not reflect a
cognitive failure but would be the expression of the intrinsic indeterminacy (contextuality)
of human reality. The question of rationality in such a context deserves further investigation.

Finally, we recognize that quantum cognition experiments cannot have the same
degree of precision of physical experiments which prevents making and testing quantitative
predictions. To a large part, this is because it is (today) impossible to fully characterize
the state of a cognitive system which is incommensurably more complex that of an atomic
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particle. Nevertheless, our experimental exercise shows that it may be useful to test some
theoretical predictions in contrast with standard classical (Bayesian) ones.
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Appendix A

Table A1. Alternative Specifications.

Dependent Variable:

Decision_ECF

(1) (2) (3) (4)

QComp −0.176 −0.170 −0.172 −0.186
(0.134) (0.134) (0.134) (0.137)

QIncomp −0.475 ∗∗∗ −0.476 ∗∗∗ −0.477 ∗∗∗ −0.451 ∗∗∗

(0.160) (0.160) (0.160) (0.162)

Honesty 0.267 ∗∗ 0.356 ∗ 0.258 ∗∗

(0.128) (0.185) (0.129)

ET 0.039 0.160 0.045
(0.116) (0.216) (0.117)

Honesty:ET −0.171
(0.256)

Reread_
Descriptions

−0.093

(0.185)

Age 0.005
(0.006)

Male −0.189
(0.121)

Education 0.021
(0.083)

NGO 0.006
(0.121)

Constant 0.371 ∗∗∗ 0.158 0.096 0.066
(0.103) (0.151) (0.177) (0.306)

Observations 1211 1211 1211 1211
Log Likelihood −829.852 −827.610 −827.387 −825.591
Akaike Inf. Crit. 1665.704 1665.219 1666.775 1671.183
Bayesian
Inf. Crit. 1681.002 1690.715 1697.370 1722.175

Note: ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01
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Abstract: The formation of a submicron optical cavity on one side of a metal–insulator–metal (MIM)
tunneling device induces a measurable electrical current between the two metal layers with no
applied voltage. Reducing the cavity thickness increases the measured current. Eight types of tests
were carried out to determine whether the output could be due to experimental artifacts. All gave
negative results, supporting the conclusion that the observed electrical output is genuinely produced
by the device. We interpret the results as being due to the suppression of vacuum optical modes
by the optical cavity on one side of the MIM device, which upsets a balance in the injection of
electrons excited by zero-point fluctuations. This interpretation is in accord with observed changes
in the electrical output as other device parameters are varied. A feature of the MIM devices is
their femtosecond-fast transport and scattering times for hot charge carriers. The fast capture in
these devices is consistent with a model in which an energy ΔE may be accessed from zero-point
fluctuations for a time Δt, following a ΔEΔt uncertainty-principle-like relation governing the process.

Keywords: MIM diode; metal–insulator–metal diode; photoinjection; internal photoemission; vac-
uum fluctuations; Casimir effect; zero-point fluctuations; geometrical asymmetry

1. Introduction

Metal–insulator–metal (MIM) tunnel diodes have been used to provide rectification
and nonlinearity [1–3] for a variety of applications. The insulator forms a barrier that charge
carriers—electrons or holes—must cross to provide current when a voltage is applied across
the device. In addition, current can be produced by the direct absorption of light on one
of the metal surfaces of an MIM sandwich structure, which generates the hot carriers that
cross the metal and are injected into the insulator. This internal photoemission [4,5] is also
called photoinjection. For current to be provided, the metal layer must be thinner than the
hot-carrier mean-free path length so that the carriers can cross it without being scattered.
Once they reach the insulator, the hot carriers must have sufficient energy to surmount the
energy barrier at the interface and traverse the insulator ballistically above its conduction
band edge, or alternatively they can tunnel through the insulator. Thinner insulators favor
tunneling [4,6]. After entering the metal base electrode on the other side, the hot carriers
are scattered and captured.

For over two decades, our lab has designed and fabricated MIM diodes for ultrahigh
speed rectification [3]. We have found that incorporating a thin optical resonator used
as an optical cavity on one side of the MIM structure induces a reduction in the device
conductivity measured over a range of several tenths of a volt [7]. At lower, submillivolt
voltages, a persistent induced current and voltage is evident, which we report here. We
describe observed trends in the current output as the thicknesses of the optical and electrical
layers in the device are varied. After showing these trends, we present the results of a
range of tests that are carried out to check whether the results could be due to some sort of
an experimental artifact. Finally, to explain what could produce the observed output, we
present a conjectural photoinjection model in which hot carriers are excited by the quantum
vacuum field.

Symmetry 2021, 13, 517. https://doi.org/10.3390/sym13030517 https://www.mdpi.com/journal/symmetry
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The devices consist of thin optical cavities deposited over MIM structures, as depicted
in Figure 1. The cavity thickness is in the range of tens of nanometers up to approximately
1 μm, which results in a cavity optical mode density with a wavelength dependence
described by an Airy function [8]. This cavity largely suppresses wavelengths longer than
twice the cavity thickness multiplied by the refractive index of the transparent dielectric.
For our devices, the resulting wavelength cutoff, above which modes are suppressed,
varies from the near-infrared (NIR) through the near-ultraviolet, depending on the cavity
thickness. The MIM structures include a nanometer-thick insulator to form the barrier. The
upper electrode is sufficiently thin to allow hot carriers that are photoexcited on the optical
cavity side of the electrode to penetrate the electrode and reach the insulator without
being scattered.

Figure 1. Device cross section, showing a metal–insulator–metal (MIM) structure adjoining an optical
cavity. The electrical characteristics of the device are measured between the two metal layers of
the MIM structure, where the polarity of the upper electrode voltage is with reference to the base
electrode, which is defined as ground. Positive current is defined to be in the direction of the arrow.

2. Materials and Methods

2.1. Device Fabrication

Two different processes were used to form the devices. Submicron devices were
fabricated using a germanium shadow-mask (GSM) process [9,10]. Using a deep-ultraviolet
stepper, a 250 nm wide germanium bridge is formed over an SiO2-coated surface of a silicon
wafer, as depicted in Figure 2a. First the nickel base electrode is evaporated under the
bridge from one side. This is followed by native NiOx growth at room temperature, and
then by conformal Al2O3 deposited by sputtering. After the insulator is formed, the
palladium upper electrode is evaporated from the opposite side. The resulting overlap of
the two metals forms an ellipse with an area of 0.02 ± 0.006 μm2, as shown in Figure 2b.
After the germanium bridge is removed, a transparent dielectric, i.e., spun-on polymethyl
methacrylate (PMMA) or sputtered SiO2, is deposited to form an optical cavity over the
MIM structure. The dielectric layer is then coated with an aluminum mirror. In addition to
providing a reduced density of optical modes, the optical cavity encapsulates and stabilizes
the MIM structure, blocking further oxidation. It should be noted that the use of PMMA to
support the germanium bridge during fabrication, as shown in Figure 2a, is independent
of whether PMMA is also used in a subsequent layer to form an optical cavity.
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Figure 2. Germanium shadow mask (GSM) device fabrication. (a) Depiction of fabrication process, showing a cross-sectional
view of materials deposited under a germanium bridge. The NiOx and Al2O3 insulating layer formed over the Ni layer is
not shown. The active area of the device is formed in the overlap region. (b) A scanning electron microscope (SEM) image
of a completed device, with an overlap area of 0.02 ± 0.006 μm2. The Ni and Pd-coated regions are indicated; the lightest
regions, in the center and at the left and right-hand sides, are coated with both Ni and Pd layers with the insulator layer
between them.

Additional devices, having larger areas, were fabricated using standard photolitho-
graphic techniques. The top view of one of these devices is shown in Figure 3.

Figure 3. Photolithographic device. Top view of devices formed by the standard photolithographic
technique. The overlap of the pallidum upper electrode, shown to the right, with the nickel lower
electrode, shown to the left, forms active square regions with edge lengths between 5 and 100 μm.

The thicknesses and refractive indices of most of the dielectric layers were determined
by UV–Vis–NIR variable angle spectroscopic ellipsometry (VASE) measurements. The
measured refractive indices for the spun-on PMMA and deposited SiO2 are 1.52 and 1.49,
respectively, at a wavelength of 300 nm. The Al2O3 thickness values were measured
by VASE on silicon witness samples that were placed in the sputtering system along
with the devices. For the photolithographic devices, we also measured the native NiOx
thickness by VASE and found it to be 2.3 nm. In addition, a monolayer (0.4 nm) of
photoresist remained over the NiOx layer in the photolithographic devices. The reason
for this is that after depositing the insulator and patterning the upper electrode using a
liftoff process, we could not use the standard oxygen plasma to clean residual photoresist
off the insulator surface without further oxidizing the insulator, with the result that the
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devices become too resistive. For GSM devices the patterning was accomplished by
the shadow-mask deposition depicted in Figure 2a, and so no photoresist was required.
Because the thickness of the native NiOx insulator in the GSM MIM structures could not
be measured directly, we determined its effective thickness from electrical measurements
and simulations of Ni/native NiOx/Pd structures. We extracted a NiOx thicknesses of
0.6–1 nm for effective barrier heights in the range of 0.06–0.08 eV [11]. The barrier height
was calculated by performing a Fowler–Nordheim analysis on a low resistance (~100 Ω)
device with nonlinear current–voltage characteristics. The native NiOx thickness for GSM
structures is smaller than that for the photolithographic devices because of the higher
processing temperatures for the photolithographic devices, and also possibly because the
junctions in GSM structures were partially protected by the germanium bridge. The total
effective insulator thickness for the Al2O3/NiOx combination is the sum of the thickness
values for each layer. Thickness values for the Ni base electrodes are 38 nm for the GSM
devices and 50 nm for the photolithographic devices. The aluminum mirror is 150 nm thick
for all devices. The thickness values for the other layers in the devices for each figure are
provided in Table 1.

Table 1. Device parameters for each figure.

Figure Area NiOx Al2O3
Pd Upper
Electrode

Transparent Dielectric

(μm2) (nm) (nm) (nm)
Values
(nm)

Material

4 (a) 0.02 1.3 8.3 33–1100 PMMA

4 (b) 0.02 1 0.9 8.3 33–1100 PMMA or
SiO2

5 (a) 1 10,000 2.3 + 0.4 resist 2.3 8.7–24 11 SiO2

5 (b) 1 625 2.3 + 0.4 resist 0.7–1.5 15 11 SiO2

6 (a) 0.02 1 0.7 8.3 35 PMMA

6 (b) 25–10,000 2.3 + 0.4 resist 2.3 12 11 SiO2

7 (b) 0.02 × 16 1 0.9 15.6 107 PMMA

8 0.02 1 0.9
0.7 8.3 36

50 PMMA SiO2

9 0.02 1 0.7 8.7 – PMMA

10 0.02 1 05 8.7 33 PMMA

11 0.02 1 0.7 8.7 35 PMMA
1 Photolithographic devices; all other devices used the GSM fabrication process.

2.2. Device Measurement

Once the MIM structures were fabricated, we carried out current–voltage (I(V)) mea-
surements at room temperature using a four-point probe configuration to circumvent the
effects of lead resistance. A high precision Keithley 2612 source meter (calibrated to NIST
standards) was used to source either voltage or current across two pads, and an HP 3478A
digital multimeter (DMM) was used to measure the voltage drop across the MIM junctions.
Although the standard technique is to source a voltage and measure the current using the
source meter, this can result in erroneous offsets for low resistance devices, e.g., for currents
on the order of 1 nA through a device having a resistance less than 1 MΩ. Therefore, we
carried out some of the measurements, particularly for low-resistance devices, by sourcing
the current (±0.06% ± 100 pA accuracy) and measuring the voltage. To eliminate any
effects due to thermoelectric potentials resulting from a temperature difference between
the source meter and the probes, we used a current reversal method [12]. Following this
method, we performed two measurements with currents of opposite polarity, i.e., one when
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the base electrode was grounded and another when the upper electrode was grounded,
and then we subtracted the difference in the currents to yield the final value.

In fabricating and testing tens of thousands of MIM devices, we generally found
a wide range of resistances for nominally the same fabrication conditions due to slight
uncontrollable variations in the insulator thickness [13], which is fewer than 10 lattice
constants thick. In most cases, the measurement results presented are averages across each
wafer chip, with error bars showing the standard deviation.

3. Results

3.1. Electrical Response Measurements

The electrical response of MIM devices having an adjoining optical cavity is shown
in Figure 4. In Figure 4a, the I(V) curves extend into the second quadrant and therefore
exhibit a positive power output. For linear I(V) characteristics, the maximum power is
|ISCVOC|/4, where ISC and VOC are the short-circuit current and open-circuit voltage,
respectively. For the device with a 33 nm thick cavity, the maximum power is 1.4 pW in a
0.02 μm2 area (see the SEM image of Figure 2b). The short-circuit current increases when
decreasing cavity thickness, as shown in Figure 4b for two different cavity dielectrics. This
increase in current with decreasing cavity thickness corresponds to an increasing range of
suppressed optical modes with decreasing thickness, as described in the Introduction.

Figure 4. Electrical response as a function of cavity thickness. (a) Current as a function of voltage for
different polymethyl methacrylate (PMMA) cavity thicknesses. (b) Short-circuit current as a function
of cavity thickness for PMMA and SiO2–filled cavities.
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To understand the current-producing mechanism, we carried out tests to determine
whether there is evidence that it involves hot charge carriers generated from optical fields
in the optical cavity. These carriers, generated in the Pd upper electrode near the interface
to the transparent dielectric cavity shown in Figure 1, could be injected into the insulator
if they could traverse the Pd without being scattered. This photoinjection current should
decrease when increasing the upper electrode thickness because of the increased scattering
of the hot carriers before they reach the insulator, which results in excited carriers not
contributing to the current. The hot electron mean-free path length in metals at room
temperature is on the order of 10 nm [14]. On the other hand, when the upper electrode
thicknesses is below the absorption depth of Pd, which is 10 nm for 0.4 μm radiation [15],
the photoinjection current would be expected to decrease when decreasing the electrode
thickness because the rate of carrier excitation is reduced. Figure 5a shows the short circuit
current as a function of upper electrode thickness. This current does, in fact, decrease with
increasing thickness, and also decreases for the thickness below 10 nm, peaking for a Pd
thickness of approximately 12 nm.

Figure 5. Tests for photoinjection of hot carriers through the Pd upper electrode and through the
insulator. (a) Short-circuit current as a function of upper electrode Pd thickness. (b) Short-circuit
current as a function of effective insulator thickness. Both trends are consistent with hot-carrier
photoinjection from optical fields in the optical cavity.

To be collected, these hot carriers must traverse the insulator either ballistically or via
tunneling. The ballistic transport is limited by the mean-free path length in the insulator,
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on the order of several nanometers [16]. The tunneling probability decreases exponentially
with insulator thickness [17]. In either case, the short-circuit current would be expected to
decrease with increasing insulator thickness if the current is due to charge injection through
the insulator. This trend is observed by the data of Figure 5b.

Although the devices of Figure 4 were fabricated using the GSM process and the
devices of Figure 5 used standard photolithography, devices fabricated by both processes
exhibited similar trends. The GSM process allowed for much shorter fabrication times and
for the absence of residual photoresist (described in Section 2.2), but it did not allow for
large device areas or for varying the device area.

3.2. Testing for Experimental Artifacts
3.2.1. Stability over Time

We carried out a series of experiments to test whether the results presented above
might be due to some sort of experimental artifact rather than a genuine electrical response
from these structures. One concern is whether the observed current is a transient or
hysteresis effect, possibly due to charging, as opposed to being a stable output from the
devices. If, for example, one charge was trapped for every Al2O3 molecule (having a lattice
constant of 0.5 nm) in a 2.5-nm thick layer of area 0.02 μm2, depleting that charge could
produce a current of 20 nA for 3.2 μs. To test for this, we measured the short-circuit current
continuously over a period of four hours. The data, provided in Figure 6a, shows no change
over time.

Figure 6. Two tests to check whether the measured current could be an experimental artifact. (a) Short-
circuit current as a function of time over a period of four hours for a GSM device. (b) Short-circuit
current as a function of active device area, as defined by the upper electrode area, for devices
fabricated using the photolithography process.
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3.2.2. Area Dependence

Another concern is whether the output current is collected from just the active area
covered by the upper electrode, or whether it is due to some other effect that would not
scale with the active area. To test for this, we fabricated devices with a range of areas, in
which the overlap shown in Figure 3 was varied. The results are shown in Figure 6b. The
current scales linearly with the active area, supporting the conclusion that the source for
the current is the active area.

3.2.3. Array Dependence

In addition to scaling with area, the short-circuit current should scale with the number
of devices in parallel. Similarly, the open-circuit voltage should scale with the number of
devices in series. If, for example, the output was the result of thermoelectric effects at the
contacts, it would not scale with the number of devices. We tested for this possibility by
fabricating and measuring two types of 4 × 4 arrays. One is a staggered array, schematically
depicted in Figure 7a. It is a combination of series and parallel connections designed to
reduce the effect of defective individual devices. The other 4 × 4 array is a series–parallel
array consisting of four parallel sets of four devices in series. The results are shown in
Figure 7b. The array currents and voltages are approximately four times those of the single
devices, supporting the validity of the measured results.

Figure 7. Measurements of device arrays. (a) Schematic representation of a 4 × 4 staggered array,
where the circuit symbols represent cavity/electronic-device elements; the measured total short-
circuit current between the top and bottom bars and the open-circuit voltage are each four times that
for a single element. (b) Measured short-circuit current and open-circuit voltage for single devices,
staggered 4 × 4 arrays, and series–parallel arrays consisting of four parallel sets of four devices
in series.

86



Symmetry 2021, 13, 517

3.2.4. Processing Dependence

From experience fabricating and testing many thousands of MIM structures, we are
confident that it is not the MIM structure alone that produces the observed electrical output.
It is conceivable, however, that it is the additional processing of the MIM structures to
form the adjoining cavity, and not the cavity itself, that gives rise to the output. To check
for that, we measured devices at different stages of cavity formation. Figure 8 shows the
short-circuit current from MIM devices at these different stages. The first stage is for an
as-built MIM structure. Only a negligible current is produced. We then annealed the MIM
structure at 180 ◦C for 15 min to replicate the temperature cycle that it would undergo
during the process in which the mirror was defined. Again, no significant current was
evident. We then deposited the cavity dielectric, i.e., PMMA in one case and SiO2 in the
other, and we saw no change in the current. Finally, after depositing the aluminum mirror,
the current jumped to the values that we observed in the completed devices. This makes it
clear that it is the cavity with the mirror, and not just the device processing, that yields a
device producing the observed electrical output.

Figure 8. Effect of cavity formation on short-circuit current. The anneal was carried out at 180 ◦C for
15 min to replicate the mirror processing temperature cycle. Only a completed device produces a
significant current.

The characteristics remain stable over time; for instance, for the full devices of Figure 8,
after approximately six months the PMMA-cavity device output degraded by less than
10% and the SiO2-cavity device output degraded by less than 20%.

3.2.5. Current Leakage through the Cavity

A possible source for the observed currents and voltages produced between the MIM
electrodes might be leakage currents through the transparent dielectric from the mirror,
which somehow picks up anomalous voltages. For this to be the case, resistance between
the mirror and the MIM upper electrode would have to be on the order of or less than
the resistance between the MIM electrodes. To test for this, we measured the relevant
resistances in some completed devices. The results, given in Figure 9, show that the
observed currents could not be due to leakage from the mirror.
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Figure 9. Comparison of resistance values across the optical cavity transparent dielectrics and across
MIM structures. Because of the much higher resistance between the mirror and upper electrode than
between the upper and the base electrodes (shown in Figure 1), the currents observed between the
electrodes could not be the result of leakage from the mirror.

3.2.6. Electromagnetic Pickup

Another potential source of anomalous currents and voltage is ambient electromagnetic
radiation. Electromagnetic pickup might occur somewhere in the device and result in current
through the MIM structure, which would rectify it to produce the I(V) characteristics shown
in Figure 4a. To avoid such rectification, we designed the MIM devices to have low barrier
heights and consequently linear I(V) characteristics, as is evident from the lack of curvature in
the data of Figure 4a. Still, a slight nonlinearity might rectify picked up signals. To test for
that, we carried out measurements in three different environments: (i) the usual measurement
conditions using a probed wafer chip mounted onto a measurement stage exposed to ambient
fields, (ii) inside a mu-metal box, which blocks low frequency electromagnetic radiation,
and (iii) inside an aluminum box, which blocks higher frequency radiation. The results,
given in Figure 10, show that the current–voltage characteristics are the same for all three
measurements. While these environments do not totally block all ambient radiation, the fact
that the three measurements give the same results make it highly unlikely that electromagnetic
pickup is the source for the electrical outputs that we observed.

Figure 10. Effect of blocking ambient electromagnetic radiation during measurement of current-
voltage characteristics. The characteristics measured under open ambient conditions did not change
when the device was place in mu-metal or aluminum boxes.
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3.2.7. Thermoelectric Effects on Electrodes

A common source of errors in low-voltage measurements is thermoelectric effects.
One type is generated from a temperature difference between electrodes of different types
at the device and at the measurement electronics. This voltage can be cancelled using the
voltage reversal method [12] during measurement, as described in Section 2.1. We used
this method consistently in our measurements. Another experiment that would indicate
whether this type of thermoelectric effect could be the source of the electrical output is
the measurement of device arrays. As the devices on a single substrate and at a uniform
temperature are linked together, the thermoelectric voltage measured at the electronics
would not change, and so the voltage would not scale with the number of devices in series.
As shown in Figure 7b, the measured voltage does scale with the number of devices in
series, and so it is not due to such a thermoelectric effect. Both the voltage reversal method
and the device array results show that this type of thermoelectric voltage does not affect
the results.

3.2.8. Thermoelectric Effects on Devices

Another potential source of thermoelectric effects is temperature differences within
the sample itself. If the upper electrode was at a slightly different temperature than
the lower electrode, this would generate a thermoelectric voltage. Such a temperature
difference would be unlikely because of the much greater thermal conductance across
the thin insulator than between the upper part of the device, shown in Figure 1, and the
surrounding air. To be sure that this sort of thermoelectric effect is not the source of the
measured electrical output, we carried out measurements to test for effects from such a
temperature difference. The wafer chip containing the device is held tightly onto the metal
measurement stage with a vacuum chuck. We varied the temperature of the measurement
stage while the ambient temperature remained constant, and measured the short-circuit
current and open-circuit voltage from the device. If there was a difference in temperatures
between the upper and lower MIM electrodes that gave rise to a thermoelectric voltage,
such a test would shift it or reverse its polarity. No change in the output voltage or current
was observed, as shown in Figure 11, providing evidence that a temperature difference is
not the source of the measured electrical output.

Figure 11. Test for possible thermoelectric effects. The electrical output is measured as the difference
between the substrate and ambient temperatures is varied. The measured short-circuit current and
open-circuit voltage does not vary, providing evidence that such a temperature difference is not the
source of the measured electrical output.
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The data shown here are not flukes observed in rare devices. The trends reported
in this paper were replicated in over 1000 MIM-based devices produced in 21 different
batches. Virtually all the devices with working (nonshorted) MIM structures exhibited the
type of electrical characteristics shown in Figure 4a.

Based on all these checks for experimental artifacts, it appears that the measured
electrical characteristics of the photoinjector cavity devices are, in fact, real and due to the
devices themselves.

4. Discussion

The data show than when an MIM structure adjoins a thin optical cavity, electrical
power is produced. An extensive range of tests show that real power is provided, and the
results are not due to experimental artifacts. We consider a possible mechanism for the
electrical characteristics based upon the experimental observations.

To produce current, the upper electrode in the MIM device must be thin, less than
or on the order of a mean-free path length for ballistic charge carriers, consistent with
Figure 5a. This suggests that the carriers are photoinjected from the cavity side of the MIM
device. The observation that the current decreases with increasing insulator thickness,
shown in Figure 5b, is consistent with the charge traversing the insulator by surmounting
the metal/insulator barrier or tunneling through it.

The current increases with decreasing cavity thickness, as shown in Figure 4b. Optical
cavities largely suppress wavelengths greater than twice the cavity spacing, such that
the suppressed band extends to shorter wavelengths for thinner cavities. Therefore, the
increase in current corresponds to an increasingly wide band of suppressed optical modes
in the cavity. The source of these optical modes could be the quantum vacuum field, which
gives rise to the Casimir force [18–21], the Lamb shift [22], and other physical effects [23].
It was argued that the use of energy from the vacuum field does not violate fundamental
laws of thermodynamics [24].

In what follows, we present an operational model consistent with the observations to
provide an interpretation of the results until a rigorous theoretical explanation is developed.
The energy density of the quantum vacuum field varies with frequency cubed [23], and
therefore the energy density of the suppressed cavity modes would vary with the reciprocal
of the cavity thickness cubed. At first blush, one might expect to see this cubic dependence
in Figure 4b. However, a multiplicity of other frequency-dependent processes could
obscure this cubic dependence. They include (i) the dependence of photoinjection yield
on photon energy, as described by extensions of Fowler’s theory of photoemission [25];
(ii) limitations in the transport of high energy carriers through the Pd upper electrode due
to the interband transition threshold [26]; (iii) the mirror energy-dependent reflectivity;
(iv) the energy-dependent absorptivity of the transparent dielectric; and (v) the energy
dependence of hot-carrier scattering [27]. A quantitative fit to the data of Figure 4b would
require an extensive investigation of each of the energy-dependent mechanisms involved
in producing the current. Despite this multiplicity of effects, the overall increase in current
with decreasing cavity thickness is qualitatively consistent with what would be expected
for the quantum vacuum field as the source for the hot-carrier excitation.

The hot carriers could be electrons, holes, or a combination of the two. The barrier
heights are the main factor that determines which one dominates. The effective barrier
heights for electrons between the Pd upper electrode and the NiOx and Al2O3 insulators
are approximately 0.2 eV and 0.3 eV, respectively, whereas for holes, the respective barrier
heights are 3.2 eV and 5.9 eV [6]. For the materials in the devices reported here, the higher
barriers for holes are consistent with electrons being the dominant carriers. As described
in the introduction, the charge transport through the insulator could be ballistic or via
tunneling. For an insulator thickness below 4 nm, which is the case for the devices reported
here, the dominant mechanism is tunneling [6].

The measured current from the devices is positive, i.e., in the direction of the arrow
shown in the measurement circuit of Figure 1. This corresponds to a net current of electrons
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flowing from the nickel base electrode through the insulator to the palladium upper
electrode. This direction of the current can be understood in terms of the three current
components shown in Figure 12.

Figure 12. Cross section of the photoinjector device, showing optically generated electron current
component A, and internally generated components B and C.

1. We consider first the MIM device in the absence of the optical cavity and the mirror.
Component A is produced by free-space ambient optical modes impinging on the
upper electrode, where they excite hot electrons. These hot electrons are injected
into the insulator and then are absorbed in the base electrode. Component B is
due to electrons excited within the upper electrode, e.g., from plasmonic zero-point
fluctuations [28]. The electrons are injected into the insulator and then absorbed in
the base electrode. Component C, in the opposite direction, is due to electrons that
are excited by fluctuations within the base electrode, injected into the insulator, and
then absorbed in the upper electrode. There is no optically excited current component
of electrons from the base electrode to the upper electrode because the base electrode
is thicker than the electron mean-free path length, and so any electrons excited at
the outer (lower) surface of the electrode are scattered before reaching the insulator.
In equilibrium, the net current is zero, and component C is balanced by the sum of
components A and B.

2. We now consider the MIM device in the presence of an adjoining optical cavity and
the mirror. The addition of the adjoining structure upsets the balance in current
components. Because the cavity reduces the density of the optical modes impinging
on the upper electrode, component A is reduced while components B and C remain
unchanged. This results in a net electron current from the base electrode to the upper
electrode, which is consistent with our observations.

To understand the enhancement of the measured current with varying thicknesses
shown in Figure 5a,b we again consider the current components of Figure 12. As discussed
with respect to Figure 5a, decreasing the upper electrode thickness from 24 nm down to the
absorption depth of ~10 nm, allows an increasing fraction of the photoexcited electrons to
traverse the upper electrode without being scattered, with the result that they can produce
measurable current. As discussed with respect to Figure 5b, decreasing the insulator
thickness increases the fraction of photoexcited electrons that can traverse the insulator
and produce measurable current. In both cases, decreasing the thickness of the layers tends
to increase the proportion of incoming photons that excite electrons, which can then be
injected. The effect is to enhance the photoinjection yield, which increases electron current
component A. To understand how the increased photoinjection yield can result in a greater
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electron current in the direction opposite to the photoinjection when an adjoining cavity is
added, we consider the process first without and then with the cavity.

1. In examining the balance of current components when the MIM device is not per-
turbed by the presence of the optical cavity and mirror, we consider first the device in
the absence of the cavity structure. To maintain the zero net current, this increase in
photoinjection yield with changing layer thickness must be balanced by a decrease in
the internally generated component B or an increase in the internally generated com-
ponent C. These changes in components B and C result from the thickness changes
and are independent of whether there is an adjoining optical cavity or not.

2. We once again consider the MIM device in the presence of an adjoining optical
cavity and mirror. With the reintroduction of this adjoining structure, the enhanced
photoinjection yield represented by component A now leads to a greater suppression
of component A. Because of the greater reduction in component A, the net electron
current from the base electrode to the upper electrode is enhanced. Thus, increasing
the photoinjection yield leads to an enhanced current that is induced by the presence
of an adjoining optical cavity, in the direction opposite to the photoinjection current.

There are additional current components in play beyond those indicated by the three
arrows in Figure 12, but they are not expected to add significantly to the current.

• Additional components result from the fact that the insulator itself forms a very
thin optical cavity. This cavity is symmetric with respect to the MIM structure itself,
as opposed to the optical cavity shown in the figure, which is to one side of the
MIM structure. Because there is no longer a cavity having a reduced density of
vacuum modes on one side of the tunneling region, the current components in each
direction balance each other out, resulting in no net current. This is consistent with the
observation that MIM structures without the adjoining optical cavity do not produce
a current, as shown in Figure 8.

• Another component results from the upper electrode being slightly transparent. As a
result, a small fraction of the optical radiation from the optical cavity impinges on the
lower electrode and produces hot carriers. Because the optical transmission through
the upper electrode is small, this produces only negligible effects.

• Additional effects, such as those from the surface plasmon modes in the cavity [29],
cannot be ruled out.

There is a particular characteristic of MIM structures that adjoin the optical cavities
that may be key in allowing the observed current and voltage outputs to be induced. This
characteristic is the time required for hot-charge carriers to traverse the combination of the
upper electrode and the thin insulator, followed by capture in the base electrode. The entire
process can be very fast. The hot-carrier velocity in the metal is at least the Fermi velocity
of 106 m/s [30,31]. For a metal thickness of approximately 10 nm, the resulting transit time
is less than 10 fs. In the insulator, which is even thinner, if the carriers travel ballistically,
the velocity is 106 m/s [32]. This results in a roughly 1 fs transit time through the insulator.
This is on the order of the same time that is required for tunneling [33], which appears to
be the dominant transport mechanism, as discussed above. Finally, the hot carriers scatter
inelastically in the base electrode, with a lifetime of at most 10 fs. The combination of
hot-carrier transport and scattering takes place in the order of 10 fs.

We speculate that the reason the femtosecond transit and capture gives rise to the
observed electrical output has to do with an uncertainty-principle-like relation that governs
the process. It has been argued that an amount of energy ΔE may be borrowed from the
quantum vacuum field for a time Δt [34–36], although that has yet to be supported by
experiments [37]. For ΔEΔt ~ h̄/2, hot electrons from 1 eV excitations would be available for
0.3 fs. For a transit and capture that is longer than that, a fraction of the hot electrons would
be available. MIM devices adjoining optical cavities could capture photoinjected electrons
sufficiently quickly and irreversibly, which would give rise to the observed currents.
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5. Conclusions

In metal–insulator–metal (MIM) tunnel devices adjoining thin optical cavities, we
consistently observed a small output current and voltage, as reproduced in over 1000 de-
vices produced in 21 batches. When the cavities were made thinner, which corresponds
to suppressing a wider range of optical modes, the current increased. The output scaled
with number of devices in parallel and series, and the current scaled with the device area.
Changing the layer thicknesses in the MIM structure resulted in changes in the current that
are consistent with modifying the suppression of hot electron photoinjection from the side
of the MIM structure adjoining the optical cavity.

We carried out a set of tests to determine whether the measured electrical output
could be the result of some sort of experimental artifact. The results support the conclu-
sion that the source of the electrical output is not due to measurement offsets or errors,
transient stored charge, characteristics of the structure not related to the optical cavity,
electromagnetic pick-up, electrical leakage through the optical cavity, or thermoelectric
effects in the electrodes or in the device itself. All evidence is that the device itself produces
the measured outputs.

The observations are consistent with the optical cavity upsetting an equilibrium
balance of currents in the MIM structures. We posit that quantum fluctuations excite the
observed currents. If access to such excitation is limited by a ΔEΔt uncertainty-principle-
like relation, the available energy ΔE would be accessible for a very short time Δt. The
ultra-fast charge transport and capture in MIM devices is compatible with such a short
time requirement.
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Abstract: Two algebraic approaches based on a discrete variable representation are introduced
and applied to describe the Stark effect in the non-relativistic Hydrogen atom. One approach
consists of considering an algebraic representation of a cutoff 3D harmonic oscillator where the
matrix representation of the operators r2 and p2 are diagonalized to define useful bases to obtain
the matrix representation of the Hamiltonian in a simple form in terms of diagonal matrices.
The second approach is based on the U(4) dynamical algebra which consists of the addition of
a scalar boson to the 3D harmonic oscillator space keeping constant the total number of bosons.
This allows the kets associated with the different subgroup chains to be linked to energy, coordinate
and momentum representations, whose involved branching rules define the discrete variable
representation. Both methods, although originating from the harmonic oscillator basis, provide
different convergence tests due to the fact that the associated discrete bases turn out to be different.
These approaches provide powerful tools to obtain the matrix representation of 3D general
Hamiltonians in a simple form. In particular, the Hydrogen atom interacting with a static electric
field is described. To accomplish this task, the diagonalization of the exact matrix representation
of the Hamiltonian is carried out. Particular attention is paid to the subspaces associated with the
quantum numbers n = 2, 3 with m = 0.

Keywords: algebraic approach; DVR method; coulombic potential; stark effect

1. Introduction

A discrete variable representation approach is based on the search of a discrete basis in terms
of which any function of the coordinates is diagonal. The discrete variable representation methods
(DVR) in configuration space were developed with some variants since the 1960s, but systematically
widely used during the 1980s with different names: discrete-variable representation method [1–4],
quadrature discretization method [5,6], configuration localized states (CLS) approach [7], and Lagrange
mesh method (LMM) [8–11], whose similarities and differences are discussed in Ref. [11]. The basic
ingredient of these methods is the use of orthogonal polynomials and their associated grids from
Gaussian quadratures.
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Symmetry 2020, 12, 1719

In this contribution, we introduce two algebraic DVR methods where the discrete bases are
obtained using purely algebraic means without any explicit reference to polynomials. This is
accomplished through the diagonalization of the matrix representations associated with the coordinates
and momenta. From this perspective, the recently-proposed unitary group approach (U(4)-UGA)
belongs to an algebraic DVR method [12–16]. In this approach, the discretization provided by the
zeros of the polynomials in configuration space is substituted by the branching rules involved in the
subgroup chains embedded in the dynamical group. An alternative approach to establish an algebraic
DVR method consists of taking a cutoff 3D harmonic oscillator in Fock space and diagonalize the matrix
representation of the squares of the coordinates and momenta to obtain two discrete bases (HO-DVR
approach), which in turn are used to diagonalize the matrix representation of the Hamiltonian in a
simple manner. Both methods are based on a harmonic oscillator basis, albeit they provide different
convergence behavior due to the fact that the provided discrete bases are distinct.

In this contribution we present the HO-DVR approach as well as the salient features of the
U(4)-UGA, both applied to the Coulombic potential. We first show the confidence of our approaches
to reproduce the analytical wave functions for the non relativistic Hydrogen atom. Both approaches
are able to arrive at the same level of accuracy with the appropriate basis dimension. In order to
explore the capabilities and differences between these approaches, the Stark effect is studied by adding
the potential energy for the electron in an homogeneous electric field. Our treatment involves a
complete dipole matrix representation contemplating the possibility of the action of fields beyond
the perturbation region. Since the conservation of the angular momentum is broken, the calculations
become particularly heavy. This fact forces us to constraint the basis to a limited angular momentum.
With the proposal of these DVR algebraic approaches, we do not intend to improve the variational
approaches used to describe the Stark effect, but rather for showing a simple way to deal with this
problem as well as to evaluate the differences between them.

Our contribution is organized as follows. In Section 2 the salient features of both the algebraic
HO-DVR method and the U(4)-UGA are presented. Section 3 is devoted to applying the methods to
describe the isolated non-relativistic Hydrogen atom. To this end, both energies and wave functions
are tested. In Section 4 the Stark effect is described, paying attention to the bound states originated
from the subspaces with n = 2, 3. Finally, in Section 5 the summary and our conclusions are presented.

2. Algebraic DVR Methods in 1D Systems

In this section, we present the salient features of the HO-DVR method as well as of the U(4)-UGA.
Since both approaches are based on the 3D harmonic oscillator we start presenting the main features
associated with its algebraic solutions.

2.1. 3D Harmonic Oscillator

We start considering the isotropic 3D harmonic oscillator with reduced mass m and frequency ω.
The Hamiltonian is given by

ĤHO
CS =

1
2m

p2 +
mω2

2
r2. (1)

The solutions in configuration space are well known, but this is not the case in Fock space [17,18].
The Hamiltonian, as well as the eigenfunctions can be translated into the Fock space through the
introduction of the bosonic creation a†

μ and annihilation aμ operators with commutation relations

[aμ, a†
ν] = δμν; [a†

μ, a†
ν] = [aμ, aν] = 0. (2)

The reflection and rotation properties of a†
μ are summarized by their transformation under a rotation

R̂(α, β, γ):
R̂−1a†

μR̂ = ∑
μ′

D(1)
μ′μ(α, β, γ)a†

μ′ , (3)
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characterized by the three Euler angles (α, β, γ). The annihilation operators aμ, however, do not
transform as the components of a spherical tensor operator, but the modified operator

ãμ = (−1)1−μa−μ (4)

do satisfy the transformation property (3). In this way the the operators a†
μ and ãμ can be coupled to

definite angular momentum λ and projection m

[a† × ã](λ)m = ∑
μ′ ,μ

〈1μ1μ′|λm〉a†
μ ãμ′ , (5)

using the standard notations × for the angular momentum coupling and the Clebsh–Gordan
coefficients. These operators in terms of the spherical coordinate and momentum components are
given by

a†
μ =

1√
2

(
1
d

qμ − i
d
h̄
(−1)μ p−μ

)
; (6)

ãμ =− 1√
2

(
1
d

qμ + i
d
h̄
(−1)μ p−μ

)
, (7)

with commutation relations

[ãμ, a†
ν] = (−1)1−μδ−μν; [a†

μ, a†
ν] = [ãμ, ãν] = 0, (8)

where d =
√

h̄/mω has been introduced as unit length, qμ(μ = 1, 0,−1) are the coordinate components
with r2 = ∑μ(−1)μqμq−μ and corresponding momenta pμ = −ih̄ ∂

∂qμ
. The solutions of the eigensystem

associated with (1) in Fock space are given by the kets [17,18]

|nlm〉 = Bnl (a
† · a†)(n−l)/2Y l

m(a
†)|0〉, (9)

characterized by the eigensystem

n̂|nlm〉 = n|nlm〉, (10)

L̂2|nlm〉 = l(l + 1)|nlm〉, (11)

L̂z|nlm〉 = m|nlm〉, (12)

where Y l
m(a

†) are the solid spherical harmonics defined by

Y l
m(a

†) = 2−l/2(a† · a†)l/2Yl
m(a

†) (13)

in terms of the spherical harmonics Yl
m(a

†) with normalization [17,18]

Bnl = (−1)(n−l)/2

√
4π

(n − l)!!(n + l + 1)!!
, (14)

and eigenvalues
EHO

n = h̄ω(n + 3/2), (15)

with frequency ω =
√

k/m in terms of the force constant k and number operator

n̂ = ∑
μ

a†
μaμ =

√
3[a† × ã]

(0)
0 , (16)
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while the notation a† · a† stands for the dot product defined by

a† · a† =
√

3[a† × a†]
(0)
0 = ∑

μ

(−1)μa†
μa†

−μ, (17)

with the realization of the angular momentum components

L̂μ =
√

2[a† × ã](1)μ . (18)

This summary for the harmonic oscillator paves the way to introduce the algebraic DVR methods.

2.2. HO-DVR Approach

The HO-DVR approach consists of establishing discrete bases where functions of the radial
coordinate and the corresponding momentum are diagonal. To accomplish this task we should
consider the algebraic realization of the variables involved in Equation (1). Based on the relations (6)
and (7), the squared of the radius and momenta in Fock space takes the form

r2 = (n̂ + 3/2) +
1
2
(a† · a† + a · a), (19)

p2 = (n̂ + 3/2)− 1
2
(a† · a† + a · a), (20)

Since both operators (19) and (20) preserve the angular momentum we can obtain their matrix
representation for a given l and m in the N-dimensional space defined by

Ll
N = {|nlm〉, n = 0, 1, . . . , N − 1}, (21)

with the restrictions l = n, n − 2, . . . , 1 or 0, and the usual reduction SO(3) ⊃ SO(2) given by −l ≤
m ≤ l. It is clear that the N-dimensional space (21) is not complete, but it establishes a space to carry
our the calculations in an approximate way. Explicitly the matrix elements of the operators (19) and (20)
in dimensionless units turn out to be

〈nlm|r2|nlm〉 = 〈nlm|p2|nlm〉,

= n +
3
2

, (22)

〈n + 2, lm|r2|nlm〉 = −〈n + 2, lm|p2|nlm〉

=
1
2

√
(n + l + 2)(n − l + 2). (23)

The numerical diagonalizations of the representation matrix of these operators provide a discrete set
of eigenvectors

|lm, r2
i 〉 =

N−1

∑
n=0

〈nlm|lm, r2
i 〉|nlm〉, (24)

|lm, p2
i 〉 =

N−1

∑
n=0

〈nlm|lm, p2
i 〉|nlm〉, (25)

which provide the radial coordinate and momentum representations characterized by

r|lm, r2
i 〉 =

√
r2

i |lm, r2
i 〉, (26)

p|lm, p2
i 〉 =

√
p2

i |lm, p2
i 〉. (27)
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Because of these properties, the basis |lm, r2
i 〉 is identified with the position representation,

while |lm, p2
i 〉 stands for the momentum representation. In addition since the Hamiltonian (15) is

diagonal in the basis (9) we refer the U(3) basis as the energy representation. As a consequence, for any
functions V(r) and G(p) we have for their matrix elements

〈lm, r2
j |V(r)|lm, r2

i 〉 = V
(√

r2
i

)
δij, (28)

〈lm, p2
j |G(p)|lm, p2

i 〉 = G
(√

p2
i

)
δij. (29)

The eigenvectors (24) and (25) define the transformation coefficients

W = ||〈nlm|lm, p2
i 〉||, (30)

T = ||〈nlm|lm, r2
i 〉||, (31)

while the properties (28) and (29) lead to a DVR method where the matrix representation of the general
3D Hamiltonian depending on the radial coordinate

Ĥ =
p2

2m
+ V(r), (32)

takes the following matrix form in the energy representation:

H = W†Λ(p)W + T†Λ(r)T, (33)

where Λ(p) is the diagonal contribution of the kinetic energy in the momentum representation (25):

||Λ(p)|| = ||〈lm, p2
j |

p2

2m
|lm, p2

i 〉|| =
p2

i
2m

δij, (34)

where the notation for the mass m should not be confused with the angular momentum projection
m. In addition the matrix Λ(r) corresponds to the diagonal matrix of the potential V(r) in the
position representation:

||Λ(r)|| = ||〈lm, r2
j |
[

V
(√

r2
)]

|lm, r2
i 〉|| =

[
V
(√

r2
i

)]
δij. (35)

Both transformation coefficients W and T are numerically calculated only once for a given l and
m and space dimension N, providing the methodology for any potential in the framework of the
HO-DVR method. However since the basis corresponds to the harmonic oscillator functions, adding
and subtracting the quadratic potential makes possible to reformulate the Equation (33) in terms of
only the transformation coefficients T in the form:

H = Λ(E) + κT†Λ′(r)T, (36)

where for a given l and m, Λ(E) is the diagonal matrix in the energy representation

||Λ(n)|| = ||〈n′lm|h̄ω(n̂ + 3/2)|nlm〉|| = h̄ω(n + 3/2)δn′n, (37)

while in the position representation

||Λ′(r)|| = −mω2

2
r2

i δij + V
(√

r2
i

)
δij. (38)
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In Equation (36), κ stands for a control parameter in the interval [0, 1], whose variation allows the
potential to be transformed from a harmonic oscillator (κ = 0) to the arbitrary potential V(

√
r2) (κ = 1).

The methodology of this approach is simple. We diagonalize both matrix representations (22)
and (23) to obtain the coefficients (30) and (31). Then we proceed to diagonalize in the energy
representation the Hamiltonian (36) associated with the potential we are interested in for a given
angular momentum and projection.

2.3. SU(4)-UGA

This approach starts by establishing the U(4) dynamical group for 3D systems by adding a scalar
boson s†(s) to the space of the same bosonic operators a†

μ(ãμ) previously introduced carrying angular
momentum l = 1 in such a way that the bilinear products satisfy the commutation relations associated
with the generators of the U(4) group [19]:

n̂a =
√

3[a × ã](0)0 ; n̂s = s†s, (39)

L̂μ =
√

2[a × ã](1)μ ; D̂μ = a†
μs − s† ãμ, (40)

Q̂μ = [a × ã](2)μ ; R̂μ = i(a†
μs + s† ãμ), (41)

with the constraint that the total number of bosons N̂ = n̂a + s†s is constant. Hence, the associated
quantum number N establishes the dimension of the dynamical space. From the dynamical group U(4),
three subgroup chains can be obtained, preserving the angular momentum [18,19]:

U(4) ⊃ U(3) ⊃ SO(3) ⊃ SO(2), (42)

U(4) ⊃ SO(4) ⊃ SO(3) ⊃ SO(2), (43)

U(4) ⊃ SO(4) ⊃ SO(3) ⊃ SO(2). (44)

Each chain provides a basis with a definitive meaning, as will become clear shortly. A particular chain,
(42), leads to the basis |[N]naLM〉 defined by the operator equations

N̂|[N]naLM〉 =N|[N]naLM〉, (45)

n̂a|[N]naLM〉 =na|[N]naLM〉, (46)

L̂2|[N]naLM〉 =L(L + 1)|[N]naLM〉, (47)

L̂z|[N]naLM〉 =M|[N]naLM〉. (48)

We now turn our attention to the connection with configuration space. Using the approach recently
proposed [20] with a mapping to the 3D harmonic oscillator basis

|[N]naLM〉 → |nlm〉. (49)

It is possible to show that the U(4) algebraic realization Q̂μ and P̂−μ for the coordinates and
momenta, respectively, take the form [16]

Q̂μ =
d√
2N

D̂μ, (50)

P̂−μ =− (−)1−μ h̄
d

1√
2N

R̂μ. (51)

The mapping
qμ → Q̂μ pμ → P̂μ (52)
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allows the algebraic Hamiltonian (1) to be obtained in the U(4) space:

ĤU(4)

alg =
1

2m
P̂2 +

mω2

2
Q̂2. (53)

Notice that the operators P̂2 and Q̂2 are not related in a straightforward way with the physical
momentum p2 and coordinate q2, but their matrix elements coincide in the N large limit:

lim
N→∞

||〈Nn′
aLM|P̂2|NnaLM〉|| = ||〈n′lm|p2|nlm〉||, (54)

with similar equation for the coordinate.
Taking into account (50) and (51), the Hamiltonian (53) is recast in the form:

ĤU(4)

alg =
h̄ω

4

[
R̂2 + D̂2

N

]
. (55)

The second order Casimir operators of U(4) and U(3) are given by [18]

Ĉ2[U(4)] =
1
3

n̂2
a +

1
2
(L̂2 + D̂2 + R̂2) + Q̂2 + (N̂ − n̂a)

2, (56)

Ĉ2[U(3)] =
1
3

n̂2
a +

1
2

L̂2 + Q̂2, (57)

and in the symmetrical space of identical bosons the following replacements are valid [18]

C2[U(4)] →N̂(N̂ + 3) (58)

C2[U(3)] →n̂a(n̂a + 2), (59)

which allows (55) to be transformed into

ĤU(4)

alg = h̄ω

[(
1 − 1

N

)
n̂a +

3
2
− n̂2

a
N

]
. (60)

Here we have taken into account that the operator N̂ is diagonal in any basis and consequently it
can be substituted by its eigenvalue N. This result leads to the identification of the U(3) chain (42) as
the energy representation with eigenkets

n̂a|[N]naLM〉 = na|[N]naLM〉, (61)

and branching rules na = 0, 1, . . . , N and L = na, na − 2, . . . , 1 or 0.
Let us now come back to chains (43, 44). Since the Casimir operators characterizing the SO(4) and

SO(4) groups are Ŵ2 = D̂2 + L̂2 and ˆ̄W2 = R̂2 + L̂2 respectively, Equation (50) and (51) implies that
chain (43) provides the coordinate representation while chain (44) gives the momentum representation.
The corresponding eigenvectors satisfy

Ŵ2|[N]ζLM〉 =ζ(ζ + 2)|[N]ζLM〉, (62)
ˆ̄W2|[N]ζ̄LM〉 =ζ̄(ζ̄ + 2)|[N]ζ̄LM〉, (63)

with branching rules ζ, ζ̄ = N, N − 2, . . . , 1 or 0, and L = 0, 1, . . . , ζ(ζ̄). The importance of these
transformations is twofold. On one hand, we have the mapping (49) and consequently it is possible
to project any state to the position representation as an expansion of harmonic oscillator functions.
On the other hand, an arbitrary potential depending on

√
Q̂2 takes a diagonal form in the basis (62),
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providing a direct way to obtain its matrix representation in the energy representation through a
similarity transformation.

Let us now consider a general situation of a 3D Hamiltonian of the form (32). The corresponding
algebraic Hamiltonian is obtained by applying the anharmonization procedure (52):

ĤU(4)
alg = Ĥ

∣∣∣∣
q→Q̂,p→P̂

=
1

2m
P̂2 + V̂(

√
Q̂2). (64)

A practical convenient form for this Hamiltonian is obtained by adding and subtracting a
quadratic term in such a way that the harmonic oscillator term (1) is identified:

ĤU(4)
alg = h̄ω

[(
1 − 1

N

)
n̂a +

3
2
− n̂2

a
N

]
+ κV̂′(

√
Q̂2). (65)

where

V′(Q̂2) = −mω2

2
Q̂2 + V̂(

√
Q̂2). (66)

Taking into account the scalar character of Q̂2, we have its following matrix elements in the
coordinate representation:

〈[N]ζ ′LM|Q̂2|[N]ζLM〉 = d2

2
[ζ(ζ + 2)− L(L + 1)]

N
δζ ′ ,ζ . (67)

Hence, the matrix elements of the Hamiltonian (for a given L and M) in the energy representation
take the general form

H(E) = Λ(E) + κT†Λ(Q)T, (68)

where Λ(E) is the diagonal contribution of the deformed harmonic oscillator

||Λ(E)|| = h̄ω

[(
1 − 1

N

)
na +

3
2
− n2

a
N

]
δn′

a ,na
, (69)

while Λ(Q) is the diagonal matrix of the potential V′(
√
Q̂2) in the position representation:

||Λ(Q)|| = h̄ω

[
− 1

2
ξ(ζ, L)2

2N
+

1
h̄ω

V
(

d
ξ(ζ, L)√

2N

)]
δζ,ζ ′ , (70)

with ξ(ζ, L) =
√

ζ(ζ + 2)− L(L + 1). The T matrix stands for the transformation brackets:
T = ||〈[N]ζLM|[N]naLM〉||, which are obtained by diagonalizing the matrix representation of the
Casimir operators Ŵ2 given by

〈[N]naLM|Ŵ2|[N]; naLM〉 =
N(2na + 3)− 2na(na + 1) + L(L + 1),

〈[N]na + 2, LM|Ŵ2|[N]; naLM〉 =

−
√
(N − na − 1)(N − na)(na − L + 2)(na + L + 3),

or in analytic form [18,21]. This matrix representation of Ŵ2 is tridiagonal and its diagonalization to
provide T is calculated once and for all for a given N, while the diagonal matrix Λ(Q) is modified in
accordance with the specific potential. The contribution (69) involves accidental degeneracy due to the
quadratic contribution n̂2

a. This degeneracy manifests in the full Hamiltonian (68) by the appearance of
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degeneracy for the bound states in the N large limit. This degeneracy is removed by substituting the
diagonal term (69) by [16] [(

1 − 1
N

)
n̂a +

3
2
− δ

n̂2
a

N

]
, (71)

with δ = 1 for na < N/2 and δ = 0 for na ≥ N/2.
The expression (68) contains the main features of our approach. The physical information

characterizing the system is given by the diagonal matrix Λ(Q) easily generated and given by (70),
while the calculation of the transformation brackets allows any system to be analyzed in simple form
using the standard tools of matrix diagonalization. It is important to notice that this approach is
intended to be considered in the N large limit [16]. This is in contrast to the previous analysis of the
algebraic models where N → ∞ represents the classical limit [22].

3. Coulombic Potential: Hydrogen Atom

Because of its importance in dealing with molecular systems the Coulombic potential deserves
special attention. For this reason we shall consider the non-relativistic Hydrogen atom together with
the effect of an external electric field to show the advantages of the proposed approaches. We start
considering the Hamiltonian of the Hydrogen atom.

Following M. Moshinsky, [17], in energy units of the first Bohr orbit EB = 1
2 me4/h̄2,

the Hamiltonian takes the form
Ĥ
EB

=
1

2mEB
p2 −

√
2h̄2

mEB

1
r

. (72)

Here, the mass associated with the harmonic oscillator is identified with the reduced mass of the
Hydrogen system. Adding and subtracting the harmonic oscillator potential we obtain

Ĥ
EB

= ε2 ˆ̄HHO −
[

ε2

2
r̄2 + ε

√
2

1
r̄

]
, (73)

where r̄ is assumed to be in units of d =
√

h̄/mω, the harmonic oscillator Hamiltonian ˆ̄HHO in units of
h̄ω and ε a dimensionless parameter given by

ε =

√
h̄ω

EB
, (74)

with ω a variational parameter to be determined.
Let us now establish, on one hand, the application of the HO-DVR approach to this problem.

The matrix representation of the Hamiltonian in units of h̄ω takes the form

H = ε2Λ(n) − κT†Λ′(r)T, (75)

where the diagonal matrix Λ(n) in the energy representation is given by

||Λ(n)|| = (n + 3/2)δn′n, (76)

while for the diagonal matrix Λ′(r) in the position representation we have

||Λ′(r)|| =
[

ε2

2
r̄2

i + ε
√

2
1√
r̄2

i

]
δij. (77)

On the other hand, in the framework of the U(4)-DVR, we introduce the realization (50) and (51)
into (73) to obtain
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Ĥ
EB

= ε2
[(

1 − 1
N

)
n̂a +

3
2
− n̂2

a
N

]
−
[

1
2

ε2
(

D̂2

2N

)
+ ε

2
√

N√
D̂2

]
. (78)

The corresponding matrix representation takes the form

H(E) = Λ(E) − κT†Λ(Q)T, (79)

where Λ(E) is the diagonal contribution of the deformed harmonic oscillator

||Λ(E)|| = ε2
[(

1 − 1
N

)
na +

3
2
− n2

a
N

]
δn′

a ,na
, (80)

while Λ(Q) is the diagonal matrix containing the potential with the form

||Λ(Q)|| =
[

1
2

ε2
(

1
2N

)
ξ(ζ, L)2 +

ε 2
√

N
ξ(ζ, L)

]
δζ,ζ ′ , (81)

where the preservation of the angular momentum has been considered implicitly. It is importance to
notice that because of the branching rule ζ = N, N − 2, . . . , 1 or 0, the number of bosons N must be
taken to be odd in order to avoid a singularity (obtained when L = ζ = 0).

The diagonalization of the Hamiltonian matrices (75) and (79) lead to the correlation diagram
displayed in Figure 1 as a function of κ. The parameter (74) turns out to be ε = 1. Although the
correlations diagram is the same for both methods, the corresponding basis dimension is different in
order to reach convergence. As noticed, the levels corresponding to the principal quantum number
in the Hydrogen atom converge to the well known n2 degeneracy, although to simplify the figure
we have only included angular momenta up to 2. The degeneracy 2L + 1 = 2l + 1 corresponding to
the projection (M, m) should be assumed but not shown because of the (M, m)-independence of the
Hamiltonian. The states above the zero energy represent a discretization of the continuum. This kind
of the description of the continuum is also present in the Morse and Pöeschl–Teller potentials [23–25].
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Figure 1. Correlation diagram from the harmonic oscillator (κ = 0) to the Coulomb potential (κ = 1)
corresponding to the Hamiltonians (36) and (68), with (77) and (81), respectively. At the right of the
figures the principal quantum number for the electron in the H atom, n, is indicated. To simplify
only the levels of the Hydrogen system with L, l = 0, 1, 2 are included. In the bottom panel a zoom
is displayed in order to show the convergence of the levels with different angular momenta. The top
level in each group corresponds to angular momentum L, l = 0. The parameters were taken to be ε = 1
and N = 4001 for the U(4)-unitary group approach (UGA), while N = 2001 for the HO-DVR method.
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In order to explicitly show the energy convergence, the comparison between the exact energy
levels En = −1/n2 and the calculated ones are displayed in Table 1 for the HO-DVR method and
in Table 2 for the U(4)-UGA. The convergence is similar, but while in the HO-DVR it is reached for
N = 2001, the U(4)-UGA needed a number of bosons N = 4001. This difference may be explained by
the accidental degeneracy involved in the U(4)-UGA but also because the bases are different. In both
cases, the space dimension is large enough to obtain a reasonable convergence to the exact values.
In general, the convergence can be measured through the fidelity F or overlap of eigenstates involving
different parameters N [26]. Along this venue we have calculated the energies for number of bosons
N ± 50, registering the energy difference as the error displayed in Table 3 for the HO-DVR method
and in Table 4 for the U(4)-UGA. It is interesting that the uniformity of the errors in the latter case.
On the other hand, we know the analytical solutions and consequently the wave functions can be
directly compared.

Table 1. Exact bond energies compared with the energies provided by the HO-DVR method, the basis
dimension was taken to be N = 2001.

Basis Dimension N

2001

En L = 0 L = 1 L = 2

−1. −0.9969
−0.25 −0.2496 −0.2500
−0.1111 −0.1111 −0.1111 −0.1111
−0.0625 −0.0625 −0.0625 −0.0625
−0.04 −0.0400 −0.0400 −0.0400
−0.0278 −0.0275 −0.0276 −0.0276
−0.0204 −0.0173 −0.0175 −0.0180

Table 2. Exact bond energies compared with the energies provided by the diagonalization of (68) taking
a total number of bosons N = 4001 with the U(4)-UGA method.

Total Number of Bosons N

4001

En L = 0 L = 1 L = 2

−1. −1.00330
−0.25 −0.25088 −0.25039
−0.1111 −0.11237 −0.11222 −0.11220
−0.0625 −0.06463 −0.06457 −0.06455
−0.0400 −0.04344 −0.04340 −0.04336
−0.0278 −0.0330 −0.0330 −0.0330
−0.0204 −0.02541 −0.02555 −0.02586

Table 3. Errors of the energies provided by the HO-DVR method. Errors were calculated considering
the difference of energies |E(N = 2051)− E(N = 1951)|.

Error for L = 0 Error for L = 1 Error for L = 2

0.0001
0.00002 9 × 10−9

5 × 10−6 3 × 10−9 8 × 10−13

2 × 10−6 1 × 10−9 1 × 10−11

2 × 10−6 5 × 10−7 3× 10−7

0.00008 0.00007 0.00005
0.0006 0.0005 0.0005
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Table 4. Errors of the energies provided by the U(4)-UGA method. Errors were calculated considering
the difference of energies |E(N = 4051)− E(N = 3951)|.

Error for L = 0 Error for L = 1 Error for L = 2

0.00007
0.00002 0.00001
0.00003 0.00003 0.00003
0.00005 0.00005 0.00005
0.00009 0.00009 0.00009
0.0001 0.0001 0.0001
0.00008 0.00006 0.00003

In our approach the α-th eigenstate in the HO-DVR method takes the form

|ψN
α,lm〉 =

N

∑
n=0

〈nlm|ψN
α,lm〉 |nlm〉, (82)

while for the U(4)-UGA

|ψN
α,LM〉 =

N

∑
na=0

〈[N]naLM|ψN
α,LM〉 |[N]naLM〉. (83)

From these expressions we obtain the corresponding position representation for the radial
contribution of the wave function. Integrating over the angular coordinates and applying the
coordinate projection we obtain 〈r|ψN

αL〉 or 〈r|ψN
αl〉 with

〈r|nl〉 = 〈r|[N]naL〉 = Anlrler2/2Ll+1/2
(n−l)/2(r

2), (84)

where Anl =
√
(2l+2(n − l)!!)/(

√
π(n + l + 1)!!). The projections 〈r|ψN

αL〉 or 〈r|ψN
αl〉 can be compared

to the exact analytical functions RnL(r). Here the variable r is given in the distance unit d. Since ε = 1
we have that h̄ω = EB, a result that determines the distance units in the MKS units system. In Figure 2
the position projection of the eigenstates (82) and (83) together with the exact solutions for the 1s, 2s
and 3s orbitals are displayed, while in Figure 3 the corresponding 2p, 3p and 3d orbitals are shown.
Beyond the intrinsic convergence (N = 2001 for the HO-DVR method and N = 4001 for the U(4)-UGA)
provided by the harmonic oscillator basis, we notice that the wave functions are very well described,
a feature that proves the validity of both approaches for the free Hydrogen atom.
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r/d

r/d

r/d

Figure 2. Comparison between exact and calculated radial wave functions Rn0(r); n = 1, 2, 3 for the
Hydrogen atom using (75) and (79) with parameters N = 2001 and N = 4001 respectively, with ε = 1.
The dash lines correspond to the exact wave functions.

r/d

r/d

r/d

Figure 3. Comparison between exact and calculated radial wave functions R21(r), R31(r), R32(r) for the
Hydrogen atom using (75) and (79) with parameters N = 2001 and N = 4001 respectively, with ε = 1.
The dash lines correspond to the exact wave functions.
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4. Stark Effect

In this section, we study the effect of an static external electric field on the spectrum of the
Hydrogen atom. The electric field interacts through the dipole producing a splitting of the spectral lines
called Stark effect, since this phenomenon was experimentally shown by Stark in 1913 [27]. There is a
vast amount of literature on the Stark effect in the Hydrogen atom. This problem has been treated in
configuration space using semi-classical methods [28–30], as well as variational approaches [31,32],
but also algebraically in an elegant way. Since it is impossible to mention all the contributions to this
problem we confine our discussion to some relevant works to put in context our algebraic method.
We do not pretend that our method represents an improvement to the previous descriptions. Instead
we are interested in showing that it is possible to tackle this problem along the venue worked out by
M. Moshinsky, where the harmonic oscillator was the basis to solve problems from atoms to quarks [17].

Algebraic methods applied to the Hydrogen atom may be considered to have originated from the
identification of the SO(4) group as the symmetry group of the non-relativistic Hydrogen atom for the
bound states and SO(3, 1) for the continuum [33–39]. Based upon the SO(4) symmetry group the Stark
effect for both static and time-dependent electric fields has been described from different points of
view, including semiclassical methods taking into account the crucial result that the Runge–Lenz vector
is proportional to the coordinate and the energy [40–43]. In any case, these treatments are confined
to the subspace characterized for a given principal quantum number n since the generators of the
group commute with the Hamiltonian, a fact that constraints the descriptions to perturbative schemes.
In addition the natural basis to deal with this problem, called the Stark basis |n1n2m〉, is based on the
parabolic coordinates where the Schrödinger equation is separable. In this context an important role is
played by the transformation brackets 〈n1n2m|nlm〉 connecting to the states |nlm〉 with good angular
momentum [44].

A full algebraic treatment for the Stark effect needs the introduction of the SO(4, 2) dynamical
group [38,45–48] or alternative groups [49]. The SO(4, 2) group can be identified by the merging of the
SO(2, 1) and SO(4) groups [50]. The SO(2, 1) group, or alternatively, the SU(1, 1) group deals with
the radial contributions that shift the principal quantum numbers [50–52]. Even though the SO(4, 2)
group allows the dipole matrix elements to be calculated, the use of the dynamical group tends to
perturbation treatments [53,54]. In contrast, our algebraic approach is not based on the use of the
dynamical group, instead, our approach falls in the framework of a discrete variable representation
approach, whose salient feature consists in its simplicity as we next present.

In the previous section, we have shown that both algebraic DVR approaches are able to describe
the free Hydrogen atom, although with a different convergence degree. The result is that the HO-DVR
method needs half of the number of the basis functions, albeit with somewhat less uniformity of
errors. In this section, the interaction with a static electric field is introduced whose better description
is tempting to be given by the HO-DVR approach. The result, however, is that the SU(4)-UGA
is more suitable to describe the Stark Effect given the dimensions taken into account for the free
Hydrogen atom, as we show next.

The Hydrogen atom under the action of the electric field takes the form

ĤS = Ĥ + V̂(E), (85)

where Ĥ represents the unperturbed Hydrogen atom (72) and V̂(E) is the potential energy associated
with the interaction of the electron with the external electric field |E| along the z direction

V̂(E) = −e|E|z, (86)

and in the convenient units previously used

V̂(E)
EB

= − z̄
ε

2
√

2|Ē|, (87)
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with z̄ in units of d and Ē in atomic units defined by the electric field of the nucleus given by e/a2
0 ≈

5 × 109 V/cm.
Let us now consider the realization of the potential V̂(E) in accordance with the two algebraic

DVR methods. According to the relations (6) and (7) the z component is given by

z̄ =
1
2
(a†

0 + a0). (88)

Hence, in the HO-DVR method we just calculate the matrix elements of the operator a†
0 in the

basis (9). We obtain

〈n + 1, l + 1, m|a†
0|nlm〉 =

√
(n + l + 3)

√
(l + 1)
(2l + 3)

√
(l + m + 1)(l − m + 1)

(2l + 1)(l + 1)
, (89)

〈n + 1, l − 1, m|a†
0|nlm〉 = −

√
(n − l + 2)

√
l

(2l − 1)

√
(l + m)(l − m)

l(2l + 1)
. (90)

On the other hand, in the U(4)-UGA method, taking into account (50) and (51) with the correspondence
z̄ → Q̂/d, we have

z̄ =
1√
2N

D̂0. (91)

Using the Wigner–Eckart theorem, its matrix elements take the form

〈[N]n′
aL′M|D̂|[N]naLM〉 =〈LM; 10|L′M〉〈[N]n′

aL′||D̂||[N]naL〉, (92)

with the reduced matrix elements

〈[N]na − 1L − 1〉||D̂||[N]naL〉 = −
√

(N − na + 1)(na + L + 1)L
2L − 1

, (93)

〈[N]na − 1L + 1〉||D̂||[N]naL〉 = −
√

(N − na + 1)(na − L)(L + 1)
2L + 3

, (94)

〈[N]na + 1L − 1〉||D̂||[N]naL〉 =
√

(N − na)(na − L + 2)L
2L − 1

, (95)

〈[N]na + 1L + 1〉||D̂||[N]naL〉 =
√

(N − na)(na + L + 3)(L + 1)
2L + 3

. (96)

Taking into account these technical ingredients, we carried out the diagonalization of the
Hamiltonian (85) in the framework of both methods.

In Figure 4 the energy levels associated with the subspace n = 2 as a function of the electrical
field are depicted. In order to obtain these results, a cutoff of the dimension space determined by the
feasibility of the calculations was necessary as well as a constraint in the involved angular momenta.
The black solid circles correspond to the spectrum obtained using the U(4)-UGA, where the number of
boson was taken to be N = 3501 up to L = 16, while the blue triangles correspond to HO-DVR method
taking N = 3001 up to l = 11. The continuous lines correspond to the energy-splitting obtained by
the variational approach described in Ref. [32], where an accurate variational method is presented
for the n = 2−5 shells for different m′s including a display of the wave functions. Since, for each
approach, the convergence of the energy levels for the null field is different the continuous lines were
appropriately located to follow the splitting trend. There are two remarkable facts to be highlighted.
First, the splitting is correctly described by the SU(4)-UGA, while the HO-DVR method tends to
overestimate the splitting as the field intensity increases. This behavior is explained by the different
basis dimensions. As a second point, we notice that for small-field intensity the splitting is rather
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flattened, showing an evident deviation from the linearity predicted by perturbation theory. In order
to clearly see this effect a zoom of Figure 4 is depicted in Figure 5 for low field intensities in the
interval [0, 10−4]. Both approaches present this anomalous behavior, which we believe corresponds to
a lack of convergence. To make clear that this is in fact the case, a similar plot is depicted in Figure 6
for the HO-DVR approach for different boson numbers. The black triangles correspond to N = 3001,
while the red ones to N = 1501. From these plots, it becomes clear that as the basis dimension increases
the splittings approach to the correct results.

Figure 4. Effect of the electric field effect over the subspace n = 2 with m = M = 0 in the Hydrogen
atom. The black solid circles correspond to spectrum obtained with the U(4)-UGA taking N = 3501
up to L = 16, while the blue triangles correspond to HO-DVR method taking N = 3001 up to l =
11. Since the calculations were carried out independently, the plotted points do not coincide. The
continuous line correspond to the variational approach described in Ref. [32]. |Ē| is the electric field in
atomic units.
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Figure 5. Electric field effect over the n = 2 levels of Hydrogen atom for M = m = 0. The black solid
circles correspond to the results using the U(4)-UGA method taking N = 3501 and L = 16. The blue
triangles correspond to HO-DVR method taking N = 3001 and l = 11.

It is worth mentioning the complexity of these calculations due to the spherical symmetry breaking.
Due to our computational limitations, we are forced to fix a maximum value for the angular momentum.
Without this approximation, we would be dealing with a (3, 067, 752)2 dimension matrices, which
are impossible to calculate given our computational capacity. However, the restriction of the angular
momentum components has physical justification in the sense that not all the functions with a given
projection are expected to be mixed. Indeed for the n = 2 and n = 3 levels the mixing of states with
different angular momenta are not expected to be so large (may be up to L, l = 5), but in this work we
have included the maximum angular momenta that allows our calculations to be carried out.

In order to see whether the previous behavior for the p-space is reproduced for other subspaces,
in Figure 7 we display the effect of the electric field provided by both algebraic DVR methods over the
subspace with n = 3 for M = m = 0. The same trend is obtained given the comparison with the exact
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result given in Ref. [32]. While the SU(4)-UGA reproduces the correct splitting, the HO-DVR method
overestimates it.

Figure 6. Zoom of the electric field effect over the subspace n = 2 with m = M = 0 in the Hydrogen
atom provided by the HO-DVR method for N = 1501 (red triangles) and N = 3001 (black triangles).

Figure 7. Electric field effect over the subspace characterized by the principal quantum number n = 3
with M = m = 0 in the Hydrogen atom. The solid black dots correspond to the U(4)-UGA method
taking N = 3501 up to L = 16, while the blue triangles correspond to the HO-DVR method taking
N = 3001 up to l = 11. The continuous lines correspond to the exact results provided by Ref. [32].

Finally it is convenient to recall the usual treatment of the Stark effect using perturbation theory.
For the first excited state (n = 2) the fourfold degeneracy must be born in mind. In this context, since
the angular momentum projection is preserved and z is odd, only the states |Ψ200〉 and |Ψ210〉 interact
through (86). The rest of the matrix element vanish leading to the eigenvalues for M = m = 0 [55,56]:

E± = E2 ± 6|Ē|, (97)

where the energy is intended to be in units of EB and the electric field in atomic units. The magnitude
of the splitting of the levels is proportional to the electric field strength, giving rise to the linear Stark
effect. The straight lines provided by the equation (97) coincide with the exact values displayed
in Figure 4. Deviation from linearity manifests around field intensities of 0.004 au.

5. Conclusions

In this work, we have applied two algebraic discrete variable representation approaches to
describe the non-relativistic Hydrogen atom together with the Sark effect. The selection of the
Coulombic potential to test our approaches is twofold. On one hand, its study is compulsory to
consider more complex situations like molecular systems. On the other hand it is reasonable to
evaluate the feasibility of these approaches to take into account additional interactions breaking the
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symmetry, in particular for the SU(4)-UGA where the condition (71) is imposed to remove the intrinsic
degeneracy associated with the deformed harmonic oscillator (60).

The two approaches we have proposed may be, in principle, applied to general potentials to
obtain the solutions of the time-independent Schrödinger equation. In both approaches, the matrix
representation of the Hamiltonian given by either (36) or (79) is given in terms of two diagonal
matrices together with the transformation brackets. The calculation of the transformation brackets
is independent of the potential and hence they are calculated only once for a given space dimension.
The diagonal matrices Λ(E) corresponding to the simple or deformed harmonic oscillator is trivially
generated and fixed for any system, while Λ(r) and Λ(Q) are diagonal in the coordinate representation
which are also easily constructed. Hence, these approaches represent powerful simple alternatives
to study systems where the analytical solutions of the Schrödinger equations are either not known
or difficult to obtain by integration methods. Even considering moderate values of space dimension,
the approach provides solutions reflecting the main salient features of the system, a situation very
useful when the solution cannot be obtained by conventional methods. Hence, this approach may be
useful in catastrophe theory where a small change in the original stable potential changes the topology
of the problem [57], as well as in the study of quantum phase transitions [58], but also provides new
ways to obtain Franck–Condon factors between different potentials since in our approach a common
basis of harmonic oscillators are used [59].

We have shown the feasibility of both approaches, the HO-DVR method and U(4)-UGA to
obtain the solutions of the 3D Coulombic potential. Although both algebraic methods provide the
solutions, the HO-DVR approach proves to show a faster convergence, a fact that makes it the best
candidate to study this system. A quite different situation is manifested when the dipole interaction
is taken into account to describe the Stark effect, which is particularly difficult due to the spherical
symmetry breaking. The full dimension of the matrices to be diagonalized is too large to be consider
in realistic terms and consequently, we were forced to cutoff the included angular momenta. With this
approximation, the calculations become feasible with reasonable convergence. Fixing the total number
of bosons obtained to describe the free Hydrogen atom, the SU(4)-UGA turns out to be the suitable
method to describe the energy splittings, while the HO-DVR method overestimates the Stark effect.
Although both approaches are based on the harmonic oscillator basis, the localized functions associated
with the discrete variable representation basis are different, a fact that makes the difference between
these approaches. We have thus obtained the unexpected remarkable result that a preference of a
model based on the convergence in the zeroth-order Hamiltonian does not imply the same preference
when a symmetry breaking interaction is included.

The two presented algebraic approaches provide alternatives to obtain the solutions of 3D systems
for any potential where the harmonic oscillator functions represent a good basis. Even though for the
Coulombic potential the harmonic oscillator is not by far the best basis, our methods provide reasonable
results in a simple way. This opens the possibility of studying systems with different algebraic DVR
methods where the exact solutions are not known, providing the possibility of extracting properties by
purely algebraic means using the standard tools of matrix diagonalization.
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Abstract: Understanding the hydrogen atom has been at the heart of modern physics. Exploring
the symmetry of the most fundamental two body system has led to advances in atomic physics,
quantum mechanics, quantum electrodynamics, and elementary particle physics. In this pedagogic
review, we present an integrated treatment of the symmetries of the Schrodinger hydrogen atom,
including the classical atom, the SO(4) degeneracy group, the non-invariance group or spectrum
generating group SO(4,1), and the expanded group SO(4,2). After giving a brief history of these
discoveries, most of which took place from 1935–1975, we focus on the physics of the hydrogen atom,
providing a background discussion of the symmetries, providing explicit expressions for all of the
manifestly Hermitian generators in terms of position and momenta operators in a Cartesian space,
explaining the action of the generators on the basis states, and giving a unified treatment of the bound
and continuum states in terms of eigenfunctions that have the same quantum numbers as the ordinary
bound states. We present some new results from SO(4,2) group theory that are useful in a practical
application, the computation of the first order Lamb shift in the hydrogen atom. By using SO(4,2)
methods, we are able to obtain a generating function for the radiative shift for all levels. Students,
non-experts, and the new generation of scientists may find the clearer, integrated presentation of
the symmetries of the hydrogen atom helpful and illuminating. Experts will find new perspectives,
even some surprises.

Keywords: symmetry; hydrogen atom; group theory; SO(4); SO(4,2); dynamical symmetry;
non-invariance group; spectrum generating algebra; Runge-Lenz; Lamb shift

1. Introduction

1.1. Objective of This Paper

This pedagogic review is focused on the symmetries of the Schrodinger nonrelativistic hydrogen
atom exclusively to give it the attention that we believe it deserves. The fundamental results of the
early work are known and do not need to be derived again. However, having this knowledge permits
us to use the modern language of group theory to do a clearer, more focused presentation, and to
use arguments from physics to develop the proper forms for the generators, rather than dealing with
detailed, mathematical derivations to prove results we know are correct.

There are numerous articles about the symmetry of the Schrodinger hydrogen atom,
particularly the SO(4) group of the degenerate energy eigenstates, including discussions from classical
perspectives. The spectrum generating group SO(4,1) and the non-invariance group SO(4,2) have been
discussed, but, in many fewer articles, often in appendices, with different bases for the representations.
For example, numerous papers employ Schrodinger wave functions in parabolic coordinates, not
with the familiar nlm quantum numbers, often with the emphasis on the details of the mathematical
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structures, not the physics, and with the emphasis on the potential role of the symmetry in elementary
particle physics. Generators may be expressed in complex and unfamiliar terms, for example, in terms
of the raising and lowering operators for quantum numbers characteristic of parabolic coordinates.
Other approaches involve regularizing Schrodinger’s equation by, for example, multiplying by r.
The approach results in generators that are not always Hermitian or manifestly Hermitian, and the
need for nonstandard inner products. Indeed, most of the seminal articles do not have the words
“hydrogen atom” in the title but are focused on the prize down the road, understanding what was
called at the time “the elementary particle zoo”.

Yet, these foundational articles and books taken together present the information we have about
the symmetry of the H atom, of which experts in the field are aware. On the other hand, to the
non-expert, the student, or a researcher new to the field, it does not appear that the relevant information
is in a form that is conveniently accessible. Since the hydrogen atom is the most fundamental physical
system with an interaction, whose exploration and understanding has led to much of the progress in
atomic physics, quantum physics, and quantum electrodynamics, we believe that a comprehensive
treatment is warranted and, since most of the relevant papers were published four decades ago,
is timely. Many younger physicists may not be acquainted with these results.

Unlike in a number of the foundational papers, here the operators are all Hermitian, and given in
terms of the canonical position and momentum variables in the simplest forms. The transformations
they generate are clearly explained, and we provide brief explanations for the group theory used in
the derivations.

In most papers, a separate treatment for bound and scattering states in needed. In contrast we are
able to clarify and simplify the exposition since we use a set of basis states which are eigenfunctions of
the inverse of the coupling constant [1], that include both the bound states and the scattering states
in a uniform way, and that employ the usual Cartesian position and momenta, with the usual inner
product, with the exact same quantum numbers nlm as the ordinary bound states; a separate treatment
for bound and scattering states is not required. In addition, we have two equivalent varieties of this
uniform basis, one that is more suitable for momentum space calculations and one more suitable for
configuration space calculations. This advantage again allows us to simplify the exposition.

We focus on the utility of group theoretic methods using our representation and derive expressions
for the unitary transformation of group elements and some new results that allow for us to readily
compute the first order radiative shift (Lamb shift) of a spinless electron, which accounts for about
95% of the total shift. This approach allows for us to obtain a generating function for the shifts for all
energy levels. For comparison, we derive an expression for the Bethe log.

In summary, we present a unified treatment of the symmetries of the Schrodinger hydrogen atom,
from the classical atom to SO(4,2) that focuses on the physics of the hydrogen atom, that gives explicit
expressions for all the manifestly Hermitian generators in terms of position and momenta operators
in a Cartesian space, that explains the action of the generators on the basis states, which evaluates
the Casimir operators characterizing the group representations, and that gives a unified treatment of
the bound and continuum states in terms of wave functions that have the same quantum numbers
as the ordinary bound states. We give an example of the use of SO(4,2) in a practical application,
the computation of the first order radiative shift in the hydrogen atom.

Hopefully, students and non-experts and the new generation of scientists will find this review
helpful and illuminating, perhaps motivating some to use these methods in various new contexts.
Senior researchers will find new perspectives, even some surprises and encouragements.

1.2. Outline of This Paper

In the remainder of Section 1 we give a brief historical account of the role of symmetry in quantum
mechanics and of the work done in order to explore the symmetries of the Schrodinger hydrogen atom.

In Section 2, we provide some general background observations regarding symmetry groups
and non-invariance groups and discuss the degeneracy groups for the Schrodinger, Dirac,
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and Klein-Gordon equations. We also introduce the uncommon (Zα)−1 eigenstates that allow
us to treat the bound and scattering states in a uniform way, using the usual quantum numbers.
In Section 3, the classical equations of motion of the nonrelativistic hydrogen atom in configuration and
momentum space are derived from symmetry considerations. The physical meaning of the symmetry
transformations and the structure of the degeneracy group SO(4) is discussed. In Section 4, we discuss
the symmetries using the language of quantum mechanics. In order to display the symmetries in
quantum mechanics in the most elegant and uniform way we use a basis of eigenstates of the inverse
of the coupling constant (Zα)−1. In Section 5 we discuss these wave functions in momentum and
configuration space, how they transform and their classical limit for Rydberg states.

In Section 6, we discuss the noninvariance or spectrum generating group of the hydrogen atom
SO(4,l) and relate it to the conformal group in momentum space. In Section 7, the enlarged spectrum
generating group SO(4,2) is introduced, with a discussion of the physical meaning of the generators.
All of the physical states together form a basis for a unitary irreducible representation of these
noninvariance groups. We derive manifestly Hermitian expressions in terms of the momentum and
position canonical variables for the generators of the group transformations and obtain the values
possible for the Casimir operators. We discuss the important subgroups of SO(4,2).

In Section 8, we use the group theory of SO(4,2) to determine the radiative shifts in energy levels
due to the interaction of a spinless electron with its own radiation field, or equivalently with the
quantum vacuum. In the nonrelativistic or dipole approximation the level shift contains a matrix
element of a rotation operator of an O(1,2) subgroup of the group SO(4,2). We can sum this over all
states, obtaining the character of the representation, yielding a single integral that is a generating
function for the radiative shift for any level in the nonrelativistic or dipole approximation. A brief
conclusion follows.

1.3. Brief History of Symmetry in Quantum Mechanics and Its Role in Understanding the Schrodinger
Hydrogen Atom

The hydrogen atom is the fundamental two-body system and perhaps the most important tool
of atomic physics and the continual challenge is to continually improve our understanding of the
hydrogen atom and to calculate its properties to the highest accuracy possible. The current QED theory
is the most precise of any physical theory [2]:

The study of the hydrogen atom has been at the heart of the development of modern
physics...theoretical calculations reach precision up to the 12th decimal place...high
resolution laser spectroscopy experiments...reach to the 15th decimal place for the 1S–2S
transition...The Rydberg constant is known to six parts in 1012 [2,3]. Today, the precision is
so great that measurement of the energy levels in the H atom has been used to determine
the radius of the proton.

Continual progress in understanding the properties of the hydrogen atom has been central to
progress in quantum physics [4]. Understanding the atomic spectra of the hydrogen atom drove the
discovery of quantum mechanics in the 1920’s. The measurement of the Lamb shift in 1947 and its
explanation by Bethe in terms of atom’s interaction with the quantum vacuum fluctuations ushered in
a revolution in quantum electrodynamics [5–7]. Exploring the symmetries of the hydrogen atom has
been an essential part of this progress. Symmetry is a concept that has played a broader role in physics
in general; for example, in understanding the dynamics of the planets, atomic, and molecular spectra,
and the masses of elementary particles.

When applied to an isolated system, Newton’s equations of motion imply the conservation of
momentum, angular momentum and energy. But the significance of these conservation laws was
not really understood until 1911 when Emily Nother established the connection between symmetry
and conservation laws [8]. Rotational invariance in a system results in the conservation of angular
momentum; translational invariance in space results in conservation of momentum; and translational
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invariance in time results in the conservation of energy. We will discuss Nother’s Theorem in more
detail in Section 2.

Another critical ingredient of knowledge, on which Nother based her proof, was the idea of an
infinitesimal transformation, such as a infinitesimal rotation generated by the angular momentum
operators in quantum mechanics. These ideas of infinitesimal transformations originated with the
Norwegian mathematician Sophus Lie who was studying differential equations in the latter half of
the nineteenth century. He studied the collection of infinitesimal transformations that would leave a
differential equation invariant [9]. In 1918, German physicist and mathematician Hermann Weyl, in his
classic book with the translated title “The Theory of Groups and Quantum Mechanics”, would refer to
this collection of differential generators leaving an operator invariant as a linear algebra, ushering in a
little of the terminology of modern group theory [10]. Still this was a very early stage in understanding
the role of symmetry in the language of quantum theory. When he introduced the new idea of a
commutator on page 264, he put the word “commutator” in quotes. In the preface Weyl made a
prescient observation: “.. the essence of the new Heisenberg-Schrodinger-Dirac quantum mechanics is
to be found in the fact that there is associated with each physical system a set of quantities, constituting
a non-commutative algebra in the technical mathematical sense, the elements of which are the physical
quantities themselves”.

A few years later Eugene Wigner published in German, “Group Theory and Its Application to
the Quantum Mechanics of Atomic Spectra [11]”. One might ask why was this classic not translated
into English until 1959. In the preface to the English edition, Prof. Wigner recalled: “When the
first edition was published in 1931, there was a great reluctance among physicists toward accepting
group theoretical arguments and the group theoretical point of view. It pleases the author that this
reluctance has virtually vanished..” It was the application of group theory in particle physics in the
early sixties, such as SU(3) and chiral symmetry, which reinvigorated interest in Wigner’s book and
the field in general. In the 1940’s, Wigner and Bargmann developed the representation theory of
the Poincare group that later provided an infrastructure for the development of relativistic quantum
mechanics [11,12].

The progress in understanding the symmetries of the hydrogen atom, in particular, has some
parallels to the history of symmetry in general: there were some decades of interest but after the 1930’s
interest waned for about three decades in both fields, until stimulated by the work on symmetry in
particle physics.

Probably, the first major advance in understanding the role of symmetry in the classical treatment
of the Kepler problem after Newton’s discovery of universal gravitation, elliptical orbits, and Kepler’s
Laws, was made two centuries ago by Laplace when he discovered the existence of three new constants
of the motion in addition to the components of the angular momentum [13]. These additional conserved
quantities are the components of a vector which determines the direction of the perihelion of the motion
(point closest to the focus) and whose magnitude is the eccentricity of the orbit. The Laplace vector
was later rediscovered by Jacobi and has since been rediscovered numerous times under different
names. Today it is generally referred to as the Runge-Lenz vector. However, the significance of this
conserved quantity was not well understood until the nineteen thirties.

In 1924, Pauli made the next major step forward in understanding the role of symmetry in
the hydrogen atom [14]. He used the conserved Runge-Lenz vector A and the conserved angular
momentum vector L to solve for the energy spectrum of the hydrogen atom by purely algebraic means,
a beautiful result, yet he did not explicitly identify that L and A formed the symmetry group SO(4)
corresponding to the degeneracy. At this time, the degree of degeneracy in the hydrogen energy levels
was believed to be n2 for a state with principal quantum number n, clearly greater than the degeneracy
due to rotational symmetry which is (2l + 1). The n2 degeneracy arises from the possible values of
the angular momentum l = 0, 1, 2, . . . n − 1, and the 2l + 1 values of the angular momentum along the
azimuthal axis m = −l,−l + 1, ...0, 1, 2, l + 1. The additional degeneracy was referred to as “accidental
degeneracy [15].”
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Six years after Pauli’s paper, Hulthen used the new Heisenberg matrix mechanics to simplify
the derivation of the energy eigenvalues of Pauli by showing that the sum of the squares L2 + A2

could be used to express the Hamiltonian and so could be used to find the energy eigenvalues [16].
In a one sentence footnote in this three page paper, Hulthen gives probably the most important
information in his paper: Prof. Otto Klein, who had collaborated for years with Sophus Lie, had
noticed that the two conserved vectors formed the generators of the Lorentz group, which we can
describe as rotations in four dimensions, the fourth dimension being time. This is the non-compact
group SO(3,1), the special orthogonal group in four dimension whose transformations leave the
magnitude gμνzμzν = −t2 + x2 + y2 + z2 unchanged [17]. Klein’s perceptive observation triggered the
introduction of group theory to understanding the hydrogen atom.

About a decade later, in 1935, the Russian physicist Vladimir Fock published a major article
in Zeitshrift fur Physik, the journal in which all the key articles about the hydrogen atom cited
were published [18]. He transformed Schrodinger’s equation for a given energy eigenvalue from
configuration space to momentum space, and did a stereographic projection onto a unit sphere,
and showed that the bound state momentum space wave functions were spherical harmonics in
four dimensions. He stated that this showed that rotations in four dimensions corresponded to the
symmetry of the degenerate bound state energy levels in momentum space, realizing the group SO(4),
the group of special orthogonal transformations which leaves the norm of a four-vector U2

0 +U2
1 +U2

2 +

U2
3 constant. By counting the number of four-dimensional spherical harmonics Ynlm in momentum

space (m = −l,−l + 1...0, 1, ...l, where the angular momentum l can equal l = n − 1, n − 2, ...0),
he determined that the degree of degeneracy for the energy level characterized by the principal
quantum number n was n2. It is interesting that Fock did not cite the work by Pauli, implying the four
dimensional rotational symmetry in configuration space. Fock also presented some ideas about using
this symmetry in calculating form factors for atoms.

A year later, the German-American mathematician and physicist Valentine Bargmann showed that
for bound states (E < 0) Pauli’s conserved operators, the angular momentum L and the Runge–Lenz
vector A, obeyed the commutation rules of the SO(4) [12]. His use of commutators was so early in
the field of quantum mechanics, that Bargmann explained the square bracket notation he used for a
commutator in a footnote [19]. He gave differential expression for the operators, adapting the approach
of Lie generators in the calculation of the commutators. He linked solutions to Schrodinger’s equation
in parabolic coordinates to the existence of the conserved Runge–Lenz vector and was thereby able to
establish the relationship of Fock’s results to the algebraic representation of SO(4) for bound states
implied by Fock and Pauli [12]. He also pointed out that the scattering states (E > 0) could provide
a representation of the group SO(3,1). In a note at the end of the paper, Bargmann, who was at the
University in Zurich, thanked Pauli for pointing out the paper of Hulthen and the observation by
Klein that the Lie algebra of L and A was the same as the infinitesimal Lorentz group, which is how
he referred to a Lie algebra. Bargmann’s work was a milestone demonstrating the relationship of
symmetry to conserved quantities and it clearly showed that to fully understand a physical system
one needed to go beyond the usual ideas of geometrical symmetry. This work was the birth, in 1936,
without much fanfare, of the idea of dynamical symmetry.

Little attention was paid to these developments until the 1960’s, when interest arose primarily
because of the applications of group theory in particle physics, particularly modeling the mass spectra
of hadrons. Particle physicists were faced with the challenge of achieving a quantitative description of
hadron properties, particularly the mass spectra and form factors, in terms of quark models. Since
little was know about quark dynamics they turned to group-theoretical arguments, exploring groups
like SU(3), chiral U(3)xU(3), U(6)xU(6), etc. The success of the eight-fold way of SU(3) (special unitary
group in three dimensions) of American physicist Murray Gell-Mann in 1962 brought attention to the
use of symmetry considerations and group theory as tools for exploring systems in which one was
unsure of the exact dynamics [20].
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In 1964, three decades after Fock’s work, American physicist Julian Schwinger published a paper
using SO(4) symmetry to construct a Green function for the Coulomb potential, which he noted was
based on a class he taught at Harvard in 1949 [21]. The publication was a response to the then current
emphasis on group theory and symmetry, which led to, as Israeli physicist Yuval Ne’eman described
it, “’the great-leap-forward’ in particle physics during the years 1961–1966 [22]”. Some of the principal
researchers leading this effort were Ne’eman [23], Gell-Mann [20,24,25], Israeli physicist Y. Dothan [26],
Japanese physicist Yochiri Nambu [27], and English-American Freeman Dyson [28]. Advantage was
taken of the mathematical infrastructures of group theory developed years earlier [10–12,29,30].

Interest was particularly strong in systems with wave equations with an infinite number of
components, which characterize non-compact groups. In about 1965, this interest in particle physics
gave birth to the identification of SO(4,1) and SO(4,2) as Spectrum Generating Algebras that might
serve as models for hadronic masses. The hydrogen atom was seen as a model to explore the infinite
dimensional representations of non-compact groups. The first mention of SO(4,1) was by Barut, Budini,
and Fronsdal [31], where the H atom was presented as an illustration of a system characterized by
non-compact representation, and so comprising an infinite number of states. The first mention of a six
dimensional symmetry, referred to as the “non-compact group O(6)”, appears to be by the Russian
physicists I. Malin and V. Man’ko of the Moscow Physico-technical Institute [32]. In a careful three page
paper, they showed that all of the bound states of the H atom energy spectrum in Fock coordinates
provided a representation of this group, and they calculated the Casimir operators for their symmetric
tensor representation in parabolic coordinates.

Very shortly thereafter, Turkish-American theoretical physicist Asim Barut and his student at
University of Colorado, German theoretical physicist Hagen Kleinert, showed that including the dipole
operator er as a generator led to the expansion of SO(4,1) to SO(4,2), and that all the bound states of
the H atom formed a representation of SO(4,2) [33]. This allowed them to calculate dipole transition
matrix elements algebraically. They give a position representation of the generators based on the use
of parabolic coordinates. The generators of the transformations are given in terms of the raising and
lowering operators for the quantum numbers for solutions to the H atom in parabolic coordinates.
The dilation operator is used to go from one SO(4) subspace with one energy to a SO(4) subspace with
different energy and it has a rather complicated form. They also used SO(4,2) symmetry to compute
form factors [34].

The papers of the Polish-American physicist Myron Bander and French physicist Claude Itzakson
published in 1966, when both were working at SLAC (Stanford Linear Accelerator in California)
provide the first mathematically rigorous and “succinct” review of the O(4) symmetry of the H atom
and provide an introduction to SO(4,1) [35,36], which is referred to as a spectrum generating algebra
SGA, meaning that it includes generators that take the basis states from one energy level to another.
They use two approaches in their mathematical analysis, the first is referred to as “the infinitesimal
method,” based on the two symmetry operators, L and A and the O(4) group they form, and the
other, referred to as the “global method”, first done by Fock, converts the Schrodinger equation to an
integral equation with a manifest four dimensional symmetry in momentum space. They establish the
equivalence of the two approaches by appealing to the solutions of the H atom in parabolic coordinates,
and demonstrate that the symmetry operators in the momentum space correspond to the symmetry
operators in the configuration space. As they note, the stereographic projection depends on the energy,
so the statements for a SO(4) subgroup are valid only in a subspace of constant energy. They then
explore the expansion of the SO(4) group to include scale changes so the energy can be changed,
transforming between states of different principal quantum number, which correspond to different
subspaces of SO(4). To insure that this expansion results in a group, they include other transformations,
which results in the the generators forming the conformal group O(4,1). Their mathematical analysis
introducing SO(4,1) is based on the projection of a p dimensional space (4 in the case of interest) on a
parabaloid in p + 1 dimensions (5 dimensions). In their derivation they treat bound states in their first
paper [35] and scattering states in the second paper [36].
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As we have indicated the interest in the SO(4,2) symmetry of the Schrodinger equation was driven
by a program focused on developing equations for composite systems that had infinite multiplets of
energy solutions and ultimately could lead to equations that could be used to predict masses of elementary
particles, perhaps using other than four dimensions [27,35–40]. In 1969 Jordan and Pratt showed that
one could add spin to the generators A and L, and still form a SO(4) degeneracy group. By defining
J = 1

2 (L + A) + S, they showed one could obtain a representation of O(4,1) for any spin s [41].
In their review of the symmetry properties of the hydrogen atom, Bander and Itzakson emphasize

this purpose for exploring the group theory of the hydrogen atom [35]:

The construction of unitary representations of non-compact groups that have the
property that the irreducible representations of their maximal subgroup appear at most
with multiplicity one is of certain interest for physical applications. The method of
construction used here in the Coulomb potential case can be extended to various other
cases. The geometrical emphasis may help to visualize things and provide a global form of
the transformations.

Special attention was also given to solutions for the hydrogen atom from the two body
Bethe-Salpeter equation for a proton and electron interacting by a Coulomb potential, since the
symmetry was that of a relativistic non-compact group [27,40,42,43].

Finally in 1969, five years after it was published, Schwinger’s form of the Coulomb Green’s
function based on the SO(4) symmetry was used to calculate the Lamb shift by Michael Lieber,
one of Schwinger’s students at Harvard [21,44]. A year later, Robert Huff, a student of Christian
Fronsdal at UCLA, focused on the use of the results from SO(4,2) group theory to compute the Lamb
shift [45]. He converted the conventional expression for the Lamb shift into a matrix element containing
generators of SO(4,2), and was able to perform rotations and scale changes to simplify and evaluate
the matrix elements. After clever mathematical manipulation, he obtained an expression for the Bethe
log in terms of a rapidly terminating series for the level shifts. He provided an appendix with a brief
discussion of the fundamental of SO(4,2) representations for the H atom, showing the expressions for
the three generators needed to express the Schrodinger equation.

In the next few years, the researchers published a few mathematically oriented papers [41,46–50],
a short book [51] dealing with the symmetries of the Coulomb problem, and a paper by Barut presenting
a SO(4,2) formulation of symmetry breaking in relativistic Kepler problems, with a 1 page summary of
the application of SO(4,2) for the non-relativistic hydrogen atom [34,52]. Bednar published a paper
applying group theory to a variety of modified Coulomb potentials, which included some matrix
elements of SO(4,2) using hydrogen atom basis states with quantum numbers nlm [53]. There also was
interest in application of the symmetry methods and dynamical groups in molecular chemistry [54]
and atomic spectroscopy [55].

In the 1970’s, researchers focused on developing methods of group theory and on understanding
dynamical symmetries in diverse systems [56–58]. A book on group theory and its applications
appeared in 1971 [59]. Barut and his collaborators published a series of papers dealing with the
hydrogen atom as a relativistic elementary particle, leading to an infinite component wave equation
and mass formula [60–63].

Papers on the classical Kepler problem, the Runge–Lenz vector, and SO(4) for the hydrogen
atom have continued to appear over the years, from 1959 to today. Many were published in the
1970’s [64–70] and some since 1980, including [71–75]. Papers dealing with SO(4,2) are much less
frequent. In 1986 Barut, A. Bohm, and Ne’eman published a book on dynamical symmetries that
included some material on the hydrogen atom [76]. In 1986, Greiner and Muller published the second
edition of Quantum Mechanics Symmetries, which had six pages on the Hydrogen atom, covering only
the SO(4) symmetry [77]. The 2005 book by Gilmore on Lie algebras has 4 pages of homework problems
on the H atom to duplicate results in early papers [78]. The last papers I am aware of that used SO(4,2)
were applications in molecular physics [79,80] and more general in scope [81]. Carl Wulfman published
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a book on dynamical symmetries in 2011, which provides a helpful discussion of dynamical symmetries
for the hydrogen atom [82]. He regularizes the Schrodinger equation, essentially multiplying by r,
obtaining Sturmian wave functions in parabolic coordinates. This approach allows for him to treat
bound and scattering states for SO(4,2) at one time, but requires redefining the inner product, and leads
to a non-Hermitian position operator.

1.4. The Dirac Hydrogen Atom

We have focused our discussion on the symmetries of the non-relativistic hydrogen atom described
by the Schrodinger equation. Quantum mechanics also describes the hydrogen atom in terms of the
relativistic Dirac equation, which we will only discuss briefly in this paper.

The gradual understanding of the dynamical symmetry of the Dirac atom parallels that of the
Schrodinger atom, but it has received much less attention, probably because the system has less
relevance for particle physics and for other applications. It was known that the rotational symmetry
was present and that the equation predicted that the energy depended on the principal quantum
number and the quantum number for the total angular momentum j, but not the spin s or orbital
angular momentum l separately. This remarkable fact meant that, in some sense, angular momentum
contributed the same to the total energy no matter whether it was intrinsic or orbital in origin.
This degeneracy is lifted if we include the radiative interactions which leads to the Lamb shift.

In order to understand the symmetry group for the Dirac equation consider that for a given total
angular momentum quantum number J > 0 there are two degenerate levels for each energy level of
the Dirac hydrogen atom: one level has l = J + 1/2 and the other has l = J − 1/2. Since the l values
differ by unity, the two levels have opposite parity. Dirac described a generalized parity operator K,
which was conserved. For an operator Λ to transform one degenerate state into the other, it follows
that the operator has to commute with J and have parity −1. This means it has to anticommute with K,
and so it is a conserved pseudoscalar operator.

The parity (−1)l+J−1/2 is conserved in time, so the states are parity eigenstates. Using the two
symmetry operators Λ and K, one can build a SU(2) algebra. If we include the O(3) symmetry due
to the conservation of angular momentum, we obtain the full symmetry group SU(2)xO(3) which is
isomorphic to SO(4) for the degeneracy of the Dirac hydrogen atom.

In 1950, M.Johnson and B. Lippman discovered the operator Λ [83]. Further work was done on
understanding Λ by Biedenharn [84]. The Johnson–Lippman operator has been rediscovered and
reviewed several times over the decades [85–87]. It has been interpreted in the non-relativistic limit
as the projection of the Runge–Lenz vector onto the spin angular momentum [87–89]. The SO(4)
group can be expanded to include all states, and then the spectrum generating group is SO(4,1) or
SO(4,2) depending on the assumptions regarding relativistic properties and the charges present [33,38].
We will not discuss the symmetries of the Dirac H atom further.

2. Background

2.1. The Relationship between Symmetry and Conserved Quantities

The nature of the relationship between symmetry, degeneracy, and conserved operators is implicit
in the equation

[H, S] = 0 (1)

where H is the Hamiltonian of our system, S is a Hermitian operator, and the brackets signify a
commutator if we are discussing a quantum mechanical system, or i times a Poisson bracket if we are
discussing a classical system. If S is viewed as the generator of a transformation on H, then Equation (1)
says the transformation leaves H unchanged. Therefore, we say S is a symmetry operator of H and
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leaves the energy invariant. The fact that a non- trivial S exists means that there is a degeneracy.
To show this, consider the action of the commutator on an energy eigenstate |E〉:

[H, S]|E〉 = 0 (2)

or
H(S|E〉) = E(S|E〉). (3)

If S is nontrivial then S|E〉 is a different state from |E〉 but has the same energy eigenvalue. If we
label all such degenerate states by

|E, m〉, m = 1, ..., N (4)

then clearly S|E, m〉 is a linear combination of degenerate states:

S|E, m〉 = Sms|E, s〉. (5)

Sms is a matrix representation of S in the subspace of degenerate states. In a classical Kepler system
S generates an orbit deformation that leaves H invariant. The existence of a nontrivial S therefore
implies degeneracy, in which multiple states have the same energy eigenvalue. We can show that the
complete set of symmetry operators for H forms a Lie algebra by applying Jacobi’s identity to our set
of Hermitian operators Si :

[H, Si] = 0, i = 1, . . . , L. (6)

[Sj, [H, Si]] + [Si, [Sj, H]] + [H, [Si, Sj]] = 0 (7)

so
[H, [Si, Sj]] = 0. (8)

Therefore, the commutator of Si and Sj is a symmetry operator of H. Either the commutator is a
linear combination of all the symmetry operators Si, i = 1, ..., L:

[Si, Sj] = Ck
ijSk (9)

or the commutator defines a new symmetry operator which we label SL+1. We repeat this procedure
until the Lie algebra closes as in Equation (9).

By exponentiation, we assume that we can locally associate a group of unitary transformations

eiSiai
(10)

for real ai with our Lie algebra and so conclude that a group of transformations exists under which
the Hamiltonian is invariant [90]. We call this the symmetry or degeneracy group of H. Our energy
eigenstates states form a realization of this group.

It is possible to form scalar operators, called Casimir operators, from the generators of the group
that commute with all the generators of the group, and, therefore, have numerical values. The values
of the Casimir operators characterize the particular representation of the group. For example,
for the rotation group in three dimensions, the generators are L = (L1, L2, L3) and the quantity
L2 = L(L + 1) commutes with all of the generators. L can have any positive integer value for a
particular representation. The Casimir operator for O(3) is L2. The number of Casimir operators that
characterize a group is called the rank of the group. O(3) is rank 1 and SO(4,2) is rank 3.

Now let us consider Equation (1) in a different way. If we view H as the generator of translations
in time, then we recall that the total time derivative of an operator Si is

dSi
dt

=
i
h̄
[H, Si̇] +

∂Si

∂t
(11)

125



Symmetry 2020, 12, 1323

where the commutator and the partial derivative give the implicit and explicit time dependence
respectively. Provided that the symmetry operators have no explicit time dependence ( ∂Si

dt = 0),
then Equation (11) implies that Equation (1) means that the symmetry operators S are conserved
in time and dSi

dt = 0. Conversely, we can say that conserved Hermitian operators with no explicit
time dependence are symmetry operators of H. This very important relationship between conserved
Hermitian operators and symmetry was first discovered by German mathematician Emmy Nother in
1917, and is called Nother’s Theorem [8,91–95].

2.2. Non-Invariance Groups and Spectrum Generating Group

As we have discussed, the symmetry algebra contains conserved generators Si that transform one
energy eigenstate into a linear combination of eigenstates all with the same energy. In order to illustrate
with hydrogen atom eigenstates:

Si|nlm〉 = ∑
l′ ,m′

Snl′m′
nlm |nl′m′〉 (12)

where |nlm〉 refers to a state with energy En, angular momentum l(l + 1) and lz = m.
A non-invariance algebra contains generators Di that can be used to transform one energy

eigenstate |nlm〉 into a linear combination of other eigenstates, with the same or a different energy,
different angular momentum l, and different azimuthal angular momentum m:

D|nlm〉 = ∑
n′ ,l′ ,m′

Dn′ l′m′
nlm |n′l′m′〉. (13)

Because the set of energy eigenstates is complete, the action of the most general operator would
be identical to that shown to Equation (13). Therefore this requirement alone is not sufficient to select
the generators needed.

The goal is to expand the degeneracy group with its generators Si into a larger group, so that
some or all of the eigenstates form a representation of the larger group with the degeneracy group as a
subgroup. Thus, we need to add generators Gi, such that the combined set of generators

{Si, Gj; for all i, j} ≡ {Dk; for all k}

forms an algebra that closes
[Di, Dj] = iεijkDk. (14)

This is the Lie algebra for the expanded group. To illustrate with a specific example, consider the
O(4) degeneracy group with six generators [96]. One can expand the group to O(5) or O(4,1) which
has ten generators by adding a four-vector of generators. One component might be a scalar and the
other three a three-vector. The question then is can some or all of the energy eigenstates provide
a representation of O(5)? If so, then this would be considered a non-invariance group. The group
might be expanded further in order to obtain generators of a certain type or to include all states in the
representation. For the H atom the generators Di can transform between different energy eigenvalues
meaning between eigenfunctions with different principal quantum numbers.

Another way to view the expansion of the Lie algebra of the symmetry group is to consider
additional generators Di that are constants in time [97] but do not commute with the Hamiltonian so

dDi
dt

= 0 =
i
h̄
[H, Di̇] +

∂Di

∂t
.

If we make the additional assumption that the time dependence of the generators is harmonic

∂2Di(t)
∂t2 = ωinDn(t).
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then generators Di, and the first and second partial derivatives with respect to time could close under
commutation, forming an algebra. This approach does not tell us what generators to add, but, as we
demonstrate in Section 7.5, it does reflect the behavior of the generators that have been added to form
the spectrum generating group in the case of the hydrogen atom.

We may look for the largest set of generators Di, which can transform the set of solutions into
itself in an irreducible fashion (meaning no more generators than necessary). These generators form
the Lie algebra for the non-invariance or spectrum generating algebra [32,98]. If the generators for the
spectrum generating algebra can be exponentiated, then we have a group of transformations for the
spectrum generating group. The corresponding wave functions form the basis for a single irreducible
representation of this group. This group generates transformations among all the solutions for all
energy eigenvalues and it is called the Spectrum Generating Group [99]. For the H atom, SO(4,1) is a
spectrum generating group or non-invariance group, which can be reduced to contain one separate
SO(4) subgroup for each value of n.

To get a representation of SO(4,1), we need an infinite number of states, which we have for the H
atom. This group has been expanded by adding a five vector to form SO(4,2) because the additional
generators can be used to express the Hamiltonian and the dipole transition operator. The group
SO(p,q) is the group of orthogonal transformations that preserve the quantity X = x2

1 + x2
2 + ... +

x2
p − ... − x2

p+q, which may be viewed as the norm or a p+q-dimensional vector in a space that has a
metric with p plus signs and q minus signs. The letters SO stand for special orthogonal, meaning the
orthogonal transformations have determinant equal to +1.

In terms of group theory, there is a significant difference between a group like SO(4) and
SO(4,1). SO(4) and SO(3) are both compact groups, while SO(4,1) and SO(4,2) are non-compact
groups. A continuous group G is compact if each function f(g), continuous for all elements g of the
group G, is bounded. The rotation group in three dimensions O(3), which conserves the quantity
r2 = x2

1 + x2
2 + x2

3, is an example of a compact group.
For a non-compact group, consider the Lorentz group O(3,1) of transformations to a coordinate

system moving with a velocity v. The transformations preserve the quantity r2 − c2t2. The matrix
elements of the Lorentz transformations are proportional to 1/

√
1 − β2, where β = v/c, and are

not bounded as β → 1. Therefore, r and ct may increase without bound, while the difference of the
squares remains constant. Unitary representations of non-compact groups are infinite dimensional,
for example, the representation of the non-invariance group SO(4,1) has an infinite number of states.
Unitary representations of compact groups can be finite dimensional, for example, our representation
of SO(4) for an energy level En has dimension n2.

In the nineteen sixties and later, the spectrum generating group was of special interest in particle
physics, because it was believed it could provide guidance where the precise particle dynamics were
not known. The hydrogen atom provided a physical system as a model. Because the application was in
particle physics, there was less interest in exploring representations in terms of the dynamical variables
for position and momentum.

The expansion of the group from SO(4,1) to SO(4,2) was motivated by the fact that the additional
generators could be used to write Schrodinger’s equation entirely in terms of the generators, and to
express the dipole transition operator. This allowed for algebraic techniques and group theoretical
methods to be used to obtain solutions, calculate matrix elements, and other quantities [33,38].

2.3. Basic Idea of Eigenstates of (Zα)−1

We briefly introduce the idea behind these states, since they are unfamiliar [1]. The full derivation
is given in Section 4. Schrodinger’s equation in momentum space for bound states can be written as[

p2 + a2 − 2mZα

r

]
|a〉 = 0.

127



Symmetry 2020, 12, 1323

where a2 = −2mE > 0 and Zα is the coupling constant, which we will now view as a parameter.
This equation has well behaved solutions for certain discrete eigenvalues of the energy or a2, namely

a2
n = −2mEn

where En = − 1
2

m(Zα)2

n2 . We can write the eigenvalue condition equivalently as

(
an

mZα
) =

1
n

.

This last equation shows that solutions exist for certain values an of the RMS momentum a.
To introduce eigenstates of (Zα)−1 we simply take a different view of this last equation and say
that instead of quantizing a and obtaining an, we imagine that we quantize (Zα)−1, let a remain
unchanged, obtaining

a
m(Zα)n

=
1
n

.

Accordingly, now we can interpret Schrodinger’s equation as an eigenvalue equation that has
solutions for certain values of (Zα)−1 namely

(Zα)−1
n =

m
an

.

We have the same equation but can view the eigenvalues differently but equivalently. Instead of
quantizing a we quantize (Zα)−1.

This roughly conveys the basic idea of eigenstates of the inverse of (Zα), but this simplified
version does at all reveal the advantages of our reformulation because we have left the Hamiltonian
unchanged. In Section 4, we transform Schrodinger’s equation to an eigenvalue equation in a, so that
the kernel is bounded, which means that there are no states with E > 0, no scattering states, and all
states have the usual quantum numbers. Other important advantages to this approach will also
be discussed.

2.4. Degeneracy Groups for Schrodinger, Dirac and Klein-Gordon Equations

The degeneracy groups for the bound states described by the different equations of the hydrogen
atom are summarized in Table 1. The degeneracy (column 2) is due to the presence of conserved
operators which are also symmetry operators (column 3), forming a degeneracy symmetry group
(column 4). For example, The symmetry operators for the degeneracy group in the Schrodinger
hydrogen atom are the angular momentum L and the Runge–Lenz vector A. In Section 3, it will be
shown that together these are the generators for the direct product SO(3)xSO(3) which is isomorphic to
SO(4). Column 5 gives the particular representations present. These numbers are the allowed values
of the Casimir operators for the group and they determine the degree of degeneracy (last column) and
the corresponding allowed values of the quantum numbers for the degenerate states.

The Casimir operators, which are made from generators of the group, have to commute with all
of the members of the group, and the only way this can happen is if they are actually constants for the
representation. The generators are formed from the dynamical variables of the H atom, so the Casimir
operators are invariants under the group composed of the generators, and their allowed numerical
values reflect the underlying physics of the system and determine the appropriate representations
of the group [9,82,100]. For example, L2 is the Casimir operator for the group O(3) and can have the
values l(l + 1). The relationship between Casimir operators and group representations is true for all
irreducible group representations, including the SO(4) degeneracy group, as well as the spectrum
generating group SO(4,2) [43,53].

For the Schrodinger equation, there are n2 states |nlm〉 that form a representation of the degeneracy
group SO(4) formed by L and A. These states correspond to the principal quantum number n, the n
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different values of the angular momentum quantum number l, and 2l + 1 different values of the z
component of the angular momentum lZ = m.

For the Dirac equation, the 2(2J + 1) dimensional degeneracy group for bound states is realized by
the total angular momentum operator J, the generalized parity operator K, and the Johnson–Lippman
operator Λ, which together form the Lie algebra for SO(4).

For the fully relativistic Klein–Gordon equation, only the symmetry from rotational symmetry
survives, leading to the degeneracy group O(3). If the V2 term, the four-potential term squared is
dropped in a semi-relativistic approximation as we describe in Section 4.3, then the equation can be
rewritten in the same form as the non-relativistic Schrodinger equation, so a Runge–Lenz vector can be
defined and the degeneracy group is again SO(4).

Table 1. In the table L = rxp is the orbital angular momentum; A is the Runge-Lenz vector;
J = L + σ/2 is the total angular momentum; K is the generalized parity operator; Λ is the conserved
pseudoscalar operator.

Degeneracy Groups for Bound States in a Coulomb Potential

Equation Degeneracy Conserved
Quantities

Degeneracy
Group

Representation Dimension

Schrodinger E indep.
of l, lz

A, L SO(4) ( n−1
2 , n−1

2 ) n2

Klein-Gordon E indep.
of lz

L O(3) Casimir
op. is
l(l + 1)

2l + 1

Klein-Gordon
without
V2 term

E indep.
of l, lz

A, L SO(4) ( n−1
2 , n−1

2 ) n2

Dirac E
depends
on J, n
only

Λ, K, J SO(4) (1/2, J) 2(2J+1)

3. Classical Theory of the H Atom

In order to discuss orbital motion and the continuous deformation or orbits we give this discussion
in terms of classical mechanics, but much of it is valid in terms of the Heisenberg representation of
quantum mechanics if the Poisson brackets are converted to commutators, as will be discussed in
Section 4.

For a charged particle in a Coulomb potential, there are two classical conserved vectors: the
angular momentum L, which is perpendicular to the plane of the orbit, and the Runge–Lenz vector A,
which goes from the focus corresponding to the center of mass and force along the semi-major axis
to the perihelion (closest point) of the elliptical orbit. The conservation of A is related to the fact that
non-relativistically the orbits do not precess. The Hamiltonian of our bound state classical system with
an energy E < 0 is [17]

H =
p2

2m
− Zα

r
= E (15)

where m=mass of the electron, r is the location of the electron, p is its momentum, α is the fine structure
constant, and E is the total non-relativistic energy.

The Runge–Lenz vector is

A =
1√

−2mH
(p × L − mZα

r

r
) (16)
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where L is the angular momentum. From Hamilton’s equation, H = E, so

A =
p × L

a
− mZα

a
r

r
(17)

where a is defined by
a =

√
−2mE. (18)

From the virial theorem, the average momentum 〈p2〉 = −2mE so a is the root mean square
momentum. We are discussing bound states so E < 0. It is straightforward to verify that A is conserved
in time:

[A, H] =
dA

dt
= 0. (19)

From the definition of A and the definition of angular momentum

L = r × p (20)

if follows that A is orthogonal to the angular momentum vector

A · L = 0. (21)

Using the fact that A and L are conserved, we can easily obtain equations for the orbits in
configuration and momentum space and the eccentricity, and other quantities, all usually derived by
directly solving the equations of motion.

We will show that A and L are the generators of the group O(4). If we introduce the linear
combinations N = 1

2 (L + A) and M = 1
2 (L − A), we find that N and M commute reducing the

nonsimple group O(4) to SU(2)x SU(2), which we will discuss in Section 4.2 in the language of
quantum mechanics.

3.1. Orbit in Configuration Space

In order to obtain the equation of the orbit one computes

r · A = rAcosφr = −r
mZα

a
+ r · p × L. (22)

Noting that r · p × l = L2, we can solve for r

r =
L2/mZα

(a/mZα)A cosφr + 1
. (23)

This is the equation of an ellipse with eccentricity e = (a/mZα)A and a focus at the origin
(Figure 1). To find e we calculate A · A using the identity p × L · p × L = p2L2 and obtain

A2 =
p2L2

a2 − 2mZα

a2
L2

r
+

(
mZα

a

)2
. (24)

Substituting E for the Hamiltonian Equation (15) gives the usual result

a
mZα

A = e =

√
2EL2

m(Zα)2 + 1 . (25)

The length rc of the semi-major axis is the average of the radii at the turning points

rc =
r1 + r2

2
. (26)
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Using the orbit equation we find

rc =
L2

mZα

1
1 − e2 (27)

or
rc = −Zα

2E
=

mZα

a2 . (28)

The energy depends only on the length of the semi-major axis rc, not on the eccentricity.
This important result is a consequence of the symmetry of the problem. It is convenient to parameterize
the eccentricity in terms of the angle ν (see Figure 1) where

e = sin ν (29)

From this definition and from Equations (25), (27), and (28) follow the useful results

L = rca cos ν, A = rca sin ν (30)

which immediately imply

L2 + A2 = (rca)2 =

(
mZα

a

)2
. (31)

This equation is the classical analogue of an important quantum mechanical result first obtained by
Pauli and Hulthen allowing us to determine the energy levels from symmetry properties alone [14,16].
From Figure 1, it is apparent that this equation is a statement of Pythagoras’s theorem for right triangles.

Figure 1. Classical Kepler orbit in configuration space. The orbit is in the 1–2 plane (plane of the
paper). One focus, where the proton charge is located, is the origin. The semi-minor axis is b = rc sin ν.
The semi-major axis is rc.

The energy equation (Equation (15)) and the orbit equation (Equation (23)) respectively may be
rewritten in terms of a , r, and ν :

rc

r
=

p2 + a2

2a2 (32)

r =
rc cos2 ν

1 + sin ν cos φr
. (33)

131



Symmetry 2020, 12, 1323

3.2. The Period

To obtain the period, we use the geometrical definition of the eccentricity

e =
√

1 − (b/rc)2 (34)

where b is the semi-minor axis. Using e = sin ν we find

b = rc cos ν (35)

so from Equation (30), we obtain
L = ab. (36)

From classical mechanics, we know the magnitude of the angular momentum is equal to twice
the mass times the area swept out by the radius vector per unit time. The area of the ellipse is πbrc.
It the period of the classical motion is T, then L = 2mπbrc/T. Therefore, the classical period is

T = 2π
mrc

a
= 2π

√
m(Zα)2

−8E3 . (37)

and the classical frequency ωcl = 2π/T is

ωcl =
a

mrc
. (38)

3.3. Group Structure SO(4)

The generators of our symmetry operations form the closed Poisson bracket algebra of O(4):

[Li, Lj] = iεijkLk , [Li, Aj] = iεijk Ak , [Ai, Aj] = iεijkLk . (39)

The brackets mean i times the Poisson bracket, which is the classical limit of a commutator.
The first bracket says that the angular momentum generates rotations and forms a closed Lie algebra
corresponding to O(3). The second bracket says that the Runge-Lenz vector transforms as a vector
under rotations generated by the angular momentum. The last commutator says that the multiple
transformations generated by the Runge-Lenz vector are equivalent to a rotation. Taken together the
commutators form the Lie algebra of O(4). The connected symmetry group for the classical bound
state Kepler problem is obtained by exponentiating our algebra giving the symmetry group SO(4).
The scattering states with E > 0 form an infinite dimensional representation of the non-compact group
SO(3,1).

We now want to determine the nature of the transformations generated by Ai and Li. Clearly,
L · δω generates a rotation of the elliptical orbit about the axis δω by an amount δω. To investigate the
transformations generated by A · δν we assume a particular orientation of the orbit, namely that it
is in the 1–2 (or x-y) plane and that A is along the 1-axis (see Figure 1). The more general problem is
obtained by a rotation generated by Li. For an example, we choose a transformation with δν pointing
along the 2-axis, so that A · δν = A2δν . The change in A is defined by δA, where

δA = i[A · δν, A]. (40)

From the Poisson bracket relations, we find for this particular case:

δA1 = L3δν , δA2 = 0 , δA3 = −L1δν (41)
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For our orbit, L1 = 0 so δA3 = 0. We perform a similar computation to find δL. We find we can
characterize the transformation by

δA1 = L3δv or δA = Lδν

δL3 = −A1δν or δL = −Aδν

δe =
√

1 − e2δν or δ(sin ν) = cos νδν

. (42)

Recalling e = sin ν and Equation (30), we see that these transformations are equivalent to
the substitution

ν −→ ν + δν. (43)

In other words, the eccentricity of the orbit, and therefore A and L are all changed in such a way
that the energy, a and rc (length of the semi-major axis) remain constant. In our example, both L and
A are changed in length but not direction, so the plane and orientation of the orbit are unchanged.
The general transformation A · δμ will also rotate the plane of the orbit or the semi-major axis.

Figure 2 shows a set of orbits in configurations space with different values of the eccentricity
e = sin ν, but the same total energy and the same semimajor axis rc, which is the bold hypotenuse.
The bold vertical and horizontal legs are A/a and L/a and they are related to the hypotenuse rc by
Pythagoras’s theorem. The generator A2ν produces a deformation of the circular orbit into the various
elliptical orbits shown. This classical degeneracy corresponds to the quantum mechanical degeneracy
in energy levels that occurs for different eigenvalues of the angular momentum with a fixed principal
quantum number.

Figure 2. Kepler bound state orbits in configuration space for a fixed energy and different values of the
eccentricity e = sin ν. The bold hypotenuse is the semi-major axis rc, which makes an angle ν with the
vertical 2-axis.

We can visualize all possible elliptical orbits for a fixed total energy or semi-major axis through a
simple device. It is possible to produce an elliptical orbit with eccentricity sin ν as the shadow of a
circle of radius rc which is rotated an amount ν about an axis perpendicular to the illuminating light.
With a complete rotation of the circle, we will see all possible classical elliptical orbits corresponding
to a given total energy. In quantum mechanics only certain angles of rotation would be possible
corresponding to the quantized values of L. As the circle is rotated, we must imagine that the force
center shifts as the sine of the angle of rotation, so that it always remains at the focus [101].

133



Symmetry 2020, 12, 1323

3.4. The Classical Hydrogen Atom in Momentum Space

We can derive the equation for the classical orbit in momentum space of a particle bound in a
Coulomb potential using the conserved operators L and A. For convenience, we assume that we have
rotated our axes, so that L lies along the 3-axis and A the 1-axis, as shown in Figure 1. We compute

p · A = p1 A =
−mZα

a
p · r

r
≡ −mZα

a
pr (44)

and we employ Equations (28) and (30) to show A = mZα
a sin ν, to obtain [102]

pr = − sin νp1 (45)

which we substitute into the identity

p2
r +

L2

r2 = p2 = p2
1 + p2

2 (46)

Using Equations (30) and (32) we find

1 =

(
2ap1

p2 + a2

)2
+

(
2ap2

p2 + a2

)2 1
cos2 v

(47)

and
p2 − a2 = 2ap2 tan ν (48)

which may also be written as

p2
1 + (p2 − a tan ν)2 =

a2

cos2 ν
. (49)

From Equation (49), we see the orbit in momentum space is a circle of radius a/ cos ν with its
center displaced from the origin a distance a tan ν along the 2-axis. Figure 3 shows the momentum
space orbit that corresponds to the configuration space orbit in Figure 1.

Figure 3. Kepler orbit in momentum space of radius a/ cos ν, with its center at p2 = a tan ν,
corresponding to the orbit in configuration space shown in Figure 1. A circular orbit in configuration
space corresponds to a circular orbit in momentum space centered on the origin with radius a.

As an alternative method of showing the momentum space orbits are circular, we can
compute [103] (

p − a
L × A

L2

)2
= C2. (50)
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Using the lemma

p × A = − L
2a

(p2 − a2), (51)

the fact that L · A = 0, and Equation (30), we find C = a
cos ν . The orbit is a circle of radius a

cosν whose
center lies at a L×A

L2 , in agreement with the previous result.
We now consider what the generators Ai and Li do to the orbit in momentum space. Clearly,

L generates a rotation of the axes. For an Ai transformation, consider the same situation that we
considered in our discussion of the configuration space orbit (see Figures 1 and 3). Because the
generator A2δν changes ν to ν + δν, we conclude that in momentum space this shifts the center of the
orbit along the 2-axis and changes the radius of the circle. However, the distance a from the 2-axis to
the intersection of the orbit with the 1-axis remains unchanged. Figure 4 shows a set of momentum
space orbits for a fixed energy that correspond to the set of orbits in configuration space shown in
Figure 2.

Figure 4. Kepler orbits in momentum space for a fixed energy and RMS momentum a with different
values of the eccentricity e = sin ν corresponding to the orbits in configuration space shown in Figure 2.

3.5. Four-Dimensional Stereographic Projection in Momentum Space

It is interesting that in classical mechanics the bound state orbits in a Coulomb potential are
simpler in momentum space than in configuration space. In quantum mechanics the momentum space
wave functions become simply four-dimensional spherical harmonics if one normalizes the momentum
p by dividing by the RMS momentum a =

√
−2mE and performs a stereographic projection onto a

unit hyper-sphere in a four-dimensional space [18,35]. We will do the analogous projection procedure
for the classical orbits. The three-dimensional momentum space hyperplane passes through the center
of the four-dimensional hypersphere, as shown in Figure 5. The unit vector in the fourth direction is
n̂ = (1, 0, 0, 0). The unit vector Û goes from the center of the sphere to the surface of the hypersphere,
where it is intersected by the line connecting the vector p/a to the north pole of the sphere.
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Figure 5. Stereographic projection in momentum space for a fixed energy, mapping p/a into Û.
The unit vector in the four direction is n̂ and n̂ · Û = cos Θ4.

We find

Ui =
2api

p2 + a2 i = 1, 2, 3. U4 =
p2 − a2

p2 + a2 (52)

or inverting,

pi =
aUi

1 − U4
p2 = a2 1 + U4

1 − U4
. (53)

Momentum space vectors for which p/a < 1 are mapped onto the lower hyperhemisphere.
The advantage of this projection over one in which the hypersphere is tangent to the hyperplane is
that we may have |n̂| = |Û| = 1. At times it is convenient to describe Û in terms of spherical polar
coordinates in four dimensions. Because Û is a unit vector we define

U4 = cos θ4

U3 = sin θ4 cos θ

U2 = sin θ4 sin θ sin φ

U1 = sin θ4 sin θ cos φ

(54)

where θ and φ are the usual coordinates in three dimensions. By comparison to Equation (52), we have

θ4 = 2 cot−1 p
a

θ = cos−1 p3

p
φ = tan−1 p2

p1
(55)

3.6. Orbit in U space

We want to find the trajectory of the particle on the surface of the hypersphere corresponding
to the Kepler orbits in configuration space or the displaced circles in momentum space. We assume
we have rotated the axes in configuration space so that L is along the 3-axis and A is along the 1-axis,
as shown in Figure 1. The equation for the orbit in three-dimensional momentum space is given by
Equations (48) or (50). Dividing Equation (48) by p2 + a2 immediately gives a parametric equation for
the projected orbit in U space:

U4 = U2 tan ν. (56)

Because the orbit is in the 1–2 plane in configurations space, U3 = 0. The orbit lies in a hyperplane
perpendicular to the 2–4 plane that goes through the origin and makes an angle π/2 − ν with the
4-axis, as shown in Figure 6 [104]. The orbit is the intersection of this plane with the hypersphere and it
is therefore a great circle. To derive the exact equation for the projected orbit we express p in Cartesian
components p1 and p2 in Equation (48) and substitute Equation (52) obtaining
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Figure 6. Showing the hyperplane containing the orbit making an angle ν with the U2 plane.
Notice tan ν = A/L as required by Equation (30).

U2
l + U2

2 − 2 tan ν U2(l − U4) = (1 − U4)
2. (57)

To interpret this equation, we consider it in a rotated coordinate system. If we perform a
rotation by an amount δν about the 1–3 plane (A2δν is the generator of this rotation), the equations of
transformation may be written [105]

U2 = U′
2 cos δν + U′

4 sin δν, U3 = U′
3

U4 = U′
4 cos δν − U′

2 sin δν, U1 = U′
1.

(58)

This transformation is equivalent to making the substitution ν −→ ν+ δν in the equations relating
to the orbit. For example, Equation (56) becomes

U′
4 = U′

2 tan (ν + δν). (59)

We choose δν = −ν, which means the orbital plane becomes U′
4 = 0. Writing Equation (57) in

terms of the primed coordinates, we find

U′2
1 + U′2

2 = 1 (60)

which in the original system is

U2
1 + (U2 cos ν + U4 sin ν)2 = 1. (61)

This is the equation of a great hypercircle (ν, 0) centered at the origin and lying in a hyperplane
making an angle π/2 − ν with the 4-axis and an angle π/2 − 0 with the 3-axis. If L did not lie along
the 3-axis, but, for example, was in the 1–3 plane, at an angle Θ from the 3-axis, then Equation (61)
would be modified by the substitution

U1 −→ U1cosΘ + U3 sin Θ (62)

which follows, since Ui transforms as a three-vector. The corresponding great circle (ν, Θ) lies in a
hyperplane making an angle π/2 − ν with the 4-axis and π/2 − Θ with the 3-axis.

The motion of the orbiting particle corresponds to a dot moving along the great circle (ν, 0 or
Θ) with a period T given by the classical period Equation (37). The velocity in configuration space
can be expressed in terms of U4 by using its definition in terms of p2 Equation (53) or in terms of θ4

Equation (55). The particle is moving at maximum velocity when θ4 is a minimum, which occurs at the
perihelion when θ4 = π/2 − ν:

max(
p
a
) =

√
1 + e
1 − e

=

√
r2

r1
(63)
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and at a minimum velocity when θ4 = π/2 + ν:

min(
p
a
) =

√
1 − e
1 + e

. (64)

These values of θ4 correspond to turning points, at which r and p have extreme values. This is
apparent when we use Equation (32) for the total energy to show

U4 =
rc − r

rc
. (65)

When r > rc then p2 < a2, so the particle is moving more slowly than the RMS velocity.
Applying the virial theorem to any orbit we find 〈p2〉 = a2 so as expected a is the RMS momentum
and 〈 1

1−U4
〉 = 1 = 〈rc/r〉.

Figure 7 is a picture of a simple device illustrating the stereographic projection of the orbit in
p/a-space onto the four-dimensional hypersphere in U-space. We assume that the orbit is in the
1–2 plane and that A lies along the 1-axis, so p3 = 0, U3 = 0. Because of this trivial dependence
on p3, we have omitted the 3-axis. The vertical pin or rod represents the unit vector n̂ lying along
the 4-axis. The circumference of the larger circle perpendicular to the 4-axis represents the orbit in
p/a-space. One can see that it is displaced from the origin along the 2-axis. Centered at the origin,
we must imagine a hypersphere of unit radius Û2 = 1. The stereographic projection Û of the vector
p/a is obtained by placing the string coming from the top of n directly at the head of the vector p/a.
The intersection of the string with the unit hypersphere defines Û. As the string is moved along the
orbit in p/a-space, it intersects the hypersphere along a great circle shown by the circumference of the
unit circle making an angle ν with the 1–2 plane. We can see for example, that at the closest approach,
θ4 is a minimum and U4 is a maximum, Û · A = U1 is a minimum, and p/a is a maximum.

Figure 7. Model illustrating the stereographic projection from the 1–2 plane to a 4-d hypersphere.
The pin represents the unit vector n̂ along the 4-axis, normal to the 1–2 plane.

3.7. Classical Time Dependence of Orbital Motion

We can determine the time dependence of the orbital motion by integrating the expression for the
angular momentum L = mr2dφr/dt ∫

dt =
∫ mr2

L
dφr (66)
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where r is given by the orbit equation Equation (33) and we are assuming the orbit is in the 1–2 plane.
After integrating, we can use the equations relating the momentum space and configuration space
variables to obtain the time dependence in p-space and U-space. We obtain

1
r2

c

1
cos ν

L
m

∫ t

0
dt = cos3 ν

∫ φr(t)

0

dφr

(1 + sin ν cos φr)
2 . (67)

The left-hand side of this equation is equal ωcl t, where ωcl is the classical frequency. This follows
by substituting Equations (30) and (38)

L = arc cos ν ωcl =
a

mrc
. (68)

The integral on the right side gives [106]

ωcl t = − sin ν cos ν sin φr

1 + sin v cos φr
− tan−1 cos ν sin φr

sin ν + cos φr
(69)

which may be simplified as

ωcl t = − A
L

y
rc

− tan−1 A
L

y
rc − r

(70)

where y = r sin φr .
The relationship between the angle φ ≡ φp in momentum space and φr in configuration space

follows by either differentiating the orbit equation Equation (33) with respect to time and using
L = mr2φ̇r or by simultaneously solving the configuration space orbit, the momentum space orbit
equation Equation (48) and the energy equation Equation (32). We find

sin φr = −p cos φ
cos ν

a
cos φr = p sin φ

cos v
a

− sin ν. (71)

From these equations, the definitions of the Ui, Equation (52), and the orbit and energy equations,
it follows that for the classical orbit in the 1–2 plane

U1 = − r sin φr

rc cos ν

U2 =
r
rc

sin ν + cos φr

cos v
= U4 cot ν

U3 = 0

U4 =
rc − r

rc
.

(72)

Using these results in Equation (69) gives

ωcl t = U1 sin ν + tan−1
(

U2

U1 cos ν

)
(73)

which gives the time dependence in U space, and it agrees with the results of [97,107]. We could do
rotations to generalize this result [102]. We can also rewrite the inverse tangent as cos−1 U1 using

U2
1 +

U2
2

cos2ν
= 1. (74)

If we consider the last two equation for circular orbits with e = sin ν = 0 we obtain
tan−1(U2/U1) = φ(t) = ωcl t = φr(t) + π/2, and our familiar circle U2

1 + U2
2 = 1 .
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Remark on Harmonic Oscillator

We can find a conserved Runge–Lenz vector for the non-relativistic hydrogen atom because the
elliptical orbit does not precess, as it does for the relativistic atom. The only central force laws that
yield classical elliptical orbits that do not precess are the inverse Kepler force and the linear harmonic
oscillator force [108]. Thus, it seems reasonable that one could construct a constant vector similar to A
for the oscillator, although the force center for the atom is at a focus and for the oscillator it is at the
center of the ellipse. However, it is not readily possible [109]. Instead, one can construct a constant
Hermitian second rank tensor Tij:

Tij =
1

mω0
pi pj + mω0xixj. (75)

This constant tensor is analogous to the moment of inertia tensor for rigid body motion.
The eigenvectors of the tensor will be constant vectors along the principal axes for the particular
orbit being considered. The existence of the conserved tensor leads to the U(3) symmetry algebra of the
oscillator. The generators are λa

ijTij, where the λ’s are are the usual U(3) matrices [22]. The spectrum
generating algebra is SU(3,1).

In another approach, the Schrodinger equation for the hydrogen atom has been transformed into
an equation for a four dimensional harmonic oscillator or two two dimensional harmonic oscillators.
This approach which fits well with parabolic coordinates was used especially in the 1980’s to analyze the
group structure of the atom and relate it to SU(3) [110–119]. We will not discuss this approach further.

4. The Hydrogenlike Atom in Quantum Mechanics; Eigenstates of the Inverse of the
Coupling Constant

In this section we switch from classical dynamics to quantum mechanics and discuss the group
structure and exploit it to determine the bound state energy spectrum directly, as Pauli and followers
did almost a century ago [14,16]. In Section 4.3 we introduce a new set of basis states for the
hydrogenlike atom, eigenstates of the coupling constant. Using these states allows us to display
the symmetries in the most convenient manner and to treat bound and scattering states uniformly.

4.1. The Degeneracy Group SO(4)

The quantum mechanical Hamiltonian is

H =
p2

2m
− Zα

r
= E. (76)

The classical expression for the Runge–Lenz vector needs to be symmetrized to insure the
corresponding quantum mechanical operator A is Hermitian:

A =
1√

−2mH

(
p × L − L × p

2
− mZα

r
r

)
. (77)

We may verify that A and L = r × p both commute with the Hamiltonian H. The commutation
relations of Li and Ai are the same as the corresponding classical Poisson bracket relations for
bound states:

[Li, Lj] = iεijkLk , [Li, Aj] = iεijk Ak , [Ai, Aj] = iεijkLk (78)

and form the algebra of O(4) [35]. We can write the commutation relations in a single equation which
makes the 0(4) symmetry explicit. If we define

Sij = εijkLk Si4 = Ai (79)
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then
[Sab, Scd] = i(δacSbd + δbdSac − δadSbc − δbcSad) a, b = 1, 2, 3, 4. (80)

The Kronecker delta function δab acts like a metric tensor.

4.2. Derivation of the Energy Levels

We can obtain the energy levels by determining which representations of the group SO(4) are
realized by the degenerate eigenstates of the hydrogenlike atom [12,14,35]. The representations of
SO(4) may be characterized by the numerical values of the two Casimir operators for SO(4):

C1 = L · A C2 = L2 + A2 (81)

Once we know the value of C2, then the eigenvalues of H follow from the quantum mechanical
form of Equation (31), namely

L2 + A2 + 1 =
(mZα)2

−2mH
. (82)

In order to determine the possible values of C2, we factor the 0(4) algebra into two disjoint
SU(2) algebras [120], each of which has the same commutation relations as the ordinary angular
momentum operators,

N = 1
2 (L + A) M = 1

2 (L − A). (83)

The commutation relations are

[Mi, Nj] = 0 [Mi, Mj] = iεijk Mk [Ni, Nj] = iεijk Nk. (84)

In analogy with the results for the ordinary angular momentum operators, the Casimir operators are

M2 = j1 (j2 + 1) , j1 = 0, 1
2 , 1, . . .

N2 = j2 (j2 + 1) , j2 = 0, 1
2 , 1, . . .

(85)

The numbers j1 and j2, which may have half-integral values for SU(2) but not O(3), define the
(j1, j2) representation of SO(4). From the definitions of A and L in terms of the canonical variables, it
follows that C1 = L · A = 0 which means j1 = j2 = j, as in the classical case. For our representations,
we find

M2 = N2 = 1
4 (L2 + A2) = j(j + 1), j = 0, 1

2 , 1, .. (86)

and therefore
L2 + A2 + 1 = (2j + 1)2. (87)

Substituting this result into Equation (82) gives the usual formula for the bound state energy
levels of the hydrogen atom:

H′ = −m(Zα)2

2n2 = En (88)

where the principal quantum number n = 2j+1 = 1,2,.. and the prime on H signifies an eigenvalue of
the operator H.

Within a subspace of energy En, the Runge–Lenz vector is

A =
1
an

(
p × L − L × p

2
− mZα

r
r

)
. (89)

where an =
√
−2mEn = mZα

n .
Our considerations of the Casimir operators have shown that the hydrogen atom provides

completely symmetrical tensor representations of SO(4), namely, (j, j) = ( n−1
2 , n−1

2 ), n = 1, 2, . . .
The dimensionality is n2, corresponding to the n2 degenerate states. The appearance of only
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symmetrical tensor representations (j1 = j2) may be traced to L · A vanishing, which is a consequence
of the structure of L and A in terms of the dynamical variables for the hydrogenlike atom. For systems
other than the hydrogenlike atom, it is not generally possible to find the expression for the energy
levels in terms of all the different quantum numbers alone. It worked here, since we could express the
Hamiltonian as a function of the Casimir operators that contained all quantum numbers explicitly.

There are a variety of possible basis states. We could choose basis states for the SO(4)
representation that reflect the SU(2) decomposition, namely eigenstates of M2, N2, M3 and N3 [120].
Another possibility is to have a basis with eigenstates of the Casimir operator C2, and A3, and M3.
This choice fits well with the use of parabolic coordinates [60]. A more physically understandable
choice is to choose the common basis states |nlm〉 that are eigenstates of C2, L2, and L3. For this set of
basis states, we have√

(L2 + A2 + 1)|nlm〉 = n|nlm〉 L2|nlm〉 = l(l + 1)|nlm〉 L3|nlm〉 = m|nlm〉 (90)

We can define raising and lowering operators for m:

L± = L1 ± iL2 (91)

which obeys the commutation relations

[L2, L±] = 0] [L3, L±] = ±L±. (92)

Therefore, we can use L± to change the value of m for the basis states

L±|nlm〉 =
√
(l(l + 1)− m(m ± 1)|nl m ± 1〉 (93)

for l ≥ 1. We can also use the generators A to change the angular momentum. A general SO(4)
transformation can be expressed as a rotation induced by L, followed by a rotation induced by A3,
followed by another rotation generated by L [121]. Our interest is primarily in changing the angular
momentum l, which is most directly done while using A3, which commutes with L3 and C2, and so
only changes l:

A3|nlm〉 =
(
(n2 − (l + 1)2)((l + 1)2 − m2)

4(l + 1)2 − 1

) 1
2

|n l + 1 m〉+
(
(n2 − l2)(l2 − m2)

4l2 − 1

) 1
2

|n l − 1 m〉. (94)

for l ≥ 1.

4.3. Relativistic and Semi-Relativistic Spinless Particles in the Coulomb Potential and Klein–Gordon Equation

The Klein–Gordon equation (
p2 − (Ẽ − V)2 + m2

)
ψ̃ = 0

where Ẽ is the relativistic total energy, may be solved exactly for a Coulomb potential, V =

−(Zα)/r [122]. The energy levels depend on a principal quantum number and on the magnitude of
the angular momentum but not its direction. The only degeneracy present is associated with the O(3)
symmetry of the Hamilton. For a relativistic scalar particle, there is no degeneracy to be lifted by a
Lamb shift.

If we neglect the V2 term the resulting equation can be written in the form(
p2

2Ẽ
+ V − Ẽ2 − m2

2Ẽ

)
ψ̃ = 0

142



Symmetry 2020, 12, 1323

This is exactly the same as the nonrelativistic Schrodinger equation with the substitutions

m → Ẽ E → Ẽ2 − m2

2Ẽ
.

Thus, we regain the O(4) symmetry of the nonrelativistic hydrogen atom, and can define two
conserved vectors, as indicated in Table 1. It is possible to take the “square root” of this approximate
Klein-Gordon equation (in the same sense that the Dirac equation is the square root of the Klein–Gordon
equation) and get an approximate Dirac equation whose energy eigenvalues are independent of the
orbital angular momentum [123].

4.4. Eigenstates of the Inverse Coupling Constant (Zα)−1

Solutions to Schrodinger’s equation for a particle of energy E = − a2

2m in a Coulomb potential[
p2 + a2 − 2mZα

r

]
|a〉 = 0 (95)

may be found for certain critical values of the energy En = − a2
n

2m where an = mZα
n . The corresponding

eigenstates of the Hamiltonian are |nlm〉 which satisfy Equation (95) with a replaced by an. In addition
to the bound states, because there is no upper bound on p2 in the Hamiltonian, we also have the
continuum of scattering states that have E > 0.

Because the quantity that must have discrete values for a solution to exist is actually a
mZα , as noted

in Section 2.3, we might ask if eigensolutions to Equation (95) exist for certain critical values of Zα

while keeping a and the energy fixed [1]. To investigate such solutions it is convenient to algebraically
transform Equation (95):[

1√
ρ(a)

(
p2 + a2

a
)

1√
ρ(a)

− 1√
ρ(a)

(
2mZα

ar
)

1√
ρ(a)

]√
ρ(a)|a〉 = 0

where

ρ(a) =
p2 + a2

2a2 . (96)

Because ρ(a) commutes with p2, we obtain the eigenvalue equation[( a
mZα

)
− K(a)

]
|a) = 0 (97)

where the totally symmetric and real kernel is

K(a) =

√
2a2

p2 + a2
1
ar

√
2a2

p2 + a2 (98)

and
|a) = (ρ(a))

1
2 |a〉. (99)

As before, solutions to this transformed equation may found for the eigenvalues

K′(a) = (
a

mZα
)′ =

1
n

. (100)

If we hold Zα constant and let a vary, we obtain the usual spectrum an =
√
−2mEn = mZα

n .
For a = an, Equation (99) reduces to the equation for the eigenstates√

ρ(an)|nlm〉 = |nlm; an). (101)
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Alternatively, if we hold a constant, then Zα has the spectrum

(Zα)n =
na
m

(102)

with the corresponding eigenstates of (Zα)−1 being

|nlm; a). (103)

The relationship between the usual energy eigenstates of the energy |nlm〉 and the eigenstates
|nlm; a) of (Zα)−1 is

|nlm〉 = 1√
ρ(an)

|nlm; an), (104)

which requires that both sets of states have the same quantum numbers. Note that the magnitude
(a|K(a)|a) is proportional to 〈1/ar〉n = (1/an)(1/n2a0) where a0 is the Bohr radius for the ground
state, and so is positive and bounded. The kernel K(a) is real and symmetric in p and r and manifestly
Hermitean. Because the kernel K in Equation (98) is bounded, definite, and Hermitian with respect to
the eigenstates |nlm; an) [124] the set of normalized eigenstates

|nlm; a) n = 0, 1, 2....; l = 0, 1, ..n − 2, n − 1; m = −l,−l + 1, ...l − 1, l. (105)

where (
1
n
− K(a)

)
|nlm; a) = 0 (106)

is a complete orthonormal basis for the hydrogenlike atom:(
nlm; a|n′l′m′; a

)
= δnn′δll′δmm′ (107)

∑
nlm

|nlm; a)(nlm; a| = 1. (108)

There are several important points to notice with regard to these eigenstates of the inverse of the
coupling constant:

(1) Because of the boundedness of K, there is no continuum portion in the eigenvalue

spectrum of (Zα)−1, the eigenvalues are discrete. Because K is a positive definite Hermitian operator,
all eigenvalues are positive, real numbers. This feature leads to a unified treatment of all states of
the hydrogenlike atom as opposed to the treatment in terms of energy eigenstates in which we must
consider separately the bound states and the continuum of scattering states.

(2) It follows from Equation (104) that the quantum numbers, multiplicities, and degeneracies

of these states |nlm; a) are precisely the same as those of the usual bound energy eigenstates.
For example, there are n2 eigenstates of (Zα)−1 that have the principal quantum number equal
to n or (Zα) equal to na

m .
(3) A single value of the RMS momentum a or the energy E = −a2

2m applies to all the states in

our complete basis, as opposed to the usual energy eigenstates where each nondegenerate state has a
different value of a. We have made this explicit by including a in the notation for the states: |nlm; a).
Sometimes we will write the states as |nlm), provided the value of a has been specified. This behavior
in which a single value of a applies to all states will prove to be very useful. In essence, it permits
us to generalize from statements applicable in a subspace of Hilbert space with energy En or energy
parameter an to the entire Hilbert space.

(4) By a suitable scale change or dilation, we may give the quantity a any positive value we

desire. This is affected by the unitary operator

D(λ) = ei 1
2 (p·r+r·p)λ (109)
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which transforms the canonical variables

D(λ)pD−1(λ) = e−λ p D(λ)rD−1(λ) = eλr (110)

and the kernel K(a)
D(λ)K(a)D−1(λ) = K(aeλ). (111)

and the eigenvalue equation (
1
n
− K(aeλ)

)
D(λ)|nlm; a) = 0. (112)

Therefore the states transform as

D(λ)|nlm; a) = |nlm; aeλ). (113)

These transformed states form a new basis corresponding to the new value eλa of the
RMS momentum.

The relationship between the energy eigenstates and the (Zα)−1 eigenstates can be written while
using the dilation operator:

|nlm〉 = 1√
ρ (an)

D (λn) |n�m; a) where eλn =
an

a
. (114)

The usual energy eigenstates |nlm〉 are obtained from the eigenstates of (Zα)−1 by first performing
a scale change to ensure that the energy parameter a has the value an and then multiplying by a factor
ρ−1/2. The need for the scale change is apparent from dimensional considerations: from the (Zα)−1

eigenvalue equation, we see that the eigenfunctions are functions of p/a or ar while from the energy
eigenvalue equation the eigenfunctions are functions of p/an and anr. The factor ρ−1/2 was required
in order to convert Schrodinger’s equation to one involving a bounded Hermitean operator.

Using the eigenstates of (Zα)−1 as our basis allows for us to analyze the mathematical and
physical structure of the hydrogenlike atom in the easiest and clearest way.

4.5. Another Set of Eigenstates of (Zα)−1

We may transform Schrodinger’s equation Equation (95) to an eigenvalue equation for (Zα)−1

that differs from Equation (96) by similar methods:(
1
n
− K1(a)

)
|nlm; a) = 0 (115)

where

K1(a) =
1√
ar

2a2

p2 + a2
1√
ar

ρ(a) = n/ar
√

ρ(an)|nlm〉 = |nlm; an) (116)

This kernel, like K(a), is a bounded, positive definite, Hermitian operator so the eigenstates form
a complete basis. The relationship of these basis states to the energy eigenstates is the same as that of
the previously discussed eigenstates of (Zα)−1 Equation (114) but with ρ(a) = n/ar. The n insures
that the two sets of eigenstates have consistent normalization, which may be checked by means of the
virial theorem. The n cancels out when similarity transforming from the basis of energy eigenstates to
the basis of (Zα)−1. Note that, classically, both kernels equal 1/arc.

The first set of basis states of (Zα)−1 with ρ(a) = p2+a2

2a2 is more convenient to use when working
in momentum space and the second set with ρ(a) = n/ar is more convenient in configuration space.

Other researchers have used other approaches to secure a bounded kernel for the Schrodinger
hydrogen atom, for example, by multiplying the equation from the left by r to regularize it [82].
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However, the methods used have not symmetrized the kernels to make them Hermitian, nor are all the
generators of the corresponding groups Hermitian, and they have to redefine the inner product [38,82].

4.6. Transformation of A and L to the New Basis States

We must transform A as given in Equation (89) and L = r × p when we change our basis
states from eigenstates of the energy to eigenstates of the inverse coupling constant. The correct
transformation may be derived by requiring that the transformed generators produce the same linear
combination of new states as the original generators produced of the old states. Thus, because

A|nlm〉 = ∑
l′ ,m′

|nl′m′〉Alm
l′m′ (117)

where the coefficients Alm
l′m′ are the matrix elements of A, we require that the transformed generator a

satisfies the equation
a|nlm) = ∑

l′m′
|nl′m′)Alm

l′m′ . (118)

In other words, since the Runge–Lenz vector A is a symmetry operator of the original energy
eigenstates, a will be a symmetry operator of the new states with precisely the same properties and
matrix elements. Because A is Hermitian, a is Hermitian.

To obtain a differential expression for a acting on the new states, we need to transform the
generator using Equation (114):

a = D−1(λn)

(√
ρ(an)A

1√
ρ(an)

)
D(λn). (119)

The effect of the scale change on the quantity in large parenthesis is to replace an everywhere by a.
By explicit calculation, we find

a =
1
2a

(
rp2 + p2r

2
− r · pp − pp · r

)
− ar

2
(120)

for ρ(a) = (p2 + a2)/2a2. And we obtain

a =
1
2a

(
rp2 + p2r

2
− r · pp − pp · r − r

4r2

)
− ar

2
(121)

for ρ(a) = n/ar.
Both of these expressions for a are manifestly Hermitian. In addition, since there is no dependence

on the principal quantum number these expressions are valid in the entire Hilbert space, and not just
in a subspace spanned by the degenerate states, as was the case when we used the energy eigenstates
as a basis (Equation (89)).

The angular momentum operator is invariant under scale changes and it commutes with scalar
operators. Therefore L is invariant under the similarity transformation 1√

ρ(an)
D(λn) and the expression

for the angular momentum operator with respect to the eigenstates of (Zα)−1 is the same as the
expression with respect to the eigenstates of the energy.

4.7. The 〈U′| Representation

The U′ coordinates provide the natural representation for the investigation of the symmetries of
the hydrogenlike atom in quantum mechanics, as in classical mechanics [125]. Therefore, we briefly
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consider the relevant features of this representation and, in particular, its relationship to the momentum
representation. The eigenstate < U′| of Ub, b = 1,2,3,4, is defined by

〈U′| Ub = U′
b 〈U′| (122)

These states are complete on the unit hypersphere in four dimensions:∫
|U′〉〈U′| d3Ω′ = 1 (123)

where Ω refers to the angles (θ4, θ, φ) defined in Equation (54). The U variables are defined in terms of
the momentum variables and the quantity a in Equation (52). Therefore, the momentum and the U
operators commute

[pi, Ub] = 0 (124)

and the state 〈U′| is proportional to a momentum eigenstate 〈p′|:

〈U′| = 〈p′|
√

J(p) (125)

where the momentum eigenstate is defined by 〈p′|p = p′〈p| and∫
d3 p′|p′〉〈p′| = 1. (126)

The function J(p′) may be determined by equating the completeness conditions and substituting
Equation (125):

1 =
∫

d3 p′|p′〉〈p′| =
∫

d3Ω′|U′〉〈U′| =
∫

d3Ω′ J(p′)|p′〉〈p′| (127)

which leads to the identification of the differential quantities

d3 p′ = d3Ω′ J(p′) (128)

demonstrating that J(p′) is the Jacobian of the transformation from the p- to the U- space. Noting that
on the unit sphere

U2
4 = 1 − UiUi (129)

we can compute the Jacobian

J(p′) =
[

p′2 + a2

2a

]3

. (130)

Therefore from Equation (125) we have the important result

〈U′| = 〈p′|
[

p2 + a2

2a

]3/2

. (131)

We can use this result to compute the action of r on 〈U′| in terms of the differential operators.
Using the equation

〈p′|r = i∇p′ 〈p′| (132)

we obtain

〈U′|r =

(
i∇p′ −

3ip′
p′2 + a2

)
〈U′|. (133)
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Action of a and L on 〈U′|
Using Equation (133) for the action of r on 〈U′| and using the expression Equation (120) for

a since 〈U′| is proportional to 〈p′|, we immediately find that when acting on 〈U′|, a has the
differential representation

a′ =
i

2a

(
(p′2 − a2)∇p′ − 2p′p′ ·∇p′

)
(134)

where
〈U′|a = a′〈U′|. (135)

We can also write a′ in terms of the U′ variables by using the relationship Equation (52) between
the p and U variables:

a′ = U′
4i∇U′ − U ′i∂/∂′4 (136)

where the spatial part of the four vector U′ is U = (U1, U2, U3) and U4 is the fourth component. This
is the differential representation of a rotation operator mixing the spatial and the fourth components of
U′

a. When acting on the state 〈U′| , clearly eia·ν generates a four-dimensional rotation that produces a
new eigenstate 〈U”|. To explicitly derive the form of the finite transformation, we compute

[a′j, U′
j ] = iU′

4δij [a′j, U′
4] = −iU′

i . (137)

For a finite transformation aia·nν with n2 = 1, we have

U ′′ = eia′ ·nνU ′e−ia′ ·nν

= U ′ − nn · U ′ + nn · U ′ cos ν − nU′
4 sin ν

(138)

and
U4” = eia′ ·nνU4

′e−ia′ ·nν

= U′
4 cos ν + n · U ′ sin ν

(139)

These equations of transformation are like those for a Lorentz transformation of a four-vector (r, it).
We can illustrate the equations for eia2ν (cf Equation (58)), which mixes the two and four components
of U′:

U1” = U′
1 U3” = U′

3

U2” = U′
2 cos ν − U′

4 sin ν U4” = U′
2 sin ν + U′

4 cos ν
. (140)

When L acts on 〈U′|, it has the differential representation

L′ = U ′ × i∇U′ (141)

This result follows directly, since U′
i equals p′i times a factor that is a scalar under rotations in

three dimensions. When eiL·ω acts on 〈U′| it produces a new state 〈U”| , where the spatial components
of U′ have been rotated to produce U”.

In summary, we see that U′ is a four-vector under rotations generated by a′ and L′. Therefore the
states 〈U′| provide a vector representation of the group of rotations in four dimensions SO(4), with the
generators a and L.

5. Wave Functions for the Hydrogenlike Atom

In this section, we analyze the wave functions of the hydrogenlike atom, working primarily in
the 〈U′| representation and using eigenstates of the inverse of the coupling constant (Zα)−1 for the
basis states. In this representation the wave functions are spherical harmonics in four dimensions.
We derive the relationship of the usual energy eigenfunctions in momentum space to the spherical
harmonics and discuss the classical limits in momentum and configuration space.
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5.1. Transformation Properties of the Wave Functions under the Symmetry Operations

We can show that the wave functions Ynlm(U′) in the 〈U′| representation with respect to the
eigenstates of (Zα)−1

Ynlm(U′) ≡ 〈U′|nlm) (142)

transform as four-dimensional spherical harmonics under the four-dimensional rotations generated by
the Runge-Lenz vector a and the angular momentum L. We note that the quantity a is implicit in both
the bra and the ket in Equation (142). For our basis states we employ the set of (Zα)−1 eigenstates |nlm)

of the inverse coupling constant that are convenient for momentum space calculations (ρ = p2+a2

2a2 ). We
choose these states rather than those convenient for configuration space calculations, because the 〈U′|
eigenstates are proportional to the 〈p′| eigenstates.

If we transform our system by the unitary operator eiθ where θ = L · ω + a · ν, then the wave
function in the new system is

Y′
nlm(U

′) = 〈U′|eiθ |nlm). (143)

There are two ways in which we may interpret this transformation, corresponding to what have
been called the active and the passive interpretations. In the passive interpretation we let eiθ act on
the coordinate eigenstate 〈U′| . As we have seen in Section 3.6, this produces a new eigenstate 〈U”|,
where the four-vector U” is obtained by a four-dimensional rotation of U′ (Equations (138) and (139)).
Thus, we have

Y′
nlm(U

′) = 〈U”|nlm) = Ynlm(U”). (144)

In the active interpretation, we let eiθ act on the basis state |nlm). Because L and a are symmetry
operators of the system, transforming degenerate states into each other, it follows that eiθ |nlm) must
be a linear combination of states with principal quantum number equal to n. Therefore, we have

Y′
nlm(U

′) = ∑
l′m′

〈U′|Rnlm
nl′m′ |nl′m′) = ∑

l′m′
Rnlm

nl′m′Ynl′m′(U′). (145)

The wave functions for degenerate states with a given n transform irreducibly among themselves
under the four-dimensional rotations, forming a basis for an irreducible representation of SO(4) of
dimensions n2 . Equating the results of the two different interpretations gives

Ynlm(U”) = ∑
l′m′

Rnlm
nl′m′Ynl′m′(U′). (146)

The transformation properties Equation (146) of Ynlm are precisely analogous to those of the
three-dimensional spherical harmonic functions. It follows that the Ynlm are four-dimensional spherical
harmonics [35,124].

5.2. Differential Equation for the Four Dimensional Spherical Harmonics Ynlm(U′)

The differential equation for the Ynlm(U′) may be obtained from the equation

(L′2 + a′2)Ynlm(U′) = (n2 − 1)Ynlm(U′) (147)

which follows from C2 = n2 − 1 and the definition of C2, Equation (81). Substituting in the differential
expressions Equations (134) and (141) for a′ and L′ we find that L′2 + a′2 equals ∇2

U′ − (U′ ·∇U′)2,
which is the angular part of the Laplacian operator in four dimensions (cf in three dimensions,
L2/r2 = p2 − p2

r ). Thus, Equation (147) is the differential equation for four-dimensional spherical
harmonics with the degree of homogeneity equal to n − 1, which means n2 such functions exist,
in agreement with the know degree of degeneracy.

149



Symmetry 2020, 12, 1323

5.3. Energy Eigenfunctions in Momentum Space

We want to determine the relationship between the usual energy eigenfunctions in momentum
space ψnlm(p′) ≡ 〈p′|nlm〉 (with a = an) and the four-dimensional spherical harmonic eigenfunctions
Ynlm(U′; a) = 〈U′|nlm; a).

We choose the RMS momentum a to have the value an. If we use the expression Equation (131)
for 〈U′| in terms of 〈p′|

〈U′| = 〈p′|
(

p2 + a2
n

2an

)3/2

(148)

and the expression Equation (104) for the eigenstates of (Zα)−1 in terms of the energy eigenstates

|nlm; an) =

√
p2 + a2

n
2a2

n
|nlm〉 (149)

we find the desired result

Ynlm(U′; an) =

(
p2 + a2

n
2an

)2 1√
an

ψnlm(p′). (150)

The usual method of deriving this relationship between the wave function in momentum space
and the corresponding spherical harmonics in four dimensions involves transforming the Schrodinger
wave equation to an integral equation in momentum space [18,35]. As in the classical case, to do this we
first replace p by p/a and perform a stereographic projection from the hyperplane corresponding to the
three- dimensional momentum space to a unit hypersphere in a four-dimensional space. The resulting
integral equation manifests a four-dimensional invariance. When the wave functions are normalized
as in Equation (150), the solutions are spherical harmonics in four dimensions. As another alternative
to this procedure, we can Fourier transform the configuration space wave functions directly [126].

5.4. Explicit Form for the Spherical Harmonics

The spherical harmonics in four dimensions can be expressed as [127]:

Ynlm(Ω) = N1(n, l)(sin θ4)
lCl+1

n−1−l(cos θ4) ·
[

N2(l, m)(sin θ)mCm+1/2
l−m (cos θ)

eimφ

√
2π

]
. (151)

The factor in brackets is equal to Ym
l (θ, φ), the usual spherical harmonic in three-dimensions [127].

The Gegenbauer polynomials Cλ
n of degree n and order λ are defined in terms of a generating function:

1
(1 − 2tx + t2)λ

= ∑
n=0

tnCλ
n . (152)

N1(n, l) and N2(l, m) are chosen to normalize the Ynlm on the surface of the unit sphere:∫
|Ynlm(Ω)|2d3ΩU = 1 (153)

where d3ΩU = sin2 θ4 sin θdθdφ. We find

N1(n, l) =

√
22l+1

π

n(n − l − 1)!(l!)2

(n + l)!
(154)

N2(l, M) =

√
22m

π
(l +

1
2
)
(l − m)!
(l + m)!

[Γ(m +
1
2
)]2 . (155)
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In the next section, we discuss the asymptotic behavior of Ynlm for large quantum numbers and
compare it to the classical results of Section 3.

5.5. Wave Functions in the Classical Limit

5.5.1. Rydberg Atoms

Advances in quantum optics, such as the development of ultra short laser pulses, microwave
spectroscopy, and atom inteferometery, have opened new possibilities for experiments with atoms and
Rydberg states, meaning hydrogenlike atoms in states with very large principal quantum numbers
and correspondingly large diameter electron orbits. The pulsed electromagnetic fields can be used
to modify the behavior of the orbital electrons. Semi-classical electron wave packets in hydrogenlike
atoms were first generated in 1988 by ultrashort laser pulses, and today are often generated by unipolar
teraherz pulses [128–130]. Over the last few decades, there has been interest in the classical limit of the
hydrogenlike atom for n very large, Rydberg states, for a number of reasons [131]: 1. Rydberg states
are at the border between bound states and the continuum, and any process which leads to excited
bound states, ions or free electrons usually leads to the production of Rydberg states. This includes,
for example, photo-ionization or the application of microwave fields. The very large cross section for
scattering is unique. 2. Rydberg states can be used to model atoms with a higher atomic number that
have an excited valence electron that orbits beyond the core. 3. In Rydberg states, the application of
electric and magnetic fields breaks the symmetry of the atom and allows for the study of different
phenomena, including the transition from classical to quantum chaos [132]. 4. Rydberg atoms can be
used to study coherent transient excitation and relaxation, for example, the response to short laser
pulses creating coherent quantum wave packets that behave like a classical particle.

The square of the wave function for a given quantum state gives a probability distribution for
the electron that is independent of time. If we want to describe the movement of an electron in a
semiclassical state, with a large radius, going around the nucleus with a classical time dependence,
then we need to form a wave packet. The wave packet is built as a superposition of many wave
functions with a band of principal quantum numbers.

A variety of theoretical methods have been used to derive expressions for the hydrogen atom wave
functions and wave packets for highly excited states. There is general agreement on the wave functions
for large n, and that the wave functions display the expected classical behavior, elliptical orbits in
configurations space, and great circles in the four dimensional momentum space [133–136].

Researchers have proposed a variety of wave packets to describe Rydberg states. There are general
similarities in the wave packets that describe electrons going in circular or elliptical orbits with a classical
time dependence for some characteristic number of orbits, and it is maintained that the quantum mechanical
wave packets provide results that agree with the classical results [129,130,133–139]. Most of the approaches
exploit the SO(4) or SO(4,2) symmetry of the hydrogen atom which is used to rotate a circular orbital to an
elliptical orbit. The starting orbital is often taken as a coherent state, which is usually considered a classical
like state with minimum uncertainty. The most familiar example of a coherent state is for a one dimensional
harmonic oscillator characterized by creation and annihilation operators a† and a. The coherent state |α〉
is a superposition of energy eigenstates that is an eigenstate of a where a|α〉 = α|α〉 for a complex α. This
coherent state will execute harmonic motion like a classical particle [140]. To obtain a coherent state for the
hydrogenlike atom, eigenstates of the operator than lowers the principal quantum number n (which will be
discussed in Section 7.4) have been used [141], as well as lowering operators based on the equivalence of
the four dimensional harmonic oscillator representation of the hydrogen atom [134,135,142].

In either case, this coherent eigenstate is characterized by a complex eigenvalue, which needs to
be specified. Several constraints have been used to obtain the classical wave packet that presumably
obeys Kepler’s Laws, such as requiring that the orbit lie in a plane so 〈z〉 = 0 for the orbital, or that
〈r − rclassical〉 be a minimum, or that some minimum uncertainty relationship is obtained. In addition,
there are issues regarding the approximations used, in particular, those that relate to time. For times
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characteristic of the classical hydrogen atom, the wavepackets act like a classical system. For longer
times, the wavepacket spreads in the azimuthal direction and after some number of classical revolutions
of order 10 to 100 the spread is 2π, so the electron is uniformly spread over the entire orbit. The spread
arises because the component wave functions forming the wavepacket have different momenta. In two
derivations, still longer times were considered, and recoherence was predicted to occur after about n/3
(where n is the approximate principal quantum number) revolutions, although there is some difference
in the predicted amount of recoherence [131,136]. Because of the conservation of L and A, the spread
of the wave packets is inhibited, except in the azimuthal direction.

This is a system with very interesting physics. For example, one can view the transition from
a well defined wave packet representing the electron to a 2π spread and back again as a dynamical
illustration of the wave-particle duality.

Brown took a different approach to develop a wavepacket for a circular orbit [139]. He first
developed the asymptotic wave function for large n and then optimized the coefficients in a Gaussian
superposition to minimize the spread in φ, obtaining a predicted characteristic decoherence time of
about 10 minutes, considerable longer than any other predicted decoherence time.

Other authors have explored the problem from the perspective of classical physics and the
correspondence principle [133,137,143,144]. The results from the different methods are similar with the
basic conclusion that the wave functions are peaked on the corresponding classical Kepler trajectories:
“atomic elliptic states sew the wave flesh on the classical bones” [129].

With the variety of experimental methods used to generate Rydberg states, a variety of Rydberg
wave packets are created, and it is not clear which theoretical model, if any, is preferred [131]. We take
a very simple approach to forming a wavepacket and simply use a Gaussian weight for the different
frequency components. This does not give an intentionally optimized wave packet, but it is a much
simpler approach and the result has all of the expected classical behavior that is very similar to that
obtained from much more complicated derivations. We start with a circular orbit and then do a SO(4)
rotation to secure an elliptical orbit. We show that it has the classical period of rotation.

5.5.2. Wave Functions in the Semi-Classical Limit

We need to derive the semiclassical limit of the wave functions that correspond to circular
orbits in configuration space. For this case, sin ν, which we interpret as the expectation value of the
eccentricity, vanishes. We derive expressions for the wave functions in momentum space and then
form a wavepacket. To obtain corresponding expressions for elliptical orbits, we perform a rotation by
eia·ν, which does not alter the energy but changes the eccentricity and the angular momentum.

Case 1: Circular orbits, sin ν = e = 0
We derive the asymptotic form of Ynlm for large quantum numbers, where for simplicity

we choose the quantum numbers n − 1 = l = m corresponding to a circular orbit in the 1–2
plane. From Equation (151) we see we encounter Gegenbauer polynomials of the form Cλ

0 , which,
by Equation (152), are unity. For a very large l, sinl θ will have a very strong peak at θ = π/2, so we
make the expansion [103]

sin θ = sin
(π

2
+
(

θ − π

2

))
= 1 − 1

2

(
θ − π

2

)2
+ · · · ≈ e−(1/2)(θ−π/2)2

(156)

to obtain
sinl θ ≈ e−(1/2)l(θ−π/2)2

. (157)

The asymptotic forms for N1 and N2 can be computed using the properties of Γ functions:

Γ(2z) =
(

1√
2π

)
22z− 1

2 Γ(z)Γ
(

z − 1
2

)
limz→∞ Γ(az + b) �

√
2πe−az(az)az+b− 1

2 .
(158)
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We finally obtain [145]

Yn,n−1,n−1(Ω) =

√
n

2π2 e−
1
2 n(θ4− π

2 )
2
· e−

1
2 n(θ− π

2 )
2
ei(n−1)φ, (159)

which gives the probability density

|Yn,n−1,n−1(Ω)|2 =
n

(2π2)
e−n(θ4− π

2 )
2
· e−n(θ− π

2 )
2
. (160)

We have Gaussian probability distributions in θ4 and θ about the value π/2. The distributions are
quite narrow with widths Δθ4 ≈ Δθ ≈ 1/

√
n and the spherical harmonic essentially describes a circle

(θ4 = θ = π/2) on the unit sphere in the 1–2 plane. As n becomes very large, U4 = cos θ4 ≈ (r − rc)/r
(Equations (54) and (72)) and U3 = sin θ4 cos θ, which is proportional to p3, both go to zero as 1/

√
n.

The distribution approaches the great circle U2
1 + U2

2 = 1 that we found in Section 3.6 for a classical
particle moving in a circular orbit in the 1–2 plane in configuration space. Note that this state is a
stationary state with a constant probability density. To get the classical time dependence we need to
form a wavepacket.

Forming a Wavepacket
We form a time dependent wavepacket for circular orbits by superposing circular

energy eigenstates:
χ(Ω, t) = ∑

n
eitEnYn,n−1,n−1 An−N (161)

where An−N is an amplitude peaked about n = N >> 1. For n >> 1 we expand En about EN :

En = EN +
∂E
∂n

∣∣∣∣
N

s +
∂2E
∂n2

∣∣∣∣
N

s2 + . . . (162)

where s = n − N. From the equation for the energy levels, E = −m(Zα)2/(2n2) we compute

∂En

∂n

∣∣∣
N
=

m(Zα)2

N3 =

√
−8E3

N
m(Zα)2 . (163)

In agreement with the Bohr Correspondence Principle, the right-hand side of this equation is just
the classical frequency ωcl as given in Equation (38). For the second order derivative, we have

∂2E
∂n2

∣∣∣
N
= − 3

N
ωcl ≡ β (164)

which gives

χ(Ω, t) = e−itEN eiφ(N−1)
∞

∑
s=−N+1

e−i
(

ωcl st−
(

β
2

)
s2t−sφ

)
· As|YN+s,N+s−1,N+s−1|. (165)

We choose a Gaussian form for As

As =
1√

2πN
e−s2/(2N). (166)

Brown used As = Ce−s23ωcl t/N which minimizes the diffusion in φ at time t [139]. Since
|YN+s,N+s−1,N+s−1| varies slowly with s for N >> 1 we can take it outside the summation in
Equation (165). We now replace the sum by an integral over s. Because As is peaked about N
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we can integrate from s = −∞ to s = +∞. We perform the integral by completing the square in the
usual way. The final result for the probability amplitude for a circular orbital wave packet is

|x(Ω, t)|2 = |YN,N−1,N−1|2
(

1 + β2t2N2
)−1

· exp
[
− (φ − ωcl t)

2 N
1 + (βtN)2

]. (167)

This represents a Gaussian distribution in φ that is centered about the classical value φ = ωcl t,
meaning that the wavepacket is traveling in the classical trajectory with the classical time dependence.
The width of the φ distribution is

Δφ = (N)(−1/2)(1 + β2t2N2)1/2 = (N)(−1/2)(1 + 9ω2
cl t

2)1/2. (168)

The distribution in φ at t = 0 is very narrow, proportional to 1/
√

N, but after several orbits Δφ is
increasing linearly with time.

The distributions in θ4 and θ are Gaussian and centered about π/2 in each case as for the circular
wave function (cf. Equation (160)) with widths equal to (N)−1/2. The spreading of these distributions
in time is inhibited because of the conservation of angular momentum and energy. The detailed
behavior of the widths depend on our use of the Gaussian distribution. Other distributions will give
different widths, although the general behavior is expected to be similar.

As a numerical example, consider a hydrogen atom that is in the semiclassical region when the
orbital diameter is about 1 cm. The corresponding principal quantum number is about 104, the mean
velocity is about 2.2 × 104 cm/s and the period about 1.5 × 10−4 s. After about 34 revolutions or
5 × 10−3 s, the spread in φ is about 2π, meaning the electron is spread uniformly about the entire
circular orbit. This characteristic spreading time can be compared to 1.6 × 10−3 s for a fully optimized
wave packets formed from coherent SO(4,2) states [136,146]. In order to make predictions about
significantly longer times, we would need to retain more terms in the expansion Equation (162) of En.

Case 2: Elliptical orbits sin ν = e �= 0
We can obtain the classical limit of the wave function for elliptical orbits by first writing our

asymptotic form Equation (159) for Yn,n−1,n−1 in terms of the U variables instead of the angular
variables by using definitions Equation (52), and setting a = an. Retaining only the lowest order terms
in (θ4 − π/2) and (θ − π/2), we find

Yn,n−1,n−1(U) =
( n

2π2

) 1
2 ei(n−1) tan−1

(
U2
U1

)
· e−

1
2 n(U4)

2
e−

1
2 n(U3)

2
(169)

For large n, this represents a circular orbit in the 1–2 plane. We now perform a rotation by A2ν.
which will change the eccentricity to sin ν, and change the angular momentum, but will not change
the energy or the orbital plane. Using Equation (140) to express the old coordinates in terms of the new
coordinates, we find to lowest order

Y′
n,n−1,n−1(U) =

( n
2π2

)1/2
ei(n−1) tan−1

(
U2

U1 cos v

)
· e−

1
2 n{U2 sin ν−U4 cos ν}2 · e−

1
2 n(U3)

2
. (170)

In Section 3.6, we found that the vanishing of the term in braces 0 = U2 sin ν − U4 cos ν specifies
the classical great hypercircle orbit (Equation (56)) corresponding to an ellipse in configuration space
with eccentricity e = sin ν and lying in the 1–2 plane. The probability density |Y′

n,n−1,n−1(U)|2 vanishes
except within a hypertorus with a narrow cross section of radius approximately 1√

n , which is centered

about the classical distribution. Because the width 1√
n of the distribution is constant in U space, it will

not be constant when projected onto p space.
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In terms of the original momentum space variables, the asymptotic spherical harmonic is

Yn,n−1,n−1(p) =
(

n
2π2

) 1
2 ei(n−1) tan−1

(
p2

p1 cos ν

)

· exp
{
−
( n

2
) [

p2
1 + (p2 − a tan ν)2 − a2

cos2 ν

]2 ( cos ν
p2+a2

)}2

· exp
{
−
( n

2
) ( 2p3a

p2+a2

)}2 ∣∣∣a = an

. (171)

The expression in brackets corresponds to the momentum space classical orbit equation we found
previously (Equation (49)). As we expect, p3 is Gaussian about zero since the classical orbit is in the
1–2 plane. We can simplify the expressions for the widths by observing that to lowest order we can
use Equation (48), which implies p2 + a2 = 2a2 + 2ap2 tan ν in the exponentials. The widths of both
distributions therefore increase linearly with p2. We also note that, since classically there exists a
one-to-one correspondence between each point of the trajectory in momentum space and each point in

configuration space, we may interpret the widths of the distributions using Equation (32) p2+a2

a2 = 2rc
r .

Accordingly, the widths increase as the momentum increases or as the distance to the force center
decreases (Figure 8).

Figure 8. Wave function probability distribution |Y′
n,n−1,n−1(p)|2 in momentum space for large n,

showing the variation in the width of the momentum distribution about the classical circular orbit.
The center of the distribution is at p2 = a tan ν. The classical orbit is in the 1–2 plane.

Forming a Wave packet for Elliptical Motion
We may form a time dependent wavepacket superposing the wave functions of Equation (170).

Care must be taken to include the first order dependence (through an) of tan−1(U2/U1 cos ν) on the
principal quantum number when integrating over the Gaussian weight function. The result for the
probability density is the same as before (Equation (167)), except |Y′

N,N−1,N−1|2 (given in Equation (170))
replaces |YN,N−1,N−1|2 and

ωcl t = tan−1
(

U2

U1 cos ν

)
+ sin ν (U1) (172)

where replaces ωcl t = φ . The result is exactly the same as the classical time dependence Equation (73).
The spreading of the wave packet will be controlled by the same factor as for the circular wave packet.
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Remark on the Semiclassical Limit in Configuration Space
The time dependent quantum mechanical probability density follows the classical trajectory in

momentum space meaning that the probability is greatest at the classical location of the particle in
momentum space. Because the configuration space wave function is the Fourier transform of the
momentum space wave function, the classical limit must also be obtained in configuration space.
That this limit is obtained is made explicit by observing that the momentum space probability density
is large when

(U2 sin ν − U4 cos ν)2 ≈ 0. (173)

However from Section 3 we can show that

U2 sin ν − U4 cos ν = cos ν
( r − rclassical

rclassical

)
(174)

where rclassical is given by the classical orbit Equation (33). Accordingly, we see that the configurations
space probability will be large when [ r − rclassical

rclassical

]2
≈ 0. (175)

5.6. Quantized Semiclassical Orbits

It is convenient at times to have a semiclassical model for the orbitals of the hydrogenlike atom.
Historically this was first done by Pauling and Wilson [147]. We can obtain a model by interpreting
the classical formulae for the geometrical properties of the orbits as corresponding to the expectation
values of the appropriate quantum mechanical expressions. Thus, when the energy E = −a2/2m
appears in a classical formula, we employ the expression for a for the quantized energy levels a = 1

nr0

where r0 = (mZα)−1, which is the radius 0.53 Angstrom of the ground state. Similarly if L2 appears
in a classical formula, we substitute l(l + 1), where l is quantized l = 0, 1, 2..n − 2, n − 1; and m ,
the component of L along the 3-axis is quantized: m= −l,−l + 1,−l + 2, ..l.

Orbits in Configuration Space
Recalling Equation (28) rc =

mZα
a2 , we see arc = n, which gives a semimajor axis of length rc = n2r0,

where r0 is the radius for the circular orbit of the ground state and rc is for a circular orbit for a state
with principal quantum number n. The equations for the magnitude of L and A are

L = rca cos v = n cos v =
√

l(l + 1) (176)

A = rca sin v = n sin v =
√

n2 − l(l + 1) (177)

This gives an eccentricity sin ν equal to

e = sin v =

√
1 − l(l + 1)

n2 (178)

and a semi-major axis equal to

b = rc sin ν = n
√

l(l + 1). (179)

Note that the expression for e is limited in its meaning. For an s state, it always gives e = 1, and for
states with l = n − 1 it give e =

√
1/n, not the classically expected 0 for a circular orbit.
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Orbits in U-Space
The corresponding great hypercircle orbits (ν, Θ) in U-space are described by giving the quantized

angle ν, between the three-dimensional hyperplane of the orbit and the 4-axis, and the quantized angle
Θ, between the hyperplane of the orbit and the 3-axis:

cos ν =

√
l(l + 1)

n2 (180)

cos Θ =

√
m2

l(l + 1)
. (181)

Note the similarity in these two equations, suggesting that m relates to l the same way that l
relates to n, which suggests a generalization of the usual vector model of the atom which only describes
the precession of L about the z axis.

The results for orbits in configuration and momentum space illustrate some interesting features:
1. The equation ar = n illustrates that the characteristic dimensions of an orbit in configuration

space and the corresponding orbit in momentum space are inversely proportional, as expected,
since they are related by a Fourier transform, consistent with the Heisenberg Uncertainty Principle.

2. If l = 0, then no classical state exists. The orbit in configuration space degenerates into a
line passing through the origin while the corresponding circular orbit in momentum space attains an
infinite radius and an infinite displacement from the origin. Although this seems peculiar from the
pure classical viewpoint, quantum mechanically it follows, since for S states there is a nonvanishing
probability of finding the electron within the nucleus.

In order to interpret these statements about quantized semiclassical elliptical orbits we observe
that for quantum mechanical state of the hydrogenlike atom with definite n, l, m, the probability
density is (1) independent of φr or φp and (2) it does not confine the electron to some orbital plane.
Because the quantum mechanical distribution for such a state specifies no preferred direction in the
1–2 plane, we must imagine this distribution as corresponding in some way to an average over all
possible orientations of the semiclassical elliptical orbit. This interpretation is supported by the fact
that the region within which the quantum mechanical radial distribution function differs largely from
zero is included between the values of r corresponding to the semiclassical turning points rc(1 ± sin ν).

5.7. Four-Dimensional Vector Model of the Atom

In configuration space or momentum space„ the angle between the classical plane of the orbit
and the 3-axis is Θ, which is usually interpreted in terms of the vector model of the atom in which
we imagine L to be a vector of magnitude

√
l(l + 1) precessing about the 3-axis, with m as the

component along the 3-axis. This precession may be linked to the φr independence of the probability
and the absence of an orbital plane as mentioned at the end of the preceding section. The precession
constitutes a classical mechanism which yields the desired average over all possible orientations of the
semiclassical elliptical orbit. Because the angle Θ is restricted to have only certain discrete values one
can say that there is a quantization of space.

The expression for cos ν =
√

l(l + 1)/n2 is quite analogous to that for Θ and so suggests
a generalization of the vector model of the atom to four dimensions. The projection of the
four-dimensional vector model onto the physical three-dimensional subspace must give the usual
vector model. We can achieve this by imagining that a four-dimensional vector of length n, where n
is the principal quantum number, is precessing in such a way that its three and four components
are constants, while the one and two components vary periodically. The projection onto the 1–2–3
hyperplane is a vector of constant magnitude

√
l(l + 1) precessing about the 3-axis. The component

along the 3-axis is m. The component along the 4-axis is A =
√

n2 − l(l + 1) the magnitude of the
vector A. The vectors L and A are perpendicular to each other. Thus, the precessing n vector makes a
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constant angle Θ with the 3-axis and a constant angle π/2 − ν with the 4-axis. Because both angles are
restricted to certain values, we may say that we have a quantization of four-dimensional space.

6. The Spectrum Generating Group SO(4,1) for the Hydrogenlike Atom

We consider the Schrodinger hydrogen atom and its unitary “noninvariance” or spectrum
generating operators eiDi βi where Di is a generator and βi is a real parameter, using eigenstates
of (Zα)−1 for our basis of our representation. These operators transform an eigenstate of the kernel K
with a definite value of the coupling constant (or principal quantum number) into a linear combination
of eigenstates with different values of the coupling constant (or different principal quantum numbers),
and different l and m. Unlike the invariance generators L and A, the noninvariance generators clearly
do not generally commute with the kernel K, [Di, K] �= 0, so they change the principal quantum number.

The set of all invariance and noninvariance operators forms a group with which we may generate
all eigenstates in our complete set from a given eigenstate. We show that this group, called the Spectrum
Generating Group of the hydrogenlike atom, is SO(4,1), the group of orthogonal transformations in
a 5-dimensional space with a metric gAB = (−1, 1, 1, 1, 1), where A, B = 0, 1, 2, 3, 4. The complete set
of eigenstates of (Zα)−1 for the hydrogenlike atom forms a unitary, irreducible, infinite-dimensional
representation of SO(4,1) which, we shall find, can be decomposed into an infinite sum of irreducible
representations of SO(4), each corresponding to the degeneracy group for a particular principal
quantum number. A unitary representation means all generators are unitary operators. An irreducible
representation does not contain lower dimensional representations of the same group. In Section 6.3,
we discuss the isomorphism between the spectrum generating group SO(4,l) and the group of
conformal transformations in momentum space. An isomorphism means the groups have the same
structure and can be mapped into each other.

6.1. Motivation for Introducing the Spectrum Generating Group Group SO(4,1)

We have examined the group structure for the degenerate eigenstates of (Zα)−1 for the
Schrodinger hydrogenlike atom: the n2 degenerate states form an irreducible representation of
SO(4). The next question we might ask is: Do all or some of the states with different principal
quantum numbers form an irreducible representation of some larger group which is reducible into
SO(4) subgroups? If such a group exists then it clearly is not an invariance group of the kernel K
(Equation (106)). If we want our noninvariance group to include just some of the states then it will be a
compact group, since unitary representations of compact groups can be finite dimensional. If we want
to include all states then it will be a noncompact group since there are an infinite number of eigenstates
of (Zα)−1 and all unitary representations of noncompact groups are infinite dimensional [9].

We can find a compact noninvariance group for the first N levels of the coupling constant,
n = 1, 2, ...N. The dimensionality of our representation is

N

∑
n=1

n2 =
N(N + 1)(2N + 1)

6
. (182)

Mathematical analysis of the group SO(5) shows that this is the dimensionality of the irreducible
symmetrical tensor representation of SO(5), given by the tensor with five upper indices Tabc...,
where a, b, .. = 1, 2, 3, 4 or 5 [11]. Reducing this representation of SO(5) into its SO(4) components gives

( symm · tensor N)SO(5) =(0, 0)⊕
(

1
2

,
1
2

)
⊕ . . . ⊕

(
N − 1

2
,

N − 1
2

)
=( symm · tensor n = 1)SO(4)⊕
( symm · tensor n = 2)SO(4)⊕
. . . ⊕ ( symm · tensor n = N)SO(4)

(183)
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which is precisely the structure of the first N levels of a hydrogenlike atom. If we want to include
all levels then we guess that the appropriate noncompact group is SO(4,1), whose maximal compact
subgroup is SO(4). Thus, we conjecture that all states form a representation of SO(4,1).

Consider the Lie algebra of O(4,1) and the general structure of its generators in terms of the
canonical variables. The algebra of O(n) has n(n−1)

2 generators so to extend the algebra of O(n) to
O(n+1) takes n generators, which can be taken as the components of a n-vector. To extend the Lie
algebra from O(4) to O(5) or O(4,1) we can choose the additional generators Ga to be components of a
four-vector G under O(4):

[Sab, Gc] = i(Gbδac − Gaδbc) a, b, c = 1, 2, 3, 4. (184)

If we apply Jacobi’s identity to Sab, Ga, and Gb and use Equation (184) we find

[Sab, [Ga, Gb]] = 0. (185)

We require that the Lie algebra closes, so [Ga, Gb] must be a linear combination of the generators,
clearly proportional to Sab and we choose the normalization, such that

[Ga, Gb] = −iSab. (186)

If we define
G4 = S40 = S; Gi = Si0 = Bi (187)

and recall Equation (79)
Li = eijkSjk Ai = Si4

then the additional commutation relations that realize SO(4,1) may be written in terms of L, A, B,
and S: [

Li, Bj
]
= iεijkBk [Li , S] = 0[

S , Aj
]
= iBj

[
S , Bj

]
= iAj[

Aj, Bk
]
= iδjkS

[
Bi, Bj

]
= −iεijkLk.

(188)

The top two commutators show that B transforms as a three-vector under O(3) rotations and that
S is a scalar under rotations. Alternatively, we can write the commutation relations in terms of the
generators SAB , A, B = 0, 1, 2, 3, 4 :

[SAB, SCD] = i (gACSBD + gBDSAC − gADSBC − gBCSAD) (189)

where g00 = −1, gaa = 1.
The commutators above follow directly from the mathematical theory of SO(4,1), but the theory

does not tell us what these generators represent, just their commutation properties. We now investigate
the general features of the representations of SO(4,1) provided by the hydrogenlike atom and how to
represent the generators in terms of the canonical variables.

6.2. Casimir Operators

The two Casimir operators of SO(4,1) are [120]

Q2 = −1
2

SABSAB = S2 + B2 − A2 − L2 (190)

and
Q4 = −wAwA = (SL − AxB)2 − 1

4
[L · (A + B)− (A + B) · L]2 (191)

where wA = 1
8 εABCDESBCSDE .
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For SO(4), we recall that for the SO(4) representations the structure of the generators in terms of
the canonical variables led to the vanishing of one Casimir operator C1 = L · A and, consequently, the
appearance of only symmetrical tensor representations. We will find Q4 vanishes for analogous reasons.

If B is a pseudovector, it is proportional to L, which is the only independent pseudovector that
can be constructed from the dynamical variables. The coefficient of proportionality, a scalar, X need
not commute with H:

B = XL [X, L] = 0 [X, H] �= 0 (192)

Because [Bi, Bj] = −ieijkLk it follows that X2 = −1 and B would therefore be a constant multiple
of L and not an independent generator. Thus B must be a vector and expressible as

B = f r + hp (193)

where f and h are scalar functions of r, p2, and r · p. Accordingly we find

B · L = L · B = 0 (194)

Further, since B is a vector and A is a vector, A × B is a pseudovector and therefore is proportional
to L :

A × B = YL , [Y, L] = 0 (195)

For this equation to be consistent with the SO(4,1) commutation relations we find Y = S and,
therefore

A × B = SL. (196)

It follows from substituting L · A = 0 and Equations (194) and (196) into Equation (191) that for
the SO(4,1) representations realized by the hydrogenlike atom

Q4 = 0. (197)

As with the SO(4) symmetry, the dynamics of the hydrogen atom require that only certain
representations of SO(4,1) appear. From the mathematical theory of irreducible infinite dimensional
unitary representations of SO(4,1), we have the following results:

Class I: Q4 = 0; Q2 real, > 0

SU(2) × SU(2) content:

(Q)I =(0, 0)⊕
(

1
2

,
1
2

)
⊕ (1, 1)⊕ . . .

(198)

Class II: Q4 = 0, Q2 = −(s − 1)(s + 2), s = integer > 0

SU(2)× SU(2) content:

(Q)I I =
( s

2
,

s
2

)
⊕
(

s + 1
2

,
s + 1

2

)
⊕ · · ·

(199)

The class I representations are realized by the complete set of eigenstates of (Zα)−1 for the
hydrogenlike atom. Note, however, that we have an infinite number of such class I representations
since Q2 may have any positive real value. We shall find that for Q2 = 2 we may extend our group
from SO(4,l) to SO(4,2). The class II representations are realized by the eigenstates of (Zα)−1 with
principal quantum numbers from n = s + 1 to n becomes infinite. The first s levels could, if we desire,
be described by SO(5).

In this section, we have analyzed the group structure and the representations using the complete
set of eigenstates of (Zα)−1 for our basis. We might ask: what if we used energy eigenstates instead as
a basis for the representations? From Section 4.3 we know that the quantum numbers and multiplicities
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of the (Zα)−1 eigenstates are precisely the same as those of the bound energy eigenstates. Thus, with
the energy eigenstates as our basis, we would reach the same conclusions about the group structure
as before but we would be including only the bound states in our representations and we would be
ignoring all scattering states.

6.3. Relationship of the Dynamical Group SO(4,1) to the Conformal Group in Momentum Space

We can give a more complete analysis of the hydrogenlike atom in terms of SO(4,1) by considering
the relationship between the four-dimensional rotations of the four-vector U′

a, with a = l, 2, 3, 4,
which we discussed in Section 4.6, and the group of conformal transformations in momentum
space. Conformal transformations preserve the angles between directed curves, but not necessarily
lengths. The rotations generated by the Runge-Lenz vector a and the angular momentum L leave
the scalar product UaVa of four-vectors invariant and, therefore, are conformal transformations.
The stereographic projection we employed is also a conformal transformation. Since the product of
two conformal transformations is itself a conformal transformation, we must conclude that a generates
a conformal transformation of the momentum three-vector p.

We must introduce two additional operators that correspond to the operators B and S introduced
in Section 6.1 in order to express the most general conformal transformation. By employing the
isomorphism between the generators L, a, B, and S of SO(4,1) and the generators of conformal
transformations in momentum space we can immediately obtain expressions for the additional
generators B and S in terms of the canonical variables, which is our objective. We need these additional
generators to complete our SO(4,1) group for the hydrogen atom.

To derive the isomorphism we use the most convenient representation, namely that based

on eigenstates of (Zα)−1 convenient for momentum space calculations (ρ = (p2+a2)
2a2 ). Once

established, the isomorphism becomes a group theoretical statement and it is independent of the
particular representation.

The Conformal Group in Momentum Space
An arbitrary infinitesimal conformal transformation in momentum three-space may be written as

δpj = δaj + δωjk pk + δρpj +
(

p2δcj − 2pj p · δc
)

(200)

where δωjk = −δωkj.
The terms in δpj arise as follows:

δaj translation generated by R · δa
δωjk rotation generated by J · δω, Jij = εijk Jk
δρ dilation generated by Dδρ

δcj special conformal transformation generated by K · δc

(201)

This is a ten parameter group with the generators (R, J, D, K) which obey the following
commutation relations: [

D, Rj
]
· = iRj [D, Ji] = 0[

D, Kj
]
= −iKj [Ri, Jk] = iεijkRk

[Kn, Rm] = 2iεnmr Jr − 2iδmnD [Ji, Jk] = iεikmJm[
Ri, Rj

]
= 0 [Ki, Jk] = iεikmKm[

Kj, Kj
]
= 0

(202)

There is an isomorphism between the algebra of the generators of conformal transformations and
the dynamical noninvariance algebra of SO(4,1) of the hydrogen atom. Because Ji is the generator
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of spatial rotations we make the association Li = Ji. Comparing the differential change in pi from a

transformation generated by a · δν (in the representation with ρ = (p2+A2)
2a2 )

δpi = i [a · δν, pi]

= − 1
2a

[(
p2 − a2

)
δνi − 2p · δνpi

] (203)

to the differential change in pi from a conformal transformation leads to the association

ai =
1
2

(
Ki
a
− aRi

)
. (204)

To confirm the identification we can use the commutation relations of the conformal group to
show that the O(4) algebra of L and a corresponds precisely to that of J and 1

2 (
K
a − aR). This result

alone suggests that our SO(4) degeneracy group should be considered as a subgroup of the larger
group SO(4,1). It suggests introducing the operators

B =
1
2

(
K
a
+ aR

)
S = D. (205)

The commutation relations of S and B which follow from Equations (205) and the commutation
relations Equation (202) are identical to the commutation relations given for S and B in Section 6.1.
Thus, by considering the a and L transformations in momentum space as conformal transformations,
we were led to introduce the generators B and S and obtain the dynamical algebra SO(4,l). Further, we
are led to the expressions for these generators in terms of the canonical variables.

By comparing the expression for a in terms of the conformal generators with our known
expressions for a, Equation (120) or Equation (121), we obtain expressions for Ki and Ri in terms
of the canonical variables. If we use the eigenstates convenient for configuration space calculations
(ρ = n/ar) we make the identifications

K = 1
2 (rp2 + p2r)− r · pp − pp · r − r 1

4r2

R = r.
(206)

Substituting these results in the equation for B we find

B =
1
2a

(
p2r + rp2

2
− r · pp − pp · r − r

4r2

)
+

ar
2

(207)

which is a manifestly Hermitean operator valid throughout Hilbert space. From Equations (204) and
(205) we note that

B − a = ar. (208)

To compute D, we substitute the expressions for K and R into the commutation relation

D =
i
2
[Ki, Ri]

obtaining the result

S =
1
2
(p · r + r · p) = D (209)

which is identical to the generator of the scale change transformation D(λ) defined in Equation (109)
in Section 4.3.
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The significance of the generator D = S of the scale change in terms of SO(4,1) is apparent if
we compute

eiλD
(

K
a
± aR

)
e−iλD =

K
a′

± a′R (210)

where a′ = eλa.
The unitary transformation eiλD may be viewed as generating an inner automorphism of SO(4,1)

which is an equivalent representation of SO(4) that is characterized by a different value of the quantity
a or the energy. In other words, under the scale change eiλD, the basis states for our representation of
SO(4,1), |nlm; a), transform to a new set, |nlm; eλa) in agreement with our discussion in Section 4.3.

Because the algebra of our generators closes, we may also view eiλD as transforming a given
generator into a linear combination of the generators. With the definitions of a and B (Equation (204)
and (205)), we can easily show that Equation (210), with the upper sign, may also be written

eiλDBe−iλD = B cosh λ + a sinh λ. (211)

7. The Group SO(4,2)

7.1. Motivation for Introducing SO(4,2)

We would like to express Schrodinger’s equation as an algebraic equation in the generators of
some group [37,38]. As we are unable to do this with our SO(4,l) generators SAB we again expand the
group. To guide us, we recall that to expand SO(3) to SO(4) we added a three-vector of generators
A, and to expand SO(4) to SO(4,1), we added a four-vector of generators (S, B). In both cases, this
type of expansion produced a set of generators convenient for the study of the hydrogenlike atom.
We guess that the appropriate expansion of SO(4,1) is obtained by adding a five-vector (under SO(4,1))
of generators ΓA to obtain SO(4,2) [37,38]. We can provide additional motivation for this choice
by considering Schrodinger’s equation. The generators in terms of which we want to express this
equation must be scalars under Li rotations. Additionally we know S = S40 (Equation (187)) generates
scale changes of Schrodinger’s equation. The fact that S40 mixes the zero and four components of a
five-vector suggests that Schrodinger’s equation may be expressed in terms of the components Γ0 and
Γ4 which are scalars under Li, of the five vector ΓA. Since ΓA is a five-vector under SO(4,1), it must
satisfy the equation

[SAB, ΓC] = i (ΓBgAC − ΓAgBC) . (212)

The spatial components of ΓA which are (Γ1, Γ2, Γ3) = Γ transform as a vector under rotations
generated by L.

To construct the Lie algebra of SO(4,2) we require that the set of operators {ΓA, SAB; A, B =

0, 1, 2, 3, 4} must close under the operations of commutation. By applying Jacobi’s identity to ΓA, ΓB,
and SAB, and requiring that ΓA and ΓB do not commute, we find

[SAB, [ΓA, ΓB]] = 0 A, B = 0, 1, 2, 3, 4.

Because we require that our Lie algebra closes, the commutator of ΓA and ΓB must be proportional
to SAB. We normalize Γ, so

[ΓA, ΓB] = −iSAB A, B = 0, 1, 2, 3, 4. (213)

If we define
SA5 = ΓA = −S5A A = 0, 1, 2, 3, 4. (214)

and recall
Ai = Si4 Bi = Sio Li = eijkSjk S = S40
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then we may unite all the commutations relations of ΓA and SAB in the single equation :

[SAB , SCD ] = i(gACSBD + gBDSAC − gADSBC − gBCSAD) (215)

where A,B, .. = 0, 1, 2, 3, 4, 5 and g00 = g55 = −1; gaa = 1, a = 1, 2, 3, 4.
These are the commutation relation for the Lie algebra of SO(4,2). In terms of A, B, L, S and ΓA

the additional commutation relations for the noncommuting generators are [53]:[
Bi, Γj

]
= iΓ0δij

[
Γi, Γj

]
= −iεijkLk[

Ai, Γj
]
= iΓ4δij [Γi, Γ0] = −iBi[

Li, Γj
]
= iεijkΓk [Γi, Γ4] = −iAi

[Γ4, Γ0] = −iS
[ Bi, Γ0] = iΓi [Ai, Γ4] = −iΓi
[ S, Γ0 ] = iΓ4 [ S, Γ4] = iΓ0

(216)

7.2. Casimir Operators

The Lie algebra of SO(4,2) is rank three, so it has three Casimir operators W2, W3, and W4 [43]:

W2 = −1
2

SABSAB = Q2 + ΓAΓA (217)

where Q2 is the nonvanishing SO(4,1) Casimir operator Equation (190) and

W3 = εABCDEFSABSCDSEF (218)

W4 = SABSBCSCDSDA. (219)

Computation of W3

We can show that W3 = 0 from dynamical considerations similar to those used in the discussion
of SO(4,1) Casimir operators. The only terms that can be included in W3 are scalars that are formed
from products of three generators with different indices

B · A × Γ, A · Γ × B, Γ · B × A

Γ4L · B, Γ0L · A, SΓ · L
(220)

It is interesting that these terms are actually all pseudoscalars. Terms like B · A × L are simply
not possible because of the structure of W3. We know that Γ = (Γ1, Γ2, Γ3) must not be pseudovector,
otherwise it would be proportional to L. Since it is a vector, it must equal a linear combination of r and
p. Therefore, we conclude

Γ · L = L · Γ = 0. (221)

Because Γ and B are both vectors and L is the only pseudovector we have Γ × B = ΛL . In order
to determine the scalar Λ we evaluate the commutators

[Bk, (Γ × B)k], and [Γk, (Γ × B)k] (222)

and find
Γ × B = Γ0L = −B × L. (223)

The analogous equations for A and Γ, and for A and B, are

Γ × A = −Γ4L = −A × Γ

A × B = SL = − B × A.
(224)
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From Equations (223) and (224), we see that because of the dynamical structure of the generators
each of the quantities in the first line of Equation (220) is proportional to the quantity directly below in
the second line. We also have shown that (Equations (194) and (221))

L · B = L · A = Γ · L = 0. (225)

Accordingly, each scalar in our list vanishes and

W3 = 0. (226)

Computation of W2

In order to compute W2 we need to evaluate

Γ2 ≡ ΓAΓA = Γ2
4 + ΓiΓi − Γ2

0. (227)

From the structure of W2 as shown in Equation (217), we see that Γ2 must be a number since
W2 and Q2 are both Casimir operators and therefore equal numbers for a particular representation.
Accordingly, we have

[Γ2, ΓA] = 0. (228)

From this equation, we can deduce a lemma allowing us to easily evaluate W2 and W4 in terms of
the number Γ2. Using Equation (227) and the definition of SAB Equation (213) we find

ΓASAB + SABΓA = 0.

Contracting Equation (212) with gAC gives

SABΓA − ΓASAB = 4iΓB.

Consequently, it must follow that

SABΓA = 2iΓB = −ΓASAB. (229)

We are now able to evaluate the quantity

SABSB
C = iSAB[ΓB, ΓC] = i(SABΓBΓC − SABΓCΓB).

Using Equation (212) for the commutator of SAB with ΓC and Equation (229) for the contraction
SABΓB we prove the lemma

SABSB
C = 2iSCA − ΓAΓC + Γ2gAC. (230)

The value of the SO(4,1) Casimir operator Q2 = 1
2 gACSABSB

C follows directly from the lemma:

Q2 = 2Γ2. (231)

Accordingly, we have from Equation (217)

W2 = 3Γ2. (232)

Computation of W4

The Casimir operator W4 can be written as

W4 = SABSBCSCDSDA + SABSB5S5DSDA + S5BSBCSCDSD5 + S5BSB5S5DSD5. (233)

where B,D = 0, 1, 2, 3, 4, 5 and A, C = 0, 1, 2, 3, 4.
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In order to evaluate W4 in terms of Γ2 we compute SABSBC. Recalling ΓA = SA5 we see

SABSBC = ΓAΓC + SABSBC. (234)

Substituting the lemma Equation (230), we find

SABSBC = 2iSC
A − Γ2g C

A . (235)

From Equation (229), it follows that

S5BSBC = 2iΓC. (236)

Substituting Equations (231), (232), (235), and (236) into Equation (233) for W4 we find

W4 = 6(Γ2)2 − 24Γ2. (237)

The fact that the nonvanishing Casimir operators (Q2, W2, and W4) for SO(4,1) and SO(4,2) are
given in terms of Γ2 implies that the representation of SO(4,2) determines the particular representation
of SO(4,l) appropriate to the hydrogenlike atom. In turn the value of Γ2 is determined by the structure
of the Γs in terms of the canonical variables. In Section 7.4, we derive these structures and find that

Γ2 = 1.

Therefore, the quadratic SO(4,1) Casimir operator Q2 has the value

Q2 = 2

and the SO(4,2) Casimir operators have the values:

W2 = 3 W3 = 0 W4 = −18.

The researchers that have published different representations of SO(4,2) based on the hydrogen
atom that give their Casimir operators all have W2 = 3 (or its equivalent) and W3=0 [34,79,82], however,
two authors have representations with W4 = 0 [34,82] and one [79] has W4 = −12, as compared to our
value of -18.

From the mathematical theory of representations, it follows that our representations of SO(4,1)
and SO(4,2) are both unitary and irreducible. This means there is no subset of basis vectors that
transform among themselves as either SO(4,1) or as SO(4,2).

7.3. Some Group Theoretical Results

In this section, we derive the transformation properties of the generators of SO(4,2) and then a
novel contraction formula that will prove useful for situations in which we want to employ perturbation
theory, for example, in our calculation of the radiative shift for the hydrogen atom in Section 8. We will
work primarily with the SO(4,2) generators expressed as the combination of the SO(4,1) generators
SAB and the five-vector Γ, with gAB = (−1, 1, 1, 1, 1) where A, B = 0, 1, 2, 3, 4.

Transformation Properties of the Generators
We can evaluate quantities like

ABΓB(θ) ≡ eiSABθΓBe−iSABθ no sum over A or B (238)

by expanding the exponentials in an infinite series and then using the commutation relations
Equations (212) and (213) of the generators SAB and ΓA, ΓB repeatedly. However, it is easier to
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solve the differential equations satisfied by ABΓB and to use the appropriate boundary conditions.
Differentiating Equation (238) and using the commutation relations, we obtain the equations

d
dθ

ABΓB = −gBB
ABΓA

d2

dθ2
ABΓB = −gAAgBB

ABΓB (239)

which have the solution

ABΓB = ΓB cos
√

gAAgBBθ +
gBB√

gAAgBB
ΓA sin

√
gAAgBBθ. (240)

Using a similar procedure we find

eiΓAθSABe−iΓAθ = SAB cosh
√

gAAθ +
√

gAAΓB sinh
√

gAAθ (241)

eiΓAθΓBe−iΓAθ = ΓB cosh
√

gAAθ +
1√
gAA

SAB sinh
√

gAAθ (242)

where no summation over A or B is implied.
These formulae, Equation (240)–(242), give the SO(4,2) transformation properties of the SO(4,2)

generators.

The Contraction Formula
If we multiply Equation (241) from the right by eiΓAθ and then contract from the left with ΓB, we

obtain

∑
B

ΓBeiΓAθΓB =

[
(1 − gAAΓ2

A) cosh
√

gAAθ +
2iΓA√

gAA
sinh

√
gAAθ

]
eiΓAθ + gAAΓ2

AeiΓAθ (243)

where we have used Γ2 = 1 and Equation (229). Expanding the hyperbolic functions in terms of
exponentials and collecting terms gives

∑
B

ΓBeiΓAθΓB =
1
2
(1 +

iΓA√
gAA

)2ei(ΓA−i
√

gAA)θ +
1
2
(1 − iΓA√

gAA
)2ei(ΓA+i

√
gAA)θ + gAAΓ2

AeiΓAθ . (244)

A Fourier decomposition of a function ΓA may be written

f (ΓA) =
1

2π

∫
dθ h(θ)eiΓAθ . (245)

Consequently we have

∑
B

ΓB f (ΓA)ΓB =
1
2
(1 +

iΓA√
gAA

)2 f (ΓA − i
√

gAA) +
1
2
(1 − iΓA√

gAA
)2 f (ΓA + i

√
gAA) + gAAΓ2

A f (ΓA).

(246)
By performing a suitable rotation we can generalize this formula from functions of ΓA to functions

of ΓAnA where nAnA = ±1. For n2 = −1 we start with ΓA = Γ0 and rotate to obtain a very
general result

∑
B

ΓB f (nΓ)ΓB =
1
2
(nΓ + 1)2 f (nΓ + 1) +

1
2
(nΓ − 1)2 f (nΓ − 1)− (nΓ)2 f (nΓ). (247)

We will have occasion to apply this formula for the special case

f (nΓ) =
1

Γn − ν
. (248)
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Using the representation
1

Γn − ν
=

∫ ∞

0
dseνse−Γns (249)

we obtain the result
ΓA

1
Γn − ν

ΓA = −2ν
∫ ∞

0
ds eνs d

ds
(sinh2 s

2
e−Γn s) (250)

which is in a form convenient for perturbation calculations.
Derivation of the ΓA in terms of the Canonical Variables
For our basis states, we shall use eigenstates of (Zα)−1 convenient for configuration space

calculations (ρ = na/r). We choose these states rather than those convenient for momentum space
calculations because they lead to simpler expressions for the ΓA in terms of the canonical variables,
although the expression for a is slightly more complicated. Thus, our states obey the equation[

1
K1(a)

− n
]
|nlm) = 0 (251)

where K1(a) is given by Equation (116). We know that K−1
1 must commute with the generators of the

SO(4) symmetry group (a)i = Si4 and Sij = εijkLk. This suggests that we choose

Γ0 = [K1(a)]−1 =
√

ar
p2 + a2

2a2

√
ar =

1
2

(√
rp2√r

a
+ ar

)
(252)

so that
(Γ0 − n) |nlm) = 0. (253)

This last equation is the Schrodinger equation expressed in our language of SO(4,2): our states
|nlm) are eigenstates of Γ0 with eigenvalue n.

To find Γ4, we calculate Γ4 = −i[S, Γ0], using Equation (209) for S,

Γ4 =
√

ar
p2 − a2

2a2

√
ar =

1
2

(√
rp2√r

a
− ar

)
. (254)

Sometimes it is convenient to use the linear combinations

Γ0 − Γ4 = ar Γ0 + Γ4 =

√
rp2√r

a
(255)

which can be used to express the dipole transition operator [33]. We can find Γi from Equation (216),
Γi = −i[Bi, Γ0]

Γi =
√

rpi
√

r (256)

which we might have guessed initially since [rpi, rpj] ∼ Lk. Every component of ΓA is Hermitean,
consequently the generators SAB given by the commutators Equation (213) are also Hermitian. We may
explicitly verify that these expressions for ΓA lead to a consistent representation of all generators in the
SO (4,2) Lie algebra.

Under a scale change generated by S, Γi is invariant and Γ4 and Γ0 transform in the same manner
as a and B (Equation (210)): they retain their form but a is transformed into eλa:

eiλS
{

Γ0

Γ4

}
e−iλS =

1
2

(√
rp2√r
eλa

± eλar
)

(257)

The scale change generates an inner automorphism of SO(4,2) characterized by a different value
of the parameter a.
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7.4. Subgroups of SO(4,2)

The two most significant subgroups are [53]:

1. Li, ai or Sjk, Si4, forming an SO(4) subgroup. These generators commute with Γ0 and therefore
constitute the degeneracy group for states of energy −a2/(2m) and fixed principal quantum number n
(or fixed coupling constant na/m). The Casimir operator for this subgroup is

a2 + L2 = n2 − 1 = Γ2
0 − 1. (258)

We discussed this subgroup in Section 4.2 in terms of L and A and the states |nlm〉. The same
results are obtained with the generators L and a with the states |nlm). For example, we have the
raising and lowering operators for m and l (Equations (93) and (94)). With the definition

L± = L1 ± iL2 (259)

it follows that
[L3, L±] = ±L± (260)

which gives

L±|nlm) =
√
(l(l + 1)− m(m ± 1)|nl m ± 1) L3|nlm) = m|nlm). (261)

for l ≥ 1. In analogy to L± one can define

a± = a1 ± ia2 (262)

which obey the relations
[a3, a±] = ±L3 [L3, a±] = ±a± (263)

and

a±|nlm) =∓
(
(n2 − (l + 1)2)(l + 2 ± m)(l + 1 ± m)

4(l + 1)2 − 1

) 1
2

|n l + 1 m ± 1)

±
(
(n2 − l2)(l ∓ m)(l − 1 ∓ m)

4l2 − 1

) 1
2

|n l − 1 m ± 1)

(264)

for l ≥ 1. The action of a± is not directly analogous to that of L±, because we are using |nlm) as
basis states. If we used |na3l3 = m) as basis states, the action would be similar. An operator that only
changes the angular momentum is a3

a3|nlm〉 =
(
(n2 − (l + 1)2)((l + 1)2 − m2)

4(l + 1)2 − 1

) 1
2

|n l + 1 m〉+
(
(n2 − l2)(l2 − m2)

4l2 − 1

) 1
2

|n l − 1 m〉.
(265)

for l ≥ 1. Since a3 commutes with L3 and Γ0, it does not change n or m.

2. Γ4, S = S40, Γ0, forming a SO(2,1) subgroup. These operators commute with L but not with Γ0,
hence then can change n but not L or m. The Casimir operator for this subgroup is

Γ2
0 − Γ2

4 − S2 = L2 = l(l + 1). (266)

We can define the operators [53]

j1 = Γ4 j2 = S j3 = Γ0 (267)

with commutators
[j1, j2] = −ij3 [j2, j3] = ij1 [j3, j1] = ij2 (268)
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We can define the raising and lowering operators

j± = j1 ± ij2 = Γ4 ± iS (269)

which obey the commutation relations
[j±, j3] = ∓j±. (270)

We find (in analogy to Equation (261))

Γ0|nlm) = n|nlm) (Γ4 ± iS)|nlm) =
√

n(n ± 1)− l(l + 1)|n ± 1 lm) (271)

We can express the action of Γ0 − Γ4 = ar on our states

ar|nlm) = 1
2

(
(n)(n − l)− l(l + 1)

) 1
2

|n − 1 lm) + n|n lm) + 1
2

(
(n)(n + l)− l(l + 1)

) 1
2

|n + 1 lm) (272)

As previously mentioned, the operator S generates scale changes as shown in Equation (257),
where the value of a is changed. We can also express the action of S equivalently as transforming Γ0

into Γ4

eiSλΓ0e−iSλ = Γ0 cosh λ − Γ4 sinh λ eiSλΓ4e−iSλ = Γ4 cosh λ − Γ0 sinh λ. (273)

7.5. Time Dependence of SO(4,2) Generators

For a generator to be a constant it must commute with the Hamiltonian as discussed in Section 2.1.
Because the SO(4,2) group is the non-invariance or spectrum generating group, the additional
generators do not all commute with the Hamiltonian and may have a harmonic time dependence
as discussed in Section 2.2. It is notable that as far as we know only one paper considers the
time dependence of the generators of non-invariance groups in general and one considers SO(4,2)
specifically [97,136]. Our results certainly clarify and make explicit the time dependence, and show
that it is just a particular aspect of the SO(4,2) transformations. In our representation with basis states
|nlm; a), the Hamiltonian, which is the generator of translations in time, has been transformed into Γ0

and the Schrodinger energy eigenvalue equation has become Γ0|nlm) = n|nlm). Accordingly, all of the
generators that commute with Γ0 are constants of the motion, which includes a, L. The other operators,
B, Γ, S, Γ4 have a time dependence given by Equations (241) and (242), for example

S(t) = eiHtS(0)E−iHt = eiΓ0tSe−iΓ0t = S cos t + Γ4 sin t. (274)

Γ4(t) = eiHtΓ4(0)E−iHt = eiΓ0tΓ4e−iΓ0t = Γ4 cos t − S sin t. (275)

Consequently, terms like j± have a simple exponential time dependence

j±(t) = j±(0)e±it. (276)

Similarly Γ ± iB has an exponential time dependence.

7.6. Expressing the Schrodinger Equation in Terms of the Generators of SO(4,2)

We can write the Schrodinger equation for the energy eigenstate En = −a2
n/2m of a particle in

a Coulomb potential in terms of the SO(4,2) generators, which are expressed in terms of the energy
−a2/2m, by making a scale change. From Section 4.3, Equation (114), the relationship between the
Schrodinger energy eigenstate |nlm〉 and the eigenstate of (Zα)−1 is:

|nlm; a) = e−iSλn
√

ρ(an)|nlm〉 (277)
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where
eλn =

an

a
ρ(an) =

n
anr

. (278)

Substituting Equation (277) into the eigenvalue equation Equation (253) for |nlm; a) and
employing the transformation Equation (273), we find the usual Schrodinger equation can be expressed
in SO(4,2) terms as

(Γn − n)
√

ρ(an)|nlm〉 = 0 (279)

where
Γn ≡ ΓAnA = Γ0n0 + Γini + Γ4n4 (280)

no = cosh λn =
a2 + a2

n
2aan

, ni = 0, n4 = − sinh λn =
a2 − a2

n
2aan

(281)

and nAnA = n2
4 − n2

0 = −1.
Equation (279) expresses Schrodinger’s equation for an ordinary energy eigenstate |nlm〉 with

energy EN = −a2
n/2m in the language of SO(4,2). It shows the relationship between these energy

eigenstates and the basis states of (Zα)−1 used for the SO(4,2) representation,

8. SO(4,2) Calculation of the Radiative Shift for the Schrodinger Hydrogen Atom

In the 1930’s, it was generally believed that the Dirac equation predicted the energy levels of
the hydrogen atom with excellent accuracy, but there were some questions about the prediction that
the energy levels for a given principal quantum number and given total angular momentum were
independent of the orbital angular momentum. To finally resolve this issue, in 1947, Willis Lamb and
his student Robert Retherford at Columbia University in New York City employed rf spectroscopy and
exploited the metastability of the hydrogen 2s1/2 level in a beautiful experiment and determined that
the 2s1/2 and 2p1/2 levels were not degenerate and that the energy difference between the levels was
about 1050 MHz, or 1 part in 106 of the 2s1/2 level [5,148]. Shortly thereafter Hans Bethe [6] published
a ground breaking nonrelativistic quantum theoretical calculation of the shift assuming it was due
to the interaction of the electron with the ground state electromagnetic field of the quantum vacuum
field. This radiative shift accounted for about 96% of the measured shift. The insight that one needed
to include the interaction of the atom with the vacuum fluctuations and how one could actually do it
ushered in the modern world of quantum electrodynamics [7]. Here, we compute in the non-relativistic
dipole approximation and to first order in the radiation field, as did Bethe, the radiative shift, but we
use group theoretical methods based on the SO(4,2) symmetry of the non-relativistic hydrogen atom
as developed in this paper. Bethe’s calculation required the numerical sum over intermediate states to
obtain the average value of the energy of the states contributing to the shift. In our calculation, we do
not use intermediate states, and we derive an integral equivalent to Bethe’s log, and more generally
derive the shift for all levels in terms of a double integral.

An expression for the radiative shift ΔNL for energy level EN of a hydrogen atom in a state
|NL〉 can be readily obtained using second order perturbation theory (to first order in α the radiation
field) [6,149–151]

ΔNL =
2αc

3πm2

s

∑
n

∫ ωc

0
dω

(En − EN)〈NL|pi|n〉〈n|pi|NL〉
En − EN + ω − iε

, (282)

where ωC is a cutoff frequency for the integration that we will take as ωc = m.
This expression, which is the same as Bethe’s, has been derived by inserting a complete set of

states |n〉〈n|, a step that we eliminate with our group theoretical approach:

ΔNL =
2α

3πm2

∫ ωc

0
dω〈NL|pi

H − E
H − (E − ω)− iε

pi|NL〉 (283)
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If we add and subtract ω from the numerator, we find the real part of the shift is

ReΔNL =
2α

3πm2 Re
∫ ωc

0
dω[〈NL|p2|NL〉 − ωΩNL] (284)

where
ΩNL = 〈NL|pi

1
H − EN + ω − iε

pi|NL〉 (285)

and

H =
p2

2m
− Zα

r
. (286)

The imaginary part of the shift gives the width of the level [7].
The matrix element ΩNL can be converted to a matrix element of a function of the generators

ΓA taken between eigenstates |nlm) of (Zα)−1. To do this we insert factors of 1 =
√

r 1√
r and use the

definitions of the ΓA in terms of the canonical variables, Equations (254)–(256). Letting the parameter a
take the value aN , we obtain the result

ΩNL =
mν

N2 (NL|Γi Γn(ξ)− ν
Γi|NL) (287)

where
n0(ξ) =

2 + ξ

2
√

1 + ξ
= cosh φ ni = 0 n4(ξ) = − ξ

2
√

1 + ξ
= − sinh φ (288)

and
ξ =

ω

|EN |
ν =

N√
1 + ξ

= Ne−φ. (289)

From the definitions we see φ = 1
2 ln(1 + ξ) > 0 and nA(ξ)nA(ξ) = −1. The quantity

ν =
mZα√

−2m(EN − ω)

may be considered the effective principal quantum number for a state of energy EN − ω.
The contraction over i in ΩNL may be evaluated using the group theoretical formula Equation (250):

ΩNL = −2
mν2

N2

∫ ∞

0
dseνs d

ds

(
sinh2 s

2
MNL(s)

)
− m

ν

N2 (NL|Γ4
1

Γn(ξ)− ν
Γ4|NL) + m

ν

N2 (NL|Γ0
1

Γn(ξ)− ν
Γ0|NL)

(290)

where
MNL(s) = (NL|e−Γn(ξ) s|NL). (291)

In order to evaluate the last-two terms in ΩNL, we can express the action of Γ4 on our states in
terms of Γn(ξ)− ν. Substituting the equation

Γ0|NL) = N|NL) (292)

into the expression for Γn(ξ)− ν, with n(ξ) given by Equation (288), gives

Γ4 = N −
(

1
sinh φ

)
(Γn(ξ)− ν) (293)
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when acting on the state |NL). If we substitute Equation (293) into the expression for the ReΔENL
Equation (284) and simplify using the virial theorem

(NL|p2|NL) = a2
N

we find that the term in p2 exactly cancels the last two terms in ΩNL, yielding the result

ReΔENL =
4mα(Zα)4

3πN4

∫ φc

0
dφ sinh φeφ

∫ ∞

0
ds eνs d

ds

(
sinh2 s

2
MNL(s)

)
(294)

where

φc =
1
2

ln
(

1 +
ωc

|EN |

)
=

1
2

ln
(

1 +
2N2

(Zα)2

)
(295)

and ωc = m.
Comparison to the Bethe Logarithm
The first order non-relativistic radiative shift is commonly given in terms of the Bethe

logarithm γ(N, L), which is interpreted as the average over all states, including scattering states,
of ln |En−EN |

1
2 m(Zα)2 [149] :

γ(N, L)∑S
n (En − EN) 〈N0 |pi| n〉 〈n |pi| N0〉

= ∑S
n (En − EN) 〈NL |pi| n〉 〈n |pi| NL〉 ln |En−EN |

1
2 m(Zα)2

. (296)

We use the dipole sum rule [150]

2
s

∑
n
(En − EN) 〈N |pi| n〉 〈n |pi| N〉 = −

〈
N
∣∣∣∇2V

∣∣∣ N
〉

(297)

and apply it for the Coulomb potential ∇2V(r) = 4πZαδ(r). The use of the Bethe log allowed Bethe to
take the logarithmic expression obtained from the frequency integration outside the summation over
the states, and replace it with the average value. Only the S states contribute to the expectation value
in Equation (297), giving, from Equation (282), an expression for the shift

Re ΔENL =

[
4m
3π

α(Zα)4
]

1
N3

{
δL0 ln

2
(Zα)2 − γ(N, L)

}
. (298)

Comparing the shift in terms of MNL Equation (294) to the shift in terms of γ(N, L) we find that
the Bethe log is

γ(N, L) =
∫ φc

0
dφ sinh φ eφ

∫ ∞

0
ds eνs d

ds

(
sinh2 s

2
MNL(s)

)
− δL0ln

1
(Zα)2 (299)

8.1. Generating Function for the Shifts

We can derive a generating function for the shifts for any eigenstate characterized by N and L if
we multiply Equation (291) by N4eβ N and sum over all N, N ≥ L + 1. To simplify the right side of the
resulting equation, we use the fact that the O(2,1) algebra of Γ0, Γ4, and S closes. We can compute the
sum on the right hand side:

∞

∑
N=L+1

e−βN MNL =
∞

∑
N=L+1

(NL|e−j·ψ|NL). (300)

where
e−j·ψ ≡ e−βΓ0 e−sΓn(ξ). (301)
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We perform a j transformation, such that

e−j·ψ → e−j3ψ = e−Γ0ψ (302)

so
∞

∑
N=L+1

e−βN MNL =
∞

∑
N=L+1

(NL|e−j3ψ|NL) =
∞

∑
N=L+1

e−Nψ (303)

=
e−ψ(L+1)

1 − e−ψ . (304)

In order to find a particular MNL, we must expand the right hand side of the equation in powers
of e−β and equate the coefficients to those on the left hand side. First, we need an equation for e−ψ.
This can be obtained using the isomorphism between j and the Pauli σ matrices:

(Γ4, S, Γ0) → (j1, j2, j3) → (
i
2

σ1,
i
2

σ2,
1
2

σ3) (305)

Using the formula

e
i
2 sn·σ = cos

s
2
+ in · σ sin

s
2

(306)

where |n| = 1, we find

cosh
ψ

2
= cosh

β

2
cosh

s
2
+ sinh

β

2
sinh

s
2

cosh φ. (307)

We can rewrite this equation in a form easier for expansion

e+
1
2 ψ = de

1
2 β + be−

1
2 β − e−

1
2 ψ (308)

where
d = cosh s

2 + sinh s
2 cosh φ

b = cosh s
2 − sinh s

2 cosh φ
. (309)

Let β become very large and iterate the equation for e−
1
2 ψ to obtain the result

e−ψ = Ae−β
[
1 + A1e−β + A2e−2β + . . .

]
(310)

where
A = A0 =

1
d2

A1 = −
(

2
d

)(
b − d−1

)
A2 = 3d−2

(
b − d−1

)2
− 2−2

(
b − d−1

)
...

(311)

Note b − d−1 = −d−1 sinh2 s
2 sinh2 φ.

8.2. The Shift between Degenerate Levels

Expressions for the energy shift between degenerate levels with the same value of N may be
obtained directly from the generating function using Equations (294) and (304). We find

∑
N=L+1

e−βN N4 Re ΔENL −
∞

∑
N=L′+1

e−βN N4 Re ΔENL′ =
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4mα(Zα)4

3π

∫ φc

0
dφeφ sinh φ

∫ ∞

0
dseνs d

ds

(
sinh2 s

2
e−ψ(L+1) − e−ψ(L′+1)

1 − e−ψ

)
. (312)

For an example, consider L = 1, L′ = 0. For the shifts between levels we obtain

∞

∑
N=2

e−βN N4 Re (ΔENO − ΔEN1) + Re ΔE10 e−β =

4mα(zα)4

3π

∫ φc

0
dφ eφ sinh φ

∫ ∞

0
dseνs d

ds

(
sinh2 s

2
e−ψ

)
(313)

Substituting Equation (310) for e−ψ, using the coefficient AAN−1 of e−Nβ, gives

Re(ΔEN0 − ΔEN1) =
4mα(Zα)4

3πN4

∫ φc

0
dφeφ sinh φ

∫ ∞

0
dseνs d

ds

(
sinh2 s

2
AAN−1

)
. (314)

where A and AN−1 are given in Equation (311) in terms of the variables of integration s and φ.
General Expression for MNL
Once we have a general expression for MNL, we can use Equation (294) to calculate the shift for any

level ENL. We can obtain expressions for the values of MNL by letting β become large, expanding the
denominator in Equation (304) and equating coefficients of powers of e−β. For large β, we have large
ψ. We have

e−ψ(L+1)

1 − e−ψ =
∞

∑
m=1

e−ψ(m+L)

and for large β it follows from Equation (310) that

∞

∑
N=L+1

e−βN MNL =
∞

∑
m=1

[
e−β A

(
1 + A1e−β + . . .

)]m+L
. (315)

Using the multinomial theorem [124], the right side of the equation becomes

∞

∑
m=1

Am+L ∑
r,s,t,...

(m + L)!
r!s!t! . . .

A1
s At

2 . . . e−β(m+L+s+2t+...). (316)

where r + s + t + ... = m + L.
To obtain the expression for MNL, we note N is the coefficient of β so N = m + L + s + 2t + ... =

r + 2s + 3t + ... Accordingly we find

MNL = ∑
r,s,t,...

A(r+s+t+...) (r + s + t + . . .)!
r!s!t! . . .

As
1 At

2 . . . (317)

where r + 2s + 3t + . . . = N and r + s + t + . . . >L.
By applying this formula, we obtain the results:

N = 1:
M10 = A (318)

N = 2:
M20 = A2 + AA1

M21 = A2 (319)

Shifts for N = 1 and N = 2
To illustrate these results, we can calculate the shift for a given energy level using Equation (294).

For N = 1, we note from Equation (318) that M10 = A, and from Equation (311) that A = 1/d2.
We find that the real part of the radiative shift for the 1S ground state is
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ReΔE10 =
4mα(Zα)4

3π

∫ φc

0
dφeφ sinh φ

∫ ∞

0
dsese−φ d

ds
1(

coth s
2 + cosh φ

)2 (320)

For the shift between two states Equation (314) can be used. For the N = 2 Lamb shift between
2S-2P states, the radiative shift to first order in α is

Re(ΔE20 − ΔE21) =
mα(Zα)4

6π

∫ φc

0
dφeφ sinh3 φ

∫ ∞

0
dse2se−φ d

ds
1(

coth s
2 + cosh φ

)4 (321)

The s integral can be computed in terms of a Jacobi function of the second kind [127].
As one check on our group theoretical methods, we can compare our matrix elements (10|eiSφ|n0)

with those of Huff [45]. To go from Equation (301) to Equation (302), we did a rotation R(φ) = eiφS

generated by S that transformed Γn into Γ0. For N, L = 1, 0 we have

M10 = (10|e−Γns|10) = (10|R(φ)e−Γ0sR−1(φ)|10) =
1

(cosh s
2 + sinh s

2 cosh φ)2 (322)

Expanding the hyperbolic functions, we get

M10 =
4e−s

(1 + cosh φ)2

[
1 − e−s tanh2 s

2

]−2

=
4

(1 + cosh φ)2

∞

∑
n=1

ne−ns
(

tanh2 φ

2

)n−1
. (323)

We can also compute M10 by inserting a complete set of states and using Γ0|n0) = n|n0) in
Equation (322). Because the generator S is a scalar, only states with L = 0, m = 0 can contribute:

M10 = ∑
nlm

e−ns|n(10|R(φ)|n0)|2. (324)

Comparing this to Equation (323), we make the identification

|(10|R(φ)|n0)|2 =
4n

(1 + cosh φ)2

(
tanh2 φ

2

)n−1
. (325)

Huff computes this matrix element by analytically continuing the known O(3) matrix element of
eiJyφ obtaining

|〈10|R(φ)|n0〉|2 =
4n

cosh2 φ − 1

(
tanh2 φ

2

)n
· [2F1(0,−1; n;

1
2
(1 − cosh φ))]2. (326)

By algebraic manipulation and using 2F1 = 1 for the arguments here, we see that this result agrees
with our much more simply expressed result from group theory.

9. Conclusions and Future Research

Measuring and explaining the properties of the hydrogen atom has been central to the
development of modern physics over the last century. One of the most useful and profound
ways to understand its properties is through its symmetries, which we have explored in this paper,
beginning with the symmetry of the Hamiltonian, which reflects the symmetry of the degenerate
levels, then the larger non-invariance and spectrum-generating groups, which include all of the states.
The successes in using symmetry to explore the hydrogen atom led to use of symmetry to understand
and model other physical systems, particularly elementary particles.
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The hydrogen atom will doubtless continue to be one of testing grounds for fundamental
physics. Researchers are exploring the relationship between the hydrogen atom and quantum
information [152], the effect of non-commuting canonical variables [xi, xj] �= 0 on energy
levels [153–155], muonic hydrogen spectra [156], and new physics using Rydberg states [157–162].
The ultra high precision of the measurement of the energy levels has led to new understanding of
low Z two body systems, including muonium, positronium, and tritium [151]. As mentioned in the
introduction, measurements of levels shifts are currently being used to measure the radius of the
proton [2]. We can expect that further investigations of the hydrogen atom and hydrogenlike atoms will
continue to reveal new vistas of physics and that symmetry considerations will play an important part.
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generator A1 rotates Û about the 2–3 plane, etc., thereby changing the orbit with respect to the 4-axis and
changing the eccentricity.

106. Bois, G. Tables of Indefinite Integrals; Dover Pub1ications: New York, NY, USA, 1961; p. 123.
107. Using Equation (44) and [102], Equation (73) may be written as cos−1(U · A/A) = p · r/arc + ωcl t.

This agrees with the time dependent function φ = p · r/arc − ωcl t Equation (70) defined in [97].
108. Brown, L. Forces giving no orbit precession. Am. J. Phys. 1978, 46, 930–931. [CrossRef]
109. Bacry, H. Lectures in Theoretical Physics; Brittin, W.E., Barut, A.O., Guenin, M., Eds.; Gordon and Breach:

New York, NY, USA, 1967.
110. Barut, A. Dynamics of a Broken SUN Symmetry for the Oscillator. Phys. Rev. 1965, 139, B1433. [CrossRef]
111. Boiteux, M. The Three-Dimensional Hydrogen Atom as a Restricted Four-Dimensional Harmonic Oscillator.

Physica 1972, 65, 381–395. [CrossRef]
112. Hughes, J. The harmonic oscillator:values of the SU(3) invariants. J. Phys. A Math. Gen. 1973, 6, 453.

[CrossRef]
113. Chen, A. Hydrogen atom as a four-dimensional oscillator. Phys. Rev. A 1980, 22, 333. [CrossRef]
114. Chen, A. Homomorphism between SO(4,2) and SU(2,2). Phys. Rev. A 1981, 23, 1653. [CrossRef]

180



Symmetry 2020, 12, 1323

115. Kibler, M.; Negadi, T. Connection between the hydrogen atom and the harmonic oscillator: The zero-energy
case. Phys. Rev. A 1984, 29, 2891. [CrossRef]

116. Chen, A.; Kibler, M. Connection between the hydrogen atom and the four-dimensional oscillator. Phys. Rev. A
1985, 31, 3960. [CrossRef]

117. Gerry, C. Coherent states and the Kepler-Coulomb problem. Phys. Rev. A 1986, 33, 6. [CrossRef]
118. Chen, A. Coulomb–Kepler problem and the harmonic oscillator. Am. J. Phys. 1987, 55, 250–252. [CrossRef]
119. Van der Meer, J. The Kepler system as a reduced 4D oscillator. J. Geom. Phys. 2015, 92, 181–193. [CrossRef]
120. Bacry, H. The de Sitter Group L4,1 and the Bound States of the Hydrogen Atom. Nuovo Cimento 1966, 41,

222–234. [CrossRef]
121. Biedenharn, L. Wigner Coefficients for the R4 Group and Some Applications. J. Math. Phys. 1961, 2, 433–441.

[CrossRef]
122. Shiff, L. Quantum Mechanics; McGraw Hill: New York, NY, USA, 1955.
123. Biedenharn, L.; Swamy, N. Remarks on the Relativistic Kepler Problem. II. Approximate Dirac-Coulomb

Hamiltonian Possessing Two Vector Invariants. Phys. Rev. 1964, 133, B1353. [CrossRef]
124. Morse, P.; Feshbach, H. Methods of Theoretical Physics, Vol. 1; McGraw-Hill: New York, NY, USA, 1953.
125. The primes indicates eigenvalues of operators, and unprimed quantities indicate abstract operators.

The quantity x′ means the four-vector (t′,�r′).
126. Morse, P.; Feshbach, H. Methods of Theoretical Physics, Vol. 2; McGraw-Hill: New York, NY, USA, 1953.
127. Erdeli, A. (Ed.) Higher Transcendental Functions, Bateman Manuscript Project; McGraw-Hill Book Co.: New York,

NY, USA, 1953.
128. Makowski, A.; Pepłowski, P. Zero-energy wave packets that follow classical orbits. Phys. Rev. A 2012,

86, 042117. [CrossRef]
129. Bellomo, P.; Stroud, C., Jr. Classical evolution of quantum elliptical orbits. Phys. Rev. A 1999, 59, 2139.

[CrossRef]
130. Berry, M.; Mount, K.E. Semiclassical approximations in wave mechanics. Rep. Prog. Phys. 1972, 35, 315.

[CrossRef]
131. Eberly, J.; Stroud, C. Chapters 14 (Rydberg Atoms) and Chapter 73 (Coherent Transients). In Springer

Handbook of Atomic, Molecular, and Optical Physics; Drake, G., Ed.; Springer Science and Business Media:
New York, NY, USA, 2006.

132. Lakshmanan, M.; Ganesan, K. Rydberg atoms and molecules-Testing grounds for quantum manifestations
of chaos. Curr. Sci. 1995, 68, 38–44.

133. Kay, K. Exact Wave Functions for the Coulomb Problem from Classical Orbits. Phys. Rev. 1999, 25, 5190.
[CrossRef]

134. Lena, C.; Deland, D.; Gay, J. Wave functions of Atomic Elliptic States. Europhys. Lett. 1991, 15, 697. [CrossRef]
135. Bhaumik, D.; Dutta-Roy, B.; Ghosh, G. Classical limit of the hydrogen atom. J. Phys. A Math. Gen. 1986,

19, 1355. [CrossRef]
136. McAnally, D.; Bracken, A. Quasiclassical states of the Coulomb system and SO(4, 2). J. Phys. A Math. Gen.

1990, 23, 2027. [CrossRef]
137. Pitak, A.; Mostowski, J. Classical limit of position and matrix elements for Rydberg atoms. Eur. J. Phys. 2018,

39, 025402. [CrossRef]
138. Nauenberg, M. Quantum wavepackets on Kepler elliptical orbits. Phys. Rev. A 1989, 40l, 1133. [CrossRef]

[PubMed]
139. Brown, L.S. Classical limit of the hydrogen atom. Am. J. Phys. 1973, 41, 525–530. [CrossRef]
140. Leonhardt, U. Measuring the Quantum State of Light; Cambridge University Press: Cambridge, UK, 1997.
141. Barut, A.; Girardello, L. New “coherent” states associated with non-compact groups. Commun. Math. Phys.

1971, 21, 41–55. [CrossRef]
142. Satyanarayana, M. Squeezed coherent states of the hydrogen atom. J. Phys. A Math. Gen. 1986, 19, 1973.

[CrossRef]
143. Liu, Q.; Hu, B. The hydrogen atom’s quantum-to-classical correspondence in Heisenberg’s correspondence

principle. J. Phys. A Math. Gen. 2001, 34, 5713. [CrossRef]
144. Zverev, V.; Rubinstein, B. Dynamical symmetries and well-localized hydrogenic wave packets. Proc. Inst.

Math. Nas Ukr. 2004, 50, 1018.

181



Symmetry 2020, 12, 1323

145. The wave function in momentum space ψ(p) is obtained by multiplying Ynlm by the normalizing factor
(an)3/2

(1−U4)2 , cf Equation (150).
146. Nandi, S.; Shastry, C. Classical limit of the two-dimensional and three-dimensional hydrogen atom. J. Phys.

A Math. Gen. 1989, 22, 1005. [CrossRef]
147. Pauling, L.; Wilson, E.B. Introduction to Quantum Mechanics; McGraw-Hill: New York, NY, USA, 1935; p. 36.
148. Lamb, W.; Retherford, R. Fine Structure of the H Atom, Part I. Phys. Rev. 1950, 79, 549. [CrossRef]
149. Bethe, H.; Salpeter, E. The Quantum Mechanics of One and Two Electron Atoms; Springer: Berlin, Germany, 1957.
150. Milonni, P. The Quantum Vacuum; Academic Press: San Diego, CA, USA, 1994.
151. Eides, M.; Grotch, H.; Shelyuto, V. Theory of Light Hydrogenic Bound States, Springer Tracts in Modern Physics

222; Springer: Berlin, Germany, 2007.
152. Rau, A.; Alber, G. Shared symmetries of the hydrogen atom and the two-bit system. J. Phys. B At. Mol. Opt.

2017, 50, 242001. [CrossRef]
153. Castro, P.; Kullock, R. Physics of the SOp(4) Hydrogen Atom. Theo. Math. Phys. 2015, 185, 1678. [CrossRef]
154. Alavi, A.; Rezaei, N. Dirac equation, hydrogen atom spectrum and the Lamb shift in dynamical

non-commutative spaces. Pramana-J. Phys. 2017, 88, 5. [CrossRef]
155. Gnatenko, K.P.; Krynytskyi, Y.S.; Tkachuk, V.M. Perturbation of the ns levels of the hydrogen atom in

rotationally invariant noncommutative space. Mod. Phys. Lett. 2015, 30, 8. [CrossRef]
156. Haghighat, M.; Khorsandi, M. Hydrogen and muonic hydrogen atomic spectra in non-commutative

space-time. Eur. Phys. J. 2015, 75, 1. [CrossRef]
157. Praxmeyer, L. Hydrogen atom in phase space: The Wigner representation. J. Phys. A Math. Gen. 2006,

39, 14143. [CrossRef]
158. Jones, M.; Potvliege, M.R.; Spannowsky, M. Probing new physics using Rydberg states of atomic hydrogen.

Phys. Rev. Res. 2020, 2, 013244. [CrossRef]
159. Jentschura, U.; Mohr, P. Calculation of hydrogenic Bethe logarithms for Rydberg States. Phys. Rev. A 2002,

72, 012110. [CrossRef]
160. Jentschura, U.; LeBigot, E.; Evers, J.; Mohr, P.; Keitel, C. Relativistic and radiative shifts for Rydberg states.

J. Phys. B At. Mol. Opt. Phys. 2005, 38, S97. [CrossRef]
161. Jentschura, U.; Mohr, P.; Tan, J. Fundamental constants and tests of theory in Rydberg states of one-electron

ions. J. Phys. B At. Mol. Opt. Phys. 2010, 43, 074002. [CrossRef]
162. Cantu, S.H.; Venkatramani, A.V.; Xu, W. Repulsive photons in a quantum nonlinear medium. Nat. Phys. 2020.

[CrossRef]

© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

182



symmetryS S

Article

Symmetries in Teleportation Assisted by N-Channels
under Indefinite Causal Order and Post-Measurement

Carlos Cardoso-Isidoro † and Francisco Delgado *,†

School of Engineering and Sciences, Tecnologico de Monterrey, Atizapan 52926, Mexico; A01750267@itesm.mx
* Correspondence: fdelgado@tec.mx; Tel.: +52-55-5864-5670
† These authors contributed equally to this work.

Received: 10 October 2020; Accepted: 16 November 2020; Published: 20 November 2020

Abstract: Quantum teleportation has had notorious advances in the last decade, being successfully
deployed in the experimental domain. In other terrains, the understanding of indefinite causal
order has demonstrated a valuable enhancement in quantum communication to correct channel
imperfections. In this work, we address the symmetries underlying imperfect teleportation when it
is assisted by indefinite causal order to correct the use of noisy entangled resources. In the strategy
being presented, indefinite causal order introduces a control state to address the causal ordering.
Then, by using post-selection, it fulfills the teleportation enhancement to recover the teleported state
by constructive interference. By analysing primarily sequential teleportation under definite causal
order, we perform a comparison basis for notable outcomes derived from indefinite causal order.
After, the analysis is conducted by increasing the number of teleportation processes, thus suggesting
additional alternatives to exploit the most valuable outcomes in the process by adding weak
measurement as a complementary strategy. Finally, we discuss the current affordability for an
experimental implementation.

Keywords: teleportation; indefinite causal order; weak measurement; quantum algorithm

1. Introduction

Quantum communication has always looked for improvements and new outstanding approaches.
Particularly, it has been shown that certain enhancements in information transmission can be reached
through the superposition of quantum communication channels. That enhancement has shown that
the interference of causal orders using sequential extreme imperfect depolarizing channels surprisingly
produces a transparent quantum channel due to constructive superposition in the components of
the state being transmitted [1]. Since that discovery, a growing interest in indefinite causal order has
emerged boosting a deep study of this topic. Experimental implementations have been proposed in
order to find, to understand, and to control their advantages [2].

1.1. Background of Indefinite Causal Order in Communication

In quantum communication with extremely noisy channels, only limited information can be
transmitted. If we continue applying such quantum channels sequentially, no information becomes
transmitted, obtaining the so-called depolarizing quantum channel. Despite, it has been shown that
when such channels are applied in a superposition of causal orders, we can still transmit information,
and notably, the quality of information transmitted becomes improved while more channels are
applied under this scheme. Concretely for the case of two quantum channels, some works considering
controllable strengths of depolarization have shown that combining a superposition of causal orders,
it is still possible to transmit information (instead of worsening it as it obviously happens for the
simpler sequential case) [1,3]. The success of the causal orders superposition has been experimentally
verified for two channels transmitting information [4].
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Following such a trend in communication, it has been found the possibility to extrapolate the
increasing number of causal orders superposed (with more than two channels) by developing a
combinatoric approach to the problem [5,6]. As a matter of fact, it has been shown that the amount of
information transmitted, in comparison with the two-channel scenario, increases for the three-channels
scenario [5]. Therefore, it has been concluded that the amount of classical information transmitted
becomes higher if the number of causal orders increases.

Some notorious approaches regarding the indefiniteness of causal orders have been explored,
exhibiting the capability to transmit information in a more efficient way. It highlights the importance
to extend this approach on teleportation, as a genuine communication process [7,8].

1.2. Approaches to Teleportation under Causal Order Schemes

Information can be transmitted from one party to another as a quantum state if it is prepared in
combination with an Einstein–Podolsky–Rosen state [9]. Such a quantum communication process is
called quantum teleportation. It plays an important role related to quantum information and quantum
communication. Teleportation algorithm for one single qubit is performed using one entangled
Bell state and one channel for classical communication in order to achieve it [10]. Symmetries
in the conformation of such quantum entangled state automatically transfer a state into another
party if post-measurement is applied. The same algorithm has also been useful to teleport states
of larger systems if they are composed of two-level systems [11]. The teleportation algorithm
has been widely studied and new approaches have been discovered, as well as variants on the
algorithm in order to make it either more efficient in terms of the quantum resources used [12] or
more adaptive to some specific quantum systems [13–15]. Additionally, several successful tests have
been experimentally performed in order to prove the feasibility of teleportation when the distance
increases [16–18]. Tests with larger multidimensional states rather than qubits have been performed
successfully [19]. Recently, a new approach has shown that the assistance of indefinite causal order
in teleportation improves its performance when imperfect entangled resources become involved [7],
which is equivalent to a quantum noisy communication channel.

Teleportation assisted by indefinite causal order and measurement has been introduced in [7]
by pointing out that teleportation is a quantum channel itself (here, entanglement distribution is
assumed to be performed through a transparent communication channel). The last proposal has been
criticized in [20] arguing the entanglement distribution in teleportation is a critical aspect not being
considered there (due to the large distances and communication issues involved). Instead, as in [7],
the most recent work [20] interestingly has analysed the use of indefinite causal order in the form of
a quantum switch for the entanglement distribution process as a part of the teleportation algorithm,
thus making an analysis to quantify the performance gained by such a switch. Nevertheless, nowadays
teleportation has been achieved through kilometers in the free space or through optical fiber, with still
high fidelities [21] without considerable deformation in the entangled resource other than that the
introduced in its imperfect generation. Thus, we believe both approaches are still valuable in the quest
of understanding creative ways to implement indefinite causal order in teleportation. Both approaches
show interesting features in the quantification of indefinite causal order issues applied to teleportation.

In [7], the quantum teleportation uses imperfect singlets showing that despite those noisy
singlets make impossible a faithful teleportation, there is still a stochastic possibility of teleporting
perfectly the state by applying indefinite causal order as the superposition of two teleportation
channels. Such teleportation process has been conducted considering two identical teleportation
channels with the same imperfect entangled resources, but in a superposition of causal orders
through an evenly quantum control system. Finally, the outcome is measured on a specific basis
in order to improve the fidelity of the teleportation process in the best possible way by recovering the
symmetrical composition of the teleported state. Following this analysis and considering the same
two imperfect channels but with an arbitrary initialized quantum control system, it has been also
found the possibility to get again the highest possible transmission by post-selecting the appropriate
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outputs under alternative scenarios [22]: a proper selection of the post-measurement state on the
control system, thus extending the interesting outcomes obtained in [7]. In addition, it has been shown
that for the less noisy cases, the effect becomes still limited [7].

In teleportation, the traditional algorithm [9] is entirely represented as a quantum channel T in
Figure 1a. In order to carry out the teleportation, it is necessary an entangled resource shown as |χ〉.
When this resource is the Bell state |β00〉 = 1√

2
(|00〉+ |11〉), a perfect teleportation is then achieved,

but if such state is imperfect (it can be generally expressed as a mixture of all Bell states), teleportation
process does not work properly. In Figure 1b, an alternative (but still equivalent) circuit is presented
assuming that Bell states measurements could be performed. In such a case, no gates are required, due
to teleportation is just reached due to the non-locality of the entangled resource |β00〉 (or imperfectly,
|χ〉). This fact will be useful at the end of the article for a tentative experimental proposal.

(a) (b)

Figure 1. (a) Traditional teleportation circuit T where |ψ〉 = α |0〉+ β |1〉 and ideally |χ〉 is the Bell
state |β00〉 = 1√

2
(|00〉+ |11〉). Measurements refer to one single qubit measurement and the double

line to classical communication channels. (b) Modified teleportation circuit considering a Bell states
measurement (which are generated by enclosing the gates on (a) within the measurement gadget).

Still, applying a sequence of two imperfect teleportation channels, the outcome worsens. In [7],
it has been shown that for the worst deformed case of |χ〉, the fidelity of single teleportation goes down.
However, if two teleportation channels are used in an indefinite causal order with the superposition
ruled by a quantum control system, surprisingly the previous worst-case arises with fidelity equal
to 1. The analysis has been extended in [22] considering a wider kind of measurements required in
the original approach. In this sense, the use of indefinite causal order improves the teleportation
process. Thus, it is possible to correct this lack of fidelity working with the worst entangled state by
applying indefinite causal order, together, with some appropriate selection in the control used and in
the measurement performed, making possible to reach perfect teleportation.

In the current work, we deal with an extended version of the algorithm presented in [7,22]
by using several sequential channels in order to benchmark the outcomes obtained by increasing
the number of channels [5]. Section 2 develops the case of sequential channels in a definite causal
order as a comparison basis. Section 3 develops the same situation but considering an indefinite
causal order superposition using N channels. Section 4 uses the last formalism with more than two
teleportation channels under indefinite causal order widening the spectrum of analysis. Section 5
revisits the problem but implementing additionally weak measurement proposing an improved
procedure. Finally, Section 6 discusses the affordability of a possible experimental implementation for
two teleportation channels under indefinite causal order using the current experimental developments.
The last section gives the conclusions and future work to extend our findings.

2. Teleportation Algorithm as a Quantum Channel and N-Redundant Teleportation Problem

2.1. Quantum Teleportation as a Quantum Channel

Traditional quantum teleportation algorithm developed originally in [10] has become a central
procedure in quantum information theory. This process uses an entangled resource in the form of
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the Bell state |β00〉 = 1√
2
(|00〉+ |11〉). Experimentally, such an entangled state becomes difficult to

create and to sustain. For this reason, it could arrive imperfect to the process. Thus, considering
a general variation of this resource in the form of the general state |χ〉 = ∑3

i=0
√

pi |βi〉, where |βi〉
is a short notation for the Bell basis |β0〉 = |β00〉, |β1〉 = |β01〉, |β2〉 = |β11〉 and |β3〉 = |β10〉.
The traditional teleportation algorithm running under this resource (instead the perfect case with
p0 = 1 and p1 = p2 = p3 = 0) becomes a quantum channel whose output expression in terms of Kraus
operators is given by [23]:

Λ[ρ] =
3

∑
i=0

piσ̃iρσ̃†
i =

3

∑
i=0

piσiρσi (1)

with σ̃i = σi if i = 0, 1, 3 and σ̃2 = iσ2. ρ = |ψ〉 〈ψ| is the state to teleportate (in the current work we
will restrict the analysis to pure state cases, despite our outcomes can be extended to mixed states [8]).
This formula, regarding teleportation algorithm as a communication channel will be discussed at
the end of the article in terms of possible and current available experimental developments for its
implementation. It means Kraus operators are Ki =

√
piσi. In the terms stated before, we are interested

to assess the corresponding fidelity of the process as function of the pi values under several schemes.
It has the form of a Pauli channel [24] and it has been recently studied to characterize its properties
under indefinite causal order and measurement [8] exhibiting notable properties and symmetries
of communication enhancement as function of the parameters pi. In the current approach, the set
{pi|i = 0, 1, 2, 3} plays an additional role because it is associated with the quantum resource |χ〉.

In the current article, we will use the fidelity to measure the channel performance:

F (ρ, Λ[ρ]) =

[
Tr
(√√

ρΛ[ρ]
√

ρ

)]2
, (2)

because we will restrict to the case when ρ is a pure state ρ = |ψ〉〈ψ|, then
√

ρ = ρ. Those facts still
give the easier formula: F (ρ, Λ[ρ]) = 〈ψ|Λ[ρ]|ψ〉 = Tr(ρΛ[ρ]). Then, in the following, we will express
the fidelity briefly as FΛ ≡ F (ρ, Λ[ρ]).

2.2. N-Redundant Quantum Teleportation

In this section, we will study the effect on the fidelity of imperfect teleportation as it was previously
depicted. For such reason, we first consider a set of identical and redundant N teleportation channels
in a definite causal order as a composition of the depicted channel in (1). In addition, we consider for
the sake of simplicity that each channel is identical to others in the redundant application:

(©NΛ)[ρ] ≡ Λ[Λ[. . . Λ[ρ] . . .]] =
3

∑
i1,...,in=0

pi1 · · · pin σiN · · · σi1 ρσi1 · · · σiN . (3)

If p1 = p2 = p3 ≡ p, with 0 ≤ p ≤ 1
3 for simplicity (to avoid the increasing parameters

involved), we have gotten the expressions for the corresponding fidelity F©N Λ ≡ Tr(ρ(©NΛ)[ρ])

for the first five cases of redundant sequential applications of teleportation (assuming ρ is a pure
state), getting:

F©1Λ = 1 − 2p (4)

F©2Λ = 1 − 4p + 8p2 (5)

F©3Λ = 1 − 6p + 24p2 − 32p3 (6)

F©4Λ = 1 − 8p + 48p2 − 128p3 + 128p4 (7)

F©5Λ = 1 − 10p + 80p2 − 320p3 + 640p4 − 512p5. (8)

186



Symmetry 2020, 12, 1904

Interestingly, those outcomes are independent from the state to teleport (a consequence from the
symmetric simplification p1 = p2 = p3 = p and the algebraic properties of Pauli operators). Such cases
can be computationally developed to get last outcomes (and other for larger cases). Figure 2 exhibits
the behavior of such applications as function of p. The gray zone sets the middle point F©1Λ = 2

3 of
fidelity F©1Λ ∈ [ 1

3 , 1] for the case N = 1 as a reference (as it was remarked in [7]). The single case
N = 1 sets the expected outcome about the effect of p on F©1Λ giving the worst value for p = 1

3 .
For N > 1, the outcome becomes as it could be expected, each application of a new teleportation
worsens the output state teleported. Despite this, there are certain recoveries for p = 1

3 , useful only for
the lowest values of N. A convergent value FN→∞ = 1

2 appears (it corresponds to the behavior of total
depolarization for the channel, ρout ≡ (©NΛ)[ρ] = σ0

2 ). The cases p = 1
4 coincide for all N because

for N = 1 the total depolarized state σ0
2 is obtained, then any further application of the teleportation

cannot worsen the outcome.

Figure 2. Sequential fidelity as function of the number N of channels being applied, and p is the
deformation strength in |χ〉.

3. Quantum Teleportation Assisted by Indefinite Causal Order with N Channels

In this section, we will consider a generalization of some variants of the process under indefinite
causal order as they are presented in [7,22] by considering N channels in a superposition of causal
orders. By applying N channels in a superposition of causal orders, we could have N! combinations
with different orders. Thus, we will need a control state with such number of dimensions (|0〉 sets for
the normal sequential order of gates T1, T2, ..., TN) to rule the application of each causal order:

ρc = (
N!−1

∑
i=0

√
qi|i〉c)(

N!−1

∑
j=0

√
qj〈j|c) =

N!−1

∑
i,j=0

√
qiqj|i〉c〈j|. (9)

For a definite causal order of teleportation channels Ti1 , Ti2 , ..., TiN given by the element πk ∈ ΣN
in the symmetric group of permutations ΣN from the ordered case, it has the effect:

πk =

(
Ti1 Ti2 · · · TiN

Tij1
Tij2

· · · TijN

)
→ πk(Ki1 Ki2 · · · KiN ) = Kij1

Kij2
· · · KijN

, (10)

187



Symmetry 2020, 12, 1904

and symbolically corresponding to the control state |k〉c. Then, the corresponding Kraus operators
Wi1,i2,...,iN are:

Wi1,i2,...,iN =
N!−1

∑
k=0

πk(Ki1 Ki2 ...KiN )⊗ |k〉c〈k|, (11)

where in the following, we will drop the tensor product symbol ⊗ in the sake of simplicity.
Thus, the output for N-channels in superposition is given by:

ΛN [ρ ⊗ ρc] = ∑
i1,i2,...,iN

Wi1,i2,...,iN ρ ⊗ ρc
(
Wi1,i2,...,iN

)† (12)

= ∑
i1,i2,...,iN

(
∑
k

πk
(
Ki1 Ki2 . . . KiN

)
|k〉〈k|

)
ρ ⊗ ρc

(
∑
k′

πk′
(
Ki1 Ki2 . . . KiN

)
|k′〉〈k′ |

)†

= ∑
i1,i2,...,iN

pi1 · · · piN

(
∑
k

πk
(
σi1 · · · σiN

)
|k〉〈k|

)
ρ ⊗ ρc

(
∑
k′

π†
k′
(
σi1 · · · σiN

)
|k′〉〈k′ |

)
(13)

= ∑
i1,i2,...,iN

k,k′

pi1 · · · piN

√
qkqk′ |k〉〈k′ | ⊗ πk

(
σi1 · · · σiN

)
ρπ†

k′
(
σi1 · · · σiN

)
.

Still, we can use the last formula to reach a simpler expression using combinatorics and then
the properties of Pauli operators. In fact, noting that the sum in (14) includes all different values
given to each i1, i2, . . . , iN , after they are permuted as distinguishable objects by πk and πk′ , it can be
transformed into:

3

∑
i1=0

3

∑
i2=0

...
3

∑
iN=0

−→
N

∑
t1=0

N−t1

∑
t2=0

N−t1−t2

∑
t3=0

N′

∑
p=1

, (14)

where tj is the number of scripts in i1, i2, ..., iN equal to j = 0, 1, 2, 3 (t0 = N − t1 − t2 − t3). Sum over
p runs on the distinguishable arrangements obtained with a fix number tj of operators σj departing
from σt0

0 σt1
1 σt2

2 σt3
3 by means of a certain permutation π

k
t1,t2,t3
p

. Then, the permutations among identical

operators in each one of the four types σ0, σ1, σ2, σ3 are indistinguishable. There, N′ = N!
t0!t1!t2!t3! .

In such case, Formula (14) can be written as:

ΛN [ρ ⊗ ρc] = ∑
k

∑
k′

√
qkqk′ |k〉〈k′|

N

∑
t1=0

N−t1

∑
t2=0

N−t1−t2

∑
t3=0

3

∏
j=0

p
tj
j ⊗ (15)

N′

∑
p=1

πk

(
π

k
t1,t2,t3
p

(
σt0

0 σt1
1 σt2

2 σt3
3

))
ρ

(
πk′

(
π

k
t1,t2,t3
p

(
σt0

0 σt1
1 σt2

2 σt3
3

)))†
,

providing an easier formula for ΛN [ρ ⊗ ρc] in terms of a definite number of sums and with the
teleported state separated from the control state. From the properties of Pauli operators algebra, it is
clear that both permutation terms besides ρ in (15) becomes equal until a sign. In addition, each one
becomes in the set {σj|j = 0, 1, 2, 3}. Thus, (15) becomes a mixed state obtained as a linear combination
of syndromes σjρσj, j = 0, 1, 2, 3 and normally entangled with the control state.

Following to [7], then we select an adequate basis to perform a measurement on the control state:
B = {|ψMi 〉|i = 1, 2, ..., N!}. Such a measurement post-selects the original symmetry of the teleported
state mixed with the control and the imperfect entangled state. In such a basis, we hope to find a
privileged state |ψm〉 ∈ B to stochastically maximize the fidelity with probability Pm (assuming ρ is a
pure state). Pm sets the probability of success of the process. If the measurement of control does not
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conduct to |ψm〉, then other undesired teleportation outcome will be obtained. Then, if the desired
outcome is not obtained, we disregard the output state. The fidelity and the success probability are:

FN =
Tr(ρ〈ψm|ΛN [ρ ⊗ ρc] |ψm〉)

Pm
(16)

Pm = Tr(〈ψm|ΛN [ρ ⊗ ρc] |ψm〉). (17)

The process is depicted by Figure 3, where N! causal orders are considered to arrive to the pictorial
representation of a complete superposition of causal orders on the right. Each causal order corresponds
to one definite order in the application of channels Ti ruled by the control state ρc above it.

Figure 3. N! causal order combinations for N identical teleportation channels Ti, i = 1, 2, ..., N finally
conforming a superposition of it. Each one is ruled by the control state above.

4. Analysis of Quantum Teleportation Assisted by the First Indefinite Causal Orders

In the following section, we deal with the analysis for the increasing number of teleportation
channels after to remark some outcomes for the case N = 2 guiding the further analysis.

4.1. Teleportation with N = 2 Teleportation Channels in an Indefinite Causal Order Superposition

For the case N = 2, it has been obtained in [22] that (16) reduces to:

F2 =
∑3

i,j=0 pi pj

(
( 1

2 + (q0 − 1
2 ) cos θ)Tr(ρσiσjρσjσi) +

√
q0q1 sin θ cos φTr(ρσiσjρσiσj)

)
∑3

i,j=0 pi pj

(
( 1

2 + (q0 − 1
2 ) cos θ)Tr(σiσjρσjσi) +

√
q0q1 sin θ cos φTr(σiσjρσiσj)

) , (18)

then, a measurement on the control is made on the basis B = {|ψm〉 = cos θ
2 |0〉+ sin θ

2 eiφ |1〉 ,
∣∣ψ⊥

m
〉
=

sin θ
2 |0〉− cos θ

2 e−iφ |1〉}, being |ψm〉 the supposed state maximizing F2. The corresponding probability
to get that outcome becomes:

Pm =
3

∑
i,j=0

pi pj

(
(

1
2
+ (q0 −

1
2
) cos θ)Tr(σiσjρσjσi) +

√
q0q1 sin θ cos φTr(σiσjρσiσj)

)
. (19)

Last formulas, (18) and (19) become reduced for pure states ρ = |ψ〉 〈ψ| , |ψ〉 = α|0〉+ β|1〉 and
p0 = 1 − 3p, p1 = p2 = p3 = p by considering the identities:

3

∑
i,j=0

pi pjTr(ρσiσjρσjσi) = 1 − 4p + 8p2 (20)

3

∑
i,j=0

pi pjTr(σiσjρσjσi) = 1 (21)

3

∑
i,j=0

pi pjTr(ρσiσjρσiσj) = (1 − 2p)2 (22)
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3

∑
i,j=0

pi pjTr(σiσjρσiσj) = 1 − 12p2. (23)

Note that the combination of the two first formulas gives the sequential case in (5). The other two
terms correspond to the interference terms. First and third formulas can be demonstrated noting that:

ρ =
1
2
(σ0 + n̂ ·�σ) (24)

with : n̂ = (|α|2 − |β|2, αβ∗ + α∗β, i(αβ∗ − α∗β)),

�σ = (σ1, σ2, σ3).

This fact is not exclusive of the case N = 2. Due to the Pauli operators algebra and the regarding
they are traceless (while, Tr(σ0) = 2), introducing (24) in (16) and (17), we note for Pm that only the
terms containing σ0 become different from zero. For FN , only the quadratic terms in σ0 and n̂ ·�σ become
different from zero. For the terms quadratic in n̂ ·�σ, the additional condition pi = pj∀i �= j(i, j �= 0)
is required in order to reduce the terms containing σασβ to the magnitude of n̂, thus removing all
reference of the teleported state.

In [7], it has been demonstrated that for |ψm〉 = |+〉 the worst deformed state |χ〉 with p = 1
3 still

lets a perfect teleportation with probability Pm = 1
3 . In fact, Figure 4 summarizes the findings for the

fidelity considering the two families of measurements with |−〉 (dashed orange lines) and |+〉 (dashed
blue lines). The sequential case with N = 2 is reported as a continuous line black together with the
single teleportation channel N = 1 (continuous red line). Dashed blue and orange lines go folded from
q0 = 0, 1 (two channels in definite causal order) nearest to the two sequential channels case in black to
the outermost lines for q0 = 1

2 (the evenly distributed control state) reaching F = 1 in p = 0, 1
3 (blue

for |ψm〉 = |+〉) and F = 1
3 , ∀p (orange for |ψm〉 = |−〉).

For the case N = 2, [22] has shown that for different values of q0 = 1
2 , other measurements

|ψm〉 = cos θ
2 |0〉+ sin θ

2 eiφ |1〉 are possible in order to achieve F = 1 when p = 1
3 giving φ = 0 and

θ distributed as in the Figure 5 as function of q0. Thus, the best fidelities F2 depend entirely from p
(see the color-scale besides in Figure 5) but the corresponding values of Pm go down far from q0 = 1

2
(θ = π

2 ). The red dotted line is the threshold setting the minimum fidelity reached in the optimal case

for p = 3−
√

3
6 , F2 = 1√

3
[22]. Thus, we conclude that for p = p1 = p2 = p3, the best state for the control

is q0 = 1
2 in order to maximize Pm, despite only for p = 1

3 and p → 0 it is possible to approach F2 → 1.
The last outstanding outcome for p = 1

3 is a consequence of the two-folded interference introduced by
the indefinite causal order together with the post-selection induced by the measurement which filters
only constructive interference among the terms belonging to the original state.
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Figure 4. Fidelity for the case of two channels in indefinite causal order as function of p. The blue
dashed upper line corresponds to |ψm〉 = |+〉 and q0 = 1

2 reaching F = 1 in p = 1
3 .

Figure 5. Condensed outcomes for the case N = 2. The respective probability Pm of measurements are
included as function of q0 and θ in |ψm〉 = cos θ

2 |0〉+ sin θ
2 eiφ |1〉 (φ = 0 in the optimal measurement).

Fidelity depends entirely from p, and Pm goes down while p → 1
3 .

Fidelity (18) can be still analysed for independent values of p1, p2, p3. Figure 6 shows a numerical
analysis to search the best possible fidelity (achieved for certain teleported state) max|ψm〉,q0

(F2) for
all possible |ψm〉 and 0 ≤ q0 ≤ 1. The value of fidelity F2 is represented in color in agreement
with the color-scale bar besides. Figure 6a shows a cut from the entire plot showing the inner core
where fidelity goes down (three parts are symmetric). The higher values of fidelity on the faces
of polyhedron suggest that better solutions can be reached for other cases with unequal values of
pi, i = 1, 2, 3, particularly for the frontal face p0 = 0 completely colored in blue in Figure 6. The case
p1 = p2 = p3 ≡ p falls in the central red dashed division crossing the clearer core reflecting the outcome
in Figure 4, where not good values of F2 are inevitably obtained far from p = 0 and p = 1

3 . In addition,
complementary information for such cases is given by Pm in Figure 6b, the probability to reach the
corresponding higher fidelity in each process assisted by an intermediate optimal measurement on the
control qubit. The plot depicts disperse outcomes barely around of Pm ≈ 0.5. Note that the computer
process to obtain Figure 6a,b requires optimization on lots of parameters, thus requiring a considerable
time of processing. The region (p1, p2, p3) was divided in 107 points to perform such optimization.
After, each point is reported as a colored sphere to fill the space in order to give a representation in

191



Symmetry 2020, 12, 1904

color about the continuity of F2 and Pm. Such an approach gives a certain impression of blurring
in the figures, but they are reported with the best precision available under numerical processing.
Particularly, Figure 6b is a collage of colored dots due to Pm is reported on an average basis, due the
optimization was made on F2 on the left. By performing a numerical statistics of our outcomes for
each Pm, we get an approximation to its statistical distribution ρPm included in the upper inset in
Figure 6b. This distribution shows symmetric behavior around of Pm = 0.5 as it could be expected for
the numerical optimization.

Figure 6. (a) Best fidelity F2 for the two-channels case as function of p1, p2, p3. Each point inside
the polyhedron corresponds to their acceptable values and it is coloured in agreement with its
fidelity value (see the color-scale besides); the cut of polyhedron region exhibits the inner structure;
(b) The corresponding values for measurement probabilities Pm denoting disperse values around 0.5.
The upper inset confirms the statistical distribution ρPm exhibiting symmetry around Pm = 0.5.

4.2. Teleportation with an Increasing Number of Teleportation Channels in an iNdefinite Causal
Order Superposition

Formula (15) exhibits the superposition of terms finally involving the states ρ, σ1ρσ1, σ2ρσ2 and
σ3ρσ3 while they become entangled with the control state ρc. In the next sections, we deal with two
cases of interest for the use of the teleportation algorithm under indefinite causal order.

4.2.1. Case p1 = p2 = p3 ≡ p

First, we will address with the case p = p1 = p2 = p3 widely used in the literature for simplicity.
In [7], it has been suggested that for |ψm〉 having one of the following forms:

|ϕ±
m〉 ≡

1√
N!

N!−1

∑
i=0

(±1)σ(πi)|i〉. (25)

The teleportation fidelity becomes optimal. There, σ is the signature of the parity of each order |i〉.
By considering (15) together with (25) and the control state with qk =

1
N!∀k = 0, 1, ..., N! − 1:

〈ϕ±
m |ΛN [ρ ⊗ ρc] |ϕ±

m〉 = ∑
k

∑
k′

1
N!2

(±1)σ(πk)+σ(πk′ )
N

∑
t1=0

N−t1

∑
t2=0

N−t1−t2

∑
t3=0

3

∏
j=0

p
tj
j · (26)

N′

∑
p=1

πk

(
π

k
t1,t2,t3
p

(
σt0

0 σ
t1
1 σt2

2 σt3
3

))
ρ

(
πk′

(
π

k
t1,t2,t3
p

(
σt0

0 σ
t1
1 σt2

2 σt3
3

)))†
.
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Then, we have developed the Formulas (14) and (16) with |ψm〉 = |ϕ±
m〉 in (25) to get both FN

and PN for N = 2, 3, 4. Those formulas have been plotted (they are not reported here because their
complexity, despite they are included in the Appendix A), the outcomes are shown in Figure 7 showing
that a perfect fidelity FN = 1 for p = 1

3 is achieved when |ϕ±
m〉 meets with the same parity to N

(p is indicated in the color-scale besides). Despite, for p = 1
3 the success probabilities Pm decrease

while N increases. For |ϕ−〉 and N = 4, we get Pm = 0, thus F4 becomes undefined in such a case.
While p ∈ [0, 1

6 ] the best election is the single teleportation channel, for p ∈ [ 1
6 , 1

3 ], the assistance of
the causal order becomes an alternative to enhance the fidelity of teleportation, particularly with
N = 2 channels.

Figure 7. Probability Pm to obtain different values of fidelity FN when the measurement states |ϕ+〉 or
|ϕ−〉 are applied for cases (a) N = 2, (b) N = 3 and (c) N = 4. Color-scale bar depicts the respective
value for p for N = 2, 3, 4.

Figure 8 again compares the fidelity FN versus p for both measurements with the corresponding
sequential case showing the alternated optimization of FN as function of the parity of N and |ϕ±

m〉. Despite,
the outcomes in Figure 6 suggest analysing the behavior of FN for independent values of p1, p2, p3.

Figure 8. Comparison of fidelity obtained when the channels are applied sequentially (blue) and with
indefinite causal order depending on the measurement state |ϕ+

m〉 (red) and |ϕ−
m〉 (green), for the cases

(a) N = 2, (b) N = 3, and (c) N = 4 (in this last case, the fidelity becomes undefined for |ϕ−
m〉).

193



Symmetry 2020, 12, 1904

4.2.2. Case pj � 1, j = 1, 2, 3

In some practical cases, the expected values for the entangled resource |χ〉 vary slightly from
a perfect entangled state: pj � 1 for j = 1, 2, 3. Thus, the outcome described through Formula (15)

becomes in this case (developing to first order for pj, j = 1, 2, 3 the factor ∏3
j=0 p

tj
j there):

ΛN [ρ ⊗ ρc] ≈
[(

1 − N
3

∑
j=1

pj

)
ρ + N

3

∑
j=1

pjσjρσj

]
⊗ ρc ≡ ρout ⊗ ρc. (27)

Note that under this approximation, ρc becomes unaltered and separated from the system
state. Thus, the optimal way to teleport the state implies to measure the control state considering
|ψm〉 = ∑k

√
qk|k〉. In the following, we assume such an optimal measurement made on the

control state.
For the particular case where pj =

1
4N with j = 1, 2, 3, last formula can be written as:

ΛN [ρ ⊗ ρc] ≈
1
2

σ0 ⊗ ρc. (28)

Obtaining the totally depolarized state 1
2 σ0. Notice that it is only applicable for very large values

of N (due to the assumption pj � 1, j = 1, 2, 3). This aspect is advised in the Figure 7 where the fidelity
drops more rapidly to 1

2 when N grows around of p = 0.
In general, the probability and fidelity given in (27) will become respectively (developing to first

order in pj, j = 1, 2, 3):

Pm ≈ Tr[ρout] = 1 (29)

FN ≈ Tr[ρρout]

Pm
= 1 − N

3

∑
j=1

pj(1 − n2
j ) ≡ 1 − Npts

3

∑
j=1

αj(1 − n2
j ) ≡ 1 − NptsΔα1,α2,α3

θ,φ , (30)

where ρ was written as in (24). We are introduced the reduced parameters αj ∈ [0, 1] and the threshold
probability pts � 1 to limit the validity of the current approximation (pj = ptsαj � 1, j = 1, 2, 3).
We note in any case that the increasing of N worsens the fidelity. Note each term in the sum in (30)
is non-negative, thus the fidelity becomes commonly reduced. Because only one of n2

j , j = 1, 2, 3
could be one at the time, then it is necessary in addition that two pj become zero to get FN = 1.
Otherwise, FN < 1 with a notable decreasing if N is large. The outcome in (29) exhibits a combination
of the three error-syndromes σ1ρσ1, σ2ρσ2, σ3ρσ3 reflected through the terms αj(1 − n2

j ) as function of
αj. Thus, for each syndrome σjρσj the best states being teleported are those closer to the eigenstates of
σj, otherwise while several αj �= 0 the teleportation capacity is widely reduced.

Considering ρ = |ψ〉〈ψ| with |ψ〉 = cos θ
2 |0〉 + sin θ

2 eiφ |1〉 on the Bloch sphere: n1 =

sin θ cos φ, n2 = sin θ sin φ, n3 = cos θ. Then, we analyze each syndrome and its impact on the fidelity
through the quantity Δα1,α2,α3

θ,φ . As lower it becomes, higher becomes FN . Figure 9a shows the simple

behavior of Δα1,α2,α3
θ,φ for each state on the Bloch sphere under each syndrome: p1 = 1, p2 = p3 = 0;

p2 = 1, p1 = p3 = 0; and p3 = 1, p1 = p2 = 0 in such order. We have denoted as |0j〉 and |1j〉 to the
eigenstates of σj, j = 1, 2, 3 (or j = x, y, z). Note the behavior commented in the previous paragraph.

Despite, the most interesting issue is centered in the fact that the entanglement resource |χ〉 is
normally unknown but with a tiny variation of |β0〉 through the deformation parameters p1, p2, p3.
By calculating the average and the standard deviation of Δα1,α2,α3

θ,φ on the parameters α1, α2, α3 ∈ [0, 1]:

194



Symmetry 2020, 12, 1904

μΔ
α1,α2,α3
θ,φ

=
∫ 1

0

∫ 1

0

∫ 1

0
Δα1,α2,α3

θ,φ dα1dα2dα3 = 1 → μFN = 1 − Npts (31)

σΔ
α1,α2,α3
θ,φ

=
√

μ
(Δ

α1,α2,α3
θ,φ )2 − (μΔ

α1,α2,α3
θ,φ

)2

=
1

8
√

6

√
53 + sin4(θ) cos(4φ) + 4 cos(2θ) + 7 cos(4θ) ∈ [

1
3

,
1√
6
] (32)

→ σFN = NptsσΔ
α1,α2,α3
θ,φ

. (33)

We note that the average value of fidelity FN = 1 − Npts becomes independent from the state
being teleported. While, the dispersion for Δα1,α2,α3

θ,φ on the values p1, p2, p3 depends from the teleported
state and it becomes lowest for the eigenstates of σ1, σ2, σ3. In fact, the exact result for the case of
N = 1 is precisely (30) with such value in (1): F1 = 1 − ∑3

j=1 pj(1 − n2
j ), thus the values in (33) are

scaled from it by a factor N. The reason is easily noticed, the ρout in (27) obtained by linearization
from (3) coincides with the sequential case (3) under linearization, so both cases exactly meet under
the current limit. It implies that indefinite causal order procedure in teleportation becomes unpractical
in this limit.

Figure 9. Bloch sphere showing under the assumption pj � 1, j = 1, 2, 3 for each state: (a) Δα1,α2,α3
θ,φ

in color obtained for each syndrome in (27), σ1ρσ1, σ2ρσ2, σ3ρσ3 respectively, and (b) the standard
deviation σΔα1,α2,α3

θ,φ
in (33). Red is the best fidelity in (a) and the lower dispersion in (b).

4.3. Notable Behavior on the Frontal Face of Parametric Region: Case p0 = 0

The behavior of F2 on the frontal face (p0 = 0) in Figure 6 can be now better advised in Figure 10.
There, we have calculated numerically (for 105 states covering the frontal face), the best fidelity obtained
using two teleportation channels under indefinite causal order by taking the optimal measurement on
the control state together with the best state able to be teleported. Thus, it represents naively the best
possible scenario.

In the last process, for each |χ〉 on the frontal face, we have additionally taken a sample of 102 sets
of values for q0 ∈ [0, 1] (the initialization value for the control state for N = 2), θ ∈ [0, π], φ ∈ [0, 2π]

for |ψm〉 and θ0 ∈ [0, π], φ0 ∈ [0, 2π] for the teleported state |ψ〉 = cos θ0
2 |0〉 + sin θ0

2 eiφ0 |1〉. Each
value is used as initial condition to find a local maximum for the fidelity F2. Then, those values are
used to predict the global maximum of F2 for each point on the frontal face. Figure 10a shows the
best fidelity on the face together with the statistical distribution of the fidelities on the frontal face
in the upper image of Figure 10c, which suggests that F2 = 1 could be obtained on the face always
(the little dispersion with lower values of F2 ∈ [0.9, 1] are due to the numerical procedure followed).
The same follows for Pm (Figure 10b,c lower) but denoting that such probabilities of success are
centrally distributed around 1

2 (note they are not the best probabilities because the process is centred
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on maximize F2). As in Figure 6, images in Figure 10 appear blurred due to the limited number of
points considered because the time processing.

Figure 10. Optimal fidelity using two teleportation channels in indefinite causal order followed by an
appropriate measurement |ϕm〉. (a) The best fidelity obtained for certain teleported state if optimal
control measurement is obtained, (b) the probability Pm of success for the last process, and (c) the
statistical distribution for F2 and Pm.

Nevertheless, the last fact is in reality a blind strategy. A more critical view of
Formulas (18) and (19) and referring to [22] which numerically suggests that q0 = sin2 θ

2 =
1
2 (1 − cos θ), φ = 0 is related with the optimal case for the case p = p1 = p2 = p3 = 1

3 . In fact,
in such case, last formulas become reduced to:

F2 =
∑3

i,j=0 pi pj
(
Tr(ρσiσjρσjσi) + Tr(ρσiσjρσiσj)

)
∑3

i,j=0 pi pj
(
Tr(σiσjρσjσi) + Tr(σiσjρσiσj)

) (34)

Pm =
sin2 θ

2

3

∑
i,j=0

pi pj
(
Tr(σiσjρσjσi) + Tr(σiσjρσiσj)

)
. (35)

Last formula explains the reason because the case θ = π
2 is optimal for Pm. Moreover, on the

frontal face p0 = 0 (then i, j = 1, 2, 3), then (34) and (35) clearly become (by splitting the cases i = j
from i �= j, noting for the last case σiσj = −σjσi and the fact that we are dealing with pure states):

F2 = 1 (36)

Pm = sin2 θ
3

∑
i=1

p2
i , with :

3

∑
i=1

pi = 1. (37)

Thus, the last conditions make the teleportation optimal not only for p = p1 = p2 = p3 = 1
3 but

also for the entire cases on the frontal face, being independent from the teleported state. Nevertheless,
the probability of success depends entirely from the values of pi (considering only the best case θ = π

2 ).
Figure 11 shows the distribution of Pm on the frontal face (in some cases we will denote this probability
by P ff,{pi}

m,N=2 to state θ = π
2 , p0 = 0 and pi arbitrary but fulfilling p1 + p2 + p3 = 1), which ranges on

[ 1
3 , 1]. In fact, the case p = p1 = p2 = p3 = 1

3 corresponds to the worst case for Pm in the center of the
face. We have constructed the norm on the frontal face to report such distribution. The mean μPm = 1

2
and the standard deviation σPm ≈ 0.13 were calculated using such distribution.

In order to solve the cases for N > 2 by including further teleportation channels under indefinite
causal order, last analysis suggests for arbitrary N that the procurement of an analytical formula
for (15) is in order at least for the case p0 = 0, implying t0 = 0:
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ΛN [ρ ⊗ ρc] = ∑
k

∑
k′

√
qkqk′ |k〉〈k′|

N

∑
t1=0

N−t1

∑
t2=0

3

∏
j=1

p
tj
j ⊗ (38)

N′

∑
p=1

πk

(
π

k
t1,t2,t3
p

(
σt1

1 σt2
2 σt3

3

))
ρ

(
πk′

(
π

k
t1,t2,t3
p

(
σt1

1 σt2
2 σt3

3

)))†

= ∑
k

∑
k′

√
qkqk′ |k〉〈k′|

N

∑
t1=0

N−t1

∑
t2=0

3

∏
j=1

p
tj
j ⊗

N′

∑
p=1

Σk
kp

Σk′
kp

(
σt1

1 σt2
2 σt3

3

)
ρ
(

σ
t1
1 σt2

2 σt3
3

)†
(39)

and t3 = N − t1 − t2. As it was previously mentioned, factors generated by πk and πk′ are equal until
a sign. In addition, they always evolve to σ0, σ1, σ2 or σ3 (easily depending on the parity of t1, t2, t3).
Thus, those factors and their signs state the introduction of syndromes on ρ together with interference
among them and the different orders. Such interference could be manipulated through the parameters
qk, pj.

Figure 11. (a) Values of Pm on p0 = 0 face , and (b) its corresponding statistical distribution ρPm for
two teleportation channels in indefinite causal order.

Even so, this formula is not easy to address in order to get a simpler closed result because
the sign Σk

kp
, Σk′

kp
introduced in the permutation with respect σ

t1
1 σt2

2 σt3
3 cannot be advised easily

(see a parallel analysis in [8]). Nevertheless, we can still to analyse computationally the cases for
the lowest values of N (analytical cases addressed by computer aided methods due to the factorial

increasing number of terms). Thus, formulas for P ff,{p′i}
m,N and F for N larger than two have been

obtained using a computational treatment. The formulas obtained in the analysis are reported in
Appendix B. As in our previous discussion for the case p1 = p2 = p3 = p in the Section 4.2.1, F = 1 is
obtained for all cases on the frontal face if the measurement in the indefinite causal order becomes
|ϕ+

m〉 for N = 2, 4 and |ϕ−
m〉 for N = 3 independently of the teleported state. Again, it is a consequence

of the order interference due to the indefinite causal order together the post-selection induced by
the measurement. For complementary cases using other measurement outcomes, we get F �≡ 1
depending from p1, p2, p3 or still undefined, and additionally depending from the teleported state
(see Appendix B).

5. An Alternative Procedure Introducing Weak Measurement

In spite of the previous outcomes, we guess the indefinite causal order could not work properly
at any point inside of region depicted in the Figure 6. Nevertheless, due to the outcomes in [7] for
the case p = p1 = p2 = p3 and those exhibited in the Figure 6, the teleportation process assisted by
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indefinite causal order (at least for two channels) becomes optimal on p0 = 0 and p0 = 1 (the origin
and the frontal face in Figure 6a). Then, we propose an alternative strategy beginning with a weak
measurement on the entangled resource.

5.1. General Case for N = 2 Assisted by a Weak Measurement

By considering first the following weak measurements on |χ〉, we get the post-measurement states
and their probabilities of occurrence:

P0 = |β0〉〈β0| → |χ0〉 = (P0|χ〉)norm = |β0〉, p̃0 = p0 (40)

P1 = I− P0 → |χ1〉 = (P1|χ〉)norm =
3

∑
i=1

√
pi
p̃1

|βi〉 ≡
3

∑
i=1

√
p′i|βi〉, p̃1 =

3

∑
i=1

pi (41)

which projects the entangled state on one of the two states |χ0〉 or |χ1〉 with probabilities p̃0 or p̃1

respectively. Each state is located on the origin or otherwise on the frontal face of the region in Figure 6.
Then, if |χ0〉 is obtained, the teleportation process can go as in the Figure 1, otherwise, if |χ1〉 is
obtained, we can try the teleportation assisted by indefinite causal order (at this point the reader
could note that clearly, we need two entangled resources). We will come back to discuss the weak
measurement strategy widely in the last section).

The entire process is depicted in the Figure 12, a schematic diagram of the process as it was
originally proposed by [7]. Given certain state to teleport, we use certain entangled resource |χa〉.
It goes through the weak measurement in (40) to get |χa0〉 = |β0〉 with probability p0. Then we
perform a single teleportation. Instead, by obtaining |χa1〉 with probability 1 − p0, then we prepare a
second entangled resource |χb〉 repeating with it the same procedure, if after of the weak measurement
|χb0〉 = |β0〉 is obtained with probability p0, we disregard |χa1〉 proceeding with a single teleportation
using such state. Otherwise, if |χb1〉 is obtained, we perform a two-channel teleportation assisted
by indefinite causal order using the states previously obtained. There, the teleportation will become
successful with probability p′21 + p′22 + p′23, otherwise it becomes unsuccessful and we need disregard
the process. Thus, the global probability of success is (there, P ff

m,N=2 corresponds to (37) with
θ = π

2 , φ = 0, renaming pi as p′i, with p′1 + p′2 + p′3 = 1):

PTot = p0 + (1 − p0)p0 + (1 − p0)
2P ff,{p′i}

m,N=2

= p0 + (1 − p0)p0 + (1 − p0)
2

3

∑
i=1

p′2i = 1 − 2(p1 p2 + p2 p3 + p3 p1) (42)

Figure 12. Schematic teleportation process assisted by weak measurement.

The last function has been represented in the plots of Figure 13. For each initial set (p1, p2, p3) of
the entangled resources (assumed identical), PTot is plotted in color in agreement with the bar besides
in the Figure 13a. One-third of the plot has shown, due to its symmetry, to exhibit its inner structure.
The corresponding statistical distribution is obtained numerically in the Figure 13b by uniformly
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sampling the space in the figure on the left. The mean value of PTot becomes 0.70 and their standard
deviation 0.16.

Figure 13. Distribution of PTot: (a) as function of (p1, p2, p3), and (b) as statistical distribution by itself
obtained numerically from the data of (a).

5.2. Cases for N ≥ 2 Assisted by a Weak Measurement

For N ≥ 2, the procedure follows as in the previous section by introducing N imperfect
entangled resources, |χi〉 (assumed identical for simplicity) but in each step, we decide if after of
the weak measurement, the state |χj0〉 = |β0〉 is used to perform a single teleportation or if we
continue the process of weak measurement N times on identical entangled resources |χj〉 to finally get
|χN1〉 = ∑3

i=1 p′i|βi〉 as in the Figure 12. The corresponding situation is now depicted for the general
case in the Figure 14. In this case, the global probability of success becomes:

PTotN =
N

∑
j=1

p0(1 − p0)
j−1 + (1 − p0)

NP ff,{p′i}
m,N . (43)

Inserting the formulas for P ff,{p′i}
m,N in Appendix B (specialized for the frontal face p0 = 0 and

changing pi by p′i). Then, we can get the outcomes for global probability PTotN for the last cases
with F = 1:

PTot2 = 1 − 2(p1 p2 + p1 p3 + p2 p3) (44)

PTot3 = 1 − (p3
1 + p3

2 + p3
3)− 3(p2

1(p2 + p3) + p2
2(p1 + p3) + p2

3(p1 + p2)) (45)

PTot4 = 1 − 4(p3
1(p2 + p3) + p3

2(p1 + p3) + p3
3(p1 + p2))

−12p1 p2 p3(p1 + p2 + p3)−
16
3
(p2

1 p2
3 + p2

2 p2
3 + p2

1 p2
2). (46)

Now, we can visualize last outcomes for PTot in Figure 15. Again, all the entangled states used for
the teleportation process are assumed to be identical by simplicity. Figures 15a–c depict the probability
PTotN to reach F = 1 in the entire process represented in color. Each color bar shows the entire
range of values for such probabilities on the graphs. According to the color, the blue zone represents
the region where PTot → 1, observing for the case N = 4 a larger blue area, suggesting still the
goodness of increase the number of teleportation channels under indefinite causal order combined
with post-measurement.

Figure 15d depicts a numerical analysis of statistical distribution for the cases N = 2, 3, 4. Note that
for N = 3, all greater values for the probability occur almost evenly. For the case N = 4, it is observed
a larger amount of success probabilities than failure probabilities compared with N = 3. Despite,
μPTot2

≈ 0.702, σPTot2
≈ 0.158 and μPTot4

≈ 0.667, σPTot4
≈ 0.249 (because for N = 2 there are a
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large distribution for medium success probabilities). In any case, the most successful outcomes of
teleportation appears for N = 4.

Figure 14. Schematic teleportation process assisted by indefinite causal order using N-teleportation
channels and weak measurement.

Figure 15. (a–c) values of PTot as function of (p1, p2, p3), for N2, N3 and N4 respectively. (d) Statistical
distribution numerically obtained for PTot2,PTot3 and PTot4.
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6. Experimental Deployment of Teleportation with Indefinite Causal Order

In this section, we comment on some main experimental developments for a possible deployment
of indefinite causal order in teleportation. We begin with the procedure to set the weak measurement
used in Section 5.1. Afterwards, we set some elements and experimental developments to propose the
implementation of the theoretical proposal before presented.

6.1. Implementation of Weak Measurement to Project |χ〉
In Section 5.1, we stated the implementation of a weak measurement to project |χ〉 conveniently

onto |χ0〉 = |β0〉 or |χ1〉 = ∑3
i=1 p′i|βi〉. Despite, in the experimental approach, there are certain

differences due to the resources been used. In this section, we present how to afford the weak
measurement stated in (40). We use an ancilla qubit |0a〉 to do the measurement minimizing the impact
on |χ〉 as is desired. In this implementation, we will use as a central resource the Toffoli gate. In order
to prepare the |χ〉 stated properly for such measurement, we combine it with the ancilla. Then, we send
the combined system into the circuit presented in Figure 16a. This circuit employs the Toffoli gate T1,2,a
on channels 1, 2 for |χ〉 and a for |0a〉 together with the C1Not2 gate (already developed for ions [25,26]
and photons [27]). In fact, it is well-known that Toffoli gate can be performed using CNOT gates and
single-qubit gates [14] o by means of the Sleator–Weinfurter construction [28], despite other more
efficient developments are known for ions [29] and photons [30]. Some single-qubit gates as Hadamard
(H) and Not (X ) are also used. In the following development, we write |χ〉 = ∑3

i=0
√

p∗i |βi〉 as the
imperfect entangled resource (be aware that ∗ not means complex conjugation). Thus, all necessary
quantum gates have been experimentally developed in our days at least in quantum optics.

(a) (b)

Figure 16. (a) Quantum circuit generating the weak measurement on |χ〉, and (b) contour plots for the
map on the region (p1, p2, p3) between those probabilities and (p∗1, p∗2, p∗3).

A direct calculation shows that this circuit performs the following transformation on |ψ0〉 =

|χ〉 ⊗ |0a〉 into:
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|ψ1〉 =
√

p0|β0〉 ⊗ |1a〉+ (
√

p1|β1〉+
√

p2|β2〉+
√

p3|β3〉)⊗ |0a〉 (47)

with :
√

2p0 =
√

p∗0 −
√

p∗3,
√

2p1 =
√

p∗1 −
√

p∗2, (48)√
2p2 =

√
p∗0 +

√
p∗3,

√
2p3 =

√
p∗1 +

√
p∗2

Just before of the projective measurement on the qubit a shown in the Figure 16a. Clearly,
after measurement, two possible outcomes arise in the qubit a, |1a〉, |0a〉 while on qubits 1, 2 the

outcomes are |χ0〉 = |β0〉, |χ1〉 = ∑3
i=1

√
p′i|βi〉 respectively as in the Section 5.1, thus completing

the weak measurement. The only difference with respect our previous development is that those
coefficients are not the original {p∗i }. Despite this, in the event that such coefficients are unknown,
this fact is not important, the really outstanding outcome is that this procedure projects the state into
the perfect Bell state to perform the teleportation |β0〉 or otherwise on the frontal face if this resource is
planned to be used under indefinite causal order and measurement (as it was previously depicted in
the procedure of Section 5.1). Anyway, Figure 16b shows the contour plots of p∗1 (red), p∗2 (green) and
p∗3 (blue) in the region (p1, p2, p3) as a reference of the involved geometric transformations.

6.2. An Insight View about Teleportation Implementing Indefinite Causal Orders Experimentally with Light

Formula (1) regards the teleportation algorithm as a quantum communication channel. Despite
this formula being a useful simplification for the theoretical analysis, it expresses the teleportation
channel with the input and output through the same system, which is not precisely the real
experimental situation. Then, as it was true for the original implementation of the original teleportation
proposal [9] in [31], the deployment should be modified to have a correct approach to the theory.
In this section we discuss an insight view into the experimental deployment together with indefinite
causal order based on current techniques and experimental developments.

A possible implementation with light should to consider an initial state with at least three initial
photons exhibiting each one at least a pair of quantum variables as polarization, frequency or spatial
localization (k-vector state) among others (as in the original experimental teleportation proposal [31]):
|ψ0〉 = |v〉1 ⊗ |v〉a ⊗ |v〉b, using polarization in the vertical direction as instance. Those photons
should then be converted into five photons by splitting the last two into entangled pairs using
Spontaneous Parametric Down Conversion (SPDC) [32] as instance, while the first state is arbitrarily
rotated by a quartz polarization rotator (QPR) [33] -to generate the state to teleportate-: |ψ1〉 =

(α|v〉1 + β|h〉1)⊗ 1√
2
(|v〉2|h〉3 + |h〉2|v〉3)⊗ 1√

2
(|v〉4|h〉5 + |h〉4|v〉5). After, five photons should be sent

together into two alternative directions (through a dichroic beamsplitter—a splitting wavelength
dependent—instead a polarization beamsplitter) coincidentally, not independently (it means five
photons will travel through corresponding paths labeled by pA or pB). This beamsplitter (BS) works as
our control state superposing the two path states (the two causal orders further). Last effect should
be solved based on the frequency of original photons which should be quantum generated to let a
quantum splitting of all beams (or otherwise based on the previous generation of a GHZ state [34]).
This necessary beamsplitter is still a cutting-edge technology. Such spatial quantization introduces
an additional quantum variable thus converting the initial state into (removing the tensor product
symbols for the sake of simplicity):

|ψ2〉 =
1√
8

(
(α|v〉1 + β|h〉1)|pA〉1(|v〉2|h〉3 + |h〉2|v〉3)|pA〉2|pA〉3(|v〉4|h〉5 + |h〉4|v〉5)|pA〉4|pA〉5

+ (α|v〉1 + β|h〉1)|pB〉1(|v〉2|h〉3 + |h〉2|v〉3)|pB〉2|pB〉3(|v〉4|h〉5 + |h〉4|v〉5)|pB〉4|pB〉5

)
(49)

If additionally we introduce certain optical distortion in the SPDC, we get imperfect entangled
states then changing each 1√

2
(|v〉i|h〉j + |h〉i|v〉j) by |χ〉ij. In the following, we will change v, h by 0, 1

respectively for simplicity.
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Note that teleportation is, in a certain sense, automatically generated due to the non-locality of the
resource |β0〉 (or imperfectly by |χ〉), then collapsed on four adequate outcomes involving an additional
correction as a function of those outcomes using classical communication (Figure 1a). In addition,
for two sequential teleportation channels, the process can be achieved by post-measurement at the
end of both processes. Nevertheless, the implementation of indefinite causal order in teleportation
introduces additional challenges due to the connectivity of paths and measurements. In the process,
it will be required the implementation of the SWAP gate, which has already been experimentally
performed in optics [35,36].

Thus, Figure 17 depicts a possible implementation for two teleportation processes assisted by
indefinite causal order. The first photon goes to the QRP and then the five photons go through the
coordinated BS. The proposed process can be then followed in the Figure 17 with paths labeled
by pA in green and pB in red. For simplicity, teleportation processes are assumed to perform
measurements on the Bell states basis as in Figure 1b, thus avoiding the use of H and CNOT gates in
the analysis. Due to the above construction (post-measurement and measurement assumed on the Bell
basis), almost no gates are present in the process, just two SWAP gates stating the causal connections.
At the end of each path, a semi-transparent mirror should mix again the paths (but not the polarization)
by pairs into the basis |±〉i =

1
2 (|pA〉i ± |pB〉i) for each photon i, in order to erase the information of the

path followed. We labeled each path (or the information being carried on it) by Mk
ij (in case that photon

carries the information of one of the complementary systems not containing the output of teleportation)
remarking the path type followed k = A, B,+,−; the final belonging teleportation process i = 1, 2;
and the number of the sequential qubit to be measured there: j = 1 for the former input and j = 2
for the correspondent to the first qubit of the original entangled resource. Instead, the final outputs
are labeled by Sk (k = A, B,+,−). By following the color, the reader should easily identify each path
considering additionally the effect of the intermediate use of SWAP gates which is discussed below.

Figure 17. Diagram for implementation of teleportation with causal ordering as it is discussed in the
text. Photons are split on two different set of paths to superpose the two causal orders of two sequential
teleportation process.

By ignoring first the SWAP gates in the Figure 17, we can realize that the circuit has not any
effect. We have indicated each optical element described before. The dotted line connecting the BS’s
denotes the not independent functioning, all together should send the five photons on the green paths
or on the red ones. States |ψ〉 and |χ〉 are remarked on photons 1 and 2, 3, 4, 5 respectively. Each path
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(green or red) is labeled from 1 to 5 in agreement with the photon carried out. Blue arrow remarks
the group of photons involved in each teleportation process T1 or T2 on each path (the first subscript
in Mk

ij): 1, 2, 3 and 3, 4, 5 respectively for the green paths, and 1, 4, 5 and 5, 2, 3 respectively for the red

ones. On each path, we reported the associated label for each system Sk or Mk
ij as it was depicted

before. Note that brown labels correspond to the information being carried before of SWAP gates,
while black labels are the final states reported there at the end of the path but before of the recombining
in the semi-transparent mirrors. The reason for the SWAP gate between the paths 3 and 5 should
be clear, we need to get the teleportation outputs on the same photon to generate the superposition
of information. The SWAP gate on the red paths 2 and 4 exchanges the information on those paths
in order to generate the superposition at the end among path information M1

ij and M2
i′ j with i �= i′,

j = 1, 2 thus mixing both. Note that the set of states in Mk
ij are those to be measured in the teleportation

process (here in the Bell basis by pairs) in order to correct the output states. The reader should
advise this process does not reproduce exactly that depicted by (1) because such formula assumes
the measurements are internal operations generating a mixed state coming from the corresponding
projections and corrections. In this approach, we have the possibility to measure only four qubits
instead of eight. Despite, we will note this procedure still reproduces some of the main previous
features analyzed. At the end of the process, each semi-transparent mirror (diagonal in grey) mixes the
information on the states |±〉i for each photon i on the red and green edges (with information M±

ij or
S± respectively -red and green-, not represented in the Figure 17). On the red edges, a detector first
decides if the photon exits through them (they are the projective measurement on |ϕ±

m〉 states in our
development). In addition, a Bell measurement is then performed on each pair 1, 3 and 2, 4 in order to
inquire the information codified in the output S+.

A direct but large calculation to expand (49) then applying the SWAP gates and projecting on
|+〉i, i = 1, ..., 5 was performed. Finally, this output was written in terms of |βi〉1,3 ⊗ |β j〉2,4, i, j = 0, ..., 3
to ease the identification of final successful measurements. If p0 = 1 or p0 = 0, upon the measurement
of |βi〉1,3 ⊗ |β j〉2,4 and then the application of σiσj as correction, the output S+ becomes |ψ〉 faithfully
in the following cases:

• If p0 = 1 for all i, j = 0, ..., 3 cases with a global successful probability of 1
16 .

• If p0 = 0 for the cases i = 0, ..., 3 and j = 2 with a global successful probability of (p1−p2+p3)
2

64 .

This clearly resembles our main outcomes. For the second case, other measurement outcomes
give imperfect teleportation thus rearranging the success probabilities with respect of those in our
theoretical development. Thus, alternative experimental proposals should be developed to approach
them into the ideal case considered in our theoretical results.

7. Conclusions

Quantum teleportation has an important role in quantum processing for the transmission of
quantum information, nevertheless, there are possible issues on the entangled resource assisting
the teleportation process mainly related to its maintenance and precise generation. It introduces
imprecision in the teleported state. In this work, the implementation of indefinite causal order has
been studied in order to propose an improved scheme to tackle such imprecision on the entangled
state when it is combined with the measurement of the control assessing it.

The analysis for the redundant case where quantum channels are simply applied sequentially
(assumed as identical) shows that the number N of channels applied, rapidly decreases the fidelity
converging to the maximal depolarization of the teleported state thus obtaining FN→∞ = 1

2 .
By modifying the process under indefinite causal order for two or more teleportation channels as it
was proposed by [7] and later discussed in [22], we advise advantages on the quantum fidelity of
the teleported state for the first values N of sequential teleportation channels. From the outcomes,
a categorization was performed to analyze the effects on the entangled state, thus obtaining a surprising
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enhancement for the most imperfect entangled resource, p0 = 0 with the absence of the ideal
entangled resource |β0〉, and still for near regions of it with p0 ≈ 0 when N increases. Notably,
in the first case, it is possible to obtain a perfect teleportation process with FN = 1. However, when N
increases, the principal downside is the reduction of the probability of successful measurement Pm,
which decreases drastically as N increases.

In order to improve the global probability of success, we have proposed the combined use of
weak measurement to first projecting the entangled resource to either p0 = 1 with p1, p2, p3 = 0
or p1 + p2 + p3 = 1 with p0 = 0, where the indefinite causal order generates the most notable
enhancements. In such cases, F = 1 is obtained always and Pm is improved. Those notable processes
are possible as for pure as for mixed states [8]. A remarkable aspect is that for such a notable case the
outcome is independent of the teleported state.

Finally, a more detailed process for the weak measurement (first barely discussed in the initial
presentation) is after detailed and oriented to the practical implementation in terms of the current
experimental developments for light and matter. The development of a Toffoli gate is advised as
central in the implementation. In addition, an introductory analysis for a possible experimental
implementation has been included for the teleportation process under indefinite causal order using two
teleportation channels. Such an approach is still imperfect and not optimal. Despite this, it reproduces
the main features found in our development. In the proposal, recent experiments and technological
developments in optics become central, particularly the implementation of the SWAP gate and the
generation of |GHZ〉 states. A valuable aspect being noticed is the use of post-measurement in the
teleportation process. Additional theoretical and experimental developments should still improve the
vast possibilities of indefinite causal order in the teleportation research field.
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Appendix A. Formulas for Pm and F for the Case p1 = p2 = p3 = p

Formulas for the fidelity and the success probability as the number of channels in indefinite causal
order increases when p1 = p2 = p3 = p have been obtained. For the case N = 2, when |ψm〉 = |ϕ−

m〉
the outcomes are:

F2 =
1
3

, Pm = 6p2 (A1)

and for the case when |ψm〉 = |ϕ+
m〉, the expressions become:

F2 =
6p2 − 4p + 1

1 − 6p2 , Pm = 1 − 6p2. (A2)

For the case N = 3, when |ψm〉 = |ϕ−
m〉 the outcomes are:

F3 =
1
3
+ 2p, Pm = 2p2 (A3)
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and for the case when |ψm〉 = |ϕ+
m〉, we get:

F3 =
−76p3 + 54p2 − 18p + 3

96p3 − 54p2 + 3
, Pm = 1 − 18p2 + 32p3. (A4)

For the case N = 4, when |ψm〉 = |ϕ−
m〉 we get Pm = 0, thus F4 becomes undefined in such case,

while for the case when |ψm〉 = |ϕ+
m〉, we get the expressions:

F4 =
360p4 − 304p3 + 108p2 − 24p + 3
−408p4 + 384p3 − 108p2 + 3

, Pm = 1 − 36p2 + 128p3 − 136p4. (A5)

Appendix B. Formulas for Pff,{pi}
m,N and F for the Case p0 = 0

In this section, formulas for F and P ff,{pi}
m,N when the entangled state has different values for p1, p2

and p3 (note they are restricted to the frontal face p0 = 0 of the parametric space) and the measurement
of the control state is either |ϕ+

m〉 or |ϕ−
m〉. In those results, the angles θ and φ corresponds to the state

being teleported (|ψ〉 = cos θ
2 |0〉+ sin θ

2 eiφ |1〉), thus meaning a dependence of those values on this
state. For the case N = 2, with the privileged measurement state as |ϕ+

m〉, the expressions become:

F2 = 1 (A6)

P ff,{pi}
m,N=2 = p2

1 + p2
2 + p2

3 (A7)

and with the privileged state as |ϕ−
m〉, the corresponding expressions are:

F2 =
1

2P ff,{pi}
m,N=2

(
2p1 p2(1 + cos 2θ) + p3(p1 + p2)(1 − cos 2θ) (A8)

+ 2p3(p2 − p1) sin2 θ cos 2φ
)

P ff,{pi}
m,N=2 = 2(p1 p2 + p2 p3 + p3 p1). (A9)

For the case N = 3, with the privileged measurement state as |ϕ+
m〉, the outcomes are:

F3 =
1

12P ff,{pi}
m,N=3

(
(3(p3

1 + p3
2 + 2p3

3) + p1(p2
2 + p2

3) + p2(p2
1 + p2

3))(1 − cos 2θ) (A10)

+ 2p3(p2
1 + p2

2)(1 + cos 2θ) + 2(3(p3
1 − p3

2) + p1(p2
2 + p2

3)− p2(p2
1 + p2

3)) sin2 θ cos 2φ
)

P ff,{pi}
m,N=3 = p3

1 + p3
2 + p3

3 +
1
3
(p2

1(p2 + p3) + p2
2(p1 + p3) + p2

3(p1 + p2)) (A11)

while, with the privileged state as |ϕ−
m〉, they become:

F3 = 1 (A12)

P ff,{p′i}
m,N=3 = 6p1 p2 p3. (A13)

Finally, for the case N = 4, with the privileged measurement state as |ϕ+
m〉, then:

F4 = 1 (A14)

P ff,{pi}
m,N=4 = p4

1 + p4
2 + p4

3 +
2
3
(p2

1 p2
2 + p2

1 p2
3 + p2

2 p2
3) (A15)

and if the privileged state is |ϕ−
m〉, then we get P ff,{pi}

m,N=4 = 0, thus F gets undetermined.
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Abstract: A non-Anderson weak localization of an electron beam scattered from disordered matter
is considered with respect to the principle of electron indistinguishability. A weak localization of
electrons of a new type is essentially associated with inelastic processing. The origin of inelasticity
is not essential. We take into account the identity principle for electron beam and electrons of
the atom of the scatterer with an open shell. In spite of isotropic scattering by each individual
scatterer, the electron exchange contribution has a hidden parameters effect on the resulting angular
dependence of the scattering cross-section. In this case, the electrons of the open shell of an atomic
scatterer can be in the s-state, that is, the atomic shell remains spherically symmetric. The methods of
an invariant time-dependent exchange perturbation theory and a Green functions with exchange
were applied. An additional angular dependence of the scattering cross-section appears during the
coherent scattering process. It is shown exactly for the helium scatterer that the role of exchange
effects in the case of a singlet is negligible, while for the triplet state, it is decisive, especially for those
values of the energy of incident electrons when de Broglie’s waves are commensurate with the atomic.

Keywords: identity principle; exchange contribution; new type weak localization; inelastic
coherent scattering

1. Introduction

The phenomenon of weak localization of conduction electrons, which manifests itself in the
enhancement of backscattering of classical waves in disordered media, has attracted scientific interest
in recent decades [1–9]. Weak localization manifests itself mainly in an increase in the probability of
elastic backscattering in a narrow range of solid angles, of the order of λ/l, where λ is the length of an
electron or light wave, and l is the mean free path of electrons and photons. Coherent phenomena
associated with the scattering of external particles (such as electrons or neutrons) with fixed excitation
energies of a disordered medium were studied in [10–13], where weak localization was observed for
electron beams with energies from 10 to 1000 electron volts. Neutron beams were also the subject of
this work [14]. According to these works, coherent phenomena can be observed in the enhancement
of particle backscattering during elastic interaction with a disordered medium, despite the relatively
high energies of the particle beams. The influence of inelastic processes on the conductivity under
conditions of weak localization has been studied in many works [15–18]. In these cases, two basic
assumptions are usually made. First, multiple scattering is represented as forward multiple scattering
and single large-angle scattering [19]. Second, the scattering by each individual diffuser is considered
to be isotropic. It was shown that the role of inelastic processes at weak localization is secondary and
negative, since inelastic collisions violate phase relations, thereby reducing the probability of coherent
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processes. However, there are cases when inelastic processes do not lead to the loss of phase memory
by the system. It was shown for the first time in [20]. In this case, in addition to the usual weak
localization of the Anderson type, there is a weak localization of electrons of a new type or a new weak
localization, which is essentially associated with inelastic processing. Moreover, the origin of inelasticity
is not essential, for example, it can be a plasmon, photon, phonon, or exciton. Moreover, quantum
coherence can exist even if the electron is exposed to an incoherent electromagnetic field. In these
cases, the situation is considered when, in the case of an inelastic interaction, the particle loses a fixed
energy and enters the inelastic channel, having an energy different from the initial value in the incident
beam. In addition to inelastic collision, the particle can still participate in at least one elastic process,
after which it leaves the medium and can be registered. This effect demonstrates itself in the scattering
processes of high-energy electron beams, where electrons velocities are relativistic. The investigation
of the process of the resonant spontaneous bremsstrahlung of ultrarelativistic electrons in the fields
of a nucleus and a weak quasimonochromatic electromagnetic wave was done in [21,22]. There is a
coherent scattering process of photons with inelastic interaction with ultrarelativistics electrons. In this
case, a characteristic angular dependence with a frequency shift appears for photons. The process has
been studied in a special kinematic region, where stimulated processes with correlated emission and
absorption of photons of the first and second waves predominate (the effect of parametric interference).
It is interesting that the described effect of a new type of weak localization for photons does not depend
on the type of inelasticity, the creation of an electron-positron, or something else. The amount of energy
loss is important. In this interference kinematics, correspondence is established between the emission
angle and the energy of the final electron.

There are two ways to implement this process, so it can start or end with an inelastic collision.
The interference of electron waves associated with these additional processes turns out to be
constructive [23]. This manifests itself in an increase in the scattering of electrons at an angle
other than π, and this difference can be significant. There are certain differences in the localization
of electrons for different mechanisms of inelastic scattering, but it turns out that the general features
of this phenomenon prevail. The most striking difference between localization of a new type in
the case of inelastic scattering from ordinary weak localization is the difference in the characteristic
scattering angles. The scattering probability here is maximal in the range of scattering angles close
to π/2, and the effect manifests itself in a much wider range of angles than in the case of traditional
localization, in which the beam enhancement is observed in forward or backward scattering at an angle
of π. As already mentioned, the main difference between conventional and new weak localization
is the typical electron scattering angle. The angular distribution of particles and radiation in the
case of ordinary weak localization in a disordered medium is usually described using the maximum
cross (or so-called “fan”) diagrams, which are used to calculate the electron radiation cross-section.
Regular weak localization, in particular, can be described by a simple graphical method [24,25],
which gives an idea of this phenomenon and explains why the angle pi is specific for regular weak
localization. This method takes into account that an electron with momentum k is scattered through
two complementary series of intermediate scattering states k→ k1 → k2 → . . .→ kn−1 → kn = −k and
k→ k′1 = −kn−1 → k′2 = −kn−2 → . . .→ k′n−1 = −k1 → kn = −k to the state −k. Momentum changes:
q1, q2, . . . qn−1, qn for the first scattering chain and qn, qn−1, . . . q2, q1 for the second. The amplitudes in
the final state −k are the same, and add up, and the waves in the forward and reverse directions are
superimposed on each other constructively, reinforcing each other. This is due to the fact that the
complementary scattering processes have the same changes in momentum, both in a straight line and
in the opposite sequence. An explanation of why the coherent enhancement of electron scattering in the
inelastic scattering channel occurs at angles other than π is proposed in [25]. A simple kinematic model
is used to determine the basic properties of weak localization of electrons in the inelastic scattering
channel. It easily reproduces the range of scattering angles characteristic of weak localization of
electrons with energy loss. The results are consistent with the results based on the dynamic theory
associated with the calculation of crossed and ladder diagrams. It is possible to trace the transition
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from a new type of weak localization to the usual weak localization with a decrease in energy losses.
The new type of weak localization is consistent with regular weak localization if the energy losses are
approximately equal to zero.

The range of angles in the elastic channel is of the order of λ/l, and in the inelastic channel is of
the order γ/ω = (λ/l)(E/�ω), where γ is the electron collision frequency, E is its energy, and �ω is the
energy transferred to the medium. It is assumed that the energy of an electron incident on the medium
is high enough to excite plasmons or atoms. However, this energy should not be too large so that the
de Broglie wavelength of electrons was less but remained comparable to the distance between the
centers of scattering, so that constructive interference of waves of scattered electrons inside condensed
media could exist. The corresponding energy values for electron beams are in the range from hundreds
of eV to keV. Moreover, the above statements remain valid both for the case of a small number of
elastic collisions, and for a sufficiently large number; the main thing in this case is only one inelastic
collision [23]. The main reason for the difficulty of fixing the indicated effect in a solid is that the
very phenomenon of the new weak localization and all possible measurable parameters have been
considered and calculated for an infinite three-dimensional medium, while the role of surface effects at
a boundary of a condensed medium is large.

Taking into account the principle of indistinguishability of electrons in a beam and a medium,
as was shown for a neutral atomic medium [26], but also takes place in a solid, this shifts the scattering
enhancement to the parameters of an ordinary weak localization. As it is shown in [26], the scattering
intensity includes the electron exchange terms varying directly as cosχ, where χ is a scattering angle.
The expression for intensity contains two main terms, the first one is specific for the new weak
localization, and the exchange interaction here contributes as an increasing pre-factor. The second term
is entirely produced by electron exchange and is proportional to cosχ. Despite the obtained interesting
exchange effect in a new type of weak localization for hydrogen scatterers, there was no systematic
method allowing the principle of indistinguishability and permutation symmetry to be taken into
account when describing scattering processes in the general case. The exchange effect considered
in [24] is a good example of the importance of developing a general formalism that makes it possible to
take into account the permutation symmetry of a many-electron system in the scattering problem in
general and for weak localization, in particular.

In the presented work, we discuss how exchange affects the scattering of electrons in a disordered
medium in a general case. We will take into account the identity of the incident electrons and electrons
belonging to multielectron scatterer atoms. An invariant exchange perturbation theory method [27,28]
is applied for the development of the cross-section for the weak localization scattering process while
taking into account exchange effects. It is shown that, in spite of isotropic scattering by each individual
scatterer, the number of electrons and their spin state in the open shell of the atom radically affect
the resulting angular dependence of the scattering cross-section of incident electrons. In this case,
the electrons themselves of the open shell of the scattering atom can be in the s-state, that is, the shell
of the atom remains spherically symmetric. An additional angular dependence of the scattering
cross-section appears, which is proportional to cosχ and does not depend on the number and state of
the spin of electrons with an open or closed shell. The main difference, depending on the number of
electrons and their spin states, is the coefficient in front of cosχ.

2. Probability of Plasmon Emission with Atom Excitation and Electron Exchange

We consider the interaction of electrons with a medium, accompanying the excitation of atoms
when electrons are scattered by them, by the same way as in [20] by using the interaction operator in
the form of the sum of two contributions:

V = Vat + Vpl, (1)
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where the operator Vat describes electron interaction with atoms of medium, numbered by indexes l:

Vat =
∑

l
V(r−Rl), (2)

and Vpl describes the interaction of the moving electron with the electric polarization field of the
medium electrons, which arises under this action. Then, let the process of inelastic scattering of an
electron be associated with the loss of energy on the plasmon:

Vpl =

∫
drρ̂(r)φ̂(r), (3)

where φ̂(r) is the operator of the electric field potential due to plasma oscillation and ρ̂(r) is the charge
density operator.

The initial state of the system corresponding to an incident electron and an atom of the medium
(for example, a Zi-Ni alloy doped with Ca, Mg, or hydrogen or He) is described by the wave vector∣∣∣n, p

〉
, antisymmetric taking into account the electronic permutations between the atom and the incident

electron. Here, n is the set of quantum numbers of atoms in the initial state, and p is the momentum of
the incident electron. Regarding the exchange perturbation theory method [27,28], the final state of the
whole system can be described by the non-symmetric wave function

∣∣∣m, p−Q) = |m〉 ·
∣∣∣p−Q

〉
, which is

a simple product of the atomic function |m〉, antisymmetrized with internal electron permutations, and a
free electron function

∣∣∣p−Q
〉

, where Q is the total momentum transferred to the medium. It should be
underlined that the operator (2) describing electron interaction with atoms has a non-symmetric form
regarding the interatomic electron permutations (the exchange of numbered atomic electrons with the
free electron of incident): [

ÂVat
]
� 0, (4)

where Â is the antisymmetrization operator [27,28]. Acting on a non-symmetric wave function, operator
Â performs antisymmetrization:

∣∣∣n, p
〉
= Â

∣∣∣n, p
)
=

1
fnp

∑
ν
(−1)gν

∣∣∣n, p
)
ν
, (5)

where gν is the parity of the ν − th permutation, (n, p
∣∣∣n, p

〉
= 1, fnp =

∑
ν(−1)gν(n, p

∣∣∣n, p
)
ν

are the

normalization condition and a normalization factor,
∣∣∣n, p) = |n〉 ·

∣∣∣p〉 ≡ ∣∣∣n, p) 0 is the wave vector of
the zeroth permutation with the initial arrangement of the electrons, and the subindex shows that
the number of the permutation is ν = 0. Here, we deal with the antisymmetric non-orthogonal
basis, while 0 < (m, p ′

∣∣∣n, p
〉
< 1, is the same as for 0 <

〈
m, p′

∣∣∣n, p
〉
< 1, but this set meet a

completeness property: ∑
n,p

∣∣∣n, p
〉 fnp

N

(
n, p

∣∣∣ = 1̂, (6)

where N is the total number of electron permutations. The proof of completeness property (6) is
described in detail in Appendix A. Generally speaking, both the “zero” Hamiltonian Ĥ0 describing a
multicentre many-electron system without interatomic interaction, and the perturbation operator V̂
describing this interatomic interaction are not invariant to the operation of antisymmetrization, taking
into account the rearrangement of electrons between the two subsystems: [ÂĤ0]� 0,[ÂV] � 0. At the
same time, the complete Hamiltonian of the system Ĥ = Ĥ0 + V̂ retains its invariance:

[
ÂĤ

]
= 0.

This discrepancy means a serious problem related to the fact that the zero-order wave function,
antisymmetrized with respect to center-to-center electron permutations, is not an eigenfunction of
the non-invariant Hamiltonian Ĥ0 [27], and the corrections are obtained by applying an asymmetric
operator of interactions containing non-physical contributions. In [27,28], a special symmetric form of
the perturbation operator and zeroth Hamiltonian were developed. It allows corrections of the wave
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functions, properly antisymmetrised, and the energy corrections to be obtained by using the correct
antisymmetric basis of the wavefunctions:

Ĥ0 =

(
ν=N∑
ν=0

H0
νΛν

)
=

N∑
ν=0

H0
ν
∑
n

∣∣∣n,p)ν( p,n|ν
fnp

,

V̂at =
(∑ν=N
ν=0 VνΛν

)
=

∑N
ν=0 Vν

∑
n

∣∣∣n,p)ν( p,n|ν
fnp

,

where Λν denotes a projector onto an asymmetric state, corresponding to the ν − th permutation

Λν =
∑

n

∣∣∣n,p)ν( p,n|ν
f N
n

, and Λν
∣∣∣n, p

〉
= (−1)gν

∣∣∣n, p) , and N, as mentioned before, is the total number of

permutations. In this case, the Hamiltonian Ĥ0 describing a system without the interaction of two
subsystems has an eigenvector, which has an antisymmetric form taking into account the electronic
permutations between these subsystems:

Ĥ0
∣∣∣n, p

〉
=

(
En + p2/2m

)∣∣∣n, p
〉
. (7)

In our case, the second term of the perturbation operator (1) Vpl has a symmetric form with
respect to the permutations of electrons. It is important to emphasize that after obtaining all the
corrections to the energy and the wave vector in all orders of the perturbation theory in the general
formalism, all matrix elements containing the complex symmetric form (6) of the perturbation operator
can be analytically reduced to a simple form. This is a symmetry-adapted form that includes the
usual asymmetric perturbation operator corresponding to the initial zero permutation of electrons.
Such a form is more convenient for practical applications. We transform all matrix elements in the
following way:

(k, p′
∣∣∣V̂∣∣∣n, p

〉
= (k, p′

∣∣∣ N∑
ν=0

VνΛν
∣∣∣n, p

〉
= (k, p′

∣∣∣ N∑
ν=0

(−1)gν

fnp
Vν|n, p)ν =

N∑
ν=0

(−1)gν

fkp
(k, p′

∣∣∣
ν
Vp=0|n, p)ν=0 =

fnp
fkp

k, p′|Vν=0|n, p).
(8)

The probability of a transition of the system in unit time from one state to another with transfer of
momentum Q from the incident electron to the medium and with transition of the medium from state
n to state m has the form obtained in [27,28], taking into account electron exchange

wmn,Q =
2π
�
δ
(
En − Em + Ep − Ep−Q

)∣∣∣〈m, p−Q
∣∣∣T̂∣∣∣n, p)

∣∣∣2, (9)

where operator T̂ is the operator of transition on the energy surface [27–29], the general operator
equation for which with taking into account electron permutations between subsystems is:

T̂ = VN + VN(Ei −H0 + iη)−1
(

f̂
N

)−1
T̂,

VN = V
(

f̂
N

)
, ____ f̂

∣∣∣n, p
〉
= fnp

∣∣∣n, p
〉
,

(10)

where η is the relaxation frequency in the general case. We rewrite it as a series:

T̂ = VN + VN(Ei −H0 + iη)−1
(

f̂
N

)−1
VN+

VN

(
Ei −H0

p=0 + iη
)−1( f̂

N

)−1
VN

(
Ei −H0

p=0 + iη
)−1( f̂

N

)−1
VN + . . .

(11)
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In the matrix element
〈
m, p−Q

∣∣∣T̂∣∣∣n, p) in Equation (9), the bra-vector has an antisymmetric form
with respect to electronic permutations, and the ket-vector has a simple non-symmetric form. Then,
a transition amplitude will be:

〈
m, p−Q

∣∣∣T̂∣∣∣n, p) =
〈
m, p−Q

∣∣∣(Vat + Vpl)
N
∣∣∣n, p) +

〈
m, p−Q

∣∣∣(Vat + Vpl)
NĜN

0 (Vat + Vpl)
N
∣∣∣n, p)+〈

m, p−Q
∣∣∣(Vat + Vpl)

NĜN

0 (Vat + Vpl)
NĜN

0 (Vat + Vpl)
N
∣∣∣n, p) + . . . =

〈
m, p−Q

∣∣∣(Vpl)
NĜN

a (Vat)
N
∣∣∣n, p)+〈

m, p−Q
∣∣∣(Vat)

NĜN
a (Vpl)

N
∣∣∣n, p) +

〈
m, p−Q

∣∣∣(Vat)
NĜN

a (Vat)
N
∣∣∣n, p) . . . ,

(12)

where we denote the normalized (indexed N) resolvent operator ĜN

0 (or the Green’s function for
the coordinate representation) and the operator equation taking into account an antisymmetric
nonorthogonal basis:

ĜN

0 = (Ei −H0 + iη)−1
(

f̂
N

)−1

ĜN
a = ĜN

0 + ĜN

0 VN

atĜ
N
a .

(13)

Since the plasmon excitation is small, we can consider this process in the Born approximation.
We do not fix our attention on the features of plasmon excitation in different situations, as it was done
in detail in [22,30], where the excitation and propagation of bulk and surface plasma waves by incident
electrons were analyzed. The motion of electrons was considered both in vacuum when approaching
the surface of the metal, and inside the metal, the boundary of which elastically and specularly reflected
the internal nonequilibrium electrons. The effect of electron boundary scattering parameters on the
structure of bulk and surface plasmon resonances was analyzed in [31]. The probability of transition
radiation of bulk plasmon by an electron moving in vacuum was examined.

We leave only the first two terms in Equation (12), where the scattering process begins or ends
with plasmon excitation, and omit all other terms where the inelastic process with a plasmon occurs
between the processes of elastic scattering by atoms. This is because we are not interested in small-angle
scattering by the medium as a whole. The mentioned two terms we shall write out in the form:

〈
m, p−Q

∣∣∣T̂∣∣∣∣Ψ+
p

)
=

{〈
m, p−Q

∣∣∣(Vpl

)∣∣∣m, p−Q + q)
[〈

m, p−Q + q
∣∣∣δQq

∣∣∣n, p) +
〈
m, p−Q + q

∣∣∣Ĝa(Vat)
N
∣∣∣n, p)

]
+[〈

m, p−Q
∣∣∣(Vat)

NĜa
∣∣∣n, p− q) +

〈
m, p−Q

∣∣∣δQq
∣∣∣n, p− q)

]〈
n, p− q

∣∣∣Vpl
∣∣∣n, p)

}
=〈

m, p− q
∣∣∣n, p− q)

〈
n, p− q

∣∣∣Vpl
∣∣∣n, p)+

〈
m, p− q

∣∣∣Vpl
∣∣∣m, p)

〈
m, p

∣∣∣n, p)+{〈
m, p−Q

∣∣∣(Vpl

)∣∣∣m, p−Q + q)
〈
m, p−Q + q

∣∣∣Ĝa(Vat)
N
∣∣∣n, p) +

〈
m, p−Q

∣∣∣(Vat)
NĜa

∣∣∣n, p− q)
〈
n, p− q

∣∣∣Vpl
∣∣∣n, p)

}
,

(14)

where the first two matrix elements describe the process of plasmon excitation without atomic scattering.
However, the exchange coefficients:

Smnp−q =
〈
m, p− q

∣∣∣n, p− q) and Smnp =
〈
m, p

∣∣∣n, p), (15)

mean the exchange density due to the entanglement of electronic states. The third term of Equation (14)
corresponds to a process that begins with scattering by atoms and ends with excitation of plasmons.
The fourth term corresponds to the process in which the events occur in the opposite order. Since we
are not interested in small-angle scattering by the medium as a whole, as mentioned earlier, we can
omit the first two terms.

Dividing the result of Equation (9) by the flux density of incident particles ( jp = �kp/me, where kp

is the wavevector of the relative movement of the incident electrons and me is their mass), we obtain an
expression for the cross-section of scattering events and reactions. Then, we multiply this expression
for the cross-section by the number of final states in the volume per unit energy interval for scattering

along the unit vector n f into a solid angle element dΩ, dρ
(
E f

)
=

mk f

(2π)3
�2

dΩ, because the final state is
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within the continuous spectrum. Then, for the differential cross-section summed over the final states of
the medium, it has the form:

dσ f i =
m2

e k f

(2π�2)2kp

∣∣∣∣〈m, p−Q
∣∣∣T̂∣∣∣∣Ψ+

n,p

) ∣∣∣∣2dΩd(�ω)→
(

me
2�2

)3/2 (p2−2me�ω)
1/2

2π2p

∑
q

∣∣∣∣∣
〈

m, p−Q
∣∣∣T̂∣∣∣∣Ψ+

n,p

) ∣∣∣∣∣
2
dΩQdω.

(16)

For electrons, we take into account the disorder of the medium, and for the plasmon electric field,
we assume that the medium is completely homogeneous. Therefore, we can assume that the matrix
elements in Equation (14) are approximately equal to each other:

〈
n, p− q

∣∣∣Vpl
∣∣∣n, p) ≈ 〈

m, p− q
∣∣∣Vpl

∣∣∣m, p) ≈ 〈
m, p−Q

∣∣∣(Vpl

)∣∣∣m, p−Q + q)

and the exchange coefficients Smnp−q and Smnp have the same order and are proportional to 1

[1+(p/�)2a2
B]

2 =

1[
1+(aB/lp)

2
]2 , then we can rewrite Equation (16) in the form:

dσ f i =
(

me
2�2

)3/2 (p2−2me�ω)
1/2

2π2p ×
∑

q

∣∣∣∣∣〈m, p−Q
∣∣∣(Vpl

)∣∣∣m, p−Q + q)
〈
m, p−Q + q

∣∣∣Ĝa(Vat)
N
∣∣∣n, p) +

〈
m, p−Q

∣∣∣(Vat)
NĜa

∣∣∣∣n, p− q)
〈
n, p− q

∣∣∣Vpl
∣∣∣n, p)

∣∣∣∣∣
2
dΩQdω,

(17)

which is illustrated in Figure 1 by the set of so-called fan diagrams determining the effect of new angle
dependence of the effective cross-section.

Figure 1. Crossed diagrams correspond to two, three, and so on, scattering events. The wavy line
corresponds to the inelastic scattering process with plasmon excitation. Dotted lines link the same atom.
(a) The processes, beginning from the elastic scattering events and ending by the inelastic, (b) processes
ranging from inelastic scattering to a series of elastic scattering by atoms.

As usual, in the diagrams that match Equation (17), we will use the dotted line to connect two
vertices belonging to the same atom. The lower parts of the diagrams correspond to the analytic
expression, which is the complex conjugation of the expression equivalent to the upper parts. The wavy
line corresponds to the plasmon. The set of ladder diagrams, correspondent to the terms contributed
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to the cross-section (17), are independent of the electron-scattering angle. The relation of the crossed
diagram contributions and ladder diagrams determine a so-called coherency degree [25]:

dσ f i
dΩQ

=
(

me
2�2

)3/2 (p2−2me�ω)
1/2

2π2p ×
∑
q

wmnQ

∣∣∣∣〈m, p−Q + q
∣∣∣Ĝa(Vat)

N
∣∣∣n, p) +

〈
m, p−Q

∣∣∣(Vat)
NĜa

∣∣∣n, p− q)
∣∣∣∣2dω

where,

wmnQ =
∣∣∣〈m, p− q

∣∣∣n, p− q)
〈
n, p− q

∣∣∣Vpl
∣∣∣n, p)

∣∣∣2 ∼∣∣∣〈m, p− q
∣∣∣Vpl

∣∣∣m, p)
〈
m, p

∣∣∣n, p)
∣∣∣2 ∼

∣∣∣∣∣〈m, p−Q
∣∣∣(Vpl

)∣∣∣m, p−Q + q)
∣∣∣∣∣
2
.

(18)

Neglecting exchange effects, in the resulting expression (17), both bra- and ket- vectors become
non symmetric, and we obtain the well-known result obtained in [25–27]. In contrast to the usual
weak localization, one of the crossed lines in the new type of weak localization corresponds to
inelastic scattering, while the others correspond to elastic interaction with randomly distributed power
centers. According to formula (18), crossed diagrams together with the corresponding ladder diagrams
contribute to the scattering probability factor �(ω,χ) [20]:

∫
dΩQ

∑
q

wmnQ(q,�ω)
∣∣∣∣〈m, p−Q + q

∣∣∣Ĝa(Vat)
N
∣∣∣n, p) +

〈
m, p−Q

∣∣∣(Vat)
NĜa

∣∣∣n, p− q)
∣∣∣∣2dω→

∑
q

wmnQ(q,�ω)dω
∣∣∣m, p−Q + qVat

∣∣∣n, p)
∣∣∣2×

∫
dΩQ

∣∣∣p−Q + qĜa p−Q + q) +
∣∣∣m, p−QĜa m, p−Q)

∣∣∣2dω,

�(ω,χ) = �2

(2π�)3

∫ ∞
0 qdqwmn(q,�ω)

∫ ∣∣∣∣G(
p−Q + q, Ep

)
+ G

(
p− q, Ep − �ω

)∣∣∣∣2dΩQ.

(19)

It was shown in [24–26] that the angular dependence characteristic of a new weak localization
arises due to the term in the integrand, which describes the contribution of the interference of two
electron waves propagating along the same path in opposite directions:

G∗
(
p−Q + q, Ep

)
G
(
p− q, Ep − �ω

)
+ G

(
p−Q + q, Ep

)
G∗

(
p− q, Ep − �ω

)
=

1
Ep−Ep−Q+q+iγ · 1

Ep−Ep−q−�ω−iγ +
1

Ep−Ep−Q+q−iγ · 1
Ep−Ep−q−�ω+iγ ,

(20)

where γ is the electron collision frequency.
This means that weak localization occurs due to such collisions of electrons in which each

subsequent scattering begins earlier than the end of the previous one. Thus, a new weak localization is
realized when two conditions are met simultaneously:

{ ∣∣∣Ep − Ep−Q+q = 0,∣∣∣Ep − Ep−q − �ω = 0
. (21)

If we denote p′ = p−Q, then a simple kinematic approach explains the range of the scattering
angle χ = cos−1 p·p′

p·p′ typical for the new type of weak localization:

cosχ = −p2 + p′2
2pp′ +

2(m�ω)2

pp′q2 , . (22)

For more details, [24,25], where it is explained why the ang1es typical of the new type of weak
localization differ from π, and by using the simple kinematic approach, these angles can be estimated
very accurately.
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Considering Equation (18) taking into account the exchange contributions, we can write the
following:

σ f i(χ,ω) =
(

me
2�2

)3/2 (p2−2me�ω)
1/2

2π2p ×∫
dΩQ

∑
q

wmnQ(q,�ω)
∣∣∣∣〈m, p−Q + q

∣∣∣Ĝa(Vat)
N
∣∣∣n, p) +

〈
m, p−Q

∣∣∣(Vat)
NĜa

∣∣∣n, p− q)
∣∣∣∣2 =

(
me
2�2

)3/2 (p2−2me�ω)
1/2

2π2p

∑
q

wmnQ(q,�ω)
∣∣∣∣〈m, p−Q + q

∣∣∣(Vat)
N
∣∣∣n, p)

∣∣∣∣2×∫
dΩQ

∣∣∣〈m, p−Q + q
∣∣∣Ĝa

∣∣∣m, p−Q + q) +
〈
n, p− q

∣∣∣Ĝa
∣∣∣n, p− q)

∣∣∣2.

(23)

In the case of an antisymmetric basis, the calculation of matrix elements
〈
n, p− q

∣∣∣Ĝa
∣∣∣n, p− q)

requires additional comments. Instead of the resolvent operator Ĝa, we will use a one-electron Green
function Gex

a (r, r′) taking into account that exchange contributions influence the one-particle system:

Gex
a (r, r′, R) =

〈
n, p− q

∣∣∣Ĝa
∣∣∣n, p− q) rr′ =

∑
lp fnl(r, R) f ∗ln (r′, R)

Ep − Ep−q − �ω+ iγ
, (24)

where:

fnl(r, R) =
∫

dr1dr2 . . . rn

(
N∑
ν
(−1)gνΨn

∗(r1 −R, r2 −R, . . . (r−R)ν . . . rk −R)ψ ∗p−q (rν)
)
×√

flp
N Ψl(r1 −R, r2 −R, . . . rν −R . . . rk −R)ψp−q(r),

(25)

fln(r′, R) =
∫

dr1dr2 . . . rn

(
N∑
ν
(−1)gνΨl

∗(r1 −R, r2 −R, . . . (r′ −R)ν . . . rk −R)ψ ∗p−q (rν)
)
×√

flp
N Ψn(r1 −R, r2 −R, . . . rν −R . . . rk −R)ψp−q(r′).

(26)

Integration over the conductor volume V means averaging over randomly distributed scatterers.
Here, we used the completeness property (6). In the same way, we rewrite the matrix element of
another resolvent operator:

Gex
a(p−Q+q)

(r, r′) = 〈
m, p−Q + q

∣∣∣Ĝa
∣∣∣m, p−Q + q)r,r′ =

∑
lp fml(r,R) flm(r′,R)R

Ep−Ep−Q+q+iγ ,

fml(r, R) flm(r′, R)R = 1
V

∫
V fml(r, R) flm(r′, R)dR.

(27)

The spectral density σ f i(χ,ω) of the cross-section (23) of the process of inelastic scattering of
electrons on disordered media consisting of atomic defects in a metal alloy (metal alloy doped with di-
or trivalent atoms), taking into account exchange effects, has the form:

σ f i(χ,ω) =
(

me
2�2

)3/2 (p2−2me�ω)
1/2

2π2p

∑
q

wmnQ(q,�ω)
∣∣∣∣〈m, p−Q + q

∣∣∣(Vat)
N
∣∣∣n, p)

∣∣∣∣2×
∫

dΩQ

∣∣∣∣∣∣
∑

lp fml(r,R) flm(r′,R)R
Ep−Ep−Q+q+iγ +

∑
lp fnl(r,R) fln(r′,R)R
Ep−Ep−q−�ω+iγ

∣∣∣∣∣∣
2

.
(28)

Using the obtained general expression for the cross-section (18) for the case considered in [24],
the alloy doped by hydrogen atoms as disordered centers, we obtain the same expression for the
Green functions and for the scattering probability. It proves a limit transition of the obtained general
expression (18) for the cross-section to the known case described in [24].
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3. The Electron Identity Principle in Quantum Interference for Multielectron Scatterers

In our consideration, we take into account the identity of the beam electrons and the electrons
belonging to the atoms of the scatterer. Firstly, we use a scatterer as a helium-like atom in the ground
state (1s2, 1S) and in the excited state (1s12s1, 3S).

3.1. Helium-Like Scatterer 1S

The wave functions of the ground state of a helium-like atom and a free (incident) electron are:

ΦHe(R− r11, R− r22; ξ11, ξ22) = (ϕ1s(R− r1)ϕ1s(R− r2)) · 1√
2
(α1β2− β1α2),

ψp(r) = ei p·r
� ,

(29)

where ϕ1s(R− ri) =
(
α3/π)1/2exp(−α|R− ri|

)
, α = 27/16.

The vector of the initial state, corresponding to the permutation ν = 0, but antisymmetrized only
accounting for the internal permutations in the helium atom, see Equation (29), has the form:

∣∣∣∣Φν=0
i

)
= ΦHe(r1, r2)XHe(ξ1ξ2)ψe(r)χe(ξ) =

∣∣∣n = 0, p) . (30)

We obtain the antisymmetric wave function by applying the normalized Young operator [29,32]
to the wave function of the free electron–helium system as follows: Antisymmetrization of the atomic
wavefunction given by Equation (30) over interatomic electrons permutations performed using the
four independent Young’s operators: ω[21]

11 ;ω[21]
12 ;ω[21]

21 ;ω[21]
22 (see Appendix A), where:

Ψ =
1
f0
(Ψ11(r1, r2, r)X22(ξ1, ξ2, ξ) + Ψ12(r1, r2, r)X21(ξ1, ξ2, ξ)),

Ψ11(r1, r2, r) = ω[21]
11 ΦHe(r1, r2)ψp(r) = 1√

3

(
2ΦHe(r1, r2)ψp(r) −ΦHe(r1, r)ψp(r2) −ΦHe(r, r2)ψp(r1)

)
Ψ12(r1, r2, r) = ω[21]

12 ΦHe(r1, r2)ψp(r) =
(
ΦHe(r1, r)ψp(r2) −ΦHe(r, r2)ψp(r1)

)
X21(ξ1, ξ2, ξ) = ω[21]

21 XHe(ξ1ξ2)χe(ξ) = ω
[21]
21

1√
2
(α1β2 − β1α2)χe(ξ) =

1√
2
[(α1β− β1α)χ2(ξ) − (αβ2 − βα2)χ1(ξ)]

X22(ξ1, ξ2, ξ) = ω[21]
22 XHe(ξ1ξ2)χe(ξ) =

1√
3

1√
2
[2(α1β2 − β1α2)χe(ξ) + (α1β− β1α)χ2(ξ) + (αβ2 − βα2)χ1(ξ)],

(31)

where f0 is the normalized factor, determined by:

〈
(Ψ11(r1, r2, r)X22(ξ1, ξ2, ξ) + Ψ12(r1, r2, r)X21(ξ1, ξ2, ξ))

∣∣∣ΦHe(R− r1, R− r2, ξ1, ξ2)ψp(r)χ(ξ)
)
R
=

f0 = 4πn
3

(
2π�

p

)3
(
1− (2p/�α)

1+(p/�α)

)
.

(32)

For this case, Equations (25) and (26) will have the forms:

fnl(r, R)→ f00(r, R) =∫
dr1dr2

1√
3

{
2ϕ1s(r1 −R)ϕ1s(r2 −R)ψ ∗p−q (r)−

ϕ1s(r1 −R)ϕ1s(r−R)ψ ∗p−q (r2) −ϕ1s(r2 −R)ϕ1s(r−R)ψ ∗p−q (r1)
}
×√

f0
6 (ϕ1s(R− r1)ϕ1s(R− r2))ψp−q(r′′) 2√

3
=

4
3

√
f0
6

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ei (p−q)(r′′−r)

� − 8⎛⎜⎜⎜⎜⎝1+ |p−q|2
α2�

2⎞⎟⎟⎟⎟⎠
2 exp

(
i (p−q)r′′

�
− α|r−R|

)
⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

.

(33)
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That is, the Green’s function (28), averaged over randomly distributed centers, can be written as:

Gex
(p−Q+q)

(r, r′) = 1
V

∫
V dRGex

a(p−Q+q)
(r, r′, R)→ 1

V

∫
V dR

∑
p f00(r) f ∗00(r′)

Ep−Ep−Q+q+iγ =

(
4
3

)2 f0
6

1
V

∫
V dR

∑
p

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
exp

(
−i p(r−r′)

�

)
Ep−Ep−Q+q+iγ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣1 +
82⎛⎜⎜⎜⎜⎝1+ |p|2
α2�

2⎞⎟⎟⎟⎟⎠
4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦−

8⎛⎜⎜⎜⎜⎝1+ |p|2
α2�

2⎞⎟⎟⎟⎟⎠
2

exp
(
i p(R+r′−r)

�
−α|r−R|

)
+exp

(
−i p(R−r′+r)

�
−α|r′−R|

)
Ep−Ep−Q+q+iγ +

82⎛⎜⎜⎜⎜⎝1+ |p|2
α2�

2⎞⎟⎟⎟⎟⎠
4

exp(−α|r−R|−α|r′−R|)
Ep−Ep−Q+q+iγ

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
=

Gex
0(p−Q+q)

(r, r′) −Gex
1(p−Q+q)

(r, r′) + Gex
a(p−Q+q)

(r, r′),

(34)

which has the same construction as in [26] but with a well-defined sign in front of the second term.
Here, Gex

0 (r, r′) is the ordinary Green’s function, previously considered in [22,24,26], making it the
main contribution to the new weak localization, corrected only by adding a normalization factor due
to exchange effects. The specific exchange contribution has the form:

Gex
1p−Q+q)(r, r′) =

(4
3

)2 f0
6Vα3 2π

∑
p

82(
1 + p2

α2�

2
)4

(
1 + ip(r−r′)

2�

)
e−i p(r−r′)

�

Ep − Ep−Q+q + iγ
, . (35)

Since we are interested in the correlation length |r− r′| ≤ λp, we can neglect the higher-order terms

of the parameter p(r−r′)
�

. Then, this term in the p-representation after the Fourier transform and an
ordinary Green function in the p-representation have the following form:

Gex
1 (p−Q + q) = Gex

1 (p′+ q) = 210

34

⎛⎜⎜⎜⎜⎜⎜⎝1−
( 2p
�α

)3

(
1+( p

�α )
2
)4

⎞⎟⎟⎟⎟⎟⎟⎠
(
�
αp

)3

(
1+ p2

α2�

2)4
(2π)2n2

Ep−Ep−Q+q+iγ ,

G0(p′+ q) = 1
Ep−Ep−Q+q+iγ .

(36)

The third term Gex
a (r, r′) describes a process that begins and ends at the same atom; therefore, it

does not contribute to the quantum transfer of electrons.
Now, consider the main pre-factor Ξ in the cross-section (28):

Ξ =
∫

dΩQ

∣∣∣∣∣∣
∑

lp fml(r,R) flm(r′,R)R
Ep−Ep−Q+q+iγ +

∑
lp fnl(r) fln(r′)R

Ep−Ep−q−�ω+iγ

∣∣∣∣∣∣
2

=

∫
dΩQ

∣∣∣Gex(p−Q + q) + Gex(p− q)
∣∣∣2,

(37)

where we denoted the Green’s function (34) in the p-representation as Gex(p−Q + q) = Gex
0 (p′+ q) −

Gex
1 (p′+ q), taking into account p−Q = p′, and in exactly the same way the Green’s function of the

second term in the same representation as Gex(p− q) = Gex
0 (p− q) −Gex

1 (p− q). Then, the factor Ξ
consists of three contributions, background, “the simple new weak localization”, and the exchange term:

Ξ = Ξbg + Ξ0 − Ξexc. (38)
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The background term has the following form:

Ξbg =
∫

dΩQ

{∣∣∣Gex
0 (p′+ q) −Gex

1 (p′+ q)
∣∣∣2 + ∣∣∣Gex

0 (p− q) −Gex
1 (p− q)

∣∣∣2} =∫
dΩQ

{∣∣∣Gex
0 (p′+ q)

∣∣∣ 2
+

∣∣∣Gex
1 (p′+ q)

∣∣∣2 + ∣∣∣Gex
0 (p− q)

∣∣∣2 + ∣∣∣Gex
1 (p− q)

∣∣∣2−[
Gex∗

0 (p′+ q)Gex
1 (p′+ q)+Gex∗

1 (p′+ q)Gex
0 (p′+ q) + Gex∗

0 (p− q)Gex
1 (p− q) + Gex∗

1 (p− q)Gex
0 (p− q)

}]
.

(39)

Substituting Expression (36), we obtain:

Ξbg =

⎛⎜⎜⎜⎜⎜⎜⎜⎝1− π

(1+ p2

(�α)2
)

6
210(πn)2

3α6

⎞⎟⎟⎟⎟⎟⎟⎟⎠×[
5
(

1
(v′q)2 ln

(
(v′q−�ω)2+(�γ)2

(v′q+�ω)2+(�γ)2

)
− 1

(vq)2 ln
(
(vq−�ω)2+(�γ)2

(vq+�ω)2+(�γ)2

))
−⎛⎜⎜⎜⎜⎜⎜⎜⎝4− 25

(1+ p2

(�α)2
)

2

⎞⎟⎟⎟⎟⎟⎟⎟⎠ Γ2(5)(vq)2

(
�2α2

2m

)4
(1+ p2

(�α)2
)

4

⎤⎥⎥⎥⎥⎥⎥⎥⎦.
(40)

“The ordinary new weak localization” contribution has the form:

Ξ0 =
∫

dΩQ

{
Gex∗

0 (p′+ q)Gex
0 (p− q) + Gex∗

0 (p− q)Gex
0 (p′+ q)2

}
=

4π
(qv)�γ ·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣arctg
(

qv+�ωp
�γ

)
+ arctg

(
qv−�ωp

�γ

)
− γ√

2ω2
p(1−cosχ)− q2v2

�2 sin2χ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦×

ln

⎛⎜⎜⎜⎜⎜⎝
�2ω2

p−q2v2cosχ+qv
√

2�2ω2
p(1−cosχ)−q2v2sin2χ

�2ω2
p−q2v2cosχ−qv

√
2�2ω2

p(1−cosχ)−q2v2sin2χ

⎞⎟⎟⎟⎟⎟⎠.

(41)

This expression was first obtained in [20] and used in [26]. The Langmuir frequency is denoted as
ωp, and γ is the collision frequency. The specific exchange contribution in the cross-section is:

Ξexc =
∫

dΩQ
{
Gex∗

0 (p + q)Gex
1 (p− q) + Gex∗

1 (p′+ q)Gex
0 (p− q) + Gex∗

0 (p− q)Gex
1 (p′+ q) + Gex∗

1 (p− q)Gex
0 (p′+ q)−(

Gex∗
1 (p′+ q)Gex

1 (p− q) + Gex∗
1 (p− q)Gex

1 (p′+ q)
)}
=

28 nπ
α3

(1+ p2

(�α)2
)

3

⎧⎪⎪⎪⎨⎪⎪⎪⎩Ξ0

⎛⎜⎜⎜⎜⎜⎜⎜⎝1− 25 nπ
α3

(1+ p2

(�α)2
)

5

⎞⎟⎟⎟⎟⎟⎟⎟⎠ − cosχ
(
4 + �ωL

vq ln
(
(vq−�ωp)

2+(�γ)2

(vq+�ωp)
2+(�γ)2

))
(2m)2·4π

(�α)4(1+ p2

(�α)2
)

2

⎛⎜⎜⎜⎜⎜⎜⎜⎝1− 25 nπ
α3 Γ2(5)

(1+ p2

(�α)2
)

5

⎞⎟⎟⎟⎟⎟⎟⎟⎠
⎫⎪⎪⎪⎬⎪⎪⎪⎭,

(42)

where Γ(5) = 4! is a Γ-function. Then, taking into account Equations (39)–(42), the main factor
determining the angular dependence of the scattering cross-section is:

Ξ(χ) = Ξbg + Ξ0

⎛⎜⎜⎜⎜⎜⎜⎜⎝1− 28 nπ
α3

(1+ p2

(�α)2
)

3 +
213

(
nπ
α3

)2

(1+ p2

(�α)2
)

8

⎞⎟⎟⎟⎟⎟⎟⎟⎠+
28 nπ
α3

(1+ p2

(�α)2
)

3 cosχ
(
4 + �ωL

vq ln
(
(vq−�ωp)

2+(�γ)2

(vq+�ωp)
2+(�γ)2

))
(2m)2·4π

(�α)4(1+ p2

(�α)2
)

2

⎛⎜⎜⎜⎜⎜⎜⎜⎝1− 25 nπ
α3 Γ2(5)

(1+ p2

(�α)2
)

5

⎞⎟⎟⎟⎟⎟⎟⎟⎠ =
Ξbg + Ξ0exc + Ξ1exc.

(43)

Thus, the cross-section σ f i(χ,ω) ∝ Ξ(χ). is proportional to the factor Ξ(χ) determined by
Equation (43), which contains the total dependence on the scattering angle.

3.2. Helium-Like Scatterer 3S

The wave functions of the excited state helium-like atom and a free (incident) electron are:

ΦHe(R− r11, R− r22; ξ1, ξ2) =
1√
2
(ϕ1s(R− r1)ϕ2s(R− r2) −ϕ1s(R− r2)ϕ2s(R− r1)) ·X(α1α2), (44)
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where:
ϕ2s(R− ri) = (α3/23π)

1/2(1− α|R−ri |
2

)
exp

(
−α|R−ri |

2

)
,

α = 27/16.
(45)

The vector of the initial state, corresponding to the permutation ν = 0, but antisymmetrized
only accounting for the internal permutations in the helium atom, see Equation (44), has the form:∣∣∣∣Φν=0

i

)
= ΦHe(r1, r2)XHe(ξ1ξ2)ψe(r)χe(ξ) =

∣∣∣n = 1∗, p) .
The antisymmetrized vector of the final state is:

Ψ(r1, r2, r3α1α2α3) =
(α1α2α3)

f1
√

3!

∣∣∣∣∣∣∣∣∣
φ1s(R− r1) φ2s(R− r1) ψp(r1)

φ1s(R− r2) φ2s(R− r2) ψp(r2)

φ1sα(R− r3) φ2s(R− r3) ψp(r3)

∣∣∣∣∣∣∣∣∣
=

(α1α2α3)
f1
√

3

(
1√
2
[φ1s(R− r1)φ2s(R− r2) −φ1s(R− r2)φ2s(R− r1)] ·ψp(r3)−

[φ1s(R− r1)φ2s(R− r3) −φ2s(R− r1)φ1s(R− r3)] · 1√
2
ψp(r2)+

[φ1s(R− r2)φ2s(R− r3) −φ1s(R− r3)φ2s(R− r2)] · 1√
2
ψp(r1)

)
.

(46)

Then, an exchange normalization factor:

f1 =
�

dr1dr2dr3
1√
2
(ϕ ∗1s (R− r1)ϕ ∗2s (R− r2) −ϕ ∗1s (R− r2)ϕ ∗2s (R− r1))ψp(r3) ×

1√
3

(
1√
2
[φ1s(R− r1)φ2s(R− r2) −φ1s(R− r2)φ2s(R− r1)] ·ψp(r3) − [φ1s(R− r1)φ2s(R− r3) −φ2s(R− r1)φ1s(R− r3)] · 1√

2
ψp(r2) +

[φ1s(R− r2)φ2s(R− r3) −φ1s(R− r3)φ2s(R− r2)] · 1√
2
ψp(r1)

)
R
=

1√
3

{
1−

[∣∣∣∣ 〈φ2s
∣∣∣ψp

〉∣∣∣∣2 +
∣∣∣∣ 〈φ1s

∣∣∣ψp
〉∣∣∣∣2

]}
R
=

4πn
3

(
2π�

p

)33
1√
3

⎧⎪⎪⎪⎨⎪⎪⎪⎩1− 26

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎜⎜⎜⎝
( 2p
�
α
)4
+7·2

( 2p
�
α
)2−11(

1+
( 2p
�
α
)2)4

⎞⎟⎟⎟⎟⎟⎟⎟⎠
2

+ 4(
4+

( 2p
α�

)2)4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭.

A one-electron amplitude with respect to the electron permutations has the form:

f11(r, R) = (α1α2α3)
f1
√

3

∫
dr1dr2

(
1√
2
[ϕ1s(R− r1)ϕ2s(R− r2) −ϕ1s(R− r2)ϕ2s(R− r1)] ·ψp(r)−

[ϕ1s(R− r1)ϕ2s(R− r) −ϕ2s(R− r1)ϕ1s(R− r)] · 1√
2
ψp(r2) +

[ϕ1s(R− r2)ϕ2s(R− r) −ϕ1s(R− r)ϕ2s(R− r2)] · 1√
2
ψp(r1)

)
×√

f1
6

1√
2
(ϕ ∗1s (R− r1)ϕ ∗2s (R− r2) −ϕ ∗1s (R− r2)ϕ ∗2s (R− r1))ψ ∗p (r′′) =

1√
6 f1
√

3

(
eip(r−r′′)/� − (α3/π)1/2exp

(
−α|R−r|

2 − ipr′′
�

)
×[

−2−3/2
(
1− α|R−r|

2

) 4πΓ(5)(α/2)3((α/2)2−(p/�)2)

((α/2)2+(p/�)2)
4 +

(
2−3/2

(
1− α|R−r|

2

)
+ exp(−α|R−r|

2

) 8π(α/2)

((α/2)2+(p/�)2)
2

])
.

(47)
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These amplitudes determine a one-electron Green function while accounting for the exchange
contributions:

G(r, r′) = 1
18 f1

∑
p

1
Ep−Ep−Q+q+iγ

(
eip(r−r′)/� − (α3/π)1/2eip(r−r′)/�

(
e−

ipr
� + e

ipr′
�

)
8π

(α/2)3

)
×[

2−3/2
(

Γ(5)(α/2)3((α/2)2−(p/�)2)

((α/2)2+(p/�)2)
4 − 2

)
+

(α/2)

8((α/2)2+(p/�)2)
2

])
+ Gaa(r, r′) =

1
18 f1

∑
p

eip(r−r′)/�
Ep−Ep−Q+q+iγ − 1

18 f1

(∑
p

eip(r−r′)/�
Ep−Ep−Q+q+iγ

(
2− ip(r−r′)

�

)
82n(α/2)−3

)
×[(

Γ(5)(1−(2p/�α)2)

(1+(2p/�α)2)
4 − 2

)
+ 1

8(1+(2p/�α)2)
2

])
+ Gaa(r, r′) =

1
18 f1

(
G0(r, r′) −Gexc

1 (r, r′) + Gaa
)
.

Gexc
1 (r, r′) = ∑

p

eip(r−r′)/�
Ep−Ep−Q+q+iγ

(
2− ip(r−r′)

�

)
82n(α/2)−3

[(
Γ(5)(1−(2p/�α)2)

(1+(2p/�α)2)
4 − 2

)
+ 1

8(1+(2p/�α)2)
2

]
.

(48)

The mentioned Green function in p-representation is:

G(p−Q + q) = G(p′+ q) = nα−3

18 f1
G0(p′+ q)

(
1 + 211π

)
− 210πnα−3

18 f1
Gexc

1 (p′+ q) =
nα−3

18 f1
G0((p′+ q)

(
1 + 211π

)
−

210πnα−3

18 f1
1

Ep−Ep−Q+q+iγ ·
⎡⎢⎢⎢⎢⎢⎢⎣ 1

8
(
1+(2|p′+q|/�α)2

)2 − 24(
1+(2|p′+q|/�α)2

)3 +
24(

1+(2|p′+q|/�α)2
)4

⎤⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎟⎠.

(49)

where the general G0(p′+ q) and the exchange Gexc
1 (p′+ q) contributions are:

G0(p′+ q) = 1
Ep−Ep−Q+q+iγ

Gexc
1 (p′+ q) =

1
Ep−Ep−Q+q+iγ ·

⎡⎢⎢⎢⎢⎢⎢⎣ 1

8
(
1+(2|p′+q|/�α)2

)2 − 24(
1+(2|p′+q|/�α)2

)3 +
24(

1+(2|p′+q|/�α)2
)4

⎤⎥⎥⎥⎥⎥⎥⎦.
(50)

The contribution Ξ in the cross-section (28) in the form (38) for our case of the excited helium
atom has the same structure as Equation (40), where the background contribution is:

Ξbg =
(

210πnα−3

18 f1

)2 ∫
dΩQ{4

(∣∣∣Gex
0 (p′+ q)

∣∣∣2 + ∣∣∣Gex
0 (p− q)

∣∣∣2)+ (∣∣∣Gex
1 (p′+ q)

∣∣∣2 + ∣∣∣Gex
1 (p− q)
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2
[
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0 (p′+ q)Gex
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1 (p′+ q)Gex
0 (p′+ q) + Gex∗

0 (p− q)Gex
1 (p− q) + Gex∗

1 (p− q)Gex
0 (p− q)

}]
.

(51)

The exchange contribution (42) in this case has the form:

Ξexc =
∫

dΩQ
{
Gex∗

0 (p′+ q)Gex
1 (p− q) + Gex∗

1 (p′+ q)Gex
0 (p− q) + Gex∗

0 (p− q)Gex
1 (p′+ q)+
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1 (p− q)Gex

0 (p′+ q) −
(
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1 (p′+ q)Gex
1 (p− q) + Gex∗

1 (p− q)Gex
1 (p′+ q)

)}
.

(52)
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The explicit form is presented in Appendix A (see Equations (A3) and (A4)). In this expression,
we neglected by the second order small terms proportional to q2, while the inelastic momentum loss is
q� p. Thus, the exchange contribution to the cross-section has the form:

Ξexc = −
(
(�α)2

8m

)2{
1
8
∂
∂R + 12

(
(�α)2

8m

)
∂2

∂R2 +4
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8m

)2
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∂R3

}[
1
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]
(J0 + J2)−(

(�α)2

8m
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×

{
1
8
∂
∂R′ + 12 (�α)2

8m
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(
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}[
1
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)4[
1
8
∂
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(
(�α)2

8m
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(
(�α)2

8m

)2
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]
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1
8
∂
∂R + 12

(
(�α)2
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)
∂2
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(
(�α)2

8m

)2
∂3

∂R3

]
×

1
R−iγ

1
R′−iγ {J0 + J1 + J2 + J3}.,

(53)

where the contribution J0 = Ξ0 is determined by Equation (41), c.c. is denoted by a complex conjugate
expression. Here:

R =
(
(�α)2

8m + Ep

)

R′ = R− �ω =
(
(�α)2

8m + Ep − �ω
)
.

(54)

The total exchange contribution consists of four terms:

Ξexc = Ξexc0 + Ξexc1 + Ξexc2 + Ξexc3, (55)

where each term is determined in detail in Appendix A, and the results of the calculations for each
term are the following:

(1) The usual term “new weak localization” Ξexc0, which retains the angular dependence of the
kinematic model with a factor depending on the exchange contributions:

Ξexc_0 =

{
1
26
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+
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(56)

(2) There are three typical exchange contributions, which differ from each other, each of which
contains, in addition to the background exchange terms, a term proportional to cosχ

Ξexc1 = 1
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Ξexc2 = 1
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(58)

Ξexc3 = −π · cosχ 1
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(59)

These three exchange terms (57)–(59) depend on the initial atomic states of the scatterers,
the number of electrons, and their multiplicity, but this dependence is expressed in the value of the
background contribution and the value of the factor in front of cosχ. Variance in the number of
electrons for different scatterers and their states does not lead to a new angular dependence in the
scattering cross-section under conditions of a new weak localization.

In our work, we consider the identity of the incident electrons and electrons on helium-like
scatterers. Helium-doped Zi-Ni alloys were used as a disordered medium. Doping the samples with
helium increases disorder and enhances quantum interference. For our estimates, we take ωp ∼ 1015,
then the energy losses due to inelastic scattering will be ~1 eV, then the contribution from the usual
weak localization of a new type, determined by Equation (42), to the factor in the cross-section is
shown in Figure 2a. It is easy to see the fluctuations of the factor with increasing energy of the incident
electron (the value determined by Equation (52)) and the singularity at an angle of 2.9 rad, which
corresponds to 166 angular degrees. This angle is in a good agreement with the results of the kinematic
model Equation (22):

cosχ = −
Ep +

(
Ep − �ω

)

2
√

Ep
(
Ep − �ω

) + 2
(�ω)2

vv′q2 ≈ 0.98,⇒ χ ≈ 2, 94, (60)

where it was taken �ω
vq ≈ 0.1, and �ω

Ep
≈ 0.05. Taking into account the identity of incident electrons with

atomic electrons increases the contribution Ξexc0 in Equation (57) by 3–15 times dependently from the
incident electron energy and does not change the singularity angle (see Figure 2b). True, it should be
noted that a special contribution of exchange effects occurs at low energies, of the order of Ep ~2 (a.u.)
atomic energy units, which is natural, since the de Broglie wavelength of an incident electron becomes
comparable to the wavelength of an atomic electron. Under such conditions, exchange effects become
dominant. Both exchange eigenvalues Ξexc1, Ξexc2, proportional to cosχ, give the same contribution
as shown in Figure 2c. Naturally, it makes the main contribution, only at low energies of incident
electrons, less than 3 eV. The third exchange term also proportional to cosχ makes the main exchange
contribution in this effect. It is shown in Figure 2d. Then, the total angle factor in the scattering
cross-section has the form shown in Figure 2e. Figure 2f,h show the shape of the peak for the incident
electron energy ~2 a.u. for the intrinsic contribution J0 (41), and its increasing exchange effects and for
the total factor in the cross-section taking into account the exchange terms. It can be argued that the
exchange effects do not change the shape and angular position of this peak. The peak size depends
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on the energy of the incident electrons due to the exchange effects associated with the ratio of the de
Broglie wavelength to the size of the atom, as mentioned above. Figure 3 shows all contributions to the
angle factor of the cross-section for the singlet state of the helium atom. Here, the intrinsic contribution
J0 (41) is the same, but the exchange coefficient differs from that shown in Figure 2b and is determined
by the exchange effects from the overlap of the wave function of freely falling electrons with the singlet
state of the helium atom. The exchange factor of the singlet state is shown in Figure 3a, and it is 1.5
times less then the triplet’s exchange factor. The eigent exchange contribution Ξexc1, proportional to
cosχ, presented by Equation (44), is shown in Figure 3b, and it has the same shape as the Ξexc3 of the
triplet state but is five times less compared with the last. The total angle factor to the cross-section,
including the exchange effects from the singlet state, is shown in Figure 3c.

Figure 2. Cont.
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Figure 2. This is a figure of the contributions to the angular factor in the cross-section for electron
scattering by a helium atom in the triplet state. Here, one axis corresponds to the energy of the
incident electron, R, measured from the energy of the bound state in the atomic units (a.u.). The second
axis corresponds to scattering angle X, measured in radian (rad.). The third axis corresponds to the
measureless factor. (a) A contribution J0 from the usual weak localization of a new type, determined
by Equation (42), to the factor in the cross-section; (b) corresponds to the term Ξexc0, presented
by Equation (58); (c) Both exchange eigenvalues Ξexc1, Ξexc2, proportional to cosχ, give the same
contribution; (d) The third “exchange-exchange” term Ξexc3 is also proportional to cosχ. (e) The total
angle factor in the scattering cross-section; (f) The peak for the incident electron energy ~2 a.u. for the
intrinsic contribution J0 (42); (g) The increase of the peak by exchange effects; (h) The total factor in the
cross-section taking into account the exchange terms.

Figure 3. Cont.
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Figure 3. This is a figure of the contributions to the angular factor in the cross-section for electron
scattering by a helium atom in the singlet state. Here, one axis corresponds to the energy of the incident
electron, R, measured from the energy of the bound state (in the atomic units (a.u.)) and the second
axis corresponds to scattering angle X, measured in radians (rad.). The third axis corresponds to the
measureless factor. (a) A contribution Ξ0exc from the usual weak localization of a new type, determined
by Equation (44), to the factor in the cross-section; (b) corresponds to the eigent exchange contribution
Ξexc1, proportional to cosχ and presented by the Equation (44); (c) The total angle factor in the scattering
cross-section; (d). The increase of the peak by exchange effects peak for the incident electron energy
~2 a.u. (42); (e) The total factor in the cross-section taking into account the exchange terms; (f) The
exchange contribution Ξexc1, proportional to cosχ.

4. Discussion

Investigation of the influence of exchange effects on the process of coherent backscattering of
electrons by disordered media is a very important task both for weak localization of the Anderson type
and for a new type of weak localization with an inelastic process. For a new type of weak localization,
this problem stood and was solved theoretically only for the case of hydrogen-like scatterers in metal
alloys [26], where an additional angular dependence was mentioned, proportional to cosχ in the
cross-section. It is now clear that this new dependence is not clearly visible, in contrast to the angular
dependence of the new weak localization, explained by the kinematic consideration. The latter has
a sharper peak and remains invariable even in the range of beam energies, where exchange effects
are strong. In this work, we investigated the exchange effects from the first principle consideration
for general case. We used the formulas for the S-matrix and scattering cross-section developed
generally [27] while taking into account the exchange contributions. We developed the Green function
(13), taking into account the wave function overlapping due to permutation symmetry. After analyzing
all exchange contributions in the example of helium-like scatterers in metallic alloys, we come to the
conclusion that exchange effects do not change the angle dependence in the new weak localization
but could change the size of the peak very dramatically. A detailed comparison of the influence of
exchange effects on the new weak localization for the singlet and triplet states of the helium atom
shows exactly that the role of exchange effects in the case of a singlet is negligible. While, for the triplet
state, it is decisive, especially for those values of the energy of incident electrons when de Broglie’s
waves are commensurate with the atomic.

5. Conclusions

In our work, we focused on two aspects of the theoretical description of non-Anderson weak
localization of electrons in disordered media. First, we made an attempt to create a general method
for taking into account the exchange of electrons between the incident beam and the belonging of
electrons to atomic scatterers, using the formalism of the invariant exchange perturbation theory.
We applied the general expressions for the scattering amplitude and scattering probability with the
allowance for permutation symmetry obtained in [27,28] to the problem of the process of electron
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scattering by disordered media under new weak localization. The result of this development of
the theory is expressed by Equations (27) and (28). Second, we applied the developed general
equations to a specific system: a scattering electron beam on disordered helium-like scatterers in
Zi-Ni alloys doped with helium. We performed a detailed analytical calculation of the angle factor in
the scattering cross-section for this system. We showed that the exchange contribution in the angle
dependence of the electrons’ cross-section under the “new weak localization” condition appears in
two apostasies, in the additional angle dependence, proportional to cosχ, and in the exchange factor to
the “kinematic” angle dependence. In our opinion, such consideration would also be useful for the
so-called anti-Anderson localization considered experimentally and theoretically in the works [33–36]
for the different disordered systems.
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Appendix A. Mathematical Additions

Appendix A.1. The Proof of Completeness Property of Antisymmetric Basis

It is easy to show this property by the acting operator (6) on to any antisymmetric vector
∣∣∣m, p′〉

and by using Equation (5):
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(A1)

Appendix A.2. Young Operators

ω
[21]
11 = 1√

12
(2 + 2P12 − P23 − P13 − P123 − P132),

ω
[21]
12 = 1

2 (P23 − P13 + P123 − P132),

ω
[21]
21 = 1

2 (P23 − P13 − P123 + P132)

ω
[21]
22 = 1√

12
(2− 2P12 + P23 + P13 − P123 − P132).

(A2)

Appendix A.3. The Explicit Form of the Cross-Section Pre-Factor Ξ(χ) for Expression (52)

Here, we took into account the obvious relations:
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(
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)
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(A3)
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In this expression, we neglected by the second order small terms proportional to q2, while inelastic
momentum loss is q << p.

Appendix A.4. The Integrals Used to Derive the Expression for the Factor Ξ(χ)

Here are the integrals used to derive the expression for the factor Ξ(χ) ((39) and (57)), which contains
the angular dependence introduced into Expression (28) for the cross-section:

J0 = Ξ0 =
∫
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∫
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Here, the c.c. complex conjugate expression is denoted:
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Abstract: In the years 1917–1919 Tullio Levi-Civita published a number of papers presenting new
solutions to Einstein’s equations. This work, while partially translated, remains largely inaccessible
to English speaking researchers. In this paper we review these solutions, and present them in a
modern readable manner. We will also compute both Cartan–Karlhede and Carminati–Mclenaghan
invariants such that these solutions are invariantly characterized by two distinct methods. These
methods will allow for these solutions to be totally and invariantly characterized. Because of the
variety of solutions considered here, this paper will also be a useful reference for those seeking to
learn to apply the Cartan–Karlhede algorithm in practice.

Keywords: Levi-Civita metric; general relativity; curvature invariant

1. Introduction

In the years 1917–1919 Tullio Levi-Civita (LC) published nearly a dozen papers intro-
ducing and analyzing a variety of new solutions to Einstein’s field equations (collected
works in Italian available in Volume IV at [1]). Recently, several key papers have been
republished in English, including two of Levi-Civita’s original papers [2,3], and [4] contain-
ing an overview of several solutions not included in any of the other translations. In [2], a
homogeneous Einstein–Maxwell spacetime is derived; in [3], a spacetime with a potential
analogous to the logarithmic Newtonian gravitational potential is derived; and [4] dis-
cusses derivation of several degenerate vacuum spacetimes. There are additional spacetime
solutions in literature not translated into English [5,6] which are similar, but distinct from
the other degenerate vacuum solutions.

The age and structure of these papers has resulted in more contemporary works citing
these papers in confusing or incorrect ways. Here, we clarify the structure of works on
exact solutions that are of interest. First, a homogeneous solution was published in 1917 as
a standalone paper [7]. Then, in the years from 1917 to 1919, a series of nine notes were
published starting with [8] and ending with [9]. It is not uncommon to find the different
papers in this series cited by the general heading of the entire series or by referencing to
only the first article in the series.

Additionally, we will provide an invariant (local) characterization of these solutions
via two different methods. First, we will utilize the Cartan–Karlhede (CK) algorithm [10]
to generate an invariant coframe and the corresponding scalar quantities which uniquely
characterize these spacetimes. The variety of solutions considered in this work will result in
the CK algorithm running in several markedly different ways. We will present an overview
of the algorithm itself, as well as a comprehensive guide that fully outlines and computes
each step of the CK algorithm for the different spacetimes. Thus, this paper should serve
as a useful resource for those attempting to learn to apply the CK algorithm in practice.
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Second, we calculate the Carminati–McLenaghan (CM) [11] scalar invariants to con-
struct a coframe independent classification of each solution. The set of CM invariants is
advantageous as they are of the lowest possible degree and are generally the minimal
independent set for any valid Petrov and Segre type spacetime. All spacetimes considered
herein are of a Segre type, such that only CM invariants are needed, i.e., we do not need the
extended set of invariants given in [12]. In fact, in several of the cases considered the space-
time is sufficiently special, such that only a subset of the CM invariants are needed [13].
We do note explicitly that the CM invariants will only uniquely characterize these solu-
tions to zeroth order (in derivatives), but such invariants are useful for distinguishing LC
solutions. In several cases, we will also present “I” invariants [14], as these invariants
are distinct from the CM invariants and may contain information regarding algebraically
special surfaces [14,15]. For completeness, we note that all spacetimes considered here
are I non-degenerate, as the only case considered with constant scalar invariants is ho-
mogeneous [16]. We also note that the CK algorithm will always generate a complete
classification of the spacetime, thus there is no possibility this may fail for the specific cases
considered here.

We will also consider several generalizations of these solutions in cases where our
methods of characterization extend directly, and in an instructive manner. In particular,
we are interested in the work given by [17], which generalizes the solution in [2,7] to one
which is not conformally flat, and in [18] which generalizes the work in [3,9] to a solution
which is not generally static.

Throughout, the (−1, 1, 1, 1) signature convention will be used. Greek indices will
be taken to run from 0 to 3, and follow the Einstein summation convention. Parentheses
(brackets) around indices will denote the usual (anti)-symmetrized indices. Partial deriva-
tives in the form ∂

∂x will always be taken to be covariant, and null tetrads will always be
listed in covariant form. The null vectors {l, k, m, m} will be taken to have normalization,
such that lμkμ = −1 and mνmν = 1.

2. Overview of the CK Algorithm

Here, we provide an overview of the practical CK algorithm used throughout this
paper. For a review of the theoretic underpinning of the general Cartan process, see [19].
For a review of this process’s application to general relativity, refer to [10,20,21]. In this
algorithm we will use q to denote the order of differentiation, which tracks the current
iteration of the algorithm. In the steps given here, we will also depart from the “standard”
description of the algorithm by treating the q = 0 order step as a distinct “initialization”
step and all steps with q ≥ 1 as the repeated part of the algorithm. We do this as the zeroth
order step is the only step in which we will require full knowledge of the algebraic type of
the tensors considered as it will usually be the step at which the parameters of the isotropy
group are fixed the most.

The CK algorithm will run as follows:

1. Take the order of differentiation to be q = 0;
2. Determine the Petrov and Segre types of the spacetime. Practical algorithms for

this can be found in [22,23], respectively. These types will be used to determine the
possible invariant forms to use at zeroth order;

3. Construct a null tetrad for the spacetime;
4. Calculate the components of the Riemann tensor along the current null tetrad. It will

be useful to split the Riemann tensor into its irreducible parts;
5. Using the known Petrov and Segre types, along with the forms of the curvature

computed above, determine an invariantly defined frame for the spacetime which
fixes the frame as much as possible. Here we will make use of the invariant forms
given in [24]. We also note that while it is possible to start with any frame and
determine the transform which brings it to its standard form, we will usually try to
determine a frame which is in (or as close as possible to) an invariant form at zeroth
order. At this step, one will often have to select, by hand, if one is setting the Ricci
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or Weyl tensor into an invariant form, as it is not generally possible to find a frame
which fixes both tensors into their canonical form;

6. Using this canonical form, determine the number of functionally independent terms
which are now invariantly defined by the given frame. One method of doing this is
constructing the Jacobian for the functions and determining its rank;

7. Set q = 1;
8. Calculate the qth derivatives of the tensor which has been set into an invariant form;
9. Determine the isotropy group which leaves these derivatives invariant. This group

will be a subgroup of the isotropy group at order q − 1, and thus one only needs to
check how the qth derivatives transform under the (q − 1)st isotropy group and find
the new maximal invariant subgroup;

10. If the new invariant subgroup is smaller than the previous group, fix the transforma-
tion parameters such that the derivatives are in an invariant form;

11. Determine the number of new functionally independent terms appearing at order q;
12. If the isotropy group and number of functionally independent terms has not changed

from the q − 1 step, the algorithm terminates. The full set of CK invariants are all of
the derivative components computed thus far. If the isotropy group or functionally
independent terms has changed, then set q = q + 1 and return to step 8.

3. The Homogeneous Levi-Civita Solution (1917)

In 1917, Levi-Civita presented a solution to Einstein’s field equations which described
a space permeated by a homogeneous, non-null Maxwell field [2,7]. This solution was
later rediscovered independently (and nearly simultaneously) in [17,25], and, as such, is
often called the Bertotti–Robinson metric in literature. It was [17] that presented a slight
generalization (discussed below) which has a non-vanishing cosmological constant. It was
shown in [26] that this metric was generally singularity free. This spacetime can also be
shown to be a limiting case of the more general Petrov solution [27].

Later considerations of more general Maxwell spacetimes have also revealed several
interesting properties regarding this solution. First, this is the only homogeneous non-
null Maxwell solution [28]. Generalizations where the Maxwell field does not share the
homogeneous symmetry also give interesting solutions (not discussed here) which are
algebraically more general [29,30].

3.1. Forms of the Metric and Nature of the Coordinates

In present literature, there are at least six equivalent forms of the homogeneous 1917
Levi-Civita line element. Here, we will introduce these different forms and discuss the
relations between them when possible and mention any relevant coordinate artifacts that
might be present. We will also present several new forms of this metric and discuss several
cases in which no coordinate transforms exist in the literature, nor can it be derived without
the use of complex transforms.

The original form of the line element [2] was given in cylindrical coordinates as:

ds2 = −
(

c1ez/a + c2e−z/a
)2

dt2 + dρ2 + a2 sin(ρ/a)2dφ2 + dz2, (1)

where c1 and c2 are integration constants originally derived by Levi-Civita and a is a
constant usually associated with an electric or magnetic field strength [2,7]. If c1 and
c2 are both non-zero and of opposite sign, this metric will be singular for z = a

2 ln | c2
c1
|.

Additionally, this metric is singular for ρ = nπa, where n ∈ Z.
One may define an angular parameter θ = ρ/a, such that (1) can be rewritten in the

form given in [31] as:

ds2 = −
(

c1ez/a + c2e−z/a
)2

dt2 + dz2 + a2dΩ2, (2)
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where dΩ2 is the line element for the 2-sphere. We explicitly note that θ ∈ R. This metric
can also be be put into a secondary set of cylindrical coordinates [31] by taking ρ′/a = sin θ
giving:

ds2 = −
(

c1ez/a + c2e−z/a
)2

dt2 +
dρ′ 2(

1 − (ρ′/a)2
) + ρ′ 2dφ2 + dz2, (3)

We note here that ρ′ ∈ [0, a]. In these coordinates the countably infinite singularities
in the original radial coordinate have been reduced to only ρ = 0 and ρ = a.

We may once again rewrite (1), this time in the associated Cartesian coordinates,
previously exploited in [32], as:

ds2 = −
(

c1ez/a + c2e−z/a
)2

dt2 + dx′ 2 + dy′ 2 + dz2 +
(x′ dx′ + y′ dy′)2

a2 − (x′ 2 + y′ 2)
, (4)

where we explicitly note that the primed coordinates x′ and y′ are restricted to take values
subject to x′ 2 + y′ 2 ≤ a2.

It is also possible to eliminate c1 and c2 via a transform on both t and z. By scaling t
and translating z, the original metric can be rewritten into one of two equivalent forms:

ds2 = − sinh(z)2dt2 + a2dz2 + a2dΩ2 (5)

or
ds2 = − cosh(z)2dt2 + a2dz2 + a2dΩ2, (6)

where, for real coordinate transforms, one can get either a sinh or cosh solution depending
on the relative signs of c1 and c2. Interestingly, it appears that the only method of connecting
these two equivalent solutions is via complex transformations on both t and z, although it is
not presently understood why this method works. We do note that this property of certain
complex transformations, resulting in the same solution in different forms, is remarkably
similar to the application of the Newman–Janis trick when applied to Minkowski space [33].

Here we also present a new form of this metric which is not related to previous
solutions by any known transform, real or complex:

ds2 = −e2zdt2 + a2dz2 + a2dΩ2. (7)

Using this form and making the coordinate transform r = e−z (along with a rescaling
in t) we get the form seen in [20], given as:

ds2 =
a2

r2

(
dr2 − dt2

)
+ a2dΩ2. (8)

This reference also presents the form

ds2 = −
(

1 +
z2

a2

)
dt2 +

(
1 − y2

a2

)
dx2 +

(
1 − y2

a2

)−1

dy2 +

(
1 +

z2

a2

)−1

dz2, (9)

which we see is a special case of the more general metric considered in (17).
Throughout the rest of this paper we will work with the metric and coordinates given

by (8). A convenient choice of covariant null tetrad is given by:

l =
a√
2r

(
∂

∂r
− ∂

∂t

)
, k = − a√

2r

(
∂

∂r
+

∂

∂t

)
,

m =
a√
2

(
∂

∂θ
+ i sin (θ)

∂

∂φ

)
, m =

a√
2

(
∂

∂θ
− i sin (θ)

∂

∂φ

)
.

(10)
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3.2. Curvature Invariants and CK Classification

Using the null tetrad defined in (10), one may calculate the only non-vanishing
curvature component

Φ00 =
1

2a2 . (11)

This constant solution is therefore both conformally flat and Ricci flat. Since this
curvature component is constant and is an invariantly defined frame, (11) is the only
non-vanishing CK invariant [24].

Additionally, this result fixes all CM invariants to be either zero or of the form ca2n for
a, c ∈ R and n ∈ Z. For example, the only two non-vanishing CM invariants are

r1 = 2
√

r3 =
1
a4 , (12)

where only r1 is independent since the spacetime is of warped product type B2 [13].

3.3. Regarding Electromagnetic “Wormholes"

It has been suggested that this solution may in some sense constitute a wormhole
supported by electromagnetic stress [34,35]. It was shown in [31,36,37] that, despite there
being a coordinate singularity at ρ′ = a in (3), this does not correspond to a wormhole
throat, as an appropriate choice of coordinate transform can be made, such that the spatial
part of the metric becomes that of a hypercylinder. Here, we will highlight two different
methods of characterizing this surface, which provide a secondary method of determining
that this solution is not a wormhole.

Working with the coordinates and metric given by (3), we choose the following null
tetrad to analyze the surface ρ = a, where we have dropped the prime out of convenience,

l =
1√
2

(
−
∣∣∣c1ez/a + c2e−z/a

∣∣∣ ∂

∂t
+

a√
a2 − ρ2

∂

∂ρ

)
,

k =
1√
2

(
−
∣∣∣c1ez/a + c2e−z/a

∣∣∣ ∂

∂t
− a√

a2 − ρ2

∂

∂ρ

)
,

m =
1√
2

(
ρ

∂

∂φ
+ i

∂

∂z

)
, m =

1√
2

(
ρ

∂

∂φ
− i

∂

∂z

)
.

(13)

The null expansions along l and k are, respectively,

θ(l) = q μν∇μlν and θ(k) = q μν∇μkν , (14)

where qμν = gμν + 2l(μnν) is a local, induced two-metric and ∇μ is the standard covariant
derivative. In terms of the given null frame, these are explicitly:

θ(l) = −θ(n) = −
√

a2 − ρ2
√

2aρ
. (15)

It can be seen that the surface ρ = a is indeed a surface on which the expansion of these
null directions vanish. For this surface to correspond to a wormhole throat, the derivative
of the expansion projected along the null direction must be positive on the surface [38].
Computing these terms at the surface we can show that

lμ∇μθ(l) = kμ∇μθ(k) = − 1
2a2 . (16)

Thus, this surface cannot correspond to a wormhole throat. It is in fact only a maximal
surface relating to the given range of coordinates [39,40]. This surface is also not detectable
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by any scalar invariants (since all invariants are constant) and, thus, is not a geometric
surface, as would be expected for a wormhole throat [15].

3.4. Bertotti Generalization

In [17], a generalization of the 1917 solution is used, with the line element taking the
form of

ds2 = −
(

1 +
y2

r2
+

)
dt2 +

(
1 − z2

r2
−

)
dx2 +

(
1 +

y2

r2
+

)−1

dy2 +

(
1 − z2

r2
−

)−1

dz2 , (17)

where x, y, z are Cartesian coordinates. If r+ �= r−, this solution is no longer conformally
flat or Ricci flat. In the case where r+ = r− = a, the spacetime becomes conformally flat
and reduces to (9).

Using the null tetrad:

l =
1√
2

⎛⎜⎜⎝−
√

1 +
x2

r2
+

∂

∂t
+

1√
1 + x2

r2
+

∂

∂x

⎞⎟⎟⎠, k =
1√
2

⎛⎜⎜⎝−
√

1 +
x2

r2
+

∂

∂t
− 1√

1 + x2

r2
+

∂

∂x

⎞⎟⎟⎠,

m =
1√
2

⎛⎜⎜⎝
√

1 − z2

r2
−

∂

∂y
+

i√
1 − z2

r2
−

∂

∂z

⎞⎟⎟⎠, m =
1√
2

⎛⎜⎜⎝
√

1 − z2

r2
−

∂

∂y
− i√

1 − z2

r2
−

∂

∂z

⎞⎟⎟⎠,

(18)

the only non-vanishing curvature components are found to be

R = 2

(
1

r2
−
− 1

r2
+

)
,

Φ11 =
1
4

(
1

r2
+

+
1

r2
−

)
, Ψ2 =

1
6

(
1

r2
+

− 1
r2
−

)
,

(19)

which are again all constants. Since both terms in (19) are constant, and this is already an
invariantly defined frame to zeroth order, these are the only three non-vanishing Cartan
invariants.

Since this spacetime is a warped product spacetime of type B2, the four invariants
given below are the complete set [13]. These are:

R = 2

(
1

r2
−
− 1

r2
+

)
, r1 =

1
4

(
1

r2
−
+

1
r2
+

)2

, r2 = 0, w2 =
1

36

(
1

r2
−
− 1

r2
+

)3

. (20)

4. The Cylindrical Levi-Civita Solution (1919)

In [3,9], a solution to Einstein’s field equations is presented that serves as the analog
to the Newtonian logarithmic potential. In [41], the CK invariants have already been
computed, and in [42] these invariants were used to show that this solution can be found as
a limiting subcase of the γ (or “Zipoy-Voorhees”) [43,44] solution. Here, for completeness,
we will independently compute the CK invariants.

This spacetime solution has also been of interest as an exterior vacuum solution to
various physical sources, see [41,45]. There has also been interest in global (topological)
properties of this solution as certain parameters (which do no affect local properties) are
related to cosmic strings, see [45–47] for discussion of these properties as they pertain to
this solution, and see [48] for a general review of cosmic strings.
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4.1. Forms of the Metric and Nature of the Coordinates

The line element for this spacetime is given by

ds2 = −e2νdt2 + e−2ν
(

e2λ
(

dρ2 + dz2
)
+ r2dφ2

)
, (21)

in standard cylindrical coordinates, where ν(ρ, z) is a solution to

1
ρ

∂

∂ρ

(
ρ

∂ν

∂ρ

)
+

∂2ν

∂z2 = 0, (22)

and λ is defined, up to a constant of integration, by the differential relation:

dλ = ρ

(
∂ν

∂ρ

2
− ∂ν

∂z

2
)

dr + 2ρν1ν2dz. (23)

Once solved, particular solutions for ν and λ are given by

e−ν =

(
ρ0

ρ

)h
, eλ−ν =

(
ρ

ρ0

)h2−h
, (24)

where h is an arbitrary real constant. Note that, with the form of line element given
by (21), it is possible to choose coordinates, such that ρ0 may be eliminated from the metric,
although this will result in φ not being parameterized from (0, 2π). This will correspond to
a global angular defect discussed in [47,49]. Since the metric is independent of the angular
coordinate, such a reparameterization will not necessarily affect the local classification
given by either CM or CK invariants. Explicitly, we will take this metric to be

ds2 = −ρ2hdt2 + ρ2(h2−h)
(

dρ2 + dz2
)
+ ρ2(1−h)dx2

3, (25)

and use it for all calculations going forward. We note, once again for clarity, that x3 ∈ [0, a]
and a is determined by the specific value of r0 taken above.

Going forward we will take a null frame given by:

l =
1√
2

(
−ρh ∂

∂t
+ ρh2−h ∂

∂ρ

)
, k =

1√
2

(
−ρh ∂

∂t
− ρh2−h ∂

∂ρ

)
,

m =
1√
2

(
ρh2−h ∂

∂z
+ iρh−1 ∂

∂x3

)
, m =

1√
2

(
ρh2−h ∂

∂z
− iρh−1 ∂

∂x3

)
.

(26)

4.2. Curvature Invariants and CK Classification

In the above frame, the only non-vanishing components of curvature are

Ψ0 = Ψ4 =
1
2

h
(

h2 − 1
)

ρ−2(h2−h+1) and Ψ2 = −1
2

h(h − 1)2ρ−2(h2−h+1) . (27)

This frame is invariantly defined and thus these are the zeroth order CK invariants.
Additionally, this frame fixes out all isotropy. Taking the covariant derivatives, the only
non-vanishing terms are

Ckmkm;k = −Cmlml;l =

(
h5 − h

)
ρ−3(1+h2−h)
√

2
,

Ckmkm;l = Ckmkl;m = −Cklml;m = −Cmlml;m = −
(
h2 + h

)
(h − 1)3ρ−3(1+h2−h)

√
2

,

Ckmkl;m = Ckmkl;k = −Ckmml;l = −Cklml;m = − (h − 1)2(h3 − h2 + h
)
ρ−3(1+h2−h)

√
2

,

(28)
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none of which are functionally independent from the zeroth order invariants. Thus, the
algorithm terminates here.

We do note that for certain special cases this spacetime is of type D
(

h = −1, 1
2 , 2

)
[20,42].

In these cases, the algorithm must be approached separately as the frame given is only
invariantly defined when h = −1. Additionally, since the Weyl tensor is now more
algebraically special, there will be boost and spin isotropy remaining at zeroth order. This
means that, in general, one will need to compute higher order derivatives to fully classify
these special cases. Here, we will work each of these three cases explicitly.

When h = −1, the frame given by (25) becomes

l =
1√
2

(
−ρ−1 ∂

∂t
+ ρ2 ∂

∂ρ

)
, k =

1√
2

(
−ρ−1 ∂

∂t
− ρ2 ∂

∂ρ

)
,

m =
1√
2

(
ρ2 ∂

∂z
+ iρ2 ∂

∂x3

)
, m =

1√
2

(
ρ2 ∂

∂z
− iρ2 ∂

∂x3

)
.

(29)

In this frame, the only non-vanishing curvature component is

Ψ2 = 2ρ−6, (30)

where we have one functionally independent term, and remaining isotropy(
α 0
0 α−1

)
, with α ∈ C and

(
0 1
−1 0

)
. (31)

At first order, the non-vanishing derivatives are

Ckmkl;m = Ckmml;k = −Ckmml;l = −Cklml;m = 6
√

2ρ−9, (32)

which are not functionally independent of the zeroth order components. At first order, the
isotropy group is reduced to just(

eiθ 0
0 e−iθ

)
, with θ ∈ R. (33)

The non-vanishing second derivative components are

Ckmkm;mm = Ckmkl;km = Ckmkl;mk = Ckmml;kk = Ckmml;ll = Cklml;lm = Cklml;ml

= Cmlml;mm = −Cklml;mm = −Ckmkl;lm = −Ckmml;mm = −Cklml;km

= −4
5

Ckmkl;ml = −4
5

Ckmml;kl = −4
5

Ckmml;lk = −4
5

Cklml;mk =
48
ρ12 ,

(34)

which do not reduce the above isotropy. Thus, the algorithm stops at second order.
In the following two cases, the functional independence follows exactly as above. At

zeroth order the isotropy is identical, but in both cases, at first order, it is reduced to(
β 0
0 β−1

)
, with β ∈ R. (35)

For h = 1
2 , using the frame:

l =
1√
2

(
−√

ρ
∂

∂t
+
√

ρ
∂

∂x3

)
, k =

1√
2

(
−√

ρ
∂

∂t
−√

ρ
∂

∂x3

)
,

m =
1√
2

(
ρ−1/4 ∂

∂ρ
+ iρ−1/4 ∂

∂z

)
, m =

1√
2

(
ρ−1/4 ∂

∂ρ
− iρ−1/4 ∂

∂z

)
,

(36)
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we have the CK invariants:

Ψ2 =
1
8

ρ−3/2,

Ckmkl;l = Ckmml;m = Ckmml;m = Cklml;k = − 3
16
√

2
ρ−9/4,

Ckmkm;ll = Ckmkl;lm = Ckmkl;ml = Ckmkl;ml = Ckmml;kl = Ckmml;lk

= Ckmml;mm = Ckmml;mm = Cklml;km = Cklml;mk = Cklml;mk = Cmlml;kk

=
4
5

Ckmkl;lm =
4
5

Ckmml;mm =
4
5

Ckmmlmm =
4
5

Cklml;km =
3
16

ρ−3.

(37)

For h = 2, using the frame:

l =
1√
2

(
−ρ2 ∂

∂t
+ ρ2 ∂

∂z

)
, k =

1√
2

(
−ρ2 ∂

∂t
− ρ2 ∂

∂z

)
,

m =
1√
2

(
ρ2 ∂

∂ρ
+

i
ρ

∂

∂x3

)
, m =

1√
2

(
ρ2 ∂

∂ρ
− i

ρ

∂

∂x3

)
,

(38)

we have the CK invariants:

Ψ2 = 2ρ−6,

Ckmkl;l = Ckmml;m = Ckmml;m = Cklml;k = −6
√

2ρ−9,

Ckmkm;ll = Ckmkl;lm = Ckmkl;ml = Ckmkl;ml = Ckmml;kl = Ckmml;lk

= Ckmml;mm = Ckmml;mm = Cklml;km = Cklml;mk = Cklml;mk = Cmlml;kk

=
4
5

Ckmkl;lm =
4
5

Ckmml;mm =
4
5

Ckmml;mm =
4
5

Cklml;kl = 48ρ−12.

(39)

Here, we can see that the h = 1/2 and h = 2 solutions are in fact identical as their CK
invariants can be found to be compatible.

In the case where h = 0, 1, the spacetime is (locally) flat, and, thus, all invariants will
vanish, although globally there are topological properties mentioned above not captured
by this approach.

The only two non-vanishing CM invariants are

w1 = 2
(

h2 − h
)2(

h2 − h + 1
)

ρ−4(h2−h+1), w2 = −3
(

h2 − h
)4

ρ−6(h2−h+1), (40)

which reduces as expected for the special values of h.

4.3. Kasner Generalization

In [18], a generalization of the 1919 solution was given as

ds2 = −r2Ddt2 + t2Adr2 + r2Et2Bdz2 + α2r2Ft2Cdφ2, (41)

which is in general stationary (rather than static). The constants in this solution are related
via the Kasner constraints

A + B + C = A2 + B2 + C2 = 1, D + E + F = D2 + E2 + F2 = 1, (42)

and take specific values given by:

A =
2s + H
S + H

, B =
(2s − 1)(2s + ε(2s − 1))

S + H
, C =

(1 − 2s)(1 + ε(2s − 1))
S + H

,

D =
2s
S

, E =
2s(2s − 1)

S
, F =

1 − 2s
S

,
(43)
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where s is a real constant, ε = ±1, and

H = ε
(

4s2 − 1
)
+ (1 − 2s)2, S = 4s2 − 2s + 1. (44)

Computing the curvature with respect to the null tetrad

l =
1√
2

(
−rD ∂

∂t
+ tA ∂

∂r

)
, k =

1√
2

(
−rD ∂

∂t
− tA ∂

∂r

)
,

m =
1√
2

(
rEtB ∂

∂z
+ iα2rFtC ∂

∂φ

)
, m =

1√
2

(
rEtB ∂

∂z
− iα2rFtC ∂

∂φ

)
,

(45)

we have the non-vanishing Ricci components:

Φ00 = −1
2
(B(D − E) + C(D − F) + A(E + F))t−2+E+Fr−2+B+C,

Φ22 =
1
2
(B + C + E − 3BE − 2CE + F − 2BF − 3CF)r−2+E+Ft−2+B+C,

(46)

and

Ψ0 =
1

2r2t2

(
C(−2 + B + 2C)r2(E+F)

+(C − E + B(3E − 1) + F − 3CF)rE+FtB+C + F(−2 + E + 2F)t2(B+C)
)

,

Ψ2 =
1
2

(
−BCr−2D

t2 +
EFt−2A

r2

)
,

Ψ4 =
1

2r2t2

(
C(−2 + B + 2C)r2(E+F)

+(B + E − 3BE − F + C(3F − 1))rE+FtB+C + F(−2 + E + 2F)t2(B+C)
)

.

(47)

This frame is not canonical, as this spacetime is Petrov type I, and Ψ0 �= Ψ4, but the
boost (

(Ψ0/Ψ4)
1/8 0

0 (Ψ4/Ψ0)
1/8

)
, (48)

will bring it to the canonical form

Ψ′
0 = Ψ′

4 =
√

Ψ0Ψ4,

Ψ′
2 = Ψ2.

(49)

For compactness we will write curvature components of the new canonical frame in
terms of the old frame, where the new frame will be primed and the old frame unprimed. At
zeroth order we have no remaining isotropy and have only two functionally independent
terms. The first order derivatives, shown below, cannot reduce the isotropy further and
contain no new functionally independent terms, and so the algorithm terminates.

Ckmkm;k =
1

2
√

2r3t3

(
2C
(

4 − 3B − 5C + 2BC + C2
)

r3(E+F) + (4(E − F)

+B(1 − 6E + C(7 − 4E − 13F) + 3F) + C(−15 + 14E + C(14 − 17E − 17F)

+23F))r2(E+F)tB+C + (−E + 15F − 7F(E + 2F) + C(4 + E(−3 + 13F)

+F(−23 + 17F)) + B(−4 + E(6 + 4F) + F(−14 + 17F)))rE+Ft2(B+C)

−2F
(

4 − 3E − 5F + 2EF + F2
)

t3(B+C)
)(Ψ4

Ψ0

)3/4
,
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Ckmkm;l = − 1
2
√

2r3t3

(
2C((−1 + C)C + B(−1 + 2C))r3(E+F) + (C(−1 + 2E

+C(2 − 3E − 3F) + F) + B(−1 + C + 2E + F − 3CF))r2(E+F)tB+C

+(E(−1 + 2B + C + F − 3CF) + F(−1 + 2B + C + 2F − 3(B + C)F))rE+Ft2(B+C)

+2F((−1 + F)F + E(−1 + 2F))t3(B+C)
)(Ψ4

Ψ0

)1/4
,

Ckmkl;m =
1

4
√

2r3t3

(
−4C((−1 + C)C + B(−1 + 2C))r3(E+F)

+(−B(−1 + C + 2E + 4CE + F − 5CF) + C(1 + F + C(−2 + E + F)))

×r2(E+F)tB+C + (F(1 + C + (−2 + B + C)F)− E(−1 + C + F − 5CF

+B(2 + 4F)))rE+Ft2(B+C) − 4F((−1 + F)F + E(−1 + 2F))t3(B+C)
)(Ψ4

Ψ0

)1/4
,

Ckmkl;m =
1

4
√

2
r−3+E+Ft−3+B+C((B + C − 2BE + (−2 + C)CE

−BF − C(1 + C)F + BC(−3 + 2E + F))rE+F + 4BCr2(E+F)t−B−C

+(E − CE + 2BE(−1 + F) + F + (−3 + C)EF + B(−2 + F)F − CF(1 + F))

×tB+C + 4EFr−E−Ft2(B+C)
)(Ψ4

Ψ0

)1/4
,

Ckmml;k =
1√
2

r−3(1+D)t−3(1+A)
(

EFr3Dt3 + BCr3t3A

+(−1 + B + C)EFr1+2Dt2+A + BC(−1 + E + F)r2+Dt1+2A
)(Ψ4

Ψ0

)1/4
,

Ckmml;l =
r−3(1+D)t−3(1+A)

√
2
(

Ψ4
Ψ0

)1/4

(
−EFr3Dt3 + BCr3t3A

+(−1 + B + C)EFr1+2Dt2+A − BC(−1 + E + F) r2+Dt1+2A
)

,

Cklml;m =
r−3+E+Ft−3+B+C

4
√

2
(

Ψ4
Ψ0

)1/4 (−(B + C − 2BE + (−2 + C)CE − BF − C(1 + C)F

+BC(−3 + 2E + F))rE+F + 4BCr2(E+F)t−B−C + (E − CE + 2BE(−1 + F)

+F + (−3 + C)EF + B(−2 + F)F − CF(1 + F))tB+C − 4EFr−E−Ft2(B+C)
)

,

Cklml;m =
1

4
√

2r3t3
(

Ψ4
Ψ0

)1/4

(
−4C((−1 + C)C + B(−1 + 2C))r3(E+F)

+(B(−1 + C + 2E + 4CE + F − 5CF)− C(1 + F + C(−2 + E + F)))r2(E+F)tB+C

+(F(1 + C + (−2 + B + C)F)− E(−1 + C + F − 5CF + B(2 + 4F)))rE+Ft2(B+C)

+4F((−1 + F)F + E(−1 + 2F))t3(B+C)
)

,
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Cmlml;k =
1

2
√

2r3t3
(

Ψ4
Ψ0

)1/4

(
−2C((−1 + C)C + B(−1 + 2C))r3(E+F)

+(C(−1 + 2E + C(2 − 3E − 3F) + F) + B(−1 + C + 2E + F − 3CF))r2(E+F)tB+C

+(−E(−1 + 2B + C + F − 3CF) + F(1 − 2B − C − 2F + 3(B + C)F))rE+Ft2(B+C)

+2F((−1 + F)F + E(−1 + 2F))t3(B+C)
)

,

Cmlml;l =
1

2
√

2r3t3
(

Ψ4
Ψ0

)3/4

(
2C
(

4 − 3B − 5C + 2BC + C2
)

r3(E+F)

+(−4E + 4F + B(−1 + 6E − 3F + C(−7 + 4E + 13F)) + C(15 − 14E − 23F

+C(−14 + 17E + 17F)))r2(E+F)tB+C + (−E + 15F − 7F(E + 2F)
+C(4 + E(−3 + 13F) + F(−23 + 17F)) + B(−4 + E(6 + 4F)

+F(−14 + 17F)))rE+Ft2(B+C) + 2F
(

4 − 3E − 5F + 2EF + F2
)

t3(B+C)
)

.

(50)

Here, the non-vanishing CM invariants are:

r1 =
√

2r3 = −1
2
(B + C + E − 3BE − 2CE + F − 2BF − 3CF)

×(B(D − E) + C(D − F) + A(E + F))r2(E+F−2)t2(B+C−2),

w1 =
1

2r4t4

(
3
(

BCr2(E+F) − EFt2(B+C)
)2

+
(

C(B + 2C − 2)r2(E+F)

+ (C − E + B(3E − 1) + F − 3CF)rE+FtB+C + F(E + 2F − 2)t2(B+C)
)

×
(

C(B + 2C − 2)r2(E+F) + (B + E − 3BE − F + C(3F − 1))rE+FtB+C+

+F(E + 2F − 2)t2(B+C)
))

,

w2 =
3

4r6t6

((
BCr2(E+F) − EFt2(B+C)

)3
−
(

BCr2(E+F) − EFt2(B+C)
)

×
(

C(−2 + B + 2C)r2(E+F) + (C − E + B(−1 + 3E)

+F − 3CF)rE+FtB+C + F(−2 + E + 2F)t2(B+C)
)

×
(

C(−2 + B + 2C)r2(E+F) + (B + E − 3BE − F + C(−1 + 3F))rE+FtB+C

+F(−2 + E + 2F)t2(B+C)
))

,

m1 =
1
4
(B(E − D) + C(F − D)− A(E + F))

×(−E − F + B(−1 + 3E + 2F) + C(−1 + 2E + 3F))r4(−2+E+F)t4(−2+B+C)

×
(
−EFr2Dt2 + BCr2t2A

)
,
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m2 =
1
8
(B + C + E − 3BE − 2CE + F − 2BF − 3CF)

×(B(D − E) + C(D − F) + A(E + F))r2(−4+E+F)t2(−4+B+C)

×
(
−
(

BCr2(E+F) − EFt2(B+C)
)2

−
(

C(−2 + B + 2C)r2(E+F)

+(C − E + B(−1 + 3E) + F − 3CF)rE+FtB+C + F(−2 + E + 2F)t2(B+C)
)

×
(

C(−2 + B + 2C)r2(E+F) + (B + E − 3BE − F + C(−1 + 3F))rE+FtB+C

+F(−2 + E + 2F)t2(B+C)
))

,

m3 =
1
16

r2(E+F−4)t2(B+C−4)(−2(B(E − D) + C(F − D)− A(E + F))

×(−E − F + B(−1 + 3E + 2F) + C(−1 + 2E + 3F))r−4Dt−4A
(

EFr2Dt2 − BCr2t2A
)2

+(B + C + E − 3BE − 2CE + F − 2BF − 3CF)2

×
(

2C2r2(E+F) + CrE+F
(
(B − 2)rE+F + (1 − 3F)tB+C

)
+tB+C

(
B(3E − 1)rE+F + F

(
rE+F + 2(F − 1)tB+C

)
+ E

(
−rE+F + FtB+C

)))2

+(B(D − E) + C(D − F) + A(E + F))2

×
(

2C2r2(E+F) + CrE+F
(
(B − 2)rE+F + (3F − 1)tB+C

)
+tB+C

(
−B(3E − 1)rE+F − FrE+F + 2(F − 1)FtB+C + E

(
rE+F + FtB+C

)))2
)

,

m5 =
1
8

r2(E+F−4)t2(B+C−4)
(

1
2
(B(E − D) + C(F − D)− A(E + F))

×(−E − F + B(3E + 2F − 1) + C(2E + 3F − 1))r−2−6Dt−2−6A
(

BCr2t2A − EFr2Dt2
)3

+
1
2
(B + C + E − 3BE − 2CE + F − 2BF − 3CF)2r2(E+F−2)t2(B+C−2)

×
(

EFr2Dt2 − BCr2t2A
)(

2C2r2(E+F) + CrE+F
(
(B − 2)rE+F + (1 − 3F)tB+C

)
+tB+C

(
B(3E − 1)rE+F + F

(
rE+F + 2(F − 1)tB+C

)
+ E

(
−rE+F + FtB+C

)))2

+
1
2
(B(E − D) + C(F − D)− A(E + F))(−E − F + B(3E + 2F − 1)

+C(2E + 3F − 1))r−2(1+D)t−2(1+A)
(
−EFr2Dt2 + BCr2t2A

)(
2C2r2(E+F)

+CrE+F
(
(B − 2)rE+F + (1 − 3F)tB+C

)
+ tB+C

(
B(3E − 1)rE+F

+F
(

rE+F + 2(−1 + F)tB+C
)
+ E

(
−rE+F + FtB+C

)))
×
(

2C2r2(E+F) + CrE+F
(
(−2 + B)rE+F + (3F − 1)tB+C

)
+ tB+C

(
−B(3E − 1)rE+F

−FrE+F + 2(F − 1)FtB+C + E
(

rE+F + FtB+C
)))

−1
2
(B(D − E) + C(D − F) + A(E + F))2r2(−2+E+F)t2(−2+B+C)

×
(
−EFr2Dt2 + BCr2t2A

)(
2C2r2(E+F) + CrE+F

(
(−2 + B)rE+F + (−1 + 3F)tB+C

)
+tB+C

(
−B(3E − 1)rE+F − FrE+F + 2(F − 1)FtB+C + E

(
rE+F + FtB+C

)))2
)

,

(51)
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where we point out that the vanishing of the Ricci invariant r2 and the mixed invariant m4
are useful for identifying this spacetime.

5. The Longitudinal, Quadrantal, and Oblique Levi-Civita Solutions (1918)

There are three classes of solutions that are less commonly discussed in the literature
than the proceeding two we presented. These solutions are derived in [5,6,50] and all three
are reviewed and summarized in [6]. These three papers are not published in English and
the latter two remain nearly uncited directly, thus we will carefully review these solutions
in more depth. Throughout this section we will also present the non-vanishing I invariants
(see [14]) as these scalars contain information not present in the CM invariants, due to
being constructed from derivatives of the Weyl tensor.

5.1. The Longitudinal Solutions

Here we characterize the solutions described in [50], which Levi-Civita refers to as
longitudinal solutions, described by the metric

ds2 = −(μ − εη)dt2 +
dσ2

η2 +
dη2

K0η4(μ − εη)
, (52)

where dσ2 is the line element for a two-dimensional space with constant Gaussian curvature
and μ, η are coordinates which run over intervals such that the spacetime is consistent with
the chosen signature convention, μ is a real constant, K0 is a positive constant, and ε = ±1.

This solution can be split into three distinct subcases depending on the sign of μ. Here,
we will move to work with the coordinates given by [4], as they are closer to those typically
employed in modern references and explicitly reduce the number of free constants to one.
The three forms given are

(μ > 0) : ds2 = −
(

1 − 2m
r

)
dt2 +

(
1 − 2m

r

)−1
dr2 + r2

(
dθ2 + sin(θ)2dφ2

)
, (53)

where m > 0 and 2m < r < ∞, or m < 0 and 0 < r < ∞,

(μ < 0) : ds2 = −
(

2m
z

− 1
)

dt2 +

(
2m
z

− 1
)−1

dz2 + z2
(

dr2 + sinh(r)2dφ2
)

, (54)

where m > 0 and 0 < z < 2m,

(μ = 0) : ds2 = −dt2

z
+ zdz2 + z2

(
dr2 + r2dφ2

)
, (55)

where z > 0.

For completeness, we note that (55) is not the only solution for μ = 0 (we also note
that the degenerate static vacuum fields are also listed in Table 2–3.1 in [51], in which
Equation (53) is classified as “A1”, (54) is classified as “A2”, and (55) is classified as “A3”,
where b = 2m). In particular, this solution takes Gaussian flat two-spaces to be a two-
dimensional plane. An equally valid choice would be to take these two spaces to be
cylinders,

ds2 = −dt2

z
+ zdz2 + z2

(
dρ2 + a2dφ2

)
, (56)

but these solutions are only different globally, and, thus, both the CK algorithm and CM
invariants will not be able to detect this difference.

The solution given by (53) is the Schwarzschild solution which has been invariantly
characterized via the CK algorithm in [10], via CM invariants in [52], and via I invariants
as a subcase in [14]. The solutions given by (54) and (55) are distinct and, as such, we will
explicitly state CK and scalar invariants.
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For (54), the null frame:

l =
1√
2

⎛⎝−
√

2m
z

− 1
∂

∂t
+

1√
2m
z − 1

∂

∂z

⎞⎠,

k =
1√
2

⎛⎝−
√

2m
z

− 1
∂

∂t
− 1√

2m
z − 1

∂

∂z

⎞⎠,

m =
1√
2

(
z

∂

∂r
+ iz sinh(r)

∂

∂φ

)
, m =

1√
2

(
z

∂

∂r
− iz sinh(r)

∂

∂φ

)
,

(57)

gives the only non-vanishing curvature component to be

Ψ2 = mz−3. (58)

This frame is, therefore, invariant to zeroth order, and the remaining isotropy is given
by (31). The independent, first order, non-zero derivatives (components) are

Ckmkl;m = Ckmml;k = −Ckmml;l = −Cklml;m =
3m√
2z4

√
2m
z

− 1, (59)

which are not functionally independent of the zeroth order components. At first order, the
isotropy group is reduced to just (33). Since the isotropy group has been reduced at first
order, the algorithm proceeds to second order, where the independent non-vanishing terms
are

Ckmkl;lm = Ckmml;mm = Ckmml;mm = Cklml;km = −Ckmkm;mm = −Ckmkl;km = −Ckmkl;mk

= −Ckmml;kk = −Ckmml;ll = −Cklml;lm = −Cklml;ml = −Cmlml;mm =
3m(2z − 4m)

z6 ,

Ckmkl;ml = Ckmml;kl = Ckmml;lk = Cklml;mk =
3m(2z − 5m)

z6 ,

(60)

which possess the same isotropy and produces no new functionally independent terms.
Thus the zeroth, first, and second order terms are the CK invariants needed to fully
characterize this spacetime.

In this case, the non-vanishing CM invariants are:

w1 = − 1
6
√

w2
= − z3

m
, (61)

and the non-vanishing I invariants are

I1 = 48
m2

z6 , I3 = 720
m2(2m − z)

z9 , I5 = 82944
m4(2m − z)

z15 . (62)

We note in this case that the I3 and I5 invariants both vanish for the extremal value
z = 2m, which indicates this hypersurface is invariantly defined in much the same way
that the Schwarzschild solution’s event horizon is.

For the spacetime given by (55), the algorithm proceeds identically to the preceding
case with the null frame given by

l =
1√
2

(
− 1√

z
∂

∂t
+
√

z
∂

∂z

)
, k =

1√
2

(
− 1√

z
∂

∂t
−
√

z
∂

∂z

)
,

m =
1√
2

(
z

∂

∂r
+ izr

∂

∂φ

)
, m =

1√
2

(
z

∂

∂r
− izr

∂

∂φ

)
,

(63)
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which gives CK invariants at zeroth, first, and second order as:

Ψ2 =
1
2

z−3,

Ckmkl;m = Ckmml;k = −Ckmml;l = −Cklml;m =
3

2
√

2
z−9/2,

Ckmkm;mm = Ckmkl;km = Ckmkl;mk = Ckmml;kk = Ckmml;ll = Cklml;lm = Cklml;ml

= Cmlml;mm = −Ckmkl;lm = −Ckmml;mm = −Ckmml;mm = −Cklml;km

= −4
5

Ckmkl;ml = −4
5

Ckmml;kl = −4
5

Ckmml;lk = −4
5

Cklml;mk =
3
z6 .

(64)

A particularly interesting remark is that this special case coincides (at least locally)
with (21) where h = −1.

We also have the following non-vanishing CM invariants:

w1 =
3

2z6 , w2 = − 3
4z9 , (65)

and I invariants
I1 =

12
z6 , I3 =

180
z9 , I5 =

5184
z15 . (66)

5.2. Quadrantal Solutions

In [5], Levi-Civita gave a second set of vacuum solutions. These are similar to, but
distinct from, the longitudinal solutions (which he called quadrantal solutions). He gave
the following line element

ds2 = − e2ζ(ψ)

ξ2 dt2 +
1

K0ξ2

(
dξ2

Ξ(ξ)
+ Ξ(ξ)dφ2 + dψ2

)
, (67)

where Ξ(ξ) = μξ3 + εξ2, K0 is a positive constant, μ is a real constant, and ε = ±1. Note
that the coordinate range of ξ is restricted to the subset of R+ such that Ξ(ξ) > 0. The
undetermined function ζ(ψ) is defined by the differential equation

∂2

∂ψ2 eζ(ψ) + μeζ(ψ) = 0, (68)

which will have solutions of the form

μ > 0 : eζ(ψ) = cos(
√

μψ),

μ < 0 : eζ(ψ) = cosh(
√
|μ|ψ),

μ = 0 : eζ(ψ) = ψ.

(69)

Working in the null frame

l =
1√
2

(
− eζ(ψ)

ξ

∂

∂t
+

1√
K0ξ

∂

∂ψ

)
, k =

1√
2

(
− eζ(ψ)

ξ

∂

∂t
− 1√

K0ξ

∂

∂ψ

)
,

m =
1√
2

⎛⎝ 1
ξ
√

K0Ξ(ξ)
∂

∂ξ
+

i
ξ

√
Ξ(ξ)
K0

∂

∂ψ

⎞⎠, m =
1√
2

⎛⎝ 1
ξ
√

K0Ξ(ξ)
∂

∂ξ
− i

ξ

√
Ξ(ξ)
K0

∂

∂ψ

⎞⎠,

(70)

the only non-vanishing curvature component is

Ψ2 =
1
2

εK0ξ3, (71)
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which is in an invariant form to first order. The remaining isotropy is given by (31). The
independent first derivative components are

Ckmkl;l = Ckmml;m = Ckmml;m = Cklml;k =
3εK

3
2
0 ξ4

2
√

2

√
μ + εξ, (72)

which are not functionally independent of Ψ2 and the isotropy is reduced to (35). The
second derivative components are

Ckmkm;ll = Ckmkl;lm = Ckmkl;ml = Ckmkl;ml = Ckmml;kl = Ckmml;lk = Ckmml;mm

= Ckmml;mm = Cklml;km = Cklml;mk = Cklml;mk = Cmlml;kk = 3εK2
0ξ5(μ + εξ),

Ckmkl;lm = Ckmml;mm = Ckmml;mm = Cklml;km =
3
4

εK2
0ξ5(4μ + 5εξ),

(73)

which have the same isotropy and introduce no new functionally independent terms. Thus
the algorithm terminates here. In the special case where μ = 0 and ε = 1, this solution will
coincide with (21) where h = 1/2 or h = 2.

In this case, the non-vanishing CM invariants are given by

w1 =
3
2

K2
0ξ6, w2 = −3

4
εK3

0ξ9, (74)

and the non-vanishing I invariants are given by

I1 = 12K2
0ξ6, I3 = 180K3

0ξ8(μ + εξ), I5 = 5184K5
0ξ14(μ + εξ). (75)

Once again the derivative I invariants will vanish at the extremal value of the coordi-
nate ξ (if that coordinate is restricted due to the signs of μ and ε).

We note that, despite this solution appearing very similar to the longitudinal solu-
tions, the fact that the first order isotropy groups are distinct guarantees that these are
inequivalent solutions.

5.3. Oblique Solutions

In [6], a third vacuum solution was given which Levi-Civita described as oblique. This
solution is characterized by the line element:

ds2 = − H(η)

(ξ + η)2 dt2 +
1

K0ξ2

(
dξ2

Ξ(ξ)
+

dη2

H(η)
+ Ξ(ξ)dφ2

)
, (76)

where K0 is a positive constant and H and Ξ are given by

Ξ(ξ) = 4ξ3 − g2ξ − g3, H(η) = 4η3 − g2η + g3, (77)

with g2 and g3 being real numbers. Working in the tetrad

l =
1√
2

(
−
√

g3 − g2η + 4η3

η + ξ

∂

∂t
+

1
(η + ξ)

√
K0(g3 − g2η + 4η3)

∂

∂η

)
,

k =
1√
2

(
−
√

g3 − g2η + 4η3

η + ξ

∂

∂t
− 1

(η + ξ)
√

K0(g3 − g2η + 4η3)

∂

∂η

)
,

m =
1√
2K0

(
1

(η + ξ)
√
(−g3 − g2ξ + 4ξ3)

∂

∂ξ
+ i

√
−g3 − g2ξ + 4ξ3

(η + ξ)

∂

∂φ

)
,

m =
1√
2K0

(
1

(η + ξ)
√
(−g3 − g2ξ + 4ξ3)

∂

∂ξ
− i

√
−g3 − g2ξ + 4ξ3

(η + ξ)

∂

∂φ

)
,

(78)
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the only non-vanishing curvature component is

Ψ2 = 2K0(η + ξ)3. (79)

This frame is canonical and has remaining isotropy given by (31) as before. The first
order derivative components are

Ckmkl;l = Ckmml;m = Ckmml;m = Cklml;k = 3
√

2
√

K3
0(η + ξ)6(−g3 − g2ξ + 4ξ3),

Ckmml;l = Cklml;m = −Ckmkl;m = −Ckmml;k = 3
√

2
√

K3
0(η + ξ)6(g3 − g2η + 4η3).

(80)

These terms introduce one new functionally independent term. Additionally, since
the derivatives are mixed between those seen in (59) and (72), we see that all isotropy will
be fixed out at first order. The second order derivatives are

Ckmkm;ll = Ckmkl;lm = Ckmkl;ml = Ckmml;mm = Ckmml;mm = Cklml;km = Cklml;mk = Cmlml;kk

= 12K2
0(η + ξ)3

(
−g3 − g2ξ + 4ξ3

)
,

Ckmkm;mm = Ckmkl;km = Ckmkl;mk = Ckmml;kk = Ckmml;ll = Cklml;lm = Cklml;ml = Cmlml;mm

= 12K2
0(η + ξ)3

(
g3 − g2η + 4η3

)
,

Cklml;mm = Cklml;mm = Cmlml;km = Cmlml;mk = Cklml;lk = Cklml;kl = Ckmml;ml = Ckmml;lm

= −Ckmkm;lm = −Ckmkm;mm = −Ckmkl;kl = −Ckmkl;lk

= −Ckmml;km = −Ckmkl;mm = −Ckmml;mk = −Ckmkl;mm

=
3
2

Ckmkl;ll =
3
2

Ckmml;lm =
3
2

Ckmml;ml =
3
2

Cklml;mm

= −3
2

Ckmkl;mm = −3
2

Ckmml;km = −3
2

Ckmml;mk = −3
2

Cklml;kk

= 12K2
0(η + ξ)3

√
(g3 − g2η + 4η3)(−g3 − g2ξ + 4ξ3),

Ckmkl;lm = Ckmml;mm = Ckmml;mm = Cklml;km

= 3K2
0(η + ξ)3

(
−6g3 + 3g2η − 3g2ξ − 16η3 + 12ηξ2 + 20ξ3

)
,

Ckmkl;ml = Ckmml;kl = Ckmml;lk = Cklml;mk

= 3K2
0(η + ξ)3

(
−6g3 + 3g2η − 3g2ξ + 16ξ3 − 12ξη2 − 20η3

)
,

(81)

which introduce no new functionally independent terms, and, thus, the algorithm stops
here.

The non-vanishing CM invariants are

w1 = − 1√
6

w2/3
3 = 24K2

0(η + ξ)6, (82)

and the non-vanishing I invariants are

I1 = 192K0(η + ξ), I3 = −2880K3
0(η + ξ)7

(
g2 − 4

(
η2 − ηξ + ξ2

))
,

I5 = −1327104K5
0(η + ξ)13

(
g2 − 4

(
η2 − ηξ + ξ2

))
.

(83)

Note that there are cases where the I invariants will vanish and detect some special
surface, although the physical meaning of these surfaces has yet to be understood.

6. Conclusions

In this paper, we discussed a number of historical solutions originally presented by
Tullio Levi-Civita, outlining these solutions in a modern fashion. We also presented two
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different invariant characterizations of these solutions, using both the CK algorithm and
CM invariants. As these methods are fully coordinate invariant they present a unique
method of identifying these solutions for future work.

The CK algorithm is used here to generate invariantly defined frames, along with
curvature components projected along those frames. These invariant quantities are used
to classify these spacetimes and provide insight into certain special cases which can now
be seen to be identical. The CK invariants are of particular interest, as this method will
extend to higher dimensional generalizations of these solutions in a natural way [19,53].
This paper should also serve as a useful reference for those who want to learn to use this
algorithm in their own work, as the numerous cases presented here allow for one to see
how the algorithm is applied under a number of different circumstances.

The CM invariants, and in some cases I invariants, for these solutions are also con-
structed. These invariants provide a coframe independent classification of these solutions
(to zeroth order), and also offer a useful characterization in cases where the CK invariants
become complicated. In particular, the vanishing of certain invariants can be used to
distinguish solutions that might otherwise appear deceivingly similar. The I invariants are
also of interest, as there are cases in which these invariants vanish for certain coordinate
values. This indicates that there may be interesting, and invariantly defined, surfaces
present in these solutions which have not yet been analyzed.

As gravitational wave astronomy moves into the limelight of modern physics, solu-
tions to Einstein’s General Theory of Relativity have become increasingly important as a
field of study even as an example for proof-by-contradiction. The high non-linearity of Ein-
stein’s field equations impose difficulties on finding solutions and an even greater difficulty
in the interpretation of them. It is possible that invariantly analyzing these solutions could
prove useful in understanding gravitational wave signals from novel sources. Though the
1917 Levi-Civita solution was not a wormhole, cylindrical symmetry seems to be a way
to avoid topological censorship and consequently give hope to obtaining phantom-free
wormholes, asymptotically flat in the radial direction [45]. Of interest is the possibility
that Levi-Civita’s metric could provide the pathway towards the engineering of artificial
gravitational fields for human spaceflight.
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Abstract: The latest released data from Planck in 2018 put up tighter constraints on inflationary
parameters. In the present article, the in-built symmetry of the non-minimally coupled scalar-tensor
theory of gravity is used to fix the coupling parameter, the functional Brans–Dicke parameter, and the
potential of the theory. It is found that all the three different power-law potentials and one exponential
pass these constraints comfortably, and also gracefully exit from inflation.

1. Introduction

The standard (FLRW) model of cosmology based on the basic assumption of homogeneity and
isotropy, known as the ‘cosmological principle’, has successfully been able to explain several very
important issues in connection with the evolution of the universe. First of all, it predicts the observed
expansion of the universe being supported by the Hubble’s law. It also postulates the existence of
cosmic microwave background radiation (CMBR), formed since recombination when the electrons
combined to form atoms, allowing photons to free stream, with extreme precession, being verified by
Penzias and Wilson for the first time [1]. It further predicts with absolute precession the abundance of
the light atomic nuclei (

4He
H ∼ 0.25,

2D
H ∼ 10−3,

3He
H ∼ 10−4,

7Li
H ∼ 10−9, by mass and not by number)

observed in the present universe [2–4]. Finally, assuming the presence of the seeds of perturbation
in the early universe, it can explain the observed present structure of the universe. Despite such
tremendous success, the model inevitably suffers from a plethora of pathologies. The problems at a
glance are the following [5,6].

1. ‘The singularity problem’: Extrapolating the FLRW solutions back in time one encounters
an unavoidable singularity, since all the physical parameters viz. the energy density (ρ),
the thermodynamic pressure (p), the Ricci scalar (R), the Kretschmann scalar (RαβγδRαβγδ) etc. diverge.

2a. ‘The flatness problem’: The model does not provide any explanation to the observed value of
the density parameter Ω ≈ 1, which depicts that the universe is spatially flat.

2b. ‘The horizon problem’: It also can not provide any reason to the observed tremendous isotropy
of the CMBR being split in 1.4 × 104 patches of the sky, that were never causally connected before
emission of the CMBR.

2c. ‘The structure formation problem’: It does not also provide any clue to the seeds of perturbation
responsible for the structure formation.

3. ‘The dark energy problem’: Finally, the standard FLRW model does not fit the redshift versus
luminosity-distance curve plotted in view of the observed SN1a (Supernova type a) data.

In connection with the first problem, viz. the so called ‘Big-Bang singularity’, and also to
understand the underlying physics of ‘Black-Hole’ being associated with Schwarzschild singularity,
it has been realized long ago that ’General Theory of Relativity’ (GTR) must have to be replaced
by a quantum theory of gravity when and where gravity is strong enough. However, GTR is not
renormalizable and a renormalized theory requires to include higher-order curvature invariant terms in
the gravitational action [7]. Despite serious and intense research over several decades and formulation
of new high energy physical theories like superstring [8,9] and supergravity [10,11] theories, a viable
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quantum theory of gravity is still far from being realized. In connection with last problem, a host of
research is in progress over last two decades [12]. It has been realized that to fit the observed redshift
versus luminosity-distance curve, it is either required to take into account some form of exotic matter
in addition to the barotropic fluid (ordinary plus the cold dark matter) which violates the strong energy
condition (ρ + p ≥ 0, ρ + 3p ≥ 0), and is dubbed as ‘dark energy’ (since it interacts none other than
with the gravitational field) or to modify the theory of gravity by including additional curvature scalars
in the Einstein–Hilbert action, known as ‘the modified theory of gravity’ [12]. It has been observed
that both the possibilities lead to present accelerated expansion of the universe. The problem is thus
rephrased as: why the universe undergoes an accelerated expansion at present? The pathology 2,
in connection with the flatness, horizon and structure formation problems has however been solved
under the hypothesis called ‘Inflation’ [5], which is our present concern.

Under the purview of cosmological principle, i.e., taking into account Robertson–Walker
line element,

ds2 = −dt2 + a2(t)
[

dr2

1 − kr2 + r2(dθ2 + sin2θdφ2)

]
, (1)

the co-moving distance (the present-day proper distance) traversed by light between cosmic time

t1 and t2 in an expanding universe may be expressed as, d0(ti, t f ) = a0
∫ t f

ti
dt

a(t) , where a(t) is called
the scale factor. The co-moving size of the particle horizon at the last-scattering surface of CMBR
(a f = alss) corresponds to d0 ∼ 100 Mpc, or approximately 10 (one degree) on the CMB sky today. In the
decelerated radiation dominated era of the standard model of cosmology (FLRW model), for which
a ∝

√
t the integrand, (ȧ)−1 ∼ 2

√
t decreases towards the past, and there exists a finite co-moving

distance traversed by light since the Big Bang (ai → 0), called the particle horizon. The hypothesis
of inflation [13,14] postulates a period of accelerated expansion, ä > 0, in the very early universe
(t ∼ 10−36 s) , prior to the hot Big-Bang era, administering certain initial conditions [15–21]. During a
period of inflation e.g., a de-Sitter universe (a ∝ eΛt) driven by a cosmological constant (say), (ȧ)−1 ∼
(ΛeΛt)−1 increases towards the past, and hence the integral diverges as (ai → 0). This allows an
arbitrarily large causal horizon dependent only upon the duration of the accelerated expansion.
Assuming that the universe inflates with a finite Hubble rate Hi, (instead of a constant exponent Λ)

ending with Hf < Hi, we may have, d0(ti, t f ) > ( ai
a f
)H−1

i (eN − 1) where N = ln
( a f

ai

)
is measured in

terms of the logarithmic expansion (or ‘e-folds’), and describes the duration of inflation. It has been
found that a 40–60 e-folds of inflation can encompass our entire observable universe today, and thus
solves the horizon and the flatness problem discussed earlier. In some situations, e-fold may range
between 25 ≤ N ≤ 70, depending on the model under consideration.

A false vacuum state can drive an exponential expansion, corresponding to a de-Sitter space-time
with a constant Hubble rate on spatially-flat hypersurfaces. However, a graceful exit from such
exponential expansion requires a phase transition to the true vacuum state. A second-order
phase transition [22,23], under the slow roll condition of the scalar field (that can also drive the
inflation instead of the cosmological constant), potentially leads to a smooth classical exit from the
vacuum-dominated phase. Further, the quantum fluctuations of the scalar field, which essentially
are the origin of the structures seen in the universe today, provides a source of almost scale-invariant
density fluctuations [24–28], as detected in the CMBR. Accelerated expansion and primordial
perturbations can also be produced in some modified theories of gravity (e.g., [13,29] and also in a host
of models presently available in the literature), which introduce additional non-minimally coupled
degrees of freedom. Such inflationary models are conveniently studied by transforming variables
to the so-called ‘Einstein frame’, in which Einstein’s equations apply with minimally coupled scalar
fields [30,31], which we shall deal with, in the present manuscript.

Non-minimal coupling with the scalar field φ is unavoidable in a quantum theory, since such
coupling is generated by quantum corrections, even if it is primarily absent in the classical action.
Particularly, it is required by the renormalization properties of the theory in curved space-time
background. Horndeski’ theory [32] presents the most general scalar-tensor theory of gravity ensuring
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no more than second-order field equations to avoid ghost instability due to Ostrogradski theorem.
Recently, in view of a general conserved current, obtained under suitable manipulation of the field
Equations [33–36], a non-minimally coupled scalar-tensor theory of gravity, being a special case of
Horndeski’ model, has been studied extensively in connection with the cosmological evolution, starting
from the very early stage (Inflationary regime) to the late-stage (presently accelerated matter-dominated
era) via a radiation dominated era [37]. It has been found that such a theory admits a viable inflationary
regime, since the inflationary parameters viz. the scalar-tensor ratio (r), and the spectral index ns

lie well within the limits of the constraints imposed by Planck’s data, released in 2014 [38] and in
2016 [39]. Furthermore, the model passes through a Friedmann-like radiation era (a ∝

√
t, q = 1) and

also an early stage of long Friedmann-like decelerating matter dominated era (a ∝ t
2
3 , q = 1

2 ) till z ≈ 4,
where a, q and z denote the scale factor, the deceleration parameter and the red-shift respectively.
The universe was also found to enter a recent accelerated expansion at a red-shift, z ≈ 0.75, which is
very much at par with recent observations. Further, the present numerical values of the cosmological
parameters obtained in the process are also quite absorbing, since it revealed the age of the universe
(13.86 < t0 < 14.26) Gyr, the present value of the Hubble parameter (69.24 < H0 < 69.96)
Km.s−1Mpc−1, so that 0.991 < H0t0 < 1.01 fit with the observation with appreciable precision.
Numerical analysis also reveals that the state finder {r, s} = {1, 0}, which establishes the
correspondence of the present model with the standard ΛCDM universe. Last but not the least
important outcome is: considering the CMBR temperature at decoupling (z ∼ 1080) to be 3000 K,
required for recombination, its present value is found to be 2.7255 K, which again fits the observation
with extremely high precision. Thus, non-minimally coupled scalar-tensor theory of gravity appears to
serve as a reasonably fair candidate for describing the evolution history of our observable universe,
beyond quantum domain.

In the mean time, new Planck’s data have been released [40,41], which imposed even tighter
constraints on the inflationary parameters. In this manuscript, we therefore pose if the theory [37]
admits these new constraints. However, earlier we considered a particular form of coupling parameter
along with the potential in the form V(φ) = V0φ4 − Bφ2, where, V0 and B are constants [37].
Here instead, we choose different forms of the coupling parameters and also different potentials
to study the inflationary regime. In Section 2, we describe the model, write down the field equations,
find the parameters involved in the theory in view of a general conserved current. We also present
the scalar-tensor equivalent form of the action in Einstein’s frame to find the inflationary parameters.
In Section 3, we choose different forms of the coupling parameters and associated potentials to test the
viability of the model in view of the latest released data from Planck [40,41]. We conclude in Section 4.

2. The Model, Conserved Current, Scalar-Tensor Equivalence and Inflationary Parameters

As mentioned, here we concentrate upon pure non-minimally coupled scalar-tensor theory of
gravity, for which the action is expressed in the form,

A =
∫ [

f (φ)R − ω(φ)

φ
φ,μφ

,μ − V(φ)−Lm

]√
−gd4x, (2)

where, Lm is the matter Lagrangian density, f (φ) is the coupling parameter, while, ω(φ) is the variable
Brans–Dicke parameter. As mentioned, action (2) is a special case of the generalized Horndeski’
model [32] having an action SH given by,

SH =
∫

d4x
√
−gLH =

∫
d4x

√
−g (L2 + L3 + L4 + L5) , (3)
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where, LH is the Lagrangian density which is the sum of a quadratic, cubic, quartic and quintic terms:

L2 = K(φ, X); (4a)

L3 = −G3(φ, X)�φ; (4b)

L4 = G4(φ, X)R + G4X [(�φ)2 − (∇μ∇νφ)2]; (4c)

L5 = G5(φ, X)Gμν∇μ∇νφ − G5X
6

[(�φ)3 − 3(�φ)(∇μ∇νφ)2 + 2(∇μ∇νφ)3]. (4d)

In the above, K and G3,4,5 are generic functions of φ and X, while, the kinetic term X := − ∂μφ∂μφ
2 ,

R is the Ricci tensor, Gμν is the Einstein tensor, (∇μ∇νφ)2 = ∇μ∇νφ∇μ∇νφ and GiX = ∂Gi
∂X . It is

important to mention that, gravity becomes dynamical only through mixing with a scalar field,
a phenomenon dubbed as kinetic gravity braiding. General relativity is recovered by setting K = G3 =

G5 = 0 and G4 =
M2

p
2 . Note that, when G4 =

M2
p

2 , L4 reduces to the Einstein–Hilbert term. We also
obtain a non minimal coupling in the form f (φ)R from L4, by setting G4 = f (φ). The Horndeski
Theory and beyond, have been studied by numerous people from different perspectives [42–50]. In the
context of inflation, the generalised (kinetically driven and potentially driven slow-roll) G-inflation has
been studied to some details, although there had been no attempt to fit inflationary parameters with
the observed data [42]. Additionally, Higgs G-inflation [43], inflation with Scalar-Tensor Horndeski
Model [44] and K-Essence non-minimally coupled Gauss–Bonnet invariant for inflation [45], appear
in the literature, as some Special cases of Horndeski model, since, it is extremely difficult to make a
general study involving all the terms appearing in the Horndeski model. Likewise, present model (2)
may be treated as a special case of the same, which may be obtained under the choice, L2 = K(X, φ) =

K(φ)X − V(φ), where, K(φ) = 2 ω(φ)
φ , G3 = 0, G4 = f (φ), G4X = 0, and G5 = 0, and may be dubbed

as the potential-driven G-inflation.
The field equations corresponding to action (2) are,

(
Rμν −

1
2

gμνR
)

f (φ) + gμν� f (φ)− f;μ;ν −
ω(φ)

φ
φ,μφ,ν +

1
2

gμν

(
φ,αφ,α + V(φ)

)
= Tμν, (5)

R f ′ + 2
ω(φ)

φ
�φ +

(ω′(φ)
φ

− ω(φ)

φ2

)
φ,μφ,μ − V′(φ) = 0, (6)

where prime denotes derivative with respect to φ, and � denotes D’Alembertian, such that,
� f (φ) = f ′′φ,μφ

,μ − f ′�φ. The model involves three parameters viz. the coupling parameter f (φ),
the Brans–Dicke parameter ω(φ) and the potential V(φ). It is customary to choose these parameters
by hand in order to study the evolution of the universe. However, we have proposed a unique
technique to relate the parameters in such a manner, that choosing one of these may fix the rest [33–37].
This follows in view of a general conserved current which is admissible by the above pair of field
equations, briefly enunciated below.

The trace of the field equation (5) reads as,

R f − 3� f − ω(φ)

φ
φ,μφ

,μ − 2V = Tμ
μ = T. (7)

Now eliminating the scalar curvature between Equations (6) and (7), one obtains,(
3 f ′2 +

2ω f
φ

)′
φ,μφ

,μ +
(

3 f ′2 +
2ω f

φ

)
�φ + 2 f ′V − f V = f ′T, (8)
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which may then be expressed as,

[(
3 f ′2 +

2ω f
φ

) 1
2
φ;μ

]
,μ
− f 3

2
(

3 f ′2 + 2ω f
φ

) 1
2

( V
f 2

)′
=

f ′

2
(

3 f ′2 + 2ω f
φ

) 1
2

T, (9)

and finally as,

(
3 f ′2 +

2ω f
φ

)1/2
[(

3 f ′2 +
2ω f

φ

)1/2
φ ;μ

]
;μ

− f 3
(

V
f 2

)′
=

f ′

2
Tμ

μ . (10)

Thus there exists a conserved current Jμ, where,

Jμ
;μ =

[(
3 f ′2 +

2ω f
φ

)1/2
φ ;μ

]
;μ

= 0. (11)

for trace-less matter field (Tμ
μ = T = 0), provided

V(φ) ∝ f (φ)2. (12)

To study cosmological consequence of such a conserved current, let us turn our attention to the
minisuperspace Model (1), in which the conserved current (11), reads as√(

3 f ′2 +
2ω f

φ

)
a3φ̇ = C1, (13)

in traceless vacuum dominated and also in radiation dominated eras. In the above, C1 is the integration
constant. Note that, fixing the form of the coupling parameter f (φ), the potential V(φ) is fixed in view
of (12), once and forever. Further, we use a relation [37]

3 f ′2 +
2ω f

φ
= ω2

0, (14)

where, ω0 is a constant, to fix the Brans–Dicke parameter as well. As a result, we obtain the relation

a3φ̇ =
C1

ω0
= C, (15)

C being yet another non-vanishing constant. In the process, all the coupling parameters f (φ),
ω(φ) and the potential V(φ) are fixed a-priori. Note that one could have made other choice to fix
the Brans–Dicke parameter, for example, an arbitrary functional form of the left hand side of (14).
But then, additional functional parameter appears that would again require additional assumption.
On the contrary, the above choice (14) finally leads to the conserved current associated with the
canonical momenta conjugate to the scalar field φ, in the absence of a variable Brans–Dicke parameter,

i.e., for
(ω(φ)

φ = 1
2
)

with minimal coupling
(

f (φ) = (16πG)−1 =
M2

p
2

)
, which is physically meaningful.

We shall work, in the typical unit,
M2

p
2 = c = 1, and consider different forms of f (φ), that fixes the

Brans–Dicke parameter ω(φ) as well as the potential V(φ). In view of these known functional forms
of the parameters of the theory, we focus our attention to study inflation, which must have occurred in
the very early vacuum dominated universe. We relax the symmetry by adding an useful term in the
potential V(φ), so that one of the terms act just as a constant in the effective potential. This ensures
a constant value of the potential as the scalar field dies out, and this constant acts as an effective
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cosmological constant (Λe). In the process, the number of parameters increases to three (ω0, V0, V1),
which is essential to administer good fit with observation.

Scalar-Tensor Equivalence and Inflationary Parameters

As mentioned, it is convenient and hence customary to study inflationary evolution in the Einstein
frame under suitable transformation of variables, where possible. Therefore, in order to study inflation,
we consider very early vacuum dominated (p = 0 = ρ, for which trace of the matter field identically
vanishes and symmetry holds) era, and express the action (2) in the form,

A =
∫ [

f (φ)R − K(φ)
2

φ,μφ,μ − V(φ)

]√
−g d4x, (16)

where, K(φ) = 2 ω(φ)
φ . The above action (16) may be translated to the Einstein frame under the

conformal transformation (gEμν = f (φ)gμν) to take the form [51],

A =
∫ [

RE − 1
2

σE,μσE
,μ − VE(σ(φ))

]√
−gE d4x, (17)

where, the subscript ‘E’ stands for Einstein’s frame. The effective potential (VE) and the field (σ) in the
Einstein frame may be found from the following expressions,

VE =
V(φ)

f 2(φ)
; and,

(
dσ

dφ

)2
=

K(φ)
f (φ)

+ 3
f ′2(φ)
f 2(φ)

=
2ω(φ)

φ f (φ)
+ 3

f ′2(φ)
f 2(φ)

. (18)

In view of the action (17), it is also possible to cast the field equations, viz. the Klein–Gordon and
the (0

0) equations of Einstein as,

σ̈ + 3Hσ̇ + V′
E = 0; 3H2 =

1
2

σ̇2 + VE, (19)

where, H = ȧE
aE

denotes the expansion rate, commonly known as the Hubble parameter. The slow-roll
parameters and the number of e-foldings, then admit the following forms,

ε =
(V′

E
VE

)2( dσ

dφ

)−2
; η = 2

[(V′′
E

VE

)( dσ

dφ

)−2
−
(V′

E
VE

)( dσ

dφ

)−3 d2σ

dφ2

]
; N =

∫ t f

ti

Hdt =
1

2
√

2

∫ φb

φe

dφ√
ε

dσ

dφ
, (20)

where, ti, t f stand for the initiation time and the end time, while φb, φe stand for the values of the
scalar field at the beginning and at the end of inflation respectively. Comparing expression for the
primordial curvature perturbation on super-Hubble scales produced by single-field inflation (Pζ(k))
with the primordial gravitational wave power spectrum (Pt(k)), one obtains the tensor-to-scalar ratio
for single-field slow-roll inflation r = Pt(k)

Pζ (k)
= 16ε, while, the scalar tilt, conventionally defined

as ns − 1 may be expressed as ns − 1 = −6ε + 2η, or equivalently ns = 1 − 6ε + 2η, dubbed as
scalar spectral index. According to the latest released results, the scalar to tensor ratio r ≤ 0.16
(TT,TE,EE+lowEB+lensing), while r ≤ 0.07 (TT,TE,EE+lowE+lensing+BK14+BAO) [40,41]. Further,
combination of all the data (TT+lowE, EE+lowE, TE+lowE, TT,TE,EE+lowE, TT,TE,EE+lowE+lensing)
constrain the scalar spectral index to 0.9569 ≤ ns ≤ 0.9815 [40,41]. It is useful to emphasize that under

the present choice of unit
M2

p
2 = c = 1 (which although appears to be a bit unusual but does not cause

any harm), φ controls the cosmological evolution in the manner φ > 1 corresponds to the inflationary
stage, φ ∼ 1 describes the end of inflation while φ < 1 is the low energy regime which triggers matter
dominated era. We also point out that the above scalar-tensor equivalent form appearing in (17) may be
achieved starting from F(R) theory of gravity. For example, in view of F(R) ∝ R + Rn + Rm, theory of
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gravity, a recent study of inflationary regime has been performed under conformal transformation to
Einstein’s frame and a good fit is obtained with the Planck’s data by Bhattacharyya et al [52].

3. Inflation with Power Law and Exponential Potentials

In the non-minimal theory, the flat section of the potential V(φ) responsible for slow-roll is
usually distorted. However, flat potential is still obtainable if the Einstein frame potential VE is
asymptotically constant [53,54]. Note that, the symmetry explored in Section 2, makes the potential
(VE) in the Einstein frame to be constant, once and forever. Thus, we need to relax the symmetry as
required by the condition (12), by taking into account additional term in the potential, viz. a constant
term V0, or even a functional form, to ensure that the effective potential in the Einstein frame (VE)
is asymptotically constant. At the end of inflation, the universe becomes cool due to sudden large
(exponential, in the present case) expansion. Therefore, in order that the structure we live in are
formed, the universe must be reheated and take the state of a hot thick soup of plasma (the so called
hot Big-Bang). This phenomena is possible if at the end of inflation, the scalar field starts oscillating
rapidly on the Hubble time scale, about the minimum of the potential. In the process, particles are
created under standard quantum field theoretic (in curved space-time) approach, which results in
the re-heating of the universe. The universe then eventually transits to the radiation dominated era.
At that epoch, the additional term may be absorbed in the potential if it is a constant term (V0), or may
even be neglected in case it is a function (since φ goes below the Planck’s mass), without any loss of
generality, to reassure symmetry. The symmetry leads to the first integral of certain combination of
the field equations, which helps in solving the field equations leading to a Friedmann-like radiation
dominated era, as shown earlier [37]. However, in the present manuscript, we only concentrate
upon inflationary regime and of-course study the possibility of graceful exit from inflation. In the
following subsection, we shall study different power law potentials, while in the next we shall deal
with exponential potential. We consider de-Sitter solution in the form a ∝ eHt, where the Hubble
parameter H is slowly varying during inflation. We repeat that according to our current choice of units

(
M2

p
2 = 1), which although is uncommon, but does not create any problem whatsoever, the value of

f (φ) at the end of inflation must be a little greater than 1.

3.1. Power Law Potential f (φ) = φn:

Under the choice, f (φ) = φn, the potential is V(φ) ∝ φ2n. We shall take into account three
different values of n, viz. n = 1, 3

2 and 2, in the following three sub-subsections. For each value of n
we shall study different cases taking into account different additive terms. In the first place however,
we shall consider an additive constant V0 in all the three cases, viz.

Case-1: V(φ) = V1φ2n + V0, (21)

corresponding to which, one can now find the expression for the Brans–Dicke parameter ω(φ),
the potential VE(σ) in the Einstein frame, the expression for dσ

dφ , and the slow-roll parameters ε, η along
with the number of e-foldings N, in view of the Equations (14), (18) and (20) respectively as,

Case-1:

{ ω(φ) =
ω2

0 − 3n2φ2(n−1)

2φ(n−1)
, VE = V1 + V0φ−2n,

(
dσ

dφ

)2

=
ω2

0
φ2n ,

ε =
4n2V2

0 φ2(n−1)

ω2
0(V0 + V1φ2n)2

, η =
4n(n + 1)V0φ2(n−1)

ω2
0(V0 + V1φ2n)

, N =
ω2

0

4
√

2nV0

∫ φb

φe

V0 + V1φ2n

φ2n−1 dφ.

(22)

The effect of the constant term V0 is now clearly noticeable, since when φ is large, second term
in the Einstein frame potential (VE) becomes insignificantly small, for n ≥ 1, and it almost becomes
(non-zero) constant, assuring slow-roll. On the contrary, if V0 is set to vanish from the very beginning,
the Einstein frame potential VE = V1 would remain flat always, and the universe would have
been ever-inflating.
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We shall also consider a functional additive term in the potential for all the cases under
consideration, such the the potential reads as

Case-2: V(φ) = V1φ2n + V0φm. (23)

In view of the above potential (23) it is possible to find the expression for the Brans–Dicke
parameter ω(φ), the potential VE(σ) in the Einstein frame, the expression for dσ

dφ , and the slow-roll
parameters ε, η along with the number of e-foldings N, in view of the Equations (14), (18) and (20)
respectively as,

Case-2:

{ ω(φ) =
ω2

0 − 3n2φ2(n−1)

2φ(n−1)
, VE = V1 + V0φm−2n,

(
dσ

dφ

)2

=
ω2

0
φ2n , ε =

(m − 2n)2V2
0 φ2(m−n−1)

ω2
0 [V1 + V0φ(m−2n)]2

,

η =
2V0(m − 2n)(m − n − 1)φ(m−2)

ω2
0 [V1 + V0φ(m−2n)]

, N =
ω2

0

2
√

2(m − 2n)V0

∫ φb

φe

V1 + V0φm−2n

φ(m−1)
dφ.

(24)

In the following sub-subsections, we shall take three different values of n, as already mentioned,
and present the data set in tabular form along with appropriate plots, to demonstrate the behaviour
of the slow-roll parameters in comparison with the latest data set released by Planck [40,41].
Different additive terms, as indicated, will be considered in each subcase separately. In the subsection
(3.1.3), we shall consider an additional case with a pair of additive terms in the form of a whole square.

3.1.1. n = 1, f (φ) = φ

Case-1: Under the choice n = 1, the potential (21) takes the form V(φ) = V0 + V1φ2, and thus the
parameters of the theory under consideration (22) read as,

ω(φ) =
ω2

0 − 3
2

,
dσ

dφ
=

ω0

φ
, VE = V1 + V0φ−2, ε =

4V2
0

ω2
0(V0 + V1φ2)2

,

η =
8V0

ω2
0(V0 + V1φ2)

, N =
ω2

0

4
√

2V0

[
V1

(
φ2

b
2

− φ2
e

2

)
+ V0(ln φb − ln φe)

]
.

(25)

In view of the above forms of the slow roll parameters (25), we present Tables 1 and 2, underneath,
corresponding to two different values of the parameter V1 > 0. The wonderful fit with the latest data
sets released by Planck [40,41] is appreciable particularly because 0.968 ≈ ns < 0.982, while r < 0.0278.
Further, the number of e-fold (36 ≤ N ≤ 62) is sufficient to alleviate the horizon and flatness problems.
Figures 1 and 2 are the two plots r versus ns and r versus ω0 respectively, presented for visualization.
For example, the figures clearly depict that the plot which represents data sets corresponding to Table 2
appears to be even better.

One very interesting feature is that the above data sets remain unaltered even if the sign of V0 and
V1 are interchanged. Note that, second derivative of the potential has to be positive, since it represents
effective mass of the scalar field. In view of the forms of the potentials V(φ) and VE(σ) presented in
(21) and (22) the effective mass of the scalar fields φ and σ respectively are,

d2V
dφ2 = 2V1;

d2VE

dσ2 = 6
V0

φ4 . (26)

In our data set, we keep V1 > 0, since φ is the scalar field under consideration, while translation
to σ only amounts to handling the situation with considerable ease. However, as a matter of taste if
one favours Einstein’s frame over Jordan’s frame, it is possible to revert the sign and keep V0 > 0,
without changing the data set.
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Table 1. f (φ) = φ, (case-1): φb = 2.0. V0 = −0.9 × 10−13T−2, V1 = 0.9 × 10−13T−2.

ω0 |η| r = 16ε φe ns N

16.0 0.010418 0.0278 1.060 0.9688 36

16.5 0.009795 0.0261 1.059 0.9706 38

17.0 0.009227 0.0246 1.057 0.9723 41

17.5 0.008707 0.0232 1.056 0.9739 43

18.0 0.008230 0.0219 1.054 0.9753 46

18.5 0.007792 0.0208 1.053 0.9766 48

19.0 0.007387 0.0197 1.051 0.9778 51

19.5 0.007013 0.0187 1.050 0.9790 54

20.0 0.006667 0.0178 1.049 0.9800 56

20.5 0.006345 0.0169 1.048 0.9810 59

21.0 0.006047 0.0161 1.047 0.9819 62

Table 2. f (φ) = φ, (case-1): φb = 2.0. V0 = −0.9 × 10−13T−2, V1 = 1.0 × 10−13T−2 .

ω0 |η| r = 16ε φe ns N

14.5 0.011047 0.0257 1.012 0.9682 36

15.0 0.01032 0.0239 1.009 0.9703 38

15.5 0.009667 0.0225 1.008 0.9722 41

16.0 0.009072 0.0210 1.006 0.9739 43

16.5 0.008531 0.0198 1.005 0.9755 46

17.0 0.008037 0.0187 1.003 0.9769 49

17.5 0.007584 0.0176 1.001 0.9782 52

18.0 0.007168 0.0166 1.000 0.9794 55

18.5 0.006786 0.0158 0.9986 0.9805 59

19.0 0.006433 0.0149 0.9973 0.9815 62

As mentioned, at the end of inflation, the scalar field must oscillate rapidly so that particles
are produced and the universe turns to the phase of: a hot thick soup of plasma, commonly called
the ‘hot big-bang’. This phenomena is dubbed as graceful exit, which is required for the structure
formation together with the formation of CMB. We therefore proceed to check if the present model
admits graceful exit from inflation. Here, VE = V1 +

V0
φ2 , and so one can express (19) as,

3H2

V1
=

σ̇2

2V1
+

(
1 +

V0

V1φ2

)
. (27)

At large value of the scalar field, which in the present unit φ > 1, we obtained slow-roll. However,
as the scalar field falls below the Planck’s mass Mp, then the Hubble rate H also decreases, and once it
falls below the effective mass V1, i.e., H � V1, then the above equation may be approximated to,

σ̇2 = 2i2
(

V1 +
V0

φ2

)
−→ φ̇ = i

φ

ω0

√
2
(

V1 +
V0

φ2

)
, (28)
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where, σ̇ = ω0
φ φ̇, in view of (25). Thus, finally we get,

φ =
1

2V1

[
(1 − V0V1) cos

(√
2V1

ω0
t
)
+ i(1 + V0V1) sin

(√
2V1

ω0
t
)]

, (29)

which is an oscillatory solution, and the field then oscillates many times over a Hubble time.
This coherent oscillating field corresponds to a condensate of non-relativistic massive (inflaton)
particles, which ensures graceful exit from the inflationary regime, driving a matter-dominated era
at the end of inflation. There is a long standing debate regarding the physical frame. It appears that
most of the people favour Einstein’s frame over Jordan’s frame (we have briefly discussed the issue in
conclusion). In this regard, it is important to mention that since in view of (25) σ = ω0 ln φ, therefore σ

executes oscillatory behaviour as well.

V

V

r

ns

ns r

Figure 1. f = φ, (case-1): Yellow ochre and blue colours represent Table 1 and 2 data, respectively.

V

V

r

r

Figure 2. f = φ, (case-1): Blue and yellow ochre colours represent Tables 1 and Table 2 data, respectively.
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Case-2: Under the same situation f (φ) = φ, let us now consider, V(φ) = V1φ2 + V0φ4, where
instead of a constant term, we have added a quartic term in the potential. The expression for the
Brans–Dicke parameter (ω(φ)), the potential (VE) in the Einstein frame, dσ

dφ , the slow-roll parameters
ε, η and the number of e-foldings N, may then be found in view of the Equation (24), respectively as,

ω(φ) =
ω2

0 − 3
2φ

,
dσ

dφ
=

ω0

φ
, VE = V1 + V0φ2, ε =

4V2
0 φ4

ω2
0(V1 + V0φ2)2

,

η =
8V0φ2

ω2
0(V1 + V0φ2)

, N =
∫ φb

φe

ω2
0(V1 + V0φ2)

4
√

2V0φ3
dφ.

(30)

Although, the potential VE does not appear to attend a flat section, the smallness of the value of
η confirms that there indeed exists a flat section, admitting slow-roll. In fact, in the Einstein frame
(17), this is just the case of a standard inflation field theory with quadratic potential. Following
Tables 3 and 4, for V1 > 0, together with the associated plots ns versus r in Figure 3 and r versus ω0 in
Figure 4 here again depict appreciably good fit with the recent released Planck’s data set, particularly
because 0.97 ≤ ns ≤ 0.98 while r ≤ 0.098. Figure 3 depicts that the data of Table 3 are somewhat better.

As before here again we test if the model associated with a different potential admits graceful exit.
Here VE = (V1 + V0φ2), and so from (19) one obtains,

3H2

V1
=

σ̇2

2V1
+

(
1 +

V0

V1
φ2
)

(31)

As the Hubble rate H � V1, the above equation can be approximated to, σ̇2 = 2i2(V1 + V0φ2),
yielding φ̇ = i φ

ω0

√
2(V1 + V0φ2), where, σ̇ = φ̇ ω0

φ . Finally we get,

φ =
2V1

[
(1 − V0V1) cos

(√
2V1

ω0
t
)
+ i(1 + V0V1) sin

(√
2V1

ω0
t
)]

1 + V2
0 V2

1 − 2V0V1 cos
(

2
√

2V1
ω0

t
) . (32)

The oscillatory behaviour of the scalar field clearly ensures graceful exit from inflationary regime,
as already discussed, and in view of (30) σ also executes oscillatory behaviour.

V

V

r

ns

ns r

Figure 3. f = φ. Yellow ochre and blue colours represent Tables 3 and 4 respectively.
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VV

r

r

Figure 4. f = φ. Yellow ochre and blue colours represent Tables 3 and 4 respectively, unlike
previous cases.

Table 3. f (φ) = φ, (case-2): φb = 1.2, V0 = −1.0 × 10−20T−2; V1 = 1.1 × 10−20T−2.

ω0 |η| r = 16ε φe ns N

114 0.002607 0.08834 1.0581 0.9721 38

116 0.002518 0.08532 1.0580 0.9730 39

118 0.002433 0.08245 1.0578 0.9739 41

120 0.002353 0.07972 1.0577 0.9748 42

122 0.002276 0.07713 1.0575 0.9756 44

124 0.002204 0.07466 1.0574 0.9764 45

126 0.002134 0.07231 1.0572 0.9772 46

128 0.002068 0.07007 1.0571 0.9779 48

130 0.002005 0.06793 1.0570 0.9785 49

132 0.001945 0.06589 1.0569 0.9792 51

134 0.001887 0.06393 1.0567 0.9798 53

136 0.001832 0.06207 1.0566 0.9804 54

138 0.001780 0.06028 1.0565 0.9810 56

140 0.001729 0.05857 1.0564 0.9815 57
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Table 4. f (φ) = φ, (case-2): φb = 1.2, V0 = −1.0 × 10−20T−2; V1 = 1.0 × 10−20T−2.

ω0 |η| r = 16ε φe ns N

84 0.003711 0.09715 1.0121 0.9710 36

86 0.003540 0.09268 1.0118 0.9723 38

88 0.003381 0.08852 1.0115 0.9736 40

90 0.003232 0.08463 1.0113 0.9747 42

92 0.003093 0.08099 1.0110 0.9758 44

94 0.002963 0.07758 1.0108 0.9768 46

96 0.002841 0.07438 1.0105 0.9778 47

98 0.002726 0.07138 1.0103 0.9787 49

100 0.002618 0.06855 1.0101 0.9795 51

102 0.002517 0.06589 1.0099 0.9803 54

104 0.002421 0.0634 1.0097 0.9810 56

106 0.002330 0.06101 1.0096 0.9818 58

3.1.2. n = 3
2 , f (φ) = φ

3
2

Case-1: Under the choice n = 3
2 , f (φ) = φ

3
2 , and the potential (21) takes the cubic form, V(φ) =

V0 + V1φ3. Thus the expressions for the parameters of the theory under consideration along with the
slow-roll parameters (22) are,

ω(φ) =
4ω2

0 − 27φ

8
√

φ
,

dσ

dφ
=

ω0

φ
3
2

; VE = V1 + V0φ−3, ε =
9V2

0 φ

ω2
0(V0 + V1φ3)2

,

η =
15V0φ

ω2
0(V0 + V1φ3)

, N =
ω2

0

6
√

2V0

[
V0

(
1
φe

− 1
φb

)
+

V1

2
(φ2

b − φ2
e )

]
.

(33)

As before, we present two sets of data in Tables 5 and 6, for two different values of V1 > 0.
Figures 5 and 6 depict the variations of the spectral index ns with the scalar-tensor ratio r and
the scalar-tensor ratio r with the Brans–Dicke parameter ω0 respectively. Here again we observe
that r ≤ 0.0278, and 0.96 < ns < 0.9815, which are very much within the stipulated observational
range [40,41], while number of e-folding N is sufficient to remove the flatness and the horizon problems.

Table 5. f (φ) = φ
3
2 , (case-1): φb = 1.7, V0 = −0.9 × 10−13T−2, V1 = 0.9 × 10−13T−2.

ω0 |η| r = 16ε φe ns N

24 0.011314 0.0278 1.0408 0.9670 36

25 0.010427 0.0256 1.0392 0.9696 39

26 0.009640 0.0237 1.0377 0.9719 42

27 0.008939 0.0219 1.0364 0.9739 46

28 0.008312 0.0204 1.0351 0.9757 49

29 0.007749 0.0190 1.0339 0.9773 52

30 0.007241 0.0178 1.0328 0.9788 56

31 0.006781 0.0166 1.0318 0.9802 60

32 0.006364 0.0156 1.0308 0.9814 64
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Table 6. f (φ) = φ
3
2 , (case-1): φb = 1.7, V0 = −0.9 × 10−13T−2, V1 = 1.0 × 10−13T−2.

ω0 |η| r = 16ε φe ns N

22.0 0.011816 0.0254 1.0076 0.9668 36

22.5 0.011217 0.0243 1.0067 0.9683 38

23.0 0.010811 0.0233 1.0059 0.9697 39

23.5 0.010356 0.0223 1.0050 0.9709 41

24.0 0.009928 0.0214 1.0042 0.9721 43

24.5 0.009528 0.0205 1.0034 0.9733 45

25.0 0.009150 0.0197 1.0027 0.9743 47

25.5 0.008795 0.0189 1.0019 0.9753 48

26.0 0.008460 0.0182 1.0013 0.9762 50

26.5 0.008143 0.0175 1.0006 0.9771 52

27.0 0.007845 0.0169 1.000 0.9780 54

V

V

r

ns

ns r

Figure 5. f (φ) = φ
3
2 . Yellow ochre and blue colours represent Tables 5 and 6 respectively.

V

V

r

r

Figure 6. f (φ) = φ
3
2 . Blue and yellow ochre colours represent Tables 5 and 6 respectively.
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To check the behaviour of the scalar field, we proceed as before, and find,

3H2

V1
=

ω2
0φ̇2

2V1φ3 +
V0

V1φ3 + 1 =⇒ φ̇2 = −2
(V0 + V1φ3)

ω2
0

, (34)

under suitable approximation, as the Hubble rate H � V1, and using the relation σ̇ = ω0
φ̇

φ
3
2

, in view

of (33). The solution reads as,

φ(t) =InverseFunction

[
2i

4√3 3
√

V1
√

V0 − #13V1
EllipticF

[
Sin−1

(
1

4√3

√√√√−(−1)
5
6 − i#1 3

√
V1

V0

)
, 3√−1

]

3
√

V0

√√√√(−1)5/6

(
#1 3

√
V1

V0
− 1

)√√√√#12 3

√
V2

1
V2

0
+ #1 3

√
V1

V0
+ 1&

⎤⎥⎦ [c1 − t] .

(35)

In the above the hash tag (#n) denotes nth argument of a pure function, and c1 is a constant.
Although, the solution is not obtainable in closed form, rather is a complicated inverse elliptic function,
nevertheless its oscillatory behaviour is quite apparent, and σ = −2 ω0√

φ
also oscillates as well.

Case-2: Under the choice n = 3
2 , f (φ) = φ

3
2 , and taking the potential in the form, V(φ) =

V1φ3 + V0φ, the expressions for the parameters of the theory under consideration along with the
slow-roll parameters (24) are,

ω(φ) =
4ω2

0 − 27φ

8
√

φ
,

dσ

dφ
=

ω0

φ
3
2

; VE = V1 +
V0

φ2 , ε =
4V2

0 φ

ω2
0(V0 + V1φ2)2

,

η =
6V0φ

ω2
0(V0 + V1φ2)

, N =
ω2

0

4
√

2V0

[
V0

(
1
φe

− 1
φb

)
+ V1(φb − φe)

]
.

(36)

We present two sets of data in Tables 7 and 8 underneath, for two different values of V1 > 0.
Figures 7 and 8 depict the variations of the spectral index ns with the scalar-tensor ratio r, and the
scalar-tensor ratio r with the Brans–Dicke parameter ω0, respectively. Here also we observe that
r ≤ 0.039, and 0.971 < ns < 0.983, which are again in excellent agreement of Planck’s data [40,41],
while the number of e-folding N is also sufficient to remove the flatness and the horizon problems.

Table 7. f (φ) = φ
3
2 , (case-2): φb = 1.7, V0 = −0.9 × 10−13T−2, V1 = 0.90 × 10−13T−2.

ω0 |η| r = 16ε φe ns N

28 0.006884 0.03885 1.0357 0.9717 40

29 0.006417 0.03623 1.0345 0.9736 43

30 0.005996 0.03384 1.0333 0.9753 46

31 0.005616 0.03169 1.0323 0.9769 49

32 0.005270 0.02974 1.0313 0.9783 52

33 0.004956 0.02797 1.0303 0.9796 55

34 0.004669 0.02635 1.0294 0.9808 59

35 0.004406 0.02486 1.0286 0.9819 62

36 0.004164 0.02350 1.0278 0.9829 66
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Table 8. f (φ) = φ
3
2 , (case-2): φb = 1.7, V0 = −0.9 × 10−13T−2, V1 = 0.95 × 10−13T−2.

ω0 |η| r = 16ε φe ns N

26 0.007358 0.03828 1.0103 0.9709 39

27 0.006823 0.03549 1.0089 0.9730 42

28 0.006345 0.03300 1.0076 0.9749 45

29 0.005915 0.03077 1.0064 0.9766 48

30 0.005527 0.02875 1.0053 0.9782 52

31 0.005176 0.02693 1.0043 0.9796 55

32 0.004858 0.02527 1.0033 0.9808 59

33 0.004568 0.02376 1.0024 0.9820 63

34 0.004303 0.02238 1.0016 0.9830 67

V

V

r

ns

ns r

Figure 7. f (φ) = φ
3
2 . Yellow ochre and blue colours represent Tables 7 and 8 respectively.

V

V

r

r

Figure 8. f (φ) = φ
3
2 . Blue and yellow ochre colours represent Tables 7 and 8 respectively.
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In order to study the behaviour of the scalar field at the end of inflation, we start with the Einstein
frame potential as before, VE = (V1 +

V0
φ2 ), and express the field Equation (19) as,

3H2

V1
=

σ̇2

2V1
+

(
1 +

V0

V1φ2

)
(37)

As the Hubble rate falls, and H � V1, the above equation may be approximated to, σ̇2 =

2i2(V1 +
V0
φ2 ), which in terms of the scalar field φ reads as,

φ̇2 +
2

ω2
0

(
V0 + V1φ2)φ = 0. (38)

The above equation when solved, is found to execute oscillatory behaviour as before, along with
σ = −2 ω0√

φ
, as well.

φ(t) = InverseFunction

⎡⎢⎢⎢⎢⎢⎢⎢⎣
2i#13/2

√
V0

#12V1
+ 1EllipticF

⎛⎝ i sinh−1

⎛⎝
√
− i

√
V0√
V1√

#1

⎞⎠∣∣∣∣∣∣− 1

⎞⎠
√
− i

√
V0√
V1

√
−#1

(
#12V1 + V0

) &

⎤⎥⎥⎥⎥⎥⎥⎥⎦
[

c1 +

√
2t

ω0

]
, (39)

Case-3: Cubic potentials with additive term have important consequence. For example, a potential
in the form V = 1

2 mω2x2 − 1
3 bx3 can be used to model decay of metastable states [55], and it also

describes the global flow [56]. Further, the tunnelling rate in real time in the semiclassical limit may
be found for arbitrary energy levels, while its ground state agrees well with the result found by the
instanton method [57]. It is therefore worth to continue the present study in view of such an additive
form in the cubic potential.

Under the choice n = 3
2 , f (φ) = φ

3
2 , and taking the potential as cubic form added with a quadratic

term, i.e., V(φ) = V1φ3 + V0φ2, the expressions for the parameters of the theory under consideration
along with the slow-roll parameters (24) are,

ω(φ) =
4ω2

0 − 27φ

8
√

φ
,

dσ

dφ
=

ω0

φ
3
2

; VE = V1 +
V0

φ
, ε =

V2
0 φ

ω2
0(V0 + V1φ)2

,

η =
V0φ

ω2
0(V0 + V1φ)

, N =
ω2

0

2
√

2V0

[
V0

(
1
φe

− 1
φb

)
+ V1 ln(φb − φe)

]
.

(40)

We present two sets of data in Tables 9 and 10 underneath, for two different values of V1 > 0.
Figures 9 and 10 depict the variations of the spectral index ns with the scalar-tensor ratio r and
the scalar-tensor ratio r with the Brans–Dicke parameter ω0 respectively. Here also we observe that
r ≤ 0.062, and 0.973 < ns < 0.983, which are again in excellent agreement of Planck’s data [40,41],
while the number of e-folding N is also sufficient to remove the flatness and the horizon problems.
It is interesting to note that the variation ns with r for the two sets of data almost overlap in Figure 9.
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Table 9. f (φ) = φ
3
2 , (case-3): φb = 1.7, V0 = −0.9 × 10−13T−2, V1 = 0.9 × 10−13T−2.

ω0 |η| r = 16ε φe ns N

30 0.00270 0.0617 1.0339 0.9715 38

31 0.00253 0.0578 1.0328 0.9733 40

32 0.00237 0.0542 1.0317 0.9749 43

33 0.00223 0.0509 1.0308 0.9764 46

34 0.00210 0.0480 1.0299 0.9778 48

35 0.00198 0.0453 1.0290 0.9790 51

36 0.00187 0.0428 1.0282 0.9802 54

37 0.00177 0.0405 1.0273 0.9812 57

38 0.00168 0.0384 1.0267 0.9822 61

Table 10. f (φ) = φ
3
2 , (case-3): φb = 1.7, V0 = −0.9 × 10−13T−2, V1 = 0.92 × 10−13T−2.

ω0 |η| r = 16ε φe ns N

29 0.00274 0.0594 1.0122 0.9723 39

30 0.00256 0.0555 1.0110 0.9741 41

31 0.00240 0.0520 1.0097 0.9757 44

32 0.00225 0.0488 1.0090 0.9772 47

33 0.00212 0.0459 1.0080 0.9786 50

34 0.00199 0.0432 1.0071 0.9798 53

35 0.00188 0.0408 1.0063 0.9809 56

36 0.00178 0.0386 1.0055 0.9820 60

37 0.00168 0.0365 1.0048 0.9829 63

V

V

r

ns

ns r

Figure 9. f (φ) = φ
3
2 . Yellow ochre and blue colours represent Tables 9 and 10 respectively.
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V

V

r

r

Figure 10. f (φ) = φ
3
2 . Blue and yellow ochre colours represent Tables 9 and 10 respectively.

In order to study the behaviour of the scalar field at the end of inflation, we start with the Einstein
frame potential as before, VE = (V1 +

V0
φ ), and express the field Equation (19) as,

3H2

V1
=

σ̇2

2V1
+

(
1 +

V0

V1φ

)
(41)

As the Hubble rate falls, and H � V1, the above equation may be approximated to, σ̇2 =

2i2(V1 +
V0
φ ), which in terms of the scalar field φ reads as,

φ̇2 +
2

ω2
0

(
V0 + V1φ

)
φ2 = 0. (42)

The above equation may be solved to find

φ =
V0

V1

⎡⎣−1 − tan

{√
V0

2

(
c1 +

√
2

ω0
t

)}2
⎤⎦ , (43)

which unfortunately is not oscillatory. Perhaps, due to the asymmetry of the potential, the oscillatory
behaviour of the scalar field with an additive quadratic term is not exhibited.

3.1.3. n = 2, f (φ) = φ2

Case-1: Under the choice n = 2, f (φ) = φ2, and the potential (21) is now chosen as V(φ) =

V0 + V1φ4. Therefore the Brans–Dicke parameter and the Einstein frame potential, together with the
slow-roll parameters (22), take the following forms,

ω(φ) =
ω2

0 − 12φ2

2φ
,

dσ

dφ
=

ω0

φ2 ; VE = V1 + V0φ−4, ε =
16V2

0 φ2

ω2
0(V0 + V1φ4)2

,

η =
24V0φ2

ω2
0(V0 + V1φ4)

, N =
ω2

0

8
√

2V0

[
V0

2

(
1

φ2
e
− 1

φ2
b

)
+

V1

2
(φ2

b − φ2
e )

]
.

(44)
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It is quite transparent that for large value of the scalar field φ, a flat Einstein’s frame potential
is realizable here too. As before, we take two sets of data corresponding to two different values of
V1 > 0, and tabulate the parametric values in Tables 11 and 12. One can see that the scalar tensor ratio
r ≤ 0.0202, and the spectral index lies between 0.9645 ≤ ns ≤ 0.9809, which are in excellent agreement
with Planck’s data [40,41]. Further number of e-folding N is also sufficient to alleviate the flatness
and the horizon problems. The ns versus r and r versus ω0 plots are presented in Figures 11 and 12,
as well.

Equation (19) now reads as,

3H2 =
1
2

σ̇2 + V1 +
V0

φ4 , (45)

which, as H falls below V1, i.e., H � V1, may be approximated to, 1
2 σ̇2 + V0

φ4 + V1 = 0. In terms of the

scalar field φ it is expressed as φ̇2 + 2
ω2

0

(
V1φ4 + V0

)
= 0, since, σ̇ = ω0

φ̇

φ2 , in view of (44). The solution

is exhibited either as,

φ(t) = −
(−1)3/4 4

√
V0JacobiSN

(
c1

4
√−V0V1

(
1 + i

√
2

ω0
t
)∣∣∣− 1

)
4
√

V1
, (46)

(where JacobiSN is a meromorphic function in both arguments, which for certain special arguments
may automatically be evaluated to exact values. In any case, under numerical simulation the above
solution is found to exhibit oscillatory behaviour of the scalar field φ), or as inverse elliptic function
as before,

φ(t) = InverseFunction

⎡⎢⎢⎣− i
√

#14V1
V0

+ 1EllipticF
(

i sinh−1
(

#1
√
− i

√
V1√
V0

)∣∣∣∣− 1
)

√
− i

√
V1√
V0

√
#14 (−V1)− V0

&

⎤⎥⎥⎦
[

c1 +

√
2t

ω0

]
, (47)

It is also clear that σ = −ω0
φ oscillates as well, and the universe transits from inflationary regime

to the matter dominated era.

Table 11. f (φ) = φ2, (case-1): φb = 1.7, V0 = −0.9 × 10−13T−2, V1 = 0.9 × 10−13T−2.

ω0 |η| r = 16ε φe ns N

26 0.013956 0.0202 1.0377 0.9645 37

27 0.012941 0.0188 1.0364 0.9671 39

28 0.012033 0.0175 1.0351 0.9694 42

29 0.01122 0.0163 1.0339 0.9715 45

30 0.010482 0.0152 1.0328 0.9733 49

31 0.009817 0.0142 1.0317 0.9750 52

32 0.009213 0.0134 1.0308 0.9766 56

33 0.008663 0.0126 1.0298 0.9780 59

34 0.008161 0.0118 1.0289 0.9792 63

35 0.007701 0.0112 1.0282 0.9804 67
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Table 12. f (φ) = φ2, (case-1): φb = 1.7. V0 = −0.9 × 10−13T−2, V1 = 1.0 × 10−13T−2.

ω0 |η| r = 16ε φe ns N

24 0.014543 0.0187 1.0127 0.9639 37

25 0.013403 0.0173 1.0112 0.9667 40

26 0.012392 0.0160 1.0098 0.9692 43

27 0.011491 0.0148 1.0085 0.9714 46

28 0.010685 0.0138 1.0073 0.9735 50

29 0.00996 0.0128 1.0062 0.9753 54

30 0.00931 0.0120 1.0051 0.9769 57

31 0.008717 0.0112 1.0041 0.9784 61

32 0.008180 0.0105 1.0032 0.9797 65

33 0.007692 0.0099 1.0023 0.9809 69

V

V

r

ns

r ns

Figure 11. f (φ) = φ2. Blue and yellow ochre colours represent Tables 11 and 12 respectively.

V

V

r

r

Figure 12. f (φ) = φ2. Blue and yellow ochre colours represent Tables 11 and 12 respectively.
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Case-2: Here, for f (φ) = φ2, we consider the potential in the form, V = V1φ4 + V0φ2,
i.e., instead of a constant additive term, we consider V0φ2 in addition. This case was earlier studied
in [37]. However, as already mentioned, over the years, Planck’s data put up tighter constraints on
inflationary parameters, and so it is quite reasonable to check if this form of potential passes the said
constraints [40,41]. One can now find the expression for the Brans–Dicke parameter ω(φ), the potential
VE in the Einstein frame, dσ

dφ , the slow-roll parameters ε, η and the number of e-folding N, in view of
the Equations (24), respectively as,

ω(φ) =
ω2

0 − 12φ2

2φ
,

dσ

dφ
=

ω0

φ2 ; VE = V1 + V0φ−2, ε =
4V2

0 φ2

ω2
0(V1φ2 + V0)2

,

η =
4V0φ2

ω2
0(V1φ2 + V0)

, N =
ω2

0

4
√

2V0

[
V1 ln(φb − φe)−

V0

2

(
1

φ2
b
− 1

φ2
e

)]
.

(48)

Note that the Einstein frame potential now takes the same form as in case-1 for n = 1, and a flat
section of the potential is still realizable at large value of the scalar field φ. We present two Tables 13
and 14, as before for different values of V1 > 0. The scalar to tensor ratio r ≤ 0.0636 and the spectral
index 0.9715 ≤ ns ≤ 0.9831 lie very much within the Planck’s data, while the number of e-folding N
is again sufficient to alleviate the horizon and flatness problems. The Figures 13 and 14 represent ns

versus r and r versus ω0 respectively. In view of the plots, the data for Table 14, here appears to be
even better.

To check if the scalar field executes oscillatory behaviour at the end of inflation, we note that here
VE = V1 +

V0
φ2 . So in view of Equation (19) one obtains,

3H2

V1
=

σ̇2

2V1
+

(
1 +

V0

V1φ2

)
(49)

As, H falls below V1, and H � V1, the above equation can be approximated to, σ̇2 = 2i2
(
V1 +

V0
φ2

)
,

yielding, φ̇ = i φ
ω0

√
2(V0 + V1φ2), where, σ̇ = ω0

φ̇

φ2 . Thus, we obtain,

φ(√
V0 +

√
(V0 + V1φ2)

) =
√

V0ei
√

2V0
ω0

t. (50)

It is also possible to solve for φ and express it in the following form,

φ(t) =

√
−β(t) +

√
β(t)2 − 4α(t)γ(t)√
2α(t)

,

where, α(t) = 1 − V0V1ei2
√

2V0
ω0

t, β(t) = −4V3
0 V1ei4

√
2V0

ω0
t, γ(t) = −4V4

0 ei4
√

2V0
ω0

t.

(51)

It is now quite apparent that the scalar field φ(t) executes oscillatory behaviour and therefore
graceful exit from inflation is realizable. Since in view of (48) σ = −ω0

φ , therefore σ also executes
oscillatory behaviour.
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Table 13. f (φ) = φ2, (case-2): φb = 1.26. V0 = −1.0 × 10−20T−2; V1 = 1.0 × 10−20T−2.

ω0 |η| r = 16ε φe ns N

68 0.002337 0.0636 1.0148 0.9715 37

70 0.002206 0.0601 1.0144 0.9731 40

72 0.002085 0.0568 1.0140 0.9745 42

74 0.001974 0.0537 1.0136 0.9759 44

76 0.001871 0.0509 1.0132 0.9772 47

78 0.001776 0.0484 1.0129 0.9783 49

80 0.001689 0.0460 1.0126 0.9793 52

82 0.001607 0.0438 1.0122 0.9804 55

84 0.001532 0.0417 1.0119 0.9813 57

86 0.001461 0.0398 1.0117 0.9821 60

88 0.001396 0.0380 1.0114 0.9830 63

Table 14. f (φ) = φ2, (case-2.): φb = 1.26. V0 = −1.0 × 10−20T−2; V1 = 1.1 × 10−20T−2.

ω0 |η| r = 16ε φe ns N

60 0.002363 0.0507 1.0656 0.9762 38

61 0.002287 0.0490 1.0653 0.9770 39

62 0.002213 0.0475 1.0650 0.9778 40

63 0.002144 0.0460 1.0648 0.9785 41

64 0.002078 0.0445 1.0646 0.9792 43

65 0.002014 0.0432 1.0643 0.9798 44

66 0.001953 0.0419 1.0641 0.9804 46

67 0.001895 0.0406 1.0638 0.9810 47

68 0.001840 0.0394 1.0636 0.9815 49

69 0.001787 0.0383 1.0634 0.9821 50

70 0.001737 0.0372 1.0632 0.9826 51

71 0.001688 0.0362 1.0630 0.9831 53

V

V

r

ns

ns r

Figure 13. f (φ) = φ2. Yellow ochre and blue colours represent Tables 13 and 14 respectively.
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V

V

r

r

Figure 14. f (φ) = φ2. Blue and yellow ochre colours represent Tables 13 and 14 respectively.

Case-3: We consider yet another case for n = 2, i.e., taking f (φ) = φ2, with the potential V(φ)

being represented by two additional terms apart from φ4, as it should be, to make it a perfect square:
V(φ) = (

√
V1φ2 −√

V0φ)2 = V1φ4 +V0φ2 − 2
√

V0V1φ3. As before, one can now find the expression for
the Brans–Dicke parameter ω(φ), the potential VE in the Einstein frame, dσ

dφ , the slow-roll parameters
ε, η and the number of e-foldings N, in view of the Equations (14), (18) and (20) respectively as,

ω(φ) =
ω2

0 − 12φ2

2φ
,

dσ

dφ
=

ω0

φ2 ; VE = V1 − 2
√

V0V1

φ
+

V0

φ2 , ε =
4V2

0 φ2

ω2
0(
√

V0V1φ − V0)2
,

η =
4V2

0 φ2

ω2
0(
√

V0V1φ − V0)2
, N =

∫ φb

φe

ω2
0

4
√

2V0

(
√

V0V1φ − V0)

φ3 dφ.

(52)

One can clearly see that the flat section of the potential is still attainable for large value of the
scalar field φ. Tables 15 and 16 depict that the scalar to tensor ratio r < 0.1), is quite reasonable, while
the spectral index 0.9752 ≤ ns ≤ 0.981 fits perfectly with Planck’s data [40,41]. Figures 15 and 16
represent ns versus r and r versus ω0 plots respectively. Interestingly, two r versus ns plots (Figure 15)
corresponding to the two sets of data (Tables 15 and 16) merge almost perfectly.

The scalar field executes oscillatory behaviour here too, as we demonstrate below. Here, VE =

V1 − 2
√

V0V1
φ + V0

φ2 , and so from (19) we find,

3H2

V1
=

σ̇2

2V1
+

(
1 − 2

φ

√
V0

V1

)
+

V0

V1φ2 . (53)

As H falls below V1, and H � V1, the above equation can be approximated as, σ̇2 =

2i2(
√

V0
φ −

√
V1)

2, which yields φ̇ = i φ
ω0

√
2(
√

V0 −
√

V1φ) where, σ̇ = ω0
φ̇

φ2 . Therefore finally
we obtain,

φ(t) =
√

V0ei
√

2V0
ω0

t

1 +
√

V1ei
√

2V0
ω0

t
. (54)

Clearly, φ executes oscillatory behaviour, and graceful exit from inflation may be realized here
too. Here again since in view of (52) σ = −ω0

φ , therefore σ executes oscillatory behaviour, as well.
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Table 15. f (φ) = φ2, (case-3): φb = 1.3. V1 = 0.9 × 10−20T−2; V0 = 0.9 × 10−20T−2.

ω0 η r = 16ε φe ns N

110 0.006208 0.0993 1.0185 0.9752 57

112 0.005988 0.0958 1.0182 0.9760 59

114 0.005780 0.0925 1.0178 0.9769 61

116 0.005582 0.0893 1.0175 0.9777 63

118 0.005394 0.0863 1.0172 0.9784 65

120 0.005216 0.0835 1.0170 0.9791 67

122 0.005046 0.0807 1.0167 0.9798 70

124 0.004885 0.0782 1.0164 0.9804 72

126 0.004731 0.0757 1.0161 0.9810 74

Table 16. f (φ) = φ2, (case-3): φb = 1.3. V1 = 1.0 × 10−20T−2; V0 = 0.9 × 10−20T−2.

ω0 η r = 16ε φe ns N

142 0.006160 0.0986 1.0386 0.9754 57

144 0.005990 0.0958 1.0388 0.9760 59

146 0.005827 0.0932 1.0391 0.9767 60

148 0.005671 0.0907 1.0393 0.9773 62

150 0.005521 0.0883 1.0395 0.9779 64

152 0.005376 0.0860 1.0397 0.9785 65

154 0.005237 0.0838 1.0399 0.9791 67

156 0.005104 0.0817 1.0400 0.9796 69

158 0.004976 0.0796 1.0402 0.9801 71

160 0.004852 0.0776 1.0404 0.9806 72

V

V

r

ns

ns r

Figure 15. f (φ) = φ2. Blue and yellow ochre colours represent Tables 15 and 16 respectively.
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VV

r

r

Figure 16. f (φ) = φ2. Blue and yellow ochre colours represent Tables 15 and 16 respectively.

3.2. Exponential Potential

Finally, we consider an exponential form of the potential with: f (φ) = e
λφ
2 , with V(φ) = V1eλφ +

V0. It is possible to find the expression for the Brans–Dicke parameter ω(φ), the potential VE in
the Einstein frame, dσ

dφ , the slow-roll parameters ε, η and the number of e-folding N, in view of the
Equations (14), (18) and (20) respectively as,

ω(φ) =
(ω2

0 − 3
4 λ2eλφ)φ

2e
λφ
2

;
dσ

dφ
=

ω0

e
λφ
2

; VE = V1 + V0e−λφ, ε =
λ2V2

0 eλφ

ω2
0(V1eλφ + V0)2

,

η =
λ2V0eλφ

ω2
0(V1eλφ + V0)

, N =
∫ φb

φe

ω2
0(V0 + V1eλφ)

2
√

2V0λeλφ
dφ.

(55)

We present our results in the following Table 17, under the only choice of the parameter λ = −1.
The data shows good agreement r < 0.06, and 0.9612 ≤ ns ≤ 0.9836 with Planck’s data [40,41].
Figure 17, represents a plot for ns versus r.

Table 17. |φb| = 1.2, V0 = −1.0 × 10−20T−2, V1 = 1.0 × 10−20T−2.

ω0 η r = 16ε |φe| ns N

13 0.008468 0.0584 0.07690 0.9612 30

14 0.007301 0.0503 0.07141 0.9665 34

15 0.00636 0.0439 0.06665 0.9708 40

16 0.005589 0.0385 0.06249 0.9745 45

17 0.004952 0.0341 0.05882 0.9773 51

18 0.004417 0.0305 0.05555 0.9797 57

19 0.003964 0.02734 0.05263 0.9818 64

20 0.003578 0.02467 0.04999 0.9836 71
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V

r

ns

ns r

Figure 17. f (φ) = e−
φ
2 .

The scalar field executes oscillatory behaviour here too, as we demonstrate below. Here
VE = V1 + V0eφ, and so in view of Equation (19), one can calculate,

3H2

V1
=

σ̇2

2V1
+

(
1 +

V0

V1
eφ

)
(56)

Again as H falls below V1, and H � V1, the above equation can be approximated to,

σ̇2 = 2i2(V1 + V0eφ), which yields φ̇ = i e−
φ
2

ω0

√
2(V1 + V0eφ), where,σ̇ = ω0φ̇e

φ
2 . Finally, therefore

φ = ln

[
1

4V2
0

(
ei
√

2V0
ω0

t − 2V0V1 + V2
0 V2

1 e−i
√

2V0
ω0

t
)]

. (57)

The oscillatory behaviour of the scalar field here again assures graceful exit from inflationary

regime. In view of (55), σ = 2ω0e
φ
2 , for λ = −1, which we have considered, hence σ also executes

oscillatory behaviour.

4. Concluding Remarks

Scalar-tensor theories of gravity are generalizations of the Brans–Dicke theory, in which the
coupling parameter is a function of the scalar field, i.e., ωBD = ω(φ), and therefore is a variable.
The requirement for such generalization of Brans–Dicke theory generated from the tight constraints on
ωBD established by the solar system experiments [58]. There exists various classification of scalar-tensor
theory of gravity [59]. In the present manuscript we have considered standard non-minimal coupling,
where the coupling parameter f (φ) is arbitrary. It has been noticed earlier that such a theory has an
in-built symmetry being associated with a conserved current for trace-free fields, such as vacuum
and radiation dominated eras for barotropic fluids. In view of such a symmetry, it is possible to
fix all the variables of the theory, including the potential function, fixing the form of one of those.
In this manuscript, we have chosen different forms of the coupling parameter f (φ), which fixed ω(φ)

and V(φ), to study the cosmological evolution of the very early universe in the context of inflation.
Inflation is a quantum mechanical phenomenon, and has occurred around Planck’s era. However, it has
been argued that since the radiative corrections to the potential are negligible, hence the inflationary
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parameters can be computed using the classical Lagrangian [60]. This argument leads in general,
to calculate inflationary parameters in view of the classical Lagrangian, which we have done in the
present manuscript. The so called unification programmes, which essentially claim to unify early
inflationary regime with late-time cosmic acceleration have no credentials, since none of the models
passes through a well behaved radiation and early matter dominated era. However, a history of
cosmic evolution starting from inflationary regime, followed by a Friedmann-like radiation (a ∝

√
t)

and early matter dominated eras (a ∝ t
2
3 ), that finally ends up to a late-time accelerated universe

(z = 0.75), has already been explored in view of the present model [37]. In this connection, the present
model makes a reasonably viable attempt to unify early inflation with late-time cosmic acceleration.
Nevertheless earlier, only a single form of the coupling parameter f (φ) together with a particular
form of V(φ) had been treated. Here, we have extended our work considering combinations of a
host of power potentials (V(φ) = V0 + V1φ2, V0 + V1φ3, V0 + V1φ4, V0φ + V1φ3, V0φ2 + V1φ3, V0φ2 +

V1φ4, V0φ2 + V1φ4 − 2
√

V0V1φ3), together with an exponential potential (V(φ) = V0 + V1eλφ). We find
that all the quadratic, cubic, quartic and exponential potentials pass the tighter constraints on
inflationary parameters released by latest Planck’s data [40,41] quite comfortably. Further, all these
potentials admit graceful exit from inflation, except one case of cubic potential associated with a
square potential, i.e., (V(φ) = V0φ2 + V1φ3), for which unfortunately the scalar field does not show up
oscillatory behaviour at the end of inflation.

For the purpose of the present analysis, we have translated the non-minimally coupled Jordan’s
frame action to the Einstein frame, under conformal transformation. It is therefore worth to make
certain comments in this regard. There is an age old debate regarding physical equivalence between the
two: Jordan’s and Einstein’s frames, which are related under conformal transformation. Now, indeed if
the two formulations are not equivalent, the problem arises in selecting the physically preferred frame.
It emerges from the work of several authors, in different contexts on Kaluza–Klein and Brans–Dicke
theories, that the formulations of a scalar-tensor theory in the two conformal frames are physically
inequivalent [61–68]. Furthermore, the Jordan frame formulation of a scalar-tensor theory is not viable
because the energy density of the gravitational scalar field present in the theory is not bounded from
below, which amounts to the violation of the weak energy condition [69]). The system therefore is
unstable and decays toward a lower and lower energy state ad infinitum [66–68]. Although, a quantum
system may have states with negative energy density [69–71], such feature is not acceptable for a viable
classical theory of gravity. In fact, a classical theory must have a ground state that is stable against
small perturbations. The violation of the weak energy condition by scalar-tensor theories formulated
in the Jordan conformal frame makes them unviable descriptions of classical gravity, while the Einstein
frame formulation of scalar-tensor theories is free from such problem. However, in the Einstein frame
also there is a violation of the equivalence principle due to the anomalous coupling of the scalar
field to ordinary matter. Nevertheless, this violation is small and compatible with the available tests
of the equivalence principle [72]. Further, Einstein’s frame is indeed regarded as an important low
energy manifestation of compactified theories [72–77]. However, in search of Noether symmetries of
F(R) theory of gravity, the two frames have been found to be physically equivalent [78]. So although
the debate persists, but somehow it is quite relevant to consider Einstein’s frame to be the physical
frame. Therefore, in view of the above discussions, it is justified to study the physics associated with
non-minimally coupled scalar-tensor theory of gravity, after translating it to the Einstein frame, as we
have done in the present article.
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Abstract: The parallel development of the theories of electrodynamical and gravitational dispersion
forces reveals important differences. The former arose earlier than the formulation of quantum elec-
trodynamics so that expressions for the unretarded, van der Waals forces were obtained by treating
the field as classical. Even after the derivation of quantum electrodynamics, semiclassical considera-
tions continued to play a critical role in the interpretation of the full results, including in the retarded
regime. On the other hand, recent predictions about the existence of gravitational dispersion forces
were obtained without any consideration that the gravitational field might be fundamentally classical.
This is an interesting contrast, as several semiclassical theories of electrodynamical dispersion forces
exist although the electromagnetic field is well known to be quantized, whereas no semiclassical
theory of gravitational dispersion forces was ever developed although a full quantum theory of
gravity is lacking. In the first part of this paper, we explore this evolutionary process from a historical
point of view, stressing that the existence of a Casimir effect is insufficient to demonstrate that a
field is quantized. In the second part of the paper, we show that the recently published results about
gravitational dispersion forces can be obtained without quantizing the gravitational field. This is
done first in the unretarded regime by means of Margenau’s treatment of multipole dispersion forces,
also obtaining mixed potentials. These results are extended to the retarded regime by generalizing
to the gravitational field the approach originally proposed by McLachlan. The paper closes with
a discussion of experimental challenges and philosophical implications connected to gravitational
dispersion forces.

Keywords: dispersion potentials; phenomenology of quantum gravity; novel experimental methods;
epistemology; semiclassical methods

1. Introduction

The Casimir effect is quite typically described as “an empirically verified quantum
mechanical phenomenon involving an attractive force between two parallel uncharged
mirrors in vacuum that exists even at zero temperature” [1]. The core of Casimir’s original
idea [2], which, with some variation of detail [3], he consistently traced to an early conver-
sation with Bohr, is that a non-zero energy exists even in a vacuum. This is because the
Uncertainty Principle of quantum mechanics prevents all components of the electric and
magnetic fields to vanish identically at the same position in spacetime, so that contributions
to the total energy density from electromagnetic fluctuations are expected [4]. Such energy
is referred to as the zero-point energy (Nullpunktsenergie)—a concept that first emerged
from Planck’s “second theory” of the blackbody radiation in 1912 [5], then was famously
considered in that context by Einstein and Stern [6] and by Bohr himself [7], and was
finally extended to the electromagnetic field by Nernst [8] (for analyses of Nernst’s work
on zero-point energy see in [9–12]). The zero-point-energy exists also if two parallel plane
reflectors separated by a gap of width s are introduced. However, the discontinuities at the
boundaries cause the energy density to change as a function of the gap width. A relatively
simple calculation quickly shows that this leads to an attractive force, more correctly a
pressure, proportional to −h̄c/s4, between the two plates [13]), where h̄ and c are Planck’s
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constant and the speed of light in vacuum, respectively. This is now referred to as the
Casimir force.

As quantum mechanics plays a key role in these interpretations, scientists and philoso-
phers alike are presented with experimental confirmation of the Casimir force as evidence
of the quantum nature of the associated field, in this case, the electromagnetic field. Such a
point of view extends, more in general, to all electrodynamical dispersion forces, that is,
forces due to the frequency-dependent electromagnetic polarizability of the interacting
systems, whether they be macroscopic or microscopic. Despite the above matter-of-fact
description [1] quite representative of the literature in the field, a robust debate regarding
the logical relationship between electrodynamical Casimir forces and the principles of
quantum mechanics has long been part of the research landscape.

In recent years, the subject of dispersion forces between gravitationally polarizable
objects driven by spacetime fluctuations has attracted steadily increasing attention. Despite
close field theory methodological analogies, however, the developmental trajectory of this
research subfield has notably differed from that dealing with electrodynamical dispersion
forces. Such a different path has unfolded in the nearly total absence of a parallel debate,
thus leading to unquestioned claims that the detection of gravitational dispersion forces
would conclusively prove the quantum nature of gravitation, claims we wish to discuss in
this paper.

The plan for our analysis is as follows. In the following section, we review from
a historical perspective the vigorous debate about the relationship between quantum
atomic theory, quantum electrodynamics, and the existence of dispersion forces in both
the unretarded and retarded regimes. In particular, we recall heuristic approaches and
semiclassical theories leading to results indistinguishable from those obtained from the full
quantum electrodynamical treatment. As an illustration that these descriptions are far from
fruitless speculation, we mention and reference applications demonstrated to engineer
dispersion forces in classical fields for specific technological purposes. In the following
section (Section 3), we consider, again historically, developments leading to proposals
about the existence of dispersion forces due to the gravitational field. The emphasis is
on highlighting the fact that consideration of possible gravitational dispersion forces has
occurred in the complete absence of a debate as to whether gravitational field quantization
is necessary as a prerequisite for the existence of such forces, unlike what occurred in the
electrodynamical case.

Readers not interested in these arguments may want to skip directly to our com-
putational illustrations that gravitational dispersion forces can exist in the presence of
classical gravitation with quantized atoms. As a first step (Section 4), we recall London’s
treatment of dipole’s electrodynamical forces (Section 4.1) and Margenau’s extension of
such a formulation to multipole dispersion forces in the unretarded regime (Section 4.2).
Those expressions are then reformulated in the classical gravitational case and it is shown
that the recently published results obtained in linearized quantum gravity are immedi-
ately recovered (Section 5). New relationships, first suggested by Spruch on dimensional
grounds, are also explicitly derived for the mixed quadrupole–quadrupole and dipole–
quadrupole electric gravitational potentials, which are tens of orders of magnitude larger
than purely gravitational potentials (Section 8). The conclusions from this initial deriva-
tion are further strengthened by extending McLachlan’s theory of dispersion forces to the
gravitational case. For his purpose, we first recall McLachlan’s theory (Section 6), in which
the electromagnetic field is not quantized, and we show that it leads to the van der Waals
and Casimir–Polder expressions in the unretarded and retarded regimes, respectively
(Section 6.1). Then, restricting our treatment to the 1D case for succinctness, we consider
the extension of McLachlan’s approach to electric quadrupole dispersion forces (Section 6.2).
The formulation of the same theory in the gravitational case is straightforward, as sketched
out in Section 6.3.

We repeatedly stress throughout the paper that our efforts are not intended to support
speculation that the electromagnetic field is not quantized. Instead, our starting point is that
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the conclusion that the electromagnetic field must be quantized could not be drawn based
solely on the detection of dispersion forces. In fact, the existence of dispersion forces can
be accommodated by quantizing the internal degrees of freedom of atoms interacting via
classical electromagnetic fields. Therefore, the aim of this paper is to show that, analogously,
any successful detection of gravitational dispersion forces could not be used to conclude
that the gravitational field must be quantized. Quantized atoms interacting through a
classical (general relativistic) gravitational field exhibit gravitational dispersion forces
indistinguishable from those derived from linearized quantum gravity.

The challenging goal of detecting the gravitational equivalent of electrodynamical
van der Waals, Casimir, and Casimir–Polder forces in the laboratory has been the subject
of a few proposals, which are summarized in Section 7. The paper closes with a brief
mention of connections between the main topic and two related subjects. On the one
hand, the role played by dispersion forces within the philosophical idea of atomism is
recalled, particularly as it regards the meaning of “void” in the presence of fluctuations
of spacetime. On the other hand, some comments are provided about possible future
technological applications of gravitational dispersion forces.

2. The Quantum Structure of the Atom, Quantum Electrodynamics, and
Dispersion Forces

Historically, the first treatment of van der Waals forces between two hydrogen-like
atoms was attempted by Wang [14] and later correctly completed by Eisenschitz and Lon-
don [15]—indeed on the basis of the then newly developed principles of non-relativistic
quantum mechanics. Such early studies were carried out contemporaneously with, but in-
dependently of, efforts to assemble the framework needed to describe the electromagnetic
field in quantum mechanical language, the theory now referred to as quantum electrody-
namics (QED) [16]. As lucidly clarified by London [17], who introduced the term “disper-
sion” in this context, the van der Waals force is explained in non-relativistic quantum theory
as due to the existence of the zero-point-energy of perturbed harmonic oscillators, which
schematically represent the interacting atoms. On the other hand, the electromagnetic
field is assumed to be classical. Further developments, such as the calculation of atomic
multipole effects, were built upon this same non-relativistic approach [18,19].

Within just a few years, experimental data on lyophobic colloids [20] clearly demon-
strated that the decay of van der Waals potentials at large particle separations is more
rapid than predicted by the London treatment. Overbeek provided a suggestive, albeit
only intuitive, explanation based on the effect of the finiteness of the speed of light, which,
at large interparticle distances, would cause interacting classical resonators to vibrate out-
of-phase thus degrading their mutual attraction [21,22]. This concept brought to the fore
the critical importance of retardation and led Casimir and Polder to attacking the problem
of interatomic forces by means of the early tools of QED [23,24]. As recalled by Casimir,
he followed up on this result by considering the attraction of two perfectly conducting
neutral plates separated by a gap in terms of zero-point-energy of the electromagnetic field,
so that “The problem in quantum electrodynamics is then reduced to a problem in classical
electrodynamics” [25]. This approach, which Casimir humbly but entertainingly referred
to as “Poor Man’s QED” [26,27], led to his important discovery [2].

One important attribute of the “two parallel uncharged mirrors” to complete the
above initial definition of the Casimir effect is that they are assumed to be perfect reflectors—
clearly an extreme idealization. The strategy available to deal with intermolecular forces in
real materials had been highlighted at least as early as in Einstein’s very first published
paper, in which he had been “. . . guided by the analogy with gravitational forces” (“Ich liess
mich dabei von der Analogie der Gravitationskräfte leiten” [28]. Obviously, Einstein,
writing even before the special relativity theory, is referring to Newtonian gravitation,
which he would finally revise with his general relativity theory, in which gravitation is not
trivially additive) [29]. Therefore, the van der Waals force between one atom and a slab or
between two slabs was calculated by augmenting the theory by the ad hoc assumption of
dispersion force additivity and by carrying out pairwise force summations in the continuum

289



Symmetry 2021, 13, 40

approximation [20,30–32]. However, it became quickly apparent that, unlike the case of
Newtonian gravitation, additivity must actually be considered with suspicion. For instance,
Axilrod and Teller intriguingly proved that each of three isolated atoms interacting via
the unretarded van der Waals–London force not only do not experience forces trivially
given by the pairwise sum, but can even mutually repel simply depending on their specific
geometric arrangement [33].

Both the problem of retardation and of additivity in real materials, regardless of
scale or distance and including absorption, were eventually addressed by Lifshitz through
the introduction of a random electromagnetic field into the Maxwell equations [34,35].
Although the status of the Lifshitz theory in relationship to the fundamental principles
of quantum mechanics has raised long-standing questions, as shown in the references
above, the quantitative success of the resulting equations for the dispersion force between
polarizable objects in explaining experimental data from a widespread variety of systems
has been remarkable [36–39].

It is crucial to what follows that London’s calculation of the near-range van der Waals
force assumes a true vacuum, that is, “. . . a state with all physical properties equal to
zero” [40], within which to consider the classical electrostatic interaction of two instan-
taneous dipoles described by non-relativistic quantum mechanics. On the other hand,
the treatment of the long-range potential presented by Casimir and Polder is explicitly
rooted in the concept of the zero-point-energy of the quantum vacuum [41]. This seems
to imply, as is often stated, that the existence of retarded interactions cannot be explained
outside the framework of quantum field theory. However, this is not the case. Indeed,
somewhat in the path Overbeek had envisioned, theories leading to the correct retarded
potentials have been developed “in spite of having used the nonretarded Schrödinger equa-
tion” [42] to treat the interacting atoms but retaining the electromagnetic field as classical.
As the quantum nature of the electromagnetic field appears beyond doubt on independent
considerations, such semiclassical endeavors are at times presented self-deprecatingly, in a
manner mindful of, or perhaps in order to pre-empty, Osiander’s opinion that, for the
sole purpose of saving the phenomena, “. . . these hypotheses need not be true nor even
probable . . . ” [43] (“Neque enim necesse est, eas hypotheses esse veras, imo ne verisimiles
quidem . . . ” [44]). For instance, in a short pedagogical article aimed at illustrating the
basic idea of the Casimir effect, Kleppner instead discusses, “delightfully” [45], a one-
dimensional version [46] of London’s unretarded model of interacting harmonic oscilla-
tors [17]. The obvious extension of that approach to include full retardation—the actual
Casimir effect—is disposed of as to “flog the argument beyond the point of diminishing
returns” [47].

One recurring apologetic argument for all such efforts is that pedagogy can take
advantage of “. . . the considerable simplification in the mathematical aspects of the frame-
work over the approach based on quantum electrodynamics” [48]. A slightly more am-
bitious perspective holds that “The various interpretations of the dispersion effect are
aimed at minimizing the quantum theoretical effort” but “It is one of the objectives of the
quantum electrodynamics procedure to check the errors and limits of these semiclassical
approaches” [42].

Along these lines, additional motivation was provided by Casimir and Polder them-
selves in their early speculation that “. . . it might be possible to derive these expressions,
perhaps apart from the numerical factors, by more elementary considerations. This would
be desirable since it would also give a more physical background to our result, a result
which in our opinion is rather remarkable” [24]. This goal was adopted by McLachlan,
who explained: “In one sense the theory of molecular attractions is now complete, but there
is still a need for an elementary discussion which gives better physical insight. The aim of
this paper is to find the dispersion force between two molecules by a new method which
uses elementary quantum mechanics and assumes almost no knowledge of quantum field
theory” [49]. Indeed, Margenau, commenting in the aftermath of such work, stated that
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“The approach just considered, for which we are indebted to McLachlan, is essentially
classical, the only quantum mechanics occurring in the definition of the polarizability” [50].

At the far end of the spectrum, one finds efforts not just aimed at recovering known
results with a less onerous mathematical apparatus for reasons of succinctness or insight
but claiming to do so, regardless of complexity, in order to show that the nature of the
electromagnetic field is not fundamentally quantum mechanical. In this view, referred
to as “stochastic” or “random” electrodynamics (SED), there actually exists a fluctuating
zero-point electromagnetic field but such an object is completely classical and it appears
as a solution of the homogeneous wave equation for the potential vector [11]. As pointed
out by Marshall [51,52] and Boyer [53], the theory is Lorentz-invariant, and it has been
shown not only to recover the major expressions from “standard” dispersion force theory
but also—stimulated by a question from none other than Casimir himself—to lead to the
earliest prediction of a repulsive Casimir force between a perfectly electrically conducting
and a perfectly magnetically permeable slab [54] (see also in [55]).

The fact that this semiclassical approch and “standard” QED calculations lead to the
same expressions was stressed by Spruch, who observed: “Why vacuum fluctuation argu-
ments worked in the past in the problems to which they were applied is, to our knowledge,
not completely understood, but the simplicity of the approach gives it considerable appeal,
as a means of providing physical insight into known results and as a means of suggesting
new results” [56]. Indeed, Spruch adds that “it is not necessary to go to the trouble for
almost all of the work has been done, and we simply note down an extension of a version
given by Boyer”. Interestingly, the result used therein had been obtained by Boyer by
pointing out that “we may regard the fields equally well as classical fields subject to a
random walk or as quantum fields” [53]. Several years later, Spruch presented these argu-
ments in a remarkable pedagogical article written for Physics Today to illustrate that “. . . the
essential idea is to proceed entirely classically. . . until that last step . . . in which we quantize
the energy of the modes of vibration of the electromagnetic field” [57]. This approach
yields a completely classical expression for the dispersion energy for any arbitrary specific
energy density, and to the intriguing comment that such is “. . . a result Maxwell could
have derived, and perhaps did”. (The reasons that this “counterfactual history” statement
cannot be considered realistic were explored in [22]) Finally, Spruch states that “[T]he
quantum version follows immediately on making E0 the field of vacuum fluctuations . . . in
that case the energy in a mode of the field is simply . . . 1

2 h̄ω . . . ”. We must notice, however,
that whereas that “last step” is attributed the actual meaning of field quantization by
Spruch, within the SED framework the fields remain classical and Planck’s constant “. . . h̄
is regarded as nothing more than a number chosen to obtain consistency of the predictions
of the theory with experiment” [11].

Predictably, a classical electromagnetic zero-point field is perceived as a highly con-
troversial proposal [3]—indeed Boyer noted that “some readers . . . are distressed, even in-
dignant at the idea . . . ” [58]—and Milonni concluded that “In spite of the successes of
SED, it cannot at this time be considered a serious alternative to QED” [11]. Such peremp-
tory rejection, supported by the argument that, for instance, “no classical theory of the
electromagnetic field can account for such experimentally observed phenomena as the
photon polarization correlations in a cascade radiative decay of atomic states” [11], has,
however, not resulted in the disappearance of the SED approach. From the theoretical
standpoint, this is continues to be presented as being due, in a typical literature example,
to “computational advantages” [59], couched in Osiander’s language of profuse apology
despite excellent agreement with experimental data, confessing that the purpose “. . . is not
to propound some rival to QED” [59].

Even more importantly, continued pursuit of the SED standpoint eventually inspired
novel experimental physics and engineering applications of the Casimir effect. One devel-
opment was motivated by a description of dispersion forces in terms of the net radiation
pressure of all modes of the zero-point-field first suggested by Casimir in his landmark
publication [2], quoted verbatim much later by Debye [9] (see in [60], Note 5), and fully ex-
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plored by Gonzáles [61] and, finally, by Milonni [11,62]. Despite some commentary critical
of this famously lucid and oft-cited interpretation, delivered by Barton in a section tellingly
entitled “Exorcism” [63], the prediction of the existence of forces between macroscopic
boundaries does not appear to demand a quantum origin of the field, which can thus be
classical. Therefore, both Boyer’s SED papers and Milonni’s more recent radiation pressure
formulation are consistently cited as cornerstones in theses and articles leading to the
successful detection of the acoustic Casimir effect [64–66], that is, “the force between two
plates in a homogeneous, isotropic, acoustic field” [67]. The development of this research
subfield led to a deeper understanding of the connection between the detailed features
of the random vibration spectrum with the Casimir force as a function of the gap width
between the two plates. Whereas, as we stated above, in the electromagnetic case such
spectrum is uniquely determined by the requirements of Lorentz invariance, in the acoustic
case it can be arbitrarily set by the experimenter.

The outcome of these studies was the mathematical proof that a narrow band random
noise spectrum may result in large oscillations of the force with distance, later indepen-
dently re-discovered by Ford in the electromagnetic case [68], which finally led to the first
experimental detection of repulsive acoustic Casimir forces [66,67]. The remarkable possibil-
ity to tailor such interactions in intensity and sign suggested that engineering the noise spec-
trum might lead to novel applications in micromanipulation and particle levitation. More
recently, this interesting result has led to the theoretical suggestion [69] that high-frequency
noise fields might represent a tool to control stiction, the phenomenon responsible for non-
linearities and a failure mode in microelectromechanical systems (MEMS) [70]. The Casimir
effect with classical random fields—referred to by some as the “analog” Casimir effect—
was further demonstrated by measuring the force between two vertically plates partially
submerged in a dish containing a liquid (This interesting experiment has been presented as
indirect support of the veracity of historical reports of a “maritime” Casimir effect, that is,
the force attraction of two side-by-side ships in a rough sea [71]. Despite the correctness of
the experiments reported in [72], the present author has shown [73] that there exists no basis
to believe that the drawing shown in [71] suggests that “It was believed in the days of the
clipper ships that . . . two vessels at close distance [in a strong swell] will attract each other”.
In fact, as also remarked by a reader in a letter to the Editor [74], the traditional belief was
the opposite, that is, that ships in a completely flat sea attract. However, the captions of
the two figures in the historical source, one showing rough seas and other one flat calm,
were inexplicably swapped by the author of [71]) excited by a shake table [72].

As a final example of productivity of the SED point of view, again represented by cita-
tion of Boyer’s papers as the logical starting point, we mention the very recent experiments
aimed at engineering dispersion forces by means of arbitrary fluctuating electromagnetic
fields in optical nanoparticle manipulation applications [75]. This remarkable work has
generated renewed impetus in long standing efforts to shape dispersion forces by radi-
ation [76] resulting in applications in bacterial screening [77] and in further progress in
“gravitational-like” interactions [78–80] and “mock gravity” [81].

We conclude these introductory remarks by quoting leading research protagonists
implicitly or explicitly exposing the need to accept the limitations presented by using forces
between polarizable particles as a tool to ascertain the ultimate nature of the fields. For in-
stance, the discoverers of “optical binding” offered the following commentary applicable
to the issue at hand.

“Finally we note that many readers of this journal view forces between elementary
particles of nature as originating from the exchange of virtual quanta of fields
to which they are coupled. The induced interaction discussed in this paper fits
nicely into that scheme, but with real quanta being exchanged. We wonder
whether other particles and fields may be substituted for our dipoles and light,
yielding analogous effects in other domains of physics” [82].

An obvious illustration of this argument is the view of the Casimir effect as due to radiation
pressure of a zero-point-field photons gas—an interpretation that cannot differentiate
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between real or virtual photons. Speaking more broadly, DeWitt has remarked that “There
must be nearly two dozen ways of calculating the Casimir effect” [83]. Indeed, approaches
as diverse as QED and SED lead to the same expressions for dispersion forces in various
regimes, thus suggesting that the existence of dispersion forces is not a valid tool to
determine whether a field is quantized. This was explicitly noted by the researcher who
designed the first modern experiment to accurately test the predictions of the Lifshitz
theory [84], S. K. Lamoreaux, who stated: “There are physical phenomena that truly require
a quantization of the electromagnetic field for their explanation; the Casimir force is not
among these phenomena, because the predictions based on different points of view are
identical” [85].

As is tradition, the present author also proffers his own apology of quantum electro-
dynamics, which has in fact never been falsified and is consistently hailed, with reason,
as possibly the most successful physical theory ever devised by the human mind [86].
However, special care must be used as we attempt to employ dispersion forces to draw
conclusions about the nature of “other particles and fields”. In this sense, it is appropri-
ate to extensively quote some words by Richard Feynman in his Nobel Prize acceptance
speech [87]:

“Physical reasoning does help some people to generate suggestions as to how
the unknown may be related to the known. Theories of the known, which are de-
scribed by different physical ideas may be equivalent in all their predictions and
are hence scientifically indistinguishable. However, they are not psychologically
identical when trying to move from that base into the unknown. For different
views suggest different kinds of modifications which might be made and hence
are not equivalent in the hypotheses one generates from them in ones attempt to
understand what is not yet understood. I, therefore, think that a good theoretical
physicist today might find it useful to have a wide range of physical viewpoints
and mathematical expressions of the same theory (for example, of quantum
electrodynamics) . . . ”

It may appear surprising to see an extraordinarily objective physicist as Feynman
ponder about such concepts as “psychologically identical” ideas—a criticism he seems to
pre-empty at the onset by stating that he just wants “to make the lecture more entertaining”.
However, considering that Julian Schwinger, seated in that same audience that day, would
later refer to the Casimir effect as “One of the least intuitive consequences of quantum
electrodynamics” [40], Feynman’s warning must be taken very seriously as we move from
the known, QED, to the unknown, the ultimate structure of spacetime.

3. Gravitational Dispersion Forces

It is a puzzling fact in the history of this subfield that no treatment of gravitational
dispersion forces was, to the best knowledge of this author, ever published till very recently
although, for instance, the non-relativistic regime does not require a treatment remarkably
more complex than that developed by London. This silence was not due to a lack of
sophisticated theoretical tools. The calculation of classical (i.e., non-quantum) corrections
to the gravitational force upon a charge distribution in various gravitational fields was
pursued intermittently, often without awareness of past results [88], as the first attempt by
Enrico Fermi to study electrostatics within the then-novel theory of general relativity while
at at the Scuola Normale Superiore at Pisa [89].

Even as QED was being developed, the problem of quantizing linearized gravity
had also emerged [90–92], most prominently, in the pioneering works of Rosenfeld [93]
and Bronstein [94]. The results by the latter are remarkable from our perspective even
in the present day because, as pointed out by the editors [95] of his recently reprinted
work [96], Bronstein even addressed the presence of a gravitational zero-point-energy and
implemented the proper operator ordering [11] needed to avoid it (This now famous paper
was Bronstein’s PhD dissertation, presented in 1935. He was arrested in August 1937
during the Great Purge, then tried, sentenced, and shot on the same day in a Leningrad
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prison on 18 February 1938 [91,97]). His results, achieved at a remarkably early stage
in the exploration of the challenges of a theory of quantum gravity and “Published in
German in a journal inaccessible today” [95], remained relatively unknown. Indeed,
as late as 1992, Gorelik still found the need to openly contradict Steven Weinberg’s taking
“liberties with history” [90] for rashly awarding to Planck [98] priority in identifying the
“inconsistency between quantum mechanics and general relativity”, an achievement which
Gorelik attributed to Bronstein.

In the several decades that followed, corrections to the Coulomb and post-Newtonian
potentials, as well as mixed potentials, were derived both within classical general rela-
tivity and quantum field theory frameworks [99–104] (the contemporary state-of-the-art
is reviewed in [105–107]). The relatively late development of the gravitational potential
corrections was explicitly acknowledged by Feinberg, Sucher, and Au as late as 1989:
“Two-graviton exchange has also been studied in some approximations . . . but, a general
expression for the potential arising from this exchange, similar to that . . . for two-photon
exchange between charges has, to our knowledge, not been derived” [108]. Specifically
regarding corrections to the Coulomb potential, the same authors observe “It is interesting
to note that the r−2 term is independent of Planck’s constant. Indeed, this term can be
obtained in a purely classical treatment of electrodynamics . . . This is not the case for the
r−3 term”. It is a further demonstration of the tortuous history of the subject that the
classical r−2 term had already been exhibited by Berends and Gastmans in 1976 [100] but
was recognized by them, “in proof”, as having being published by Cécile and Bryce DeWitt
as early as 1964 [99].

As far as the quantum corrections to the gravitational as well as the mixed potentials
(∝ r−3), remarkably early comments are found in the aforementioned paper by Spruch [57]
and reiterated in a later review chapter on Casimir forces, also of a pedagogical nature [109].
For instance, after having obtained the order of magnitude of the correction to the Coulomb
potential, Vee ∼ h̄e4/c3m2r3, Spruch instructs the reader: “To obtain the gravitational
analog of the electron–electron interaction, replace both factors of e2 by Gm2; to obtain the
gravitational-electromagnetic interference term in the interaction, replace only one factor
of e2 with Gm2”. As noted later, as this mixed contribution is linear in G, it is “much larger
and more interesting” (see in [57], Equation (6), box on p. 42, and p. 43; see also in [109],
p. 28). However, having come so close to the subject of dispersion forces in gravitationally
polarizable systems, Spruch walks away from it with the justification that “. . . there is
no gravitationally neutral system and therefore no gravitational analog of the electrically
neutral atom . . . ”.

An element crucial to the focus of the present paper was added to the debate by
J. P. Dowling in a letter written in response to Spruch’s article in Physics Today [110]. Dowl-
ing reminded readers that, as we repeatedly mentioned above, there exist other points of
view than explaining the existence of retarded dispersion forces by coupling of the interact-
ing systems with the electromagnetic zero-point fluctuations, such as the Lifshitz theory [34]
and the source theory by Schwinger, DeRaad, and Milton [40]. To these, he added yet
another framework, that is, the “self-field approach” in which no second quantization is
carried out, as proposed by Barut [111,112] and pursued by him and his collaborators,
including J. F. Van Huele [113] and Dowling himself [114,115]. In the apologetic tone typi-
cal of authors straying from the standard theory, Barut and Dowling responded by citing
the facts: “If a semiclassical theory is defined as a theory which is not second quantized,
then self-field QED has been quite a successful semiclassical theory (at least to order α) in
accounting for quite an array of phenomena thought to require at least the second quantiza-
tion of the radiation field for their explanation” [115]. Among such phenomena, were also
the “long-range Casimir–Polder van der Waals forces near boundaries” [114]. The obvious
consequence of such observations is, once again, that if the existence of electrodynamical
dispersion forces does not demand second quantization but can be correctly described
within a semiclassical theory, neither does the existence of gravitational dispersion forces.
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In the last forty years, the subject of dispersion forces involving the gravitationally
field has been slowly, and rather haphazardly, rediscovered. Among earliest studies in
this phase were calculations of the gravitational Casimir energy in very specific contexts of
cosmology and field theory [116–118]. As late as 1993, Spruch had dismissed the problem
stating: “We have been concerned almost exclusively with electromagnetic effects but it
is amusing to consider gravitational effects, and it is trivial to do so” [109]. Apparently
unaware of Spruch’s assessment, Panella and Widom wrote, shortly thereafter, that “. . . to
the best of our knowledge, the study of long range gravitational interactions between
massive bodies (e.g., calculation of gravitational retarded static potentials) has not yet
been undertaken”. In their article, these authors presented possibly the earliest detailed
calculation of gravitational dispersion forces—“a new finite effect of linearized quantum
gravity namely, the retarded (Casimir) potential of a test mass interacting with a condensed
matter system” [119]. Disappointingly, their result—the retarded gravitational potential
between a point mass and an extended mass distribution found by an approach that
parallels that used to analyze the analogous electrostatic problem [120]—remained virtually
uncited till 2017.

Approximately two decades after Panella and Widom, the problem reemerged from
two independent directions. On the macroscopic scale, the original motivation was pro-
vided by theoretical speculation—tempered by extreme skepticism in the absence of any
experimental confirmation—that superconductors might act as nearly-ideal high frequency
gravitational wave reflectors, thus opening the door to a new field of optics [121–124].
Following a suggestion by Bouwmeester, reported by Minter et al. [125], the possibility of
gravitational wave reflection led to a treatment of the gravitational Casimir effect (Impor-
tantly, Casimir’s approach was later explicitly mentioned by Sakharov (reprinted in [126])
in his theory of “induced gravity” [127]. Although effects connected to fluctuations in
curved spacetime are sometimes referred to as a “gravitational Casimir effect” [128], in this
paper, we consider gravitation as a fundamental, and not an emergent, interaction) analo-
gous to that of the Lifshitz theory in QED [129,130]. Very shortly thereafter, and without
any reference to the results by Quach [129,130] in the macroscopic regime, the computation
of the gravitational van der Waals and Casimir–Polder potentials appeared, carried out
by means of quantum field theoretical methods by Ford, Hertzberg, and Karouby [131],
confirmed a few months later by Wu, Hu, and Yu [132]; Hu and Yu [133]; and Holstein [134].

On the one hand, the macroscopic scale results [129,130] have stimulated a justifiably
lively debate as to whether a hypothetical detection of such a gravitational Casimir effect
would in fact represent a conclusive confirmation of the quantum nature of
spacetime [22,60,135–138]. On the other hand, the microscopic scale calculations have
been accompanied by a unanimous consensus on the part of those who carried them out
that any experimental confirmation of those predictions would reveal a signature of the
quantum nature of the gravitational field. Consider the following examples of matter-of-fact
commentary provided regarding the first black hole merger detection, announced within
the same time frame as the above results [139], and gravitational dispersion forces. Holstein
forcefully stated that “The recent observation at LIGO of gravitational radiation has veri-
fied the existence of gravitons and has emphasized the importance of studying processes
involving their interactions” [134]. Ford and collaborators sweepingly concluded that their
own work “. . . is a rare, precise, and definite prediction of quantum gravity, independent of
the details of its UV completion . . . (analogous to the electromagnetic Casimir–Polder and
London–van der Waals forces) . . . ” [131]. Along these lines, Wu, Hu, and Yu introduced
their calculations stating that “Although a full theory of quantum gravity is absent, one can
still use linearized quantum gravity to find quantum gravitational corrections to classical
physics which an ultimate quantum gravity theory must produce at low energies” [132].
Finally, Hu and Yu commented that “One naturally expects that, if gravity has a quantum
nature, it should also generate Casimir-like forces” [133].

As must appear obvious in light of the facts we recalled so far, all such strong claims
deserve careful analysis to avoid logical pitfalls. For instance, as we have repeatedly seen,
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Casimir forces are also predicted by theories without second quantization and even with
entirely classical fields [140,141]. Therefore, a non-quantum gravitational field should
still very much be expected to generate Casimir forces. Furthermore, in electrodynamics,
one would find it obviously untenable to state that “the observation of light verifies the
existence of photons”. Indeed, Dev and Mazumdar voiced the opinion that “The LIGO
detection as such does not confirm whether the observed gravitational wave is classical or
quantum” [142].

From the methodological standpoint, as the present author has previously discussed [60],
the adoption by Ross and Moreau of the SED mathematical tools developed by Boyer to
carry out an analogous study of “stochastic gravity” [143] is neither less rigorous nor less
promising than far more popular linear quantum gravitational methods. For instance,
in addition to providing a useful framework to treat gravitation approaching the Planck
scale, the possibility must be examined that contamination of gravitational dispersion force
measurements [60] might occur from an as yet undetected classical gravitational stochastic
field background of cosmological and astrophysical origins [144–146].

In summary, the historical evidence has shown that the developmental trajectory of
the quantum gravity research subfield intriguingly differed from that of QED. Whereas at
least half-a-century of extensive analysis in the electrodynamical domain established that
“. . . the Casimir effect reveals nothing conclusive about the nature of the vacuum” [147],
claims that “If gravity truly has a quantum nature, then gravitational waves should also
generate Casimir-like forces” [135] were left largely unchallenged.

In the remainder of this paper, we discuss some examples of calculation of gravitational
dispersion forces carried out assuming that the gravitational field is classical.

4. Unretarded Higher Multipole Electrodynamical van der Waals Forces

The computational strategy adopted below is part of the ongoing program by this au-
thor to bring computer algebra system (CAS) technology to bear in attacking prohibitively
complex Casimir force problems [22,148]. This approach is particularly effective when
generalizing computations to systems in which simplifying symmetries may be lost, as in
the case of electrodynamical dispersion forces in the presence of arbitrary gravitational
fields [88], to avoid errors due to very extensive algebraic calculations or to identify errors
in the published literature, as well as for pedagogical reasons. In order to demonstrate the
algorithm, first we verify several well known expressions for the generalized electric multi-
pole van der Waals potential by means of the Mathematica™ system (v. 11.3.0.0). Second,
we proceed by adapting this approach to compute the gravitational van der Waals potential
expressions. Finally, we report on the explicit calculation of the mixed electric-gravitational
potentials in the unretarded regime.

4.1. Margenau’s Algorithm: London Potential

The interatomic London potential [15,17] will be calculated by the procedure devel-
oped by Margenau [18], who first computed the quadrupole contributions to the van der
Waals interatomic forces on Frenkel’s suggestion. This is summarized here for convenience.
Let us consider the Coulomb potential (Gaussian units), V(r) = e/|r− r0|, at r (components
xi) due to a proton of charge e = +|e| placed at r0 (components xi

0). The total potential Vpe
at r due to this proton and to its atomic electron of charge −e, placed at a position r1 away
from the proton is, to second order in the components xi

1 = xi − xi
0 (index summation

convention is used) and eventually setting r0 = 0:

Vpe(r) =
e
r
− e

r
+ e

(
xi

1
∂

∂xi

)(1
r

)
+ . . . , (1)

where ∂/∂x = −∂/∂x0. Let us now place at second atom with proton at r and electron at r2

from the proton. The classical dipole–dipole potential energy of this atom in the potential
Vpe(r) is, also to first order in xk

2:
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Wdd(r1, r2, r) = eVpe(r)− eVpe(r)− e
(

xk
2

∂

∂xk

)
Vpe(r) + · · · = −e2

(
xi

1xk
2

∂

∂xi
∂

∂xk

)(1
r

)
. . . . (2)

By implementing the above steps in Mathematica, and by choosing r = (R, 0, 0), we find

Wdd(r1, r2, R) = − e2

R3 (2x1
1x1

2 − x2
1x2

2 − x3
1x3

2) , (3)

which is the classical perturbing field used by London. As is well known [18,149], the cal-
culation next proceeds to obtain a good approximation of the expression for the van der
Waals force by evaluating the following six-dimensional integral,

UvdW(R) � − 1
2EI

∫
V1

∫
V2

φ∗
1,0,0(r1)φ

∗
1,0,0(r2)W2

dd(r1, r2, R) φ1,0,0(r1)φ1,0,0(r2) dr1 dr2 , (4)

where EI is the atomic ionization energy EI = e2/2a0 and a0 = h̄2/mee2 is the Bohr radius
and the normalized ground state wave function φ1,0,0 is:

φ1,0,0(r) =
e−r/a0√

a3
0π

. (5)

The elementary process consists of considering the symmetry properties of the in-
tegrals of the 6 terms produced by squaring the classical energy at Equation (3) and
recognizing that some vanish while all others are identical to one another. Here, instead,
we proceed by brute force as all such integrals are elementary and can be computed by
Mathematica in ∼1 s of CPU time on a typical laptop. With the above approximations,
one finds the standard expressions:

UvdW(R) = −3a4
0e4

EI R6 = −6a5
0e2

R6 . (6)

This quantity can be expressed in terms of < 1, 0, 0|r2|1, 0, 0 >= r2
1,0,0 = 3a2

0, so that
we can finally write:

UvdW(R) = −
e4(r2

1,0,0)
2

3EI R6 , (7)

which is the expression given by Margenau (see in [18], Equation (8) and in [50], p. 24).
Further expressions of this result useful for comparison with the literature can be obtained
by writing the square of the norm of the ground state dipole expectation value from the
result above as ||μ1,0,0||2 = 3e2a2

0, so that

UvdW(R) = − (||μ1,0,0||2)(||μ1,0,0||2)
3EI R6 , (8)

which agrees with the complete expression at Equation (1.1) of the work in [150]:

UvdW(R) = − 2
3R6 ∑

r,s

||μ0,r(A)||2||μ0,s(B)||2
Er,0 + Es,0

, (9)

in the approximation in which one only retains the ground state contribution of two
identical atoms, A and B. Finally, let us write the electric dipole polarizability from the
Kramers–Heisenberg formula [11,150,151]:

α
(1)
E (ω) =

2
3 ∑

r

Er,0||μ0,r||2
E2

r,0 − (h̄ω)2
. (10)
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In the static limit for ω → 0, again only considering the contribution of the ground
state and by using the results above, we find the classical static dipolar polarizability,
α
(1)
0,E = 4a3

0 [11,152], and we obtain another standard expression:

UvdW(R) = −
3EI(α

(1)
0,E)

2

4R6 . (11)

4.2. Margenau’s Algorithm: Quadrupole van der Waals Forces

The next objective to validate our approach is to generalize the above procedure to
higher multipoles by first expanding Vpe(r) to second order at Equation (1):

Vpe(r) = e
(

xi
1

∂

∂xi −
1
2

xi
1xj

1
∂

∂xi
∂

∂xj

)(1
r

)
+ . . . . (12)

Therefore, the electrostatic potential energy of the two atoms is

Wdd(r1, r2, r) = −e
(

xk
2

∂

∂xk +
1
2

xk
2xl

2
∂

∂xk
∂

∂xl

)
Vpe(r) + . . .

= −e2
(

xk
2

∂

∂xk +
1
2

xk
2xl

2
∂

∂xk
∂

∂xl

)(
xi

1
∂

∂xi −
1
2

xi
1xj

1
∂

∂xi
∂

∂xj

)(1
r

)
. (13)

By implementing these expansions in Mathematica and again choosing r = (R, 0, 0),
we obtain the sum of three polynomials proportional to 1/R3, 1/R4, and 1/R5, where
the first of course recovers the dipole–dipole potential energy seen above. Squaring this
quantity to obtain Wdd(r1, r2, R) leads to a polynomial that Mathematica measures as having
229 terms. The 6-dimensional integration shown at Equation (4), carried out in ≈ 180 s of
CPU time, yields the following van der Waals potential,

UvdW(R) = −3a4
0e4

EI R6 − 135a6
0e4

2EI R8 − 2835a8
0e4

4EI R10 = −6a5
0e2

R6 − 135a7
0e2

R8 − 2835a9
0e2

2R10 , (14)

coinciding with the results by Margenau [18,50] and Pauling [153] (In Equation (47.7) [154],
the coefficient of the term in 1/R10 is given as 1416 instead of 1417.5). Margenau also
expresses this result [18] in terms of the quantity < 1, 0, 0|r4|1, 0, 0 >= r4

1,0,0 = 45
2 a4

0 and of
r2

1,0,0 already found above:

UvdW(R) = −
e4(r2

1,0,0)
2

3EI R6 −
e4(r2

1,0,0r4
1,0,0)

EI R8 −
7e4(r4

1,0,0)
2

5EI R10 . (15)

Finally, let us express this result in terms of the dipole moment found above and of
the traceless quadruple moment tensor defined as [150,155–157]

Qij = − e
2!

[
xixj − 1

3 r2δij

]
(16)

Computing the expectation values < 1, 0, 0||Qij|2|1, 0, 0 > by means of Mathematica,
the square of the Frobenius norm [158] of the ground state traceless quadruple moment
tensor can be obtained:

||Q||2F ≡ ∑
i

∑
j
< 1, 0, 0||Qij|2|1, 0, 0 >=

15
4

a4
0e2 . (17)

Let us now use this result in the quadrupole-quadrupole, 1/R10 term at Equation (14),
indicated as V22(R) in [150]:

V22(R) = −2835a8
0e4

4EI R10 = − 504
5R10

(||Q||2F)(||Q||2F)
2EI

, (18)
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in agreement with Equation (1.3) of the work in [150]. By now using Equation (17) and the
norm squared of the ground state dipole expectation, ||μ1,0,0||2 = 3e2a2

0, we can rewrite the
dipole-quadrupole, 1/R8 term at Equation (14), indicated as V12(R) in [150], as

V12(R) = −135a6
0e4

2EI R8 = −135
R8

1
2EI

4
15

(||Q||2F)
1
3
||(μ1,0,0||2) = − 12

R8
(||Q||2F)(μ1,0,0||2)

2EI
, (19)

which indicates the factor of 3 in front of the summation at Equation (1.2) of the work
in [150] should be 12.

Finally, let us express these results in terms of the static dipole (α(1)0,E = 2
3 ||μ0,r||2/Er,0)

and static electric quadrupole polarizabilities, by using the standard expression for the
latter (i.e., see Equation (6.5) in [159]), where μ0,r and Er,0 are the transition moments and
the transition energies, and again only considering the ground state contribution [150]:

α
(2)
0,E =

1
5 ∑

r

Er,0||Q||2F
E2

r,0 − (h̄ω)2
−→ 2

(||Q||2F)
EI

. (20)

In summary, we find, including also Equation (21) rewritten in the notation of the
work in [150]:

UvdW(R) = V11(R) = −3EI(α
(1)
0 )2

4R6 ; (21)

V12(R) = −
9EIα

(1)
0 α

(2)
0,E

R8 ; (22)

V22(R) = −
504EI(α

(2)
0,E)

2

40R10 . (23)

Although in the literature all such results are obtained from rigorous calculations
within the framework of QED, it is also pointed out, without proof, that “The near-zone
result . . . may also be obtained with second-order perturbation theory and the electrostatic
potentials coupling two electric dipoles . . . , an electric dipole and an electric quadrupole . . . ,
and two electric quadrupoles . . . ” (see in [159], see also in [157], p. 64). Such an approach,
which extends London’s calculations to higher multipoles as shown by Margenau, does not
rely on the quantization of the electromagnetic field.

5. Unretarded Gravitational van der Waals Forces

The classical electrostatic dipolar polarizability, α
(1)
0,E, is typically introduced by means

of a classical model in which an electron of mass me, bound to a proton by a spring of
constant K = meω2

0, is displaced by an external electric field, E, so that the position of static
equilibrium is given by −eE = −Kr. The corresponding induced dipole moment p = er is,
therefore, p = e2/meω2

0E and the polarizability is, by definition, α
(1)
0,,E = e2/meω2

0.
Let us now develop a similar oscillator model to exhibit the static gravitational polar-

izability, α
(2)
G . It is important to notice at the onset that this calculation differs from the

electrostatic case in subtle ways that require careful consideration. For instance, as first
pointed out by Szekeres almost half-a-century ago in what was possibly the first attempt
to calculate the “gravitational dielectric constant” [160,161], and as later rediscovered by
this author in related contexts [162,163], a model of a harmonic oscillator interacting with
gravitational waves naturally leads to a Mathieu-type equation of motion. In what fol-
lows, as also done by Szekeres, we shall assume that the circumstances possibly triggering
parametric resonance are not verified.

We shall again consider an atom in which the electron is connected to the proton by
a spring aligned, for instance, along the direction pointing to another identical atom at
distance R. Again, although the electrodynamical model and this gravitational model
appear equivalent, it is not widely appreciated that the evolution of the latter in response
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to external gravitational fields depends critically on the assumed dynamics of the atoms.
For instance, the gravitational effects by a mass on “a hydrogen atom whose point proton
is immobile” [164] (“Le modèle envisagé est celui d’un atome d’hydrogène dont le proton
ponctuel est immobile à l’extérieur de la matière créant le champ” [164]) are drastically
different than those on an atom “. . . in free fall along a geodesic of the spacetime during the
time required for an atomic transition” (see in [165], see also in [166]). For the purpose of
defining the gravitational polarizability, here we shall assume that both atoms are in free
fall although it is clear that, rigorously speaking, this assumption is contradiction with the
existence of dispersion forces.

In this 1D model (see in [11], p. 100, Note 11), we shall assume the unperturbed
electron to be oscillating harmonically with amplitude equal to r1,0,0 = 3

2 a0 so that the
position time average is equal to z = r1,0,0/

√
2. The displacement from this average due to

a gravitational tidal force produced by a mass M is Δz = meR0z0zz/K, where R0z0z are the
appropriate components of the Riemann tensor [167,168]. This yields the following induced
trace-free quadrupole moment tensor [167,168]:

Qzz =
2
3

me[(z + Δz)2 − z2] � 2
3

me2 z Δz =
4
3

m2
e R0z0z

z2

K
. (24)

Therefore, the gravitational polarizability, in the static limit, can now be defined as
(Equation (11) in [131]):

α
(2)
0,G ≡ Qzz

R0z0z
=

4
3

m2
e

z2

K
=

4
3

m2
e

r2
1,0,0

2K
=

4
3

m2
e (

3
2
)2 a2

0
2K

=
3
2

m2
e a2

0
K

=
3
2

mea2
0

ω2
0

, (25)

where the units also correspond to those given therein (see comment above Equation (32)
in [131]).

For the purpose of succinctness, supported by explicit verification with Mathematica,
we shall now return to our electrostatic results to extract the expression of the gravitational
dispersion force. Obviously, as pointed out by Spruch [57,109], in this case we cannot
have a neutral atom. However, the assumption of free fall, by the Principle of Equivalence,
implies that all non-tidal gravitational interactions must not affect the dynamics of the
system (Notice that introducing a negative mass is a standard procedure employed formally
“to eliminate the mass monopole” [169] in analogy with an electric quadrupole. See also
Section 6.2). Therefore, the leading contribution left in this unretarded regime is provided
by the quadrupole–quadrupole term at Equation (18), upon carrying out Spruch’s (e2)2 →
(Gm2

e )
2 substitution, and with appropriate identification of the gravitational polarizability

given above:

VGG
22,near(R) = −2835 a8

0 G2m4
e

4EI R10 = −315
4

EI G2(α
(2)
0,G)

2

R10 . (26)

This equation, obtained by quantizing the interacting oscillators but with classical
gravitation, is identical to that found by Ford, Hertzberg, and Karouby (see Equation (31)
in [131]) from quantum field theory provided that the two atoms are identical and with
EI = h̄ω0.

Finally, as also hinted to by Spruch, we provide new results, that is, the expressions for
the mixed quadrupole–quadrupole and dipole–quadrupole electric-gravitational potentials
in the unretarded regime. These can be obtained analogously to what done above by
carrying out only one e2 → Gm2

e substitution while leaving one e2 factor unchanged in
Equations (18) and (19), respectively:

VEG
22,near(R) = −2835 a8

0 e2Gm2
e

2EI R10 = −
63EI Gα

(2)
0,Eα

(2)
0,G

R10 . (27)
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VEG
12,near(R) = −135 a6

0 e2Gm2
e

EI R8 = −
45EI Gα

(1)
0,Eα

(2)
0,G

2R8 . (28)

Notice, however, that the explicit Mathematica calculation shows a factor of 2 difference
in addition to the e2 → Gm2

e substitution.

6. McLachlan’s Semiclassical Calculation of Electrodynamical Dispersion Forces

As we have mentioned above (Section 1), McLachlan developed an approach to the
calculation of dispersion forces between polarizable bodies requiring only the quantiza-
tion of the atomic degrees of freedom while leaving the interacting electromagnetic field
classical [49,170]. Within this semiclassical framework, all results from the Lifshitz theory,
including the potential of two or more molecules or that of infinite parallel dielectric sur-
faces, both in the unretarded and retarded regimes, are correctly recovered. As typical, a
method that “. . . gives the main results of Lifshitz’s treatment and does not use quantum
field theory” is justified merely as having “the advantage of using simple physical con-
cepts” [171]. In the case of this paper, however, we intend to employ this strategy to show
that a completely classical gravitational field is expected to produce dispersion forces equal
to those predicted in the low-energy limit of a hypothetical theory of quantum gravity.
Therefore, a hypothetical experimental verification of the existence of such forces would
not represent proof that the gravitational field is quantized. For the purpose of considering
such a generalization of McLachlan’s theory to the gravitational case, we first focus on the
electromagnetic case, sketching his calculation of the interatomic dipole–dipole dispersion
potential, which leads back to the expressions by London and by Casimir and Polder. We
then broaden this treatment to dipole–quadrupole and quadrupole–quadrupole electro-
dynamical dispersion forces in simplified 1D models to highlight the physical principles;
thus, reaching expressions obtained approximately four decades after Casimir and Polder
by Thirunamachandran [172] from non-relativistic QED [79], later in collaboration with
Salam, Power, and Jenkins [150,156,157,159,173].

6.1. Electric Dipole–Electric Dipole Dispersion Forces

Here, we closely follow the analyses of the relevant physical arguments in McLachlan’s
approach provided by Margenau (see in [50], especially Section 6.3), by Renne [174,175],
and by Langbein [42], adapting all notation and definitions therein to compare our results
to those above and elsewhere in the published literature, and to extend this treatment to
the case of gravitational dispersion forces.

Let us consider two coupled harmonic oscillators of displacement components uA,i
and uB,j of masses mA,B and natural frequencies ωA,B. By writing the equation of motion
of each oscillator in the absence of friction and under the action of an external force Fext =
F(ω) exp(−iωt), with i =

√
−1, the usual amplitude of the forced oscillation is found,

uA,B = χA,B(ω)Fext, where χA,B(ω) is the generalized scalar susceptibility (As discussed
below, the dimensionality of this definition differs from that at Equation (10) by [Charge]2.
For this reason, we add a factor e2 to the force equation, FBA,j = uA,ie2Tij(ω), as explicitly
done in all treatments following that by London [17] (for instance, see Equations (3.67–68)
in [11]). The definitions in McLachlan are consistent with those by Langbein (compare
Equation (5.3) in [170] with our Equation (10)). On the other hand, Margenau adopts our
definition at Equation (10) (see Ch. 2, Equation (83) in [50])):

χj(ω) =
1

mj(ω
2
j − ω2)

. (29)

In the hypothesis of linear oscillator coupling, the force FBA,j exerted by oscillator A
on B is given by the displacement uA,i as FBA,j = uA,ie2Tij(ω), where Tij(ω) will represent
the classical interaction tensor and Tij(ω) = Tji(ω) due to Newton’s third law. By writing
the equations of motion for the two oscillators and assuming solutions of the form uA,B =
uA,B(ω) exp(−iωt), with i =

√
−1, we find the standard homogeneous system of two
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equations whose determinant, set equal to zero, yields the secular equation for the normal
modes [176]:

(ω2 − ω2
A)(ω

2 − ω2
B) = e4 1

mA
Tij

1
mB

Tji . (30)

At this point, as clearly articulated by London (see in [17], § 4; see also in [22,46,47,177]),
the quantization of the oscillation modes of the harmonic oscillator, consistently with the
Uncertainty Principle, leads to a non-vanishing ground state energy, which is shifted by
the interatomic coupling according to the following expression,

ΔE = 1
2 h̄(ΩA + ΩB)− 1

2 h̄(ωA + ωB) , (31)

where ΩA,B are the solutions of the secular equation. By solving Equation (30) and expand-
ing the result in the parameter Tij Tji/mAmB, we find

ΔE = − e4

4
h̄

1
mA

Tij
1

mB
Tji

1
ωAωB(ωA + ωB)

. (32)

In order to verify this result, let us first discuss the structure of the dipole interaction
tensor Tij in the unretarded case. In the present system, the electrostatic potential at rB of a
dipole A located at rA is given by the elementary expression [178,179]:

Udip = −euA · ∇A

( 1
|rA − rB|

)
, (33)

so that the force acting on the elastically bound electron of dipole B is

FBA,j = −e2uA,i∇A,i∇B,j

( 1
|rA − rB|

)
(34)

and the the dipole interaction tensor can be read out as

Tij = −∇A,i∇B,j
1

|rA − rB|
. (35)

A generalization of the quantity TijTji to the full 3D case requires the explicit calcu-
lation of the quantity tr (TijTji) = 6/R6

AB, where RAB = |rA − rB|. Therefore, for ωA =
ωB = ω0 and mA = mB = me, we finally have

ΔE(R) = UvdW(R) = − 3h̄e4

4m2
e ω3

0R6
AB

= − 3h̄4e4

4m2
e E2

I

1
EI R6

AB
= − 3a4

0e4

EI R6
AB

, (36)

as already found at Equation (6) and where, again, EI = h̄ω0 = e2/2a0 and a0 = h̄2/mee2.
Importantly, a different route is to express the natural frequencies at Equation (32) in

integral form by means of the identity:

1
ωAωB(ωA + ωB)

=
1
π

∫ ∞

−∞
dω

1
(ω2 + ω2

A)(ω
2 + ω2

B)
, (37)

so that, equivalently, by integrating along the imaginary frequency axis, where ωC =
ωR + iωI :

ΔE = − h̄
2π

∫ ∞

0
dωI e2 χA(iωI)Tij e2 χB(iωI)Tji = − h̄

2π

∫ ∞

0
dωI α

(1)
A,E)(iωI)Tij α

(1)
B,E)(iωI)Tji . (38)

Again, a generalization of this result to fully independent three-dimensional (3D)
oscillators leads to the well-known result by McLachlan in terms of polarizability tensors:

ΔE = − h̄
2π

∫ ∞

0
dωI tr

(
α
(1)
A,E)(iωI) · Tij · α

(1)
B,E)(iωI) · Tji

)
. (39)
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In the case of isotropic molecules, the polarizability tensors again reduce to scalars
and we can write, in the unretarded case:

ΔE = −3h̄
π

1
R6

ij

∫ ∞

0
dωI α

(1)
A,E)(iωI)α

(1)
B,E)(iωI) . (40)

In order to consider the retarded case, we must again compute the force on dipole B
by means of the dipole classical radiation fields. This can be done starting from the dipole
Hertz vector, Z(rA, rB, ω), given by (see in [178], Sections 14.5–7):

Z(rA, rB, ω) = pA
ei(ω/c)|rA−rB |

|rA − rB|
, (41)

The electric field is then found by means of the auxiliary vector, C = ∇× Z, as E =
∇×∇× Z. In Cartesian coordinates, this leads to the following expression for the tensor to
be multiplied by pA = euA,i in order to obtain the force on dipole B, FBA,j = uA,ie2Tij(ω),

Tij =
[
∇i∇j − δij∇2

] ei(ω/c)|rA−rB |

|rA − rB|
, (42)

where all derivatives are respect to the rA = (xA, yA, zA) coordinates. Let us now assume,
without loss of generality, dipole A to be at the origin (rA = 0) and dipole B at rB =
(r, 0, 0). Direct calculation in this geometry shows that the only non-zero components of
the interaction tensor are, after the customary rotation to the imaginary frequency axis (see
Equation (101) in [50]):

T11 =
( 2

R3

)(
1 + R

ωI
c

)
e−RωI /c (43)

T22 = T33 = −
( 1

R3

)(
1 + R

ωI
c

+ R
ω2

I
c2

)
e−RωI /c . (44)

Therefore, for isotropic atoms, the dipole polarizabilities are again scalars and the
trace at Equation (39) becomes

tr (TijTji) = e−2RωI /c
( 2ω4

I
c4R2

)(
1 +

2c
ωI R

+
5c2

ω2
I R2

+
6c3

ω3
I R3

+
3c4

ω4
I R4

)
(45)

By using this result and Equation (10) in Equation (39), we find

ΔE(R) = − h̄
2π

( 2
3h̄

)2( 2
c4R2

)
∑
r,s

ωr,0 ωs,0||μ0,r||2||μ0,s||2
∫ ∞

0
dωI

ω4
I e−2RωI /c

(ω2
r,0 + ω2

I )(ω
2
s,0 + ω2

I )
×

(
1 +

2c
ωI R

+
5c2

ω2
I R2

+
6c3

ω3
I R3

+
3c4

ω4
I R4

)
. (46)

This expression for the dispersion force in terms of the dynamical polarizability as a
function of the imaginary frequency was first obtained by Casimir and Polder [24] (see also
Equation (42) in [50] and Equation (3.87) in [11,180]).

In the simplified case of two identical atoms in which only one transition is dominant
and in the unretarded limit (e−2RωI /c → 1), only the integral corresponding to the last term
∝ R−4 in Equation (45) must be considered so that we recover the well-known expression
at Equation (21):

ΔE(R) = UvdW(R) = −3h̄
π

( 2
3h̄

)2( 1
R6

)
ω2

0 ||μ0,r||4,
∫ ∞

0
dωI

1
(ω2

0 + ω2
I )

2
= −

3h̄ω0(α
(1)
0,E)

2

4R6 , (47)
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where we used the expression for the static polarizability in terms of the dipole matrix ele-
ment equivalent to that given above immediately preceding Equation (20),
α
(1)
0,E = 2

3 ||μ0,r||2/h̄ω0.
The famous limit of the result at Equation (46) referred to as the Casimir–Polder poten-

tial can be obtained by realizing that, in the fully retarded regime, the static polarizability
provides the leading contribution (See footnote 14, p. 104 of the work in [11]) so that,
by using Equation (45), Equation (39) becomes

ΔE(R) = UCP(R) = − h̄
2π

(α
(1)
0,E)

2
∫ ∞

0
dωI tr

(
TTTij · TTTji

)
= − 23 h̄c

4πR7 (α
(1)
0,E)

2 . (48)

Importantly for our further generalizations, in the isotropic case, Equation (46) can be
rewritten by means of Equation (42) as [156,181]:

ΔE = − h̄
2π

∫ ∞

0
α
(1)
A,E)(iωI)α

(1)
B,E)(iωI)

[(
∇i∇j − δij∇2

) e−RωI /c

R

][(
∇i∇j − δij∇2

) e−RωI /c

R

]
dωI . (49)

6.2. Application to Dispersion Forces with Electric Quadrupoles: One-Dimensional Case

As anticipated by McLachlan, the above strategy can be generalized to the case of
atoms interacting through higher order electric and magnetic multipole fields (see in [49],
Section 7 and Appendix). To the best of this author’s knowledge, however, such a semi-
classical program has never been appeared in the published literature. In what follows,
in support of our analysis of the gravitational case, we consider electric dipole–electric
quadrupole and electric quadrupole–electric quadrupole interactions. In order to expose
the physical processes involved behind this approach while avoiding lengthy calculations,
we shall not analyze the full 3D geometry but, as often done in survey presentations about
the unretarded and retarded regimes [46,47,177], we shall restrict ourselves to the 1D
case. Extension to the full 3D case is promptly achieved through straightforward, though
technically more intricate, calculations as just demonstrated in the previous section.

In analogy with the process leading to Equation (36), let us now consider one simple
1D classical quadrupole, A, represented by two pairs of identical, opposing, elastically
bound point dipoles, pA/δ at a mutual vector distance δuA, where δ is a limit parameter
(Section 4.4 in [182]) (Another useful simple quadrupole model is given by three charges
(+q, −2q, +q) arranged along a straight line at charge-to-charge distances equal to d [169]).
Let us first assume the two opposing dipoles to be aligned along the x-axis and interacting
with another single dipole, pB, like those used in the previous section, also parallel to the
the x-axis.

The only non-vanishing component of the point quadrupole tensor, in the limit δ → 0,
is Qxx = uA pA and the traceless quadrupole tensor becomes Qxx = 3Qxx −Qxx = 2Qxx =
2uA pA. The quadrupole potential can then be written as [183]:

Uquad =
1
6

Qxx
∂2

∂x2

( 1
|rA − rB|

)
, (50)

and, analogously to Equation (34), the force on the oscillating charge of dipole pB is:

FBA,x =
1
3

euA pA
∂3

∂x3

( 1
|rA − rB|

)
. (51)

Finally, since the 1D ‘trace’ TijTji = (∂3/∂x3
A)(1/|xA − xB|) = 36/x8, we obtain,

indicating r = |xA − xB| and by identifying p2
A = 1

3 ||μ1,0,0||2 = a2
0e2:

ΔE1D
12 = − e4

4
h̄

1
9

e2||pA||2
1

2ω3
0

1
m2

e

36
x8 = −6

a6
0e4

EI

1
r8 , (52)
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to be compared to Equation (14). By again exploiting the identity at Equation (37) and by
comparing the middle term of the above equation to that at Equation (36), it can be recog-
nized that ||μ1,0,0||2 χA(iωI)Tij = α

(2)
B,E) and e2 χB(iωI)Tji = α

(1)
B,E) (see Equations (1.7)–(1.8)

in [150]), so that this result can be put into the important integral form analogous to that as
at Equation (38)

ΔE12 = V12(r) = − h̄
2π

∫ ∞

0
dωI α

(1)
A,E)(iωI)Tij α

(2)
B,E)(iωI)Tji = −18h̄

π

1
r8

∫ ∞

0
dωI α

(1)
A,E)(iωI) α

(2)
B,E)(iωI) . (53)

As mentioned above (Section 4.2), this result was previously obtained by a full QED
approach by Jenkins (Equation (6.7), Ref. [159]), and then re-derived by appropriate gen-
eralizations by Salam (Equation (3.5) in [156]) and by Power (Equation (1.5) in [150]) all
working with Thirunamachandran (Notice that units employed in these works differ from
one another. Power and Thirunamachandran showed that the correct numerical factor in
the full 3D case is 90. Also, the speed of light c factors in Equations (1.4)–(1.6) in [150],
which refer to the unretarded limit, are erroneous).

In the case of electric unretarded electric quadrupole–quadrupole forces, the system
is represented by two quadrupoles as A above, that is, a total of four dipoles elastically
bound in opposing pairs and, in the 1D case, all parallel to the x-axis. The force due to the
electric field produced by quadrupole A acting on the oscillating dipole of atom B is given
by the well-known equation F = (p · ∇)E [179,182] so that the force becomes

FBA,x = −1
3

euA pA pB
∂4

∂x4

( 1
|rA − rB|

)
. (54)

Therefore, TijTji = (∂4/∂x4
A)(1/|xA − xB|) = 576/x10, leading to the unretarded potential

ΔE1D
22 = −32

a8
0e4

EI

1
r10 , (55)

again to be compared to Equation (14). The integral form immediately descends from this
formulation as

ΔE22 = V22,near(r) = −288h̄
π

1
r10

∫ ∞

0
dωI α

(2)
A,E)(iωI) α

(2)
B,E)(iωI) , (56)

again in agreement, to within the constant numerical factor, with results previously
found [150,156,159]. Importantly, a comparison of the quantity TijTji at Equation (35) and in
the cases above shows that the required order of the derivative of the potential 1/|rA − rB|
increases by one unit for each integer order of the multipoles considered. This observation
is reflected in the generalization of the results above to all multipole orders, including
possibly anisotropic polarizabilities. For instance, to treat the general case of any inter-
atomic distance, the factors [(∇i∇j − δij∇2)(e−RωI /c/R)] at Equation (49) must likewise
be modified into [(∇i∇j − δij∇2)∇k(e−RωI /c/R)] and [(∇i∇j − δij∇2)∇k∇l(e−RωI /c/R)]
in the two systems analyzed, respectively, and “tumbling averages” must be taken over all
orientations in the case of isotropic atoms (see Equation (2.9) in [156]).

To briefly illustrate the important fully retarded regime, let us consider the interactions
ΔE1D

12 (Equation (52) and ΔE1D
22 (Equation (55) by starting from the quadrupole field Hertz

vector j-component (see in [178], Section 14-8), as done above at Equation (41):

Zquad,j =
ω

2c
ei(ω/c)|rA−rB |

|rA − rB|2
xi Qij . (57)

By proceeding again as above to calculate the electric field as E = ∇×∇× Zquad,
analogously to Equation (45), by forming the trace of the interaction tensor in this 1D
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model, isolating the static polarizabilities α
(1)
0,E) and α

(2)
0,E), and by calculating an integral

analogous to that at Equation (48), we find, for the dipole–quadrupole energy,

ΔE12 = V12,far(r) = −C12
h̄c

πr9 α
(1)
0,E) α

(2)
0,E) (58)

where C is a numerical constant. A similar procedure for the quadrupole–quadrupole
interaction, seeking the quantity (p · ∇)E, leads to:

ΔE22 = V22,far(r) = −C22
h̄c

πr11 α
(2)
0,E) α

(2)
0,E) . (59)

These results are in full agreement, to within the constants C12 and C22, with those by
Power and Thirumanamachandran (Equations (4.13)–(4.14) in [150]). Furthermore, the cor-
responding expressions in terms of integrals over the proper multipole polarizabilities
as functions of the complex frequency, generalizing Equation (49), are promptly written
and lead to the same expressions provided by Salam and collaborators (a full review is
provided in [157] and references therein).

6.3. Application of McLachlan’s Approach to Gravitational Dispersion Forces

The semiclassical computation of gravitational dispersion forces is a straightforward
extension of the process just described. As we have already commented (Sections 5 and 6.2),
strong analogies exist between the calculations with multipoles in the electrodynamic and
in the gravitational case [169]. The calculation of the multipole fields in Cartesian coordi-
nates in both electromagnetism and gravitation is mathematically relatively burdensome,
as shown even in the much simplified 1D case, and it benefits from the computer algebra
approach applied extensively in this paper. However, the physical principle of McLachlan’s
approach as applied to gravitation within the context of general relativity is quite clear. In
analogy to electrodynamics, atoms interact through possibly retarded gravitational fields
due to the oscillating sources and dispersion forces appear as the atomic energy levels
are quantized, that is, one again envisions two systems of elastically bound dipole pairs
aligned to the x-axis in near-free fall (considering accelerations due to dispersion forces as
much smaller than that due to the monopoles). As shown in Section 5 in our simplified
1D model, the force acting on each oscillator is given by the appropriate Riemann tensor
component, which can be obtained from the classical field metric solution given in general,
for instance, by Ford et al. (Equations (4)–(9) in [131]) or, for a simplified model, by Price et
al. (Equations (24)–(26) in [169]). Importantly, in the gravitational case, the Riemann tensor,
and thus the interaction tensor, are determined through second derivatives with respect
to spacetime coordinates of the metric tensor solution (Equations (7.27)–(7.29) in [184]),
which does not directly determine the force. As in the electrodynamical case, this compu-
tation reproduces our results for the unretarded dispersion force in Section 5 and Ford’s
results in all distance regimes, to within numerical constants reflecting our dimensional
simplification.

7. Experimental Detection of Gravitational Dispersion Forces

There is no doubt that identifying any effects of gravitation on dispersion forces
is one of the most extreme contemporary experimental challenges. Generally speaking,
these include not only the gravitational dispersion forces discussed in this paper but
also the effects of time-independent spacetime curvature on electrodynamical dispersion
forces, which can be viewed as a manifestation of the inertial equivalent of the Casimir
potential energy [88,185]. Although these two avenues for gravitation to affect theoretical
predictions are sometimes, puzzlingly, conflated [186], they are connected to drastically
different phenomena. Whereas treatments of the latter hinge on relatively well-understood,
uncontroversial concepts and measurements are deemed within reach [187–189], the former,
which we briefly consider herein, depend on novel, exotic physical mechanisms.

306



Symmetry 2021, 13, 40

As mentioned above (Section 3), the possibility to detect a macroscopic gravitational
Casimir force has been recently brought to the fore [129] by the proposal that superconduc-
tors could be caused to act as nearly-ideal gravitational wave reflectors through a so-called
“Heisenberg–Coulomb effect” [125]. This is a remarkably bold statement considering that
even neutron stars are predicted to reflect gravitational waves with an index of reflection
of only 4–25% [190]. The idea that superconductors might appreciably reflect and refract
gravitational waves, thus enabling table-top gravitational wave optics [122,124], has been
proposed by several authors [191] but it remains experimentally unverified. As already
clarified by this author, in the theory of the Heisenberg–Coulomb effect, all radiation fields
are treated classically [125] and the gravitational Casimir effect, even if detected, would
not represent proof of the quantization of the gravitational field as extensively discussed in
this paper [60]. Furthermore, initial predictions of the gravitational Casimir force as being
even larger than its QED counterpart by almost one order of magnitude were shown to
be due to a computational error [130]. Finally, recent measurements of the Casimir force
between superconductors [186], although criticized [192], were reported to rule out the
predicted gravitational Casimir effect in superconductors.

As regards systems in which detection of a gravitational Casimir–Polder effect might
be feasible, Ford and collaborators [131] speculatively suggest “microscopic clumps built
out of heavy sterile neutrinos” as possible, but as yet unconfirmed, interacting dark matter
systems. An additional suggestion has been made by the present author to study Efimov
states in dark matter once and if its components are definitely identified [193].

A more optimistic consideration is that identifying experimentally accessible phenom-
ena that involve mixed potentials would represent an immense step towards fulfilling a
detection goal since such quantities are larger by approximately 43 orders of magnitude
(∼e2/Gm2

e ) than those due purely to gravitational fluctuations. This exploration is only
now starting with indications, for instance, that low energy scattering experiments with
neutrons in ground-based laboratories may prove useful [194].

As we have argued throughout this paper, any determination of the existence of
gravitational dispersion forces will probably not represent conclusive proof of the quantum
nature of the gravitational field. However, this makes the prospect of such an experiment
in no way less exciting. What shall we find? Surprising scenarios are indeed possible,
especially in the even more challenging retarded regime in which the existence of a minimal
length may introduce modifications in the expressions found herein. Any theoretical
estimates might be modified if fundamental assumptions are found to be inaccurate,
for instance, because of a significant stochastic gravitational wave background [60] or the
existence of Planck scale granularity [194]. Regardless of whether gravitational dispersion
force behavior departs from or conforms to theoretical predictions, we shall enter a new
era in our understanding of crucial parameters that characterize the structure of spacetime
as well as the universe on astrophysical and cosmological scales.

8. Discussion and Conclusions

In closing, it is appropriate to discuss the connection between the main thesis of this
paper and two apparently widely separate issues. Philosophically speaking, the history of
forces between the basic constituents of matter is far older than that of the last few decades.
In fact, interactions between “atoms” were deemed indispensable to the apparatus of philo-
sophical atomism introduced by Leucippus and Democritus of Abdera. As this author has
previously discussed [195], the existence of dispersion forces, whether within a quantum or
a semiclassical description, ties the logical self-consistency of atomistic philosophy to the
question of the nature of the vacuum. The challenge, as identified by Post, appears to be
“. . . the difficulty of reconciling a world of interacting parts with atomism, which ideally re-
quires independence for its atoms” [196]. As we have seen, physics, even at a semiclassical
level, explains the existence of dispersion forces by introducing the concept of zero-point
field, thus making a statement about another difficulty “. . . traditionally associated with
atomism, . . . the problem of the void”. J. A. Wheeler stated: “No point is more central than
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this, that empty space is not empty. . . ” [167] and adopting his “foam-like structure” [197]
must necessarily introduce new interactions among the basic constituents of matter. Atom-
ism, identified by some with determinism [198], functions if we accept stochasticity or
uncertainty so as to introduce needed forces between polarizable particles. Therefore,
the subject of gravitational dispersion forces, by introducing uncertainty in spacetime, adds
one further layer of complexity to these reflections, as will be discussed elsewhere.

Technologically speaking, it would be natural to doubt that such fantastically small in-
teractions as gravitational dispersion forces might lead to novel applications. Although we
shall not even attempt to speculate about possible future developments here, we shall recall
that, when Jordan Maclay and his collaborators suggested in 1995 that electrodynamical
Casimir forces may have some important applications in microelectromechanical system
(MEMS) engineering [70], it was certainly less than obvious that such apparently exotic
interactions would, two decades later, enable a human to climb vertically on glass [199].
Such has been, however, the history of dispersion force research technology transfer [3].
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