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Preface to ”Robust Procedures for Estimating and
Testing in the Framework of Divergence Measures”

The approach for estimating and testing based on suitable divergence measures has become, in

the last 30 years, a very popular technique not only in the field of statistics but also in other areas, such

as machine learning, pattern recognition, etc. In relation to the estimation problem, it is necessary

to minimize a suitable divergence measure between the data and the model under consideration.

Some interesting examples of those estimators are the minimum phi-divergence estimators (MPHIE),

in particular, the minimum Hellinger distance (MHD) and the minimum density power divergence

estimators (MDPDE). The MPHIE are characterized by asymptotic efficiency (BAN estimators), the

MHE by asymptotic efficiency and robustness inside the family of the MPHIE, and the MDPD by

their robustness without a significant loss of efficiency as well as by the simplicity of getting them,

because it is not necessary to use a non-parametric estimator of the true density function.

Based on these estimators of minimum divergence or distance, many people have studied the

possibility to use them in order to obtain statistics for testing hypotheses. There are some possibilities

to use them with that objective: (i) Plugging them in a divergence measure in order to obtain the

estimated distance (divergence) between the model, whose parameters have been estimated under

the null hypothesis and the model evaluated in all the parameter space; and (ii) extending the concept

of the Wald test in the sense of considering MDPDE instead of maximum likelihood estimators. These

test statistics have been considered in many different statistical problems: Censoring, equality of

means in normal and lognormal models, logistic regression model, multinomial logistic regression,

and GLM models in general, etc.

The scope of the contributions to this book will be to present new and original research papers

based on MPHIE, MHD, and MDPDE, as well as test statistics based on these estimators from

a theoretical and applied point of view in different statistical problems with special emphasis on

robustness. Manuscripts given solutions to different statistical problems as model selection criteria

based on divergence measures or in statistics for high-dimensional data with divergence measures as

loss function are considered. Reviews making emphasis in the most recent state-of-the art in relation

to the solution of statistical problems base on divergence measures are also presented.

Leandro Pardo, Nirian Martin

Editors
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The approach for estimating and testing based on divergence measures has become,
in the last 30 years, a very popular technique not only in the field of statistics, but also in
other areas, such as machine learning, pattern recognition, etc. In relation to the estimation
problem, it is necessary to minimize a suitable divergence measure between the data and
the model under consideration. Some interesting examples of those estimators are the
minimum phi-divergence estimators (MPHIE), in particular, these minimum Hellinger
distance (MHD) and the minimum density power divergence estimators (MDPDE). The
MPHIE (Pardo [1], Morales et al. [2]) are characterized by asymptotic efficiency (BAN
estimators), the MHE (Beran [3]) by asymptotic efficiency and robustness inside the family
of the MPHIE, and the MDPDE (Basu et al. [4]) by their robustness without a significant
loss of efficiency as well as by the simplicity of getting them, because it is not necessary to
use a nonparametric estimator of the true density function.

Based on these estimators of minimum divergence or distance, many people have
studied the possibility to use them to obtain statistics for testing hypotheses. There are
some possibilities to use them with that objective: (i) plugging them in a divergence mea-
sure in order to obtain the estimated distance (divergence) between the model, whose
parameters have been estimated under the null hypothesis and the model evaluated in
all of the parameter space, see, for instance, Martín and Pardo [5], Menéndez et al. [6],
Salicrú et al. [7], Morales et al. [8,9]; (ii) extending the concept of the Wald test in the
sense of considering MDPDE instead of maximum likelihood estimators (MLE). These test
statistics have been considered in many different statistical problems: censoring, equality
of means in normal and lognormal models, logistic regression model, multinomial regres-
sion in particular, and GLM models in general, etc., see, for instance, Basu et al. [10–14],
Ghosh et al. [15], Castilla et al. [16], Ghosh et al. [17], and references therein; and, (iii)
extending the concept of the Rao’s test in the sense of considering MDPDE instead of MLE,
see Basu et al. [18] and Martín [19].

This Special Issue present new and original research papers that are based on MPHIE,
MHD, and MDPDE, as well as test statistics that are based on these estimators from a
theoretical and applied point of view in different statistical problems with special emphasis
on robustness. Manuscripts give solutions to different statistical problems as model selec-
tion criteria based on divergence measures or in statistics for high-dimensional data with
divergence measures as loss function are presented. It comprises nine selected papers that
address novel issues, as well as specific topics illustrating the importance of the divergence
measures or pseudodistances in statistics. In the following, the manuscripts are presented:

An important class of time-dynamic models is given by discrete-time integer-valued
branching processes, in particular (Bienaymé-) Galton-Watson processes without immigra-
tion (GW), respectively, with immigration (GWI), which have numerous applications in
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biotechnology, population genetics, internet traffic research, clinical trials, asset price mod-
elling, derivative pricing, and many others. As far as important terminology is concerned,
they shall subsume both models as GW(I) and, simply as GWI in the case that GW appears
as a parameter-special-case of GWI; recall that a GW(I) is called subcritical, respectively,
critical, respectively, supercritical if its offspring mean is less than 1, respectively, equal to
1, respectively, larger than 1.

In “Some dissimilarity Measures of Branching Processes and optimal Decision Making
in the Presence of Potential Pandemics”, Kammerer and Stummer, [20], compute exact
values respectively bounds of dissimilarity/distinguishability measures—in the sense
of the Kullback-Leibler information distance (relative entropy) and some transforms of
more general power divergences and Rényi divergences—between two competing discrete-
time Galton-Watson branching processes with immigration for which the offspring and
the immigration (importation) are arbitrarily Poisson-distributed; especially, they allow
for an arbitrary type of extinction-concerning criticality and, thus, for non-stationarity.
They apply this to optimal decision making in the context of the spread of potentially
pandemic infectious diseases (such as, e.g., the current COVID-19 pandemic), e.g., covering
different levels of dangerousness and different kinds of intervention/mitigation strategies.
Asymptotic distinguishability behavior and diffusion limits are also investigated by them.
In a more concrete way, this paper pursues the following main goals:

(A) for any time horizon and any criticality scenario (allowing for non-stationarities),
to compute lower and upper bounds—and sometimes even exact values—of the
Hellinger integrals Hλ(PA||PH), density power divergences Iλ(PA||PH), and Rényi
divergences Rλ(PA||PH) of two alternative Galton-Watson branching processes PA
and PH (on path/scenario space), where (i) PA has Poisson (βA) distributed off-
spring as well as Poisson (αA) distributed immigration, and (ii) PH has Poisson
(βH) distributed offspring as well as Poisson (αH) distributed immigration; the non-
immigration cases are covered as αA = αH = 0; as a side effect, they also aim for
corresponding asymptotic distinguishability results;

(B) to compute the corresponding limit quantities for the context in which (a proper
rescaling of) the two alternative Galton-Watson processes with immigration converge
to Feller-type branching diffusion processes, as the time-lags between the generation-
size observations tend to zero; and,

(C) as an exemplary field of application, to indicate how to use the results that are pointed
out in A) for Bayesian decision making in the epidemiological context of an infectious-
disease pandemic (e.g., the current COVID-19), where e.g., potential state-budgetary
losses can be controlled by alternative public policies (such as e.g., different degrees of
lookdown) for mitigations of the time-evolution of the number of infectious persons
(being quantified by a GW(I)). Corresponding Neyman-Pearson testing will also
be treated.

Because of the involved Poisson distributions, these goals can be tackled with a high
degree of tractability, which is worked out in detail with the following structure they
first introduce (i) the basic ingredients of Galton-Watson processes, together with their
interpretations in the above-mentioned pandemic setup, where it is essential to study all
types of criticality (being connected with levels of reproduction numbers), (ii) the employed
fundamental information measures, such as Hellinger integrals, power divergences, and
Rényi divergences, (iii) the underlying decision-making framework, as well as (iv) con-
nections to time series of counts and asymptotical distinguishability. Thereafter, they start
other detailed technical analyses by giving recursive exact values respectively recursive
bounds-as well as their applications-of Hellinger integrals Hλ(PA||PH), density power
divergences Iλ(PA||PH), and Rényi divergences Rλ(PA||PH). Explicit closed-form bounds
of Hellinger integrals Hλ(PA||PH) that will be worked are obtained as well as Hellinger
integrals and power divergences of the above-mentioned Galton-Watson type diffusion
approximations.
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The change point problem is a core issue in time series analysis because changes can
occur in underlying model parameters, owing to critical events or policy changes, and
ignoring such changes can result in false conclusions. Numerous studies exist on change
point analysis in time series models; refer to Kang and Lee, see [21] and Lee and Lee,
see [22], and the articles cited therein, for the background and history of change points
in integer-valued time series models. Lee and Lee [22], conducted a comparison study of
the performance of various cumulative sum (CUSUM) tests while using score vectors and
residuals through the Monte Carlo simulations. In their work, the conditional maximum
likelihood estimator (CMLE) is used for the parameter estimation and the construction
of the CUSUM tests. However, the CMLE is often damaged by outliers, and so is the
performance of the CMLE-based CUSUM test. In general, outliers easily mislead the
CUSUM test, since they can be mistakenly taken for abrupt changes; in the opposite, they
can misidentify change points in their presence on time series.

In the work “Monitoring Parameter Change for Time Series. Models of Counts
Based on Minimum Density Power Divergence estimator”, Lee and Kim [23] consider the
CUSUM monitoring procedure to detect a parameter change for integer-valued generalized
autoregressive heteroscedastic models (core area in time series analysis that includes
diverse disciplines in social, physical, engineering, medical sciences, etc. Integer-valued
autoregressive time series models and the integer-valued generalized autoregressive
conditional heteroscedastic models have been widely studied in the literature and applied
to various practical problems), whose conditional density of present observations over past
information follows one parameter exponential family distributions. For this purpose, they
use CUSUM of score functions that were deduced from the objective functions, constructed
for the MDPDE that includes the MLE, to diminish the influence of outliers. It is well-
known that, as compared to the MLE, the MDPDE is robust against outliers with little loss
of efficiency. This robustness property is properly inherited by the proposed monitoring
procedure. The CUSUM test has been a conventional tool to detect a structural change
in underlying models, and it has been applied not only to retrospective change point
tests, but also to on-line monitoring and statistical process control (SPC) problems, which
were designed to monitor abnormal phenomena in manufacturing processes and health
care surveillance. The CUSUM control chart has been popular due to its considerable
competency in early detection of anomalies. A simulation study is conducted to affirm
the validity of their method. Focus is placed on comparing the MDPDE-based CUSUM
test with the MLE-based CUSUM test for Poisson INGARCH models to demonstrate the
superiority of the former over the latter in the presence of outliers. A real data analysis
of the return times of extreme events of Goldman Sachs Group (GS) stock prices is also
provided to illustrate the validity of the proposed test. These authors, see [24], considered
the CUSUM tests based on score vectors for the MLE and MDPDE in exponential family
distribution INGARCH models.

In “Robust Change Point Test for General Integer-Valued Time Series Models Based
on Density Power Divergence” by Kim and Lee [24], the problem of testing for a parameter
change in general integer-valued time series models whose conditional distribution belongs
to the one-parameter exponential family when the data are contaminated by outliers is
considered. In particular, they use a robust change point test that is based on density power
divergence (DPD) as the objective function of the MDPDE. The results show that, under
regularity conditions, the limiting null distribution of the DPD-based test is a function of a
Brownian bridge. Monte Carlo simulations are conducted to evaluate the performance of
the proposed test and show that the test inherits the robust properties of the MDPDE and
DPD. They compare the DPD-based test and the score-based CUSUM test to demonstrate
the superiority of the proposed test in the presence of outliers. They provide a real data
analysis of the return times of extreme events that are related to Goldman Sachs Group
(GS) stock to illustrate the proposed tests.

MDPDE provides a general framework for robust statistics, depending on a parameter
α, which determines the robustness properties of the method. The usual estimation method
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is numerical minimization of the power divergence. In “Robust Regression with Density
Power Divergence: Theory, Comparisons, and Data Analysis”, by Riani et al. [25], is
considered to be the special case of linear regression developing an alternative estimation
procedure using the methods of S-estimation. The so obtained rho function is proportional
to one minus a suitably scaled normal density raised to the power α. We used the theory
of S-estimation to determine the asymptotic efficiency and breakdown point for this new
form of S-estimation. Two sets of comparisons were made. In one, S power divergence is
compared with other S-estimators using four distinct rho functions. The plots of efficiency
against breakdown point show that the properties of S power divergence are close to
those of Tukey’s biweight. The second set of comparisons is between S power divergence
estimation and numerical minimization. Monitoring these two procedures in terms of
breakdown point shows that the numerical minimization yields a procedure with larger
robust residuals and a lower empirical breakdown point, thus providing an estimate of α,
leading to more efficient parameter estimates.

Model selection is fundamental to the practical applications of statistics, and there
is substantial literature on this issue. Classical model selection criteria include, among
others, the Cp-criterion, the Akaike Information Criterion (AIC), based on the Kullback-
Leibler divergence, and the Bayesian Information Criterion (BIC), as well as a General
Information Criterion (GIC), which corresponds to a general class of criteria which also
estimates the Kullback-Leibler divergence. These criteria have been proposed, respectively,
in [26–28], and they represent powerful tools for choosing the best model among different
candidate models that can be used to fit a given data set. On the other hand, many classical
procedures for model selection are extremely sensitive to outliers and other departures from
the distributional assumptions of the model. Robust versions of classical model selection
criteria, which are not strongly affected by outliers, have been proposed, for example, in [29]
and [30]. Some recent proposals for robust model selection are criteria based on divergences
and minimum divergence estimators. Here, we recall the Divergence Information Criteria
(DIC) based on the density power divergences that were introduced in [31], the Modified
Divergence Information Criteria (MDIC) introduced in [32], and the criteria based on
minimum dual divergence estimators introduced in [33]. In [34,35] some model selection
criteria are presented. In “Robust Model Selection Criteria Based on Pseudodistances” by
Toma et al. see [34], a new class of robust model selection criteria are introduced. These
criteria are defined by estimators of the expected overall discrepancy using pseudodistances
and the minimum pseudodistance principle. The theoretical properties of these criteria
are proved, namely asymptotic unbiasedness, robustness, consistency, as well as the limit
laws. The case of the linear regression models is studied and a specific pseudodistance
based criterion is proposed. Monte Carlo simulations and applications for real data are
presented to exemplify the performance of the new methodology. These examples show
that the new selection criterion for regression models is a good competitor of some well
known criteria and may have superior performance, especially in the case of small and
contaminated samples.

Classical likelihood function requires the exact specification of the probability den-
sity function, but, in most applications, the true distribution is unknown. In some cases,
where the data distribution is available in an analytic form, the likelihood function is still
mathematically intractable due to the complexity of the probability density function. There
are many alternatives to the classical likelihood function; one of them is the composite
likelihood. Composite likelihood is an inference function that is derived by multiplying
a collection of component likelihoods; the particular collection used is a conditional de-
termined by the context. Therefore, the composite likelihood reduces the computational
complexity, so that it is possible to deal with large datasets and very complex models, even
when the use of standard likelihood methods is not feasible. Composite likelihood methods
have been successfully used in many applications concerning, for example, genetics, gener-
alized linear mixed models, spatial statistics, frailty models, multivariate survival analysis,
etc. Asymptotic normality of the composite maximum likelihood estimator (CMLE) still
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holds with the Godambe information matrix to replace the expected information in the
expression of the asymptotic variance-covariance matrix. This allows for the construction
of composite likelihood ratio test statistics, Wald-type test statistics, as well as score-type
statistics. Varin [36] provides a review of composite likelihood methods. They mentioned,
at this point, that CMLE, as well as the respective test statistics are seriously affected by the
presence of outliers in the set of available data. In this sense, [37–39] derived some new
distance-based estimators and tests with good robustness behavior without an important
loss of efficiency. In the context of the composite likelihood there are some criteria based
on Kullback-Leibler divergence, see, for instance [40–42] and references therein. To the best
of our knowledge, only Kullback-Leibler divergence was used to develop model selection
criteria in a composite likelihood framework. To fill this gap, our interest is now focused on
DPD. In “Model Selection in a Composite Likelihood Framework Based on Density Power
Divergence”, Castilla et al. see [35], consider the composite minimum density power diver-
gence estimator (CMDPDE), as introduced in [37], in order to present a model selection
criterion in a composite likelihood framework. The criterion introduced in [37] will be
called composite likelihood DIC criterion (CLDIC). The motivation, as pointed out by the
authors, of considering a criterion based on DPD instead of Kullback-Leibler divergence is
due to the robustness of the procedures based on DPD in statistical inference, not only in
the context of full likelihood, but also in the context of composite likelihood [37,38]. After
introducing the new model selection criterion, CLDIC, based on CMDPDE, some of its
asymptotic properties are studied. A simulation study is carried out and some numerical
examples are also presented.

Bounding the best achievable error probability for binary classification problems is
relevant to many applications, including machine learning, signal processing, and informa-
tion theory. The Bayes error rate is the expected risk for the Bayes classifier, which assigns
a given feature vector x to the class with the highest posterior probability. The Bayes error
rate is the lowest possible error rate of any classifier for a particular joint distribution.
The Bayes error rate provides a measure of classification difficulty. Thus, when known,
the Bayes error rate can be used to guide the user in the choice of classifier and tuning
parameter selection. In practice, the Bayes error is rarely known and it must be estimated
from data. The estimation of the Bayes error rate is difficult due to the non-smooth in
function within an integral. Thus, research has focused on deriving tight bounds on the
Bayes error rate based on smooth relaxations of the min function. Many of these bounds can
be expressed in terms of divergence measures between the pair of class distributions, such
as the Bhattacharyya distance or Jensen-Shannon divergence measure. Many techniques
have been developed for estimating divergence measures. These methods can be broadly
classified into two categories: (i) plug-in estimators in which we estimate the probability
densities and then plug them in the divergence function and (ii) entropic graph approaches,
in which the relationship between the divergence function and a graph functional in Eu-
clidean space is derived. Examples of plug-in methods include k-nearest neighbor (K-NN)
and Kernel density estimator (KDE) divergence estimators. Examples of entropic graph
approaches include methods that are based on minimal spanning trees (MST), K-nearest
neighbors graphs (K-NNG), minimal matching graphs (MMG), traveling salesman problem
(TSP), and their power-weighted variants. Recently, the Henze-Penrose (HP) divergence
has been proposed for bounding classification error probability. In “Convergence Rates
for Empirical Estimation of Binary Classification Bounds”, by Sekeh et al. see [43], the
problem of empirically estimating the HP-divergence from random samples is considered.
The first contribution of this paper is that they obtain a bound on the convergence rates
for the Friedman and Rafsky (FR) estimator of the HP-divergence, which is based on a
multivariate extension of the non-parametric run length test of equality of distributions.
This estimator is constructed using a multicolored MST on the labeled training set, where
MST edges connecting samples with dichotomous labels are colored differently from edges
connecting identically labeled samples. While previous works have investigated the FR
test statistic in the context of estimating the HP-divergence, to the best of the author’s
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knowledge, its minimax MSE convergence rate has not been previously derived. The bound
on convergence rate is established by using the umbrella theorem, for which they define a
dual version of the multicolor MST. The proposed dual MST in this work is different than
the standard dual MST that was introduced by Yukich in [44]. They show that the bias rate
of the FR estimator is bounded by a function of N, η and d, as O

(
N−η2/(d(η+1))

)
, where N

is the total sample size, d is the dimension of the data samples d > 2, and η is the Hölder
smoothness parameter 0 ≤ η ≤ 1. They also obtain the variance rate bound as O(N−1).
The second contribution of this paper is a new concentration bound for the FR test statistic.
The bound is obtained by establishing a growth bound and a smoothness condition for
the multicolored MST. Because the FR test statistic is not a Euclidean functional, we can-
not use the standard subadditivity and superadditivity approaches. Their concentration
inequality is derived using a different Hamming distance approach and a dual graph to
the multicolored MST. They experimentally validate their theoretic results comparing the
MSE theory and simulation in three experiments with various dimensions d = 2, 4, 8. They
observe that, in all three experiments, as sample size increases, the MSE rate decreases and,
for higher dimensions, the rate is slower. Our theory matches the experimental results in
all sets of experiments.

In “Distance-Based Estimation Methods for Models for Discrete and Mixed-Scale Data”
by Sofikitou et al. [45], robust methods for mixed-scale data are developed. Mixed-scale
measurements scenario have both discrete (categorical or nominal) and continuous type
random variables. Initially, they reviews basic concepts in minimum disparity estimation
(MDE), which has been extensively studied in models where the scale of the data is either
interval or ratio ([3,12]). It has also been studied in the discrete outcomes case. Specifi-
cally, when the response variable is discrete and the explanatory variables are continuous,
Pardo et al. [46] introduced a general class of distance estimators based on φ-divergence
measures, the MPHIE, and they studied their asymptotic properties. The estimators can
be viewed as an extension/generalization of the MLE. In Pardo et al. [47], the MPHIE is
used in statistic to perform goodness-of-fit tests in logistic regression models, while Pardo
and Pardo [48] extended the previous works to address solving problems for testing in
generalized linear models with binary scale data. The case where data are measured on
discrete scale (either on ordinal or generally categorical scale) has also attracted the interest
of other researchers. For instance, Simpson [49] demonstrated that minimum Hellinger
distance estimators fulfill desirable robustness properties and, for this reason, can be effec-
tive in the analysis of count data that are prone to outliers. Simpson [50] also suggested
tests based on the minimum Hellinger distance for parametric inference that are robust
as the density of the (parametric) model can be nonparametrically estimated. In contrast,
Markatou et al. [51] used weighted likelihood equations to obtain efficient and robust
estimators in discrete probability models and applied their methods to logistic regression,
whereas Basu and Basu [52] considered robust penalized minimum disparity estimators for
multinomial models with good small sample efficiency. Moreover, Gupta et al. [53], Martín
and Pardo [54], and Castilla et al. [55] used the MPHIE to provide a solution to testing
problems in polytomous regression models. Working in a similar fashion, Martín and
Pardo [56] studied the properties of the family of MPHIE for log-linear models with linear
constraints under multinomial sampling to identify the potential associations between
various variables in multi-way contingency tables. Pardo and Martín [57] presented an
overview of works that are associated with contingency tables of symmetric structure on
the basis of MPHIE and φ-divergence test statistics. Additional works include Pardo and
Pardo [58] and Pardo et al. [59]. Basu et al. [60] introduced alternative power divergence
measures. Afterwards, define various Pearson residuals appropriate for the measurement
scale of the data and study their properties. They further concentrate on the case of mixed-
scale data, which is, data measured in both categorical and interval scale. We study the
asymptotic properties and the robustness of MDE obtained in the case of mixed-scale data
and exemplify the performance of the methods via simulation. The results show that,
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depending on the level of contamination and the type of contaminating probability model,
the performance of the methods is satisfactory.

The asymptotic distributions of minimum Hellinger distance estimators has been well
investigated; nevertheless, the probabilities of rare events that are induced by them are
largely unknown. In “Event Analysis for Minimum Hellinger Distance Estimators via
Large Deviation Theory” by Vidayashankar and Collamore [61], rare event probabilities,
for the minimum Hellinger distance estimators of a family of continuous distributions
satisfying an equicontinuous condition, using large deviation theory under a potential
model misspecification, in both one and higher dimensions are analyzed. They show that
these probabilities decay exponentially, characterizing their decay via a “rate function”,
which is expressed as a convex conjugate of a limiting cumulant generating function. In
the analysis of the lower bound, in particular, certain geometric considerations arise, which
facilitate an explicit representation, also in the case when the limiting generating function
is non-differentiable. The analysis also involves the modulus of continuity properties of
the affinity, which may be of independent interest. The results that are presented in this
paper extend large deviation asymptotics for M-estimators that were given previously.
In contrast to the case for M-estimators, our setting is complicated due to its inherent
nonlinearity, leading to complications in the proofs of both the upper and lower bounds,
and an unexpected subtlety in the form of the rate function for the lower bound. The
results of Vidayashankar and Collamore (2021) suggest that one can, under additional
hypotheses, establish saddlepoint approximations to the density of minimum Hellinger
distance estimators, which would enable one to sharpen inference for small samples.

Similar results are expected to hold for discrete distributions. However, the equiconti-
nuity condition is not required in that case, since `1, unlike L1(S) (the space of integrable
functions on S), possesses the Schur property. Hence, the large deviation principle in the
weak topology of `1 can be derived (more easily) using a standard Gartner-Ellis argument
and, utilizing this, one can, in principle, repeat all of the arguments above to derive results
that are analogous to Theorems 2.2 and 2.3. Large deviations for other divergences under
weak family regularity (such as non-compactness of the parameter space) and their con-
nections to estimation and test efficiency are interesting open problems that require new
techniques beyond those that are described in this article.
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Abstract: We compute exact values respectively bounds of dissimilarity/distinguishability measures–in
the sense of the Kullback-Leibler information distance (relative entropy) and some transforms of more
general power divergences and Renyi divergences–between two competing discrete-time Galton-Watson
branching processes with immigration GWI for which the offspring as well as the immigration (importation)
is arbitrarily Poisson-distributed; especially, we allow for arbitrary type of extinction-concerning
criticality and thus for non-stationarity. We apply this to optimal decision making in the context
of the spread of potentially pandemic infectious diseases (such as e.g., the current COVID-19 pandemic),
e.g., covering different levels of dangerousness and different kinds of intervention/mitigation strategies.
Asymptotic distinguishability behaviour and diffusion limits are investigated, too.

Keywords: Galton-Watson branching processes with immigration; Hellinger integrals; power divergences;
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coefficient/distance

Contents

1 Introduction 3

2 The Framework and Application Setups 5
2.1 Process Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Connections to Time Series of Counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Applicability to Epidemiology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Information Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Decision Making under Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6 Asymptotical Distinguishability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Detailed Recursive Analyses of Hellinger Integrals 21
3.1 A First Basic Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Some Useful Facts for Deeper Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Detailed Analyses of the Exact Recursive Values, i.e., for the Cases (βA, βH, αA, αH) ∈

PNI ∪ PSP,1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 Some Preparatory Basic Facts for the Remaining Cases (βA, βH, αA, αH) ∈ PSP\PSP,1 . . 29
3.5 Lower Bounds for the Cases (βA, βH, αA, αH, λ) ∈ (PSP\PSP,1)×]0, 1[ . . . . . . . . . . . 31
3.6 Goals for Upper Bounds for the Cases (βA, βH, αA, αH, λ) ∈ (PSP\PSP,1)×]0, 1[ . . . . . 32
3.7 Upper Bounds for the Cases (βA, βH, αA, αH, λ) ∈ PSP,2×]0, 1[ . . . . . . . . . . . . . . . 34

Entropy 2020, 22, 874; doi:10.3390/e22080874 www.mdpi.com/journal/entropy11



Entropy 2020, 22, 874

3.8 Upper Bounds for the Cases (βA, βH, αA, αH, λ) ∈ PSP,3a×]0, 1[ . . . . . . . . . . . . . . 35
3.9 Upper Bounds for the Cases (βA, βH, αA, αH, λ) ∈ PSP,3b×]0, 1[ . . . . . . . . . . . . . . 36
3.10 Upper Bounds for the Cases (βA, βH, αA, αH, λ) ∈ PSP,3c×]0, 1[ . . . . . . . . . . . . . . . 37
3.11 Upper Bounds for the Cases (βA, βH, αA, αH, λ) ∈ PSP,4a×]0, 1[ . . . . . . . . . . . . . . 37
3.12 Upper Bounds for the Cases (βA, βH, αA, αH, λ) ∈ PSP,4b×]0, 1[ . . . . . . . . . . . . . . 37
3.13 Concluding Remarks on Alternative Upper Bounds for all Cases (βA, βH, αA, αH, λ) ∈

(PSP\PSP,1)×]0, 1[ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.14 Intermezzo 1: Application to Asymptotical Distinguishability . . . . . . . . . . . . . . . 38
3.15 Intermezzo 2: Application to Decision Making under Uncertainty . . . . . . . . . . . . . 39

3.15.1 Bayesian Decision Making . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.15.2 Neyman-Pearson Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.16 Goals for Lower Bounds for the Cases (βA, βH, αA, αH, λ) ∈ (PSP\PSP,1)× (R\[0, 1]) . . 41
3.17 Lower Bounds for the Cases (βA, βH, αA, αH, λ) ∈ PSP,2 × (R\[0, 1]) . . . . . . . . . . . . 44
3.18 Lower Bounds for the Cases (βA, βH, αA, αH, λ) ∈ PSP,3a × (R\[0, 1]) . . . . . . . . . . . 45
3.19 Lower Bounds for the Cases (βA, βH, αA, αH, λ) ∈ PSP,3b × (R\[0, 1]) . . . . . . . . . . . 46
3.20 Lower Bounds for the Cases (βA, βH, αA, αH, λ) ∈ PSP,3c × (R\[0, 1]) . . . . . . . . . . . 47
3.21 Lower Bounds for the Cases (βA, βH, αA, αH, λ) ∈ PSP,4a × (R\[0, 1]) . . . . . . . . . . . 47
3.22 Lower Bounds for the Cases (βA, βH, αA, αH, λ) ∈ PSP,4b × (R\[0, 1]) . . . . . . . . . . . 48
3.23 Concluding Remarks on Alternative Lower Bounds for all Cases (βA, βH, αA, αH, λ) ∈

(PSP\PSP,1)× (R\[0, 1]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.24 Upper Bounds for the Cases (βA, βH, αA, αH, λ) ∈ (PSP\PSP,1)× (R\[0, 1]) . . . . . . . . 48

4 Power Divergences of Non-Kullback-Leibler-Information-Divergence Type 49
4.1 A First Basic Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Detailed Analyses of the Exact Recursive Values of Iλ(·||·), i.e., for the Cases

(βA, βH, αA, αH, λ) ∈ (PNI ∪ PSP,1)× (R\{0, 1}) . . . . . . . . . . . . . . . . . . . . . . . 51
4.3 Lower Bounds of Iλ(·||·) for the Cases (βA, βH, αA, αH, λ) ∈ (PSP\PSP,1)×]0, 1[ . . . . . 52
4.4 Upper Bounds of Iλ(·||·) for the Cases (βA, βH, αA, αH, λ) ∈ (PSP\PSP,1)×]0, 1[ . . . . . 53
4.5 Lower Bounds of Iλ(·||·) for the Cases (βA, βH, αA, αH, λ)∈ (PSP\PSP,1)×(R\[0,1]) . . . . 53
4.6 Upper Bounds of Iλ(·||·) for the Cases (βA, βH, αA, αH, λ) ∈ (PSP\PSP,1)× (R\[0, 1]) . . 54
4.7 Applications to Bayesian Decision Making . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 Kullback-Leibler Information Divergence (Relative Entropy) 55
5.1 Exact Values Respectively Upper Bounds of I(·||·) . . . . . . . . . . . . . . . . . . . . . . 55
5.2 Lower Bounds of I(·||·) for the Cases (βA, βH, αA, αH) ∈ (PSP\PSP,1) . . . . . . . . . . . 56
5.3 Applications to Bayesian Decision Making . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6 Explicit Closed-Form Bounds of Hellinger Integrals 59
6.1 Principal Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.2 Explicit Closed-Form Bounds for the Cases (βA, βH, αA, αH, λ) ∈ (PNI ∪ PSP,1) ×

(R\{0, 1}) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.3 Explicit Closed-Form Bounds for the Cases (βA, βH, αA, αH, λ) ∈ (PSP\PSP,1)×]0, 1[ . . 64
6.4 Explicit Closed-Form Bounds for the Cases (βA, βH, αA, αH, λ) ∈ (PSP\PSP,1)× (R\[0, 1]) 67
6.5 Totally Explicit Closed-Form Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.6 Closed-Form Bounds for Power Divergences of Non-Kullback-Leibler-Information-Divergence

Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.7 Applications to Decision Making . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

12



Entropy 2020, 22, 874

7 Hellinger Integrals and Power Divergences of Galton-Watson Type Diffusion
Approximations 71
7.1 Branching-Type Diffusion Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.2 Bounds of Hellinger Integrals for Diffusion Approximations . . . . . . . . . . . . . . . . 74
7.3 Bounds of Power Divergences for Diffusion Approximations . . . . . . . . . . . . . . . . 79
7.4 Applications to Decision Making . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

A Proofs and Auxiliary Lemmas 81
A.1 Proofs and Auxiliary Lemmas for Section 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 81
A.2 Proofs and Auxiliary Lemmas for Section 5 . . . . . . . . . . . . . . . . . . . . . . . . . . 88
A.3 Proofs and Auxiliary Lemmas for Section 6 . . . . . . . . . . . . . . . . . . . . . . . . . . 94
A.4 Proofs and Auxiliary Lemmas for Section 7 . . . . . . . . . . . . . . . . . . . . . . . . . . 101

References 115

1. Introduction

(This paper is a thoroughly revised, extended and retitled version of the preprint arXiv:1005.3758v1
of both authors) Over the past twenty years, density-based divergences D(P, Q) –also known as
(dis)similarity measures, directed distances, disparities, distinguishability measures, proximity
measures–between probability distributions P and Q, have turned out to be of substantial importance
for decisive statistical tasks such as parameter estimation, testing for goodness-of-fit, Bayesian
decision procedures, change-point detection, clustering, as well as for other research fields such
as information theory, artificial intelligence, machine learning, signal processing (including image
and speech processing), pattern recognition, econometrics, and statistical physics. For some
comprehensive overviews on the divergence approach to statistics and probability, the reader is
referred to the insightful books of e.g., Liese & Vajda [1], Read & Cressie [2], Vajda [3], Csiszár &
Shields [4], Stummer [5], Pardo [6], Liese & Miescke [7], Basu et al. [8], Voinov et al. [9], the survey
articles of e.g., Liese & Vajda [10], Vajda & van der Meulen [11], the structure-building papers of
Stummer & Vajda [12], Kißlinger & Stummer [13] and Broniatowski & Stummer [14], and the references
therein. Divergence-based bounds of minimal mean decision risks (e.g., Bayes risks in finance) can be
found e.g., in Stummer & Vajda [15] and Stummer & Lao [16].

Amongst the above-mentioned dissimilarity measures, an important omnipresent subclass are
the so-called f−divergences of Csiszar [17], Ali & Silvey [18] and Morimoto [19]; important special
cases thereof are the total variation distance and the very frequently used λ−order power divergences
Iλ(P, Q) (also known as alpha-entropies, Cressie-Read measures, Tsallis cross-entropies) with λ ∈ R.
The latter cover e.g., the very prominent Kullback-Leibler information divergence I1(P, Q) (also
called relative entropy), the (squared) Hellinger distance I1/2(P, Q), as well as the Pearson chi-square
divergence I2(P, Q). It is well known that the power divergences can be build with the help of the
λ−order Hellinger integrals Hλ(P, Q) (where e.g., the case λ = 1/2 corresponds to the well-known
Bhattacharyya coefficient), which are information measures of interest by their own and which are also
the crucial ingredients of λ−order Renyi divergences Rλ(P, Q) (see e.g., Liese & Vajda [1], van Erven &
Harremoes [20]); the case R1/2(P, Q) corresponds to the well-known Bhattacharyya distance.

The above-mentioned information/dissimilarity measures have been also investigated in
non-static, time-dynamic frameworks such as for various different contexts of stochastic processes
like processes with independent increments (see e.g., Newman [21], Liese [22], Memin & Shiryaev [23],
Jacod & Shiryaev [24], Liese & Vajda [1], Linkov & Shevlyakov [25]), Poisson point processes (see e.g.,
Liese [26], Jacod & Shiryaev [24], Liese & Vajda [1]), diffusion prcoesses and solutions of stochastic differential
equations with continuous paths (see e.g., Kabanov et al. [27], Liese [28], Jacod & Shiryaev [24], Liese &
Vajda [1], Vajda [29], Stummer [30–32], Stummer & Vajda [15]), and generalized binomial processes (see e.g.,
Stummer & Lao [16]); further related literature can be found e.g., in references of the aforementioned
papers and books.

13



Entropy 2020, 22, 874

Another important class of time-dynamic models is given by discrete-time integer-valued branching
processes, in particular (Bienaymé-)Galton-Watson processes without immigration GW respectively with
immigration (resp. importation, invasion) GWI, which have numerous applications in biotechnology,
population genetics, internet traffic research, clinical trials, asset price modelling, derivative pricing,
and many others. As far as important terminology is concerned, we abbreviatingly subsume both
models as GW(I) and, simply as GWI in case that GW appears as a parameter-special-case of GWI;
recall that a GW(I) is called subcritical respectively critical respectively supercritical if its offspring mean
is less than 1 respectively equal to 1 respectively larger than 1.

For applications of GW(I) in epidemiology, see e.g., the works of Bartoszynski [33], Ludwig [34],
Becker [35,36], Metz [37], Heyde [38], von Bahr & Martin-Löf [39], Ball [40], Jacob [41], Barbour &
Reinert [42], Section 1.2 of Britton & Pardoux [43]); for more details see Section 2.3 below.

For connections of GW(I) to time series of counts including GLM models, see e.g., Dion, Gauthier &
Latour [44], Grunwald et al. [45], Kedem & Fokianos [46], Held, Höhle & Hofmann [47], and Weiß [48];
a more comprehensive discussion can be found in Section 2.2 below.

As far as the combined study of information measures and GW processes is concerned, let us
first mention that (transforms of) power divergences have been used for supercritical Galton-Watson
processes without immigration for instance as follows: Feigin & Passy [49] study the problem to find
an offspring distribution which is closest (in terms of relative entropy type distance) to the original
offspring distribution and under which ultimate extinction is certain. Furthermore, Mordecki [50] gives
an equivalent characterization for the stable convergence of the corresponding log-likelihood process
to a mixed Gaussian limit, in terms of conditions on Hellinger integrals of the involved offspring
laws. Moreover, Sriram & Vidyashankar [51] study the properties of offspring-distribution-parameters
which minimize the squared Hellinger distance between the model offspring distribution and the
corresponding non-parametric maximum likelihood estimator of Guttorp [52]. For the setup of GWI
with Poisson offspring and nonstochastic immigration of constant value 1, Linkov & Lunyova [53]
investigate the asymptotics of Hellinger integrals in order to deduce large deviation assertions in
hypotheses testing problems.

In contrast to the above-mentioned contexts, this paper pursues the following main goals:

(MG1) for any time horizon and any criticality scenario (allowing for non-stationarities), to compute
lower and upper bounds–and sometimes even exact values–of the Hellinger integrals
Hλ (PA||PH), power divergences Iλ (PA||PH) and Renyi divergences Rλ (PA||PH) of two
alternative Galton-Watson branching processes PA and PH (on path/scenario space), where (i)
PA has Poisson(βA) distributed offspring as well as Poisson(αA) distributed immigration, and
(ii) PH has Poisson(βH) distributed offspring as well as Poisson(αH) distributed immigration;
the non-immigration cases are covered as αA = αH = 0; as a side effect, we also aim for
corresponding asymptotic distinguishability results;

(MG2) to compute the corresponding limit quantities for the context in which (a proper rescaling
of) the two alternative Galton-Watson processes with immigration converge to Feller-type
branching diffusion processes, as the time-lags between the generation-size observations tend
to zero;

(MG3) as an exemplary field of application, to indicate how to use the results of (MG1) for Bayesian
decision making in the epidemiological context of an infectious-disease pandemic (e.g.,
the current COVID-19), where e.g., potential state-budgetary losses can be controlled by
alternative public policies (such as e.g., different degrees of lockdown) for mitigations
of the time-evolution of the number of infectious persons (being quantified by a GW(I)).
Corresponding Neyman-Pearson testing will be treated, too.

Because of the involved Poisson distributions, these goals can be tackled with a high degree
of tractability, which is worked out in detail with the following structure (see also the full table of
contents after this paragraph): in Section 2, we first introduce (i) the basic ingredients of Galton-Watson
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processes together with their interpretations in the above-mentioned pandemic setup where it is
essential to study all types of criticality (being connected with levels of reproduction numbers), (ii) the
employed fundamental information measures such as Hellinger integrals, power divergences and
Renyi divergences, (iii) the underlying decision-making framework, as well as (iv) connections to
time series of counts and asymptotical distinguishability. Thereafter, we start our detailed technical
analyses by giving recursive exact values respectively recursive bounds–as well as their applications–of
Hellinger integrals Hλ (PA||PH) (see Section 3), power divergences Iλ (PA||PH) and Renyi divergences
Rλ (PA||PH) (see Sections 4 and 5). Explicit closed-form bounds of Hellinger integrals Hλ (PA||PH) will
be worked out in Section 6, whereas Section 7 deals with Hellinger integrals and power divergences of
the above-mentioned Galton-Watson type diffusion approximations.

2. The Framework and Application Setups

2.1. Process Setup

We investigate dissimilarity measures and apply them to decisions, in the following context.
Let the integer-valued random variable Xn (n ∈ N0) denote the size of the nth generation of a
population (of persons, organisms, spreading news, other kind of objects, etc.) with specified
characteristics, and suppose that for the modelling of the time-evolution n 7→ Xn we have the choice
between the following two (e.g., alternative, competing) models (H) and (A):

(H) a discrete-time homogeneous Galton-Watson process with immigration GWI, given by the
recursive description

X0 ∈ N; N0 3 Xn =
Xn−1

∑
k=1

Yn−1,k + Ỹn, n ∈ N, (1)

where Yn−1,k is the number of offspring of the kth object (e.g., organism, person) within the (n− 1)th
generation, and Ỹn denotes the number of immigrating objects in the nth generation. Notice that
we employ an arbitrary deterministic (i.e., degenerate random) initial generation size X0. We always
assume that under the corresponding dynamics-governing law PH

(GWI1) the collection Y :=
{

Yn−1,k, n ∈ N, k ∈ N
}

consists of independent and identically distributed
(i.i.d.) random variables which are Poisson distributed with parameter βH > 0,

(GWI2) the collection Ỹ :=
{

Ỹn, n ∈ N
}

consists of i.i.d. random variables which are Poisson
distributed with parameter αH ≥ 0 (where αH = 0 stands for the degenerate case of having
no immigration),

(GWI3) Y and Ỹ are independent.

(A) a discrete-time homogeneous Galton-Watson process with immigration GWI given by the same
recursive description (1), but with different dynamics-governing law PA under which (GWI1) holds
with parameter βA > 0 (instead of βH > 0), (GWI2) holds with αA ≥ 0 (instead of αH ≥ 0), and (GWI3)
holds. As a side remark, in some contexts the two models (H) and (A) may function as a “sandwich”
of a more complicated not fully known model.

Basic and advanced facts on general GWI (introduced by Heathcote [54]) can be found e.g., in
the monographs of Athreya & Ney [55], Jagers [56], Asmussen & Hering [57], Haccou [58]; see also
e.g., Heyde & Seneta [59], Basawa & Rao [60], Basawa & Scott [61], Sankaranarayanan [62], Wei &
Winnicki [63], Winnicki [64], Guttorp [52] as well as Yanev [65] (and also the references therein all those)
for adjacent fundamental statistical issues including the involved technical and conceptual challenges.

For the sake of brevity, wherever we introduce or discuss corresponding quantities simultaneously
for both models H and A, we will use the subscript • as a synonym for either the symbol H or A.
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For illustration, recall the well-known fact that the corresponding conditional probabilities
P•(Xn = · |Xn−1 = k) are again Poisson-distributed, with parameter β• · k + α•.

In oder to achieve a transparently representable structure of our results, we subsume the involved
parameters as follows:

(PS1) PSP is the set of all constellations (βA, βH, αA, αH) of real-valued parameters βA > 0, βH > 0,
αA > 0, αH > 0, such that βA 6= βH or αA 6= αH (or both); in other words, both models are
non-identical and have non-vanishing immigration;

(PS2) PNI is the set of all (βA, βH, αA, αH) of real-valued parameters βA > 0, βH > 0, αA = αH = 0,
such that βA 6= βH; this corresponds to the important special case that both models have no
immigration and are non-identical;

(PS3) the resulting disjoint union will be denoted by P = PSP ∪ PNI.

Notice that for (unbridgeable) technical reasons, we do not allow for “crossovers” between
“immigration and no-immigration” (i.e., αA = 0 and αH 6= 0, respectively, αA 6= 0 and αH = 0).
For practice, this is not a strong restriction, since one may take e.g., αA = 10−12 and αH = 1.

For the non-immigration case α• = 0 one has the following extinction properties (see e.g., Harris [66],
Athreya & Ney [55]). As usual, let us define the extinction time τ := min

{
i ∈ N : X` = 0 for all integers

` ≥ i
}

if this minimum exists, and τ := ∞ else. Correspondingly, let B := {τ < ∞} be the extinction
set. If the offspring mean β• satisfies β• < 1—which is called the subcritical case– or β• = 1—which is
known as the critical case–then extinction is certain, i.e., there holds P(B | X0 = 1) = 1. However, if the
offspring mean satisfies β• > 1—which is called the supercritical case–then there is a probability greater
than zero, that the population never dies out, i.e., P(B | X0 = 1) ∈]0, 1[. In the latter case, Xn explodes
(a.s.) to infinity as n→ ∞.

In contrast, for the (nondegenerate, nonvanishing) immigration case α• 6= 0 there is no extinction,
viz. P(B | X0 = 1) = 0, although there may be zero population X`0 = 0 for some intermediate time
`0 ∈ N; but due to the immigration, with probability one there is always a later time `1 > `0, such that
X`1 > 0. Nevertheless, also for the setup α• 6= 0 it is important to know whether β• T 1—which is
still called (super-, sub-)criticality–since e.g., in the case β• < 1 the population size Xn converges
(as n → ∞) to a stationary distribution on N whereas for β• > 1 the behaviour is non-stationary
(non-ergodic), see e.g., Athreya & Ney [55].

At this point, let us emphasize that in our investigations (both for α• = 0 and for α• 6= 0) we do
allow for “crossovers” between “different criticalities”, i.e., we deal with all cases βA T 1 versus all

cases βH T 1; as will be explained in the following, this unifying flexibility is especially important for
corresponding epidemiological-model comparisons (e.g., for the sake of decision making).

One of our main goals is to quantitatively compare (the time-evolution of) two competing GWI
modelsH and A with respective parameter sets (βH, αH) and (βA, αA), in terms of the information
measures Hλ (PA||PH) (Hellinger intergrals), Iλ (PA||PH) (power divergences), Rλ (PA||PH) (Renyi
divergences). The latter two express a distance (degree of dissimilarity) betweenH and A. From this,
we shall particularly derive applications for decision making under uncertainty (including tests).

2.2. Connections to Time Series of Counts

It is well known that a Galton-Watson process with Poisson offspring (with parameter β•) and
Poisson immigration (with parameter α•) is “distributionally” equal to each of the following models
(listed in “tree-type” chronological order):

(M1) a Poissonian Generalized Integer-valued Autoregressive process GINAR(1) in the sense of Gauthier
& Latour [67] (see also Dion, Gauthier & Latour [44], Latour [68], as well as Grunwald
et al. [45]), that is, a first-order autoregressive times series with Poissonian thinning (with
parameter β•) and Poissonian innovations (with parameter α•);
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(M2) Poissonian first order Conditional Linear Autoregressive model (Poissonian CLAR(1)) in the sense
of Grunwald et al. [45] (and earlier preprints thereof) (since the conditional expectation is
EP•[Xn|Fn−1] = α• + β• · Xn−1); this can be equally seen as Poissonian autoregressive
Generalized Linear Model GLM with identity link function (cf. [45] as well as Chapter 4 of
Kedem & Fokianos [46]), that is, an autoregressive GLM with Poisson distribution as random
component and the identity link as systematic component;
the same model was used (and generalized)

(M2i) under the name BIN(1) by Rydberg & Shephard [69] for the description of the number
Xn of stock transactions/trades recorded up to time n;

(M2ii) under the name Poisson autoregressive model PAR(1) by Brandt & Williams [70] for the
description of event counts in political and other social science applications;

(M2iii) under the name Autoregressive Conditional Poisson model ACP(1,0) by Heinen [71];
(M2iv) by Held, Höhle & Hofmann [47] as well as Held et al. [72], as a description of the

time-evolution of counts from infectious disease surveillance databases, where β•
(respectively, α•) is interpreted as driving parameter of epidemic (respectively,
endemic) component; in principle, this type of modelling can be also implicitly
recovered as a special case of the epidemics-treating work of Finkenstädt, Bjornstad
& Grenfell [73], by assuming trend- and season-neglecting (e.g., intra-year) measles
data in urban areas of about 10 million people (provided that their population size
approximation extends linearly);

(M2v) under the name integer-valued Generalized Autoregressive Conditional Heteroscedastic
model INGARCH(1,0) by Ferland, Latour & Oraichi [74] (since the conditional variance
is VarP•[Xn|Fn−1] = α• + β• · Xn−1), see also Weiß [75]; this has been refinely
named as INARCH(1) model by Weiß [76,77], and frequently applied thereafter;
for an “overlapping-generation type” interpretation of the INARCH(1) model, which
is an adequate description for the time-evolution of overdispersed counts with an
autoregressive serial dependence structure, see Weiß & Testik [78]; for a corresponding
comprehensive recent survey (also to more general count time series), the reader is
referred to the book of Weiß [48];

Moreover, according to the general considerations of Grunwald et al. [45], the Poissonian
Galton-Watson model with immigration may possibly be “distributionally equal” to an integer-valued
autoregressive model with random coefficient (thinning).

Nowadays, besides the name homogeneous Galton-Watson model with immigration GWI, the name
INARCH(1) seems to be the most used one, and we follow this terminology (with emphasis on GWI).
Typical features of the above-mentioned models (M1) to (M2v), are the use of Z as the set of times, and
the assumptions α• > 0 as well as β• ∈]0, 1[, which guarantee stationarity and ergodicity (see above). In
contrast, we employ N0 as the set of times, degenerate (and thus, non-equilibrium) starting distribution,
and arbitrary α• ≥ 0 as well as β• > 0. For such a situation, as explained above, we quantitatively
compare two competing GWI modelsH and A with respective parameter sets (βH, αH) and (βA, αA).
Since–as can be seen e.g., in (29) below—we basically employ only (conditionally) distributional
ingredients, such as the corresponding likelihood ratio (see e.g., (13) to (15), (27) to (29) below), all the
results of the Sections 3–6 can be immediately carried over to the above-mentioned time-series contexts (where
we even allow for non-stationarities, in fact we start with a one-point/Dirac distribution); for the sake
of brevity, in the rest of the paper this will not be mentioned explicitly anymore.

Notice that a Poissonian GWI as well as all models (M1) and (M2) are–despite of their conditional
Poisson law– typically overdispersed since

EP•[Xn] = α• + β• · EP•[Xn−1] ≤ α• + β• · EP•[Xn−1] + β2
• ·VarP•[Xn−1] = VarP•[Xn], n ∈ N\{1},
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with equality iff (i.e., if and only if) α• = 0 (NI) and Xn−2 = 0 (extinction at n− 2 with n ≥ 3).

2.3. Applicability to Epidemiology

The above-mentioned framework can be used for any of the numerous fields of applications of
discrete-time branching processes, and of the closely related INARCH(1) models. For the sake of
brevity, we explain this—as a kind of running-example—in detail for the currently highly important
context of the epidemiology of infectious diseases. For insightful non-mathematical introductions to
the latter, see e.g., Kaslow & Evans [79], Osterholm & Hedberg [80]; for a first entry as well as overviews
on modelling, the reader is referred to e.g., Grassly & Fraser [81], Keeling & Rohani [82], Yan [83,84],
Britton [85], Diekmann, Heesterbeek & Britton [86], Cummings & Lessler [87], Just et al. [88], Britton
& Giardina [89], Britton & Pardoux [43]. A survey on the particular role of branching processes in
epidemiology can be found e.g., in Jacob [41].

Undoubtedly, by nature, the spreading of an infectious disease through a (human, animal,
plant) population is a branching process with possible immigration. Indeed, typically one has the
following mechanism:

(D1) at some time tE
k –called the time of exposure (moment of infection)—an individual k of a

specified population is infected in a wide sense, i.e., entered/invaded/colonized by a number of
transmissible disease-causative pathogens (etiologic agents such as viruses, bacteria, protozoans
and other parasites, subviruses (e.g., prions and plant viroids), etc.); the individual is then a host
(of pathogens);

(D2) depending on the level of immunity and some other factors, these pathogens may
multiply/replicate within the host to an extent (over a threshold number) such that at time
tI
k some of the pathogens start to leave their host (shedding of pathogens); in other words,

the individual k becomes infectious at the time tI
k of onset of infectiousness. Ex post, one can

then say that the individual became infected in the narrow sense at earlier time tE
k and call

it a primary case. The time interval [tE
k , tI

k[ is called the latent/latency/pre-infectious period of k,
and tI

k − tE
k its duration (in some literature, there is no verbal distinction between them); notice

that tI
k may differ from the time tOS

k of onset (first appearance) of symptoms, which leads to the
so-called incubation period [tE

k , tOS
k [; if tI

k < tOS
k then [tI

k, tOS
k [ is called the pre-symptomatic period;

(D3) as long as the individual k stays infectious, by shedding of pathogens it may infect in a narrow
sense a random number Yk ∈ N0 of other individuals which are susceptible (i.e., neither immune
nor already infected in a narrow sense), where the distribution of Yk depends on the individual’s
(natural, voluntary, forced) behaviour, its environment, as well as some other factors e.g.,
connected with the type of pathogen transmission; the newly infected individuals are called
offspring of k, and secondary cases if they are from the same specified population or exportations
if they are from a different population; from the view of the latter, these infections are imported
cases and thus can be viewed as immigrants;

(D4) at the time tR
k of cessation of infectiousness, the individual stops being infectious (e.g., because of

recovery, death, or total isolation); the time interval [tI
k, tR

k [ is called the period of infectiousness (also
period of communicability, infectious/infective/shedding/contagious period) of k, and tR

k − tI
k its duration

(in some literature, there is no verbal distinction between them); notice that tR
k may differ from

the time tCS
k of cessation (last appearance) of symptoms which leads to the so-called sickness period

[tOS
k , tCS

k [;
(D5) this branching mechanism continues within the specified population until there are no infectious

individuals and also no importations anymore (eradication, full extinction, total elimination)–
up to a specified final time (which may be large or even infinite);

All the above-mentioned times t·k and time intervals are random, by nature. Two further connected
quantities are also important for modelling (see e.g., Yan & Chowell [84] (p. 241ff), including a history
of corresponding terminology). Firstly, the generation interval (generation time, transmission interval)
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is the time interval from the onset of infectiousness in a primary case (called the infector) to the onset
of infectiousness in a secondary case (called the infectee) infected by the primary case; clearly, the
generation interval is random, and so is its duration (often, the (population-)mean of the latter is also
called generation interval). Typically, generation intervals are important ingredients of branching
process models of infectious diseases. Secondly, the serial interval describes time interval from the onset
of symptoms in a primary case to the onset of symptoms in a secondary case infected by the primary
case. By nature, the serial interval is random, and so is its duration (often, the (population-)mean
of the latter is also called serial interval). Typically, the serial interval is easier to observe than the
generation interval, and thus, the latter is often approximately estimated from data of the former.
For further investigations on generation and serial intervals, the reader is referred to e.g., Fine [90],
Svensson [91,92], Wallinga & Lipsitch [93], Forsberg White & Pagano [94], Nishiura [95], Scalia
Tomba et al. [96], Trichereau et al. [97], Vink, Bootsma & Wallinga [98], Champredon & Dushoff [99],
Just et al. [88], and–especially for the novel COVID-19 pandemics—An der Heiden & Hamouda [100],
Ferretti et al. [101], Ganyani et al. [102], Li et al. [103], Nishiura, Linton & Akhmetzhanov [104],
Park et al. [105].

With the help of the above-mentioned individual ingredients, one can aggregatedly build numerous
different population-wide models of infectious diseases in discrete time as well as in continuous time;
the latter are typically observed only in discrete-time steps (discrete-time sampling), and hence in
the following we concentrate on discrete-time modelling (of the real or the observational process).
In fact, we confine ourselves to the important task of modelling the evolution n 7→ Xn of the number
of incidences at “stage” n, where incidence refers to the number of new infected/infectious individuals.
Here, n may be a generation number where, inductively, n = 0 refers to the generation of the first
appearing primary cases in the population (also called initial importations), and n refers to the generation
of offsprings of all individuals of generation n− 1. Alternatively, n may be the index of a physical
(“calender”) point of time tn, which may be deterministic or random; e.g., (tn)n∈N may be a strictly
increasing series of (i) equidistant deterministic time points (and thus, one can identify tn = n in
appropriate time units such as days, weeks, bi-weeks, months), or (ii) non-equidistant deterministic
time points, or (iii) random time points (as a side remark, let us mention that in some situations, Xn

may alternatively denote the number of prevalences at “stage” n, where prevalence refers to the total
number of infected/infectious individuals (e.g., through some methodical tricks like “self-infection”)).

In the light of this, one can loosely define an epidemic as the rapid spread of an infectious disease
within a specified population, where the numbers Xn of incidences are high (or much higher than
expected) for that kind of population. A pandemic is a geographically large-scale (e.g., multicontinental
or worldwide) epidemic. An outbreak/onset of an epidemic in the narrow sense is the (time of) change
where an infectious disease turns into an epidemic, which is typically quantified by exceedance over
an threshold; analogously, an outbreak/onset of a pandemic is the (time of) change where the epidemic
turns into a pandemic. Of course, one goal of infectious-disease modelling is to quantify “early enough”
the potential danger of an emerging outbreak of an epidemic or a pandemic.

Returning to possible models of the incidence-evolution n 7→ Xn, its description
may be theoretically derived from more detailed, time-finer, highly sophisticated,
individual-based “mechanistic” infectious-disease models such as e.g., continuous-time
suscetible-exposed-infectious-recovered (SEIR) models (see the above-mentioned introductory
texts); however, as e.g., pointed out in Held et al. [72], the estimation of the correspondingly involved
numerous parameters may be too ambitious for routinely collected, non-detailed disease data, such as
e.g., daily/weekly counts Xn of incidences–especially in decisive emerging/early phases of a novel
disease (such as the current COVID-19 pandemic). Accordingly, in the following we assume that Xn

can be approximately described by a Poissonian Galton-Watson process with immigration respectively
a (“distributionally equal”) Poissonian autoregressive Generalized Linear Model in the sense of (M2).
Depending on the situation, this can be quite reasonable, for the following arguments (apart from
the usual “if the data say so”). Firstly, it is well known (see e.g., Bartoszynski [33], Ludwig [34],
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Becker [35,36], Metz [37], Heyde [38], von Bahr & Martin-Löf [39], Ball [40], Jacob [41], Barbour &
Reinert [42], Section 1.2 of Britton & Pardoux [43]) that in populations with a relatively high number
of susceptible individuals and a relatively low number of infectious individuals (e.g., in a large
population and in decisive emerging/early phases of the disease spreading), the incidence-evolution
n 7→ Xn can be well approximated by a (e.g., Poissonian) Galton-Watson process with possible
immigration where n plays the role of a generation number. If the above-mentioned generation interval
is “nearly” deterministic (leading to nearly synchronous, non-overlapping generations)—which is the
case e.g., for (phases of) Influenza A(H1N1)pdm09, Influenza A(H3N2), Rubella (cf. Vink, Bootsma
& Wallinga [98]), and COVID-19 (cf. Ferretti et al. [101])—and the length of the generation interval
is approximated by its mean length and the latter is tuned to be equal to the unit time between
consecutive observations, then n plays the role of an observation (surveillance) time. This effect is even
more realistic if the period of infectiousness is nearly deterministic and relatively short. Secondly,
as already mentioned above, the spreading of an infectious disease is intrinsically a (not necessarily
Poissonian Galton-Watson) branching mechanism, which may be blurred by other effects in a way
that a Poissonian autoregressive Generalized Linear Model is still a reasonably fitting model for the
observational process in disease surveillance. The latter have been used e.g., by Finkenstädt, Bjornstad
& Grenfell [73], Held, Höhle & Hofmann [47], and Held et al. [72]; they all use non-constant parameters
(e.g., to describe seasonal effects, which are however unknown in early phases of a novel infectious
disease such as COVID-19). In contrast, we employ different new–namely divergence-based–statistical
techniques, for which we assume constant parameters but also indicate procedures for the detection of
changes; the extension to non-constant parameters is straightforward.

Returning to Galton-Watson processes, let us mention as a side remark that they can be also used to
model the above-mentioned within-host replication dynamics (D2) (e.g., in the time-interval [tE

k , tI
k[ and

beyond) on a sub-cellular level, see e.g., Spouge [106], as well as Taneyhill, Dunn & Hatcher [107] for
parasitic pathogens; on the other hand, one can also employ Galton-Watson processes for quantifying
snowball-effect (avalanche-effect, cascade-effect) type, economic-crisis triggered consequences of
large epidemics and pandemics, such as e.g., the potential spread of transmissible (i) foreclosures
of homes (cf. Parnes [108]), or clearly also (ii) company insolvencies, downsizings and credit-risk
downgradings; moreover, the time-evolution of integer-valued indicators concerning the spread of
(rational or unwarranted) fears resp. perceived threats may be modelled, too.

Summing up things, we model the evolution n 7→ Xn of the number of incidences at stage n by a
Poissonian Galton Watson process with immigration GWI

X0 ∈ N; N0 3 Xn =
Xn−1

∑
k=1

Yn−1,k + Ỹn, n ∈ N, cf. (1), (GWI1)–(GWI3) with law P•,

(where Yn−1,k corresponds to the Yk of (D3), equipped with an additional stage-index n − 1),
respectively by a corresponding “distributionally equal”–possibly non-stationary– Poissonian
autoregressive Generalized Linear Model in the sense of (M2); depending on the situation, we may
also fix a (deterministic or random) upper time horizon other than infinity. Recall that both models are
overdispersed, which is consistent with the current debate on overdispersion in connection with the
current COVID-19 pandemic. In infectious-disease language, the sum ∑

Xn−1
k=1 Yn−1,k can also be loosely

interpreted as epidemic component (in a narrow sense) driven by the parameter β•, and Ỹn as endemic
component driven by the parameter α•. In fact, the offspring mean (here, β•) is called reproduction number
and plays a major role–also e.g., in the current public debate about the COVID-19 pandemic–because
it crucially determines the rapidity of the spread of the disease and—as already indicated above in
the second and third paragraph after (PS3)–also the probability that the epidemic/pandemic becomes
(maybe temporally) extinct or at least stationary at a low level (that is, endemic). For this to happen, β•
should be subcritical, i.e., β• < 1, and even better, close to zero. Of course, the size of the importation
mean α• ≥ 0 matters, too, in a secondary order.
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Keeping this in mind, let us discuss on which factors the reproduction number β• and the
importation mean α• depend upon, and how they can be influenced/controlled. To begin with, by
recalling the above-mentioned points (D1) to (D5) and by adapting the considerations of e.g., Grassly
& Fraser [81] to our model, one encounters the fact that the distribution of the offspring Yn−1,k—here
driven by the reproduction number (offspring mean) β•—depends on the following factors:

(B1) the degree of infectiousness of the individual k, with three major components:

(B1a) degree of biological infectiousness; this reflects the within-host dynamics (D2) of the
“representative” individual k, in particular the duration and amount of the corresponding
replication and shedding/excretion of the infectious pathogens; this degree depends thus
on (i) the number of host-invading pathogens (called the initial infectious dose), (ii) the type
of the pathogen with respect to e.g., its principal capabilities of replication speed, range of
spread and drug-sensitivity, (iii) features of the immune system of the host k including
the level of innate or acquired immunity, and (iv) the interaction between the genetic
determinants of disease progression in both the pathogen and the host;

(B1b) degree of behavioural infectiousness; this depends on the contact patterns of an
infected/infectious individual (and, if relevant, the contact patterns of intermediate
hosts or vectors), in relation to the disease-specific type of route(s) of transmission of
the infectious pathogens (for an overview of the latter, see e.g., Table 3 of Kaslow &
Evans [79]); a long-distance-travel behaviour may also lead to the disease exportation to
another, outside population (and thus, for the latter to a disease importation);

(B1c) degree of environmental infectiousness; this depends on the location and environment of
the host k, which influences the duration of outside-host survival of the pathogens (and,
if relevant, of the intermediate hosts or vectors) as well as the speed and range of their
outside-host spread; for instance, high temperature may kill the pathogens, high airflow
or rainfall dynamics may ease their spread, etc.

(B2) the degree of susceptibility of uninfected individuals who have contact with k, with the following
three major components (with similar background as their infectiousness counterparts):

(B2a) degree of biological susceptibility;
(B2b) degree of behavioural susceptibility;
(B2c) degree of environmental susceptibility.

All these factors (B1a) to (B2c) can be principally influenced/controlled to a
certain–respective–extent. Let us briefly discuss this for human infectious diseases, where one
major goal of epidemic risk management is to operate countermeasures/interventions in order to
slow down the disease transmission (e.g., by reducing the reproduction number β• to less than 1)
and eventually even break the chain of transmission, for the sake of containment or mitigation;
preparedness and preparation are motives, too, for instance as a part of governmental pandemic
risk management.

For instance, (B1a) can be reduced or even erased through pharmaceutical interventions such as
medication (if available), and preventive strengthening of the immune system through non-extreme
sports activities and healthy food.

Moreover, the following exemplary control measures for (B2) can be either put into action by
common-sense self-behaviour, or by large-scale public recommendations (e.g., through mass media),
or by rules/requirements from authorities:

(i) personal preventive measures such as frequent washing and disinfecting of hands; keeping hands
away from face; covering coughs; avoidance of handshakes and hugs with non-family-members;
maintaining physical distance (e.g., of two meters) from non-family-members; wearing a
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face-mask of respective security degree (such as homemade cloth face mask, particulate-filtering
face-piece respirator, medical (non-surgical) mask, surgical mask); self-quarantine;

(ii) environmental measures, such as e.g., cleaning of surfaces;
(iii) community measures aimed at mild or stringent social distancing, such as e.g.,

prohibiting/cancelling/banning gatherings of more than z non-family members (e.g., z =

2, 5, 10, 100, 1000 in various different phases and countries during the current COVID-19
pandemic); mask-wearing (see above); closing of schools, universities, some or even all
nonessential (“system-irrelevant”) businesses and venues; home-officing/work ban; home
isolation of disease cases; isolation of homes for the elderly/aged (nursing homes); stay-at-home
orders with exemptions, household or even general quarantine; testing & tracing; lockdown of
entire cities and beyond; restricting the degrees of travel freedom/allowed mobility (e.g., local,
union-state, national, international including border and airport closure). The latter also affects
the mean importation rate α•, which can be controlled by vaccination programs in “outside
populations”, too.

As far as the degree of biological susceptibility (B2a) is concerned, one obvious therapeutic
countermeasure is a mass vaccination program/campaign (if available).

In case of highly virulent infectious diseases causing epidemics and pandemics with substantial
fatality rates, some of the above-mentioned control strategies and countermeasures may (have to) be
“drastic” (e.g., lockdown), and thus imply considerable social and economic costs, with a huge impact
and potential danger of triggering severe social, economic and political disruptions.

In order to prepare corresponding suggestions for decisions about appropriate control measures
(e.g., public policies), it is therefore important–especially for a novel infectious disease such as the
current COVID-19 pandemic–to have a model for the time-evolution of the incidences in (i) a natural
(basically uncontrolled) set-up, as well as in (ii) the control set-ups under consideration. As already
mentioned above, we assume that all these situations can be distilled into an incidence evolution
n 7→ Xn which follows a Poissonian Galton-Watson process with respectively different parameter
pairs (β•, α•). Correspondingly, we always compare two alternative models (H) and (A) with
parameter pairs (βH, αH) and (βA, αA) which reflect either a “pure” statistical uncertainty (under
the same uncontrolled or controlled set-up), or the uncertainty between two different potential control
set-ups (for the sake of assessing the potential impact/efficiency of some planned interventions,
compared with alternative ones); the economic impact can be also taken into account, within a Bayesian
decision framework discussed in Section 2.5 below. As will be explained in the next subsections, we
achieve such comparisons by means of density-based dissimilarity distances/divergences and related
quantities thereof.

From the above-mentioned detailed explanations, it is immediately clear that for the described
epidemiological context one should investigate all types of criticality and importation means for the
therein involved two Poissonian Galton-Watson processes with/without immigration (respectively the
equally distributed INARCH(1) models); in particular, this motivates (or even “justifies”) the necessity
of the very lengthy detailed studies in the Sections 3–7 below.

2.4. Information Measures

Having two competing models (H) and (A) at stake, it makes sense to study questions such
as “how far are they apart?” and thus “how dissimilar are they?”. This can be quantified in terms
of divergences in the sense of directed (i.e., not necessarily symmetric) distances, where usually the
triangular inequality fails. Let us first discuss our employed divergence subclasses in a general set-up
of two equivalent probability measures PH, PA on a measurable space (Ω,F ). In terms of the parameter
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λ ∈ R, the power divergences—also known as Cressie-Read divergences, relative Tsallis entropies, or
generalized cross-entropy family– are defined as (see e.g., Liese & Vajda [1,10])

0 ≤ Iλ (PA||PH) :=





I (PA||PH) , if λ = 1,
1

λ(λ−1) (Hλ (PA||PH)− 1) , if λ ∈ R\{0, 1},
I (PH||PA) , if λ = 0, (2)

where
I (PA||PH) :=

∫
pA log

pA
pH

dµ ≥ 0 (3)

is the Kullback-Leibler information divergence (also known as relative entropy) and

Hλ (PA||PH) :=
∫

Ω
pλ
A p1−λ
H dµ ≥ 0 (4)

is the Hellinger integral of order λ ∈ R\{0, 1}; for this, we assume as usual without loss of generality
that the probability measures PH, PA are dominated by some σ−finite measure µ, with densities

pA =
dPA
dµ

and pH =
dPH
dµ

(5)

defined on Ω (the zeros of pH, pA are handled in (3) and (4) with the usual conventions). Clearly, for
λ ∈ {0, 1} one trivially gets

H0 (PA||PH) = H1 (PA||PH) = 1 .

The Kullback-Leibler information divergences (relative entropies) in (2) and (3) can alternatively be
expressed as (see, e.g., Liese & Vajda [1])

I (PA||PH) = lim
λ↗1

1− Hλ (PA||PH)
λ(1− λ)

, I (PH||PA) = lim
λ↘0

1− Hλ (PA||PH)
λ(1− λ)

. (6)

Apart from the Kullback-Leibler information divergence (relative entropy), other prominent examples
of power divergences are the squared Hellinger distance 1

2 I1/2 (PA||PH) and Pearson’s χ2−divergence
2 I2 (PA||PH); the Hellinger integral H1/2 (PA||PH) is also known as (multiple of) the Bhattacharyya
coefficent. Extensive studies about basic and advanced general facts on power divergences, Hellinger
integrals and the related Renyi divergences of order λ ∈ R\{0, 1}

0 ≤ Rλ (PA||PH) :=
1

λ(λ− 1)
log Hλ (PA||PH) , with log 0 = −∞, (7)

can be found e.g., in Liese & Vajda [1,10], Jacod & Shiryaev [24], van Erven & Harremoes [20] (as a side
remark, R1/2 (PA||PH) is also known as (multiple of) Bhattacharyya distance). For instance, the integrals
in (3) and (4) do not depend on the choice of µ. Furthermore, one has the skew symmetries

Hλ (PA||PH) = H1−λ (PH||PA) , as well as Iλ (PA||PH) = I1−λ (PH||PA) , (8)

for all λ ∈ R (see e.g., Liese & Vajda [1]). As far as finiteness is concerned, for λ ∈]0, 1[ one gets the
rudimentary bounds

0 < Hλ (PA||PH) ≤ 1 , and equivalently, (9)

0 ≤ Iλ (PA||PH) =
1− Hλ (PA||PH)

λ(1− λ)
<

1
λ(1− λ)

, (10)
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where the lower bound in (10) (upper bound in (9)) is achieved iff PA = PH. For λ ∈ R\]0, 1[, one gets
the bounds

0 ≤ Iλ (PA||PH) ≤ ∞ , and equivalently, 1 ≤ Hλ (PA||PH) ≤ ∞ , (11)

where, in contrast to above, both the lower bound of Hλ (PA||PH) and the lower bound of Iλ (PA||PH) is
achieved iff PA = PH; however, the power divergence Iλ (PA||PH) and Hellinger integral Hλ (PA||PH)
might be infinite, depending on the particular setup.

The Hellinger integrals can be also used for bounds of the well-known total variation

0 ≤ V(PA||PH) := 2 sup
A∈F

{
PA(A)− PH(A)

}
=
∫

Ω
|pA − pH| dµ ,

with pA and pH defined in (5). Certainly, the total variation is one of the best known statistical
distances, see e.g., Le Cam [109]. For arbitrary λ ∈]0, 1[ there holds (cf. Liese & Vajda [1])

1− V(PA||PH)
2

≤ Hλ(PA||PH) ≤
(

1 +
V(PA||PH)

2

)max{λ,1−λ} (
1− V(PA||PH)

2

)min{λ,1−λ}
.

From this together with the particular choice λ = 1
2 , we can derive the fundamental

universal bounds

2
(
1− H 1

2
(PA||PH)

)
≤ V(PA||PH) ≤ 2

√
1−

(
H 1

2
(PA||PH)

)2 . (12)

We apply these concepts to our setup of Section 2.1 with two competing models (H) and (A) of
Galton-Watson processes with immigration, where one can take Ω ⊂ NN0

0 to be the space of all paths
of (Xn)n∈N. More detailed, in terms of the extinction set B := {τ < ∞} and the parameter-set notation
(PS1) to (PS3), it is known that for PSP the two laws PH and PA are equivalent, whereas for PNI the two
restrictions PH|B and PA|B are equivalent (see e.g., Lemma 1.1.3 of Guttorp [52]); with a slight abuse of
notation we shall henceforth omit |B . Consistently, for fixed time n ∈ N0 we introduce PA,n := PA|Fn

and PH,n := PH|Fn
as well as the corresponding Radon-Nikodym-derivative (likelihood ratio)

Zn :=
dPA,n

dPH,n
, (13)

where (Fn)n∈N denotes the corresponding canonical filtration generated by X := (Xn)n∈N; in other
words, Fn reflects the “process-intrinsic” information known at stage n. Clearly, Z0 = 1. By choosing
the reference measure µ = PH,n one obtains from (4) the Hellinger integral Hλ (PA,0||PH,0) = 1, as well
as and for all n ∈ N

Hλ (PA,n||PH,n) = EPH,n
[
(Zn)

λ
]
, (14)

I (PA,n||PH,n) = EPA,n
[

log Zn
]
, (15)

from which one can immediately build Iλ (PA,n||PH,n) (λ ∈ R) respectively Rλ (PA,n||PH,n) (λ ∈
R\{0, 1}) respectively bounds of V (PA,n||PH,n) via (2) respectively (7) respectively (12).

The outcoming values (respectively bounds) of Hλ (PA,n||PH,n) are quite diverse and depend on
the choice of the involved parameter pairs (βH, αH), (βA, αA) as well as λ; the exact details will be
given in the Sections 3 and 6 below.

Before we achieve this, in the following we explain how the outcoming dissimilarity results
can be applied to Bayesian testing and more general Bayesian decision making, as well as to
Neyman-Pearson testing.
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2.5. Decision Making under Uncertainty

Within the above-mentioned context of two competing models (H) and (A) of Galton-Watson
processes with immigration, let us briefly discuss how knowledge about the time-evolution of
the Hellinger integrals Hλ (PA,n||PH,n)–or equivalently, of the power divergences Iλ (PA,n||PH,n),
cf. (2)—can be used in order to take decisions under uncertainty, within a framework of Bayesian
decision making BDM, or alternatively, of Neyman-Pearson testing NPT.

In our context of BDM, we decide between an action dH “associated with” the (say) hypothesis
law PH and an action dA “associated with” the (say) alternative law PA, based on the sample path
observation Xn := {Xl : l ∈ {0, 1, . . . , n} } of the GWI-generation-sizes (e.g., infectious-disease
incidences, cf. Section 2.3) up to observation horizon n ∈ N. Following the lines of Stummer &
Vajda [15] (adapted to our branching process context), for our BDM let us consider as admissible
decision rules δn : Ωn 7→ {dH, dA} the ones generated by all path sets Gn ∈ Ωn (where Ωn denotes the
space of all possible paths of (Xk)k∈{1,...,n}) through

δn(Xn) := δGn(Xn) :=

{
dA, if Xn ∈ Gn,
dH, if Xn /∈ Gn,

as well as loss functions of the form
(

L(dH,H) L(dH,A)
L(dA,H) L(dA,A)

)
:=

(
0 LA
LH 0

)
(16)

with pregiven constants LA > 0, LH > 0 (e.g., arising as bounds from quantities in worst-case
scenarios); notice that in (16), dH is assumed to be a zero-loss action underH and dA a zero-loss action
under A. Per definition, the Bayes decision rule δGn,min minimizes–over Gn—the mean decision loss

L(δGn) := pprior
H · LH · Pr

(
δGn(Xn) = dA

∣∣∣H
)

+ pprior
A · LA · Pr

(
δGn(Xn) = dH

∣∣∣A
)

= pprior
H · LH · PH,n(Gn) + pprior

A · LA · PA,n(Ωn − Gn) (17)

for given prior probabilities pprior
H = Pr(H) ∈]0, 1[ for H and pprior

A := Pr(A) = 1− pprior
H for A.

As a side remark let us mention that, in a certain sense, the involved model (parameter) uncertainty
expressed by the “superordinate” Bernoulli-type law Pr = Bin(1, pprior

H ) can also be reinterpreted as a
rudimentary static random environment caused e.g., by a random Bernoulli-type external static force.

By straightforward calculations, one gets with (13) the minimizing path set Gn,min =

{
Zn ≥ pprior

H LH
pprior
A LA

}

leading to the minimal mean decision loss, i.e., the Bayes risk,

Rn := min
Gn
L(δGn) = L(δGn,min) =

∫

Ωn
min

{
pprior
H LH, pprior

A LA Zn

}
dPH,n . (18)

Notice that—by straightforward standard arguments—the alternative decision procedure

take action dA (resp. dH) if LH · ppost
H (Xn) ≤ (resp. >) LA · ppost

A (Xn)

with posterior probabilities ppost
H (Xn) := pprior

H
(1−pprior

H )·Zn(Xn) + pprior
H

=: 1− ppost
A (Xn), leads exactly to the

same actions as δGn,min . By adapting the Lemma 6.5 of Stummer & Vajda [15]—which on general
probability spaces gives fundamental universal inequalities relating Hellinger integrals (or equivalently,
power divergences) and Bayes risks—one gets for all LH > 0, LA > 0, pprior

H ∈]0, 1[, λ ∈]0, 1[ and
n ∈ N the upper bound

Rn ≤ Λλ
A Λ1−λ

H Hλ (PA,n||PH,n) , with ΛH := pprior
H LH, ΛA := (1− pprior

H )LA, (19)
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as well as the lower bound

(Rn)
min{λ,1−λ} · (ΛH + ΛA −Rn)

max{λ,1−λ} ≥ Λλ
A Λ1−λ

H Hλ (PA,n||PH,n)

which implies in particular the “direct” lower bound

Rn ≥
Λ

max{1, λ
1−λ }

A Λ
max{1, 1−λ

λ }
H

(ΛA + ΛH)
max{ λ

1−λ , 1−λ
λ }
· (Hλ (PA,n||PH,n))

max{ 1
λ , 1

1−λ } . (20)

By using (19) (respectively (20)) together with the exact values and the upper (respectively lower)
bounds of the Hellinger integrals Hλ (PA,n||PH,n) derived in the following sections, we end up with
upper (respectively lower) bounds of the Bayes risk Rn. Of course, with the help of (2) the bounds
(19) and (20) can be (i) immediately rewritten in terms of the power divergences Iλ (PA,n||PH,n) and
(ii) thus be directly interpreted in terms of dissimilarity-size arguments. As a side-remark, in such
a Bayesian context the λ−order Hellinger integral Hλ (PA,n||PH,n) = EPH,n

[
(Zn)λ

]
(cf. (14)) can

be also interpreted as λ−order Bayes-factor moment (with respect to PH,n), since Zn = Zn(Xn) =

ppost
A (Xn)

ppost
H (Xn)

/
pprior
A

pprior
H

is the Bayes factor (i.e., the posterior odds ratio of (A) to (H), divided by the prior

odds ratio of (A) to (H)).
At this point, the potential applicant should be warned about the usual way of asynchronous

decision making, where one first tests (A) versus (H) (i.e., LA = LH = 1 which leads to 0–1 losses
in (16)) and afterwards, based on the outcoming result (e.g., in favour of (A)), takes the attached
economic decision (e.g., dA); this can lead to distortions compared with synchronous decision making
with “full” monetary losses LA and LH, as is shown in Stummer & Lao [16] within an economic context
in connection with discrete approximations of financial diffusion processes (they call this distortion
effect a non-commutativity between Bayesian statistical and investment decisions).

For different types of–mainly parameter estimation (squared-error type loss function)
concerning—Bayesian analyses based on GW(I) generation size observations, see e.g., Jagers [56],
Heyde [38], Heyde & Johnstone [110], Johnson et al. [111], Basawa & Rao [60], Basawa &
Scott [61], Scott [112], Guttorp [52], Yanev & Tsokos [113], Mendoza & Gutierrez-Pena [114], and
the references therein.

Within our running-example epidemiological context of Section 2.3, let us briefly discuss the
role of the above-mentioned losses LA and LH. To begin with, as mentioned above the unit-free
choice LA = LH = 1 corresponds to Bayesian testing. Recall that this concerns with two alternative
infectious-disease models (H) and (A) with parameter pairs (recall the interpretation of β• as
reproduction number and α• as importation mean) (βH, αH) and (βA, αA) which reflect either a
“pure” statistical uncertainty (under the same uncontrolled or controlled set-up), or the uncertainty
between two different potential control set-ups (for the sake of assessing the potential impact/efficiency
of some planned interventions, compared with alternative ones). As far as non-unit-free–e.g.,
macroeconomic or monetary–losses is concerned, recall that some of the above-mentioned control
strategies (countermeasures, public policies, governmental pandemic risk management plans) may
imply considerable social and economic costs, with a huge impact and potential danger of triggering
severe social, economic and political disruptions; a corresponding tradeoff between health and
economic issues can be incorporated by choosing LA and LH to be (e.g., monetary) values which reflect
estimates or upper bounds of losses due to wrong decisions, e.g., if at stage n due to the observed
data one erroneously thinks (reinforced by fear) that a novel infectious disease (e.g., COVID-19) will
lead (or re-emerge) to a severe pandemic and consequently decides for a lockdown with drastic
future economic consequences, versus, if one erroneously thinks (reinforced by carelessness) that the
infectious disease is (or stays) non-severe and consequently eases some/all control measures which
will lead to extremely devastating future economic consequences. For the estimates/bounds of LA and
LH, one can e.g., employ (i) the comprehensive stochastic studies of Feicht & Stummer [115] on the
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quantitative degree of elasticity and speed of recovery of economies after a sudden macroeconomic
disaster, or (ii) the more short-term, German-specific, scenario-type (basically non-stochastic) studies
of Dorn et al. [116,117] in connection with the current COVID-19 pandemic.

Of course, the above-mentioned Bayesian decision procedure can be also operated in sequential
way. For instance, suppose that we are encountered with a novel infectious disease (e.g., COVID-19) of
non-negligible fatality rate and let (A) reflect a “potentially dangerous” infectious-disease-transmission
situation (e.g., a reproduction number of substantially supercritical case βA = 2, and an importation
mean of αA = 10, for weekly appearing new incidence-generations) whereas (H) describes a “relatively
harmless/mild” situation (e.g., a substantially subcritical βH = 0.5, αH = 0.2). Moreover, let dA
respectively dH denote (non-quantitatively) the decision/action to accept (A) respectively (H). It can
then be reasonable to decide to stop the observation process n 7→ Xn (also called surveillance or
online-monitoring) of incidence numbers at the first time at which n 7→ Zn = Zn(Xn) exceeds the
threshold pprior

H /pprior
A ; if this happens, one takes dA as decision (and e.g., declare the situation as

occurrence of an epidemic outbreak and start with control/intervention measures (however, as explained
above, one should synchronously involve also the potential economic losses)) whereas as long as this
does not happen, one continues the observation (and implicitly takes dH as decision). This can be

modelled in terms of the pair (τ̃, dA) with (random) stopping time τ̃ := inf
{

n ∈ N : Zn ≥ pprior
H

pprior
A

}

(with the usual convention that the infimum of the empty set is infinity), and the corresponding decision
dA. After the time τ̃ < ∞ and e.g., immediate subsequent employment of some control/counter
measures, one can e.g., take the old model (A) as new (H), declare a new target (A) for the desired
quantification of the effectiveness of the employed control measures (e.g., a mitigation to a slightly
subcritical case of βA = 0.95, αH = 0.8), and starts to observe the new incidence numbers until
the new target (A) has been reached. This can be interpreted as online-detection of a distributional
change; a related comprehensive new framework for the use of divergences (even much beyond power
divergences) for distributional change detection can be found e.g., in the recent work of Kißlinger &
Stummer [118]. A completely different, SIR-model based, approach for the detection of change points
in the spread of COVID-19 is given in Dehning et al. [119]. Moreover, other different surveillance
methods can be also found e.g., in the corresponding overview of Frisen [120] and the Swedish
epidemics outbreak investigations of Friesen & Andersson & Schiöler [121].

One can refine the above-mentioned sequential procedure via two (instead of one) appropriate
thresholds c1 < c2 and the pair (τ̆, δτ̆), with the stopping time τ̆ := inf

{
n ∈ N : Zn /∈ [c1, c2]

}
as well

as corresponding decision rule

δτ̆ :=

{
dA, if Zτ̆ > c2,

dH, if Zτ̆ < c1.

An exact optimized treatment on the two above-mentioned sequential procedures, and
their connection to Hellinger integrals (and power divergences) of Galton-Watson processes with
immigration, is beyond the scope of this paper.

As a side remark, let us mention that our above-mentioned suggested method of Bayesian
decision making with Hellinger integrals of GWIs differs completely from the very recent work of
Brauner et al. [122] who use a Bayesian hierarchical model for the concrete, very comprehensive study
on the effectiveness and burden of non-pharmaceutical interventions against COVID-19 transmission.

The power divergences Iλ (PA,n||PH,n) (λ ∈ R) can be employed also in other ways within
Bayesian decision making, of statistical nature. Namely, by adapting the general lines of Österreicher &
Vajda [123] (see also Liese & Vajda [10], as well as diffusion-process applications in Stummer [5,31,32])
to our context of Galton-Watson processes with immigration, we can proceed as follows. For the sake
of comfortable notations, we first attach the value θ := 1 to the GWI model (A) (which has prior
probability pprior

A ∈ ]0, 1[) and θ := 0 to (H) (which has prior probability 1− pprior
A ). Suppose we
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want to decide, in an optimal Bayesian way, which degree of evidence deg ∈ [0, 1] we should attribute
(according to a pregiven loss function LO) to the model (A). In order to achieve this goal, we choose a
nonnegatively-valued loss function LO(θ, deg) defined on {0, 1} × [0, 1], of two types which will be
specified below. The risk at stage 0 (i.e., prior to the GWI-path observations Xn), from the optimal
decision about the degree of evidence deg concerning the decision parameter θ, is defined as

BRLO
(

pprior
A

)
:= min
deg∈[0,1]

{
(1− pprior

A ) · LO(0, deg) + pprior
A · LO(1, deg)

}
,

which can be thus interpreted as a minimal prior expected loss (the minimum will always exist).
The corresponding risk posterior to the GWI-path observations Xn, from the optimal decision about the
degree of evidence deg concerning the parameter θ, is given by

BRpost
LO
(

pprior
A

)
:=
∫

Ωn
BRLO

(
ppost
A (Xn)

) (
pprior
A dPA,n + (1− pprior

A ) dPH,n
)

,

which is achieved by the optimal decision rule (about the degree of evidence)

D∗
(
Xn
)

:= arg min
deg∈[0,1]

{ (
1− ppost

A (Xn)
)
· LO(0, deg) + ppost

A (Xn) · LO(1, deg)
}

.

The corresponding statistical information measure (in the sense of De Groot [124])

∆BRLO
(

pprior
A

)
:= BRLO

(
pprior
A

)
−BRpost

LO
(

pprior
A

)
≥ 0

represents the reduction of the decision risk about the degree of evidence deg concerning the parameter
θ, that can be attained by observing the GWI-path Xn until stage n. For the first-type loss function
L̃O(θ, deg) := deg− (2 deg− 1) · 1{1}(θ), defined on {0, 1} × [0, 1] with the help of the indicator function
1A(.) on the set A, one can show that

D∗
(
Xn
)

:=





0, if ppost
A (Xn) ∈ [0, 1

2 [,

1, if ppost
A (Xn) ∈ ] 1

2 , 1[,

any number in [0, 1], if ppost
A (Xn) =

1
2 ,

as well as the representation formula

Iλ (PA,n||PH,n) =
∫ 1

0
∆BRL̃O

(
pprior
A

)
·
(

1− pprior
A

)λ−2
·
(

pprior
A

)−1−λ
dpprior
A , λ ∈ R, (21)

(cf. Österreicher & Vajda [123], Liese & Vajda [10], adapted to our GWI context); in other words, the
power divergence Iλ (PA,n||PH,n) can be regarded as a weighted-average statistical information measure
(weighted-average decision risk reduction). One can also use other weights of pprior

A in order to get bounds
of Iλ (PA,n||PH,n) (analogously to Stummer [5]).

For the second-type loss function LOλ,χ(θ, deg) := λθ−1 degλ−θ

χλ (1−χ)1−λ (1−λ)θ (1−deg)λ−θ defined on {0, 1}×
[0, 1] with parameters λ ∈]0, 1[ and χ ∈]0, 1[, one can derive the optimal decision rule

D∗
(
Xn
)
= ppost

A (Xn)

as well as the representation formula as a limit statistical information measure (limit decision risk reduction)

Iλ (PA,n||PH,n) = lim
χ→pprior

A

∆BRLOλ,χ

(
pprior
A

)
=: ∆BRLO

λ,p
prior
A

(
pprior
A

)
(22)
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(cf. Österreicher & Vajda [123], Stummer [5], adapted to our GWI context).
As an alternative to the above-mentioned Bayesian-decision-making applications of Hellinger

integrals Hλ (PA,n||PH,n), let us now briefly discuss the use of the latter for the corresponding
Neyman-Pearson (NPT) framework with randomized tests Tn : Ωn 7→ [0, 1] of the hypothesis PH
against the alternative PA, based on the GWI-generation-size sample path observations Xn := {Xl :
l ∈ {0, 1, . . . , n} }. In contrast to (17) and (18) a Neyman-Pearson test minimizes—over Tn–the type
II error probability

∫
Ωn

(1− Tn)dPA,n in the class of the tests for which the type I error probability∫
Ωn
Tn dPH,n is at most ς ∈]0, 1[. The corresponding minimal type II error probability

Eς (PA,i||PH,i) := inf
Ti :
∫

Ωi
Ti dPH,i≤ς

∫

Ωi

(1− Ti)dPA,i

can for all ς ∈]0, 1[, λ ∈]0, 1[, i ∈ I be bounded from above by

Eς
(

PA,i||PH,i
)
≤ EU

ς

(
PA,i||PH,i

)
:= min

{
(1− λ) ·

(
λ

ς

)λ/(1−λ)

·
(

Hλ

(
PA,i||PH,i

) )1/(1−λ)
, 1

}
, (23)

and for all λ > 1, i ∈ I it can be bounded from below by

Eς
(

PA,i||PH,i
)
≥ E L

ς

(
PA,i||PH,i

)
:= (1− ς)λ/(λ−1) ·

(
Hλ

(
PA,i||PH,i

) )1/(1−λ)
, (24)

which is an adaption of a general result of Krafft & Plachky [125], see also Liese & Vajda [1] as well as
Stummer & Vajda [15]. Hence, by combining (23) and (24) with the exact values respectively upper
bounds of the Hellinger integrals H1−λ (PA,n||PH,n) from the following sections, we obtain for our
context of Galton-Watson processes with Poisson offspring and Poisson immigration (including the
non-immigration case) some upper bounds of Eς (PA,n||PH,n), which can also be immediately rewritten
as lower bounds for the power 1 − Eς (PA,n||PH,n) of a most powerful test at level ς. In contrast
to such finite-time-horizon results, for the (to our context) incompatible setup of Galton-Watson
processes with Poisson offspring but nonstochastic immigration of constant value 1, the asymptotic
rates of decrease as n → ∞ of the unconstrained type II error probabilities as well as the type I
error probabilites were studied in Linkov & Lunyova [53] by a different approach employing also
Hellinger integrals. Some other types of Galton-Watson-process concerning Neyman-Pearson testing
investigations different to ours can be found e.g., in Basawa & Scott [126], Feigin [127], Sweeting [128],
Basawa & Scott [61], and the references therein.

2.6. Asymptotical Distinguishability

The next two concepts deal with two general families (PA,i)i∈I and (PH,i)i∈I of probability
measures on the measurable spaces (Ωi,Fi)i∈I , where the index set I is either N0 or R+. For them,
the following two general types of asymptotical distinguishability are well known (see e.g.,
LeCam [109], Liese & Vajda [1], Jacod & Shiryaev [24], Linkov [129], and the references therein).

Definition 1. The family (PA,i)i∈I is contiguous to the family (PH,i)i∈I – in symbols, (PA,i) / (PH,i)– if for
all sets Ai ∈ Fi with limi→∞ PH,i(Ai) = 0 there holds limi→∞ PA,i(Ai) = 0.

Definition 2. Families of measures (PA,i)i∈I and (PH,i)i∈I are called entirely separated (completely
asymptotically distinguishable)—in symbols, (PA,i)4 (PH,i)–if there exist a sequence im ↑ ∞ as m ↑ ∞
and for each m ∈ N0 an Aim ∈ Fim such that limm→∞ PA,im(Aim) = 1 and limm→∞ PH,im(Aim) = 0.

It is clear that the notion of contiguity is the attempt to carry the concept of absolute continuity
over to families of measures. Loosely speaking, (PA,i) is contiguous to (PH,i), if the limit limi→∞(PA,i)

(existence preconditioned) is absolute continuous to the limit limi→∞(PH,i). However, for the definition
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of contiguity, we do not need to require the probability measures to converge to limiting probability
measures. On the other hand, entire separation is the generalization of singularity to families
of measures.

The corresponding negations will be denoted by / and 4. One can easily check that a family
(PA,i) cannot be both contiguous and entirely separated to a family (PH,i). In fact, as shown in
Linkov [129], the relation between the families (PA,i) and (PH,i) can be uniquely classified into the
following distinguishability types:

(a) (PA,i) / . (PH,i) ;
(b) (PA,i) / (PH,i), (PH,i) / (PA,i) ;
(c) (PA,i) / (PH,i), (PH,i) / (PA,i) ;
(d) (PA,i) / . (PH,i), (PA,i) 4 (PH,i) ;
(e) (PA,i) 4 (PH,i) .

As demonstrated in the above-mentioned references for a general context, one can conclude
the type of distinguishability from the time-evolution of Hellinger integrals. Indeed, the following
assertions can be found e.g., in Linkov [129], where part (c) was established in Liese & Vajda [1] and
(f), (g) in Vajda [3].

Proposition 1. The following assertions are equivalent:

(a) (PA,i) 4 (PH,i) ,

(b) lim inf
i→∞

Hλ(PA,i||PH,i) = 0 for all λ ∈]0, 1[,

(c) there exists a λ ∈ ]0, 1[ : lim inf
i→∞

Hλ(PA,i||PH,i) = 0 , (25)

(d) there exists a π ∈ ]0, 1[ : lim inf
i→∞

eπ(PA,i||PH,i) = 0 ,

(e) lim sup
i→∞

V(PA,i||PH,i) = 2 ,

( f ) there exists a λ ∈ ]0, 1[ : lim sup
i→∞

Iλ(PA,i||PH,i) =
1

λ · (1− λ)
,

(g) lim sup
i→∞

Iλ(PA,i||PH,i) =
1

λ · (1− λ)
, for all λ ∈]0, 1[.

In combination with the discussion after Definition 2, one can thus interpret the λ−order Hellinger
integral Hλ(PA,i||PH,i) as a “measure” for the distinctness of the two families PA,i and PH,i up to a
fixed finite time horizon i ∈ I .

Furthermore, for the contiguity we obtain the equivalence (see e.g., Liese & Vajda [1], Linkov [129])

(PA,i) / (PH,i) ⇐⇒ lim inf
λ↗1

{
lim inf

i→∞
Hλ (PA,i||PH,i)

}
= 1 (26)

⇐⇒ lim sup
λ↗1

{
lim sup

i→∞
λ · (1− λ) · Iλ (PA,i||PH,i)

}
= 0.

All the above-mentioned general results can be applied to our context of two competing Poissonian
Galton-Watson processes with immigration (GWI) (H) and (A) (reflected by the two different laws
PH resp. PA with parameter pairs (βH, αH) resp. (βA, αA)), by taking PA,i := PA|Fi

and PH,i := PH|Fi
.

Recall from the preceding subsections (by identifying i with n) that the latter two describe the stochastic
dynamics of the respective GWI within the restricted time-/stage-frame {0, 1, . . . , i}.

In the following, we study in detail the evolution of Hellinger integrals between two competing
models of Galton-Watson processes with immigration, which turns out to be quite extensive.
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3. Detailed Recursive Analyses of Hellinger Integrals

3.1. A First Basic Result

In terms of our notations (PS1) to (PS3), a typical situation for applications in our mind is that one
particular constellation (βA, βH, αA, αH) ∈ P (e.g., obtained from theoretical or previous statistical
investigations) is fixed, whereas–in contrast–the parameter λ ∈ R\{0, 1} for the Hellinger integral or
the power divergence might be chosen freely, e.g., depending on which (transform of a) dissimilarity
measure one decides to choose for further analysis. At this point, let us emphasize that in general we
will not make assumptions of the form β• T 1, i.e., upon the type of criticality.

To start with our investigations, in order to justify for all n ∈ N0

Zn :=
dPA,n

dPH,n
(cf. (13)),

(14) and (15) (as well as Iλ (PA,n||PH,n) for λ ∈ R respectively Rλ (PA,n||PH,n) for λ ∈ R\{0, 1}),
we first mention the following straightforward facts: (i) if (βA, βH, αA, αH) ∈ PNI, then PA,n and
PH,n are equivalent (i.e., PA,n ∼ PH,n), as well as (ii) if (βA, βH, αA, αH) ∈ PSP, then PA,n and PH,n
are equivalent (i.e., PA,n ∼ PH,n). Moreover, by recalling Z0 = 1 and using the “rate functions”
f•(x) = β• x + α• (x ∈ [0, ∞[), a version of (13) can be easily determined by calculating for each
~x := (x0, x1, x2, · · · ) ∈ Ω := N×N0 ×N0 × · · ·

Zn(~x) =
n

∏
k=1

Zn,k(~x) with Zn,k(~x) := exp
{
−
(

fA(xk−1)− fH(xk−1)
)} [ fA(xk−1)

fH(xk−1)

]xk

,

where for the last term we use the convention
( 0

0
)x

= 1 for all x ∈ N0. Furthermore, we define for each
~x ∈ Ω

Z(λ)
n,k (~x) := exp

{
−
(
λ fA(xk−1) + (1− λ) fH(xk−1)

)}
[
( fA(xk−1))

λ ( fH(xk−1))
1−λ
]xk

xk!
(27)

with the convention (0)0

0! = 1 for the last term. Accordingly, one obtains from (14) the Hellinger integral
Hλ (PA,0||PH,0) = 1, as well as for all (βA, βH, αA, αH, λ) ∈ P × (R\{0, 1})

Hλ (PA,1||PH,1) = exp
{
( fA(x0))

λ ( fH(x0))
(1−λ) − (λ fA(x0) + (1− λ) fH(x0))

}
(28)

for x0 = X0 ∈ N, and for all n ∈ N\{1}

Hλ (PA,n||PH,n) = EPH,n
[
(Zn)

λ
]
=

∞

∑
x1=0
· · ·

∞

∑
xn=0

n

∏
k=1

Z(λ)
n,k (~x)

=
∞

∑
x1=0
· · ·

∞

∑
xn−1=0

n−1

∏
k=1

Z(λ)
n,k (~x) · e−(λ fA(xn−1)+(1−λ) fH(xn−1))

∞

∑
xn=0

[
( fA(xn−1))

λ ( fH(xn−1))
1−λ

]xn

xn!

=
∞

∑
x1=0
· · ·

∞

∑
xn−1=0

n−1

∏
k=1

Z(λ)
n,k (~x) · exp{( fA(xn−1))

λ ( fH(xn−1))
1−λ − (λ fA(xn−1) + (1− λ) fH(xn−1))}. (29)

From (29), one can see that a crucial role for the exact calculation (respectively the derivation of
bounds) of the Hellinger integral is played by the functions defined for x ∈ [0, ∞[

φλ(x) := φ(x, βA, βH, αA, αH, λ) := ϕλ(x)− fλ(x) , with (30)

ϕλ(x) := ϕ(x, βA, βH, αA, αH, λ) := ( fA(x))λ ( fH(x))1−λ and (31)
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fλ(x) := f (x, βA, βH, αA, αH, λ) := λ fA(x) + (1− λ) fH(x) = αλ + βλ x , (32)

where we have used the λ-weighted-averages

αλ := α(αA, αH, λ) := λ · αA + (1− λ) · αH and βλ := β(βA, βH, λ) := λ · βA + (1− λ) · βH.

Since λ plays a special role, henceforth we typically use it as index and often omit (βA, βH, αA, αH).
According to Lemma A1 in the Appendix A.1, it follows that for λ ∈]0, 1[ (respectively λ ∈ R\[0, 1])
one gets φλ(x) ≤ 0 (respectively φλ(x) ≥ 0) for all x ∈ [0, ∞[. Furthermore, in both cases there holds
φλ(x) = 0 iff fA(x) = fH(x), i.e., for x = x∗ := αA−αH

βH−βA
≥ 0. This is consistent with the corresponding

generally valid upper and lower bounds (cf. (9) and (11)) 0 < Hλ (PA,n||PH,n) ≤ 1 , for λ ∈
]0, 1[ , 1 ≤ Hλ (PA,n||PH,n) ≤ ∞ , for λ ∈ R\[0, 1] .

As a first indication for our proposed method, let us start by illuminating the simplest case λ ∈
R\{0, 1} and γ := αHβA − αAβH = 0. This means that (βA, βH, αA, αH) ∈ PNI ∪ PSP,1, where PSP,1

is the set of all (componentwise) strictly positive (βA, βH, αA, αH) with βA 6= βH, αA 6= αH and
βA
βH

= αA
αH
6= 1 (“the equal-fraction-case”). In this situation, all the three functions (30) to (32) are

linear. Indeed,
ϕλ(x) = pE

λ + qE
λ x (33)

with pE
λ := αλ

A α1−λ
H and qE

λ := βλ
A β1−λ
H (where the index E stands for exact linearity). Clearly, qE

λ > 0
on PNI ∪ PSP,1, as well as pE

λ > 0 on PSP,1 and pE
λ = 0 on PNI. Furthermore,

φλ(x) = rE
λ + sE

λ x

with rE
λ := pE

λ − αλ = αλ
A α1−λ
H − (λαA + (1− λ)αH) and sE

λ := qE
λ − βλ = βλ

A β1−λ
H − (λβA + (1−

λ)βH). Due to Lemma A1 one knows that on PNI ∪ PSP,1 one gets sE
λ < 0 for λ ∈]0, 1[ and sE

λ > 0 for
λ ∈ R\[0, 1]. Furthermore, on PSP,1 one gets rE

λ < 0 (resp. rE
λ > 0) for λ ∈]0, 1[ (resp. λ ∈ R\[0, 1]),

whereas on PNI, the no-immigration setup, we get for all λ ∈ R\{0, 1} rE
λ = 0.

As it will be seen later on, such kind of linearity properties are useful for the recursive handling
of the Hellinger integrals. However, only on the parameter set PNI ∪ PSP,1 the functions ϕλ and φλ

are linear. Hence, in the general case (βA, βH, αA, αH, λ) ∈ P ×R\{0, 1} we aim for linear lower and
upper bounds

ϕL
λ(x) := pL

λ + qL
λ x ≤ ϕλ(x) ≤ ϕU

λ (x) := pU
λ + qU

λ x , (34)

x ∈ [0, ∞[ (ultimately, x ∈ N0), which by (30) and (31) leads to

φλ(x)





≤ φU
λ (x) := rU

λ + sU
λ · x := (pU

λ − αλ) + (qU
λ − βλ) · x ,

≥ φL
λ(x) := rL

λ + sL
λ · x := (pL

λ − αλ) + (qL
λ − βλ) · x ,

(35)

x ∈ [0, ∞[ (ultimately, x ∈ N0). Of course, the involved slopes and intercepts should satisfy reasonable
restrictions. Later on, we shall impose further restrictions on the involved slopes and intercepts,
in order to guarantee nice properties of the general Hellinger integral bounds given in Theorem 1
below

(
for instance, in consistency with the nonnegativity of ϕλ we could require pU

λ ≥ pL
λ ≥ 0,

qU
λ ≥ qL

λ ≥ 0 which nontrivially implies that these bounds possess certain monotonicity properties
)
.

For the formulation of our first assertions on Hellinger integrals, we make use of the following notation:
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Definition 3. For all (βA, βH, αA, αH, λ) ∈ P × R\{0, 1} and all p, q ∈ R let us define the sequences(
a(q)n

)
n∈N0

and
(

b(p,q)
n

)
n∈N0

recursively by

a(q)0 := 0 ; a(q)n := ξ
(q)
λ

(
a(q)n−1

)
:= q · ea(q)n−1 − βλ, n ∈ N, (36)

b(p,q)
0 := 0 ; b(p,q)

n := p · ea(q)n−1 − αλ, n ∈ N. (37)

Notice the interrelation a
(qA

λ )
1 = sA

λ and b
(pA

λ ,qA
λ )

1 = rA
λ for A ∈ {E, L, U}. Clearly, for all q ∈ R\{0}

and p ∈ R one has the linear interrelation

b(p,q)
n =

p
q

a(q)n +
p
q

βλ − αλ, n ∈ N. (38)

Accordingly, we obtain fundamental Hellinger integral evaluations:

Theorem 1.

(a) For all (βA, βH, αA, αH, λ) ∈ (PNI ∪ PSP,1)×R\{0, 1}, all initial population sizes X0 ∈ N and all
observation horizons n ∈ N one can recursively compute the exact value

Hλ(PA,n||PH,n) = exp
{

a
(qE

λ)
n X0 +

αA
βA

n

∑
k=1

a
(qE

λ)

k

}
=: Vλ,X0,n, (39)

where αA
βA

can be equivalently replaced by αH
βH

. Recall that qE
λ := βλ

A β1−λ
H . Notice that on PNI ×

(R\{0, 1}) the formula (39) simplifies significantly, since αA = αH = 0.
(b) For all (βA, βH, αA, αH, λ) ∈ (PSP\PSP,1)× (R\{0, 1}), all coefficients pL

λ, pU
λ , qL

λ, qU
λ ∈ R which

satisfy (35) for all x ∈ N0
(
and thus in particular pL

λ ≤ pU
λ , qL

λ ≤ qU
λ

)
, all initial population sizes

X0 ∈ N and all observation horizons n ∈ N one gets the following recursive (i.e., recursively computable)
bounds for the Hellinger integrals:

for λ ∈]0, 1[ : BL
λ,X0,n := B̃

(pL
λ ,qL

λ)
λ,X0,n < Hλ(PA,n||PH,n) ≤ min

{
B̃
(pU

λ ,qU
λ )

λ,X0,n , 1
}

=: BU
λ,X0,n , (40)

for λ ∈ R\[0, 1] : BL
λ,X0 ,n := max

{
B̃
(pL

λ ,qL
λ)

λ,X0 ,n , 1
}
≤ Hλ(PA,n||PH,n) < B̃

(pU
λ ,qU

λ )

λ,X0 ,n =: BU
λ,X0 ,n , (41)

where for general λ ∈ R\{0, 1}, p ∈ R, q ∈ R\{0} we use the definitions

B̃(p,q)
λ,X0 ,n := exp

{
a(q)n · X0 +

n

∑
k=1

b(p,q)
k

}
= exp

{
a(q)n · X0 +

p
q

n

∑
k=1

a(q)k + n ·
(

p
q

βλ − αλ

)}
, (42)

as well as
B̃(p,0)

λ,X0,n := exp
{
− βλ · X0 +

(
p · e−βλ − αλ

)
· n
}

.

Remark 1.

(a) Notice that the expression B̃(p,q)
λ,X0,n can analogously be defined on the parameter set PNI ∪ PSP,1. For the

choices qE
λ := βλ

Aβ1−λ
H > 0 and pE

λ := αλ
Aα1−λ
H = qE

λ ·
αA
βA

= qE
λ ·

αH
βH
≥ 0 one gets (pE

λ/qE
λ) · βλ −

αλ = 0, and thus the characterization B̃
(pE

λ ,qE
λ)

λ,X0,n = Vλ,X0,n as the exact value (rather than a lower/upper
bound (component)).

(b) In the case q = βλ one gets the explicit representation B̃(p,q)
λ,X0,n = exp

{(
p− αλ

)
· n
}

.
(c) Using the skew symmetry (8), one can derive alternative bounds of the Hellinger integral by switching to

the transformed parameter setup (
←→
βA ,
←→
βH,←→αA ,←→αH ,

←→
λ ) := (βH, βA, αH, αA, 1− λ). However, this does

not lead to different bounds: define
←→
φ ←→

λ
, ←→ϕ ←→

λ
and
←→

f ←→
λ

analogously to (30), (31) and (32) by

33



Entropy 2020, 22, 874

replacing the parameters (βA, βH, αA, αH, λ) with (
←→
βA ,
←→
βH,←→αA ,←→αH ,

←→
λ ). Then, there holds

←→
f ←→

λ
(x) =

fλ(x), ←→ϕ ←→
λ
(x) = ϕλ(x) and

←→
φ ←→

λ
(x) = φλ(x), and the set of (lower and upper bound) parameters

pL
λ, qL

λ, pU
λ , qU

λ satisfying (35) does not change under this transformation.
(d) If there are no other restrictions on pL

λ, pU
λ , qL

λ, qU
λ than (35), the bounds in (40) and (41) can have some

inconvenient features, e.g., being 1 for all (large enough) n ∈ N, having oscillating n-behaviour, being
suboptimal in certain (other) senses. For a detailed discussion, the reader is referred to Section 3.16 ff.
below.

(e) For the (to our context) incompatible setup of GWI with Poisson offspring but nonstochastic immigration
of constant value 1, the exact values of the corresponding Hellinger integrals (i.e., an “analogue” of part
(a)) was established in Linkov & Lunyova [53].

Proof of Theorem 1. Let us fix (βA, βH, αA, αH) ∈ P as well as x0 := X0 ∈ N, and start with arbitrary
λ ∈]0, 1[. We first prove the upper bound BU

λ,X0,n of part (b). Correspondingly, we suppose that the
coefficients pU

λ , qU
λ satisfy (35) for all x ∈ N0. From (28), (30), (31), (32) and (35) one gets immediately

BU
λ,X0,1 in terms of the first sequence-element a

(qU
λ )

1 (cf. (36)). With the help of (29) for all observation
horizons n ∈ N\{1} we get (with the obvious shortcut for n = 2)

Hλ (PA,n||PH,n) =
∞

∑
x1=0
· · ·

∞

∑
xn−1=0

n−1

∏
k=1

Z(λ)
n,k (~x) · exp

{
ϕλ(xn−1)− fλ(xn−1)

}

<
∞

∑
x1=0
· · ·

∞

∑
xn−1=0

n−1

∏
k=1

Z(λ)
n,k (~x) · exp

{
(pU

λ − αλ) + (qU
λ − βλ) xn−1

}

=
∞

∑
x1=0
· · ·

∞

∑
xn−1=0

n−1

∏
k=1

Z(λ)
n,k (~x) · exp

{
b
(pU

λ ,qU
λ )

1 + a
(qU

λ )
1 xn−1

}

= exp
{

b
(pU

λ ,qU
λ )

1

} ∞

∑
x1=0
· · ·

∞

∑
xn−2=0

n−2

∏
k=1

Z(λ)
n,k (~x) · exp

{
exp

{
a
(qU

λ )
1

}
ϕλ(xn−2)− fλ(xn−2)

}

< exp
{

b
(pU

λ ,qU
λ )

1

} ∞

∑
x1=0
· · ·

∞

∑
xn−2=0

n−2

∏
k=1

Z(λ)
n,k (~x)

· exp
{(

exp
{

a
(qU

λ )
1

}
pU

λ − αλ

)
+

(
exp

{
a
(qU

λ )
1

}
qU

λ − βλ

)
· xn−2

}

< exp
{

b
(pU

λ ,qU
λ )

1

} ∞

∑
x1=0
· · ·

∞

∑
xn−2=0

n−2

∏
k=1

Z(λ)
n,k (~x) · exp

{
b
(pU

λ ,qU
λ )

2 + a
(qU

λ )
2 xn−2

}

< · · · < exp
{

a
(qU

λ )
n x0 +

n

∑
k=1

b
(pU

λ ,qU
λ )

k

}
. (43)

Notice that for the strictness of the above inequalities we have used the fact that φλ(x) < φU
λ (x) for

some (in fact, all but at most two) x ∈ N0 (cf. Properties 3(P19) below). Since for some admissible
choices of pU

λ , qU
λ and some n ∈ N the last term in (43) can become larger than 1, one needs to take

into account the cutoff-point 1 arising from (9). The lower bound BL
λ,X0,n of part (b), as well as the

exact value of part (a) follow from (29) in an analogous manner by employing pL
λ, qL

λ and pE
λ, qE

λ

respectively. Furthermore, we use the fact that for (βA, βH, αA, αH, λ) ∈ (PNI ∪ PSP,1)×]0, 1[ one gets

from (38) the relation b
(pE

λ ,qE
λ)

n = αA
βA

a
(qE

λ)
n . For the sake of brevity, the corresponding straightforward

details are omitted here. Although we take the minimum of the upper bound derived in (43) and 1,
the inequality BL

λ,X0,n < BU
λ,X0,n is nevertheless valid: the reason is that for constituting a lower bound,

the parameters pL
λ, qL

λ must fulfill either the conditions
[
pL

λ − αλ < 0 and qL
λ − βλ ≤ 0

]
or
[
pL

λ − αλ ≤ 0
and qL

λ − βλ < 0
]

(or both), which guarantees that BL
λ,X0,n < 1. The proof for all λ ∈ R\[0, 1] works
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out completely analogous, by taking into account the generally valid lower bound Hλ(PA,n||PH,n) ≥ 1
(cf. (11)).

3.2. Some Useful Facts for Deeper Analyses

Theorem 1(b) and Remark 1(a) indicate the crucial role of the expression B̃(p,q)
λ,X0,n and that

the choice of the quantities p, q depends on the underlying (e.g., fixed) offspring-immigration
parameter constellation (βA, βH, αA, αH) as well as on the (e.g., selectable) value of λ, i.e., pA

λ =

pA (βA, βH, αA, αH, λ) and qA
λ = qA (βA, βH, αA, αH, λ) with A ∈ {E, L, U}. In order to study the

desired time-behaviour n 7→ B̃(·,·)
λ,X0,n of the Hellinger integral bounds resp. exact values, one therefore

faces a six-dimensional (and thus highly non-obvious) detailed analysis, including the search for
criteria (in addition to (35)) on good/optimal choices of pL

λ, qL
λ, pU

λ , qU
λ . Since these criteria will (almost)

always imply the nonnegativity of pA
λ , qA

λ (A ∈ {L, U}) and pE
λ ≥ 0, qE

λ > 0 (cf. Remark 1(a)),

let us first present some fundamental properties of the underlying crucial sequences
(

a(q)n

)
n∈N

and
(

b(p,q)
n

)
n∈N

for general p ≥ 0, q ≥ 0.

Properties 1. For all λ ∈ R the following holds:

(P1) If 0 < q < βλ, then the sequence
(

a(q)n

)
n∈N

is strictly negative, strictly decreasing and converges to the

unique negative solution x(q)0 ∈]− βλ, q− βλ[ of the equation

ξ
(q)
λ (x) = q · ex − βλ = x . (44)

(P2) If 0 < q = βλ, then a(q)n ≡ 0.

(P3) If q > max{0, βλ}, then the sequence
(

a(q)n

)
n∈N

is strictly positive and strictly increasing. Notice that

in this setup, q = 1 implies min{1, eβλ−1} = eβλ−1 < q.

(P3a) If additionally q ≤ min
{

1 , eβλ−1}, then the sequence
(

a(q)n

)
n∈N

converges to the smallest

positive solution x(q)0 ∈]0,− log q] of the Equation (44) .

(P3b) If additionally q > min
{

1 , eβλ−1}, then the sequence
(

a(q)n

)
n∈N

diverges to ∞, faster than

exponentially (i.e., there do not exist constants c1, c2 ∈ R such that a(q)n ≤ ec1+c2n for all n ∈ N).

(P4) If q = 0, then one gets a(0)n ≡ −βλ.

Due to the linear interrelation (38), these results directly carry over to the behaviour of the sequence(
b(p,q)

n

)
n∈N

:

(P5) If p > 0 and 0 < q < βλ, then the sequence
(

b(p,q)
n

)
n∈N

is strictly decreasing and converges to

p · ex(q)0 − αλ. Trivially, b(p,q)
1 = p− αλ.

(P5a) If additionally p < αλ, then
(

b(p,q)
n

)
n∈N

is strictly negative for all n ∈ N.

(P5b) If additionally p = αλ, then
(

b(p,q)
n

)
n∈N

is strictly negative for all n ∈ N\{1}.

(P5c) If additionally p > αλ, then
(

b(p,q)
n

)
n∈N

is strictly positive for some (and possibly for all) n ∈ N.

(P6) If 0 < q = βλ, then b(p,q)
n ≡ p− αλ.

(P7) If p > 0 and q > max{0, βλ}, then the sequence
(

b(p,q)
n

)
n∈N

is strictly increasing.
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(P7a) If additionally q ≤ min
{

1 , eβλ−1}, then the sequence
(

b(p,q)
n

)
n∈N

converges to p · ex(q)0 − αλ ∈]
p− αλ, p/q− αλ

]
; this limit can take any sign, depending on the parameter constellation.

(P7b) If additionally q > min
{

1 , eβλ−1}, then the sequence
(

b(p,q)
n

)
n∈N

diverges to ∞, faster than
exponentially.

(P8) For the remaining cases we get: b(0,q)
n ≡ −αλ and b(p,0)

n ≡ p · e−βλ − αλ (p ∈ R, q ∈ R).

Moreover, in our investigations we will repeatedly make use of the function ξ
(q)
λ (·) from the definition

(36) of a(q)n (see also (44)), which has the following properties:

(P9) For q ∈]0, ∞[ and all λ ∈ R\{0, 1} the function ξ
(q)
λ (·) is strictly increasing, strictly convex and smooth,

and there holds

(P9a) ξ
(q)
λ (0)





< 0, if q < βλ,
= 0, if q = βλ,
> 0, if q > βλ.

(P9b) lim
x→−∞

ξ
(q)
λ (x) = −βλ , and lim

x→∞
ξ
(q)
λ (x) = ∞ .

The proof of these properties is provided in Appendix A.1. From Properties 1 (P1) to (P4) we can
see, that the behaviour of the sequence

(
a(q)n

)
n∈N

can be classified basically into four different types;

besides the case (P2) where a(q)n is constant, the sequence can be either (i) strictly decreasing and convergent
(e.g., for the NI case (βA, βH, αA, αH, λ) = (0.5, 2, 0, 0, 0.5) leading to βλ = λβA + (1− λ)βH = 1.25
and to q := qE

λ = βλ
Aβ1−λ
H = 1, cf. (33) resp. Theorem 1(a)), or (ii) strictly increasing and convergent

(e.g., for (βA, βH, αA, αH, λ) = (0.5, 2, 0, 0, 1.5) leading to βλ = −0.25, q := qE
λ = 0.25), or (iii) strictly

increasing and divergent (e.g., for (βA, βH, αA, αH, λ) = (0.5, 2, 0, 0, 2.7) leading to βλ = −2.05, q := qE
λ ≈

0.047366). Within our running-example epidemiological context of Section 2.3, this corresponds to a
“potentially dangerous” infectious-disease-transmission situation (H) (with supercritical reproduction
number βH = 2), whereas (A) describes a “mild” situation (with “low” subcritical βA = 0.5).

As already mentioned before, the sequences
(

a(q)n

)
n∈N

and
(

b(p,q)
n

)
n∈N

–whose behaviours for

general p ≥ 0 and q ≥ 0 were described by the Properties 1–have to be evaluated at setup-dependent
choices p = pλ = p (βA, βH, αA, αH, λ) and q = qλ = q (βA, βH, αA, αH, λ). Hence, for fixed
(βA, βH, αA, αH), one of the questions–which arises in the course of the desired investigations of
the time-behaviour of the Hellinger integral bounds (resp. exact values)–is for which λ ∈ R the
sequence

(
a(qλ)

n

)
n∈N

converges. In the following, we illuminate this for the important special case

qλ = βλ
Aβ1−λ
H . Suppose at first that βA 6= βH. Properties 1 (P1) implies that for λ ∈]0, 1[ one has

limn→∞ a(qλ)
n = x(qλ)

0 ∈] − βλ, qλ − βλ[, and Lemma A1 states that qλ − βλ < 0. For λ ∈ R\[0, 1],

there holds qλ > max{0, βλ}, and from (P3) one can see that
(

a(qλ)
n

)
n∈N

does not converge to x(qλ)
0 in

general, but for qλ ≤ min{1, eβλ−1} which constitutes an implicit condition on λ. This can be made
explicit, with the help of the auxiliary variables

λ− := λ−(βA, βH) :=





inf
{

λ ≤ 0 : βλ
Aβ1−λ
H ≤ min

{
1 , exp{λβA + (1− λ)βH − 1}

}}
,

in case that the set is nonempty,
0, else,

λ+ := λ+(βA, βH) :=





sup
{

λ ≥ 1 : βλ
Aβ1−λ
H ≤ min

{
1 , exp{λβA + (1− λ)βH − 1}

}}
,

in case that the set is nonempty,
1, else.
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For the constellation βA = βH > 0 we clearly obtain qλ = βλ
Aβ1−λ
H = βA = βH = βλ. Hence,

(P2) implies that the sequence
(

a(qλ)
n

)
n∈N

converges for all λ ∈ R\{0, 1} and we can set λ− := −∞

as well as λ+ := ∞. Incorporating this and by adapting a result of Linkov & Lunyova [53] on
λ−(v1, v2), λ+(v1, v2) for βA 6= βH, we end up with

Lemma 1. (a) For all βA > 0, βH > 0 with βA 6= βH there holds

λ− = λ−(βA, βH) =





0, if βH ≥ 1,

λ̆, if βH < 1 and βA /∈ [βH, βH z(βH)],

−∞, if βH < 1 and βA ∈]βH, βH z(βH)],

λ+ = λ+(βA, βH) =





1, if βA ≥ 1,

λ̆, if βA < 1 and βH /∈ [βA, βA z(βA)],

∞, if βA < 1 and βH ∈]βA, βA z(βA)],

where

λ̆ := λ̆(βA, βH) :=
βH − 1− log (βH)

βH − βA + log
(

βA
βH

)
{

< 0, if βH < 1 and βA /∈ [βH, βH z(βH)],

> 1, if βA < 1 and βH /∈ [βA, βA z(βA)].

Here, for fixed β ∈]0, ∞[\{1} we denote by z(β) the unique solution of the equation log(x)− β(x− 1) = 0,
x ∈]0, ∞[\{1}. For β = 1, z(β) = 1 denotes the unique solution of log(x)− (x− 1) = 0, x ∈]0, ∞[.
(b) For all βA = βH > 0 one gets λ− = λ−(βA, βH) = −∞ as well as λ+ = λ+(βA, βH) = ∞.
Notice that the relationship λ̆(βA, βH) = 1− λ̆(βH, βA) is consistent with the skew symmetry (8).

A corresponding proof is given in Appendix A.1.
With these auxiliary basic facts in hand, let us now work out our detailed investigations of the

time-behaviour n 7→ Hλ(PA,n||PH,n), where we start with the exactly treatable case (a) in Theorem 1.

3.3. Detailed Analyses of the Exact Recursive Values, i.e., for the Cases (βA, βH, αA, αH) ∈ PNI ∪ PSP,1

In the no-immigration-case (βA, βH, αA, αH) ∈ PNI and in the equal-fraction-case
(βA, βH, αA, αH) ∈ PSP,1, the Hellinger integral can be calculated exactly in terms of Hλ(PA,n||PH,n) =

Vλ,X0,n (cf. (39)), as proposed in part (a) of Theorem 1. This quantity depends on the behaviour of

the sequence
(

a
(qE

λ)
n

)

n∈N
, with qE

λ := βλ
Aβ1−λ
H > 0, and of the sum

(
αA
βA ∑n

k=1 a
(qE

λ)

k

)

n∈N
. The last

expression is equal to zero on PNI. On PSP,1, this sum is unequal to zero. Using Lemma A1 we
conclude that qE

λ < βλ (resp. qE
λ > βλ) iff λ ∈]0, 1[ (resp. λ ∈ R\[0, 1]), since on PNI ∪ PSP,1 there holds

βA 6= βH. Thus, from Properties 1 (P1) we can see that the sequence
(

a
(qE

λ)
n

)

n∈N
is strictly negative,

strictly decreasing and it converges to the unique solution x
(qE

λ)
0 ∈]− βλ, qE

λ − βλ[ of the Equation (44)

if λ ∈]0, 1[. For λ ∈ R\[0, 1], (P3) implies that the sequence
(

a
(qE

λ)
n

)

n∈N
is strictly positive, strictly

increasing and converges to the smallest positive solution x
(qE

λ)
0 ∈]0,− log(qE

λ)] of the Equation (44) in
case that (P3a) is satisfied, otherwise it diverges to ∞. Thus, we have shown the following detailed
behaviour of Hellinger integrals:
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Proposition 2. For all (βA, βH, αA, αH, λ) ∈ PNI×]0, 1[ and all initial population sizes X0 ∈ N there holds

(a) Hλ(PA,1||PH,1) = exp
{(

βλ
A β1−λ
H − λβA − (1− λ)βH

)
X0

}
< 1,

(b) the sequence (Hλ(PA,n||PH,n))n∈N given by

Hλ(PA,n||PH,n) = exp
{

a
(qE

λ)
n X0

}
=: Vλ,X0,n

is strictly decreasing,

(c) lim
n→∞

Hλ(PA,n||PH,n) = exp
{

x
(qE

λ)
0 X0

}
∈ ]0, 1[ ,

(d) lim
n→∞

1
n

log Hλ(PA,n||PH,n) = 0

(e) the map X0 7→ Vλ,X0,n is strictly decreasing.

Proposition 3. For all (βA, βH, αA, αH, λ) ∈ PNI × (R\[0, 1]) and all initial population sizes X0 ∈ N there
holds with qE

λ := βλ
Aβ1−λ
H

(a) Hλ(PA,1||PH,1) = exp
{ (

βλ
A β1−λ
H − βλ

)
· X0

}
> 1,

(b) the sequence (Hλ(PA,n||PH,n))n∈N given by

Hλ(PA,n||PH,n) = exp
{

a
(qE

λ)
n · X0

}
=: Vλ,X0,n

is strictly increasing,

(c) lim
n→∞

Hλ(PA,n||PH,n) =





exp
{

x
(qE

λ)
0 · X0

}
> 1, if λ ∈ [λ−, λ+] \ [0, 1],

∞, if λ ∈ ]−∞, λ−[ ∪ ]λ+, ∞[ ,

(d) lim
n→∞

1
n

log Hλ(PA,n||PH,n) =

{
0, if λ ∈ [λ−, λ+] \ [0, 1],
∞, if λ ∈ ]−∞, λ−[ ∪ ]λ+, ∞[ ,

(e) the map X0 7→ Vλ,X0,n is strictly increasing.

In the case (βA, βH, αA, αH) ∈ PSP,1, the sequence
(

a
(qE

λ)
n

)

n∈N
under consideration is formally

the same, with the parameter qE
λ := βλ

Aβ1−λ
H > 0. However, in contrast to the case PNI, on PSP,1 both

the sequence
(

a
(qE

λ)
n

)

n∈N
and the sum

(
αA
βA ∑n

k=1 a
(qE

λ)

k

)

n∈N
are strictly decreasing in case that λ ∈]0, 1[,

and strictly increasing in case that λ ∈ R\[0, 1]. The respective convergence behaviours are given in
Properties 1 (P1) and (P3). We thus obtain

Proposition 4. For all (βA, βH, αA, αH, λ) ∈ PSP,1×]0, 1[ and all initial population sizes X0 ∈ N there holds
with qE

λ := βλ
Aβ1−λ
H

(a) Hλ(PA,1||PH,1) = exp
{(

βλ
A β1−λ
H − βλ

)
·
(

X0 +
αA
βA

)}
< 1,

(b) the sequence (Hλ(PA,n||PH,n))n∈N given by

Hλ(PA,n||PH,n) = exp

{
a
(qE

λ)
n · X0 +

αA
βA

n

∑
k=1

a
(qE

λ)

k

}
=: Vλ,X0,n

is strictly decreasing,

(c) lim
n→∞

Hλ(PA,n||PH,n) = 0 ,

(d) lim
n→∞

1
n

log Hλ(PA,n||PH,n) =
αA
βA
· x(q

E
λ)

0 < 0 ,

(e) the map X0 7→ Vλ,X0,n is strictly decreasing.
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Proposition 5. For all (βA, βH, αA, αH, λ) ∈ PSP,1× (R\[0, 1]) and all initial population sizes X0 ∈ N there
holds with qE

λ := βλ
Aβ1−λ
H

(a) Hλ(PA,1||PH,1) = exp
{(

βλ
A β1−λ
H − βλ

)
·
(

X0 +
αA
βA

)}
> 1,

(b) the sequence (Hλ(PA,n||PH,n))n∈N given by

Hλ(PA,n||PH,n) = exp

{
a
(qE

λ)
n · X0 +

αA
βA

n

∑
k=1

a
(qE

λ)

k

}
=: Vλ,X0,n

is strictly increasing,

(c) lim
n→∞

Hλ(PA,n||PH,n) = ∞,

(d) lim
n→∞

1
n

log Hλ(PA,n||PH,n) =





αA
βA
· x(q

E
λ)

0 > 0, if λ ∈ [λ−, λ+] \ [0, 1] ,

∞, if λ ∈ ]−∞, λ−[ ∪ ]λ+, ∞[ ,

(e) the map X0 7→ Vλ,X0,n is strictly increasing.

Due to the nature of the equal-fraction-case PSP,1, in the assertions (a), (b), (d) of the Propositions 4
and 5, the fraction αA/βA can be equivalently replaced by αH/βH.

Remark 2. For the (to our context) incompatible setup of GWI with Poisson offspring but nonstochastic
immigration of constant value 1, an “analogue” of part (d) of the Propositions 4 resp. 5 was established in Linkov
& Lunyova [53].

3.4. Some Preparatory Basic Facts for the Remaining Cases (βA, βH, αA, αH) ∈ PSP\PSP,1

The bounds BL
λ,X0,n, BU

λ,X0,n for the Hellinger integral introduced in formula (40) in Theorem 1 can
be chosen arbitrarily from a (pL

λ, qL
λ, pU

λ , qU
λ )-indexed set of context-specific parameters satisfying (34),

or equivalently (35).
In order to derive bounds which are optimal, with respect to goals that will be discussed later,

the following monotonicity properties of the sequences
(

a(q)n

)
n∈N

and
(

b(p,q)
n

)
n∈N

(cf. (36), (37)) for

general, context-independent parameters q and p, will turn out to be very useful:

Properties 2.

(P10) For 0 ≤ q1 < q2 < ∞ there holds a(q1)
n < a(q2)

n for all n ∈ N.

(P11) For each fixed q ≥ 0 and 0 ≤ p1 < p2 < ∞ there holds b(p1,q)
n < b(p2,q)

n , for all n ∈ N.

(P12) For fixed p > 0 and 0 ≤ q1 < q2 it follows b(p,q1)
n < b(p,q2)

n for all n ∈ N.
(P13) Suppose that 0 ≤ p1 < p2 and 0 ≤ q2 < q1. For fixed n ∈ N, no dominance assertion can be conjectured

for b(p1,q1)
n , b(p2,q2)

n . As an example, consider the setup (βA, βH, αA, αH, λ) = (0.4, 0.8, 5, 3, 0.5);
within our running-example epidemiological context of Section 2.3, this corresponds to a “nearly
dangerous” infectious-disease-transmission situation (H) (with nearly critical reproduction number
βH = 0.8 and importation mean of αH = 3), whereas (A) describes a “mild” situation (with “low”
subcritical βA = 0.4 and αA = 5). On the nonnegative real line, the function φλ(x) can be bounded
from above by the linear functions φU,1

λ (x) := p1 + q1x := 4.040 + 0.593 · x as well as by φU,2
λ (x) :=

p2 + q2x := 4.110 + 0.584 · x. Clearly, p1 < p2 and q1 > q2. Let us show the first eight elements and
the respective limits of the corresponding sequences b(p1,q1)

n , b(p2,q2)
n :

n 1 2 3 4 5 6 7 8 · · · ∞

b(p1,q1)
n 0.040 0.011 −0.005 −0.015 −0.021 −0.024 −0.026 −0.028 · · · −0.029

b(p2,q2)
n 0.110 0.045 0.007 −0.014 −0.026 −0.033 −0.036 −0.039 · · · −0.041
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(P14) For arbitrary 0 < p1, p2 and 0 ≤ q1, q2 ≤ min{1, eβλ−1} suppose that log(p1) + x(q1)
0 < log(p2) +

x(q2)
0 . Then there holds

p1 · ex
(q1)
0 − αλ = lim

n→∞

1
n

n

∑
k=1

b(p1,q1)
k < lim

n→∞

1
n

n

∑
k=1

b(p2,q2)
k = p2 · ex(q2)

0 − αλ .

From (P10) to (P12) one deduces that both sequences
(

a(q)n

)
n∈N

and
(

b(p,q)
n

)
n∈N

are monotone

in the general parameters p, q ≥ 0. Thus, for the upper bound of the Hellinger integral BU
λ,X0,n

we should use nonnegative context-specific parameters pU
λ = pU (βA, βH, αA, αH, λ) and qU

λ =

qU (βA, βH, αA, αH, λ) which are as small as possible, and for the lower bound BL
λ,X0,n we should use

nonnegative context-specific parameters pL
λ = pL (βA, βH, αA, αH, λ) and qL

λ = qL (βA, βH, αA, αH, λ)

which are as large as possible, of course, subject to the (equivalent) restrictions (34) and (35).
To find “optimal” parameter pairs, we have to study the following properties of the function

φλ(·) = φ(·, βA, βH, αA, αH, λ) defined on [0, ∞[ in (30) (which are also valid for the previous parameter
context (βA, βH, αA, αH) ∈ (PNI ∪ PSP,1)):

Properties 3.

(P15) One has

φλ(x) = (αA + βAx)λ (αH + βHx)1−λ − λ(αA + βAx) + (1− λ)(αH + βHx)

{
≤ 0, if λ ∈ ]0, 1[,

≥ 0, if λ ∈ R\[0, 1],

where equality holds iff fA(x) = fH(x) for some x ∈ [0, ∞[ iff x = x∗ := αA−αH
βH−βA

∈ [0, ∞[ .

(P16) There holds

φλ(0) = αλ
Aα1−λ
H − αλ

{
≤ 0, if λ ∈ ]0, 1[,

≥ 0, if λ ∈ R\[0, 1],

with equality iff αA = αH together with βA 6= βH (cf. Lemma A1).

(P17) For all λ ∈ R\{0, 1} one gets

φ′λ(x) = λβA ( fA(x))λ−1 ( fH(x))1−λ + (1− λ)βH ( fA(x))λ ( fH(x))−λ − βλ .

(P18) There holds

lim
x→∞

φ′λ(x) = βλ
Aβ1−λ
H − βλ

{
≤ 0, if λ ∈ ]0, 1[,

≥ 0, if λ ∈ R\[0, 1],

with equality iff βA = βH together with αA 6= αH (cf. Lemma A1).

(P19) There holds

φ′′λ(x) = −λ(1− λ) ( fA(x))λ−2 ( fH(x))−λ−1 (αAβH − αHβA)
2

{
≤ 0, if λ ∈ ]0, 1[,

≥ 0, if λ ∈ R\[0, 1],

with equality iff (βA, βH, αA, αH) ∈ (PNI ∪ PSP,1). Hence, for (βA, βH, αA, αH) ∈
PSP\PSP,1, the function φλ is strictly concave (convex) for λ ∈]0, 1[ (λ ∈ R\[0, 1]).

Notice that φ′λ(0) = λβA
(

αA
αH

)λ−1
+ (1 − λ)βH

(
αA
αH

)λ
− βλ can be either negative

(e.g., for the setup (βA, βH, αA, αH, λ) ∈
{
(4, 2, 3, 1, 0.5) , (4, 2, 5, 1, 2)

}
, or zero

(e.g., for (βA, βH, αA, αH, λ) ∈
{
(4, 2, 4, 1, 0.5), (4, 2, 3, 1, 2)

}
), or positive (e.g.,

for (βA, βH, αA, αH, λ) ∈
{
(4, 2, 5, 1, 0.5),(4, 2, 2, 1, 2)

}
), where the exemplary parameter
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constellations have concrete interpretations in our running-example epidemiological context of
Section 2.3. Accordingly, for λ ∈]0, 1[, due to concavity and (P17), the function φλ(·) can be either
strictly decreasing, or can obtain its global maximum in ]0, ∞[, or–only in the case βA = βH—can be
strictly increasing. Analogously, for λ ∈ R\[0, 1], the function φλ(·) can be either strictly increasing,
or can obtain its global minimum in ]0, ∞[, or–only in the case βA = βH—can be strictly decreasing.

(P20) For all λ ∈ R\{0, 1} one has

lim
x→∞

(
φλ(x)− (r̃λ + s̃λ x)

)
= 0 ,

for r̃λ := p̃λ − αλ := λαA

(
βA
βH

)λ−1
+ (1− λ)αH

(
βA
βH

)λ

− αλ

and s̃λ := q̃λ − βλ := βλ
Aβ1−λ
H − βλ .

The linear function φ̃λ(x) := r̃λ + s̃λ · x constitutes the asymptote of φλ(·). Notice that if βA = βH
one has s̃λ = 0 = r̃λ; if βA 6= βH we have s̃λ < 0 in the case λ ∈]0, 1[ and s̃λ > 0 if
λ ∈ R\[0, 1]. Furthermore, φλ(0) < r̃λ if λ ∈]0, 1[ and φλ(0) > r̃λ if λ ∈ R\[0, 1], (cf.
Lemma A1(c1) and (c2)). If αA = αH (and thus βA 6= βH), then the intercept r̃λ is strictly positive
if λ ∈]0, 1[ resp. strictly negative if λ ∈ R\[0, 1]. In contrast, for the case αA 6= αH, the intercept
r̃λ can assume any sign, take e.g., (βA, βH, αA, αH, λ) ∈ {(3.7, 0.9, 2.0, 1.0, 0.5), (4, 2, 1.6, 1, 2)}
for r̃λ > 0, (βA, βH, αA, αH, λ) ∈ {(3.6, 0.9, 2.0, 1.0, 0.5), (4, 2, 1.5, 1, 2)} for r̃λ = 0,
and (βA, βH, αA, αH, λ) ∈ {(3.5, 0.9, 2.0, 1.0, 0.5), (4, 2, 1.4, 1, 2)} for r̃λ < 0; again, the exemplary
parameter constellations have concrete interpretations in our running-example epidemiological context
of Section 2.3.

The properties (P15) to (P20) above describe in detail the characteristics of the function φλ(·) =

φ(·, βA, βH, αA, αH, λ). In the previous parameter setup PNI ∪ PSP,1, this function is linear, which can
be seen from (P19). In the current parameter setup PSP\PSP,1, this function can basically be classified
into four different types. From (P16) to (P20) it is easy to see that for all current parameter constellations
the particular choices

pA
λ := αλ

Aα1−λ
H > 0, qA

λ := βλ
Aβ1−λ
H > 0, (45)

which correspond to the following choices in (35)

rA
λ := αλ

Aα1−λ
H − αλ ≤ 0 (resp. ≥ 0), sA

λ := βλ
Aβ1−λ
H − βλ ≤ 0 (resp. ≥ 0),

– where A = L (resp. A = U)–lead to the tightest lower bound BL
λ,X0,n (resp. upper bound BU

λ,X0,n) for
Hλ(PA,n||PH,n) in (40) in the case λ ∈]0, 1[ (resp. λ ∈ R\[0, 1]). Notice that for the previous parameter
setup (βA, βH, αA, αH) ∈ (PNI ∪ PSP,1) these choices led to the exact values of the Hellinger integral

and to the simplification
(

pE
λ/qE

λ

)
· βλ − αλ = 0, which implies b

(pE
λ ,qE

λ)
n = (αA/βA) · a

(qE
λ)

n . In contrast,
in the current parameter setup (βA, βH, αA, αH) ∈ PSP\PSP,1 we only derive the optimal lower (resp.
upper) bound for λ ∈]0, 1[ (resp. λ ∈ R\[0, 1]) by using the parameters pA

λ , qA
λ for A = L (resp. A = U)

and
(

pA
λ /qA

λ

)
· βλ − αλ 6= 0. For a better distinguishability and easier reference we thus stick to the

L−notation (resp. U−notation) here.

3.5. Lower Bounds for the Cases (βA, βH, αA, αH, λ) ∈ (PSP\PSP,1)×]0, 1[

The discussion above implies that the lower bound BL
λ,X0,n for the Hellinger integral

Hλ(PA,n||PH,n) in (40) is optimal for the choices pL
λ, qL

λ > 0 defined in (45). If βA 6= βH, due to

Properties 1 (P1) and Lemma A1, the sequence
(

a
(qL

λ)
n

)

n∈N
is strictly negative and strictly decreasing

and converges to the unique negative solution of the Equation (44). Furthermore, due to (P5),
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the sequence
(

b
(pL

λ ,qL
λ)

n

)

n∈N
, as defined in (37), is strictly decreasing. Since b

(pL
λ ,qL

λ)
1 = pL

λ − αλ ≤ 0 by

Lemma A1, with equality iff αA = αH, the sequence
(

b
(pL

λ ,qL
λ)

n

)

n∈N
is also strictly negative (with the

exception b
(pL

λ ,qL
λ)

1 = 0 for αA = αH) and strictly decreasing. If βA = βH and thus αA 6= αH, due to (P2),

(P6) and Lemma A1, there holds a
(qL

λ)
n ≡ 0 and b

(qL
λ)

n ≡ pL
λ − αλ < 0. Thus, analogously to the cases

PNI ∪ PSP,1 we obtain

Proposition 6. For all (βA, βH, αA, αH, λ) ∈ (PSP\PSP,1)×]0, 1[ and all initial population sizes X0 ∈ N
there holds with pL

λ := αλ
Aα1−λ
H , qL

λ := βλ
Aβ1−λ
H

(a) BL
λ,X0,1 = exp

{(
βλ
A β1−λ
H − βλ

)
· X0 + αλ

Aα1−λ
H − αλ

}
< 1,

(b) the sequence of lower bounds
(

BL
λ,X0,n

)
n∈N

for Hλ(PA,n||PH,n) given by

BL
λ,X0,n = exp

{
a
(qL

λ)
n · X0 +

pL
λ

qL
λ

n

∑
k=1

a
(qL

λ)

k + n ·
(

pL
λ

qL
λ

· βλ − αλ

)}
is strictly decreasing,

(c) lim
n→∞

BL
λ,X0,n = 0 ,

(d) lim
n→∞

1
n

log BL
λ,X0,n =

pL
λ

qL
λ

·
(

x
(qL

λ)
0 + βλ

)
− αλ = pL

λ · ex
(qL

λ
)

0 − αλ < 0 .

(e) the map X0 7→ BL
λ,X0,n is strictly decreasing.

3.6. Goals for Upper Bounds for the Cases (βA, βH, αA, αH, λ) ∈ (PSP\PSP,1)×]0, 1[

For parameter constellations (βA, βH, αA, αH, λ) ∈ (PSP\PSP,1)×]0, 1[, in contrast to the treatment
of the lower bounds (cf. the previous Section 3.5), the fine-tuning of the upper bounds of the
Hellinger integrals Hλ(PA,n||PH,n) is much more involved. To begin with, let us mention that the
monotonicity-concerning Properties 2 (P10) to (P12) imply that for a tight upper bound BU

λ,X0,n (cf. (40))
one should choose parameters pU

λ ≥ pL
λ > 0, qU

λ ≥ qL
λ > 0 as small as possible. Due to the concavity

(cf. Properties 3 (P19)) of the function φλ(·), the linear upper bound φU
λ (·) (on the ultimately relevant

subdomain N0) thus must hit the function φλ(·) in at least one point x ∈ N0, which corresponds to
some “discrete tangent line” of φλ(·) in x, or in at most two points x, x + 1 ∈ N0, which corresponds to
the secant line of φλ(·) across its arguments x and x + 1. Accordingly, there is in general no overall best
upper bound; of course, one way to obtain “good” upper bounds for Hλ(PA,n||PH,n) is to solve the
optimization problem

(
pU

λ , qU
λ

)
:= arg min

(pU
λ ,qU

λ )

{
exp

{
a
(qU

λ )
n · X0 +

n

∑
k=1

b
(pU

λ ,qU
λ )

k

}}
, (46)

subject to the constraint (35). However, the corresponding result generally depends on the particular
choice of the initial population X0 ∈ N and on the observation time horizon n ∈ N. Hence, there is
in general no overall optimal choice of pU

λ , qU
λ without the incorporation of further goal-dependent

constraints such as limn→∞ BU
λ,X0,n = 0 in case of limn→∞ Hλ(PA,n||PH,n) = 0. By the way, mainly

because of the non-explicitness of the sequence
(

a
(qU

λ )
n

)

n∈N
(due to the generally not explicitly

solvable recursion (36)) and the discreteness of the constraint (35), this optimization problem seems
to be not straightforward to solve, anyway. The choice of parameters pU

λ , qU
λ for the upper bound

BU
λ,X0,n ≥ Hλ(PA,n||PH,n) can be made according to different, partially incompatible (“optimality-”

resp. “goodness-”) criteria and goals, such as:

42



Entropy 2020, 22, 874

(G1) the validity of BU
λ,X0,n < 1 simultaneously for all initial configurations X0 ∈ N, all observation

horizons n ∈ N and all λ ∈]0, 1[, which leads to a strict improvement of the general upper bound
Hλ(PA,n||PH,n) < 1 (cf. (9));

(G2) the determination of the long-term-limits limn→∞ Hλ(PA,n||PH,n) respectively limn→∞ BU
λ,X0,n

for all X0 ∈ N and all λ ∈]0, 1[; in particular, one would like to check whether
limn→∞ Hλ(PA,n||PH,n) = 0, which implies that the families of probability distributions
(PA,n)n∈N and (PH,n)n∈N are asymptotically distinguishable (entirely separated), cf. (25);

(G3) the determination of the time-asymptotical growth rates limn→∞
1
n log

(
Hλ(PA,n||PH,n)

)
resp.

limn→∞
1
n log

(
BU

λ,X0,n
)

for all X0 ∈ N and all λ ∈]0, 1[.

Further goals–with which we do not deal here for the sake of brevity–are for instance (i) a very
good tightness of the upper bound BU

λ,X0,n for n ≥ N for some fixed large N ∈ N, or (ii) the criterion
(G1) with fixed (rather than arbitrary) initial population size X0 ∈ N.

Let us briefly discuss the three Goals (G1) to (G3) and their challenges: due to Theorem 1, Goal

(G1) can only be achieved if the sequence
(

a
(qU

λ )
n

)

n∈N
is non-increasing, since otherwise, for each fixed

observation horizon n ∈ N there is a large enough initial population size X0 such that the upper bound

component B̃
(pU

λ ,qU
λ )

λ,X0,n becomes larger than 1, and thus BU
λ,X0,n = 1 (cf. (40)). Hence, Properties 1 (P1) and

(P2) imply that one should have qU
λ ≤ βλ. Then, the sequence

(
b
(pU

λ ,qU
λ )

n

)

n∈N
is also non-increasing.

However, since b
(pU

λ ,qU
λ )

n might be positive for some (even all) n ∈ N, the sum
(

∑n
k=1 b

(pU
λ ,qU

λ )

k

)

n∈N
is

not necessarily decreasing. Nevertheless, the restriction

qU
λ − βλ ≤ 0 and pU

λ − αλ ≤ 0, where at least one of the inequalities is strict, (47)

ensures that both sequences
(

a
(qU

λ )
n

)

n∈N
and

(
b
(pL

λ ,qU
λ )

n

)

n∈N
are nonpositive and decreasing, where at

least one sequence is strictly negative, implying that the sum
(

∑n
k=1 b

(pU
λ ,qU

λ )

k

)

n∈N
is strictly negative

for n ≥ 2 and strictly decreasing. To see this, suppose that (47) is satisfied with two strict inequalities.

Then,
(

a
(qU

λ )
n

)

n∈N
as well as

(
b
(pL

λ ,qU
λ )

n

)

n∈N
are strictly negative and strictly decreasing. If qU

λ = βλ

and pU
λ < αλ, we see from (P2) and (P6) that a

(qU
λ )

n ≡ 0 and that b
(pU

λ ,qU
λ )

n ≡ pU
λ − αλ < 0 (notice that

αλ = 0 is not possible in the current setup PSP\PSP,1 and for λ ∈]0, 1[). In the last case qU
λ < βλ and

pU
λ = αλ, from (P1) and (P5) it follows that

(
a
(qU

λ )
n

)

n∈N
is strictly negative and strictly decreasing,

as well as that b
(pU

λ ,qU
λ )

1 = 0 and
(

b
(pL

λ ,qU
λ )

n

)

n∈N
is strictly decreasing and strictly negative for n ≥ 2.

Thus, whenever (47) is satisfied, the sum
(

∑n
k=1 b

(pU
λ ,qU

λ )

k

)

n∈N
is strictly negative for n ≥ 2 and

strictly decreasing.

To achieve Goal (G2), we have to require that the sequence
(

a
(qU

λ )
n

)

n∈N
converges, which is the

case if either qU
λ ≤ βλ or βλ < qU

λ ≤ min{1, eβλ−1} (cf. Properties 1 (P1) to (P3)). From the upper bound

component B̃
(pU

λ ,qU
λ )

λ,X0,n (42) we conclude that Goal (G2) is met if the sequence
(

b
(pU

λ ,qU
λ )

n

)

n∈N
converges

to a negative limit, i.e., limn→∞ b
(pU

λ ,qU
λ )

n = pU
λ · ex

(qU
λ
)

0 − αλ < 0. Notice that this condition holds true

if (47) is satisfied: suppose that qU
λ < βλ, then x

(qU
λ )

0 < 0 and pU
λ · ex

(qU
λ
)

0 − αλ < pU
λ − αλ ≤ 0. On the

other hand, if pU
λ − αλ < 0, one obtains x

(qU
λ )

0 ≤ 0 leading to pU
λ · ex

(qU
λ
)

0 − αλ ≤ pU
λ − αλ < 0.
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The examination of Goal (G2) above enters into the discussion of Goal (G3): if the sequence(
a
(qU

λ )
n

)

n∈N
converges and limn→∞ BU

λ,X0,n = 0, then there holds

lim
n→∞

1
n

log
(

BU
λ,X0,n

)
= lim

n→∞

1
n

log
(

B̃
(pU

λ ,qU
λ )

λ,X0,n

)
= pU

λ · ex
(qU

λ
)

0 − αλ . (48)

For the case (βA, βH, αA, αH, λ) ∈ (PSP\PSP,1)×]0, 1[, let us now start with our comprehensive
investigations of the upper bounds, where we focus on fulfilling the condition (47) which tackles Goals
(G1) and (G2) simultaneously; then, the Goal (G3) can be achieved by (48). As indicated above, various
different parameter subcases can lead to different Hellinger-integral-upper-bound details, which we
work out in the following. For better transparency, we employ the following notations (where the first
four are just reminders of sets which were already introduced above)

PNI :=
{
(βA, βH, αA, αH) ∈ [0, ∞[4 : αA = αH = 0; βA > 0; βH > 0; βA 6= βH

}
,

PSP :=
{
(βA, βH, αA, αH) ∈ ]0, ∞[4 : (αA 6= αH) or (βA 6= βH) or both

}
,

P := PNI ∪ PSP,

PSP,1 :=
{
(βA, βH, αA, αH) ∈ PSP : αA 6= αH, βA 6= βH,

αA
βA

=
αH
βH

}
,

PSP,2 := { (βA, βH, αA, αH) ∈ PSP : αA = αH, βA 6= βH } ,

PSP,3 :=
{
(βA, βH, αA, αH) ∈ PSP : αA 6= αH, βA 6= βH,

αA
βA
6= αH

βH

}
= PSP,3a ∪ PSP,3b ∪ PSP,3c ,

PSP,3a :=
{
(βA, βH, αA, αH) ∈ PSP : αA 6= αH, βA 6= βH,

αA
βA
6= αH

βH
,

αA − αH
βH − βA

∈ ]−∞, 0[
}

,

PSP,3b :=
{
(βA, βH, αA, αH) ∈ PSP : αA 6= αH, βA 6= βH,

αA
βA
6= αH

βH
,

αA − αH
βH − βA

∈ ]0, ∞[\N
}

,

PSP,3c :=
{
(βA, βH, αA, αH) ∈ PSP : αA 6= αH, βA 6= βH,

αA
βA
6= αH

βH
,

αA − αH
βH − βA

∈ N
}

,

PSP,4 := { (βA, βH, αA, αH) ∈ PSP : αA 6= αH > 0, βA = βH } = PSP,4a ∪ PSP,4b ,

PSP,4a := { (βA, βH, αA, αH) ∈ PSP : αA 6= αH > 0, βA = βH ∈ ]0, 1[ } ,

PSP,4b := { (βA, βH, αA, αH) ∈ PSP : αA 6= αH > 0, βA = βH ∈ [1, ∞[ } ; (49)

notice that because of Lemma A1 and of the Properties 3 (P15) one gets on the domain ]0, ∞[ the
relation φλ(x) = 0 iff fA(x) = fH(x) iff x = x∗ := αH−αA

βA−βH
∈ ]0, ∞[.

3.7. Upper Bounds for the Cases (βA, βH, αA, αH, λ) ∈ PSP,2×]0, 1[

For this parameter constellation, one has φλ(0) = 0 and φ′λ(0) = 0 (cf. Properties 3 (P16),
(P17)). Thus, the only admissible intercept choice satisfying (47) is rU

λ = 0 = pU
λ − αλ

(
i.e., pU

λ =

pU (βA, βH, αA, αH, λ) = αλ = α > 0
)
, and the minimal admissible slope which implies (35) for all

x ∈ N0 is given by sU
λ = φλ(1)−φλ(0)

1−0 = qU
λ − βλ = a

(qU
λ )

1 < 0
(
i.e., qU

λ = qU (βA, βH, αA, αH, λ) =

(α + βA)λ(α + βH)1−λ − α > 0
)
. Analogously to the investigation for PSP,1 in the above-mentioned

Section 3.3, one can derive that
(

a
(qU

λ )
n

)

n∈N
is strictly negative, strictly decreasing, and converges to

x
(qU

λ )
0 ∈]− βλ, qU

λ − βλ[ as indicated in Properties 1 (P1). Moreover, in the same manner as for the case
PSP,1 this leads to
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Proposition 7. For all (βA, βH, αA, αH, λ) ∈ PSP,2×]0, 1[ and all initial population sizes X0 ∈ N there holds
with pU

λ = α, qU
λ = (α + βA)λ(α + βH)1−λ − α

(a) BU
λ,X0,1 = exp

{(
qU

λ − βλ

)
· X0

}
< 1,

(b) the sequence
(

BU
λ,X0,n

)
n∈N

of upper bounds for Hλ(PA,n||PH,n) given by

BU
λ,X0,n = exp

{
a
(qU

λ )
n · X0 +

n

∑
k=1

b
(pU

λ ,qU
λ )

k

}

is strictly decreasing,

(c) lim
n→∞

BU
λ,X0,n = 0 = lim

n→∞
Hλ(PA,n||PH,n) ,

(d) lim
n→∞

1
n

log BU
λ,X0,n = pU

λ · ex
(qU

λ
)

0 − αλ = α

(
ex

(qU
λ
)

0 − 1

)
< 0 .

(e) the map X0 7→ BU
λ,X0,n is strictly decreasing.

3.8. Upper Bounds for the Cases (βA, βH, αA, αH, λ) ∈ PSP,3a×]0, 1[

From Properties 3 (P16) one gets φλ(0) < 0, whereas φ′λ(0) can assume any sign, take e.g.,
the parameters (βA, βH, αA, αH, λ) = (1.8, 0.9, 2.7, 0.7, 0.5) for φ′λ(0) < 0, (βA, βH, αA, αH, λ) =

(1.8, 0.9, 2.8, 0.7, 0.5) for φ′λ(0) = 0 and (βA, βH, αA, αH, λ) = (1.8, 0.9, 2.9, 0.7, 0.5) for φ′λ(0) > 0; within
our running-example epidemiological context of Section 2.3, this corresponds to a “nearly dangerous”
infectious-disease-transmission situation (H) (with nearly critical reproduction number βH = 0.9 and
importation mean of αH = 0.7), whereas (A) describes a “dangerous” situation (with supercritical
βA = 1.8 and αA = 2.7, 2.8, 2.9). However, in all three subcases there holds maxx∈N0 φλ(x) ≤
maxx∈[0,∞[ φλ(x) < 0. Thus, there clearly exist parameters pU

λ = pU (βA, βH, αA, αH, λ) , qU
λ =

qU (βA, βH, αA, αH, λ) with pU
λ ∈

[
αλ
Aα1−λ
H , αλ

[
and qU

λ ∈
[
βλ
Aβ1−λ
H , βλ

[
(implying (47)) such that (35)

is satisfied. As explained above, we get the following

Proposition 8. For all (βA, βH, αA, αH, λ) ∈ PSP,3a×]0, 1[ there exist parameters pU
λ , qU

λ which satisfy
pU

λ ∈
[
αλ
Aα1−λ
H , αλ

[
and qU

λ ∈
[
βλ
Aβ1−λ
H , βλ

[
as well as (35) for all x ∈ N0, and for all such pairs (pU

λ , qU
λ )

and all initial population sizes X0 ∈ N there holds

(a) BU
λ,X0,1 = exp

{(
qU

λ − βλ

)
· X0 + pU

λ − αλ

}
< 1,

(b) the sequence
(

BU
λ,X0,n

)
n∈N

of upper bounds for Hλ(PA,n||PH,n) given by

BU
λ,X0,n = exp

{
a
(qU

λ )
n X0 +

n

∑
k=1

b
(pU

λ ,qU
λ )

k

}

is strictly decreasing,

(c) lim
n→∞

BU
λ,X0,n = 0 = lim

n→∞
Hλ(PA,n||PH,n) ,

(d) lim
n→∞

1
n

log BU
λ,X0,n = pU

λ · ex
(qU

λ
)

0 − αλ < 0 ,

(e) the map X0 7→ BU
λ,X0,n is strictly decreasing.

Notice that all parts of this proposition also hold true for parameter pairs (pU
λ , qU

λ ) satisfying (35)
and additionally either pU

λ = αλ, qU
λ < βλ or pU

λ < αλ, qU
λ = βλ.

Let us briefly illuminate the above-mentioned possible parameter choices, where we begin with the
case of φ′λ(0) ≤ 0, which corresponds to λβA (αA/αH)

λ−1 + (1− λ)βH (αA/αH)
λ − βλ ≤ 0 (cf. (P17));

then, the function φλ(·) is strictly negative, strictly decreasing, and–due to (P19)–strictly concave (and
thus, the assumption αH−αA

βA−βH
< 0 is superfluous here). One pragmatic but yet reasonable parameter
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choice is the following: take any intercept pU
λ ∈ [αλ

Aα1−λ
H , αλ] such that (pU

λ − αλ) + 2(φλ(1)− (pU
λ −

αλ)) ≥ φλ(2)
(

i.e., 2 (αA + βA)
λ (αH + βH)

1−λ − pU
λ + αλ ≥ (αA + 2βA)

λ (αH + 2βH)
1−λ

)
and

qU
λ := φλ(1) − (pU

λ − αλ) + βλ = (αA + βA)
λ (αH + βH)

1−λ − pU
λ , which corresponds to a linear

function φU
λ which is (i) nonpositive on N0 and strictly negative on N, and (ii) larger than or

equal to φλ on N0, strictly larger than φλ on N\{1, 2}, and equal to φλ at the point x = 1 (“discrete
tangent or secant line through x = 1”). One can easily see that (due to the restriction (34)) not all
pU

λ ∈ [αλ
Aα1−λ
H , αλ] might qualify for the current purpose. For the particular choice pU

λ = αλ
Aα1−λ
H and

qU
λ = (αA + βA)

λ (αH + βH)
1−λ − αλ

Aα1−λ
H one obtains rU

λ = pU
λ − αλ = b

(pU
λ ,qU

λ )
1 < 0 (cf. Lemma A1)

and sU
λ = qU

λ − βλ = φλ(1)− φλ(0) = a
(qU

λ )
1 < 0 (secant line through φλ(0) and φλ(1)).

For the remaining case φ′λ(0) > 0, which corresponds to λβA (αA/αH)
λ−1 + (1 −

λ)βH (αA/αH)
λ − βλ > 0, the function φλ(·) is strictly negative, strictly concave and hump-shaped

(cf. (P18)). For the derivation of the parameter choices, we employ xmax := argmaxx∈]0,∞[φλ(x) which
is the unique solution of

λβA

[(
fA(x)
fH(x)

)λ−1

− 1

]
+ (1− λ)βH

[(
fA(x)
fH(x)

)λ

− 1

]
= 0 , x ∈]0, ∞[ , (50)

(cf. (P17), (P19)); notice that x = x∗ := αH−αA
βA−βH

∈ ]0, ∞[ formally satisfies the Equation (50) but does not
qualify because of the current restriction x∗ < 0.

Let us first inspect the case φλ(bxmaxc) > φλ(bxmaxc+ 1), where bxc denotes the integer part of x.
Consider the subcase φλ(bxmaxc) + bxmaxc (φλ(bxmaxc)− φλ(bxmaxc+ 1)) ≤ 0, which means that the
secant line through φλ(bxmaxc) and φλ(bxmaxc+ 1) possesses a non-positive intercept. In this situation

it is reasonable to choose as intercept any pU
λ − αλ = b

(pU
λ ,qU

λ )
1 = rU

λ ∈ [φλ(bxmaxc), φλ(bxmaxc) +
bxmaxc (φλ(bxmaxc)− φλ(bxmaxc+ 1))], and as corresponding slope qU

λ − αλ = a
(qU

λ )
1 = sU

λ =
φλ(bxmaxc)−rU

λ
(bxmaxc)−0 ≤ 0. A larger intercept would lead to a linear function φU

λ for which (35) is not
valid at bxmaxc + 1. In the other subcase φλ(bxmaxc) + xmax (φλ(bxmaxc)− φλ(bxmaxc+ 1)) > 0,

one can choose any intercept pU
λ − αλ = b

(pU
λ ,qU

λ )
1 = rU

λ ∈ [φλ(bxmaxc), 0] and as corresponding slope

qU
λ − αλ = a

(qU
λ )

1 = sU
λ =

φλ(bxmaxc)−rU
λ

(bxmaxc)−0 ≤ 0 (notice that the corresponding line φU
λ is on ]bxmaxc, ∞[

strictly larger than the secant line through φλ(bxmaxc) and φλ(bxmaxc+ 1)).
If φλ(bxmaxc) ≤ φλ(bxmaxc + 1), one can proceed as above by substituting the crucial pair of

points (bxmaxc, bxmaxc+ 1) with (bxmaxc+ 1, bxmaxc+ 2) and examining the analogous two subcases.

3.9. Upper Bounds for the Cases (βA, βH, αA, αH, λ) ∈ PSP,3b×]0, 1[

The only difference to the preceding Section 3.8 is that–due to Properties 3 (P15)–the maximum
value of φλ(·) now achieves 0, at the positive non-integer point xmax = x∗ = αH−αA

βA−βH
∈

]0, ∞[\N (take e.g., (βA, βH, αA, αH, λ) = (1.8, 0.9, 1.1, 3.0, 0.5) as an example, which within our
running-example epidemiological context of Section 2.3 corresponds to a “nearly dangerous”
infectious-disease-transmission situation (H) (with nearly critical reproduction number βH = 0.9
and importation mean of αH = 3), whereas (A) describes a “dangerous” situation (with supercritical
βA = 1.8 and αA = 1.1)); this implies that φλ(x) < 0 for all x on the relevant subdomain N0. Due to
(P16), (P17) and (P19) one gets automatically λβA (αA/αH)

λ−1 + (1− λ)βH (αA/αH)
λ− βλ > 0 for all

λ ∈]0, 1[. Analogously to Section 3.8, there exist parameter pU
λ ∈ [αλ

Aα1−λ
H , αλ] and qU

λ ∈ [βλ
Aβ1−λ
H , βλ]

such that (47) and (35) are satisfied. Thus, all the assertions (a) to (e) of Proposition 8 also hold true for
the current parameter constellations.
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3.10. Upper Bounds for the Cases (βA, βH, αA, αH, λ) ∈ PSP,3c×]0, 1[

The only difference to the preceding Section 3.9 is that the maximum value of φλ(·) now achieves
0 at the integer point xmax = x∗ = αH−αA

βA−βH
∈ N (take e.g., (βA, βH, αA, αH, λ) = (1.8, 0.9, 1.2, 3.0, 0.5) as

an example). Accordingly, there do not exist parameters pU
λ , qU

λ , such that (35) and (47) are satisfied

simultaneously. The only parameter pair that ensures exp
{

a
(qU

λ )
n · X0 + ∑n

k=1 b
(pU

λ ,qU
λ )

k

}
≤ 1 for all

n ∈ N and all X0 ∈ N without further investigations, leads to the choices pU
λ = αλ as well as

qU
λ = βλ. Consequently, BU

λ,X0,n ≡ 1, which coincides with the general upper bound (9), but violates
the above-mentioned desired Goal (G1). However, there might exist parameters pU

λ < αλ, qU
λ > βλ or

pU
λ > αλ, qU

λ < βλ, such that at least the parts (c) and (d) of Proposition 8 are satisfied. Nevertheless,
by using a conceptually different method we can prove

Hλ(PA,n||PH,n) < 1 ∀ n ∈ N\{1} as well as the convergence lim
n→∞

Hλ(PA,n||PH,n) = 0 (51)

which will be used for the study of complete asymptotical distinguishability (entire separation) below.
This proof is provided in Appendix A.1.

3.11. Upper Bounds for the Cases (βA, βH, αA, αH, λ) ∈ PSP,4a×]0, 1[

This setup and the remaining setup (βA, βH, αA, αH, λ) ∈ PSP,4b×]0, 1[ (see the next Section 3.12)
are the only constellations where φλ(·) is strictly negative and strictly increasing, with limx→∞ φλ(x) =
limx→∞ φ′λ(x) = 0, leading to the choices pU

λ = αλ as well as qU
λ = βλ = β under the restriction that

exp
{

a
(qU

λ )
n · X0 + ∑n

k=1 b
(pU

λ ,qU
λ )

k

}
≤ 1 for all n ∈ N and all X0 ∈ N. Consequently, one has BU

λ,X0,n ≡ 1,
which is consistent with the general upper bound (9) but violates the above-mentioned desired Goal
(G1). Unfortunately, the proof method of (51) (cf. Appendix A.1) can’t be carried over to the current
setup. The following proposition states two of the above-mentioned desired assertions which can be
verified by a completely different proof method, which is also given in Appendix A.1.

Proposition 9. For all (βA, βH, αA, αH, λ) ∈ PSP,4a×]0, 1[ there exist parameters pU
λ < αλ, 1 > qU

λ >

βλ = β such that (35) is satisfied for all x ∈ [0, ∞[ and such that for all initial population sizes X0 ∈ N the
parts (c) and (d) of Proposition 8 hold true.

3.12. Upper Bounds for the Cases (βA, βH, αA, αH, λ) ∈ PSP,4b×]0, 1[

The assertions preceding Proposition 9 remain valid. However, any linear upper bound of the
function φλ(·) on the domain N0 possesses the slope qU

λ − βλ ≥ 0. If qU
λ = βλ, then the intercept is

pU
λ − αλ = 0 leading to BU

λ,X0,n ≡ 1 and thus Goal (G1) is violated. If we use a slope qU
λ − βλ > 0,

then both the sequences
(

a
(qU

λ )
n

)

n∈N
and

(
b
(pU

λ ,qU
λ )

n

)

n∈N
are strictly increasing and diverge to ∞.

This comes from Properties 1 (P3b) and (P7b) since qU
λ > βλ = β ≥ 1. Altogether, this implies that the

corresponding upper bound component B̃
(pU

λ ,qU
λ )

λ,X0,n (cf. (42)) diverges to ∞ as well. This leads to

Proposition 10. For all (βA, βH, αA, αH, λ) ∈ PSP,4b×]0, 1[ and all initial population sizes X0 ∈ N there
do not exist parameters pU

λ ≥ 0, qU
λ ≥ 0 such that (35) is satisfied and such that the parts (c) and (d) of

Proposition 8 hold true.

3.13. Concluding Remarks on Alternative Upper Bounds for all Cases (βA, βH, αA, αH, λ) ∈
(PSP\PSP,1)×]0, 1[

As mentioned earlier on, starting from Section 3.6 we have principally focused on constructing
upper bounds BU

λ,X0,n of the Hellinger integrals, starting from pU
λ , qU

λ which fulfill (35) as well as further
constraints depending on the Goals (G1) and (G2). For the setups in the Sections 3.7–3.9, we have
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proved the existence of special parameter choices pU
λ , qU

λ which were consistent with (G1) and (G2).
Furthermore, for the constellation in the Section 3.11 we have found parameters such that at least
(G2) is satisfied. In contrast, for the setup of Section 3.12 we have not found any choices which are
consistent with (G1) and (G2), leading to the “cut-off bound” BU

λ,X0,n ≡ 1 which gives no improvement
over the generally valid upper bound (9).

In the following, we present some alternative choices of pU
λ , qU

λ which–depending on the parameter
constellation (βA, βH, αA, αH, λ) ∈ (PSP\PSP,1)×]0, 1[–may or may not lead to upper bounds BU

λ,X0,n
which are consistent with Goal (G1) or with (G2) (and which are maybe weaker or better than resp.
incomparable with the previous upper bounds when dealing with some relaxations of (G1), such as
e.g., Hλ(PA,n||PH,n) < 1 for all but finitely many n ∈ N).

As a first alternative choice for a linear upper bound of φλ(·) (cf. (35)) one could use the
asymptote φ̃λ(·) (cf. Properties 3 (P20)) with the parameters pU

λ := p̃λ = λαA (βA/βH)
λ−1 + (1−

λ)αH (βA/βH)
λ and qU

λ := q̃λ = βλ
Aβ1−λ
H . Another important linear upper bound of φλ(·) is the

tangent line φtan
λ,y(·) on φλ(·) at an arbitrarily fixed point y ∈ [0, ∞[, which amounts to

φtan
λ,y(x) := rtan

λ,y + stan
λ,y · x :=

(
ptan

λ,y − αλ

)
+
(

qtan
λ,y − βλ

)
· x :=

(
φλ(y)− y ·φ′λ(y)

)
+ φ′λ(y) · x , (52)

where φ′λ(·) is given by (P17). Notice that this upper bound is for y ∈]0, ∞[\N “not tight” in the sense
that φtan

λ,y(·) does not hit the function φλ(·) on N0 (where the generation sizes “live”); moreover, φtan
λ,y(x)

might take on strictly positive values for large enough points x which is counter-productive for Goal
(G1). Another alternative choice of a linear upper bound for φλ(·), which in contrast to the tangent
line is “tight” (but not necessarily avoiding the strict positivity), is the secant line φsec

λ,k(·) across its
arguments k and k + 1, given by

φsec
λ,k(x) := rsec

λ,k + ssec
λ,k · x :=

(
psec

λ,k − αλ

)
+
(

qsec
λ,k − βλ

)
· x

:=
[
φλ(k)− k ·

(
φλ(k + 1)− φλ(k)

)]
+
(

φλ(k + 1)− φλ(k)
)
· x . (53)

Another alternative choice is the horizontal line

φhor
λ (x) ≡ max

{
φλ(y), y ∈ N0

}
. (54)

For pU
λ ∈

{
p̃λ , ptan

λ,y , psec
λ,y

}
and qU

λ ∈
{

qtan
λ,y , qsec

λ,y

}
it is possible that in some parameter cases

(βA, βH, αA, αH) either the intercept rU
λ = pU

λ − αλ is strictly larger than zero or the slope sU
λ = qU

λ − βλ

is strictly larger than zero. Thus, it can happen that B̃
(pU

λ ,qU
λ )

λ,X0,n > 1 for some (and even for all) n ∈ N,
such that the corresponding upper bound BU

λ,X0,n for the Hellinger integral Hλ(PA,n||PH,n) amounts to

the cut-off at 1. However, due to Properties 1 (P5) and (P7a), the sequence
(

B̃
(pU

λ ,qU
λ )

λ,X0,n

)

n∈N
may become

smaller than 1 and may finally converge to zero. Due to Properties 2 (P14), this upper bound can even
be tighter (smaller) than those bounds derived from parameters pU

λ , qU
λ fulfilling (47).

As far as our desired Hellinger integral bounds are concerned, in the setup of Section 3.11 —where
limy→∞ φtan

λ,y(·) ≡ 0–for the proof of Proposition 9 in Appendix A.1 we shall employ the mappings
y 7→ φtan

λ,y resp. y 7→ ptan
λ,y resp. y 7→ qtan

λ,y. These will also be used for the proof of the below-mentioned
Theorem 4.

3.14. Intermezzo 1: Application to Asymptotical Distinguishability

The above-mentioned investigations can be applied to the context of Section 2.6 on asymptotical
distinguishability. Indeed, with the help of the Definitions 1 and 2 as well as the equivalence relations
(25) and (26) we obtain the following
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Corollary 1.

(a) For all (βA, βH, αA, αH) ∈ PSP\PSP,4b and all initial population sizes X0 ∈ N, the corresponding
sequences (PA,n)n∈N0 and (PH,n)n∈N0 are entirely separated (completely asymptotically distinguishable).

(b) For all (βA, βH, αA, αH) ∈ PNI with βA ≤ 1 and all initial population sizes X0 ∈ N, the sequence
(PA,n)n∈N0 is contiguous to (PH,n)n∈N0 .

(c) For all (βA, βH, αA, αH) ∈ PNI with βA > 1 and all initial population sizes X0 ∈ N, the sequence
(PA,n)n∈N0 is neither contiguous to nor entirely separated to (PH,n)n∈N0 .

The proof of Corollary 1 will be given in Appendix A.1.

Remark 3.

(a) Assertion (c) of Corollary 1 contrasts the case of Gaussian processes with independent increments where
one gets either entire separation or mutual contiguity (see e.g., Liese & Vajda [1]).

(b) By putting Corollary 1(b) and (c) together, we obtain for different “criticality pairs” in the non-immigration
case PNI the following asymptotical distinguishability types:
(PA,n) / .(PH,n) if βA ≤ 1, βH ≤ 1; (PA,n) / . (PH,n) if βA ≤ 1, βH > 1;
(PA,n) / . (PH,n) if βA > 1, βH ≤ 1; (PA,n) / . (PH,n) and (PA,n)4(PH,n) if βA > 1, βH > 1;
in particular, for PNI the sequences (PA,n)n∈N0 and (PH,n)n∈N0 are not completely asymptotically
inseparable (indistinguishable).

(c) In the light of the above-mentioned characterizations of contiguity resp. entire separation by means of
Hellinger integral limits, the finite-time-horizon results on Hellinger integrals given in the “λ ∈]0, 1[
parts” of Theorem 1, the Sections 3.3–3.13 and also in the below-mentioned Section 6 can loosely be
interpreted as “finite-sample (rather than asymptotical) distinguishability” assertions.

3.15. Intermezzo 2: Application to Decision Making under Uncertainty

3.15.1. Bayesian Decision Making

The above-mentioned investigations can be applied to the context of Section 2.5 on
dichotomous Bayesian decision making on the space of all possible path scenarios (path space) of
Poissonian Galton-Watson processes without/with immigration GW(I) (e.g., in combination with
our running-example epidemiological context of Section 2.3). More detailed, for the minimal mean
decision loss (Bayes risk)Rn defined by (18) we can derive upper (respectively lower) bounds by using
(19) respectively (20) together with the exact values or the upper (respectively lower) bounds of the
Hellinger integrals Hλ(PA,n||PH,n) derived in the “λ ∈]0, 1[ parts” of Theorem 1, the Sections 3.3–3.13
(and also in the below-mentioned Section 6); instead of providing the corresponding outcoming
formulas–which is merely repetitive–we give the illustrative

Example 1. Based on a sample path observation Xn := {X` : ` = 1, ..., n} of a GWI, which is either governed
by a hypothesis law PH or an alternative law PA, we want to make a dichotomous optimal Bayesian decision
described in Section 2.5, namely, decide between an action dH “associated with” PH and an action dA “associated
with” PA, with pregiven loss function (16) involving constants LA > 0, LH > 0 which e.g., arise as bounds
from quantities in worst-case scenarios.

For this, let us exemplarily deal with initial population X0 = 5 as well as parameter setup
(βA, βH, αA, αH) = (1.2, 0.9, 4, 3) ∈ PSP,1; within our running-example epidemiological context of Section 2.3,
this corresponds e.g., to a setup where one is encountered with a novel infectious disease (such as COVID-19)
of non-negligible fatality rate, and (A) reflects a “potentially dangerous” infectious-disease-transmission
situation (with supercritical reproduction number βA = 1.2 and importation mean of αA = 4, for weekly
appearing new incidence-generations) whereas (H) describes a “milder” situation (with subcritical βH = 0.9
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and αH = 3). Moreover, let dH and dA reflect two possible sets of interventions (control measures) in
the course of pandemic risk management, with respective “worst-case type” decision losses LA = 600 and
LH = 300 (e.g., in units of billion Euros or U.S. Dollars). Additionally we assume the prior probabilities
π = Pr(H) = 1 − Pr(A) = 0.5, which results in the prior-loss constants LA = 300 and LH = 150.
In order to obtain bounds for the corresponding minimal mean decision loss (Bayes Risk) Rn defined in (18)
we can employ the general Stummer-Vajda bounds (cf. [15]) (19) and (20) in terms of the Hellinger integral
Hλ(PA,n||PH,n) (with arbitrary λ ∈]0, 1[), and combine this with the appropriate detailed results on the latter
from the preceding subsections. To demonstrate this, let us choose λ = 0.5 (for which H1/2(PA,n||PH,n) can
be interpreted as a multiple of the Bhattacharyya coefficient between the two competing GWI) respectively
λ = 0.9, leading to the parameters pE

0.5 = 3.464, qE
0.5 = 1.039 respectively pE

0.9 = 3.887, qE
0.9 = 1.166

(cf. (33)). Combining (19) and (20) with Theorem 1 (a)– which provides us with the exact recursive values of

Hλ(PA,n||PH,n) in terms of the sequence a
(qE

λ)
n (cf. (36))– we obtain for λ = 0.5 the bounds

Rn ≤ RU
n := 2.121 · 102 · exp

{
5 · a(1.039)

n +
10
3
·

n

∑
k=1

a(1.039)
k

}
,

Rn ≥ RL
n := 100 · exp

{
10 · a(1.039)

n +
20
3
·

n

∑
k=1

a(1.039)
k

}
,

whereas for λ = 0.9 we get

Rn ≤ RU
n := 2.799 · 102 · exp

{
5 · a(1.166)

n +
10
3
·

n

∑
k=1

a(1.166)
k

}
,

Rn ≥ RL
n := 3.902 · exp

{
50 · a(1.166)

n +
100
3
·

n

∑
k=1

a(1.166)
k

}
.

Figure 1 illustrates the lower (orange resp. cyan) and upper (red resp. blue) boundsRL
n resp. RU

n of the Bayes
RiskRn employing λ = 0.5 resp. λ = 0.9 on both a unit scale (left graph) and a logarithmic scale (right graph).
The lightgrey/grey/black curves correspond to the (18)-based empirical evaluation of the Bayes risk sequence(
Rsample

n
)

n=1,...,50 from three independent Monte Carlo simulations of 10000 GWI sample paths (each) up to time
horizon 50.
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Figure 1. Bayes risk bounds (using λ = 0.5 (red/orange) resp. λ = 0.9 (blue/cyan)) and Bayes
risk simulations (lightgrey/grey/black) on a unit (left graph) and logarithmic (right graph) scale in
the parameter setup (βA, βH, αA, αH) = (1.2, 0.9, 4, 3) ∈ PSP,1, with initial population X0 = 5 and
prior-loss constants LA = 300 and LH = 150.
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3.15.2. Neyman-Pearson Testing

By combining (23) with the exact values resp. upper bounds of the Hellinger integrals
Hλ (PA,n||PH,n) from the preceding subsections, we obtain for our context of GW(I) with Poisson
offspring and Poisson immigration (including the non-immigration case) some upper bounds of the
minimal type II error probability Eς (PA,n||PH,n) in the class of the tests for which the type I error
probability is at most ς ∈]0, 1[, which can also be immediately rewritten as lower bounds for the power
1− Eς (PA,n||PH,n) of a most powerful test at level ς. As for the Bayesian context of Section 3.15.1,
instead of providing the–merely repetitive–outcoming formulas for the bounds of Eς (PA,n||PH,n) we
give the illustrative

Example 2. Consider the Figures 2 and 3 which deal with initial population X0 = 5 and the parameter
setup (βA, βH, αA, αH) = (0.3, 1.2, 1, 4) ∈ PSP,1; within our running-example epidemiological context of
Section 2.3, this corresponds to a “potentially dangerous” infectious-disease-transmission situation (H) (with
supercritical reproduction number βH = 1.2 and importation mean of αH = 4), whereas (A) describes a “very
mild” situation (with “low” subcritical βA = 0.3 and αA = 1). Figure 2 shows the lower and upper bounds
of Eς (PA,n||PH,n) with ς = 0.05, evaluated from the Formulas (23) and (24), together with the exact values
of the Hellinger integral Hλ (PA,n||PH,n), cf. Theorem 1 (recall that we are in the setup PSP,1) on both a unit
scale (left graph) and a logarithmic scale (right graph). The orange resp. red resp. purple curves correspond to
the outcoming upper bounds EU

n := EU
n (PA,n||PH,n) (cf. (23)) with parameters λ = 0.3 resp. λ = 0.5 resp.

λ = 0.7. The green resp. cyan resp. blue curves correspond to the lower bounds E L
n := E L

n (PA,n||PH,n) (cf. (24))
with parameters λ = 2 resp. λ = 1.5 resp. λ = 1.1. Notice the different λ-ranges in (23) and (24). In contrast,
Figure 3 compares the lower bound E L

n (for fixed λ = 1.1) with the upper bound EU
n (for fixed λ = 0.5) of the

minimal type II error probability Eς(PA,n||PH,n) for different levels ς = 0.1 (orange for the lower and cyan for
the upper bound), ς = 0.05 (green and magenta) and ς = 0.01 (blue and purple) on both a unit scale (left graph)
and a logarithmic scale (right graph).
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Figure 2. Different lower bounds E L
n
(
using λ ∈ {1.1, 1.5, 2}

)
and upper bounds EU

n
(
using λ ∈

{0.3, 0.5, 0.7}
)

of the minimal type II error probability Eς (PA,n||PH,n) for fixed level ς = 0.05 in the
parameter setup (βA, βH, αA, αH) = (0.3, 1.2, 1, 4) ∈ PSP,1 together with initial population X0 = 5 on
both a unit scale (left graph) and a logarithmic scale (right graph).

3.16. Goals for Lower Bounds for the Cases (βA, βH, αA, αH, λ) ∈ (PSP\PSP,1)× (R\[0, 1])

Recall from (49) the setPSP :=
{
(βA, βH, αA, αH) ∈ ]0, ∞[4 : (αA 6= αH) or (βA 6= βH) or both

}

and the “equal-fraction-case” setPSP,1 :=
{
(βA, βH, αA, αH) ∈ PSP : αA 6= αH, βA 6= βH, αA

βA
= αH

βH

}
,

where for the latter we have derived in Theorem 1(a) and in Proposition 5 the exact recursive values for
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the time-behaviour of the Hellinger integrals Hλ(PA,1||PH,1) of order λ ∈ R\[0, 1]. Moreover, recall that
for the case (βA, βH, αA, αH, λ) ∈ (PSP\PSP,1)×]0, 1[ we have obtained in the Sections 3.4 and 3.5 some
“optimal” linear lower bounds φL

λ(·) for the strictly concave function φλ(x) := φ(x, βA, βH, αA, αH, λ)

on the domain x ∈ [0, ∞[; due to the monotonicity Properties 2 (P10) to (P12) of the sequences(
a
(qL

λ)
n

)

n∈N
and

(
b
(pL

λ ,qL
λ)

n

)

n∈N
, these bounds have led to the “optimal” recursive lower bound BL

λ,X0,n

of the Hellinger integral Hλ(PA,n||PH,n) in (40) of Theorem 1(b)).
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Figure 3. The lower bound E L
n (using λ = 1.1) and the upper bound EU

n (using λ = 0.5) of the minimal
type II error probability Eς (PA,n||PH,n) for different levels ς ∈ {0.01, 0.05, 0.1} in the parameter setup
(βA, βH, αA, αH) = (0.3, 1.2, 1, 4) ∈ PSP,1 together with initial population X0 = 5 on both a unit scale
(left graph) and a logarithmic scale (right graph).

In contrast, the strict convexity of the function φλ(·) in the case (βA, βH, αA, αH, λ) ∈ (PSP\PSP,1)×
(R\[0, 1]) implies that we cannot maximize both parameters pL

λ, qL
λ ∈ R simultaneously subject to

the constraint (35). This effect carries over to the lower bounds BL
λ,X0,n of the Hellinger integrals

Hλ(PA,n||PH,n) (cf. (41)); in general, these bounds cannot be maximized simultaneously for all initial
population sizes X0 ∈ N and all observation horizons n ∈ N.

Analogously to (46), one way to obtain “good” recursive lower bounds for Hλ(PA,n||PH,n) from
(41) in Theorem 1 (b) is to solve the optimization problem,

(
pL

λ, qL
λ

)
:= arg max

(pL
λ ,qL

λ)∈R2

{
exp

{
a
(qL

λ)
n · X0 +

n

∑
k=1

b
(pL

λ ,qL
λ)

k

}}
such that (35) is satisfied, (55)

for each fixed initial population size X0 ∈ N and observation horizon n ∈ N. But due to
the same reasons as explained right after (46), the optimization problem (55) seems to be not
straightforward to solve explicitly. In a congeneric way as in the discussion of the upper bounds for
the case λ ∈]0, 1[ above, we now have to look for suitable parameters pL

λ, qL
λ for the lower bound

BL
λ,X0,n ≤ Hλ(PA,n||PH,n) that fulfill (35) and that guarantee certain reasonable criteria and goals;

these are similar to the goals (G1) to (G3) from Section 3.6, and are therefore supplemented by an
additional “ ′ ”:

(G1′) the validity of BL
λ,X0,n > 1 simultaneously for all initial configurations X0 ∈ N, all observation

horizons n ∈ N and all λ ∈ R\[0, 1], which leads to a strict improvement of the general upper
bound Hλ(PA,n||PH,n) > 1 (cf. (11));
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(G2′) the determination of the long-term-limits limn→∞ Hλ(PA,n||PH,n) respectively limn→∞ BL
λ,X0,n

for all X0 ∈ N and all λ ∈ R\[0, 1]; in particular, one would like to check whether
limn→∞ Hλ(PA,n||PH,n) = ∞;

(G3′) the determination of the time-asymptotical growth rates limn→∞
1
n log

(
Hλ(PA,n||PH,n)

)
resp.

limn→∞
1
n log

(
BL

λ,X0,n
)

for all X0 ∈ N and all λ ∈ R\[0, 1].

In the following, let us briefly discuss how these three goals can be achieved in principle, where we
confine ourselves to parameters pL

λ, qL
λ which–in addition to (35)–fulfill the requirement

{
qL

λ ≥ max{0, βλ} ∧ pL
λ > max{0, αλ}

}
∨

{
qL

λ > max{0, βλ} ∧ pL
λ ≥ max{0, αλ}

}
, (56)

where ∧ is the logical “AND” and ∨ the logical “OR” operator. This is sufficient to tackle all three
Goals (G1′) to (G3′). To see this, assume that pL

λ, qL
λ satisfy (35). Let us begin with the two “extremal”

cases in (56), i.e., with (i) qL
λ = max{0, βλ}, pL

λ > max{0, αλ}, respectively (ii) qL
λ > max{0, βλ}, pL

λ =

max{0, αλ}.
Suppose in the first extremal case (i) that βλ ≤ 0. Then, qL

λ = 0 and Properties 1 (P4) implies that

a
(qL

λ)
n = −βλ ≥ 0 and hence b

(pL
λ ,qL

λ)
n = pL

λe−βλ − αλ ≥ pL
λ − αλ > 0 for all n ∈ N. This enters into (41) as

follows: the Hellinger integral lower bound becomes BL
λ,X0,n ≥ B̃

(pL
λ ,qL

λ)
λ,X0,n = exp{−βλ · X0 + (pL

λe−βλ −
αλ) · n} > 1. Furthermore, one clearly has limn→∞ BL

λ,X0,n = ∞ as well as limn→∞
1
n log

(
BL

λ,X0,n

)
=

pL
λe−βλ − αλ > 0. Assume now that βλ > 0. Then, qL

λ = βλ > 0, a
(qL

λ)
n = 0 (cf. (P2)), b

(pL
λ ,qL

λ)
n =

pL
λ − αλ > 0 and thus BL

λ,X0,n = exp{(pL
λ − αλ) · n} > 1 for all n ∈ N. Furthermore, one gets

limn→∞ BL
λ,X0,n = ∞ as well as limn→∞

1
n log

(
BL

λ,X0,n

)
= pL

λ − αλ > 0.

Let us consider the other above-mentioned extremal case (ii). Suppose that qL
λ > max{0, βλ}

together with qL
λ > min{1, eβλ−1} which implies that the sequence

(
a
(qL

λ)
n

)

n∈N
is strictly positive,

strictly increasing and grows to infinity faster than exponentially, cf. (P3b). Hence, BL
λ,X0,n ≥

exp{a(q
L
λ)

n · X0} > 1, limn→∞ BL
λ,X0,n = ∞ as well as limn→∞

1
n log

(
BL

λ,X0,n

)
= ∞. If max{0, βλ} <

qL
λ ≤ min{1, eβλ−1}, then

(
a
(qL

λ)
n

)

n∈N
is strictly positive, strictly increasing and converges to

x(qλ)
0 ∈]0,− log(qL

λ)] (cf. (P3a)). This carries over to the sequence
(

b
(pL

λ ,qL
λ)

n

)

n∈N
: one gets b

(pL
λ ,qL

λ)
1 =

pL
λ − αλ ≥ 0 and b

(pL
λ ,qL

λ)
n > 0 for all n ≥ 2. Furthermore, b

(pL
λ ,qL

λ)
n is strictly increasing and converges

to pL
λ · ex

(qL
λ
)

0 − αλ > 0, leading to BL
λ,X0,n > 1 for all n ∈ N, to limn→∞ BL

λ,X0,n = ∞ as well as to

limn→∞
1
n log

(
BL

λ,X0,n

)
= pL

λ · ex
(qL

λ
)

0 − αλ > 0.

It remains to look at the cases where pL
λ, qL

λ satisfy (35), and (56) with two strict inequalities. For
this situation, one gets

•
(

a
(qL

λ)
n

)

n∈N
is strictly positive, strictly increasing and–iff qL

λ ≤ min{1, eβλ−1}–convergent
(
namely

to the smallest positive solution x
(qL

λ)
0 ∈]0,− log(qL

λ)] of (44)
)
, cf. (P3);

•
(

b
(pL

λ ,qL
λ)

n

)

n∈N
is strictly increasing, strictly positive

(
since b

(pL
λ ,qL

λ)
1 = pL

λ − αλ > 0
)

and–iff qL
λ ≤

min{1, eβλ−1}–convergent
(
namely to pL

λex
(qL

λ
)

0 −αλ ∈ [pL
λ − αλ, pL

λ/qL
λ − αλ]

)
, cf (P7).

Hence, under the assumptions (35) and
(

pL
λ > max{0, αλ}

)
∧
(
qL

λ > max{0, βλ}
)

the
corresponding lower bounds BL

λ,X0,n of the Hellinger integral Hλ(PA,n||PH,n) fulfill for all X0 ∈ N

• BL
λ,X0,n > 1 for all n ∈ N,
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• limn→∞ BL
λ,X0,n = ∞,

• limn→∞
1
n log

(
BL

λ,X0,n

)
= pL

λex
(qL

λ
)

0 − αλ > 0 for the case qL
λ ∈

]
max{0, βλ}, min{1, eβλ−1}

]
,

respectively limn→∞
1
n log

(
BL

λ,X0,n

)
= ∞ for the remaining case qL

λ > min{1, eβλ−1}.

Putting these considerations together we conclude that the constraints (35) and (56) are sufficient
to achieve the Goals (G1′) to (G3′). Hence, for fixed parameter constellation (βA, βH, αA, αH, λ), we aim
for finding pL

λ = pL (βA, βH, αA, αH, λ) and qL
λ = qL (βA, βH, αA, αH, λ) which satisfy (35) and (56).

This can be achieved mostly, but not always, as we shall show below. As an auxiliary step for further
investigations, it is useful to examine the set of all λ ∈ R\[0, 1] for which αλ ≤ 0 or βλ ≤ 0 (or both).
By straightforward calculations, we see that

αλ ≤ 0 ⇐⇒ λ





≤ −αH
αA−αH

, if αA > αH,

≥ αH
αH−αA

, if αA < αH,

and βλ ≤ 0 ⇐⇒ λ





≤ −βH
βA−βH

, if βA > βH,

≥ βH
βH−βA

, if βA < βH.

(57)

Furthermore, recall that (35) implies the general bounds pL
λ ≤ αλ

Aα1−λ
H = ϕλ(0) (being equivalent to

the requirement φL
λ(0) = φλ(0) ) and qL

λ ≤ βλ
Aβ1−λ
H = q̃λ (the latter being the maximal slope due to

Properties 3 (P19), (P20)).
Let us now undertake the desired detailed investigations on lower and upper bounds of

the Hellinger integrals Hλ(PA,n||PH,n) of order λ ∈ R\[0, 1], for the various different subclasses
of PSP\PSP,1.

3.17. Lower Bounds for the Cases (βA, βH, αA, αH, λ) ∈ PSP,2 × (R\[0, 1])

In such a constellation, where PSP,2 := { (βA, βH, αA, αH) ∈ PSP : αA = αH, βA 6= βH } (cf. (49)),
one gets φλ(0) = 0 (cf. Properties 3 (P16)), φ′λ(0) = 0 (cf. (P17)). Thus, the only choice for the
intercept and the slope of the linear lower bound φL

λ(·) for φλ(·), which satisfies (35) for all x ∈ N
and (potentially) (56), is rL

λ = 0 = pL
λ − αλ (i.e., pL

λ = αλ = α > 0) and sL
λ = φλ(1)−φλ(0)

1−0 = qL
λ − βλ =

a
(qL

λ)
1 > 0 (i.e., qL

λ = (α + βA)λ(α + βH)1−λ − α). However, since pL
λ = αλ = α > 0, the restriction (56)

is fulfilled iff qL
λ > 0, which is equivalent to

λ ∈ ISP,2 :=





]
log
(

α
α+βH

)

log
(

α+βA
α+βH

) , 0

[
∪
]
1, ∞

[
, if βA > βH,

]
−∞, 0

[
∪
]

1 ,
log
(

α
α+βH

)

log
(

α+βA
α+βH

)

[
, if βA < βH.

(58)

Suppose that λ ∈ ISP,2. As we have seen above, from Properties 1 (P3a) and (P3b) one can

derive that
(

a
(qL

λ)
n

)

n∈N
is strictly positive, strictly increasing, and converges to x

(qL
λ)

0 ∈]0,− log(qL
λ)] iff

qL
λ ≤ min{1 , eβλ−1}, and otherwise it diverges to ∞. Notice that both cases can occur: consider the

parameter setup (βA, βH, αA, αH) = (1.5, 0.5, 0.5, 0.5) ∈ PSP,2, which leads to ISP,2 =]− 1, 0[∪ ]1, ∞[;
within our running-example epidemiological context of Section 2.3, this corresponds to a “mild”
infectious-disease-transmission situation (H) (with “low” reproduction number βH = 0.5 and
importation mean of αH = 0.5), whereas (A) describes a “dangerous” situation (with supercritical
βA = 1.5 and αA = 0.5). For λ = −0.5 ∈ ISP,2 one obtains qL

λ ≈ 0.207 ≤ min{1 , eβλ−1} ≈ 0.368,
whereas for λ = 2 ∈ ISP,2 one gets qL

λ = 3.5 > min{1 , eβλ−1} = 1. Altogether, this leads to
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Proposition 11. For all (βA, βH, αA, αH, λ) ∈ PSP,2 × ISP,2 and all initial population sizes X0 ∈ N there
holds with pL

λ = αA = αH = α, qL
λ = (α + βA)λ(α + βH)1−λ − α

(a) BL
λ,X0,1 = B̃

(pL
λ ,qL

λ)
λ,X0,1 = exp

{(
qL

λ − βλ

)
· X0

}
> 1,

(b) the sequence
(

BL
λ,X0,n

)
n∈N

of lower bounds for Hλ(PA,n||PH,n) given by

BL
λ,X0,n = B̃

(pL
λ ,qL

λ)
λ,X0,n = exp

{
a
(qL

λ)
n · X0 +

n

∑
k=1

b
(pL

λ ,qL
λ)

k

}

is strictly increasing,

(c) lim
n→∞

BL
λ,X0,n = ∞ = lim

n→∞
Hλ(PA,n||PH,n) ,

(d) lim
n→∞

1
n

log BL
λ,X0,n =





pL
λ · exp

{
x
(qL

λ)
0

}
− α > 0, if qL

λ ≤ min
{

1, eβλ−1} ,

∞, if qL
λ > min

{
1, eβλ−1} ,

(e) the map X0 7→ BL
λ,X0,n = B̃

(pL
λ ,qL

λ)
λ,X0,n is strictly increasing.

Nevertheless, for the remaining constellations (βA, βH, αA, αH, λ) ∈ PSP,2 × R\ (ISP,2 ∪ [0, 1]),
all observation time horizons n ∈ N and all initial population sizes X0 ∈ N one can still prove

1 < Hλ (PA,n||PH,n) and lim
n→∞

Hλ (PA,n||PH,n) = ∞ , (59)

(i.e., the achievement of the Goals (G1′), (G2′)), which is done by a conceptually different method
(without involving pL

λ, qL
λ) in Appendix A.1.

3.18. Lower Bounds for the Cases (βA, βH, αA, αH, λ) ∈ PSP,3a × (R\[0, 1])

In the current setup, where PSP,3a :=
{
(βA, βH, αA, αH) ∈ PSP : αA 6= αH, βA 6= βH, αA

βA
6= αH

βH
,

αA−αH
βH−βA

∈ ]−∞, 0[
}

(cf. (49)), we always have either (αA > αH) ∧ (βA > βH) or (αA < αH) ∧ (βA <

βH). Furthermore, from Properties 3 (P16) we obtain φλ(0) > 0. As in the case λ ∈]0, 1[, the derivative
φ′λ(0) can assume any sign on PSP,3a, take e.g., (βA, βH, αA, αH, λ) = (2.2, 4.5, 1, 3, 2) for φ′λ(0) < 0,
(βA, βH, αA, αH, λ) = (2.25, 4.5, 1, 3, 2) for φ′λ(0) = 0 and (βA, βH, αA, αH, λ) = (2.3, 4.5, 1, 3, 2) for
φ′λ(0) > 0 (these parameter constellations reflect “dangerous” (A) versus “highly dangerous” (H)
situations within our running-example epidemiological context of Section 2.3). Nevertheless, in
all three subcases one gets minx∈N0 φλ(x) ≥ minx≥0 φλ(x) > 0. Thus, there exist parameters
pL

λ ∈
]
αλ, αλ

Aα1−λ
H
]

and qL
λ ∈

]
βλ, βλ

Aβ1−λ
H
]

which satisfy (35)
(
in particular, pL

λ − αλ > 0, qL
λ − βλ > 0

)
.

We now have to look for a condition which guarantees that these parameters additionally fulfill (56);
such a condition is clearly that both αλ ≥ 0 and βλ ≥ 0 hold, which is equivalent (cf. (57)) with

λ ∈ I (≥)SP,3a :=





[
max

{
−αH

αA−αH
, −βH

βA−βH

}
, 0
[
∪
]
1, ∞

[
, if (αA > αH) ∧ (βA > βH),

[
−∞, 0

[
∪
]
1, min

{
αH

αH−αA
, βH

βH−βA

} ]
, if (αA < αH) ∧ (βA < βH);

recall that αλ = 0 and βλ = 0 cannot occur simultaneously in the current setup. If αλ ≤ 0 and βλ ≤ 0,
i.e., if

λ ∈ I (<)
SP,3a :=





]
−∞ , min

{
−αH

αA−αH
; −βH

βA−βH

} ]
, if (αA > αH) ∧ (βA > βH),

[
max

{
αH

αH−αA
; βH

βH−βA

}
, ∞
[
, if (αA < αH) ∧ (βA < βH),
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then–due to the strict positivity of the function ϕλ(·) (cf. (31))–there exist parameters pL
λ > 0 =

max{0, αλ} and qL
λ > 0 = max{0, βλ} which satisfy (56) and (34) (where the latter implies (35) and

thus pL
λ ≤ αλ

Aα1−λ
H , qL

λ ≤ βλ
Aβ1−λ
H ). With

ISP,3a := I (≥)SP,3a ∪ I
(<)
SP,3a (60)

and with the discussion below (56), we thus derive the following

Proposition 12. For all (βA, βH, αA, αH, λ) ∈ PSP,3a × ISP,3a there exist parameters pL
λ, qL

λ which satisfy
max{0, αλ} < pL

λ ≤ αλ
Aα1−λ
H , max{0, βλ} < qL

λ ≤ βλ
Aβ1−λ
H as well as (35) for all x ∈ N0, and for all such

pairs (pL
λ, qL

λ) and all initial population sizes X0 ∈ N one gets

(a) BL
λ,X0,1 = B̃

(pL
λ ,qL

λ)
λ,X0,1 = exp

{(
qL

λ − βλ

)
· X0 + pL

λ − αλ

}
> 1,

(b) the sequence
(

BL
λ,X0,n

)
n∈N

of lower bounds for Hλ(PA,n||PH,n) given by

BL
λ,X0,n = B̃

(pL
λ ,qL

λ)
λ,X0,n = exp

{
a
(qL

λ)
n · X0 +

n

∑
k=1

b
(pL

λ ,qL
λ)

k

}

is strictly increasing,

(c) lim
n→∞

BL
λ,X0,n = ∞ = lim

n→∞
Hλ(PA,n||PH,n) ,

(d) lim
n→∞

1
n

log BL
λ,X0,n =





pL
λ · exp

{
x
(qL

λ)
0

}
− αλ > 0, if qL

λ ≤ min
{

1, eβλ−1} ,

∞, if qL
λ > min

{
1, eβλ−1} ,

(e) the map X0 7→ BL
λ,X0,n = B̃

(pL
λ ,qL

λ)
λ,X0,n is strictly increasing.

Notice that the assertions (a) to (e) of Proposition 12 hold true for parameter pairs (pL
λ, qL

λ) whenever
they satisfy (35) and (56); in particular, we may allow either pL

λ = max{0, αλ} or qL
λ = max{0, βλ}. Let

us furthermore mention that in part (d) both asymptotical behaviours can occur: consider e.g., the
parameter setup (βA, βH, αA, αH) = (0.3, 0.2, 4, 3) ∈ PSP,3a, leading to ]1, ∞[( I (≥)SP,3a ( ISP,3a. For λ =

2 ∈ ISP,3a, the parameters pL
λ := p̃λ := 5.25, qL

λ := q̃λ := 0.45 (corresponding to the asymptote φ̃λ(·), cf.
(P20)) fulfill (35), (56) and additionally qL

λ = 0.45 < min{1, eβλ−1} ≈ 0.549. Analogously, in the setup
(βA, βH, αA, αH, λ) = (3, 2, 4, 3, 2) ∈ PSP,3a × ISP,3a, the choices pL

λ := p̃λ := 5.25, qL
λ := q̃λ := 4.5

satisfy (35), (56) and there holds qL
λ = 4.5 > min{1, eβλ−1} = 1.

For the remaining two cases (αλ ≤ 0) ∧ (βλ > 0) (e.g., (βA, βH, αA, αH, λ) = (6, 5, 3, 2,−3)) and
(αλ > 0) ∧ (βλ ≤ 0) (e.g., (βA, βH, αA, αH, λ) = (3, 2, 6, 5,−3)), one has to proceed differently. Indeed,
for all parameter constellations (βA, βH, αA, αH, λ) ∈ PSP,3a ×R\ (ISP,3a ∪ [0, 1]), all observation time
horizons n ∈ N and all initial population sizes X0 ∈ N one can still prove

1 < Hλ (PA,n||PH,n) , and lim
n→∞

Hλ (PA,n||PH,n) = ∞ , (61)

which is done in Appendix A.1, using a similar method as in the proof of assertion (59).

3.19. Lower Bounds for the Cases (βA, βH, αA, αH, λ) ∈ PSP,3b × (R\[0, 1])

Within such a constellation, where PSP,3b :=
{
(βA, βH, αA, αH) ∈ PSP : αA 6= αH, βA 6= βH,

αA
βA
6= αH

βH
, αA−αH

βH−βA
∈ ]0, ∞[\N

}
(cf. (49)), one always has either (αA < αH) ∧ (βA > βH) or (αA >

αH) ∧ (βA < βH). Moreover, from Properties 3 (P15) one can see that φλ(x) = 0 for x = x∗ =
αH−αA
βA−βH

> 0. However, x∗ /∈ N0, which implies φλ(x) > 0 for all x on the relevant subdomain N0.
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Again, we incorporate (57) and consider the set of all λ ∈ R\[0, 1] such that αλ ≥ 0 and βλ ≥ 0 (where
αλ = 0∧ βλ = 0 cannot appear), i.e.,

λ ∈ I (≥)SP,3b :=





[ −βH
βA−βH

, 0
[
∪
]
1 , αH

αH−αA

]
, if (αA < αH) ∧ (βA > βH),

[
−αH

αA−αH
, 0
[
∪
]
1 , βH

βH−βA

]
, if (αA > αH) ∧ (βA < βH).

(62)

As above in Section 3.18, if λ ∈ I (≥)SP,3b then there exist parameters pL
λ ∈

]
αλ, αλ

Aα1−λ
H
]
, qL

λ ∈]
βλ, βλ

Aβ1−λ
H
]

(which thus fulfill (56)) such that (35) is satisfied for all x ∈ N0. Hence, for all λ ∈
ISP,3b := I (≥)SP,3b, all assertions (a) to (e) of Proposition 12 hold true. Notice that for the current setup
PSP,3b one cannot have αλ ≤ 0 and βλ ≤ 0 simultaneously. Furthermore, in each of the two remaining
cases (αλ < 0) ∧ (βλ > 0) respectively (αλ > 0) ∧ (βλ < 0) it can happen that there do not exist
parameters pL

λ, qL
λ > 0 which satisfy both (35) and (56). However, as in the case PSP,3a above, for all

λ /∈ ISP,3b we prove in Appendix A.1 (by a method without pL
λ, qL

λ) that for all observation times n ∈ N
and all initial population sizes X0 ∈ N there holds

1 < Hλ (PA,n||PH,n) and lim
n→∞

Hλ (PA,n||PH,n) = ∞ . (63)

3.20. Lower Bounds for the Cases (βA, βH, αA, αH, λ) ∈ PSP,3c × (R\[0, 1])

Since in this subcase one has PSP,3c :=
{
(βA, βH, αA, αH) ∈ PSP : αA 6= αH, βA 6= βH,

αA
βA
6= αH

βH
, αA−αH

βH−βA
∈ N

}
(cf. (49)) and thus φλ(x∗) = 0 for x∗ ∈ N, there do not exist parameters

pL
λ, qL

λ such that (35) and (56) are satisfied. The only parameter pair that ensures exp
{

a
(qL

λ)
n · X0 +

∑n
k=1 b

(pL
λ ,qL

λ)

k

}
≥ 1 for all n ∈ N and all X0 ∈ N within our proposed method, is the choice pL

λ =

αλ, qL
λ = βλ. Consequently, BL

λ,X0,n ≡ 1, which coincides with the general lower bound (11) but violates
the above-mentioned desired Goal (G1′). However, in some constellations there exist nonnegative
parameters pL

λ < αλ, qL
λ > βλ or pL

λ > αλ, qL
λ < βλ, such that at least the parts (c) and (d) of

Proposition 12 are satisfied. As in Section 3.19 above, by using a conceptually different method
(without pL

λ, qL
λ) we prove in Appendix A.1 that for all λ ∈ R\[0, 1], all observation times n ∈ N and

all initial population sizes X0 ∈ N there holds

1 < Hλ (PA,n||PH,n) and lim
n→∞

Hλ (PA,n||PH,n) = ∞ . (64)

3.21. Lower Bounds for the Cases (βA, βH, αA, αH, λ) ∈ PSP,4a × (R\[0, 1])

In the current setup, wherePSP,4a := { (βA, βH, αA, αH) ∈ PSP : αA 6= αH > 0, βA = βH ∈ ]0, 1[ }
(cf. (49)), the function φλ(·) is strictly positive and strictly decreasing, with limx→∞ φλ(x) =

limx→∞ φ′λ(x) = 0. The only choice of parameters pL
λ, qL

λ which fulfill (35) and

exp
{

a
(qL

λ)
n · X0 + ∑n

k=1 b
(pL

λ ,qL
λ)

k

}
≥ 1 for all n ∈ N and all X0 ∈ N, is the choice pL

λ = αλ as

well as qL
λ = βλ = β•, where β• stands for both (equal) βH and βA. Of course, this leads to BL

λ,X0,n ≡ 1,
which is consistent with the general lower bound (11), but violates the above-mentioned desired Goal
(G1′). Nevertheless, in Appendix A.1 we prove the following

Proposition 13. For all (βA, βH, αA, αH, λ) ∈ PSP,4a × R\[0, 1] there exist parameters pL
λ > αλ (not

necessarily satisfying pL
λ ≥ 0) and 0 < qL

λ < βλ = β• < min{1, eβ•−1} = eβ•−1 such that (35) holds for all
x ∈ [0, ∞[ and such that for all initial population sizes X0 ∈ N the parts (c) and (d) of Proposition 12 hold true.
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3.22. Lower Bounds for the Cases (βA, βH, αA, αH, λ) ∈ PSP,4b × (R\[0, 1])

By recalling PSP,4b := { (βA, βH, αA, αH) ∈ PSP : αA 6= αH > 0, βA = βH ∈ [1, ∞[ } (cf.(49)),
the assertions preceding Proposition 13 remain valid. However, the proof of Proposition 13 in
Appendix A.1 contains details which explain why it cannot be carried over to the current case PSP,4b.
Thus, the generally valid lower bound BL

λ,X0,n ≡ 1 cannot be improved with our methods.

3.23. Concluding Remarks on Alternative Lower Bounds for all Cases
(βA, βH, αA, αH, λ) ∈ (PSP\PSP,1)× (R\[0, 1])

To achieve the Goals (G1′) to (G3′), in the above-mentioned investigations about lower bounds
of the Hellinger integral Hλ(PA,n||PH,n), λ ∈ R\[0, 1], we have mainly focused on parameters pL

λ, qL
λ

which satisfy (35) and additionally (56). Nevertheless, Theorem 1 (b) gives lower bounds BL
λ,X0,n

whenever (35) is fulfilled. However, this lower bound can be the trivial one, BL
λ,X0,n ≡ 1. Let us

remark here that for the parameter constellations (βA, βH, αA, αH, λ) ∈
(
PSP,2 ×R

∖(
[0, 1] ∪ ISP,2

))
∪

(
PSP,3a × R

∖(
[0, 1] ∪ ISP,3a

))
∪
(
PSP,3b × R

∖(
[0, 1] ∪ ISP,3b

))
one can prove that there exist pL

λ, qL
λ

which satisfy (35) for all x ∈ N0 as well as the condition (generalizing (56))

pL
λ ≥ αλ , qL

λ ≥ βλ , (where at least one of the inequalities is strict) ,

and that for such pL
λ, qL

λ one gets the validity of Hλ(PA,n||PH,n) ≥ BL
λ,X0,n = B̃

(pL
λ ,qL

λ)
λ,X0,n > 1 for all X0 ∈ N

and all n ∈ N; consequently, Goal (G1′) is achieved. However, in these parameter constellations it
can unpleasantly happen that n 7→ BL

λ,X0,n is oscillating (in contrast to the monotone behaviour in the
Propositions 11 (b), 12 (b)).

As a final general remark, let us mention that the functions φtan
λ,y(·), φsec

λ,k(·), φhor
λ (·), φ̃λ(·) –defined

in (52)–(54) and Properties 3 (P20)–constitute linear lower bounds for φλ(·) on the domain N0 in the case
λ ∈ R\[0, 1]. Their parameters pL

λ ∈
{

ptan
λ,y, psec

λ,y, phor
λ,y , p̃λ

}
and qL

λ ∈
{

qtan
λ,y, qsec

λ,y, qhor
λ,y , q̃λ

}
lead to lower

bounds BL
λ,X0,n of the Hellinger integrals that may or may not be consistent with Goals (G1′) to (G3′),

and which may be possibly better respectively weaker respectively incomparable with the previous
lower bounds when adding some relaxation of (G1′), such as e.g., the validity of Hλ(PA,n||PH,n) > 1
for all but finitely many n ∈ N.

3.24. Upper Bounds for the Cases (βA, βH, αA, αH, λ) ∈ (PSP\PSP,1)× (R\[0, 1])

For the cases λ ∈ R\[0, 1], the investigation of upper bounds for the Hellinger integral
Hλ(PA,n||PH,n) is much easier than the above-mentioned derivations of lower bounds. In fact,
we face a situation which is similar to the lower-bounds-studies for the cases λ ∈]0, 1[ : due to
Properties 3 (P19), the function φλ(·) is strictly convex on the nonnegative real line. Furthermore, it is
asymptotically linear, as stated in (P20). The monotonicity Properties 2 (P10) to (P12) imply that for
the tightest upper bound (within our framework) one should use the parameters pU

λ := αλ
Aα1−λ
H > 0

and qU
λ := βλ

Aβ1−λ
H > 0. Lemma A1 states that pU

λ ≥ αλ resp. qU
λ ≥ βλ, with equality iff αA = αH

resp. iff βA = βH. From Properties 1 (P3a) we see that for βA 6= βH the corresponding sequence(
a
(qU

λ )
n

)

n∈N
is convergent to x

(qU
λ )

0 ∈ ]0,− log(qU
λ )] if qU

λ ≤ min{1 , eβλ−1} (i.e., if λ ∈ [λ−, λ+], cf.

Lemma 1 (a)), and otherwise it diverges to ∞ faster than exponentially (cf. (P3b)). If βA = βH (i.e.,

if (βA, βH, αA, αH) ∈ PSP,4 = PSP,4a ∪ PSP,4b), then one gets qU
λ = βλ and a

(qU
λ )

n = 0 = x
(qU

λ )
0 for all

n ∈ N (cf. (P2)). Altogether, this leads to

58



Entropy 2020, 22, 874

Proposition 14. For all (βA, βH, αA, αH, λ) ∈ (PSP\PSP,1) × (R\[0, 1]) and all initial population sizes
X0 ∈ N there holds with pU

λ := αλ
Aα1−λ
H , qU

λ := βλ
Aβ1−λ
H

(a) BU
λ,X0,1 = B̃

(pU
λ ,qU

λ )

λ,X0,1 = exp
{(

βλ
Aβ1−λ
H − βλ

)
· X0 + αλ

Aα1−λ
H − αλ

}
> 1,

(b) the sequence
(

BU
λ,X0,n

)
n∈N

of upper bounds for Hλ(PA,n||PH,n) given by

BU
λ,X0,n = B̃

(pU
λ ,qU

λ )

λ,X0,n = exp

{
a
(qU

λ )
n · X0 +

n

∑
k=1

b
(pU

λ ,qU
λ )

k

}

is strictly increasing,

(c) lim
n→∞

BU
λ,X0,n = ∞ ,

(d) lim
n→∞

1
n

log BU
λ,X0,n =





pU
λ · exp

{
x
(qU

λ )
0

}
− αλ > 0, if λ ∈ [λ−, λ+] \ [0, 1] ,

∞, if λ ∈ ]−∞, λ−[ ∪ ]λ+, ∞[ ,

(e) the map X0 7→ BU
λ,X0,n = B̃

(pU
λ ,qU

λ )

λ,X0,n is strictly increasing.

4. Power Divergences of Non-Kullback-Leibler-Information-Divergence Type

4.1. A First Basic Result

For orders λ ∈ R\{0, 1}, all the results of the previous Section 3 carry correspondingly over from
the Hellinger integrals Hλ(·||·) to the total variation distance V(·||·), by virtue of the relation (cf. (12))

2
(
1− H 1

2
(PA,n||PH,n)

)
≤ V(PA,n||PH,n) ≤ 2

√
1−

(
H 1

2
(PA,n||PH,n)

)2 ,

to the Renyi divergences Rλ(·||·), by virtue of the relation (cf. (7))

0 ≤ Rλ (PA,n||PH,n) =
1

λ(λ− 1)
log Hλ (PA,n||PH,n) , with log 0 := −∞,

as well as to the power divergences Iλ (·||·), by virtue of the relation (cf. (2))

Iλ (PA,n||PH,n) =
1− Hλ(PA,n||PH,n)

λ · (1− λ)
, n ∈ N ;

in the following, we concentrate on the latter. In particular, the above-mentioned carrying-over
procedure leads to bounds on Iλ (PA||PH) which are tighter than the general rudimentary bounds (cf.
(10) and (11))

0 ≤ Iλ (PA,n||PH,n) <
1

λ(1− λ)
, for λ ∈ ]0, 1[ , 0 ≤ Iλ (PA,n||PH,n) ≤ ∞, for λ ∈ R\[0, 1] .

Because power divergences have a very insightful interpretation as “directed distances” between
two probability distributions (e.g., within our running-example epidemiological context), and function
as important tools in statistics, information theory, machine learning, and artificial intelligence, we
present explicitly the outcoming exact values respectively bounds of Iλ (PA||PH) (λ ∈ R\{0, 1},
n ∈ N), in the current and the following subsections. For this, recall the case-dependent parameters
pA = pA

λ = pA (βA, βH, αA, αH, λ) and qA = qA
λ = qA (βA, βH, αA, αH, λ) (A ∈ {E, L, U}). To begin

with, we can deduce from Theorem 1

Theorem 2.
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(a) For all (βA, βH, αA, αH) ∈ (PNI ∪ PSP,1), all initial population sizes X0 ∈ N0, all observation horizons
n ∈ N and all λ ∈ R\{0, 1} one can recursively compute the exact value

Iλ(PA,n||PH,n) =
1

λ(λ− 1)
·
[

exp

{
a
(qE

λ)
n · X0 +

αA
βA

n

∑
k=1

a
(qE

λ)

k

}
− 1

]
=: V I

λ,X0,n , (65)

where αA
βA

can be equivalently replaced by αH
βH

and qE
λ := βλ

A β1−λ
H . Notice that on PNI the formula (65)

simplifies significantly, since αA = αH = 0.
(b) For general parameters p ∈ R, q 6= 0 recall the general expression (cf. (42))

B̃(p,q)
λ,X0,n := exp

{
a(q)n · X0 +

p
q

n

∑
k=1

a(q)k + n ·
(

p
q

βλ − αλ

)}

as well as
B̃(p,0)

λ,X0,n := exp
{
− βλ · X0 +

(
p · e−βλ − αλ

)
· n
}

.

Then, for all (βA, βH, αA, αH) ∈ PSP\PSP,1, all λ ∈ R\{0, 1}, all coefficients pL
λ, pU

λ , qL
λ, qU

λ ∈ R
which satisfy (35) for all x ∈ N0, all initial population sizes X0 ∈ N and all observation horizons n ∈ N
one gets the following recursive bounds for the power divergences: for λ ∈]0, 1[ there holds

Iλ(PA,n||PH,n)





< 1
λ(1−λ)

·
(

1− BL
λ,X0,n

)
= 1

λ(1−λ)
·
(

1− B̃
(pL

λ ,qL
λ)

λ,X0,n

)
=: BI,U

λ,X0,n ,

≥ 1
λ(1−λ)

·
(

1− BU
λ,X0,n

)
= 1

λ(1−λ)
·
(

1−min
{

B̃
(pU

λ ,qU
λ )

λ,X0,n , 1
})

=: BI,L
λ,X0,n ,

whereas for λ ∈ R\[0, 1] there holds

Iλ(PA,n||PH,n)





< 1
λ(λ−1) ·

(
BU

λ,X0,n − 1
)

= 1
λ(λ−1) ·

(
B̃
(pU

λ ,qU
λ )

λ,X0,n − 1
)

=: BI,U
λ,X0,n ,

≥ 1
λ(λ−1) ·

(
BL

λ,X0,n − 1
)

= 1
λ(λ−1) ·

(
max

{
B̃
(pL

λ ,qL
λ)

λ,X0,n , 1
}
− 1
)

=: BI,L
λ,X0,n .

In order to deduce the subsequent detailed recursive analyses of power divergences, we also
employ the obvious relations

lim
n→∞

1
n

log
(

1
λ(1− λ)

− Iλ(PA,n||PH,n)

)
= lim

n→∞

1
n

[
− log

(
λ(1− λ)

)
+ log

(
Hλ(PA,n||PH,n)

)]

= lim
n→∞

1
n

log
(

Hλ(PA,n||PH,n)
)

, for λ ∈]0, 1[ , (66)

as well as

lim
n→∞

1
n

log
(

Iλ(PA,n||PH,n)
)

= lim
n→∞

1
n

[
− log

(
λ(λ− 1)

)
+ log

(
Hλ(PA,n||PH,n)− 1

)]

= lim
n→∞

1
n

[
log
(

1− 1
Hλ(PA,n||PH,n)

)
+ log

(
Hλ(PA,n||PH,n)

)]
= lim

n→∞

1
n

log
(

Hλ(PA,n||PH,n)
)

,

(67)

for λ ∈ R\[0, 1] (provided that lim infn→∞ Hλ(PA,n||PH,n) > 1).
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4.2. Detailed Analyses of the Exact Recursive Values of Iλ(·||·), i.e., for the Cases
(βA, βH, αA, αH, λ) ∈ (PNI ∪ PSP,1)× (R\{0, 1})
Corollary 2. For all (βA, βH, αA, αH, λ) ∈ PNI×]0, 1[ and all initial population sizes X0 ∈ N there holds
with qE

λ := βλ
A β1−λ
H

(a) Iλ(PA,1||PH,1) =
1

λ(1− λ)
·
(

1− exp
{ (

βλ
A β1−λ
H − βλ

)
· X0

})
> 0 ,

(b) the sequence (Iλ(PA,n||PH,n))n∈N given by

Iλ(PA,n||PH,n) =
1

λ(1− λ)
·
(

1− exp
{

a
(qE

λ)
n · X0

})
=: V I

λ,X0,n

is strictly increasing,

(c) lim
n→∞

Iλ(PA,n||PH,n) =
1

λ(1− λ)
·
(

1− exp
{

x
(qE

λ)
0 · X0

})
∈
]
0,

1
λ(1− λ)

[
,

(d) lim
n→∞

1
n

log
(

1
λ(1− λ)

− Iλ(PA,n||PH,n)

)
= lim

n→∞

1
n

log Hλ(PA,n||PH,n) = 0 ,

(e) the map X0 7→ V I
λ,X0,n is strictly increasing.

Corollary 3. For all (βA, βH, αA, αH, λ) ∈ PNI × (R\[0, 1]) and all initial population sizes X0 ∈ N there
holds with qE

λ := βλ
A β1−λ
H

(a) Iλ(PA,1||PH,1) =
1

λ(λ− 1)
·
(

exp
{ (

βλ
A β1−λ
H − βλ

)
· X0

}
− 1
)

> 0 ,

(b) the sequence (Iλ(PA,n||PH,n))n∈N given by

Iλ(PA,n||PH,n) =
1

λ(λ− 1)
·
(

exp
{

a
(qE

λ)
n · X0

}
− 1
)

=: V I
λ,X0,n

is strictly increasing,

(c) lim
n→∞

Iλ(PA,n||PH,n) =





1
λ(λ−1) ·

(
exp

{
x
(qE

λ)
0 · X0

}
− 1
)
> 0, if λ ∈ [λ−, λ+] \ [0, 1] ,

∞, if λ ∈ ]−∞, λ−[ ∪ ]λ+, ∞[ ,

(d) lim
n→∞

1
n

log Iλ(PA,n||PH,n) =

{
0, if λ ∈ [λ−, λ+] \ [0, 1],
∞, if λ ∈ ]−∞, λ−[ ∪ ]λ+, ∞[ ,

(e) the map X0 7→ V I
λ,X0,n is strictly increasing.

Corollary 4. For all (βA, βH, αA, αH, λ) ∈ PSP,1×]0, 1[ and all initial population sizes X0 ∈ N there holds
with qE

λ := βλ
A β1−λ
H

(a) Iλ(PA,1||PH,1) =
1

λ(1− λ)
·
(

1− exp
{(

βλ
Aβ1−λ
H − βλ

)
·
(

X0 +
αA
βA

)})
> 0 ,

(b) the sequence (Iλ(PA,n||PH,n))n∈N given by

Iλ(PA,n||PH,n) =
1

λ(1− λ)
·
(

1− exp

{
a
(qE

λ)
n · X0 +

αA
βA

n

∑
k=1

a
(qE

λ)

k

})
=: V I

λ,X0,n

is strictly increasing,

(c) lim
n→∞

Iλ(PA,n||PH,n) =
1

λ(1− λ)
,

(d) lim
n→∞

1
n

log
(

1
λ(1− λ)

− Iλ(PA,n||PH,n)

)
=

αA
βA
· x(q

E
λ)

0 < 0 ,

(e) the map X0 7→ V I
λ,X0,n is strictly increasing.
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Corollary 5. For all (βA, βH, αA, αH, λ) ∈ PSP,1 × (R\[0, 1]) and all initial population sizes X0 ∈ N there
holds with qE

λ := βλ
A β1−λ
H

(a) Iλ(PA,1||PH,1) =
1

λ(λ− 1)
·
(

exp
{(

βλ
Aβ1−λ
H − βλ

)
·
(

X0 +
αA
βA

)}
− 1
)

> 0,

(b) the sequence (Iλ(PA,n||PH,n))n∈N given by

Iλ(PA,n||PH,n) =
1

λ(λ− 1)
·
(

exp

{
a
(qE

λ)
n · X0 +

αA
βA

n

∑
k=1

a
(qE

λ)

k

}
− 1

)
=: V I

λ,X0,n

is strictly increasing,

(c) lim
n→∞

Iλ(PA,n||PH,n) = ∞,

(d) lim
n→∞

1
n

log Iλ(PA,n||PH,n) =





αA
βA
· x(q

E
λ)

0 > 0, if λ ∈ [λ−, λ+] \ [0, 1] ,

∞, if λ ∈ ]−∞, λ−[ ∪ ]λ+, ∞[ ,

(e) the map X0 7→ V I
λ,X0,n is strictly increasing.

In the assertions (a), (b), (d) of the Corollaries 4 and 5 the fraction αA/βA can be equivalently
replaced by αH/βH.

Let us now derive the corresponding detailed results for the bounds of the power divergences
for the parameter cases PSP\PSP,1, where the Hellinger integral, and thus Iλ(PA,n||PH,n), cannot be
determined exactly. The extensive discussion on the Hellinger-integral bounds in the Sections 3.4–3.13,
as well as in the Sections 3.16–3.24 can be carried over directly to obtain power-divergence bounds.
In the following, we summarize the outcoming key results, referring a detailed discussion on the
possible choices of pA

λ = pA (βA, βH, αA, αH, λ) and qA
λ = qA (βA, βH, αA, αH, λ) (A ∈ {L, U}) to the

corresponding above-mentioned subsections.

4.3. Lower Bounds of Iλ(·||·) for the Cases (βA, βH, αA, αH, λ) ∈ (PSP\PSP,1)×]0, 1[

Corollary 6. For all (βA, βH, αA, αH, λ) ∈ (PSP,2 ∪ PSP,3a ∪ PSP,3b)×]0, 1[ there exist parameters pU
λ , qU

λ

which satisfy pU
λ ∈

[
αλ
Aα1−λ
H , αλ

]
and qU

λ ∈
[
βλ
Aβ1−λ
H , βλ

[
as well as (35) for all x ∈ N0, and for all such pairs

(pU
λ , qU

λ ) and all initial population sizes X0 ∈ N there holds

(a) BI,L
λ,X0,1 =

1
λ(1− λ)

·
(

1− exp
{ (

qU
λ − βλ

)
· X0 + pU

λ − αλ

})
> 0,

(b) the sequence
(

BI,L
λ,X0,n

)
n∈N

of lower bounds for Iλ(PA,n||PH,n) given by

BI,L
λ,X0,n =

1
λ(1− λ)

·
(

1− exp

{
a
(qU

λ )
n · X0 +

n

∑
k=1

b
(pU

λ ,qU
λ )

k

})

is strictly increasing,

(c) lim
n→∞

BI,L
λ,X0,n = lim

n→∞
Iλ(PA,n||PH,n) =

1
λ(1− λ)

,

(d) lim
n→∞

1
n

log
(

1
λ(1− λ)

− BI,L
λ,X0,n

)
= pU

λ · ex
(qU

λ
)

0 − αλ < 0 ,

(e) the map X0 7→ BI,L
λ,X0,n is strictly increasing.

Remark 4.

(a) Notice that in the case (βA, βH, αA, αH, λ) ∈ PSP,2× ]0, 1[–where αλ
Aα1−λ
H = αλ = αA = αH = α–we

get the special choice pU
λ = α and qU

λ = (α + βA)λ(α + βH)1−λ − α (cf. Section 3.7).
For the constellations (βA, βH, αA, αH, λ) ∈ (PSP,3a ∪ PSP,3b)×]0, 1[ there exist parameters
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pU
λ ∈

[
αλ
Aα1−λ
H , αλ

[
, qU

λ ∈
[
βλ
Aβ1−λ
H , βλ

[
which satisfy (35) for all x ∈ N0.

(b) For the parameter setups (βA, βH, αA, αH, λ) ∈ (PSP,2 ∪ PSP,3a ∪ PSP,3b)×]0, 1[ there might exist
parameter pairs (pU

λ , qU
λ ) satisfying (35) and either pU

λ = αλ or qU
λ = βλ, for which all assertions of

Corollary 6 still hold true.

(c) Following the discussion in Section 3.10 for all (βA, βH, αA, αH, λ) ∈ PSP,3c×]0, 1[ at least part (c) still
holds true.

Corollary 7. For all (βA, βH, αA, αH, λ) ∈ PSP,4a×]0, 1[ there exist parameters pU
λ < αλ, 1 > qU

λ > βλ = β

such that (35) is satisfied for all x ∈ [0, ∞[ and such that for all initial population sizes X0 ∈ N at least the parts
(c) and (d) of Corollary 6 hold true.

As in Section 3.12, for the parameter setup (βA, βH, αA, αH, λ) ∈ PSP,4b×]0, 1[ we cannot
derive a lower bound for the power divergences which improves the generally valid lower bound
Iλ(PA,n||PH,n) ≥ 0 (cf. (10)) by employing our proposed (pU

λ , qU
λ )-method.

4.4. Upper Bounds of Iλ(·||·) for the Cases (βA, βH, αA, αH, λ) ∈ (PSP\PSP,1)×]0, 1[

Since in this setup the upper bounds of the power divergences can be derived from the lower
bounds of the Hellinger integrals, we here appropriately adapt the results of Proposition 6.

Corollary 8. For all (βA, βH, αA, αH, λ) ∈ (PSP\PSP,1)×]0, 1[ and all initial population sizes X0 ∈ N
there holds with pL

λ := αλ
Aα1−λ
H and qL

λ := βλ
Aβ1−λ
H

(a) BI,U
λ,X0,1 =

1
λ(1− λ)

·
(

1− exp
{(

βλ
A β1−λ
H − βλ

)
· X0 + αλ

Aα1−λ
H − αλ

})
> 0,

(b) the sequence of upper bounds
(

BI,U
λ,X0,n

)
n∈N

for Iλ(PA,n||PH,n) given by

BI,U
λ,X0,n =

1
λ(1− λ)

·
(

1− exp

{
a
(qL

λ)
n · X0 +

pL
λ

qL
λ

n

∑
k=1

a
(qL

λ)

k + n ·
(

pL
λ

qL
λ

· βλ − αλ

)})

is strictly increasing,

(c) lim
n→∞

BI,U
λ,X0,n =

1
λ(1− λ)

,

(d) lim
n→∞

1
n

log
(

1
λ(1− λ)

− BI,U
λ,X0,n

)
=

pL
λ

qL
λ

·
(

x
(qL

λ)
0 + βλ

)
− αλ = pL

λ · ex
(qL

λ
)

0 − αλ < 0 ,

(e) the map X0 7→ BI,U
λ,X0,n is strictly increasing.

4.5. Lower Bounds of Iλ(·||·) for the Cases (βA, βH, αA, αH, λ)∈ (PSP\PSP,1)×(R\[0,1])

In order to derive detailed results on lower bounds of the power divergences in the case
λ ∈ R\[0, 1], we have to subsume and adapt the Hellinger-integral concerning lower-bounds
investigations from the Sections 3.16–3.23. Recall the λ-sets ISP,2, ISP,3a, ISP,3b (cf. (58), (60), (62)).
For the constellations PSP,2 × ISP,2 we employ the special choice pL

λ = αλ
Aα1−λ
H = αλ = αA = αH = α

together with qL
λ = (α + βA)λ(α + βH)1−λ − α > max{0, βλ} (cf. (58)) which satisfy (35) for all

x ∈ N0 and (56), whereas for the constellations (PSP,3a × ISP,3a)∪(PSP,3b × ISP,3b) we have proved the
existence of parameters pL

λ, qL
λ satisfying both (35) for all x ∈ N0 and (56) with two strict inequalities.

Subsuming this, we obtain
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Corollary 9. For all (βA, βH, αA, αH, λ) ∈ (PSP,2 × ISP,2)∪(PSP,3a × ISP,3a)∪(PSP,3b × ISP,3b) there exist
parameters pL

λ, qL
λ which satisfy max{0, αλ} ≤ pL

λ ≤ αλ
Aα1−λ
H , max{0, βλ} < qL

λ ≤ βλ
Aβ1−λ
H as well as (35)

for all x ∈ N0, and for all such pairs (pL
λ, qL

λ) and all initial population sizes X0 ∈ N one gets

(a) BI,L
λ,X0,1 =

1
λ(λ− 1)

·
(

exp
{ (

qL
λ − βλ

)
· X0 + pL

λ − αλ

}
− 1
)

> 0,

(b) the sequence
(

BI,L
λ,X0,n

)
n∈N

of lower bounds for Iλ(PA,n||PH,n) given by

BI,L
λ,X0,n =

1
λ(λ− 1)

·
(

exp

{
a
(qL

λ)
n · X0 +

n

∑
k=1

b
(pL

λ ,qL
λ)

k

}
− 1

)

is strictly increasing,

(c) lim
n→∞

BI,L
λ,X0,n = lim

n→∞
Iλ(PA,n||PH,n) = ∞ ,

(d) lim
n→∞

1
n

log BI,L
λ,X0,n =





pL
λ · exp

{
x
(qL

λ)
0

}
− αλ > 0, if qL

λ ≤ min
{

1; eβλ−1} ,

∞, if qL
λ > min

{
1; eβλ−1} ,

(e) the map X0 7→ BI,L
λ,X0,n is strictly increasing.

Analogously to the discussions in the Sections 3.17–3.20, for the parameter setups
(
PSP,2 ×

R\
(
ISP,2 ∪ [0, 1]

))
∪
(
PSP,3a × R\

(
ISP,3a ∪ [0, 1]

))
∪
(
PSP,3b × R\

(
ISP,3b ∪ [0, 1]

))
∪
(
PSP,3c ×

R\[0, 1]
)

and for all initial population sizes X0 ∈ N one can still show

0 < Iλ(PA,n||PH,n) , and lim
n→∞

Iλ(PA,n||PH,n) = ∞ .

For the penultimate case we obtain

Corollary 10. For all (βA, βH, αA, αH, λ) ∈ PSP,4a × (R\[0, 1]) there exist parameters pL
λ > αλ (where not

necessarily pL
λ ≥ 0) and 0 < qL

λ < βλ = β• < min{1, eβ•−1} = eβ•−1 such that (35) is satisfied for all
x ∈ [0, ∞[ and such that for all initial population sizes X0 ∈ N at least the parts (c) and (d) of Corollary 9
hold true.

Notice that for the last case (βA, βH, αA, αH, λ) ∈ PSP,4b × R\[0, 1] (where (βA = βH ≥ 1) we
cannot derive lower bounds of the power divergences which improve the generally valid lower bound
Iλ(PA,n||PH,n) ≥ 0 (cf. (11)) by employing our proposed (pU

λ , qU
λ )-method.

4.6. Upper Bounds of Iλ(·||·) for the Cases (βA, βH, αA, αH, λ) ∈ (PSP\PSP,1)× (R\[0, 1])

For these constellations we adapt Proposition 14, which after modulation becomes
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Corollary 11. For all (βA, βH, αA, αH, λ) ∈ (PSP\PSP,1) × (R\[0, 1]) and all initial population sizes
X0 ∈ N there holds with pU

λ := αλ
Aα1−λ
H and qU

λ := βλ
Aβ1−λ
H

(a) BI,U
λ,X0,1 =

1
λ(λ− 1)

·
(

exp
{ (

βλ
Aβ1−λ
H − βλ

)
· X0 + αλ

Aα1−λ
H − αλ

}
− 1
)

> 0,

(b) the sequence
(

BI,U
λ,X0,n

)
n∈N

of upper bounds for Iλ(PA,n||PH,n) given by

BI,U
λ,X0,n =

1
λ(λ− 1)

·
(

exp

{
a
(qU

λ )
n · X0 +

n

∑
k=1

b
(pU

λ ,qU
λ )

k

}
− 1

)

is strictly increasing,

(c) lim
n→∞

BI,U
λ,X0,n = ∞ ,

(d) lim
n→∞

1
n

log BI,U
λ,X0,n =





pU
λ · exp

{
x
(qU

λ )
0

}
− αλ > 0, if λ ∈ [λ−, λ+] \ [0, 1] ,

∞, if λ ∈ ]−∞, λ−[ ∪ ]λ+, ∞[ ,

(e) the map X0 7→ BI,U
λ,X0,n is strictly increasing.

4.7. Applications to Bayesian Decision Making

As explained in Section 2.5, the power divergences fulfill

Iλ (PA,n||PH,n) =
∫ 1

0
∆BRL̃O

(
pprior
A

)
·
(

1− pprior
A

)λ−2
·
(

pprior
A

)−1−λ
dpprior
A , λ ∈ R, (cf. (21)),

and
Iλ (PA,n||PH,n) = lim

χ→pprior
A

∆BRLOλ,χ

(
pprior
A

)
, λ ∈ ]0, 1[, (cf. (22)),

and thus can be interpreted as (i) weighted-average decision risk reduction (weighted-average statistical
information measure) about the degree of evidence deg concerning the parameter θ that can be attained
by observing the GWI-path Xn until stage n, and as (ii) limit decision risk reduction (limit statistical
information measure). Hence, by combining (21) and (22) with the investigations in the previous
Sections 4.1–4.6, we obtain exact recursive values respectively recursive bounds of the above-mentioned
decision risk reductions. For the sake of brevity, we omit the details here.

5. Kullback-Leibler Information Divergence (Relative Entropy)

5.1. Exact Values Respectively Upper Bounds of I(·||·)
From (2), (3) and (6) in Section 2.4, one can immediately see that the Kullback-Leibler information

divergence (relative entropy) between two competing Galton-Watson processes without/with
immigration can be obtained by the limit

I(PA,n||PH,n) = lim
λ↗1

Iλ (PA,n||PH,n) , (68)

and the reverse Kullback-Leibler information divergence (reverse relative entropy) by I (PH,n||PA,n) =

limλ↘0 Iλ (PA,n||PH,n). Hence, in the following we concentrate only on (68), the reverse case works
analogously. Accordingly, we can use (68) in appropriate combination with the λ∈]0, 1[-parts of the
previous Section 4 (respectively, the corresponding parts of Section 3) in order to obtain detailed
analyses for I (PH,n||PA,n). Let us start with the following assertions on exact values respectively upper
bounds, which will be proved in Appendix A.2:

Theorem 3.
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(a) For all (βA, βH, αA, αH) ∈ (PNI ∪ PSP,1), all initial population sizes X0 ∈ N and all observation
horizons n ∈ N the Kullback-Leibler information divergence (relative entropy) is given by

I(PA,n||PH,n) = IX0,n :=





βA ·
(

log
(

βA
βH

)
−1
)
+βH

1−βA
·
[

X0 − αA
1−βA

]
·
(
1− (βA)

n)

+
αA ·

[
βA ·

(
log
(

βA
βH

)
−1
)
+βH

]

βA(1−βA)
· n , if βA 6= 1,

[βH − log βH − 1] ·
[ αA

2 · n2 +
(
X0 +

αA
2
)
· n
]

, if βA = 1.
(69)

(b) For all (βA, βH, αA, αH) ∈ PSP\PSP,1, all initial population sizes X0 ∈ N and all observation horizons
n ∈ N there holds I(PA,n||PH,n) ≤ EU

X0,n, where

EU
X0,n :=





βA ·
(

log
(

βA
βH

)
−1
)
+βH

1−βA
·
[

X0 − αA
1−βA

]
·
(
1− (βA)

n)

+

[
αA ·

[
βA ·

(
log
(

βA
βH

)
−1
)
+βH

]

βA(1−βA)
+ αA

[
log
(

αAβH
αHβA

)
− βH

βA

]
+ αH

]
· n , if βA 6= 1,

[βH − log βH − 1] ·
[ αA

2 · n2 +
(
X0 +

αA
2
)
· n
]

+
[
αA
[
log
(

αAβH
αH

)
− βH

]
+ αH

]
· n , if βA = 1.

(70)

Remark 5.
(i) Notice that the exact values respectively upper bounds are in closed form (rather than in recursive form).
(ii) The n−behaviour of (the bounds of) the Kullback-Leibler information divergence/relative entropy
I(PA,n||PH,n) in Theorem 3 is influenced by the following facts:

(a) βA ·
(

log
(

βA
βH

)
− 1
)
+ βH ≥ 0 with equality iff βA = βH.

(b) In the case βA 6= 1 of (70), there holds
αA ·

[
βA ·

(
log
(

βA
βH

)
−1
)
+βH

]

βA(1−βA)
+ αA

[
log
(

αAβH
αHβA

)
− βH

βA

]
+ αH ≥ 0,

with equality iff αA = αH and βA = βH.

5.2. Lower Bounds of I(·||·) for the Cases (βA, βH, αA, αH) ∈ (PSP\PSP,1)

Again by using (68) in appropriate combination with the “λ∈]0, 1[-parts” of the previous Section
4 (respectively, the corresponding parts of Section 3), we obtain the following (semi-)closed-form lower
bounds of I (PH,n||PA,n):

Theorem 4. For all (βA, βH, αA, αH) ∈ PSP\PSP,1, all initial population sizes X0 ∈ N and all observation
horizons n ∈ N

I(PA,n||PH,n) ≥ EL
X0,n := sup

k∈N0, y∈[0,∞[

{
EL,tan

y,X0,n , EL,sec
k,X0,n , EL,hor

X0,n

}
∈ [0, ∞[ , (71)
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where for all y ∈ [0, ∞[ we define the – possibly negatively valued– finite bound component

EL,tan
y,X0,n :=





[
βA log

(
αA+βAy
αH+βHy

)
+ βH

(
1− αA+βAy

αH+βHy

)]
· 1−(βA)

n

1−βA
·
[

X0 − αA
1−βA

]

+
[

αA
βA(1−βA)

[
βA log

(
αA+βAy
αH+βHy

)
+ βH

(
1− αA+βAy

αH+βHy

)]

+
(

αH − αA
βH
βA

) (
1− αA+βAy

αH+βHy

) ]
· n , if βA 6= 1,

[
log
(

αA+y
αH+βHy

)
+ βH

(
1− αA+y

αH+βHy

)]
·
[ αA

2 · n2 +
(
X0 +

αA
2
)
· n
]

+ (αH − αAβH)
(

1− αA+y
αH+βHy

)
· n , if βA = 1,

(72)

and for all k ∈ N0 the – possibly negatively valued– finite bound component

EL,sec
k,X0,n :=





[
fA(k + 1) log

(
fA(k+1)
fH(k+1)

)
− fA(k) log

(
fA(k)
fH(k)

)
+ βH − βA

]
· 1−(βA)

n

1−βA
·
[

X0 − αA
1−βA

]

+
[

αA
βA(1−βA)

(
fA(k + 1) log

(
fA(k+1)
fH(k+1)

)
− fA(k) log

(
fA(k)
fH(k)

)
+ βH − βA

)

−
(

fA(k + 1) log
(

fA(k+1)
fH(k+1)

)
− fA(k) log

(
fA(k)
fH(k)

))
·
(

k + αA
βA

)

+ fA(k) log
(

fA(k)
fH(k)

)
− αAβH

βA
+ αH

]
· n , if βA 6= 1,

[
fA(k + 1) log

(
fA(k+1)
fH(k+1)

)
− fA(k) log

(
fA(k)
fH(k)

)
+ βH − 1

]
·
[ αA

2 · n2 +
(
X0 +

αA
2
)
· n
]

−
[ (

fA(k + 1) log
(

fA(k+1)
fH(k+1)

)
− fA(k) log

(
fA(k)
fH(k)

))
(k + αA)

− fA(k) log
(

fA(k)
fH(k)

)
+ αAβH − αH

]
· n , if βA = 1.

(73)

Furthermore, on PSP,4 we set EL,hor
X0,n := 0 for all n ∈ N whereas on PSP\(PSP,1 ∪ PSP,4) we define

EL,hor
X0,n :=

[
(αA + βAz∗) ·

[
log
(

αA + βAz∗

αH + βHz∗

)
− 1
]
+ αH + βHz∗

]
· n, , n ∈ N, (74)

with z∗ := arg maxx∈N0

{
(αA + βAx)

[
− log

(
αA+βAx
αH+βHx

)
+ 1
]
− (αH + βHx)

}
.

On PSP\(PSP,1 ∪ PSP,3c) one even gets EL
X0,n > 0 for all X0 ∈ N and all n ∈ N.

For the subcase PSP,3c, one obtains for each fixed n ∈ N and each fixed X0 ∈ N the strict positivity EL
X0,n > 0 if(

∂
∂y EL,tan

y,n

)
(y∗) 6= 0, where y∗ := αA−αH

βH−βA
∈ N and hence

(
∂

∂y
EL,tan

y,X0,n

)
(y∗) (75)

=





− (βA−βH)3

αAβH−αHβA
· 1−(βA)

n

1−βA
·
[

X0 − αA
1−βA

]
− (βA−βH)2

βA

(
1 + αA(βA−βH)

(1−βA)(αAβH−αHβA)

)
· n , if βA 6= 1,

− (1−βH)3

αAβH−αH
·
[ αA

2 · n2 +
(
X0 +

αA
2
)
· n
]
− (1− βH)2 · n , if βA = 1.

A proof of this theorem is given in in Appendix A.2.

Remark 6. Consider the exemplary parameter setup (βA, βH, αA, αH) = ( 1
3 , 2

3 , 2, 1) ∈ PSP,3c;
within our running-example epidemiological context of Section 2.3, this corresponds to a “semi-mild”
infectious-disease-transmission situation (H) (with subcritical reproduction number βH = 2

3 and importation
mean of αH = 1), whereas (A) describes a “mild” situation (with “low” subcritical βA = 1

3 and αA = 2).

In the case of X0 = 3 there holds
(

∂
∂y EL,tan

y,X0,n

)
(y∗) = 0 for all n ∈ N, whereas for X0 6= 3 one obtains

(
∂

∂y EL,tan
y,X0,n

)
(y∗) 6= 0 for all n ∈ N.

It seems that the optimization problem in (71) admits in general only an implicitly representable
solution, and thus we have used the prefix “(semi-)” above. Of course, as a less tight but less involved
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explicit lower bound of the Kullback-Leibler information divergence (relative entropy) I(PA,n||PH,n)

one can use any term of the form max
{

EL,tan
y,X0,n , EL,sec

k,X0,n , EL,hor
X0,n

}
(y ∈ [0, ∞[, k ∈ N0), as well as

the following

Corollary 12. (a) For all (βA, βH, αA, αH) ∈ PSP\PSP,1, all initial population sizes X0 ∈ N and all
observation horizons n ∈ N

I(PA,n||PH,n) ≥ EL
X0,n ≥ ẼL

X0,n := max
{

EL,tan
∞,X0,n , EL,sec

0,X0,n , EL,hor
X0,n

}
∈ [0, ∞[ ,

with EL,hor
X0,n defined by (74), with – possibly negatively valued– finite bound component EL,tan

∞,X0,n :=

limy→∞ EL,tan
y,X0,n, where

EL,tan
∞,X0,n :=





βA ·
(

log
(

βA
βH

)
−1
)
+βH

1−βA
·
[

X0 − αA
1−βA

]
·
(
1− (βA)

n)

+

[
αA ·

[
βA ·

(
log
(

βA
βH

)
−1
)
+βH

]

βA(1−βA)
+ αA

(
1− βH

βA

)
+ αH

(
1− βA

βH

)]
· n , if βA 6= 1,

[βH − log βH − 1] ·
[ αA

2 · n2 +
(
X0 +

αA
2
)
· n
]

+
[
αA (1− βH) + αH

(
1− 1

βH

)]
· n , if βA = 1,

and –possibly negatively valued–finite bound component

EL,sec
0,X0,n =





[
(αA + βA) · log

(
αA+βA
αH+βH

)
− αA · log

(
αA
αH

)
+ βH − βA

]
· 1−(βA)

n

1−βA
·
[

X0 − αA
1−βA

]

+

{
αA

βA(1−βA)

(
(αA + βA) · log

(
αA+βA
αH+βH

)
− αA · log

(
αA
αH

))
− αA

1−βA
(1− βH)

−αA
(

1 + αA
βA

)
· log

(
αH(αA+βA)
αA(αH+βH)

)
+ αH

}
· n , if βA 6= 1,

[
(αA + 1) · log

(
αA+1

αH+βH

)
− αA · log

(
αA
αH

)
+ βH − 1

]
·
[
n · X0 +

αA
2 · n2]

+
{

αA
2

[
(αA + 1) · log

(
αA+1

αH+βH

)
− αA · log

(
αA
αH

)
− βH − 1

]

−αA (1 + αA) · log
(

αH(αA+1)
αA(αH+βH)

)
+ αH

}
· n , if βA = 1.

For the cases PSP,2 ∪ PSP,3a ∪ PSP,3b one gets even ẼL
X0,n > 0 for all X0 ∈ N and all n ∈ N.

5.3. Applications to Bayesian Decision Making

As explained in Section 2.5, the Kullback-Leibler information divergence fulfills

I (PA,n||PH,n) =
∫ 1

0
∆BRL̃O

(
pprior
A

)
·
(

1− pprior
A

)−1
·
(

pprior
A

)−2
dpprior
A , (cf. (21) with λ = 1),

and thus can be interpreted as weighted-average decision risk reduction (weighted-average statistical
information measure) about the degree of evidence deg concerning the parameter θ that can be attained
by observing the GWI-path Xn until stage n. Hence, by combining (21) with the investigations in the
previous Sections 5.1 and 5.2, we obtain exact values respectively bounds of the above-mentioned
decision risk reductions. For the sake of brevity, we omit the details here.
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6. Explicit Closed-Form Bounds of Hellinger Integrals

6.1. Principal Approach

Depending on the parameter constellation (βA, βH, αA, αH, λ) ∈ P × (R\{0, 1}), for the Hellinger
integrals Hλ (PA,n||PH,n) we have derived in Section 3 corresponding lower/upper bounds respectively
exact values–of recursive nature– which can be obtained by choosing appropriate p = pA

λ =

pA (βA, βH, αA, αH, λ) , q = qA
λ = qA (βA, βH, αA, αH, λ) (A ∈ {E, L, U}) and by using those together

with the recursion
(

a(q)n

)
n∈N

defined by (36) as well as the sequence
(

b(p,q)
n

)
n∈N

obtained from
(

a(q)n

)
n∈N

by the linear transformation (38). Both sequences are “stepwise fully evaluable” but

generally seem not to admit a closed-form representation in the observation horizons n; consequently,
the time-evolution n 7→ Hλ (PA,n||PH,n)–respectively the time-evolution of the corresponding recursive
bounds– can generally not be seen explicitly. On order to avoid this intransparency (at the expense
of losing some precision) one can approximate (36) by a recursion that allows for a closed-form
representation; by the way, this will also turn out to be useful for investigations concerning diffusion
limits (cf. the next Section 7).

To explain the basic underlying principle, let us first assume some general q ∈]0, βλ[ and λ ∈]0, 1[.
With Properties 1 (P1) we see that the sequence

(
a(q)n

)
n∈N

is strictly negative, strictly decreasing and

converges to x(q)0 ∈]− βλ, q− βλ[. Recall that this sequence is obtained by the recursive application

of the function ξ
(q)
λ (x) := q · ex − βλ, through a(q)1 = ξ

(q)
λ (0) = q − βλ < 0, a(q)n = ξ

(q)
λ

(
a(q)n−1

)
=

qea(q)n−1 − βλ (cf. (36)). As a first step, we want to approximate ξ
(q)
λ (·) by a linear function on the interval[

x(q)0 , 0
]
. Due to convexity (P9), this is done by using the tangent line of ξ

(q)
λ (·) at x(q)0

ξ
(q),T
λ (x) := c(q),T + d(q),T · x := x(q)0

(
1− q · ex(q)0

)
+ q · ex(q)0 · x , (76)

as a linear lower bound, and the secant line of ξ
(q)
λ (·) across its arguments 0 and x(q)0

ξ
(q),S
λ (x) := c(q),S + d(q),S · x := q− βλ +

x(q)0 − (q− βλ)

x(q)0

· x , (77)

as a linear upper bound. With the help of these functions, we can define the linear recursions

a(q),T0 := 0 , a(q),Tn := ξ
(q),T
λ

(
a(q),Tn−1

)
, n ∈ N , (78)

as well as a(q),S0 := 0 , a(q),Sn := ξ
(q),S
λ

(
a(q),Sn−1

)
, n ∈ N . (79)

In the following, we will refer to these sequences as the rudimentary closed-form sequence-bounds.
Clearly, both sequences are strictly negative (on N), strictly decreasing, and one gets the sandwiching

a(q),Tn < a(q)n ≤ a(q),Sn (80)

for all n ∈ N, with equality on the right side iff n = 1 (where a(q)1 = q− βλ < 0); moreover,

lim
n→∞

a(q),Tn = lim
n→∞

a(q),Sn = lim
n→∞

a(q)n = x(q)0 . (81)
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Furthermore, such linear recursions allow for a closed-form representation, namely

a(q),∗n =
c(q),∗

1− d(q),∗
·
(

1−
(

d(q),∗
)n)

= x(q)0 ·
(

1−
(

d(q),∗
)n)

, (82)

where the “ * ” stands for either S or T. Notice that this representation is valid due to d(q),T , d(q),S ∈]0, 1[.
So far, we have considered the case q ∈]0, βλ[. If q = βλ, then one can see from Properties 1 (P2)
that a(q)n ≡ 0, which is also an explicitly given (though trivial) sequence. For the remaining case,
where q > βλ and thus ξ

(q)
λ (0) = a(q)1 = q− βλ > 0), we want to exclude q ≥ min

{
1 , eβλ−1} for the

following reasons. Firstly, if q > min
{

1 , eβλ−1}, then from (P3) we see that the sequence
(

a(q)n

)
n∈N

is

strictly increasing and divergent to ∞, at a rate faster than exponentially (P3b); but a linear recursion is
too weak to approximate such a growth pattern. Secondly, if q = min

{
1 , eβλ−1}, then one necessarily

gets q = eβλ−1 < 1 (since we have required q > βλ, and otherwise one obtains the contradiction
βλ < q = 1 ≤ eβλ−1). This means that the function ξ

(q)
λ (·) now touches the straight line id(·) in

the point − log(q), i.e., ξ
(q)
λ

(
− log(q)

)
= − log(q). Our above-proposed method, namely to use the

tangent line of ξ
(q)
λ (·) at x = x(q)0 = − log(q) as a linear lower bound for ξ

(q)
λ (·), leads then to the

recursion a(q),Tn ≡ 0 (cf. (78)). This is due to the fact that the tangent line ξ
(q),T
λ (·) is in the current case

equivalent with the straight line id(·). Consequently, (81) would not be satisfied.
Notice that in the case βλ < q < min

{
1 , eβλ−1}, the above-introduced functions

ξ
(q),T
λ (·), ξ

(q),S
λ (·) constitute again linear lower and upper bounds for ξ

(q)
λ (·), however, this time

on the interval
[
0, x(q)0

]
. The sequences defined in (78) and (79) still fulfill the assertions (80) and (81),

and additionally allow for the closed-form representation (82). Furthermore, let us mention that these
rudimentary closed-form sequence-bounds can be defined analogously for λ ∈ R\[0, 1] and either
0 < q < βλ, or q = βλ, or max{0, βλ} < q < min{1, eβλ−1}.

In a second step, we want to improve the above-mentioned linear (lower and upper)
approximations of the sequence a(q)n by reducing the faced error within each iteration. To do so,
in both cases of lower and upper approximates we shall employ context-adapted linear inhomogeneous
difference equations of the form

ã0 := 0 ; ãn := ξ̃ (ãn−1) + ρn−1, n ∈ N, (83)

with

ξ̃(x) := c + d · x , x ∈ R , (84)

ρn−1 := K1 ·κn−1 + K2 · νn−1 , n ∈ N, (85)

for some constants c ∈ R, d ∈]0, 1[, K1, K2,κ, ν ∈ R with 0 ≤ ν < κ ≤ d. This will be applied to
c := c(q),S, c := c(q),T , d := d(q),S and d := d(q),T later on. Meanwhile, let us first present some facts and
expressions which are insightful for further formulations and analyses.

Lemma 2. Consider the sequence (ãn)n∈N0
defined in (83) to (85). If 0 ≤ ν < κ < d, then one gets the

closed-form representation

ãn = ãhom
n + c̃n with ãhom

n = c · 1− dn

1− d
and c̃n = K1 ·

dn −κn

d−κ + K2 ·
dn − νn

d− ν
, (86)

which leads for all n ∈ N to

n

∑
k=1

ãk =

(
K1

d−κ +
K2

d− ν
− c

1− d

)
· d · (1− dn)

1− d
− K1 ·κ · (1−κn)

(d−κ)(1−κ) −
K2 · ν · (1− νn)

(d− ν)(1− ν)
+

c
1− d

· n . (87)
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If 0 ≤ ν < κ = d, then one gets the closed-form representation

ãn = ãhom
n + c̃n with ãhom

n = c · 1− dn

1− d
and c̃n = K1 · n · dn−1 + K2 ·

dn − νn

d− ν
, (88)

which leads for all n ∈ N to

n

∑
k=1

ãk =

(
K1

d(1− d)
+

K2
d− ν

− c
1− d

)
· d · (1− dn)

1− d
− K2 · ν · (1− νn)

(d− ν)(1− ν)
+

(
c

1− d
− K1 · dn

1− d

)
· n . (89)

Lemma 2 will be proved in Appendix A.3. Notice that (88) is consistent with taking the limit
κ ↗ d in (86). Furthermore, for the special case K2 = −K1 > 0 one has from (85) for all integers n ≥ 2
the relation ρn−1 < 0 and thus ãn − ãhom

n < 0, leading to

c̃n < 0 and
n

∑
k=1

c̃n < 0 . (90)

Lemma 2 gives explicit expressions for a linear inhomogeneous recursion of the form (83)
possessing the extra term given by (85). Therefrom we derive lower and upper bounds for the
sequence

(
a(q)n

)
n∈N

by employing a(q),Tn resp. a(q),Sn as the homogeneous solution of (83), i.e., by setting

ãhom
n := a(q),Tn resp. ãhom

n := a(q),Sn . Moreover, our concrete approximation-error-reducing “correction
terms” ρn will have different form, depending on whether 0 < q < βλ or q > max{0, βλ}. In both

cases, we express ρn by means of the slopes d(q),T = qex(q)0 resp. d(q),S =
x(q)0 −(q−βλ)

x(q)0

of the tangent line

ξ
(q),T
λ (·) (cf. (76)) resp. the secant line ξ

(q),S
λ (·) (cf. (77)), as well as in terms of the parameters

Γ(q)
< :=

1
2
·
(

x(q)0

)2
· q · ex(q)

0 , for 0 < q < βλ , and Γ(q)
> :=

q
2
·
(

x(q)0

)2
, for q > max{0, βλ} . (91)

In detail, let us first define the lower approximate by

a(q)0 := 0 , a(q)n := ξ
(q),T
λ

(
a(q)n−1

)
+ ρ(q)

n−1
, n ∈ N, (92)

where

ρ(q)
n−1

:=





Γ(q)
< ·

(
d(q),T

)2(n−1)
, if 0 < q < βλ ,

Γ(q)
> ·

(
d(q),S

)2(n−1)
, if max{0, βλ} < q < min{1, eβλ−1} .

(93)

The upper approximate is defined by

a(q)0 := 0 , a(q)n := ξ
(q),S
λ

(
a(q)n−1

)
+ ρ

(q)
n−1 , n ∈ N, (94)

where

ρ
(q)
n−1 :=





− Γ(q)
< ·

(
d(q),T

)n−1
·
[

1−
(

d(q),S
)n−1

]
, if 0 < q < βλ ,

− Γ(q)
> ·

(
d(q),S

)n−1
·
[

1−
(

d(q),T
)n−1

]
, if max{0, βλ} < q < min{1, eβλ−1} .

(95)

In terms of (85), we use for ρ(q)
n

the constants K2 = ν = 0 as well as K1 = Γ(q)
< , κ =

(
d(q),T

)2
for

0 < q < βλ respectively K1 = Γ(q)
> , κ =

(
d(q),S

)2
for max{0, βλ} < q < min{1, eβλ−1}. For ρ

(q)
n we
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shall employ the constants −K1 = K2 = Γ(q)
< , κ = d(q),T , ν = d(q),Sd(q),T for 0 < q < βλ, and −K1 =

K2 = Γ(q)
> , κ = d(q),S, ν = d(q),Sd(q),T for max{0, βλ} < q < min{1, eβλ−1}. Recall from (76) the

constants c(q),T := x(q)0 (1− qex(q)0 ), d(q),T := qex(q)0 and from (77) c(q),S := q− βλ, d(q),S := x(q)0 −(q−βλ)

x(q)0

.

In the following, we will refer to the sequences a(q)n resp. a(q)n as the improved closed-form sequence-bounds.
Putting all ingredients together, we arrive at the

Lemma 3. For all (βA, βH, αA, αH) ∈ P there holds with d(q),T = qex(q)0 and d(q),S =
x(q)0 −(q−βλ)

x(q)0

(a) in the case 0 < q < βλ:

(i)
a(q)n < a(q)n ≤ a(q)n for all n ∈ N,

with equality on the right-hand side iff n = 1, where

a(q)n = x(q)0 ·
(

1−
(

d(q),T
)n)

+ Γ(q)
< ·

(
d(q),T

)n−1

1− d(q),T
·
(

1−
(

d(q),T
)n)

> a(q),Tn , and

a(q)n = x(q)0 ·
(

1−
(

d(q),S
)n)
− Γ(q)

< ·




(
d(q),S

)n
−
(

d(q),T
)n

d(q),S − d(q),T
−
(

d(q),S
)n−1 1−

(
d(q),T

)n

1− d(q),T


≤ a(q),Sn ,

with a(q),Tn and a(q),Sn defined by (78) and (79).

(ii) Both sequences
(

a(q)n

)
n∈N

and
(

a(q)n

)
n∈N

are strictly decreasing.

(iii)
lim

n→∞
a(q)n = lim

n→∞
a(q)n = lim

n→∞
a(q)n = x(q)0 ∈]− βλ, q− βλ[.

(b) in the case max{0, βλ} < q < min
{

1 , eβλ−1}:

(i)
a(q)n < a(q)n ≤ a(q)n , for all n ∈ N,

with equality on the right-hand side iff n = 1, where

a(q)n = x(q)0 ·
(

1−
(

d(q),T
)n)

+ Γ(q)
> ·

(
d(q),T

)n
−
(

d(q),S
)2n

d(q),T −
(
d(q),S

)2 > a(q),Tn and

a(q)n = x(q)0 ·
(

1−
(

d(q),S
)n)

− Γ(q)
> ·

(
d(q),S

)n−1


n −

1−
(

d(q),T
)n

1− d(q),T


 ≤ a(q),Sn ,

with a(q),Tn and a(q),Sn defined by (78) and (79).

(ii) Both sequences
(

a(q)n

)
n∈N

and
(

a(q)n

)
n∈N

are strictly increasing.

(iii)
lim

n→∞
a(q)n = lim

n→∞
a(q)n = lim

n→∞
a(q)n = x(q)0 ∈]q− βλ,− log(q)[.

A detailed proof of Lemma 3 is provided in Appendix A.3. In the following, we employ the
above-mentioned investigations in order to derive the desired closed-form bounds of the Hellinger
integrals Hλ(PA,n||PH,n).
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6.2. Explicit Closed-Form Bounds for the Cases (βA, βH, αA, αH, λ) ∈ (PNI ∪ PSP,1)× (R\{0, 1})
Recall that in this setup, we have obtained the recursive, non-explicit exact values Vλ,X0,n =

Hλ(PA,n||PH,n) given in (39) of Theorem 1, where we used q = qE
λ = qE(βA, βH, λ) = βλ

Aβ1−λ
H ∈]0, βλ[

in the case λ ∈]0, 1[ respectively q = qE
λ = βλ

Aβ1−λ
H > max{0, βλ} in the case λ ∈ R\[0, 1]. For the

latter, Lemma 1 implies that qE
λ < min{1, eβλ−1} iff λ ∈]λ−, λ+[ \[0, 1]. This—together with (39) from

Theorem 1, Lemma 2 and with the quantities d(q),T , d(q),S, Γ(q)
< and Γ(q)

> as defined in (76) and (77) resp.
(91) –leads to

Theorem 5. Let pE
λ := αλ

Aα1−λ
H and qE

λ := βλ
Aβ1−λ
H . For all (βA, βH, αA, αH, λ) ∈ (PNI ∪ PSP,1) ×(

]λ−, λ+[ \ {0, 1}
)
, all initial population sizes X0 ∈ N and for all observation horizons n ∈ N the following

assertions hold true:

(a) the Hellinger integral can be bounded by the closed-form lower and upper bounds

C
(pE

λ ,qE
λ),T

λ,X0,n ≤ C
(pE

λ ,qE
λ),L

λ,X0,n ≤ Vλ,X0,n = Hλ(PA,n||PH,n) ≤ C
(pE

λ ,qE
λ),U

λ,X0,n ≤ C
(pE

λ ,qE
λ),S

λ,X0,n ,

(b)
lim

n→∞

1
n

log
(
Vλ,X0,n

)
= lim

n→∞

1
n

log
(

C
(pE

λ ,qE
λ),L

λ,X0,n

)
= lim

n→∞

1
n

log
(

C
(pE

λ ,qE
λ),U

λ,X0,n

)

= lim
n→∞

1
n

log
(

C
(pE

λ ,qE
λ),T

λ,X0,n

)
= lim

n→∞

1
n

log
(

C
(pE

λ ,qE
λ),S

λ,X0,n

)
=

αA
βA
· x(q

E
λ)

0 ,

where the involved closed-form lower bounds are defined by

C
(pE

λ ,qE
λ),L

λ,X0,n := C
(pE

λ ,qE
λ),T

λ,X0,n · exp
{

ζ(q
E
λ)

n · X0 +
αA
βA
· ϑ(qE

λ)
n

}
, with (96)

C
(pE

λ ,qE
λ),T

λ,X0,n := exp

{
x
(qE

λ)
0 ·

[
X0 −

αA
βA
· d(q

E
λ),T

1− d(q
E
λ),T

]
·
(

1−
(

d(q
E
λ),T
)n)

+
αA
βA

x
(qE

λ)
0 · n

}
,

and the closed-form upper bounds are defined by

C
(pE

λ ,qE
λ),U

λ,X0,n := C
(pE

λ ,qE
λ),S

λ,X0,n · exp
{
− ζ

(qE
λ)

n · X0 −
αA
βA
· ϑ(qE

λ)
n

}
, with (97)

C
(pE

λ ,qE
λ),S

λ,X0,n := exp

{
x
(qE

λ)
0 ·

[
X0 −

αA
βA
· d(q

E
λ),S

1− d(q
E
λ),S

]
·
(

1−
(

d(q
E
λ),S
)n)

+
αA
βA

x
(qE

λ)
0 · n

}
,

where in the case λ ∈]0, 1[

ζ(q
E
λ)

n := Γ
(qE

λ)
< ·

(
d(q

E
λ),T
)n−1

1− d(q
E
λ),T

·
(

1−
(

d(q
E
λ),T
)n)

> 0 , (98)

ϑ
(qE

λ)
n := Γ

(qE
λ)

< ·
1−

(
d(q

E
λ),T
)n

(
1− d(q

E
λ),T
)2 ·


1−

d(q
E
λ),T

(
1 +

(
d(q

E
λ),T
)n)

1 + d(q
E
λ),T


 > 0 , (99)

ζ
(qE

λ)
n := Γ

(qE
λ)

< ·




(
d(q

E
λ),S
)n
−
(

d(q
E
λ),T
)n

d(q
E
λ),S − d(q

E
λ),T

−
(

d(q
E
λ),S
)n−1

·
1−

(
d(q

E
λ),T
)n

1− d(q
E
λ),T


 > 0 , (100)

ϑ
(qE

λ)
n := Γ

(qE
λ)

< · d(q
E
λ),T

1− d(q
E
λ),T
·




1−
(

d(q
E
λ),Sd(q

E
λ),T
)n

1− d(q
E
λ),Sd(q

E
λ),T

−

(
d(q

E
λ),S
)n
−
(

d(q
E
λ),T
)n

d(q
E
λ),S − d(q

E
λ),T


 > 0 , (101)
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and where in the case λ ∈ ]λ−, λ+[ \[0, 1]

ζ(q
E
λ)

n := Γ
(qE

λ)
> ·

(
d(q

E
λ),T
)n
−
(

d(q
E
λ),S
)2n

d(q
E
λ),T −

(
d(q

E
λ),S
)2 > 0 , (102)

ϑ
(qE

λ)
n :=

Γ
(qE

λ)
>

d(q
E
λ),T−

(
d(q

E
λ),S
)2




d(q
E
λ),T

(
1−

(
d(q

E
λ),T
)n)

1− d(q
E
λ),T

−

(
d(q

E
λ),S
)2
(

1−
(

d(q
E
λ),S
)2n
)

1−
(

d(q
E
λ),S
)2




> 0 , (103)

ζ
(qE

λ)
n := Γ

(qE
λ)

> ·
(

d(q
E
λ),S
)n−1

·


n −

1−
(

d(q
E
λ),T
)n

1− d(q
E
λ),T


 > 0 , (104)

ϑ
(qE

λ)
n := Γ

(qE
λ)

> ·
[

d(q
E
λ),S − d(q

E
λ),T

(
1− d(q

E
λ),S
)2 (

1− d(q
E
λ),T
) ·
(

1−
(

d(q
E
λ),S
)n)

+
d(q

E
λ),T

(
1−

(
d(q

E
λ),Sd(q

E
λ),T
)n)

(
1− d(q

E
λ),T
) (

1− d(q
E
λ),Sd(q

E
λ),T
) −

(
d(q

E
λ),S
)n

1− d(q
E
λ),S
· n
]

> 0 . (105)

Notice that αA
βA

can be equivalently be replaced by αH
βH

in (96) and in (97).

A proof of Theorem 5 is given in Appendix A.3.

6.3. Explicit Closed-Form Bounds for the Cases (βA, βH, αA, αH, λ) ∈ (PSP\PSP,1)×]0, 1[

To derive (explicit) closed-form lower bounds of the (nonexplicit) recursive lower bounds BL
λ,X0,n

for the Hellinger integral Hλ(PA,n||PH,n) respectively closed-form upper bounds of the recursive
upper bounds BU

λ,X0,n for all parameters cases (βA, βH, αA, αH, λ) ∈ (PSP\PSP,1) × (R\{0, 1}), we
combine part (b) of Theorem 1, Lemma 2, Lemma 3 together with appropriate parameters pL

λ =

pL (βA, βH, αA, αH, λ) , pU
λ = pU (βA, βH, αA, αH, λ) ≥ 0 and qL

λ = qL (βA, βH, αA, αH, λ), qU
λ =

qU (βA, βH, αA, αH, λ) > 0 satisfying (35). Notice that the representations of the lower and upper
closed-form sequence-bounds depend on whether 0 < qA

λ < βλ, 0 < qA
λ = βλ or max{0, βλ} < qA

λ <

min{1, eβλ−1} (A ∈ {L, U}).
Let us start with closed-form lower bounds for the case λ ∈]0, 1[; recall that the choice pL

λ =

αλ
Aα1−λ
H , qL

λ = βλ
Aβ1−λ
H led to the optimal recursive lower bounds BL

λ,X0,n of the Hellinger integral (cf.
Theorem 1(b) and Section 3.5). Correspondingly, we can derive

Theorem 6. Let pL
λ = αλ

Aα1−λ
H and qL

λ = βλ
Aβ1−λ
H . Then, the following assertions hold true:
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(a) For all (βA, βH, αA, αH, λ) ∈
(
PSP,2 ∪PSP,3a ∪PSP,3b ∪PSP,3c

)
×]0, 1[ (for which particularly 0 < qL

λ <

βλ, βA 6= βH), all initial population sizes X0 ∈ N and all observation horizons n ∈ N there holds

C
(pL

λ ,qL
λ),T

λ,X0,n ≤ C
(pL

λ ,qL
λ),L

λ,X0,n ≤ BL
λ,X0,n < 1 ,

where C
(pL

λ ,qL
λ),L

λ,X0,n := C
(pL

λ ,qL
λ),T

λ,X0,n · exp

{
ζ(q

L
λ)

n · X0 +
pL

λ

qL
λ

· ϑ(qL
λ)

n

}
(106)

with C
(pL

λ ,qL
λ),T

λ,X0,n := exp

{
x
(qL

λ)
0 ·

[
X0 −

pL
λ

qL
λ

· d(q
L
λ),T

1− d(q
L
λ),T

]
·
(

1−
(

d(q
L
λ),T
)n)

+

(
pL

λ

qL
λ

·
(

βλ + x
(qL

λ)
0

)
− αλ

)
· n
}

,

and with ζ(q
L
λ)

n := Γ
(qL

λ)
< ·

(
d(q

L
λ),T
)n−1

1− d(q
L
λ),T

·
(

1−
(

d(q
L
λ),T
)n)

> 0 , (107)

ϑ
(qL

λ)
n := Γ

(qL
λ)

< ·
1−

(
d(q

L
λ),T
)n

(
1− d(q

L
λ),T
)2 ·


1−

d(q
L
λ),T

(
1 +

(
d(q

L
λ),T
)n)

1 + d(q
L
λ),T


 > 0 . (108)

(b) For all (βA, βH, αA, αH, λ) ∈ (PSP,4a ∪ PSP,4b)×]0, 1[ (for which particularly 0 < qL
λ = βλ, βA = βH),

all initial population sizes X0 ∈ N and all observation horizons n ∈ N there holds

C
(pL

λ ,qL
λ),L

λ,X0,n := C
(pL

λ ,qL
λ),T

λ,X0,n := BL
λ,X0,n = exp

{ (
pL

λ − αλ

)
· n
}

< 1 .

(c) For all (βA, βH, αA, αH, λ) ∈ (PSP\PSP,1)×]0, 1[ and all initial population sizes X0 ∈ N one gets

lim
n→∞

1
n

log
(

C
(pL

λ ,qL
λ),T

λ,X0,n

)
= lim

n→∞

1
n

log
(

C
(pL

λ ,qL
λ),L

λ,X0,n

)
= lim

n→∞

1
n

log
(

BL
λ,X0,n

)

=
pL

λ

qL
λ

·
(

βλ + x
(qL

λ)
0

)
− αλ < 0 ,

where in the case βA = βH there holds qL
λ = βλ and x

(qL
λ)

0 = 0.

The proof will be provided in Appendix A.3.
In order to deduce closed-form upper bounds for the case λ ∈]0, 1[, we first recall from the

Sections 3.6–3.13, that we have to employ suitable parameters pU
λ = pU (βA, βH, αA, αH, λ) , qU

λ =

qU (βA, βH, αA, αH, λ) satisfying (35). Notice that we automatically obtain pU
λ ≥ pL

λ = αλ
Aα1−λ
H > 0.

Correspondingly, we obtain

Theorem 7. For all (βA, βH, αA, αH, λ) ∈ (PSP\PSP,1)×]0, 1[, all coefficients pU
λ , qU

λ which satisfy (35) for
all x ∈ N0 and additionally either 0 < qU

λ ≤ βλ or βλ < qU
λ < min{1, eβλ−1}, all initial population sizes

X0 ∈ N and all observation horizons n ∈ N the following assertions hold true:

C
(pU

λ ,qU
λ ),S

λ,X0,n ≥ C
(pU

λ ,qU
λ ),U

λ,X0,n ≥ B̃
(pU

λ ,qU
λ )

λ,X0,n ≥ BU
λ,X0,n , where (109)
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(a) in the case 0 < qU
λ < βλ one has

C
(pU

λ ,qU
λ ),U

λ,X0,n := C
(pU

λ ,qU
λ ),S

λ,X0,n · exp

{
− ζ

(qU
λ )

n · X0 −
pU

λ

qU
λ

· ϑ(qU
λ )

n

}
(110)

with C
(pU

λ ,qU
λ ),S

λ,X0,n := exp

{
x
(qU

λ )
0 ·

[
X0 −

pU
λ

qU
λ

· d(q
U
λ ),S

1− d(q
U
λ ),S

]
·
(

1−
(

d(q
U
λ ),S
)n)

+

(
pU

λ

qU
λ

·
(

βλ + x
(qU

λ )
0

)
− αλ

)
· n
}

,

ζ
(qU

λ )
n := Γ

(qU
λ )

< ·




(
d(q

U
λ ),S
)n
−
(

d(q
U
λ ),T

)n

d(q
U
λ ),S − d(q

U
λ ),T

−
(

d(q
U
λ ),S
)n−1

·
1−

(
d(q

U
λ ),T

)n

1− d(q
U
λ ),T


 > 0 , (111)

ϑ
(qU

λ )
n := Γ

(qU
λ )

< · d(q
U
λ ),T

1− d(q
U
λ ),T
·




1−
(

d(q
U
λ ),Sd(q

U
λ ),T

)n

1− d(q
U
λ ),Sd(q

U
λ ),T

−

(
d(q

U
λ ),S
)n
−
(

d(q
U
λ ),T

)n

d(q
U
λ ),S − d(q

U
λ ),T


 > 0 ; (112)

furthermore, whenever pU
λ , qU

λ satisfy additionally (47)
(
such parameters exist particularly in the setups

PSP,2 ∪ PSP,3a ∪ PSP,3b, cf. Sections 3.7–3.9
)
, then

1 > C
(pU

λ ,qU
λ ),S

λ,X0,n and B̃
(pU

λ ,qU
λ )

λ,X0,n = BU
λ,X0,n ∀ n ∈ N ;

(b) in the case 0 < qU
λ = βλ one has

C
(pU

λ ,qU
λ ),U

λ,X0,n := C
(pU

λ ,qU
λ ),S

λ,X0,n := B̃
(pU

λ ,qU
λ )

λ,X0,n = exp
{ (

pU
λ − αλ

)
· n
}

;

(c) in the case βλ < qU
λ < min

{
1 , eβλ−1} the formulas (109) and (110) remain valid, but with

ζ
(qU

λ )
n := Γ

(qU
λ )

> ·
(

d(q
U
λ ),S
)n−1

·


n −

1−
(

d(q
U
λ ),T

)n

1− d(q
U
λ ),T


 > 0 , (113)

ϑ
(qU

λ )
n := Γ

(qU
λ )

> ·
[

d(q
U
λ ),S − d(q

U
λ ),T

(
1− d(q

U
λ ),S
)2 (

1− d(q
U
λ ),T

) ·
(

1−
(

d(q
U
λ ),S
)n)

+
d(q

U
λ ),T

(
1−

(
d(q

U
λ ),Sd(q

U
λ ),T

)n)

(
1− d(q

U
λ ),T

) (
1− d(q

U
λ ),Sd(q

U
λ ),T

) −

(
d(q

U
λ ),S
)n

1− d(q
U
λ ),S
· n
]

> 0 ; (114)

(d) for all cases (a) to (c) one gets

lim
n→∞

1
n

log
(

C
(pU

λ ,qU
λ ),S

λ,X0,n

)
= lim

n→∞

1
n

log
(

C
(pU

λ ,qU
λ ),U

λ,X0,n

)
= lim

n→∞

1
n

log
(

B̃
(pU

λ ,qU
λ )

λ,X0,n

)

=
pU

λ

qU
λ

·
(

βλ + x
(qU

λ )
0

)
− αλ ,

where in the case qU
λ = βλ there holds x

(qU
λ )

0 = 0.
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This Theorem 7 will be proved in Appendix A.3. Notice that for an inadequate choice of pU
λ , qU

λ it

may hold that pU
λ

qU
λ

(βλ + x
(qU

λ )
0 )− αλ > 0 in part (d) of Theorem 7.

6.4. Explicit Closed-Form Bounds for the Cases (βA, βH, αA, αH, λ) ∈ (PSP\PSP,1)× (R\[0, 1])

For λ ∈ R\[0, 1], let us now construct closed-form lower bounds of the recursive lower bound

components B̃
(pL

λ ,qL
λ)

λ,X0,n , for suitable parameters pL
λ ≥ 0 and either 0 < qL

λ ≤ βλ or max{0, βλ} < qL
λ <

min{1, eβλ−1} satisfying (35).

Theorem 8. For all (βA, βH, αA, αH, λ) ∈ (PSP\PSP,1) × (R\[0, 1]) , all coefficients pL
λ ≥ 0, qL

λ > 0
which satisfy (35) for all x ∈ N0 and either 0 < qL

λ ≤ βλ or max{0, βλ} < qL
λ < min{1, eβλ−1}, all initial

population sizes X0 ∈ N and all observation horizons n ∈ N the following assertions hold true:

C
(pL

λ ,qL
λ),T

λ,X0,n ≤ C
(pL

λ ,qL
λ),L

λ,X0,n ≤ B̃
(pL

λ ,qL
λ)

λ,X0,n ≤ BL
λ,X0,n , where (115)

(a) in the case 0 < qL
λ < βλ one has

C
(pL

λ ,qL
λ),L

λ,X0,n := C
(pL

λ ,qL
λ),T

λ,X0,n · exp

{
ζ(q

L
λ)

n · X0 +
pL

λ

qL
λ

· ϑ(qL
λ)

n

}
, (116)

with C
(pL

λ ,qL
λ),T

λ,X0,n := exp

{
x
(qL

λ)
0 ·

[
X0 −

pL
λ

qL
λ

· d(q
L
λ),T

1− d(q
L
λ),T

]
·
(

1−
(

d(q
L
λ),T
)n)

+

(
pL

λ

qL
λ

·
(

βλ + x
(qL

λ)
0

)
− αλ

)
· n
}

ζ(q
L
λ)

n := Γ
(qL

λ)
< ·

(
d(q

L
λ),T
)n−1

1− d(q
L
λ),T

·
(

1−
(

d(q
L
λ),T
)n)

> 0 , (117)

ϑ
(qL

λ)
n := Γ

(qL
λ)

< ·
1−

(
d(q

L
λ),T
)n

(
1− d(q

L
λ),T
)2 ·


1−

d(q
L
λ),T

(
1 +

(
d(q

L
λ),T
)n)

1 + d(q
L
λ),T


 > 0 ; (118)

furthermore, whenever pL
λ, qL

λ satisfy additionally (56)
(
such parameters exist particularly in the setups

PSP,2 ∪ PSP,3a ∪ PSP,3b, cf. Sections 3.17–3.19), then

1 < C
(pL

λ ,qL
λ),T

λ,X0,n and B̃
(pL

λ ,qL
λ)

λ,X0,n = BL
λ,X0,n ∀ n ∈ N ;

(b) in the case 0 < qL
λ = βλ one has

C
(pL

λ ,qL
λ),L

λ,X0,n := C
(pL

λ ,qL
λ),T

λ,X0,n = B̃
(pL

λ ,qL
λ)

λ,X0,n = exp
{ (

pL
λ − αλ

)
· n
}

;

(c) in the case max{0 , βλ} < qL
λ < min

{
1 , eβλ−1} the formulas (115) and (116) remain valid, but with

ζ(q
L
λ)

n := Γ
(qL

λ)
> ·

(
d(q

L
λ),T
)n
−
(

d(q
L
λ),S
)2n

d(q
L
λ),T −

(
d(q

L
λ),S
)2 > 0 , (119)

ϑ
(qL

λ)
n :=

Γ
(qL

λ)
>

d(q
L
λ),T −

(
d(q

L
λ),S
)2 ·




d(q
L
λ),T ·

(
1−

(
d(q

L
λ),T
)n)

1− d(q
L
λ),T

−

(
d(q

L
λ),S
)2
·
(

1−
(

d(q
L
λ),S
)2n
)

1−
(

d(q
L
λ),S
)2


 > 0 ;

(120)
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(d) for all cases (a) to (c) one gets

lim
n→∞

1
n

log
(

C
(pL

λ ,qL
λ),T

λ,X0,n

)
= lim

n→∞

1
n

log
(

C
(pL

λ ,qL
λ),L

λ,X0,n

)
= lim

n→∞

1
n

log
(

B̃
(pL

λ ,qL
λ)

λ,X0,n

)

=
pL

λ

qL
λ

·
(

βλ + x
(qL

λ)
0

)
− αλ ,

where in the case qL
λ = βλ there holds x

(qL
λ)

0 = 0.

For the proof of Theorem 8, see Appendix A.3. Notice that for an inadequate choice of pL
λ, qL

λ it

may hold that pL
λ

qL
λ

(βλ + x
(qU

λ )
0 )− αλ < 0 in the last assertion of Theorem 8.

To derive closed-form upper bounds of the recursive upper bounds BU
λ,X0,n of the Hellinger

integral in the case λ ∈ R\[0, 1] , let us first recall from Section 3.24 that we have to use the parameters
pU

λ = αλ
Aα1−λ
H > 0 and qU

λ = βλ
Aβ1−λ
H > 0. Furthermore, in the case βA 6= βH we obtain from Lemma 1

(setting qλ = qU
λ ) the assertion that max{0, βλ} < qU

λ < min{1, eβλ−1} iff λ ∈]λ−, λ+[ \ [0, 1]
(
implying

that the sequence
(
a
(qU

λ )
n

)
n∈N converges

)
. In the case βA = βH on gets qU

λ = βλ
Aβ1−λ
H = βA = βH = βλ

and therefore (cf. (P2)) a
(qU

λ )
n = 0 for all n ∈ N and for all λ ∈ R\[0, 1]. Correspondingly, we deduce

Theorem 9. Let pU
λ = αλ

Aα1−λ
H and qU

λ = βλ
Aβ1−λ
H . Then, the following assertions hold true:

(a) For all (βA, βH, αA, αH, λ) ∈ (PSP,2 ∪ PSP,3a ∪ PSP,3b ∪ PSP,3c)× ( ]λ−, λ+[ \[0, 1] ) (in particular for
βA 6= βH), all initial population sizes X0 ∈ N and all observation horizons n ∈ N there holds

∞ > C
(pU

λ ,qU
λ ),S

λ,X0,n ≥ C
(pU

λ ,qU
λ ),U

λ,X0,n ≥ BU
λ,X0,n > 1 ,

where C
(pU

λ ,qU
λ ),U

λ,X0,n := C
(pU

λ ,qU
λ ),S

λ,X0,n · exp

{
− ζ

(qU
λ )

n · X0 −
pU

λ

qU
λ

· ϑ(qU
λ )

n

}
(121)

with C
(pU

λ ,qU
λ ),S

λ,X0,n := exp

{
x
(qU

λ )
0 ·

[
X0 −

pU
λ

qU
λ

· d(q
U
λ ),T

1− d(q
U
λ ),T

]
·
(

1−
(

d(q
U
λ ),T

)n)

+

(
pU

λ

qU
λ

·
(

βλ + x
(qU

λ )
0

)
− αλ

)
· n
}

,

ζ
(qU

λ )
n := Γ

(qU
λ )

> ·
(

d(q
U
λ ),S
)n−1

·


n −

1−
(

d(q
U
λ ),T

)n

1− d(q
U
λ ),T


 > 0 , (122)

ϑ
(qU

λ )
n := Γ

(qU
λ )

> ·
[

d(q
U
λ ),S − d(q

U
λ ),T

(
1− d(q

U
λ ),S
)2 (

1− d(q
U
λ ),T

) ·
(

1−
(

d(q
U
λ ),S
)n)

+
d(q

U
λ ),T

(
1−

(
d(q

U
λ ),Sd(q

U
λ ),T

)n)

(
1− d(q

U
λ ),T

) (
1− d(q

U
λ ),Sd(q

U
λ ),T

) −

(
d(q

U
λ ),S
)n

1− d(q
U
λ ),S
· n
]

> 0 . (123)

(b) For all (βA, βH, αA, αH, λ) ∈ (PSP,4a ∪ PSP,4b) × (R\[0, 1] ) (for which particularly 0 < qU
λ = βλ,

βA = βH), all initial population sizes X0 ∈ N and all observation horizons n ∈ N there holds

C
(pU

λ ,qU
λ ),U

λ,X0,n := C
(pU

λ ,qU
λ ),S

λ,X0,n := BU
λ,X0,n = exp

{ (
pU

λ − αλ

)
· n
}

> 1 .
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(c) For all (βA, βH, αA, αH, λ) ∈ (PSP\PSP,1)× ( ]λ−, λ+[ \[0, 1] ) and all initial population sizes X0 ∈ N
one gets

lim
n→∞

1
n

log
(

C
(pU

λ ,qU
λ ),S

λ,X0,n

)
= lim

n→∞

1
n

log
(

C
(pU

λ ,qU
λ ),U

λ,X0,n

)
= lim

n→∞

1
n

log
(

BU
λ,X0,n

)

=
pU

λ

qU
λ

·
(

βλ + x
(qU

λ )
0

)
− αλ > 0 ,

where in the case βA = βH there holds qU
λ = βλ and x

(qU
λ )

0 = 0.

A proof of Theorem 9 is provided in Appendix A.3.

Remark 7. Substituting a(q)n by a(q),Tn resp. a(q),Sn (cf. (78) resp. (79)) in B̃(p,q)
λ,X0,n from (42) leads to the

“rudimentary” closed-form bounds C(p,q),T
λ,X0,n resp. C(p,q),S

λ,X0,n , whereas substituting a(q)n by a(q)n resp. a(q)n (cf. (92)

resp. (94)) in B̃(p,q)
λ,X0,n from (42) leads to the “improved” closed-form bounds C(p,q),L

λ,X0,n resp. C(p,q),U
λ,X0,n in all the

Theorems 5–9.

6.5. Totally Explicit Closed-Form Bounds

The above-mentioned results give closed-form lower bounds C(p,q),L
λ,X0,n , C(p,q),T

λ,X0,n resp. closed-form

upper bounds C(p,q),U
λ,X0,n , C(p,q),S

λ,X0,n of the Hellinger integrals Hλ(PA,n||PH,n) for case-dependent choices

of p, q. However, these bounds still involve the fixed point x(q)0 which in general has to be
calculated implicitly. In order to get “totally” explicit but “slightly” less tight closed-form bounds of
Hλ(PA,n||PH,n), one can proceed as follows:

1. in all the closed-form lower bound formulas of the Theorems 5, 6 and 8–including the definitions
(76), (77) and (91)–replace the implicit x(q)0 by a close explicitly known point x(q)0 < x(q)0 ;

2. in all closed-form upper bound formulas of the Theorems 5, 7 and 9–including (76), (77) and
(91)–replace x(q)0 by a close explicitly known point x(q)0 > x(q)0 .

For instance, one can use the following choices which will be also employed as an auxiliary tool
for the diffusion-limit-concerning proof of Lemma A6 in Appendix A.4:

x(q)0 :=





q−1 · e−x(q)
0 ·
[
(1− q)−

√
(1− q)2 − 2 · q · ex(q)

0 · (q− βλ)

]
, if q ∈]0, βλ[ ,

q−1 ·
[
(1− q)−

√
(1− q)2 − 2 · q · (q− βλ)

]
, if max{0, βλ} < q < min{1, eβλ−1},

(124)

where x(q)0 :=

{
max

{
−βλ , q−βλ

1−q

}
, if q ∈]0, 1[ ,

−βλ, if q ≥ 1,
(125)

x(q)0 :=





q−1 ·
[
(1− q)−

√
(1− q)2 − 2 · q · (q− βλ)

]
, if q ∈]0, βλ[ ,

(1− q)−
√
(1− q)2 − 2 · (q− βλ), if max{0, βλ} < q < min{1, eβλ−1}

and (1− q)2 − 2 · q · (q− βλ) ≥ 0,

x(q)0 := − log(q) if max{0, βλ} < q < min{1, eβλ−1}
and (1− q)2 − 2 · q · (q− βλ) < 0.

(126)
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Behind this choice “lies” the idea that–in contrast to the solution x(q)0 of ξ
(q)
λ (x) := qex − βλ =

x–the point x(q)0 is a solution of (the obviously explicitly solvable) Q(q)
λ (x) := a(q)λ x2 + b(q)λ x + c(q)λ = x

in both cases 0 < q < βλ and max{0, βλ} < q < min{1, eβλ−1}, whereas the point x(q)0 is a solution

of Q(q)
λ (x) := a(q)λ x2 + b

(q)
λ x + c(q)λ = x in the case 0 < q < βλ and in the case max{0, βλ} < q <

min{1, eβλ−1} together with (1− q)2 − 2 · q · (q− βλ) ≥ 0. Thereby, Q(q)
λ (·) and Q(q)

λ (·) are the lower

resp. upper quadratic approximates of ξ
(q)
λ (·) satisfying the following constraints:

• for q ∈]0, βλ[ (mostly but not only for λ ∈]0, 1[) (lower bound):

Q(q)
λ (0) = ξ

(q)
λ (0) = q− βλ, Q(q) ′

λ (0) = ξ
(q) ′
λ (0) = q, Q(q) ′′

λ (x) = ξ
(q) ′′
λ (y) = qey, x ∈ R,

for some explicitly known approximate y < x(q)0
(
leading to the (tighter) explicit lower approximate

x(q)0 ∈]y, x(q)0 [
)
; here, we choose

y := x(q)0 :=

{
max

{
−βλ , q−βλ

1−q

}
, if q < 1,

−βλ, if q ≥ 1;

• for q ∈]0, βλ[ (mostly but not only for λ ∈]0, 1[) (upper bound):

Q(q)
λ (0) = ξ

(q)
λ (0) = q− βλ, Q(q) ′

λ (0) = ξ
(q) ′
λ (0) = q, Q(q) ′′

λ (x) = ξ
(q) ′′
λ (0) = q, x ∈ R;

• for max{0, βλ} < q < min{1, eβλ−1} (mostly but not only for λ ∈ R\[0, 1]) (lower bound):

Q(q)
λ (0) = ξ

(q)
λ (0) = q− βλ, Q(q) ′

λ (0) = ξ
(q) ′
λ (0) = q, Q(q) ′′

λ (x) = ξ
(q) ′′
λ (0) = q, x ∈ R;

• for max{0, βλ} < q < min{1, eβλ−1} in combination with (1− q)2− 2 · q · (q− βλ) ≥ 0 (mostly but
not only for λ ∈ R\[0, 1]) (upper bound):

Q(q)
λ (0) = ξ

(q)
λ (0) = q− βλ, Q(q) ′

λ (0) = ξ
(q) ′
λ (0) = q, Q(q) ′′

λ (x) = ξ
(q) ′′
λ (− log(q)) = 1, x ∈ R.

If max{0, βλ} < q < min{1, eβλ−1} and (1− q)2 − 2 · q · (q− βλ) < 0, then a real-valued solution

Q(q)
λ (x) = x does not exist and we set x(q)0 := x(q)0 := − log(q), with ξ

(q) ′
λ

(
x(q)0

)
= 1. The above

considerations lead to corresponding unique choices of constants a(q)λ , b(q)λ , c(q)λ , a(q)λ , b
(q)
λ , c(q)λ

culminating in

Q(q)
λ (x) :=





q
2 · ex(q)0 · x2 + q · x + q− βλ, if 0 < q < βλ ,

q
2 · x2 + q · x + q− βλ, if max{0, βλ} < q < min{1, eβλ−1} ,

(127)

Q(q)
λ (x) :=





q
2 · x2 + q · x + q− βλ, if 0 < q < βλ ,

1
2 · x2 + q · x + q− βλ, if max{0, βλ} < q < min{1, eβλ−1} .

(128)

6.6. Closed-Form Bounds for Power Divergences of Non-Kullback-Leibler-Information-Divergence Type

Analogously to Section 4 (see especially Section 4.1), for orders λ ∈ R\{0, 1} all the results of
the previous Sections 6.1–6.5 carry correspondingly over from closed-form bounds of the Hellinger
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integrals Hλ(·||·) to closed-form bounds of the total variation distance V(·||·), by virtue of the relation
(cf. (12))

2
(
1− H 1

2
(PA,n||PH,n)

)
≤ V(PA,n||PH,n) ≤ 2

√
1−

(
H 1

2
(PA,n||PH,n)

)2 ,

to closed-form bounds of the Renyi divergences Rλ(·||·), by virtue of the relation (cf. (7))

0 ≤ Rλ (PA,n||PH,n) =
1

λ(λ− 1)
log Hλ (PA,n||PH,n) , with log 0 := −∞,

as well as to closed-form bounds of the power divergences Iλ (·||·), by virtue of the relation (cf. (2))

Iλ (PA,n||PH,n) =
1− Hλ(PA,n||PH,n)

λ · (1− λ)
, n ∈ N .

For the sake of brevity, the–merely repetitive–exact details are omitted.

6.7. Applications to Decision Making

The above-mentioned investigations of the Sections 6.1 to 6.6 can be applied to the context of
Section 2.5 on dichotomous decision making on the space of all possible path scenarios (path space) of
Poissonian Galton-Watson processes without (with) immigration GW(I) (e.g., in combination with our
running-example epidemiological context of Section 2.3). More detailed, for the minimal mean decision
loss (Bayes risk) Rn defined by (18) we can derive explicit closed-form upper (respectively lower)
bounds by using (19) respectively (20) together with the results of the Sections 6.1–6.5 concerning
Hellinger integrals of order λ ∈ ]0, 1[; we can proceed analogously in the Neyman-Pearson context in
order to deduce closed-form bounds of type II error probabilities, by means of (23) and (24). Moreover,
in an analogous way we can employ the investigations of Section 6.6 on power divergences in order to
obtain closed-form bounds of (i) the corresponding (cf. (21)) weighted-average decision risk reduction
(weighted-average statistical information measure) about the degree of evidence deg concerning the
parameter θ that can be attained by observing the GW(I)-path Xn until stage n, as well as (ii) the
corresponding (cf. (22)) limit decision risk reduction (limit statistical information measure). For the
sake of brevity, the–merely repetitive–exact details are omitted.

7. Hellinger Integrals and Power Divergences of Galton-Watson Type Diffusion Approximations

7.1. Branching-Type Diffusion Approximations

One can show that a properly rescaled Galton-Watson process without (respectively with)
immigration GW(I) converges weakly to a diffusion process X̃ :=

{
X̃s , s ∈ [0, ∞[

}
which is the

unique, strong, nonnegative – and in case of η

σ2 ≥ 1
2 strictly positive– solution of the stochastic

differential equation (SDE) of the form

dX̃s =
(

η − κ X̃s

)
ds + σ

√
X̃s dWs, s ∈ [0, ∞[, X̃0 ∈]0, ∞[ given, (129)

where η ∈ [0, ∞[, κ ∈ [0, ∞[, σ ∈]0, ∞[ are constants and
{

Ws , s ∈ [0, ∞[
}

denotes a standard
Brownian motion with respect to the underlying probability measure P; see e.g., Feller [130], Jirina [131],
Lamperti [132,133], Lindvall [134,135], Grimvall [136], Jagers [56], Borovkov [137], Ethier & Kurtz [138],
Durrett [139] for the non-immigration case corresponding to η = 0, κ ≥ 0, Kawazu & Watanabe [140],
Wei & Winnicki [141], Winnicki [64] for the immigration case corresponding to η 6= 0, κ = 0, as well as
Sriram [142] for the general case η ∈ [0, ∞[, κ ∈ R. Feller-type branching processes of the form (129),
which are special cases of continuous state branching processes with immigration (see e.g., Kawazu
& Watanabe [140], Li [143], as well as Dawson & Li [144] for imbeddings to affine processes) play
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for instance an important role in the modelling of the term structure of interest rates, cf. the seminal
Cox-Ingersoll-Ross CIR model [145] and the vast follow-up literature thereof. Furthermore, (129) is
also prominently used as (a special case of) Cox & Ross’s [146] constant elasticity of variance CEV asset
price process, as (part of) Heston’s [147] stochastic asset-volatility framework, as a model of neuron
activity (see e.g., Lansky & Lanska [148], Giorno et al. [149], Lanska et al. [150], Lansky et al [151],
Ditlevsen & Lansky [152], Höpfner [153], Lansky & Ditlevsen [154]), as a time-dynamic description of
the nitrous oxide emission rate from the soil surface (see e.g., Pedersen [155]), as well as a model for
the individual hazard rate in a survival analysis context (see e.g., Aalen & Gjessing [156]).

Along these lines of branching-type diffusion limits, it makes sense to consider the solutions of
two SDEs (129) with different fixed parameter sets (η, κA, σ) and (η, κH, σ), determine for each of them
a corresponding approximating GW(I), investigate the Hellinger integral between the laws of these
two GW(I), and finally calculate the limit of the Hellinger integral (bounds) as the GW(I) approach
their SDE solutions. Notice that for technicality reasons (which will be explained below), the constants
η and σ ought to be independent of A,H in our current context.

In order to make the above-mentioned limit procedure rigorous, it is reasonable to work with
appropriate approximations such that in each convergence step m one faces the setup PNI ∪ PSP,1 (i.e.,
the non-immigration or the equal-fraction case), where the corresponding Hellinger integral can be
calculated exactly in a recursive way, as stated in Theorem 1. Let us explain the details in the following.

Consider a sequence of GW(I)
(

X(m)
)

m∈N
with probability laws P(m)

• on a measurable space

(Ω,F ), where as above the subscript • stands for either the hypothesis H or the alternative A.
Analogously to (1), we use for each fixed step m ∈ N the representation X(m) :=

{
X(m)
` , ` ∈ N

}
with

X(m)
` :=

X(m)
`−1

∑
j=1

Y(m)
`−1,j + Ỹ(m)

` , ` ∈ N, X(m)
0 ∈ N given, (130)

where under the law P(m)
•

• the collection Y(m) :=
{

Y(m)
i,j , i ∈ N0, j ∈ N

}
consists of i.i.d. random variables which are Poisson

distributed with parameter β
(m)
• > 0,

• the collection Ỹ(m) :=
{

Ỹ(m)
i , i ∈ N

}
consists of i.i.d. random variables which are Poisson

distributed with parameter α
(m)
• ≥ 0,

• Y(m) and Ỹ(m) are independent.

From arbitrary drift-parameters η ∈ [0, ∞[, κ• ∈ [0, ∞[, and diffusion-term-parameter σ > 0,
we construct the offspring-distribution-parameter and the immigration-distribution parameter of the
sequence

(
X(m)
`

)
`∈N

by

β
(m)
• := 1− κ•

σ2m
and α

(m)
• := β

(m)
• ·

η

σ2 . (131)

Here and henceforth, we always assume that the approximation step m is large enough to ensure
that β

(m)
• ∈]0, 1] and at least one of β

(m)
A , β

(m)
H is strictly less than 1; this will be abbreviated by m ∈ N.

Let us point out that – as mentioned above–our choice entails the best-to-handle setup PNI ∪ PSP,1

(which does not happen if instead of η one uses η• with ηA 6= ηH). Based on the GW(I) X(m), let us
construct the continuous-time branching process X̃(m) :=

{
X̃(m)

s , s ∈ [0, ∞[
}

by

X̃(m)
s :=

1
m

X(m)

bσ2msc , (132)
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living on the state space E(m) := 1
mN0. Notice that X̃(m) is constant on each time-interval

[
k

σ2m , k+1
σ2m

[

and takes at s = k
σ2m the value 1

m X(m)
k of the k-th GW(I) generation size, divided by m, i.e., it “jumps”

with the jump-size 1
m

(
X(m)

k − X(m)
k−1

)
which is equal to the 1

m -fold difference to the previous generation
size. From (132) one can immediately see the necessity of having σ to be independent of A, H
because for the required law-equivalence in (the corresponding version of) (13) both models at stake
have to “live” on the same time-scale τ

(m)
s :=

⌊
σ2ms

⌋
. For this setup, one obtains the following

convergenc result:

Theorem 10. Let η ∈ [0, ∞[, κ• ∈ [0, ∞[, σ ∈]0, ∞[ and X̃(m) be as defined in (130) to (132). Furthermore,
let us suppose that limm→∞

1
m X(m)

0 = X̃0 > 0 and denote by D([0, ∞[, [0, ∞[) the space of right-continuous

functions f : [0, ∞[ 7→ [0, ∞[ with left limits. Then the sequence of processes
(

X̃(m)
)

m∈N
convergences in

distribution in D([0, ∞[, [0, ∞[) to a diffusion process X̃ which is the unique strong, nonnegative–and in case of
η

σ2 ≥ 1
2 strictly positive–solution of the SDE

dX̃s =
(
η − κ• X̃s

)
ds + σ

√
X̃s dW•s , s ∈ [0, ∞[, X̃0 ∈]0, ∞[ given, (133)

where
{

W•s , s ∈ [0, ∞[
}

denotes a standard Brownian motion with respect to the limit probability measure P̃•.

Remark 8. Notice that the condition η

σ2 ≥ 1
2 can be interpreted in our approximation setup (131) as α

(m)
• ≥

β
(m)
• /2, which quantifies the intuitively reasonable indication that if the probability P•[Ỹ

(m)
` = 0] = e−α

(m)
•

of having no immigration is small enough relative to the probability P•[Y
(m)
`−1,k = 0] = e−β

(m)
• of having no

offspring (m ∈ N), then the limiting diffusion X̃ never hits zero almost surely.

The corresponding proof of Theorem 10–which is outlined in Appendix A.4–is an adaption of
the proof of Theorem 9.1.3 in Ethier & Kurtz [138] which deals with drift-parameters η = 0, κ• = 0
in the SDE (133) whose solution is approached on a σ−independent time scale by a sequence of
(critical) Galton-Watson processes without immigration but with general offspring distribution with
mean 1 and variance σ. Notice that due to (131) the latter is inconsistent with our Poissonian setup,
but this is compensated by our chosen σ−dependent time scale. Other limit investigations for (133)
involving offspring/immigration distributions and parametrizations which are also incompatible to
ours, are e.g., treated in Sriram [142].

As illustration of our proposed approach, let us give the following

Example 3. Consider the parameter setup (η, κ•, σ) = (5, 2, 0.4) and initial generation size X̃0 = 3. Figure 4
shows the diffusion-approximation X̃(m)

s (blue) of the corresponding solution X̃s of the SDE (133) up to the time
horizon T = 10, for the approximation steps m ∈ {13, 50, 200, 1000}. Notice that in this setup there holds
N = {k ∈ N : k ≥ 13} (recall that N is the subset of the positive integers such that β

(m)
• = 1− κ•

σ2·m > 0).
The “long-term mean” of the limit process X̃s is η

κ• = 2.5 and is indicated as red line. The “long-term mean” of

the approximations X̃(m)
s is equal to α

(m)
•

1−β
(m)
•

= η
κ• −

η

σ2·m = 2.5− 31.25/m and is displayed as green line.
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Figure 4. Simulation of the process X̃(m)
s for the approximation steps m ∈ {13, 50, 200, 1000} in the

parameter setup (η, κ•, σ) = (5, 2, 0.4) and with initial starting value X̃0 = 3.

7.2. Bounds of Hellinger Integrals for Diffusion Approximations

For each approximation step m and each observation horizon t ∈ [0, ∞[, let us now investigate the

behaviour of the Hellinger integrals Hλ

(
P(m),CDA
A,t

∣∣∣
∣∣∣P(m),CDA
H,t

)
, where P(m),CDA

•,t denotes the canonical

law (underH resp. A) of the continuous-time diffusion approximation X̃(m) (cf. (132)), restricted to [0, t].

It is easy to see that Hλ

(
P(m),CDA
A,t

∣∣∣
∣∣∣P(m),CDA
H,t

)
coincides with Hλ

(
P(m)

A,bσ2mtc
∣∣∣
∣∣∣P(m)

H,bσ2mtc
)

of the law

restrictions of the GW(I) generations sizes
(

X(m)
`

)
`∈{0,...,bσ2mtc}, where bσ

2mtc
σ2m can be interpreted as

the last “jump-time” of X̃(m) before t. These Hellinger integrals obey the results of

• the Propositions 2 and 3 (for η = 0) respectively the Propositions 4 and 5 (for η ∈]0, ∞[), as far as
recursively computable exact values are concerned,

• Theorem 5 as far as closed-form bounds are concerned; recall that the current setup is of type
PNI ∪ PSP,1, and thus we can use the simplifications proposed in the Remark 7(a).

In order to obtain the desired Hellinger integral limits limm→∞ Hλ

(
P(m)

A,bσ2mtc
∣∣∣
∣∣∣P(m)

H,bσ2mtc
)

, one

faces several technical problems which will be described in the following. To begin with, for fixed
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m ∈ N we apply the Propositions 2(b), 3(b), 4(b), 5(b) to the current setup (β
(m)
A , β

(m)
H , α

(m)
A , α

(m)
H ) ∈

PNI ∪ PSP,1 with

β
(m)
• := β•(m, κ•, σ2) := 1− κ•

σ2m
and α

(m)
• := α•(m, κ•, σ2, η) := β

(m)
• ·

η

σ2 (cf. (131)).

Notice that η = 0 corresponds to the no-immigration (NI) case and that α
(m)
•

β
(m)
•

= η

σ2 . Accordingly,

we set α
(m)
λ := λ · α(m)

A + (1− λ) · α(m)
H , β

(m)
λ := λ · β(m)

A + (1− λ) · β(m)
H . By using

q(m)
λ := q(m, κ•, σ2, λ) :=

(
β
(m)
A
)λ (

β
(m)
H
)1−λ

, λ ∈ R\{0, 1}, (134)

as well as the connected sequence
(

a(m)
n

)
n∈N

:=
(

a
(q(m)

λ )
n

)

n∈N
we arrive at the

Corollary 13. For all
(

β
(m)
A , β

(m)
H , α

(m)
A , α

(m)
H , λ

)
∈ (PNI ∪ PSP,1) × (R\{0, 1}) and all population sizes

X(m)
0 ∈ N there holds

h(m)
λ := Hλ

(
P(m)

A,bσ2mtc
∣∣∣
∣∣∣P(m)

H,bσ2mtc
)

= exp



a

(q(m)
λ )

bσ2mtc · X
(m)
0 +

η

σ2

bσ2mtc
∑
k=1

a
(q(m)

λ )

k



 (135)

with η = 0 in the NI case.

In the following, we employ the SDE-parameter constellations (which are consistent with (131) in
combination with our requirement to work here only on (PNI ∪ PSP,1))

P̃NI :=
{
(κA, κH, η), η = 0, κA ∈ [0, ∞[ , κH ∈ [0, ∞[ , κA 6= κH

}
, (136)

P̃SP,1 :=
{
(κA, κH, η), η > 0, κA ∈ [0, ∞[ , κH ∈ [0, ∞[ , κA 6= κH

}
. (137)

Due to the–not in closed-form representable–recursive nature of the sequences
(

a(q)n

)
n∈N

defined

by (36), the calculation of limm→∞ h(m)
λ in (135) seems to be not (straightforwardly) tractable; after

all, one “has to move along” a sequence of recursions (roughly speaking) since
⌊
σ2mt

⌋
→ ∞ as m

tends to infinity. One way to “circumvent” such technical problems is to compute instead of the
limit limm→∞ h(m)

λ of the (exact values of the) Hellinger integrals h(m)
λ , the limits of the corresponding

(explicit) closed-form lower resp. upper bounds adapted from Theorem 5. In order to achieve

this, one first needs a preparatory step, due to the fact that the sequence
(

a
(q(m)

λ )

bσ2mtc
)

m∈N
(and hence

its bounds leading to closed-form expressions) does not necessarily converge for all λ ∈ R\[0, 1];
roughly, this can be conjectured from the Propositions 3(c) and 5(c) in combination with

⌊
σ2mt

⌋
→

∞. Correspondingly, for our “sequence-of-recursions” context equipped with the diffusion-limit’s
drift-parameter constellations (κA, κH, η) we have to derive a “convergence interval” [λ̃−, λ̃+]\[0, 1]
which replaces the single-recursion-concerning [λ−, λ+]\[0, 1] (cf. Lemma 1). This amounts to

Proposition 15. For all (κA, κH, η) ∈ P̃NI ∪ P̃SP,1 define

0 > λ̃− :=




− ∞, if κA < κH ,

− κ2
H

κ2
A−κ2

H
, if κA > κH ,

and 1 < λ̃+ :=





κ2
H

κ2
H−κ2

A
, if κA < κH ,

∞, if κA > κH .
(138)
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Then, for all (κA, κH, η, λ) ∈ (P̃NI ∪ P̃SP,1) × ]λ̃−, λ̃+[ \ [0, 1] there holds for all sufficiently large m ∈ N

q(m)
λ :=

(
1− κA

σ2m

)λ (
1− κH

σ2m

)1−λ
< min

{
1 , eβ

(m)
λ −1

}
, (139)

and thus the sequence
(

a
(q(m)

λ )
n

)

n∈N
converges to the fixed point x(m)

0 ∈
]
0,− log

(
q(m)

λ

) [
.

This will be proved in Appendix A.4.
We are now in the position to determine bounds of the Hellinger integral limits

limm→∞ Hλ

(
P(m)

A,bσ2mtc
∣∣∣
∣∣∣P(m)

H,bσ2mtc
)

in form of m-limits of appropriate versions of closed-form bounds

from Section 6. For the sake of brevity, let us henceforth use the abbreviations x(m)
0 := x

(q(m)
λ )

0 , Γ(m)
< :=

Γ
(q(m)

λ )
< =

q(m)
λ
2 · ex(m)

0 ·
(

x(m)
0

)2
, Γ(m)

> := Γ
(q(m)

λ )
> =

q(m)
λ
2 ·

(
x(m)

0

)2
, d(m),S := d(q

(m)
λ ),S =

x(m)
0 −(q(m)

λ −β
(m)
λ )

x(m)
0

and d(m),T := d(q
(m)
λ ),T = q(m)

λ · ex(m)
0 . By the above considerations, the Theorem 5 (together with

Remark 7(a)) adapts to the current setup as follows:

Corollary 14. (a) For all (κA, κH, η, λ) ∈ (P̃NI ∪ P̃SP,1)×]0, 1[, all t ∈ [0, ∞[, all approximation steps
m ∈ N and all initial population sizes X(m)

0 ∈ N the Hellinger integral can be bounded by

C(m),L
λ,X(m)

0 ,t
:= exp

{
x(m)

0 ·
[

X(m)
0 − η

σ2
d(m),T

1− d(m),T

](
1−

(
d(m),T

)bσ2mtc)
+ x(m)

0
η

σ2 ·
⌊

σ2mt
⌋

+ ζ
(m)
bσ2mtc · X

(m)
0 +

η

σ2 · ϑ
(m)
bσ2mtc

}
(140)

≤ Hλ

(
P(m)
A,bσ2mtc

∣∣∣
∣∣∣P(m)
H,bσ2mtc

)

≤ exp

{
x(m)

0 ·
[

X(m)
0 − η

σ2
d(m),S

1− d(m),S

](
1−

(
d(m),S

)bσ2mtc)
+ x(m)

0
η

σ2 ·
⌊

σ2mt
⌋

− ζ
(m)
bσ2mtc · X

(m)
0 − η

σ2 · ϑ
(m)
bσ2mtc

}
=: C(m),U

λ,X(m)
0 ,t

, (141)

where we define analogously to (98) to (101)

ζ(m)
n := Γ(m)

< ·

(
d(m),T

)n−1

1− d(m),T
·
(

1−
(

d(m),T
)n)

> 0 , (142)

ϑ
(m)
n := Γ(m)

< ·
1−

(
d(m),T

)n

(
1− d(m),T

)2 ·


1−

d(m),T
(

1 +
(

d(m),T
)n)

1 + d(m),T


 > 0 , (143)

ζ
(m)
n := Γ(m)

< ·




(
d(m),S

)n
−
(

d(m),T
)n

d(m),S − d(m),T
−
(

d(m),S
)n−1

·
1−

(
d(m),T

)n

1− d(m),T


 > 0 , (144)

ϑ
(m)
n := Γ(m)

< · d(m),T

1− d(m),T
·




1−
(

d(m),Sd(m),T
)n

1− d(m),Sd(m),T
−

(
d(m),S

)n
−
(

d(m),T
)n

d(m),S − d(m),T


 > 0 . (145)

Notice that (140) and (141) simplify significantly for (κA, κH, η, λ) ∈ P̃NI×]0, 1[ for which η = 0 holds.
(b) For all (κA, κH, η, λ) ∈ (P̃NI ∪ P̃SP,1) ×

]
λ̃−, λ̃+

[
\ [0, 1] and all initial population sizes X(m)

0 ∈ N the
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Hellinger integral bounds (140) and (141) are valid for all sufficiently large m ∈ N, where the expressions (142)
to (145) have to be replaced by

ζ(m)
n := Γ(m)

> ·

(
d(m),T

)n
−
(

d(m),S
)2n

d(m),T −
(

d(m),S
)2 > 0 , (146)

ϑ
(m)
n :=

Γ(m)
>

d(m),T −
(

d(m),S
)2 ·




d(m),T ·
(

1−
(

d(m),T
)n)

1− d(m),T
−

(
d(m),S

)2
·
(

1−
(

d(m),S
)2n
)

1−
(

d(m),S
)2


 > 0 ,

ζ
(m)
n := Γ(m)

> ·
(

d(m),S
)n−1

·


n −

1−
(

d(m),T
)n

1− d(m),T


 > 0 , (147)

ϑ
(m)
n := Γ(m)

> ·
[

d(m),S − d(m),T

(
1− d(m),S

)2 (1− d(m),T
) ·
(

1−
(

d(m),S
)n)

(148)

+
d(m),T

(
1−

(
d(m),Sd(m),T

)n)

(
1− d(m),T

) (
1− d(m),Sd(m),T

) −

(
d(m),S

)n

1− d(m),S
· n
]

. (149)

Let us finally present the desired assertions on the limits of the bounds given in Corollary 14 as
the approximation step m tends to infinity, by employing for λ ∈

]
λ̃−, λ̃+

[
! [0, 1] the quantities

κλ := λκA + (1− λ)κH as well as Λλ :=
√

λκ2
A + (1− λ)κ2

H , (150)

for which the following relations hold:

Λλ > κλ > 0, for λ ∈
]
0, 1
[
, (151)

0 < Λλ < κλ, for λ ∈
]
λ̃−, λ̃+

[∖
[0, 1] . (152)

Theorem 11. Let the initial SDE-value X̃0 ∈]0, ∞[ be arbitrary but fixed, and suppose that
limm→∞

1
m X(m)

0 = X̃0. Then, for all (κA, κH, η, λ) ∈ (P̃NI ∪ P̃SP,1) ×
]
λ̃− , λ̃+

[
\ {0, 1} and all t ∈ [0, ∞[

the Hellinger integral limit can be bounded by

DL
λ,X̃0,t := exp

{
− Λλ − κλ

σ2

[
X̃0 −

η

Λλ

] (
1− e−Λλ ·t

)
− η

σ2 (Λλ − κλ) · t

+ L(1)
λ (t) · X̃0 +

η

σ2 · L
(2)
λ (t)

}
(153)

≤ lim
m→∞

Hλ

(
P(m)

A,bσ2mtc
∣∣∣
∣∣∣P(m)

H,bσ2mtc
)

≤ exp

{
− Λλ − κλ

σ2

[
X̃0 −

η
1
2 (Λλ + κλ)

] (
1− e−

1
2 (Λλ+κλ)·t

)
− η

σ2 (Λλ − κλ) · t

− U(1)
λ (t) · X̃0 −

η

σ2 ·U
(2)
λ (t)

}
=: DU

λ,X̃0,t
, (154)
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where for the (sub)case of all λ ∈]0, 1[ and all t ≥ 0

L(1)
λ (t) :=

(Λλ − κλ)
2

2σ2 ·Λλ
· e−Λλ ·t ·

(
1− e−Λλ ·t

)
, (155)

L(2)
λ (t) :=

1
4
·
(

Λλ − κλ

Λλ

)2
·
(

1− e−Λλ ·t
)2

, (156)

U(1)
λ (t) :=

(Λλ − κλ)
2

σ2 ·
[

e−
1
2 (Λλ+κλ)·t − e−Λλ ·t

Λλ − κλ
− e−

1
2 (Λλ+κλ)·t (1− e−Λλ ·t)

2 ·Λλ

]
, (157)

U(2)
λ (t) :=

(Λλ − κλ)
2

Λλ
·
[

1− e−
1
2 (3Λλ+κλ)·t

3Λλ + κλ
+

e−Λλ ·t − e−
1
2 (Λλ+κλ)·t

Λλ − κλ

]
, (158)

and for the remaining (sub)case of all λ ∈
]
λ̃−, λ̃+

[ ∖
[0, 1] and all t ≥ 0

L(1)
λ (t) :=

(Λλ − κλ)
2

2σ2 · κλ
· e−Λλ ·t ·

(
1− e−κλ ·t) , (159)

L(2)
λ (t) :=

(Λλ − κλ)
2

2 · κλ
·
[

1− e−Λλ ·t

Λλ
− 1− e−(Λλ+κλ)·t

Λλ + κλ

]
, (160)

U(1)
λ (t) :=

(Λλ − κλ)
2

2 · σ2 · e− 1
2 (Λλ+κλ)·t ·

[
t − 1− e−Λλ ·t

Λλ

]
, (161)

U(2)
λ (t) := (Λλ − κλ)

2 ·
[
(Λλ − κλ)

(
1− e−

1
2 (Λλ+κλ)·t

)

Λλ · (Λλ + κλ)
2 +

1− e−
1
2 (3Λλ+κλ)·t

Λλ · (3Λλ + κλ)
− e−

1
2 (Λλ+κλ)·t

Λλ + κλ
· t
]

.

(162)

Notice that the components L(i)
λ (t) and U(i)

λ (t)
(
for i = 1, 2 and in both cases λ ∈]0, 1[ and λ ∈]

λ̃−, λ̃+
[ ∖

[0, 1]
)

are strictly positive for t > 0 and do not depend on the parameter η. Furthermore, the bounds
DL

λ,X̃0,t
and DU

λ,X̃0,t
simplify significantly in the case (κA, κH, η) ∈ P̃NI , for which η = 0 holds.

This will be proved in Appendix A.4. For the time-asymptotics, we obtain the

Corollary 15. Let the initial SDE-value X̃0 ∈]0, ∞[ be arbitrary but fixed, and suppose that
limm→∞

1
m X(m)

0 = X̃0. Then:

(a) For all (κA, κH, η, λ) ∈ P̃NI ×
]
λ̃−, λ̃+

[
\{0, 1} the Hellinger integral limit converges to

lim
t→∞

lim
m→∞

log
(

Hλ

(
P(m)
A,bσ2mtc

∣∣∣
∣∣∣P(m)
H,bσ2mtc

))
= − X̃0

σ2 ·
(

Λλ − κλ

)




< 0, for λ ∈]0, 1[ ,

> 0, for λ ∈
]
λ̃−, λ̃+

[ ∖
[0, 1] .

(b) For all (κA, κH, η, λ) ∈ P̃SP,1 ×
]
λ̃−, λ̃+

[
\{0, 1} the Hellinger integral limit possesses the asymptotical

behaviour

lim
t→∞

1
t

log
(

lim
m→∞

Hλ

(
P(m)
A,bσ2mtc

∣∣∣
∣∣∣P(m)
H,bσ2mtc

))
= − η

σ2 ·
(

Λλ − κλ

)




< 0, for λ ∈]0, 1[ ,

> 0, for λ ∈
]
λ̃−, λ̃+

[ ∖
[0, 1] .

The assertions of Corollary 15 follow immediately by inspecting the expressions in the exponential
of (153) and (154) in combination with (155) to (162).
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7.3. Bounds of Power Divergences for Diffusion Approximations

Analogously to Section 4 (see especially Section 4.1), for orders λ ∈ R\{0, 1} all the
results of the previous Section 7.2 carry correspondingly over from (limits of) bounds of the

Hellinger integrals Hλ

(
P(m)

A,bσ2mtc
∣∣∣
∣∣∣P(m)

H,bσ2mtc
)

to (limits of) bounds of the total variation distance

V
(

P(m)

A,bσ2mtc
∣∣∣
∣∣∣P(m)

H,bσ2mtc
)

(by virtue of (12)), to (limits of) bounds of the Renyi divergences

Rλ

(
P(m)

A,bσ2mtc
∣∣∣
∣∣∣P(m)

H,bσ2mtc
)

(by virtue of (7)) as well as to (limits of) bounds of the power divergences

Iλ

(
P(m)

A,bσ2mtc
∣∣∣
∣∣∣P(m)

H,bσ2mtc
)

(by virtue of (2)). For the sake of brevity, the–merely repetitive–exact

details are omitted. Moreover, by combining the outcoming results on the above-mentioned power
divergences with parts of the Bayesian-decision-making context of Section 2.5, we obtain corresponding
assertions on (i) the (cf. (21)) weighted-average decision risk reduction (weighted-average statistical
information measure) about the degree of evidence deg concerning the parameter θ that can be attained
by observing the GWI-path Xn until stage n, as well as (ii) the (cf. (22)) limit decision risk reduction
(limit statistical information measure).

In the following, let us concentrate on the derivation of the Kullback-Leibler information
divergence KL (relative entropy) within the current diffusion-limit framework. Notice that altogether
we face two limit procedures simultaneously: by the first limit limλ↑1 Iλ

(
P(m)

A,bσ2mtc||P
(m)

H,bσ2mtc
)

we

obtain the KL I
(

P(m)

A,bσ2mtc||P
(m)

H,bσ2mtc
)

for every fixed approximation step m ∈ N; on the other

hand, for each fixed λ ∈]0, 1[, the second limit limm→∞ Iλ

(
P(m)

A,bσ2mtc||P
(m)

H,bσ2mtc
)

describes the limit

of the power divergence – as the sequence of rescaled and continuously interpolated GW(I)’s((
X̃(m)

s
)

s∈[0,∞[

)
m∈N

(
equipped with probability law P(m)

A,bσ2mtc resp. P(m)

H,bσ2mtc up to time
⌊
σ2mt

⌋)

converges weakly to the continuous-time CIR-type diffusion process
(
X̃s
)

s∈[0,∞[
(with probability law

P̃A,t resp. P̃H,t up to time t). In Appendix A.4 we shall prove that these two limits can be interchanged:

Theorem 12. Let the initial SDE-value X̃0 ∈]0, ∞[ be arbitrary but fixed, and suppose that
limm→∞

1
m X(m)

0 = X̃0. Then, for all (κA, κH, η) ∈ P̃NI ∪ P̃SP,1 and all t ∈ [0, ∞[ , one gets the
Kullback-Leibler information divergence (relative entropy) convergences

lim
m→∞

I
(

P(m)

A,bσ2mtc
∣∣∣∣P(m)

H,bσ2mtc
)

= lim
m→∞

lim
λ↗1

Iλ

(
P(m)

A,bσ2mtc
∣∣∣∣P(m)

H,bσ2mtc
)

=





(κA−κH)
2

2σ2·κA ·
[(

X̃0 − η
κA

)
·
(
1− e−κA ·t)+ η · t

]
, if κA > 0,

κ2
H

2σ2 ·
[

η
2 · t2 + X̃0 · t

]
, if κA = 0,

= lim
λ↗1

lim
m→∞

Iλ

(
P(m)

A,bσ2mtc
∣∣∣∣P(m)

H,bσ2mtc
)

. (163)

This immediately leads to the following
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Corollary 16. Let the initial SDE-value X̃0 ∈]0, ∞[ be arbitrary but fixed, and suppose that
limm→∞

1
m X(m)

0 = X̃0. Then, the KL limit (163) possesses the following time-asymptotical behaviour:
(a) For all (κA, κH, η) ∈ P̃NI (i.e., η = 0) one gets

(i) in the case κA > 0 lim
t→∞

lim
m→∞

I
(

P(m)

A,bσ2mtc
∣∣∣∣P(m)

H,bσ2mtc
)

=
X̃0 · (κA − κH)2

2σ2 · κA
,

(ii) in the case κA = 0 lim
t→∞

lim
m→∞

1
t
· I
(

P(m)

A,bσ2mtc
∣∣∣∣P(m)

H,bσ2mtc
)

=
X̃0 · κ2

H
4σ2 .

(b) For all (κA, κH, η) ∈ P̃SP,1 (i.e., η > 0) one gets

(i) in the case κA > 0 lim
t→∞

lim
m→∞

1
t
· I
(

P(m)

A,bσ2mtc
∣∣∣∣P(m)

H,bσ2mtc
)

=
η · (κA − κH)2

2σ2 · κA
,

(ii) in the case κA = 0 lim
t→∞

lim
m→∞

1
t2 · I

(
P(m)

A,bσ2mtc
∣∣∣∣P(m)

H,bσ2mtc
)

=
η · κ2

H
4σ2 .

Remark 9. In Appendix A.4 we shall see that the proof of the last (limit-interchange concerning) equality
in (163) relies heavily on the use of the extra terms L(1)

λ (t), L(2)
λ (t), U(1)

λ (t), U(2)
λ (t) in (153) and (154). Recall

that these terms ultimately stem from (manipulations of) the corresponding parts of the “improved closed-form
bounds” in Theorem 5, which were derived by using the linear inhomogeneous difference equations a(q)n resp.
a(q)n (cf. (92) resp. (94)) instead of the linear homogeneous difference equations a(q),Tn resp. a(q),Sn (cf. (78)
resp. (79)) as explicit approximates of the sequence a(q)n . Not only this fact shows the importance of this more
tedious approach.

Interesting comparisons of the above-mentioned results in Sections 7.2 and 7.3 with corresponding
information measures of the solutions of the SDE (129) themselves (rather their branching
approximations), can be found in Kammerer [157].

7.4. Applications to Decision Making

Analogously to Section 6.7, the above-mentioned investigations of the Sections 7.1–7.3 can be
applied to the context of Section 2.5 on dichotomous decision making about GW(I)-type diffusion
approximations of solutions of the stochastic differential Equation (129). For the sake of brevity,
the–merely repetitive–exact details are omitted.
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Appendix A. Proofs and Auxiliary Lemmas

Appendix A.1. Proofs and Auxiliary Lemmas for Section 3

Lemma A1. For all real numbers x, y, z > 0 and all λ ∈ R one has

xλy1−λ −
(

λ x zλ−1 + (1− λ) y zλ
)




≤ 0, for λ ∈]0, 1[ ,
= 0, for λ ∈ {0, 1} ,
≥ 0, for λ ∈ R\[0, 1] ,

with equality in the cases λ ∈ R\{0, 1} iff x
y = z.

Proof of Lemma A1. For fixed x̃ := xzλ−1 > 0, ỹ := yzλ > 0 with x̃ 6= ỹ we inspect the
function g on R defined by g(λ) := x̃λỹ1−λ − (λx̃ + (1 − λ)ỹ) which satisfies g(0) = g(1) = 0,
g′(0) = ỹ log(x̃/ỹ)− (x̃− ỹ) < ỹ((x̃/ỹ)− 1)− (x̃− ỹ) = 0 and which is strictly convex. Thus, the
assertion follows immediately by taking into account the obvious case x̃ = ỹ.

Proof of Properties 1. Property (P9) is trivially valid. To show (P1) we assume 0 < q < βλ, which
implies a(q)1 = ξ

(q)
λ (0) = q− βλ < 0. By induction, (an)n∈N is strictly negative and strictly decreasing.

As stated in (P9), the function ξ
(q)
λ is strictly increasing, strictly convex and converges to −βλ for

x → −∞. Thus, it hits the straight line id(x) = x once and only once on the negative real line at
x(q)0 ∈]− βλ, 0[ (cf. (44)). This implies that the sequence

(
a(q)n

)
n∈N

converges to x(q)0 ∈]− βλ, q− βλ[.

Property (P2) follows immediately. In order to prove (P3), let us fix q > max{0, βλ}, implying
a(q)1 = ξ

(q)
λ (0) = q− βλ > 0; notice that in this setup, the special choice q = 1 implies min{1, eβλ−1} =

eβλ−1 < q. By induction,
(

a(q)n

)
n∈N

is strictly positive and strictly increasing. Since limx→∞ ξ
(q)
λ (x) =

∞, the function ξ
(q)
λ does not necessarily hit the straight line id(x) = x on the positive real line. In fact,

due to strict convexity (cf. (P9)), this is excluded if ξ
(q)′
λ (0) = q ≥ 1. Suppose that q < 1. To prove that

there exists a positive solution of the equation ξ
(q)
λ (x) = x it is sufficient to show that the unique global

minimum of the strict convex function h(q)λ (x) := ξ
(q)
λ (x)− x is taken at some point x0 ∈]0, ∞[ and

that h(q)λ (x0) ≤ 0. It holds h(q)′λ (x) = q · ex − 1, and therefore h(q)′λ (x) = 0 iff x = x0 = − log q. We have

h(q)λ (− log q) = 1− βλ + log q, which is less or equal to zero iff q ≤ eβλ−1. It remains to show that for

q > βλ and q > min
{

1 , eβλ−1} the sequence
(

a(q)n

)
n∈N

grows faster than exponentially, i.e., there do

not exist constants c1, c2 ∈ R such that a(q)n ≤ ec1+c2n for all n ∈ N. We already know that (in the
current case) a(q)n

n→∞−→ ∞. Notice that it is sufficient to verify lim supn→∞

(
log(a(q)n+1)− log(a(q)n )

)
= ∞.

For the case βλ ≥ 0 the latter is obtained by

log
(

a(q)n+1

)
− log

(
a(q)n

)
= log

(
(q− βλ)ea(q)n + βλ(ea(q)n − 1)

)
− log

(
qea(q)n−1 − βλ

)

≥
(

log(q− βλ)− log(q)
)
+

(
qea(q)n−1 − βλ − a(q)n−1

)
a(q)n−1→∞
−→ ∞ .

An analogous consideration works out for the case βλ < 0. Property (P4) is trivial, and (P5) to (P8) are
direct implications of the already proven properties (P1) to (P4).
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Proof of Lemma 1. (a) Let βA > 0, βH > 0 with βA 6= βH, λ ∈ R\]0, 1[, βλ := λβA + (1− λ)βH and
qλ := βλ

Aβ1−λ
H > max{0, βλ} (cf. Lemma A1). Below, we follow the lines of Linkov & Lunyova [53],

appropriately adapted to our context. We have to find those λ ∈ R\]0, 1[ for which the following two
conditions hold:

(i) qλ ≤ 1, i.e., ξ
(qλ) ′
λ (0) ≤ 1,

(ii) qλ ≤ eβλ−1 (cf.(P3a)), which is equivalent with the existence of a–positive, if (i) is satisfied,–solution
of the equation ξ

(qλ)
λ (x) = x.

Notice that the case qλ = 1, λ ∈ R\[0, 1], cannot appear in (i), provided that (ii) holds (since due to
Lemma A1 eβλ−1 < eqλ−1 = 1). For (i), it is easy to check that we have to require

λ





<
log(βH)

log(βH/βA)
, if βA > βH,

>
log(βH)

log(βH/βA)
, if βA < βH.

(A1)

To proceed, straightforward analysis leads to − log(qλ) = arg minx∈R
{

ξ
(qλ)
λ (x)− x

}
. To check (ii),

we first notice that qλ ≤ eβλ−1 iff ξ
(qλ)
λ (x)− x ≤ 0 for some x ∈ R. Hence, we calculate

ξ
(qλ)
λ

(
− log(qλ)

)
+ log(qλ) ≤ 0 ⇐⇒ 1− λ(βA − βH)− βH + λ log

(
βA
βH

)
+ log(βH) ≤ 0

⇐⇒ λ ·
[

βH

(
1− βA

βH

)
+ log

(
βA
βH

)]
≤ βH − 1− log (βH) . (A2)

In order to isolate λ in (A2), one has to find out for which (βA, βH) the term in the square bracket
is positive resp. zero resp. negative. To achieve this, we aim for the substitutions x := βA/βH, β = βH
and thus study first the auxiliary function hβ(x) := log(x)− β(x− 1), x > 0, with fixed parameters
β > 0. Straightforwardly, we obtain h′β(x) = x−1 − β and h′′β(x) = −x−2. Thus, the function hβ(·) is

strictly concave and attains a maximum at x = β−1. Since additionally hβ(1) = 0 and h′β(1) = 1− β,
there exists a second solution z(β) 6= 1 of the equation hβ(x) = 0 iff β 6= 1. Thus, one gets

• for β = 1: for all x > 0 there holds hβ(x) ≤ 0, with equality iff x = β−1,
• for β < 1: hβ(x) ≥ 0 iff x ∈ [1, z(β)], with equality iff x ∈ {1, z(β)} (notice that z(β) > 1),
• for β > 1: hβ(x) ≥ 0 iff x ∈ [z(β), 1], with equality iff x ∈ {z(β), 1} (notice that z(β) < 1).

Suppose that λ < 0.
Case 1: If βH = 1, then condition (ii) is not satisfied whenever βA 6= βH, since the right side of (A2) is
equal to zero and the left side is strictly greater than zero. Hence, λ− = 0.
Case 2: Let βH > 1. If βA < βH, then condition (i) is not satisfied and hence λ− = 0. If βA >

βH, then condition (i) is satisfied iff λ < ˘̆λ := ˘̆λ(βA, βH) := log(βH)
log(βH/βA)

< 0. On the other hand,

incorporating the discussion of the function hβ(·), we see that hβH

(
βA
βH

)
< 0. Thus, (A2) implies that

condition (ii) is satisfied when λ ≥ λ̆ := λ̆(βA, βH) := βH−1−log(βH)
βH−βA+log

(
βA
βH

) . We claim that ˘̆λ < λ̆ and

conclude that the conditions (i) and (ii) are not fulfilled jointly, which leads to λ− = 0. To see this,
we notice that due to 1 < βH < βA we get log(βA)/(βA − 1) < log(βH)/(βH − 1) and thus
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log(βA)(βH − 1) < log(βH)(βA − 1)

⇐⇒ βH log(βH)− βA log(βH) < βH log(βH)− βH log(βA)− log(βH) + log(βA)

⇐⇒ log(βH)(βH − βA) + log(βH) log
(

βA
βH

)
< log

(
βH
βA

)
(βH − 1) + log(βH) log

(
βA
βH

)

⇐⇒ log(βH)

log
(

βH
βA

) <
βH − 1− log(βH)

βH − βA + log
(

βA
βH

) ⇐⇒ ˘̆λ < λ̆ . (A3)

Case 3: Let βH < 1. For this, one gets hβH

(
βA
βH

)
≥ 0 for βA ∈]βH, βHz(βH)]. Hence, condition

(ii) is satisfied if either βA ∈]βH, βHz(βH)], or βA /∈]βH, βHz(βH)] and λ ≥ λ̆. If βA > βHz(βH),
then condition (i) is trivially satisfied for all λ < 0. In the case βA < βH, condition (i) is satisfied
whenever λ > ˘̆λ. Notice that since 0 < βA < βH < 1, an analogous consideration as in (A3) leads
to ˘̆λ < λ̆. This implies that λ− = λ̆. The last case βA ∈]βH, βHz(βH)] is easy to handle: since

log(βH)
log(βH/βA)

> 0 as well as zβH

(
βA
βH

)
> 0, both conditions (i) and (ii) hold trivially.

The representation of λ+ follows straightforwardly from the λ−-result and the skew symmetry
(8), by employing 1− λ̆(βH, βA) = λ̆(βA, βH). Alternatively, one can proceed analogously to the
λ−-case.
Part (b) is much easier to prove: if β• := βA = βH > 0, then for all λ ∈ R\[0, 1] one gets qλ =

βλ
Aβ1−λ
H = β• as well as βλ = β•. Hence, Properties 1 (P2) implies that a(qλ)

n ≡ 0 and thus it is
convergent, independently of the choice λ ∈ R\[0, 1].

Proof of Formula (51). For the parameter constellation in Section 3.10, we employ as upper bound for
φλ(x) (x ∈ N0) the function

φλ(x) :=

{
φλ(0), if x = 0,
0, if x > 0.

Notice that this method is rather crude, and gives in the other cases treated in the Sections 3.7–3.9
worse bounds than those derived there. Since λ ∈]0, 1[ and αA 6= αH, one has φλ(0) < 0. In order
to derive an upper bound of the Hellinger integral, we first set ε := 1− eφλ(0) ∈]0, 1[. Hence, for all
n ∈ N\{1} we obtain the auxiliary expression

∞

∑
xn−1=0

[ϕλ(xn−2)]
xn−1

xn−1!
· exp

{
φλ(xn−1)

}
≤

∞

∑
xn−1=0

[
ϕλ(xn−2)

]xn−1

xn−1!
· exp

{
φλ(xn−1)

}

= exp
{

ϕλ(xn−2)
}
− ε = exp

{
ϕλ(xn−2)

}
·
[
1− ε · exp

{
− ϕλ(xn−2)

}]
.

Moreover, since βA 6= βH, one gets limx→∞ φλ(x) = −∞ (cf. Properties 3 (P20) and Lemma A1).
This–together with the nonnegativity of ϕλ(·)–implies

sup
x∈N0

{
exp

{
φλ(x)

}
·
[
1− ε · exp

{
− ϕλ(x)

}]}
=: δ ∈]0, 1[ .
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Incorporating these considerations as well as the formulas (27) to (32), we get for n = 1 the relation
Hλ (PA,n||PH,n) = exp{φλ(x0)} ≤ 1

(
with equality iff x0 = x∗ = αA−αH

βH−βA

)
, and–as a continuation of

formula (29)– for all n ∈ N\{1}
(
recall that ~x := (x0, x1, . . .) ∈ Ω

)

Hλ (PA,n||PH,n) =
∞

∑
x1=0
· · ·

∞

∑
xn=0

n

∏
k=1

Z(λ)
n,k (~x)

=
∞

∑
x1=0
· · ·

∞

∑
xn−1=0

n−1

∏
k=1

Z(λ)
n,k (~x)

· exp
{
( fA(xn−1))

λ ( fH(xn−1))
(1−λ) − (λ fA(xn−1) + (1− λ) fH(xn−1))

}

=
∞

∑
x1=0
· · ·

∞

∑
xn−2=0

n−2

∏
k=1

Z(λ)
n,k (~x) · exp {− fλ(xn−2)}

∞

∑
xn−1=0

[ϕλ(xn−2)]
xn−1

xn−1!
· exp{φλ(xn−1)}

≤
∞

∑
x1=0
· · ·

∞

∑
xn−2=0

n−2

∏
k=1

Z(λ)
n,k (~x) · exp

{
φλ(xn−2)

}
·
[
1− ε · exp

{
− ϕλ(xn−2)

}]

≤ δ ·
∞

∑
x1=0
· · ·

∞

∑
xn−2=0

n−2

∏
k=1

Z(λ)
n,k (~x) ≤ · · · ≤ δ

bn/2c . (A4)

Hence, Hλ (PA,n||PH,n) < 1 for (at least) all n ∈ N\{1}, and limn→∞ Hλ (PA,n||PH,n) = 0.

Notice that the above proof method of formula (51) does not work for the parameter setup in

Section 3.11, because there one gets δ = supx∈N0

{
exp

{
φλ(x)

}
·
[
1− ε · exp

{
− ϕλ(x)

}]}
= 1.

Proof of Proposition 9. In the setup (βA, βH, αA, αH, λ) ∈ PSP,4a×]0, 1[ we require β• := βA = βH <

1. As a linear upper bound for φλ(·), we employ the tangent line at y ≥ 0 (cf. (52))

φtan
λ,y(x) := (py − αλ) +

(
qy − β•

)
· x := (ptan

λ,y − αλ) + (qtan
λ,y − βλ) · x :=

(
φλ(y)− y · φ′λ(y)

)
+ φ′λ(y) · x . (A5)

Since in the current setup PSP,4a the function φλ(·) is strictly increasing, the slope φ′λ(y) of the
tangent line at y is positive. Thus we have qy > βλ and Properties 1 (P3) implies that the sequence(

a
(qy)
n

)
n∈N

is strictly increasing and converges to x
(qy)
0 ∈]0,− log(qy)] iff qy ≤ min{1, eβ•−1} = eβ•−1 <

1 (cf. (P3a)), where x
(qy)
0 is the smallest solution of the equation ξ

(qy)
λ (x) = qy · ex − β• = x. Since qy ↘

β• for y → ∞ (cf. Properties 3 (P18)) and additionally eβ•−1 > β•, there exists a large enough y ≥ 0

such that the sequence
(

a
(qy)
n

)
n∈N

converges. If this y is also large enough to additionally guarantee

h(y) < 0 for

h(y) := lim
n→∞

1
n

log
(

B̃
(py ,qy)
λ,X0,n

)
= py · ex

(qy)
0 − αλ ,

then one can conclude that limn→∞ Hλ(PA,n||PH,n) = 0. As a first step, for verifying h(y) < 0 we look

for an upper bound x
(qy)
0 for the fixed point x

(qy)
0 where the latter exists for y ≥ y1 (say). Notice that

Q
(qy)
λ (x) :=

1
2

x2 + qyx + qy − β• ≥ qy · ex − β• = ξ
(qy)
λ (x) , (A6)

since Q
(qy)
λ (0) = ξ

(qy)
λ (0), Q

(qy) ′
λ (0) = ξ

(qy) ′
λ (0) and Q

(qy) ′′
λ (x) ≥ ξ

(qy) ′′
λ (x) for x ∈ [0,− log(qy)].

For sufficiently large y ≥ y2 ≥ y1 (say), we easily obtain the smaller solution of Q
(qy)
λ (x) = x as

x(qy)
0 = (1− qy)−

√
(1− qy)2 − 2(qy − β•) = (1− φ′λ(y)− β•)−

√
(1− φ′λ(y)− β•)2 − 2φ′λ(y) ≥ x(qy)

0 (A7)
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where the expression in the root is positive since qy ↘ β• for y→ ∞. We now have

h(y) = py · ex
(qy)
0 − αλ ≤ py · ex

(qy)
0 − αλ =: h(y) , ∀ y ≥ y2 . (A8)

Hence, it suffices to show that h(y) < 0 for some y ≥ y2. We recall from Properties 3 (P15), (P17) and
(P19) that

φλ(y) =
(
αA + β• · y

)λ(
αH + β• · y

)1−λ − λ (αA + β• · y)− (1− λ) (αH + β• · y) < 0,

φ′λ(y) = λ · β• ·
(

αA + β• · y
αH + β• · y

)λ−1
+ (1− λ) · β• ·

(
αA + β• · y
αH + β• · y

)λ

− β• > 0 and that

φ′′λ(y) = −
(

αA + β• · y
αH + β• · y

)λ

· λ(1− λ) · β2• · (αA − αH)2

(αA + β• · y)2(αH + β• · y)
< 0 , (A9)

which immediately implies limy→∞ φλ(y) = limy→∞ φ′λ(y) = limy→∞ φ′′λ(y) = 0 and with
l’Hospital’s rule

lim
y→∞

y · φλ(y) = lim
y→∞
−y2 · φ′λ(y) = lim

y→∞

y3

2
· φ′′λ(y) (A10)

= − 1
2

lim
y→∞

(
αA + β• · y
αH + β• · y

)λ

· λ(1− λ) · β2• · (αA − αH)2

(αA/y + β•)2(αH/y + β•)
= − 1

2
λ(1− λ) · (αA − αH)2

β•
.

The formulas (A5), (A7) and (A9) imply the limits limy→∞ py = αλ, limy→∞ qy = β•, limy→∞ x
(qy)
0 = 0.

Notice that py < αλ holds trivially for all y ≥ 0 since the intercept (py−αλ) of the tangent line φtan
λ,y(·)

is negative. Incorporating (A8) we therefore obtain limy→∞ h(y) ≤ limy→∞ h(y) = 0. As mentioned
before, for the proof it is sufficient to show that h(y) < 0 for some y ≥ y2. This holds true if
limy→∞ y · h(y) < 0. To verify this, notice first that from (A5), (A7) and (A8) we get

h
′
(y) = −py · ex

(qy)
0 · φ′′λ(y) ·


1− 2− φ′λ(y)− β•√

(1− qy)2 − 2(qy − β•)


 − y · φ′′λ(y) · ex

(qy)
0

y→∞−→ 0. (A11)

Finally we obtain with (A10)

lim
y→∞

y · h(y) = − lim
y→∞

y2 · h′(y)

= lim
y→∞

py · ex
(qy)
0 · y2 · φ′′λ(y) ·


1− 2− φ′λ(y)− β•√

(1− qy)2 − 2(qy − β•)


 + y3 · φ′′λ(y) · ex

(qy)
0

= 0 − λ(1− λ) · (αA − αH)2

β•
< 0 .

Proof of Corollary 1. Part (a) follows directly from Proposition 1 (a),(b) and the limit
limn→∞ Hλ(PA,n||PH,n) = 0 in the respective part (c) of the Propositions 7, 8, 9 as well as from (51).
To prove part (b), according to (26) we have to verify lim infλ↗1 {lim infn→∞ Hλ (PA,n||PH,n)} = 1.

From part (c) of Proposition 2 we see that this is satisfied iff limλ↑1 x
(qE

λ)
0 = 0. Recall that for fixed

λ ∈]0, 1[ we have βλ = λβA+ (1− λ)βH > 0, qE
λ = βλ

Aβ1−λ
H < βλ (cf. Lemma A1) and from Properties

1 (P1) the unique negative solution x
(qE

λ)
0 ∈] − βλ, qE

λ − βλ[ of ξ
(qE

λ)
λ (x) = qE

λex − βλ = x (cf. (44)).

Due to the continuity and boundedness of the map λ 7→ x
(qE

λ)
0 (for λ ∈ [0, 1]) one gets that limλ↗1 x

(qE
λ)

0
exists and is the smallest nonpositive solution of βAex − βA = x. From this, the part (b) as well as
the non-contiguity in part (c) follow immediately. The other part of (c) is a direct consequence of
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Proposition 1 (a),(b) and Proposition 2 (c).

Proof of Formula (59) . One can proceed similarly to the proof of formula (51) above. Recall
Hλ(PA,1||PH,1) = exp{φλ(X0)} > 1 for X0 ∈ N

(
cf. (28), Lemma A1 and fA(X0) 6= fH(X0) for

all X0 ∈ N
)
. For (βA, βH, αA, αH, λ) ∈ PSP,2 × (R\[0, 1]) one gets φλ(0) = 0, φλ(1) > 0, and we define

for x ≥ 0

φλ(x) :=

{
φλ(1) , if x = 1,
0, if x 6= 1.

By means of the choice ε := ϕλ(1) ·
(

eφλ(1) − 1
)
> 0, we obtain for all n ∈ N\{1}

∞

∑
xn−1=0

[ϕλ(xn−2)]
xn−1

xn−1!
· exp

{
φλ(xn−1)

}
≥

∞

∑
xn−1=0

[
ϕλ(xn−2)

]xn−1

xn−1!
· exp

{
φλ(xn−1)

}

= exp
{

ϕλ(xn−2)
}
+ ε = exp

{
ϕλ(xn−2)

}
·
[
1 + ε · exp

{
− ϕλ(xn−2)

}]
.

Incorporating

inf
x∈N0

{
exp

{
φλ(x)

}
·
[
1 + ε · exp

{
− ϕλ(x)

}]}
=: δ > 1 ,

one can show analogously to (A4) that

Hλ (PA,n||PH,n) ≥ · · · ≥ δbn/2c n→∞−→ ∞.

Proof of the Formulas (61), (63) and (64). In the following, we slightly adapt the above-mentioned
proof of formula (59). Let us define

φλ(x) :=

{
φλ(0) , if x = 0,
0, if x > 0.

In all respective subcases one clearly has φλ(0) = φλ(0) > 0. With ε := eφλ(0) − 1 > 0 we obtain for all
n ∈ N\{1}

∞

∑
xn−1=0

[ϕλ(xn−2)]
xn−1

xn−1!
· exp

{
φλ(xn−1)

}
≥

∞

∑
xn−1=0

[
ϕλ(xn−2)

]xn−1

xn−1!
· exp

{
φλ(xn−1)

}

= exp
{

ϕλ(xn−2)
}
+ ε = exp

{
ϕλ(xn−2)

}
·
[
1 + ε · exp

{
− ϕλ(xn−2)

}]
.

By employing

inf
x∈N0

{
exp

{
φλ(x)

}
·
[
1 + ε · exp

{
− ϕλ(x)

}]}
=: δ > 1 , (A12)

one can show analogously to (A4) that

Hλ (PA,n||PH,n) ≥ · · · ≥ δbn/2c n→∞−→ ∞.

Notice that this method does not work for the parameter cases PSP,4a ∪ PSP,4b, since there the infimum
in (A12) is equal to one.
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Proof of Proposition 13. In the setup (βA, βH, αA, αH, λ) ∈ PSP,4a× (R\[0, 1]) we require β• := βA =

βH < 1. As in the proof of Proposition 9, we stick to the tangent line φtan
λ,y(·) at y ≥ 0 (cf. (52)) as a

linear lower bound for φλ(·), i.e., we use the function

φtan
λ,y(x) :=

(
py − αλ

)
+
(
qy − β•

)
· x :=

(
ptan

λ,y − αλ

)
+
(

qtan
λ,y − βλ

)
· x :=

(
φλ(y)− y · φ′λ(y)

)
+ φ′λ(y) · x . (A13)

As already mentioned in Section 3.21, on PSP,4a the function φλ(·) is strictly decreasing and converges
to 0. Thus, for all y ≥ 0 the slope φ′λ(y) of the tangent line at y is negative, which implies that
qy < βλ = β•. For λ ∈ R\[0, 1] there clearly may hold qy < 0 for some y ∈ R. However, there exists a
sufficiently large y1 > 0 such that qy > 0 for all y > y1, since limy→∞ φ′λ(y) = 0 and hence qy ↗ β• > 0

for y→ ∞. Thus, let us suppose that y > y1. Then, the sequence
(

a
(qy)
n

)
n∈N

is strictly negative, strictly

decreasing and converges to x
(qy)
0 ∈]− β•, qy − β•[ (cf. Properties 1 (P1)). If there is some y ≥ y1 such

that h(y) > 0 with

h(y) := lim
n→∞

1
n

log
(

B̃
(py ,qy)
λ,X0,n

)
= py · ex

(qy)
0 − αλ ,

then one can conclude that limn→∞ Hλ(PA,n||PH,n) = ∞. Let us at first consider the case αλ ≥ 0.
By employing py ↘ αλ for y → ∞, one gets py > 0 for all y ≥ 0. Analogously to the proof of

Proposition 9, we now look for a lower bound x
(qy)
0 of the fixed point x

(qy)
0 . Notice that x

(qy)
0 >

−β• implies

Q
(qy)
λ (x) :=

e−β•

2
· qy · x2 + qy · x + qy − β• ≤ qy · ex − β• = ξ

(qy)
λ (x) , (A14)

since Q
(qy)
λ (0) = ξ

(qy)
λ (0) < 0, Q

(qy) ′
λ (0) = ξ

(qy) ′
λ (0) > 0 and 0 < Q

(qy) ′′
λ (x) < ξ

(qy) ′′
λ (x) for

x ∈]− β•, 0]. Thus, the negative solution x
(qy)
0 of the equation Q

(qy)
λ (x) = x (which definitely exists)

implies that there holds x
(qy)
0 ≤ x

(qy)
0 . We easily obtain

x(qy)
0 =

eβ•

qy

[
(1− qy) −

√
(1− qy)2 − 2e−β•qy(qy − β•)

]

=
eβ•

φ′λ(y) + β•

[
(1− φ′λ(y)− β•) −

√
(1− φ′λ(y)− β•)2 − 2 · e−β•qy · φ′λ(y)

]
< 0. (A15)

Since
h(y) = py · ex

(qy)
0 − αλ ≥ py · ex

(qy)
0 − αλ =: h(y) , (A16)

it is sufficient to show h(y) > 0 for some y > y1. We recall from Properties 3 (P15), (P17) and (P19) that

φλ(y) =
(
αA + β• · y

)λ(
αH + β• · y

)1−λ − λ (αA + β• · y)− (1− λ) (αH + β• · y) > 0,

φ′λ(y) = λ · β• ·
(

αA + β• · y
αH + β• · y

)λ−1
+ (1− λ) · β• ·

(
αA + β• · y
αH + β• · y

)λ

− β• < 0 and

φ′′λ(y) = −
(

αA + β• · y
αH + β• · y

)λ

· λ(1− λ) · β2• · (αA − αH)2

(αA + β• · y)2(αH + β• · y)
> 0, (A17)

which immediately implies limy→∞ φλ(y) = limy→∞ φ′λ(y) = limy→∞ φ′′λ(y) = 0, and by means of
l’Hospital’s rule

lim
y→∞

y · φλ(y) = lim
y→∞
−y2 · φ′λ(y) = lim

y→∞

y3

2
· φ′′λ(y) (A18)

= −1
2

lim
y→∞

(
αA + β• · y
αH + β• · y

)λ

· λ(1− λ) · β2• · (αA − αH)2

(αA/y + β•)2(αH/y + β•)
= −1

2
λ(1− λ) · (αA − αH)2

β•
.
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The Formulas (A13), (A15), (A17) imply the limits limy→∞ py = αλ, limy→∞ qy = β• and

limy→∞ x
(qy)
0 = 0 iff β• ≤ 1. The latter is due to the fact that for β• > 1 one gets with

(A15) limy→∞ x
(qy)
0 = eβ•

β•

[
(1 − β•) −

√
(1− β•)2

]
= eβ•

β•

[
2 − 2β•

]
6= 0. In the following, let us

assume β• < 1 (the reason why we exclude the case β• = 1 is explained below). One gets
limy→∞ h(y) ≥ limy→∞ h(y) = 0. Since we have to prove that h(y) > 0 for some y > y1, it is
sufficient to show that limy→∞ y · h(y) > 0. To verify the latter, we first derive with l’Hospital’s rule
and with (A17), (A18)

lim
y→∞

y ·
(

1− ex
(qy )
0

)
= lim

y→∞
y2 · ex

(qy )
0 ·

(
∂

∂y
x(qy)

0

)

= lim
y→∞

{
y2 · −eβ• · φ′′λ(y)(

φ′λ(y) + β•
)2 ·

[
(1− qy) −

√
(1− qy)2 − 2e−β•qy(qy − β•)

]

+
eβ•

qy
·

−y2 · φ′′λ(y)−

−2y2φ′′λ(y)(1− qy)− 2y2φ′′λ(y)e
−β•qy − 2y2φ′′λ(y)e

−β•φ′λ(y)

2 ·
√
(1− qy)2 − 2e−β•qy(qy − β•)



}

= 0 . (A19)

Notice that without further examination this limit would not necessarily hold for β• = 1, since then
the denominator in (A19) converges to zero. With (A13), (A16), (A18) and (A19) we finally obtain

lim
y→∞

y · h(y) = lim
y→∞

{(
y · φλ(y)− y2 · φ′λ(y)

)
· ex

(qy)
0 − y ·

(
1− ex

(qy)
0

)
αλ

}

= −λ(1− λ)
(αA − αH)2

β•
> 0 . (A20)

Let us now consider the case αλ < 0. The proof works out almost completely analogous to the case
αλ ≥ 0. We indicate the main differences. Since py ↘ αλ < 0 and qy ↗ β• ∈]0, 1[ for y→ ∞, there is a
sufficiently large y2 > y1, such that py < 0 and qy > 0. Thus,

Q
(qy)
λ (x) :=

qy

2
· x2 + qy · x + qy − β• ≥ ξ

(qy)
λ (x) = qyex − β• for x ∈]−∞, 0].

The corresponding (existing) smaller solution of Q
(qy)
λ (x) = x is

x
(qy)
0 =

1
qy

[
(1− qy) −

√
(1− qy)2 − 2qy(qy − β•)

]
,

having the same form as the solution (A15) with e−β• substituted by 1. Notice that there clearly holds

x
(qy)
0 < x

(qy)
0 < 0. However, since py < 0, we now get h(y) = py · ex

(qy)
0 − αλ ≥ py · ex

(qy)
0 − αλ =: h(y),

as in (A16). Since all calculations (A17) to (A20) remain valid (with e−β• substituted by 1), this proof
is finished.

Appendix A.2. Proofs and Auxiliary Lemmas for Section 5

We start with two lemmas which will be useful for the proof of Theorem 3. They deal with the
sequence

(
a(qλ)

n

)
n∈N

from (36).

Lemma A2. For arbitrarily fixed parameter constellation (βA, βH, αA, αH, λ) ∈ P×]0, 1[, suppose that
qλ > 0 and limλ↗1 qλ = βA holds. Then one gets the limit

∀ n ∈ N : lim
λ↗1

a(qλ)
n = 0. (A21)
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Proof. This can be easily seen by induction: for n = 1 there clearly holds

lim
λ↗1

a(qλ)
1 = lim

λ↗1
(qλ − βλ) = βA − βA = 0 .

Assume now that limλ↗1 a(qλ)
k = 0 holds for all k ∈ N, k ≤ n− 1, then

lim
λ↗1

a(qλ)
n = lim

λ↗1
(qλ · ea

(qλ)
n−1 − βλ) = βA · 1− βA = 0 .

Lemma A3. In addition to the assumptions of Lemma A2, suppose that λ 7→ qλ is continuously differentiable
on ]0, 1[ and that the limit l := limλ↗1

∂ qλ
∂λ is finite. Then, for all n ∈ N one obtains

lim
λ↗1

∂ a(qλ)
n

∂λ
= un :=





l+βH−βA
1−βA

·
(
1− (βA)

n) , if βA 6= 1,

n · (l + βH − 1) , if βA = 1,
(A22)

which is the unique solution of the linear recursion equation

un = l + βH − βA + βA · un−1 , u0 = 0 . (A23)

Furthermore, for all n ∈ N there holds

n

∑
k=1

lim
λ↗1

∂ a(qλ)
k

∂λ
=

n

∑
k=1

uk =





l+βH−βA
1−βA

·
[
n− βA

1−βA

(
1− (βA)

n)] , if βA 6= 1,

n·(n+1)
2 · (l + βH − 1) , if βA = 1.

Proof. Clearly, un defined by (A22) is the unique solution of (A23). We prove by induction that

limλ↗1
∂ a

(qλ)
n

∂λ = un holds. For n = 1 one gets

lim
λ↗1

∂ a(qλ)
1

∂λ
= lim

λ↗1

∂ (qλ − βλ)

∂λ
= l − (βA − βH) = u1.

Suppose now that (A22) holds for all k ∈ N, k ≤ n− 1. Then, by incorporating (A21) we obtain

lim
λ↗1

∂ a(qλ)
n

∂λ
= lim

λ↗1

∂

∂λ

(
qλ · ea

(qλ)
n−1 − βλ

)
= lim

λ↗1
ea

(qλ)
n−1 ·


∂ qλ

∂λ
+ qλ

∂ a(qλ)
n−1

∂λ


− (βA − βH)

= l − (βA − βH) + βA · un−1 = un.

The remaining assertions follow immediately.

We are now ready to give the

Proof of Theorem 3. (a) Recall that for the setup (βA, βH, αA, αH) ∈ (PNI ∪ PSP,1) we chose the
intercept as pλ := pE

λ := αλ
Aα1−λ
H and the slope as qλ := qE

λ := βλ
Aβ1−λ
H , which in (39) lead to the exact
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value Vλ,X0,n of the Hellinger integral. Because of pλ
qλ

βλ − αλ = 0 as well as limλ↗1 qλ = βA, we obtain
by using (38) and Lemma A2 for all X0 ∈ N and for all n ∈ N

lim
λ↗1

Vλ,X0,n := lim
λ↗1

exp

{
a(qλ)

n · X0 +
n

∑
k=1

b(pλ ,qλ)
k

}
= lim

λ↗1
exp

{
a(qλ)

n · X0 +
αA
βA

n

∑
k=1

a(qλ)
k

}
= 1,

which leads by (68) to

I(PA,n||PH,n) = lim
λ↗1

1− Hλ(PA,n||PH,n)

λ · (1− λ)
= lim

λ↗1

1−Vλ,X0,n

λ · (1− λ)

= lim
λ↗1

−Vλ,X0,n

1− 2λ
· ∂

∂λ

[
a(qλ)

n · X0 +
pλ

qλ

n

∑
k=1

a(qλ)
k

]

= lim
λ↗1


∂ a(qλ)

n
∂λ

· X0 +

(
∂

∂λ

pλ

qλ

)
·

n

∑
k=1

a(qλ)
k +

pλ

qλ
·

n

∑
k=1

∂ a(qλ)
k

∂λ


 . (A24)

For further analysis, we use the obvious derivatives

∂ pλ

∂λ
= pλ log

(
αA
αH

)
,

∂

∂λ

pλ

qλ
=

pλ

qλ
log
(

αAβH
αHβA

)
,

∂ qλ

∂λ
= qλ log

(
βA
βH

)
, (A25)

where the subcase (βA, βH, αA, αH) ∈ PNI (with pλ ≡ 0) is consistently covered. From (A25) and
Lemma A3 we deduce

lim
λ↗1

∂ a(qλ)
n

∂λ
· X0 =





(
βA log

(
βA
βH

)
− (βA − βH)

)
· 1−(βA)

n

1−βA
· X0, if βA 6= 1,

n ·
(

βA log
(

βA
βH

)
− (βA − βH)

)
· X0, if βA = 1,

and by means of (A21)

∀ n ∈ N : lim
λ↗1

[(
∂

∂λ

pλ

qλ

)
·

n

∑
k=1

a(qλ)
k

]
= 0.

For the last expression in (A24) we again apply Lemma A3 to end up with

lim
λ↗1

pλ

qλ
·

n

∑
k=1

∂

∂λ
a(qλ)

k =





αA ·
[

βA log
(

βA
βH

)
−(βA−βH)

]

βA(1−βA)
·
[
n− βA

1−βA

(
1− (βA)

n)] , if βA 6= 1,

n · (n + 1) αA
2βA
·
[

βA log
(

βA
βH

)
− (βA − βH)

]
, if βA = 1,

(A26)

which finishes the proof of part (a). To show part (b), for the corresponding setup (βA, βH, αA, αH)
∈ PSP\PSP,1 let us first choose – according to (45) in Section 3.4—the intercept as pλ := pL

λ := αλ
Aα1−λ
H

and the slope as qλ := qL
λ := βλ

Aβ1−λ
H , which in part (b) of Proposition 6 lead to the lower bounds BL

λ,X0,n
of the Hellinger integral. This is formally the same choice as in part (a) satisfying limλ↗1 pλ = αA,
limλ↗1 qλ = βA but in contrast to (a) we now have pλ

qλ
βλ − αλ 6= 0 but nevertheless

lim
λ↗1

pλ

qλ
βλ − αλ = 0.

From this, (38), part (b) of Proposition 6 and Lemma A2 we obtain

lim
λ↗1

BL
λ,X0,n = lim

λ↗1
exp

{
a(qλ)

n · X0 +
pλ

qλ

n

∑
k=1

a(qλ)
k + n ·

(
pλ

qλ
βλ − αλ

)}
= 1 (A27)
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and hence

I(PA,n||PH,n) ≤ lim
λ↗1

1− BL
λ,X0,n

λ · (1− λ)
= lim

λ↗1

−BL
λ,X0,n

1− 2λ
· ∂

∂λ

[
a(qλ)

n X0 +
pλ

qλ

n

∑
k=1

a(qλ)
k + n

(
pλ

qλ
βλ − αλ

)]

= lim
λ↗1


 ∂ a(qλ)

n
∂λ

X0 +

(
∂

∂λ

pλ

qλ

) n

∑
k=1

a(qλ)
k +

pλ

qλ

n

∑
k=1

∂ a(qλ)
k

∂λ
+ n

∂

∂λ

(
pλ

qλ
βλ − αλ

)
. (A28)

In the current setup, the first three expressions in (A28) can be evaluated in exactly the same way as
in (A25) to (A26), and for the last expression one has the limit

∂

∂λ

(
pλ

qλ
βλ − αλ

)
=

pλ

qλ
log
(

αAβH
αHβA

)
· βλ +

pλ

qλ
· (βA − βH) − (αA − αH)

λ↗1−→ αA

[
log
(

αAβH
αHβA

)
− βH

βA

]
+ αH ,

which finishes the proof of part (b).

Proof of Theorem 4. Let us fix (βA, βH, αA, αH) ∈ PSP\PSP,1, X0 ∈ N, n ∈ N and y ∈ [0, ∞[. The lower bound
EL,tan

y,X0,n of the Kullback-Leibler information divergence (relative entropy) is derived by using φU
λ ≡ φtan

λ,y
(cf. (52)), which corresponds to the tangent line of φλ at y, as a linear upper bound for φλ (λ ∈]0, 1[). More
precisely, one gets φU

λ (x) := (pU
λ − αλ) + (qU

λ − βλ) x (x ∈ [0, ∞[) with pλ := pλ(y) := φλ(y)− yφ′λ(y) + αλ

and qλ := qλ(y) := φ′λ(y) + βλ, implying qλ > 0 because of Properties 3 (P17). Analogously to (A27) and
(A28), we obtain from (38) and (40) the convergence limλ↗1 BU

λ,X0,n = 1 and thus

I(PA,n||PH,n) ≥ lim
λ↗1


 ∂ a(qλ)

n
∂λ

X0 +

(
∂

∂λ

pλ

qλ

) n

∑
k=1

a(qλ)
k +

pλ

qλ

n

∑
k=1

∂ a(qλ)
k

∂λ
+ n

∂

∂λ

(
pλ

qλ
βλ − αλ

)
 . (A29)

As before, we compute the involved derivatives. From (30) to (32) as well as (P17) we get

∂pλ

∂λ
=

(
fA(y)
fH(y)

)λ

fH(y) log
(

fA(y)
fH(y)

)
− βAy

(
fA(y)
fH(y)

)λ−1
− λβAy

(
fA(y)
fH(y)

)λ−1
log
(

fA(y)
fH(y)

)

+ βHy
(

fA(y)
fH(y)

)λ

− (1− λ)βHy
(

fA(y)
fH(y)

)λ

log
(

fA(y)
fH(y)

)

λ↗1−→ αA log
(

fA(y)
fH(y)

)
+

y · (αAβH − αHβA)
fH(y)

, (A30)

and
∂qλ

∂λ
= βA

(
fA(y)
fH(y)

)λ−1
+ λβA

(
fA(y)
fH(y)

)λ−1
log
(

fA(y)
fH(y)

)
− βH

(
fA(y)
fH(y)

)λ

+ (1− λ)βH

(
fA(y)
fH(y)

)λ

log
(

fA(y)
fH(y)

)

λ↗1−→ βA

(
1 + log

(
fA(y)
fH(y)

))
− βH

fA(y)
fH(y)

=: l. (A31)

Combining these two limits we get

∂

∂λ

(
pλ

qλ
βλ − αλ

)
=

qλ

(
∂pλ

∂λ

)
− pλ

(
∂qλ

∂λ

)

(qλ)2 · βλ +
pλ

qλ
· (βA − βH)− (αA − αH)

λ↗1−→
[

y · (αAβH − αHβA)
fH(y)

− αA

(
1− βH fA(y)

βA fH(y)

)]
+ αH −

αAβH
βA

.

=

(
αH − αA

βH
βA

)(
1− fA(y)

fH(y)

)
. (A32)
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The above calculation also implies that limλ↗1

(
∂

∂λ
pλ

qλ

)
is finite and thus limλ↗1

(
∂

∂λ
pλ

qλ

)
∑n

k=1 a(qλ)
k = 0

by means of Lemma A2. The proof of I(PA,n||PH,n) ≥ EL,tan
y,X0,n is finished by using Lemma A3 with l

defined in (A31) and by plugging the limits (A30) to (A32) in (A29).
To derive the lower bound EL,sec

k,X0,n (cf. (73)) for fixed k ∈ N0, we use as a linear upper bound φU
λ for

φλ(·) (λ ∈]0, 1[) the secant line φsec
λ,k (cf. (53)) of φλ across its arguments k and k + 1, corresponding to the

choices pλ := psec
λ,k = (k + 1) · φλ(k)− k · φλ(k + 1) + αλ and qλ := qsec

λ,k := φλ(k + 1)− φλ(k) + βλ, implying
qλ > 0 because of Properties 3 (P18). As a side remark, notice that this φU

λ (x) may become positive for
some x ∈ [0, ∞[ (which is not always consistent with Goal (G1) for fixed λ, but leads to a tractable limit
bound as λ tends to 1). Analogously to (A27) and (A28) we get again limλ↗1 BU

λ,X0,n = 1, which leads to
the lower bound given in (A29) with appropriately plugged-in quantities. As in the above proof of the
lower bound EL,tan

y,X0,n, the inequality I(PA,n||PH,n) ≥ EL,sec
k,X0,n follows straightforwardly from Lemma A2,

Lemma A3 and the three limits

∂pλ

∂λ
=

(
fA(k)
fH(k)

)λ

fH(k) · (k+1) log
(

fA(k)
fH(k)

)
−
(

fA(k+1)
fH(k+1)

)λ

fH(k+1) · k log
(

fA(k+1)
fH(k+1)

)

λ↗1−→ fA(k)(k+1) log
(

fA(k)
fH(k)

)
− fA(k+1)k log

(
fA(k+1)
fH(k+1)

)
,

∂qλ

∂λ
=

(
fA(k+1)
fH(k+1)

)λ

fH(k+1) log
(

fA(k+1)
fH(k+1)

)
−
(

fA(k)
fH(k)

)λ

fH(k) log
(

fA(k)
fH(k)

)

λ↗1−→ fA(k+1) log
(

fA(k+1)
fH(k+1)

)
− fA(k) log

(
fA(k)
fH(k)

)
=: l , and

∂

∂λ

(
pλ

qλ
βλ − αλ

)
=

qλ

(
∂pλ

∂λ

)
− pλ

(
∂qλ

∂λ

)

(qλ)2 · βλ +
pλ

qλ
· (βA − βH)− (αA − αH)

λ↗1−→ fA(k) log
(

fA(k)
fH(k)

)(
k+1 +

αA
βA

)
− fA(k+1) log

(
fA(k+1)
fH(k+1)

)(
k +

αA
βA

)
− αAβH

βA
+ αH.

To construct the third lower bound EL,hor
X0,n (cf. (74)), we start by using the horizontal line φhor

λ (·) (cf. (54))
as an upper bound of φλ. For each fixed λ ∈]0, 1[, it is defined by the intercept supx∈N0

φλ(x). On PSP,3a ∪
PSP,3b, this supremum is achieved at the finite integer point z∗λ := arg maxx∈N0 φλ(x) (since limx→∞ φλ(x) =
−∞) and there holds φλ(z∗λ) < 0 which leads with the parameters qλ = βλ, pλ = φλ(z∗λ) + αλ to the
Hellinger integral upper bound BU

λ,X0,n = exp
{

φλ(z∗λ) · n
}
< 1 (cf. Remark 1 (b)). We strive for computing

the limit limλ↗1
1−BU

λ,X0,n

λ(1−λ)
, which is not straightforward to solve since in general it seems to be intractable

to express z∗λ explicitly in terms of λ. To circumvent this problem, we notice that it is sufficient to
determine z∗λ in a small ε−environment ]1− ε, 1[. To accomplish this, we incorporate limλ↗1 φλ(x) = 0
for all x ∈ [0, ∞[ and calculate by using l’Hospital’s rule

lim
λ↗1

φλ(x)
1− λ

= (αA + βAx)
[
− log

(
αA + βAx
αH + βHx

)
+ 1
]
− (αH + βHx).

Accordingly, let us define z∗ := arg maxx∈N0

{
(αA + βAx)

[
− log

(
αA+βAx
αH+βHx

)
+ 1
]
− (αH + βHx)

}
(note that

the maximum exists since limx→∞

{
(αA + βAx)

[
− log

(
αA+βAx
αH+βHx

)
+ 1
]
− (αH + βHx)

}
= −∞). Due to

continuity of the function (λ, x) 7→ φλ(x)
1−λ , there exists an ε > 0 such that for all λ ∈]1 − ε, 1[ there

holds z∗λ = z∗. Applying these considerations, we get with l’Hospital’s rule

I(PA,n||PH,n) ≥ lim
λ↗1

1− exp {φλ(z∗) · n}
λ(1− λ)

=

[
fA(z∗) ·

[
log
(

fA(z∗)
fH(z∗)

)
− 1
]
+ fH(z∗)

]
· n ≥ 0. (A33)

In fact, for the current parameter constellation PSP,3a ∪ PSP,3b we have φλ(x) < 0 for all λ ∈]0, 1[ and all
x ∈ N0 which implies fA(z∗) 6= fH(z∗) by Lemma A1; thus, we even get EL,hor

X0,n > 0 for all n ∈ N by virtue

of the inequality − log
(

fH(z∗)
fA(z∗)

)
> − fH(z∗)

fA(z∗)
+ 1.
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For the case PSP,2, the above-mentioned procedure leads to z∗λ = 0 = z∗ (λ ∈]0, 1[) which implies

φλ(z∗λ) = 0, BU
λ,X0,n ≡ 1 and thus the trivial lower bound EL,hor

X0,n = limλ↗1
1−BU

λ,X0,n

λ(1−λ)
= 0 follows for all n ∈ N.

In contrast, for the case PSP,3c one gets z∗λ = αA−αH
βH−βA

= z∗ (λ ∈]0, 1[) which nevertheless also implies

φλ(z∗λ) = 0 and hence EL,hor
X0,n ≡ 0. On PSP,4, we have supx∈N0

φλ(x) = limx→∞ φλ(x) = 0 and hence we set
EL,hor

X0,n ≡ 0.
To show the strict positivity EL

X0,n > 0 in the parameter case PSP,2, we inspect the bound EL,sec
0,X0,n.

With α := α• := αA = αH (the bullet will be omitted in this proof) and the auxiliary variable x := βH
βA

> 0,
the definition (73) respectively its special case (76) rewrites for all n ∈ N as

EL,sec
0,X0,n := EL,sec

0,X0,n(x) :=





[
−(α + βA) · log

(
α+βAx
α+βA

)
+ βA(x− 1)

]
· 1−(βA)n

1−βA
·
[

X0 − α
1−βA

]

+
[

α
βA(1−βA)

(
−(α + βA) · log

(
α+βAx
α+βA

)
+ βA(x− 1)

)

+ α
βA

(α + βA) · log
(

α+βAx
α+βA

)
− α(x− 1)

]
· n , if βA 6= 1,

[
−(α + 1) · log

(
α+x
α+1

)
+ x− 1

]
·
[

α
2 · n2 +

(
X0 +

α
2
)
· n
]

+
[
(α + 1) · log

(
α+x
α+1

)
− x + 1

]
· α · n , if βA = 1.

(A34)

To prove that EL,sec
0,X0,n > 0 for all X0 ∈ N and all n ∈ N it suffices to show that EL,sec

0,X0,n(1) =
(

∂
∂x EL,sec

0,X0,n

)
(1) = 0

and
(

∂2

∂x2 EL,sec
0,X0,n

)
(x) > 0 for all x ∈]0, ∞[\{1}. The assertion EL,sec

0,X0,n(1) = 0 is trivial from (A34). Moreover,
we obtain

(
∂

∂x
EL,sec

0,X0,n

)
(x) =





βA ·
[
1− α+βA

α+βAx

]
· 1−(βA)n

1−βA
·
[

X0 − α
1−βA

]

+ α ·
(

1− α+βA
α+βAx

)
· βA

1−βA
· n , if βA 6= 1,

[
1− α+1

α+x

]
·
[

α
2 · n2 +

(
X0 − α

2
)
· n
]

, if βA = 1,

which immediately yields
(

∂
∂x EL,sec

0,X0,n

)
(1) = 0. For the second derivative we get

(
∂2

∂x2 EL,sec
0,X0,n

)
(x) =





(α+βA)·β2
A

(α+βAx)2 · 1−(βA)n

1−βA
·
[

X0 − α
1−βA

]

+ α
α+βA

(α+βAx)2 · β2
A

1−βA
· n > 0, if βA 6= 1,

α+1
(α+x)2 ·

[
α
2 · n2 +

(
X0 − α

2
)
· n
]
> 0, if βA = 1,

(A35)

where the strict positivity of EL,sec
0,X0,n in the case βA 6= 1 follows immediately by replacing X0 with 0 and

by using the obvious relation 1
1−βA

·
[
n− 1−βn

A
1−βA

]
= 1

1−βA ∑n−1
k=0

(
1− βk

A
)
> 0. The strict positivity in the

case βA = 1 is trivial by inspection.
For the constellation PSP,4 with parameters β := β• := βA = βH, αA 6= αH, the strict positivity of

EL
X0,n > 0 follows by showing that EL,tan

y,X0,n converges from above to zero as y tends to infinity. This is
done by proving limy→∞ y · EL,tan

y,X0,n ∈]0, ∞[. To see this, let us first observe that by l’Hospital’s rule we get

lim
y→∞

y · log
(

αA + βy
αH + βy

)
=

αA − αH
β

as well as lim
y→∞

y ·
(

1− αA + βy
αH + βy

)
= −αA − αH

β
.

From this and (72), we obtain limy→∞ y · EL,tan
y,X0,n = (αA−αH)2

β · n > 0 in both cases β 6= 1 and β = 1.
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Finally, for the parameter case PSP,3c we consider the bound EL,tan
y∗ ,X0,n, with y∗ = αA−αH

βH−βA
. Since

αA + βAy∗ = αH + βHy∗ , it is easy to see that EL,tan
y∗ ,X0,n = 0 for all n ∈ N. However, the condition(

∂
∂y EL,tan

y,X0,n

)
(y∗) 6= 0 implies that supy≥0 EL,tan

y,X0,n > 0. The explicit form (75) of this condition follows from

(
∂

∂y
EL,tan

y,X0,n

)
(y) =





(αAβH−αHβA)2

fA(y)( fH(y))
2 · 1−(βA)

n

1−βA
·
[

X0 − αA
1−βA

]

+
αAβH−αHβA

( fH(y))
2 ·

[
αA

βA(1−βA) fA(y)
− αAβH−αHβA

βA

]
· n , if βA 6= 1,

(αAβH−αH)2

fA(y)( fH(y))
2 ·
[ αA

2 · n2 +
(
X0 +

αA
2
)
· n
]
− (αAβH−αH)2

( fH(y))
2 · n , if βA = 1,

y ≥ 0, by using the particular choice y = y∗ together with fA(y∗) = fH(y∗) = − αAβH−αHβA
βA−βH

.

Appendix A.3. Proofs and Auxiliary Lemmas for Section 6

Proof of Lemma 2. A closed-form representation of a sequence (ãn)n∈N0
defined in (83) to (85) is given

by the formula

ãn =
n−1

∑
k=0

(c + ρk) dn−1−k. (A36)

This can be seen by induction: from (83) we obtain with ã0 = 0 for the first element ã1 = c + ρ0 =

∑0
k=0(c + ρk)d−k. Supposing that (A36) holds for the n-th element, the induction step is

ãn+1 = c + d · ãn + ρn = c + d ·
n−1

∑
k=0

(c + ρk) dn−1−k + ρn =
n

∑
k=0

(c + ρk) dn−k .

In order to obtain the explicit representation of ãn, we consider first the case 0 ≤ ν < κ < d and
ρn = K1 ·κn + K2 · νn, which leads to

ãn = dn−1
n−1

∑
k=0

(
c · d−k + K1 ·

(κ
d

)k
+ K2 ·

( ν

d

)k
)

= dn−1 ·
[

c · 1− d−n

1− d−1 + K1 ·
1−

(κ
d
)n

1− κ
d

+ K2 ·
1−

(
ν
d
)n

1− ν
d

]

=
c

1− d
(1− dn) + K1 ·

dn −κn

d−κ + K2 ·
dn − νn

d− ν
. (A37)

Hence, for the corresponding sum we get

n

∑
k=1

ãk =
n

∑
k=1

[
c

1− d
+

(
K1

d−κ +
K2

d− ν
− c

1− d

)
· dk − K1

d−κ ·κ
k − K2

d− ν
· νk
]

=
c

1− d
· n +

(
K1

d−κ +
K2

d− ν
− c

1− d

)
· d · (1− dn)

1− d
− K1 ·κ · (1−κn)

(d−κ)(1−κ) −
K2 · ν · (1− νn)

(d− ν)(1− ν)
.

(A38)

Consider now the case 0 ≤ ν < κ = d. Then some expressions in (A37) and (A38) have a zero
denominator. In this case, the evaluation of (A36) becomes

ãn = dn−1
n−1

∑
k=0

(
c · d−k + K1 + K2 ·

( ν

d

)k
)
= dn−1 ·

[
c · 1− d−n

1− d−1 + K1 · n + K2 ·
1−

(
ν
d
)n

1− ν
d

]

=
c

1− d
(1− dn) + K1 · n · dn−1 + K2 ·

dn − νn

d− ν
. (A39)
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Before we calculate the corresponding sum ∑n
k=1 ãk, we notice that

n

∑
k=1

k · dk−1 =
n

∑
k=1

∂

∂d
dk =

∂

∂d

n

∑
k=1

dk =
∂

∂d

(
d · (1− dn)

1− d

)
=

1− n · dn(1− d)− dn

(1− d)2 .

Using this fact, we obtain

n

∑
k=1

ãk =
n

∑
k=1

[
c

1− d
(1− dk) + K1 · k · dk−1 + K2 ·

dk − νk

d− ν

]

=
c

1− d
· n +

n

∑
k=1

(
K2

d− ν
− c

1− d

)
dk + K1

n

∑
k=1

k · dk−1 − K2
d− ν

n

∑
k=1

νk

=

(
K2

d− ν
− c

1− d

)
d · (1− dn)

1− d
+ K1 ·

1− n · dn(1− d)− dn

(1− d)2 − K2 · ν(1− νn)

(d− ν)(1− ν)
+

c
1− d

· n

=

(
K1

d(1− d)
+

K2
d− ν

− c
1− d

)
d · (1− dn)

1− d
− K2 · ν(1− νn)

(d− ν)(1− ν)
+

(
c

1− d
− K1 · dn

1− d

)
· n.

Proof of Lemma 3. (a) In this case we have 0 < q < βλ. To prove part (i), we consider the function ξ
(q)
λ (·)

on [x(q)0 , 0], the range of the sequence
(

a(q)n

)
n∈N

(recall Properties 1 (P1)). For tackling the left-hand

inequality in (i), we compare ξ
(q)
λ (x) = q · ex − βλ with the quadratic function

Υ(q)
λ (x) :=

q
2

ex(q)
0 · x2 + qex(q)

0

(
1− x(q)0

)
· x + x(q)0

(
1− qex(q)

0 +
q
2

ex(q)
0 x(q)0

)
. (A40)

Clearly, one has the relations Υ(q)
λ (x(q)0 ) = x(q)0 = ξ

(q)
λ (x(q)0 ), Υ(q) ′

λ (x(q)0 ) = q · ex(q)
0 = ξ

(q) ′
λ (x(q)0 ),

and Υ(q) ′′
λ (x) < ξ

(q) ′′
λ (x) for all x ∈]x(q)0 , 0]. Hence, Υ(q)

λ (·) is on ]x(q)0 , 0] a strict lower functional bound
of ξ

(q)
λ (·). We are now ready to prove the left-hand inequality in (i) by induction. For n = 1, we easily

see that a(q)1 < a(q)1 iff x(q)0

(
1− qex(q)

0 +
q
2 ex(q)

0 x(q)0

)
< q− βλ iff Υ(q)

λ (0) < ξ
(q)
λ (0), and the latter is obviously

true. Let us assume that a(q)n ≤ a(q)n holds. From this, (93), (78) and (80) we obtain

0 < ρ(q)
n

=
q
2

ex(q)
0

(
x(q)0 ·

(
q · ex(q)

0

)n )2

=
q
2

ex(q)
0

(
a(q),Tn − x(q)0

)2

<
q
2

ex(q)
0

(
a(q)n − x(q)0

)2
= Υ(q)

λ

(
a(q)n

)
− d(q),T · a(q)n − x(q)0 ·

(
1− d(q),T

)

< ξ
(q)
λ

(
a(q)n

)
− d(q),T · a(q)n − x(q)0 ·

(
1− d(q),T

)

< a(q)n+1 − d(q),T · a(q)n − x(q)0 ·
(

1− d(q),T
)

= a(q)n+1 − ξ
(q),T
λ (a(q)n ) .

Thus, there holds a(q)n+1 < a(q)n+1. For the right-hand inequality in (i), we proceed analogously:

Υ(q)
λ (x) :=

q
2

ex(q)
0 · x2 +


1− q

2
ex(q)

0 x(q)0 −
q− βλ

x(q)0


 · x + q− βλ (A41)

satisfies Υ(q)
λ (x(q)0 ) = x(q)0 = ξ

(q)
λ (x(q)0 ), Υ(q)

λ (0) = q − βλ = ξ
(q)
λ (0) as well as Υ(q) ′′

λ (x) < ξ
(q) ′′
λ (x) for all

x ∈]x(q)0 , 0]. Hence, Υ(q)
λ (·) is on ]x(q)0 , 0] a strict upper functional bound of ξ

(q)
λ (·). Let us first observe the
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obvious relation a(q)1 = q− βλ = a(q)1 < 0, and assume that a(q)n ≥ a(q)n (n ∈ N) holds. From this, (95), (79),
and (80) we obtain the desired inequality a(q)n+1 > a(q)n+1 by

0 > ρ
(q)
n = −Γ(q)

<

(
d(q),T

)n
· a(q),Sn

x(q)0

=
q
2

ex(q)
0

(
a(q),Tn − x(q)0

)
· a(q),Sn

≥ q
2

ex(q)
0

(
a(q)n − x(q)0

)
· a(q)n = Υ(q)

λ

(
a(q)n

)
− d(q),S · a(q)n − (q− βλ)

> ξ
(q)
λ

(
a(q)n

)
− d(q),S · a(q)n − (q− βλ) ≥ a(q)n+1 − d(q),S · a(q)n − (q− βλ) = a(q)n+1 − ξ

(q),S
λ (a(q)n ) .

The explicit representations of the sequences
(

a(q)n

)
n∈N

,
(

a(q)n

)
n∈N

and
(

a(q)n

)
n∈N

follow from (86) by
incorporating the appropriate constants mentioned in the prelude of Lemma 3. With (83) to (85) and
(86) we immediately achieve a(q)n > a(q),Tn for all n ∈ N. Analogously, for all n ≥ 2, we get ρn−1 < 0, which
implies that a(q)n < a(q),Sn for all n ≥ 2. For n = 1 one obtains ρ0 = 0 as well as a(q)1 = a(q),S1 = a(q)1 = q− βλ.

For the second part (ii), we employ the representation (A36) which leads to

a(q)n =
n−1

∑
k=0

(
d(q),T

)n−1−k
·
(

ρ
(q)
k + x(q)0 · (1− d(q),T)

)

as well as a(q)n =
n−1

∑
k=0

(
d(q),S

)n−1−k
·
(

ρ
(q)
k + (q− βλ)

)
.

The strict decreasingness of both sequences follows from

ρ
(q)
k + x(q)0 (1− d(q),T) =

qex(q)
0

2

(
x(q)0

)2 (
d(q),T

)2n
+ x(q)0

(
1− d(q),T

)
≤ Υ(q)

λ (0) < ξ
(q)
λ (0) = q− βλ < 0

and from the fact that ρ
(q)
k ≤ 0 for all k ∈ N0 and q < βλ. Part (iii) follows directly from (i), since

d(q),T , d(q),S ∈]0, 1[.
Let us now prove part (b), where max{0, βλ} < q < min

{
1 , eβλ−1

}
is assumed. To tackle part (i),

we compare ξ
(q)
λ (x) = q · ex − βλ with the quadratic function

υ
(q)
λ (x) :=

q
2
· x2 + q ·

(
ex(q)

0 − x(q)0

)
· x + x(q)0

(
1− qex(q)

0 +
q
2

x(q)0

)
> 0 (A42)

on the interval [0, x(q)0 ]. Clearly, we have υ
(q)
λ

(
x(q)0

)
= ξ

(q)
λ (x(q)0 ) = x(q)0 , υ

(q) ′
λ (x(q)0 ) = ξ

(q) ′
λ (x(q)0 ) = qex(q)

0

and 0 < υ
(q) ′′
λ (x) < ξ

(q) ′′
λ (x) for all x ∈]0, x(q)0 ]. Thus, υ

(q)
λ (·) constitutes a positive functional lower bound

for ξ
(q)
λ (·) on [0, x(q)0 ]. Let us now prove the left-hand inequality of (i) by induction: for n = 1 we

get a(q)1 = υ
(q)
λ (0) < ξ

(q)
λ (0) = a(q)1 . Moreover, by assuming a(q)n ≤ a(q)n for n ∈ N, we obtain with the

above-mentioned considerations and (93), (80) and (82)

0 < ρ(q)
n

= Γ(q)
>

(
d(q),S

)2n
=

q
2
·
(

a(q),Sn − x(q)0

)2
<

q
2
·
(

a(q)n − x(q)0

)2

=
q
2

(
a(q)n

)2
+ q ·

(
ex(q)

0 − x(q)0

)
· a(q)n + x(q)0 ·

(
1− qex(q)

0 +
q
2

x(q)0

)
− d(q),T a(q)n − c(q),T

= υ
(q)
λ (a(q)n )− d(q),T a(q)n − c(q),T < ξ

(q)
λ (a(q)n )− d(q),T a(q)n − c(q),T

< a(q)n+1 − d(q),T a(q)n − c(q),T = a(q)n+1 − ξ
(q),T
λ (a(q)n ) .

Hence, a(q)n+1 < a(q)n+1. For the right-hand inequality in part (i), we define the quadratic function
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υ
(q)
λ (x) :=

q
2
· x2 +


1− q

2
x(q)0 −

q− βλ

x(q)0


 · x + q− βλ , (A43)

which is a functional upper bound for ξ
(q)
λ (·) on the interval [0, x(q)0 ] since there holds υ

(q)
λ (0) = ξ

(q)
λ (0) =

q− βλ, υ
(q)
λ (x(q)0 ) = ξ

(q)
λ (x(q)0 ) = x(q)0 and additionally υ

(q) ′′
λ (x) = q < qex = ξ

(q) ′′
λ (x) on ]0, x(q)0 [. Obviously,

a(q)1 = q− βλ = a(q)1 . By assuming a(q)n ≥ a(q)n for n ∈ N, we obtain with (80), (82) and (95)

0 > ρ
(q)
n = − Γ(q)

> ·
(

d(q),S
)n
·
(

1−
(

d(q),T
)n)

= − q
2
·
(

x0 − a(q),Sn

)
· a(q),Tn

> − q
2
·
(

x0 − a(q)n

)
· a(q)n = υ

(q)
λ (a(q)n )− x(q)0 − (q− βλ)

x(q)0

· a(q)n − (q− βλ)

> ξ
(q)
λ (a(q)n )− d(q),Sa(q)n − c(q),S > ξ

(q)
λ (a(q)n )− d(q),Sa(q),Sn − c(q),S = a(q)n+1 − ξ

(q),S
λ (a(q)n ) , (A44)

which implies a(q)n+1 > a(q)n+1. The explicit representations of the sequences
(

a(q)n

)
n∈N

and
(

a(q)n

)
n∈N

follow
from (86) by employing the appropriate constants mentioned in the prelude of Lemma 3. By means
of (83) to (85) and (86), we directly get a(q)n > a(q),Tn for all n ∈ N, whereas a(q)n < a(q),Sn holds only for all
n ≥ 2, since ρ0 = 0 implies that a(q)1 = a(q),S1 = a(q)1 = q− βλ.

The second part (ii) can be proved in the same way as part (ii) of (a), by employing the
representation (A36). For the lower bound one has

a(q)n =
n−1

∑
k=0

(
d(q),T

)n−1−k
·
[
c(q),T + ρ

(q)
k

]
, with c(q),T > 0 and ρ

(q)
k > 0.

For the upper bound we get

a(q)n =
n−1

∑
k=0

(
d(q),S

)n−1−k
·
[
c(q),S + ρ

(q)
k

]
,

hence it is enough to show c(q),S + ρ
(q)
n > 0 for all n ∈ N0. Considering the first two lines of calculation

(A44) and incorporating c(q),S = q− βλ, this can be seen from

c(q),S + ρ
(q)
n > υ

(q)
λ (a(q)n )− x(q)0 − (q− βλ)

x(q)0

· a(q)n = υ
(q)
λ (a(q)n )− d(q),S · a(q)n > 0 ,

because on [0, x(q)0 ] there holds d(q),S · x < x < υ
(q)
λ (x). The last part (iii) can be easily deduced from (i)

together with limn→∞ n ·
(

d(q),S
)n−1

= 0.

The proofs of all Theorems 5–9 are mainly based on the following

Lemma A4. Recall the quantity B̃(p,q)
λ,X0,n from (42) for general p ≥ 0, q > 0 (notice that we do not consider parameters

p < 0, q ≤ 0 in Section 6) as well as the constants d(q),T , d(q),S and Γ(q)
< , Γ(q)

> defined in (76), (77) and (91). For all
(βA, βH, αA, αH, λ) ∈ P ×R\{0, 1}, all initial population sizes X0 ∈ N and all observation horizons n ∈ N there holds
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(a) in the case p ≥ 0 and 0 < q < βλ

B̃(p,q)
λ,X0,n ≥ exp

{
x(q)0 ·

[
X0 −

p
q
· d(q),T

1− d(q),T

]
·
(

1−
(

d(q),T
)n)

+

(
p
q
·
(

βλ + x(q)0

)
− αλ

)
· n

+ ζ(q)n · X0 +
p
q
· ϑ(q)

n

}
=: C(p,q),L

λ,X0,n , (A45)

B̃(p,q)
λ,X0,n ≤ exp

{
x(q)0 ·

[
X0 −

p
q
· d(q),S

1− d(q),S

]
·
(

1−
(

d(q),S
)n)

+

(
p
q
·
(

βλ + x(q)0

)
− αλ

)
· n

− ζ
(q)
n · X0 −

p
q
· ϑ(q)

n

}
=: C(p,q),U

λ,X0,n , (A46)

where ζ(q)n := Γ(q)
< ·

(
d(q),T

)n−1

1− d(q),T
·
(

1−
(

d(q),T
)n)

> 0 , (A47)

ϑ
(q)
n := Γ(q)

< ·
1−

(
d(q),T

)n

(
1− d(q),T

)2 ·


1−

d(q),T
(

1 +
(

d(q),T
)n)

1 + d(q),T


 > 0 , (A48)

ζ
(q)
n := Γ(q)

< ·




(
d(q),S

)n
−
(

d(q),T
)n

d(q),S − d(q),T
−
(

d(q),S
)n−1

·
1−

(
d(q),T

)n

1− d(q),T


 > 0 , (A49)

ϑ
(q)
n := Γ(q)

< ·
d(q),T

1− d(q),T
·




1−
(

d(q),Sd(q),T
)n

1− d(q),Sd(q),T
−

(
d(q),S

)n
−
(

d(q),T
)n

d(q),S − d(q),T


 > 0 . (A50)

(b) in the case p ≥ 0 and 0 < q = βλ

B̃(p,q)
λ,X0,n = exp

{(
p
q
·
(

βλ + x(q)0

)
− αλ

)
· n
}

= exp
{
(p− αλ) · n

}
.

(c) in the case p ≥ 0 and max{0 , βλ} < q < min
{

1 , eβλ−1
}

the bounds C(p,q),L
λ,X0,n and C(p,q),U

λ,X0,n from (96) and (97)
remain valid, but with

ζ(q)n := Γ(q)
> ·

(
d(q),T

)n
−
(

d(q),S
)2n

d(q),T −
(
d(q),S

)2 > 0 , (A51)

ϑ
(q)
n :=

Γ(q)
>

d(q),T −
(
d(q),S

)2 ·




d(q),T ·
(

1−
(

d(q),T
)n)

1− d(q),T
−

(
d(q),S

)2
·
(

1−
(

d(q),S
)2n
)

1−
(
d(q),S

)2


 > 0 ,

(A52)

ζ
(q)
n := Γ(q)

> ·
(

d(q),S
)n−1

·


n −

1−
(

d(q),T
)n

1− d(q),T


 > 0 , (A53)

ϑ
(q)
n := Γ(q)

> ·
[

d(q),S − d(q),T
(
1− d(q),S

)2 (
1− d(q),T

) ·
(

1−
(

d(q),S
)n)

+
d(q),T

(
1−

(
d(q),Sd(q),T

)n)

(
1− d(q),T

) (
1− d(q),Sd(q),T

) −

(
d(q),S

)n

1− d(q),S
· n
]

. (A54)

(d) for the special choices p := pE
λ := αλ

Aα1−λ
H > 0, q := qE

λ := βλ
Aβ1−λ
H > 0 in the parameter setup

(βA, βH, αA, αH, λ) ∈ (PNI ∪ PSP,1)× ]λ−, λ+[ \{0, 1} we obtain

lim
n→∞

1
n

log
(
Vλ,X0,n

)
= lim

n→∞

1
n

log
(

C(pE
λ ,qE

λ),L
λ,X0,n

)
= lim

n→∞

1
n

log
(

C(pE
λ ,qE

λ),U
λ,X0,n

)
=

αA
βA
· x(q

E
λ)

0 .
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(e) for all general p ≥ 0 with either 0 < q < βλ or max{0, βλ} < q < min
{

1 , eβλ−1
}

we get

lim
n→∞

1
n

log
(

B̃(p,q)
λ,X0,n

)
= lim

n→∞

1
n

log
(

C(p,q),L
λ,X0,n

)
= lim

n→∞

1
n

log
(

C(p,q),U
λ,X0,n

)
=

p
q
·
(

βλ + x(q)0

)
− αλ .

Proof of Lemma A4. The closed-form bounds C(p,q),L
λ,X0,n and C(p,q),U

λ,X0,n are obtained by substituting in the

representation (42) (for B̃(p,q)
λ,X0,n, cf. Theorem 1) the recursive sequence member a(q)n by the explicit

sequence member a(q)n respectively a(q)n . From the definitions of these sequences (92) to (95) and
from (83) to (85) one can see that we basically have to evaluate the term

exp

{(
ãhom

n + c̃n

)
· X0 +

p
q
·

n

∑
k=1

(
ãhom

k + c̃k

)
+

(
p
q
· βλ − αλ

)
· n
}

, (A55)

where ãhom
n + c̃n = ãn is either interpreted as the lower approximate a(q)n or as the upper approximate

a(q)n . After rearranging and incorporating that c(q),S
1−d(q),S = c(q),T

1−d(q),T = x(q)0 in both approximate cases, we
obtain with the help of (86), (87) for the expression (A55) in the case 0 ≤ ν < κ < d

exp

{
x(q)0 · (1− dn) ·

[
X0 −

p
q
· d

1− d

]
+

(
p
q
·
(

βλ + x(q)0

)
− αλ

)
· n

+

[
K1 ·

dn −κn

d−κ + K2 ·
dn − νn

d− ν

]
· X0

+
p
q
·
[(

K1
d−κ +

K2
d− ν

)
· d · (1− dn)

1− d
− K1 ·κ · (1−κn)

(d−κ)(1−κ) −
K2 · ν · (1− νn)

(d− ν)(1− ν)

]}
. (A56)

In the other case 0 ≤ ν < κ = d, the application of (88), (89) turns (A55) into

exp

{
x(q)0 · (1− dn) ·

[
X0 −

p
q
· d

1− d

]
+

(
p
q
·
(

βλ + x(q)0

)
− αλ

)
· n

+

[
K1 · n · dn−1 + K2 ·

dn − νn

d− ν

]
· X0

+
p
q
·
[(

K1
d(1− d)

+
K2

d− ν

)
· d · (1− dn)

1− d
− K2 · ν · (1− νn)

(d− ν)(1− ν)
− K1 · dn

1− d
· n
]}

. (A57)

After these preparatory considerations let us now begin with elaboration of the details.

(a) Let 0 < q < βλ. We obtain a closed-form lower bound for B̃(p,q)
λ,X0,n by employing the parameters

c =̂ c(q),T, d =̂ d(q),T, K2 = ν = 0, K1 = Γ(q)
< , and κ =

(
d(q),T

)2
, cf. (93) in combination with (85).

Since κ < d(q),T, we have to plug in these parameters into (A56). The representations of ζ(q)n and ϑ
(q)
n

in (A47) and (A48) follow immediately. For a closed-form upper bound, we employ the parameters
c =̂ c(q),S, d =̂ d(q),S, −K1 = K2 = Γ(q)

< , κ = d(q),T and ν = d(q),Sd(q),T (in particular, κ < d(q),S implying that
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we have to use (A56)). From this, (A49) can be deduced directly; the representation (A50) comes from
the expressions in the squared brackets in the last line of (A56) and from

−
(

Γ(q)
<

d(q),S − d(q),T
− Γ(q)

<

d(q),S − d(q),Sd(q),T

)
·

d(q),S ·
(

1−
(

d(q),S
)n)

1− d(q),S
+

Γ(q)
< · d(q),T ·

(
1−

(
d(q),T

)n)

(
d(q),S − d(q),T

) (
1− d(q),T

)

−
Γ(q)
< · d(q),Sd(q),T ·

(
1−

(
d(q),Sd(q),T

)n)

(
d(q),S − d(q),Sd(q),T

) (
1− d(q),Sd(q),T

)

= −
Γ(q)
< · d(q),T

(
1− d(q),S

)

d(q),S
(

d(q),S − d(q),T
) (

1− d(q),T
) ·

d(q),S ·
(

1−
(

d(q),S
)n)

1− d(q),S
+

Γ(q)
< · d(q),T ·

(
1−

(
d(q),T

)n)

(
d(q),S − d(q),T

) (
1− d(q),T

)

−
Γ(q)
< · d(q),T ·

(
1−

(
d(q),Sd(q),T

)n)

(
1− d(q),T

) (
1− d(q),Sd(q),T

)

= − Γ(q)
< · d(q),T

1− d(q),T
·




1−
(

d(q),Sd(q),T
)n

1− d(q),Sd(q),T
+

1−
(

d(q),S
)n

d(q),S − d(q),T
−

1−
(

d(q),T
)n

d(q),S − d(q),T




= − Γ(q)
< · d(q),T

1− d(q),T
·




1−
(

d(q),Sd(q),T
)n

1− d(q),Sd(q),T
−

(
d(q),S

)n
−
(

d(q),T
)n

d(q),S − d(q),T


 = −ϑ

(q)
n .

Part (b) has already been mentioned in Remark 1 (b) and is due to the fact that for 0 < q = βλ,
the sequence

(
a(q)n

)
n∈N

is itself explicitly representable by a(q)n = 0 for all n ∈ N (cf. Properties 1 (P2)).
Plugging this into (42) gives the desired result.

(c) Let us now consider max{0, βλ} < q < min{1, eβλ−1}. For a closed-form lower bound for B̃(p,q)
λ,X0,n we

have to employ the parameters c =̂ c(q),T, d =̂ d(q),T, K2 = ν = 0, K1 = Γ(q)
> and κ =

(
d(q),S

)2
, cf. (93) in

combination with (85). The representations of ζ(q)n and ϑ
(q)
n in (A51) and (A52) follow immediately from

(A56). For a closed-form upper bound, we use the parameters c =̂ c(q),S, d =̂ d(q),S, −K1 = K2 = Γ(q)
> ,

κ = d(q),S and ν = d(q),Sd(q),T . Notice that in this case we stick to the representation (A57). The formula
(104) is obviously valid, and (105) is implied by


 −Γ(q)

>

d(q),S
(

1− d(q),S
) +

Γ(q)
>

d(q),S − d(q),Sd(q),T


 ·

d(q),S ·
(

1−
(

d(q),S
)n)

1− d(q),S

= − Γ(q)
> ·

d(q),S − d(q),T
(

1− d(q),S
)2 (

1− d(q),T
) ·
(

1−
(

d(q),S
)n)

.

The parts (d) and (e) are trivial by incorporating that in all respective cases one has d(q),S ∈]0, 1[,
d(q),T ∈]0, 1[ and limn→∞ n · d(q),S = 0.

Proof of Theorem 5. (a) For λ ∈ ]0, 1[, we get 0 < qE
λ < βλ and the assertion follows by applying part

(a) of Lemma A4. Notice that in the current subcase PNI ∪ PSP,1 there holds pE
λ

qE
λ

βλ − αλ = 0 as well as
pE

λ

qE
λ

= αA
βA

= αH
βH

. For the case λ ∈ R\[0, 1], one gets from Lemma A1 that max{0, βλ} < qE
λ, and there holds

qE
λ < min{1, eβλ−1} iff λ ∈]λ−, λ+[ \[0, 1], cf. Lemma 1. Thus, an application of part (c) of Lemma A4

proves the desired result. The assertion (b) is equivalent to part (d) of Lemma A4.
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Proof of Theorem 6. The assertions follow immediately from (A45), Lemma A4(b),(e), Proposition
6(d) as well as the incorporation of the fact that for λ ∈]0, 1[ there holds qL

λ = βλ
Aβ1−λ
H < βλ in

the case (βA, βH, αA, αH) ∈ (PSP\(PSP,1 ∪ PSP,4)) (i.e., βA 6= βH) respectively qL
λ = βλ in the case

(βA, βH, αA, αH) ∈ PSP,4 (i.e., βA = βH).

Proof of Theorem 7. This can be deduced from (A46), from the parts (b), (c) and (e) of Lemma A4 as
well as the incorporation of pU

λ ≥ αλ
Aα1−λ
H > 0 for λ ∈]0, 1[. Notice that an inadequate choice of pU

λ , qU
λ

may lead to pU
λ

qU
λ

(βλ + x(q
U
λ )

0 )− αλ > 0.

Proof of Theorem 8. The assertions follow immediately from (A45) and from the parts (b), (c) and (e) of
Lemma A4. Notice that an inadequate choice of pL

λ, qL
λ may lead to pL

λ

qL
λ

(βλ + x(q
U
λ )

0 )− αλ < 0.

Proof of Theorem 9. Let pU
λ = αλ

Aα1−λ
H > max{0, αλ} and qU

λ = βλ
Aβ1−λ
H > max{0, βλ}. Since qU

λ <

min{1, eβλ−1} iff λ ∈]λ−, λ+[ \[0, 1] (cf. Lemma 1 for qλ := qU
λ )), this theorem follows from (A46) of

Lemma A4, from the parts (b), (e) of Lemma A4 and from part (d) of Proposition 14.

Appendix A.4. Proofs and Auxiliary Lemmas for Section 7

Proof of Theorem 10. As already mentioned above, one can adapt the proof of Theorem 9.1.3 in Ethier
& Kurtz [138] who deal with drift-parameters η = 0, κ• = 0, and the different setup of σ−independent
time-scale and a sequence of critical Galton-Watson processes without immigration with general offspring
distribution. For the sake of brevity, we basically outline here only the main differences to their proof;
for similar limit investigations involving offspring/immigration distributions and parametrizations
which are incompatble to ours, see e.g., Sriram [142].

As a first step, let us define the generator

A• f (x) :=
(
η − κ• · x

)
· f ′(x) +

σ2

2
· x · f ′′(x), f ∈ C∞

c
(
[0, ∞)

)
,

which corresponds to the diffusion process X̃ governed by (133). In connection with (130), we study

T(m)
• f (x) := EP•

[
f

(
1
m

(
mx

∑
k=1

Y(m)
0,k + Ỹ(m)

0

))]
, x ∈ E(m) :=

1
m
N0, f ∈ C∞

c
(
[0, ∞),

where the Y(m)
0,k , Ỹ(m)

0 are independent and (Poisson-β
(m)
• respectively Poisson-α

(m)
• ) distributed as the

members of the collection Y(m) respectively Ỹ(m). By the Theorems 8.2.1 and 1.6.5 as well as Corollary
4.8.9 of [138] it is sufficient to show

lim
m→∞

sup
x∈E(m)

∣∣∣σ2m
(

T(m)
• f (x)− f (x)

)
− A• f (x)

∣∣∣ = 0, f ∈ C∞
c
(
[0, ∞)

)
. (A58)

But (A58) follows mainly from the next
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Lemma A5. Let

S(m)
n :=

1√
n

(
n

∑
k=1

(
Y(m)

0,k − β
(m)
•
)
+ Ỹ(m)

0 − α
(m)
•

)
, n ∈ N, m ∈ N,

with the usual convention S(m)
0 := 0. Then for all m ∈ N, x ∈ E(m) and all f ∈ C∞

c
(
[0, ∞)

)

ε(m)(x) := EP•

[∫ 1

0

(
S(m)

mx

)2
x(1− v)

(
f ′′
(

β
(m)
• x +

α
(m)
•
m

+ v
√

x
m

S(m)
mx

)
− f ′′(x)

)
dv

]

=
1

σ2 ·
[
σ2m ·

(
T(m)
• f (x)− f (x)

)
− A• f (x)

]
+ R(m), where lim

m→∞
R(m) = 0. (A59)

Proof of Lemma A5. Let us fix f ∈ C∞
c
(
[0, ∞)

)
. From the involved Poissonian expectations it is easy to

see that
lim

m→∞

∣∣∣σ2m
(

T(m)
• f (0)− f (0)

)
− A• f (0)

∣∣∣ = 0 ,

and thus (A59) holds for x = 0. Accordingly, we next consider the case x ∈ E(m)\{0}, with fixed m ∈ N.

From EP•
[(

S(m)
mx

)2
]
= β

(m)
• + α

(m)
•

mx we obtain

EP•
[(

S(m)
mx

)2
x f ′′(x)

∫ 1

0
(1− v)dv

]
=

1
2

(
β
(m)
• · x +

α
(m)
•
m

)
f ′′(x) =: amx

f ′′(x)
2

=: a
f ′′(x)

2
. (A60)

Furthermore, with bmx := b := a +
√

x/m · S(m)
mx = 1

m

(
∑mx

k=1 Y(m)
0,k + Ỹ(m)

0

)
we get on {S(m)

mx 6= 0}

∫ 1

0
f ′′
(

β
(m)
• x +

α
(m)
•
m

+ v
√

x
m

S(m)
mx

)
dv =

√
m
x
· 1

S(m)
mx

∫ b

a
f ′′(y)dy =

√
m
x
· f ′(b)− f ′(a)

S(m)
mx

(A61)

as well as

∫ 1

0
v f ′′

(
β
(m)
• x +

α
(m)
•
m

+ v
√

x
m

S(m)
mx

)
dv =

m

x
(

S(m)
mx

)2

[ ∫ b

a
y f ′′(y) dy− a

∫ b

a
f ′′(y) dy

]

=

√
m
x
· f ′(b)

S(m)
mx

+
m
x
· f (a)− f (b)
(

S(m)
mx

)2 . (A62)

With our choice β
(m)
• = 1− κ•

σ2m and α
(m)
• = β

(m)
• · η

σ2 , a Taylor expansion of f at x gives

f (a) = f (x) +
1

σ2m
· f ′(x)

(
β
(m)
• · η − κ• · x

)
+ o

(
1
m

)
, (A63)
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where for the case η = κ = 0 we use the convention o
(

1
m

)
≡ 0. Combining (A60) to (A63) and the

centering EP•
[
S(m)

mx

]
= 0, the left hand side of Equation (A59) becomes

EP•

[∫ 1

0

(
S(m)

mx

)2
x(1− v)

(
f ′′
(

β
(m)
• x +

α
(m)
•
m

+ v
√

x
m

S(m)
mx

)
− f ′′(x)

)
dv

]

= EP•
[√

mx · S(m)
mx ·

(
f ′(b)− f ′(a)

)]
− EP•

[√
mx · S(m)

mx · f ′(b) + m · ( f (a)− f (b))
]

− 1
2

(
β
(m)
• · x +

α
(m)
•
m

)
· f ′′(x)

= m ·
(

EP•
[

f (b)
]
− f (a)

)
− 1

2

(
β
(m)
• · x +

α
(m)
•
m

)
· f ′′(x)

= m ·
{

EP•

[
f

(
1
m

(
mx

∑
k=1

Y(m)
0,k + Ỹ0

))]
− f (x)

}
− 1

σ2 A• f (x)

+
1

σ2

[
(η − κ• · x)− β

(m)
• · η + κ• · x

]
· f ′(x) +

x
2

[
1− β

(m)
• − α

(m)
•
m

]
· f ′′(x)−m · o

(
1
m

)

which immediately leads to the right hand side of (A59).

To proceed with the proof of Theorem 10, we obtain for m ≥ 2κ•/σ2 the inequality β
(m)
• ≥ 1/2 and

accordingly for all v ∈]0, 1[, x ∈ E(m)

β
(m)
• x +

α
(m)
•
m

+ v
√

x
m

S(m)
mx = (1− v) · x · β(m)

• + (1− v)
α
(m)
•
m

+ v

(
mx

∑
k=1

Y(m)
0,k + Ỹ0

)
≥ x · 1− v

2
.

Suppose that the support of f is contained in the interval [0, c]. Correspondingly, for v ≤ 1− 2c/x the
integrand in ε(m)(x) is zero and hence with (A64) we obtain the bounds

∣∣∣∣∣
∫ 1

0

(
S(m)

mx

)2
x(1− v)

(
f ′′
(

β
(m)
• x +

α
(m)
•
m

+ v
√

x
m

S(m)
mx

)
− f ′′(x)

)
dv

∣∣∣∣∣

≤
∫ 1

0∨(1−2c/x)

(
S(m)

mx

)2
x(1− v) · 2

∥∥ f ′′
∥∥

∞ dv ≤ x ·
(

S(m)
mx

)2
(

1∧ 2c
x

)2 ∥∥ f ′′
∥∥

∞ .

From this, one can deduce limm→∞ supx∈E(m) ε(m)(x) = 0–and thus (A58) – in the same manner as at the
end of the proof of Theorem 9.1.3 in [138] (by means of the dominated convergence theorem).

Proof of Proposition 15. Let (κA, κH, η) ∈ P̃NI ∪ P̃SP,1 be fixed. We have to find those orders λ ∈ R\[0, 1]
which satisfy for all sufficiently large m ∈ N

q(m)
λ =

(
1− κA

σ2m

)λ (
1− κH

σ2m

)1−λ
< min

{
1 , eβ

(m)
λ −1

}
. (A64)

In order to achieve this, we interpret q(m)
λ = qλ

( 1
m
)

in terms of the function

qλ(x) :=
(

1− κA
σ2 · x

)λ (
1− κH

σ2 · x
)1−λ

, x ∈]− ε, ε[ , (A65)
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for some small enough ε > 0 such that (A65) is well-defined. Since β
(m)
λ − 1 = − κλ

σ2·m = − κλ

σ2 · x =

− λκA+(1−λ)κH
σ2 · x, for the verification of (A64) it suffices to show

lim
x↘0

1− qλ(x)
x

> 0 , (A66)

and lim
x↘0

e−
κλ
σ2 ·x − qλ(x)

x2 > 0 . (A67)

By l’Hospital’s rule, one gets limx↘0
1−qλ(x)

x = λκA+(1−λ)κH
σ2 = κλ

σ2 and hence

(A66) ⇐⇒





λ < κH
κH−κA

, if κA < κH ,

λ > − κH
κA−κH

, if κA > κH .

(A68)

To find a condition that guarantees (A67), we use l’Hospital’s rule twice to deduce

lim
x↘0

e−
κλ
σ2 ·x − qλ(x)

x2 =
1

2σ4

[
κ2

λ − λ(λ− 1)(κA − κH)2
]

=
1

2σ4

[
λκ2
A + (1− λ)κ2

H
]

and hence we obtain

(A67) ⇐⇒





λ <
κ2
H

κ2
H−κ2

A
, if κA < κH,

λ > − κ2
H

κ2
A−κ2

H
, if κA > κH.

(A69)

To compare both the lower and upper bounds in (A68) and (A69), let us calculate

κ2
H

κ2
H − κ2

A
− κH

κH − κA
= − κAκH

(κH − κA)(κH + κA)





< 0, if κA < κH,

> 0, if κA > κH.

(A70)

Incorporating this, we observe that both conditions (A66) and (A67) are satisfied simultaneously iff

λ < min

{
κH

κH − κA
,

κ2
H

κ2
H − κ2

A

}
=

κ2
H

κ2
H − κ2

A
if κA < κH,

λ > max

{
− κH

κA − κH
, − κ2

H
κ2
A − κ2

H

}
= − κ2

H
κ2
A − κ2

H
if κA > κH,

which finishes the proof.

The following lemma is the main tool for the proof of Theorem 11.
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Lemma A6. Let (κA, κH, η, λ) ∈ (P̃NI ∪ P̃SP,1)×
( ]

λ̃−, λ̃+
[
\{0, 1}

)
. By using the quantities κλ := λκA + (1−

λ)κH and Λλ :=
√

λκ2
A + (1− λ)κ2

H from (150) (which is well-defined, cf. (138)), one gets for all t > 0

(a) lim
m→∞

m ·
(

1− q(m)
λ

)
= lim

m→∞
m ·
(

1− β
(m)
λ

)
=

κλ

σ2 .

(b) lim
m→∞

m2 · a(m)
1 = lim

m→∞
m2 ·

(
q(m)

λ − β
(m)
λ

)
= −λ(1− λ) (κA − κH)

2

2σ4 = −Λ2
λ − κ2

λ

2σ4 .

(c) lim
m→∞

m · x(m)
0 = −Λλ − κλ

σ2





< 0, if λ ∈]0, 1[,

> 0, if λ ∈
]
λ̃−, λ̃+

[∖
[0, 1].

(d) lim
m→∞

m2 · Γ(m)
< = lim

m→∞
m2 · Γ(m)

> =
(Λλ − κλ)

2

2σ4 > 0 .

(e) lim
m→∞

m · (1− d(m),S) =
Λλ + κλ

2σ2 > 0 .

( f ) lim
m→∞

m · (1− d(m),T) =
Λλ

σ2 > 0 .

(g) lim
m→∞

m · (1− d(m),Sd(m),T) =
3Λλ + κλ

2σ2 > 0 .

(h) lim
m→∞

(
d(m),S

)σ2mt
= exp

{
−Λλ + κλ

2
· t
}

< 1 .

(i) lim
m→∞

(
d(m),T

)σ2mt
= exp {−Λλ · t} < 1 .

(j) lim
m→∞

(
d(m),Sd(m),T

)σ2mt
= exp

{
−3Λλ + κλ

2
· t
}

< 1 .

(k) for λ ∈]0, 1[, there holds for the respective quantities defined in (142) to (145)

lim
m→∞

m · ζ(m)
bσ2mtc =

(Λλ − κλ)
2

2σ2 ·Λλ
· e−Λλ ·t ·

(
1− e−Λλ ·t

)
> 0 ,

lim
m→∞

ϑ
(m)
bσ2mtc =

1
4
·
(

Λλ − κλ

Λλ

)2
·
(

1− e−Λλ ·t
)2

> 0 ,

lim
m→∞

m · ζ(m)
bσ2mtc =

(Λλ − κλ)
2

σ2 ·
[

e−
1
2 (Λλ+κλ)·t − e−Λλ ·t

Λλ − κλ
− e−

1
2 (Λλ+κλ)·t (1− e−Λλ ·t)

2 ·Λλ

]
> 0 ,

lim
m→∞

ϑ
(m)
bσ2mtc =

(Λλ − κλ)
2

Λλ
·
[

1− e−
1
2 (3Λλ+κλ)·t

3Λλ + κλ
+

e−Λλ ·t − e−
1
2 (Λλ+κλ)·t

Λλ − κλ

]
> 0 .

(l) for λ ∈
]
λ̃−, λ̃+

[∖
[0, 1], there holds for the respective quantities defined in (146) to (149)

lim
m→∞

m · ζ(m)
bσ2mtc =

(Λλ − κλ)
2

2σ2 · κλ
· e−Λλ ·t ·

(
1− e−κλ ·t) > 0 ,

lim
m→∞

ϑ
(m)
bσ2mtc =

(Λλ − κλ)
2

2 · κλ
·
[

1− e−Λλ ·t

Λλ
− 1− e−(Λλ+κλ)·t

Λλ + κλ

]
> 0 ,

lim
m→∞

m · ζ(m)
bσ2mtc =

(Λλ − κλ)
2

2 · σ2 · e− 1
2 (Λλ+κλ)·t ·

[
t − 1− e−Λλ ·t

Λλ

]
> 0 ,

lim
m→∞

ϑ
(m)
bσ2mtc = (Λλ − κλ)

2 ·
[
(Λλ − κλ)

(
1− e−

1
2 (Λλ+κλ)·t

)

Λλ · (Λλ + κλ)
2

+
1− e−

1
2 (3Λλ+κλ)·t

Λλ · (3Λλ + κλ)
− e−

1
2 (Λλ+κλ)·t

Λλ + κλ
· t
]

> 0 .

Proof of Lemma A6. For each of the assertions (a) to (l), we will make use of l’Hospital’s rule. To begin
with, we obtain for arbitrary µ, ν ∈ R

lim
m→∞

m
[
1− (β

(m)
A )µ(β

(m)
H )ν

]
= lim

m→∞
m2
[
µ · (β

(m)
A )µ−1(β

(m)
H )ν κA

σ2 m2 + ν · (β
(m)
A )µ(β

(m)
H )ν−1 κH

σ2 m2

]

= µ
κA
σ2 + ν

κH
σ2 . (A71)
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From this, the first part of (a) follows immediately and the second part is a direct consequence of the
definition of β

(m)
λ . Part (b) can be deduced from (A71):

lim
m→∞

m2 · a(m)
1 = lim

m→∞

m
2σ2 ·

[
λ · κA

(
1− (β

(m)
A )λ−1(β

(m)
H )1−λ

)

+ (1− λ) · κH
(

1− (β
(m)
A )λ(β

(m)
H )−λ

) ]
= −λ(1− λ)(κA − κH)2

2σ4 = −Λ2
λ − κ2

λ

2σ4 .

For the proof of (c), we rely on the inequalities x(m)
0 ≤ x(m)

0 ≤ x(m)
0 (m ∈ N), where x(m)

0 and x(m)
0 are the

obvious notational adaptions of (124) and (126), respectively. Notice that x(m)
0 and x(m)

0 are solutions
of the (again adapted) quadratic equations Q(m)

λ (x) = x resp. Q(m)
λ (x) = x (cf. (127) and (128)). These

solutions clearly exist in the case λ ∈]0, 1[. For sufficiently large approximations steps m ∈ N, these
solutions also exist in the case λ ∈

]
λ̃−, λ̃+

[∖
[0, 1] since (138) together with parts (a) and (b) imply

lim
m→∞

(
m · (1− q(m)

λ )
)2
− 2 · q(m)

λ ·m2 · a(m)
1 = σ−2 ·

[
λκ2
A + (1− λ)κ2

H
]

> 0, for λ ∈
]
λ̃−, λ̃+

[∖
[0, 1].

To prove part (c), we show that the limits of x(m)
0 and x(m)

0 coincide. Assume first that λ ∈]0, 1[. Using (a)
and (b), we obtain together with the obvious limit limm→∞ q(m)

λ = 1

lim
m→∞

m · x(m)
0 = lim

m→∞

(
q(m)

λ

)−1
·
[

m · (1− q(m)
λ )−

√(
m · (1− q(m)

λ )
)2
− 2 · q(m)

λ ·m2 · a(m)
1

]

=
κλ

σ2 −
√
( κλ

σ2

)2
+

Λ2
λ − κ2

λ

σ4 = −Λλ − κλ

σ2 . (A72)

Let x(m)
0 be the adapted version of the auxiliary fixed-point lower bound defined in (125).

By incorporating limm→∞ β
(m)
λ = 1 we obtain with (a) and (b)

lim
m→∞

x(m)
0 = lim

m→∞
max



−β

(m)
λ ,

q(m)
λ − β

(m)
λ

1− q(m)
λ



 = lim

m→∞

1
m
· m2 · a(m)

1

m ·
(

1− q(m)
λ

) = 0,

which implies

lim
m→∞

m · x(m)
0 = lim

m→∞

e−x(m)
0

q(m)
λ

·
[

m · (1− q(m)
λ )−

√(
m · (1− q(m)

λ )
)2
− 2 · ex(m)

0 q(m)
λ ·m2 · a(m)

1

]

=
κλ

σ2 −
√
( κλ

σ2

)2
+

Λ2
λ − κ2

λ

σ4 = −Λλ − κλ

σ2 . (A73)

Combining (A72) and (A73), the desired result (c) follows for λ ∈]0, 1[. Assume now that λ ∈]
λ̃−, λ̃+

[∖
[0, 1]. In this case the approximates x(m)

0 and x(m)
0 have a different form, given in (124) and

(126). However, the calculations work out in the same way: with parts (a) and (b) we get

lim
m→∞

m · x(m)
0 = lim

m→∞

1

q(m)
λ

·
[

m ·
(

1− q(m)
λ

)
−
√(

m · (1− q(m)
λ )

)2
− 2 · q(m)

λ ·m2 · a(m)
1

]

=
κλ

σ2 −
√
( κλ

σ2

)2
+

Λ2
λ − κ2

λ

σ4 = −Λλ − κλ

σ2 ,
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as well as

lim
m→∞

m · x(m)
0 = lim

m→∞
m ·
(

1− q(m)
λ

)
−
√(

m · (1− q(m)
λ )

)2
− 2 ·m2 · a(m)

1

=
κλ

σ2 −
√
( κλ

σ2

)2
+

Λ2
λ − κ2

λ

σ4 = −Λλ − κλ

σ2 ,

which finally finishes the proof of part (c). Assertion (d) is a direct consequence of (c). Since the
representations of the parameters c(m),S, d(m),S, c(m),T , d(m),T are the same in both cases λ ∈]0, 1[ and
λ ∈

]
λ̃−, λ̃+

[∖
[0, 1], the following considerations hold generally. Part (e) follows from (b) and (c) by

lim
m→∞

m · (1− d(m),S) = lim
m→∞

m2 · a(m)
1

m · x(m)
0

=
Λλ + κλ

2σ2 > 0 .

Notice that this term is positive since on
]
λ̃−, λ̃+

[
\{0, 1} there holds κλ > 0 as well as Λλ > 0, cf. (A70).

To prove (f), we apply the general limit limx→0
ex−1

x = 1 and get with (a), (c)

lim
m→∞

m · (1− d(m),T) = lim
m→∞

(
m ·
(

1− q(m)
λ

)
− q(m)

λ ·m · x(m)
0 · ex(m)

0 − 1

x(m)
0

)
=

Λλ

σ2 .

The limit (g) can be obtained from (e) and (f):

lim
m→∞

m · (1− d(m),Sd(m),T) = lim
m→∞

{
m · (1− d(m),S) + d(m),S ·m · (1− d(m),T)

}
=

3Λλ + κλ

2σ2 .

The assertions (h) resp. (i) resp. (j) follow from (e) resp. (f) resp. (g) by using the general relation
limm→∞

(
1 + xm

m
)m

= exp {limm→∞ xm}. To get the last two parts (k) and (l), we make repeatedly use of
the results (a) to (j) and combine them with the formulas (142) to (149) of Corollary 14. More detailed,
for λ ∈]0, 1[

(
and thus q(m)

λ < β
(m)
λ

)
we obtain

m · ζ(m)
bσ2mtc = m2 · Γ(m)

< ·

(
d(m),T

)bσ2mtc−1

m ·
(

1− d(m),T
) ·

(
1−

(
d(m),T

)bσ2mtc)

m→∞−→ (Λλ − κλ)
2

2σ2 ·Λλ
· e−Λλ ·t ·

(
1− e−Λλ ·t

)
> 0 ,

ϑ
(m)
bσ2mtc = m2 · Γ(m)

< ·
1−

(
d(m),T

)bσ2mtc
(

m ·
(

1− d(m),T
))2 ·


1−

d(m),T
(

1 +
(

d(m),T
)bσ2mtc)

1 + d(m),T




m→∞−→ 1
4
·
(

Λλ − κλ

Λλ

)2
·
(

1− e−Λλ ·t
)2

> 0 ,

m · ζ(m)
bσ2mtc = m2 · Γ(m)

< ·
[ (

d(m),S
)bσ2mtc −

(
d(m),T

)bσ2mtc

m ·
(

1− d(m),T
)
−m ·

(
1− d(m),S

)

−
(

d(m),S
)bσ2mtc−1

·
1−

(
d(m),T

)bσ2mtc

m ·
(

1− d(m),T
)
]

m→∞−→ (Λλ − κλ)
2

σ2 ·
[

e−
1
2 (Λλ+κλ)·t − e−Λλ ·t

Λλ − κλ
− e−

1
2 (Λλ+κλ)·t (1− e−Λλ ·t)

2 ·Λλ

]
> 0 ,
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ϑ
(m)
bσ2mtc =

m2 · Γ(m)
< · d(m),T

m ·
(

1− d(m),T
) ·




1−
(

d(m),Sd(m),T
)bσ2mtc

m ·
(

1− d(m),Sd(m),T
) −

(
d(m),S

)bσ2mtc −
(

d(m),T
)bσ2mtc

m ·
(

1− d(m),T
)
−m ·

(
1− d(m),S

)




m→∞−→ (Λλ − κλ)
2

Λλ
·
[

1− e−
1
2 (3Λλ+κλ)·t

3Λλ + κλ
+

e−Λλ ·t − e−
1
2 (Λλ+κλ)·t

Λλ − κλ

]
> 0 .

For λ ∈
]
λ̃−, λ̃+

[∖
[0, 1]

(
and thus q(m)

λ > β
(m)
λ

)
we get

m · ζ(m)
bσ2mtc = m2 · Γ(m)

> ·

(
d(m),T

)bσ2mtc −
(

d(m),S
)2·bσ2mtc

m ·
(

1− d(m),S
) (

1 + d(m),S
)
−m ·

(
1− d(m),T

)

m→∞−→ (Λλ − κλ)
2

2σ2 · κλ
· e−Λλ ·t ·

(
1− e−κλ ·t) > 0 ,

ϑ
(m)
bσ2mtc =

m2 · Γ(m)
>

m ·
(

1− d(m),S
) (

1 + d(m),S
)
−m ·

(
1− d(m),T

)

·




d(m),T ·
(

1−
(

d(m),T
)bσ2mtc)

m ·
(

1− d(m),T
) −

(
d(m),S

)2
·
(

1−
(

d(m),S
)2·bσ2mtc)

m ·
(

1− d(m),S
) (

1 + d(m),S
)




m→∞−→ (Λλ − κλ)
2

2 · κλ
·
[

1− e−Λλ ·t

Λλ
− 1− e−(Λλ+κλ)·t

Λλ + κλ

]
> 0 ,

m · ζ(m)
bσ2mtc = m2 · Γ(m)

> ·
(

d(m),S
)bσ2mtc−1

·




⌊
σ2mt

⌋

m
−

1−
(

d(m),T
)bσ2mtc

m ·
(

1− d(m),T
)




m→∞−→ (Λλ − κλ)
2

2 · σ2 · e− 1
2 (Λλ+κλ)·t ·

[
t − 1− e−Λλ ·t

Λλ

]
> 0 ,

ϑ
(m)
bσ2mtc = m2 · Γ(m)

> ·
[

m ·
(

1− d(m),T
)
−m ·

(
1− d(m),S

)

m2 ·
(

1− d(m),S
)2
·m ·

(
1− d(m),T

) ·
(

1−
(

d(m),S
)bσ2mtc)

+

d(m),T
(

1−
(

d(m),Sd(m),T
)bσ2mtc)

m ·
(

1− d(m),T
)
·m ·

(
1− d(m),Sd(m),T

) −

(
d(m),S

)bσ2mtc

m ·
(

1− d(m),S
) ·

⌊
σ2mt

⌋

m

]

m→∞−→ (Λλ − κλ)
2 ·
[
(Λλ − κλ)

(
1− e−

1
2 (Λλ+κλ)·t

)

Λλ · (Λλ + κλ)
2 +

1− e−
1
2 (3Λλ+κλ)·t

Λλ · (3Λλ + κλ)
− e−

1
2 (Λλ+κλ)·t

Λλ + κλ
· t
]
> 0.

Proof of Theorem 11. It suffices to compute the limits of the bounds given in Corollary 14 as m tends to
infinity. This is done by applying Lemma A6 which provides corresponding limits of all quantities
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of interest. Accordingly, for all t > 0 the lower bound (153) in the case λ ∈]0, 1[ can be obtained
from (140), (142) and (143) by

lim
m→∞

exp

{
x(m)

0 ·
[

X(m)
0 − η

σ2 ·
d(m),T

1− d(m),T

](
1−

(
d(m),T

)bσ2mtc)

+ x(m)
0

η

σ2 ·
⌊

σ2mt
⌋
+ ζ

(m)
bσ2mtc · X

(m)
0 + ϑ

(m)
bσ2mtc

}

= lim
m→∞

exp

{
m · x(m)

0 ·

X(m)

0
m
− η

σ2 ·
d(m),T

m ·
(

1− d(m),T
)



(

1−
(

d(m),T
)bσ2mtc)

+ m · x(m)
0

η

σ2 ·
⌊
σ2mt

⌋

m
+ m · ζ(m)

bσ2mtc ·
X(m)

0
m

+ ϑ
(m)
bσ2mtc

}

= exp

{
− Λλ − κλ

σ2 ·
[

X̃0 −
η

σ2 ·
σ2

Λλ

] (
1− e−Λλt

)
− Λλ − κλ

σ2 · η

σ2 · σ
2t

+
(Λλ − κλ)

2

2σ2 ·Λλ
· e−Λλ ·t ·

(
1− e−Λλ ·t

)
· X̃0 +

η

4σ2 ·
(

Λλ − κλ

Λλ

)2
·
(

1− e−Λλ ·t
)2
}

= exp
{
−Λλ − κλ

σ2

[
X̃0 −

η

Λλ

] (
1− e−Λλ ·t

)
− η

σ2 (Λλ − κλ) · t + L(1)
λ (t) · X̃0 +

η

σ2 · L
(2)
λ (t)

}
.

For all t > 0, the upper bound (154) in the case λ ∈]0, 1[ follows analogously from (141), (144), (145) by

lim
m→∞

exp

{
x(m)

0 ·
[

X(m)
0 − η

σ2 ·
d(m),S

1− d(m),S

](
1−

(
d(m),S

)bσ2mtc)

+ x(m)
0

η

σ2 ·
⌊

σ2mt
⌋
− ζ

(m)
bσ2mtc · X

(m)
0 − ϑ

(m)
bσ2mtc

}

= lim
m→∞

exp

{
m · x(m)

0 ·

X(m)

0
m
− η

σ2 ·
d(m),S

m ·
(

1− d(m),S
)



(

1−
(

d(m),S
)bσ2mtc)

+ m · x(m)
0

η

σ2 ·
⌊
σ2mt

⌋

m
− m · ζ(m)

bσ2mtc ·
X(m)

0
m
− ϑ

(m)
bσ2mtc

}

= exp

{
− Λλ − κλ

σ2

[
X̃0 −

η

σ2 ·
2σ2

Λλ + κλ

] (
1−

(
e−

1
2 (Λλ+κλ)t

))
− Λλ − κλ

σ2 · η

σ2 · σ
2t

− (Λλ − κλ)
2

σ2 ·
[

e−
1
2 (Λλ+κλ)·t − e−Λλ ·t

Λλ − κλ
− e−

1
2 (Λλ+κλ)·t (1− e−Λλ ·t)

2 ·Λλ

]
· X̃0

− η

σ2
(Λλ − κλ)

2

Λλ
·
[

1− e−
1
2 (3Λλ+κλ)·t

3Λλ + κλ
+

e−Λλ ·t − e−
1
2 (Λλ+κλ)·t

Λλ − κλ

]}

= exp

{
− Λλ − κλ

σ2

[
X̃0 −

η
1
2 (Λλ + κλ)

] (
1− e−

1
2 (Λλ+κλ)·t

)
− η

σ2 (Λλ − κλ) · t

− U(1)
λ (t) · X̃0 −

η

σ2 ·U
(2)
λ (t)

}
.

In the case λ ∈
]
λ̃−, λ̃+

[∖
[0, 1], the lower bound as well as the upper bound of the Hellinger integral

limit is obtained analogously, by taking into account that the quantities ζ(m)
n , ϑ

(m)
n , ζ

(m)
n , ϑ

(m)
n now have

the form (146) to (149) instead of (142) to (145). Thus, the functions L(1)
λ (t), U(1)

λ (t), L(2)
λ (t), U(2)

λ (t) are
obtained by employing the limits of part (l) of Lemma A6 instead of part (k).

The next Lemma (and parts of its proof) will be useful for the verification of Theorem 12:
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Lemma A7. Recall the bounds on the Hellinger integral m−limit given in (153) and (154) of Theorem 11, in terms of
L(i)

λ (t) and U(i)
λ (t) (i = 1, 2) defined by (155) to (158). Correspondingly, one gets the following λ−limits for all t ∈ [0, ∞[:

(a) for all κA ∈]0, ∞[ and all κH ∈ [0, ∞[ with κA 6= κH

lim
λ↗1

∂L(1)
λ (t)
∂λ

= lim
λ↗1

∂L(2)
λ (t)
∂λ

= lim
λ↗1

∂ U(1)
λ (t)
∂λ

= lim
λ↗1

∂ U(2)
λ (t)
∂λ

= 0 . (A74)

(b) for κA = 0 and all κH ∈]0, ∞[

lim
λ↗1

∂L(1)
λ (t)
∂λ

= − κ2
H · t
2σ2 , (A75)

lim
λ↗1

∂L(2)
λ (t)
∂λ

= − κ2
H · t2

4
, (A76)

lim
λ↗1

∂ U(1)
λ (t)
∂λ

= lim
λ↗1

∂ U(2)
λ (t)
∂λ

= 0 . (A77)

Proof of Lemma A7. For all κA, κH ∈ [0, ∞[ with κA 6= κH one can deduce from (150) as well as (155) to
(158) the following derivatives:

∂L(1)
λ (t)
∂λ

=
1

2σ2

{
t
2

(
Λλ − κλ

Λλ

)2 (
κ2
A − κ2

H
) [

2e−2Λλt − e−Λλt
]

+ e−Λλt 1− e−Λλt

Λλ

[
Λλ − κλ

Λλ

(
κ2
A − κ2

H − 2Λλ(κA − κH)
)
−
(

Λλ − κλ

Λλ

)2 κ2
A − κ2

H
2

]}
, (A78)

∂L(2)
λ (t)
∂λ

=
1
4

{
Λλ − κλ

Λλ
·
(

1− e−Λλt

Λλ

)2

·
(

κ2
A − κ2

H − 2Λλ(κA − κH)−
Λλ − κλ

Λλ

(
κ2
A − κ2

H
))

+ t · e−Λλt ·
(

Λλ − κλ

Λλ

)2
· 1− e−Λλt

Λλ
·
(

κ2
A − κ2

H
)}

, (A79)

∂ U(1)
λ (t)
∂λ

=
1

σ2

{
Λλ − κλ

2Λλ

[
t e−Λλt

(
κ2
A − κ2

H
)
− t

2
e−

1
2 (Λλ+κλ)t

(
κ2
A − κ2

H + 2Λλ(κA − κH)
) ]

− e−
1
2 (Λλ+κλ)t − e−Λλt

2Λλ
·
(

κ2
A − κ2

H − 2Λλ(κA − κH)
)

+

(
Λλ − κλ

2Λλ

)2
[

t
2

e−
1
2 (Λλ+κλ)t

(
κ2
A − κ2

H + 2Λλ(κA − κH)
)

− t
2

e−
1
2 (3Λλ+κλ)t

(
3
(

κ2
A − κ2

H
)
+ 2Λλ(κA − κH)

)

+e−
1
2 (Λλ+κλ)t · 1− e−Λλt

Λλ
·
(

κ2
A − κ2

H
) ]

+
Λλ − κλ

Λλ

(
κ2
A − κ2

H − 2Λλ(κA − κH)
) [ e−

1
2 (Λλ+κλ)t − e−Λλ t

Λλ − κλ
− e−

1
2 (Λλ+κλ)t

(
1− e−Λλ t)

2Λλ

]}
,

(A80)
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∂ U(2)
λ (t)
∂λ

=
(Λλ − κλ)

2

Λλ(3Λλ + κλ)

[
t
2

e−
1
2 (3Λλ+κλ)t

(
3

κ2
A − κ2

H
2Λλ

+ κA − κH

)

− 1− e−
1
2 (3Λλ+κλ)t

3Λλ + κλ
·
(

3
κ2
A − κ2

H
2Λλ

+ κA − κH

)]

+
Λλ − κλ

Λλ

[
t
2

e−
1
2 (Λλ+κλ)t

(
κ2
A − κ2

H
2Λλ

+ κA − κH

)
− t e−Λλt κ2

A − κ2
H

2Λλ

]

+
e−

1
2 (Λλ+κλ)t − e−Λλt

Λλ

(
κ2
A − κ2

H
2Λλ

− κA + κH

)

+

[
2

(
κ2
A − κ2

H
2Λλ

− κA + κH

)
− Λλ − κλ

Λ2
λ

· κ2
A − κ2

H
2

]

· 1
Λλ

[
Λλ − κλ

3Λλ + κλ

(
1− e−

1
2 (3Λλ+κλ)t

)
− e−

1
2 (Λλ+κλ)t + e−Λλt

]
. (A81)

If κA ∈]0, ∞[ and κH ∈ [0, ∞[ with κA 6= κH, then one gets limλ↗1 Λλ = limλ↗1 κλ = κA > 0 which
implies (A74) from (A78) to (A81). For the proof of part (b), let us correspondingly assume κA = 0
and κH ∈]0, ∞[, which by (150) leads to κλ = κH · (1 − λ), Λλ = κH ·

√
1− λ and the convergences

limλ↗1 Λλ = limλ↗1 κλ = 0. From this, the assertions (A75), (A76), (A77) follow in a straightforward
manner from (A78), (A79), (A80) – respectively – by using (parts of) the obvious relations

lim
λ↗1

κλ

Λλ
= 0, lim

λ↗1

Λλ ± κλ

Λλ
= lim

λ↗1

Λλ − κλ

Λλ + κλ
= 1 , (A82)

lim
λ↗1

1− e−cλ ·t

cλ
= t for all cλ ∈

{
Λλ,

Λλ + κλ

2
,

3 Λλ + κλ

2

}
. (A83)

In order to get the last assertion in (A77), we make use of the following limits

lim
λ↗1

1
Λλ − κλ

− 3
3Λλ + κλ

= lim
λ↗1

4 κH
(κH − κH ·

√
1− λ) · (3 κH + κH ·

√
1− λ)

=
4

3 κH
(A84)

and

lim
λ↗1

1
Λλ

[
1− e−

1
2 (3Λλ+κλ)t

3Λλ + κλ
− 1− e−Λλt

Λλ − κλ
+

1− e−
1
2 (Λλ+κλ)t

Λλ − κλ

]
= 0 . (A85)

To see (A85), let us first observe that the involved limit can be rewritten as

lim
λ↗1

{
1

Λλ(Λλ − κλ)

[
1
3
− 1

3
e−

1
2 (3Λλ+κλ)t + e−Λλt − e−

1
2 (Λλ+κλ)t

]
(A86)

+
1− e−

1
2 (3Λλ+κλ)t

Λλ

[
1

3Λλ + κλ
− 1

3(Λλ − κλ)

]}
. (A87)

Substituting x :=
√

1− λ and applying l’Hospital’s rule twice, we get for the first limit (A86)

lim
x↘0

1
3 − 1

3 e−
κH t

2 (3x+x2) + e−κHtx − e−
κH t

2 (x+x2)

κ2
H · (x2 − x3)

= lim
x↘0

κHt
6 (3 + 2x) e−

κH t
2 (3x+x2) − κH t e−κHtx + κHt

2 (1 + 2x) e−
κH t

2 (x+x2)

κ2
H · (2x− 3x2)

= lim
x↘0

[
− κ2

Ht2

12 (3 + 2x)2 + κHt
3

]
e−

κH t
2 (3x+x2) + κ2

H t2 e−κHtx−
[

κ2
Ht2

4 (1 + 2x)2 − κH t
]

e−
κH t

2 (x+x2)

κ2
H · (2− 6x)

=
1

2κ2
H

[
−3κ2

Ht2

4
+

κHt
3

+ κ2
Ht2 − κ2

Ht2

4
+ κHt

]
=

2t
3 κH

.
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The second limit (A87) becomes

lim
λ↗1

1− e−
1
2 (3Λλ+κλ)t

3Λλ + κλ
· 3Λλ + κλ

Λλ
· −4κH
(3κH +

√
1− λκH)(3κH − 3

√
1− λκH)

(A88)

and consequently (A85) follows. To proceed with the proof of (A77), we rearrange

lim
λ↗1

∂ U(2)
λ (t)
∂λ

= lim
λ↗1

{(
Λλ − κλ

Λλ

)2
[

Λλ

3Λλ + κλ

(
t
2

e−
1
2 (3Λλ+κλ)t

(
−3κ2

H
2Λλ
− κH

))

− Λλ

3Λλ + κλ
· 1− e−

1
2 (3Λλ+κλ)t

3Λλ + κλ

(
−3κ2

H
2Λλ

− κH

)
+

Λλ

Λλ − κλ

e−
1
2 (Λλ+κλ)t − e−Λλt

Λλ − κλ

(
− κ2

H
2Λλ

+ κH

)

− Λλ

Λλ − κλ

(
− t

2
e−

1
2 (Λλ+κλ)t

(
− κ2

H
2Λλ
− κH

)
− t e−Λλt κ2

H
2Λλ

)]

+

[
Λλ − κλ

Λλ

(
−κ2
H + 2ΛλκH

)
+

(
Λλ − κλ

Λλ

)2 κ2
H
2

]
·
[

1− e−
1
2 (3Λλ+κλ)t

Λλ(3Λλ + κλ)
− e−

1
2 (Λλ+κλ)t − e−Λλt

Λλ(Λλ − κλ)

]}

= lim
λ↗1

{(
Λλ − κλ

Λλ

)2
[

κ2
H t
4

(
−3 e−

1
2 (3Λλ+κλ)t

3Λλ + κλ
− e−

1
2 (Λλ+κλ)t

Λλ − κλ
+

2 e−Λλt

Λλ − κλ

)
(A89)

+
κ2
H
2




3
(

1− e−
1
2 (3Λλ+κλ)t

)

(3Λλ + κλ)
2 − 1− e−Λλt

(Λλ − κλ)
2 +

1− e−
1
2 (Λλ+κλ)t

(Λλ − κλ)
2


 (A90)

+ κH

(
− Λλ

3Λλ + κλ
· t e−

1
2 (3Λλ+κλ)t

2
+

Λλ

3Λλ + κλ
· 1− e−

1
2 (3Λλ+κλ)t

3Λλ + κλ
− Λλ

Λλ − κλ
· t e−

1
2 (Λλ+κλ)t

2

+
Λλ

Λλ − κλ
· 1− e−Λλt

Λλ − κλ
− Λλ

Λλ − κλ
· 1− e−

1
2 (Λλ+κλ)t

Λλ − κλ

)]

+

[
Λλ − κλ

Λλ

(
−κ2
H + 2ΛλκH

)
+

(
Λλ − κλ

Λλ

)2 κ2
H
2

]
·
[

1− e−
1
2 (3Λλ+κλ)t

Λλ(3Λλ + κλ)
− e−

1
2 (Λλ+κλ)t − e−Λλt

Λλ(Λλ − κλ)

]}
.

(A91)

By means of (A82) to (A84), the limit of the expression after the squared brackets in (A89) becomes

lim
λ↗1

{
κ2
H t
4

[
1− e−

1
2 (Λλ+κλ)t

Λλ − κλ
− 2

1− e−Λλt

Λλ − κλ
+ 3

1− e−
1
2 (3Λλ+κλ)t

3Λλ + κλ
+

1
Λλ − κλ

− 3
3Λλ + κλ

]
=

κH t
3

, (A92)

and the limit of the expression in (A90) becomes with (A85)

lim
λ↗1

{
Λλ

Λλ − κλ
· κ2
H

2Λλ
·
[

1− e−
1
2 (3Λλ+κλ)t

3Λλ + κλ
− 1− e−Λλt

Λλ − κλ
+

1− e−
1
2 (Λλ+κλ)t

Λλ − κλ

]

− κ2
H
2
· 1− e−

1
2 (3Λλ+κλ)t

3Λλ + κλ
·
[

1
Λλ − κλ

− 3
3Λλ + κλ

]
= − κHt

3
. (A93)

By putting (A91)–(A93) together with (A85) we finally end up with

lim
λ↗1

∂ U(2)
λ (t)
∂λ

=

[
κHt

3
− κHt

3

]
+ κH

(
− t

6
+

t
6
− t

2
+ t− t

2

)
+

[
−κ2
H +

κ2
H
2

]
· 0 = 0 ,

which finishes the proof of Lemma A7.

Proof of Theorem 12. Recall from (131) the approximative Poisson offspring-distribution parameter
β
(m)
• := 1− κ•

σ2m and Poisson immigration-distribution parameter α
(m)
• := β

(m)
• · η

σ2 , which is a special

case of
(

β
(m)
A , β

(m)
H , α

(m)
A , α

(m)
H
)
∈ PNI ∪ PSP,1. Let us first calculate limm→∞ I

(
P(m)
A,bσ2mtc

∣∣∣
∣∣∣P(m)
H,bσ2mtc

)
by starting
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from Theorem 3(a). Correspondingly, we evaluate for all κA ≥ 0, κH ≥ 0 with κA 6= κH by a twofold
application of l’Hospital’s rule

lim
m→∞

m2 ·
[

β
(m)
A ·

(
log

(
β
(m)
A

β
(m)
H

)
− 1

)
+ β

(m)
H

]
= lim

m→∞

−m
2σ2

[
κA log

(
β
(m)
A

β
(m)
H

)
+ κH

(
1− β

(m)
A

β
(m)
H

)]

=
1

2σ4 · lim
m→∞

β
(m)
H · κA − β

(m)
A · κH(

β
(m)
H
)2 ·

(
κA ·

β
(m)
H

β
(m)
A
− κH

)
=

(κA − κH)
2

2σ4 . (A94)

Additionally there holds

lim
m→∞

m · (1− β
(m)
A ) =

κA
σ2 and lim

m→∞

(
β
(m)
A
)bσ2mtc

= lim
m→∞

[(
1− κA

σ2m

)m]bσ2mtc/m
= e−κA ·t . (A95)

For κA > 0, we apply the upper part of formula (69) as well as (A94) and (A95) to derive

lim
m→∞

Iλ

(
P(m)
A,bσ2mtc

∣∣∣
∣∣∣P(m)
H,bσ2mtc

)
= lim

m→∞




m2 ·
[

β
(m)
A ·

(
log
(

β
(m)
A

β
(m)
H

)
− 1
)
+ β

(m)
H

]

m · (1− β
(m)
A )

·
[

X(m)
0
m
− α

(m)
A

m · (1− β
(m)
A )

]
·
(

1−
(

β
(m)
A
)bσ2mtc)

+
α
(m)
A

β
(m)
A ·m · (1− β

(m)
A )

·m2 ·
[

β
(m)
A ·

(
log

(
β
(m)
A

β
(m)
H

)
− 1

)
+ β

(m)
H

]
·
⌊
σ2mt

⌋

m

]

=
(κA − κH)

2

2σ2 · κA
·
[(

X̃0 −
η

κA

)
·
(
1− e−κA ·t)+ η · t

]
.

For κA = 0 (and thus κH > 0, β
(m)
A ≡ 1, α

(m)
A ≡ η/σ2), we apply the lower part of formula (69) as well as

(A94) and (A95) to obtain

lim
m→∞

Iλ

(
P(m)
A,bσ2mtc

∣∣∣
∣∣∣P(m)
H,bσ2mtc

)
=

{
lim

m→∞
m2 ·

[
β
(m)
H − log β

(m)
H − 1

]

·
[

η

2σ2 ·
(⌊

σ2mt
⌋)2

m2 +

(
X(m)

0
m

+
η

2σ2 ·m

)
·
⌊
σ2mt

⌋

m

]}
=

κ2
H

2σ2 ·
[ η

2
· t2 + X̃0 · t

]
.

Let us now calculate the “converse” double limit

lim
λ↗1

lim
m→∞

Iλ

(
P(m)
A,bσ2mtc

∣∣∣
∣∣∣P(m)
H,bσ2mtc

)
= lim

λ↗1
lim

m→∞

1− Hλ

(
P(m)
A,bσ2mtc

∣∣∣
∣∣∣P(m)
H,bσ2mtc

)

λ · (1− λ)
.

This will be achieved by evaluating for each t > 0 the two limits

lim
λ↗1

1− DL
λ,X̃0,t

λ · (1− λ)
and lim

λ↗1

1− DU
λ,X̃0,t

λ · (1− λ)
(A96)

which will turn out to coincide; the involved lower and upper bound DL
λ,X̃0,t

, DU
λ,X̃0,t

defined by (153)
and (154) satisfy limλ↗1 DL

λ,X̃0,t
= limλ↗1 DU

λ,X̃0,t
= 1 as an easy consequence of the limits (cf. 150)

lim
λ↗1

Λλ = κA ≥ 0 and lim
λ↗1

κλ = κA ≥ 0 , (A97)
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as well as the formulas (A82) and (A83) for the case κA = 0. Accordingly, we compute

lim
λ↗1

1− DL
λ,X̃0,t

λ · (1− λ)
= lim

λ↗1

−DL
λ,X̃0,t

1− 2λ

∂

∂λ

[
− Λλ − κλ

σ2 ·
[

X̃0 −
η

Λλ

]
·
(

1− e−Λλ ·t
)
− η

σ2 · (Λλ − κλ) · t

+ L(1)
λ (t) · X̃0 +

η

σ2 · L
(2)
λ (t)

]

= lim
λ↗1

{
− Λλ − κλ

σ2

[(
X̃0 −

η

Λλ

)
· te−Λλ ·t · ∂ Λλ

∂λ
+
(

1− e−Λλ ·t
)
· η

Λ2
λ

· ∂ Λλ

∂λ

]

− 1
σ2 ·

∂

∂λ
(Λλ − κλ) ·

(
X̃0 −

η

Λλ

)
·
(

1− e−Λλ ·t
)
− η t

σ2 ·
∂

∂λ
(Λλ − κλ)

+ X̃0
∂L(1)

λ (t)
∂λ

+
η

σ2
∂L(2)

λ (t)
∂λ

}
, with (A98)

∂ Λλ

∂λ
=

κ2
A − κ2

H
2 Λλ

and
∂ κλ

∂λ
= κA − κH . (A99)

For the case κA > 0, one can combine this with (A97) and (A74) to end up with

lim
λ↗1

1− DL
λ,X̃0,t

λ · (1− λ)
=

(κA − κH)
2

2σ2 · κA
·
[(

X̃0 −
η

κA

)
·
(
1− e−κA ·t)+ η · t

]
. (A100)

For the case κA = 0, we continue the calculation (A98) by rearranging terms and by employing the
Formulas (A75), (A76), (A82) and (A83) as well as the obvious relation 1

Λ − Λ−κλ

Λ2 = 1
κH

and obtain

lim
λ↗1

1− DL
λ,X̃0,t

λ · (1− λ)
= lim

λ↗1

{
κ2
H · X̃0

2σ2

[
Λλ − κλ

Λλ
· t · e−Λλt +

1− e−Λλt

Λλ

]

+
η · κ2

H · t
2σ2

[
1

Λλ
− Λλ − κλ

Λ2
λ

+
Λλ − κλ

Λλ
· 1− e−Λλt

Λλ

]
− η · κ2

H
2σ2 ·

1− e−Λλt

Λλ

[
1

Λλ
− Λλ − κλ

Λ2
λ

]

− κH · X̃0

σ2

(
1− e−Λλt

)
+

η · κH
σ2

[
1− e−Λλt

Λλ
− t

]
+

∂L(1)
λ (t)
∂λ

· X̃0 +
η

σ2 ·
∂L(2)

λ (t)
∂λ

}

=
κ2
H X̃0 t

σ2 +
η κ2
H t

2σ2

[
1

κH
+ t
]
− η κH t

2σ2 −
κ2
H X̃0 t
2σ2 − η κ2

H t2

4σ2 =
κ2
H

2σ2 ·
[ η

2
· t2 + X̃0 · t

]
. (A101)

Let us now turn to the second limit (A96) for which we compute analogously to (A98)

lim
λ↗1

1− DU
λ,X̃0,t

λ · (1− λ)
= lim

λ↗1

−DU
λ,X̃0,t

1− 2λ

∂

∂λ

[
− Λλ − κλ

σ2 ·
[

X̃0 −
η

1
2 (Λλ + κλ)

]
·
(

1− e−
1
2 (Λλ+κλ)·t

)

− η

σ2 · (Λλ − κλ) · t−U(1)
λ (t) · X̃0 −

η

σ2 ·U
(2)
λ (t)

]

= lim
λ↗1

{
− Λλ − κλ

σ2

[(
X̃0 −

η
1
2 (Λλ + κλ)

)
· t

2
· e− 1

2 (Λλ+κλ)·t ∂

∂λ
(Λλ + κλ)

+
(

1− e−
1
2 (Λλ+κλ)·t

)
· 2 · η
(Λλ + κλ)2 ·

∂

∂λ
(Λλ + κλ)

]

− 1
σ2 ·

∂

∂λ
(Λλ − κλ) ·

(
X̃0 −

η
1
2 (Λλ + κλ)

)
·
(

1− e−
1
2 (Λλ+κλ)·t

)
− η t

σ2 ·
∂

∂λ
(Λλ − κλ)

− ∂ U(1)
λ (t)
∂λ

· X̃0 −
η

σ2
∂ U(2)

λ (t)
∂λ

}
. (A102)
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For the case κA > 0, one can combine this with (A97), (A99) and (A74) to end up with

lim
λ↗1

1− DU
λ,X̃0,t

λ · (1− λ)
=

(κA − κH)
2

2σ2 · κA
·
[(

X̃0 −
η

κA

)
·
(
1− e−κA ·t)+ η · t

]
. (A103)

For the case κA = 0, we continue the calculation of (A102) by rearranging terms and by employing the
formulas (A77), (A82) and (A83) as well as the obvious relation limλ↗1

1
Λλ
− Λλ−κλ

Λλ(Λλ+κλ)
= 2

κH
to obtain

lim
λ↗1

1− DU
λ,X̃0,t

λ · (1− λ)
= lim

λ↗1

{
t · X̃0

4σ2 ·
Λλ − κλ

Λλ
· e− 1

2 (Λλ+κλ)·t
(

κ2
H + 2ΛλκH

)

+
X̃0

2σ2 ·
1− e−

1
2 (Λλ+κλ)·t

Λλ

(
κ2
H − 2ΛλκH

)
− η · t

σ2

[
κH

(
1 + e−

1
2 (Λλ+κλ)·t Λλ − κλ

Λλ + κλ

)

− κ2
H
2
·
(

1
Λλ
− Λλ − κλ

Λλ(Λλ + κλ)
+

Λλ − κλ

Λλ + κλ
· 1− e−

1
2 (Λλ+κλ)·t

Λλ

)]

+
2η

σ2 ·
1− e−

1
2 (Λλ+κλ)·t

Λλ + κλ

[
κH

(
1 +

Λλ − κλ

Λλ + κλ

)
− κ2

H
2

(
1

Λλ
− Λλ − κλ

Λλ(Λλ + κλ)

)]

− ∂ U(1)
λ (t)
∂λ

· X̃0 −
η

σ2
∂ U(2)

λ (t)
∂λ

}

=
κ2
H t X̃0

4σ2 +
κ2
H t X̃0

4σ2 − η t
σ2

[
2κH − κH −

κ2
H t
4

]
+

η t
σ2 [2κH − κH] =

κ2
H

2σ2

[ η

2
· t2 + X̃0 · t

]
. (A104)

Since (A100) coincides with (A103) and (A101) coincides with (A104), we have finished the proof.
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Abstract: In this study, we consider an online monitoring procedure to detect a parameter change for
integer-valued generalized autoregressive heteroscedastic (INGARCH) models whose conditional
density of present observations over past information follows one parameter exponential family
distributions. For this purpose, we use the cumulative sum (CUSUM) of score functions deduced
from the objective functions, constructed for the minimum power divergence estimator (MDPDE)
that includes the maximum likelihood estimator (MLE), to diminish the influence of outliers. It is
well-known that compared to the MLE, the MDPDE is robust against outliers with little loss of
efficiency. This robustness property is properly inherited by the proposed monitoring procedure.
A simulation study and real data analysis are conducted to affirm the validity of our method.

Keywords: time series of counts; INGARCH model; SPC; CUSUM monitoring; MDPDE

1. Introduction

In this paper we consider the cumulative sum (CUSUM) monitoring procedure for detecting a
parameter change in integer-valued generalized autoregressive heteroscedastic (INGARCH) models.
Integer-valued time series is a core area in time series analysis that includes diverse disciplines in social,
physical, engineering, and medical sciences. Both integer-valued autoregressive (INAR) time series
models and the integer-valued generalized autoregressive conditional heteroscedastic (INGARCH)
models have been widely studied in the literature and applied to various practical problems. Refer
to McKenzie [1], Al-Osh and Alzaid [2], Ferland, Latour and Oraichi [3], Fokianos, Rahbek and
Tjøstheim [4], and Weiß [5] for a general review. Poisson, negative binomial (NB), and one-parameter
exponential family distributions have been widely used as underlying distributions, as seen in Davis
and Wu [6], Zhu [7], Zhu [8], Jazi, Jones and Lai [9], Christou and Fokianos [10], Davis and Liu [11],
Lee, Lee and Chen [12], and Chen, Khamthong and Lee [13].

Since Page [14], the CUSUM test has been a conventional tool to detect a structural change
in underlying models. For a history and background, we refer to Csörgő and Horváth [15],
Chen and Gupta [16], Lee, Ha, Na and Na [17], and the papers cited therein. Several authors have
studied the change point test for INGARCH models, including Fokianos and Fried [18], Fokianos and
Fried [19], Franke, Kirch and Kamgaing [20], Fokianos, Gombay and Hussein [21], Hudecová [22],
Hudecová, HuŠková and Meintanis [23], Kang and Lee [24], Lee, Lee and Chen [12], Lee, Lee and
Tjøstheim [25], and Lee and Lee [26]. This CUSUM scheme has been applied not only to retrospective
change point tests but also to on-line monitoring and statistical process control (SPC) problems, designed to
monitoring abnormal phenomena in manufacturing processes and health care surveillance. The CUSUM
control chart has been popular due to its considerable competency in early detection of anomalies.
Refer to Weiß [27], Rakitzis, Maravelakis and Castagliola [28], Kim and Lee [29], and the papers cited
therein. Meanwhile, Gombay and Serban [30] used the CUSUM approach based on the score vectors
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for independent observations, and later extended it to autoregressive processes, wherein the Type I
probability error is measured for obtaining control limits instead of the conventional average run length
(ARL). Their CUSUM monitoring process is based on the asymptotic property of the partial sum process
generated from score vectors. Later, Huh, Kim and Lee [31] adopted their method for analyzing Poisson
INGARCH models, and compared its performance with the likelihood ratio (LR)-based control chart,
originally considered by Weiss and Testik [32].

In this work, taking the approach of Gombay and Serban [30] and Huh, Kim and Lee [31],
we designate a robust monitoring process based on the minimum distance power divergence estimator
(MDPDE) proposed by Basu, Harris, Hjort and Jones [33]. We do this because the MDPDE is
well-known to be suitable for robust inference in various models, having a trade-off between efficiency
and robustness controlled through the tuning parameters with little loss in asymptotic efficiency
relative to the maximum likelihood estimator (MLE) (Riani, Atkinson, Corbellini and Perrotta [34]).
The MDPDE method has been successfully applied to various time series models, and in particular
INGARCH models (Kim and Lee [35], Kim and Lee [36]). Recently, Lee and Lee [26] and Kim and Lee
[37] considered the CUSUM tests based on score vectors for the MLE and MDPDE in exponential family
distribution INGARCH models. See also Kang and Song [38]. Using their results within the framework
of Gombay and Serban [30] and Huh, Kim and Lee [31], we design an MDPDE-based monitoring
process to detect a model parameter change in INGARCH models. Monte Carlo simulations are
conducted to assess the performance of the proposed monitoring procedure. A focus is made on
comparing the MDPDE-based CUSUM test with the MLE-based CUSUM test for Poisson INGARCH
models to demonstrate the superiority of the former over the latter in the presence of outliers. A real
data analysis of the return times of extreme events of Goldman Sachs Group (GS) stock prices is also
provided to illustrate the validity of the proposed test.

The rest of the paper is organized as follows. Section 2 reviews the MDPDE for INGARCH models
and Section 3 constructs the monitoring procedure for these models and investigates its asymptotic
properties. Section 4 presents a simulation study and Section 5 provides a real data analysis. Section 6
concludes the paper. The proof of the main theorem is provided in Appendix A.

2. MDPDE for INGARCH Model: An Overview

In this section, we briefly review the MDPDE for INGARCH models in [36]. Let Y1, Y2, . . . be the
observations generated from integer-valued time series models with the conditional distribution of the
one-parameter exponential family:

Yt|Ft−1 ∼ p(y|ηt), Xt := E(Yt|Ft−1) = fθ(Xt−1, Yt−1), (1)

where Ft−1 is a σ-field generated by Yt−1, Yt−2, . . ., and fθ(x, y) is a non-negative bivariate function,
depending on the parameter θ ∈ Θ ⊂ Rd, and satisfies infθ∈Θ fθ(x, y) ≥ c∗ for some c∗ > 0 for all x, y,
and p(·|·) is a probability mass function given by

p(y|η) = exp{ηy− A(η)}h(y), y = 0, 1, . . . ,

where η is the natural parameter, A(η) and h(y) are known functions, and both A and B = A
′

are
strictly increasing. In particular, B(ηt) = Xt and B′(ηt) is the conditional variance of Yt. In what
follows, symbols Xt(θ) and ηt(θ) = B−1(Xt(θ)) are also utilized to stand for Xt and ηt, respectively.

Davis and Liu [11] demonstrated that the strict stationarity and ergodicity of {Xt}, and the
expression of Xt(θ) = f θ

∞(Yt−1, Yt−2, . . .) are allowed for some nonnegative measurable function f θ
∞

defined on N∞
0 under the contraction condition: for all x, x′ ≥ 0 and y, y′ ∈ N0,

sup
θ∈Θ
| fθ(x, y)− fθ(x′, y′)| ≤ λ1|x− x′|+ λ2|y− y′|

with constants λ1, λ2 ≥ 0 satisfying λ1 + λ2 < 1.
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Meanwhile, Basu, Harris, Hjort and Jones [33] considered the minimum distance power
divergence estimator (MDPDE) for model parameters using the density power divergence dα between
two density functions g and h, defined by:

dα(g, h) :=

{ ∫
{g1+α(y)− (1 + 1

α )h(y)gα(y) + 1
α h1+α(y)}dy, α > 0,∫

h(y)(log h(y)− log g(y))dy, α = 0.

Kim and Lee [36] studied the MDPDE for one parameter exponential family distribution INGARCH
models. Given Y1, . . . , Yn generated from (1), the MDPDE is defined by

θ̂α,n = argmin
θ∈Θ

L̃α,n(θ) = argmin
θ∈Θ

1
n

n

∑
t=1

l̃α,t(θ), (2)

where

l̃α,t(θ) =

{
∑∞

y=0 p1+α(y|η̃t(θ))−
(

1 + 1
α

)
pα(Yt|η̃t(θ)), α > 0,

− log p(Yt|η̃t(θ)), α = 0,
(3)

and η̃t(θ) = B−1(X̃t(θ)) is updated recursively through the equations: X̃t(θ) = fθ(X̃t−1(θ), Yt−1), t ≥
2 with an initial value X̃1(θ) := X̃1.

Below, θ0 denotes the true value of θ and is assumed to be an interior point in the compact
parameter space Θ ⊂ Rd. Moreover, it is assumed that E

(
supθ∈Θ X1(θ)

)4
< ∞, EY4

1 < ∞, Xt(θ) =

Xt(θ0) a.s. implies θ = θ0, and νT ∂Xt(θ0)
∂θ = 0 a.s. implies ν = 0. Furthermore, θ 7→ Xt(θ) is twice

continuously differentiable with respect to θ and satisfies

E

(
sup
θ∈Θ

∥∥∥∥
∂Xt(θ)

∂θ

∥∥∥∥

)4

< ∞ and E

(
sup
θ∈Θ

∥∥∥∥
∂2Xt(θ)

∂θ∂θT

∥∥∥∥

)2

< ∞.

Assuming
inf
θ∈Θ

inf
0≤δ≤1

B′((1− δ)ηt(θ) + δη̃t(θ)) ≥ c

for some c > 0, Kim and Lee [36] verified that the MDPDE is strongly consistent. Additionally,
they showed that provided

sup
θ∈Θ

sup
0≤δ≤1

{ ∣∣∣∣
B′′((1− δ)ηt(θ) + δη̃t(θ))

B′((1− δ)ηt(θ) + δη̃t(θ))5/2

∣∣∣∣ ≤ K for some K > 0,

and

sup
θ∈Θ

∥∥∥∥∥
∂X̃t(θ)

∂θ
− ∂Xt(θ)

∂θ

∥∥∥∥∥+
∥∥∥∥∥

∂2X̃t(θ)

∂θ∂θT −
∂2Xt(θ)

∂θ∂θT

∥∥∥∥∥ ≤ Vρt a.s.,

where V and ρ ∈ (0, 1) denote a generic integrable random variable and a constant, respectively,
the symbol ‖ · ‖ denotes the L2-norm for matrices and vectors, and expectation E(·) is taken under θ0,
the MDPDE is asymptotically normal with asymptotic variance J−1

α Kα J−1
α where

Jα = −E
(

∂2lα,t(θ0)

∂θ∂θT

)
, Kα = E

(
∂lα,t(θ0)

∂θ

∂lα,t(θ0)

∂θT

)
, (4)

and lα,t(θ) is the same as l̃α,t(θ) with η̃t(θ) in (3) replaced by ηt(θ).
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Moreover, additionally assuming

sup
θ∈Θ

sup
0≤δ≤1

∣∣∣∣∣
B(3)((1− δ)ηt(θ) + δη̃t(θ))

B′((1− δ)ηt(θ) + δη̃t(θ))4

∣∣∣∣∣ ≤ M for some M > 0,

Kim and Lee [37] showed that the CUSUM test statistics designed for detecting a change in θ have the
limiting null distribution of the sup of a Brownian bridge. In practice, α ∈ (0, 1] is often harnessed
and an optimal α can be selected through the method of Warwick [39] and Warwick and Jones [40];
see Remark 1 of Kim and Lee [36].

In the literature, the following linear INGARCH model has been frequently used:

Yt|Ft−1 ∼ p(y|ηt), Xt = ω + aXt−1 + bYt−1,

where Xt = B(ηt) = E(Yt|Ft−1) and θ = (ω, a, b)T satisfy ω > 0 and a + b < 1. Here, we assume
that θ0 is an interior of a compact neighborhood Θ = {θ = (ω, a, b)T ∈ R3

+ : 0 < ω1 ≤ ω ≤ ω2, ε ≤
a + b ≤ 1− ε} for some 0 < ω1 < ω2, ε > 0. Moreover, the Poisson INGARCH(1,1) model with
Yt|Ft−1 ∼ Poisson(Xt) and the NB-INGARCH(1,1) model with Yt|Ft−1 ∼ NB(r, pt), Xt =

r(1−pt)
pt

,
where NB(r, p) denotes a negative binomial (NB) distribution with parameters r ∈ N and p ∈ (0, 1),
satisfy the aforementioned regularity conditions. Those conditions should be checked analytically
when one aims to use a specific distribution as the conditional distribution of the INGARCH model.
In this case, a goodness of fit test could be conducted to check the adequacy of the assumed underlying
distribution (Fokianos and Neumann [41]).

3. MDPDE-Based Monitoring Process

In this section, we consider a monitoring process detecting a significant change in the underlying
models based on sequentially observed time series Y1, . . . , Yn following Model (1), given a training
sample Y

′
1, . . . , Y

′
m from Model (1), where m = m(n) is a sequence of positive integers that diverges to

∞ as n tends to ∞. For this task, we set up the following hypotheses:

H0 : θ does not change over t = 1, . . . , n vs. H1 : not H0.

We first consider the case that θ0 is known a priori from a past experience. Then we consider the

monitoring process using the process Ŵk,0 = K̂−1/2
α ∑k

t=1
∂l̃α,t(θ0)

∂θ , k = 1, . . . , n, constructed as

T̂min
n,0 := max

1≤k≤n
T̂min

n,0 (k) = max
1≤k≤n

1√
n

∣∣∣∣
∣∣∣∣min

j≤k
Ŵj,0 − Ŵk,0

∣∣∣∣
∣∣∣∣
max

, (5)

T̂max
n,0 := max

1≤k≤n
T̂max

n,0 (k) = max
1≤k≤n

1√
n

∣∣∣∣
∣∣∣∣max

j≤k
Ŵj,0 − Ŵk,0

∣∣∣∣
∣∣∣∣
max

,

T̂cusum
n,0 := max

1≤k≤n
T̂
′
n,0(k) = max

1≤k≤n
max

1≤i<j≤k

1√
n

∣∣∣∣
∣∣∣∣
( i

j

)
Ŵj,0 − Ŵi,0

∣∣∣∣
∣∣∣∣ ,

where ∂l̃α,t
∂θ is the score vector as in (3) based on Y1, . . . , Yn and

K̂α =
1
m

m

∑
t=1

∂l̃
′
α,t(θ0)

∂θT

∂l̃
′
α,t(θ0)

∂θT , (6)

where
∂l̃
′
α,t

∂θ is the score vector based on the training sample. Here, the notation max1≤i≤k zi with
zi = (zi,1, . . . , zi,d)

T ∈ Rd is defined to be the vector with the jth entry equal to max1≤i≤k zj,i for
j = 1, . . . , d, and ||z||max = max1≤i≤k |zi| for z = (z1, . . . , zd)

T ∈ Rd. Similar versions of T̂max
n,0 and

T̂cusum
n,0 based on MLE have been considered by Gombay and Serban [30] and Huh, Kim and Lee
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[31] for the AR and Poisson INGARCH models, while T̂min
n,0 is newly considered here. An anomaly is

signaled at k when T̂min
n,0 (k), T̂max

n,0 (k), or T̂cusum
n,0 (k) get out of a control limit for some k = 1, . . . , n, and

the control limit can be determined using the convergence result in Theorem 1 addressed below.
Next, we consider the situation that θ0 is unknown and must be estimated in the construction

of the monitoring process in (5). We employ a monitoring process constructed based on Ŵk =

K̂−1/2
α,m ∑k

t=1
∂l̃α,t(θ̂α,m)

∂θ , where θ̂α,m is the MDPDE of θ0 obtained from the training sample and

K̂α,m =
1
m

m

∑
t=1

∂l̃
′
α,t(θ̂α,m)

∂θ

∂l̃
′
α,t(θ̂α,m)

∂θT ,

which is obtained by substituting θ0 in Kα in (6) with θ̂α,m, namely,

T̂min
n := max

1≤k≤n
T̂min

n (k) = max
1≤k≤n

1√
n

∣∣∣∣
∣∣∣∣min

j≤k
Ŵj − Ŵk

∣∣∣∣
∣∣∣∣
max

, (7)

T̂max
n := max

1≤k≤n
T̂max

n (k) = max
1≤k≤n

1√
n

∣∣∣∣
∣∣∣∣max

j≤k
Ŵj − Ŵk

∣∣∣∣
∣∣∣∣
max

,

T̂cusum
n := max

1≤k≤n
T̂cusum

n (k) = max
1≤k≤n

max
1≤i<j≤k

1√
n

∣∣∣∣
∣∣∣∣
( i

j

)
Ŵj,0 − Ŵi,0

∣∣∣∣
∣∣∣∣ .

An anomaly is detected at k when T̂min
n (k), T̂max

n (k), or T̂cusum
n (k) get out of the control limit for

some k = 1, . . . , n. The control limit can be determined theoretically using the asymptotic result in
Theorem 1 addressed below. For this task, we investigate the asymptotic behavior of the monitoring
processes T̂min

n , T̂max
n , and T̂cusum

n defined below.
Let Wk = K−1/2

α ∑k
t=1

∂lα,t(θ0)
∂θ , where Kα and ∂lα,t

∂θ are the ones in (4), and

Tmin
n = max

1≤k≤n

1√
n

∣∣∣∣
∣∣∣∣min

j≤k
Wj −Wk

∣∣∣∣
∣∣∣∣
max

,

Tmax
n = max

1≤k≤n

1√
n

∣∣∣∣
∣∣∣∣max

j≤k
Wj −Wk

∣∣∣∣
∣∣∣∣
max

,

Tcusum
n = max

1≤k≤n
max

1≤i<j≤k

1√
n

∣∣∣∣
∣∣∣∣
( i

j

)
Wj −Wi

∣∣∣∣
∣∣∣∣ .

Using Donsker’s invariance principle for martingale differences (Billingsley [42]) and the fact
that sup0≤s≤t B(s)− B(t) = |B(t)| in distribution for any standard Brownian motion B, we obtain

Tmax
n

d→ T := sup
0≤s≤1

||Bd(s)||max, (8)

where Bd and denote a d-dimensional standard Brownian motion, so that

Tmin
n

d→ T = sup
0≤s≤1

||Bd(s)||max

as Tmin
n behaves asymptotically similarly to Tmax

n . Meanwhile, we can see that

Tcusum
n

d→ T
′
= sup

0<s≤s′≤1

∣∣∣
∣∣∣ s
s′
B◦d(s

′
)−B◦d(s)

∣∣∣
∣∣∣, (9)

where B◦d is a d-dimensional Brownian bridge.
Using the above facts, we are led to attain the following theorem, whose proof is provided in the

Appendix A.
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Theorem 1. Assume that (A.1)–(A.11) hold. Then, under H0, as n → ∞, T̂min
n,0 and T̂max

n,0 converge to T
in distribution, and the same holds for T̂min

n and T̂max
n if m/n → ∞. Moreover, T̂cusum

n,0 converges to T
′

in
distribution as n→ ∞, and so does T̂cusum

n if m/n→ λ ∈ (0, ∞).

The result in Theorem 1 can be used to determine a control limit for the monitoring process.
Given significance level 0 < α < 1, we take c and c

′
satisfying P(T ≥ c) = P(T

′ ≥ c
′
) = α.

In particular, P(T ≥ c) = 1 − (P(sup0≤s≤1 |B(s)| ≤ c))d, so that c can be obtained from the fact
that P(sup0≤s≤1 |B(s)| ≥ c) = 1− (1− α)1/d. The performance of the proposed CUSUM monitoring
methods is evaluated in our simulation study, focusing on T̂cusum

n , T̂min
n,0 , and T̂min

n . (We do not report the
result for T̂max

n,0 and T̂max
n , as these do not perform well compared to the others in most cases). Therein,

a parametric bootstrap is adopted in obtaining control limits to reduce the parameter estimation effect,
which can be more problematic when m is not so large compared to n, and the MDPDE from the
training sample is used to generate the bootstrap sample.

4. Simulation Results

In this section, we compare the performance of the CUSUM monitoring processes T̂cusum
n , T̂min

n,0 ,
and T̂min

n in three different experimental environments for the Poisson INGARCH(1,1) model as follows:

Yt | Ft−1 ∼ Poisson (Xt) , Xt = ω + aXt−1 + bYt−1.

For the comparison, we compute the empirical sizes and powers at the nominal level of 0.05 for
m = n = 500, 1000 with 1000 implications. For the critical value of T̂min

n,0 , we use 2.633, which is
the 0.95th quantile of sup0≤s≤1 ‖B3(s)‖max. However, for T̂cusum

n and T̂min
n , we use the critical values

obtained from a parametric bootstrap method, as the MDPDE θ̂α,m might cause some size distortions.
In implementation, the warp-bootstrap method is utilized to save computing times (Giacomini, Politis,
and White [43]).

-Part 1. We compare the performance of MLE- and MDPDE-based monitoring processes (α =

0, 0.1, 0.2, 0.3) by calculating the size and power for the four different cases of changing parameter from
(ω0, a0, b0) to (ω1, a1, b1) when the parameter change is assumed to occur at [n/2].

Case 1: ω1 = (1 + δ)ω0, a1 = (1 + δ)a0, b1 = (1 + δ)b0; that is, all parameters change;
Case 2: ω1 = (1 + δ)ω0, a1 = a0, b1 = b0; that is, only ω changes;
Case 3: ω1 = ω0, a1 = (1 + δ)a0, b1 = b0; that is, only a changes;
Case 4: ω1 = ω0, a1 = a0, b1 = (1 + δ)b0; that is, only b changes.
-Part 2. We examine the size and power for the same settings as in Part 1 when the change occurs

at [n/4].
-Part 3. We compare the performance of MLE- and MDPDE-based monitoring processes (α =

0, 0.1, 0.2, 0.3) for the same settings as in Part 1 when outliers exist in the time series, wherein the
parameter change is assumed to occur at [n/2]. In this case time series samples are generated from
(1− pt)Yt + ptZt where Yt is the INGARCH process with the parameters as in Part 1, pt are iid Bernoulli
random variables with success probability p, and Zt are iid Poisson variables wit intensity λ > 0. Here,
{Yt}, {pt} and {Zt} are all independent.

Figure 1 shows how the parameter change affects the pattern of the Poisson INGARCH(1,1) time
series (Case 3) with θ0 = (2, 0.3, 0.3), τ = 500, and δ = 0 for the left panel and δ = 0.5 for the right
panel. As EYt =

ω
1−a−b , we can see that parameter change causes a mean shift. Tables 1–3 list the size

and powers for Part 1 (τ therein stands for the location of the change point) and show no severe size
distortions and reasonably good powers for δ ≥ 0.5. In particular, T̂cusum

n and T̂min
n,0 largely outperform

T̂min
n in terms of power. However, as seen in Tables 4–8, the power of T̂min

n in Part 2 appears to increase
up to that of T̂min

n,0 . In both Part 1 and Part 2, different α do not affect the size much, but a larger α tends
to diminish the power. This appeals to our intuition, as the MLE is more efficient in the presence of
no outliers.
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Table 1. Empirical sizes and powers in Case 1 for the Poisson INGARCH(1,1) model when no outliers
exist with θ0 = (2, 0.1, 0.2).

α n τ δ : 0 0.25 0.5 0.75 1
T̂min

n,0 0 500 250 0.035 0.541 1 1 1
T̂min

n 0 500 250 0.036 0.428 1 1 1
T̂cusum

n 0 500 250 0.048 0.997 1 1 1
T̂min

n,0 0 1000 500 0.042 0.791 1 1 1
T̂min

n 0 1000 500 0.049 0.682 1 1 1
T̂cusum

n 0 1000 500 0.052 1 1 1 1
T̂min

n,0 0.1 500 250 0.035 0.523 1 1 1
T̂min

n 0.1 500 250 0.036 0.398 1 1 1
T̂cusum

n 0.1 500 250 0.043 0.995 1 1 1
T̂min

n,0 0.1 1000 500 0.042 0.78 1 1 1
T̂min

n 0.1 1000 500 0.051 0.642 1 1 1
T̂cusum

n 0.1 1000 500 0.056 1 1 1 1
T̂min

n,0 0.2 500 250 0.035 0.493 1 1 1
T̂min

n 0.2 500 250 0.038 0.361 1 1 1
T̂cusum

n 0.2 500 250 0.041 0.994 1 1 1
T̂min

n,0 0.2 1000 500 0.04 0.757 1 1 1
T̂min

n 0.2 1000 500 0.048 0.589 1 1 1
T̂cusum

n 0.2 1000 500 0.066 1 1 1 1
T̂min

n,0 0.3 500 250 0.035 0.465 1 1 1
T̂min

n 0.3 500 250 0.042 0.332 1 1 1
T̂cusum

n 0.3 500 250 0.036 0.992 1 1 1
T̂min

n,0 0.3 1000 500 0.034 0.718 1 1 1
T̂min

n 0.3 1000 500 0.047 0.551 1 1 1
T̂cusum

n 0.3 1000 500 0.064 1 1 1 1
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Figure 1. Plots of the Poisson INGARCH(1,1) time series (Case 3) with θ0 = (2, 0.3, 0.3), τ = 500 and
δ = 0 for the left panel and δ = 0.5 for the right panel.

Meanwhile, Tables 9–12 show that the outliers undermine the performance of the MLE-based
monitoring processes in terms of both size and power; namely, size distortions are notable and the
power decreases to a certain extent. This result particularly indicates that T̂cusum

n is improved when the
MDPDE with α > 0 is used, which demonstrates the efficacy of the MDPDE in the monitoring process.
By contrast, the size of T̂min

n significantly increases when α > 0, indicating that T̂min
n is unstable;

see Figure 2. Although not reported here, we also examined the performance of the same monitoring
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processes for NB INGARCH(1,1) models. The result for this case showed a similar pattern to the
Poisson INGARCH(1,1) case. All our findings strongly affirm that T̂cusum

n is the most favorable among
the monitoring methods considered in this study.

Table 2. Empirical sizes and powers in Case 2 for the Poisson INGARCH(1,1) model when no outliers
exist with θ0 = (2, 0.6, 0.2).

α n τ δ : 0 −1/5 −1/3 −3/7 −1/2
T̂min

n,0 0 500 250 0.05 0.983 1 1 1
T̂min

n 0 500 250 0.06 0.86 0.999 1 1
T̂cusum

n 0 500 250 0.049 0.893 0.999 1 1
T̂min

n,0 0 1000 500 0.052 1 1 1 1
T̂min

n 0 1000 500 0.053 0.98 1 1 1
T̂cusum

n 0 1000 500 0.059 0.997 1 1 1
T̂min

n,0 0.1 500 250 0.047 0.984 1 1 1
T̂min

n 0.1 500 250 0.058 0.871 1 1 1
T̂cusum

n 0.1 500 250 0.046 0.9 1 1 1
T̂min

n,0 0.1 1000 500 0.048 1 1 1 1
T̂min

n 0.1 1000 500 0.041 0.977 1 1 1
T̂cusum

n 0.1 1000 500 0.051 0.996 1 1 1
T̂min

n,0 0.2 500 250 0.045 0.986 1 1 1
T̂min

n 0.2 500 250 0.05 0.852 0.999 1 1
T̂cusum

n 0.2 500 250 0.043 0.904 1 1 1
T̂min

n,0 0.2 1000 500 0.052 1 1 1 1
T̂min

n 0.2 1000 500 0.04 0.973 1 1 1
T̂cusum

n 0.2 1000 500 0.054 0.997 1 1 1
T̂min

n,0 0.3 500 250 0.04 0.985 1 1 1
T̂min

n 0.3 500 250 0.043 0.845 0.999 1 1
T̂cusum

n 0.3 500 250 0.048 0.912 1 1 1
T̂min

n,0 0.3 1000 500 0.05 1 1 1 1
T̂min

n 0.3 1000 500 0.052 0.978 1 1 1
T̂cusum

n 0.3 1000 500 0.053 0.996 1 1 1
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Figure 2. Plots of the sizes and powers in Table 10 (Part 3, Case 2) for n = 1000. The left panel is for
T̂min

n and the right panel is for T̂cusum
n .
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Table 3. Empirical sizes and powers in Case 3 for the Poisson INGARCH(1,1) model when no outliers
exist with θ0 = (2, 0.3, 0.3).

α n τ δ : 0 0.25 0.5 0.75 1
T̂min

n,0 0 500 250 0.046 0.309 0.999 1 1
T̂min

n 0 500 250 0.043 0.216 0.993 1 1
T̂cusum

n 0 500 250 0.047 0.685 1 1 1
T̂min

n,0 0 1000 500 0.039 0.473 1 1 1
T̂min

n 0 1000 500 0.041 0.337 1 1 1
T̂cusum

n 0 1000 500 0.057 0.969 1 1 1
T̂min

n,0 0.1 500 250 0.044 0.292 0.999 1 1
T̂min

n 0.1 500 250 0.046 0.208 0.992 1 1
T̂cusum

n 0.1 500 250 0.054 0.696 1 1 1
T̂min

n,0 0.1 1000 500 0.046 0.458 1 1 1
T̂min

n 0.1 1000 500 0.047 0.314 1 1 1
T̂cusum

n 0.1 1000 500 0.062 0.965 1 1 1
T̂min

n,0 0.2 500 250 0.046 0.266 0.998 1 1
T̂min

n 0.2 500 250 0.05 0.192 0.99 1 1
T̂cusum

n 0.2 500 250 0.048 0.696 1 1 1
T̂min

n,0 0.2 1000 500 0.044 0.44 1 1 1
T̂min

n 0.2 1000 500 0.042 0.287 1 1 1
T̂cusum

n 0.2 1000 500 0.067 0.962 1 1 1
T̂min

n,0 0.3 500 250 0.041 0.244 0.998 1 1
T̂min

n 0.3 500 250 0.051 0.179 0.986 1 1
T̂cusum

n 0.3 500 250 0.051 0.669 1 1 1
T̂min

n,0 0.3 1000 500 0.04 0.412 1 1 1
T̂min

n 0.3 1000 500 0.045 0.267 1 1 1
T̂cusum

n 0.3 1000 500 0.055 0.956 1 1 1

Table 4. Empirical sizes and powers in Case 4 for the Poisson INGARCH(1,1) model when no outliers
exist with θ0 = (1, 0.4, 0.4).

α n τ δ : 0 −1/5 −1/3 −3/7 −1/2
T̂min

n,0 0 500 250 0.044 0.687 0.991 1 1
T̂min

n 0 500 250 0.049 0.345 0.75 0.941 0.986
T̂cusum

n 0 500 250 0.058 0.364 0.828 0.957 0.991
T̂min

n,0 0 1000 500 0.038 0.946 1 1 1
T̂min

n 0 1000 500 0.039 0.626 0.969 1 1
T̂cusum

n 0 1000 500 0.058 0.796 0.998 1 1
T̂min

n,0 0.1 500 250 0.044 0.688 0.99 1 1
T̂min

n 0.1 500 250 0.054 0.349 0.752 0.938 0.985
T̂cusum

n 0.1 500 250 0.06 0.376 0.841 0.964 0.993
T̂min

n,0 0.1 1000 500 0.042 0.945 1 1 1
T̂min

n 0.1 1000 500 0.042 0.616 0.966 0.999 1
T̂cusum

n 0.1 1000 500 0.053 0.782 0.997 1 1
T̂min

n,0 0.2 500 250 0.047 0.686 0.989 0.999 1
T̂min

n 0.2 500 250 0.056 0.357 0.757 0.939 0.986
T̂cusum

n 0.2 500 250 0.056 0.378 0.832 0.965 0.991
T̂min

n,0 0.2 1000 500 0.042 0.94 1 1 1
T̂min

n 0.2 1000 500 0.039 0.597 0.965 0.999 1
T̂cusum

n 0.2 1000 500 0.059 0.793 0.997 1 1
T̂min

n,0 0.3 500 250 0.049 0.677 0.985 0.999 1
T̂min

n 0.3 500 250 0.048 0.321 0.721 0.917 0.977
T̂cusum

n 0.3 500 250 0.054 0.381 0.831 0.963 0.991
T̂min

n,0 0.3 1000 500 0.043 0.931 1 1 1
T̂min

n 0.3 1000 500 0.047 0.606 0.962 0.999 1
T̂cusum

n 0.3 1000 500 0.064 0.792 0.997 1 1
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Table 5. Empirical sizes and powers in Case 1 for the Poisson INGARCH(1,1) model when no outliers
exist with θ0 = (2, 0.1, 0.2).

α n τ δ : 0 0.25 0.5 0.75 1
T̂min

n,0 0 500 125 0.035 0.759 1 1 1
T̂min

n 0 500 125 0.036 0.636 1 1 1
T̂cusum

n 0 500 125 0.048 0.983 1 1 1
T̂min

n,0 0 1000 250 0.042 0.936 1 1 1
T̂min

n 0 1000 250 0.049 0.874 1 1 1
T̂cusum

n 0 1000 250 0.052 1 1 1 1
T̂min

n,0 0.1 500 125 0.035 0.739 1 1 1
T̂min

n 0.1 500 125 0.036 0.606 1 1 1
T̂cusum

n 0.1 500 125 0.043 0.981 1 1 1
T̂min

n,0 0.1 1000 250 0.042 0.938 1 1 1
T̂min

n 0.1 1000 250 0.051 0.861 1 1 1
T̂cusum

n 0.1 1000 250 0.056 1 1 1 1
T̂min

n,0 0.2 500 125 0.035 0.716 1 1 1
T̂min

n 0.2 500 125 0.038 0.57 1 1 1
T̂cusum

n 0.2 500 125 0.041 0.981 1 1 1
T̂min

n,0 0.2 1000 250 0.04 0.936 1 1 1
T̂min

n 0.2 1000 250 0.048 0.842 1 1 1
T̂cusum

n 0.2 1000 250 0.066 1 1 1 1
T̂min

n,0 0.3 500 125 0.035 0.693 1 1 1
T̂min

n 0.3 500 125 0.042 0.542 1 1 1
T̂cusum

n 0.3 500 125 0.036 0.976 1 1 1
T̂min

n,0 0.3 1000 250 0.034 0.93 1 1 1
T̂min

n 0.3 1000 250 0.047 0.828 1 1 1
T̂cusum

n 0.3 1000 250 0.064 1 1 1 1

Table 6. Empirical sizes and powers Case 2 for the Poisson INGARCH(1,1) model when no outliers
exist with θ0 = (2, 0.6, 0.2).

α n τ δ : 0 −1/5 −1/3 −3/7 −1/2
T̂min

n,0 0 500 125 0.05 0.999 1 1 1
T̂min

n 0 500 125 0.06 0.969 1 1 1
T̂cusum

n 0 500 125 0.049 0.844 1 1 1
T̂min

n,0 0 1000 250 0.052 1 1 1 1
T̂min

n 0 1000 250 0.053 1 1 1 1
T̂cusum

n 0 1000 250 0.059 0.988 1 1 1
T̂min

n,0 0.1 500 125 0.047 1 1 1 1
T̂min

n 0.1 500 125 0.058 0.971 1 1 1
T̂cusum

n 0.1 500 125 0.046 0.85 1 1 1
T̂min

n,0 0.1 1000 250 0.048 1 1 1 1
T̂min

n 0.1 1000 250 0.041 1 1 1 1
T̂cusum

n 0.1 1000 250 0.051 0.988 1 1 1
T̂min

n,0 0.2 500 125 0.045 1 1 1 1
T̂min

n 0.2 500 125 0.05 0.967 1 1 1
T̂cusum

n 0.2 500 125 0.043 0.845 1 1 1
T̂min

n,0 0.2 1000 250 0.052 1 1 1 1
T̂min

n 0.2 1000 250 0.04 1 1 1 1
T̂cusum

n 0.2 1000 250 0.054 0.991 1 1 1
T̂min

n,0 0.3 500 125 0.04 1 1 1 1
T̂min

n 0.3 500 125 0.043 0.962 1 1 1
T̂cusum

n 0.3 500 125 0.048 0.863 1 1 1
T̂min

n,0 0.3 1000 250 0.05 1 1 1 1
T̂min

n 0.3 1000 250 0.052 1 1 1 1
T̂cusum

n 0.3 1000 250 0.053 0.986 1 1 1
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Table 7. Empirical sizes and powers Case 3 for the Poisson INGARCH(1,1) model when no outliers
exist with θ0 = (2, 0.3, 0.3).

α n τ δ : 0 0.25 0.5 0.75 1
T̂min

n,0 0 500 125 0.046 0.488 1 1 1
T̂min

n 0 500 125 0.043 0.33 0.999 1 1
T̂cusum

n 0 500 125 0.047 0.614 1 1 1
T̂min

n,0 0 1000 250 0.039 0.716 1 1 1
T̂min

n 0 1000 250 0.041 0.554 1 1 1
T̂cusum

n 0 1000 250 0.057 0.916 1 1 1
T̂min

n,0 0.1 500 125 0.044 0.455 1 1 1
T̂min

n 0.1 500 125 0.046 0.314 0.999 1 1
T̂cusum

n 0.1 500 125 0.054 0.614 1 1 1
T̂min

n,0 0.1 1000 250 0.046 0.706 1 1 1
T̂min

n 0.1 1000 250 0.047 0.531 1 1 1
T̂cusum

n 0.1 1000 250 0.062 0.914 1 1 1
T̂min

n,0 0.2 500 125 0.046 0.434 1 1 1
T̂min

n 0.2 500 125 0.05 0.295 0.999 1 1
T̂cusum

n 0.2 500 125 0.048 0.601 0.999 1 1
T̂min

n,0 0.2 1000 250 0.044 0.701 1 1 1
T̂min

n 0.2 1000 250 0.042 0.505 1 1 1
T̂cusum

n 0.2 1000 250 0.067 0.901 1 1 1
T̂min

n,0 0.3 500 125 0.041 0.416 1 1 1
T̂min

n 0.3 500 125 0.051 0.283 0.999 1 1
T̂cusum

n 0.3 500 125 0.051 0.573 0.999 1 1
T̂min

n,0 0.3 1000 250 0.04 0.684 1 1 1
T̂min

n 0.3 1000 250 0.045 0.485 1 1 1
T̂cusum

n 0.3 1000 250 0.055 0.869 1 1 1

Table 8. Empirical sizes and powers in Case 4 for the Poisson INGARCH(1,1) model when no outliers
exist with θ0 = (1, 0.4, 0.4).

α n τ δ : 0 −1/5 −1/3 −3/7 −1/2
T̂min

n,0 0 500 125 0.044 0.958 1 1 1
T̂min

n 0 500 125 0.049 0.559 0.937 0.995 0.999
T̂cusum

n 0 500 125 0.058 0.242 0.636 0.869 0.943
T̂min

n,0 0 1000 250 0.038 0.998 1 1 1
T̂min

n 0 1000 250 0.039 0.887 1 1 1
T̂cusum

n 0 1000 250 0.058 0.543 0.961 0.998 1
T̂min

n,0 0.1 500 125 0.044 0.955 1 1 1
T̂min

n 0.1 500 125 0.054 0.565 0.937 0.994 0.999
T̂cusum

n 0.1 500 125 0.06 0.283 0.667 0.881 0.953
T̂min

n,0 0.1 1000 250 0.042 0.999 1 1 1
T̂min

n 0.1 1000 250 0.042 0.883 1 1 1
T̂cusum

n 0.1 1000 250 0.053 0.542 0.96 0.998 1
T̂min

n,0 0.2 500 125 0.047 0.95 1 1 1
T̂min

n 0.2 500 125 0.056 0.574 0.941 0.992 0.999
T̂cusum

n 0.2 500 125 0.056 0.291 0.669 0.88 0.951
T̂min

n,0 0.2 1000 250 0.042 0.999 1 1 1
T̂min

n 0.2 1000 250 0.039 0.873 0.997 1 1
T̂cusum

n 0.2 1000 250 0.059 0.56 0.965 0.999 1
T̂min

n,0 0.3 500 125 0.049 0.945 1 1 1
T̂min

n 0.3 500 125 0.048 0.535 0.931 0.987 0.997
T̂cusum

n 0.3 500 125 0.054 0.294 0.662 0.873 0.95
T̂min

n,0 0.3 1000 250 0.043 0.999 1 1 1
T̂min

n 0.3 1000 250 0.047 0.885 0.996 1 1
T̂cusum

n 0.3 1000 250 0.064 0.569 0.967 0.998 1
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Table 9. Empirical sizes and powers in Case 1 for the Poisson INGARCH(1,1) model when
θ0 = (2, 0.1, 0.2), p = 0.1 and λ = 10.

α n τ δ : 0 0.25 0.5 0.75 1
T̂min

n 0 500 250 0.065 0.058 0.145 0.8 0.958
T̂cusum

n 0 500 250 0.048 0.047 0.066 0.512 0.997
T̂min

n 0 1000 500 0.061 0.058 0.367 0.958 0.991
T̂cusum

n 0 1000 500 0.053 0.053 0.095 0.978 1
T̂min

n 0.1 500 250 0.042 0.039 0.23 0.891 0.962
T̂cusum

n 0.1 500 250 0.035 0.037 0.122 0.897 1
T̂min

n 0.1 1000 500 0.056 0.046 0.653 0.979 0.995
T̂cusum

n 0.1 1000 500 0.053 0.054 0.963 1 1
T̂min

n 0.2 500 250 0.036 0.032 0.162 0.842 0.951
T̂cusum

n 0.2 500 250 0.035 0.036 0.111 0.804 1
T̂min

n 0.2 1000 500 0.026 0.025 0.454 0.976 0.993
T̂cusum

n 0.2 1000 500 0.023 0.023 0.514 1 1
T̂min

n 0.3 500 250 0.032 0.034 0.201 0.855 0.95
T̂cusum

n 0.3 500 250 0.032 0.032 0.114 0.771 0.979
T̂min

n 0.3 1000 500 0.024 0.02 0.485 0.973 0.991
T̂cusum

n 0.3 1000 500 0.021 0.021 0.284 0.999 1

Table 10. Empirical sizes and powers in Case 2 for the Poisson INGARCH(1,1) model when
θ0 = (2, 0.6, 0.2), p = 0.1 and λ = 30.

α n τ δ : 0 0.25 0.5 0.75 1
T̂min

n 0 500 250 0.08 0.975 1 1 1
T̂cusum

n 0 500 250 0.065 0.11 0.194 0.329 0.456
T̂min

n 0 1000 500 0.055 1 1 1 1
T̂cusum

n 0 1000 500 0.05 0.203 0.594 0.795 0.902
T̂min

n 0.1 500 250 0.057 0.935 0.999 1 1
T̂cusum

n 0.1 500 250 0.062 0.169 0.666 0.927 0.993
T̂min

n 0.1 1000 500 0.091 0.999 1 1 1
T̂cusum

n 0.1 1000 500 0.052 0.615 1 1 1
T̂min

n 0.2 500 250 0.054 0.875 0.998 0.999 1
T̂cusum

n 0.2 500 250 0.043 0.069 0.309 0.663 0.784
T̂min

n 0.2 1000 500 0.135 0.993 1 1 1
T̂cusum

n 0.2 1000 500 0.046 0.569 0.999 1 1
T̂min

n 0.3 500 250 0.063 0.896 0.998 0.999 1
T̂cusum

n 0.3 500 250 0.046 0.086 0.455 0.763 0.853
T̂min

n 0.3 1000 500 0.159 0.992 1 1 1
T̂cusum

n 0.3 1000 500 0.047 0.675 0.999 1 1
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Table 11. Empirical sizes and powers in Case 3 for the Poisson INGARCH(1,1) model when
θ0 = (2, 0.3, 0.3), p = 0.1 and λ = 30.

α n τ δ : 0 0.25 0.5 0.75 1
T̂min

n 0 500 250 0.074 0.118 0.069 0.127 0.885
T̂cusum

n 0 500 250 0.062 0.064 0.06 0.068 0.777
T̂min

n 0 1000 500 0.062 0.213 0.058 0.257 0.935
T̂cusum

n 0 1000 500 0.049 0.05 0.049 0.057 0.992
T̂min

n 0.1 500 250 0.036 0.033 0.041 0.516 0.914
T̂cusum

n 0.1 500 250 0.037 0.037 0.04 0.268 0.961
T̂min

n 0.1 1000 500 0.029 0.026 0.03 0.824 0.963
T̂cusum

n 0.1 1000 500 0.023 0.023 0.025 0.859 1
T̂min

n 0.2 500 250 0.038 0.034 0.038 0.487 0.865
T̂cusum

n 0.2 500 250 0.04 0.042 0.046 0.321 0.612
T̂min

n 0.2 1000 500 0.019 0.017 0.018 0.725 0.922
T̂cusum

n 0.2 1000 500 0.015 0.015 0.015 0.244 0.616
T̂min

n 0.3 500 250 0.035 0.032 0.036 0.351 0.661
T̂cusum

n 0.3 500 250 0.039 0.039 0.042 0.13 0.211
T̂min

n 0.3 1000 500 0.02 0.016 0.017 0.684 0.893
T̂cusum

n 0.3 1000 500 0.012 0.012 0.012 0.085 0.161

Table 12. Empirical sizes and powers in Case 4 for the Poisson INGARCH(1,1) model when
θ0 = (1, 0.4, 0.4), p = 0.1 and λ = 30.

α n τ δ : 0 0.25 0.5 0.75 1
T̂min

n 0 500 250 0.05 0.796 0.958 0.989 0.996
T̂cusum

n 0 500 250 0.048 0.078 0.118 0.173 0.219
T̂min

n 0 1000 500 0.032 1 1 1 1
T̂cusum

n 0 1000 500 0.043 0.613 0.874 0.931 0.957
T̂min

n 0.1 500 250 0.085 0.712 0.97 0.997 1
T̂cusum

n 0.1 500 250 0.04 0.065 0.243 0.466 0.647
T̂min

n 0.1 1000 500 0.242 0.978 0.999 1 1
T̂cusum

n 0.1 1000 500 0.069 0.916 0.999 1 1
T̂min

n 0.2 500 250 0.078 0.677 0.96 0.995 0.999
T̂cusum

n 0.2 500 250 0.032 0.069 0.284 0.535 0.735
T̂min

n 0.2 1000 500 0.229 0.965 0.999 1 1
T̂cusum

n 0.2 1000 500 0.047 0.836 0.999 1 1
T̂min

n 0.3 500 250 0.06 0.642 0.947 0.993 0.999
T̂cusum

n 0.3 500 250 0.027 0.08 0.332 0.621 0.807
T̂min

n 0.3 1000 500 0.201 0.962 0.999 1 1
T̂cusum

n 0.3 1000 500 0.027 0.749 0.999 1 1

5. Real Data Analysis

In this section, we apply T̂cusum
n to a real dataset, using the extreme events of the daily log-returns

of GS stock from 2 July 2007 to 28 February 2020. Davis and Liu [11] and Kim and Lee [37] used the
GS stock datasets with different periods, but their works were focused on parameter estimation and
the retrospective change point test. For the task of online monitoring, we first calculated the hitting
times, τ1, τ2, . . . , for which the log-returns of GS stock fall outside the 0.05 and 0.95 quantiles of the
data, and generated the time series of counts Yt = τt − τt−1 ≥ 0, t = 1, . . . , 319. Figure 3 plots Yt and
exhibits the presence of a number of outliers.
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Figure 3. Plot of the return times of extreme events for Goldman Sachs Group stock.

Fitting the Poisson INGARCH(1,1) model to the whole observations, we have the MLE of
(ω̂, â, b̂) = (1.969, 0.152, 0.664) and the MDPDE of (ω̂, â, b̂) = (1.213, 0.144, 0.472) when α = 0.1 is
used. The significant difference between the two estimates is seemingly due to the presence of outliers.
Using Yt, t = 1, . . . , 150 as a training sample and viewing Yt, t ≥ 151 as sequentially observed testing
data, we implement the monitoring process T̂cusum

n with α = 0, 0.1 to detect a parameter change.
Subsequently, an anomaly is detected when t = 180 for α = 0 (blue vertical line) and t = 197 for
α = 0.1 (red vertical line), which indicates that the monitoring process based on the MLE is more
sensitive to relatively smaller outliers lying around t = 180, while that based on MDPDE is more
robust to those outliers and detects a more significant change around t = 197, ignoring smaller
ones. Obviously, we can see from Figure 3 that Yt has a pattern with more fluctuations after t = 180.
Our finding affirms the adequacy of the MDPDE-based monitoring process in the presence of outliers.

6. Concluding Remarks

In this work, we studied the robust on-line monitoring process based on MDPDE for detecting
a parameter change in INGARCH models. For this task, we adopted the CUSUM process based on
the score functions, which were originally constructed for obtaining the MDPDE. Our simulation
study and real data analysis confirmed the validity of the proposed method. Here, we focused on the
monitoring process within the framework of Gombay and Serban [30] and Huh, Kim and Lee [31].
However, one can also consider a different monitoring scheme, for example as in Na, Lee and Lee [44],
and conduct a comparison study, which is left as our future project.
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Abbreviations

The following abbreviations are used in this manuscript:

CUSUM cumulative sum
INGARCH integer-valued generalized autoregressive conditionally heteroscedastic
INAR integer-valued autoregressive
MDPDE minimum density power divergence etimator
MLE maximum likelihood estimator
SPC statistical process control

Appendix A

Proof of Theorem 1. We first verify that T̂max
n converges to T in distribution; the cases of T̂min

n,0 , T̂max
n,0 ,

and T̂min
n can be similarly handled and the proofs for these are omitted. As θ̂α,m converges to θ0 and

E

(
sup
θ∈Θ

∥∥∥∥
∂2lα,t(θ)

∂θ∂θT −
∂2lα,t(θ0)

∂θ∂θT

∥∥∥∥

)
< ∞,

we have that for any sequence θ∗n converging to θ0 a.s.,

1
n

n

∑
t=1

∂2lα,t(θ∗n)
∂θ∂θT → −Jα (A1)

in probability. Then, using the mean value theorem and ergodicity, owing to (A1), we have
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∂θ∂θT

∣∣∣∣∣

∣∣∣∣∣
= oP(1), (A2)

where θ̂∗n and θ̂∗∗n are intermediate points between θ0 and θ̂α,m. Hence, since K̂α,m is a consistent
estimator of Kα (Lemma A5 of Kim and Lee [36]) and

sup
θ∈Θ

max
1≤k≤n

∣∣∣∣∣
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∣∣∣∣∣ = oP(1) (A3)

(Lemma 6 of Kim and Lee, 2019), we get T̂max
n − Tmax

n = oP(1) and T̂max
n converges to T in distribution

owing to (9).
Next, we deal with T̂cusum

n . The case of T̂cusum
n,0 can be similarly handled. Similarly to (A2), we can

see that

max
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Then, using the arguments as in (A3) and (A4), we can see that

max
1≤k≤n

1√
n

∣∣∣∣
∣∣∣∣Ŵk −

( k
n

)
Ŵk −Wk +

( k
n

)
Wk

∣∣∣∣
∣∣∣∣ = oP(1),

which implies T̂cusum
n − Tcusum

n = oP(1) and T̂cusum
n

d→ T
′

holds owing to (9). This completes
the proof.
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Abstract: In this study, we consider the problem of testing for a parameter change in general integer-valued
time series models whose conditional distribution belongs to the one-parameter exponential family
when the data are contaminated by outliers. In particular, we use a robust change point test based on
density power divergence (DPD) as the objective function of the minimum density power divergence
estimator (MDPDE). The results show that under regularity conditions, the limiting null distribution
of the DPD-based test is a function of a Brownian bridge. Monte Carlo simulations are conducted to
evaluate the performance of the proposed test and show that the test inherits the robust properties
of the MDPDE and DPD. Lastly, we demonstrate the proposed test using a real data analysis of the
return times of extreme events related to Goldman Sachs Group stock.

Keywords: integer-valued time series; one-parameter exponential family; minimum density power
divergence estimator; density power divergence; robust change point test

1. Introduction

Integer-valued time series models have received widespread attention from researchers and practitioners
in diverse research areas. Since the works of McKenzie [1] as well as Al-Osh and Alzaid [2],
integer-valued autoregressive (INAR) models have gained popularity in the analysis of correlated
time series of counts. Later, as an alternative, Ferland et al. [3] proposed using Poisson integer-valued
generalized autoregressive conditional heteroscedastic (INGARCH) models (see Engle [4] and
Bollerslev [5]). Since then, INGARCH models have been studied by many authors, such as
Fokianos et al. [6], who developed Poisson autoregressive (Poisson AR) models with nonlinear
specifications for their intensity processes. The Poisson assumption on INGARCH models has been
extended to include negative binomial INGARCH (NB-INGARCH) models (Davis and Wu [7] and
Christou and Fokianos [8]), zero-inflated generalized Poisson INGARCH models (Zhu [9,10] and
Lee et al. [11]), and one-parameter exponential distribution AR models (Davis and Liu [12]). The latter
are also known as general integer-valued time series models and have been studied by, among others,
Diop and Kengne [13] and Lee and Lee [14], who considered change point tests for these models.

The change point problem is a core issue in time series analysis because changes can occur in
underlying model parameters owing to critical events or policy changes, and ignoring such changes
can result in false conclusions. Numerous studies exist on change point analysis in time series models;
refer to Kang and Lee [15] and Lee and Lee [14], and the articles cited therein, for the background
and history of change points in integer-valued time series models. Lee and Lee [14] conducted a
comparison study of the performance of various cumulative sum (CUSUM) tests using score vectors
and residuals through the Monte Carlo simulations. In their work, the conditional maximum likelihood
estimator (CMLE) is used for the parameter estimation and also the construction of the CUSUM tests.
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However, the CMLE is often damaged by outliers, and so is the performance of the CMLE-based
CUSUM test. In general, outliers easily mislead the CUSUM test since they can be mistakenly taken
for abrupt changes; in the opposite, they can misidentify change points in their presence on time series.
Among the robust estimation methods, we adopt the minimum density power divergence estimator
(MDPDE) approach—proposed by Basu et al. [16]—as a remedy and propose to use the density power
divergence (DPD)-based test as a robust change point test.

The MDPDE method is well known for consistently making robust inferences in various situations,
and the trade-off between efficiency and robustness is managed via the tuning parameter. Basu et al. [16]
introduced the MDPDE using the independent and identically distributed observations, and later,
Ghosh and Basu [17] extended their method to the independent but not identically distributed samples.
For earlier works in the context of time series, see Lee and Song [18], Kim and Lee [19], Kang and
Lee [20], and Kim and Lee [21], who deal with the MDPDE for GARCH models, multivariate times
series, and (zero-inflated) Poisson AR models. Kim and Lee [22] demonstrated that the MDPDE for
general integer-valued time series models has strong robust properties, with little loss in asymptotic
efficiency relative to the CMLE. This motivates us to use the MDPDE to construct a robust change point
test for general integer-valued time series models. More precisely, we anticipate that the robust property
of the MDPDE would be inherited to the proposed change point test, so that the influence of outliers
should be reduced when performing a parameter change test in the presence of outliers. Although the
problem of testing for a parameter change in integer-valued time series models has been investigated
by many researchers, the testing procedure for observations with outliers has not been widely studied.
This motivates us to develop a MDPDE-based robust change point test for general integer-valued time
series models.

Kang and Song [23] proposed an estimate-based robust CUSUM test that uses the MDPDE to
detect parameter changes in Poisson AR models. However, this type of test is known to suffer from
severe size distortions, especially when the true parameter lies at the boundary of the parameter space.
Thus, we use the test deduced based on an empirical version of the DPD, which is the objective function
of the MDPDE. Song and Kang [24] and Kang and Song [25] applied DPD-based change point tests in
GARCH models and Poisson AR models, respectively. However, the DPD approach basically shares
the same spirit as the score-based CUSUM test of Lee and Lee [14] (see Remark 3 in Section 2.2), in that
both are based on derivatives of objective functions. Thus, the idea is easily adapted to one-parameter
exponential family AR models. As for a parameter change test for independent samples based on
divergence measures, see Batsidis et al. [26,27], who consider the φ-divergence as a measure. We also
refer to Martín and Pardo [28], who point out the importance of a Wald-type test based on DPD in
dealing with the change point problem.

Monte Carlo simulations are conducted to evaluate the performance of the proposed test. Here,
we compare the DPD-based test and the score-based CUSUM test to demonstrate the superiority of the
proposed test in the presence of outliers. Then, we provide a real data analysis of the return times of
extreme events related to Goldman Sachs Group (GS) stock to illustrate the proposed test. The paper
proceeds as follows. Section 2 constructs the DPD-based change point test for general integer-valued
time series models, and states its weak convergence theorem. Section 3 presents a simulation study
and a real data analysis. Section 4 concludes the paper. All proofs are provided in the Appendix A.

2. Construction of the MDPDE and Change Point Test

2.1. MDPDE for General Integer-Valued Time Series Models

Let Y1, Y2, . . . be the observations generated from general integer-valued time series models with
the conditional distribution of the one-parameter exponential family:

Yt|Ft−1 ∼ p(y|ηt), Xt := E(Yt|Ft−1) = fθ(Xt−1, Yt−1), (1)
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where Ft−1 is a σ-field generated by Yt−1, Yt−2, . . . and fθ(x, y) is a non-negative bivariate function
defined on [0, ∞) × N0, N0 = N ∪ {0}, depending on the parameter θ ∈ Θ ⊂ Rd, and satisfies
infθ∈Θ fθ(x, y) ≥ x∗ for some x∗ > 0 for all x, y. Here, p(·|·) is a probability mass function, given by

p(y|η) = exp{ηy− A(η)}h(y), y ≥ 0,

where η is the natural parameter and A(η) and h(y) are known functions. This distribution family
includes several famous discrete distributions, such as the Poisson, negative binomial, and binomial
distributions. If B(η) = A′(η), B(ηt) and B′(ηt) become the conditional mean and variance of Yt,
and Xt = B(ηt). The derivative of A(η) exists for the exponential family; see Lehmann and Casella [29].
Since B′(ηt) = Var(Yt|Ft−1) > 0, B(η) is strictly increasing, and since B(ηt) = E(Yt|Ft−1) > 0, A(η)

is also strictly increasing. To emphasize the role of θ, we also use Xt(θ) and ηt(θ) = B−1(Xt(θ)) to
stand for Xt and ηt, respectively.

Davis and Liu [12] showed that the assumption below ensures the strict stationarity and ergodicity
of {(Xt, Yt)}:

(A0) For all x, x′ ≥ 0 and y, y′ ∈ N0,

sup
θ∈Θ
| fθ(x, y)− fθ(x′, y′)| ≤ ω1|x− x′|+ ω2|y− y′|,

where ω1, ω2 ≥ 0 satisfy ω1 + ω2 < 1.

They also demonstrated that there exists a measurable function f θ
∞ : N∞

0 → [0, ∞), such that
Xt(θ) = f θ

∞(Yt−1, Yt−2, . . .) almost surely (a.s.).
Meanwhile, the DPD dα between two density functions g and h is defined as

dα(g, h) :=

{ ∫
{g1+α(y)− (1 + 1

α )h(y)gα(y) + 1
α h1+α(y)}dy, α > 0,∫

h(y)(log h(y)− log g(y))dy, α = 0.

For a parametric family {Gθ , θ ∈ Θ} with densities given by {gθ} and a distribution H with density
h, the minimum DPD functional Tα(H) is defined by dα(h, gTα(H)) = minθ∈Θ dα(h, gθ). In particular,
if H = Gθ0 ∈ {Gθ}, Tα(Gθ0) = θ0. Then, given a random sample Y1, . . . , Yn with unknown density h,
the MDPDE is defined by

θ̂α,n = argmin
θ∈Θ

Lα,n(θ),

where Lα,n(θ) =
1
n ∑n

t=1 lα,t(θ) and

lα,t(θ) =

{ ∫
g1+α

θ (y)dy−
(

1 + 1
α

)
gα

θ (Yt), α > 0,

− log gθ(Yt), α = 0.

When α = 0 and 1, the MDPDE becomes the MLE and the L2-distance estimator, respectively.
Basu et al. [16] revealed that θ̂α,n is consistent for Tα(H) and asymptotically normal. Furthermore,
the estimator is robust against outliers, but still exhibits high efficiency when the true distribution belongs
to a parametric family {Gθ} and α is close to zero. The tuning parameter α controls the trade-off between
robustness and asymptotic efficiency. A large α escalates the robustness while a small α yields greater
efficiency. The conditional version of the MDPDE is defined similarly (cf. Section 2 of Kim and Lee [22]).

For Y1, . . . , Yn generated from (1), the MDPDE for general integer-valued time series models is
defined as

θ̂α,n = argmin
θ∈Θ

L̃α,n(θ) = argmin
θ∈Θ

1
n

n

∑
t=1

l̃α,t(θ), (2)
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where

l̃α,t(θ) =

{
∑∞

y=0 p1+α(y|η̃t(θ))−
(

1 + 1
α

)
pα(Yt|η̃t(θ)), α > 0,

− log p(Yt|η̃t(θ)), α = 0,
(3)

and η̃t(θ) = B−1(X̃t(θ)) is updated recursively using the following equations:

X̃t(θ) = fθ(X̃t−1(θ), Yt−1), t = 2, 3, . . . , X̃1(θ) = X̃1,

with an arbitrarily chosen initial value X̃1. The MDPDE with α = 0 becomes the CMLE from (3).
Kim and Lee [22] showed that under the regularity conditions (A0)–(A9) stated below, the MDPDE

is strongly consistent and asymptotically normal. Conditions (A10) and (A11) are imposed to derive
the limiting null distribution of the DPD-based change point test in Section 2.2. Below, V and ρ ∈ (0, 1)
represent a generic integrable random variable and a constant, respectively; the symbol ‖ · ‖ denotes
the L2-norm for matrices and vectors; and E(·) is taken under θ0, where θ0 denotes the true value of θ.

(A1) θ0 is an interior point in the compact parameter space Θ ⊂ Rd.
(A2) E

(
supθ∈Θ X1(θ)

)4
< ∞.

(A3) infθ∈Θ inf0≤δ≤1 B′((1− δ)ηt(θ) + δη̃t(θ)) ≥ c for some c > 0.
(A4) EY4

1 < ∞.
(A5) If there exists t ≥ 1, such that Xt(θ) = Xt(θ0) a.s., then θ = θ0.
(A6) supθ∈Θ sup0≤δ≤1

∣∣∣ B′′((1−δ)ηt(θ)+δη̃t(θ))
B′((1−δ)ηt(θ)+δη̃t(θ))5/2

∣∣∣ ≤ K for some K > 0.

(A7) The mapping θ 7→ f θ
∞ is twice continuously differentiable with respect to θ, and satisfies

E

(
sup
θ∈Θ

∥∥∥∥
∂ f θ

∞(Y0, Y−1, . . .)
∂θ

∥∥∥∥

)4

< ∞ and E

(
sup
θ∈Θ

∥∥∥∥
∂2 f θ

∞(Y0, Y−1, . . .)
∂θ∂θT

∥∥∥∥

)2

< ∞.

(A8) supθ∈Θ

∥∥∥ ∂X̃t(θ)
∂θ − ∂Xt(θ)

∂θ

∥∥∥ ≤ Vρt a.s.

(A9) νT ∂Xt(θ0)
∂θ = 0 a.s. implies ν = 0.

(A10) supθ∈Θ

∥∥∥ ∂2X̃t(θ)
∂θ∂θT − ∂2Xt(θ)

∂θ∂θT

∥∥∥ ≤ Vρt a.s.

(A11) supθ∈Θ sup0≤δ≤1

∣∣∣∣
B(3)((1−δ)ηt(θ)+δη̃t(θ))
B′((1−δ)ηt(θ)+δη̃t(θ))4

∣∣∣∣ ≤ M for some M > 0.

Proposition 1. Under (A0)–(A5), θ̂α,n −→ θ0 a.s. as n→ ∞, and further, under (A0)–(A9),

√
n(θ̂α,n − θ0)

d−→ N(0, J−1
α Kα J−1

α ) as n→ ∞,

where

Jα = −E
(

∂2lα,t(θ0)

∂θ∂θT

)
, Kα = E

(
∂lα,t(θ0)

∂θ

∂lα,t(θ0)

∂θT

)

and lα,t(θ) is defined by substituting ηt(θ) for η̃t(θ) in (3).

Remark 1. In our empirical study, discussed in Section 3.2, we select an optimal α using the method of
Warwick [30] and Warwick and Jones [31]. We choose α that minimizes the trace of the estimated asymptotic
mean squared error ( ̂AMSE):

̂AMSE = (θ̂α,n − θ̂1,n)(θ̂α,n − θ̂1,n)
T + ̂As.var(θ̂α,n),

where θ̂1,n is the MDPDE with α = 1 and ̂As.var(θ̂α,n) is the estimate of the asymptotic variance of θ̂α,n,
computed as
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̂As.var(θ̂α,n) =

(
n

∑
t=1

∂2 l̃α,t(θ̂α,n)

∂θ∂θT

)−1( n

∑
t=1

∂l̃α,t(θ̂α,n)

∂θ

∂l̃α,t(θ̂α,n)

∂θT

)(
n

∑
t=1

∂2 l̃α,t(θ̂α,n)

∂θ∂θT

)−1

.

Remark 2. Instead of (A6), Kim and Lee [22] assumed

sup
θ∈Θ

sup
0≤δ≤1

∣∣∣∣
B′′((1− δ)ηt(θ) + δη̃t(θ))

B′((1− δ)ηt(θ) + δη̃t(θ))3

∣∣∣∣ ≤ K for some K > 0

to prove Proposition 1. Note that this condition is satisfied directly if (A3) and (A6) hold. In our study, we alter
the above condition to (A6) to prove Lemma A1 in the Appendix A, which is needed to obtain the limiting null
distribution of the DPD-based change point test in Section 2.2.

The following INGARCH(1,1) models are typical examples of general integer-valued time series models:

Yt|Ft−1 ∼ p(y|ηt), Xt = d + aXt−1 + bYt−1,

where Xt = B(ηt) = E(Yt|Ft−1), θ = (d, a, b)T ∈ Θ ⊂ (0, ∞) × [0, ∞)2 with a + b < 1, and Θ is
compact. Condition (A0) trivially holds, and the process {(Xt, Yt), t ≥ 1} has a strictly stationary and
ergodic solution. Condition (A1) can be replaced with the following:

(A1)′ The true parameter θ0 lies in a compact neighborhood Θ ∈ R3
+ of θ0, where

Θ ∈ {θ = (d, a, b)T ∈ R3
+ : 0 < dL ≤ d ≤ dU , ε ≤ a + b ≤ 1− ε} for some dL, dU , ε > 0.

Moreover, we can express

Xt(θ) =
d

1− a
+ b

∞

∑
k=0

akYt−k−1 and X̃t(θ) =
d

1− a
+ b

t−2

∑
k=0

akYt−k−1,

where the initial value X̃1 is taken as d/(1 − a) for simplicity. Based on the above and (A4),
the conditions (A2), (A5), and (A7)–(A10) are all satisfied for INGARCH(1,1) models, as proven by
Theorem 3 of Kang and Lee [15]. Kim and Lee [22] showed recently that the following Poisson and
negative binomial INGARCH(1,1) models satisfy (A3) and (A4). Furthermore, following the arguments
presented in Section 3.2 of their study, (A6) holds for these models as well. Below, we show that (A11)
holds for Poisson and negative binomial INGARCH(1,1) models.

• Poisson INGARCH(1,1) model:

Yt|Ft−1 ∼ Poisson(Xt), Xt = d + aXt−1 + bYt−1.

In this model, ηt(θ) = log(Xt(θ)) and A(ηt(θ)) = eηt(θ). Since B′(η) = B(3)(η), (A11) holds owing to
(A3).

• NB-INGARCH(1,1) model:

Yt|Ft−1 ∼ NB(r, pt), Xt =
r(1− pt)

pt
= d + aXt−1 + bYt−1,

where NB(r, p) denotes a negative binomial distribution with parameters r ∈ N and p ∈ (0, 1).
To be more specific, it counts the number of failures before the r-th success occurs in a sequence
of Bernoulli trials with success probability p. Here, r is assumed to be known. In this model, ηt(θ) =

log(Xt(θ)/(Xt(θ) + r)) and A(ηt(θ)) = r log(r/(1− eηt(θ))). From the fact that B′(η) = reη/(1− eη)2

and B(3)(η) = reη(e2η + 4eη + 1)/(1− eη)4, we have B(3)(η)/B′(η)4 = (1− eη)4(e2η + 4eη + 1)/r3e3η ,
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which is positive and strictly decreasing on η < 0. Moreover, since dL/(dL + r) ≤ eηt(θ) < 1, it
holds that

B(3)(ηt(θ))

B′(ηt(θ))4 ≤
6(1− dL/(dL + r))4

r3(dL/(dL + r))3 =
6r

d3
L(dL + r)

and B(3)(η̃t(θ))/B′(η̃t(θ))4 also has the same upper bound. Hence, (A11) is satisfied.
In addition to the above models, general integer-valued time series models also include nonlinear

models, such as the integer-valued threshold GARCH (INTGARCH) model:

Yt|Ft−1 ∼ Poisson(Xt), Xt = d + aXt−1 + b1 max(Yt−1 − l, 0) + b2 min(Yt−1, l),

where θ = (d, a, b1, b2)
T ∈ Θ ⊂ (0, ∞)× [0, ∞)3 with a + max(b1, b2) < 1, Θ is compact, and l is a

non-negative integer value. For more details, see Remark 3 in Kim and Lee [22].

2.2. DPD-Based Change Point Test

As a robust test for parameter changes in general integer-valued time series models, we propose
a DPD-based test for the following hypotheses:

H0 : θ does not change over Y1, · · · , Yn vs. H1 : not H0.

To construct the test, we employ the objective function of the MDPDE. That is, our test is constructed
using the empirical version of the DPD. Let L̃α,n be that in (2). To implement our test, we employ the
following test statistic:

T̂α
n := max

1≤k≤n

k2

n
∂L̃α,k(θ̂α,n)

∂θT K̂−1
α

∂L̃α,k(θ̂α,n)

∂θ
,

where

K̂α =
1
n

n

∑
t=1

∂l̃α,t(θ̂α,n)

∂θ

∂l̃α,t(θ̂α,n)

∂θT

is a consistent estimator of Kα. For the consistency of K̂α, see Lemma A5 in Appendix A.
Using the mean value theorem (MVT), we have the following, for each s ∈ [0, 1],

[ns]√
n

∂L̃α,[ns](θ̂α,n)

∂θ
=

[ns]√
n

∂L̃α,[ns](θ0)

∂θ
+

[ns]
n

∂2 L̃α,[ns](θ
∗
α,n,s)

∂θ∂θT

√
n(θ̂α,n − θ0), (4)

where θ∗α,n,s is an intermediate point between θ̂α,n and θ0. From ∂L̃α,n(θ̂α,n)/∂θ = 0, we obtain that,
for s = 1,

0 =
√

n
∂L̃α,n(θ0)

∂θ
+

∂2 L̃α,n(θ∗α,n,1)

∂θ∂θT

√
n(θ̂α,n − θ0).

Furthermore, since Jα is nonsingular (cf. proof of Lemma 7 in Kim and Lee [22]), this can be expressed as

√
n(θ̂α,n − θ0) = J−1

α

√
n

∂L̃α,n(θ0)

∂θ
+ J−1

α

∂2 L̃α,n(θ∗α,n,1)

∂θ∂θT

√
n(θ̂α,n − θ0) +

√
n(θ̂α,n − θ0)

= J−1
α

√
n

∂L̃α,n(θ0)

∂θ
+ J−1

α

(
∂2 L̃α,n(θ∗α,n,1)

∂θ∂θT + Jα

)
√

n(θ̂α,n − θ0).
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Substituting the above into (4) yields

[ns]√
n

∂L̃α,[ns](θ̂α,n)

∂θ
=

[ns]√
n

∂L̃α,[ns](θ0)

∂θ
+

[ns]
n

∂2 L̃α,[ns](θ
∗
α,n,s)

∂θ∂θT J−1
α

√
n

∂L̃α,n(θ0)

∂θ

+
[ns]

n
∂2 L̃α,[ns](θ

∗
α,n,s)

∂θ∂θT J−1
α

(
∂2 L̃α,n(θ∗α,n,1)

∂θ∂θT + Jα

)
√

n(θ̂α,n − θ0). (5)

In Appendix A, we show that the first two terms on the right-hand side of (5) converge weakly to
K1/2

α Bo
d(s), where Bo

d is a d-dimensional standard Brownian bridge and the last term is asymptotically
negligible. Therefore, we obtain the following theorem.

Theorem 1. Suppose that conditions (A0)–(A11) hold. Then, under H0, we have

K−1/2
α

[ns]√
n

∂L̃α,[ns](θ̂α,n)

∂θ

w−→ Bo
d(s).

Therefore,

T̂α
n

d−→ sup
0≤s≤1

‖Bo
d(s)‖2.

We reject H0 if T̂α
n is large; see Table 1 of Lee et al. [32] for the critical values. When a change point

is detected, its location is estimated as

argmax
1≤k≤n

k2

n
∂L̃α,k(θ̂α,n)

∂θT K̂−1
α

∂L̃α,k(θ̂α,n)

∂θ
.

Remark 3. The proposed test T̂α
n with α = 0 is the same as the score-vector-based CUSUM test proposed by

Lee and Lee [14], given by

T̂score
n = max

1≤k≤n

1
n

(
k

∑
t=1

∂l̃0,t(θ̂0,n)

∂θT

)
Î−1
n

(
k

∑
t=1

∂l̃0,t(θ̂0,n)

∂θ

)
,

where l̃0,t(θ) is defined in (3), θ̂0,n is the CMLE, and În = n−1 ∑n
t=1 ∂2 l̃0,t(θ̂0,n)/∂θ∂θT . In the next section,

we compare the performance of T̂α
n with that of T̂score

n in the presence of outliers.

3. Empirical Studies

3.1. Simulation

In this section, we evaluate the performance of the proposed test T̂α
n (with α > 0) through

simulations, focusing on the comparison with T̂score
n . First, we consider the Poisson INGARCH models:

Yt|Ft−1 ∼ Poisson(Xt), Xt = d + aXt−1 + bYt−1, (6)

where X1 is set to 0 for the data generation and X̃1 is set as the sample mean of the data. The sample
sizes considered are n = 500 and 1000, with 1000 repetitions for each simulation. For the comparison,
we examine the empirical size and power at the nominal level of 0.05, which has a corresponding critical
value of 3.004. To calculate the empirical size and power for each test, we consider cases with θ =

(d, a, b) = (1, 0.2, 0.2), (1, 0.2, 0.4), (1, 0.2, 0.7) and those in which θ = (d, a, b) = (1, 0.2, 0.2) changes to
θ′ = (d′, a′, b′) = (1.5, 0.2, 0.2), (1, 0.4, 0.2), (1, 0.2, 0.4) at the middle time t = [n/2], respectively.
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Table 1 presents the results when the data are not contaminated by outliers, showing that both tests
(T̂score

n and T̂α
n ) exhibit reasonable size, even when a + b is close to 1. When n = 500, T̂score

n outperforms
T̂α

n in terms of power; however, as the sample size increases to n = 1000, T̂α
n exhibits similar power to

that of T̂score
n , particularly when α is small. The power of T̂α

n tends to decrease as α increases, confirming
that an MDPDE with large α results in a loss of efficiency.

Table 1. Empirical sizes and powers for Poisson integer-valued generalized autoregressive conditional
heteroscedastic (INGARCH)(1,1) models when no outliers exist.

T̂α
n with α

θ = (d, a, b) n T̂score
n α = 0.1 α = 0.2 α = 0.3 α = 0.5 α = 1

(1, 0.2, 0.2) 500 0.084 0.053 0.059 0.059 0.058 0.059
1000 0.065 0.047 0.053 0.053 0.051 0.059

Sizes (1, 0.2, 0.4) 500 0.049 0.040 0.043 0.045 0.047 0.047
1000 0.033 0.039 0.045 0.047 0.050 0.053

(1, 0.2, 0.7) 500 0.031 0.028 0.030 0.029 0.029 0.034
1000 0.050 0.051 0.047 0.044 0.046 0.051

θ′ = (d′, a′, b′) n θ = (d, a, b) = (1, 0.2, 0.2) changes to θ′ = (d′, a′, b′)

(1.5, 0.2, 0.2) 500 0.836 0.776 0.764 0.741 0.687 0.525
1000 0.912 0.914 0.911 0.910 0.901 0.871

Powers (1, 0.4, 0.2) 500 0.782 0.704 0.695 0.661 0.591 0.454
1000 0.951 0.942 0.939 0.937 0.917 0.886

(1, 0.2, 0.4) 500 0.819 0.804 0.800 0.795 0.736 0.634
1000 0.996 0.996 0.996 0.993 0.991 0.978

To evaluate the robustness of the proposed test, we assume that contaminated data Yc,t are
observed instead of Yt in (6) (cf. Fried et al. [33]):

Yc,t = Yt + PtYo,t, (7)

where Pt are independent and identically distributed (iid) Bernoulli random variables with success
probability p and Yo,t are iid Poisson random variables with mean γ. We assume that Yt, Pt, and Yo,t are
all independent. In this simulation, we consider the cases p = 0.01, 0.03 and γ = 5, 10. The results
are reported in Tables 2–5, showing that T̂score

n suffers from size distortions that become more severe as
either p or γ increase. In contrast, T̂α

n compensates for this defect remarkably well, yielding comparable
power to that of T̂score

n when n = 1000. This indicates that as more data are contaminated by outliers, T̂α
n

increasingly outperforms T̂score
n .
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Table 2. Empirical sizes and powers for Poisson INGARCH(1,1) models when p = 0.01 and γ = 5.

T̂α
n with α

θ = (d, a, b) n T̂score
n α = 0.1 α = 0.2 α = 0.3 α = 0.5 α = 1

(1, 0.2, 0.2) 500 0.108 0.048 0.046 0.046 0.052 0.057
1000 0.110 0.048 0.044 0.041 0.050 0.053

Sizes (1, 0.2, 0.4) 500 0.070 0.041 0.041 0.046 0.046 0.049
1000 0.078 0.041 0.042 0.041 0.045 0.043

(1, 0.2, 0.7) 500 0.057 0.035 0.039 0.038 0.045 0.045
1000 0.061 0.041 0.042 0.045 0.044 0.049

θ′ = (d′, a′, b′) n θ = (d, a, b) = (1, 0.2, 0.2) changes to θ′ = (d′, a′, b′)

(1.5, 0.2, 0.2) 500 0.792 0.736 0.735 0.723 0.676 0.569
1000 0.901 0.898 0.903 0.903 0.896 0.856

Powers (1, 0.4, 0.2) 500 0.766 0.684 0.686 0.667 0.626 0.525
1000 0.944 0.934 0.935 0.931 0.915 0.864

(1, 0.2, 0.4) 500 0.871 0.806 0.804 0.787 0.752 0.647
1000 0.997 0.993 0.993 0.992 0.990 0.960

Table 3. Empirical sizes and powers for Poisson INGARCH(1,1) models when p = 0.01 and γ = 10.

T̂α
n with α

θ = (d, a, b) n T̂score
n α = 0.1 α = 0.2 α = 0.3 α = 0.5 α = 1

(1, 0.2, 0.2) 500 0.246 0.069 0.075 0.070 0.069 0.079
1000 0.317 0.071 0.062 0.070 0.070 0.062

Sizes (1, 0.2, 0.4) 500 0.234 0.053 0.060 0.061 0.052 0.051
1000 0.262 0.059 0.070 0.072 0.071 0.060

(1, 0.2, 0.7) 500 0.127 0.040 0.040 0.037 0.041 0.038
1000 0.115 0.045 0.044 0.049 0.048 0.050

θ′ = (d′, a′, b′) n θ = (d, a, b) = (1, 0.2, 0.2) changes to θ′ = (d′, a′, b′)

(1.5, 0.2, 0.2) 500 0.840 0.785 0.791 0.769 0.742 0.649
1000 0.874 0.863 0.874 0.869 0.868 0.862

Powers (1, 0.4, 0.2) 500 0.835 0.743 0.759 0.740 0.694 0.590
1000 0.911 0.910 0.913 0.908 0.902 0.879

(1, 0.2, 0.4) 500 0.920 0.829 0.835 0.831 0.787 0.697
1000 0.997 0.992 0.995 0.997 0.994 0.965

Table 4. Empirical sizes and powers for Poisson INGARCH(1,1) models when p = 0.03 and γ = 5.

T̂α
n with α

θ = (d, a, b) n T̂score
n α = 0.1 α = 0.2 α = 0.3 α = 0.5 α = 1

(1, 0.2, 0.2) 500 0.213 0.060 0.059 0.058 0.062 0.074
1000 0.229 0.052 0.055 0.063 0.062 0.061

Sizes (1, 0.2, 0.4) 500 0.176 0.052 0.057 0.064 0.066 0.060
1000 0.173 0.047 0.055 0.054 0.055 0.059

(1, 0.2, 0.7) 500 0.073 0.030 0.039 0.037 0.037 0.045
1000 0.086 0.039 0.035 0.040 0.042 0.039

θ′ = (d′, a′, b′) n θ = (d, a, b) = (1, 0.2, 0.2) changes to θ′ = (d′, a′, b′)

(1.5, 0.2, 0.2) 500 0.804 0.693 0.715 0.709 0.687 0.616
1000 0.867 0.859 0.867 0.867 0.859 0.847

Powers (1, 0.4, 0.2) 500 0.786 0.662 0.693 0.681 0.634 0.561
1000 0.908 0.896 0.903 0.899 0.893 0.868

(1, 0.2, 0.4) 500 0.915 0.787 0.797 0.792 0.773 0.672
1000 0.998 0.994 0.995 0.993 0.986 0.965
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Table 5. Empirical sizes and powers for Poisson INGARCH(1,1) models when p = 0.03 and γ = 10.

T̂α
n with α

θ = (d, a, b) n T̂score
n α = 0.1 α = 0.2 α = 0.3 α = 0.5 α = 1

(1, 0.2, 0.2) 500 0.475 0.083 0.082 0.083 0.091 0.102
1000 0.592 0.092 0.097 0.104 0.109 0.097

Sizes (1, 0.2, 0.4) 500 0.556 0.071 0.078 0.080 0.068 0.065
1000 0.621 0.092 0.113 0.115 0.108 0.071

(1, 0.2, 0.7) 500 0.296 0.050 0.056 0.056 0.053 0.040
1000 0.289 0.060 0.062 0.057 0.060 0.055

θ′ = (d′, a′, b′) n θ = (d, a, b) = (1, 0.2, 0.2) changes to θ′ = (d′, a′, b′)

(1.5, 0.2, 0.2) 500 0.834 0.760 0.800 0.801 0.782 0.719
1000 0.889 0.821 0.852 0.867 0.860 0.866

Powers (1, 0.4, 0.2) 500 0.850 0.738 0.783 0.786 0.759 0.688
1000 0.897 0.848 0.887 0.889 0.895 0.880

(1, 0.2, 0.4) 500 0.951 0.817 0.847 0.842 0.815 0.728
1000 0.997 0.991 0.992 0.992 0.983 0.969

Next, we consider the following NB-INGARCH(1,1) models:

Yt|Ft−1 ∼ NB(r, pt), Xt =
r(1− pt)

pt
= d + aXt−1 + bYt−1, (8)

where X1 and X̃1 are 0 and the sample mean of the data, respectively. We set r = 10, and use the same
parameter settings as in the Poisson INGARCH model case. In order to evaluate the robustness of the
test, we observe contaminated data Yc,t, as in (7), where Yt are generated from (8), Pt are iid Bernoulli
random variables with success probability p, and Yo,t are iid NB(10, κ) random variables. We consider
the cases p = 0.01, 0.03 and κ = 0.6, 0.5. The results are reported in Tables 6–10, showing similar
results to those in Tables 1–5. Our findings show that the DPD-based test performs reasonably well
in terms of both size and power, regardless of the existence of outliers. In addition, we confirm that the
proposed test outperforms the score-based CUSUM test when the data are contaminated by outliers.

Table 6. Empirical sizes and powers for negative binomial INGARCH (NB-INGARCH)(1,1) models
when no outliers exist.

T̂α
n with α

θ = (d, a, b) n T̂score
n α = 0.1 α = 0.2 α = 0.3 α = 0.5 α = 1

(1, 0.2, 0.2) 500 0.076 0.050 0.052 0.054 0.061 0.071
1000 0.061 0.055 0.052 0.052 0.055 0.059

Sizes (1, 0.2, 0.4) 500 0.040 0.041 0.038 0.040 0.045 0.048
1000 0.049 0.053 0.056 0.057 0.062 0.060

(1, 0.2, 0.7) 500 0.047 0.046 0.043 0.038 0.042 0.043
1000 0.041 0.044 0.048 0.048 0.047 0.043

θ′ = (d′, a′, b′) n θ = (d, a, b) = (1, 0.2, 0.2) changes to θ′ = (d′, a′, b′)

(1.5, 0.2, 0.2) 500 0.821 0.759 0.735 0.706 0.640 0.505
1000 0.953 0.942 0.936 0.932 0.919 0.881

Powers (1, 0.4, 0.2) 500 0.759 0.689 0.646 0.611 0.558 0.454
1000 0.967 0.964 0.959 0.955 0.940 0.881

(1, 0.2, 0.4) 500 0.733 0.719 0.718 0.702 0.650 0.544
1000 0.984 0.984 0.981 0.975 0.961 0.908
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Table 7. Empirical sizes and powers for NB-INGARCH(1,1) models when p = 0.01 and κ = 0.6.

T̂α
n with α

θ = (d, a, b) n T̂score
n α = 0.1 α = 0.2 α = 0.3 α = 0.5 α = 1

(1, 0.2, 0.2) 500 0.158 0.062 0.066 0.066 0.071 0.071
1000 0.173 0.069 0.066 0.067 0.068 0.061

Sizes (1, 0.2, 0.4) 500 0.105 0.045 0.045 0.049 0.047 0.039
1000 0.112 0.058 0.058 0.062 0.057 0.047

(1, 0.2, 0.7) 500 0.045 0.031 0.035 0.038 0.041 0.038
1000 0.065 0.042 0.045 0.044 0.041 0.045

θ′ = (d′, a′, b′) n θ = (d, a, b) = (1, 0.2, 0.2) changes to θ′ = (d′, a′, b′)

(1.5, 0.2, 0.2) 500 0.803 0.705 0.714 0.695 0.647 0.516
1000 0.945 0.931 0.931 0.930 0.921 0.909

Powers (1, 0.4, 0.2) 500 0.757 0.648 0.645 0.626 0.579 0.464
1000 0.959 0.958 0.952 0.947 0.930 0.895

(1, 0.2, 0.4) 500 0.807 0.704 0.716 0.710 0.659 0.574
1000 0.985 0.978 0.980 0.979 0.969 0.935

Table 8. Empirical sizes and powers for NB-INGARCH(1,1) models when p = 0.01 and κ = 0.5.

T̂α
n with α

θ = (d, a, b) n T̂score
n α = 0.1 α = 0.2 α = 0.3 α = 0.5 α = 1

(1, 0.2, 0.2) 500 0.258 0.069 0.069 0.070 0.076 0.080
1000 0.292 0.061 0.061 0.057 0.058 0.068

Sizes (1, 0.2, 0.4) 500 0.177 0.048 0.048 0.052 0.057 0.058
1000 0.236 0.072 0.079 0.081 0.073 0.074

(1, 0.2, 0.7) 500 0.095 0.048 0.054 0.058 0.060 0.055
1000 0.097 0.049 0.050 0.050 0.050 0.051

θ′ = (d′, a′, b′) n θ = (d, a, b) = (1, 0.2, 0.2) changes to θ′ = (d′, a′, b′)

(1.5, 0.2, 0.2) 500 0.840 0.771 0.768 0.740 0.688 0.599
1000 0.923 0.924 0.932 0.926 0.925 0.897

Powers (1, 0.4, 0.2) 500 0.808 0.704 0.709 0.673 0.634 0.536
1000 0.938 0.946 0.946 0.943 0.935 0.898

(1, 0.2, 0.4) 500 0.842 0.723 0.740 0.735 0.696 0.586
1000 0.997 0.989 0.984 0.977 0.972 0.923

Table 9. Empirical sizes and powers for NB-INGARCH(1,1) models when p = 0.03 and κ = 0.6.

T̂α
n with α

θ = (d, a, b) n T̂score
n α = 0.1 α = 0.2 α = 0.3 α = 0.5 α = 1

(1, 0.2, 0.2) 500 0.289 0.079 0.077 0.076 0.086 0.069
1000 0.328 0.060 0.068 0.068 0.077 0.075

Sizes (1, 0.2, 0.4) 500 0.228 0.051 0.054 0.051 0.052 0.047
1000 0.246 0.054 0.064 0.066 0.064 0.059

(1, 0.2, 0.7) 500 0.090 0.035 0.040 0.040 0.044 0.036
1000 0.108 0.058 0.053 0.052 0.050 0.040

θ′ = (d′, a′, b′) n θ = (d, a, b) = (1, 0.2, 0.2) changes to θ′ = (d′, a′, b′)

(1.5, 0.2, 0.2) 500 0.818 0.685 0.705 0.702 0.675 0.582
1000 0.925 0.892 0.900 0.899 0.905 0.909

Powers (1, 0.4, 0.2) 500 0.806 0.637 0.666 0.664 0.627 0.522
1000 0.938 0.927 0.926 0.922 0.913 0.896

(1, 0.2, 0.4) 500 0.870 0.690 0.734 0.731 0.704 0.604
1000 0.990 0.976 0.978 0.974 0.969 0.931
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Table 10. Empirical sizes and powers for NB-INGARCH(1,1) models when p = 0.03 and κ = 0.5.

T̂α
n with α

θ = (d, a, b) n T̂score
n α = 0.1 α = 0.2 α = 0.3 α = 0.5 α = 1

(1, 0.2, 0.2) 500 0.469 0.085 0.088 0.100 0.102 0.096
1000 0.563 0.075 0.088 0.097 0.105 0.100

Sizes (1, 0.2, 0.4) 500 0.506 0.068 0.071 0.076 0.081 0.072
1000 0.532 0.089 0.096 0.101 0.089 0.078

(1, 0.2, 0.7) 500 0.188 0.054 0.066 0.072 0.066 0.061
1000 0.207 0.053 0.051 0.064 0.069 0.059

θ′ = (d′, a′, b′) n θ = (d, a, b) = (1, 0.2, 0.2) changes to θ′ = (d′, a′, b′)

(1.5, 0.2, 0.2) 500 0.879 0.749 0.784 0.797 0.758 0.687
1000 0.930 0.880 0.889 0.893 0.889 0.886

Powers (1, 0.4, 0.2) 500 0.867 0.698 0.766 0.756 0.734 0.636
1000 0.948 0.891 0.900 0.906 0.906 0.889

(1, 0.2, 0.4) 500 0.927 0.735 0.770 0.770 0.743 0.639
1000 0.995 0.977 0.984 0.981 0.971 0.944

3.2. Real Data Analysis

In this section, we demonstrate the validity of T̂α
n using a real data analysis. To this end, we analyze

the return times of extreme events related to GS stock, which are constructed based on the daily log-returns
for the period of 5 May 1999 to 15 March 2012. Davis and Liu [12] and Kim and Lee [22] previously
investigated this data set in their works on geometric INGARCH(1,1) models (i.e., NB-INGARCH(1,1)
models with r = 1).

We first compute the hitting times, τ1, τ2, . . ., for which the log-returns of GS stock fall outside the 0.05
and 0.95 quantiles of the data. The return times of these extreme events are calculated as Yt = τt − τt−1.
Figure 1 plots Yt, t = 1, . . . , 323. The figure shows that the data include large observations; for example,
a sample variance of 1106 with a sample mean of 10.01 indicates the existence of aberrant observations.
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Figure 1. Plot of the return times of extreme events for Goldman Sachs Group (GS) stock.

Since Yt ≥ 1, we consider a geometric distribution that counts the total number of trials, rather
than the number of failures, to fit the following geometric INGARCH(1,1) models to the data:

Yt|Ft−1 ∼ Geo(pt), Xt =
1
pt

= d + aXt−1 + bYt−1,
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where X̃1 is set as the sample mean of the data. Kim and Lee [22] showed that the optimal α for the
MDPDE is 0.25, using the criterion provided in Remark 1. The results for the parameter estimation are
summarized in Table 11 for α = 0 (CMLE) and 0.25 (MDPDE with optimal α); figures in parentheses
denote the standard errors of the corresponding estimates. We observe that, compared with the CMLE,
the MDPDE with α = 0.25 is quite different and has smaller standard errors.

Table 11. Parameter estimates for geometric INGARCH(1,1) models.

α d̂ â b̂ ̂AMSE

0(CMLE) 0.526(0.406) 0.490(0.175) 0.483(0.156) 0.623
0.25 0.432(0.242) 0.518(0.129) 0.418(0.115) 0.398

Next, we use T̂score
n and T̂0.25

n (T̂α
n with α = 0.25) to perform a parameter change test at the nominal

level of 0.05 (the corresponding critical value is 3.004). Let T̂score
n = max1≤k≤n SCOREk,n and T̂0.25

n =

max1≤k≤n DPDk,n. The left and right panels of Figure 2 display SCOREk,n and DPDk,n, respectively.
For most k, DPDk,n appears to be smaller than SCOREk,n, which is definitely attributed to the robustness
of the MDPDE and DPD. We obtain T̂score

n = 5.136, which suggests the existence of a parameter change.
In Figures 1 and 2, the red, vertical, dashed line represents the location of a change when T̂score

n is applied.
However, this result is not so reliable because T̂score

n can signal a change point affected by outliers as
seen in the previous section, and the change point is truly detected at the occurrence time of an outlier
in this case. In contrast, T̂0.25

n yields a value of 1.219, indicating that no change point exists. This result
clearly demonstrates that outliers can severely affect parameter estimates and change point tests by
mistakenly identifying a change point. Our findings confirm that the DPD-based change point test
provides a functional and robust alternative to the score-based CUSUM test in the presence of outliers.
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Figure 2. Plots of SCOREk,n and DPDk,n.

4. Conclusions

In this study, we developed a DPD-based robust change point test for general integer-valued time
series models with a conditional distribution that belongs to the one-parameter exponential family.
We provided regularity conditions under which the proposed test converges weakly to the function
of a Brownian bridge. The simulation study showed that the DPD-based test produces reasonable
sizes and powers regardless of the existence of outliers, whereas the score-based CUSUM test suffers
from severe size distortions when the data are contaminated by outliers. In the real data analysis using
the return times of extreme events related to GS stock, the score-based CUSUM test supported the
existence a parameter change, due to the influence of outliers, while the DPD-based test did not detect
a change point because of its robust property. This result confirms the validity of the proposed test as
a robust test in practice. It is noteworthy that the DPD-based test can be feasibly extended to other
parametric models as far as the asymptotic properties of the MDPDE for the models are validated.
We leave the issue of extension to other models as our future study.
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Appendix A

In this appendix, we prove Theorem 1 for α > 0; refer to Lee and Lee [14] for the case of α = 0.
The following properties of the probability mass function of the non-negative integer-valued exponential
family are useful for proving Lemma A1. For all y ∈ N0 and η ∈ R:

(E1) 0 < p(y|η) < 1,
(E2) ∑∞

y=0 p(y|η) = 1,
(E3) ∑∞

y=0 yp(y|η) = B(η),
(E4) ∑∞

y=0 y2 p(y|η) = B′(η) + B(η)2,
(E5) ∑∞

y=0 y3 p(y|η) = B′′(η) + 3B′(η)B(η) + B(η)3.

Throughout this section, we denote Lα,n(θ) = n−1 ∑n
t=1 lα,t(θ) and employ the notation ηt =

ηt(θ), η̃t = η̃t(θ), and η0
t = ηt(θ0) for brevity. Furthermore, if we define two functions hα(η) and

mα(η) as

hα(η) =
∞

∑
y=0

p(y|η)1+α y− B(η)
B′(η)

− p(Yt|η)α Yt − B(η)
B′(η)

,

mα(η) =
∞

∑
y=0

p(y|η)1+α

[
(1 + α)

(
y− B(η)

B′(η)

)2

− B′′(η)
B′(η)2

y− B(η)
B′(η)

− 1
B′(η)

]

−p(Yt|η)α

[
α

(
Yt − B(η)

B′(η)

)2

− B′′(η)
B′(η)2

Yt − B(η)
B′(η)

− 1
B′(η)

]
,

we obtain

∂lα,t(θ)

∂θ
= (1 + α)hα(ηt)

∂Xt(θ)

∂θ
,

∂2lα,t(θ)

∂θ∂θT = (1 + α)

(
hα(ηt)

∂2Xt(θ)

∂θ∂θT + mα(ηt)
∂Xt(θ)

∂θ

∂Xt(θ)

∂θT

)
.
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Lemma A1. Suppose that conditions (A3), (A6), and (A11) hold. Then, we have

|hα(ηt)| ≤
1
c
(Yt + 3Xt(θ)),

|hα(η̃t)| ≤
1
c
(Yt + 3Xt(θ) + 3|Xt(θ)− X̃t(θ)|),

|mα(ηt)| ≤
α

c2 Y2
t +

K
c1/2 Yt +

α

c2 Xt(θ)
2 +

3K
c1/2 Xt(θ) +

3 + α

c
,

|hα(ηt)− hα(η̃t)| ≤
[

α

c2 Y2
t +

K
c1/2 Yt +

2α

c2

(
Xt(θ)

2 + |Xt(θ)− X̃t(θ)|2
)

+
3K
c1/2

(
Xt(θ) + |Xt(θ)− X̃t(θ)|

)
+

3 + α

c

]
|Xt(θ)− X̃t(θ)|,

|mα(η̃t)| ≤
α

c2 Y2
t +

K
c1/2 Yt +

2α

c2

(
Xt(θ)

2 + |Xt(θ)− X̃t(θ)|2
)

+
3K
c1/2

(
Xt(θ) + |Xt(θ)− X̃t(θ)|

)
+

3 + α

c
,

|mα(ηt)−mα(η̃t)| ≤
[

α2

c3 Y3
t +

3αK
c3/2 Y2

t +

(
3α

c2 + M + 3K2
)

Yt

+
4(3α2 + 4α + 2)

c3

(
Xt(θ)

3 + |Xt(θ)− X̃t(θ)|3
)

+
6αK
c3/2

(
Xt(θ)

2 + |Xt(θ)− X̃t(θ)|2
)

+3
(

α2 + 5α + 3
c2 + M + 3K2

)(
Xt(θ) + |Xt(θ)− X̃t(θ)|

)

+
(α2 + 5α + 8)K

c1/2

]
|Xt(θ)− X̃t(θ)|.
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Proof. The proofs for the first four parts of the lemma can be found in Lemma 4 of Kim and Lee [22].
The fifth part is obtained directly from the third part, together with the fact that X̃t(θ) ≤ |Xt(θ)−
X̃t(θ)|+ Xt(θ).

By the MVT, (E1)–(E5), (A3), (A6), and (A11), we have

|mα(ηt)−mα(η̃t)|

=

∣∣∣∣
∂mα(B−1(X∗t (θ)))

∂Xt(θ)

∣∣∣∣ |Xt(θ)− X̃t(θ)|

=

∣∣∣∣
∂mα(η∗t )

∂ηt

1
B′(η∗t )

∣∣∣∣ |Xt(θ)− X̃t(θ)|

=
1

B′(η∗t )

∣∣∣∣∣
∞

∑
y=0

p(y|η∗t )1+α

[
(1 + α)2 1

B′(η∗t )2 (y− B(η∗t ))
3 − 3(1 + α)

B′′(η∗t )
B′(η∗t )3 (y− B(η∗t ))

2

+

(
−3(1 + α)

1
B′(η∗t )

− B(3)(η∗t )
B′(η∗t )3 + 3

B′′(η∗t )
2

B′(η∗t )4

)
(y− B(η∗t )) + 2

B′′(η∗t )
B′(η∗t )2

]

−p(Yt|η∗t )α

[
α2 1

B′(η∗t )2 (Yt − B(η∗t ))
3 − 3α

B′′(η∗t )
B′(η∗t )3 (Yt − B(η∗t ))

2

+

(
−3α

1
B′(η∗t )

− B(3)(η∗t )
B′(η∗t )3 + 3

B′′(η∗t )
2

B′(η∗t )4

)
(Yt − B(η∗t )) + 2

B′′(η∗t )
B′(η∗t )2

]∣∣∣∣∣ |Xt(θ)− X̃t(θ)|

≤
[
(1 + α)2 1

B′(η∗t )3

(
B′′(η∗t ) + 3B′(η∗t )B(η∗t ) + B(η∗t )

3 + B(η∗t )
3
)
+ 3(1 + α)

∣∣∣∣
B′′(η∗t )
B′(η∗t )3

∣∣∣∣

+

(
3(1 + α)

1
B′(η∗t )2 +

∣∣∣∣∣
B(3)(η∗t )
B′(η∗t )4

∣∣∣∣∣+ 3
B′′(η∗t )

2

B′(η∗t )5

)
(B(η∗t ) + B(η∗t )) + 2

∣∣∣∣
B′′(η∗t )
B′(η∗t )3

∣∣∣∣

+α2 1
B′(η∗t )3 (Y

3
t + B(η∗t )

3) + 3α

∣∣∣∣
B′′(η∗t )
B′(η∗t )4

∣∣∣∣ (Y2
t + B(η∗t )

2)

+

(
3α

1
B′(η∗t )2 +

∣∣∣∣∣
B(3)(η∗t )
B′(η∗t )4

∣∣∣∣∣+ 3
B′′(η∗t )

2

B′(η∗t )5

)
(Yt + B(η∗t )) + 2

∣∣∣∣
B′′(η∗t )
B′(η∗t )3

∣∣∣∣

]
|Xt(θ)− X̃t(θ)|

≤
[

α2

c3 Y3
t +

3αK
c3/2 Y2

t +

(
3α

c2 + M + 3K2
)

Yt +
3α2 + 4α + 2

c3 B(η∗t )
3 +

3αK
c3/2 B(η∗t )

2

+

(
3α2 + 15α + 9

c2 + 3M + 9K2
)

B(η∗t ) +
(α2 + 5α + 8)K

c1/2

]
|Xt(θ)− X̃t(θ)|,

where X∗t (θ) is an intermediate point between Xt(θ) and X̃t(θ), and η∗t = B−1(X∗t (θ)). Note that since
B−1 is strictly increasing, η∗t lies between B−1(Xt(θ)) = ηt and B−1(X̃t(θ)) = η̃t. Then, because B(η∗t ) ≤
B(ηt) + |B(ηt)− B(η̃t)|, the last part of the lemma is established.

Lemma A2. Suppose that conditions (A0)–(A11) hold. Then, under H0, we have as n→ ∞,

1
n

n

∑
t=1

sup
θ∈Θ

∥∥∥∥
∂2lα,t(θ)

∂θ∂θT −
∂2 l̃α,t(θ)

∂θ∂θT

∥∥∥∥ = o(1) a.s.

and
1
n

n

∑
t=1

sup
θ∈Θ

∥∥∥∥
∂lα,t(θ)

∂θ

∂lα,t(θ)

∂θT − ∂l̃α,t(θ)

∂θ

∂l̃α,t(θ)

∂θT

∥∥∥∥ = o(1) a.s.

Proof. It is sufficient to show that as t→ ∞,

sup
θ∈Θ

∥∥∥∥
∂2lα,t(θ)

∂θ∂θT −
∂2 l̃α,t(θ)

∂θ∂θT

∥∥∥∥ = o(1) a.s.
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and

sup
θ∈Θ

∥∥∥∥
∂lα,t(θ)

∂θ

∂lα,t(θ)

∂θT − ∂l̃α,t(θ)

∂θ

∂l̃α,t(θ)

∂θT

∥∥∥∥ = o(1) a.s.

Note that we can write

1
1 + α

sup
θ∈Θ

∥∥∥∥
∂2lα,t(θ)

∂θ∂θT − ∂2 l̃α,t(θ)

∂θ∂θT

∥∥∥∥

≤ sup
θ∈Θ

∥∥∥∥∥hα(η̃t)

(
∂2Xt(θ)

∂θ∂θT −
∂2X̃t(θ)

∂θ∂θT

)∥∥∥∥∥+ sup
θ∈Θ

∥∥∥∥(hα(ηt)− hα(η̃t))
∂2Xt(θ)

∂θ∂θT

∥∥∥∥

+ sup
θ∈Θ

∥∥∥∥(mα(ηt)−mα(η̃t))
∂Xt(θ)

∂θ

∂Xt(θ)

∂θT

∥∥∥∥+ sup
θ∈Θ

∥∥∥∥∥mα(η̃t)
∂Xt(θ)

∂θ

(
∂Xt(θ)

∂θT − ∂X̃t(θ)

∂θT

)∥∥∥∥∥

+ sup
θ∈Θ

∥∥∥∥∥mα(η̃t)

(
∂Xt(θ)

∂θ
− ∂X̃t(θ)

∂θ

)(
∂X̃t(θ)

∂θT − ∂Xt(θ)

∂θT

)∥∥∥∥∥

+ sup
θ∈Θ

∥∥∥∥∥mα(η̃t)

(
∂Xt(θ)

∂θ
− ∂X̃t(θ)

∂θ

)
∂Xt(θ)

∂θT

∥∥∥∥∥

≤ sup
θ∈Θ
|hα(η̃t)| sup

θ∈Θ

∥∥∥∥∥
∂2Xt(θ)

∂θ∂θT −
∂2X̃t(θ)

∂θ∂θT

∥∥∥∥∥+ sup
θ∈Θ
|hα(ηt)− hα(η̃t)| sup

θ∈Θ

∥∥∥∥
∂2Xt(θ)

∂θ∂θT

∥∥∥∥

+ sup
θ∈Θ
|mα(ηt)−mα(η̃t)|

(
sup
θ∈Θ

∥∥∥∥
∂Xt(θ)

∂θ

∥∥∥∥

)2

+ 2 sup
θ∈Θ
|mα(η̃t)| sup

θ∈Θ

∥∥∥∥
∂Xt(θ)

∂θ

∥∥∥∥ sup
θ∈Θ

∥∥∥∥∥
∂Xt(θ)

∂θ
− ∂X̃t(θ)

∂θ

∥∥∥∥∥

+ sup
θ∈Θ
|mα(η̃t)|

(
sup
θ∈Θ

∥∥∥∥∥
∂Xt(θ)

∂θ
− ∂X̃t(θ)

∂θ

∥∥∥∥∥

)2

.

Using Lemma 2.1 of Straumann and Mikosch [34], together with Lemma A1, (A2), (A4), (A7), (A8),
(A10), and Lemma 1 of Kim and Lee [22], the right-hand side of the last inequality converges to 0 a.s.
as t→ ∞. Hence, the first part of the lemma is verified.

Similarly, we have

1
(1 + α)2 sup

θ∈Θ

∥∥∥∥
∂lα,t(θ)

∂θ

∂lα,t(θ)

∂θT − ∂l̃α,t(θ)

∂θ

∂l̃α,t(θ)

∂θT

∥∥∥∥

≤ sup
θ∈Θ

∥∥∥∥(hα(ηt)
2 − hα(η̃t)

2)
∂Xt(θ)

∂θ

∂Xt(θ)

∂θT

∥∥∥∥+ sup
θ∈Θ

∥∥∥∥∥hα(η̃t)
2 ∂Xt(θ)

∂θ

(
∂Xt(θ)

∂θT − ∂X̃t(θ)

∂θT

)∥∥∥∥∥

+ sup
θ∈Θ

∥∥∥∥∥hα(η̃t)
2

(
∂Xt(θ)

∂θ
− ∂X̃t(θ)

∂θ

)(
∂X̃t(θ)

∂θT − ∂Xt(θ)

∂θT

)∥∥∥∥∥

+ sup
θ∈Θ

∥∥∥∥∥hα(η̃t)
2

(
∂Xt(θ)

∂θ
− ∂X̃t(θ)

∂θ

)
∂Xt(θ)

∂θT

∥∥∥∥∥

≤ sup
θ∈Θ
|hα(ηt)− hα(η̃t)|

(
sup
θ∈Θ
|hα(ηt)|+ sup

θ∈Θ
|hα(η̃t)|

)(
sup
θ∈Θ

∥∥∥∥
∂Xt(θ)

∂θ

∥∥∥∥

)2

+2 sup
θ∈Θ
|hα(η̃t)

2| sup
θ∈Θ

∥∥∥∥
∂Xt(θ)

∂θ

∥∥∥∥ sup
θ∈Θ

∥∥∥∥∥
∂Xt(θ)

∂θ
− ∂X̃t(θ)

∂θ

∥∥∥∥∥

+ sup
θ∈Θ
|hα(η̃t)

2|
(

sup
θ∈Θ

∥∥∥∥∥
∂Xt(θ)

∂θ
− ∂X̃t(θ)

∂θ

∥∥∥∥∥

)2

,

and the right-hand side of the last inequality also converges to 0 a.s. from Lemma 2.1 of Straumann and
Mikosch [34]. Therefore, the lemma is asserted.
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Lemma A3. Suppose that conditions (A0)–(A11) hold. Then, under H0, we have as n→ ∞,

K−1/2
α

[ns]√
n

∂L̃α,[ns](θ0)

∂θ

w−→ Bd(s),

where Bd is a d-dimensional Brownian motion.

Proof. First, we show that Kα is nonsingular. Since Var[hα(η0
t )|Ft−1] = Var[p(Yt|η0

t )
α(Yt −

B(η0
t ))/B′(η0

t ) |Ft−1] > 0, we have E(hα(η0
t )

2|Ft−1) > [E(hα(η0
t )|Ft−1)]

2 = 0. Hence, it holds
that for ν ∈ Rd/{0},

νTKαν = (1 + α)2E

[
hα(η

0
t )

2
(

νT ∂Xt(θ0)

∂θ

)2
]
= (1 + α)2E

[
E(hα(η

0
t )

2|Ft−1)

(
νT ∂Xt(θ0)

∂θ

)2
]
> 0,

from (A9), which implies that Kα is nonsingular.
Note that

E
(

∂lα,t(θ0)

∂θ

∣∣∣Ft−1

)
= (1 + α)

∂Xt(θ0)

∂θ
E(hα(η

0
t )|Ft−1) = 0,

and Kα is finite from Lemma 5 of Kim and Lee [22]. Since ∂lα,t(θ0)/∂θ is stationary and ergodic, it holds
from the functional central limit theorem for martingales (cf. Section 18 in Billingsley [35]) that

K−1/2
α

[ns]√
n

∂Lα,[ns](θ0)

∂θ
= K−1/2

α
1√
n

[ns]

∑
t=1

∂lα,t(θ0)

∂θ

w−→ Bd(s).

Furthermore, we can show that

sup
0≤s≤1

[ns]√
n

∥∥∥∥∥
∂Lα,[ns](θ0)

∂θ
−

∂L̃α,[ns](θ0)

∂θ

∥∥∥∥∥ ≤
1√
n

n

∑
t=1

∥∥∥∥
∂lα,t(θ0)

∂θ
− ∂l̃α,t(θ0)

∂θ

∥∥∥∥ = o(1) a.s.,

from Lemma 6 of Kim and Lee [22]. Hence, the lemma is verified.

Lemma A4. Suppose that conditions (A0)–(A11) hold. Then, under H0, we have as n→ ∞,

max
1≤k≤n

k
n

∥∥∥∥∥
∂2 L̃α,k(θ̄α,n,k)

∂θ∂θT + Jα

∥∥∥∥∥ = o(1) a.s.,

where {θ̄α,n,k|1 ≤ k ≤ n, n ≥ 1} is any double array of Θ-valued random vectors satisfying ‖θ̄α,n,k − θ0‖ ≤
‖θ̂α,n − θ0‖.

Proof. From Lemma 5 of Kim and Lee [22], it holds that

E

(
sup
θ∈Θ

∥∥∥∥
∂2lα,t(θ)

∂θ∂θT −
∂2lα,t(θ0)

∂θ∂θT

∥∥∥∥

)
< ∞.

Since ∂2lα,t(θ)/∂θ∂θT is continuous in θ, for any ε > 0, we can take a neighborhood Nε(θ0), such that

E

(
sup

θ∈Nε(θ0)

∥∥∥∥
∂2lα,t(θ)

∂θ∂θT −
∂2lα,t(θ0)

∂θ∂θT

∥∥∥∥

)
< ε (A1)
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by decreasing the neighborhood to θ0. Since θ̂α,n converges to θ0 a.s. by Proposition 1, we can write
that for sufficiently large n,

max
1≤k≤n

k
n

∥∥∥∥∥
∂2 L̃α,k(θ̄α,n,k)

∂θ∂θT + Jα

∥∥∥∥∥

≤ max
1≤k≤n

k
n

∥∥∥∥∥
∂2 L̃α,k(θ̄α,n,k)

∂θ∂θT − ∂2Lα,k(θ̄α,n,k)

∂θ∂θT

∥∥∥∥∥+ max
1≤k≤n

k
n

∥∥∥∥∥
∂2Lα,k(θ̄α,n,k)

∂θ∂θT − ∂2Lα,k(θ0)

∂θ∂θT

∥∥∥∥∥

+ max
1≤k≤n

k
n

∥∥∥∥∥
∂2Lα,k(θ0)

∂θ∂θT + Jα

∥∥∥∥∥

≤ 1
n

n

∑
t=1

sup
θ∈Nε(θ0)

∥∥∥∥
∂2 l̃α,t(θ)

∂θ∂θT −
∂2lα,t(θ)

∂θ∂θT

∥∥∥∥+
1
n

n

∑
t=1

sup
θ∈Nε(θ0)

∥∥∥∥
∂2lα,t(θ)

∂θ∂θT −
∂2lα,t(θ0)

∂θ∂θT

∥∥∥∥

+ max
1≤k≤n

k
n

∥∥∥∥∥
∂2Lα,k(θ0)

∂θ∂θT + Jα

∥∥∥∥∥
:= In + I In + I I In a.s.

By Lemma A2, In = o(1) a.s. By using (A1) and the stationarity and ergodicity of ∂2lα,t(θ)/∂θ∂θT,
we have

lim
n→∞

I In = E

(
sup

θ∈Nε(θ0)

∥∥∥∥
∂2lα,t(θ)

∂θ∂θT −
∂2lα,t(θ0)

∂θ∂θT

∥∥∥∥

)
< ε a.s.

Finally, since
∥∥∂2Lα,n(θ0)/∂θ∂θT + Jα

∥∥ converges to 0 a.s., we can show that

max
1≤k≤√n

k
n

∥∥∥∥∥
∂2Lα,k(θ0)

∂θ∂θT + Jα

∥∥∥∥∥ ≤
1√
n

sup
1≤k

∥∥∥∥∥
∂2Lα,k(θ0)

∂θ∂θT + Jα

∥∥∥∥∥ = o(1) a.s.,

and

max√
n≤k≤n

k
n

∥∥∥∥∥
∂2Lα,k(θ0)

∂θ∂θT + Jα

∥∥∥∥∥ ≤ max√
n≤k≤n

∥∥∥∥∥
∂2Lα,k(θ0)

∂θ∂θT + Jα

∥∥∥∥∥ = o(1) a.s.,

which assert I I In = o(1) a.s. Therefore, the lemma is established.

Proof of Theorem 1. First, we show that

[ns]√
n

∂L̃α,[ns](θ0)

∂θ
+

[ns]
n

∂2 L̃α,[ns](θ
∗
α,n,s)

∂θ∂θT J−1
α

√
n

∂L̃α,n(θ0)

∂θ

w−→ K1/2
α Bo

d(s). (A2)

From Lemma A3, we have

[ns]√
n

∂L̃α,[ns](θ0)

∂θ
− [ns]

n
√

n
∂L̃α,n(θ0)

∂θ

w−→ K1/2
α Bo

d(s).

Since
√

n∂L̃α,n(θ0)/∂θ = Op(1) by Lemma A3 with s = 1, using Lemma A4, it holds that

sup
0≤s≤1

[ns]
n

∥∥∥∥∥
∂2 L̃α,[ns](θ

∗
α,n,s)

∂θ∂θT J−1
α

√
n

∂L̃α,n(θ0)

∂θ
+
√

n
∂L̃α,n(θ0)

∂θ

∥∥∥∥∥

≤
∥∥∥∥∥J−1

α

√
n

∂L̃α,n(θ0)

∂θ

∥∥∥∥∥ max
1≤k≤n

k
n

∥∥∥∥∥
∂2 L̃α,k(θ

∗
α,n,k)

∂θ∂θT + Jα

∥∥∥∥∥
= op(1),

169



Entropy 2020, 22, 493

where θ∗α,n,k denotes that corresponding to θ∗α,n,s when [ns] = k. Hence, (A2) is verified.
Next, from Lemma A4, we have

sup
0≤s≤1

[ns]
n

∥∥∥∥∥
∂2 L̃α,[ns](θ

∗
α,n,s)

∂θ∂θT

∥∥∥∥∥ ≤ max
1≤k≤n

k
n

∥∥∥∥∥
∂2 L̃α,k(θ

∗
α,n,k)

∂θ∂θT + Jα

∥∥∥∥∥+ ‖Jα‖ = Op(1)

and
∥∥∥∥∥

∂2 L̃α,n(θ∗α,n,1)

∂θ∂θT + Jα

∥∥∥∥∥ ≤ max
1≤k≤n

k
n

∥∥∥∥∥
∂2 L̃α,k(θ

∗
α,n,k)

∂θ∂θT + Jα

∥∥∥∥∥ = o(1) a.s.

Then, since
√

n(θ̂α,n − θ0) = Op(1) by Proposition 1, we have

sup
0≤s≤1

[ns]
n

∥∥∥∥∥
∂2 L̃α,[ns](θ

∗
α,n,s)

∂θ∂θT

(
∂2 L̃α,n(θ∗α,n,1)

∂θ∂θT + Jα

)
√

n(θ̂α,n − θ0)

∥∥∥∥∥ = op(1). (A3)

Therefore, from (5), (A2), and (A3), the theorem is validated.

Lemma A5. Suppose that conditions (A0)–(A11) hold. Then, under H0, we have as n→ ∞,

1
n

n

∑
t=1

∂l̃α,t(θ̂α,n)

∂θ

∂l̃α,t(θ̂α,n)

∂θT
a.s.−→ Kα.

Proof. In a similar way to Lemma A4, from Lemma 5 of Kim and Lee [22], we can also take a neighborhood
Nε(θ0), such that

lim
n→∞

1
n

n

∑
t=1

sup
θ∈Nε(θ0)

∥∥∥∥
∂lα,t(θ)

∂θ

∂lα,t(θ)

∂θT − ∂lα,t(θ0)

∂θ

∂lα,t(θ0)

∂θT

∥∥∥∥

= E

(
sup

θ∈Nε(θ0)

∥∥∥∥
∂lα,t(θ)

∂θ

∂lα,t(θ)

∂θT − ∂lα,t(θ0)

∂θ

∂lα,t(θ0)

∂θT

∥∥∥∥

)
< ε a.s. (A4)

Note that we can write
∥∥∥∥∥

1
n

n

∑
t=1

∂l̃α,t(θ̂α,n)

∂θ

∂l̃α,t(θ̂α,n)

∂θT − E
(

∂lα,t(θ0)

∂θ

∂lα,t(θ0)

∂θT

)∥∥∥∥∥

≤
∥∥∥∥∥

1
n

n

∑
t=1

∂l̃α,t(θ̂α,n)

∂θ

∂l̃α,t(θ̂α,n)

∂θT − 1
n

n

∑
t=1

∂lα,t(θ̂α,n)

∂θ

∂lα,t(θ̂α,n)

∂θT

∥∥∥∥∥

+

∥∥∥∥∥
1
n

n

∑
t=1

∂lα,t(θ̂α,n)

∂θ

∂lα,t(θ̂α,n)

∂θT − 1
n

n

∑
t=1

∂lα,t(θ0)

∂θ

∂lα,t(θ0)

∂θT

∥∥∥∥∥

+

∥∥∥∥∥
1
n

n

∑
t=1

∂lα,t(θ0)

∂θ

∂lα,t(θ0)

∂θT − E
(

∂lα,t(θ0)

∂θ

∂lα,t(θ0)

∂θT

)∥∥∥∥∥
:= In + I In + I I In.

By Lemma A2,

In ≤
1
n

n

∑
t=1

sup
θ∈Θ

∥∥∥∥
∂l̃α,t(θ)

∂θ

∂l̃α,t(θ)

∂θT − ∂lα,t(θ)

∂θ

∂lα,t(θ)

∂θT

∥∥∥∥ = o(1) a.s.

170



Entropy 2020, 22, 493

Since θ̂α,n converges to θ0 a.s. by Proposition 1, from (A4), we have

lim
n→∞

I In ≤ lim
n→∞

1
n

n

∑
t=1

sup
θ∈Nε(θ0)

∥∥∥∥
∂lα,t(θ)

∂θ

∂lα,t(θ)

∂θT − ∂lα,t(θ0)

∂θ

∂lα,t(θ0)

∂θT

∥∥∥∥ < ε a.s.

Finally, by the ergodic theorem, I I In = o(1) a.s. Therefore, the lemma is established.
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Abstract: Minimum density power divergence estimation provides a general framework for robust
statistics, depending on a parameter α, which determines the robustness properties of the method.
The usual estimation method is numerical minimization of the power divergence. The paper considers
the special case of linear regression. We developed an alternative estimation procedure using the
methods of S-estimation. The rho function so obtained is proportional to one minus a suitably
scaled normal density raised to the power α. We used the theory of S-estimation to determine
the asymptotic efficiency and breakdown point for this new form of S-estimation. Two sets of
comparisons were made. In one, S power divergence is compared with other S-estimators using
four distinct rho functions. Plots of efficiency against breakdown point show that the properties of S
power divergence are close to those of Tukey’s biweight. The second set of comparisons is between
S power divergence estimation and numerical minimization. Monitoring these two procedures in
terms of breakdown point shows that the numerical minimization yields a procedure with larger
robust residuals and a lower empirical breakdown point, thus providing an estimate of α leading to
more efficient parameter estimates.

Keywords: estimation of α; monitoring; numerical minimization; S-estimation; Tukey’s biweight

1. Introduction

Basu et al. [1] introduced a general form of robust estimation based on minimizing a density
power divergence. The family of procedures, and so the robustness properties, depend on the value
of a parameter α. In this paper, we consider normal theory regression. We use standard methods for
the analysis of robust procedures, in particular S-estimation (Riani et al. [2]), to find the theoretical
breakdown point and efficiency of power divergence regression as a function of α. We use these results
to make comparisons with theoretical properties of other robust methods, for example, S-estimation
using Tukey’s biweight. We introduce a data-driven method for the estimation of α from monitoring
residuals over a range of values of α and so find the empirical efficiency and breakdown point of power
density estimation for several regression examples. One surprising conclusion is that, for normal
theory models, the rho function for the power divergence is one minus a suitably scaled standard
normal density raised to the power α.

The paper is structured as follows. The next section introduces minimum density power
divergence estimation and the related estimating equations for normal theory linear regression.
The important problem of estimating α is mentioned. The first part of Section 3 reviews S-estimation
in the linear regression model, and the second part, Section 3.2, rewrites power divergence estimation
of the regression parameter β in the form of S-estimation, derives the rho function, and so finds the
asymptotic breakdown point (bdp) of the procedure. Section 3.2.2 gives the asymptotic efficiency of this
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S-estimation at the Gaussian model and finds the weight function used in fitting data. Comparisons
are given with some well known rho and weight functions. In Section 4, plots of asymptotic efficiency
against asymptotic bdp are used to compare the properties of several S-estimators, including Tukey’s
biweight. Section 5 compares methods through the analysis of data. An alternative to S power
divergence is the original suggestion of Basu et al. [1] to use Brute Force (BF) minimization (our
acronym, not theirs). Comparisons on simulated and real data show the superiority of BF power
divergence to the S-estimator. In particular, monitoring the plots of residuals as α varies may lead to
a clear indication of the minimum value of α for which a robust fit is obtained. Thus, the empirical
breakdown point of BF power divergence estimation can be found, leading to the most efficient robust
estimation for each specific data set.

2. Minimum Density Power Divergence Estimation

Basu et al. [1] define the power divergence between two densities f (z) and g(z), a function of a
single parameter α, as

dα{g(z), f (z)} =
∫ {

f 1+α(z)−
(

1 +
1
α

)
f α(z)g(z) +

1
α

g1+α(z)
}

dz, α > 0 (1)

d0{g(z), f (z)} =
∫

g(z) log
{

g(z)
f (z)

}
dz.

The parameter α controls the trade-off between efficiency and robustness for the power divergence
estimator. The limit as α→ 0 is a version of the Kullback-Leibler divergence. The value α = 1 leads to
squared L2 estimation, an analysis of which is given by Scott [3].

Let g be the density function of the process generating the data. Given an independent and
identically distributed sample y1, . . . , yn is available from G, Basu et al. [1] model the unknown
g(z) with the density fθ(y) by minimizing dα{g(z), fθ(y)}. Since the third term of the divergence is
independent of θ, the power divergence estimator of θ can be found by minimizing

∫
f 1+α
θ (z)dz−

(
1 +

1
α

)
1
n

n

∑
i=1

f α
θ (yi), (2)

in which the empirical distribution Gn is used to approximate the unknown distribution G,
thus avoiding the necessity for density estimation.

Basu et al. [1] develop their method only for random samples from the normal, exponential and
Poisson distributions. For the normal distribution, Equation (2) is minimized over both the mean µ

and the variance σ2. The extension to normal theory regression models is in Ghosh and Basu [4].
As usual in a regression framework, we define yi to be the response variable, which is related to

the values of a set of p− 1 explanatory variables xi1, . . . , xip−1 by the relationship

yi = β′xi + εi i = 1, . . . , n, (3)

where, including an intercept, β′ = (β0, β1, . . . , βp−1) and xi = (1, xi1, . . . , xip−1)
′. Let σ2 = var(εi),

which is assumed to be constant for all i = 1, . . . , n. We also take the quantities in xi to be fixed and
assume that x1, . . . , xn are not collinear. The case p = 1 corresponds to that of a univariate response
without predictors. We call σ the scale of the distribution of the error term εi, when its density takes
the form

σ−1 f
( ε

σ

)
.
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When f is the normal distribution with mean, as in Equation (3), and variance σ2, Durio and Isaia [5]
and Ghosh and Basu [4] show that the function, as in Equation (2), to be minimized becomes

1
(2π)α/2σα

√
1 + α

− 1 + α

α

1
(2π)α/2σα

1
n

n

∑
i=1

e−α(yi−x′i β)
2/2σ2

. (4)

The partial derivative of Equation (4), with respect to β j, provides the estimating equation for β:

n

∑
i=1

xij(yi − x′i β)e
−α(yi−x′i β)

2/2σ2
, (j = 1, . . . , p). (5)

When α = 0, Equation (5) becomes the equation for non-robust ordinary least squares. For α > 0
we have weighted least squares of the kind associated in the next section with M estimation. Ghosh
and Basu [4] also give the estimating equation for σ2 which we will however not be using in our
theoretical development.

An important aspect is the estimation of α. Durio and Isaia [5] test for changes in the estimates of
the parameters β as a function of α, while Warwick and Jones [6] and Ghosh and Basu [7] estimate the
mean squared error of the parameter estimates as α changes. In Section 5, we monitor changes in the
pattern of residuals to choose the minimum value of α for which a robust fit is obtained, so leading to
the most efficient parameter estimates.

3. Robust Regression

3.1. M and S Estimation

Basu et al. [1] find estimates of the parameters of the linear model by simultaneous minimization
of Equation (4) as a function of β and σ2. In this section, we recall the theory of M and S estimation,
which we use in Section 3.2 to describe properties of the S power divergence estimator. In Section 5,
we provide a numerical comparison of the BF minimization and S-estimation approaches.

The M-estimator of the regression parameters, which is scale equivariant (i.e., independent of the
units of measurement), is defined by

β̂M = min
β∈<p

n

∑
i=1

ρ
( ri

s

)
, (6)

where ri = yi − β′xi is the i-th residual and ρ is a function with suitable properties and s is an estimate
of σ. For least squares ρ(x) = x2. For robust estimation ρ(x) < x2 for sufficiently large absolute values
of x. We also write ri(β) to emphasize the dependence of ri on β.

These definitions do not depend on how σ is estimated. Clearly, if we want to keep the M-estimate
robust, s should also be a robust estimate. We assume that the same ρ is used in the estimation of β and
σ, which is customary in practice. In order to have a consistent scale estimate for normally distributed
observations, we require

EΦ0,1

[
ρ
( ri

s

)]
= K, (7)

where Φ0,1 is the cdf of the standard normal distribution. To see consistency, notice that EΦ0,1(ρ) = K
implies

EΦ0,σ2 [ρ]

K
=

Kσ2

K
= σ2.

An M-estimator of scale in Equation (3), say s, is defined to be the solution to the equation

1
n

n

∑
i=1

ρ
( ri

s

)
=

1
n

n

∑
i=1

ρ

(
yi − β′xi

s

)
= K. (8)
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Equation (8) is solved, at least in principle, among all (β, σ) ∈ <p × (0, ∞), where 0 < K < sup ρ.
Rousseeuw and Yohai [8] defined S-estimators by minimization of the dispersion s of the residuals

β̂S = min
β∈<p

s{r1(β), . . . , rn(β)} (9)

with final scale estimate
σ̂S = s{r1(β̂S), . . . , rn(β̂S)}.

The dispersion s is defined as the solution of Equation (8). The S-estimates, therefore, can
be thought as self-scaled M-estimates whose scale is estimated simultaneously with the regression
parameters. Note, in fact, that when the scale and the regression estimates are simultaneously estimated,
S-estimators for regression also satisfy (for example, Maronna et al. [9], p. 131)

β̂S = min
β∈<p

n

∑
i=1

ρ
( ri

s

)
. (10)

The estimator of β in Equation (9) is called an S-estimator because it is derived from a scale
statistic in an implicit way.

The function ρ is the key to many important properties of M and S estimates. Rousseeuw and
Leroy [10] (p. 139) show that, if the function ρ satisfies the following conditions:

1. It is symmetric and continuously differentiable, and ρ(0) = 0;
2. there exists a c > 0 such that ρ is strictly increasing on [0, c] and constant on [c, ∞); and
3. it is such that

K/ρ(c) = bdp with 0 < bdp ≤ 0.5, (11)

then the asymptotic breakdown point of the S-estimator tends to bdp when n→ ∞. Note that if ρ(c) is
normalized in such a way that sup ρ(c) = 1, the constant K becomes exactly equal to the breakdown
point of the S-estimator.

3.2. S Estimation for Power Divergence Regression

3.2.1. The Breakdown Point and the Rho Function

The function ρ is used in the estimation of β for a given estimate s. With x = r/s it follows from
the function to be minimized in Equation (4) that ρ(x) ∝ − exp(−αx2/2). If we scale this function so
that sup ρα(x) = 1 and ρα(0) = 0, we obtain

ρα(x) = 1− exp(−αx2/2). (12)

This is a trivial reparameterization of an otherwise unreferenced rho function attributed to Welsh.
The panels of Figure 1 show plots of ρα(x) for several values of α. For α = 1, the efficiency is

0.65, and the breakdown point is 0.29. As α decreases, the procedure becomes less robust but more
efficient. Table 1 gives values of α, bdp, and eff for three frequently used values of each quantity; these
values being given in bold. The left-hand panel of Figure 1 is for the three bold values of bdp, and the
right-hand panel for the three values of eff. The rho functions for high efficiency are appreciably flatter
than those for high bdp.

Since ρα is scaled, the breakdown point, bdp, is given by EΦ0,1 [ρα(x)]. Then,

EΦ0,1 [ρα(x)] = 1− E
[
exp(−αx2/2)

]
,

= 1−
∫

exp(−αx2/2)dx,
= 1− (2π)α/2

∫
φα

0,1(x)φ0,1(x)dx.
(13)
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Figure 1. Dependence of ρα(x) on α, for frequently used values of robustness properties in Table 1.
Left-hand panel, three values of breakdown point (bdp); right-hand panel, three values of eff.

From the useful general expression in Section 3.2 of Basu et al. [11] that

∫
φα

m,s(x)φc,d(x)dx =
exp

[
−α(c−m)2/{2(s2 + αd2)}

]

(2π)α/2sα
(

1 + αd2

s2

)0.5 ,

we obtain
EΦ0,1 = bdp = 1− 1√

1 + α
. (14)

Our expression for the breakdown point comes from S-estimation, reflecting breakdown in the
estimate of β under the customary assumption that σ is known. This is different from the value of

α

(1 + α)3/2 (15)

in Section 3.2 of Basu et al. [11], who consider the joint breakdown of the estimates of β and σ

when “location explodes” and “scale implodes”. While the expression in Equation (14) increases
monotonically in the interval α = [0, 3], Equation (15) increases monotonically in the smaller interval
α = [0, 2] and then slightly decreases.

To fit a model to data, we specify the desired asymptotic breakdown point, when the value of α

from inverting the expression in Equation (14) is

α =
1

(1− bdp)2 − 1.

For example, for 50% breakdown, α = 3.

Table 1. S power divergence. Values of α, bdp, and eff for three frequently used values of each in bold.

α bdp eff

0 0 1
0.5 0.1835 0.8381
1 0.2929 0.6495

0.7778 0.25 0.7271
1.7778 0.4 0.4536

3 0.5 0.2894
0.4715 0.1756 0.85
0.3522 0.14 0.9
0.2245 0.0963 0.95
0.089 0.0417 0.99
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3.2.2. Efficiency, the Psi Function and the Influence Function

Other basic properties of the robust estimator follow from derivatives of ρα(x). For power density

ψα(x) = ρ′α(x) = αx exp(−αx2/2)

and
ψ′α(x) = α(1− αx2) exp(−αx2/2).

Figure 2 shows, for three values of α, a plot of ψα(x) (which is proportional to the Influence
Function, see Maronna et al. [9] (p. 123)). As α decreases, the figure shows the curve becomes flatter.

-20 -15 -10 -5 0 5 10 15 20

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Figure 2. S power divergence; ψ function, proportional to the influence function.

From, for example, Rousseeuw and Leroy [10] (p. 142), the asymptotic efficiency eff of the
S-estimator at the Gaussian model is

eff =
{∫

ψ′(x)dΦ(x)
}2

∫
ψ2(x)dΦ(x)

. (16)

For ρα(x),

E[ψ2
α(x)] = α2(2π)α/2

∫
x2φ2αx+1

0,1 dx. (17)

Since ∫
x2φn

0,1dx =
1

n3(2π)n−1 ,

Equation (17) becomes

E[ψ2
α(x)] = α2 1

(2α + 1)3 .

To find the numerator of the efficiency

E[ψ′α(x)] = α(2π)α/2
∫

φα+1
0,1 dx− α2(2π)α/2

∫
x2φα+1

0,1 dx,

= α√
1+α
− α2√

(1+α)3
,

= α√
(1+α)3

.
(18)
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Combining these pieces, we obtain

eff =
√
(1 + 2α)3

(1 + α)3 , (19)

agreeing with the expression for the asymptotic variance of the estimate of the mean µ of a univariate
normal sample given in Section 4.2 of Basu et al. [1], a few values of which are tabulated in their
Table 1. Inversion of Equation (19) yields

α = (1− F +
√

1− F)/F,

where F = eff 2/3.
The algorithm for S-estimation is complicated, involving weighted regression. Rousseeuw and

Leroy [10] (pp. 207–208) provide a sketch. More details are in Salibian-Barrera and Yohai [12]. A central
part is weighted regression, with weights

w(x) = ψ(x)/x.

Figure 3 plots the weight functions for power divergence and five other rho functions: Tukey’s
biweight [13], Hampel’s [14] (p. 150), Huber’s [15], the optimal (Yohai and Zamar [16]), and hyperbolic
tangent (Hampel et al. [14] (p. 328)), all scaled to have efficiency 0.95.

Details of the functions are in the Appendix A. The similarity of the power divergence weights
to those of the Tukey biweight is outstanding, although the biweight is exactly zero at x = c, which
in this case is equal to 4.6851. For this x coordinate, the power divergence weight (when eff = 0.95) is
0.0851. Both have a curved shape for small values of |x|, unlike the Hampel and hyperbolic weights.
We note that the procedure for finding the tuning constant α for the power divergence estimator, given
a prefixed value of breakdown point or efficiency, is not iterative. This is distinct from all the other rho
functions listed above (apart from that of Huber), for which iterative procedures are required.
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Figure 3. The weight function ψ(x)/x for six S-estimators.
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4. Comparisons of Asymptotic Properties

The basic properties of S power divergence are the asymptotic breakdown point, as in
Equation (14), and the asymptotic efficiency, as in Equation (19). Figure 4 shows these two properties
as functions of α over the range 0 ≤ α ≤ 3. As bdp increases from zero towards 0.5, eff decreases from 1
to 0.2894. These are generic shapes for robust estimators, quantifying the trade-off between robustness
and efficiency. Figure 5 shows plots of efficiency against breakdown point for S power divergence
and four of the other ρ functions of Figure 3 (the Huber function being excluded because it has a zero
breakdown point). In order to generate these curves, we fix a particular value of breakdown point
and find the associated tuning constant α for PD or c for the other estimators (the details are in the
Appendix). In the case of the Hampel ρ functions, the three extra parameters c1, c2, and c3 have been
set equal to 2, 4, and 8. For the hyperbolic tangent estimator the extra parameter k, which reflects the
log of the change of variance sensitivity of the M-estimator, has been set equal to 4.5. Given the value
of the tuning constant, we found the corresponding value of the efficiency.
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Figure 4. S power divergence: breakdown point and efficiency as functions of α.

It is clear from the figure that the general asymptotic performance of the five methods is similar.
The optimal function is best for small bdp but worst for values slightly larger than 0.25. The situation
for Hampel is the reverse, being worst for small bdp and best for bdp values above approximately 0.4.
For small bdp, the power divergence is the second worst but behaves much like the hyperbolic and
biweight functions for larger values of bdp. For 50% bdp (as the inset in the figure shows), the ordering
is (we give the exact numbers in parenthesis ) hyperbolic (0.3019), Hampel (0.2924), power divergence
(0.2894), biweight (0.2868), and last the optimal (0.2428). Hössjer [17] proves that, for normal theory
linear models, the maximum efficiency when bdp = 0.5 is 0.329.

Some further insight into the balance between breakdown point and efficiency comes from varying
the parameters of the Hampel and hyperbolic functions. In Figure 5, the parameters for the Hampel
were c1 = 2, c2 = 4, and c3 = 8. The left-hand panel of Figure 6 compares the breakdown point and
efficiency of Hampel’s rho function with these values to those when c1 = 1.5, c2 = 3.5, and c3 = 8.
The original procedure is better for breakdown point less than around 0.3, with the modified version
being slightly better for larger values. For the hyperbolic rho function in the right-hand panel the freely
variable parameter, other than c, is k. The curves for three values of k are shown in the right-hand
panel of Figure 6. The difference is largest for small values of bdp, when k = 6 has the highest
efficiency. In other words, imposing a looser constraint in the change of variance parameter produces
higher efficiency for small values of bdp. For breakdown points near 0.5, the order is reversed,
with k = 6 being the least efficient, although, in this region, the differences are less than for low bdp.
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The conclusion from this figure reinforces that from Figure 5; no one rho function has the highest
breakdown point and efficiency over the whole range of bdp from 0 to 0.5. These results also implicitly
show that the choice of the ρ function is not a crucial aspect since all (provided they are bounded) have
similar behavior in terms of breakdown point and efficiency. These theoretical results are in line with
the empirical findings in Salini et al. [18], where it is shown that the size of the test for outlier detection
is much more affected by the choice of the requested level of efficiency or breakdown point than by the
choice of the ρ function.
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Figure 5. Breakdown point and efficiency as parameters vary for five rho functions: TB = Tukey
biweight; HA = Hampel; OPT = optimal; PD = power divergence and HYP = hyperbolic. The inset is a
zoom of the main figure for high breakdown point.
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Figure 6. Breakdown point and efficiency as parameters vary for the Hampel and hyperbolic
rho functions.
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It is hard to reconcile the conclusions from these graphs with the statement in the opening
paragraph of Jones et al. [19] that “quite small values of α were found to afford considerable robustness
while retaining very high efficiency relative to maximum likelihood”. Although it may be argued
that S power divergence has good properties as a robust procedure, the figure shows that these
fully agree with those for other S estimators. We now turn from asymptotics to data analysis to allow
non-asymptotic comparisons and analysis of the ‘brute force’ approach to power divergence estimation.

5. Monitoring and Comparisons with Data

In order to compare the finite sample properties of robust estimators in regression, Riani et al. [20]
introduced the idea of monitoring the properties of robust analyses as tuning constants are changed.
For power divergence, this would be the value of α, or equivalently changes in nominal values of bdp
or eff, which are how the range of monitored values was specified for other ρ functions. The most
incisive information comes from looking at displays of residuals. Typically, for contaminated data,
these display many outliers for very robust analyses, which suddenly are much reduced in magnitude
at a specific value of the tuning constant. At this point, the procedure becomes close to maximum
likelihood including the outliers. The sharp transition between the two regions allows estimation of the
empirical breakdown point and so to the robust analysis with the highest efficiency. The monitoring
process starts with bdp=0.5, which is the maximum fraction of contamination that an affine equivariant
estimator can resist.

To illustrate this structure, we re-analyze regression data from Atkinson and Riani [21] (Table A2)
comparing S power divergence with the BF version, using numerical minimization. We start
monitoring from a bdp of 50% and use the very robust version of Least Median of Squares regression
(Rousseeuw [22]) to provide initial estimates of β and σ2. After this initial minimization for α = 3,
successive minimizations for lower values of α start from the estimates for the immediately higher
value of α.

The regression data consist of 60 response observations and three explanatory variables.
The scatter-plot matrix of the data does not reveal any outlying observations. The upper panel
of Figure 7 is the monitoring plot of the residuals for BF power divergence as α goes from 3 to 0. There
is a very clear transition from the robust analysis in the left-hand part of the plot to the non-robust
analysis in the right-hand part, which occurs just before bdp = 0.21, giving an empirical breakdown
point of 0.23. What is striking about this figure, apart from the clear transition point, is the distinct
near constancy of the residuals in the two parts of the plot.
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Figure 7. Regression data: residuals as bdp decreases. Upper panel, Brute Force (BF)-estimation, lower
panel S-estimation.
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The lower panel of Figure 7 is the same plot but for the analysis using S power divergence.
The conclusion is similar, with an empirical breakdown point of 0.27, higher than that in the upper
panel; BF therefore provides more efficient estimates. Although the residuals in the non-robust
right-hand part are constant, those from the robust analysis decrease in magnitude as the analysis
becomes less robust. This effect is caused by the gradual increase in the estimate of σ2 as the analysis
becomes less robust. A monitoring plot of the two estimates of σ is in the left-hand panel of Figure 8.
The BF estimate is indeed virtually constant up to a bdp of nearly 0.3, increasing more rapidly to
bdp = 0.2 with a jump corresponding to the switch from robust to non-robust analysis. At this point,
it is close to that from S-estimation, which has been continually increasing. Both estimates of course
coincide when bdp = 0, that is, for non-robust least squares.

These plots show the importance of the empirical breakdown point, found as α, and hence
bdp, decrease. We monitor at values αi, i = 1, . . . , nα, corresponding to breakdown values bdpi.
In our examples, nα = 50. At each i, we calculate a property of the fit, Pi and find the difference
Di = |Pi −Pi−1|. Let the empirical breakdown point be bdp∗. Then,

Definition 1. The empirical breakdown point bdp∗ = bdpi∗ , where

i∗ = arg maxDi, i = 1, . . . , nα − 1.

Some choices of the property Pi are

1. The residual sum of squares.
2. Changes in the parameter estimates β̂i or σ̂.
3. Measures of correlation between successive sets of residuals, rather than the sum of squares

(Riani et al. [20]).

This definition is for fixed finite n. If there are m outliers with responses y′j = yj + ∆j, j = 1, . . . , m,
determination of bdp∗ is sharp as ∆j → ∞. As ∆j → 0, a threshold should be applied in the calculation
of i∗.

We ran a number of simulations and studied the monitoring plots. For a data set of
100 observations without outliers, the trajectories of the residuals were smooth and uneventful,
although a similar structure was observed to that of Figure 7: the residuals from BF were sensibly
constant until around α = 1 and then began gently to become less extreme. On the other hand, the S
residuals steadily decreased in magnitude. The plot of the estimates of σ was similar to that of the
left-hand panel of Figure 8. As is correct in the absence of outliers, neither plot of residuals nor σ

indicated the need for robust analysis.
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Figure 8. Comparison of estimates of σ as bdp decreases. Left-hand panel, regression data: right-hand
panel, data with moderate outliers.
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When the outliers in our simulations were very remote, both methods clearly indicated the
outliers, although the monitoring plot for S estimation, unlike that using BF, did not show a sharp
transition between two regions. The challenge for robust methods is when the outliers are less remote.
As an example, we again simulated 100 observations with σ2 = 1, but now a value of 5 was added
to 20 responses. The two panels of Figure 9 show the resulting monitoring plots. Both display the
same set of scaled residuals for 50% bdp, although those from BF are larger in magnitude. BF shows
relatively sharp transitions at a breakdown point of 0.16, whereas S estimation shows a gradual
decrease in the magnitude of the residuals as bdp (α) decreases. The right-hand panel of Figure 8
plots the two estimates of σ. As in the results for the regression data, the estimate from S-estimation
increases gradually as bdp decreases, but the BF estimates are sensibly constant until a bdp around
0.16, when there is a distinct increase due to non-robust estimation.

0.050.10.150.20.250.30.350.40.450.5

-2

0

2

4

6
  1

  2

  3

  4

  5

  6

  7

  8

  9

 10

 11

 12
 13

 14

 15

 16

 17

 18

 19

 20

 32

 79

  1

  2

  3

  4

  5

  6

  7

  8

  9

 10

 11

 12
 13

 14

 15

 16

 17

 18

 19

 20

 32

 79

0.050.10.150.20.250.30.350.40.450.5

-2

0

2

4

6

  1

  2

  3

  4

  5

  6

  7

  8

  9

 10

 11

 12
 13

 14

 16

 17

 18

 19

 20

 32

  1

  2

  3

  4

  5

  6

  7

  8

  9

 10

 11

 12
 13

 14
 16

 17

 18

 19

 20

 32

Figure 9. Data with moderate outliers: residuals as bdp decreases. Upper panel, BF-estimation; lower
panel S-estimation.

Our results in Section 3.2.1 and 4 indicate the close relationship between Tukey’s biweight and the
power density rho functions. This is illustrated by the plot for S estimation using the biweight on these
data, which we do not show here, which is indistinguishable from that using the power divergence ρ.

As a final larger data example, we analyze 509 observations on the amount spent by loyalty
card holders at a supermarket chain in Northern Italy, introduced by Atkinson and Riani [23],
who recommended a Box-Cox transformation for the response with λ = 1/3. Perrotta et al. [24]
showed that a value of λ = 0.4 is to be preferred. We used this value in our analysis. The monitoring
plot of residuals from BF power divergence is in Figure 10. It shows stable trajectories of the residuals
for many values of α. A change starts around bdp = 0.17, indicating this as the empirical bdp. Again,
S power divergence, which we do not show, reveals the same extreme observations, but fails to
provide a sharp transition, so that the empirical breakdown point for efficient analysis is again not
easily determined.
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Figure 10. Loyalty card data: residuals for BF-estimation as bdp decreases.

6. Discussion

We have used the estimating equation for the linear parameters β to recast power divergence
estimation in the context of S-estimation. This leads straightforwardly to calculations of asymptotic
bdp and efficiency. This form of the power density estimate has asymptotic properties close to those of
S estimation using Tukey’s biweight.

An alternative to power divergence S-estimation is brute-force numerical minimization.
The non-asymptotic comparison of the two procedures has been performed with monitoring plots of
residuals as bdp varies, providing fits changing from very robust to maximum likelihood. S power
divergence estimation has properties very similar to those of S-estimation with Tukey’s biweight.
In both, there is often a smooth decrease in the magnitude of the residuals as bdp decreases. On the
other hand, BF minimization produces monitoring plots which show a clearer break between robust
and non-robust fits, leading to estimation of an empirical breakdown point and so to the most efficient
robust estimates.

One conclusion is that BF estimation provides more informative analyses than power density
S-estimation. However, the results of monitoring regression in Riani et al. [20] show that the
comparative behavior of estimators depends on the particular data set being analyzed. Figure 7
shows that S-estimation may produce monitoring plots with a sharp change, and further examples are
in Riani et al. [20]. Other methods providing a sharp change, and so guidance to efficient analysis,
are the Forward Search [25] and Least Trimmed Squares [22]. It remains to be seen how BF power
divergence compares with these other methods, both statistically and on larger, more complicated
models, such as linear mixed models, generalized linear models, or nonlinear models.
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Appendix A. Rho Functions

In this appendix, we summarize the characteristics of the ρ functions which have been used in the
paper. Since the hyperbolic tangent estimator is rarely used and, as far as we know, is not implemented
in any statistical package, we describe this estimator in greater detail.

The first ρ-function was proposed in Huber (1964):

ρ(u) =

{
(u2/2) |u/c| ≤ 1

c|u| − c2/2 |u/c| > 1.

It is easily seen that this ρ function is unbounded and, therefore, the corresponding estimator has
a zero breakdown point.

Perhaps the most popular ρ function for redescending M and S-estimates is Tukey’s Biweight
function [13]:

ρ(u) =

{
u2

2 − u4

2c2 +
u6

6c4 if |u| ≤ c
c2

6 if |u| > c,
(A1)

the first derivative of which vanishes outside the interval [−c,+c]. Therefore, for this function c is the
crucial tuning constant, determining the efficiency or, equivalently, the breakdown point.

Hampel’s ρ function [14] (p. 150) has a similar, but less smooth, shape.

ρ(u) =





1
2 u2 if |u/c| ≤ c1

c1|u| − 1
2 c2

1 if c1 < |u/c| ≤ c2

c1
c3|u|− 1

2 u2

c3−c2
if c2 < |u/c| ≤ c3

c1(c2 + c3 − c1) if |u/c| > c3.

(A2)

The first derivative is piece-wise linear and vanishes outside the interval [−c3,+c3]. The crucial
tuning constant is c3. Huber and Ronchetti [26] (p. 101) suggest that the slope between c2 and c3 should
not be too steep.

Yohai and Zamar [16] introduced a ρ function which minimizes the asymptotic variance of the
regression M-estimate, subject to a bound on a robustness measure called contamination sensitivity.
Therefore, this function is called the optimal ρ function.

ρ(u) =





1.3846
( u

c
)2 if |u| ≤ 2

3 c

0.5514− 2.6917
( u

c
)2

+ 10.7668
( u

c
)4 − 11.6640

( u
c
)6

+

+4.0375
( u

c
)8 if 2

3 c < |u| ≤ c

1 if |u| > c.

(A3)

Now, the first derivative vanishes outside the interval [−c,+c]. The resulting M-estimate
minimizes the maximum bias under contamination distributions (locally for a small fraction of
contamination), subject to achieving a desired nominal asymptotic efficiency when the data are
normally distributed.

Hampel et al. [14] (p. 328) considered another optimization problem, by minimizing the
asymptotic variance of the regression M-estimate, subject to a bound on the supremum of the Change of
Variance Curve (CVC) of the estimate. The CVC describes the infinitesimal increment of the logarithm
of the variance of the M estimator—that is by the reciprocal of Equation (16)—in the vicinity of the
null normal model, in the same way that the influence function reflects the infinitesimal asymptotic
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bias. This leads to the Hyperbolic Tangent ρ function, which, for suitable constants c, k, A, B, and d,
is defined as

ρ(u) =





1
2 u2 if |u| ≤ d
d2

2 − 2 A
B ln cosh[ 1

2

√
(k−1)B2

A (c− |u|)]+
+2 A

B ln cosh[ 1
2

√
(k−1)B2

A (c− d)] if d ≤ |u| ≤ c
d2

2 + 2 A
B ln cosh[ 1

2

√
(k−1)B2

A (c− d)] if |u| > c,

(A4)

where 0 < d < c is such that

d =
√
[A(k− 1)] tanh[

1
2

√
(k− 1)B2

A
(c− d)]. (A5)

Parameters A and B are found as:

A = E[ψ2(x)] and B = E[ψ′(x)].

The value of d is found by applying the Newton-Raphson method to Equation (A5). New values
of A and B are obtained (through numerical integration) and the procedure is iterated to convergence.
For additional details, see Hampel et al. [27]. The parameter k is defined as

k = sup
x
{CVC(ψ, x)}.

In Figures 3 and 5, we used a value of 4.5 for k. The right-hand panel of Figure 6 shows that,
for values of bdp close to 0.5, higher efficiencies are obtained when stronger constraints are imposed
on the value of CVC by decreasing k. Conversely, smaller efficiencies result for small values of bdp.
Figure A1 shows the ψ function of the hyperbolic tangent estimator for two different values of k. Note
that A, B, and d (and, consequently, also bdp and eff) are automatically determined after fixing k and c.
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Figure A1. Hyperbolic tangent ψ function for two values of the parameter k .

We have illustrated the use of the power divergence ρ function in regression. But all these ρ

functions can also be used for the estimation of robust location and covariance in the analysis of
multivariate data. In this case, the scaled residuals u are replaced by scaled Mahalanobis distances.
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All the functions ρ(x), ψ(x), w(x) = ψ(x)/x, ψ′(x), and ψ(x)x described in this appendix have
been implemented in the FSDA MATLAB toolbox, which is freely downloadable from the file exchange
of Mathworks. Each .m file has associated HTML documentation which is also present at web address
“http://rosa.unipr.it/FSDA”. The prefixes of the different links which have been used are “HU”, “TB”,
“OPT”, “HA”, “HYP”, and “PD”. The suffixes for the different ingredients are “rho”, “psi”, “wei”,
“psider”, and “psix”. For example, to see the corresponding documentation for the hyperbolic ρ

function, visit “http://rosa.unipr.it/FSDA/HYPrho.html”. For the corresponding documentation
of the derivative of the ψ function of Hampel, see “http://rosa.unipr.it/FSDA/HApsider.html”.
The routines for finding the constant c associated with a particular value of the breakdown point
end with the suffix bdp. For example, to compute the constant c associated with the Tukey biweight
for a given bdp, type “http://rosa.unipr.it/FSDA/TBbdp.html”. The routines to find the constant c
associated with a particular value of the efficiency end with the suffix eff. Finally, the routines which,
given a particular value of c compute bdp and eff, end with the suffix c. For example, to compute bdp
and eff for the power divergence estimator given c, call function PDc (the corresponding documentation
is on the web at “http://rosa.unipr.it/FSDA/PDc.html”).
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Abstract: In this paper, we introduce a new class of robust model selection criteria. These criteria are
defined by estimators of the expected overall discrepancy using pseudodistances and the minimum
pseudodistance principle. Theoretical properties of these criteria are proved, namely asymptotic
unbiasedness, robustness, consistency, as well as the limit laws. The case of the linear regression
models is studied and a specific pseudodistance based criterion is proposed. Monte Carlo simulations
and applications for real data are presented in order to exemplify the performance of the new
methodology. These examples show that the new selection criterion for regression models is a good
competitor of some well known criteria and may have superior performance, especially in the case of
small and contaminated samples.
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1. Introduction

Model selection is fundamental to the practical applications of statistics and there is a substantial
literature on this issue. Classical model selection criteria include, among others, the Cp-criterion,
the Akaike Information Criterion (AIC), based on the Kullback-Leibler divergence, and the Bayesian
Information Criterion (BIC) as well as a General Information Criterion (GIC) which corresponds to
a general class of criteria which also estimates the Kullback-Leibler divergence. These criteria have
been proposed respectively in [1–4], and represent powerful tools for choosing the best model among
different candidate models that can be used to fit a given data set. On the other hand, many classical
procedures for model selection are extremely sensitive to outliers and to other departures from the
distributional assumptions of the model. Robust versions of classical model selection criteria, which
are not strongly affected by outliers, have been proposed for example in [5–7]. Some recent proposals
for robust model selection are criteria based on divergences and minimum divergence estimators.
We recall here, the Divergence Information Criteria (DIC) based on the density power divergences
introduced in [8], the Modified Divergence Information Criteria (MDIC) introduced in [9] and the
criteria based on minimum dual divergence estimators introduced in [10].

The interest on statistical methods based on divergence measures has grown significantly in
recent years. For a wide variety of models, statistical methods based on divergences have high model
efficiency and are also robust, representing attractive alternatives to the classical methods. We refer
to the monographs [11,12] for an excellent presentation of such methods, for their importance and
applications. The pseudodistances that we use in the present paper were originally introduced in [13],
where they are called “type-0” divergences, and corresponding minimum divergence estimators
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have been studied. They are also presented and extensively studied in [14] where they are called
γ-divergences, as well as in [15] in the context of decomposable pseudodistances. Like divergences,
the pseudodistances are not mathematical metrics in the strict sense of the term. They satisfy
two properties, namely the nonnegativity and the fact that the pseudodistance between two probability
measures equals to zero if and only if the two measures are equal. The divergences are moreover
characterized by the information processing property, that is, the complete invariance with respect to
statistically sufficient transformations of the observation space. In general, a pseudodistance may not
satisfy this property. We have adopted the term pseudodistance for this reason, but in literature we
can also encounter the other terms mentioned above.

The pseudodistances that we consider in this paper have also been used to define robustness and
efficiency measures, as well as the corresponding optimal robust M-estimators following the Hampel’s
infinitesimal approach in [16]. The minimum pseudodistance estimators for general parametric
models have been studied in [15] and consist of minimizing an empirical version of a pseudodistance
between the assumed theoretical model and the true model underlying the data. These estimators have
the advantage of not requiring any prior smoothing and conciliate robustness with high efficiency,
providing a high degree of stability under model misspecification, often with a minimal loss in model
efficiency. Such estimators are also defined and studied in the case of the multivariate normal model,
as well as for linear regression models in [17,18], where applications for portfolio optimization models
are also presented.

In the present paper we propose new criteria for model selection, based on pseudodistances
and on minimum pseudodistance estimators. These new criteria have robustness properties,
are asymptotically unbiased, consistent and compare well with some other known model selection
criteria, even for small samples.

The paper is organized as follows—Section 2 is devoted to minimum pseudodistance estimators
and to their asymptotic properties, which will be needed in the next sections. Section 3 presents new
estimators of the expected overall discrepancy using pseudodistances, together with corresponding
theoretical properties including robustness, consistency and limit laws. The new asymptotically
unbiased model selection criteria are presented in Section 3.3, where the case of the univariate normal
model and the case of linear regression models are investigated. Applications based on Monte Carlo
simulations and on real data, illustrating the performance of the new methodology in the case of linear
regression models, are included in Section 4.

2. Minimum Pseudodistance Estimators

The construction of new model selection criteria is based on using the following family of
pseudodistances (see [15]). For two probability measures P and Q admitting densities p and q
respectively with respect to the Lebesgue measure, the family of pseudodistances of order γ > 0 is
defined by

Rγ(P, Q) =
1

γ + 1
ln
(∫

pγdP
)
+

1
γ(γ + 1)

ln
(∫

qγdQ
)
− 1

γ
ln
(∫

pγdQ
)

(1)

and satisfies the limit relation
lim
γ→0

Rγ(P, Q) = R0(P, Q), (2)

where R0(P, Q) :=
∫

ln q
p dQ is the modified Kullback-Leibler divergence.

Let (Pθ) be a parametric model indexed by θ ∈ Θ, where Θ is a d-dimensional parameter space,
and pθ be the corresponding densities with respect to the Lebesgue measure λ. Let X1, . . . , Xn be
a random sample on Pθ0 , θ0 ∈ Θ. For γ > 0 fixed, a minimum pseudodistance estimator of the
unknown parameter θ0 from the law Pθ0 is defined by replacing the measure Pθ0 in the pseudodistance
Rγ(Pθ , Pθ0) by the empirical measure Pn pertaining to the sample, and then minimizing this empirical
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quantity with respect to θ on the parameter space. Since the middle term in Rγ(Pθ , Pθ0) does not
depend on θ, these estimators are defined by

θ̂n = arg min
θ∈Θ

{
1

γ + 1
ln
(∫

pγ+1
θ dλ

)
− 1

γ
ln

(
1
n

n

∑
i=1

pγ
θ (Xi)

)
,

}
(3)

or equivalently as

θ̂n = arg max
θ∈Θ
{Cγ(θ)

−1 · 1
n

n

∑
i=1

pγ
θ (Xi)}, (4)

where Cγ(θ) = (
∫

pγ+1
θ dλ)γ/(γ+1). Denoting h(x, θ) := Cγ(θ)−1 · pγ

θ (x), these estimators can be
written as

θ̂n = arg max
θ∈Θ

1
n

n

∑
i=1

h(Xi, θ). (5)

The optimum given above need not be uniquely defined.
On the other hand,

arg max
θ∈Θ

∫
h(x, θ)dPθ0(x) = θ0 (6)

and here θ0 is the unique optimizer, since Rγ(Pθ , Pθ0) = 0 implies θ = θ0.
Define

Rγ(θ0) := max
θ∈Θ

∫
h(x, θ)dPθ0(x) =

∫
h(x, θ0)dPθ0(x).

An estimator of Rγ(θ0) is defined by

R̂γ(θ0) := max
θ∈Θ

∫
h(x, θ)dPn(x) = max

θ∈Θ

1
n

n

∑
i=1

h(Xi, θ) =
1
n

n

∑
i=1

h(Xi, θ̂n). (7)

The following regularity conditions of the model will be assumed throughout the rest of the paper.
(C1) The density pθ(x) has continuous partial derivatives with respect to θ up to the third order

(for all x λ-a.e.).
(C2) There exists a neighborhood Nθ0 of θ0 such that the first-, the second- and the third- order

partial derivatives with respect to θ of h(x, θ) are dominated on Nθ0 by some Pθ0 -integrable functions.

(C3) The integrals
∫
[ ∂2

∂θ2 h(x, θ)]θ=θ0dPθ0(x) and
∫
[ ∂

∂θ h(x, θ)]θ=θ0 [
∂
∂θ h(x, θ)]tθ=θ0

dPθ0(x) exist.

Theorem 1. Assume that conditions (C1), (C2) and (C3) are fulfilled. Then

(a) Let B :=
{

θ ∈ Θ; ‖θ − θ0‖ ≤ n−1/3
}

. Then, as n → ∞, with probability one, the function θ 7→
1
n ∑n

i=1 h(Xi, θ) attains a local maximal value at some point θ̂n in the interior of B, which implies that the
estimator θ̂n is n1/3-consistent.

(b)
√

n
(

θ̂n − θ0

)
converges in distribution to a centered multivariate normal random variable with

covariance matrix
V = S−1MS−1, (8)

where S := −
∫
[ ∂2

∂θ2 h(x, θ)]θ=θ0dPθ0(x) and M :=
∫
[ ∂

∂θ h(x, θ)]θ=θ0 [
∂
∂θ h(x, θ)]tθ=θ0

dPθ0(x).

(c)
√

n
(

R̂γ(θ0)− Rγ(θ0)
)

converges in distribution to a centered normal variable with variance σ2(θ0) =
∫

h(x, θ0)
2dPθ0(x)−

(∫
h(x, θ0)dPθ0(x)

)2.

We refer to [15] for details regarding these estimators and for the proofs of the above
asymptotic properties.
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3. Model Selection Criteria Based on Pseudodistances

Model selection is a method for selecting the best model among candidate models that can be
used to fit a given data set. A model selection criterion can be considered as an approximately unbiased
estimator of the expected overall discrepancy, a nonnegative quantity which measures the distance
between the true unknown model and a fitted approximating model. If the value of the criterion is
small, then the approximated candidate model can be chosen. In the following, by applying the same
methodology used for AIC, we construct new criteria for model selection using pseudodistances (1)
and minimum pseudodistance estimators.

Let X1, . . . , Xn be a random sample from the distribution associated with the true model Q with
density q and let pθ be the density of a candidate model Pθ from a parametric family (Pθ), where
θ ∈ Θ ⊂ Rd.

3.1. The Expected Overall Discrepancy

For γ > 0 fixed, we consider the quantity

Wθ =
1

γ + 1
ln
(∫

pγ+1
θ dλ

)
− 1

γ
ln
(∫

pγ
θ qdλ

)
, (9)

which is the same as the pseudodistance Rγ(Pθ , Q) without the middle term that remains constant
irrespectively of the model (Pθ) used.

The target theoretical quantity that will be approximated by an asymptotically unbiased estimator
is given by

E[W
θ̂n
] = E[Wθ |θ = θ̂n], (10)

where θ̂n is a minimum pseudodistance estimator defined as in (3). The same pseudodistance is used
for both Wθ and θ̂n. The quantity (10) can be seen as an average distance between Q and (Pθ) up to
a constant and is called the expected overall discrepancy between Q and (Pθ).

The next Lemma gives the gradient vector and the Hessian matrix of Wθ and is useful for the
evaluation of E[W

θ̂n
] through Taylor expansion.

Throughout this paper, for a scalar function ϕθ(·), the quantity ∂
∂θ ϕθ(·) denotes the d-dimensional

gradient vector of ϕθ(·) with respect to the vector θ and ∂2

∂θ2 ϕθ(·) denotes the corresponding d× d
Hessian matrix. We also use the notations ϕ̇θ and ϕ̈θ for the first and the second order derivatives of
ϕθ with respect to θ.

We assume the following conditions allowing derivation under the integral sign:
(C4) There exists a neighborhood Nθ of θ such that

∫
sup
t∈Nθ

∥∥∥∥
∂

∂t
pγ+1

t

∥∥∥∥dλ < ∞,
∫

sup
t∈Nθ

∥∥∥∥
∂

∂t
[pγ

t ṗt]

∥∥∥∥dλ < ∞.

(C5) There exists a neighborhood Nθ of θ such that

∫
sup
t∈Nθ

∥∥∥∥
∂

∂t
pγ

t

∥∥∥∥ qdλ < ∞,
∫

sup
t∈Nθ

∥∥∥∥
∂

∂t
[pγ−1

t ṗt]

∥∥∥∥ qdλ < ∞.

Lemma 1. Under (C4) and (C5), the gradient vector and the Hessian matrix of Wθ are

∂

∂θ
Wθ =

∫
pγ

θ ṗθdλ
∫

pγ+1
θ dλ

−
∫

pγ−1
θ ṗθqdλ∫
pγ

θ qdλ
(11)
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∂2

∂θ2 Wθ =
[γ
∫

pγ−1
θ ṗθ ṗt

θdλ +
∫

pγ
θ p̈θdλ]

∫
pγ+1

θ dλ− (γ + 1)
∫

pγ
θ ṗθdλ(

∫
pγ

θ ṗθdλ)t

(
∫

pγ+1
θ dλ)2

− [(γ− 1)
∫

pγ−2
θ ṗθ ṗt

θqdλ +
∫

pγ−1
θ p̈θqdλ]

∫
pγ

θ qdλ− γ
∫

pγ−1
θ ṗθqdλ(

∫
pγ−1

θ ṗθqdλ)t

(
∫

pγ
θ qdλ)2

.

When the true model Q belongs to the parametric model (Pθ), hence Q = Pθ0 and q = pθ0 ,
the gradient vector and the Hessian matrix of Wθ simplify to

[
∂

∂θ
Wθ

]

θ=θ0

= 0 (12)

[
∂2

∂θ2 Wθ

]

θ=θ0

= Mγ, (θ0) (13)

where

Mγ(θ0) :=
(
∫

pγ−1
θ0

ṗθ0 ṗt
θ0

dλ)(
∫

pγ+1
θ0

dλ)− (
∫

pγ
θ0

ṗθ0 dλ)(
∫

pγ
θ0

ṗθ0dλ)t

(
∫

pγ+1
θ0

dλ)2
. (14)

In the following Propositions we suppose that the true model Q belongs to the parametric model
(Pθ), hence Q = Pθ0 , q = pθ0 and θ0 is the value of the parameter corresponding to the true model
Q = Pθ0 . We also say that θ0 is the true value of the parameter.

Proposition 1. When the true model Q belongs to the parametric model (Pθ), assuming that (C4) and (C5) are
fulfilled for q = pθ0 and θ = θ0, the expected overall discrepancy is given by

E[W
θ̂n
] = Wθ0 +

1
2

E[(θ̂n − θ0)
t Mγ(θ0)(θ̂n − θ0)] + E[Rn], (15)

where Rn = o(‖θ̂n − θ0‖2), Mγ(θ0) is given by (14).

3.2. Estimation of the Expected Overall Discrepancy

In this section, we introduce an estimator of the expected overall discrepancy, under the hypothesis
that the true model Q belongs to the parametric model (Pθ). Hence, Q = Pθ0 and the unknown
parameter θ0 will be estimated by a minimum pseudodistance estimator θ̂n.

For a given θ ∈ Θ, a natural estimator of Wθ is defined by

Qθ :=
1

γ + 1
ln
(∫

pγ+1
θ dλ

)
− 1

γ
ln

(
1
n

n

∑
i=1

pγ
θ (Xi)

)
. (16)

Lemma 2. Assuming (C4), the gradient vector and the Hessian matrix of Qθ are given by

∂

∂θ
Qθ =

∫
pγ

θ ṗθdλ
∫

pγ+1
θ dλ

− ∑n
i=1 pγ−1

θ (Xi) ṗθ(Xi)

∑n
i=1 pγ

θ (Xi)

∂2

∂θ2 Qθ =
[γ
∫

pγ−1
θ ṗθ ṗt

θdλ +
∫

pγ
θ p̈θdλ]

∫
pγ+1

θ dλ− (γ + 1)
∫

pγ
θ ṗθdλ(

∫
pγ

θ ṗθdλ)t

(
∫

pγ+1
θ dλ)2

−

− [(γ− 1)∑n
i=1 pγ−2

θ (Xi) ṗθ(Xi) ṗθ(Xi)
t + ∑n

i=1 pγ−1
θ (Xi) p̈θ(Xi)]∑n

i=1 pγ
θ (Xi)

(∑n
i=1 pγ

θ (Xi))2

+
γ(∑n

i=1 pγ−1
θ (Xi) ṗθ(Xi))(∑n

i=1 pγ−1
θ (Xi) ṗθ(Xi))

t

(∑n
i=1 pγ

θ (Xi))2
.
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Proposition 2. When the true model Q belongs to the parametric model (Pθ), by imposing the conditions
(C1)-(C5), it holds

E[Qθ0 ] = E[Q
θ̂n
] +

1
2

E[(θ0 − θ̂n)
t Mγ(θ0)(θ0 − θ̂n)] + E[Rn], (17)

where Rn = o(‖θ̂n − θ0‖2).

The following result allows to define an asymptotically unbiased estimator of the expected
overall discrepancy.

Proposition 3. When the true model Q belongs to the parametric model (Pθ), under (C1)-(C5), it holds

E[W
θ̂n
] = E[Q

θ̂n
] + E[(θ0 − θ̂n)

t Mγ(θ0)(θ0 − θ̂n)] +

+
1

2γn


1−

∫
p2γ+1

θ0
dλ

(∫
pγ+1

θ0
dλ
)2


+ E [Rn] +

1
γ

E
[
R′n
]

, (18)

where Rn = o(‖θ̂n − θ0‖2) and R′n = o(‖ 1
n ∑n

i=1 pγ
θ0
(Xi)−

∫
pγ+1

θ0
dλ‖2).

3.2.1. Limit Properties of the Estimator Q
θ̂n

Under the hypothesis that the true model Q belongs to the family of models (Pθ), hence Q = Pθ0 ,
we prove the consistency and the asymptotic normality for the estimator Q

θ̂n
.

Note that

Q
θ̂n

=
1

γ + 1
ln
(∫

pγ+1
θ̂n

dλ

)
− 1

γ
ln

(
1
n

n

∑
i=1

pγ

θ̂n
(Xi)

)
(19)

= − ln




1
n ∑n

i=1 p
θ̂n
(Xi)

(
∫

pγ+1
θ̂n

dλ)
γ

γ+1




1
γ

= − ln[R̂γ(θ0)]
1
γ , (20)

where
∫

pγ+1
θ̂n

dλ =
[∫

pγ+1
θ dλ

]
θ=θ̂n

and R̂γ(θ0) is given by (7).

First we prove that R̂γ(θ0) is a consistent estimator of Rγ(θ0). Indeed, using Theorem 1 and the
fact that

∫
∂
∂θ h(x, θ0)dPθ0(x) = 0, a Taylor expansion of 1

n ∑n
i=1 h(Xi, θ) in θ̂n around θ0 gives

R̂γ(θ0) =
1
n

n

∑
i=1

h(Xi, θ0) + oP(n−1/2). (21)

Using the weak law of large numbers,

1
n

n

∑
i=1

h(Xi, θ0) = Rγ(θ0) + oP(1). (22)

Combining (21) and (22), we obtain that R̂γ(θ0) converges to Rγ(θ0) in probability.

Then, using the continuous mapping theorem, since g(t) = − ln t
1
γ is a continuous function,

we get

Q
θ̂n

= − ln[R̂γ(θ0)]
1
γ → − ln[Rγ(θ0)]

1
γ = Wθ0

in probability.
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On the other hand, using the asymptotic normality of the estimator R̂γ(θ0) (according to
Theorem 1 (c)) together with the univariate delta method, we obtain the asymptotic normality of Q

θ̂n
.

The Proposition below summarizes the above asymptotic results.

Proposition 4. Under (C1)-(C3), when Q = Pθ0 , it holds

(a) Q
θ̂n

converges to Wθ0 in probability.

(b)
√

n(Q
θ̂n
−Wθ0) converges in distribution to a centered univariate normal random variable with

variance σ2(θ0)
γ2Rγ(θ0)2 , σ2(θ0) being defined in Theorem 1.

3.2.2. Robustness Properties of the Estimator Q
θ̂n

The influence function is a useful tool for describing robustness of an estimator. Recall that,
a map T defined on a set of probability measures and parameter space valued is a statistical functional
corresponding to an estimator θ̂n of the parameter θ, whenever θ̂n = T(Pn), where Pn is the empirical
measure associated to the sample. The influence function of T at Pθ is defined by

IF(x; T, Pθ) :=
∂T(P̃εx)

∂ε

∣∣∣∣∣
ε=0

,

where P̃εx := (1− ε)Pθ + εδx, ε > 0, δx being the Dirac measure putting all mass at x. The gross error
sensitivity of the estimator is defined by

γ∗(T, Pθ) = sup
x
‖IF(x; T, Pθ)‖.

Whenever the influence function is bounded with respect to x, the corresponding estimator is called
B-robust (see [19]).

In what follows, for a given γ > 0, we derive the influence function of the estimator Q
θ̂n

.
The statistical functional associated with this estimator, which we denote by U, is defined by

U(P) :=
1

γ + 1
ln
(∫

pγ+1
T(P)dλ

)
− 1

γ
ln
(∫

pγ
T(P)dP

)
,

where T is the statistical functional corresponding to the used minimum pseudodistance estimator
estimator θ̂n, namely

T(P) := arg sup
θ

Cγ(θ)
−1
∫

pγ
θ dP

where Cγ(θ) = (
∫

pγ+1
θ dλ)γ/(γ+1).

Due to the Fisher consistency of the functional T, according to (6), we have T(Pθ0) = θ0 which
implies that U(Pθ0) = Wθ0 .

Proposition 5. When Q = Pθ0 , the influence function of Q
θ̂n

is given by

IF(x; U, Pθ0) =
1
γ


1−

pγ
θ0
(x)

∫
pγ+1

θ0
dλ


 . (23)

Note that the influence function of the estimator Q
θ̂n

does not depend on the estimator θ̂n,
but depends on the used pseudodistance. Usually, pγ

θ0
(x) is bounded with respect to x and therefore

Q
θ̂n

is a robust estimator with respect to Wθ0 .
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Figure 1. Influence functions in the case of the normal model.

For comparison at the level of the influence function, we consider the AIC criterion which is
defined by

AIC = −2 ln(L(θ̂n)) + 2d,

whereL(θ̂n) is the maximum value of the likelihood function for the model, θ̂n the maximum likelihood
estimator and d the dimension of the parameter. The statistical functional corresponding to the statistic
−2 ln(L(θ̂n)) is

V(P) = −2
∫

ln pT(P)dP

where T here is the statistical functional corresponding to the maximum likelihood estimator.
The influence function of the functional V is given by

IF(x; V, Pθ0) = 2
[∫

ln pθ0 dPθ0 − ln pθ0(x)
]

. (24)

This influence function is not bounded with respect to x, therefore the statistic −2 ln(L(θ̂n)) is
not robust.

For example, in the case of the univariate normal model, for a positive γ, the influence function (23)
writes as

IF(x; U, Pθ0) =
1
γ

(
1−

√
γ + 1 · exp

(
−γ

2

(
x−m

σ

)2
))

(25)

while the influence function (24) writes as

IF(x; V, Pθ0) =

(
x−m

σ

)2
− 2m2

σ2 − 1 (26)

(here θ0 = (m, σ)). For all the pseudodistances, the influence function (25) is bounded with respect
to x, therefore the selection criteria based on the statistic Q

θ̂n
will be robust. On the other hand,

the influence function (26) is not bounded with respect to x, showing the non robustness of AIC
in this case. Moreover, the gross error sensitivities corresponding to these influence functions are
γ∗(U, Pθ0) =

1
γ and γ∗(V, Pθ0) = ∞. These results show that, in the case of the normal model, when γ

increases the gross error sensitivity decreases. Therefore, larger values of γ are associated with more
robust procedures. For the particular case m = 0 and σ = 1, the influence functions (25) and (26) are
represented in Figure 1.

198



Entropy 2020, 22, 304

3.3. Model Selection Criteria Using Pseudodistances

3.3.1. The Case of Univariate Normal Family

The criteria that we propose in this section correspond to the case where the candidate model
is a univariate normal model from the family of normal models (Pθ) indexed by θ = (µ, σ). We also
suppose that the true model Q belongs to (Pθ).

In the case of the univariate normal model, Mγ(θ0) defined in (14) expresses as

Mγ(θ0) =
(γ + 1)2

(2γ + 1)3/2 A(γ)V−1, (27)

where V is the asymptotic covariance matrix given by (8) and the matrix A(γ) is given by

A(γ) =

(
1 0

0 3γ2+4γ+2
2(2γ+1)

)
.

For small positive values of γ, the matrix A(γ) can be approximated by the identity matrix I.
According to Theorem 1,

√
n(θ̂n − θ0) is asymptotically multivariate normal and then the statistic

n(θ0 − θ̂n)tV−1(θ0 − θ̂n) has approximately a χ2
d distribution. For large n, it holds

E[(θ0 − θ̂n)
t Mγ(θ0)(θ0 − θ̂n)] ≈

(γ + 1)2

(2γ + 1)3/2 ·
d
n

. (28)

Also, for the normal model, it holds

∫
p2γ+1

θ0
dλ

(∫
pγ+1

θ0
dλ
)2 =

γ + 1√
2γ + 1

. (29)

Therefore, (18) becomes

E[W
θ̂n
] ∼= E[Q

θ̂n
] +

(γ + 1)2

(2γ + 1)3/2 ·
d
n
+

1
2γn

[
1− γ + 1√

2γ + 1

]
+ E [Rn] +

1
γ

E
[
R′n
]

. (30)

Using the central limit theorem and asymptotic properties of θ̂n given in Theorem 1, the following
hold

n · o(‖θ̂n − θ0‖2) = oP(1), (31)

n · o(‖ 1
n

n

∑
i=1

pγ
θ0
(Xi)−

∫
pγ+1

θ0
dλ‖2) = oP(1). (32)

Using (30), (31) and (32) we obtain:

Proposition 6. For the univariate normal family, an asymptotically unbiased estimator of the expected overall
discrepancy is given by

Q
θ̂n
+

(γ + 1)2

(2γ + 1)3/2 ·
d
n
+

1
2γn

[
1− γ + 1√

2γ + 1

]
, (33)

where θ̂n is a minimum pseudodistance estimator given by (3).
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Under the hypothesis that (Pθ) is the univariate normal model, as we supposed in this subsection,
the function h writes as

h(x, θ) = (
√

γ + 1)γ/(γ+1) · (σ
√

2π)−γ/(γ+1) · exp

(
−γ

2

(
x−m

σ

)2
)

(34)

and it can be easily checked that all the conditions (C1)–(C5) are fulfilled. Therefore we can use all
results presented in the preceding subsections, such that Proposition 6 is fully justified.

Moreover, the selection criteria based on (33) are consistent on the basis of Proposition 4. It should
also be noted that the bias correction term in (33) decreases slowly as the parameter γ increases staying
always very close to zero (∼ 10−2). As expected, the larger the sample size the smaller the bias
correction. As we saw in Section 3.2.2, since the gross error sensitivity of Q

θ̂n
is γ∗(U, Pθ0) =

1
γ , larger

values of γ are associated with more robust procedures. On the other hand, the approximation of A(γ)

with the identity matrix is realized for values of γ close to zero. Thus, positive values of γ smaller than
0.5 for example could represent choices satisfying the robustness requirement and the approximation
of A(γ) through the identity matrix, approximation which is necessary to construct the criterion in
this case.

3.3.2. The Case of Linear Regression Models

In the following, we adapt the pseudodistance based model selection criterion in the case of linear
regression models. Consider the linear regression model

Y = α + βtX + e (35)

where e ∼ N (0, σ) and e is independent of X. Suppose we have a sample given by the i.i.d. random
vectors Zi = (Xi, Yi), i = 1, ..., n, such that Yi = α + βtXi + ei.

We consider the joint distribution of the entire data and write a pseudodistance between the
theoretical model and the true model corresponding to the data. Let Pθ , θ := (α, β, σ), be the probability
measure associated to the theoretical model given by the random vector Z = (X, Y) and Q the
probability measure associated to the true model corresponding to the data. Denote by pθ , respectively
by q the corresponding densities. For γ > 0, the pseudodistance between Pθ and Q is defined by

Rγ(Pθ , Q) :=
1

γ + 1
ln
(∫

pγ
θ (x, y)dPθ(x, y)

)
+

1
γ(γ + 1)

ln
(∫

qγ(x, y)dQ(x, y)
)
−

− 1
γ

ln
(∫

pγ
θ (x, y)dQ(x, y)

)
. (36)

Similar to [18], since the middle term above does not depend on Pθ , a minimum pseudodistance
estimator of the parameter θ0 = (α0, β0, σ0) is defined by

θ̂n = (α̂n, β̂n, σ̂n) = arg min
α,β,σ

{
1

γ + 1
ln
(∫

pγ
θ (x, y)dPθ(x, y)

)
− 1

γ
ln
(∫

pγ
θ (x, y)dPn(x, y)

)}
, (37)

where Pn is the empirical measure associated with the sample. This estimator can be written as

θ̂n = (α̂n, β̂n, σ̂n) = arg min
α,β,σ

{
1

γ + 1
ln
(∫

φ
γ+1
σ (e)de

)
− 1

γ
ln

(
1
n

n

∑
i=1

φ
γ
σ (Yi − α− βtXi)

)}
, (38)

where φσ is the density of the random variable e ∼ N (0, σ). Then, the estimator Q
θ̂n

can be written as

Q
θ̂n

= minα,β,σ

{
1

γ+1 ln
(

1
(σ
√

2π)γ
√

γ+1

)
− 1

γ ln
(

1
n ∑n

i=1
1

(σ
√

2π)γ
· exp

(
− γ

2σ2 (Yi − α− βtXi)
2
))}

. (39)

200



Entropy 2020, 22, 304

In order to construct an asymptotic unbiased estimator of the expected overall discrepancy in the
case of the linear regression models, we evaluated the second and the third terms from (18).

For values of γ close to 0 (γ smaller than 0.3), we found the following approximation of the matrix
Mγ(θ0)

Mγ(θ0) '
(γ + 1)2

(2γ + 1)3/2 V−1

(
I 0

0 3γ2+4γ+2
2γ+1 ,

)
(40)

where V is the asymptotic covariance matrix of θ̂n and I is the identity matrix. We refer to [15] for
the asymptotic properties of the minimum pseudodistance estimators in the case of linear regression
models. Since

√
n(θ̂n − θ0) is asymptotically multivariate normal distributed, using the χ2 distribution,

we obtain the approximation

E[(θ̂n − θ0)
t Mγ(θ0)(θ̂n − θ0)] '

1
n
· (γ + 1)2

(2γ + 1)3/2

[
(d− 1) +

3γ2 + 4γ + 2
2(γ + 1)(2γ + 1)

]
. (41)

Also, the third term in (18) is given by

1
2γn

[
1−

(
γ + 1√
2γ + 1

)d
]

. (42)

Then, according to Proposition 3, an asymptotically unbiased estimator of the expected overall
discrepancy is given by

Q
θ̂n
+

1
n
· (γ + 1)2

(2γ + 1)3/2

[
(d− 1) +

3γ2 + 4γ + 2
2(γ + 1)(2γ + 1)

]
+

1
2γn

[
1−

(
γ + 1√
2γ + 1

)d
]

, (43)

where Q
θ̂n

is given by (39). Note that, using the asymptotic properties of θ̂n and the central limit

theorem, the last two terms in (18) of Proposition 3 are oP(
1
n ).

When we compare different linear regression models, as in Section 4 below, we can ignore the
terms depending only on n and γ in (43). Therefore, we can use as model selection criterion the
simplified expression

Q
θ̂n
+

(γ + 1)2

(
√

2γ + 1)3 ·
d
n
− 1

2γn

(
γ + 1√
2γ + 1

)d
, (44)

which we call Pseudodistance based Information Criterion (PIC).

4. Applications

4.1. Simulation Study

In order to illustrate the performance of the PIC criterion (44) in the case of linear regression
models, we performed a simulation study using for comparison the model selection criteria AIC, BIC
and MDIC. These criteria are defined respectively by

AIC = n log σ̂2
p + 2 (p + 2)

BIC = n log σ̂p
2 + (p + 2) log n,

where n the sample size, p the number of covariates of the model and σ̂2
p the classical unbiased

estimator of the variance of the model,

MDIC = nMQθ̂ + (2π)−α/2(1 + α)2+p/2 p
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with α = 0.25 and

MQθ̂ = −
[
(1 + α−1)

1
n

n

∑
n=1

f α
θ̂
(Xi)

]
,

where θ̂ is a consistent estimate of the vector of unknown parameters involved in the model with p
covariates and fθ̂ is the associated probability density function. Note that MDIC is based on the well
known BHHJ family of divergence measures indexed by a parameter α > 0 and on the minimum
divergence estimating method for robust parameter estimation (see [20]). The value of α = 0.25 was
found in [9] to be an ideal one for a great variety of settings. The above three criteria have been chosen
to be used in this comparative study with PIC not only due to their popularity, but also due to their
special characteristics. Indeed, AIC is the classical representative of asymptotically efficient criteria,
BIC is known to be consistent, while MDIC is associated with robust estimations (see e.g., [20–23]).

Let X1, X2, X3, X4 be four variables following respectively the normal distributions N (0, 3),
N (1, 3), N (2, 3) and N (3, 3). We consider the model

Y = a0 + a1X1 + a2X2 + ε

with a0 = a1 = a2 = 1 and ε ∼ N (0, 1). This is the uncontaminated model. In order to evaluate the
robustness of the new PIC criterion, we also consider the contaminated model

Y = d1(a0 + a1X1 + a2X2 + ε) + d2(a0 + a1X1 + a2X2 + ε∗)

where ε∗ ∼ N (5, 1) and d1, d2 ∈ [0, 1] such that d1 + d2 = 1. Note that for d1 = 1 and d2 = 0 the
uncontaminated model is obtained.

The simulated data corresponding to the contaminated model are

Yi = d1(1 + X1,i + X2,i + εi) + d2(1 + X1,i + X2,i + ε∗i ),

for i = 1, . . . , n, where X1,i, X2,i, εi, ε∗i are values of the variables X1, X2, ε, ε∗ independently generated
from the normal distributions N (1, 3), N (2, 3), N (0, 1), N (5, 1) correspondingly.

With a set of four possible regressors there are 24 − 1 = 15 possible model specifications that
include at least one regressor. These 15 possible models constitute the set of candidate models in our
study. More precisely, this set contains the full model (X1, X2, X3, X4) given by

Y = b0 + b1X1 + b2X2 + b3X3 + b4X4 + ε

as well as all 14 possible subsets of the full model consisting of one (Xj1), two (Xj1 , Xj2) and three
(Xj1 , Xj2 , Xj3 ) of the four regressors X1, X2, X3 and X4, with j1 6= j2 6= j3, ji ∈ {1, 2, 3, 4} and i = 1, 2, 3 .

In our simulation study, for several values of the parameter γ associated with the pseudodistance,
we compared the new criterion PIC with the other model selection criteria. Different levels of
contamination and different sample sizes have been considered. In the examples presented in this
work, d1 ∈ {0.8, 0.9, 0.95, 1} and n ∈ {20, 50, 100}. Additional examples for n = 30, 75, 200, 500 have
been analyzed (results not shown) with similar findings (see below). For each setting, fifty experiments
were performed in order to select the best model among the available candidate models. In the
framework of each of the fifty experiments, on the basis of the simulated observations, the value of
each of the above model selection criteria was calculated for each of the 15 possible models. Then,
for each criterion, the 15 candidate models were ranked from 1st to 15th according to the value of the
criterion. The model chosen by a given criterion is the one for which the value of the criterion is the
lowest among all the 15 candidate models.

Tables 1–12 present the proportions of models selected by the considered criteria. Among the 15
candidate models only 4 were chosen at least once. These four models are the same in all instances
and appear in the 2nd column of all Tables.
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For small sample sizes (n = 20, n = 30) the criteria PIC and MDIC yield the best results. When
the level of contamination is 10% or 20%, the PIC criterion yields very good results and beats the
other competitors almost all the time. When the level of contamination is small, for example 5% or
when there is no contamination, the two criteria are comparable, in the sense that in many cases the
proportions of selected models by the two criteria are very close, so that sometimes PIC wins and
sometimes MDIC wins. Tables 1–4 present these results for n = 20, but similar results are obtained for
n = 30, too.

For medium sample sizes (n = 50, n = 75), the criteria PIC and BIC yield the best results.
The results for n = 50 are given in Tables 5–8. Note that the PIC criterion yields the best results for
0% and 10% contamination. For the other levels of contamination, there are values of γ for which
PIC is the best among all the considered criteria. On the other hand, in most cases when BIC wins,
the proportions of selections of the true model by BIC and PIC are close.

When the sample size is large (n = 100, n = 200, n = 500), BIC generally yields better results
than PIC which stays relatively close behind, but sometimes BIC and PIC have the same performance.
Tables 9–12 present the results obtained for n = 100.

Thus, the new PIC criterion works very well for small to medium sample sizes and for levels of
contamination up to 20%, but falls behind BIC for large sample sizes. Note that for contaminated data,
PIC with γ = 0.15 prevails in most of the considered cases. On the other hand, for uncontaminated
data, it is PIC with γ = 0.2 that prevails in all the considered instances. It is also worth mentioning that
PIC with γ = 0.3 appears to behave very satisfactorily in most cases irrespectively of the proportion
of contamination (0%–20%) and the sample size. Observe also that in all cases, AIC has the highest
overestimation rate which is somehow expected (see [24]).

Although the consistency is the main focus of the applications presented in this work, one should
point out that if prediction is part of the objective of a regression analysis, then model selection carried
out using criteria such as the ones used in this work, have desirable properties. In fact, the case
of finite-dimensional normal regression models has been shown to be associated with satisfactory
prediction errors for criteria such as AIC and BIC (see [25]). Furthermore, it should be pointed out
that in many instances PIC has a behavior quite similar to the above criteria by choosing the same
models. Also, according to the presented simulation results, the proportion of choosing the true model
by PIC is always better than the proportion of choosing the true model by AIC (even in the case of non
contaminated data) and sometimes it is better than the proportion of choosing the true model by BIC.
These results imply a satisfactory prediction ability for the proposed PIC criterion.

In conclusion, the new PIC criterion is a good competitor of the well known model selection
criteria AIC, BIC and MDIC and may have superior performance especially in the case of small and
contaminated samples.
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Table 1. Proportions of selected models by the considered criteria (n = 20, d1 = 0.8).

Criteria Variables γ = 0.01 γ = 0.05 γ = 0.1 γ = 0.15 γ = 0.2 γ = 0.25 γ = 0.3

PIC X1, X2 90 84 88 84 92 90 86
X1, X2, X3





(10)




(16)




(12)




(16)




(8)




(10)




(14)
X1, X2, X4

X1, X2, X3, X4

AIC X1, X2 62 56 52 56 66 56 60
X1, X2, X3





(38)




(44)




(48)




(44)




(34)




(44)




(40)
X1, X2, X4

X1, X2, X3, X4

BIC X1, X2 74 76 60 74 72 68 70
X1, X2, X3





(26)




(24)




(40)




(26)




(28)




(32)




(30)
X1, X2, X4

X1, X2, X3, X4

MDIC X1, X2 86 86 64 78 84 80 74
X1, X2, X3





(14)




(14)




(36)




(22)




(16)




(20)




(26)
X1, X2, X4

X1, X2, X3, X4

Table 2. Proportions of selected models by the considered criteria (n = 20, d1 = 0.9).

Criteria Variables γ = 0.01 γ = 0.05 γ = 0.1 γ = 0.15 γ = 0.2 γ = 0.25 γ = 0.3

PIC X1, X2 80 84 90 82 82 80 80
X1, X2, X3





(20)




(16)




(10)




(18)




(18)




(20)




(20)
X1, X2, X4

X1, X2, X3, X4

AIC X1, X2 60 52 56 62 64 54 52
X1, X2, X3





(40)




(48)




(44)




(38)




(36)




(46)




(48)
X1, X2, X4

X1, X2, X3, X4

BIC X1, X2 76 70 78 72 84 76 76
X1, X2, X3





(24)




(30)




(22)




(28)




(16)




(24)




(24)
X1, X2, X4

X1, X2, X3, X4

MDIC X1, X2 86 76 88 74 92 78 86
X1, X2, X3





(14)




(24)




(12)




(26)




(8)




(22)




(14)
X1, X2, X4

X1, X2, X3, X4
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Table 3. Proportions of selected models by the considered criteria (n = 20, d1 = 0.95).

Criteria Variables γ = 0.01 γ = 0.05 γ = 0.1 γ = 0.15 γ = 0.2 γ = 0.25 γ = 0.3

PIC X1, X2 82 88 80 94 82 88 86
X1, X2, X3





(18)




(12)




(20)




(6)




(18)




(12)




(14)
X1, X2, X4

X1, X2, X3, X4

AIC X1, X2 78 50 66 70 66 64 66
X1, X2, X3





(22)




(50)




(34)




(30)




(34)




(36)




(34)
X1, X2, X4

X1, X2, X3, X4

BIC X1, X2 84 64 74 84 84 76 82
X1, X2, X3





(16)




(36)




(26)




(16)




(16)




(24)




(18)
X1, X2, X4

X1, X2, X3, X4

MDIC X1, X2 90 74 82 88 88 80 88
X1, X2, X3





(10)




(26)




(18)




(12)




(12)




(20)




(12)
X1, X2, X4

X1, X2, X3, X4

Table 4. Proportions of selected models by the considered criteria (n = 20, d1 = 1).

Criteria Variables γ = 0.01 γ = 0.05 γ = 0.1 γ = 0.15 γ = 0.2 γ = 0.25 γ = 0.3

PIC X1, X2 86 86 86 86 88 82 92
X1, X2, X3





(14)




(14)




(14)




(14)




(12)




(18)




(8)
X1, X2, X4

X1, X2, X3, X4

AIC X1, X2 64 74 62 58 64 62 70
X1, X2, X3





(36)




(26)




(38)




(42)




(36)




(38)




(30)
X1, X2, X4

X1, X2, X3, X4

BIC X1, X2 78 90 78 80 82 80 74
X1, X2, X3





(22)




(10)




(22)




(20)




(18)




(20)




(26)
X1, X2, X4

X1, X2, X3, X4

MDIC X1, X2 84 92 88 88 88 88 80
X1, X2, X3





(16)




(8)




(12)




(12)




(12)




(12)




(20)
X1, X2, X4

X1, X2, X3, X4
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Table 5. Proportions of selected models by the considered criteria (n = 50, d1 = 0.8).

Criteria Variables γ = 0.01 γ = 0.05 γ = 0.1 γ = 0.15 γ = 0.2 γ = 0.25 γ = 0.3

PIC X1, X2 86 96 94 90 88 86 90
X1, X2, X3





(14)




(4)




(6)




(10)




(12)




(14)




(10)
X1, X2, X4

X1, X2, X3, X4

AIC X1, X2 74 64 82 62 64 78 72
X1, X2, X3





(26)




(36)




(18)




(38)




(36)




(22)




(28)
X1, X2, X4

X1, X2, X3, X4

BIC X1, X2 94 86 96 86 90 88 90
X1, X2, X3





(6)




(14)




(4)




(14)




(10)




(12)




(10)
X1, X2, X4

X1, X2, X3, X4

MDIC X1, X2 94 82 98 82 86 88 90
X1, X2, X3





(6)




(18)




(2)




(18)




(14)




(12)




(10)
X1, X2, X4

X1, X2, X3, X4

Table 6. Proportions of selected models by the considered criteria (n = 50, d1 = 0.9).

Criteria Variables γ = 0.01 γ = 0.05 γ = 0.1 γ = 0.15 γ = 0.2 γ = 0.25 γ = 0.3

PIC X1, X2 92 88 92 90 82 94 86
X1, X2, X3





(8)




(12)




(8)




(10)




(18)




(6)




(14)
X1, X2, X4

X1, X2, X3, X4

AIC X1, X2 70 64 62 64 66 74 72
X1, X2, X3





(30)




(36)




(38)




(36)




(34)




(26)




(28)
X1, X2, X4

X1, X2, X3, X4

BIC X1, X2 92 88 82 92 88 88 86
X1, X2, X3





(8)




(12)




(18)




(8)




(12)




(12)




(14)
X1, X2, X4

X1, X2, X3, X4

MDIC X1, X2 92 86 76 88 84 88 86
X1, X2, X3





(8)




(14)




(24)




(12)




(16)




(12)




(14)
X1, X2, X4

X1, X2, X3, X4
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Table 7. Proportions of selected models by the considered criteria (n = 50, d1 = 0.95).

Criteria Variables γ = 0.01 γ = 0.05 γ = 0.1 γ = 0.15 γ = 0.2 γ = 0.25 γ = 0.3

PIC X1, X2 94 92 92 88 84 90 88
X1, X2, X3





(6)




(8)




(8)




(12)




(16)




(10)




(12)
X1, X2, X4

X1, X2, X3, X4

AIC X1, X2 70 62 66 68 70 72 58
X1, X2, X3





(30)




(38)




(34)




(32)




(30)




(28)




(42)
X1, X2, X4

X1, X2, X3, X4

BIC X1, X2 96 82 92 86 92 92 86
X1, X2, X3





(4)




(18)




(8)




(14)




(8)




(8)




(14)
X1, X2, X4

X1, X2, X3, X4

MDIC X1, X2 90 78 88 86 86 90 82
X1, X2, X3





(10)




(22)




(12)




(14)




(14)




(10)




(18)
X1, X2, X4

X1, X2, X3, X4

Table 8. Proportions of selected models by the considered criteria (n = 50, d1 = 1).

Criteria Variables γ = 0.01 γ = 0.05 γ = 0.1 γ = 0.15 γ = 0.2 γ = 0.25 γ = 0.3

PIC X1, X2 94 90 80 84 90 94 88
X1, X2, X3





(6)




(10)




(20)




(16)




(10)




(6)




(12)
X1, X2, X4

X1, X2, X3, X4

AIC X1, X2 64 68 62 68 66 64 62
X1, X2, X3





(34)




(32)




(38)




(32)




(34)




(36)




(38)
X1, X2, X4

X1, X2, X3, X4

BIC X1, X2 86 86 86 90 86 94 82
X1, X2, X3





(14)




(14)




(14)




(10)




(14)




(6)




(18)
X1, X2, X4

X1, X2, X3, X4

MDIC X1, X2 84 84 82 88 84 90 82
X1, X2, X3





(16)




(16)




(18)




(12)




(16)




(10)




(18)
X1, X2, X4

X1, X2, X3, X4
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Table 9. Proportions of selected models by the considered criteria (n = 100, d1 = 0.8).

Criteria Variables γ = 0.01 γ = 0.05 γ = 0.1 γ = 0.15 γ = 0.2 γ = 0.25 γ = 0.3

PIC X1, X2 94 94 94 92 88 88 94
X1, X2, X3





(6)




(6)




(6)




(8)




(12)




(12)




(6)
X1, X2, X4

X1, X2, X3, X4

AIC X1, X2 70 82 78 70 68 68 72
X1, X2, X3





(30)




(18)




(22)




(30)




(32)




(32)




(28)
X1, X2, X4

X1, X2, X3, X4

BIC X1, X2 90 96 98 90 96 94 88
X1, X2, X3





(10)




(4)




(2)




(10)




(4)




(6)




(12)
X1, X2, X4

X1, X2, X3, X4

MDIC X1, X2 86 96 92 86 92 90 88
X1, X2, X3





(14)




(4)




(8)




(14)




(8)




(10)




(12)
X1, X2, X4

X1, X2, X3, X4

Table 10. Proportions of selected models by the considered criteria (n = 100, d1 = 0.9).

Criteria Variables γ = 0.01 γ = 0.05 γ = 0.1 γ = 0.15 γ = 0.2 γ = 0.25 γ = 0.3

PIC X1, X2 88 92 96 88 88 88 86
X1, X2, X3





(12)




(8)




(4)




(12)




(12)




(12)




(14)
X1, X2, X4

X1, X2, X3, X4

AIC X1, X2 68 72 78 66 70 78 60
X1, X2, X3





(32)




(28)




(22)




(34)




(30)




(22)




(40)
X1, X2, X4

X1, X2, X3, X4

BIC X1, X2 98 98 96 88 92 94 92
X1, X2, X3





(2)




(2)




(4)




(12)




(8)




(6)




(8)
X1, X2, X4

X1, X2, X3, X4

MDIC X1, X2 90 90 96 84 82 90 82
X1, X2, X3





(10)




(10)




(4)




(16)




(18)




(10)




(18)
X1, X2, X4

X1, X2, X3, X4

208



Entropy 2020, 22, 304

Table 11. Proportions of selected models by the considered criteria (n = 100, d1 = 0.95).

Criteria Variables γ = 0.01 γ = 0.05 γ = 0.1 γ = 0.15 γ = 0.2 γ = 0.25 γ = 0.3

PIC X1, X2 90 88 92 90 98 96 92
X1, X2, X3





(10)




(12)




(8)




(10)




(2)




(4)




(8)
X1, X2, X4

X1, X2, X3, X4

AIC X1, X2 70 78 78 66 82 68 68
X1, X2, X3





(30)




(22)




(22)




(34)




(18)




(32)




(32)
X1, X2, X4

X1, X2, X3, X4

BIC X1, X2 96 92 92 94 96 94 88
X1, X2, X3





(4)




(8)




(8)




(6)




(4)




(6)




(12)
X1, X2, X4

X1, X2, X3, X4

MDIC X1, X2 90 88 82 90 94 84 88
X1, X2, X3





(10)




(12)




(18)




(10)




(6)




(16)




(12)
X1, X2, X4

X1, X2, X3, X4

Table 12. Proportions of the selected models by the considered criteria (n = 100, d1 = 1).

Criteria Variables γ = 0.01 γ = 0.05 γ = 0.1 γ = 0.15 γ = 0.2 γ = 0.25 γ = 0.3

PIC X1, X2 94 96 92 92 96 90 94
X1, X2, X3





(6)




(4)




(8)




(8)




(4)




(10)




(6)
X1, X2, X4

X1, X2, X3, X4

AIC X1, X2 78 74 72 74 70 62 74
X1, X2, X3





(22)




(26)




(28)




(26)




(30)




(38)




(26)
X1, X2, X4

X1, X2, X3, X4

BIC X1, X2 96 100 92 96 94 90 100
X1, X2, X3





(4)




(8)




(4)




(6)




(10)
X1, X2, X4

X1, X2, X3, X4

MDIC X1, X2 94 92 86 90 86 80 94
X1, X2, X3





(6)




(8)




(14)




(10)




(14)




(20)




(6)
X1, X2, X4

X1, X2, X3, X4

4.2. Real Data Example

In order to illustrate the proposed method, we used the Hald cement data (see [26]) which
represent a popular example for multiple linear regression. This example concern the heat evolved
in calories per gram of cement Y as a function of the amount of each of four ingredient in the mix:
tricalcium aluminate (X1), tricalcium silicate (X2), tetracalcium alumino-ferrite (X3) and dicalcium
silicate (X4). The data are presented in Table 13.
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Table 13. Hald cement data.

X1 X2 X3 X4 Y

7 26 6 60 78.5
1 29 15 52 74.3

11 56 8 20 104.3
11 31 8 47 87.6
7 52 6 33 95.9

11 55 9 22 109.2
3 71 17 6 102.7
1 31 22 44 72.5
2 54 18 22 93.1

21 47 4 26 115.9
1 40 23 34 83.8

11 66 9 12 113.3
10 68 8 12 109.4

Since 4 variables are available, there are 15 possible candidate models (involving at least one
regressor) for this data set. Note that the 4 single-variable models should be excluded from the analysis,
because cement involves a mixture of at least two components that react chemically (see [27], p. 102).
The model selection criteria that have been used are PIC for several values of γ, AIC, BIC and MDIC
with α = 0.25. Table 14 shows the model selected by each of the considered criteria.

Table 14. Selected models by model selection criteria.

Criteria Variables

PIC, γ = 0.05 X1, X2, X4
PIC, γ = 0.15 X1, X2, X4
PIC, γ = 0.2 X1, X2, X3
PIC, γ = 0.25 X1, X2, X4
PIC, γ = 0.3 X1, X2, X4

AIC X1, X2, X4
BIC X1, X2

MDIC X1, X2, X3

Observe that, in this example, PIC behaves similarly to AIC and MDIC having a slight tendency
of overestimation. Note that for this specific dataset the collinearity is quite strong with X1 and X3

as well as X2 and X4 being seriously correlated. It should be pointed out that the model (X1, X2, X4)

is chosen not only by AIC and PIC, but also by Cp Mallows’ criterion ([1]) with (X1, X2, X3) coming
very close second. Note further that (X1, X2, X4) has also been chosen by cross validation ([28], p. 33)
and PRESS ([26], p. 325). Finally, it is worth noticing that these two models share the highest adjusted
R2 values which are almost identical (0.976 for (X1, X2, X4) and 0.974 for (X1, X2, X3)) making the
distinction between them extremely hard. Thus, in this example, the new PIC criterion gives results as
good as other recognized classical model selection criteria.

5. Conclusions

In this work, by applying the same methodology as for AIC to a family of pseudodistances,
we constructed new model selection criteria using minimum pseudodistance estimators. We proved
theoretical properties of these criteria including asymptotic unbiasedness, robustness, consistency,
as well as the limit laws. The case of the linear regression models was studied in detail and specific
selection criteria based on pseudodistance are proposed.

For linear regression models, a comparative study based on Monte Carlo simulations illustrate
the performance of the new methodology. Thus, for small sample sizes, the criteria PIC and MDIC
yield the best results and in many cases PIC wins, for example when the level of contamination is 10%
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or 20%. For medium sample sizes, the criteria PIC and BIC yield the best results. When the sample size
is large, BIC generally yields better results than PIC which stays relatively close behind, but sometimes
BIC and PIC have the same performance.

Based on the results of the simulation study and on the real data example, we conclude that the
new PIC criterion is a good competitor of the well known criteria AIC, BIC and MDIC with an overall
performance which is very satisfactory for all possible settings according to the sample size and
contamination rate. Also PIC may have superior performance, especially in the case of small and
contaminated samples.

An important issue that needs further investigation is the choice of the appropriate value for the
parameter γ associated to the procedure. The findings of the presented simulation study show that,
for contaminated data, the value γ = 0.15 leads to very good results, irrespectively of the sample
size. Also, γ = 0.3 produces overall very satisfactory results, irrespectively of the sample size and
the contamination rate. We hope to explore further and provide a clear solution to this problem, in
a future work. We also intend to extend this methodology to other type of models including nonlinear
or time series models.
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Appendix A

Proof of Proposition 1. Using a Taylor expansion of Wθ around the true parameter θ0 and taking
θ = θ̂n, on the basis of (12) and (13) we obtain

W
θ̂n

= Wθ0 +
1
2
(θ̂n − θ0)

t Mγ(θ0)(θ̂n − θ0) + o(‖θ̂n − θ0‖2). (A1)

Then (15) holds.

Proof of Proposition 2. Using a Taylor expansion of Qθ around to θ̂n and taking θ = θ0, we obtain

Qθ0 = Q
θ̂n
+

[
∂

∂θ
Qθ

]t

θ=θ̂n

(θ0 − θ̂n) +
1
2
(θ0 − θ̂n)

t
[

∂2

∂θ2 Qθ

]

θ=θ̂n

(θ0 − θ̂n) + o(‖θ̂n − θ0‖2). (A2)

Note that
[

∂
∂θ Qθ

]
θ=θ̂n

= 0 by the very definition of θ̂n.
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By applying the weak law of large numbers and the continuous mapping theorem, we get

[
∂2

∂θ2 Qθ

]

θ=θ0

−
[

∂2

∂θ2 Wθ

]

θ=θ0

P→ 0 (A3)

and using (13) [
∂2

∂θ2 Qθ

]

θ=θ0

−Mγ(θ0)
P→ 0. (A4)

Then, using the consistency of θ̂n and (A4), we obtain

[
∂2

∂θ2 Qθ

]

θ=θ̂n

= Mγ(θ0) + oP(1). (A5)

Consequently,

Qθ0 = Q
θ̂n
+

1
2
(θ0 − θ̂n)

t Mγ(θ0)(θ0 − θ̂n) + o(‖θ̂n − θ0‖2) (A6)

and we deduce (17).

Proof of Proposition 3. Using Proposition 1 and Proposition 2, we obtain

E[W
θ̂n
] = E[Q

θ̂n
] + E[(θ0 − θ̂n)

t Mγ(θ0)(θ0 − θ̂n)]− E[Qθ0 ] + Wθ0 + E[Rn] (A7)

where Rn = o(‖θ̂n − θ0‖2).
In order to evaluate Wθ0 − E[Qθ0 ], note that

Qθ0 −Wθ0 = − 1
γ

[
ln

(
1
n

n

∑
i=1

pγ
θ0
(Xi)

)
− ln

(∫
pγ+1

θ0
dλ

)]
. (A8)

A Taylor expansion of the function ln x around to
∫

pγ+1
θ0

dλ yields

ln

(
1
n

n

∑
i=1

pγ
θ0
(Xi)

)
= ln

(∫
pγ+1

θ0
dλ

)
+

1∫
pγ+1

θ0
dλ

[
1
n

n

∑
i=1

pγ
θ0
(Xi)−

∫
pγ+1

θ0
dλ

]
−

−1
2
· 1

(
∫

pγ+1
θ0

dλ)2

[
1
n

n

∑
i=1

pγ
θ0
(Xi)−

∫
pγ+1

θ0
dλ

]2

+

+o(‖ 1
n

n

∑
i=1

pγ
θ0
(Xi)−

∫
pγ+1

θ0
dλ‖2). (A9)

Then

E[Qθ0 −Wθ0 ] = − 1
γ

E

[
ln

(
1
n

n

∑
i=1

pγ
θ0
(Xi)

)
− ln

(∫
pγ+1

θ0
dλ

)]

= − 1
γ





1∫
pγ+1

θ0
dλ

E

[
1
n

n

∑
i=1

pγ
θ0
(Xi)−

∫
pγ+1

θ0
dλ

]
−

−1
2
· 1

(
∫

pγ+1
θ0

dλ)2
E



(

1
n

n

∑
i=1

pγ
θ0
(Xi)−

∫
pγ+1

θ0
dλ

)2

+ E[R′n]





where R′n = o(‖ 1
n ∑n

i=1 pγ
θ0
(Xi)−

∫
pγ+1

θ0
dλ‖2).

On the other hand,
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E



(

1
n

n

∑
i=1

pγ
θ0
(Xi)−

∫
pγ+1

θ0
dλ

)2

 = Var

[
1
n

n

∑
i=1

pγ
θ0
(Xi)

]
=

1
n

Var
[

pγ
θ0
(X)

]

=
1
n

{
E[p2γ

θ0
(X)]− E[pγ

θ0
(X)]2

}

=

∫
p2γ+1

θ0
dλ− (

∫
pγ+1

θ0
dλ)2

n
. (A10)

Consequently,

E[Qθ0 ]−Wθ0 = − 1
2γn


1−

∫
p2γ+1

θ0
dλ

(∫
pγ+1

θ0
dλ
)2


− 1

γ
E
[
R′n
]

. (A11)

Using (A7) and (A11), we obtain (18).

Proof of Proposition 5. For the contaminated model P̃εx = (1− ε)Pθ0 + εδx, it holds

U(P̃εx) =
1

γ + 1
ln
(∫

pγ+1
T(P̃εx)

dλ

)
− 1

γ
ln
(∫

pγ

T(P̃εx)
dP̃εx

)
. (A12)

Derivation with respect to ε yields

∂

∂ε
[U(P̃εx)]ε=0 =

1∫
pγ+1

θ0
dλ
·
∫

pγ
θ0

ṗθ0dλ · IF(x; T, Pθ0)−

− 1
γ
· 1∫

pγ+1
θ0

dλ

{
−
∫

pγ+1
θ0

dλ + γ ·
∫

pγ
θ0

ṗθ0dλ · IF(x; T, Pθ0) + pγ
θ0
(x)
}

=
1
γ
·

1−

pγ
θ0
(x)

∫
pγ+1

θ0
dλ


 .

Thus we obtain

IF(x; U, Pθ0) =
1
γ


1−

pγ
θ0
(x)

∫
pγ+1

θ0
dλ


 . (A13)
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Abstract: This paper presents a model selection criterion in a composite likelihood framework based
on density power divergence measures and in the composite minimum density power divergence
estimators, which depends on an tuning parameter α. After introducing such a criterion, some
asymptotic properties are established. We present a simulation study and two numerical examples in
order to point out the robustness properties of the introduced model selection criterion.

Keywords: composite likelihood; composite minimum density power divergence estimators; model
selection

1. Introduction

Composite likelihood inference is an important approach to deal with those real situations of
large data sets or very complex models, in which classical likelihood methods are computationally
difficult, or even, not possible to manage. Composite likelihood methods have been successfully used
in many applications concerning, for example, genetics ([1]), generalized linear mixed models ([2]),
spatial statistics ([3–5]), frailty models ([6]), multivariate survival analysis ([7,8]), etc.

Let us introduce the problem, adopting here the notation by [9]. Let { f (·; θ), θ ∈ Θ ⊆ Rp, p ≥ 1}
be a parametric identifiable family of distributions for an observation y = (y1, ..., ym)T , a realization of
a random m-vector Y . In this setting, the composite likelihood function based on K different marginal
or conditional distributions has the form

CL(θ, y) =
K

∏
k=1

(
fAk (yj, j ∈ Ak; θ)

)wk

and the corresponding composite log-density

logCL(θ, y) =
K

∑
k=1

wk`Ak (θ, y), (1)

with `Ak (θ, y) = log fAk (yj, j ∈ Ak; θ), where {Ak}K
k=1 is a family of sets of indices associated either

with marginal or conditional distributions involving some yj, j ∈ {1, ..., m} and wk, k = 1, ..., K are
non-negative and known weights. If the weights are all equal, then they can be ignored. In this case,
all the statistical procedures give equivalent results. The composite maximum likelihood estimator
(CMLE), θ̂c, is obtained by maximizing, in respect to θ ∈ Θ, the expression (1).

The CMLE is consistent and asymptotically normal and, based on it, we can establish hypothesis
testing procedures in a similar way to the classical likelihood ratio test, Wald test or Rao’s score test.
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A development of the asymptotic theory of the CMLE including its application to obtain the composite
ratio statistics, Wald-type tests and Rao score tests in the context of composite likelihood can be seen
in [10]. However, in [11–13] is shown that the CMLE and the derived testing procedures present an
important lack of robustness. In this sense, [11–13] derived some new distance-based estimators and
tests with good robustness behaviour without an important loss of efficiency. In this paper, we are
going to consider the composite minimum density power divergence estimator (CMDPDE), introduced
in [12], in order to present a model selection criterion in a composite likelihood framework.

Model selection criteria, for summarizing data evidence in favor of a model, is a very well
studied subject in statistical literature, overall in the context of full likelihood. The construction of
such criteria requires a measure of similarity between two models, which are typically described in
terms of their distributions. This can be achieved if an unbiased estimator of the expected overall
discrepancy is found, which measures the statistical distance between the true, but unknown model,
and the entertained model. Therefore, the model with the smallest value of the criterion is the most
preferable model. The use of divergence measures, in particular Kullback–Leibler divergence ([14]),
to measure this discrepancy, is the main idea of some of the most known criteria: Akaike Information
Criterion (AIC, [15,16]), the criterion proposed by Takeuchi (TIC, [17]) and other modifications of
AIC [18]. DIC criterion, based on the density power divergence (DPD), was presented in [19] and,
recently, [20] presented a local BHHJ power divergence information criterion following [21]. In the
context of the composite likelihood there are some criteria based on Kullback–Leibler divergence,
see for instance [22–24] and references therein. To the best of our knowledge only Kullback–Leibler
divergence was used to develop model selection criteria in a composite likelihood framework. To fill
this gap, our interest is now focused on DPD.

In this paper, we present a new information criterion for model selection in the framework of
composite likelihood based on DPD measure. This divergence measure, introduced and studied
in the case of complete likelihood by [25], has been considered previously in [12,13] in the context
of composite likelihood. In these papers, a new estimator, the CMDPDE, was introduced and its
robustness in relation to the CMLE as well as the robustness of some families of test statistics were
studied, but the problem of model selection was not considered. This problem is considered in this
paper. The criterion introduced in this paper will be called composite likelihood DIC criterion (CLDIC).
The motivation of considering a criterion based on DPD instead of Kullback–Leibler divergence is due
to the robustness of the procedures based on DPD in statistical inference, not only in the context of full
likelihood [25,26], but also in the context of composite likelihood [12,13]. In Section 2, the CMDPDE
is presented and some properties of this estimator are discussed. The new model selection criterion,
CLDIC, based on CMDPDE is introduced in Section 3 and some of its asymptotic properties are studied.
A simulation study is carried out in Section 4 and some numerical examples are presented in Section 5.
Finally, some concluding remarks are presented in Section 6.

2. Composite Minimum Density Power Divergence Estimator

Given two probability density functions g and f , associated with two m-dimensional random
variables respectively, the DPD ([25]) measures a statistical distance between g and f by

dα(g, f ) =
∫

Rm

{
f (y)1+α −

(
1 +

1
α

)
f (y)αg(y) +

1
α

g(y)1+α

}
dy, (2)

for α > 0, while for α = 0 it is defined by

d0(g, f ) = lim
α→0+

dα(g, f ) = dKL(g, f ),
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where dKL(g, f ) is the Kullback–Leibler divergence (see, for example, [26]). For α = 1, the expression (2)
leads to the L2 distance L2(g, f ) =

∫
Rm ( f (y)− g(y))2 dy. It is also interesting to note that (2) is a special

case of the so-called Bregman divergence
∫

Rm

[
T(g(y))− T( f (y))− {g(y)− f (y}T′( f (y))

]
dy. (3)

If we consider T(l) = 1
α l1+α in (3), we get dα(g, f ). The parameter α controls the trade-off between

robustness and asymptotic efficiency of the parameter estimates which are the minimizers of this
family of divergences. For more details about this family of divergence measures we refer to [27].

Let now Y1, ..., Yn be independent and identically distributed replications of Y which are
characterized by the true but unknown distribution g. Taking into account that the true model g
is unknown, suppose that Ξ = { f (·; θ), θ ∈ Θ ⊆ Rp, p ≥ 1} is a parametric identifiable family of
candidate distributions to describe the observations y1, ..., yn. Then, the DPD between the true model g
and the composite likelihood function, CL(θ, ·), associated to the parametric model f (·; θ) is defined as

dα(g (·) , CL(θ, ·)) =
∫

Rm

{
CL(θ, y)1+α −

(
1 +

1
α

)
CL(θ, y)αg(y) +

1
α

g(y)1+α

}
dy, (4)

for α > 0, while for α = 0 we have dKL(g (·) , CL(θ, ·)), which is defined by

dKL(g (·) , CL(θ, ·)) =
∫

Rm
g(y) log

g(y)
CL(θ, y)

dy. (5)

In Section 3, we are going to introduce and study the CLDIC criterion based on (4).
Let

{Mk}k∈{1,...,`} (6)

be a family of candidate models to govern the observations Y1, ..., Yn. We shall assume that the true
model is included in {Mk}k∈{1,...,`} . For a specific k = 1, . . . , `, the parametric model Mk is described
by the composite likelihood function

CL(θ, ·), θ ∈ Θk ⊂ Rk.

In this setting, it is quite clear that the most suitable candidate model to describe the observations
is the model that minimizes the DPD in (4). However, the unknown parameter θ is included in it,
so it is not possible to use directly this measure for the choice of the most suitable model. A way
to overcome this problem is to plug-in, in (4), the unknown parameter θ by an estimator which is
desirable to obey some nice properties, like consistency and asymptotic normality. Based on this point,
the CMDPDE, introduced in [12], can be used. This estimator is described in the sequel for the sake
of completeness.

If we denote the kernel of (4) as

Wα (θ) =
∫

Rm
CL(θ, y)1+αd y−

(
1 +

1
α

) ∫

Rm
CL(θ, y)αg(y)dy, (7)

we can write
dα(g (·) , CL(θ, ·)) = Wα (θ) +

1
α

∫

Rm
g(y)1+αdy

and the term 1
α

∫
Rm g(y)1+αdy does not depend on θ and could be ignored in (9). A natural estimator

of Wα (θ), given in (7), can be obtained by observing that the last integral in (7), can be expressed
in the form

∫
Rm CL(θ, y)αdG(y), for G the distribution function corresponding to g. Hence, if the
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empirical distribution function of Y1, ..., Yn will be exploited, this last integral is approximated by
1
n

n
∑

i=1
CL(θ, Y i)

α, i.e.,

Wn,α (θ) =
∫

Rm
CL(θ, y)α+1dy−

(
1 +

1
α

)
1
n

n

∑
i=1
CL(θ, Y i)

α. (8)

Definition 1. The CMDPDE of θ, θ̂
α
c , is defined, for α > 0, by

θ̂
α
c = arg min

θ∈Θ
Wn,α (θ) . (9)

We shall denote the score of the composite likelihood by

u(θ, y) =
∂logCL(θ, y)

∂θ
. (10)

Let θ0 be the true value of the parameter θ. In [12], it was shown that the asymptotic distribution
of θ̂

α
c is given by √

n(θ̂
α
c − θ0)

L−→
n→∞

N
(

0p, Hα(θ0)
−1 Jα(θ0)Hα(θ0)

−1
)

,

being

Hα(θ) =
∫

Rm
CL(θ, y)α+1u(θ, y)u(θ, y)Tdy (11)

and

Jα(θ) =
∫

Rm
CL(θ, y)2α+1u(θ, y)u(θ, y)Tdy

−
∫

Rm
CL(θ, y)α+1u(θ, y)dy

∫

Rm
u(θ, y)TCL(θ, y)1+αdy. (12)

Remark 1. For α = 0 we get the CMLE of θ

θ̂c = arg min
θ ∈Θ

(
− 1

n

n

∑
i=1

logCL(θ, yi)

)
. (13)

At the same time it is well-known that

√
n(θ̂c − θ)

L−→
n→∞

N
(

0p, G∗(θ)−1
)

,

where G∗(θ) denotes the Godambe information matrix defined by G∗(θ) = H(θ)J(θ)−1H(θ), with H(θ)

being the sensitivity or Hessian matrix and J(θ) being the variability matrix, defined, respectively, by

H(θ) = Eθ

[
− ∂

∂θ
u(θ, Y)T

]
, J(θ) = Eθ

[
u(θ, Y)u(θ, Y)T

]
.

3. A New Model Selection Criterion

In order to describe the CLDIC criterion we consider the model Mk given in (6). Following
standard methodology (cf. [28], pp. 240), the most suitable candidate model to describe the data
Y1, ..., Yn is the model that minimizes the expected estimated DPD

EY1,...,Yn

[
dα(g (·) , CL(θ̂α

c , ·))
]

, (14)

subject to the assumption that the unknown model g is belonging to Ξ, i.e., the true model is included
in {Ms}s∈{1,...,`} and taking into account that θ̂

α
c , defined in (9), is a consistent and asymptotic normally
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distributed estimator of θ. However, this expected value is still depending on the unknown parameter
θ. So, as a criterion, it should be used an asymptotically unbiased estimator of (14), for g ∈ Ξ.

The most appropriate model to select is the model which minimizes the expected value

EY1,...,Yn

[
Wα

(
θ̂

α
c

)]
.

This expected value is still depending on the unknown parameter θ. So, an asymptotically unbiased
estimator of the above expected value could be the basis of a selection criterion, for g ∈ Ξ. In order to
proceed with the derivation of such an asymptotically unbiased estimator of EY1,...,Yn

[
Wα

(
θ̂

α
c

)]
.

The empirical version of Wα (θ), in (7), is Wn,α(θ), given in (8), and plays a central role in the
development of the model selection criterion on the basis of the next theorem which expresses
the expected value EY1,...,Yn

[
Wα

(
θ̂

α
c

)]
by means of the respective expected value of Wn,α(θ̂

α
c ), in

an asymptotically equivalent way.

Theorem 1. If the true distribution g belongs to the parametric family Ξ and θ0 denotes the true value of the
parameter θ, then we have

EY1,...,Yn

[
Wα(θ̂

α
c )
]
= EY1,...,Yn

[
Wn,α(θ̂α) +

α + 1
n

trace
(

Jα (θ0) Hα (θ0)
−1
)]

+ op(1)

with Hα (θ) and Jα (θ) given in (11) and (12), respectively.

Based on the above theorem, the proof of which is presented in a full detail in the Appendix A,
an asymptotic unbiased estimator of EY1,....,Yn

[
Wα(θ̂

α
c )
]

is given by

Wn,α(θ̂
α
c ) +

α + 1
n

trace
(

Jα(θ̂
α
c )Hα(θ̂

α
c )
−1
)

.

This ascertainment is the basis and a strong motivation for the next definition which introduces the
model selection criterion.

Definition 2. Let {Mk}k∈{1,...,`} be candidate models for the observations Y1, ..., Yn. The selected model
M∗ verifies

M∗ = min
k∈{1,...,,`}

CLDICα (Mk) ,

where

CLDICα (Mk) = Wn,α(θ̂
α
c ) +

α + 1
n

trace
(

Jα(θ̂
α
c )Hα(θ̂

α
c )
−1
)

,

Wn,α(θ) was given in (8) and Jα (θ) and Hα (θ) were defined in (11) and (12), respectively.

The next remark summarizes the model selection criterion in the case α = 0 and it therefore
extends, in a sense, the pioneer and classic AIC.

Remark 2. For α = 0 we have,

dKL(g(·), CL(θ, ·)) = W0(θ) +
∫

Rn
g(y) log g(y)dy

with W0(θ) = −
∫
Rn log CL(θ, y)g(y)dy. Therefore, the most appropriate model which should be selected, is

the model which minimizes the expected value

EY1,...,Yn

[
W0(θ̂c)

]
, (15)
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where θ̂c is the CMLE of θ0 defined in (9).
The expected value (15) is still depending on the unknown parameter θ. A natural estimator of W0(θ̂c)

can be obtained by replacing the distribution function G, of g, by the empirical distribution function based on
Y1, . . . , Yn,

Wn,0(θ) = −
1
n

n

∑
i=1

log CL(θ, yi).

Based on it, we select the model M∗ that verifies

M∗ = min
k∈{1,...,,`}

CLDIC0 (Mk) ,

with
CLDIC0 (Mk) = Hn,0(θ̂c) +

1
n

trace
(

J(θ̂c)H(θ̂c)
−1
)

,

where J(θ̂c) and H(θ̂c) are defined in Remark 1. In a manner, quite similar to that of the previous theorem, it
can be established that CLDIC0(Mk) is an asymptotic unbiased estimator of EY1,...,Yn

[
W0(θ̂c)

]
.

This would be the model selection criterion in a composite likelihood framework based on Kullback–Leibler
divergence. We can observe that this criterion coincides with the criterion given in [22] as a generalization of the
classical criterion of Akaike, which will be referred from now as Composite Akaike Information Criterion (CAIC).

4. Numerical Simulations

4.1. Scenario 1: Two-Component Mixed Model

We are starting with a simulation example, which is motivated and follows ideas from the
paper [29] and the Example 4.1 in [20] which will compare the behaviour of the proposed criteria with
the CAIC criterion, for α = 0 (see Remark 2).

Consider the random vector Y = (Y1, Y2, Y3, Y4)
T from an unknown density g and let now

Y1, ..., Yn be independent and identically distributed replications of Y which are described by the true
but unknown distribution g. Taking into account that the true model g is unknown, suppose that
{ f (·; θ), θ ∈ Θ ⊆ Rp, p ≥ 1} is a parametric identifiable family of candidate distributions to describe
the observations y1, ..., yn. Let also CL(θ, y) denotes the composite likelihood function associated to
the parametric model f (·; θ).

We consider the problem of choosing (on the basis of n independent and identically distributed
replications y1, ..., yn of Y = (Y1, Y2, Y3, Y4)

T) between a 4-variate normal distribution, N
(
µN , Σ

)
,

with µN = (µN
1 , µN

2 , µN
3 , µN

4 )T and

Σ =




1 ρ 2ρ 2ρ

ρ 1 2ρ 2ρ

2ρ 2ρ 1 ρ

2ρ 2ρ ρ 1


 ,

and a 4-variate t-distribution with ν degrees of freedom, tν

(
µtν , Σ∗

)
, with different location parameters

µtν = (µtν
1 , µtν

2 , µtν
3 , µtν

4 )T and same variance-covariance matrix Σ, and density,

Cm|Σ∗|−1/2
[

1 +
1
ν
(y− µtν)T(Σ∗)−1(y− µtν)

]−(ν+m)/2
,

with Σ∗ = ν−2
ν Σ, Cm = (πν)−m/2 Γ[(ν+m)/2]

Γ(ν/2) and m = 4.
Consider the composite likelihood function,

CLN(ρ, y) = f N
A1
(y; ρ) f N

A2
(y; ρ),
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with f N
A1
(y; ρ) = f N

12(y1, y2; µN
1 , µN

2 ; ρ) and f N
A2
(y; ρ) = f N

34(y3, y4; µN
3 , µN

4 ; ρ), where f N
12 and f N

34 are the
densities of the marginals of Y , i.e., bivariate normal distributions with mean vectors (µN

1 , µN
2 )T and

(µN
3 , µN

4 )T , respectively, and common variance-covariance matrix

Σ0 =

(
1 ρ

ρ 1

)
.

In a similar manner consider the composite likelihood

CLtν(ρ, y) = f tν
A1
(y; ρ) f tν

A2
(y; ρ),

with f tν
A1
(y; ρ) = f tν

12(y1, y2; µtν
1 , µtν

2 ; ρ) and f tν
A2
(y; ρ) = f tν

34(y3, y4; µtν
3 , µtν

4 ; ρ), where f tν
12 and f tν

34 are

the densities of the marginals of Y , i.e., bivariate t-distributions with mean vectors (µtν
1 , µtν

2 )T and
(µtν

3 , µtν
4 )T , respectively, and common variance-covariance matrix

Σ0 =

(
1 ρ

ρ 1

)
.

Under this formulation, the simulation study follows in the next two scenarios.

4.1.1. Scenario 1a

Following Example 4.1 in [20], the steps of the simulation study are the following:

• Generate 1000 samples of size n = 5, 7, 10, 20, 40, 50, 70, 100 from a two component mixture of two
4-variate distributions, namely, a 4-variate normal and a 4-variate t-distribution,

hω(y) = ωN
(

µN , Σ
)
+ (1−ω)tν

(
µtν , Σ∗

)
, 0 ≤ ω ≤ 1,

with µN = (0, 0, 0.5, 0) and µtν = (3.2, 1.5, 0.5, 2), for ω = 0, 0.25, 0.45, 0.5, 0.55, 0.75, 1, ν = 5, 10, 30
degrees of freedom and with specific values of ρ = −0.15,−0.10, 0.10. As pointed out in [29],
taking into account that Σ should be semi-positive definite, the following condition is imposed:
− 1

5 ≤ ρ ≤ 1
3 .

• Estimate the common parameter ρ, separately in each model, by using the CMDPDE estimator
for different values of the tuning parameter α = 0, 0.3. The composite density which corresponds
to the mixture hω(y) is defined by

CL(ρ, y) = ωCLN(ρ, y) + (1−ω)CLtν(ρ, y), 0 ≤ ω ≤ 1,

and it is used to obtain the CMDPDE estimator, ρ̂, of ρ.
• Define the mixture composite likelihood function

CL(ρ̂, y) = ωCLN(ρ̂, y) + (1−ω)CLtν(ρ̂, y), 0 ≤ ω ≤ 1.

• Calculate CLDICα (Mk), the value of the model selection criterion considered in this paper, for the
two candidate models, with

CLDICα (Mk) = Wn,α (ρ̂) +
α + 1

n
trace

(
Jα (ρ̂) Hα (ρ̂)

−1
)

.

An explanation of how to obtain this value for the both candidate models is given in Appendix B.
• Compute the times that the 4-variate normal model was selected.

Results are summarized in Table 1. Extreme values of ω = 0, 1 represent the times that the 4-variate
normal model was selected under the 4-variate t-distribution and 4-variate normal distribution,
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respectively. This means that, for ω = 1, the perfect discrimination will be achieved when 1000 of
the 1000 simulated samples are correctly assigned, while for ω = 0, the more near to 0, the better
discrimination of the criterion. ω = 0.5 means that each sample was generated both from the normal
and t-distribution in the same proportion.

Table 1. Main results, Scenario 1a.

α = 0 (CAIC) α = 0.3

ω 0 0.25 0.45 0.5 0.55 0.75 1 0 0.25 0.45 0.5 0.55 0.75 1

ν = 5, ρ = −0.15

n = 5 0 1 269 499 713 996 1000 0 0 273 498 712 1000 1000
7 0 1 246 504 758 998 1000 0 1 220 511 738 999 1000

10 0 0 202 482 775 1000 1000 0 0 185 467 771 1000 1000
20 0 0 114 486 871 1000 1000 0 0 112 473 866 1000 1000
40 0 0 41 459 947 1000 1000 0 0 54 496 954 1000 1000
50 0 0 21 475 964 1000 1000 0 0 41 556 986 1000 1000
70 0 0 9 461 985 1000 1000 0 0 48 656 995 1000 1000

100 0 0 5 472 992 1000 1000 0 0 142 885 1000 1000 1000

ν = 10, ρ = −0.15

5 0 3 222 445 688 996 1000 0 3 218 433 688 997 1000
7 0 1 191 439 720 1000 1000 0 0 179 431 690 999 1000

10 0 0 163 432 747 1000 1000 0 0 152 402 725 1000 1000
20 0 0 59 399 819 1000 1000 0 0 49 361 773 1000 1000
40 0 0 19 336 912 1000 1000 0 0 12 326 899 1000 1000
50 0 0 6 362 936 1000 1000 0 0 10 334 925 1000 1000
70 0 0 1 292 960 999 1000 0 0 2 356 973 1000 1000

100 0 0 0 301 983 1000 1000 0 0 1 531 992 1000 1000

ν = 30, ρ = −0.15

5 0 4 237 423 677 997 1000 0 2 235 413 656 996 1000
7 0 0 155 394 689 1000 1000 0 0 141 379 677 999 1000

10 0 0 144 413 719 1000 1000 0 0 134 393 701 1000 1000
20 0 0 57 351 801 1000 1000 0 0 40 311 764 1000 1000
40 0 0 11 296 904 1000 1000 0 0 8 263 882 1000 1000
50 0 0 6 271 918 1000 1000 0 0 3 253 903 1000 1000
70 0 0 1 225 942 1000 1000 0 0 0 229 941 1000 1000

100 0 0 0 208 978 1000 1000 0 0 0 303 989 1000 1000

ν = 10, ρ = −0.10

5 0 4 242 464 680 996 1000 0 3 238 459 682 999 1000
7 0 0 187 461 733 997 1000 0 0 199 457 731 998 1000

10 0 0 162 445 738 1000 1000 0 0 165 407 713 1000 1000
20 0 0 62 378 807 1000 1000 0 0 59 354 789 1000 1000
40 0 0 19 357 902 999 1000 0 0 14 333 895 1000 1000
50 0 0 6 325 932 1000 1000 0 0 8 325 931 1000 1000
70 0 0 2 305 954 1000 1000 0 0 6 367 967 1000 1000

100 0 0 0 307 979 1000 1000 0 0 2 507 993 1000 1000

ν = 10, ρ = 0.10

5 0 11 268 459 669 991 1000 1 11 268 478 680 993 1000
7 0 1 211 456 720 999 1000 0 3 207 464 716 998 1000

10 0 0 168 423 704 1000 1000 0 0 162 403 702 1000 1000
20 0 0 86 360 789 1000 999 0 0 89 357 786 1000 1000
40 0 0 35 367 893 1000 1000 0 0 38 398 896 1000 1000
50 0 0 19 331 886 1000 1000 0 0 19 360 913 1000 1000
70 0 0 11 311 933 1000 1000 0 0 16 379 963 1000 1000

100 0 0 2 276 969 1000 1000 0 0 7 490 985 1000 1000
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4.1.2. Scenario 1b

Same Scenario is evaluated under the more-closed means µN = (0, 1.5, 0.5,−0.75) and µtν =

(0, 1.5, 0.5, 2) for moderate-large sample sizes and α ∈ {0, 0.2, 0.4}. Here ν = 5 and ρ = −0.15. Results
are shown in Table 2. In this case, the models under consideration are more similar, so it would be
understandable that the CLDIC criterion did not discriminate in such as good way.

Table 2. Main results, Scenario 1b.

α = 0 (CAIC) α = 0.2 α = 0.4

0 0.25 0.75 1 0 0.25 0.75 1 0 0.25 0.75 1

n = 40 0 0 39 731 0 0 537 961 0 0 580 949
50 0 0 24 732 0 0 859 990 0 0 944 994
60 0 0 14 772 0 0 999 1000 0 1 999 1000
70 0 0 9 734 0 0 999 1000 0 27 999 1000
80 0 0 5 770 0 1 1000 1000 0 326 1000 1000
90 0 0 4 782 0 23 1000 1000 2 794 1000 1000

100 0 0 4 802 0 173 1000 1000 26 978 1000 1000

4.2. Scenario 2: Three-Component Mixed Model

Now, we consider a mixed model composed on two 4-variate normal distributions and a
4-variate t-distribution with ν = 10 degrees of freedom. The three distributions have common
variance-covariance matrix, as in the previous scenario, with unknown ρ = −0.15 and different but
known means µN

1 = (0, 0, 0.5, 0), µN
2 = (0, 1.5, 0.5, 0) and µt = (0, 1.5, 0.5, 2). The model is defined by

ωN (µN
1 , Σ) + λN (µN

2 , Σ) + (1−ω− λ)tν=10(µ
t, Σ∗), 0 ≤ ω, λ, ω + λ ≤ 1,

with Σ being again a common variance-covariance matrix with unknown parameter ρ of the form

Σ =




1 ρ 2ρ 2ρ

ρ 1 2ρ 2ρ

2ρ 2ρ 1 ρ

2ρ 2ρ ρ 1


 .

Following the same steps that in the first scenario, we generate 1000 samples of the
three-component mixture for different sample sizes n = 5, 7, 10, 20, 40, 50, 70, 100 and different values
of ω and λ. Then, we consider the problem of choosing among one of the two 4-variate normal
distributions and the 4-variate t-distribution through the CLDIC criterion, for different values of the
tuning parameter α = 0, 0.3, 0.5, 0.7. See Table 3 for results. Here, the normal models are denoted by N1
and N2, respectively, while the 4-variate t-distribution is denoted by MT. The first three cases evaluate
the selected model under these multivariate distributions. In the last two scenarios, a mixed model is
considered as the true distribution.

4.3. Discussion of Results

In Scenario 1a, two well-differentiated multivariate models are considered. In this case CLDIC
criterion works in a very efficient way, with an almost-perfect discrimination for extreme values of ω.
The good behaviour is also observed for not so extreme values of ω, such as ω = 0.55 or 0.45. We can
not observe a significant difference in the choice of α.

In Scenario 1b we consider closer models, which affect the discrimination power of the CLDIC.
However, in this case, we do observe great differences when considering different α. While the
discrimination power of CLDIC for α = 0 (CAIC) and ω = 1 is around 75%, for α = 0.2 or α = 0.4
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the behaviour is excellent. This happens also for large but not extreme values of ω, such as ω = 0.75.
However, a medium value of α turns into a worse discrimination for low values of ω.

Table 3. Main results, Scenario 2.

α = 0 (CAIC) α = 0.3 α = 0.5 α = 0.7

Model ∗ N1 N2 MT N1 N2 MT N1 N2 MT N1 N2 MT

True model: N (µN
1 , Σ)

n = 5 957 24 19 950 16 34 939 23 38 936 28 36
7 970 19 11 966 13 24 961 13 26 950 22 28

10 993 3 4 986 4 10 979 6 15 971 6 23
20 1000 0 0 1000 0 0 998 0 2 997 0 3
40 1000 0 0 1000 0 0 1000 0 0 1000 0 0
50 1000 0 0 1000 0 0 1000 0 0 1000 0 0
70 1000 0 0 1000 0 0 1000 0 0 1000 0 0

100 1000 0 0 1000 0 0 1000 0 0 999 0 0

True model: N (µN
2 , Σ)

5 29 638 333 34 610 356 38 639 323 50 646 304
7 15 622 363 13 589 398 17 599 384 28 627 345

10 6 610 384 5 540 455 5 540 455 11 586 403
20 1 612 387 1 518 481 1 472 527 1 527 472
40 0 566 434 0 650 350 0 590 410 0 614 386
50 0 561 439 0 804 196 0 797 203 0 835 165
70 0 584 416 0 987 13 0 994 6 0 998 2

100 0 520 480 0 1000 0 0 1000 0 0 1000 0

True model: tν=10(µ
t, Σ)

5 2 15 983 1 6 993 1 8 991 3 15 982
7 0 3 997 0 1 999 2 2 996 0 4 996

10 0 1 999 0 2 998 0 2 998 0 3 997
20 0 0 1000 0 0 1000 0 0 1000 0 0 1000
40 0 0 1000 0 0 1000 0 0 1000 0 0 1000
50 0 0 1000 0 0 1000 0 0 1000 0 0 1000
70 0 0 1000 0 0 1000 0 0 1000 0 0 1000

100 0 0 1000 0 0 1000 0 4 996 0 296 704

True model: 0.7N (µN
2 , Σ) + 0.3tν=10(µ

t, Σ)

5 6 384 610 6 375 619 4 401 595 11 452 537
7 1 331 668 1 294 705 1 317 682 1 373 626

10 1 261 738 1 218 781 1 253 746 1 306 693
20 0 109 891 0 101 899 0 107 893 0 141 859
40 0 26 974 0 126 874 0 122 878 0 166 834
50 0 13 987 0 311 689 0 345 655 0 445 555
70 0 6 994 0 948 52 0 982 18 0 994 6

100 0 2 998 0 1000 0 0 1000 0 0 999 1

True model: 1
3N (µN

1 , Σ) + 1
3N (µN

2 , Σ) + 1
3 tν=10(µ

t, Σ)

5 127 377 496 121 363 516 107 392 501 107 424 469
7 87 357 556 70 339 591 66 356 578 63 396 541

10 69 326 605 61 314 625 56 330 614 45 381 574
20 37 259 704 25 298 677 17 337 646 15 349 636
40 7 145 848 9 452 539 4 508 488 1 469 530
50 2 122 876 5 744 251 3 814 183 3 853 144
70 0 99 901 4 996 0 4 996 0 4 996 0

100 0 36 964 355 645 0 645 355 0 856 144 0
∗ Here the model candidates are expressed as N1, N2, MT to denote N (µN

1 , Σ), N (µN
2 , Σ)

and t10(µ
t, Σ), respectively.
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Scenario 2 deals with three different models, two multivariate normal and one multivariate t
(N1, N2 and MT, respectively). The second normal distribution is closer to MT in terms of means.
While CLDIC criterion discriminate well between N1 and N2 and between N1 and MT, it has difficulties
in distinguishing N2 an MT distributions, overall for small samples sizes and α = 0.

It seems, therefore, that when we have well-discriminated models, CLDIC criterion works very
well, independently of the sample size and the tuning parameter α considered. Dealing with closer
models leads, as expected, to worst results, overall for α = 0 (CAIC).

Note that the behaviour of Wald-type and Rao tests based on CMDPDEs was studied in [12,13]
through extensive simulation studies.

5. Numerical Examples

5.1. Choice of the Tuning Parameter

In the previous sections, we have seen that CLDIC criterion works generally very well,
independently of α, but that some values present a better behaviour, overall when distinguishing
similar models. In these situations, it appears that values close to 0.2 or 0.3 work well, while CAIC
criterion presents a worse behaviour. A data-driven approach for the choice of the tuning parameter
which would be helpful in practice. The approach of [30] was adapted In [13], for the choice of the
optimum α in CMDPDEs. This approach consisted on minimizing the estimated mean squared error
by means of a pilot estimator, θP. This approximation is given by

M̂SEα = (θ̂
α
c − θP)T(θ̂

α
c − θP) +

1
n

Trace
(

H−1
α (θ̂

α
c )Jα(θ̂

α
c )H−1

α (θ̂
α
c )
)

, (16)

where Hα(θ) and Jα(θ) are given in (11) and (12). The optimum α will be the one that minimizes
expression (16). The choice of the pilot estimator is probably one of the major drawbacks of this
approach, as it may lead to a choice of α too close to that used for the pilot estimator. A pilot estimator
with α ≈ 0.4, was proposed in [13] after some simulations, in concordance with [30], where the initial
choice of a pilot is suggested to be a robust one in order to obtain the best results in terms of robustness.

5.2. Iris Data

The Iris data (Fisher, [31]) includes 3 categories of 50 sample values each, where each category
refers to a type of iris plant: setosa, versicolor and virginica. Each plant is categorized in its class and
described by other 4 variables: (1) sepal length, (2) sepal width, (3) petal length and (4) petal width.
This is one of the most known data sets for discriminant analysis. [32] proposed the use of a Gaussian
finite mixture for modeling Iris data, in which each known class is modeled by a single Gaussian term
with the same variance-covariance matrix. The resulting model is as follows

f (x) =
1
3
N (µ1, Σ) +

1
3
N (µ2, Σ) +

1
3
N (µ3, Σ), (17)

with

µ1 = (µ11, µ12, µ13, µ14)
T , µ2 = (µ21, µ22, µ23, µ24)

T , µ3 = (µ31, µ32, µ33, µ34)
T

and

Σ =




σ2
1 σ12 σ13 σ14

σ21 σ2
2 σ23 σ24

σ31 σ32 σ2
3 σ34

σ41 σ42 σ43 σ2
4


 .
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Exact values can be obtained by MclustDA() function of mclust package in R Software ([32]).
We propose a composite likelihood approach to modeling (17) where we suppose independence

between the two first and two last variables. This is

fCL(y) =
1
3

CLN1 +
1
3

CLN2 +
1
3

CLN3, (18)

with

CLNi = f N
Ai1

(ρ12, y) f N
Ai2

(ρ34, y),

where f N
Ai1

(ρ12, y) = f N
Ai1

(ρ12, µi1, µi2, ΣA1 , y) and f N
Ai2

(ρ34, y) = f N
Ai2

(ρ34, µi3, µi4, ΣA2 , y), i = 1, 2, 3 are
bivariate normals with variance-covariance matrices

ΣA1 =

(
σ2

1 ρ12σ1σ2

ρ12σ1σ2 σ2
2

)
, ΣA2 =

(
σ2

3 ρ34σ3σ4

ρ34σ3σ4 σ2
4

)
.

We are going to evaluate the behavior of the CLDIC criterion proposed in previous sections.
After estimating parameters ρ12 and ρ34 in (18), we consider 10 different subsets of the IRIS data:

• SE subset: 50 first observations, corresponding to Setosa plants (n = 50).
• VE subset: 50 second observations, corresponding to Versicolor plants (n = 50).
• VI subset: 50 last observations, corresponding to Virginica plants (n = 50).
• SE(VE) subset: SE subset with 2 first observations of VE subset (n = 52).

Equivalently: SE(VI), VE(SE), VE(VI), VI(SE) and VI(VE).
• VI(SE+VE) subset: VI subset with 2 first observations of SE and VE subsets (n = 54).

In Table 4, chosen models for each one of the subsets are obtained by the proposed CLDIC
criterion. When a “pure” subset is considered, all the tuning parameters lead to optimal decisions,
but when a “contaminated” subset is under consideration, only α = 0.2, 0.3 have an optimal response
in all the cases.

Table 4. Selected model in each of the subsets. Iris data.

α SE VE VI SE(VE) SE(VI) VE(SE) VE(VI) VI(SE) VI(VE) VI(SE+VE)

0 (CAIC) CN1 CN2 CN3 CN1 CN1 CN1∗ CN2 CN1∗ CN3 CN3
0.2 CN1 CN2 CN3 CN1 CN1 CN2 CN2 CN3 CN3 CN3
0.3 CN1 CN2 CN3 CN1 CN1 CN2 CN2 CN3 CN3 CN3
0.4 CN1 CN2 CN3 CN1 CN1 CN2 CN2 CN1∗ CN3 CN3
0.5 CN1 CN2 CN3 CN1 CN1 CN2 CN2 CN1∗ CN3 CN3
0.8 CN1 CN2 CN3 CN1 CN1 CN2 CN2 CN1∗ CN3 CN3

0.22 CN1 CN2 CN3 CN1 CN1 CN2 CN2 CN3 CN3 CN3

We now apply the ad hoc approach presented in Section 5.1 for selecting the tuning parameter α

in a composite likelihood framework. Applying this procedure to our data set though a grid search
of length 100 and by means of a pilot estimator with α = 0.4 leads to the optimal tuning parameter
α = 0.22, what is in concordance with the obtained results (see Table 5). We can see that the use of
other pilot estimators would not affect very much to the final decission.
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Table 5. Selected α for different pilot estimators, ad-hoc tuning parameter selection procedure. Iris and
Wine data

αpilot 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Iris αopt 0.31 0.17 0.20 0.21 0.22 0.23 0.24 0.24 0.25 0.25 0.25
Wine αopt 0.45 0.46 0.47 0.49 0.51 0.53 0.55 0.56 0.56 0.56 0.57

5.3. Wine Data

We now work with Wine data ([33]), which contain a chemical analysis of 178 Italian wines
from three different cultivars (Barolo, Grignolino, Barbera) yielded 13 measurements. In order to
illustrate our criterion, we will work with only first four explanatory variables: Alcohol, Malic, Ash and
Alkalinity. As in the previous section, we adjust a Gaussian mixture model with weights, in this case:
59/178 , 72/178 and 47/178 corresponding to Barolo, Grignolino and Barbera classes, respectively. We
now consider these 10 different subsets of the Wine data:

• BO subset: 20 first observations of Barolo wines (n = 20).
• GR subset: 20 first observations of Grignolino wines (n = 20).
• BA subset: 20 first observations of Barbera wines (n = 20).
• BO(GR) subset: BO subset with 5 first observations of GR subset (n = 25).

Equivalently: BO(BA), GR(BO), GR(BA), BA(BO) and BA(GR).
• BA(BO+GR) subset: BA subset with 3 first observations of BO and GR subsets (n = 26).

We can observe how, for medium values of α, the discrimination is perfect (see Table 6). Applying
ad-hoc tuning parameter choice procedure we obtain αopt ≈ 0.51, with a perfect discrimination again
(Table 5).

Table 6. Selected model in each of the subsets. Wine data.

α BO GR BA BO(GR) BO(BA) GR(BO) GR(BA) BA(BO) BA(GR) BA(BO+GR)
0 (CAIC) CN1 CN2 CN3 CN1 CN1 CN2 CN2 CN3 CN3 CN2∗

0.2 CN1 CN2 CN3 CN1 CN1 CN2 CN2 CN3 CN3 CN3
0.3 CN1 CN2 CN3 CN1 CN1 CN2 CN2 CN3 CN3 CN3
0.4 CN1 CN2 CN3 CN1 CN1 CN2 CN2 CN3 CN3 CN3
0.5 CN1 CN2 CN3 CN1 CN1 CN2 CN2 CN3 CN3 CN3
0.8 CN1 CN2 CN3 CN1 CN1 CN2 CN2 CN2∗ CN2∗ CN3

0.51 CN1 CN2 CN3 CN1 CN1 CN2 CN2 CN3 CN3 CN3

6. Conclusions and Future Research

In this paper, we have addressed the problem of model selection in the framework of composite
likelihood methodology, on the basis of the DPD as a measure of the closeness of the composite density
and the true model that drives the data. In this context, an information criterion is introduced and
studied which is defined by means of composite minimum distance type estimators of the unknown
parameters, well-known for having nice robustness properties. Thanks to a simulation study, we
have shown that the proposed here model selection criterion works well in practice and mainly that
the use of CMDPDE makes the criterion more robust than the criteria based on the classic CMLE
and the Kullback–Leibler divergence, given in [22]. The analysis of two real data examples of the
literature illustrate on how the model selection criterion, presented here, can be applied in practical
cases. This paper is a part of a series of papers by the authors where composite likelihood ideas and
methods are harmonically weaved with divergence theoretic methods in order to develop statistical
inference (estimation and testing of hypotheses) and model selection criteria, as well. We envision
future work in some directions. The development of change point methodology on the basis of
composite density with CMDPDE and divergence measures would be maybe an appealing problem
for a future research on the topic. However, all the information theoretic methods developed on the
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basis of the composite likelihood depend on the choice of the family of sets {Ak}K
k=1, appeared in

Formula (1). A question is raised at this point: how the information theoretic procedures developed on
the basis of the composite likelihood are affected by this family of sets? It is an appealing problem
which deserves also investigation in a future work.
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Abbreviations

The following abbreviations are used in this manuscript:

MLE Maximum likelihood estimator
CMLE Composite maximum likelihood estimator
CLDIC Composite likelihood DIC
DPD Density power divergence
MDPDE Minimum density power divergence estimator
CMDPDE Composite minimum density power divergence estimator
AIC Akaike Information Criterion
CAIC Composite Akaike Information Criterion
TIC Takeuchi Information Criterion

Appendix A. Proof of Theorem 1

Proof. A Taylor expansion of Wα (θ) around the true parameter θ0 and evaluated in θ = θ̂
α
c , gives

Wα

(
θ̂

α
c

)
= Wα (θ0) +

(
∂Wα (θ)

∂θ

)

θ=θ0

(
θ̂

α
c − θ0

)

+
1
2

(
θ̂

α
c − θ0

)T
(

∂2Wα (θ)

∂θ∂θT

)

θ=θ0

(
θ̂

α
c − θ0

)
+ o

(∥∥∥
(

θ̂
α
c − θ0

)∥∥∥
2
)

.

Now,

∂Wα (θ)

∂θ
=
∫

Rm
(1 + α) CL(θ, y)α ∂CL(θ, y)

∂θ
dy −

(
1 +

1
α

)
α
∫

Rm
CL(θ, y)α−1 ∂CL(θ, y)

∂θ
g(y)dy

= (1 + α)
∫

Rm
CL(θ, y)α+1u (θ, y) dy − (1 + α)

∫

Rm
CL(θ, y)αu (θ, y) g(y)dy.

It is clear that if the true distribution g belongs to the parameter family f (.; θ), θ ∈ Θ and θ0 denotes
the true value of the parameter θ, we get

(
∂Wα (θ)

∂θ

)

θ=θ0

= 0.

Now we are going to get
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∂2Wα (θ)

∂θ∂θT = (1 + α)

{∫

Rm
(1 + α) CL(θ, y)α+1u (θ, y) u (θ, y)T dy

−
∫

Rm
CL(θ, y)α+1

(
−∂2 log CL(θ, y)

∂θ∂θT

)
dy

−α
∫

Rm
CL(θ, y)αu (θ, y) u (θ, y)T g(y)dy +

∫

Rm
CL(θ, y)α

(
−∂2 log CL(θ, y)

∂θ∂θT

)
g(y)dy

}
.

If the true distribution g belongs to the parameter family fθ(·; θ), θ ∈ Θ and θ0 denotes the true value
of the parameter θ, verifies,

(
∂2Wα (θ)

∂θ∂θT

)

θ=θ0

= (1 + α)
∫

Rm
CL(θ0, y)α+1u (θ0, y) u (θ0, y)T dy

= (1 + α) Hα (θ0) .

Therefore,

nWα

(
θ̂

α
c

)
= nWα (θ0) +

(1 + α)

2
√

n
(

θ̂
α
c − θ0

)T
Hα (θ0)

√
n
(

θ̂
α
c − θ0

)
+ no

(∥∥∥
(

θ̂
α
c − θ0

)∥∥∥
2
)

.

But

√
n
(

θ̂
α
c − θ0

)
L→

n→∞
N
(

0,Hα(θ0)
−1 Jα(θ0)Hα(θ0)

−1
)

,

and no
(∥∥∥
(

θ̂
α
c − θ0

)∥∥∥
2
)
= o(Op(1)) = op(1).

The asymptotic distribution of the quadratic form
√

n
(

θ̂
α
c − θ0

)T
Hα (θ0)

√
n
(

θ̂
α
c − θ0

)
, verifies

√
n
(

θ̂
α
c − θ0

)T
Hα (θ0)

√
n
(

θ̂
α
c − θ0

) L−→
n→∞

k

∑
r=1

λrZ2
r

being λr, r = 1, ..., k, the eigenvalues of the matrix

Hα (θ0) Hα(θ0)
−1 Jα(θ0)Hα(θ0)

−1 = Jα(θ0)Hα(θ0)
−1

and Zr are independent normal random variable of mean zero and variance 1. Therefore,

EY1,...,Yn

[√
n
(

θ̂
a
c − θ0

)T
Hα (θ0)

√
n
(

θ̂
a
c − θ0

)]
=

k

∑
r=1

λr + op(1)

= trace
(

Jα(θ0)Hα(θ0)
−1
)
+ op(1)

and

EY1,...,Yn

[
nWα(θ̂

α
c )
]
= nWα (θ0) +

(1 + α)

2
trace

(
Jα(θ0)Hα(θ0)

−1
)
+ op(1).

Now a Taylor expansion of Wn,α (θ), around θ̂
α
c and evaluated at θ = θ0 gives
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Wn,α(θ0) = Wn,α(θ̂
α
c ) +

(
Hn,α (θ)

∂θ

)

θ=θ̂
α
c

(
θ0 − θ̂

α
c

)

+
1
2

(
θ0 − θ̂

α
c

)T
(

∂2Wn,α (θ)

∂θ
∂θT

)

θ=θ̂
α
c

(
θ0 − θ̂

α
c

)
+ o

(∥∥∥θ0 − θ̂
α
c

∥∥∥
2
)

.

But

Wn,α (θ)

∂θ
= (α + 1)

∫

Rm
CL(θ, y)α+1u (θ, y) dy− (α + 1)

1
n

n

∑
k=1
CL(θ, yk)

αu (θ, yk)

therefore
(

Wn,α (θ)

∂θ

)

θ=θ̂
a
c

P→
n→∞

0.

On the other hand

∂2Wn,α (θ)

∂θ ∂θT = (1 + α)

{∫

Rm
(1 + α) CL(θ, y)α+1u (θ, y)T u (θ, y) dy +

∫

Rm
CL(θ, y)α+1 ∂u (θ, y)

∂θT dy

− 1
n

n

∑
i=1

αCL(θ, yi)
αu (θ, yi)

T u (θ, yi)−
1
n

n

∑
i=1
CL(θ, yi)

α ∂u (θ, yi)

∂θT

}
.

But

1
n

n

∑
i=1
CL(θ, yi)

αu (θ, yi)
T u (θ, yi)

P→
n→∞

∫

Rm
CL(θ, y)α+1u (θ, y)T u (θ, y) dy

and

1
n

n

∑
i=1
CL(θ, yi)

α ∂u (θ, yi)

∂θT
P→

n→∞

∫

Rm
CL(θ, y)α+1 ∂u (θ, y)

∂θT dy.

Therefore

(
∂2Hn,α(θ)

∂θ∂θT

)

θ=θ̂
α
c

P→
n→∞

(1 + α) Hα (θ0) .

We can now write

nWn,α (θ0) = nWn,α(θ̂
α
c ) +

(1 + α)

2
√

n
(

θ0 − θ̂
α
c

)T
Hα (θ0)

√
n
(

θ0 − θ̂
α
c

)
+ op(1).

It is clear that

EY1,...,Yn

[√
n
(

θ0 − θ̂
α
c

)T
Hα (θ0)

√
n
(

θ0 − θ̂
α
c

)]
=

k

∑
r=1

λr + op(1)

= trace
(

Jα(θ0)Hα(θ0)
−1
)
+ op(1).

Then
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EY1,...,Yn [nWn,α(θ0)] = EY1,...,Yn

[
nWn,α(θ̂

α
c )
]
+

(1 + α)

2
trace

(
Jα(θ0)Hα(θ0)

−1
)
+ op(1)

and, on the other hand, it is clear that

EY1,...,Yn [Wn,α(θ0)] = Wα(θ0).

Therefore,

EY1,...,Yn

[
nWα(θ̂

α
c )
]
= nWα (θ0) +

(1 + α)

2
trace

(
Jα(θ0)Hα(θ0)

−1
)
+ op(1)

= EY1,...,Yn [nWn,α (θ0)] +
(1 + α)

2
trace

(
Jα(θ0)Hα(θ0)

−1
)
+ op(1)

= EY1,...,Yn

[
nWn,α(θ̂

α
c )
]
+

(1 + α)

2
trace

(
Jα(θ0)Hα(θ0)

−1
)

+
(1 + α)

2
trace

(
Jα(θ0)Hα(θ0)

−1
)
+ op(1)

= EY1,...,Yn

[
nWn,α(θ̂

α
c )
]
+ (1 + α) trace

(
Jα(θ0)Hα(θ0)

−1
)
+ op(1).

Hence nWn,α(θ̂
α
c ) + (1 + α) trace

(
Jα(θ0)Hα(θ0)

−1) is an asymptotic unbiased estimator of

EY1,...,Yn

[
nWα(θ̂

α
c )
]

.

Appendix B. Computation of the CLDIC in Section 4.1

We have to compute

CLDIC (Mk) = Wn,α (ρ̂) +
α + 1

n
Jα (ρ̂)

Hα (ρ̂)
,

where

Wn,α (ρ̂) =
∫

R4
CL(ρ̂, y)α+1dy− (1− α−1)

1
n

n

∑
i=1
CL(ρ̂, yi)

α, (A1)

Jα(ρ̂) =
∫

R4
CL(ρ̂, y)2α+1u(ρ̂, y)2dy−

(∫

R4
CL(ρ̂, y)α+1u(ρ̂, y)dy

)2
, (A2)

Hα(ρ̂) = −
∫

R4
CL(ρ̂, y)α+1u(ρ̂, y)2dy, (A3)

for our candidate models, namely, composite normal and composite 4-variate t-distribution.
As commented in Section 4.1, we consider a composite likelihood function based on the product
of two bivariate distributions with common variance-covariance matrix. It is therefore, necessary
in this example, to obtain values (A1), (A2) and (A3) for both composite normal and composite
t-distributions. However, as stated in [10], while the sensitivity and variability matrices can be
sometimes be evaluated explicitly, it is more usual to use empirical estimates. Following this comment,
in the current example, we compute Equations (A1), (A2) and (A3) empirically through the sample
data using
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Ŵn,α (ρ̂) =
n

∑
i=1
CL(ρ̂, yi)

α+1 − (1− α−1)
1
n

n

∑
i=1
CL(ρ̂, yi)

α,

Ĵα(ρ̂) =
n

∑
i=1
CL(ρ̂, yi)

2α+1u(ρ̂, yi)
2 −

(
n

∑
i=1
CL(ρ̂, yi)

α+1u(ρ̂, yi)

)2

Ĥα(ρ̂) = −
n

∑
i=1
CL(ρ̂, yi)

α+1u(ρ̂, yi)
2.

Now, we obtain the score of the composite likelihood u(ρ̂, yi) explicitly for both cases. By equation (A.5)
in [12],

uN(ρ̂, yi) =
ρ̂

1− ρ̂2

[
2 +

1
ρ̂
(t1it2i + t3it4i)

− 1
1− ρ̂2

(
t2
1i − 2ρ̂t1it2i + t2

2i

)
− 1

1− ρ̂2

(
t2
3i − 2ρ̂t3it4i + t2

4i

)]
,

with tji = yji − µj, j = 1, . . . , 4. On the other hand, we want to compute utν(ρ̂, yi).

utν(ρ̂, yi) =
∂CLtν(ρ̂, yi)

∂ρ̂
=

∂ log CLtν(ρ̂, yi)

∂ρ̂
=

1
CLtν(ρ̂, yi)

∂CLtν(ρ̂, yi)

∂ρ̂

=
1

f tν
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[
∂
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∂
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.

Now, it can be shown that

∂ f tν
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∂ρ̂
= f tν
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ν
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1i + t2
2i − 1)ν + t2

2i + t2
1i + 2

)
ρ̂− t1it2iν− 2t1it2i

]

(1− ρ̂2)
[
(ν− 2)ρ̂2 + 2t1it2i ρ̂− ν− t2

1i − t2
2i + 2

]

and

∂ f tν
34(yi; ρ̂)

∂ρ̂
= f tν

34(yi; ρ̂)
ν
[
(ν− 2)ρ̂3 − t3it4iνρ̂2 +

(
(t2

3i + t2
4i − 1)ν + t2

4i + t2
3i + 2

)
ρ̂− t1it4iν− 2t3it4i

]

(1− ρ̂2)
[
(ν− 2)ρ̂2 + 2t3it4i ρ̂− ν− t2

3i − t2
4i + 2

] .
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Abstract: Bounding the best achievable error probability for binary classification problems is relevant
to many applications including machine learning, signal processing, and information theory. Many
bounds on the Bayes binary classification error rate depend on information divergences between
the pair of class distributions. Recently, the Henze–Penrose (HP) divergence has been proposed
for bounding classification error probability. We consider the problem of empirically estimating
the HP-divergence from random samples. We derive a bound on the convergence rate for the
Friedman–Rafsky (FR) estimator of the HP-divergence, which is related to a multivariate runs
statistic for testing between two distributions. The FR estimator is derived from a multicolored
Euclidean minimal spanning tree (MST) that spans the merged samples. We obtain a concentration
inequality for the Friedman–Rafsky estimator of the Henze–Penrose divergence. We validate our
results experimentally and illustrate their application to real datasets.

Keywords: classification; Bayes error rate; Henze–Penrose divergence; Friedman–Rafsky test statistic;
convergence rates; bias and variance trade-off; concentration bounds; minimal spanning trees

1. Introduction

Divergence measures between probability density functions are used in many signal processing
applications including classification, segmentation, source separation, and clustering (see [1–3]).
For more applications of divergence measures, we refer to [4].

In classification problems, the Bayes error rate is the expected risk for the Bayes classifier, which
assigns a given feature vector x to the class with the highest posterior probability. The Bayes error
rate is the lowest possible error rate of any classifier for a particular joint distribution. Mathematically,
let x1, x2, . . . , xN ∈ Rd be realizations of random vector X and class labels S ∈ {0, 1}, with prior
probabilities p = P(S = 0) and q = P(S = 1), such that p + q = 1. Given conditional probability
densities f0(x) and f1(x), the Bayes error rate is given by

ε =
∫

Rd
min

{
p f0(x), q f1(x)

}
dx. (1)

The Bayes error rate provides a measure of classification difficulty. Thus, when known, the Bayes error
rate can be used to guide the user in the choice of classifier and tuning parameter selection. In practice,
the Bayes error is rarely known and must be estimated from data. Estimation of the Bayes error rate
is difficult due to the nonsmooth min function within the integral in (1). Thus, research has focused
on deriving tight bounds on the Bayes error rate based on smooth relaxations of the min function.
Many of these bounds can be expressed in terms of divergence measures such as the Bhattacharyya [5]
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and Jensen–Shannon [6]. Tighter bounds on the Bayes error rate can be obtained using an important
divergence measure known as the Henze–Penrose (HP) divergence [7,8].

Many techniques have been developed for estimating divergence measures. These methods can
be broadly classified into two categories: (i) plug-in estimators in which we estimate the probability
densities and then plug them in the divergence function [9–12], (ii) entropic graph approaches,
in which the relationship between the divergence function and a graph functional in Euclidean
space is derived [8,13]. Examples of plug-in methods include k-nearest neighbor (K-NN) and Kernel
density estimator (KDE) divergence estimators. Examples of entropic graph approaches include
methods based on minimal spanning trees (MST), K-nearest neighbors graphs (K-NNG), minimal
matching graphs (MMG), traveling salesman problem (TSP), and their power-weighted variants.

Disadvantages of plug-in estimators are that these methods often require assumptions on the
support set boundary and are more computationally complex than direct graph-based approaches.
Thus, for practical and computational reasons, the asymptotic behavior of entropic graph approaches
has been of great interest. Asymptotic analysis has been used to justify graph based approaches.
For instance, in [14], the authors showed that a cross match statistic based on optimal weighted
matching converges to the the HP-divergence. In [15], a more complex approach based on the K-NNG
was proposed that also converges to the HP-divergence.

The first contribution of our paper is that we obtain a bound on the convergence rates for the
Friedman and Rafsky (FR) estimator of the HP-divergence, which is based on a multivariate extension
of the non-parametric run length test of equality of distributions. This estimator is constructed using a
multicolored MST on the labeled training set where MST edges connecting samples with dichotomous
labels are colored differently from edges connecting identically labeled samples. While previous works
have investigated the FR test statistic in the context of estimating the HP-divergence (see [8,16]), to the
best of our knowledge, its minimax MSE convergence rate has not been previously derived. The bound
on convergence rate is established by using the umbrella theorem of [17], for which we define a dual
version of the multicolor MST. The proposed dual MST in this work is different than the standard dual
MST introduced by Yukich in [17]. We show that the bias rate of the FR estimator is bounded by a

function of N, η and d, as O
(
(N)−η2

/
(d(η+1))), where N is the total sample size, d is the dimension

of the data samples d ≥ 2, and η is the Hölder smoothness parameter 0 < η ≤ 1. We also obtain the
variance rate bound as O

(
(N)−1).

The second contribution of our paper is a new concentration bound for the FR test statistic.
The bound is obtained by establishing a growth bound and a smoothness condition for the multicolored
MST. Since the FR test statistic is not a Euclidean functional, we cannot use the standard subadditivity
and superadditivity approaches of [17–19]. Our concentration inequality is derived using a different
Hamming distance approach and a dual graph to the multicolored MST.

We experimentally validate our theoretic results. We compare the MSE theory and simulation in
three experiments with various dimensions d = 2, 4, 8. We observe that, in all three experiments, as
sample size increases, the MSE rate decreases and, for higher dimensions, the rate is slower. In all sets
of experiments, our theory matches the experimental results. Furthermore, we illustrate the application
of our results on estimation of the Bayes error rate on three real datasets.

1.1. Related Work

Much research on minimal graphs has focused on the use of Euclidean functionals for signal
processing and statistics applications such as image registration [20,21], pattern matching [22], and
non-parametric divergence estimation [23]. A K-NNG-based estimator of Rényi and f -divergence
measures has been proposed in [13]. Additional examples of direct estimators of divergence measures
include statistic based on the nonparametric two sample problem, the Smirnov maximum deviation
test [24], and the Wald–Wolfowitz [25] runs test, which have been studied in [26].

Many entropic graph estimators such as MST, K-NNG, MMG, and TSP have been considered for
multivariate data from a single probability density f . In particular, the normalized weight function
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of graph constructions all converge almost surely to the Rényi entropy of f [17,27]. For N uniformly
distributed points, the MSE is O(N−1/d) [28,29]. Later, Hero et al. [30,31] reported bounds on Lγ-norm
bias convergence rates of power-weighted Euclidean weight functionals of order γ for densities
f belonging to the space of Hölder continuous functions Σd(η, K) as O

(
N−αη/(αη+1) 1/d), where

0 < η ≤ 1, d ≥ 1, γ ∈ (1, d), and α = (d− γ)/d. In this work, we derive a bound on convergence
rate of FR estimator for the HP-divergence when the density functions belong to the Hölder class,
Σd(η, K), for 0 < η ≤ 1, d ≥ 2 [32]. Note that throughout the paper we assume the density functions
are absolutely continuous and bounded with support on the unit cube [0, 1]d.

In [28], Yukich introduced the general framework of continuous and quasi-additive Euclidean
functionals. This has led to many convergence rate bounds of entropic graph divergence estimators.

The framework of [28] is as follows: Let F be finite subset of points in [0, 1]d, d ≥ 2, drawn from
an underlying density. A real-valued function Lγ defined on F is called a Euclidean functional of order
γ if it is of the form Lγ(F) = min

E∈E
∑

e∈E
|e(F)|γ, where E is a set of graphs, e is an edge in the graph E, |e|

is the Euclidean length of e, and γ is called the edge exponent or power-weighting constant. The MST,
TSP, and MMG are some examples for which γ = 1.

Following this framework, we show that the FR test statistic satisfies the required continuity
and quasi-additivity properties to obtain similar convergence rates to those predicted in [28]. What
distinguishes our work from previous work is that the count of dichotomous edges in the multicolored
MST is not Euclidean. Therefore, the results in [17,27,30,31] are not directly applicable.

Using the isoperimetric approach, Talagrand [33] showed that, when the Euclidean functional Lγ

is based on the MST or TSP, then the functional Lγ for derived random vertices uniformly distributed
in a hypercube [0, 1]d is concentrated around its mean. Namely, with high probability, the functional Lγ

and its mean do not differ by more than C(N log N)(d−γ)/2d. In this paper, we establish concentration
bounds for the FR statistic: with high probability 1− δ, the FR statistic differs from its mean by not

more than O
(
(N)(d−1)/d( log(C/δ)

)(d−1)/d
)

, where C is a function of N and d.

1.2. Organization

This paper is organized as follows. In Section 2, we first introduce the HP-divergence and the
FR multivariate test statistic. We then present the bias and variance rates of the FR-based estimator
of HP-divergence followed by the concentration bounds and the minimax MSE convergence rate.
Section 3 provides simulations that validate the theory. All proofs and relevant lemmas are given in
the Appendices A–E.

Throughout the paper, we denote expectation by E and variance by abbreviation Var. Bold face
type indicates random variables. In this paper, when we say number of samples we mean number of
observations.

2. The Henze–Penrose Divergence Measure

Consider parameters p ∈ (0, 1) and q = 1− p. We focus on estimating the HP-divergence measure
between distributions f0 and f1 with domain Rd defined by

Dp( f0, f1) =
1

4pq

[∫ (
p f0(x)− q f1(x)

)2

p f0(x) + q f1(x)
dx− (p− q)2

]
. (2)

It can be verified that this measure is bounded between 0 and 1 and, if f0(x) = f1(x), then Dp = 0.
In contrast with some other divergences such as the Kullback–Liebler [34] and Rényi divergences [35],
the HP-divergence is symmetrical, i.e., Dp( f0, f1) = Dq( f1, f0). By invoking relation (3) in [8],

∫
(p f0(x)− q f1(x))

2

p f0(x) + q f1(x)
dx = 1− 4pqAp( f0, f1),
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where

Ap( f0, f1) =
∫ f0(x) f1(x)

p f0(x) + q f1(x)
dx = E f0

[(
p

f0(X)
f1(X)

+ q
)−1
]
,

up( f0, f1) = 1− 4pq Ap( f0, f1),

one can rewrite Dp in the alternative form:

Dp( f0, f1) = 1− Ap( f0, f1) =
up( f0, f1)

4pq
− (p− q)2

4pq
.

Throughout the paper, we refer to Ap( f0, f1) as the HP-integral. The HP-divergence measure belongs to
the class of φ-divergences [36]. For the special case p = 0.5, the divergence (2) becomes the symmetric
χ2-divergence and is similar to the Rukhin f -divergence. See [37,38].

2.1. The Multivariate Runs Test Statistic

The MST is a graph of minimum weight among all graphs E that span n vertices. The MST has
many applications including pattern recognition [39], clustering [40], nonparametric regression [41],
and testing of randomness [42]. In this section, we focus on the FR multivariate two sample test statistic
constructed from the MST.

Assume that sample realizations from f0 and f1, denoted by Xm ∈ Rm×d and Yn ∈ Rn×d,
respectively, are available. Construct an MST spanning the samples from both f0 and f1 and color
the edges in the MST that connect dichotomous samples green and color the remaining edges black.
The FR test statistic Rm,n := Rm,n(Xm,Yn) is the number of green edges in the MST. Note that the
test assumes a unique MST, therefore all inter point distances between data points must be distinct.
We recall the following theorem from [7,8]:

Theorem 1. As m→ ∞ and n→ ∞ such that
m

n + m
→ p and

n
n + m

→ q,

1−Rm,n(Xm,Yn)
m + n
2mn

→ Dp( f0, f1), a.s. (3)

In the next section, we obtain bounds on the MSE convergence rates of the FR approximation for
HP-divergence between densities that belong to Σd(η, K), the class of Hölder continuous functions
with Lipschitz constant K and smoothness parameter 0 < η ≤ 1 [32]:

Definition 1 (Hölder class). Let X ⊂ Rd be a compact space. The Hölder class Σd(η, K), with η-Hölder
parameter, of functions with the Ld-norm, consists of the functions g that satisfy

{
g :
∥∥g(z)− pbηcx (z)

∥∥
d ≤ K

∥∥x− z
∥∥η

d , x, z ∈ X
}

, (4)

where pk
x(z) is the Taylor polynomial (multinomial) of g of order k expanded about the point x and bηc is defined

as the greatest integer strictly less than η.

In what follows, we will use both notations Rm,n and Rm,n(Xm,Yn) for the FR statistic over the
combined samples.

2.2. Convergence Rates

In this subsection, we obtain the mean convergence rate bounds for general non-uniform Lebesgue
densities f0 and f1 belonging to the Hölder class Σd(η, K). Since the expectation of Rm,n can be closely
approximated by the sum of the expectation of the FR statistic constructed on a dense partition of
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[0, 1]d, Rm,n is a quasi-additive functional in mean. The family of bounds (A16) in Appendix B enables
us to achieve the minimax convergence rate for the mean under the Hölder class assumption with
smoothness parameter 0 < η ≤ 1, d ≥ 2:

Theorem 2 (Convergence Rate of the Mean). Let d ≥ 2, and Rm,n be the FR statistic for samples drawn
from Hölder continuous and bounded density functions f0 and f1 in Σd(η, K). Then, for d ≥ 2,

∣∣∣∣∣
E
[
Rm,n

]

m + n
− 2pq

∫ f0(x) f1(x)
p f0(x) + q f1(x)

dx

∣∣∣∣∣ ≤ O
(
(m + n)−η2

/
(d(η+1))

)
. (5)

This bound holds over the class of Lebesgue densities f0, f1 ∈ Σd(η, K), 0 < η ≤ 1. Note that this
assumption can be relaxed to f0 ∈ Σs

d(η, K0) and f1 ∈ Σs
d(η, K1) that is Lebesgue densities f0 and f1

belong to the Strong Hölder class with the same Hölder parameter η and different constants K0 and
K1, respectively.

The following variance bound uses the Efron–Stein inequality [43]. Note that in Theorem 3 we
do not impose any strict assumptions. We only assume that the density functions are absolutely
continuous and bounded with support on the unit cube [0, 1]d. Appendix C contains the proof.

Theorem 3. The variance of the HP-integral estimator based on the FR statistic, Rm,n
/
(m + n) is bounded by

Var
(Rm,n(Xm,Yn)

m + n

)
≤ 32 c2

d q
(m + n)

, (6)

where the constant cd depends only on d.

By combining Theorems 2 and 3, we obtain the MSE rate of the form O
(

m + n)−η2/(d(η+1))
)
+

O
(
(m + n)−1). Figure 1 indicates a heat map showing the MSE rate as a function of d and N = m = n.

The heat map shows that the MSE rate of the FR test statistic-based estimator given in (3) is small for
large sample size N.

Figure 1. Heat map of the theoretical MSE rate of the FR estimator of the HP-divergence based on
Theorems 2 and 3 as a function of dimension and sample size when N = m = n. Note the color
transition (MSE) as sample size increases for high dimension. For fixed sample size N, the MSE rate
degrades in higher dimensions.
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2.3. Proof Sketch of Theorem 2

In this subsection, we first establish subadditivity and superadditivity properties of the FR statistic,
which will be employed to derive the MSE convergence rate bound. This will establish that the mean
of the FR test statistic is a quasi-additive functional:

Theorem 4. Let Rm,n(Xm,Yn) be the number of edges that link nodes from differently labeled samples Xm =

{X1, . . . , Xm} and Yn = {Y1, . . . , Yn} in [0, 1]d. Partition [0, 1]d into ld equal volume subcubes Qi such
that mi and ni are the number of samples from {X1, . . . , Xm} and {Y1, . . . , Yn}, respectively, that fall into the
partition Qi. Then, there exists a constant c1 such that

E
[
Rm,n(Xm,Yn)

]
≤

ld

∑
i=1

E
[
Rmi ,ni

(
(Xm,Yn) ∩Qi

)]
+ 2 c1 ld−1 (m + n)1/d. (7)

Here, Rmi ,ni is the number of dichotomous edges in partition Qi. Conversely, for the same conditions as above on
partitions Qi, there exists a constant c2 such that

E
[
Rm,n(Xm,Yn)

]
≥

ld

∑
i=1

E
[
Rmi ,ni

(
(Xm,Yn) ∩Qi

)]
− 2 c2 ld−1 (m + n)1/d. (8)

The inequalities (7) and (8) are inspired by corresponding inequalities in [30,31]. The full proof is
given in Appendix A. The key result in the proof is the inequality:

Rm,n(Xm,Yn) ≤
ld

∑
i=1

Rmi ,ni

(
(Xm,Yn) ∩Qi

)
+ 2|D|,

where |D| indicates the number of all edges of the MST which intersect two different partitions.
Furthermore, we adapt the theory developed in [17,30] to derive the MSE convergence rate of the

FR statistic-based estimator by defining a dual MST and dual FR statistic, denoted by MST∗ and R∗m,n
respectively (see Figure 2):

Figure 2. The dual MST spanning the merged set Xm (blue points) and Yn (red points) drawn from
two Gaussian distributions. The dual FR statistic (R∗m,n) is the number of edges in the MST∗ (contains
nodes in Xm ∪Yn ∪ {2 corner points}) that connect samples from different color nodes and corners
(denoted in green). Black edges are the non-dichotomous edges in the MST∗.

Definition 2 (Dual MST, MST∗ and dual FR statistic R∗m,n). Let Fi be the set of corner points of the
subsection Qi for 1 ≤ i ≤ ld. Then, we define MST∗(Xm ∪Yn ∩Qi) as the boundary MST graph of partition
Qi [17], which contains Xm and Yn points falling inside the section Qi and those corner points in Fi which
minimize total MST length. Notice it is allowed to connect the MSTs in Qi and Qj through points strictly
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contained in Qi and Qj and corner points are taken into account under condition of minimizing total MST
length. Another word, the dual MST can connect the points in Qi ∪Qj by direct edges to pair to another point
in Qi ∪Qj or the corner the corner points (we assume that all corner points are connected) in order to minimize
the total length. To clarify this, assume that there are two points in Qi ∪Qj, then the dual MST consists of the
two edges connecting these points to the corner if they are closed to a corner point; otherwise, dual MST consists
of an edge connecting one to another. Furthermore, we define R∗m,n(Xm,Yn ∩Qi) as the number of edges in an
MST∗ graph connecting nodes from different samples and number of edges connecting to the corner points. Note
that the edges connected to the corner nodes (regardless of the type of points) are always counted in dual FR test
statistic R∗m,n.

In Appendix B, we show that the dual FR test statistic is a quasi-additive functional in mean
and R∗m,n(Xm,Yn) ≥ Rm,n(Xm,Yn). This property holds true since MST(Xm,Yn) and MST∗(Xm,Yn)

graphs can only be different in the edges connected to the corner nodes, and in R∗(Xm,Yn) we take all
of the edges between these nodes and corner nodes into account.

To prove Theorem 2, we partition [0, 1]d into ld subcubes. Then, by applying Theorem 4 and
the dual MST, we derive the bias rate in terms of partition parameter l (see (A16) in Theorem A1).
See Appendix B and Appendix E for details. According to (A16), for d ≥ 2, and l = 1, 2, . . . , the slowest
rates as a function of l are ld(m + n)η/d and l−ηd. Therefore, we obtain an l-independent bound by
letting l be a function of m + n that minimizes the maximum of these rates i.e.,

l(m + n) = arg min
l

max
{

ld(m + n)−η/d, l−ηd
}

.

The full proof of the bound in (2) is given in Appendix B.

2.4. Concentration Bounds

Another main contribution of our work in this part is to provide an exponential inequality
convergence bound derived for the FR estimator of the HP-divergence. The error of this estimator can
be decomposed into a bias term and a variance-like term via the triangle inequality:

∣∣∣∣Rm,n −
∫ f0(x) f1(x)

p f0(x) + q f1(x)
dx
∣∣∣∣ ≤

∣∣Rm,n −E
[
Rm,n

]∣∣
︸ ︷︷ ︸
variance-like term

+

∣∣∣∣E
[
Rm,n

]
−
∫ f0(x) f1(x)

p f0(x) + q f1(x)
dx
∣∣∣∣

︸ ︷︷ ︸
bias term

.

The bias bound was given in Theorem 2. Therefore, we focus on an exponential concentration
bound for the variance-like term. One application of concentration bounds is to employ these bounds
to compare confidence intervals on the HP-divergence measure in terms of the FR estimator. In [44,45],
the authors provided an exponential inequality convergence bound for an estimator of Rény divergence
for a smooth Hölder class of densities on the d-dimensional unite cube [0, 1]d. We show that if Xm

and Yn are the set of m and n points drawn from any two distributions f0 and f1, respectively, the FR
criteria Rm,n is tightly concentrated. Namely, we establish that, with high probability, Rm,n is within

1− O
(
(m + n)−2/dε∗2

)
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of its expected value, where ε∗ is the solution of the following convex optimization problem:

min
ε≥0

C′m,n(ε) exp
(−(t/(2ε))d/(d−1)

(m + n)C̃

)

subject to ε ≥ O
(
7d+1(m + n)1/d),

(9)

where C̃ = 8(4)d/(d−1) and

C′m,n(ε) = 8
(

1− O
(
(m + n)−2/dε2

))−2

. (10)

Note that, under the assumption (m + n)1/d ' 1, C′m,n(ε) becomes a constant depending only

on ε by 8
(
1− (c ε2)−2, where c is a constant. This is inferred from Theorems 5 and 6 below as

(m + n)1/d ' 1. See Appendix D, specifically Lemmas A8–A12 for more detail. Indeed, we first show
the concentration around the median. A median is by definition any real number Me that satisfies
the inequalities P(X ≤ Me) ≥ 1/2 and P(X ≥ Me) ≥ 1/2. To derive the concentration results, the
properties of growth bounds and smoothness for Rm,n, given in Appendix D, are exploited.

Theorem 5 (Concentration around the median). Let Me be a median of Rm,n which implies that P
(
Rm,n ≤

Me
)
≥ 1/2. Recall ε∗ from (9) then we have

P
(∣∣Rm,n(Xm,Yn)−Me

∣∣ ≥ t
)
≤ C′m,n(ε

∗) exp
(−(t/ε∗)d/(d−1)

(m + n)C̃

)
, (11)

where C̃ = 8(4)d/(d−1).

Theorem 6 (Concentration of Rm,n around the mean). Let Rm,n be the FR statistic. Then,

P
(∣∣Rm,n −E[Rm,n]

∣∣ ≥ t
)
≤ C′m,n(ε

∗) exp

(
−(t/(2ε∗))d/(d−1)

(m + n) C̃

)
. (12)

Here, C̃ = 8(4)d/(d−1) and the explicit form for C′m,n(ε
∗) is given by (10) when ε = ε∗.

See Appendix D for full proofs of Theorems 5 and 6. Here, we sketch the proofs. The proof of
the concentration inequality for Rm,n, Theorem 6, requires involving the median Me, where P(Rm,n ≤
Me) ≥ 1/2, inside the probability term by using

∣∣Rm,n −E[Rm,n]
∣∣ ≤ |Rm,n −Me

∣∣+ |E[Rm,n]−Me
∣∣.

To prove the expressions for the concentration around the median, Theorem 5, we first consider
the hd uniform partitions of [0, 1]d, with edges parallel to the coordinate axes having edge lengths h−1

and volumes h−d. Then, by applying the Markov inequality, we show that with at least probability
1−

(
δh

m,n/ε
)
, where δh

m,n = O
(
hd−1(m + n)1/d), the FR statistic Rm,n is subadditive with 2ε threshold.

Afterward, owing to the induction method [17], the growth bound can be derived with at least
probability 1−

(
h δh

m,n
/

ε
)
. The growth bound explains that with high probability there exists a constant

depending on ε and h, Cε,h, such that Rm,n ≤ Cε,h
(
m n

)1−1/d. Applying the law of total probability
and semi-isoperimetric inequality (A108) in Lemma A11 gives us (A35). By considering the solution to
convex optimization problem (9), i.e., ε∗ and optimal h = 7 the claimed results (11) and (12) are derived.
The only constraint here is that ε is lower bounded by a function of δh

m,n = O
(
hd−1(m + n)1/d).
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Next, we provide a bound for the variance-like term with high probability at least 1− δ. According
to the previous results, we expect that this bound depends on ε∗, d, m and n. The proof is short and is
given in Appendix D.

Theorem 7 (Variance-like bound for Rm,n). Let Rm,n be the FR statistic. With at least probability 1− δ,
we have

|Rm,n −E[Rm,n]| ≤ O
(

ε∗ (m + n)(d−1)/d
(

log
(
C′m,n(ε

∗)
/

δ
))(d−1)/d

)
. (13)

or, equivalently,
∣∣∣∣
Rm,n

m + n
− E[Rm,n]

m + n

∣∣∣∣ ≤ O
(

ε∗ (m + n)−1/d
(

log
(
C′m,n(ε

∗)
/

δ
))(d−1)/d

)
, (14)

where C′m,n(ε
∗) depends on m, n, and d is given in (10) when ε = ε∗.

3. Numerical Experiments

3.1. Simulation Study

In this section, we apply the FR statistic estimate of the HP-divergence to both simulated and real
data sets. We present results of a simulation study that evaluates the proposed bound on the MSE.
We numerically validate the theory stated in Sections 2.2 and 2.4 using multiple simulations. In the
first set of simulations, we consider two multivariate Normal random vectors X, Y and perform three
experiments d = 2, 4, 8, to analyze the FR test statistic-based estimator performance as the sample sizes
m, n increase. For the three dimensions d = 2, 4, 8, we generate samples from two normal distributions
with identity covariance and shifted means: µ1 = [0, 0], µ2 = [1, 0] and µ1 = [0, 0, 0, 0], µ2 = [1, 0, 0, 0]
and µ1 = [0, 0, . . . , 0], µ2 = [1, 0, . . . , 0] when d = 2, d = 4 and d = 8, respectively. For all of the
following experiments, the sample sizes for each class are equal (m = n).

We vary N = m = n up to 800. From Figure 3, we deduce that, when the sample size increases,
the MSE decreases such that for higher dimensions the rate is slower. Furthermore, we compare
the experiments with the theory in Figure 3. Our theory generally matches the experimental results.
However, the MSE for the experiments tends to decrease to zero faster than the theoretical bound.
Since the Gaussian distribution has a smooth density, this suggests that a tighter bound on the MSE
may be possible by imposing stricter assumptions on the density smoothness as in [12].
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SE

d=2, Experiment
d=2, Theory
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d=4, Theory
d=8, Experiment
d=8, Teory

Figure 3. Comparison of the bound on the MSE theory and experiments for d = 2, 4, 8 standard
Gaussian random vectors versus sample size from 100 trials.
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In our next simulation, we compare three bivariate cases: first, we generate samples from a
standard Normal distribution. Second, we consider a distinct smooth class of distributions i.e.,
binomial Gamma density with standard parameters and dependency coefficient ρ = 0.5. Third, we
generate samples from Standard t-student distributions. Our goal in this experiment is to compare the
MSE of the HP-divergence estimator between two identical distributions, f0 = f1, when f0 is one of
the Gamma, Normal, and t-student density function. In Figure 4, we observe that the MSE decreases
as N increases for all three distributions.
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Figure 4. Comparison of experimentally predicted MSE of the FR-statistic as a function of sample size
m = n in various distributions Standard Normal, Gamma (α1 = α2 = 1, β1 = β2 = 1, ρ = 0.5) and
Standard t-Student.

3.2. Real Datasets

We now show the results of applying the FR test statistic to estimate the HP-divergence using
three different real datasets [46]:

• Human Activity Recognition (HAR), Wearable Computing, Classification of Body Postures and
Movements (PUC-Rio): This dataset contains five classes (sitting-down, standing-up, standing,
walking, and sitting) collected on eight hours of activities of four healthy subjects.

• Skin Segmentation dataset (SKIN): The skin dataset is collected by randomly sampling B,G,R
values from face images of various age groups (young, middle, and old), race groups (white,
black, and asian), and genders obtained from the FERET and PAL databases [47].

• Sensorless Drive Diagnosis (ENGIN) dataset: In this dataset, features are extracted from electric
current drive signals. The drive has intact and defective components. The dataset contains 11
different classes with different conditions. Each condition has been measured several times
under 12 different operating conditions, e.g., different speeds, load moments, and load forces.

We focus on two classes from each of the HAR, SKIN, and ENGIN datasets, specifically, for HAR
dataset two classes “sitting” and “standing” and for SKIN dataset the classes “Skin” and “Non-skin”
are considered. In the ENGIN dataset, the drive has intact and defective components, which results in
11 different classes with different conditions. We choose conditions 1 and 2.

In the first experiment, we computed the HP-divergence using KDE plug-in estimator and then
the MSE for the FR test statistic estimator is derived as the sample size N = m = n increases. We used
95% confidence interval as the error bars. We observe in Figure 5 that the estimated HP-divergence
ranges in [0, 1], which is one of the HP-divergence properties [8]. Interestingly, when N increases the
HP-divergence tends to 1 for all HAR, SKIN, and ENGIN datasets. Note that in this set of experiments
we have repeated the experiments on independent parts of the datasets to obtain the error bars. Figure 6
shows that the MSE expectedly decreases as the sample size grows for all three datasets. Here, we
have used the KDE plug-in estimator [12], implemented on the all available samples, to determine the
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true HP-divergence. Furthermore, according to Figure 6, the FR test statistic-based estimator suggests
that the Bayes error rate is larger for the SKIN dataset compared to the HAR and ENGIN datasets.
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Figure 5. HP-divergence vs. sample size for three real datasets HAR, SKIN, and ENGIN.

Figure 6. The empirical MSE vs. sample size. The empirical MSE of the FR estimator for all three
datasets HAR, SKIN, and ENGIN decreases for larger sample size N.

In our next experiment, we add the first six features (dimensions) in order to our datasets and
evaluate the FR test statistic’s performance as the HP-divergence estimator. Surprisingly, the estimated
HP-divergence doesn’t change for the HAR sample; however, big changes are observed for the SKIN
and ENGIN samples (see Figure 7).

1 2 3 4 5 6
Dimension

0

0.2

0.4

0.6

0.8

1

H
P 

D
iv

er
ge

nc
e

HAR
SKIN
ENGIN

Figure 7. HP-divergence vs. dimension for three datasets HAR, SKIN, and ENGIN.

Finally, we apply the concentration bounds on the FR test statistic (i.e., Theorems 6 and 7) and
compute theoretical implicit variance-like bound for the FR criteria with δ = 0.05 error for the real
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datasets ENGIN, HAR, and SKIN. Since datasets ENGIN, HAR, and SKIN have the equal total sample
size N = m + n = 1200 and different dimensions d = 14, 12, 4, respectively; here, we first intend
to compare the concentration bound (13) on the FR statistic in terms of dimension d when δ = 0.05.
For real datasets ENGIN, HAR, and SKIN, we obtain

P (|Rm,n −E[Rm,n]| ≤ ξ) ≥ 0.95,

where ξ = ξ ′[0.257, 0.005, 0.6 × 10−11], respectively, and ξ ′ is a constant not dependent on d.
One observes that as the dimension decreases the interval becomes significantly tighter. However,
this could not be generally correct and computing bound (13) precisely requires the knowledge of
distributions and unknown constants. In Table 1, we compute the standard variance-like bound by
applying the percentiles technique and observe that the bound threshold is not monotonic in terms
of dimension d. Table 1 shows the FR test statistic, HP-divergence estimate (denoted by Rm,n, D̂p,
respectively), and standard variance-like interval for the FR statistic using the three real datasets HAR,
SKIN, and ENGIN.

Table 1. Rm,n, D̂p, m, and n are the FR test statistic, HP-divergence estimates using Rm,n, and sample
sizes for two classes, respectively.

FR Test Statistic

Dataset E[Rm,n] D̂p m n Variance-Like Interval

HAR 3 0.995 600 600 (2.994,3.006)
SKIN 4.2 0.993 600 600 (4.196,4.204)

ENGIN 1.8 0.997 600 600 (1.798,1.802)

4. Conclusions

We derived a bound on the MSE convergence rate for the Friedman–Rafsky estimator of the
Henze–Penrose divergence assuming the densities are sufficiently smooth. We employed a partitioning
strategy to derive the bias rate which depends on the number of partitions, the sample size m + n,
the Hölder smoothness parameter η, and the dimension d. However, by using the optimal partition
number, we derived the MSE convergence rate only in terms of m + n, η, and d. We validated our
proposed MSE convergence rate using simulations and illustrated the approach for the meta-learning
problem of estimating the HP-divergence for three real-world data sets. We also provided concentration
bounds around the median and mean of the estimator. These bounds explicitly provide the rate that the
FR statistic approaches its median/mean with high probability, not only as a function of the number of
samples, m, n, but also in terms of the dimension of the space d. By using these results, we explored
the asymptotic behavior of a variance-like rate in terms of m, n, and d.
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Abbreviations

HP Henze-Penrose
BER Bayes error rate
MST Minimal Spanning Tree
FR Friedman-Rafsky
MSE Mean squared error

Appendix A. Proof of Theorem 4

In this section, we prove the subadditivity and superadditivity for the mean of FR test statistic.
For this, first we need to illustrate the following lemma.

Lemma A1. Let {Qi}ld

i=1 be a uniform partition of [0, 1]d into ld subcubes Qi with edges parallel to the
coordinate axes having edge lengths l−1 and volumes l−d. Let Dij be the set of edges of MST graph between
Qi and Qj with cardinality |Dij|, then for |D| defined as the sum of |Dij| for all i, j = 1, . . . , ld, i 6= j, we have
E|D| = O(ld−1 n1/d), or more explicitly

E[|D|] ≤ C′ld−1n1/d + O(ld−1n(1/d)−s), (A1)

where η > 0 is the Hölder smoothness parameter and

s =
(1− 1/d)η

d ((1− 1/d)η + 1)
.

Here, and in what follows, denote ΞMST(Xn) the length of the shortest spanning tree on
Xn = {X1, . . . , Xn}, namely

ΞMST(Xn) := min
T

∑
e∈T
|e|,

where the minimum is over all spanning trees T of the vertex set Xn. Using the subadditivity relation
for ΞMST in [17], with the uniform partition of [0, 1]d into ld subcubes Qi with edges parallel to the
coordinate axes having edge lengths l−1 and volumes l−d, we have

ΞMST(Xn) ≤
ld

∑
i=1

ΞMST(Xn ∩Qi) + C ld−1, (A2)

where C is constant. Denote D the set of all edges of MST
( M⋃

i=1
Qi

)
that intersect two different subcubes

Qi and Qj with cardinality |D|. Let |ei| be the length of i-th edge in set D. We can write

∑
i∈|D|
|ei| ≤ Cld−1 and E ∑

i∈|D|
|ei| ≤ Cld−1,

also we know that

E ∑
i∈|D|
|ei| = ED ∑

i∈|D|
E
[
|ei|
∣∣D
]
. (A3)

Note that using the result from ([31], Proposition 3), for some constants Ci1 and Ci2, we have

E|ei| ≤ Ci1n−1/d + Ci2n−(1/d)−s, i ∈ |D|. (A4)

247



Entropy 2019, 21, 1144

Now, let C1 = max
i
{Ci1} and C2 = max

i
{Ci2}, hence we can bound the expectation (A3) as

E|D| (C1n−1/d + C2(n−(1/d)−s)) ≤ Cld−1,

which implies

E|D| ≤ (C1n−1/d + O(n−(1/d)−s))

≤ C′ld−1n1/d + O(ld−1n(1/d)−s).

To aim toward the goal (7), we partition [0, 1]d into M := ld subcubes Qi of side 1/l. Recalling
Lemma 2.1 in [48], we therefore have the set inclusion:

MST
( M⋃

i=1

Qi

)
⊂

M⋃

i=1

MST(Qi) ∪ D, (A5)

where D is defined as in Lemma A1. Let mi and ni be the number of sample {X1, . . . , Xm} and
{Y1, . . . , Yn} respectively falling into the partition Qi, such that ∑

i
mi = m and ∑

i
ni = n. Introduce sets

A and B as

A := MST
( M⋃

i=1

Qi

)
, B :=

M⋃

i=1

MST(Qi).

Since set B has fewer edges than set A, thus (A5) implies that the difference set of B and A contains at
most 2|D| edges, where |D| is the number of edges in D. On the other word,

|A∆B| ≤ |A− B|+ |B− A| = |D|+ |B− A|

= |D|+ (|B| − |B ∩ A| ≤ |D|+ (|A| − |B ∩ A|) = 2|D|.

The number of edge linked nodes from different samples in set A is bounded by the number of edge
linked nodes from different samples in set B plus 2|D|:

Rm,n(Xm,Yn) ≤
M

∑
i=1

Rmi ,ni

(
(Xm,Yn) ∩Qi

)
+ 2|D|. (A6)

Here, Rmi ,ni stands with the number edge linked nodes from different samples in partition Qi, M.
Next, we address the reader to Lemma A1, where it has been shown that there is a constant c such that
E|D| ≤ c ld−1 (m + n)1/d. This concludes the claimed assertion (7). Now, to accomplish the proof, the
lower bound term in (8) is obtained with similar methodology and the set inclusion:

M⋃

i=1

MST(Qi) ⊂ MST
( M⋃

i=1

Qi

)
∪ D. (A7)

This completes the proof.

Appendix B. Proof of Theorem 2

As many of continuous subadditive functionals on [0, 1]d, in the case of the FR statistic, there
exists a dual superadditive functional R∗m,n based on dual MST, MST∗, proposed in Definition 2. Note
that, in the MST* graph, the degrees of the corner points are bounded by cd, where it only depends on
dimension d, and is the bound for degree of every node in MST graph. The following properties hold
true for dual FR test statistic, R∗m,n:
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Lemma A2. Given samples Xm = {X1, . . . , Xm} and Yn = {Y1, . . . , Yn}, the following inequalities hold true:

(i)For constant cd which depends on d:

R∗m,n(Xm,Yn) ≤ Rm,n(Xm,Yn) + cd 2d,

Rm,n(Xm,Yn) ≤ R∗m,n(Xm,Yn).
(A8)

(ii)(Subadditivity on E[R∗m,n] and Superadditivity) Partition [0, 1]d into ld subcubes Qi such that mi, ni be
the number of sample Xm = {X1, . . . , Xm} and Yn = {Y1, . . . , Yn} respectively falling into the partition
Qi with dual R∗mi ,ni

. Then, we have

E
[
R∗m,n(Xm,Yn)

]
≤

ld

∑
i=1

E
[
R∗mi ,ni

((Xm,Yn) ∩Qi)
]
+ c ld−1 (m + n)1/d,

R∗m,n(Xm,Yn) ≥
ld

∑
i=1

R∗mi ,ni
((Xm,Yn) ∩Qi)− 2dcdld,

(A9)

where c is a constant.

(i) Consider the nodes connected to the corner points. Since MST(Xm,Yn) and MST∗(Xm,Yn) can only
be different in the edges connected to these nodes, and in R∗(Xm,Yn) we take all of the edges between these
nodes and corner nodes into account, so we obviously have the second relation in (A8). In addition, for the first
inequality in (A8), it is enough to say that the total number of edges connected to the corner nodes is upper
bounded by 2d cd.

(ii) Let |D∗| be the set of edges of the MST∗ graph which intersect two different partitions. Since MST
and MST∗ are only different in edges of points connected to the corners and edges crossing different partitions.
Therefore, |D∗| ≤ |D|. By eliminating one edge in set D in the worse scenario we would face two possibilities:
either the corresponding node is connected to the corner which is counted anyways or any other point in MST
graph which wouldn’t change the FR test statistic. This implies the following subadditivity relation:

R∗m,n(Xm,Yn)− |D| ≤
ld

∑
i=1

R∗mi ,ni

(
(Xm,Yn) ∩Qi

)
.

Further from Lemma A1, we know that there is a constant c such that E|D| ≤ c ld−1 (m + n)1/d. Hence, the
first inequality in (A9) is obtained. Next, consider |D∗c | which represents the total number of edges from both
samples only connected to the all corners points in MST∗ graph. Therefore, one can easily claim:

R∗m,n(Xm,Yn) ≥
ld

∑
i=1

R∗mi ,ni

(
(Xm,Yn) ∩Qi

)
− |D∗c |.

In addition, we know that |D∗c | ≤ 2dldcd where cd stands with the largest possible degree of any vertex. One
can write

R∗m,n(Xm,Yn) ≥
ld

∑
i=1

R∗mi ,ni

(
(Xm,Yn) ∩Qi

)
− 2dcdld.

The following list of Lemmas A3, A4 and A6 are inspired from [49] and are required to prove
Theorem A1. See Appendix E for their proofs.

Lemma A3. Let g(x) be a density function with support [0, 1]d and belong to the Hölder class Σd(η, L),
0 < η ≤ 1, stated in Definition 1. In addition, assume that P(x) is a η-Hölder smooth function, such that its
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absolute value is bounded from above by a constant. Define the quantized density function with parameter l and
constants φi as

ĝ(x) =
M

∑
i=1

φi1{x ∈ Qi}, where φi = ld
∫

Qi

g(x) dx. (A10)

Let M = ld and Qi = {x, xi : ‖x− xi‖ < l−d}. Then,
∫ ∥∥∥

(
g(x)− ĝ(x)

)
P(x)

∥∥∥ dx ≤ O(l−dη). (A11)

Lemma A4. Denote ∆(x,S) the degree of vertex x ∈ S in the MST over set S with the n number of vertices.
For given function P(x, x), one obtains

∫
P(x, x)g(x)E[∆(x,S)] dx = 2

∫
P(x, x)g(x) dx + ςη(l, n), (A12)

where, for constant η > 0,

ςη(l, n) =
(

O
(
l/n
)
− 2 ld/n

) ∫
g(x)P(x, x) dx + O(l−dη). (A13)

Lemma A5. Assume that, for given k, gk(x) is a bounded function belong to Σd(η, L). Let P : Rd ×Rd 7→
[0, 1] be a symmetric, smooth, jointly measurable function, such that, given k, for almost every x ∈ Rd, P(x, .)
is measurable with x a Lebesgue point of the function gk(.)P(x, .). Assume that the first derivative P is bounded.
For each k, let Zk

1, Zk
2, . . . , Zk

k be an independent d-dimensional variable with common density function gk. Set
Zk = {Zk

1, Zk
2 . . . , Zk

k} and Zx
k = {x, Zk

2, Zk
3 . . . , Zk

k}. Then,

E
[ k

∑
j=2

P(x, Zk
j )1
{
(x, Zk

j ) ∈ MST(Zx
k)
}]

= P(x, x) E
[
∆(x,Zx

k)
]
+
{

O
(
k−η/d)+ O

(
k−1/d)}. (A14)

Lemma A6. Consider the notations and assumptions in Lemma A5. Then,

∣∣∣k−1 ∑ ∑
1≤i<j≤k

P(Zk
i , Zk

j )1{(Zk
i , Zk

j ) ∈ MST(Zk)} −
∫

Rd
P(x, x)gk(x) dx

∣∣∣

≤ ςη(l, k) + O(k−η/d) + O(k−1/d).
(A15)

Here, MST(S) denotes the MST graph over nice and finite set S ⊂ Rd and η is the smoothness Hölder
parameter. Note that ςη(l, k) is given as before in Lemma A4 (A13).

Theorem A1. Assume Rm,n := R(Xm,Yn) denotes the FR test statistic and densities f0 and f1 belong to the
Hölder class Σd(η, L), 0 < η ≤ 1. Then, the rate for the bias of the Rm,n estimator for d ≥ 2 is of the form:

∣∣∣∣∣
E
[
Rm,n

]

m + n
− 2pq

∫ f0(x) f1(x)
p f0(x) + q f1(x)

dx

∣∣∣∣∣ ≤ O
(
ld(m + n)−η/d)+ O(l−dη). (A16)

The proof and a more explicit form for the bound (A16) are given in Appendix E.

Now, we are at the position to prove the assertion in (5). Without loss of generality, assume that
(m + n)l−d > 1. In the range d ≥ 2 and 0 < η ≤ 1, we select l as a function of m + n to be the sequence
increasing in m + n which minimizes the maximum of these rates:

l(m + n) = arg min
l

max
{

ld(m + n)−η/d, l−ηd
}

.
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The solution l = l(m + n) occurs when ld(m + n)−η/d = l−ηd, or equivalently l = b(m + n)η/(d2(η+1))c.
Substitute this into l in the bound (A16), the RHS expression in (5) for d ≥ 2 is established.

Appendix C. Proof of Theorems 3

To bound the variance, we will apply one of the first concentration inequalities which was proved
by Efron and Stein [43] and further was improved by Steele [18].

Lemma A7 (The Efron–Stein Inequality). Let Xm = {X1, . . . , Xm} be a random vector on the space S .
Let X′ = {X′1, . . . , X′m} be the copy of random vector Xm. Then, if f : S × · · · × S → R, we have

V
[

f (Xm)
]
≤ 1

2

m

∑
i=1

E
[(

f (X1, . . . , Xm)− f (X1, . . . , X′i, . . . , Xm)
)2
]
. (A17)

Consider two set of nodes Xi, 1 ≤ i ≤ m and Yj for 1 ≤ j ≤ n. Without loss of
generality, assume that m < n. Then, consider the n − m virtual random points Xm+1, . . . , Xn

with the same distribution as Xi, and define Zi := (Xi, Yi). Now, for using the Efron–Stein
inequality on set Zn = {Z1, . . . , Zn}, we involve another independent copy of Zn as Z′n =

{Z′1, . . . , Z′n}, and define Z
(i)
n := (Z1, . . . , Zi−1, Z′i, Zi+1, . . . , Zn), then Z

(1)
n becomes (Z′1, Z2, . . . , Zn) ={

(X′1, Y′1), (X2, Y2), . . . , (Xm, Yn)
}
=: (X(1)

m ,Y(1)
n ) where (X′1, Y′1) is independent copy of (X1, Y1). Next,

define the function rm,n(Zn) := Rm,n/(m + n), which means that we discard the random samples
Xm+1, . . . , Xn, and find the previously defined Rm,n function on the nodes Xi, 1 ≤ i ≤ m and Yj for
1 ≤ j ≤ n, and multiply by some coefficient to normalize it. Then, according to the Efron–Stein
inequality, we have

Var(rm,n(Zn)) ≤
1
2

n

∑
i=1

E
[
(rm,n(Zn)− rm,n(Z

(i)
n ))2

]
.

Now, we can divide the RHS as

1
2

n

∑
i=1

E
[
(rm,n(Zn)− rm,n(Z

(i)
n ))2

]
=

1
2

m

∑
i=1

E
[
(rm,n(Zn)− rm,n(Z

(i)
n ))2

]

+
1
2

n

∑
i=m+1

E
[
(rm,n(Zn)− rm,n(Z

(i)
n ))2

]
.

(A18)

The first summand becomes

=
1
2

m

∑
i=1

E
[
(rm,n(Zn)− rm,n(Z

(i)
n ))2

]
=

m
2 (m + n)2E

[
(Rm,n(Xm,Yn)−Rm,n(X

(1)
m ,Y(1)

n ))2
]

,

which can also be upper bounded as follows:
∣∣∣Rm,n(Xm,Yn)−Rm,n(X

(1)
m ,Y(1)

n )
∣∣∣ ≤

∣∣∣Rm,n(Xm,Yn)−Rm,n(X
(1)
m ,Yn)

∣∣∣

+
∣∣∣R(X

(1)
m ,Yn)−Rm,n(X

(1)
m ,Y(1)

n )
∣∣∣ .

(A19)

For deriving an upper bound on the second line in (A19), we should observe how much changing
a point’s position modifies the amount of Rm,n(Xm,Yn). We consider two steps of changing X1’s
position: we first remove it from the graph, and then add it to the new position. Removing it would
change Rm,n(Xm,Yn) at most by 2 cd because X1 has a degree of at most cd, and cd edges will be
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removed from the MST graph, and cd edges will be added to it. Similarly, adding X1 to the new
position will affect Rm,n(Xm,n,Ym,n) at most by 2cd. Thus, we have

∣∣∣Rm,n(Xm,Yn)−Rm,n(X
(1)
m ,Yn)

∣∣∣ ≤ 4 cd,

and we can also similarly reason that
∣∣∣Rm,n(X

(1)
m ,Yn)−Rm,n(X

(1)
m ,Y(1)

n )
∣∣∣ ≤ 4 cd.

Therefore, totally we would have
∣∣∣Rm,n(Xm,Yn)−Rm,n(X

(1)
m ,Y(1)

n )
∣∣∣ ≤ 8 cd.

Furthermore, the second summand in (A18) becomes

=
1
2

n

∑
i=m+1

E
[
(rm,n(Zn)− rm,n(Z

(i)
n ))2

]
= Km,nE

[
(Rm,n(Xm,Yn)−Rm,n(X

(m+1)
m ,Y(m+1)

n ))2
]

,

where Km,n = n−m
2 (m+n)2 . Since, in (X

(m+1)
m ,Y(m+1)

n ), the point X′m+1 is a copy of virtual random point
Xm+1, therefore this point doesn’t change the FR test statistic Rm,n. In addition, following the above
arguments, we have

∣∣∣Rm,n(Xm,Yn)−Rm,n(Xm,Y(m+1)
n )

∣∣∣ ≤ 4 cd.

Hence, we can bound the variance as below:

Var(rm,n(Zn)) ≤
8c2

d(n−m)

(m + n)2 +
32 c2

d m
(m + n)2 . (A20)

Combining all results with the fact that
n

m + n
→ q concludes the proof.

Appendix D. Proof of Theorems 5–7

We will need the following prominent results for the proofs.

Lemma A8. For h = 1, 2, . . . , let δh
m,n be the function c hd−1(m + n)1/d, where c is a constant. Then, for

ε > 0 , we have

P
(
Rm,n(Xm,Yn) ≤

hd

∑
i=1

Rmi ,ni (Xmi ,Yni ) + 2ε
)
≥ ε− δh

m,n

ε
. (A21)

Note that, in the case ε ≤ δh
m,n, the above claimed inequality becomes trivial.

The subadditivity property for FR test statistic Rm,n in Lemma A8, as well as Euclidean functionals,
leads to several non-trivial consequences. The growth bound was first explored by Rhee (1993b) [50],
and as is illustrated in [17,27] has a wide range of applications. In this paper, we investigate the
probabilistic growth bound for Rm,n. This observation will lead us to our main goal in this appendix
that is providing the proof of Theorem 6. For what follows, we will use δh

m,n notation for the expression
O
(
hd−1(m + n)1/d).
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Lemma A9 (Growth bounds for Rm,n). Let Rm,n be the FR test statistic. Then, for given non-negative ε,

such that ε ≥ h2 δh
m,n, with at least probability g(ε) := 1− h δh

m,n

ε
, h = 2, 3, . . . , we have

Rm,n(Xm,Yn) ≤ c′′ε,h
(
#Xm #Yn

)1−1/d. (A22)

Here, c′′ε,h = O
(

ε

hd−1 − 1

)
depending only on ε and h.

The complexity of Rm,n’s behavior and the need to pursue the proof encouraged us to explore the
smoothness condition for Rm,n. In fact, this is where both subadditivity and superadditivity for the FR
statistic are used together and become more important.

Lemma A10 (Smoothness for Rm,n). Given observations of

Xm := (Xm′ ,Xm′′) = {X1, . . . , Xm′ , Xm′+1, . . . , Xm},

where m′ + m′′ = m and Yn := (Yn′ ,Yn′′) = {Y1, . . . , Yn′ , Yn′+1, . . . , Yn}, where n′ + n′′ = n, denote
Rm,n(Xm,Yn) as before, the number of edges of MST(Xm,Yn) which connect a point of Xm to a point of Yn.
Then, for given integer h ≥ 2, for all (Xn,Ym) ∈ [0, 1]d, ε ≥ h2 δh

m,n where δh
m,n = O

(
hd−1(m + n)1/d),

we have

P
(∣∣∣Rm,n(Xm,Yn)−Rm′ ,n′(Xm′ ,Yn′)

∣∣∣ ≤ c̃ε,h
(
#Xm′′ #Yn′′

)1−1/d
)

≥ 1− 2h δh
m,n

ε
,

(A23)

where c̃ε,h = O
(

ε

hd−1 − 1

)
.

Remark: Using Lemma A10, we can imply the continuty property, i.e., for all observations (Xm,Yn)

and (Xm′ ,Yn′), with at least probability 2 g(ε)− 1, one obtains

∣∣∣Rm,n(Xm,Yn)−Rm′ ,n′(Xm′ ,Yn′)
∣∣∣

≤ c∗ε,h
(
#(Xm∆ Xm′) #(Yn∆ Yn′)

)1−1/d,
(A24)

for given ε > 0, c∗ε,h = O
(

ε

hd−1 − 1

)
, h ≥ 2. Here, Xm∆ Xm′ denotes symmetric difference of

observations Xm and Xm′ .

The path to approach the assertions (11) and (12) proceeds via semi-isoperimentic inequality for
the Rm,n involving the Hamming distance.

Lemma A11 (Semi-Isoperimetry). Let µ be a measure on [0, 1]d; µn denotes the product measure on space
([0, 1]d)n. In addition, let Me denotes a median of Rm,n. Set

A :=
{
Xm ∈

(
[0, 1]d

)m,Yn ∈
(
[0, 1]d

)n;Rm,n(Xm,Yn) ≤ Me

}
. (A25)
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Following the notations in [17], H(x, x′) = #{i, xi 6= x′i) and φA(x′) + φA(y′) = min{H(x, x′) +
H(y, y′) : x, y ∈ A} and φA(x′) φA(y′) = min{H(x, x′) H(y, y′) : x, y ∈ A} . Then,

µm+n
({

x′ ∈ ([0, 1]d)m, y′ ∈ ([0, 1]d)n : φA(x′) φA(y′) ≥ t
})

≤ 4 exp
( −t

8(m + n)

)
.

(A26)

Now, we continue by providing the proof of Theorem 5. Recall (A25) and denote

Fx :=
{

xi, i = 1, . . . , m, xi = x′i
}

,

Fy :=
{

yj, j = 1, . . . , n, yj = y′j
}

,

and

Gx :=
{

xi, i = 1, . . . , m, xi 6= x′i
}

,

Gy :=
{

yj, j = 1, . . . , n, yj 6= y′j
}

.

In addition, for given integer h, define events B, B′ by

B :=
{∣∣∣Rm,n(X′m,Y′n)−R(Fx,Fy)

∣∣∣ ≤ cε,h
(
#Gx #Gy

)1−1/d
}

,

B′ :=
{∣∣∣R(Fx,Fy)−Rm,n(Xm,Yn)

∣∣∣ ≤ cε,h
(
#Gx #Gy

)1−1/d
}

,

where cε,h is a constant. By virtue of smoothness property, Lemma A10, for ε ≥ h2δh
m,n, we know

P(B) ≥ 2g(ε)− 1 and P(B′) ≥ 2g(ε)− 1. On the other hand, we have

Rm,n(X
′
m,Y′n) ≤

∣∣∣Rm,n(X
′
m,Y′n)−R(Fx,Fy)

∣∣∣

+
∣∣∣R(Fx,Fy)−Rm,n(Xm,Yn)

∣∣∣+Rm,n(Xm,Yn).

= |v′|+ |v|+Rm,n(Xm,Yn) (say).

Moreover, P(Rm,n(Xm,Yn) ≤ Me) ≥ 1/2. Therefore, we can write

1/2 ≤ P
(
Rm,n(X

′
m,Y′n) ≤ Me + |v′|+ |v|

)

≤ P
(
Rm,n(X′m,Y′n) ≤ Me + |v′|+ |v|

∣∣ B∩B′
)

P(B∩B′)

+P(Bc ∪B′c).

(A27)

Thus, we obtain

P
(
Rm,n(X

′
m,Y′n) ≤ Me + 4ε

(
#Gx #Gy

)1−1/d
)

≥
(
1/2− 1 + P(B∩B′)

)/
P(B∩B′)

= 1−
((

2 P(B∩B′)
)−1
)

.

Note that P(B∩B′) = P(B) P(B′) ≥
(
2 g(ε)− 1

)2. Now, we easily claim that

1−
((

2 P(B∩B′)
)−1
)
≥ 1−

((
2 (2 g(ε)− 1)2)−1

)
. (A28)
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Thus,
P
(
Rm,n(X′m,Y′n) ≤ Me + 4ε

(
#Gx #Gy

)1−1/d
)
≥ 1−

((
2 (2 g(ε)− 1)2)−1

)
.

On the other word, calling φA(x′) and φA(y′) in Lemma A11, we get

P
(
Rm,n(X′m,Y′n) ≤ Me + 4ε

(
φA(x′) φA(y′)

)1−1/d
)
≥ 1−

((
2 (2 g(ε)− 1)2)−1

)
. (A29)

Furthermore, denote event

C :=
{
Rm,n(X

′
m,Y′n) ≤ Me + 4ε

(
φA(x′) φA(y′)

)1−1/d}.

Then, we have

P
(
Rm,n(Xm,Yn) ≥ Me + t

)
= µm+n(Rm,n(X′m,Y′n) ≥ Me + t

)

= µm+n(
(
Rm,n(X′m,Y′n) ≥ Me + t

)∣∣C)P(C)

+µm+n(
(
Rm,n(X

′
m,Y′n) ≥ Me + t

)∣∣Cc)P(Cc)

≤ µm+n
((

φA(x′) φA(y′)
)1−1/d ≥ t

4ε

)
P(C)

+µm+n(
(
Rm,n(X

′
m,Y′n) ≥ Me + t

)∣∣Cc)P(Cc).

Using P(C) = 1− P(Cc)

= µm+n
((

φA(x′) φA(y′)
)1−1/d ≥ t

4ε

)

+P(Cc)

{
µm+n(

(
Rm,n(X

′
m,Y′n) ≥ Me + t

)∣∣Cc)

−µm+n
((

φA(x′) φA(y′)
)1−1/d ≥ t

4ε

)}
.

(A30)

Define set Kt =
{(

φA(x′) φA(y′)
)1−1/d ≥ t

4ε

}
, so

µm+n(Rm,n(X
′
m,Y′n) ≥ Me + t

∣∣Cc)

= µm+n(Rm,n(X
′
m,Y′n) ≥ Me + t

∣∣Cc,Kt
)
µm+n(Kt) + µm+n(

(
Rm,n(X

′
m,Y′n) ≥ Me + t

)∣∣Cc,Kc
t )µ

m+n(Kc
t ).

Since
µm+n(Rm,n(X

′
m,Y′n) ≥ Me + t

∣∣Cc,Kt
)
= 1,

and

µm+n(Rm,n(X
′
m,Y′n) ≥ Me + t

∣∣Cc,Kc
t
)
= µm+n(Rm,n(X

′
m,Y′n) ≥ Me + t

)
.
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Consequently, from (A30), one can write

P
(
Rm,n(Xm,Yn) ≥ Me + t

)

≤ µm+n
((

φA(x′) φA(y′)
)1−1/d ≥ t

4ε

)

+P(Cc)
{

µm+n(Rm,n(X
′
m,Y′n) ≥ Me + t

)
µm+n(Kc

t )
}

≤ µm+n
((

φA(x′) φA(y′)
)1−1/d ≥ t

4ε

)

+
((

2 (2 g(ε)− 1)2)−1
)

P
(
Rm,n(Xm,Yn) ≥ Me + t

)
.

(A31)

The last inequality implies by owing to (A29) and µm+n(Kc
t ) ≤ 1. For g(ε) ≥ 1/2 + 1/

(
2
√

2
)
, we have

1−
((

2 (2 g(ε)− 1)2)−1
)
≥ 0,

or equivalently this holds true when ε ≥ (2h
√

2 δh
m,n)

/
(
√

2− 1). Furthermore, for h ≥ 7, we have

h2δh
m,n ≥ (2h

√
2 δh

m,n)
/
(
√

2− 1), (A32)

therefore P
(
Rm,n(Xm,Yn) ≥ Me + t

)
is less than and equal to

(
1−

((
2 (2 g(ε)− 1)2)−1

))−1

µm+n
((

φA(x′) φA(y′)
)1−1/d ≥ t

4ε

)
. (A33)

By virtue of Lemma A11, finally we obtain

P
(
Rm,n(Xm,Yn) ≥ Me + t

)
≤ 4

(
1−

((
2 (2 g(ε)− 1)2)−1

))−1

exp
( −td/(d−1)

8(4ε)d/d−1(m + n)

)
. (A34)

Similarly, we can derive the same bound on P
(
Rm,n(Xm,Yn) ≤ Me − t

)
, so we obtain

P
(∣∣Rm,n −Me

∣∣ ≥ t
)
≤ C′m,n(ε, h) exp

( −td/(d−1)

8(4ε)d/(d−1)(m + n)

)
, (A35)

where

C′m,n(ε, h) = 8
(

1− 2−1
(

1− 2h O
(
hd−1(m + n)1/d)

ε

)−2
)−1

. (A36)

We will analyze (A35) together with Theorem 6. The next lemma will be employed in Theorem 6’s proof.

Lemma A12 (Deviation of the Mean and Median). Consider Me as a median of Rm,n. Then, for ε ≥ h2δh
m,n

and given h ≥ 7, we have
∣∣∣E
[
Rm,n(Xm,Yn)

]
−Me

∣∣∣ ≤ Cm,n(ε, h) (m + n)(d−1)/d, (A37)

where Cm,n(ε, h) is a constant depending on ε, h, m, and n by

Cm,n(ε, h) = C
(

1−
((

2 (2 g(ε)− 1)2)−1
))−1

, (A38)
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where C is a constant and

δh
m,n = O

(
hd−1(m + n)1/d), and g(ε) = 1− h δh

m,n

ε
.

We conclude this part by pursuing our primary intension which has been the Theorem 6’s proof.
Observe from Theorem 5, (11) that

P
(∣∣∣Rm,n −E[Rm,n]

∣∣∣ ≥ t + Cm,n(ε, l)
(
m + n)(d−1)/d

)

≤ P
(∣∣Rm,n −Me

∣∣+
∣∣E[Rm,n]−Me

∣∣

≥ t + Cm,n(ε, l)
(
m + n)(d−1)/d

)

≤ P
(∣∣Rm,n −Me

∣∣ ≥ t
)

≤ 8
(

1−
((

2 (2 g(ε)− 1)2)−1
))−1

exp
( −td/(d−1)

8(4ε)d/d−1(m + n)

)
.

Note that the last bound is derived by (11). The rest of the proof is as the following: When t ≥
2Cm,n(ε, h)

(
m + n)(d−1)/d, we use

(
t− Cm,n(ε, h)

(
m + n)(d−1)/d

)d/(d−1)
≥
(

t/2
)d/(d−1)

.

Therefore, it turns out that

P
(∣∣∣Rm,n −E[Rm,n]

∣∣∣ ≥ t
)

≤ 8
(

1−
((

2 (2 g(ε)− 1)2)−1
))−1

exp
( −td/(d−1)

8(8ε)d/(d−1)(m + n)

)
.

(A39)

In other words, there exist constants C′m,n(ε, h) depending on m, n, ε, and h such that

P
(∣∣∣Rm,n −E[Rm,n]

∣∣∣ ≥ t
)
≤ C′m,n(ε, h) exp

(
−(t/(2ε))d/(d−1)

(m + n) C̃

)
, (A40)

where C̃ = 8(4)d/(d−1).
To verify the behavior of bound (A40) in terms of ε, observe (A35) first; it is not hard to see that

this function is decreasing in ε. However, the function

exp

(
−(t/(2ε))d/(d−1)

(m + n)C̃

)

increases in ε. Therefore, one can not immediately infer that the bound in (12) is monotonic with respect
to ε. For fixed N = n + m, d, and h, the first and second derivatives of the bound (12) with respect to
ε are quite complicated functions. Thus, deriving an explicit optimal solution for the minimization
problem with the objective function (12) is not feasible. However, in the sequel, we discuss that under
conditions when t is not much larger than N = m + n, this bound becomes convex with respect to ε.
Set

K(ε) = C′m,n(ε, h) exp
( −B(t)

εd/(d−1)

)
, (A41)
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where C′m,n is given in (10) and

B(t) =
td/(d−1)

8 (8)d/(d−1)(N)
.

By taking the derivative with respect to ε, we have

dK(ε)
dε

= K(ε)
(

d
dε

(
log C′m,n

)
+

B(t) d/(d− 1)
ε(2d−1)/(d−1)

)
, (A42)

where
d
dε

(
log C′m,n

)
=

−4 ah ε

(ε− 2ah)(8a2
h − 8εah + ε2)

, (A43)

where ah = hδh
m,n. The second derivative K(ε) with respect to ε after simplification is given as

d2

dε2 K(ε) =

(
−4 ah ε

(ε− 2ah)(8a2
h − 8εah + ε2)

+
B(t) d̄
εd̄+1

)2

+K(ε)

(
8ah (8a3

h + ε2(ε− 5ah))

(8a2
h − 8ahε + ε2)2(ε− 2ah)2

− B(t)d̄(d̄ + 1)
εd̄+2

)
,

(A44)

where d̄ = d/(d− 1). The first term in (A44) and K(ε) are non-negative, so K(ε) is convex if the second
term in the second line of (A44) is non-negative. We know that ε ≥ h2δh

m,n = h ah, when h = 7, we can
parameterize ε by setting it equal to γah, where γ ≥ 7. After simplification, K(ε) is convex if

ad̄−1
h

(
γd̄−1 + 3γd̄−2

)
+ B(t)d̄(d̄ + 1)

×
{

a−1
h

(
− 32γ−6 + 64γ−5 − 48γ−4 + 8γ−3 − 7

2
γ−2 + 2γ−1 − 1

8

)

+a−2
h

(
32γ−6 − 64γ−5 + 40γ−4 + 8γ−3 +

1
2

γ−2
)}
≥ 0.

(A45)

This is implied if

0 ≤ B(t)d̄(d̄ + 1) a−1
h

×
(
− 32γ−6 + 64γ−5 − 48γ−4 + 8γ−3 − 7

2
γ−2 + 2γ−1 − 1

8

)
,

(A46)

such that γ ≥ 7. One can easily check that, as γ → ∞, then (A46) tends to −1
8

B(t)d̄(d̄ + 1) a−1
h .

This term can be negligible unless we have t that is much larger than N = m + n with the threshold
depending on d. Here, by setting B(t)/ah = 1, a rough threshold t = O

(
7d−1(m+ n)1−1/d2)

depending
on d, m + n is proposed. Therefore, minimizing (A35) and (A40) with respect to ε when optimal h = 7
is a convex optimization problem. Denote ε∗ the solution of the convex optimization problem (9).
By plugging optimal h (h = 7) and ε (ε = ε∗) in (A35) and (A40), we derive (11) and (12), respectively.

In this appendix, we also analyze the bound numerically. By simulation, we observed that lower
h i.e., h = 7 is the optimal value experimentally. Indeed, this can be verified by Theorem 11’s proof.
We address the reader to Lemma A8 in Appendix D and Appendix E where, as h increases, the lower
bound for the probability increases too. In other words, for fixed N = m + n and d, the lowest h implies
the maximum bound in (A92). For this, we set h = 7 in our experiments. We vary the dimension d
and sample size N = m + n in relatively large and small ranges. In Table A1, we solve (9) for various
values of d and N = m + n. We also compute the lower bound for ε i.e., 7d+1N1/d per experiment. In
Table A1, we observe that as we have higher dimension the optimal value ε∗ equals the ε lower bound
hd+1N1/d, but this is not true for smaller dimensions with even relatively large sample size.
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Table A1. d, N, ε∗ are dimension, total sample size m + n, and optimal ε for the bound in (12).
The column hd+1N1/d represents approximately the lower bound for ε which is our constraint in the
minimization problem and our assumption in Theorems 5 and 6. Here, we set h = 7.

Concentration Bound (11)

d N = m + n ε∗ t0 hd+1N1/d Optimal (11)

2 103 1.1424× 104 2× 107 1.0847× 104 0.3439
4 104 1.7746× 105 3× 1010 168,070 0.0895
5 550 4.7236× 105 1010 4.1559× 105 0.9929
6 104 3.8727× 106 2× 1012 3.8225× 106 0.1637
8 1200 9.7899× 107 12× 1012 9.7899× 107 0.7176

10 3500 4.4718× 109 2× 1015 4.4718× 109 0.4795
15 108 1.1348× 1014 1024 1.1348× 1014 0.9042

To validate our proposed bound in (12), we again set h = 7 and for d = 4, 5, 7 we ran experiments
with sample sizes N = m + n = 9000, 1100, 140, respectively. Then, we solved the minimization
problem to derive optimal bound for t in the range 1010[1, 3]. Note that we chose this range to have a
non-trivial bound for all three curves; otherwise, the bounds partly become one. Figure A1 shows that
when t increases in the given range, the optimal curves approach zero.
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Figure A1. Optimal bound for (12), when h = 7 versus t ∈ 1010[1, 3]. The bound decreases as t grows.

To prove the Theorem 7 in the concentration of Rm,n, Theorem 6, let

δ = C′m,n(ε
∗) exp

(−(t/(2ε∗))d/(d−1)

(m + n) C̃

)
,

this implies t = O
(

ε∗ (m + n)(d−1)/d( log
(
C′m,n(ε

∗)
/

δ)
)(d−1)/d

)
and the proofs are completed.

Appendix E. Additional Proofs

Lemma A3: Let g(x) be a density function with support [0, 1]d and belong to the Hölder class
Σd(η, L), 0 < η ≤ 1, expressed in Definition 1. In addition, assume that P(x) is a η-Hölder smooth
function, such that its absolute value is bounded from above by some constants c. Define the quantized
density function with parameter l and constants φi as
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ĝ(x) =
M

∑
i=1

φi1{x ∈ Qi}, where φi = ld
∫

Qi

g(x) dx, (A47)

and M = ld and Qi = {x, xi : ‖x− xi‖ < l−d}. Then,
∫ ∥∥∥

(
g(x)− ĝ(x)

)
P(x)

∥∥∥ dx ≤ O(l−dη). (A48)

Proof. By the mean value theorem, there exist points εi ∈ Qi such that

φi = ld
∫

Qi

g(x) dx = g(εi).

Using the fact that g ∈ Σd(η, L) and P(x) is a bounded function, we have

∫ ∥∥g(x)− ĝ(x)
)

P(x)
∥∥ dx =

M

∑
i=1

∫

Qi

∥∥(g(x)−Φi)P(x)
∥∥dx

=
M

∑
i=1

∫

Qi

∥∥(g(x)− g(εi))P(x)
∥∥dx

≤ c L
M

∑
i=1

∫

Qi

∥∥x− εi
∥∥η dx.

Here, L is the Hölder constant. As x, εi ∈ Qi, a sub-cube with edge length l−1, then
∥∥x− εi

∥∥η
= O(l−dη)

and
M

∑
i=1

∫

Qi

dx = 1. This concludes the proof.

Lemma A4: Let ∆(x,S) denote the degree of vertex x ∈ S in the MST over set S ⊂ Rd with the n
number of vertices. For given function P(x, x), one yields

∫
P(x, x)g(x)E[∆(x,S)] dx = 2

∫
P(x, x)g(x) dx + ςη(l, n), (A49)

where for constant η > 0,

ςη(l, n) =
(

O
(
l/n
)
− 2 ld/n

) ∫
g(x)P(x, x) dx + O(l−dη). (A50)

Proof. Recall notations in Lemma A3 and
∣∣∣
∫

g(x)P(x) dx−
∫

ĝ(x)P(x) dx
∣∣∣ ≤

∫ ∣∣(g(x)− ĝ(x)
)

P(x)
∣∣ dx.

Therefore, by substituting ĝ, defined in (A47), into g with considering its error, we have
∫

P(x, x)g(x)E[∆(x,S)] dx

=
∫

P(x, x)E[∆(x,S)]
M

∑
i=1

φi1{x ∈ Qi} dx + O(l−dη)

=
M

∑
i=1

φi

∫

Qi

P(x, x)E[∆(x,S)] dx + O(l−dη).

(A51)
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Here, Qi represents as before in Lemma A3, so the RHS of (A51) becomes

M

∑
i=1

φi

∫

Qi

P(x, x)E[∆(x,S ∩Qi)] dx +
M

∑
i=1

φi

∫

Qi

P(x, x)O(l1−d/n) + O(l−dη)

=
M

∑
i=1

φiP(xi, xi)
1
M

∫

Qi

M E[∆(x,S ∩Qi)] dx +
M

∑
i=1

φi

∫

Qi

P(x, x)O(l1−d/n) + 2 O(l−dη).
(A52)

Now, note that
∫

Qi

M E[∆(x,S ∩ Qi)] dx is the expectation of E[∆(x, S ∩ Qi)] over the nodes in Qi,

which is equal to 2− 2
ki

, where ki =
n
M

. Consequently, we have

∫
P(x, x)g(x)E[∆(x,S)] dx =

(
2− 2 M

n

) M

∑
i=1

φi P(xi, xi)
1
M

+ O

(
l1−d

n

)
M

∑
i=1

φi P(xi, xi) + 3 O(l−dη)

= 2
∫

g(x)P(x, x) dx + 5 O(l−dη)) + M

(
O

(
l1−d

n

)
−
(

2
n

)) ∫
g(x)P(x, x) dx.

(A53)

This gives the assertion (A49).

Lemma A5: Assume that, for given k, gk(x) is a bounded function belong to Σd(η, L). Let
P : Rd×Rd 7→ [0, 1] be a symmetric, smooth, jointly measurable function, such that, given k, for almost
every x ∈ Rd, P(x, .) is measurable with x a Lebesgue point of the function gk(.)P(x, .). Assume that
the first derivative P is bounded. For each k, let Zk

1, Zk
2, . . . , Zk

k be independent d-dimensional variable
with common density function gk. Set Zk = {Zk

1, Zk
2 . . . , Zk

k} and Zx
k = {x, Zk

2, Zk
3 . . . , Zk

k}. Then,

E
[ k

∑
j=2

P(x, Zk
j )1
{
(x, Zk

j ) ∈ MST(Zx
k)
}]

= P(x, x) E
[
∆(x,Zx

k)
]
+
{

O
(
k−η/d)+ O

(
k−1/d)}.

(A54)

Proof. Let B(x, r) = {y : ‖y− x‖d ≤ r}. For any positive K, we can obtain:

E
k

∑
j=2

∣∣∣P(x, Zk
j )− P(x, x)

∣∣∣1
{

Zk
j ∈ B

(
x, Kk−1/d)}

= (k− 1)
∫

B
(

x;Kk−1/d
)

∣∣∣
(

P(x, y)gk(y)− P(x, x)gk(x)
)
+ P(x, x)

(
gk(x)− gk(y)

)∣∣∣ dy

≤ (k− 1)
[ ∫

B
(

x;Kk−1/d
)

∣∣∣
(

P(x, y)gk(y)− P(x, x)gk(x)
)∣∣∣dy + O

(
k−η/d)V

(
B
(
x, Kk−1/d)

]
,

(A55)

where V is the volume of space B which equals O(k−1). Note that the above inequality appears because
gk(x) ∈ Σd(η, L) and P(x, x) ∈ [0, 1]. The first order Taylor series expansion of P(x, y) around x is

P(x, y) = P(x, x) + P(1)(x, x)‖y− x‖+ o
(
‖y− x‖2)

= P(x, x) + O
(
k−1/d)+ o

(
k−2/d).

Then, by recalling the Hölder class, we have

∣∣∣P(x, y)gk(y)− P(x, x)gk(x)
∣∣∣ =

∣∣∣
(

P(x, x) + O(k−1/d)
)(

gk(x) + O(k−η/d)
)
− P(x, x)gk(x)

∣∣∣

= O(k−η/d) + O(k−1/d).

261



Entropy 2019, 21, 1144

Hence, the RHS of (A55) becomes

(k− 1)
[(

O(k−η/d) + O(k−1/d)
)
V
(
B
(
x, Kk−1/d))+ O

(
k−η/d)V

(
B
(
x, Kk−1/d))

]

= (k− 1)
[
O
(
k−1−η/d)+ O

(
k−1−1/d)].

The expression in (A54) can be obtained by choice of K.

Lemma A6: Consider the notations and assumptions in Lemma A5. Then,

∣∣∣k−1 ∑ ∑
1≤i<j≤k

P(Zk
i , Zk

j )1{(Zk
i , Zk

j ) ∈ MST(Zk)−
∫

Rd
P(x, x)gk(x) dx

∣∣∣

≤ ςη(l, k) + O(k−η/d) + O(k−1/d).
(A56)

Here, MST(S) denotes the MST graph over nice and finite set S ⊂ Rd and η is the smoothness Hölder
parameter. Note that ςη(l, k) is given as before in (A50).

Proof. Following notations in [49], let ∆(x,S) denote the degree of vertex x in the MST(S) graph.
Moreover, let x be a Lebesgue point of gk with gk(x) > 0. In addition, let Zx

k be the point process
{x, Zk

2, Zk
3, . . . , Zk

k}. Now, by virtue of (A55) in Lemma A5, we can write

E
[

k
∑

j=2
P(x, Zk

j )1{(x, Zk
j ) ∈ MST(Zx

k)}
]
= P(x, x) E

[
∆(x,Zx

k)
]
+
{

O
(
k−η/d)+ O

(
k−1/d)}. (A57)

On the other hand, it can be seen that

k−1E
[

∑ ∑
1≤i<j≤k

P(Zk
i , Zk

j )1{(Zk
i , Zk

j ) ∈ MST(Zk)}
]

=
1
2
E
[ k

∑
j=2

P(Zk
1, Zk

j )1{(Zk
i , Zk

j ) ∈ MST(Zk)}
]

=
1
2

∫
gk(x) dx E

[ k

∑
j=2

P(x, Zk
j )1{(x, Zk

j ) ∈ MST(Zk)}
]
.

(A58)

Recalling (A57),

=
1
2

∫
gk(x)P(x, x)E

[
∆(x,Zx

k)
]

dx + O
(
k−η/d)+ O

(
k−1/d). (A59)

By virtue of Lemma A4, (A49) can be substituted into expression (A59) to obtain (A56).

Theorem A1: Assume Rm,n := R(Xm,Yn) denotes the FR test statistic as before. Then, the rate
for the bias of the Rm,n estimator for 0 < η ≤ 1, d ≥ 2 is of the form:

∣∣∣
E
[
Rm,n

]

m + n
− 2pq

∫ f0(x) f1(x)
p f0(x) + q f1(x)

dx
∣∣∣ ≤ O

(
ld(m + n)−η/d)+ O(l−dη). (A60)
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Here, η is the Holder smoothness parameter. A more explicit form for the bound on the RHS is given
in (A61) below:

∣∣∣
E
[
R′m,n(Xm,Yn)

]

m + n
−
∫ 2pq f0(x) f1(x)

p f0(x) + q f1(x)
dx
∣∣∣ ≤ O

(
ld(m + n)−η/d)

+O
(
ld(m + n)−1/2)+ 2 c1 ld−1(m + n)(1/d)−1 + cd 2d (m + n)−1

−2 ld(m + n)−1
∫ 2pq f0(x) f1(x)

p f0(x) + q f1(x)
dx + c2 (m + n)−1ld

+O(l)(m + n)−1
M

∑
i=1

ld(ai)
−1
∫ 2 f0(x) f1(x)

p f0(x) + q f1(x)
dx + O(l−dη)

+O(l)
M

∑
i=1

ld/2
√

bi

a2
i

∫ 2 f0(x) f1(x)
(

f0(x)
√

m + f1(x)
√

n
)

(
m f0(x) + n f1(x)

)2 dx

+
M

∑
i=1

2 l−d/2
√

bi

a2
i

∫ f0(x) f1(x)
(

αiβi
(
mai f 2

0 (x) + nbi f 2
1 (x)

))1/2

(
m f0(x) + n f1(x)

)2
(m + n)

dx.

(A61)

Proof. Assume Mm and Nn be Poisson variables with mean m and n, respectively, one independent
of another and of {Xi} and {Yj}. Let also X′m and Y′n be the Poisson processes {X1, . . . , XMn} and
{Y1, . . . , YNn}. Set R′m,n := Rm,n(X′m,Y′n). Applying Lemma 1, and (12) cf. [49], we can write

∣∣∣R′m,n −Rm,n

∣∣∣ ≤ Kd
(
|Mm −m|+ |Nn − n|). (A62)

Here, Kd denotes the largest possible degree of any vertex of the MST graph in Rd. Moreover, by the
matter of Poisson variable fact and using Stirling approximation [51], we have

E
[∣∣Mm −m

∣∣] = e−m mm+1

m!
≤ e−m mm+1

√
2πmm+1/2e−m

= O
(

m1/2). (A63)

Similarly, E
[∣∣Nn − n

∣∣] = O(n1/2). Therefore, by (A62), one yields

E[Rm,n] = E
[
Rm,n −R′m,n

]
+E

[
R′m,n

]
= O

(
(m + n)1/2)+E

[
R′m,n

]
. (A64)

Therefore,

E[Rm,n]

m + n
=

E
[
R′m,n

]

m + n
+ O

(
(m + n)−1/2). (A65)

Hence, it will suffice to obtain the rate of convergence of E
[
R′m,n

]/
(m+ n) in the RHS of (A65). For this,

let mi, ni denote the number of Poisson process samples X′m and Y′n with the FR statistic R′m,n, falling
into partitions Q′i with FR statistic R′mi ,ni

. Then, by virtue of Lemma 4, we can write

E
[
R′m,n

]
≤

M

∑
i=1

E
[
R′mi ,ni

]
+ 2 c1 ld−1(m + n)1/d.
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Note that the Binomial RVs mi, ni are independent with marginal distributions mi ∼ B(m, ail−d), ni ∼

B(n, bil−d), where ai, bi are non-negative constants satisfying, ∀i, ai ≤ bi and
ld

∑
i=1

ail−d =
ld

∑
i=1

bil−d = 1.

Therefore,

E
[
R′m,n

]
≤

M

∑
i=1

E
[
E
[
R′mi ,ni

|mi, ni

]]
+ 2 c1 ld−1(m + n)1/d. (A66)

Let us first compute the internal expectation given mi, ni. For this reason, given mi, ni,

let Zmi ,ni
1 , Zmi ,ni

2 , . . . be independent variables with common densities gmi ,ni (x) =
(

mi f0(x) +

ni f1(x)
)/

(mi + ni), x ∈ Rd. Moreover, let Lmi ,ni be an independent Poisson variable with mean

mi + ni. Denote F′mi ,ni
= {Zmi ,ni

1 , . . . , Zmi ,ni
Lmi .ni
} a non-homogeneous Poisson of rate mi f0 + ni f1. Let Fmi ,ni

be the non-Poisson point process {Zmi ,ni
1 , . . . Zmi ,ni

mi+ni
}. Assign a mark from the set {1, 2} to each points

of F′mi ,ni
. Let X̃′mi

be the sets of points marked 1 with each probability mi f0(x)
/(

mi f0(x) + ni fi(x)
)

and
let Ỹ′ni

be the set points with mark 2. Note that owing to the marking theorem [52], X̃′mi
and Ỹ′ni

are
independent Poisson processes with the same distribution as X′mi

and Y′ni
, respectively. Considering

R̃′mi .ni
as FR statistic over nodes in X̃′mi

∪ Ỹ′ni
we have

E
[
R′mi ,ni

|mi, ni
]
= E

[
R̃′mi ,ni

|mi, ni
]
.

Again using Lemma 1 and analogous arguments in [49] along with the fact that E
[
|Mm + Nn −

m− n|
]
= O((m + n)1/2), we have

E
[
R̃′mi ,ni

|mi, ni
]
= E

[
E
[
R̃′mi ,ni

|F′mi ,ni

]]

= E
[

∑ ∑
s<j<mi+ni

Pmi ,ni (Zmi ,ni
s , Zmi ,ni

j )1
{
(Zmi ,ni

s , Zmi ,ni
j ) ∈ Fmi ,ni

}]
+ O((mi + ni)

1/2)).

Here,

Pmi ,ni (x, y) := Pr{mark x 6= mark y, (x, y) ∈ F′mi ,ni
}

=
mi f0(x)ni f1(y) + ni f1(x)mi f0(y)(

mi f0(x) + ni f1(x)
)(

mi f0(y) + ni f1(y)
) .

By owing to Lemma A6, we obtain

M

∑
i=1

Emi ,niE
[

∑ ∑
s<j<mi+ni

Pmi ,ni (Zmi ,ni
s , Zmi ,ni

j )1
{
(Zmi ,ni

s , Zmi ,ni
j ) ∈ Fmi ,ni

}]
+

M

∑
i=1

Emi ,ni

[
O
(
(mi + ni)

)1/2]

=
M

∑
i=1

Emi ,ni

[
(mi + ni)

∫
gmi ,ni (x, x)Pmi ,ni (x, x) dx +

(
ςη(l, mi, ni) + O

(
(mi + ni)

−η/d)

+O
(
(mi + ni)

−1/d))(mi + ni)
]
+

M

∑
i=1

Emi ,ni

[
O
(
(mi + ni)

1/2)],

(A67)

where

ςη(l, mi, ni) =
(

O
(
l/(mi + ni)

)
− 2 ld/(mi + ni)

) ∫
gmi ,ni (x)Pmi ,ni (x, x) dx + O(l−dη).
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The expression in (A67) equals

M

∑
i=1

∫
Emi ,ni

[ 2mini f0(x) f1(x)
mi f0(x) + ni f1(x)

]
dx +

M

∑
i=1

Emi ,ni

[
(mi + ni) ςη(l, mi, ni)

]

+O
(
ld(m + n)1−η/d)+ O

(
ld(m + n)1/2).

(A68)

Because of Jensen inequality for concave function:

M

∑
i=1

Emi ,ni

[
O
(
(mi + ni)

1/2)] =
M

∑
i=1

O
(
E[mi] +E[ni]

)1/2

=
M

∑
i=1

O(mail−d + nbil−d)1/2 = O
(
ld(m + n)1/2).

In addition, similarly since η < d, we have

M

∑
i=1

Emi ,ni

[
O
(
(mi + ni)

1−η/d)] = O
(
ld(m + n)1−η/d), (A69)

and, for d ≥ 2, one yields

M

∑
i=1

Emi ,ni

[
O
(
(mi + ni)

1−1/d)] = O
(
ld(m + n)1−1/d) = O

(
ld(m + n)1/2). (A70)

Next, we state the following lemma (Lemma 1 from [30,31]), which will be used in the sequel:

Lemma A13. Let k(x) be a continuously differential function of x ∈ R which is convex and monotone

decreasing over x ≥ 0. Set k′(x) =
dk(x)

dx
. Then, for any x0 > 0, we have

k(x0) +
k(x0)

x0
|x− x0| ≥ k(x) ≥ k(x0)− k′(x0)|x− x0|. (A71)

Next, continuing the proof of (A60), we attend to find an upper bound for

Emi ,ni

[ mini
mi f0(x) + ni f1(x)

]
. (A72)

In order to pursue this aim, in Lemma A13, consider k(x) =
1
x

and x0 = Emi ,ni

[
mi f0(x) + ni f1(x)

]
,

therefore as the function k(x) is decreasing and convex, one can write

1
mi f0(x) + ni f1(x)

≤ 1
Emi ,ni

[
mi f0(x) + ni f1(x)

] +

∣∣∣mi f0(x) + ni f1(x)−Emi ,ni

[
mi f0(x) + ni f1(x)

]∣∣∣
E2

mi ,ni

[
mi f0(x) + ni f1(x)

] . (A73)

Using the Hölder inequality implies the following inequality:

Emi ,ni

[ mini
mi f0(x) + ni f1(x)

]
≤ Emi ,ni [mini]

Emi ,ni

[
mi f0(x) + ni f1(x)

]

+

(
Emi ,ni

[
m2

i n2
i
])1/2

E2
mi ,ni

[
mi f0(x) + ni f1(x)

] ×
(
Emi ,ni

[
mi f0(x) + ni f1(x)−Emi ,ni

[
mi f0(x) + ni f1(x)

]]2
)1/2

.

(A74)
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As random variables mi, ni are independent, and because of V[mi] ≤ mail−d, V[ni] ≤ nbil−d, we can
claim that the RHS of (A74) becomes less than and equal to

mnaibil−2d

mail−d f0(x) + nbil−d f1(x)
+

(
αiβi

(
mail−d f 2

0 (x) + nbil−d f 2
1 (x)

))1/2

(
mai f0(x) + nbi f1(x)

)2 , (A75)

where

αi = maild (1− ail−d) + m2a2
i ,

βi = nbild (1− bil−d) + n2b2
i .

Going back to (A66), we have

E
[
R′m,n(Xm,Yn)

]
≤

M

∑
i=1

aibil−d
∫ 2 mn f0(x) f1(x)

mai f0(x) + nbi f1(x)
dx

+
M

∑
i=1

2
∫ f0(x) f1(x)

(
αiβi

(
mail−d f 2

0 (x) + nbil−d f 2
1 (x)

))1/2

(
mai f0(x) + nbi f1(x)

)2 dx

+
M

∑
i=1

Emi ,ni

[
(mi + ni) ςη(l, mi, ni)

]
+ O

(
ld(m + n)1−η/d)

+O
(
ld(m + n)1/2)+ 2c1 ld−1(m + n)1/d.

(A76)

Finally, owing to ai ≤ bi and
M

∑
i=1

bil−d = 1, when
m

m + n
→ p, we have

E
[
R′m,n(Xm,Yn)

]

m + n
≤
∫ 2 pq f0(x) f1(x)

p f0(x) + q f1(x)
dx

+
M

∑
i=1

2
∫ f0(x) f1(x)

(
αiβi

(
mail−d f 2

0 (x) + nbil−d f 2
1 (x)

))1/2

(
mai f0(x) + nbi f1(x)

)2
(m + n)

dx

+
1

m + n

M

∑
i=1

Emi ,ni

[
(mi + ni) ςη(l, mi, ni)

]
+ O

(
ld(m + n)−η/d)

+O
(
ld(m + n)−1/2)+ 2c1 ld−1 (m + n)(1/d)−1.

(A77)

Passing to Definition 2, MST∗, and Lemma A2, a similar discussion as above, consider the
Poisson processes samples and the FR statistic under the union of samples, denoted by R′∗m,n,
and superadditivity of dual R∗m,n, we have

E
[
R′∗m,n(Xm,Yn)

]
≥

M

∑
i=1

E
[
R′∗mi ,ni

(
(Xm,Yn) ∩Qi

)]
− c2 ld

=
M

∑
i=1

Emi ,ni

[
E
[
R′∗mi ,ni

(
(Xm,Yn) ∩Qi

)
|mi, ni

]]
− c2 ld

≥
M

∑
i=1

Emi ,ni

[
E
[
R′mi ,ni

(
(Xm,Yn) ∩Qi

)
|mi, ni

]]
− c2 ld,

(A78)
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the last line is derived from Lemma A2, (ii), inequality (A8). Owing to the Lemma A6, (A69), and (A70),
one obtains

E
[
R′∗m,n(Xm,Yn)

]
≥

M

∑
i=1

∫
Emi ,ni

[ 2mini f0(x) f1(x)
mi f0(x) + ni f1(x)

]
dx

−
M

∑
i=1

Emi ,ni

[
(mi + ni) ςη(l, mi, ni)

]
−O

(
ld(m + n)1−η/d)−O

(
ld(m + n)1/2)− c2 ld.

(A79)

Furthermore, by using the Jenson’s inequality, we get

Emi ,ni

[ mini
mi f0(x) + ni f1(x)

]
≥ E[mi]E[ni]

E[mi] f0(x) +E[ni] f1(x)
=

l−d(mainbi
)

mai f0(x) + nbi f1(x)
.

Therefore, since ai ≤ bi, we can write

Emi ,ni

[ mini
mi f0(x) + ni f1(x)

]
≥ l−dmn aibi

bi
(
m f0(x) + n f1(x)

) =
l−dmn ai(

m f0(x) + n f1(x)
) . (A80)

Consequently, the RHS of (A79) becomes greater than or equal to

M

∑
i=1

ai l−d
∫ 2mn f0(x) f1(x)

m f0(x) + n f1(x)
dx

−
M

∑
i=1

Emi ,ni

[
(mi + ni) ςη(l, mi, ni)

]
−O

(
ld(m + n)1−η/d)−O

(
ld(m + n)1/2)− c2 ld.

(A81)

Finally, since
M

∑
i=1

ail−d = 1 and
m

m + n
→ p, we have

E
[
R′∗m,n(Xm,Yn)

]

m + n
≥
∫ 2pq f0(x) f1(x)

p f0(x) + q f1(x)
dx− (m + n)−1

M

∑
i=1

Emi ,ni

[
(mi + ni) ς(l, mi, ni)

]

−O
(
ld(m + n)−η/d)−O

(
ld(m + n)−1/2)− c2 ld(m + n)−1.

(A82)

By definition of the dual R∗m,n and (i) in Lemma A2,

E
[
R′m,n(Xm,Yn)

]

m + n
+

cd 2d

m + n
≥

E
[
R′∗m,n(Xm,Yn)

]

m + n
, (A83)

we can imply

E
[
R′m,n(Xm,Yn)

]

m + n
≥
∫ 2pq f0(x) f1(x)

p f0(x) + q f1(x)
dx− (m + n)−1

M

∑
i=1

Emi ,ni

[
(mi + ni) ςη(l, mi, ni)

]

−O
(
ld(m + n)−η/d)−O

(
ld(m + n)−1/2)− c2 ld(m + n)−1 − cd 2d (m + n)−1.

(A84)
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The combination of two lower and upper bounds (A84) and (A77) yields the following result

∣∣∣
E
[
R′m,n(Xm,Yn)

]

m + n
−
∫ 2pq f0(x) f1(x)

p f0(x) + q f1(x)
dx
∣∣∣

≤ O
(
ld(m + n)−η/d)+ O

(
ld(m + n)−1/2)+ 2 c1 ld−1 (m + n)(1/d)−1

+cd 2d (m + n)−1 + c2 (m + n)−1 ld +
1

m + n

M

∑
i=1

Emi ,ni

[
(mi + ni) ςη(l, mi, ni)

]

+
M

∑
i=1

2
∫ f0(x) f1(x)

(
αiβi

(
mail−d f 2

0 (x) + nbil−d f 2
1 (x)

))1/2

(
mai f0(x) + nbi f1(x)

)2
(m + n)

dx.

(A85)

Recall ςη(l, mi, ni), then we obtain

M

∑
i=1

Emi ,ni

[
(mi + ni) ςη(l, mi, ni)

]
=

M

∑
i=1

O(l)
∫

E
[ 2mini f0(x) f1(x)
(mi + ni)(mi f0(x) + ni f1(x))

]
dx

−2 ld
M

∑
i=1

∫
E
[ 2mini f0(x) f1(x)
(mi + ni)(mi f0(x) + ni f1(x))

]
dx + O(l−η)

M

∑
i=1

Emi ,ni [mi + ni].

(A86)

In addition, we have

Emi ,ni

[ 2mini f0(x) f1(x)
(mi + ni)(mi f0(x) + ni f1(x))

]
≥ 1

m + n
Emi ,ni

[ 2mini f0(x) f1(x)
(mi f0(x) + ni f1(x))

]
. (A87)

This implies

M

∑
i=1

∫
E
[ 2mini f0(x) f1(x)
(mi + ni)(mi f0(x) + ni f1(x))

]
dx ≥

∫ 2pq f0(x) f1(x)
p f0(x) + q f1(x)

dx. (A88)

Note that the above inequality is derived from (A80) and
m

m + n
→ p. Furthermore,

1
m + n

M

∑
i=1

O(l)
∫

Emi ,ni

[ 2mini f0(x) f1(x)
(mi + ni)(mi f0(x) + ni f1(x))

]
dx

≤
M

∑
i=1

O(l)
∫

Emi ,ni

[ 2mini f0(x) f1(x)
(mi + ni)2(mi f0(x) + ni f1(x))

]
dx

≤
M

∑
i=1

O(l)
∫

Emi ,ni

[ 2 f0(x) f1(x)
(mi f0(x) + ni f1(x))

]
dx.

(A89)

The last line holds because of mini ≤ (mi + ni)
2. Going back to (A73), we can give an upper bound for

the RHS of above inequality as

Emi ,ni

[(
mi f0(x) + ni f1(x)

)−1
]
≤
(
mail−d f0(x) + nbil−d f1(x)

)−1

+
(
Emi ,ni

∣∣∣mi f0(x) + ni f1(x)−
(
E[mi] f0(x) +E[ni] f1(x)

∣∣∣
)/(

mail−d f0(x) + nbil−d f1(x)
)2.
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Note that we have assumed ai ≤ bi and by using Hölder inequality we write

Emi ,ni

[(
mi f0(x) + ni f1(x)

)−1
]
≤ ld(ai)

−1(m f0(x) + n f1(x)
)−1

+
(

f0(x)
√
V(mi) + f1(x)

√
V(ni)

)/(
a2

i l−d(m f0(x) + n f1(x))2) ≤ ld(ai)
−1(m f0(x) + n f1(x)

)−1

+ l−d/2√bi

(
f0(x)

√
m + f1(x)

√
n
)/(

a2
i l−d(m f0(x) + n f1(x))2).

(A90)

As result, we have

M

∑
i=1

O(l)
∫

Emi ,ni

[ 2 f0(x) f1(x)
(mi f0(x) + ni f1(x))

]
dx

≤
M

∑
i=1

O(l)
∫

ld(ai)
−1 2 f0(x) f1(x)

m f0(x) + n f1(x)
dx

+
M

∑
i=1

O(l)
∫

l−d/2
√

bi
2 f0(x) f1(x)

(
f0(x)

√
m + f1(x)

√
n
)

a2
i l−d

(
m f0(x) + n f1(x)

)2 dx.

(A91)

As a consequence, owing to (A85), for 0 < η ≤ 1, d ≥ 2, which implies η ≤ d− 1, we can derive (A61).
Thus, the proof can be concluded by giving the summarized bound in (A60).

Lemma A8: For h = 1, 2, . . . , let δh
m,n be the function c hd−1(m + n)1/d. Then, for ε > 0, we have

P
(
Rm,n(Xm,Yn) ≤

hd

∑
i=1

Rmi ,ni (Xmi ,Yni ) + 2ε
)
≥ ε− δh

m,n

ε
. (A92)

Note that in case ε ≤ δh
m,n the above claimed inequality is trivial.

Proof. Consider the cardinality of the set of all edges of MST
( hd⋃

i=1
Qi
)

which intersect two different

subcubes Qi and Qj, |D|. Using the Markov inequality, we can write

P
(
|D| ≥ ε

)
≤ E(|D|)

ε
,

where ε > 0. Since E|D| ≤ c hd−1(m + n)1/d := δh
m,n, therefore for ε > δh

m,n and h = 1, 2, . . . :

P
(
|D| ≥ ε

)
≤ δh

m,n

ε
.

In addition, if Qi, i = 1, . . . hd is a partition of [0, 1]d into congruent subcubes of edge length 1/h, then

P
( hd

∑
i=1

Rmi ,ni (Xm,Yn ∩Qi) + 2|D| ≥
hd

∑
i=1

Rmi ,ni (Xm,Yn ∩Qi) + 2ε

)
≤ δh

m,n

ε
. (A93)

This implies

P
( hd

∑
i=1

Rmi ,ni (Xm,Yn ∩Qi) + 2|D| ≤
hd

∑
i=1

Rmi ,ni (Xm,Yn ∩Qi) + 2ε

)
≥ 1− δh

m,n

ε
. (A94)
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By subadditivity (A6), we can write

Rm,n(Xm,Yn) ≤
hd

∑
i=1

Rmi ,ni (Xm,Yn ∩Qi) + 2|D|,

and this along with (A94) establishes (A92).

Lemma A9: (Growth bounds for Rm,n) Let Rm,n be the FR statistic. Then, for given non-negative

ε, such that ε ≥ h2 δh
m,n, with at least probability g(ε) := 1− h δh

m,n

ε
, h = 2, 3, . . . , we have

Rm,n(Xm,Yn) ≤ c′′ε,h
(
#Xm #Yn

)1−1/d. (A95)

Here, c′′ε,h = O
(

ε

hd−1 − 1

)
depending only on ε, h. Note that, for ε < h2 δh

m,n, the claim is trivial.

Proof. Without loss of generality, consider the unit cube [0, 1]d. For given h, if Qi, i = 1, . . . hd is a
partition of [0, 1]d into congruent subcubes of edge length 1/h, then, by Lemma A8, we have

P
(
Rm,n(Xm,Yn) ≤

hd

∑
i=1

Rmi ,ni (Xmi ,Yni ) + 2ε
)
≥ ε− δh

m,n

ε
. (A96)

We apply the induction methodology on #Xm and #Yn. Set c := sup
x,y∈[0,1]d

Rm,n({x, y}) which is finite

according to assumption. Moreover, set c2 :=
2ε

hd−1 − 1
and c1 := c+ d hd−1c2. Therefore, it is sufficient

to show that for all (Xm,Yn) ∈ [0, 1]d with at least probability g(ε)

Rm,n(Xm,Yn) ≤ c1
(
#Xm #Yn

)(d−1)/d. (A97)

Alternatively, as for the induction hypothesis, we assume the stronger bound

Rm,n(Xm,Yn) ≤ c1
(
#Xm #Yn

)(d−1)/d − c2 (A98)

holds whenever #Xm < m and #Yn < n with at least probability g(ε). Note that d ≥ 2, ε > 0 and c1, c2

both depend on ε, h. Hence,

c1 − c2 = c + c2
(
d hd−1 − 1

)
≥ c + c2

(
hd−1 − 1

)
= c + 2ε ≥ c,

which implies P(Rm,n ≤ c1 − c2) ≥ P(Rm,n ≤ c). In addition, we know that P(Rm,n ≤ c) = 1 ≥ g(ε);
therefore, the induction hypothesis holds particularly #Xm = 1 and #Yn = 1. Now, consider the
partition Qi of [0, 1]d; therefore, for all 1 ≤ i ≤ hd, we have mi := #(Xm ∩ Qi) < m and ni :=
#(Yn ∩Qi) < n and thus, by induction hypothesis, one yields with at least probability g(ε)

Rmi ,ni (Xm,Yn ∩Qi) ≤ c1 (mi ni)
1−1/d − c2. (A99)

Set B the event
{

all i : Rmi ,ni ≤ c1 (mi ni)
1−1/d − c2

}
and Bi stands with the event

{
Rmi ,ni ≤

c1 (mi ni)
1−1/d − c2

}
. From (A96) and since Qi’s are partitions, which implies

P(B) =
(

P(Bi)
)hd
≤ P(Bi), P(Bc) = P(

ld⋃
i=1

Bc
i ) ≤

hd

∑
i=1

P(Bc
i ) ≤ hd(1− g(ε)

)
,

and P(B) =
hd

∏
i=1

P(Bi) ≥
(

g(ε)
)hd

,
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we thus obtain

ε− δh
m,n

ε
≤ P

(
Rm,n ≤

hd

∑
i=1

Rmi ,ni (Xmi ,Yni ) + 2ε
∣∣B
)

P(B) + P
(
Rm,n ≤

hd

∑
i=1

Rmi ,ni (Xmi ,Yni ) + 2ε
∣∣Bc
)

P(Bc)

≤ P
(
Rm,n ≤

ld

∑
i=1

Rmi ,ni (Xmi ,Yni ) + 2ε
∣∣B
)

P(B) + P(Bc).

Equivalently,

P
(
Rm,n ≤

hd

∑
i=1

Rmi ,ni (Xmi ,Yni ) + 2ε
∣∣B
)
≥
(
1− δh

m,n

ε
− 1 + P(B)

)/
P(B) = 1− δh

m,n

ε P(B) .

In fact, in this stage, we want to show that

1− δh
m,n

ε P(B) ≥ g(ε) or P(B) ≥ δh
m,n

ε (1− g(ε))
.

Since P(B) ≥
(

g(ε)
)hd

, therefore it is sufficient to derive that
(

g(ε)
)hd
≥ δh

m,n

ε (1− g(ε))
. Indeed, for

given g(ε) =
( ε− h δh

m,n

ε

)
, we have g(ε) ≤ ε− δh

m,n

ε
hence

δh
m,n

ε (1− g(ε))
=

1
h
≤ 1. Furthermore, we

know
1
h
≤ 1− 1

h(1/hd)
and since ε ≥ h2 δh

m,n this implies
h δh

m,n

ε
≤ 1

h
and consequently

h δh
m,n

ε
≤ 1− 1

hh−d

or

g(ε)hd
=
( ε− h δh

m,n

ε

)hd

≥ 1
h
=

δh
m,n

ε (1− g(ε))
.

This implies the fact that for ε ≥ h2δh
m,n

P
(
Rm,n ≤

hd

∑
i=1

(
c1(mini)

1−1/d − c2
)
+ 2ε

)
≥ g(ε), where g(ε) =

ε− h δh
m,n

ε
.

Now, let γ := #{i : mi, ni > 0} and using Hölder inequality gives

P
(
Rm,n(Xm,Yn) ≤ c1γ1/d(m n)1−1/d − γc2 + c2 (hd−1 − 1)

)
≥ g(ε). (A100)

Next, we just need to show that c1γ1/d(m n)1−1/d − γc2 + c2 (hd−1 − 1) in (A100) is less than or equal
to c1(m n)1−1/d − c2, which is equivalent to show

c2
(
hd−1 − γ

)
≤ c1(m n)1−1/d(1− γ1/d).

We know that m, n ≥ 1 and c1 ≥ d hd−1c2, so it is sufficient to get

c2
(
hd−1 − γ

)
≤ d hd−1c2(1− γ1/d), (A101)

choose t as γ = t hd, then 0 < t ≤ 1, so (A101) becomes

(h−1 − t) ≥ d h−1(1− h t1/d). (A102)
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Note that the function d h−1(1− h t1/d) + t− h−1 has a minimum at t = 1 which implies (A101) and
subsequently (A95). Hence, the proof is completed.

Lemma A10: (Smoothness for Rm,n) Given observations of

Xm := (Xm′ ,Xm′′) = {X1, . . . , Xm′ , Xm′+1, . . . , Xm},

such that m′ + m′′ = m and Yn := (Yn′ ,Yn′′) = {Y1, . . . , Yn′ , Yn′+1, . . . , Yn}, where n′ + n′′ = n,
denote Rm,n(Xm,Yn) as before, the number of edges of MST(Xm,Yn) which connect a point of Xm

to a point of Yn. Then, for integer h ≥ 2, for all (Xn,Ym) ∈ [0, 1]d, ε ≥ h2 δh
m,n, where δh

m,n =

O
(
hd−1(m + n)1/d), we have

P
(∣∣∣Rm,n(Xm,Yn)−Rm′ ,n′(Xm′ ,Yn′)

∣∣∣ ≤ c̃ε,h
(
#Xm′′ #Yn′′

)1−1/d
)
≥ 1− 2h δh

m,n

ε
, (A103)

where c̃ε,h = O
(

ε

hd−1 − 1

)
. For the case ε < h2 δh

m,n, this holds trivially.

Proof. We begin with removing the edges which contain a vertex in Xm′′ and Yn′′ in minimal spanning
tree on (Xm,Yn). Now, since each vertex has bounded degree, say cd, we can generate a subgraph in
which has at most cd(#Xm′′ + #Yn′′) components. Next, choose one vertex from each component and
form the minimal spanning tree on these vertices, assuming all of them can be considered in FR test
statistic, we can write

Rm,n(Xm,Yn) ≤ Rm′ ,n′(Xm′ ,Yn′) + c′′ε,h
(
c2

d #Xm′′ #Yn′′
)1−1/d,

or equivalently

≤ Rm′ ,n′(Xm′ ,Yn′) + ch
ε1
(

#Xm′′ #Yn′′
)1−1/d,

(A104)

with probability at least g(ε), where g(ε) is as in Lemma A9. Note that this expression is obtained
from Lemma A9. In this stage, it remains to show that with at least probability g(ε)

Rm,n(Xm,Yn) ≥ Rm′ ,n′(Xm′ ,Yn′)− c̃ε,h
(
#Xm′′ #Yn′′

)1−1/d, (A105)

which, again by using the method before, with at least probability g(ε), one derives

Rm′ ,n′(Xm′ ,Yn′) ≤ Rm,n(Xm,Yn) + ĉε,h
(
c2

d (#Xm′′ #Yn′′)
)1−1/d,

orequivalently
≤ Rm,n(Xm,Yn) + ch

ε2
(
#Xm′′ #Yn′′

)1−1/d.

Letting c̃ε,h = max{ch
ε1, ch

ε2} implies (A105). Thus,

P
(∣∣∣Rm,n(Xm,Yn)−Rm′ ,n′(Xm′ ,Yn′)

∣∣ ≥ c̃ε,h
(
#Xm′′ #Yn′′

)1−1/d
)
≤ 2− 2 g(ε), (A106)

Hence, the smoothness is given with at least probability 2 g(ε) − 1 as in the statement of
Lemma A10.

Lemma A11: (Semi-Isoperimetry) Let µ be a measure on [0, 1]d; µn denotes the product measure
on space ([0, 1]d)n. In addition, let Me denotes a median of Rm,n. Set

A :=
{
Xm ∈

(
[0, 1]d

)m,Yn ∈
(
[0, 1]d

)n;Rm,n(Xm,Yn) ≤ Me

}
. (A107)

272



Entropy 2019, 21, 1144

Then,

µm+n
({

x′ ∈ ([0, 1]d)m, y′ ∈ ([0, 1]n) : φA(x′) φA(y′) ≥ t
})
≤ 4 exp

( −t
8(m + n)

)
. (A108)

Proof. Let φA(z′) = min{H(z, z′), z ∈ A}. Using Proposition 6.5 in [17], isoperimetric inequality,
we have

µm+n
({

z′ ∈ ([0, 1]d)m+n : φA(z′) ≥ t
})
≤ 4 exp

( −t2

8(m + n)

)
. (A109)

Furthermore, we know that

(
φA(x′) + φA(y′)

)2
≥ φA(x′) φA(y′),

hence

µm+n
({

(x′ ∈ ([0, 1]d)m, y′ ∈ ([0, 1]n) : φA(x′)φA(y′) ≥ t
})

≤ µm+n
({

(x′ ∈ ([0, 1]d)m, y′ ∈ ([0, 1]n) :
(
φA(x′) + φA(y′)

)2 ≥ t
})

= µm+n
({

(x′ ∈ ([0, 1]d)m, y′ ∈ ([0, 1]n) : φA(x′) + φA(y′) ≥
√

t
})

.

(A110)

The last equality in (A110) achieves because of φA(x′), φA(y′) ≥ 0 and note that φA(z′) ≥ φA(x′) +
φA(y′). Therefore,

µm+n
({

(x′ ∈ ([0, 1]d)m, y′ ∈ ([0, 1]n) : φA(x′) + φA(y′) ≥
√

t
})

≤ µm+n
({

(z′ ∈ ([0, 1]d)m+n : φA(z′) ≥
√

t
})

.

By recalling (A109), we derive the bound (A108).

Lemma A12: (Deviation of the Mean and Median) Consider Me as a median of Rm,n. Then, for

given g(ε) = 1− h δh
m,n

ε
, and δh

m,n = O
(
hd−1(m + n)1/d) such that for h ≥ 7, ε ≥ h2δh

m,n, we have

∣∣∣E
[
Rm,n(Xm,Yn)

]
−Me

∣∣∣ ≤ Cm,n(ε, h) (m + n)(d−1)/d, (A111)

where Cm,n(ε, h) stands with a form depends on ε, h, m, n as

Cm,n(ε, h) = C
(

1−
((

2 (2 g(ε)− 1)2)−1
))−1

, (A112)

where C is a constant.
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Proof. Following the analogous arguments in [17,53], we have

∣∣∣E
[
Rm,n(Xm,Yn)

]
−Me

∣∣∣ ≤ E
∣∣∣Rm,n(Xm,Yn)−Me

∣∣∣ =
∫ ∞

0
P
(∣∣∣Rm,n(Xm,Yn)−Me

∣∣∣ ≥ t
)

dt

≤ 8
(

1−
(

1
/(

2 (2 g(ε)− 1)2))
)−1 ∫ ∞

0
exp

( −td/(d−1)

8(4ε)d/d−1(m + n)

)
dt

= C
(

1−
((

2 (2 g(ε)− 1)2)−1
))−1

(m + n)(d−1)/d,

(A113)
where g(ε) = 1−

(
h O

(
hd−1(m + n)1/d))/ε. The inequality in (A113) is implied from Theorem 5.

Hence, the proof is completed.
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Abstract: Pearson residuals aid the task of identifying model misspecification because they compare
the estimated, using data, model with the model assumed under the null hypothesis. We present
different formulations of the Pearson residual system that account for the measurement scale of
the data and study their properties. We further concentrate on the case of mixed-scale data, that is,
data measured in both categorical and interval scale. We study the asymptotic properties and the
robustness of minimum disparity estimators obtained in the case of mixed-scale data and exemplify
the performance of the methods via simulation.

Keywords: contingency tables; disparity; mixed-scale data; pearson residuals; residual adjustment
function; robustness; statistical distances

1. Introduction

Minimum disparity estimation has been studied extensively in models where the
scale of the data is either interval or ratio (Beran [1], Basu and Lindsay [2]). It has also
been studied in the discrete outcomes case. Specifically, when the response variable is
discrete and the explanatory variables are continuous, Pardo et al. [3] introduced a general
class of distance estimators based on φ-divergence measures, the minimum φ-divergence
estimators, and they studied their asymptotic properties. The estimators can be viewed as
an extension/generalization of the Maximum Likelihood Estimator (MLE). Pardo et al. [4]
used the minimum φ-divergence estimator in a φ-divergence statistic to perform goodness-
of-fit tests in logistic regression models, while Pardo and Pardo [5] extended the previous
works to address solving problems for testing in generalized linear models with binary
scale data.

The case where data are measured on discrete scale (either on ordinal or gener-
ally categorical scale) has also attracted the interest of other researchers. For instance,
Simpson [6] demonstrated that minimum Hellinger distance estimators fulfill desirable
robustness properties and for this reason can be effective in the analysis of count data prone
to outliers. Simpson [7] also suggested tests based on the minimum Hellinger distance
for parametric inference which are robust as the density of the (parametric) model can
be nonparametrically estimated. In contrast, Markatou et al. [8] used weighted likeli-
hood equations to obtain efficient and robust estimators in discrete probability models
and applied their methods to logistic regression, whereas Basu and Basu [9] considered
robust penalized minimum disparity estimators for multinomial models with good small
sample efficiency.

Moreover, Gupta et al. [10], Martín and Pardo [11] and Castilla et al. [12] used the
minimum φ-divergence estimator to provide solution to testing problems in polytomous
regression models. Working in a similar fashion, Martín and Pardo [13] studied the proper-
ties of the family of φ-divergence estimators for log-linear models with linear constraints
under multinomial sampling in order to identify potential associations between various

Entropy 2021, 23, 107. https://doi.org/10.3390/e23010107 https://www.mdpi.com/journal/entropy

277



Entropy 2021, 23, 107

variables in multi-way contingency tables. Pardo and Martín [14] presented an overview of
works associated with contigency tables of symmetric structure on the basis of minimum
φ-divergence estimators and minimum φ-divergence test statistics. Additional works in-
clude Pardo and Pardo [15] and Pardo et al. [16]. Alternative power divergence measures
have been introduced by Basu et al. [17].

The class of f or φ−divergences was originally introduced by Csiszár [18]. The struc-
tural characteristics of this class and their relationship to the concepts of efficiency and
robustness were studied, for the case of discrete probability models, by Lindsay [19]. Basu
and Lindsay [2] studied the properties of estimators derived by minimizing f−divergences
between continuous models and presented examples showing the robustness results of
these estimates. We also note that Tamura and Boos [20] studied the minimum Hellinger
distance estimation for multivariate location and covariance. Additionally, formal robust-
ness results were presented in Markatou et al. [8,21] in connection with the introduction of
weighted likelihood estimation.

If G is a real valued, convex function, defined on [0, ∞) and such that G(u) con-
verges to 0 as u → ∞, 0G(0/0) = 0, 0G(u/0) = uG∞, G∞ = lim

u→∞
(G(u)/u), the class of

φ−divergences is defined as

ρ(τ, mβ0) = ∑ G
( τ(t)

mβ0(t)

)
mβ0(t),

where τ(·), mβ0(·) are two probability models. Notice that we define ρ(τ, mβ0) on discrete
probability models first, where T = {0, 1, 2, . . . , T} is a discrete sample space, T possibly
infinite, and mβ0(t) ∈ M =

{
mβ(t) : β ∈ B

}
, B is the parameter space B ⊆ Rd.

Furthermore, different forms of the function G(u) provide different statistical distances
or divergences.

We can change the argument of the function G from τ(t)
mβ0

(t) to τ(t)
mβ0

(t) − 1. Then, G is a

function of the Pearson residual which is defined as δ(t) = τ(t)
mβ0

(t) − 1, and takes values in

[−1, ∞). If the measurement scale is interval/ratio, then the Pearson residuals are modified
to reflect and adjust for the discrepancy of scale between data, that are always discrete,
and the assumed continuous probability model (see Basu and Lindsay [2]).

The Pearson residual is used by Lindsay [19], Basu and Lindsay [2] and
Markatou et al. [8,21] in investigating the robustness of the minimum disparity and
weighted likelihood estimators, respectively. This residual system allows one to iden-
tify distributional errors. If, in the equation of Pearson residual, we replace τ(t) with
its best nonparametric representative d(t), the proportion of observations in a sample
with value t, then δ(t) = d(t)

mβ0
(t) − 1. We note that the Pearson residuals are called so

because n ∑ δ2(t)m(t) is Pearson’s chi-squared distance. Furthermore, these residuals
are not symmetric since they take values in [−1, ∞] and are not standardized to have
identical variances.

How does robustness fit into this picture? In the robustness literature, there is a
denial of the model’s truth. Following this logic, the framework based on disparities starts
with goodness-of-fit by identifying a measure that assesses whether the model fits the
data adequately. Then, we examine whether this measure of adequacy is robust and in
what sense. A fundamental tool that assists in measuring the degree of robustness is the
Pearson residual, because it measures model misspecification. That is, Pearson residuals
provide information about the degree to which the specified model mβ fits the data. In this
context, outliers are defined as those data points that have a low probability of occurrence
under the hypothesized model. Such probabilistic outliers are called surprising observations
(Lindsay [19]). Furthermore, the robustness of estimators obtained via minimization of the
divergence measures we discuss here is indicated by the shape of the associated Residual
Adjustment Function (RAF), a concept that is reviewed in Section 2. Of note is that in con-
tingency table analysis, the generalized residual system is used for examination of sources
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of error in models for contingency tables, see, for example, Haberman [22], Haberman and
Sinharay [23]. The concept of generalized residuals in the case of generalized linear models
is discussed, for example, in Pierce and Schafer [24].

Data sets are comprised of data measured on both categorical (ordinal or nominal)
scale and interval/ratio scale. We can think of these data as realizations of discrete and
continuous random variables respectively. Examples of data sets that include mixed-scale
data are electronic health records containing diagnostic codes (discrete) and laboratory mea-
surements (e.g., blood pressure, alanine amino transferase (ALT) measurements on inter-
val/ratio scale) and marketing data (customer records include income and gender informa-
tion). Additional examples include data from developmental toxicology (Aerts et al. [25]),
where fetal data from laboratory animals include binary, categorical and continuous out-
comes. In this context, the joint density of the discrete and continuous random variables is
given as mβ(x, y) = fβ1(y|x)gβ2(x), where βT = (βT

1 , βT
2 ) are parameter vectors indexing

the joint, conditional on x and probability density function of x.
Work on the analysis of mixed-scale data is complicated by the fact that is difficult

to identify suitable joint probability distributions to describe both measurement scales of
the data, although a number of ad hoc methods to the analysis of mixed-scale data have
been used in applications. Olkin and Tate [26] proposed multivariate correlation models
for mixed-scale data. Copulas also provide an attractive approach to modeling the joint
distribution of mixed-scale data, though copulas are less straightforward to implement,
and there are subtle identifiability issues that complicate the specification of a model
(Genest and Nes̆lehová [27]).

To formulate the joint distribution in the mixed-scale variables case one can either
specify the marginal distribution of the discrete variables and the conditional distribution
of the continuous variables. Alternatively, one can specify the marginal distribution of the
continuous variables and the conditional distribution of the discrete variables given the
continuous variables. Of note here is that the direction of factorization generally yields
distinct model interpretations and results. The first approach has received much attention
in the literature, in the context of the analysis of data with mixtures of categorical and
continuous variables. Here, the continuous variables follow different multivariate normal
distributions for each possible setting of the categorical variable values; the categorical vari-
ables then follow an arbitrary marginal multinomial distribution. This model is known in
the literature as the conditional Gaussian distribution model and is central in the discussion
of graphical association models with mixed-scale variables (Lauritzen and Wermuth [28]).
A very special case of this model is used in our simulations.

In this paper, we develop robust methods for mixed-scale data. Specifically, Section 2
reviews basic concepts in minimum disparity estimation, Section 3 defines Pearson residu-
als for data measured in discrete, interval/ratio and mixed-scale, and studies their proper-
ties. Section 4 establishes the optimization problem for obtaining estimators of the model
parameters, while Sections 5 and 6 establish the robustness and asymptotic properties
of these estimators. Finally, Section 7 presents simulations showing the performance of
these methods and Section 8 offers discussions. The Appendix A includes proofs of the
theoretical results.

2. Concepts in Minimum Disparity Estimation

Beran [1] introduced a robust method to estimate the parameters of a statistical model,
called minimum Hellinger distance estimation. The parameter estimator is obtained by
minimizing the Hellinger distance between a parametric model density and a nonparamet-
ric density estimator. Lindsay [19] extended the aforementioned method to incorporate
many other distances, and introduced the concept of the residual adjustment function in
the context of minimum disparity estimation. The Minimum Distance Estimators (MDE) of
a parameter vector β are obtained by minimizing over β, the distance (or disparity)

ρ(d, mβ) = ∑
x

G(δ(x))mβ(x), (1)
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where the assumed model mβ is a probability mass function. When the model mβ is contin-
uous, the MDE of the parameter vector β is obtained by minimizing over β the quantity

ρ( f ∗, m∗β) =
∫

G(δ(x))m∗β(x) dx, (2)

where f ∗(x) =
∫

k(x; t, h)dF̂(t), m∗β(x) =
∫

k(x; t, h)mβ(t) dt, F̂ is the empirical distribution
function obtained from the data and k is a smooth family of kernel functions. One example
is the normal density with mean t and standard deviation h. Furthermore, δ(x) is the Pear-
son residual defined as δ(x) = f ∗(x)/m∗(x)− 1. Lindsay [19] and Basu and Lindsay [2]
discuss the efficiency and robustness properties of these estimators.

If G(δ) = 1
λ(1+λ)

{
(1+ δ)(λ+1)− 1

}
we obtain the class of power divergence measures.

Notice that we have G(0) = 0. Different values of λ offer different measures; for example,
when λ = −2 we obtain Neyman’s chi-squared divided by 2 measure, while λ = −1,−1/2
return the Kullback-Leibler and Hellinger distances, respectively.

Under appropriate conditions, (1) and (2) can be written as

∑ A(δ(x))mβ(x) = 0,

or ∫
A(δ(x))∇m∗β(x) dx = 0,

where A(δ) = (δ + 1)G′(δ)− G(δ) and the prime denotes differentiation with respect to δ.
Lindsay [19] has shown that the structural characteristics of the function A(δ) play an

important role in the robustness and efficiency properties of these methods. Furthermore,
without loss of generality, we can center and rescale A(δ), and define the RAF as follows.

Definition 1 (Lindsay [19]). Let A(δ) be an increasing and twice differentiable function on
[−1, ∞) defined as

A(δ) = (δ + 1)G′(δ)− G(δ),

A(0) = 0,

A′(0) = 1,

where G is strictly convex and twice differentiable with respect to δ on [−1, ∞) with G(0) = 0.
Then, A(δ) is called residual adjustment function.

Remark 1. Since A′(δ) = (1 + δ)G′′(δ), the second order differentiability of G, in addition to its
strict convexity, implies that A(δ) is strictly increasing function of δ on [−1, ∞). Thus, we can
define A(δ) as above without changing the solutions of the aforementioned estimating equations in
the discrete case (see Lindsay [19], p. 1089). In the continuous case, such standardization does not
change the estimating properties of the associated disparities (see Basu and Lindsay [2], p. 687).

Two fundamental and at the same time conflicting goals in robust statistics are the
goals of robustness and efficiency. In the traditional literature on robustness, first order
efficiency is sacrificed and, instead, safety of the estimation or testing method against
outliers is guaranteed. Here, one adheres to the notion that information about robustness
of a method is carried by the influence function. In our setting, using the influence
function to characterize the robustness properties of the associated estimation procedures
is misleading. Instead, the shape of the RAF, A(·), provides information to the extent of
which our procedures can be characterized as robust. The interested reader is directed to
Lindsay [19] for further discussion on this topic.

3. Pearson Residual Systems

In this section, we define various Pearson residuals, appropriate for the measurement
scale of the data. We introduce our notation first.

280



Entropy 2021, 23, 107

Let (yi, xi), i = 1, 2, . . . , n be realizations from n independent and identically dis-
tributed random variables that follow a distribution with density mβ(x, y). Recall that we
use the word density to denote a general probability function, independently of whether
the random variables X, Y are discrete, continuous or mixed. In what follows, we define
different Pearson residual systems that account for the measurement scale of the data and
study their properties.

Case 1: Both X and Y are discrete.
In this case, the pairs (yi, xi) follow a discrete probability mass function mβ(xi, yi). Define
the Pearson residual as

δ(x, y) =
nx,y

n
mβ(y|x)πx

− 1,

where πx = P(X = x) = g(x), and nx,y is the number of observations in the cell with
Y = y and X = x.

Note that this definition of the Pearson residual is nonparametric on the discrete
support of X. In the case of regression, one can carry out a semiparametric argument to
obtain the estimators of the vector β and πx.

We now establish that, under correct model specification, the residual δ(x, y) con-
verges, almost surely, to zero.

Proposition 1. When the model is correctly specified and as n→ ∞,

δ(x, y) a.s.−→ 0.

Proof. Write

δ(x, y) =
nx,y

n
mβ(y|x)πx

− 1

=

nx,y
nx
· nx

n

mβ(y|x)πx
− 1.

Then

nx

n
=

(# of observations in the sample equal to x)
n

=
1
n

n

∑
i=1

I(xi = x),

where I(·) is the indicator function. Furthermore,

E

[
1
n

I(Xi = x)

]
= P(X = x) < ∞,

and by the strong law of large numbers

nx

n
a.s.−−−→

n→∞
E[I(X = x)] = P(X = x) = πx.

Similarly,

nx,y

nx

a.s.−→ mβ(y|x),

therefore

δ(x, y) a.s.−−−→
n→∞

0
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under correct model specification.

Case 2: Y is continuous and X is discrete.
This is the case in some ANOVA models. We can still define the Pearson residual in this
setting as

δ(x, y) =
fn(y, x)

mβ(y, x)
− 1,

where

fn(y, x) = f ∗n (y|x)g(x)

=
{ ∫

k(y, t, h) dF̂n(t|x)
}nx

n
and

mβ(y, x) = m∗β(y|x)g(x)

=
{ ∫

k(y, t, h) dMβ(t|x)
}

πx.

Then,

δ(x, y) =
f ∗n (y|X = x) nx

n
m∗β(y|X = x)πx

− 1.

Proposition 2. Assume the model is correctly specified and k(y, t, h) is a continuous function.
Then,

δ(x, y) a.s.−−−→
n→∞

0.

Proof. Under the strong law of large numbers

nx

n
a.s.−−−→

n→∞
πx.

Under the correct model specification, continuity of the kernel function and the fact that F̂n
converges completely to F (implication of Glivenko-Cantelli theorem),

lim
n→∞

∫
k(y; t, h) dF̂n(t|x)→

∫
k(y; t, h) dF(t|x) =

∫
k(y; t, h) dMβ(t|x) = m∗β(y|x)

(extension of Helly-Bray lemma). Therefore,

nx
n f ∗n (y|x)

πx m∗β(y|x)
a.s.−→ πx

πx
·

m∗β(y|x)
m∗β(y|x)

= 1

and hence

δ(x, y) =
nx
n f ∗n (y|x)

πx m∗β(y|x)
− 1 a.s.−→ 1− 1 = 0.

Case 3: Y is continuous and X is continuous.
In this case, the pairs (yi, xi) follow a continuous probability distribution. The Pearson
residual is then defined as

δ(x, y) =
f ∗n (y, x)

m∗β(y, x)
− 1,
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where

f ∗n (x, y) =
∫

k(x, y; t1, t2) dF̂n(t1, t2),

m∗β(x, y) =
∫

k(x, y; t1, t2)mβ(t1, t2) dt1dt2.

As an example, we take the linear regression model with random carriers X, and
εi ∼ N(0, 1). Furthermore, assume that the random carriers follow a normal distribution
with mean vector µ and covariance matrix Σ. In this case, yi = xT

i β + εi and the quantities
zi = (yi − xT

i β)/σ are independent, identically distributed random variables when β
represents the vector of true parameters. Hence, the zi’s represent realizations of a random
variable Z that has a completely known density f (z). Thus,

mβ(x, y) = mβ(z|x) · g(x), z = (y− xT β)/σ

and hence
m∗β(x, y) = m∗β(y− xT β|X = x)g∗(x),

m∗β(y− xT β|X = x) = m∗β(z|x) =
∫

k(z, t, h) dMβ(t|x),

g∗(x) =
∫

k′(x, t′, h′)g(t′) dt′.

The kernel k(z, t, h) is selected so that it facilitates easy computation. Kernels that
do not entail loss of information when they are used to smooth the assumed parametric
model are called transparent kernels (Basu and Lindsay [2]). Basu and Lindsay [2] provide
a formal definition of transparent kernels and an insightful discussion on the point of why
transparent kernels do not exhibit information loss when convoluted with the hypothesized
model (see Section 3.1 of Basu and Lindsay [2]).

4. Estimating Equations

In this section, we concentrate on cases 1, 2 presented in the previous section. We care-
fully outline the optimization problems and discuss the associated estimating equations
for these two cases. The case where both X and Y are continuous has been discussed in the
literature, see, for example, Markatou et al. [21].

Case 1: Both X and Y are discrete.
In this case, the minimum distance estimators of the parameter vector β and πx are obtained
by solving the following optimization problem

min
β,πx

ρ(d, mβ) (3)

subject to
∑
x

πx = 1.

Optimization problem (3) is equivalent to the problem

min ∑
x,y

G(δ(x, y))mβ(x, y)

subject to
∑
x

πx = 1.

The class of G functions that we use creates distances that belong in the family of
φ-divergences.
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Proposition 3. The estimating equations for β and πx are given as:

∑
x,y

w(δ(x, y)) nx,y u(y|x; β) = 0,

∑
x,y

w(δ(x, y)) nx,y

{ I(X = x)
πx

− 1
}
= 0.

(4)

The function w(δ(x, y)) is a weight function, such that 0 ≤ w(δ(x, y)) ≤ 1, and it is defined as

w(δ(x, y)) = min
{ [A(δ(x, y)) + 1]+

δ(x, y) + 1
, 1
}

with [·]+ indicating the positive part of the function A(δ(x, y)) + 1.

Proof. The main steps of the proof are provided in the Appendix A.1.

Remark 2.

1. The above two estimating equations can be solved with respect to β and πx. In an iterative
algorithm, we can solve the second equation (4) explicitly for πx to obtain

πx =
∑y w(δ(x, y))nx,y

∑x,y w(δ(x, y))nx,y
.

This means that if the model does not fit any of the y, observed at a particular x well, the weight
for this x will drop as well.

2. When A(δ(x, y)) = δ(x, y) the corresponding estimating equation for β becomes
∑x,y nx,yu(y|x; β) = 0 and the MLE is obtained. This is because the corresponding weight
function w(δ(x, y)) = 1. In this case, the estimating equations for the πxs become

∑ nx,y

[
I(X=x)

πx
− 1
]
= 0, the estimating equations for the MLEs of πx.

3. The Fisher consistency property of the function that introduces the estimates guarantees that
the expectation of the corresponding estimating function is 0, under the correct model specification.

Case 2: Y is continuous and X is discrete.
In this case, the estimates of the parameters β and πx are obtained by solving the following
optimization problem

min
β,πx

∑
x

∫
G(δ(x, y))m∗β(y, x)dy

subject to
∑
x

πx = 1.

In general m∗β(y, x) = m∗β(y|x)πx; in the case where y, x are independent m∗β(y, x) =
m∗β(y)πx, and the optimization problem stated above is equivalent to

min
β,πx

∑
x

πx

∫
G(δ(x, y))m∗β(y)dy (5)

subject to
∑
x

πx = 1.
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Proposition 4. The estimating equations for β and πx in the case of independence of y, x are given
as follows:

∑
x

πx

∫
A(δ(x, y))∇β m∗β(y)dy = 0,

∑
x

πx

∫
A(δ(x, y))

[ I(X = x)
πx

− 1
]

m∗β(y)dy = 0,
(6)

where A(δ) is the residual adjustment function (RAF) that corresponds to the function G, and G′(δ)
is the derivative of G with respect to δ.

Proof. Straightforward, after differentiating the Lagrangian with respect to β and πx.

Case 3: Y is continuous and X is continuous.
In this case, we refer the reader to Basu and Lindsay [2].

5. Robustness Properties

Hampel et al. [29] and Hampel [30,31] define robust statistics as the “statistics of
approximate parametric models”, and introduce one of the fundamental tools of robust
statistics, the concept of the influence function, in order to investigate the behavior of a
statistic Tn expressed as a functional T(G). The influence function is a heuristic tool with
the intuitive interpretation of measuring the bias caused by an infinitesimal contamination
at a point x on the estimate standardized by the mass of contamination. Its formal definition
is as follows:

Definition 2. The influence function of a functional T at the distribution F is given as

IF(x; T, F) = lim
t→0

T((1− t)F + t∆x)− T(F)
t

,

in those x ∈ X where the limit exists, 0 ≤ t ≤ 1 and ∆x is the Dirac measure defined as

∆x(u) =

{
1, u = x,
0, u 6= x.

(7)

If an estimator has a bounded influence function, the estimator is considered to be
robust to outliers, that is data which is away from the pattern set by the majority of the
data. The effect of bounding the influence function is the sacrifice of efficiency; estimators
with bounded influence function, while are not affected by outlying points, are not fully
efficient under the correct model specification.

Our goal in calculating the influence function is to show the full efficiency of the
proposed estimators. That is, the influence function of the proposed estimators, under cor-
rect model specification, equals the influence function of the corresponding maximum
likelihood estimators. In our context, robustness of the estimators is quantified by the
associated RAFs (see Lindsay [19] and Basu and Lindsay [2]).

In what follows, we will derive the influence function of the estimators for the pa-
rameter vector β in the case where both y, x are discrete. Similar calculations provide
the influence functions of estimators obtained under the remaining scenarios. To do so,
we need to resort to the estimators’ functional form, denoted by βε, with corresponding
estimating equations

∑
s,t

w(δε(s, t))u(t|s; βε)dε(s, t) = 0,

where dε(s, t) = (1− ε)d(s, t) + ε∆x,y(s, t). The influence function is then obtained by dif-
ferentiating the aforementioned estimating equations with respect to ε and then evaluating
the derivative at ε = 0.
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Proposition 5. The influence function of the β estimator is given by

β′0 = [A(d)]−1B(x, y; d),

where

A(d) =∑
s,t
[δ0(t) + 1]w′(δ0(s, t))u(t|s; β0)uT(t|s; β0)d(s, t)

−∑
s,t

w(δ0(s, t))∇u(t|s; β0)d(s, t),

B(x, y; d) =∑
s,t

[ I(s = x, t = y)
mβ0(t|s)πs

− d(s, t)
mβ0(t|s)πs

w′(δ0(s, t))
]
u(t|s; β0)d(s, t)

−∑
s,t

w(δ0(s, t))u(t|s; β0)d(s, t) + w(δ0(x, y))u(t|s; β0),

with u(t|s; β) = ∇ ln mβ(t|s), and the subscript 0 indicates evaluation at a parametric model.

Proof. The proof is obtained via straightforward differentiation and its main steps are
provided in the Appendix A.2.

Proposition 6. Under the assumption that the model is correct, the influence function derived,
reduces to the influence function of the MLE of β.

Proof. Under the assumption that the adopted model is the correct model, the density
d(s, t) is mβ0(s, t), so that δ(s, t) = 0. Now recall that w(0) = 1 and w′(0) = 0, so the
expression A(d) reduces to

A(d) = −∑
s,t
∇u(t|s; β0)mβ0(s, t)

= i(β, x, y).
(8)

Furthermore, the expression B(x, y; d) reduces to u(y|x; β0), where we assume exchange-
ability of differentiation and integration and use the fact that u(t|s; β0) = u(s, t; β0). Hence,
the influence function is given as

i−1(β; x, y)u(y|x; β0),

which is exactly the influence function of the MLE. Therefore, full efficiency is preserved
under the model.

6. Asymptotic Properties

In what follows, we establish asymptotic normality of the estimators in the case of
discrete variables. The techniques for obtaining asymptotic normality in the mixed-scale
case are similar and not presented here.

Case 1: Both X and Y are discrete.
Recall that the k−th estimating equation is given as ∑x,y w(δβ(x, y))nx,yuk(y|x; β) = 0,
which can be expanded in Taylor series in the neighborhood of the true parameter β0
to obtain:

1
n ∑

x,y
w(δβ(x, y))nx,yuk(y|x; β) ∼= An + (β− β0)

T Bn +
1
2
(β− β0)

TCn(β− β0), (9)
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where
An =

1
n ∑

x,y
w(δβ(x, y))nx,yuk(y|x; β0),

Bn = ∇β

{ 1
n ∑

x,y
w(δβ(x, y))nx,yuk(y|x; β)

}∣∣∣
β0

,
(10)

Cn is a p× p Hessian matrix whose (t, e)−th element is given as

∂2

∂βt∂βe

{ 1
n ∑

x,y
w(δβ(x, y))nx,yuk(y|x; β)

}∣∣∣
β0

.

Under assumptions 1–8, listed in the Appendix A.3, we have the following theorem.

Theorem 1. The minimum disparity estimators of the parameter vector β are asymptotically
normal with asymptotic variance I−1(β0), where I(·) indicates the Fisher information matrix.

7. Simulations

The simulation study presented below has two aims. The first one, is to indicate the
versatility of the disparity methods for different data measurement scales. The second
aim is to exemplify and study the robustness of these methods under different contamina-
tion scenarios.

Case 1: Both X and Y are discrete.
The Cressie-Read family of power divergence is given by

PWD(d, mβ) = ∑ mβ(x, y) · [1 + δ(x, y)]λ+1 − 1
λ(λ + 1)

= ∑ d(x, y) · [d(x, y)/mβ(x, y)]λ − 1
λ(λ + 1)

,

where d(x, y) = nx,y/n is the proportion of observations with value x, y and mβ(x, y) =
mβ(y|x)πx is the density function of the model of interest.

To evaluate the performance of our algorithmic procedure, we use the following
disparity measures, that is,

Likelihood disparity (λ = 0) :

LD(d, mβ) = ∑ d(x, y) ·
{

log[d(x, y)/mβ(x, y)]
}

,

Twice-squared Hellinger’s (λ = −1/2) :

HD(d, mβ) = 2 ·∑
[√

d(x, y)−
√

mβ(x, y)
]2

,

Pearson’s chi-squared divided by 2 (λ = 1) :

PCS(d, mβ) = ∑
[
d(x, y)−mβ(x, y)

]2

2 ·mβ(x, y)
,

Symmetric chi-squared
(

G(δ(x, y)) =
2[δ(x, y)]2

δ(x, y) + 2

)
:

SCS(d, mβ) = 2 ·∑
[
mβ(x, y)− d(x, y)

]2
[
mβ(x, y) + d(x, y)

] .

The data are generated in four different ways using three different sample sizes N,
say N = 100; N = 1000 and N = 10,000. The data format used can be represented in a
5 × 5 contingency table, with ni,j, i = 1, 2, . . . , 5; j = 1, 2, . . . , 5 denoting the counts in the
ij-th cell, ni• and n•j representing the row and column totals, respectively. Furthermore,
the variable x indicates columns, while y indicates the rows. In each of the aforementioned
cases/scenarios, 10,000 tables were generated and that corresponds to the number of Monte
Carlo (MC) replications. Our purpose is to get the mean values of the estimates of the
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parameters mβ(y|x)’s and πx’s along with their corresponding standard deviations (SDs).
Notice that, in this setting, the estimation of πx and mβ(y|x) is completely nonparametric,
that is, no model is assumed for estimating the marginal probabilities of X and Y.

The table was generated by using either a fixed total sample size N or fixed marginal
probabilities. These two data generating schemes imply two different sampling schemes
that could have generated the data with consequences for the probability model one would
use. For example, with fixed total sample size the distribution of the counts is multinomial,
or if the row margin is fixed in advance the distribution of the counts is a product binomial
distribution. In the former case of fixed N, we explored two different scenarios: a balanced
and an imbalanced one. The imbalanced scenario allows for the presence of one zero cell in
the contingency table, whereas the balanced scenario does not. In the latter case of fixed
marginal probabilities, the row marginal probabilities (mβ(y|x)’s) were fixed, while the
column marginals (πx’s) were randomly chosen and these values were used to obtain the
contingency table. In this case, we also explored a balanced and an imbalanced scenario
based on whether the row marginal probabilities were chosen so that to be equal to each
other or not, respectively.

Specifically, under Scenario Ia, where the total sample size N was fixed and the
balanced design was exploited, none of the nij’s (nij 6= 0, ∀ i, j = 1, 2, 3, 4, 5) was set equal
to zero, with equal row and column marginal probabilities. Table 1 presents the mean of
10,000 estimates and the corresponding SDs for all four distances (PCS, HD, SCS, LD) when
N is fixed under the balanced scenario. Table 1 clearly shows that all distances provide
estimates approximately equal to 0.200 regardless of the sample size used. Furthermore,
as the sample size increases, the SDs decrease noticeably.

In Scenario IIa, where the total sample size N was fixed and the contingency table was
structured using the imbalanced design, the presence of a zero cell (n11 = 0) was allowed.
The results of this scenario are presented in Table 2, where the estimates were calculated
exploiting all disparity measures. For the LD, n11 was set equal to 10−8. The presence
of zero cells in contingency tables has a large history in the relevant literature on contin-
gency tables analysis, where several options are provided for the analysis of these tables
(Fienberg [32], Agresti [33], Johnson and May [34], Poon et al. [35]). From Table 2, one
could infer that the different distances handle differently the zero cell. This difference is
reflected in the estimate of m̂β(y1|x) = m̂β1 , because it is affected by the zero value of n11.
The strongest control is provided by the Hellinger and symmetric chi-squared distances.
All distances estimate the parameters πxi similarly, with the bias in their estimation been
between 2.7% and 5.2%. The SDs are almost the same for all distances per estimate and
their values are ameliorated for N = 10,000.

A referee suggested that in certain cases interest may be centered on smaller sam-
ples. We generated 2× 3 tables with fixed total sample size of 50 and 70 observations.
Tables 3 and 4 describe the results when the contingency tables were generated under a
balanced and an imbalanced design with associated respective Scenarios Ib and IIb. More
precisely, Table 3 presents the estimators of the marginal row and column probabilities
obtained when PC, HD, SCS and LD distances are used. We notice that the increase in
the sample size provides for a decrease in the overall absolute bias in estimation, defined
as ∑L

`=1 |θ̂` − θ0,`|, where θ̂` is the estimate of the `-th component of an L × 1 vector θ
and θ0,` is the corresponding true value. In our case, θT = (mβ1 , mβ2 , πx1 , πx2 , πx3). This
observation applies to all distances used in our calculations. Table 4 presents results as-
sociated with the imbalanced case. The generated 2× 3 tables contain two empty cells
(n12 = n21 = 0). Once again, for calculating the LD, cells n12 = n21 = 10−8. We notice that
the bias associated with the estimates is rather large for all the distances, and an increased
sample size does not alleviate the observed bias. Basu and Basu [9] have proposed an
empty cell penalty for the minimum power-divergence estimators. This penalty leads
to estimators with improved small sample properties. See also Alin and Kurt [36] for a
discussion of the need of penalization in small samples.
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Table 5 provides the results obtained under Scenario III. In this case, the parameter
estimates were calculated using the PCS, HD, SCS and LD distances when the 5 × 5
contingency table was constructed by fixing the row marginal probabilities so that they
were all set at 0.20, that is, (0.20, 0.20, 0.20, 0.20, 0.20). The column marginals were randomly
chosen in the interval [0, 1] and summed to 1. In this case, the produced column marginal
probabilities were (0.1472, 0.2365, 0.3196, 0.2370, 0.0597). The simulation study reveals that
the estimates of the parameters mβ(y|x)’s and πx’s do not differ substantially from the
respective row and column marginal probabilities for any of the four distances utilized.
The SDs are approximately the same and they get lower values for larger N.

Finally, in Table 6 the data generation was done by exploiting Scenario IV, that is, by
having fixed the row marginal probabilities, which were not equal to each other; while,
the column marginals were randomly chosen in the interval [0, 1] so that they sum to 1.
In particular, the row marginal probabilities were fixed at values (0.04, 0.20, 0.20, 0.20, 0.36),
while the column marginals used were (0.2171, 0.1676, 0.2347, 0.1178, 0.2628). When N = 100,
the value of m̂β(y1|x) = m̂β1 is not approximately 0.07 and not equal to 0.04 for all distances.
However, when N = 1000 or N = 10,000, we get better estimates irrespectively of the
disparity measure choice. The SDs are approximately the same and they become smaller as
the sample size increases.

We also notice from Tables 1, 5 and 6 that in all cases the standard deviation associated
with the estimates obtained when we use other than likelihood distances, is approximately
the same with the standard deviation that corresponds to the likelihood estimates, thereby
showing the asymptotic efficiency of the disparity estimators.

All calculations were performed using the R language. Given that the problem
described in this section can be viewed as a general non-linear optimization problem,
the solnp function of the Rsolnp package (Ye [37]) was used to obtain the aforementioned
estimates. For our calculations, we tried using a variety of different initial values (π̂(0)

x ’s
and m̂(0)

β (y|x)’s); we notice that no matter how the initial values were chosen, the estimates
were always pretty similar and very close to the observed values (ni•/N and n•j/N for
i, j = 1, 2, 3, 4, 5). Only the number of iterations needed for convergence is slightly affected.
Consequently, random numbers from a Uniform distribution in the interval [0, 1] were
set as initial values (which were not necessarily summing to 1). The solnp function has a
built-in stopping rule and there was no need to set our own stopping rule. We only set the
boundary constraints to be in the interval [0, 1] for all estimates which were also subject to
∑ πx = ∑ mβ(y|x) = 1.

Other functions may also be used to obtain the estimates. For example, we used
the auglag function of the nloptr package with local solvers “lbfgs” or “SLSQP” (Conn
et al. [38], Birgin and Martínez [39]) which emulates Augmented Lagrangian multipliers.
However, the convergence using the solnp function (the number of iterations was on
average 2) was extremely faster than using the auglag function (the average number of
iterations was approximately 100). For this reason, the results presented in Tables 1–6 were
based only on the function solnp.
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Table 1. Scenario Ia: Means and standard deviations (SDs) of 4 distances (PCS, HD, SCS, LD). A 5× 5
contingency table was generated having fixed the total sample size N under a balanced design with
nij 6= 0, ∀ i, j = 1, 2, 3, 4, 5. The number of Monte Carlo (MC) replications used is 10,000.

N Statistical
Distance Summary

Estimates
Means and SDs over 10,000 Replications

m̂β1 m̂β2 m̂β3 m̂β4 m̂β5 π̂x1 π̂x2 π̂x3 π̂x4 π̂x5

100 PCS Mean 0.199 0.199 0.201 0.201 0.200 0.201 0.200 0.199 0.200 0.201
SD 0.038 0.041 0.039 0.039 0.039 0.038 0.038 0.037 0.038 0.038

HD Mean 0.199 0.200 0.200 0.200 0.201 0.200 0.200 0.200 0.200 0.200
SD 0.037 0.041 0.037 0.037 0.037 0.037 0.037 0.035 0.036 0.037

SCS Mean 0.199 0.201 0.200 0.200 0.200 0.200 0.200 0.199 0.200 0.201
SD 0.037 0.041 0.038 0.038 0.038 0.032 0.033 0.030 0.031 0.032

LD Mean 0.199 0.200 0.200 0.200 0.200 0.200 0.002 0.200 0.200 0.200
SD 0.035 0.039 0.036 0.036 0.036 0.035 0.036 0.036 0.034 0.035

1000 PCS Mean 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200
SD 0.014 0.015 0.016 0.016 0.014 0.017 0.015 0.015 0.013 0.016

HD Mean 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200
SD 0.013 0.015 0.013 0.013 0.013 0.013 0.012 0.012 0.012 0.013

SCS Mean 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200
SD 0.014 0.015 0.013 0.013 0.013 0.008 0.009 0.011 0.012 0.008

LD Mean 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200
SD 0.013 0.015 0.013 0.013 0.013 0.013 0.013 0.012 0.012 0.013

10,000 PCS Mean 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200
SD 0.008 0.007 0.006 0.006 0.009 0.010 0.010 0.007 0.008 0.006

HD Mean 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200
SD 0.004 0.005 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004

SCS Mean 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200
SD 0.004 0.005 0.004 0.004 0.004 0.007 0.005 0.008 0.008 0.004

LD Mean 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200
SD 0.004 0.005 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004

Table 2. Scenario IIa Means and SDs of 4 distances (PCS, HD, SCS, LD). A 5× 5 contingency table
was generated having fixed the total sample size N under an imbalanced design with n11 = 0.
The number of MC replications used is 10,000.

N Statistical
Distance Summary

Estimates
Means and SDs over 10,000 Replications

m̂β1 m̂β2 m̂β3 m̂β4 m̂β5 π̂x1 π̂x2 π̂x3 π̂x4 π̂x5

100 PCS Mean 0.052 0.197 0.198 0.198 0.355 0.165 0.173 0.172 0.245 0.245
SD 0.028 0.045 0.044 0.044 0.053 0.041 0.039 0.044 0.044 0.047

HD Mean 0.026 0.202 0.202 0.202 0.368 0.156 0.168 0.168 0.254 0.254
SD 0.019 0.049 0.045 0.045 0.054 0.041 0.042 0.041 0.046 0.049

SCS Mean 0.033 0.209 0.209 0.209 0.340 0.166 0.172 0.171 0.245 0.246
SD 0.022 0.047 0.045 0.045 0.051 0.036 0.036 0.033 0.038 0.040

LD Mean 0.040 0.200 0.200 0.200 0.360 0.160 0.170 0.170 0.250 0.250
SD 0.020 0.043 0.040 0.040 0.048 0.037 0.038 0.036 0.042 0.044

1000 PCS Mean 0.044 0.197 0.197 0.197 0.365 0.164 0.170 0.170 0.248 0.248
SD 0.011 0.017 0.014 0.014 0.018 0.013 0.014 0.013 0.015 0.015

HD Mean 0.034 0.203 0.202 0.202 0.359 0.156 0.170 0.170 0.252 0.252
SD 0.005 0.015 0.013 0.013 0.016 0.011 0.012 0.012 0.013 0.014

SCS Mean 0.038 0.210 0.210 0.210 0.332 0.166 0.169 0.169 0.248 0.248
SD 0.006 0.015 0.014 0.014 0.016 0.014 0.013 0.011 0.013 0.014

LD Mean 0.040 0.200 0.200 0.200 0.360 0.160 0.170 0.170 0.250 0.250
SD 0.006 0.015 0.013 0.013 0.016 0.012 0.012 0.011 0.013 0.014

10,000 PCS Mean 0.044 0.197 0.196 0.196 0.367 0.164 0.170 0.170 0.248 0.248
SD 0.002 0.006 0.007 0.007 0.010 0.007 0.006 0.005 0.007 0.008

HD Mean 0.034 0.203 0.202 0.202 0.359 0.156 0.171 0.171 0.252 0.252
SD 0.002 0.005 0.004 0.004 0.005 0.004 0.004 0.004 0.004 0.005

SCS Mean 0.038 0.210 0.210 0.210 0.332 0.166 0.169 0.169 0.248 0.248
SD 0.002 0.005 0.004 0.004 0.005 0.007 0.006 0.004 0.006 0.006

LD Mean 0.040 0.200 0.200 0.200 0.360 0.160 0.170 0.170 0.250 0.250
SD 0.002 0.005 0.004 0.004 0.005 0.004 0.004 0.004 0.004 0.004
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Table 3. Scenario Ib: Means and Biases of 4 distances (PCS, HD, SCS, LD). A 2× 3 contingency table
was generated having fixed the total sample size N under a balanced design with nij 6= 0, ∀ i =
1, 2, j = 1, 2, 3. The number of MC replications used is 10,000.

N Statistical
Distance Summary

Estimates
Means and Biases over 10,000 Replications

m̂β1 m̂β2 π̂x1 π̂x2 π̂x3

50 PCS Mean 0.5008 0.4992 0.3339 0.3336 0.3325
Abs.Biases 0.0008 0.0008 0.0006 0.0003 0.0009

Overall Bias 0.0034
HD Mean 0.5008 0.4992 0.3339 0.3335 0.3326

Abs.Biases 0.0008 0.0008 0.0006 0.0002 0.0007
Overall Bias 0.0031

SCS Mean 0.5007 0.4993 0.3338 0.3335 0.3326
Abs.Biases 0.0007 0.0007 0.0005 0.0002 0.0007

Overall Bias 0.0028
LD Mean 0.5008 0.4992 0.3339 0.3335 0.3326

Abs.Biases 0.0008 0.0008 0.0006 0.0002 0.0008
Overall Bias 0.0032

70 PCS Mean 0.4998 0.5002 0.3333 0.3331 0.3337
Abs.Biases 0.0002 0.0002 0.0001 0.0003 0.0003

Overall Bias 0.0011
HD Mean 0.4998 0.5002 0.3333 0.3330 0.3336

Abs.Biases 0.0002 0.0002 0.0000 0.0003 0.0003
Overall Bias 0.0009

SCS Mean 0.4998 0.5002 0.3334 0.3331 0.3335
Abs.Biases 0.0002 0.0002 0.0000 0.0002 0.0002

Overall Bias 0.0008
LD Mean 0.4999 0.5001 0.3333 0.3330 0.3336

Abs.Biases 0.0001 0.0001 0.0000 0.0003 0.0003
Overall Bias 0.0009

Table 4. Scenario IIb: Means and Biases of 4 distances (PCS, HD, SCS, LD). A 2× 3 contingency table
was generated having fixed the total sample size N under an imbalanced design with n12 = n21 = 0.
The number of MC replications used is 10,000.

N Statistical
Distance Summary

Estimates
Means and Biases over 10,000 Replications

m̂β1 m̂β2 π̂x1 π̂x2 π̂x3

50 PCS Mean 0.6391 0.3609 0.3489 0.2278 0.4234
Abs.Biases 0.0276 0.0276 0.0155 0.0611 0.0766

Overall Bias 0.2084
HD Mean 0.7815 0.2185 0.3346 0.0497 0.6157

Abs.Biases 0.1149 0.1149 0.0013 0.1170 0.1157
Overall Bias 0.4638

SCS Mean 0.6420 0.3580 0.3510 0.2726 0.3765
Abs.Biases 0.0247 0.0247 0.0176 0.1059 0.1235

Overall Bias 0.2964
LD Mean 0.6677 0.3323 0.3342 0.1660 0.4998

Abs.Biases 0.0010 0.0010 0.0009 0.0007 0.0002
Overall Bias 0.0038

70 PCS Mean 0.6377 0.3623 0.3483 0.2297 0.4220
Abs.Biases 0.0290 0.0290 0.0150 0.0631 0.0780

Overall Bias 0.2141
HD Mean 0.7812 0.2188 0.3328 0.0491 0.6180

Abs.Biases 0.1145 0.1145 0.0005 0.1175 0.1180
Overall Bias 0.4650

SCS Mean 0.6395 0.3605 0.3505 0.2739 0.3756
Abs.Biases 0.0271 0.0271 0.0172 0.1072 0.1244

Overall Bias 0.3030
LD Mean 0.6657 0.3343 0.3331 0.1671 0.4998

Abs.Biases 0.0010 0.0010 0.0002 0.0004 0.0002
Overall Bias 0.0028
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Table 5. Scenario III: Means and SDs of 4 distances (PCS, HD, SCS, LD). A 5× 5 contingency table
was generated having fixed the row marginal probabilities at (0.20, 0.20, 0.20, 0.20, 0.20). The number
of MC replications used is 10,000.

N Statistical
Distance Summary

Estimates
Means and SDs over 10,000 Replications

m̂β1 m̂β2 m̂β3 m̂β4 m̂β5 π̂x1 π̂x2 π̂x3 π̂x4 π̂x5

100 PCS Mean 0.199 0.200 0.200 0.200 0.201 0.153 0.230 0.302 0.229 0.086
SD 0.037 0.037 0.037 0.037 0.037 0.034 0.039 0.043 0.039 0.023

HD Mean 0.200 0.200 0.200 0.200 0.200 0.147 0.230 0.311 0.230 0.082
SD 0.039 0.040 0.039 0.039 0.040 0.033 0.043 0.037 0.042 0.019

SCS Mean 0.200 0.200 0.200 0.200 0.200 0.153 0.230 0.302 0.230 0.085
SD 0.039 0.085 0.038 0.038 0.038 0.033 0.039 0.043 0.039 0.022

LD Mean 0.200 0.200 0.200 0.200 0.200 0.150 0.230 0.307 0.230 0.083
SD 0.038 0.038 0.038 0.038 0.038 0.033 0.041 0.045 0.040 0.019

1000 PCS Mean 0.200 0.200 0.200 0.200 0.200 0.148 0.236 0.319 0.236 0.061
SD 0.013 0.013 0.013 0.013 0.014 0.012 0.014 0.017 0.015 0.011

HD Mean 0.200 0.200 0.200 0.200 0.200 0.147 0.237 0.320 0.237 0.059
SD 0.013 0.013 0.013 0.013 0.013 0.011 0.014 0.015 0.014 0.008

SCS Mean 0.200 0.200 0.200 0.200 0.200 0.148 0.236 0.319 0.237 0.060
SD 0.015 0.015 0.015 0.015 0.015 0.011 0.014 0.016 0.014 0.013

LD Mean 0.200 0.200 0.200 0.200 0.200 0.147 0.237 0.320 0.237 0.059
SD 0.013 0.013 0.013 0.013 0.013 0.011 0.014 0.015 0.013 0.008

10,000 PCS Mean 0.200 0.200 0.200 0.200 0.200 0.147 0.236 0.320 0.237 0.060
SD 0.006 0.006 0.006 0.006 0.006 0.008 0.006 0.011 0.006 0.008

HD Mean 0.200 0.200 0.200 0.200 0.200 0.147 0.236 0.320 0.237 0.060
SD 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.005 0.004 0.002

SCS Mean 0.200 0.200 0.200 0.200 0.200 0.147 0.236 0.320 0.237 0.060
SD 0.005 0.005 0.005 0.005 0.005 0.004 0.006 0.008 0.006 0.008

LD Mean 0.200 0.200 0.200 0.200 0.200 0.147 0.236 0.320 0.237 0.060
SD 0.004 0.004 0.004 0.004 0.004 0.004 0.005 0.005 0.005 0.002

Table 6. Scenario IV: Means and SDs of 4 distances (PCS, HD, SCS, LD). A 5× 5 contingency table
was generated having fixed the row marginal probabilities at (0.04, 0.20, 0.20, 0.20, 0.36). The number
of MC replications used is 10,000.

N Statistical
Distance Summary

Estimates
Means and SDs over 10,000 Replications

m̂β1 m̂β2 m̂β3 m̂β4 m̂β5 π̂x1 π̂x2 π̂x3 π̂x4 π̂x5

100 PCS Mean 0.074 0.197 0.197 0.197 0.335 0.214 0.173 0.228 0.132 0.253
SD 0.022 0.037 0.038 0.038 0.045 0.038 0.035 0.039 0.031 0.041

HD Mean 0.070 0.194 0.195 0.195 0.346 0.215 0.170 0.231 0.126 0.258
SD 0.015 0.039 0.039 0.039 0.048 0.041 0.037 0.042 0.030 0.044

SCS Mean 0.074 0.194 0.195 0.195 0.342 0.214 0.173 0.229 0.131 0.253
SD 0.015 0.039 0.039 0.039 0.048 0.038 0.035 0.040 0.030 0.041

LD Mean 0.071 0.195 0.196 0.196 0.342 0.214 0.172 0.230 0.128 0.256
SD 0.015 0.037 0.038 0.038 0.046 0.040 0.036 0.041 0.030 0.042

1000 PCS Mean 0.042 0.200 0.200 0.200 0.358 0.217 0.168 0.234 0.119 0.262
SD 0.011 0.014 0.013 0.013 0.017 0.014 0.013 0.014 0.014 0.015

HD Mean 0.039 0.200 0.200 0.200 0.361 0.217 0.167 0.235 0.118 0.263
SD 0.006 0.013 0.013 0.013 0.015 0.013 0.012 0.013 0.010 0.014

SCS Mean 0.039 0.200 0.200 0.200 0.361 0.217 0.168 0.234 0.118 0.263
SD 0.007 0.013 0.013 0.013 0.016 0.016 0.013 0.014 0.010 0.015

LD Mean 0.040 0.200 0.200 0.200 0.360 0.217 0.167 0.235 0.118 0.263
SD 0.006 0.013 0.013 0.013 0.015 0.013 0.012 0.013 0.010 0.014

10,000 PCS Mean 0.040 0.200 0.200 0.200 0.360 0.217 0.167 0.235 0.118 0.263
SD 0.008 0.005 0.007 0.007 0.009 0.006 0.005 0.005 0.007 0.006

HD Mean 0.040 0.200 0.200 0.200 0.360 0.217 0.167 0.235 0.118 0.263
SD 0.002 0.004 0.004 0.004 0.005 0.004 0.004 0.004 0.003 0.004

SCS Mean 0.040 0.200 0.200 0.200 0.360 0.217 0.167 0.235 0.118 0.263
SD 0.002 0.004 0.004 0.004 0.005 0.006 0.005 0.007 0.003 0.008

LD Mean 0.040 0.200 0.200 0.200 0.360 0.217 0.167 0.235 0.118 0.263
SD 0.002 0.004 0.004 0.004 0.005 0.004 0.004 0.005 0.003 0.005
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Case 2: X is discrete and Y is continuous
In this section, we are interested in solving the optimization problem (5) when X is discrete,
Y is continuous and X, Y are independent of each other. To evaluate the performance of our
procedure, we used Hellinger’s distance, which in this case takes on the following form:

HD( f ∗, m∗β) =
∫

∑
x

[√
f ∗N(x, y)−

√
m∗β(x, y)

]2
dy =

∫
∑
x

[√
f ∗Y (y) ·

nX
N
−
√

mX(x) ·m∗Y (y)
]2

dy.

The aim of this simulation is to obtain the minimum Hellinger distance estimators
of πx and µ assuming (without loss of generality) that σ2 is known to be equal to 1.
All calculations were performed in R language.

For this purpose, we generated mixed-type data of size N using the package OrdNor
(Amatya and Demirtas [40]). More precisely, the data are comprised of one categorical vari-
able X with three levels and probability vector (1/3, 1/3, 1/3), while the continuous part
is coming from a trivariate normal distribution; symbolic Y = (Y1, Y2, Y3) ∼ MVN3(µ, I3),
where µT = (µ1, µ2, µ3). We used two different mean vectors: µT = (0, 0, 0) and µT =
(0, 3, 6). The set of ordinal and normal variables were generated concurrently using an
overall correlation matrix Σ, which consists of three components/sub-matrices: ΣOO, ΣON
and ΣNN , with O and N corresponding to “Ordinal” and “Normal” variables, respectively.
More precisely, the overall correlation matrix Σ used is the following

Σ =




1 ρON ρON ρON
ρON 1 0 0
ρON 0 1 0
ρON 0 0 1


,

where ΣOO = 1, ΣNN = I3, ΣON =
(
ρON ρON ρON

)
and ρON represents the polyserial

correlations for the ON combinations (for more information on polyserial correlations
refer to Olsson et al. [41]). Since X, Y were assumed to be independent, we set ρON = 0.0.
However, we also used weak correlations, say ρON = 0.1 and 0.2, to investigate whether
the estimates we receive in these cases remain reasonable.

The kernel function was the multivariate normal density MVN3(0, H) with H be-
ing estimated by the data using the kde function of the ks package (Duong [42]), m∗Y (y)
represented the multivariate normal density MVN3(µ, Σ + H) and mX(x) was the multi-
nomial mass function. This choice of smoothing parameter, stemmed from the fact that
we were interested in evaluating the performance, in terms of robustness, of standard
bandwidth selection.

To solve the optimization problem, the solnp function of the Rsolnp package (Ye [37])
was used. Specifically, the initial values set for the probabilities πx1 , πx2 , πx3 associated
with the X variable were random uniform numbers in the interval [0, 1], while the initial
values for the means µy1 , µy2 , µy3 were random numbers in the interval [Q1(Yi), Q3(Yi)]
for i = 1, 2, 3, where Q1 and Q3 stand for the respective 25th and the 75th quantile per
component of the continuous part. Following the same procedure with the one of Basu
and Lindsay [2] in the univariate continuous case, here (in the mixed-case) the numerical
evaluation of the integrals was also done on the basis of the Simpson’s 1/3rd rule using
the sintegral function of the Bolstad2 package (Bolstad [43]). Moreover, we calculated
the mean values, the SDs, as well as the percentages of bias of the mean and the probability
vectors for three different sample sizes: N = 100; N = 1000 and N = 1500 over 1000 MC
replications. The bias is defined as the difference of the estimates from their “true” values,
that is, bias(µyi ) = µ̂yi − µi and bias(πxi ) = π̂xi − 1/3 for i = 1, 2, 3. The results are shown
in Tables 7 and 8.

In particular, Table 7 illustrates the mean values, the SDs and the bias percentages
of the corresponding minimum Hellinger distance estimators, over 1000 MC replications,
for the three different sample sizes and polyserial correlations, when µ = (0, 0, 0)T . The es-
timates for the πxi are approximately equal to 1/3 = 0.333, while the µyi estimates are
almost zero, even in the cases of weak correlations. When ρON = 0.0, the sample size

293



Entropy 2021, 23, 107

choice does not seem to affect the values of the estimates either overall or per component
of X, Y variables. Specifically, we observe that the total absolute bias, computed as the sum
of the individual component-wise absolute biases of the vectors πT = (π1, π2, π3) and
µT = (µ1, µ2, µ3) are approximately the same, with larger samples providing slightly less
biases at the expense of a higher computational cost.

Table 7. Means, Absolute Biases and Overall Absolute Bias of the Hellinger’s distance (HD). The data
were concurrently generated with a given correlation structure (an overall correlation matrix Σ) and
consist of a discrete variable X with marginal probability vector (1/3, 1/3, 1/3) and a continuous
vector Y = (Y1, Y2, Y3) ∼ MVN3(µ, I3), where µT = (0, 0, 0) and I3 is a (3× 3) identity matrix.
The number of MC replications used is 1000.

ρON N Summary

Estimates
Means, Biases over 1000 Replications

π̂x1 π̂x2 π̂x3 µ̂y1 µ̂y2 µ̂y3

0.0 50 Mean 0.332 0.340 0.329 0.016 0.011 −0.011
Abs. Biases 0.001 0.007 0.004 0.016 0.011 0.011
Overall Bias 0.050

100 Mean 0.330 0.350 0.320 0.017 −0.018 −0.010
Abs. Biases 0.003 0.017 0.013 0.017 0.018 0.010
Overall Bias 0.078

1000 Mean 0.324 0.337 0.339 0.001 −0.008 0.007
Abs. Biases 0.009 0.004 0.006 0.001 0.008 0.007
Overall Bias 0.035

0.1 50 Mean 0.351 0.320 0.329 −0.006 0.003 0.005
Abs. Biases 0.018 0.013 0.004 0.006 0.003 0.005
Overall Bias 0.049

100 Mean 0.330 0.323 0.347 0.001 0.005 −0.004
Abs. Biases 0.003 0.010 0.014 0.001 0.005 0.004
Overall Bias 0.037

1000 Mean 0.327 0.343 0.330 −0.021 0.008 0.003
Abs. Biases 0.006 0.010 0.003 0.021 0.008 0.003
Overall Bias 0.051

In Table 8, analogous results are presented with the difference that the mean vec-
tor used was µ = (0, 3, 6)T . The πxi estimates are very close to 1/3 (= 0.333) for all X
components, no matter which sample size or correlation is used. On the contrary, the in-
terpretation of the µi estimates slightly differs in this case. We also calculated the overall
absolute bias as well as the individual, per parameter, absolute biases. In this case, larger
samples clearly provide estimates with smaller bias for both parameter vectors π, µ and
for both cases, the case of independence as well as the case of weak correlations. However,
the computational time increases.

In what follows, we also present -for illustration purposes- a small simulation ex-
ample using a mixed-type, contaminated data set of size N = 1000, which was gener-
ated using OrdNor package setting ρON = 0.0 . Once again, the data were comprised
of one categorical variable X with three levels and probability vector (1/3, 1/3, 1/3),
and a trivariate continuous vector Y = (Y1, Y2, Y3). The contamination is happening
only in the continuous part on the basis of α ∈ {1.00, 0.95, 0.90, 0.85, 0.80}, as follows:
Y ∼ α × MVN3(0, I3) + (1− α) × MVN3(µ, I3), where µT = (3, 3, 3). This means that,
N1 = α× N data were generated with Y coming from multivaraiate standard normal and
the remaining N2 = N−N1 subset of the data followed a multivaraiate normal distribution
with mean vector µT = (3, 3, 3). It goes without saying that when α = 1.00, there is no
contamination. Here, we are still considering the same optimization problem with the one
described above and, consequently, we are interested in evaluating the minimum Hellinger
distance estimators over 1000 MC replications by examining/studying to what extend the
contamination level affects these estimates.
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Table 8. Means, Absolute Biases and Overall Absolute Bias of the Hellinger’s distance (HD). The data
were concurrently generated with a given correlation structure (an overall correlation matrix Σ) and
consist of a discrete variable X with marginal probability vector (1/3, 1/3, 1/3) and a continuous
vector Y = (Y1, Y2, Y3) ∼ MVN3(µ, I3), where µT = (0, 3, 6) and I3 is a (3× 3) identity matrix.
The number of MC replications used is 1000.

ρON N Summary

Estimates
Means, Biases over 1000 Replications

π̂x1 π̂x2 π̂x3 µ̂y1 µ̂y2 µ̂y3

0.0 50 Mean 0.340 0.328 0.332 −0.004 2.606 5.227
Abs. Biases 0.007 0.005 0.001 0.004 0.394 0.773
Overall Bias 1.184

100 Mean 0.313 0.350 0.337 −0.004 2.777 5.593
Abs. Biases 0.020 0.017 0.004 0.004 0.223 0.407
Overall Bias 0.675

1000 Mean 0.338 0.334 0.328 0.012 2.972 5.958
Abs. Biases 0.005 0.001 0.005 0.012 0.028 0.042
Overall Bias 0.093

0.1 50 Mean 0.347 0.323 0.330 −0.021 2.628 5.249
Abs. Biases 0.014 0.010 0.003 0.021 0.372 0.751
Overall Bias 1.171

100 Mean 0.317 0.343 0.340 0.017 2.817 5.615
Abs. Biases 0.016 0.010 0.007 0.017 0.183 0.385
Overall Bias 0.618

1000 Mean 0.334 0.320 0.346 −0.013 2.988 5.956
Abs. Biases 0.001 0.013 0.013 0.013 0.012 0.044
Overall Bias 0.096

0.2 50 Mean 0.324 0.333 0.343 −0.004 2.589 5.240
Abs. Biases 0.009 0.000 0.010 0.004 0.411 0.760
Overall Bias 1.194

100 Mean 0.329 0.350 0.321 0.024 2.763 5.549
Abs. Biases 0.004 0.017 0.012 0.024 0.237 0.451
Overall Bias 0.745

1000 Mean 0.337 0.344 0.319 −0.011 2.971 5.951
Abs. Biases 0.004 0.011 0.014 0.019 0.029 0.049
Overall Bias 0.118

As indicated from Table 9, when there is no contamination in the data (α = 1.00),
the estimates for the πxi s are almost equal to 1/3, while the µy’s estimates are almost
equal to zero. As the data become more contaminated (i.e., the value of α decreases),
the minimum disparity estimators corresponding to X variable remain pretty consistent
with their true values. However, this is not the case with the estimates for the µyi s, which
deteriorate as the value of the contamination level α shifts from the target/null value,
that is 1.00.

The mean parameters are estimated with reasonable bias (maximum bias is 9% for the
second component of the mean) when α = 0.95, that is the contamination is 5%. When the
contamination is 10%, the bias of the mean components is relatively high but still below
19%. With higher contamination, the percentage of bias in the mean components is in
the interval [28.3%, 47%]. This is the result of using standard density estimation to obtain
the smoothing parameters for the different mean components. Smaller values of these
component smoothing parameters result in substantial bias reduction.

295



Entropy 2021, 23, 107

Table 9. Means and SDs of the Hellinger’s distance (HD). The data were concurrently generated
with a given correlation structure (an overall correlation matrix Σ) and consist of a discrete variable X
with marginal probability vector (1/3, 1/3, 1/3) and a continuous trivariate vector Y = (Y1, Y2, Y3) ∼
α×MVN3(0, I3) + (1− α)×MVN3(µ, I3), where µT = (3, 3, 3), I3 is a (3× 3) identity matrix and
α = 1.00(0.05)0.80 indicates the contamination level. The number of MC replications used is 1000.

ρON N α Summary

Estimates
Means and SDs over 1000 Replications

π̂x1 π̂x2 π̂x3 µ̂y1 µ̂y2 µ̂y3

0.0 1000 1.00 Mean 0.324 0.337 0.339 0.001 −0.008 0.007
SD 0.293 0.293 0.298 0.378 0.378 0.386

0.95 Mean 0.327 0.326 0.347 0.068 0.090 0.079
SD 0.304 0.299 0.309 0.413 0.413 0.413

0.90 Mean 0.318 0.331 0.351 0.188 0.170 0.189
SD 0.300 0.305 0.306 0.443 0.450 0.436

0.85 Mean 0.324 0.337 0.339 0.292 0.283 0.312
SD 0.293 0.293 0.297 0.484 0.487 0.491

0.80 Mean 0.324 0.337 0.338 0.447 0.436 0.470
SD 0.293 0.293 0.297 0.552 0.547 0.559

We also looked at the case where the continuous model was contaminated by a
trivariate normal with mean µT = (1.5, 1.5, 1.5) and covariance matrix I. In this case (results
not shown), when the contamination is 5% the maximum bias of the mean components is
6.6%, while when the contamination is 10% the maximum bias of the mean components is
13.5%. Again, in this case the bandwidth parameters were obtained by fitting a unimodal
density to the data.

The above results are not surprising. A judicious selection of the smoothing parameter
decreases the bias of the component estimates of the mean. Agostinelli and Markatou [44]
provide suggestions of how to select the smoothing parameter that can be extended and
applied in this context.

8. Discussion and Conclusions

In this paper, we discuss Pearson residual systems that conform to the measurement
scale of the data. We place emphasis on the mixed-scale measurements scenario, which is
equivalent to having both discrete (categorical or nominal) and continuous type random
variables, and obtain robust estimators of the parameters of the joint probability distribution
that describes those variables. We show that, disparity methods can be used to actually
control against model misspecification and the presence of outliers, and these methods
provide reasonable results.

The scale and nature of measurement of the data imposes additional challenges, both
computationally and statistically. Detecting outliers in this multidimensional space is an
open research question (Eiras-Franco et al. [45]). The concept of outliers has a long history
in the field of statistics and outlier detection methods have broad applications in many
scientific fields such as security (Diehl and Hampshire [46], Portnoy et al. [47]), health care
(Tran et al. [48]) and insurance (Konijn and Kowalczyk [49]) to mention just a few.

Classical outlier detection methods are largely designed for single measurement scale
data. Handling mixed measurement scale is a challenge with few works coming from
both, the field of statistics (Fraley and Wilkinson [50], Wilkinson [51]) and the fields of
engineering and computer science (Do et al. [52], Koufakou et al. [53]). All these works use
some version of a probabilistic outlier, either looking for regions in the space of data that
have low density (Do et al. [52], Koufakou et al. [53]) or by attaching a probability, under a
model, to the suspicious data point (Fraley and Wilkinson [50], Wilkinson [51]).

Our concept of a probabilistic outlier discussed here and expressed via the construction
of appropriate Pearson residuals can unify the different measurement scales, and the class
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of disparity functions discussed above can provide estimators for the model parameters
that are not influenced unduly by potential outliers.

One of the important parameters that controls the robustness of these methods is the
smoothing parameter(s) used to compute the density estimator of the continuous part
of the model. In our computations, we use standard smoothing parameters obtained
from utilizing appropriate R functions for density estimation. The results show that,
depending on the level of contamination and the type of contaminating probability model,
the performance of the methods is satisfactory. Specifically, a small simulation study using
the model reported in the caption of Table 9 shows that the overall bias associated with the
mean components of the standard multivariate normal model is low when contamination
with a multivariate normal model with mean components equal to 3 is less than or equal
to 10%. But even in this case, when the percentage of contamination is greater than 10%,
the bias increases when the smoothing parameter used is the one obtained from the R
density function. Here, smaller values of the smoothing parameter guarantee reduction of
the bias.

Devising rules for selecting the smoothing parameter(s) in the context of mixed-scale
measurements that can guarantee robustness for larger than 5% levels of contamination
may be possible. However, it is the opinion of the authors that greater levels of data
inhomogeneity may indicate model failure, a case where assessing model goodness of fit is
of importance.
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Appendix A

Appendix A.1. Proof of Proposition 3

Proof. The equations (4) are obtained from solving optimization problem (3). To solve this
problem we need to form the corresponding Langrangian, which is

∑
x,y

G(δ(x, y))mβ(y|x)πx − λ(∑ πx − 1).
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(i) Let ∇β denote gradient with respect to β. The estimators of β are obtained as solutions
of the set of equations:

∇β

{
∑
x,y

G(δ(x, y))mβ(y|x)πx − λ(∑ πx − 1)
}
= 0,

which can be equivalently expressed as follows,

∑
x,y

πx[∇βG(δ(x, y))]mβ(y|x) + ∑
x,y

πxG(δ(x, y))∇β(y|x) = 0.

Notice that the ∇β of G(δ(x, y)) is given by

∇βG(δ(x, y)) = −G′(δ(x, y))(δ(x, y) + 1) u(y|x; β),

where the superscript "’" denote derivative with respect to δ, δ(x, y) is the Pearson residual and

u(y|x; β) =
∇βmβ(y|x)

mβ(y|x)
= ∇β ln[mβ(y|x)]

is the score for β in the conditional distribution of y given x. Therefore,

∑
x,y

A(δ(x, y))πxu(y|x; β)mβ(y|x) = 0,

where
A(δ(x, y)) = G′(δ(x, y))[δ(x, y) + 1]− G(δ(x, y)).

By making use of the fact that ∑x πx∇βmβ(y|x) = 0, the resulting equations can repre-
sented as

∑
x,y

A(δ(x, y)) + 1
δ(x, y) + 1

nx,yu(y|x; β) = 0,

or equivalently,
∑
x,y

w(δ(x, y))nx,yu(y|x; β) = 0.

Without loss of generality, we can take,

w(δ(x, y)) = min
{ [A(δ(x, y)) + 1]+

δ(x, y) + 1
, 1
}

, w(δ(x, y)) ≤ 1.

(ii) We now need to obtain π̂x, which can be obtained by setting the gradient of formula
with respect to πz equal to zero, that is, by the following equations:

∑
y

G′(δ(z, y))[∇πzδ(z, y)]mβ(y|z)πz + ∑
y

G(δ(z, y))mβ(y|z)− λ = 0.

Recording A(δ(z, y)) = G′(δ(z, y))[δ(z, y) + 1] − G(δ(z, y)) and δ(z, y) + 1 =
nz,y/n

mβ(y|z)πz
,

the above equations are reduced to,

∑
y

A(δ(z, y))mβ(z, y)
1

πz
+ λ = 0

and we readily conclude that,

πz = −
1
λ ∑

y
A(δ(z, y))m(z, y), ∀z.
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Furthermore, to satisfy the constraint ∑x πx = 1, we obtain

λ = −∑
x,y

A(δ(x, y))mβ(x, y).

Therefore, we get

∑
x,y

A(δ(x, y))mβ(y, x)
[ I(X = z)

πx
− 1
]
= 0

and by making use of the fact that ∑x,y mβ(x, y)
[

I(X=z)
πx
− 1
]
= 0, the above equation can

be represented as

∑
x,y

w(δ(x, y))nx,y

[ I(X = x)
πx

− 1
]
= 0

for any x where I(X = x) is the indicator function of the event {X = x}.

Appendix A.2. Proof of Proposition 5

Recall that βε is a solution of the set of estimating equation

∑
s,t

w(δε(s, t))u(t|s; βε)dε(s, t) = 0, (A1)

where dε(s, t) = (1− ε)d(s, t) + ε∇x,y(s, t) and u(t|s; β) =
∇βmβ(s,t)

mβ(s,t) = ∇β ln[mβ(s, t)] is a

p-dimensional vector.
The influence function of β is calculated by differentiating, with respect to ε, the quan-

tity (A1), and evaluating the derivative at ε = 0. Thus, we need

d
dε

{
∑
s,t

w(δε(s, t))u(t|s; βε)d(s, t)

− ε ∑
s,t

w(δε(s, t))u(t|s; βε)d(s, t)

+ ε ∑
s,t

w(δε(s, t))u(t|s; βε)∇(x,y)(s, t)
}∣∣∣

ε=0
= 0.

(A2)

Taking into account that δε(s, t) = dε(s,t)
mβ(s,t) − 1 = dε(s,t)

mβ(t|s)πs
− 1, the aforementioned evaluation

implies {
∑
s,t
(δ0(t) + 1)w′0(δ0(s, t))u(t|s; β0)uT(t|s; β0)d(s, t)

−∑
s,t

w(δ0(s, t))∇u(t|s; β0)d(s, t)
}

β′0

=∑
s,t

{ I(s = x, y = t)
mβ0(t|s)πs

− d(s, t)
mβ0(t|s)πs

w′(δ0(s, t))
}

u(t|s; β0)d(s, t)

−∑
s,t

w(δ0(s, t))u(t|s; β0)d(s, t) + w(δ0(x, y))u(y|x; β0),

(A3)

which implies that
β′0 = IF(β; F) = [A(d)]−1B(x, y; d).

Appendix A.3. Assumptions of Theorem 1

The following assumptions are needed to be able to establish asymptotic normality of
the estimators.

1. The weight functions are nonnegative, bounded and differentiable with respect to δ.
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2. The weight function is regular, that is, w′(δ)(δ + 1) is bounded, where w′(δ) is the
derivative of w with respect to δ.

3. ∑x,y m
1
2 (x, y)E[u2

k(y|x; β0)] < ∞.

4. The elements of the Fisher information matrix are finite and the Fisher information
matrix is nonsingular.

5. ∑x,y m
1
2 (x, y)E[u2

i (y|x; β0)u2
j (y|x; β0)] < ∞ ∀i, j = 1, 2, · · · , p.

6. If β0 denotes the true value of β, there exist functions Mijk(x) such that |uijk(y|x; β0)| ≤
Mijk(x), ∀β with ‖ β− β0 ‖2< r(β0), r(β0) < 0 and Eβ0 |Mijk(y|x)| < ∞, ∀i, j, k.

7. If β0 denotes the true value of β, there is a neighborhood N(β0) such that for β ∈ N(β0)
the quantity |ut(y|x; β0)ui(y|x; β0)ue(y|x; β0)| are bounded by M1(y|x) and M2(y|x)
respectively, such that their corresponding expectations are finite.

8. A′′(δ + 1)(δ + 1) is bounded, where A′′ denotes the second derivative of A with respect
to δ.
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Abstract: Hellinger distance has been widely used to derive objective functions that are alternatives
to maximum likelihood methods. While the asymptotic distributions of these estimators have been
well investigated, the probabilities of rare events induced by them are largely unknown. In this
article, we analyze these rare event probabilities using large deviation theory under a potential
model misspecification, in both one and higher dimensions. We show that these probabilities
decay exponentially, characterizing their decay via a “rate function” which is expressed as a convex
conjugate of a limiting cumulant generating function. In the analysis of the lower bound, in particular,
certain geometric considerations arise that facilitate an explicit representation, also in the case when
the limiting generating function is nondifferentiable. Our analysis involves the modulus of continuity
properties of the affinity, which may be of independent interest.

Keywords: Hellinger distance; large deviations; divergence measures; rare event probabilities

1. Introduction

In a variety of applications, the use of divergence-based inferential methods is gain-
ing momentum, as these methods provide robust alternatives to traditional maximum
likelihood-based procedures. Since the work of [1,2], divergence-based methods have been
developed for various classes of statistical models. A comprehensive treatment of these
ideas is available, for instance, in [3,4]. The objective of this paper is to study the large
deviation tail behavior of the minimum divergence estimators and, more specifically, the
minimum Hellinger distance estimators (MHDE).

To describe the general problem, suppose Θ ⊂ Rd, and let F = { fθ(·) : θ ∈ Θ} denote
a family of densities indexed by θ. Let {Xn : n ≥ 1} denote a class of i.i.d. random
variables, postulated to have a continuous density with respect to Lebesgue measure and
belonging to the family F, and let X be a generic element of this class. We denote by g(·)
the true density of X.

Before providing an informal description of our results, we begin by recalling that
the square of the Hellinger distance (SHD) between two densities h1(·) and h2(·) on R is
given by

HD2(h1, h2) =

∥∥∥∥h
1
2
1 − h

1
2
2

∥∥∥∥
2

2
= 2− 2

∫

R
(h1(x)h2(x))

1
2 dx.

The quantity
∫
R(h1(x)h2(x))

1
2 dx is referred to as the affinity between h1(·) and h2(·) and

denoted by A (h1, h2). Hence, the SHD between the postulated density and the true density
is given by SHD(θ) = HD2( fθ, g). When Θ is compact, it is known that there exists a
unique θg ∈ Θ minimizing the SHD(θ). Furthermore, when g(·) = fθ0(·) and F satisfies
an identifiability condition, it is well known that θg coincides with θ0; cf. [1]. Turning to the
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sample version, we replace g(·) by gn(·) in the definition of SHD, obtaining the objective
function SHDn(θ) = HD2( fθ, gn) and

gn(x) =
1

nbn

n

∑
i=1

K
(

x− Xi
bn

)
, (1)

where the kernel K(·) is a probability density function and bn ↘ 0 and nbn ↗ ∞ as n→ ∞.
It is known that when the parameter space Θ is compact, there exists a unique θ̂n ∈

Θ minimizing SHDn(θ), and that θ̂n converges almost surely to θg as n → ∞; cf. [1].
Furthermore, under some natural assumptions,

n
1
2 (θ̂n − θg)

d→ G, (2)

where, under the probability measure associated with g(·), G is a Gaussian random vector
with mean vector 0 and covariance matrix Σg. If g(·) = fθ0(·), then the variance of
G coincides with the inverse of the Fisher information matrix I(θ0), yielding statistical
efficiency. When the true distribution g(·) does not belong to F, we will call this the “model
misspecifed case,” while when g ∈ F, we will say that the “postulated model” holds.

In this paper, we focus on the large deviation behavior of {θ̂n : n ≥ 1}; namely, the
asymptotic probability that the estimate θ̂n will achieve values within a set away from the
central tendency described in (2). We establish results of the form

log Pg(θ̂n ∈ B) ≈ −n inf
θ∈B

I(θ), (3)

for some “rate function” I and given Borel subset B ⊂ Θ. Similar large deviation estimates
for maximum likelihood estimators (MLE) have been investigated in [5–7], and for general
M-estimators in [8,9]. These results allow for a precise description of the probabilities of
Type I and Type II error in both the Neymann–Pearson and likelihood ratio test frameworks.
Furthermore, large deviation bounds allow one to identify the best exponential rate of
decrease of Type II error amongst all tests that satisfy a bound on the Type I error, as in
Stein’s lemma (cf. [10]). Additional evidence of the importance of large deviation results
for statistical inference has been described in [11] and in the book [12].

One of our initial goals was to derive sharp probability bounds for Type I and Type II
error in the context of robust hypothesis testing using Hellinger deviance tests. This article
is a first step towards this endeavor. A key issue that distinguishes our work from earlier
works is that, in our case, the objective function is a nonlinear function of the smoothed
empirical measure, and the analysis of this case requires more involved methods compared
with those currently existing in the statistical literature on large deviations. Consistent
with large deviation analysis more generally, we identify the rate function I as the convex
conjugate of a certain limiting cumulant generating function, although in our problem,
we uncover a subtle asymmetry between the upper and lower bounds when our limiting
generating function is nondifferentiable. In the classical large deviation literature, similar
asymmetries have been studied in other one-dimensional contexts (e.g. [13]), although
the statistical problem is still quite different, as the dependence on the parameter θ arises
explicitly—inhibiting the use of convexity methods typically exploited in the large deviation
literature—and hence requiring novel techniques.

1.1. Large Deviations

In this subsection we provide relevant definitions and properties from large deviation
theory required in the sequel. In the following, R+ will denote the set of non-negative
real numbers.
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Definition 1. A collection of probability distributions {Pn : n ≥ 1} on a topological space (X , B)
is said to satisfy the weak large deviation principle if

lim sup
n→∞

1
n

log Pn(F) ≤ − inf
x∈F

I(x), for all closed F ∈ B,

and

lim inf
n→∞

1
n

log Pn(G) ≥ − inf
x∈G

I(x) for all open sets F ∈ B

for some lower semicontinuous function I : X → [0, ∞]. The function I is called the rate function.
If the level sets of I are compact, we call I a good rate function and we say that {Pn} satisfies the
large deviation principle (LDP).

We begin with a brief review of large deviation results for i.i.d. random variables and
empirical measures. Let {Xn} ⊂ R be an i.i.d. sequence of real-valued random variables,
and let Pn denote the distribution of the sample mean X̄n. If the moment generating
function of X1 is finite in a neighborhood of the origin, then Cramér’s theorem states
that {Pn} satisfies the LDP with good rate function Λ∗, where Λ∗ is the convex conjugate
(or Legendre–Fenchel transform) of Λ, and where Λ(α) = log E[eαX1 ] is the cumulant
generating function of X1 (cf. [10], Section 2.2).

Next, consider the empirical measures {µn}, defined by

µn(B) =
1
n

n

∑
i=1

I{Xi∈B}, B ∈ B, (4)

where B denotes the collection of Borel subsets of R. It is well known (cf. [14]) that {µn}
converges weakly to P, namely to the distribution of X1. Then Sanov’s theorem asserts that
{µn} satisfies a large deviation principle with rate function IP given by

IP(ν) =

{
KL(ν, P) if ν� P,
∞ otherwise,

(5)

where KL(ν, P) is the Kullback–Leibler information between the probability measures ν and
P. When ν and P each possesses a density with respect to Lebesgue measure (say p and g,
respectively), the above expression becomes

KL(p, g) :=

{∫
S p(x) log

(
p(x)
g(x)

)
dµ(x) if p� g,

∞ otherwise.
(6)

In Sanov’s theorem, the rate function IP is defined on the space of probability measures,
which is a metric space with the open sets induced by weak convergence. Extensions of
Sanov’s theorem to strong topologies have been investigated in the literature; cf., e.g., [15].

We now turn to a general result, which will play a central role in this paper, namely
Varadhan’s integral lemma (cf. [10], Theorem 4.3.1). This result will allow us to infer
the scaled limit of a sequence of generating functions from the existence of the large
deviation principle.

Lemma 1 (Varadhan). Let {Yn} be a sequence of random variables taking values in a regular
topological space (X , B), and assume that the probability law of {Yn} satisfies the LDP with good
rate function I. Then for any bounded continuous function F : X → R,

lim
n→∞

1
n

log E[exp(nF(Yn))] = sup
x∈X
{F(x)− I(x)}. (7)
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1.2. Minimum Hellinger Distance Estimator and Large Deviations

We first observe that the MHDE is obtained by maximizing

An(θ) ≡ An(θ, gn) :=
∫

R
f

1
2

θ (x)g
1
2
n (x)dµ(x), (8)

which involves solving the equation ∇An(θ) = 0. The idea behind the large deviation
analysis is to observe that the large deviation behavior of the maximizer can be extracted
from that of the objective function ∇An(θ) near 0. By the Gärtner–Ellis theorem (cf. [10],
Section 2.3), this amounts to investigating the asymptotic behavior as n→ ∞ of

1
an

log Eg[exp{an〈α,∇A n(θ)〉}], α ∈ Rd, (9)

where an ↗ ∞ as n → ∞. In the case of maximum likelihood estimation (MLE) or
minimum contrast estimation (MCE), the objective function can be expressed as

n

∑
i=1

hθ(Xi) = n
∫

R
hθ(x)dµn(x), (10)

where {µn : n ≥ 1} is the empirical measure associated with {Xk : 1 ≤ k ≤ n}. Thus,
while the objective functions associated with the MLE and MCE are linear functions of
the empirical measure, the affinity is a nonlinear function of the empirical measure. This
creates certain complications in identifying the rate function I(·) alluded to in (3). Of
course, in the case of likelihood and minimum contrast estimator analysis, an explicit
formula for I(·) ensues as the Legendre–Fenchel transform of the cumulant generating
function of hθ(X1), viz. log Eθ0 [exp(αhθ(X1))]. One approach to evaluating the limiting
generating function is to apply Varadhan’s lemma as given above in (7). In the context
of our problem, that requires an investigation into the large deviation principle for the
density estimators gn(·) viewed as elements of L1(S), viz. the space of integrable functions
on S. Equivalently, we require a version of Sanov’s theorem in L1-space, which leads to
certain topological considerations. The main issue here is that, when L1 is equipped with a
norm topology, the sequence of kernel density estimates {gn(·)} possesses large deviation
bounds, but the associated rate function may not have compact level sets, as is required
for a typical application of Varadhan’s lemma. Nonetheless, one obtains a full LDP when
L1(S) is equipped with the weak topology.

The asymptotic properties of MHDE, such as consistency and asymptotic normality,
are established using the norm convergence of gn(·) to g(·). For this reason, we focus
on a subclass of densities G (see Proposition 1 below) possessing certain equicontinuity
properties where norm convergence prevails. These issues are handled in Section 2, where
the precise statements of our main results can also be found. Section 3 is devoted to the
proofs of the main results. Section 4 contains some concluding remarks.

2. Notation, Assumptions, and Main Results

Let fθ(·) denote the postulated density of {Xn}, defined on a measure space (Ω, F ).

Let S ⊂ R denote the support of X and sθ(·) = f
1
2

θ (·). Let the true density of {Xn} be given
by g(·). Throughout the paper, we assume that the following regularity conditions hold.

Hypothesis 1. Θ is a compact and convex subset of Rd.

Hypothesis 2. The family F is identifiable; namely, if θ1 6= θ2, fθ1(·) 6= fθ2(·) on a set of positive
Lebesgue measure.
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Hypothesis 3. For every θ ∈ Θ, sθ is three times continuously differentiable with respect to all
components of θ. Denote by ∇sθ the gradient of sθ and its components by ṡi

θ(·). Let Hθ denote the
matrix of second partial derivatives of sθ(·) with respect to θ and s̈ij

θ the (i, j)th element of Hθ.

Hypothesis 4. Let the matrix of second partial derivatives of An(θ) and A (θ) be denoted by
HAn(θ) and HA (θ), respectively. Assume that HAn(θ) and HA (θ) are continuous in θ and that
HA (θ) is positive definite for every θ ∈ Θ. For p ∈ G and θ ∈ Θ, let λθ(p) denote the smallest
eigenvalue of the matrix

∫
S Hθ(x)p

1
2 (x)dx. Assume that inf{λθ(p) : p ∈ G } ≥ c > 0, where c

is independent of θ.

These hypotheses on the family F are generally standard and are used to establish
the asymptotic properties of the MHDE. Sufficient conditions on F for the validity of these
hypotheses are described in [3,16], and [17]. A remark on Hypothesis 4 is warranted
here. When p = g, this assumption is related to the positive definiteness of the Fisher
information matrix. If one assumes G = F, then this hypothesis reduces to the condition
that inf{λθ : θ ∈ Θ} ≥ c > 0, which is standard. Finally, we remark that we have not
attempted to provide the weakest regularity conditions, and we do believe some of these
conditions can possibly be relaxed.

Recall that the MHDE of θ can be obtained by solving the equation

∇A n(θ) := ∇θA ( fθ, gn) =
1
2

∫

R
uθ(x)sθ(x)g

1
2
n (x)dx = 0, (11)

where uθ(x) = ∇θ fθ(x)( fθ(x))−1 is the score function, which is obtained using
∇θs(x; θ) = 1

2 u(x; θ)s(x; θ).
We begin by providing some heuristics for the case d = 1. Let ˙An(θ) denote the

derivative of An(θ) when d = 1. Let θ̂n denote the argzero of the function ˙A n(θ) obtained
from (11) above. Let θ̂n,l = inf{θ ∈ Θ : ˙A n(θ) ≤ 0} and θ̂n,u = sup{θ ∈ Θ : ˙A n(θ) ≥ 0}.
Since θ̂n,l ≤ θ̂n ≤ θ̂n,u, we obtain using Markov’s inequality that for any ε > 0,

Pg(θ̂n,l ≥ θg + ε) ≤ Pg( ˙A n(θg + ε) ≥ 0) ≤ Eg[exp(nα ˙A n(θg + ε)], (12)

where α > 0. Similarly, for α < 0, it can be seen that

Pg(θ̂n,u ≤ θg − ε) ≤ Pg( ˙A n(θg − ε) ≤ 0) ≤ Eg[exp(nα ˙A n(θg − ε)]. (13)

Thus, an evaluation of (9) will allow us to obtain the logarithmic upper bound for θ̂n,l and
θ̂n,u. Next, using the inequalities

Pg(θ̂n,l ≥ θg + ε) ≤ Pg( ˙A n(θg + ε) ≥ 0) ≤ Pg(θ̂n,u ≥ θg + ε), (14)

Pg(θ̂n,u ≤ θg − ε) ≤ Pg( ˙A n(θg − ε) ≤ 0) ≤ Pg(θ̂n,l ≤ θg − ε), (15)

under additional hypotheses, one can derive large deviation lower bounds for θ̂n. Deriving
these bounds for MLE and MCE is rather standard, since the objective functions and their
derivatives are linear functionals of the empirical distribution, as stated in (10), but this is
not the case for the Hellinger distance.

Observe that the probabilities in (12) and (13) represent rare-event probabilities since,
under the hypotheses described previously, θ̂n converges to θg almost surely as n→ ∞. The
distributional results concerning θ̂n rely on the continuity and differentiability properties
of ∇A n(θ), which depend nonlinearly on gn, and the norm convergence of gn to g.

Let G denote the collection of all probability densities with support S. By Scheffe’s

theorem, the pointwise convergence of gn to g implies gn
L1→ g as n → ∞. Additionally,

when gn(·) is the kernel density estimator, then Glick’s Theorem guarantees that gn
L1→

g almost surely as n → ∞ when bn ↘ 0 and n ↗ ∞; cf. [18]. Since the MHDE are
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functionals of density estimators, it is natural to expect that the large deviations of density
estimators will play a significant role in our analysis. For this reason, one is forced to
consider the topological issues that arise in the large deviation analysis of density estimators.
Interestingly, it turns out that the weak topology on L1(S) plays a prominent role. This, in
turn, leads to the question of whether certain continuity properties, which were part of the
traditional theory of MHD analysis, continue to hold if G were viewed as a subset of L1(S)
equipped with weak topology. Expectedly, while the answer in general is no (cf. [19]),
Proposition 1 provides sufficient conditions on the family G under which one additionally
obtains norm convergence.

Before proceeding, we now introduce some further regularity conditions, as follows.

Hypothesis 5. uθsθ ∈ L2(S) and is an L2(S)-continuous function of θ.

Hypothesis 6. The family F consists of bounded equicontinuous densities.

Hypothesis 7. The family G consists of bounded and equicontinuous densities.

Hypothesis 8. uθg ∈ L2(S) and is an L2(S)-continuous function of θ.

Here, we note that Hypotheses 6 and 7 are related. Furthermore, if one is willing
to assume that G = F, then one does not need Hypothesis 7. On the other hand, if one
believes that parametric distributions are approximations to G , then one needs to work
with Hypothesis 7. For this reason, we have maintained both of these hypotheses in our
main results. Hypotheses 5 and 8 are related to finiteness of the Fisher information and are
standard in the statistical literature.

Before we state the first proposition, we recall the definition of weak topology on L1
(cf. [19]). A sequence {hn : n ≥ 1} is said to converge weakly in L1 if

∫
S hn(x)b(x)dx →∫

S h(x)b(x)dx as n→ ∞ for every b ∈ L∞(S), where L∞(S) is a class of essentially bounded
functions. We assume throughout the paper that the topology on Θ is the standard topology
generated by the Euclidean metric.

Proposition 1. Let G denote the class of densities, equipped with the weak topology. Further
assume that Hypotheses 1–7 hold. Let Θ⊗ G be equipped with the product topology. Then the
mapping ∇A : Θ⊗ G → Rd defined by

∇A (θ, g) :=
∫

R
uθ(x)sθ(x)g

1
2 (x)dx (16)

is jointly continuous in (θ, g). Furthermore, if gn
w→ g, then

lim
n→∞

sup
θ∈Θ
||∇A (θ, gn)−∇A (θ, g)|| = 0. (17)

Finally, under Hypothesis 7, the family G is a weakly sequentially closed subset of L1(S).

Our next result is concerned with the limit behavior of the generating function of
∇A n(θ). In the following we use the notation p � g to mean the probability measures
associated with p(·) and g(·) are absolutely continuous.

Theorem 1. Assume that Hypotheses 1–7 hold, and set

Λn,θ(α) :=
1
n

log Eg[exp(n〈α,∇A n(θ)〉], α ∈ Rd. (18)
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Then Λθ(α) := limn→∞ Λn,θ(α) exists and is a convex function given by

Λθ(α) = sup
p∈G

{∫

S
〈α, uθ(x)〉sθ(x)p

1
2 (x)dx−KL(p, g)

}
, (19)

where

KL(p, g) =

{∫
S p(x) log

(
p(x)
g(x)

)
dx if p� g,

∞ otherwise.
(20)

Remark 1. Since Λθ is defined via a limiting operation, it is hard to extract its qualitative properties.
However, we can obtain a simple lower bound by observing that KL(p, g) = 0 if and only if p = g,
and an upper bound using that the Kullback–Leibler information is nonnegative. This results in the
following bounds:

∫

S
〈α, uθ(x)〉sθ(x)g

1
2 (x)dx ≤ Λθ(α) ≤ sup

p∈G

[∫

S
〈α, uθ(x)〉sθ(x)p

1
2 (x)dx

]
. (21)

Furthermore, if all densities in G are bounded by one, then p
1
2 (·) ≥ p(·) implies

Λθ(α) ≥ sup
p∈G

{∫

S
〈α, uθ(x)〉sθ(x)p(x)dx−KL(p, g)

}
. (22)

Using a variational argument, it can be shown that the supremum on the right-hand side is attained
at p∗ given by

p∗(x) :=
exp(〈α, uθ(x)〉)sθ(x)∫

S〈α, uθ(x)〉sθ(x)g(x)dx
; (23)

cf. [20]. Furthermore, the maximum that results from this choice of p∗(·) is

log
∫

S
exp(〈α, uθ(x)〉)sθ(x)g(x)dx,

yielding yet another lower bound for Λθ(α), although the comparison of these two lower bounds is
not immediate.

Returning to our main discussion, recall from [21] that the convex conjugate of the
function Λθ is defined by

Λ∗θ(x) = sup
α∈Rd
{〈α, x〉 −Λ(α)}, x ∈ Rd. (24)

Let Dθ denote the domain of Λθ; namely,

Dθ = {α ∈ Rd : Λθ(α) < ∞}; (25)

and let Rθ denote the range of the gradient map ∇Λθ; that is,

Rθ =
{

x ∈ Rd : ∇Λθ(α) = x, some α ∈ Rd
}

.

We begin with the discussion of the case d = 1. In this case, the generating function
Λθ reduces to

Λθ(α) = sup
p∈G

{
α
∫

S
exp(nα ˙An(θ)s(x; θ)p

1
2 (x)dx−KL(p, g)

}
. (26)
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By the convexity of Λθ(·), this function is differentiable almost everywhere (cf. [21]), and
in the proof, we would like to exploit the differentiability of this function at the point α∗θ
where it attains its minimum value. If Λθ is not differentiable at this point, it is helpful to
consider the directional derivatives of Λθ . Specifically, let Λ′θ,+(·) and Λ′θ,−(·) denote the

right and left derivatives of Λθ(·), respectively. When x ∈
(
Λ′θ,−(α),Λ

′
θ,+(α)

)
, then it is

well known that Λ∗θ (x) = αx−Λθ(α), but this observation will not be sufficient to obtain a
proper lower bound. For that to hold, we need a stronger condition, namely that 0 ∈ Rθ ,
which will only be true if Λθ is differentiable at its point of minimum, α∗θ . Otherwise, the
expected lower bound turns out to be Λ∗θ (x), where x = Λ′θ,+(α

∗
θ ); cf. [13].

We now turn to our large deviation theorem in R1, where we study the rare-event
probabilities Pg(θ̂n ∈ C) for sets C that are away from the true value θg. Specifically, we
establish an analogue of the LDP, but where a subtle difference arises in the lower bound
in the absence of differentiability of Λθ .

We recall that θ̂n is defined using the kernel density estimator gn(·) defined in (1),
whose behavior is dictated by the bandwidth sequence {bn}.

Theorem 2. Assume d = 1, Hypotheses 1–8 are satisfied, and θ̂n is the unique zero of ˙An(θ) = 0.
Further assume that bn ↘ 0 and nbn ↗ ∞ as n→ ∞. Then for any closed set F not containing θg,

lim sup
n→∞

1
n

log Pg(θ̂n ∈ F) ≤ − inf
θ∈F

Λ∗θ (0). (27)

Moreover, for any open set G not including θg,

lim inf
n→∞

1
n

log Pg(θ̂n ∈ G) ≥ − inf
θ∈G

I(θ), (28)

where

I(θ) = inf{Λ∗θ (x) : x ∈ Rθ ∩ [0, ∞)}, (29)

and the infimum is taken to be infinity if the set Rθ ∩ [0, ∞) is empty.

Remark 2. If F = [θ, ∞) where θ > θg, then in both the upper and lower bounds, it is sufficient
to evaluate the infimum at the boundary point θ. That is,

lim sup
n→∞

1
n

log Pg(θ̂n ∈ [θ, ∞)) ≤ −Λ∗θ (0).

Similarly, if G = (θ, ∞) where θ > θg, then

lim inf
n→∞

1
n

log Pg(θ̂n ∈ (θ, ∞)) ≥ −I(θ).

Furthermore, if infα Λθ(α) is achieved at a unique point α∗θ and Λθ is differentiable at α∗θ , then
the right-hand side of (28) reduces to Λ∗θ (0), i.e., the upper and lower bounds coincide and the
limits exist. Since the rate function appearing in the upper and lower bounds coincide in this case,
we obtain a proper LDP if the resulting rate function has the required regularity properties, in
particular, I(θ) = Λ∗θ (0) is lower semicontinuous and has compact level sets.

The proof of the above theorem relies on (14) and (15) combined with Theorem 1,
together with a change of measure argument characteristic of large deviation analysis. The
comparison inequalities in (14) and (15) are critical to obtaining the characterizations in the
above theorem, but these are essentially one-dimensional results and their analogues in
higher dimensions (d ≥ 2) are not immediate. Consequently, when Λθ is not differentiable,
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new complications arise, which lead to a slightly different, and less explicit, representation
of the lower bound.

Next we establish a large deviation theorem for Rd, generalizing the previous theorem
to higher dimensions. In the following, let dist(x, G) = infy∈G ||x− y|| denote the distance
between a point x ∈ Rd and a set G ⊂ Rd.

Theorem 3. Assume Hypotheses 1–8 are satisfied, and assume that bn ↘ 0 and nbn ↗ ∞ as
n→ ∞. Then for any closed set F not containing θg,

lim sup
n→∞

1
n

log Pg(θ̂n ∈ F) ≤ − inf
θ∈F

Λ?
θ(0). (30)

Moreover, for any open set G not including θg,

lim inf
n→∞

1
n

log Pg(θ̂n ∈ G) ≥ − inf
θ∈G

I(θ), (31)

where I(θ) = inf
{
Λ∗θ(x) : x ∈ Rθ ∩ B(0; cθ)

}
and cθ = b dist(θ,Θ− G) for some universal

constant b ∈ (0, ∞), and the infimum is taken to be infinity if the set Rθ ∩ B(0; cθ) is empty.

Remark 3. As we noted for the one-dimensional case in Remark 2, under a differentiability
assumption on Λθ , the function I(θ) can be identified as Λ∗θ (0), but in full generality, it is not
immediately known that I(θ) is even nontrivial. Moreover, without differentiability, the infimum in
the definition of I(θ) is more restrictive than what we encountered in the one-dimensional problem.
However, if one assumes additional geometry on G, such as a translated cone structure, then one
obtains improved estimates in the sense that one can take unbounded regions in the definition of
I(θ), just as we saw in Theorem 2.2. For further remarks in this direction, see the discussion given
after the proof of the theorem.

3. Proofs

We turn first to Proposition 1.

Proof of Proposition 1. Since Θ⊗ G is equipped with product topology, it is sufficient to
show that if θn → θ and gn

w→ g, then ∇A n(θ) converges to ∇A (θ), where

∇A (θ) =
∫

S
uθ(x)sθ(x)g

1
2 (x)dx. (32)

Let rθ(x) = uθ(x)sθ(x), and observe that

|∇A (θn, gn)−∇A (θ, g)| ≤
∫

S
|rθn (x)||g

1
2
n (x)− g

1
2 (x)|dx +

∫

S
|rθn (x)− rθ(x)|g 1

2 (x)dx

≤ ||rθ||2HD(gn, g) +
∫

S
|rθn (x)− rθ(x)|g 1

2 (x)dx

= Tn,1 + Tn,2, (33)

where the penultimate equation follows by applying the Cauchy–Schwarz inequality. Then
by the Cauchy–Schwarz inequality and Hypothesis 5, Tn,2 → 0. Since Hellinger distance is
dominated by the L1-distance, in order to complete the proof, it is sufficient to show that
||gn − g||1 → 0. Now since gn

w→ g, it follows that as n→ ∞,

Gn(x) :=
∫

S
gn(y)I{y≤x}dy→

∫

S
g(y)I{y≤x}dy := G(x). (34)

Evidently, Gn(·) and G(·) are nondecreasing and right continuous. Furthermore, if x∗ =
inf{x : x ∈ S} and x∗ = sup{x : x ∈ S}, then Gn(x∗) → G(x∗) and Gn(x∗) →
G(x∗), where Gn(x∗) = limx→x∗ Gn(x), Gn(x∗) = limx→x∗ Gn(x), G(x∗) = limx→x∗ G(x),
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G(x∗) = limx→x∗ G(x). Thus Gn converges to G, which is a proper distribution function.
Then by Lemma 1 of Boos [22], gn(·) converges to g(·) uniformly on compact sets. This, in
turn, implies the L1 convergence of gn(·) to g(·) (by Scheffe’s lemma), which establishes
the convergence of Tn,1 to 0, thus completing the proof of the joint continuity of ∇A (θ, g).

Next, the uniform convergence (17) follows by Hypothesis 5, since

sup
θ∈Θ
|∇A (θ, gn)−∇A (θ, g)| ≤

∫

S
|rθ(x)||g

1
2
n (x)− g

1
2 (x)|dx

≤ sup
θ∈Θ
||rθ||2HD(gn, g)→ 0.

Finally, to prove that G is weakly sequentially closed, note that convergence in weak
topology implies pointwise convergence, yielding g(·) ≥ 0. Noting that

∫

S
g(x)dµ(x) = 1 +

∫

S
(g(x)− gn(x))dx, (35)

it follows that g(·) integrates to one, using L1 convergence, thus completing the proof of
the proposition.

We now turn to the proof of Theorem 1. The proof relies on the large deviation theorem
for the kernel density estimator gn(·) in the weak topology of G . The next proposition
is concerned with the LDP for {gn} in G , equipped with the inherited weak topology
from L1(S). This issue has received considerable attention recently (cf. [23,24]), where it is
established that the full LDP may not hold for {gn} in norm topology, but does hold under
the weak topology.

Proposition 2. Assume Hypotheses 1–8 and that bn ↘ 0 and nbn ↗ ∞ as n→ ∞. Then {gn}
satisfies the LDP in the weak topology of L1(S) with good rate function I given by

I(p) =

{∫
S p(x) log

(
p(x)
g(x)

)
dx if g� p,

∞ otherwise.
(36)

Proof of Theorem 1. As before, let G be equipped with the weak topology. Set
rθ(x) = uθ(x)sθ(x), and define F : G → R as follows:

F(h) =
∫

S
〈α, rθ(x)〉h 1

2 (x)dx. (37)

By Hypothesis 5, rθ ∈ L2(S). To show that F(·) is continuous, let hn
w→ h as n→ ∞. Then

|F(hn)− F(h)| ≤
∫

S
rθ(x)|h

1
2
n (x)− h

1
2 (x)|dµ(x)

≤ ||rθ||2HD(hn, h) ≤ ||rθ||2||hn − h||1 → 0 as n→ ∞, (38)

where we have used the Cauchy–Schwarz inequality that the L1 distance dominates the
Hellinger distance in (38). Now by Hypothesis 7, as in the proof of Proposition 1, we have
that ||hn − h||1 → 0 as n→ ∞, establishing the continuity of F(·). Next, to show that F(·) is
bounded, note that sup{F(p) : p ∈ G } ≤ ||rθ||2 by the Cauchy–Schwarz inequality. Then
by Proposition 2, it follows by Varadhan’s integral lemma (see [10], Theorem 4.3.1) that
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lim
n→∞

1
n

log E[exp(nF(gn(x))] = lim
n→∞

1
n

log E
[

exp
(

n
∫

S
〈α, uθ(x)sθ(x)〉g

1
2
n (x)dx

)]

= sup
p∈G

{∫

S
〈α, uθ(x)〉sθ(x)p

1
2 (x)dx−KL(p, g)

}

:= Λθ(α). (39)

This completes the proof of the theorem.

The proofs of our main results will involve probability bounds on the modulus of
continuity of An(θ) and ∇A n(θ), respectively. Recall that the modulus of continuity
ω(h; r) of a function h : Rd → R is given by

ω(h; r) := sup
||x1−x2||≤r

|h(x1)− h(x2)|, r > 0. (40)

Observe that when h(·) is replaced by An(θ) or ∇A n(θ), the modulus of continuity
becomes a random quantity. Our next proposition summarizes the continuity properties
of An(θ) and ∇A n(θ) via their modulus of continuity as real-valued functionals from G
equipped with the weak topology.

Proposition 3. Assume that Hypotheses 1–8 hold and that bn ↘ 0 and nbn ↗ ∞ as n → ∞.
Then, with respect to {An} and A , the modulus of continuity satisfies the following relations, each
with probability one:

(i) lim
n→∞

ω(An; r) = ω(A , r); (ii) lim
r→0

ω(An; r) = 0; and (iii) lim
r→0

ω(A ; r) = 0.

Similarly, the sequence {∇An} and∇A satisfy the analogous relations with probability one; namely,

(iv) lim
n→∞

ω(∇An; r) = ω(∇A ; r); (v) lim
r→0

ω(∇An; r) = 0; and (vi) lim
r→0

ω(∇A ; r) = 0.

Proof. First observe that An(θ) converges uniformly to A (θ). To see this, note that if
gn

w→ g, then by Proposition 1, it converges in L1. Hence

sup
θ∈Θ
|An(θ)−A (θ)| ≤ sup

θ∈Θ

∫

R
sθ(x)|g

1
2
n (x)− g

1
2 (x)|dx

≤ ||g
1
2
n (x)− g

1
2 (x)||2 ≤ ||gn − g||1 → 0, (41)

where the last inequality follows using that the Hellinger distance is dominated by the L1-
distance. We now prove (i). For this we invoke the properties of the modulus of continuity.
Observe that

ω(An; r) = ω(An −A +A ; r) ≤ ω(An −A ; r) + ω(A ; r), (42)

which yields

|ω(An; r)−ω(A ; r)| ≤ ω(An −A ; r). (43)
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Next observe that

ω(An −A ; r) = sup
||θ1−θ2||≤r

|(An −A )(θ1)− (An −A )(θ2)|

≤ 2 sup
θ∈Θ
|An(θ)−A (θ)| → 0, (44)

where the last convergence follows from the uniform convergence of (An −A )(θ) to 0 as
shown in (42). The proof of (iv) is similar, and specifically is obtained by using that

ω(∇(An −A ); r) ≤ 2 sup
θ∈Θ
||∇An(θ)−∇A (θ)|| → 0, (45)

where the above convergence follows from (17).
We now turn to the proof of (ii). Using the Cauchy–Schwarz inequality and the

definition of Hellinger distance,

ω(An; r) = sup
||θ1−θ2||≤r

|An(θ1)−An(θ2)|

= sup
||θ1−θ2||≤r

∣∣∣∣
∫

R
(sθ1(x)− sθ2(x))g

1
2
n (x)dx

∣∣∣∣ ≤ HD( fθ1 , fθ2)

≤ sup
||θ1−θ2||≤r

|| fθ1 − fθ2 ||1 := ω(H; r), (46)

where H : (θ1, θ2)→ || fθ1 − fθ2 ||1 is continuous since F is continuous in θ. Also, since Θ×
Θ is compact, H(·, ·) is uniformly continuous. Since the modulus of continuity converges
to 0 if and only if H(·, ·) is uniformly continuous, (ii) follows. Turning to (v), notice that,
as before,

ω(∇An; r) ≤ sup
||θ1−θ2||≤r

||uθ1 sθ1 − uθ2 sθ2 ||2. (47)

Now, since uθsθ is L2 continuous, by Hypothesis 5, the proof follows as in (ii) due to to the
compactness of Θ. The proofs of (iii) and (vi) are similar to (ii) and (v), respectively, and are
therefore omitted.

Proposition 4. For any 0 < M < ∞ and δ > 0, there exists a positive number r(M, δ) such that

Pg(ω(An; r) ≥ δ) ≤ e−Mn and Pg(ω(∇An; r) ≥ δ) ≤ e−Mn. (48)

Proof. By Markov’s inequality and (46), it follows that for any β > 0,

Pg(ω(An; r) ≥ δ) ≤ Eg[enβω(An ;r)]e−nβδ ≤ e−nβ(δ−ω(H;r)). (49)

Since ω(H; r) → 0 as r ↘ 0, there exists an r0 such that for all r ≤ r0, (δ− ω(H; r)) > 0.
Since β > 0 is arbitrary, the proposition follows by taking β = M(δ−ω(H; r))−1, for some
r ≤ r0. The proof of the second inequality is similar, using (47).

Proof of Theorem 2. We begin with the proof of the upper bound. Since we assume that
the equation ˙A n(θ) = 0 has a unique solution, it follows from the inequality in (12) that
for any α > 0 and θ > θg,

lim sup
n→∞

1
n

log Pg(θ̂n ≥ θ) ≤ lim sup
n→∞

1
n

log Eg[exp(nα ˙A n(θ))] = Λθ(α), (50)
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where the last equality follows by applying Theorem 1 with d = 1. Since the inequality
holds for every α > 0,

lim sup
n→∞

1
n

log Pg(θ̂n ≥ θ) ≤ sup
α>0

Λθ(α) ≤ sup
α∈R

Λθ(α). (51)

Now, noticing that supα∈RΛθ(α) = − infα∈R−Λθ(α) = −Λ∗θ (0), we then obtain

lim sup
n→∞

1
n

log Pg(θ̂n ≥ θ) ≤ −Λ∗θ (0). (52)

Similarly, for θ < θg, using (13), one can show by an analogous calculation that

lim sup
n→∞

1
n

log Pg(θ̂n ≤ θ) ≤ −Λ∗θ (0). (53)

Now let θ1 = inf{θ > θg : θ ∈ F} and θ2 = sup{θ < θg : θ ∈ F}. Then

Pg(θ̂n ∈ F) ≤ Pg(θ̂n ≥ θ1) + Pg(θ̂n ≤ θ2), (54)

and so by (52) and (53), it follows that

lim sup
n→∞

1
n

log Pg(θ̂n ∈ F) ≤ − min
θ∈{θ1,θ2}

Λ∗θ (0) ≤ − inf
θ∈F

Λ∗θ (0), (55)

where the last step follows since F closed implies {θ1, θ2} ⊂ F.
Next we turn now to the proof of the lower bound. Let G be an open set, and let θ ∈ G.

Then there exists an ε > 0 (to be chosen) such that Iε := (θ − ε, θ + ε) ( G. Note that

{θ̂n ∈ Iε} = { ˙A n(θ̂n) = 0, θ̂n ∈ Iε}
⊃ { ˙A n(θ)− ˙A n(θ̂n) ≥ δ} ∪ { θ̂n ∈ Iε, sup

θ1,θ2∈Iε

| ˙A n(θ1)− ˙A n(θ2)| ≤ δ}.

Thus,

Pg(θ̂n ∈ Iε) ≥ Pg( ˙A n(θ)− ˙A n(θ̂n) ≥ δ)− Pg(θ̂n /∈ Iε, sup
θ1,θ2∈Iε

| ˙A n(θ1)− ˙A n(θ2| > δ))

≥ Pg( ˙A n(θ)− ˙A n(θ̂n) ≥ δ)− Pg( sup
θ1,θ2∈Iε

| ˙A n(θ1)− ˙A n(θ2)| > δ)

= Pg( ˙A n(θ) ≥ δ)− Pg( sup
θ1,θ2∈Iε

| ˙A n(θ1)− ˙A n(θ2)| > δ)

= Pg( ˙A n(θ) ≥ δ)− Pg(ω( ˙An; ε) > δ). (56)

We now investigate Pg( ˙A n(θ) ≥ δ). Let Qn denote the distribution of ˙A n(θ), and
define Qn,α as follows:

Qn,α(B) =
1

Λn,θ(α)

∫

B
e−nαydQn(y), B ∈ B. (57)

Let B = (x− η, x + η), for some η > 0, where B ⊂ (δ, ∞) and x ∈ Rθ . Then

Qn(B) ≥ exp{−nαx− nη|α|+ nΛn,θ(α)}Qn,α(B). (58)

Taking the logarithm, dividing by n, and then taking the limit as n→ ∞, we obtain

lim inf
n→∞

1
n

log Qn(B) ≥ −αx− η|α| −Λθ(α) + lim inf
n→∞

1
n

log Qn,α(B). (59)
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Now since x ∈ Rθ , we can apply Theorem IV.1 of [25] to obtain that the last term on
the right-hand side of the previous equation converges to zero. Upon letting η → 0, it
follows that

lim inf
n→∞

1
n

log Qn(B) ≥ −Λ∗θ (x). (60)

Since the above inequality holds for all x ∈ Rθ ∩ (δ, ∞), we conclude that

lim
n→∞

1
n

log Pg( ˙A n(θ) ≥ δ) ≥ −Iδ(θ), (61)

where Iδ(θ) = infx∈Rθ∩(δ,∞) Λ
∗
θ (x).

By Proposition 4, choosing M > Iδ(θ), one can find ε > 0 such that

Pg(ω( ˙An; ε) > δ) ≤ e−Mn. (62)

Since

Pg(θ̂n ∈ G) ≥ Pg( ˙A n(θ) ≥ δ)

(
1− Pg(ω( ˙An; ε))

Pg( ˙A n(θ) ≥ δ)

)
, (63)

by the choice of M, it follows from (61) that

lim inf
n→∞

1
n

log Pg(θ̂n ∈ G) ≥ −Iδ(θ). (64)

Taking the supremum on left- and right-hand side over all δ > 0 yields the required
lower bound.

Turning to the higher dimensional case, we first need the following result, which
provides a uniform bound on the Hessian of the objective function An(θ).

Lemma 2. Under Hypotheses 1–8, there exists a finite constant 0 < C < ∞ such that with
probability one,

sup
n≥1

sup
θ∈Θ
||HAn(θ)||2 ≤ C. (65)

Proof. This is standard. Specifically, note that the (i, j)th element of the matrix HAn(θ) is
given by

hn,ij =
∫

S
s̈ij

θ(x)g
1
2
n (x)dx. (66)

Next, writing down the expression for s̈ij
θ in terms of the derivatives of the score function

uθ, using the Cauchy–Schwarz inequality along with Hypotheses 3, 4, 6, and 8, and the
definition of the matrix norm, the lemma follows.

In the proof of the lower bound, we will take a somewhat different approach, involving
the analysis of k constraints, and our strategy will be to reduce this to a problem involving
a single constraint. Specifically, in (67) below, we establish that, instead of studying k
constraints on a quantity Dn (which we are about to define), we can cast the problem in
terms of a d-dimensional vector Yn (defined in (70) below) belonging to a ball centered at 0
and of appropriate radius.

To be more precise, let G ⊂ Rd be open, and consider the probability that we obtain
an estimated value θ ∈ G. Let {θ1, . . . , θk} ⊂ Θ− G, and for any δ > 0, set

dn(j) = An(θ)−An(θj)− δ, j = 1, . . . , k
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and Dn(θ) = (dn(1), · · · dn(k)). If θ is chosen as the estimate, then we must have An(θ)−
An(θj) ≥ 0 for all j, so, in particular,

Pg(θ̂n ∈ G) ≥ Pg(Dn(θ) ≥ 0) (67)

(by which we mean that dn(j) ≥ 0 for all j in this last probability).
To evaluate the latter probability, observe that by a second-order Taylor expansion,

sθ(x)− sθj(x) = 〈θ− θj,∇sθ(x)〉+ 1
2
(θ− θj)H (x; θ∗j )(θ− θj)

′. (68)

Using the positive definiteness and uniform boundedness of the matrix
∫
R H (x; θ)p

1
2 (x)dx,

by Hypothesis 4, we have that for any unit vector v ∈ Rd,

sup
p∈G

inf
η∈Θ

{
v
(∫

R
H (x; η)p

1
2 (x)dx

)
v′
}
≥ c,

where c is a positive constant independent of v. Thus, for each j,

sup
p∈G

inf
η∈Θ

{
(θ− θj)

(∫

R
H (x; η)p

1
2 (x)dx

)
(θ− θj)

′
}
≥ c ‖θ− θj‖2. (69)

Integrating with respect to g
1
2
n (·) and using the definition of An(·), we then obtain that

dn(j) =
∫

R

[
〈θ− θj,∇s(x, θ)〉

]
g

1
2
n (x)dx +R(θ, θj), (70)

where
R(θ, θj) ≥ c ‖θ− θj‖2 − δ.

Let Yn(θ) = (Yn,1, . . . , Yn,d), where for s(x; θ) := sθ(x):

Yn,j =
∫

S

∂

∂θj
s(x; θ)g

1
2
n (x)dx, 1 ≤ j ≤ k. (71)

(We have suppressed θ in the notation for Yn,j.) Then the inequality dn(j) ≥ 0 corresponds
to an event En,j described by the occurrence of the inequality

〈
θ− θj

||θ− θj||
, Yn

〉
≥ −c||θ− θj||+ δ(||θ− θj||)−1, (72)

where the right-hand side is always negative for small δ (since dist(θ,Θ− G) > 0) and
behaves like a constant multiple of dist(θ,Θ− G) as this distance tends to infinity. Thus,
we can choose a positive constant aδ such that

aδ dist(θ,Θ− G) ≤ c||θ− θj|| − δ(||θ− θj||)−1, j = 1, . . . , k,

and set cθ(δ) := aδ dist(θ,Θ− G). Finally, let Ẽn denote the event that
〈

θ− θj

||θ− θj||
, Yn

〉
≥ −cθ(δ). (73)
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Then for all j, En,j ⊃ Ẽn, where we recall that En,j was defined via (72). Now, since the
definition of the event Ẽn does not depend on any specific vector θj, one can replace the
vector (θ− θj)(||θ− θj||)−1 by any unit vector v in Rd. Hence

Pg(Dn ≥ 0) ≥ Pg(〈v, Yn〉 ≥ −cθ(δ), for all unit vectors v) = Pg(Yn ∈ B(0; cθ(δ))), (74)

and we now derive a large deviation lower bound for the probability on the right-hand
side.

Proposition 5. Assume that Hypotheses 1–8 hold, and suppose that G is an open subset of Rd.
Assume that bn ↘ 0 and nbn ↗ ∞ as n→ ∞. Then for any θ ∈ G and r > 0,

lim
n→∞

1
n

log Pg(Yn ∈ B(0; r)) ≥ −Ir(θ), (75)

where Ir(θ) = inf
{
Λ∗θ(x) : x ∈ Rθ ∩ B(0; r)

}
and the infimum is taken to be infinity if the set

Rθ ∩ B(0; r) is empty.

Proof. We begin by studying the limiting generating function of Yn. By Varadhan’s integral
lemma, it follows that

lim
n→∞

Λn,θ(α) := lim
n→∞

1
n

log Eg[exp(n〈α, Yn〉] = Λθ(α), (76)

where

Λθ(α) = sup
p∈G

[∫

S
〈α,∇sθ(x)〉p 1

2 (x)dx−KL(p, g)
]

. (77)

Define the α-shifted distribution by

Qn,α(B) =
1

Λn,θ(α)

∫

B
en〈α,y〉dQn(y), (78)

where Qn denotes the distribution of Yn. Note by the convexity of Λθ(α) that it is almost
everywhere differentiable. Fix x ∈ Rθ ∩ B(0; r) and choose α such that ∇Λθ(α) = x. Let
δ > 0 be such that B(x; δ) ( B(0; r). Then

Qn(B(x; δ)) = exp(nΛn,θ(α))
∫

B(x;δ)
exp (−n〈α, y〉)dQn,α(y)

≥ exp(n(−〈α, x〉+Λn,θ(α) + ||α||δ))Qn,α(B(x; δ)), (79)

implying

lim inf
n→∞

1
n

log Qn(B(x; δ)) ≥ −〈α, x〉+Λθ(α)− ||α||δ + lim inf
n→∞

1
n

log Qn,α(B(x; δ)). (80)

Now, notice that the limiting cumulant generating function of Yn under the measure Qn,α
is given by

Λ̃θ(β) = Λθ(α + β)−Λθ(β). (81)

Since Λ̃θ is a proper convex function, it is continuous since Λθ(α) is finite in the Rd, and
moreover, by the choice of x, it is differentiable at 0. Hence Condition II.1 of [25] is satisfied.
Now, using Theorem IV.1 of [25], it follows that

lim inf
n→∞

1
n

log Qn,α(B(x; δ)) = 0. (82)
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Substituting the above into (80), we obtain

lim inf
n→∞

1
n

log Pg(Yn ∈ B(0; r)) ≥ −Λ∗θ(x). (83)

Taking the supremum in x ∈ Rθ ∩ B(0; r), the proposition follows.

Proof of Theorem 3: Upper Bound. Let F be a closed subset of Θ. Note Θ compact
implies that F is compact. Let {B(θ; r) : θ ∈ Θ} denote an open cover of F, and let
{B(θ1; r), . . . , B(θk; r)} denote the finite subcover. Using that∇An(θ̂n) = 0, we then obtain
that for any α ∈ Rd,

Pg(θ̂n ∈ F) ≤
k

∑
j=1

Pg(θ̂n ∈ B(θk; r))

=
k

∑
j=1

Eg[exp(n〈α, ˙A n(θ̂n)〉)I{θ̂n∈B(θj ;r)}] :=
k

∑
j=1

Tn(j). (84)

Adding and subtracting ∇An(θj) to ∇An(θ) and then applying Hölder’s inequality yields
Tn(j) ≤ Tn(1, j, p)Tn(2, j, q), where

log Tn(1, j, p) =
1
p

log Eg[exp(np〈α,∇A n(θj)〉)I{θ∈B(θj ;r)}],

log Tn(2, j, q) =
1
q

log Eg[exp(nq〈α,∇(A n(θ̂n)−An(θj))〉)I{θ̂n∈B(θj ;r)}].

First we study Tn(2, j, q). For θ̂n ∈ B(θj, rj) and θ1, θ2 ∈ Θ, the Cauchy–Schwarz inequal-
ity gives

|〈α,∇An(θ̂n)−∇An(θj))〉| ≤ ||α||2 sup
θ1,θ2∈B(θj ,r)

||∇An(θ1)−∇An(θ2))||2

≤ ||α||2|r| sup
θ∈B(θj ,r)

||HAn(θ)||2

≤ ||α||2|r| max
1≤j≤k


 sup

θ∈B(θj ,rj)

||HAn(θ)||2


,

where HAn(θ) is the Hessian matrix consisting of the second partial derivatives of An(θ).
Hence we obtain for any 1 ≤ j ≤ k that

1
n

log Tn(2, j, q) ≤ r
1

nq
(nq||α||2) max

1≤j≤k



 sup

θ∈B(θj ,r)
||HAn(θ)||2





= r||α||2 max
1≤j≤k



 sup

θ∈B(θj ,r)
||HAn(θ)||2



. (85)

Now by Lemma 2,

lim sup
n→∞

1
n

log Tn(2, j, q) ≤ Cr. (86)

Also, for each 1 ≤ j ≤ k, Theorem 1 provides that

lim sup
n→∞

1
n

log Tn(1, j, p) ≤ 1
p
Λθj(pα). (87)
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Thus

lim sup
n→∞

1
n

Pg(θ̂n ∈ F) ≤ max
1≤j≤k

lim sup
n→∞

1
n

log Tn(1, j, p) + max
1≤j≤k

lim sup
n→∞

1
n

log Tn(2, j, p)

≤ max
1≤j≤k

1
p
Λθj(pα) + Cr. (88)

Since the last inequality holds for all p > 1,

lim sup
n→∞

1
n

Pg(θ̂n ∈ F) ≤ max
1≤j≤k

1
p
Λθj(pα) + Cr

→ max
1≤j≤k

Λθj(α) + Cr as p↘ 0. (89)

Moreover, for each j,

Λθj(α) ≤ sup
α∈Rd

Λθj(α) := −Λθj(0).

Hence

lim sup
n→∞

1
n

Pg(θ̂n ∈ F) ≤ max
1≤j≤k

−Λ∗θj
(0) + Cr

≤ − inf
θ∈F

Λ∗θ(0) + Cr. (90)

The upper bound follows by letting r ↘ 0.

Proof of Theorem 3: Lower Bound. Let G be an open subset of Θ, and let θ ∈ G. Then
Gc = Θ− G is compact, and there exists a collection T = {θ1, . . . , θk} ⊂ Gc such that
B(θ1; ε), . . . , B(θk; ε) forms a finite subcover of Θ− G, where ε > 0. Since

{
An(θ) ≥ sup

t∈T
An(t)

}
⊃



An(θ) ≥ max

1≤j≤k
An(θj) + max

1≤j≤k
sup

t∈B(θj ;ε)
[An(t)−An(θj)]





⊃
{

An(θ) ≥ max
1≤j≤k

An(θj) + sup
||θ1−θ2||<ε

|An(θ1)−An(θ2)|
}

, (91)

it follows that

Pgθ̂n ∈ G ≥ Pg

(
An(θ) > max

1≤j≤k
An(θj) + δ, sup

||θ1−θ2||<ε

[An(θ1)−An(θ2)] ≤ δ

)

≥ Jn,1 − Jn,2, (92)

where

Jn,1 := Pg

(
An(θ) > max

1≤j≤k
An(θj) + δ

)
,

Jn,2 := Pg

(
sup

||θ1−θ2||≤r
[An(θ1)−An(θ2)] ≥ δ

)
:= Pg(ω(An; ε) ≥ δ).
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We now investigate the behavior of Jn,1 and Jn,2. Starting with Jn,1, note that

Jn,1 ≥ Pg

(
min

1≤j≤k
(An(θ)−An(θj)− δ) ≥ 0

)
= Pg(Dn ≥ 0). (93)

Now by (74), it follows that

Jn,1 ≥ Pg(Yn ∈ B(0; r)), (94)

where Yn is as in (71) and r = cθ(δ). Applying Proposition 3.4, we obtain

lim
n→∞

1
n

log Jn,1 ≥ −Ir(θ), (95)

where Ir(θ) = inf
{
Λ∗θ(x) : x ∈ Rθ ∩ B(0; r)

}
, and we now observe that r may be chosen to

be cθ := limδ↓0 cθ(δ) > 0, where cθ(δ) is given as in (73). Hence we may replace Ir(·) with
I(·) on the right-hand side of the previous equation. Next, using Proposition 4 yields that

lim inf
n→∞

1
n

log Pg(θ̂n ∈ G) ≥ lim inf
n→∞

1
n

log Jn,1 + lim
n→∞

log
(

1− Jn,2

Jn,1

)
≥ −I(θ). (96)

Finally, the required lower bound is obtained by maximizing the right-hand side over all
θ ∈ G.

In the proof of the lower bound, it is clear that the choice of {θ1, . . . , θk} plays a central
role, and the rate function I(θ) will be minimized when k is small. As a simple example,
suppose that our goal is to obtain a lower bound for Pg(θ̂n ∈ G), where

G = {(θ1, θ2) : θ1 > a1 or θ2 > a2} ⊂ R2, θg /∈ G,

which is a union of two halfspaces, This can be expressed as a + C , where a = (a1, a2)
and C = {(θ1, θ2) : θ1 > 0 or θ2 > 0}, which is an example of a translated cone. Now
if θ ∈ G, then we can find two elements which generate the entire set Θ − G, in the
sense that all other normalized differences lie between these two unit vectors. These two
representative points are the unit vectors e1 = (−1, 0) and e2 = (0,−1), and all other
normalized differences (θ− θ̃/‖θ− θ̃‖ lie between these vectors for all θ̃ ∈ Θ− G. Now
going back to (73), we see that this equation again holds. Furthermore, (74) holds with
B(0; cδ(θ)) now replaced by an intersection of two halfspaces rather than of all halfspaces,
yielding an unbounded region in the definition of I(θ). This potentially improves the quality
of the lower bound compared with what is presented in the statement of Theorem 3. This
idea can be potentially generalized to other sets, such as other unions of halfspaces, and so
from a practical perspective, could apply somewhat generally.

4. Concluding Remarks

In this article, we have derived large deviation results for the minimum Hellinger
distance estimators of a family of continuous distributions satisfying an equicontinuity
condition. These results extend large deviation asymptotics for M-estimators given, e.g.,
in [6,9]. In contrast to the case for M-estimators, our setting is complicated due to its
inherent nonlinearity, leading to complications in the proofs of both the upper and lower
bounds, and an unexpected subtlety in the form of the rate function for the lower bound.
Our results suggest that one can, under additional hypotheses, establish saddlepoint
approximations to the density of MHDE, which would enable one to sharpen inference for
small samples.

Similar results are expected to hold for discrete distributions. However, the equicon-
tinuity condition is not required in that case, since `1, unlike L1(S), possesses the Schur
property. Hence the LDP in the weak topology of `1 can be derived (more easily) using a
standard Gärtner–Ellis argument, and utilizing this, one can, in principle, repeat all of the
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arguments above to derive results analogous to Theorems 2 and 3. Large deviations for
other divergences under weak family regularity (such as noncompactness of the parameter
space Θ)—and their connections to estimation and test efficiency—are interesting open
problems requiring new techniques beyond those described in this article.
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