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Abstract

This thesis presents a numerical model capable of simulating o�shore wind turbines
exposed to extreme loading conditions. External condition-based extreme responses
are reproduced by coupling a fully nonlinear wave kinematic solver with a hydro-
aero-elastic simulator.

First, a two�dimensional fully nonlinear wave simulator is developed. The tran-
sient nonlinear free surface problem is formulated assuming the potential theory and
a higher-order boundary element method (HOBEM) is implemented to discretize
Laplace's equation. For temporal evolution a second-order Taylor series expansion
is used. The code, after validation with experimental data, is successfully adopted
to simulate overturning plunging breakers which give rise to dangerous impact loads
when they break against wind turbine substructures. The impact force is quanti-
�ed by means of an analytical model and the total hydrodynamic action is �nally
obtained by adding the impulsive term to the drag and inertial ones.

In the second main core of the thesis, emphasis is placed on the random nature
of the waves. Indeed, a global simulation framework embedding the numerical wave
simulator into a more general stochastic environment is developed. Namely, �rst
a linear irregular sea is generated by the spectral approach, then, only on critical
space�time sub-domains, the fully nonlinear solver is invoked for a more re�ned
simulation. The space�time sub�domains are de�ned as the wind turbine near �eld
(space) times the time interval in which wave impacts are expected (time). Such a
domain decomposition approach permits systematically accounting for dangerous
e�ects on the structural response (which would be totally missed by adopting linear
or weakly nonlinear wave theories alone) without penalizing the computational e�ort
normally required.

At the end of the work the attention is moved to the consequences that the
proposed model would have in the quanti�cation of the structural risk.
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Sommario

In questa tesi viene proposto un nuovo modello numerico in grado di simulare tur-
bine eoliche in mare esposte a condizioni ambientali estreme. Le simulazioni, ot-
tenute per via diretta (i.e. a partire da azioni estreme stabilite a priori �ssando
il periodo di ritorno), accoppiano un modello numerico di propagazione del moto
ondoso con un solutore idro-aero-elastico dell'intero sistema.

Inizialmente viene sviluppato il modello numerico bidimensionale e comple-
tamente non�lineare di propagazione dell'onda formulato assumendo un �usso a
potenziale. L'equazione di Laplace ad esso associata viene risolta numericamente
attraverso il metodo degli elementi al contorno di ordine elevato (HOBEM). L'evo-
luzione temporale del moto viene e�ettuata implementando una serie di Taylor �no
al secondo ordine. Il software, validato con dati sperimentali, è così in grado di
riprodurre onde frangenti �no al rientro del getto. La forza di impatto, quanti�cata
mediante un modello analitico, viene poi aggiunta alle componenti inerziale e di
trascinamento in modo da stimare l'azione idrodinamica complessiva.

La seconda fase del lavoro è dedicata allo sviluppo di un modello di simulazione
globale �nalizzato alla integrazione del suddetto solutore numerico in un ambiente
del tutto stocastico. In particolare, dapprima una mare lineare irregolare viene gen-
erato con approccio spettrale. Successivamente, solo su sotto�domini critici, i.e.
nell'intorno della turbina e per intervalli di tempo in cui i frangimenti sono attesi, il
simulatore non�lineare viene lanciato per un'analisi più ra�nata. Questa strategia
di decomposizione del dominio permette di mettere in conto in modo sistematico
quegli e�etti impulsivi, che verrebbero altrimenti ignorati dai modelli lineari, senza
penalizzare lo sforzo computazionale normalmente richiesto.

In�ne, il lavoro si chiude mostrando le ripercussioni che il modello proposto può
avere in termini di a�dabilità e sicurezza strutturale.
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Kurzfassung

In dieser Arbeit wird ein numerisches Modell zur Simulation von O�shore-Wind-
energieanlagen unter extremen Lasteinwirkungen entwickelt. Dazu wird ein voll-
ständig kinematisch nichtlineares Wellenmodell mit einem hydroaeroelastischen Mod-
ell kombiniert.

Zunächst wird das instationäre nichtlineare Problem der freien Wasserober�äche
unter Verwendung der zweidimensionalen Potentialtheorie beschrieben. Die sich
ergebende Laplace-Gleichung wird mit einer Randelementmethode höherer Ord-
nung räumlich diskretisiert. Für die zeitliche Entwicklung wird eine Taylor Reihe
zweiter Ordnung verwendet. Nach Abgleichung mit experimentellen Daten wird
der entwickelte Algorithmus angewendet, um die für die Stoÿbelastung von Wind-
kraftanlagen ursächlichen überschlagenden brechenden Wellen zu simulieren. Die
gesamte hydrodynamische Last wird schlieÿlich durch ein analytisches Modell be-
schrieben, bei dem ein Term, der die Stoÿwirkung der Wellen berücksichtigt, zu den
Längs- und Trägheitskräften hinzugefügt wird.

Im zweiten Teil der Arbeit wird das Wellenmodell in eine Simulationsumgebung
eingebettet, welche die stochastischen Natur des Wellengangs erfasst. Hierbei wird
zuerst ein linear beschriebener breitbandiger Seegang mithilfe des Spektralansatzes
erzeugt. Beschränkt auf kritische Bereiche in der räumlichen und zeitlichen Simu-
lation wird im Anschluss das vollständig nichtlineare hydrodynamische Modell für
eine genauere Lösung herangezogen. Die kritischen Bereiche sind auf die nähere
Umgebung der Windenergieanlage beim Eintre�en der brechenden Welle begrenzt.
Diese Substrukturtechnik erlaubt es, für die Strukturantwort maÿgebende E�ekte
systematisch zu erfassen, die bei einer Verwendung von linearen oder schwach nicht-
linearen Wellentheorien komplett vernachlässigt werden, ohne dabei den herkömm-
lichen Rechenaufwand substantiell zu erhöhen.

Zum Abschluss der Arbeit wird diskutiert, wie sich das vorgestellte Modell auf
die Quanti�zierung des Risikos der Struktur auswirkt.
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Chapter1
Introduction

This introductive chapter presents the framework of the thesis and outlines the moti-
vations and the organization of the work.

At the beginning it also tries to give a global view about the wind energy market with

the aim of pointing out that research on (o�shore) wind energy is nowadays truly crucial.

1.1 Wind energy

To introduce the topic of this thesis and to get a broader idea about the global
energy system, it could be useful to start with some preliminary notions about the
current worldwide and European energy consumption status as well as the objectives
in matter of greenhouse gas emissions1.

Only starting by clarifying the objectives and, above all, the departing point
for each country, it is possible to understand how important is nowadays to invest
research sources in wind energy.

1.1.1 European and world energy scenario

During the last decade with no doubt wind energy has been representing the
leading renewable energy source. And, according to government plans, it will keep
being the leading renewable source for many years.

The worldwide energy scenario is represented in �gures 1.1 and 1.2 which show
the global annual wind power installed capacity in the period 1996�2008 and the
annual wind power capacity installed by region, respectively.

Wind power is the fastest growing power generation technology in the EU with
more than 35% of all new energy installations in 2008. It is also interesting to note
from �gure 1.2 that European wind energy installation has been leading the global
installation since 2003.

Figure 1.3 shows that in 2008 wind energy installation was de�nitely dominating
other energy sources. Indeed, only in this year, upon a total installed capacity of
23.851 GW in Europe, approximately one third was represented by wind anergy.

Almost 8.9 GW of new wind turbines installed in 2008 brought European wind
power generation capacity up to nearly 66 GW. Another promising sign, see �g-
ure 1.4, is the diversi�cation of the European market. 2008, in fact, saw a much
more balanced expansion with not negligible contributions given by Italy, France
and the UK.

1Data and statistics here presented are all update to 2008. Currently, o�cial data from EWEA
and GWEC for 2010 are not yet available.
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Figure 1.1: Global annual wind power installed capacity, 1996-2008.

Figure 1.2: Annual wind power installed capacity by region, 2003-2008.

Figure 1.3: New power capacity installed in Europe in 2008.
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However, Germany continues to be Europe's leading market, both in terms of
new and total installed capacity. To con�rm this, �gure 1.4 shows that over 1.6 GW
of new capacity was installed in 2008 and this brought the total German capacity
up to nearly 24 GW.

Figure 1.4: Top 10 global capacity installed, total and in 2008.

As reported in [15], it is also worth mentioning that among the growing European
markets in 2008, Italy experienced a signi�cant leap: over 1 GW of new wind turbines
came on line in 2008, bringing the total installed capacity up to 3.7 GW.

A more detailed map about the cumulative installed capacity state by state is
given in �gure 1.5.

Installed in 2008 Cumulative, end of 2008

Total EU-27 8484 MW 64 935 MW

of which O�shore 357 MW 1471 MW

Table 1.1: European wind power capacity.

As shown in table 1.1, at the end of 2008, there were 65 GW of wind power ca-
pacity installed in the EU-27 producing 142 TWh hours of electricity which satis�es
4.2% of the whole EU electricity demand. This means that at the moment o�shore
wind energy is able to satisfy only 0.1% of the whole EU demand. This datum
makes more understandable how challenging are the targets �xed by EU which will
be shortly recalled in the next section.
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EWEA – Annual Report 200810 EWEA – Annual Report 2008
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Wind power installed in Europe 
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Figure 1.5: State by state cumulative installed capacity at the end of 2008.

In 2008 US wind industry was able to install 8.36 GW marking an increase in
generating capacity of 50% in a single calendar year. The 2008 US growth repre-
sented about 42% of new electricity generating capacity added in the United States
during the year, establishing wind as a mainstream energy source for the country
(second only to natural gas) in new generating capacity. US total wind generating
capacity in 2008 was more than 25.17 GW, producing enough electricity to power
the equivalent of close to 7 million households and to meet over 1% of total US
electricity demand.

1.1.2 Short and long term objectives

Focusing on the European situation, in the Strategic Research Agenda (SRA)
- a document prepared by the Wind Technological Platform (TPWind) in 2008 -
fundamental objectives in matter of wind energy development have been �xed. They
are divided into:

Short term targets: within 2020 reduction of greenhouse gas emission by 20%
and ensure 20% of renewable energy sources in the EU;

Long term targets: decarbonization, 60 - 80% reduction of the greenhouse gas
emission.
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To meet the 2020 targets, among many other research lines, for the European
Commission it is imperative to:

�Double the power generation capacity of the largest wind turbines, with
o�shore wind as the lead application.�

In particular for the o�shore wind, the Strategic Research Agenda establishes
the following special objectives to be achieved within 2030:

• More than 10% of Europe's electricity should come from o�shore wind;

• Make the o�shore generating costs competitive with other sources of power
generation;

• Make commercially mature the technology for sites at any distance from shore
with a water depth up to 50 m:

• Full�scale proven technology to dominate deep�water sites.

Moreover, together with the above targets, �ve research topics have been prior-
itized:

• Substructures;

• Assembly, installation and decommissioning;

• Electrical infrastructure;

• Turbines;

• Operations and maintenance;

With respect to on land standard designs, the o�shore environment does intro-
duce signi�cant additional elements which have to be carefully considered, especially
in designing the support structures. Knowledge about modeling the wind and ro-
tor aerodynamics developed for onshore sites are generally enough and do not need
deep changes when moving in the o�shore environment. Some adjustments are made
just due to the di�erent wind characteristics of o�shore sites (e.g. strong di�erence
in the roughness length and turbulence intensity). Figure 1.6 gives an example of
di�erent wind shears for on� and o��shore sites, respectively.

On the contrary, for o�shore plants, the concept of support structure has to be
entirely rearranged. For this reason research on the substructure is always prior-
itized both directly, by improving the technology itself, and indirectly, that is by
developing more accurate models to estimate the combined wind�waves action. In
fact, in addition to the previous research topics, the Strategic Research Agenda
establishes also the following priorities:

• Development of fully integrated wind�wave�current interaction models;

• Development of new substructure concepts;

• Development of improved design methodologies to extend the life of structures,
to reduce costs and to incorporate risk-based life-cycle approaches.
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6 Introduction17.1 Offshore Wind Energy in the North Sea and the Baltic Sea 619

Figure 17.3. Logarithmic profiles of increasing wind speed with height for typical land at offshore

sites [3]

on land, with the consequence that the economic tower heights of the wind turbines are

lower (Fig. 17.3) (Chapter 14.4.8).

Turbulence intensity is another important characteristic parameter. Whereas the turbu-

lence intensity over land is within a range of between 10 and 20%, a turbulence intensity

of less than 10% is measured above the open sea. Typical values are about 8% at a height

of 60 to 70 m [5]. As a result of this lesser turbulence intensity, the fatigue loads on the

wind turbines, resulting form the wind turbulence, are less, on the one hand, but, on the

other hand, the wake behind the rotor

“

fills up” less rapidly. For this reason, the distances

between the turbines must be greater than with siting on land in order to achieve the same

aerodynamic array efficiency (Chapters 5.4 and 16.4.1).

Sea bottom

The nature of the sea bottom is of importance for building the foundation of a wind turbine.

In the area of the North Sea and Baltic Sea, the major part of the sea bottom consists of fine

sand. This is interspersed with areas with coarser sand and relatively large accumulations

of stones. If monopile foundations are used, the strength of the ground plays a role in the

vibrational characteristic of the wind turbine [3] (Chapter 17.3.2).

In connection with the nature of the sea bottom, oceanic currents must be considered

which cause considerable displacements of the ground material in the case of a sand bottom

and scouring in the case of obstacles (e. g. foundations). These effects can have considerable

influence on the stability of the foundation. For these reasons, careful soil testing is an

absolute requirement for any planning.

Figure 1.6: Typical wind shears for land and o�shore sites. Figure from [1].

Consider that only the substructure represents approximately 25% of the whole
investment and if we think that forces (and consequently costs) used to design the
substructure increase with the square of wind/water velocity, then it appears clear
the importance of accurate models for loads prediction.

The objectives described above for wind energy development are based on the
central fact that Europe has a remarkable wind potential. Figure 1.7 shows the map
of onshore wind potential. Considering that the minimum value of the mean wind
speed to make cost�e�ective a wind power plant is approximately 4 m/s, it results
that most of the European areas possess a wind energy potential.

The o�shore potential is depicted in �gure 1.8, which shows that in addition
to the North and Baltic Seas, also some Mediterranean areas, for example between
Greek and Italian coasts, the wind resource can be exploited.
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Figure 1.7: Onshore wind potential. European Wind Atlas. Copyright 1989 by Risø-
National Laboratory, Roskilde, Denmark.



i
i

�Main_FUP_v06_14112011� � 2011/11/14 � 15:44 � page 8 � #34 i
i

i
i

i
i

8 Introduction

Figure 1.8: O�shore wind potential. European Wind Atlas. Copyright 1989 by Risø-
National Laboratory, Roskilde, Denmark.
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1.2 General nomenclature

Before entering further into the topic of this thesis, it would be useful to pro-
vide some general terminology which will be frequently used throughout the text.
Figures 1.9 and 1.10 help in this task. 3.2 Horizontal Axis Rotors 73

Figure 3.5. Components of a

horizontal-axis wind turbine

Figure 1.9: Main components of an horizontal axis wind turbine. Figure from [1].

Figure 1.9 in particular shows the essential components of the upper part of the
wind turbine. It is referred to an onshore case with a super�cial foundation. On the
contrary, �gure 1.10 provides more details about the substructure, which is de�ned
as the structural subpart included between the sea bed and the platform. Among
the three types of substructures sketched in the �gure, the so called �monopile�, the
�rst from the left, is the one supporting the baseline reference model adopted in
this work.
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 – 10 –  61400-3  IEC:2009 

3.9  
fast ice cover 
rigid continuous cover of ice not in motion 

3.10  
fetch 
distance over which the wind blows constantly over the sea with approximately constant wind 
speed and direction  

3.11  
foundation 
part of an offshore wind turbine support structure which transfers the loads acting on the 
structure into the seabed. Different foundation concepts are shown in Figure 1 together with 
the other parts of an offshore wind turbine 

Rotor-nacelle assembly 

Tower

Tower 

Sub-structure 

Platform 

Water level 

Pile 

Sea floor 

Seabed 
Pile

Foundation

Sub-structure

Support 
structure 

IEC   001/09 

 

Figure 1 – Parts of an offshore wind turbine 

3.12  
highest astronomical tide 
highest still water level that can be expected to occur under any combination of astronomical 
conditions and under average meteorological conditions. Storm surges, which are 
meteorologically generated and essentially irregular, are superimposed on the tidal variations, 
so that a total still water level above highest astronomical tide may occur 

Figure 1.10: Main components of the support structures of an horizontal axis o�-
shore wind turbine. Figure from IEC61400-3 [2].

622 Chapter 17: Offshore Wind Energy Utilisation

Figure 17.7. Offshore wind farm Utgrunden off the southern Swedish North-Sea coast (7 GE wind

turbines of 1.5 MW ea.) (GE Wind Energy)

Figure 17.8. Wind farm Yttre Stengrund in the Baltic Sea off Gutland in Sweden (5 NEG Micon

turbines of 2.0 MW ea.) (NEG Micon)

Figure 1.11: O�shore wind farm Utgrunden o� the southern Swedish North�Sea
coast (7 wind turbines of 1.5 MW each).

An example of a wind farm made of monopile supported wind turbines is shown
in �gure 1.11.



i
i

�Main_FUP_v06_14112011� � 2011/11/14 � 15:44 � page 11 � #37 i
i

i
i

i
i

An integrated nonlinear wind�waves model for o�shore wind turbines 11

1.3 Modeling o�shore wind turbines

Together with the general motivations regarding the global need in boosting
wind energy production, there are some more technical lines of reasoning which
justify the research on o�shore wind turbine.

O�shore wind turbines are very sophisticated systems that can be only analyzed
by adopting integrated multi�physic models. There are four coupled disciplines in-
volved: aerodynamics, structural dynamics, hydrodynamics, soil dynamics. Each of
them relates to the rotor, the tower, the substructure, the foundation, respectively.
Figure 1.12 tries to sketch this concept, indeed, moving from right to left, the four
isolated subjects are applied to the four main parts of an o�shore wind turbine
and thus coupled into a unique system which should render the reality as much as
possible.

Coupled System

Aerodynamics

Structural dynamics

Hydrodynamics

Soil dynamics

Rotor

Tower

Substructure

Foundation

Current Technology

Figure 1.12: Coupled disciplines in a unique system.

The current standard technique to analyze and design o�shore wind turbines
starts from a real structure (or from a scheme if one is to design it) and, once all
the structural and mechanical properties are known, the designer collects the system
and environmental variables so that it is possible to provide input data for adequate
numerical simulations.

In the present case, the time domain solver used is FAST, which gets the aero-
dynamic loads acting on the rotor blades by invoking AeroDyn, see scheme in �g-
ure 1.13. Both solvers have been developed at National Renewable Energy Labora-
tory (NREL). In some cases, however, solvers for simulating wind turbines imple-
ment some additional hydrodynamic routines which provide the wave kinematics
and accordingly the hydrodynamic forces to reproduce also the o�shore environ-
ment. The linear wave theory, together with Morison's equation, is commonly im-
plemented and this permits to simulate most of the condition that a wind turbine
may experience during operation. In fact, looking at the green rectangles in �g-
ure 1.13, it is clear that when the aim is to predict state of failure induced by long
term fatigue accumulation, or more in general for all those cases characterized by
relatively small wind speeds, this procedure is su�cient.

On the contrary, there are design load conditions characterized by extreme wind
which in turn generates severe highly nonlinear waves that cannot be modeled by the
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System &
Environmental
Properties

AeroDyn

Input File

FAST

Input File

Hydro .f90
subroutines

AeroDyn

solver

FAST

solver
FAST

Output

Linear Wave
Th. adopted

Fatigue Analysis = OK
Extreme Impacts = NO!!

Figure 1.13: Commonly adopted scheme for o�shore wind turbines simulations.

System &
Environmental
Properties

AeroDyn

Input File

FAST

Input File

Hydro .f90
subroutines

AeroDyn

solver

FAST

solver
FAST

Output

Linear Wave
Th. adopted

BEM for Fully Nonlinear Waves

Fatigue Analysis = OK
Extreme Impacts = OK

+

Figure 1.14: Proposed scheme for o�shore wind turbines simulations capable of cap-
turing both fatigue state of failure and ultimate limit states associated with extreme
wind�waves actions.
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linear theory anymore. Later on it will be also shown that for really extreme wind
conditions also the most common (weakly) nonlinear wave theories are not su�cient
when phenomenal events, such as plunging breaking waves, occur. Therefore, the
simulation scheme alone sketched in �gure 1.13 is no longer valid.

For this reason the present thesis attempts to give a contribution to �ll the
gap, so that, as highlighted by the red rectangles of �gure 1.14, an improved hy-
drodynamic model is provided with the aim of setting up and advanced numerical
simulator able to reproduce not only irregular linear random seas associate with
the normal wind conditions, but also extreme winds which can give rise to very
dangerous and destructive phenomena for an o�shore wind turbine such as impacts
due to plunging breakers.

1.4 Structure and scope of the thesis

The thesis is articulated in four main parts. After this introductory chapter,
which attempts to point out both the general and scienti�c motivations of the
whole work, �rstly the general Risk Management Chain is tailored on the speci�c
features characterizing o�shore wind systems. The crucial point which is stressed
in this context lies in the fact that any design of wind energy converters must
always assure a certain minimum system reliability level. Therefore, to estimate the
probability of failure of such systems, a systematic procedure needs to be applied.

Chapters 3, 4, and 5, as sketched in scheme 1.15, are devoted to the development
of a new numerical code whose importance in terms of structural safety will be
remarked in the concluding Chapter 6.

Intro &
Motivations

(Ch. 1)

What is the Global wind energy
scenario? Why research in this �eld?

Risk Manage-
ment Chain

(Ch. 2)

Why to �t the general Risk Man-
agement Chain to o�shore wind
turbines? What are the needs?

Numerical Core
(Ch.s 3,4,5)

Is it possible to improve numer-
ical models without penalizing
the computational costs? How?

Aeroelastic Solver

BEM for Fully
Nonlinear Waves

Coupled Time
Domain SolverImprovements &

e�ects on Risk
Assessment

(Ch. 6)

Which are the bene�ts of the pro-
posed numerical tool in assessing the
probability of failure of the system?
And on the general quality of OWTs

model? Are the needs stated above met?

Figure 1.15: Scheme of the work. Blue: state of the art, red: development of a new
numerical tool; green: initial targets and improvements evaluation.

Figure 1.15 helps to understand the structure of the work. The central column
denotes the main parts of the thesis. Each of these parts tries to provide an answer
to the key questions stated on the left�hand side. The blue elements in scheme 1.15
denote either what concerns the state of the art or anything which has been only
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used in the present work but not investigated. The red parts (the ellipse and the two
related sub-cores), on the contrary, refer to parts which have been either entirely
developed (as the case of the Boundary Element code for fully nonlinear water waves
simulation) or improved and embedded into a new design tool. Finally, the green
rectangles represent the motivation and objectives achieved. In particular, Chap-
ter 2 rises some issues concerning the structural risk of o�shore wind turbines, then
Chapter 6, by using results of the central core, attempts to answer the questions.
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Chapter2
The risk management chain of o�shore wind turbines

This chapter has the scope of applying the general probabilistic risk management chain

to investigate the probability of failure of o�shore wind turbines.

2.1 Cost and structural safety

In accordance with the new research lines in the �eld of o�shore wind energy
emphasized in the introductory chapter, fully probabilistic based design procedures
are more and more necessary and desirable. However, it must be remarked that even
the most sophisticated probabilistic model will return unsatisfactory results when
the physical model being simulated is not well re�ected in the numerical idealization.

As already anticipated, the major needs for o�shore systems today are repre-
sented by novel design procedures, e.g. structural optimization, which assure the
minimization of the costs under the constraint, among others, of a �xed Structural
Reliability (SR). The latter is regarded as the probability that the structure under
consideration exhibits a proper performance throughout its lifetime. The de�ni-
tion itself intrinsically contains a very sensitive point: what does it mean �proper
performance�? A closer look at this issue will be taken in the next section.

Minimizing costs under a �xed Structural Reliability level can be thought as a
constrained optimization problem

Cost
(
X̄
)
→ min (2.1)

SR
(
X̄
)
> SR∗ (2.2)

where X̄ is the vector collecting all design variables involved both on the loading side
and the structural strength side, while SR∗ is the minimum acceptable structural
safety level.

Establishing the lower structural reliability level SR∗ mostly concerns cost�
bene�t analysis and lies beyond the goals of this work. On the contrary, the opti-
mization problem shown in equations (2.1) and (2.2) highlights how strongly the
cost reduction is linked to a proper estimation of SR. This concept results even
clearer by recalling the general principle that the better the SR is evaluated, the
larger its expected value [16].

Therefore, since SR is never an absolute measure - it considerably depends
on many factors, such as the accuracy level of the idealized structural model, the
number of uncertainties and their statistics, etc. - in this thesis the attention is
most paid to restrict as much as possible the sources of uncertainties solely to those
parameters which are intrinsically random (aleatory uncertainties) by providing a

Enzo Marino, An integrated nonlinear wind-waves model for offshore wind turbines  
ISBN 978-88-6655-051-8 (print) ISBN 978-88-6655-053-2 (online) © 2011 Firenze University Press



i
i

�Main_FUP_v06_14112011� � 2011/11/14 � 15:44 � page 16 � #42 i
i

i
i

i
i

16 The risk management chain of o�shore wind turbines

more accurate numerical tool to account for the extreme hydrodynamic actions
due to overturning breaking waves. It will be presented, in fact, a numerical model
which, without assuming any a priori restriction about the magnitude of water
waves nonlinearity, reduces the model uncertainties, especially those deriving from
modeling the loads.

2.2 The risk management framework

More analytically, it is possible to quantify the structural reliability as SR =
1−Pf where Pf denotes the probability of failure of the system, or the Element at
Risk (EaR), under consideration. Hence, the issue opened above concerning when it
is possible to say that a structure is exhibiting a proper performance and when not,
has now simply been shifted to determine the probability of failure of the system.

The di�cult task of determining the probability of failure, especially when the
system is very articulated as in the case of o�shore wind turbines, can only be
carried out by invoking a proved and systematic approach which is usually referred
to as Risk Management Process [3], [17], [18], [19] [20].

As already mentioned, such a general approach needs to be adapted depend-
ing on the speci�c application. In fact, it might happen that not all the phases
characterizing the Process are of primary interest for the current application.

The �rst level subdivision of the whole risk management framework is made up
of the three following crucial steps [3]:

1. Risk Identi�cation;

2. Risk Assessment;

3. Risk Treatment;

The �rst step, Risk Identi�cation, is decisive for all the remaining procedure.
In this phase the system must be declared and the sources of all possible hazards
menacing the system should be carefully identi�ed. In the present case the system
could be represented by a group of components of which an o�shore wind turbine
is made. For example, one could focus on the rotor blades, the nacelle (including
all the electrical and mechanical components such as generator, gear box, brake
system, etc.), the tower and �nally the foundation.

However, in the case being investigated in this thesis the system is represented
by the tower and the performance we are interested in is its capability of safely
carry all the loads acting on the entire structure. This choice is justi�ed by the fact
that since extreme environmental conditions are simulated, the rotor is always in
the parked condition so that an ultimate load case condition will always involve
primarily the support structure1.

The threat which may endanger the system is represented by a combined wind�
waves action. As in this work we only consider wind�generated waves, in the hazard
identi�cation we distinguish a �driver� (main) hazard, represented by the wind and
a �driven� (induced) hazard represented by the waves. Note that this distinction

1In future the e�ects of the foundation should also be considered, but in the current application
the monopile is considered rigidly connected to the sea bed.
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Loading
Model

ULTIMATE FATIGUE

Extreme wind�waves scenario

1. Extreme turbulent wind model

2. Highly nonlinear waves

3. Breaking waves may occur

4. Adequate model are needed

In coastal engineering, the impact force on piles

due to breaking waves is usually calculated according

to Goda et al. (1966):

FI tð Þ ¼ kd gbd pd qd RdC
2 1� C

R
t

��
ð3Þ

Eq. (3) is based on the assumption that the breaker

front over the height kd gb is vertical and moves with

wave celerity C (Fig. 3). The height kd gb is

interpreted as the height of the impact area. The

impact force is equally distributed along that height so

that the impact line force is:

fI tð Þ ¼ pd qd Rd V 2 1� V

R
t

�
with V ¼ C

�
ð4Þ

From Eq. (4), it follows that at the beginning of the

impact with t=0 the line force is maximum

fI ¼ pd qd RdV 2 ð5Þ

and corresponds to the line force provided by the

theory of von Karman (1929). At each time step of the

impact, a flat plate approximates the cylinder (Fig. 4).

The flow against the plate results in an additional

hydrodynamic mass. The added mass below the flat

plate is given by a half circle with the diameter equal

to the width of the plate. Considering the momentum

conservation during the impact, the line force as given

in Eq. (5) is obtained. The time history given by Goda

is obtained by considering higher order terms for the

variation of the plate width in time. However, this

procedure is formally not consistent with the flat plate

approximation.

By taking into account not only the momentum

conservation, but also the flow beside the flat plate

will result in the so-called pile-up effect, which is a

deformation of the water free surface (Fig. 4). Due to

this pile-up effect, the bimmersionQ of the cylinder

occurs earlier. As a result, the duration of impact

decreases and the maximum line force increases.

According to Wagner (1932), the maximum line force

is:

fI ¼ 2d pd qdRd V 2 ð6Þ

The maximum force calculated by applying Wagn-

er’s theory is twice the maximum line force calculated

by von Karman’s theory. Very often the maximum line

Fig. 3. Definition sketch.

Fig. 4. 2D-impact description: definition sketch.

J. Wienke, H. Oumeraci / Coastal Engineering 52 (2005) 435–462438

5. Hydro. Model:

F (t) = FD (t) + FM (t) +FI (t)

(e.g. Wienke & Oumeraci, 2005)

Operational conditions

1. Normal Turbulence Wind Model
(Uin ≤ U ≤ Uout)

2. Linear waves superposition (spec-
tral approach) to reconstruct the
random sea state:

3. Hydro. Model:

F (t) = FD (t) + FM (t)

(Morison's equation, 1950)

Figure 2.1: Schematic representation of the two main loading conditions an o�shore
wind turbine may experience. Di�erent failure types have to be investigated with
di�erent tools.

by no means should lead to believe that waves are less dangerous or secondary in
terms of load intensity compared with the wind.

These two hazards are not statistically independent and thus in the subsequent
phase, Risk Assessment, the correlated multi�hazard scenario needs to be carefully
analyzed.

The Risk Identi�cation phase ends only when it is possible to answer the fol-
lowing question: given the system, what is the possible state of failure that it may
experience? Figure 2.1 helps to answer this question. Indeed, the �rst most impor-
tant distinction has to be made between ultimate failure condition and long-term
damage accumulation failure. What is crucial to stress is that not only di�erent
statistics are involved depending on the failure type under investigation, but also
the way of modeling the actions has to be be properly adjusted.

It is known that o�shore structures are basically exposed to wind, wave and cur-
rent loads, see the schematic representation in �gure 2.2, and they may fail because
of two di�erent loading conditions: (i) extreme wind coupled with highly nonlinear
extreme waves, which lead to the so called ultimate failure condition and (ii) long
term fatigue accumulation that gives raise to the growth of cracks [21]. In general
the fatigue failure results from the accumulation of damage induced by �uctuat-
ing loads. When the material is exposed to a continually changing internal state
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Figure 2.2: Schematic representation of the main loading actions on an o�shore
wind turbine.

of stress, it slowly deteriorates initiating cracks which will eventually lead to the
material rupture. Such failures caused by damage accumulation are not investigated
in this thesis. Contrarily, we will only focus on failures induced by extreme loading
conditions. In particular, it will be assumed that our system reaches a state of fail-
ure whenever the state of internal forces due to the combined action of wind and
waves attains a certain �xed value above which the bearing loads capability of the
tower is compromised2.

A deep understanding of the failure scenario paves the way for the next phase
of the risk management framework: the Risk Assessment.

Risk Assessment

The Risk Assessment step represents the core of the whole risk management
process and it is divided in two subparts:

• Risk Analysis;

• Risk Evaluation;

The above approach is referred to the model proposed in [3], see �gure 2.3.
This phase aims at quantifying the risk. To this end it is of primary importance to

employ as much accurate as possible prediction models to estimate both the hazard
intensity and its frequency of occurrence. The risk is quanti�ed by the following
expression

Risk = Probability of failure × Losses [Losses unit/time]

2Additional loads might be provided by ice impacts and earthquakes, but in this context they
are not taken into account.
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Figure 2.3: The Risk Assessment phase. Image from [3].

where Losses indicates all the expected consequences which may happen due to
the failure of the system. Typical losses are: economical, fatalities, e�ects on the
environment, etc. The estimation of consequences given the failure of the system
remarkably relates to the nature of the system. Consequences associated with a
failure of support structures of o�shore wind turbines may be very signi�cant in
terms of monetary loss, while fatalities have less probability of occurrence than in
the case of structural failures of civil buildings. Also the impact on the environment
would not be dramatic as a failure of nuclear power plants. For these reasons, in
the present work the risk analysis is restricted only to the �rst term of the risk,
that is the the probability of failure of the system. The consequences - and thus the
quanti�cation of the losses in case of failure of the system - is not part of this thesis.

The probability of failure involves the Vulnerability of the system, the Hazard
and the Exposure. According to [22], [23], [24], and assuming that the uncertainties
associated with the loads are de�nitely dominating those related to the structure
[25], for the speci�c case under consideration, the probability of failure can be
expressed as follows

Pfail = P (LS) =

∫
P (LS|IM) p (IM) dIM (2.3)

where LS denotes a limit state which in this case it is assumed to represent both
the measure of the damage induced by the hazard and the structural response,
while IM is the intensity measure of the hazards. In the light of equation (2.3) it
is possible to understand the following conceptual equation for the probability of
failure

Pfail = Vulnerability × Hazard × Exposure

where the Vulnerability is meant as the probability of a certain structural damage
(or structural response) given the intensity measure of the hazard: P (LS|IM), while
the Hazard is meant as the probability distribution the hazard intensities: p (IM),



i
i

�Main_FUP_v06_14112011� � 2011/11/14 � 15:44 � page 20 � #46 i
i

i
i

i
i

20 The risk management chain of o�shore wind turbines

�nally the Exposure is intended as the probability that such a Hazard meets the
system.

As already mentioned, in this work we are mainly interested in the bearing load
capacity of the substructure so that the structural response is quanti�ed by means
of the tower base bending moment Myt and, as a consequence, the Limit State
function which identi�es the state of failure is given by

Limit State (LS): Myt > M∗
yt ⇔ Failure

where M∗yt is the ultimate resistant tower�base bending moment3.
It has to be noted in equation (2.3) that the hazard intensity measure is a

vector (typed in bold). Uncertainties from the load side are provided by several
variables: the mean wind speed, the turbulence intensity, the wind shear exponent,
yaw misalignment, signi�cant wave height, zero up�crossing wave period, current
speed, etc. However, in agreement with what observed in [25], the randomness in
the load model is restricted only to the three variables which have the greatest
in�uence on the response of support structures. These are: the mean wind speed U ,
the signi�cative wave height Hs and the zero up�crossing wave period Tz. Thus, by
setting IM = (U,Hs, Tz), equation (2.3) becomes

Pfail=P
(
Myt > M∗yt

)
=

∫

E
P
(
Myt > M∗yt|U,Hs, Tz

)
p (U,Hs, Tz) dUdHsdTz

(2.4)
where E is the environmental domain which represents all the possible variations of
U , Hs and Tz.

The conditional distribution of the response given the set of sea state parameters
is usually referred to as short�term distribution. By multiplying the conditional
response times the joint probability density function of the sea state parameters U ,
Hs and Tz and integrating over the domain E , the so called long�term distribution
of the response is obtained.

According to [25] and as sketched in �gure 2.4, the procedure to get the prob-
ability of failure conditioned on the environmental parameters is articulated in the
following main steps:

• De�nition of a joint wind�waves probabilistic model (from measurements or
hindcast data);

• Generation of wind and waves time histories from which aerodynamic and
hydrodynamic loads are derived;

• Time domain simulation and analysis of response time series;

At this point some statistics of the time series permits to obtain the distribution
of the response conditioned on a given set of environmental parameters. To ob-
tain such a conditional distribution several methods can be applied, for a detailed
description we refer to [25], [26].

As already mentioned the long�term distribution is then obtained by the integra-
tion over the domain of all sea state. Finally, to extrapolate the response distribution

3Here this value is assumed to be deterministic.
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Figure 2.4: Schematic representation to obtain the short�term response given the
environmental parameters intensity.

for longer period, e.g. 50 years, due to the hypothesis of independent sea states (once
the sea state duration has been established), it is possible to calculate the number
of independent sea state in a �xed time period and thus the probability distribution
of the response for such a return period.

Finally, the probability of failure, i.e. the probability that in such a period of
time the maximum response is higher than the ultimate strength, can be computed.

The methodology above described is known as �response�based� approach. Al-
though it represents a rational method to estimate the probability of failure of the
system, it has some disadvantages: it requires a considerable computational e�ort,
it cannot be used in the early stage of the design; it usually adopts the same load-
ing model independently on the intensity of the environmental parameters. Thus,
no possibility of accounting the increasing waves nonlinearity as the wind speed
increases.

An alternative procedure used to estimate the extreme response of o�shore wind
turbines is the so called �external conditions�based� approach. In this case it is
assumed that the extreme response is induced by the extreme loads. In this thesis
this methodology is used because our scope is to capture the response when the
structure system is exposed to extreme events such as breaking waves. It will be
shown in fact that, according to IEC61400-3, when 50�year return period storm
are simulated, then breaking waves occur causing dangerous impacts against the
substructure.

Within this second approach, �rst the joint probability distribution for the three
main random variables U , Hs and Tz has to be built [21], [11], [27]. Then from the
joint model the environmental contour may be obtained by �xing the requested
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return period. Next, assuming that the turbine is parked or standstill4, and that
the extreme response is always proportional to the wind speed and the signi�cative
wave height, the triplet of environmental parameters which induce the maximum
response can be easily found among the in�nity triplets of U , Hs and Tz laying on
the environmental contour [28], [21], [27], [26], [29], [30].

For the practical application in this thesis, however, because of lack of measured
data and also because it is not central for our purpose, the extreme environment
is established in a simpli�ed way, that is by �rst setting the wind intensity in
agreement with the extreme turbulent wind speed model (EWM) as in IEC61400-1,
then by deriving the sea severity - associated with such a wind model - by using
values for Hs and Tz recommended by literature [10], [31], [32], [11], [33], among
others. Details on the wind�waves loading model are discussed in section 5.4.

The point we want to to stress in conclusion of this chapter is that the loading
model employed to predict the system response needs to be adjusted according to
the intensity measures of the hazard. Currently, appropriate numerical tools capable
of systematically predicting the structural response when the hazard is characterized
by fully nonlinear waves seem to lack in literature.

4In particular we will only focus on the substructure bearing load capacity rather than on the
internal forces of the rotor blades. According to what said in the previous section, this restriction
is reasonably justi�ed because in case of extreme scenarios it will be assumed that the turbine is
parked, so that blades are set with 90◦ pitch angle in order to be not a�ected by any lift force. On
the contrary, in extreme environmental conditions tower and substructure result mostly involved.
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Chapter3

Aerodynamic model

In this chapter the basic notions concerning the rotor blade aerodynamics on which the

solver used in the next chapters is based are shortly recalled. The key concepts of the Blade

Element Momentum are presented step by step starting from the disc theory.

3.1 Basics on wind turbines aerodynamics

The primary goal of a wind turbine is to subtract kinetic energy from the wind
to transform it �rst into mechanical energy and then into electrical energy. The
conversion of the wind kinetic energy into mechanical energy takes place when the
air �ows through the rotor disc. Given the upstream air �ow velocity and making
use of some basic �uid dynamics, it is possible to calculate both the velocity at
the rotor disc and in the wake, provided that the axial �ow induction factor a is
known. The maximum achievable value of power coe�cient is known as Betz limit
and represents only a theoretical value. What so far introduced is usually named
Momentum Theory and it is marked by the fact that it does not employ neither any
event which occurs locally at rotor blades nor the shape and the number of blades.

To calculate the torque and power developed by the rotor a more sophisticated
model involving lift and drag forces on the blades is adopted. To this aim, �rst
the axial wind velocity at the disc is composed with the tangential velocity, which
depends on the rotor angular velocity as well as on the tangential �ow induction
factor a′, then, given the aerodynamic coe�cients of each elemental segment of the
blades, it is possible to compute the drag and lift forces. An iterative procedure
permits to calculate the induction factors a and a′ which �nally lead to know the
torque and, as a consequence, the power developed by the rotor. The latter, divided
by the maximum available power, gives the expression of the power coe�cient Cp.
The variation of Cp versus the tip speed ratio represents the performance curve of
a wind turbine.

In the following section details about the method will be presented and the
meaning of the terminology here introduced will result clear.

3.2 Momentum theory

Let us start from the stream tube concept sketched in �gure 3.1. The mass of
�uid m passing a generic cross section A of the stream tube is given by m = ρV ,
where ρ is the air density and V the volume of �uid. The mass �ow rate, that is the
volume of �uid passing the cross�section A per unit time is just given by Q = AU ,

Enzo Marino, An integrated nonlinear wind-waves model for offshore wind turbines  
ISBN 978-88-6655-051-8 (print) ISBN 978-88-6655-053-2 (online) © 2011 Firenze University Press
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24 Aerodynamic model

where U is the velocity of the air particles passing through the considered section1.

3.2.1 Axial momentum

Of course, mass �ow conservation imposes that

Q∞ = Qd = Qw (3.1)

where the subscripts ∞, d and w - according to �gure 3.1, denote the far upstream
undisturbed wind velocity, the disc, and the wake wind velocity, respectively.

flow velocity. The mass flow rate must be the same everywhere along the stream-
tube and so

rA1U1 ¼ rAdUd ¼ rAwUw (3:1)

The symbol 1 refers to conditions far upstream, d refers to conditions at the disc
and w refers to conditions in the far wake.

It is usual to consider that the actuator disc induces a velocity variation which
must be superimposed on the free-stream velocity. The stream-wise component of
this induced flow at the disc is given by �aU1, where a is called the axial flow
induction factor, or the inflow factor. At the disc, therefore, the net stream-wise
velocity is

Ud ¼ U1(1� a) (3:2)

3.2.1 Momentum theory

The air that passes through the disc undergoes an overall change in velocity,
U1 � Uw and a rate of change of momentum equal to the overall change of velocity
times the mass flow rate:

Rate of change of momentum ¼ (U1 � Uw)rAdUd (3:3)

The force causing this change of momentum comes entirely from the pressure
difference across the actuator disc because the stream-tube is otherwise completely
surrounded by air at atmospheric pressure, which gives zero net force. Therefore,

( pþd � p�d )Ad ¼ (U1 � Uw)rAdU1(1� a) (3:4)

To obtain the pressure difference ( pþd � p�d ) Bernoulli’s equation is applied sepa-
rately to the upstream and downstream sections of the stream-tube; separate equa-

Stream-tube

Velocity

Pressure

Actuator disc

w

d

d

d

Velocity

Pressure

Figure 3.2 An Energy Extracting Actuator Disc and Stream-tube
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Figure 3.1: Stream tube. Wind Energy Handbook, Burton et al. Wiley 2001 [4].

Equation (3.1) can also be written as follows

A∞U∞ = AdUd = AwUw (3.2)

Newton's second law can be naturally applied at the disc by introducing the
momentum K = mU . At the disc, the momentum rate writes as K̇d = ρAdUdU .
Thus, throughout the disc the momentum rate experiences an overall change given
by

∆K̇d = ρAdUd∆U = ρAdUd (U∞ − Uw) (3.3)

and consequently the total forces acting at the disc, basically given by the pressure,
must equal

Ad
(
p+
d − p−d

)
= ρAdUd (U∞ − Uw) (3.4)

Now, by introducing the axial �ow induction factor a, which permits to express
the velocity at the disc through the far upstream undisturbed velocity U∞ as Ud =
U∞ (1− a), equation (3.4) turns into

∆pd = ρU∞ (1− a) (U∞ − Uw) (3.5)

1Q = d
dt

(Ads) = A ds
dt

= AU , where ds is the disc thickness: the distance the air particles would
cover in a time interval of dt.
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The pressure gradient ∆pd can be computed by using twice Bernoulli's equation
(once between the upstream undisturbed section and the disc section and once
between the disc and the wake sections). This leads to write

∆pd =
1

2
ρ
(
U2
∞ − U2

w

)
(3.6)

that replaced into equation (3.4) �nally gives

Uw = (1− 2a)U∞ (3.7)

Next, by making use of equation (3.7) into (3.4), the total force acting at the
rotor disc (the thrust) is given by

Fd = 2ρAdU
2
∞a (1− a) (3.8)

and, accordingly, the power developed is

Pyield = FdUd = 2ρAdU
3
∞a (1− a)

2 (3.9)

It is straightforward now to see that from the all available power in the wind,
machines can only extract a share given by the so called power coe�cient Cp de�ned
as follows

Cp =
Pyield

1
2ρU

3∞Ad
= 4a (1− a)

2 (3.10)

The above coe�cient is maximum when a = 1/3, therefore we have

Cpmax
= 0.593 (3.11)

that is known as Bet's limit. It represents an ideal value which proves that the most
exploitable energy is about 60 % of the available wind power.

3.2.2 Angular momentum

We are still not considering the blades aerodynamics. Since the �nal scope is to
get the aerodynamic forces acting on the blades, it is necessary to go more in depth
by adding some concepts about the angular momentum.

We assume that an air particle past the rotor disc has a tangential velocity
Ut = 2a′ΩR where Ω is the angular velocity of the rotor, while a′ is called tangential
�ow induction factor. Refer to �gure 3.2.

It is easy thus to derive that, given an elemental volume of air, the in�nitesimal
angular moment writes as δKang = r̄×dmŪt = dm2a′Ωr, where the elemental mass
is δm = ρrδϑδr. By integrating along the circumference and taking the derivative
with respect to time, we get

δK̇ang = ρδAdU∞ (1− a) 2a′Ωr2 (3.12)

which represents the change of angular momentum at the rotor disc regarding an
elemental annulus. Therefor, it is straightforward to obtain an alternative expression
for the power yield2

δPyield = ρδAdU∞ (1− a) 2a′Ω2r2 (3.13)

2Power is given by the couple times the angular velocity.
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Equating equation (3.9) with the above result we get

a′λ2
r = a (1− a) (3.14)

where λr = Ωr/U∞ is the local speed ratio.
Throughout the rotor disc thickness the tangential velocity of an air particle

varies from zero (upstream) to 2a′Ωr (downstream), so that in the middle a linear
model permits to consider that the tangential velocity is a′Ωr. See �gure 3.2. The
latter, along with the tangential velocity of the blades, gives rise to a net tangential
�ow experienced by the blade element equal to Ωr + a′Ωr = Ωr (1 + a′), therefore
the total relative velocity experienced by the blade is the following. See �gure 3.3.

W =

√
U2∞ (1− a)

2
+ Ω2r2 (1 + a′)2 (3.15)

imparting the tangential velocity component to the air whereas the axial force acting
on the ring will be responsible for the reduction in axial velocity. The whole disc
comprises a multiplicity of annular rings and each ring is assumed to act indepen-
dently in imparting momentum only to the air which actually passes through the
ring.
The torque on the ring will be equal to the rate of change of angular momentum

of the air passing through the ring. Thus,

torque ¼ rate of change of angular momentum

¼ mass flow rate3 change of tangential velocity3 radius

�Q ¼ r�AdU1(1� a)2�a9r2 (3:17)

where �Ad is taken as being the area of an annular ring.
The driving torque on the rotor shaft is also �Q and so the increment of rotor

shaft power output is

�P ¼ �Q�

The total power extracted from the wind by slowing it down is therefore deter-
mined by the rate of change of axial momentum given by Equation (3.10) in Section
3.2.2

2 '

2 '

(1- )

(1- )
(1- )

'

Rotor motion

Figure 3.5 Tangential Velocity Grows Across the Disc Thickness

48 AERODYNAMICS OF HORIZONTAL-AXIS WIND TURBINES

Figure 3.2: Tangential velocity growing across the rotor disc thickness.Wind Energy
Handbook, Burton et al. Wiley 2001 [4].

Furthermore, from �gure 3.3 it can also be readily set

W sinφ = U∞ (1− a) (3.16)

W cosφ = Ωr (1− a′) (3.17)

where φ = α + β. The angle β amid the airfoil zero lift line and the plane of the
rotor disc is named pitch angle, while α is the angle of attack.
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sin� ¼ U1(1� a)

W
and cos� ¼ �r(1þ a9)

W
(3:42)

The angle of attack Æ is then given by

Æ ¼ �� � (3:43)

The lift force on a span-wise length �r of each blade, normal to the direction of W, is
therefore

�L ¼ 1

2
rW2cC�r (3:44)

and the drag force parallel to W is

�D ¼ 1

2
rW2cCd r�r (3:45)

3.5.3 The blade element – momentum (BEM) theory

The basic assumption of the BEM theory is that the force of a blade element is solely
responsible for the change of momentum of the air which passes through the
annulus swept by the element. It is therefore to be assumed that there is no radial
interaction between the flows through contiguous annuli—a condition that is,
strictly, only true if the axial flow induction factor does not vary radially. In
practice, the axial flow induction factor is seldom uniform but experimental
examination of flow through propeller discs by Lock (1924) shows that the assump-
tion of radial independence is acceptable.

The component of aerodynamic force on N blade elements resolved in the axial
direction is

�L cos�þ �D sin� ¼ 1

2
rW2Nc(CL cos�þ Cd sin�)�r (3:46)

U (1-a)

r(1+a)

Lcos  D sin 

L sin  D cos 

L

W

 

D

(a) Velocities (b) Forces

Figure 3.14 Blade Element Velocities and Forces
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Figure 3.3: Velocity and forces on a blade element. Wind Energy Handbook, Burton
et al. Wiley 2001 [4].

3.3 Blade Element Momentum theory

3.3.1 Drag and Lift forces

Once the total velocityW of air particles past the single blade element is known,
see equation (3.15), it becomes relevant to compute the aerodynamic forces acting
on it. To this aim, the aerodynamic properties of the blades, namely the drag and
lift coe�cients CD and CL, respectively, lead us to write

δD =
1

2
ρW 2cCDδr (3.18)

δL =
1

2
ρW 2cCLδr (3.19)

where δr denotes an elemental ring belonging to the rotor plane and c is the blade
chord. See �gure 3.4.

132 Chapter 5: Rotor Aerodynamics

dynamics research institute in Germany (Aerodynamische Versuchsanstalt in Göttingen).

Airfoils from the Göttingen airfoil system are scarcely used today. They were replaced later

by the American NACA airfoil series which is characterized by the following parameters

(Fig. 5.40):

– chord length c

– maximum camber f or camber ratio ( f/c) in percent, as max. curvature over the median

line

– position of maximum camber x f
– maximum airfoil thickness d, as largest diameter of the inscribed circles with their centers

on the mean camber line, or thickness-to-chord ratio (d/c) in percent

– position of maximum thickness xd
– nose radius rN

– airfoil co-ordinates zu(x) and zl(x) of the upper and lower side contours

Figure 5.40. Geometric airfoil parameters of the NACA airfoil series

The contour co-ordinates are listed as tables in the airfoil catalogues. NACA airfoils are

indexed with a multidigit code containing data on airfoil geometry and partly also on

certain aerodynamic properties.

The most important airfoil families are:

Four-digit NACA airfoils:

1st digit: maximum camber-to-chord ratio in percent

2nd digit: camber position in tenths of the chord length

3rd/4th digit: maximum thickness-to-chord ratio in percent

Figure 3.4: Typical geometry of NACA airfoil.

Together with the chord length c, the main geometric parameters which de�ne
an airfoil are shown in �gure 3.4, where f is the maximum camber, xf is the position
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of the maximum camber, d is the maximum airfoil thickness, xd is the position of
maximum thickness, rN is the nose radius and �nally yo (x) and yu (x) are the
coordinates of the upper and lower side contours.

As we are mainly interested in the forces normal and tangential to the rotor
plane, the following projections are considered

Pn = δL cosφ+ δD sinφ (3.20)

Pt = δL sinφ− δD cosφ (3.21)

which can be normalized with respect to 1/2ρW 2c to obtain

pn = δl cosφ+ δd sinφ (3.22)

pt = δl sinφ− δd cosφ (3.23)

where

pn =
Pn

1
2ρW

2c
(3.24)

pt =
Pt

1
2ρW

2c
(3.25)

Projecting also the drag and lift coe�cients we have

Cn = CL cosφ+ CD sinφ (3.26)

Ct = CL sinφ− CD cosφ (3.27)

where Cn and Ct are such as

pn =
1

2
ρcCnW

2 (3.28)

pt =
1

2
ρcCtW

2 (3.29)

Now, if Nb denotes the number of blades, we obtain that the thrust and torque
for an elemental volume of thickness δr are, respectively

δF =
1

2
ρNb

W 2 (1− a)
2

sin2 φ
cCnδr (3.30)

δM =
1

2
ρNb

W (1− a) Ωr (1 + a′)
sinφ cosφ

cCtrδr (3.31)

By equating the two equations above, and by introducing the solidity σ =
crNb/ (2πr), the system for a and a′ becomes

a =
1

4 sin2 φ
σCn

+ 1
(3.32)

a′ =
1

4 sinφ cosφ
σCt

− 1
(3.33)
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Algorithm 1: Blade Element Momentum algorithm
Data: U∞, β, Ω, r
Result: δF , δM
initialization (a = 0, a′ = 0);
while toll (a, a′) <= toll∗ do

Compute �ow angle φ;
Read o� CL (α) and CD (α) from tables;
Compute Cn and Ct from equations 3.26 and 3.27;
Calculate a and a′ from equations 3.32 and 3.33;

end
Compute the local loads on the segment of the blades;

The above system concludes the so called Blade Element Momentum (BEM)
model which can be translated into a computer code by the following algorithm 1
[34].

To sum up, the BEM theory just couples the momentum equations with the local
element aerodynamics balance equations, involving drag and lift forces, to solve the
complete system.

The BEM method requires two corrections in order to account for both the real
number of blades and the case when the momentum theory is no longer allowed.
Finally, the corrected BEM theory can be satisfactory used to compute the loads
on the rotor as well as the annual energy production.

The aerodynamic solver used by the structural aero�elastic simulator which will
be used in this thesis implements also the so called Generalized Dynamic Wake
(GDW) model to compute the aerodynamic forces. This theory is also known as the
Method of Acceleration Potential. It is an approach originally developed for heli-
copter industry and exhibits some advantages with respect to the above discussed
BEM. It allows a more general distribution of pressure across the rotor plane than
the BEM. The GDW model is based an a solution of Laplace'equation for potential
problems. Details about the GDW theory are available in [35], [4]. The aerodynamic
solver used in the next simulations will use both the BEM and the GDW theories
depending upon the current wind speed.

3.4 Wind model

Forces acting on o�shore wind turbines mostly stem from the aerodynamics of
the rotor, the o�shore environment (waves, tides, currents, ice, ect.), the gravita-
tional and inertial loads. Modern turbine rotor blades are getting larger and larger
and this gives rise to an increase of the dimensions of all others structural compo-
nents (e.g. the tower height). Larger dimensions cause, in turn, an augmentation of
dead weight (gravitational loading), inertial forces and, last but not least, the e�ects
of unsteady turbulent wind becomes more and more evident. A sketch of a three
bladed onshore wind turbine in a full �eld turbulent wind is given in �gure 3.5.

In this thesis, as already pointed out in Chapter 1, an external condition�based
extreme response analysis of o�shore wind turbines is carried out. This means that
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Figure 6.22. Effect of an uneven wind-speed distribution over the swept rotor area on the upwind

velocity of the rotating rotor blades
Figure 3.5: E�ect of a turbulent wind speed distribution over the swept rotor area
on the upwind velocity of the rotating rotor blades. Figure from [1].

extreme wind conditions are assumed according to recognized international stan-
dards, such as IEC61400-1 and -3.

Since the external conditions are dependent on the site, in IEC61400-1 wind
turbines are divided in four classes. Each one is characterized by a reference wind
speed Uref and a turbulence intensity factor Iref . These wind classes have the intent
to cover most of the onshore applications. While, a special wind class, referred to
as �S� is devoted to o�shore applications. No prescription are made on this special
class where all parameters are speci�ed by the designer. However, for o�shore wind
turbines, to design the Rotor�Nacelle Assembly, the de�nition of wind classes as
in IEC61400-1 remains valid. Due to a lack of data, for the sake of simplicity, in the
present study the parameters de�ning the class �S� are always chosen like those for
wind class III.
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Much attention must be paid to the reference wind speed, in fact if a turbine
belongs to a speci�c wind turbine class with a reference wind speed Uref , it is
designed to withstand climates for which the extreme 10 min average wind speed
with a 50�year recurrence period at turbine hub height is lower than or equal to
Uref .

For the sake of simplicity, IEC61400-1 groups external condition in the so called
Design Load Cases (DLCs) which are de�ned by combining:

• normal design situations and appropriate normal or extreme external condi-
tions;

• fault design situations and appropriate external conditions;

• transportation, installation and maintenance design situations and appropri-
ate external conditions.

It is worth pointing out that all structural and mechanical components are re-
quired to resist both the ultimate and the fatigue loading conditions. While the
design of tower and foundation is governed by the ultimate load cases, the design
driver for the rotor blades is usually contemplated by the fatigue load cases.

To each DLC it is assigned a speci�c type of analysis denoted by U (Ultimate),
F (Fatigue). Ultimate analysis are additionally distinguished in Normal (N) or Ab-
normal (A) and partial safety factors are then assigned accordingly3.

3.4.1 Extreme turbulent wind speed model EWM

As already pointed out, in this work the focus is on the extreme wind conditions,
where the word �extreme� is referred to all those events with a 50�year return period.
O�shore wind turbine must be designed to safely withstand wind conditions having
intensity de�ned by such a return period.

The randomness of the wind is taken into account by adopting the appropriate
turbulence model. Among the two recommended by IEC61400-1 3rd edition, the
Kaimal model is here adopted. The single�sided velocity spectra for the three wind
components, k = u, v, w4 is given as follows

Sk (f)
4σ2

kLk/Uhub

(1 + 6fLk/Uhub)
5/3

(3.34)

where f is the frequency, σk is the standard deviation of the k�th velocity component
and Lk is the integral scale parameter. See table 3.1

where

Λ1 =

{
0.7z z ≤ 60 m
42 m z ≥ 60 m

In this case the 10 min average wind speeds as functions of the elevation above
the still water level, with 50�year and 1�year return period, respectively, are as-

3As 1.35 for N, 1.1 for A situations. All fatigue design situations assume 1.0 as partial safety
factor.

4u is the longitudinal direction, v lateral and w vertical.
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Velocity components
u v w

σk σu 0.8σu 0.5σu
Lk 8.1Λ1 2.7Λ1 0.66Λ1

Table 3.1: Turbulence spectral parameter for the Kaimal model.

sumed as follows

U50 (z) = Uref

(
z

zhub

)0.14

(3.35)

U1 (z) = 0.8Uref (3.36)

The standard deviation in the longitudinal direction σu for the turbulent extreme
wind speed model is

σu = 0.11Uhub (3.37)

where Uhub is the wind velocity at hub height.
Note that for speci�c design load conditions when the turbine is parked or stand-

still (e.g. DLC 6.1a of IEC61400-3 [2]) the turbulent extreme wind model prescribed
by the ICE61400-1 [36], see section 6.3.2.1, assumes that the turbulence standard
deviation does not depend on the surface roughness. However, in general, this is not
true and an appropriate model accounting for the e�ect of the sea surface roughness
on the turbulence has to be adopted5.

5Apart from the extreme wind model, for other design load conditions, according to [2], the
turbulence standard deviation, whenever there are no site data available, is related to the sea
surface roughness as follows

σu =
Uhub

ln
(
zhub
z0

) + 1.28 × 1.45 × I15 (3.38)

where I15 is the average value of the hub height turbulence intensity determined at hub height
wind speed Uhub = 15 m/s. O�shore wind turbines are considered in the wind class �S� for which
speci�c data regarding the wind and turbulence models have to be provided, see Annex A of [2].
While, the roughness length z0 should be found by solving the following nonlinear equation

z0 =
AC

g


 κUhub

ln
(
zhub
z0

)




2

(3.39)

where g is the acceleration due to gravity, κ = 0.4 is the von Karman constant,AC is the Charnock's
constant whose recommended values are 0.011 for open sea conditions and 0.034 for near�costal
areas. See [2] for further details.
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Chapter4
Hydrodynamic model

This chapter describes the numerical model developed in this thesis for fully nonlinear
water waves simulations. In addition to the aerodynamic loads discussed in the previous
chapter, the o�shore environment provides additional signi�cant loading actions such as
wave loads, current loads, ice impacts and tides. The numerical model here presented aims
at the systematical inclusion (see next chapter) into the design procedures of the e�ects
stemming from extreme waves breaking against o�shore structures.

The �rst part is devoted to a brief review of the standard waves descriptions in order

to adequately prepare the background for the new impact wave model.

4.1 Waves description

Sea waves are traditionally described by both a deterministic approach and a
probabilistic model with respective advantages and disadvantage. For instance, the
spectral approach permits to describe a random sea, but has the drawback that
only linear waves can be represented. As a consequence, only forces stemming from
linear wave theories can be derived.

On the contrary, some nonlinearity magnitude can be taken into account when a
deterministic single-harmonic wave is used. In other words, the two commonly used
approaches implement respectively either

• Regular nonlinear waves, or

• Irregular linear waves;

Fortunately, in most cases the nature of oceans can be very well described by
the superposition of linear regular waves, and this makes the spectral approach an
extraordinarily e�ective tool, in fact especially for long term loading condition, this
approach �ts fairly well the nature of the actions.

Contrarily, for ultimate failure conditions more representative models are re-
quired in order to capture the fully nonlinear contribution due to extreme (possibly
breaking) waves.

Nowadays capabilities of modern computers permit to simulate fully nonlinear
waves without penalizing the total simulation time, thus, whenever the fully non-
linear behaviour of waves plays a dominant role in designing o�shore structures,
it seems to be opportune to adopt a direct numerical solution of the governing
equation without introducing any a priori hypotheses1.

1Note that �a priori hypotheses� refers to the magnitude of nonlinearity, rather than to the
assumptions on the physical characteristic of the �uid and �ow type.

Enzo Marino, An integrated nonlinear wind-waves model for offshore wind turbines  
ISBN 978-88-6655-051-8 (print) ISBN 978-88-6655-053-2 (online) © 2011 Firenze University Press
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34 Hydrodynamic model

Analytical theories, such as Stokes�2nd and 5th order, fall in the weakly non-
linear group. In fact, what really distinguishes weak nonlinearity to the high (or
strong) nonlinearity is essentially the asymmetry with respect to the vertical axis
[31]. In the weakly nonlinear case we only deal with asymmetry with respect to the
horizontal axis: crests become narrower and the troughs wider.

Figure 4.1(a) shows the two traditional approaches used to describe ocean waves:
deterministic and stochastic. The advantage of the deterministic description is the
capability of simulating nonlinear waves both through analytical and numerical
tools. The main drawback however is that the real nature of oceans is not de-
terministic. On the other hand, as already pointed out, the stochastic approach
permits to capture the real nature of the sea but only superimposing linear regular
waves. To overcome the disadvantages of both methodologies, �rst a deterministic
fully nonlinear Boundary Element Method�based simulator is developed, then it is
linked with the wave energy spectra in order to account for the stochastic nature of
the reality, see �gure 4.1(b).

In this thesis the link between the probabilistic and deterministic approaches is
used to get the advantages from both by virtue of their complementarity. In fact,
in a random wave series there are some larger components, characterized by special
energy contents, which have to be be captured and described separately because the
importance of their strong nonlinearity is dominant with respect to the whole sea
surface representation. These are the cases when exceptional events, such as rouge
waves, occur. An example is shown in �gure 4.2.

Figure 4.3, The Great Wave, shows how the danger represented by such extreme
waves was also well impressed into artists' imaginary.

In the next section the fully nonlinear numerical wave model is described. Later
on, in the next chapter, the numerical model is embedded into the stochastic envi-
ronment.

4.1.1 Deterministic representation

There are several wave theories that provide a deterministic description of water
waves. For most of them, three parameters are fundamental, while all the others
can be derived from these. They are the period T , the wave height H and the water
depth d.

The most used wave theories are shortly listed below:

Linear (or Airy) wave theory: the most important, useful and applied theory.
It is also known as small amplitude wave theory and it is based on a strong
linearization which makes the theory suitable for the probabilistic spectral
representation of random seas. The analytical solution for the velocity poten-
tial and all the kinematic quantities is found by dropping all the second order
terms in the dynamic and kinematic boundary conditions at the free surface.

It is always useful, especially for the scopes of Chapter 5, to have at hand
all the kinematic and dynamic equations governing the propagation of a reg-
ular sinusoidal wave. For this reason, the essential formulas are listed in ap-
pendix A.

2nd and 5th order Stokes theories: these theories are also known as �nite am-
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Waves
Description

Deterministic Probabilistic

Analytic Numeric

BEM,
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Spectra
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Figure 1: Traditional scheme adopted for describing ocean waves.

(a) Standard layout.
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Waves
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Deterministic Probabilistic

Analytic Numeric

BEM,
SPH, etc.

Linear
Theory

Weakly
Nonlinear
Theories

Energy
Spectra

fully nonlinear

typical link

provided link

(b) Proposed approach.

Figure 4.1: Traditional scheme and proposed analysis approach adopted for describ-
ing ocean waves.

plitude wave theories. In fact, they employ a perturbation parameter called
steepness ε = ka, where k is the wave number and a the wave amplitude,
which permits to describe steeper waves.

Cnoidal theory: the above Stokes theories have some restrictions on the applica-
bility in shallow waters. The cnoidal theory supplies a proper description for
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(a) Deep water rogue wave. (b) Shallow water freak wave.

Figure 4.2: Examples of freak waves.

Figure 4.3: The Great Wave by Katsushika Hokusai, 1760-1849.

�nite amplitude long waves in shallow waters. A cnoidal wave has a typical
shape consisting of sharper crest separated by wide troughs.

The importance of understanding the di�erence between several wave theories
comes up if we look at the applicability diagram in �gure 4.4.

A complete description of all the theories mentioned above is available in many
books [37], [5], among others.

4.1.2 Probabilistic representation

As already mentioned, to design o�shore structures both the stochastic and the
deterministic approaches are necessary. To describe the random nature of ocean
waves the only tool is represented by the wave energy spectrum. Energy density
spectra represent the energy content of an ocean wave and how it varies on a certain
range of frequencies.
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 – 84 – 61400-3  IEC:2009 

Annex C  
(informative) 

 
Shallow water hydrodynamics and breaking waves 

C.1 Selection of suitable wave theories 

Several periodic wave theories can be used to predict the kinematics of two-dimensional 
regular waves. The different theories all provide approximate solutions to the same differential 
equations with appropriate boundary conditions. All compute a waveform that is symmetric 
about the crest and propagates without changing shape. The theories differ in their functional 
formulation and in the degree to which they satisfy the non-linear kinematic and dynamic 
boundary conditions at the wave surface. Figure C.1 provides guidance on the selection of 
suitable regular wave theories as a function of normalised wave height and water depth. 
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Figure C.1 – Regular wave theory selection diagram 

 

The following symbols are used in Figure C.1: 

Figure 4.4: Wave theories applicability, from [5].

It is not our aim to repeat what is available in a very wide range of textbooks, but
to have at hand some important concepts we just mention the two most important
wave spectra which have been implemented in the numerical model discussed in the
next chapter.

Standard wave spectra

After carrying out an environmental analysis, the key parameters which describe
the sea severity can be established. They are: the wind velocity, the signi�cant wave
height, the mean zero�crossing wave period. Then, depending upon the type of sea
to be simulated, the two most used wave spectra are [32], [11], [31], [38], [2], [7]:

Pierson�Moskowitz: The Pierson-Moskowitz spectrum was developed departing
from data obtained in the North Atlantic in condition of fully developed sea.
This is a single�parameter formulation, indeed it depends only on the wind
velocity U measured at 19.5 m above the sea water level.

Sηη (ω) =
8.10

103

g2

ω5
exp


−0.032

(
g
Hs

)2

ω4


 (4.1)
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where Hs is the signi�cative wave height related to the wind velocity U as
Hs = 0.21U

2

g .

JONSWAP: The Joint North Sea Wave Project spectrum is based on an extensive
measurement campaign carried out between the 1968 and 1969 along a line of
about 160 km in the area of Sylt Island, see [11] and its references. Contrarily
to the Pierson�Moskowitz formulation, this spectrum is suitable for wind�
generated fetch�limited seas. Therefore it requires as input both the wind
velocity and the fetch length. The formulation is given as follows

Sηη (ω) = α
g2

ω5
exp

[
−5

4

(ωp
ω

)4
]
γ

exp

[
− (ω−ωp)2

2(σωp)2

]

(4.2)

where

• ωp is the peak circular frequency. According to [11] it is related to the
fetch F and wind velocity U by the following relation

ωp = 7π
g

U
x−0.33
F (4.3)

• γ is the peak�shape parameter, it represents the ratio between the max-
imum spectral energy density and the maximum of the corresponding
Pierson�Moskowitz spectrum

• α is a parameter related to the sea generation conditions, indeed it de-
pends on the fetch F as follows

α = 0.076x−0.22
F (4.4)

• σ = 0.07 for ω ≤ ωp and σ = 0.09 for σ > ωp

• xF = gF
U2 is the nondimensional fetch length

• U is the mean wind speed

• F is the fetch length

• g is the gravity acceleration

It is always useful, however, to obtain the JONSWAP spectrum in terms of the sea
severity Hs. In agreement with [11] and [12], we will assume the following relation

U = kF−0.615H1.08
s (4.5)

where k depends on the peak shape parameter γ, as shown in table 4.1, F is the
fetch in km and Hs must be expressed in m.

The line in red in table 4.1 highlights the values for k associated with the mean
value of γ.

The value γ varies approximately from 1 to 5 randomly, it is usually normal
distributed with mean value of 3.30. However, according to [2] and [10], the following
formulation is adopted:

γ =





5 for Tp√
Hs
≤ 3.6

exp
(

5.75− 1.15
Tp√
Hs

)
for 3.6 <

Tp√
Hs
≤ 5

1 for Tp√
Hs

> 5
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k γ
96.2 1.75
88.3 2.64
83.7 3.30
80.1 3.96
76.4 4.85

Table 4.1: k − γ relation, [11] and [12].

It is convenient sometime to get the JONSWAP spectrum as function of the two
independent variables Hs and Tp. In this way we do not use neither table 4.1 nor
the fetch F which is an information already contained in Tp and Hs. Indeed, given
these two inputs, α is readily obtained as follows [39]

Tp =

(
1

0.305α

) 1
4

2π

√
Hs

4g
⇒ α =

1

4.88
ω4
p

(
Hs

g

)2

(4.6)

In conclusion, the formulation given in equation (4.2) would require as indepen-
dent variables U and F . In other design situations Hs and Tp are assumed the two
independent design parameters. From them, of course, it is possible to get back �rst
α via (4.6), then F through (4.4) and �nally U .

4.2 Fully nonlinear potential �ow water waves

Most of the current approaches in designing o�shore structures successfully
adopt the linear wave theory, nevertheless in some design conditions nonlinear e�ects
cannot be neglected, especially when the goal is evaluating the structural safety.

Although modern computer simulations of o�shore wind turbines have made
formidable progresses, the integration of a fully nonlinear numerical solution of
gravity waves into the more general multi-physics framework characterizing the
design of o�shore wind turbines seems to be not yet a common practice.

One of the �rst contribution addressing the numerical simulation of nonlinear
water waves was due to Longuet�Higgins and Cokelet in [40] who introduced for
the �rst time the Mixed Eulerian�Lagrangian approach to describe such a free
surface problem. Subsequently, in [41] it was proposed a new and time�e�ective
procedure to integrate in time the dynamic and kinematic boundary conditions
on the free surface. The advantage of this time-stepping procedure, indeed, lies in
solving di�erent Laplace's equation at each �xed time step making use of the same
system matrices.

The numerical solution of the Boundary Value Problem (BVP) and the conse-
quent time integration do not introduce any approximation neither on the velocity
potential nor on the dimension of typical wave parameters such as wave height,
wave period, water depth and wave length. Excellent results of this approach in the
description of fully nonlinear water waves have been achieved in [42], [43], [44] and
[45], just to mention a few.

Nowadays the implementation of this computational tool deserves attention for
several reasons: �rstly we detected a lack of fully nonlinear models in investigat-
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ing structure-�uid interaction for o�shore wind turbines substructures. Secondly
because, especially in those seas where the water depth is fairly high, �oating struc-
tures are desirable and in this case methods hereafter illustrated are quite promising
[46], [47] and [48]. Moreover, as for long term loading actions the sea state needs
to be described by a superposition of nonlinear waves, interesting developments are
also in the direction proposed in [49].

4.2.1 On the validity of the potential �ow model to describe breaking waves

The potential �ow theory is regularly used to model water waves. The existence
of a velocity potential stems from the hypothesis that the �uid is irrotational. In
the model used in this work the condition of non-rotational �ow is guaranteed
throughout the evolution of the wave up to the time instant when the water jet
re-enters into the free surface. At the re-entry time instant, in fact, the domain
becomes multi-connected and Kelvin's theorem does not hold anymore.

Kelvin's theorem states that for an ideal �uid subjected to conservative body
forces, the circulation about any closed material contour moving with the �uid is
constant in time, see e.g. [50].

So that, given a zero initial circulation, we are sure that it remains zero up to the
re-entry. Moreover, Stokes' theorem assures that the condition of zero circulation
on the closed contour is equivalent to the condition of irrotaional �ow.

In addition to the theoretical justi�cations, experimental evidences (see e.g.
[6, 51]) con�rm that the irrotational model is valid to capture the evolution of
plunging breakers (up to the re-entry).

The above argumentations lead to the conclusion that no relevant discrepancies
from the real �ow situation are caused by the assumption of a potential model.

As already mentioned, in addition to the hypotheses of incompressibility of the
�uid and irrotational �ow discussed above, the present model is based on the as-
sumption of non-viscous �uid. It has been demonstrated that the e�ects of the vis-
cosity on the kinematics of water waves is negligible for the cases we are interested
in. In general, the viscosity might in�uence by acting through three mechanisms:
1) viscous e�ects at the free surface; 2) viscous e�ects inside the �uid; 3) viscous
e�ects at the sea bottom. Concerning mechanisms 1) and 2), viscosity causes the
progressive attenuation of the gravity waves, but this happens for time periods much
longer than those typical for the propagation of gravity waves. In case 3), the e�ect
could be taken in some consideration only in the case of very small water depth.
Our simulations are all in intermediate water conditions, thus the e�ects of viscosity
can be neglected without introducing signi�cant errors. Further details on the e�ect
of viscosity can be found in [52].

On the contrary, the viscosity plays a di�erent role in the loading model. In fact,
a non-viscous �uid would lead to no drag contribution in the hydrodynamic force
exerted on the monopile. To avoid this, Morison's equation provides the drag term
which accounts for the viscosity of the �uid.
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4.2.2 Governing equations

From Euler's equations valid for an incompressible and inviscid �uid, the addi-
tional hypothesis of irrotational �ow allows the description of fully nonlinear water
waves by means of a potential model. At a �xed time t, the velocity �eld for each
point belonging to the spatial domain Ω (t) can be expressed by means of a velocity
potential φ (p, t) as follows

v̄ (p, t) = ∇φ (p, t) ∀p ∈ Ω (t) (4.7)

Equation (4.7), together with the mass conservation (div (v̄) = 0) leads to the
following Laplace's equation

∇2φ (p, t) = 0 ∀p ∈ Ω (t) (4.8)

The domain Ω (t) is assumed bounded by four boundaries: Γi (t), Γb (t), Γo (t),
Γf (t) being the in�ow wall, the bottom, the out�ow wall and the free surface,
respectively. See �gure 4.5.

Figure 4.5: Two�dimensional domain of the potential problem.

Let n̄ be the unit outward normal vector, the normal component of the velocity
�eld (the �ux) stems form (4.7), as follows

vn (p, t) = ∇φ (p, t) · n̄ (4.9)

Equation (4.9) is used to provide Neumann boundary conditions on the bound-
ary Γi (t), Γb (t), Γo (t). The value to be assigned to the normal derivative of the
velocity potential depends on the type of water wave to be simulated.

An inertial coordinate system is �xed with the x�axis along the Still Water Level
(SWL) and the y�axis vertical and upwardly oriented. See �gure 4.5. At a �xed time,
points p ∈ Γf are tracked by a Lagrangian position vector r̄ (p) = p−o = xf ēx+yf ēy.
Where ēx and ēy denote the unit normal basis.
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Boundary conditions

On the free surface Γf (t) the dynamic boundary condition, which represents the
Bernoulli equation for unsteady �ow, reads as follows

Dφ (p, t)

Dt
= − pa

ρw
− gyf +

1

2
∇φ (p, t) · ∇φ (p, t) ∀p ∈ Γf (t) (4.10)

where yf is the free surface instantaneous elevation, often also denoted by η, pa is
the atmospheric pressure, which can be neglected, and ρw the water density.

Moreover, the pro�le of the free surface is governed by the following kinematic
boundary condition which stems directly from equation (4.7)

Dr̄ (p, t)

Dt
= v̄ (p, t) = ∇φ (p, t) ∀p ∈ Γf (t) (4.11)

The above free surface kinematic boundary condition can be written in compo-
nents as follows

Dxf
Dt

= vxf (4.12)

Dyf
Dt

= vyf (4.13)

To solve the time-depending potential problem (4.8), initial conditions must be
also assigned. Namely, at the beginning of the simulation the potential along the
free surface and its geometry have to be known.

4.2.3 Time integration scheme

There are several methods to integrate the dynamic and kinematic boundary
conditions on the free surface. A review of the possible approaches is proposed in
[53], [54]. One of the most e�ective time integration scheme for this type of problems
was �rst proposed by Dold and Peregrine [41]. It is based on Taylor series truncated
at a certain order which permits to approximate, and consequently to update, both
the free surface pro�le and the velocity potential from the current time t to the
subsequent time step t+ dt. Namely, the series are

r̄ (p, t+ dt) = r̄ (p, t) +
Dr̄ (p, t)

Dt
dt+

1

2

D2r̄ (p, t)

Dt2
dt2 + o

(
dt3
)

(4.14)

φ (p, t+ dt) = φ (p, t) +
Dφ (p, t)

Dt
dt+

1

2

D2φ (p, t)

Dt2
dt2 + o

(
dt3
)

(4.15)

Figure 4.6 shows the Lagrangian updating of the free surface water particles
position.

The above series are truncated at the second order. It seems that such a choice
is optimal considering the numerical e�ort necessary to compute the third order
coe�cients [55]. The procedure to get up to the second order coe�cients of the
above series is rather simple and has some remarkable advantages with respect
to other time-stepping schemes. The following two paragraphes describe how to
proceed.
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Figure 4.6: Lagrangian updating of the free surface particles position.

First order Lagrangian derivatives

No special e�ort is required to compute the �rst�order coe�cients in equations
(4.14) and (4.15). Indeed, the �rst�order total derivative of the position vector r̄,
i.e. the velocity components vxf and vyf , can be computed by accounting for both
the contributions of normal and tangential components

vxf = vnf n
x + vtf t

x (4.16)

vyf = vnf n
y + vtf t

y (4.17)

where, in turn, vnf stems directly form the solution of the BVP, while the tangential
component vtf is obtained by di�erentiating the shape functions. See section B.2 of
appendix B.

In equations (4.16) and (4.17), nx, ny and tx, ty denote the Cartesian components
of the normal and tangential unit vectors, respectively.

In addition to this, the �rst�order coe�cient for the integration of the velocity
potential, that is its total derivative, see equation (4.15), can be directly computed
by means of the dynamic boundary condition (4.10)

Dφ (p, t)

Dt
= −gyf +

1

2

(
vx2
f + vy2

f

)
(4.18)

Second order Lagrangian derivatives

A bit more articulated procedure is invoked to compute the second�order coef-
�cients involved in equations (4.14) and (4.15), [45]. Let us start from the particle
acceleration

D2r̄

Dt2
=
Dv̄

Dt
=
∂v̄

∂t
+ (∇v̄) (v̄) (4.19)

By means of equation (4.7), the temporal derivative ∂v̄
∂t can be written as follows

∂v̄

∂t
= ∇φ̇ (4.20)

where it has been set φ̇ = ∂φ
∂t . Therefore, the particle acceleration becomes

Dv̄

Dt
= ∇φ̇+ (∇v̄) (v̄) (4.21)
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To solve the above problem it is necessary to know φ̇. By di�erentiating equation
(4.8) with respect to time, it is immediate to realize that for a �xed time, φ̇ satis�es
another potential problem stated as follows

∇2φ̇ (p) = 0 ∀p ∈ Ω (4.22)

φ̇ =
Dφ

Dt
−
(
vx2
f + vy2

f

)
∀p ∈ Γf (4.23)

v̇nb =
∂vnb
∂t

∀p ∈ Γb (4.24)

v̇no =
∂vno
∂t

∀p ∈ Γo (4.25)

v̇ni =
∂vni
∂t

∀p ∈ Γi (4.26)

Note that the right�hand side of equation (4.23) is completely known since the
total derivative of the potential stems directly form the dynamic boundary condition
and the velocity �eld on Γf has already been computed by using equations (4.16)
and (4.17). By solving this second BVP, with the same distribution of Dirichlet and
Neumann boundary conditions, we get the unknowns v̇nf . Furthermore, by numerical
di�erentiation it is possible to calculate also v̇tf and thus it is straightforward to

compute the gradient of φ̇ as follows

∂φ̇

∂x
= v̇xf = v̇nf n

x + v̇tf t
x (4.27)

∂φ̇

∂y
= v̇yf = v̇nf n

y + v̇tf t
y (4.28)

The above approach is particularly e�ective because the system matrix needs to
be computed only once at each time�step as the geometry of the domain Ω is the
same for both BVPs. Namely, this permits to use again the same matrices H and
G, see equation (B.28) in appendix B. The di�erence between the two BVPs lies
only in the boundary condition value (not type!), and so no new integration over
the boundary elements is required.

The second�order coe�cient for Taylor series (4.14) still need the last contri-
bution (∇v̄) (v̄). The procedure to compute this involves nothing but some basic
vector calculus where the irrotational hypothesis of the �ow and the continuity equa-
tion are used [45]. However, details on the calculation of this term are discussed in
section B.3 of appendix B.

Concerning the second�order coe�cient D2φ
Dt2 necessary to update the velocity

potential at time t+dt, it is required to di�erentiate the dynamic boundary condition
with respect to time as follows

D2φ

Dt2
=

D

Dt

(
−gyf +

1

2
v̄f · v̄f

)
= −gvyf + vxf

Dvxf
Dt

+ vyf
Dvyf
Dt

(4.29)

4.2.4 Method of solution

As already mentioned, the fully nonlinear potential �ow initial-boundary-value
problem is solved by using the Mixed Eulerian Lagrangian (MEL) approach which
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consists in a repeated two-step procedure. See [56] for a wide literature survey.
After the notions introduced in the previous sections, the MEL approach can

now be better highlighted.
For the sake of brevity let ΓN = Γi ∪Γb ∪Γo denote the region of the boundary

where Neumann boundary conditions are assigned. Note that the dependency of
the boundary curve Γ on time has been suppressed. This abuse in notation is here
justi�ed by the fact that at each time step the problem is regarded as a steady case.

The two steps are:

1. Eulerian step: at a �xed time t, the free surfac Γf and the velocity poten-
tial φ (p ∈ Γf ) on it are known. The �ux ∇φ (p ∈ Γf ) · n̄ on ΓN and ΓN it-
self are also known. Two steady Laplace's equations are solved for the �uxes
∇φ (p ∈ Γf ) · n̄ and ∇φ̇ (p ∈ Γf ) · n̄ on the free surface and for the velocity
potentials φ and φ̇ on ΓN .

2. Lagrangian step: making use of equations (4.14) and (4.15), the velocity po-
tential and the free pro�le are updated in time providing boundary conditions
for the next Eulerian step. See �gure 4.6.

At the second step, when all the unknowns have been found, each particle of the
boundary of the Eulerian frame is updated in a Lagrangian manner.

It is worth pointing out that the particular type of time-integration adopted
requires that at each time step the number of steady Laplace's equations to be
solved depends on the order of Taylor's series, so that, in accordance with equations
(4.14) and (4.15), in the current code two BVPs are solved at each time�step.

The steady solution at each time�step is achieved by discretizing the BVP by
using the direct Boundary Elements Method. See appendix B.1.

Note that in the above procedure the analytic linear solution (Airy wave theory
for irregular waves) plays a twofold role: it is used to initialize the solver by providing
the free surface elevation and the velocity potential on the free surface, and it is
used to provide Neumann boundary conditions (involved in the Eulerian step) on
the upstream and downstream walls during the simulation. Moreover, the transition
from the linear solution to the fully nonlinear one is made by using a ramp function
which is required to be long not more than ten times one boundary element length.
In Chapter 5, in particular in section 5.4.3, such a domain decomposition strategy
will be extensively discussed.

4.2.5 Smoothing and regridding

According to [57] in our model the two most important and typical numeri-
cal instabilities occurred: (i) strong instability due to a too large time�step; (ii)
steep wave instability, also known as �sawtooth� instability. The Boundary Element
Method used to discretize Laplace's equation implements second order elements
along all the four boundaries. Hence, the sawtooth instabilities look like a bit dif-
ferent to the classical one shown in literature. Figure 4.7 gives an example of what
this instability causes.

While the strong instability can be �xed by setting a proper time�step, to remove
the sawtooth behavior of the free surface a smoothing procedure is necessary. The
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BEM Free Surface at t = 1.3141 s

x

y

Figure 4.7: Typical sawtooth instability a�ecting the free surface in the case of a
steep wave generated by a piston wavemaker.

are many possibilities to smooth the free surface, here the one proposed in [40] has
been chosen. Every a variable number of time steps the free surface and the velocity
potential are smoothed by the following 5�point smoothing formula

fsmtj =
1

16
(−fj−2 + 4fj−1 + 10fj + 4fj+1 − fj+2) (4.30)

where fsmtj is the smoothed value in the j�th node of the function f which can be
φ, yf and xf .

The above smoothing formula is valid for equally spaced points and does not
apply to the �rst (and last) two nodes of the free surface. When nodes tend to
gather in the large velocity gradient regions, the equally spaced condition is no
longer su�ciently accurate, hence the smoothing subroutine also implements the
generalized form of the 5�point scheme in accordance with [58].

When dealing with overturning waves, however, the formation of a water jet
causes nodes to concentrate near the cusp where very high velocity �elds are asso-
ciated with high curvatures. In this situation a more re�ned mesh could be needed
but it must also be avoided that nodes undergo displacement so large to step over
the neighbor particles. A regridding subroutine has been thus implemented with
the aim of avoiding the latter inconvenient. When necessary, the regridding is also
used to re�ne the free surface discretization as it allows the augmentation of the
boundary elements on selected boundary patches. The regridding makes use of cubic
splines.

Smoothing and regridding have to be used together carefully. For both there are
advantages and drawbacks which can lead to inaccurate solutions.
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4.3 Validation

4.3.1 Periodic waves

The �rst simplest case used to test the numerical model regards a period wave.
It will result clear later on the importance of demanding excellent performance to
the code in simulating linear periodic waves. In fact, when the goal will be the
simulation of an irregular sea, it will be just matter of the number of harmonics
of which the velocity potential and the other kinematic entities are made up, but
the global framework of the numerical solver is absolutely identical to this case.
However, in this speci�c case, to check also the capability of the code of capturing
nonlinear e�ect, a periodic 2nd�order Stokes wave has been simulated. Care needs
to be devoted to the in�ow and out�ow boundaries where periodicity guarantees
no re�ection. Although the analytical solution for such a problem is spread into an
unbounded number of textbooks, e.g. [37], here the initial and boundary conditions
are recalled and adapted to the present numerical scheme.

Boundary conditions on Γb

The boundary condition on the bottom is the no �ux condition, so that

vnb = ∇φ · n̄ = 0 ∀p ∈ Γb (4.31)

Boundary conditions on Γi and Γo

The velocity along the in�ow and out�ow boundary are consistent with Stokes
2nd�order theory. They are

vni (Γi, t) =
Hπ

T

cosh (ks)

sinh (kd)
cos (k (xi − ct)) +

+
3

4c

(
Hπ

T

)2
cosh (kd)

sinh3 (kd)
(2 + cos (2kd)) cos (2k (xi − ct)) (4.32)

vno (Γo, t) =
Hπ

T

cosh (ks)

sinh (kd)
cos (k (xo − ct)) +

+
3

4c

(
Hπ

T

)2
cosh (kd)

sinh3 (kd)
(2 + cos (2kd)) cos (2k (xo − ct)) (4.33)

where s = d+ y.
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Initial conditions

The initial conditions are assigned to the free surface as follows

φ (p, 0) =
Hg

2ω

cosh (ks)

cosh (kd)
sin (kx) +

+
3

8

H2π2

kTL

cosh (2ks)

sinh4 (kd)
sin (2x) ∀p ∈ Γf (0) (4.34)

yf (x, 0) =
H

2
cos (kx) +

+
πH2

8L

cosh (kd)

sinh3 (kd)
(2 + cos (2kd)) cos (2kx) ∀p ∈ Γf (0) (4.35)

where yf (often denoted also by η) is the elevation of the free surface with respect
to the still water level.

4.3.2 Solitary wave

The second numerical experiments to test our code addresses the propagation
of a solitary wave as described in [59]. Actually, several kinds of solitary waves have
been simulated, e.g. [55] among others, and for all cases excellent results have been
attained. Here, for the sake of brevity, only the solitary wave simulated in [59] is
shown.

Boundary conditions on Γi, Γo and Γb

To generate a solitary wave we give some speci�c initial conditions on the free
surface, while all the remaining boundaries are assumed impervious and kept at rest
by setting the following Neumann boundary conditions

vnb (Γi, t) = vni (Γi, t) = vno (Γo, t) = 0 ∀ t ∈ [ti, tf ] (4.36)

where ti and tf are the initial and �nal instants of the simulation.

Initial conditions

The motion is generated by initial conditions obtained by the following second�
order analytical solution setting t = 0

φ (x, t) =
1

λ

[
1− 1/4H + 1/3H tanh2 (µ− kλt)2

]
×

tanh (µ− kλt)
√

4/3H (1− 5/4H)+

+ 1/λsech2 (µ− kλt)2
tanh (µ− kλt)

√
3/4H3 (1− 5/4H) (4.37)

η (x, t) = H
[
1− 3/4H tanh2 (µ− kλt)

]
sech2 (µ− kλt) (4.38)
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where

k =
√

3/4H (1− 5/4H) (4.39)

λ = 1 + 1/2H − 3/20H2 (4.40)

µ = kx (4.41)

4.3.3 Piston wavemaker

Here a fully nonlinear numerical wave tank is simulated. See [60], [61], [62], [63],
[43], [42], [51], [46], [6], [64], [45], [44], [65], among others.

Two fundamental cases have been tested: (i) when the paddle is moving gen-
erating single harmonic wave and (ii) the motion of the piston is given by the
superposition of several harmonics.

The numerical piston starts moving at the initial time ti = 0 when the �uid lies
in a state of rest with the free surface being horizontal.

Boundary conditions on Γb and Γo

The out�ow wall Γo and the bottom Γb are not time-depending and for both of
them the no-�ux condition is assigned as follows

vnb = ∇φ · n̄ = 0 ∀p ∈ Γb (4.42)

vno = ∇φ · n̄ = 0 ∀p ∈ Γo (4.43)

Boundary conditions on the wavemaker Γi

According to [51], [6], [64], in the case of single harmonic, the piston moves with
the following general law

xp (t) = −A
2

cos (ωt) (4.44)

so that the position of the piston at the initial instant is given by the negative
semistroke −A/2. From equation (4.44), the upstream �ux assumes the following
expression

vp (t) =
A

2
ω sin (ωt) (4.45)

Note that since the unit normal vector is always outwardly oriented from the
domain Ω (t), the Neumann boundary condition assumes the negative sign: vni (t) =
−vp (t).

Initial conditions

The �uid in the water tank is at rest, so that the initial conditions on the free
surface are assumed as follows

φ (p, 0) = 0 ∀p ∈ Γf (0) (4.46)

f (x, 0) = 0 ∀p ∈ Γf (0) (4.47)

where f is the elevation of the free surface with respect to the still water level,
indeed we have yf (xf , t) = f (x, t).
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4.3.4 Absorbing beach

To reproduce a real wave tank, especially when simulating waves generated by
piston wavemakers, it is necessary to avoid the re�ection of the energy introduced
into the system by the piston. This can be done by means of a damping layer which
can be tuned in order do dissipate a certain amount of energy. See �gure 4.8.

Thus, the waves are gradually attenuated along the beach which has a �xed
length. Along this sponge layer both the kinematic and dynamic free surface bound-
ary conditions have been modi�ed by introducing the dissipative term as suggested
in [64] as follows

Dφ (p, t)

Dt
= − pa

ρw
−gyf +

1

2
∇φ (p, t) ·∇φ (p, t)−ν (p) (φ− φe) ∀p ∈ Γf (t) (4.48)

and for the free surface kinematic boundary condition (4.11), we have

Dr̄ (p, t)

Dt
= v̄ (p, t) = ∇φ (p, t)− ν (p) (r̄ − r̄e) ∀p ∈ Γf (t) ∀p ∈ Γf (t) (4.49)

where φe and r̄e denote the velocity potential and the free surface particle position
at the reference con�guration, that is when no waves are being generated.

The absorbing piston located downstream at Γo as described in [61] is not nec-
essary for our purposes.

Setting the function ν (p) is crucial as its strength makes the �lter more or less
e�ective. The scope of absorbing the incident wave energy before it reaches the
wall and thus being re�ected depends on the parameters which tune the following
expression

ν (x) = αω

[
k

2π
(x− x0)

]2

∀x ∈ [x0, x1] (4.50)

where x0 is the starting point of the beach and x1 = x0 + 2πβ
k is the channel length.

To fully absorb a wave characterized by ω and k as angular frequency and wave
number respectively, the parameters α and β should both equal one.
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Figure 4.8: Sketch of the numerical wave tank equipped with a sponge layer.

4.4 Results

4.4.1 Stokes 2nd�order

The simulated wave is characterized by H = 0.2 m, d = 2.5 m, L = 6.28 m,
T = 2.019 s. Where H denotes the wave height, d the water depth, L the wave
length and T the period. The harmonic wave is simulated considering a numerical
tank 4L = 25.12 m long2.

Figure 4.9 shows the comparison between analytical and numerical free surface
evolution obtained with NEf = 60, NEb = 20, NEi = NEo = 10, dt = 0.05 s.
Where NEα denotes the number of boundary elements on the α�boundary with
α = i, b, o and i: in�ow (upstream); b: bottom; o: out�ow (downstream). Moreover,
the smoothing scheme introduced above has been used.

4.4.2 Solitary wave

The parameters de�ning the solitary wave and the geometry of the numerical
tank are

• wave height H = 0.1 m;

• water depth d = 1 m;

The number of elements on the free surface is NEf = 48, while on the upstream,
downstream and on the bottom there are NEi = NEo = 8 and NEb = 24 elements,
respectively. The time�step adopted to integrate the boundary conditions is dt =
0.05 s.

2Note that H/
(
gT 2

)
= 0.005 and d/

(
gT 2

)
= 0.0625. These values make the simulated wave

falling in the Stokes second order theory applicability, [37].
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x

y

Figure 4.9: Analytical and numerical free wave propagation of a second order Stokes
periodic wave. Free surfaces taken at t = 2 s.

To generate a solitary wave we assigned initial conditions from the analytical
solution for t = 0. As said earlier, on the upstream, bottom and downstream walls
the boundary conditions are de�ned by the impervious (no �ux) condition.

Figure 4.10 shows the excellent agreement between the numerical results and
the analytical solution. In addition to this, a proof of the e�ciency of the code is
given by computing both the total mass of the system and the �ux trough the free
surface. In the former the mass conservation is always guaranteed and in the latter
zero �ux balance is also preserved (with 10E-7 approximation).

The comparison presented in �gure 4.10 has been intentionally limited to t =
11, because just further this dimensionless instant the run up starts, as shown in
�gures 4.11(c) and 4.11(d), and the comparison becomes meaningless.

A complete propagation is presented in �gure 4.11 where also the run up is well
visible. The simulation has been stopped at t = 30.

Simulation in �gure 4.11 has been run with the following parameters: NEf = 64,
NEb = 20; NEi = NEo = 10; dt = 0.05; d = 1. All the parameters have been made
dimensionless by using water depth d for lengths and

√
gd for time.

As already mentioned, along with fundamental comparisons with analytical re-
sults, some global quantities are also controlled to be in agreement with the theo-
retical expected values, naturally within some tolerance.

First, the total mass involved in the system has to be unchanged and this is
shown in �gure 4.12. Another useful check of the numerical reliability concerns
the total �ux balance. By using the divergence theorem, indeed, given Laplace's
equation on a domain with boundary Γ, then it is possible to prove that

∫

Γ

∂φ

∂n̄
dΓ =

NEf∑

j=1

∫

Γj

3∑

k=1

ϕk (s) dΓq(j) = 0 (4.51)

where ϕk (s) is the k�th shape function and NEf the number of quadratic elements
used to discretize the free surface. See appendix B for further details. Figure 4.13
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x

η

Figure 4.10: Analytical and numerical free wave propagation of a solitary wave. Free
surfaces taken at each 40 time steps (∆t = 40dt = 2, from t = 0 to t = 11.

shows total �ux balance during the propagation of the solitary wave.

4.4.3 Piston wavemaker: regular wave

The parameters concerning this simulation are itemized in the following. Note
that all depends on the wave length L and the piston stroke S. The remaining
parameters have been derived accordingly. The wave height in particular has been
computed by invoking the linear transfer function.

• tank length Lt = 32 m;

• water depth d = 1 m;

• wave length L = 8 m;

• piston stroke S = 2.0× 10−1 m

• wave number k = 7.854× 10−1 ;

• angular frequency ω = 2.248 rad/s;

• wave period T = 2.795 s

• celerity c = 2.862 m/s;

• wave height H = 1.559× 10−1 m;

• d/
(
gT 2

)
= 1.305× 10−2 ;

• H/
(
gT 2

)
= 2.034× 10−3

• initial simulation time ti = 0;
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BEM Free Surface at t = 0.0000

x

y

(a) Free surface at t = 0.

BEM Free Surface at t = 5.0000

x

y

(b) Free surface at t = 5.

BEM Free Surface at t = 10.0000

x

y

(c) Free surface at t = 10.

BEM Free Surface at t = 15.0000

x

y

(d) Free surface at t = 15.

BEM Free Surface at t = 17.5000

x

y

(e) Free surface at t = 17.

BEM Free Surface at t = 20.0000

x

y

(f) Free surface at t = 20.

BEM Free Surface at t = 22.5000

x

y

(g) Free surface at t = 22.5.

BEM Free Surface at t = 25.0000

x

y

(h) Free surface at t = 25.

BEM Free Surface at t = 30.0000

x

y

(i) Free surface at t = 30.

Figure 4.11: Propagation and run�up on an vertical wall of a solitary wave.

n time step

M
=

∫ Γ
f
ηd
x

Figure 4.12: Mass conservation during the propagation of a solitary wave.
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n time step

Q
=

∫ Γ
f
(∇

φ
·n̄

)
d
Γ

Figure 4.13: Total �ux through the boundary during the propagation and runup of
a solitary wave.

• �nal simulation time tf = T ;

Figures 4.14 to 4.18 show the evolution of a nonlinear regular wave generated by
a piston wavemaker. They show the transient and the beginning of the stationary
evolution. Even though linear theory is adopted for the transfer function, expected
results in terms of wave length and wave height are excellently met.

This simulation implements also the absorbing beach which is fundamental in
these type of simulations in order to avoid re�ection. When a regular wave is being
simulated, setting the numerical beach parameters is straightforward as the sponge
layer is calibrated to absorb the whole energy associated with that single harmonic.
In this case we have in fact

• α = 1;

• β = 1;

• x0 = 24 m;

• x1 = 32 m;

where it results that the beach length just equals the wave length.
The number of elements on the free surface is NEf = 60, while on the upstream

(the paddle) and downstream boundaries we have NEi = NEo = 2. On the bottom
there are NEb = 15 elements. The time�step adopted to integrate the boundary
conditions is dt = 0.05 s.

4.4.4 Piston wavemaker: breaking wave

In this paragraph we show the capability of the code of simulating breaking
waves induced by wave�wave interaction. Contrarily to the previous cases, where
the augmentation of steepness is well controlled by the stroke of the piston, in this
case we are to face a real fully nonlinear phenomenon which is characterized by very
rapid increase of velocity together with high curvature regions of the free surface.
This scheme is numerically very sensitive and a high resolution is required both in
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BEM Free Surface at t = 0.0000 s
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BEM Free Surface at t = 0.5000 s
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BEM Free Surface at t = 1.0000 s
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Figure 4.14: Propagation of a regular wave generated by a piston wavemaker.

space and in time whenever the wave becomes unstable. The re�nement in space
is gained by implementing a local mesh re�nement subroutine while the latter is
achieved by halving the integration time step when each node moves more than a
�xed percentage of the adjacent elements length.

A deep water plunging breaking wave is here simulated according to [6], where
an irregular wave �eld is generated by the following motion of the paddle

vp (t) =

72∑

n=1

Un cos (ωnt− θn) (4.52)

where vp is the velocity of the piston. The velocities Un, the angular frequencies ωn
and θn the phases induce a breaking wave due to wave�wave interaction at 11.5 m
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BEM Free Surface at t = 1.5000 s
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y

BEM Free Surface at t = 2.0000 s

x
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BEM Free Surface at t = 2.5000 s

x

y

Figure 4.15: Propagation of a regular wave generated by a piston wavemaker.

approximately apart from the paddle and after 51.10 (non�dimensional) time from
the beginning of the motion. All data necessary to implement equation (4.52) are
available in [6].

The numerical tank has the following dimensions

• tank length L = 20 m;

• water depth d = 1 m;

Some selected snapshots of the free surface evolution are presented in �gures 4.19
to 4.21. In particular, subplots of �gure 4.19 show up to t = 25 (nondimensional
time), while in �gure 4.20 it is shown up to t = 49.5 , which is just few instants
before the steepness attains the critical value. Indeed, the three remaining subplots
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BEM Free Surface at t = 3.0000 s

x

y

BEM Free Surface at t = 3.5000 s
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y

BEM Free Surface at t = 4.0000 s

x

y

Figure 4.16: Propagation of a regular wave generated by a piston wavemaker.

shown in �gure 4.21 depict the formation of the jet. From the �gure it is also possible
to note that the mesh has been re�ned a lot in the area where the cusp is forming.
From this instant on it makes more sense to follow the evolution of the plunging
breaker in an undistorted scale as in �gure 4.22.

To validate the code and its capability of correctly simulating fully nonlinear
waves, a comparison with experimental results obtained in [6] is presented in the
following. Six numerical gauges are set at nondimensional distances of x = 3.17 ,
5.00 , 6.17 , 9.17 , 10.83 , 11.83 from the paddle and the time histories there numer-
ically evaluated are compared with the experimental measurements. Figure 4.23
shows the free surface elevation over time for each probe.

The initial number of boundary elements of the free surface was NEf = 120,
then they self-adaptively increased whenever mesh re�nement was needed. On the
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BEM Free Surface at t = 4.5000 s

x

y

(a) Free surface at t = 1s.

BEM Free Surface at t = 5.0000 s

x

y

(b) Free surface at t = 2s.

BEM Free Surface at t = 5.5000 s

x

y

(c) Free surface at t = 3s.

Figure 4.17: Propagation of a regular wave generated by a piston wavemaker.

other boundaries there were NEi = NEo = 3, NEb = 30 quadratic elements. The
initial time�step adopted to integrate the boundary conditions was dt = 0.05 s.

For the purpose of this thesis it is crucial to describe the water particles velocity
during overturning. Figure 4.24 gives an example on how accurately it is possible
to investigate such velocities with the present code.
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BEM Free Surface at t = 6.0000 s

x

y

(a) Free surface at t = 1s.

BEM Free Surface at t = 6.5000 s

x

y

(b) Free surface at t = 2s.

BEM Free Surface at t = 7.0000 s

x

y

(c) Free surface at t = 3s.

Figure 4.18: Propagation of a regular wave generated by a piston wavemaker.
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BEM Free Surface at t = 5.0000 s
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BEM Free Surface at t = 15.0000 s
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BEM Free Surface at t = 25.0000 s
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y

Figure 4.19: Propagation of a wave packet generated by a piston wavemaker.
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BEM Free Surface at t = 35.0000 s

x

y

BEM Free Surface at t = 45.0000 s
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BEM Free Surface at t = 49.5000 s
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y

Figure 4.20: Propagation of a wave packet generated by a piston wavemaker.
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BEM Free Surface at t = 50.6413 s
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BEM Free Surface at t = 51.2801 s
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BEM Free Surface at t = 51.4663 s

x

y

Figure 4.21: Propagation of a wave packet generated by a piston wavemaker.
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BEM Free Surface at t = 51.6445 s
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y

(a) t = 51.64

BEM Free Surface at t = 51.6999 s

x
y

(b) t = 51.70

BEM Free Surface at t = 51.7499 s

x

y

(c) t = 51.75

BEM Free Surface at t = 51.7999 s

x

y

(d) t = 51.80

BEM Free Surface at t = 51.8499 s

x

y

(e) t = 51.85

BEM Free Surface at t = 51.8999 s

x

y

(f) t = 51.90

Figure 4.22: Evolution of the plunging breaker.
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(a) Free surface at x = 3.17
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(b) Free surface at x = 5.00

t
√

g/d

η
/
d

(c) Free surface at x = 6.67
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(d) Free surface at x = 9.17
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(e) Free surface at x = 10.83
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(f) Free surface at x = 11.83

Figure 4.23: Numerical and experimental time histories of the free surface elevation
at six probes.
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BEM Free Surface at t = 51.6999 s

x

y

Figure 4.24: Velocities (red arrows) of the water particles at t = 51.70 of the spout
evolution. Overturning wave generated by wave�wave interaction according to [6].
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4.5 Impact wave model

The impact wave model adopted in the simulations performed in the next chapter
is based on the Winke and Oumeraci's work [8]. The model applies to overturning
deep water breaking waves. Before introducing the impact model, a very short review
of breaking waves is presented in the next section. After this, Morison's equation
will be recalled in order to prepare the background for the analysis of slapping wave
loads.

4.5.1 Breaking waves

Among various special sea events present in nature, breaking waves de�nitively
represent one of the most dangerous phenomenon. They may occur both in deep wa-
ter and in shallow water, whenever the stability of the free surface is compromised
by some reasons. In costal engineering the hazard represented by shallow water
breaking waves is of primary interest, while when designing o�shore structures deep
water overturning breakers need to be taken into account carefully due their de-
structive potentiality. The shallow water instability is reached when the ratio wave
height/water depth attains the theoretical value of 0.78 [5].

While the deep water breaking condition is reached when the wave steepness
εb = H/L increases above the theoretical limit of 0.142. In the case of �nite depth
d, as it will be our case, the breaking limit becomes εb = 0.142 tanh (kd) where k
is the wave number. When a water wave becomes unstable it may break in four
di�erent ways, giving rise to the so called spilling, plunging, collapsing, surging
breaking wave pro�les, as shown in �gure 4.25.

The most dangerous for the safety of o�shore structures is de�nitely the plunging
type which can cause strong and potentially destructive impacts.

Currently, there is no systematic methodology to take into account such extreme
events when designing o�shore structures and, above all, unless using computa-
tionally heavy CFD codes, they are only reconstructed by using empirical formula
mostly suitable for deterministic design approaches. On this point it is worth quot-
ing S.K. Chakrabarti who, in Chap. 3 of [10], says:

�The theories described earlier for regular waves, including nonlinear
Stokes waves and stream function theory, do not predict the kinematics
and dynamic properties of very steep waves well. These waves are not
only vertically unsymmetric, but also have large horizontal unsymmetry.
If the design is based on these single steep waves, then a numerical theory
need to be utilized. There are current attempts in describing such waves
by the numerical wave tank methods and the method of New Waves [see
Tromans, et a1 (1991) and Kim, et a1 (1999) for details]. These methods
have not reached the design stage yet and are not commonly used in the
design of o�shore structures�.

Plunging breakers de�nitely belong to the group the above quotation refers
to when it mentions the horizontal asymmetry. Hence, what really deserves to be
pointed out here is the fact that this thesis attempts to overcome what said in
the last sentence of the above quotation. In fact, an e�cient and computationally
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Figure 4.25: Di�erent types of breaking waves, source [5].

e�ective numerical tool able to simulate very steep waves in a systematic way,
overturning plunging breakers included, is o�ered to improve the standard design
procedures.

4.5.2 Morison's equation

Wave forces on structures depend on many parameters, among which there are:
time t, mean wave period Tz, mean wave length L, horizontal water particles velocity
v, member diameter D, kinematic viscosity µ, member roughness κ, etc. All of these
variables can be rearranged and somehow normalized to de�ne some conventional
quantities

• Keulegan�Carpenter's number: KC = vT/D;

• Reynolds' number: Re = vD/µ;

• Di�raction parameter: D/L;

• Relative surface roughness: ε = κ/D;
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Morison's equation applies only to those members which are considered slender,
that is with the di�raction parameter lower than 0.2. Generally, we have

D

L

{
< 0.2 Morison's equation
≥ 0.2 Di�raction/Radiation theory

Note that the KC number is also related to members main dimension. Consider
in fact that for a �xed location, at the SWL, we have ηmax = H/2 and vmax =
(gk/ω) ηmax. Recalling also the dispersion relation in deep water ω2 = kg, the KC
number becomes

KC = π
H

D
(4.53)

This means that the larger KC, the smaller the di�raction parameter. A general
rule suggests that Morison's equation is valid for KC > 6 [14].

To develop the impulsive wave impact model it is necessary to start by analyzing
how Morison's equation is composed [66]. The model takes into account the drag
and inertia contributions induced by an undisturbed wave on a cylindrical mem-
ber. Morison's equation is a useful and simple engineering tool because it has the
great advantage of considering the whole wave kinematics as if the cylinder were
absent. On the other hand it presents some important limitations and drawbacks.
For example it does not take into account wave run�up and it is questionable its
validity for all wave theories, especially for highly nonlinear cases. In particular, by
adopting Morison's equation alone, extreme events like breaking waves cannot be
considered at all.

The force per unit�length given by Morison in [66] is the following

f (t) = fD (t) + fM (t) =

1

2
ρCDDv (t) |v (t) |+ π

4
ρCMD

2v̇ (t) (4.54)

where CM and CD are the mass and drag coe�cients, respectively; ρw is the water
density.

The drag component in equation (4.54) would actually vanish if we had strictly
to follow the the assumption of potential �ow theory. Indeed, by virtue of this theory,
one would end up into the famous D'Alebert's paradox. Nevertheless, by assuming
the real pressure distribution around a cylinder, once accounted for the dependency
on Reynolds' number, it is possible to describe the real drag force on the cylinder.

Concerning the inertial contribution in equation (4.54), by virtue of the pure
potential theory one would �nd CM = 2. Looking at the inertial term fM we realize
that (D/2)

2
π = vol is the unit�length volume of the cylinder, and thus

fM (t) = 2ρ vol v̇ (t) (4.55)

which is nothing but twice the inertial force associated with a �slice� of the cylinder
under consideration. In the reality it has been proved that the inertial coe�cient
is not really equal to 2 but it is given as CM = 1 + kM . The sub coe�cient �1�
represents the inertial force owned by the �ow able to move an amount of �uid
having the volume vol , which is actually replaced by the material member. This
contribution assumes an undisturbed �ow.
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However, the presence of the cylinder modi�es the �ow forcing the water particles
to encircle the pile. Thus, particles undergo an acceleration which is provided by a
force called added mass. kM represents the added mass coe�cient and depends on
the shape of the object. See [67] and [33] for further details.

There are many researchers who proposed values for these hydrodynamic coef-
�cients and of course it is not our intent to comment or list all of them. We just
mention very few in order to get a practical idea. According to [13] typical values
for the drag and inertial coe�cients are given in table 4.2.

Re < 105 Re < 105

KC < 10 ≥ 10 < 10 ≥ 10
CD 1.2 1.2 0.6 0.6
CM 2 1.5 2 1.5

Table 4.2: CD and CM proposed in [13].

Values proposed by the American Petroleum Institute API and by the Society
of Naval Architects and Marine Engineers (SNAME) are shown in table 4.3

smooth rough
API SNAME API SNAME

CD 0.65 0.65 1.05 1
CM 1.6 2 1.2 1.8

Table 4.3: CD and CM proposed by API and SANME.

Coe�cients recommended by Det Norske Veritas (DNV) in [7] are only related
to the KC number and the relative surface roughness ε. See �gure 4.26.

However, as most of the recommended values in this work follow instructions
given in [2], reference values for hydrodynamic coe�cients may be found also in the
International Standard ISO 13819 - 2, Part 2: Fixed Steel Structures.

The total force F = F (t) acting on the member is then obtained by integrating
the unit length force along the member up to the free surface elevation as follows

F (t) = FD (t) + FM (t) =

=

∫ η

−d

1

2
ρCDDv (t) |v (t) |dy +

∫ η

−d

π

4
ρCMD

2v̇ (t) dy (4.56)

To perform the integral in equation (4.56) it is necessary to extend the solution
of the wave kinematic model up to the free surface, therefore the commonly linear
and weakly nonlinear theory need to be adjusted because they provide solution
up to the SWL. In the numerical model developed in the next chapter, Wheeler
stretching is usually adopted, [68] and [10].

4.5.3 Impulsive load due to plunging breakers

Impact forces acting on o�shore wind turbines can be two to four times larger
than the non�impact forces stemming from waves of similar amplitude. And the
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Figure 12.4: Suggested Drag and Inertia Coe¢cient Values from DNV

Figure 4.26: Hydrodynamic coe�cients recommended by DNV, [7].

pressure due to impacts may be ten times larger than the non-impact pressure and
it rises in a fraction of second.

Traditionally, the contribution of slamming waves is accounted for in a deter-
ministic sense without considering its temporal development. Indeed, the drag com-
ponent of Morison's equation (4.56) is just ampli�ed by a factor which has a wide
range of variation, typically from 2.5 to 5.15 [8], [69], [10]. [70].

Without considering the real time�history (though very short) of the impulsive
contribution it is of course not possible to integrate such type of action in a full
time domain analysis which accounts the global dynamic behaviour of the system.

Contrarily, the slapping contribution due to plunging breakers can be described
by adjusting the original Morison's equation as follows

F (t) = FD (t) + FM (t) +FI (t) (4.57)
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where FI is the impulsive term. Wienke and Oumeraci in [71] and [8] developed
a new analytical model to determine the impact force which results very accurate
such as to represent a valid alternative to the earlier models proposed in [72], [32],
[73], [74], among others.

Adopting a potential �ow model and neglecting the surface tension as well as
the the forces due to gravity, they found that for a rigid cylinder of radius R the
impulsive force for unit length in 2D is given by

fI (t) = ρRv2 cos γ

[
2π cos γ − 2

√
cos γ

v

R
t

]
·

·
[
arctanh

√
1− 1

4

1

cos γ

v

R
t

]
(4.58)

for

0 ≤ t ≤ 1

8

1

cos γ

R

v
(4.59)

And

fI (t) = ρRv2 cos γ

[
π

√
1

6
cos γ

1
v
R t
′ −

(
8

3
cos γ

v

R
t′
) 1

4

]
·

·


arctanh

√
1− v

R
t′
√

6

cos γ

v

R
t′


 (4.60)

for
3

32

1

cos γ

R

V
≤ t′ ≤ 12

32

1

cos γ

R

V
(4.61)

where

t′ = t− 1

32

1

cos γ

R

V
(4.62)

The duration Ti of the impact considered from the immersion time of the front
line to the time of complete immersion of the half ellipse, see �gure 4.27, is given
by the following equation

Ti =
13

32

1

cos γ

R

v
(4.63)

Figure 4.28 shows the fundamental sketch the above formulation is referred to.

4.5.4 Numerical treatment of the plunging jet

The subroutine implementing equations (4.58) and (4.60) will need, as passed
variables, both v and ηb. These two values are obtained from the numerical simulator
discussed earlier. To this end, the forming water jet has to be analyzed carefully.

We start saying that for each time step of the simulation the free surface Γf (t) is
numerically known. So that in the space�time neighborhood of the expected impact
event, a dedicated subroutine �nds at which time the impact would happen. Let us
imagine that the turbine is located at xt = 35 m, see �gure 4.29.
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obtained from the Wagner model. Up to the transition

between the two sections of the circle approximation

(see Eq. (9)), the calculated time history is in good

agreement with the time history according to the

second order solution given by Cointe (1989). So the

decrease of the line force is slightly slower than given

by Fabula’s description. At the transition between the

two approximation sections, the line force falls below

the line force given by Fabula. The line force

according to Fabula is a suitable regression curve of

the line force according to the proposed model. Prior

to the transition between the two sections of the circle

approximation, the line force is overestimated and,

afterwards, it is underestimated as compared to the

Fabula’s model.

Comparing the time histories according to differ-

ent theories demonstrates that the proposed model

is a reasonable alternative. It must be noticed that

the approach of Cointe and Armand (1987) is based

on a parabolic shape. Considering the circle, the

line force is overestimated by Cointe’s approach

with increasing time. Using the proposed model,

the total duration of the impact can be determined.

Only Goda’s description also offers a solution for

the total duration, but the obtained duration is

obviously overestimated.

When the mass of water hits the cylinder not

normally but oblique by an angle cp08, then the shape

of the cylinder has to be represented by an elliptic

instead of a circular shape (Fig. 18). This description is

valid for the inclined cylinder or when the over curling

breaker tongue hits the vertical cylinder obliquely, i.e.

below the wave crest.

For the elliptic shape, the pressure spreading

can be calculated in the same way as for the

circular shape. Subsequently, the following line

force acting normal to the cylinder axis is

determined (2D-model):

f8 ¼ qd RdV 2d coscð2d pd cosc � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosc

V

R
t

r

�artanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

4
d

1

cosc
d
V

R
d t

r Þ
for 0VtV

1

8

1

cosc
R

V

ð10Þ

f8 ¼ qd RdV 2d coscðp
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cosc

1

V
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tV

vuut �
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8

3
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V

R
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r
tV
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3
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32

1
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with tV ¼ t � 1

32

1

cosc
R
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The total duration of the impact, i.e. from the

immersion time of the front line to the time of

Fig. 18. bObliqueQ impact: definition sketch.

J. Wienke, H. Oumeraci / Coastal Engineering 52 (2005) 435–462450

Figure 4.27: Sketch of the impact against an inclined cylinder. Image from [8].

In coastal engineering, the impact force on piles

due to breaking waves is usually calculated according

to Goda et al. (1966):

FI tð Þ ¼ kd gbd pd qd RdC
2 1� C

R
t

��
ð3Þ

Eq. (3) is based on the assumption that the breaker

front over the height kd gb is vertical and moves with

wave celerity C (Fig. 3). The height kd gb is

interpreted as the height of the impact area. The

impact force is equally distributed along that height so

that the impact line force is:

fI tð Þ ¼ pd qd Rd V 2 1� V

R
t

�
with V ¼ C

�
ð4Þ

From Eq. (4), it follows that at the beginning of the

impact with t=0 the line force is maximum

fI ¼ pd qd RdV 2 ð5Þ

and corresponds to the line force provided by the

theory of von Karman (1929). At each time step of the

impact, a flat plate approximates the cylinder (Fig. 4).

The flow against the plate results in an additional

hydrodynamic mass. The added mass below the flat

plate is given by a half circle with the diameter equal

to the width of the plate. Considering the momentum

conservation during the impact, the line force as given

in Eq. (5) is obtained. The time history given by Goda

is obtained by considering higher order terms for the

variation of the plate width in time. However, this

procedure is formally not consistent with the flat plate

approximation.

By taking into account not only the momentum

conservation, but also the flow beside the flat plate

will result in the so-called pile-up effect, which is a

deformation of the water free surface (Fig. 4). Due to

this pile-up effect, the bimmersionQ of the cylinder

occurs earlier. As a result, the duration of impact

decreases and the maximum line force increases.

According to Wagner (1932), the maximum line force

is:

fI ¼ 2d pd qdRd V 2 ð6Þ

The maximum force calculated by applying Wagn-

er’s theory is twice the maximum line force calculated

by von Karman’s theory. Very often the maximum line

Fig. 3. Definition sketch.

Fig. 4. 2D-impact description: definition sketch.

J. Wienke, H. Oumeraci / Coastal Engineering 52 (2005) 435–462438

Figure 4.28: Sketch of the wave impact model. Image from [8].

Figure 4.29: Example of the imminent overturning wave hitting the structure. At
this time, ηb and v̄ are computed.

At this impact time, the free surface looks like the example shown in �gure 4.29.
To get the maximum wave height ηb is trivial, while to compute the impact velocity
v an �averaging region should be identi�ed�.

After many numerical runs we discovered that averaging the horizontal velocity
components over a region included by the maximum wave elevation node and the
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node being the turning point for the free surface curvature, gives acceptable results
in estimating the impact velocity v. The turning point is found internally by the
subroutine by checking for each element when a change of the curvature sign occurs3.
See �gure 4.29.

3For the j�th boundary elements the curvature k(j) is computed by using the well known
formula

k(j) =
[
(ẋÿ − ẏẍ) /(ẋ2 + ẏ2)

]3/2

where the derivatives are trivially carried out due to the simplicity of the shape functions.
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Chapter5

Coupled wind�fully nonlinear waves model

This chapter represents the second main part the thesis, where the fully nonlinear water

waves simulator developed in Chapter 4 is coupled with a hydro-aero-elastic solver of the

whole system. The chapter begins by describing the solvers, then it enters into the details of

the wind and wave loads simulations, and �nally the fully coupled analyses are presented.

5.1 Solvers description

Here we will introduce the basic features of FAST: a combined modal and multi�
body dynamics simulator [9]. The version used in this thesis is FAST_v602c�jmj
which is a not�yet�released version. As it is an alpha version all the the new capa-
bilities of the software, in particular the hydrodynamic module, are not yet docu-
mented.

However, due to the support provided by the National Renewable Energy Labo-
ratory (NREL, Colorado)1, it was possible not only to use the new modules but also
to set up and implement the new impact model developed in this thesis. A detailed
description of this new capability is presented in the next section.

For three�bladed wind turbines FAST has up to 24 DOFs. All DOFs come from
modeling rigid and �exible system components: tower, blades, etc. Reference [9]
o�ers a detailed description of each DOF. The modus operandi of FAST (the parts
relevant for our case) is sketched in �gure 5.1, which also shows the input/output
structure of the code.

The aeroelastic forces acting on the rotating blades are computed by AeroDyn
which is internally called by FAST's main program at each time step. To compute
the aerodynamic forces, AeroDyn implements both the Blade Element Momentum
theory and the Generalized Dynamic Wake model [35], see Chapter 3.

To give an overview of the fundamental features of the solver we will shortly
describe all the input �les which are necessary to the simulations, see �gure 5.1.

5.1.1 FAST input

• Primary input �le: *.fst : contains many sets of the parameters which have
to be entered. We mention just the following:

� PLATFORM which calls an additional input �le containing the platform prop-
erties (.dat)

1In the person of Jason Jonkman.

Enzo Marino, An integrated nonlinear wind-waves model for offshore wind turbines  
ISBN 978-88-6655-051-8 (print) ISBN 978-88-6655-053-2 (online) © 2011 Firenze University Press
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FAST AeroDyn

Primary Platform Tower Blades

Summary Time series

PrimaryAirfoilsWind

SummaryElement

calls

Figure 5.1: Selected �les involved in FAST and AeroDyn.

� TOWER which calls an additional input �le containing the tower properties
(.dat)

� BLADE which calls additional input �le(s) containing data about the blades
(.dat)

� AERODYN which calls an additional input �le containing AeroDyn input pa-
rameters (.ipt)

∗ the .ipt �le calls the �le containing the wind data (.wnd)

∗ the .ipt �le calls the �le containing the airfoil data (.dat)

� OUTPUT which itemizes the output channels required

• Platform (monopile) input �le *.dat : also in this case we mention the
blocks more relevant for our scope:

� MASS AND INERTIA (relative to the platform)

� PLATFORM (loading model 0: none, 1: user-de�ned from routine UserPtfmLd
(switch))

� TOWER (Loading model)

� WAVES

� CURRENT

� OUTPUT

• Tower input �le *.dat : the data sets required in this �le are:
� TOWER PARAMETERS

� TOWER ADJUSTMUNT FACTORS

� TOWER FORE-AFT MODE SHAPES

� TOWER SIDE-TO-SIDE MODE SHAPES

• Blade input �le *.dat :
� BLADE PARAMETERS

� BLADE ADJUSTMENT FACTORS

� DISTRIBUTED BLADE PROPERTIES

� BLADE MODE SHAPES
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5.2 5�MW Baseline reference model

This section is devoted to a brief description of the model adopted in all the
simulations carried out to test the new hydrodynamic model proposed.

The turbine model is the 5�MW Reference Wind Turbine for O�shore System
Development. See Figure 5.2 for its general layout.

Figure 5.2: Layout of the model.

This model has been created by J. Jonkman et al. at the National Renewable
Energy Laboratory (NREL, Colorado) with the aim of creating a common reference
basis to pave the way for further investigations concerning o�shore wind turbines lo-
cated both in shallow and deep waters. In [75] the authors speci�ed all the technical
characteristics of the hypothetical, but realistic, multi-megawatt large wind turbine
model by combining some available data from di�erent machines (e.g. REpower 5�
MW and Arveva Multibrid 5000) together with data assumed in some conceptual
models of projects like RECOFF, etc. NREL 5�MW Baseline Wind Turbine gross
properties are itemized in table 5.1.

In the following sections a short description of the model is given. Further details
are available in [75], [76] and their bibliography.

5.2.1 Rotor and support structure

Rotor blades

The turbine has three blades with structural properties of the 62.6 m�long LM
Glas�ber blade used in the DOWEC study. As this type of blade is 1.1 m longer
than the 61.5 m�long LM Glas�ber blades adopted on the actual REpower 5�MW
machine, in [75] they truncated the 62.6 m�long blades at 61.5 m span to obtain the
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Rating Power 5 MW

Rotor Orientation, Con�guration Upwind, 3 Blades

Control Variable Speed, Collective Pitch

Drivetrain High Speed, Multiple-Stage Gearbox

Rotor, Hub Diameter 126 m, 3 m

Hub Height 90 m

Cut-In, Rated, Cut-Out Wind Speed 3 m/s, 11.4 m/s, 25 m/s

Cut-In, Rated Rotor Speed 6.9 rpm, 12.1 rpm

Rated Tip Speed 80 m/s

Overhang, Shaft Tilt, Precone 5 m, 5◦, 2.5◦

Rotor Mass 110 t

Nacelle Mass 240 t

Tower Mass 347.460 t

Coordinate Location of Overall CM (−0.2 m, 0.0 m, 64.0 m)

Table 5.1: Key properties of the NREL 5�MW Baseline Wind Turbine.

structural properties of the NREL 5�MW baseline blades. Then properties at 61.5 m
have been found interpolating the two properties at 61.2 m and 61.7 m stations. More
exhaustive data are available in [77]. Each single blade is made up of three di�erent
varying geometries. Each di�erent geometry is described in its special �le where the
aerodynamical properties are assigned. See table 5.2. Appendix B of [75] reports all
the mentioned �les.

Tower and pile

The tower adopted in the NREL baseline model is tubular shaped and has
the same geometric characteristics of the tower used in the DOWEC study [76].
Table 5.3 summarizes the key geometric parameters. The tower diameter and wall
thickness are assumed to vary linearly. The base diameter of 6 m is equal to the
diameter of the monopile.

Regarding the substructure, the main properties are itemized in table 5.4.
Note that in general FAST uses the following variables to model the platform.

As shown in Figure 5.3, TwrDraft denotes the downward distance from the Still
Water Level (SWL) to the tower base platform connection. PtfmCM and PtfmRef
represent the distance from the SWL and the platform center of mass and the
platform reference point, respectively. The latter is the point where the platform
DOFs are located. These three parameters are useful for modeling �oating platforms,
in our case they all equal the water depth d = 20 m.
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Wind

TowerHt

TwrDraft

PtfmCM

Yaw Bearing
C.M.

Yaw Axis

PtfmRef

Ground Level [onshore] or
Mean Sea Level [offshore]

Platform C.M.

Platform
Reference Point

Support
Platform

Tower

Surge

Roll

Sway

Pitch

Yaw

Heave

Tower Base

Figure 5.3: Platform scheme. Image from from [9]
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Node RNode AeroTwist ∆RNode Chord Airfoil Table

1 2.8667 13.308 2.7333 3.542 Cylinder1.dat

2 5.6000 13.308 2.7333 3.854 Cylinder1.dat

3 8.3333 13.308 2.7333 4.167 Cylinder2.dat

4 11.7500 13.308 4.1000 4.557 DU40_A17.dat

5 15.8500 11.480 4.1000 4.652 DU35_A17.dat

6 19.9500 10.162 4.1000 4.458 DU35_A17.dat

7 24.0500 9.011 4.1000 4.249 DU30_A17.dat

8 28.1500 7.795 4.1000 4.007 DU25_A17.dat

9 32.2500 6.544 4.1000 3.748 DU25_A17.dat

10 36.3500 5.361 4.1000 3.502 DU21_A17.dat

11 40.4500 4.188 4.1000 3.256 DU21_A17.dat

12 44.5500 3.125 4.1000 3.010 NACA64_A17.dat

13 48.6500 2.319 4.1000 2.764 NACA64_A17.dat

14 52.7500 1.526 4.1000 2.518 NACA64_A17.dat

15 56.1667 0.863 2.7333 2.313 NACA64_A17.dat

16 58.9000 0.370 2.7333 2.086 NACA64_A17.dat

17 61.6333 0.106 2.7333 1.419 NACA64_A17.dat

Table 5.2: Distributed blade aerodynamic properties.

Tower base diameter, wall thickness 6 m, 0.027 m

Tower top diameter, wall thickness 3.87 m, 0.019 m

Table 5.3: Tower geometric properties.

Pile length2, diameter 20 m, 6 m

Pile wall thickness, total weight 0.060 m, 187.90 t

Table 5.4: Monopile properties.

5.3 New slamming wave module in FAST

As already mentioned, FAST is a Fortran open source code developed at NREL
with the extraordinary feature of having some subroutines which can be de�ned by
the user upon their speci�c needs. This was, indeed, the case of this work where the
impact forces associated with some probable extreme seas, �rst computed externally
by dedicated simulations, are passed to the time marching solver by means of the
used de�ned subroutine UserTwrLd. This subroutine provides user de�ned tower
loading in the case of monopile substructure.

Before describing how the impact model has been implemented, it is useful to
give just an overview about the subroutine MorisonTwrLoading. The latter is stored
in the HydroCalc.f90 �le and provides the forces acting on the tower calculated
by means of Morison's equation. File HydroCalc.f90 also contains all the necessary
subroutines to generate the requested sea: linear regular or linear irregular. The
latter can be generated by adopting either the Pierson�Moskowitz or the JONSWAP
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spectrum. However we will always use our external sea generator.
The most important input parameters that control the wave kinematics are pro-

vided by the �platform monopile� input �le (see previous section). In the present case
the following parameters are frequently invoked: TwrLdMod (from block TOWER),
which sets the tower loading model (0: none, 1: Morison's equation, 2: user-de�ned
from routine UserTwrLd).

From blockWAVES, the parametersWaveMod,WaveStModWaveTMax,WaveDT
are crucial to develop the new impact model. The �rst, WaveMod, sets the type of
incident wave kinematics (0: none, that is still water, 1: plane regular, 2: irregu-
lar with JONSWAP or Pierson�Moskowitz spectra, 3: user�de�ned spectrum from
routine UserWaveSpctrm, 4: GH Bladed wave data). WaveStMod sets the type of
stretching, that is how to extend the linear solution, which is valid only up to
the still water level, up to the instantaneous free surface elevation. Switches for
WaveStMod are 0: no stretching, 1: vertical stretching, 2: extrapolation stretching,
3: Wheeler stretching. WaveTMax and WaveDT set the total simulation time and
the time step, respectively.

To implement the new slapping wave module we �rst need to pass to FAST the
wave kinematics consistent with the actual extreme sea which may contain some
breaking wave events. Hence, the random sea is generated externally, see section 5.4
for details, then it is passed to FAST by the same way it reads in the wave kinematics
�les generated by GH Bladed. Namely, three �les are necessary. They all have the
same name root which can be assigned as input.

• FNL_FAST.txt

• FNL_surface.txt

• FNL_kinematics.txt

where FNL (in this case) is the passed name root.
FNL_FAST.txt contains the coordinates of the points where the kinematics is

provided. The coordinates are expressed with respect to a planar system with the
vertical axis y upward oriented and passing by the center of the monopile, while
the x�axis points in the direction of the wave propagation. The origin is �xed
at the still water level. FNL_surface.txt stores the free surface elevation at the
wind turbine location (xt = 0) during the whole simulation time WaveTmax, while
FNL_kinematics.txt provides:

• particles velocity along x�axis , vx

• particles velocity along z�axis , vz (always zero in 2D model)

• particles velocity along y�axis , vy

• particles acceleration along x�axis , ax

• particles acceleration along z�axis , az (always zero 2D model)

• particles acceleration along y�axis , ay

• dynamic pressure pD
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To understand the structure that FNL_kinematics.txt must have to be correctly
read in by FAST, here there is an example of the Matlab function generating it:
function [] = write_kinematics(Elevx0,time,y)

global Aw omega k_w phase rho_w g d

% NOTE: xt = 0!

fid = fopen('fast\FNL_kinematics.txt','w'); for i = 1:length(time)

for h = 1:length(y)

% With Wheeler stetching

eta = Elevx0(i);

if y(h) <= eta

q = d/(d+eta);

vx = sum(Aw.*omega .* cosh( k_w.*( d + q*y(h) + d*(q-1)) )./sinh(k_w.*d).*cos(-omega.*time(i)+phase));

vy = sum(Aw.*omega .* sinh( k_w.*( d + q*y(h) + d*(q-1)) )./sinh(k_w.*d).*sin(-omega.*time(i)+phase));

ax = sum(Aw.*omega.^2 .* cosh( k_w.*( d + q*y(h) + d*(q-1)) )./sinh(k_w.*d).*sin(-omega.*time(i)+phase));

ay =-sum(Aw.*omega.^2 .* sinh( k_w.*( d + q*y(h) + d*(q-1)) )./sinh(k_w.*d).*cos(-omega.*time(i)+phase));

p = rho_w*g*sum(Aw .* cosh( k_w.*( d + q*y(h) + d*(q-1)) )./cosh(k_w.*d).*cos(-omega.*time(i)+phase));

else

vx = 0;

vy = 0;

ax = 0;

ay = 0;

p = 0;

end

fprintf(fid,'%d %d %d %d %d %d %d\r\n',vx, 0, vy, ax, 0, ay, p);

end

end fclose(fid);

To check whether the wave kinematics provided by using external text �les were
correct, a very simple test comparing results obtained adopting both simulators has
been carried out.

A simple regular wave has been generated �rst by using the internal wave solver,
then by passing data provided by our external solver. For the sake of simplicity no
wind is assumed to blow and the turbine is parked. The incident regular periodic
wave is characterized by the following wave height and wave period: H = 12 m and
T = 12 s.

For both the simulations shown in �gures 5.4 and 5.5, hydrodynamic forces
are computed by using Morison's equation, i.e. TwrLdMod: 2, while WaveMod is 1
when the wave is simulated internally and 4 when read in from text �les. Note that
WaveMod 4 means loading GH Bladed wave �les, but in the present case our own
simulator is used. Only the �le format and their organization is passed according
to GH Bladed �le type.

By comparing the tower base forces shown in �gure 5.4(a) and 5.5(b), it is
evident that the kinematics passed gives the same results than WaveMod 1. In fact,
forces have the same period and amplitude.

Moreover, as expected, the same agreement is observed by comparing the tower
base moments. Indeed, also for them, the structural response shown in �gures 5.5(a)
and 5.4(b) is basically the same.

Note that both for tower base forces and moments, meaningful comparisons are
made between Myt and Fyt. The remaining internal forces are reported just for the
sake of completeness.

At this stage, once it has been proved that the external wave solver developed in
the framework of this thesis works well, it is possible to move on to the impact model.
As already said, a short introduction of MorisonTwrLd may be helpful as Morison's
equation is the starting point for the impulsive contribution, see section 4.5. The
subroutine needs as input variables the current tower node, the tower diameter,
the inertial and drag coe�cients, the three components of the translational and
the three components of the rotational displacements, the three components of
the translational and the three components of the rotational (angular) velocities.
Moreover, the current simulation time is also needed.
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(a) Tower base forces computed by using FAST's internal wave
simulator.

(b) Tower base forces computed by using the external wave kine-
matic solver and passed via text �les.

Figure 5.4: Tower base forces obtained with wave kinematics computed internally
by FAST (WaveMod: 1) and passed form outside (WaveMod: 4).

MorisonTwrLd subroutine outputs the force vector TwrFt, which is formed by the
x (surge), y (sway) and z (heave) components of the portion of the tower force per
unit length at the current tower element and the roll, pitch, and yaw components
of the portion of the tower moment per unit length acting at the current tower
element.
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(a) Tower base moment computed by using FAST's internal
wave simulator.

(b) Tower base moment computed by using the external wave
kinematic solver and passed via text �les.

Figure 5.5: Tower base moments obtained with wave kinematics computed internally
by FAST (WaveMod: 1) and passed form outside (WaveMod: 4).

5.3.1 Slamming tower loading subroutine

The slamming tower load subroutine developed in this thesis adds a new feature
to FAST. In fact, whenever under extreme climates a designer detects that highly
nonlinear wave are present in the simulated sea and then the risk of impacts is pretty
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hight, it is possible to switch the input parameter TwrLdMod to 2 in order to call
the special user�de�ned subroutine implementing the theoretical model discussed
in section 4.5.

It was necessary to introduce MorisonTwrLd subroutine because our user de�ned
one contains a call to it. This should not surprise as the impulsive contribution is
just added to the drag and inertial ones already provided by Morison's equation [8].

So the idea is: if breaking wave events are expected, then switch TwrLdMod to
2, else switch TwrLdMod to 1. Algorithm 2 summarizes this logic.

Algorithm 2: Basic logical scheme on how the variable TwrLdMod makes
FAST compute tower loads.
input : TwrLdMod
output: TwrFt

if TwrLdMod = 1 then
No impacts are expected, TwrFt = fD (t) + fM (t)
MorisonTwrLd is called;

else if TwrLdMod = 2 then
Impacts may occur, TwrFt = fD (t) + fM (t) +fI (t)
UserTwrLd is called;

According to algorithm 2, when UserTwrLd is called by switching TwrLdMod to
2, the �rst thing the routine does is to read in the following text �les:

• NtNb.txt

• eta_b.txt

• curl.txt

• Tb.txt

• f_Impact

To understand the logic of the routine, the above �les need to be shortly de-
scribed. NtNb.txt just contains the two parameters: Nt and Nb, which denote the
number of total time steps concerning the sea simulation (Nt = Tsim/WaveDT+ 1)
and the number of expected impact events in that sea state, respectively.

File eta_b.txt provides the maximum wave heights during the impacts and of
course the �le consists in Nb values. To remind the importance of the variable ηb
(known as eta_b in the code) it is useful to recall the impact scheme proposed by
Wienke and Oumerci in [8] and shown again in �gure 5.6.

To properly compute the impact load, it is also extremely important to de�ne
the so called impact area. See �gure 5.6. This can be done by means of the curling
factor λ which basically gives the portion of tower being hit by the overturning
spout of water. It would be very interesting in future to use the fully nonlinear
solver here developed to asses and compare with experiments this factor, but in this
application it has been �xed according to literature as λ = 0.46 [78], [79], [8].
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In coastal engineering, the impact force on piles

due to breaking waves is usually calculated according

to Goda et al. (1966):

FI tð Þ ¼ kd gbd pd qd RdC
2 1� C

R
t

��
ð3Þ

Eq. (3) is based on the assumption that the breaker

front over the height kd gb is vertical and moves with

wave celerity C (Fig. 3). The height kd gb is

interpreted as the height of the impact area. The

impact force is equally distributed along that height so

that the impact line force is:

fI tð Þ ¼ pd qd Rd V 2 1� V

R
t

�
with V ¼ C

�
ð4Þ

From Eq. (4), it follows that at the beginning of the

impact with t=0 the line force is maximum

fI ¼ pd qd RdV 2 ð5Þ

and corresponds to the line force provided by the

theory of von Karman (1929). At each time step of the

impact, a flat plate approximates the cylinder (Fig. 4).

The flow against the plate results in an additional

hydrodynamic mass. The added mass below the flat

plate is given by a half circle with the diameter equal

to the width of the plate. Considering the momentum

conservation during the impact, the line force as given

in Eq. (5) is obtained. The time history given by Goda

is obtained by considering higher order terms for the

variation of the plate width in time. However, this

procedure is formally not consistent with the flat plate

approximation.

By taking into account not only the momentum

conservation, but also the flow beside the flat plate

will result in the so-called pile-up effect, which is a

deformation of the water free surface (Fig. 4). Due to

this pile-up effect, the bimmersionQ of the cylinder

occurs earlier. As a result, the duration of impact

decreases and the maximum line force increases.

According to Wagner (1932), the maximum line force

is:

fI ¼ 2d pd qdRd V 2 ð6Þ

The maximum force calculated by applying Wagn-

er’s theory is twice the maximum line force calculated

by von Karman’s theory. Very often the maximum line

Fig. 3. Definition sketch.

Fig. 4. 2D-impact description: definition sketch.

J. Wienke, H. Oumeraci / Coastal Engineering 52 (2005) 435–462438

Figure 5.6: Sketch of the wave impact model. Image from [8].

File Tb.txt provides the vector gathering the times at which the impacts are
expected. During an extreme sea state, in fact, several plunging breakers may occur
at the structure location, thus, to take into account all of them, this variable needs
to be known3.

Finally, reading in the �le f_Impact , the subroutine will create an allocatable
variable called f_Impact. This variable has Nt rows and three columns: time, force
in x direction (main direction of the impact), force in y direction. Of course the
third column is always zero for the present model.

Now, when all the input data have been read in by the routine, the fraction of
the current tower element included in the impact area is computed (this is necessary
because the impact force applies of course only to those elements, or portion of them,
included in the range ληb). To do this a logic similar to that used inMorisonTwrLd to
�nd out which elements fall between the mudline and the instantaneous free surface
has been implemented.

A selection of the most relevant lines of UserTwrLd are listed in the following:

!=======================================================================
!!!!Some key lines of: SUBROUTINE UserTwrLd ( JNode, X, XD, ZTime,
DirRoot, TwrAM, TwrFt ) ! Select eta_b and curl corresponding to the
current impact event

CALL MorisonTwrLd ( JNode, TwrDiam, TwrCA, TwrCD, X, XD, ZTime, TwrAM, TwrFt )

! Initialize eta_b and curl

eta_b = 0
curl = 0

DO I = 1,Nb ! Loop through the impact events
IF ( ( Ztime >= Tb(I) - 1 ) .AND. ( Ztime <= Tb(I) + 1 ) ) THEN

eta_b = eta_b_vec(I)
curl = curl_vec(I)

END IF
END DO

3Note that this �le provides the variable Tb to the subroutine, and it is nothing but what we
will call t̄b later on in section 5.5 of this chapter.
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IF ( ( WaveKinzi0(JNode) - 0.5*DZNodes(JNode) ) >= eta_b ) THEN
DZFractW = 0.0

ELSEIF ( ( WaveKinzi0(JNode) + 0.5*DZNodes(JNode) ) <= eta_b ) THEN
DZFractW = 1.0

ELSE
DZFractW = ( ( eta_b - ( WaveKinzi0(JNode) -

0.5*DZNodes(JNode) ) )/DZNodes(JNode) )
ENDIF

IF ( ( WaveKinzi0(JNode) - 0.5*DZNodes(JNode) ) >= (1.0-curl)*eta_b ) THEN
DZFractS = 1.0

ELSEIF ( ( WaveKinzi0(JNode) + 0.5*DZNodes(JNode) ) <= (1.0-curl)*eta_b ) THEN
DZFractS = 0.0

ELSE
DZFractS = ( ( ( WaveKinzi0(JNode) + 0.5*DZNodes(JNode) ) -

( (1.0-curl)*eta_b ) )/DZNodes(JNode) )
ENDIF

DZFract = DZFractW*DZFractS

! Compute the impact load (for the moment it is simply read from
outside):

IF ( DZFract > 0.0 ) THEN
f_imp(1) = InterpStp ( ZTime, f_Impact(1,:), f_Impact(2,:), LastInd, Nt)
f_imp(2) = InterpStp ( ZTime, f_Impact(1,:), f_Impact(3,:), LastInd, Nt)

DO K = 1,2 ! Loop through the xi- (1) and yi- (2) directions

TwrFt(K) = TwrFt(K) + f_imp(K)*DZFract

ENDDO ! K - The xi- (1) and yi- (2) directions

ENDIF

It is important to observe that in the subroutine UserTwrLd, �rst MorisonTwrLd
provides the drag and inertial terms, then the remaining part adds the impulsive
contribution. In addition to this, two important things should be pointed out from
the above subroutine: �rst, it makes use of an additional subroutine named InterpStp
which provides the value of f_impact interpolated at Ztime. This interpolation per-
mits to compute the impact force with its own time step, which normally isWaveDT
and then to be included in FAST main solver which has a di�erent time step DT.
It should also be considered that dealing with impulsive events, let us say with an
average duration of magnitude 0.01 s, to capture the impulsive load it is necessary
that a minimum number of time steps have to be included in the impact duration
time. This induces some restriction both on WaveDT and DT. On the contrary, to
generate the wave kinematics a time step of 0.5 s would be enough, but it could not
capture the impact events. For this reason the impact force is always given with a
proper time step.

The last remark about the above routine (see the last lines) is that the interpo-
lated values of f_Impact, f_imp(1) and f_imp(2) are added to Morison's contribu-
tions at each time step. This can be done because f_Impact is nonzero only for the
duration of the impact(s).



i
i

�Main_FUP_v06_14112011� � 2011/11/14 � 15:44 � page 88 � #114 i
i

i
i

i
i

88 Coupled wind�fully nonlinear waves model

5.3.2 Test of the slamming load subroutine

At this point of the work, all the necessary tools to set up a preliminary test
of a slamming wave have been provided. Plots showed in �gures 5.4 and 5.5 were
the time histories of the structural response subjected to a weakly nonlinear regular
wave characterized by a wave height H = 12 m and a wave period T = 12 s. This
regular wave was rather far from the breaking limit, indeed its steepness is ε = 0.079.

In this section, on the contrary, we need to increase the wave steepness in order
to generate a plunging breaker from which, by following the scheme described in
section 4.5.4, the input data to be passed to subroutine UserTwrLd can be derived.

A satisfactory high value of the steepness is achieved by doubling the wave height
of the previous case, so thatH = 24 m, while the wave period is unchanged: T = 12 s.
Therefore the steepness becomes ε = H/L = 24/152.365 = 0.1575. The free surface
evolution with the formation of the overturning wave is shown in �gure 5.7.

With a tower diameter of 6 m, the resulting impact force due to the breaker of
�gure 5.7 is plotted in �gure 5.8.

The impact force vector, after being written in f_Impact.txt , is passed as variable
f_Impact to FAST and it has the classical impulsive form as shown in �gure 5.10.

According to this time history, indeed, the second column of �le f_Impact.txt
is nonzero only in a proper neighborhood of tb = 12 s. The scale of �gure 5.10 is
too large to capture the real distribution of the impulsive force (which is shown in
�gure 5.8) but, as already said, FAST integration time step has been chosen in such
a way to sample the impulsive contribution in an enough number of points.

Finally, it is possible to move to the structural response. As did earlier when we
tested the wave kinematic solver, here we want to show the e�ect of the tower base
internal forces, basically the shear force Fxt (that is in the same direction of the
incident wave) and the bending momentMyt rotating around the y�axis. The other
internal forces and moments are also presented just to check that nothing occurs in
the remaining directions.

The �rst subplot of �gure 5.11(a) clearly describes that the periodical response
due only to one single�harmonic loading action is suddenly shocked by the impul-
sive action associated with the slamming wave. The shear forces in the direction
of the wave motion, indeed, presents a peak right at t = 12 s, compare with �g-
ure 5.10, while the force orthogonal to the main direction of the wave Fyt is not
a�ected at all by this contribution. Another clear e�ect is registered by the time
history of the vertical force Fzt at the tower base. In this direction, see the lower
subplot of �gure 5.11(a), the impulsive force also gives a relevant e�ect because the
structure, after being hit, starts oscillating and this activates the the rotor mass,
which, together with the mass of the tower, starts exciting the structure also in
the vertical direction giving rise to a transient response. After a few seconds such a
transient behaviour is damped. The vertical force comes back to the structure self
weight after approximately 25 s, while a shorter damping period is necessary for Fxt
to recover its periodicity. However, more details about the e�ects of the slam upon
the vertical tower base force will be provided in the last paragraph of this section.

Observing in depth Fxt, however, a short delay between the peak due to the
impact and the maximum fore due to Morison's contributions alone occurs. This
is due to the fact that the impact force is computed with a nonlinear solver, while
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BEM Free Surface at t = 9.0000 s

x

y

(a) Initial con�guration.

BEM Free Surface at t = 10.3000 s

x

y

(b) Snapshot of the evolution at t = 10.3 s.

BEM Free Surface at t = 11.6500 s

x

y

(c) Vertical front forming.

Figure 5.7: Free surface evolution of a steep regular breaking wave. Red arrows
denote the free surface particles velocity and the blue dots the boundary element
mesh. Input data from table 5.12.
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Impact 1 of 1 expected at t =12.00 [s]

Impact velocity v = 12.92 [m/s]

Maximum elevetion ηb = 11.40 [m]

Curling factor λ = 0.46

t [s]

f I
[N

/m
]

Figure 5.8: Impact force per unit length associated with the breaking wave shown
in �gure 5.7(c). The impact duration is Ti = 0.094 s.

                          

 

 

Figure 5.9: Closer view of the forming plunging breaker shown at the same time of
�gure 5.7(c). From this con�guration the impact velocity and maximum wave height
have been extracted in order tho get the time history of the impact load shown in
�gure 5.8.
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Impact forces time history

t [s]

f I
[N

/m
]

Figure 5.10: Impact force time history stemming from a steep regular wave breaking
at t = 12 s, with ηb = 11.40 m, λ = 0.46. Total simulation time Tsim is 180 s.

Morison's force stems from a linear wave model. This delay is probably even more
increased due to an excessive use of smoothing, which tends to dissipate some energy.
A more careful use of both smoothing and regridding subroutines has been done in
the next simulations.

Likewise, looking at �gure 5.11(b), the results are pretty encouraging as neither
the yaw moment nor the bending moment around the main direction of the incoming
wave are a�ected by the hit, while, on the contrary, maximum e�ects is produced
on the bending overturning moment. Here, in the middle subplot of �gure 5.11(b),
a clear peak occurs at 12 s which dissipates approximately after 10 s. Note that the
damping period gives an idea of how much the whole structure su�ers the shock.

It is also interesting to observe the tower top displacement in the incident wave
direction. This displacement is shown in �gure 5.12.

Also for the tower top displacement at t = 12 s, when the impact occurs, an
increase of the tower de�ection is registered. The series plotted in �gure 5.12 is too
short to really compare the transient e�ect with the stationary behavior. It seems
that after a peak of about 26 cm due the slam, a progressive decay of the following
peaks is registered.

Further considerations on Fzt time�history

To be sure that the above reasoning to justify the e�ect on Fzt is correct, the
same simulation has been run disabling the tower degrees of freedom. Therefore,
by assuming that the tower cannot undergo any displacement, that is no fore�
aft oscillation is permitted, then no excitation is caused in the vertical direction.
Evidences of this are given in �gure 5.13.

The explanation given above about the transient e�ect also in Fzt time history
is absolutely con�rmed. Due to the absence of tower oscillations the impact e�ect
is even clearer than before. The lower subplot of �gure 5.13(a) shows that in this
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(a) Tower base forces.

(b) Tower base moments.

Figure 5.11: First test on the structural response accounting for the impulsive load
generated by a plunging breaker obtained from a very steep regular wave. (WaveMod:
4, TwrLdMod 2).
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Figure 5.12: Tower top fore�aft displacement of the turbine parked and subjected
only to hydrodynamic loads including the impact force associated with a plunging
breaker.

case no transient e�ect is induced in z�direction and, as expected, the tower base
vertical force remains constant on 8578 kN (as after the transient of �gure 5.11(a))
which represents the self weight.

The last remark before closing this important test of the new impact model
implemented in FAST regards the peaks of Fxt and Myt plotted in the upper and
middle subplots of �gures 5.13(a) and 5.13(b), respectively.

The peak value of the shear force is Fxtpk = 1.8× 10
4

kN, while the maximum

shear force during the stationary phase is Fxt = 5.8× 10
3

kN. Thus, the impact
increases in the shear force by 210%. While the peak value of the bending moment
is Mytpk = 4.8× 10

5

kNm and the maximum value during the stationary phase is

Myt = 8.7× 10
3

kNm. This means that due to the impact, the fore-aft bending
moment undergoes an augmentation of 451%, that is Mytpk ' 5.5Myt. Note that
these ampli�cations should be treated carefully at this stage of the work, because
the plunging wave has been generated without taking into account a realistic sea
state. Indeed, the aim of this section is only to test the e�ciency of the numerical
model.
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(a) Tower base forces.

(b) Tower base moments.

Figure 5.13: The same impact load of �gure 5.8, but in order to better investigate
the nature of Fzt, this �gure shows the tower base forces and moments when the
tower degrees of freedom are disabled.
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5.4 Wind and wave loads generation

According to IEC61400-1 [36], an Extreme Wind Speed Model (EMW) is as-
sumed to estimate the wind loading conditions experienced by the o�shore wind
turbine. Consequently, as we are here mainly interested in extreme events, the rele-
vant sea conditions are basically made up of wind�generated waves. So that, based
upon the assumed wind, the most probable sea state around the o�shore monopile,
de�ned in terms of signi�cant wave height and mean wave period, is reproduced in
the time domain through a linear spectral approach. In particular the JONSWAP
spectrum is adopted as the most suitable in case of wind�waves. For a generic time
instant t the extreme scenario looks like the sketch in �gure 5.14.

Figure 5.14: Sketch of the wind turbine located at xt = 0 in the 2D spatial domain
Dt = [xmin, xmax] for a given time instant t.

Figure 5.14 describes the main load sources for the whole structure acting to-
gether and in a continuous mutual interaction.

Once the wind�generated irregular sea is known in space and time, a suitable
breaking wave criterion is used to check whether plunging breakers occur. And



i
i

�Main_FUP_v06_14112011� � 2011/11/14 � 15:44 � page 96 � #122 i
i

i
i

i
i

96 Coupled wind�fully nonlinear waves model

thus, only when the steepness becomes large enough to induce wave instabilities,
the fully nonlinear simulator is called in order to follow the sea evolution with an
higher resolution in a narrower neighborhood of the substructure. This procedure
is analyzed in depth on section 5.4.3.

The wind speeds at each blade element at the current time are computed from
the hub�height turbulent value by accounting only for the assumed wind shear. As
the rotor lies in the parked con�guration (all the three blades are set with 90◦ pitch
angle), the conservative assumption of not considering a full �eld turbulent wind
generated by means of coherence functions can be accepted.

5.4.1 Wind loads

As already mentioned an extreme turbulent wind speed model (EWM) is adopted
according to IEC61400-1. The turbulent wind is generated at the hub�height by us-
ing TurbSim which is an utility developed at NREL capable of generating both
hub�height and full �eld wind data according to several spectral formulation. For
our simulations the Kaimal model will always be adopted, see section 3.4 for details.

Extreme wind speed generation

In FAST's primary input �le (i.e. *.fst), in the AERODYN block, AeroDyn input
�le (i.e. *.ipt) must be speci�ed. In *.ipt (line 10) at least two additional input
�les have to be provided: the wind �le, containing either the hub-height wind speed
(steady or time varying) or a full��eld data �le.

AeroDyn automatically detects the wind data type: if no �le extension is speci�ed
(but only the root), then AeroDyn treats it like a full-�eld �le and it expects to �nd
both the �les *.wnd and *.sum. Otherwise, a hub-height wind �le, *.hh, is assumed.
This will always be our case. To summarize the input data necessary to generate a
turbulent hub�height wind �le, a part of TurbSim input �le is shortly commented
in the following.

TurbSim's input �le is made up of �ve blocks:

• Runtime Options;

• Turbine Model Speci�cations;

• Meteorological Boundary Conditions;

• Non�IEC Meteorological Boundary Conditions;

• Coherent Turbulence Scaling Parameters;

Parameters provided in the above blocks are related both to the turbine type
being simulated and the Design Load Case requested. In particular, in the �rst block
settings about pseudorandom number generation and output type are speci�ed.
In the second block, parameters concerning the grid size and density, hub height,
analysis time, etc. are to be speci�ed. Most of these parameters depend on the
turbine type for which the wind is simulated.

To set up the Kaimal model described in section 3.4, it might be opportune to
show the forth block about �Meteorological Boundary Conditions�:
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--------Meteorological Boundary Conditions-------------------
"IECKAI" TurbModel\\
"1-ED3" IECstandard\\
"C" IECturbc\\
"3WM50" IEC_WindType\\
default ETMc\\
"PL" WindProfileType\\
90 RefHt\\
37.5 URef\\
...

Even though o�shore wind turbines fall in the wind class �S�, whose wind pa-
rameters are speci�ed by the designer (see Annex A of [2]), here for the sake of
simplicity we assume the wind turbine is designed according with parameters valid
for wind class III. Therefore we have Uref = 37.5 m/s and for the turbulence inten-
sity we choose the group �C�, that is Iref = 0.12, see [36]. As already mentioned
in section 3.4, the simulations performed to test the coupled wind�fully nonlinear
waves here developed, employ an extreme turbulent wind model. As in this case
the standard deviation of the turbulence is always assumed to be depending only
on the hub height wind speed, the turbulence intensity is not actually used in the
following simulations.

Given the hub height of 90 m measured from the still water level, for the tur-
bulent extreme wind speed model, the 10�min average wind speed pro�le with re-
currence periods of 50 years and 1 year, respectively, are those given in section 3.4.
The extreme mean wind pro�les both for a 50 years and one year return period are
shown in �gure 5.15.

Of course, such wind velocities are far beyond the cut�out wind speed, which is
25 m/s, indeed in these two cases the turbine is parked or standstill.

Note that in FAST, in order to set the turbine in a parked condition, it is
necessary (i) to turn o� all controllers; (ii) to put the blade pitch angles at 90◦

(basically no lift forces); (iii) deactivate the induction model.

5.4.2 Wind-correlated sea states

An extreme sea state is de�ned by its signi�cant wave height and mean zero�
upcrossing wave period which should be estimated by taking into account the actual
correlation between the whole environmental processes. As already discussed in
Chapter 2, this requires a joint probabilistic model for the weather parameters
relevant to the problem under consideration: wind speed, signi�cant wave height,
mean wave period.

As described in Chapter 2, the most suitable tool to this end is the so called
Inverse FORM (First Order Reliability Method). Such a tool provides an envi-
ronmental contour de�ning, for a required return period, environmental variables
combinations at which the most extreme response lies. In other words, it is necessary
to search along the contour in order to determine the point at which the conditional
expected extreme response becomes the most extreme. The idea of investigating a
contour, hence all combinations, is particularly e�ective because in most cases the
critical environment is structure-dependent. For instance, assume to have found a
contour of signi�cant wave height and current velocity, then in the case of shallow
water, it will be more dangerous the combination which maximize the signi�cant
wave height rather than the one which maximize the current velocity, [80].
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EWM profile, Uref = 37.50 m/s

U

z

U50

U1

Figure 5.15: Extreme Wind Model velocity pro�les.

A joint probabilistic model of mean wind speed, signi�cant wave height and
spectral peak period needs to be built. The wind speed is chosen as the primary pa-
rameter, the signi�cant wave height is assumed to have second most in�uence. The
joint model is used to establish a contour surface, giving combinations of the envi-
ronmental variables with return period of 50 years according the recommendations
in [2].

The reliability of the probabilistic model, however, lies mostly on the quality of
available data. Indeed it is necessary to know the mean value of the signi�cative
wave height conditional on the wind velocity µHs|U = f (U) and the standard
deviation of Hs conditional on the wind velocity U , σHs|U = f (U). Thus, such
a stochastic model is strictly recommended when reliable estimates of µHs|U and
σHs|U are available. Unfortunately this is not our case. And, in addition to this, in
the present thesis it is not decisive to have at our disposal real data to implement
the IFORM because it is not central for the research.

In similar circumstances, in accordance with [2], the signi�cant wave height Hs

de�ning the sea state state severity, can be assumed independent on the mean wind
speed, so that Hs50 is found from the marginal distribution of Hs and with the
same sea state duration as the sea state duration used for the construction of the
environmental contour.

Several distribution models for Hs and Tz are available, [81], [82] [83] [84] [85],
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[86], [87], [88], among others. Often the Generalized Gamma distribution proposed
in [12] gives a reliable description.

Extreme Sea State, simpli�ed de�nition

Setting up a probabilistic model to estimate Hs and Tp (or Tz) departing from
the 50�year return period wind velocity U50, even by assuming an uncorrelated
model, would be a mere exercise in this context because we are not aiming at a real
design. In fact, we are more interested in constructing a valid model that, however
determined the extreme values for U , Hs and Tp, is able to simulate with a higher
accuracy the extreme o�shore environment and the induced response.

The simpli�ed approach consists in de�ning a sea state by assigning a severity
rank depending on the wind velocity. Each severity class is characterized by a range
of signi�cant wave height and wave period.

By virtue of this simpli�cation, the only random variable is the mean wind
speed U , while Hs and Tp are deterministically determined from the wind velocity,
see �gure 5.16. Thus, equation (2.4) presented in Chapter 2 becomes

Pfail =

∫
P
(
Myt > M∗yt|U

)
p (U) d (U) (5.1)

Hazard

Sea State

U

Hs

Tz

Figure 5.16: Simpli�ed environmental model: the sea state is de�ned deterministi-
cally depending on the mean wind speed U .

In the present case the mean 50�year return period wind speed at 19.5 m above
the sea level, obtained by using the pro�le in �gure 5.15, is 31.69 m/s (61.61 Kn)
which, referring to table 5.5 [10], makes the storm fall in the class of �hurricane�type
storm�.

This class is characterized by the following ranges for the signi�cative wave-
height and mean wave period, respectively

Hs = {21.34 to 35.05 m} (5.2)

Tz = {10 to 30 s} (5.3)
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Table 5.5: De�nition of sea states according to [10].

Since this values are quite general, they could result too conservative and not
very consistent with those speci�c for the North Sea, where our turbine is supposed
to be located.

Hence, referring again to [10] (table 3.19), speci�c values for the North Sea
extreme sea state associated with extreme wind of 37 m/s are

Hs = 14 m (5.4)

Tp = {15 to 17 s} (5.5)

Moreover, as no consideration about the water depth has been made so far, we
can refer to the diagram proposed in [10] where for the three exposure levels L-1,
L-2, L-3 of an o�shore platform, the relation between water depth and wave height
has been found.4

In our simpli�ed model we just need to collect some realistic values, so if we
consider our o�shore wind turbine like an unmanned platform (L-3), then from
�gure 5.17 it is immediate to see that for a water depth of 20 m (approximately
65.6 ft) the corresponding wave height is about 40 ft (12.19 m). And for such a
design condition, the recommended extreme wind velocity and wave period are
58 Kn (29.84 m/s) and 11.6 s.

On the other hand, if we refer to Beaufort scale, see table 5.6, we have that for
a Wind Force 11 (i.e. wind speed grater than 30.60 m/s) and Wind Force 12 (i.e.

4The three exposure levels are de�ned as follows:

• L-1: manned, non-evacuated;

• L-2: manned, evacuated;

• L-3: unmanned.
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Figure 5.17: Water depth dependent wave height for di�erent platform types, [10].

wind speed in the range of 29 to 33 m/s) the suggested values are, respectively

Hs = 10.25 m (5.6)

Tp = 12.59 s (5.7)

and

Hs = 8.70 m (5.8)

Tp = 11.99 s (5.9)

Note that with respect to table 5.6, the peak spectral period for the JONSWAP
spectrum is given by Tp = 1.199T1 or Tp = 1.287T2, where T1 and T2 are some
characteristic periods.

Although the above data present some di�erences, a deeper investigation to
know which are the most suitable parameters for our case is not necessary. Also
because in real design context a probabilistic model as described in the preceding
section should be implemented.

In literature there are many other proposed tables and diagrams to get sea state
parameters following the simpli�ed approach. Among others we cite also diagrams
proposed in [89] and [33].

5.4.3 Domain decomposition and breaking waves simulations

In this paragraph a detailed description of the procedure adopted to simulate
the coupled wind�waves extreme environment is presented. The procedure has been
implemented in a computer code which basically executes a certain number of in-
structions which can be grouped into the following steps:

1. Environmental Analysis
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5-52 CHAPTER 5. OCEAN SURFACE WAVES

² Wave Height H in meters, on the left of the …gure,

² Duration t in hours, needed to generate the wave under the chosen conditions on
the bottom of the …gure and

² Wave Period T in seconds, by interpolating between the dashed lines.

Most oceanographers consider a fully developed sea to be one in which - for a given wind
speed - the remaining wave conditions (height and period) are no longer in‡uenced by
either the storm duration or fetch length and thus one’s location. Even if one were to
travel around the globe with the constant wind …eld, one would …nd that the wave height
no longer increased. Fully developed sea conditions are represented in this …gure by the
triangular area on the right in which the wave height (for a given wind speed) is indeed
independent of the duration or the fetch.

Suppose, as an exercise with …gure 5.41, a wind speed of 10 m/sec (Beaufort force 5).
With a fetch of 60 km, the sea no longer increases after 6 hours. This sea is de…ned by a
signi…cant wave height of 1.5 meters with an average wave period of 4.8 seconds.
With a fetch of 600 km, the sea no longer increases after 40 hours. This sea is de…ned by
a signi…cant wave height of 2.0 meters with an average wave period of 6.4 seconds.
Notice that, if one were to wait longer at a given location than the time duration found
in this …gure, the wave height would not increase further even though the waves are not
oceanographically fully developed; they are limited in this case by the fetch.

Storm Wave Data

The table below, for ”Open Ocean Areas” and ”North Sea Areas” gives an indication of
an average relationship between the Beaufort wind scale (or the associated average wind
velocity) at 19.5 meters above the sea and the signi…cant wave height H1=3 and the average
wave periods T1 and T2, de…ned before. These data have been plotted in …gure 5.42.

Wave Sp ec tru m Param eter E st im ates

S ca le o f W ind Sp ee d Op en Oc ean A re as North Sea Areas

B eau fort at 19.5 m (B retsch neid er) (JONS WAP)

above se a

H1=3 T1 T2 H1=3 T1 T2 °
(kn) (m ) (s) (s) (m ) (s) (s) ( -)

1 2 .0 1 .10 5 .80 5 .35 0 .50 3.50 3 .25 3 .3

2 5 .0 1 .20 5 .90 5 .45 0 .65 3.80 3 .55 3 .3

3 8 .5 1 .40 6 .00 5 .55 0 .80 4.20 3 .90 3 .3

4 13 .5 1 .70 6 .10 5 .60 1 .10 4.60 4 .30 3 .3

5 19 .0 2 .15 6 .50 6 .00 1 .65 5.10 4 .75 3 .3

6 24 .5 2 .90 7 .20 6 .65 2 .50 5.70 5 .30 3 .3

7 30 .5 3 .75 7 .80 7 .20 3 .60 6.70 6 .25 3 .3

8 37 .0 4 .90 8 .40 7 .75 4 .85 7.90 7 .35 3 .3

9 44 .0 6 .10 9 .00 8 .30 6 .10 8.80 8 .20 3 .3

10 51 .5 7 .45 9 .60 8 .80 7 .45 9.50 8 .85 3 .3

11 59 .5 8 .70 10 .10 9 .30 8 .70 10.00 9 .30 3 .3

12 >64 .0 10 .25 10 .50 9 .65 10 .25 10.50 9 .80 3 .3

Table 5.6: De�nition of sea states according to Beaufort scale. Table from [14].

2. Spectrum choice

3. Irregular sea generation for a requested space�time domain

4. Setting the wind turbine location

5. Free surface elevation and zero�crossing analysis

6. Solve dispersion relations

7. Check breaking wave limit

(a) if NOT: Use standard Morison's equation.

(b) if YES: Identify all the possible time instants at which waves break and:

i. De�ne space�time subdomains

ii. Invoke the fully nonlinear solver

iii. Perform fully nonlinear simulations

iv. Plunging breakers analysis

v. Get parameters to compute impact loads

vi. Pass impact loads to FAST

vii. Perform the fully coupled aero�hydro�elastic analysis

From the environmental analysis, data about wind and wave conditions should
be collected. However, in a pure conceptual design phase, it is possible to start
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from the IEC wind class which provides both the Uref and the turbulence intensity.
As already said in the pervious section, in this work a wind turbine in class III is
assumed.

The power law wind pro�le permits to get the mean extreme wind speed at
19.5 m above the still sea level. The sea state correlated to such an extreme wind
condition can be derived by implementing one of the statistical model described
above, but as the lack of data justi�es, here we use the simpli�ed approach. In fact
we adopt the sea severity parameters among those recommended by [10].

From the environmental analysis we basically get {Uref , Hs, Tp} and after having
chosen the most suitable wave spectrum, it is possible to move to phase 3. Here,
�rst we consider a space�time domain D (t) = [0, Tsim] × [xmin, xmax], where Tsim
is the total simulation time, xmin and xmax are the lower and upper bounds of the
two�dimensional spatial domain.

Since the focus is devoted to wind�generated waves and also because we imagine
that the wind turbine is located in the North Sea, the JONSWAP spectrum is
adopted. See section 4.1.2 for details.

By using the spectral formulation it is possible to determine the kinematics, the
velocity potential and the free surface elevation of every water particle p ∈ D (t).
The so called inverse approach permits in fact to come back to the temporal domain
from the frequency domain provided that the phase angle ε, lost during the Fourier
transform, is now assigned in such a way to get a di�erent signal but with the
identical statistical properties. To this end a uniform normal distributed phase angle
is assumed.

The two�dimensional time�depending domain D (t) is reduced by one dimension
by �xing the wind turbine location xt. For all cases we will have xt = 0 as shown
in �gure 5.14. Moreover, as already mentioned, for all simulations the water depth
is always d = 20 m.

Subroutine 5 performs a zero�crossing analysis of the free surface elevation at
xt

η (xt, t) =
∑

n

an cos (−ωnt+ εn) (5.10)

where an is the n�th wave amplitude stemming from the JONWASP spectrum

an =
√

2Sηη (ω) ∆ωn (5.11)

The time series η (xt, t) is analyzed by means of a special subroutine which
computes all the wave periods and the corresponding wave heights. Firstly all the
time instants up�crossing the still water level are collected into a vector called
t̄up. Then the wave periods can be easily computed as the di�erence between two
successive zero up�crossing time instants, while the wave heights are obtained by
taking the di�erence between the highest and lowest points of the free surface (crests
and troughs) within the corresponding period. Hence, for each time series these data
are stored in two vectors, T̄ and H̄, respectively. In step 6, Solve dispersion relations,
as many linear dispersion relations as the dimension of T̄ (or H̄) are solved in order
to get the vector of wave numbers k̄ which �nally leads to the vector of wave lengths
L̄. Step 6 ends with the computation of the steepness vector

ε̄ =
H̄

L̄
(5.12)
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Point 7, Check breaking wave limit, performs a comparison between the steepness
vector ε̄ and the limit steepness vector ε̄b. By computing the mean value of H̄ and T̄
it is not di�cult to verify that the condition of deep water is not always guaranteed,
thus in establishing the breaking limit the water depth is also taken into account
by the well known relation [5]

ε̄b = 0.142 tanh
(
k̄d
)

(5.13)

d/L

ε b

Figure 5.18: Limit breaking steepness εb for di�erent wave lengths and water depth.

From step 7 there could be two outcomes: either the breaking limit is never
achieved by any of the steepness in ε̄, or there could be a certain number of waves
which violate the breaking limit.

In the �rst case, which is not the focus here, nothing should be done in particular.
It is reasonable, in fact, to presume that since no impact will take place, Morison's
equation remains valid without any alteration. The bene�t stemming from the use
of the fully nonlinear simulator is anyway not negligible because a more accurate
wave kinematics can be obtained.

On the contrary, a di�erent scenario occurs when the breaking limit is violated.
Referring to �gure 5.19, and assuming that the vector ε̄ has dimension n, it is

possible the identify a number nb of times t̄b = {tb1, tb2 , . . . , tbnb} at which waves
will theoretically break. In this way all possible breaking events can be analyzed.

To visualize the importance of detecting the times at which breaking waves may
occur we can refer to �gure 5.14 and notice that it represents a snapshot taken
at a generic time when, despite of the heavy storm in action, no wave is breaking
against the substructure. In contrast, at a generic time tbj , or in particular at tbmax

,
an impact may occur as sketched in �gure 5.20.

To perform some preliminary simulations aiming mainly at testing the global
scheme, we start analyzing only the strongest event among nb possible. In the next
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Figure 5.19: Example of free surface elevation. All zero up�crossing time instants
are marked with a black dash and the i�th, with i = 1, . . . nb, wave period and wave
height are highlighted red.

section, when extreme wind and waves will be coupled, all the possible events will
be taken into account.

Focusing the attention only on the stronger event, we just need to �nd the
maximum value of ε̄ and then compute the associated time instant tbmax

as

tbmax
= tup (1) +

ibmax−1∑

h=1

T (h) + T (ibmax
)/4 (5.14)

where ibmax
is the vector index corresponding to the maximum steepness, t̄up is the

vector collecting the zero up�crossing time instants, T̄ collects all the wave periods
in the signal η (xt, t).

Once the vector t̄b or the time tbmax
are known, phase 7b ends and data to be

passed as input for the fully nonlinear solver can be prepared.
In fact, in step 7(b)i De�ne space�time subdomain, neighborhoods of xt and tbmax

have to be found in order to de�ne a speci�c space�time subdomain Ω (t) ⊂ D (t) on
which Laplace's equation and the fully nonlinear kinematic and dynamic boundary
conditions can be numerically solved.

Note that, whenever not ambiguous, the subscript max will be removed so that
tbmax will be simply denoted by tb.

The subdomain is de�ned as follows

Ω (t) = [tb − δtb, tb + δtb]× [xt − δxt, xt + δxt] (5.15)

where Ω (t) has the same meaning of section 4.
Upper and lower bounds of the sub-domain Ω (t) are crucial to set the initial and

boundary conditions to be passed to the fully nonlinear solver. Caution has to be
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Figure 5.20: Sketch of the wind turbine located at xt = 0 in the 2D spatial domain
Dt = [xmin, xmax] for a time t = tb.

paid when starting the nonlinear numerical solver by assigning initial and boundary
conditions derived from the linear theory. To avoid numerical instabilities induced
by a sudden transition from the linear to nonlinear solution, a spatial ramp function
is applied in a very short space range.

The radii δxt and δtb of the neighborhood Ω (t) are chosen in order to assure
a good compromise between the accuracy of the nonlinear wave propagation and
the computational cost. In particular, it has been found that good values to de�ne
the sub-domains are twice the mean value of the wavelengths (spatial radius) and
ranging between 2 and 4 s for the temporal radius

δxt = 2×mean
(
L̄
)

(5.16)

δtb = 2 − 4 s (5.17)

where, as already mentioned, vector L̄ collects all the wave lengths contained in the
signal η (xt, tb).

It should be noted, however, that the temporal radius δtb may signi�cantly be
increased without the global numerical scheme loses its e�ciency. For the sole sake
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Figure 5.21: The three main models involved in the simulation. Wind: IEC Kaimal
turbulence model; waves: fully nonlinear Boundary Element Method model; impact:
analytical model.

of limiting the computational time, in all the applications presented later on, the
temporal radius is �xed according to the above range.

Finally, it is possible to move to point 7(b)ii where the fully nonlinear solver
is invoked. Before doing this, however, it is necessary to set the initial and the
boundary conditions which have to be passed to the Boundary Element Method
solver discussed in section 4.2.
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Initial conditions

The spectral initial conditions, namely the initial free surface elevation and the
velocity potential, are calculated as follows

η (x, ti) =

N∑

n=1

an cos (knx− ωnti + εn) (5.18)

φ (x, ti) = g

N∑

n=1

an
ωn

cosh (kn (d+ η′ (x)))

cosh (knd)
sin (knx− ωnti + εn) (5.19)

where x ∈ Ωt = [xt − δxt, xt + δxt] and ti = tb − δtb is the initial time of the
numerical simulation. The subscript t on the domain Ω (t) just denotes the space-
time domain at a given time instant, namely Ωt turns out to be a spatial domain.
In addition to that, as customary, an, kn, ωn, εn, denote respectively the wave
amplitude, circular frequency, wave number and random phase angle associated
with the n�th wave component. The meaning of these symbols will not be repeated
in the remaining of the work.

Moreover, note that in equation (5.19) Wheeler's stretching [68] has been used.
Accordingly, let q (x) = d/ (d+ η (x, ti)), then

η′ (x) = q (x) η (x, ti) + d (q (x)− 1) (5.20)

In general, the code enables users to chose the most preferred extension of the
linear solution up to the actual free surface elevation. Indeed, Wheeler, extrapola-
tion, constant and no stretching, are all possible switches.

Boundary conditions

The transition from the linear to the fully nonlinear solution at both ends Γi (t)
and Γo (t) of the sub-domain Ω (t) is made using a two�sided ramp function Rs,
which is required to be long not more than 10 times one boundary element length.
The spatial ramp function is de�ned as follows

Rs (x) =





1
2

[
sin
(
x−xi
Lrmp1

π − π
2

)
+ 1
]

for x ∈ [xi, xi + Lrmp1]

1 for x ∈ (xi + Lrmp1, xo − Lrmp2)

1
2

[
sin
(
xo−x
Lrmp2

π − π
2

)
+ 1
]

for x ∈ [xo − Lrmp2, xo]

where the shorter notation xi = xt − δxt, xo = xt + δxt has been introduced.
This ramp function is necessary because it should be kept in mind that the we

are setting up a numerical solver by assigning boundary conditions stemming from
the linear solution. Thanks to this expedient we can safely assume that the solution
inside the reduced sub-domain

Ω̂ (t) = [tb − δtb, tb + δtb]× [xt − δxt + Lrmp1, xt + δxt − Lrmp2] (5.21)
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is fully reliable as the e�ects of the linear boundary conditions are all con�ned in
the transition zones Lrmp1 and Lrmp2. Note, in particular, that the area of our main
focus is the very close surrounding of the turbine xt, therefore as it lies always in
the reduced sub-domain Ω̂ (t), we can totally relay on the accuracy of the numerical
solution.

A simple explanatory example on how the ramp function (5.4.3) works is given
in �gure 5.22, where the ramp function Rs is applied to a generic function g = g (x).

The boundary conditions on Γi (t) and Γo (t) are derived from the linear theory
as follows

vni (xi, t) =

N∑

n=1

anωn
cosh (kn (d+ y′ (x)))

sinh (knd)
cos (knxi − ωnt+ εn) (5.22)

vno (xo, t) =

N∑

n=1

anωn
cosh (kn (d+ y′ (x)))

sinh (knd)
cos (knxo − ωnt+ εn) (5.23)

where t ∈ Ωx = [tb − δtb, tb + δtb] and y′ is given by the general form of equa-
tion (5.20)

y′ (x) = q (x) y (x, ti) + d (q (x)− 1) (5.24)

with

y′ ∈ [−d, 0] is the computational vertical axis;

y ∈ [−d, η (x, t)] is the actual vertical coordinate up to the free surface eleva-
tion;

q is a dimensionless factor;

η (x, t) the elevation of the actual free surface elevation up to which the solu-
tion is sought.

The subscript x on the domain Ω (t) just denotes the space-time domain for a
given location, so that Ωx turns out to be a time domain.

To compute the second�order Lagrangian derivatives, used in the solution of
the second Boundary Value Problem, refer to section 4.2 for details, also the ac-
celerations need to be assigned as boundary conditions on Γi and Γo, therefore we
have

v̇ni (xi, y, t) =

N∑

n=1

anω
2
n

cosh (kn (d+ y′))
sinh (knd)

sin (knxi − ωnt+ εn) (5.25)

v̇no (xo, y, t) =

N∑

n=1

anω
2
n

cosh (kn (d+ y′))
sinh (knd)

sin (knxo − ωnt+ εn) (5.26)

After the initialization, all the kinematic quantities computed by the fully non-
linear numerical solver at each time step are made compatible with the linear bound-
ary conditions by using the ramp function over the transition zones in the following
fashion.



i
i

�Main_FUP_v06_14112011� � 2011/11/14 � 15:44 � page 110 � #136 i
i

i
i

i
i

110 Coupled wind�fully nonlinear waves model

x

Original function g

Ramp function Rs

(a) Generic function g = g (x) and two-side ramp function Rs.

(b) Function g after the application of the ramp function.

Figure 5.22: Example of application of the space ramp function Rs on a domain
Ωt = [−150, 150] with Lrmp1 = Lrmp2 = 30.

Let fn = fn (p, t) be a generic quantity numerically computed by the fully non-
linear solver, with the pair (p, t) ∈ Ω (t). For a given time instant t ∈ [tb − δtb, tb + δtb]
and for the points lying on the free surface, i.e. y = yf = η, the function fn (p, t)
turns out to be depending only on the the x�coordinate and it will be denoted by
f̂n = f̂n (x) with x ∈ [xt − δxt, xt + δxt]. Note that f̂n is used for φf , vxf , v

y
f and η
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itself.
Moreover, let f̂a be the respective linear quantity computed analytically.
Then we have

f̂ (x) = f̂a (x) (1− Rs (x)) + f̂n (x)Rs (x) ∀x ∈ [xt − δxt, xt + δxt] (5.27)

Notice that in the present case it is not necessary to have two di�erent transition
zones so that, from now on, we will always assume Lrmp1 = Lrmp2 = Lrmp. See
�gure 5.23.

Figure 5.23: Schematic representation of the transition between the linear and fully
nonlinear solution. The �gure is out of scale.

To summarize, �gures 5.24 and 5.25 show a schematic representation of the the
main steps discussed above about the the global simulation scheme.

5.4.4 Applications

Before coupling the the fully nonlinear wave kinematic solver with the hydro-
aero-elastic simulator, some applications are here preliminary presented in order to
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Environmental
Analysis

(Uref , Tp, Hs)
Start

Spectrum
choice

(JONSWAP, P-M)

Generate
random phase ε

Irregular sea

generation

De�nition
of the global
domain D (t)

Fix WT
location xt

Zero�crossing

analysis

Solve linear
dispersion
relations

Check break-

ing wave limit

(to be continued...)

Figure 5.24: Diagram of the simulation. Part I

test the reliability of the numerical scheme summarized in �gures 5.24 and 5.25.

Applications 1 and 2

In the �rst example a strong gale is simulated and all the relevant parameters
are listed in table 5.7.

Sea severity5 �Strong gale� (rank 8)

Uref , Hs, Tp 37.5 m/s, 18 m, 12 s

Spectrum Type JONSWAP

Tsim, xmin, xmax 300 s, −200 m, 200 m

Turbine Location xt 0

Maximum breaking wave time tb 8.20 s (but not relevant!)

δxt 146.59 m

δtb 3 s

Table 5.7: Data relevant to application 1.

In this case no special time instant tb has been requested to start the nonlinear
numerical solver. In other words a generic time t has been assigned. The purpose is
only to check the quality of the global scheme for the simulation.

The second simulation also shows a case of a strong gale and similarly to the
previous example no special time instant tb is requested to start the nonlinear solver.
It interesting to notice, indeed, in the subdomain under analysis there could be
multiple plunging breakers. Data relevant to this application are listed in table 5.8

Figures 5.26 and 5.27 show the evolution of the fully non linear seas for the
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Check break-

ing wave limit

Breaking wave

DO

occur

Find breaking

instant tbmax

De�ne subdomains

δxt, δtb

Compute BC

and IC for

BEM solver

Analyze plung-

ing breakers

Get impact force

Breaking waves

DO NOT

occur

Keep Morison's

equation unaltered

Start BEM solver

(set: Mesh, Regrid-
ding, Smoothing)

MEL scheme

solve the two BVPs and inte-
grate the FSKBC and FSDBC

Get Γf and v̄f

call BEM solver

Figure 5.25: Diagram of the simulation. Part II.

Sea severity6 �Hurricane type storm� (rank 9)

Uref , Hs, Tp 42.5 m/s, 22 m, 12 s

Spectrum Type JONSWAP

Tsim, xmin, xmax 600 s, −200 m, 200 m

Turbine Location xt 0

Maximum breaking wave time tb 123.58 s (but not relevant!)

δxt 137.24 m

δtb 2 s

Table 5.8: Data relevant to application 2.

two examples above (tables 5.7 and 5.8, respectively). It is immediate to realize
the transition from the linear solution to the fully nonlinear one work pretty well.
Moreover, as the initial conditions have been assigned at a generic time instant,
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BEM Free Surface at t = 5.2021 s

x
y

BEM Free Surface at t = 6.8021 s

x

y

BEM Free Surface at t = 8.3271 s

x

y

BEM Free Surface at t = 9.1521 s

x

y

BEM Free Surface at t = 9.9521 s

x

y

Figure 5.26: Five snapshots of a �Strong gale�. Multiple plunging breakers scenario.
Red arrows denote the free surface particles velocity and the blue dots the boundary
element mesh. Input data from table 5.7.

waves break anywhere into the sub�domains.
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Application 3

In the third case we show a simulation having a speci�ed time tb. All parameters
are listed in table 5.9

Sea severity7 �Hurricane type storm� (rank 9)

Uref , Hs, Tp 37.5 m/s, 18 m, 12 s

Spectrum Type JONSWAP

Tsim, xmin, xmax 600 s, −200 m, 200 m

Turbine Location xt 0

Maximum breaking wave time tb 35.38 s (relevant!)

δxt 128.28 m

δtb 2 s

Table 5.9: Data relevant to application 3.

This simulation, see table 5.9 and �gure 5.28, is extremely important and shows
that the model described above works well and meet all the expectations. Such a
result is actually not trivial because the breaking waves prediction tool elaborated
above (see scheme in �gures 5.24 and 5.25) starts form linear boundary and initial
conditions to simulate a fully nonlinear event.

The �rst sub�gure (the upper one) in 5.28 is a snapshot taken at t = tb − δtb,
namely it shows the free surface con�guration when we started the fully nonlinear
solver. The last sub�gure (the lower one) in 5.28 shows the free surface at t = tb+δtb,
that is at the end of the re�ned simulation or, consistently with the concept of sub�
domains D̂, at the end of the �sub�simulation�. So as expected in the middle of the
temporal sub�domain, i.e. at tb (�gure in the middle), we see exactly what expected:
the plunging breaker is �crashing� against the virtual turbine substructure causing
ad additional load to be carefully considered. From this time on, say up to the
re�entry, the free surface experience very large curvatures and highest velocity at
the water jet. This is very well seen in the three lower subplot of �gure 5.28. These
three instants are zoomed�out and reported in �gure 5.29.

A clearer representation of the overturning tongue of water is given in �gure 5.30
where the same of �gure 5.29 is shown without velocity vectors and grid markers.

Application 4

To test further the stability and reliability of the �rst part of the numerical tool
developed in this thesis another application is presented. Simulation parameters are
listed in table 5.10. The main di�erences here with respect to results associated
with data in table 5.7 are a larger wave period which tends to reduce the steepness
in the average and a longer simulation time. In particular, here we have Tp = 16 s
and Tsim = 600 s. Moreover, also in this case, as did in the last two, we require to
investigate the strongest breaker at xt, that means the time tb is relevant. The free
surface evolution is presented in �gure 5.31. The last three snapshots are zoomed
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Sea severity8 �Strong gale� (rank 8)

Uref , Hs, Tp 37.5 m/s, 14 m, 16 s

Spectrum Type JONSWAP

Tsim, xmin, xmax 1200 s, −200 m, 200 m

Turbine Location xt 0

Maximum breaking wave time tb 464.15 s (relevant!)

δxt 184.34 m

δtb 3 s

Table 5.10: Data relevant to application 4.

and reported in �gure 5.32.
A clearer representation of the overturning tongue of water is given in �gure 5.33

where the same of �gure 5.32 is plotted without velocity vectors and grid markers.
Also this application con�rms the reliability of the global numerical model. From

the second and third subplots presented in �gure 5.31 it is clear that the predicted
time of breaking, tb = 464.15 s, is satisfactory observed and to compute the maxi-
mum impact force it is possible to use the most severe combination between wave
elevation and water velocity among all the con�gurations around tb.

Application 5

This simulation consist of a particular sea state which is not related to excep-
tional events. Highly nonlinear events may occur also with moderate wind speed.
Indeed, by considering the rated wind speed of our wind turbine, that is 11.4 m/s,
possibly after some reduction because that value is referred to the hub height 90 m
and not to the conventional value of 19.5 m above the mean sea level, we realize to
fall in a �Moderate Sea� again according to [10]. This sea severity rank (number 5)
is characterized by the following ranges

Hs = {2.13 to 3.96 m} (5.28)

Tp = {2.8 to 13.5 s} (5.29)

The wave period range is meant to cover all possible periods over which mea-
surable energy of the random wave for the particular sea state exists.

Now, by assuming the median value for the signi�cative wave height and a wave
period in the lower part of its �energy range� it has been observed that overturning
breaking waves occur as well.

Table 5.11 lists all the relevant data for this simulation. Four breaking waves
are detected in this realization and, as did for the previous cases, we isolate the
stronger event which is expected to occur at tb = 33.99 s.

We chose a larger sub�domain 500 m long in space and 12.5 min long in time. At
the location of the wind turbine, i.e. xt = 0, the free surface elevation is represented
by the time series in �gure 5.34.
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Sea severity9 �Moderate waves� (rank 5)

Uref , Hs, Tp 11.4 m/s, 3.05 m, 4.75 s

Spectrum Type JONSWAP

Tsim, xmin, xmax 900 s, −250 m, 250 m

Turbine Location xt 0

Maximum breaking wave time tb 33.99 s (relevant!)

δxt 33.99 m

δtb 3 s

Table 5.11: Data relevant to application 5.

The three subplots reported in �gure 5.35 show that a very steep and unstable
wave is forming. The lower one clearly shows the vertical pro�le of the free surface
just few instants before overturning.

Looking at what happens in the second group of snapshots, �gure 5.36, the
classical plunging overturning breaker takes place. However, the wave breaks some
meters before reaching exactly the turbine location. By comparing this numerical
experiments with the other presented in this section, it should not lead to wrong
conclusions. Indeed, in this speci�c case the resolution is much higher because of the
dimension of the space sub�domain D̂t. In this case the numerical domain is 68 m
long (which is 2δxt), while in the previous cases the domain was in the range of
200 m up to 360 m, approximately. Within this scale, few meters of approximation
are de�nitely acceptable.

Anyhow, to judge the quality of this simulation, it is also crucial to stress that we
are simulating a fully nonlinear phenomenon by departing from boundary and initial
conditions which have been produced by a the linear spectral theory. Therefore, it
is reasonable that breaking waves my not occur exactly where and when predicted
by the linear theory.

Figure 5.37 shows what already presented in �gures 5.35 and 5.36, but by remov-
ing the free surface particles velocity and the mesh markers a clearer representation
of the water jet is o�ered.

Application 6

The very last case which deserves some attention is a non�breaking circumstance.
This additional applications con�rms once again the reliability of the numerical tool.
Table 5.12 collects all key input parameters for this simulation.

What makes singular this application is that in the �Moderate waves� random
sea we have generated, none of the harmonics reaches such a high steepness to
violate the breaking limit. However, we �xed as center for the temporal domain tb
the time instant at which the maximum steepness is reached.

In the signal, plotted in �gure 5.38, there are 242 wave components with mean
steepness 0.051, mean wave length 39 m, mean wave period 4.94 s.

With the same scheme proposed above to identify tb, we proceeded by consid-
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Sea severity10 �Moderate waves� (rank 5)

Uref , Hs, Tp 11.4 m/s, 3.05 m, 5.75 s

Spectrum Type JONSWAP

Tsim, xmin, xmax 1200 s, −300 m, 300 m

Turbine Location xt 0

Maximum breaking wave time tb NO breakers are detected!

δxt 39.62 m

δtb 6 s

Table 5.12: Data relevant to application 6.

ering the maximum steepness and we found that it is tb = 560.90 s. According to
the general scheme discussed above, we launched the fully nonlinear solver with an
initial time ti = tb − δtb = 557.90 s and we ended the simulation at a �nal time
given as tb + δtb = 563.90 s.

The maximum steepness max (ε̄) = 0.1150, which is below the limit in equa-
tion (5.13), has been used to start the simulator and as it can be seen form the
third subplot (from above or below) of �gure 5.39 the wave is really very steep
and asymmetric also with respect to the vertical axis. Moreover, even though there
is no overturning, a nearly vertical front forms approximately at xt. This kind of
ambiguous situation, where there is no real breaking phenomenon but the velocity
of water increases a lot storing a large amount of kinetic energy - which could be
released on the structure - should be investigated further. In our opinion such kind
of non�overturning waves should also be counted among the impact events as they
could also induce impulsive contribution.

The three subplots in �gure 5.39 are shown again in �gure 5.40 without the
boundary mesh and the velocity vectors.

Some remarks on the numerical solver

We observe that in general all simulations may stop by obeying two criteria:
a �natural� one, that is when the simulation time reaches the tb + δtb; a �forced�
one, which applies when the water tongue re�enters into the sea surface. In this
circumstance, in fact, the irrotational hypothesis on which the entire mathematical
model is founded vanishes and thus the scheme breaks down.

The numerical instability of the system at the re�entry is shown in �gures 5.41
and 5.42.

The zoom�in of the subplots in �gure 5.41 are shown in �gure 5.42. They clearly
prove that the simulation is stable up to the contact of the water jet with the free
surface.

An additional consideration regards also the utilization of local re�nement and
smoothing subroutines. Notice in fact that a multi�breaking waves scenario may
occur (e.g. the case shown in �gure 5.41). In these circumstances, the re�nement
subroutine should work at the same time on di�erent regions of the boundary.
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It should be pointed out that all the above results have been obtained by employ-
ing a number of quadratic boundary elements on the free surface NEf adaptively
computed as follows

NEf = ceil

(
Lf

mean
(
L̄
)NE∗f

)
(5.30)

where ceil and mean simply compute the larger integer and the mean value of their
arguments, respectively. NE∗f is number of quadratic elements per wave length and
as already said, L̄ collects all the wave lengths contained in η (x = xt, t). The opti-
mum value for NE∗f has been found to be included in the range of 30-60.

Furthermore, it is remarkable the fact that during the simulations above the
regridding subroutine has been called every �ve time steps, while the smoothing
was applied every two time steps. Nevertheless, the code presents an extraordinary
stability because neither restarting nor local re�nements in the regions of the cusps
were necessary.

Also surprising is to note that the time step is for nearly all the simulation time
Tsim kept constant on the value 0.05 s. When the water jet is forming however, a
speci�c subroutine halves the time step span any time a node of the boundary mesh
undergoes a displacement larger than 50% of the element's length. This expedient
permits to circumvent possible instabilities related to very high velocity gradient.
See section 4.2 for further details.
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BEM Free Surface at t = 121.5813 s

x

y

BEM Free Surface at t = 122.8313 s

x

y

BEM Free Surface at t = 124.1063 s

x

y

BEM Free Surface at t = 124.7063 s

x

y

BEM Free Surface at t = 125.3563 s

x

y

Figure 5.27: Five snapshots of a �Hurricane type storm�. Multiple plunging breakers
scenario. Red arrows denote the free surface particles velocity and the blue dots the
boundary element mesh. Input data from table 5.8.
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BEM Free Surface at t = 33.3806 s

x

y

BEM Free Surface at t = 34.5806 s

x

y

BEM Free Surface at t = 35.8306 s

x

y

BEM Free Surface at t = 36.7306 s

x

y

BEM Free Surface at t = 37.3806 s

x

y

Figure 5.28: Five snapshots of a �Strong gale�. Plunging breaker approximately at
xt and tb. Red arrows denote the free surface particles velocity and the blue dots the
boundary element mesh. Input data from table 5.9.
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BEM Free Surface at t = 35.8306 s

x

y

BEM Free Surface at t = 36.7306 s

x

y

BEM Free Surface at t = 37.3806 s

x

y

Figure 5.29: Plunging breaker: zoom of the lower three subplots of �gure 5.28, from
tb to tb + δtb.

                          

 

 

                          

 

 

                          

 

 

Figure 5.30: Plunging breaker: zoom of the lower three subplots of �gure 5.28, from
tb to tb + δtb. Free surface pro�les alone.
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BEM Free Surface at t = 461.1480 s

x

y

BEM Free Surface at t = 462.2980 s

x

y

BEM Free Surface at t = 463.5480 s

x

y

BEM Free Surface at t = 464.7480 s

x

y

BEM Free Surface at t = 465.9980 s

x

y

Figure 5.31: Five snapshots of a �Strong gale� sea state. Plunging breaker at pre-
dicted values of xt and tb . Red arrows denote the free surface particles velocity and
the blue dots the boundary element mesh. Input data from table 5.10.
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BEM Free Surface at t = 463.5480 s

x

y

BEM Free Surface at t = 464.7480 s

x

y

BEM Free Surface at t = 465.9980 s

x

y

Figure 5.32: Plunging breaker: zoom of the lower three subplots of �gure 5.31, from
tb to tb + δtb.

                           

 

 

                           

 

 

                           

 

 

Figure 5.33: Plunging breaker: zoom of the lower three subplots of �gure 5.31, from
tb to tb + δtb. Free surface pro�les alone.
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η
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Figure 5.34: Time series of the free surface elevation at xt = 0 for a �Moderate sea�.
More input data in table 5.11.

BEM Free Surface at t = 36.9940 s

x

y

BEM Free Surface at t = 38.1627 s

x

y

BEM Free Surface at t = 38.4190 s

x

y

Figure 5.35: First three snapshots of a �Moderate waves� sea state. Red arrows
denote the free surface particles velocity and the blue dots the boundary element
mesh. Input data from table 5.11.
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BEM Free Surface at t = 38.9315 s

x

y

BEM Free Surface at t = 39.4315 s

x

y

BEM Free Surface at t = 39.9502 s

x

y

Figure 5.36: Second three snapshots of a �Moderate waves� sea state. Red arrows
denote the free surface particles velocity and the blue dots the boundary element
mesh. Input data from table 5.11.
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Figure 5.37: Application 5: free surface elevations for the six time instants associated
with a �Moderate waves� sea state. Input data from table 5.11.
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Figure 5.38: Time series of the free surface elevation at xt = 0 for a �Moderate sea�.
More input data in table 5.12.
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BEM Free Surface at t = 557.8980 s

x

y

BEM Free Surface at t = 560.1980 s

x

y

BEM Free Surface at t = 561.6230 s

x

y

BEM Free Surface at t = 562.8230 s

x

y

BEM Free Surface at t = 563.8980 s

x

y

Figure 5.39: Five snapshots of a �Moderate waves� sea state. No breaking waves
occur and tb is �xed by the maximum steepness. Red arrows denote the free surface
particles velocity and the blue dots the boundary element mesh. Input data from
table 5.12.
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Figure 5.40: The three central snapshots of �gure 5.39. Free surface evolution in
the surrounding of xt for a non�breaking wave case. The entire subdomain is shown
only in the lower subplot. Input data from table 5.12.

                           

 

 

                           

 

 

Figure 5.41: Breaking down of the numerical scheme due to re�entry of the water
jet in the sea surface.

                           

 

 (a) Last time step before breaking down.

                           

 

 (b) Re�entry and simulation breaking down.

Figure 5.42: Details of the overturning spout. Zoom�in of �gure 5.41.
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5.5 Fully nonlinear aero-hydro-elastic coupled model

In this section the complete fully integrated wind�waves simulation model is
presented. The main steps and the global numerical framework shown in �gures 5.24
and 5.25 is here generalized and extended in order to include all the possible breaking
wave events occurring during the extreme sea state. The main implication of this
feature is that the call to the fully nonlinear solver is made as many times as the
number nb of plunging breakers detected.

Moreover, in this section the interface of the numerical wave simulator with
FAST is developed.

Hazard
Analysis

(U, Tp, Hs)
Start

Spectra choice
(JONSWAP, P-

M, Kaimal, etc.)

Generate
random phase ε

Irregular sea
generation

Simulation domain
D =

[xmin, xmax] × [0, Tsim]

Fix WT location
xt ∈ [xmin, xmax]

Zero�crossing
analysis in xt

Solve disp. relations
ω2
j = gkj tanh kjd

Check breaking
wave limit

(to be continued...)

Hi/Li
compared with
(H/L)breaking

Figure 5.43: First part of the complete aero�hydro�elastic simulation.

The diagram shown in �gure 5.43 does not present any signi�cant di�erence
compared with the scheme already seen in �gure 5.24. It is just repeated for the
sake of completeness.

On the contrary, a substantial di�erence appears in the second part of the com-
plete simulation scheme depicted in �gure 5.44. Here in fact all the instants at which
a breaking wave is expected are collected in the vector t̄b and nb sub�domains have
to be de�ned. In fact, while in the previous section only the strongest event was
considered, here we need to account for all the possible impacts which may occur
during a storm. Therefore, nb possible overturning breakers are simulated by call-
ing nb times the fully nonlinear solver. Note that the procedure shown earlier to
compute the time instant at which braking occur needs to be slightly adjusted in
order to get the vector t̄b

tbi = tup (1) +

BrLm(i)−1∑

h=1

T (h) + T (BrLm (i)) /4 (5.31)

where BrLm is the vector selecting only elements of ε̄ which breaks, t̄up is the vector
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Check breaking
wave limit

Breaking waves
DO NOT occur

Use Morison's equation
F (t) = FD (t) + FM (t)

Breaking waves
DO occur

Find breaking instant(s)
tb = [tb1 . . . tbi . . . tbn ]

De�ne sub�domains
Ωi (t)

(to be continued...)

D (t, p)⊃Ωi (t)=[xt − δxt, xt + δxt]×
[
tbi − δtb, tbi + δtb

]

Figure 5.44: Second part of the complete aero�hydro�elastic simulation.

collecting the zero up�crossing time instants, T̄ collects all the wave periods in the
signal η (xt, t).

De�ne sub�domains
Ωi (t)

Compute Boundary
and Initial conditions

f [Hz]

f
S
1
(f
)
/σ

2 1

vnup =
∑
j v
n
up

(
t, y, ωj

)
vndown =

∑
j v
n
down

(
t, y, ωj

)

η =
∑
j aj cos (kjx− ωjt+ εj)

φ =
∑
j aj/ωj sin (kjx− ωjt+ εj)

vnb = 0

aj =
√

2S (ωj) dω

ωj
Ωi (t)

i�th sub-domain

Figure 5.45: De�nition of subdomains and initial and boundary conditions assign-
ment form JONSWAP spectrum.
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expected impact event a dedicated Matlab function �nds at which time and
at which free surface boundary node the worst impact can happen. The worst
situation is the one which maximize both ηb and the ipact velocity v̄.

Namely two identi�ers, related to time steps and boundary nodes, re-
spectively, permit to capture the con�guration showed, as an example, in
�gure 4.29. At this stage, to get the maximum wave height is trivial, while
to compute the impact velocity v̄ an �averaging region should be identi�ed�.
After many numerical runs we discovered that averaging the horizontal ve-
locity components over a region included by the maximum wave elevation
and the node being the turning point, gives acceptable results in estimating
v̄. The turning point is found internally by the subroutine by checking for
each element when a change of the curvature sign occurs3. See �gure 4.29.

Figure 4.29: Example of the imminent overturning waved hitting the struc-
ture. This time frame is isolated by checking whether a vertical front exists. At
this time, ηb and v̄ are computed.

3For the j�th boundary elements the curvature k(j) is computed by using the well
known formula

k(j) =
[
(ẋÿ − ẏẍ) /(ẋ2 + ẏ2)

]3/2

Where the derivatives are trivially due to the simplicity of the shape functions.

Get impact force

Pass impact
loads to FAST

Launch FAST get Output

Figure 5.46: Last part of the global simulation scheme: interface with FAST.

The de�nition of sub-domains is well depicted in �gure 5.45 where it is clear how
the BEM�based code is activated to solve the fully nonlinear Laplace's equation on
the domain Ωi (relative to the i�th braking event) by assigning initial and boundary
conditions derived by the linear spectral approach.

The last group of subroutines of the global simulation code execute the in-
structions sketched in �gure 5.46, where the kinematic properties of each plunging
breaker are derived. Impact forces are computed and subsequently passed to FAST
which performs the time marching analysis.

The instructions executed by the software are also summarized in the algo-
rithm 3 which gives a simpli�ed representation of the whole procedure. Note that
the environmental analysis is carried out externally from algorithm 3.

In the above algorithm WaveDT denotes the time step for the irregular sea
simulation, the argument inputi passed to the subroutine CallBEMSolver collects
all the data related to the i�th breaking wave necessary to run the fully nonlinear
code. See section 4.2 for details.

A global view of all the main steps of the code is presented in the scheme on
�gure 5.47.

Before presenting the applications of the software, we just stress that fact that in
the light of the considerations and values proposed in the previous section about the
simpli�ed extreme sea states de�nition, given a wind turbine located in a generic re-
gion of North Sea with water depth of 20 m designed to withstand an 50�year return
period extreme mean wind velocity of 37.5 m/s (wind class III, [36]), it seems to be
reasonable to perform most of the simulations by assuming variations of the input
parameters in the neighborhoods of the �most probable� sea state characterized by
the following values of signi�cative wave height and peak period

• Hs = 12 m

• Tp = 12 s

Now it is possible to start simulating irregular seas coupled with realistic tur-
bulent wind.
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Linear solution

Check breaking
wave limit

Breaking waves
DO
occur

Find breaking
instant(s) t̄b

De�ne sub-
domains Ωi

Compute BC
and IC for
BEM solver

Analyze plung-
ing breakers

Get the i�th impact force

Collect the nb impact forces

Write impact
data for FAST

Switch Wave-

Mod to 4 and
TwrLdMod to 2

Launch FAST

Call subroutine
UserTwrLd

Breaking waves
DO NOT
occur

Keep Morison's
equation unaltered

Start BEM solver
(set: Mesh, Regrid-
ding, Smoothing)

MEL scheme
two-step procedure:
1. Eulerian step

2. Lagrangian step

Get Γf and v̄f

start loop for i = 1, . . . , nb

call BEM solver

pass data

Figure 5.47: Framework of the whole simulation scheme.



i
i

�Main_FUP_v06_14112011� � 2011/11/14 � 15:44 � page 134 � #160 i
i

i
i

i
i

134 Coupled wind�fully nonlinear waves model

Algorithm 3: Global simulation scheme.
input : Environmental variobles: Uref , Hs, Tp
input : Total simulation time: Tsim
output: Impact force: f̄I
Initialization: f̄I = zeros (0 : WaveDT : Tsim, 3);

Spectrum choice;
Irregular sea generation;
Setting the wind turbine location;
Zero�crossing analysis;
Solve dispersion relations;
Check breaking waves limit;
if breaking waves occur then

Identify all possible breakers: get nb;
for i = 1 to nb do

De�ne space�time subdomains: �x δtbi and δxt;
[vi, ηbi ] = CallBEMSolver (inputi);[
f̄Ii
]

= ComputeImpactForce (vi, ηbi);

else
Morison's eq. unaltered;

Get �nal impact force f̄I =
∑nb
i=1 f̄Ii ;

5.5.1 Fully coupled Simulation #01

Before approaching the �nal coupled simulations, a preliminary model is set up
with no wind blowing, while an extreme irregular sea is generated. We should point
out that this scenario is unrealistic because, as stated many times throughout this
work, the focus is on wind�generated waves and not swells. However this preliminary
simulation allows to test whether the software, until now only tested with regular
waves, is stable and reliable.

In table 5.13 all the input data characterizing this simulation, form now on
denoted by Simulation #01, are provided.

Note that WaveDT, DT, dt in the above table refer to time step for the linear
irregular sea generation, FAST time step, our BEM simulator, respectively. More-
over, values δxt and δtb will always be constant for each breaking event occurring
in one simulation.

First of all we start by showing the time series of the free surface elevation at
the turbine location. The �rst time the breaking wave limit is achieved is at 68.12 s
when, as con�rmed in �gure 5.48, a clear peak of about 13 m is registered.

Since nb = 2, the fully nonlinear wave kinematic solver is called two times. The
most signi�cative snapshots of the free surface evolution for each call are shown in
�gures 5.49 and 5.51, respectively.

Data passed to the subroutine computing the impact force are extracted at the
time shown in �gure 5.50.

It is interesting to observe that the predicted breaking wave time matches very
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Uref , Iref 0 m/s, 0

U19.5, Hs, Tp 0 m/s, 12 m, 12 s

Spectrum type, γ JONSWAP, 3.3

Water depth Intermediate Water

Tsim, xmin, xmax 600 s, −300 m, 300 m

WaveDT, DT, dt11 0.05 s, 0.01 s, 0.05 s

Turbine location xt 0

Predicted number of breaking wave events 2

Number of breaking wave events occurred nb 2

Predicted breaking waves time vector t̄b s 68.118, 105.376

BrLm 8, 11

δxt 252.7681 m

δtb 3 s

NEf 80

Table 5.13: Input data for Simulation #01.

t [s]

η
(t
)

[m
]

Figure 5.48: Time series of the free surface elevation at xt = 0 for Simulation #01.
Input data in table 5.13.

well the instant at which the impact occurs. However, it will not always be like this.
It must be pointed out that the predicted time at which the breaking wave

would occur is just an indication to de�ne the initial time to start the BEM solver.
In fact, as it happens for the second breaker, the predicted time was 105.38 s but
the simulation reveals that the wave crest starts overturning (say when the front
forms) later at t = 107.70 s. From �gure 5.53, it is clear that the overturning is
taking place approximately 20 m further the turbine location.

This example reveals how inaccurate the linear model can be in predicting break-
ing waves.

The total impact force vector read in FAST is shown in �gure 5.55. This plot
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BEM Free Surface at t = 65.1175 s

x

y

BEM Free Surface at t = 67.0675 s

x

y

BEM Free Surface at t = 68.9175 s

x

y

BEM Free Surface at t = 69.4300 s

x

y

Figure 5.49: Simulation #01, �rst breaking wave event. Three snapshots of fully
nonlinear free surface evolution.
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BEM Free Surface at t = 68.1175 s

x

y

Figure 5.50: Simulation #01, �rst breaking wave event. Time at which the slam is
supposed to happen.

is rather useful in understanding how the impulsive contributions are distributed
during the whole simulation.

The structural response is presented in �gures 5.56 and 5.57. The two slamming
loads which occur during 10 min simulation induce on the structure a remarkable
additional state of internal stress. To have a proper idea of what really happens when
these two impulsive actions act on the monopile, we �rst observe the time series of
the tower top fore�aft displacements, �gure 5.56. From a maximum value (either
positive or negative) of 5 cm when the �rst impact takes place, the maximum peak
displacement leaps to approximately 21 cm, then when the vibrations start decay
suddenly the second hit arrives and, even though it has a lower intensity because of
a smaller ηb and reduced impact velocity, a clear ampli�cation is registered around
105 s which brings the peak displacement up to 24 cm.

Note that here ultimate strength conditions are investigated, therefore the peak
values are really crucial in assessing the structural safety.

Also looking at the shear force and bending moment at the foot of the monopile,
reported in �gure 5.57, the two peaks associated with the respective plunging break-
ers are very clear. In this case, contrarily to what happens for the tower top fore�aft
displacement, the second shock does not cause an ampli�cation of the �rst one. Both
Fxt and Myt, indeed, seem to have the time to dissipate all the momentum induced
by the �rst impact in about 35 s which is approximately the time interval between
the two slams.

The remaining internal forces and moments are also slightly a�ected by the
impacts, but of course, due to the main direction of the colliding waves, they register
a negligible consequences and for this reason are not shown in this �rst simulation.

From this preliminary case analyzed interesting suggestions to set up the next
case study are derived: �rst the simulation time should be increased, second it is
fundamental now to activate the turbulent wind simulator in order to have a �rst
more realistic extreme environment.
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BEM Free Surface at t = 102.3763 s

x

y

BEM Free Surface at t = 104.8263 s

x

y

BEM Free Surface at t = 107.1763 s

x

y

BEM Free Surface at t = 108.3513 s

x

y

Figure 5.51: Simulation #01, second breaking wave event. Four snapshots of fully
nonlinear free surface evolution.
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Impact 1 of 2 expected at t =68.12 [s]

Impact velocity v = 16.01 [m/s]

Maximum elevetion ηb = 8.46 [m]

Curling factor λ = 0.46

t [s]

f I
[N

/m
]

Impact 2 of 2 expected at t =105.38 [s]

Impact velocity v = 12.97 [m/s]
Maximum elevation ηb = 7.85 [m]
Curling factor λ = 0.46

t [s]

f I
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Figure 5.52: Simulation #01, impact forces computed according to section 4.5.

BEM Free Surface at t = 107.7013 s

x

y

Figure 5.53: Simulation #01, second breaking event. Time at which the slam is
supposed to happen.
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Figure 5.54: Simulation #01, second breaking event. Time at which the slam is
supposed to happen. Detailed view of the impact front of the jet forming shown in
�gure 5.53.

Impact forces time history

t [s]

f
I
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Figure 5.55: Simulation #01, time history of the impact forces throughout the total
simulation time. On this scale the two impacts look like just two pins with intensity
in agreement with �gure 5.52.
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Figure 5.56: Simulation #01, Tower top fore�aft displacements time series.

5.5.2 Fully coupled Simulation #02

Table 5.14 lists all the input data characterizing this second simulation, form
now on referred to as Simulation #02. This case is much more realistic than the
previous one because here we really have for the �rst time the coupled wind and
wind�waves extreme actions together.

The turbulent wind is generated by means of TurbSim, already introduced in
section 5.4 of this chapter. The three 50�year recurrence period turbulent wind
velocity components are plotted in �gure 5.58.

Such a severe wind condition gives rise to an extreme irregular sea modeled by a
JONSWAP spectrum characterized by a signi�cative wave height Hs = 12 m and a
peak period Tp = 12 s as reported in table 5.14. This sea has a free surface elevation
at the turbine location shown in �gure 5.59.

The software developed in this thesis at this point performs a zero�crossing
analysis from which it results that in 10 min simulation and upon the severity en-
vironmental conditions assumed, one breaking wave event may occur, i.e nb = 1.

Thus the fully nonlinear wave kinematic solver is called only once. The most
signi�cative snapshots of the free surface evolution for the call are shown in �g-
ure 5.60.

Figure 5.60 shows four frames of the simulation. The upper subplot represents
the initial time ti, see equation (5.15), at which the BEM solver is started. The two
intermediate sub��gures show the augmentation of the steepness until the �cusp�
starts overturning, while the lower one describes the re�entry of the water jet which
is completely curled. The latter is also the last time step the software in able to
integrate the boundary conditions, in fact after this, the multi�connected domain
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Figure 5.57: Simulation #01, tower base shear force Fxt and overturning moment
Myt.

occurs, the irrotational �ow hypothesis is no longer valid and the numerical scheme
breaks down as shown in the example of �gure 5.41.

Data passed to the subroutine that computes the impact force are extracted
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Uref , Iref 37.5 m/s, 0.12

U19.5, Hs, Tp 31.69 m/s, 12 m, 12 s

Spectrum type, γ JONSWAP, 3.3

Water depth Intermediate Water

Tsim, xmin, xmax 600 s, −300 m, 300 m

WaveDT, DT, dt12 0.05 s, 0.01 s, 0.05 s

Turbine location xt 0

Predicted number of breaking wave events 1

Number of breaking wave events occurred nb 1

Predicted breaking waves time vector t̄b s 516.10

BrLm, Steepness ε 48, 0.1473

δxt 263.304 m

δtb 3 s

NEf 100

Table 5.14: Input data for Simulation #02.

Figure 5.58: Time series of three turbulent wind speed components according to
the Extreme Wind speed Model (EWM) of IEC61400-1 3rd ed. Time histories used
in Simulation #02.
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Figure 5.59: Time series of the free surface elevation at xt = 0 for Simulation #02.
Input data in table 5.14.

when the worst condition among maximum elevation and maximum impact velocity
is reached. This condition is shown in �gure 5.61.

Also in this circumstance the predicted breaking wave time matches extremely
well the instant at which maximum wave elevation and impact velocity are ex-
tracted. The predicted value is 516.10 s, while the time at which the crest starts
overturning and may likely exert the strongest impact force is t = 516.85 s. The two
value are surprisingly close each other and this con�rms the validity of the approach
hereby implemented. A zoom�in of the free surface elevation with its kinematic fea-
tures is o�ered in �gure 5.62.

Note also that the spatial agreement between the expected location xt = 0
(where the turbine is supposed) and the simulated impact.

The elevation ηb and the velocity v characterizing this impact are 12.44 m/s and
7.73 m, respectively; the impact duration is 0.0978 s and this means that approx-
imately 10 time steps of FAST integration scheme account for such an impulsive
contribution.

The total impact force vector read�in by FAST is plotted in �gure 5.63(b).
This plot permits to better understand the following results about the structural
response. Figures 5.64 shows the tower top fore�aft displacement time series and,
contrarily to what happened in Simulation #01, in this case impulsive load does
not bring the tower top displacement too mach beyond its normal maxima. Where
with �normal maxima� is intended as the peaks in the displacement time series
before tb.

The reason why this happens lies in the fact that Simulation #01 was performed
without wind and, of course, this made the structural displacement only depend
on the the hydrodynamic loads where the impulsive action was generated. On the
contrary, in Simulation #2 a turbulent extreme wind (with mean value of 37.5 m/s)
is blowing in the same direction of the slamming wave. Therefore, the tower is
already vibrating with an average maximum displacement of 20 cm (it was 5 cm
for Simulation #01) and when the impact occurs it can even be out of phase. We
want to point out that the frequency of the impulsive loads are very high, therefore
they are far beyond the �rst system fore�aft natural frequency. For this reason, the
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BEM Free Surface at t = 513.0999 s

x

y

BEM Free Surface at t = 515.7999 s

x

y

BEM Free Surface at t = 517.5499 s

x

y

BEM Free Surface at t = 518.8749 s

x

y

Figure 5.60: Simulation #02, �rst breaking wave event. Four snapshots of fully
nonlinear free surface evolution.
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BEM Free Surface at t = 516.8499 s

x

y

Figure 5.61: Simulation #02, maximum wave elevation ηb and impact velocity v
are those associated with this instantaneous frame.

                           

 

 

Figure 5.62: Simulation #02, second breaking wave event. Time at which the slam
is supposed to happen. Detailed view of the impact front of the jet forming shown in
�gure 5.61.

consequences of the impacts are almost negligible on the global dynamics of the
system.

The slamming wave which may occur during 10 min simulation induces on the
structure a remarkable additional state of internal stress. And likewise to what
pointed out for Simulation #01, peaks of internal forces and moments are abso-
lutely relevant for our scopes.

It is impressive but not surprising to see the instantaneous augmentation of both
the shear tower base force Fxt and the bending tower base moment Myt plotted
in �gure 5.65. The force undergoes a leap from a peak of 4× 10

3

kN to nearly
10× 10

3

kN (positive sign), while the bending moment has extreme peaks of about
0.5× 10

5

kNm and the impact brings the value up to nearly 1.5× 10
5

kNm.
Another interesting structural output which deserves attention is the internal

bending moment at the still water level. In this cross�section the structure registers
the additional couple due to the impact given by the impact force MI = FIdI ,
where FI = fIληb is the impact force described in section 4.5 and dI denotes the
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Impact 1 of 1 expected at t =516.10 [s]

Impact velocity v = 12.44 [m/s]

Maximum elevation ηb = 7.73 [m]

Curling factor λ = 0.46

t [s]

f I
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/
m
]

(a) Time history of the impact force throughout its duration.

Impact forces time history

t [s]

f I
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/m
]

(b) Time history of the impact force throughout the total simulation time. On this scale the impact
looks just like a spike.

Figure 5.63: Simulation #02, impact force time histories in the two di�erent time
scales.

moment arm given as ηb (1− 1/2λ), where λ is the curling factor [8].

Also for the fore�aft bending moment at the tower cross�section taken at the
mean sea level, plotted in �gure 5.66, as expected, a peak is registered at t = 517.5 s
due to the impact. Note also that since in this case the moment arm is twenty meters
(the water depth) shorter with respect to the moment acting at the monopile foot
form plot 5.65, Myt results one order higher: 1.5× 10

5

kN versus 3.4× 10
4

kNm at



i
i

�Main_FUP_v06_14112011� � 2011/11/14 � 15:44 � page 148 � #174 i
i

i
i

i
i

148 Coupled wind�fully nonlinear waves model

Figure 5.64: Simulation #02, Tower top fore�aft displacement time series.

the SWL13

Since for this simulation lateral and vertical wind components are also simulated,
see �gure 5.58, it would be interesting also to see the structural response in these
other directions, to check whether the impact causes some e�ects.

As expected, forces, bending moments and torsion at the tower base are not com-
pletely negligible due to the lateral and vertical wind loads, however from �gure 5.67
it is possible to say that no relevant e�ects are induced by the impact.

5.5.3 Fully coupled Simulation #03

The simulation presented here is particularly important for two main reasons:
�rst it is longer than those launched up to now, and this is fundamental to have
much more reliable data when evaluating the distribution of peaks due to impacts.
The duration is also relevant because it permits to test the numerical stability of
the code. This application shows that the code developed is reliable also for 40 min
simulations.

The second very important reason for which Simulation #03 is crucial is that
it is based on �real data� input. As discussed in section 5.4, so far we have assumed
the most important data to estimate the sea severity by using a simpli�ed approach.
We just relied on data and tables provided in literature and said that for 31.695 m/s
wind speed at 19.5 m above the sea level, the related sea state severity should be
de�ned in a neighborhood of Hs = 12 m and Tp = 12 s. This is true but in this

13This numbers are totally indicative and have the only scope to make rough check whether the
results match the expectations.
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Figure 5.65: Simulation #02, tower base shear force Fxt and overturning moment
Myt.
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Figure 5.66: Simulation #02, tower top fore�aft bending moment at the tower
cross�section taken approximately at the mean sea level.

case we wanted to use input parameters which have been extrapolated by real data
referred to the North Sea. In [31], indeed, starting from data recorded over 3 years in
the area of 2◦ longitude east and between 53◦ and 54 latitude north, the signi�cant
wave height and mean zero�crossing period with return period 50 years have been
extrapolated. So in this case we are using data that we are sure they have the same
return period of the wind velocity assumed. Anyhow, it should be kept in mind that
the distributions for Hs and Tp have been assumed uncorrelated to the mean wind
speed and this could lead to some approximation of the values. All the parameters
characterizing Simulation #03 are listed in table 5.15.

The turbulent wind is generated as in the case of Simulation #02 and the
three 50�year recurrence period turbulent wind velocity components are plotted in
�gure 5.68.

The 50�year return period random sea which may occur in the North Sea during
a storm having the turbulent wind plotted in �gure 5.68 is depicted in �gure 5.69.

The zero�crossing analysis of the signal plotted in �gure 5.69 detects that there
could be 3 wave components with such a high steepness to break. Hence, the fully
nonlinear solver is invoked three times (nb = 3). For each of these sub�simulations,
three signi�cant con�gurations of the free surface evolution are shown in the follow-
ing. In all three cases, the upper subplot represents the initial time when the BEM
solver is called. The three breaking wave events are shown in �gures 5.70 to 5.72

The last expected impact would occur at t = 470.03 s. And according with the
sub�domain de�ned above, the fully nonlinear simulator is started with an initial
time ti = 467.03 s. In this case the steepness is ε = ε̄ ((BrLm (3)) = 0.096 which, for
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Figure 5.67: Simulation #02, tower base shear force Fxt and overturning moment
Myt.
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Uref , Iref 37.5 m/s, 0.12

U19.5, Hs, Tp 31.69 m/s, 9.80 m, 13.63 s

Spectrum type, γ JONSWAP, 3.3

Water depth Intermediate Water

Tsim, xmin, xmax 2400 s, −300 m, 300 m

WaveDT, DT, dt14 0.05 s, 0.01 s, 0.05 s

Turbine location xt 0

Predicted number of breaking wave events 3

Number of breaking wave events occurred nb 2

Predicted breaking waves time vector t̄b s 22.28, 36.05, 470.02

BrLm, Steepness ε 2, 3, 41

δxt 286.27 m

δtb 3 s

NEf 80

Table 5.15: Data relevant to Simulation #03.

a case of intermediate water, is not too larger than the breaking limit. Moreover, to
increase the numerical stability of the code the smoothing and regridding of the free
surface have been used frequently: smoothing at each time step, regridding every
three steps. This causes an unwanted dissipation of energy, which may delay the
formation of the plunging breaker.

During the third simulation the expected overturning wave does not occur. See
�gure 5.72. However, a very steep wave forms and its e�ect cannot be neglected
when it approaches the monopile. Although much weaker, an impact can also be
induced. This last case shows that the prediction of breaking waves based on the
linear theory may result inaccurate.

The three impact forces stemming from the above simulations are shown in
�gure 5.73.

The distribution of the impact forces over the whole simulation time is shown in
�gure 5.74. This plot is rather useful to understand the following results about he
structural response. From this plot two remarks rise: the �rst two impacts are very
close each other and this could induce some ampli�cation in the global dynamics
of the structure. Second, the third steep wave, which does not really plunge, is also
considered an impulsive action. However, its associated impact force is much less
strong due to the fact that without plunging, the crest does not reach those very
high velocities of the other cases.

Figure 5.75 shows the tower top fore�aft displacement time series. It seems
that the two impacts produce an increase in the displacement with a certain delay.
Consider that the structure is undergoing a strong turbulent wind and its natural
frequency is very far away from the impulsive action.

Concerning the state of stress, the two slamming waves that occur during the
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Figure 5.68: Time series of three turbulent wind speed components according to
the Extreme Wind speed Model (EWM) of IEC61400-1 3rd ed. Time histories used
in Simulation #03.
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Figure 5.69: Time series of the free surface elevation at xt = 0 for Simulation #03.
Input data in table 5.14.

40 min long simulation induce on the structure a remarkable additional state of
internal stress.

From output shown in plots 5.75 and 5.76 two considerations can be directly
done. First of all also in this case the instantaneous augmentations of both the
shear tower base force Fxt and the bending tower base moment Myt are phenome-
nal. They bring the average peak value from approximately 2× 10

3

kNm to nearly
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BEM Free Surface at t = 19.2780 s

x

y

(a) Initial time.

BEM Free Surface at t = 22.0780 s

x

y

(b) Generic intermediate time step.

BEM Free Surface at t = 24.8780 s

x

y

(c) Time at which data to compute the impact force are taken.

Figure 5.70: Simulation #03, �rst breaking wave event. Three snapshots of fully
nonlinear free surface evolution.

8× 10
3

kNm. The second thing that can be observed is the e�ect of the third non�
breaking wave. Since it has included into the simulation as a breaking wave, the
force it exerts is almost in the range of the standard maxima due to plain Morison's
equation. Therefore, this instructive simulation tells us that without the formation
of the jet the e�ect on the structure is totally di�erent. The last remark we can add
is that the peaks tend to decay very rapidly, indeed the negative peak is already
less intense. This of course much depends on the global system dynamics.

Another interesting structural output which deserves attention is the internal
bending moment at the still water level. In this cross�section the structure registers
the additional couple due to the impact given by the impact force MI = FIdI ,
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BEM Free Surface at t = 33.0547 s

x

y

(a) Initial time.

BEM Free Surface at t = 35.6547 s

x

y

(b) Generic intermediate time step.

BEM Free Surface at t = 38.3047 s

x

y

(c) Time at which data to compute the impact force are taken.

Figure 5.71: Simulation #03, second breaking wave event. Three snapshots of fully
nonlinear free surface evolution.

where FI = fIληb is the impact force described in section 4.5 and dI denotes the
moment arm.

5.5.4 Fully coupled Simulation #04

This simulation is characterized by the data set reported in table 5.16. The wind
conditions are unchanged with respect to the previous case, while sea state severity
parameters have been slightly modi�ed. The total simulation time is 15 min. This
simulation di�ers from the others mainly in the number of impacts.

The three components of the extreme turbulent wind are plotted in �gure 5.78.
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BEM Free Surface at t = 467.0251 s

x

y

(a) Initial time.

BEM Free Surface at t = 469.9751 s

x

y

(b) Generic intermediate time step.

BEM Free Surface at t = 473.0251 s

x

y

(c) Time at which data to compute the impact force are taken.

Figure 5.72: Simulation #03, third (expected) breaking wave event. Three snap-
shots of fully nonlinear free surface evolution.

The zero�crossing analysis of the free surface at the wind turbine location detects
four breaking waves, thus the fully nonlinear plunging breaker simulator is called
four times, i.e. nb = 4.

For each of these sub�simulations three signi�cant con�gurations of the free
surface evolution are shown in �gures 5.79 to 5.82. In all four cases, the upper
subplot represents the initial time when the BEM solver is called.

From �gures 5.79 to 5.82 it can be seen that the �rst breaking wave event is not a
real overturning phenomenon. Or at least the simulation duration [tb1 − δtb, tb1 + δtb]
was not enough to capture the complete plunging. There are many reasons for which
sometimes the predicted breaking event does not actually happens. For sure it must
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Impact 1 of 3 expected at t =22.28 [s]

Impact velocity v = 11.75 [m/s]

Maximum elevation ηb = 6.16 [m]

Curling factor λ = 0.46
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Impact 2 of 3 expected at t =36.05 [s]

Impact velocity v = 11.79 [m/s]

Maximum elevation ηb = 5.74 [m]

Curling factor λ = 0.46

t [s]

f I
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]

Impact 3 of 3 expected at t =470.03 [s]

Impact velocity v = 6.47 [m/s]

Maximum elevation ηb = 5.30 [m]

Curling factor λ = 0.46
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Figure 5.73: Simulation #03, impact forces computed according to section 4.5.
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Impact forces time history
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Figure 5.74: Simulation #03, impact forces time history over the all simulation
time Tsim.

Uref , Iref 37.5 m/s, 0.12

U19.5, Hs, Tp 31.69 m/s, 11.50 m, 10.60 s

Spectrum type, γ JONSWAP, 3.3

Water depth Intermediate Water

Tsim, xmin, xmax 900 s, −300 m, 300 m

WaveDT, DT, dt15 0.05 s, 0.01 s, 0.05 s

Turbine location xt 0

Predicted number of breaking waves 4

Number of breaking waves occurred nb 3

Predicted breaking waves times t̄b s 72.15, 114.56, 482.49, 551.06

BrLm 7, 11, 53, 60

Steepness ε (at breaking) 0.134, 0.133, 0.146, 0.144

δxt 205.02 m

δtb 2 s

NEf 80

Table 5.16: Data relevant to Simulation #04.
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Figure 5.75: Simulation #03, tower top fore�aft displacement time series.

be remarked that the breaking limit criterion is a theoretical value which in certain
situations (e.g. linear wave theory, as in our case) can be less reliable, secondly it
could happen that the very small amount of energy dissipated by the smoothing
subroutine, which is generally not a�ecting the solution, in this sensitive cases can
in�uence.

However, the crest shown in �gure 5.79 is steep enough to think that when
hitting a pile a certain impulsive e�ect is also produced. Therefore it has also been
included in to the total number of impact forces passed to FAST.

The four impact forces stemming from the above simulations are shown in �g-
ure 5.83.

The distribution of the all impact forces over the whole simulation time is shown
in �gure 5.84. As for the previous case, this plot is rather useful for qualitative
judgment of the extreme structural response. From this plot it is evident that the
impact associated with the third breaking wave, represented in �gure 5.81, is the
strongest. Even though its elevation is not higher than the other cases, the water
particles at the cusp have an average velocity of 15.05 m/s which makes the crash
really strong.

Figure 5.85 shows the tower top fore�aft displacement time series. It seems that
the �rst two impacts induce an increase of the tower top displacements with peaks
of about 25 cm. The third impact does not produce an instantaneous e�ect on the
displacement, anyway ampli�cations are registered during the third a fourth slams.

On the contrary, the tower base forces and moments re�ect instantaneously
the e�ects of the impacts. Peaks in �gure 5.86, in fact, strictly follow the impacts
distribution over the all simulated time as shown in �gure 5.84.
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Figure 5.76: Simulation #03, tower base shear force Fxt and overturning moment
Myt.
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Figure 5.77: Simulation #03, tower top fore�aft bending moment at the tower
cross�section taken approximately at the mean sea level.

Figure 5.78: Time series of three turbulent wind speed components according to
the Extreme Wind speed Model (EWM) of IEC61400-1 3rd ed. Time histories used
in Simulation #04.
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BEM Free Surface at t = 70.1453 s

x

y

(a) Initial time.

BEM Free Surface at t = 72.0953 s

x

y

(b) Generic intermediate time step.

BEM Free Surface at t = 74.0953 s

x

y

(c) Time at which data to compute the impact force are taken.

Figure 5.79: Simulation #04, �rst breaking event. Three snapshots of fully nonlin-
ear free surface evolution.
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BEM Free Surface at t = 112.5594 s

x

y

(a) Initial time.

BEM Free Surface at t = 115.1594 s

x

y

(b) Generic intermediate time step.

BEM Free Surface at t = 116.5094 s

x

y

(c) Time at which data to compute the impact force are taken.

Figure 5.80: Simulation #04, second breaking event. Three snapshots of fully non-
linear free surface evolution.
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BEM Free Surface at t = 480.4864 s

x

y

(a) Initial time.

BEM Free Surface at t = 482.8364 s

x

y

(b) Generic intermediate time step.

BEM Free Surface at t = 484.4864 s

x

y

(c) Time at which data to compute the impact force are taken.

Figure 5.81: Simulation #04, third breaking event. Three snapshots of fully non-
linear free surface evolution.
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BEM Free Surface at t = 549.0576 s

x

y

(a) Initial time.

BEM Free Surface at t = 551.0076 s

x

y

(b) Generic intermediate time step.

BEM Free Surface at t = 551.9076 s

x

y

(c) Time at which data to compute the impact force are taken.

Figure 5.82: Simulation #04, forth breaking event. Three snapshots of fully non-
linear free surface evolution.
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Impact 1 of 4 expected at t =72.15 [s]

Impact velocity v = 8.06 [m/s]

Maximum elevation ηb = 5.84 [m]

Curling factor λ = 0.46

t [s]

f
I

[N
/m

]

Impact 2 of 4 expected at t =114.56 [s]

Impact velocity v = 12.48 [m/s]

Maximum elevation ηb = 5.93 [m]

Curling factor λ = 0.46

t [s]

f
I

[N
/m

]

Impact 3 of 4 expected at t =482.49 [s]

Impact velocity v = 15.05 [m/s]

Maximum elevation ηb = 6.36 [m]

Curling factor λ = 0.46

t [s]

f
I

[N
/
m
]

Impact 4 of 4 expected at t =551.06 [s]

Impact velocity v = 9.28 [m/s]

Maximum elevation ηb = 6.54 [m]

Curling factor λ = 0.46

t [s]

f I
[N

/m
]

Figure 5.83: Simulation #04, the four impact forces computed according to sec-
tion 4.5.
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Impact forces time history

t [s]

f I
[N

/m
]

Figure 5.84: Simulation #04, impact forces time history over the all simulation
time Tsim.

Figure 5.85: Simulation #04, tower top fore�aft displacement time series.
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Figure 5.86: Simulation #04, tower base shear force Fxt and overturning moment
Myt.
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Chapter6
Achievements and �nal remarks

This concluding chapter summarizes the principal achievements of this thesis. More-

over, the important implications of the proposed numerical tool on the structural risk as-

sessment phase are underlined.

6.1 Implications of the proposed model on the structural safety and Risk Assess-
ment

At this point of the work some crucial and spontaneous questions rise up: what
are the practical consequences of such a model? Why should it be used instead of the
traditional impact models? Would not it be easier to use directly the semi�empirical
deterministic impact wave models available in literature?

Let us start from the last issue. Modern design approaches aims at employing
tools (especially numerical tools in this context), which are more and more rep-
resentative of the reality (reduction of model uncertainties) and at the same time
guarantee an acceptable cost in terms of computational time. In fact, to minimize
the model uncertainties, one could model in a very re�ned scale the �uid�structure
interaction. Unfortunately, this approach does not meet the second fundamental
need when designing o�shore wind turbine, that is the limited computational time
available.

The new numerical model developed in this thesis precisely represents a com-
promise for the two major needs above mentioned. It is able, indeed, to simulate
o�shore monopile�supported wind turbines exposed to wave impacts with very high
accuracy without penalizing the computational e�ort normally required. This is pos-
sible thanks to two main features of the computational strategy developed: i) the
domain decomposition linear�nonlinear; ii) the implementation of the Boundary
Element Method�based solver which, among others, has the brilliant advantage to
reduce the problem under consideration by one dimension.

Usually, impact forces are computed with some semi�empirical formula derived
mainly from experiments. Just to give an example, in [12] and [10] it is recommend
to compute the impact pressure p as follows

p = ρκ1v
2 (6.1)

where κ1 = 5.98 for impact due to waves breaking in proximity of the vertical
cylinder (this is always our case), while κ1 = 2.74 when the pile is hit by broken
waves. ρ is the water density and v is the impact velocity given as follows

v = 0.48× 1.092
gT

2π
(6.2)

Enzo Marino, An integrated nonlinear wind-waves model for offshore wind turbines  
ISBN 978-88-6655-051-8 (print) ISBN 978-88-6655-053-2 (online) © 2011 Firenze University Press
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Impact velocity v = 12.44 [m/s]

Maximum elevation ηb = 7.73 [m]

Curling factor λ = 0.46

Impact 1 of 1 expected at t =516.10 [s]

t [s]

f
I

[N
/m

]

Figure 6.1: Impact force through its duration taken from Simulation #01.

If we recall the impact in Simulation #02, it is possible to compare the the sim-
ulated impact velocity with the predicted one by the above semi�empirical model.
The simulated impact velocity was v = 12.44 m/s, while the wave period associ-
ated with that wave component was T = 10 s. With these data the above model
would lead to an impact velocity of 8.14 m/s, while our simulation shows that the
strongest impact occur when the velocity reaches 12.44 m/s. Figure 6.1 is recalled
here to remind some key values concerning this impact.

The di�erence between the two impact velocities gives an idea on how large is
the range of variation and approximation of semi�empirical models. Therefore, the
�rst thing to say about the model developed in the thesis is that it is able to capture
the wave impacts much more accurately and thus forces transferred to the structure
are much more reliable. This, by the way, is what we announced in Chapter 1 when
the reduction of model uncertainties was mentioned. In fact, by using our model
the extreme response of o�shore wind turbines can be more realistically captured
and this induces remarkable consequences on the ultimate loads assessment.

The implications mentioned above bring us back to the issue opened in Chapter 2
when the crucial phase of the Risk Assessment was discussed. As we said, here the
scope is the quanti�cation of structural risk. To this aim, by recalling the de�nition

Risk = Probability of failure × Losses [Losses unit/time]

it appears that the prediction of the state of failure is deeply conditioned on the
peaks distribution of each simulation, therefore the utilization of the proposed nu-
merical approach becomes of primary importance at this stage of the general risk
management framework.

In this paragraph the important consequences of the proposed model on the
vulnerability term of equation (5.1), written as

V ulnerability = P
(
Myt > M∗yt|U = U50

)
(6.3)
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are highlighted by comparing the structural response obtained with the proposed
wave impact model with the usual non�impact linear wave approach.

Notice from equation (6.3) that the approach followed in this thesis to investigate
the extreme response of o�shore wind turbines is the one referred to as �external
conditions�based� approach, see Chapter 2. This means that the extreme response
is not extrapolated from simulations at wind speeds in the range of the cut�in and
cut�out, but directly reproduced by assigning extreme loads.

After running a certain number of simulations, whose input (loads) di�er each
other only by the seeds used to generate the extreme wind and waves, statistical
properties of each realization should be analyzed. Together with the randomness
of the sea and the turbulent wind, to make even wider the di�erence between two
di�erent arbitrarily selected simulations is the randomness of the impulsive contri-
butions due to breaking waves. The latter makes necessary to have at disposal a
minimum number of runs. Due to limited time, here it is not possible to run a large
number of simulations at least 10 min long each. Hence, just to describe the proce-
dure it will be assumed that one selected time series for the case considering the
impacts forces and one realization without impact forces are selected and assumed
to be representative of all the others. Moreover, for all the remaining of the work,
the structural response taken as reference is the overturning moment at the tower
base Myt.

Let us consider the case ofMyt associated with Simulation #04 which is recalled
in �gure 6.2. Subplot 6.2(a) represents the response when no impact is considered.
Let us say that this is the output that one would obtain without the numerical tool
developed in this thesis. On the contrary, subplot 6.2(b) shows for the same sea
severity, established by the same extreme turbulent wind, the response including
the wave impacts.

The statistics of the series in subplot 6.2(a) is given as follows

Minimum Mean Maximum StdDev Skewness Range

-8.291e+004 5.198e+003 8.538e+004 1.893e+004 -2.272e-003 1.683e+005

while the statistics of the series in 6.2(b) is the following

Minimum Mean Maximum StdDev Skewness Range

-9.632e+004 5.256e+003 1.601e+005 1.979e+004 3.494e-001 2.564e+005

A much clearer comparison is possible by the superposition of the two responses
as plotted in �gure 6.3. To extract local maxima form the series a peak�over�
threshold is used [90], [91]. The method is suitable to select the largest value between
positive slope up-crossings of the threshold and to eliminate the majority of smaller
amplitude extremes that are less signi�cant for the current purpose. The choice of
the threshold is pretty important to investigate the statistics of the response and
several methods are available [90] but since it is not the main point here, it is just
used the threshold recommended by IEC61400-1, annex F, which is the mean value
of the original series plus 1.4 the standard deviation.

Figure 6.4 compares the exceeding probability distributions for both the model
taking into account the wave impacts and the model considering only Morison's
contributions (solid red line and solid blue line, respectively). As expected, the upper
tail of the impact model distribution keeps always above the distribution without
impacts. If the distribution of the structural ultimate strength were also plotted in
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(a) Without impacts.

(b) With impacts.

Figure 6.2: Comparison of tower base overturning momentMyt due to EWM plus a
JONSWAP irregular sea with and without the impulsive contributions due to breaking
waves.
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(a) Superposition of the responses time series.
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With impacts
Without impacts

(b) Peaks selected by the threshold �xed as the mean value plus 1.4 times the standard
deviation.

Figure 6.3: Comparison of tower base overturning moment Myt due to EWM plus a
JONSWAP irregular sea with and without the impulsive contributions due to breaking
waves.

the same �gure, it would result clear that the distribution without impacts leads
to an overestimation of the structural capabilities giving rise to unsafe conclusions
when assessing the probability of failure.

The empirical exceeding probability distributions of peaks shown in �gure 6.3
is plotted in �gure 6.4. It is �tted with a Generalized Extreme Value Distribution
(GEV) as presented in �gure 6.5.

For the sake of simplicity we can imagine that the ultimate moment strength
M∗yt the tower can supply is a deterministic value. So we can draw a vertical line
intercepting the two distributions plotted in �gures 6.4 or 6.5 in two points repre-
senting the probabilities that such an ultimate value is not exceeded for the model
with impacts and for the model without impacts, respectively. These two values
prove that the model without impacts leads to relay on a certain level of structural



i
i

�Main_FUP_v06_14112011� � 2011/11/14 � 15:44 � page 174 � #200 i
i

i
i

i
i

174 Achievements and �nal remarks

Myt

E
x
ce
ed
in
g
P
ro
b
a
b
il
it
y
D
is
tr
ib
u
ti
o
n

With impacts
Without impacts

Figure 6.4: Comparison of the exceeding probability distributions of the tower base
bending moment Myt with and without considering the impulsive forces due to over-
turning plunging breakers.
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Figure 6.5: Comparison of the �tted GEV exceeding probability distributions of the
tower base bending moment Myt with and without considering the impulsive forces
due to overturning plunging breakers.

safety which is actually wrong. In other words, the structural safety is overestimated
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because the real probability that M∗yt is not exceeded is given by the distribution
accounting for the wave impacts. On the other hand, in the opposite situation, let
us say in a design phase, one could �x a certain structural reliability which in this
case can be represented by a horizontal line drawn on �gure 6.4. The model not
accounting for the impacts would lead to demand a lower ultimate bending strength
than the more realistic one described by the distribution accounting for the impacts.
Hence, we have that at

Design stage: Given the Pfail, the non-impact wave model will always demand a
lower design load;

Veri�cation stage Given the ultimate structural strength M∗yt, the non-impact
wave model will always underestimate the Pfail of the System.

The above remarks are extremely relevant from a qualitative point of view and
they pave the way for the development of a systematic methodology in assessing
the ultimate loads for o�shore wind turbines by employing the proposed model.
However, in this context, since the probability distributions have been obtained
only from one simulation, a reliable quanti�cation of the error in the assessment of
the probability of failure due to the inaccuracy of the model not accounting for the
impacts cannot be provided.

6.2 Summary and conclusions

At the very end of this work it remains to draw a balance of what was planned
to achieve within this research and what has been really attained.

We started in Chapter 1 with a general overview about the European and world
wind energy scenario. In this framework the most pressing priorities established by
the European Commission to meet the challenging targets in terms of o�shore wind
energy have been recalled in order to provide some undiscussed motivations of gen-
eral interest. In addition to them, further motivations have been identi�ed by discov-
ering some important lacks in modeling o�shore wind turbines. In particular, while
for fatigue design of o�shore energy converters the current approach is satisfactory,
when dealing with extreme wind and waves conditions very dangerous consequence
in evaluating the structural safety may be induced by adopting standard methods
alone. Departing from this background we theorized that an improved numerical
model capable of capturing more realistically the response of a system exposed to
an extreme environment could lead to a more accurate structural risk assessment.
To this aim, after devoting some attention to the basic concepts concerning the
rotor aerodynamics in Chapter 3, a fully nonlinear water waves simulator has been
developed in Chapter 4. The code, written entirely within this research work, im-
plements a higher�order Boundary Element Methods (BEM) to discretize in space
Laplace's equation governing the gravity waves propagation. Then, integrating in
time the kinematic and dynamic boundary conditions - following indeed the so called
Mixed Eulerian�Lagrangian scheme -, it is able to simulate fully nonlinear waves
generated by several types of initial and boundary conditions. A numerical wave
tank, equipped with an absorbing beach, has also been simulated and comparisons
with experimental measurements, along with analytical results (when available),
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validated the numerical tool. The Boundary Element Method�based code permits
to reproduce plunging breaking waves up to the time the tongue re�enters into the
free surface.

The capabilities of the software developed in Chapter 4 have been used to set
up an impact wave model which in turn has been embedded into a stochastic en-
vironment. Indeed, the �rst part of Chapter 5 is devoted to the implementation of
a logic that, once an extreme random sea is generated, whenever breaking waves
occur, the fully nonlinear code is called to perform a re�ned analysis over a pace�
time sub�domain de�ned as a neighborhood centered in the wind turbine location
at the time of the expected breaking wave. Next, in the second part of Chapter 5,
forces stemming from overturning breaking waves are passed to the hydro�aero�
elastic simulator which permits to simulate the whole o�shore wind turbine system
when exposed to severe conditions. Results of such coupled model have then been
thoroughly commented throughout the chapter. More synthetically, in this thesis:

• A new numerical procedure to simulate extreme response of O�shore Wind
Turbines has been developed:

� The BEM-based code reproduces with high accuracy the overturning
plunging breakers;

� An analytical impact model permits to compute the impulsive forces
subsequently passed to the aerolelastic solver;

� The deterministic simulator has been successfully embedded into a stochas-
tic environment;

• Peaks in the structural response due to slapping waves can be up to three
times higher than peaks induced by the standard linear wave approach.

Finally, in this conclusive chapter we came back to what theorized at the begin-
ning of the thesis, and in particular we tried to face those issues raised in Chapter 2.
Here it has been shown that the new numerical model meets all the expectations.
In fact:

• The model developed signi�cantly contributes to turn the simulation of o�-
shore wind turbines exposed to random wave impacts into a mature stage;

• It represents a more reliable tool in predicting ultimate loading conditions;

• It poses a crucial issue about the accuracy in evaluating the structural safety
when non-impact models are employed because dangerous impact waves would
be completely missed;

• The model developed aims at being a design tool as it increases the model
accuracy without penalizing the computational cost normally required;

• An accurate extreme value analysis is necessary for a full quanti�cation of the
Structural Vulnerability.
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AppendixA
Linear wave formulas

Wind generated waves can be grouped in two main categories:

Deep water waves, also referred to as short waves. The water is considered deep
if the water depth d is larger than half the wavelength L, so d > L/2. These
relatively short waves do not �feel� the sea �oor.

Shallow water waves, also known as long waves. The water is considered to be
shallow if the water depth d is less than 1/20 of the wavelength. Namely,
d < L/20. In this case the sea bottom has a signi�cant in�uence on the
characteristics of these relatively short waves.

Thus, in the case of shallow water conditions (�nite water depth) the kinematic
and dynamic quantities for a single-harmonic (regular) wave are given as follows:

Velocity potential

φ (p, t) =
ga

ω

cosh k (y + d)

cosh kd
sin (kx− ωt) (A.1)

Dispersion relation
ω2 = gk tanh (kd) (A.2)

Wavelength-wave period relation
L = T

√
gd (A.3)

Free surface elevation
η (x, t) = a cos (kx− ωt) (A.4)

Dynamic pressure

pD (p, t) = −ρgy + ρga
cosh k (y + d)

cosh kd
cos (kx− ωt) (A.5)

Particle displacement along the x�axis

ξ (p, t) = −acosh k (y + d)

sinh kd
sin (kx− ωt) (A.6)

Particle displacement along the y�axis

η (p, t) = a
sinh k (y + d)

sinh kd
cos (kx− ωt) (A.7)

Enzo Marino, An integrated nonlinear wind-waves model for offshore wind turbines  
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Velocity along the x�axis

vx (p, t) = aω
cosh k (y + d)

sinh kd
cos (kx− ωt) (A.8)

Velocity along the y�axis

vy (p, t) = aω
sinh k (y + d)

sinh kd
sin (kx− ωt) (A.9)

Acceleration along the x�axis

ax (p, t) = aω2 cosh k (y + d)

sinh kd
sin (kx− ωt) (A.10)

Acceleration along the y�axis

ay (p, t) = −aω2 sinh k (y + d)

sinh kd
cos (kx− ωt) (A.11)

Whereas, in deep water conditions (in�nite water depth), the kinematic and
dynamic quantities for a single-harmonic (regular) wave are given as follows:

Velocity potential
φ (p, t) = eky sin (kx− ωt) (A.12)

Dispersion relation
ω2 = gk (A.13)

Wavelength-wave period relation

L =
gT 2

2π
(A.14)

Free surface elevation
η (x, t) = a cos (kx− ωt) (A.15)

Dynamic pressure
pD (p, t) = −ρgy + gaeky cos (kx− ωt) (A.16)

Particle displacement along the x�axis

ξ (p, t) = −aeky sin (kx− ωt) (A.17)

Particle displacement along the y�axis

η (p, t) = aeky cos (kx− ωt) (A.18)

Velocity along the x�axis

vx (p, t) = aωeky cos (kx− ωt) (A.19)
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Velocity along the y�axis

vy (p, t) = aωeky sin (kx− ωt) (A.20)

Acceleration along the x�axis

ax (p, t) = aω2eky sin (kx− ωt) (A.21)

Acceleration along the y�axis

ay (p, t) = −aω2eky cos (kx− ωt) (A.22)

where a = H/2 is the wave amplitude, k is the wave number, ω is the circular
frequency, d the water depth. The coordinates (x, y) of points p are referred to a
Cartesian system having the y�axis upwardly oriented and the x axis positive in
the wave propagation direction with the origin on the still water level.
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AppendixB
Numerical dicretization of Laplace's equation

B.1 Green's formulation

Laplace's equation (4.8) discussed in Chapter 4 together with the boundary and
initial conditions represents a Boundary Value Problem (BVP) whose approximate
solution is obtained by means of weighted residual methods [38]. The weighting
function φ∗ (p, pc) is the Green function that, for a 2D problem, reads as follows

φ∗ (p, pc) =
1

2π
ln

1

R
(B.1)

where R =
√

(xp − xpc)2
+ (yp − ypc)2 is the distance between the point p and

the collocation point pc. By means of equation (B.1) as well as the �rst and second
Green's identities, the BVP is turned into the following Boundary Integral Equation
(BIE).

c (pc)φ (pc) +

∫

Γ

φ (p) q∗ (p, pc) dΓ−
∫

Γ

φ∗ (p, pc) q (p) dΓ = 0 (B.2)

where

q (p) = ∇φ (p) · n̄ (B.3)

q∗ (p, pc) = ∇φ∗ (p, pc) · n̄ (B.4)

are respectively the �ux (normal velocity component) and the normal derivative of
the Green function. The coe�cient c (pc) depends on the positions of the collocation
point pc. In general it is given as ϑ/2π, where ϑ denotes the internal angle in radians
of the corner at pc. When there is no corner, that is when ϑ = π, i.e. when pc lies
on a smooth boundary, then c = 1/2; when the collocation point is internal to the
�uid domain c = 1 and �nally when pc is outside the domain c = 0 [38].

The boundary integral equation (B.2) is discretized into NE isoparametric qua-
dratic elements in such a way nodal values belonging to j�th element are approxi-
mated as follows

φ(j) =
3∑

k=1

ϕk (s)φ
(j)
k (B.5)

q(j) =
3∑

k=1

ϕk (s) q
(j)
k (B.6)

Enzo Marino, An integrated nonlinear wind-waves model for offshore wind turbines  
ISBN 978-88-6655-051-8 (print) ISBN 978-88-6655-053-2 (online) © 2011 Firenze University Press
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so that equation (B.2) becomes

c (pc)φ (pc) +

NE∑

j=1

∫

Γj

3∑

k=1

ϕk (s)φ
(j)
k q∗(j)pc dΓ+

−
NE∑

j=1

∫

Γj

3∑

k=1

ϕk (s) q
(j)
k φ∗(j)pc dΓ (B.7)

where

q∗(j)pc = −
(
x(j) − xpc

)
n

(j)
x +

(
y(j) − ypc

)
n

(j)
y

2π
[(
x(j) − xpc

)2
+
(
y(j) − ypc

)2] (B.8)

and

φ∗(j)pc = − 1

4π
ln

[(
x(j) − xpc

)2

+
(
y(j) − ypc

)2
]

(B.9)

The shape functions adopted in equation (B.7) are as follows

ϕ1 (s) =
1

2
s (s− 1) ; ϕ2 (s) = (1− s) (1 + s) ; ϕ3 (s) =

1

2
s (1 + s) (B.10)

Integrals in equation (B.7) can be transformed into integrals over the shape
functions domain [−1, 1] as follows

c (pc)φ (pc) +

NE∑

j=1

∫ 1

−1

3∑

k=1

ϕk (s)φ
(j)
k q∗(j)pc (s)J (j)(s)ds+

−
NE∑

j=1

∫ 1

−1

3∑

k=1

ϕk (s) q
(j)
k φ∗(j)pc (s)J (j)(s)ds = 0 (B.11)

If the collocation point pc assumes in turn all NN boundary nodes, the above
equation becomes

ciφi +

NE∑

j=1

3∑

k=1

h
(j)
ik φ

(j)
k −

NE∑

j=1

3∑

k=1

g
(j)
ik q

(j)
k = 0 i = 1 : NN (B.12)

that is

ciφi + h
(1)
i1 φ

(1)
1 + h

(1)
i2 φ

(1)
2 + h

(1)
i3 φ

(1)
3 + . . .+ h

(NE)
i1 φ

(NE)
1 + h

(NE)
i2 φ

(NE)
2 + h

(NE)
i3 φ

(NE)
3 +

− g(1)i1 φ
(1)
1 − g(1)i2 φ

(1)
2 − g(1)i3 φ

(1)
3 − . . .− g(NE)

i1 φ
(NE)
1 − g(NE)

i2 φ
(NE)
2 − g(NE)

i3 φ
(NE)
3 = 0

where it has been set

h
(j)
ik =

∫ 1

−1

q
∗(j)
i (s)ϕk (s)J (j)(s)ds (B.13)

g
(j)
ik =

∫ 1

−1

φ
∗(j)
i (s)ϕk (s)J (j)(s)ds (B.14)
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The number NN of boundary nodes is given by NN = 2NE+number of corners
of the domain Ω.

To compute the velocity of particles internal to the �uid domain, the gradient
of the velocity potential is obtained by di�erentiating equation (B.12). Thus, if the
collocation point pc assumes in turn all NNint where the velocity is sought, the
gradient of the velocity potential writes as follows

vxi =

NE∑

j=1

3∑

k=1

g
(j)
ik,xq

(j)
k −

NE∑

j=1

3∑

k=1

h
(j)
ik,xφ

(j)
k i = 1 : NNint (B.15)

vyi =

NE∑

j=1

3∑

k=1

g
(j)
ik,yq

(j)
k −

NE∑

j=1

3∑

k=1

h
(j)
ik,yφ

(j)
k i = 1 : NNint (B.16)

where

g
(j)
ik,x =

∫ 1

−1

φ
∗(j)
i,x (s)ϕk (s)J (j)(s)ds (B.17)

g
(j)
ik,y =

∫ 1

−1

φ
∗(j)
i,y (s)ϕk (s)J (j)(s)ds (B.18)

h
(j)
ik,x =

∫ 1

−1

q
∗(j)
i,x (s)ϕk (s)J (j)(s)ds (B.19)

h
(j)
ik,y =

∫ 1

−1

q
∗(j)
i,y (s)ϕk (s)J (j)(s)ds (B.20)

For the sake of completeness, the gradient of the fundamental solution and its
normal derivative for the i�th internal point are also given in the following

φ
∗(j)
i,x = − 1

4π

2
(
x(j) − xi

)
(
x(j) − xi

)2
+
(
y(j) − yi

)2 (B.21)

φ
∗(j)
i,y = − 1

4π

2
(
y(j) − yi

)
(
x(j) − xi

)2
+
(
y(j) − yi

)2 (B.22)

and

q
∗(j)
i,x =−

[(
x(j)− xi

)2
+
(
y(j)− yi

)2]
n
(j)
x −2

[(
x(j)− xi

)
n
(j)
x +

(
y(j)− yi

)
n
(j)
y

](
x(j)− xi

)

2π
[
(x(j)− xi)2 + (y(j)− yi)2

]2

(B.23)

q
∗(j)
i,y =−

[(
x(j)− xi

)2
+
(
y(j)− yi

)2]
n
(j)
y −2

[(
x(j)− xi

)
n
(j)
x +

(
y(j)− yi

)
n
(j)
y

](
y(j)− yi

)

2π
[
(x(j)− xi)2 + (y(j)− yi)2

]2

(B.24)

The Jacobian J (j)(s) referred to the j�th boundary element is evaluated by
di�erentiating the shape functions as follows

J (j)(s) =

√(
dx(j)

ds

)2

+

(
dy(j)

ds

)2

(B.25)
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where the above derivatives are computed as follows

dx(j)

ds
=

3∑

k=1

dϕk
ds

x
(j)
k (B.26)

dy(j)

ds
=

3∑

k=1

dϕk
ds

y
(j)
k (B.27)

Finally, equation (B.12) can be rewritten in matrix form as follows

ciφi + Ĥiqφq = Giqqq (B.28)

for which
Hiqφq = Giqqq (B.29)

where Hiq = ciδiq + Ĥiq and e i = 1 : NN and q = 1 : 3NE.
In the same way, equations (B.15) and (B.16) can be written in matrix form as

follows

vxi =Giq,xqq −Hiq,xφq (B.30)

vyi =Giq,yqq −Hiq,yφq (B.31)

where i = 1 : NNint and q = 1 : 3NE.
As soon as the primary unknowns of the system are computed (see the next two

sections) the gradient of the velocity potential expressed by equations (B.30) and
(B.31) can be readily computed.

B.1.1 Assembling

The matrix system (B.29), as well as (B.30) and (B.31), are of course not square
because each boundary element has been treated as a single part without being
connected with its two adjacent elements. An assembling algorithm is therefore
required. The connectivity matrix has the following form

Conn =




Element n1 n2 n3

1 n
(1)
1 n

(1)
2 n

(1)
3

. . . . . . . . . . . .

j − 1 n
(j−1)
1 n

(j−1)
2 n

(j−1)
3

j n
(j)
1 n

(j)
2 n

(j)
3

j + 1 n
(j+1)
1 n

(j+1)
2 n

(j+1)
3

. . . . . . . . . . . .

NE n
(NE)
1 n

(NE)
2 n

(NE)
3




Once the connectivity matrix has been de�ned, algorithm 4 turns the system
matrices H and G into the square form HH and GG, respectively. By means of the
same algorithm, matrices H,x, H,y, G,x and G,y are transformed in the square forms
denoted by HH,x, HH,y, GG,x and GG,y.
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Algorithm 4: Assembling
input : H and G of size NN × 3NE
output: HH and GG of size NN ×NN
for i = 1 to NN do

for j = 1 to NE do
for k = 2 to 4 do

index = Conn (j, k)
q = 3j − 3 + (k − 1)
HH (i, index) = HH (i, index) +H (i, q)
GG (i, index) = GG (i, index) +G (i, q)

B.1.2 Reordering the system and continuity conditions

The system
HHijφj = GGijqj (B.32)

needs to be rearranged according to the boundary condition type in order to get an
algebraic system in the standard form

AijXj = bi (B.33)

where all the unknown are collected in X̄ and all the known terms, among velocity
potential and �ux, are collected in b̄.

Singularities at the upper left and upper right corners of the domain, where two
di�erent boundary conditions coexist, have been removed by the so called �double�
node technique�. However, this expedient causes that for each of the two corners
the matrix Ā has two identical row and consequently the system results singular.
To avoid this the continuity condition is inserted according to [43] (see section 4.3
of the paper).

Finally, once the system unknowns are found, the gradient of the velocity po-
tential at points internal to the �uid domain is computed as follows

vxi =GGij,xqj −HHij,xφj (B.34)

vyi =GGiq,yqj −HHiq,yφj (B.35)

where i = 1 : NNint and j = 1 : NN .

B.2 Numerical dervatives

Once the velocity potential is known on the free surface, the tangential compo-
nent of the particle velocity at each node is computed by the following numerical
scheme

vtf = ∇φ · t̄ (B.36)

It is straightforward to prove that the above equation can be rewritten as follows

vtf =

(
∂φ

∂x

dx

ds
+
∂φ

∂y

dy

ds

)
1

J (s)
=

dφ

ds

1

J (s)
(B.37)
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where for the j-th element the velocity potential derivative with respect to the
curvilinear coordinate s, as well as the derivatives involved in the Jacobian, are
obtained by di�erentiating the shape functions as follows

dφ

ds
=

dϕi
ds

φ
(j)
i (B.38)

dx

ds
=

dϕi
ds

x
(j)
i (B.39)

dy

ds
=

dϕi
ds

y
(j)
i (B.40)

B.3 Gradient of the velocity �eld

Let us start form the gradient of the velocity �eld

∇v̄ =

(
vx,x vx,y
vx,y vy,y

)

The curve Γf : IR→ IR2, i.e. the free surface, is parameterized as follows

s 7→ Γf (s) =

{
x (s)
y (s)

The velocity �eld is also parameterized as follows

s 7→ v̄ (s) =

{
vx (x (s) , y (s) , t)
vy (x (s) , y (s) , t)

The chain rule allows to write the following partial derivatives

∂vx

∂s
=
∂vx

dx

dx

ds
+
∂vx

dy

dy

ds
(B.41)

∂vy

∂s
=
∂vy

dx

dx

ds
+
∂vy

dy

dy

ds
(B.42)

Next, the continuity equation assures that

∂vx

∂x
= −∂v

y

∂y
(B.43)

while the irrotational �ow hypothesis allows to write

∂vy

∂x
=
∂vx

∂y
(B.44)

and both of the above equations transform the system of equations (B.41) and
(B.42) into

∂vx

∂s
=
∂vx

∂x

dx

ds
+
∂vy

∂x

dy

ds
(B.45)

∂vy

∂s
=
∂vy

∂x

dx

ds
+
∂vx

∂x

dy

ds
(B.46)
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which can be solved for ∂vx

∂x and ∂vy

∂x to get

∂vx

∂x
=

1

D

(
∂vx

∂s

dx

ds
− ∂vy

∂s

dy

ds

)
(B.47)

∂vy

∂x
=

1

D

(
∂vy

∂s

dy

ds
+
∂vy

ds

dx

ds

)
(B.48)

(B.49)

where

D (s) = J (s)
2

=

(
dx

ds

)2

+

(
dy

ds

)2

(B.50)

Finally the second term of the right-hand side of equation (4.21) becomes

Dvx

Dt
= v̇xf + vxf,xv

x + vxf,yv
y (B.51)

Dvy

Dt
= v̇yf + vyf,xv

x + vyf,yv
y (B.52)

where the components ∂vy

∂y and ∂vx

∂y have been found by using the continuity and
irrotational equations.

B.4 Tests of convergence

In order to check the reliability of the BEM code it is important �rst to show the
reliability of the solution of the steady Laplace's equation. This is in fact the core
of the numerical wave simulator because at each time step a stationary problem is
solved.

To this aim in the �rst two tests a very well known problem in solid mechanics
is presented: the Saint Venant torsional problem. Indeed, given a cylindrical beam,
i. e. a solid with one dimension dominating with respect to the others, and denoting
its cross section by A, the whole state of stress induced by a torsional couple is
known when either the stress function ψ or the warping function ϕ are known.
Details on the torsion problem are available in [92].

The last case regards a a general potential problem de�ned on a square domain
with mixed boundary condition of the type as in the case of water waves.

B.4.1 Torsion: Dirichlet's problem

The problem can be formulated in terms of the stress function ψ as follows
{

∇2ψ (x1, x2) = 0 ∀ p ∈ A
ψ (x1, x2) = 1

2

(
x2

1 + x2
2

)
∀ p ∈ ∂A (B.53)

When the cross section A has an elliptical shape, the analytical solution writes
as follows

ψ =
a2b2

a2 + b2
+

1

2

a2 − b2
a2 + b2

(x1 − x2) (B.54)

where a and b are the major and minor axes of the ellipse.
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NE 2 4 8 16 32 64

errL2
2 74.9129 0.7892 0.0017 0.0000 0.0000 0.0000

errL2 8.6552 0.8884 0.0408 0.0028 0.0001 0.0000

Table B.1: errL2
2 and errL2 of stress function for di�erent boundary mesh.

Given such a domain, for four boundary discretizations more and more re�ned
we compare the numerical and analytical solutions by using the norm L2 of the
error computed as

errL2 =

√√√√
n∑

i=1

(
φAnal.i − φNum.i

)2
(B.55)

where n is the number of points uniformly distributed across the domain A at
which the two solutions are evaluated. See the red dots into the domains plotted
in �gure B.1. The �gure shows di�erent boundary discretizations form a number of
boundary elements NE = 2 up to NE = 64.

The error decrease quadratically and approaches zero with sixteen elements. See
�gure B.2. The rate of convergence is pretty satisfactory.

B.4.2 Torsion: Neumann's problem

The excellent result shown in the previous section needs to be con�rmed also in
the case when mixed boundary conditions are applied (as the case of our numerical
wave simulator) where discontinuities occur. As already mentioned, this problem is
faced by introducing the double�node technique. To test such a circumstance, the
domain is here restricted only to one quarter of the all ellipse.

{
∇2ϕ (x1, x2) = 0 ∀ p ∈ A

∇ϕ · n̄ = x2n1 − x1n2 ∀ p ∈ ∂A (B.56)

In the case of Dirichlet's problem no corners were involved, thus the double�node
method was not necessary. On the contrary, for the one forth of ellipse, there are
three corners. For those where Neumann-Dirichlet boundary conditions are assigned
the double�node technique works quite well after implementing the the kinematic
and continuity conditions proposed in [43]. But at the symmetry point, in the center
of the ellipse, the Dirichlet�Dirichlet condition produces two identical equations.
Hence the system is again singular. To avoid this, the two nodes have been shifted
of a very small quantity inside the elements [38]. With this expedient results are
su�ciently accurate.

The domain discretization is shown in �gure B.3. While the Root Mean Square
Error convergence in shown in table B.2 and �gure B.4.

B.4.3 Potential problem on a square domain

In this case a square domain Ω whose boundaries Γb,Γi2 ,Γf ,Γi1 are straigth lines
with lengths Lb = Li2 = Lf = Li1 = 1 m is considered. The Neumann boundary
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BEM solution of S. Venant Torsional Problem, NE = 2

x1

x
2

(a) NE = 2

BEM solution of S. Venant Torsional Problem, NE = 4

x1

x
2

(b) NE = 4

BEM solution of S. Venant Torsional Problem, NE = 32

x1

x
2

(c) NE = 32

BEM solution of S. Venant Torsional Problem, NE = 64

x1

x
2

(d) NE = 64

Figure B.1: Mesh re�nement in the case of an elliptical cross section, domain for a
Dirichlet's torsional problem.

NE

lo
g(
R
M
S
E
)

Figure B.2: Convergence of errL2 in the case of Dirichlet's torsion problem.
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BEM solution of S. Venant Torsional Problem, NE1 =32, NEe =1, NE2 =16

x1

x
2

(a) NE1, NEe, NE2 = 32, 1, 16

BEM solution of S. Venant Torsional Problem, NE1 =32, NEe =32, NE2 =16

x1

x
2

(b) NE1, NEe, NE2 = 32, 128, 16

Figure B.3: Mesh re�nement in the case of an elliptical cross section, domain for a
Neumann's torsional problem.

NEe

lo
g(
R
M
S
E
)

Figure B.4: Convergence of errL2 in the case of Neumann's torsion problem.
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NEe 1 2 4 8 16 32 64 128

errL2
2 2.5598 0.2588 0.0183 0.0029 0.0008 0.0003 0.0002 0.0002

errL2 1.5999 0.5087 0.1353 0.0539 0.0278 0.0177 0.0139 0.0125

Table B.2: errL2
2 and errL2 of torsion function for di�erent boundary mesh.

x

y

(a) Number of elements per side NE = 2

x

y

(b) Number of elements per side NE = 16

Figure B.5: Two discretizations for the solution of the potential problem de�ned on
a square domain.

conditions are prescribed as follows

∂Φ (p)

∂n̄
=





a cos (a (y + d)) ∀p ∈ Γi1
−ae−a cos (a (y + d)) ∀p ∈ Γi2
0 ∀p ∈ Γb

while on the remaining boundary the Dirichlet condition is Φ (p) = 0 ∀p ∈ Γf . a is
a constant equals to 3π/2 and d = Li1 = Li2 is the distance between the upper and
lower boundaries (in the next cases it will be the water depth). The exact solution
of this problem is Φ (p) = e−ax cos (a (y + d)).

The vector X̄ collecting all the unknowns of the problem concatenates 2NEb+1
elements that are the potential function over Γb, 2NEi2 + 1 elements that are the
potential function over Γi2 , 2NEf+1 elements that are the �uxes over Γf and �nally
2NEi1 + 1 elements that are the potential function over Γi1 .

To investigate the error convergence of the steady second order boundary ele-
ment solver, the global error errL2 has been evaluated as function of the number
of elements per boundary. All the four boundaries have been discretized with the
same number of elements. See �gure B.5.

Figure B.6 shows the convergence of the error computed as

errL2 =

√√√√
k=n∑

k=1

(Xk −Xk
a )2 (B.57)
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Number of elements per side NE

er
rL

2
=

√
(X

−
X

a
)2

Error vs. NE

test
NE−2

Figure B.6: Error convergence of the error.

where X and Xa are the vectors collecting the numerical and the exact analytical
solution, respectively, only on the boundary.

The global error decreases quadratically as the number of element per boundary
NE increases. This rate of convergence is justi�ed by the order of the boundary
elements discussed above. When the number of elements per side is quite low, when
it doubles from 2 to 4, the convergence is even faster then quadratic.



i
i

�Main_FUP_v06_14112011� � 2011/11/14 � 15:44 � page 193 � #219 i
i

i
i

i
i

Bibliography

[1] E. Hau. Wind Turbines: Fundamentals, Technologies, Application, Eco-
nomics. Springer, 2006.

[2] IEC 61400-3 Wind Turbines Part 3: Design requirements for o�shore wind
turbines, Edition 1.0 2009-02.

[3] T. Plifke, S.T. Sperbeck, M. Urban, U. Peil, and H. Budelmann. A standard-
ized methodology for managing disaster risk - an attempt to remove ambi-
guity. In Proceedings of the 5th International Probabilistic Workshop, Ghent,
Belgium, 2007.

[4] T. Burton, D. Sharpe, N. Jenkins, and E. Bossanyi. Wind Energy Handbook.
John Wiley & Sons, Ltd, 2001.

[5] T. Sarpkaya and M. Isaacson. Mechanics of Wave Forces on O�shore Struc-
tures. Van Nostrand Reinhold Company, 1981.

[6] D.G. Dommermuth, D.K.P. Yue, W.M. Lin, R.J. Rapp, E.S. Chan, and W.K.
Melville. Deep-water plunging breakers: a comparison between potential the-
ory and experiments. Journal of Fluid Mechanics, 189:423�442, 1988.

[7] Design of o�shore wind turbine structures. Technical report, O�shore Stan-
dard Det Norske Veritas DNV-OS-J101.

[8] J. Wienke and H. Oumeraci. Breaking wave impact force on a vertical and
inclined slender pile�theoretical and large-scale model investigations. Coastal
Engineering, 52(5):435 � 462, 2005.

[9] J.M. Jonkman and L. Buhl Jr. Marshall. FAST user's guide. Technical report,
NREL, 2005.

[10] S. Chakrabarti, editor. Handbook of O�shore Engineering. Elsevier Ltd., 2005.

[11] M.K. Ochi. Ocean waves: the stochastic approach. Cambridge Ocean Tech-
nology Series, 2005.

[12] M.K. Ochi. A series of JONSWAP wave spectra for o�shore structure design.
In 2nd International Conference on the Behaviour of o�shore Structure, pages
45�86, 1979.

[13] G. Clauss, E. Lehmann, and C. Ostergaard. O�shore Structures: Conceptual
Design and Hydromechanics. Springer, London, UK, 1992.



i
i

�Main_FUP_v06_14112011� � 2011/11/14 � 15:44 � page 194 � #220 i
i

i
i

i
i

194 BIBLIOGRAPHY

[14] J.M.J. Journée and W.W. Massie. O�shore Hydrodynamics. Delft University
of Technology, 2001.

[15] Global Wind Report. Technical report, GWEC, Global Wind Energy Council,
2008.

[16] O. Ditlevsen and H.O. Madsen. Structural Reliability Method. John Wiley &
Sons Ltd, 1996.

[17] E.J. Plate. Flood risk and �ood management. Journal of Hydrology, 267(1-
2):2 � 11, 2002.

[18] M.H. Faber. Risk and Safety in Civil, Surveying and Environmental Engi-
neering. Swiss Federal Institute of Technology, 2005.

[19] J.D. Sørensen. Structural Risk Theory And Risk Analysis. 2004.

[20] G. Augusti, C. Borri, and H.J. Niemann. Is aeolian risk as signi�cen as other
environmantal risks? Reliability Engineering and System Safety, 74:227�237,
2001.

[21] O. Ditlevsen. Stochastic model for joint wave and wind loads on o�shore
structures. Structural Safety, 24:139�163, 2002.

[22] M. Ciampoli, F. Petrini, and G. Augusti. A procedure for performance-based
wind engineering. In ICOSSAR 2009, 2009.

[23] C. Mannini and G. Bartoli. The problem of uncertainty in the measurement
of aerodynamic derivatives. In ICOSSAR, 2009.

[24] C. Mannini. Flutter Vulnerability Assessment of Flexible Bridges. PhD thesis,
University of Florence - TU Braunschweig, 2006.

[25] P.W. Cheng. A reliability based design methodology for extreme respnse of
o�sore wind turbines. PhD thesis, DUWIND, Delft University Wind Energy
Research Institute, 2002.

[26] P.W. Cheng, G.J.W. van Bussel, G.A.M. van Kuik, and J.H. Vugts.
Reliability-based design methods to determine the extreme response distri-
bution of o�shore wind turbines. Wind Energy, 6:1�22, 2003.

[27] K. Johannessen. Joint distribution for wind and waves in the northern north
sea. In Proceedings of the Eleventh International O�shore and Polar Engi-
neering Conference, 2001.

[28] O. Ditlevsen and H.O. Madsen. Structural Reliability Methods. 2007.

[29] S. Zachary, G. Feld, G. Ward, and J. Wolfram. Multivariate extrapolation in
the o�shore environment. Applied Ocean Research, 20(5):273 � 295, 1998.

[30] M. Rosenblatt. Remarks on a multivariate transformation. Annals of Math-
ematical Statistics, 23:470�472, 1952.



i
i

�Main_FUP_v06_14112011� � 2011/11/14 � 15:44 � page 195 � #221 i
i

i
i

i
i

An integrated nonlinear wind�waves model for o�shore wind turbines 195

[31] C.H. Kim. Nonlinear Waves and O�shore Structures. Worl Scienti�c - Ad-
vanced Series on Ocean Engineering - Vol. 27, 2008.

[32] Y. Goda. Random Seas And Design Of Maritime Structures. Advanced Series
On Ocean Engineering, Volume 15 - World Scienti�c Publishing Company,
2000.

[33] C.A. Brebbia and S. Walker. Dynamic analysis of o�shore structures. Newnes-
Butterworths, 1979.

[34] M.O.L. Hansen. Aerodynamics of Wind Turbines. Earthscan, 2008.

[35] P.J. Moriarty and A.C. Hansen. Aerodyn theory manual. Technical report,
NREL/EL-500-36881, 2005.

[36] IEC 61400-1 wind Turbines Part 1: Design requirements, Edition 3.0 2005-08.

[37] S. K. Chakrabarti. Hydrodynamics of O�shore Structures. WIT Press (UK),
1998.

[38] C.A. Brebbia and J. Dominguez. Boundary Elements, An Introductory
Course. WIT Press, Boston, Southamton, 1998.

[39] P. Boccotti. Wave Mechanics for Ocean Engineering. Elsevier Oceanography
Series, 2000.

[40] M.S. Longuet-Higgins and E.D. Cokelet. The deformation of steep sur-
face waves on water. i. a numerical method of computation. Proceedings of
the Royal Society of London. Series A, Mathematical and Physical Sciences,
350(1660):1�26, 1976.

[41] J.W. Dold and D.H. Peregrine. An e�cient boundary integral method for
steep unsteady water waves. Numerical Methods for Fluid Dynamics II, pages
671�679, 1986.

[42] S.T. Grilli, J. Skourup, and I.A. Svedsen. An e�cient boundary element
method for nonlinear water waves. Engineering Analysis with Boundary Ele-
ments, 6(2):97�107, 1989.

[43] S.T. Grilli and I.A. Svendsen. Corner problems and global accuracy in the
boundary element solution of nonlinear wave �ows. Engineering Analysis with
Boundary Elements, 7(4):178 � 195, 1990.

[44] T. Nakayama. Boundary element analysis of nonlinear water wave problems.
International Journal for Numerical Methods in Engineering, 19(7):953�970,
1983.

[45] T. Nakayama. A computational method for simulating transient motions of
an incompressible inviscid �uid with a free surface. International Journal for
Numerical Methods in Fluids, 10(6):683�695, 1990.



i
i

�Main_FUP_v06_14112011� � 2011/11/14 � 15:44 � page 196 � #222 i
i

i
i

i
i

196 BIBLIOGRAPHY

[46] V. Vinayan and S. A. Kinnas. A bem for the propagation of nonlinear pla-
nar free-surface waves. Electronic Journal of Boundary Elements, 5(1):17�40,
2007.

[47] W. Bai and R. Eatock Taylor. Fully nonlinear simulation of wave interaction
with �xed and �oating �ared structures. Ocean Engineering, 36(3-4):223 �
236, 2009.

[48] W. Koo and M.-H. Kim. Freely �oating-body simulation by a 2d fully non-
linear numerical wave tank. Ocean Engineering, 31(16):2011 � 2046, 2004.

[49] X.T. Zhang, B.C. Khoo, and J. Lou. Wave propagation in a fully nonlinear
numerical wave tank: A desingularized method. Ocean Engineering, 33(17-
18):2310 � 2331, 2006.

[50] J. N. Newman. Marine Hydrodynamics. The MIT Press, 1977.

[51] W.M. Lin. Nonlinear motion of the free surface near a moving body. PhD
thesis, Massachusetts Institut of Technology, 1984.

[52] J. Lighthill. Waves in �uids. Cambridge University Press, 2011.

[53] T. Srisupattarawanit, R. Niekamp, and H.G. Matthies. Simulation of nonlin-
ear random �nite depth waves coupled with an elastic structure. Computer
Methods in Applied Mechanics and Engineering, 195(23-24):3072 � 3086, 2006.
Incompressible CFD.

[54] T. Srisupattarawanit. Simulation of O�shore Wind Turbines by Computa-
tional Multi-Physics. PhD thesis, Technischen Universität Carolo-Wilhelmina
zu Braunschweig, 2007.

[55] R. Machane and E. Canot. High-order schemes in boundary element meth-
ods for transient non-linear free surface problems. International Journal for
Numerical Methods in Fluids, 24(10):1049�1072, 1997.

[56] W. Tsai and D. K. P. Yue. Computation of nonlinear free-surface �ows. Annual
Review of Fluid Mechanics, 28:249�278, 1996.

[57] J.W. Dold. An e�cient surface-integral algorithm applied to unsteady gravity
waves. Journal of Computational Phisycs, 103:90 � 115, 1992.

[58] P. Wang, Y. Yitao, and M.P. Tulin. An e�cient numerical tank for non-linear
water waves, based on the multi-subdomain approach with bem. International
Journal for Numerical Methods in Fluids, 20:1315�1336, 1995.

[59] D.E. Medina, J.A. Liggett, R.A. Birchwood, and K.E. Torrance. A consis-
tent boundary element method for free surface hydrodynamic calculations.
International Journal for Numerical Methods in Fluids, 12:835 � 857, 1991.

[60] S.T. Grilli. Depth inversion in shallow water based on nonlinear properties of
shoaling periodic waves. Coastal Engineering, 35(3):185 � 209, 1998.



i
i

�Main_FUP_v06_14112011� � 2011/11/14 � 15:44 � page 197 � #223 i
i

i
i

i
i

An integrated nonlinear wind�waves model for o�shore wind turbines 197

[61] J. Horrillo S.T. Grilli. Numerical generation and absorption of fully nonlinear
periodic waves. Journal of Engineering Mechanics, 123, 1997.

[62] R. Subramanya S.T. Grilli. Quasi-singular integrals in the modeling of non-
linear water waves in shallow water. Engineering Analysis with Boundary
Elements, 13(2):181 � 191, 1994.

[63] S.T. Grilli and I.A. Svendsen. Corner problems and global accuracy in the
boundary element solution of nonlinear wave �ows. Engineering Analysis with
Boundary Elements, 7(4):178 � 195, 1990.

[64] R. Cointe. Numerical simulation of a wave channel. Engineering Analysis
with Boundary Elements, 7(4):167 � 177, 1990.

[65] N. Drimer and Y. Agnon. An improved low-order boundary element method
for breaking surface waves. Wave Motion, 43(3):241 � 258, 2006.

[66] J. R. Morison, M. P. O'Brien, J. W. Johnson, and S. A. Schaaf. The force
exerted by surface wave on piles. Petroleum Transactions (American Institute
of Mining Engineers), 189:149�154, 1950.

[67] R.G. Dean and R.A. Dalrymple. Water Wave Mechanics for Engineers and
Scientists. World Scienti�c - Advanced Series on Ocean Engineering - Volume
2, 1984.

[68] J.D. Wheeler. Methods for calculating forces produced by irregular waves.
Journal of Petroleum Technology, 249:359�367, 1970.

[69] G. Cuomo, W. Allsop, T. Bruce, and J. Pearson. Breaking wave loads at
vertical seawalls and breakwaters. Coastal Engineering, 57(4):424 � 439, 2010.

[70] M.K. Ochi and C.-H. TSAI. Prediction of impact pressure induced by breaking
waves on vertical cylinders in random seas. Applied ocean research, 6:157�163,
1984.

[71] J. Wienke. Druckschlagbelastung auf schlanke zylindrische Bauwerke
durch brechende Wellen-theoretische und groÿmaÿstäbliche Laborunter-
suchungen - PhD thesis (in German). PhD thesis, TU Braunschweig,
http://www.biblio.tu-bs.de, 2001.

[72] M. Kitahata Y. Goda, S. Haranaka. Study on impulsive breaking wave forces
on piles. Report Port and Harbour Technical Research Institute, 6(5):1 � 30,
1966.

[73] H. Wagner. Über stoÿund gleitvorgänge an der ober�äche von �üssigkeiten.
Zeitschrift für angewandte Mathematik und Mechanik, 12(4):193 � 215, 1932.

[74] R. Cointe. Hydrodynamic impact analysis of a cylinder. Journal of O�shore
Mechanics and Arctic Engineering, 109:237� 243, 1987.

[75] J. Jonkman, S. Butter�eld, W. Musial, and G. Scott. De�nition of a 5-MW
reference wind turbine for o�shore system development. Technical report,
NREL, 2009.



i
i

�Main_FUP_v06_14112011� � 2011/11/14 � 15:44 � page 198 � #224 i
i

i
i

i
i

198 BIBLIOGRAPHY

[76] H.J.T. Kooijman, C. Lindenburg, D. Winkelaar, and E.L. van der Hooft.
Dowec 6 mwpre-design aero-elastic modelling of the dowec 6 mw pre-design
in phatas. Technical report, DOWEC-F1W2-HJK-01-046/9 public version,
2003.

[77] C. Lindenburg. Aeroelastic modelling of the lmh64-5 blade. Technical report,
DOWEC Dutch O�shore Wind Energy Converter 1997 2003 Public Reports,
2002.

[78] E.-S. Chan. Mechanics of deep water plunging-wave impacts on vertical struc-
tures. Coastal Engineering, 22(1-2):115 � 133, 1994. Special Issue Vertical
Breakwaters.

[79] E-S. Chan, H.-F. Cheong, and B.-C. Tan. Laboratory study of plunging wave
impacts on vertical cylinders. Coastal Engineering, 25(1-2):87 � 107, 1995.

[80] S.R. Winterstein, T.C. Ude, C.A. Cornell, P. Bjergager, and S. Haver. Envi-
ronmental parameters for extreme response: Inverse form with omission fac-
tors. In Proceedings, ICOSSAR-93, 1993.

[81] P. Stansell. Distributions of freak wave heights measured in the north sea.
Applied Ocean Research, 26(1-2):35 � 48, 2004.

[82] G. Muraleedharan, A.D. Rao, P.G. Kurup, N.U. Nair, and M. Sinha. Modi�ed
weibull distribution for maximum and signi�cant wave height simulation and
prediction. Coastal Engineering, 54(8):630 � 638, 2007.

[83] E.L. Andreas and S. Wang. Predicting signi�cant wave height o� the northeast
coast of the united states. Ocean Engineering, 34(8-9):1328 � 1335, 2007.

[84] C. Guedes Soares and M. Scotto. Modelling uncertainty in long-term predic-
tions of signi�cant wave height. Ocean Engineering, 28(3):329 � 342, 2001.

[85] J.A. Ferreira and C.G. Soares. Modelling distributions of signi�cant wave
height. Coastal Engineering, 40(4):361 � 374, 2000.

[86] I. Rychlik. A note on signi�cant wave height. Ocean Engineering, 23(6):447
� 454, 1996.

[87] J. Mathisen and E. Bitner-Gregersen. Joint distributions for signi�cant wave
height and wave zero-up-crossing period. Applied Ocean Research, 12(2):93 �
103, 1990.

[88] L.R. Muir and A.H. El-Shaarawi. On the calculation of extreme wave heights:
A review. Ocean Engineering, 13(1):93 � 118, 1986.

[89] M. Darbyshire and L. Draper. Forecasting wind generated sea�waves. Engi-
neering, 195(5), April 1963.

[90] P.J. Moriarty, W.E. Holley, and S.P. Butter�eld. Extrapolation of extreme
and fatigue loads using probabilistic methods. NREL, Technical Report,
NRET/TP-500-34421, 2004.



i
i

�Main_FUP_v06_14112011� � 2011/11/14 � 15:44 � page 199 � #225 i
i

i
i

i
i

An integrated nonlinear wind�waves model for o�shore wind turbines 199

[91] P.H. Madsen and K.P. Marshall Buhl. Predicting ultimate loads for wind
turbine design. In AIAA/ASME Wind Energy Symposium, 1999.

[92] C. Borri, M. Betti, and E. Marino. Lectures on Solid Mechanics. Firenze
University Press, 2008.

[93] A. Andres, A. Argyriadis, P. Dalho�, C. Nath, and S. Schwartz. Standars and
Certi�cation, chapter 11, pages 225�269. Multi-Science Publishing Co. Ltd,
2009.

[94] W. Bai and R. Eatock Taylor. Higher-order boundary element simulation of
fully nonlinear wave radiation by oscillating vertical cylinders. Applied Ocean
Research, 28(4):247 � 265, 2006.

[95] P. Brevig, M. Greenhow, and T. Vinje. Extreme wave forces on submerged
wave energy devices. Applied Ocean Research, 4(4):219 � 225, 1982.

[96] A.T. Brewer and L.A. Godoy. On interaction between static and dynamic
loads in instability of symmetric or asymmetric structural systems. Journal
of Sound and Vibration, 147(1):105 � 114, 1991.

[97] L.L. Broderick and J.W. Leonard. Nonlinear response of membranes to ocean
waves using boundary and �nite elements. Ocean Engineering, 22(7):731 �
745, 1995.

[98] L.L. Broderick and J.W. Leonard. Nonlinear water-wave structure interaction.
Computers & Structures, 44(4):837 � 842, 1992. Special Issue: Computational
Structures Technology.

[99] L.L. Broderick and J.W. Leonard. Selective review of boundary element mod-
elling for the interaction of deformable structures with water waves. Engineer-
ing Structures, 12(4):269 � 276, 1990.

[100] G.N. Bullock, C. Obhrai, D.H. Peregrine, and H. Bredmose. Violent breaking
wave impacts. Part 1: Results from large-scale regular wave tests on vertical
and sloping walls. Coastal Engineering, 54(8):602 � 617, 2007.

[101] X. Cai, H.P.Langtangen, B.F. Nielsen, and A. Tveito. A �nite element method
for fully nonlinear water waves,. Journal of Computational Physics, 143(2):544
� 568, 1998.

[102] S.K. Chakrabarti. Loads and responses. In Subrata K. Chakrabarti, editor,
Handbook of O�shore Engineering, pages 133 � 196. Elsevier, London, 2005.

[103] Y.-H. Chang, K.-S. Hwang, and H.-H. Hwung. Large-scale laboratory mea-
surements of solitary wave inundation on a 1:20 slope. Coastal Engineering,
56(10):1022 � 1034, 2009.

[104] H. Chanson and L. Jaw-Fang. Plunging jet characteristics of plunging break-
ers. Coastal Engineering, 31(1-4):125 � 141, 1997.



i
i

�Main_FUP_v06_14112011� � 2011/11/14 � 15:44 � page 200 � #226 i
i

i
i

i
i

200 BIBLIOGRAPHY

[105] M. Christou, C.H. Hague, and C. Swan. The re�ection of nonlinear irregular
surface water waves. Engineering Analysis with Boundary Elements, 33(5):644
� 653, 2009.

[106] E. von Collani, A. Binder, W. Sans, A. Heitmann, and K. Al-Ghazali. Design
load de�nition by lexpol. Wind Energy, 11:637�653, 2008.

[107] O.M. Faltinsen. Sea loads on ships and o�shore structures. Cambridge Ocean
Technology Series, 1990.

[108] L.A. Godoy. Displacements induced by breaking waves on axially loaded
cylindrical shells. Applied Ocean Research, 7(3):152 � 157, 1985.

[109] L.A. Godoy, S. R. Idelsohn, and E. Barbero. On load interaction in the non
linear buckling analysis of cylindrical shells. Advances in Engineering Software
and Workstations, 13(1):46 � 50, 1991.

[110] L.A. Godoy, V.C.M. de Souza, and J.G.A. Croll. Transient dynamics of cylin-
ders under wave slamming. Thin-Walled Structures, 3(1):67 � 79, 1985.

[111] C.H. Hague and C. Swan. A multiple �ux boundary element method applied
to the description of surface water waves. Journal of Computational Physics,
228(14):5111 � 5128, 2009.

[112] W. He. Numerical simulation of nonlinear radiation water surface wave caused
by large-amplitude oscillation of a cylinder. Communications in Nonlinear
Science and Numerical Simulation, 4(1):24 � 28, 1999.

[113] B. J. Jonkman and M. L. Buhl Jr. TurbSim User's Guide for Version 1.40.
Revised September 12, 2008 for TurbSim version 1.40.

[114] A. Khayyer and H. Gotoh. Modi�ed moving particle semi-implicit methods
for the prediction of 2d wave impact pressure. Coastal Engineering, 56(4):419
� 440, 2009.

[115] A. Khayyer, H. Gotoh, and S. Shao. Enhanced predictions of wave impact
pressure by improved incompressible sph methods. Applied Ocean Research,
31(2):111 � 131, 2009.

[116] M.S. Kirkgoz, A.K. Tanrikulu, and C. Dündar. Dynamic analysis of a vertical
plate exposed to breaking wave impact. Ocean Engineering, 31(13):1623 �
1635, 2004.

[117] M.S. Kirkgöz. In�uence of water depth on the breaking wave impact on
vertical and sloping walls. Coastal Engineering, 18(3-4):297 � 314, 1992.

[118] M.S. Kirkgöz and M.S. Aköz. Geometrical properties of perfect breaking waves
on composite breakwaters. Ocean Engineering, 32(16):1994 � 2006, 2005.

[119] M.S. Kirkgöz and M. Mamak. Impulse modelling of wave impact pressures
on vertical wall. Ocean Engineering, 31(3-4):343 � 352, 2004.



i
i

�Main_FUP_v06_14112011� � 2011/11/14 � 15:44 � page 201 � #227 i
i

i
i

i
i

An integrated nonlinear wind�waves model for o�shore wind turbines 201

[120] K.M.T. Kleefsman, G. Fekken, A.E.P. Veldman, B. Iwanowski, and B. Buch-
ner. A volume-of-�uid based simulation method for wave impact problems.
Journal of Computational Physics, 206(1):363 � 393, 2005.

[121] W.C. Koo and M.H. Kim. Fully nonlinear wave-body interactions with
surface-piercing bodies. Ocean Engineering, 34(7):1000 � 1012, 2007.

[122] A. Kyte and A. Tørum. Wave forces on vertical cylinders upon shoals. Coastal
Engineering, 27(3-4):263 � 286, 1996.

[123] P. Lin. A numerical study of solitary wave interaction with rectangular ob-
stacles. Coastal Engineering, 51(1):35 � 51, 2004.

[124] Enzo Marino. An integrated nonlinear wind-waves model for o�shore wind
turbines. PhD thesis, University of Florence-TU�Braunschweig, 2010.

[125] E. Marino, C. Borri, and C. Lugni. In�uence of wind-waves energy transfer on
the impulsive hydrodynamic loads acting on o�shore wind turbines. Journal of
Wind Engineering and Industrial Aerodynamics, In Press, Corrected Proof:�,
2011.

[126] E. Marino, C. Borri, and U. Peil. A fully nonlinear wave model to account
for breaking wave impact loads on o�shore wind turbines. Journal of Wind
Engineering and Industrial Aerodynamics, 99(4):483 � 490, 2011.

[127] D.Z. Ning, J. Zang, S.X. Liu, R. Eatock Taylor, B. Teng, and P.H. Taylor.
Free-surface evolution and wave kinematics for nonlinear uni-directional fo-
cused wave groups. Ocean Engineering, 36(15-16):1226 � 1243, 2009.

[128] P. Osuna, A.J. Souza, and J. Wolf. E�ects of the deep-water wave breaking
dissipation on the wind-wave modelling in the irish sea. Journal of Marine
Systems, 67(1-2):59 � 72, 2007.

[129] U. Peil and C. Corte. Numerical simulation of breacking wave load on o�shore
wind turbines. In Proceedings of EACWE4-The Fourth European and African
Conference on Wind Engineering, 2005.

[130] W. Romanczyk. Instability of nonlinear standing waves in front of a vertical
wall. Journal of Fluids and Structures, 23(5):733 � 753, 2007.

[131] J. Skourup, M. J. Sterndor�, and E. A. Hansen. Numerical modelling of
wave-structure interaction by a three-dimensional nonlinear boundary ele-
ment method: A step towards the numerical wave tank. Ocean Engineering,
19(5):437 � 460, 1992.

[132] V. Sriram, S.A. Sannasiraj, and V. Sundar. Simulation of nonlinear free sur-
face dispersive shallow water waves. Journal of Hydro-environment Research,
1(2):126 � 132, 2007.

[133] P.K. Stansby and M. Isaacson. Recent developments in o�shore hydrodynam-
ics: workshop report. Applied Ocean Research, 9(3):118 � 127, 1987.



i
i

�Main_FUP_v06_14112011� � 2011/11/14 � 15:44 � page 202 � #228 i
i

i
i

i
i

202 BIBLIOGRAPHY

[134] H. Sun and O.M. Faltinsen. Water impact of horizontal circular cylinders and
cylindrical shells. Applied Ocean Research, 28(5):299 � 311, 2006.

[135] H.G. Sung and H.S. Choi. Implicit formulation with the boundary element
method for nonlinear radiation of water waves. Engineering Analysis with
Boundary Elements, 34(5):511 � 529, 2010.

[136] C. Swan, P. H. Taylor, and H. van Langen. Observations of wave-structure
interaction for a multi-legged concrete platform. Applied Ocean Research,
19(5-6):309 � 327, 1997.

[137] R.H. Swift. Prediction of breaking wave forces on vertical cylinders. Coastal
Engineering, 13(2):97 � 116, 1989.

[138] H. Söding, J. J. Blok, H. H. Chen, K. Hagiwara, M. Isaacson, J. Jankowski,
E. R. Je�erys, J. Mathisen, I. Rask, J-P. Richer, J. U. Römeling, and P. Varsta.
Environmental forces of o�shore structures: a state-of-the-art review. Marine
Structures, 3(1):59 � 81, 1990.

[139] C.Z. Wang, G.X. Wu, and K.R. Drake. Interactions between nonlinear water
waves and non-wall-sided 3d structures. Ocean Engineering, 34(8-9):1182 �
1196, 2007.

[140] Q.X. Wang. Unstructured MEL modelling of nonlinear unsteady ship waves.
Journal of Computational Physics, 210(1):368 � 385, 2005.

[141] Z. Wang, Q. Zou, and D. Reeve. Simulation of spilling breaking waves using
a two phase �ow CFD model. Computers & Fluids, 38(10):1995 � 2005, 2009.

[142] G.X. Wu and R. Eatock Taylor. The coupled �nite element and boundary
element analysis of nonlinear interactions between waves and bodies. Ocean
Engineering, 30(3):387 � 400, 2003.

[143] S. Yan and Q.W. Ma. Numerical simulation of fully nonlinear interaction
between steep waves and 2d �oating bodies using the QALE-FEM method.
Journal of Computational Physics, 221(2):666 � 692, 2007.

[144] Y. Yuksel and R. Narayanan. Breaking wave forces on horizontal cylinders
close to the sea bed. Coastal Engineering, 23(1-2):115 � 133, 1994.

[145] X.T. Zhang, B.C. Khoo, and J. Lou. Application of desingularized approach
to water wave propagation over three-dimensional topography. Ocean Engi-
neering, 34(10):1449 � 1458, 2007.



premio firenze university press
tesi di dottorato

Coppi E., Purines as Transmitter Molecules. Electrophysiological Studies on Purinergic Signalling in Different 
Cell Systems, 2007 

Natali I., The Ur-Portrait. Stephen Hero ed il processo di creazione artistica in A Portrait of the Artist as a 
Young Man, 2007 

Petretto L., Imprenditore ed Università nello start-up di impresa. Ruoli e relazioni critiche, 2007 
Mannini M., Molecular Magnetic Materials on Solid Surfaces, 2007 
Bracardi M., La Materia e lo Spirito. Mario Ridolfi nel paesaggio umbro, 2007
Bemporad F., Folding and Aggregation Studies in the Acylphosphatase-Like Family, 2008
Buono A., Esercito, istituzioni, territorio. Alloggiamenti militari e «case Herme» nello Stato di Milano (secoli 

XVI e XVII), 2008
Castenasi S., La finanza di progetto tra interesse pubblico e interessi privati, 2008
Gabbiani C., Proteins as Possible Targets for Antitumor Metal Complexes: Biophysical Studies of their 

Interactions, 2008
Colica G., Use of Microorganisms in the Removal of Pollutants from the Wastewater, 2008
Inzitari M., Determinants of Mobility Disability in Older Adults: Evidence from Population-Based 

Epidemiologic Studies, 2009
Di Carlo P., I Kalasha del Hindu Kush: ricerche linguistiche e antropologiche, 2009
Pace R., Identità e diritti delle donne. Per una cittadinanza di genere nella formazione, 2009
Macrì F., Verso un nuovo diritto penale sessuale. Diritto vivente, diritto comparato e prospettive di riforma 

della disciplina dei reati sessuali in Italia, 2009
Vignolini S., Sub-Wavelength Probing and Modification of Complex Photonic Structures, 2009
Decorosi F., Studio di ceppi batterici per il biorisanamento di suoli contaminati da Cr(VI), 2009
Di Patti F., Finite-Size Effects in Stochastic Models of Population Dynamics: Applications to Biomedicine and 

Biology, 2009
Polito C., Molecular imaging in Parkinson’s disease, 2010
Fedi M., «Tuo lumine». L’accademia dei Risvegliati e lo spettacolo a Pistoia tra Sei e Settecento, 2010
Orsi V., Crisi e Rigenerazione nella valle dell’Alto Khabur (Siria). La produzione ceramica nel passaggio dal 

Bronzo Antico al Bronzo Medio, 2010
Fondi M., Bioinformatics of genome evolution: from ancestral to modern metabolism. Phylogenomics and 

comparative genomics to understand microbial evolution, 2010
Marino E., An Integrated Nonlinear Wind-Waves Model for Offshore Wind Turbines, 2010
Romano R., Smart Skin Envelope. Integrazione architettonica di tecnologie dinamiche e innovative per il 

risparmio energetico, 2010



Finito di stampare presso
Grafiche Cappelli Srl – Osmannoro (FI)




