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Armando Maya-López, Fran Casino and Agusti Solanas
Improving Multivariate Microaggregation through Hamiltonian Paths and Optimal Univariate
Microaggregation
Reprinted from: Symmetry 2021, 13, 916, doi:10.3390/sym13060916 . . . . . . . . . . . . . . . . . 109

Abel Cabrera Martı́nez, Suitberto Cabrera Garcı́a, Andrés Carrión Garcı́a and Angela Marı́a
Grisales del Rio
On the Outer-Independent Roman Domination in Graphs
Reprinted from: Symmetry 2020, 12, 1846, doi:10.3390/sym12111846 . . . . . . . . . . . . . . . . . 137

Anna Bryniarska
The n-Pythagorean Fuzzy Sets
Reprinted from: Symmetry 2020, 12, 1772, doi:10.3390/sym12111772 . . . . . . . . . . . . . . . . . 149

v



Brandon Cortés-Caicedo, Laura Sofı́a Avellaneda-Gómez, Oscar Danilo Montoya, Lázaro
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Abstract: This paper introduces a general approach to the idea of protection of graphs, which
encompasses the known variants of secure domination and introduces new ones. Specifically,
we introduce the study of secure w-domination in graphs, where w = (w0, w1, . . . , wl) is a vector
of nonnegative integers such that w0 ≥ 1. The secure w-domination number is defined as follows.
Let G be a graph and N(v) the open neighborhood of v ∈ V(G). We say that a function f : V(G) −→
{0, 1, . . . , l} is a w-dominating function if f (N(v)) = ∑u∈N(v) f (u) ≥ wi for every vertex v with
f (v) = i. The weight of f is defined to be ω( f ) = ∑v∈V(G) f (v). Given a w-dominating function f
and any pair of adjacent vertices v, u ∈ V(G) with f (v) = 0 and f (u) > 0, the function fu→v is defined
by fu→v(v) = 1, fu→v(u) = f (u)− 1 and fu→v(x) = f (x) for every x ∈ V(G) \ {u, v}. We say that a
w-dominating function f is a secure w-dominating function if for every v with f (v) = 0, there exists
u ∈ N(v) such that f (u) > 0 and fu→v is a w-dominating function as well. The secure w-domination
number of G, denoted by γs

w(G), is the minimum weight among all secure w-dominating functions.
This paper provides fundamental results on γs

w(G) and raises the challenge of conducting a detailed
study of the topic.

Keywords: secure domination; secure Italian domination; weak roman domination; w-domination

1. Introduction

Let Z+ = {1, 2, 3, . . . } and N = Z+ ∪ {0} be the sets of positive and nonnegative integers,
respectively. Let G be a graph, l ∈ Z+ and f : V(G) −→ {0, . . . , l} a function. Let Vi = {v ∈ V(G) :
f (v) = i} for every i ∈ {0, . . . , l}. We identify f with the subsets V0, . . . , Vl associated with it, and thus
we use the unified notation f (V0, . . . , Vl) for the function and these associated subsets. The weight of f
is defined to be

ω( f ) = f (V(G)) =
l

∑
i=1

i|Vi|.

Let w = (w0, . . . , wl) ∈ Z+ ×Nl such that w0 ≥ 1. As defined in [1], a function f (V0, . . . , Vl) is
a w-dominating function if f (N(v)) ≥ wi for every v ∈ Vi. The w-domination number of G, denoted by
γw(G), is the minimum weight among all w-dominating functions. For simplicity, a w-dominating
function f of weight ω( f ) = γw(G) is called a γw(G)-function. For fundamental results on the
w-domination number of a graph, we refer the interested readers to the paper by Cabrera et al. [1],
where the theory of w-domination in graphs is introduced.

The definition of w-domination number encompasses the definition of several well-known
domination parameters and introduces new ones. For instance, we highlight the following particular
cases of known domination parameters that we define here in terms of w-domination: the domination
number γ(G) = γ(1,0)(G) = γ(1,0,...,0)(G), the total domination number γt(G) = γ(1,1)(G) =

γ(1,...,1)(G), the k-domination number γk(G) = γ(k,0)(G), the k-tuple domination number γ×k(G) =

γ(k,k−1)(G), the k-tuple total domination number γ×k,t(G) = γ(k,k)(G), the Italian domination number

1
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γI(G) = γ(2,0,0)(G), the total Italian domination number γtI(G) = γ(2,1,1)(G), and the {k}-domination
number γ{k}(G) = γ(k,k−1,...,0)(G). In these definitions, the appropriate restrictions on the minimum
degree of G are assumed, when needed.

For any function f (V0, . . . , Vl) and any pair of adjacent vertices v ∈ V0 and u ∈ V(G) \ V0,
the function fu→v is defined by fu→v(v) = 1, fu→v(u) = f (u) − 1 and fu→v(x) = f (x) whenever
x ∈ V(G) \ {u, v}.

We say that a w-dominating function f (V0, . . . , Vl) is a secure w-dominating function if for every
v ∈ V0 there exists u ∈ N(v) \ V0 such that fu→v is a w-dominating function as well. The secure
w-domination number of G, denoted by γs

w(G), is the minimum weight among all secure w-dominating
functions. For simplicity, a secure w-dominating function f of weight ω( f ) = γs

w(G) is called a
γs

w(G)-function. This approach to the theory of secure domination covers the different versions of
secure domination known so far. For instance, we emphasize the following cases of known parameters
that we define here in terms of secure w-domination.

• The secure domination number of G is defined to be γs(G) = γs
(1,0)(G). In this case, for any secure

(1, 0)-dominating function f (V0, V1), the set V1 is known as a secure dominating set. This concept
was introduced by Cockayne et al. [2] and studied further in several papers (e.g., [3–9]).

• The secure total domination number of a graph G of minimum degree at least one is defined to be
γst(G) = γs

(1,1)(G). In this case, for any secure (1, 1)-dominating function f (V0, V1), the set V1 is
known as a secure total dominating set of G. This concept was introduced by Benecke et al. [10] and
studied further in several papers (e.g., [7,11–14]).

• The weak Roman domination number of a graph G is defined to be γr(G) = γs
(1,0,0)(G). This concept

was introduced by Henning and Hedetniemi [15] and studied further in several papers
(e.g., [5,6,16,17]).

• The total weak Roman domination number of a graph G of minimum degree at least one is defined to
be γtr(G) = γs

(1,1,1)(G). This concept was introduced by Cabrera et al. in [12] and studied further
in [18].

• The secure Italian domination number of G is defined to be γs
I
(G) = γs

(2,0,0)(G). This parameter was
introduced by Dettlaff et al. [19].

For the graphs shown in Figure 1, we have the following:

• γs
(1,1)(G1) = γs

(2,0)(G1) = γs
(2,1)(G1) = γ(2,0)(G1) = γ(2,1)G1) = γs

(1,1,0)(G1) = γs
(1,1,1)(G1) =

γs
(2,0,0)(G1) = γs

(2,1,0)(G1) = γ(2,0,0)(G1) = γ(2,1,0)(G1) = γ(2,2,0)(G1) = γ(2,2,1)(G1) =

γ(2,2,2)(G1) = 4 and γs
(2,2)(G1) = γ(2,2)(G1) = γs

(2,2,0)(G1) = γs
(2,2,1)(G1) = γs

(2,2,2)(G1) =

γs
(3,0,0)(G1) = γs

(3,1,0)(G1) = γs
(3,1,1)(G1) = γs

(3,2,0)(G1) = γs
(3,2,1)(G1) = γs

(3,2,2)(G1) =

γ(3,0,0)(G1) = γ(3,1,0)(G1) = γ(3,1,1)(G1) = γ(3,2,0)(G1) = γ(3,2,1)(G1) = γ(3,2,2)(G1) = 6.

• γs
(1,1)(G2) = γs

(1,1,0)(G2) = γs
(1,1,1)(G2) = γ(2,2,0)(G2) = γ(2,2,1)(G2) = γ(2,2,2)(G2) = 3.

• γs
(1,1)(G3) = γs

(1,1,0)(G3) = γs
(1,1,1)(G3) = γ(2,1,0)(G3) = γ(3,0,0)(G3) = 3 < 4 = γs

(2,0,0)(G3) =

γs
(2,1,0)(G3) = γs

(3,1,0)(G3) = γ(2,2,0)(G3) = γ(2,2,1)(G3) = γ(2,2,2)(G3) = γ(3,2,0)(G3) <

5 = γs
(2,2,0)(G3) = γs

(3,2,0)(G3) = γs
(2,2,1)(G3) = γs

(2,2,2)(G3) = γs
(3,1,1)(G3) = γs

(3,2,1)(G3) =

γ(3,2,1)(G3) = γ(3,2,2)(G3) < 6 = γs
(3,2,2)(G3).

This paper is devoted to providing general results on secure w-domination. We assume that
the reader is familiar with the basic concepts, notation, and terminology of domination in graph.
If this is not the case, we suggest the textbooks [20,21]. For the remainder of the paper, definitions are
introduced whenever a concept is needed.
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Figure 1. The labels of black-colored vertices describe the positive weights of a γs
(2,1,0)(G1)-function,

a γs
(1,1,1)(G2)-function, and a γs

(2,2,2)(G3)-function, respectively.

2. General Results on Secure w-Domination

Given a w-dominating function f (V0, . . . , Vl), we introduce the following notation.

• Given v ∈ V0, we define M f (v) = {u ∈ V(G) \V0 : fu→v as a w-dominating function}.
• M f (G) =

⋃

v∈V0

M f (v).

• Given u ∈ M f (G), we define D f (u) = {v ∈ V0 : u ∈ M f (v)}.
• Given u ∈ M f (G), we define Tf (u) = {v ∈ V0 : u ∈ M f (v) and f (N(v)) = w0}.

Obviously, if f is a secure w-dominating function, then M f (v) 6= ∅ for every v ∈ V0.

Lemma 1. Let f be a secure w-dominating function on a graph G, and let u ∈ M f (G). If Tf (u) 6= ∅,
then each vertex belonging to Tf (u) is adjacent to every vertex in D f (u) and, in particular, G[Tf (u)] is a clique.

Proof. Since Tf (u) ⊆ D f (u), we only need to suppose the existence of two non-adjacent vertices
v ∈ Tf (u) and v′ ∈ D f (u) with v 6= v′. In such a case, fu→v′(N(v)) < w0, which is a contradiction.
Therefore, the result follows.

Remark 1 ([1]). Let G be a graph of minimum degree δ and let w = (w0, w1, . . . , wl) ∈ Z+ ×Nl . If w0 ≥
w1 ≥ · · · ≥ wl , then there exists a w-dominating function on G if and only if wl ≤ lδ.

Throughout this section, we repeatedly apply, without explicit mention, the following necessary
and sufficient condition for the existence of a secure w-dominating function on G.

Remark 2. Let G be a graph of minimum degree δ and let w = (w0, w1, . . . , wl) ∈ Z+ ×Nl . If w0 ≥ w1 ≥
· · · ≥ wl , then there exists a secure w-dominating function on G if and only if wl ≤ lδ.

Proof. If f is a secure w-dominating function on G, then f is a w-dominating function, and by Remark 1
we conclude that wl ≤ lδ.

Conversely, if wl ≤ lδ, then the function f , defined by f (v) = l for every v ∈ V(G), is a secure
w-dominating function. Therefore, the result follows.

It was shown by Cabrera et al. [1] that the w-domination numbers satisfy a certain monotonicity.
Given two integer vectors w = (w0, . . . , wl) and w′ = (w′0, . . . , w′l), we say that w′ ≺ w if w′i ≤ wi
for every i ∈ {0, . . . , l}. With this notation in mind, we can state the next remark which is a direct
consequence of the definition of w-dominating function.

3
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Remark 3. [1] Let G be a graph of minimum degree δ and let w = (w0, . . . , wl), w′ = (w′0, . . . , w′l) ∈
Z+ ×Nl such that wi ≥ wi+1 and w′i ≥ w′i+1 for every i ∈ {0, . . . , l− 1} . If w′ ≺ w and wl ≤ lδ, then every
w-dominating function is a w′-dominating function and, as a consequence,

γw′(G) ≤ γw(G).

The monotonicity also holds for the case of secure w-domination.

Remark 4. Let G be a graph of minimum degree δ and let w = (w0, . . . , wl), w′ = (w′0, . . . , w′l) ∈ Z+ ×Nl

such that wi ≥ wi+1 and w′i ≥ w′i+1 for every i ∈ {0, . . . , l − 1} . If w′ ≺ w and wl ≤ lδ, then every secure
w-dominating function is a secure w′-dominating function and, as a consequence,

γs
w′(G) ≤ γs

w(G).

Proof. For any γs
w(G)-function f and any v ∈ V(G) with f (v) = 0, there exists u ∈ M f (v). Since f

and fu→v are w-dominating functions, by Remark 3, we conclude that, if w′ ≺ w and wl ≤ lδ, then both
f and fu→v are w′-dominating functions. Therefore, f is a secure w′-dominating function and, as a
consequence, γs

w′(G) ≤ ω( f ) = γs
w(G).

From the following equality chain, we obtain examples of equalities in Remark 4. Graph G1 is
illustrated in Figure 1.

γs
(3,0,0)(G1) = γs

(3,1,0)(G1) = γs
(3,2,0)(G1) = γs

(3,2,1)(G1) = γs
(3,2,2)(G1).

Theorem 1. Let G be a graph of minimum degree δ, and let w = (w0, . . . , wl) ∈ Z+×Nl such that wi ≥ wi+1
for every i ∈ {0, . . . , l − 1}. If lδ ≥ wl , then the following statements hold.

(i) γw(G) ≤ γs
w(G).

(ii) If k ∈ Z+, then γ(k+1,k=w1,...,wl)
(G) ≤ γs

(k,k=w1,...,wl)
(G).

Proof. Since every secure w-dominating function on G is a w-dominating function on G, (i) follows.
Let f (V0, . . . , Vl) be a γs

(k,k=w1,...,wl)
(G)-function. Since f is a (k, k = w1, . . . , wl)-dominating

function, f (N(v)) ≥ wi for every v ∈ Vi with i ∈ {1, . . . , l} and w1 = k. If V0 = ∅, then f is
a (k + 1, k = w1, . . . , wl)-dominating function, which implies that γ(k+1,k=w1,...,wl)

(G) ≤ ω( f ) =

γs
(k,k=w1,...,wl)

(G). Assume V0 6= ∅. Let v ∈ V0 and u ∈ M f (v). If f (N(v)) = k, then fu→v(N(v)) =
f (N(v))− 1 = k− 1, which is a contradiction. Thus, f (N(v)) ≥ k + 1, which implies that f is a (k +
1, k = w1, . . . , wl)-dominating function. Therefore, γ(k+1,k=w1,...,wl)

(G) ≤ ω( f ) = γs
(k,k=w1,...,wl)

(G),
and (ii) follows.

The inequalities above are tight. For instance, for any integers n, n′ ≥ 4, we have that γ(2,2,2)(Kn +

Nn′) = γs
(2,2,2)(Kn + Nn′) = 3 and γ(3,2,2)(K2,n) = γs

(2,2,2)(K2,n) = 5.

Corollary 1. Let G be a graph of minimum degree δ and order n. Let w = (w0, . . . , wl) ∈ Z+ ×Nl such that
wi ≥ wi+1 for every i ∈ {0, . . . , l − 1} and lδ ≥ wl . The following statements hold.

(i) If n > w0, then γs
w(G) ≥ w0.

(ii) If n > w0 = w1, then γs
w(G) ≥ w0 + 1.

Proof. Assume n > w0. By Theorem 1, we have that γs
w(G) ≥ γw(G). Now, if γw(G) ≤ w0− 1 < n− 1,

then for any γw(G)-function f there exists at least one vertex x ∈ V(G) such that f (x) = 0 and
f (N(x)) ≤ ω( f ) < w0, which is a contradiction. Thus, γs

w(G) ≥ γw(G) ≥ w0.

4
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Analogously, if w0 = w1, then Theorem 1 leads to γs
w(G) ≥ γ(w0+1,w1,...,wl)

(G). In this case,
if γ(w0+1,w1,...,wl)

(G) ≤ w0 < n, then for any γ(w0+1,w1,...,wl)
(G)-function f there exists at least one

vertex x ∈ V(G) such that f (x) = 0 and f (N(x)) ≤ ω( f ) < w0 + 1, which is a contradiction.
Therefore, γs

w(G) ≥ γ(w0+1,w1,...,wl)
(G) ≥ w0 + 1.

As the following result shows, the bounds above are tight.

Proposition 1. For any integer n and any w = (w0, . . . , wl) ∈ Z+ ×Nl such that wl ≤ · · · ≤ w0 < n,

γs
w(Kn) =

{
w0 + 1 if w0 = w1,

w0 otherwise.

Proof. Assume n > w0. Let S ⊆ V(Kn) such that |S| = w0 + 1 if w0 = w1 and |S| = w0 otherwise.
In both cases, the function f (V0, . . . , Vl), defined by V1 = S, V0 = V(G) \ V1 and Vj = ∅ whenever
j 6∈ {0, 1}, is a secure w-dominating function. Hence, γs

w(Kn) ≤ ω( f ) = |S|. Therefore, by Corollary 1
the result follows.

Theorem 2. Let G be a graph of minimum degree δ, and let w = (w0, . . . , wl), w′ = (w′0, . . . , w′l) ∈ Z+ ×Nl

such that lδ ≥ wl , wi ≥ wi+1 and w′i ≥ w′i+1 for every i ∈ {0, . . . , l − 1}. If wi ≥ w′i−1 − 1 for every
i ∈ {1, . . . , l}, and max{wj − 1, 0} ≥ w′j for every j ∈ {0, . . . , l}, then

γs
w′(G) ≤ γw(G).

Proof. Assume that wi ≥ w′i−1 − 1 for every i ∈ {1, . . . , l} and max{wj − 1, 0} ≥ w′j for every
j ∈ {0, . . . , l}. Let f (V0, . . . , Vl) be a γw(G)-function. We claim that f is a secure w′-dominating
function. Since f (N(x)) ≥ wi ≥ w′i for every x ∈ Vi with i ∈ {0, . . . , l}, we deduce that f is a
w′-dominating function. Now, let v ∈ V0 and u ∈ N(v) ∩Vi with i ∈ {1, . . . , l}. We differentiate the
following cases for x ∈ V(G).

Case 1. x = v. In this case, fu→v(v) = 1 and fu→v(N(v)) = f (N(v))− 1 ≥ w0− 1 ≥ max{w1− 1, 0} ≥
w′1.

Case 2. x = u. In this case, fu→v(u) = f (u)− 1 = i− 1 and fu→v(N(u)) = f (N(u)) + 1 ≥ wi + 1 ≥
w′i−1.

Case 3. x ∈ V(G) \ {u, v}. Assume x ∈ Vj. Notice that fu→v(x) = f (x) = j. Now, if x 6∈ N(u)
or x ∈ N(u) ∩ N(v), then fu→v(N(x)) = f (N(x)) ≥ wj ≥ w′j, while if x ∈ N(u) \ N[v],
then fu→v(N(x)) = f (N(x))− 1 ≥ max{wj − 1, 0} ≥ w′j.

According to the three cases above, fu→v is a w′-dominating function. Therefore, f is a secure
w′-dominating function, and so γs

w′(G) ≤ ω( f ) = γw(G).

The inequality above is tight. For instance, γs
(1,1,1)(Kn,n′) = γ(2,2,2)(Kn,n′) = 4 for n, n′ ≥ 4.

From Theorems 1 and 2, we derive the next known inequality chain, where G has minimum
degree δ ≥ 1, except in the last inequality in which δ ≥ 2.

γs(G) ≤ γ2(G) ≤ γ×2(G) ≤ γst(G) ≤ γ×2,t(G).

The following result is a particular case of Theorem 2.

Corollary 2. Let G be a graph of minimum degree δ, and let w = (w0, . . . , wl) ∈ Z+ ×Nl and 1 = (1, . . . , 1).
If 0 ≤ wj−1 − wj ≤ 2 for every j ∈ {1, . . . , i}, where 1 ≤ i ≤ l and lδ ≥ wl + 1, then

γs
(w0,...,wi ,0,...,0)(G) ≤ γ(w0+1,...,wi+1,0,...,0)(G) ≤ γw+1(G).

5
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For Graph G2 illustrated in Figure 1, we have that γs
(1,1)(G2) = γs

(1,1,0)(G2) = γ(2,2,0)(G2) =

γs
(1,1,1)(G2) = γ(2,2,2)(G2) = 3. Notice that γs

w(G2) = γw+1(G2) for w = 1 = (1, 1, 1).
Next, we show a class of graphs where γw(G) = γw+1(G). To this end, we need to introduce

some additional notation and terminology. Given the two Graphs G1 and G2, the corona product graph
G1 � G2 is the graph obtained from G1 and G2, by taking one copy of G1 and |V(G1)| copies of G2 and
joining by an edge every vertex from the ith copy of G2 with the ith vertex of G1. For every x ∈ V(G1),
the copy of G2 in G1 � G2 associated to x is denoted by G2,x.

Theorem 3 ([1]). Let G1 � G2 be a corona graph where G1 does not have isolated vertices, and let w =

(w0, . . . , wl) ∈ Z+ ×Nl . If l ≥ w0 ≥ · · · ≥ wl and |V(G2)| ≥ w0, then

γw(G1 � G2) = w0|V(G1)|.

From the result above, we deduce that under certain additional restrictions on G2 and w we can
obtain γs

w(G1 � G2) = γw+1(G1 � G2).

Theorem 4. Let G1 � G2 be a corona graph, where G1 does not have isolated vertices and G2 is a triangle-free
graph. Let w = (w0, . . . , wl) ∈ Z+ ×Nl such that l − 1 ≥ w0 ≥ · · · ≥ wl . If |V(G2)| ≥ w0 + 2, then

γs
w(G1 � G2) = (w0 + 1)|V(G1)| = γw+1(G1 � G2).

Proof. Since G1 does not have isolated vertices, the upper bound γs
w(G1 � G2) ≤ (w0 + 1)|V(G1)| is

straightforward, as the function f , defined by f (x) = w0 + 1 for every x ∈ V(G1) and f (x) = 0 for the
remaining vertices of G1 � G2, is a secure w-dominating function.

On the other hand, let f (V0, . . . , Vl) be a γs
w(G1 � G2)-function and suppose that there exists

x ∈ V(G1) such that f (V(G2,x)) + f (x) ≤ w0. Since |V(G2,x)| ≥ w0 + 2, there exist at least two
different vertices u, v ∈ V(G2,x) ∩ V0. Hence, f (N(u)) = f (N(v)) = w0, which implies that u and
v are adjacent and, since G2 is a triangle-free graph, f (x) = w0 and f (y) = 0 for every y ∈ V(G2,x).
Thus, by Lemma 1, we conclude that G2,x is a clique, which is a contradiction as |V(G2)| ≥ 3 and G2

is a triangle-free graph. This implies that f (V(G2,x)) + f (x) ≥ w0 + 1 for every x ∈ V(G1), and so
γs

w(G1 � G2) = ω( f ) ≥ (w0 + 1)|V(G1)|.
Therefore, γs

w(G1�G2) = (w0 + 1)|V(G1)|, and by Theorem 3 we conclude that γw+1(G1�G2) =

(w0 + 1)|V(G1)|, which completes the proof.

Theorem 5. Let G be a graph of minimum degree δ and l ≥ 2 an integer. For any (w0, . . . , wl−1) ∈ Z+×Nl−1

with w0 ≥ · · · ≥ wl−1 and lδ ≥ wl−1,

γs
(w0,...,wl−1,wl=wl−1)

(G) ≤ γ(w0,...,wl−1)
(G) + γ(G).

Proof. Let f (V0, . . . , Vl−1) be a γ(w0,...,wl−1)
(G)-function and S a γ(G)-set. We define a function

g(W0, . . . , Wl) as follows. Let Wl = Vl−1 ∩ S, W0 = V0 \ S, and Wi = (Vi−1 ∩ S) ∪ (Vi \ S) for every
i ∈ {1, . . . , l − 1}.

We claim that g is a secure (w0, . . . , wl−1, wl = wl−1)-dominating function. First, we observe that,
if x ∈ Wi ∩ S with i ∈ {1, . . . , l}, then x ∈ Vi−1 and g(N(x)) ≥ f (N(x)) ≥ wi−1 ≥ wi. Moreover,
if x ∈ Wi \ S with i ∈ {0, . . . , l − 1}, then x ∈ Vi and g(N(x)) ≥ f (N(x)) ≥ wi. Hence, g is a
(w0, . . . , wl−1, wl = wl−1)-dominating function.

Now, let v ∈W0 = V0 \ S. Notice that there exists a vertex u ∈ N(v)∩Vi−1 ∩ S with i ∈ {1, . . . , l}.
Hence, u ∈ N(v) ∩Wi. We differentiate the following cases for x ∈ V(G).

Case 1. x = v. In this case, gu→v(v) = 1 and, as N(v) ∩ S 6= ∅, we obtain that gu→v(N(v)) =

g(N(v))− 1 ≥ f (N(v)) ≥ w0 ≥ w1.

6
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Case 2. x = u. In this case, gu→v(u) = g(u) − 1 = i − 1 and gu→v(N(u)) = g(N(u)) + 1 ≥
f (N(u)) + 1 ≥ wi−1 + 1 > wi−1.

Case 3. x ∈ V(G) \ {u, v}. Assume x ∈ Wj. Notice that gu→v(x) = g(x) = j. If x 6∈ N(u) or
x ∈ N(u) ∩ N(v), then gu→v(N(x)) = g(N(x)) ≥ f (N(x)) ≥ wj.

Moreover, if x ∈ (N(u) \ N[v]) ∩ S, then x ∈ Vj−1 and so gu→v(N(x)) = g(N(x)) − 1 ≥
f (N(x)) ≥ wj−1 ≥ wj. Finally, if x ∈ (N(u) \ N[v]) \ S, then x ∈ Vj and therefore gu→v(N(x)) =

g(N(x))− 1 ≥ f (N(x)) ≥ wj.
According to the three cases above, gu→v is a (w0, . . . , wl−1, wl = wl−1)-dominating

function. Therefore, f is a secure (w0, . . . , wl−1, wl = wl−1)-dominating function, and so
γs
(w0,...,wl−1,wl=wl−1)

(G) ≤ ω(g) ≤ ω( f ) + |S| = γ(w0,...,wl−1)
(G) + γ(G).

From Theorem 5, we derive the next known inequalities, which are tight.

Corollary 3. For a graph G, the following statements hold.

• Ref. [15] γr(G) ≤ 2γ(G).

• Ref. [12] γtr(G) ≤ γt(G) + γ(G), where G has minimum degree at least one.

• Ref. [19] γs
I(G) ≤ γ2(G) + γ(G).

To establish the following result, we need to define the following parameter.

νs
(w0,...,wl)

(G) = max{|V0| : f (V0, . . . , Vl) is a γs
(w0,...,wl)

(G)-function.}

In particular, for l = 1 and a graph G of order n, we have that νs
(w0,w1)

(G) = n− γs
(w0,w1)

(G).

Theorem 6. Let G be a graph of minimum degree δ and order n. The following statements hold for any
(w0, . . . , wl) ∈ Z+ ×Nl with w0 ≥ · · · ≥ wl .

(i) If there exists i ∈ {1, . . . , l − 1} such that iδ ≥ wi, then γs
(w0,...,wl)

(G) ≤ γs
(w0,...,wi)

(G).

(ii) If l ≥ i + 1 > w0, then γs
(w0,...,wi ,0,...,0)(G) ≤ (i + 1)γ(G).

(iii) Let k, i ∈ Z+ such that l ≥ ki, and let (w′0, w′1, . . . , w′i) ∈ Z+ ×Nl . If iδ ≥ w′i and wkj = kw′j for every
j ∈ {0, 1, . . . , i}, then γs

(w0,...,wl)
(G) ≤ kγs

(w′0,...,w′i)
(G).

(iv) Let k ∈ Z+ and β1, . . . , βk ∈ Z+. If lδ ≥ k + wl > k and w0 + k ≥ β1 ≥ · · · ≥ βk ≥ w1 + k, then
γs
(w0+k,β1,...,βk ,w1+k,...,wl+k)(G) ≤ γs

(w0,...,wl)
(G) + k(n− νs

(w0,...,wl)
(G)).

(v) If lδ ≥ wl ≥ l ≥ 2, then γs
(w0,...,wl)

(G) ≤ lγs
(w0−l+1,wl−l+1)(G).

Proof. If there exists i ∈ {1, . . . , l − 1} such that iδ ≥ wi, then for any γs
(w0,...,wi)

(G)-function
f (V0, . . . , Vi) we define a secure (w0, . . . , wl)-dominating function g(W0, . . . , Wl) by Wj = Vj for every
j ∈ {0, . . . , i} and Wj = ∅ for every j ∈ {i + 1, . . . , l}. Hence, γs

(w0,...,wl)
(G) ≤ ω(g) = ω( f ) =

γs
(w0,...,wi)

(G). Therefore, (i) follows.
Now, assume l ≥ i + 1 > w0. Let S be a γ(G)-set. Let f be the function defined by f (v) = i + 1

for every v ∈ S and f (v) = 0 for the remaining vertices. Since i + 1 > w0, we can conclude that f is a
secure (w0, . . . , wi, 0 . . . , 0)-dominating function. Therefore, γs

(w0,...,wi ,0...,0)(G) ≤ ω( f ) = (i + 1)|S| =
(i + 1)γ(G), which implies that (ii) follows.

7
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To prove (iii), assume that l ≥ ki, iδ ≥ w′i and wkj = kw′j for every j ∈ {0, . . . , i}. Let f ′(V′0, . . . , V′i )
be a γs

(w′0,...,w′i)
(G)-function. We construct a function f (V0, . . . , Vl) as f (v) = k f ′(v) for every v ∈ V(G).

Hence, Vkj = V′j for every j ∈ {0, . . . , i}, while Vj = ∅ for the remaining cases. Thus, for every
v ∈ Vkj with j ∈ {0, . . . , i} we have that f (N(v)) = k f ′(N(v)) ≥ kw′j = wkj, which implies that f is a
(w0, . . . , wl)-dominating function. Now, for every x ∈ V0, there exists y ∈ M f ′(x). Hence, for every
v ∈ Vkj with j ∈ {0, . . . , i}, we have that fy→x(N(v)) = k f ′y→x(N(v)) ≥ kw′j = wkj, which implies that
fy→x is a (w0, . . . , wl)-dominating function. Therefore, f is a secure (w0, . . . , wl)-dominating function,
and so γs

(w0,...,wl)
(G) ≤ ω( f ) = kω( f ′) = kγs

(w′0,...,w′i)
(G). Therefore, (iii) follows.

Now, assume that lδ ≥ k + wl > k and w0 + k ≥ β1 ≥ · · · ≥ βk ≥ w1 + k. Let
g(W0, . . . , Wl) be a γs

(w0,...,wl)
(G)-function. We construct a function f (V0, . . . , Vl+k) as f (v) = g(v) + k

for every v ∈ V(G) \ W0 and f (v) = 0 for every v ∈ W0. Hence, Vj+k = Wj for every
j ∈ {1, . . . , l}, V0 = W0 and Vj = ∅ for the remaining cases. Thus, if v ∈ Vj+k and j ∈ {1, . . . , l},
then f (N(v)) ≥ g(N(v)) + k ≥ wj + k, and if v ∈ V0, then f (N(v)) ≥ g(N(v)) + k ≥ w0 + k.
This implies that f is a (w0 + k, β1, . . . , βk, w1 + k, . . . , wl + k)-dominating function. Now, for every
x ∈ V0 = W0, there exists y ∈ Mg(x). Hence, if v ∈ Vj+k and j ∈ {1, . . . , l}, then fy→x(N(v)) ≥
gy→x(N(v)) + k ≥ wj + k, and if v ∈ V0, then fy→x(N(v)) ≥ gy→x(N(v)) + k ≥ w0 + k. This implies
that fy→x is a (w0 + k, β1, . . . , βk, w1 + k, . . . , wl + k)-dominating function, and so f is a secure
(w0 + k, β1, . . . , βk, w1 + k, . . . , wl + k)-dominating function. Therefore, γs

(w0+k,β1,...,βk ,w1+k,...,wl+k)(G) ≤
ω( f ) = ω(g) + k ∑l

j=1 |Wj| = γs
(w0,...,wl)

(G) + k(n − |W0|) ≤ γs
(w0,...,wl)

(G) + k(n − νs
(w0,...,wl)

(G)),
concluding that (iv) follows.

Furthermore, if lδ ≥ wl ≥ l ≥ 2, then, by applying (iv) for k = l − 1, we deduce that

γs
(w0,...,wl)

(G) ≤ γs
(w0−l+1,wl−l+1)(G) + (l − 1)(n− νs

(w0−l+1,wl−l+1)(G)) = lγs
(w0−l+1,wl−l+1)(G).

Therefore, (v) follows.

In the next subsections, we consider several applications of Theorem 6 where we show that the
bounds are tight. For instance, the following particular cases is of interest.

Corollary 4. Let G be a graph of minimum degree δ, and let k, l, w2, . . . , wl ∈ Z+ with k ≥ w2 ≥ · · · ≥ wl .

(i’) If δ ≥ k, then γs
(k+1,k,w2,...,wl)

(G) ≤ γs
(k+1,k)(G).

(ii’) If δ ≥ k, then γs
(k,k,w2,...,wl)

(G) ≤ γs
(k,k)(G).

(iii’) If lδ ≥ k ≥ l ≥ 2, then γs
(k, k, . . . , k︸ ︷︷ ︸

l+1

)
(G) ≤ lγs

(k−l+1,k−l+1)(G).

(iv’) Let i ∈ Z+. If l ≥ ki and δ ≥ 1, then γs
(k, . . . , k︸ ︷︷ ︸

l+1

)
(G) ≤ kγs

(1, . . . , 1︸ ︷︷ ︸
i+1

)
(G).

Proof. If δ ≥ k, then by Theorem 6 (i) we conclude that (i’) and (ii’) follow. If lδ ≥ k ≥ l ≥ 2, then by
Theorem 6 (v) we deduce (iii’). Finally, if l ≥ k and δ ≥ 1, then by Theorem 6 (iii) we deduce that (iv’)
follows.

To show that the inequalities above are tight, we consider the following examples. For (i’), we have
γs
(2,1,1)(K1 + (K2 ∪ K2)) = γs

(2,1)(K1 + (K2 ∪ K2)) = 3. For (ii’) we have γs
(k,k,w2,...,wl)

(G) = γs
(k,k)(G) =

k + 1 for every graph G with k + 1 universal vertices. Finally, for (iii’) and (iv’), we take l = k = 2 and
γs
(2,2,2)(K2 + Nn) = 2γs

(1,1)(K2 + Nn) = 4 for every n ≥ 2.
We already know that γt(G) = γ(1,1)(G) = γ(1,1,w2,...,wl)

(G), for every w2, . . . , wl ∈ {0, 1}.
In contrast, the picture is quite different for the case of secure (1, 1)-domination, as there are graphs

8
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where the gap γs
(1,1)(G)− γs

(1,...,1)(G) is arbitrarily large. For instance, lim
n→∞

γs
(1,1)(K1,n−1) = +∞, while,

if l ≥ 2, then lim
n→+∞

γs
(1, . . . , 1︸ ︷︷ ︸

l+1

)(K1,n−1) = 3.

Proposition 2. Let G be a graph of order n. Let w = (w0, . . . , wl) ∈ Z+ ×Nl such that w0 ≥ · · · ≥ wl . If
G′ is a spanning subgraph of G with minimum degree δ′ ≥ wl

l , then

γs
w(G) ≤ γs

w(G
′).

Proof. Let E− = {e1, . . . , ek} be the set of all edges of G not belonging to the edge set of G′. Let G′0 = G
and, for every i ∈ {1, . . . , k}, let Xi = {e1, . . . , ei} and G′i = G− Xi, the edge-deletion subgraph of G
induced by E(G) \ Xi.

For any γs
w(G′i)-function f and any v ∈ V(G′i) = V(G) with f (v) = 0, there exists u ∈ M f (v).

Since f and fu→v are w-dominating functions on G′i , both are w-dominating functions on G′i−1, and so
we can conclude that f is a secure w-dominating function on G′i−1, which implies that γs

w(G′i−1) ≤
γs

w(G′i). Hence, γs
w(G) = γs

w(G′0) ≤ γs
w(G′1) ≤ · · · ≤ γs

w(G′k) = γs
w(G′).

As a simple example of equality in Proposition 2 we can take any graph G of order n, having
n′ + 1 ≥ 2 universal vertices. In such a case, for n′ = w1 ≥ · · · ≥ wl we have that

γs
(n′ ,n′=w1,...,wl)

(Kn) = γs
(n′ ,n′=w1,...,wl)

(G) = γs
(n′ ,n′)(Kn) = γs

(n′ ,n′)(G) = n′ + 1.

From Proposition 2, we obtain the following result.

Corollary 5. Let G be a graph of order n and w = (w0, . . . , wl) ∈ Z+ ×Nl such that w0 ≥ · · · ≥ wl .

• If G is a Hamiltonian graph and wl ≤ 2l, then γs
w(G) ≤ γs

w(Cn).

• If G has a Hamiltonian path and wl ≤ l, then γs
w(G) ≤ γs

w(Pn).

To derive some lower bounds on γs
w(G), we need to establish the following lemma.

Lemma 2 ([1]). Let G be a graph with no isolated vertex, maximum degree ∆ and order n. For any w-dominating
function f (V0, . . . , Vl) on G such that w0 ≥ · · · ≥ wl ,

∆ω( f ) ≥ w0n +
l

∑
i=1

(wi − w0)|Vi|.

Theorem 7. Let G be a graph with no isolated vertex, maximum degree ∆ and order n. Let w = (w0, . . . , wl) ∈
Z+ ×Nl such that w0 ≥ · · · ≥ wl and lδ ≥ wl . The following statements hold.

• If w0 = w1 and w0 − wi ≤ i for every i ∈ {2, ..., l}, then γs
w(G) ≥

⌈
(w0+1)n

∆+1

⌉
.

• If w0 = w1, then γs
w(G) ≥

⌈
(w0+1)n

∆+w0

⌉
.

• If w0 = w1 + 1 and w0 − wi ≤ i for every i ∈ {2, ..., l}, then γs
w(G) ≥

⌈ w0n
∆+1

⌉
.

• γs
w(G) ≥

⌈
w0n

∆+w0

⌉
.

9
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Proof. Let w0 = w1 and w0 − wi ≤ i for every i ∈ {2, ..., l}. Let f (V0, . . . , Vl) be a
γ(w0+1,w1,...,wl)

(G)-function. By Lemma 2, we deduce the following.

∆ω( f ) ≥ (w0 + 1)n +
l

∑
i=1

(wi − w0)|Vi|

≥ (w0 + 1)n−
l

∑
i=1

i|Vi|

= (w0 + 1)n−ω( f ).

Therefore, Theorem 1 (ii) leads to γs
w(G) ≥ ω( f ) ≥

⌈
(w0+1)n

∆+1

⌉
.

The proof of the remaining items is completely analogous. In the last two cases, we consider that
f (V0, . . . , Vl) is a γw(G)-function, and we apply Theorem 1 (i) instead of (ii).

The bounds above are sharp. For instance, γs
(1,1,0)(G) ≥

⌈ 2n
∆+1

⌉
is achieved by Graph G2 shown in

Figure 1, the bound γs
(k,k,0)(G) ≥

⌈
(k+1)n

∆+k

⌉
is achieved by G ∼= Kn for every n > k(k− 1) > 0, the bound

γs
(2,1,1)(G) ≥

⌈ 2n
∆+1

⌉
is achieved by the corona graph K2 � Kn′ with n′ ≥ 4, while γs

(2,0,0)(G) ≥
⌈ 2n

∆+2
⌉

is achieved by G ∼= C5, G ∼= Kn and G ∼= Kn′ ∪ Kn′ with n ≥ 2 and n′ ≥ 4.
To conclude the paper, we consider the problem of characterizing the graphs G and the vectors

w for which γs
w(G) takes small values. It is readily seen that γs

(w0,...,wl)
(G) = 1 if and only if w0 = 1,

w1 = 0 and G ∼= Kn. Next, we consider the case γs
w(G) = 2.

Theorem 8. Let w = (w0, . . . , wl) ∈ Z+ ×Nl such that w0 ≥ · · · ≥ wl . For a graph G of order at least three,
γs
(w0,...,wl)

(G) = 2 if and only if one of the following conditions holds.

(i) w2 = 0, γ(G) = 1 and one of the following conditions holds.

• w0 = w1 = 1.
• w0 = 1, w1 = 0, and G 6∼= Kn.
• w0 = 2, w1 ∈ {0, 1} and G ∼= Kn.

(ii) w0 = 1, w1 = 0, and γs
(1,0)(G) = 2.

(iii) w0 = w1 = 1 and γs
(1,1)(G) = 2.

(iv) w0 = 2, w1 ∈ {0, 1}, and G ∼= Kn.

Proof. Assume first that γs
(w0,...,wl)

(G) = 2 and let f (V0, . . . , Vl) be a γs
(w0,...,wl)

(G)-function. Notice
that (w0, w1) ∈ {(1, 0), (1, 1), (2, 0), (2, 1)} and |V2| ∈ {0, 1}.

Firstly, we consider that |V2| = 1, i.e., V2 = {u} for some universal vertex u ∈ V(G). In this
case, w2 = 0, γ(G) = 1, and Vi = ∅ for every i 6= 0, 2. By Lemma 1, if w0 = 2, then G[Tf (u)] =
G[V(G) \ {u}] is a clique, which implies that G ∼= Kn. Obviously, in such a case, w1 < 2. Finally,
the case, w0 = 1 and w1 = 0 leads to G 6∼= Kn, as γs

(1,0...,0)(Kn) = 1. Therefore, (i) follows.
From now on, assume that V2 = ∅. Hence, Vi = ∅ for every i 6= 0, 1. If w0 = 1 and w1 = 0,

then G 6∼= Kn and V1 is a secure dominating set. Therefore, (ii) follows. If w0 = w1 = 1, then V1 is a
secure total dominating set of cardinality two, and so γs

(1,1)(G) = 2. Therefore, (iii) follows. Finally,
assume w0 = 2. In this case, V1 is a double dominating set of cardinality two, and by Lemma 1 we
know that G[Tf (x)] = G[V(G) \ V1] is a clique for any x ∈ V1. Hence, G ∼= Kn and, in such a case,
w1 < 2. Therefore, (iv) follows.

Conversely, if one of the four conditions holds, then it is easy to check that γs
(w0,...,wl)

(G) = 2,
which completes the proof.
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Abstract: In this study, we present the notion of the quasi-ordinarization transform of a numerical
semigroup. The set of all semigroups of a fixed genus can be organized in a forest whose roots
are all the quasi-ordinary semigroups of the same genus. This way, we approach the conjecture
on the increasingness of the cardinalities of the sets of numerical semigroups of each given genus.
We analyze the number of nodes at each depth in the forest and propose new conjectures. Some
properties of the quasi-ordinarization transform are presented, as well as some relations between the
ordinarization and quasi-ordinarization transforms.

Keywords: numerical semigroup; forest; ordinarization transform; quasi-ordinarization transform

1. Introduction

A numerical semigroup is a cofinite submonoid of N0 under addition, where N0 is the
set of nonnegative integers.

While the symmetry of structures has traditionally been studied with the aid of
groups, it is also possible to relax the definition of symmetry, so as to describe some forms
of symmetry that arise in quasicrystals, fractals, and other natural phenomena, with the aid
of semigroups or monoids, rather than groups. For example, Rosenfeld and Nordahl [1]
lay the groundwork for such a theory of symmetry based on semigroups and monoids,
and they cite some applications in chemistry.

Suppose that Λ is a numerical semigroup. The elements in the complement N0 \Λ
are called the gaps of the semigroup and the number of gaps is its genus. The Frobenius
number is the largest gap and the conductor is the non-gap that equals the Frobenius number
plus one. The first non-zero non-gap of a numerical semigroup (usually denoted by m) is
called its multiplicity. An ordinary semigroup is a numerical semigroup different from N0
in which all gaps are in a row. The non-zero non-gaps of a numerical semigroup that are
not the result of the sum of two smaller non-gaps are called the generators of the numerical
semigroup. It is easy to deduce that the set of generators of a numerical semigroup must
be co-prime. One general reference for numerical semigroups is [2].

To illustrate all these definitions, consider the well-tempered harmonic semigroup
H = {0, 12, 19, 24, 28, 31, 34, 36, 38, 40, 42, 43, 45, 46, 47, 48, . . . }, where we use ” . . . ” to in-
dicate that the semigroup consecutively contains all the integers from the number that
precedes the ellipsis. The semigroup H arises in the mathematical theory of music [3]. It is
obviously cofinite and it contains zero. One can also check that it is closed under addition.
Hence, it is a numerical semigroup. Its Frobenius number is 44, its conductor is 45, its
genus is 33, and its multiplicity is 12. Its generators are {12, 19, 28, 34, 42, 45, 49, 51}.

The number of numerical semigroups of genus g is denoted ng. It was conjectured in [4]
that the sequence ng asymptotically behaves as the Fibonacci numbers. In particular, it was
conjectured that each term in the sequence is larger than the sum of the two previous terms,
that is, ng > ng−1 + ng−2 for g > 2, with each term being increasingly similar to the sum
of the two previous terms as g approaches infinity, more precisely limg→∞

ng
ng−1+ng−2

= 1

and, equivalently, limg→∞
ng

ng−1
= φ = 1+

√
5

2 . A number of papers deal with the sequence

13
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ng [5–20]. Alex Zhai proved the asymptotic Fibonacci-like behavior of ng [21]. However,
it remains unproven that ng is increasing. This was already conjectured by Bras-Amorós
in [22]. More information on ng, as well as the list of the first 73 terms can be found in entry
A007323 of The On-Line Encyclopedia of Integer Sequences [23].

It is well known that all numerical semigroups can be organized in an infinite tree T

whose root is the semigroup N0 and in which the parent of a numerical semigroup Λ is the
numerical semigroup Λ′ obtained by adjoining to Λ its Frobenius number. For instance,
the parent of the semigroup H = {0, 12, 19, 24, 28, 31, 34, 36, 38, 40, 42, 43, 45, 46, 47, 48, . . . }
is the semigroup H′ = {0, 12, 19, 24, 28, 31, 34, 36, 38, 40, 42, 43, 44, 45, 46, 47, 48, . . . }. In turn,
the children of a numerical semigroup are the semigroups we obtain by taking away the
generators one by one that are larger than or equal to the conductor of the semigroup. The
parent of a numerical semigroup of genus g has genus g− 1 and all numerical semigroups
are in T, at a depth equal to its genus. In particular, ng is the number of nodes of T at depth
g. This construction was already considered in [24]. Figure 1 shows the tree up to depth 7.

Version June 3, 2021 submitted to Journal Not Specified 2 of 17
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Figure 1. The tree T up to depth 7. White dots refer to the gaps, dark gray dots to the generators and
the light gray ones to the elements of the semigroups that are not generators.

The number of numerical semigroups of genus g is denoted ng. It was conjectured in [5] that the34

sequence ng asymptotically behaves as the Fibonacci numbers. In particular, it was conjectured that35

each term in the sequence is larger than the sum of the two previous terms, that is, ng > ng−1 + ng−236

for g > 2, being each term more and more similar to the sum of the two previous terms as g approaches37

infinity, more precisely limg→∞
ng

ng−1+ng−2
= 1 and, equivalently, limg→∞

ng
ng−1

= φ = 1+
√

5
2 . A number38

of papers deal with the sequence ng [1–3,6,7,9–11,13,16–20,22,28]. Alex Zhai proved the asymptotic39

Fibonacci-like behavior of ng [27]. However, it remains not proved that ng is increasing. This was40

already conjectured by Bras-Amorós in [4]. More information on ng, as well as the list of the first 7341

terms can be found in entry A007323 of The On-Line Encyclopedia of Integer Sequences [23].42

It is well known that all numerical semigroups can be organized in an infinite tree T whose43

root is the semigroup N0 and in which the parent of a numerical semigroup Λ is the numerical44

semigroup Λ′ obtained by adjoining to Λ its Frobenius number. For instance, the parent of the45

semigroup H = {0, 12, 19, 24, 28, 31, 34, 36, 38, 40, 42, 43, 45, 46, 47, 48, . . . } is the semigroup H′ =46

{0, 12, 19, 24, 28, 31, 34, 36, 38, 40, 42, 43, 44, 45, 46, 47, 48, . . . }. In turn, the children of a numerical47

semigroup are the semigroups we obtain by taking away one by one the generators that are larger48

than or equal to the conductor of the semigroup. The parent of a numerical semigroup of genus g has49

genus g− 1 and all numerical semigroups are in T, at a depth equal to its genus. In particular, ng is the50

number of nodes of T at depth g. This construction was already considered in [24]. Figure 1 shows the51

tree up to depth 7.52

In [7] a new tree construction is introduced as follows. The ordinarization transform53

of a non-ordinary semigroup Λ with Frobenius number F and multiplicity m is the54

set Λ′ = Λ \ {m} ∪ {F}. For instance, the ordinarization transform of the semigroup55

H = {0, 12, 19, 24, 28, 31, 34, 36, 38, 40, 42, 43, 45, 46, 47, 48, . . . } is the semigroup H′ =56

{0, 19, 24, 28, 31, 34, 36, 38, 40, 42, 43, 44, 45, 46, 47, 48, . . . } The ordinarization transform of an57

ordinary semigroup is then defined to be itself. Note that the genus of the ordinarization transform of58

a semigroup is the genus of the semigroup.59

The definition of the ordinarization transform of a numerical semigroup allows the construction60

of a tree Tg on the set of all numerical semigroups of a given genus rooted at the unique ordinary61

semigroup of this genus, where the parent of a semigroup is its ordinarization transform and the62

children of a semigroup are the semigroups obtained by taking away one by one the generators that63

are larger than the Frobenius number and adding a new non-gap smaller than the multiplicity in a licit64

place. To illustrate this construction with an example in Figure 2 we depicted T7.65

One significant difference between Tg and T is that the first one has only a finite number of nodes.66

In fact, it has ng nodes, while T is an infinite tree. It was conjectured in [7] that the number of numerical67

Figure 1. The tree T up to depth 7. White dots refer to the gaps, dark gray dots to the generators and the light gray ones to
the elements of the semigroups that are not generators.

In [9], a new tree construction is introduced as follows. The ordinarization trans-
form of a non-ordinary semigroup Λ with Frobenius number F and multiplicity m is
the set Λ′ = Λ \ {m} ∪ {F}. For instance, the ordinarization transform of the semi-
group H = {0, 12, 19, 24, 28, 31, 34, 36, 38, 40, 42, 43, 45, 46, 47, 48, . . . } is the semigroup
H′ = {0, 19, 24, 28, 31, 34, 36, 38, 40, 42, 43, 44, 45, 46, 47, 48, . . . } The ordinarization trans-
form of an ordinary semigroup is then defined to be itself. Note that the genus of the
ordinarization transform of a semigroup is the genus of the semigroup.

The definition of the ordinarization transform of a numerical semigroup allows the
construction of a tree Tg on the set of all numerical semigroups of a given genus rooted
at the unique ordinary semigroup of this genus, where the parent of a semigroup is its
ordinarization transform and the children of a semigroup are the semigroups obtained
by taking away the generators one by one that are larger than the Frobenius number
and adding a new non-gap smaller than the multiplicity in a licit place. To illustrate this
construction with an example in Figure 2, we depicted T7.
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Figure 2. The whole tree T7

semigroups in Tg at a given depth is at most the number of numerical semigroups in Tg+1 at the same68

depth. This was proved in the same reference for the lowest and largest depths. This conjecture would69

prove that ng+1 > ng.70

In Section 2 we will construct the quasi-ordinarization transform of a general semigroup,71

paralleling the ordinarization transform. If the quasi-ordinarization transform is applied repeatedly72

to a numerical semigroup, it ends up in a quasi-ordinary semigroup. In Section 3 we define73

the quasi-ordinarization number of a semigroup as the number of successive quasi-ordinarization74

transforms of the semigroup that give a quasi-ordinary semigroup. Section 4 analyzes the number75

of numerical semigroups of a given genus and a given quasi-ordinarization number in terms of the76

given parameters. We present the conjecture that the number of numerical semigroups of a given77

genus and a fixed quasi-ordinarization number increases with the genus and we prove it for the largest78

quasi-ordinarization numbers. In Section 5 we present the forest of semigroups of a given genus79

that is obtained when connecting each semigroup to its quasi-ordinarization transform. The forest80

corresponding to genus g is denoted Fg. Section 6 analyzes the relationships between T, Tg, and Fg.81

From the perspective of the forests of numerical semigroups here presented, the conjecture in82

Section 4 translates to the conjecture that the number of numerical semigroups in Fg at a given depth83

is at most the number of numerical semigroups in Fg+1 at the same depth. The results in Section 484

provide a proof of the conjecture for the largest depths. Proving this conjecture for all depths, would85

prove that ng+1 > ng. Hence, we expect our work to contribute to the proof of the conjectured86

increasingness of the sequence ng (A007323).87

2. Quasi-ordinary semigroups and quasi-ordinarization transform88

Quasi-ordinary semigroups are those semigroups for which m = g and so, there is a unique gap89

larger than m. The sub-Frobenius number of a non-ordinary semigroup Λ with Frobenius number F is90

the Frobenius number of Λ ∪ {F}.91

The subconductor of a semigroup with Frobenius number F is the smallest nongap in the interval92

of nongaps immediatelly previous to F. For instance, the subconductor of the above example, H =93

{0, 12, 19, 24, 28, 31, 34, 36, 38, 40, 42, 43, 45, 46, 47, 48, . . . }, is 42.94

Lemma 1. Let Λ be a non-ordinary and non quasi-ordinary semigroup, with multiplicity m, genus g, and95

sub-Frobenius number f . Then Λ ∪ { f } \ {m} is another numerical semigroup of the same genus g.96

Figure 2. The whole tree T7.

One significant difference between Tg and T is that the first one has only a finite
number of nodes. In fact, it has ng nodes, while T is an infinite tree. It was conjectured in [9]
that the number of numerical semigroups in Tg at a given depth is at most the number of
numerical semigroups in Tg+1 at the same depth. This was proved in the same reference
for the lowest and largest depths. This conjecture would prove that ng+1 > ng.

In Section 2, we will construct the quasi-ordinarization transform of a general semi-
group, paralleling the ordinarization transform. If the quasi-ordinarization transform is
applied repeatedly to a numerical semigroup, it ends up in a quasi-ordinary semigroup.
In Section 3, we define the quasi-ordinarization number of a semigroup as the number of
successive quasi-ordinarization transforms of the semigroup that give a quasi-ordinary
semigroup. Section 4 analyzes the number of numerical semigroups of a given genus
and a given quasi-ordinarization number in terms of the given parameters. We present
the conjecture that the number of numerical semigroups of a given genus and a fixed
quasi-ordinarization number increases with the genus and we prove it for the largest quasi-
ordinarization numbers. In Section 5, we present the forest of semigroups of a given genus
that is obtained when connecting each semigroup to its quasi-ordinarization transform.
The forest corresponding to genus g is denoted Fg. Section 6 analyzes the relationships
between T, Tg, and Fg.

From the perspective of the forests of numerical semigroups here presented, the
conjecture in Section 4 translates to the conjecture that the number of numerical semigroups
in Fg at a given depth is at most the number of numerical semigroups in Fg+1 at the same
depth. The results in Section 4 provide a proof of the conjecture for the largest depths.
Proving this conjecture for all depths, would prove that ng+1 > ng. Hence, we expect
our work to contribute to the proof of the conjectured increasingness of the sequence
ng (A007323).

2. Quasi-Ordinary Semigroups and Quasi-Ordinarization Transform

Quasi-ordinary semigroups are those semigroups for which m = g and so, there is a
unique gap larger than m. The sub-Frobenius number of a non-ordinary semigroup Λ with
Frobenius number F is the Frobenius number of Λ ∪ {F}.

The subconductor of a semigroup with Frobenius number F is the smallest nongap in
the interval of nongaps immediatelly previous to F. For instance, the subconductor of the
above example, H = {0, 12, 19, 24, 28, 31, 34, 36, 38, 40, 42, 43, 45, 46, 47, 48, . . . }, is 42.
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Lemma 1. Let Λ be a non-ordinary and non quasi-ordinary semigroup, with multiplicity m, genus
g, and sub-Frobenius number f . Then, Λ ∪ { f } \ {m} is another numerical semigroup of the same
genus g.

Proof. Since Λ is already a numerical semigroup, it is enough to see that F− f is not in
Λ ∪ { f } \ {m}, where F is the Frobenius number of Λ. Notice that for a non-ordinary
numerical semigroup, the difference between its Frobenius number and its sub-Frobenius
number needs to be less than the multiplicity of the semigroup; hence, F− f 6∈ Λ. So, the
only option for F − f to be in Λ ∪ { f } \ {m} is that F − f = f . In this case, any integer
between 1 and f − 1 must be a gap, since the integers between F − 1 and F − f + 1 are
nongaps. In this case, Λ would be quasi-ordinary, contradicting the hypotheses.

Definition 1. The quasi-ordinarization transform of a non-ordinary and non quasi-ordinary
numerical semigroup Λ, with multiplicity m, genus g and sub-Frobenius number f , is the numerical
semigroup Λ ∪ { f } \ {m}.

The quasi-ordinarization of either an ordinary or quasi-ordinary semigroup is defined to
be itself.

As an example, the quasi-ordinarization of the well-tempered harmonic semigroup
H = {0, 12, 19, 24, 28, 31, 34, 36, 38, 40, 42, 43, 45, 46, 47, 48, . . . } used in the previous exam-
ples is H′ = {0, 19, 24, 28, 31, 34, 36, 38, 40, 41, 42, 43, 45, 46, 47, 48, . . . }.

Remark 1. In the ordinarization and quasi-ordinarization transform process, we replace the multi-
plicity by the largest and second largest gap, respectively, and we obtain numerical semigroups. In
general, if we replace the multiplicity by the third largest gap, we do not obtain a numerical semigroup.

See for instance {0, 2, 4, 6, 8, 10, 11, . . . }. Replacing 2 by 5, we obtain {0, 4, 5, 6, 8, 10, 11, . . . },
which is not a numerical semigroup since 9 = 4 + 5 is not in the set.

3. Quasi-Ordinarization Number

Next, lemma explicits that there is only one quasi-ordinary semigroup with genus g
and conductor c where c 6 2g.

Lemma 2. For each of the positive integers g and c with c 6 2g, the semigroup {0, g, g+ 1, . . . , c−
2, c, c + 1 . . . } is the unique quasi-ordinary semigroup of genus g and conductor c.

The quasi-ordinarization transform of a non-ordinary semigroup of genus g and
conductor c can be applied subsequently and at some step, we will attain the quasi-
ordinary semigroup of that genus and conductor, that is, the numerical semigroup {0, g, g +
1, . . . , c− 2, c, c + 1, . . . }. The number of such steps is defined to be the quasi-ordinarization
number of Λ.

We denote by $g,q, the number of numerical semigroups of genus g and quasi-
ordinarization number q. In Table 1, one can see the values of $g,q for genus up to 45.
It has been computed by an exhaustive exploration of the semigroup tree using the RGD
algorithm [12].

Lemma 3. The quasi-ordinarization number of a non-ordinary numerical semigroup of genus g
coincides with the number of non-zero non-gaps of the semigroup that are smaller than or equal
to g− 1.

Proof. A non-ordinary numerical semigroup of genus g is non-quasi-ordinary if and only
if its multiplicity is at most g − 1. Consequently, we can repeatedly apply the quasi-
ordinarization transform to a numerical semigroup while its multiplicity is at most g− 1.
Furthermore, the number of consecutive transforms that we can apply before obtaining the
quasi-ordinary semigroup is hence the number of its non-zero non-gaps that are at most
the genus minus one.
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Table 1. Number of semigroups of each genus and quasi-ordinarization number.

$g,q g = 1 g = 2 g = 3 g = 4 g = 5 g = 6 g = 7 g = 8 g = 9 g = 10

q = 0 1 2 3 4 5 6 7 8 9 10
q = 1 1 3 6 15 24 42 61 93
q = 2 1 2 7 16 43 89
q = 3 1 1 4 11
q = 4 1 1

sum= 1 2 4 7 12 23 39 67 118 204

$g,q g = 11 g = 12 g = 13 g = 14 g = 15 g = 16 g = 17 g = 18 g = 19 g = 20

q = 0 11 12 13 14 15 16 17 18 19 20
q = 1 123 174 219 291 355 453 537 666 774 936
q = 2 176 327 538 903 1379 2127 3022 4441 5979 8417
q = 3 30 75 209 448 990 1894 3575 6367 10,796 17,960
q = 4 2 3 19 34 106 295 829 1847 4447 9019
q = 5 1 1 2 2 9 18 55 116 403 986
q = 6 1 1 2 2 7 9 36 48
q = 7 1 1 2 2 7 7
q = 8 1 1 2 2
q = 9 1 1

sum= 343 592 1001 1693 2857 4806 8045 13,467 22,464 37,396

$g,q g = 21 g = 22 g = 23 g = 24 g = 25 g = 26 g = 27 g = 28 g = 29 g = 30

q = 0 21 22 23 24 25 26 27 28 29 30
q = 1 1072 1272 1437 1680 1878 2166 2401 2739 3012 3405
q = 2 10,966 14,826 18,774 24,770 30,539 39,321 47,697 60,083 71,711 88,938
q = 3 28,265 44,272 66,046 99,525 140,960 204,611 281,077 394,617 525,838 720,977
q = 4 18,673 35,178 65,533 115,252 197,836 329,568 533,479 848,091 1,304,275 2,001,344
q = 5 2981 7165 17,640 37,770 84,075 166,465 331,872 615,860 1,135,074 1,989,842
q = 6 181 464 1383 3603 11,141 26,864 67,991 153,882 352,322 727,680
q = 7 25 37 94 170 652 1679 5300 14,899 42738 107,050
q = 8 7 7 23 24 85 99 321 715 2506 7073
q = 9 2 2 7 7 23 23 69 83 233 331
q = 10 1 1 2 2 7 7 23 23 68 70
q = 11 1 1 2 2 7 7 23 23
q = 12 1 1 2 2 7 7
q = 13 1 1 2 2
q = 14 1 1

sum= 62,194 103,246 170,963 282,828 467,224 770,832 1,270,267 2,091,030 3,437,839 5,646,773

For a numerical semigroup Λ, we will consider its enumeration λ, that is, the unique
increasing bijective map between N0 and Λ. The element λ(i) is then denoted λi. As a
consequence of the previous lemma, for a numerical semigroup Λ with quasi-ordinarization
number equal to q, the non-gaps that are at most g− 1 are exactly λ0 = 0, λ1, . . . , λq.

Lemma 4. The maximum quasi-ordinarization number of a non-ordinary semigroup of genus g
is b g−1

2 c.
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Proof. Let Λ be a numerical semigroup with quasi-ordinarization number equal to q. Since
the Frobenius number F is at most 2g− 1, the total number of gaps from 1 to 2g− 1 is g,
and so the number of non-gaps from 1 to 2g− 1 is g− 1. The number of those non-gaps
that are larger than g − 1 is g − 1− q. On the other hand, λq + λ1, λq + λ2, . . . , 2λq are
different non-gaps between g and 2g− 1. So, the number of non-gaps between g and 2g− 1
is at least q. All these results imply that g− 1− q > q and so, q 6 g−1

2 .
On the other hand, the bound stated in the lemma is attained by the hyperelliptic

numerical semigroup

{0, 2, 4, . . . , 2
⌊

g− 1
2

⌋
, 2
(⌊

g− 1
2

⌋
+ 1
)

, . . . , 2g, 2g + 1, 2g + 2, . . . }. (1)

We will next see that the maximum ordinarization number stated in the previous
lemma is attained uniquely by the numerical semigroup in (1). To prove this result, we
will need the next lemma. Let us recall that A + B = {a + b : a ∈ A, b ∈ B} and that #A
denotes the cardinality of A.

Lemma 5. Consider a finite subset A = {a1 < · · · < an} ⊆ N0.

1. The set A + A contains at least 2n− 1 elements
2. If n > 1, the set A + A contains exactly 2n− 1 elements if and only if there exists a positive

integer α such that ai = a1 + (i− 1)α for all i 6 n.
3. If n > 4, the set A + A contains exactly 2n elements if and only if either

• there exists a positive integer α such that ai = a1 + α(i− 1) for all i with 1 6 i < n
and an = a1 + nα,

• there exists a positive integer α such that ai = a1 + iα for all i with 2 6 i 6 n.

Proof. The first item stems from the fact that if A = {a1, . . . , an}, then A + A must con-
tain at least 2a1, a1 + a2, a1 + a3, . . . , a1 + an, a2 + an, a3 + an, . . . , an−1 + an, 2an, which are
all different.

The second item easily follows from the fact that if A+ A has 2n− 1 elements, then A+
A must be exactly the set 2a1, a1 + a2, a1 + a3, . . . , a1 + an, a2 + an, a3 + an, . . . , an−1 + an, 2an.
Indeed, in this case, the increasing set {a1 + a3, . . . , a1 + an, a2 + an, a3 + an, . . . , an−1 +
an, 2an}must coincide with the increasing set {2a2, a2 + a3, a2 + a4, . . . , a2 + an, a3 + an, . . . ,
an−1 + an, 2an}, having as a consequence that 2a2 = a1 + a3 and so, a2 = a1+a3

2 = a1 +
a3−a1

2 ,
and a3 = 2a2 − a1 = a1 + 2 a3−a1

2 . Hence,

a2 = a1 +
a3 − a1

2

a3 = a1 + 2
a3 − a1

2

Similarly, one can show that 2a3 = a2 + a4 and, so, a4 = 2a3 − a2 = 2a1 + 4 a3−a1
2 −

a1 − a3−a1
2 = a1 + 3 a3−a1

2 . It equally follows that

a4 = a1 + 3
a3 − a1

2

a5 = a1 + 4
a3 − a1

2
...

For the third item, one direction of the proof is obvious, so we just need to prove the
other one, that is, if the sum contains 2n elements, then a1, . . . , an must be as stated.
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We will proceed by induction. Suppose that n = 4 and that the set A + A contains
exactly 8 elements. Since the ordered sequence

2a1 < a1 + a2 < 2a2 < a2 + a3 < 2a3 < a3 + a4 < 2a4 (2)

already contains 7 elements, then necessarily two of the elements a1 + a3, a1 + a4, a2 + a4
coincide with one element in (2) and the third one is not in (2). So, at least one of a1 + a3
and a2 + a4 must be in (2).

Suppose first that a1 + a3 is in (2). Then, necessarily a1 + a3 = 2a2, which means that
a2 − a1 = a3 − a2. Hence, there exists α (in fact, α = a2 − a1) such that a2 = a1 + α and
a3 = a1 + 2α. Now, the elements

2a1 < a1 + a2 < 2a2 < a2 + a3 < 2a3 (3)

are equally separated by the same separation α. That is,

(a1 + a2)− (2a1) = α

(2a2)− (a1 + a2) = α

(a2 + a3)− (2a2) = α

(2a3)− (a2 + a3) = α.

Additionally, the elements

a4 + a1 < a4 + a2 < a4 + a3 (4)

are equally separated by the same separation α. That is,

(a4 + a3)− (a4 + a2) = α

(a4 + a2)− (a4 + a1) = α.

Furthermore, A + A must contain all the elements in (3) and (4) as well as the element
2a4, which is not in (3), nor in (4). Since #(A + A) = 8, this means that there must be exatly
one element that is both in (3) and (4). The only way for this to happen is that 2a3 = a4 + a1.
Consequently, a4 + a1 = 2a1 + 4α, and so, a4 = a1 + 4α. This proves the result in the
first case.

For the case in which a2 + a4 is in (2), it is necessary that a2 + a4 = 2a3, which means
that a3 − a2 = a4 − a3. Hence, there exists β (in fact, β = a3 − a2) such that a3 = a2 + β and
a4 = a2 + 2β. Now, the elements

2a2 < a2 + a3 < 2a3 < a3 + a4 < 2a4 (5)

are equally separated by the same separation β. That is,

(a2 + a3)− (2a2) = β

(2a3)− (a2 + a3) = β

(a3 + a4)− (2a3) = β

(2a4)− (a3 + a4) = β.

Additionally, the elements

a1 + a2 < a1 + a3 < a1 + a4 (6)

are equally separated by the same separation β. That is,
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(a1 + a3)− (a1 + a2) = β

(a1 + a4)− (a1 + a3) = β.

Now, A + A must contain all the elements in (5) and (6), as well as the element 2a1,
which is not in (5), nor in (6). Since #(A + A) = 8, this means that there must be exactly one
element that is both in (5) and in (6). The only way for this to happen is that a1 + a4 = 2a2.
Consequently, a1 + a4 = 2a1 + 4α, and so, a4 = a1 + 4α. Hence, a2 = a1 + 2β, a3 = a1 + 3β,
a4 = a1 + 4β. This proves the result in the second case and concludes the proof for n = 4.

Now, let us prove the result for a general n > 4. We will denote An the set {a1, . . . , an}.
Notice that A1 + A1 = {2a1}while, if i > 1, then {ai−1 + ai, 2ai} ⊆ (Ai + Ai) \ (Ai−1 +

Ai−1), hence, #((Ai + Ai) \ (Ai−1 + Ai−1)) > 2. Consequently, if #(An + An) = 2n, we
can affirm that there exists exactly one integer s such that #(Ar + Ar) = 2r− 1, for all r < s
and #(Ar + Ar) = 2r for all r > s.

If s = n, then we already have, by the second item of the lemma, that ai = a1 +(i− 1)γ
for a given positive integer γ for all i < n.

On one hand,

An−1 + An−1 = {2a1, 2a1 + γ, 2a1 + 2γ, 2a1 + 3γ, . . . , 2a1 + (2n− 4)γ}, (7)

which has 2n− 3 elements. On the other hand,

An−1 + an = {(a1 + an), (a1 + an) + γ, (a1 + an) + 2γ, (a1 + an) + 3γ, . . . , (a1 + an) + (n− 2)γ}, (8)

has n− 1 elements.
Now, A + A = (An−1 + An−1) ∪ (An−1 + an) ∪ (2an). By the inclusion–exclusion

principle, and since 2an is not in (An−1 + An−1) ∪ (An−1 + an),

#((An−1 + An−1) ∩ (An−1 + an)) = #(An−1 + An−1) + #(An−1 + an) + 1− #(A + A)

= (2n− 3) + (n− 1) + 1− 2n

= n− 3

By (7) and (8), we conclude that (a1 + an) + (n − 4)γ = 2a1 + (2n − 4)γ, that is,
an = a1 + nγ. Hence, the result follows with α = γ.

On the contrary, if s < n, then, since #(An−1 + An−1) = 2(n− 1), we can apply the
induction hypothesis and affirm that either one of the following cases, (a) or (b), holds.

(a) There exists a positive integer αn−1 such that ai = a1 + αn−1(i − 1) for all i with
1 6 i < n− 1 and an−1 = a1 + (n− 1)α;

(b) There exists a positive integer α such that ai = a1 + iαn−1 for all i with 2 6 i 6 n− 1.

In case (a), we will have

An−1 + An−1 = {2a1, 2a1 + αn−1, 2a1 + 2αn−1, . . .
. . . , 2a1 + (2n− 4)αn−1, 2a1 + (2n− 2)αn−1},

and
An−1 + an = {(a1 + an), (a1 + an) + αn−1, (a1 + an) + 2αn−1, . . .

. . . , (a1 + an) + (n− 3)αn−1, (a1 + an) + (n− 1)αn−1},
In case (b), we will have

An−1 + An−1 = {2a1, 2a1 + 2αn−1, 2a1 + 3αn−1, . . .
. . . , 2a1 + (2n− 3)αn−1, 2a1 + (2n− 2)αn−1},

and
An−1 + an = {(a1 + an), (a1 + an) + 2αn−1, (a1 + an) + 3αn−1, . . .

. . . , (a1 + an) + (n− 1)αn−1},

20



Symmetry 2021, 13, 1084

Now,

#((An−1 + An−1) ∩ (An−1 + an)) = #(An−1 + An−1) + #(An−1 + an) + 1− #(A + A)

= #(An−1 + An−1)− n

= n− 2.

This is only possible in case (b) with

(An−1 + An−1) ∩ (An−1 + an) = {(a1 + a2), (a1 + an) + 2αn−1, (a1 + an) + 3αn−1, . . .
. . . , (a1 + an) + (n− 2)αn−1},

and, hence, with (a1 + an) + (n− 2)αn−1 = 2a1 + (2n− 2)αn−1, that is, an = a1 + nαn−1,
hence yielding the result with α = αn−1.

Lemma 6. Let g > 2 and g 6= 4, g 6= 6. The unique non-quasi-ordinary numerical semigroup of
genus g and quasi-ordinarization number b g−1

2 c is {0, 2, 4, . . . , 2g, 2g + 2, 2g + 3 . . . }.

Proof. If g = 3, there is only one numerical semigroup non-ordinary and non-quasi-
ordinary as we can observe in Figure 1, and it is exactly {0, 2, 4, 6, . . . }, which indeed, has a
quasi-ordinarization number b g−1

2 c and it is of the form {0, 2, 4, . . . , 2g, 2g + 1, 2g + 2, . . . }.
The case g = 4 and g = 6 are excluded from the statement (and analyzed in Remark 2). So,
we can assume that either g = 5 or g > 6.

Suppose that the quasi-ordinarization number of Λ is b g−1
2 c. Since λb g−1

2 c
6 g− 1, we

know that the set of all non-gaps between 0 and 2g− 2 must contain all the sums

Σ = {λi + λj : 0 6 i, j 6 b g− 1
2
c}.

However, the number of non-gaps between 0 and 2g− 2 is either g− 1 or g depend-
ing on whether 2g − 1 is a gap or not. So, #Σ 6 g. On the other hand, by Lemma 5,
#Σ > 2b g−1

2 c+ 1.
If g is odd, we get that 2b g−1

2 c+ 1 = g and so, #Σ = g. Then, by the second item in
Lemma 5, we get that λi = iλ1 for i 6 g−1

2 . Now, λ g−1
2

= g−1
2 λ1 and, since λ g−1

2
6 g− 1,

one can deduce that λ1 6 2. If λ1 = 1 this contradicts g > 1. So, λi = 2i for 0 6 i 6 g−1
2

and the remaining non-gaps between g and 2g are necessarily λi = 2i for i = g−1
2 + 1 to

i = g.
If g is even, then g− 1 6 #Σ 6 g. If #Σ = g, then, since the number of summands in

the sum Σ is at least 4 (because we excluded the even genera 4 and 6), we can apply the
third item in Lemma 5. Then, we obtain λ g

2−1 = g
2 λ1. This, together with λ g

2−1 6 g− 1

implies that λ1 6 2 g−1
g < 2. So, λ1 = 1, contradicting g > 1. Hence, it must be Σ = g− 1. If

Σ = g− 1, then, by the second item in Lemma 5, we obtain λi = iλ1 for all i 6 g
2 − 1. Now,

λ g
2−1 = ( g

2 − 1)λ1 and, since λ g
2−1 6 g− 1, one can deduce that λ1 6 2 g−1

g−2 . However,

2 g−1
g−2 < 3 if g > 5. So, λ1 con only be 1 or 2. If λ1 = 1 this contradicts g > 1. So, λi = 2i for

0 6 i 6 g
2 − 1 and the remaining non-gaps between g and 2g are necessarily λi = 2i for

i = g
2 to i = g.

Remark 2. For g = 4, the maximum quasi-ordinarization number b g−1
2 c = 1 is, in fact, attained

by three of the 7 semigroups of genus 4. The semigroups whose quasi-ordinarization number is
maximum are {0, 3, 6, . . . }, {0, 2, 4, 6, 8, . . . }, {0, 3, 5, 6, 8, . . . }.

For g = 6, the maximum quasi-ordinarization number b g−1
2 c = 2 is, in fact, attained by two

of the 23 semigroups of genus 6. The semigroups whose quasi-ordinarization number is maximum
are {0, 2, 4, 6, 8, 10, 12, . . . }, {0, 4, 5, 8, 9, 10, 12, . . . }.
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Hence, g = 4 and g = 6 are exceptional cases.

4. Analysis of $g,q

Let us denote og,r, the number of numerical semigroups of genus g and ordinar-
ization number r and $g,q, the number of numerical semigroups of genus g and quasi-
ordinarization number r.

We can observe a behavior of $g,q very similar to the behavior of og,r introduced in [9].
Indeed, for odd g and large r, it holds $g,q = og,r and for even g and large q, it holds

$g,q = og,r+1. We will give a partial proof of these equalities at the end of this section.
It is conjcetured in [9] that, for each genus g ∈ N0 and each ordinarization number

r ∈ N0,
og,r 6 og+1,r.

We can write the new conjecture below paralleling this.

Conjecture 1. For each genus g ∈ N0 and each quasi-ordinarization number q ∈ N0,

$g,q 6 $g+1,q.

Now, we will provide some results on $g,q for high quasi-ordinarization numbers.
First, we will need Freı̆man’s Theorem [25,26] as formulated in [27].

Theorem 2 (Freı̆man). Let A be a set of integers such that #A = k > 3. If #(A + A) 6 3k− 4,
then A is a subset of an arithmetic progression of length #(A + A)− k + 1 6 2k− 3.

The next lemma is a consequence of Freı̆man’s Theorem. The lemma shows that the
first non-gaps of numerical semigroups of large quasi-ordinarization number must be even.

Lemma 7. If a semigroup Λ of genus g has quasi-ordinarization number q with g+1
3 6 q 6 b g−1

2 c
then all its non-gaps which are less than or equal to g− 1 are even.

Proof. Suppose that Λ is a semigroup of genus g and quasi-ordinarization number q > g+1
3 .

Since the quasi-ordinarization is q, this means that λ0 = 0, λ1, . . . , λq 6 g− 1 and
λq+1 > g, hence Λ ∩ [0, g− 1] = {λ0, λ1, . . . , λq}. Let A = Λ ∩ [0, g− 1]. By the previous
equality, #A = q + 1. We have that the elements in A + A are upper bounded by 2g− 2 and
so A + A ⊆ Λ ∩ [0, 2g− 2]. Then, #(A + A) 6 #(Λ ∩ [0, 2g− 2]) < #(Λ ∩ [0, 2g]). Since
the Frobenius number of Λ is at most 2g− 1, #(Λ ∩ [0, 2g]) = g + 1 and, so, #(A + A) 6 g.
Now, since q > g+1

3 , we have g 6 3q− 1 = 3(q + 1)− 4 = 3(#A)− 4 and we can apply
Theorem 2 with k = q + 1. Thus, we have that A is a subset of an arithmetic progression of
length at most g− k + 1 = g− q.

Let d(A) be the difference between consecutive terms of this arithmetic progression.
The number d(A) can not be larger than or equal to three since otherwise λq > q · d(A) >
3q > 3 g+1

3 > g, a contradiction with q being the quasi-ordinarization number.
If d(A) = 1, then A ⊆ [0, g − q − 1] and so Λ ∩ [g − q, g − 1] = ∅. We claim that

in this case A ⊆ {0} ∪ [d g
2 e, g− q− 1]. Indeed, suppose that x ∈ A. Then, 2x satisfies

either 2x 6 g− q− 1 or 2x > g. If the second inequality is satisfied, then it is obvious that
x ∈ {0} ∪ [d g

2 e, g− q− 1]. If the first inequality is satisfied, then we will prove that mx 6
g− q− 1 for all m > 2 by induction on m and this leads to x = 0. Indeed, if mx 6 g− q− 1,

then x 6 g−q−1
m 6 g− g+1

3 −1
m = 2g−4

3m < 2g
3m . Now, (m + 1)x < 2g(m+1)

3m = (2m+2)g
3m and since

m > 2, we have (m + 1)x < (2m+m)g
3m = g and so (m + 1)x 6 g− 1. Since (m + 1)x is in

Λ ∩ [0, g− 1] = A ⊆ [0, g− q− 1], this means that (m + 1)x 6 g− q− 1 and this proves
the claim.

Now, A ⊆ {0} ∪ [d g
2 e, g− q− 1] together with #A = q + 1 implies that q 6 g− q−

d g
2 e = b

g
2 c − q 6 g

2 −
g+1

3 = g−2
6 < q, a contradiction.
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So, we deduce that d(A) = 2, leading to the proof of the lemma.

The next lemma was proved in [9].

Lemma 8. Suppose that a numerical semigroup Λ has ω gaps between 1 and n − 1 and
n > 2ω + 2, then

1. n ∈ Λ,
2. the Frobenius number of Λ is smaller than n,
3. the genus of Λ is ω.

Let Λ be a numerical semigroup. As in [9], let us say that a set B ⊂ N0 is Λ-closed if
for any b ∈ B and any λ in Λ, the sum b + λ is either in B or it is larger than max(B). If
B is Λ-closed, so is B−min(B). Indeed, b−min(B) + λ = (b + λ)−min(B) is either in
B−min(B) or it is larger than max(B)−min(B) = max(B−min(B)). The new Λ-closed
set contains 0. We will denote by C(Λ, i), the Λ-closed sets of size i that contain 0.

Let Sγ be the set of numerical semigroups of genus γ. It was proved in [9] that, for r,
an integer with g+2

3 6 r 6 b g
2 c, it holds

og,r = ∑
Ω∈S

(b g
2 c−r)

#C(Ω,
⌊ g

2

⌋
− r + 1).

We will see now that, for q an integer with g+1
3 6 q 6 b g−1

2 c, it holds

$g,q = ∑
Ω∈S

(b g−1
2 c−q)

#C(Ω,
⌊

g− 1
2

⌋
− q + 1).

This proves that, for q, an integer with g+2
3 6 q 6 b g−1

2 c, we have

$g,q =

{
og,q if g is odd,
og,q+1 if g is even.

Theorem 3. Let g ∈ N0, g > 1, and let q be an integer with g+1
3 6 q 6 b g−1

2 c. Define
ω = b g−1

2 c − q

1. If Ω is a numerical semigroup of genus ω and B is an Ω-closed set of size ω + 1 and first
element equal to 0 then

{2j : j ∈ Ω} ∪ {2j− 2 max(B) + 2g + 1 : j ∈ B} ∪ (2g +N0)

is a numerical semigroup of genus g and quasi-ordinarization number equal to q.
2. All numerical semigroups of genus g and quasi-ordinarization number q can be uniquely

written as

{2j : j ∈ Ω} ∪ {2j− 2 max(B) + 2g + 1 : j ∈ B} ∪ (2g +N0)

for a unique numerical semigroup Ω of genus ω and a unique Ω-closed set B of size ω + 1
and first element equal to 0.

3. The number ρg,q of numerical semigroups of genus g and quasi-ordinarization number q
depends only on ω. It is exactly

∑
Ω∈Sω

#C(Ω, ω + 1).
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Proof.

1. Suppose that Ω is a numerical semigroup of genus ω and B is an Ω-closed set of size
ω + 1 and first element equal to 0. Let X = {2j : j ∈ Ω}, Y = {2j− 2 max(B)+ 2g+ 1 :
j ∈ B}, and Z = (2g +N0).
First of all, let us see that the complement N0 \ (X ∪ Y ∪ Z) has g elements. Notice
that all elements in X are even while all elements in Y are odd. So, X and Y do not
intersect. Additionally, the unique element in Y ∩ Z is 2g+ 1. The number of elements
in the complement will be

#N0 \ (X ∪Y ∪ Z) = 2g− #{x ∈ X : x < 2g} − #Y + 1

= 2g− #{s ∈ Ω : s < g} − #B + 1

= 2g−ω− #{s ∈ Ω : s < g}.

We know that all gaps of Ω are at most 2ω− 1 = 2(b g−1
2 c − q)− 1 6 g− 1− 2q− 1 <

g. So, #{s ∈ Ω : s < g} = g−ω and we conclude that #N0 \ (X ∪Y ∪ Z) = g.
Before proving that X ∪Y ∪ Z is a numerical semigroup, let us prove that the number
of non-zero elements in X ∪Y ∪ Z, which are smaller than or equal to g− 1 is q. Once
we prove that X ∪Y ∪ Z is a numerical semigroup, this will mean, by Lemma 3, that it
has quasi-ordinarization number q. On the one hand, all elements in Y are larger than
g− 1. Indeed, if λ is the enumeration of Ω (i.e., Ω = {λ0, λ1, . . . } with λi < λi+1),
then max(B) 6 λω 6 2ω = 2b g−1

2 c − 2q 6 g− 1− 2 g+1
3 < g

3 . Now, for any j ∈ B,
2j− 2 max(B) + 2g + 1 > 2g− 2 max(B) > g. On the other hand, all gaps of Ω are at
most 2ω− 1 = 2b g−1

2 c − 2q− 1 < g− 2(g+1)
3 − 1 < g

3 − 1 and so all the even integers
not belonging to X are less than g. So, the number of non-zero non-gaps of X ∪Y ∪ Z
smaller than or equal to g− 1 is b g−1

2 c −ω = q.
To see that X ∪Y ∪ Z is a numerical semigroup, we only need to see that it is closed
under addition. It is obvious that X + Z ⊆ Z, Y + Z ⊆ Z, Z + Z ⊆ Z. It is also
obvious that X + X ⊆ X since Ω is a numerical semigroup and that Y + Y ⊆ Z since,
as we proved before, all elements in Y are larger than g.
It remains to see that X + Y ⊆ X ∪ Y ∪ Z. Suppose that x ∈ X and y ∈ Y. Then,
x = 2i for some i ∈ Ω and y = 2j − 2 max(B) + 2g + 1 for some j ∈ B. Then,
x+ y = 2(i+ j)− 2 max(B)+ 2g+ 1. Since B is Ω-closed, we have that either i+ j ∈ B
and so x + y ∈ Y or i + j > max(B). In this case, x + y ∈ Z. So, X + Y ⊆ Y ∪ Z.

2. First of all notice that, since the Frobenius number of a semigroup Λ of genus g is
smaller than 2g, it holds

Λ ∩ (2g +N0) = (2g +N0).

For any numerical semigroup Λ, the set Ω = { j
2 : j ∈ Λ ∩ (2N0)} is a numerical

semigroup. If Λ has a quazi-ordinarization number q > g+1
3 then, by Lemma 7,

Λ ∩ [0, g− 1] = (2Ω) ∩ [0, g− 1].

The semigroup Ω has exactly q+ 1 non-gaps between 0 and b g−1
2 c and ω = b g−1

2 c− q
gaps between 0 and b g−1

2 c. We can use Lemma 8 with n = b g+1
2 c since

2ω + 2 = 2
⌊

g− 1
2

⌋
− 2q + 2 6 g− 1− 2(g + 1)

3
+ 2 =

g + 1
3

,

which implies 2ω + 2 6 g+1
3 6 b g+1

2 c = n. Then, the genus of Ω is ω and the
Frobenius number of Ω is at most b g+1

2 c. This means that all even integers larger than
g− 1 belong to Λ.
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Define D = (Λ ∩ [0, 2g]) \ 2Ω. That is, D is the set of odd non-gaps of Λ smaller than
2g. We claim that B̄ = { j−1

2 : j ∈ D ∪ {2g + 1}} is a Ω-closed set of size ω + 1. The
size follows from the fact that the number of non-gaps of Λ between g and 2g is g− q
and that the number of even integers in the same interval is d g+1

2 e. Suppose that

λ ∈ Ω and b ∈ B̄. Then, b = j−1
2 for some j in D ∪ {2g + 1} and b + λ = (j+2λ)−1

2 .

If (j+2λ)−1
2 > max(B̄) = (2g+1)−1

2 , we are done. Otherwise, we have j + 2λ 6 2g.
Since Λ is a numerical semigroup and both j, 2λ ∈ Λ, it holds j + 2λ ∈ Λ ∩ [0, 2g].
Furthermore, j + 2λ is odd since j is also. So, b + λ is either larger than max(B̄) or it
is in B̄. Then, B = B̄−min(B̄) is a Λ-closed set of size ω + 1 and first element zero.

3. The previous two points define a bijection between the set of numerical semigroups
in Sg of quasi-ordinarization number q and the set {C(Ω, ω + 1) : Ω ∈ Sω}. Hence,
ρg,q = ∑Ω∈Sω

#C(Ω, ω + 1).

Corollary 1. Suppose that g+2
3 6 q 6 b g−1

2 c. Then,

$g,q =

{
og,q if g is odd,
og,q+1 if g is even.

Define, as in [9], the sequence fω by fω = ∑Ω∈Sω
#C(Ω, ω + 1). The first elements in

the sequence, from f0 to f15 are

ω 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
fω 1 2 7 23 68 200 615 1764 5060 14,626 41,785 117,573 332475 933,891 2,609,832 7,278,512

We remark that this sequence appears in [5], where Bernardini and Torres proved
that the number of numerical semigroups of genus 3ω whose number of even gaps is ω is
exactly fω. It corresponds to the entry A210581 of The On-Line Encyclopedia of Integer
Sequences [23].

We can deduce the values $g,q using the values in the previous table together with
Theorem 3 for any g, whenever q > max( g+2

3 , b g−1
2 c − 15).

The next corollary is a consequence of the fact that the sequence fω is increasing for ω
between 0 and 15.

Corollary 2. For any g ∈ N and any q > max( g
3 + 1, b g

2 c − 15), it holds $g,q > $g+1,q.

If we proved that fω 6 fω+1 for any ω, this would imply $g,q 6 $g+1,q for any q > g
3 .

5. The Forest Fg

Fix a genus g. We can define a graph in which the nodes are all semigroups of that
genus and whose edges connect each semigroup to its quasi-ordinarization transform, if it
is not itself. The graph is a forest Fg rooted at all ordinary and quasi-ordinary semigroups
of genus g. In particular, the quasi-ordinarization transform defines, for each fixed genus
and conductor, a tree rooted at the unique quasi-ordinary semigroup of that genus and
conductor, given in Lemma 2. See F4 in Figure 3, F6 in Figure 4, and F7 in Figure 5.

In the forest Fg, we know that the parent of a numerical semigroup that is not a root is
its quasi-ordinarization transform. Let us analyze now, what the children of a numerical
semigroup are. The next result is well known and can be found, for instance, in [2]. We use
Λ∗ to denote Λ \ {0}.

Lemma 9. Suppose that Λ is a numerical semigroup and that a ∈ N0 \ Λ. The set a ∪ Λ is a
numerical semigroup if and only if

• a + Λ∗ ⊆ Λ∗,
• 2a ∈ Λ,
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• 3a ∈ Λ.

The elements a ∈ N0 \Λ such that a + Λ ⊆ Λ, are denoted pseudo-Frobenius numbers
of Λ. The elements a ∈ N0 \Λ such that {2a, 3a} ⊆ Λ, are denoted fundamental gaps of Λ.
The elements satisfying the three conditions will be called candidates.

Suppose that a numerical semigroup Λ with Frobenius number F has children in Fg.
Let e1, . . . , er be the generators of Λ between the subconductor and F− 1. For i = 1, . . . , r,
let ci

1, . . . , ci
ki

be the candidates of Λ \ {ei}. The children of Λ in Fg are the semigroups of
the form Λ \ {ei} ∪ {ci

j}, for i = 1, . . . , r and j = 1, . . . , ki.
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6. Relating Fg , Tg , and T

Now, we analyze the relation between the kinship of different nodes in Fg, Tg, and T.
If two semigroups are children of the same semigroup Λ, then they are called siblings. If Λ1
and Λ2 are siblings, and Λ3 is a child of Λ2, then we say that Λ3 is a niece/nephew of Λ1.

Let q(Λ) denote the quasi-ordinarization of Λ. The next lemmas are quite immediate
from the definitions.

Lemma 10. If Λ1 is a child of Λ2 in T, then q(Λ1) is a niece/nephew of q(Λ2) in T.

As an example, Λ1 = {0, 4, 5, 8, 9, 10, 12, . . . } is a child of Λ2 = {0, 4, 5, 8, . . . } in T,
while q(Λ1) = {0, 5, 7, 8, 9, 10, 12, . . . } is a niece of q(Λ2) = {0, 5, 6, 8, . . . } in T.

Lemma 11. If Λ1 and Λ2 are siblings in T, then they are siblings in Tg but not in Fg.

As an example, Λ1 = {0, 5, 7, 9, 10, 11, 12, 14, . . . } and Λ2 = {0, 5, 7, 9, 10, 12, . . . } are
siblings in T and in T7 (see Figure 2), but they are not siblings in F7 (see Figure 5).

Lemma 12. If Λ1 and Λ2 are siblings in Tg, then q(Λ1) and q(Λ2) are siblings in T.
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As an example, Λ1 = {0, 3, 6, 9, 10, 12, . . . } and Λ2 = {0, 5, 6, 10, . . . } are siblings in T7
(see Figure 2), and q(Λ1) = {0, 6, 8, 9, 10, 12, . . . } and q(Λ2) = {0, 6, 8, 10, . . . } are siblings
in T.

As a consequence of the previous two lemmas, we obtain this final lemma.

Lemma 13. If Λ1 and Λ2 are siblings in T, then q(Λ1) and q(Λ2) are siblings in T.

As an example, Λ1 = {0, 5, 7, 9, 10, 11, 12, 14, . . . } and Λ2 = {0, 5, 7, 9, 10, 12, . . . } are
siblings in T and q(Λ1) = {0, 7, 8, 9, 10, 11, 12, 14, . . . } and q(Λ2) = {0, 7, 8, 9, 10, 12, . . . }
are siblings in T.

7. Conclusions

Quasi-ordinary semigroups are those semigroups that have all gaps except one in a
row, while ordinary semigroups have all gaps in a row.

We defined a quasi-ordinarization transform that, applied repeatedly to a non-ordinary
numerical semigroup stabilizes in a quasi-ordinary semigroup of the same genus.

From this transform, fixing a genus g, we can define a forest Fg whose nodes are all
semigroups of genus g, whose roots are all ordinary and quasi-ordinary semigroups of that
genus, and whose edges connect each non-ordinary and non-quasi-ordinary numerical
semigroup to its quasi-ordinarization transform.

We conjectured that the number of numerical semigroups in Fg at a given depth is
at most the number of numerical semigroups in Fg+1 at the same depth. We provided a
proof of the conjecture for the largest possible depths. Proving this conjecture for all depths
would prove the conjecture that ng+1 > ng. Hence, we expect our work to be a step toward
the proof of the conjectured increasingness of the sequence ng.
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Abstract: In this paper, we analyze the security of a group key establishment scheme proposed by
López-Ramos et al. This proposal aims at allowing a group of users to agree on a common key. We
present several attacks against the security of the proposed protocol. In particular, an active attack is
presented, and it is also proved that the protocol does not provide forward secrecy.

Keywords: cryptanalysis; group key establishment

1. Introduction

Secure multiparty communication is an important concern for many current appli-
cations that work over public insecure channels, such as the Internet. Wireless sensor
networks, collaborative applications, multiparty voice and video conferences, etc. need to
guarantee confidentiality, integrity and authentication in their communications.

Group key establishment (GKE) protocols are fundamental in that sense. They allow a
set of participants to agree on a common secret key to be used afterwards with symmetric
key cryptographic primitives.

In some settings all the nodes play an equivalent role, and thus the group protocol
is somewhat symmetric. Nevertheless, there are other applications where some nodes
are distinguished and one can assume they may have more computational power and
resources, and thus, they are required to perform more computations.

Over recent decades, group key establishment protocols were widely discussed in the
literature [1–7], and formal security models were proposed, indicating which attacks the
adversary can perform and what a secure key establishment protocol is. What is typically
required is that, after completion of the protocol, the intended users agree on a common
key, whereas the adversary does not learn anything about it.

A standard technique to augment the security of a scheme is the use of compilers,
which allows a modular design, going from passively secure solutions to authenticated
ones [8], from 2-party to group solutions [9], or adding forward secrecy [10].

However, several protocols were found to be insecure after they were published,
because the proposals do not provide security proofs or the proofs are not correct [11–13].
Other protocols were found to be insecure when considering active attacks [14].

Motivated by the works in López-Ramos et al. [14], in this paper, we analyze a group
key establishment proposal by López-Ramos et al. [15] and present several attacks on the
proposed protocols. In particular, we present here some active attacks against the protocols,
proving they are insecure when considering active adversaries.

Contributions: We present several concrete attacks showing the security flaws of the
protocols proposed in López-Ramos et al. [15]. In Section 2, we review the proposal of
López Ramos et al. Then, in Section 3 we review a standard security model for group key
exchange. We then present our attacks in Section 4.
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2. The Protocol of López Ramos et al.

In this section, we describe Protocol 1 in López-Ramos et al. [15], which can be seen as
an extension of the classical 2-party Diffie-Hellman key exchange. Four different protocols
are presented, which are modifications of this first one. In particular, Protocol 2 computes
the same session key, but publishing only one public key and sending a different message
in Round 2. Protocol 3 describe the extra steps to be done if some participants leave the
group and Protocol 4 deals with the case where some users join the group.

Initialization

Let {U1, . . . , Un} be the finite set of protocol participants, including Uc1 , who will act as
controller. The users agree on a multiplicative cyclic group G of prime order p and on g, a
generator of G.

Each user Ui, 1 ≤ i ≤ n will have two random values, ri, xi ∈ Z∗p as private keys and
gri and gxi will be their public keys.

Round 1

1. Each user Ui publishes his pair of public keys (gri , gxi ) (We assume that these keys
are sent to the users, hence the adversary can potentially manipulate those values).

2. The group controller calculate K1 = g
rc1

n
∑

j=1,j 6=c1

rj

, which will be the session key.
3. The group controller will choose a new pair of elements (r′c1

, x′c1
) that will be privately

kept and will become his new private information at a later stage.

Round 2

Every user Ui, using the public information, computes g∑j 6=i,c1
rj and sends this value to

Uc1 (Notice that there is no need to send this information, since this value can be computed
from the published public keys).

The group controller Uc1 , moreover, computes

Y1,i = g−xc1 xi

(
g

rc1 ∑
j 6=c1,i

rj
)

for i ∈ {1, . . . , n} \ {c1} and

Y1,c1 = K1g−r′c1
rc1 g−x′c1

xc1 ,

R1 = grc1 and S1 = gxc1 .

He broadcasts (Y1,1, . . . , Y1,c1 , . . . , Y1,n, R1, S1)

Key Computation

Once user Ui has received the second round message, he computes the common
session key K1 := K1,i = Y1,iS

xi
1 Rri

1 .
The protocol is summarized in Figure 1.

Remark 1. The subindex 1 in the session key K1 indicates here that it is the first execution of
the protocol. In Protocols 3 and 4 in López-Ramos et al. [15], this subindex changes when the
participants involved in the protocol change, i.e., some participants leave or join the protocol, and
thus, some extra computations are needed.

32



Symmetry 2021, 13, 332

Round 1

Ui Controller Uc1

Publishes his public keys (gri , gxi ) Publishes his public keys (grc1 , gxc1 )

Computes: K1 = g
rc1

n
∑

j=1,j 6=c1

rj

selects and keeps private: (r′c1
, x′c1

)

Round 2

Computes: g∑j 6=i,c1
rj

g∑j 6=i,c1
rj

-
Computes:

Y1,i = g−xc1 xi

(
g

rc1 ∑
j 6=c1,i

rj
)

for i ∈ {1, . . . , n} \ {c1}

Y1,c1 = K1g−r′c1
rc1 g−x′c1

xc1

R1 = grc1 and S1 = gxc1

�
(Y1,1, . . . , Y1,c1 , . . . , Y1,n, R1, S1)

Key Computation

Computes: K1 := K1,i = Y1,iS
xi
1 Rri

1

Figure 1. Protocol 1 of López Ramos et al.

3. Security Model

To formalize secure group key establishment, we use the somewhat standard Bohli
et al.’s [5] security model, which builds on Jonathan Katz and Moti Yung [8].

Security Goals: Semantic Security and Authentication

Participants:

The (potential) protocol participants are modelled as probabilistic polynomial time
(ppt) Turing machines in the finite set U = {U1, . . . , Un}. Each participant Ui in the set U is
able to run a polynomial amount of protocol instances in parallel.

We will refer to instance si of principal Ui as Πsi
i (i ∈ N) and it has the following

variables assigned:

pid
si
i : stores the identities of the parties user Ui aims at establishing a session key with

(including Ui itself);

sid
si
i : is a variable storing a non-secret session identifier to the session key stored in sk

si
i ;

acc
si
i : is a variable which indicates whether the session key in sk

si
i was accepted;

term
si
i : is a variable which indicates whether the protocol execution has terminated;

used
si
i : is a variable which indicates whether this instance is taking part in a protocol run;

sk
si
i : this variable is initialized with a distinguished NULL value and will store the ses-

sion key.

Communication network and adversarial capabilities:

We assume there exist arbitrary point to point connections among users and the
network is non-private, fully asynchronous and in complete control of the adversary A,
who can eavesdrop, delay, delete, modify or insert messages. The adversary’s capabilities
are captured by the following oracles:
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Send(Ui, si, M) : when querying this oracle, message M is sent to instance Πsi
i of user

Ui ∈ U . The output will be the protocol message that the instance outputs after
receiving message M. This oracle can also be used for the adversary A to initialize a
protocol execution, by using the special message M = {Ui1 , . . . , Uir} to an unused
instance Πsi

i . This oracle initializes a protocol run among Ui1 , . . . , Uir ∈ U . After such
a query, Πsi

i sets pidsi
i := {Ui1 , . . . , Uir}, used

si
i := TRUE, and processes the first step of

the protocol.

Execute(U1, s1, . . . , Ur, sr) : if the instances s1, . . . , sr have not yet been used, this oracle
will return a transcript of a complete execution of the protocol among the specified
instances.

Reveal(Ui, si) : this oracle returns the session key stored in sksi
i if accsi

i = TRUE and a NULL

value otherwise.

Corrupt(Ui) : this query returns Ui’s long term secret key.

We can distinguish two types of adversaries. An adversary with access to all the
oracles described above is considered to be active. If the adversary is not granted access to
any of the Send oracles, then it is considered a passive adversary.

To define semantic security, we also allow the adversary to have access to a Test oracle,
which can be queried only once. The query Test(Ui, si) can be made on input an instance
Πsi

i of user Ui ∈ U only if accsi
i = TRUE. In that case, a bit b← {0, 1} is chosen uniformly

at random; if b = 0, the oracle returns the session key stored in sk
si
i . Otherwise, the oracle

outputs a uniformly at random chosen element from the space of session keys.

Security notions:

For the schemes to be useful, we need the group key establishments to be correct,
i.e., without adversarial interference, the protocol would allow all users to compute the
same key.

Definition 1 (correctness). A group key establishment is correct if for all instances Πsi
i , Π

sj
j

which accepted with sid
si
i = sid

sj
j and pid

si
i = pid

sj
j , the condition sk

si
i = sk

sj
j 6= NULL is satisfied.

To be more precise in the security definition, it is important to specify under which
conditions the adversary can query the Test oracle. To do so, we first define the following
notion of partnering:

Definition 2 (partnering). Two terminated instances Πsi
i and Π

sj
j are partnered if sidsi

i = sid
sj
j ,

pid
si
i = pid

sj
j and acc

si
Ui

= acc
sj
Uj

= TRUE.

To avoid queries that would trivially allow the adversary to know the key, we restrict
the instances that can be queried to the Test oracle, only allowing fresh instances:

Definition 3 (freshness). We say an instance Πsi
i is fresh if none of the following events has

occurred:

• the adversary queried Reveal(Uj, sj) for an instance Π
sj
j that is partnered with Πsi

i ;
• the adversary queriedCorrupt(Uj) for a user Uj ∈ pid

si
i before a query of the form Send(Ul , sl , ∗);

Remark 2. The previous definition for freshness allows including the desired goal of forward
secrecy in our definition of security given below: an adversaryA is allowed to query Corrupt for all
users and obtain their long term keys without violating freshness, if he does not send any message
afterwards.
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Let SuccA be the event that the adversary A queries the Test oracle with a fresh
instance and makes a correct guess about the random bit b used by the Test oracle, we
define the advantage of an adversary A attacking protocol P as

Advke
A = Advke

A (k) :=
∣∣∣∣Pr[SuccA]−

1
2

∣∣∣∣.

Definition 4 (semantic security). A group key establishment protocol is (semantically) secure,
if Advke

A = Advke
A (k) is negligible for every ppt adversary A.

4. Cryptanalysis of the Proposal of López-Ramos et al.

In this section, we describe several concrete attacks refuting the security results of
López-Ramos et al. [15], where four different, but related, GKE protocols are described.
The four protocols will be considered in this section. However, we will only explicitly
attack Protocol 1, being the attacks to the others straightforwardly adapted.

4.1. Active Attack

Informally, since the protocol is not authenticated, we will describe here how an
adversary can attack the protocol by mounting a Man-In-The-Middle attack. Users will
end up sharing a key with the adversary, instead of with all the intended communication
partners. We formalize the attack below.

Let us fix {U1, ..., Un} the set of communication parties and let A be an active attacker
able to supersede some parties in the set. We will distinguish two different cases: A shares
a key with the group controller Uc1 and other with the rest of the users and A shares a key
with any other party Ui, i 6= c1, and a different key with the rest, including the controller.

IfA tries to share a different key with the group controller Uc1 the adversary can build
an attack by following the next steps:

1. The attacker A queries Send(U1, s1, . . . , Un, sn), to initiate a protocol instance. After
this query, the first step of the protocol is executed. In particular, the adversary obtains
every users’ pairs of public keys (gri , gxi ), with ri, xi ∈ Z∗p.

2. The adversary A will delete the message (grc1 , gxc1 ) sent by the controller Uc1 to the
rest of the users and delete the public keys (gr1 , gx1) sent by user U1 to Uc1 .

3. The adversary A generates its private keys ac1 , bc1 ∈ Z∗p and public keys (gac1 , gbc1 )

and queries Send(Ui, si, (gac1 , gbc1 )), for all i ∈ {1, ..., n} \ {c1}. the adversaryA gener-
ates its private keys a1, b1 ∈ Z∗p and public keys (ga1 , gb1) and queries
Send(Uc1 , sc1 , (ga1 , gb1)).

Notice that every user Ui, i 6= 1, c1, after receiving that message, will compute and

send the value g

n
∑

j=1,j 6=c1

rj

and therefore this value will be output by the Send oracle.
The controller Uc1 , after receiving that message, will compute and send the value

g
a1+

n
∑

j=2,j 6=c1

rj

and therefore this value will be output by the Send oracle.

4. The adversary A will compute the session key Q1 = g
ac1 (

n
∑

j=1,j 6=c1

rj)

and the values
T1 = gac1 and V1 = gbc1 , along with the keying values

Z1,i = g−bc1 xi g
ac1 (

n
∑

j=1,j 6=c1,i
rj)

, i 6= c1

Z1,c1 = Q1g−a′c1
ac1 g−b′c1

bc1 .

5. The adversaryAwill query Send(Ui, si, (Z1,1, . . . , Z1,n, T1, V1) oracle, for all i ∈ {1, ..., n}
\{c1}.
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6. The adversary A will compute the session key K1 = g
rc1 (

n
∑

j=1,j 6=c1

rj)

and the values
R1 = grc1 and S1 = gxc1 , along with the keying values

Y1,i = g−xc1 xi g
rc1 (a1+

n
∑

j=2,j 6=c1,i
rj)

, i 6= c1

Y1,c1 = K1g−r′c1
rc1 g−x′c1

xc1 .

7. The adversary A will query Send(U1, s1, (Y1,1, . . . , Y1,n, S1, T1) oracle.

Please note that after receiving this last message, users {U1, . . . , Un} \ {Uc1}, following
the protocol, will compute Q1,i = Z1,iT

xi
1 Vri

1 . Please note that Q1,i = Q1 for every i 6= c1.
On the other hand, the group controller Uc1 will compute K1 = Y1,1Sb1

1 Ra1
1 .

Therefore, after this attack, the adversary has established a shared key Q1 with the set
of parties {U1, . . . , Un} \ {Uc1} and the key K1 with the group controller Uc1 , where

Q1 = g
ac1

n
∑

j=1,j 6=c1

rj

and K1 =
rc1 (a1+

n
∑

j=2,j 6=c1

rj)

.

Consequently, all the users will believe they are establishing a common key when they
are not. Moreover, the adversary can decrypt the messages sent encrypted with both keys
and forward the communication between the users that do not share a key.

This attack is outlined in Figure 2.
If A tries to compute a different key with any user different from the group controller,

we can assume without loss of generality that A is sharing it with U1. The adversary A can
build an attack following the subsequent steps:

1. The attacker A queries Send(U1, s1, . . . , Un, sn), to initiate a protocol instance. After
this query, the first step of the protocol is executed. In particular, the users send their
public keys and thus, the adversary obtains (gri , gxi ), with ri, xi ∈ Zp

∗ for all the
participants {U1, ..., Un}.

2. The adversary A will delete the message (grc1 , gxc1 ) sent by the controller Uc1 to user
U1 and the message (gr1 , gx1) sent by user U1 to the rest of the participants.

3. The adversary A, will choose random values a1, b1, ac1 , bc1 ∈ Zp
∗, and queries

Send(Ui, si, (ga1 , gb1)), for all i ∈ {2, ..., n}, including c1.

Notice that every user Ui, i 6= 1, c1 and the adversary A, after receiving that message,

will compute g
(a1+

n
∑

j=2,j 6=c1

rj)

and therefore this value will be output by the Send oracle.

Moreover, the group controller Uc1 will calculate the session key Q1 = g
rc1 (a1+

n
∑

j=2,j 6=c1

rj)

and he will send R1 = grc1 and S1 = gxc1 , along with the keying values

Z1,1 = g−xc1 b1 g
(rc1

n
∑

j=2,j 6=c1

rj)

,

Z1,i = g−xc1 xi g
rc1 (a1+

n
∑

j=2,j 6=c1

rj)

i 6= 1, c1,

Z1,c1 = Q1g−r′c1
rc1 g−x′c1

xc1 .

These values will also be part of the output of the Send oracle.
Please note that after receiving this message every user Ui, i 6= 1, can compute the key

Q1 = Z1,iS
xi
1 Rri

1 that will be shared with the adversary A.
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Round 1

Ui A Controller Uc1

Publishes: Publishes:
(gri , gxi ) (grc1 , gxc1 )

Erases(grc1 , gxc1 )

and publishes:(gac1 , gbc1 )

Erases(gr1 , gx1 )
and publishes:(ga1 , gb1 )

Round 2

Computes:

g∑j 6=1,c1
rj

g∑j 6=i,c1
rj

-
Computes:

g
a1+

n
∑

j=2,j 6=c1

rj

� g
a1+

n
∑

j=2,j 6=c1

rj

Computes:

Q1 = g
ac1 (

n
∑

j=1,j 6=c1

rj)

T1 = gac1

V1 = gbc1

Z1,i = g−bc1 xi g
ac1 (

n
∑

j=1,j 6=c1,i
rj)

, i 6= c1

Z1,c1 = Q1g−a′c1
ac1 g−b′c1

bc1

�
(Z1,1, . . . , Z1,n, T1, V1)

Computes:

K1 = g
rc1 (

n
∑

j=1,j 6=c1

rj)

R1 = grc1

S1 = gxc1

Y1,i = g−xc1 xi g
rc1 (a1+

n
∑

j=2,j 6=c1,i
rj)

, i 6= c1

Y1,c1 = K1g−r′c1
rc1 g−x′c1

xc1

(Y1,1, . . . , Y1,n, S1, T1)-

Key Computation

Computes: Computes:
Q1,i = Z1,iT

xi
1 Vri

1 K1 = Y1,1Sb1
1 Ra1

1

Figure 2. Active attack on Protocol 1 of López Ramos et al.

4. The attacker A will delete the message sent by Uc1 to the superseded user U1, and
queries Send(U1, s1, (W1,1, . . . , W1,n, T1, V1)), where

W1,i = g−bc1 xi g
ac1 (

n
∑

j=1,j 6=i,c1

rj)

,

W1,c1 = K1g−a′c1
ac1 g−b′c1

bc1 ,

T1 = gac1 and V1 = gbc1 .
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Please note that user U1, after receiving these last messages, can compute the key
K1 = W1,1Tx1

1 Vr1
1 which is shared with the adversary A.

5. With the information received, the users, following the protocol, will compute the
subsequent keys:

(a) The superseded user U1 will compute K1 = W1,1Tx1
1 Vr1

1 .
(b) Every user Ui, i 6= 1 computes Q1,i = Y1,iS

xi
1 Rri

1 .

(c) Adversary A computes Q1,1 = Z1,1Sb1
1 Ra1

1 and K1 = W1,1Tx1
1 Vr1

1 .

Therefore, the adversary A has established a shared key Q1 with the set of parties
{U2, ..., Un}. On the other hand, both U1 and the adversary A share the common key K1.

Remark 3. While in López-Ramos et al. [15] four different protocols were described, in the previous
lines only Protocol 1 was attacked.

In Protocol 2, authors try to share the computational requirements in a more even way among
the parties by slightly modifying which values every participant sends to the group controller and
the computations that this user has to perform. However, the only private information for every
user is the tuple (ri, xi) as in Protocol 1. Thus, an attack can be built analogously by following the
steps described above.

In Protocol 3, authors assume that the group controller has changed. The new group controller,
by using two private elements (r′ct , x′ct) makes a transformation of the key. The next steps of Protocol
3 follows the description of Protocol 1. Therefore, an attack can be built following the previous
description.

In Protocol 4, new users take part in the round with new private elements (rt, xt). Therefore
a new key has to be computed by the group controller using those new elements. Once more,
subsequent steps of Protocol 4 follows the description of Protocol 1 and an attack can be constructed
analogously.

4.2. Forward Secrecy

We will informally describe how a passive adversary who corrupts a participant
Ui ∈ {U1, . . . , Un} involved in a protocol run will be able to compute the shared session
key. Therefore, the protocol does not provide forward secrecy.

Let A be a probabilistic polynomial time adversary (modelled as a Turing machine).
He may perform an attack by following the next steps:

1. The attacker A queries Corrupt(Ui), obtaining the private keys ri and xi.
2. Afterwards, he queries, Execute(U1, s1, . . . , Ur, sr), obtaining a protocol transcript. In

particular, he gets the values Y1,i, R1 and S1.
3. The adversary now can compute the key as user Ui would do according to the protocol

description: K1 = Y1,iS
xi
1 Rri

1 .
4. The adversary now queries Test(Uj, sj) on any user instance involved in the above

execution. Since he knows the key established, he wins the game with probability
one.

Please note that session sj of user Uj remains fresh, since, the adversary has not made
any Send or Reveal query, so the attack is legitimate.

Remark 4. In Protocols 3 and 4 in López-Ramos et al. [15], it is described how to proceed when
participants may join or leave the group. However, when a participant leaves, the only user changing
his private and public keys is the new controller. This means that the rest of the users will have
the same private and public key used for previous instances. Therefore, when corrupting any user
that is not the new controller, one will obtain their private keys and mount the attack described
above. Protocol 2, can also be attacked in the same way, just changing the computations to obtain
the session key according to the protocol description.

Remark 5. As observed in Theorem 2.4 in López-Ramos et al. [15], the keying messages sent to
establish the key can be seen as ElGamal-like encryptions of the key K1 under a different key for
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each user. In that sense, the protocol can be interpreted as a key transport protocol, which cannot be
forward secret.

Remark 6. Countermeasures: If a security proof of the protocols in López-Ramos et al. [15] is
provided for passive adversaries, and one consider the private keys as random nonces to be used
only in one instance of the protocol, one could then apply the compiler in Katz and Yung [8] to
avoid active attacks, generating long term keys for each user to compute digital signatures on all the
exchanged messages to guarantee authentication. In that case, if the keys are nonces, Corrupt oracle
queries would return the signing private keys, thus, corrupted users would not be able to compute
the session keys and forward secrecy would also be granted.

5. Conclusions

As demonstrated above, the protocol proposed by López Ramos et al. [15] does not
offer security guarantees. The paper does not provide a rigorous security proof in any
standard security model using provable security techniques. The proofs provided are too
schematic. If a compiler for authentication is used and the private keys are ephemeral,
some attacks could not be applicable. Nevertheless, a security proof should be provided.
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Abstract: Let G be a graph with no isolated vertex and let N(v) be the open neighbourhood of
v ∈ V(G). Let f : V(G) → {0, 1, 2} be a function and Vi = {v ∈ V(G) : f (v) = i} for every
i ∈ {0, 1, 2}. We say that f is a strongly total Roman dominating function on G if the subgraph
induced by V1 ∪ V2 has no isolated vertex and N(v) ∩ V2 6= ∅ for every v ∈ V(G) \ V2. The
strongly total Roman domination number of G, denoted by γs

tR(G), is defined as the minimum
weight ω( f ) = ∑x∈V(G) f (x) among all strongly total Roman dominating functions f on G. This
paper is devoted to the study of the strongly total Roman domination number of a graph and it
is a contribution to the Special Issue “Theoretical Computer Science and Discrete Mathematics”
of Symmetry. In particular, we show that the theory of strongly total Roman domination is an
appropriate framework for investigating the total Roman domination number of lexicographic
product graphs. We also obtain tight bounds on this parameter and provide closed formulas for some
product graphs. Finally and as a consequence of the study, we prove that the problem of computing
γs

tR(G) is NP-hard.

Keywords: strongly total Roman domination; total Roman domination; total domination; lexico-
graphic product graph

1. Introduction

Let G be a simple graph with no isolated vertex. Given a vertex v ∈ V(G), N(v)
and N[v] denote the open neighbourhood and the closed neighbourhood of v in G, respectively.
The order, minimum degree and maximum degree of G will be denoted by n(G), δ(G) and
∆(G), respectively. As usual, given a set D ⊆ V(G) and a vertex v ∈ D, the external private
neighbourhood and the internal private neighbourhood of v with respect to D is defined to be
epn(v, D) = {u ∈ V(G) \ D : N(u) ∩ D = {v}} and ipn(v, D) = {u ∈ D : N(u) ∩ D =
{v}}, respectively.

Domination in graphs is a classical research topic that has experienced rapid growth
since its introduction. A set D ⊆ V(G) is said to be a dominating set of G if N(v) ∩ D 6= ∅
for every v ∈ V(G) \D. LetD(G) be the set of dominating sets of G. The domination number
of G is defined to be the following.

γ(G) = min{|D| : D ∈ D(G)}.

We define a γ(G)-set as a set D ∈ D(G) with |D| = γ(G). The same agreement will
be assumed for optimal parameters associated with other characteristic functions or sets of
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a graph. For more information on domination and its variants in graphs, we suggest the
books [1–4].

An important domination variant in graph, which may be the most studied, is the total
domination number. A total dominating set of G is a set D ∈ D(G) such that N(v) ∩ D 6= ∅
for every v ∈ D. Let Dt(G) be the set of total dominating sets of G. The total domination
number of G is defined to be the following.

γt(G) = min{|D| : D ∈ Dt(G)}.

More information on total domination in graphs can be found in the works [5–7].
Let G be a graph with no isolated vertex and f : V(G) → {0, 1, 2} a function. For every
i ∈ {0, 1, 2}, we define Vi = {v ∈ V(G) : f (v) = i}. We will use the unified notation
f (V0, V1, V2) to identify the function f with the subsets V0, V1, V2 associated with it. Given
a set X ⊆ V(G), we define f (X) = ∑x∈X f (x) and, particularly, we define the weight of f as
ω( f ) = f (V(G)) = |V1|+ 2|V2|. One of the domination topics widely studied by research
is the Roman domination, which is a domination variant arising from some historical roots
coming from the ancient Roman Empire [8]. A function f (V0, V1, V2) is a Roman dominating
function on G if N(v) ∩ V2 6= ∅ for every vertex v ∈ V0. The Roman domination number
of G denoted by γR(G) is the minimum weight among all Roman dominating functions
on G. For more information on Roman domination in graphs, we suggest the referenced
works [9–12].

One of the classical variants of Roman domination is the so-called total Roman domi-
nation. This article deals precisely with this style of domination. A total Roman dominating
function (TRDF) on a graph G with no isolated vertex is a Roman dominating function
f (V0, V1, V2) such that V1 ∪V2 ∈ Dt(G). The minimum weight among all TRDFs on G is the
total Roman domination number of G and is denoted as γtR(G). This concept was introduced
in 2013 by Liu and Chang [13] and formally presented and deeply studied three years later
by Abdollahzadeh Ahangar et al. [14]. Subsequently, several researchers have continued
with the study of this parameter. For instance, in [15–17], some combinatorial results were
presented. In [18–21], constructive characterizations in trees related with this domination
parameter were provided. In [22–25], studies of the total Roman domination number on
graph products were carried out. In particular, we want to highlight the following closed
formula provided in [25] for the case of lexicographic product graphs.

For any graph G with no isolated vertex and any nontrivial graph H, the total Roman
domination number of the lexicographic product graph G ◦H is given by the following [25]:

γtR(G ◦ H)=

{
2γt(G) if γ(H) ≥ 2,

ξ(G) if γ(H) = 1,
(1)

where ξ(G) = min{|A|+ 2|B| : B ∈ D(G) and A ∪ B ∈ Dt(G)}. As it can be observed,
the authors [25] showed that the behavior of γtR(G ◦ H) depends on two domination
parameters of graphs, namely the well-known total domination number and the incipient
parameter ξ(G). In that regard, the authors exposed some results on this last parameter
and they raised the challenge of conducting a detailed study of the topic.

In this paper, we continue with the study of this novel parameter although it will be
carried out by considering a different approach. In Section 2 we define a new variant of
total Roman domination, namely strongly total Roman domination number and denoted
by γs

tR(G). We then show that this variant is an appropriate framework to investigate the
parameter ξ(G) of a graph. Section 3 is devoted to providing closed formulas for some
product graphs. As a consequence of the study, we conclude this section by showing that
the problem of computing γs

tR(G) is NP-hard. Finally, in Section 4 we obtain tight bounds
on the strongly total Roman domination number of a graph and we discuss the tightness
of these bounds.
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We assume that the reader is familiar with the basic concepts and terminology of
graph domination. If this is not the case, then we suggest the textbooks [1,4]. For the
remainder of the article, definitions will be introduced whenever a concept is required.

2. Strongly Total Roman Dominating Functions

The concept of a total Roman dominating function on a graph is associated with the
“total domination” property, i.e., this kind of functions requires that each vertex has a
neighboring vertex with a positive label assigned to it. However, some vertices have a
“special property”, which in some cases others do not have. In particular, vertices with
label zero must always have a neighbor with label two, but it is not always the case that a
vertex with label one satisfies this property. In relation to the above situation, we introduce
a “stronger” version of the standard total Roman domination below.

A strongly total Roman dominating function (STRDF) on a graph G with no isolated
vertex is a total Roman dominating function f (V0, V1, V2) with the additional property that
V2 is a dominating set of G. The minimum weight among all STRDFs on G is the strongly
total Roman domination number of G and is denoted γs

tR(G).
To illustrate this concept, we consider the graph G shown in Figure 1. For this example,

γtR(G) < γs
tR(G).

2 2 1 1 2 2 1 2

Figure 1. The function on the left is a γtR(G)-function, while the function on the right is a
γs

tR(G)-function.

Now, we proceed to show that this new domination variant is an appropriate frame-
work to investigate the parameter ξ(G).

Theorem 1. For any graph G with no isolated vertex,

γs
tR(G) = ξ(G).

Proof. Let f (V0, V1, V2) be a γs
tR(G)-function. By definition we have that V2 ∈ D(G) and

V1 ∪V2 ∈ Dt(G). Therefore, the following obtains.

ξ(G) = min{|A|+ 2|B| : B ∈ D(G) and A ∪ B ∈ Dt(G)} ≤ |V1|+ 2|V2| = γs
tR(G).

On the other side, let A′, B′ ⊆ V(G) such that B′ ∈ D(G), A′ ∪ B′ ∈ Dt(G) and
ξ(G) = |A′|+ 2|B′|. Notice that the function f ′(V′0, V′1, V′2), defined by V′2 = B′, V′1 = A′

and V′0 = V(G) \ (A′ ∪ B′), is a STRDF on G. Hence, γs
tR(G) ≤ ω( f ′) = |A′|+ 2|B′| =

ξ(G), which completes the proof.

To end this section and as a consequence of previous theorem, we show the basic
results given in [25] for the strongly total Roman domination number.

Theorem 2. Ref. [25] For any graph G with no isolated vertex,

max{γtR(G), γt(G) + γ(G)} ≤ γs
tR(G) ≤ min{3γ(G), 2γt(G)}.

Furthermore,

(i) γs
tR(G) = γtR(G) if and only if there exists a γtR(G)-function f (V0, V1, V2) such that V2 is

dominating set of G.
(ii) γs

tR(G) = γt(G) + γ(G) if and only if there exists a γt(G)-set that contains some γ(G)-set.
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3. Exact Formulas for Some Graph Products and Computational Complexity

In order to show the tightness of several bounds and relationships, in this section
we obtain the strongly total Roman domination number concerning a well-know families
of graphs. We emphasize that we will use the notation Kn, K1,n−1, Kr,n−r and Wn for
complete graphs, star graphs, complete bipartite graphs and the wheel graphs of order
n, respectively.

The join graph G + H of the graphs G and H is the graph with vertex set V(G + H) =
V(G) ∪V(H) and edge set E(G + H) = E(G) ∪ E(H) ∪ {uv : u ∈ V(G), v ∈ V(H)}.

Theorem 3. For any graphs G and H,

γs
tR(G + H) =

{
3 if γ(G) = 1 or γ(H) = 1,

4 otherwise.

Proof. We first notice that γt(G + H) = 2. Now, we observe that γ(G + H) = 1 if and only
if γ(G) = 1 or γ(H) = 1. Therefore, by Theorem 2 we deduce that γs

tR(G + H) = 3 if and
only if γ(G) = 1 or γ(H) = 1, which completes the proof.

The following corollary is an immediate consequence of the theorem above.

Corollary 1. The following equalities hold for any integer n ≥ 3.

(i) γs
tR(K1,n−1) = γs

tR(Wn) = γs
tR(Kn) = 3.

(ii) If r ∈ Z such that n− r ≥ r ≥ 2, then γs
tR(Kr,n−r) = 4.

Let G be a graph with no isolated vertex and H is any graph. The corona product
graph G� H is defined as the graph obtained from G and H, by taking one copy of G and
|V(G)| copies of H and joining by an edge every vertex from the ith-copy of H with the
ith-vertex of G. Next, we study the strongly total Roman domination number of any corona
product graph.

Theorem 4. For any graph G with no isolated vertex and any graph H,

γs
tR(G� H) = 2n(G).

Proof. First, we notice that γt(G� H) = γ(G� H) = n(G). Hence, Theorem 2 leads to
the equality γs

tR(G� H) = 2n(G). Therefore, the proof is complete.

Let G be a graph with no isolated vertex and H a nontrivial graph. The lexicographic
product of G and H is the graph G ◦ H for which the vertex set is V(G ◦ H) = V(G)×V(H)
and two vertices (u, v), (x, y) ∈ V(G ◦ H) are neighbors if and only if ux ∈ E(G) or u = x
and vy ∈ E(H).

Theorem 5. Ref. [26] For any graph G with no isolated vertex and any nontrivial graph H,

γt(G ◦ H) = γt(G).

We next show that the strongly total Roman domination number and the total Roman
domination number coincide for lexicographic product graphs.

Theorem 6. For any graph G with no isolated vertex and any nontrivial graph H,

γs
tR(G ◦ H) =

{
2γt(G) if γ(H) ≥ 2,

γs
tR(G) if γ(H) = 1.
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Proof. If γ(H) ≥ 2, then the result immediately follows by applying Equation (1) and
Theorems 2 and 5, i.e., we have the following.

2γt(G) = γtR(G ◦ H) ≤ γs
tR(G ◦ H) ≤ 2γt(G ◦ H) = 2γt(G).

From this moment on, we assume that γ(H) = 1. By Equation (1) and Theorems 1 and 2
we deduce that γs

tR(G) = ξ(G) = γtR(G ◦ H) ≤ γs
tR(G ◦ H). We only need to prove that

γs
tR(G ◦ H) ≤ γs

tR(G). Let f (V0, V1, V2) be a γs
tR(G)-function and {v} a γ(H)-set. No-

tice that the function g(W0, W1, W2), defined by W2 = V2 × {v}, W1 = V1 × {v} and
W0 = V(G ◦ H) \ (W1 ∪W2), is a STRDF on G ◦ H. Hence, γs

tR(G ◦ H) ≤ |W1|+ 2|W2| =
|V1|+ 2|V2| = γs

tR(G), which completes the proof.

As shown in [27], the general optimization problem of computing the total domination
number of a graph with no isolated vertex is NP-hard. Therefore, by Theorem 6 (considering
the case γ(H) ≥ 2) we immediately obtain the analogous result for the strongly total Roman
domination number.

Theorem 7. The problem of computing the strongly total Roman domination number of a graph
with no isolated vertex is NP-hard.

4. Primary Combinatorial Results

The first result of this section provides bounds for the strongly total Roman domination
number in terms of the order of a graph. For this purpose, we need to recall the following
well-known result.

Theorem 8. Ref. [5] If G is a connected non-complete graph of order at least three, then G has
a γt(G)-set D such that every vertex v ∈ D satisfies epn(v, D) 6= ∅ or is adjacent to a vertex
v′ ∈ ipn(v, D) satisfying epn(v′, D) 6= ∅.

Theorem 9. For any connected graph G of order at least three,

3 ≤ γs
tR(G) ≤ n(G).

Furthermore,

(i) γs
tR(G) = 3 if and only if γ(G) = 1.

(ii) γs
tR(G) = 4 if and only if γt(G) = γ(G) = 2.

Proof. The lower bound is straightforward. Now, we proceed to prove the upper bound.
If G is isomorphic to a complete graph, then γs

tR(G) = 3 ≤ n(G), as desired. From this
moment, we assume that G is different of a complete graph. Let D be a γt(G)-set which
satisfies Theorem 8 and D = V(G) \ D. Now, we consider the following sets.

De = {v ∈ D : epn(v, D) 6= ∅} and De = {v ∈ D : N(v) ∩ De 6= ∅}.

Let us define f ′(V′0, V′1, V′2) as a function of minimum weight among all functions
f (V0, V1, V2) on G satisfying the following conditions.

(a) V1 ∪V2 = D.
(b) De ⊆ V2.
(c) N(v) ∩V2 6= ∅ for every vertex v ∈ D \ De.

By (a), it is straightforward that V′1 ∪V′2 ∈ Dt(G). By (b) and (c) we deduce that every
vertex in V′0 = D has a neighbor in V′2. Now, let v ∈ V′1. By definition, v ∈ D \ De and
thus Theorem 8 results in N(v) ∩ De 6= ∅. Hence, N(v) ∩V′2 6= ∅ by (b). This implies that
V′2 ∈ D(G). Therefore, f ′ is a STRDF on G and thus γs

tR(G) ≤ ω( f ′).
We only need to prove that ω( f ′) ≤ n(G). Let v ∈ D \ De. By definition, we have

that N(v) ∩ D ⊆ D \ De and |N(v) ∩ D| ≥ 2. Hence, by (a) and (c) we deduce that
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N(v) ∩ V′2 \ De 6= ∅. Thus, the minimality of f ′ results in |V′2 \ De| ≤ |D \ De| and it is
straightforward that |V′2 ∩ De| ≤ |De| ≤ |De|. Therefore, the following

ω( f ′) = |V′1|+ 2|V′2|
= |D|+ |V′2 \ De|+ |V′2 ∩ De|
≤ |D|+ |D \ De|+ |De|
= |D|+ |D|
= n(G),

is as required. Hence, the proof of the upper bound is complete.
We then proceed to prove (i). By Theorem 2 we deduce that γs

tR(G) = 3 if and only if
γ(G) = 1. Hence, (i) follows.

Finally, we proceed to prove (ii). If γt(G) = γ(G) = 2, then Theorem 2 leads to
γs

tR(G) = 4. Conversely, if γs
tR(G) = 4, then by (i) we deduce that γ(G) ≥ 2. Thus,

Theorem 2 results in γt(G) = γ(G) = 2. Therefore, (ii) follows.

The upper bound above is tight. For instance, it is achieved for the graph G given
in Figure 1. Moreover and as an immediate consequence of Theorems 2 and 9, it is also
achieved for the graphs G with γtR(G) = n(G). This family is defined in [14].

We continue by providing additional upper bounds. As shown in Theorem 2, the strongly
total Roman domination number is bounded from above by 3γ(G). Since γR(G) ≤ 2γ(G),
the next result improves this upper bound for any graph G with no isolated vertex. We
need to introduce the following result.

Theorem 10. Ref. [9] Let f (V0, V1, V2) be a γR(G)-function on a graph G with no isolated vertex
such that |V1| is minimum. Then the following conditions hold.

(a) N(v) ⊆ V0 for every vertex v ∈ V1.
(b) N[x] ∩ N[y] = ∅ for any two different vertices x, y ∈ V1.

Theorem 11. For any graph G with no isolated vertex,

γs
tR(G) ≤ γR(G) + γ(G).

Proof. Let f (V0, V1, V2) be a γR(G)-function such that |V1| is minimum. Hence, conditions
(a) and (b) of Theorem 10 are satisfied. Now, we consider a function g′(W ′0, W ′1, W ′2)
of minimum weight among all functions g(W0, W1, W2) on G such that the following
conditions are satisfied:

(i) V2 ⊆W2.
(ii) N(v) ∩W2 6= ∅ for every vertex v ∈ V1.
(iii) N(v) ∩ (W1 ∪W2) 6= ∅ for every vertex v ∈ V2.

We proceed to prove that g′ is a STRDF on G. By definitions of f and g′, it is straight-
forward that W ′1 ∪W ′2 ∈ Dt(G). Now, let v ∈ V(G) \W ′2. By (i) we deduce that v ∈ V0 ∪V1.
Moreover, if v ∈ V0, then N(v) ∩W ′2 6= ∅ because N(v) ∩ V2 6= ∅. Otherwise, if v ∈ V1,
then (ii) results in N(v) ∩W ′2 6= ∅. Hence, W ′2 ∈ D(G), which implies that g′ is a STRDF
on G, as desired. Thus, γs

tR(G) ≤ ω(g′).
Now, let D be a γ(G)-set. Hence, N[v] ∩ D 6= ∅ for every v ∈ V(G). In addition,

notice that N(v)∩ (W ′2 \V2) 6= ∅ for every v ∈ V1. Thus, by (ii) and (iii), conditions (a) and
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(b) of Theorem 10 and the minimality of g′, we deduce that 2|W ′2 \V2|+ |W ′1| ≤ |V1|+ |D|.
From the inequalities above we obtain

γs
tR(G) ≤ ω(g′)

= |W ′1|+ 2|W ′2|
= |W ′1|+ 2|W ′2 \V2|+ 2|W ′2 ∩V2|
≤ |V1|+ |D|+ 2|V2|
= γR(G) + γ(G).

Therefore, the proof is complete.

The bound above is tight. For instance, it is achieved for any graph G = G1 + G2 such
that γ(G1) = 1. In this case, Theorem 3 results in γs

tR(G) = 3 = γR(G) + γ(G).
The following characterization is an immediate consequence of Theorem 11 and the

well-known inequality γR(G) ≤ 2γ(G).

Theorem 12. Let G be a graph with no isolated vertex. Then γs
tR(G) = 3γ(G) if and only if

γs
tR(G) = γR(G) + γ(G) and γR(G) = 2γ(G).

From Theorem 4 and the fact that γR(G1 � G2) = 2γ(G1 � G2) = 2n(G1) we deduce
that γs

tR(G1 � G2) = γR(G1 � G2) = 2γ(G1 � G2) for any graph G1 with no isolated
vertex and any nontrivial graph G2. This previous equality chain shows that the condition
γR(G) = 2γ(G) is a necessary condition but is not sufficient to satisfy γs

tR(G) = 3γ(G).

We continue the study by providing a new upper bound, which improves the classical
inequality γs

tR(G) ≤ 2γt(G). We need to introduce some concepts and tools. For any
γt(G)-set D, let D∗ ⊆ D be a set of minimum cardinality such that D∗ ∈ D(G). Observe
that D∗ is not necessarily a γ(G)-set. For instance, for the graph G given in Figure 2 we
have that γt(G) = 4 and γ(G) = 3. However, the set D of black-colored vertices is the only
γt(G)-set; moreover, the only dominating set that is a subset of D is D itself.

Figure 2. The set of black-colored vertices is the only γt(G)-set.

We define KG(D) = D \D∗ as the kernel of D. The maximum cardinality among all ker-
nels KG(D) from all γt(G)-sets D is the kernel of G and it is denoted by k(G). For instance,
k(G1 � G2) = 0 and also if γ(G1 + G2) = 1, then k(G1 + G2) = 1.

Theorem 13. For any graph G with no isolated vertex,

γs
tR(G) ≤ 2γt(G)− k(G).

Proof. Let D be a γt(G)-set such that k(G) = |KG(D)|. Let D∗ ⊆ D ∩ D(G) be the set
such that KG(D) = D \ D∗. Notice that the function f (V0, V1, V2), defined by V2 = D∗,
V1 = KG(D) and V0 = V(G) \ D, is a STRDF on G. Hence,

γs
tR(G) ≤ ω( f )

= |V1|+ 2|V2|
= |KG(D)|+ 2|D∗|
= 2|D| − |KG(D)|
= 2γt(G)− k(G).
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Therefore, the proof is complete.

The following result provides a necessary condition for the graphs G satisfying
γs

tR(G) = 2γt(G).

Theorem 14. Let G be a graph of order at least three with no isolated vertex. If γs
tR(G) = 2γt(G),

then epn(v, D) 6= ∅ for every γt(G)-set D and v ∈ D.

Proof. If there exist a γt(G)-set D and a vertex v ∈ D such that epn(v, D) = ∅, then
|KG(D)| ≥ 1 because D \ {v} ∈ D(G). Hence, k(G) ≥ 1 and Theorem 13 results in
γs

tR(G) < 2γt(G), which completes the proof.

The following results provide lower bounds for the strongly total Roman domination
number in terms of order, maximum degree and total domination number of a graph.

Theorem 15. For any graph G with every component of order at least three,

γs
tR(G) ≥ γt(G) +

n(G)− γt(G)

∆(G)− 1
.

Proof. Let f (V0, V1, V2) be a γs
tR(G)-function. As V1 ∪V2 ∈ Dt(G), we deduce that

|V2| = ω( f )− (|V1|+ |V2|) ≤ γs
tR(G)− γt(G).

Now, it is easy to deduce that |V0| ≤ (∆(G)− 1)|V2| because V2 ∈ D(G). Hence,

γs
tR(G) = |V1|+ 2|V2|

= n(G)− |V0|+ |V2|
≥ n(G)− (∆(G)− 1)|V2|+ |V2|
= n(G)− (∆(G)− 2)|V2|
≥ n(G)− (∆(G)− 2)(γs

tR(G)− γt(G)).

Therefore, we deduce that γs
tR(G) ≥ γt(G)+ n(G)−γt(G)

∆(G)−1 , which completes the proof.

In order to show a class of graphs satisfying the equality in the previous bound, we
consider the corona product graphs K2 � H. For these graphs we obtain that

γs
tR(K2 � H) = 4 = γt(K2 � H) +

n(K2 � H)− γt(K2 � H)

∆(K2 � H)− 1
,

because γs
tR(K2 � H) = 4 by Theorem 4, γt(K2 � H) = 2, n(K2 � H) = 2n(H) + 2 and

∆(K2 � H) = n(H) + 1.

In [15], the authors showed that γtR(G) ≥ 2n(G)
∆(G)

for any graph G with no isolated
vertex. The following result is a direct consequence of this previous inequality and
Theorems 2, 5 and 15.

Theorem 16. For any graph G with no isolated vertex,

γs
tR(G) ≥

⌈
2n(G)

∆(G)

⌉
.

Furthermore, if γt(G) = n(G)
∆(G)

, then the previous bound is achieved.
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The next theorem shows another relationship between our parameter and the order,
maximum degree and total domination number of a graph. This result improves the bound
given in the previous theorem whenever γt(G) ≥ 2n(G)

∆(G)
.

Theorem 17. For any graph G with no isolated vertex,

γs
tR(G) ≥

⌈
2n(G) + γt(G)

∆(G) + 1

⌉
.

Proof. Let f (V0, V1, V2) be a γs
tR(G)-function. As V1 ∪V2 ∈ Dt(G), we deduce that

γt(G) ≤ |V1|+ |V2| = ω( f )− |V2| = γs
tR(G)− |V2|.

Now, notice that the following is the case:

∆(G)γs
tR(G) = ∆(G)ω( f )

= ∆(G) ∑
x∈V(G)

f (x)

≥ ∑
x∈V(G)

|N(x)| f (x)

= ∑
x∈V(G)

∑
u∈N(x)

f (u)

≥ 2|V0|+ 2|V1|+ |V2|
= 2n(G)− |V2|.

From previous inequality chains we deduce the following:

2n(G) + γt(G) ≤ ∆(G)γs
tR(G) + |V2|+ γs

tR(G)− |V2| = (∆(G) + 1)γs
tR(G).

Therefore, γs
tR(G) ≥

⌈
2n(G)+γt(G)

∆(G)+1

⌉
, as desired.

The bound above is tight. For instance, it is achieved for any graph G such that
∆(G) = n(G)− 1.

5. Conclusions and Open Problems

In this article we introduced the concept of strongly total Roman domination number
and showed that this parameter is an appropriate framework to study the total Roman
domination number of lexicographic product graphs. Moreover, we obtained new tight
bounds and provided exact formulas for some product graphs. As a consequence of this
study, we showed that the problem of computing γs

tR(G) is NP-hard.
We next propose some open problems which we consider to be interesting:

(i) Since the optimization problem of finding γs
tR(G) is NP-hard, it would be interesting

to compute the value of this parameter for other families of graphs.
(ii) We propose the problem of characterizing the graphs satisfying the following equalities:

(a) γs
tR(G) = n(G);

(b) γs
tR(G) = γR(G) + γ(G);

(c) γs
tR(G) = 2γt(G)− k(G).

Author Contributions: The work was organized and led by A.C.M. All authors contributed equally
to this work. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

49



Symmetry 2021, 13, 1282

References
1. Haynes, T.W.; Hedetniemi, S.T.; Slater, P.J. Domination in Graphs: Volume 2: Advanced Topics; Chapman & Hall/CRC Pure and

Applied Mathematics, Taylor & Francis: Abingdon, UK, 1998.
2. Haynes, T.W.; Hedetniemi, S.T.; Henning, M.A. Topics in domination in graphs. In Developments in Mathematics; Springer: Cham,

Switzerland, 2020; Volume 64.
3. Haynes, T.W.; Hedetniemi, S.T.; Henning, M.A. Structures of domination in graphs. In Developments in Mathematics; Springer:

Cham, Seitzerland, 2021; Volume 66.
4. Haynes, T.W.; Hedetniemi, S.T.; Slater, P.J. Fundamentals of Domination in Graphs; Chapman and Hall/CRC Pure and Applied

Mathematics Series; Marcel Dekker, Inc.: New York, NY, USA, 1998.
5. Henning, M.A. Graphs with large total domination number. J. Graph Theory 2000, 35, 21–45. [CrossRef]
6. Henning, M. A survey of selected recent results on total domination in graphs. Discret. Math. 2009, 309, 32–63. [CrossRef]
7. Henning, M.; Yeo, A. Total Domination in Graphs. Springer Monographs in Mathematics; Springer: New York, NY, USA, 2013.
8. Stewart, I. Defend the Roman Empire! Sci. Am. 1999, 281, 136–138. [CrossRef]
9. Cockayne, E.J.; Dreyer, P.A., Jr.; Hedetniemi, S.M.; Hedetniemi, S.T. Roman domination in graphs. Discret. Math. 2004, 278, 11–22.

[CrossRef]
10. Chambers, E.W.; Kinnersley, B.; Prince, N.; West, D.B. Extremal problems for Roman domination. SIAM J. Discret. Math. 2009,

23, 1575–1586. [CrossRef]
11. Chellali, M.; Jafari Rad, N.; Sheikholeslami, S.M.; Volkmann, L. Roman Domination in Graphs. In Topics in Domination in Graphs.

Developments in Mathematics; Springer: Cham, Switzerland, 2020; Volume 64.
12. Henning, M.A. A characterization of Roman trees. Discuss. Math. Graph Theory 2002, 22, 325–334. [CrossRef]
13. Liu, C.-H.; Chang, G.J. Roman domination on strongly chordal graphs. J. Comb. Optim. 2013, 26, 608–619. [CrossRef]
14. Abdollahzadeh Ahangar, H.; Henning, M.A.; Samodivkin, V.; Yero, I.G. Total Roman domination in graphs. Appl. Anal. Discret.

Math. 2016, 10, 501–517. [CrossRef]
15. Abdollahzadeh Ahangar, H.; Amjadi, J.; Sheikholeslami, S.M.; Soroudi, M. On the total Roman domination number of graph. Ars

Combin. 2020, 150, 225–240.
16. Cabrera Martínez, A.; Cabrera García, S.; Carrión García, A. Further results on the total Roman domination of graphs. Mathematics

2020, 8, 349. [CrossRef]
17. Pushpam, P.R.L.; Sampath, P. On total Roman domination in graphs. In Theoretical Computer Science and Discrete Mathematics;

Lecture Notes in Comput. Sci.; Springer: Cham, Switzerland, 2017; Volume 10398, pp. 326–331.
18. Cabrera Martínez, A.; Martínez Arias, A.; Menendez Castillo, M. A characterization relating domination, semitotal domination

and total Roman domination in trees. Commun. Comb. Optim. 2021, 6, 197–209.
19. Amjadi, J.; Nazari-Moghaddam, S.; Sheikholeslami, S.M.; Volkmann, L. Total Roman domination number of trees. Australas. J.

Combin. 2017, 69, 271–285.
20. Cabrera García, S.; Cabrera Martínez, A.; Hernández Mira, F.A.; Yero, I.G. Total Roman {2}-domination in graphs. Quaest. Math

2021, 44, 411–434. [CrossRef]
21. Amjadi, J.; Sheikholeslami, S.M.; Soroudi, M. On the total Roman domination in trees. Discuss. Math. Graph Theory 2019,

39, 519–532. [CrossRef]
22. Cabrera Martínez, A.; Cabrera García, S.; Carrión García, A.; Hernández Mira, F.A. Total Roman domination number of rooted

product graphs. Mathematics 2020, 8, 1850. [CrossRef]
23. Cabrera Martínez, A.; Kuziak, D.; Peterin, I.; Yero, I.G. Dominating the direct product of two graphs through total Roman

strategies. Mathematics 2020, 8, 1438. [CrossRef]
24. Campanelli, N.; Kuziak, D. Total Roman domination in the lexicographic product of graphs. Discret. Appl. Math. 2019, 263, 88–95.

[CrossRef]
25. Cabrera Martínez, A.; Rodríguez-Velázquez, J. A. Closed formulas for the total Roman domination number of lexicographic

product graphs. ARS Math. Contemp. 2021, in press. [CrossRef]
26. Cabrera Martínez, A.; Rodríguez-Velázquez, J.A. Total protection of lexicographic product graphs. Dis. Math. Graph Theory 2020,

in press. [CrossRef]
27. Laskar, R.; Pfaff, J.; Hedetniemi, S.; Hedetniemi, S. On the algorithmic complexity of total domination. SIAM J. Alg. Discr. Meth.

1984, 5, 420–425. [CrossRef]

50



symmetryS S

Article

Modeling and Optimization for Multi-Objective Nonidentical
Parallel Machining Line Scheduling with a Jumping Process
Operation Constraint

Guangyan Xu 1, Zailin Guan 1, Lei Yue 2,*, Jabir Mumtaz 3 and Jun Liang 1

����������
�������

Citation: Xu, G.; Guan, Z.; Yue, L.;

Mumtaz, J.; Liang, J. Modeling and

Optimization for Multi-Objective

Nonidentical Parallel Machining Line

Scheduling with a Jumping Process

Operation Constraint. Symmetry 2021,

13, 1521. https://doi.org/10.3390/

sym13081521

Academic Editors: Juan

Alberto Rodríguez Velázquez and

Alejandro Estrada-Moreno

Received: 13 July 2021

Accepted: 13 August 2021

Published: 18 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Mechanical Science and Engineering, Huazhong University of Science and Technology,
Wuhan 430074, China; xuguangyan@hust.edu.cn (G.X.); zlguan@hust.edu.cn (Z.G.);
liangjun@alumni.hust.edu.cn (J.L.)

2 School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou 510000, China
3 College of Mechanical and Electronic Engineering, Wenzhou University, Wenzhou 325000, China;

jabir.mumtaz@me.uol.edu.pk
* Correspondence: leileiyok@gzhu.edu.cn

Abstract: This paper investigates the nonidentical parallel production line scheduling problem
derived from an axle housing machining workshop of an axle manufacturer. The characteristics
of axle housing machining lines are analyzed, and a nonidentical parallel line scheduling model
with a jumping process operation (NPPLS-JP), which considers mixed model production, machine
eligibility constraints, and fuzzy due dates, is established so as to minimize the makespan and
earliness/tardiness penalty cost. While the physical structures of the parallel lines in the NPPLS-
JP model are symmetric, the production capacities and process capabilities are asymmetric for
different models. Different from the general parallel line scheduling problem, NPPLS-JP allows for
a job to transfer to another production line to complete the subsequent operations (i.e., jumping
process operations), and the transfer is unidirectional. The significance of the NPPLS-JP model
is that it meets the demands of multivariety mixed model production and makes full use of the
capacities of parallel production lines. Aiming to solve the NPPLS-JP problem, we propose a hybrid
algorithm named the multi-objective grey wolf optimizer based on decomposition (MOGWO/D).
This new algorithm combines the GWO with the multi-objective evolutionary algorithm based
on decomposition (MOEA/D) to balance the exploration and exploitation abilities of the original
MOEA/D. Furthermore, coding and decoding rules are developed according to the features of
the NPPLS-JP problem. To evaluate the effectiveness of the proposed MOGWO/D algorithm, a
set of instances with different job scales, job types, and production scenarios is designed, and the
results are compared with those of three other famous multi-objective optimization algorithms.
The experimental results show that the proposed MOGWO/D algorithm exhibits superiority in
most instances.

Keywords: nonidentical parallel production lines; axle housing machining; mixed model production;
eligibility constraint; fuzzy due date; grey wolf optimizer

1. Introduction

Flow shop scheduling problems are the most common and widely studied problems
in the manufacturing industry, and the examined problems are usually simplified versions
of the real flow shop scheduling problem so as to reduce the difficulty of modeling and
solving these problems. These oversimplified schemes often cannot perfectly solve such
scheduling problems in the actual environment. In real-world manufacturing situations,
some special constraints or uncertainties must usually be considered and handled, such as
sequence-dependent setup times [1–3], the kinds of parallel machines under study [4,5],
machine eligibility constraints [6–9], resource constraints [10,11], and fuzzy stochastic
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demand [12,13]. Considerations of these additional constraints and uncertainties make
the developed scheduling models closer to real production scenarios, but also increase
their scheduling complexity. Because of product iteration requirements and the diversified
needs of customers, production systems must often address multivariety production
on multiple production lines. This is very common in manufacturing enterprises such
as those in the automobile industry and household appliance industry, as well as for
construction machinery manufacturers. When coping with these situations, the equipment
configurations of multiple lines may be different for meeting multivariety production. In
this paper, we study this nonidentical parallel production line scheduling problem. To
improve the machine utilization and shorten the waiting times of the jobs to be processed,
a jumping process operation is often used. This means that if a certain process operation
of a job is finished, it can move to another production line to complete the subsequent
process operations. This jumping process operation is unidirectional. To solve this kind of
scheduling problem, nonidentical parallel line scheduling with a jumping process operation
(NPPLS-JP) is proposed; this is also in essence a parallel production line scheduling problem.
Notably, the proposed NPPLS-JP problem is an NP-hard problem because of its complexity.

This NPPLS-JP problem is derived from the axle housing machining workshop of an
axle manufacturer. Axle housing is an important part of axle production; it usually adopts
make-to-stock (MTS) production and make-to-order (MTO) assembly. The machining of
an axle housing is shown in Figure 1. The axle manufacturer adopts nonidentical parallel
production lines for axle housing machining. There are two parallel production lines (A and
B) in the axle housing machining workshop, and each production line is installed linearly,
as shown in Figure 1. The physical structures of the two production lines are symmetrical.
Each production line contains five stages corresponding to five operations, and the parallel
machines at any stage of each line are identical. The corresponding stages of production
lines A and B have similar functions, but the configurations of the machines in the different
lines are different in order to meet the needs of multivariety mixed production. In this
production situation, the production load of each stage on any line is not easy to balance
via a simple scheduling scheme.
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Figure 1. The composition of an axle housing machining line.

According to the different vehicle models, there are eight types of axle housing
products that can be processed on line A and line B with multivariety mixed model
production; all types of products are processed through five operations, as shown in
Figure 1. Two types of axle housing products have machine eligibility constraints, and the
operation “combined machining I” can only be performed at the corresponding machines in
production line B; the others can finish processing on any line independently. For different
types of axle housing, the different processing times required for the same operation on the
same machine and the different mixing ratios of the various axle housing types increase
the complexity of the scheduling problems. It is difficult to balance all the stages of each
production line, so a jumping process operation is adopted to address this problem by
allowing a job to be processed on two production lines. For example, when the operation
“combined machining I” is finished on line A, the job is transferred to line B to complete
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the subsequent machining operations; this is called the jumping process operation, and
the stage “combined machining I” is called the jumping process point. A jumping process
operation is unidirectional, which means that the axle housings processed on line A are
allowed to be transferred to production line B, but not the other way around. Appropriate
jumping process operations can reduce waiting times, improve the utilization rate of
equipment, balance the production capacity of each stage, and ensure the due date of
each order.

From the above description of a production system, it can be seen that the axle housing
machining line scheduling problem has the following characteristics: (1) The configurations
of the multiple production lines are similar but not the same. (2) Mixed multivariety
production is adopted to organize production. (3) Several jobs with special types have
machine eligibility constraints. (4) The jumping process operation is unidirectional in the
production process. This problem can be regarded as a variant and extension of the flow
shop scheduling problem or general parallel production line scheduling problems, and it
involves four key decision-making processes, namely: job sequencing decisions, parallel
line decisions, parallel machine decisions, and job jumping process operation decisions. It is
obvious that the NPPLS-JP problem proposed in this paper is a rather complex scheduling
optimization problem.

Because of the fierce competition in the market and the diversified needs of cus-
tomers, the NPPLS-JP problem is widespread in manufacturing environments and has
an important impact on the manufacturing efficiency of production systems. However,
there is no relevant research on this topic in the existing literature, so the study in this
paper is of exploratory and practical significance. In this paper, we establish a scheduling
model for the NPPLS-JP problem, which involves multivariety mixed model production,
multiline scheduling, and machine eligibility constraints. The objectives are to minimize
the makespan and earliness/tardiness penalty in a production cycle. In the NPPLS-JP
model, to more closely approximate the actual production environment, the due date of
a production order denoted by the fuzzy earliness/tardiness penalty model [14], and a
hybrid algorithm combining the grey wolf optimization algorithm and the multi-objective
evolutionary algorithm based on decomposition (MOEA/D) are proposed to solve the
NPPLS-JP problem.

The remainder of this paper is organized as follows. Section 2 reviews the literature
relevant to multivariety mixed model production, parallel line scheduling, and multi-
objective optimization. Section 3 gives a general statement of the NPPLS-JP problem and
establishes a production-based, order-oriented, multi-objective scheduling model. Section 4
proposes the multi-objective grey wolf optimizer based on decomposition (MOGWO/D)
for NPPLS-JP and describes the procedures in detail. Section 5 tests the performance
of the proposed MOGWO/D algorithm by comparing it with three other famous multi-
objective algorithms based on a set of designed test instances, and the experimental results
are analyzed. Section 6 summarizes the research content and discusses the direction of
future research.

2. Literature Review

Mixed model production refers to the production of a variety of products on a single
production line to increase the flexibility of the line and meet the multivariety and small-
batch production demands. For multiproduct demands, mixed model production is widely
adopted by manufacturing enterprises, especially in assembly workshops [15,16]. Because
of the widespread application of mixed model production, many scholars are devoted to
research in this field and have made many achievements [17–21].

Mcmullen et al. [22] studied the mixed model scheduling problem with the considera-
tion of a setup time. They presented a bean search heuristic method to obtain an efficient
front. Leu and Hwang [23] proposed a resource-constrained mixed-production flow shop
scheduling system for mixed precast production task problems and developed a search
method based on a genetic algorithm (GA) to minimize the output makespan under re-
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source constraints and mixed production. Wang et al. [24] studied final assembly line
scheduling, which considers order scheduling and mixed model sequencing simultane-
ously, and combined the original artificial bee colony (ABC) algorithm with some steps
of the GA and Pareto optimality to solve this problem. Bahman et al. [25] constructed a
mixed-integer linear programming model with a tighter linear relaxation for a realistic
automotive industry assembly line, including a set of specific requirements involving
moving workers and limited workspace. Alghazi and Kurz [26] proposed a mixed model
line-balancing integer program for mixed model assembly lines with the aim of minimizing
the number of chemical workers; a constraint programming model was established to
address larger assembly line balancing problems.

Parallel line scheduling problems are very common in both mass production and
multiproduct production. Parallel line production can enhance the stability and flexibility
of the production system and improve production efficiency. When one production line
breaks down, not all production activities are stopped. All parallel lines may have the same
number of processing stages, the pieces of equipment in the same stage are similar and can
complete the same production processes, and every line can substitute for all other lines to
produce all or some types of the desired products [27]. However, in some situations, the
configurations of the machines in different lines are nonidentical; this situation is more
convenient for the production of multiple products. For example, two types of equipment
in different production lines can independently complete the operation of milling surfaces,
but the machining accuracies are different.

Haq et al. [28] studied the line scheduling problem with multiple parallel processing
in job shops. Each job can only be processed on a particular line and is not allowed
to move between parallel lines. Meyr and Mann et al. [29] introduced a new solution
approach to determine the lot-sizing and scheduling problem for parallel production
lines with the consideration of scarce capacity; sequence-dependent setup times; and the
deterministic, dynamic demands of multiple products. Mumtaz et al. [30] investigated the
multiple assembly line scheduling problem for a printed circuit board (PCB) assembly and
developed a hybrid spider monkey optimization approach with an improved replacement
strategy to solve it. Rajeswari et al. [27] presented parallel flow line scheduling with a
dual objective to minimize the tardiness and earliness of jobs. All parallel flow lines had
similar sets, and the authors developed a hybrid algorithm that used a GA and particle
swarm optimization (PSO) to incorporate greedy randomized adaptive search to address
the problem. Ebrahimipour et al. [31] proposed linear programming and a bagged binary
knapsack to address the multiple production line scheduling problem. Mumtaz et al. [32]
developed a mixed-integer programming model for the multilevel planning and scheduling
problem of parallel PCB assembly lines, and a hybrid spider monkey optimization (HSMO)
algorithm was proposed.

Multi-objective optimization refers to a situation where more than one conflicting
objective is to be optimized simultaneously. It is often impossible to obtain an optimal solu-
tion as in a single-objective optimization problem, but a set of tradeoff solutions, namely,
nondominated solutions, can be used to choose the most suitable solution according to the
actual requirements. Therefore, it is more applicable to the actual situation, which requires
the consideration of multiple indicators affecting decision making. As it is conducive to
obtaining an ideal decision making effect, multi-objective optimization has a wider appli-
cation field and more practical value. MOEAs are global optimization algorithms based
on populations that simulate the evolution process of natural organisms. Since the whole
solution set can be obtained in one run, MOEAs have become some of the mainstream
algorithms in multi-objective optimization. According to their selection mechanisms,
MOEAs can be classified into three classes [33]: Pareto-based algorithms, indicator-based
algorithms, and decomposition-based algorithms. The Pareto-based method was first
proposed by Goldberg et al. [34] and has been widely studied since then. Many classi-
cal multi-objective optimization algorithms are based on the Pareto relation, and many
have been proposed based on the Pareto dominance relationship, such as the famous
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SPEA [35], SPEA2 [36], and NSGA-II [37]. The indicator-based method uses performance
evaluation indicators to guide the search process and the choice of solutions [38,39]. The
MOEA/D was first proposed by Zhang and Hui in 2007 [40], and it is the most representa-
tive multi-objective optimization algorithm based on decomposition. Different from the
classical multi-objective optimization algorithms, it decomposes an input multi-objective
optimization problem (MOP) into a series of single-objective optimization subproblems
by using a set of uniformly distributed weight vectors and optimizing these subproblems
simultaneously. Since the MOEA/D was proposed, it has attracted increasing attention
from scholars, improvements and applications for the MOEA/D are constantly emerging,
and it has become one of the best multi-objective optimization algorithms.

Li and Landa-Silva et al. [41] proposed evolutionary multi-objective simulated an-
nealing (EMOSA), which incorporates a simulated annealing algorithm and introduces an
adaptive search strategy. The experimental results showed that the algorithm obtained a
good effect in terms of solving the multi-objective knapsack problem and multi-objective
salesman problem. Tan et al. [42] developed a multi-objective meme algorithm based
on decomposition, which integrates a simplified quadratic approximation (SQA) into
the MOEA/D as a local search operator to balance its local and global search strategies.
Wang et al. [43] designed a multi-objective particle swarm optimization algorithm based on
decomposition (MPSO/D). This algorithm adopts relevant measures to ensure that only one
solution is present in each subregion in oder to maintain solution diversity, and the fitness is
calculated by the crowding distance. Ke and Zhang et al. [44] proposed the MOEA/D-ACO
algorithm, which incorporates ant colony optimization (ACO) into the MOEA/D; they
then tested the performance of the proposed algorithm in 12 instances and obtained good
results. Alhindi et al. [45] developed a hybrid algorithm called MOEA/D-GLS, which
integrated guided local search (GLS) with the MOEA/D to promote the exploitation ability
of the original MOEA/D. The experimental results showed that the proposed MOEA/D-
GLS was superior to the original MOEA/D. Zhang et al. [46] proposed MOEA/D-EGO to
address expensive MOPs. In this method, the input problem is decomposed into several
subproblems, and a prediction model is established for each subproblem based on the
evaluated points in order to reduce modeling costs and improve the prediction quality.
Wang et al. [47] proposed adaptive replacement strategies by adjusting the problem size
dynamically for the MOEA/D. This approach can balance the diversity and convergence
of the MOEA/D.

However, according to the no free lunch theorem [48], no algorithm can solve all of
the optimization problems in all of the fields. Because of the continuous emergence of
new optimization problems, the existing algorithms cannot solve these new optimization
problems well, so new algorithms or improved algorithms are needed. The MOEA/D
algorithm exhibits good diversity in solving MOPs; its characteristics include simplicity,
few parameters, and better result distributions. In this paper, the MOGWO/D, which
incorporates the GWO into the MOEA/D, is proposed to solve the NPPLS-JP problem.

3. Problem Description and Mathematical Modeling
3.1. Problem Definition and Assumption

Suppose that O orders are processed in L production lines, the job types for each order
are the same and those for different orders may be different, and the operations of each
type of job are predetermined and similar. All production lines have the same number of
stages, and the machine configurations may be different. If parallel machines exist in some
stages of the production line, they are identical parallel machines. Some types of jobs may
have machine eligibility constraints, namely some job operations must be carried out on
specific machines at certain stages of some production lines. For any production line l, if s
is set as the jumping process operation point, it means that after processing is completed in
stage s, the job can be transferred to line l′ to continue the processing of the subsequent
operations (l 6= l′ and l, l′ ∈ {1, 2, · · · , L}); the jumping process operation is unidirectional.
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The scheduling objectives are to minimize the makespan and the earliness/tardiness
penalty cost.

In addition, there are usually several complicated constraints and perturbations in
the real-world production environment. To prevent the loss of generality and reduce the
computational complexity of the scheduling model, some modeling assumptions are given,
as follows.

(1) The type, quantity, and due date of each order are known.
(2) The jobs in each order are of the same type.
(3) All the machines in the production system are available at the beginning.
(4) The processing times and setup times of the jobs on each machine do not overlap.
(5) Each job can be processed on only one machine at any time, each machine can process

only one job at any time, and operations cannot be interrupted.
(6) For each job, the jumping operation can only occur once.
(7) The jumping process operation point is singular, fixed, and unidirectional.
(8) The setup time and machine breakdown time are ignored.

Meanwhile, to solve the NPPLS-JP problem more conveniently, the concept of a virtual
production line is introduced. This means that if there is a jumping process operation
point in the manufacturing process of a job of a certain type, all the stages in two different
production lines that can complete the processing of jobs of this type are regarded as a new
production line, namely, a virtual production line.

In a real-world production environment, a breach of the order due dates is not always
unacceptable. In general, a few occurrences of tardiness are allowed, to achieve the smallest
due date penalty cost across the total orders. Here, the fuzzy due date is used to deal
with this situation. Trapezoidal fuzzy due date and triangular fuzzy due date are two
common fuzzy due dates that have been investigated in the literature regarding scheduling
problems [14,49–51]. Most researchers choose the type of fuzzy due date depending on
the research background and problem characteristics. In our research, neither early nor
late completion were the best solutions for the automobile industries. Completing the
production order in advance will increase the inventory cost, while the order delay will
lead to customer penalty loss. Finishing and delivering the orders in a given period is the
most feasible result. Therefore, the trapezoidal fuzzy due date and earliness/tardiness
penalty cost model was adopted in this scheduling problem according to the real-world
production requirement.

As shown in Figure 2a–b, (a) is the trapezoidal fuzzy due date and earliness/tardiness
penalty cost model, (b) is the corresponding satisfaction model of the fuzzy due date.
Model (a) shows each order has a corresponding trapezoidal fuzzy due date that is denoted
by a trapezoidal fuzzy number do =

(
d1

o , d2
o , d3

o , d4
o
)
, and the earliness/tardiness penalty

cost coefficients are αo and βo, respectively. A completion time before d1
o it means that

the orders are produced prematurely, and additional inventory costs are generated; if
the completion time comes after d4

o , the production order seriously violates the due date
requirement. These two cases are both unacceptable, so the satisfaction is 0, and the maxi-
mal earliness/tardiness penalty is imposed. If the completion time is in the time interval
[d1

o , d2
o ] or [d3

o , d4
o ], the due date penalty costs decrease and increase linearly, respectively,

and the corresponding due date satisfaction is just the opposite. Only in the time interval
[d2

o , d3
o ] are the completion times reasonable, and the due date penalty cost in this case is 0.

Therefore, the production orders should be arranged optimally in terms of time according
to different due dates and earliness/tardiness penalty costs.
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Figure 2. The earliness/tardiness penalty cost and satisfaction model. (a) The earliness/tardiness
penalty cost; (b) The satisfaction model.

3.2. Mathematical Modeling

A mathematical model for the proposed NPPLS-JP problem is established using the
above notations, and the two objective functions, which minimize the makespan and
earliness/tardiness penalty cost, are formulated as Equations (1) and (2), respectively.

Min f1 = max{Co} (1)

Min f2 =
O

∑
o=1

Po (2)

where the calculation formulas of the completion time and due earliness/tardiness penalty
for order o are formulated as Equations (3) and (4), respectively:

Co = max{ui,oCi} i ∈ J (3)

Po =





αo Co < d1
o

αo· d
2
o−Co

d2
o−d1

o
d1

o ≤ Co < d2
o

0 d2
o ≤ Co ≤ d3

o o ∈ O

βo·Co−d3
o

d4
o−d3

o
d3

o ≤ Co < d4
o

βo Co ≥ d4
o

(4)

The constraints are as follows:

L

∑
l=1

(sl−1)

∑
s=1

(
Xi,s,lYi,s,s′

)
= 1 i ∈ J; s′ = (s + 1) (5)

L

∑
l=1

(S−1)

∑
s=(sl+1)

(
Xi,s,lYi,s,s′

)
= 1 i ∈ J; s′ = (s + 1) (6)

Yi,sl ,(sl+1)= 0, 1 i ∈ J (7)

L

∑
l=1

(
Xi,s,lXi,s′ ,l

)
= Xi,s,s′ i ∈ J; s ∈ {1, 2, · · · , (S− 1)}; s′ = (s + 1) (8)

Msl

∑
k=1

Xk,i,s,l = Xi,s,l i ∈ J; s ∈ S; l ∈ L (9)

Xi,s,l ≤
O

∑
o=1

Nt

∑
t=1

L

∑
l=1

xi,oxo,txt,s,l i ∈ J; s ∈ S; l ∈ L (10)

L

∑
l=1

Msl

∑
k=1

Xk,i,s,l = 1 i ∈ J; s ∈ S (11)

Z
k,i,i′ ,s,l

+ Z
k,i′ ,i,s,l

≤ Xk,s,i,l i, i′ ∈ J; i 6= i′; s ∈ S; k ∈ Ms,l ; l ∈ L (12)
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Zk,i,i′ ,s,l + Zk,i′ ,i,s,l ≤ Xk,s,i′ ,l i, i′ ∈ J; i 6= i′; s ∈ S; k ∈ Ms,l ; l ∈ L (13)

Ck,s,i′ ,l′Xk,s,i′ ,l′ + M
(
1− Zk,i,i′ ,s,l

)
≥ Ck,s,i,lXk,s,i,l +

O
∑

o=1

Nt
∑

t=1
(ptt,k,sxo,txi,o)Xk,s,i′ ,l′

i, i′ ∈ J; i 6= i′; s ∈ S; k ∈
{

Ms,l ∪Ms,l′
}

; l, l′ ∈ L
(14)

C
k′,s′,i,l′Xk′,s′,i,l′ + M(1− X

k′,s′,i,l′ ) ≥ Ck,s,i,lXk,s,i,l +
O
∑

o=1

Nt
∑

t=1

(
ptt,k′ ,s′xo,txi,o

)
Xk′ ,s′ ,i,l′

s ∈ {1, 2, · · · , S− 1}; s′ = (s + 1); k ∈ Ms,l ; k′ ∈ Ms′ ,l′ ; l, l′ ∈ L
(15)

Among the above constraints, constraints (5)–(7) together define the jumping process
operation. Constraint (5) defines the operations before the jumping process operation
point (including the operation on the jumping process operation stage), which can only
be completed in one production line. Constraint (6) restricts all of the operations after
the jumping process operation point for each job that can only be processed on the same
production line. Constraint (7) states the jumping process operation for any job may
or may not occur after completing another jumping process operation, and the three
constraints together guarantee that the jumping process operation can only occur once at
most. Constraint sets (8) and (9) define the relationships between several decision variables.
Constraint (10) states that the processing of each job operation must satisfy the machine
eligibility constraints. Constraint (11) ensures that each operation of a job can only be
processed on one machine. Constraint sets (12) and (13) together restrict the processing
sequence of two jobs on a machine to only one possible result. Constraint (14) guarantees
that one machine can only process one job at a time, which means that the completion
time of the current job is longer than the sum of the completion time of the immediate
predecessor job and the processing time of the current job. Constraint (15) ensures that
a job is processed by only one machine at a time, that is, the completion time of the job
operation is greater than the sum of the completion time of the immediate predecessor
operation and the processing time of the current operation.

4. Proposed MOGWO/D Algorithm

The MOEA/D provides a general framework that allows any single objective to be
applied to the subproblems of a MOP [41]. Compared with the other multi-objective
optimization algorithms, such as the Pareto-based optimization algorithms, MOEA/D has
less computational complexity, and its results have better diversity. In this section, we
present a hybrid algorithm that combines GWO with MOEA/D, and uses the mechanism
of searching for prey in the GWO algorithm to enforce a balance between exploration
and exploitation. According to the characteristics of the NPPLS-JP problem, problem-
specific encoding and decoding rules are given, and some main procedures in the proposed
MOGWO/D are also stated in detail.

4.1. Original GWO

The GWO was inspired by the leadership hierarchy and hunting behaviors of grey
wolves [52]. In GWO, initial populations are used to simulate the grey wolf group, which
is divided into four hierarchies; the solutions with the best, second, and third fitness
values are α, β, and δ, respectively, are utilized to find the optimal solution by simulating
the hunting process of grey wolves. In the process of hunting, the location of the prey
is unknown. Therefore, to simulate the hunting behavior of grey wolves and the prey
behavior from the perspective of mathematical modeling, suppose that α, β, and δ are
closest to the potential position of the prey. Under the guidance of α, β, and δ, the position
vector is updated to approximate the optimal solutions in the search space.

The main procedure of wolf hunting includes encircling prey and hunting, and the
mathematical models for grey wolves approaching and encircling their prey are as follows:

→
D =

∣∣∣∣
→
C ·

→
Xp(t)−

→
X(t)

∣∣∣∣ (16)
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→
X(t + 1) =

→
Xp(t)−

→
A ·
→
D (17)

→
A = 2

→
a ·→r1 −

→
a (18)

→
C = 2

→
r2 (19)

In Equations (16) and (17),
→
Xp indicates the position vector of the prey and

→
X is the

position vector of the grey wolf.
→
A and

→
C are coefficient vectors, and the calculation

methods are shown in Equations (18) and (19). By changing the value of the vector
→
A, the

search process can be guided. When |
→
A| > 1, α, β, and δ diverge from each other, which is

good for global search; when |
→
A| < 1, α, β, and δ converge to the prey, which contributes

to the local search. The parameter
→
C is generated randomly to help grey wolves jump out

of the local optima.
In Equations (18) and (19),

→
r1 and

→
r2 are randomly generated in [0, 1], and the values

of the parameter
→
a linearly decrease from 2 to 0 over the course of the iterations. During

the process of hunting, the position vectors are updated using the following equations:

→
X1 =

→
Xα −

→
A1 ·

∣∣∣∣
→
C1 ·

→
Xα −

→
X
∣∣∣∣ (20)

→
X2 =

→
Xβ −

→
A2 ·

∣∣∣∣
→
C2 ·

→
Xβ −

→
X
∣∣∣∣ (21)

→
X3 =

→
Xδ −

→
A3 ·

∣∣∣∣
→
C3 ·

→
Xδ −

→
X
∣∣∣∣ (22)

→
X(t + 1) =

→
X1 +

→
X2 +

→
X3

3
(23)

In Equations (20)–(23),
→
Xα,

→
Xβ, and

→
Xδ are the position vectors of α, β, and δ, respec-

tively, and
→
X denotes the current position vector that needs to be updated.

4.2. MOGWO/D Algorithm Framework

The proposed MOGWO/D is a hybrid algorithm that integrates GWO into MOEA/D.
Similar to the original MOEA/D, the MOGWO/D algorithm decomposes the input multi-
objective problem into a series of single-objective scalar optimization subproblems by
utilizing a set of uniformly distributed weight vectors and a scalar function. Here, we use
the Tchebycheff method to construct each subproblem; then, subproblem i can be described
as follows [40]:

Minimize gte(x|λi, z∗ ) = max
1≤j≤m

{
λ

j
i | fi(x)− z∗m|

}
(24)

where z∗i is the i-th component of reference point
(
z∗1, z∗2, · · · , z∗m

)T, z∗i = min{ fi(x)|x ∈ Ω},
i = 1, 2, · · · , m, λi =

(
λ1

i , λ2
i , · · · , λm

i
)T . The purpose is to minimize each single-

objective function gte(xi|λi, z∗), and each subproblem uses the approach of the GWO to
update its position vectors. It is worth noting that finding accurate reference points is
difficult and time-consuming work, so the best objective values z = (z1, z2, · · · , zm)T

method is used in the initial population as the initial reference point, and to update the
reference point over the course of iterations by generations.

As the normalization method for objectives is conducive to increase the uniformness
of the obtained solutions when the input objectives are disparately scaled [40], we used
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a simple normalization method to replace fi and obtained a normalization Tchebycheff
approach, as follows.

Minimize gte(x|λi, z∗ ) = max
1≤j≤m

{
λ

j
i

∣∣∣∣∣
fi(x)− z∗i
znad

i − z∗i

∣∣∣∣∣

}
(25)

where z∗ is the reference point and znad =
{

znad
1 , znad

2 , · · · , znad
m

}
is the nadir point in the

objective space. In our calculation, z∗ is replaced by z in Step 2.3 of Algorithm 1, and the
maximum value of fi(x) in the current population is the substitute for znad

i . This calculation
strategy can meet the needs of the algorithm.

Algorithm 1 MOGWO/D

Input:
A multiobjective problem;
A stopping criterion;
A set of uniformly spread weight vectors

{
λ1, λ2, · · · , λN};

N : population size (equal to the number of the weight vectors or subproblems);
T : neighborhood size;
T′: the number of position vectors in the neighborhood to be updated of a subproblem (where

T′ < T).
Output:

External population, EP for short.
Step 1) Initialization:

Step 1.1) Set EP = ∅;
Step 1.2) Generate a set of uniformly distributed weight vectors

{
λ1, λ2, · · · , λN}, calculate

the Euclidean distances of any pair of weight vectors, for
∀i = 1, 2, · · · , N, defines a set B(i) = {i1, i2, · · · , iT}, λi1 , λi2 , · · · , λiT are T closest weight
vectors of the weight vecto λi.

Step 1.3) Randomly generate an initial population
{

x1, x2, · · · , xN} or use a problem-specific
approach. The objective of each position vector is calculated and labeled as

FVi, FVi = F
(

xi
)

, i = 1, 2, · · · , N.

Step 1.4) Initialize
z = (z1, z2, · · · , zm)

T , zi = min
{

fi
(

x1), fi
(

x2), · · · , fi
(

xN)}, i = 1, 2, · · ·m.

Step 1.5) Calculate gte
(

xj
∣∣∣λi, z∗

)
for each j ∈ B(i), and the three best position vectors are

labeled as xα, xβ and xδ, respectively corresponding to weight vector λi.
Step 2) Update:

for i = 1, 2, · · · ,N, do
Step 2.1) Randomly select T

′
indexes k1, k2, · · · , kT′ from B(i), then yield a set of new position

vectors xk1
, xk2 , · · · , xkT′ according to the Equations (20)–(23) by the guidance of

xi
αxi

β, and xi
δ, set PS(i) =

{
xk1

, xk2 , · · · , xkT′

}
.

Step 2.2) Update of xi
α, xi

β and xi
δ. Comparing the value of gte

(
x′
∣∣∣λi, z

)
with

gte
(

xi
α

∣∣∣λi, z
)

, gte
(

xi
β

∣∣∣λi, z
)

and gte
(

xi
δ

∣∣∣λi, z
)

, x′ ∈ PS(i), then update xi
α, xi

β and xi
δ with the

three best position vectors of all.

Step 2.3) Update of z. For each j = 1, 2, · · · , m, if f j

(
xi

α

)
< zj, set zj = f j

(
xi

α

)
.

Step 2.4) Update of neighborhood. For each

j ∈ B(i), if
(

xi
α ,

∣∣∣λj, z
)}
≤ gte

(
xj
∣∣∣λj, z

)
, set xj = xi

α , and update of FVj = f
(

xi
α

)
.

Step 2.5) Update of EP. Add f
(

xi
α

)
to EP if no vectors in EP dominate f

(
xi

α

)
; if the number of

vectors exceeds the EP capacity, the kth nearest neighbor method is used as a truncation strategy.

If the vectors in EP are dominated by f
(

xi
α

)
, remove from EP.

Step 3) Stopping criterion:
If the stopping criteria is satisfied, stop running and output EP. Otherwise, return to Step 2.
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Similar to the original MOEA/D, the MOGWO/D algorithm (Algorithm 1) also
optimizes a number of scalar optimization subproblems simultaneously in one iteration,
thus improving the optimization efficiency of the proposed algorithm.

4.3. Generate a Set of Uniform Weight Vectors

In Step 1.2 of Algorithm 1, a simplex-lattice design [53] is adopted to generate a
set of uniformly distributed weight vectors λi =

(
λi

1, λi
2, · · · , λi

m
)
, i ∈ N, and m is the

dimensionality of the objective space. For each λi,
m
∑

j=1
λi

j=1, and λi
j ∈
{

0, 1
H , 2

H , · · · , H
H

}
,

H is a predetermined positive integer determined according to the sizes of the problems, so,
a total of Cm−1

H+m−1 weight vectors are obtained. For each λi, the Euclidean distance to any
weight vector is calculated, defining a set B(i) = {i1, i2, · · · , iT}, in which λi1 , λi2 , · · · , λiT

are the indexes of the T closest weight vectors to λi; then, B(i) is called neighborhood of
λi (including λi itself, as λi is the closest weight vector to itself, of which the Euclidean
distance is 0). At the same time, the response of xi to λi also generates a neighborhood,
and each individual in the neighborhood corresponds to each weight vector determined
by B(i).

4.4. Encoding and Decoding

In the proposed MOGWO/D algorithm, the encoding method is similar to the original
GWO, and the initial population is randomly generated from a uniform distribution. All
position vectors in the initial population are continuous, but the scheduling solutions to the
proposed combinatorial optimization problem are not, so a decoding approach is needed
to convert the continuous position vectors to the scheduling solutions.

In the proposed NPPLS-JP problem, each position vector needs to include two pieces
of information, a job permutation and a production line sequence, and the production line
sequence corresponds to the job permutation. Suppose that there are O orders in a planning
cycle; if the number of jobs in the order o is No, then there are a total of N = ∑O

o=1 No
jobs in this planning cycle, and each position vector in the population is represented
as xi = [xi

1, xi
2, · · · , xi

N , |xi
(N+1), · · · , xi

2N ]. For convenience of expression, the first N
position values are marked as Part 1, which corresponds to the job permutation, and the last
N position values are marked as Part 2, which corresponds to the production line sequence.

Part 1 and Part 2 are decoded independently. The decoding methods for Part 1 and
Part 2 are different because the machining operations of the jobs of some types have
machine eligibility constraints. The selection of the production line involves the decoded
information of Part 1, that is, the decoding process of Part 2 depends on the obtained jobs’
permutation. To discretize the continuous position vectors, the ranked-order value (ROV)
rule [54] is used in the decoding processes of Part 1 and Part 2.

For each position value in Part 1 of the position vector, the ROV rule is used to generate
ROVs according to the position values in ascending order. If identical position values exist,
the ROVs increase from left to right, and then the ROV permutation is obtained. Then, the
N1 smallest values are picked and all are assigned a value of V1. V1 is the order number
of order 1, and N1 is the size of order 1; similarly, ROVs (N1 + 1) to N2 are picked and
assigned V2. V2 is the order number of order 2, and N2 is the size of order 2. In the same
way, the job permutation is obtained.

For Part 2, first, as in Part 1, the ROV sequence is obtained according to the position
values in Part 2 in ascending order. The next step is different from Part 1. For each ROV
in Part 2, the same ROV in Part 1 is found, the corresponding order number is obtained,
and then its job type is determined. Then, the job type in the first column of the given line
selection information table is found, and the corresponding number of optional lines in
the second column is obtained. Next, the remainder of the current ROV divided by the
number of available lines is obtained. Finally, the corresponding production line number
in the third column is found according to the calculated remainder, and the production line
number is assigned to the position in Part 2 corresponding to current ROV. In the same

61



Symmetry 2021, 13, 1521

way, the production line sequence is obtained. This decoding method for Part 2 can prevent
increases in the calculation cost due to invalid solutions caused by the selection of unusable
production lines.

A simple example, as shown in Table 1, is used to demonstrate the decoding rules.
The sizes of the three orders are two, three, and one, and the total number of jobs is 6six.
The detailed decoding process for the example is shown in Figure 3.

Table 1. The data used in the example.

Order No. Number of Jobs Job Type

1 2 3
2 3 1
3 1 2
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In this example, there are a total of five jobs. Each position value of the position vector
is taken from the uniform distribution U[−6, 6] so that the position vector x = [3.8, −2.4,
2.3, −3.3, −1.9, −0.6, −3.2, −0.4, 3.8, −3.1, 0.7, 4.6] can be obtained, where Part 1 is [3.8,
−2.4, 2.3, −3.3, −1.9, −0.6], and Part 2 is [−3.2, −0.4, 3.8, −3.1, 0.7, 4.6]. For the decoding
process, the production line selection information used in Part 2 is given in Table 2.

Table 2. The line selection information of the example.

Job Types Available
Quantity

Optional Lines

0 1 2

1 2 1 2
2 3 1 2 3
3 3 1 2 3

4.5. Updating the Position Vectors

The Tchebycheff approach is adopted to decompose the input MOP into N single-
objective optimization subproblems and to optimize them simultaneously. The neighbor-
hood of each subproblem is defined based on the distances between their weight vectors.
Adjacent subproblems have similar approximate solutions, so each subproblem is opti-
mized, and only the information of neighboring subproblems is used. For every generation,
T′ position vectors corresponding to the subproblems are updated, where T′ is a positive
integer smaller than the neighborhood size, and these T′ position vectors are randomly
selected from the neighborhood corresponding to the subproblem.

62



Symmetry 2021, 13, 1521

Each selected position vector of each subproblem is updated, and this information is
used in its neighborhood. First, position vectors are updated according to Equations (20)–
(23) through the guidance of the current three best position vectors xα, xβ, and xδ, and the
position vector set PS = {x1,x2, · · · , xT′} of the subproblem is obtained. Second, calculating
the gte value of every position vector in the GS(i) = PS ∪

{
xα, xβ, xδ

}
corresponding to

λi. Then, xα, xβ, and xδ are updated with the best, second best, and third best position
vectors in the GS(i) corresponding to the weight vector λi, where xα is the optimal solution
to the current subproblem. After that, the reference point is updated by calculating the
objectives with xα; if f j(xα) < zj, then zj = f j(xα). Third, the neighborhood of the current
subproblem is updated with respect to each position vector to the weight vectors of the
neighborhood; for each j ∈ B(i), if gte(xα

∣∣λi, z∗
)
≤ gte(xj

∣∣λj, z∗
)
, xj = xα and FVj = f (xα)

simultaneously. The pseudocode for implementing the update process in one iteration is
shown in Algorithm 2.

Algorithm 2 The update process of one iteration

While(stopping condition is not satisfied){
//Main loop
for(i = 1; i ≤ N; i++)
{//optimize N subproblems simultaneously
idxes = getRandoms(T

′
, B(i));

selectedPop = getIndividuals(neighborhood, idxes);

PS(i)= updateIndividuls
(

selectedPop, xα, xβ, xδ

)
;

sortedPop = sort(PS(i));
xα = sortedPop(0);

xβ = sortedPop(1);
xδ = sortedPop(2);
updateZ(xα); //update the reference point;
updateNeighborhood(xα);
updateEP(xα);

}
}

4.6. Updating the External Population (EP)

After obtaining the best position vector xα of every subproblem in each generation,
the EP needs to be updated. If the condition that F(xα) is not dominated by the individuals
in the EP, F(xα) is added to the EP, and the individuals that are dominated by F(xα)
are removed.

In the search process of the algorithm, excess individuals are added to the EP. Too many
nondominated individuals are not of great significance for solving practical problems, but
they increase the difficulty of the data analysis. Therefore, a special truncation strategy is
used to maximize the retention of nondominated solution characteristics while maintaining
the appropriate EP size. In this strategy, the kth nearest neighbor method [36] is used
here to evaluate the individuals in the EP, and the calculation approach for the kth nearest
neighbor distance is as follows.

D(i) =
1

σk
i + 2

(26)

k =
√
|P|+ |EP| (27)

where D(i) is the inverse function of the Euclidean distance from individual i to its k-th
nearest neighbor, which is used to reflect the density information of the objective space.
σk

i is the kth nearest Euclidean distance of individual i, where the value of k is calculated
using Equation (27), and |P| and |EP| are the population size and external population size,
respectively. The smaller the D(i) value is, the more scattered the solutions are.
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5. Computational Experiments and Results Analysis

NPPLS-JP is a novel multiline scheduling problem derived from a real-world man-
ufacturing workshop; it is an extension of regular flow shop scheduling problems that
has no related research. Therefore, there are no benchmarks available for the proposed
MOGWO/D algorithm. In this section, test experiments are designed to assess the perfor-
mance of the proposed MOGWO/D algorithm by comparing the results obtained on the
proposed NPPLS-JP problem with those of three other famous multi-objective optimization
algorithms, i.e., NSGA-II [37], MOGWO [55], and MOPSO [56], in terms of three metrics.
The results illustrate the effectiveness of the proposed MOGWO/D algorithm.

5.1. Evaluation Metrics

Different from single objective optimization problems, MOPs involve the simultaneous
optimization of multiple conflicting objectives. An improvement of one objective results in
the deterioration of another objective, so MOP algorithms usually obtain a set of tradeoff
solutions in terms of the desired objectives, namely, nondominated solutions. There is
no absolute optimum among these solutions, and fitness functions cannot evaluate their
effectiveness, so a set of metrics is needed to evaluate the performance of multi-objective
algorithms for solving MOPs. If the obtained Pareto front is closer to the Pareto optimal
front, covering the extreme regions as much as possible, and the nondominated solutions
are uniformly distributed in the obtained Pareto front, this means that the obtained results
have better convergence and distribution effects. In this paper, the following three metrics
are used:

(1) Generational distance (GD) [57]. The GD is the most common multi-objective indicator
for convergence. It is used to calculate the mean Euclidean distance between the
obtained Pareto front and the Pareto optimal front. The calculation formula for the
GD is as follows.

GD =

√
∑
|OF|
i=1 d2

i

|OF| (28)

where di is the Euclidean distance from point i of the obtained Pareto front to the
closest point in the Pareto optimal front, and |OF| is the number of nondominated
solutions in the obtained Pareto front; therefore, GD denotes the mean value of the
closest distance from each point in the obtained Pareto front to the Pareto optimal
front. A smaller GD value indicates that the obtained Pareto front is closer to the
Pareto optimal front; namely, the obtained Pareto front has good convergence. When
GD equals zero, the obtained Pareto front is located at the Pareto optimal front.

(2) Inversed generational distance (IGD) [58]. This metric is a variant of the GD and is a
comprehensive performance indicator. This metric represents the mean Euclidean
distance from the points in the Pareto optimal front to the obtained Pareto front. The
formulation of the IGD is as follows.

IGD =

√
∑
|PF|
i=1 D2

i

|PF| (29)

where |PF| denotes the number of points in the Pareto optimal front and Di is the
Euclidean distance from point i in the Pareto optimal front to the closest point in the
obtained Pareto front. A smaller IGD value indicates better convergence and diversity
for the obtained Pareto front. In our experiments, the nondominated solutions ob-
tained from all independent runs of the four algorithms on each instance are regarded
as the Pareto optimal front of that instance.
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(3) Spread (∆) [37]. ∆ is the diversity metric of the multi-objective optimization that can
measure the distribution and spread of solutions. ∆ is calculated as follows.

4 =
∑m

j=1 de
j + ∑n

i=1

∣∣∣di − d
∣∣∣

∑m
j=1 de

j + nd
(30)

where m is the number of objectives and n is the number of solutions in the obtained
Pareto front. de

j is the minimum Euclidean distance from the nondominated solutions
in the obtained Pareto front to the extreme point j of the Pareto optimal front, and di is
the Euclidean distance of the closest pairwise points in the obtained Pareto front, and
d is the average value of di. A smaller value of ∆ represents a better distribution and
increased diversity. The calculation of ∆ is simple and does not require knowledge
of the whole Pareto optimal front, it uses only the extreme objectives of the Pareto
optimal front.

5.2. Instance Generation

In the ideal situation, the proposed MOGWO/D algorithm is suitable for all kinds of
problems that meet the model definition of NPPLS-JP with different numbers of parallel
production lines and jobs, different mixing ratios of job types, and different configurations
of production lines. Here, by combining the production system and customers’ demand
data to generate a set of instances, the performance of the proposed MOGWO/D algorithm
is tested. Therefore, we evaluated the effectiveness of the proposed algorithm in different
production scenarios by varying the order quantity and order capacity. In the experiment
in this section, we only considered the case with two parallel production lines, and gave
three production scenarios with different configurations, four different numbers of orders,
and three different order capacities; thus, a tally of 3 × 4 × 3 = 36 instances were generated
by the combination of the three factors.

The three production scenarios are shown in Figure 4a–c, each with two nonidentical
parallel production lines, and each production line consisting of five stages corresponding
to five operations of eight types of jobs. The three production scenarios consist of two
general flow lines, a general flow production line and a hybrid flow production line, and
two hybrid flow lines. The machines of each production scenario are taken from Table 3.
Notably, the machine configuration for the first line in Scenario (b) is the same as that of the
first line in Scenario (a), and the machines configuration for the second line in Scenario (c) is
the same as that of the second line in Scenario (b). All of the parallel machines are identical
parallel machines in each line of any production scenario. Table 3 also gives the processing
time of each operation of the eight types of jobs on each machine. “_” indicates that jobs of
the current type cannot be processed on the corresponding machines. Therefore, if the next
operation of a job cannot be processed on the current line, the jumping process operation
will occur. The production line selection information for decoding is shown in Table 4.

Table 3. The optional machines and the processing times for each type of job.

Job
Types

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17 M18 M19 M20

1 41 41 30 30 39 39 34 34 42 42 31 31 − − 26 26 49 49 23 23
2 40 40 31 31 42 42 34 34 40 40 32 32 − − 23 23 50 50 23 23
3 40 40 32 32 38 38 32 32 41 41 32 32 47 47 26 26 52 52 24 24
4 39 39 32 32 41 41 32 32 39 39 29 29 48 48 26 26 52 52 24 24
5 42 42 34 34 40 40 34 34 39 39 30 30 − − 24 24 51 51 24 24
6 40 40 35 35 39 39 31 31 42 42 31 31 − − 23 23 46 46 22 22
7 39 39 32 32 40 40 32 32 40 40 33 33 54 54 24 24 54 54 24 24
8 43 43 31 31 42 42 31 31 43 43 34 34 57 57 26 26 56 56 26 26
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Table 4. Production line selection information for the experiments.

Type Available
Quantity

Optional Lines

0 1 2

1 2 2 3 -
2 2 2 3 -
3 3 1 2 3
4 3 1 2 3
5 3 2 3 -
6 3 2 3 -
7 3 1 2 3
8 3 1 2 3

Symmetry 2021, 13, x FOR PEER REVIEW 17 of 26 
 

Table 3. The optional machines and the processing times for each type of job. 

Job 

Types 

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 𝑴𝟏 𝑴𝟐 𝑴𝟑 𝑴𝟒 𝑴𝟓 𝑴𝟔 𝑴𝟕 𝑴𝟖 𝑴𝟗 𝑴𝟏𝟎 𝑴𝟏𝟏 𝑴𝟏𝟐 𝑴𝟏𝟑 𝑴𝟏𝟒 𝑴𝟏𝟓 𝑴𝟏𝟔 𝑴𝟏𝟕 𝑴𝟏𝟖 𝑴𝟏𝟗 𝑴𝟐𝟎 

1 41 41 30 30 39 39 34 34 42 42 31 31 − − 26 26 49 49 23 23 

2 40 40 31 31 42 42 34 34 40 40 32 32 − − 23 23 50 50 23 23 

3 40 40 32 32 38 38 32 32 41 41 32 32 47 47 26 26 52 52 24 24 

4 39 39 32 32 41 41 32 32 39 39 29 29 48 48 26 26 52 52 24 24 

5 42 42 34 34 40 40 34 34 39 39 30 30 − − 24 24 51 51 24 24 

6 40 40 35 35 39 39 31 31 42 42 31 31 − − 23 23 46 46 22 22 

7 39 39 32 32 40 40 32 32 40 40 33 33 54 54 24 24 54 54 24 24 

8 43 43 31 31 42 42 31 31 43 43 34 34 57 57 26 26 56 56 26 26 

Table 4. Production line selection information for the experiments. 

Type Available Quantity 
Optional Lines 

0 1 2 
1 2 2 3 - 
2 2 2 3 - 
3 3 1 2 3 
4 3 1 2 3 
5 3 2 3 - 
6 3 2 3 - 
7 3 1 2 3 
8 3 1 2 3 

M3

(a)

M5

M7

M13 M17M9

M11 M15 M19

M1

M3

(b)

M5 M13 M17M9M1

M4

M7

M8

M11

M12

M15

M16

M19

M20

M3

(c)

M4

M7

M8

M11

M12

M15

M16

M19

M20

M1

M2

M5

M6

M9

M10

M13

M14

M17

M18

Line 1

Line 2

Line 1

Line 2

Line 1

Line 2

 
Figure 4. The three different production scenarios. (a) Scenario 1; (b) Scenario 2; (c) Scenario 3. Figure 4. The three different production scenarios. (a) Scenario 1; (b) Scenario 2; (c) Scenario 3.

The number of orders O = {2, 4, 6, 8} and the capacity of order o is No, where
No = {10, 20, 30}. As the jobs in each order are of the same type, O represents not only
the number of orders, but also the number of job types in the production cycle, and both O
and No determine the total number of jobs. Each instance is denoted in the form “x_y_z”,
where x represents the production scenario taken from the three scenarios described earlier
in Figure 4a–c, y is the total number of orders (corresponding to the first y types in Table 1),
and z is the number of jobs in each order. For example, 1_4_10 represents the instance in
scenario 1 that includes four orders, and there are 10 jobs in each order.

For each order in the instances, the trapezoidal fuzzy number for the trapezoidal fuzzy
due date is generated as follows. First, a uniform distribution U

[
0.8× NJ , 3× NJ

]
is given,

where NJ = No ×
S
∑

s=1
pts, No is the number of jobs in order o, S is the number of operations

in the job, and pts is the maximum processing time for each job operation in order o at any
available machine, as shown in Table 3. Then, four integers are randomly taken from the
uniform distribution U

[
0.8× NJ , 3× NJ

]
. The last four time points are sorted in ascending
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order, as required for the trapezoidal fuzzy due date. The earliness/tardiness penalty
coefficients of all orders are set to 5 and 15, respectively.

There are 36 instances to be tested using the proposed MOGWO/D algorithm and
the three compared algorithms. For experimentation, the four algorithms are all coded
in Java, and all instances are run on an HP Pavilion m4 notebook PC with a Windows 10
Professional 64-bit operating System, 8 GB of RAM, and an Intel Core i5 CPU at 2.60 GHz.

5.3. Parameter Settings

From the 36 instances generated above, we can see that the jobs in each instance have
eight different scales: 20, 40, 60, 80, 120, 160, 180, and 240. For instances with different job
sizes, different population sizes and numbers of iterations should be set so as to obtain
the best optimization performance for the algorithms; thus, four different population
sizes are given in Table 5. For fairness, MOGWO and MOPSO used the same encoding
and decoding method as the proposed MOGWO/D algorithm. Because of the different
mechanisms, the encoding and decoding methods of NSGA-II are slightly different. In the
NSGA-II algorithm, Part 1 and Part 2 use a permutation encoding scheme [59] to obtain
independent encodings, both of which are natural number permutations. The decoding
scheme is similar to that of the proposed MOGWO/D algorithm; the only difference is that
the individuals in the population are discrete, and these discrete values are natural number
permutations. They can be regarded as ROVs, and then decoded according to the decoding
rules in Section 4. Unlike the other three algorithms, the encodings in NSGA-II do not need
to be discretized first.

Table 5. The parameter settings for the four algorithms.

MOGWO/D NSGA-II MOGWO MOPSO

Population size (N): 60
and iterations: 300

(20 and 40 jobs)

Population size (N): 60
and iterations: 300

(20 and 40 jobs)

Population size (N): 60
and iterations: 300

(20 and 40 jobs)

Population size (N): 60
and iterations: 300

(20 and 40 jobs)

Population size (N): 100
and iterations: 500

(60 and 80 jobs)

Population size (N): 100
and iterations: 500

(60 and 80 jobs)

Population size (N): 100
and iterations: 500

(60 and 80 jobs)

Population size (N): 100
and iterations: 500

(60 and 80 jobs)

Population size (N): 240
and iterations: 800
(120 and 160 jobs)

Population size (N): 240
and iterations: 800
(120 and 160 jobs)

Population size (N): 240
and iterations: 800
(120 and 160 jobs)

Population size (N): 240
and iterations: 800
(120 and 160 jobs)

Population size (N): 300
and iterations: 1000
(180 and 240 jobs)

Population size (N): 300
and iterations: 1000
(180 and 240 jobs)

Population size(N): 300
and iterations: 1000
(180 and 240 jobs)

Population size (N): 300
and iterations: 1000
(180 and 240 jobs)

The external population size:
N Crossover rate: 0.9 The external population size:

N The external archive size: N

The neighborhood size: 20 (for
all instances) Mutation rate: 0.1 The inertia weight wo = 0.4

T′ = 6 (for all instances) The acceleration coefficients
c1 = c2 = 2.0

In addition, in NSGA-II, a binary tournament is used to as a selection operator for
Part 1 and Part 2, the partial mapped crossover (PMX) and swap operation are used as
the crossover operator of the two parts, and the insert operation is used as the mutation
operator of both parts. The other parameter settings of the four algorithms are also shown
in Table 5.

Each instance is run 30 times independently for the proposed MOGWO/D algorithm
and the other three comparison algorithms.
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5.4. Experimental Results Analysis

Table 6 presents the means and standard deviations of the three metrics for the
MOGWO/D algorithm—NSGA-II, MOGWO, and MOPSO. By comparing the GD, IGD,
and Spread values of the four multi-objective algorithms, it can be seen in Table 6 that
the proposed MOGWO/D algorithm has better results in the vast majority of instances.
Specifically, with regard to the convergence metric GD, the MOGWO/D algorithm achieves
the best results for 33 instances; it is inferior to MOGWO on the “2_8_10” and “2_8_20”
instances and inferior to MOPSO on “3_4_30”, but the differences are very small. For the
spread metric, MOGWO/D algorithm achieves the optimal scheme in 34 instances; it is
only inferior to MOGWO on “2_8_10” and inferior to NSGA-II on “3_4_30”, but still better
than MOPSO. Regarding the comprehensive metric IGD, 34 instances obtained the best
metrics values with the MOGWO/D algorithm, only instance “2_ 8_10” was slightly better
when using MOGWO, and NSGA-II is superior to MOGWO/D algorithm on “3_4_30”.
Furthermore, the standard deviations achieved for the three metrics for these instances by
the MOGWO/D algorithm were better than those of the other three comparison algorithms
in the vast majority of instances.

Table 6. Means and deviations of the three metrics obtained by MOGWO/D, NSGA-II, MOGWO, and MOPSO.

Problems
MOGWO/D NSGA-II MOGWO MOPSO

GD IGD ∆ GD IGD ∆ GD IGD ∆ GD IGD ∆

1_2_10
3.11E-2 3.93E-3 2.62E-1 7.52E-2 1.20E-2 7.96E-1 6.52E-2 1.02E-2 7.56E-1 8.50E-2 1.33E-2 7.70E-1
6.73E-3 8.93E-4 4.68E-2 8.07E-3 1.62E-3 8.51E-2 7.80E-3 2.01E-3 /6.50E- 1.06E-2 1.67E-3 7.80E-2

1_4_10
1.38E-2 4.36E-3 3.57E-1 3.32E-2 1.47E-2 8.15E-1 2.86E-2 1.18E-2 8.62E-1 3.82E-2 1.69E-2 7.71E-1
5.11E-3 1.03E-3 6.08E-2 1.05E-2 3.66E-3 1.00E-1 9.12E-3 3.19E-3 9.77E-2 1.32E-2 3.93E-3 7.77E-2

1_6_10
7.45E-3 2.09E-3 6.24E-1 5.82E-2 8.47E-3 7.61E-1 2.96E-2 4.17E-3 7.50E-1 8.15E-2 1.08E-2 6.43E-1
9.70E-3 6.04E-4 6.19E-2 6.83E-2 1.19E-2 5.64E-1 3.16E-2 3.61E-3 5.55E-1 1.29E-1 1.68E-2 5.35E-1

1_8_10
1.70E-3 1.05E-3 3.90E-1 8.44E-3 4.70E-3 8.74E-1 4.62E-3 2.88E-3 8.31E-1 1.27E-2 6.14E-3 6.97E-1
8.40E-4 4.09E-4 2.95E-2 3.99E-3 3.14E-3 2.23E-1 1.72E-3 1.26E-3 5.83E-2 1.06E-2 5.77E-3 4.15E-1

1_2_20
2.36E-2 1.74E-2 3.81E-1 3.46E-2 4.84E-2 1.01E + 00 3.94E-2 4.60E-2 1.02E + 00 2.54E-2 5.02E-2 9.70E-1
3.96E-2 8.09E-3 1.95E-1 4.16E-2 5.90E-3 7.97E-2 4.96E-2 9.25E-3 1.44E-1 2.30E-2 3.68E-3 4.40E-2

1_4_20
1.12E-2 4.20E-3 3.64E-1 2.20E-2 1.02E-2 7.68E-1 2.00E-2 9.37E-3 7.80E-1 2.48E-2 1.11E-2 7.60E-1
5.60E-3 2.48E-3 4.85E-2 8.89E-3 4.67E-3 4.50E-2 8.78E-3 4.78E-3 5.88E-2 1.04E-2 4.81E-3 8.10E-2

1_6_20
3.49E-2 1.94E-2 4.68E-1 3.59E + 01 4.37E-2 9.65E-1 3.83E + 01 4.08E-2 9.36E-1 3.74E + 01 4.69E-2 9.96E-1
1.56E-2 4.78E-3 7.30E-2 1.32E + 02 1.05E-2 1.97E-1 1.43E + 02 1.04E-2 2.23E-1 1.27E + 02 1.32E-2 2.16E-1

1_8_20
3.02E + 01 3.22E-3 5.40E-1 8.49E + 01 7.62E-3 8.48E-1 7.42E + 01 7.19E-3 9.86E-1 9.41E + 01 9.05E-3 7.21E-1
6.97E + 01 2.23E-3 9.90E-2 1.69E + 02 6.33E-3 5.76E-1 1.67E + 02 5.32E-3 4.56E-1 1.69E + 02 7.71E-3 6.13E-1

1_2_30
4.34E-2 5.87E-3 1.93E-1 1.51E-1 1.69E-2 7.50E-1 1.16E-1 1.45E-2 7.12E-1 1.77E-1 1.89E-2 7.55E-1
2.94E-2 1.03E-3 7.06E-2 3.79E-2 3.32E-3 1.02E-1 3.69E-2 2.81E-3 9.66E-2 3.80E-2 3.85E-3 1.00E-1

1_4_30
3.26E-2 1.08E-2 3.92E-1 5.55E-2 2.68E-2 8.50E-1 5.43E-2 2.41E-2 8.14E-1 5.57E-2 2.82E-2 8.27E-1
1.98E-2 7.54E-3 5.74E-2 2.93E-2 1.55E-2 6.21E-2 3.06E-2 1.54E-2 7.18E-2 2.82E-2 1.54E-2 6.66E-2

1_6_30
4.64E + 01 1.60E-1 4.35E-1 6.90E + 01 3.61E-1 8.93E-1 5.37E + 01 3.44E-1 8.81E-1 1.23E + 02 3.75E-1 9.42E-1
2.02E + 02 9.72E-2 6.76E-2 3.00E + 02 2.10E-1 1.23E-1 2.33E + 02 2.10E-1 1.44E-1 4.29E + 02 2.12E-1 1.51E-1

1_8_30
1.76E + 02 3.22E + 00 6.02E-1 3.62E + 02 1.07E + 01 1.28E + 00 2.77E + 02 8.59E + 00 1.29E + 00 3.94E + 02 1.50E + 01 1.27E + 00
1.35E + 02 4.78E + 00 7.64E-2 1.71E + 02 1.10E + 01 6.85E-2 1.74E + 02 1.05E + 01 1.12E-1 1.84E + 02 1.06E + 01 5.52E-2

2_2_10
1.69E-3 1.05E-3 3.76E-1 6.66E-3 5.14E-3 1.02E + 00 4.83E-3 3.34E-3 8.82E-1 9.05E-3 7.88E-3 1.14E + 00
3.88E-4 1.91E-4 3.07E-2 9.63E-4 8.87E-4 8.09E-2 8.66E-4 4.83E-4 7.77E-2 1.57E-3 2.14E-3 6.75E-2

2_4_10
7.71E-3 9.17E-4 4.50E-1 3.38E-2 5.39E-3 8.93E-1 2.75E-2 3.31E-3 9.12E-1 4.15E-2 7.50E-3 9.21E-1
5.79E-3 4.21E-4 5.34E-2 2.28E-2 2.90E-3 9.24E-2 1.53E-2 6.50E-4 9.76E-2 3.02E-2 5.06E-3 8.74E-2

2_6_10
1.60E-1 3.14E-2 5.50E-1 2.21E-1 6.49E-2 8.99E-1 2.05E-1 5.64E-2 8.87E-1 2.37E-1 7.13E-2 9.23E-1
1.30E-1 5.50E-3 1.04E-1 1.05E-1 9.55E-3 1.09E-1 1.18E-1 8.56E-3 9.91E-2 1.04E-1 9.18E-3 1.13E-1

2_8_10
1.04E-3 3.60E-3 6.16E-1 1.03E-3 1.04E-3 5.81E-2 1.37E-4 3.20E-4 5.46E-2 7.52E-4 2.21E-3 4.89E-2
2.20E-4 1.69E-3 5.64E-2 4.49E-3 4.53E-3 2.53E-1 5.96E-4 1.40E-3 2.38E-1 3.28E-3 9.64E-3 2.13E-1

2_2_20
1.26E-3 7.85E-4 3.51E-1 2.74E-2 1.50E-2 1.11E + 00 9.37E-3 3.80E-3 9.47E-1 3.72E-2 2.48E-2 1.28E + 00
4.72E-4 1.52E-4 2.68E-2 2.04E-2 7.67E-3 1.18E-1 4.89E-3 5.08E-4 9.58E-2 2.59E-2 8.00E-3 2.26E-1

2_4_20
6.34E-3 2.90E-3 4.98E-1 2.15E-2 9.74E-3 1.05E + 00 1.55E-2 6.88E-3 1.03E + 00 2.68E-2 9.90E-3 9.77E-1
4.19E-3 1.71E-3 5.70E-2 1.48E-2 6.84E-3 1.52E-1 7.67E-3 2.89E-3 1.40E-1 1.37E-2 6.18E-3 2.52E-1

2_6_20
1.67E-2 8.88E-3 5.86E-1 2.19E-2 1.60E-2 9.59E-1 1.86E-2 1.45E-2 9.07E-1 2.81E-2 1.85E-2 9.74E-1
6.75E-3 3.72E-3 4.58E-2 7.23E-3 5.75E-3 5.46E-2 5.82E-3 5.77E-3 6.54E-2 9.63E-3 6.00E-3 7.60E-2

2_8_20
1.89E-2 1.88E-2 6.05E-1 2.26E-2 3.12E-2 9.34E-1 2.16E-2 2.95E-2 9.08E-1 2.56E-2 3.28E-2 9.84E-1
9.36E-3 9.15E-3 6.20E-2 9.38E-3 1.41E-2 8.92E-2 8.77E-3 1.38E-2 9.37E-2 1.17E-2 1.43E-2 1.13E-1

2_2_30
1.07E-3 9.50E-4 4.10E-1 8.16E-3 9.67E-3 1.12E + 00 5.01E-3 5.72E-3 9.80E-1 1.22E-2 1.46E-2 1.24E + 00
5.40E-4 4.77E-4 4.66E-2 4.11E-3 8.56E-3 2.01E-1 3.22E-3 5.86E-3 1.80E-1 4.87E-3 8.92E-3 1.63E-1

2_4_30
1.75E-2 1.65E-2 4.80E-1 2.22E-2 2.91E-2 8.30E-1 2.08E-2 2.78E-2 8.44E-1 2.35E-2 3.04E-2 8.43E-1
1.63E-2 9.82E-3 6.57E-2 1.55E-2 2.00E-2 2.98E-1 1.47E-2 1.97E-2 3.17E-1 1.63E-2 2.03E-2 3.02E-1

2_6_30
9.06E-3 5.89E-3 6.22E-1 1.24E-2 9.63E-3 9.98E-1 1.10E-2 9.27E-3 9.70E-1 1.39E-2 9.81E-3 1.01E + 00
6.63E-3 3.02E-3 7.22E-2 7.18E-3 4.56E-3 8.25E-2 7.36E-3 4.69E-3 8.23E-2 7.24E-3 4.29E-3 8.61E-2

2_8_30
1.40E-2 2.55E-2 6.39E-1 1.54E-2 4.10E-2 1.00E + 00 1.55E-2 4.00E-2 1.03E + 00 1.62E-2 4.18E-2 1.02E + 00
5.97E-3 9.17E-3 4.74E-2 5.50E-3 1.45E-2 7.58E-2 5.57E-3 1.45E-2 7.57E-2 5.85E-3 1.47E-2 6.46E-2

68



Symmetry 2021, 13, 1521

Table 6. Cont.

Problems
MOGWO/D NSGA-II MOGWO MOPSO

GD IGD ∆ GD IGD ∆ GD IGD ∆ GD IGD ∆

3_2_10
3.81E-3 2.44E-3 2.93E-1 7.36E-3 7.38E-3 6.54E-1 6.53E-3 6.16E-3 6.26E-1 8.96E-3 8.81E-3 6.70E-1
5.73E-4 1.96E-4 3.01E-2 6.19E-4 7.85E-4 6.62E-2 6.45E-4 4.02E-4 4.89E-2 9.92E-4 1.10E-3 4.24E-2

3_4_10
1.75E-3 4.21E-3 6.30E-1 1.80E-2 3.63E-2 1.03E + 00 1.48E-2 2.00E-2 1.13E + 00 1.68E-2 4.94E-2 1.01E + 00
1.65E-3 9.72E-4 5.37E-2 1.96E-2 1.55E-2 1.44E-1 1.58E-2 1.23E-2 1.05E-1 1.66E-2 4.51E-3 6.04E-2

3_6_10
3.05E-3 2.02E-3 5.03E-1 3.45E-2 1.69E-2 9.37E-1 1.35E-2 8.79E-3 1.01E + 00 4.13E-2 1.33E-2 6.96E-1
2.82E-3 1.20E-3 7.36E-2 2.52E-2 1.63E-2 3.19E-1 8.74E-3 5.07E-3 2.55E-1 4.68E-2 1.35E-2 4.67E-1

3_8_10
8.48E-4 8.06E-4 4.09E-1 2.30E-2 1.55E-2 1.09E + 00 4.49E-3 3.82E-3 1.01E + 00 3.23E-2 1.80E-2 8.86E-1
4.96E-4 4.08E-4 3.25E-2 1.70E-2 1.20E-2 2.93E-1 2.69E-3 2.88E-3 1.40E-1 3.31E-2 1.52E-2 5.31E-1

3_2_20
3.22E-3 9.19E-4 3.59E-1 2.72E-2 1.32E-2 1.14E + 00 1.40E-2 4.41E-3 9.26E-1 3.86E-2 2.67E-2 1.29E + 00
1.27E-3 1.41E-4 3.27E-2 8.04E-3 4.61E-3 9.75E-2 4.02E-3 1.22E-3 9.68E-2 1.02E-2 4.68E-3 1.31E-1

3_4_20
4.37E-3 9.39E-4 3.66E-1 1.32E-2 3.46E-3 8.24E-1 9.38E-3 2.58E-3 8.42E-1 1.89E-2 4.74E-3 8.89E-1
2.73E-3 1.84E-4 7.22E-2 6.55E-3 6.67E-4 1.14E-1 5.05E-3 4.39E-4 1.11E-1 9.37E-3 8.16E-4 1.16E-1

3_6_20
6.68E-3 3.27E-3 5.18E-1 1.88E-2 9.60E-3 1.07E + 00 1.47E-2 8.03E-3 1.05E + 00 2.63E-2 1.29E-2 1.08E + 00
4.66E-3 1.89E-3 4.42E-2 9.13E-3 4.32E-3 1.18E-1 7.62E-3 3.77E-3 7.74E-2 1.91E-2 5.64E-3 1.27E-1

3_8_20
2.79E-3 1.74E-3 4.18E-1 9.66E-3 6.78E-3 9.36E-1 8.24E-3 5.52E-3 9.39E-1 1.63E-2 1.28E-2 1.01E + 00
2.21E-3 1.28E-3 4.86E-2 4.76E-3 4.90E-3 2.91E-1 5.74E-3 6.58E-3 1.19E-1 1.59E-2 1.33E-2 2.97E-1

3_2_30
3.92E-3 3.23E-3 2.34E-1 1.19E-2 1.08E-2 5.27E-1 1.00E-2 8.67E-3 5.25E-1 1.39E-2 1.34E-2 5.42E-1
1.48E-3 3.54E-4 4.10E-2 5.13E-3 7.11E-4 1.04E-1 6.26E-3 6.82E-4 1.67E-1 3.99E-3 8.41E-4 1.09E-1

3_4_30
3.24E-2 1.14E-2 1.30E-1 3.05E-3 2.14E-3 1.31E-1 4.24E-3 4.28E-3 1.79E-1 2.39E-3 3.05E-3 1.49E-1
8.88E-3 2.88E-3 6.68E-2 9.15E-3 6.46E-3 3.94E-1 9.13E-3 9.65E-3 4.35E-1 9.50E-3 9.34E-3 4.47E-1

3_6_30
8.38E-3 1.36E-2 5.02E-1 1.76E-2 1.76E-2 4.33E-1 3.87E-2 3.30E-2 7.28E-1 2.12E-2 2.43E-2 4.22E-1
3.06E-3 5.69E-3 5.45E-2 3.95E-2 3.05E-2 5.44E-1 6.29E-2 3.14E-2 4.95E-1 4.61E-2 3.89E-2 5.25E-1

3_8_30
1.76E-2 1.20E-2 4.68E-1 3.21E-2 2.64E-2 1.02E + 00 2.79E-2 2.50E-2 1.04E + 00 4.39E-2 2.84E-2 1.02E + 00
9.12E-3 4.95E-3 5.92E-2 1.45E-2 1.03E-2 1.18E-1 1.23E-2 9.90E-3 1.10E-1 3.48E-2 1.08E-2 1.38E-1

Statistics 33/30 34/34 35/33 0/1 1/0 0/1 2/3 1/1 1/0 1/2 0/1 0/2

It is clear that the MOGWO/D algorithm has a better optimization performance for
solving NPPLS-JP problems, and meets the needs to solve such problems. This may be
because of the better balance of the MOGWO/D algorithm between exploitation and
exploration, as well as the strategy in which the three best solutions xα, xβ, and xδ can
be obtained from different levels of the grey wolves’ social hierarchy. The experimental
results show that the proposed algorithm is superior to other multi-objective optimization
algorithms in solving the NPPLS-JP problem.

To observe the experimental results more intuitively, Figure 5a–j gives the convergence
curve of each instance in the instance set, for which the order capacity is 20, and each
curve is the best running result according to the comprehensive performance metric IGD
over 30 independent runs for the proposed MOGWO/D algorithm and the three other
comparison algorithms. It can be seen clearly that the convergence curves of the proposed
algorithm are better than those of the comparison algorithms through these curve graphs.
Among them, only on instances “3_2_20” and “3_8_20” is the proposed algorithm similar
to the comparison algorithms, and the other instances all yield much better convergence
curves than those of the comparison algorithms, which proves the effectiveness of the
proposed MOGWO/D algorithm in solving the NPPLS-JP problem.

The NPPLS-JP problem proposed in this paper comes from the actual demand of
an axle housing machining workshop. This scheduling demand exists widely in a multi-
variety mixed production environment, so the proposed model and method are of great
significance for production practice. This research has a substantive impact on improving
the production efficiency of the workshop, and can significantly enhance the production
management level of enterprises, so as to increase the market competitiveness.
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6. Conclusions

In this paper, a multi-objective NPPLS-JP derived from the real-life axle housing ma-
chining workshop of an axle manufacturer is studied. In the established NPPLS-JP model,
the structures of all parallel lines are symmetrical. However, because of the demands
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of multivariety mixed production, the process capabilities and production capacities of
these parallel production lines are asymmetric, and some types of job operations must
be processed on the specific lines. This situation greatly affects the production efficiency
of the production system and increases the difficulty of scheduling. To make multivari-
ety mixed production more efficient and to maximize the utilization of the production
capacity, a jumping process operation is introduced into the proposed model, which is the
largest difference relative to the other general parallel production line scheduling prob-
lems. In the NPPLS-JP model, the multiline scheduling, multivariety mixed production,
machine eligibility constraints, and MOPs are involved, so it is an NP-hard scheduling
problem. In view of this model, we propose a hybrid multi-objective optimization algo-
rithm that incorporates the single-objective GWO into the MOEA/D. The basic idea is to
compensate for the shortcomings of the original algorithms by the reasonable mixing of
several algorithms to balance their exploration and exploitation of abilities. To verify the
effectiveness of the proposed algorithm, a set of instances is designed, and comparative
experiments are conducted using the MOGWO/D algorithm as well as three other famous
multi-objective optimization algorithms. The experimental results demonstrate that the
proposed algorithm is superior to the compared algorithms for solving the NPPLS-JP
problem. Furthermore, the experiment also proves that algorithm mixing can improve the
performance and expand the application field of the constitutive algorithms.

In future research, we could solve the NPPLS-JP problem under the condition of
considering the sequence-dependent setup times, or we could design new metaheuristics
to solve the NPPLS-JP problem. Another interesting research direction is to explore new
problem-specific rules to improve the performance of the MOGWO/D algorithm in terms
of solving the NPPLS-JP. We can also focus on utilizing the MOGWO/D algorithm to solve
other workshop scheduling problems, such as job shop scheduling problems and regular
flow shop scheduling problems.
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Abbreviations
The mathematical modeling notations are listed as follows.
o the index of orders, o = (1, 2, · · · , O)
O the number of orders
No the number of jobs in order o

NJ the total number of jobs, N′ =
o
∑

o=1
no

J a set of jobs, J =
{

1, 2, · · · , NJ
}

i, i′ the index of jobs, i, i′ ∈ J
NL the total number of production lines
L a set of production lines, L = {1, 2, · · · , NL}
l, l′ the index of production lines, l, l′ ∈ L
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NS the number of operations, which is equals to the number of stages
S a set of operations, S = {1, 2, · · · , NS}
s the index of operations, which is also the index of stages, s ∈ S
sl the jumping process point of production line l, sl = (1, 2, · · · , S− 1)
t the index of job types
Nt the number of job types
k the index of machines
Ml,s the number of machines at stage s of production line l
ptk,t,s the processing time of operation s for a job of type t on machine k
αo the earliness penalty cost coefficient of order o
βo the tardiness penalty cost coefficient of order o
M a sufficiently large positive number
xt,s,l takes a value of 1 if stage s of type t can be processed on production line l

and 0 otherwise
xi,o takes a value of 1 if job i is included in order o and 0 otherwise
xo,t takes a value of 1 if the type of jobs in order o is t and 0 otherwise(
d1

o , d2
o , d3

o , d4
o
)

the trapezoidal fuzzy number for trapezoidal fuzzy due date of order o,
where d1

o ≤≤ d2
o ≤ d3

o ≤ d4
o

Decision variables

Xi,s,l binary variable, taking a value of 1 if operation s of job i is processed on
production line l and 0 otherwise

Xk,s,i,l binary variable, taking a value of 1 if operation s and s′ of job i are both
processed on production line l and 0 otherwise

Yi,s,s′ binary variable, taking a value of 1 if operation s of job i is processed before
job i′ on machine k of production line l and 0 otherwise

Zk,i,i′ ,s,l binary variable, taking a value of 1 if operation s of job i is processed before
job i′on machine k of production line l and 0 otherwise

Ck,s,i,l the completion time of operation s of job i on machine k of production line l
Co the completion time for order o
Po the fuzzy due date earliness/tardiness penalty cost of order o
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Abstract: During the last few decades, domination theory has been one of the most active areas of
research within graph theory. Currently, there are more than 4400 published papers on domination
and related parameters. In the case of total domination, there are over 580 published papers, and 50
of them concern the case of product graphs. However, none of these papers discusses the case of
rooted product graphs. Precisely, the present paper covers this gap in the theory. Our goal is to
provide closed formulas for the total domination number of rooted product graphs. In particular,
we show that there are four possible expressions for the total domination number of a rooted product
graph, and we characterize the graphs reaching these expressions.

Keywords: total domination; domination; rooted product graph

Let G be a graph. The open neighborhood of a vertex v ∈ V(G) is defined to be N(v) = {u ∈
V(G) : u is adjacent to v}. A set S ⊆ V(G) is a dominating set of G if N(v) ∩ S 6= ∅ for every vertex
v ∈ V(G) \ S. Let D(G) be the set of dominating sets of G. The domination number of G is defined
to be,

γ(G) = min{|S| : S ∈ D(G)}.

A set S ⊆ V(G) is a total dominating set, TDS, of a graph G without isolated vertices if every
vertex v ∈ V(G) is adjacent to at least one vertex in S. Let Dt(G) be the set of total dominating sets
of G.

The total domination number of G is defined to be,

γt(G) = min{|S| : S ∈ Dt(G)}.

By definition, Dt(G) ⊆ D(G), so that γ(G) ≤ γt(G).
We define a γt(G)-set as a set S ∈ Dt(G) with |S| = γt(G). The same agreement will be assumed

for optimal parameters associated with other characteristic sets defined in the paper. For instance,
a γ(G)-set will be a set S ∈ D(G) with |S| = γ(G).

The theory of domination in graphs has been extensively studied. For instance, there are more
than 4400 papers already published on domination and related parameters. In particular, we cite the
following books [1,2]. In the case of total domination, there are over 580 published papers and one
book [3]. Among these papers on total domination in graphs, there are over 50 which concern the case
of product graphs. Surprisingly, none of these papers discusses the case of rooted product graphs. The
present paper covers that gap in the theory.

In order to present our results, we need to introduce some additional notation and terminology.
The closed neighborhood of v ∈ V(G) is defined to be N[v] = N(v) ∪ {v}. A vertex v ∈ V(G) is
universal if N[v] = V(G), while it is a leaf if |N(v)| = 1. The set of leaves of G will be denoted by
L(G). A support vertex is a vertex v with N(v) ∩ L(G) 6= ∅. The set of support vertices of G will
be denoted by S(G). If v is a vertex of a graph G, then the vertex-deletion subgraph G− {v} is the
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subgraph of G induced by V(G) \ {v}. By analogy, we define the subgraph G − S for an arbitrary
subset S ⊆ V(G).

The concept of rooted product graph was introduced in 1978 by Godsil and McKay [4]. Given a
graph G of order n(G) and a graph H with root vertex v, the rooted product graph G ◦v H is defined
as the graph obtained from G and H by taking one copy of G and n(G) copies of H and identifying the
ith vertex of G with the root vertex v in the ith copy of H for every i ∈ {1, 2, . . . , n(G)}. If H or G is a
trivial graph, then G ◦v H is equal to G or H, respectively. In this sense, hereafter we will only consider
graphs G and H with no isolated vertex.

G

v

H
G ◦v H

Figure 1. The set of black-coloured vertices forms a γt(G ◦v H)-set.

Figure 1 shows an example of a rooted product graph. In this case, the set of black-coloured
vertices forms a TDS of G ◦v H and γt(G ◦v H) = 14 = γ(G) + n(G)(γt(H)− 1).

For every x ∈ V(G), Hx ∼= H will denote the copy of H in G ◦v H containing x. The restriction
of any set S ⊆ V(G ◦v H) to V(Hx) will be denoted by Sx, and the restriction to V(Hx − {x}) will
be denoted by S−x ; i.e., Sx = S ∩ V(Hx) and S−x = Sx \ {x}. In some cases, we will need to define
S ⊆ V(G ◦v H) from the sets Sx ⊆ V(Hx) as S = ∪x∈V(G)Sx.

Since V(G ◦v H) = ∪x∈V(G)V(Hx), we have that for every set S ⊆ V(G ◦v H),

|S| = ∑
x∈V(G)

|Sx| = ∑
x∈V(G)

|S−x |+ |S ∩V(G)|. (1)

A basic problem in the study of product graphs consists of finding closed formulas or sharp
bounds for specific invariants of the product of two graphs and expressing these in terms of parameters
of the graphs involved in the product. In this sense, for recent results on rooted product graphs, we cite
the following works [5–19]. As we can expect, the products of graphs are not alien to applications in
other fields. In particular, in [5] the authors show that several important classes of chemical graphs can
be expressed as rooted product graphs, and as described in [20], there exist a number of molecular
graphs of high-tech interest that can be generated using the rooted product of graphs.

1. Closed Formulas for the Total Domination Number

The following three lemmas will be the main tools to deduce our results.

Lemma 1. Given a graph H with no isolated vertex and any v ∈ V(H) \ S(H), the following statements hold.

(i) γt(H − {v}) ≥ γt(H)− 1.
(ii) If γt(H − {v}) = γt(H)− 1, then the following statements hold.

(a) N(v) ∩ S = ∅ for every γt(H − {v})-set S.
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(b) There exists a γt(H)-set S such that v /∈ S.
(iii) If γt(H − {v}) > γt(H), then v ∈ S for every γt(H)-set S.

Proof. Let v ∈ V(H) \ S(H) and S a γt(H − {v})-set. For every u ∈ N(v) we have that S ∪ {u} is
a TDS of H, which implies that γt(H) ≤ |S ∪ {u}| ≤ γt(H − {v}) + 1. Therefore, (i) follows.

Now, in order to prove (ii), we assume that |S| = γt(H)− 1. If there exists a vertex y ∈ N(v) ∩ S,
then S is also a TDS of H, which is a contradiction. Therefore, N(v) ∩ S = ∅ and so (a) follows.
In addition, for any y ∈ N(v), the set S∪ {y} is a γt(H)-set not containing v. Therefore, (b) also follows.

Finally, we proceed to prove (iii). If there exists a γt(H)-set D such that v /∈ D, then D is also a TDS
of H − {v}, and so γt(H − {v}) ≤ |D| = γt(H). Therefore, we conclude that if γt(H − {v}) > γt(H),
then v ∈ D for every γt(H)-set D, which completes the proof.

Lemma 2. Let H be a graph and v ∈ V(H). If v is not a universal vertex and H − N[v] does not have isolated
vertices, then

γt(H − N[v]) ≥ γt(H)− 2.

Furthermore, if γt(H − {v}) = γt(H)− 1, then

γt(H)− 2 ≤ γt(H − N[v]) ≤ γt(H)− 1.

Proof. Assume that v is not a universal vertex and H − N[v] does not have isolated vertices. Let S be
a γt(H − N[v])-set and u ∈ N(v). Since S ∪ {u, v} is a TDS of H, we have that γt(H) ≤ |S ∪ {u, v}| =
γt(H − N[v]) + 2, as required.

Now, assume γt(H− {v}) = γt(H)− 1. In this case, by Lemma 1 (ii) we have that N(v)∩D = ∅
for every γt(H− {v})-set D, which implies that D is a TDS of H− N[v], and so γt(H− N[v]) ≤ |D| =
γt(H − {v}) = γt(H)− 1. Therefore, the result follows.

Lemma 3. Given a γt(G ◦v H)-set S and a vertex x ∈ V(G), the following statements hold.

(i) |Sx| ≥ γt(H)− 1.
(ii) If |Sx| = γt(H)− 1, then N(x) ∩ Sx = ∅.

Proof. Let x ∈ V(G). Notice that every vertex in V(Hx) \ {x} is adjacent to some vertex in Sx. For any
y ∈ N(x) ∩ V(Hx), the set Sx ∪ {y} is a TDS of Hx, and so γt(H) = γt(Hx) ≤ |Sx ∪ {y}| = |Sx|+ 1.
Therefore, (i) follows.

Finally, assume that |Sx| = γt(H)− 1. If there exists a vertex y ∈ N(x) ∩ Sx, then Sx is a TDS of
Hx, which is a contradiction. Therefore, N(x) ∩ Sx = ∅, and so (ii) follows.

Given a γt(G ◦v H)-set S, we define the following subsets of V(G) associated with S.

AS = {x ∈ V(G) : |Sx| ≥ γt(H)} and BS = {x ∈ V(G) : |Sx| = γt(H)− 1}.

These sets will play an important role in the inference results. By Lemma 3, V(G) = AS ∪ BS.
In particular, if AS = ∅, then γt(G ◦v H) = n(G)(γt(H)− 1), and as we will show in the proof of
Theorem 2, if BS = ∅, then γt(G ◦v H) = n(G)γt(H). As we can expect, these are the extreme values
of γt(G ◦v H).

Theorem 1. For any graphs G and H with no isolated vertex and any v ∈ V(H),

n(G)(γt(H)− 1) ≤ γt(G ◦v H) ≤ n(G)γt(H).

Furthermore, if γt(H − {v}) = γt(H)− 1, then

γt(G ◦v H) ≤ γt(G) + n(G)(γt(H)− 1).
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Proof. The lower bound follows from Lemma 3, as for any γt(G ◦v H)-set S,

γt(G ◦v H) = |S| = ∑
x∈V(G)

|Sx| ≥ n(G)(γt(H)− 1).

Now, we proceed to prove the upper bound. Let D ⊆ V(G ◦v H) such that Dx is a γt(Hx)-set for
every x ∈ V(G). It is readily seen that D is a TDS of G ◦v H. Hence,

γt(G ◦v H) ≤ |D| = ∑
x∈V(G)

|Dx| = ∑
x∈V(G)

γt(Hx) = n(G)γt(H).

From now on, assume γt(H − {v}) = γt(H)− 1. Notice that, by assumption, H − {v} does not
have isolated vertices.

Let W ⊆ V(G ◦v H) such that W−x = Wx \ {x} is a γt(Hx − {x})-set for every x ∈ V(G) and
W ∩V(G) is a γt(G)-set. Clearly, W is a TDS of G ◦v H, which implies that

γt(G ◦v H) ≤ |W ∩V(G)|+ ∑
x∈V(G)

|W−x | = γt(G) + ∑
x∈V(G)

γt(Hx−{x}) = γt(G) + n(G)(γt(H)− 1).

Therefore, the result follows.

The following lemma is another important tool for determining all possible values of γt(G ◦v H).

Lemma 4. Given a γt(G ◦v H)-set S with BS 6= ∅, the following statements hold.

(i) If BS ∩ S 6= ∅, then γt(G ◦v H) = n(G)(γt(H)− 1).
(ii) If BS ∩ S = ∅, then γt(H − {v}) = γt(H)− 1, and as a consequence,

γ(G) + n(G)(γt(H)− 1) ≤ γt(G ◦v H) ≤ γt(G) + n(G)(γt(H)− 1).

Proof. First, we proceed to prove (i). Given a fixed x′ ∈ BS ∩ S, let D ⊆ V(G ◦v H) such that for
every x ∈ V(G) the set Dx is induced by Sx′ . Obviously, D is a TDS of G ◦v H. Hence, γt(G ◦v H) ≤
|D| = ∑x∈V(G) |Dx| = n(G)|Sx′ | = n(G)(γt(H)− 1). Therefore, Theorem 1 leads to γt(G ◦v H) =

n(G)(γt(H)− 1).
In order to prove (ii), assume that BS ∩ S = ∅, and let x ∈ BS. By Lemma 3 we have that

N[x] ∩ Sx = ∅. So, x /∈ S(Hx) and Sx is a TDS of Hx − {x}. Hence, γt(H − {v}) = γt(Hx − {x}) ≤
|Sx| = γt(H)− 1, and so Lemma 1 leads to γt(H − {v}) = γt(H)− 1. Therefore, by Theorem 1 we
have that γt(G ◦v H) ≤ γt(G) + n(G)(γt(H)− 1).

Moreover, since N[x]∩ Sx = ∅ for every x ∈ BS, we have thatAS is a dominating set of G. Hence,

γt(G ◦v H) = ∑
x∈AS

|Sx|+ ∑
x∈BS

|Sx|

≥ |AS|γt(H) + |BS|(γt(H)− 1)

≥ |AS|+ n(G)(γt(H)− 1)

≥ γ(G) + n(G)(γt(H)− 1).

Therefore, the result follows.

Next we give one of the main results of this section, which states the four possible values of
γt(G ◦v H).

Theorem 2. Let G and H be two graphs with no isolated vertex. For any v ∈ V(H),

γt(G ◦v H) ∈ {n(G)(γt(H)− 1), γ(G) + n(G)(γt(H)− 1), γt(G) + n(G)(γt(H)− 1), n(G)γt(H)}.

78



Symmetry 2020, 12, 1929

Proof. Let S be a γt(G ◦v H)-set and consider the subsets AS,BS ⊆ V(G) associated with S.
We distinguish the following cases.

Case 1. BS = ∅. In this case, for any x ∈ V(G) we have that |Sx| ≥ γt(H), and as a consequence,
γt(G ◦v H) = ∑x∈V(G) |Sx| ≥ n(G)γt(H). Thus, Theorem 1 leads to the equality γt(G ◦v H) =

n(G)γt(H).

Case 2. BS 6= ∅. If BS ∩ S 6= ∅, then from Lemma 4 (i) we have that γt(G ◦v H) = n(G)(γt(H)− 1).
From now on we assume that BS ∩ S = ∅. Hence, Lemma 4 (ii) leads to

γ(G) + n(G)(γt(H)− 1) ≤ γt(G ◦v H) ≤ γt(G) + n(G)(γt(H)− 1).

We only need to prove that γt(G ◦v H) only can take the extreme values. To this end, we shall
need to introduce the following notation. Let A′S = {x ∈ AS : |Sx| = γt(H)} and A′′S = AS \ A′S.

Subcase 2.1. There exists x′ ∈ A′S such that Sx′ is a γt(Hx′)-set containing x′. From a fixed vertex y ∈ BS
and any γ(G)-set D, we can construct a set W ⊆ V(G ◦v H) as follows. If x ∈ D, then Wx is induced by
Sx′ , while if x ∈ V(G) \ D, then Wx is induced by Sy. Notice that W is a TDS of G ◦v H, which implies
that γt(G ◦v H) ≤ |W| = γ(G) + n(G)(γt(H)− 1). Therefore, γt(G ◦v H) = γ(G) + n(G)(γt(H)− 1).

Subcase 2.2. A′S = ∅ or for any x ∈ A′S, either Sx is not a γt(Hx)-set or x 6∈ Sx. If A′S 6= ∅, then every
vertex x ∈ A′S satisfies one of the following conditions.

(a) Sx is a γt(Hx)-set such that x /∈ Sx.
(b) Sx is not a TDS of Hx and x ∈ Sx.

Notice that we do not consider the case where Sx is not a TDS of Hx and x 6∈ Sx, as in this case we
can replace S with the γt(G ◦v H)-set (S \ Sx) ∪ S′x for some γt(Hx)-set S′x. In such a case, if x ∈ S′x,
then we proceed as in Subcase 2.1, while if x 6∈ S′x, then x satisfies (a).

Let us construct a TDS X of G as follows.

- AS ⊆ X.
- For any x ∈ A′S which satisfies condition (a) and N(x) ∩ S ∩V(G) = ∅, we choose one vertex

y ∈ N(x) ∩V(G) and set y ∈ X.
- For any x ∈ A′′S with N(x) ∩ S ∩ V(G) = ∅, we choose one vertex y ∈ N(x) ∩ V(G) and set

y ∈ X.

We proceed to show that X is a TDS of G. If x ∈ V(G) \ X, then either x ∈ BS or x ∈ A′S \ S.
If x ∈ BS, then N(x) ∩ S ∩ AS 6= ∅, which implies that N(x) ∩ X 6= ∅. Obviously, if x ∈ A′S \ S,
then N(x) ∩ X 6= ∅, by definition of X. Now, let x ∈ X. If x ∈ A′′S ∪ (A′S \ S), then N(x) ∩ X 6= ∅ by
definition. If x ∈ A′S ∩ S, then x satisfies condition (b). This implies that N(x) ∩ Sx = ∅. Hence, there
exists a vertex y ∈ N(x) ∩V(G) ∩ S ⊆ X, as desired.

Therefore, X is a TDS of G, which implies that γt(G) ≤ |X| ≤ 2|A′′S |+ |A′S|. Thus,

γt(G ◦v H) ≥ ∑
x∈A′′S

|Sx|+ ∑
x∈A′S

|Sx|+ ∑
x∈BS

|Sx|

≥ |A′′S |(γt(H) + 1) + |A′S|γt(H) + |BS|(γt(H)− 1)

≥ (2|A′′S |+ |A′S|) + n(G)(γt(H)− 1)

≥ γt(G) + n(G)(γt(H)− 1),

which completes the proof.

Later on, we will characterize the graphs that reach each of the previous expressions. However,
we have to admit that when applying some of these characterizations we will need to calculate the
total domination number of H − {v} or H − N[v] which may not be easy. Before giving the above
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mentioned characterizations, we shall show a simple example in which we can observe that these
expressions of γt(G ◦v H) are realizable.

Example 1. Let G be a graph with no isolated vertex. If H is one of the graphs shown in Figure 2, then the
resulting values of γt(G ◦v H) for some specific roots are described below.

• γt(G ◦v′ H2) = 3 n(G) = n(G)(γt(H2)− 1).
• γt(G ◦v H2) = γ(G) + 3 n(G) = γ(G) + n(G)(γt(H2)− 1).
• γt(G ◦v H1) = γt(G) + 2 n(G) = γt(G) + n(G)(γt(H1)− 1).
• γt(G ◦v′ H1) = γt(G ◦v′′ H1) = 3 n(G) = n(G)γt(H1).

For these cases, it is not difficult to construct a γt(G ◦v H)-set. For instance, a γt(G ◦v H2)-set S can be
formed as follows. Given a fixed γ(G)-set X, we take S in such a way that the set Sx is induced by {a, b, v′, v}
for every x ∈ X, and induced by {a, b, c} for every x ∈ V(G) \ X.

v′ v′′ v

H1

a v′ v

b c

H2

Figure 2. The set of black-coloured vertices forms a γt(Hi)-set for i ∈ {1, 2}. The set {v′, v′′} forms a
γt(H1 − {v})-set, while {a, b, c} forms a γt(H2 − {v})-set.

As we have observed in Lemma 2, if v ∈ V(H) is not a universal vertex and H − N[v] does
not have isolated vertices, then γt(H − N[v]) ≥ γt(H) − 2. Next we show that the extreme case
γt(H − N[v]) = γt(H)− 2 characterizes the graphs with γt(G ◦v H) = n(G)(γt(H)− 1).

Theorem 3. Given two graphs G and H with no isolated vertex and v ∈ V(H), the following statements
are equivalent.

(i) γt(G ◦v H) = n(G)(γt(H)− 1).
(ii) v is a universal vertex of H or γt(H − N[v]) = γt(H)− 2.

Proof. First, assume that (i) holds. Let S be a γt(G ◦v H)-set. If v is a universal vertex of H, then
we are done. Assume that v ∈ V(H) is not a universal vertex. In this case, Lemma 3 leads to
BS = V(G) and N(x) ∩ Sx = ∅ for every x ∈ BS. Thus, BS ∩ S is a dominating set of G and for any
x ∈ BS ∩ S we have that Hx − N[x] does not have isolated vertices and Sx \ {x} is a TDS of Hx − N[x],
which implies that γt(H − N[v]) = γt(Hx − N[x]) ≤ |Sx \ {x}| = γt(H)− 2. Hence, Lemma 2 leads
to γt(H − N[v]) = γt(H)− 2. Therefore, (ii) follows.

Conversely, assume that (ii) holds. If v is a universal vertex of H, then V(G) is a TDS of G ◦v H,
which implies that γt(G ◦v H) ≤ |V(G)| = n(G) = n(G)(γt(H)− 1). Thus, by Theorem 1 we conclude
that γt(G ◦v H) = n(G)(γt(H)− 1).

From now on, we assume that v is not a universal vertex. For any x ∈ V(G), let D′x be a
γt(Hx−N[x])-set and Dx = D′x ∪ {x}. Observe that D = ∪x∈V(G)Dx is a TDS of G ◦v H, which implies
that γt(G ◦v H) ≤ |D| = n(G)(γt(H − N[v]) + 1) = n(G)(γt(H)− 1). By Theorem 1 we conclude
that γt(G ◦v H) = n(G)(γt(H)− 1), which completes the proof.

Lemma 5. Let G and H be two graphs with no isolated vertex and v ∈ V(H) \ S(H). If γt(H − {v}) ≥
γt(H), then

γt(G ◦v H) ∈ {n(G)γt(H), n(G)(γt(H)− 1)}.
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Proof. By Theorem 1 we have that γt(G ◦v H) ≤ n(G)γt(H). Let S be a γt(G ◦v H)-set. If |S| =
n(G)γt(H), then we are done. Suppose that |S| < n(G)γt(H). Hence, there exists x ∈ V(G) such that
|Sx| < γt(H), which implies that x ∈ BS by Lemma 3. Since γt(H − {v}) ≥ γt(H), Lemma 4 (ii) leads
to x ∈ S, and by Lemma 4 (i) we deduce that γt(G ◦v H) = n(G)(γt(H)− 1).

Lemma 6. Let G and H be two graphs with no isolated vertex and v ∈ V(H). If v belongs to every
γt(H)-set, then

γt(G ◦v H) ∈ {n(G)γt(H), n(G)(γt(H)− 1)}.

Proof. We first consider the case where v ∈ V(H) \ S(H). By Lemma 1 we deduce that γt(H−{v}) ≥
γt(H), and so Lemma 5 leads to the result. Now, assume that v ∈ S(H) and let S be a γt(G ◦ H)-set.
If γt(G ◦v H) = n(G)γt(H), then we are done. Thus, we assume that γt(G ◦v H) < n(G)γt(H). In such
a case, there exists x ∈ BS, and since x ∈ S(Hx), it follows that x ∈ S(G ◦ H). Therefore, x ∈ S, and by
Lemma 4 (i) we deduce that γt(G ◦v H) = n(G)(γt(H)− 1), which completes the proof.

We are now ready to characterize the graphs with γt(G ◦v H) = γ(G) + n(G)(γt(H)− 1).

Theorem 4. Let G and H be two graphs with no isolated vertex and v ∈ V(H). The following statements
are equivalent.

(i) γt(G ◦v H) = γ(G) + n(G)(γt(H)− 1).
(ii) γt(H − N[v]) = γt(H − {v}) = γt(H) − 1, and in addition, γt(G) = γ(G) or there exists a

γt(H)-set D such that v ∈ D.

Proof. First, assume that (i) holds. Since 1 ≤ γ(G) < n(G), by Lemma 6, v 6∈ S(H), so that from
Lemma 5 we deduce that γt(H − {v}) ≤ γt(H)− 1 and Lemma 1 leads to γt(H − {v}) = γt(H)− 1.
Hence, by Lemma 2 it follows that γt(H − N[v]) ∈ {γt(H)− 2, γt(H)− 1} and by Theorem 3 we
obtain that γt(H − N[v]) = γt(H)− 1.

Now, let S be a γt(G ◦v H)-set. Since 1 ≤ γ(G) < n(G), Lemma 3 leads to AS 6= ∅ and
BS 6= ∅. Additionally, by Lemma 4 we deduce that BS ∩ S = ∅, and by Lemma 3 we have that
N(x) ∩ Sx = ∅ for every x ∈ BS. Hence, AS is a dominating set of G and AS ∩ S 6= ∅. Thus,
γt(G ◦v H) ≥ |AS| + n(G)(γt(H) − 1) ≥ γ(G) + n(G)(γt(H) − 1) = γt(G ◦v H), which implies
that AS is a γ(G)-set and for every x ∈ AS ∩ S we have that |Sx| = γt(H). Therefore, there exists
x ∈ AS ∩ S such that Sx is a γt(Hx)-set or AS is a γt(G)-set, which implies that (ii) holds.

Conversely, assume that (ii) holds. As above, let S be a γt(G ◦v H)-set. Since γt(H − {v}) =

γt(H)− 1, by Theorem 1, γt(G ◦v H) ≤ γt(G) + n(G)(γt(H)− 1).
Suppose that BS = ∅. In such a case, γt(G ◦v H) = n(G)γt(H), which implies that γ(G) <

γt(G) = n(G), and so G ∼= ∪K2. Let A ∪ B = V(G) be the bipartition of the vertex set of G, i.e., every
edge has one endpoint in A and the other one in B. Thus, for every x ∈ V(G) we define a subset
Yx ⊆ V(Hx) as follows. If x ∈ A, then Yx is a γt(Hx)-set which contains x, while if x ∈ B, then
Yx is a γt(Hx − {x})-set. Hence, Y = ∪x∈V(G)Yx is a TDS of G ◦v H and so γt(G ◦v H) ≤ |Y| =
n(G)γt(H)− n(G)

2 < n(G)γt(H), which is a contradiction. From now on we assume that BS 6= ∅.
If there exists a vertex x ∈ BS ∩ S, then by Lemma 3 we have that N(x) ∩ Sx = ∅, which implies

that Sx \ {x} is a TDS of Hx − N[x]. Hence, γt(H − N[v]) = γt(Hx − N[x]) ≤ |Sx \ {x}| = γt(H)− 2,
which is a contradiction with the assumption γt(H − N[v]) = γt(H) − 1. Therefore, BS ∩ S = ∅,
and by Lemma 4 we deduce that γt(G ◦v H) ≥ γ(G) + n(G)(γt(H)− 1).

It is still necessary to prove that γt(G ◦v H) ≤ γ(G) + n(G)(γt(H)− 1). If γ(G) = γt(G), then
we are done. Assume γ(G) < γt(G). Now we take a γ(G)-set X and for every x ∈ V(G) we
define a set Zx ⊆ V(Hx) as follows. If x ∈ X, then Zx is a γt(Hx)-set such that x ∈ Zx, while if
x ∈ V(G) \ X, then Zx is a γt(Hx − {x})-set. Notice that Z = ∪x∈V(G)Zx is a TDS of G ◦v H. Therefore,
γt(G ◦v H) ≤ |Z| = γ(G) + n(G)(γt(H)− 1), as required.
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Next we proceed to characterize the graphs with γt(G ◦v H) = γt(G) + n(G)(γt(H) − 1).
Notice that it is excluded the case G ∼= ∪K2. In such a case, γt(G) = n(G), and so γt(G) +

n(G)(γt(H)− 1) = n(G)γt(H), which implies that the characterization of this particular case can be
derived by elimination from Theorems 3 and 4. Analogously, the case γ(G) = γt(G) is excluded, as it
was discusses in Theorem 4.

Theorem 5. Let G 6∼= ∪K2 and H be two graphs with no isolated vertex such that γ(G) < γt(G), and let
v ∈ V(H). The following statements are equivalent.

(i) γt(G ◦v H) = γt(G) + n(G)(γt(H)− 1).
(ii) γt(H − {v}) = γt(H)− 1 and v /∈ D for every γt(H)-set D.

Proof. First, assume that (i) holds. Since, G 6∼= ∪K2, we have that γt(G) < n(G). Thus, by Lemma 6,
v 6∈ S(H) and then by Lemma 5 we deduce that γt(H − {v}) ≤ γt(H)− 1 and Lemma 1 leads to
γt(H − {v}) = γt(H)− 1.

Suppose that there exists a γt(H)-set containing v. Let X be a γ(G)-set. For every x ∈ V(G)

we define a set Zx ⊆ V(Hx) as follows. If x ∈ X, then Zx is a γt(Hx)-set such that x ∈ Zx, while if
x ∈ V(G) \ X, then Zx is a γt(Hx − {x})-set. Notice that Z = ∪x∈V(G)Zx is a TDS of G ◦v H. Therefore,
γt(G ◦v H) ≤ |Z| = γ(G) + n(G)(γt(H)− 1), which is a contradiction, as γt(G) > γ(G). Therefore,
v 6∈ D for every γt(H)-set D, which implies that (ii) follows.

Conversely, assume that (ii) holds. Since γt(H − {v}) = γt(H)− 1, by Theorem 1 we have that
γt(G ◦v H) ≤ γt(G) + n(G)(γt(H) − 1). Let S be a γt(G ◦v H)-set. If BS = ∅, then γt(G ◦v H) =

n(G)γt(H), and so γt(G) = n(G), which is a contradiction, as G 6∼= ∪K2. Hence, from now on we
assume that BS 6= ∅.

If there exists a vertex x ∈ BS ∩ S, then for any vertex y ∈ N(v) ∩ V(Hx), the set Sx ∪ {y} is a
γt(Hx)-set, which is a contradiction. Thus, BS ∩ S = ∅, and so by Lemma 3, AS is a dominating set of
G. Moreover, by Lemma 4 and Theorem 2 we deduce that either γt(G ◦v H) = γ(G)+ n(G)(γt(H)− 1)
or γt(G ◦v H) = γt(G) + n(G)(γt(H)− 1). Now, let AS = A− ∪ A+ where x ∈ A− if x ∈ AS and
N(x) ∩AS = ∅. Let B ⊆ BS such that |B| ≤ |A−| and N(x) ∩ B 6= ∅ for every x ∈ A−. Obviously,
B ∪ A+ is a total dominating set of G, and so γt(G) + n(G)(γt(H)− 1) ≤ |B ∪ A+|+ n(G)(γt(H)−
1) ≤ |AS|+ n(G)(γt(H)− 1) ≤ γt(G ◦v H). Therefore, the result follows.

From Theorem 2 we learned that there are four possible expressions for γt(G ◦v H). In the case
of the first three expressions, the graphs (and the root) reaching the equality were characterized
in Theorems 3–5. In the case of the expression γt(G ◦v H) = n(G)γt(H), the corresponding
characterization can be derived by elimination from the previous results, although it must be
recognized that the formulation of such a characterization is somewhat cumbersome. To conclude this
section, we will just give a couple of examples where this expression is obtained.

The following result shows an example where γt(G ◦v H) = n(G)γt(H), which covers the cases
in which v is a neighbor of a support vertex, excluding the case where v is the only leaf adjacent to
its support.

Proposition 1. Let G and H be two graphs with no isolated vertex and v ∈ V(H). If there exists u ∈ N(v)
such that N(u) ∩ (L(H) \ {v}) 6= ∅, then

γt(G ◦v H) = n(G)γt(H).

Proof. Assume first that v 6∈ S(H). Let D be a γt(H − {v})-set. Since u ∈ S(H − {v}), we have
that u ∈ D. Hence, D is a TDS of H, and so γt(H − {v}) = |D| ≥ γt(H). Therefore, Lemma 5
leads to γt(G ◦v H) = n(G)γt(H) or γt(G ◦v H) = n(G)(γt(H) − 1). Now, suppose that γt(G ◦v

H) = n(G)(γt(H) − 1). Let S be a γt(G ◦v H)-set. By Lemma 3, BS = V(G) and N(x) ∩ Sx = ∅
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for every x ∈ BS, which is a contradiction, as N(x) ∩ S(Hx) 6= ∅ and S(Hx) ⊆ Sx. Therefore,
γt(G ◦v H) = n(G)γt(H).

Now, if v ∈ S(H), then u, v ∈ S(G ◦v H). Hence, for every γt(G ◦v H)-set S and every vertex
x ∈ V(G), we have that Sx is a TDS of Hx. Thus, BS = ∅, which implies that γt(G ◦v H) = n(G)γt(H),
as required.

We next consider another example where γt(G ◦v H) = n(G)γt(H).

Proposition 2. Let G and H be two graphs with no isolated vertex and v ∈ V(H) \ S(H). If γt(H− {v}) ≥
γt(H) and v does not belong to any γt(H)-set, then

γt(G ◦v H) = n(G)γt(H).

Proof. If γt(H − {v}) ≥ γt(H), then by Lemma 5 we have that γt(G ◦v H) = n(G)γt(H) or γt(G ◦v

H) = n(G)(γt(H) − 1). Now, assume that v does not belong to any γt(H)-set. If γt(G ◦v H) =

n(G)(γt(H) − 1), then BS = V(G). Hence, by Lemma 4 (ii) there exists x ∈ BS ∩ S, which is a
contradiction as from any x′ ∈ N(x) ∩V(Hx) the set Sx ∪ {x′} is a γt(Hx)-set containing x. Therefore,
γt(G ◦v H) = n(G)γt(H).

2. An Observation on the Domination Number

It was shown in [15] that there are two possibilities for the domination number of a rooted product
graph. Since the graphs reaching these expressions have not been characterized, we consider that
it is appropriate to derive a result in this direction. Specifically, we will provide a characterization
in Theorem 7.

Theorem 6. [15] For any nontrivial graphs G and H and any v ∈ V(H),

γ(G ◦v H) ∈ {n(G)γ(H), γ(G) + n(G)(γ(H)− 1)}.

In order to derive our result, we need to introduce the following two lemmas.

Lemma 7. [21] Let H be a graph. For any vertex v ∈ V(H),

γ(H − {v}) ≥ γ(H)− 1.

Lemma 8. For any γ(G ◦v H)-set D and any vertex x ∈ V(G),

|Dx| ≥ γ(H)− 1.

Furthermore, if |Dx| = γ(H)− 1, then N[x] ∩ Dx = ∅.

Proof. Let x ∈ V(G). Notice that every vertex in V(Hx) \ {x} is adjacent to some vertex in Dx.
Since Dx ∪ {x} is a dominating set of Hx, we have that γ(H) = γ(Hx) ≤ |Dx ∪ {x}| ≤ |Dx| + 1,
as required.

Now, assume that |Dx| = γ(H)− 1. If N[x]∩Dx 6= ∅, then Dx is a dominating set of Hx, which is
a contradiction as |Dx| = γ(Hx)− 1. Therefore, the result follows.

Theorem 7. For any pair of nontrivial graphs G and H, and any v ∈ V(H),

γ(G ◦v H) =





γ(G) + n(G)(γ(H)− 1) if γ(H − {v}) = γ(H)− 1,

n(G)γ(H) otherwise.
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Proof. By Theorem 6 we only need to prove that γ(G ◦v H) = γ(G) + n(G)(γ(H)− 1) if and only if
γ(H − {v}) = γ(H)− 1.

We first assume γ(H − {v}) = γ(H) − 1. Let D ⊆ V(G ◦v H) such that D−x = Dx \ {x} is
a γ(Hx − {x})-set for every x ∈ V(G), and D ∩ V(G) is a γ(G)-set. It is readily seen that D is a
dominating set of G ◦v H, which implies that γ(G ◦v H) ≤ |D| = γ(G) + ∑x∈V(G) |D−x | = γ(G) +

n(G)(γ(H)− 1), and by Theorem 6 we conclude that the equality holds.
Conversely, assume γ(G ◦v H) = γ(G) + n(G)(γ(H) − 1). Let S be a γ(G ◦v H)-set. Since

|S| < n(G)γ(H), there exists x ∈ V(G) such that |Sx| < γ(H). Hence, by Lemma 8, |Sx| = γ(H)− 1
and N[x]∩ Sx = ∅. This implies that Sx is a dominating set of Hx −{x}, and so γ(H−{v}) = γ(Hx −
{x}) ≤ |Sx| = γ(H)− 1. By Lemma 7 we conclude that γ(H − {v}) = γ(H)− 1, which completes
the proof.
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Abstract: Fermat’s Factoring Algorithm (FFA) is an integer factorisation methods factoring the
modulus N using exhaustive search. The appearance of the Estimated Prime Factor (EPF) method
reduces the cost of FFA’s loop count. However, the EPF does not work for balanced primes. This
paper proposed the modified Fermat’s Factoring Algorithm 1-Estimated Prime Factor (mFFA1-EPF)
that improves the EPF method. The algorithm works for factoring a modulus with unbalanced and
balanced primes, respectively. The main results of mFFA1-EPF focused on three criteria: (i) the
approach to select good candidates from a list of convergent continued fraction, (ii) the establishment
of new potential initial values based on EPF, and (iii) the application of the above modification
upon FFA. The resulting study shows the significant improvement that reduces the loop count of
FFA1 via (improved) EPF compared to existing methods. The proposed algorithm can be executed
without failure and caters for both the modulus N with unbalanced and balanced primes factor. The
algorithm works for factoring a modulus with unbalanced and balanced primes.

Keywords: estimated prime factor; integer factorisation problem; continued fraction; Fermat’s
Factoring Algorithm

1. Introduction

Cryptography has its crucial parts in Industrial Revolution 4 (IR4) where technology
is embedded in artificial intelligent to maintain the secureness of the information data.
Regarding cryptography, there are two types of cryptography: symmetric and asymmetric
cryptography. Symmetric cryptography uses the same key for the encryption and de-
cryption process while asymmetric cryptography uses different keys for each encryption
and decryption process. A lot of asymmetric cryptography strength relies on the Integer
Factorisation Problem (IFP). IFP is one of the oldest hard mathematical problems in history.
IFP is defined as finding the two distinct primes, p and q, for a given integer (a modulus)
N = pq, which is the multiplication of those two primes. We et al. [1] mentioned that from
the existing classical sense of computation, a modulus with a minimum 1024-bit length is
still very hard to be factorised. There are several general purpose algorithms to solve the
IFP, such as Pollard’s p− 1, General Number Field Sieve, Quadratic Sieve, Elliptic Curve
Factoring, and Fermat’s Factoring Algorithm [2].

Pierre de Fermat explored Fermat’s Factoring Algorithm (FFA) as one of the IFP
methods that is used to factor the modulus N with balanced primes (Ambedkar et al. [3]).
According to Somsuk and Tientanopajai [4], the modulus N in FFA is written as N =(

p+q
2

)2
−
(

p−q
2

)2
. In this work, the FFA is categorised into Fermat’s Factoring Algorithm 1

(FFA1) and Fermat’s Factoring Algorithm 2 (FFA2). FFA1 uses a square root, while FFA2
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uses multiplication as their main processes that lead to factorization of N. Both methods are
having their advantages and disadvantages in terms of the number of loop count (iteration)
and computational time to complete the factoring process. Many studies have introduced
to improve the FFA, to make the algorithm efficient for factoring the modulus N [5–8]. The
main purpose is to speed up the algorithms: either to reduce the loop count or to improve
the algorithm’s computational time for exhaustive search or both [9].

The EPF is introduced by Wu et al. [1]. Wu et al’s study enhances the efficiency of
FFA2 by shortening the search for the target value of p + q and p− q. The EPF method
was adopted as a mechanism to reset the initial values of FFA (in this case is FFA2), which
results in reducing the loop count for the FFA to complete the search and successfully
factor the modulus N. The authors of [1,9] use the continued fraction of 1√

N
to produce a

list of convergent and create an additional extension for the initial values. Potentially, EPF
is considered as a good “device” to increase the efficiency of FFA.

However, as reported in [1], the absence of a deterministic approach to select the
required parameter in EPF is the limitations of such an approach, and most of the cases
cannot work on balanced primes. Somsuk [5] agreed that EPF works perfectly only on
unbalanced primes. By observation and empirical evidence, the selected values on the list
of convergent certainly cannot be used for the initial value because it may cause the FFA2
algorithm to fail. On the other hand, the authors of [1] overlook a convergent-selecting case
that affects the effectiveness of EPF. In finding a solution regarding EPF, FFA1 is chosen to
be the main integer factorisation method in this study. This is because FFA1 potentially
avoids the failure of running algorithm via EPF and reduce the exhaustive search as it uses
a single loop run the algorithm. The resulting study shows a significant improvement that
reduces the loop count of FFA1 via (improved) EPF compared to previous methods (FFA1,
FFA2, FFA2-EPF, and FFA-Euler).

The rest of this paper is sorted as follows. Section 2 introduces the background of the
FFA1, FFA2, and EPF. The definition of a modulus N is provided considering unbalanced
and balanced primes. Section 3 discusses the methodology that will support the finding of
this work. Section 4 presents the mFFA1-EPF, which works on factoring a modulus N for
both unbalanced and balanced primes. The results of numerical examples are shown and
compared with other existing FFA-based method. The conclusion is drawn in Section 5.

2. Preliminaries

Some fundamental information for the study, about FFAs and EPF, and some defini-
tions are provided.

2.1. Balanced and Unbalanced Primes

This section provided the definitions of balanced and unbalanced primes, which
restructure from [10,11], respectively. The definition of balanced prime is as follows.

Definition 1. Let N = pq be a number with a multiplication of two primes p and q. The number
N is defined to have balanced primes where p and q have the same bit-size and satisfy the relation
q < p < 2q.

The term of unbalanced primes is defined, as follows.

Definition 2. Let N = pq be a number with a multiplication of two primes p and q. The number
N is defined to have unbalanced primes where p and q have the different bit-size and satisfy the
relation q < p < αq where α > 2.

2.2. Fermat’s Factoring Algorithm (FFA)

De Weger [12] studied FFA1 as an approach of IFP to factor the modulus N by
searching the value of p + q and p − q. There is modulus N written as the difference

of square, N =
(

p+q
2

)2
−
(

p−q
2

)2
. As the value of p + q and p− q are unknown, we need
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to find the closest of those values. According to Asbullah and Ariffin [10], the smallest
value of p + q, based on balanced prime, is 2

√
N. We start the initial value x = 2d

√
Ne and

then, compute y =
√

x2 − N. If y is an integer then we accept the pair (x, y). Otherwise,
the algorithm is ran by increasing the value of x by 1. If there is a pair of integers (x, y),
then compute the values p = x + y and q = x − y. Note that FFA1 only run a loop on
searching the integer value on p + q via initial value of x.

Bressoud [13] introduced FFA2, which is uses two loops on searching p + q and p− q
to reduce the running time. Wu et al. [1] reformulated the Bressoud’s method. Suppose
there is modulus N = x2 − y2 where x = p+q

2 and y = p−q
2 . The modulus is derived into

4N = u2 − v2 where u = 2x and v = 2y. As the actual values of u and v are unknown,
reset u = 2d

√
Ne and v = 0. Now compute r = u2 − v2 − 4N. If r = 0, thus the solution of

(u, v) is found. There are two cases for value of r as r 6= 0:

• Case 1: When r > 0
The value of v needs to set larger; v← v + 2 and then r ← r− (4v + 4)

• Case 2: When r < 0
The value of u needs to set larger; u← u + 2 and then r ← r + (4u + 4)

When the initial value u and v are created, we need to check the value of r. If r 6= 0,
there are two cases: r > 0 and r < 0. If r > 0, the new v is produced that is increased
by 2 from the old v, then the new r is computed by r − (4v + 4). Otherwise, if r < 0,
the new u is produced that is increased by 2 from the old u, then the new r is computed
from r + (4u + 4). The iteration of both case will be run until r = 0. If (u, v) found, the
factorisation of N occurs as p = u+v

2 and q = u−v
2 .

Remark 1. The sign ← represents an assignment of changes on a same value. For example,
v← v + 2 means the new value v is computed from the old value v with increment by 2.

2.3. Continued Fraction

The continued fraction is a non-integer expansion method that represents a decimal
number into a list of integers. The list of the integer can establish a partial quotient that
brings into a convergent list in term of a rational number. The continued fraction is suitable
for the representation of the rational and irrational number like π, Euler’s number, e, and√

2. Chung et al. [14] mentioned that the continued fraction for a rational number may
produce a finite yield of integer number while for an irrational number may produce an
infinite yield an infinite list of an integer number.

Let r be a real number which has unique continued fraction expansion,

r = [m0, m1, m2, . . . , mi, . . .] = m0 +
1

m1 +
1

m2+
1
...

where mi ∈ Z and i ∈ N. The list of mi is a list integer form of r, thus, let ri with an amount
of i represent the partial quotients as follows:

r0 = m0

r1 = m0 +
1

m1

r2 = m0 +
1

m1 +
1

m2

...

ri = m0 +
1

m1 +
1

m2+
1

...+ 1
mi
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The list of partial quotients, [r0, r1, r2, . . . , ri] is also known as a convergent list. The
list of the convergence is significantly used for several purposes such as shortening the
distance of the initial value in Fermat’s Factoring Algorithm and creating an approximate
value of a rational number. Wu et al. [1] purposed Estimated Prime Factor in which used
in application such as shortening the searching distance for (FFA2). It may give a “hint” for
a new position for initial values of FFA2. The EPF will be discussed in the next section.

2.4. Estimated Prime Factor (EPF)

Wu et al. [1,9] proposed an approach to estimate p + q and p − q using EPF. The
authors of [1,9] mentioned that the continued fraction of 1√

N
is used to give out the partial

knowledge of Dp−Dq
DpDq

in which helps to find p + q and p − q as Dp − Dq and DpDq are

unknown. From the list of convergent 1√
N

, ht
kt

is selected as the additional extension where

kt . N and ht < Dp − Dq < ht+1. The in-depth discussion of convergent ht
kt

in EPF is
provided in Appendix A.

Remark 2. Let kt be denominator of ht
kt

from convergent list pf 1√
N

. The value of kt is approximately
less than N, kt . N, in which kt need to be less and closer to the value of N. As the value of N is
known, it is easy to select ht

kt
by kt comparing with the value of N, and kt could be good indicator to

select a good convergent of 1√
N

as there is i convergents on the list.

We illustrate EPF process in Figure 1.

Figure 1. The process of Estimated Prime Factor (EPF).

3. Methodology

As early discussed in Section 1, Bressoud [13] claimed that the FFA2 has a better
component for loop count without any multiplication or division and exhibit faster com-
putational time. However, the FFA2 requires a huge number of cycles because it needs to
search for the value of p + q and p− q, separately. Compare to FFA2, FFA1 needs to search
for the value of p + q only. This eliminates the process of searching for the value of p− q,
and thus reduces the number of loop count.

Table 1 shows the comparison of loop count between FFA1 and FFA2 based on three
distinct moduli N = pq. The first modulus of N = 1,783,647,329 is taken from an example
in [1]. Observed that the FFA1 dominates the smallest values of loop count (10,552) rather
than the FFA2 (42,215) and the FFA2-EPF (11,455). For N = 195,656,557, again, the FFA1
dominates the smallest loop count compare to the other two methods. N = 1,952,194,393 is
selected to illustrate the balanced prime situation. Similarly, the FFA1 recorded the smallest
loop count, while the loop count for FFA2-EPF is not available as the initial value of u and
v are larger than p + q and p− q. Overall, the FFA1 requires a lesser loop count, therefore
it can factor modulus N relatively faster than the FFA2 and the FFA2-EPF.
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Table 1. The comparison on loop count between FFA1, FFA2, and FFA2-EPF based on 3 distinct
modulus N = pq.

Modulus N = pq
Loop Count

FFA1 FFA2 FFA2-EPF

1,783,647,329 = 84,449 · 21,121 10,552 42,215 11,455
195,656,557 = 27,103 · 7219 3173 13,115 8131

1,952,194,393 = 47,969 · 40,697 150 3785 N/A

Recall that the initial value of the FFA1 started from
√

N and it increased by 1 until it
reach the value p+q

2 . Therefore, there exists a distance, denoted by d0 from the initial value

where it starts from
√

N to p+q
2 : d0 =

∣∣∣ p+q
2 −

√
N
∣∣∣ (as shown in Figure 2). The methodology

is to introduce a new parameter λ ∈ N, such that
√

N + λ will be serve as a new initial
value for the FFA1. The reason is to establish a new distance, dnew =

∣∣∣ p+q
2 − (

√
N + λ)

∣∣∣, as
shown in Figure 2, where dnew < d0. Therefore, a good λ is needed toward initial value of
FFA1 to obtain the dnew.

In this work, the EPF method is used to extend the initial value of FFA1. We show
that the EPF approach is suitable to be used in FFA1 with following conditions. Suppose
x = p+q

2 and y = p−q
2 . Note that from Section 2.4, we have p =

√
N +Dp and q =

√
N−Dq.

Recall that modulus N = x2 − y2 =
(

p+q
2

)2
−
(

p−q
2

)2
, therefore

N =

(
(Dp +

√
N) + (

√
N − Dq)

2

)2

−
(
(Dp +

√
N)− (

√
N − Dq)

2

)2

=

(
2
√

N + Dp − Dq

2

)2

−
(

Dp + Dq

2

)2

=
4N + 4

√
N(Dp − Dq) + (Dp − Dq)2

4
− (Dp + Dq)2

4
4N = 4N + 4

√
N(Dp − Dq) + (Dp − Dq)

2 − (Dp + Dq)
2

4
√

N(Dp − Dq) = 4DpDq√
N(Dp − Dq) = DpDq

Dp − Dq

DpDq
=

1√
N

(1)

From Equation (3), the value Dp − Dq is needed to improve FFA1, which obtained
from the convergences of continued fraction of 1√

N
. Recall from Section 2.4, from the

continued fraction of 1√
N

will established a list of hi
ki

. As a candidate Dp−Dq
DpDq

, the ht
kt

is
selected with kt . N and ht be the additional extension λ to improve the initial value
of FFA1.

Figure 2. The position of x =
√

N and p+q
2 .
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Now, the bound of Dp−Dq will be consider. Recall in Section 2.4 where p = Dp +
√

N
and q =

√
N − Dq, p + q = 2

√
N + Dp − Dq, we have Dp − Dq = p + q − 2

√
N. As

ht < Dp − Dq, thus

ht < Dp − Dq = p + q− 2
√

N. (2)

We proceed with a lemma that shows x = d
√

N + ht
2 e is always smaller than p+q

2 .

Lemma 1. Let p = Dp +
√

N and q =
√

N − Dq. If ht
kt

be a fraction from the convergent list of

continued fraction 1√
N

with ht < Dp − Dq, then
√

N + ht
2 < p+q

2 .

Proof. Suppose there exist ht
kt

from convergent list of continued fraction 1√
N

. If ht <

Dp − Dq, then substituting the Equation (2) into
√

N + ht
2 , thus it can be rewritten as

follows.

√
N +

ht

2
=

2
√

N + ht

2

<
2
√

N + Dp − Dq

2

=
p + q

2

Observation 1. Consider Lemma 1. As
√

N + ht
2 is always smaller than p+q

2 , therefore ht
2 via

EPF can be use as the additional extension λ. Furthermore, we can set x =
√

N + ht
2 to serve as

the (improved) initial value of x in the FFA1 algorithm.

In this study, we discover two types of possible selected convergent on the list. The
first is Type 1: ht

kt
from the convergent list of 1√

N
where kt . N. For Type 1, Wu et al. [1] men-

tioned that ht
kt

can be an indicator of convergent with index t to select the good candidate
for initial value.

[
h1

k1
, . . . ,

ht

kt
,

ht+1

kt+1
, . . . ,

hi
ki

]
(3)

Next, is the Type 2: h′i
k′i

where it is the last convergent on the list, which will be elabo-

rated further. Thus, h′i will be selected for additional extension for potential initial value.

[
h1

k1
,

h2

k2
, . . . ,

h′i
k′i

]
(4)

The behaviour of Type 2 convergent selection is analysed via experiment on 50 distinct
balanced prime moduli N. Figure 3 shows there are three possible positions on the potential
initial value with additional extension that close to p+q

2 as follows.
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(a) Situation 1

(b) Situation 2

(c) Situation 3

Figure 3. Three possible situations of Type 2 convergent selection.

Observation 2. Figure 3 shows that Situation 1 happens when the value of p+q
2 is larger than the

two initial values, Situation 2 shows that position p+q
2 is in the middle of potential initial values,

and Situation 3 is where the value of p+q
2 is smaller than the potential initial values.

The result via experimental analysis of 50 distinct moduli N indicates that 33 moduli
are considered as Type 2 convergent selection and 42.42% of them have potential initial
value with additional extension h′i−3 and h′i−4 larger than p+q

2 (i.e., Situation 3), while the
rest might fall under Situation 1 or Situation 2. This experimental analysis suggests that
the position of those potential initials values close to p+q

2 is undecidable. This study aims
to provide solutions that covered unbalanced and balanced primes for all three situations.
The in-depth analysis of Type 2 will be discussed in Section 4.3.

4. Results and Discussion

By the observation in Section 3, an improvement for FFA1 to increase the effectiveness
of the algorithm to factor a modulus N is sought after. The aim is to focus on three
important parts: (i) EPF’s technique is used, (ii) establishing potential initial values for
FFA1, and (iii) the alteration on the original FFA1 algorithm to suit the said potential initial
value. Thus, we introduce mFFA1-EPF to improve the effectiveness of FFA1.

4.1. mFFA1-EPF: Unbalanced Prime

This section is dedicated for the modulus N with unbalanced primes factor. From
Observation 1, we setting x = d

√
N + ht

2 e as the improved initial value in FFA1 algorithm
is which less than p+q

2 . Let us start with the following question.

Question 1. Is there any other potential initial values aside from x =
√

N + ht
2 that can be selected

to shorten the distance towards p+q
2 ?

Answer. Interestingly, if we can find other candidates for initial values in which potentially
reduces the distance dnew, then it can be useful to reduce the loop count to search for
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the value of p+q
2 . Suppose the value of

√
N + ht is considered as the other candidate of

potential values (i.e., the value of λ). Then, such value is supposed close to p+q
2 . However,

in general, it position is undecided whether
√

N + ht is larger (as shown by Figure 4) or is
smaller than p+q

2 (i.e., similar to Lemma 1).

Figure 4. The position of
√

N + ht >
p+q

2 .

Next, suppose there exist ht−1 such that ht−1
kt−1

is from the convergent list of 1√
N

with

kt−1 < kt . N. By empirical evident, the value
√

N + ht−1 < p+q
2 can be considered as

another candidate of additional extension for FFA1. Based on the empirical evident, it
shows that the position of

√
N + ht

2 and
√

N + ht−1 are unpredictable as illustrated in
Figure 5a,b.

(a) The position with
√

N + ht
2 <
√

N + ht−1

(b) The position with
√

N + ht
2 >
√

N + ht−1

Figure 5. The possible position between
√

N + ht
2 ,
√

N + ht−1,
√

N + ht, and p+q
2 .

There are three candidates for the potential values for λ: ht
2 , ht−1, and ht. In answering Ques-

tion 1, the algorithm will start to compute the first value, a1 = max
(
d
√

N + ht−1e, d
√

N + ht
2 e
)

,

while the second value is a2 = d
√

N + hte. Once a1 and a2 are established, then two

values—y1 =
√

a2
1 − N and y2 =

√
a2

2 − N—are computed.

After establishing the values of a’s and y’s, three procedures run simultaneously:

• Procedure 1: The iteration with potential initial value a1 and y1. The value a1 is
increased by 1 until y1 is integer.

• Procedure 2: The iteration with potential initial value a2 and y2. The value a2 is
increased by 1 until y2 is integer.

• Procedure 3: The iteration with potential initial value a2 and y2. The value a2 is
decreased by 1 until y2 is integer.

Remark 3. Note that the same value a2 is applied in both Procedure 2 and Procedure 3. As the
value a2, might be larger than p+q

2 , the main role of Procedure 3 is to prevent the mFFA1-EPF
algorithm to keep running forever. All of the procedure is done by parallel computing, which means
that the algorithm will completely be stopped whenever one of the procedures outputs y1 or y2 as an
integer. Eventually, p and q will be obtained.
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Unbalanced prime is demonstrated in Algorithm 1 as follows and flowchart on Figure A1
in Appendix B.1.

Algorithm 1: mFFA1-EPF: Unbalanced Prime
Input: Modulus N
Output: The prime p and q

1 Compute the continued fraction of 1√
N

.

2 Select ht−1
kt−1

and ht
kt

which is convergence to 1√
N

, where kt−1 < kt < N

3 Compute a1 = max
(
d
√

N + ht−1e, d
√

N + ht
2 e
)

and a2 = d
√

N + hte
4 Compute y1 =

√
a2

1 − N and y2 =
√

a2
2 − N

5 do in parallel
6 Procedure 1: while y1 6= integer do
7 Compute a1 ← a1 + 1

8 Compute y1 =
√

a2
1 − N

9 end while
10 p = a1 + y1 and q = a1 − y1
11

12 Procedure 2: while y2 6= integer do
13 Compute a2 ← a2 + 1

14 Compute y2 =
√

a2
2 − N

15 end while
16 p = a2 + y2 and q = a2 − y2
17

18 Procedure 3: while y2 6= integer do
19 Compute a2 ← a2 − 1

20 Compute y2 =
√

a2
2 − N

21 end while
22 p = a2 + y2 and q = a2 − y2

23 return (p,q)

Remark 4. For the Type 2 case, Step 2 on Algorithm 1 is changed by selecting h′i
k′i

and
h′i−1
k′i−1

. Beside

that, Step 3 will be modified with a1 = max
(
d
√

N + h′i−1e, d
√

N +
h′i
2 e
)

and a2 = d
√

N + h′ie.

Examples 1–4 are presented as illustrations of mFFA1-EPF for unbalanced primes.
Example 1 demonstrates Type 1 of convergent-type selection, while Example 2 demon-
strates Type 2 of convergent-type selection. Example 3 shows the importance of a2 for this
algorithm, and Example 4 shows the application of a previous example from Wu et al. [1].

Example 1. Let N = 707,896,463. By the continued fraction method, the following list of fraction
1√
N

is created [
. . . ,

34
904,615

,
139

3,698,279
,

33,811
899,586,412

, . . .
]

We select 139
3,698,279 as a candidate of ht

kt
and 34

904,615 as a candidate of ht−1
kt−1

since kt−1 < kt . N. Now,
the potential initial values are computed as follows:

1. a1 = max
(
d
√

N + ht−1e, d
√

N + ht
2 e
)
= 26,676

2. a2 = d
√

N + hte = 26,746
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With a1 = 26,676 and a2 = 26,746, Algorithm 1 is performed. The algorithm is stopped
when Procedure 2 satisfy the searching on Algorithm 1 where y2 become an integer (y2 = 66,126).
Finally, p = a2 + y2 = 50,359 and q = a2 − y2 = 14,057 are computed.

Example 2. Let N = 7,665,365,527,725,431. By continued fraction method, the following conver-
gent list of 1√

N
is created

[
. . . ,

1273
111,453,789,228

,
1554

136,055,921,807
,

2827
247,509,711,035

]

2827
247,509,711,035 is selected as h′i

k′i
(the last convergent on the list) and 1554

136,055,921,807 as
h′i−1
k′i−1

as k′i < N.

The potential initial values are computed as follows:

1. a1 = max
(
d
√

N + h′i−1e, d
√

N +
h′i
2 e
)
= 87,553,628

2. a2 = d
√

N + h′ie = 87,554,901

With a1 = 87,553,628 and a2 = 87,554,901, Algorithm 1 is performed. The algorithm is
stopped when Procedure 2 satisfies the searching on Algorithm 1 where y2 become an integer (y2 =
96,393,384). Last, p = a2 + y2 = 136,721,029 and q = a2 − y2 = 56,065,739 are computed.

Example 3. Suppose N = 2,927,489,533. By continued fraction method, the following convergent
list of 1√

N
is created

[
. . . ,

5329
288,332,366

,
7097

383,992,269
,

12426
672,324,635

]

12,426
672,324,635 is selected as h′i

k′i
and 7097

383,992,269 as
h′i−1
k′i−1

as k′i < N. Now, the potential initial values are

computed as follows:

1. a1 = max
(
d
√

N + h′i−1e, d
√

N +
h′i
2 e
)
= 61,204

2. a2 = d
√

N + h′ie = 66,533

With a1 = 29,682 and a2 = 36,369, Algorithm 1 is performed. The algorithm is stopped
when Procedure 3 satisfies the searching on Algorithm 1 where y2 become integer (y2 = 65,903).
Last, p = a2 + y2 = 49,307 and q = a2 − y2 = 10,723 are computed.

Example 4. Suppose N = 1,783,647,329 which adapted from the numerical example of Wu
et al. [1]. By continued fraction method, the following convergent list of 1√

N
is created

[
. . . ,

2758
11,6479,301

,
10,205

430,990,307
,

12,963
547,469,608

, . . .
]

12,963
547,469,608 is selected as a candidate of ht

kt
and 10,205

430,990,307 as a candidate of ht−1
kt−1

since kt−1 < kt < N.
Two potential initial values are computed as follows:

1. a1 = max
(
d
√

N + ht−1e, d
√

N + ht
2 e
)
= 52,439

2. a2 = d
√

N + hte = 55,197

Algorithm 1 is performed and stop when Procedure 1 satisfies that y1 is an integer (y1 =
31,664). Last, p = a1 + y1 = 84,449 and q = a1 − y1 = 21,121 are computed.

4.2. Discussion of Algorithm 1 (mFFA1-EPF: Unbalanced Primes)

This section presents a comparative analysis between the mFFA1-EPF and the previous
technique, based on loop count and computational time. Note that all experimental results
were using a computer running on 2.1 GHz on Intel® Core i3 with 4 GB of RAM.
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According to Table 2, the loop count on Procedure 2 of Examples 1 and 2 is the
shortest one. It shows that the mFFA1-EPF has the smallest loop count compared to the
other methods. For Example 3, Procedure 3 has the shortest path (630), at the same time
it indicates

√
N + ht is larger than p+q

2 . Thus far, the results give a good visualization
representing the factorization of modulus N by our method experimentally. Example 4 is
the same example as given in Wu et al. [1]. Procedure 1 obtained the smallest loop count
(346) compared to other methods. This N/A (Not Applicable) means that all the proce-
dure in Algorithm 1 is stopped when one of the y’s from any procedures got the integer first.

Table 2. The comparison on loop count between FFA1, FFA2, and FFA2-EPF with our propose method toward Examples 1–4.

N = pq FFA1 FFA2 FFA2-EPF
mFFA1-EPF

Procedure 1 Procedure 2 Procedure 3
Example 1 128,439 386,939 342,627 N/A 120,265 N/A
Example 2 8,841,310 98,337,910 97,340,072 N/A 8,838,483 N/A
Example 3 11,796 98,844 33,091 N/A N/A 630

Example 4 [1] 11455 42,215 10,551 346 N/A N/A

The mFFA1-EPF is performed by parallel computing, which means Procedures 1–3
were run simultaneously. We recorded the computational time for the three different
procedures. In Table 3, mFFA1-EPF is faster than FFA1 by 4 numerical examples. This seems
to be a slight improvement for FFA1 as there is an involvement of additional extension.
mFFA1-EPF is good in term of loop count, running without failure and computational time
(compared to FFA1).

Table 3. The comparison on computational time in second (s) between FFA1, FFA2, and FFA2-EPF with mFFA1-EPF toward
Examples 1–4.

N = pq FFA1 FFA2 FFA2-EPF
mFFA1-EPF

Procedure 1 Procedure 2 Procedure 3
Example 1 2.86 0.64 0.50 N/A 2.01 N/A
Example 2 338.12 215.89 199.27 N/A 301.98 N/A
Example 3 0.63 0.17 0.09 N/A N/A 0.33

Example 4 [1] 0.55 0.12 0.10 0.23 N/A N/A

To make mFFA1-EPF more convincing, there are numerical examples from Somsuk [6]
provided in Table 4.

Table 4. The comparison loop count between FFA1, FFA2, FFA2-EPF, and FFA-Euler with our proposed method by Somsuk’s
Example (Tables 2 and 3 [6]).

Modulus N FFA1 FFA2 FFA2-EPF FFA-Euler
mFFA1-EPF

Procedure 1 Procedure 2 Procedure 3
1,047,329,636,821,139,813
= 1,971,074,143 · 531,349,691

227,820,673 1,895,365,798 1,893,402,196 227,820,673 N/A 227,819,732 N/A

788,582,867,650,121,563
= 1,066,200,463 · 739,619,701

14,888,197 356,357,156 307,600,540 14,888,197 N/A 14,236,836 N/A

This comparison highlights the improvement made by mFFA1-EPF compared to the
method FFA-Euler, provided by Somsuk [6]. By two examples from in [6], the exhaustive
search is improved with shortest loop counts, and the potential initial values are shorter
than the FFA-Euler loop count. This shows that our method can be compatible with all
unbalanced prime.
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4.3. mFFA1-EPF: Balanced Prime

Previously, in the case of a modulus with unbalanced primes, three candidates are
determined as the λ. Only two potential initial values that possibly shorten the dnew were
selected. In this section, we will explore the case of a modulus with balanced primes. The
aim is to dictate the proper candidates from the convergent list (i.e., mFFA1-EPF) for the
potential initial values via a similar approach.

Recall that ht
kt

with index t, where kt . N, deemed as the indicator for selecting a
good convergent to additional extension of initial values for FFA2-EPF [1]. When the EPF
technique applied for the balanced prime case on FFA1, by empirical evidence, it shows
that such indicator leads to the initial value (

√
N + ht) relatively far away from the target

value (exceeded by p+q
2 ). Therefore, we conjecture that the EPF method seems not to be an

effective method to factor the modulus N with a balanced prime. Furthermore, the result
in Somsuk [5] agreed that EPF is only suitable for unbalanced prime. It failed to address
the convergent with index t as a suitable index to improve the initial value.

Therefore, in this section, we provide the strategies to address such drawback of
factoring the modulus N with a balanced prime by imposing modification in the mFFA1-
EPF algorithm. The strategies involve convergent selection and modification of potential
initial values. Therefore, to enhance the effectiveness via mFFA1-EPF, the additional
extension ht until ht−5 is observe empirically to determine the smallest value of dnew. The
result of the observation is presented on Figure 6, and the discussion follows.

Suppose ht
kt

with index t where kt . N is chosen via EPF. Note that for the modu-

lus N with balanced primes case, the value
√

N + ht � p+q
2 . Therefore, the additional

extension from ht to ht−5 is analysed. Interestingly, the additional extension
√

N + ht−j

for j = 0, 1, 2, 3, 4, 5 can be a potential initial values as it moves closer to the value of p+q
2 .

Figure 6a–f shows comparison of potential initial values between the additional extension
of
√

N + ht−j for j = 0, 1, 2, 3, 4, 5 and p+q
2 , respectively. The potential initial values de-

crease, because the value of additional extension is become smaller from ht to ht−5 (i.e.,
ht > ht−1 > ht−2 > ht−3 > ht−4 > ht−5).

Question 2. What are the suitable initial values that need to be implemented on mFFA1-EPF with
balanced primes?

Answer. Based on Figure 6, the line graph between the initial value (represented by the
blue dots) starts closer to the target value p+q

2 (represented by the red dots) as the value of
initial values changes. A hindrance to the development process for this approach is that we
can not determine the smallest value of dnew via additional extension ht to ht−5. In other
words, the “closeness” of the potential initial values with additional extension unable to
be decided simply from the results of Figure 6. This is because the additional extension a
random value from the generation of convergent list of 1√

N
. It requests further analysis. A

statistical analysis of 50 distinct moduli N with balanced primes is conducted to determine
the closeness of potential initial value through index t to t− 5, as follows.

In this work, a measurement called Mahalanobis Distance (MD) is implemented. MD
is the distance between two points in multivariate space. According to Çakmakçı et al. [15],
MD measures the distance between a multidimensional point of probability distribution
and distribution of distance. The smaller the value of MD, the closer the mean of candidate
of potential initial values to the mean of the target value.
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Figure 6. The comparison value of 50 data (distinct modulus N) between ht, ht−1, ht−2, ht−3, ht−4

and p+q
2 .

In the one-dimensional case on the mFFA1-EPF for balanced prime, MD is used to
calculate the normalized distance between the mean of each ht to ht−5 and the mean of the
target value p+q

2 . The measurement formula is

MD =
|µIV − µAV |

σIV+AV
(5)

where µIV is a mean of each data potential initial value of
√

N + ht to
√

N + ht−5 while
µAV is mean of actual value p+q

2 . The value σIV+AV is calculated from combination data
from potential initial value and the actual value p+q

2 . The following formula is represented
for MD between

√
N + ht and p+q

2 ,

MD(
√
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∣∣∣µIV(
√

N+ht) − µAV

∣∣∣
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We calculate MD for
√

N + ht to
√

N + ht−5 by same data of 50 moduli N and represent
the MD value on Table 5.

Figure 6. The comparison value of 50 data (distinct modulus N) between ht, ht−1, ht−2, ht−3, ht−4

and p+q
2 .

In the one-dimensional case on the mFFA1-EPF for balanced prime, MD is used to
calculate the normalized distance between the mean of each ht to ht−5 and the mean of the
target value p+q

2 . The measurement formula is

MD =
|µIV − µAV |

σIV+AV
(5)

where µIV is a mean of each data potential initial value of
√

N + ht to
√

N + ht−5 while
µAV is mean of actual value p+q

2 . The value σIV+AV is calculated from combination data
from potential initial value and the actual value p+q

2 . The following formula is represented
for MD between

√
N + ht and p+q

2 ,

MD(
√

N+ht) =

∣∣∣µIV(
√

N+ht) − µAV

∣∣∣
σIV+AV

We calculate MD for
√

N + ht to
√

N + ht−5 by same data of 50 moduli N and represent
the MD value on Table 5.

Table 5 shows the comparison of the MD index of “closer distance” between several
potential initial values from ht to ht−5 and p+q

2 . Table 5 reported that the MD index value
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of
√

N + ht−3 and
√

N + ht−4 are the smallest MD values among other potential initial
values, that is, 0.0114 and 0.0116, respectively. It means that

√
N + ht−3 and

√
N + ht−4 are

the most suitable candidates for potential initial values, because they have the smallest
dnew on average with respect to MD measurement.

Table 5. The comparison on the closeness of value between the candidate of potential initial value
with p+q

2 by MD.

Mahalanobis Distance (MD) Value

MD(
√

N+ht) 0.4965

MD(
√

N+ht−1)
0.2932

MD(
√

N+ht−2)
0.0756

MD(
√

N+ht−3)
0.0114

MD(
√

N+ht−4)
0.0116

MD(
√

N+ht−5)
0.0257

Observation 3. The candidates
√

N + ht−3 and
√

N + ht−4 have the smallest value of MD.
Therefore, it is highly suggested to select convergents with index t− 3 and t− 4 to improve the
initial values.

Based on Observation 3, two potential initial values are set as follows:

1. b1 =
√

N + ht−3

2. b2 =
√

N + ht−4

Remark that the FFA1 algorithm requires an initial value less than the target value
and will keep increasing by one (i.e., +1) until it reaches p+q

2 . Therefore, in mFFA1-EPF, we
use the variation technique, which means the value of b1 and b2 need to be increased and
decreased by 1 simultaneously. Next, the following values are established:

1. y1 =
√

b2
1 − N

2. y2 =
√

b2
2 − N

Four procedures are introduced using the above values, with the variation technique
as follows:

• Procedure 1: The iteration with potential initial values b1 and y1. The value of b1 is
increased by 1 until it is the same as the y1 becomes an integer.

• Procedure 2: The iteration with potential initial values b2 and y2. The value of b2 is
increased by 1 until it is the same as y2 becomes an integer.

• Procedure 3: The iteration with potential initial values b1 and y1. The value of b1 is
decreased by 1 until it is the same as the y1 becomes an integer.

• Procedure 4: The iteration with potential initial values b2 and y2. The value of b2 is
decreased by 1 until it is the same as the y2 becomes an integer.

Note that these four procedures were run simultaneously by parallel computing
which will stop when one of the y’s become the first integer. Algorithm 2 shows how the
workflow runs.
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Algorithm 2: mFFA1-EPF: Balanced Prime
Input: Modulus N
Output: The prime p and q

1 Compute the continued fraction of 1√
N

.

2 Select ht−3
kt−3

and ht−4
kt−4

which is convergence to 1√
N

, where kt−4 < kt−3 < N

3 Compute b1 = d
√

N + ht−3e and b2 = d
√

N + ht−4e
4 Compute y1 =

√
b2

1 − N and y2 =
√

b2
2 − N

5 do in parallel
6 Procedure 1: while y1 6= integer do
7 Compute b1 ← b1 + 1

8 Compute y1 =
√

b2
1 − N

9 end while
10 Compute p = b1 + y1 and q = b1 − y1
11

12 Procedure 2: while y2 6= integer do
13 Compute b2 ← b2 + 1

14 Compute y2 =
√

b2
2 − N

15 end while
16 Compute p = b2 + y2 and q = b2 − y2
17

18 Procedure 3: while y1 6= integer do
19 Compute b1 ← b1 − 1

20 Compute y1 =
√

b2
1 − N

21 end while
22 Compute p = b1 + y1 and q = b1 − y1
23

24 Procedure 4: while y2 6= integer do
25 Compute b2 ← b2 − 1

26 Compute y2 =
√

b2
2 − N

27 end while
28 Compute p = b2 + y2 and q = b2 − y2

29 return (p, q)

4.4. Discussion on Algorithm 2 (mFFA1-EPF: Balanced Primes)

Algorithm 2 is also illustrated as a flowchart in Figure A2 in Appendix B.2. The exper-
imental result is represented using the mFFA1-EPF via balanced prime on Example 5 while
applying mFFA1-EPF is represented on Somsuk’s numerical example [6] in Example 6.

Example 5. (Procedure 1 satisfies on Example 5). Let N = 616,696,115,591. By continued
fraction method, the following convergent list 1√

N
is created

[
. . . ,

61
47,903,301

,
123

96,591,902
,

184
144,495,203

,
491

385,582,308
, . . .

]

491
385,582,308 is selected as a candidate of ht−3

kt−3
and 184

144,495,203 as a candidate of ht−4
kt−4

since kt−4 <

kt−3 < kt . N. Now, there are two candidates of potential initial value and 2 y’s are computed as
follows:

1. b1 = d
√

N + ht−3e = 785,792
2. b2 = d

√
N + ht−4e = 785,485
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Algorithm 2 is performed because y1 and y2 not integers. The values b1 and b2 in Procedure 1
and 2 are increased by 1 while initial values in Procedure 3 and 4 are decreased by 1. The algorithm
stop where y1 from Procedure 1 is integer (y1 = 801,204). Finally, compute p = b1 + y1 =
960,049 and q = b1 − y1 = 642,359.

Example 6. [6] (Procedure 1 satisfies on Example 6) Say N = 340,213. By continued fraction
method, a list of fraction 1√

N
is created

[
. . . ,

1
583

,
3

1750
,

4
2333

,
7

4083
, . . .

]

3
1750 is selected as a candidate of ht−3

kt−3
and 1

583 as a candidate of ht−4
kt−4

since kt−4 < kt−3 < kt < N.
Now, there are two candidates of potential initial value and 2 y’s are computed as follows:

1. b1 = d
√

N + ht−3e = 587
2. b2 = d

√
N + ht−4e = 585

Algorithm 2 is performed because y1 and y2 not integer. The values b1 and b2 in Procedure 1
and 2 are increased by 1 while initial values in Procedure 3 and 4 are decreased by 1. The algorithm
stop where y1 from Procedure 1 is integer (y1 = 587). We compute p = b1 + y1 = 653 and
q = b1 − y1 = 521.

Table 6 shows the comparison on count loop and computational time in seconds (s),
between several FFAs with our proposed method toward Example 5. The loop count on
Procedure 1 (15412) is the least number of loop count compared to previous methods.
Besides, FFA2-EPF can not undergo the process and the loop count is not available since
the initial value exceeded the value of p + q and p− q. When it goes on computational
time, the algorithm is not shown the fastest one but it still improves from FFA1.

Table 6. The comparison on loop count and computational time in second (s) between several FFAs with our propose
method toward Example 5.

Example 5 FFA1 FFA2 FFA2-EPF
mFFA1-EPF

Procedure 1 Procedure 2 Procedure 3 Procedure 4
Loop count 15,903 174,748 N/A 15,412 N/A N/A N/A
Computational time, s 0.71 0.2 N/A 0.48 N/A N/A N/A

For Table 7, mFFA1-EPF is applied toward [6] to compare the loop count and compu-
tational time. It shows the shortest loop count even the initial value is exactly the value of
p+q

2 ( p+q
2 =

√
N + ht−3 = 587). Using Algorithm 2, the loop count reduced significantly,

which result in the exhaustive search to run without fail.

Table 7. The comparison on loop count and computational time in second (s) between several FFAs with our propose
method toward Example 6 [6].

Example 6 FFA1 FFA2 FFA2-EPF FFA-Euler
mFFA1-EPF

Procedure
1

Procedure
2

Procedure
3

Procedure
4

Loop count 3 6 N/A 3 0 N/A N/A N/A
Computational
time, s

2.12× 10−2 1.45× 10−2 N/A 7.89× 10−3 4.92× 10−2 N/A N/A N/A

Remark 5. Consider Type 2 of the continued fraction convergent selection of the modulus N with
balanced primes. For Type 2, we use Algorithm 2 with a changes in Step 2 where h′i−3 and h′i−4 and
k′i < N.

102



Symmetry 2021, 13, 735

Now, we replicate a numerical example from the Algorithm 2 with respect to Remark 5 on
Example 7.

Example 7. (Procedure 4 satisfies on Example 7). Suppose N = 9,355,908,869. By continued
fraction method, a convergent list of 1√

N
is created

[
. . . ,

1611
155,825,501

,
2009

194,322,428
,

3620
350,147,929

,
9249

894,618,286
,

22,118
2,139,384,501

]

As h′i
k′i

is the last convergent on the list, 2009
194,322,428 is selected as a candidate of

h′i−3
k′i−3

and 1611
155,825,501 as

a candidate of
h′i−4
k′i−4

as k′i−4 < k′i−3 < k′i < N. We compute two candidates of initial value of x, y1

and y2 as follows:

1. b1 = d
√

N + h′i−3e = 98,735
2. b2 = d

√
N + h′i−4e = 98,337

Since y1 and y2 are not integer, the values b1 and b2 in Procedures 1 and 2 are increased by
1 while initial values in Procedures 3 and 4 are decreased by 1. The algorithm stop where y2 in
Procedure 4 is integer (y2 = 97,245). We compute p = b2 + y2 = 107,279 and q = b2 − y2 =
87,211.

Table 8 shows the comparison on loop count and computational time in second
between several FFAs with our propose method toward Example 7. Procedure 4 shows
the smallest loop count with 1092 compared to FFA1 (1590) and FFA2 (10,553). The loop
count of FFA2-EPF is unavailable as the initial values are exceeded the value of p + q and
p− q. On computational time, our algorithm is slightly better than FFA1. Procedure 4
plays it crucial part to achieve the value p+q

2 , and, at the same time, Procedure 4 obtains
the indicators of whether the value is larger or smaller than p+q

2 . Therefore, Algorithm 2
with Remark 5 helps to search for the value of p+q

2 without failure.

Table 8. The comparison on loop count and computational time in second (s), between several FFAs with our propose
method toward Example 7.

Example 7 FFA1 FFA2 FFA2-EPF
mFFA1-EPF

Procedure 1 Procedure 2 Procedure 3 Procedure 4
Loop count 1590 10553 N/A N/A N/A N/A 1092
Computational time, s 8.90 × 10−2 1.90 × 10−2 N/A N/A N/A N/A 4.07× 10−2

Recall that there is dnew = p+q
2 − (

√
N + λ). For mFFA1-EPF, the λ varies according

to type of modulus N; λ = ht and λ = ht−1 for a modulus with unbalanced primes while
λ = ht−3 and λ = ht−4 for a modulus with balanced primes. Multiple λ can lead to the
shortest path toward p+q

2 . For comparison on mFFA1-EPF with FFA1, both methods use
the same process of calculating the square roots to reach the target value p+q

2 . However,
mFFA1-EPF uses the additional extension on its potential initial values dnew < d0 where
d0 is the loop count of FFA1. Based on the empirical results in this work, the loop count
and computational time of mFFA1-EPF are improved compared to FFA1. Consequently, it
reduces the cost of running the exhaustive search.

The uniqueness of FFA2 is that it uses multiplication operation as the main process, it
has less cost in computational time compared to the mFFA1-EPF which uses square root
operation. Alas, FFA2 requires a greater number of iterations to achieve p + q and p− q.
In this regard, the mFFA1-EPF uses less cost in terms of computational memory and less
space to run the iteration compared to FFA2.

The objective of establishing additional extension on FFA2-EPF is the same as mFFA1-
EPF, to shorten the path toward p + q and p− q. mFFA1-EPF has a shorter loop count than
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FFA2-EPF because the main operation comes from FFA2, which uses a huge number of
iteration to achieve its target values: p + q and p− q. Thus, mFFA1-EPF requires less cost
in terms of space compared to FFA2-EPF.

5. Conclusions and Future Works

In this study, we discovered two types of convergent list selections. The first is Type
1: ht

kt
is selected from the convergent list of 1√

N
where kt . N. For Type 1, Wu et al. [1]

mentioned that ht
kt

can be an indicator of convergent with index t to select a good candidate

for initial value. Next, Type 2: h′i
k′i

where k′i is the last convergent on the list (as illustrated

by Figure 4) where h′i will be selected for additional extension for potential initial value.
This paper proposed two improved factoring algorithms called mFFA1-EPF for unbalanced
primes and mFFA1-EPF for balanced primes. The general idea for designing the algorithms
is due to a modification made to EPF and then implemented to (improved) FFA1. The
resulting study shows a significant improvement that reduces the loop count of FFA1 via
(improved) EPF compared to previous methods (FFA1, FFA2, FFA2-EPF, and FFA-Euler).

An interesting limitation to our work is that the computational time of mFFA1-EPF is
still far beyond efficient to factor a modulus with 1024-bit size of balanced primes, with the
current technology. We foresee that the mFFA1-EPF might be useful once a large quantum
computer with stable qubits is available. The mFFA1-EPF is a type of searching algorithm,
thus it might take advantage of making fine adjustments or manipulating the mathematical
nature within Grover’s searching quantum algorithm [16]. The mFFA1-EPF can be used in
machine architecture with low power such as the Internet of Things-based devices, which
requires to factor small composites integer [1,9]. Furthermore, we expect mFFA1-EPF to be
an assistive tool to increase the effort on the machine learning and artificial intelligence
approaches, such as in [17], have been introduced in the literature to deal with similar
problems as ours.
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Appendix A. The Proving on Estimated Prime Factor (EPF)

We discuss the original study by Wu et al. [1,9]. There is a distance between p and q
with

√
N that written as

Dp = p−
√

N (A1)

Dq =
√

N − q (A2)

Derive (A1) and (A2) to become
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p = Dp +
√

N (A3)

q =
√

N − Dq (A4)

Denote that N = pq. We substitute (A3) to p and (A4) to q and yield

N = pq = (
√

N + Dp)(
√

N − Dq)

= N +
√

N(Dp − Dq)− DpDq (A5)

N is eliminated on the both side which generate Equation (A6) and lead to Equation (A7).

N = N +
√

N(Dp − Dq)− DpDq

N − N =
√

N(Dp − Dq)− DpDq

DpDq =
√

N(Dp − Dq) (A6)

1√
N

=
Dp − Dq

DpDq
(A7)

We do not have any informations about the value of Dp − Dq and DpDq. However,
from Equation (A7), 1√

N
can be useful to get Dp − Dq and DpDq as N is publically known.

Now, a convergent list 1√
N

is produced by continued fraction.

Suppose there is a convergent list 1√
N

, assign as hi
ki

with hi, ki ∈ Z and i be a number of

the convergent produced. From the continued fraction, we know that hi
ki
→ 1√

N
as i→ ∞.

As the size hi and ki increase as i increase, there exist t such that

ht < Dp − Dq < ht+1 (A8)

We use ht and kt to correspond the estimation of Dp and Dq that is

ht ≈ Dp − Dq

kt ≈ DpDq

The convergent with index t be the selection fraction for improving the FFA as it give
an advantage on shorten the exhasutive search on p + q and p− q.
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Appendix B. Flowchart mFFA1-EPF

Appendix B.1. mFFA1-EPF on Unbalanced Prime

Figure A1. The flowchart of mFFA1-EPF on unbalanced prime.
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Appendix B.2. mFFA1-EPF on Balanced Prime

Figure A2. The flowchart of mFFA1-EPF on balanced prime.
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Abstract: The collection of personal data is exponentially growing and, as a result, individual privacy
is endangered accordingly. With the aim to lessen privacy risks whilst maintaining high degrees
of data utility, a variety of techniques have been proposed, being microaggregation a very popular
one. Microaggregation is a family of perturbation methods, in which its principle is to aggregate
personal data records (i.e., microdata) in groups so as to preserve privacy through k-anonymity. The
multivariate microaggregation problem is known to be NP-Hard; however, its univariate version
could be optimally solved in polynomial time using the Hansen-Mukherjee (HM) algorithm. In this
article, we propose a heuristic solution to the multivariate microaggregation problem inspired by the
Traveling Salesman Problem (TSP) and the optimal univariate microaggregation solution. Given a
multivariate dataset, first, we apply a TSP-tour construction heuristic to generate a Hamiltonian path
through all dataset records. Next, we use the order provided by this Hamiltonian path (i.e., a given
permutation of the records) as input to the Hansen-Mukherjee algorithm, virtually transforming it
into a multivariate microaggregation solver we call Multivariate Hansen-Mukherjee (MHM). Our
intuition is that good solutions to the TSP would yield Hamiltonian paths allowing the Hansen-
Mukherjee algorithm to find good solutions to the multivariate microaggregation problem. We
have tested our method with well-known benchmark datasets. Moreover, with the aim to show the
usefulness of our approach to protecting location privacy, we have tested our solution with real-life
trajectories datasets, too. We have compared the results of our algorithm with those of the best
performing solutions, and we show that our proposal reduces the information loss resulting from
the microaggregation. Overall, results suggest that transforming the multivariate microaggregation
problem into its univariate counterpart by ordering microdata records with a proper Hamiltonian
path and applying an optimal univariate solution leads to a reduction of the perturbation error whilst
keeping the same privacy guarantees.

Keywords: microaggregation; statistical disclosure control; graph theory; traveling salesman prob-
lem; data privacy; location privacy

1. Introduction

Knowledge retrieval and data processing are catalysts for innovation. The continuous
advances in information and communication technologies (ICT) and the efficient processing
of data allow the extraction of new knowledge by discovering non-obvious patterns
and correlations in the data. Nevertheless, such knowledge extraction procedures may
threaten individuals’ privacy if the proper measures are not implemented to protect it [1–3].
For instance, an attacker may use publicly available datasets to obtain insights about
individuals and extract knowledge by exploiting correlations that were not obvious from
examining a single dataset [4]. Therefore, before disclosing any data, privacy protection
procedures (e.g., anonymization, pseudonymization, aggregation, generalization) must be
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applied. A wide variety of privacy models and protection mechanisms have been proposed
in the literature so as to guarantee anonymity (at different levels depending on the utilized
model) when disclosing data [5]. Since most privacy protection methods are based on
modifying/perturbing/deleting original data, their main drawback is that they negatively
affect the utility of the data. Hence, there is a need for finding a proper trade-off between
data utility and privacy.

One of the most well-known disciplines studying methods to protect individuals’
private information is Statistical Disclosure Control (SDC [6]), which seeks to anonymize
microdata sets (i.e., datasets consisting of multiple records corresponding to individual
respondents) in a way that it is not possible to re-identify the respondent corresponding to
any particular record in the published microdata set. Microaggregation [7], which perturbs
microdata sets by aggregating the attributes’ values of groups of k records so as to reduce
re-identification risk by achieving k−anonymity, stands out among the most widely used
families of SDC methods. It is usually applied by statistical agencies to limit the disclosure
of sensitive microdata, and it has been used to protect data in a variety of fields, namely
healthcare [8], smart cities [9], or collaborative filtering applications [10], to name a few.

Although the univariate microaggregation problem can be optimally solved in poly-
nomial time, optimal multivariate microaggregation is an NP-hard problem [11]. Thus,
finding a solution for the multivariate problem requires heuristic approaches that aim to
minimize the amount of data distortion (often measured in terms of information loss),
whilst guaranteeing a desired privacy level (typically determined by a parameter k that
defines the cardinality of the aggregated groups).

1.1. Contribution and Research Questions

In this article, we propose a novel solution for the multivariate microaggregation
problem, inspired by the heuristic solutions of the Traveling Salesman Problem (TSP) and
the use of the optimal univariate microaggregation algorithm of Hansen and Mukherjee
(HM) [12]. Given an ordered numerical vector, the HM algorithm creates the optimal
k-partition (i.e., the optimal univariate microaggregation solution). Hence, our intuition is
that, if we feed the HM algorithm with a good ordering of the records in a multivariate
dataset, it would output a good k-partition of the multivariate dataset (although not
necessarily optimal).

Ordering the records of a univariate dataset is trivial. However, ordering those records
in a multivariate dataset, in which every record has p attributes, is not obvious since it
is not apparent how to determine the precedence of an element over another. Thus, the
primary question is:

Q1: How to create this ordering, when the records are in Rp.

We suggest that a possible order for the records in Rp is determined by the Hamiltonian
path resulting from solving the Traveling Salesman Problem, in which the goal is to find
the path that travels through all elements of a set only once, whilst minimizing the total
length of the path. Optimally solving the TSP is known to be NP-Hard, but very good
heuristic solutions are available. Hence, our intuition is that good heuristic solutions of the
TSP (i.e., those with shorter path lengths) would provide a Hamiltonian path, that could
be used as an ordered vector for the HM optimal univariate microaggregation algorithm,
resulting in a good multivariate microaggregation solution.

The quality of a TSP solution is measured in terms of "path length", the shorter the
length the better the solution. However, the quality of the microaggregation is measured in
terms of information loss. Given a cardinality parameter k (which sets the minimum size of
the aggregation clusters), the lower the information loss, the better the microaggregation.
Hence, the next questions that we aim to answer are:

Q2: Are the length of the Hamiltonian path and the information loss of the microaggrega-
tion related?, or Do shorter Hamiltonian paths lead to microaggregation solutions with
lower information loss?
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and

Q3: Is the length of the Hamiltonian path the only factor affecting information loss or
does the particular construction of the path (regardless of the length) affect the informa-
tion loss?

Overall, the key question is:

Q4: Does this approach provide better solutions (in terms of information loss) than the
best performing microaggregation methods in the literature?

In order to answer these questions, we have tested seven TSP solvers, combined with
the HM algorithm (virtually applied in a multivariate manner, or Multivariate HM (MHM)).
Particularly, we have tested the “Concorde” heuristic, which, to the best of our knowledge,
is the first time it is used for microaggregation. In addition, we have tested well-known
classic microaggregation methods (i.e., MDAV and V-MDAV), and an advanced refinement
of the former (i.e., MDAV-LK-MHM).

With the aim to test all the aforementioned approaches on a variety of datasets, we
have used three classical benchmarks (i.e., Census, Tarragona, and EIA) and three novel
datasets containing trajectory data retrieved from public sources, which lead to our last
research question:

Q5: Do TSP-based microaggregation methods perform better than current solutions on
trajectories datasets?

1.2. Plan of the Article

The rest of the article aims to answer the research questions above, and it is organized
as follows: Section 2 provides the reader with some fundamental knowledge on Statistical
Disclosure Control and microaggregation. In addition, it introduces the basics of the
Traveling Salesman Problem and an overview of the existing heuristics to solve it. Next,
Section 3 analyzes related work and highlights the novelty of our proposal compared with
the state of the art. Section 4 describes our proposal, which is later thoroughly tested and
compared with well-known classical and state-of-the-art microaggregation methods in
Section 5. Section 6 discusses the research questions and the main benefits of our proposal.
The article concludes in Section 7 with some final remarks and comments on future research
lines.

2. Background
2.1. Statistical Disclosure Control and Microaggregation

Statistical disclosure control (SDC) has the goal of preserving the statistical properties
of datasets, whilst minimizing the privacy risks related to the disclosure of confidential
information from individual respondents. Microaggregation is a family of SDC methods
for microdata, which use data perturbation as a protection strategy.

Given an original data file D and a privacy parameter k, microaggregation can be
defined as follows: Let us assume a microdata set D with p continuous numerical attributes
and n records. Clusters (also referred to as groups or subsets in this context) of D are
formed with ni records in the i-th cluster (ni ≥ k and n = ∑

g
i=1 ni), where g is the number

of resulting clusters, and k a cardinality constraint. Optimal microaggregation is defined
as the one yielding a k-partition maximizing the within-clusters homogeneity. Optimal
microaggregation requires heuristic approaches since it is an NP-hard problem [11] for
multivariate data. Microaggregation heuristics can be classified into two main families:

• Fixed-size microaggregation: These heuristics cluster the elements of D into k-partitions
where all clusters have size k, except perhaps one group which has a size between k
and 2k− 1, when the total number of records is not divisible by k.

• Variable-size microaggregation: These heuristics cluster the elements of D into k-
partitions where all clusters have sizes in (k, 2k− 1). Note that it is easy to show that
any cluster with size larger than (2k− 1) could be divided in several smaller clusters

111



Symmetry 2021, 13, 916

of size between k and 2k− 1 in which its overall within-cluster homogeneity is better
than that of the single larger cluster.

Therefore, a microaggregation process consists in constructing a k-partition of the
dataset, this is a set of disjoint clusters (in which the cardinality is between k and 2k− 1)
and replacing each original data record by the centroid (i.e., the average vector) of the
cluster to which it belongs, hence creating a k-anonymous dataset D′. With the aim to
reduce the information loss caused by the aggregation, the clusters are created so that the
records in each cluster are similar.

2.2. Data Utility and Information Loss

The sum of square error (SSE) is commonly used for measuring the homogeneity
in each group. In terms of sums of squares, maximizing within-groups homogeneity is
equivalent to finding a k-partition minimizing the within-groups sum of square error
(SSE) [13] defined as:

SSE =
g

∑
i=1

ni

∑
j=1

(xi,j − x̄i)(xi,j − x̄i)
′, (1)

where xi,j is the j-th record in group i, and x̄i is the average record of group i. The total sum
of squares (SST), an upper bound on the partitioning information loss, can be computed
as follows:

SST =
n

∑
i=1

(xi − x̄)(xi − x̄)′, (2)

where xi is the i-th record in D, and x̄i is the average record of D. Note that all the above
equations use vector notation, so xi ∈ Rp.

The microaggregation problem consists in finding a k-partition with minimum SSE,
this is, the set of disjoint subsets of D so that D =

⋃g
m=1 sm, where sm is the m-th subset,

and g is the number of subsets, with minimum SSE. However, a normalized measure of
information loss (expressed in percentage) is also used:

Iloss =
SSE
SST

× 100. (3)

In terms of information loss, the worst case scenario for microaggregation would
happen when all records in D are replaced in D′ by the average of the dataset (i.e., SSE =
SST −→ Iloss = 100), and the best case scenario implies that D = D′ (i.e., k = 1, no
aggregation), which leads to SSE = Iloss = 0. Obviously, the latter case is optimal in
terms of information loss, but it offers no privacy protection, at all. Hence, values for the
protection parameter k are greater than one, typically: k = 3, 4, 5, or 6, and are chosen by
privacy experts in statistical agencies so as to adapt to the needs of each particular dataset.

2.3. Basics on the Traveling Salesman Problem

The Traveling Salesman Problem (TSP) [14] consists of finding a particular Hamiltonian
cycle. The problem can be stated as follows: a salesman leaves from one city and wants to
visit (exactly once) each other city in a given group and, finally, return to the starting city.
The salesman wonders in what order he should visit these cities so as to travel the shortest
possible total distance.

In terms of graph theory, the TSP can be modeled by a graph G = (V, E), where cities
are the nodes in set V = {v1, v2, ..., vn} and each edge eij ∈ E has an associated weight wij
representing the distance between nodes i and j. The goal is to find a Hamiltonian cycle,
i.e., a cycle which visits each node in the graph exactly once, with the least total weight.
An alternative approach to the Hamiltonian cycle to solve the TSP is finding the Shortest
Hamiltonian path through a graph (i.e., a path which visits each node in the graph exactly
once). As an example, Figure 1 shows a short Hamiltonian path for the Eurodist dataset,
which contains the distance (in km) between 21 cities in Europe.
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Figure 1. A Hamiltonian path for the Eurodist dataset.

Finding an optimal solution to the TSP is known to be NP-Hard. Hence, several heuris-
tics to find good but sub-optimal solutions have been developed. TSP heuristics typically
fall into two groups: those involving minimum spanning trees for tour construction and
those with edge exchanges to improve existing tours. There are numerous heuristics to
solve the TSP [15,16]. In this article, we have selected a representative sample of heuristics,
including well-known approaches and top performers from the state-of-the-art:

• Nearest Neighbor algorithm: The algorithm starts with a tour containing a randomly
chosen node and appends the next nearest node iteratively.

• Repetitive Nearest Neighbor: The algorithm is an extension of the Nearest Neighbor
algorithm. In this case, the tour is computed n times, each one considering a different
starting node and then selecting the best tour as the outcome.

• Insertion Algorithms: All insertion algorithms start with a tour that originated from a
random node. In each step, given two nodes already inserted in the tour, the heuristic
selects a new node that minimizes the increase in the tour’s length when inserted
between such two nodes. Depending on the way such the next node is selected, one
can find different variants of the algorithm. For instance, Nearest Insertion, Farthest
Insertion, Cheapest Insertion, and Arbitrary Insertion.

• Concorde: This method is currently one of the best implementations for solving
the symmetric TSP. It is based on the Branch-and-Cut method to search for optimal
solutions.

3. Related Work on Microaggregation

There is a wide variety of heuristics to solve the multivariate microaggregation prob-
lem in the literature. One of the most well-known methods is the Maximum Distance to
Average Vector (MDAV), proposed by Domingo-Ferrer et al. [17]. This method iteratively
creates clusters of k members considering the furthest records from the dataset centroid.
A variant of MDAV was proposed by Laszlo et al., namely the Centroid-Based Fixed Size
method (CBFS) [18], which also has optimized versions based on kd-tree neighborhood
search, such as KD-CBFS and KD-CBFSapp [19]. The Two Fixed Reference Points (TFRP)
method was proposed by Chang et al. [20]. It uses the two most extreme points of the
dataset at each iteration as references to create clusters. Differential Privacy-based mi-
croaggregation was explored by Yang et al. [21], which created a variant of the MDAV
algorithm that uses the correlations between attributes to select the minimum required
noise to achieve the desired privacy level. In addition, V-MDAV, a variable group-size
heuristic based on the MDAV method was introduced by Solanas et al. in Reference [13]
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with the aim to relax the cardinality constraints of fixed-size microaggregation and allow
clusters to better adapt to the data and reduce the SSE.

Laszlo and Mukherjee [18] approached the microaggregation problem through mini-
mum spanning trees, aimed at creating graph structures that can be pruned according to
each node’s associated weights to create the groups. Lin et al. proposed a Density-Based
Algorithm (DBA) [22], which first forms groups of records in density descending order,
and then fine-tunes these groups in reverse order. The successive Group Selection based
on sequential Minimization of SSE (GSMS) method [23], proposed by Panagiotakis et al.,
optimizes the information loss by discarding the candidate cluster that minimizes the
current SSE of the remaining records. Some methods are built upon the HM algorithm. For
example, Mortazavi et al. proposed the IMHM method [24]. Domingo-Ferrer et al. [17]
proposed a grouping heuristic that combines several methods, such as Nearest Point Next
(NPN-MHM), MDAV-MHM, and CBFS-MHM.

Other approaches have focused on the efficiency of the microaggregation procedure,
for example, the Fast Data-oriented Microaggregation (FDM) method proposed by Mor-
tazavi et al. [25] efficiently anonymizes large multivariate numerical datasets for multiple
successive values of k. The interested readers can find more detailed information about
microaggregation in Reference [5,26].

The most similar work related to ours is the one presented in Reference [27] by Heaton
and Mukherjee. The authors use TSP tour optimization heuristics (e.g., 2-opt, 3-opt) to
refine a path created with the information of a multivariate microaggregation method (e.g.,
MDAV, MD, CBFS). Notice that, in our proposed method (described in the next section), we
use tour construction TSP heuristics instead of optimization heuristics; thus, we eliminate
the need for using a multivariate microaggregation method as a pre-processing step, and
we decrease the computational time without hindering data utility.

4. Our Method

Our proposal is built upon two main building blocks: a TSP tour construction heuristic
(H), and the optimal univariate microaggregation algorithm of Hansen and Mukherjee
(HM). As we have already explained in Section 2, the HM algorithm is applied to univariate
numerical data, because it requires the input elements to be in order. However, we virtually
use it with multivariate data; thus, when we do that, we refer to it as Multivariate Hansen-
Mukherjee (MHM), although, in practice, the algorithm is univariate. Since our proposal is
based on a Heuristic (H) to obtain a Hamiltonian Path and the MHM algorithm, we have
come to call it HMHM-microaggregation or (HM)2-Micro, for short.

Given a multivariate microdata set (D) with p columns and r rows, we model it
as a complete graph G(N, E), where we assume that each row is represented by a node
ni ∈ N (or a city, if we think in terms of the TSP), and each edge eij ∈ E represents the
Euclidean distance between ni and nj (or the distance between cities in TSP terms). Hence,
we have a set of nodes N = {n1, n2, . . . nr} each representing rows of the microdata set in a
multivariate space Rp.

In a nutshell, we use H over G to create a Hamiltonian path (Hpath) that travels across
all nodes. Hpath is a permutation (ΠN = {πN

1 , πN
2 , . . . πN

r }) of the nodes in N, and de facto
it determines an order for the nodes (i.e., it provides a sense of precedence between nodes).
Hence, although D is multivariate, its rows represented as nodes in N can be sorted in a
univariant permutation Hpath that we use as input to the MHM algorithm. As a result, the
MHM algorithm returns the optimal univariate k-partition of Hpath, this is, the set of disjoint
subsets S = {s1, s2, . . . st} defining the clusters of N. Hence, since each node ni represents a
row in D, which is indeed multivariate, we have obtained a multivariate microaggregation
of the rows in D and provided a solution for the multivariate microaggregation. Notice that,
although MHM returns the optimal k-partition of Hpath, it does not imply that the resulting
microaggregation of D is optimal A schematic of our solution is depicted in Figure 2.
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Figure 2. Given a microdata dataset, we use a tour construction heuristic to generate a Hamiltonian path, which will be used as the
input of the MHM method to generate the groups.

Although the foundation of our proposal described above is pretty straightforward,
it has the beauty of putting together complex mathematical building blocks from the
multivariate and univariate worlds in a simple yet practical manner. In addition, our
solution is very flexible, since it allows the use of any heuristic H to create the Hamiltonian
path Hpath, and it allows for comprehensive studies, such as the one we report in the next
section.

Note that most TSP heuristics output a Hamiltonian cycle. However, since we need a
Hamiltonian path, we use the well-known solution of adding a dummy node in the graph
(i.e., a theoretical node in which its distance to all other nodes is zero), and we cut the cycle
by eliminating this node, so as to obtain a Hamiltonian path.

For the sake of completeness, we summarize our proposal step-by-step in Algorithm 1,
and we next comment on it. Our solution can be seen as a meta-heuristic to solve the
multivariate microaggregation problem, since it can accommodate any Heuristic (H) able
to create a Hamiltonian cycle from a complete graph (G), and it could deal with any privacy
parameter (k). Thus, our algorithm receives as input a numerical multivariate microdata
set D with p columns (attributes) and r rows, that have to be microaggregated, a Heuristic
H, and a privacy parameter k (see Algorithm 1: line 1). In order to avoid bias towards
higher magnitude variables, the original dataset D (understood as a matrix) is standardized
by subtracting to each element the average of its column and dividing it by the standard
deviation of the column. The result is a standardized dataset Dstd in which each column
has zero mean and unitary standard deviation (see Algorithm 1: line 2). Next, the distance
matrix Mdist is computed. Each element mij ∈ Mdist contains the Euclidean distance
between row i and row j in Dstd; hence, Mdist is a square matrix (r× r) (see Algorithm 1: line
3). In order to be able to cut the Hamiltonian Cycle and obtain a Hamiltonian path, we add
a dummy node to the dataset by adding a zero column and a zero row to Mdist and generate
Mdum

dist , which is a square matrix (r + 1× r + 1) (see Algorithm 1: line 4). Mdum
dist is, in fact, a

weighted adjacency matrix that defines a graph G(N, E) with nodes N = {n1, . . . , nr+1}
and edges E = {e11, . . . ei,j . . . er+1,r+1} = {Mdum

dist 1,1, . . . Mdum
dist r+1,r+1}. With this matrix as
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an input, we could compute a Hamiltonian Cycle Hcycle on G by applying a TSP heuristic
H (see Algorithm 1: line 5). Notice that this Heuristic H could be anyone that gets as
input a weighted graph and returns a Hamiltonian cycle. Some examples are: Concorde,
Nearest Neighbor, Repetitive Nearest Neighbor, and Insertion Algorithms. After obtaining
Hcycle, we cut it by removing the dummy node (see Algorithm 1: line 6), and we obtain a
Hamiltonian path Hpath that defines a permutation (ΠN = {πN

1 , πN
2 , . . . πN

r }) of the nodes
in N, as well as determines an order for the nodes that can be inputted to the MHM
algorithm to obtain its optimal k-partition (S) (see Algorithm 1: line 7). S is a set of disjoint
subsets S = {s1, s2, . . . st} defining the clusters of nodes in N. Hence, with S and D, we
could create a microaggregated dataset D′ by replacing each row in D by the average vector
of the k-partition subset to which it belongs (see Algorithm 1: line 8).

After applying the algorithm, we have transformed the original dataset D into a
dataset D′ that has been microaggregated so as to guarantee the privacy criteria established
by k.

Algorithm 1 (HM)2-Micro

1: function (HM)2-MICRO( Microdata set D, TSP-Heuristic H, Privacy Parameter k)

2: Dstd = StandardizeDataset(D)

3: Mdist = ComputeDistanceMatrix(Dstd)

4: Mdum
dist = InsertDummyNode(Mdist)

5: Hcycle = CreateHamiltonianCycle(Mdum
dist , H)

6: Hpath = CutDummyNode(Hcycle)

7: S = MHM(Hpath, Dstd, k)

8: D′ = BuildMicroaggregatedDataSet(D, S);

9: return D′

10: end function

5. Experiments

With the aim to practically validate the usefulness of our multivariate microaggrega-
tion proposal, we have thoroughly tested it on six datasets (described in Section 5.1) that
serve as benchmarks. In addition, we are interested in knowing (if and) to what extend
our method outperforms the best performing microaggregation methods in the literature.
Hence, we have compared our proposal with these methods (described in Section 5.2),
and the results of all these tests are summarized in Section 5.3. Overall, considering four
different values for the privacy parameter k ∈ {3, 4, 5, 6}, ten microaggregation algorithms,
50 repetitions per case, and six datasets, we have run over 12.000 microaggregation tests,
which allow us to provide a statistically solid set of results.

5.1. Datasets

We used six datasets as benchmarks for our experiments. We can classify those
datasets into two main groups: The first group comprises three well-known SDC microdata
sets that have been used for years as benchmarks in the literature, namely “Census”, “EIA”,
and “Tarragona”. The second group comprises three mobility datasets containing real GPS
traces from three Spanish cities, namely “Barcelona”, “Madrid”, and “Tarraco”. Notice that
we use the term “Tarraco”, the old Roman name for the city of Tarragona, in order to avoid
confusion with the classic benchmark dataset “Tarragona”. The features of each dataset are
next summarized:
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The Census dataset was obtained using the public Data Extraction System of the U.S.
Census Bureau. It contains 1080 records with 13 numerical attributes. The Tarragona dataset
was obtained from the Tarragona Chamber of Commerce. It contains information on
834 companies in the Tarragona area with 13 variables per record. The EIA dataset was
obtained from the U.S. Energy Information Authority, and it consists of 4092 records with 15
attributes. More details on the aforementioned datasets can be obtained in Reference [28].

The Barcelona, Madrid, and Tarraco datasets consist of OpenStreetMap [29] GPS traces
collected from those cities: Barcelona contains the GPS traces of the city of Barcelona within
the area determined by the parallelogram formed by latitude (41.3726866, 41.4078446)
and longitude (2.1268845, 2.1903992). The dataset has 969 records with 30 GPS locations
each. Madrid contains the GPS traces of the city of Madrid within the area determined by
the parallelogram formed by latitude (40.387613, 40.483515) and longitude (−3.7398145,
−3.653985). The dataset has 959 records with 30 GPS locations each. Tarraco contains the
GPS traces of the city of Tarragona within the area determined by the parallelogram formed
by latitude (41.0967083, 41.141174) and longitude (1.226008, 1.2946691). The dataset has
932 records with 30 GPS locations each.

In all trajectories datasets, each record consists of 30 locations represented as (latitude
and longitude). Hence, each record has 60 numerical values. These locations were extracted
from each corresponding parallelogram according to the amount of recorded tracks and
their length.

All datasets are available in our website: https://www.smarttechresearch.com/publ
ications/symmetry2021-Maya-Casino-Solanas/ (accessed on 1 May 2021).

Table 1. Comparing methods and features. For Concorde, M is a bound on the time to explore subproblems, b is a branching
factor, and d is a search depth.

Method Cardinality Computational Cost Reference

MDAV fixed O(n2/2k) [17]
V-MDAV variable O(n2) [13]
MDAV-LK-MHM variable O(n2/2k) [27]

(HM)2-Micro TSP Heuristic + MHM

Nearest Neighbor variable O(n2) [15]
Repetitive Nearest-Neighbor variable O(n2 log n) [15]
Nearest Insertion variable O(n2) [30]
Farthest Insertion variable O(n2) [30]
Cheapest Insertion variable O(n2) [30]
Arbitrary Insertion variable O(n2) [30]
Concorde variable O(Mbd) [31]

5.2. Compared Methods

We have selected a representative set of well-known and state-of-the-art methods to
assess the value of our approach. We have selected two classic microaggregation methods
(i.e., MDAV and V-MDAV), as baselines. In the case of V-MDAV, the method was run for
several values of γ ∈ {0, 2}, and the best result is reported. Although some other newer
methods might have achieved better results, they are still landmarks that deserve to be
included in any microaggregation comparison.

For newer and more sophisticated methods, we have considered the work of Heaton
and Mukherjee [27], in which they study a variety of microaggregation heuristics, including
methods, such as CBFS and MD. Thus, instead of comparing our proposal with all those
methods, we have taken the method that Heaton and Mukherjee reported as the best
performer, namely the MDAV-LK-MHM method. This method, which is based on MDAV,
first creates a microaggregation using MDAV, next improves the result of MDAV by apply-
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ing the LK heuristic, and it finally applies MHM to obtain the resulting microaggregation
(cf. Reference [27] for further details on the algorithm).

Regarding our proposal (i.e., (HM)2-Micro), as we already discussed, it can be under-
stood as a meta-heuristic able to embody any heuristic H that returns a Hamiltonian Cycle.
Hence, with the aim to determine the best heuristic, we have analyzed seven alternatives,
namely Nearest Neighbor, Repetitive Nearest Neighbor, Nearest Insertion, Farther In-
sertion, Cheapest Insertion, Arbitrary Insertion, and (our suggestion) Concorde. Table 1
summarizes some features of all selected methods, including the reference to the original
article where the method was described. For our method, each reference points to the
article describing the TSP heuristic.

The implementation of all these methods have used the R package sdcMicro [28],
the TSP heuristics implemented in Reference [32], and the LK heuristics implemented in
Reference [33]. LK has been configured so that the algorithm runs once at each iteration
parameter RUN=1 until a local optimum is reached. This same criteria was followed for the
other TSP heuristics. In this regard, the heuristics we used consider a random starting node
at each run. Hence, each experiment has been repeated 50 times to guarantee statistically
sound outcomes regardless of this random starting point.

5.3. Results Overview

By using the datasets and methods described above, we have analyzed the Information
Loss (expressed in percentage), as a measure of data utility (cf. Section 2 for details). It is
assumed that, given a privacy parameter k that guarantees that the microaggregated dataset
is k-anonymous, the lower the Information Loss the better the result and performance of
the microaggregation method. The results are reported in Tables 2–7 with the best (lowest)
information loss highlighted in green.

Overall, it can be observed that our method, (HM)2-Micro, with the Concorde heuris-
tic is the best performer in 79% of the experiments, and it is the second best in the remaining
21% (for which the MDAV-LK-MHM outperforms it by a narrow margin of less than 2%).
Interestingly enough, although (HM)2-Micro, with both Nearest Insertion and Farthest-
Insertion, is not the best performer in any experiment, it outperforms MDAV-LK-HMH
50% of the times. The rest of the methods obtain less consistent results and highly depend
on the dataset.

When we analyze the results more closely for each particular dataset, we observe that,
in the case of the “Census” dataset (cf. Table 2), our method with Concorde outperforms all
methods for all values of k. In addition, despite the random nature of TSP-heuristics, the
values of σ are very stable, denoting the robustness of all methods, yet slightly higher on
average in the case of the methods with higher Information Loss. It is worth emphasizing
though, that, in all runs, our method with Concorde and the MDAV-LK-MHM method
obtained better results than MDAV and V-MDAV (i.e., the max values obtained in all runs
are lower than the outcomes obtained by MDAV and V-MDAV).

Table 2. Information Loss obtained on the Census dataset.

Census

k = 3 k = 4 k = 5 k = 6

Method Average σ min max Average σ min max Average σ min max Average σ min max

MDAV 5.6922 NA NA NA 7.4947 NA NA NA 9.0884 NA NA NA 10.3847 NA NA NA

V-MDAV 5.6619 NA NA NA 7.4947 NA NA NA 9.0070 NA NA NA 10.2666 NA NA NA

MDAV-LK-MHM 5.1085 0.0398 5.0256 5.1877 6.9131 0.0526 6.7774 7.0227 8.5199 0.0842 8.3100 8.7030 9.9752 0.1284 9.7675 10.2527

Nearest Insertion-MHM 5.6561 0.1369 5.3596 6.0695 7.4818 0.1579 7.1946 7.9318 8.9617 0.2539 8.5190 9.4727 10.3005 0.2927 9.7624 11.2086

Farthest Insertion-MHM 5.5638 0.0956 5.3300 5.8995 7.3485 0.0990 7.1723 7.5853 8.8234 0.1322 8.5784 9.1748 10.1250 0.1932 9.6970 10.7363

Cheapest Insertion-MHM 5.7044 0.0719 5.5669 5.8766 7.4625 0.1155 7.2674 7.8052 9.0340 0.1236 8.7212 9.3847 10.3787 0.1305 10.1706 10.9089

Arbitrary Insertion-MHM 5.5883 0.0976 5.4235 5.8763 7.3723 0.1438 7.1272 7.8250 8.8696 0.1788 8.5072 9.2867 10.2011 0.2475 9.7081 10.7794

Nearest Neighbor-MHM 6.9718 0.3508 6.1978 7.7291 9.2433 0.3702 8.6744 10.2246 11.3287 0.3854 10.5230 12.3958 13.1357 0.4053 12.4711 13.9421

Repetitive NN-MHM 6.2888 0.2192 5.8811 6.6841 8.6779 0.2799 7.9941 9.3345 10.7518 0.2472 10.3421 11.4554 12.5882 0.3143 11.9360 13.2915

Concorde-MHM 5.0563 0.0377 4.9917 5.1169 6.8846 0.0555 6.7895 7.0217 8.4576 0.0903 8.2372 8.6614 9.8440 0.1232 9.5542 10.2517
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For the “EIA” dataset (cf. Table 3), MDAV-LK-MHM is the best performer for all values
of k except k = 5, for which our proposal with Concorde performs better. In this case, the
results obtained by these two methods are very close. Similarly to the results in “Census”,
the max values obtained by these two methods outperform MDAV and V-MDAV. In the case
of “Tarragona” (cf. Table 4), our method with Concorde outperforms all other methods.
Surprisingly, both MDAV and V-MDAV obtain better results than MDAV-LK-MHM, which
performs poorly in this dataset.

Table 3. Information Loss obtained on the EIA dataset.

EIA
k = 3 k = 4 k = 5 k = 6

Method Average σ min max Average σ min max Average σ min max Average σ min max
MDAV 0.4829 NA NA NA 0.6713 NA NA NA 1.6667 NA NA NA 1.3078 NA NA NA
V-MDAV 0.4829 NA NA NA 0.6713 NA NA NA 1.2771 NA NA NA 1.2320 NA NA NA
MDAV-LK-MHM 0.3741 0.0075 0.3659 0.4097 0.5251 0.0116 0.5117 0.5693 0.7890 0.0336 0.7502 0.8932 1.0430 0.0289 1.0033 1.1113
Nearest Insertion-MHM 0.4061 0.0114 0.3831 0.4238 0.5781 0.0241 0.5441 0.6179 0.8621 0.0456 0.8032 0.9760 1.1254 0.0837 0.9976 1.3334
Farthest Insertion-MHM 0.4070 0.0119 0.3872 0.4207 0.5878 0.0251 0.5524 0.6277 0.8764 0.0522 0.8190 0.9747 1.1776 0.0359 1.1245 1.2484
Cheapest Insertion-MHM 0.5254 0.0358 0.4692 0.5651 0.7321 0.0641 0.6322 0.8477 1.0868 0.0689 0.9910 1.2264 1.4061 0.1147 1.2605 1.6329
Arbitrary Insertion-MHM 0.4281 0.0300 0.3921 0.4944 0.6092 0.0376 0.5566 0.6699 0.9048 0.0840 0.8194 1.0621 1.1928 0.1077 1.0652 1.3476
Nearest Neighbor-MHM 0.9028 0.1455 0.5089 1.1023 1.1510 0.1675 0.7056 1.3776 1.4015 0.1788 0.9451 1.6767 1.6792 0.1107 1.4635 1.9139
Repetitive NN-MHM 0.5110 0.0532 0.4725 0.6599 0.7192 0.0557 0.6646 0.8619 1.0072 0.0701 0.9274 1.1126 1.3101 0.1521 1.1561 1.4825
Concorde-MHM 0.3889 0.0203 0.3673 0.4210 0.5288 0.0170 0.5087 0.5576 0.7802 0.0267 0.7581 0.8501 1.0476 0.0282 1.0009 1.0904

Table 4. Information Loss obtained on the Tarragona dataset.

Tarragona
k = 3 k = 4 k = 5 k = 6

Method Average σ min max Average σ min max Average σ min max Average σ min max
MDAV 16.9326 NA NA NA 19.5460 NA NA NA 22.4619 NA NA NA 26.3252 NA NA NA
V-MDAV 16.6603 NA NA NA 19.5460 NA NA NA 22.4619 NA NA NA 26.3252 NA NA NA
MDAV-LK-MHM 18.7969 1.8738 15.0595 23.0830 22.8523 1.7576 19.1195 26.2806 26.2432 1.5066 23.0421 28.9522 28.5244 1.7742 25.1703 30.9656
Nearest Insertion-MHM 15.9687 0.8360 15.1107 20.1835 19.3677 1.3141 17.8032 24.5286 23.7323 1.4376 21.8365 28.9753 26.9018 1.5674 24.6538 33.0785
Farthest Insertion-MHM 15.7634 0.2062 15.4743 16.6623 19.0323 0.5521 18.1062 20.2105 22.8316 0.7636 21.3313 24.1988 25.7627 0.4496 24.9004 26.9613
Cheapest Insertion-MHM 16.3142 1.4861 15.2169 22.0271 19.7784 1.6060 18.3103 25.8916 23.9017 1.7155 22.3121 30.0828 27.5572 1.6611 25.2394 32.7082
Arbitrary Insertion-MHM 16.0918 0.7527 15.1310 18.9668 19.5461 1.3436 18.2072 25.8572 23.7685 1.3985 21.7333 29.1863 27.0419 1.6872 25.0093 33.2382
Nearest Neighbor-MHM 22.3019 0.8866 19.9620 23.5496 27.1002 1.2234 24.2527 29.5117 30.4478 1.5455 27.7026 33.3513 34.5445 1.2088 31.3302 37.5350
Repetitive NN-MHM 17.6981 1.2157 15.7435 20.9981 22.1232 1.9138 20.0839 28.7399 27.9089 1.7946 25.1434 32.5729 30.4085 1.9216 28.0648 35.2458
Concorde-MHM 14.7677 0.0858 14.6294 14.9633 17.9957 0.1241 17.7528 18.2211 21.9895 0.2164 21.6712 22.3479 25.3459 0.2061 24.8045 25.6564

So, it can be concluded that the overall winner for the classical benchmarks (i.e.,
Census, EIA, and Tarragona) is our method, (HM)2-Micro, with the Concorde heuristic,
that is only marginally outperformed by MDAV-LK-MHM in the EIA dataset.

Regarding the other three datasets containing GPS traces (i.e., Barcelona, Madrid and
Tarraco), our method, (HM)2-Micro, with the Concorde heuristic, is the best performer in
83% of the cases and comes second best in the remaining 17%. For the Barcelona dataset (cf.
Table 5), MDAV-LK-MHM and (HM)2-Micro, with the Concorde heuristic, perform very
well and similarly. The methods with the worst Information Loss are MDAV and V-MDAV.
Our method, (HM)2-Micro, with the Insertion heuristics, have a remarkable performance,
obtaining values similar to those of MDAV-LK-MHM and Concorde. Nevertheless, it is
worth noting that the max (worst) values obtained by MDAV-LK-MHM and Concorde are
still better than the averages obtained by the other methods. In the case of the Madrid
dataset (cf. Table 6), our method, (HM)2-Micro, with the Concorde heuristic, achieves the
minimum (best) value of Information Loss for all values of k. We can also observe that our
method with Insertion heuristics offers higher performance than MDAV-LK-MHM. Finally,
the results for the Tarraco dataset (cf. Table 7) show that the minimum (best) Information
Loss value is obtained by our method with the Concorde heuristic in all cases. In this case,
MDAV-LK-MHM performs poorly, and, for k = 3 and k = 4, MDAV and V-MDAV are
better.
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Table 5. Information Loss obtained on the Barcelona dataset.

Barcelona
k = 3 k = 4 k = 5 k = 6

Method Average σ min max Average σ min max Average σ min max Average σ min max
MDAV 2.5667 NA NA NA 3.5023 NA NA NA 4.2849 NA NA NA 5.1873 NA NA NA
V-MDAV 2.5667 NA NA NA 3.3193 NA NA NA 4.2849 NA NA NA 5.1873 NA NA NA
MDAV-LK-MHM 1.6251 0.0362 1.5637 1.7425 2.1913 0.0339 2.1170 2.2738 2.6798 0.0607 2.5156 2.8067 3.2120 0.0664 3.0731 3.3825
Nearest Insertion-MHM 1.8022 0.0656 1.6857 1.9438 2.3526 0.0842 2.1754 2.5050 2.8405 0.1008 2.6417 3.0411 3.3316 0.1083 3.1093 3.5103
Farthest Insertion-MHM 1.7838 0.0525 1.6967 1.8980 2.3575 0.0698 2.1919 2.4681 2.8386 0.0751 2.6654 2.9670 3.3189 0.1131 3.1112 3.6445
Cheapest Insertion-MHM 1.8156 0.0565 1.6887 1.9293 2.3880 0.0912 2.2354 2.5473 2.8887 0.0792 2.7807 3.0405 3.4118 0.1238 3.1938 3.6247
Arbitrary Insertion-MHM 1.8061 0.0635 1.6823 1.9469 2.3593 0.0749 2.1808 2.5414 2.8231 0.0911 2.6338 3.0251 3.3331 0.1085 3.1031 3.5584
Nearest Neighbor-MHM 2.2019 0.1202 1.9165 2.4476 2.9274 0.1778 2.5276 3.3377 3.4733 0.2168 3.0611 3.9399 4.1053 0.2590 3.5159 4.6420
Repetitive NN-MHM 2.0091 0.0563 1.8899 2.2547 2.7474 0.0611 2.6108 3.0130 3.2318 0.1001 3.1176 3.5701 3.8877 0.1220 3.7106 4.1982
Concorde-MHM 1.6829 0.0375 1.6210 1.7848 2.2132 0.0534 2.1138 2.3426 2.6786 0.0627 2.4974 2.8268 3.1075 0.0718 2.9588 3.2348

Table 6. Information Loss obtained on the Madrid dataset.

Madrid
k = 3 k = 4 k = 5 k = 6

Method Average σ min max Average σ min max Average σ min max Average σ min max
MDAV 3.1876 NA NA NA 4.3353 NA NA NA 5.2883 NA NA NA 5.8235 NA NA NA
V-MDAV 3.1876 NA NA NA 4.3353 NA NA NA 5.2883 NA NA NA 5.8235 NA NA NA
MDAV-LK-MHM 2.9872 0.1285 2.7200 3.1946 4.0536 0.1398 3.6804 4.3314 4.8541 0.1664 4.4680 5.1856 5.5703 0.2163 5.0931 6.0088
Nearest Insertion-MHM 2.7511 0.0814 2.5782 2.9116 3.7039 0.1122 3.4304 3.9623 4.4522 0.1535 4.1533 4.8463 5.1544 0.1549 4.8661 5.5510
Farthest Insertion-MHM 2.6683 0.0558 2.5319 2.8280 3.6187 0.0742 3.4605 3.7755 4.3338 0.1131 4.1260 4.5668 5.0598 0.1172 4.8391 5.3372
Cheapest Insertion-MHM 2.7833 0.0749 2.6517 2.9789 3.7531 0.0804 3.5253 3.9830 4.4752 0.1140 4.3163 4.7356 5.2496 0.1345 5.0147 5.5609
Arbitrary Insertion-MHM 2.7476 0.0757 2.6009 2.9160 3.7156 0.0986 3.5213 3.9828 4.4149 0.1420 4.0583 4.7078 5.1070 0.1437 4.7687 5.3754
Nearest Neighbor-MHM 3.4257 0.1714 3.0816 3.9040 4.7553 0.2116 4.2823 5.3736 5.7671 0.2194 5.1807 6.3191 6.7615 0.2507 6.1871 7.4355
Repetitive NN-MHM 3.1236 0.1345 2.8799 3.5430 4.4141 0.1482 4.1254 5.0012 5.3911 0.2127 5.0894 6.1676 6.4865 0.2223 6.1764 7.3492
Concorde-MHM 2.4845 0.0336 2.4053 2.5728 3.4302 0.0466 3.3249 3.5664 4.1124 0.0774 3.9816 4.3228 4.8066 0.1065 4.6538 5.0534

Table 7. Information Loss obtained on the Tarraco dataset.

Tarraco
k = 3 k = 4 k = 5 k = 6

Method Average σ min max Average σ min max Average σ min max Average σ min max
MDAV 0.9988 NA NA NA 1.4180 NA NA NA 1.7683 NA NA NA 2.0260 NA NA NA
V-MDAV 0.9988 NA NA NA 1.3093 NA NA NA 1.7182 NA NA NA 2.0051 NA NA NA
MDAV-LK-MHM 1.1365 0.0154 1.0979 1.1465 1.4216 0.0203 1.4115 1.4723 1.7201 0.0401 1.6995 1.8257 2.0238 0.0404 2.0061 2.1247
Nearest Insertion-MHM 0.9113 0.0345 0.8490 1.0100 1.2634 0.0745 1.1052 1.4306 1.5988 0.1160 1.4220 1.8839 1.9105 0.1517 1.7018 2.2870
Farthest Insertion-MHM 0.9190 0.0368 0.8582 1.0268 1.2217 0.0490 1.1123 1.3755 1.5040 0.0581 1.3965 1.7118 1.8346 0.0612 1.7533 2.1299
Cheapest Insertion-MHM 0.9500 0.0406 0.8975 1.0962 1.2951 0.0557 1.2270 1.4637 1.6200 0.0870 1.5225 1.8677 1.9704 0.1094 1.8584 2.2471
Arbitrary Insertion-MHM 0.9258 0.0455 0.8589 1.0269 1.2530 0.0753 1.1419 1.4538 1.5695 0.0971 1.4454 1.8312 1.9051 0.1265 1.7475 2.3396
Nearest Neighbor-MHM 1.5080 0.1937 1.1624 2.0189 2.1341 0.2232 1.5881 2.6725 2.6499 0.2671 2.0802 3.2271 3.3041 0.4123 2.6557 4.3884
Repetitive NN-MHM 1.2177 0.1286 1.0276 1.5906 1.7806 0.1599 1.4244 2.1131 2.2545 0.1882 1.9146 2.7394 2.7384 0.2209 2.3073 3.4314
Concorde-MHM 0.8482 0.0179 0.8167 0.9005 1.1031 0.0324 1.0739 1.2348 1.3805 0.0556 1.3275 1.6813 1.7280 0.0652 1.6610 2.1308

We have already discussed that all studied methods (with the exception of MDAV and
V-MDAV) have a non-deterministic component emerging from the random selection of the
initial node. This random selection affects the performance of the final microaggregation
obtained. With the aim to analyze the effect of this non-deterministic behavior, we have
studied the standard deviation of all methods for all values of k and for all datasets.
In addition, we have visually inspected the variability of the results by using box plot
diagrams.

Since the results are quite similar and consistent across all datasets, for the sake of
clarity, we only reproduce here the box plots for the “Census” dataset (see Figure 3), and
we leave the others in Appendix A for the interested reader.

120



Symmetry 2021, 13, 916

Figure 3. Information Loss variability for each value of k over the Census dataset.

In Figure 3, we can observe that the Information Loss values increase with k, but all
methods have the same behavior regardless of the value of k. In addition, it is clear that the
most stable methods are (HM)2-Micro, with Concorde, and MDAV-LK-MHM.

Overall, we observe some expected differences depending on the datasets. However,
the behavior of the best performing methods is stable. Particularly, the datasets with GPS
traces (i.e., Barcelona, Madrid, and Tarraco) show more stable results. In summary, the best
method was our (HM)2-Micro with Concorde, exhibiting the most stable results across
all datasets.

6. Discussion

Over the previous sections, we have presented our microaggregation method, (HM)2-
Micro, its rationale, and its performance against other classic and state-of-the-art methods
on a variety of datasets. In the previous section, we have reported the main results, and we
will discuss them next by progressively answering the research questions that we posed in
the Introduction of the article.

Q1: How to create a suitable ordering for a univariate microaggregation algorithm, when
the records are in Rp.

A main takeaway of this article is that, by using a combination of TSP tour construction
heuristics (e.g., Concorde) and an optimal univariate microaggregation algorithm, we are
properly ordering multivariate datasets in a univariate fashion that leads to excellent
multivariate microaggregation solutions. Other approaches to order Rp points might
consider projecting them over the principal component. However, the information loss
associated with this approach makes it unsuitable. In addition, other more promising
approaches, like the one used in MDAV-LK-MHM, first create a k-partition and set an
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order based on maximum distance criteria. Although this approach might work well in
some cases, we have clearly seen that Hamiltonian paths created by TSP-heuristics, like
Concorde, outperform this approach. Hence, based on the experiments of Section 5, we
can conclude that TSP-heuristics, like Concorde, provide an order for elements in Rp that
is suitable for an optimal univariate microaggregation algorithm to output a consistent
multivariate microaggregation solution with low Information Loss (i.e., high data utility).
Moreover, from all analyzed heuristics, it is clear that the best performer is Concorde,
followed by insertion heuristics.

Q2: Are the length of the Hamiltonian path and the information loss of the microaggrega-
tion related?, or Do shorter Hamiltonian paths lead to microaggregation solutions with
lower information loss?

When we started this research, our intuition was that good heuristic solutions of
the TSP (i.e., those with shorter path lengths) would provide a Hamiltonian path, that
could be used as an ordered vector for the HM optimal univariate microaggregation
algorithm, resulting in a good multivariate microaggregation solution. From this intuition,
we assumed that shorter Hamiltonian paths would lead to lower Information Loss in
microaggregated datasets.

In order to validate (or disproof) this intuition, we have analyzed the Pearson correla-
tion between the Hamiltonian path length obtained by all studied heuristics (i.e., Nearest
Neighbor, Repetitive Nearest Neighbor, Nearest Insertion, Farther Insertion, Cheapest In-
sertion, Arbitrary Insertion, and Concorde) and the SSE of the resulting microaggregation.
We have done so for all studied datasets and k values. The results are summarized in
Table 8, and all plots along with a trend line are available in Appendix B.

Table 8. Summary of the Pearson correlation between Path Length and SSE.

Dataset k = 3 k = 4 k = 5 k = 6

Census 0.48 0.39 0.32 0.28
EIA 0.62 0.67 0.74 0.76
Tarragona 0.70 0.72 0.82 0.71
Barcelona 0.83 0.81 0.81 0.80
Madrid 0.84 0.81 0.80 0.78
Tarraco 0.80 0.82 0.82 0.80

From the correlation analysis, it can be concluded that there is a positive correlation
between the Hamiltonian path length and the SSE. This is, the shorter the path length the
lower the SSE. This statement holds for all k and for all datasets (although Census exhibits
a lower correlation). Hence, although this result is not a causality proof, it can be safely
said that good solutions of the TSP problem lead to good solutions of the multivariate
microaggregation problem. In fact, the best heuristic (i.e., Concorde) always results in the
lowest (best) SSE.

Interested readers can find all plots in Appendix B. However, for the sake of clarity,
let us illustrate this result by discussing the case of the Madrid dataset with k = 6, depicted
in Figure 4. In the figure, the positive correlation is apparent. In addition, it is clear that
heuristics tend to form clusters. In a nutshell, the best heuristic is Concorde, followed
by the insertion family of methods (i.e., Nearest Insertion, Furthest Insertion, Cheapest
Insertion, and Arbitrary Insertion), followed by Repetitive Nearest Neighbor and Nearest
Neighbor.

Although Figure 4 clearly illustrates the positive correlation between the path length
and the SSE, it also shows that heuristics tend to cluster and might indicate that not only
the path but the heuristic (per se) plays a role in the reduction of the SSE. This indication
leads us to our next research question.
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Figure 4. Relation between SSE and Path Length for Madrid and k = 6.

Q3: Is the length of the Hamiltonian path the only factor affecting information loss or
does the particular construction of the path (regardless of the length) affect the informa-
tion loss?

In the previous question, we have found clear positive correlation between the path
length and the SSE. However, we have also observed apparent clusters suggesting that
the very heuristics could be responsible for the minimization of the SSE. In other words,
although the path length and SSE are positively correlated when all methods are analyzed
together, would this correlation hold when heuristics are analyzed one at a time? In order
to answer this question, we have analyzed the results of each heuristic individually, and
we have observed that there is still positive correlation between path length and SSE, but it
is very weak or almost non-existent (i.e., very close to 0), as Figure 5 illustrates.

Figure 5. Correlation between path length and SSE for each individual method (from top to bottom:
Cheapest Insertion, Concorde, and Nearest Neighbor) for k = 3 over the Madrid dataset.

The results shown in Figure 5 are only illustrative, and a deeper analysis that is out
of the scope of this paper would be necessary. However, our initial results indicate that,
although there is positive correlation between path length and SSE globally, this correlation
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weakens significantly when analyzed on each heuristic individually. This result suggests
that it is not only the length of the path but the way in which this path is constructed what
affects the SSE. This would explain why similar methods (e.g., those based on insertion)
behave similarly in terms of SSE although their paths’ length varies.

Q4: Does (HM)2-Micro provide better solutions (in terms of information loss) than the
best performing microaggregation methods in the literature?

This question has been already answered in Section 5.3. However, for the sake of
completeness, we summarize it here: The results obtained after executing more than
12,000 tests suggest that our solution (HM)2-Micro obtains better results than classic
microaggregation methods, such as MDAV and V-MDAV. Moreover, when (HM)2-Micro
uses the Concorde heuristic to determine the Hamiltonian path, it outperforms the best
state-of-the-art methods consistently. In our experiments, (HM)2-Micro with Concorde
was the best performer 79% of the times and was the second best in the remaining 21%.

Q5: Do TSP-based microaggregation methods perform better than current solutions on
trajectories datasets?

(HM)2-Micro with Concorde is the best overall performer. Moreover, if we focus
on those datasets with trajectory data (i.e., Barcelona, Madrid, and Tarraco), the results
are even better. It is the best performer in 83% of the tests and the second best in the
remaining 17%. This good behavior of the method could result from the very foundations
of the TSP; however, there is still plenty of research to do in this line to reach more solid
conclusions. Location privacy is a very complex topic that encompasses many nuances
beyond k-anonymity models (such as the one followed in this article). However, this
result is an invigorating first step towards the analysis of novel microaggregation methods
applied to trajectory analysis and protection.

7. Conclusions

Microaggregation has been studied for decades now, and, although finding the op-
timal microaggregation is NP-Hard and a polynomial-time microaggregation algorithm
has not been found, steady improvements over microaggregation heuristics have been
made. Hence, after such a long research and polishing process, finding new solutions that
improve the best methods is increasingly difficult. In this article, we have presented (HM)2-
Micro, a meta-heuristic that leverages the advances in TSP solvers and combines them
with the optimal univariate microaggregation to create a flexible and robust multivariate
microaggregation solution.

We have studied our method and thoroughly compared it to classic and state-of-the-art
microaggregation algorithms over a variety of classic benchmarks and trajectories datasets.
Overall, we have executed more than 12,000 tests, and we have shown that our solution
embodying the Concorde heuristic outperforms the others. Hence, we have shown that our
TSP-inspired method could be used to guarantee k-anonymity of trajectories datasets whilst
reducing the Information Loss, thus increasing data utility. Furthermore, our proposal is
very stable, i.e., it does not change significantly its performance regardless of the random
behavior associated with initial nodes selection.

In addition to proposing (HM)2-Micro, we have found clear correlations between the
length of Hamiltonian Paths and the SSE introduced by microaggregation processes, and
we have shown the importance of the Hamiltonian Cycle construction algorithms over the
overall performance of microaggregation.

Despite these relevant results, there is still much to do in the study of microaggre-
gation and data protection. Future work will focus on scaling up (HM)2-Micro to high-
dimensional and very-large datasets. Considering the growing importance of Big Data
and Cloud Computing, adapting our solution to distributed computation environments is
paramount. Moreover, adjusting TSP heuristics to leverage lightweight microaggregation-
based approaches is an interesting research path to follow. In addition, although the values
of the privacy parameter k are typically low (i.e., 3, 4, 5, 6), we plan to study the effect of
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larger values of k on our solution. Last but not least, since microaggregation is essentially a
data-oriented procedure, we will study how our solution adapts to data structures from
specific domains, such as healthcare, transportation, energy, and the like.

All in all, with (HM)2-Micro, we have set the ground for the study of multivariate
microaggregation meta-heuristics from a new perspective, that might continue in the years
to come.
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Appendix A. Information Loss Variability Box Plots

Figure A1. Information Loss variability for each value of k over the Census dataset.
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Figure A2. Information Loss variability for each value of k over the EIA dataset.

Figure A3. Information Loss variability for each value of k over the Tarragona dataset.
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Figure A4. Information Loss variability for each value of k over the Barcelona dataset.

Figure A5. Information Loss variability for each value of k over the Madrid dataset.

127



Symmetry 2021, 13, 916

Figure A6. Information Loss variability for each value of k over the Tarraco dataset.
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Appendix B. Correlation Analysis between “Path Length” and “SSE”

Figure A7. Relation between SSE and Path Length for Census and k ∈ {3, 4, 5, 6}.
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Figure A8. Relation between SSE and Path Length for EIA and k ∈ {3, 4, 5, 6}.
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Figure A9. Relation between SSE and Path Length for Tarragona and k ∈ {3, 4, 5, 6}.
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Figure A10. Relation between SSE and Path Length for Barcelona and k ∈ {3, 4, 5, 6}.
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Figure A11. Relation between SSE and Path Length for Madrid and k ∈ {3, 4, 5, 6}.
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Figure A12. Relation between SSE and Path Length for Tarraco and k ∈ {3, 4, 5, 6}.
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Abstract: Let G be a graph with no isolated vertex and f : V(G) → {0, 1, 2} a function. Let Vi = {v ∈
V(G) : f (v) = i} for every i ∈ {0, 1, 2}. The function f is an outer-independent Roman dominating
function on G if V0 is an independent set and every vertex in V0 is adjacent to at least one vertex in V2.
The minimum weight ω( f ) = ∑v∈V(G) f (v) among all outer-independent Roman dominating functions
f on G is the outer-independent Roman domination number of G. This paper is devoted to the study of
the outer-independent Roman domination number of a graph, and it is a contribution to the special issue
“Theoretical Computer Science and Discrete Mathematics” of Symmetry. In particular, we obtain new
tight bounds for this parameter, and some of them improve some well-known results. We also provide
closed formulas for the outer-independent Roman domination number of rooted product graphs.

Keywords: outer-independent Roman domination; Roman domination; vertex cover; rooted
product graph

1. Introduction

Throughout this paper, we consider G = (V(G), E(G)) as a simple graph with no isolated vertex.
Given a vertex v of G, N(v) and N[v] represent the open neighbourhood and the closed neighbourhood of
v, respectively. We also denote by deg(v) = |N(v)| the degree of vertex v. For a set D ⊆ V(G), its open
neighbourhood and closed neighbourhood are N(D) = ∪v∈D N(v) and N[D] = N(D) ∪ D, respectively.
Moreover, the subgraph of G induced by D ⊆ V(G) will be denoted by G[D].

Domination theory is an interesting topic in the theory of graphs, as well as one of the most active topic
of research in this area. A set D ⊆ V(G) is a dominating set of G if N[D] = V(G). The domination number
of G, denoted by γ(G), is the minimum cardinality amongst all dominating sets of G. Numerous results
on this issue obtained in the previous century are shown in [1,2]. We define a γ(G)-set as a dominating set
of cardinality γ(G). The same terminology will be assumed for optimal parameters associated with other
sets or functions defined in the paper.

Moreover, in the last two decades, the interest in the domination theory in graphs has increased.
In that sense, a very high number of variants of domination parameters have been studied, many of which
are combinations of two or more parameters. Next, we expose some of them.
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• A set S ⊆ V(G) is an independent set of G if the subgraph induced by S is edgeless. The maximum
cardinality among all independent sets of G is the independence number of G, and is denoted by
β(G). In some kind of “opposed” side of an independent set, we find a vertex cover, which is a set
D ⊆ V(G) such that V(G) \ D is an independent set of G. The vertex cover number of G, denoted by
α(G), is the minimum cardinality among all vertex covers of G. It is well-known that for any graph G
of order n, α(G) + β(G) = n (see [3]).

• A set S ⊆ V(G) is an independent dominating set of G if S is an independent and dominating set
at the same time. The independent domination number of G is the minimum cardinality among all
independent dominating sets of G and is denoted by i(G). Independent domination in graphs was
formally introduced in [4,5]. However, a fairly complete survey on this topic was recently published
in [6].

• A function f : V(G)→ {0, 1, 2} is called a Roman dominating function on G, if every v ∈ V(G) for
which f (v) = 0 is adjacent to at least one vertex u ∈ V(G) for which f (u) = 2. The Roman domination
number of G, denoted by γR(G), is the minimum weight ω( f ) = ∑v∈V(G) f (v) among all Roman
dominating functions f on G. This parameter was introduced in [7]. Let Vi = {v ∈ V(G) : f (v) = i}
for i ∈ {0, 1, 2}. We will identify a Roman dominating function f with the subsets V0, V1, V2 of V(G)

associated with it, and so we will use the unified notation f (V0, V1, V2) for the function and these
associated subsets.

• A Roman dominating function f (V0, V1, V2) is called an outer-independent Roman dominating
function, abbreviated OIRDF, if V0 is an independent set of G. Notice that then V1 ∪V2 is a vertex
cover of G. The outer-independent Roman domination number of G is the minimum weight among
all outer-independent Roman dominating functions on G, and is denoted by γoiR(G). This parameter
was introduced in [8] and also studied in [9–11].

All the previous parameters are, in one way or another, related to each other. Next, we show the most
natural relationships that exist between them, which are easily deductible by definition.

Remark 1. For any graph G of order n with no isolated vertex,

(i) γ(G) ≤ i(G) ≤ β(G) = n− α(G).
(ii) γ(G) ≤ γR(G) ≤ γoiR(G).

For the graphs shown in Figure 1 we have the following.

• γ(G1) = 2 < i(G1) < 4 = α(G1) = γR(G1) < β(G1) < γoiR(G1) = 6.
• γ(G2) = i(G2) = α(G2) = 2 < γR(G2) = γoiR(G2) = 3 < β(G2) = 5.

G1

1 2 2 1

G2

2

1

Figure 1. The labels of (gray and black) coloured vertices describe the positive weights of a
γoiR(Gi)-function, for i ∈ {1, 2}.
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In this paper, we continue the study of the outer-independent Roman domination number of graphs.
For instance, in Section 2 we give some new relationships between this parameter and the others mentioned
above. Several of these results improve other bounds previously given. Finally, in Section 3 we provide
closed formulas for this parameter in rooted product graphs. In particular, we show that there are four
possible expressions for the outer-independent Roman domination number of a rooted product graph,
and we characterize the graphs reaching these expressions.

2. Bounds and Relationships with Other Parameters

Abdollahzadeh Ahangar et al. [8] in 2017, established the following result.

Theorem 1 ([8]). For any graph G with no isolated vertex,

α(G) + 1 ≤ γoiR(G) ≤ 2α(G).

Observe that any graph G with no isolated vertex, order n and maximum degree ∆, satisfies that
1 ≤

⌈
n−α(G)

∆

⌉
. It is also well-know that γ(G) ≤ α(G), which implies α(G)+γ(G) ≤ 2α(G). With the above

inequalities in mind, we state the following theorem, which improves the bounds given in Theorem 1.

Theorem 2. For any graph G with no isolated vertex, order n and maximum degree ∆,

α(G) +

⌈
n− α(G)

∆

⌉
≤ γoiR(G) ≤ α(G) + γ(G).

Proof. We first prove the upper bound. Let D be a γ(G)-set and S an α(G)-set. Let g(W0, W1, W2) be a
function defined by W0 = V(G) \ (D ∪ S), W1 = (D ∪ S) \ (D ∩ S) and W2 = D ∩ S. We claim that g is an
OIRDF on G. Without loss of generality, we may assume that W0 6= ∅. Notice that W0 = V(G) \ (D ∪ S) is
an independent set of G as S is a vertex cover. Now, we prove that every vertex in W0 has a neighbour in W2.
Let x ∈W0 = V(G) \ (D∪ S). Since S is a vertex cover and D is a dominating set, we deduce that N(x) ⊆ S
and N(x) ∩ D 6= ∅, respectively. Hence N(x) ∩ D ∩ S 6= ∅, or equivalently, N(x) ∩W2 6= ∅. Thus, g is an
OIRDF on G, as required. Therefore, γoiR(G) ≤ ω(g) = |(D ∪ S) \ (D ∩ S)|+ 2|D ∩ S| = α(G) + γ(G).

We now proceed to prove the lower bound. Let f (V0, V1, V2) be a γoiR(G)-function. By definition,
we have that V0 is an independent set, and so, V1 ∪ V2 is a vertex cover. Moreover, we note that every
vertex in V2 has at most ∆ neighbours in V0. Hence, |V0| ≤ ∆|V2|. By inequality above, and the fact that
n− α(G) = β(G) ≥ |V0|, we have

∆γoiR(G) = ∆(|V1|+ 2|V2|)
= ∆(|V1|+ |V2|) + ∆|V2|
≥ ∆(n− |V0|) + |V0|
= n∆− (∆− 1)|V0|
≥ n∆− (∆− 1)(n− α(G))

= ∆α(G) + (n− α(G)).

Therefore, γoiR(G) ≥ α(G) +
⌈

n−α(G)
∆

⌉
, which completes the proof.

The bounds above are tight. To see this, let us consider the vertex cover Roman graphs G. These graphs
were defined in [8] and satisfy the equality γoiR(G) = 2α(G). Since γ(G) ≤ α(G), we deduce that for
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every vertex cover Roman graph G it follows that γoiR(G) = α(G) + γ(G). Note also that both bounds are
achieved for the graph G1 given in Figure 1, i.e., α(G1) +

⌈ |V(G1)|−α(G1)
∆(G1)

⌉
= γoiR(G1) = α(G1) + γ(G1).

The following result is an immediate consequence of Theorem 2.

Corollary 1. If G is a graph such that γ(G) = 1, then

γoiR(G) = α(G) + 1.

However, the graphs G with γ(G) = 1 are not the only ones that satisfy the equality γoiR(G) =

α(G) + 1. For instance, the path P4 satisfies that γ(P4) = 2 and γoiR(P4) = 3 = α(P4) + 1. In such a sense,
we next give a theoretical characterization of the graphs that satisfy this equality above.

Theorem 3. If G is a graph with no isolated vertex, then the following statements are equivalent.

(i) γoiR(G) = α(G) + 1.
(ii) There exist an α(G)-set S and a vertex v ∈ S such that V(G) \ S ⊆ N(v).

Proof. We first suppose that (i) holds, i.e., γoiR(G) = α(G) + 1. Let f (V0, V1, V2) be a γoiR(G)-function
such that |V2| is maximum. Hence, V2 6= ∅. Let v ∈ V2. Since V1 ∪ V2 is a vertex cover of G, it follows
that α(G) + 1 ≤ (|V1|+ |V2|) + |V2| = γoiR(G) = α(G) + 1. Hence, we have equalities in the previous
inequality chain, which implies that S = V1 ∪ V2 is an α(G)-set and V2 = {v}. So, V(G) \ S = V0 ⊆
N(V2) = N(v). Therefore, (ii) follows.

On the other hand, suppose that (ii) holds, i.e., suppose there exist an α(G)-set S and v ∈ S such
that V(G) \ S ⊆ N(v). Observe that the function g(W0, W1, W2), defined by W2 = {v}, W1 = S \ {v} and
W0 = V(G) \ S, is an OIRDF on G. Therefore, and using the lower bound given in the Theorem 1, we obtain
that α(G) + 1 ≤ γoiR(G) ≤ ω(g) = |S|+ 1 = α(G) + 1. Hence, γoiR(G) = α(G) + 1, which completes
the proof.

A tree T is an acyclic connected graph. A leaf vertex of T is a vertex of degree one. The set of
leaves is denoted by L(T). We say that a vertex v ∈ V(T) is a support vertex (strong support vertex) if
|N(v)∩ L(T)| ≥ 1 (|N(v)∩ L(T)| ≥ 2). The set of support vertices and strong support vertices are denoted
by S(T) and Ss(T), respectively.

With this notation in mind, we next characterize the trees T with γoiR(T) = α(T) + 1. Before we do
this, we shall need to state the following useful lemma, in which diam(T) represents the diameter of T.

Lemma 1. If T is a tree such that γoiR(T) = α(T) + 1, then the following statements hold.

(i) diam(T) ≤ 4.
(ii) V(T) = L(T) ∪ S(T).

Proof. We first proceed to prove (i). By Theorem 3 there exist an α(T)-set S and v ∈ S such that V(T) \ S ⊆
N(v). Now, we suppose that k = diam(T) ≥ 5. Let P = v0v1 · · · vk−1vk be a diametrical path of T. Hence,
∅ 6= {v0, v1, vk−1, vk} ∩ (V(T) \ S) 6⊆ N(v), which is a contradiction. Therefore, diam(T) ≤ 4, as desired.

Finally, we proceed to prove (ii). By (i) we have that diam(T) ≤ 4. If V(T) \ (L(T) ∪ S(T)) 6= ∅, then
for every α(T)-set S and v ∈ S it follows that V(T) \ S 6⊆ N(v), which is a contradiction with Theorem 3.
Hence, V(T) = L(T) ∪ S(T), which completes the proof.

Let T be the family of trees Tr,s of order r + s + 1 with r ≥ 1 and r− 1 ≥ s ≥ 0, obtained from a star
K1,r by subdividing s edges exactly once. In Figure 2 we show the tree T5,3.
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Figure 2. The tree T5,3.

Theorem 4. Let T be a nontrivial tree. Then γoiR(T) = α(T) + 1 if and only if T ∈ T .

Proof. If T ∈ T , then it is easy to check that γoiR(T) = α(T) + 1. Now, we prove the converse. Let T be a
nontrivial tree such that γoiR(T) = α(T) + 1. By Lemma 1-(i) we have that diam(T) ≤ 4. If diam(T) ≤ 2,
then T ∼= Tr,0 ∈ T . If diam(T) = 3, then T ∼= Tr,1 ∈ T . We now suppose that diam(T) = 4. By Lemma 1-(ii)
we have that V(T) = L(T) ∪ S(T). We claim that for any diametrical path P = v0v1v2v3v4 of T, it follows
that v1, v3 ∈ S(T) \ Ss(T). First, we observe that v1, v3 ∈ S(T). Without loss of generality, suppose that
v1 ∈ Ss(T). Hence, v1 belongs to every α(T)-set. By Theorem 3 there exist an α(T)-set S and v ∈ S such that
V(T) \ S ⊆ N(v). Since v0 ∈ V(T) \ S, then v = v1. Notice also that ∅ 6= {v3, v4} ∩ (V(T) \ S) 6⊆ N(v1),
which is a contradiction. Therefore, v1, v3 ∈ S(T) \ Ss(T), as desired. From above, we deduce that
T ∼= Tr,s ∈ T , where r ≥ 3 and r− 1 ≥ s ≥ 2. Therefore, the proof is complete.

The following result is another consequence of Theorem 2.

Theorem 5. Let G be a graph with no isolated vertex. For any γR(G)-function f (V0, V1, V2),

γoiR(G) ≤ γR(G) + α(G)− |V2|.

Proof. Let f (V0, V1, V2) be a γR(G)-function. Since V1 ∪V2 is a dominating set of G, it follows that γ(G) ≤
|V1|+ |V2| = γR(G)− |V2|. Therefore, Theorem 2 leads to γoiR(G) ≤ α(G) + γ(G) ≤ γR(G) + α(G)− |V2|,
which completes the proof.

The bound above is tight. For instance, in the corona graph G� Nr with r ≥ 3, the unique γR(G�
Nr)-function f (V0, V1, V2), defined by V2 = V(G) and V1 = ∅, is also a γoiR(G � Nr)-function, and so,
γR(G� Nr) = γoiR(G� Nr) = γR(G� Nr) + α(G� Nr)− |V2| = 2|V(G)|. The following result, which is
a consequence of Remark 1 and Theorem 5, generalizes the previous example.

Proposition 1. If there exists a γR(G)-function f (V0, V1, V2) such that |V2| = α(G), then

γoiR(G) = γR(G).

We now relate the outer-independent Roman domination number with other domination parameters
of graphs. Before, we shall state the following proposition.

Proposition 2. For any graph G with no isolated vertex, there exists a γoiR(G)-function f (V0, V1, V2) such that
V0 is an independent dominating set of G.

Proof. Let f (V0, V1, V2) be a γoiR(G)-function such that |V2| is maximum. By definition we have that
V0 is an independent set. We next prove that V0 is a dominating set of G. It is clear that V2 ⊆ N(V0).
Let v ∈ V1. If N(v) ⊆ V1 ∪ V2, then the function f ′(V′0, V′1, V′2), defined by f ′(v) = 0, f ′(u) = f (u) + 1
for some vertex u ∈ N(v) ∩V1 and f ′(x) = f (x) whenever x ∈ V(G) \ {v, u}, is a γoiR(G)-function and
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|V′2| > |V2|, which is a contradiction. Hence, N(v) ∩ V0 6= ∅, which implies that V0 is an independent
dominating set of G, as desired.

Theorem 6. For any graph G with no isolated vertex, order n, minimum degree δ and maximum degree ∆,
⌈

i(G)δ

∆

⌉
+ 1 ≤ γoiR(G) ≤ n− i(G) + γ(G).

Proof. The upper bound follows by Theorem 2 and the fact that α(G) = n − β(G) ≤ n − i(G). Now,
we proceed to prove the lower bound. Let f (V0, V1, V2) be a γoiR(G)-function which satisfies Proposition 2.
Since every vertex in V1 ∪ V2 has at most ∆ neighbours in V0 and V0 is an independent dominating set,
it follows that δ|V0| ≤ ∆(|V1|+ |V2|) and |V0| ≥ i(G). Hence,

γoiR(G) = (|V1|+ |V2|) + |V2|

≥ |V0|δ
∆

+ |V2|

≥ i(G)δ

∆
+ 1.

Therefore, the proof is complete.

The bounds above are tight. For example, the lower bound is achieved for the complete bipartite
graphs Kr,r, where γoiR(Kr,r) = r + 1 =

⌈
r2

r

⌉
+ 1 =

⌈
i(Kr,r)δ(Kr,r)

∆(Kr,r)

⌉
+ 1. In addition, the upper bound is

achieved for the case of complete graphs, and in connection with this fact, we pose the following question.

Open question: Is it the case that γoiR(G) = n− i(G) + γ(G) if and only if G is a complete graph?

Next, we give new bounds for the outer-independent Roman domination number of triangle-free
graphs. Recall that in these graphs, no pair of adjacent vertices can have a common neighbor. For this
purpose, we shall need to introduce the following definitions.

A set S ⊆ V(G) is a 3-packing if the distance between u and v is greater than three for every pair of
different vertices u, v ∈ S. The 3-packing number of G, denoted by ρ3(G), is the maximum cardinality
among all 3-packings of G. We also define

P3(G) = {S ⊆ V(G) : S is a 3-packing of G}.

Theorem 7. For any triangle-free graph G of order n,

γoiR(G) ≤ n− max
S∈P3(G)

{
∑
v∈S

(deg(v)− 1)

}
.

Proof. Let S ∈ P3(G). As G is triangle-free, it follows that N(v) is an independent set of G for every
v ∈ V(G). Hence, N(S) is an independent set of G, which implies that the function f (V0, V1, V2), defined by
V2 = S, V0 = N(S) and V1 = V(G) \ N[S], is an OIRDF on G. Thus, γoiR(G) ≤ 2|V2|+ |V1| = 2|S|+ (n−
|N[S]|) = n−∑v∈S(deg(v)− 1). Since the inequality holds for every S ∈ P3(G), the result follows.

Corollary 2. For any triangle-free graph G of order n and minimum degree δ,

γoiR(G) ≤ n− ρ3(G)(δ− 1).
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In [8], the bound γoiR(G) ≤ n − ∆(G) + 1 was given for the case of triangle-free graph. Next,
we state a result which improve the bound above for the triangle-free graphs G that satisfy the condition
diam(G)(δ(G)− 1) ≥ 4(∆(G)− 1).

Proposition 3. Let G be a connected triangle-free graph of order n, minimum degree δ and maximum degree ∆.
If diam(G) ≥ 4, then

γoiR(G) ≤ n−
⌈

diam(G)

4

⌉
(δ− 1).

Proof. Assume that diam(G) ≥ 4. Let P = v0v1 · · · vk be a diametrical path of G (notice that k = diam(G)),
and S = {v0, v4, . . . , v4bk/4c}. It is easy to see that S ∈ P3(G), and so, by Theorem 7 we deduce that

γoiR(G) ≤ n−∑v∈S(deg(v)− 1) ≤ n−
⌈

diam(G)
4

⌉
(δ− 1) which completes the proof.

The bounds given in Corollary 2 and Proposition 3 are tight. For instance, they are achieved for the
cycle C10.

3. Rooted Product Graphs

Let G be a graph of order n with vertex set {u1, . . . , un} and H a graph with root v ∈ V(H). The rooted
product graph G ◦v H is defined as the graph obtained from G and n copies of H, by identifying the vertex
ui of G with the root v in the ith-copy of H, where i ∈ {1, . . . , n} [12]. If H or G is a trivial graph, then G ◦v H
is equal to G or H, respectively. In this sense, to obtain the rooted product G ◦v H, hereafter we will only
consider graphs G and H of orders at least two. Figure 3 shows an example of a rooted product graph.

For every x ∈ V(G), Hx will denote the copy of H in G ◦v H containing x. The restriction of any
γoiR(G ◦v H)-function f to V(Hx) will be denoted by fx and the restriction to V(Hx) \ {x} will be denoted
by f−x .

G

v

H G ◦v H

Figure 3. The rooted product graph G ◦v H.

If v is a vertex of a graph H, then the subgraph H − v is the subgraph of H induced by V(H) \ {v}.
The following three results will be the main tools to deduce our results.

Lemma 2. Let H be a graph without isolated vertices. For any v ∈ V(H),

γoiR(H − v) ≥ γoiR(H)− 1.

Proof. Let g′ be a γoiR(H − v)-function. Notice that the function g, defined by g(v) = 1 and g(u) = g′(u)
whenever u ∈ V(H) \ {v}, is an OIRDF on H. Hence, γoiR(H)− 1 ≤ ω(g)− 1 = ω(g′) = γoiR(H − v),
which completes the proof.

143



Symmetry 2020, 12, 1846

Lemma 3. Let G and H be two graphs without isolated vertices. If G has order n and v ∈ V(H), then the following
statements hold.

(i) If g(v) = 0 for some γoiR(H)-function g, then γoiR(G ◦v H) ≤ α(G) + nγoiR(H).
(ii) If g(v) > 0 for some γoiR(H)-function g, then γoiR(G ◦v H) ≤ nγoiR(H).

(iii) If there exists a γoiR(H − v)-function g such that g(x) > 0 for every x ∈ N(v), then γoiR(G ◦v H) ≤
γoiR(G) + nγoiR(H − v).

Proof. From any γoiR(H)-function g such that g(v) = 0 and any α(G)-set, we can construct an OIRDF on
G ◦v H of weight α(G) + nγoiR(H). Thus, γoiR(G ◦v H) ≤ α(G) + nγoiR(H) and (i) follows.

Now, if there exists a γoiR(H)-function g such that g(v) > 0, then from g we can construct an OIRDF
on G ◦v H of weight nω(g). Thus, γoiR(G ◦v H) ≤ nω(g) = nγoiR(H), and (ii) follows.

Finally, if there exists a γoiR(H − v)-function g such that g(x) > 0 for every x ∈ N(v), then from
g and any γoiR(G)-function we can construct an OIRDF on G ◦v H of weight γoiR(G) + nγoiR(H − v),
which completes the proof.

Lemma 4. Let f (V0, V1, V2) be a γoiR(G ◦v H)-function. The following statements hold for any vertex x ∈ V(G).

(i) ω( fx) ≥ γoiR(H)− 1.
(ii) If ω( fx) = γoiR(H)− 1, then x ∈ V0 and N(x) ∩V(Hx) ⊆ V1.

Proof. Let x ∈ V(G). Observe that V0 ∩ V(Hx) is an independent set of Hx and also, every vertex in
V0 ∩ (V(Hx) \ {x}) has a neighbour in V2 ∩ V(Hx). So, it is easy to see that the function g, defined
by g(x) = max{1, f (x)} and g(u) = f (u) whenever u ∈ V(Hx) \ {x}, is an OIRDF on Hx. Hence,
γoiR(H)− 1 = γoiR(Hx)− 1 ≤ ω(g)− 1 ≤ ω( fx), which completes the proof of (i).

Now, we suppose that ω( fx) = γoiR(H)− 1. If x ∈ V1 ∪V2 or x ∈ V0 and N(x) ∩V(Hx) ∩V2 6= ∅,
then fx is an OIRDF on Hx, which is a contradiction. Hence, x ∈ V0 and as V0 ∩V(Hx) is an independent
set, we deduce that N(x) ∩V(Hx) ⊆ V1, which completes the proof.

From Lemma 4 (i) we deduce that any γoiR(G ◦v H)-function f induces three subsets A f , B f and C f
of V(G) as follows.

A f = {x ∈ V(G) : ω( fx) > γoiR(H)},
B f = {x ∈ V(G) : ω( fx) = γoiR(H)},
C f = {x ∈ V(G) : ω( fx) = γoiR(H)− 1}.

Next, we state the four possible values of γoiR(G ◦v H).

Theorem 8. Let G and H be two graphs with no isolated vertex and |V(G)| = n. If v ∈ V(H), then

γoiR(G ◦v H) ∈ {α(G) + nγoiR(H), nγoiR(H), γoiR(G) + n(γoiR(H)− 1), α(G) + n(γoiR(H)− 1)}.

Proof. Let f (V0, V1, V2) be a γoiR(G ◦v H)-function. By Lemma 3 (i) and (ii) we deduce the upper bound
γoiR(G ◦v H) ≤ α(G) + nγoiR(H). Now, we consider the subsets A f ,B f , C f ⊆ V(G) associated to f and
distinguish the following cases.

Case 1. C f = ∅. In this case, for any x ∈ V(G) we have that ω( fx) ≥ γoiR(H) and, as a consequence,
γoiR(G ◦v H) = ω( f ) ≥ nγoiR(H). If A f = ∅, then γoiR(G ◦v H) = nγoiR(H). Hence, assume that
A f 6= ∅. This implies that ω( f ) > nγoiR(H). Moreover, we note that B f 6= ∅ because α(G) < n and
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ω( f ) ≤ α(G) + nγoiR(H). Thus, by Lemma 3 (ii) we obtain that B f ⊆ V0, and as V0 is an independent set,
we have that A f is a vertex cover of G. Therefore,

γoiR(G ◦v H) = ∑
x∈A f

ω( fx) + ∑
x∈B f

ω( fx)

≥ ∑
x∈A f

(γoiR(H) + 1) + ∑
x∈B f

γoiR(H)

= |A f |+ ∑
x∈V(G)

γoiR(H)

≥ α(G) + nγoiR(H).

Hence, γoiR(G ◦v H) = α(G) + nγoiR(H).
Case 2. C f 6= ∅. Let z ∈ C f . By Lemma 4 (ii) we obtain that z ∈ V0 and N(z) ∩V(Hz) ⊆ V1. Hence,

f−z is an OIRDF on Hz − z, and so γoiR(H − v) = γoiR(Hz − z) ≤ ω( f−z ) = γoiR(H)− 1. Thus, Lemma 2
leads to γoiR(Hz − z) = γoiR(H) − 1. This implies that f−z is a γoiR(Hz − z)-function which satisfies
Lemma 3 (iii). Therefore, γoiR(G ◦v H) ≤ γoiR(G) + n(γoiR(H)− 1).

Now, observe the following inequality chain.

γoiR(G ◦v H) = ∑
x∈A f∪B f

ω( fx) + ∑
x∈C f

ω( fx) ≥ (2|A f |+ |B f |) + n(γoiR(H)− 1). (1)

By Lemma 4 (ii) we have that C f ⊆ V0, which implies that A f ∪ B f is a vertex cover of G. Thus,
Inequality chain (1) leads to γoiR(G ◦v H) = ω( f ) ≥ α(G) + n(γoiR(H) − 1). Next, we consider the
following two subcases.

Subcase 1. There exists a γoiR(H)-function g such that g(v) = 2. Let D be an α(G)-set. From D, g
and fz , we define a function h on G ◦v H as follows. For every x ∈ D, the restriction of h to V(Hx) is
induced from g. Moreover, if x ∈ V(G) \ D, then the restriction of h to V(Hx) is induced from fz. By the
construction of g and fz, it is straightforward to see that h is an OIRDF on G ◦v H. Thus,

γoiR(G ◦v H) ≤ ∑
x∈D

ω(hx) + ∑
x∈V(G)\D

ω(hx)

= ∑
x∈D

ω(g) + ∑
x∈V(G)\D

ω( fz)

= ∑
x∈D

γoiR(H) + ∑
x∈V(G)\D

(γoiR(H)− 1)

= |D|+ ∑
x∈V(G)

(γoiR(H)− 1)

= α(G) + n(γoiR(H)− 1).

Therefore, γoiR(G ◦v H) = α(G) + n(γoiR(H)− 1).
Subcase 2. g(v) ≤ 1 for every γoiR(H)-function g. This condition implies that V2 ∩ B f = ∅. Since

every vertex x ∈ C f has a neighbour in V2, and as Lemma 4 (ii) leads to N(x)∩V(Hx) ⊆ V1, then we deduce
that N(x)∩V2 ∩A f 6= ∅. Hence, and as C f ⊆ V0, the function f ′(V′0, V′1, V′2), defined by V′2 = A f , V′1 = B f
and V′0 = C f , is an OIRDF on G. So γoiR(G) ≤ ω( f ′) = 2|A f |+ |B f |. Therefore, Inequality chain (1) leads
to γoiR(G ◦v H) ≥ γoiR(G)+ n(γoiR(H)− 1), which implies that γoiR(G ◦v H) = γoiR(G)+ n(γoiR(H)− 1).

Therefore, the proof is complete.
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In order to see that the four possible values of γoiR(G ◦v H) described in Theorem 8 are realizable,
we consider the following example.

Example 1. Let G be a graph with no isolated vertex. If H is the graph shown in Figure 4, then the resulting values
of γoiR(G ◦x H) for some specific roots x ∈ V(H) are described below.

• γoiR(G ◦v H) = α(G) + nγoiR(H).
• γoiR(G ◦w H) = nγoiR(H).
• γoiR(G ◦v′ H) = γoiR(G) + n(γoiR(H)− 1).
• γoiR(G ◦w′ H) = α(G) + n(γoiR(H)− 1).

Now, we characterize the graphs with γoiR(G ◦v H) = α(G) + nγoiR(H).

v w w′

v′

Figure 4. The labels of (gray and black) coloured vertices describe the positive weights of a
γoiR(H)-function.

Theorem 9. Let G and H be two graphs with no isolated vertex, let |V(G)| = n and v ∈ V(H). The following
statements are equivalent.

(i) γoiR(G ◦v H) = α(G) + nγoiR(H).
(ii) g(v) = 0 for every γoiR(H)-function g.

Proof. We first assume that (i) holds, i.e., γoiR(G ◦v H) = α(G) + nγoiR(H). If there exists a
γoiR(H)-function g such that g(v) > 0, then by Lemma 3 (ii) it follows that γoiR(G ◦v H) ≤ nγoiR(H),
which is a contradiction. Therefore, (ii) holds.

On the other hand, we assume that (ii) holds, i.e., g(v) = 0 for every γoiR(H)-function g.
Let f (V0, V1, V2) be a γoiR(G ◦v H)-function. If C f 6= ∅, then by Lemma 4 (ii) we can obtain a
γoiR(H)-function g such that g(v) = 1, which is a contradiction. Hence, C f = ∅, and so, by Theorem 8 we
deduce that γoiR(G ◦v H) ∈ {α(G) + nγoiR(H), nγoiR(H)}. Now, suppose that γoiR(G ◦v H) = nγoiR(H).
Since C f = ∅, it follows that B f = V(G) and as V0 is an independent set, there exists x ∈ B f \ V0.
This implies that fx is a γoiR(Hx)-function such that fx(x) > 0, which is a contradiction. Therefore,
γoiR(G ◦v H) = α(G) + nγoiR(H), which completes the proof.

Next, we characterize the graphs with γoiR(G ◦v H) = α(G) + n(γoiR(H)− 1).

Theorem 10. Let G and H be two graphs with no isolated vertex, let |V(G)| = n and v ∈ V(H). The following
statements are equivalent.

(i) γoiR(G ◦v H) = α(G) + n(γoiR(H)− 1).
(ii) There exist two γoiR(H)-functions g1 and g2 such that g1(x) = 1 for every x ∈ N[v] and g2(v) = 2.

Proof. We first assume that (i) holds, i.e., γoiR(G ◦v H) = α(G) + n(γoiR(H) − 1). Let f (V0, V1, V2)

be a γoiR(G ◦v H)-function. As α(G) < n, it follows that C f 6= ∅, and so, by Lemma 4 (ii) we can
obtain a γoiR(H)-function g1 such that g1(x) = 1 for every x ∈ N[v]. Moreover, if g(v) ≤ 1 for every
γoiR(H)-function g, then, by proceeding analogously to Subcase 2 in the proof of Theorem 8 we deduce
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that γoiR(G ◦v H) ≥ γoiR(G) + n(γoiR(H)− 1), which is a contradiction as γoiR(G) > α(G). Therefore,
there exists a γoiR(H)-function g2 such that g2(v) = 2, and (ii) follows.

On the other hand, we assume that there exist two γoiR(H)-functions g1 and g2 such that g1(x) = 1
for every x ∈ N[v] and g2(v) = 2. Let D be an α(G)-set and let g′1 be a function on H such that g′1(v) = 0
and g′1(x) = g1(x) whenever x ∈ V(H) \ {v}. From D, g′1 and g2, we define a function h on G ◦v H as
follows. For every x ∈ D, the restriction of h to V(Hx) is induced from g2. Moreover, if x ∈ V(G) \ D,
then the restriction of h to V(Hx) is induced from g′1. Notice that h is an OIRDF on G ◦v H, and so
γoiR(G ◦v H) ≤ ω(h) = |D|γoiR(H) + |V(G) \ D|(γoiR(H) − 1) = α(G) + n(γoiR(H) − 1). Therefore,
Theorem 8 leads to γoiR(G ◦v H) = α(G) + n(γoiR(H)− 1), which completes the proof.

Next we proceed to characterize the graphs with γoiR(G ◦v H) = γoiR(G) + n(γoiR(H)− 1). Notice
that it is excluded the case γoiR(G) = n, since then γoiR(G ◦v H) = nγoiR(H).

Theorem 11. Let G be a graph of order n with no isolated vertex such that γoiR(G) < n and let H be a graph with
no isolated vertex and v ∈ V(H). The following statements are equivalent.

(i) γoiR(G ◦v H) = γoiR(G) + n(γoiR(H)− 1).
(ii) g(v) ≤ 1 for every γoiR(H)-function g and also, there exists a γoiR(H)-function g1 such that g1(x) = 1 for

every x ∈ N[v].

Proof. We first assume that (i) holds, i.e., γoiR(G ◦v H) = γoiR(G) + n(γoiR(H)− 1). Let f (V0, V1, V2) be a
γoiR(G ◦v H)-function. Since γoiR(G) < n, it follows that C f 6= ∅, and so, by Lemma 4 (ii) we can obtain a
γoiR(H)-function g1 such that g1(x) = 1 for every x ∈ N[v]. Moreover, if there exists a γoiR(H)-function g2

such that g2(v) = 2, then by Theorem 10 we deduce that γoiR(G ◦v H) = α(G) + n(γoiR(H)− 1), which is
a contradiction as γoiR(G) > α(G). Therefore, g(v) ≤ 1 for every γoiR(H)-function g, which implies that
(ii) follows.

On the other side, we assume that g(v) ≤ 1 for every γoiR(H)-function g and also, that there exists
a γoiR(H)-function g1 such that g1(x) = 1 for every x ∈ N[v]. Under these assumptions, observe that
the function g1 restricted to V(H) \ {v}, namely g′1, is an OIRDF on H − v. Hence, γoiR(H − v) ≤
ω(g′1) = ω(g1) − 1 = γoiR(H) − 1 and by Lemma 2 we deduce that γoiR(H − v) = γoiR(H) − 1.
Hence, g′1 is a γoiR(H − v)-function which satisfies Lemma 3 (iii). Therefore, Lemma 3 and Theorem
8 lead to γoiR(G ◦v H) ∈ {γoiR(G) + n(γoiR(H) − 1), α(G) + n(γoiR(H) − 1)}. Finally, as g(v) ≤ 1 for
every γoiR(H)-function g, by Theorem 10 we deduce that γoiR(G ◦v H) = γoiR(G) + n(γoiR(H) − 1),
which completes the proof.

From Theorem 8 we have that there are four possible expressions for γoiR(G ◦v H). Theorems 9–11
characterize three of these expressions. In the case of the expression γoiR(G ◦v H) = nγoiR(H),
the corresponding characterization can be derived by elimination from the previous results.
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Abstract: The following paper presents deductive theories of n-Pythagorean fuzzy sets (n-PFS). N-PFS
objects are a generalization of the intuitionistic fuzzy sets (IFSs) and the Yager Pythagorean fuzzy sets
(PFSs). Until now, the values of membership and non-membership functions have been described
on a one-to-one scale and a quadratic function scale. There is a symmetry between the values of this
membership and non-membership functions. The scales of any power functions are used here in order
to increase the scope of the decision-making problems. The theory of n-PFS introduces a conceptual
apparatus analogous to the classic theory of Zadeh fuzzy sets, consistently striving to correctly define
the n-PFS algebra.

Keywords: fuzzy set; n-Pythagorean; n-PFS algebra; triangular norms

1. Introduction

Zadeh [1] introduced the fuzzy set idea, which generalizes the theory of classical sets. In fuzzy
sets, there is a membership function µ, which assigns a number from the set [0, 1] to each element of
the universe. This determines how much this element belongs to this universe, where 0 means no
belonging and 1 means full belonging to the set that is under consideration. Other values between
0 and 1 mean the degree of belonging to this set. This membership function is defined to describe the
degree of belonging of an element to some class. The membership function in the fuzzy sets replace the
characteristic function that is used in crisp sets. Since the work of Zadeh, the fuzzy set theory has been
used in different disciplines such as management sciences, engineering, mathematics, social sciences,
statistics, signal processing, artificial intelligence, automata theory, and medical and life sciences.

Atanassov studied the intuitionistic fuzzy sets (IFSs) [2,3]. IFSs have values for two functions:
the membership function µ and the non-membership function v. Additionally, there is a constraint
0 ≤ µ + v ≤ 1. This is a symmetric relationship between the values and the membership function.
In order to create model for imprecise information, the model of Pythagorean fuzzy sets (PFSs) was
proposed by Yager [4,5]. This model is different than the IFSs model because it uses the condition
0 ≤ µ2 + v2 ≤ 1. Moreover, there is also the Pythagorean fuzzy number (PFN) idea established by Zhang
and Xu [6]. In decision-making problems, there are also applications of PFSs proposed by Garg [7,8].

The decision-making problems in the model of Pythagorean fuzzy sets will significantly increase
the application range of solving these problems than in the model of intuitionistic fuzzy sets. It is
because more pairs (µ, v) satisfy the condition 0 ≤ µ2 + v2 ≤ 1 than the condition 0 ≤ µ + v ≤ 1.
Is there any other data scale in decision-making problems that will help to extend its applicability even
further? Yes, with the condition 0 ≤ µn + vn ≤ 1, for any natural number n > 2.

In articles using local deduction regarding IFSs [3,9–12] and concerning PFSs [4,5,13–17], it was
noted that there is a series of mathematical and logical inaccuracies. That is why the conceptual apparatus
should be generalized and refined by formulating the deductive theory of n-Pythagorean fuzzy sets with
the condition 0 ≤ µn + vn ≤ 1, for any natural number n〉0. The theory is presented below.
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2. Triangular Norms

Definition 1. The operation •t : [0, 1]× [0, 1]→ [0, 1] is called a t-norm in the set [0, 1], or a triangular norm,
when it meets the following conditions (for any numbers x, y, z ∈ [0, 1]):

1. boundary conditions
0 •t y = 0, y •t 1 = y, (1)

2. monotonicity
x •t y ≤ z •t y, when x ≤ z, (2)

3. commutativity
x •t y = y •t x, (3)

4. associativity
x •t (y •t z) = (x •t y) •t z, (4)

Since there is sup{t ∈ [0, 1] : x •t t ≤ y}, there can be specified the operation→t: [0, 1]× [0, 1]→
[0, 1], such that for any numbers x, y ∈ [0, 1]:

x →t y = sup{t ∈ [0, 1] : x •t t ≤ y}. (5)

This operation is called t-residuum in the set [0, 1].
The operation •s : [0, 1]× [0, 1]→ [0, 1], described by formula for any numbers x, y ∈ [0, 1]:

x •s y = 1− (1− x) •t (1− y), (6)

is called a s-norm or triangular conorm.
Using the definitions of t-norm and s-norm, after simple calculations we get (where the names of

conditions are given analogously to the definition of t-norm):

Theorem 1. For any numbers x, y, z ∈ [0, 1]:

• boundary conditions
0 •s y = y, y •s 1 = 1, (7)

• monotonicity
x •s y ≤ z •s y, when x ≤ z, (8)

• commutativity
x •s y = y •s x, (9)

• associativity
x •s (y •s z) = (x •s y) •s z, (10)

Further, only continuous t-norms and s-norms are considered. The general discussion on the
construction of triangular norms, using the results of functional equations, leads to the theorem from
paper [18]:

Theorem 2.

1. There is a continuous and strictly decreasing function for each continuous t-norm ft : [0, 1]→ [0,+∞)

such that ft(1) = 0, ft(0) = 1 and for any x, y ∈ [0, 1]:

x •t y =

{
f−1
t [ ft(x) + ft(y)], ft(x) + ft(y) ∈ [0, 1]

0, otherwise.
(11)
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2. There is a continuous and strictly increasing function for each continuous s-norm fs : [0, 1]→ [0,+∞)

such that fs(0) = 0, fs(1) = 1 and for any x, y ∈ [0, 1]:

x •s y =

{
f−1
s [ fs(x) + fs(y)], fs(x) + fs(y) ∈ [0, 1]

1, otherwise.
(12)

3. For any x ∈ [0, 1]
fs(x) = ft(1− x). (13)

Functions ft, fs are called generators of t-norm and s-norm, respectively.

Example 1. For the t-norm x •t y = min{x, y} and any x, y ∈ [0, 1], the generator is ft(x) = 1− x.
For the s-norm x •s y = max{x, y} and any x, y ∈ [0, 1], the generator is fs(x) = x.

Example 2. For the t-norm x •t y = 1−min{1, ((1− x)p + (1− y)p)1/p}, p ≥ 1 and any x, y ∈ [0, 1],
the generator is ft(x) = 1− xp.

For the s-norm x •s y = min{1, (xp + yp)1/p}, p ≥ 1 and any x, y ∈ [0, 1], the generator is fs(x) = xp.

Theorem 3. Let ft, fs be generators of the triangular norms •t, •s. Then there exist operations •p : [0, 1]×
[0, 1]→ [0, 1], •l : [0, 1]× [0, 1]→ [0, 1] defined by formulas:

λ •p x =

{
f−1
t [λ ft(x)], for λ ft(x) ∈ [0, 1]

0, otherwise.
(14)

λ •l x =

{
f−1
s [λ fs(x)], for λ fs(x) ∈ [0, 1]

1, otherwise.
(15)

Proof of Theorem 3. Because ft is a strictly decreasing function, there is only one value
f−1
t [λ ft(x)] ∈ [0, 1], when λ ft(x) ∈ [0, fs(0)].

It is noted that λ •p x =d f f−1
t [λ ft(x)], for λ ft(x) ∈ [0, ft(0)], and λ •p x =d f 0 otherwise.

Similarly, we define the operation •l .

Definition 2. Operations •p, •l specified in Theorem 3 are called p-norm (with properties similar to the
power functions) and the l-norm (with properties similar to the linear function), respectively, and the system
SYager = 〈[0, 1], •t, •s, •p, •l , 0, 1〉 is called the Yager system of the triangular norms.

The following notation agreement is accepted:

λ •p x =d f xλ, (16)

λ •l x =d f λx. (17)

Fact 1. If xλ = f−1
t [λ ft(x)], for λ ft(x) ∈ [0, ft(0)], then ft(xλ) = λ ft(x).

If λx = f−1
s [λ fs(x)], for λ fs(x) ∈ [0, fs(1)], then fs(λx) = λ fs(x).

Theorem 4. In the system SYager = 〈[0, 1], •t, •s, •p, •l , 0, 1〉 operations •p, •l satisfy the following conditions
(for any x, y, λ, λ1, λ2 ∈ [0, 1]):

λ(x •s y) = λx •s λy, (18)

(x •t y)λ = xλ •t yλ, (19)

(λ1 + λ2)x = λ1x •s λ2x, (20)
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xλ1+λ2 = xλ1 •t xλ2 . (21)

Proof of Theorem 4.

1. For Equation (18): λ(x •s y) = f−1
s [λ fs(x •s y)] = f−1

s [λ fs(x) + λ fs(y)] = f−1
s [ fs(λx) + fs(λy)] =

λx •s λy, for fs(x •s y) ∈ [0, 1], and since λ fs(x •s y) ≤ fs(x •s y), so λ fs(x •s y) ∈ [0, 1].
2. For Equation (19): (x •t y)λ = f−1

t [λ ft(x •t y)] = f−1
t [λ ft(x) + λ ft(y)] = f−1

t [ ft(xλ) + ft(yλ)] =

xλ •t yλ, for ft(x •t y) ∈ [0, 1], and since λ ft(x •t y) ≤ ft(x •t y), so λ ft(x •t y) ∈ [0, 1].
3. For Equation (20): (λ1 + λ2)x = f−1

s [(λ1 + λ2) fs(x)] = f−1
s [λ1 fs(x) + λ2 fs(x)] = f−1

s [ fs(λ1x) +
fs(λ2x)] = λ1x •s λ2x, for (λ1 + λ2) fs(x) = fs(λ1x) + fs(λ2x) ∈ [0, 1].

4. For Equation (21): xλ1+λ2 = f−1
t [(λ1 + λ2) ft(x)] = f−1

t [λ1 ft(x) + λ2 ft(x)] = f−1
t [ ft(xλ1) +

ft(xλ2)] = xλ1 •t xλ2 , for (λ1 + λ2) ft(x) = ft(xλ1) + ft(xλ2) ∈ [0, 1].

3. n-Pythagorean Fuzzy Set and Yager Aggregation Operators

Definition 3. Let F be a set of all fuzzy sets for the nonempty space X. Any function p : X → [0, 1]× [0, 1]
defined for any µp, vp ∈ F is:

p = {〈x, 〈µp(x), vp(x)〉〉 : x ∈ X}. (22)

It is called the n-Pythagorean fuzzy set (n-PFS) if the following condition is satisfied (for any natural
number n > 0 ):

0 ≤ (µp(x))n + (vp(x))n ≤ 1, for any x ∈ X. (23)

Let n-PFS mean set of all n-PFS.
The fuzzy sets µp, vp indicate the membership and non-membership functions. Zhang and Xu [6]

considered p(x) = 〈µp(x), vp(x)〉 as n-Pythagorean fuzzy number (n-PFN) represented by p = 〈µp, vp〉.
The notation is used:

n-PFN =d f {〈µ, v〉 ∈ [0, 1]× [0, 1] : 0 ≤ µn + vn ≤ 1}. (24)

Fact 2.
n-PFN = {p(x) : x ∈ X, p ∈ n-PFS}. (25)

When n = 1, then the 1-Pythagorean fuzzy sets are the intuitionistic fuzzy sets (IFS), which were
studied by Atanassow [2]. Moreover, when n = 2, then the 2-Pythagorean fuzzy sets are the PFS of
Yager [4].

Simple arithmetic properties of inequalities 0 ≤ µn+1 + vn+1 ≤ µn + vn ≤ 1 result from:

Theorem 5. For any natural number n > 1

n-PFN ⊆ (n+1)-PFN ⊆ [0, 1]× [0, 1]. (26)

Thus, entering a power scale for a value of the membership and non-membership functions allows
to replace 〈µ, v〉 ∈ [0, 1] × [0, 1] such that µ + v > 1, by 〈µn, vn〉 ∈ 1-PFN, for some n. As a result,
the aggregation operations on the IFS can be extended to the aggregation operations on the n-PFS.

Theorem 6. In any system SYager = 〈[0, 1], •t, •s, •p, •l , 0, 1〉, for any 〈µ1, v1〉, 〈µ2, v2〉 ∈ 1-PFN and a
number λ ∈ [0, 1], the following conditions are satisfied:

〈µ1 •s µ2, v1 •t v2〉 ∈ 1-PFN, (27)

〈µ1 •t µ2, v1 •s v2〉 ∈ 1-PFN, (28)
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Furthermore, in some systems SYager (not in all - see Proof of Theorem 3,4 and Remark 1) there are
additional conditions:

〈λ •l µ1, λ •p v1〉 ∈ 1-PFN, (29)

〈λ •p µ1, λ •l v1〉 ∈ 1-PFN. (30)

Proof of Theorem 6.

1. For Equation (27): 〈µ1, v1〉, 〈µ2, v2〉 ∈ 1-PFN iff µ1 + v1 ≤ 1, µ2 + v2 ≤ 1 if and only if µ1 ≤
1− v1, µ2 ≤ 1− v2.

Hence and from the monotonicity of the s-norm and its determination by t-norm:

µ1 •s µ2 ≤ (1− v1) •s (1− v2) = 1− (1− (1− v1) •s (1− v2) = 1− v1 •t v2 iff µ1 •s µ2 + v1 •t v2 ≤
1 iff 〈µ1 •s µ2, v1 •t v2〉 ∈ 1-PFN.

2. For Equation (28): 〈µ1, v1〉, 〈µ2, v2〉 ∈ 1-PFN iff 〈v1, µ1〉, 〈v2, µ2〉 ∈ 1-PFN.

Hence, and from point 1, there is 〈v1 •s v2, µ1 •t µ2〉 ∈ 1-PFN, which is equivalent to 〈µ1 •t µ2, v1 •s

v2〉 ∈ 1-PFN.
3. For Equation (29): let µ •s v = max{µ, v}, µ •t v = min{µ, v}, then fs(x) = x, ft(x) = 1˘x

(see Example 1);

〈µ1, v1〉 ∈ 1-PFN iff µ1 + v1 ≤ 1;

λ •l µ1 = f−1
s [λ fs(µ1)] = λµ1 and λ •p v1 = f−1

s [λ fs(v1)] = 1− λ(1− v1);

λ •l µ1 + λ •p v1 = λµ1 + 1− λ(1− v1) = 1− λ + λ(µ1 + v1);

Since λ(µ1 + v1) ≤ λ, so 0 ≤ 1− λ + λ(µ1 + v1) ≤ 1.
4. For Equation (30): let µ •s v = max{µ, v}, µ •t v = min{µ, v}, then fs(x) = x, ft(x) = 1˘x;

〈µ1, v1〉 ∈ 1-PFN iff µ1 + v1 ≤ 1 iff 〈v1, µ1〉 ∈ 1-PFN.

Hence, and from point 3, there is 〈λ •l v1, λ •p µ1〉 ∈ 1-PFN, which is equivalent to 〈λ •p µ1, λ •l
v1〉 ∈ 1-PFN.

Remark 1. Assuming generators of triangular norms from the Example 2 λ •l µ1 = λ1/pµ1, λ •p v1 =

1− λ1/p(1− v1), for µ1 = 1/2, v1 = 7/8, λ = 1/4 and p = 2, it is obtained that 〈λ •l µ1, λ •p v1〉 =
〈1/8, 15/16〉 /∈ 1-PFN, (1 < 1/8 + 15/16).

Theorem 7. Let the system SYager = 〈[0, 1], •t, •s, •p, •l , 0, 1〉 conditions from Equations (27)–(30) of the
Theorem 6 apply. Then, for any natural number n > 1, for any 〈µ1, v1〉, 〈µ2, v2〉 ∈ n-PFN, and number
λ ∈ [0, 1] the following conditions are satisfied:

〈(µn
1 •s µn

2 )
1/n, (vn

1 •t vn
2 )

1/n〉 ∈ n-PFN, (31)

〈(µn
1 •t µn

2 )
1/n, (vn

1 •s vn
2 )

1/n〉 ∈ n-PFN, (32)

〈(λ •l µn
1 )

1/n, (λ •p vn
1 )

1/n〉 ∈ n-PFN, (33)

〈(λ •p µn
1 )

1/n, (λ •l vn
1 )

1/n〉 ∈ n-PFN. (34)

Proof of Theorem 7.

〈µ1, v1〉, 〈µ2, v2〉 ∈ n-PFN iff 〈µn
1 , vn

1 〉, 〈µn
2 , vn

2 〉 ∈ 1-PFN. (35)

Then, the conditions of Theorem 6 are satisfied, which are equivalent to the above
conditions (31)–(34).
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Definition 4. In the system SYager = 〈[0, 1], •t, •s, •p, •l , 0, 1〉, the following aggregation operators are
defined: the Yager operators on n-PFN: for any 〈µ1, v1〉, 〈µ2, v2〉 ∈ n-PFN and number λ ∈ [0, 1].

When conditions (27)–(30) of the Theorem 6 are satisfied:

〈µ1, v1〉 ⊕ 〈µ2, v2〉 = 〈(µn
1 •s µn

2 )
1/n, (vn

1 •t vn
2 )

1/n〉, (36)

〈µ1, v1〉 ⊕ 〈µ2, v2〉 = 〈(µn
1 •t µn

2 )
1/n, (vn

1 •s vn
2 )

1/n〉, (37)

λ〈µ1, v1〉 = 〈(λ •l µn
1 )

1/n, (λ •p vn
1 )

1/n〉, (38)

〈µ1, v1〉λ = 〈(λ •p µn
1 )

1/n, (λ •l vn
1 )

1/n〉. (39)

when 〈(λ •l µn
1 )

1/n, (λ •p vn
1 )

1/n〉 /∈ n-PFN, then:

λ〈µ1, v1〉 = 〈1, 0〉, (40)

or when 〈(λ •p µn
1 )

1/n, (λ •l vn
1 )

1/n〉 /∈ n-PFN, then:

〈µ1, v1〉λ = 〈0, 1〉. (41)

Hence, in any system SYager = 〈[0, 1], •t, •s, •p, •l , 0, 1〉, using the Theorem 4, there is:

Theorem 8. For any 〈µ1, v1〉, 〈µ2, v2〉, 〈µ3, v3〉 ∈ n-PFN and number λ ∈ [0, 1]:

〈µ1, v1〉 ⊕ 〈0, 1〉 = 〈µ1, v1〉, 〈µ1, v1〉 ⊕ 〈1, 0〉 = 〈1, 0〉, (42)

〈µ1, v1〉 ⊕ 〈µ2, v2〉 = 〈µ2, v2〉 ⊕ 〈µ1, v1〉, (43)

(〈µ1, v1〉 ⊕ 〈µ2, v2〉)⊕ 〈µ3, v3〉 = 〈µ1, v1〉 ⊕ (〈µ2, v2〉 ⊕ 〈µ3, v3〉), (44)

〈µ1, v1〉 ⊕ 〈1, 0〉 = 〈µ1, v1〉, 〈µ1, v1〉 ⊗ 〈0, 1〉 = 〈0, 1〉, (45)

〈µ1, v1〉 ⊕ 〈µ2, v2〉 = 〈µ2, v2〉 ⊕ 〈µ1, v1〉, (46)

(〈µ1, v1〉 ⊕ 〈µ2, v2〉)⊕ 〈µ3, v3〉 = 〈µ1, v1〉 ⊕ (〈µ2, v2〉 ⊕ 〈µ3, v3〉), (47)

λ(〈µ1, v1〉 ⊕ 〈µ2, v2〉) = λ〈µ1, v1〉 ⊕ λ〈µ2, v2〉, (48)

(〈µ1, v1〉 ⊕ 〈µ2, v2〉)λ = 〈µ1, v1〉λ ⊕ 〈µ2, v2〉λ, (49)

(λ1 + λ2)〈µ1, v1〉 = λ1〈µ1, v1〉 ⊕ λ2〈µ1, v1〉, (50)

〈µ1, v1〉λ1+λ2 = 〈µ1, v1〉λ1 ⊕ 〈µ1, v1〉λ2 . (51)

4. Triangular Norms in the n-PFN and the n-PFS Algebra

Definition 5. For any 〈µ1, v1〉, 〈µ2, v2〉 ∈ n-PFN:

〈µ1, v1〉 ≤n 〈µ2, v2〉 iff µ1 ≤ µ2, v1 ≥ v2. (52)

The results of operations maximum and minimum for any A ⊆ n-PFN are described for the relation ≤n

and are denoted by: maxn A, minn A.

Fact 3. For any x, y ∈ [0, 1]:

1. 〈0, 1〉 ≤n 〈0, x〉 ≤n 〈0, 0〉 ≤n 〈y, 0〉 ≤n 〈1, 0〉,
2. 〈0, 1〉 ≤n 〈x, y〉 ≤n 〈1, 0〉, when 〈x, y〉 ∈ n-PFN.
3. 〈0, 1〉 = minn n-PFN, 〈1, 0〉 = maxn n-PFN.
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Fact 4. There is:
n-PFN = {〈x, y〉 ∈ [0, 1]× [0, 1] : 〈0, 1〉 ≤n 〈x, y〉 ≤n 〈1, 0〉}. (53)

Definition 6. There are:

1. The operation ◦t : n-PFN× n-PFN → n-PFN is called a t-norm in the set n-PFN ordered by the
relations ≤n, when for any 〈µ1, v1〉, 〈µ2, v2〉, 〈µ3, v3〉 ∈ n-PFN:

(a) boundary conditions

〈0, 1〉 ◦t 〈µ1, v1〉 = 〈0, 1〉, 〈µ1, v1〉 ◦t 〈1, 0〉 = 〈µ1, v1〉, (54)

(b) monotonicity

〈µ1, v1〉 ◦t 〈µ2, v2〉 ≤n 〈µ3, v3〉 ◦t 〈µ2, v2〉, when 〈µ1, v1〉 ≤n 〈µ3, v3〉, (55)

(c) commutativity
〈µ1, v1〉 ◦t 〈µ2, v2〉 = 〈µ2, v2〉 ◦t 〈µ1, v1〉, (56)

(d) associativity

〈µ1, v1〉 ◦t (〈µ2, v2〉 ◦t 〈µ3, v3〉) = (〈µ1, v1〉 ◦t 〈µ2, v2〉) ◦t 〈µ3, v3〉. (57)

2. The operation ◦s : n-PFN× n-PFN → n-PFN is called the s-norm in the set n-PFN ordered by the
relations ≤n, when for any 〈µ1, v1〉, 〈µ2, v2〉, 〈µ3, v3〉 ∈ n-PFN:

(a) boundary conditions

〈1, 0〉 ◦s 〈µ1, v1〉 = 〈1, 0〉, 〈µ1, v1〉 ◦s 〈0, 1〉 = 〈µ1, v1〉, (58)

(b) monotonicity

〈µ1, v1〉 ◦s 〈µ2, v2〉 ≤n 〈µ3, v3〉 ◦s 〈µ2, v2〉, when 〈µ1, v1〉 ≤n 〈µ3, v3〉, (59)

(c) commutativity
〈µ1, v1〉 ◦s 〈µ2, v2〉 = 〈µ2, v2〉 ◦s 〈µ1, v1〉, (60)

(d) associativity

〈µ1, v1〉 ◦s (〈µ2, v2〉 ◦s 〈µ3, v3〉) = (〈µ1, v1〉 ◦s 〈µ2, v2〉) ◦s 〈µ3, v3〉. (61)

Theorem 9. The Yager operator ⊗ on the n-PFN is a t-norm in the set n-PFN and the operator ⊕ is a s-norm
in the set n-PFN.

Proof of Theorem 9. Conditions (45)–(47) of the Theorem 8 proof that the operator ⊗ satisfies
conditions (a),(c), and (d) of the Definition 6 (1) of the t-norm in the set n-PFN. It is enough to
prove that this operation is monotonous.

For any 〈µ1, v1〉, 〈µ2, v2〉, 〈µ3, v3〉 ∈ n-PFN
〈µ1, v1〉 ⊗ 〈µ2, v2〉 = 〈(µn

1 •t µn
2 )

1/n, (vn
1 •s vn

2 )
1/n〉,

〈µ3, v3〉 ⊗ 〈µ2, v2〉 = 〈(µn
3 •t µn

2 )
1/n, (vn

3 •s vn
2 )

1/n〉.
Let 〈µ1, v1〉 ≤n 〈µ3, v3〉. Then µ1 ≤ µ3, v1 ≥ v3. Hence, and from the monotonicity of the t-norm

and s-norm, it is obtained that:
µn

1 •t µn
2 ≤ µn

3 •t µn
2 and vn

3 •s vn
2 ≤ vn

1 •s vn
2 iff

(µn
1 •t µn

2 )
1/n ≤ (µn

3 •t µn
2 )

1/n and (vn
1 •s vn

2 )
1/n ≥ (vn

3 •s vn
2 )

1/n iff
〈(µn

1 •t µn
2 )

1/n, (vn
1 •s vn

2 )
1/n〉 ≤n 〈(µn

3 •t µn
2 )

1/n, (vn
3 •s vn

2 )
1/n〉 iff

〈µ1, v1〉 ⊗ 〈µ2, v2〉 ≤n 〈µ3, v3〉 ⊗ 〈µ2, v2〉.
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Proof that the operator ⊕ satisfies conditions of the Definition 6 (2) about the s-norm in the set
n-PFN is analogical.

Summarizing, for the knowledge of operations and relationships introduced in the n-PFN,
the following operations and conclusion relationships can be determined for the n-PFS:

Definition 7. For any p1, p2 ∈ n-PFS, and number λ ∈ [0, 1]:

p1 ⊕ p2 = {〈x, 〈µp1(x), vp1(x)〉 ⊕ 〈µp2(x), vp2(x)〉〉 : x ∈ X}, (62)

p1 ⊗ p2 = {〈x, 〈µp1(x), vp1(x)〉 ⊗ 〈µp2(x), vp2(x)〉〉 : x ∈ X}, (63)

λp1 = {〈x, λ〈µp1(x), vp1(x)〉〉 : x ∈ X}, (64)

pλ
1 = {〈x, 〈µp1(x), vp1(x)〉λ〉 : x ∈ X}, (65)

supp(p1) = {x ∈ X : µp1(x) > 0, vp1(x) > 0}, (66)

p1 ⊆n p2 iff for any x ∈ X, 〈µp1(x), vp1(x)〉 ≤n 〈µp2(x), vp2(x)〉. (67)

The system n-PFS, with defined in the Definition 7 operations (t-norm, s-norm, p-norm, l-norm,
and support) and inclusion relations, is called the n-PFS algebra.

Let 1 =d f 〈0, 1〉, 0 =d f 〈1, 0〉. Then from the Definition 7 and the Theorem 8 there are:

Theorem 10. In the algebra n-PFS, for any p1, p2, p3 ∈ n-PFN and the number λ ∈ [0, 1]:

p1 ⊕ 0 = p1, p1 ⊕ 1 = 1, (68)

p1 ⊕ p2 = p2 ⊕ p1, (69)

(p1 ⊕ p2)⊕ p3 = p1 ⊕ (p2 ⊕ p3), (70)

p1 ⊗ 1 = p1, p1 ⊗ 0 = 0, (71)

p1 ⊗ p2 = p2 ⊗ p1, (72)

(p1 ⊗ p2)⊗ p3 = p1 ⊗ (p2 ⊗ p3), (73)

λ(p1 ⊕ p2) = λp1 ⊕ λp2, (74)

(p1 ⊗ p2)
λ = pλ

1 ⊗ pλ
2 , (75)

(λ1 + λ2)p1 = λ1 p1 ⊕ λ2 p1, (76)

pλ1+λ2
1 = pλ1

1 ⊗ pλ2
1 . (77)

5. Conclusions

This paper presents the elements of deductive theory of the n-PFS, where the membership degree
µ and the non-membership degree v determine not only in the square scale, but in any power scale,
i.e., 0 ≤ µn + vn ≤ 1. As a result, any local deductions in the n-PFS range can be formulated. It may be
interesting to use the described model to create similar models but based on other functional scales,
for example for the function of scale fn(x) = x/n : 0 ≤ µ/n + v/n ≤ 1 or fn(x) = 1 + logn(x + 1),
for x ∈ [0, 1], where f (x) < x : 0 ≤ (l + logn(µ + 1)) + (1 + logn(v + 1)) ≤ 1. In the research,
the n-PFS theory can be used to describe n-PFS as a system of information granules [19].
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Abstract: This paper discusses the power loss minimization problem in asymmetric distribution
systems (ADS) based on phase swapping. This problem is presented using a mixed-integer nonlinear
programming model, which is resolved by applying a master–slave methodology. The master stage
consists of an improved version of the crow search algorithm. This stage is based on the generation of
candidate solutions using a normal Gaussian probability distribution. The master stage is responsible
for providing the connection settings for the system loads using integer coding. The slave stage
uses a power flow for ADSs based on the three-phase version of the iterative sweep method, which
is used to determine the network power losses for each load connection supplied by the master
stage. Numerical results on the 8-, 25-, and 37-node test systems show the efficiency of the proposed
approach when compared to the classical version of the crow search algorithm, the Chu and Beasley
genetic algorithm, and the vortex search algorithm. All simulations were obtained using MATLAB
and validated in the DigSILENT power system analysis software.

Keywords: improved crow search algorithm; normal Gaussian distribution; phase swapping prob-
lem; power losses; asymmetric distribution grids; vortex search algorithm

1. Introduction

Due to the economic and population growth, the dependence on electrical systems has
equally grown to satisfy humanity’s basic needs, changing the habits and customs of how
individuals live and work [1]. To ensure this, three-phase distribution networks are used,
which are responsible for interconnecting transmission and sub-transmission networks
with end-users (i.e., residential, industrial, and commercial areas) requiring medium and
low voltage [2,3]. These systems generally operate in an asymmetric manner due to the
following factors. (i) The configurations on the distribution lines are asymmetrical since
the transposition criterion is not applicable due to the short length of the lines [4,5]. (ii) The
nature of the loads may be 1ϕ, 2ϕ, or 3ϕ, which generates unbalances in voltages at the
nodes and in the line currents [6]. (iii) The arbitrary location of single-phase transformers
on the phases of the system causes an unbalance in the currents through the lines [7].
Load unbalances in distribution systems create undesirable scenarios such as the increase
of current in any phase system, which produces an increase in power losses through its
constituent elements [8]. These power losses can exceed the capacity required to supply
the demand, cause equipment to age, and increase investment and operating costs for
network operators [7,9].

The importance of reducing power losses in distribution networks has established mul-
tiple approaches, such as (i) optimal placement and sizing of distributed generation [10],
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(ii) optimal capacitor placement and sizing [11], (iii) optimal network reconfiguration [12],
(iv) optimal conductor sizing in distribution networks [13], (v) optimal power system
restoration [14], and (vi) optimal phase swapping [15,16]. These strategies can significantly
help distribution companies to reduce the number of power losses. However, the first two
approaches involve significant investments since they integrate new devices into the distri-
bution network [17]. The third approach requires less investment since few distribution
lines need to be constructed to realize the optimal network reconfiguration [18]. The fourth
approach also requires high investment as the system conductors need to be renewed [19].
The fifth methodology is more appropriate for operation of the power system after fault
isolation. The sixth strategy is the most economical as it requires few teams to reconfigure
the system loads without investing in new equipment [20]. Bearing in mind the low phase
swapping costs to minimize the power losses in ADSs, a new master–slave optimization
strategy is proposed to solve this problem.

In the specialized literature, the balance phase problem, with the minimizing power
losses approach, has been solved using different optimization methods, including the
Chu and Beasley genetic algorithms [8,16,21–24], particle swarm optimization [9], mixed-
integer convex optimization [25], bat optimization algorithm [26], differential evolution
algorithm [27], simulated annealing optimizer [28], and vortex search algorithm [15],
among others.

The main feature of the optimization methodologies described above is that they
employ the master–slave optimization scheme to solve the problem [15]. The master defines
the connection of the loads to the nodes. The slave is typically a power flow tool that allows
one to revise and exploit the solution space through the power losses calculation [16].

Similar to the metaheuristic optimization methods described above, a master–slave
methodology is proposed in this work to solve the phase swapping problem in ADSs.
The proposed optimization algorithm corresponds to an improved version of the crow
optimization algorithm (CSA) to select the connection of the loads in the master stage,
together with the use of the iterative sweep power flow method in its three-phase version
in the slave stage. In the master stage, the connection of each load is defined using an
integer encoding between 1 and 6, which represents the six possible connection forms for
a three-phase charge [8]. The slave stage is responsible for evaluating the power flow to
determine the total power losses for the connection set provided in the master stage [15].
Improvements in the classical CSA are carried out in the crow avoidance stage based on a
probability criterion [29]. If the probability is higher than the crow knowledge probability
(Ap), the new crow position i is provided using the classical CSA exploration proposed
in [29]. Likewise, if the possibility is less than the crow knowledge probability (i.e., Ap), the
new crow position i is generated through a regular Gaussian distribution (GD) used in the
process of evolution of the vortex search algorithm (VSA) [30]. The main benefit of the VSA
is that the solution space can be explored and exploited through the use of hyper-spheres
derived from the selection of an individual from the current population. It also clarifies
that the criterion of evolution in our proposal is applied at each iteration, which implies
that this process is of the adaptive type.

The main contributions of our proposal are listed below.

• It proposes an improved approach for the classical CSA using the VSA evolution
mechanism to revise and exploit the solution space.

• The interaction between the improved CSA (i.e., ICSA) and the three-phase power
flow (TPPF), based on the classical iterative sweep method, allows the application of
phase swapping in radial or meshed systems with connected loads, either in Y or ∆.

It is relevant to mention that, upon analyzing the specialized literature, there was no
evidence of the CSA application to the phase swapping problem in distribution systems,
which corresponds to a research gap that this work intends to fill. In addition, the numerical
results obtained in test systems of 8, 25, and 37 nodes prove the quality of the algorithm
when compared with classical metaheuristic optimization methodologies.
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The structure of the remainder of the document takes the following form: Section 2
presents the optimal phase swapping problem representation in ADSs, Section 3 presents
the ICSA incorporated with the TPPF method, Section 4 portrays the electrical networks
used in this research, and Section 5 represents the obtained results for the connections
set and the grid power losses. Finally, Section 6 states the conclusions drawn from the
development of this article.

2. Mathematical Formulation

The optimal phase swapping problem in ADSs is represented by a mixed-integer
nonlinear programming (MINLP) model [16]. The binary variables are the decision vari-
ables, which correspond to the connections set for each load presented in the system [8].
Additionally, the power flow formulation provides the continuous part of the decision
variables. The nonlinear nature of the products appears between the different voltage
magnitudes at the nodes and the trigonometric functions [25]. Next, the objective function
and the set of constraints representing the phase swapping problem are presented.

2.1. Formulation of the Objective Function

The phase swapping problem has an objective function associated with the minimiza-
tion of total active power losses of the ADS, as presented in Equation (1):

min z = ∑
n∈N

∑
m∈N

∑
f∈F

∑
g∈F

Yn f mgVn f Vmgcos(δn f − δmg − θnm f g), (1)

where z defines the value of the objective function. Further, Yn f mg is the admittance
magnitude associated with node n in the electrical phase f with node m in the electrical
phase g, Vn f (Vmg) corresponds to the voltage magnitude at node n(m) in the electrical
phase f (g), δn f (δmg) represents the angle of the voltage at node n(m) in the electrical phase
f (g), and θnm f g represents the admittance angle associated with node n in the electrical
phase f with node m in the electrical phase g. It is relevant to mention that F and N are
the sets containing all phases and nodes, respectively.

Remark 1. The product between the magnitudes of the voltages and the trigonometric functions
makes the objective function nonlinear and nonconvex [16]. The structure of the objective function
makes advanced numerical optimization techniques necessary to minimize it efficiently [15]. A
master–slave methodology is proposed, as is the case of the improved version of the developed CSA,
due to its simplicity in programming terms.

2.2. Set of Constraints

The phase swapping problem has a set of constraints that corresponds to the different
operating limitations in an ADS [15]. These are shown from Equation (2) to Equation (6):

Ps
n f − ∑

g∈F
xn f gPd

ng = Vn f ∑
m∈N

∑
g∈F

Yn f mgVmgcos(δn f − δmg − θn f mg),
{∀ f ∈ F
∀n ∈ N

}
, (2)

Qs
n f − ∑

g∈F
xn f gQd

ng = Vn f ∑
m∈N

∑
g∈F

Yn f mgVmgsin(δn f − δmg − θn f mg),
{∀ f ∈ F
∀n ∈ N

}
, (3)

∑
g∈F

xn f g = 1,
{
∀ f ∈ F , ∀n ∈ N

}
, (4)

∑
f∈F

xn f g = 1,
{
∀g ∈ F , ∀n ∈ N

}
, (5)

Vmin ≤ Vn f ≤ Vmax,
{
∀g ∈ F , ∀n ∈ N

}
, (6)

where Ps
n f is the variable associated with the active power produced at generator s con-

nected to node n in the electrical phase f , and Qs
n f is the generated reactive power at
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generator s sited at node n in the electrical phase f . Pd
ng indicates the active demanded

power at node n in the electrical phase g, while Qd
ng describes the reactive power needed

at node n in the electrical phase g. xn f g is a binary variable defining the configuration of
demand node n at f in the electrical phase g. Finally, Vmin and Vmax correspond to the
allowable limits of voltage regulation for all the system nodes.

Remark 2. Equations (2) and (3) are nonlinear and nonconvex. These features highlight the
complexity of the TPPF problem for electrical systems, making it necessary to use numerical
methods, such as the iterative sweep method, to solve it.

Note that Equation (1) defines the form of the objective function for the phase swap-
ping problem formulated as the minimization of power losses under a given demand condi-
tion in all network sections of the system. Equations (2) and (3) define the apparent power
balance constraints maintained at each phase and node of the ADS. Equations (4) and (5)
ensure that loads take a unique connection form by using a matrix of connections (i.e., xn f g)
at each node [5]. Finally, the constraint presented in (6) defines the allowable limits of
voltage regulation for all nodes of the system [15].

3. Methodology Proposed

To solve the optimal phase swapping problem in ADS with the objective of minimize
power losses for a specific demand condition, this paper proposes to use an ICSA [29] as
the master stage in conjunction with the iterative swept TPPF as the slave stage [15]. The
master stage defines the phase configurations at each system demand node to achieve the
most balanced system possible, while the slave stage evaluates the power flow constraints
defined in (2) and (3). The section below will describe each component of the proposed
master–slave methodology.

3.1. Slave Stage: TPPF Method

The iterative sweep power flow method is a numerical method typically used for
single-phase distribution networks [31]. Nevertheless, this method has been adapted for
three-phase ADSs with wye (i.e., Y) and delta (i.e., ∆) loads [15]. This method is derived
from graph theory, where the topology of the network is represented by an incidence
matrix, which relates the nodes and the links of the system [31]. First, Kirchhoff’s first law
is used to calculate currents in the system nodes, starting from the terminal nodes and until
the source node, which corresponds to the implementation of the backward sweep stage.
Then, Kirchhoff’s second law, which corresponds to the implementation of the forward
sweep stage, is used to calculate the voltage drops in the network sections from the slack
node to the terminal nodes [31].

One of the most important aspects of the iterative sweep power flow method is that it
is derivative-free. Likewise, the matrices involved in the calculations are constant, which
implies that the computing times required to obtain a solution are in milliseconds [15].

In order to expose the iterative swept TPPF method developed by [15], in any n−node
system, we used the relationship between the nodal voltage and the injected current
that is presented using the equivalent between the admittance matrix and the incidence
matrix [32], as shown in Equation (7).

[
Ig3ϕ

Id3ϕ

]
=

[
Ag3ϕZ−1

r3ϕAT
g3ϕ Ag3ϕZ−1

r3ϕAT
d3ϕ

Ad3ϕZ−1
r3ϕAT

g3ϕ Ad3ϕZ−1
r3ϕAT

d3ϕ

][
Vg3ϕ

Vd3ϕ

]
, (7)

where Vg3ϕ is the vector containing all the voltages at the slack node that are known for
power flow purposes [21]. Vd3ϕ is the vector containing all the unknown variables of
interest, i.e., the demand voltages. Further, Ig3ϕ represents the vector with the net current
injections at the slack node, Id3ϕ represents the vector that involves all the currents at the
nodes of consumption, and Zr3ϕ is the matrix that contains all the impedance matrices of
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the distribution lines present in the system. Ag3ϕ is the component of the incidence matrix
that associates the source nodes to each other, while Ad3ϕ is the component of the incidence
matrix relating the nodes of consumption to each other.

Remark 3. The voltage variables and current ones in Equation (7) are organized by nodes and
phases according to the three-phase condition.

From Equation (7), it can be observed that the second row has the nodal voltages at
the demand nodes (i.e., Vd3ϕ), which are the unknown variables in power flow studies [16].
Equation (7) can then be rewritten as follows: (8).

Vd3ϕ = −Y−1
dd3ϕ

[
Ydg3ϕVg3ϕ − Id3ϕ

]
, (8)

where Ydg3ϕ = Ad3ϕZ−1
r3ϕAT

g3ϕ and Ydd3ϕ = Ad3ϕZ−1
r3ϕAT

d3ϕ.
Equation (8) allows the determination of all the nodal demand voltages per phase.

However, it is necessary to consider the type of load, either Y or ∆, to establish the demand
current (i.e., Id3ϕ).

In the case where node m has a constant power load with a Y structure (assum-
ing it is solidly earthed [33]), the demand current can be shown as in Equation (9), as
reported in [21].

Idm3ϕ = −diag−1(V∗dm3ϕ)S
∗
dm3ϕ (9)

If node m has a load with a connection ∆, the demand current can be as shown in
Equation (10), as reported in [21].

Idm3ϕ = −(diag−1(MV∗dm3ϕ)− diag−1(MTV∗dm3ϕ)H)S∗dm3ϕ, (10)

where the H and M matrices are defined as follows:

H =




0 0 1
1 0 0
0 1 0


, M =




1 −1 0
0 1 −1
−1 0 1




Through a t iteration counter, the solution of Equation (8) is obtained if
max

{
||Vt+1

d3ϕ| − |Vt
d3ϕ||

}
≤ ε, where ε is the maximum tolerance suggested as 1× 10−10 [34].

When solving the TPPF, the main objective is to evaluate the power losses for the
phase connection set established in the master stage. For this purpose, Equation (11), as
described in [32], is used.

Ploss = real
{∣∣J3ϕ

∣∣TZr3ϕ

∣∣J3ϕ

∣∣
}

, (11)

where Ploss describes the total system effective power losses and J3ϕ represents the current
per phase flowing through the system branches expressed as shown in Equation (12)
through Ohm’s Law, as reported in [15].

J3ϕ = Z−1
r3ϕE3ϕ, (12)

where E3ϕ represents the voltage drop per phase in the system branches, which can be
written in terms of the generation and demand using the three-phase incidence matrix as
shown in Equation (13), as reported in [15].

E3ϕ = AT
g3ϕVg3ϕ + AT

d3ϕVd3ϕ (13)

Algorithm 1 shows the general implementation of the TPPF method by an iterative
sweep for ADSs with connected loads in Y and ∆.
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Algorithm 1: Solution of the TPPF problem for ADSs with Y and ∆ loads

Define the characteristics of the unbalanced three-phase system under study;
Obtain the per-unit equivalent of the system;
Generate the 3ϕ incidence matrix A3ϕ;
Extract the components Ag3ϕ and Ad3ϕ;
Define Zr3ϕ;
Calculate Ydg3ϕ and Ydd3ϕ;
Select tmax;
Define ε;

Chose the voltages per phase of the Slack node: Vg3ϕ =
[
1∠0, 1∠− 2π

3 , 1∠ 2π
3

]T ;
Do t = 0;
for m ≥ n− 1 do

Do Vt
dm3ϕ = Vg3ϕ;

end
for t ≤ tmax do

Define m = 1;
for m ≥ n− 1 do

if node load m is connected at Y then
Calculate It

dm3ϕ using Equation (9);

else
Calculate It

dm3ϕ using Equation (10);

end
end
Calculate the new voltages at the demand nodes Vt

d3ϕ using Equation (8);

if max
{
||Vt+1

d3ϕ| − |Vt
d3ϕ||

}
≤ ε then

Report the nodal voltages as V3ϕ =
[
Vg3ϕ, Vd3ϕ

]T ;
Calculate the voltage drop across the branches of the system using Equation (13);
Calculate the current flowing in the system branches using Equation (12);
Calculate the power losses using Equation (11) ;
break;

else
Do Vt

d3ϕ = Vt+1
d3ϕ;

end
end

Remark 4. The convergence of the matrix iterative sweep method can be demonstrated with the
Banach fixed-point theorem, as reported in [31]. So, if the system is far enough from the stress
collapse point, it can be guaranteed that the solution of Equations (2) and (3) obtain any combination
of nodal loads provided by the master stage.

3.2. Master Stage: ICSA

The master stage is responsible for providing the nodal connections set for evaluation
in the iterative sweep TPPF presented in Algorithm 2. This paper proposes an improved
version of the classical CSA modifying the solution space exploration by introducing
a normal GD employed by the VSA optimization method [35]. Before explaining the
improvements made to the CSA, the encoding of the phase swapping problem in ADSs
according to the possible configurations is shown in Table 1.
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Table 1. Possible connection types for the system loads [8].

Connection Type Phases Sequence

1 UVW
2 VWU No vary
3 WUV

4 UWV
5 WVU Vary
6 VUW

The coding used to represent an individual i in iteration k is presented as follows:

Xi,k = [6, 2, 4, 5, ..., c, ..., 1]

Here, the dimensions are 1 × (n − 1) and c is an integer that defines the type of
connection (see Table 1) [15]. The ICSA is developed using a probability criterion at each
iteration, which will define the methodology to be used to define the new site of crow
i. If the probability criterion is greater than the crow knowledge probability (i.e., AP) at
iteration k, the traditional classical CSA search is employed [29]; otherwise, it will use the
GD of the VSA to generate the new crow position i.

3.2.1. Classical Approach: CSA

CSA is a metaheuristic optimization technique inspired by the intelligent performance
of crows [29]. Crows are considered to be the smartest birds in nature; they possess
a brain much larger in relation to the size of their bodies [36]. In groups, crows show
notable traits of intelligence. They can learn and remember faces, use tools, communicate
using sophisticated manners, and manage their food throughout the seasons because
they hide their excess food in certain places (caches) in their environment and retrieve it
when necessary [29].

Crows are ambitious birds as they pursue each other for better food reserves, observe
where other birds hide their food, and steal it once they have left [37]. If a crow has stolen
something, it takes additional cautions such as relocating its hiding places to prevent
becoming a future victim [36]. They use their experience in theft to predict another robber’s
behavior and to determine the quickest course to protect their caches from being stolen [38].
The main bases of CSA are listed below [29]: (i) crows live in flocks, (ii) crows remember
the site of their hiding places, (iii) crows pursue others to commit robberies, and (iv) crows
shield their caches from being robbed using probability.

The following is an example of how the CSA mechanism works. Crows explore
and exploit their environment, which is the solution space. Each environment cache
corresponds to a feasible solution, the quality of the food source is the objective function.
The best food source in the environment is the solution to the problem, Thus, the CSA
seeks to simulate the intelligent behavior of crows to find the optimal solution [29].

The CSA is also based on a population. The population size (i.e., flock) consists of
N individuals (number of crows), which belong to a d dimensional solution space, where
d = (n− 1). The position Xi,k of crow i at iteration k is described in Equation (14) and
represents a feasible problem solution.

Xi,k = [x1
i,k, x2

i,k, ...., xn
i,k], (14)

where i = 1, 2, ..., N and k = 1, 2, ..., tmax. Further, tmax is the maximum number of iterations
of the exploration and exploitation process of the solution space. Each crow (individual) can
memorize the position of its hiding place. At iteration k, the position of crow i hiding place
is represented as Mi,k, being the best position that crow i has obtained so far. Of course, the
position of its best experience is memorized because crows move in their environment and
search for the best food source (i.e., hiding places).
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At the start of the optimization process, it is assumed that at iteration k, crow j wants
to visit its hideout, Mj,k. In this iteration, crow i decided to follow crow j to approach crow
j’s hideout. In this case, two situations can occur.

Situation 1: Search
Crow j does not know that crow i is following it. As a result, crow i approaches crow

j’s hiding place. In this case, through Equation (15), the new position of crow i is obtained.

Xi,k+1 = Xi,k + ri f li,k
(

Mj,k − Xi,k

)
, (15)

where ri a random number between 0 and 1, and f li,k is the flight length of the crow i at each
iteration k. According to [29], small values of f l allow a local exploration of the solution
space (close to Xi,k), while large values of f l allow a global solution space exploration (far
from Xi,k).

Situation 2: Evasion
Crow j knows that crow i is following it. As a result, crow j tries to deceive crow i by

heading towards another position in the solution space to protect its caches from being
stolen. Either way, situations 1 and 2 can be represented as shown in Equation (16).

Xi,k+1 =

{
Xi,k + ri f li,k(Mj,k − Xi,k) if rj ≥ AP

random otherwise
, (16)

where rj is a random number between 0 and 1, and AP denotes the probability of crow j’s
knowledge of crow i.

Once the crows’ positions are modified, the memory of each crow is updated based
on the objective function values of the new spots. So, if the objective function of the new
location is better than the objective function of the memorized position, the crows update
their memory to the new area, as shown in Equation (17).

Mi,k+1 =

{
F(Xi,k+1) if F(Xi,k+1) < F(Mi,k)

Mi,k otherwise
, (17)

where F(·) represents the minimized objective function.

3.2.2. Proposed ICSA

The CSA has confirmed its capability to reach the optimal solution for particular
solution space configurations [29,39,40]. Nevertheless, its convergence is not ensured due
to the inefficient exploration of its search strategy [37]. Therefore, it presents difficulties
when facing high-dimensional problems [37,41]. In the original CSA method [29], there
are two elements responsible for the search process: knowledge probability (i.e., AP) and
random motion (i.e., Situation 2: Avoidance) [41].

The value of AP is entrusted with providing an adequate equilibrium between diver-
sification and intensification [29]. With small AP values, a local solution space search is
obtained, increasing intensification [29]. On the other hand, with large AP values, a global
solution space search is obtained, which increases diversification [29]. Since metaheuristic
algorithms require a balance between diversification and intensification to find a globally
optimal solution when solving problems with large dimensions [42,43], AP is taken as an
intermediate value, i.e., 50%.

Moreover, the random motion specifically impacts the CSA search mechanism since
it resets the candidate solutions, deviating them from the current best solution and de-
laying the convergence of the problem [37]. In the proposed ICSA, the random motion is
reformulated, as shown below.
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3.2.3. Improved Approach: VSA for Random Movement

The evasion behavior is simulated by a random motion implementation computed
through a uniformly distributed random value [29]. In the proposed ICSA, to have a better
solution space diversification, the possibility of generated candidate solutions based on the
VSA evolution criteria is added to the classical CSA [15], considering that the main feature
of the VSA is the use of a regular GD to generate neighbors around the current best solution
named as the center of the hyper-sphere µ [44]. In this paper, the hyper-sphere center is
selected as the best solution in the current population during iteration k as µk = Xbest,k.

The set of candidate solutions Cv,k(y) is generated using a random GD in the space d
around the best solution Xbest,k, as shown in Equation (18).

Cv,k(y) = p(y|µk, Σ) =
1√

(2π)d|Σ|)
exp

{
−1

2
(y− µk)

TΣ−1(y− µk)

}
, (18)

where d is the solution space dimension, y ∈ Rd×1 corresponds to a vector of random
variables with values between zero and one, and Σ ∈ Rd×d is the matrix of covariance.
If, in Σ, the on-diagonal elements (variance) are equally defined and if the off-diagonal
components (covariance) are chosen as zero, then the GD will generate hyper-spheres in the
d−dimensional space [35]. Equation (19) displays a simple way to calculate Σ, considering
equal variance and zero covariances.

Σ = σ2Id×d, (19)

where Id×d is an identity matrix and σ represents the variance of the GD. Note that the
standard deviation of the GD can be defined as shown in Equation (20).

σ0 =
max{ymax} −min

{
ymin}

2
, (20)

where ymax and ymin are vectors of dimension d× 1 that define the upper and lower bounds
of the decision variables of the optimization problem, respectively. Here, σ0 can also be
considered as the initial radius r0 of the hyper-sphere [35]. To achieve a proper exploration
of the solution space, initially, σ0 is the largest possible hyper-sphere.

The candidate solutions obtained and contained in the set Cv,k(y) must guarantee that
the results lie within the bounds of the solution space; so, Equation (21) is employed.

Cv,k(y) =
{

Cv,k(y) ymin ≤ y ≤ ymax

ymin + (ymax − ymin)rand otherwise
, (21)

where rand generates random numbers between 0 and 1. Once verified the limits, the best
solution obtained in the set Cv,k(y) is selected to be the new position of the crow i.

It is necessary to mention that the radius of the hyper-sphere decreases as the iteration
process progresses using an inverse incomplete gamma function, as reported in [45] and as
shown in Equation (22).

rk = σ0γ−1(y, ak) (22)

The inverse incomplete gamma function for the variable radius calculation can be
calculated in MATLAB®, as shown in Equation (23) [35].

rk = σ0
1
y

gammaincinv(y, ak), (23)

where ak is a parameter defined as ak = 1− k
tmax

. Moreover, the parameter y is chosen as
0.1, as recommended in [35].

Algorithm 2 summarizes the implementation of the CSA, considering the VSA evolu-
tion criterion for Situation 2, to solve the phase swapping problem in ADSs.

167



Symmetry 2021, 13, 1329

Remark 5. For the phase swapping problem solution, when using Algorithm 2, it is recommended
to take ymax as 6.5 and ymin as 0.5. Further, d is the number of system demand nodes, except for
the slack node.

Remark 6. The size of the solution set Cv,k(y) is chosen as 30% of the CSA population size to
minimize the number of evaluations needed in the slave stage to determine the power losses.

Algorithm 2: General ICSA implementation for solving the phase swapping problem in ADSs

Read information from the AC distribution system;
Set the initial values N,AP, f l, and tmax;
Initialize the crows’ position Xi,0 randomly;
Calculate the objective function value for each crow F(xi,0) using Algorithm 1;
Select the initial memory value Mi,0 for each crow i;
Select the initial radius r0 (or the standard deviation σ0) of (20);
Set k = 1;
while k ≤ iter max do

for i = 1: N do
Randomly select a crow j for tracking.;
if rj ≥ AP then

Xi,k+1 = Xi,k + ri · f li,k · (Mj,k − Xi,k) ;
else

Determine the center of the hyper-sphere µk as Xbest,k;
Select the radius of the hyper-sphere rk ;
Define the individuals’ number v as 30% of N;
Create the set of candidate solutions Cv,k(y) using (18);
Check the lower and upper bounds for each v en Cv,k(y) using (21);
Calculate the objective function value for each crow v in Cv,k(y) using Algorithm 1;
Select Xi,k+1 = as the individual with the best solution of Cv,k(y);

end
end
Verify feasibility of the new positions Xi,k+1 ;
Evaluate the crows’ new position F(Xi,k+1);
Update the crows’ memory Mi,k+1;
Update the radius rk+1 as shown in en (22);
k = k + 1;

end
Result: Report the best solution Xi,tmax , and its obj. func. value, i.e., F(Xi,tmax).

4. Three-Phase Test Feeders

We consider three test systems to validate the proposed ICSA. These test systems
correspond to the 8, 25, and 37 node systems with radial topology reported in [15] for the
phase swapping study using the VSA. Their main characteristics are presented below.

4.1. 8-Bus Test Feeder

The 8-node test system is a three-phase ADS formed by eight nodes and seven distri-
bution lines, which operates with a nominal voltage of 11 kV at the main node. Figure 1
shows the electrical configuration of the test system. Note that the benchmark active power
losses for this system take a value of 13.9925 kW. The electrical parameters for this test
feeder can be found in [15].
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Figure 1. Electrical design of the 8-node system.

4.2. 25-Bus Test Feeder

The 25-node test system is a three-phase ADS formed by twenty five nodes and twenty
four distribution lines, which operates with a nominal voltage of 4.16 kV at the main node.
Figure 2 displays the grid configuration. Note that the benchmark active power losses for
this system take a value of 75.4207 kW. The electrical parameters for this test feeder can be
found in [15].
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Figure 2. Electrical design of the 25-node system.

4.3. 37-Bus Test Feeder

The 37-node system is part of a current ADS, consisting entirely of subway lines
situated in California, USA. It has thirty seven nodes and thirty five distribution lines,
and it operates at a nominal voltage of 4.8 kV at the substation. Figure 3 shows the grid
electrical design of this test feeder. Note that the benchmark active power losses for this
system take a value of 76.1357 kW. The electrical parameters for this test feeder can be
found in [15].
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Figure 3. Electrical design of the 37-node system.

5. Numerical Simulations

This section contains the numerical validation of the developed methodology to
solve the phase swapping problem in 8-, 25-, and 37-node test systems, considering a
given demand condition. In that sense, it uses the information provided by [15], which
presents two methodologies to solve the proposed problem. Note that the aim is to
compare the results obtained by the proposed procedure with each optimization technique
reported in [15].

To solve the MINLP, formulated from (1) through (6), that represents the optimal phase
swapping problem for ADSs, MATLAB® V2020a software is used on a laptop computer
with an Intel(R) Core(TM) i5-7200U CPU @2.50 Ghz, a RAM of 8.00 GB, and a Windows 10
Home Single Language 64-bit operating system.

To test the efficiency of the proposed algorithm, the ICSA is compared with the Chu
and Beasley genetic algorithm (CBGA) [15], the VSA [15], and the CSA. The parameters
used for the CSA and ICSA are as provided in Table 2. Furthermore, the parameters were
established with ten individuals in the population, six hundred iterations, and one hundred
evaluations to calculate the average processing time. The parameters for the CSA are those
recommended by the author of the algorithm in [29].

Table 2. Algorithms parameters.

Parameter CSA ICSA

f l 2 2
AP 0.1 0.5

5.1. Results for the 8-Node System

Table 3 shows the results obtained by the proposed ICSA for the 8-node test system as
follows: (i) all methodologies allow a reduction of more than 24% in total power losses;
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(ii) the solution obtained with the ICSA for the 8-node system equals those reported in [15],
which states that the optimal global solution for this system is 10.5968 kW, albeit with
a much longer processing time; and (iii) the standard deviation for the ICSA shown in
Table 3 is 1.099× 10−5 kW, which is at least ten times lower than in the VSA [15]. These
results indicate that the repeatability of the solutions is close to 100% when solving the
phase swapping problem in the 8-node test system, bearing in mind that the solution space
has dimensions of 279,936.

Table 3. Performance of the power losses after implementing the phase-swapping plan in the 8-bus test feeder.

Method Connections Losses (kW) Std. (kW) Reduction (%) Proc. Time (s)

Benchmark case {1, 1, 1, 1, 1, 1, 1} 13.9925 - - -
CBGA [15] {6, 1, 5, 1, 4, 4, 1} 10.5869 0.0897 24.34 2.8137
VSA [15] {6, 1, 5, 1, 2, 1, 1} 10.5869 4× 10−4 24.34 6.059

CSA {5, 3, 4, 5, 6, 6, 3} 10.5869 4.646× 10−3 24.34 8.7290
ICSA {2, 4, 5, 4, 6, 4, 3} 10.5869 1.099× 10−5 24.34 47.7428

Figure 4 displays the variations of the phase power losses before and after the appli-
cation of phase swapping with the ICSA, where the phase losses of a and b increase by
1.025 kW and 1.663 kW, respectively. On the contrary, the power losses in the electrical
phase c decrease by about 6.10 kW, which increases the offsets seen in the power losses of
phases a and b. Additionally, the power losses per phase are close to the average of the
total power losses of approximately 3.50 kW, with differences of less than 0.80 kW. These
results indicate that phase swapping by ICSA is an effective way to redistribute the loads
in the phases of the system as evenly as possible.
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Figure 4. Effect of phase swapping on power losses in the 8-bus test feeder.

5.2. Results for the 25-Node System

Table 4 shows the results obtained by the proposed ICSA for the 25-node test system,
where the following is evident: (i) the solution obtained with the ICSA for the 25-node
system equals the one reported in [15] for the VSA, which states that the optimal global
solution for this system is 72.2888 kW; (ii) the solution obtained with the ICSA for the
25-node system outperforms the solution obtained with the CSA, which shows that the
improvement made to the classical CSA explores and exploits the solution space for
systems of large dimensions (i.e., 24 nodes in this case) in a better way; and (iii) the
standard deviation for the ICSA, shown in Table 4, is 0.0116 kW lower than those reported
in [15] and in CSA. This affirms the repeatability properties of the ICSA for solving the
phase swapping problem, considering the size of the solution space, i.e., 2.8430× 1019.
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Table 4. Performance of the power losses after implementing the phase-swapping plan in the 25-bus test feeder.

Method Connections Losses (kW) Std. (kW) Proc. Time (s)

Benchmark case {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1} 75.4207 - -
CBGA [15] {1, 1, 3, 5, 2, 1, 1, 1, 2, 6, 5, 1, 5, 3, 6, 6, 3, 3, 1, 3, 5, 2, 4, 3} 72.2919 0.0366 18.6683
VSA [15] {1, 2, 4, 5, 6, 1, 2, 3, 1, 5, 4, 3, 3, 5, 5, 2, 3, 3, 5, 4, 2, 2, 2, 3} 72.2888 0.0233 36.6900

CSA {4, 4, 4, 2, 6, 5, 2, 5, 3, 6, 3, 1, 4, 2, 2, 1, 2, 3, 3, 5, 2, 5, 3, 4} 72.3296 0.0225 29.4161
ICSA {4, 2, 4, 5, 6, 3, 2, 3, 1, 5, 4, 3, 3, 5, 5, 2, 3, 3, 5, 4, 2, 2, 2, 3} 72.2888 0.0116 134.8935

Figure 5 represents the variations of the phase power losses before and after the
application of phase swapping with the ICSA, where the phase losses of b increase by
11.3776 kW. On the other hand, the phase power losses of a and c approximately decrease
by 11.2156 kW and 3.294 kW, respectively, which offsets the increase seen in the electrical
phase b power losses. Additionally, the phase power losses are close to the average of
the total power losses, approximately 24 kW, with differences of less than 3.60 kW. These
results indicate that phase swapping by ICSA is an effective way to redistribute the loads
in the phases of the system as evenly as possible.
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Figure 5. Effect of phase swapping on power losses in the 25-bus test feeder.

Figure 6 shows a comparison of the percentage reductions of the total active power
losses of the different methods displayed in Table 4, in contrast to the initial power losses.
All methodologies allow a cutback of more than 4%. ICSA obtains a reduction of 4.15%,
akin to the VSA reported in [15].
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Figure 6. Reduction of the power losses in the 25-bus system.

5.3. Results for the 37-Node System

Table 5 shows the results obtained by the proposed ICSA for the 37-node test system,
where the following is evident: (i) the solution obtained with the ICSA for the 37-node
system improves the one reported in [15] for the VSA, which indicates that the optimal
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solution for this system is 61.4781 kW; (ii) the solution obtained with the ICSA for the
37-node system outperforms the solution obtained with the CSA, which shows that the
improvement made to the classical CSA explores and exploits the solution space for systems
of large dimensions (i.e., 37-nodes) in a better way; and (iii) the standard deviation for the
ICSA shown in Table 5 is 0.1344 kW, which is lower than those reported in [15] and the one
obtained by the CSA. This affirms the repeatability properties of the ICSA for solving the
phase swapping problem, considering the size of the solution space, i.e., 6.1887× 1028.

Table 5. Performance of the power losses after implementing the phase-swapping plan in the 37-bus test feeder.

Method Connections Losses (kW) Std. (kW) Proc. Time (s)

Benchmark case
{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1

76.1357 - -1,1,1,1,1,1,1,1,1,1,1}

CBGA [15]
{4,1,1,6,4,4,6,4,1,1,6,5,2,1,2,3,1,5,1,4,3,2,6,5

61.5785 0.4274 14.18163,2,1,6,5,2,1,4,1,2,3}

VSA [15]
{4,1,1,5,3,4,2,3,1,1,3,2,2,1,3,5,2,3,1,3,6,1,2,3

61.4801 0.3286 50.02623,2,1,1,2,4,1,4,1,2,4}

CSA
{4,5,4,4,4,4,5,4,3,3,4,4,1,4,5,3,3,2,3,3,4,3,4,3

61.6565 0.2975 89.16983,4,4,4,5,4,4,4,3,2,3}

ICSA
{4,4,4,3,5,3,3,5,6,5,3,2,4,5,3,5,5,3,5,5,6,5,2,6

61.4781 0.1344 238.36146,4,6,5,4,4,3,2,5,4,2}

Figure 7 portrays the variations of the phase power losses before and after the appli-
cation of phase swapping with the ICSA, where the phase b losses increase by 9.9184 kW.
On the contrary, the phase power losses in a and c decrease by approximately 6.7771 kW
and 17.7989 kW, respectively, offsetting the increase seen in the electrical phase b power
losses. Additionally, the phase power losses are close to the average total power losses of
approximately 20.50 kW, with differences of less than 1.40 kW. These results indicate that
phase swapping by ICSA is an effective way to redistribute the loads in the phases of the
system as evenly as possible.
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Figure 7. Effect of phase swapping on power losses in the 37-bus test feeder.

Figure 8 compares the reductions in the total active power losses percentage of the
different methods presented in Table 5 to the initial power losses. All methodologies allow
a decrease of more than 19%, where ICSA obtains a reduction of 19.252%, a higher loss
than VSA, as reported in [15], which reported a decrease of 19.249%.

In Figure 8, it is possible to observe that the proposed ICSA allows an additional
improvement about 0.003% when compared to the power losses reduction with the VSA.
This reduction implies a difference of 0.1784 kW in the total power losses minimization
for the IEEE 37-bus system. Even if this power losses value corresponds to a small power
losses reduction for this system, this demonstrates that the proposed ICSA finds an optimal
solution for the IEEE 37-bus system, which supports the best current literature report
obtained by [15] with the VSA method. Thus, this new solution will serve as a reference
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point for future approaches that can be proposed to solve the phase swapping problem
in ADSs.
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Figure 8. Reduction of the power losses in the 37-bus test feeder.

5.4. Complementary Results

The following can be concluded from the results obtained in Section 5.

X The optimal solution achieved with the enhanced version of the CSA for each test
system is equal to the one reported in [15] for the 8- and 25-node systems. However, it
obtained a better solution for the 37-node system. Note that the obtained solutions
(power losses) in this research are 10.5869 kW, 72.2888 kW, and 61.4781 kW for the 8-,
25-, and 37-node systems, respectively, while the best solutions reported in [15] are
10.5869 kW, 72.2888 kW, and 61.4801 kW, respectively. It is relevant to highlight that
the ICSA requires a longer processing time. Nevertheless, these times do not exceed
6 minutes, which is not significant considering the terms for optimization problems
with solution spaces with hundreds of thousands of combinations. It ensures excellent
quality solutions and even better ones than the values reported in the literature review
in some cases (see results for the 37-node system). However, simulations in tests
feeders with large number of nodes will be required to ensure that, in all of the cases,
the processing times spent by the proposed ICSA will be compensated with optimal
solutions better than the solutions provided by the VSA.

X The standard deviations reported in Tables 3–5 for the 8-, 25-, and 37-node systems,
respectively, for ICSA are lower than those reported in [15]. In addition, a standard
deviation of 0.1344 kW for the 37-node test system demonstrates the repeatability prop-
erties of the ICSA for solving the phasing problem, considering that the dimensions
of the solution space are higher than 1× 1028. Regarding metaheuristic optimization
methods, the main preoccupation in the literature is associated with the ability of these
methods to find the same optimal solution at each simulation. However, this is not
possible due to the random nature of the exploration and exploitation criteria inside
of each metaheuristic optimizer. Nevertheless, when an optimization methodology
exhibits low standard deviations, all the solutions are contained inside of a small
hyper-sphere close to the global optimum. This improves the optimization method of
the proposed ICSA when compared with a family of metaheuristic optimizers.

X When comparing the base cases of each test system with the proposed methodologies,
as shown in Table 3 and Figures 5 and 7, the reductions in energy losses resulting from
ICSA in the 8, 25, and 37-node systems are 24.34%, 4.152%, and 19.252%, respectively.
The results show that better results are obtained when applying the proposed method-
ology for the 37-node system, in contrast to the CSA and the VSA [15]. Likewise, it is
observed that the proposed enhancement for the CSA effectively explores and exploits
the solution space for large systems higher than 25 nodes in the case of distribution
power systems.
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X The comparison of the effect in the energy losses redistribution at each phase using
the classic and improved CSA methods is presented in Table 6.

Table 6. Comparison between the CSA and the proposed ICSA regarding power losses among phases.

Method Phase a (kW) Phase b (kW) Phase b (kW) Total (kW)

8-bus system

Benchmark case 1.7158 2.3305 9.9462 13.9925
CSA 3.7617 2.7295 4.0957 10.5869
ICSA 2.7412 3.9930 3.8464 10.5869

25-bus system

Benchmark case 36.8801 14.7837 23.7570 75.4207
CSA 24.9590 26.2079 21.1627 72.3296
ICSA 25.6645 26.1613 20.4630 72.2888

IEEE 37-bus system

Benchmark case 27.1532 11.9143 37.0683 76.1357
CSA 19.1177 20.5926 21.1627 61.6565
ICSA 20.3761 21.8327 19.2694 61.4781

With these results, we can make several observations. (i) In the 8-bus system, the
phase c presents power losses higher than 4 kW, while the ICSA does not support this
value; however, both solutions are indeed optimal since the total power losses is the same
for both methods. (ii) In the 25-bus system both methods, i.e., the CSA and its improved
version, the phase c has been identified to present higher power losses surpassing 26 kW;
however, regarding the final power losses, the ICSA presents better load redistribution,
since the amount of power losses is about 0.0408 kW. Finally, (iii) in the 37-bus system, the
CSA method presents a difference between phases a and b power losses of 2.0450 kW, while
the proposed ICSA has a minor difference between both phases with a value of 1.1067 kW.
This directly impacts the final grid results with a general improvement of about 0.1784 kW
in favor of the proposed ICSA, which is indeed the best global optimum reported in the
current literature for the IEEE 37-bus system.

6. Conclusions and Future Works

This paper presented a master–slave methodology to solve the phase equilibrium
problem in ADSs. For this purpose, an ICSA was proposed using the VSA evolution
mechanism. The master stage determined the set of phase configurations for the system
three-phase charges through the ICSA, using an integer encoding between 1 and 6 repre-
senting the load connections in the three-phase system. On the other hand, the slave stage
evaluated each of the load connections in the TPPF, which correspond to the extended
version of the iterative sweep power flow method for unbalanced three-phase systems.

The numerical results on the 8-, 25-, and 37-node test systems showed that the pro-
posed ICSA, compared to the VSA, achieves identical solutions for the 8-node and 25-node
systems. However, for the 37-node system, the ISCA obtains a better optimal solution when
compared with the current report employing the VSA method. The solutions obtained by
the ICSA are 10.5869 kW, 72.2888 kW, and 61.4781 kW for the 8-, 25-, and 37-node systems,
representing a reduction of 24.34%, 4.152%, and 19.252%, respectively. In the same way, the
solutions for the VSA are 10.5869 kW, 72.2888 kW, and 61.4801 kW, respectively.

In addition, the proposed methodology has minor standard deviations for solving
the phase swapping problem for the 8-, 25-, and IEEE 37-node test systems, which were
1.099× 10−5 kW, 0.0116 kW, and 0.1344 kW, respectively. This demonstrates better repeata-
bility properties of the improved algorithm, since all the solutions are contained inside
small hyper-spheres around the global optimum. Further, the solution space for the phase
equilibrium problem potentially increases as a function of the demand nodes. Thus, for the
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IEEE 37-node system, there is a solution space bigger than 1× 1028, which is by far higher
than 100 billion combinations. This result confirmed the effectiveness of the proposed
methodology for solving complex MINLP models such as the phase equilibrium problem in
ADSs as well as in being better than the optimal solution reported in the current literature
using the VSA.

In future work, it is possible to accomplish the following: (i) combine the proposed
phase swapping with the optimal placement of distributed generators to reduce power
losses in ADSs; (ii) employ typical active and reactive power demand curves to solve the
phase swapping problem using the ICSA to reduce power losses; and (iii) use the ICSA to
solve the optimal reconfiguration problem in three-phase radial distribution networks.
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12. Jakus, D.; Čad̄enović, R.; Vasilj, J.; Sarajčev, P. Optimal reconfiguration of distribution networks using hybrid heuristic-genetic
algorithm. Energies 2020, 13, 1544. [CrossRef]

13. Montoya, O.D.; Garces, A.; Castro, C.A. Optimal conductor size selection in radial distribution networks using a mixed-integer
non-linear programming formulation. IEEE Lat. Am. Trans. 2018, 16, 2213–2220. [CrossRef]

14. Łukaszewski, A.; Nogal, Ł.; Robak, S. Weight Calculation Alternative Methods in Prime’s Algorithm Dedicated for Power System
Restoration Strategies. Energies 2020, 13, 6063. [CrossRef]

15. Cortés-Caicedo, B.; Avellaneda-Gómez, L.S.; Montoya, O.D.; Alvarado-Barrios, L.; Chamorro, H.R. Application of the Vortex
Search Algorithm to the Phase-Balancing Problem in Distribution Systems. Energies 2021, 14, 1282. [CrossRef]

16. Montoya, O.D.; Molina-Cabrera, A.; Grisales-Noreña, L.F.; Hincapié, R.A.; Granada, M. Improved Genetic Algorithm for
Phase-Balancing in Three-Phase Distribution Networks: A Master-Slave Optimization Approach. Computation 2021, 9, 67.
[CrossRef]

17. Saad Al-Sumaiti, A.; Kavousi-Fard, A.; Salama, M.; Pourbehzadi, M.; Reddy, S.; Rasheed, M.B. Economic Assessment of
Distributed Generation Technologies: A Feasibility Study and Comparison with the Literature. Energies 2020, 13, 2764. [CrossRef]

18. Rajaram, R.; Kumar, K.S.; Rajasekar, N. Power system reconfiguration in a radial distribution network for reducing losses and to
improve voltage profile using modified plant growth simulation algorithm with Distributed Generation (DG). Energy Rep. 2015,
1, 116–122. [CrossRef]

19. Ahshan, R. Analysis of Loss Reduction Techniques for Low Voltage Distribution Network. J. Eng. Res. [TJER] 2020, 17, 100–111.
20. Grigoras, , G.; Neagu, B.C.; Gavrilas, , M.; Tris, tiu, I.; Bulac, C. Optimal phase load balancing in low voltage distribution networks

using a smart meter data-based algorithm. Mathematics 2020, 8, 549. [CrossRef]
21. Montoya, O.D.; Giraldo, J.S.; Grisales-Noreña, L.F.; Chamorro, H.R.; Alvarado-Barrios, L. Accurate and Efficient Derivative-Free

Three-Phase Power Flow Method for Unbalanced Distribution Networks. Computation 2021, 9, 61. [CrossRef]
22. Taghipour Boroujeni, S.; Mardaneh, M.; Hashemi, Z. A dynamic and heuristic phase balancing method for LV feeders. Appl.

Comput. Intell. Soft Comput. 2016, 2016, doi:10.1155/2016/6928080. [CrossRef]
23. Gandomkar, M. Phase balancing using genetic algorithm. In Proceedings of the 39th International Universities Power Engineering

Conference, 2004, UPEC 2004, Bristol, UK, 6–8 September 2004; Volume 1, pp. 377–379.
24. Rios, M.A.; Castaño, J.C.; Garcés, A.; Molina-Cabrera, A. Phase Balancing in Power Distribution Systems: A heuristic approach

based on group-theory. In Proceedings of the 2019 IEEE Milan PowerTech, Milan, Italy, 23–27 June 2019; pp. 1–6.
25. Garces, A.; Gil-González, W.; Montoya, O.D.; Chamorro, H.R.; Alvarado-Barrios, L. A Mixed-Integer Quadratic Formulation of

the Phase-Balancing Problem in Residential Microgrids. Appl. Sci. 2021, 11, 1972. [CrossRef]
26. Amon, D.A.; Adeyemi, A. A modified bat algorithm for power loss reduction in electrical distribution system. Indones. J. Electr.

Eng. Comput. Sci. (IJEECS) 2015, 14, 55–61.
27. Sathiskumar, M.; kumar, A.N.; Lakshminarasimman, L.; Thiruvenkadam, S. A self adaptive hybrid differential evolution

algorithm for phase balancing of unbalanced distribution system. Int. J. Electr. Power Energy Syst. 2012, 42, 91–97. [CrossRef]
28. Zhu, J.; Bilbro, G.; Chow, M.Y. Phase balancing using simulated annealing. IEEE Trans. Power Syst. 1999, 14, 1508–1513. [CrossRef]
29. Askarzadeh, A. A novel metaheuristic method for solving constrained engineering optimization problems: Crow search

algorithm. Comput. Struct. 2016, 169, 1–12. [CrossRef]
30. Dogan, B. A Modified Vortex Search Algorithm for Numerical Function Optimization. Int. J. Artif. Intell. Appl. 2016, 7, 37–54.

[CrossRef]
31. Shen, T.; Li, Y.; Xiang, J. A graph-based power flow method for balanced distribution systems. Energies 2018, 11, 511. [CrossRef]
32. Herrera-Briñez, M.C.; Montoya, O.D.; Alvarado-Barrios, L.; Chamorro, H.R. The Equivalence between Successive Approximations

and Matricial Load Flow Formulations. Appl. Sci. 2021, 11, 2905. [CrossRef]
33. Łukaszewski, A.; Nogal, Ł. Influence of lightning current surge shape and peak value on grounding parameters. Bull. Pol. Acad.

Sci. Tech. Sci. 2021, 69, e136730. [CrossRef]
34. Gil-González, W.; Montoya, O.D.; Rajagopalan, A.; Grisales-Noreña, L.F.; Hernández, J.C. Optimal Selection and Location of

Fixed-Step Capacitor Banks in Distribution Networks Using a Discrete Version of the Vortex Search Algorithm. Energies 2020,
13, 4914. [CrossRef]
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Abstract: The problem of the optimal load redistribution in electrical three-phase medium-voltage
grids is addressed in this research from the point of view of mixed-integer convex optimization.
The mathematical formulation of the load redistribution problem is developed in terminals of the
distribution node by accumulating all active and reactive power loads per phase. These loads are used
to propose an objective function in terms of minimization of the average unbalanced (asymmetry)
grade of the network with respect to the ideal mean consumption per-phase. The objective function
is defined as the l1-norm which is a convex function. As the constraints consider the binary nature
of the decision variable, each node is conformed by a 3× 3 matrix where each row and column
have to sum 1, and two equations associated with the load redistribution at each phase for each of
the network nodes. Numerical results demonstrate the efficiency of the proposed mixed-integer
convex model to equilibrate the power consumption per phase in regards with the ideal value in
three different test feeders, which are composed of 4, 15, and 37 buses, respectively.

Keywords: load redistribution; leveling power consumption per phase; three-phase asymmetric
distribution networks; ideal power consumption; mixed-integer convex optimization

1. Introduction

Most of the electricity users are typically connected to medium- and low-voltage levels,
corresponding to three-phase distribution system structures [1]. The main characteristics of
these networks are: (i) the radial connection among nodes helps to reduce the investment
costs in protective schemes [2]; (ii) the existence of multiple single-, two-, and three-
phase loads produce current unbalances that increases the amount of power losses with
respect to the perfectly balanced load scenario [3]; and the high grade of active and
reactive power imbalances in terminals of the substation causes deterioration of voltage
profile in the nodes located at the end of the feeder [4]. The importance of the three-
phase distribution networks to supply medium- and low-voltage users shows the need of
proposing optimization methodologies to improve their electrical performance when the
connection of new loads is required and the consumption at industrial nodes is increased [5].
The most common methodologies to improve the operative performance of the distribution
networks are: optimal placement and sizing of reactive power compensators, i.e., capacitor
banks and static distribution compensators [6,7]; optimal placement and sizing of disperse
generation [8,9]; optimal grid reconfiguration [10]; and optimal phase-balancing [3,11].
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Note that the first two methodologies are based on the connection of new devices
(shunt generators and compensators) to the network, which implies large amounts of
investment to improve the quality of the grid, hardly recovered in short periods of time,
i.e., 5 to 15 years [12–14]; the third methodology based on grid reconfiguration involves
moderate investments in tie-lines and reconfiguration of protective devices [15]; whereas
the phase-balancing method is the most simple strategy to reduce power losses in three-
phase distribution networks with minimum investment efforts, since devices are not
required to implement the phase-balancing plan and it is only necessary to send few
working crews along with the grid infrastructure to interchange the phase connections in
the required nodes [3,16,17].

In the current literature can be found multiple optimization strategies, most of them
based on evolutionary optimization algorithms to address the problem of the phase-
balancing in three-phase networks. Some of these works apply to the following opti-
mization methods: genetic algorithms [18,19]; tabu search algorithm [20]; particle swarm
optimization [21]; ant colony optimization [22], and the vortex search algorithm [3], among
others. The main characteristic of these evolutionary algorithms is the master–slave op-
timization strategy, where the master stage is entrusted of defining the connection of the
loads using an integer or binary codification, while the slave stage determines the amount
of energy losses at each connection provided by the master stage. Even if the master–slave
optimization approach is widely accepted in the current literature, its main problem arises
with not ensuring the global optimum finding. Recently, authors of [23] have proposed a
mixed-integer quadratic programming model that allows to ensure the global optimum
finding of the phase-balancing problem in three-phase networks; however, the effectiveness
of this methodology was only tested in a small low-voltage microgrid. This fact has reduced
the real impact of the convex methodologies in the general operation improvement of the
electrical networks.

Based on the aforementioned arguments, this research deals with a problem similar to
the phase-balancing approach, which is known as the load redistribution at terminals of the
substation, i.e., the problem studied corresponds to leveling the active power demands per
phase, making these to be accumulated in the main bus of the network (without considering
the effect of the three-phase lines). The main advantage of this optimization problem is that
it can be formulated with a mixed-integer convex (MIC) model that allows to ensure the
global optimum finding by combining the Branch & and Bound method with the interior
point method. The main contributions of this research are listed below:

• The formulation of a MIC to represent the problem of the load redistribution in
terminals of the substation that guarantees the global optimum finding with convex
optimization tools that deal with integer problems [23];

• The evaluation of each solution provided by the MIC in a three-phase asymmetric
power flow method based on its matrix formulation by rotating all the loads connected
at the nodes, to find and evaluate the load redistribution configuration with minimum
power losses.

The remainder of this document is structured as presented below:
Section 2 presents the proposed mixed-integer convex optimization model to represent

the problem of the load redistribution in the terminals of the main substation; Section 3
presents the main characteristics of the optimization methodology based on the combina-
tion of the branch and bound (B&B) method with linear programming methods, ensuring
the global optimum finding for MIC optimization models; Section 4 presents the main
characteristics of the test feeders composed of 4, 15, and 37 nodes used to validate the
proposed MIC optimization model using the CVX optimization tool with the MOSEK
solver in the MATLAB programming environment; Section 5 describes the main numerical
achievements in the three test feeders under study regarding the minimization of the
general average grade of unbalance in terminals of the substation and the grid power
losses. Finally, Section 6 presents the main concluding remarks derived from this work
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based on the main numerical results obtained after solving the proposed MIC model with
the MOSEK solver.

2. Exact Mathematical Formulation

In general terms, the problem of the load redistribution in electrical three-phase
medium-voltage grids is a mixed-integer non-linear programming model due to the pres-
ence of the power balance equations [23]; however, here, we propose a mixed-integer
convex (MIC) model that allows redistributing the loads at all the nodes by the accumu-
lation in the main substation (i.e., by neglecting the effect of the electrical distribution
grid) [11]. The main objective of the MIC is to find the global optimum by combining the
(B&B) method with linear programming search methods. Figure 1 presents a schematic
model of the load redistribution in a particular node of the network before and after the
solution of the proposed MIC model.

Figure 1. Redistribution of the load in a particular node of the network after solving the proposed
MIC model.

Note that the main objective of the proposed MIC model is to reduce the level of asym-
metry within all the loads of the network, analyzed at terminal of the main substation, i.e.,
redistribute all the loads in the nodes to reach the maximum level of balanced (symmetry)
in the power consumption.

The complete optimization model for load redistribution in electrical asymmetric
networks is fully described below.

2.1. Objective Function

The objective function of the problem is the minimization of general grid unbalance
of the network with respect to the ideal consumption per phase. The objective function
proposed is defined by Equation (1).

min U% =

(
100

3Pave

)
∑
f∈F

∣∣∣Pf − Pave

∣∣∣, (1)

where U% represents the average grid unbalance; Pave corresponds to the average active
power consumption per phase, which is calculated as the total active power load divided by
three; and Pf is the total active power consumption per phase. Note that the F represents
the set that contains all the phases of the network.

Remark 1. The main advantage of the objective function defined in (1) comes from the fact that
this corresponds to the l1−norm (i.e., absolute value) which is a convex function. The convexity
property is important since it is possible to ensure the global optimum finding of the optimization
problem if, and only if, the set of constraints are also convex, or by using the MIC through the
combination of the (B&B) method with the Simplex method.
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2.2. Set of Constraints

The problem of the load redistribution is subject to linear constraints which correspond
to the load reconfiguration at each phase, the binary nature of the decision variable, and the
calculation of the total load per phase, among others. The complete list of constraints is
defined as follows:

Pd
k f = ∑

g∈G
xk f gPd

kg, {∀k ∈ N , ∀ f ∈ F}, (2)

Qd
k f = ∑

g∈G
xk f gQd

kg, {∀k ∈ N , ∀ f ∈ F}, (3)

Pf = ∑
k∈N

Pd
k f , {∀ f ∈ F}, (4)

Q f = ∑
k∈N

Qd
k f , {∀ f ∈ F}, (5)

∑
g∈F

xk f g = 1, {∀k ∈ N , ∀ f ∈ F}, (6)

∑
f∈F

xk f g = 1, {∀k ∈ N , ∀g ∈ F}, (7)

where Pd
k f and Qd

k f are the active and reactive power connected at node k in phase f after

the redistribution of the loads; Pd
kg and Qd

kg correspond to the active and reactive power
connected at the node k in the phase f before the redistribution of the loads; xk f g is the
binary variable that determines if the load connected in phase g is reassigned to the phase
f in the node k; Pf represents the total active power consumption of the network in the
phase f after redistributing all the loads; Q f defines the total reactive power consumption
of the network in the phase f after redistributing all the loads. Note that N represents the
set that contains all the buses of the network.

The set of constraints defined from (2) to (7) are explained as follows: Equations (2) and (3)
determine the amount of active and reactive power consumption at each phase and node
after redistributing the loads in all the buses and phases of the network. Equations (4) and (5)
determine the final equivalent active and reactive power consumption in the terminals of
the substation after redistributing all the loads in order to minimize the average unbalance
of the network; finally, Equations (6) and (7) ensure that each load is uniquely connected to
one phase of the network.

Remark 2. The general structure of the set of constraints above presented show that the optimiza-
tion model defined from (1) to (7) is indeed MIC, which implies that its optimal solution is achievable
with conventional mixed-integer optimization methods [24].

Remark 3. The solution of the optimization model presented in (1) to (7) with conventional op-
timization techniques such as the (B&B) and interior point methods ensures the global optimum
finding based on the mixed-integer convex theory [25]; however, it is not possible that the combi-
nation of the variables that produce the optimum value is unique. This behavior is observed in the
numerical analysis presented in the Results’ section.

To illustrate the effect of the three-dimensional characteristics of the decision variable
xk f g, let us consider the possible three-phase load connections presented in Table 1.
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Table 1. Possible load distributions in a three-phase network [3].

Type of Connection Phases Sequence Binary Variable xk f g

1 XYZ



1 0 0
0 1 0
0 0 1




2 ZXY No change



0 0 1
1 0 0
0 1 0




3 YZX



0 1 0
0 0 1
1 0 0




4 XZY



1 0 0
0 0 1
0 1 0




5 YXZ Change



0 1 0
1 0 0
0 0 1




6 ZYX



0 0 1
0 1 0
1 0 0




Note that the decision variables in Table 1 in the last column represent the six possible
combinations for the connection of the three-phase loads [23], which clearly fulfills the
requirements in equality constraints (6) and (7) associated with the uniqueness of the loads
per phase.

It is worth mentioning that the exact formulation of the load redistribution problem
in three-phase asymmetric networks is indeed a mixed-integer non-linear programming
(MINLP) problem due to the power balance equations that relates the power injection at
each node with the voltage and angle variables [18]; the main difficulty of the exact MINLP
model lies in the non-convexity of the power balance equations that makes impossible
to find the global optimum with exact or metaheuristic methods. To reduce this model
complexity, here, we propose a reformulation of the load balancing problem in two stages
which corresponds to the exact MIC model formulated from (1) to (7) in the first stage that
helps with finding the optimal redistribution of the loads in all the nodes. The solution
obtained in the first stage is evaluated at the second one to determine the final level of
power losses of the grid. The two-level methodology proposed in this research is easily
implemented at any optimization software that combines the (B&B) and interior point
methods with the main advantage of ensuring the optimal solution as demonstrated
in [25,26], some solvers that can deal with this type of problems are available in the GAMS
and AMPL software. Numerical results that will be reported in the Results’ section were
corroborated with the CPLEX software in the GAMS software [27].

3. Methodology of Solution

To efficiently solve the MIC optimization model defined from (1) to (7) it is possible to
use any programming language that deals with convex optimization. Here, we adopt the
CVX optimization package in the MATLAB programming environment with the MOSEK
solver. The main characteristic of the optimization model is that the objective function is
defined as the l1-norm which is a convex function. The illustration of the objective function
in a three-dimensional space is presented in Figure 2.
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Figure 2. Representation of the objective function in a three-dimensional space z = |x1|+ |x2|.

It is important to mention, that as with the most of the integer optimization models, an
MIC can be solved with a modification of the (B&B) method as presented in Figure 3 [28].
Note that at each iteration, it is solved a linear programming model which ensures the
optimal solution finding at each nodal exploration [29].

Figure 3. General application of the B&B method for addressing MIC problems.

Remark 4. Notice that the MIC model defined from (1) to (7) can be rewritten as a mixed-integer
quadratic programming problem which is also convex, i.e., it is also possible to find its global
optimum by combining the interior point and the (B&B) method [25].

To verify the efficiency of the optimization model to balance the total power consump-
tion in the substation terminals and its positive effects on the minimization of the power
losses, we evaluate the final load reconfiguration in an asymmetrical three-phase power
flow method to determine the final power losses and compare with the initial state of the
network. The power flow methodology used in this research corresponds to the matrix
version of the backward–forward method reported in [3,30].

4. Electric Distribution Grids

The computational validation of the proposed MIC to redistribute loads in three-phase
networks considering a simplified model in the substation terminals is made with three
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different test feeders composed of 4, 15, and 37 buses, respectively. The information of
these test feeders is presented below.

4.1. 4-Bus Test Feeder

The 4-bus system is a medium-voltage grid with 4 nodes and 3 lines with a nominal
line-to-line voltage of 11.4 kV. The information of the loads and branches are listed in
Tables 2 and 3, respectively. This information was obtained from [3].

Table 2. Parametric information of the 4-bus test system (kW and kvar units are used for all powers).

Line Node i Node j Cond. Length (ft) Pja Qja Pjb Qjb Pjc Qjc

1 1 2 1 29,536 500 300 250 100 600 400
2 2 3 2 17,850 0 0 700 350 200 100
3 3 4 3 13,070 750 500 620 540 0 0

Table 3. Impedances’ information for the conductors used in the 4-bus system.

Conductor Impedance Matrix
(Ω/mi)

0.3686 + j0.6852 0.0169 + j0.1515 0.0155 + j0.1098
1 0.0169 + j0.1515 0.3757 + j0.6715 0.0188 + j0.2072

0.0155 + j0.1098 0.0188 + j0.2072 0.3723 + j0.6782
0.9775 + j0.8717 0.0167 + j0.1697 0.0152 + j0.1264

2 0.0167 + j0.1697 0.9844 + j0.8654 0.0186 + j0.2275
0.0152 + j0.1264 0.0186 + j0.2275 0.9810 + j0.8648
1.9280 + j1.4194 0.0161 + j0.1183 0.0161 + j0.1183

3 0.0161 + j0.1183 1.9308 + j1.4215 0.0161 + j0.1183
0.0161 + j0.1183 0.0161 + j0.1183 1.9337 + j1.4236

4.2. 15-Bus Test Feeder

This test feeder is composed by 15 buses and 14 branches, asymmetric three-phase
nature network with 13.2 kV of nominal phase voltage at the node of the substation,
which corresponds to the typical operating voltage in Colombian power distribution grids.
In Figure 4, it is shown the electrical configuration of this test feeder.

Figure 4. Nodal connections in the 15-bus test feeder.

Tables 3 and 4 present the parametric data of the 15-bus system.
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Table 4. Parametric information of the 15-bus test system (kW and kvar units are used for all
power values).

Line Node i Node j Cond. Length (ft) Pja Qja Pjb Qjb Pjc Qjc

1 1 2 1 603 0 0 725 300 1100 600
2 2 3 2 776 480 220 720 600 1040 558
3 3 4 3 825 2250 1610 0 0 0 0
4 4 5 3 1182 700 225 0 0 996 765
5 5 6 4 350 0 0 820 700 1220 1050
6 2 7 5 691 2500 1200 0 0 0 0
7 7 8 6 539 0 0 960 540 0 0
8 8 9 6 225 0 0 0 0 2035 1104
9 9 10 6 1050 1519 1250 1259 1200 0 0

10 3 11 3 837 0 0 259 126 1486 1235
11 11 12 4 414 0 0 0 0 1924 1857
12 12 13 5 925 1670 486 0 0 726 509
13 6 14 4 386 0 0 850 752 1450 1100
14 14 15 2 401 486 235 887 722 0 0

4.3. IEEE 37-Bus Test Feeder

The IEEE 37-bus system is a three-phase unbalanced network that is a portion of a
real power grid located in California, USA. This grid has 37 nodes with radial connection
among them. The line-to-line voltage assigned to the substation bus is 4.8 kV. Note that the
electrical configuration of this test feeder was taken from [18] where some variations to
the grid topology were included. The single-phase equivalent diagram of the IEEE 37-bus
system is presented in Figure 5.

Figure 5. Nodal connection of the IEEE 37-bus system.

The complete parametric information for this test feeder is reported in Tables 5 and 6.
Note that this information was taken from [3].
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Table 5. Parametric information of the IEEE 37-bus test system (kW and kvar units are used for all
power values).

Line Node i Node j Cond. Length (ft) Pja Qja Pjb Qjb Pjc Qjc

1 1 2 1 1850 140 70 140 70 350 175
2 2 3 2 960 0 0 0 0 0 0
3 3 24 4 400 0 0 0 0 0 0
4 3 27 3 360 0 0 0 0 85 40
5 3 4 2 1320 0 0 0 0 0 0
6 4 5 4 240 0 0 0 0 42 21
7 4 9 3 600 0 0 0 0 85 40
8 5 6 3 280 42 21 0 0 0 0
9 6 7 4 200 42 21 42 21 42 21
10 6 8 4 280 42 21 0 0 0 0
11 9 10 3 200 0 0 0 0 0 0
12 10 23 3 600 0 0 85 40 0 0
13 10 11 3 320 0 0 0 0 0 0
14 11 13 3 320 85 40 0 0 0 0
15 11 12 4 320 0 0 0 0 42 21
16 13 14 3 560 0 0 0 0 42 21
17 14 18 3 640 140 70 0 0 0 0
18 14 15 4 520 0 0 0 0 0 0
19 15 16 4 200 0 0 0 0 85 40
20 15 17 4 1280 0 0 42 21 0 0
21 18 19 3 400 126 62 0 0 0 0
22 19 20 3 400 0 0 0 0 0 0
23 20 22 3 400 0 0 0 0 42 21
24 20 21 4 200 0 0 0 0 85 40
25 24 26 4 320 8 4 85 40 0 0
26 24 25 4 240 0 0 0 0 85 40
27 27 28 3 520 0 0 0 0 0 0
28 28 29 4 80 17 8 21 10 0 0
29 28 31 3 800 0 0 0 0 85 40
30 29 30 4 520 85 40 0 0 0 0
31 31 34 4 920 0 0 0 0 0 0
32 31 32 3 600 0 0 0 0 0 0
33 32 33 4 280 0 0 42 21 0 0
34 34 36 4 760 0 0 42 21 0 0
35 34 35 4 120 0 0 140 70 21 10

Table 6. Data of impedance for the conductors used in the IEEE 37-bus system.

Conductor Impedance Matrix
(Ω/mi)

0.2926 + j0.1973 0.0673− j0.0368 0.0337− j0.0417
1 0.0673− j0.0368 0.2646 + j0.1900 0.0673− j0.0368

0.0337− j0.0417 0.0673− j0.0368 0.2926 + j0.1973
0.4751 + j0.2973 0.1629− j0.0326 0.1234− j0.0607

2 0.1629− j0.0326 0.4488 + j0.2678 0.1629− j0.0326
0.1234− j0.0607 0.1629− j0.0326 0.4751 + j0.2973
1.2936 + j0.6713 0.4871 + j0.2111 0.4585 + j0.1521

3 0.4871 + j0.2111 1.3022 + j0.6326 0.4871 + j0.2111
0.4585 + j0.1521 0.4871 + j0.2111 1.2936 + j0.6713
2.0952 + j0.7758 0.5204 + j0.2738 0.4926 + j0.2123

4 0.5204 + j0.2738 2.1068 + j0.7398 0.5204 + j0.2738
0.4926 + j0.2123 0.5204 + j0.2738 2.0952 + j0.7758
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5. Computational Validation

The computational validation of the proposed MIC programming model is made in
the MATLAB environment with the CVX optimization package and the MOSEK solver.
In addition, we evaluate the power losses before and after solving the MIC model us-
ing the matrix version of the backward–forward asymmetrical three-phase power flow
method [30].

5.1. 4-Bus System

This test feeder presents an initial power losses of 68.6292 kW with an average grid
unbalance of 22.47%. After solving the load reconfiguration problem, total grid power
losses is 62.5449 kW, i.e., a reduction with respect to the benchmark case is about 8.87%;
in addition, the general grid unbalance is reduced until 0.74%. In Figure 6 is presented the
comparison between the initial and the final grade of unbalance per phase.
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Figure 6. Initial and final unbalances in the 4-bus system.

Note that all the phases are effectively balanced with differences lower than 1.20 %
with respect to the ideal consumption case, i.e., Pave; in addition, the final active power
load at phases a, b, and c in terminals of the substation are 1220 kW, 1200 kW, and 1200 kW,
respectively; where the variations with respect to the initial case were 30 kW, 370 kW, and
400 kW, for phases a, b, and c, respectively.

Table 7 presents the final solution regarding load connections after solving the MIC
model to redistribute all the loads. The most important result observed in this table
corresponds to the existence at least of two possible solutions for the MIC model in the
4-bus system. This happens in this test feeder since two of the phases ends with 1200 kW
of total load, which implies that some rotations in the phase connections will exhibit the
same final active power losses.

Table 7. Optimal solutions reached by the MIC optimization model in the 4-bus system.

Scenario Solution Losses (kW) Reduction (%) U% (%)

Benchmark case {1, 1, 1, 1} 68.6292 0.00 22.47
Solution 1 {1, 6, 4, 5} 62.7868 8.51 0.74
Solution 2 {1, 2, 1, 3} 62.5449 8.87 0.74

It is important to mention that the solutions obtained with the MOSEK solver in
the CVX environment were validated with the GAMS optimization package with the
COUENNE solver. In addition, the average processing time in MATLAB including the
power flow evaluations was about 1.83 s.

5.2. 15-Bus System

In this test feeder, previous to the application of the MIC model to redistribute all
the loads among the phases of the network, we know that the initial power losses is
134.2472 kW, caused by a general unbalance of 20.48 %, which is distributed as 2.68 % for
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Note that all the phases are effectively balanced with differences lower than 1.20%
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and 400 kW, for phases a, b, and c, respectively.

Table 7 presents the final solution regarding load connections after solving the MIC
model to redistribute all the loads. The most important result observed in this table
corresponds to the existence at least of two possible solutions for the MIC model in the
4-bus system. This happens in this test feeder since two of the phases ends with 1200 kW
of total load, which implies that some rotations in the phase connections will exhibit the
same final active power losses.

Table 7. Optimal solutions reached by the MIC optimization model in the 4-bus system.

Scenario Solution Losses (kW) Reduction (%) U% (%)

Benchmark case {1, 1, 1, 1} 68.6292 0.00 22.47
Solution 1 {1, 6, 4, 5} 62.7868 8.51 0.74
Solution 2 {1, 2, 1, 3} 62.5449 8.87 0.74

It is important to mention that the solutions obtained with the MOSEK solver in
the CVX environment were validated with the GAMS optimization package with the
COUENNE solver. In addition, the average processing time in MATLAB including the
power flow evaluations was about 1.83 s.
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5.2. 15-Bus System

In this test feeder, previous to the application of the MIC model to redistribute all
the loads among the phases of the network, we know that the initial power losses is
134.2472 kW, caused by a general unbalance of 20.48%, which is distributed as 2.68% for
phase a, 30.72% pf phase b, and 28.04% for phase c. Once the MIC model defined from (1)
to (7) is executed, we observe that the active power losses is uniformly distributed for all
the phases with respect to the average value. In Table 8 is presented the load redistribution
in the 15-bus system.

Table 8. Comparison between initial and final load distributions per phase (all the values in kW
and kVar).

Scenario Pa Qa Pb Qb Pc Qc U% (%)

Benchmark case 9605 5226 6480 4940 11,977 8778 28.04
Solution 1 9354 7112 9354 5794 9354 6038 0.00
Solution 2 9354 6038 9354 5794 9354 7112 0.00

Note that results in Table 8 show that: (i) there are at least two solutions of the opti-
mization model (1)–(7) that present the same objective function performance which in this
system is exactly zero; this implies that all the phases have the same active power load
consumption per phase, i.e., 9354 kW; (ii) the general unbalance in the case of reactive
power for this system in the benchmark case is 26.01% which is reduced to 8.42% after
making the load redistribution; this result implies an important effect when redistributing
the total consumption per phase in the substation terminals, since the modification of the
active power load connection is directly connected with the total reactive power consump-
tion; (iii) the final power losses for solutions 1 and 2 are 117.8982 kW and 115.1107 kW,
with reductions respect to the benchmark case of about 12.18%, and 14.25%, respectively;
and (iv) note that the main difference between solutions 1 and 2 corresponds to the rotation
of the loads connected between phases a and c in all the nodes; this results important since
4 additional solutions can be obtained making possible the 6 load rotations presented in
Table 1 with the same objective function of 0.00%, and power losses between 117.8982 kW
and 115.1107 kW, respectively.

In regards with the total processing time the MOSEK solver using the MATLAB/CVX
environment takes about 174.45 s; which is a quite small processing time taking into account
that there are 6n−1 possible combinations of the loads, where n is the total number of nodes,
i.e., 78,364,164,096, this is, more than 78,000 million of combinations.

5.3. IEEE 37-Bus System

The initial average unbalance in the IEEE 37-bus system is 22.14%, which is distributed
in 11.23% for the phase a, 21.98% for the phase b, and 33.21 for the phase c, respectively.
Once it is solved the proposed MIC model the final average unbalance in the network is
1.71%. Figure 7 depicts the initial and final unbalances per phase.

Numerical results per phase in Figure 7 show that phases a, b, and c are improved
in about 9.16%, 19.41%, and 32.72%, respectively, with respect to the benchmark case of
active power; which confirms the efficiency of the proposed approach for optimizing the
general average grid unbalance, guaranteeing the global minimum of the problem.
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phase a, 30.72 % pf phase b, and 28.04 % for phase c. Once the MIC model defined from (1)
to (7) is executed, we observe that the active power losses is uniformly distributed for all
the phases with respect to the average value. In Table 8 is presented the load redistribution
in the 15-bus system.

Table 8. Comparison between initial and final load distributions per phase (all the values in kW and
kVar).

Scenario Pa Qa Pb Qb Pc Qc U% (%)

Benchmark case 9605 5226 6480 4940 11977 8778 28.04
Solution 1 9354 7112 9354 5794 9354 6038 0.00
Solution 2 9354 6038 9354 5794 9354 7112 0.00

Note that results in Table 8 show that: (i) there are at least two solutions of the
optimization model (1)–(7) that present the same objective function performance which in
this system is exactly zero; this implies that all the phases have the same active power load
consumption per phase, i.e., 9354 kW; (ii) the general unbalance in the case of reactive power
for this system in the benchmark case is 26.01% which is reduced to 8.42% after making
the load redistribution; this result implies an important effect when redistributing the total
consumption per phase in the substation terminals, since the modification of the active
power load connection is directly connected with the total reactive power consumption;
(iii) the final power losses for solutions 1 and 2 are 117.8982kW and 115.1107kW, with
reductions respect to the benchmark case of about 12.18%, and 14.25%, respectively; and
(iv) note that the main difference between solutions 1 and 2 corresponds to the rotation of
the loads connected between phases a and c in all the nodes; this results important since
4 additional solutions can be obtained making possible the 6 load rotations presented in
Table 1 with the same objective function of 0.00%, and power losses between 117.8982 kW
and 115.1107 kW, respectively.

In regards with the total processing time the MOSEK solver using the MATLAB/CVX
environment takes about 174.45 s; which is a quite small processing time taking into account
that there are 6n−1 possible combinations of the loads, where n is the total number of nodes,
i.e., 78364164096, this is, more than 78,000 million of combinations.

5.3. IEEE 37-Bus System

The initial average unbalance in the IEEE 37-bus system is 22.14 %, which is distributed
in 11.23 % for the phase a, 21.98 % for the phase b, and 33.21 for the phase c, respectively.
Once it is solved the proposed MIC model the final average unbalance in the network is
1.71 %. Figure 7 depicts the initial and final unbalances per phase.
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Figure 7. Initial and final unbalances in the IEEE 37-bus system.

Numerical results per phase in Figure 7 show that phases a, b and c are improved
in about 9.16 %, 19.41 %, and 32.72 % respectively with respect to the benchmark case of

Figure 7. Initial and final unbalances in the IEEE 37-bus system.

In relation with the amount of power losses, the benchmark case presents the initial
power losses of 76.1357 kW; however, for this test system after solving the MIC model
there are six possible combinations that produce different levels of power losses reduction.
Table 9 reports all the possible solutions in regards with power losses obtained by our
proposed optimization approach.

Table 9. Optimal solutions reached by the MIC optimization model in the 15-bus system.

Scenario Solution Losses (kW) Reduction (%) U% (%)

Ben. case
{

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

}
76.1357 0.00 22.14

Sol. 1
{

1, 5, 1, 1, 2, 4, 1, 1, 4, 1, 1, 2, 5, 2, 4, 3, 5, 3,
6, 4, 4, 6, 6, 4, 4, 1, 6, 4, 6, 4, 2, 1, 1, 1, 2, 5

}
66.5829 12.55 1.71

Sol. 2 Rotation of Sol. 1 from XYZ to ZXY in
all the nodes 67.2585 11.66 1.71

Sol. 3 Rotation of Sol. 1 from XYZ to YZX in
all the nodes 67.3892 11.49 1.71

Sol. 4 Rotation of Sol. 1 from XYZ to XZY in
all the nodes 67.4765 11.37 1.71

Sol. 5 Rotation of Sol. 1 from XYZ to YXZ in
all the nodes 67.1325 11.83 1.71

Sol. 6 Rotation of Sol. 1 from XYZ to ZYX in
all the nodes 66.6432 12.47 1.71

Results in Table 9 allow concluding that: (i) the first solution obtained by the MIC
approach presents the best numerical performance regarding grid power losses with a
reduction of 12.55% in comparison to the benchmark case; (ii) the worst solution regarding
of power losses corresponds to solution 4, which is obtained by rotating solution 1 from XYZ
to XZY in all the nodes since the reduction of the power losses in this case decreases until
11.37%; (iii) all the solutions in Table 9 are indeed the global optimum for the optimization
model (1)–(7) since the general grid imbalance is 1.71% for all the solution cases; however,
the calculation of the final power losses can be considered a decision criterion to select the
most attractive solution from the point of view of the grid operator, which, in this context,
is solution 1.

Finally, with respect to total processing time, the MOSEK solver using the MAT-
LAB/CVX environment takes about 29,879.44 s; which is an acceptable processing time
taking into account that there are 6n−1 possible combination of the loads, where n is the
total number of nodes, i.e., 1.03144247984905× 1028.
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5.4. Additional Comments

It is worth mentioning that all the numerical results reported with the CVX tool in the
MATLAB environment for the 4-, 15-, and 37-bus systems were confirmed by the CPLEX
solver in the GAMS environment with simulation times that do not get over 10 s [27]. These
processing times confirm the effectiveness of the MIC model to solve the problem of the
load redistribution in asymmetrical three-phase networks by ensuring the global optimum
finding in the first stage of the two-level proposed optimization method [26]. The solutions
provided in the first stage were evaluated in the triangular-based three-phase power flow
which takes less than 10 ms to solve it and determine the final level of power losses in the
grid at the second stage [3].

On the other hand, the proposed two-stage optimization methodology to redistribute
the load connections in three-phase networks is suitable to be applied in the improvement
of the resilience level of the electricity distribution activity [31]. This is in the context of
the physical- or cyber-attacks to the distribution network or any electrical disturbance
that implies the reconfiguration of the grid topology; since the proposed optimization
model can be applied to each possible grid topology to ensure that after clarifying the
disturbance the resulting electrical network has the minimum level of unbalance, in other
words, minimum power losses.

6. Conclusions

The problem of the load redistribution in three-phase distribution networks was
addressed in this research from the point of view of the mathematical optimization,
by proposing a mixed-integer convex model that ensures the global optimum finding
via (B&B) and linear programming methods. Numerical results in the 4-, 15-, and 37-bus
systems demonstrate the effectiveness of the proposed optimization model to reduce the
general average grid unbalance of the network by reducing from 22.47% to 0.74% for the
4-bus system, 20.48% to 0.00% for the 15-bus system; and 22.14% to 1.71% for the IEEE-37
bus system, respectively.

In addition, for each test feeder it was observed that when the final load reconfigu-
ration is rotated for all the possible phase combinations, the amount of power losses in
the final configuration changes with the same objective function value, which confirms
the multi-modal behavior of the load redistribution optimization problem in terminals
of the main substation. For the 4-, 15-, and IEEE 37-bus systems the maximum power
losses reductions with respect to the benchmark case were 8.87%, 14.25%, and 12.55%,
respectively. These reductions demonstrate the strong relationship between the load re-
distribution problem and the total grid power losses, which can be taken as an advantage
of the grid owner to improve the quality of the electricity service at the same time that
increases the net profit due to the reduction in the costs of the energy losses.

Regarding the processing times it was observed that for each test feeder the MOSEK solver
in the CVX package using the MATLAB environment takes 1.73 s, 174.45 s, and 29,879.44 s,
for the 4-, 15-, and IEEE 37-bus systems, respectively, which can be considered as short
processing times due to the large dimension of the solution space. This latter can be
calculated as 6n−1, being 216, 7.8364164096× 1010, and 1.031442479849054× 1028 for the
test feeders mentioned previously. As future work it will be possible to analyze the
inclusion in the proposed MIC model of the power balance constraints with a second-order
cone representation that will ensure the global optimum finding for the problem of the
phase-balancing problem in three-phase networks.
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Abstract: This paper is devoted to the study of the quasi-total strong differential of a graph, and
it is a contribution to the Special Issue “Theoretical computer science and discrete mathematics” of
Symmetry. Given a vertex x ∈ V(G) of a graph G, the neighbourhood of x is denoted by N(x).
The neighbourhood of a set X ⊆ V(G) is defined to be N(X) =

⋃
x∈X N(x), while the external

neighbourhood of X is defined to be Ne(X) = N(X) \ X. Now, for every set X ⊆ V(G) and every
vertex x ∈ X, the external private neighbourhood of x with respect to X is defined as the set
Pe(x, X) = {y ∈ V(G) \ X : N(y) ∩ X = {x}}. Let Xw = {x ∈ X : Pe(x, X) 6= ∅}. The strong
differential of X is defined to be ∂s(X) = |Ne(X)| − |Xw|, while the quasi-total strong differential of
G is defined to be ∂s∗ (G) = max{∂s(X) : X ⊆ V(G) and Xw ⊆ N(X)}. We show that the quasi-total
strong differential is closely related to several graph parameters, including the domination number,
the total domination number, the 2-domination number, the vertex cover number, the semitotal
domination number, the strong differential, and the quasi-total Italian domination number. As a
consequence of the study, we show that the problem of finding the quasi-total strong differential of a
graph is NP-hard.

Keywords: differentials in graphs; strong differential; quasi-total strong differential; quasi-total
Italian domination number

1. Introduction

Given a graph G = (V(G), E(G)), the open neighbourhood of a vertex x ∈ V(G)
is defined to be N(x) = {y ∈ V(G) : xy ∈ E(G)}. The open neighbourhood of a set
X ⊆ V(G) is defined by N(X) =

⋃
x∈X N(x), while the external neighbourhood of X,

or boundary of X, is defined as Ne(X) = N(X) \ X.
The differential of a subset X ⊆ V(G) is defined as ∂(X) = |Ne(X)| − |X| and the

differential of a graph G is defined as

∂(G) = max{∂(X) : X ⊆ V(G)}.

These concepts were introduced by Hedetniemi about twenty-five years ago in an un-
published paper, and the preliminary results on the topic were developed by Goddard and
Henning [1]. The development of the topic was subsequently continued by several authors,
including [2–7]. Currently, the study of differentials in graphs and their variants is of great
interest because it has been observed that the study of different types of domination can
be approached through a variant of the differential which is related to them. Specifically,
we are referring to domination parameters that are necessarily defined through the use of
functions, such as Roman domination, perfect Roman domination, Italian domination and
unique response Roman domination. In each case, the main result linking the domination
parameter to the corresponding differential is a Gallai-type theorem, which allows us to
study these domination parameters without the use of functions. For instance, the differ-
ential is related to the Roman domination number [3], the perfect differential is related to
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the perfect Roman domination number [5], the strong differential is related to the Italian
domination number [8], the 2-packing differential is related to the unique response Roman
domination number [9]. Next, we will briefly describe the case of the strong differential
and then introduce the study of the quasi-total strong differential. We refer the reader to
the corresponding papers for details on the other cases.

For any x ∈ X, the external private neighbourhood of x with respect to X is defined
to be

Pe(x, X) = {y ∈ V(G) \ X : N(y) ∩ X = {x}}.
We define the set Xw = {x ∈ X : Pe(x, X) 6= ∅}.
The strong differential of a set X is defined to be

∂s(X) = |Ne(X)| − |Xw|,

while the strong differential of G is defined to be

∂s(G) = max{∂s(X) : X ⊆ V(G)}.

As shown in [8], the problem of finding the strong differential of a graph is NP-hard,
and this parameter is closely related to several graph parameters. In particular, the theory
of strong differentials allows us to develop the theory of Italian domination without the
use of functions.

In this paper, we study the quasi-total strong differential of G, which is defined as

∂s∗(G) = max{∂s(X) : X ⊆ V(G) and Xw ⊆ N(X)}.

We will show that this novel parameter is perfectly integrated into the theory of
domination. In particular, we will show that the quasi-total strong differential is closely
related to several graph parameters, including the domination number, the total domination
number, the 2-domination number, the vertex cover number, the semitotal domination
number, the strong differential, and the quasi-total Italian domination number. As a
consequence of the study, we show that the problem of finding the quasi-total strong
differential of a graph is NP-hard.

The paper is organised as follows. Section 2 is devoted to establish the main notation,
terminology and tools needed to develop the remaining sections. In Section 3 we obtain
several bounds on the quasi-total strong differential of a graph and we discuss the tightness
of these bounds. In Section 4 we prove a Gallai-type theorem which shows that the
theory of quasi-total strong differentials can be applied to develop the theory of Italian
domination, provided that the Italian dominating functions fulfil an additional condition.
Finally, in Section 5 we show that the problem of finding the quasi-total strong differential
of a graph is NP-hard.

2. Notation, Terminology and Basic Tools

Throughout the paper, we will use the notation G ∼= H if G and H are isomorphic
graphs. Given a set X ⊆ V(G), the subgraph of G induced by X will be denoted by
G[X], while (for simplicity) the subgraph induced by V(G) \ X will be denoted by G− X.
The minimum degree, the maximum degree and the order of G will be denoted by δ(G),
∆(G) and n(G), respectively.

A leaf of G is a vertex of degree one. A support vertex of G is a vertex which is adjacent
to a leaf, while a strong support vertex is a vertex which is adjacent to at least two leaves.
The set of leaves, support vertices and strong support vertices of G will be denoted by
L(G), S(G) and Ss(G), respectively.

A dominating set of G is a subset D ⊆ V(G) such that N(v) ∩ D 6= ∅ for every
v ∈ V(G) \ D. Let D(G) be the set of dominating sets of G. The domination number of G
is defined to be,

γ(G) = min{|D| : D ∈ D(G)}.
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The domination number has been extensively studied. For instance, we cite the
following books [10–12].

We define a γ(G)-set as a set D ∈ D(G) with |D| = γ(G). The same agreement will
be assumed for optimal parameters associated to other characteristic sets of a graph. For
instance, a ∂s∗(G)-set will be a set X ⊆ V(G) such that Xw ⊆ N(X) and ∂s(X) = ∂s∗(G).

As described in Figure 1, X = {a, b, x, y} is a ∂s∗(G)-set while X′ = {u, v, x, y} is not
a ∂s∗(G)-set, as X′w = {u, v} 6⊆ N(X′). In contrast, both X and X′ are ∂s(G)-sets. Another
∂s∗(G)-sets are Y = {a, b, u, v, x, y} and Y′ = {a, b, v, x, y}.

a b
u v

x

y

Figure 1. Let X = {a, b, x, y} and X′ = {u, v, x, y}. In this case, Xw = {a, b} ⊆ N(X) and ∂s(X) =

∂s∗ (G) = 7, so that X is a ∂s∗ (G)-set. In contrast, X′ is not a ∂s∗ (G)-set, although ∂s(X′) = ∂s∗ (G).

A total dominating set of G is a subset D ⊆ V(G) such that N(v) ∩ D 6= ∅ for every
vertex v ∈ V(G). Let Dt(G) be the set of total dominating sets of G. The total domination
number of G is defined to be,

γt(G) = min{|D| : D ∈ Dt(G)}.

The total domination number has been extensively studied. For instance, we cite the
book [13].

A k-dominating set of G is a subset D ⊆ V(G) such that |N(v) ∩ D| ≥ k for every
vertex v ∈ V(G) \ D. Let Dk(G) be the set of k-dominating sets of G. The k-domination
number of G is defined to be,

γk (G) = min{|D| : D ∈ Dk(G)}.

For a comprehensive survey on k-domination in graphs, we cite the book [10] pub-
lished in 2020. In particular, there is a chapter, Multiple Domination, by Hansberg and
Volkmann, where they put into context all relevant research results on multiple domination
concerning k-domination that have been found up to 2020.

In particular, the following result will be useful in the study of quasi-total strong
differentials.

Theorem 1 ([14]). Let r and k be positive integers. For any graph G with δ(G) ≥ r+1
r k− 1,

γk (G) ≤ r
r + 1

n(G).

A semitotal dominating set of a graph G with no isolated vertex, is a dominating set
D of G such that every vertex in D is within distance two of another vertex in D. This
concept was introduced in 2014 by Goddard et al. in [15]. Let Dt2(G) be the set of semitotal
dominating sets of G. The semitotal domination number of G is defined to be

γt2(G) = min{|D| : D ∈ Dt2(G)}.

By definition,
γ(G) ≤ γt2(G) ≤ min{γt(G), γ2(G)}.

A set C ⊆ V(G) is a vertex cover of G if every edge of G is incident with at least one
vertex in C. The vertex cover number of G, denoted by β(G), is the minimum cardinality
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among all vertex covers of G. Recall that the largest cardinality of a set of vertices of G, no
two of which are adjacent, is called the independence number of G and it is denoted by
α(G). The following well-known result, due to Gallai, states the relationship between the
independence number and the vertex cover number of a graph.

Theorem 2 (Gallai’s theorem, [16]). For any graph G,

α(G) + β(G) = n(G).

The concept of a corona product graph was introduced in 1970 by Frucht and Harary [17].
Given two graphs G1 and G2, the corona product graph G1 � G2 is the graph obtained
from G1 and G2, by taking one copy of G1 and n(G1) copies of G2 and joining by an edge
every vertex from the ith-copy of G2 with the ith-vertex of G1. Notice that n(G1 � G2) =
n(G1)(n(G2) + 1) and γ(G1 � G2) = n(G1).

The following result will be one of our main tools.

Theorem 3 ([8]). For any graph G, the following statements hold.

(i) There exists a ∂s(G)-set which is a dominating set of G.
(ii) n(G)−min{2γ(G), γ2(G)} ≤ ∂s(G) ≤ n(G)− γ(G)− |Ss(G)|.

For the remainder of the paper, definitions will be introduced whenever a concept is
needed. In particular, this is the case for concepts, notation and terminology that are used
only once or only in a short section.

3. General Results

To begin this section we present some bounds on the quasi-total strong differential of
a graph, and then we discuss the tightness of the bounds.

Theorem 4. For any graph G, the following statements hold.

(i) ∂s(G)− γ(G) ≤ ∂s∗(G) ≤ ∂s(G).
(ii) n(G)−min{3γ(G), γ2(G)} ≤ ∂s∗(G) ≤ n(G)− γ(G)− |Ss(G)|.

Proof. The inequality ∂s∗(G) ≤ ∂s(G) is straightforward, as for any ∂s∗(G)-set X we have
∂s∗(G) = ∂s(X) ≤ ∂s(G).

We proceed to prove ∂s∗(G) ≥ ∂s(G)−γ(G). Let D be a ∂s(G)-set such that D ∈ D(G),
which exists by Theorem 3. Now, we define D′′ ⊆ V(G) as a set of minimum cardinality
among all supersets D′ of D such that N(v) ∩ D′ 6= ∅ for every vertex v ∈ Dw. Since D is
a dominating set, D′′w ⊆ Dw. Moreover, observe that |D′′ \ D| ≤ γ(G), by the minimality
of D′′. Therefore,

∂s∗(G) ≥ ∂s(D′′)

= |Ne(D′′)| − |D′′w|
≥ |Ne(D)| − |D′′ \ D| − |D′′w|
≥ |Ne(D)| − |Dw| − |D′′ \ D|
= ∂s(G)− |D′′ \ D|
≥ ∂s(G)− γ(G),

as required.
To prove lower bound ∂s∗(G) ≥ n(G) − γ2(G) we only need to observe that for

any γ2(G)-set S we have ∂s∗(G) ≥ ∂s(S) = |Ne(S)| − |Sw| = |Ne(S)| = n(G) − |S| =
n(G)− γ2(G).

Finally, to complete the proof of (ii) we only need to combine the previous bounds
with Theorem 3.
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Corollary 1. Let G be a graph. If ∂s(G) = n(G)− γ2(G) or there exists a ∂s(G)-set which is a
total dominating set, then ∂s∗(G) = ∂s(G).

In order to show some classes of graphs with ∂s∗(G) = ∂s(G) and ∂s∗(G) = n(G)−
γ(G)− |Ss(G)|, we consider the case of corona graphs. It is not difficult to see that if G1
has no isolated vertex and G2 is a non trivial graph, then

∂s∗(G1 � G2) = ∂s(G1 � G2) = n(G1)(n(G2)− 1).

In addition, if G2 is a graph with at least two isolated vertices, then

∂s∗(G1 � G2) = n(G1)(n(G2)− 1)

= n(G1 � G2)− γ(G1 � G2)− |Ss(G1 � G2)|.

Next we discuss some cases where the lower bounds given in Theorem 4 are achieved.

Theorem 5. For any graph G, the following statements are equivalent.

(i) ∂s∗(G) = ∂s(G)− γ(G).
(ii) ∂s∗(G) = n(G)− 3γ(G).

Proof. Assume ∂s∗(G) = ∂s(G) − γ(G). By Theorem 3, there exists a set D ∈ D(G)
which is a ∂s(G)-set. Now, we define D′′ ⊆ V(G) as a set of minimum cardinality among
all supersets D′ of D such that N(v) ∩ D′ 6= ∅ for every vertex v ∈ Dw. Obviously,
|D′′ \ D| ≤ |Dw| ≤ |D|. As we have shown in the proof of Theorem 4,

∂s∗(G) ≥ ∂s(G)− |D′′ \ D| ≥ ∂s(G)− γ(G),

which implies that γ(G) = |D′′ \ D|, and so γ(G) ≤ |Dw| ≤ |D|. On the other side,
∂s(G) ≥ n(G)− 2γ(G), by Theorem 3. In summary,

n(G)− 2γ(G) ≤ ∂s(G) = n(G)− |D| − |Dw| ≤ n(G)− 2γ(G),

Therefore, ∂s(G) = n(G)− 2γ(G), and so ∂s∗(G) = n(G)− 3γ(G).
Conversely, assume ∂s∗(G) = n(G)− 3γ(G). By Theorems 3 and 4 we have

n(G)− 3γ(G) = ∂s∗(G) ≥ ∂s(G)− γ(G) ≥ n(G)− 3γ(G).

Therefore, ∂s(G) = n(G)− 2γ(G) and, as a result, ∂s∗(G) = ∂s(G)− γ(G).

To continue the study, we need to establish the following lemma.

Lemma 1. For any graph G, there exists a ∂s∗(G)-set X which is a dominating set of G and
|Pe(v, X)| ≥ 2 for every v ∈ Xw.

Proof. Let D be a ∂s∗(G)-set and D′ = V(G) \ Ne(D). Since Ne(D′) = Ne(D) and
D′w ⊆ Dw,

∂s(D′) = |Ne(D′)| − |D′w| ≥ |Ne(D)| − |Dw| = ∂s(D) = ∂s∗(G),

which implies that D′ is a ∂s∗(G)-set, as D′w ⊆ N(D′). Obviously, D′ is a dominating set.
Now, let D1 ⊆ D′w such that |Pe(v, D′)| = 1 for every v ∈ D1 and |Pe(v, D′)| ≥ 2 for

every v ∈ D′w \ D1. Let X = D′ ∪ (
⋃

v∈D1

Pe(v, D′)). Since |Ne(X)| = |Ne(D′)| − |D1| and

|Xw| ≤ |D′w| − |D1|,

∂s(X) = |Ne(X)| − |Xw| ≥ |Ne(D′)| − |D′w| = ∂s(D′) = ∂s∗(G).
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Therefore, X is a ∂s∗(G)-set, as Xw ⊆ N(X). Clearly, |Pe(v, X)| ≥ 2 for every
v ∈ Xw.

We are now able to characterize the graphs with ∂s∗(G) = n(G)− γ(G).

Theorem 6. For any graph G, the following statements are equivalent.

(i) ∂s∗(G) = n(G)− γ(G).
(ii) γ2(G) = γ(G).
(iii) ∂s(G) = n(G)− γ(G).

Proof. Assume ∂s∗(G) = n(G)− γ(G). By Lemma 1, there exists a set D ∈ D(G) which
is a ∂s∗(G)-set. Hence, n(G) − γ(G) = ∂s∗(G) = |Ne(D)| − |Dw| = n(G) − |D| − |Dw|,
which implies that |D|+ |Dw| = γ(G). Since γ(G) ≤ |D|, we deduce that |D| = γ(G) and
|Dw| = 0. Therefore, D is a 2-dominating set of G and so, γ2(G) ≤ |D| = γ(G) ≤ γ2(G),
which leads to γ2(G) = γ(G).

Conversely, from Theorem 4 we deduce that γ2(G) = γ(G) implies that ∂s∗(G) =
n(G)− γ(G).

Finally, the equivalence (ii)←→(iii) was previously established in [8].

By the result above we have that if ∂s∗(G) = n(G)− γ(G), then ∂s∗(G) = n(G)−
γ2(G). However, the converse does not hold. For instance, as we will see in Corollary 2,
if G is a path or a cycle, then ∂s∗(G) = n(G)− γ2(G) < n(G)− γ(G).

We next consider some cases of graphs satisfying ∂s∗(G) = n(G)− γ2(G).

Theorem 7. Let G be a graph. If ∆(G) ≤ 3 or G is a claw-free graph, then

∂s∗(G) = n(G)− γ2(G).

Proof. By Lemma 1, there exists D ∈ D(G) which is a ∂s∗(G)-set and |Pe(v, D)| ≥ 2 for
every v ∈ Dw. Assume that ∆(G) ≤ 3. We define a set D′ ⊆ V(G) as follows.

D′ = (D \ Dw) ∪
(
⋃

v∈Dw

Pe(v, D)

)
.

Notice that N(v) ∩ D 6= ∅ and |N(v) \ D| = |Pe(v, D)| = 2 for every v ∈ Dw. Hence,
D′ ∈ D(G) and D′w = ∅, which implies that D′ is a 2-dominating set of G and

n(G)− |D′| = n(G)− |D| − |Dw|
= |Ne(D)| − |Dw|
= ∂s(D)

= ∂s∗(G).

Therefore, ∂s∗(G) = n(G)− |D′| ≤ n(G)− γ2(G), and we deduce the equality by the
lower bound ∂s∗(G) ≥ n(G)− γ2(G) given in Theorem 4.

Now, assume that G is a claw-free graph. Observe that in this case Pe(v, D) is a clique
for every v ∈ Dw, as N(v) ∩ D 6= ∅. Let X ⊆ V(G) \ D such that |X| = |Dw| and
|X ∩ Pe(v, D)| = 1 for every v ∈ Dw. Notice that X′ = D ∪ X is a 2-dominating set of
G. Hence,

∂s∗(G) = ∂s(D) = |Ne(D)| − |Dw| = n(G)− |D| − |Dw| = n(G)− |X′| ≤ n(G)− γ2(G).

Therefore, by the lower bound ∂s∗(G) ≥ n(G)− γ2(G) given in Theorem 4 we con-
clude the proof.

The following result is a direct consequence of Theorem 7 and the well-known equali-
ties γ2(Cn) = d n

2 e and γ2(Pn) = d n+1
2 e due to Fink and Jacobson [18].
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Corollary 2. For any integer n ≥ 3,

∂s∗(Pn) =

⌊
n− 1

2

⌋
and ∂s∗(Cn) =

⌊n
2

⌋
.

By Theorems 1 and 4 we derive the following result.

Theorem 8. Given a graph G, the following statements hold.

(i) If δ(G) ≥ 3, then ∂s∗(G) ≥ n(G)
2 .

(ii) If δ(G) = 2, then ∂s∗(G) ≥ n(G)
3 .

For instance, for any cubic graph with γ2(G) = n(G)
2 we have ∂s∗(G) = n(G)

2 , and for

any corona graph of the form G ∼= G1 � K2 we have ∂s∗(G) = ∂s(G) = n(G)
3 .

We next discuss the relationship between the quasi-total strong differential and the
semitotal domination number.

Theorem 9. Given a graph G with no isolated vertex, the following statements hold.

(i) ∂s∗(G) ≤ n(G)− γt2(G).
(ii) ∂s∗(G) = n(G)− γt2(G) if and only if γt2(G) = γ2(G).
(iii) ∂s∗(G) = n(G)− γt2(G)− 1 if and only if one of the following conditions holds.

(a) γ2(G) = γt2(G) + 1.
(b) γ2(G) ≥ γt2(G) + 1 and there exist a γt2(G)-set D and a vertex v ∈ D ∩ N(D)

such that Pe(v, D) 6= ∅ and D is a 2-dominating set of G− Pe(v, D).

Proof. By Lemma 1, there exists a dominating set D which is a ∂s∗(G)-set. In addition,
since G has no isolated vertex, D is also a semitotal dominating set of G, which implies that
|D| ≥ γt2(G). Hence,

∂s∗(G) = |Ne(D)| − |Dw| ≤ n(G)− |D| − |Dw| ≤ n(G)− |D| ≤ n(G)− γt2(G).

Therefore, (i) follows and ∂s∗(G) = n(G)− γt2(G) if and only if D is a 2-dominating
set and |D| = γt2(G). Now, since γt2(G) ≤ γ2(G), every 2-dominating set of cardinality
γt2(G) is a γ2(G)-set. Therefore, (ii) follows.

Finally, we proceed to prove (iii). We first assume that ∂s∗(G) = n(G)− γt2(G)− 1.
By (i) we deduce that γt2(G) + 1 ≤ γ2(G). Also, notice that

n(G)− γt2(G)− 1 = ∂s∗(G) = ∂s(D) = n(G)− |D| − |Dw|,

which implies that |D|+ |Dw| = γt2(G)+ 1. Since |D| ≥ γt2(G), we obtain that |Dw| ∈ {0, 1}.
We distinguish these two cases.

Case 1. |Dw| = 0. In this case, we have that D is a 2-dominating set of G of cardinality
γt2(G)+ 1, which implies that γt2(G)+ 1 ≤ γ2(G) ≤ |D| = γt2(G)+ 1. Therefore, γ2(G) =
γt2(G) + 1. Conversely, if γ2(G) = γt2(G) + 1, then by (i) and Theorem 4 we have that
n(G) − γt2(G) − 1 ≤ ∂s∗(G) = n(G) − γt2(G), and so (ii) leads to ∂s∗(G) = n(G) −
γt2(G)− 1.

Case 2. |Dw| = 1. If Dw = {v}, then v ∈ D ∩ N(D) and Pe(v, D) 6= ∅. In addition,
since |D|+ |Dw| = |D|+ 1 = γt2(G) + 1, we have that D is a γt2(G)-set and a 2-dominating
set of G− Pe(v, D). Therefore, (b) holds. Conversely, assume that (b) holds. Since γ2(G) ≥
γt2(G) + 1, from (i) and (ii) we conclude that ∂s∗(G) ≤ n(G) − γt2(G) − 1, and so the
γt2(G)-set satisfying (b) is a ∂s∗(G)-set.

Next we derive some lower bounds on ∂s∗(G).
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Theorem 10. For any graph G with every component of order at least three,

∂s∗(G) ≥
⌈

1
2
(n(G)− γ(G) + |L(G)| − 2|S(G)| − 2|Ss(G)|)

⌉
.

Proof. Let S be a γ(G)-set such that S(G) ⊆ S and S = V(G) \ S.
Now, we define S′′ ⊆ S as a set of minimum cardinality among all subsets S′ of S that

satisfy the following conditions.

(a) N(v) ∩ L(G) ∩ S′ 6= ∅ for every vertex v ∈ S(G) \ Ss(G) or v ∈ S(G) with N(v) ⊆
L(G).

(b) (N(v) ∩ S′) \ L(G) 6= ∅ for every vertex v ∈ Ss(G) such that N(v) ∩ S = ∅ and
N(v) 6⊆ L(G).

Notice that |S(G)| − |Ss(G)| ≤ |S′′| ≤ |S(G)|. Now, let I ⊆ S \ S′′ the set of isolated
vertices of the graph G[S \ S′′]. Hence, by definition of S′′ we deduce that |I| ≥ |L(G)| −
|S(G)|+ |Ss(G)|.

Now, we define X′′ ⊆ S \ (I ∪ S′′) as a set of minimum cardinality among all subsets
X′ of S \ (I ∪ S′′) such that N(v) ∩ X′ 6= ∅ for every vertex v ∈ S \ (I ∪ S′′ ∪ X′). It is clear
that if S = I ∪ S′′, then X′′ = ∅, while if S \ (I ∪ S′′) 6= ∅, then X′′ is a γ(G[S \ (I ∪ S′′)])-set.
As G[S \ (I ∪ S′′)] has no isolated vertex, we have that

|X′′| ≤ 1
2
(n(G)− (|S|+ |I|+ |S′′|)) ≤ 1

2
(n(G)− γ(G)− |L(G)|).

Hence, in any case |X′′| ≤ 1
2 (n(G)− γ(G)− |L(G)|) because |S|+ |L(G)| ≤ n(G).

Now, let D = S ∪ S′′ ∪ X′′. Notice that D ∈ D(G), Dw ⊆ Ss(G) and Dw ⊆ N(D).
Hence,

∂s∗(G) ≥ ∂s(D)

= |Ne(D)| − |Dw|
= n(G)− |D| − |Dw|
= n(G)− |S| − |S′′| − |X′′| − |Ss(G)|

≥ n(G)− γ(G)− |S(G)| − 1
2
(n(G)− γ(G)− |L(G)|)− |Ss(G)|

=
1
2
(n(G)− γ(G) + |L(G)| − 2|S(G)| − 2|Ss(G)|).

Therefore, the result follows.

The bound above is tight. For instance, it is achieved by the graphs shown in Figure 2.

Figure 2. Two graphs achieving the bound given in Theorem 10.

Corollary 3. For any graph G with δ(G) = 2,

∂s∗(G) ≥ 1
2
(n(G)− γ(G)).

The bound above is achieved by any corona graph of the form G ∼= G1 � K2, where
G1 is a nontrivial graph. In this case, ∂s∗(G) = ∂s(G) = n(G1) =

1
2 (n(G)− γ(G)).

202



Symmetry 2021, 13, 1036

Theorem 11. For any graph G with no isolated vertex,

∂s∗(G) ≥ n(G)− γt(G)− γ(G).

Proof. Let S1 be a γt(G)-set and S2 a γ(G)-set. Let S = S1 ∪ S2. As S1 ∈ Dt(G) and
S2 ∈ D(G), we deduce that Sw ⊆ N(S) and Sw ⊆ S1 ∩ S2. Hence,

∂s∗(G) ≥ ∂s(S)

= |Ne(S)| − |Sw|
= n(G)− |S| − |Sw|
≥ n(G)− |S1| − |S2|+ |S1 ∩ S2| − |Sw|
≥ n(G)− γt(G)− γ(G),

as desired.

The bound above is tight. Figure 3 shows a graph G with γ(G) < γt(G), where
∂s∗(G) = 5 = n(G)− γt(G)− γ(G).

Figure 3. A graph G with ∂s∗ (G) = 5.

Theorem 12. For any graph G with every component of order at least three,

∂s∗(G) ≥ n(G)− β(G)− |S(G)| − |Ss(G)|.

Proof. Let S be a β(G)-set such that S(G) ⊆ S. Now, we define S′ ⊆ L(G) such that
|S′| = |S(G)| and |N(v) ∩ S′| = 1 for every vertex v ∈ S(G). Hence, S′′ = S ∪ S′ is a
dominating set, S′′w ⊆ Ss(G) and S′′w ⊆ N(S′′), which implies that

∂s∗(G) ≥ ∂s(S′′)

= |Ne(S′′)| − |S′′w|
= n(G)− |S′′| − |S′′w|
≥ n(G)− |S| − |S(G)| − |Ss(G)|.

Therefore, the result follows.

The bound above is tight. For instance, Figure 3 shows a graph G with ∂s∗(G) = 5 =
n(G)− β(G)− |S(G)| − |Ss(G)| = α(G)− |S(G)| − |Ss(G)|.

Notice that Theorems 2 and 12 lead to the following bound.

Theorem 13. For any graph G with every component of order at least three,

∂s∗(G) ≥ α(G)− |S(G)| − |Ss(G)|.

In particular, for graphs of minimum degree at least two we deduce the following result.

Theorem 14. For any graph G with δ(G) ≥ 2, the following statements hold.

(i) ∂s∗(G) ≥ α(G).
(ii) If ∂s∗(G) = α(G), then α(G) = n(G)− γ2(G).
(iii) ∂s∗(G) ≥ γ(G).
(iv) If ∂s∗(G) = γ(G), then γ(G) = n(G)− γ2(G).
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Proof. Obviously, (i) is an immediate consequence of Theorem 13 and (iii) is derived from
the fact that α(G) ≥ γ(G).

Now, since δ(G) ≥ 2, every vertex cover is a 2-dominating set, which implies that
γ2(G) ≤ β(G) = n(G)− α(G). Thus, by Theorem 4, if ∂s∗(G) = α(G), then

α(G) = ∂s∗(G) ≥ n(G)− γ2(G) ≥ α(G).

Therefore, (ii) follows, and by analogy we deduce that (iii) follows.

The graph shown in Figure 4, on the left, satisfies ∂s∗(G) = α(G) = n(G)− γ2(G) = 4.
The converse of Theorem 14 (ii) does not hold. For instance, for the right hand side graph
shown in Figure 4 we have α(G) = n(G)− γ2(G) = 3, while ∂s∗(G) = 4.

Figure 4. Two graphs with ∂s∗ (G) = 4.

The graph shown in Figure 5 satisfies ∂s∗(G) = γ(G) = n(G) − γ2(G) = 5. We
would point out that there are several cases of graphs of minimum degree one with
∂s∗(G) ≤ γ(G)− 1.

Next we discuss the trivial bounds on ∂s∗(G) and we characterize the extreme cases.

Figure 5. A graph with ∂s∗ (G) = γ(G) = n(G)− γ2 (G) = 5.

Proposition 1. For any graph G of order n(G) ≥ 3, the following statements hold.

(i) max{0, ∆(G)− 2} ≤ ∂s∗(G) ≤ n(G)− 2.
(ii) ∂s∗(G) = 0 if and only if ∆(G) ≤ 1.
(iii) ∂s∗(G) = 1 if and only if ∆(G) ∈ {2, 3} and γ2(G) = n(G)− 1.
(iv) ∂s∗(G) = n(G)− 2 if and only if γ2(G) = 2.
(v) ∂s∗(G) = n(G)− 3 if and only if γ2(G) = 3 or γ2(G) 6= 2 and γ(G) = 1.

Proof. We first proceed to prove (i). If ∆(G) ∈ {0, 1}, then it is straightforward that
∂s∗(G) = 0. We assume that ∆(G) ≥ 2. Let v ∈ V(G) be a vertex of maximum degree,
u ∈ N(v) and S = {u} ∪ (V(G) \ N(v)). Notice that either Sw = ∅ or Sw = {v}. Hence,
∂s∗(G) ≥ ∂s(S) = |Ne(S)| − |Sw| ≥ ∆(G)− 2, as desired. Since n(G) ≥ 3 every ∂s∗(G)-set
has cardinality at least two, and so ∂s∗(G) ≤ n(G)− 2.

We next proceed to prove (ii). if ∂s∗(G) = 0, then ∆(G) ≤ 2 by (i). Now, if ∆(G) = 2,
then for any vertex x of maximum degree we have that V(G) \ {x} is a 2-dominating set,
and so ∂s∗(G) ≥ 1, which is a contradiction. Therefore, ∆(G) ≤ 1. Obviously, if ∆(G) ≤ 1,
then ∂s∗(G) = 0.

Now, we proceed to prove (iii). First, we assume that ∂s∗(G) = 1. By (i) and (ii) we
deduce that ∆(G) ∈ {2, 3}. Hence, Theorem 7 leads to γ2(G) = n(G)− 1. Conversely,
if ∆(G) ∈ {2, 3} and γ2(G) = n(G)− 1, then Theorem 7 leads to ∂s∗(G) = n(G)− γ2(G) =
1. Therefore, (iii) follows.
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To prove the remaining statements, we take a ∂s∗(G)-set D ∈ D(G), which exists due
to Lemma 1.

We next proceed to prove (iv). First, assume that ∂s∗(G) = n(G)− 2. In this case, we
deduce that |D|+ |Dw| = 2, which implies that |D| = 2 and Dw = ∅. Therefore, D is a
γ2(G)-set and so, γ2(G) = 2. On the other side, if γ2(G) = 2, then by Theorem 4 and (i)
we deduce that ∂s∗(G) = n(G)− 2.

Finally, we proceed to prove (v). If either γ2(G) = 3 or γ2(G) 6= 2 and γ(G) = 1, then
by Theorem 4 and the statements (i) and (iv) we deduce that ∂s∗(G) = n(G)− 3. Conversely,
assume that ∂s∗(G) = n(G) − 3. From (iv) we deduce that γ2(G) ≥ 3. Moreover, we
deduce that |D|+ |Dw| = 3, which implies that either |D| = 2 and |Dw| = 1 or |D| = 3
and |Dw| = 0. If |D| = 2 and |Dw| = 1, then γ(G) = 1 as D ∈ D(G), while if |D| = 3 and
|Dw| = 0, then D is a 2-dominating set, and so γ2(G) = 3.

To conclude this section, we discuss the case of join graphs.

Proposition 2. For any two graphs G and H we have the following statements.

(i) n(G) + n(H)− 4 ≤ ∂s∗(G + H) ≤ n(G) + n(H)− 2.
(ii) ∂s∗(G + H) = n(G) + n(H) − 2 if and only if min{γ2(G), γ2(H)} = 2 or γ(G) =

γ(H) = 1.
(iii) ∂s∗(G + H) = n(G) + n(H)− 3 if and only if one of the following holds.

• min{γ2(G), γ2(H)} = 3 and max{γ(G), γ(H)} ≥ 2.
• min{γ2(G), γ2(H)} ≥ 3 and, in addition, γ(G) = 2 or γ(H) = 2.
• min{γ(G), γ(H)} = 1 and max{γ(G), γ(H)} ≥ 2 and min{γ2(G), γ2(H)} ≥ 3.

(iv) ∂s∗(G + H) = 4 if and only if min{γ(G), γ(H)} ≥ 3 and min{γ2(G), γ2(H)} ≥ 4.

Proof. By Proposition 1 (i) we deduce that ∂s∗(G + H) ≤ n(G) + n(H)− 2. For any set
D = {u, v}, where u ∈ V(G) and v ∈ V(H), we have that ∂s∗(G + H) ≥ |Ne(D)| − |Dw| =
n(G) + n(H) − |D| − |Dw| ≥ n(G) + n(H) − 4. Thus, (i) follows. Finally, by (i) and
Proposition 1 (iv) and (v), we deduce the remaining statements, which completes the
proof.

4. A Gallai-Type Theorem

A Gallai-type theorem is a result of the form a(G) + b(G) = n(G), where a(G) and
b(G) are parameters defined on G. This terminology comes from Theorem 2, which is
a well-known result stated by Gallai in 1959. The aim of this section is to identify the
parameter a(G) such that a(G) + ∂s∗(G) = n(G). We will show that this invariant, which
is associated to a version of the Italian domination, is perfectly integrated into the theory
of domination.

Let f : V(G) −→ {0, 1, 2} be a function and Vi = {v ∈ V(G) : f (v) = i} for
i ∈ {0, 1, 2}. We will identify the function f with these subsets of V(G) induced by f ,
and write f (V0, V1, V2). The weight of f is defined to be

ω( f ) = f (V(G)) = ∑
v∈V(G)

f (v) = ∑
i

i|Vi|.

The theory of Roman domination was introduced by Cockayne et al. [19]. They
defined a Roman dominating function on a graph G to be a function f (V0, V1, V2) satisfying
the condition that every vertex in V0 is adjacent to at least one vertex in V2. Recently,
Cabrera García et al. [20] defined a quasi-total Roman dominating function as a Roman
dominating function f (V0, V1, V2) such that N(v) ∩ (V1 ∪V2) 6= ∅ for every v ∈ V2.

An Italian dominating function on a graph G is a function f (V0, V1, V2) satisfying that
f (N(v)) = ∑u∈N(v) f (u) ≥ 2 for every v ∈ V0, i.e., f (V0, V1, V2) is an Italian dominating
function if N(v) ∩ V2 6= ∅ or |N(v) ∩ V1| ≥ 2 for every v ∈ V0. Hence, every Roman
dominating function is an Italian dominating function. The concept of Italian domination
was introduced by Chellali et al. in [21] under the name Roman {2}-domination. The term
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Italian Domination was later introduced by Henning and Klostermeyer [22,23]. The Italian
domination number, denoted by γI (G), is the minimum weight among all dominating
functions on G.

The following Gallai-type theorem for the strong differential and the Italian domina-
tion number was stated in [8].

Theorem 15 (Gallai-type theorem, [8]). For any graph G,

γI (G) + ∂s(G) = n(G).

We say that an Italian dominating function f (V0, V1, V2) is a quasi-total Italian domi-
nating function if N(v) ∩ (V1 ∪V2) 6= ∅ for every v ∈ V2. Clearly, every quasi-total Roman
dominating function is a quasi-total Italian dominating function. The quasi-total Italian
domination number, denoted by γI∗(G), is the minimum weight among all quasi-total
dominating functions on G.

Theorem 16 (Gallai-type theorem). For any graph G,

γI∗(G) + ∂s∗(G) = n(G).

Proof. By Lemma 1, there exists a ∂s∗(G)-set D which is a dominating set of G. Hence,
the function g(W0, W1, W2), defined from W1 = D \ Dw and W2 = Dw, is a quasi-total
Italian dominating function on G, which implies that

γI∗(G) ≤ ω(g)

= 2|Dw|+ |D \ Dw|
= |Dw|+ |D|
= n(G)− (|Ne(D)| − |Dw|)
= n(G)− ∂s∗(G).

We proceed to show that γI∗(G) ≥ n(G) − ∂s∗(G). Let f (V0, V1, V2) be a γI∗(G)-
function. It is readily seen that for D′ = V1 ∪V2 we have that D′ \ D′w = V1 and D′w = V2.
Thus,

∂s∗(G) ≥ ∂s(D′)

= |Ne(D′)| − |D′w|
= |V(G) \ (V1 ∪V2)| − |V2|
= n(G)− 2|V2| − |V1|
= n(G)− γI∗(G).

Therefore, the result follows.

5. Computational Complexity

In this section, we show that the problem of finding the quasi-total strong differential
of graph is NP-hard. To this end, we need to establish the following result.

Theorem 17. For any graph G,

∂s∗(G� K1) = n(G)− γ(G).

Proof. Given x ∈ V(G), let x′ be the vertex of the copy of K1 associated to x in G � K1,
and let V(G� K1) = V(G) ∪ X, where X =

⋃

x∈V(G)

{x′}.
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By Lemma 1, there exists a ∂s∗(G�K1)-set A which is a dominating set and |Pe(v, A)| ≥
2 for every v ∈ Aw. Hence, Aw ∩ X = ∅. Now, if there exists x ∈ V(G) ∩ Aw, then there
exists u ∈ Pe(x, A) ∩V(G) such that u′ 6∈ A and N(u′) ∩ A = ∅, which is a contradiction.
Hence, Aw = ∅, which implies that A is a 2-dominating set of G� K1. Thus,

∂s∗(G� K1) = ∂s(A) = n(G� K1)− |A| ≤ n(G� K1)− γ2(G� K1).

Since Theorem 4 leads to ∂s∗(G� K1) ≥ n(G� K1)− γ2(G� K1), we conclude that

∂s∗(G� K1) = 2 n(G)− γ2(G� K1).

Now, let D be a dominating set of G and D′ = D ∪ X. Since D′ is a 2-dominating set
of G� K1, we have that

γ2(G� K1) ≤ |D′| = γ(G) + n(G).

Finally, for any γ2(G� K1)-set Y, we have that X ⊆ Y and Y ∩V(G) is a dominating
set of G, which implies that

γ2(G� K1) = |Y| = |X|+ |Y ∩V(G)| ≥ |X|+ γ(G) = n(G) + γ(G).

Therefore, γ2(G� K1) = n(G) + γ(G), and so the result follows.

A direct consequence of the preceding result is the determination of computational
complexity of finding the quasi-total strong differential. Given a graph G and a positive
integer t, the domination problem is to decide whether there exists a dominating S in G
such that |S| is at most t. It is well known that the domination problem is NP-complete.
Hence, the optimization problem of finding γ(G) is NP-hard. Therefore, from Theorem 17,
we derive the following result.

Corollary 4. Given a graph G, the problem of finding ∂s∗(G) is NP-hard.

6. Conclusions and Open Problems

This article is a contribution to the theory differential of graphs. Particularly, we
introduce the concept of the quasi-total strong differential of a graph. In our study, we
show that the quasi-total strong differential is closely related to several graph parameters,
including the domination number, the total domination number, the 2-domination number,
the vertex cover number, the semitotal domination number, the strong differential, and the
quasi-total Italian domination number. Finally, we proved that the problem of finding the
quasi-total strong differential of a graph is NP-hard.

Some open problems have emerged from the study carried out. For instance, we
highlight the following.

(a) It would be interesting to obtain some Nordhaus-Gaddum type relations.
(b) We have shown that if ∂s∗(G) = α(G), then α(G) = n(G)− γ2(G). Likewise, we

have shown that if ∂s∗(G) = γ(G), then γ(G) = n(G)− γ2(G). However, the prob-
lem of characterizing all graphs such that ∂s∗(G) = α(G) and ∂s∗(G) = γ(G) is still
an open problem.

(c) Since the optimization problem of finding ∂s∗(G) is NP-hard, it would be inter-
esting to devise polynomial-time algorithm for simple families of graphs or to
develop heuristics that allow to estimate as accurately as possible this parameter for
any graph.

(d) It would be interesting to investigate the quasi-total strong differential of product
graphs, and try to express this invariant in terms of different parameters of the
graphs involved in the product.
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Abstract: In recent years, the use of Genetic Algorithms (GAs) in symmetric cryptography, in
particular in the cryptanalysis of block ciphers, has increased. In this work, the study of certain
parameters that intervene in GAs was carried out, such as the time it takes to execute a certain
number of iterations, so that a number of generations to be carried out in an available time can be
estimated. Accordingly, the size of the set of individuals that constitute admissible solutions for GAs
can be chosen. On the other hand, several fitness functions were introduced, and which ones led
to better results was analyzed. The experiments were performed with the block ciphers AES(t), for
t ∈ {3, 4, 7}.

Keywords: genetic algorithm; cryptanalysis; AES(t); optimization; heuristics

1. Introduction

There are several methods and tools that are used as optimization methods and
predictive tools. Several heuristic algorithms have been used in the context of cryptography;
in [1], the Ant Colony Optimization (ACO) heuristic method was used, and a methodology
with S-AES block encryption was tested, using two pairs of plain encrypted texts. In [2],
a combination of GA and ACO methods was used for cryptanalysis of stream ciphers.
In [3–5], the possibilities of combining and designing these analyzes using machine learning
and deep learning tools were shown. In [6–8], the methods of the Artificial Neural Network
(ANN), Support Vector Machine (SVM), and Gene-Expression Programming (GEP) were
used as predictive tools in other contexts.

The Genetic Algorithm (GA) is an optimization method used in recent years in
cryptography for various purposes, mainly to carry out attacks on various encryption types.
Some of the research conducted in this direction is mentioned next. In [9], the authors
presented a combination of the GA with particle swarm optimization (another heuristic
method based on evolutionary techniques); they called their method genetic swarm
optimization and applied it to attack the block cipher Data Encryption Standard (DES).
Their experimental results showed that better results were obtained by applying their
combined method than by using both methods separately. The proposal presented in [10]
provided a preliminary exploration of GA’s use over a Permutation Substitution Network
(SPN) cipher. The purpose of the scan was to determine how to find weak keys. Both
works [9,10] used a known plaintext attack, i.e., given a plaintext T and the corresponding
ciphertext C, one is interested in finding the key K. In [10], the fitness function evaluates
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the bitwise difference (Hamming distance) between C and the ciphertext of T, using a
candidate for the key, whereas, on the contrary, in [9] the Hamming distance between T
and the decryption of the ciphertext of C is measured. In [11], a ciphertext-only attack on
simplified DES was shown, obtaining better results than by brute force. The authors used a
fitness function that combined the relative frequency of monograms, digrams, and trigrams
(for a particular language). Since the key length was very small, they were able to use this
kind of function. The approach in [12] was similar to [11]; it used essentially the same
fitness function, but with different parameters. It was also more detailed regarding the
experiments and compared them concerning brute force and random search. For more
details on the area of cryptanalysis using GAs, see [13–15].

As in all evolutionary algorithms, it is always a difficulty in the GA that, as the
number of individuals in the space of admissible solutions grows, in this case, the set of
keys, it is necessary to perform a greater number of generations in order to obtain the best
results. It is clear that the greater the number of generations, the more time the algorithm
consumes, so it is important to be able to estimate the time that may be necessary to execute
a certain number of desired generations. On the other hand, it is necessary to analyze
fitness functions that allow obtaining better results with the fittest individuals obtained.

Symmetry is omnipresent in the universe; in particular, it is present in symmetric
cryptography, where the secret key is known for both authorized parts in the
communication channel essentially by symmetry. We worked with block ciphers, an
important primitive of symmetric cryptographic, where the key space (the population of
admissible solutions for the GA in this case) is exponentially big, making it impossible in
many cases to fully move in that space.

In the present work, the ideas to divide the key space that were started in [16,17] were
followed. Both methodologies for dividing the key space allow the GA search space to
be reduced over a subset of individuals. For this case, we studied the behavior of time
and the introduction of various fitness functions. The structure of the work is as follows.
In Section 2, the general ideas of the GA and two methodologies for partitioning the key
space are presented; in Section 3, several parameters of the cryptanalysis for block ciphers
using the GA are studied; in Section 3.1, the time it takes to execute a certain number of
iterations is analyzed, so that a number of generations to be carried out in an available time
can be estimated; and in Section 3.2, other fitness functions are proposed. Finally, Section 4
gives the conclusions.

2. Preliminaries
2.1. The Genetic Algorithm

The GA is a heuristic optimization method. We assume that the reader knows the
general ideas of how the GA works; see Algorithm 1. In this section, we briefly describe
the GA scheme used in this work.

Algorithm 1 Genetic algorithm.

Input: m (quantity of individuals in the population), F (fitness function), g (number of
generations).

Output: the individual with the highest fitness function as the best solution.
1: Randomly generate an initial population Pi with m individuals (possible solutions).
2: Compute the fitness of each individual from Pi with F.
3: while the solution is not found, or the g generations are not reached do
4: Select parent pairs in Pi.
5: Perform the crossover of the selected parents, and generate a pair of offspring.
6: Mutate each of the resulting descendants.
7: Compute the fitness of each of the descendants with F and their mutations.
8: By the tournament method between two, based on the fitness of the parents and

descendants, decide what is the new population Pi for the next generation (selecting
two individuals at random each time and choosing the one with the highest fitness).

9: end while
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The individuals from the populations are elements of the key space taken as binary
blocks. For Crossover, the crossing by two points was used, and the crossover probability
was fixed to 0.6. The Mutate operation consisted of interchanging the values of the bits of at
most three random components of the binary block with a mutation rate of 0.2. The values
of 0.6 and 0.2 were fixed for all experiments, and the study of the incidence of the variation
of these values in the behavior of the GA was not addressed in this paper. An individual
x is better adapted than another y, if it has greater fitness, i.e., if F(x) > F(y). Fitness
functions are studied in more detail in Section 3.2. For the specification of the GA to block
ciphers, see Section 3 of [16].

2.2. Key Space Partition Methodologies

The methodologies introduced in [16,17] allow GAs to work on a certain subset of
the set of admissible solutions as if it were the complete set. The importance of this fact is
that it reduces the size of the search space and gives the heuristic method a greater chance
of success, assuming that the most suitable individuals are found in the selected subset.
Let Fk1

2 be the key space of length k1 ∈ Z>0. It is known that Fk1
2 has cardinality 2k1 , and

therefore, there is a one-to-one correspondence between Fk1
2 and the range

[
0, 2k1 − 1

]
.

If an integer k2 is set, (1 < k2 ≤ k1), then the key space can be represented by the numbers,

q2k2 + r, (1)

where q ∈
[
0, 2k1−k2 − 1

]
and r ∈

[
0, 2k2 − 1

]
. In this way, the key space is divided into

2k1−k2 blocks (determined by the quotient in the division algorithm dividing by 2k2), and
within each block, the corresponding key is determined by its position, which is given by
the remainder r. The main idea is to stay in a block (given by q) and move within this block
through the elements (given by r) using the GA. Note in this methodology that first q is
set to choose a block, and then, r varies to be able to move through the elements of the
block; however, the complete key in Fk1

2 is obtained from Expression (1). We refer to this
methodology as BBM. For more details on the connection with GAs, see [16].

The following methodology is based on the definition of the quotient group of the
keys GK whose objective is to make a partition of Fk1

2 in equivalence classes. It is known
that Fk1

2 , as an additive group, is isomorphic to Z2k1 . Let h be the homomorphism defined
as follows:

h : Z2k1 −→ Z2k2 (2)

n −→ n (mod 2k2),

where k2 ∈ Z>0 and 0 < k2 < k1. We denote by N the kernel of h, i.e.,

N = {x ∈ Z2k1 |h(x) = 0 ∈ Z2k2 }. (3)

Then, by the definition of h, we have that N is composed by the elements of Z2k1 ,
which are multiples of 2k2 . It is known that N is an invariant subgroup; therefore, the main
objective is to calculate the quotient group of Z2k1 by N, and in this way, the key space
will be divided into 2k2 equivalence classes. We denote by GK the quotient group of
Z2k1 by N (GK = Z2k1 /N). By Lagrange’s theorem, we have that o(GK) = o(Z2k1 )/o(N),
but o(GK) = o(Z2k2 ) = 2k2 , then,

o(N) = o(Z2k1 )/o(Z2k2 ) = 2k1−k2 . (4)
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Now, N can be described, taking into account that its elements are multiples of 2k2 .
For this, we take Q = {0, 1, 2, . . . , 2k1−k2 − 1}, then:

N = < 2k2 > = {x ∈ Z2k1 | ∃ q ∈ Q, x = q 2k2} (5)

= {0, 2k2 , 2 ∗ 2k2 , 3 ∗ 2k2 , . . . , (2k1−k2 − 1) ∗ 2k2}.

On the other hand,

GK = {N, 1 + N, 2 + N, . . . , (2k2 − 2) + N, (2k2 − 1) + N}. (6)

In this way, Z2k1 is divided into a partition of 2k2 classes given by N. GK is called the
quotient group of keys. Let,

E : {0, 1}m × {0, 1}n → {0, 1}n, m, n ∈ N, m ≥ n, (7)

be a block cipher, T a plaintext, K a key, and C the corresponding ciphertext, i.e., C =
E(K, T); K′ is said to be a consistent key with E, T, and C, if C = E(K′, T) (see [16]).
The idea here is also to go through, from the total space, the elements that are in a class
and then find one (or several) consisting of the keys of that class. To be able to go through
the elements of each class, note that Z2k2 is isomorphic with GK, and the isomorphism
corresponds to each r ∈ Z2k2 its equivalence class r + N in GK; thus, selecting a class is
setting an element r ∈ Z2k2 . On the other hand, the elements of N are of the form q 2k2

(q ∈ Q); therefore, the elements of the class r + N are of the form,

q 2k2 + r, q ∈ Q. (8)

Then, the problem of looping through each element of each equivalence class consists
of first setting an element of Z2k2 and then looping through each element of the set Q, to find
a key of GK using Equation (8). The elements of the set Q have block length kd = k1 − k2,
and each class has 2kd elements. We refer to this methodology as TBB. Note that the TBB
methodology is a kind of dual idea with respect to the BBM methodology, i.e., one first
stays in the same class (given by r) and then moves within this class through the elements
(given by q) using the GA. In this case, the length of the blocks is 2kd instead of 2k2 .

The main difficulty in these methodologies is the choice of k2, since it is the parameter
that determines the number of equivalence classes and, therefore, the number of elements
within them. If in GK, k2 increases, the classes have fewer elements, but there are more
classes; on the contrary, if it decreases, so does the number of classes, but the number
of elements of each increases. Something similar happens in the first methodology. The
operations of the space partitioning and going through the elements of each class are done
with the decimal representation and the specific operations of the GA with the binary
representation. For more details, see [16,17].

In Figure 1, the relationship of the content by subsections and the attack on block
ciphers are shown in a flowchart.

S0

S1 S2 · · · Se

I1 I2 · · · Ie

Key space partition

Genetic Algorithm

Consistent keysSolutions

2.2

2.1

3.1

3.2

Figure 1. Flowchart of the relationship between content by subsections and the attack on block ciphers.
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3. Study of Parameters in the GA
3.1. Time Estimation

In GAs, less complex operations such as mutation and crossing are performed within
each class, where the elements have block length k2 ≤ k1 or kd ≤ k1 depending on the
way of partitioning the space. However, despite the variation of these two parameters,
the calculation of the fitness function, being the function of greater complexity within the
GA, is carried out using (8), i.e., with the complete key of length k1, and not with the part
of it found in the class. This means that a variation in the number of elements in a class
does not affect the fitness function’s cost. Moreover, if all the parameters remain the same,
the GA’s time in each generation must be quite similar, even if k2 varies. To check this,
experiments were done with a PC with an Intel(R) Core (TM) i3-4160 CPU @ 3.60GHz
(four CPUs), and 4GB of RAM. AES(t) encryption was used, a parametric version of AES,
where t ∈ {3, 4, 5, 6, 7, 8} and also AES(8) = AES (see [18,19]). The experiment consisted
of executing the GA with the BBM methodology and measuring the time (in minutes)
that it took in a generation for different values of k2 (keeping the other parameters fixed),
then verifying if these data were used to forecast the time it would take in n generations.
The size of the population was m = 100 in all cases.

Tables 1–3 summarize the results corresponding to AES(3), AES(4), and AES(7),
respectively. The first column has the different values that were given to k2. The second
column is the average time tk2 that was obtained for a generation in 10 executions of each k2.
The general mean for all the k2 values is tm = 0.0435571 minutes approximately in Table 1,
tm = 0.0519393 in Table 2, and tm = 0.1900297 in Table 3. The third column represents the
number of generations (ng). The real-time that the algorithm takes, tr, appears in the fourth
column. The fifth column is the estimated time, te, that should be delayed, the calculation
of which is based on:

te = tmng. (9)

Finally, the last column is the error of the prediction, Ep = |tr − te|. With these
experiments, we wanted to check for the procedure whether if for a specific value of k2 and
having ng generations, then the approximate time (t) that the GA would take to complete
those generations was t ≈ te.

With a generation, or very few, the average time it took for the GA was slightly slower,
decreasing and tending to stabilize at a limit as it performed more iterations. This was due
to probabilistic functions that intervened in the GA and a set of operations to randomly
create an initial population. Therefore, the criterion for calculating the average time tk2 was
to let the GA finish executing in a certain number of generations, either because it found
the key or because it reached the last iteration without finding it, and then calculate the
average. Therefore, calculating tk2 in a few generations or setting the amount to one, would
get longer times; however, doing so would be valid if the intention were to go over the top
in estimating the time that the algorithm consumed.

Table 1. Time estimation in AES(3).

k2 1 Gen n Gen tr te Ep

10 0.0355 2 0.0962 0.0871 0.0091
11 0.0518 20 0.7134 0.8711 0.1577
12 0.0429 27 1.0491 1.1760 0.1269
13 0.042 81 3.3475 3.5281 0.1806
14 0.0429 49 2.0863 2.1343 0.0481
15 0.0454 71 3.1606 3.0926 0.0680
16 0.0444 655 28.9312 28.5299 0.4012

213



Symmetry 2021, 13, 806

Table 2. Time estimation in AES(4).

k2 1 Gen n Gen tr te Ep

10 0.0519 9 0.3739 0.4675 0.0936
11 0.0553 8 0.3838 0.4155 0.0318
12 0.0465 5 0.2756 0.2597 0.0159
13 0.0564 2 0.1303 0.1039 0.0264
14 0.0506 81 4.1554 4.2071 0.0517
15 0.0510 98 4.9621 5.0900 0.1279
16 0.0519 655 34.1330 34.0202 0.1128

In the case of AES(7) (Table 3), we only experimented with the values 17 and 18 of k2,
since considering all the previous (or higher) values would take a considerably longer time
(given the greater strength of AES(7)).

Table 3. Time estimation in AES(7).

k2 1 Gen n Gen tr te Ep

17 0.1895 373 69.1909 70.8811 1.6902
18 0.1905 932 178.069 177.108 0.9610

Similar results were obtained if more values of k2 were chosen to calculate tm.
For example, using a PC Laptop with a processor: Intel (R) Celeron (R) CPU N3050 @
1.60GHz (two CPUs), ∼1.6 GHz, and 4 GB of RAM and going through all the values of k2
from 10 to 48 (AES(3) key length), tm = 0.2340212 was obtained. Now, for ng = 215, we
had tr = 48.14715 and te = tmng ≈ 50.3145. In another test: ng = 150, tr = 34.9565, then
te ≈ 35.1032. Note that the PC used in this case had different characteristics and less
computational capacity than the experiments in Tables 1–3. The interesting thing is that
under these conditions, the results were as expected as well.

In a similar way, the GA was executed with the TBB methodology for the search in GK,
for values of kd equal to those of k2 and different generations (ng). It was observed that the
time estimates behaved in a similar way to the results presented previously for the BBM
methodology. Note that in the AES(t) family of ciphers, the length of the key increases from
48 for AES(3) to 128 for AES(8); however, regardless of the key length, the same behavior
was seen in all of them.

Now, we showed with these experiments another application of this study on time
estimation. In the GA scheme with the BBM methodology, the total number of generations
(iterations) to perform for a given value of k2 is:

g =

⌊
2k2

m

⌋
. (10)

Taking ng = g, by using te, then we can do an a priori estimation for a given value of
k2, of the total time it will take the GA to perform all the generations or a certain desired
percent of them. For example, in AES(3), for k2 = 16, in Expression (10), we have g = 655;
now, since tm = 0.0435571 in Table 1, then the approximate time that the GA will consume
to perform 655 generations is te ≈ 655 · 0.0435571 ≈ 28.5299, as can be seen in the table.
Another example can be seen in Table 2, also for k2 = 16.

On the other hand, supposing we have an available time te, to carry out the attack
with this model, thus we may use (9) and (10), to compute an approximated value of k2,
which implies doing the corresponding partition of the space and computing the number
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of generations to perform for this time te and the value of k2. In this sense, doing ng = g in
(9), we have:

k2 ≈
⌊

log2
mte

tm

⌋
. (11)

We remark that the above is valid in the TBB methodology, only that kd is used instead
of k2.

As can be observed, the results on the estimation of time were favorable. In this sense,
the following points can be summarized:

1. Taking into account the estimation of time te and its observed closeness to the real
value tr, a number of generations to be carried out in an available or desired time can
be estimated (using Expression (9)), which can be taken as a starting point for the
proper choice of k2, or kd in GK (see Section 2). In this way, it is possible to adapt the
size of the search space (to choose a proper value of k2 using (11)) to the number of
generations that it is estimated can be executed in a given time.

2. The time tk2 could be used to perform the time estimation of its own k2, but as can
be seen in the tables, sometimes, it makes predictions with minor errors and other
times greater than with tm. Another drawback is that it cannot be used for other
k2. On the contrary, the main advantage of using tm is that it can be calculated for
some sparse values of k2 and be used to estimate the time even with values of this
parameter whose tk2 has not been calculated.

3.2. Proposal of Other Fitness Functions

In the context of the BBM and TBB methodologies used in this work with the GA, we
studied in this section which fitness functions provided a better response, in the sense that
consistent keys were obtained as solutions in a greater percentage of occasions. Let E be
a block cipher with length n of plaintext and ciphertext, defined as in Expression (7), T a
plaintext, K a key, and C the corresponding ciphertext, that is C = E(K, T). Let:

D : {0.1}m × {0.1}n → {0.1}n, (12)

be the function of decryption of E, such that T = D(K, C). Then, the fitness function
with which we have been working and based on the Hamming distance dH , for a certain
individual X of the population, is:

F1(X) =
n− dH(C, E(X, T))

n
, (13)

which measures the closeness between the encrypted texts C and the text obtained from
encrypting T with the probable key X (see [16]). A similar function is the one that measures
the closeness between plaintexts:

F2(X) =
n− dH(T, D(X, C))

n
. (14)

Another function that follows the idea of comparing texts in binary with dH is the
weighting of F1 and F2. Let α, β ∈ [0, 1] ⊂ R, such that α + β = 1, then this function would
be defined as follows:

F3(X) = αF1(X) + βF2(X). (15)

It is interesting to note that F3 is more time consuming than each function separately,
but the idea is to be more efficient in searching for the key.
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The fitness functions proposed at this point are based on measuring the closeness of
the plaintext and ciphertext, but in decimals. Let Yd be the corresponding conversion to
decimals of the binary block Y. The first function is defined as follows,

F4(X) =
2n − 1− |Cd − E(X, T)d|

2n − 1
. (16)

Note that if the encrypted texts are equal, Cd = E(X, T)d, then |Cd − E(X, T)d| = 0,
which implies that F4(X) = 1, i.e., if they are equal, then the fitness function takes the
highest value. On the contrary, the greatest difference is the farthest they can be, i.e., Cd =
2n − 1 and E(X, T)d = 0, and therefore, F4(X) = 0. The following is a weighting of the
functions F1 and F4,

F5(X) = αF1(X) + βF4(X). (17)

Both functions have in common that they measure the closeness between ciphertexts.
This is not ambiguous since, for example, if C and E(X, T) differ by two bits, the function
F1 will always have the same value no matter what these two bits are. On the contrary, it is
not the same in F4 if the bits are both more or less significant since the numbers are not the
same in their decimal representation. The following function measures the closeness in
decimals of plaintexts:

F6(X) =
2n − 1− |Td − D(X, C)d|

2n − 1
. (18)

Finally, the functions F7, F8, and F9 are defined with respect to the previous ones
as follows,

F7(X) = αF2(X) + βF6(X), (19)

F8(X) = αF4(X) + βF6(X), (20)

F9(X) = α1F1(X) + α2F2(X) + α3F4(X) + α4F6(X), (21)

where αi ∈ [0, 1] ⊂ R, i ∈ {1, 2, 3, 4} and
4
∑

i=1
αi = 1. This guarantees that in general, each

Fj(X) ∈ [0, 1] ⊂ R, j ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9}.
The idea behind the introduction of these functions lies mainly in the fact that there

are changes that the Hamming distance does not detect, as opposed to the decimal distance.
For example, suppose the key is a = (1, 1, 1, 1, 1, 1)2, and b = (0, 0, 0, 0, 0, 1)2 is the possible
key, both in binary. It is clear that the Hamming distance is five, and the distance in decimals
is 62 since a = 63 and b = 1; the fitness functions take the values 1− 5/6 = 0.17 for the
binary version and 1− 62/63 = 0.016 for the decimal version. Now, if b = (0, 0, 1, 0, 0, 0)2,
the binary fitness function would still be 0.17 since there are still five different bits; on the
other hand, b = 8, so the decimal fitness function takes the value 1− 55/63 = 0.13. Finally,
if we take b = (1, 0, 0, 0, 0, 0)2 = 32, then the distance in binary remains the same value,
but the decimal continues to change, therefore, the fitness function as well, and takes the
value 0.49. Therefore, this shows that the change of b, the decimal distance, is always
detected, unlike the binary distance, which remains the same for certain changes.

AES(3) encryption attack experiments were carried out for the two methodologies for
partitioning the key space to compare these functions. The main idea is to find the key and
not do a component percent match analysis between them, where the fitness functions with
the Hamming distance would be more useful. A PC with an Inter (R) Core (TM) i3-4160
CPU @ 3.60GHz (four CPUs), and 4 GB of RAM was used. For the results, we took into
account the average time it took to find the key, the average number of generations in which
it was found, the percentage of failures (in many attacks carried out), and a parameter
called efficiency, EFi , which resulted in a weighting of the three previous criteria.

Definition 1 (Fitness functions’ efficiency). Let µ1, µ2, µ3 ∈ [0, 1] ⊂ R, µ1 + µ2 + µ3 = 1,
tFi , i = 1, · · · , k, the time it takes the GA to find the key with Fi, on an average for gFi generations,
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and pFi the percent of attempts in that the GA did not find the key with Fi. Then, the efficiency, EFi ,
of the fitness function Fi with respect to the other k− 1 functions, Fj, j 6= i, is defined as,

EFi = 1−


µ1

tFi

k
∑

γ=1
tFγ

+ µ2
gFi

k
∑

γ=1
gFγ

+ µ3
pFi

k
∑

γ=1
pFγ


. (22)

Note that the number of generations and the failure percentage are inversely
proportional to the efficiency EFi as the higher these parameters, the lower its efficiency
fitness function. Table 4 presents the results of the comparison of the different fitness
functions for the BBM space partitioning methodology, in this case k = 9. We took
α = β = 0.5 and each αi = 0.25. To calculate EFi the values µ1 = 0.33, µ2 = 0.33 and
µ3 = 0.34 were taken for tFi , gFi , and pFi , respectively. Sorting Fi with respect to efficiency,
the first five would be F6, F8, F4, F5, and F2. It is noteworthy that of the first three that use
only the Hamming distance, only F2 appears.

Table 4. Comparison of fitness functions, with BBM.

Fi Times Generations Failures (%) EFi

F1 5.233 121.2 60 0.8731
F2 5.402 108.4 50 0.8870
F3 11.101 117.4 50 0.8584
F4 4.764 109.2 40 0.8995
F5 9.451 109.8 30 0.8885
F6 3.126 63.4 20 0.9433
F7 12.424 121.3 50 0.8511
F8 7.054 77.1 10 0.9309
F9 15.811 87.7 30 0.8682

In the comparison of these functions for the TBB methodology of partitioning the key
space and searching in GK, the experiment results are presented in Table 5. In this case,
ordering the functions by their efficiency, the first five would be F1, F4, F5, F8, and F6. Again,
a single function appears from the first three, in this case F1, and the others repeat. Note in
particular that F8 (the weight of the functions in decimals) is better than F3 (the weight of
the functions in binary) in each of the parameters measured in both methodologies.

Table 5. Comparison of fitness functions, with TBB.

Fi Times Generations Failures (%) EFi

F1 3.688 83.1 20 0.9278
F2 5.353 109.1 60 0.8633
F3 11.403 122.9 40 0.8536
F4 3.226 67.8 30 0.9240
F5 7.147 83.4 10 0.9235
F6 4.871 96.2 40 0.8939
F7 10.694 113.1 20 0.8840
F8 8.354 92 20 0.9029
F9 16.876 95.7 50 0.8270

It is interesting to see what happens if the values of the weights are changed in the
functions F5, F7, and F9, which combine the functions with distance in decimals and binary,
keeping fixed µ1, µ2, and µ3 for the calculation of EFi . In this sense, in the following group
of experiments, the weights were assigned as follows for each methodology: the values
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were 0.2 and 0.8; first, in each of these three functions, the subfunctions in binary were
favored, from which α = 0.8, β = 0.2 (in F5, F7), α1 = α2 = 0.4, and α3 = α4 = 0.1
(in F9; note that this function has two subfunctions with the distance in binary and two in
decimals); in this case, we identified the functions as F5b, F7b, and F9b; then, we changed the
order of these same weights, and the largest were given to the subfunctions whose distance
was in decimals; and we identified the functions for this case as F5d, F7d, and F9d.

For the BBM methodology, the results are presented in Table 6. Note that according to
EFi , the first is F7d, followed by F5d and F9d.

Table 6. Comparison of functions F5, F7, and F9, with BBM.

Fi Times Generations Failures (%) EFi

F5b 10.247 115 50 0.772
F7b 9.131 90.6 40 0.814
F9b 20.053 107.4 50 0.728
F5d 7.276 83.3 10 0.891
F7d 5.921 61.3 0 0.933
F9d 13.799 77.5 10 0.862

In Figure 2, these results are compared, according to EFi , with those of Table 4, also
including the values of F5, F7, and F9. Sorting the functions according to their efficiency,
the first five are F7d, F6, F8, F5d, and F9d.
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Figure 2. Efficiency of all fitness functions in the BBM methodology.

Notice how the best results prevail in the functions with the distance in decimals.
In this sense, F7 and F9 (now as F7d and F9d) are incorporated into the first ones and three
of those that already were in this group in the above experiments, F5 (as F5d), F6, and F8

In the case of the TBB methodology, the results are presented in Table 7. According to
efficiency, the first is F7b, followed by F5d and F5b.

Table 7. Comparison of functions F5, F7, and F9, with TBB.

Fi Times Generations Failures (%) EFi

F5b 9.987 111.5 40 0.845
F7b 8.578 86.7 10 0.909
F9b 22.500 119.1 50 0.777
F5d 8.341 96.9 10 0.905
F7d 13.623 141.8 80 0.754
F9d 22.183 114.8 30 0.811
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In Figure 3, these results are compared with those of all the functions of Table 5.
The first five are now F1, F5, F4, F7b, and F5d; notice how the functions that contain the
distance prevail in decimals and this combined with binary. In the experiments, the best
global behavior of the functions with the decimal distance is verified, and specifically in the
BBM methodology, where the keys are grouped into intervals according to their decimal
position in space, contrary to the other methodology, where the keys of each class are
positioned throughout the space.
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Figure 3. Efficiency of all fitness functions in the TBB methodology.

Note that when comparing Figures 2 and 3, the values of EFi that are in the tables are
not directly compared, but rather, it is necessary to recalculate EFi taking into account that
there are 15 functions. We mean,

EFδi
= 1−


µ1

tFδi

k
∑

γ=1
tFδγ

+ µ2
gFδi

k
∑

γ=1
gFδγ

+ µ3
pFδi

k
∑

γ=1
pFδγ


, (23)

where δi ∈ {1, · · · , 9, 5b, 5d, 7b, 7d, 9b, 9d}, i = 1, · · · , k, and, k = 15.

4. Conclusions

In this article, various aspects of some parameters of the GA for the attack on block
ciphers were studied. In the first place, a way of estimating the time that the GA takes
in a given number of generations was proposed, having an average of the time that this
algorithm takes in one generation. This study is important to jointly evaluate different
parameters and make the best decisions according to the computational capacity, available
time, and an adequate selection of the size of the search space when using the BBM and TBB
methodologies. On the other hand, several fitness functions were proposed with favorable
results in the experiments with respect to the fitness functions using only the Hamming
distance. In this sense, it was found that the fitness functions that use the decimal distance,
in general, are more efficient than those that use only the Hamming distance, especially in
the methodology BBM.

As future work, several directions are possible. Similar studies can be carried out
with the GA working with other parameters, such as varying the crossover probability and
mutation rate and making comparisons regarding the percentage of success of the method.
It is also recommended to explore other heuristic techniques and to evaluate the use of
whole space partitioning methods so that the methods work closed on the subsets. In the
same way, it is also recommended to investigate the combined use with some other tools
such as machine learning, deep learning, ANN, SVM, and GEP.
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Abstract: Topology optimization is a modern method for optimizing the material distribution in
a given space, automatically searching for the ideal design of the product. The method aims to
maximize the design performance of the system regarding given conditions. In engineering practice,
a given space is first described using the finite element method and, subsequently, density-based
method with solid isotropic material with penalty. Then, the final shape is found using a gradient-
based method, such as the optimality criteria algorithm. However, obtaining the ideal shape is highly
dependent on the correct setting of numerical parameters. This paper focuses on the sensitivity
analysis of key formulations of topology optimization using the implementation of mathematical
programming techniques in MATLAB software. For the purposes of the study, sensitivity analysis of
a simple spatial task—cantilever bending—is performed. This paper aims to present the formulations
of the optimization problem—in this case, minimization of compliance. It should be noted that this
paper does not present any new mathematical formulas but rather provides an introduction into
the mathematical theory (including filtering methods and calculating large-size problems using the
symmetry of matrices) as well as a step-by step guideline for the minimization of compliance within
the density-based topology optimization and search for an optimal shape. The results can be used for
complex commercial applications produced by traditional manufacturing processes or by additive
manufacturing methods.

Keywords: topology optimization; optimization; filtering; method; penalization; weight factor; FEM;
MATLAB; SIMP

1. Introduction

Topology optimization is a calculation of the distribution of materials within a struc-
ture without a known pre-defined shape. This distribution calculation yields a “black
and white pattern” where black places indicate full material while white places represent
voids (i.e., places where material can be removed). Because the distribution is solved over
a general region, topology optimization allows us to acquire a unique, innovative, and
effective structure. The principle of topology optimization is presented on the example of
cantilever bending in Figure 1, where the initial geometry (given space) is depicted on the
left and the optimal shape on the right. As apparent from Figure 1, topology optimization
plays nowadays an important role in engineering practice. Usually, it allows the designer
to reduce the weight of the part without losing too much of its previous properties such as
stiffness, natural frequency, etc.
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Figure 1. Topology optimization of cantilever bending; the initial geometry (left) and the optimal
shape in the form of design variables (right).

Issues associated with topology optimization are studied by many engineers and
researchers. The Finite Elements Method (FEM) is the most widely used technique for the
analysis of discretized continuum. Femlab [1], FreeFem++ [2,3] and ToPy [4] are rapidly
growing engineering tools supporting topology optimization. The problem of topology
optimization was described, e.g., by Bendsøe and Sigmund [5–8]. Many computer tools
have been prepared, including tools in the MATLAB platform (MathWorks, Natick, MA,
United States of America). Liu et al. [9] described a three-dimensional (3D) topology
optimization using MATLAB scripts. They described the necessary steps of optimization
and provided scripts for individual steps. Their scripts are freely available and can be
modified in accordance with the authors’ instructions. It should be noted that although the
scripts have great educational value, their practical usage is limited as they are applicable
only for simple shapes and cannot work with imported meshes. The same can be said
about the paper by Sigmund et al. [7] who investigated two-dimensional optimization
and introduced sensitivity filtering. Master thesis by William Hunter [10] worked on 3D
topology optimization. The author described in depth the theoretical background as well
as its implementation in Python.

Even though topology optimization might seem novel, the first mention of structural
topology optimization dates back to 1904 [11]. However, major progress has come only
in the last 30 years due to the development of computers and the advancement of new
technological processes (in particular, additive manufacturing). Hunar et al. [12] and
Pagac et al. [13] illustrated the significance of topology optimization for designing a 3D
printed part. Currently, however, topology optimization is perceived by most users as a
“black box” producing always correct, i.e., optimal, shapes.

This is, however, largely not true and deeper understanding of the parameters and
settings is needed to yield optimal results. A thorough introduction to the problem and a
complex guideline for performing sensitivity analysis that would help researchers and en-
gineers with determining correct settings is, however, not available in the current literature.
For this reason, we decided to provide such a guideline in this paper.

Hence, the presented paper studies the effect of key formulations of the topology
optimization problem on the design performance. In addition, it recommends the values
of individual numerical parameters using a cantilever beam problem. Even though it
is demonstrated on a simple example, this insight can be used for complex problems of
engineering practice. For example, our group [14] described topology optimization of a
transtibial bed stump using a custom MATLAB script. Performing sensitivity analysis of
the key formulations is recommended for supporting the robustness of the computations
in any new problem. Failure to perform so such an analysis may lead to the production of
„false-optimal“ results. The individual steps of this study were performed in MATLAB as
well as in ANSYS Workbench 2019 R3 (ANSYS, Inc., Canonsburg, United States of America,
AWB), which helped with the evaluation of the results (assessment of the similarity in
resulting values or shapes). The preliminary results of the work are presented in the
Master’s thesis by Sotola [15].
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2. Materials and Methods

The procedure for calculating the optimal shape of the structure can be divided into
three stages: (i.) Preparative stage (ii.) Optimization, and (iii.) Postprocessing, see Figure 2.
MATLAB scripts were prepared for each of these stages to automatize the procedure.

The first step of the initiation of optimization lies in preparing the finite element
analysis. In this step, the boundary conditions and local stiffness matrices of elements
are set up. This paper does not describe this stage in depth because it has been already
described in many books; for example, Hughes [16] describes the preparation of local and
global stiffness matrices. Still, some advanced recommendations are presented in this
paper. At this stage, the global stiffness matrix is also assembled and the reference values of
the objective function are calculated. Before optimization, it is also necessary to prepare an
initial approximation of volume, i.e., the structural elements are assigned a new material
model containing individual design variables for each element. Elements are assigned new
values of elasticity modulus, which affect the global stiffness matrix and leads to a new
value of the objective function with each iteration.

Optimization itself follows, during which new values of design variables are de-
termined. Subsequently, the terminating criterion is queried and if the process is not
terminated based on the criterion being met or the maximal number of iterations exceeded,
the process is repeated with new design variables.

In the last stage, the results are recalculated and prepared in the vtk format, which can
be viewed in the open-source software ParaView (Kitware, Inc., Clifton Park, NY, USA).
This paper focuses on the first and second stages; we provide the results of the entire
process but do not describe the postprocessing in detail.

Boundary conditions

Local stiffness matrices

Initial approximation

Calculating reference
values

Assembly of global
stiffness matrix

Solving displacement Calculating objection
function and sensitivity

Finding new design
variables

Termination
criteria

Preparation Optimization

Preparing results

Export results (.vtk)

Postprocessing

Figure 2. Diagram of the procedure for topology optimization.

2.1. Description of the Optimization Problem

As mentioned already, being able to describe the problem as a mathematical input is
the key to the full understanding of topology optimization. Such understanding is needed
for proper definition of the design variables, the objective function, and the constraint
function (mostly inequality constraints). The most widely used method for solving mul-
tivariate optimization is called “Karush–Kuhn–Tucker conditions” [17] (also known as
Kuhn–Tucker conditions or just KKT conditions).

2.1.1. The Optimization Problem

The objective of the optimization presented in this paper is to minimize compliance
arising during volume reduction defined as volume fraction vfrac. The volume fraction
is calculated as the ratio of the proposed volume and the original volume. The volume
fraction ranges from 0% to 100%.

Several methods can be used for solving the problem of minimization of compliance.
For example, the homogenization method [18,19] uses microperforated composites as a
base material for shape optimization. Since the number of holes within the domain is not
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limited, it can be seen as a method of topology optimization. In another approach, the
phase-field method, the domain consists of two “phases”, the “void” and the fictional
“liquid” which interacts with loads [20,21]. One of the newer methods (meaning newly
implemented in commercial software) is the Level-set method. Optimization in this method
is solved “above” the fixed domain with a fictional velocity [22].

The density-based method is the last of the methods commonly used for solving the
topology problem. This method can be viewed as mature and is easy to implement. In this
paper, we focused on this method, which uses a continuous design variable ranging from
0% to 100%, see Figure 1. In the literature, the design variable is usually referred to as the
density; note, however, that this “density” of the element has no clear physical meaning.
In 2D space, the density can be pictured as a variable thickness of sheet metal but in 3D
space, it is not easy to assign a tangible meaning to this term. The Solid Isotropic Material
with Penalty (SIMP) model is a popular interpolation scheme for definition of material
that would be subsequently used in the density-based method. In this model, the elasticity
modulus is in a power law relation with the design variable and can be described using
the following equation.

Ee = x̃p
e · E0, x̃e ∈< 0, 1 >, (1)

where E0 is the elastic modulus of the base material, p is the penalization and x̃e is the
“modified” filtered design variable. The reasons for the “modification” are described in the
following Sections 2.1.2 and 2.1.6.

After preparation of the material model, the objective function of minimizing compli-
ance is defined as

min : c(x̃e) = { f }T · {u(x̃e)}, (2)

where c is the deformation energy, { f } is the force vector and {u} is the displacement.
One could argue that the deformation energy of the linear material should be divided by
two; however, as it is only a scalar variable, it will not affect the optimization itself. The
constraint Equation (or, rather, inequality in this case) is defined as

v(x̃e) = { x̃e}T · {ve} − vfrac ·∑{ve} ≤ 0, (3)

where {ve} is the vector containing the volume of each element. Displacement is solved
from the equilibrium equation

{ f } = [K] · {u}, (4)

where [K] is the global stiffness matrix. Assembly of stiffness matrices is described in
Section 2.1.4. The design variable is defined as

0 ≤ x̃e ≤ 1. (5)

Equation (2) can be written in a simpler form after applying SIMP

min : c(x̃e) =
n

∑
e=1

E0 x̃p
e {ue}T [k0]{ue} (6)

where {ue} is the vector of element displacement, [k0] is the stiffness matrix with unit elastic
modulus and n is the number of elements. Penalization is introduced in Section 2.1.3.

One can notice that the problem is defined as minimizing the deformation energy,
which leads to the higher stiffness of the structure. Using the KKT conditions, the La-
grange multipliers convert the constrained problem to the equivalent unconstrained
problem [17,23]. The first step is assembling the Lagrange function

L(x̃e, λ) = c(x̃e) + λ · v(x̃e), (7)

where c(x̃e) is the objective function, v(x̃e) is the constraint function and λ the Lagrange
multiplier. It is necessary to solve the derivation of the Lagrange function with respect
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to the design variables because it is necessary to find a stationary point; at that point, the
derivation is equal to 0

∇L(x̃e, λ) =
∂c(x̃e)

∂x̃e
+ λ · ∂v(x̃e)

∂x̃e
= 0. (8)

The following equation is known as the complementary slackness condition, deter-
mining whether the constraint function is active or passive

λ · v(x̃e) = 0. (9)

The next condition is that the Lagrange multiplier is not negative

λ ≥ 0. (10)

The last condition is the derivation of the Lagrange function with respect to Lagrange
multipliers. In simple terms, it determines whether or not the particular point is the KKT
point, i.e., the optimum (there are fundamental theorems proving that the solution is
automatically optimal, see more in [17]). This condition is not important for solving the
problem, it is important for results evaluation. Rearranging the equation and adding the
variable Be leads to the equation

Be = 1 =
− ∂c(x̃e)

∂x̃e

λ
∂v(x̃e)

∂x̃e

. (11)

It is obvious that the optimum of the element is met if Be = 1. Preparing the first
derivation of the objective function determined by Equation (2) with respect to the design
variables can be tricky as at the first sight, there is no evident “influence” of the design
variables. It can be solved numerically but this would require a calculation of the displace-
ment for every individual possible design variable. However, it is possible to calculate
derivation using the adjoint method [5], i.e., to add the equilibrium equation into the
objective function

c(x̃e) = { f }T{u(x̃e)}+ {η}T([K]{u(x̃e))} − { f }), (12)

where η is a vector of non-zero variables (also unknown for now). Adding the equilibrium
equation does not change the objective function because it is equal to zero. Similarly,
the vector η does not change the function. Let us assume that the exterior forces are not
independent on the design variables. Then, the first-order derivation of the objective
function is

∂c
∂{x̃e}

= { f }T ∂{u}
∂{x̃e}

+ {η}T
(

∂[K]
∂{x̃e}

{u}+ [K]
∂{u}
∂{x̃e}

)
. (13)

Rearranging the previous Equation (13) leads to factoring out the derivation of
the displacement

∂c
∂{x̃e}

=

(
{ f }T + {η}T [K]

)
∂{u}
∂{x̃e}

+ {η}T ∂[K]
∂{x̃e}

{u}. (14)

To get rid of the derivation of displacement, it is critical that the term in brackets
(adjoint equation) is equal to zero. This means that our added unknown variable has to be
equal to

{η}T = −{ f }T [K]−1 = −{u}T . (15)
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It is apparent that the vector {η} is already solved. The final form of the derivation of
the objective function (with added SIMP model) is

∂c(x̃e)

∂x̃e
= −E0 p x̃(p−1)

e {ue}T [k0]{ue}. (16)

The first order derivation of the constraint function is defined asIt should be noted
that in the literature (for example, [8]), it is possible to find another equation describing the
constraint function and its derivation

∂v(x̃e)

∂x̃e
= {ve}. (17)

It should be noted that in the literature (for example, [8]), it is possible to find another
equation describing the constraint function and its derivation

v(x̃e) =
{ x̃e}T · {ve}

∑{ve}
− vfrac ≤ 0, (18)

∂v(x̃e)

∂x̃e
=
{ve}

∑{ve}
. (19)

That form of the equation usually depends on the solver and its settings. For example,
“MMA-based” solvers prefer the constraint function defined by Equations (18).

2.1.2. Material Model

In this paper, the density-based method used the Solid Isotropic Material with Penalty
(SIMP) material model, which is a power-law relation of the design variables. The SIMP
material model is used in solvers such as ANSYS (ANSYS, Inc., Canonsburg, PA, USA),
MSC Nastran (MSC Software, Irvine, CA, USA), etc. The elastic modulus of the element is
defined as

Ee = xp
e · E0, xe ∈< 0, 1 >, (20)

where E0 is the elastic modulus of the base material, p is the penalization and xe is the
“unmodified” design variable. This definition looks very similar to Equation (1); however,
here, we use unfiltered designed variable to give a clearer picture of the need for filtering
(see below).

During topology optimization, many problems can occur. For example, the so-called
checkerboard pattern problem [24–26] is very common. This title describes the distribution
of the structural elements in a checkerboard-like arrangement in certain areas of the part.
Figure 3 shows the checkerboard patterns on the cantilever beam.

Figure 3. Checkerboard pattern problem (left) and its possible solution (right).

In our case, i.e., when discussing the problem of minimizing compliance, the com-
putation may consider such a solution to be ideal as the checkerboard pattern creates
artificial regions with higher stiffness. However, as obvious from Figure 3, this is not
true and, moreover, the part cannot be manufactured. Another common problem is the
insufficient number of connected nodes (four or more nodes are needed for the hexahedral
element), which causes the formation of possible joints in the structure and, again, makes it
impossible to manufacture.

The mesh-dependency of optimization results is a crucial problem [5,26]. As the name
suggests, this problem results from the used discretization and its refinement. In context of
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structure stiffness, the reason is quite simple—increasing the number holes in the structure
without changing its volume leads to increase of stiffness. Finer meshes facilitate this
operation—they allow us to create a higher numbers of holes and, therefore, are capable of
providing different (superior) results than coarser meshes. On the other hand, finer meshes
might result in more complex structures that are difficult to manufacture.

The last important problem of topology optimization is the non-uniqueness of solu-
tions, which makes results evaluation trickier [27]. Generally, the problem of optimization
can have a single solution or up to an infinite number of solutions depending on whether
the problem is convex or not.

One of the ways of solving the above-mentioned problems is to use a suitable filter(s).
This solution has not been mathematically confirmed, but many numerical experiments
suggest that the results could be considered optimal [7]. The description of each of the
filters used in our study is presented in Section 2.1.6.

To prevent numerical difficulties, the modulus of void (passive) elements is introduced
into the material model. This modification helps to reduce the risk of having a singular
stiffness matrix. The final equation of the material model is

Ee = Emin + x̃p
e · (E0 − Emin ),

x̃e = x̃e(xe), xe ∈< 0, 1 >,
(21)

where Emin is the elasticity modulus of passive elements and x̃e is the filtered design
variable (density).

2.1.3. Penalization

The numerical scheme should lead to a black & white design (or 1-0 design with white
to be removed). One of the possible approaches is to ignore the physical importance of
elements with intermediate density (grey areas) and consider them “black”, leading to their
preservation. However, the physical relevance is discussed a lot since many interpolation
methods can remove further parts of the grey regions. If the optimization is prematurely
terminated, the stiffness (compliance) of the grey areas plays an important role in the
evaluation of results. This issue is discussed by Bendsøe [5,6]. As mentioned above,
the SIMP material model is suitable for FEM optimization as it assigns elasticity to each
element. However, it can be used as the material model only if the penalization meets the
following criteria

p ≥ max

{
2

1− µ
,

4
1 + µ

}
, (in 2D); p ≥ max

{
15

1− µ

7− 5µ
,

3
2

1− µ

1− 2µ

}
, (in 3D) (22)

where µ is the Poisson’s ratio. This means that different values of penalization must be
calculated for each Poisson’s ratio. The resulting values of the penalization for volume
elements with the following Poisson’s ratio are

p
(

µ =
1
5

)
≥ 2, p

(
µ =

1
3

)
≥ 3, p

(
µ =

2
5

)
≥ 4.5. (23)

In this paper, the base material has a Poisson ratio of µ = 0.30; therefore, the penalization
p = 3 was chosen for the following topology optimization.

2.1.4. Finite Element Method

From our experience, it is recommended for MATLAB implementation that the stiff-
ness matrices is prepared with unit elastic modulus and saved in memory. The stiffness
matrix of the solid element is volume integrated using the stress–strain matrix of the
material [C0] with the unit elasticity modulus

[k0] =
∫∫∫

[B]T[C0][B] dV, (24)
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where [B] is the strain–displacement matrix [28]. The integral is usually solved numerically.
Before the assembly of the global stiffness matrix, every local stiffness matrix is multiplied
by the corresponding elasticity modulus (i.e., the modulus of the SIMP material model).

[ke(x̃e)] = Ee(x̃e) · [k0]. (25)

The MATLAB implementation of calculating the stiffness matrix of linear elements is
presented by Bhatti [29,30]. With some effort, the procedures were modified to the calcula-
tion of quadratic elements. The procedures use full integration of the individual elements
using Gauss points (2× 2× 2 scheme for linear elements, 3× 3× 3 for quadratic elements).

For testing purposes, meshes were prepared using the AWB software [31]. They were
constructed either of tetrahedral (TET) or hexahedral (HEX) elements (i.e., no result with
mixed mesh was evaluated in this paper). The calculation of the stiffness matrices of linear
elements is fast thanks to the low number of degrees of freedom (DOF); in effect, solving a
single load case was swift when using this approach; however, it comes with a disadvantage
in the form of locking as linear elements with full integration have a tendency to shear
and volume locking [28]. There are numerous ways of fixing this problem; nonetheless,
in this paper, the shear locking effects are “neglected” during the optimization but are
mentioned in results. Meshes are separated into three groups: coarse, normal, and fine
meshes according to the size (length) of individual elements.

2.1.5. The Optimality Criterion Algorithm

The design variable of the elements was updated using an algorithm called the
Optimality criterion (OC) [5,32]. The name indirectly refers to the used method, i.e., KKT
conditions. The algorithm is also implemented in the AWB software. To find the material
distribution of the structure, a fixed updating scheme is proposed as

xnew
e =

{max(0, xe −m), if xe · Bη
e ≤ max(0, xe −m)

min(1, xe + m), if xe · Bη
e ≥ min(1, xe + m)

xe · Bη
e otherwise,

(26)

where Be is constructed using Equation (11). As already mentioned above, the optimum
of the element is found if Be = 1. In other words, the design variable increases if Be > 1
and decreases if Be < 1. Changing the move limit m and tuning parameter η can lead to
a lower number of iterations. Bendsøe [5] recommended values of η = 0.5 and m = 0.2.
New values of design variables depend on the Lagrange multiplier, which has to be solved
in the inner loop to ensure that the constraint function is satisfied. This leads to a reduction
of the multivariate problem to one-dimensional (1D) optimization, which can be solved
by various methods, such as the bisection method, golden section search, or methods
using derivation (such as the Newton–Raphson method or secant method) [17,23]. In
this work, the bisection method obtained from the paper by Liu [9] was used as the 1D
optimization method.

A detailed description of the Optimality criterion method is presented in the disserta-
tion thesis by Munro [32] and the Master’s thesis by Hunter [4]. These theses describe the
relationships between the Optimality criterion and Sequential approximate optimization
(SAO). The SAO method can be solved using the duality principle. The purpose of this
method is to find an equivalent subproblem (dual problem) that is easier to solve than
the primary problem. The method is used for preparing a scheme (similar to the OC
fixed scheme) with only one constraint function, which can be subsequently solved. The
primary problem (in this case, minimizing compliance) is then reduced to maximizing the
Lagrange multiplier.
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2.1.6. Filtering Methods

Density filtering is one of the methods of solving the above-mentioned problems (such
as the checkerboard pattern). A common parameter of the filters, weight factor Hij, is
defined as

Hij =
{R− dist(i, j) if dist(i, j) ≤ R

0 if dist(i, j) > R,
(27)

where R is the radius of the filter, dist(i, j) is the operator calculating the distance between
the center of an element i and the center of an element j. This type of weight factor is called
linear. If the distance between elements is greater than the radius, the weight factor is equal
to zero; if the distance is equal to zero, the weight factor is equal to the size of the radius.
In Figure 4, 2D examples are presented; in 2D, the radius defines a circular neighborhood.
In a 3D problem, the radius forms a sphere.

R

dist(i,j)

j i

Figure 4. 2D Neighborhood of element (left), examples of the radius dependence on the element size
ES in 2D; R= 1.2 ES for the red circle, R= 1.5 ES for the blue circle, R= 2.0 ES for the yellow circle
and R= 3.0 ES for the purple circle.

An alternative approach is to use the normal distribution (Gauss function) [33,34].
Compared to the linear function, the Gauss function is smoother but in reality, there might
not be a real benefit in using this alternative [8]. The weight factor is defined as

Hij = e
− 1

2

(
3·dist(i,j)

R

)2

. (28)

In Figure 5, both functions are displayed. Due to the different characters of values of
the weight factor, the linear function had to be normalized by the radius to have values
ranging from 0 to 1, the same as the Gauss function. Furthermore, the distance was
normalized to the radius (i.e., divided by the radius to ensure independence on it).

Preparing a matrix of weight factors can be challenging if the mesh is imported (if the
mesh is not imported but created by additional scripts, the weight factor can be calculated
during the mesh preparation). The following should be pointed out: Firstly, the preparation
should use a function for creating sparse matrices because the matrix of weight factors
is mainly sparse. Secondly, if the distance between the i-th and j-th element is constant,
there is no need to create a “full” matrix but only the upper triangle of the matrix [Htri].
Non-diagonal components of the matrix [Htri] are multiplied by 2. The following equation
uses “symmetry” for composing the full matrix

[H] =
1
2
·
(
[Htri] + [Htri]

T
)

, (29)

where T is the operator of the transpose. Lastly, with the growing amount of elements,
the process of preparation is becoming more time-consuming even though calculating
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only “half” of the matrix. This basic approach is, up to 10 k elements, fast. However, the
time of solution is growing exponentially for meshes with over 10k elements. In such
cases, it is recommended to invest time into finding an appropriate method for speeding
up the preparation. This could be done by dividing the mesh into mutually overlapping
subzones with less than 10 k elements to ensure fast calculation. These subzones should be
solved individually using the parallel toolbox (package). Using this approach, it should be
possible to prepare the weight factors of complex meshes in a reasonable time.

Figure 5. Functions of the weight factor.

Three filters are analyzed in this paper: (i) Density filter, (ii) Sensitivity filter, and (iii)
Greyscale filter (G). The Density filter (D) and Sensitivity filter (S) use weight factors while
the greyscale filter is an addition to the OC scheme.

Density Filter

The fundamental function of density filtering is

x̃i =
∑n

j=1 Hijxj

∑n
j=1 Hij

, i = 1, ..., n, (30)

where x̃i is the filtered design variable (density) of the i-th element, Hij is the weight factor
and n is the number of elements [35–37]. Every equation containing the design variables
has to be adjusted to allow filtering (including partial derivations)

∂̂c
∂xe

=
∑n

j=1 Hij
∂c

∂xe

∑n
j=1 Hij

,
∂̂v
∂xe

=
∑n

j=1 Hij
∂v
∂xe

∑n
j=1 Hij

. (31)

In this case, the design variable of the element is averaged over its neighborhood. It
ensures the smoothing of stiffness. The filtered density is applied during the construction
of the global stiffness matrix before solving the static structural analysis. Generally, the
density tends to have a value of 0 or 1 (which could be ideal), but after applying the filter,
regions of intermediate (grey density) design variable appear, which are then penalized by
the SIMP model. Deformation energy is also averaged and shared with the neighborhood
of elements.

Sensitivity Filter

This filter is based on filtering of the sensitivity (i.e., of the first partial derivation
of Lagrange function). Experience has proven that filtering sensitivity ensures mesh
independence of results and is time-effective [7]. It is also easy to implement and does not
increase the complexity of the problem. The filter is purely heuristic but has been proven
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to yield similar results as the gradient constraint method [5]. The fundamental equation of
this filter is

∂̂c
∂xi

=
1

max(10−3, xi) ·∑n
j=1 Hij

·
n

∑
j=1

Hij · xi ·
∂c(xi)

∂xe
. (32)

Grayscale Filter

The last filter is an addition to the previous filters called the Grayscale filter [38].
Applying this filter should reduce the grey areas. The objective of the filter is also to
penalize the volume constraint in the OC algorithm. The parameter q is implemented in
the OC scheme and its value can be constant or gradually increasing by multiplication (in
our case, coefficient q was multiplied by 1.01 each iteration). The amended OC scheme is
described as

xnew
e =

{max(0, xe −m), if xe · Bη
e ≤ max(0, xe −m)

min(1, xe + m), if xe · Bη
e ≥ min(1, xe + m)

(xe · Bη
e )

q otherwise.
(33)

This filter is activated after 15 iterations of optimization. Usually, it is limited by
the maximum value of the coefficient q (in this paper, the maximum was set to 5). If
the q coefficient maximum was set to 1, the filter would be deactivated. The idea of the
filter is to underestimate the intermediate density leading to a zero value (void density).
Underestimation occurs also in the inner iteration. This leads to fewer iterations needed
for finding solutions.

2.1.7. Displacement Solver and Termination Criteria

To solve the displacement Equation (4), it is possible to use the direct solver present in
MATLAB. However, if the number of degrees of freedom is high (above sixty thousand),
the pursuit to provide an accurate result is too ambitious. In such cases, therefore, it
is appropriate to switch to the iteration solver. MATLAB includes a solver using the
conjugate gradient method with preconditioning [39]. It is recommended to use the
simplest preconditioning matrix, the diagonal (Jacobi) preconditioner. The reason is that
to ensure the best possible solving stability, assembly of the preconditioner is needed in
every iteration and, hence, the simpler is the preconditioner, the faster is the solution. Use
of a different (more complex) preconditioner, such as Incomplete Cholesky factorization
(with various settings),could reduce the number of iterations but the computing time
would be the same or higher due to a slow preconditioner assembly (we tested these in the
preliminary stage but the detailed results are not presented here). An alternative approach
would be to prepare a “universal” preconditioner from the reference matrix only once and
to use in every iteration [40]. In the presented study, however, we used the first approach
with assembling the diagonal preconditioner each iteration.

It is important to determine the termination criteria. The maximal number of iterations
is the first common criterion. Usually, the value ranges between 200 and 500. It should be
noted that a complex task (such as a complex geometry or complex loads) requires more
iterations but from our experience, 100 iterations are enough for a simple task. The second
criterion is defined as the tolerance of sufficient optimization at which the calculation is
terminated. There are two possible options.

The first option is to calculate the change in the values of design variables between the
current and previous iteration [7]. This change is compared with the chosen tolerance value
and once the change in the design variables is below the tolerance value, the calculation
is terminated. Thus, if the tolerance is set to a low value, the number of iterations will
increase. This is defined as

max |xei − xei−1 | ≤ ε, (34)

where xei are the design variables of the current iteration, xei−1 are the design variables of
the previous iteration and ε is the tolerance value.
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The other option is to calculate the ratio of the change of the objective function to the
current objective function value. It is assumed that the changes of the objective function
near the stationary point are minimal. Compared to the first option, the number of iterations
is lower (it may be reduced by as much as half). This option is defined as

∣∣∣∣∣
c(xei )− c(xei−1)

c(xei )

∣∣∣∣∣ ≤ ε, (35)

where c(xei ) is the value of the objective function in the i-th iteration, c(xei−1) is the value
of the objective function of the previous iteration (i−1,) and ε is the tolerance value. This
method, however, comes with a risk of premature termination; for this reason, the first
option of terminating criterion was used.

2.2. Key Formulations

It is apparent from the previous sections that the optimization comes with many
formulations and parameters. Each parameter can be changed, which might reduce the
number of iterations, improve the values of objective functions or of the desired volume
fraction; on the other hand, the changes may also lead to solver instability, premature
termination, or ineffective shape of the part. In this paper, five key formulations are
analyzed and evaluated:

Formulation of the filter radius mentioned in Section 2.1.6 is important because the
radius defines the element’s neighborhood. If the defined range is too small, the energy is
distributed only to a few elements. However, if the neighborhood is too large, the energy is
scattered to a point where it is difficult to evaluate the optimum.

Formulation of the filter type was already mentioned in Section 2.1.6 but the theory
does not provide an answer to the question of which filter should perform best.

Formulation of the penalization was also mentioned in Section 2.1.3; the theory,
however, is able to provide only the lower boundary, not the upper one.

Formulation of the element approximation mentioned in Section 2.1.4 is a necessary
step in the initiation of optimization. The element approximations greatly affect the
accuracy of the solved displacement and the value of the objective function.

The formulation of the type of the weight factor mentioned in Section 2.1.6 is defined
by two functions. However, theory does not provide enough evidence to decide, which
function offers the better performance.

These key formulations were tested on several numerical examples including planar
and spatial problems (see Figure 6) but to ensure the clarity of this paper, only one example
is presented.

Figure 6. Results of numerical examples of topology optimization; from left to right-four point bend-
ing, L problem, two-loadcase cantilever plate, beam with square cross-section subjected to torsion.

2.3. Description of Numerical Test

The sensitivity analysis was performed using a numerical test-cantilever beam. It is a
standard problem of mechanics, well-known to every designer. As the optimal shape can
be found intuitively, results evaluation is easier.

The boundary conditions were simple. The beam was fixed on one end and the force
acted on the other end’s edge (bottom edge). The beam had a rectangular cross-section and
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was made of steel. It was assumed that the forces caused only a small displacement and
the original material model was linear isotropic. All finite element meshes were made of
solid elements, see Table 1. The authors used linear HEX elements and linear TET elements.
In addition, quadratic HEX and TET elements have been calculated and results (mesh
statistics) presented in Section 3.4. The geometry and discretization are shown in Figure 7.
The figure also contains material and force parameters. The objective of optimization was
to minimize the compliance (i.e., to maximize stiffness). In our paper, the constraint was
defined as the volume fraction of 30%.

F

L

H

t

L = 60 mm

H = 20 mm

t = 4 mm

E0 = 210 GPa

= 0.3 μ

F = 100 N

Height

Lenght

Thickness

Elasticity modulus

Poisson ratio

Force

Figure 7. Geometry, discretization and parameters of the numerical test-cantilever beam.

Table 1. Finite element mesh statistics.

TET Elements HEX Elements

Coaser mesh
Number of nodes 686 2460

Number of elements 2034 1680
Element size [mm] 1.500 2.000

Normal mesh
Number of nodes 1403 6405

Number of elements 4458 4800
Element size [mm] 1.000 1.000

Fine mesh
Number of nodes 10,850 44,650

Number of elements 38,740 38,400
Element size [mm] 0.355 0.500

3. Results

Optimization using MATLAB software was performed on multiple meshes. The
maximal number of iterations was set to 200. The maximal change of the design variable
(i.e., density) was chosen as the terminating criterion. The tolerance was set to 0.01. The
cut-off limit of the design variable for element deactivation (white in the Figures) was
0.01 unless stated otherwise. The penalty was set to a constant value of p = 3 unless
stated otherwise. Unless stated otherwise, the Density filter was used throughout the
paper. In tables, two variants of the objective function are shown. The non-normed value
indicates the deformation energy. The normed value is the objective function divided by
the reference value of the initial objective function (i.e., the objective function describing the
original structure before optimization). In other words, the normed value shows how many
times the resulting structure is more compliant than the original reference. The normed
value in the linear static analysis should be the same (or, at least, similar) regardless of
the applied force. Data and shapes presented in this chapter were prepared in Ansys
Workbench (AWB).

3.1. Formulation of Filter Radius

The radius of the filter is an important parameter since it defines the element’s neigh-
borhood. In this case, the radius is dependent on the element size (ES). For hexahedral
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elements, multipliers were set to 1.2 ES, 1.5 ES, 2.0 ES, and 3.0 ES, respectively. For clari-
fication, Figure 4 displays the mentioned radiuses. For tetrahedral elements, multipliers
were twice as high (i.e., 2.4 ES, 3.0 ES, 4.0 ES and 6.0 ES) to prevent possible inactivation
of filters.

Results for the hexahedral and tetrahedral meshes are shown in Figure 8, which is
displayed in the dominant (planar) view.

R = 2.4 ES

ES = 1.5 mm ES = 1.0 mm ES = 0.5 mm

R = 3.0 ES 

R = 4.0 ES

R = 6.0 ES

AWB

R = 1.2 ES

ES = 2.0 mm ES = 1.0 mm ES = 0.5 mm

R = 1.5 ES

R = 2.0 ES

R = 3.0 ES

AWB

Design variables

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 8. Final shapes for linear HEX elements (left) and linear TET elements (right) with various radii, Density filter (D).

From Table 2, it was apparent that the radius heavily affected the distortion of design
variables over the design region. This means if the radius was increased, the value of the
objective function (both deformation energy and normed value) also increased. Besides,
the volume fraction increased due to the distortion. A fine mesh with small radii yielded a
great stiffness-volume ratio, the optimized structure was approximately 2.5 times more
compliant than the original structure but the volume reduction was as high as 53%.

A few notes: Radius should never be smaller than 1.5 ES/2.4 ES. A radius such as
1.2 ES greatly limited the capability of filters. In the case of uniform mesh, the radius
should be appropriately chosen from the range between 1.5 ES and 3.0 ES. In the case
of the non-uniform (tetrahedral) mesh, the radius should be within the range of 2.4 ES
to 4.0 ES. Radii exceeding the upper value of the mentioned ranges make the structure
more compliant. In the case of a coarser TET mesh, the radius R = 6.0 ES caused an over
two-fold increase in the deformation energy than radius R = 2.4 ES. Besides, the shapes of
the coarser meshes with larger radii were not acceptable due to the high representation of
“grey” areas (see Figure 8).
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Table 2. Results of optimization with different radius, for meshes with linear HEX elements (first
multiplier) or linear TET elements (latter multiplier).

HEX Elements TET Elements
Radius Value 2.0 mm 1.0 mm 0.5 mm 1.5 mm 1.0 mm 0.355 mm

1.2/2.4 ES

Deformation energy [mJ] 6.1 4.1 3.4 8.0 5.6 3.6
Normed value [-] 4.2 2.8 2.3 5.8 3.9 2.5
Iteration 110 96 200 200 200 200
Volume fraction [%] 63.6 56.0 46.9 75.6 67.4 54.4

1.5/3.0 ES

Deformation energy [mJ] 7.2 4.6 3.7 9.8 6.7 3.9
Normed value [-] 5.0 3.1 2.5 7.1 4.8 2.7
Iteration 83 200 200 200 200 200
Volume fraction [%] 64.6 57.6 50.2 81.1 72.0 59.9

2.0/4.0 ES

Deformation energy [mJ] 9.7 5.2 4.0 12.6 9.0 4.3
Normed value [-] 6.7 3.5 2.7 9.1 6.3 3.0
Iteration 167 200 200 200 200 200
Volume fraction [%] 78.2 55.3 50.2 87.4 75.7 58.5

3.0/6.0 ES

Deformation energy [mJ] 14.5 7.2 4.5 18.4 12.4 5.1
Normed value [-] 10.1 4.9 3.1 13.3 8.7 3.5
Iteration 200 200 200 139 200 200
Volume fraction [%] 89.7 66.1 51.6 98.3 87.0 62.8

AWB

Deformation energy [mJ] 5.7 4.9 3.9 2.7 5.5 4.7
Normed value [-] 3.9 3.4 2.7 2.0 3.9 3.2
Iteration 35 42 33 31 57 33
Volume fraction [%] 51.7 51.3 40.3 78.4 58.6 58.5

3.2. Formulation of Filter Type

The importance of filters was already mentioned in the previous section. The following
effects were evaluated: the number of iterations, objective function, and volume fraction.
This particular aim of our study was to find the appropriate filter leading to a 0–1 design
(and low objective function). Five variants were calculated: No filter (NoF), Density filter
(D), Sensitivity filter (S), Grayscale filter with Density filter (G), and Grayscale filter with
sensitivity filter (SG). Figure 9 shows each filter.

S

SG

D

G

Figure 9. Results of individual filtering algorithms: Density filter (D), Sensitivity filter (S), Grayscale
filter (G),Combination of the Sensitivity and Grayscale filters (SG).

At the first look, it should be apparent that the SG combination leads in this case to a
purely 0-1 design (with the required volume fraction).

Two variants of the radius were selected: In the first variant, the radius was considered
to depend on the element size, namely, it was defined as 1.5 ES. Results of this approach
are displayed in Figure 10 and Table 3. The way of how the filters acted when the radius
was not constant over different meshes should be noted.
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NoF

ES = 2.0 mm ES = 1.0 mm ES = 0.5 mm

S

D

G

SG

AWB

R = 1.5 ES  

ES = 1.5 mm ES = 1.0 mm ES = 0.355 mm

R = 3.0 ES  

Design variables

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 10. The final shape for linear HEX elements (left) and linear TET elements (right) with various filters, HEX radius
R = 1.5 ES and TET radius R = 3.0 ES.

Table 3. Results of optimization for various filters for each mesh, dependent radius, filter radius of
linear HEX mesh is R = 1.5 ES an filter radius of linear TET mesh is R = 3.0 ES.

HEX Elements TET Elements

Filter Value 2.0 mm 1.0 mm 0.5mm 1.5 mm 1.0 mm 0.355 mm

S

Deformation energy [mJ] 6.1 3.9 3.4 7.7 9.3 3.5
Norm value [-] 4.3 2.7 2.3 5.5 6.6 2.4
Iteration 117 53 200 80 26 167
Volume fraction [%] 71.2 54.1 45.5 82.4 93.4 58.8

G

Deformation energy [mJ] 7.6 4.9 3.9 10.6 7.5 4.1
Norm value [-] 5.3 3.3 2.6 7.6 5.3 2.8
Iteration 35 34 34 34 36 34
Volume fraction [%] 63.4 59.5 51.0 82.9 72.6 61.8

D

Deformation energy [mJ] 7.2 4.6 3.7 9.8 6.7 3.9
Norm value [-] 5.0 3.1 2.5 7.1 4.8 2.7
Iteration 83 200 200 200 200 200
Volume fraction [%] 64.6 57.6 50.2 81.1 72.0 59.9

SG

Deformation energy [mJ] 3.8 3.3 3.1 3.7 3.3 3.0
Norm value [-] 2.6 2.2 2.1 2.7 2.4 2.1
Iteration 74 45 47 47 51 49
Volume fraction [%] 30.0 30.0 30.1 30.0 30.0 30.0

AWB

Deformation energy [mJ] 5.7 4.9 3.9 2.7 5.5 4.7
Norm value [-] 3.9 3.4 2.7 2.0 3.9 3.2
Iteration 35 42 33 31 57 33
Volume fraction [%] 51.7 51.3 40.3 78.4 58.6 58.5

In the second variant, the radius was not considered to be dependent on the element
size and was assigned a constant value of R = 4 mm. This radius was defined as a
1.5 multiple of the element size from the coarse tetrahedral mesh. Results displayed in
Figure 11 and Table 4 demonstrate the independence of the results on the mesh (results have
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a similar shape and value of the objective function). In this variant, TET meshes performed
poorly, especially in combination with the Sensitivity filter, which acted unpredictably at
best. A coarser TET mesh could result in an acceptable shape (i.e., a shape similar to that
derived using the HEX mesh) but finer TET meshes did not lead to volume reduction, but
rather to its increase. In addition, the combination of TET mesh with Sensitivity filter often
resulted in premature termination of the computation.

ES = 1.5 mm ES = 1.0 mm ES = 0.355 mm

D

G

S

SG

ES = 2.0 mm ES = 1.0 mm ES = 0.5 mm

Design variables

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 11. The final shape for linear HEX elements (left) and linear TET elements (right) with various filters, radius
R = 4 mm.

Table 4. Results of optimization for various filters for each mesh, independent radius, filter radius
R = 4 mm.

HEX Elements TET Elements

Filter Value 2.0 mm 1.0 mm 0.5 mm 1.5 mm 1.0 mm 0.355 mm

S

Deformation energy [mJ] 9.9 9.8 9.6 7.4 8.2 5.1
Norm value [-] 6.9 6.7 6.5 5.3 5.8 3.5
Iteration 101 117 135 54 50 24
Volume fraction [%] 84.9 84.5 84.3 82.8 92.1 92.7

G

Deformation energy [mJ] 11.1 10.9 10.6 9.6 10.4 9.6
Norm value [-] 7.7 7.4 7.2 6.9 7.4 6.6
Iteration 41 35 39 36 34 36
Volume fraction [%] 78.8 79.8 79.6 80.4 80.2 80.3

D

Deformation energy [mJ] 9.7 9.6 9.5 8.7 9.0 9.7
Norm value [-] 6.7 6.6 6.44 6.3 6.3 6.7
Iteration 167 158 200 200 200 200
Volume fraction [%] 78.2 76.9 79.6 77.2 75.7 77.5

SG

Deformation energy [mJ] 3.9 3.8 3.7 3.7 4.1 3.0
Norm value [-] 2.7 2.6 2.5 2.7 2.9 2.0
Iteration 47 48 38 34 37 50
Volume fraction [%] 30 30 29.2 30.0 30.0 30.0

It should be noted that unwanted effects, such as shear locking, can occur while
solving the static structural analysis and cause an increase in the relative error of the
objective function. In case of the radius of R = 4 mm, the deformation energy of the
Density filter was slightly higher for HEX elements than for TET elements. Hence, relative
errors were small enough to justify acceptation of the results.

Our results indicate that all filters discussed in this paper are suitable for use with a
uniform mesh. The recommended filter combines the Density or Sensitivity filter with the
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Greyscale filter to ensure a low number of iterations. In the case of a fine mesh, the Density
filter without the Greyscale filter reached a maximal number of iterations while with the
Greyscale filter, only 34 iterations were needed. The deformation energies of both results
were similar. In the case of a non-uniform mesh, only the Density and Greyscale filters can
be used effectively.

One could argue that the combination of the Sensitivity and Greyscale filters got us
a perfect black and white design with the required volume fraction (volume reduction
of 70%) while increasing the compliance of the structure only approximately 2.1 times;
however, the shape was likely to be prone to buckling since compared to other results, the
parts were thin.

3.3. Formulation of Penalization

Penalization is the parameter of the SIMP material model. Its correct choice is crucial
as incorrect penalization would invalidate the model. For the Poisson ratio of µ = 1

3 , it is
recommended to use the penalization of p = 3 and higher as mentioned above.

Figure 12 demonstrates that the penalizations p = 1 and p = 2 should not be used
since the shapes are not fully optimized (due to the premature termination of optimization).
Literature, however, does not set the upper limit of this inequality. The values of defor-
mation energy grew more or less predictably up to a penalization value of p > 6, see the
values in Table 5. With high penalization values, such as p > 6, it was, nevertheless, clear
that the results were becoming mesh-dependent. This could be caused by the convergence
of the solution to a local minimum rather than a global minimum.

One could choose the continuation method with a gradual increase in the penalization
value. This approach should help in acquisition of a reasonable solution. It should be,
however, mentioned that the continuation method might not be capable of yielding a true
“black and white” design, as reported by Stolpe and Svanberg [41]. This paper does not
fully study this strategy; the risks are that a too fast increase of the penalization could lead
to numerical difficulties that only increase the number of iterations.

p = 10

p = 9

p = 8

p = 7

p = 6

p = 5

p = 4

p = 3

p = 2

p = 1

ES = 2.0 mm ES = 1.0 mm ES = 0.5 mm
AWB,

ES = 1.0 mm

Design variables

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 12. The final shapes for different values of penalization p, Density filter, radius of filter
R = 2 mm.
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Table 5. Values of objection function, deformation energy c [mJ] for each values of penalization.

Penalization ES = 2.0 mm ES = 1.0 mm ES = 0.5 mm AWB, ES = 1.0 mm

1 3.02 2.90 2.85 2.90
2 4.68 4.78 4.76 4.23
3 5.54 5.68 5.66 4.96
4 6.78 6.88 6.90 5.44
5 8.69 8.97 8.66 6.02
6 9.40 11.02 10.31 6.66
7 10.18 14.16 14.39 7.82
8 24.27 27.67 36.70 11.91
9 30.66 26.97 24.55 21.58

10 34.16 29.08 29.98 62.78

3.4. Formulation of Element Approximation

During the mesh preparation, it is necessary to choose an element approximation (usu-
ally linear or quadratic displacement approximation). Literature suggests that problems
such as the checkerboard patterns should be less common with quadratic elements [26].
The advantage is that quadratic elements are less stiff than linear ones. However, the
need to solve a larger number of unknowns (DOF) is a considerable disadvantage of this
approach. Table 6 lists the mesh statistics.

Table 6. Finite element mesh statistics for linear and quadratic elements.

Linear Elements Quadratic Elements

Number of nodes 6405 23,930
HEX Number of elements 4800 4800

Element size [mm] 1.0 1.0

Number of nodes 1391 8269
TET Number of elements 4351 4351

Element size [mm] 1.0 1.0

In our case, the optimization settings were slightly altered. Only the Density filter
with a radius of R = 1.5 ES for HEX elements and R = 3.0 ES for TET. Element size of
ES = 1.0 mm was used. The maximal number of iterations was set to 100.

Figure 13 shows that the previous statement about the checkerboard pattern being
less common with quadratic elements is only partially true. In the case of quadratic
HEX elements, a checkerboard pattern was still present in the front part of the structure
(although less than when linear elements were used). In the case of TET elements, not
even higher order approximations did reduce the checkerboard pattern. Hence, filtering is
highly recommended regardless of whether quadratic or linear elements are used. Table 7
obviates that the linear elements are stiffer, i.e., that they provide lower values of the
objective function. However, the time needed to solve the problem with quadratic elements
is up to thirty times longer than with linear elements.
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Figure 13. The final shapes for evaluation of element approximations of HEX elements (left) and TET elements (right);
Density filter, radius R = 1.5 Es for HEX and radius R = 3.0 Es for TET.
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Table 7. Results of optimization for linear elements and quadratic elements.

Linear Elements Quadratic Elements
With Filter Without Filter With Filter Without Filter

HEX elements

Deformation energy [-] 4.6 3.63 4.79 3.73
Norm value [-] 3.16 2.49 3.22 2.51
Iteration 100 33 100 57
Volume fraction [%] 58.1 30.2 56.4 30.1
Solving time [s] 140 51.7 4820 3260

TET elements

Deformation energy [-] 6.71 2.83 10.07 4.64
Norm value [-] 4.74 2.00 4.91 2.27
Iteration 100 24 100 58
Volume fraction [%] 73.6 30.1 73.9 30.1
Solving time [s] 50 17.1 118.9 77.1

3.5. Formulation of Type of Weight Factor

In the theoretical part, two types of weight factors are mentioned—one characterized
by a linear function, the other by the Gauss function. Nevertheless, according to the
literature, there is no evidence that the Gauss function offers any advantages over the linear
one [8].

In the investigation of this formulation, only two meshes were tested. Both meshes
used linear elements with element sizes of ES = 1.0 mm and ES = 0.5 mm. Two radii
were chosen as R = 1.5 ES and R = 2.0 ES, respectively. The maximal number of iterations
was 100.

The values of the objective function and volume fraction detailed in Table 8, as well
as results shown in Figure 14, indicate a significant resemblance between values acquired
using Gaussian and linear weight factors. In the case of a normal mesh (ES = 1.0 mm),
setting the radius of the linear function to R = 1.5 Es provided similar results as in the
case of the Gauss function with a radius of R = 2.0 ES (see the highlighted values in
Table 8). In the fine mesh (ES = 0.5 mm), the similarities were more pronounced than
in the normal mesh. This means that the Gauss function does not offer any significant
advantage over the linear function as their results are very similar and shapes similar to
those produced by the Gauss function can be obtained by simply changing the radius in
the linear function/solution. As the preparation of mathematical apparatus is simpler with
linear function, we decided to prefer linear solution over the one with the Gauss function.

Table 8. Results of optimization for different weight factors.

ES = 1.0 mm ES = 0.5 mm
R = 1.5 ES R = 2.0 ES R = 1.5 ES R = 2.0 ES

Linear function

Deformation energy [mJ] 4.61 5.26 3.74 4.02
Norm value [-] 3.16 3.61 2.53 2.72
Iteration 100 100 100 100
Volume fraction [%] 58.15 56.2 50.2 50.3

Gauss function

Deformation energy [mJ] 4.11 4.67 3.61 3.91
Norm value [-] 2.82 3.2 2.44 2.65
Iteration 100 100 100 100
Volume fraction [%] 59.25 59.15 50.8 50.0

240



Symmetry 2021, 13, 712

a) Linear
    function

b) Gauss
    function

R = 1.5 ES R = 2.0 ES R = 1.5 ES R = 2.0 ES

Design variables

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 14. The final shape with different weight functions, mesh with element size ES = 1.0 mm (left), mesh with element
size ES = 0.5 mm (right), Density filter.

4. Discussion

To fully understand optimization, one should possess advanced experience in math
(namely, calculus and finite element method) and computer science (for example, scripting
for iteration solvers). One should also be capable of preparing a correct mathematical
formulation of the problem, i.e., of determining the objective function of the problem,
constraints, and design variables, and of finding equivalent problems, potentially offering
an easier solution than the original one.

Five key formulations were analyzed in this paper. The results make it clear that each
formulation affects the resulting shape, number of iterations, volume of the part, etc.

The formulation of the filter radius is crucial for determining the element neighbor-
hood. Choosing too small radius might lead to the deactivation of the filter. Choosing
a too large radius leads to dissipation of energy in large areas, resulting in too much
“grey”. Choosing the filter itself can be difficult since the theory does not provide enough
knowledge from the application point of view. The SIMP model was used as a simple
material model in this study. The penalty value is a key parameter of this model. However,
the theory provides only the bottom boundary but does not inform about the upper one.
Failure to limit the upper boundary could lead to invalid results that would be highly
mesh-dependent. The maximum reasonable penalty value for the steel cantilever in our
study was p = 6.

The theory also recommends a quadratic approximation of the displacement of the
elements. However, it does not provide clear reasons behind this recommendation. Choos-
ing the right approximation might lead to a faster calculation. Lastly, neither the theory
nor practice (as demonstrated by our calculations) provide enough evidence or reason for
using the Gauss function as the weight function.

It should be noted that there are additional formulations affecting the final shape. For
example, various algorithms, described by Zuo et al., can be used in topology optimization [42].
Another approach to this problem could lie in reducing the computing efforts, as reported by
Amir et al. [40]. For larger problems, it would be better to prepare a better displacement solver
(for example, a parallel displacement solver as suggested, e.g., by Makropoulos et al. [43]. In our
paper, however, we did not study other types of structural analysis, such as the heat transfer of
flow optimization.

The algorithm used in our scripts, the Optimality Criterion (OC), was designed only
for minimizing the compliance and volume constraint. The advantages of the OC algorithm
include its simplicity and rapid updating of the design variables. The disadvantage is that
it is only capable of solving the minimizing compliance problem (in the current form, it
cannot solve the maximizing natural frequency).

Construction of the matrix of the weight factor might be tricky. Open-source scripts
usually do not support importing meshes and use a rather simple geometry. Thus, an
effective script for importing meshes usually needs to be prepared. The modification of the
weight factor calculation allowed us, due to the symmetry of the matrix, to solve only its
upper triangle, which halved the calculating time. Another possible modification would
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lie in splitting the part into sub-regions, which could be calculated in parallel. Of course,
the latter approach would come with its own limitations; overlapping would be necessary
to be able to combine the individual regions back into the full structure, and, therefore,
therefore, already solved regions would have to be calculated again.

The design performance has many criteria such as stiffness, overall solving duration,
post-processing, manufacturing, etc. Each formulation has its effect on the design per-
formance. It is difficult to pinpoint settings that are optimal for the design performance
in each formulation. However, it is easy to recommend, which settings and parameter
values should be avoided. It should be noted that the steps following the optimization (in
particular, smoothing) might heavily affect the design performance.

It should be also noted that complex problems might need their own sensitivity
analysis. However, this paper should help with the initial estimates. After finding the
optimal formulations and their parameters, one could prepare scripts for automated
designing of customized structures such as prosthetic aids [14,44] or scripts for automated
designing of mountain climbing equipment [45].

5. Conclusions

This paper focuses on the sensitivity analysis of key topology optimization formula-
tions. The novelty of this research comes from the presented results, which might be used
in the preparation of custom scripts solving the topology optimization. The solutions were
tested on various meshes with various types of elements. The paper contains important
theoretical background for the problem of minimizing compliance. To have freedom in
choosing such formulations, the authors prepared a MATLAB procedure solving such
optimization. The prepared program allows users to import the mesh and boundary condi-
tions. Scripts constructed within this study provided results comparable to the open-source
top3d script [9]. The presented paper also includes recommendations on how to choose
the parameters of topology optimization.

It is clear that uniform meshes perform generally better in this formulation; this was
particularly true during optimization as it allowed the application of multiple filters.

Radius is an important part of the filtering method and correct results depend on
the appropriate selection of its value. Too small a radius could possibly lead to difficult
manufacturing (even if using additive manufacturing). Using a large radius could produce
non-optimized shapes with grey areas. If the mesh is being refined during optimization, it
is recommended to use the same or similar radius as in the previous step (coarser mesh).

The combination of the Density and Greyscale filters performed better than the Density
filter alone as it yielded similar or even identical values of the objective function as the
Density filter in fewer iterations. The combination also performed well on non-uniform
meshes. It is obvious that the combined filter still left some grey areas but the success of
this filtering was still the best of all tested filters. If the design variable in these grey areas
is xe < 0.3, they can be removed when using penalization of p ≥ 3 since their contribution
to stiffness is negligible.

The use of a Gaussian weight factor did not bring any advantage over the linear
function as the results calculated using both functions were very similar. As constructing
the matrix for the Gaussian weight factor is more difficult, a linear function is more suitable
for these purposes.

In this paper, the authors used in most cases linear elements, which led to several
conclusions: (i) The usage of linear tetrahedral elements is not recommended in any
case. They are too stiff due to the locking effects, which greatly affects the value of the
objective function. The only advantage lies in the fast calculation of displacement because
the tetrahedral mesh usually has fewer nodes. However, a fine mesh would be needed
to get reasonable results, which negates this only advantage. (ii) The uniform mesh
provides acceptable results even if the linear approximation is used. For that reason, it is
recommended to use the “Cartesian mesher” which provides uniform meshes even for
complex geometries. A small disadvantage is represented by the differences in the shape of
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the resulting structure depending on the method of mesh creation. (iii) Quadratic elements
might be less stiff but solving them would be time-consuming. If one would like to use
only quadratic elements, it would be recommended to spend time preparing a better solver
of linear equation systems (for example, a parallel solver).

The authors recommend performing a sensitivity analysis of the key formulations
presented in the paper for each problem, regardless of whether or not the designer has
previous experience with similar problems. Without the suggested analysis, more doubts
arise and the creation of “false-optimal” shapes is not prevented.
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Abbreviations
The following abbreviations are used in this manuscript:

3D Three Dimensional
2D Two Dimensional
AWB ANSYS Workbench
KKT Karush-Kuhn-Tucker
SIMP Solid Isotropic Material with Penalty
TET Tetrahedral
HEX Hexahedral
DOF Degrees of Freedom
OC Optimality Criterion
SAO Sequential Approximate Optimization
1D One Dimensional
ES Element Size
NF No Filter
D Density filter
S Sensitivity filter
G Gray scale filter
SG Combination of Sensitivity and Gray scale Filters
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