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FOREWORD 

The book is the most comprehensive coverage of piezoelectric acoustic transducers and all the 

related aspects of practical transducer designing for underwater applications in the field. It uses 

a physics-based energy method for analyzing transducer problems. This gives great physical 

insight into the understanding of the electromechanical devices. The great benefit of the energy 

method is that the multidisciplinary subject of electro-mechano-acoustics can be presented in 

parts and the solutions to the problems (electrical, electro-piezo, mechanical, and radiation) are 

combined using equivalent electrical circuit network theory. The energy and equivalent elec-

tromechanical circuit method at first is illustrated with transducer examples that can be modeled 

as a single degree of freedom system (such as spheres, short cylinders and flexural beams and 

plates). Then transducers are modeled as multiple degrees of freedom devices and the results 

are presented using multi contour electromechanical circuits. Special focus is made on the ef-

fects of coupled vibrations on the transducer performance. The Book gives also extensive cov-

erage of acoustic radiation including acoustic interaction between the transducers. It provides 

practical results that are directly useful for the transducers modeling. While there have been 

many studies of acoustic radiation of various shapes, non-previous presented the results in terms 

of such practical utility. 

The book is inherently multidisciplinary. It provides essential background into vibration of 

elastic passive and piezoelectric bodies, piezoelectricity, acoustic radiation, and transducer 

characterization. Scientists and engineers working in the field of acoustics will find such a com-

prehensive treatment extremely useful not only for underwater acoustics, but also for electro-

mechanics, energy conversion and medical ultrasonics. 

 

David A. Brown, Dartmouth, Massachusetts, 2022 

 



 

PREFACE 

This book is initiated by the engineering experience of the author. Throughout his career the 

author has encountered many of the problems known to others involved in the design of elec-

troacoustic transducers. The fact of the matter is that the complexity of designing electroacous-

tic transducers is inherent in the multidisciplinary nature of the subject. Therefore, the develop-

ers and designers of the transducers must possess the knowledge of several different theoretical 

disciplines (such as the vibration of mechanical systems, electromechanical conversion by de-

formed piezoelectric bodies, and acoustic radiation) and be able to actively use this knowledge 

to derive equations that describe the performance of the transducers. Furthermore, creating 

practical transducer designs that meet certain requirements and can operate under realistic en-

vironmental conditions requires the knowledge of properties of materials used and a certain 

level of engineering intuition that cannot be developed without a clear understanding of the 

underlying physics. Hardly anyone may possess all these capabilities without having received 

a specially targeted education, which, to the best of the author’s knowledge, is not commonly 

available in the academic world. Usually, the necessary skills may be acquired through self-

education, which was the case for the author. The main difficulties that arise in this endeavor 

are not in the lack of available information. On the contrary, the theoretical disciplines listed 

above are very well developed and are well-represented in the literature. Nevertheless, all these 

disciplines employ different methods for solving their problems and the results obtained are 

usually presented in forms not suitable for direct use in concert for synthesizing equations that 

govern transducer performance. Thus, the results must be tailored accordingly. 

Experiencing the above difficulties over several decades, the author gradually developed a 

special approach to treating transducers problems that allows one to overcome many of the 

obstacles. The essence of this approach is in the consistent application of the physics-based 

energy method for solving all the problems that arise in the course of treating electromechanical 

and electroacoustic transducers. The first attempt to describe this concept was undertaken in 

Electromechanical transducers from piezoelectric ceramic published in 1990 in Russia. This 

version has now been updated and expanded to the extent that it can be considered a completely 
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different book. Only the underlying energy approach to solving the problems has remained 

unaltered. This book is written for students, applied scientists and engineers in a way that should 

prove fruitful both for those who have only begun to chart their careers in electroacoustics as 

well as for those at a more advanced level. The content of the book is split into four p arts. 

In Part I, titled “Introduction of energy method of treating the transducers,” the main con-

cepts of the method are considered (Chapter 1); applications of the method to calculating prop-

erties of transducers with single degree of freedom are illustrated (Chapter 2); and the study of 

problems for designing the transducers as a part of the transmit/receive channel is made (Chap-

ter 3). The main concept is that of energy and following its transformation. Different types of 

energies involved in the electro-mechano-acoustic conversion in the course of transducer oper-

ation are presented in the generalized coordinates. All the governing equations are derived from 

the energy principles, that is, from the Law of Conservation of Energy for transducers with a 

single mechanical degree of freedom, and from the Principle of Least Action for transducers 

with multiple degrees of freedom. Equations describing the electromechanical part of the prob-

lem are reinterpreted as Kirchhoff’s equations for the corresponding equivalent electromechan-

ical circuits. In Chapter 2, the general approach is applied towards calculating the properties of 

transducers of widely used types (spheres, cylinders, bars undergoing extensional vibration and 

for circular plates and rectangular beams vibrating in flexure) that may be considered as systems 

with single mechanical degree of freedom. In Chapter 3, the operating properties of transducers 

as a part of a transmit/receive channel are considered and some recommendations regarding a 

rational transducer designing are presented. Given that the single degree of freedom approxi-

mation covers many practical transducer designs, Part I can be regarded as a self-sufficient 

study of underwater electroacoustic transduction on a basic level and can be read independently 

from the rest of the book. 

The general treatment of electroacoustic transduction requires an advanced knowledge of 

the vibration of mechanical systems, electromechanical conversion in the deformed pie-

zoceramic bodies and acoustic radiation. Information about these topics, which is necessary for 

the consideration of virtually all practical transducer types is presented in Chapters 4-6 of Part 

II under the title: “Subsystems of the Electroacoustic Transducers.” All the constitutive equa-

tions are derived in these chapters from the Principle of Least Action as Euler’s Equations in 
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generalized coordinates. The obtained results are presented in the form of impedances, (includ-

ing the radiation impedances), electromechanical transformation coefficients and acting forces 

(including those of acoustic origin) that can be directly substituted into the equivalent electro-

mechanical circuits (multi contour in general) of the transducers. The diffraction coefficients 

and directional factors for differently configured transducer surfaces are also presented. 

In Chapter 4, special attention is paid to the consideration of coupled vibrations in the 

generally two-dimensional mechanical systems. The results allow determining the range of as-

pect ratio, at which the system can be approximately considered as one-dimensional, where the 

problem can be simplified. 

In Chapter 5, especial importance is ascribed to the theorem that sets the conditions, at 

which the electromechanical conversion under the longitudinal and transverse piezoelectric ef-

fects can be treated qualitatively in the same way. This allows for the unifying calculation tech-

nique for the transducers that employ these types of ceramics polarization. Another important 

subject is the general analysis of optimizing the effective coupling coefficients in nonuniformly 

deformed piezoceramic bodies. 

Chapter 6 touches upon several noteworthy issues. Besides solving the general radiation 

problems, it provides a detailed consideration of the effects of baffling parts of the surfaces of 

cylindrical and spherical transducers, which ensures their unidirectionality. The technique for 

the experimental investigation of the acoustic interaction between transducers (or between the 

mechanically isolated parts of the same transducer) is also analyzed. Since the baffles have an 

effect on the acoustic near field, the interactions can rarely be treated analytically for practical 

transducer configurations, hence more reliable characterization of the interaction can be ob-

tained through an experimental investigation. 

The results obtained in the Part II are used in Part III of the book titled “Calculating trans-

ducers of different types” for synthesizing equations that describe the detailed operation of 

transducers of various configurations: cylindrical (Chapter 7), spherical (Chapter 8), plates and 

beams vibrating in flexure (Chapter 9) and bar transducers (Chapter 10). 

Chapter 7 presents a study of cylindrical transducers that employ multimode extensional 

and flexural vibration of complete and incomplete cylinders (slotted cylinder projectors are also 

considered) for various practical applications. Different modes of the cylinder polarization are 
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considered, including the tangential polarization (with striped electrodes). An extensive study 

is provided of the effects of coupled vibrations on the electromechanical and acoustic perfor-

mance of transducers that employ cylindrical piezoelements having finite thickness to diameter 

aspect ratios. Chapter 8 covers transducers which employ general multimode extensional vibra-

tions of complete and incomplete piezoceramic spherical shells, (hemispherical in particular). 

The baffling of the parts of the surface that allows using multiple modes of vibration for unidi-

rectional transducer operations is also considered. 

In Chapter 9, a general analysis is provided of transducers which feature flexural vibrations 

of circular and rectangular piezoceramic plates (beams), including non-uniform over thickness 

and radius (length) transducer designs. Optimizing the effective coupling coefficients of the 

transducers is considered making use of the nonuniformity of the distribution of deformations 

in the volume of the plates. Corrections for transducer parameters due to a finite thickness to 

radius (length) ratio of the plates are taken into account. It is then concluded that the accuracy 

with which the wave numbers can be predicted substantially depends on the aspect ratio (espe-

cially for the higher modes of vibration) and presenting their values without the notion of the 

aspect ratios is not appropriate. 

In Chapter 10, the length expander bar transducers are considered Transitions of configu-

rations of bars to thickness vibrating plates at different polarizations and related dependencies 

of their effective coupling coefficients on the aspect ratios are considered using the technique 

of coupled vibrations. Relatively small attention is paid to the widely used Tonpilz transducer 

designs because they have already been described in detail in the available literature. 

Part IV (Chapters 11 through 15) is titled: “Some aspects of the transducers designing.” 

In Chapter 11, a review of the existing data and some new results is presented regarding 

effects of operating environmental conditions, such as the hydrostatic pressure, temperature, 

and drive level on the parameters of piezoceramics. It is emphasized that, under these condi-

tions, the parameters of ceramics may deviate significantly from those that are given in speci-

fications for normal conditions. Moreover, they may differ for samples of ceramics supplied by 

different (and even by the same) manufacturers. This must be kept in mind when calculating 

the operating parameters of transducers under real conditions and in estimating a reasonable 

accuracy of calculation of the parameters. The variations in the parameters of transducers 
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intended for operating at great depths can be avoided by using designs, which incorporate hy-

drostatic pressure compensation. Issues related to the practical implementation of the pressure 

compensation are examined in Chapter 12 (more general information), in Chapter 13 (regarding 

the liquid filled cylindrical projectors) and in Chapter 14 (regarding the hydrophones). 

Chapter 13 presents some considerations regarding the practical challenges of the projec-

tors design. Using the concept of the Reserves-of-Strength for improving parameters of the 

transducers of different types by optimizing their matching with the acoustic field is considered. 

The possibilities of increasing the dynamic and static mechanical strength of the projectors by 

prestressing and combining piezoceramic with passive materials in their mechanical systems 

are analyzed. 

Chapter 14 is dedicated to the design of hydrophones and related issues. The hydrophones 

employing different transducer types are classified by the pressure and pressure-gradient hy-

drophones of the diffraction and motion types. Their properties as a source of energy of signal 

and internal noise for a receive channel are considered. Special attention is paid to the response 

of the hydrophones and accelerometers to unwanted actions and to measures aimed at increas-

ing their noise immunity. 

 Chapter 15 is crucial for the structure of the book because it introduces the practice of 

combining Finite Element Analysis (FEA) with analytical energy methods. This is illustrated 

with examples of flextensional and oval transducers. Combining powerful computer-based FEA 

techniques that are used to obtain results for vibration mode shapes with the energy method that 

yields great physical insight opens up a new area of research collaboration for many transducer 

problems. FEA allows the determination of the vibration mode shapes for mechanical systems 

that cannot be approximated analytically due to the complexities of the mechanical system and 

its boundary conditions. 

The book also contains appendices with information on the properties of the piezoelectric 

ceramics and passive materials that may be used in transducer designs, and on the properties of 

the special functions that are referred to throughout the book. 

In summary, the book presents methods for calculating the properties of most common 

electroacoustic transducer problems with particular focus on underwater applications. Moreo-

ver, by combining the FEA technique to determine the prerequisite vibration mode shapes with 
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the energy method, virtually any transducer type may be analyzed. Still however, when it comes 

to choosing and designing a particular transducer for a particular application under demanding 

operating and environmental specifications – this remains somewhat of an art. Thus, recom-

mendations of transduction choices for representative problems remain a guide and not a pre-

scription for success. 

It is inevitable that the book may contain typographical or content errors and thus the author 

would welcome the readers’ comments and notifications of such. 

 

Boris S. Aronov 



 

ACKNOWLEDGEMENT 

I am indebted to many people I have worked with throughout my career without whom this 

book could not have been written. Firstly, I am grateful to my mentor, the outstanding acousti-

cian Lev Yakovlevich Gutin, who was my PhD advisor. He taught me that even complicated 

problems can be solved in a simple and physically clear way and demonstrated this throughout 

all his work. He was a strong proponent of using the energy physics-based approach to solving 

problems of electroacoustics, my first mentor in this regard. 

It was my good fortune during the early part of my career to have worked for many years 

in the acoustic laboratory of Morphizpribor (Russian Marine Research Institution) in Saint Pe-

tersburg (then Leningrad) that was headed by R. E. Pasynkov and O.A. Kudasheva. A creative 

and friendly atmosphere existed in the laboratory, which resulted in many fruitful scientific 

research accomplishments. Discussions with my friends and colleagues L. D Lubavin, V.I. 

Pozern, M. D. Smaryshev, E. L. Shenderov, V. E. Glazanov and advising my colleagues and 

Doctoral PhD students G. K. Screbnev, N.M. Gribakina, L. B. Nikitin were priceless experi-

ences that profoundly impacted this book. The style and content of this book have been influ-

enced by my Doctor of Science Dissertation (1974) and my previous text Electromechanical 

Transducers from Piezoelectric Ceramic (1990) that were to a great extent based on the results 

of that period of my career.  

The next stage of my professional career is in United States of America, where I started 

working with Dr. David A. Brown of BTech Acoustics LLC and the University of Massachu-

setts Dartmouth. David and I became and remain close friends for more than 20 years, and 

collaborated on many research projects, journal papers, and on co-advising graduate PhD and 

MS students in Electroacoustics. Hence, I am grateful to David Brown for providing me an 

unprecedented opportunity to teach and advise students at the University and work at the same 

time on the practical realization of my research and development transducer projects with 

BTech Acoustics. The results of this collaboration have been rewarding and have greatly con-

tributed to the content of the book. 



 ix 

 

Furthermore, I would like to acknowledge many of our graduate students, who were eager 

to learn and assist in putting theory into practice often devoting long hours to experiments and 

computations. Specifically, Dr. Corey Bachand for transducer subsystem modeling and count-

less laboratory projects, coauthor of many journal publications; Sundar Regmi for participating 

in the research of coupled vibrations, Dr. Sairagan Saragapani for stripe-electrode tangential 

polarization research, Dr. Tetusuro Oishi for baffled multimode cylindrical transducers and 

their mutual impedances; Dr. Yan Xiang, who performed calculations regarding radiation of 

the baffled cylindrical and spherical transducers and FEA modeling, and many more students 

and engineering technicians too numerous to count including Gregory Bridge, Austin Souza, 

Zach Souza, Glenn Volkema, and others. 

Further, our work would not have been successful had it not been the generous sup-port 

from the Office of Naval Research (ONR) and especially Jan Lindberg, Michael Traweek, Mi-

chael Wardlaw, Fletcher Blackmon, as well as the entrepreneurial activity of BTech Acoustics 

LLC, the SBIR innovative research program, the unique facilities funded by the Commonwealth 

of Massachusetts – Advanced Technology and Manufacturing Center (ATMC-UMass), Center 

for Innovation and Entrepreneurship (CIE) and the Underwater Acoustics Tank Test Facility at 

the Center for Marine Science and Technology (CMAST). 

I am immensely grateful to Dr. Corey Bachand and to my Russian colleague, Aleksey 

Leznikov, with his team for their truly gigantic work in preparing the manuscript of the Book 

for the publication that included all the formatting and numerous graphical works.  

My special thanks go to my sons, Igor and Vitaly, for their moral and financial support 

throughout this years-long effort. 

 

 



 

 



  

 

 

Part I 

Introduction to Energy Method of 

Treating the Transducers 

 

 



 

 

 

 



  

 

TABLE OF CONTENTS 

TABLE OF CONTENTS ............................................................................................. 1 

CHAPTER 1 ................................................................................................................. 3 

Introduction .................................................................................................................. 3 

1.1 Block Diagram of a Transducer .........................................................................................3 

1.2 Concepts of the Generalized Quantities .............................................................................5 

1.3 Actions on the Transducers ...............................................................................................7 

1.3.1 Actions as Functions of Time ......................................................................................7 

1.3.2 Actions as Functions of the Spatial Coordinates ..........................................................8 

1.4 Forms of energies involved ............................................................................................. 10 

1.4.1 Kinetic Energy ........................................................................................................... 11 

1.4.2 Potential Energy ......................................................................................................... 12 

1.4.3 Losses of energy ........................................................................................................ 13 

1.4.4 Electromechanical Energy ......................................................................................... 15 

1.4.5 Acoustic Energy ......................................................................................................... 18 

1.5 Energy Flow and Sign Convention .................................................................................. 21 

1.5.1 Directed Energy Flow ................................................................................................ 22 

1.5.2 Sign Convention ........................................................................................................ 23 

1.5.3 Examples Illustrating Directional Energy Flow ......................................................... 25 

1.6 Energy Approaches to Calculating the Transducers ........................................................ 28 

1.6.1 Balance of Energies in a Transducer having One Degree of Freedom, Single 

Contour Equivalent Circuit ........................................................................................ 29 

1.6.1.1 Transmit Mode ...................................................................................................... 29 

1.6.1.2 Receive Mode ........................................................................................................ 31 

1.6.2 Energy Approach to Calculating Transducer having Multiple Degrees of 

Freedom ..................................................................................................................... 33 

1.6.2.1 Least Action Variational Principle and Euler Equations ....................................... 33 

1.6.2.2 Multi contour Equivalent Electromechanical Circuits ........................................... 35 

1.7 References ....................................................................................................................... 39 

CHAPTER 2 ............................................................................................................... 40 

Designing Transducers ............................................................................................... 40 

2.1 One Degree of Freedom Transducers .............................................................................. 40 

2.2 Spherical Transducer ....................................................................................................... 40 

2.3 Cylindrical Transducers ................................................................................................... 47 

2.3.1 Acoustic Field of the Infinitely Long Cylindrical Transducer ................................... 50 

2.3.2 Acoustic Field of the Finite Height Cylindrical Transducer ...................................... 52 

2.4 Uniform Bar Transducers ................................................................................................ 54 

2.4.1 Effective Coupling Coefficient of a Transducer ........................................................ 58 



2 

 

2.5 Mass Loaded Bar Transducer ......................................................................................... 60 

2.6 Flexural Type Transducers ............................................................................................. 64 

2.6.1 Rectangular Beam Transducer .................................................................................. 64 

2.6.2 Cantilever Beam Transducer ..................................................................................... 68 

2.6.3 Circular Plate Transducer .......................................................................................... 70 

2.6.4 Acoustic Field Related Parameters of the Transducers of Flexural Type ................. 74 

2.7 References ...................................................................................................................... 79 

CHAPTER 3 ............................................................................................................... 80 

Transducer Performance Analysis .............................................................................. 80 

3.1 Operation in Transmit Mode ........................................................................................... 80 

3.1.1 Transducer Input Impedance and Tuning Conditions ............................................... 81 

3.1.1.1 On the Tuning Conditions..................................................................................... 91 

3.1.2 Effectiveness Factor of the Transmit Channel and Efficiency of a Projector ......... 102 

3.1.2.1 Efficiency of a Projector ..................................................................................... 104 

3.1.2.2 Efficiency of a Projector over a Frequency Band ............................................... 110 

3.1.3 Maximum Acoustic Power Radiated by a Transducer and Its Limitations ............. 111 

3.1.3.1 The Optimal Acoustic Load and the Maximum Power Radiated ....................... 114 

3.1.3.2 Reserves of Strength Coefficients ....................................................................... 117 

3.1.4 Frequency Response of a Projector ......................................................................... 118 

3.1.5 Operation of a Projector in a Broad Frequency Band ............................................. 122 

3.1.5.1 About the Bandwidth of a Projector ................................................................... 122 

3.2 Transducers in the Receive Mode ................................................................................. 128 

3.2.1 Transducer as a Member of Receive Channel ......................................................... 128 

3.2.2 Sensor as a Source of Energy for the Receive Channel .......................................... 129 

3.2.3 Noise Property of a Receive Channel, Requirement for the Sensor Sensitivity ...... 138 

3.2.3.1 Internal Noise of a Sensor ................................................................................... 138 

3.2.3.2 Matching a Sensor with Preamplifier ................................................................. 139 

3.2.4 Response of the Sensors to Unwanted Actions ....................................................... 142 

3.3 References .................................................................................................................... 149 

LIST OF SYMBOLS ................................................................................................ 150 

INDEX ...................................................................................................................... 154 

 



  

 

CHAPTER 1 

INTRODUCTION 

1.1 Block Diagram of a Transducer 

The electromechanical piezoelectric ceramics transducers (further “piezoceramics transducers” 

or just “transducers”) are employed as a part of the devices that are intended for converting 

electric energy into the mechanical (acoustic) energy (transmit mode of operation), or, con-

versely, for converting the mechanical (acoustic) energy into energy of electrical signals (re-

ceive mode of operation). Two closely linked problems can be distinguished in the theory and 

practice of transducers designing: calculating the transducer’s output characteristics at specified 

input actions (the direct problem) and optimizing the transducer’s design and efficiency factors 

at specified operating conditions including environmental conditions and conditions of their 

matching with mechanical (acoustic) loads and related electronics (the inverse problem). In 

terms of formulating the direct problem the multiple energy conversions that are performed by 

the devices that include electromechanical transducers can be conveniently illustrated for theo-

retical analysis by the block diagram presented in Figure 1.1. 

 

Figure 1.1: The block diagram of the electromechanical transducer. The blocks labels correspond 

to: (1) Electrical source of transducer (or load in case of receiver), (2) Electrical branch of the 

transducer, (3) Electrical to mechanical conversion, (4) Mechanical branch of the transducer; and 

(5) Mechanical (acoustic) load (or external source of mechanical energy). 

In Figure 1.1, block 1 represents an external source of electric energy, or (depending on the 

direction of energy conversion) the first stage of processing the received signal; block 2 is the 

electrical part of a transducer (a unit to which electric energy is supplied from block 1, or as a 

result of the mechanoelectrical energy conversion); block 3 is a fictitious transformer that 

1 2 4 5

elW
s

eW mW
 acW

mechW

eLW mLW
emW

3
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performs the electromechanical energy conversion; block 4 is the mechanical part of the trans-

ducer (a unit in which the vibration energy of the transducer system is concentrated being either 

produced as a result of the electromechanical energy conversion or supplied from an external 

source of mechanical energy); block 5 represents a consumer of mechanical energy (mechanical 

or acoustic load), or an external source of mechanical energy. The piezoelectric transducer as a 

system per se is represented by the blocks 2-4. Dividing the transducer system into subsystems 

possessing electric and mechanical energies is conditional, as the energies of these types are 

indivisible in the piezoelectric transducers. Dissipation of energy takes place in the process of 

the electromechanical transduction. This is accounted for in the block diagram by outgoing 

fluxes of energies of electric and mechanical losses. 

The energies and energy fluxes (powers) involved in the transduction in the transmit mode 

of operation are denoted in Figure 1.1 as W and W , respectively, with subscripts that corre-

spond to the particular energy form. Thus, elW  is the total electric energy supplied to the trans-

ducer; 
S

eW  is the part of the electric energy stored on the electrical side of the ‘‘blocked’’ 

transducer (i.e., under the condition that the transducer cannot vibrate); eLW  is the energy of 

electrical losses; emW  is the part of supplied electrical energy, which is transformed into the 

mechanical energy of vibration of the transducer mechanical system at constant magnitude of 

electric field, 
E

mW , by means of the mechanism of electromechanical conversion; mLW  is the 

energy of mechanical losses; mechW  and acW  are the energies transferred into the mechanical or 

acoustic load. 

Results of theoretical analysis in accordance with the block diagram may be applicable to 

whatever electromechanical transducers as far as characteristics of the mechanical load or ex-

ternal mechanical actions are known (the acoustical load and external action can be regarded as 

a particular case of the mechanical). In the case that electroacoustic transducers and specifically 

transducers for underwater applications are concerned, which is our intended goal, this analysis 

covers only a part of the direct problem. First, determining the acoustic load that is required for 

completing calculations of the transducer mechanical system vibration involves solving the 

problem of radiation by the transducer body (thus the overall problem becomes coupled mech-

anoacoustic). Finally, not only the acoustic power radiated by the transducer has to be deter-

mined, but also a spatial distribution of acoustic energy that is characterized by the directional 
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factor of the transducer. Thus, in addition to the subsystems presented in the block diagram of 

Figure 1.1 the acoustic subsystem of a transducer must be considered. 

The block diagram does not show the essential elements of the energy conversion system 

such as arrangements that are used for matching the electromechanical transducer with a source 

of excitation and a load. The matching elements may be incorporated in the source of excitation 

or in the load, but frequently they are a part of the transducer, and, consequently, they should 

be taken into account in the transducer analysis, especially, when considering issues of rational 

transducer designing (the reverse problem). It can be said without exaggeration that the optimal 

matching of an electromechanical transducer with a source of excitation and a load is one of 

the goals of its rational designing. 

Due to reversibility of the piezoelectric transducers, we will predominantly consider one 

direction of energy conversion in the theoretical analysis, namely, the conversion of electrical 

energy into mechanical and acoustic energy, unless the peculiarities of the inverse conversion 

need to be emphasized. 

1.2 Concepts of the Generalized Quantities 

The main physical concept that will be used in our analysis is that of energy. The energy is 

measured by the work that has to be done in process of changing a physical system from an 

initial to final stage. Thus, expression for the mechanical work done by a constant force (f) that 

produces a displacement ( ) of a body while acting in direction of the displacement is 

 mechW f = . (1.1) 

The energy (work) is measured in Joules (J), 1 J = Nm. The work done by a constant moment 

(torque) (m ) that turns a body at some angle ( ) is 

 W m  = . (1.2) 

Amount of work done per unit of time is the energy flux or power (W ) 

 
dW

W
dt

= . (1.3) 

Thus, 
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 ,mechW f f u W m m    = = = = , (1.4) 

where u =  and  =  are the velocity and angular velocity, respectively. The power is meas-

ured in watts, 1 W = Nm/s. 

At different stages of the process of energy conversion in the transducers the energies may 

be of different physical nature, but in all the cases the energy in general, gW , can be represented 

as a product of two quantities, one of which can be considered as the generalized force, gf , 

and another as the generalized coordinate (displacement), g , so that 

 g g gW f =
. (1.5) 

The energy flux can be represented correspondingly as a product of the generalized force and 

the generalized velocity, gu , namely, 

 
g g gW f u= . (1.6) 

In general, when directions of the generalized force and generalized velocity do not coincide 

the energy flux is the scalar product (bold letters denote the vector quantities) 

 g g gW = f u . (1.7) 

In the case that the generalized parameters are not vector quantities by nature, the signs will be 

prescribed to them according to sign convention that will be discussed in Section 1.5.2. 

Usually, the values of generalized coordinates and velocities may change with changes of 

system dimensions and of amount of substance in it (extensive values). The quantities of the 

generalized forces are independent of the dimensions and amount of substance in the system 

(intensive values). Thus, the mechanical force, moment of force, mechanical stress T, acoustic 

pressure p, and electric voltage v are the generalized forces; displacement  , turning angle  , 

deformation S, and charge q are the generalized coordinates; velocity u, angular velocity  , 

and current i are the generalized velocities. 

In general, a force may change in process of producing a work, and the expression for the 

work becomes 

 

II

g g g

I

W d=  f  , (1.8) 

where I and II are the initial and final position of a system, and both the generalized force and 

generalized displacement may be vectors. 
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1.3 Actions on the Transducers 

Process of reduction of real actions on the electromechanical transducer that may have different 

physical nature to some generalized forces, and expression of results of these actions in the 

generalized coordinates or generalized velocities depends on the time and spatial characteristics 

of the actions. For unifying the theory of electromechanical transducers used for different ap-

plications, it is expedient to reduce the variety of actions to a combination of some standard 

functions, by means of which these actions can be easily expressed. 

1.3.1 Actions as Functions of Time 

It is appropriate to treat the piezoelectric ceramic transducers in the linear approximation unless 

the hard drive conditions are concerned. The related effects of nonlinearity will be considered 

in Chapter 11. Otherwise all the time depended actions may by expressed through the harmonic 

functions sin t , cos t  and, in the complex form, through the functions 

cos sinj te t j t  = +  by the general procedures applicable to the linear systems. It is note-

worthy that using the negative exponential i te −  is more traditional for description of the acous-

tic wave propagation, but the main problems of the electromechanical transducers designing 

are in the fields of mechanical and electric engineering, for which the positive exponential is 

common. 

Thus, all the generalized forces and generalized coordinates (displacements) will be con-

sidered as the time harmonic functions. The instantaneous values of the generalized forces and 

generalized coordinates that were designated by small letters, will be represented by the corre-

sponding capital letters in the complex form. For example, 

 ( ) j t

g g ogf F F e → =  and ( ) j t

g g ogu U U e → = , (1.9) 

where ( )ogF   and ( )ogU   are the complex amplitudes of the generalized force and velocity 

(only real values of the complex amplitudes correspond to the instantaneous values). From now 

on, the factor j te   will be omitted for brevity and ogF , ogU  will represent complex amplitudes 

of generalized forces and velocities. 

When it comes to calculating the energies and powers in the complex form, we will intro-

duce for them notations W  and W , respectively. The complex power, for example, will be 
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presented as product of the complex conjugated complex amplitudes of the generalized force 

and velocity, namely, as follows. We present the energy 
gW  and energy flux (power) gW  in 

the complex form as 

 *

g og ogW F U=  (1.10) 

(the asterisk (*) denotes a complex conjugate quantity). In particular, *

elW UI=  is the complex 

value of the electrical power. The relationship between instantaneous and complex values of 

power (analogous for the energy), is 

 g gr gxW W jW= + , (1.11) 

where 

 
0

1
T

gr gW W dt
T

=   and 

/4

0

2

2

T

gx g grW W dt W
T

 
= −  (1.12) 

are the active and reactive power, respectively. It is obvious that any linear correlation between 

instantaneous values of power (or energy) is also valid for their active, reactive and complex 

values. 

The notion of a generalized complex impedance can be introduced in accordance with the 

relation 

 
2

g gr gx g ogW W jW Z U= + = . (1.13) 

Taking into account formula (1.10), the generalized impedance can be represented as 

 
og

g g g

og

F
Z r jx

U
= = + , (1.14) 

where gr  and gx  are the active and reactive components of the complex impedance respec-

tively. 

1.3.2 Actions as Functions of the Spatial Coordinates 

Actions as functions of the spatial coordinates can be applied at a point or distributed over the 

surface of a transducer. The mechanical system of a transducer can be often considered as hav-

ing one degree of freedom. This means that the state of the system can be characterized by a 
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single variable. Thus, assuming that distribution of velocity of vibration in the mechanical sys-

tem (mode shape of vibration) is known, the state of vibration of the mechanical system can be 

characterized by velocity of some point (the reference point), which can be called the reference 

velocity. Consider, for example, a simply supported bar under action of the concentrated force 

1( )F x  and distributed along its length forces of density ( )F x  that are shown in Figure 1.2. 

Let us assume that the mode shape of the vibrations, ( )x  of the bar is known, and ( / 2) 1l =

. Then the distribution of velocity along the bar is ( ) ( )oU x U x= , where oU  is velocity of the 

reference point (reference velocity). 

The energy flux supplied by the concentrated force 1( )F x  to the mechanical system, is 

 * *

1 1 1 1 0( ) ( ) ( ) ( ) eqvW F x U x F x x U F U = = = . (1.15) 

Here 1 1( ) ( )eqvF F x x= is the equivalent force, the action of which on displacement of the refer-

ence point produces the same work as the real force 1( )F x  produces on displacement of point 1x . 

 

Figure 1.2: Simply supported beam under action of concentrated and distributed forces. 

The energy flux supplied by the distributed force ( )F x  to the mechanical system is 

 
* *

0

0

( ) ( ) ( ) ( )
l

F x U x dx U w F x x dx =  , (1.16) 

and in this case the equivalent force that produce the same work on displacement of the refer-

ence point as the real distribution of forces on the entire vibrating surface is 

 
0

( ) ( )
l

eqvF w F x x dx=  . (1.17) 

Since the values of the introduced equivalent forces depend on the position of the reference 

point, they can also be called reduced forces. The equivalent forces perform the same work on 

displacement of the reference point, as the actual forces do on the displacements of the trans-

ducer surface. 

( )x

0 1x

oU

l x

( )F x1( )F x

o
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In general, the mechanical systems of transducers may have many degrees of freedom, and 

the nature of their vibrations is not known in advance. Suppose that some complete set of func-

tions, { ( )}i r , is determined for the surface of a mechanical system that meet the boundary 

conditions for the system ( r  is the radius vector of a point on the surface), then the unknown 

distribution of the vibration velocity over the surface, ( )U r , can be represented by the expan-

sion in terms of these functions: 

 
1

( ) ( ) ( )i o i

i

U U 


=

=r r r , (1.18) 

where or  is the radius vector of the point chosen as a reference point, ( ) 1i o =r . 

Since the distribution of velocities and thus the state of a mechanical system becomes quite 

definite, when the coefficients ( )i oU r  of the series are found, these coefficients can be adopted 

as the generalized velocities. When distributed forces act on the surface of a mechanical system, 

the equivalent force iF  that corresponds to the generalized velocity 0( )iU r  can be determined 

as follows: 

 * *

1

( ) ( ) ( ) ( ) ( )i o i

i

W F U d U F d


= 

=   =   r r r r r , (1.19) 

where from 

 
*

( ) ( )i i

i

W
F F d

U





= =  
  r r . (1.20) 

It is convenient to choose the eigenfunctions of the problem for a particular transducer mechan-

ical system vibration as the system of standard functions ( )n r  that can also be called the sup-

porting or coordinate functions. Thus, ( ) sin( / )n x n x l =  for a simply supported bar shown in 

the Figure 1.2, and the expression for the equivalent forces is 

 
0

( )sin
l

n

n x
F w F x dx

l


=  . (1.21) 

1.4 Forms of energies involved 

Consider expressions for the energies of different form that are involved in electroacoustic 

transduction with examples of systems having one degree of freedom (characterized by a single 

generalized coordinate). 
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Figure 1.3: Examples of the mechanical systems with one degree of freedom. 

1.4.1 Kinetic Energy 

In the case that a force produces motion with velocity u  of a body having mass M, in expression 

(1.7) 

 
d

M
dt

=f u  and d dt= u , (1.22) 

thus, the work done from the initial ( 0t = ) to the final state is 

 
2

0

1

2

t

kin

d
W M dt Mu

dt
=  = u u . (1.23) 

The work is stored in the energy of motion of the body, and can be released, when the body 

slows down. In the example shown in Figure 1.3 (a), the mass M can move linearly along the 

spring, and u = . In the case that a body having volume V rotates, as is shown in Figure 1.3 

(b), u r= , the force acting on an element of volume is f r dm= , were dm  is the mass of 

the element, and the kinetic energy of the body is 

 
2 2 21 1

2 2
kin

V

W r dm I = = , (1.24) 

where 

 2

V

I r dm=   (1.25) 

is the moment of inertia of the body. 

In the case that a non-uniform distribution of velocity in the body takes place, such as 

( ) (ou u  )r = r , kinetic energy of the body will be determined by integrating the kinetic energies 

of elements of the body over its volume, thus, 

M

1

m

K
C

=





r

(a) (b)



12  1. Introduction 

 

 2 2 21 1
( ) ( )

2 2
kin o eqv o

V

W u dV M u = = r r , (1.26) 

where ( ) r  is the density that in general can be non-uniform over the volume of the body, and 

eqvM  is the equivalent mass of the body 

 
2

0

1

2

t

kin

d
W M dt Mu

dt
=  = u u . (1.27) 

The energy LW  stored in the inductance L through which electric current i flows is also kinetic 

by nature. It is energy of motion of electric charges. 

 
2 21 1

2 2
LW Li Lq= = . (1.28) 

1.4.2 Potential Energy 

The work done by a force is stored in the potential energy of a system in the case that the force 

is acting against inherent in the system restoring (reaction) forces that tend to keep the state of 

the system unchanged. The typical examples of such systems are the spring shown in Figure 

1.3 (a), capacitor and the unit element of elastic body ( 1x y z =  =  = ) that is presented in 

Figure 1.4. 

 

Figure 1.4: One degree of freedom systems possessing the potential energy. 

The generalized reaction forces in these cases are: /r p mf K C = =  for the spring (sub-

script p stays for potential, K is the rigidity of the spring, and 1/mC K=  is its compliance); 

/ ev q C=  for the capacitor ( eC is the capacitance); and T YS= (Y is the Young’s modulus). 

The generalized displacements are: displacement  , charge q  and strain S, respectively. After 

performing integrations by formula (1.8) the expressions for the potential energies will be ob-

tained as follows: 

(a) (b)

q

S

T

x
y

z

eC
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2 2

2 21 1 1 1
,

2 2 2 2
mech e e

m e

q
W K W C v

C C


= = = = , (1.29) 

 
21 1

2 2
mw TS YS= = . (1.30) 

The small letter in the expression for the elastic energy designates energy of the unit volume 

that must be integrated over the volume of a body to get the full potential energy. Given that 

/S y=   and under the assumption that distribution of displacement over the body volume is 

( ) ( )o  =r r , and the elastic properties can be in general not uniform the potential energy of 

the body will be determined as 

 

2
2 2 21 1

( ) ( )
2 2 2

o
pot o eqv o

eqvV

W Y dV K
C


  = = = r r , (1.31) 

where ( )Y r  is distribution of the elastic modulus over the volume and eqvK  is the equivalent 

rigidity ( eqvC is the equivalent compliance) of the body 

 21
( ) ( )

2
eqv

V

K Y dV=  r r . (1.32) 

The expressions for the potential energies are obtained under assumption that processes of 

changing state of the systems are linear. In this case all the stored energy will be given away, 

when the systems will return to their initial state. 

1.4.3 Losses of energy 

In reality some amount of energy converts into heat during deformation of the systems due to 

internal “friction” inherent in these processes. The term “friction” stays collectively for various 

mechanisms of energy loss that take place. Having negligible effect on the linearity of defor-

mation, the losses of energy play significant role in balances of energy, especially when a sys-

tem vibrates in the frequency range around its resonance. 

The internal friction can be defined as the ratio 

 
g L

g L

g pot

W

W
=  , (1.33) 

where g potW  is the maximum generalized potential energy stored per cycle of deformation, 

g LW  is the part of the energy lost in this process, and g L may be called the specific loss 
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coefficient1. The general assumption is that 1gL  in linear systems. The specific loss coef-

ficients have to be determined through experimenting (as well as the elastic and dielectric con-

stants of materials have to). The equivalent resisting force, rLf , that is related to the energy of 

loss is assumed to be proportional to the generalized velocity (within limits of linearity of de-

formations), and it is directed as to oppose the deformation 

 
rL g L gf r = . (1.34) 

Thus, formally the energy flux of losses can be presented as 

 2

g L r L g g L gW f r = = . (1.35) 

 

Figure 1.5: Equivalent representations of the resistances of mechanical and electrical losses. 

The coefficient g Lr  is the resistance of losses. In the case of mechanical energy g L mLr r→

(resistance of the mechanical losses) and g L → , in the case of electrical energy g L eLr r→

(resistance of dielectric losses) and g L i q → = . If to represent the elements that possess the 

potential energy (generalized compliances gC ) and resistance of losses being in series con-

nected, as shown in Figure 1.5 (a), then 

 
( / )

g L gL grL
gL g g L

g pot rp g g

W rf
r C

W f C





= = = =  . (1.36) 

In the case of mechanical losses (Figure 1.5 (b)) 

CI

RI eLR

eLreC

i

mLrmC



(a)

gC

g

gLr

rpf rLf
(b)

(c)

eC

(d)

V

(e)

e

CI

RI
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 1/mL mL m mr C Q = = , (1.37) 

where mQ  is called the mechanical quality factor. 

In the case of dielectric losses (Figure 1.5 (c)) it is more common to present the capacitor 

and resistance of losses as connected in parallel. The equivalent parallel resistance, eLR , will 

be found under the condition that (1/ )eL er C  that is equivalent to 1gL , as 

 
2

1

( )
eL

eL e

R
r C

 . (1.38) 

Considering the vector diagram of voltages vs. currents for the circuits in Figure 1.5 (c), will 

be obtained that 

 
1

taneL eL el e

eL el

r C
R C

 


 = = = , (1.39) 

where e  is the phase angle between the active and reactive currents (voltages) that is called 

angle of dielectric losses. 

The reason behind introducing different characterizations of mechanical (elastic) and elec-

trical (dielectric) loss coefficients through the quality factor and angle of dielectric losses is due 

to different experimental methods for their determining. Thus, whenever the elements respon-

sible for the potential energies of different nature are used, they must be accompanied by the 

corresponding resistances of losses. Expressions for the corresponding energy fluxes of me-

chanical and electric losses can be represented as 

 
2

2 2 ,mL mL mL eL

eL

v
W r r u W

R
= = = . (1.40) 

1.4.4 Electromechanical Energy 

The term electromechanical energy is introduced to characterize process of energy conversion 

that occurs in block 3 of the block diagram of Figure 1.1. Concept of the electromechanical 

energy (it is called “mutual” in Ref. 2) is fundamental for the theory of electromechanical con-

version. Analysis of this concept under general assumptions regarding distribution of defor-

mations in the piezoceramic bodies will be produced in Chapter 5. Here the concept of electro-

mechanical energy will be illustrated with an example of a unit volume of piezoceramic material 

shown in Figure 1.6. The dimensions of the piezoelement are 1x y z =  =  = . 
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Figure 1.6: Piezoelement for illustrating concept of the electromechanical energy. 

Status of the piezoelement that is polarized in direction of axis 3 and is mechanically loaded in 

direction of axis 1 while all its other surfaces are free of stress 2 3( 0)T T= =  may be described 

by the piezoelectric equations2 

 1 11 1 31 3

ES s T d E= + , (1.41) 

 3 31 1 33 3

TD d T E= + , (1.42) 

in which 1T  and 3E  are independent variables, (The standard notations of the piezoelectric 

material constants are used, as they are defined in Ref. 2). If to express 1T  from Eq. (1.41) and 

substitute the expression obtained into Eq. (1.42), the set of piezoelectric equations becomes 

 31
1 1 3

11 11

1
E E

d
T S E

s s
= − , (1.43) 

 131
3 1 33 3

11

S

E

d
D S E

s
= + , (1.44) 

where 1 2

33 33 31(1 )S T k = −  is the dielectric constant of the piezoelement “clamped” in direction of 

axis 1, 
2 2

31 31 33 11/ T Ek d s=  is the electromechanical coupling coefficient square. 

The internal energy of the piezoelectric element in the general case may be expressed as 

 int 1 1 3 3

1 1

2 2
w S T E D= +  (1.45) 

where 1 1 / 2S T  and 3 3 / 2E D  are the independent mechanical and electrical energies supplied 

by external sources; 1S , 1T  are the strain and stress along the axis 1 induced by an external 

source; 3E , 3D  are the electric field and charge density. If to consider the unit piezoelectric 

element as the energy converter in the ‘‘transmit mode”, then the energy enters the piezoele-

ment from the electrical side only, and the stress 1 0T =  in Eq. (1.43) as independent variable. 

The electrical energy supplied to the piezoelement is 

x

y

z

P 3

2 1T

1S

1
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3

3 3

0 0

EV

elW Vdq E dD= =   (1.46) 

(for the unit volume 3 3V E z E=  =  and 3 3q D x y D=   = ). Using Eq. (1.44) we obtain ex-

pression for the total electric energy supplied to the piezoelement in the form of 

 1 1231
1 3 33 3

11

1 1

2 2

S S

el em eE

d
w S E E w w

s
= + = + . (1.47) 

Here 1 1 2

33 3 / 2S S

ew E=  is the part of electrical energy supplied by the external source that is stored 

as electrical energy of piezoelement clamped along axis 1, and the term 

 31
1 3

11

1

2
em E

d
w S E

s
=  (1.48) 

will be defined as the density of electromechanical energy. It follows from Eq. (1.43) at 1 0T =  

that 31 3 1d E S= . Upon substituting this expression into relation (1.48) will be obtained that 

 
2

31 1
1 3

11 11

1 1

2 2
em E E

d S
w S E

s s
= = . (1.49) 

The right-hand term in this expression is the mechanical energy of a piezoelectric element de-

termined with elastic constant 11

Es  at constant electric field. It can be denoted as 
E

mw . Note that 

111/ Es  is the analog of the Young’s modulus of a passive elastic body and the expression (1.30) 

for the density of elastic energy must be replaced by 

 
2

1

11

1

2

E

m E

S
w

s
= , (1.50) 

when it is related to a piezoelectric element. Thus, 

 31
1 3

11

1

2

E

em mE

d
w S E w

s
= = , (1.51) 

and the electromechanical energy can be considered as the part of electrical energy supplied to 

piezoelement that is transformed into the mechanical energy of deformation calculated with the 

elastic constant at constant electric field. 

Formula (1.48) for the density of electromechanical energy can be generalized for a piezo-

electric body of a finite size having one mechanical degree of freedom under the same mechan-

ical boundary conditions 2 3( 0)T T= = . Given that 1 1 /S y=   and 3 /E v z=  , where 
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1y z =  = , and that expression for the displacement in the body can be presented as 

(o  = r) , it can be assumed that 

 31
3

11

1 1

2 2
em oE

V

d
W E dV n v

s
 = = , (1.52) 

where V  is the volume of the body. The coefficient n will be called coefficient of electrome-

chanical transformation. It must be determined as result of integrating a factual distribution of 

displacements and electric field in the body. Examples of calculating the coefficient of electro-

mechanical transformation will be considered in Chapter 2. Expression for the electromechan-

ical energy flux in the complex form, 
emW , will be found as 

 
1

( )
2

em o o oW n V V nU V   = + = . (1.53) 

Note that results of calculating the total potential energy by formula (1.31) and value of the 

equivalent rigidity (compliance) depend on the boundary electrical conditions, when they are 

related to a piezoceramic body, as it follows from expression (1.50) for density of potential 

energy. Therefore, the notations of the rigidity (compliance) must be marked with superscripts 

that show under what electrical conditions they were calculated. In most of the cases this is 

condition of constant electric field (E = 0). Therefore, the rigidities and compliances will be 

marked as E

eqvK  and E

eqvC  until otherwise will be noted. 

1.4.5 Acoustic Energy 

 

Figure 1.7: Illustration of the mechano-acoustic system consisting of the surface of radiating trans-

ducer 1 and pulsating sphere of a small radius 2. 

or

or

( )U r


oU

( )sP r

d

r

1

2

2P sphU

0
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Suppose that in the general case the acoustic field is generated by vibration of the transducer 

surface  with velocity distribution on it ( ) ( ) ( )oU U  =r r r  (Figure 1.7). In the figure r  is 

the radius vector of the running point on the surface, and or  is the radius vector of the reference 

point. Velocity at the reference point ( )oU r  will be further denoted for brevity as oU . Expres-

sion for the acoustic energy flux (power) radiated by the transducer surface is 

 ( ) ( )ac s oW P U d 



=  r r , (1.54) 

where ( )sP r  is the sound pressure acting on the surface of transducer in course of its vibration. 

Values of the sound pressure have to be determined by solving the radiation problem for a 

particular transducer surface configuration and mode of vibration.  

Formulation of the radiation theory problems and some examples of determining the acoustic 

field related parameters of particular transducer types will be considered in Chapter 2. So far, 

we will assume that solution of the radiation problem is known, and the sound pressure pro-

duced by a transducer in the space can be represented as follows 

 
( )

2( ) ( , ) ( ) ( , )
j kR

o o

c
P U P d U e

R






  

− −

 



=  =r r r r r , (1.55) 

where ( , )P r r is the sound pressure produced by an elementary source vibrating with unit 

volume velocity located on the otherwise clamped surface of the transducer; , c are the density 

and sound speed in the medium; /k c= , ( , ) r  is the function that characterizes sound 

pressure distribution in space. Function ( , ) r  is determined by the configuration and mode 

shape of vibration of the radiating surface. At the large distances R from the surface (at 

2 /R d  , where d is the maximum overall dimension of the radiating surface and  is the 

acoustic wavelength), ( ), r  becomes independent of R. By substituting expression (1.55) for 

the sound pressure into formula (1.54) one obtains 

 
( /2)2 2( )

| | ( ) | |
j k

ac o ac oW c U e d Z U
r

 
 − −





=  =
rr

r , (1.56) 

where from the reaction of acoustic field on the transducer vibration–acoustic radiation imped-

ance acZ  may be determined after the radiation problem is solved. Thus, 

 2 2

0| | ( ) | |ac ac ac ac oW Z U r jx U= = + , (1.57) 
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where acr , acx  are the active and reactive components of the radiation impedance. 

In the receive mode the external acoustic field presents the mechanical energy source for a 

transducer. Determining parameters of this source constitutes a problem that is formulated as 

follows. If ( )P r  is the acoustic pressure on the surface of the transducer under the action of 

acoustic field, and ( ) ( )oU U  =r r  is the distribution of vibrations generated by this action, 

then the mechanical energy flux supplied by the acoustic field to the transducer (we will call 

this energy acoustomechanical, amW ) will be 

 ( ) ( )am oW P U d 


=  r r . (1.58) 

The sound pressure ( )P r  on the vibrating surface of a transducer may be represented as 

 ( ) ( ) ( )u sP P P  = −r r r , (1.59) 

where ( )uP r  is the sound pressure that would be acting in acoustic field on the clamped surface 

of a transducer (at ( ) 0U  =r ) and ( )sP r  is the sound pressure generated on the surface of the 

transducer as a back radiation due to its vibration with velocity distribution ( )U r . Taking into 

account expression (1.59), the relation (1.58) can be rewritten as follows 

 0( ) ( ) ( ) ( )am u s oW P U d P U d  

   

 

= −  r r r r . (1.60) 

The second term in this expression is 2| |ac ac oW Z U= , as it follows from Eqs. (1.54) and (1.57)

. The first term may be represented as eqv oF U  , where the designation is introduced 

 ( ) ( )u eqvP d F   =r r . (1.61)  

For actual calculating the equivalent forces the problem of diffraction of acoustic field on 

the clamped transducer surface must be solved that will result in determining sound pressure 

( )uP r . These issues are considered in Chapter 2 for some transducer types and in Chapter 6 in 

the general formulation. 

The flux of the acoustomechanical energy consumed by the transducer that is converted 

into the energy of vibration of its mechanical system can be expressed as 

 
2

am m m o inm oW W F U Z U= = = . (1.62) 

Here mF  is the equivalent force that can be imagined as acting on the transducer surface at the 

reference point, and inmZ  is the input impedance of the mechanical system of the transducer 
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reduced to this point. Finally, the relation (1.60) can be presented after summarizing expressions 

for the involved energies, as 

 0 0m inm eqv acF Z U F Z U= = − . (1.63) 

This relation can be illustrated by the equivalent mechanical circuit shown in Figure 1.8. 

 

Figure 1.8: Equivalent acoustomechanical generator. 

Thus, the acoustic field can be considered in respect to a transducer as an energy source with 

mechanical motive force eqvF  and internal impedance acZ . The part of energy of this source 

2

0inmZ U
 
is transmitted into the mechanical system of the transducer and another part 

2

ac oZ U  

is reflected from the surface of the transducer (is consumed by the internal impedance of the 

source). Peculiarity of this source of energy is that both eqvF  and acZ  depend on the configura-

tion of radiating surface of the transducer and on its mode of vibration. The final expression for 

the acoustic energy supplied to mechanical system of a transducer may be presented as 

 ( )am eqv ac o oW F Z U U = −  (1.64) 

after combining expressions (1.62) and (1.63). 

1.5 Energy Flow and Sign Convention 

In process of electroacoustic (and in the reversed acoustoelectric) transduction directional flow 

of energies of different physical nature takes place. With the energies being described in the 

generalized quantities the processes of energy propagation cannot be attributed to the particular 

geometrical coordinate systems, and considering the energy balances require introducing some 

signs convention regarding the direction of energy flow (positive or negative), and regarding 

the signs of the related to these energies generalized coordinates (displacements) and forces. 

oU

acZ

in mZ eqvF
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1.5.1 Directed Energy Flow 

Consider the energy state of the volume V  bounded by the surface   (Figure 1.9). 

 

Figure 1.9: Closed volume for illustrating the directional energy fluxes. 

Amount of energy inside the volume can change due to a spatial flow of energy through the 

surface. The rate of change of amount of energy inside the volume, gW , should be equal to the 

total sum of energy fluxes through the boundary surface per unit time according to the energy 

conservation law. Direction of the spatial energy flow will be considered positive if the flux 

increases amount of energy inside the volume. Mathematical formulation of this statement was 

given by Russian physicist N. A. Umov.3 He introduced a concept of the density vector of the 

energy flux of a physical field known as Umov’s vector. We will denote Umov’s vector  . By 

definition (in our notations) 

 g uw = n , (1.65) 

where gw  is the density of the generalized energy and is the unit vector heading in direction of 

the generalized velocity. For example, for the flux of acoustic energy 

 pv = . (1.66) 

The theorem formulated by N. A. Umov states that 

 
gW

d d
t



 


= −   = −  

   n , (1.67) 

where d d = n  is the directional unit surface area, and n  is the unit vector of the outward 

normal to the surface. On the other hand 

 
g

g

V

W
w dV

t


=

  . (1.68) 

According to the Gauss theorem applied to the vector field of vector   

W

V

d



on on
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 div dV d


 =   n , (1.69) 

where the flux of vector   is directed outside of the volume. Comparing expressions (1.68), 

(1.67) and (1.69) we conclude that 
gw div= −  . This relation reflects the fact that in our case 

the convention is accepted that incoming flux of vector   is positive. Using the expressions 

(1.65) and (1.67) we arrive at relation 

 
g

g u

W
d w d

t
 

 


= −   = − 

  n n n , (1.70) 

where from the condition follows for the energy flux being positive 

 0g uw  n n . (1.71) 

At the same time the condition (see (1.7)) has to be fulfilled 

 0g g gw u=  f . (1.72) 

The energy flow is also positive if both inequalities are reversed. In the case that one of these 

inequalities is not fulfilled, the energy flux is negative (energy flows out of the system). Given 

that expressions for the energy flux densities ggw  are known from Section 1.4, positive direc-

tions of the generalized velocities (of vector un ) have to be chosen for applying the concept of 

directional energy flow. This can be done by establishing a certain sign convention. 

1.5.2 Sign Convention 

Defining the signs for generalized displacements and velocities having different physical nature 

can be arbitrary, as long as these definitions are used consistently. Once the positive direction 

of a generalized velocity is chosen, the positive direction of corresponding generalized force 

must result in the positive direction of energy flow in accordance with inequality (1.72). 

 

Figure 1.10: Illustration of the sign convention for the tensile and shear stress. 

(a) (b)

S

T

shearS
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We accept the following rule of sign common for theory of elasticity and for mechanical and 

electrical engineering. For the acoustic field related quantities the rarefication will be consid-

ered as positive and compression – as negative. The tensile strain will be considered as positive. 

The shear deformations will be considered positive, if they result in decreasing the angle be-

tween coordinate axes compared with their initial state. Accordingly, the mechanical tensile 

stresses are positive ( 0TS  ) and the shear stresses that form a couple in the clockwise direc-

tion (Figure 1.10). Under the accepted rule of signs displacement of the mechanical system 

surface directed towards the external normal and the forces directed likewise or under sharp 

angle to the normal must be considered as conventionally positive, as illustrated in Figure 1.11 

with example of a bar.  

 

Figure 1.11: Illustration of the sign convention for displacement and bending moment. 

The rule of signs for bending moments is illustrated in Figure 1.11 (b) with example of a beam 

under flexure. If the bending is produced with curvature convex downwards (which is positive), 

the moment is positive in the clockwise direction to the left of a cross section of the beam and 

in the counterclockwise direction to the right of a cross section. If the bending is produced with 

curvature convex upwards, the sign of curvature and the positive moments will change direc-

tion. 

Increase of charge density inside a volume and direction of the electric intensity that yields 

a charge increase are also considered to be positive. According to the standard for the electrical 

engineering passive sign convention (PSC), the direction of current into the positive terminal 

of a component of a system and the voltage vector across its input that is pointed to the terminal 

are positive. As a result, the energy flow enters this part of the system, which thus presents a 

load for an external energy source (active element of the system). This situation is illustrated 

with Figure 1.12, where the source of electrical energy is also shown. Suppose that the refer-

enced positive direction of the current is indicated by the unit vector in . If to formally assume 

nu

0 u f f 0 u f f

n u

0M  0M 

r

(a) (b)

z
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that the outer normal to an element of the system is directed outside of its terminal along the 

wire, as it is shown in the figure by unit vectors n , then on the input of passive element 

0i  n n .  

 

Figure 1.12: The sign convention for direction of current. 

As the energy flux through this input 0el pw iv=   by the sign convention, the condition (1.71) 

is met, and the energy flows into the element. On the output of the active element 0i  n n . 

The current that is flowing out of the positive terminal must be considered as negative. Accord-

ing to the second Kirchhoff’s rule 0a pv v+ = , and a pv v= − . Thus 0el aw iv=   and the sign 

of inequality (1.71) is reversed. This means that the energy flows out of the active element. In 

this situation the element, out of which energy flows, is a source of energy for the element, in 

which energy enters and which can be considered as a load. 

The sign convention and considerations regarding direction of energy flow used in this 

example can be generalized to different energy forms, if to replace current with a generalized 

velocity and voltage with a generalized force. 

The sign convention applies to alternating processes. Being defined for some moment of 

time (for example, for the first half of a cycle), the direction of energy flow does not change 

because both the generalized velocities and forces reverse directions simultaneously in the 

course of vibration. 

Consider examples that illustrate directional flow of energy. 

1.5.3 Examples Illustrating Directional Energy Flow 

1. Longitudinal deformation of a bar by the forces acting on its ends (Figure 1.13). 

In the case shown in Figure 1.13 (a) the bar is in the phase of extension ( 0 0u  , 1 0u  ), and 

forces acting on the ends are tensile ( 0 0f  , 0lf  ). The energy flows enter the bar through 

n i

Z

n

aV pV
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both ends according to the condition (1.71). In the case (b) the bar experiences compression on 

the both ends ( 0 0u  , 0lu  ), and the forces are tensile on the left end ( 0 0f  ) and compres-

sive on the right ( 0lf  ). According to the condition (1.71) the energy enters the bar through 

the right end and flows away through the left end. The general rule is that change of sign of 

either strain or stress reverses direction of the energy flow, whereas simultaneous change of 

signs of both quantities does not change direction of flow. 

 

Figure 1.13: Directional energy flow of the longitudinal deformation of a bar. 

2. “Horse and carriage” example (Figure 1.14). 

 

Figure 1.14: Energy flow in the “horse and carriage” situation. 

Consider the system of two bodies connected mechanically with a rigid truss (or rod), in 

which one of the bodies tows another with velocity u . The acting force Lf  is applied to the 

“carriage”, and to the “horse” is applied the reaction force Rf . According to Newton’s third law

R L= −f f . Under action of these forces the truss experiences tension on the both ends, as shown 

in Figure 1.12 (b), because the reactive forces acting on the ends of the truss are equal and 

opposite to the forces Rf  
and Lf , correspondingly. By the condition (1.71) the energy flows 

out of “horse” through the truss and into the “carriage”. This is shown by direction of vector 

  in Figure 1.14. Thus, the “horse”, as a body that produces outgoing energy flow, is the 

source of mechanical energy, and the “carriage” that consumes this energy is the mechanical 

load. 

nou n

(a) (b)
lfof

lu nn
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3. Electromechanical energy flow (Figure 1.15) 

Expression for the electromechanical energy flux is, 
em gW vu n= , where v is the voltage on the 

electric part of a transducer gu  is the generalized velocity of vibration on the mechanical part 

and n is the electromechanical transformation coefficient. Dimension of this quantity is such 

that the term vn  has the dimension of force, emf vn= , and the term gu n  has the dimension of 

current, gu n i= . Thus, emW  can be considered either as emW = v i  on the electric part, or as 

emW = em gf v  on the mechanical part. With conventionally positive directions of i , u, 
emf , and 

gv ( ), as shown in Figure 1.15, the flux of the electromechanical energy flows out of electric 

unit 2 and is directed into mechanical unit 4. Thus, the block 2 is the source of electrical energy 

and block 4 is the mechanical load.  

 

Figure 1.15: Illustration of the flow of electromechanical energy. 

In the reversible systems division of elements of a system in the sources and the loads is 

conditional. Source in one situation may become a load in another situation depending on di-

rection of energy flow through the element. A typical example in this respect is the mechanical 

system of a transducer (block 4 in the block diagram of Figure 1.1). In the transmit mode it is a 

load for the electric energy source, and a source of energy for the acoustic field. In the receive 

mode block 4 is the mechanical load for source of the acoustic energy and the source of electric 

energy for block 2. In the equivalent circuits that will be used for describing balance of energies 

in the systems with multiple energy transformations the loads may be represented by the gen-

eralized impedances determined as /g g gZ F U= , where the quantities of the generalized force 

and velocity depend on the form of energy. The two terminal block that represents generalized 

source of energy shown in Figure 1.16 (a) can be replaced following Thevenin’s theorem by 

the equivalent generalized generator with voltage oc gE  and impedance in gZ  shown in Figure 

1.16 (b). According the Thevenin’s theorem the value of voltage equals to the open circuit 

voltage at the terminals, and the impedance is the input impedance of the block measured at 




2

i

u 4emf
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
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terminals under condition that all voltage sources inside the block are short circuited and all 

current sources are open circuited. 

 

Figure 1.16: Generalized equivalent generator. 

The terminology typical for the electrical circuits is used for denoting the generalized quan-

tities, loads and sources of energy (voltage, current, generator, impedance) and for their graph-

ical representation by several reasons. First, the equivalency can be established between param-

eters that determine expressions for energies of different physical nature through their general-

ized variables and those for the electric energy. Second, and the most important is that calcu-

lating technique for the electric networks is well developed and can be applied to calculating 

characteristics of different systems after their operation is described in terms of equivalent elec-

tric circuits. 

1.6 Energy Approaches to Calculating the Transducers 

Considering energy status of an energy converting system, a balance can be made of changing 

its total energy ( kinW + potW ) and incoming and outgoing energy flows based on the energy con-

servation law or on its equivalents. According to the convention accepted all the incoming flows 

must be regarded as positive (with signs (+)) and all the outgoing flows as negative (with signs 

(-)). Thus, due to the energy conservation law 

 ( )g kin g pot g in g out

d
W W W W

dt
+ = −  . (1.73) 

The incoming energy flows can be represented as produced by the sources of energy – gener-

alized equivalent generators. The outgoing flows can be considered as consumed by the loads 

and represented as the generalized impedances. Processes of vibration are considered to be ad-

iabatic, i.e., occurring without exchange of the thermal energy with surroundings. At first we 

a

b

oc gE

in gZ

(a) (b)
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will llustrate using the energy balances with examples of the mechanical (block 4 in Figure 1.1) 

and electrical (block 2) subsystems of a transducer, assuming that they have one degree of free-

dom each, i.e., the energy state of the subsystem depends on a single variable – displacement 

of the reference point o  in the mechanical case and charge q in the electrical. 

1.6.1 Balance of Energies in a Transducer having One Degree of Freedom, Single 

Contour Equivalent Circuit 

1.6.1.1 Transmit Mode 

For the mechanical block the incoming is electromechanical energy flux, emW , and the outgoing 

are the acoustic energy flux, acW , that is generated by vibration of the mechanical system sur-

face, and flux of energy of the mechanical loss, mLW . After converting Eq. (1.73) into the com-

plex form and substituting expressions (1.26), (1.31), (1.34), (1.52) and (1.57) for the energies 

and energy fluxes involved we arrive at the equation 

 
1

eqv mL ac oE

eqv

j M r Z U Vn
j C




 
+ + + = 

 
 

. (1.74) 

The expression in parentheses represents the mechanical impedance 

 
1 E

eqv mL ac mE

eqv

j M r Z Z
j C




+ + + = , (1.75) 

and Eq. (1.74) may be rewritten as 

 
E

m oZ U Vn= . (1.76) 

For the electrical block incoming is the energy of an external electrical source, 
elW VI = , and 

outgoing are the electromechanical energy that flows into the mechanical block and energy of 

the electrical loss. The potential energy is stored in the capacitance. Kinetic energy is absent so 

far as no inductances are involved (the special case of using inductances for tuning the input 

impedance of a transducer will be considered separately). After substituting expressions (1.29)

, (1.40) and (1.52) for the energies and converting to the complex form Eq. (1.73) becomes 

 
1U

e o

eL

I j C V nU
R


 

= + + 
 

. (1.77) 
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Here the first term represents the current that flows through the parallel connection of the ca-

pacitance and resistance of electrical losses, or it would be the total input current if the mechan-

ical system of the transducer was clamped ( 0oU = ). Therefore, the capacitance is marked with 

superscript U to underline that it is the input capacitance of mechanically clamped transducer. 

The second term can be transformed following Eq. (1.76) to the form 

 
2

o

m

n
nU V

Z
=  (1.78) 

that makes it clear that it represents the current flowing through the impedance introduced into 

the electrical side of the transducer as result of transformation of the input impedance of the 

mechanical block. Thus, finally we arrive at the equation 

 
21U

e

eL m

n
I j C V

R Z


 
= + + 
 

, (1.79) 

where from the input impedance of the transducer as a load for the external source of electrical 

energy will be found as 

 

1
21U

in tr e

eL m

V n
Z j C

I R Z


−

 
= = + + 

 
. (1.80) 

The equations (1.74) and (1.79) can be obtained from the electrical circuit that is shown in 

Figure 1.17 under the condition that the electrical elements in the circuit have meaning of the 

equivalent mechanical parameters of a transducer. All the results of calculating produced with 

using this circuit are equivalent to those that can be obtained with the original equations. There-

fore, the circuit is called the equivalent electromechanical circuit of transducer (or just equiva-

lent circuit for brevity). 

 

Figure 1.17: Equivalent electromechanical circuit of one degree of freedom transducer operating 

in the transmit mode. 
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1.6.1.2 Receive Mode 

In the receive mode the transducer is a source of electric energy regarding the input of a system 

of signal processing. Therefore, it can be represented by the equivalent generator, as shown in 

Figure 1.16, which requires for its characterization knowing the electromotive force (voltage 

across the open circuited output of transducer) and impedance of the transducer determined 

between the output terminals. 

For the mechanical block the incoming is the acoustic energy flux, amW  by formula (1.64) 

and the outgoing are the flux of energy of the mechanical loss, mLW , and electromechanical 

energy flux, emW , that is produced by vibration of the mechanical system and by reaction of the 

electrical load that the open circuited electrical block presents that will be denoted ocV . Formula 

(1.53) should read 
me o ocW nU V=  (in this case the energy is called mechanoelectrical due to the 

opposite direction of flow). As the result, Eq. (1.73) being converted to the complex form will 

be 

 
1

eqv mL ac o oc eqvE

eqv

j M r Z U nV F
j C




 
+ + + + = 

 
 

. (1.81) 

For the electrical block incoming is the mechanoelectrical energy. The energy of the elec-

trical loss is the only outgoing flow, due to absence of an electric load. The potential energy is 

stored in the capacitance. The resulting equation is 

 
1U

oc e o

eL

V j C nU
R


 

+ = 
 

. (1.82) 

Due to relation (1/ ) U

eL eR C , it will be found that 

 oc oU

e

n
V U

j C
 , (1.83) 

and after substituting this expression for ocV  into Eq. (1.81) we finally obtain that 

 
21

eqv mL ac o eqvE U

eqv e

n
j M r Z U F

j C j C


 

 
+ + + + = 

 
 

. (1.84) 

The expression in parentheses represents the mechanoelectrical impedance 
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and Eq. (1.84) may be rewritten as 

 E

me o eqvZ U F= . (1.86) 

The Eqs. (1.84) and (1.82) follow from the electrical circuit in Figure 1.18 with elements 

having meaning of the equivalent mechanical and electrical parameters of the equations. This 

circuit is the equivalent circuit of a transducer in the receive mode. Similarity of the equivalent 

circuits of a transducer in the transmit and receive modes reflects the reciprocity of the electro-

mechanical conversion performed by a piezoelectric transducer. 

 

Figure 1.18: Equivalent electromechanical circuit of one degree of freedom transducer operating 

in the receive mode. 

All the necessary calculations regarding operating characteristics of one degree of freedom 

transducers as loads and sources of energy can be made using the equivalent circuits of Figure 

1.17 and Figure 1.18. Determining of the acoustic field related properties of the transducers 

require considering on the separate issues. This will be done in Chapter 6.  

The one degree of freedom approximation for the transducer subsystems is appropriate for 

wide variety of transducers and may cover the most of their practical applications. Although in 

general, the mechanical system of an electroacoustic transducer must be considered as the sys-

tem with multiple degrees of freedom. In other words, the displacement distribution in the me-

chanical system may be represented as a function of a number of independent variables – gen-

eralized coordinates. Thus, for example, if distribution of displacements in the mechanical sys-

tem is represented in the form 
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where { ( )}i r  is a set of linearly independent functions satisfying the boundary conditions for 

the mechanical system, then the quantities i  can be considered as the generalized coordinates 
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for the system. In this case all the energies involved will be expressed through the generalized 

coordinates i  and the generalized velocities 
i .The electrical side of a transducer also may 

have several degrees of freedom (several electrical inputs), though they always have lumped 

parameters, because dimensions of the electromechanical transducers for underwater applica-

tions are much smaller than the electromagnetic wave lengths.  

For treating transducers having multiple degrees of freedom using the energy conservation 

law is not sufficient, and different energy methods must be used. The most general and the most 

powerful of them is the Least Action Principle. 

1.6.2 Energy Approach to Calculating Transducer having Multiple Degrees of Free-

dom 

1.6.2.1 Least Action Variational Principle and Euler Equations 

Equations of motion for a physical system can be derived in the general form (i.e., irrespective 

of a specific coordinate system) from the variational Least Action Principle.4 According to this 

principle the equations of motion of the system may be found from the following condition of 

minimizing the function represented by the integral of the Lagrangian L, of the system taken 

between the fixed initial (at moment 1t ) and final (at moment 2t ) states of the system 

 
2

1
1 2 1 2( , ,...; , ,...) 0

t

t
L dt     = . (1.88) 

The Lagrangian is a function of the generalized coordinates i  and velocities 
i . This function 

has to be determined for a particular system. The equations of motion may be obtained from 

the condition (1.88) by means of calculus of variations and they are known as the Euler equa-

tions4 

 0   ( 1,2,...)
ii

d L L
i

dt 

  
− = = 
 

. (1.89) 

In general, a form of the Euler equations depends on the type of function that describes the state 

of the system. Thus, if the Lagrangian is a function 
x ( , , )xL     from the displacement of 

points, ( , )x t , its time derivative,  , and the derivative in respect to coordinates, x , the Euler 

equations, which in this case is derived from the condition 
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L dxdt     =   (1.90) 

has the form 
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dt x  

     
+ − =  
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. (1.91) 

This equation can be generalized to the case of several spatial coordinates (then the term 

( )x xx L       becomes ( )
ii x xi

x L      ), or to the case of several functions ( , )i x t . The 

latter case involves the system of equations of type of Eq. (1.74) for each of ( , )i x t  functions. 

In order to apply the corresponding Euler equations to a specific system, it is necessary to de-

termine the Lagrangian L or other function (of xL  type) that characterizes the state of the sys-

tem, and to express this function in an explicit form in the system of adopted generalized coor-

dinates. This task is of primary importance in applying the method under consideration to dif-

ferent systems (mechanical, electrical, electromechanical). In principle Lagrangian is a function 

that being used in the Euler equations leads to correct results of solving the particular problems, 

as those that agree with existing experience. Thus, for a conservative system the Lagrangian is 

used in the form 

 kin potL W W= − . (1.92) 

This results in the particular case of the Euler equations that are commonly called the Lagrange 

equations 

 0, 1, 2, . . .
potkin

ii

WWd
i

dt 

 
+ = = 

 
 . (1.93) 

They describe vibrations of a system in the generalized coordinates. 

Based on the energy balance expressed by Eq. (1.73), we suggest the Lagrangian for elec-

troacoustic transducer as a system with multiple energy conversions in the form 

 g kin g pot g in g outL W W W W= − + −  . (1.94) 

It will be seen that using this function throughout this treatment never failed in getting correct 

equations of motion for different modifications of the transduction systems. 

In the case of a non-conservative system that is supplied with external energy eW  under 

action of the generalized forces ( / )i e if W =   , the Lagrange equations are 
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 , 1, 2, . . .
potkin e

i

i ii

WW Wd
f i

dt  

  
+ = = = 

  
 (1.95) 

If a volume element of an elastic body is considered as the system, then 

 x kin pot eL w w w= − + , (1.96) 

where kinw , potw  are the kinetic and potential energies of the volume element; ew  is the energy 

supplied to the volume element by external action. The energies kinw , potw , ew  depend on the 

geometric coordinates. In the most cases kinw  depends only on  , potw  on x , and ew  on  ; 

thus the Euler equations in the form (1.91) are applicable. After substituting the expression 

(1.96) for xL  into Eq. (1.91) the differential equation of motion of the body in geometrical 

coordinates will be obtained as 

 
potkin e

x

ww wd

dt x  

    
− =  

     
. (1.97) 

At ( / ) 0ew   =  this equation describes free vibration of the body. 

Thus, we see that all the problems of vibration of both transducer as a whole and particular 

mechanical systems employed in the transducers can be solved by using the energy based ap-

proach to deriving equations of motion regardless of coordinate systems, which is convenient 

for a particular case – generalized or geometrical. 

1.6.2.2 Multi contour Equivalent Electromechanical Circuits 

In order to obtain equations that describe vibration of the mechanical system of a transducer 

out of the general Euler equation (1.89), all the energies involved into expression (1.94) for the 

Lagrangian must be determined. How it is done can be demonstrated with an example of the 

kinetic energy. After substituting expression (1.87) for ( r)  into the general formula for the 

kinetic energy 

 
21

( ) ( )
2

kin

V

W dV =  r r  (1.98) 

will be obtained 

 

2

1 1 1

1 1
( ) , , 1, 2, . . . ,

2 2

N N N

kin i i il i l

i i lV

W dV M i l N   
= = =

 
= = = 

 
  r , (1.99) 
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where (1/ )( / )il i kin lM W =    can be considered as the equivalent masses. In the case that 

functions ( )i r  are orthogonal (for example, if they form a system of eigenfunctions for the 

problem of mechanical system vibration), the mutual terms with i l  disappear, and 

 21
, 1, 2, . . . ,

2

N

kin ii i

i

W M i N= = . (1.100) 

Expressions for all the other energies in formula (1.94) for the Lagrangian can be represented 

in the analogous way. This will be done in course of considering particular types of the me-

chanical systems. After substituting the Lagrangian into Eq. (1.93) and transferring the result 

to the complex form, we arrive at the set of equations that describe vibration of the transducer 

mechanical system in the transmit mode, 

 
1

, 1, 2, . . . ,eqvi mLi ac i oi iE

eqv i

j M r Z U Vn i N
j C




 
+ + + = = 

 
 

. (1.101) 

Here the equivalent parameters with number i are attributed to the generalized velocity 
i oiU =

. Due to assumed orthogonality of functions i  the equations are independent. 

Equation for the electrical subsystem may be obtained from the energy balance (1.73) in 

the same way as Eq. (1.77) was obtained, but in this case expression (1.53) for 
emW  must be 

replaced by 

 
1

N

em i oi

i

W V nU

=

=  , (1.102) 

where in  is the coefficient of electromechanical transformation determined for the distribution 

of strain according to function i . Thus, the equation will be 

 
1

1 N
U

e i oi

ieL

I j C V nU
R


=

 
= + + 
 

 . (1.103) 

The set of Equations (1.101) and (1.103) is equivalent to the multi contour electrical circuit 

presented in Figure 1.19, elements of which have meaning of the equivalent parameters of a 

transducer. Each contour corresponds to one of generalized velocities and is coupled to the 

electrical side of the transducer by ideal electromechanical transformer. The contours are inde-

pendent as far as the supporting functions i  are orthogonal. Otherwise, the equations will be 

coupled, and the mutual impedances will appear in the contours, between which the coupling 
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exists. The radiation impedances ac iZ  or/and mechanical impedances E

m iZ  will be represented 

in this case as 

 

Figure 1.19: Equivalent multi contour electromechanical circuit of a transducer having multiple 

degrees of freedom in the transmit mode. 

 1( / )aci acii acil i

l i

Z Z z U U


= + , (1.104) 

 ( / )E E

m i m ii m il l i

l i

Z Z z U U


= + , (1.105) 

where E

m iiZ  and ac iiZ  are the self-impedances related to ith mode of vibration, and m ilz , ac ilz  

are the mutual impedances between different modes of vibration. Examples of calculating these 

impedances for particular transducer types are considered in Chapter 4 and Chapter 6. Compu-

tational problems of calculating the transducers parameters, and clarity of interpretation of the 

results obtained depend significantly on how the supporting functions are determined. The right 

choice of the set of supporting functions is one of the main problems in application of the energy 

approach to calculating the transducers. 

Modification of the equivalent multi contour circuit for the receive mode of operation can 

be obtained following the procedure used for deriving the circuit in Figure 1.18. As the result 

the equivalent forces eqv iF  that correspond to the modes of vibration i  must be inserted in the 

contours in series with the radiation impedances ac iZ . 

In conclusion it must be reminded that in this chapter the energy approach is described for 

calculating parameters of a transducer as an electromechanical device, for which mechanical or 
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acoustic load is known. In order to complete theoretical analysis of the transducer as electroa-

coustic device, the radiation problem for the transducer must be solved (the Acoustic Subsystem 

of the transducer must be considered). Analysis of the Acoustic Subsystem of the transducer 

must result in determining the acoustic load and equivalent force acting on the transducer sur-

face and in determining the spatial distribution of the radiated energy, i.e., in determining the 

directional properties of the transducer. The general analysis of the Acoustic Subsystems of the 

transducers is performed in Chapter 6. Both aspects of the transducer treatment in this respect 

will be illustrated in the next chapter with examples of one degree of freedom transducers. 
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CHAPTER 2 

DESIGNING TRANSDUCERS 

2.1 One Degree of Freedom Transducers 

Representation of a transducer as a system with one mechanical degree of freedom, i. e., vibrat-

ing with fixed velocity distribution in the operating frequency range, proves to be a fairly ade-

quate approximation in many, if not to say in the most, practical cases. Thus, in the case of a 

transducer operating in vicinity of its resonance frequency (usually for projectors and electro-

mechanical resonators) the mode of vibration of mechanical system can be considered as close 

to that, which takes place at resonance frequency. Piezoceramic spheres and short rings under 

uniform electrical excitation and uniform loading can be considered as uniformly vibrating 

(pulsating) by the symmetry considerations. For the transducers (mostly receivers) that employ 

flexural vibrations of various mechanical systems approximation for the modes of vibration at 

frequencies below the first resonance can be obtained in the form of static deflection under the 

action of correspondingly distributed forces according to Rayleigh’s method1. 

In this chapter several examples of widely used transducers having one degree of freedom 

will be considered with the twofold goal: to obtain the data that are necessary for calculating 

transducers of this kind, and to formulate the problems of designing the general transducer types 

with their examples. 

2.2 Spherical Transducer 

Consider transducer in the shape of a thin spherical shell made of piezoelectric ceramics fully 

electroded on the inner and outer surfaces and poled in the radial direction (in direction of axis 

3 of the crystallographic coordinate system), as shown in Figure 2.1. Under the assumption that 

2t a , where a  is the average radius of the shell, and that the inner and outer surfaces of the 

shell are free of normal stresses, it can be concluded that in the body of the piezoelement 3 0T =  

and 3 /E V t= . Due to symmetry 1 2T T= , all the shear stresses are zero, 4 5 6 0T T T= = =  and 

the “working” deformations are the strain in the circumferential direction, 1 2S S= , which will 

be found as 
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2

o oa a
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   



+ −
= = = . (2.1) 

 

Figure 2.1: Spherical transducer configuration. 

The piezoelectric equations with T  and 3E  as independent variables in this case become 

 ( )1 2 11 12 1 31 3

E ES S s s T d E= = + + , (2.2) 

 3 12 13 1 33 3( )E ES s s T d E= + + , (2.3) 

 3 31 1 33 32 TD d T E= + . (2.4) 

From these equations we obtain 

 1,2

2

31 31
3 1 33 3 1 33 3

11 12 33 11 12

2 2
1 ( )

( )

ST E

E E T E E

d d
D S D S E

s s s s
 



 
= + − = + 

+ + 
, (2.5) 

where 

 31
33 1 1

11 12

2
( )E

E E

d
D S S

s s
=

+
 (2.6) 

is the charge density at 3 0E = , 

 
2

231

33 11 12

2

( )
pT E E

d
k

s s
=

+
 (2.7) 

is the planar coupling coefficient (square) for a piezoceramic material, and 

 1,2 2

33 33(1 )
S T

pk = −  (2.8) 

is the dielectric constant of a piezoelement, “blocked” in the direction of deformations 1S  and 

2S . The capacitance of the spherical shell blocked in directions 1 and 2 is 

 1,2 2 2

334 (1 ) /
S T

e pC a k t = − . (2.9) 
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The energy status of the pulsating spherical shell is as follows. The kinetic energy is 

 2 2

0 0

1 1

2 2
km

V

W dV M = = . (2.10) 

Thus, the equivalent mass of the shell is equal to total mass 24eqvM M a t = = . The potential 

energy of the shell at 3 0E =  is 

 2

1 1 2 2 1 1

1 1
( ) 8

2 2

E

pot

V

W S T S T dV a t S T= + = . (2.11) 

After substituting 1T  from Eq. (2.2) at 3 0E =  and 1 /oS a=  we arrive at 
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11 12

1 8

2

E

pot E E
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W

s s


=

+
, (2.12) 

and the equivalent rigidity of the spherical shell is 

 
11 12

1 8E

eqv E E E

eqw

t
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C s s


= =

+
. (2.13) 

The resonance frequency of the transducer now will be obtained as 

 
111

1 1 2

12 2
r EE E

eqv eqv

f
M C a s   

= =
−

, (2.14) 

where it is denoted 1 12 11/E E Es s = − , as analog of the Poisson’s ratio for the piezoelectric ceram-

ics. 

For determining the electromechanical energy of the pulsating sphere at first the density of 

energy must be found in the way analogous to obtaining formula (1.48) as 

 31
1 3 3 3

11 12

21 1

2 2

E

em E E

d
w S E D E

s s
= =

+
 (2.15) 

(the charge density at 3 0E = , 3

ED , is substituted according to relation (2.5)). By integrating 

over the volume of sphere the total energy will be obtained as 

 3 3

1 1

2 2

E

em o

V

W D E dV n V= =  (2.16) 

and after substituting 3

ED , 1 /oS a=  and 3 /E V t= , we arrive at expression for the electro-

mechanical transformation coefficient 
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The resistances of the electrical and mechanical losses are according to formulas (1.37) 

and (1.39) 

 
1,2

1 1
,

tan
mL eLE S

m m e e

r R
C Q C  

= = . (2.18) 

Now it remains to determine the sound field related parameters of the spherical transducer 

in order to complete the equivalent circuit of the transducer as an electromechanical device 

loaded by the radiation impedance acZ . To complete analysis of the transducer as an electroa-

coustic device a link must be provided between the transducer surface velocity, 
0 0U = , and 

the generated acoustic field, ( )sP r , in the transmit mode; and equivalent force eqvF must be 

determined that characterizes acoustic field as a source of energy for the transducer in receive 

mode of operation. 

The spherical transducer presents an ideal example for illustrating statement of the radia-

tion problems for transducers, because solution for the acoustic field generated by a pulsating 

sphere is readily available in literature (see, for example, Refs. 2, 3). The general solution for 

sound pressure radiated by the pulsating sphere is 

 ( ) jkrB
P r e

r

−= , (2.19) 

where quantity B must be determined from the condition that velocity on the surface of the 

sphere is ( ) oU a U= , i. e., 

 o

r a

P
j U

r


=


− =


. (2.20) 

After determining the quantity B it will be obtained from Eq. (2.19) that 
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. (2.21) 

Comparing expressions (2.21) and (1.55) we conclude that in the case of the pulsating sphere 
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After integrating over surface of the sphere in the expression (1.56) at r a =  and ( ) 1r  =  the 

radiation impedance will be obtained as 
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 (2.23) 

where S  is the surface area of the sphere and r  and r  are the dimensionless coefficients, 

dependences of which on the wave dimension of a transducer, ka = 2a , are shown in Figure 

2.2. At values of ka  0.3 

 
34ac acx a M   = , (2.24) 
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Figure 2.2: The dimensionless coefficients of the radiation impedance of a spherical transducer 

and diffraction coefficient 

In the case that the wave size of the sphere is small ( 0ka→ ), it follows from expression (2.21) 

that sound pressure generated by the small sphere, 0P , is 

 
( /2) 2

0

( ) j krw
o

c
P e U ka

r

 − −= , (2.26) 

or, if to denote 24o V
U a U =  as the volume velocity (or the source strength), 

difk

r
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where 2 / k =  is the wavelength. In this form the formula for sound pressure is valid for all 

the sources with dimensions much smaller than wavelength (simple sources). 

We define the ratio of the sound pressure generated by an arbitrary transducer to the sound 

pressure generated by the small pulsating sphere having the same volume velocity, as the dif-

fraction coefficient of the transducer in the transmit mode, dif tk . Using expressions (2.27) and 

(1.55), we obtain 
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P
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r r

r , (2.28) 

where S  is the radiating surface of the transducer. In the case of the spherical transducer 

 ( arctan )

2

1 1

1 1 ( )

jka j ka ka

dif tk e e
jka ka

−= =
+ +

. (2.29) 

The function dif tk  is depicted in Figure 2.2. At 1ka , 1/dif tk ka→ . 

Thus, all the parameters of the equivalent electromechanical circuit of the transducer are 

determined, and after calculating velocity of vibration of the transducer surface the sound pres-

sure in the acoustic field generated by these vibrations is determined as well. Calculation of the 

transducer in the transmit mode is completed. 

For calculating transducer in the receive mode the value of eqvF , the “mechanomotive 

force” of the acoustic field as the source of energy for the transducer, must be determined by 

solving the problem of diffraction of plane acoustic wave by the transducer surface. So far as 

the radiation problem is solved, this can be done by using the reciprocity principle. We will 

perform the treatment for transducer surface having a general configuration, because this will 

be useful for further analysis. 

From the general definition (1.61) for the equivalent force 

 ( ) ( )eqv uF P d 



=  r r  (2.30) 

follows that in the case that dimensions of a transducer are small compared with the wavelength 

of sound, i.e. 0( )uP P r  ( 0P  is the sound pressure in the propagating plane wave), 
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 0 0( )eqv avF P d P S 



=  = r . (2.31) 

Here the average transducer surface avS  is introduced as 

 ( )avS d 



=  r . (2.32) 

If the dimensions of the transducer are comparable with the wavelength, the equivalent force 

may be represented as 

 0eqv dif rF P k S= , (2.33) 

where dif rk  is the diffraction coefficient in the receive mode, and S  is the radiating surface 

area of the transducer. In the case of sphere 
24avS S a= = . 

Consider the mechanoacoustical system presented in Figure 1.7 that consists of two trans-

ducers: the transducer under consideration (#1) with surface  , on which the distribution of 

velocity is specified as ( ) ( )oU U  =r r , and the pulsating sphere of small radius a (#2) located 

at a large distance R from the transducer. One of the formulations of the reciprocity principle is 

as follows: the pressure at a point 1 (sound pressure 1( )uP r  acting at the element d  of the 

blocked surface  ) due to a source in point 2 (sphere vibrating with the volume velocity 

2

2
4sphV

U U a=  ) is equal to the pressure at point 2 (at the blocked surface of the sphere) due 

to a source in point 1 (element d  of transducer 1 with the volume velocity 

1
( ) ( )oV

U U d = r r ) everything else being equal, i. e., 
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


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r

r
. (2.34) 

The sound pressure 0P  generated by a pulsating sphere of a small radius in the free field is 

determined by the expression (2.27). The sound pressure generated in the free field by an 

elementary source d  located on a blocked surface  , was denoted in formula (1.55) as 

( , ) ( , ) ( )d oP R U P R d    = r r r , where P  is the sound pressure generated by a point source 

on the transducer surface having unit velocity. As the blocked sphere of a small radius does not 

disturb the acoustic field, it should be 2u dP P = . After substituting the values 

2 ( , ) ( )u oP U P R d  = r r , 
1

( )oV
U U d = r  and 

2V
U  determined from formula (2.27) into 

expression (2.34) written as 1 21 2u uV V
P U P U= , we obtain 
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After integrating both parts of this expression over the surface   and taking into account 

formula (1.61) for eqvF  and expression (1.55) for the sound pressure generated by the vibrating 

surface   at distance R 
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where R=r , we arrive at the following relation 

 02 ( , )eqvF P  =  r . (2.37) 

Here, 0P  is the sound pressure in the plane wave generated by the pulsating sphere. Given that 

the pulsating sphere is located at arbitrarily large distance R, 0P  can be considered as the sound 

pressure of the plane acoustic wave in the free field at the transducer location. The function 

( , ) r  is the known diffraction function obtained from the solution of the radiation problem. 

By comparing expressions (2.37) and (2.33) the diffraction coefficient for the transducer in the 

receive mode will be obtained in the form 

 
2 ( , )

dif rk
S

 



=
r

 (2.38) 

that coincides with expression (2.28) for the difraction coefficient, dif tk , introduced for the 

transducer in the transmit mode. Therefore the distunguishing subscripts t and r will be further 

omitted. The result obtained is valid for an arbitrary configuration and mode of vibration of the 

transducer surface. This is manifestation of the principle of resiprocity. The value of the 

diffraction coefficient for the pulsating sphere is given by expression (2.29). 

2.3 Cylindrical Transducers 

The cylindrical transducer shown in Figure 2.3 (a) is supposed to be much longer than the 

wavelength in the operating frequency range. It can be made of piezoelectric ceramic rings in 

two variants of design: solid radially polarized ring (Figure 2.3 (b)) and segmented ring ce-

mented out of staves having electrodes on their sides and polarized in the circumferential di-

rection (Figure 2.3 (c)). The following assumptions will be made: the rings are thin and short , 
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i. e., , 2t h a ; the surfaces of the ring are free of stress, 3 2 0T T= = , and because of small t 

and h these stress can be considered zero throughout the volume of the ring; the electric field 

in the rings is uniform (variation of the electrical field in the radial direction can be neglected 

because of the small thickness of the rings); the acoustic load is uniform as the radiation is 

supposed to be axially symmetric. The strength of the electric field in the rings at the radial and 

circumferential polarizations is 3 /E V t=  and 3 /E V = , respectively. Under the assumptions 

made the ring undergoes uniform radial vibrations, i. e., 0 = . The strain in the circumferen-

tial direction will be found as 

 
2 ( ) 2

2

o oa a
S

a a

   



+ −
= =  (2.39) 

and the strains in other directions are idle (as their stress counterparts are zeros) and can be 

neglected. As the only non-zero stress in the ring is the stress in circumferential direction, the 

piezoelectric equations in this case can be simplified to the form 

 3 3

E

i ii i iS s T d E= + , (2.40) 

 3 3 33 3

T

i iD d T E= + , (2.41) 

where 1i =  for the radially poled ring, and 3i =  for the circumferentially poled. The stress iT  

being determined from equation (2.40) is 

 3
3

1 i
i iE E

ii ii

d
T S E

s s
= −  . (2.42) 

 

Figure 2.3: (a) Cylindrical transducer made of piezoelectric ceramics rings: h is the height, t is the 

thickness of the ring, 2a is the average diameter, V is the applied voltage, E is the electrical field 

strength, and oU  is the velocity of reference point; (b) radially poled and (c) circumferentially 

poled rings. 
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After substituting this expression into equation (2.41) we obtain 

 3
3 33 3

iSi
iE

ii

d
D S E

s
= + , (2.43) 

where 2

33 33 3(1 )iS T

ik = −  is the dielectric constant of a piezoelectric element blocked in the di-

rection of the only “working” deformation iS  ( 0)i iS T   and 
2 2

3 3 33/ E T

i i iik d s =  is the coupling 

coefficient of piezoelectric ceramics. 

In determining the energy status of the ring, the kinetic energy is 

 

2
2 0
0

1
2 2

kinW V M


 = = , (2.44) 

where 
2M a h =  is the total mass of the ring. The strain (potential) energy of the ring at 

3 0E =  is 

 

2

2

1 2

2 E

ii

E E

pot i i

V

o

s

th
W S T dV

a


= = , (2.45) 

and the equivalent compliance of the ring is 

 
2

E
E ii
eqv

as
C

th
= . (2.46) 

Thus, the resonance frequency of a ring is 

 
1 1

2 2
r

E E

eqv eqv ii

f
M C a s  

= = . (2.47) 

According to expression (2.16) the electromechanical energy, emW , can be represented as 

 3 3 0
1 1
2 2

E

em

V

dVW D E Vn= = . (2.48) 

After substituting 3 3 /E E

i i iiD d S s=  from (2.43), and values 3 /E V t=  and 3 /E V =  for vari-

ants of the radial and circumferential polarizations we obtain the electromechanical transfor-

mation coefficients 1n  and 3n  for these variants 

 31 33
1 3

11 33

2 2
,

E E

d h d h t
n n

s s

 


= = . (2.49) 

Capacitances of the blocked (in terms of the working deformations iS ) rings are 
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 3 2

33 33 2

2
(1 )S T

e

aht
C k





= − . (2.50) 

The resistances of the electrical and mechanical losses being presented by Eq. (2.18), as quan-

tities inherent in the capacitance and the equivalent compliance, are 

 
1 1

, tan
tani

eL eS

ee e

R
QC


 

= = , (2.51) 

 
1

tan , tanE

mL m m m

m

r C
Q

  = = , (2.52) 

where eQ  and mQ  are the electrical and mechanical quality factors of the piezoelectric material. 

Thus, all the parameters of the equivalent electromechanical circuit of a ring resonator (piezo-

electric element vibrating without an acoustical load) are determined. 

2.3.1 Acoustic Field of the Infinitely Long Cylindrical Transducer 

General analysis of radiation of the cylindrical transducers of different kind is made in Section 

6.3. If to suppose that the cylindrical transducer is built from a number of identical rings and it 

is long compared to the wavelength in water, then the acoustic load can be considered to be 

uniform by length and the radiation impedance per unit height of the transducer can be found 

from solution for acoustic field radiated by the infinitely long cylinder. In this case the problem 

is two-dimensional (independent of the z coordinate). Solution for this problem is described in 

Ref.2. The resulting expressions involve Bessel functions. All the information regarding prop-

erties of the Bessel functions required for this solution is presented in Ref 2. 

The sound pressure in the wave radiating by the infinitely long cylinder is 

 0 0( ) [ ( ) ( )]P r A J kr j N kr= − . (2.53) 

After applying the boundary condition 

 1 1

1
[ ( ) ( )] o

r a

P k
A J ka j N ka U

j r j 
=


− = − =


 (2.54) 

and determining expression for constant A the sound pressure will be obtained in the form 

 0 0
0

1 1

( ) ( )
( )

( ) ( )

J kr j N kr
P r j cU

J ka j N ka


−
=

−
. (2.55) 
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Here, 0 ( )J x , 1( )J x  and 0 ( )N x , 1( )N x  are the Bessel and Neumann functions of the zero and 

first order, respectively. 

The radiation impedance per unit height can be determined due to symmetry as 

 0 0

1 1

( ) ( )( )
( ) 2 2

( ) ( )
ac

o

J ka jN kaP a
Z ka a j c a

U J ka jN ka
  

−
= =

−
, (2.56) 

 

Figure 2.4: Dimensionless coefficients of the components of radiation impedance and diffraction 

coefficient for the cylindrical transducer. 

or 

  ( ) 2 [ ( ) ( )]ac ac ac r rZ ka r jx c a ka j ka   = + = + . (2.57) 

The non-dimensional coefficients r  and r  of radiation impedance are 

 0 1 0 1

2 2 (2) 2

1 1 1 1

( ) ( ) ( ) ( )2 1
( ) , ( )

( ) ( ) ( ) ( )
r r

J ka J ka N ka N ka
ka ka

ka J ka N ka J ka N ka
 



+
= =

+ +
. (2.58) 

These functions of ka are plotted in Figure 2.4. 

In the “long-wave“ approximation (at 1ka ) 

 ( ) / 2, ( ) ln(1/ )r rka ka ka ka ka    , (2.59) 

and per unit height of transducer 

 
2(2 )

( ) ( )
2

ac w

a
r ka c

 



 , (2.60) 

difk
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2( ) [2 ln(1/ )]ac w acx ka a ka m    = , (2.61) 

where 2 ln(1/ )ac wm M ka=  and 
2

w wM a =  is the mass of water in the volume of the cylinder 

per unit length. In the “short-wave” limit (at ka→ ) 

 
( /4)

0

1 1

2 1
( )

( ) ( )

j krP r j cU e
kr J ka j N ka




− −=
−

. (2.62) 

Sound pressure generated by the cylinder of very small radius (cylindrical simple source) will 

be obtained from formula (2.56) taking into consideration that, at 0ka→ , 1( ) 0J ka →  and 

1( ) (2 / )N ka ka→ , as 

 0 0 01
( ) 2 [ ( ) ( )]

2
oka

P r c aU J kr jN ka

 = − . (2.63) 

Given that 2 o V
aU U =  is the volume velocity per unit length (cylindrical source strength), 

this formula can be generalized for a long source having small in respect to wavelength cross 

section (cylindrical simple source) regardless of its geometry and distribution of vibration on 

the surface as 

 0 0 01
( ) [ ( ) ( )]

2 Vka
P r cU J kr jN ka


= − , (2.64) 

where o avV
U U S= . 

Thus, the diffraction coefficient (see Eq. (2.28)) for the cylindrical transducer is 

 
0 1 1

( ) 2 1

( , 1) ( ) ( )

r
dif

r

P r
k j

P r ka ka J ka j N ka
→

→

= =
−

. (2.65) 

And the equivalent force per unit height is (see Eq. (2.33)) 

 0 02eqv dif difF S k P ak P= = . (2.66) 

Here 0P  is the sound pressure in the incident plane wave. The modulus of the diffraction coef-

ficient as function of ka is presented in Figure 2.4. At large ka, 2 /difk ka→  . 

2.3.2 Acoustic Field of the Finite Height Cylindrical Transducer 

Real cylindrical transducers have a finite height. Rigorous solution of the radiation problem is 

available in literature5 for the case that the cylinder is installed flush with the surface of an 

infinitely long rigid cylindrical baffle, as shown in Figure 2.5 
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Figure 2.5: Finite-size cylindrical transducer in the infinite rigid baffle and illustration of the prod-

uct theorem. 

It is noteworthy that the results presented below were obtained under the assumption that 

the surface of the cylinder vibrates uniformly. For the real transducers nonuniformity of radial 

vibration over the height may exist by two reasons. The radial vibration of the comprising rings 

over their height may be nonuniform due to coupled vibrations in their mechanical system, if 

their height to diameter aspect ratio is not small enough (the related issues are considered in 

Chapter 4). On the other hand, if the wave height of the rings is small and they are connected 

in parallel the acoustic interaction between the rings may affect distribution of velocities be-

tween them significantly especially in the frequency range around their resonance frequency 

(the related issues are considered in Chapter 6). 

At uniform radial vibration by height the sound pressure generated by a cylinder in the far 

field is 

 
(2)

1

sin[( sin ) / 2]
( , )

( sin ) / 2cos ( cos )

jkR

ochU kh e
P R

kh RH ka

 


  

−

= −   , (2.67) 

where 
(2)

1 1 1( ) ( ) ( )H x J x jN x= −  is the Hankel function of the second kind. The sound pressure 

on the acoustic axis at 0 =  

 
(2)

1

( ,0)
( )

jkR

ochU e
P R

RH ka





−

= −  . (2.68) 

Sound pressure generated by a cylinder of small diameter at ka l  (given that 

(2)

1 ( 1) 2 /H ka j ka ) is 

(c)(b)(a)

0U

h h

( )H  ( )hH  ( )aH =

( )aH ( )hH 


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( /2)sin[( sin ) / 2]

( , )
2 ( sin ) / 2

kR

o

ka kh e
P R c hU

kh R


 



− −

=   . (2.69) 

Sound pressure generated by a short ring at kh l  

 
(2)

1

( , )
cos ( cos )

jkR

ochU e
P R

RH ka




  

−

= −  , (2.70) 

Thus, the directional factor of the transducer, ( ) ( , ) / ( ,0)H P R P R = , is 

 
(2)

1

(2) 1 1
1

( ) sin[( sin ) / 2]
( ) ( ) ( )

( sin ) / 2cos ( cos )
h aka kh

H ka kh
H H H

khH ka
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=  =  , (2.71) 

where 

 
(2)

1

(2)

1

( )
( )

cos ( cos )
a

H ka
H

H ka


 
=  (2.72) 

is the directional factor of a short ring of radius a, and 

 
sin[( sin ) / 2]

( )
( sin ) / 2

h

kh
H

kh





=  (2.73) 

is the directional factor of a thin cylinder of height h. 

Expression (2.71) is an illustration of the product theorem in the theory of directivity. The 

above results remain valid for a cylinder without the cylindrical baffle, if its height is greater 

than the wavelength, 1kh  (practically at h  ). In the case that the cylinder without the 

cylindrical baffle has smaller height the radiation problem becomes much more complicated 

due to effect of diffraction on its ends. The results obtained for relatively short cylinders are 

considered in Chapter 6. 

2.4 Uniform Bar Transducers 

Consider two variants of transducers in the shape of a longitudinally vibrating thin bar: with 

electrodes on the sides (transverse piezoeffect) and with the electrodes embedded into bar (lon-

gitudinal piezoeffect). Their sketches are shown in Figure 2.6. The assumptions are made that 

the lateral dimensions of the bars are small compared with their length (w, t l ), and sides and 

ends of the bars are free of stress. Vibration of the bar is one-dimensional. The only non-zero 

stress in the bar is the stress in the longitudinal direction, as on the sides of the bar 2 3 0T T= =
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and due to its infinitesimal cross sections they are zeros inside the bar. It is also assumed that 

in the case of Figure 2.6 (b) the number of segments, N, of which bar is cemented, is large 

enough for considering that electric field inside the segments practically does not change6 (it 

will be shown in Chapter 5 that N > 6 is enough ). Under this assumption the piezoelectric 

equations can be used in the form of Eqs. (2.40) and (2.41) that are reproduced here as Eqs. 

(2.74) and (2.75) with subscripts i = 1 for the transverse and i = 3 for the longitudinal effects 

 3 3

E

i ii i iS s T d E= + , (2.74) 

 3 3 33 3

T

i iD d T E= + . (2.75) 

The solution for free vibration of the thin bar is known.1 The normal modes of vibration 

are 

 ( ) cos( / ), 1,2,...omx xm l m  = = , (2.76) 

and strains in the longitudinal direction are 

 / ( / )sin( / )i omS d dx m l xm l   = = − . (2.77) 

 

Figure 2.6: Longitudinally vibrating piezoceramic bars: (a) side-electroded design, transverse pi-

ezoeffect and (b) segmented design, longitudinal piezoeffect. 

The sign (–) is in accordance with the convention that tensile strains are positive (they corre-

spond to outside displacements of the ends). In the context of determining the equivalent pa-

rameters the sign can be omitted. 

In general, the vibrating bar must be treated as a system with multiple degrees of freedom, 

if to consider its behavior in a broad frequency range. But it can be assumed that in the vicinity 

of each natural resonance frequency the corresponding resonance mode of vibration dominates, 

and the bar can be considered as one degree of freedom system. Equivalent parameters of the 
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bars at different normal modes of vibration will be found from expressions for energies associ-

ated with the vibrations.  

Thus, the equivalent mass of the bar for a given normal mode, being found from the ex-

pression for kinetic energy 

 
2 2 2 2

0

1 1 1
cos ( / )

2 2 2

l

kin om om om eqvm

V

W dV w m x l dx M    = = =  , (2.78) 

is / 2eqvmM M= , where M wtl=  is the total mass of the bar. 

The equivalent rigidity of the resonator will be found from the expression for potential 

energy, in which the strain is determined by formula (2.77) and the stress at E3 = 0 is 

1 /E E

i i iiT S s= , as follows from Eq. (2.74). Thus, 

 

2 22 2

0

1

2 2 22

l
om omE E E

pot i i eqvmE

ii

wtm
W wt T S dx K

s l
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= = =  (2.79) 

and 

 
2 2

1/
2

E E

eqvm eqvm E

ii

wtm
K C

s l


= = . (2.80) 

Note that this value of the rigidity is valid for the bar with full size electrodes that cover all the 

side surfaces (with all segments active in the segmented design). In the case that the electrodes 

are partial different values for elastic constant must be used, when integrating over parts of the 

bar free of electrodes. If these parts were not polarized, the Young’s modulus of non-polarized 

ceramics must be used. If they were polarized and the electrodes were removed afterwards, the 

elastic constant 
D

iis  (at condition that charge density is zero) should be used. This must be taken 

into consideration in determining the accurate values of the resonance frequencies of the bars 

by formula 

 1/ 2 / 2E E

rm eqvm eqvm iif M C m l s = = , (2.81) 

where ( )1/ E E

ii is c =  is the velocity of propagating the longitudinal vibration in a piezoceram-

ics bar transversely (at i = 1) or longitudinally (at i = 3) polarized. After the capacitances of the 

bars is determined, as 

 1 2

33 31(1 ) /S T

elC k wl t= −  and 3 2 2 2

33 33 33 33(1 ) / (1 ) /S T T

elC k wtN k wtl = −  = −  , (2.82) 
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the resistances of the electrical and mechanical losses may be found by formulas (2.51). 

Using the general formula for the electromechanical energy, after substituting 3

ED  and 

strain iS  by formulas (2.43) and (2.77), respectively, will be obtained 
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 (2.83) 

From this expression follows that in the case of the side-electroded bar (at 3( ) /E x V t= ) with 

full size unipolar electrodes, the electromechanical transformation coefficient will be 

 31 112 / E

mn d w s=  at 1,3,...m =  and 0mn =  at 2,4,...m = . (2.84) 

In the case of segmented bar with all the segments having length   active and connected as 

shown in Figure 2.6 (b) (at 3 ( ) / /E x V VN l= = ) 

 33 33 33 332 / 2 /E E

mn d wt s d wtN ls= =  at 1,3,...m =  and 0mn =  at 2,4,...m = . (2.85) 

 

Figure 2.7: The normal modes of longitudinal vibrations of a bar with free ends: (a) odd modes, 

(b) even modes. 

Thus, in the case of fully active bars only the odd modes of natural vibrations of the bar can be 

excited electrically. This fact has a simple physical explanation that is illustrated by plots of the 

natural mode shapes in Figure 2.7 for the case of the transverse piezoeffect. If to assume that 
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the bar vibrates under an external action in an even mode, then the charge on the electrodes, 

which is proportional to the strain, will be averaged to zero. At the odd modes the total charge 

remains finite even for the high modes, though it drops relative to those for the first mode. 

Imagine now that the electrodes are divided into two equal parts, and the halves of the electrodes 

are connected electrically in the opposite phase. Then 3( ) /E x V t=  at 0 x  l/2 and 

3 ( ) /E x V t= −  at / 2l x l  . In this case 

 31 114 / E

mn d w s=  at m even and 0mn =  at m odd. (2.86) 

The same explanation regarding excitation of modes with reference to Figure 2.7 remains intact. 

Thus, by switching parts of the electrodes on the bar surface it is possible to excite different 

modes of natural vibration and to change the resonance frequencies of the bar. The most usable 

are the first and third modes of vibration. It is evident from Figure 2.7 that transformation co-

efficient for the third mode can be increased by dividing the electrodes in three parts and con-

necting the neighboring parts in the opposite phase. In this case the destructive effect of chang-

ing sign of the stress along the bar will be eliminated. The corresponding calculation using 

expression (2.83) results in 

 3 31 116 / En d w s= . (2.87) 

It is noteworthy that the equivalent parameters must be used for calculating transducer and 

for predicting its quality only collectively. Their individual values depend on how the position 

of reference point is chosen. But some combinations of the equivalent parameters don’t depend 

on a choice of the reference point. They are inherent in the transducer configuration and can be 

considered as transducer’s figures of merit. 

2.4.1 Effective Coupling Coefficient of a Transducer 

One of important properties of a transducer, which is directly linked to its quality as an energy 

converter, is the effective coupling coefficient that can be defined as7 

 
2 mechanical energy stored in the mode of vibration

total input energy
effk =  (2.88) 

at 0 → . 
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It will be obtained after integrating expressions (1.46) and (1.52) over volume of the bar trans-

ducer that the total electrical energy supplied is 

 ( )21

2
iSS

el e em e om mW W W V C V n= + = + ; (2.89) 

the energy stored in mechanical form in the mode under consideration is 

 
21 1

2 2

E E

pot m om eqvm em m om mW K W V n = = = , (2.90) 

where from 

 / /E

om eqvm mV K n = . (2.91) 

After using expressions (2.89)–(2.91) and definition (2.88), we arrive at the formula for 2

effk  
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eqvm e m

k
K C n

=
+

 (2.92) 

that can be represented for brevity as 
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=

+
, where 

22

i i

E

m eqvmm
c S SE

eqvm e e

n Cn

K C C
 = = . (2.93) 

Formulas (2.93) for the effective coupling coefficient and coefficient c , which will be used 

further for denoting the combination of equivalent electromechanical parameters, being ob-

tained regarding the side-electroded transversely poled and for the segmented longitudinally 

poled bar, are valid for all the one-dimensional piezoelements (for the segmented bar under the 

assumption that number of segments on the half wave length of deformation is large enough). 

Detailed treatment of the effective coupling coefficients of piezoceramic bodies under general 

assumptions regarding their modes of polarization and distribution of deformation will be done 

in Chapter 5. 

The effective coupling coefficients of a bar with full size unipolar electrodes (with all the 

segments connected as shown in Figure 2.6 (b)) for the first and third modes of vibration being 

determined by formulas (2.93) are 

 

2
23

2 2 2 2 2 2 2

3 3 3

8 1
,

1 1 (1 ) / 8

i
cm eff m

i i i

k
k

k m m k k


 
=  =

− + −
. (2.94) 

Thus, for the bar made from PZT-4 ceramics ( 31 0.33k =  and 33 0.7k = ) 1 0.3effk =  and 0.66; 

3 0.1effk =  and 0.28. In the case that the electrodes are divided in three parts and the 
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neighboring parts are connected in opposite phase with transformation coefficient determined 

by formula (2.87) will be obtained that 3 0.3effk =  and 0.66 (it is easy to make sure that in this 

case 1 0effk = ). The same result 2 0.3effk =  and 0.66 will be also obtained for the case that the 

electrodes are divided into two parts and are connected in opposite phase. 

2.5 Mass Loaded Bar Transducer 

Consider transducer that has symmetrical configuration shown in Figure 2.8. Mechanical sys-

tem of the transducer consists of piezoceramic bar loaded by massive identical passive parts. 

 

Figure 2.8: Configuration of the symmetrical mass loaded bar transducer: 1 – piezoceramic bar 

with cross section area cS , 2 – passive “heads” having cross section area hS  and mass hM . 

In the cases (a) and (b) the transverse and longitudinal piezoeffects are used, respectively. 

Due to symmetry the ends of the transducer vibrate with equal velocity 
o oU =  that fully de-

termines the energy status of the mechanical system and allows considering it as one degree of 

freedom system. This is a particular case of the transducers of general type, mechanical systems 

of which are combined of the bars having different lengths and cross section areas. Under the 

assumptions that 1ckl  and 1hkL  (in reality at the conditions that 
3sin ( ) / 6c c ckl kl kl −  

and 
3sin ( ) / 6c c ckl kl kl − , as this will be shown in Chapter 10, deformations of the heads can 

be neglected (they vibrate as a whole with velocity 
o ), distribution of displacements in the 

piezoceramic bar, ( )x , can be assumed to be linear and the strain and stress to be constant, 

 ( ) 2 / , 2 / , 2 / E

o c i o c i o c iix x l S l T l s   = = = . (2.95) 
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The set of piezoelectric equations, Eqs. (2.40) and (2.41), is applicable. Expressions for the 

energies involved and for the equivalent parameters are as follows. The kinetic energy is 
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2 2
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2 / 3 ,
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 (2.96) 

where c  is the density of ceramics and cm  is the mass of the bar. The potential energy is 

 
21 1

, 1/ 4 /
2 2

E E E E

pot i i c c o eqv eqv eqv c c iiW ST S l K K C S l s =  = = = . (2.97) 

The electromechanical energy is 

 3 3

1 1

2 2

E

em c c oW D E S l Vn=  = . (2.98) 

Analogous to Eq. (2.43) 3 3 /E E

i i iiD d S s= ; 3 /E V t=  for the case of the transverse effect (a) and 

3 / cE V l=  for the case of the longitudinal effect with solid end-electroded bar (b). Thus, 

 31 33
(a) (b)

11 33

2 2
, c

E E

c

wd S d
n n

s l s

= = . (2.99) 

The clamped capacitances are (with dielectric constant 2

33 33 3(1 )iS T

ik = −  analogous to Eq.(2.43)) 

 31 2 2

(a) 33 31 (b) 33 33(1 ) / , (1 ) /SS T T

e c e c cC k wl t C k S l  = − = − . (2.100) 

It is easy to check using formulas (2.93) that the effective coupling coefficients are (a) 31effk k=  

and (b) 33effk k= , i. e., the same as the coupling coefficients of the piezoceramics. Actually, this 

result is obvious, because the piezoelement possesses all the mechanical (potential) energy and 

its deformation is uniform. 

The resonance frequency of the transducer being determined by formula 

1/ 2 E

r eqv eqvf M C=  is 
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Usually, ( / 3) 2c hm M  and the formula reduces to 
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Let L be the length of a uniform bar that has the same resonance frequency, / 2c rL c f= . The 

ratio of the lengths cl  and L is 

 
2

2

c c

h

l m

L M
= . (2.103) 

Thus, the same resonance frequency can be obtained with much shorter piezoceramic bar by 

employing the mass loaded design. This is one of the reasons for using such design. Another 

reason is that this can be regarded as a way of matching a bar transducer with acoustic load by 

changing radiation resistance per unit area of the bar cross section. To show this, consider de-

pendence of the radiation impedance of the end surface of a bar from its wave dimensions. We 

will assume for qualitative estimating the effects of transducer loading that the radiating surface 

presents a uniformly vibrating circular piston installed flush with the surface of the absolutely 

rigid plane. This may be considered as an imitation of the situation that the transducer operates 

in a flat array of a large wave size, as shown in Figure 2.9, and its self-radiation impedance is 

considered. (In reality an acoustic interaction between transducers in arrays exists and may 

affect the radiation impedance of a single transducer. These issues will be considered in Chapter 

6.) 

 

Figure 2.9: Bar transducer operating in a rigid baffle of a large wave size. 

The radiation impedance of a circular piston vibrating in the rigid plane is known from 

literature (see, for example, Ref. 8) as 

 ( ) ( )ac ac ac w r rZ r jx c S j  = + = + , (2.104) 

where the dimensionless coefficients of the components of radiation impedance are 
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Here 1J  and 1S  are the Bessel and Struve functions of the first order. In the case that 1ka  

(low frequency approximation) 

 
2( ) / 2, 8( ) / 3r rka ka    , (2.107) 

At 1ka  1r →  , 0r → , and ( )ac wZ c S → . This will be impedance per surface area of 

transducer operating in a large array vibrating in phase. The dimensionless coefficients of radi-

ation impedance are presented in Figure 2.10. 

 

Figure 2.10: Non-dimensional coefficients of radiation impedance of a circular piston vibrating in 

the rigid plane vs. its wave size. 

The diffraction coefficient for the piston-like radiating surface flush with the rigid baffle 

of a large size is 2difk = , because the sound pressure of the incident wave doubles on the rigid 

plane. The assumption can be made for rough estimations that maximum dimensions of the 

radiating surface of a single bar projector in array are / 2 , i. e., / 2ka  . At this value of 

ka 0.81r   and 0.67r = . Thus, the radiation resistance per cross section of uniform bar is 

0.81( )acc wr c= . For the mass loaded bar that has radiating surface of the same size the total 

radiation resistance is 0.81( )ac h w hr c S = . 

One of important characteristics of a transducer in operation around the resonance fre-

quency is the quality factor of its mechanical system acoustically loaded, mwQ . By definition 

 ( ) / 1/ ( )mw r eqv ac r eqv acQ M r C r  = . (2.108) 
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Compare the quality factors of the uniform and mass loaded bar transducers, mwuQ  and mwmLQ  

that have equal resonance frequencies and areas of radiating surfaces, i. e., equal radiation re-

sistances. The equivalent compliances of transducers of these types, eqvuC  and eqvmLC , are de-

termined by formulas (2.80) and (2.97), respectively. Thus, 

 
2

8mwmL eqvu c

mwu eqvmL c h

Q C SL

Q C l S




= =   , (2.109) 

where from follows that the quality factor of the mass loaded transducer can be transformed 

(reduced) by changing proportions of its mechanical system. For example, if ( / ) 2cL l =  and 

the radius of head is twice the radius of ceramics, 0.4mwmL mwuQ Q= . Effects of such transfor-

mation of the quality factor will be discussed in the next chapter. 

2.6 Flexural Type Transducers 

Consider transducers with mechanical systems in the shape of rectangular and circular plates, 

and the cantilever beam that are shown in Figure 2.11. Analysis of transducers of these types in 

this chapter will be restricted by their applications as receivers (hydrophones, accelerometers) 

of small size in comparison with the wavelengths, in which capacity they are predominantly 

used. Therefore, vibrations of the mechanical systems in the frequency range below their first 

resonance are of interest. The assumption is that the mechanical systems are thin, t l , and 

the rectangular plate and cantilever are comprised of the beams having small width, w l . 

Therefore, it is sufficient to consider vibration of the beams. For the circular plates the assump-

tion is that t a  (at least / 1/ 5t a  ). Thus, in all the cases elementary theory of bending is 

applicable. Under these assumptions the modes of vibration of the mechanical systems can be 

used in the form of static deflection under action of uniformly distributed forces according to 

Rayleigh’s method. The modes of static deflection for the mechanical systems shown in Figure 

2.11 can be found in Ref. 9 and in Section 4.5.9. The boundary conditions for the beams and 

circular plate will be assumed to be simply supported, and the end of the cantilever is clamped. 

2.6.1 Rectangular Beam Transducer 

The beam is bimorph, i. e., it is cemented of two identical piezoceramic layers poled through 

their thickness. The way the poling vectors are directed in the layers and the way the electrodes 
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on their surfaces are connected in order to make the plates active under the flexural deformation 

are shown in Figure 2.12. Because of the small thickness and width of a beam, it can be assumed 

 

Figure 2.11: Mechanical systems of the flexural type transducers: (a) rectangular plate, (b) circular 

plate, (c) cantilever beam. 

that 2 3 0T T= = , and the only active stress is 1T . Therefore, the appropriate piezoelectric equa-

tions are 

 1 11 1 31 3

ES s T d E= + , (2.110) 

 3 31 1 33 3

TD d T E= + . (2.111) 

After substituting expression for 1T  from Eq. (2.110) into Eq. (2.111) it will be obtained 
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3 1 33 31 3
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(1 )T

E

d
D S k E

s
= + − . (2.112) 

Let displacements of the surface of the bean be ( ) ( )ox x  = . The strains 1S  in the thin layer 

located at distance z from the middle surface of the plate in Figure 2.12 (neutral plane that 

remains unstretched under flexure) can be determined from the relation 
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1 1
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1 1

( )
o

R z d R d z d
S z

R d R dx
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
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+ −
= = = − , (2.113) 

where 

 
2 2

1  1/  ( / )R d dx= −  (2.114) 

is the radius of curvature of the bent beam in zx plane. 

(a) (b)

(c)
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Figure 2.12: Piezoelement represented by a bimorph beam. 

Note that the sign in Eq. (2.112) is in accordance with adopted sign convention. The curvature 

is negative, the layers at z > 0 experience tension, which is positive by sign convention, and 

bending is produced by positive moments. From Eq. (2.110) 

 
11 1

11

1E E

Es
T Y SS= = , (2.115) 

where notation 1 111/E EY s=  is introduced for the Young’s modules of a piezoceramic material. 

The expression for the potential energy of the deformed beam is 
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where 
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Here 3 /12 ywt J=  is the moment of inertia of the beam cross section with respect to the y-axis 

in the neutral plane. The kinetic energy of the beam is 
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where 
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is the equivalent mass and 
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( )
l

effS w x dx=   (2.120) 

is the effective surface area of the mechanical system. 

The electromechanical energy associated with the flexural deformation is 
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Here 3

ED  is substituted from Eq. (2.112). From this expression follows that the flexural vibra-

tion can be generated electromechanically in the case that the electric field changes sign in 

halves of the beam. The sign of electric field depends on the relative directions of vectors of 

electric field 3E  and field of polarization P : it is positive if their directions coincide, and 

negative otherwise. Two variants of the piezoelement design for generating the bending mo-

ment are possible that correspond to the parallel and series connection of its halves. They are 

shown in Figure 2.13. In the variant of Figure 2.13 (a) that is adopted also in Figure 2.12 (par-

allel connection) 3 2 /E V t= , in the variant (b) (series connection) 3 /E V t= . The halves of 

the beams further are assumed to be connected in parallel. 

 

Figure 2.13: Variants of electrical connection of halves of the bimorph beam. 

The expression for the electromechanical transformation coefficient that follows from Eq. 

(2.121) for the parallel connection of halves of the beams is 

 31

0112 E

x l x

wtd d d
n

dx dxs

 

= =

 
= − − 

 
. (2.122) 

Thus, the value of transformation coefficient depends on the slopes of the mode shape of dis-

placement on the ends of the electrodes. The sign (–) is related to sign convention and in the 

context of calculating parameters of a single transducer it can be omitted. 
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For calculating capacitance of the beam the value of dielectric permittivity 

1 2

33 31(1 )S T

ee k = −  of the piezoelement clamped in the x direction must be used according Eq. 

(2.112), thus, 

 1 2

33 31

4
(1 )S T

e

wl
C k

t
= − . (2.123) 

2.6.2 Cantilever Beam Transducer 

All the general expressions for the transducer equivalent parameters are the same as for the 

simply supported beam, but the reference point has to be chosen at x l= , at which point 

( ) 1l = . Thus, the reference velocity will be 
l lU = . The main difference in calculating the 

parameters is due to different expressions for the mode shapes of vibration. 

 

Figure 2.14: Configuration of the cantilever beam transducer. 

If the beam is used as mechanical system of accelerometer, the support vibrates with accelera-

tion 
s , as shown in Figure 2.14. The equivalent force that generates vibration of the beam may 

be determined in this case as follows. In the range of frequencies below the resonance, in which 

the accelerometers are usually used, the mode of vibration of a beam can be represented as 

superposition of its movement together with the support and vibration of the beam relative to 

the support, namely, as 

 ( ) ( )s o sx x    = −  , (2.124) 

In is taken into consideration in this relation that below the resonance ( )o sx   . Thus, the 

mechanical system vibrates under action of the distributed inertia force with density 
in sf t =

. The equivalent force that generates deformation of the mechanical system is according to for-

mula (1.17) 

 
0 0

( ) ( )
l l

eqv in s av sF w f x dx wt x dx tS     = = =  . (2.125) 
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Here, 

 
0

( )
l

avS w x dx=   (2.126) 

is the average surface area of the mechanical system, one of the equivalent parameters of a 

transducer. Note that in deriving the equivalent force by formula (2.125) the acceleration was 

assumed to act in the normal to surface of the beam direction. In general acceleration is vector 

  that can be directed at some angle   to the surface. If n  is the unit vector normal to the 

surface, then in formula (2.125) it must be 

 coss n ==   . (2.127) 

This means that the accelerometer possesses a directional factor that is characterized by the 

figure of eight pattern. 

To complete the calculation of the equivalent parameters, the mode of displacement ( )x  

has to be determined. Generally, the mode of vibration has to be found by solving differential 

equation of motion of a mechanical system under particular boundary conditions. In the case 

that exact expressions for the mode shapes are not available, extension of the Rayleigh’s method 

can be applied. According to this method the mode of static deflection of a mechanical system 

under the action of a distributed load can be used to determine its first resonance frequency. 

The same mode of displacement can be used for calculating the equivalent parameters of a 

transducer employing the mechanical system at resonance and in the frequency range below the 

first resonance. The modes of static displacements under uniform loading are available for dif-

ferent mechanical systems from works on the strength of materials, for example, from Ref. 9. 

In particular, for a beam with simply supported ends (with displacements and bending moments 

on the ends zeros) 

 ( ) ( )( )3 2 4 3  16 / 5l 2 / /x x x l x l = − + , (2.128) 

and for a cantilever beam with one clamped end (displacement and slope of the displacement 

curve are zeros at this end) 

 
2 2 2( ) 2( / ) (1 2 / 3 / 6 )x x l x l x l = − + . (2.129) 
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Expressions for the equivalent parameters obtained from the general formulas after using the 

modes of vibration (2.128) and (2.129) for the simply supported beam and for the cantilever are 

as follows. For the simply supported beam 
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 (2.130) 

For the cantilever beam 
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 (2.131) 

The resonance frequencies of the transducers are determined by formula 1/ 2 E

r eqv mf M C= . 

Expressions for the effective coupling coefficients are calculated according to definition (2.93)

. The exact expression for the resonance mode of vibration for the simply supported beam is 

known as ( ) sin( / )ox x l  = . Values of the equivalent parameters calculated with using this 

expression differ from the approximate values obtained with mode of static deflection within 

1-2%. 

2.6.3 Circular Plate Transducer 

As an example of a typical transducer for application in the receive mode consider the flexural 

circular bilaminar plate transducers shown in Figure 2.15. The plate is assumed to be thin com-

pared with the radius t a  and free of stress on the major surfaces. Thus, the stress in the axial 

direction throughout the thickness is neglected, and 3 0T = . The electrodes are axially symmet-

ric and the plate vibration as well. 

In the diametrical sections through the z-axis the radius of curvature is determined by the 

same expression as for the bent beam (see (2.114)), which was explained with reference to 

Figure 2.14. The second principal curvature is in the plane that is perpendicular to the rz-plane 

and goes through the normal of the bent plate (segment no in Figure 2.15 (b)). Point o on the 

intersection of normal with axis of symmetry of the plate is the center of curvature. The length 



2.6. Flexural Type Transducers  71 

 

of the segment no is the radius of curvature for the section of plate that goes in the circumfer-

ential direction, 2R . From geometry considerations /d dr = −  and 2/ sinr R  =   (

/ 1o a  ). Thus, 

 

Figure 2.15: (a) Configuration of the circular plate transducer and (b) determination of the radius 

of curvature. 
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= − = − , (2.132) 

where the normal displacement is represented as 

 0( / ) ( / )r a r a  = . (2.133) 

By derivations analogous to those produced regarding Eq. (2.113) 
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The piezoelectric equations suitable for this case are 

 1 11 1 12 2 31 3

E ES s T s T d E= + + , (2.135) 

 2 12 1 22 2 31 3

E ES s T s T d E= + + , (2.136) 

 ( )3 31 1 2 33 3

TD d T T E= + + . (2.137) 

Upon substituting 1T  and 2T  from Eqs. (2.134) and (2.135) into Eq. (2.137), it will be obtained 
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where 1,2 2

33 33(1 )
S T

pk = − , 2 2

31 33 11 122 / ( )T E E

pk d s s= + . Thus, the capacitance of the transducer at 

parallel connection of the halves of the plate is 
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It follows from Eqs. (2.135) and (2.136) that at 3 0E =  
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The potential energy of the plate vibration is 
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where it is denoted 12 11

E E Es s = −  as the analog of Poisson’s ratio for piezoelectric ceramic 

material. The kinetic energy of the vibrating plate is 
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The equivalent mass will be denoted as eqv effM t S=  , where 
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is the effective surface area of the plate. 

The electromechanical energy associated with vibration is 
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The halves of the plate must be polarized and connected electrically as it is shown in Figure 

2.13. Assuming that they are connected in parallel with 3 2 /E V t= , and after substituting ex-

pressions (2.134) for 1 2 and S S  into formula (2.145) will be obtained 
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where from the electromechanical transformation coefficient is 
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Thus, the electromechanical transformation coefficient is proportional to the slope of the mode 

of vibration on the border of the electrode. The sign (–) is related to sign convention and in the 

context of calculating parameters of a single transducer it can be omitted as well as it was sug-

gested regarding a beam. In the case that the circular plate piezoelement is used as accelerom-

eter and its support vibrates with acceleration 
s , the equivalent force has to be determined by 

the expression analogous to (2.125) 
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where 
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avS r a dr =   (2.149) 

is the average surface of the plate. The mode of vibration of a circular plate is defined by the 

boundary conditions, which may in practice vary significantly depending on the transducer de-

sign. For the case of simply supported boundary (i.e., displacements and bending moment in 

the radial directions are zeros on the boundary), expression for the static deflection curve is9 

 ( )
2 2 2 2

2 2 2 2

1
/ 1 1   1 1

5 4

r r r r
r a

a a a a






     +
= − −  − −     

+     
. (2.150) 

These conditions may be closely achieved in the symmetrical double-sided transducer design 

shown in Figure 2.16. The plates assumed to be identical, therefore the design has the plane of 

symmetry that can be considered as absolutely rigid, and the boundaries of the plates don’t 

move in the vertical direction when the plates vibrate. 

A peculiarity of the above expressions for determining the equivalent parameters in the 

case of a simply supported circular plate by comparison with a beam is that they depend on the 

material parameter E = , which affects the mode of vibration (2.150). Because of this the 

general formulas for the transducer equivalent parameters, strictly speaking, cannot be obtained 

in a closed form and calculation of the integrals involved must be fulfilled for each particular 

ceramic composition having different Poisson’s ratio E . However, the values of these inte-

grals for all the modern ceramic materials do not deviate significantly from those obtained with 
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an approximately average value of 0.3E = . This will be shown in Section 4.5.7.1. If to ne-

glect these small deviations, then after substituting the mode of vibration by formula (2.150) 

into the expressions for the equivalent parameters their following values will be obtained 

 

Figure 2.16: Symmetrical double-sided flexural transducer design. 
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The effective coupling coefficient of the circular plate are according to expressions (2.93) 
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2.6.4 Acoustic Field Related Parameters of the Transducers of Flexural Type 

Transducers of the flexural type are most commonly used in designs of the single hydrophones 

intended to react on the sound pressure or pressure gradient in acoustic field, and of the mem-

bers of receiving arrays. Yet another field of their applications is in designs of the low frequency 

projectors: circular and rectangular benders. Configurations of the transducer designs for these 

applications are schematically sketched in Figure 2.16 and Figure 2.17. Detailed analyses of 

operating characteristics of the transducers will be done in Chapters 13 and 14. Information 

about the acoustic field related parameters of the transducers that may be needed for completing 

their considering on a basic level, namely, the radiation impedances and diffraction coefficients, 

is presented below. 

z

r

oU

a
o

D

trt
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Figure 2.17: Configurations of the flexural transducer designs for different applications: (a) one-

sided design of the benders and pressure hydrophones; (b) and (c) variants of designs of the pres-

sure gradient hydrophones of the diffraction and motional type (definitions and details of calcula-

tion are given in Chapter 14). 

Inherent property of transducers of the flexural type is relatively small wave size of their me-

chanical systems. Among transducers of the flexural type the biggest wave size have the bend-

ers that operate around their resonance frequencies. Using formula for the resonance frequency 

of the simply supported circular plate it can be shown that at the resonance frequency 

/ /D t a  . For estimating the maximum wave size of a transducer, we assume that 

/ 1/ 5t a  (this is shown to be a reasonable relation in Chapter 9). Thus, it may be considered 

that / 0.2D   . The overall thickness, trt , of a single double-sided plate bender transducer 

(Figure 2.16) is usually about two thicknesses of the comprising plates, i. e., / 0.04trt   . As 

to the rectangular plate benders that are composed of beams, we will assume that a single trans-

ducer unit has approximately the same wave size as a circular plate having the same resonance 

frequency ( l w D= = ). Although this assumption is not quite rigorous, it allows fair enough 

comparison between benders of this kind. 

One side of the double-sided symmetrical circular plate transducer can be considered as 

vibrating in the infinite rigid plane baffle due to symmetry. Therefore, the diffraction coefficient 

is 2difk = , and components of the radiation impedance per one side of the transducer vibrating 

(a)

P

P P+ 

(b)

P

P P+ 

 

(c)

P
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in piston like mode would be determined by equations (2.104) through (2.107). Thus, for trans-

ducers of small wave size (at 0.6ka  ) they would be 
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( ) ( )
2

2
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ka a
r c a c


  


 =  (2.153) 

within an accuracy of about 5%, and 
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8 8

3 3
ac acx c a ka a M    


 = =  (2.154) 

within an accuracy of about 10%. 

These formulas can be generalized for transducers of small wave size that have distribution of 

velocity on their surface by replacing surface area 
2S a =  by the average surface area avS  

(because the volume velocity or “the source strength” 
av oV

U S =  is what counts in terms of 

radiation of small sources). Thus, the expressions may be used 
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1 2
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2
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ac

S
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
  and 1 1

8

3
ac avx c S ka


  (2.155) 

per one side of a double-sided transducer. The diffraction coefficient for this case remains the 

same, 1 2difk = , being determined under assumption that surface of the transducer is clamped. 

These radiation impedances and diffraction coefficient may be used, when calculating magni-

tude of vibration 
o  from the equivalent circuit derived for a single plate with simply supported 

boundary. 

It is noteworthy that the same problem could be approached in the alternative way, if to 

consider the entire double-sided structure as a simple source vibrating in the free space. In this 

case in the general formula for radiation resistance of the simple source in the free space the 

total average surface (the total source strength) must be doubled, which will result in doubling 

the radiation resistance obtained for the previous case, as it follows from the manipulation 

 

22
1

12 2

(2 )( )
2

avav
ac ac

SS
r c c r 

 
= = = . (2.156) 

The diffraction coefficient for this case will be found to be 11 / 2dif difk k= =  as for a rigid body 

of small wave size in the free space. But now the equivalent electromechanical circuit, to which 

the equivalent acoustic parameters should be applied, must be derived for the entire double-
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sided structure. This will bring us to doubling the energies and corresponding equivalent pa-

rameters involved, and thus the final results of transducer calculation would be the same, as in 

the previous case. This must be taken into consideration in czse the acoustic field related data 

are obtained from other sources. 

The above estimations were made for a single bender transducer that can be considered 

approximately as a simple source. In practice, low frequency transducer designs often are com-

posed of a number of elementary single sources, in our case from the single benders. The radi-

ation impedance of a combination of several single bender transducers can be determined by 

considering the acoustic interaction between simple sources by formula 

 ( )12 11 sin cos /Z r kd j kd kd= + , (2.157) 

where 12Z  is the mutual radiation impedance between two sources separated by distance d, and 

11r  is the radiation resistance of a single source that is given by expression (2.156). The origin 

of this formula and detailed analysis of possible results of interaction between transducers can 

be found in Ref. 10 and will be considered in Chapter 6. 

The radiation problems that are associated with other applications of the flexural plate 

transducers that are schematically shown in Figure 2.17 (as one-sided and operating in the os-

cillating mode) were first considered in work11. The results related to our case of bodies having 

small wave size are as follows. For the piston like vibrating round disk radiating from one side 

at 0.6ka   

 
2( ) 2

, , 1
4

dif

ka
ka k 


  = . (2.158) 

The corresponding radiation resistance for the plate vibrating with nonuniform distribution of 

velocity 
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For the oscillating disk  
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The radiation resistance of an oscillating body of small size is zero to the first approximation, 

because the total volume velocity (the source strength) is zero as velocities on the sides of a 

plate have different signs. And to the second approximation it is 

 
4

1 2

8
( ) ( )

27
ac w avr c S ka


= , (2.161) 

where 1avS  is the average surface per one side of the plate. The diffraction coefficient is 

 
4

( )cos
3

difk j ka 


= , (2.162) 

and the average surface of the plate that must be taken in calculation of the equivalent force is 

12 avS . Thus, 

 12eqv av dif oF S k P= . (2.163) 

In conclusion it has to be noted that transducers of all the types considered in this chapter 

have to be treated as the systems with multiple degrees of freedom under more general assump-

tions regarding dimensions of the piezoelements, modes of their polarization, configuration of 

the electrodes, acoustic loading, and with effects of coupled vibrations in in their mechanical 

systems. The general treatment of these transducers will be performed in Chapters 7-10. 
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CHAPTER 3 

TRANSDUCER PERFORMANCE ANALYSIS 

3.1 Operation in Transmit Mode 

Transducer operating in the transmit mode has to be considered as a part of the transmit channel, 

that is as a single transducer or a member of a group of transducers driven by a common power 

amplifier. The goal to be achieved by a transmit channel is to provide a certain acoustic intensity 

in the direction of the acoustic axis of the projector, (0)I , and required spatial distribution of 

sound pressure described by the directional factor ( , )H   . By definition 

 
2

1(0) (0) / ( )m wI P c= , (3.1) 

where 1(0) mP  is the effective sound pressure (rms) on the acoustic axis in the far field refer-

enced to 1 meter from the acoustic center of the transducer, and 

 ( , ) ( , ) / (0,0)H P P   = . (3.2) 

The units to measure the intensity and sound pressure are W/m2 and Pa. As the magnitudes of 

the acoustic quantities may change in a very wide range, it is common to characterize them in 

the logarithmic to the base 10 scale relative to some reference levels of the quantities. Namely, 

for the Intensity Level (IL) and for the Sound Pressure Level (SPL) 

 10log( / )refIL I I= , (3.3) 

 20log( / )refSPL P P= . (3.4) 

It is customary in underwater acoustics to use refP  = 1 µPa and 196.76 10refI =   W/m2 (

2 / ( )ref ref wI P c= ). Thus, 

 20log[ (0)]SPL P=  re 1 µPa at 1 m. (3.5) 

The requirements for a transmit channel must be met in a prescribed frequency band and under 

the condition of a long-term reliable operation at specified environmental conditions. 

Our treatment of the transmit channel will be concentrated mainly on the part of the prob-

lem related to the transducer as an electromechanical device. In this section characteristics of a 

transducer will be considered that must be known for fulfilling the requirements for the transmit 
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channel, given that they can be fully described by the equivalent electromechanical circuit of 

the transducer with acoustic load known. An assumption is that the acoustic load can be changed 

by means of the mechanical-acoustic matching, and the electrical input impedance of the trans-

ducer subject to tuning by using the additional inductances in order to facilitate conditions for 

matching with internal impedance of power amplifier. The transducers will be considered as 

having one mechanical degree of freedom. This assumption is applicable for the most of pro-

jectors operating in the vicinity of their resonance frequency. 

3.1.1 Transducer Input Impedance and Tuning Conditions 

A significant part of the problem of generating acoustic energy in a broad frequency band is 

that of delivering electrical power to a highly reactive and frequency dependent load, which the 

piezoceramic transducer presents. Severity of the driving source problems depends on how the 

input impedance of a projector and internal impedance of the source are matched. The overall 

efficiency of conversion from electric power to acoustic power produced by a transmit channel 

is determined by the combined losses in the source of energy, in the matching network, and in 

the transducer. Therefore, the projector must be appropriately designed for matching, and de-

velopers of the power supply should be fully aware of peculiarities of the transducer input in 

order to rationally design the matching network. (Obviously, the best result can be achieved in 

the case that developing the entire transmit channel is in the same hands.) The goal of transducer 

input impedance analysis is in exploring conditions for compensating its reactive component 

(conditions for tuning) in as broad frequency band as possible and thus in presenting transducer 

as predominantly active load for power amplifier. 

 

Figure 3.1: Equivalent circuits of a transducer recalculated to its electrical side. 
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The general expressions for the electrical input impedance of a transducer, inZ , and input im-

pedance of its mechanical system, 
E

mZ , are given by formulas (1.80) and (1.75), and are illus-

trated by the equivalent circuit in Figure 1.17. The equivalent circuit of a transducer after recal-

culating the mechanical contour of the equivalent circuit into the electrical side is given in Fig-

ure 3.1, where 

 2 2 2, ( ) / , ( ) /E

m m m eqv ac m mL acC C n L M m n R r r n= = + = + . (3.6) 

In the most cases the projectors operate in the frequency region around the resonance frequen-

cies of their mechanical systems. The resonance frequency in water, rw , may be found from 

the equation  Im 0E

mZ = , or 

 1 0rw ac ra

ra rw eqv rw

x

M

 

  

 
+ − = 

 
 

. (3.7) 

Usually for the typical underwater projectors / ( ) 1ac ra eqvx M  in vicinity of their resonance 

frequencies (see the examples in Table 3.1), and without a significant error rw  in the paren-

thesis in equation (3.6) may be replaced by ra . Under this assumption it follows from Eq. 

(3.7) that 

 
1 /

ra
rw

ac ra eqvx M







+
 (3.8) 

and expression (1.75) for 
E

mZ  becomes 

 ( ) 1
rw eqvE rw

m ac mL

ac mL rw

M
Z r r j

r r
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 

  
= + + −  

+   
. (3.9) 

As rw ra  , and in a narrow frequency band around the resonance frequency it can be as-

sumed that ac mLr r+  is constant, we can consider that quantity 

 
rw eqv ra eqv

mw

ac mL ac mL

M M
Q

r r r r

 
 =

+ +
, (3.10) 

which we define as the mechanical quality factor of the transducer in water, remains approxi-

mately constant in this frequency band. Under this assumption expression (3.9) becomes 

 ( ) 1 rw
m ac mL mw

rw

ff
Z r r jQ

f f

  
= + + −  

   
. (3.11) 
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The frequency f may be represented as 

 rwf f f=  , (3.12) 

where f  is the deviation of frequency from its value at resonance. Substituting (3.12) for the 

term in parenthesis in Eq. (3.11), after some manipulations we arrive at 

 

2

2
1 2 ...

2 2

rw

rw rw rw rw

ff f f f

f f f f f

    
 − =    
   

. (3.13) 

Table 3.1: Acoustic loads and their effect on the resonance frequencies for different transducer 

types. 
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1.0 0.0 25 0 1 

1) Per unit height of a ring operating in a long column like transducer. 

2) Value for a/t = 5. 

3) Single bar transducer operating in a plane array of a big size vibrating in phase. Ring and bar can 

employ transverse or longitudinal piezoeffect. In the table the transverse piezoeffect is assumed to 

be used. Switching to the longitudinal piezoeffect would not change results in principle. 

If to assume that 

 / 0.2rwf f  , (3.14) 

which is appropriate for most of the practical cases, then within 10% accuracy 
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2rw

rw rw

ff f

f f f


− =  =  . (3.15) 

Notation   is for the relative deviation of frequency from its value at resonance. Finally, we 

arrive at expression 

 ( )(1 )E

m ac mL mwZ r r j Q + +   (3.16) 

for the band of 0.4  . The mechanical impedance may be presented as 

 
arg E

mj ZE E

m mZ Z e= , (3.17) 

where 

 2( ) 1 ( ) , arg arctanE E

m ac mL mw m mwZ r r Q Z Q= + +  =  . (3.18) 

Quantitative estimations of the parameters mwQ  and rwf  vs. raf  related to some typical trans-

ducer mechanical systems with acoustic load are presented in Table 3.1. 

The equivalent circuit of the transducer electrical side that includes the motional impedance 

(Figure 3.1) can be further transformed into the circuit with parallel representation of the mo-

tional impedance that is shown in Figure 3.2. Parameters of the circuit in Figure 3.2 (a) are 

related to the original mechanical parameters of a transducer by formulas (3.6) and by the fol-

lowing relations 
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= = , (3.19) 
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X R
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, (3.20) 

where 
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1 1
1m E

m r m

X
C C n



  

 
= − = −  

 
. (3.21) 

Upon substituting the expression mX  into the Eq. (3.19) and (3.20) we obtain 
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Figure 3.2: Electrical circuits of the projector input: (a) as the combination of the blocked and 

motional admittances, (b) final representation as measured by an impedance analyzer, (c) ,V
GI  

vector diagram. 
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The functions pC  and mwG  vs. frequency deviation   are qualitatively illustrated in Figure 

3.3. 

 

Figure 3.3: The functions pC  and mwG  vs. frequency deviation from the resonance frequency. 
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Thus, at 0f =  
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( ) tan E

p f m mw

r

C C n Q
f

 = = = − . (3.25) 

From the equation '( ) 0pC =  it follows that 
2 2 1mwQ = . Next, we will determine the fre-

quency deviations corresponding to the extreme values of pC  as 

 
2

r
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mw

f
f

Q
 =  . (3.26) 

After substituting 
2 2 1mwQ =  into Eq. (3.22), we will find that ( ) (0) / 2mw m mwG f G= , which 

means that at the deviation mf , the energy of the mechanical vibration drops to 0.5 of its value 

at the resonance frequency. Therefore, this deviation can be denoted as 0.5mf f =  . Upon 

substituting 1mwQ =   into Eq. (3.23), we arrive at 
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E mw
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Q
C C C n = − = . (3.27) 

Taking into account expressions (3.22) and (3.23) we finally represent the parameters pC  and 

G  of electric circuit of the input impedance shown in Figure 3.2 (b) as 
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Remembering (see (2.93)) that 
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, (3.29) 

and representing 
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2/ 1
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effeL m mw

e mwS

mL ac e e eff

kn R n C Q
Q Q

r r C Q k





 
= =  

 + − 

 (3.30) 

(note that for completed transducer design (1/ tan )e mQ   due to possible stray losses) the 

equations for pC  and G  can be transformed to 



3.1. Operation in Transmit Mode  87 

 

 

2 2

2 2 2
1

1 1

effS mw
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 (3.31) 

and 
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1
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eff e mw

eL eff mw
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  
= +  

− +   

. (3.32) 

Thus, the input impedance of a projector is represented by the parallel connection of frequency 

dependent “capacitance,” ( )pC  , and resistance, ( )pR  . (Note that depending on the combi-

nation of effk  and mwQ  in some frequency band function ( )pC   may become negative, and in 

this case pC  can only conditionally be called “capacitance”). In order to characterize the input 

impedance as electric load to driver amplifier, we introduce the electric quality, ewQ , and power 

factor, cos , of the loaded projector by the following relations 

 ( ) ( )ew p pQ C R  =   (3.33) 

and 

 
2 2 2

1
cos

1
p

R R

R C ew

I I

I I I Q
 = = =

+ +
. (3.34) 

The relation between voltage across the projector, trV , and input current, trI , is 

 
1

cos
tr tr

p

I V
R 

= . (3.35) 

 

 

Figure 3.4: Experimental set up for determining the transducer admittance: G – function generator, 

Tr – transducer, 
o  - phase meter. 

The input admittance of a transducer 

 1/ / ,
oj

in in in inY Z I V Y Y e = = =  (3.36) 

G Tr

adR

2V

I
1V

1V

2V
2 1V V −  
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can be experimentally determined with aid of the set up presented in Figure 3.4, which allows 

to get in principle the same results in terms of the input admittance, as can be produced by an 

impedance analyzer, a device that is not always available because of its high cost. The addi-

tional resistance addr  should be chosen in such a way that 

 
ad inr Z  (3.37) 

in all the frequency band of measurements. Under this condition 

 2 1/ ad inV r I VY= = , (3.38) 

where from 

 
2 1/in adY V r V=  and      2 1arg arg argo

inY V V = = − . (3.39) 

 

Figure 3.5: Components of the input admittance of the spherical transducer (PZT-4, 2a = 1.9 in, t 

= 0.1 in): (a) modulus and phase of the admittance in air, (b) parallel capacitance pC  and con-

ductance G in water. 

The dependences of components of the admittance on frequency qualitatively look as shown 

with plots in Figure 3.5. They were measured with example of a spherical transducer in air and 
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in water. Dependence from frequency of conductance eLG  that corresponds to the electrical 

losses, which is shown in Figure 3.5 by the dashed line, should be linear according the assump-

tion made by relation (1.39) (at least within limits, in which factor taneL e =  remains inde-

pendent of frequency). Next to zero point at this line have to be chosen at a frequency that is 

much lower than resonance frequency of the transducer in order to minimize a contribution of 

the mechanical losses. 

At first consider the input admittance of an unloaded transducer (at 0acZ = ). This mode 

of operation can be used for experimental determining of unknown parameters of the transducer 

impedance such as resistances of the mechanical and electrical losses, for measuring important 

transducer characteristics such as the resonance frequency and effective coupling coefficient, 

for control of these parameters in course of transducers fabrication. Besides this mode of oper-

ation is typical of transducers used as resonators that represent two-terminal networks. The 

measurements performed in air result in the most accurate data regarding the characteristics that 

are inherent in the transducer piezoelement properties. 

The resonance frequencies of the electrical contour in Figure 3.1 correspond to the condi-

tions that  arg 0Y = . They are the frequency of the parallel resonance that coincides with the 

resonance frequency of transducer mechanical system, 

 1/ 2 1/ 2 E

p r m m eqv mf f L C M C = = = , (3.40) 

and frequency of the series resonance that is called the antiresonance frequency of the trans-

ducer, 

 
2 1/2[1 / ]E S

s ar r m ef f f C n C= = + . (3.41) 

Combination of the equivalent parameters in brackets was denoted as c  in the expression 

(3.29) for the effective coupling coefficient. After manipulations that involve this expression, 

it will be obtained from formula (3.41) that 

 2 21 ( / )eff r ark f f= − . (3.42) 

As it follows from Eq. (3.22), without the acoustical load 

 
2 2

( ) 1

(0) 1

m

m m

G

G Q

 
= 

+ 
. (3.43) 



90  3. Transducer Performance Analysis 

 

Thus, at ( ) / (0) 1/ 2m mG G = , 1mQ =  and 

 0.5/ 2m rQ f f=  , (3.44) 

where 0.5f  is deviation of frequency at which mechanical conductance reaches 0.5 of its value 

at resonance frequency. According to notation (3.10) / 1/m r eqv mL r m mLQ M r C r = = , i. e., the 

mechanical quality factor. 

Measuring parameters of transducer in water allows determining values of components of 

the radiation impedance. From Eq. (3.8) follows that 

 ac ra rw

ra eqv rw

x f f

M f

−
= . (3.45) 

Difference between raf  and rwf  in the denominator can be neglected, and we arrive at the 

approximate formula for the reactive component of the radiation impedance 

 2 ( )ac eqv ra rwx M f f − . (3.46) 

Peculiarity exists when dealing with a transducer encapsulated in polyurethane (PU) or a like 

material. The mass of PU is added to equivalent mass of the transducer when resonance fre-

quency is measured in air. This lowers the original resonance frequency of a bare piezoelement. 

When measured in water, the layer of PU becomes transparent and the additional mass disap-

pears. This must be taken into consideration in calculating the acoustic reactance from results 

of experimenting. 

At the resonance frequencies in air and in water from Eq. (3.16) follows that p mR R= , i.e., 
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(0)mw

mL ac

n
G

r r
=

+
 and 

2

(0)ma
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n
G

r
= , (3.47) 

when measured in water and in air, respectively. Thus, 

 
2

1 1

(0) (0)

ac

mw ma

r

G Gn
= − . (3.48) 

Given that all the electromechanical transducer parameters are known the radiation resistance 

can be determined. 
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3.1.1.1 On the Tuning Conditions 

Tuning of input impedance is achieved by inserting an inductor in parallel or in series with the 

projector input as shown in Figure 3.6. The inductances pL , sL  and the respective 

 

Figure 3.6: Electrical circuit of the transmit channel: (a) with parallel tuning, (b) with series tun-

ing. 

resistances LpR  and LsR , which are accountable for the energy losses in the inductors, are re-

lated through the quality factor of the inductor LQ . Using formulas for conversion from the 

parallel to series impedance representation 

 

( ) ( )
2 2

1 1
, X

1 / 1 /
s p s p

p p p p

R R X
R X X R

=  = 
+ +

 (3.49) 

and the definition for the quality factor    Im / ReQ W W=  we obtain for the same inductor 

in different representations 
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R L
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= =  and 
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+
. (3.50) 

The quality factor, LQ , can be considered as frequency independent in a given frequency band. 

When operating in the frequency band around the resonance frequency usually (but not exclu-

sively) the frequency of mechanical resonance is chosen as the frequency of exact tuning. In 

the rare cases of operating in the frequency band well below the resonance the exact tuning is 

gV ( )pR gE N trV

gR N

pL

gI

(a)

LI CI

pC LpR
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gV

( )pC 
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1

1

1

trI

gR N LsRsL
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fulfilled at the desired operating frequency. In this section we will assume that the frequency of 

exact tuning is denoted tf . 

The main goal of tuning is to reduce the reactive load as seen by the electric power source, 

or to reduce the total power 
el g gW V I=  delivered to the tuning circuit in comparison with 

the total power 
tr tr trW V I=  required for the operation of the untuned projector. 

In the case of the parallel circuit g trV V=  and at the frequency of exact tuning. 

 
2

1
1

1

ew
g tr

Lew

Q
I I

QQ

 
=  + 

+  
, (3.51) 

as it follows from analysis of the circuit in Figure 3.6 (a) and the definition for ewQ  by formula 

(3.33). In the case that L ewQ Q , which is desirable in order to avoid noticeable losses of en-

ergy in the tuning circuits, and taking into account formula (3.34) for the power factor of the 

transducer, the current gI  can be represented as 

 cosg tr trI I   (3.52) 

and 

 cosg g tr tr trV I V I  . (3.53) 

It must be noted that both ewQ  and LQ  may become of the same order of magnitude, when 

operating in a broad frequency band around the resonance frequency of a projector and espe-

cially at frequencies much below the resonance. In this case the factor in parenthesis of formula 

(3.51) cannot be neglected, and the gain in power supplied that is expressed by expression (3.53) 

will be less impressive. 

In the case of the series tuning 

 g trI I=  and 
2

1
1

1

ew
g tr

Lew

Q
V V

QQ

 
=  + 

+  
, (3.54) 

as it follows from analysis of the circuit in Figure 3.6 (b). Thus, 

 cosg tr trV V   and cosg g tr tr trV I V I   (3.55) 

under the same assumption regarding value of LQ , i.e., the same result is obtained as in the case 

of the parallel tuning. The difference between these circuits is that in the case of the parallel 
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tuning the equivalent generator that represents the driving amplifier with the matching trans-

former has to be capable of producing a high driving voltage and a moderate output current, 

while in the case of the series tuning it has to be capable of providing a larger current under the 

smaller output voltage. In terms of requirements for the inductors, the operating conditions, 

which they face in the parallel and series circuits, are approximately the same. Thus, in the 

parallel circuit at the frequency of exact tuning 

 L trV V=  and 

2

2

1

1

Lew
L tr

Lew

QQ
I I

QQ

+
=  

+
, (3.56) 

and in the series circuit 

 L trI I=  and 

2

2

1

1

Lew
L tr

Lew

QQ
V V

QQ

+
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+
. (3.57) 

Taking into account that 1LQ  and usually 1ewQ , it can be concluded that the voltage 

across the inductor may be slightly smaller in the case of the series circuit, though basically the 

tuning inductors in the transmit channel operate under the same high voltage as the projectors 

do, and the practical realization of an inductor with desirably high LQ  that operates at high 

voltage may be a challenging. 

Conditions of operating the tuning circuits depend essentially on the behavior of ( )pC   

and ( )pR   parameters of the transducer input impedance. Therefore, the results of application 

of formulas describing effects of tuning will be different for the frequency bands A and B in 

Figure 3.7, where the plots of ( )pC   and 1/ ( )pG R =  vs. frequency are qualitatively shown. 

In the band B, where ( )pC   changes slowly, the exact tuning may take place at a single fre-

quency, tf , according to the formula 

 
2

1
( )p t

t p

C
L




= . (3.58) 

Quite a different situation takes place in the vicinity of the resonance frequency (in the band A), 

where the capacitance ( )pC   may change rapidly depending on the mechanical quality factor 

of acoustically loaded projector and its effective coupling coefficient. Usually, the intended 

frequency for exact tuning in this frequency band is the resonance frequency of the projector, 

thus, it should be 
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L
C C  

= = . (3.59) 

At certain conditions the functions 
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F f C

L f
= =  (3.60) 

 

Figure 3.7: Qualitative plot of dependencies of pC  and G components of the input admittance. 

and ( )pC   may intersect in two more points, 1tf  and 2tf , in addition to the point rf , as is 

shown in Figure 3.7. Thus, the exact tuning (with power factor cos 1 = ) can be achieved at 

three frequencies. Between these frequencies the reactance remains partly not compensated 

( cos 1  ). The non-compensated part of the parallel reactive element (capacitance or induct-

ance depending on the frequency deviation from the frequency of exact tuning) at the particular 

frequencies is characterized by the segments ( ) shown in the Figure. The vector diagram 

for currents through the transducer input admittance at these frequencies is shown in Figure 3.8, 

where 

  Im ( ) ( )Y    =   , (3.61) 

and the power factor at these points is 
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+  
. (3.62) 

Consider the tuning situation in the region A in more detail. The region A of change of 

( )pC f and function ( )F f  determined by formula (3.60) is shown in Figure 3.9. 

f
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Figure 3.8: Vector diagram for currents through the transducer input admittance. 

 

Figure 3.9: On the tuning in the region A: ( )2 2( ) / S

r eF f f f C= . 

According to formula (3.25) the slope of the function ( )pC f  at rf f=  is determined by the 

expression 
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We denote 
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. (3.64) 

The factor Q  is related to the mechanical quality factor of the loaded transducer, mwQ , and to 

the effective coupling coefficient of the transducer, effk , and characterizes the slope of the 

function ( )pC f  at the resonance frequency of the transducer. Behavior of ( )pC f  for transducer 

having different values of Q  is qualitatively illustrated in Figure 3.9. The function ( )F f  ex-

pressed by formula (3.60) will have minimal deviations from ( )pC f  in the case that the slopes 

of both functions at t rf f=  are equal, i.e., under the condition 
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The right hand part of Eq. (3.65) represents expression (3.63) for tan  after factor Q  is sub-

stituted. Thus, in the case that 1Q = , or 

 

21 eff

mw

eff

k
Q

k

−
=  (3.66) 

virtually exact tuning takes place in the band between frequencies that correspond to maxC and 

minC  around the resonance frequency. Under the condition that 1Q   ( 1Q  in Figure 3.9), the 

exact tuning is achieved at three points as it was mentioned before, and between these points 

( 1tf , rf , and 2tf  in Figure 3.9) a detuning takes place, which is characterized by formula 

(3.62) for cos . The actual magnitude of detuning depends on how strong the inequality 

1 1Q   is. In the case that 1Q  , the resonance frequency is the only frequency of exact tuning 

unless a different frequency is chosen for this purpose. 

The value 1Q =  and relation (3.66) between mwQ  and effk  can be considered as optimal 

for ideal (with the smallest deviation from cos 1 = ) tuning in a broad frequency band around 

the resonance frequency. At the same time a sufficiently good tuning can be achieved in a 

broader frequency band, if to admit deviation of the power factor to a smaller value. Usually 

cos 0.8   is considered acceptable.9 As it follows From Figure 3.9 at optQ Q the most devi-

ation from the optimal tuning takes place at frequencies 0.5rf f , at which maxpC  is 

achieved. The situation with detuning that is characterized by deviation ( )  from value of 

function ( )F f  is symmetrical and can be considered for frequency 0.5rf f−  for example. At 

this frequency 

 0.5 0.5 max( ) ( )r r pF f f C − + − =  . (3.67) 

The deviation 0.5( )r  − , at which cos 0.8 = , will be found from Eq. (3.62) as 
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 (3.68) 

or, given that 2 2/ E

mw mw r mw eqvG n r Q C n= = , 
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. (3.69) 

According to formula (3.27) 
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p mw eqvC Q C n = . (3.70) 

After substituting into Eq. (3.67) expressions (3.70), (3.69), and (3.60) for 0.5( )rF f f− , and 

after simple manipulations, in process of which relations 
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 (3.71) 

are taken into consideration, we will obtain equation for determining the quality factor mwQ  
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Thus, for example, for the pulsating sphere with 0.58eff pk k= =  1.4mwoptQ =  and mwQ , at 

which within points of intersection of functions ( )pC   and ( )F   the power factor is 

cos 0.8  , is 3.1mwQ = . 

Consider now peculiarity of tuning the projector operating at frequencies well below the 

resonance frequency (in the range B shown in Figure 3.7). At frequencies far below the reso-

nance frequency, i.e., at ( / ) 1r B  =  , formulas (3.19) and (3.20) simplify to 
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If we assume that the mechanical quality factor measured in air, maQ , does not change with 

frequency (this is a reasonable assumption for piezoelectric element), then 
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= . (3.75) 

If to take into consideration that acr  is assumed to be constant, as far as operation in a large 

array is concerned, then after following manipulations 
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it becomes obvious that 
2( ) 1m mC R  (note that this inequality does not change, if to assume 

that acr  drops with frequency), and equations (3.73) and (3.74) can be reduced to 
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Respectively, 

 2 2/ (1 )s E s
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Recalling that 
2( ) /m mL acR r r n= + , the terms involved in relation (3.79) can be represented as 

follows 
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After some manipulations it will be obtain that 

 

122

2

1 1

1

effeL eL
e B

m mL ac ma mweff

kR R n
Q

R r r Q Qk

−

 
= =  + 

+ −  
, (3.81) 

and finally we arrive at the following expression for pG  
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Now we can determine ewQ  and cos  for the not tuned input impedance as 

 

2 2

2

2 2

1

1
1 1

1

1 1

p e
ew

p eff effe ma
B

ma mweff

e

e ma
eff eff B

ma mw

C Q
Q

G k kQ Q

Q Qk

Q

Q Q
k k

Q Q


= =  =

− 
+  + 

−  

=
 

− + + 
 

 (3.83) 

and 
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1 ewQ
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+
. (3.84) 

Consider now electrical circuit of parallel tuning of a projector shown in Figure 3.6. The in-

ductance L  in this circuit should be 
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= , (3.85) 

where t  is the frequency of exact tuning and L LR Q L=  is the equivalent resistance of losses 

in the inductor, having quality factor LQ . The conductivity, tcG , of the tuning circuit at the 

frequency of exact tuning will be found as 
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After substituting /p p ewG C Q=  in this relation (see formula (3.83)) and L  from formula 

(3.85) we obtain 
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We will introduce the electric quality of the tuning circuit, tcQ , as 

 
t p ew L

tc

tc ew L

C Q Q
Q

G Q Q


= =

+
, (3.88) 

and the efficiency of the tuning circuit, tc , as 

 tr

tc

el

tc

el

W

W
 = , (3.89) 

where 2

tcel tcW V G=  is the total active power supplied to the tuning circuit and 

2 2 /
trel p t p ewW V G V C Q= =  is the active power consumed by the projector. Thus, 

 
1
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L
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Q

Q Q Q Q
 = =

+ +
. (3.90) 

We will assume for estimations that 100LQ = , although, as it was noted before, this value may 

be too optimistic for a practical inductor design, given that the magnitude of operating voltage 

across the inductor may be of the order of kilovolts. 

Now consider the power factor, cos tc , of the input impedance of the tuned projector vs. 

frequency deviation from the frequency of exact tuning. By definition 

 
22

cos G ct
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I G

I G Y
 = =

+
, (3.91) 
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where ( )2 21 /p tY C f f= − . If to represent the operating frequency as (1 / )t tf f f f=   

then this relation may be reduced to 

 
2 2

1
cos

1 (2 / )
tc

t tcf f Q
 =

+ 
, (3.92) 

where from follows that the power factor of a tuned projector drops down to 0.7 at deviation 

from the tuned frequency 

 0.7 1

2t tc

f

f Q


= . (3.93) 

If, for example, 100LQ =  and 60ewQ =  (the data can be considered as representative of a 

projector operating at low frequencies) cos 0.7tc =  at the deviation of frequency 

0.7 0.01 tf f   ( cos 0.3tc =  at 0.3 0.04 tf f  ). 

Thus, the frequency band of acceptable tuning in terms of the value of the power factor of 

the transmit channel is very narrow. Note that usually (0)L ewQ Q  and in a narrow band 

around the resonance frequency the term /ew LQ Q  in formulas (3.88) and (3.90) can be ne-

glected. But in the case of a broad band operation, firstly, ( )ewQ   vs.   may increase rapidly 

and, secondly, given that voltage across the tuning inductor can be fairly large, in a broad band 

operation it may become not affordable to get a high LQ . 

 

Figure 3.10: Qualitative illustration of difference in results of tuning in the frequency ranges A 

and B. 

Qualitative illustration of difference in results of tuning in the frequency range around the res-

onance frequency and far below this range is presented in Figure 3.10. 

f

cos tc

1tf rf 2tf

A

t b rf f= 

B

1
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Estimations can be made of the optimal for tuning values of the quality factors mwQ  using 

relation (3.66). Suppose that the projectors are made of PZT-4 ceramics, for which the coupling 

coefficients are2: 0.58pk = , 31 0.33k = , 33 0.70k = . These coupling coefficients are typical for 

the spherical transducer and for the cylindrical transducer solid and segmented, respectively. 

For the bar transducer the effective coupling coefficients must be used. For the solid bar they 

are 1 0.3effk =  and 3 0.57effk =  for the side electroded and for end electroded piezoelements, 

respectively, according to relations (2.94). The corresponding optimal values of the quality fac-

tors are: 1.4 for sphere, 2.9 and 1.0 for the solid and segmented rings, 2.8 and 1.4 for the solid 

side and end electroded bars. Comparison with data presented in Table 3.1 on the quality factors 

mwQ  leads to the conclusions that in terms of optimal tuning all the transducers are acoustically 

under loaded ( we optQ Q ). The closest to optimal is loading of the solid cylindrical transducer, 

and the most under loaded is the bar transducer. For spheres and cylinders a better matching 

with acoustic load can be achieved by reducing their thickness relative to radius. Conditions of 

loading for the bars cannot be changed without using additional matching elements in their 

design. Employing the Tonpilz design is the most efficient way of matching bar transducer with 

acoustic load. This issue will be discussed in Section 10.4.1. 

Estimations made in this section are not rigorous, because values of the resistances of the 

mechanical and electrical losses that play a crucial role are not known to a great accuracy. Thus, 

they show the qualitative tendencies. 

The tuning situation can be easily modeled numerically so far as parameters of the input 

impedance are known, and appropriate value of inductance thus can be determined. Moreover, 

more complicated tuning circuits can be used for improving quality of the tuning, as it is shown 

for example in Ref. 9. The transducer related designing problem is in achieving a proper value 

of the quality factor mwQ . 

It must be noted that the tuning issues are not the only considerations that determine the 

frequency band of a projector operation, in which the requirements for the transmit channel 

must be met (“bandwidth” of the projector). The final conclusions regarding the necessary band 

of tuning must be made after all the issues related to determining the transducer bandwidth will 

be discussed. 
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3.1.2 Effectiveness Factor of the Transmit Channel and Efficiency of a Projector 

The goal of a transmit channel as it was formulated in Section 3.1 is in providing a certain 

acoustic intensity on the acoustical axis, (0)I , and a required spatial distribution of sound pres-

sure described by the directional factor, ( , )H   . Assuming that requirements for the direc-

tional factor are satisfied, the value of (0)I  referenced to 1 meter from the acoustic center fully 

characterizes useful acoustic output of the transmit channel. 

Thus, the quality of converting the input electric energy, 
.e chW , into a useful acoustical 

output performed by a transmit channel may be characterized by the coefficient 

 
(0)

ch

ech

I
Ef

W
= , (3.94) 

which we will define as the effectiveness factor of the transmit channel. It is convenient for the 

further analysis to break the effectiveness factor for the channel into two factors related to the 

driving amplifier and to the projector, 
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=  , (3.95) 

where the first factor 

 
.

.

e tr

da

e ch

W

W
 =  (3.96) 

is the efficiency of the driver amplifier loaded by the projector’s input impedance. It can be 

assumed that the input impedance is tuned, as considered in the previous section, and matched 

with the internal impedance of the amplifier. The second factor 
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=  (3.97) 

is the effectiveness of the projector. The more common characterization of the energy transmis-

sion by a projector is the electroacoustic efficiency, ea , which is defined as 
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e tr
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where acW  is the total acoustic power radiated. Assuming that directivity D  of the projector is 

determined as7 
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4 (0)
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( , ) ac
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D

WH d





 
= =


, (3.99) 

(where   is the solid angle), relation between the effectiveness and electroacoustic efficiency 

of the projector may be expressed as 

 
4

ea

trD Ef


 =


. (3.100) 

The effectiveness factor has several advantages over the efficiency ea . Firstly, the effective-

ness is accounted for the “useful” part of the total acoustic power that is radiated in the direction 

of the acoustic axis only, whereas the total acoustic power includes radiation in unwanted di-

rections, which is a waste of energy from the viewpoint of a user of the transmit channel. Sec-

ondly, it is easy to measure the sound pressure and therefore the intensity in a certain direction, 

whereas it is hard to accurately measure the total acoustical power radiated. 

One of the methods for determining the acoustic power (the direct method) presupposes 

measuring the intensity on acoustical axis and evaluating the directivity, which in its turn in-

volves measuring the directional factors of the projector in several planes and subsequent cal-

culations. The whole procedure is time consuming and subject to considerable errors. Another 

method (the impedance method) is based on analysis of balance between the components of the 

equivalent electromechanical circuit of a projector, which are responsible for the electrical and 

mechanical losses in the projector, and the radiation resistance that represents the acoustic load. 

Fairly simple experimental application of this method was discussed in the preceding article. 

Though more practical in terms of realization, this method has its shortcomings because the 

impedances involved may not be accurately represented. In particular, when measuring the ra-

diation resistance it is hard to separate the part, which represents a “truly” acoustic radiation 

from the acoustic losses due to radiation into “wet” elements of transducer design (such as the 

baffles, for example). Besides, the “useful” radiation (in direction of the acoustical axis) con-

stitutes only a part of the total acoustic radiation. As the result, it is very likely that thus meas-

ured efficiency might be falsely increased. Introducing the effectiveness makes it possible to 
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avoid all the complications and inaccuracies involved in determining the efficiency, ea , and 

the effectiveness factor seems to be a preferable characterization of the projector power han-

dling capacity. 

On the other hand, the efficiency ea  is a good characterization of a transducer as an elec-

tromechanical system, because it accounts for energy losses within the transducer mechanical 

system that may become a limiting factor for power radiated by causing the transducer over-

heating, and its analysis may help to improve the transducer design 

3.1.2.1 Efficiency of a Projector 

The efficiency of a projector formally may be determined from the equivalent circuit in Figure 

3.1. Expression (3.98) for the electroacoustic efficiency can be represented as 
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where 
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is the electromechanical efficiency of a projector, and 

 ac
ma

mech

W

W
 =  (3.103) 

is the mechanoacoustic efficiency of the projector. The expressions for the active energies in-

volved in the definitions (3.102) and (3.103) follow directly from the equivalent circuit in Fig-

ure 3.1, namely, 
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After substituting the expressions for energies into the formulas (3.102) and (3.105) we arrive 

at the following representations for the efficiencies 
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and 
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r

r r
 =

+
. (3.107) 

It follows from expression (3.106) that em  strongly depends on the frequency deviation from 

the resonance frequency of the projector. As for ma , it can be considered practically independ-

ent of frequency so far as mLr  and acr  change only slightly in the narrow frequency band around 

the resonance frequency, and far enough of resonance frequency the very rapid changes of em  

are dominating anyway. Thus, we can assume that 

 
ma ma r = , (3.108) 

where ma r  is the mechanoacoustic efficiency at the resonance frequency of the projector. At 

the resonance frequency expression (3.101) for electroacoustic efficiency simplifies to 
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Figure 3.11: Efficiencies of a projector vs. acoustic load. 

All the efficiencies of a projector depend on the acoustic load. Their dependencies on the 

radiation resistance are illustrated qualitatively in Figure 3.11 (subscript “r” is omitted). While 

ma  increases with rise of the radiation resistance, em  decreases, and ea  has a maximum, 

eam , at some value of acr , which we denote as acr  . This value of the radiation resistance can 

be found from the condition 

f



acr 

1

eam

1m  ea

em

1m 

ma
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where ea  is given by Eq. (3.109). After calculations, we arrive at 

 
21 /ac mL eL mLr r n R r = + . (3.111) 

If the parameters of a particular projector involved in formula (3.111) are known, then the op-

timal acr   and the maximum available efficiency of the projector, which will be obtained by 

substituting acr   in formula (3.109), can be determined. Although in practice the freedom to 

vary acr  is restricted, the conclusion can be made on what kind of losses are critical under a 

particular acoustic loading in terms of the overall efficiency improvement. The ratio of an op-

erating value of acr  to its optimal value acr   is denoted as 

 ac m

ac mw

r Q
m

r Q




= = . (3.112) 

The coefficient m  characterizes mismatch of the acoustic load in terms of maximizing the 

electroacoustic efficiency. From Figure 3.11 follows that in the case that 1m   (the projector 

is overloaded) the electrical losses are predominant, and in the case that 1m   (the projector 

is under loaded) the mechanical losses prevail. 

The resistances eLR  and mLr  of a projector at the resonance frequency can be represented 

as 

 ea
eL s

r e

Q
R

C
=  and 

1
mL E

r m ma

r
C Q

= . (3.113) 

Here eaQ  and maQ  are the quality factors measured in air, because for the projector operating 

in water only radiation resistance will be added. Upon substituting these expressions into for-

mula (3.111) and noting that 2 2 2/ / (1 )E s

m e eff effn C C k k= −  we obtain 

 
2 21 [ / (1 )]ac mL eff eff ma ea mLr r k k Q Q r A = + − = . (3.114) 

In this formula the dimensionless factor 

 
2 21 [ / (1 )]eff eff ma eaA k k Q Q = + −  (3.115) 
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is introduced that is a function of the internal losses in the projector and of its effective coupling 

coefficient. Now the maximum efficiency of the projector at optimal acoustic load, eam , can 

be estimated as 

 ( 1) / ( 1)eam A A  = − + , (3.116) 

following formula (3.109). The rate of change of electroacoustic efficiency relative to its max-

imum value at the optimal acoustic load vs. mismatch between a real load and its optimal value, 

( ) / (1)ea eam  , depends on value of coefficient A . 

 

Figure 3.12: Plots of the relative change of the electroacoustic efficiency vs. mismatch between 

the real and optimal loads. The value of A  is shown in the plot. 

This is illustrated with plots in Figure 3.12. It must be noted that the measurements of the quality 

factors maQ  and eaQ  of a projector in air must be made with caution. One has to make sure that 

mechanical stress in the projector does not exceed the permissible value, pT , as maQ  can be 

much greater than mwQ  under real acoustic load in water. Therefore, the full operating electric 

field cannot be applied when measuring in air if a projector for radiation a great power is con-

cerned. The results obtained in this case by measuring at low electrical field cannot be extrap-

olated to their maximum permissible values, due to nonlinear nature of the mechanism of en-

ergy dissipation. 
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It is interesting to make at least a rough analytical comparison between transducers of dif-

ferent kinds that employ different piezoceramicss in terms of their potential maximum efficien-

cies. With this goal we will consider situation that is idealized, as follows. 

The quality factors maQ  and eaQ  of a real finished transducer account for additional me-

chanical and electrical losses that can be considered as parasitic (stray) losses, if compared with 

the internal losses in a bare piezoelement, which are inherent in a piezoelectric material. The 

latter are characterized by the quality factors 2(1 )e es effQ Q k= −  and mQ . We will assume that 

the stray losses may be neglected. To some extent this can be achieved by a rational transducer 

designing. The internal dielectric and mechanical losses may be lesser quantitatively than the 

stray losses, but they directly contribute to a heat release inside of the piezoelement and may 

become a limiting factor for the maximum power radiated because of an overheating of the 

piezoelements. Moreover, esQ  and mQ  behave in a nonlinear way and at large electrical field 

and mechanical stress the percentage of energy dissipated may increase significantly. Though 

the estimations made under such simplifying assumption should result in exaggerating the effi-

ciency, they are useful for illustrating the existing tendencies. 

Thus, formula (3.107) reduces to 

 2 21 1 / taneff m es eff mA k Q Q k Q = + = + . (3.117) 

The values of quality factors mQ  and 1/ tanesQ =  of the piezoceramic materials at high elec-

trical field and mechanical stress can be found in catalogues issued by the manufacturers of 

piezoelements. Data regarding values of mQ  and tan  related to low and high electric fields 

and mechanical stress are presented in Table 3.2 for the piezoceramic compositions PZT-4, 

PZT-8 and PZT-5A (though the “soft” PZT-5A composition is not supposed to be used for the 

powerful projectors, this material is included for comparison). Results of calculations made 

with examples of transducers considered in Chapter 2 that illustrate differences of values of the 

projector’s efficiencies are presented in Table 3.3. The solid rings and bars at the transverse 

piezoeffect (i. e., with 31k  coupling coefficient) are taken into calculation only. Therefore, the 

results are representative for relatively high frequency transducers (for rings at f > 10 kHz). The 

relatively low frequency transducer designs usually employ the segmented mechanical systems, 
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in which case some additional mechanical losses due to cementing the piezoelements are in-

volved. 

Table 3.2: Properties of the piezoceramic compositions. Presented are the averaged data taken from 

catalogues of the EDO Corporation, Channel Industries Inc., Morgan and Matroc and from Ref. [2] 

 PZT-4 PZT-8 PZT-5A 

1
tan

esQ
 =  

Low field 0.004 0.003 0.02 

E = 2 kV/cm (5 V/mil*) 0.02 0.005 0.16 

mQ  
Low stress 500 1000 75 

T = 20 MPa (3000 psi**) 100 600 30 

*1 V/mil = 0.4 kV/cm **1 psi = 6895 Pa 

Table 3.3: Results of calculating the efficiencies of projectors. 

  Low Field E = 2 kV/cm 

 Material A  m  eam  A  m  eam  

 

/ 5a t = , 

3.6mwQ =  

PZT-4 117 1.19 0.98 24.5 1.25 0.92 

PZT-8 150 1.85 0.99 95.0 1.46 0.98 

PZT-5A 20.8 1.00 0.91 4.3 1.62 0.62 

 

/ 5a t = , 

7.2mwQ =  

PZT-4 117 0.60 0.98 24.5 0.62 0.92 

PZT-8 150 0.93 0.99 95.0 0.73 0.98 

PZT-5A 20.8 0.50 0.89 4.3 0.81 0.62 

Data presented in Table 3.3 show the potential maximum values of the efficiencies, eam , 

and the mismatch coefficients, m . They change depending on the driving conditions. In order 

to estimate how the values of efficiencies change at acoustic loads that correspond to the mis-

match coefficients from the table, the plots in Figure 3.12 may be used. In the idealized case, 

in which only losses in the ceramics are taken into consideration, coefficients A  are large 

enough for effects of the mismatch being negligible with exception of transducers made of PZT-

5A. For these transducers under hard drive the additional drop of efficiency due to the mismatch 
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will be about 5%. Effect of the mismatch on efficiency of transducers with real internal losses 

taken into account may be much more significant. 

3.1.2.2 Efficiency of a Projector over a Frequency Band 

After substituting expressions (3.106)-(3.108) into formula (3.101) we will arrive at the relation 

( ) ( )ea ea rB  =  , where   characterizes deviation from the resonance frequency (see defi-

nition (3.15)), and 

 
2 2

1
( )

(1 )(1 )em r em r mw

B
Q 

 =
+ − +

. (3.118) 

 

Figure 3.13: Plot of function ( ) ( ) /em em rB   =   vs. frequency band for PZT-4 (solid lines), 

PZT-8 (dashed lines) and PZT-5A (dot-dashed lines): (a) cylindrical transducer ( 7.2mwQ = ), (b) 

bar transducer ( 25mwQ = ). Labels 1 are for the case 31effk k=  and labels 3 are for the case 

33effk k= . 

Thus, analysis of the electroacoustic efficiency in a broad frequency band may be reduced to 

the analysis of the function ( )B  . This function depends essentially on the value of em r  and, 

in the case that em r  is close to unity, ( )B   becomes nearly independent of the frequency. 
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Note that under the condition that maximum power has to be radiated over the entire operating 

band efficiency em r  must be calculated with value of tan  corresponding to the permissible 

electric field 52 10  V/mpE =   on the border of the band. 

Consider a numerical estimation of the function ( )B   vs. frequency deviation using the 

examples of the transducers, for which values of mwQ  under a “natural” acoustic load are pre-

sented in Table 3.1, namely, for the cylindrical transducer at / 5a t = , 7.2mwQ =  and for the 

bar transducer 25mwQ = . Behavior of the function ( )B   is illustrated in Figure 3.13. 

The dot-dashed lines in Figure 3.13 show how the efficiency of the transducers made of 

“hard” ceramic materials would change, if they were made of “soft” PZT-5A ceramic compo-

sition. 

It must be recognized judging by the results presented that decrease of efficiency of trans-

ducer itself is not a limiting factor for a broadband operation, if a proper PZT material is used 

(so far as the heat release considerations are not concerned). The effectiveness of a transmit 

channel may be affected more seriously by efficiency of the driving amplifier together with 

tuning and matching elements in operation on the transducer impedance that becomes highly 

reactive and frequency dependent. 

3.1.3 Maximum Acoustic Power Radiated by a Transducer and Its Limitations 

The ability of delivering the maximum possible acoustic power is the most important charac-

terization of a projector . This is obvious in the case that it is needed by a requirement. But even 

if this is not required, and the projector is intended for radiating a moderate power, comparing 

the operating power with the maximum possible shows, how much of the reserves available can 

be used for rationalizing the projector design for a particular application. The maximum acous-

tic power is limited by the mechanical and electrical strength of the transducer, as well as by 

possible overheating caused by energy dissipation within the transducer. The latter will not be 

considered on a general level, because the thermal conditions depend very much on the operat-

ing regime of a transducer and on the detail of a particular transducer design. 

The acoustic power radiated, being expressed from the equivalent circuit of Figure 3.1, 

may be represented after using relation (3.18) for the impedance of mechanical system as 
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The maximum acoustic power may be radiated at the resonance frequency of a transducer, 

and its value is 
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As it follows from Eq. (3.120), the acoustic power can be limited by the permissible value of 

voltage applied, maxV , or by the permissible value of the mechanical stress generated in the 

transducer body, which is proportional to velocity maxoU . 

Table 3.4: Allowable compressive and rated tensile strss for piezooceramics. 

 

One-Dimensional Compression 

MPa (kpsi) 

Tensile Dynamic 

and Static 

Strength 

MPa (kpsi) 

Hydrostatic Pres-

sure 

MPa (kpsi) ||  ⊥  

PZT-4 84 (12) 56 (8) 24 (3.5) 350 (5) 

PZT-8 84 (12) 56 (8) 35 (5.0) 350 (50) 

PZT-5A 21 (3) 14 (2) 28 (4.0) 140 (20) 

The problem of radiating a great power is a complex multidisciplinary problem. Two 

groups of factors that limit a reliable power radiation can be considered: (1) physical and tech-

nological and (2) design related. Physical and technological factors, e.g., the electrical and me-

chanical strength of piezoelectric and auxiliary materials and piezoelements, the transducers 

fabrication technique, reliability problems including the fatigue strength of the transducers. 

Factors related to the rational designing the projectors as electromechanical devices, namely, 

the effective electromechanical coupling, optimal acoustic loading in terms of reducing operat-

ing electric field and/or mechanical stress, whichever is limiting, and possible increase of effi-

ciency of the projector. In this treatment we will consider the latter group of factors assuming 

that all the physical and technological factors are reduced to the representative values of the 

permissible electric field, pE , and mechanical stress, pT , under which an operation of a pro-

jector can be considered as linear and long term reliable. The values of pE  and pT , which are 

valid for finished transducer designs, are assumed to be correlated with an existing level of the 
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“technological skills” and thus subject to change in accordance with an improvement of these 

skills. This can change the quantitative estimations made, but the methodical approach to the 

problem can remain intact. The permissible values of pE  and pT  are not very certain. For ex-

ample, the data related to the mechanical strength of the ceramics are presented in Table 3.4 

that is taken from Ref. 2. 

Judging by the data from different sources available in accessible literature, we will use for 

our estimations the following values: pE  = 2 kV/cm (5 V/mil) and pT  = 20 MPa (3000 psi). 

Here pT  is the permissible tensile stress for a solid piezoelement. In the case of the segmented 

mechanical systems this value is applicable under the condition that they are prestressed by the 

stress T = 20 MPa in the direction of segmenting. 

The operating electric field in a transducer piezoelement, which is required for developing 

the electromechanical force, Vn , may be represented as 

 EE A Vn= , (3.121) 

where coefficient EA  must be determined for each transducer type. Upon substituting the value 

of Vn  from Eq. (3.121) into the left hand part of Eq. (3.120) we arrive at the expression for the 

maximum available power radiated limited by the electrical strength 

 

2

2 2( )

p ac
mE

E ac mL

E r
W

A r r
=

+
. (3.122) 

The maximum operating stress in the mechanical system of a transducer is proportional to 

magnitude of the reference point velocity and this may be represented at resonance frequency 

as 

 T oT A U= , (3.123) 

where TA  is coefficient that is determined by a type of mechanical system and its mode of 

vibration (note that /o oT U = , thus TA  includes the resonance frequency of the mechan-

ical system). Coefficients EA  and TA  for the transducers considered in Chapter 2 are presented 

in Table 3.5. Upon substituting the value of oU  determined from Eq. (3.123) into the right hand 

side of Eq. (3.122) we arrive at the expression for the maximum available power radiated, lim-

ited by the mechanical strength of the transducer 
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2

2

p

mT ac

T

T
W r

A
= . (3.124) 

The maximum power that can be radiated by a projector is equal to the lesser of values mEW  

and mTW . 

3.1.3.1 The Optimal Acoustic Load and the Maximum Power Radiated 

Consider the ratio of the maximum stress limited power to the maximum electric field limited 

power, 

 ( )

22

2pmT E
ac mL

T pmE

TW A
r r

A EW


  
= + =    
   

. (3.125) 

The first factor in Eq. (3.125), 
2( / )E TA A , is determined by the type and mode of vibration 

of the transducer mechanical system and by the electromechanical properties of the piezoelec-

tric ceramic material used (it may be called the design factor). The second factor, 2( / )p pT E , is 

related to the existing average technological level of fabricating the piezoelements and the fin-

ished transducers (it may be called the technological factor). Note that a poor transducer fabri-

cation can reduce this factor dramatically. The third term depends on the acoustic load (the load 

factor). In the case that in Eq. (3.125) 1  , the maximum power radiated is limited by the 

electrical strength and the transducer has a reserve of the mechanical strength. In the case that 

1  , the power radiated is limited by the mechanical strength, and the transducer has a reserve 

of the electrical strength. In the case that 1 = , the maximum possible acoustical power can be 

radiated by the transducer. This optimal situation can be achieved by matching the acoustic load 

to the properties of a particular transducer. It is shown qualitatively in Figure 3.14, how mEW  

and mTW  change with respect to acoustic load. Coordinates of the intersection point M of the 

functions mEW  and mTW , which correspond to the maximum power, acmW , and the value of 

optimal acoustic load, optWr , depends on both the design factor, ( / )E TA A , and the technological 

factor, ( / )P PT E . Therefore, the optimum can be achieved not only by direct changing the 

acoustic load that is usually not an easy task, but also by changing the transducer design and 

thereby by changing the criterion for matching. The value of optimal acoustic load, optWr , can 

be found from Eq. (3.125) at 1 = , namely, 
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 T P T P
optW mL

E P E P

A E A E
r r

A T A T
= −  . (3.126) 

 

Figure 3.14: The diagram of the maximum acoustic power with respect to acoustic load: 

2 2tan /P TT A = . 

Resistance of mechanical losses, mLr , can be neglected, because this is equivalent to as-

suming that at the optimal loading the mechanoacoustic efficiency, ma , of the transducer is 

close to unity, as it was illustrated with the typical examples of transducers in Section 3.1.2. As 

it is shown in Table 3.3, the electroacoustic efficiencies eam  are close to unity (and so do ma  

that have greater values). From plots in Figure 3.12 follows that these values do not change 

significantly in a broad range of mismatch with acoustic load for transducers made of PZT-4 

and PZT-8, and the optimal resistances optr   and opt wr  are comparable. The correlation between 

them is / /opt w opt wr r m m = , and from Table 3.3 and Table 3.5 it follows that for the ring trans-

ducers / 1.25 / 2.7 0.46wm m = = . 

Upon substituting the optimal value of radiation resistance into either equation (3.122) or 

(3.124) we will obtain for acmW  

 P P
acm

E T

E T
W

A A
. (3.127) 

The ratio 

 /ac opt W Wr r m=  (3.128) 

characterizes a mismatch between the real radiation impedance and its optimal value for a par-

ticular transducer. Thus, at 1Wm   in Figure 3.14 the transducer is overloaded, and at 1Wm   

it is underloaded. Note that combining Eqs. (3.125), (3.126) and (3.128) results in 

acr

W

mLr

2

24

P

E mL

E

A r

acmW

1Wm 



mTW

Projector Underloaded Projector Overloaded

1Wm optWr

mEW

M

/W ac optm r r=

1 1 

acW
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2

wm = . (3.129) 

Although the above considerations related to the maximum power radiated by a transducer 

are quantitatively valid only at its resonance frequency, they are also important in a methodical 

sense, because they give an estimation of the absolute maximum power obtainable from the 

transducer and they help to determine the ways for optimizing the transducer design. 

Consider cylindrical transducer made of circular rings vibrating in the breathing mode and 

transducer in the shape of uniform bar vibrating longitudinally in the fundamental mode, as 

examples for illustrating this statement. In terms of acoustic loading, we will assume that the 

cylindrical transducer is long compared to the wavelength and the bar transducer operates in a 

large plane array. The results of estimation of the optimal acoustic load and maximum possible 

power radiated as well as the maximum power available under the real (natural) acoustic load 

are presented in Table 3.5. 

Table 3.5: Estimations of the optimal acoustic loads and maximum power radiated. 

 i  EA  TA  /optr S , 10-2 /acr S
1) wm

2) /mT mEW W  

Bar 1 

32

E

ii

i

s

d tw
 

( )Ei cc  3
2 ( )

i E

i cE

ii

d
c

s
  

0.8( )wc  0.24 0.06 

3 0.15 0.02 

Ring 1 

32

E

ii

i

s

d th
 

( )Ei cc  3
( )

i E

i cE

ii

d t
c

as
  

0.9( )wc  

at ka = 2.2 

2.7 7.3 

3 1.7 2.9 

Note: 
2/ 10p pE T −=  Vm/N, 2S ah =  for ring, S tw =  for bar. 

1) See Figure 2.4 for ring and Figure 2.10 for bars. 
2) For ceramics PZT-4; for rings at / 1/ 5t a = . 

Several conclusions can be made following the estimations presented in Table 3.5. 

The uniform bar transducers are significantly under loaded even operating in a big array, 

and their power radiated is limited by the mechanical strength. One must pursue an increase of 

acoustic load for optimizing the transducer design. This can be done at the expense of reduction 

of the reserve of the electrical strength. Thus, the Tonpilz transducer design can be considered 

as modification of the uniform bar with the goal of matching acoustic load for obtaining greater 

acoustic power. The related issues will be considered in Chapter 10. 

In contrast, the single cylindrical transducers are overloaded, and their power radiated is 

limited by the electrical strength. Near to optimal loading of the transducers can be achieved by 
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an increase of the thickness to radius ratio, /t a , and/or by a partial baffling the radiating sur-

face, as is the case for cylindrical transducers used in arrays or as single transducers with baffles 

for achieving unidirectional radiation in the horizontal plane. This issue will be considered in 

Chapter 7. The estimations of the maximum available acoustic power radiated are of significant 

methodical importance. Not only can they help to increase the maximum power radiated by 

better matching the acoustic load, but they can also be used as guidance for improving designs 

of transducers intended for radiating a moderate power in a broad frequency band. Introducing 

the concept of reserves of mechanical and electrical strength may be useful in this respect. 

3.1.3.2 Reserves of Strength Coefficients 

The operating acoustic power of a projector can be denoted by 
opW  and the corresponding 

electrical field and mechanical stress in the projector as opE  and opT . Then the coefficients 

 mEP
E

op op

WE
k

E W
= = , (3.130) 

and 

 mEP
T

op op

WT
k

T W
= = , (3.131) 

characterize the reserves of the electrical and mechanical strength of the projector regarding the 

maximum permissible values of the electrical field and mechanical stress. By these definitions 

for the reserve coefficients, it should be 1Ek   and 1Tk  . The equality corresponds to the 

case that the operating power reaches the maximum power limited by electrical field or by 

mechanical stress. If Ek  and/or Tk  exceeds the unity, it means that the projector has an exces-

sive reserve of strength. In general, the projector design can be regarded as rational in the case 

that it does not have an excessive reserve of either electrical or mechanical strength, i.e., 

E Tk k=  under the operating loading conditions. The situation where 1E Tk k= =  corresponds 

to the maximum power available from projector for a particular application. If a moderate 

acoustic power is required, then , 1E Tk k  , which means that the projector acquires excessive 

reserves and its design can be made simpler, cheaper, and even more reliable for expense of a 

reduction of these reserves (for example, the amount of active material can be reduced, or the 
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prestressing arrangements can be simplified, etc.). Note, that the resulting increase of opE  and 

opT  up to their permissible values pE  and pT  should not compromise the reliability of a pro-

jector, because the permissible values by their definitions are supposed to insure a long term 

reliability of a transducer. 

3.1.4 Frequency Response of a Projector 

In order for a transmit channel to maintain a certain intensity level (3.1) on the acoustic axis in 

a prescribed frequency band, dependence of the projector voltage sensitivity on the frequency 

in this frequency band has to be known. Here the projector voltage sensitivity, V , is defined 

as the ratio of sound pressure generated by the projector on the acoustic axis referenced to 1 m, 

1m(0)P , to voltage applied 

 1m( ) (0, ) /V P V  = . (3.132) 

The sound pressure generated by a projector on the acoustic axis is according to relation (2.28) 

 0(0, ) ( ) ( )difV
P P U k = , (3.133) 

where 0 ( )
V

P U is the sound pressure generated by the small pulsating sphere having the same 

volume velocity, as a real transducer, and ( )difk   is the diffraction coefficient for the trans-

ducer. Following Eq. (2.27) 
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 
 

 

− − − −= = , (3.134) 

and therefore 
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1m(0, ) ( ) ( )
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j kr

o dif

cS
P U k e 

  


− −= . (3.135) 

The magnitude of velocity of the reference center on the projector surface, ( )oU  , being de-

termined from the equivalent circuit (see Eqs. (1.74) and (1.76)) is 

 
2

1
( )  

[1 ( / ) ]
o E

m eqv r mL ac

Vn
U Vn

Z j M f f r Z



= =

− + +
. (3.136) 

Thus, the general expression for the sound pressure frequency response in a broad frequency 

band is 
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. (3.137) 

It must be understood that in real operation of a transmit channel magnitude of the voltage 

applied to projector does not remain constant in a frequency band. Its value depends on the 

properties of a driver amplifier and on conditions of matching its internal impedance with the 

input impedance of the projector. 

 

Figure 3.15: Plots of the (a) voltage sensitivity of the spherical transducer (OD = 50.8 mm, t = 2.5 

mm, PZT-4) with and without series tuning normalized to its value at resonance frequency and 

(b) cos tr  of the transducer. Dashed lines – characteristics of the tuned transducer. 

Thus, if the input impedance of the projector is series tuned, the voltage applied to transducer 

relates to the output voltage of a driver amplifier by relation (3.54) / costr g trV V = , where 

2cos 1/ 1tr ewQ = +  (Eq. (3.34)) and ( ) ( )ew p pQ C R  =   (Eq. (3.33)). In the case that in-

ternal impedance of the driver amplifier is much smaller than input impedance of the tuned 

transducer, its output voltage will be kept constant and the frequency response of the tuned 

transducer will be found as 
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 / costuned V tr  = . (3.138) 

For example, the plots of the voltage sensitivity V , cos tr  and voltage sensitivity of the tuned 

spherical transducer are presented in Figure 3.15. Thus, a real frequency response of a tuned 

transducer can be significantly broader than that of the voltage sensitivity. 

As to the voltage sensitivity by formula (3.132) that characterizes property of a projector 

itself, it must be measured at constant voltage applied to the transducer. Further the voltage 

sensitivity, V , and its dependence on frequency will be considered. The voltage sensitivity 

being expressed in the dB scale is called TVR – transmitting voltage response, 

 TVR = 20 log P (0) re 1 µPa/V at 1 m. (3.139) 

In the typical operating band of a projector around its resonance frequency the expression for 

the mechanical impedance can be reduced to the form (3.18). Then Eq. (3.136) becomes 
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1 1
o o r

ac mL mw mw

Vn
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r r j Q j Q
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+ +  + 
, (3.140) 

where 

 ( ) / ( ) /o r ac r mL ma r ac rU Vn r r Vn r = + = . (3.141) 

Finally, we arrive at the expression for the frequency response 

 ( /2)1(0, ) 1
( )   ( )

2 1

j krm
V ma r dif

ac r mw

P cS n
k e

V r j Q

 
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

− −= =
+ 

. (3.142) 

The ratio of its value to value at the resonance frequency is the normalized frequency response 

of the projector 
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. (3.143) 

The factor ( ) / ( )ac r acr f r f  changes insignificantly at deviation 0.4 =   from resonance fre-

quency and can be neglected. Thus, from plots in Figures 2.2 and 2.4 follows that for the spher-

ical and cylindrical transducers considered in Chapter 2 ( ) / (0) 1 0.03ac acr r   ). The factor 

( ) / ( )dif dif rk f k f changes slowly with frequency. Its most deviation from resonance value takes 

place for the spherical transducer and does not exceed 1.2  at 0.4 =  . 
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The normalized frequency response of a projector is an inherent property of a transducer 

type. It is shown in Figure 3.16 at different values of the quality factor mwQ  for the transducers 

described in Table 3.1. 

 

Figure 3.16: Normalized frequency responses of the projectors: (1) cylindrical with a/t = 5, 

7.2mwQ = , (2) spherical with a/t = 5, 6.0mwQ = , and (3) uniform bar with 25mwQ = . 

The following must be noted regarding the absolute magnitude of the voltage sensitivity of 

a transducer. Physically effect of generating vibration and hence acoustic radiation is produced 

by the electric field in the piezoelements comprising the transducer, and the maximum of the 

sound pressure level (SPL) achievable is limited by the permissible value of the electric field. 

The sound pressure radiated by a transducer can be changed without affecting the voltage ap-

plied. For example, this can be done in the segmented transducer designs by changing the thick-

ness of segments in direction of electric field. (This is one of the ways of matching transducer 

input impedance that is equivalent to its transformation.) Reducing the thickness of segments 

produces effect of increase of electric field and of the sound pressure at the same voltage applied 

to the transducer, i. e., effect of increasing the TVR. 

Thus, the TVR cannot be used for comparing radiating abilities of different transducers 

without providing information about peculiarities of their designs. Much more appropriate for  

this purpose is TER, the transmit response at unit electric field developed in the comprising 

piezoelements (TER = 20 log P(0) re 1 µPa/V at 1 m). 
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3.1.5 Operation of a Projector in a Broad Frequency Band 

3.1.5.1 About the Bandwidth of a Projector 

The ability of a projector to meet requirements for operating in a broad frequency band is com-

monly called the transducer Bandwidth. This property of a projector is the most controversial. 

It cannot be characterized by a single figure of merit, and no single definition can be made that 

fully describes this concept. Complexity of the bandwidth concept arises from the role of pro-

jector, as a member of a transmit channel that has a goal of operating in as wide as necessary 

frequency band at a certain level of the acoustic power radiated. Not only the projector itself 

should be able of radiating the required power in the operating frequency band at an acceptable 

level of efficiency. It has to meet requirements for matching its input impedance with the chan-

nel’s source of energy that is loaded by the projector as well. Properties of the input impedance 

and behavior of efficiency of a projector in a frequency band are already considered in the 

Sections 3.1.1 and 3.1.2. In this section we will be concerned with the projector’s ability of 

radiating a prescribed power in a frequency band around its resonance frequency. In other 

words, we must be sure that the projector can radiate a required power at each frequency within 

the specified band around the resonance at maximum deviation of frequency up to 0.4 =   

(remember that 2 / rf f =  ). We denote the acoustic power radiated in this frequency band 

as ( )W  . 

The maximum acoustic power can be radiated by a projector at the resonance frequency, 

as it was discussed in Section 3.1.3, and the values of acoustic power limited by the electrical 

and mechanical strengths of the projector are determined by Eqs. (3.122) and (3.124). Here we 

will denote these values at resonance frequency (0)mEW  and (0)mTW . The coefficients of re-

serves of the electrical and mechanical strength at resonance frequency determined by Eqs. 

(3.130) and (3.131) will be denoted as (0)Ek and (0)Tk , and those in the operating frequency 

band as ( )Ek   and ( )Tk  . 

The acoustic power radiated in operating frequency band is determined by the general ex-

pression (3.119) 

 

2

2 2 2

[ ( ) ] 1
( )

( ) 1

ac

ac mL mw

V n r
W

r r Q


 = 

+ +
. (3.144) 



3.1. Operation in Transmit Mode  123 

 

The values of ( )acr   and 
2/ ( )ac ac mLr r r+  change slowly compared with strongly frequency 

dependent second factor of the equation. (This was noted regarding Eq. (3.141)). Taking into 

consideration that V E , the dependence of the acoustic power in the operating frequency 

band determined by the electric field, EW , can be represented as 
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2 2
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( ) (0)

(0) 1
E E
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E
W W

E Q

 
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+ 
, (3.145) 

and in order to keep the power constant over the frequency band it should be 

 
2 2( ) (0) 1 mwE E Q = + . (3.146) 

The expression for the radiated power in the band can be represented as 
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Then 
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The second factor in this equation is negligible (see the note under Eq. (3.144)). Thua, it can be 

concluded that for maintaining the power constant in the operating band it should be 

( ) (0)o oU U  . Given that the mechanical stress is /o oT U =  , the stress should change 

as 

 
1

( ) (0) (0)
1 (0.5 )

rfT T T
f

 =  
 

 (3.149) 

(note that / / ( ) 1/ (1 0.5 )r r rf f f f f=     ). Thus, the stress increases at frequencies below 

the resonance frequency if the power radiated is kept constant. 

To ensure reliable radiation of acoustic power, the requirements ( ) 1Ek    and ( ) 1Tk    

for values of reserve of strength coefficients must be met. Using expressions (3.146) and (3.149) 

for values of stress and electric field under condition that acoustic power remains constant over 

the operating band, we obtain the inequalities to be met 
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It follows from these inequalities that the projector must possess additional reserves of power 

available at resonance frequency, which will be denoted ( )r mW  , regarding the power ( )W   

required for radiation in the frequency band m . Namely, the following relations must be 

fulfilled 

 
2 2(0) 1E mwk Q + , (3.152) 
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The maximum power available in the frequency band m =   will be 
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If the maximum power at the resonance frequency is mechanical stress limited, then 

 ( )( ) 1r m mT mW W = − . (3.155) 

If the maximum power at resonance frequency is electric field limited, then 
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. (3.156) 

We will further consider the case that the maximum power radiated at the resonance frequency 

is electric field limited, because the stress limited projectors are usually significantly under 

loaded and are not suitable for broad band operation. Slightly under loaded projectors can be 

considered in the same way as electric field limited without a big mistake. Upon substituting 

expression (3.10) for mwQ  and (3.122) for mEW  into Eq. (3.156) we obtain 
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In the manipulations mLr  was neglected in comparison with acr , because for the electric field 

limited projectors usually mL ac rr r . The optimal acoustic load, r , can be found from this 

equation for any given value of ( )r mW  , which results in the maximum band m . After 
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differentiating the right side of the equation with respect to acr  and equating the result to zero 

we arrive at 
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The mismatch coefficient 

 /ac rm r r =  (3.159) 

can be introduced to characterize deviation of the real radiation resistance, acr ,, from its optimal 

for broadband operation value. After substituting expression for the optimal load into Eq. 

(3.157) instead of ac rr  the following relation will be obtained 

 

2

2

1
( )

2

p

m r m

r eqvE

E
W

MA 
  =  . (3.160) 

Thus, the product of the frequency band and the maximum power that can be radiated in this 

band (gain-bandwidth product) is constant for a particular transducer type under the condition 

of optimal loading. In general, under an arbitrary acoustic load Eq. (3.160) must be replaced by 

the inequality 
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For example, in the case of a cylindrical transducer, which is a typical representative of the 

projectors with electric field limited maximum acoustic power available for radiation at the 

resonance frequency, after substituting the corresponding EA  and r eqvM  parameters from Ta-

ble 3.1 and Table 3.5 we arrive at 
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Here ( ) /r mW S  is the specific acoustic power radiated ( S  
is the radiating surface of the 

projector). There are three factors in the right hand side of the inequality, which essentially 

affect the capability of the projector to operate in a broad frequency band: the first factor can 

be identified as the technological factor so far as the value of pE  depends on the transducer 
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fabrication quality; the second factor is the combination of parameters of the piezoelectric ma-

terial used; the third factor depends on the transducer mechanical system geometry (for the 

cylindrical transducer this is ratio of the thickness to mean radius of the ring). 

The analysis made shows that for considering the operating frequency band of a projector 

it is necessary to specify a required acoustic power radiated in this band. The acoustic power 

vs. frequency band tradeoff is illustrated qualitatively by plots in Figure 3.17. 

 

Figure 3.17: Acoustic power available for radiation in a frequency band ( )r miW   vs. frequency 

band mi . Value of the maximum band, in which acoustic power ( )miW  can be radiated, is on 

the intersection of its frequency dependence with the line that correspond to the permissible elec-

tric field, pE . 

In Figure 3.17 1 2 3( ) ( ) ( )r m r m r mW W W     , and 1 2 3m m m   . The product 

( )mi r miW    must not exceed some value that is constant for each transducer type. The max-

imum power ( )mE acW r  limited by the electric field depends on the radiation resistance and can 

be radiated at the resonance frequency (at 0 = ) only. The broader the operating frequency 

band, the smaller is the acoustic power available for radiation. The maximum operating band, 

in which a required power can be radiated by a transducer, may be achieved at optimal for this 

value of power acoustic load given by Eq. (3.158). 

The concepts of optimal acoustic loads, under which the maximum values of certain trans-

ducer parameters may be achieved, and corresponding mismatch coefficients used in this sec-

tion need to be emphasized. We have introduced definitions for the optimal loads and mismatch 
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coefficients in terms of the: maximum efficiency at the resonance frequency ( r  by Eq. (3.111) 

and m  by Eq. (3.112)); maximum power available at the resonance frequency of a projector (

Wr  by Eq. (3.126) and wm  by Eq. (3.128)); maximum product ( )m r mW   ( r  by Eq. (3.158) 

and m  by Eq. (3.159)). The values of the optimal load resistances are different. Besides, not 

much freedom is available for actual changing the radiation resistances of projectors. Therefore, 

the question can arise regarding a usefulness of these concepts. However their importance orig-

inates from the fact that the value of an optimal load depends not only on a real radiation re-

sistance, but also on the properties of a particular projector type, as it follows from formulas 

(3.114), (3.126) and (3.158). Possibility of matching the optimal load by a proper changing the 

projector design must be considered in each particular case. Thus, the way of optimizing illus-

trated in this section with example of a cylindrical transducer does not work in the case of a 

uniform bar, because neither mwQ  nor ( )rW   depend on the uniform bar geometry. This trans-

ducer type is not flexible in terms of optimizing its operation. Under “natural” acoustic loading 

(in a flat array of a big wave size) projectors of this type are strongly under loaded, and there is 

no practical way for improving their matching without modifying the mechanical system of the 

transducer. The well-known and widely used Tonpilz transducer design that employs a mechan-

ical system composed of piezoelectric and passive longitudinally vibrating bars of different 

lengths and cross sections represents the modification of uniform bar transducer that allows 

optimizing the acoustic loading. The mass loaded bar transducer considered in Section 2.5 is a 

variant of this transducer type. 

In the conclusion we note that the numerical data related to optimal acoustic loads are 

presented in order to illustrate the technique, and they characterize the maximum achievable 

values, as if the only limiting factor was the electric field. The actual achievable level of power 

radiated by a transmit channel in a frequency band depends also on the properties of the trans-

ducer input impedance and on its effectiveness.  
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3.2 Transducers in the Receive Mode 

3.2.1 Transducer as a Member of Receive Channel 

Transducers intended for operating in the receive mode are the sensors that convert energy of a 

physical input (signal) that characterizes properties of acoustic field (sound pressure, pressure-

gradient), or a state of vibration (acceleration) of structures into electrical output. The sensors 

of the first group are hydrophones and of the second group – accelerometers. The sensors op-

erate as a part of receiving channel, the main task of which is detecting of signals against back-

ground noise. In order to formulate the basic properties of the sensors per see, we will consider 

the receive channel with a single sensor unit. As the background noise will be regarded: the 

internal noise of the receiving channel that is characterized by value of equivalent noise voltage 

of the channel reduced to its input; the internal noise of the sensor; and the output voltages of 

the sensor generated by unwanted actions having a physical nature different from that of the 

signal (for example, vibration for the hydrophones, and conversely sound pressure for accel-

erometers). The external actions having the same physical nature as that of the signal, such as 

the sea noise for hydrophones, will not be considered in this section as a background noise, 

because it is impossible for a receiving channel with a single sensor to discriminate noise of 

this kind by changing the sensor design. The only way to reduce effect of such actions is by 

means of spatial and temporal data processing that may be performed by an array and signal 

processing system. The block diagram of a receiving channel is shown in Figure 3.18. 

 

Figure 3.18: Block diagram of a receiving channel. 

The sensor and preamplifier make the input of receiving channel. Their goal is to fulfill the 

“primary processing” of a signal, i.e., to raise magnitude of the signal delivered to the “second-

ary processing” electronics to a level sufficient to avoid a deterioration of the signal to noise 

ratio in the subsequent circuits. The problem is in minimizing the signal to noise decrease in 

Sensor Preamp
Signal 

Processing

2

2

out

s

n

2

2

in

s

n



3.2. Transducers in the Receive Mode  129 

 

process of the primary processing, as both the sensor and preamplifier are the sources of addi-

tional noise.  

In terms of reducing influence of combined internal noise of the sensor itself and of the 

receiving channel on the signal to noise ratio, the properties of the sensor as the source of energy 

of a signal are important, because the minimal signal must produce an output effect exceeding 

level of the preamplifier noise to a certain degree. These properties are considered in Section 

3.2.2. An important parameter of a sensor regarding its internal noise is the threshold signal, 

which is defined by the value of the minimal external action that produces the output voltage 

exceeding the sensor internal noise level. These issues are considered in Section 3.2.3. 

In terms of diminishing influences of the external unwanted actions, the noise immunity of the 

sensors, as their ability to be as less sensitive to these actions, as it is needed under the particular 

operating conditions, will be considered in Section 3.2.4. It is noteworthy that requirements for 

different parameters of the sensors may be more or less challenging depending on their appli-

cations. Thus, the most demanding are requirements for the sensors intended for populating 

arrays of the passive sonars. For measurement sensors that usually deal with strong signals more 

important may be requirements for their immunity to unwanted actions. 

3.2.2 Sensor as a Source of Energy for the Receive Channel 

In accordance with the Thevenin’s theorem, a sensor can be considered as a source of energy 

for the receiving channel with the electromotive force equal to the output voltage of the open 

circuited sensor ( ocV in the equivalent circuit in Figure 1.18 that is reproduced here as Figure 

3.19) and with internal impedance intZ equal to the impedance of the circuit between points 1, 

1. 

 

Figure 3.19: Equivalent circuit of a sensor. 
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The open circuit voltage for a hydrophones can be represented from the equivalent circuit 

(at the condition 1S

e eLC R  that usually holds) as 

 0 0

( , )1 1
( , )

eqv dif

oc ocS E S E

e me e me

nF nS k
V P P

j C Z j C Z


 

 


  =  = 

r
r , (3.163) 

where 
E

meZ  and eqvF  are determined by relations (1.75) and (2.30); 0P is the sound pressure in 

the plane wave propagating in the free field in direction of the acoustic axis of the sensor and 

( ,oc  r)  is the free field open circuit sensitivity of the sensor. The sensitivity of a sensor de-

pends on the direction of propagating the plane wave in accordance with directional factor in 

the same way as diffraction coefficient for the transmit mode (2.38) depends. Further its value 

(oc  )  will be considered that corresponds to direction of the acoustic axis 

 
( )1

(
dif

oc S E

e me

nS k

j C Z


 




) = . (3.164) 

The open circuit sensitivity, OCVS, (further just sensitivity for brevity) being expressed in the 

dB scale is called RVS – receive voltage response, or sometimes FFVS – free field voltage 

sensitivity, 

 OCVS 20log oc=  re 1 V/µPa. (3.165) 

Requirements for the sensitivity of a sensor are quite different for its operation in the frequency 

band around the resonance frequency and at frequencies below the resonance frequency. Oper-

ation in the band around the resonance frequency is typical for the reversible mode of transducer 

operation, in which case the requirements for transmit mode of operation dominate, and re-

quirements for the receive mode are met automatically. In the case that phase relations between 

transmitted and received signals are important it must be remembered that the resonance fre-

quency and hence the phase characteristic of a transducer in the transmit and receive modes are 

different. Whereas the condition for resonance frequency in the transmit mode is Im{ 0}E

mZ =  

and 1/ ( ) / 1 ( / )E

r w eqv ac eqv r a ac eqvM m C x M  = + = +  (see examples in Table 3.1), the con-

dition for resonance frequency in the receive mode is Im{ 0}E

meZ = . Following relation (1.75) it 

can be obtained that 

 1/ ( ) / (1 )E

rme eqv ac eqv cM m C = + + , (3.166) 

where 2 /E S

c eqv en C C =  and 21 1/ (1 )c effk+ = −  according to relations (2.93). Thus, 
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 / 1 ( / )me w ar a ac eqvx M  = + . (3.167) 

Here ar a  is the antiresonance frequency of the transducer in air. 

Comparison is made in Figure 3.20 between the frequency responses of a spherical trans-

ducer in the transmit and receive modes normalized to their values at the resonance frequencies. 

 

Figure 3.20: Comparison between the frequency responses of a spherical transducer at / 9.5a t =  

in (1) transmit and (2) receive modes normalized to their magnitude at the peak response. 

 

Figure 3.21: Equivalent circuit of a sensor operating at frequencies much below the resonance (a), 

its transformation to the electrical side (b), and representation as equivalent electrical generator 

for the receive channel (c) 
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An important characteristic of the measurement hydrophones is uncorrupted signal repro-

duction in a broad frequency range. One of the basic requirements for the sensors intended for 

application in arrays of passive sonars is a small spread in performance (magnitude and phase 

identity). Therefore, the most typical mode of operation for these groups of sensors is in the 

frequency range below resonance, where frequency response of a sensor is relatively flat. The 

frequency range below resonance is characterized by the fact that in the equivalent circuit of a 

transducer 1/ E

eqv eqvM C  . Equivalent circuit of the sensor operating at frequencies below 

resonance is shown in Figure 3.21 together with its representation as the equivalent generator. 

Expression for the parameters of the equivalent generator in Figure 3.21 (c) at low frequencies 

greatly simplifies. At r   

 
2

2

11 1

(1 )

E c
me E E E E

eqv e eqv eqv eff

n
Z

j C j C j C j C k



   

+
 + = =

−
, (3.168) 

where expressions (2.93) for coefficients c  and 2

effk  are considered. Besides, it follows from 

Figure 3.21 (a) that capacitance LfC  measured between terminals 1, 1 is 

 
2

21

E
E E e

Lf e eqv

eff

C
C C n C

k
= + =

−
. (3.169) 

Thus, expression (3.164) for the open circuit sensitivity becomes 

 ( ( )

E

eqv

oc dif

Lf

C
nS k

C
  ) = . (3.170) 

The active resistances are neglected in this calculation because they are insignificant compared 

with the reactive terms. The input impedance 1,1inZ  of the generator must be calculated as im-

pedance between the terminals 1, 1 at the condition that the voltage source inside the circuit ( eqvF

is short circuited (see definition for the generalized generator done in regard to Figure 1.16). 

The resistances of losses cannot be neglected in determining the internal impedance though 

being small compared with the reactive terms, because they constitute the source of the internal 

noise of the sensor. The magnitude of resistance of mechanical losses, mLr , ideally can be ex-

pressed through the mechanical quality of piezoceramic material used, as 1/ E

mL eqv mr C Q= . 

This quantity may increase in a finished transducer design. We will assume that this increase is 

negligible to the first approximation. The radiation resistance of a single transducer, acr , 
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depends in general on the transducer type and wave size. Examples of estimating radiation re-

sistances for different transducer types are given in Table 3.1. In the case that sensors operate 

in arrays, their radiation resistances may depend on configuration of an array and of a relative 

position of the sensors due to acoustic interaction between them. Resistance mR  in Figure 3.21 

(b) can be represented as 

 2 / E

m m eqvR Q n C= , (3.171) 

where 

 1/ E

m eqv mQ C r =  and m mL acr r r= + . (3.172) 

All of these quantitatives have to be determined by analizing the elements of equivalent circuit 

in Figure 3.21 (a). The dielectric loss factor of a finished sensor design also may differ from 

analogous parameter of the piezoceramics, but for carefully designed sensor this difference can 

be small enough. At least it will be neglected in the context of this Section, and the resistance 

of electrical losses, eLR , will be represented as 1/ tanS

eL e eR C = . 

Finally, the sensor may be represented as a source of energy for the preamplifier by the 

circuit in Figure 3.21 ( c). The internal impedance of the sensor can be considered as purely 

capacitive with capacitance LfC  in calculating the signal transfer. And the resulting resistance 

of the internal losses that determines property of the sensor as a source of internal noise is 

 

2

21
(1 ) tan

eff

in eff e

Lf m

k
r k

C Q


 

 
= − + 

  

. (3.173) 

In order to characterize this property, the electrical quality factor of a sensor can be introduced 

as 

 
1 1

tan
tr

Lf in tr

Q
C r 

= = , (3.174) 

where 

 

2

2tan (1 ) tan
eff

tr eff e

m

k
k

Q
 



= − + . (3.175) 

These quantities can be useful also in terms of experimental estimating of internal losses. It is 

instructive to compare contribution of electrical and mechanical losses to the total loss effect. 
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Determine the quality factor mQ   for the typical low frequency double-sided flexural plate sen-

sor design shown in Figure 2.16. After substituting expressions (2.151) for 1/E E

eqv eqvC K=  and 

(2.153) for acr  (given that the wave size of the sensor is 0.6ka  ) in formula (3.172) will be 

obtained 

 
2 6

2 3 3

( )1
tan 37

( )

w
m

m c

c a

Q c t



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= + , (3.176) 

where tan m  and 
2( )cc  are the quantities determined for a ceramic composition, and 

2( )wc

is for water, respectively. From the condition that 0.6ka   follows / 0.1a   . The aspect ratio 

/a t  for the sensors operating under moderate hydrostatic pressures can be about 5 to 7, so let 

be ( / ) 7a t  . Thus, for the sensor built from PZT-4 ceramics 

 
1

tan 0.35m

mQ




 + . (3.177) 

Using relation (3.175), we arrive at following estimation of ratio of mechanical to electrical 

components of the loss factor tan tr  

 

2 2

2 2
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eeff e eff

k Q k
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
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 +

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Conservatively, tan 0.01m   and can be neglected. Expression for the effective coupling co-

efficient (2.152) for PZT-4 results in 2 0.18effk = . Thus, contribution of the mechanical (acous-

tic) losses may be significant. The ratio (3.178) is 1.6 in this particular example, given that for 

PZT-4 tan 0.05e  . 

The open circuit sensitivity and low frequency capacitance will be denoted further for sim-

plicity without subscripts, namely, and C instead of oc  and LfC . These parameters fully 

characterize a sensor as the source of signal. However, it is hard to judge sensors by using these 

parameters alone. Therefore, it is desirable to establish Figure of Merit for a sensor as the source 

of signal. This figure of merit can be derived from the obvious consideration that out of two 

sensors having equal internal impedances, the sensor that has larger sensitivity is better. Con-

sider two sensors with different sensitivities ( 1 ,
, 2 ) and different internal impedances ( 1X ,

2X ) loaded with the same impedance LZ , as represented by Figure 3.22 (a) and (b).  


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Figure 3.22: Comparison of outputs of the sensors loaded with the same impedance LZ : (a) equiv-

alent circuit of sensor number 1; (b) circuit of sensor number 2 having different sensitivity and 

internal impedance, and ideal transformer; (c) circuit of sensor number 2 after transformation. 

Let us assume that the load is applied to the sensor number 2 via an ideal transformer with 

turn’s ratio 
1 2/N X X=  as illustrated in Figure 3.22 (b). Parameters of the sensor number 2 

after the transformation become 2 2N  =  and 2

2 2 1X X N X =  = , as shown in Figure 3.22 

(c). Comparing output voltages of the sensors 1V  and 2V  results in 
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CV E

V E N C



 
= = = , (3.179) 

which means that the sensor having the larger parameter C  is potentially better as the source 

of signal. We will define this parameter as the specific sensitivity, 

 sp C = . (3.180) 

The specific sensitivity does not change by using an ideal transformer. In practice, the perfor-

mance of an ideal transformer can be duplicated by a proper designing of the sensor. This is 

illustrated with the examples shown in Figure 3.23. As it can be seen from Figure 3.23, the 

parallel to series switching of the piezoelements (Figure 3.23 (a)), or single sensor units in the 

case that the sensor is comprised of a number of separate units (Figure 3.23 (b)) the sensor is 

comprised of a number of separate units (Figure 3.23 (b)) is analogous to an ideal transfor-

mation. Further transformation can be achieved by dividing electrodes of a single piezoelement 
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in several parts and switching them to series connection (Figure 3.23 (c)). Such a redesigning 

of the electrodes is advantageous for achieving increased sensitivity and matching with the pre-

amplifier, as it will be illustrated in Section 3.2.3. 

 

Figure 3.23: Transformation of the output signals: (a) by switching electrodes of a piezoelement 

from parallel to series; (b) by changing connection of the single transducer units, (c) by dividing 

electrodes of the piezoelements into parts and connecting the parts in series. The sensitivity and 

capacitance of a single piezoelement (single sensor unit) are 1  and 1C . In all the cases 

1 1 2C C =  . 

Using relations (3.163) and (3.170) for  and C and definition for effk  (2.93), the expres-

sion for sp  can be obtained 

 E

sp eff av dif eqvk S k C = . (3.181) 

(Note that generally for low frequency sound pressure hydrophones 1difk = , but for the pres-

sure gradient hydrophones it should be determined by formula (2.162)). The value sp  charac-

terizes the rated power of the sensor as the energy of a signal source. Indeed, when the latter 

operates under the matched electrical load . 1/el l elR C= , 
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If the overall surface area S  occupied by the hydrophone is limited (as it can be in case 

of populating an array), the more objective criterion for sensor can be quantity 
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 /sp rdS  = , (3.183) 

which will be called the reduced specific sensitivity. The reduced sensitivity characterizes the 

efficiency of the acoustoelectric conversion produced by a sensor per unit area. This becomes 

clear, if to relate 
r tW  to value of the acoustic energy flux acW  that passes in the free field 

through the “dimensional area” S  occupied by the sensor, 
2

0(| | /2 )acW p c S = . This will 

result in 
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rd
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

= = . (3.184) 

While sp  can be increased by increasing the sensor dimensions, which do not affect the reso-

nance frequency, such as the cylinder height or end area of a bar, or by using several electrically 

connected identical sensor units, the reduced sensitivity remains the same. It belongs to a sensor 

type. The achievable values of sensitivities of the hydrophones essentially depend on the range, 

in which their frequency response must remain linear, and on the depth of operation. These 

issues will be considered in Chapter 14. 

 

Figure 3.24: Transformation of the sensor as equivalent generator circuit in case that it is ended 

by a cable with capacitance CC . 

In practice, sensor may be connected to preamplifier by a cable having capacitance cC  that 

depends on its length. In this case the equivalent generator representing the sensor must be 

transformed, as it is shown in Figure 3.24. In the transformed circuit 
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3.2.3 Noise Property of a Receive Channel, Requirement for the Sensor Sensitivity 

3.2.3.1 Internal Noise of a Sensor 

The internal resistance (3.173) is the source of thermal self-noise of the sensor. In the represen-

tation of the sensor as equivalent generator it can be replaced by the equivalent noise voltage 

ne  with mean square value per 1 Hz bandwidth. 

 
2 tan

4 4 tr
n B Be k Tr k T

C




= = , (3.186) 

where Bk  is Boltzmann’s constant, 
231.38 10 /oBk J K−=  , T is the absolute temperature and 

the brackets    indicate time average. Finally, the electrical circuit of the sensor as a source of 

signal and of internal noise may be represented as shown in Figure 3.25. 

 

Figure 3.25: Electrical circuit of a sensor as source of signal and noise. 

The figure of merit for a sensor as a source of noise can be introduced by considering the min-

imum detectable signal, minp , as the signal having such a magnitude that its distortion due to 

the sensor internal noise is limited to a certain permissible extent. In other words, the minimum 

signal to internal noise ratio at the sensor output must be of a certain permissible level 1 , or 

 min
1

4 tan
min

n B tr

p C
p

e k T

  



=   , (3.187) 

where from 
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tan4 trB
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p
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

 
  . (3.188) 

The value of coefficient 1  depends on the signal processing properties of the receive system. 

The figure of merit in expression (3.188) that characterizes the sensor as a contributor of noise 

is the quantity tan /tr sp   (the smaller this quantity, the better). Thus, in order to minimize 

the detectable signal, the specific sensitivity of the sensor should be maximized in addition to 

C

oc oV P=

ne
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obvious requirement of minimizing internal noise by reducing mechanical and electrical losses 

to the level that is inherent in the ceramic composition used. 

3.2.3.2 Matching a Sensor with Preamplifier 

Consider a sensor as a part of the receiving system having block diagram that is illustrated in 

Figure 3.18. As it was noted, the goal of the system is to detect the acoustic signals existing in 

a background of ambient sea noise. The goal of the sensor and preamplifier as part of the system 

is in minimizing degradation of signal to noise ratio at output of the preamplifier in comparison 

with this ratio at the input of the sensor in course of the primary processing of the signals. The 

relative decrease of the signal to noise ratio can be characterized by the relation 
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s n s n

s n
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−
 , (3.189) 

where 
2 2/ outs n     and 

2 2/ ins n     are the signal to noise power ratios at preamplifier output 

and in the sound field, accordingly, and   is the measure of permissible degradation. In order 

to derive requirements for the sensor parameters from relation (3.189), the primary processing 

part of the receiving system has to be considered that includes the sensor as generator of signal 

and internal noise, and preamplifier, which produces the gain and also contributes to a noise 

level. The equivalent circuit of this part of the receiving channel is shown in Figure 3.26. 

 

Figure 3.26: Equivalent circuit of input of the receiving channel with sources of internal noise. 

The sensor is represented by the circuit in Figure 3.25. The preamplifier is represented as a 

noiseless gain-producing block with sources of internal noise referred to its input. It is assumed 

that the sensor is connected to the amplifier directly without a cable. The noise contribution 

from the amplifier is represented in this circuit by two generators sce  and Re , which can be 

considered uncorrelated. The sce represents voltage noise of the amplifier with the input short-

E P= Preamp

C

Re

scese

inR
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circuited. And Re  is the thermal noise of an equivalent input resistance of the amplifier, inR . 

Its mean square value per 1 Hz bandwidth is 

 
2 4R B ine k TR= . (3.190) 

The amplifier noise parameters can also be considered as eS , the spectral density of the voltage 

source, eS , and the spectral density of the current source, iS . In our notation 

 
2 2 2, / 4 /e sc i R in B inS e S e R k T R= = = . (3.191) 

We will not consider the situation, in which sensor is connected to preamplifier via cable, by 

the two reasons. Primarily, in optimal designed receiving system the best result can be obtained 

in the case that preamplifier is near the sensor, if not combined with the sensor design. Moreo-

ver, that the modern state of designing electronic devices allows this practically without com-

promising reliability of the system. Secondly, existing of a cable can be taken into consideration 

by changing the sensor parameters according to relations (3.185). We will assume that to ensure 

that the low frequency roll-off is well below the operating frequency band the relation holds 

 
2( ) 1L inCR  (3.192) 

(for example, 3L inCR  ), where L  is the lowest operating frequency. In this case the circuit 

in Figure 3.25 can be modified, as it is shown in Figure 3.27. In Figure 3.27 
21/ ( )in inr C R= , 

re  is the thermal noise of resistance inr  with the spectral density 

 

Figure 3.27: Modified circuit of the input of receiving system. 

 
2 24 / ( )r B ine k T C R= . (3.193) 

The resistance inr  may be neglected due to relation (3.192). 

The signal to noise ratio at the omnidirectional receiving system input (with a single sensor 

of small wave size) is 

 
2 2 2 2/ /s snin
s n p p= . (3.194) 

E P=

r

Preamp

C re scese
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where sp  is the signal pressure and snp  
is the ambient sea noise pressure measured by the 

omnidirectional hydrophone that is specified as background noise for the system. All the 

sources of noise and signal at the amplifier input are uncorrelated, therefore their energies may 

be summed and the signal to noise ratio at the amplifier output will be 

 

2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2
/ 1

s s n r sc

sn n r sc sn sn
out

s p p e e e

n p e e e p p



 

 + +
 = = +

+ + +   

. (3.195) 

Combining the expressions (3.189), (3.194) and (3.195) we arrive at relation 

 

2 2 2

2 2

n r sc

sn

e e e

p




+ +
 . (3.196) 

Thus, the ratio of internal noise of the receiving system to the noise generated by the ambient 

sea noise pressure at the preamplifier input should be less than the coefficient  , which is the 

measure of the acceptable degradation of the signal to noise ratio. Following relation (3.196), 

the minimum sensitivity required to fulfill this condition is 

 

2 2 2

2

2

n r sc

sn

e e e

p




+ +
 . (3.197) 

Upon substituting 
2

ne  and 
2

re  by their expressions (3.186), (3.193) and taking into account 

the expression (3.180) for sp , inequality (3.197) will be transformed into 

 

2

2

2

4 / 4 tansc B in B tr

sp

sn

e C k T CR k T

p

  




+ +
 . (3.198) 

The numerator in expression (3.198) depends on the sensor capacitance C that can be changed 

in the sensor design, whereas the specific sensitivity sp  will remain intact. Thus, the optimum 

value of the capacitance can be found that matches an amplifier in terms of minimizing the 

required sensor sensitivity. This value may be obtained by differentiating the numerator with 

respect to C and equating the result to zero. After performing the differentiation, the optimum 

value of the capacitance will be found, as 

 
2

4 B

opt

sc in

k T
C

e R
= . (3.199) 
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This relation may be represented alternatively in terms of the spectral densities eS  and iS  of 

the amplifier noise using the expressions (3.191), as 

 
1

/opt i eC S S


=  . (3.200) 

Analogous result in terms of matching sensor with preamplifier was demonstrated in Refs. 12 

and 13 using a different approach. The condition (3.192) for the low frequency roll-off should 

be verified at optC C=  based on the relation 

 2 2( ) (4 ) /opt in B i eC R k T S S = . (3.201) 

With optC  known the minimum specific sensitivity required to meet relation (3.198) can 

be found. Upon substituting expressions (3.199) or (3.200) for optC  into relation (3.198) one 

may arrive at the following results 

 

2

2

min 2

41
( ) 2 4 tan

B sc

sp B tr

sn in

k T e
k T

p R
 



 
 = +
  
 

 (3.202) 

or 

 ( )2

min 2

1
( ) 2 4 tansp i e B tr

sn

S S k T
p

 


= + . (3.203) 

In both relations (3.202) and (3.203) the first term within the bracket is due to amplifier noise 

and the second term is due to sensor internal noise, where tan tr  is determined by relation 

(3.175). 

3.2.4 Response of the Sensors to Unwanted Actions 

Under operating environmental conditions the sensors may be exposed to the unwanted actions 

having a physical nature other than that of a signal, but also resulting in generating electric 

voltage at their output, which can be considered as noise. If to denote the sensor sensitivity to 

an unwanted action as N  and the action itself as NF , then the output voltage generated by this 

action is N N NV F= . In evaluating an effect of the unwanted action on the sensor operation it 

is not the absolute value of the output voltage that matters, but its relation to the value of voltage 

generated by signal s s sV F= , namely, signal to noise ratio 
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 ( )( / ) ( / )s N s N s N s NV V F F NI F F = =  . (3.204) 

We define the parameter /s NNI  =  that depends on the sensor design and determines its 

immunity to an unwanted action, as the coefficient of noise immunity (NI). The ratio /s NF F  

characterizes the external conditions, under which reception of signal takes place. The value of 

this ratio determines the requirements for the sensor immunity to a particular unwanted action. 

Thus, a sensor intended for measuring the sound pressure (zero-order sensor) may experi-

ence in operating conditions an action caused by the structural vibrations propagating through 

its mounting elements, or/and by the pressure gradient in the sound field. For a sensor of the 

first-order in addition to structural vibrations the sound pressure is an unwanted action, to which 

an ideal sensor must not react by definition. For accelerometers, designated for measuring a 

single component of acceleration of bodies and surfaces under the real operating conditions, 

the unwanted actions are the components of vibration in the perpendicular directions and the 

sound pressure that can be generated by the vibrating body itself or by an independent source. 

The sound pressure may produce deformations of the accelerometer case, which in its turn may 

cause deformations of the accelerometer piezoelement and generating the unwanted output volt-

age. 

The concept of sensor noise immunity will be illustrated in this section with example of 

pressure (zero order) hydrophone immunity to vibration. Detailed analysis regarding noise im-

munity of sensors of different kind and the ways of its increasing will be done in Chapter 14. 

The following notations will be introduced when considering the noise immunity of pressure 

hydrophone to vibration. The output voltage and sensitivity of the hydrophone related to action 

of the sound pressure will be denoted by subscript p that corresponds to the nature of the signal, 

i.e., pV  and p . The output voltage and sensitivity of the hydrophone to unwanted action (ac-

celeration) will be denoted with two indices: with the subscript p that corresponds to the signal, 

and with superscript U  that corresponds to the unwanted action of the acceleration, i. e., U

pV  

and U

p . By definition of the sensitivity p pV p=  and U U

p pV U= . Thus, relation (3.204) be-

comes 

 
p p Us

pU U
N p p

VV P P
NI

V U UV




= = = . (3.205) 
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Here, /U U

p p pNI  =  is the coefficient of immunity of sound pressure hydrophone to accelera-

tion that otherwise can be called the “vibration resistance” of the hydrophone. 

It is noteworthy that the sound pressure hydrophone even of small wave size does not re-

main omnidirectional, if it is sensitive to acceleration, because the component of its output gen-

erated by the acceleration is cosU U

p pV U = , where θ is the angle relative to direction of the 

acceleration (see Eqs. (2.125) and (2.127)). When estimating the noise immunity, the maximum 

sensitivity to the vibration must be considered unless the direction of its action is known. Thus, 

in order to qualitatively estimate the noise immunity we will use relation (3.205), where U

p  is 

the maximum value of sensitivity to vibration. 

 

Figure 3.28: Examples of the single plate (a) and symmetrical double plate (b) hydrophones that 

are subjected to vibration with acceleration U . Shaded is the passive plate. Solid arrows show 

direction of acting of sound pressure, dashed arrows show direction of action of inertia forces due 

to the acceleration. 

To illustrate, how the vibration resistance can depend on the sensor design, consider exam-

ples of the flexural plate sound pressure hydrophones in the variants of single plate and sym-

metrical double plate designs that are shown in Figure 3.28. Assuming that the piezoceramic 

plates comprising the hydrophones are identical, the sensitivities of the hydrophones can be 

compared by values of the equivalent forces acting at their surfaces. 

For the single plate hydrophone they are: eqv p avF S P=  due to the sound pressure, and 

aveqv U
F tS U=  due to the acceleration (see formula (2.148)). Thus, 

 1/U

pNI t= . (3.206) 

For the symmetrical double plate hydrophone 2eqv p avF S P= , and 0
eqv U
F =  in the case that 

the plates are electromechanically and mechanically identical, because the output voltages 

(a)

inFP

U

inFP

U

inFP

U U

(b)
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generated by the acceleration in the plates have equal magnitudes and opposite phase. Thus, 

theoretically the double plate hydrophone is ideally acceleration resistant. Practically, some 

difference in parameters of the plates may exist, and the noise immunity coefficient 0U

pNI  . 

If value of this coefficient is larger than admissible, it can be further reduced by equalizing the 

output voltages generated in the plates by acceleration. A procedure for equalizing the sensitiv-

ities may be accomplished by external tuning as illustrated in Figure 3.29. By changing the 

capacitance adC  connected in parallel to the plate having larger sensitivity, the output voltage 

outV  can be reduced theoretically to zero (and practically to the noise level of instrumentation 

used). This will be reached at 

 1 1 2 1( ) /adC C   = − . (3.207) 

 

Figure 3.29: Illustration of method for equalizing the sensitivities of individual plates by external 

capacitive tuning. 

As one more example, consider the structural noise immunity of the widely used broadband 

hydrophones that employ cylindrical piezoelements operating in a frequency range much below 

their resonance frequency. The acceleration resistance of the hydrophones depends significantly 

on the way, how the cylindrical piezoelement is attached to a vibrating structure. In the case 

that cylindrical piezoelement is attached to the supporting structure by its end, as it is shown in 

Figure 3.30 (a), vibration with acceleration U  propagating through the structure in the direction 

of the cylinder axis will generate the inertia forces, and corresponding mechanical stress in the 

piezoelement will be ( ) ( )T x U l x= −  (l is the length of a cylinder and  is the density of its 

material). It is easy to verify using results of Section 2.3 that the ratio of the output voltages of 

the piezoelement caused by the sound pressure and by the inertial forces due to acceleration is 

/ ( / ) (2 / )U

p pV V P U tl= , where a is the mean radius of the cylinder and t is its thickness. 

Thus, the vibration resistance of the cylinder in the axial direction has a finite value 

Shaker Table

1V 2V
U U 1V 2V 2C1C

adC

outV

(a) (b)
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 2 /U

pNI tl= . (3.208) 

Sensitivity of the cylindrical piezoelement to vibration in the radial direction must vanish due 

to symmetry of the cylinder cross section, assuming that it is mechanically and electromechan-

ically uniform. 

A substantial increase in the vibration resistance of the hydrophone may be achieved, if to 

attach the piezoelement to the supporting structure by its middle section, as shown in Figure 

3.30 (b). In case that the piezoelement is ideally uniform there should be no voltage at its output 

in response to vibration in the axial direction due to symmetry. The electrical charges generated 

in the halves of the cylinder should be equal in value and opposite in sign, as it is seen from the 

mechanical stress profile shown in the Figure. Thus, 0
U
   and U

pNI → . 

 

Figure 3.30: Profiles of the stress in a cylindrical piezoelement under action of acceleration de-

pending on the way how it is attached to a supporting structure. 

In real situations the halves of a piezoelement are not identical and 0
U
  . If it is not small 

enough for meeting requirements for the noise immunity under particular operating conditions, 

then the procedure of equalizing sensitivities of the halves of piezoelement to acceleration de-

scribed above can be used for increasing the acceleration resistance of the hydrophone. Note-

worthy is that, if to connect halves of the piezoelement in opposite phase, then transducer be-

comes ideal (as far as the halves are identical) accelerometer insensitive to sound pressure. 

Thus, the noise immunity of the sensors substantially depend on their design, and can be 

increased by rational designing, as examples in Figure 3.28 and Figure 3.30 show. 

(a)

P
U

( )T x

0 l
x

(b)

PU

( )T x
/ 2l−

/ 2l
x
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Requirement for the admissible value of parameter U

pNI  can be derived from the consideration 

that the root-mean-square value of the output voltage of a sensor, which is determined due to 

statistical independence of the signal and noise by the relation 

 2 2 2( ) 1 ( / )U U

p p p p pV V V V V V= + = + , (3.209) 

with a given degree of accuracy must correspond to the voltage pV  generated by the signal 

only. For fulfilling this condition, it should be 2( / ) 1U

p pV V . We will assume for estima-

tions that the admissible accuracy is achieved at 2( / ) 0.1U

p pV V  . Requirement for the param-

eter U

pNI  under the particular operating conditions depends on relation of the signal P to 

noise U  at location of reception. With the assumed admissible value of /U

p pV V  it is deter-

mined by formula 

 3 /U

pNI U P . (3.210) 

If to apply the similar reasoning to an accelerometer, we will find out that the measure of its 

noise immunity with respect to the sound pressure is characterized by parameter /p P

U U U
NI  =  

(now it is the “sound pressure resistance”). The condition, under which the accelerometer is 

capable of measuring vibration with the same accuracy as in the previous case, will be 

 3 /p

U
NI P U . (3.211) 

In essence, only by values of the parameters U

pNI  and p

U
NI  in combination with the known 

relation U /P under particular operating conditions it can be said whether in this situation the 

sensor is functioning as a hydrophone, or as an accelerometer, or it is unsuitable for measuring 

either pressure or vibration. In this sense, assigning to sensitivity a subscript that indicates the 

sensor function is conditional. 

For illustration consider as an example a sensor that is intended for measuring vibration of 

surfaces in air and has for these conditions of operation value of immunity to the sound pressure, 

( )P airU
NI , sufficiently large for positioning the sensor as an accelerometer. For comparison also 

consider the situation that the same sensor is used for measuring vibration of the surface im-

merged in water. For simplicity of a qualitative estimations suppose that the surface is flat, 

vibrates in the piston-like mode and is large enough to generate a plane wave. Magnitude of the 

sound pressure generated will be in this case ( ) /P U c = . To measure true value of the ac-

celeration in air the immunity of the sensor to sound pressure must be according to (3.211) 
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( ) 3( ) /p

air airU
NI c  . For measuring the acceleration in water with the same accuracy the 

value of this parameter must be ( ) 3( ) /p

w wU
NI c  . Thus, the immunity to the sound pres-

sure of the accelerometer for measuring in water should be 

3( ) ( ) ( ) / ( ) 3.5 10 ( )P P P

w air w air airU U U
NI NI c c NI =    , i.e., enormously greater than immunity 

of accelerometer for measuring in air. Otherwise, the sensor must be considered as a sound 

pressure hydrophone with noise immunity to acceleration ( ) 1/ ( )U p

p w wU
NI NI= .  

As we can see, the unwanted actions may cause the serious distortions of the sensor char-

acteristics. Therefore, in the specifications for the sensors the values of their sensitivities to the 

unwanted actions typical of operating conditions must be presented together with sensitivities 

to the action of the signal. Note, that among the technical characteristics of the B&K accel-

erometers the sensitivity p

U
  to the sound pressure is given along with its sensitivity 

U
 to ac-

celeration.  
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LIST OF SYMBOLS 

Symbol Description 

A radius 

B bulk modulus 

c , cc , wc  sound speed, peed of sound in ceramic composition and in water 

E

mic  elastic stiffness of a piezoceramics at constant electric field 

C, 
S

eC  capacitance, capacitance of blocked transducer 

C, E

eqvC   compliance, equivalent compliance of a mechanical system at con-

stant electric field 

d, mid   separation, distance; piezoelectric constant 

D  diameter, flexural rigidity 
3 2/12(1 )D Yh = −  

iD , 
E

iD   charge density, charge density at constant electric field 

E

mie   piezoelectric constant, E

mi mj jie d c= , j =1…6 

E , opE , pE  electric field, operating field, permissible field 

Ef   effectiveness 

f , rf , arf , f   frequency, resonance frequency, antiresonance frequency, deviation 

of frequency 

ipf  partial resonance frequencies of a coupled system 

F , eqvF  force, equivalent force 

G torsional rigidity 

h  height 

( , )H     directional factor 

I  current 

LI  , CI  , mI   current through inductance, current through capacitance, motional 

current 

J, pJ  moment of inertia, polar moment of inertia 

k; ck , effk ; difk  wave number /k c= ; electromechanical coupling coefficient, ef-

fective coupling coefficient; diffraction coefficient 

Ek , Tk  reserves of the electrical and mechanical strength coefficients  

K , E

eqvK , ilK  rigidity, equivalent rigidity of a mechanical system, mutual rigidity 

of coupled systems 
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Symbol Description 

K  additional rigidity term that characterizes electrical interaction be-

tween elements in nonuniformly deformed piezoelectric body 

l, t, w length, thickness, width 

L ; pL , sL  Lagrangian, inductance; parallel and series inductances 

wms   Mismatch coefficient, /w ac optms r r=  

ims  mode shape coefficient 

M ; eqvM , ilM  Moment, total mass; equivalent mass, mutual mass of coupled sys-

tems 

n  turns ratio, electromechanical transformation coefficient,  

N, iN  Number of segments in segmented mechanical system, electrome-

chanical transformation coefficients, 1,3i = . 

o subscript that denotes a reference point 

P , oP ; hP  sound pressure, sound pressure of simple source; hydrostatic pres-

sure 

Q , eQ , mQ  quality factor, /kin LossQ W W= ; electrical and mechanical quality 

factors 

r, r  distance, radius vector 

r, mLr ; acr , optr   resistance, resistance of mechanical loss; radiation resistance, opti-

mal value of the radiation resistance  

R, eLR  resistance, resistance of electrical loss 

E

mis   elastic compliance of piezoceramics at constant electric field 

S , ikS , iS  deformation, tensor of deformation ( , 1,2,3)i k = , tensor of defor-

mation ( 1,..,6)i =  

S , avS , effS   surface area, average surface area, effective surface area 

T , ikT , iT  stress, stress tensor ( , 1,2,3)i k = , stress tensor ( 1,..,6)i =   

opT , pT  operating stress, permissible stress 

u, U ; oU , iU   Velocity; velocity of reference point, velocity of reference point in 
thi  mode of vibration 

V
U  volume velocity 

v,V  voltage  

V  volume 

w; intw , ew , mchw , 

emw   

width, energy density; densities of the internal, electrical, mechani-

cal, and electromechanical energies 

W , W ,W  energy, energy flux (power), complex power 
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Symbol Description 

elW , 
S

eW  total electrical energy, electrical energy stored in a blocked piezoel-

ement 

intW , mW , emW , acW  internal, mechanical, electromechanical, and acoustic energies  

kinW , E

potW  kinetic energy, potential energy at constant electrical field 

eLW , mLW  energies of electrical and mechanical loss 

mEW , mTW   maximum power electric field limited and mechanical stress limited 

W  additional energy term that characterizes electrical interaction be-

tween elements in nonuniformly deformed piezoelectric body  

x; acx  coordinate; reactance of acoustic radiation 

y; /y t=  coordinate; ratio of thickness of active layer to total thickness of 

mechanical system  

Y, 1/E E

i iiY s=  Young’s modulus, Young’s modulus of piezoceramics (i =1, 3)  

E

aY , pY   Young’s moduli of active and passive materials  

Y   2/ (1 )Y Y = −  

z; ilz   Coordinate; mutual impedance between modes of vibration  

Z, /il il i lZ z U U=   impedance, introduced impedance 

mZ , 
E

mZ , inZ   mechanical impedance, impedance at constant electric field, input 

impedance 

acZ  radiation impedance 

ac   nondimensional coefficients of the radiation resistance  

2 /E S

c m en C C =  coefficient related to effective coupling coefficient, 
2 / (1 )eff c ck  = +  

ac   nondimensional coefficient of the radiation reactance 

1 2/p pf f =   detuning factor between partial frequencies of a coupled system 

 , m , k , coefficient of coupling between partial systems, coefficients of in-

ertial and elastic coupling 

Y  / E

Y p aY Y =  

  /p a  =  

 ; em , ma , ea  efficiency; electromechanical, mechanoacoustic, electroacoustic ef-

ficiencies 

   separation between electrodes, 

e , m  angles of dielectric and mechanical losses, tan 1/e eQ = , 

tan 1/m mQ =   
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Symbol Description 

 ; 
T

ik , 
S

ik  dielectric constant; tensors of dielectric constants of piezoceramics 

at free and clamped conditions  

 ; ( r)  angle, mode shape 

  wavelength, Lame constant 

  Lame constant (share modulus)  

 , o  displacement, displacement of reference point 

 , a , p  density, density of the active and passive materials 

 , 
E

i  Poisson’s ratio; Poisson’s ratio of piezoceramics, 1 12 11/E E Es s = − , 

3 13 33/E E Es s = −  

  surface in general 

  angle 

  diffraction function 

 , r , ar  angular frequency, resonance and antiresonance frequencies 

2 2

1/ pf f =  nondimensional frequency factor 

2 / rf f =   normalized bandwidth 

1. Vectors are displayed in bold letters.  

2. Low case letters denoting the time dependent quantities indicate instantaneous values; 

the capital letters are values in rms. 

3. An overbar on a capital letter denotes a complex quantity. 
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INDEX 

A 

accelerometer · 68, 69, 73, 143, 146, 147 

acoustic field · 50, 52, 74 

acoustic interaction · 53, 62, 77, 133 

acoustic power · 81, 103, 111, 116, 117, 

126 

acoustic pressure · 6, 20 

acoustic radiation · 19, 103, 121, 152 

acoustic wave · 47 

admittance · 87, 88, 89, 94, 95 

aspect ratio · 53, 134 

average surface area · 69, 76, 151 

B 

baffle · 52, 53, 54, 62, 63, 75 

balance of energies · 27 

bandwidth · 122 

bar transducer · 59, 60, 62, 83, 101, 110, 

111, 116, 127 

beam · 9, 24, 64, 66, 68, 69, 73 

bending moment · 24, 67, 73 

berlincourt · 39, 149 

boundary conditions · 10, 17, 32, 64, 69, 

73 

C 

cantilever · 68 

circular plate transducer · 70 

clamped end · 69 

clamped transducer · 20, 30 

compliance · 12, 13, 18, 49, 50, 150, 151 

coordinates · 6, 7, 8, 21, 32, 33, 34, 35 

coupling coefficient · 16, 41, 49, 58, 59, 

74, 89, 93, 95, 107, 108, 134, 150, 152 

cylindrical simple source · 52 

D 

degree of freedom · 8, 10, 29, 30, 32, 38, 

40, 55 

diffraction coefficient · 45, 46, 47, 51, 52, 

63, 75, 76, 78, 118, 130, 150 

diffraction function · 47, 153 

directional factor · 5, 54, 69, 80, 102, 130, 

150 

directivity · 54, 103 

E 

effective coupling coefficient · 150 

effective surface area · 67, 72, 151 

effectiveness factor · 102 

electroacoustic efficiency · 102, 103, 104, 

105, 107, 110 

electromechanical efficiency · 104 

electromechanical energy · 4, 15, 29, 31 

energy conservation law · 22, 28, 33 

energy flux · 5, 6, 8, 9, 14, 18, 19, 22, 23, 

25, 27, 29, 31, 137, 151 

equivalent circuit · 30, 32, 82, 130 

equivalent generator · 27, 28, 31, 93, 132, 

137, 138 

equivalent parameters · 36, 55, 58, 61, 68, 
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flexure · 24, 65 

frequency response · 118, 119, 120, 121, 

132, 137 

fuler equations · 33 

G 

generalized coordinates · 6, 7, 33 

generalized forces · 6, 7, 34 

generalized velocity · 6, 10, 14, 22, 23, 

25, 27, 36 

generator · 21, 28, 87, 131, 132, 139 

H 

hydrophones · 64, 74, 75, 128, 130, 132, 

136, 137, 145 

hydrostatic pressure · 151 

I 

immunity · 129, 143, 144, 145, 146, 147 

inertia · 11, 66, 68, 144, 145, 150 

intensity · 24, 80, 102, 103, 118 

internal noise · 128, 129, 138, 139, 142 

K 

kinetic energy · 11, 35, 42, 49 

L 

lagrangian · 33, 34, 35, 36, 151 

least action principle · 33 

M 

matching · 3, 5, 62, 81, 93, 101, 111, 117, 

122, 127, 136, 142 

mode of operation · 3, 4, 43, 89, 130, 132 

mode of vibration · 19, 21, 37, 40, 47, 55, 

68, 69, 70, 73, 113, 114, 151 

moment of inertia · 150 

motional current · 150 

mutual impedance · 152 

N 

noise · 128, 129, 132, 133, 138, 141, 142, 

143, 144, 145, 146, 147, 148, 149 

noise immunity · 143, 144, 148 

nondimensional coefficients · 152 

O 

open circuit · 27, 81, 130, 132, 134 

operating conditions · 3, 93, 129, 143, 

146, 147, 148 

optimal matching · 5 

optimization · 127 

oscillating disk · 77 

P 

parallel tuning · 91, 92, 98 

permissible electric field · 111, 112, 126 

permissible stress · 151 

piezoceramics · 3, 15, 18, 56, 61, 62, 66, 

108, 133, 150, 151, 152, 153 

piezoelement · 15, 16, 17, 40, 41, 61, 67, 
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polarization · 59, 67, 78 

potential energy · 12 
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quality factor · 15, 63, 64, 82, 90, 91, 93, 

95, 97, 99, 101, 121, 133, 134, 151 

R 

radiation impedance · 62, 63 

reactance · 90, 94, 152 

receive channel · 128, 129, 138 

receive mode · 3, 20, 27, 31, 32, 43, 45, 

46, 47, 70, 128, 130 

reciprocity principle · 46 

rectangular beam transducer · 64 

reference point · 9, 10, 19, 20, 29, 48, 58, 

68, 113, 151, 153 

reserves of strength · 117 

rigidity · 12, 13, 18, 42, 56, 150, 151 

rule of signs · 24 

S 

self noise · 141 

self-impedance · 37 

sensor · 129, 138, 139, 142 

series tuning · 91, 92, 93, 119 

shear · 23, 24, 40 

sign convention · 6, 23, 24, 25, 66, 67, 73 

signal to noise ratio · 128, 129, 139, 140, 

141, 142 

simply supported ends · 69 

source strength · 44, 52, 76, 78 

specific sensitivity · 135, 137, 138, 141, 

142 

spherical transducer · 40 

supporting functions · 36, 37 

T 

tension · 26, 66 

thevenin’s theorem · 27, 129 

transformation coefficient · 27, 42, 57, 58, 

60, 67, 72, 73, 151 

transmit channel · 80, 81, 91, 93, 100, 

101, 102, 103, 111, 118, 119, 122, 127 

transmit mode · 3, 4, 16, 27, 30, 36, 37, 

43, 45, 47, 80, 130 

U 

umov · 22, 39 

underwater · 149 

unwanted action · 142, 143 

V 

volume velocity · 46, 76 

W 

wavelength · 19, 45, 46, 47, 50, 52, 54, 

116, 153 
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