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Optimised strut and tie model for integrated ULS- and SLS design of RC structures 746
J. Larsen, P.N. Poulsen, J.F. Olesen & L.C. Hoang

Author index 753

ix





Computational Modelling of Concrete and
Concrete Structures – Meschke, Pichler & Rots (Eds)

© 2022 Copyright the Editor(s), ISBN: 978-1-032-32724-2

Preface

EURO-C 2022 represents the continuation of a series of conferences on computational methods and numerical
models for the analysis of concrete and concrete structures.

The Covid-19 pandemic had, unfortunately, an impact on the date and the venue of the current issue of the
EURO-C conference series. The main aim of the organizers was to keep the spirit of the previous conferences
alive by making every effort to ensure personal interaction by avoiding a hybrid or pure online format. Hence,
EURO-C 2022 was postponed from March to May 2022. “Snow”, required for the skiing race, one of the tra-
ditional elements of the EURO-C conference series, is melted at the end of May, even in the original venue in
Obergurgl. The meltwater has flown down the Ötztaler Arche, into the Inn, and finally into the Danube, leading
to Vienna. Therefore, the organizers decided to move the conference venue from the Austria alps, exceptionally,
to Vienna. Instead of the skiing race, a joint activity on the Danube will take place. Special situations call for
exceptional arrangements, but we are very much looking forward to be back in the Austrian alps in 2026.

EURO-C 2022 will take place in Vienna, Austria, from May 23–26, 2022. It is the eighth edition of the
EURO-C conference series after Innsbruck 1994, Bad Gastein 1998, St. Johann im Pongau 2003, Mayrhofen
2006, Schladming 2010, St. Anton am Arlberg 2014, and Bad Hofgastein 2018. The series emerged as a joint
activity, following early developments in nonlinear Finite Element analysis and softening models for concrete,
generated at the time of the ICC 1984 conference in Split, the SCI-C conference in Zell am See, and the two
IABSE Concrete Mechanics Colloquia in Delft, 1981 and 1987.

The Proceedings of EURO-C 2022 comprise 6 papers of Plenary Lecturers as well as 85 contributed papers,
grouped into 6 sections: (1) Analysis of concrete materials, (2) Analysis of concrete structures, (3) Analysis
of masonry materials and structures, (4) Constitutive models and computational frameworks, (5), Durability,
coupled, time-dependent, and thermal effects, as well as (6) Safety assessment and design-oriented models. As
compared to previous conferences, there are still many contributions on robustness and precision of constitutive
models and computational frameworks at the structural scale, for both plain concrete, reinforced concrete and
masonry structures. However, trends towards the materials scale with new fibres and 3D printable concretes,
multi-scale and multi-physics frameworks, and life-cycle oriented models for ageing and durability of existing
and new concrete infrastructure as well as data-driven models are clearly visible.

We are very grateful to the members of the Scientific Advisory Committee for their support and substantial
efforts in the reviewing process of over 130 abstracts: Zdenek Bažant, Jan Červenka, Gianluca Cusatis, Guillermo
Etse, Dariusz Gawin, Stéphane Grange, Christian Hellmich, Günter Hofstetter, Tony Jefferson, Milan Jirásek,
Karin Lundgren, Koichi Maekawa, Chris Pearce, Gilles Pijaudier-Cabot, Ekkehard Ramm, Bert Sluys, Jacek
Tejchman, Franz-Josef Ulm, and Yong Yuan.

Prof. Herbert A. Mang, long-standing chairman and currently honorary chairman of the EURO-C conference
series as well as key contributor to all previous EURO-C events, celebrated his 80th birthday at the beginning
of 2022. We combine our sincerest congratulations with the wish that for many years to come he will maintain
in good health his unbroken and extensive scientific activities. Ad multos annos!

We sincerely hope that the EURO-C 2022 Proceedings will serve as a major reference, stimulating new
research directions in the field of computational modelling of concrete and its application to the analysis of
concrete structures.

Günther Meschke, Bernhard Pichler, Jan Rots, conference chairmen
René de Borst, Herbert Mang, honorary chairmen

Bochum/Vienna/Delft/Sheffield/Vienna, May 2022
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Reappraisal of phase-field, peridynamics and other fracture models in light
of classical fracture tests and new gap test

Zdeněk P. Bažant∗ & Hoang T. Nguyen
Northwestern University, Evanston, IL, USA

A. Abdullah Dönmez
Northwestern University, Evanston, IL, USA
Istanbul Technical University, Istanbul, Turkey

ABSTRACT: The newly developed gap test and ten types of classical fracture tests of concrete are used to
evaluate the performances of three popular numerical models. The crack band model with microplane damage
constitutive model M7 is found to match all the experimental results well. However, the phase-field models
show large deviations from the test results, and peridynamic models are even worse. Examination of four recent
variants of these models does not change the overall critical appraisal.

1 INTRODUCTION

Recently, a new type of experimental setup, called the
gap test [1, 2], has been developed at Northwestern
University to reveal in a clear and unambiguous way
the effect of crack-parallel stress on the fracture prop-
erties of material. Testing specimens of different sizes
and applying the size effect method showed that the
fracture energy, Gf , and the effective size, cf , of frac-
ture process zone (FPZ) of concrete depends strongly
on level of crack-parallel stresses σxx(=T ).

This prediction is confirmed by finite element
analysis with the M7 crack band model, which fur-
ther indicated a strong effect of σzz and σxz . The
gap test, applied to shale, composites and plastic-
hardening metals, to reveal that the crack-parallel
stress effects are rather different for different materials.
These results shed new light on the validity of numer-
ical models for fracture, such as phase-field (PF) and
peridynamics (PD), newly popular in computational
mechanics.The gap tests [2] also revealed that the frac-
ture energy of quasibrittle materials, plastic hardening
metals and composites depends strongly on the history
of crack-parallel stresses (see Figure 1).

2 APPROACH AND MAIN RESULTS

This study uses the new gap test and ten types of
classical fracture tests of concrete, most of them pre-
viously ignored, to conduct a critical comparison of
the phase field (PF) model and peridynamics (PD)
with the finite element crack band model (CB) in
which the material model is the microplane model M7.

∗Corresponding Author

Figure 1. a,b) Setup of the gap test for 2D-geometrically
scaled concrete specimens of various sizes. c) Measured and
predicted variation of fracture energy Gf with increasing
crack-parallel compression; d) the same for polycrystalline
metal with millimeter-width yielding zone and microme-
ter-width fracture process zone.

Optimal fitting of the data by state-of-art phase-field
and peridynamics computer programs calibrated by
basic material properties reveals severe discrepancies.

Although the phase-field models have certain
advantages (being superior for static and dynamic
propagation of curved and branching line cracks in
perfectly brittle materials obeying LEFM), and could
be generalized to different constant (non-varying) lev-
els of crack-parallel stress, they are found incapable of
matching the results of the gap test and the classical
fracture tests of concrete and rock, provided that the
same set of model parameters is used for all the tests
conducted on the same material.
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In these comparisons, the PD, considered as a kind
of strongly nonlocal model, is found to disagree with
the test data and be even inferior to PF. This rein-
forces the previous, strictly theoretical, critique of the
basic concept of peridynamics [3], both bond- and
state-based.

One of the faults of peridynamics is the use of
interparticle potential, which is realistic only on the
atomic scale. Still another is does not take into account
shear-resisted particle rotations (which are what lends
LDPM, the lattice particle discrete model, its superior
performance). Still another is the unphysical boundary
conditions and crack face conditions, along with the
problem of unphysical interaction across the fracture
process zone (FPZ) softened to various degrees.

The continuum-based finite element crack band
model with realistic tensorial damage constitutive law
M7 [4, 5] is able to fit the data from all the classical
tests and the gap tests closely. The crack band model
combined with Grassl’s tensorial model and CDPM2
performs in most types of tests almost equally well.

The previously discussed severe limitations of the
discrete crack and cohesive crack models are also
pointed out. Also, the ubiquity of varying crack-
parallel stresses in practical problems and their effects
in concrete, shale, fiber composites, plastic-hardening
metals and materials on submicrometer scale is
emphasized.

3 MODELS AND EXPERIMENTAL DATA
USED IN COMPARISONS

Eleven types of experiments on quasibrittle materials
(concrete and rock) have been simulated to test the
performance of computational models and discussed
in the lecture. A few of them are selected here for
comments.

• Size effect tests of types 1 and 2 [6]: geometri-
cally scaled specimens with and without notches,
subjected to three-point-bend load configuration.

• Compression-torsion fracture tests (mode III) [7]:
notched cylindrical specimens subjected to a fixed
axial confinement and angle-controlled torque.

• Uniaxial compression fracture tests [2] of cylin-
drical specimens subjected to uniaxial compressive
load with zero or various constant lateral confining
pressures rigid confinement.

• Diagonal shear fracture of reinforced concrete (RC)
beams [8], reinforced by graded steel bars and
subjected to four-point-bend load configuration.

• Gap tests [2] of fracture of notched beams sub-
jected to the loading configuration in Figure 1 and
described in Section 1.

Seven computational models are examined in the
lecture. They include:

• CB-M7: the crack band model [9] based on the
microplane damage constitutive model M7 for
concrete [4], as slightly updated in [10] (download-
able codes can be found at http://www.civil.north

western.edu/people/bazant/m7-coding/m7_cyc_
schell_v1.f). The material parameters are optimized
for material tests of typical laboratory specimens
whose size is close to the size FPZ, or the rep-
resentative volume of material. This size approxi-
mately represents the material characteristic length
l0, which is, of course, kept the same for all specimen
sizes.

• CB-Gr: is a tensorial damage constitutive model
implemented within the same crack-band finite ele-
ment framework as CB-M7, except that M7 has
been replaced with the concrete constitutive model
CDPM2 developed by Grassl et al. [5]. This model
is an update of [11] and represents arguably the best
plastic-damage constitutive model of concrete for-
mulated in the classical way—in terms of tensors,
two loading surfaces in the stress space, and tesorial
invariants.

• PF: is the basic phase-field model developed by
Francfort and Marigo [12]. Conveniently, this model
has been implemented as a user subroutine in
Abaqus by Pañeda et al. [13].

• PF-Wu: is a phase-field model that is modified to
fit better one particular test and is based on the
cohesive zone theory of Jiang-Ying Wu [14]. Down-
load both PF models from: https://www.empaneda.
com/codes/.

• PD: is an ordinary state-based peridynamic model
using a critical stretch with sudden force drop to ini-
tiate fracture, developed by Silling [15]. This model
has been implemented in the Peridigm [16] code
downloadable from the Sandia National Laboratory
website.

• PD-Gr: is a state-based non-ordinary (or
correspondence-based) peridynamic model, in
which Grassl’s CDPM2 has been implemented as
the constitutive law.

• PDba-Gr: is the same as PD-Gr, except that the
deformation gradient needed for the constitutive
relation is corrected by Bazilevs et al. according
their new bond-associated formulation of peridy-
namics [17]. Both PD-Gr and PDba-Gr models were
implemented as user material subroutines to be used
with Peridigm code.

4 CRITICAL COMPARISONS

The size effect on structural strength [18] is salient
characteristic of quasibrittle fracture and thus the most
important experiment to verify a fracture model. It fol-
lows a simple size effect law formulated in 1984 and
amply verified for many different quasibrittle mate-
rials. This law, whose most important feature is the
deviation from the −1/2 power law of linear elastic
fracture mechanics (LEFM), underlies a simple unam-
biguous procedure (1990) for measuring the fracture
energy and the material characteristic length of qua-
sibrittle materials (even in presence of crack-parallel
stresses).
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Figure 2. Simulations of a) quasibrittle size effect, b) uniaxial compression fracture, c) mode III shear fracture without and
with transverse compression, and d) vertex effect tests (all in concrete).

Figure 2a shows that both PF models result in a
power-law behavior in log-log scale. While the slope of
the PF model is−1/2, which complies with the LEFM,
the slope of PF-Wu is different from −1/2 which
is thermodynamically impossible since it implies a
zero-energy flux into the fracture tip. All PD models
deviate significantly from the experimental data, and
the PD-Gr model even results in an unphysical increase
of structural strength. Both CB models yield good
results.

Unlike tension, the existence of a discontinuous
band of localized strain in concrete could only appear
when a material model has the capability of forming
frictional or cohesive shear surfaces. Such a capability
is absent from both PF models. The same conclusion
can be drawn for the basic PD model. Even though
the tensorial formulation of Grassl’s model allows the

emergence of a localized band, only CB implementa-
tion of this model shows the presence of such a band.
PDba-Gr shows its appearance only vaguely while it is
missing completely from the PD-Gr (see Figure 2b).

The transition from a flat to conical and then to dis-
torted cylindrical surfaces of the localized crack when
the axially confining strain increases is well captured
by both CB models, yet the CB-Gr model produces
some secondary diffused cracks. Such a transition is
evident in the experimental observation. Neither of the
PF models could produce such a transition.Among the
PD models, the basic PD model exhibits a rather brit-
tle failure with fragmented pieces which are abruptly
released at the peak load but are absent in experiment.
The PD-Gr, on the other hand, shows delocalized dam-
age band while the PDba-Gr results in unchanged flat
crack surfaces (see Figure 2c).
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Figure 3. Simulations of a) diagonal shear failure of RC beams without stirrups, b) double punch tests of concrete cylinders,
and c) gap test.

The ability to capture diagonal shear of RC beams
and the gap test depends on the ability of the model
to capture the interaction between components of the
stress tensor. Only CB-M7 could reasonably do the
job. Though the trend in CB-Gr was reasonable, its
prediction of the change in fracture energy could be
improved. Other models can capture neither the crack
development process nor the peak load corresponding
to each structural size (see Figure 3).

5 CLOSING COMMENT

These comparisons document more broadly an
unhealthy dichotomy that has recently prevailed
between computational mechanics and the concrete
testers-designers. The former has relied on minimal
selective and insufficient experimental verifications

while latter paid insufficient attention to theoretical
developments and their critical scrutiny.
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ABSTRACT: after many years of being only an interesting research topic, nonlinear analysis of reinforced
concrete structures is becoming a standard engineering tool that is used in the assessment of existing structures
as well as in the design of new structures. This development has been significantly supported by the introduction
of new safety formats for nonlinear analysis in the fib model code 2010. Currently the new version of the fib
model code 2020 is being finalized. In addition, some of the methods proposed in the fib model code are being
implemented in the new version of Eurocodes. The paper provides a summary of the most promising proposals
of safety formats for the nonlinear analysis together with the crucial and very important issue of addressing
the modelling uncertainty. Some critical and still not fully addressed issues related to the crack band model
are discussed and demonstrated using examples of recent blind competition results. Two examples are selected
and described in more detail to demonstrate the application of nonlinear analysis, global safety formats and
uncertainty treatment in engineering practice. It is concluded that nonlinear modelling represents a very useful
engineering tool that can provide better understanding in the structural behavior, expected failure modes and
that suitable safety formats, consistent treatment of modelling uncertainties and solid engineering guidelines are
needed for their application in practice.

1 INTRODUCTION

The application of finite element method for nonlin-
ear analysis of reinforced concrete structures has been
introduced already in the 70’s by landmark works of
Ngo & Scordelis (1967), Rashid (1968) and Červenka
V. & Gerstle (1971). Various material models for
concrete and reinforced concrete were developed in
70’s, 80’s and 90’s such as for instance Suidan &
Schnobrich (1973), Lin & Scordelis (1975), De Borst
(1986), Rots & Blaauwendrad (1989), Pramono &
Willam (1989), Etse (1992) or Lee & Fenves (1998).
These models are typically based on the finite element
method and a concrete material model is formulated
as a constitutive model applied at each integration
point for the evaluation of internal forces. It was soon
discovered that material models with strain soften-
ing, if not formulated properly, exhibit severe mesh
dependency (De Borst & Rots 1989), and tend to
zero energy dissipation if the element size is reduced
(Bažant 1976).

The crack band approach was introduced by
Bažant and Oh (1983) to remedy the convergence
towards zero energy dissipation.A more rigorous solu-
tion of the ill-posed nature of the strain softening

∗Corresponding Author

problem represent nonlocal or higher-order contin-
uum models: such as non-local damage model by
Bažant & Pijaudier-Cabot (1987), gradient plasticity
model by de Borst & Muhlhaus (1992) or gradient
damage model by de Borst et al. (1996). The non-
local models introduce additional material parameters
related to an internal material length scale. Currently
these models are mathematically rigorous, but are
seldom used in engineering practice or available in
commercial finite element codes.

The limitations of the crack band model in practi-
cal engineering calculations, namely when it comes
to large finite elements or in the presence of rein-
forcement, were clearly understood already in the
work of Bažant and Oh (1983). These limitations were
described and treatment was proposed by Červenka
(2018) for the cases when large finite element sizes
as well as small ones are used in the finite element
nonlinear analyses.

Until recently the application of these advanced
nonlinear analyses in practice was difficult since it was
not compatible in many cases with the existing design
codes and engineering practice, which is still mostly
based on linear analysis.

The fib Model Code 2010 (MC2010) introduced a
comprehensive system for the treatment of safety and
model uncertainty for structural assessment and design
based on nonlinear analysis. On the basis of MC2010,
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new safety formats are being proposed also in the
ongoing revisions of Eurocodes and in the evolution
of the new fib Model Code 2020.

The paper summarizes the most prominent safety
formats available for nonlinear analysis with stronger
focus on the critical treatment of model uncertainty.
The important topic of model uncertainty is demon-
strated on three recent examples of blind predictions,
in which the authors participated.

In the last part, the paper demonstrates the applica-
tion of nonlinear analysis and the global safety formats
to two examples from engineering practice.

2 NONLINEAR ANALYSIS AND CRACK BAND
MODEL

As already noted in the introduction, many material
models have been developed in the past. It is not the
objective of this paper to provide a comprehensive
overview and summary of all of them. A comprehen-
sive summary of this topic is available for instance at
Jirásek & Bažant (2001). Considering the extremely
large variety of existing material models or approaches
to nonlinear analysis, it is impossible to provide guide-
lines or recommendations for their general application
in engineering practice. It is therefore evident that very
detailed guidelines or approaches for the treatment of
for instance the modelling uncertainties can be only
specific to certain class of constitutive models or even
to a particular material model or even only to a single
software.

The examples presented in this paper were cal-
culated using the finite element software ATENA
(Červenka 2021), and therefore some of the conclu-
sions are valid only for this software or at most are
applicable for the class of models based on smeared
crack approach and crack band method. However, the
presented safety formats or the general treatment of
model uncertainties is applicable for other nonlinear
models for concrete structures as well.

The material model used in the examples of this
paper is a fracture-plastic model described in more
detail in Červenka (1998) and Červenka & Papaniko-
laou (2008).

The constitutive model formulation assumes small
strains, and is based on the strain decomposition into
elastic (εe

ij), plastic (εp
ij) and fracture (εf

ij) components.
The stress development is described by a rate equation
reflecting the progressive damage (concrete cracking)
and plastic yielding (concrete crushing):

σ̇ij =Dijkl · (ε̇kl − ε̇
p
kl − ε̇f

kl) (1)

The flow rules govern the evolution of plastic and
fracturing strains:

Plastic model: ε̇
p
ij= λ̇p ·mp

ij, mp
ij=

∂gp

∂σij
(2)

Fracture model: ε̇f
ij= λ̇f ·mf

ij, mf
ij=

∂gf

∂σij
(3)

where λ̇p is the plastic multiplier rate and gp is the
plastic potential function, λ̇f is the inelastic fracturing
multiplier and gf is the potential defining the direc-
tion of inelastic fracturing strains. The multipliers are
evaluated from the consistency conditions.

The model of Menetrey & Willam (1995) is used
for plasticity of concrete in multiaxial stress state
in compression (Figure 1) with nonlinear harden-
ing/softening (Figure 2).

Figure 1. Three-parameter Menetrey & Willam (1995)
concrete failure criterion in principal stress frame.

Figure 2. Hardening/softening law for the plasticity model
for concrete in compression.

For tensile cracking, Rankine criterion with expo-
nential softening of Hordijk (1991) – see Figure 3 – is
used, where wt stands for the crack width. The crack
band approach of Bažant & Oh (1983) is used to
relate crack opening displacement to fracturing strains.
An analogical approach is used also in compression
according to Červenka (2014). The crack band Lt
as well as the crush band size Lc are adjusted with
regard to the crack orientation approach proposed by
Červenka & Margoldová (1995). This method is illus-
trated in Figure 4 and described by Eq. (4) where the
crack angle θ is taken as the average angle between
crack direction and element sides.

L′t = α γ Lt and L′c= γLc (4)

γ = 1+ (γmax − 1)
θ

45
, θ ∈ 〈0; 45〉, γmax = 1.5
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Figure 3. Crack opening law according to Hordijk (1991).

Figure 4. Crack band formulation.

The above formulation controls the strain local-
ization accounting for the mesh size and the crack
orientation. Parameter α is introduced to cover the
localization effect due to the various element types.
according to Slobbe (2013).

Additional important features of cracked rein-
forced concrete include the reduction of compressive
strength, shear stiffness and shear strength degrada-
tion, often referred as a shear retention effect. They
represent key elements of a successful constitutive
model of reinforced concrete (Červenka & Papaniko-
laou 2008), and are mainly important in problems
dominated by shear failure.

Červenka (2018) demonstrated the limits of the
crack band approach for modelling of reinforced con-
crete when very large or very small finite elements are
used.

For the case of large finite elements this problem is
demonstrated on Figure 5. When very large finite ele-
ments are used, the standard assumption of the crack
band approach that single crack, i.e. localization zone
will develop inside the finite element, is not valid
anymore. Due to reinforcement spacing, cover size or
reinforcement diameter, cracks will localize at certain
distances, which maybe smaller than the used finite
element size.

Figure 5. (Left) valid assumption of the crack band and
(right) invalid assumption for the large finite element size
when more than one crack will localize inside the finite
element.

A similar situation may develop in the other extreme
when very small finite elements are used as is schemat-
ically described in Figure 6. In case of very fine finite
element meshes near the reinforcement, artificially
stiff response may be obtained at the stage of crack
initiation (Figure 7).

Figure 6. (Top) shows the schematic view of the crack local-
ization near the reinforcement bar influenced by aggregate
dimensions and rib spacing, (bottom) shows the incorrect
crack initiation if very fine mesh is used.

Figure 7. Manifestation of the minimal crack spacing issue
in a typical analysis of reinforced concrete element.

If an analogical approach to crack band is used
also for the modelling of softening in compression
(Figure 2), a similar defective behavior is observed.
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Figure 8 shows the failure localization in a typical
compression cylinder analysis. Contrary to the direct
tensile failure, the crush band cannot localize into a
row of single finite elements namely due to the effect of
the dilatancy, and the resulting shear band will involve
many elements. The crack band approach therefore
cannot be used unless the crush band size is much
smaller than the size of the finite element. The band
size has to be therefore specified as in additional input
parameter. The recommended assumption is schemat-
ically described in Figure 9 and is equivalent to the

Figure 8. Compression test with localization into an
inclined band involving many elements.

Figure 9. Schematic description of the assumption of the
crush band size dependance on the specimen minimal dimen-
sion Dmin.

minimal dimension of the analyzed structural element.
The three localization limiters are proposed (Červenka
2018):

Lt,min–minimal crack spacing limiter in tension
related to aggregate size
Lt,max–maximal crack spacing limiter in tension
related to reinforcement arrangement
Lc,min–minimal crush band limiter in compression
related to the minimal size of the compression zone.

3 SAFETY FORMATS FOR NONLINEAR
ANALYSIS OF REINFORCED CONCRETE

The design condition is generally formulated as:

Ed <Rd (5)

where Ed represents the design load effect and Rd
the design resistance. They should include the speci-
fied safety margins. For simplicity, the load effect and
resistance are considered separately.

The design condition (5) in the standard design
practice is applied to critical cross-sections and the
load effect is obtained by linear analysis. The incon-
sistency of this concept is well known as different
assumptions are used for the calculation of:

load effects – using typically linear analysis and,
the cross-section resistance – with assumptions of
strongly nonlinear material behavior.

In statically indeterminate systems, the section
forces may change due to force redistribution at the
ultimate limit state. Local safety checks may then be
insufficient, and a global safety assessment is needed.
Global safety formats combined with nonlinear anal-
ysis provide adequate tools for such cases.

The load effect Ed in the equation (5) is considered
at the global level (typically it represents the total effect
or the intensity of the relevant load combination), and
analogically the resistance Rd is the ultimate load level
at failure for the given load combination calculated by
the nonlinear analysis.

MC2010 introduces four methods for the global
assessment using nonlinear analysis. In this study only
two most prominent methods will be treated. i.e. the
partial factor (PFM) (Section 7.11.3.4) and GFM-
ECoV method (Section 7.11.3.3 of fib model code
2010). The full probabilistic approach on the other
hand can be used as a reference solution. These two
methods are expected to be included in the new ver-
sion of Eurocodes, and therefore they will be treated
in more detail.

3.1 Partial safety factor method (PFM)

This approach is most appealing for practicing engi-
neers as it is a quite natural extension of the current
design practice. The resistance Rd is obtained as:

Rd = R{Xd; anom}
γRd

(6)
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where:
R{−} is the structural resistance by numerical

simulation,
Xd is the design value of the material property

considering material and geometric uncertainties, but
excluding model uncertainty treated separately by γRd,
and it is estimated as:

Xd = Xk

γM
, γM= exp

(
αR · βtgt · VRM

)

µRM
, (7)

anom is the nominal value of the geometric prop-
erty, i.e. for instance reinforcement depth or element
dimension,

γRd is the partial safety factor, which accounts for
the model uncertainty, index M where S stands for
reinforcement and C for concrete in compression,

αR is the partial safety factor, which accounts for
the model uncertainty, and will be treated in Section 4,

βtgt is sensitivity factor for resistance in MC2010
with the recommended value of 0.8 for a 50-year
reference period,

VRM is the coefficient of variation of the resistance
estimated for a linear product of resistance parameters
as in (8),

µRM is the bias factor for all uncertainties obtained
as a product of the individual bias factors:

VRM=
√√√√

n∑

I

V 2
I µRM=

n∏

I

µI (8)

3.2 GFM-ECoV method – an estimate of the
coefficient of variation

ECoV method originally proposed by Červenka (2008,
2013) is a semi probabilistic approach assuming that
the distribution of resistance due to the variability of
materials – described by the coefficient of variation Vm
- can be estimated from the mean Rm and characteristic
value Rk of the resistance. The underlying assumption
is that the distribution of the resistance is according to
a lognormal distribution, which is however typical for
the structural resistance, and it can be expressed as:

VR= 1

1.65
ln

(
Rm

Rk

)
(9)

Under these assumptions, the global safety factor of
the resistance can be calculated as:

γR= exp (αRβ VR)∼= exp (3.04 VR) (10)

where the typical values for αR and β are 0.8 and 3.8
respectively leading to 1.12‰ fractile of the design
value of resistance, which is calculated as:

Rd= Rm

γR γRd
(11)

The main task is to estimate the mean and char-
acteristic values Rm and Rk. They can be estimated

from two separate nonlinear analyses using mean and
characteristic values of the input material parameters,
respectively.

The method is quite general and the reliabil-
ity level β and distribution type can be changed
if required. Also the geometric uncertainty can be
included (Červenka 2021). It can capture different
types of failure and the sensitivity to a random varia-
tion of the material parameters is adequately captured
in most cases of practical relevance. The slight disad-
vantage of this method compared to the PFM is the
need for two separate non-linear analyses.

4 MODEL UNCERTAINTY

The evaluation of model uncertainty is critical for
robust and reliable evaluation of the design resis-
tance as described in Section 3. The model uncertainty
should be evaluated by statistical evaluation of the
comparison of the model predictions to experimen-
tal data. In this respect it should be understood that
the obtained partial factors for model uncertainty will
be valid only for the investigated material model or
simulation software. The model uncertainty is usually
defined as the ratio:

θ =Rexp/Rsim (12)

where Rexp is the resistance found by an experiment
and Rsim is the resistance obtained by a numeri-
cal simulation. The model uncertainty is considered
as an additional random variable with a lognormal
distribution.

The experimental resistance is considered as a refer-
ence, i.e. true value. Therefore, in order to investigate
pure model uncertainties, it is essential to reduce
other effects such as aleatory uncertainties to min-
imum. Material properties of concrete are typically
identified by the concrete compressive strength tested
on accompanying concrete samples (e.g. cylinders).
Other material parameters (elastic modulus, tensile
strength, fracture energy, etc.) are usually determined
indirectly by formulas available in codes or should
be provided as guidelines for a particular model. A
random distribution of material properties within the
tested structure is also not known. These effects will
be therefore included in the model uncertainties.

The experimental data base for the calibration of
model uncertainty for a particular material model or
modelling approach should include results of exper-
iments relevant to the considered resistance model.
Range of parameters in experiments, such as rein-
forcement, size or concrete strength class, limit also
the relevant range of model uncertainty. Failure mode
is often also suggested as a classification parameter.
However, it may be useful to include more failure
modes in one group, since in general a failure mode
identification is not unique and straightforward.

For a database containing n samples (experi-
ments) the central moment characteristics of model
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uncertainty can be estimated for mean µθ , standard
deviation σθ and coefficient of variation Vθ . Consid-
ering a log-normal statistical distribution (according
to MC2010) a safety factor for model uncertainty can
be obtained as:

γRd = exp (αRβ × Vθ )

µθ

(13)

The values for the sensitivity factor αR and β are
to be selected based on the required reliability levels,
and as in Section 3.2 the typical values are 0.8 and 3.8,
respectively.

The calibration of the model uncertainty is by its
nature dependent on the used constitutive model, its
implementation in a particular software or even on
the analyst or engineer himself. The human factor
can be eliminated or at least addressed by providing
modelling guidelines, training and education. Several
investigations of model uncertainty for various non-
linear finite element software have been published
recently:

Engen (2017) investigated 38 RC members under
monotone loading analyzed by several authors. Rather
low partial safety factor for the model uncertainty was
proposed based on the failure mode in the range 1.02–
1.04.

Castaldo (2018) considered 25 structural members
from various literature sources including deep beams,
shear panels and walls. The investigated members had
statically determined static scheme and were tested up
to failure with a monotonic incremental loading pro-
cess. The tests were reproduced by non-linear analysis
adopting 9 different modelling hypotheses distinguish-
ing between the software platform and concrete tensile
response. A total number of 225 simulations has
been performed, and the resulting value of the model
uncertainty partial factor was 1.15.

Castaldo (2020) investigated also the model uncer-
tainty for cyclic loading of 17 shear walls with
statically determined scheme. 18 different modelling
hypothesis were considered and altogether 306 sim-
ulations have been performed. This study proposes a
model uncertainty factor γRd = 1.35.

Gino (2021) focused on the problem of model
uncertainty related to nonlinear analysis of slender RC
members, A total number of 40 experiments of con-
crete columns with slenderness ratio between 15-275
are considered, and the model uncertainty factor γRd
is proposed in the range 1.15–1.19.

Finally the authors of this paper also performed a
similar study in ČervenkaV. (2018) where 33 RC mem-
bers were studied with failure modes ranging from
ductile modes governed by reinforcement yielding up
to brittle failure modes dominated either by tensile
fracture or concrete compressive crushing. The study
involved slabs and beams with bending or shear or
punching failure modes.

The results of this study are summarized in Table 1.
It should be noted that the model uncertainties

parameters in Table 1 are valid only for the used

Table 1. Partial safety factors for model uncertainty
(Červenka V. 2018).

Failure type µθ Vθ γRd

Punching 0.971 0.076 1.16
Shear 0.984 0.067 1.13
Bending 1.072 0.052 1.01
All failure modes 0.979 0.081 1.16

software (Červenka 2021) and the constitutive model
(Červenka & Papanikolaou 2008).

5 VALIDATION AND EXPERIENCE FROM
BLIND COMPETITIONS

The nonlinear methods or constitutive models for con-
crete structures are usually implemented and used as
a part of a software tool. It is crucial that the constitu-
tive models as well as the various numerical tools and
methods to be used in practical engineering projects
are properly tested and validated based on known ana-
lytical solutions or best by real material and structural
experiments. Such tests and validation are usually part
of the software development, and it should contain also
the definition of the model uncertainty as described in
Section 4.

Since this validation as well as the model uncer-
tainty quantification is performed when the results of
the experiments are already known, there is a signif-
icant risk that the analyst will adjust certain material
or solution parameters to obtain a better fit. It is there-
fore important to strictly derive all the input material
parameters from the known experimental data, i.e. typ-
ically concrete compressive strength or reinforcement
yield strength. For most material models, more input
material parameters are needed then available from
the physical tests. It is important that unique formulas
and rules are provided how to relate them to available
experimental data or otherwise default values should
be used.

This is the case also for other parameters necessary
for the nonlinear analysis, such as: step size, conver-
gence criteria, arc-length method parameters, finite
element size, etc. These should be strictly based on
some guidelines or default values.

In this respect, the most crucial test for the robust-
ness of any method or model is the participation in
blind robin predictions that are often organized by
various research institutions.

The blind robin competitions have certain limita-
tions as well. They often involve a single experiment,
therefore they include the influence of both aleatory
(inherent uncertainty due to probabilistic variability)
and epistemic (missing knowledge) uncertainty mixed
together.

The authors participated in the past in various
blind competitions, and it is interesting to share the
experience of some of the most recent ones to doc-
ument complications, risks or peculiarities with their
evaluation.
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The competition organized by Collins (2015)
received a lot of attention. It involved a large deep
beam with dimensions 4× 19 m as shown in Figure 10.
When the beam was loaded, it failed first on the right
side (East) without shear reinforcement. After the fail-
ure the right side was strengthened with shear ties,
and the beam was reloaded up to the failure on the left
side (West), where shear reinforcement was introduced
during the beam production.

Figure 10. Test specimen geometry for the Toronto beam
(Collins 2015).

With this approach the single beam was used to
obtain two test results for the shear strength with and
without shear reinforcement.

Similar competition was organized recently at the
University of California at Berkeley (Moehle & Zhai
2021), Figure 11. Very similar geometry and approach
was adopted for testing with the difference that during
the first test, i.e. right side (Exp. 1) four longitudinal
bottom reinforcement bars were left unbonded inside
the beam (see Detail B, Figure 11). After the first test
was completed, these bars were injected with grout for
the second test, i.e. the left side (Exp. 2).

Figure 11. Test specimen geometry (dimensions in mm) for
the UC Berkeley beam (Moehle & Zhai 2021).

The material parameters that were used in the
prediction simulations for the two competitions are
summarized inTable 2.Authors predictions for the two
competitions are shown in Figure 12 and Figure 13.
The authors predictions for the Toronto competition
were the winning predictions. They are indicated by
the solid lines in Figure 12.

The predictions for UC Berkeley competition (Fig-
ure 13) were not so satisfactory. Especially for the
test without shear reinforcement, i.e. the curve labeled
“Sim. 1” in Figure 13 has a peak almost 50% lower
than in the experiment labeled as “Exp. 1”.

Table 2. Material parameters used in the prediction of beam
competitions of Toronto and UC Berkeley.

Parameter Toronto UC Berkeley

Concrete
Elastic modulus E [MPa] 34129 31 008
Poisson ratio 0.2 0.2
Compressive strength f c [MPa] 40.0 30
Tensile strength f ct [MPa] 3.0 2.3/2.4(∗)

Fracture energy GF [N/m] 78 100/135(∗)

Crushing lim. displ. wd [mm] 5 20
Fixed cracks 1.0 0.75/1.0(∗)

Strength reduction of 0.8 1.0/0.8(∗)

cracked concrete rlim
c

Shear factor sF 50 50/20(∗)

Reinforcement
Elastic modulus E [MPa] 200 000 200 000
Yield strength f ys [MPa] 573/522(∗∗) 830/420(∗∗)

Tensile strength f ts [MPa] 685/629(∗∗) 1030/620(∗∗)

Limit strain [–] 0.18/0.2(∗∗) 0.025/0.02(∗∗)

(∗)The second value indicates the default value normally gen-
erated by the software for the given strength class. In Figure
13 the results for these parameters are indicated by the label
“default”.
(∗∗)The first value is for the shear reinforcement, the second
for the longitudinal bars.

Figure 12. Comparison of Toronto test predictions and
experiments.

Figure 13. Comparison of UC Berkeley beam predictions
and experiments.
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It should be however taken into account that the self
weight of the beam is significant especially for the test
without shear reinforcement.This is actually valid also
for the Toronto test.

In UC Berkeley experiment, for instance, the self
weight of the beam is about 515 kN. This means that
the peak load was in reality underestimated by only
about 25% for Exp. 1 and 22% for the Exp. 2. It is also
necessary to understand that there was only a single
experiment performed in both cases so uncertainty in
the material parameters, i.e. aleatory uncertainty was
not addressed in the test at all. In both cases, the fail-
ure was dominated by concrete. In Exp. 1 the tensile
properties played the major role, while in Exp. 2 it
was the concrete compressive crushing as well as the
steel yielding controlling the peak load. This means
that quite high variability of the structural strength can
be expected just from the material heterogeneity and
variability.

However, the major source of inaccuracy in the UC
Berkeley prediction was the consideration of shrink-
age (150 µstrains), which by itself reduced the beam
strength of the “Sim. 1” by about 25%. This is doc-
umented by the curve denoted as “Sim. 1 default”,
where default material parameters were used with-
out any adjustment and shrinkage was not considered.
The error of this analysis was only about 25%, i.e.
12% considering the dead weight. Important parame-
ter for the shear dominated problems is the shear factor
parameter sF (Červenka & Papanikolaou 2008), which
controls the shear stiffness of the cracked concrete,
which had to be increased to 100 in order to have a
good match with the experiment. This analysis is in
denoted as “Sim. 1, default, sF 100” in Figure 13. The
default value of this parameter is normally set to 20 to
provide conservative results.

The typical crack patterns for the two UC Berkeley
experiments are shown in Figure 14, and they are in
very good agreement with the observed failure modes,
which were reported as diagonal tension failure and
flexure-diagonal compression for Exp. 1 and Exp. 2
respectively.

Figure 14. Crack pattern for the UC Berkeley beam predic-
tions.

Gunay & Donald (2021) from UC Berkeley
organized another interesting competition in 2021
on the response of reinforced concrete column in
cyclic behavior. The results of the competition were

announced in December 2021 (see Gunay & Donald
2021).

The load-displacement curves showing the compar-
ison of the predictions with the experiment are shown
in Figure 16.The prediction was quite satisfactory even
though the initial stiffness of the system is signifi-
cantly underestimated, however, this can be also due
to higher flexibility of the boundary conditions in the
experiment itself. Again, it is important to take into
consideration that material variability is not addressed
by the experiment. The failure mode (see 6) was also
in a very good agreement with the experiment, where
shear failure in diagonal tension in the middle section
was reported.

Figure 15. Test specimen geometry for UC Berkeley cyclic
column.

Figure 16. Comparison of UC Berkeley cyclic column
experiment and simulation prediction.

6 APPLICATION IN DESIGN AND
ASSESSMENT

Two examples of application of nonlinear analysis
from engineering practice will be presented in this
chapter. The first example is an assessment and
design of strengthening for an understrength contin-
uous beam. The second example represents a seismic
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Figure 17. Final failure modes from UC Berkeley cyclic
column predictions.

assessment by pushover analysis of existing rein-
forced concrete building, which is part of a critical
infrastructure.

6.1 Assessment and strengthening design of a
continuous beam

This investigated beam is part of a foundation slab
at a food processing and storage plant in southern
Bohemia. During the construction an insufficient rein-
forcement placement was detected in the continuous
beams supporting the foundation slab below the stor-
age rooms. The continuous beam is connecting the
foundation piles, and is main load bearing element
transferring the loads from the structure to the founda-
tion. The problematic area is supposed to be a storage
rooms with freezers, and it was critical for the investor
that sufficient load carrying capacity is guaranteed.

Figure 18 shows the geometry of the model, which
consists of a continuous beam with contributing parts
of a slab. The beam dimensions are height 750 mm,
thickness 400 mm and 200 mm in its end and middle
parts respectively. Figure 19 shows the reinforcement
arrangement, which was modelled using embedded
truss elements. Based on the construction methods
using prefabricated filigran slabs, there is a construc-
tion joint between the beam and the slab that was
modelled by interface elements as shown in Figure 20.
Important aspect of the modelling was to consider this
weak connection and its effect on the capacity of the
continuous beam. The initial assessment using stan-
dard design formulas expected inadequate bending
reinforcement above the piles and insufficient shear
capacity of the slab-beam connection.

The initial nonlinear analysis confirmed inadequate
shear capacity of the continuous beam mainly due
to the loss of connection between the slab and the

Figure 18. 3D geometric model of the symmetric half of the
investigated continuous beam.

Figure 19. Reinforcement arrangement, label indicates the
reinforcement diameter, location and orientation in the
model.

Figure 20. Location of the construction join between the
beam and the slab.

beam resulting in their separate behavior without the
necessary composite effect.

The calculated load-displacement diagrams are
shown in Figure 21. The dashed lines show the struc-
tural resistance of the original model without strength-
ening for two models of the beam-slab connection.
Model B considers the contribution of both concrete
as well as steel shear studs in the beam-slab interface
while model C assumes that due to observed large
slab deflection during the construction, the interface
is cracked and only steel shear studs are contributing
to the interface shear strength.

Figure 21 shows that for the cases without strength-
ening, only model B provides enough load-carrying
capacity. If the required design load level is increased
to include the expected model uncertainty (see Chap-
ter 4), none of the models are able to reach this load
level.

Figure 22 demonstrates the typical development of
the diagonal shear crack during the nonlinear anal-
ysis and the crushing of the compressive strut near
the right support. From engineering point of view it
is interesting to evaluate internal forces (moments,
shear) along the beam. Figure 23 shows their evolu-
tion at the peak load for the case of model B. It is
interesting to compare the value of the shear force at
the section where shear failure is observed with the
value obtained by Eurocode design formula. The EC2
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Figure 21. L-D diagram for original and strengthened
continuous beam from the first example.

Figure 22. Characteristic development of diagonal shear
crack and crushing of the diagonal compressive strut near
the right support for the model without strengthening.

Figure 23. Distribution of moments (MNm) and shear
forces (MN) in the model B without strengthening at peak
load.

gives shear capacity of 0.350–0.700 MN depending
whether we consider only the shear strength of the
beam or the whole cross-section including the con-
tributing slab. The analysis shows that structure can
carry up to 0.8 MN at failure at this location, which
is reasonably close to the EC2 value for the whole
section. This indicates that even though model B takes
into account the slip between the beam and the slab, the
overall shear strength is still provided by the whole sec-
tion with significant contribution from the slab. Figure
23 also demonstrates the importance of checking the
numerical results with analytical formulas whenever
possible to verify the reliability of the numerical sim-
ulation. In most cases, an exact verification is not
possible, but an expected range of reasonable results
can be often estimated.

Figure 24. Proposed strengthening and stress carbon lame-
las at peak load.

To increase the capacity of the beam, the strength-
ening was designed and verified by nonlinear analysis.
The proposed strengthening arrangement with carbon
lamellas is shown in 6.2. The strengthening resulted
in the capacity increase by 10%–20% as shown in the
l-d diagrams in Figure 21. The impact of the strength-
ening is not very significant due to the fact that the
failure load is governed by crushing of the compres-
sive strut, that can be only partially addressed by the
additional lamellas, however, it was enough to address
the concerns of the investor.

6.2 Pushover analysis of a reinforced concrete
building

The investigated reinforced concrete building in the
second practical example was constructed in 1960s.
The building belongs to a critical infrastructure and
it is located in a seismic area. The proof of safety
of such buildings requires a sophisticated analysis.
The engineers of the building owner developed an
analysis method (Kurmann 2013), which inludes cer-
tain simplifications, but provides a far more realistic
estimation of the seismic load bearing capacity of
reinforced concrete structures compared to standard
methods. It is based on pushover curves determined by
nonlinear analysis and the application of time histories
to an equivalent dynamic model of a representative
harmonic oscillator (see 7). The dynamic parame-
ters of the oscillator, i.e. model mass and damping
are obtained from a soil-structure-interaction anal-
ysis. This oscillator is then exposed to a series of
time-histories of various earthquakes.

This approach allows the consideration of both
uncertainties on the loading side by using different
earthquake time histories as well as the uncertainties
related to the structural response. These are treated by
performing nonlinear structural analyses with mean
and characteristic parameters. The resulting realiabil-
ity of the structure under seismic loading is represented
by a fragility curve. The details of this approach are
described in more detail in Kurmann (2013). This
paper will described only some aspects and results of
the nonlinear structural analysis that was used to gen-
erate the nonlinear force-deformation curves required
by this method.
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The geometric model of the building is shown in
Figure 25. Two types of reinforcement models were
used:

– the critical reinforcement in colums and beams was
modelled in a very detailed way using the discrete
model, where each reinforcement bar or stirrup is
included in the model (Figure 26). In the finite
element model these bars are modelled by truss
elements embedded inside 3D solid finite elements.

– the reinforcement in the slabs and in most of the
walls is modelled by smeared approach, where the
reinforcement behavior is included into a compos-
ite reinforced concrete constitutive material model
(Figure 27).

Figure 25. 3D model of the reinforced concrete building
from the second example.

Figure 26. Discrete reinforcement model for the reinforced
concrete building example.

Table 3 lists the used material parameters for the
characteristic and mean analyses respectively.

The used finite element model is shown in
Figure 28. The final mesh was a result of mesh size
and element type parametric study.

In the final mesh, columns are modelled using lin-
ear isoparametric solid elements. The walls and slabs
marked in Figure 27 are modelled by quadratic 3D
shell elements. These are special elements described
in more detail in Jendele & Červenka (2014) and
Červenka (2021). These elements have 3D geometry
with 12 nodes with only displacement degrees of free-
dom, which simplifies their application in combined
meshes with standard solid elements. Internally they

Figure 27. Structural elements with smeared reinforcement
model.

Table 3. Summary of material parameters for the reinforced
concrete building example.

Concrete char. mean

E [GPa] 36 36
ν [–] 0.2 0.2
fc [MPa] 45 54
ft [MPa] 2.7 3.8
Gf [N/m] 67.5 95
Steel Ø≤ 18 Ø> 18
E [GPa] 200 200
fys [MPa] 380 345 440 370
[–] 0.1
fy2[MPa] 520 570

Figure 28. The finite element model for pushover analysis
of the reinforced concrete building example.

are however formulated as a layered shell element with
displacement and rotational degrees of freedom. This
element supports the definition of special internal rein-
forcement layers, which simplifies the definition of
internal reinforcement of the slabs or walls.

Up to 8 nonlinear pushover analyses were per-
formed for characteristic and mean parameters
(Table 3) for two directions (x, y) of the pushover
forces. For each direction the pushover forces were
applied with positive as well as negative orientation.
The distribution, i.e. vertical shape, of the pushover
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forces was determined by a separate soil-structure
interaction analysis using SASSI software (Figure 29).

Figure 29. Vertical distribution of accelerations defining the
vertical shape of the pushover forces that was used in the
nonlinear analysis.

The calculated force-deflection curves are shown
in Figure 30 for the two pushover directions, two
orientations and two sets of parameters, i.e. mean
and characteristic. The pushover curves in Figure 30
show that the structural response is slightly stronger
in positive direction, but overall the behavior in both
directions and orientations is quite similar.Typical fail-
ure modes and crack patterns are shown in Figure 31
for the positive and negative y direction. It shows
the deformed shape at failure is slightly unsymmet-
ric. Larger deformations and more damages can be
observed on the right side of the figures. This can
be attributed to the presence of reinforced concrete
walls in both directions on the left side of the build-
ing. The stronger response in the negative direction
can be attributed to the fact that the shear walls in y-
direction are located on the side of the building which
is experiencing higher compressive forces when the
pushover forces are acting in the negative y-direction.

Figure 30. Pushover curves for x,y directions from mean
and characteristic analyses for the reinforced concrete build-
ing example.

Figure 32 shows the shape and hysteretic response
of the equivalent SDOF system that was used in

Figure 31. Deformed shape and crack pattern at failure
from pushover analysis in -Y direction for the analysis with
characteristic parameters.

Figure 32. Cyclic behavior of the equivalent SDOF sys-
tem representing the structural capacity and accounting of a
ductility-dependent strength degradation.

the subsequent probabilistic dynamic analyses for the
evaluation of the building’s fragility curve.

The two practical examples presented in this section
provide a very brief overview of typical application
cases in the current engineering practice.

The first example covers a situation of a problem-
atic design. Such scenario often occurs in case of very
complicated design, which is outside of the scope of
standard design methods and tools or if an error or
mistake is discovered during the construction or after
the completion. This was the case of the first example
when a missing reinforcement was discovered during
the construction when excessive deformations of the
slabs were observed.

The second example comes from the assessment
of existing structures, which were originally designed
according to older guidelines, and are required to meet
the current standards or increased levels of traffic
loads, seismic or environmental hazards and risks.
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7 CONCLUSIONS

The paper summarizes the most important aspects and
issues, at least according to the authors experience,
related to the application of nonlinear analysis in engi-
neering practice. At the beginning, typical features of
nonlinear models for reinforced concrete analysis by
finite element method are discussed namely to provide
a consistent background and briefly described the main
features of the numerical model used in the examples
subsequently presented in the paper.

An important topic is the application and choice of
a suitable safety format for nonlinear analysis. Until
recently the engineers were left on their own, but the
situation is changing now. New safety formats for non-
linear analysis are available in fib model code 2010.
They are further enhanced in the new version of the
code, i.e. model code 2020 under preparation. CEN
committees are working intensively to introduce them
into the new generation of Eurocodes.

Another important issue in the application of non-
linear simulation in practice is the treatment of model
uncertainties. Approaches are available and signifi-
cant research effort has been devoted to this topic as
discussed in chapter 5.

Blind robin prediction competitions are very useful
for the assessment of the robustness and reliability of
existing models or software tools. However, they have
certain specifics and limits that are demonstrated on
three recent prediction competitions. In future compe-
titions, it would be useful, if their organizers make
more attempts to separate the various uncertainties
involved.

In the last section, two examples of application
of nonlinear simulation from engineering practice are
presented to illustrate the typical use cases and level
of modelling detail that is becoming standard in the
nonlinear modeling of reinforced concrete structures.
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ABSTRACT: Fracture mechanics in its most elemental form introduced by Griffith defines the irreversible
change of energy between two equilibrium states at constant loading. This particular equilibrium nature permits
the use of Monte Carlo sampling for evaluating the energy change introduced by fracture, as well as energy release
rate and its critical value, the fracture energy, from fluctuations. This is in short the idea of fluctuation-based
fracture mechanics in the semigrand canonical ensemble (SGCMC). Herein, we review recent developments of
SGCMC, and show possible applications for heterogeneous materials and structures.

1 INTRODUCTION

1.1 Gedankenexperiment

Consider a solid composed of particles subjected to
a volume change at constant temperature. The sys-
tem is further subjected to an external energy source
that targets the bonds between particles in the system,
akin to a bulk radiation source. At a given energy of
this radiation source, denoted by 
µ, fracture at the
macroscopic level of the sample may occur between
two equilibrium states of the system. This transition
is defined by the bond potential, 
µ, the prescribed
volume, V , and temperature, T . In this semigrand
canonical ensemble, we measure the ensemble energy
average of possible microstates of the system, 〈U〉,
and the energy fluctuations, as a function of the aver-
age number of bonds, 〈N 〉, and their fluctuations. As
we repeat the experiment by sweeping possible values
for volume changes, stress-strain curves can be traced
out for different prescribed bond potentials, 
µ.

1.2 From Griffith’s fracture mechanics to
fluctuation-based fracture mechanics

The outlined Gedankenexperiment suggested by
Mulla et al. 2021 encapsulates the very essence of
fluctuation-based fracture mechanics, namely:

1. Fracture mechanics in the classical Griffith sense
(Griffith 1920) defines (potential) energy changes
between two equilibrium states at constant loading
(prescribed forces Fd , prescribed displacements

∗Corresponding Author

ud ), by means of the energy release rate, G, as ther-
modynamic driving force of fracture propagation:

G=−∂Epot

∂�
|Fd ,ud ≤GF (1)

where Epot is the potential energy, � fracture
surface, and GF the fracture energy.

2. Yet, two notable differences guide the SGCMC-
approach. In contrast to classical fracture mechan-
ics, which samples a single fracture configuration
around a notch, we sample by means of Monte Carlo
simulations a great deal of possible fracture con-
figurations; so called microstates. Each microstate
is defined by its number of broken bonds, Nb,i =
N0 − Ni (with N0 = the initial number of bonds;
Ni the number of unbroken/active bonds), and the
associated bond energy, Ui = (U0 + Uλ)i (with U0
the groundstate energy, i.e. the (sum of the) well-
depth of the bond potential; and Uλ the (sum of the)
elastic energy of the system). Given a sufficient
number of sampled bond fracture configurations,
SGCMC permits evaluating the change in energy
(i.e. dissipation) from the ‘heat of bond rupture’
(Al-Mulla et al. 2018):

qλ=−∂〈Uλ〉
∂〈Nb〉 |
µ,V ,T = cov(Uλ, N )

var(N )
≤−q0 (2)

Herein,−q0 is the bond fracture energy of the con-
sidered material or structural system, which derives
from the ground state energy activated by bond
fracture:

−q0= ∂〈U0〉
∂〈Nb〉 |
µ,V ,T =− cov(U0, N )

var(N )
(3)
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That is, qλ and −q0 are –for bond rupture–
the analogues of respectively the energy release
rate, G→ qλ, and the fracture energy, GF →−q0.
Note, however, the difference in dimension: [G]=
[GF ]=MT−2 vs. [qλ]= [q0]=L2MT−2Mole−1.
This requires consideration of re-scaling of
SGCMC–obtained fracture properties to match
with ‘classical’ Griffith-type fracture properties.

3. The ‘new’ ensemble quantity in SGCMC-
simulations is the external energy potential, 
µ,
that targets all bonds in the system – akin to a
radiation source. Classical fracture simulations cor-
respond to 
µ= 0; whereas 
µ< 0 may be help-
ful to simulate dissolution processes, and 
µ> 0
bond solidification processes brought to equilib-
rium. More generally,
µ permits the development
of phase diagrams of fracture that separate, for
given values of 
µ, the corresponding limit strain
of fracture as a first-order phase transition phe-
nomena (Mulla et al. 2021). The coining of this

µVT ensemble as semi-grand canonical is due
to the fact that in contrast to the grand canoni-
cal ensemble which targets particles, the semigrand
canonical ensemble only targets the bonds between
particles in the system. Otherwise said, the mass is
conserved.

4. Of critical importance for SGCMC simulations is
the (thermodynamic) equilibrium-based nature of
the fracture process defined by the thermodynamic
ensemble, 
µVT , the rough equivalent of a well-
posed boundary value problem in classical contin-
uum mechanics. From the point of view of statis-
tical physics, the well-defined ensemble permits
averaging microstates, and hence the evaluation of
fracture properties from Eqn. (2) and (3). In return,
given this equilibrium nature, out-of-equilibrium
fracture situations such as dynamic fracture propa-
gation (see, e.g. Bonamy and Bouchaud 2011), are
beyond the (thermodynamic) equilibrium-based
focus of Griffith’s and SGCMC-based fracture
evaluations.

2 SGCMC SIMULATIONS

At the core of the fluctuation-based fracture mechan-
ics approach is the generation of a sufficient number
of bond fracture microstates, from which ensemble
averages can be derived. This seems on first sight
a daunting task. Yet, Monte Carlo simulation tech-
niques provide a solid foundation to effectively address
this challenge [for a ‘must’ read, see (Frenkel & Smit
2002)]. Let’s start simple.

2.1 SGCMC acceptance criteria

All boils down to evaluating the probability of accep-
tance of the addition or removal of a bond. We return
to the initial Gedankenexperiment, which for pur-
pose of clarity we consider at 
µ= 0 (the classical
fracture test situation). Our starting configuration is

under strain due to the application of displacement
boundary conditions (generalized prescribed volume),
and temperature, T . In this configuration at a cur-
rent bond number N , the sum of the bond potential
energy is denoted by U [o], and the probability den-
sity is N
µVT [o]∼ exp (−βU [o]), with β−1= (kBT )
the Boltzmann energy. We now attempt to either
remove (from the active bonds) or add (to the broken
bonds) one bond, which entails a change in energy,
U [o]→U [n], and a probability density, N
µVT [n]∼
exp (−βU [n]). The probability of acceptance of the
trial move from [o] to [n] is thus:

acc(o→ n)= N [n]

N [o]
|
µ=0VT = exp (−β
U )< 1 (4)

with
U =U [n]− U [o].The extension to considering
a non-zero external energy, 
µ 	= 0 is straightfor-
ward, if we remind us that 
µ targets all bonds in
an equiprobable way; so that

acc(o→ n)= exp (β(δ[n]
µ−
U ))< 1 (5)

where δ[n]=+1 if the bond is added and δ[n]=−1 if
it is removed.

2.2 Algorithmic realization

We now need to be cognizant of the fact that the addi-
tion or removal of a bond from the system entails
simultaneous changes of (i) the groundstate energy
(attached to the bond), (ii) the elastic energy stored in
the bond; as well as (iii) a redistribution of the elas-
tic energy in adjacent bonds. Fortunately, Monte Carlo
simulation techniques address this complexity by con-
sidering the semigrand canonical (
µVT ) trial moves
in a frozen particle position configuration, which is
updated in the NVT ensemble:

1. MC trial moves in a frozen particle position config-
uration: Each bond i= 1, N0 has an identity δi =+1
if ON, and δi =−1 if OFF. The MC trial move
then consists of (1) choosing a bond at random,
i= ceil[N0 ∗ rand()] with rand()∼U[0,1] generated
from a uniform distribution between 0 and 1; and
determining its bond energy,

u(i)[o]= u0(i)+ uλ(i) (6)

where u0(i) and uλ(i) stand for the bond’s ground-
state and elastic energy, respectively. (2) Then
toggle the bond’s identity,

δ(i)[n]=−1 ∗ δ(i)[o] (7)

Evaluate the trial bond energy, u(i)[n], for the tog-
gled identity, δ(i)[n], while considering the (frozen)
particle position. Finally, the change in energy
in the MC trial is 
U = u(i)[n]− u(i)[o], which
permits (3) evaluation of the acceptance probabil-
ity acc(o→ n) according to Eq. (5). Last, (4) the
trial is rejected and the bond identity is restored,
δ(i)[n]= δ(i)[o] if acc(o→ n)< rand().
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2. Update of particle/node position in the NVT -
Ensemble: For a given microstate of bond identities,
δi(= 1, N0), focus of the NVT -part is to update the
particle positions, x=X + ξ (where ξ is the dis-
placement vector. There exists a variety of options
for this (canonical) ensemble update in which the
number of particles (N) is maintained constant (i.e.,
mass conservation), while displacement boundary
conditions (generalized volume change, V ) and a
temperature (T ) are prescribed.These options range
from canonical Monte Carlo moves (Frenkel &
Smit 2002), to Molecular Dynamics (MD) time
integration in the NVT -ensemble (Mulla et al. 2021;
Villermaux et al. 2021) to (more classical) lat-
tice or finite-element type displacement updates
using standard small or large deformation simula-
tion tools (Al-Mulla et al. 2018; Laubie et al. 2017;
Wackerfuß 2009).

In Canonical Monte Carlo simulations, trial
moves focus on displacing a random particle, while
a move is accepted if the change in bond energies,
U (x(i)[o])→U (x(i)[n]), satisfies the acceptance
criterion [for details, see Frenkel & Smit 2002],

acc(o→ n)NVT = exp (−β
U (x(i))≤ 1 (8)

where x(i)[n]= x(i)[o]+ (rand()− 0.5)
ξ1.
In contrast, in MD simulations in the NVT -

ensemble, particle moves are defined by the con-
servation of linear momentum, while the moves
are ‘thermalized’ by means of thermostats. For
instance, in case of a Nosé-Hoover thermostat,
the equations of motion are enriched by a mass
damping term which evolves in function of the
kinetic temperature/energy, β−1= kBT ∼Ek which
ensures that the (bonded) particle system attains the
prescribed temperature when approaching (static)
equilibrium [for a brief ‘structural engineering’
introduction to thermalization, see Louhghalam
et al. 2018]:

m(ẍi + ζ (t)ẋ)=−∇ri (uλ) (9)

where the right hand side represents the (bond)
forces acting on particle (node) i, while the damping
coefficient ζ evolves as:

ζ̇ ∼βEk − 1 (10)

Herein, Ek (t) is the mean kinetic energy of the par-
ticles, and βEk =T (t)/T0 is the kinetic temperature
ratio, between the (evolving) kinetic temperature,
T (t) and the prescribed (bath) temperature. Such
thermostats form an integral part of MD codes,
and are readily adopted for structural engineering
purposes as well (Louhghalam et al. 2018).

Finally, computational mechanics approaches
based on the theorem of minimum potential energy
are a a safe (but sometimes computationally expen-
sive) backup for particle (node) position update and
related bond energy update in the NVT ensemble.
At a coarse-grained level of material/structural rep-
resentation, such energy minima approaches may
(eventually) include consideration of continuum-
based constitutive equations, that permit access to

the elastic energy of bonds understood in a large
sense. Given the ubiquity of existing lattice-based
or finite-element based minimization procedures,
they do not need further development here.

Last, the choice of method for the NVT update
is often a compromise between computational effi-
ciency and stability. Specifically, while MC, FE and
lattice approaches sample stable and (eventually)
meta-stable states, MD-approaches equally access
unstable particle configurations, incl. rigid body
motions.

The algorithm sketch shown in Table 1 provides the
elementary structure for a typical SGCMC algorithm,
which partitions SGCMC trials of bond activation/de-
activation from particle position update in the NVT
ensemble.

Table 1. Algorithm Sketch for SGCMC fracture simu-
lations. Function BondEnergy(H (i), x) updates the elastic
energy for bond i; and function NVTupdate(H ) updates the
particle positions and bond energies. [Inspired by Frenkel &
Smit 2002].

for icycl = 1:ncycle
if rand()<ratio % SGCMC-Trials

i= ceil(rand() ∗ N0)
% —Store old bond energy
uλ(i)[o]= uλ(i)
U [o]= (u0(i) ∗ H(i)[o]+ uλ(i))[o]
% —Toggle Bond Identity and Calculate Energy

δ(i)=−δ(i)
H (i)= 1/2 ∗ (δ(i)+ |δ(i)|)
uλ(i)=BondEnergy(H (i), x)
U [n]= (u0(i) ∗ H(i)+ uλ(i))

% —Acceptance Criterion

U =U [n]− U [o]
acc = exp (β ∗ (δ(i) ∗
µ−
U ))

% —Reject & Restore
if acc < rand()

δ(i)=−δ(i)
H (i)= 1/2 ∗ (δ(i)+ |δ(i)|)
uλ(i)= uλ(i)[o]

end
else % NVT Update

Nact = sum(H )
[x, uλ]=NVTupdate(H )
U0= sum(u0)
Uλ= sum(uλ)

end
end

3 APPLICATION

3.1 Reduced units

A convenient way to scale interparticle bond energies
in molecular-based simulations is by reduced units. In
this unit system, often referred to as LJ units (LJ =
Lennard-Jones), bond energies are written in a dimen-
sionless form considering as independent variables
physical quantities that define the equilibrium state.
These are the groundstate energy, ε0 (i.e. the well-
depth of inter-particle potentials), the particle radius
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R, and the particle mass m. Derived quantities are
the dimensionless energies U∗ =U/ε0; temperature,
T ∗ = kbT/ε0; pressure (or stress), P∗ =PR3/ε0; time
t∗ = t/(R

√
m/ε0); and their derivatives, such as forces,

�F∗ =−∂(u∗)/∂(�r∗)= �F(R/ε0); moments, �M ∗ = �F∗ ×
�r∗ = �M/ε0, etc. In this reduced unit system, an elas-
tic modulus (e.g. E∗) the energy release rate (G∗), and
the fracture energy (G∗F ) [see Eq. (1)] or the fracture
toughness (K∗

c ∼
√

E∗G∗F ) scale as:

E∗ =E

(
R3

ε0

)
; G∗ =G

(
R2

ε0

)
; K∗

c =Kc

(
R5/2

ε0

)
(11)

A straightforward dimensionless analysis of Eqn. (1),
(3) and (11) then reveals that the ‘heat of bond rupture’,
−q∗0 in reduced units obtained from energy fluctua-
tions in the semigrand canonical ensemble [see Eq. 3]
provides a direct means to measure the dimensionless
fracture energy of the material/ structural system from
SGCMC simulations; that is:

GF
∗ =GF

(
R2

ε0

)
∼−q∗0 =−

cov(U ∗
0 , N )

var(N )
(12)

3.2 Phase diagram of brittle fracture

The first example deals with the phase diagram of brit-
tle fracture proposed by Mulla et al. 2021. Similar to

Figure 1. Phase diagram of brittle fracture for a homo-
geneous harmonic/linear and Morse material: εV is the
prescribed volume change; 
µ is the bath potential targeting
bonds. The phase line is developed from stress-strain dia-
grams shown in inset (a) for the harmonic potential, and inset
(b) for the Morse potential. [adapted from Mulla et al. 2021].

pressure-temperature phase diagrams of substances,
the application of the SGCMC in all its facets permits
the development of a phase diagram that delineates
a mechanically intact solid from a fractured solid.
Herein, the phase line is defined as the pair of crit-
ical values of the control variables, i.e. volume V =
V0(1+ εV ) [with εV = volume strain] and bath bond
potential [
µ], at which the bond energy release rate,
q∗λ [Eq. (2)], equals the ‘heat of bond rupture’, −q∗0
[Eq. (11)]; as shown in Figure 1. These critical values
are developed from simulations of the stress strain dia-
grams [Figs. 1(a-b)] for different types of 2-pt bond
potentials, namely a harmonic potential (in reduced
units, u∗ = u/ε0):

u∗ =−1+ u∗λ; u∗λ= (λ/λc)2 (13)

and a Morse potential:

u∗ =−1+ u∗λ; u∗λ= (1− exp (−λ/λc))2 (14)

where λc=√2ε0/ελ is the critical dilation for which
the harmonic potential is zero, with ελ the elastic
bond energy [for link with continuum elastic mod-
uli for Lattice systems, see e.g. Laubie et al. 2017,
and for link with structural mechanics stiffness prop-
erties, see Keremides et al. 2018]. Below the phase
line shown in Figure 1, q∗λ <−q∗0, there are still elas-
tic energy reserves available in the system to store the
externally applied work due to volume change into
recoverable energy. In turn, at q∗λ=−q∗0, a first-order
phase transition takes place. For the homogeneous
system, for which U∗0 =

∑
u0/ε

∗ =−N , the effective
bond fracture energy is:

−q∗0 =
cov(N , N )

var(N )
= 1 (15)

3.3 Textured material systems

The second example here considered is a two-phase
material, say A and B phases, with different ground-
state energies, εA

0 and εB
0 ; so that the total groundstate

energy reads:

U0=−εA
0 NA − εB

0 NB (16)

where NA=N − NB and NB denote the intact bonds
of phase A and B, respectively. In order to evaluate
the groundstate energy of the 2-phase composite from
Eq. (3), we make use of the covariance and variance
of linear expressions and arrive at (Mulla et al. 2022):

−q0= εA
0 + (εB

0 − εA
0 )Sβ (17)

where:

Sβ = cov(NB, N )

var(N )
= 1

2

(

1− σ 2
NA
− σ 2

NB

σ 2
N

)

(18)
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In reduced units, −q∗0 =−q0/ε
A
0 , the SGCMC

approach provides a means to evaluate the frac-
ture energy of a two-phase material from the fluc-
tuations of the bond numbers of the two phases,
σ 2

NJ
= var(NJ ) (J =A, B), and the total variance σ 2

N =
var(NA + NB)= σ 2

NA
+ σ 2

NB
+ 2cov(NA, NB). This is

invaluable when evaluating the impact of material
texture on fracture properties of heterogeneous mate-
rials. As an example, Figure 2 displays simulations
results for a 2-D two-phase material system uniaxially
strained in a direction inclined w.r.t. the layer axis by an
angle θ . Hence, θ = 0 corresponds to a uniaxial strain
that activates the layers in parallel [Figure 2(c)], while
the system is activated in series for θ =π/2. The first
case leads to simulation results close to upper bound
[Figure 2(a)], for which Sβ = fB (with fB the volume
fraction of bonds B); while the latter entails the lower
bound, Sβ = 0, dissipating at fracture only ground-
state energy in the weaker phase, εA

0 <εB
0 . Finally,

at θ =π/4 [Figure 2(e)], the bonds are equally acti-
vated, which can be associated with the equiprobable
Hill bound, i.e. Sβ = fB/2 (i.e. the arithmetic mean of
upper and lower bound). Yet, simulation results show
that the layered system only follows the Hill bound
up to a critical volume fraction of fB= 1/2, beyond
which Sβ drops to zero, and for which the lower bound
is recovered. More generally, when plotting Sβ vs. θ
at constant volume fraction [Figure 2(b)], we recog-
nize that the reinforcing effect of the tougher phase
diminishes with increasing load angle θ , and ceases
beyond the magic angle, Sβ (θ ≥ arccos (1/

√
3))= 0.

A detailed analysis of this and other textures can be
found in (Mulla et al. 2022).

Figure 2. (a–b) Fracture energy homogenization of 2-phase
layered composite material, loaded uniaxially in direction
(c) θ = 0, (d) θ =π/2, and (e) θ =π/4. [adapted from Mulla
et al. 2022].

3.4 Scaling relations for structural mechanics
applications

The last example deals with the development of scal-
ing relations of the fracture energy for structural
applications. A typical example are fracture hinge
relations that can be used for beam-type structural fail-
ure analysis (Bažant 2003), coarse-grained Molecular
Dynamics structural applications with 3-body (beam)
interactions (Keremides et al. 2018; Villermaux et al.
2021) and so on. Focus of our analysis is the calibration
of the groundstate and elastic energy for homogeneous
and heterogeneous materials, which can be used by
Engineers for structural mechanics applications.

Our starting point is an application of the strength
scaling in reduced units, applied here to the nominal
strength, σN , of a structural or material test; i.e.

σN = σ ∗N
ε0

R3
(19)

where σ ∗N is the nominal structural strength in reduced
units, obtained from SGCMC simulations for the refer-
ence particle radius R∗ = 1 and a reference groundstate
energy, ε∗0 = 1. Therefore, rescaling the reduced nom-
inal strength with actual values of groundstate energy
and particle radius, provides a means to determine
the actual nominal strength of a specific material or
structure. Vice versa, if the experimental and reduced
nominal strength are known (the first from experi-
ments, the second from simulations), the ratio σN /σ

∗
N

permits access to ε0/R3. Similarly, if the fracture
energy ratio of the material in ‘real’ and reduced
units, GF/G∗F is available, it becomes possible to deter-
mine the groundstate energy together with the material
particle radius from Eqn. (12) and (19):

ε0=
(
σ ∗N
σN

)2 (GF

G∗F

)3

; R=
(
σ ∗N GF

σN G∗F

)2

(20)

This highlights the hybrid experimental-simulation
nature of the SGCMC-approach, which provides a
clear pathway for fluctuation-based fracture mechan-
ics for the determination of generic values for σ ∗N
and G∗F ∼−q∗0 from simulations of homogeneous [e.g.
Eq. (15)] or heterogeneous [e.g. Eq. (17)] material and
structural systems described by interparticle potentials
[e.g. Eqn. (13), (14)].

By way of illustration, Figure 3 displays results
of SGCMC-simulations of a bending problem. The
square material domain is discretized in a hexagonal
fashion considering in between particles (radius R∗ =
1) equidistant bond lengths of 2R∗ = 2, and harmonic
bond potentials defined by Eq. (13). Lateral boundary
conditions of the form xd − X =−Yω/2 and yd =Y
(with ω≈ κL∗ the opening angle, κ = curvature) are
prescribed; whereas the top and bottom boundary are
stress-free. The angle is increased in increments, and
for each load angle SGCMC-simulations are carried
out until the energy and the bond number reaches equi-
librium, at which the probability of bond deletion and
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bond addition is equal.This SGCMC-equilibrium con-
dition is conveniently achieved by means of the weak
stationarity condition, i.e. that the mean and (eventu-
ally) the autocovariance of bond number (N ), and bond
energies (U′, Uλ) do not vary with respect to ‘time’, set
forth by the NVT cycles in the Monte Carlo simula-
tions at each constant (displacement) load level (see
Table 1). For the NVT cycles, a standard truss solver
is employed.

Figure 3. Flexural strength determination using SGCMC
approach in reduced units: A square sample (length L∗) is
subject to bending deformation (angle ω= κL∗ with κ =
curvature) at lateral boundaries. The nominal stress σ ∗N is
determined from the generated reaction bending moment
M ∗

z , width b∗ =R, and height h∗ =L∗. Displayed are values
of σ ∗N of converged SGCMC simulations vs. εxy =ω/(2λc)
(with λc =√2ε0/ελ the critical linear dilation for which
the harmonic potential is zero; ε0/ελ= 1/100 = groundstate
–to– elastic energy ratio). Three simulation samples are con-
sidered: Homogeneous sample at T ∗ = 0.1 (3 specimens);
homogeneous sample at T ∗ = 0.2 (2 specimens); heteroge-
neous sample with uniform groundstate energy distribution
at T ∗ = 0.1 (3 specimens). The bottom figures show char-
acteristic bond fracture microstates for (left) homogeneous
sample and (right) heterogeneous sample (T ∗ = 0.1).

Three SGCMC-simulation experiments are carried
out. For reference, the first experiment is carried out
for a homogeneous sample at a reference temperature
of T ∗ = kBT/ε0= 0.1. The second experiment con-
siders the impact of temperature for a homogeneous
sample, by setting the reduced temperature to T ∗ =
0.2. Finally, the last experiment carried out at T ∗ = 0.1
considers a uniform distribution of the groundstate
energy in the bonds of mean E[ε∗0 ]= 1 and variance
var(ε∗0 )= 1/12:

ε∗0 = 1/2+ U[0,1] (21)

For each experiment, simulations are carried out for 2-
3 specimens to gauge the variability of the stress–strain
response, as each converged simulation result along
the stress curve represents a (bond) fracture microstate.

We observe that temperature significantly reduces
the (nominal) flexural strength, σN = 6Mz/bh2 – in
reduced units – from σ ∗N (T ∗ = 0.1)= 1.5 to σ ∗N (T ∗ =
0.2)= 1.0− 1.1, whereas the bond fracture energy
remains the same [see Eq. (15)]. The apparent increase
in brittleness relates to the temperature induced
increase in bond energy release rate, q∗λ [see Eq. (2)].
That is, higher temperatures increase energy/bond
fluctuations; whence a lower nominal strength. Note
that more realistic simulations of e.g. concrete would
need to consider distributions of the elastic energy as
well, accessible from e.g. nanoindentation (DeJong &
Ulm 2007).

A second observation of interest is the decrease
in nominal strength due to the heterogeneous distri-
bution of groundstate energy. Specifically, at same
mean value of the groundstate energy, the nominal
flexural strength decreases from σ ∗N ,hom= 1.3− 1.5
to σ ∗N ,het = 1.0− 1.1, i.e. in similar proportions as
observed for a two-fold temperature increase. Yet,
the nominal strength for the heterogeneous system
plateaus before the stress drops due to localized frac-
ture.The origin of this heterogeneity-induced decrease
in nominal strength is quite different. It results from
the change in the bond fracture energy from −q∗0 = 1
for the homogeneous sample to−q∗0 = 0.6 for the con-
sidered uniform distribution, Eq. (21). Note clearly
that the Griffith-type fracture criterion, q∗λ≤−q∗0 is
never enforced (or checked) in the simulations, but
only evaluated during post-processing of the results
using Eq. (3). This shows that the SGCMC approach
is able to ascertain the ‘effective’ fracture resistance of
heterogeneous materials as an output – not an input, in
contrast to the many classical threshold-based compu-
tational fracture mechanics approaches, whether local
(testing bond strengths, strains, etc.) or global (in the
sense of Griffith’s criterion, Eq. (1)) [for a discussion,
see e.g. Laubie et al. 2017a; 2017b; Wang et al. 2021].

Finally, a comment on fracture modes is in order.
As a bond-energy approach toggling bond identities
according to the value of the groundstate and elastic
energy [i.e., Eq. (4) andTable 1], the SGCMC approach
is blind to the tensile or compressive nature of 2-pt
bonds. This entails that broken bonds situated in the
tension zone of the bending sample in Figure 3 appear
as Mode-I opening, whereas those in the compres-
sion zone exhibit an apparent Mode-II – type opening.
The latter form de facto shear fractures due to exces-
sive energy in compression; typically in the softening
branch of the stress-strain diagram. More importantly,
the key to realistic modeling is the choice of the poten-
tials of mean force (PMF), which for realistic simula-
tions would need to consider the asymmetry of energy
in tension and compression beyond harmonic poten-
tials, as captured by e.g. the Morse potential; as well
as 3-body and 4-body interactions to accurately repro-
duce the energy content of heterogeneous materials.
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4 CONCLUSIONS

It has long been argued that fracture mechanics of het-
erogeneous materials and structures cannot be handled
satisfactorily with classical averaging rules suitable for
elastic and strength problems [see e.g. Dormieux et al.
2006]. This is why we reformulated classical fracture
mechanics within the statistical physics framework of
fluctuation-based simulations in the semigrand canon-
ical ensemble. The following strengths and limitations
define our current understanding of fluctuation-based
fracture mechanics:

1. The SGCMC approach is rooted in the equilibrium-
nature of fracture processes as defined by Grif-
fith. Out-of-equilibrium situations required e.g. for
dynamic fracture propagation would need further
refinements. Such refinements may benefit from
developments of out-of-equilibrium Monte Carlo
simulations techniques applied in glass physics
or gelation processes of cement hydration, in
which an evolving system during NVT-relaxation
is not given enough ‘time’ to attain complete
relaxation (Ioannidou et al. 2016; Masoero et al.
2012).

2. In contrast to classical fracture mechanics theories,
there is no need for initial notches or discontinu-
ities to initiate or localize fracture. Instead, it is the
acceptance probability that triggers bond fracture
initiation and propagation.

3. The key to realistic simulations is an accurate
yet efficient way to model the energy content of
bonds in terms of both groundstate energy and elas-
tic energy. Compared to classical computational
mechanics approaches which only deal with energy
variations (i.e. forces, moments,...), the ground-
state energy is an active ingredient of the SGCMC
approach. It defines the relaxed energy state toward
which the system evolves when bonds are held con-
stant. In contrast, in fracture mechanics, it defines
the amount of energy that is released when a bond
breaks. Based upon this realization, a homogeniza-
tion rule for fracture energy with heterogeneous
groundstate energy is derived based upon ground-
state energy fluctuations – as a statistical extension
of Griffith’s fracture criterion.

4. The elastic energy of bonds is key to capture the
interparticle force play, and thus the deformation
of the system. While we have considered here only
2-pt interactions, ‘bonds’need to be understood in a
large sense, encompassing beam and plate bending
energy interactions between three and four parti-
cles. At even higher coarse-grained levels, bond
energies in this large sense can be captured by finite
elements. In this case, NVT cycles solve classical
‘static’or dynamic finite element systems based on
energy minimization. Ultimately, such an extension
to classical computational approaches as integral
part of the SGCMC approach is expected to impact
structural mechanics and structural design in that a
structural energy release rate and a structural frac-
ture energy of structures is measurable by means

of simulations – providing (fracture) strength as
output incl. its fluctuation.
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ABSTRACT: Masonry structures populate European historic centres as both secular and sacred monumental
buildings. Several researchers focused on implementing advanced computational strategies to preserve masonry
buildings structural integrity. Moreover, today’s tools and workflows offer possibilities for assessing vulnerability,
simulating scenarios, and reducing vulnerability are opening new perspectives and challenges. This literature
review provides a classification of the analytical and numerical modelling strategies for the structural assessment
of unreinforced masonry structures. Finally, two-stepped procedures are discussed and suggested as valuable
approaches to combine analytical/analytical, numerical/analytical or numerical/numerical methods.

1 INTRODUCTION

Given its important role for economies and societies,
the assessment, preventive conservation and main-
tenance of the historical masonry structures (HMS)
continue to stand as major priorities of the overall
political strategy at the European level. In this context,
the earthquake protection of HMS assumes particu-
lar relevance because of the non-negligible seismic
vulnerability of this type of ancient building whose
tangible and intangible value is further enhanced by
the artworks therein located, such as sculptures, paint-
ings and frescos, among others. This means that when
a disaster involves historical centres, it is likely that
buildings, as well as artworks, are damaged, produc-
ing i)a physical loss of artistic and historical materials,
ii) an immaterial loss of memory and cultural iden-
tity for the people to whom that legacy “belongs”,
and iii) difficulties in the action of the Civil Protec-
tion in assisting the population affected by the disaster
(Lourenço 2014).

One of the main issues still not solved in the lit-
erature is the indeterminacy in defining the economic
value of historical centres containing architectural her-
itage. Indeed, society tends to define architectural
heritage as invaluable, making the problem mathemat-
ically indeterminate. However, in order to define a
strategy for architectural heritage conservation, one
can refer to studies from the National Institute of
Building Sciences (US) that show how the invest-
ment in mitigation saves six times the amount for
damage repair (“prevention pays”). According to this

statement, several researchers focused on implement-
ing advanced computational strategies to preserve
HMS structural integrity. Moreover, today’s tools and
workflows offer possibilities for assessing vulnerabil-
ity, simulating scenarios, and reducing vulnerability
are opening new perspectives and challenges.

Because of the need to investigate thousands of
buildings, structural engineers often use analytical
approaches based on limit analysis, theorems that
have the great advantage of being independent of
many material properties but inevitably rely on a very
simplified material model (Cascini et al. 2020; De
Felice & Giannini 2001). Such approaches include
force- and displacement-based procedures suitable
for a rapid seismic vulnerability assessment. How-
ever, force-based approaches do not consider the
load-displacement capacity of the structures (Heyman
1966). Moreover, limit analysis-based tools typically
neglect the structure’s global behaviour, only focus-
ing on assessing a set of local failure mechanisms
(D’Ayala & Speranza 2003; Funari et al. 2021; Giuffré
1996).

However, sometimes there is the need to investi-
gate non-linear masonry behaviour deeply, and this
may be achieved by adopting sophisticated advanced
numerical methodologies, i.e. Finite Element Method
(FEM) (As̨ıkoğlu et al, 2019; Fortunato et al. 2017) or
Disce Element Method (DEM) ( Bui et al. 2017; Gonen
et al. 2021; Lemos 2007, 2019). Such approaches
model the masonry material using different repre-
sentation scales, i.e. equivalent continuum, macro-
blocks or discrete representations. However, despite
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their reliability, the computational efficiency of the
available numerical methods is rarely compatible
with the need to have a rigorous real-time post-
earthquake assessment (Lourenço & Silva 2020).
Hence, researchers are committed in developing alter-
native modelling approaches and practical tools to
decrease the computational cost without losing accu-
racy.

Several authors have recently proposed two-stepped
procedures in order to develop numerical tools for
the rapid seismic assessment of historic masonry
structures combining analytical/analytical (Funari et
al. 2021b), analytical/numerical (D’Altri et al. 2021;
Funari et al. 2020), or numerical/numerical approaches
(Gams et al. 2017; Mele et al. 2003).

The first attempt to define a workflow based on
a two-stepped analysis has been proposed by Mele
et al. (2003). In the first step, the structure is anal-
ysed in the linear-elastic range using a 3D FE model.
Subsequently, a pushover analysis of the single macro-
elements is performed. The results obtained through
pushover analysis has been compared to the collapse
loads derived from limit analysis, proving the ability
of the non-linear finite element model to provide rea-
sonable simulations of the actual response of masonry
elements.

Betti and Galano (2012) and Cundari et al. (2017)
proposed modelling approaches analysing structures
with non-linear static or dynamic analysis to detect
the most likely collapse mechanisms.The upper bound
limit analysis method was applied in the second step
to compute the maximum horizontal acceleration that
the structure can withstand analytically.

Funari et al. (2020) proposed a two-stepped analy-
sis in which a non-linear static analysis was performed
to identify the failure mechanism’s geometry. Then,
the second step aimed to refine the geometry of the
failure mechanism through an optimisation based on
limit analysis and genetic algorithm, which explores
the research panorama of solutions kinematically com-
patible.

Recently, D’Altri et al. (2021) proposed a new work-
flow based on the adaptive limit and pushover analyses.
First, limit analysis was used to identify the position of
the cracked surfaces by adopting an adaptive NURBS
approach. Subsequently, the geometry of the collapse
mechanism was imported into FE software to perform
a non-linear static analysis simulation by adopting
a hardening plasticity model and cohesive-frictional
contact-based at the interfaces between macro-
blocks.

This study’s primary goal is to perform a litera-
ture review of the analytical and numerical modelling
approaches to assess the structural integrity of HMS.
The discussion will be enriched with practical exam-
ples of advanced analytical and numerical strategies
developed by the Historic Masonry Structures research
group (Department of Civil Engineering, University of
Minho, ISISE, Guimarães, Portugal). At first, analyti-
cal approaches will be discussed. The discussion will
only involve force-based analytical formulations.

The subsequent section will be devoted to address-
ing state of the art numerical methodologies.

Finally, the third section will discuss two-stepped
approaches formulated to get an accurate struc-
tural response, decreasing the computational demand
thanks to the adoption of macro-block representation.

Finally, some meaningful conclusions will be
drawn.

2 ANALYTICAL APPROACHES

As aforementioned in the introduction section, several
analytical methodologies for the structural assessment
of HMS have been proposed to date. These methods
can be divided into two main categories:

• Force-equilibrium formulations,
• Displacement-based formulations.

Force-based formulations have been recommended
because unreinforced masonry structures are per-
ceived frequently as possessing very limited ductility.

However, several studies have demonstrated that,
in one regard, unreinforced masonry walls subjected
to dynamic loads can resist accelerations higher than
their static strength. In the following subsection, only
analytical approaches based on force-based formula-
tions are discussed.

Force-based formulations are set within the theo-
retical frame of reference of application of plasticity
theory for the structural assessment of masonry struc-
tures, as proposed for the first time by Heyman in his
revolutionary work (Heyman 1966, 1969). According
to this, applying the static theorem leads to a lower-
bound or safe solution based on equilibrium equations,
while applying the kinematic theorem provides an
upper-bound multiplier of the collapse load factor.
Thus, the solution that satisfies the hypotheses of
both theorems, equilibrium, compatibility, and mate-
rial conditions, is the correct solution and provides the
collapse load multiplier for the specific problem.

Once a mechanism is selected, and a set of equi-
librated generalised forces and a set of compatible
generalised virtual displacements are determined, the
work done by the generalised forces in equilibrium
with the internal stresses for the given set of gen-
eralised virtual displacements is computed. Finding
a minimum or a maximum of the resulting equa-
tion leads to the optimal solution. In this framework,
after the post-seismic damage surveys carried out
in the sequence of Irpinia and Syracuse earthquakes
in Italy, Giuffré (1991) presented an original work
where he provided an abacus of local failure mech-
anisms that may be assessed through simple analytical
formulations.

Following his pioneering work, some authors have
already implemented algorithms able to investigate
the most reasonable collapse mechanisms into user-
defined routines of analysis that in turn adopted the
lower or the upper bound theorem of the limit anal-
ysis (Block et al. 2006; D’Ayala & Speranza 2003).
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Specifically, the kinematic theorem of limit analy-
sis is a useful tool, and it is the most adopted in
formulations recently proposed. One can note that
the computation of the load multiplier depends on
the macroblocks’ geometry that strongly influences
the assessment of their structural integrity. Therefore,
multiple (theoretically infinite) failure mechanisms
need to be considered to evaluate the minimum of the
kinematically compatible load multipliers. To address
the latter, some researchers proposed using optimi-
sation routines to solve the minimisation problem
constrained under specific hypotheses.

Casapulla et al. (2014) proposed a macro-block
model coupled with a simplified procedure for pre-
dicting the collapse load and the failure mechanism of
in-plane loaded masonry walls with non-associative
frictional contact interfaces. The same authors (Cas-
apulla & Maione 2018) have recently revisited the
previous macro-block approach implementing the fric-
tional resistance computation. Fortunato et al. (2018)
developed a numerical procedure for the limit anal-
ysis of 2D masonry structures subject to arbitrary
loading. Similarly, in the framework of limit analysis
methods, other authors have proposed meta-heuristic
approaches (i.e. Genetic Algorithms) as a tool to
explore the entity of loads associated with considered
collapse mechanisms (Funari et al. 2020a, 2020b).

Recently, Turco et al. (2020) developed a novel
digital procedure for the assessment of masonry struc-
tures embedding the upper bound limit theorem under
the hypothesis of no-tension capacity for the masonry
material and heuristic optimisation algorithm. Once
preselected, the failure mechanism genetic algorithms
are employed to search for the failure mode corre-
sponding to the minimum value of the load multiplier
that is also statically equilibrated. The workflow is
integrated into a computational tool implemented
in the visual programming environment offered by
Rhinoceros3D+Grasshopper. This is well suited to be
confidently used by practitioners, also allowing the
user to progress fast. Even though genetic algorithms
may require high computational efforts, they make
a robust implementation of a multidimensional con-
strained optimisation problem possible. Furthermore,
adopting the upper bound theorem of the limit analysis
under the hypothesis of the macro-blocks’ discretisa-
tion improves the computational efficiency without
requiring the detailed knowledge of the mechanical
properties of materials and providing a solution of the
structural problem showing good accuracy (Figure 1).

3 NUMERICAL APPROACHES

Advanced numerical strategies have been developed in
the last few decades. In this framework, sophisticated
Finite Element (FE) computational strategies are the
ones that deserve more attention from the scientific
community. For the masonry field, it is recognisable
that two scale levels are of interest when analysing
its structural behaviour (Lourenço, 2009; Roca et al.,

2010), the macro and the mesoscale as depicted in
Figure 2. Again, three main modelling strategies can
be put together, namely: i) the direct simulation or the
micro-modelling; ii) the macro-modelling; and iii) the
multi-scale modelling.

In the micro-modelling approach, both masonry
components (units and mortar joints) are explicitly
represented. These are certainly capable of well repro-
ducing both in- and out-of-plane orthotropic non-
linear behaviour of masonry but are characterised by
prohibitive computational cost and is only recom-
mended for limited size structural problems (Adam
et al. 2010; Giambanco & Rizzo 200; Lemos 200;
Lotfi & Shing 199; Macorini & Izzuddin 2011,
201; Sarhosis et al. 201; Sejnoha et al. 2008. The
macro-modelling approaches used fictitious homo-
geneous anisotropic material to reproduce heteroge-
neous assemblage of mortar and bricks. The use of
closed-form laws to represent the masonry’s com-
plex phenomenological behaviour and damage may be
cumbersome as it may require a calibration step (usu-
ally achieved by thorough experimental campaigns).
However, this approach allows studying large-scale
structures without the drawbacks exhibited by meso-
modelling (Berto et al. 2002; Dhanasekar et al. 198;
Paulo B. Lourenço et al. 1997; Roca et al. 2013).

Multi-scale FE (or FE2) methods are in-between the
latter two FE modelling schemes. The framework is
being used to investigate composites’ response with
different natures (Greco et al. 201; Leonetti et al.
201; Spahn et al. 2014; Trovalusci et al. 2015. It
typically relies on a meso and macro transition of
information and is, therefore, designated as a two-
scale or FE2 approach. Full continuum-based FE2

approaches result in a good compromise between solu-
tion accuracy and computational cost. Nevertheless,
these methods still constitute a challenge if one desires
to account for the material non-linearity (Geers et al.
2010; Otero et al. 2015).In fact, the constant need
of data between the macro-and meso- scales consti-
tute a contentious issue because a new boundary value
problem (BVP) must be solved numerically for each
load step and in each Gauss integration point. The
approach’s utility is compromised due to the involved
computational time, and thus, full continuum-based
FE2 approaches are seldom used for dynamic or com-
plex structural analysis. An adequate possibility is the
use of a two-scale simplified strategy, for instance, by

Figure 1. Predicted macro-block geometry by adopting
different friction coefficients.
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Figure 2. Representation of the three scales considered
in the analysis of masonry for this study: macro-scale and
meso-scale. Definition of the modelling strategies adopted
to represent masonry.

using a kinematic theorem of limit analysis at a macro-
level to obtain the homogenised failure surfaces with
a minimal computational effort (A. Cecchi & Milani
2008; de Buhan & de Felice 1997; Milani et al. 2006).
Yet, the use of discrete FE-based methods at a macro-
level seems to be a promising alternative (Casolo &
Milani 2010; Milani & Tralli 201; Silva et al. 2017b)

4 TWO-STEPPED APPROACHES

As aforementioned, both analytical and numerical
approaches have their own strengths and weaknesses.
In particular, micro- or mesoscale approaches requires
several input data for the non-linear characterisation of
the masonry, making the structural assessment of HMS
economically expensive and time-consuming. On the
contrary analytical approaches are always based on
some hypotheses and may be widely used to study local
failure mechanisms but is often not sufficient for a full
structural analysis under seismic loads. To this end,
new computational modelling strategies are investigat-
ing hybrid approaches combining analytical/analytical
(Funari et al. 2021b), analytical/numerical (D’Altri et
al. 2021; Funari et al. 2020), or numerical/numerical
approaches ( Gams et al. 2017; Mele et al. 2003). In
the following subsections, three of the most recent
two-stepped approaches developed are discussed.

4.1 Visual programming for structural assessment
of out-of-plane mechanisms in historic masonry
structures

Funari et al. (2020) proposed a two-stepped proce-
dure for the seismic assessment of HMS. Firstly, digital
datasets describing the geometric configuration of his-
toric masonry structures are employed to generate
a FE model and investigate possible failure mecha-
nisms automatically.Therefore, a coarse configuration
of failure surfaces is detected through the Control
Surface Method (CSM), which is generated by inter-
polating the displacement function obtained during
the step-by-step global analysis of all control points
(Figure 3).

In the following step of the analysis, structural mac-
roblocks were identified, whereas an upper bound limit
analysis approach was employed to estimate the struc-
tural capacity of the structure. Genetic Algorithms are

Figure 3. Control surface detected at final load step of the
non-linear static analysis.

hence employed to detect the actual failure mode for
the structure(Funari et al., 2020).

The procedure was implemented into a visual pro-
gramming environment, which allows the user to
explore all the landscape of possible solutions para-
metrically (see Figure 4).

Figure 4. Evolutionary solver: genes definition, generations
representation and graphical representation of the genomes.

The approach prosed by Funari et al. (2020) was
applied to a benchmark case of study representative
of a residential building (Figure 5). The CSM allowed
detecting the failure modes of the structure considered,
demonstrating its capability to detect the failure mech-
anism of masonry structures characterised by irregular
shape.

Figure 6 shows the optimisation process. During the
first generation, the load factor is equal to 0.43.At each
succeeding generation, the result tends to converge to
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Figure 5. +X direction: (a) damage pattern obtained from
the preparatory step (b) CS and identified macro-block (c)
Top view of CS.

the value that minimises the load multiplier and simul-
taneously satisfies the horizontal equilibrium forces.
The solving strategy leads to a load multiplier equal to
0.354.

Figure 6. +X direction: Load factor vs generation of the
evolutionary solver.

4.2 A tool for the rapid seismic assessment of
historic masonry structures based on limit
analysis optimisation and rocking dynamics

Recently, Funari et al. (2021a) developed a multi-level
integrated modelling procedure that uses a combi-
nation of upper bound limit analysis and non-linear
dynamic (rocking) analysis for the seismic collapse
assessment of any user-defined structural configura-
tion. In the first step, parametric modelling of the
macro-block geometry is conducted, enabling explo-
ration of the domain of possible solutions using the
upper bound method of limit analysis. A heuristic
solver based on the Nelder-Mead method is then
adopted to refine the geometry of the macro-blocks
and search for the minimum value of the load multi-
plier. Once the macro-block (i.e., collapse mechanism)
has been defined, the digital tool then computes the
kinematic constants defining the corresponding (rock-
ing) equation of motion, which can be solved for full
time-histories. Finally, the structure’s response is pro-
vided both in terms of the full time-history response
and the form of the maximum predicted rotation.
An overview of the proposed analysis procedure is
reported in Figure 7.

Figure 7. Overview of the proposed multi-level analysis
procedure.

As the research work mentioned in the previous
section, the methodology was entirely integrated into
a user-friendly visual programming environment that
allows the user to easily connect data from different
sources while clearly understanding the relationships
between them thanks to the flowchart-like represen-
tation of the different components of the code. The
main advantage of this approach with respect to
more time-consuming advanced methods of analysis,
the proposed method allows the users to perform a
seismic assessment of masonry buildings in a rapid
and computationally-efficient manner while simul-
taneously providing more accurate predictions than
simplified/code-based methods. Such an approach
may be particularly useful for territorial scale vulner-
ability analysis (e.g., for risk assessment and mitiga-
tion in historic city centres) or as post-seismic event
response (when the safety and stability of a large
number of buildings need to be assessed with limited
resources).

4.3 A concurrent micro/macro FE-model optimised
with a limit analysis tool for the assessment of
dry-joint masonry structures

A more detailed description of the failure mechanism
may be required in some cases, e.g. using microscale
representation. To this end, Funari et al. (2021) pre-
sented a numerical framework to accurately describe
the in- and out-of-plane failure mechanisms that may
affect unreinforced masonry structures. The so-called
concurrent approach, firstly presented by Fish (2006),
is adopted together with a limit analysis tool. In this
regard, the framework has two sequential and coupled
steps, in which a limit analysis is conducted first, and
a concurrent FE analysis is employed next.

The workflow includes four main tasks, as given in
Figure 8, needed to compute the mechanical response
of HMS. The first step consists of the geometrical
modelling of the structure via an explicit representa-
tion of both masonry units and joints (micro-modelling
approach). In the second step, masonry units are
merged, and its topology is optimised to provide a
macro representation. Prone in-plane and/or out-of-
plane failure mechanisms are a-priori assigned, and
the location of the yielding surfaces is optimised by
an Upper bound limit analysis theorem coupled with
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a heuristic solver. Hence, the third step is conducted,
in which an ad-hoc script represents the sub-structure,
which is activated by the failure mechanism, through
a micro-scale representation. The outer domain, i.e.
the rest of the structure that is not involved in the
mechanism, keeps a macro and continuous repre-
sentation. Finally, at the fourth step, the concurrent
FE multi-scale model can be used to perform the
structural assessment of the structure through a non-
linear quasi-static type of analysis and within a FE
environment.

Figure 8. Schematic representation of the proposed proce-
dure.

The authors concluded that the two-step procedure
is computational quite attractive, robust, and allows
higher levels of accuracy. This is so because it is based
on a sequential process in which a continuous transfer
of information between scales is not required during
the analysis; as observed in classical multi-domain
strategies that need activation rules to process the
macro-to-micro decomposition ( Driesen et al. 2021;
Leonetti et al. 2018; Reccia et al., 2018).

5 CONCLUSIONS

The vulnerability assessment and preservation of the
HMS need fast, reliable and modern tools. In the
last decades, several researchers proposed advanced
analysis methods for the preventive assessment of
heritage buildings. However, their overall classifica-
tion is mainly made between numerical and analyt-
ical approaches ( D’Altri et al., 2020). This paper
explored both analytical and numerical methodolo-
gies and finally presented a literature review of
two-stepped procedures recently developed by the His-
toric Masonry Structures research group Department
of Civil Engineering, University of Minho, ISISE,
Guimarães, Portugal).

The following conclusion can be drawn:

1. Because of the need to investigate thousands of
buildings, analytical approaches based on force-
and displacement-based methodologies have the
great advantage of being independent of many
material properties and inevitably rely on a very
simplified assessment;

2. On the other hand, numerical approaches are
typically implemented in the FEM or DEM frame-
works. Such approaches model the masonry mate-
rial using different representation scales, i.e., equiv-
alent continuum, macro-blocks, or discrete repre-
sentations.

3. In the last decade, the computational efficiency of
the available numerical methods has been strongly
improved, even though rarely compatible with the
need to have a rigorous real-time post-earthquake
assessment.

4. The two-stepped procedure represents a valid com-
promise in terms of both accuracy and computa-
tional efficiency.
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The numerical simulation of self-healing cementitious materials
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ABSTRACT: The behaviour of autonomic self-healing cementitious materials depends on a set of interacting
mechanical, chemical and transport processes.A summary is provided of a set of component models developed to
simulate these processes along with a description of a linked experimental programme of work. The component
models are brought together in a coupled finite element formulation that solves Navier-Stokes and mass-balance
equations for healing agent transport and uses elements with embedded strong discontinuities to represent
cracks. A compact description is also provided of a new cohesive-zone damage-healing model for discrete
concrete cracks. This model simulates evolving curing-fronts within the body of healing-agent using a two-level
recursive time-stepping scheme. The formulation naturally accounts for the dependency of the healing response
on the crack opening displacement (COD) its rate. The crack-front model is embedded in a damage-healing
solution algorithm that addresses simultaneous cracking and healing, as well as re-cracking and re-healing.
Validations undertaken of full coupled finite element model are discussed and an illustrative example presented.
A new extension is described of the curing-front model that allows healing in wide cracks (i.e. COD>0.5mm)
to be simulated. A new parametric study, for a vascular system with cyanoacrylate as the healing agent, is also
presented from which a set of graphs are produced that show the expected healing in a crack for a given relative
COD and time. The graphs should be useful to researchers working on cementitious self-healing materials.

1 INTRODUCTION

Interest in biomimetic construction materials has
grown considerably over the past two decades, as evi-
denced by a number of recent review articles on the
subject (De Belie et al. 2018; Ferrara et al. 2018; Fer-
nandez et al. 2021; Xue et al. 2019). The potential
of these materials to greatly improve the durability
of future infrastructure has been highlighted by the
Royal Society of London in a recent report (The Royal
Society 2021).

Concrete is by far the most used construction
material, and problems with its durability are well-
documented (Gardner et al. 2018). Research to address
these durability problems has included the develop-
ment a range of self-healing cementitious materials
(SHCMs). A number of approaches has been taken,
and systems developed, to incorporate self-healing
capabilities into these materials. The materials have
been broadly categorised as (i) autogenic, (ii) micro-
bial and (iii) autonomic (Van Tittelboom & De Bele
2013). It is the latter category that is most relevant to
the work reported in this paper. A range of autonomic,
or manufactured, healing systems have been devel-
oped to store and deliver healing agents to damage
sites within structural elements. These include the use
of brittle vessels (normally tubes) (Joseph et al. 2010;
Minnebo et al. 2017); microcapsules (Kanellopoulos
et al. 2017); and interconnected channels or ‘vascular

networks’ (;e Nardi et al. 2020; Li et al. 2020; Shields
et al. 2021).

Some research has been undertaken on the devel-
opment of design and numerical models for these
materials, but this has been far more limited that the
work on the materials themselves (Mauludin et al.
2019). A review article in 2018, co-written by the
presented authors (Jefferson et al. 2018), highlighted
that there was no unified coupled model framework
for simulating SCHMs. Nor was there a comprehen-
sive experimental data set that provided all of the
properties we needed to simulate the transport and
mechanical behaviour of any one autonomic SCHM.
We therefore embarked on a combined experimental
and numerical programme of work to develop a new
coupled numerical model for autonomic SHCMs. The
work concentrated on understanding and developing
a model for cementitious materials with embedded
vascular networks, or channels, although the essen-
tial model components developed are applicable to a
wider range of self-healing materials.

The experimental work from this study is reported
in Selvarajoo et al. (2020a and 2020b), the trans-
port component of the model is described in Free-
man & Jefferson (2020), a specialised finite element
with an embedded strong discontinuity is presented
in Freeman et al. (2020) and a new cohesive zone
damage-healing model is presented in Jefferson and
Freeman (2022). This latter model uses homogenised
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damage-healing variables that were developed using
the results from a series of simulations undertaken
with a multi-ligament model in which the ligament
strengths were varied according to a statistical func-
tion. Healing is simulated from the interaction of
diffuse curing fronts emanating from opposing crack
faces. The model naturally allows for the dependency
of the degree of healing on the crack opening dis-
placement (COD) and its rate. It also accounts for
material that re-damages and re-heals. The model is
able to simulate simultaneous and continuous damage
and healing with no restrictions on the timings of these
events.

The present paper provides an overview of the com-
bined experimental and numerical study. In particular,
this article presents a new enhancement to the compo-
nent of the damage-healing cohesive zone model that
allows healing in cracks with larger CODs than those
considered in the original study to be simulated accu-
rately. This paper also presents a new study in which
the damage-healing model was used to determine
the degree of healing expected in cracks of different
openings for different healing agents properties.

2 AUTONOMIC VASCULAR SYSTEM,
GOVERNING PROCESSES AND MODEL
COMPONENTS

Figure 1 shows a schematic of the autonomic self-
healing system considered in this study. It comprises

Figure 1. Healing-agent flow in a cementitious specimen
with an embedded autonomic healing system.

channels embedded in a cementitious matrix (con-
crete or mortar) that are used to supply healing-
agent to cracks. The healing-agent can be pressurised
(with pressure Pa above atmospheric), but also func-
tions without pressurisation, in which case the liquid
healing-agent is drawn into a crack by capillary forces
alone.

We studied the processes that govern the behaviour
of this healing system in a series of experiments (Sel-
varajoo et al. 2020a, 2020b) and used the evidence
to guide the development of our coupled numerical
model.All of the tests in this series used concrete spec-
imens and PC20 cyanoacrylate (CA) as the healing-
agent. The latter was chosen because it is a relatively
fast acting agent that allowed us to study simultaneous
cracking–healing processes in tests of modest duration
(i.e. 1 to 30 minutes).

The processes considered in the experimental
programme include cracking; healing-agent release;
healing-agent flow in discrete cracks and within the
cementitious matrix; healing-agent curing and its
effect on flow properties; mechanical healing resulting
from agent curing; and re-cracking and re-healing.

The experiments, associated processes and linked
model components are described below.

2.1 Cracking

Notched prismatic concrete beams under three-point
loading and notched direct tension cube specimens
were used to study coupled cracking and healing
processes. These testing arrangements were selected
because they allowed healing to be studied in speci-
mens with a single discrete crack of known config-
uration. The applied load – displacement behaviour
of the control beams and direct tension specimens
(i.e. those without healing-agent) followed the pre-
peak hardening/post-peak softening response that is
characteristic of this type of specimen. In our finite
element (FE) model, concrete cracking is simulated
with a cohesive zone damage model applied to an ele-
ment with embedded strong discontinuity. We chose
a strong-discontinuity approach because it provides a
precise description of a crack path and opening con-
figuration, both of which are important for properly
simulating coupled flow and healing processes. The
element is illustrated in Figure 2 and details of its for-
mulation and a linked crack tracking procedure are
given in Freeman et al. (2020). The cohesive zone
model is described in Jefferson and Freeman (2022)

Figure 2. Element with embedded strong discontinuity.
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2.2 Flow of healing-agent in a discrete crack under
capillary action and/or external pressure

Healing-agent is released when a crack breaches one or
more capillary channels and reaches a threshold value
(wc_th). For the system used in our experiments, this
was found to be in the range 20–50 µm.

A set of experiments was undertaken to measure
the flow of CA in discrete cracks, the change in vis-
cosity over time and the effect of flow velocity on the
dynamic meniscus contact angle. Discrete crack flow
was investigated using concrete specimens for a range
of natural crack openings (0.1–0.3 mm). The experi-
ments used a high-speed camera and a back-lighting
arrangement to capture the meniscus rise behaviour. A
range of supply pressures was considered that varied
from 0 (atmospheric) to 1 bar (above atmospheric).
An illustration of this crack flow process is given in
Figure 1. This shows that a crack is defined in terms
of a convected coordinate (χ ) and its COD (wc(χ , tm))
that can vary with the reference time (tm), measured
from the start of loading. The meniscus position is
defined by χm(tm) and the dynamic meniscus contact
angle (θm(χ̇m, θm0)) depends on the static contact angle
(θm0) and the meniscus speed (χ̇m). The flow per unit
area of healing-agent from a discrete crack into the
surrounding matrix is denoted by qcrk (χ , tm).

We were able to reproduce the observed behaviour
with good accuracy using the single fluid Navier-
Stokes equations. The resulting expressions for the
momentum and mass balance are as follows:
∂(ρχ̇ )
∂t + χ̇

∂(ρχ̇ )
∂χ

=− ∂Phcrk
∂χ

+ ρg sin (ψ)− ηχ̇ − ρχ̇qcrk in Ωcrk
∂(ρwc)

∂t + ∂(ρwc χ̇)
∂χ

+ ρwcqcrk = 0 in Ωcrk

Phcrk =−Pc0 (1− βs)+ 2βmχ̇m
wc

Γm

Phcr =Pa Γd

(1)

where Ωcrk , Γm and Γd indicate the crack domain,
meniscus and the part of the boundary where pressure
is prescribed respectively; the superior dot denotes a
time derivative, βm andβs are meniscus and stick slip
material parameters, Phcrk is the healing agent pres-
sure in the crack, ψ is the crack inclination, ρ is the
healing agent density and Pc is the capillary pressure;
the dependent function for the sink-source term qcrk is
given in the next sub-section, with the functions for the
effective viscous resistance η, dynamic contact angle
θm and time dependent viscosity µ being given below.

We demonstrated in Freeman & Jefferson (2020)
that χ̇m in pressurised vascular systems could be suf-
ficiently large for θm to depart significantly from its
static value (θm0). In order to investigate this issue,
we measured the variation of θm with velocity in a
series of dynamic flow experiments and found that
the observed behaviour was well-matched by the
following expression from:

θm= arcos(cos(θm0)− (cos(θm0)+ 1)tanh(c1Cc2
a )) (2)

where Ca=µχ̇m/γ is the capillary number, γ is the
surface tension and the constants were calibrated to be
c1= 1.325 and c2= 0.350.

The time-dependent viscosity of CA (PC20) was
measured in a series of tests with a bespoke manometer
that measured the flow rate in a circular channel within
a mortar specimen (Gardner et al. 2014). We found
that the chemo-rheological model proposed by Castro
& Macosko (1980) matched Gardner et al.’s data with
good accuracy. The expression adopted is as follows:

µ=µ0

(
ϕg

ϕg − ϕ

)nv

(3)

where ϕ is the degree of cure,µ0 is the initial viscosity,
ϕg is the degree of cure at the gel point and nv is an
exponent which defines the rate of change of µ with ϕ

2.3 Flow of healing-agent from the crack into the
surrounding cementitious matrix material

The discrete crack flow tests established that a sig-
nificant quantity of CA flows from the crack into
the surrounding matrix. In order to understand and
quantify this process, a series of experiments were
conducted that measured the sorption of CA into a
concrete specimen through a natural crack surface,
with the capillary rise response and weight gain due to
CA adsorption both being recorded. We simulated this
process using macroscopic balance equations with the
capillary pressure in the pores of the continuum, along
with the external pressure, as the driving forces. The
mass-balance equation for the healing-agent is given
below:

∂ (ρh)

∂t
+∇ · Jh + ρqmtx = 0 in Ωmtx

−→n · Jh= qc on ΓNf

(4)

where Ωmtx defines the cementitious domain, ΓNf is
the part of the boundary where the flux is prescribed
and −→n is a unit vector on the boundary; ρh= ρnSh
is the phase averaged density (Sh is the degree of CA
saturation), qmtx is a source/sink term and Jh is the
healing-agent flux given by Jh=−ρKeff (Sh)(∇Ph −
ρg) where Ph=Pg − Pc is the healing-agent pressure
and Keff is an effective diffusion coefficient.

The balancing crack boundary flow terms in the
discrete crack (qcrk ) and matrix (qmtx) are given by
(2.5), as follows:

qcrk = 2

ρ
nβcrk (Phcrk − Ph)=−qmtx (5)

where βcrk is a boundary transfer coefficient, n is the
matrix porosity, Ph is the matrix pressure, noting that
qcrk accounts for both crack faces.

2.4 CA curing and associated healing

One of the primary concerns of the present work was
to understand curing and healing processes in cracks
with transient openings. This was a challenge because
the healing response is strongly dependent on the COD
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but prior to this work no information was available on
the curing of CA with a concrete substrate or within a
concrete crack. To fill this gap and gain a better under-
standing of the curing process, we undertook a series
of experiments aimed at measuring the progression of
a curing front in a layer of CA overlying a concrete
cube in a sealed container. We then linked the find-
ings from these experiments to a series of mechanical
tests on specimens with different CODs during healing
(Selvarajoo et al. 2020a).

The experiments showed that CA cures with a dif-
fuse curing front that emanates from the substrate,
which -in the case of a crack in a cementitious sample-
is the crack wall. The curing front is illustrated below
in Figure 3.

Figure 3. Progression of a diffuse curing front.

The variation of curing was derived by solving
an advection diffusion equation (Freeman & Jeffer-
son 2020) and was found to be well-matched by the
following equation:

ϕ
(
x, zf

)= 1

2

(

1− tanh

(
x − zf − zc2

zc2 +
√

zf /zc1

))

(6)

where x is defined in Figure 3, zc1 is the curing front
constant and zc2 is the wall factor.

The mean position of the curing front is given by
the following time-dependent function:

zf (tc)= zc0
(
1− e−tc/t) (7)

where zc0 is the critical curing depth and τ is the curing
time parameter.

In a situation where a crack is full of healing agent,
only healing occurs and no re-damage or re-healing
takes place, the degree of healing was found to be well
represented by the degree of cure at the mid-line of a
crack (i.e. at x=wc/2) (Jefferson & Freeman 2022).
This gives the following basic healing function:

hf = 1

2

(

1− tanh

(
0.5wc − zf − zc2

zc2 +
√

zf /zc1

))

(8)

However, if the amount of healing agent in a crack
changes during the healing period and/or healed mate-
rial re-cracks and re-heals, equations (7) and (8) are
no longer directly applicable. To allow for all these
scenarios, a new approach was developed that uses a
crack propagation variablez that is a convolution inte-
gral formed from the product of equation (7) and the
rate of change area of curing material. This convolu-
tion integral is solved numerically using a two-level
recursive scheme. In addition, a set of homogenised
healing variables are introduced. The general form of
these were derived from the results of a series of sim-
ulations with a multi-ligament model that considered
the variation of virgin and re-healed material strengths
across a representative crack area, along with some
thermodynamic considerations.

The variables comprise the virgin healing parameter
(hv), the current healing parameter (h), the effec-
tive healed material relative displacement (uh), the
effective healed relative-displacement (ζh) and the
associated re-damage variable (ωh). The latter is not
a conventional damage variable since it increases with
damage but decreases with re-healing.

One of the main findings of the ligament model
simulations was that, if the healed material within
a representative crack area is plotted against a nor-
malised area variable arranged in order of increasing
strength, discrete blocks of healed material develop
across the area when the crack is opened continuously
during healing. The number and frequency of these
blocks tend to increase and decrease respectively as
the damage-healing process proceeds.

3 SIMULATING CURING IN WIDE CRACKS

Design serviceability crack limits for concrete struc-
tures range from 0.1mm for liquid retaining structures
to 0.4mm for structural elements in a humidity-
controlled environment. For this range of cracks, the
curing front functions (6) and (7) have been shown to
be reasonable (Freeman & Jefferson 2020; Jefferson &
Freeman 2022); however, there may be occasions when
healing in wider cracks needs to be simulated.

When larger bodies of CA cure, thermal convection
can become significant, and this provides a second
mechanism for transporting OH– ions (Li et al. 2017).
From the data in Tomlinson et al. (2006) and our own
data, we conclude that thermal convection becomes
significant for layers of CA greater than approximately
0.5 mm. We therefore propose that the following two
component forms of curing distribution and curing
front position functions are used for crack widths wider
0.5 mm

zf (tc) = zf 1 (tc)+ zf 2 (tc)

= zc0
(
1− e−tc/τ

)+ zc02
(
1− e−tc/τ2

)
(9)

ϕ(x, zf )= 1

2

⎛

⎜
⎝1− tanh

⎛

⎜
⎝

x − zf − zc2

zc2 +
√

zf 1

zc1
+ zf 2

zc12

⎞

⎟
⎠

⎞

⎟
⎠ (10)
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The ability of equations (9) and (10) to represent the
curing data of Tomlinson et al. and our own data are
illustrated in Figures 4 to 6 respectively. The calibrated
constants for consideringTomlinson et al.’s data for the
0.11 mm thick film of CA on glass were τ = 120 s and
zc0= 0.135 mm, zc02= 0. The values of the constants
used for the 6 mm thick body of CA overlaying the
concrete substrate from our experiments were τ = 60 s,
τ2= 420 s, zc0= 0.1 mm, zc02= 0.7 mm, zc1= 25 mm,
zc12= 2.5 mm and zc2= 0.0001 mm. Figure 5 uses data
from Selvarajoo et al. (2020b) that gave the lead-
ing edge of the curing front, which is zD (a diffusion
distance) in front of zf , where:

zD =
√

zf 1/zc1 + zf 2/zc12 (11)

Figure 4. Total degree of cure for 0.11 mm film of CA on
glass (Tomlinson et al.).

The comparisons presented in Figures 4 to 6 show
that the revised functions can expand the crack widths
(thickness of CA layers) to which the curing front
equations are applicable.

Figure 5. Curing front variable for cementitious substrate
(Selvarajoo et al. 2020b).

4 HEALING PARAMETRIC STUDY

The numerical response varies with the value of the
material parameters.The role of elasticity, strength and

Figure 6. Degree of cure measured from cementitious
substrate (Selvarajoo et al. 2020b).

fracture parameters is well understood and these are
not considered further here. The new parameters that
have the greatest bearing on the healing response are
the critical curing front depth (zc0) and the curing time
parameter (τ ) (Jefferson & Freeman 2022).

In the case that a crack is fully formed, static
and filled with healing-agent, the amount of healing
depends on the ratios (tf /τ ) and (wc/zc0), where tf
denotes the healing time. Figure 7 shows how the heal-
ing develops over time (relative to τ ) for a range of
relative CODs.The maximum healing predicted by the
model (hmax) for a given (wc/zc0) depends strongly on
the value of (wc/zc0), with less healing predicted for
greater relative CODs. 99% of full healing is achieved
at between 3 and 6 (tf /τ ), with larger CODs requir-
ing longer to reach this limit. It is evident that there
is a time lag for significant healing (≥0.01hmax) to
start, which increases with (wc/zc0) (see the line of
0.01hmax).

Figure 7. Degree of healing versus the relative healing time
for a range of relative CODs.

The relationships shown in Figure 7 should be
helpful to researchers selecting a healing agent for a
particular design scenario.

5 MODEL VALIDATIONS

The full coupled model has been validated using a
range of experimental data. This includes validations
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of the transport model (Freeman & Jefferson 2020),
the element with embedded strong-discontinuity
(Freeman et al. 2020) and the full coupled model with
the new damage-healing cohesive zone model com-
ponent (Jefferson & Freeman 2022). In addition, a
number of examples are presented in these papers
that use data from experimental tests on plain con-
crete specimens from the literature. The simulations
show that the model is able to represent accurately the
behaviour of the specimens as measured in the origi-
nal experiments and then to predict what the behaviour
would be if a similar test were undertaken with an
embedded healing system. The examples are also used
to explore the mesh convergence characteristics of
the model. One such example, presented originally in
Freeman et al. (2020), concerns an L-shaped speci-
men undertaken by Winkler et al. (2001), illustrated in
Figure 8.

It is assumed that healing agent is supplied from
the start of the experiment and the agent is released
from the channels when the crack crossing the channel
reaches a threshold displacement of 30 µm.

The meshes used for the analysis are shown in
Figure 9, and the experimental and predicted load dis-
placement responses of the plain concrete specimen
are shown in Figure 10 along with a predicted response
of the specimen with the hypothetical embedded
healing system.

Figure 8. L-Shaped specimen of Winkler et al. with hypo-
thetical embedded channels for the supply of healing agent
(Based on Freeman et al. 2020).

Figure 9. Meshes used for the finite element analysis (based
on Freeman et al. 2020).

The degree of healing at a number of load-
displacement positions (i.e. i, ii and iii, as indicated

Figure 10. Experimental and numerical responses (based
on Freeman et al. 2020).

Figure 11. Degree of healing in cracks at selected
load-displacement positions shown on a extract from mesh 3
(based on Freeman et al. 2020).

in Figure 10) are shown in Figure 11 on mesh
extracts.

The predicted cracking-healing response has a sim-
ilar form to those reported in Selvarajoo et al. 2020a,
for specimens that have a continuous supply of healing
agent from the start of loading. In such a case, the heal-
ing and damage rates tend to become equal over time,
which results in the plateau in the response. In this
case, the response shown in Figure 10 has two peaks,
which are believed to be associated with the supply
from the two sets of channels, which are breached by
the crack at different times.

6 CONCLUDING REMARKS

The behaviour of autonomic self-healing cementitious
materials is governed by a set of interacting processes
that include, cracking, healing-agent release, healing-
agent flow in discrete cracks and within the cemen-
titious matrix, healing-agent curing and mechanical
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healing. These may be represented by the set of
component models described in this paper that were
developed using data from a linked experimental
investigation. When the model components are cou-
pled together in a finite element formulation, the
combined model is able to represent the characteristic
behaviour of a vascular self-healing system embed-
ded in concrete specimens with cyanoacrylate as the
healing agent. This includes the behaviour of direct
tension specimens with different crack opening dis-
placements during healing as well as that of notched
beam tests under a range of loading rates and healing
conditions.

Mechanical cracking and healing may be simu-
lated effectively using a cohesive zone damage-healing
approach linked to a finite element with embedded
discontinuity. A Navier-Stokes crack-flow model cou-
pled to a mass balance equation for simulating matrix
flow, with degree-of-cure dependent flow properties,
provides a sound basis for simulating healing agent
transport.

Our healing-agent curing-front model for simulat-
ing healing in discrete cracks naturally accounts for
COD and COD-rate effects on healing behaviour. The
linked two-level recursive scheme, for the evolution of
the curing front and the computation of the degree of
healing, readily allows for re-cracking and re-healing
and can simulate simultaneous damage and healing
processes.

The curing front model and its linked parameters
are appropriate for simulating healing in serviceability
sized cracks in concrete structural elements. A two-
part curing front evolution function is required for
simulating healing in wider cracks (>0.5 mm).
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ABSTRACT: In solid mechanics, size effect is very often observed. This lecture provides a brief overview
of two sorts of size effect: size effect on the structural strength observed at the macro-scale and size effect on
elasticity and fracture observed at the micro-scale on porous materials. Both size effects are investigated with
the same methodology, that is the help of up-scaling techniques : lattice approaches at the meso-to-macro scale
and molecular mechanics at the nano-to-micro scale. These two up-scaling techniques provide ways to account
for material heterogeneities and for surface effects that are at the origin of these size effects. In the two examples
discussed in this contribution, accurate constitutive relations and continuum models at the macro-scale remain
a very open issue, without the help of up-scaling. The methodology and results discussed in this paper may
enlighten future extended continuum theories.

1 INTRODUCTION

Size effect is a very usual feature in the field of
mechanics. Aside from statistical effects, size effect
has been related to fracture mechanics over a century
ago, when engineers and physicists observed that the
apparent strength of a material, as provided by exper-
iments was several orders of magnitude less than that
predicted by solid state physics (atomistic considera-
tions). The answer given to this discrepancy was that
the material contains defects and that the defect size
controls the apparent strength of the material. In lin-
ear fracture mechanics (LEFM), the apparent strength
is proportional to the toughness of the material and
inversely proportional to the size of the defect (crack
length) to the power 1/2.

In concrete and other quasi-brittle materials, size
effect on the apparent strength originates from a tran-
sition: between strength of materials and LEFM. It is
due to the interaction between a fracture process zone
of finite size and the size of the structure. This type of
size effect – denoted as structural size effect – is very
well documented in the literature, see e.g. Bažant &
Planas 1998. Cohesive fracture models or regularized
continuum models capture this size effect controlled
by the size of the internal length entering in these mod-
els, that defines also the size (width or length) of the
fracture process zone.

Size effect occurs also at a much smaller scale,
for instance in microporous materials. Micro-porous

materials (with pore sizes under 2nm typically, accord-
ing to the IUPAC classification) are widely encoun-
tered in chemical engineering, novel material design,
manufacturing and pharmaceutical industries, and
construction. Zeolites, activated carbon, hydrated
cement, construction materials and some rocks are
among these materials. The behavior of micro-porous
materials is the result of the mechanical response
of pore walls made of a few layers of atoms. Their
elastic response is different from that of the bulk mate-
rial, and size effects on the elastic response of these
pore walls are expected (Liang et al. 2005). Fracture
characteristics ought also to be revisited as they are
different from those observed in bulk materials (see
e.g. Shimada et al. 2015). This kind of size effect
is neither due to the defect size nor to the crack
length, but to the interaction between the surface of
the material and the bulk material. It is a “surface”
effect.

These two size effects are investigated with the
help of up-scaling techniques. We start by considering
structural size effect and focus on lattice modeling;
this approach being viewed as a way to up-scale
responses from the meso-scale where material hetero-
geneities are explicitly described to the macro-scale.
Then, we consider the atomistic scale and use molecu-
lar mechanics to perform the up-scaling to a continuum
response. Although the atomistic model is simplistic,
it allows to exhibit surface effects, both on elasticity
and fracture.
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2 STRUCTURAL SIZE EFFECT AND
MESO-SCALE LATTICE-BASED
UP-SCALING

2.1 Database on size effect experiments

In the literature, there are very few experimental
results dealing with size effect on geometrically sim-
ilar specimens for the same material with various
geometries.To our knowledge, two databases are avail-
able, due to Bažant and Hoover (2014) and to Grégoire
et al. (2013). In the experiments of Grégoire et al.
(2013), three point bending experiments have been
performed on specimens made of mortar. Four differ-
ent sizes and three different geometries are considered:
half-notched specimens, short-notched specimens and
specimens without any notches (Figure 1).

Figure 1. Geometries tested by Grégoire et al. (2013).

The important feature in these experiments is that
notched and unnotched specimens, which exhibit very
different size effects, have been tested on the same
material. Figure 2 shows the size effect on the nominal
stress at failure for the three geometries considered.
Note that experimental data compare quite well with
the universal size effect law proposed by Bažant and
Yu (2009).

Figure 2. Size effect on the nominal stress obtained exper-
imentally by Grégoire et al. (2013).

2.2 Lattice modelling of structural size effect

In a continuum setting, the description of such a struc-
tural size effect relies on constitutive relations that

are regularized with respect to strain localization due
to strain softening. The key ingredient is the internal
length which is a model parameter and size effect orig-
inates form the ratio of this length to the size of the
structure.

Standard non local (e.g. damage) models are capa-
ble of capturing it as far as the effect of size on the
nominal stress is concerned, this has been documented
many times in the literature (see for instance Le Bel-
lego et al. 2003). The challenge, however, is to be able
to capture the entire post peak responses, for each
size and for each geometry. Grégoire et al. (2013)
pointed out this difficulty and also the shortcomings
of the standard non local continuum damage model to
this respect. Later on, it was also demonstrated that
the lattice approach indeed provided a very accurate
description on structural size effect with respect to the
nominal stress, and also with respect to the descrip-
tion of the entire experimental responses, for notched
and unnotched beams of various sizes. In the forego-
ing, we shall illustrate this result with two different
lattice models: the lattice model formed by discrete
structural elements (Grassl & Jirasek 2010) and the
lattice discrete particle model (Cusatis et al. 2011). For
more in-depth considerations about lattice modelling
applied to quasi-brittle heterogeneous materials, the
reader may refer to the recent review by Bolander at
al. (2021).

In the model proposed by Grassl and Jirasek (2010),
a heterogeneous material is described by beam ele-
ments connecting the nodes of a discretization (Fig-
ure 3). The material heterogeneities are described
explicitly, provided their size is above a fixed threshold
and the interface between the matrix and the inclusions
is endowed with a specific response.

Figure 3. Discrete description of a heterogeneous material
(after Grassl et al. 2012).

The mechanical response relies on a continuum
damage isotropic model with an elliptical strength
envelope (Figure 4). The tensile response is also illus-
trated on this figure. It is defined by a stress versus
crack opening relationship, the crack opening being
related to the tensile strain and the length of each
element.
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Figure 4. Lattice element response: strength envelope (left)
and tensile response (right), after Grassl et al. (2012).

In the model, a meso-scale fracture energy is
introduced, defined as the area under the curve in
Figure 4b).

Figure 5 shows the results obtained with this lattice
approach for the half-notched and unnotched beams.
The model parameters entering in the lattice model
have been fitted on separate experiments for the elastic
constants. The nonlinear response is mainly controlled
by the meso-scale tensile strength and fracture energy
which are kept the same for all computations.

It can be observed that the lattice model provides
a very good description of the various experimental
responses, for all sizes and for all geometries.

Figure 5. Load – CMOD responses for various sizes and
notched (top) and unnotched (bottom) specimens: compari-
son between experiments and lattice model (after grassl et al.
2012)

The lattice particle discrete model (LPDM) relies
on a slightly different approach for constructing the

lattice model equivalent to a continuum. Concrete is
discretized by placing nodes at the volume centroids of
each aggregate particle above a specified size thresh-
old. Elements are defined by the edges of the Delaunay
elements constructed from the nodal points (Figure
6). The elements represent the combined actions of
the aggregates and intermediary matrix in between the
aggregates. The nature of interaction captures tensile
failure with strain softening and it has been enriched to
account for the effects of triaxial stress conditions. For
more details on this model, see e.g. the contribution
by Pathirage et al. (2022) in this volume.

Figure 6. Discrete description of concrete according to
LPDM.

Same as for the previous lattice model, the LPDM
approach allows a very good description of size effect.
Figure 7 is an illustration fort short-notched specimens
of 4 various sizes.

Figure 7. Description of size effect by LPDM for the
short-notched specimens (after Pathirage et al. 2022).

In these two modelling approaches, the lattice
model lies at the meso-scale. The lattice model can be
viewed as an up-scaling technique from the meso-scale

48



to the macro-scale. Heterogeneities on the material
are described explicitly and fracture is captured at the
meso-scale. It is certainly the combination of these
two features that provides, after up-scaling, a broader
capability to capture size effect and the complete post-
peak responses at the same time. Continuum models at
the macro-scale could probably yield similar results,
at the price of a greater complexity of the constitutive
relations, however.To our knowledge, this has not been
completely achieved yet in an entire satisfactory way.

3 SURFACE EFFECT AND MOLECULAR
MECHANICS-BASED UP-SCALING

We turn now to a much smaller scale and consider
surface and size effects in micro-porous materials.The
major common denominator in these materials is that
the physics that govern the material response should
be considered at the nanometre scale.

Let us look, as an example, at the comparison of the
elastic properties as obtained from standard homoge-
nization techniques and experimental data on activated
carbon (Perrier 2015): the bulk modulus of a typi-
cal activated carbon with micro-porosity of 50% (pore
diameters less than 2 nm) is in the range of 0,5 GPa.
The bulk modulus of carbon being in the range of
30 GPa, standard homogenization techniques (e.g. the
self-consistent method) yield a bulk modulus of the
porous material in the range of 4 GPa. There is a gap
of one order of magnitude between experiments and
modelling.

A simplistic calculation shows that for a porosity of
50% and a pore size in the range of 1nm, the thick-
ness of the solid walls in between pores should be of
the order of 1nm, three to four atomic diameters. In
such thin walls, atoms experience a modified interac-
tion environment compared to the bulk state. This may
explain the above discrepancy. In a broader context, the
same phenomenon occurs at the surface of solids, and
it induces a surface effect.

At the continuum level, surface effects have been
mostly introduced following the concept of sur-
face/interface stress initiated by Gibbs (see e.g. Xia
et al. 2011). Surface stresses are qualitatively meant to
result from the fact that atoms sitting on the surface of
a material do not interact in the same way as in the bulk
phase. Hence, forces in the plane of the free surface
develop, which do not exist in the bulk state. These
forces represent the mechanical effect of the modified
interaction environment.

Some homogenization techniques (relating the elas-
ticity of the porous material to that of the skeleton and
to the void fraction) introduce such surface stresses.To
some extent, these homogenization schemes are sim-
ilar to the one devised many years ago by Benveniste
(1985) in which an imperfect interface is introduced in
a composite material (see also Brach et al. 2016). As a
consequence, given materials with the same void frac-
tion, the elastic properties depend not only on the shape
of the voids but also on their size, as the surface to

volume ratio defines the importance of surface forces.
Figure 8 shows such an example taken from Duan et
al. (2005).

Figure 8. Bulk modulus of a porous material containing
spherical voids as a function of the void radii (after Duan
et al. 2005).

Connections between surface stresses and the modi-
fied energy environment at the atomistic scale depend
strongly on the organization of the atoms. We shall
consider here the simple model problem of a CFC
Lennard-Jones crystal.

3.1 Description of the model problem

We are interested in elucidating how the free sur-
face influences the overall mechanical properties
(described in terms of elastic moduli, stress distri-
bution and surface energy) of simple model systems
when the characteristic size (thickness) of the system
is varied. We shall carry out the analysis on a CFC
Lennard-Jones crystal as shown below:

Figure 9. Model CFC structure made of 32 layers of atoms
subjected to uniaxial tension.

Periodic boundary conditions are used in the x and
y direction so that we are looking at an infinite plate of
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finite thickness, expressed as a function of the num-
ber of layers of atoms. A relative displacement in the
y direction is applied so that uniaxial tension is gen-
erated in the specimen. Recall that the Lennard Jones
potential reads:

U (r)= 4U0[
(

d

r

)12

−
(

d

r

)6

] (1)

where U (r) is the potential (potential energy) between
two atoms lying at distance r (from which the atomic
interactions are derived), U0 and d are two constants.
In the foregoing, all the results will be expressed in
the Lennard-Jones coordinates, meaning that displace-
ments are divided by d and energies are divided by
U0.

An important issue in such molecular calculations is
that, prior to any loading, the system of atoms is indeed
at equilibrium. This is performed by minimizing the
potential energy of the system, letting the atoms move
from an initial arbitrary regular configuration until
equilibrium is reached. Minimization is performed in
two steps: first the system is considered to be infinite
in the z direction with periodic boundary conditions
applied in the x, y, z directions and without any load.
Upon minimization, we obtain the bulk configuration
of the material. Second, periodic boundary conditions
are removed in the z direction and a second minimiza-
tion step is performed. Upon minimization, we have an
infinite plate with finite thickness.Then, displacement
boundary conditions are applied in the y direction. The
relative vertical displacement between the top and bot-
tom boundaries of the periodic cell is increased step by
step. At each step, minimization is performed again so
that equilibrium is reached for each deformed config-
uration. It should be underlined that in this simplistic
model problem calculations are carried out without
any effect of the temperature, meaning that the tem-
perature is 0k. All calculations have been performed
with LAMMPS.

3.2 Global elastic response

We start the analysis by looking at the overall elastic
response of the plates subjected to tension. For each
configuration at equilibrium, global quantities can be
obtained: the vertical relative displacement divided by
the height of the cell provides an average tensile strain
εyy, the induced relative displacements between the
cell boundaries in the x direction divided by the cell
size provides the average strain εxx at the boundary,
and within the thickness of the plate, relative displace-
ment divided by the thickness yields strain εzz . The
average pressure distribution required to elongate the
plate corresponds to the tensile stress σyy. On average,
all other stresses and strain components are zero.

Hence, we may extract from the calculations the
average elastic parameters for each value of the thick-
ness of the plate. We should underline that linear
elasticity has been recovered at the “macro-scale”. In
other words, all the responses are linear as a function

of the applied relative displacements which remained
small.

Figure 10 shows the evolution of the Young’s mod-
ulus with the number of atomic layers and Figure 11
shows the evolution of the Poisson’s ratios defined as:

υxy =−εxx

εyy
and υzy =− εzz

εyy
(2)

Figure 10. Evolution of the Young’s modulus in the y
direction as a function of the thickness of the plate.

Figure 11. Evolution of the Poisson’s ratios as a function of
the thickness of the plate.

These two results show that (i) theYoung’s modulus
decreases when the thickness of the plate is decreasing;
this trend is consistent with the observations made by
Perrier et al. (2015) on porous carbon, and (ii) that
the plate is no longer isotropic when the thickness is
small. The two Poisson’s ratio are different, moreover,
their evolution is quite different. It may be surprising
to observe that the Poisson’s ratio υxy is larger than 0.5.
recall that because the material is no longer isotropic
this limit does not necessarily apply.

A complete 3D series of applied displacements on
the plate would be required in order to have access
to the full average elastic operator. We may use, how-
ever, the symmetry of the crystal and infer that x and
y directions can be substituted without changing the
results and that we should have here a plate that is
orthotropic (also because the principal directions of
the crystal are the (x,y,z) directions). The important
issue is that the elastic constants depend on the thick-
ness of the plate, for thicknesses less than 50 atomic
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layers typically. In the case of carbon for instance, 50
atomic layers is in the range of 10 nm, which is not
necessarily very small.

3.3 Distribution of stresses within the thickness of
the plate

We look now for the distribution of the stresses within
the thickness of the plate in order to better understand
surface effects.

A first issue is to define and calculate the stress
in this system. Stresses are average quantities and in
molecular mechanics calculations they are very often
calculated as Virial stresses and that localizes stress
quantities on each atom. This works very well for an
infinite system, but for a finite system, it yields a bias
nearby the boundaries of the solid. This is the reason
why we use here the method of planes due to Todd
and co-workers (1995) that has been implemented in
LAMMPS.

The method of planes uses a very classical defini-
tion of the stress, more precisely the stress vector, as
the forces acting through a given surface divided by
the area of the surface. The solid is cut into two pieces
by a plane. The plane is discretized into small sub-
surfaces, called bins, and the calculation collects the
interactions forces between pairs of atoms that cross
this surface.

These interacting forces are summed to form a
vector whose components are expressed into forces
tangent to the bin and forces normal to the bin. Upon
dividing these components by the area of the bin, a
stress vector is obtained.

The stress distributions that are obtained according
to the method of plane may exhibit severe oscillations.
There are two reasons for this:

– When the bin size is very small, the sum of inter-
acting forces crossing the bin may oscillate. For
instance, if the bin is very small, no interacting
forces may cross it. This is the reason why we have
taken a bin size in our calculations equal at least to
the spacing between two atomic layers, except for
the bins near the boundaries where it is divided by
2.

– The plane cut the plate in between atoms and
results depend on this location. Consider a series
of planes located in the same interatomic spacing
but a different distances from atoms. Depending on
their position in the interatomic spacing, stresses
will vary as interatomic forces may – or not – be
accounted for in a specific bin moving within this
interatomic spacing. What is observed, however, is
that such oscillations are periodic, with a period
equal to the interatomic distance. This oscillations
have been smoothed by averaging the stress distri-
butions over 10 planes with a spacing equal to the
interatomic distance divided by 10.

Let us now have a look at the distribution of the
stresses across the thickness of the plate. We shall
illustrate the results in the case of a plate with 10 atomic

layers. First, let us have a look at the state of stress in
the plate prior to any loading.

Figure 12 shows the distribution of the stress com-
ponents σxx, σxy, σyx, σyy, σxz within the thickness of
the plate. We may observe that the in-plane shear σxy
and σyx are identically zero, that the shear component
σxz oscillates with a small amplitude, and that the two
stress components σxx and σyy are almost similar (the
difference being that the unit cell has not the same
number of atoms in the x and y directions). The oscil-
lations of the shear stress may not be regarded as a
consistent result. It is most probably generated by dis-
cretization effects: amplitudes are decreasing as the
thickness of the plate increases. We also checked that
the other stress components where small or equal to
zero.

Figure 12. Distributions of stresses within the thickness for
an unloaded plate. On the horizontal axis, the depth within the
plate is reported (number of the layer times the interatomic
spacing in the L-J coordinate system).

Surface effects are most illustrated on the distribu-
tion of stresses σxx and σyy. Although the plate is not
loaded, the surface of the plate experiences tension in
both x and y directions. The stress distribution, how-
ever, are self-equilibrated, meaning that the integral
over the plate thickness is equal to zero.

We may wonder whether this surface effect is depen-
dent on the thickness of the plate or not. Figure 13
shows the distribution of the in-plane stress σyy for a
plate with 40 layers of atoms.

This figure shows that the amplitude of the stress
distribution is not the same as in Figure 13 for a smaller
thickness. Upon decreasing the thickness from 40 to
10 layers, the maximum stress is multiplied by 2.9.The
compressive stress at mid-thickness changes too. We
may also observe that the first two atom layers that are
at the boundary experience tension only. The others
experience compression.

Let us consider now what happens during the tensile
loading in the y direction. We are going to compute the
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Figure 13. Distribution of the in-plane stress within the
thickness of a plate with 40 layers of atoms.

same stress distribution, but for the sake of clarity, we
shall illustrate results with differential distributions,
that is the distribution under load minus the distribu-
tion without any load. Therefore, we will look at the
effect of loading and see if it is independent from the
initial state of stress or not.

Figure 14 shows the differential distributions of the
in-plane stressesσxx andσyy for a plate with 10 layers of
atoms. Five loading step, with equal relative displace-
ment amplitude have been applied on the system. We
may see that (i) the distribution of the in-plane stress
σxx does change, but the difference is only of the order
of a few percent; (ii) the in-plane stress σyy increases
at each loading step, but the differential distribution
is almost a horizontal line. It means that the stress
distributions induced by the applied relative displace-
ment does not exhibit any surface effect, aside from the
effect observed initially on the plate without any load.
We may conclude also that standard elasticity, that does
not account for surface effect, could be superimposed
to the initial state of stress that account for the surface
effect, both being independent.

With such an assumption, we may now go back to
the definition of a surface tension according to Gibbs.

3.4 Surface tension

Surface tension arises because the material at the sur-
face does not exhibit the same energy environment
than in the bulk. On one hand, one expects that such
a quantity is a property of the surface, that does not
depend on the size of the bulk phase, in our case
the thickness of the plate. On the other hand, our
results show that the stress induced nearby the free
surface depend on the plate thickness. The conclusion
is that our calculations show that the surface tension,
as defined by Gibbs, is not independent from the thick-
ness of the plate. It may become a quantity that does
not depend on the bulk for plates of sufficiently large
thicknesses, meaning that Gibbs’ definition holds for
sufficiently thick plates.

Extracting the surface tension from our calculation
would therefore require running calculation on thicker
and thicker plates. We saw also in the previous section
that in fact, only the first two layers were experiencing

Figure 14. Distribution of differential in-plane stresses σxx
(top) and and σyy (bottom) upon loading. Step 1 is omitted in
the bottom figure.

tension, while the inner layers were experiencing com-
pression. On this basis, we may devise a simplified
model in order to extract the surface tension.

We assume that the plate is made of a sandwich of
two elastic isotropic plates, perfectly glued to an inner
elastic isotropic plate with different mechanical prop-
erties (Figure 15). The plate is subjected to a relative
displacement at both ends in the y direction.

The thickness of the outer layers is denoted as b
times the atomic spacing, and the thickness of the inner
layer is a times the atomic spacing. The elastic con-
stants of the inner layer are that of the material in the
bulk phase. Numerically, they have been obtained by
subjecting a unit cell of crystal to a relative displace-
ment along axis y (periodic boundary conditions in the
three direction).The elastic constant of the outer layers
should be independent of the bulk phase. In order to
obtain those, we have carried out molecular mechanics
calculations on plates of thickness equal to 2b times
the atomic spacing.

In the inner layer we have:

εb
ij =

1+ νb

Eb
σ b

ij −
νb

Eb
σ b

kkδij (3)

and in the outer layers we have:

εo
ij =

1+ νo

Eo
σ o

ij −
νo

E0
σ o

kkδij (4)

where subscripts b and o stand for the bulk phase and
the overlay (the two outer layers). The inner and outer
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Figure 15. Simplified mechanical model for the calculation
of the surface tension.

materials are assumed to be isotropic and elastic and
calculations can be performed in order to obtain the
stresses and strains in each layer. The in-plane total
stresses σ tot

yy and σ tot
xx read:

σ tot
yy (a+ 2b).s= σ b

yy.(a.s)+ σ o
yy(2b.s)

σ tot
xx (a+ 2b).s= σ b

xx.(a.s)+ σ o
xx(2b.s)= 0

(5)

Due to the surface tension, we assume that the outer
plates need to be stretched initially, before they are
glued onto the inner layer. Due to this stretch, the non-
zero in-plane strains are denoted as εoi

xx = εoi
yy. This will

induce a surface stress:

σxx = σyy = Eo

1− νo
εoi

xx (6)

It is important to remark that this surface stress is
independent from the inner plate. It is not the actual
stress that is calculated once the inner and outer plates
are glued and equilibrium is obtained. The actual state
of stress in the outer plates will be relaxed and at the
same time the inner plate will undergo compression.

Eqs. (3-5) yield the stresses and strains in the inner
and outer plates, provided the initial stretching εoi

is known. This initial stretching is obtained by fit-
ting the stress distribution across the thickness in the
simplified model and the stress distribution obtained
numerically. More precisely, the initial stretching is
obtained under the condition that:
∫

(σyy)2dz =
(
σ b

yy ∗ (a ∗ s)
)2

+(σ o
yy(2 ∗ b ∗ s))2 (7)

where the integral term in the left hand-side of the
equation stands for the integration of the square of
the stress obtained numerically according to molecular
mechanics.

Figure 16. Initial stretch as obtained after fitting for plates
of various thicknesses.

Figure 16 shows the fits of this initial stretching for
various values of the overall thickness of the plate. We
can see that this simplified model provides an initial
stretch, equivalent to a surface tension (Eq. 6) that is
not constant for very thin plates whereas it becomes
almost constant when the plate is sufficiently thick.
In this case, an intrinsic surface tension is obtained. It
does not depend on the inner layer of material, e.g. on
the thickness of the substrate on which the surface is
placed. It corresponds indeed to Gibbs’ definition of
surface tension.

Finally, we may also check that the overall moduli
and poisons ratio provided by this simple model are
consistent with the numerical results. This is indeed
the case.

3.5 Surface energy

So far, we have considered surface effects on elasticity.
We may obtain also information on surface energy.The
surface energy is obtained by comparing the potential
energies of the system at equilibrium, when switch-
ing to the bulk phase to a finite system. According
to the simple molecular mechanics model, the differ-
ence should be the energy that is consumed by the
creation of a free surface. It is also related to the frac-
ture energy, in its initial definition, meaning that the
fracture energy is twice the energy needed to create a
crack of unit surface (free surface).

In order to investigate the thickness effect on the
surface energy, we shall start from the infinite plate
and remove the periodic boundary conditions in the y
direction. In this direction, the plate becomes finite –
it is a strip of fixed dimension in the y direction and
infinite in the x direction. Again, we may consider
strips of various thicknesses and look at the influence
of this parameter.

Figure 17 shows influence of the thickness of the
strip on the surface energy. The thicker the strip, the
higher the surface energy. The overall variation, going
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Figure 17. Evolution of the surface energy with the thick-
ness of the plate.

from a thickness of 2 atomic layers to a thickness of
160 atomic layers, is quite large. This growth of the
surface energy could have been expected. For very thin
plates, many atomic interactions are missing compared
to thicker plates. Upon creation of the free surface,
these missing interaction do not need to be removed,
the plate is easier to separate into a strip and therefore,
the surface energy is lower compared to the case of a
strip of large thickness.

We may now try to interpret this result in the con-
text of a porous material. For this, we shall consider
a porous 2D material containing circular voids. The
unit cell of the material is hexagonal, with the void
centered in the middle (Figure 18).

Figure 18. Ligament in a porous material made of hexago-
nal periodic cells.

We assume that separation occurs in the ligament
shown in Figure 18. The crack will run from one void
to another propagating in the ligament (which may be
a quite rough assumption). For a given porosity and
for a given value of the pore radius, which is related
to the ligament size, we may now calculate the energy
needed to create the crack, keeping in mind that the
surface energy is a function of the ligament size as
shown in Figure 17.

This calculation simply converts the relationship
between the surface energy and the thickness, to a rela-
tionship between the surface energy and the ligament
size which, for a fixed porosity, is a function of the
radius of the pores. We further assume that the frac-
ture energy is twice the energy needed for the creation
of a surface of unit area and we plot the evolution of
the fracture energy as a function of the pore size, at
constant porosity.

Figure 19. Evolution of the fracture energy of a porous
material with the pore size, at constant porosity.

We can see on Figure 19 that the fracture energy
grows with the pore size at constant porosity.The same
should be expected for the Young’s modulus in view
of our previous results, it can be obtained with more
accurate up-scaling techniques (e.g. a three phase self-
consistent method).

4 CONCLUDING REMARKS

In quasi-brittle porous materials, size effect occurs
over a wide spectrum of scales. In this contribution
two effects operating at very distinct scales have been
discussed:

– at the nano-to-micro scale size effect is due to sur-
face effects and the special energy environment that
exists near free surfaces. The size effect at stake is
related to the ratio of the surface to the volume of
the material.

– At the meso scale, it is due to distributed micro-
cracking inherited from the presence of hetero-
geneities in the material. The size effect at stake
is related to the ratio between the size of the
zone where micro-cracking occurs – a function of
the size of the heterogeneities – and the size of
the structure.

Both size effects have been investigated with the
help of up-scaling techniques. At the structural level,
lattice approaches provide a way to account for the size
of heterogeneities and therefore enable a quite accu-
rate investigation of structural size effects. Molecular
mechanics allow to up-scale the atomistic description
to that of a continuum. It should be stressed that the
atomistic description of a given material, heteroge-
neous and amorphous sometimes, may still be looked
as very complex task. In many cases, it remains to be
achieved.

Nevertheless, simplified nano-scale models pro-
vide qualitative trends (see also Vandamme et al.
2015), and limits beyond which existing theories may
fail. The results obtained in this paper belong to this
category. For instance, the definition of a surface ten-
sion, intrinsic to a surface, does not hold very thin
solids.
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In fact, and in the two situations discussed in
this contribution, constitutive relations and models at
upper scales, without the help of up-scaling, remain
a very open issue. The methodology and results
discussed in this contribution may enlighten future
extended continuum theories.
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ABSTRACT: The paper shows both experimental and numerical results for micro-scratching tests applied to
main hydration products of cement paste at the scale of 10–100 µm. In the experimental part, micro-scratch
tests were conducted along with scanning electron microscopy and acoustic emission measurements to reveal
local fracture toughness of individual cement paste constituents. 3-D finite element model of the scratch process
utilizing Griffith-type of a fracture-damage model for tension/compression failure was successfully used for
replication of the experiments and identification of local cement paste strength. The tensile strength for the
outer hydration product was identified as 54 MPa being about 5 times lower compared to FIB-produced micro-
cantilevers at 3 µm scale (Němeček, Králík, Šmilauer, Polívka, & Jäger 2016)and about 3.6 times higher than
at 500 µm scale (Zhang, Šavija, Figueiredo, & Schlangen 2017). The strong size effect can be attributed to a
different number of internal defects in the cement paste microstructure.

1 INTRODUCTION

Initiation of fracture is a localized phenomenon related
to small material volume that manifests itself on a
higher level as an expanding crack. As proved by
Němeček et al. (Němeček, Králík, Šmilauer, Polívka,
& Jäger 2016) local tensile strength and fracture
energy vary for individual cement paste constituents
such as inner and outer products (composed of mainly
C-S-H gels), portlandite or clinker at the microme-
ter scale. The new concept of micro-bending tests has
already been introduced and gives access to unique
engineering parameters of cement paste at the range
from 1 to approximately 100 µm. At this scale,
e.g. the inner C-S-H product attains tensile strength
around 700 MPa. The high tensile strength of C-S-H
becomes substantially reduced by stress concentra-
tions around crystalline inclusions, pores and internal
defects as shown in Němeček et al. (Němeček, Šmi-
lauer, Němeček, Kolařík, & Maňák 2018). However,
the experimental procedure using micro-bending tests
requires specialized lab equipment such as focused
ion beam microscope, it is relatively uneasy, lengthy
and costly. Gaining larger statistics in a reasonable
time is not feasible for most laboratories. The con-
tribution aims to present a novel methodology for
fracture testing at the scale of 10-100 µm based

on micro-scratching performed with the nanoinden-
ter over a larger representative area of the sample.
Multiple scratching experiments are performed in
hydrated cements with individual scratch length of
several hundreds of micrometers, thus consecutively
covering all microscopic phases. While mechani-
cal testing is performed by a nanoindenter which
gives information on the horizontal and vertical loads
and deflections, position and identification of micro-
scopic phases is provided by the scanning electron
microscope (SEM). Along with the tests, acoustic
measurements are done for detection of cracking in
individual cement paste phases. Fracture toughness is
evaluated for microscopic cement paste phases being
slightly higher compared to usual macroscopic values.
In this contribution, the initiation of the scratching
process is modeled by a 3D finite element model
with a smeared crack constitutive law combining
both tensile and compressive strain softening and
the damage mechanics. The experimental data give
access to fracture toughness of individual cement paste
phases and give the idea about the fluctuation of this
quantity at the 10-100 µm scale. With the aid of
the numerical model experimental data are matched
and the cracking pattern under the indenter tip, oth-
erwise not accessible by microscopic observations,
predicted.
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1.1 Brief summary of existing experimental data of
fracture properties at micro-scale

Nowadays, micro-scale fracture properties at the scale
of 1-100 µm can be accessed only by a few exper-
imental techniques. Focused ion beam milling tech-
nique (FIB) (Gianuzzi & Stevie 2005) can be used
for fabrication of micro-beams that are loaded by a
nanoindenter. Němeček et al. (Němeček, Králík, Šmi-
lauer, Polívka, & Jäger 2016) successfully measured
Young’s moduli, tensile strength and supremum frac-
ture energies of the outer C-S-H product, inner C-S-H
product and CH on micro-cantilevers with triangular
cross-section (≈3 µm, length ≈15-20 µm), Table 1.

Table 1. The results from micro-bending and nanoindenta-
tion tests reported in Němeček et al. 2016.

OP IP CH

E (GPa) 24.9± 1.3 33.6± 2.0 39.0± 7.1
ft (MPa) 264± 73 700± 199 655± 258
Gsupp

f (J/m2) 4.4± 1.9 19.7± 3.8 19.9± 14.4
Kc (MPa·m1/2) 0.33± 0.06 0.81± 0.08 0.88± 0.28

Another way of micro-scale testing of cementi-
tious samples was recently developed by Schlangen
et al. (Schlangen, Lukovic, Šavija, & Copuroglu
2015), and Zhang et al. (Zhang, Šavija, Figueiredo,
& Schlangen 2017; Zhang et al. 2018). The proce-
dure consists of preparing small-scale cementitious
samples: cubes, beams, and cantilevers with a square
cross-section and edge length of 100-500 µm with a
micro-dicing saw.The produced samples were used for
various ranges of experiments e.g.: micro-beam three-
point bending test, micro-cantilever static and fatigue
tests, compression or split tests.The mechanical exper-
iments are also supported with discrete lattice model,
3D microstructure extracted from X-ray computed
tomography (XCT), and SEM images. The measured
tensile strength for micro-cantilevers tests lies in the
range of 15-25 MPa for 0.4 w/c ratio.

Micro-pillars fabricated by FIB and loaded with a
sharp indenter were used to estimate fracture tough-
ness of cement paste value. So far, the only micro-pillar
study of cement paste was done by Shahrin and
Bobko (Shahrin & Bobko 2019). They investigated
micro-pillars in the C-S-H phase (mostly HD C-S-H)
with several pillars diameters with volumes of 1.25-
38 µm3. The compressive strength measured was in
the range of 181-1145 MPa with a presence of a strong
size effect. Also, the authors reported the approximate
value of fracture toughness as 0.67 MPa·m1/2.

The experiments utilizing FIB are relatively rare,
very time consuming and costly which prohibits gain-
ing large statistical data. This disadvantage leads to
searching of new approaches that can reliably produce
larger measurement sets. Micro-scratching is among
such techniques that do not require complicated and
laborious procedures and can be done relatively easy
and fast.

1.2 Fracture toughness evaluation from a scratch
test

In standard nanoindetation, the indenter tip is brought
to the contact with the specimen and loaded by increas-
ing/decreasing vertical load. Micro-scratching is a
technique in which not only vertical but also horizontal
force is imposed on the nanoindenter tip. The combi-
nation of loads produces a linear scratch in the sample
microstructure at the scale depending on the tip geom-
etry and forces applied. Typically the scratch width is
about 10 µm and the length is in hundreds of µm
which leads to some interactions of phases compared
to smaller FIB-produced samples. Thus, evaluation
procedures must include reliable phase separation.

For a homogeneous-like material, Akono and Ulm
derived an analytical relationship for fracture tough-
ness estimation from the scratch test (Akono 2020;
Akono, Randall, & Ulm2012). Kc was derived from
the relationship between the horizontal force, FT and
indentation tip geometry and is expressed as

Kc= FT√
2p(d)A(d)

, (1)

where A(d) is the horizontal load bearing contact
area, p(d) is the perimeter and d is the penetration
depth. Different indenter geometries can be taken into
account considering the shape function

f (d)= 2p(d)A(d), (2)

which for a spherical probe of radius R is defined as

f (d)= 16

3
β

(
d

R

)
d2R, (3)

where β is dimensionless parameter (Akono & Ulm
2012). Since the actual geometry of the indenter varies
from the ideal shape, the shape function needs to be
calibrated by a suitable approximation as

f

(
d

R

)
= R3

[

α

(
d

R

)3

+ δ

(
d

R

)2

+ γ

(
d

R

)]

,

α≥ 0, δ≥ 0, γ ≥ 0, (4)

where α, δ, and γ are fitting coefficients of the
function.

2 EXPERIMENTAL PART

2.1 Samples preparation and microstructure

Pure cement paste samples were prepared from Port-
land cement CEM-I 42.5R with water-to-cement ratio
of 0.4. The samples were cast into cylindrical molds
with a diameter of 27 mm and a height of 70 mm. The
samples were demoulded after one day and put into
water for 120 days to achieve a high degree of hydra-
tion. Subsequently, the samples were cut into 6 mm
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Figure 1. SEM-BSE image of cement paste microstructure.

thick slices, dried in the oven at 50◦, and finely pol-
ished to achieve a smooth surface according to the
procedure described in (Němeček, Lukeš, & Němeček
2020).

The microstructure at the level of cement paste (i.e.
below 100 µm) is highly heterogeneous, composed
mainly with outer (OP) and inner (IP) products which
are rich C-S-H gel mixed with other hydrates, larger
crystals of Portlandite (CH), and unreacted grains of
clinker (C). Also, the capillary pores are present in
the microstructure. The typical situation is shown in
Figure 1.

2.1.1 Scratch testing
The scratch tests were performed with the NanoTests
Vantage system (Micro Materials) with a spherical dia-
mond tip with the radius of 10 µm. The coefficients
for spherical tip with a radius of 10 µm were calibrated
using Equation 4 as α = 298.1, δ = 0, γ = 0. The load
function was divided into three segments. At first, the
vertical force was kept at contact load 0.05 mN (0-
50 µm), then in the next segment (50-200 µm) the
force was linearly increased up to the maximum verti-
cal force of 25 mN. In the last segment (200-450 µm),
the maximum vertical force was kept constant. Also,
the tip was moved with a constant horizontal speed of
10 µm/s for all three segments. Thus, during the mea-
surement the penetration depth and horizontal force,
FT are recorded. Since the length of the scratch line is
large, the penetration needs to be corrected by sample
inclination (measured by pre-scratch scan). Totally 25
scratch tests were performed.

During the scratch test, the acoustic emissions activ-
ity was continuously recorded and analyzed using
the ZEDO system (Dakel, Prague, Czech Repub-
lic). Data were measured in the frequency range of

100–1500 kHz. The sample was fixed using the low-
temperature wax on the dedicated AE holder with an
inbuild pre-amplifier (Čtvrtlík, et al. 2019).

2.1.2 Results of scratch testing
The wide range of the fracture toughness values from
0.1 to 2 MPa·m1/2 were evaluated according to Equa-
tion 1. Due to high uncertainties at the beginning of the
contact scratch data from ≈0-80 µm were excluded
from the analysis. The rest of the scratch was used
for Kc evaluation. High fluctuations connected with
microstructural variation were encountered. The sepa-
ration of mechanical response was done into four main
phases: OP, IP, CH, and C. The large pores visible on
the SEM back-scattered electron (SEM-BSE) images
were also excluded from the results. The separation
was done manually between two selected points, and
the mean value of Kc calculated. Two factors were
taken into account during the separation process. First,
SEM-BSE images provided a very good overview of
phases located in the scratch line (Figure 2a). The sec-
ond factor was the measured AE signal (Figure 2c),
which served as an auxiliary indicator of the fracture
process. It was found that AE could reliably record
CH cracking during the scratch test. Cracking in other
phases was not encountered in the AE signal, even
if cracks were observed in SEM-BSE images, which
might be the influence of higher AE threshold or
acoustic signal damping in disordered C-S-H phases.
The results of fracture toughness are summarized in
Table 2.

Table 2. The results of fracture toughness from micro-
scratch tests.

OP IP CH

Kc (MPa·m1/2) 0.34± 0.03 0.51± 0.05 0.54± 0.09
Gf (J/m2) 5.3± 0.9 8.4± 1.7 7.1± 2.6

The fracture toughness of OP (Kc= 0.34±
0.03 MPa·m1/2) is with the excellent agreement of
un-notched micro-beam bending experiment Kc =
0.33± 0.06 MPa·m1/2 (Němeček, Králík, Šmilauer,
Polívka, & Jäger 2016). Furthermore, the measured
values are close to the MD simulation of Bauchy et
al. (2015), who evaluated the fracture properties of
C-S-H gel as Kc = 0.37± 0.03 MPa·m1/2. The Kc
values for both IP and CH were lower in scratch exper-
iment than for un-notched micro-beam. This is caused
by interactions of phases in micro-scratching, since
IP and CH zones are relatively small compared to
the scratch dimensions. Although, the separation of
indents was done to the groups of OP, IP, CH and
C, some inevitable interactions appear for phases that
occupy volume smaller or closer to the scratch interac-
tion volume. Thus, lower values of Kc in comparison
to micro-beams is natural for the smaller phases.
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Figure 2. (a) SEM-BSE image of a scratch line, (b) fracture toughness calculated from scratch test with mean values of
individual phases, (c) AE signal record.

3 MODELING PART

3.1 Material model for compressive and tensile
failure

Material model already successfully applied for a com-
bined failure of cement paste e.g. in (Hlobil, Šmilauer,
& Chanvillard 2016), (Němeček, Šmilauer, Němeček,
& Maňák 2019), (Němeček, Šmilauer, Němeček,
Kolařík, & Maňák 2018) was utilized in this work. The
main features of the model that combines fracture and
damage mechanics will be briefly described here. It
uses the concept of damage mechanics where an equiv-
alent uniaxial strain ε̃ under compression-dominant
loading can be derived as (Griffith 1924), (Hlobil,
Šmilauer, & Chanvillard 2016)

ε̃c= 1

E
· −(σ1 − σ3)2

8(σ1 + σ3)
(5)

where E is the elastic modulus, σ1 and σ3 are the maxi-
mum positive and negative effective principal stresses
of undamaged-like material in uniaxial situations,
respectively. An interesting feature of the Griffith
model is that the ratio of the uniaxial compressive-
to-tensile strength equals to 8, e.g. | fc| = 8ft . The
equivalent strain is evaluated as a maximum of the
strain in tension (for σ1 > 0 using Rankine crite-
rion) and in compression (using the Griffith criterion,
Equation 5) as

ε̃=max(
σ1

E
, ε̃c) (6)

Since the damage evolution law has a small effect
on the computed macroscopic strength simple linear
softening can be assumed.Then, the cohesive law takes
the form

σ = ft

(
1− w

wf

)
(7)

where w is a crack opening and wf is the max-
imum crack opening at zero stress. According to
the formulation of the isotropic damage model, the
uniaxial tensile stress obeys the law

σ = (1− ω)Eε̃ (8)

Considering the crack band model (Bažant & Planas
1997) for finite element size of h derived in the direc-
tion of the maximum principal strain, objective results,
independent on finite element size can be obtained and
the damage law formulated as (Jirásek & Bažant 2001)

ω=
(

1− ε0

ε̃

)(
1− hEε2

0

2Gf

)−1

(9)

with Gf being the mode-I fracture energy and ε0 the
elastic limit strain.

3.2 Numerical model

The three-dimensional finite element analysis per-
formed in OOFEM 2.5 software (Patzák 2000) was
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Figure 3. Scheme of the mesh with highlighted boundary
conditions.

Figure 4. Displacement at the last time step. (a) Top view
(b) Section (A-A’) view.

used to derive cracking pattern and reproduce the
initiation of the cracking process during the scratch
experiment. The largest microstructural phase, the OP,
was chosen for modeling. The model is schematically
shown in Figure 3. The domain (30× 50× 100 µm3)
was filled with linear tetrahedra four-node finite ele-
ments (LTRSpace), where each node has 3 degrees
of freedom corresponding to displacements at each
direction. The fixed support was prescribed to all the
nodes of the bottom surface. At the upper surface,
a trench corresponding to the average penetration of
the tip in the OP phase deduced from experiments

Figure 5. (a) Experimental data corresponding to scratch distance 355-450 µm in Figure 2, (b) calculated model response
and experimental mean value of OP.

(900 ± 100 nm) was introduced. The trench also
corresponds to the geometry of the tip with radius
R=10 µm. Infinitely stiff indenter tip was modeled to
be in full contact with the material in lateral y-direction
(scratch direction).The analysis was controlled by pre-
scribed displacement imposed on contact part of the
sphere in y-direction. Material constants were derived
from microindentation experiments using the same tip
(R=10 µm) and maximum force of 25 mN performed
in OP which yielded Young’s modulus of 22 GPa. The
Poisson’s ratio was assumed as 0.2 (Constantinides &
Ulm 2007) and the value of fracture energy was taken
4.4 J/m2 from the micro-beam experiments (Němeček,
Králík, Šmilauer, Polívka, & Jäger 2016). Although
the scales are different in micro-bending and micro-
scratching experiments, it is assumed that the scaling
effect is low in the OP phase. The value of tensile
strength was left as a free parameter fitted by the model
to find the best match with the record of horizon-
tal force encountered in the experiment (Figure 5a).
Since the initial loading stage of the experiment is not
reproducible by the current numerical model, only the
peak horizontal force was fitted to the mean value of
experimental data (5.43 mN) which matches precisely
(Figure 5b).

The calculated model response (horizontal load vs.
scratch displacement) can be divided into several seg-
ments as shown in Figure 5b. Initially, the material
behaves elastically until the tensile stress under the tip
overcomes the material tensile strength, and the crack
is initiated, see Figure 6a. Then, the crack propagates
under the tip downwards. The top of such multiple
cracks is well visible in SEM images, Figure 7 (the
SEM image corresponds to the zone highlighted by
yellow rectangle in Figure 2a) and shows the end of
the scratch distance 385-450 µm). Fully developed
tension crack is formed at end of the second segment
of Figure 5 as shown in Figure 6b. The vertical extent
of the crack is approximately 2 µm. The horizontal
extent of the tension damage zone is approximately
1 µm which corresponds to the crack extent found
in SEM images, where typical discrete crack width
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Figure 6. Damage (0-1) propagation in three different states. (a) Crack initiation, (b) fully developed tension crack, (c) fully
damaged material under the tip.

Figure 7. SEM-BSE image with visible cracks correspond-
ing to scratch distance 385-450 µm in Figure 2.

after unloading is 0.1–0.2 µm. In the last segment of
Figure 5b, the tension crack under the tip is not evolv-
ing anymore, but the compressive damage starts to
propagate at the tip front end horizontally. The situ-
ation is related to inelastic straining and pushing of
the material in the direction of scratch and sidewards,
again as observed in SEM images. At the end of the
segment, the material under the tip front end is fully
damaged in compression (Figure 6c).

The best fit of experimental horizontal force
(Figure 5) yielded the cement paste tensile strength
of 54 MPa. The value is about 5 times lower than

Table 3. Summary of cement paste fracture properties obtained at various scales.

Test Length ft Kc Gf

method scale (µm) (MPa) (MPa·m1/2) (J/m2) Phase Reference

Molecular dyn. 0.005 0.37± 0.01 1.72±0.29 C-S-H Bauchy et al. 2015

Micro-pillars 0.5-2 0.67 C-S-H Shahrin et al. 2019
Micro-cantilevers 3.5 264± 73 0.33± 0.06 4.4± 1.9 OP Nemecek et al. 2016

700± 199 0.81± 0.08 19.7± 3.8 IP Nemecek et al. 2016
672± 370 0.88± 0.28 19.9± 14.4 CH Nemecek et al. 2016

Scratch test 10 54 0.34± 0.03 5.3± 0.9 OP this study
0.51± 0.05 8.4 1.7 IP this study
0.54± 0.09 7.1 2.6 CH this study

Micro-cubes 100 58 OP Zhang et al. 2016
(multi-scale) 92 IP Zhang et al. 2016

Scratch test 190 0.65± 0.01 All phases Akono 2020
Micro-beams 500 15.3± 2.9 All phases Zhang et al. 2017

the tensile strength obtained from micro-beam bend-
ing experiments (264 ± 73 MPa, (Němeček, Králík,
Šmilauer, Polívka, & Jäger 2016)). Such a reduction
can be explained by different volumes of the damage
zone in both experiments. The tension damage volume
for micro-beams derived from their small geometry is
about 1 µm3, while for the scratch test damage zone is
much larger, ≈100 µm3. The damage zone in cement
paste contains a variable number of defects at differ-
ent scales causing the strength scaling. The defects
can be in the form of capillary porosity, shrinkage
cracks or other inclusions. The number of defects in
micro-beam experiments is substantially lower com-
pared to scratch experiment. The scaling of tensile
strength in dependence on the defect size was shown
for two levels of cement paste in (Němeček, Šmi-
lauer, Němeček, Kolařík, & Maňák 2018), (Němeček,
Šmilauer, Němeček, & Maňák 2019). Similarly, the
compression strength reduces as the scale of cement
paste enlarges (Hlobil, Šmilauer, & Chanvillard 2016).

The cement paste tensile strength of 54 MPa
corresponds well with experiments done at simi-
lar length scale on micro-cubes/cantilevers with a
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minimum volume of (100× 100× 100 µm3) (Zhang,
Šavija, Ch. Figueiredo, Lukovic, & Schlangen 2016).
In Zhang, Šavija, Xu, & Schlangen (2018) the ten-
sile strength was reproduced from experiments with
the aid of XCT scanning and 3D lattice modeling
as 58-66 MPa being in excellent agreement with our
results. A detailed comparison of the results obtained
by several authors at different cement paste scales is
summarized in Table 3. Not all data are available for
all scales but it is clear that both tensile strength and
fracture energy decrease as the testing size increases.

4 CONCLUSIONS

The paper shows application of the micro-scratch test
for evaluation of fracture toughness of cement paste at
the scale of 10 - 100 µm. The technique was found
to be feasible and in line with other available exper-
iments (Table 3). Fracture toughness was assessed
for individual micro-scale cement paste phases with
the aid of electron microscopy and acoustic emission
as Kc= 0.34− 0.54 MPa·m1/2 (Table 2). 3-D finite
element model was constructed to reproduce the exper-
iments and to identify local tensile strength of main
hydration products (OP) in cement paste. As a consti-
tutive law, Griffith-type of a fracture-damage model
for tension/compression failure was successfully used.
The tensile strength for the outer hydration product
was identified as 54 MPa being about 5 times lower
compared to FIB-produced micro-cantilevers at 3 µm
scale (Němeček, Králík, Šmilauer, Polívka, & Jäger
2016) and about 3.6 times higher than at 500 µm
scale (Zhang, Šavija, Figueiredo, & Schlangen 2017).
The strong size effect can be attributed to a differ-
ent number of internal defects in the cement paste
microstructure. The scaling effect that can also be
deduced from other works (Table 3) was confirmed.
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mechanical mapping of blended cement pastes and its
comparison with standard modes of nanoindentation.
Materials Today Communications 23, 100806.
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FE2 multiscale modelling of chloride ions transport in recycled
aggregates concrete
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ABSTRACT: In the context of climate change, reducing the production of CO2 emissions and preserving
natural resources have proven to be necessary. One way to reach theses objectives is to recycle old concrete
members: Recycle Concrete Aggregates (RCA) are aggregates obtained by crushing demolished concrete struc-
tures. Those aggregates can substitute the Natural Aggregates (NA) inside the so-called Recycled Aggregates
Concrete (RAC). RCA are composed of natural aggregates and adherent mortar paste, the latter increasing the
porosity and water absorption of RAC. Furthermore, water is necessary for, and even promotes, the penetration
of aggressive ions such as chloride ions, possibly reducing the durability of said concrete.

This paper aims to model the influence of RCA on chloride ions ingress: several experiments have been
performed to determine the transfer properties and the chloride ions diffusion coefficients of mortar pastes and
concretes produced with NA or 100% RCA. The microstructure of the RCA deeply influences the permeability,
the water content distribution and the chloride diffusion. These properties have been included into a numerical
model that integrates the microstructural information. A numerical homogenization technique, based on the
Finite Element square (FE2) method, is implemented into a coupled multiscale model of water flows and advec-
tion/diffusion of chlorides in saturated concrete, in order to model the complex flow behaviour encountered.

The numerical model developed is compared to existing simple-scale models, using a simple RVE, in order
to validate the implementation. The numerical convergence of the developed model is also studied, as far as the
numerical cost of the FE square method is expensive.

1 INTRODUCTION

Maintenance and rehabilitation of concrete structures
represent a significant and continuously increasing
cost. In the vicinity of roads (where de-icing salts are
used in winter) and coastal areas, the major cause of
degradation of reinforced concrete structures is chlo-
ride attacks (Mangat & Molloy 1994; Morga & Marano
2015). Chloride ions leach into the concrete’s porous
system, reaching the steel rebars where they even-
tually concentrate. This leads to pitting and loss of
section of the reinforcements, decreasing their strength
and possibly leading to a structural failure (Angst,
Elsener, Larsen, & Vennesland 2009). On the other
hand, waste from the construction and demolition sec-
tor (C&D Waste) is one of the heaviest and most
voluminous waste streams generated (European Com-
mission 2019; Zhao, Courard, Groslambert, Jehin,
Léonard, & Xiao 2020). One popular way to reduce the
amount of C&DW to be landfilled and simultaneously
provide a sustainable source of aggregates for future
building materials production is recycling. Recycled
Concrete Aggregates (RCA) produced from crushed
C&DW as a replacement of Natural Aggregates (NA)
is one way to recycle, which has made it a thoroughly

studied field of research (Belin, Habert, Thiery, &
Roussel 2014; Hussain, Levacher, Quenec’h, Bennabi,
& Bouvet 2000; Nagataki, Gokce, Saeki, & Hisada
2004). RCA are coarse particles containing both nat-
ural aggregates and residual adherent mortar paste,
the latter impairing negatively their properties com-
pared to NA: due to their increased porosity and water
absorption, they favour the penetration of water and
chloride ions, increasing the diffusivity of Recycled
Aggregate Concrete (RAC) (Akbarnezhad, Ong., Tam,
& Zhang 2013; Hu, Mao, Xia, Liu, Gao, Yang, & Liu
2018; Rao, Jha, & Misra 2007; Sun, Chen, Xiao, &
Liu 2020).

Concrete is a highly heterogeneous material due
to its composition: its microstructure is composed
of a wide range of components, from nanometre-
sized pores to centimetre-sized aggregates (Garboczi
& Bentz 1998). Modelling concrete and its entire
microstructure is therefore computationally impossi-
ble, and often the properties are homogenized over the
entire microstructure to obtain mean values.

Nowadays, multiscale modelling and computa-
tional homogenization techniques allow to homoge-
nize the concrete’s microstructure over a certain scale,
and then up-scale it while keeping the computational
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cost acceptable (Nilenius 2014). The multiscale mod-
elling approach tends to combine the best of both the
macroscopic approach and the microscopic approach
(Bertrand, Buzzi, Bésuelle, & Collin 2020):

1. Macroscale: the concrete is treated as a homo-
geneous medium, and the constitutive laws are
supposed to represent the whole behaviour of the
material. The mixture theory allows to account for
multiple phases (e.g. liquid water and water vapour)
percolating inside the porous system of the mate-
rial studied (Bear & Verruijt 1987). This method
is easy to implement and allows the use of general
properties of concrete, determined experimentally
for example. Unfortunately, it means that each
modification of the microstructure requires a new
experimental campaign to obtain the homogenized
properties of the material.

2. Microscale: the whole structure, including the het-
erogeneities (aggregates, porosity, ...) is directly
represented in the model. Each microscopic
constituent has its own constitutive equations.
Although this increases the precision of the model,
its computation cost is too high to be used on
metre-sized structures.

The chloride ingress inside RAC being highly depen-
dent on the microstructure of concrete, it is therefore
necessary to use a multiscale model for that purpose.

Modelling the advection/diffusion of chloride in
the water requires the replacement of the macro-
scopic phenomenological quantities of interest (e.g.
flow measures, pore pressure or gradient of pore
pressure) by suitable averages over this RVE. The con-
stitutive equations (Darcy’s and Fick’s laws among
others) are indeed applied only at the microscopic
scale and homogenization/localization equations are
employed to compute the macroscopic flows based on
the pore pressure state at the microscopic scale. It has
to be reminded that due to the separation of scale, the
diffusion problem is solved under the assumption of
steady-state at the microscale. Advective and diffusive
transport modes and adsorption of chlorides are to be
included in the model.

The homogenization technique used is considered
as a numerical homogenization: it is called the unit
cell method. This technique is based on the concept of
representative volume element (RVE) (Kouznetsova,
Brekelmans, & Baaijens 2001). The macroscopic phe-
nomenological equations are replaced by averages
over the RVE.The material properties and behaviour at
the macroscale are therefore obtained from the mod-
elling of this RVE, volume that contains a detailed
model of the microstructure of the material (Bertrand,
Buzzi, Bésuelle, & Collin 2020; Kouznetsova, Brekel-
mans, & Baaijens 2001). In a sense, the RVE is meant
to decouple the macrostructure from the microstruc-
ture in a computational way (Smit, Brekelmans, &
Meijer 1998).

Using this method, the behaviour of the material and
its properties are not valid for the whole macroscopic
structure, but rather at some macroscopic points where

an estimation is obtained through calculations on the
RVE assigned to that macroscopic point (Kouznetsova,
Brekelmans, & Baaijens 2001).

Each integration point of the discretized homog-
enized macrostructure is then linked to a RVE and
finite element computations are performed separately
for each RVE. The macroscopic pressure gradients
and mean pressure are then transformed into bound-
ary conditions applied to the RVE, and the macro-
scopic fluxes are computed by averaging the fluxes
obtained for each RVE over their respective volume
(Kouznetsova, Brekelmans, & Baaijens 2001; Smit,
Brekelmans, & Meijer 1998). This averaging is possi-
ble thanks to the periodicity of the microstructure in
the vicinity of the integration point.

The method is called FE2 method because the mod-
elling is achieved by a finite element analysis on both
the macroscale and microscale (RVE).

In this work, the microscale is referred to as the
mesoscale as it consists of the scale of samples at
the laboratory. The Representative Volume Element
(RVE) therefore represents the structure of a con-
crete sample, that is a homogenized mortar paste (with
homogenized properties, as for a macroscale solution)
as well as impervious aggregates and adherent mortar
paste. The ITZ between them could be accounted for
through interface elements, but their influence would
be difficult to quantify experimentally.

The macroscale, on the other hand, represents a
metre-sized civil engineering structure.

At the mesoscale, the parameters used in the equa-
tions represent properties of a single phase among the
two cited before when the integration point is in that
phase. However, this means that for the mortar phase,
which is a composite material, the properties used must
be effective properties for the composite (Xi & Bazant
1999). At the macroscale, concrete is considered as a
single phase composite material and all its properties
are therefore averaged effective properties.

The material structure is assumed to be macro-
scopically homogeneous but microscopically hetero-
geneous. However, in concrete, the microscopic length
scale is still bigger than at the molecular level, allowing
the use of continuum mechanics as for the macroscale.

The FE2 method is therefore a numerical double-
scale method based on four consecutive and iterative
steps performed on each Gauss point of the mesh until
convergence of both scales (Bertrand, Buzzi, Bésuelle,
& Collin 2020). For our application, those four steps
could be described as follows:

1. From macroscale to mesoscale: the gradients and
mean pressures of the macroscale are localised at
the mesoscale through boundary conditions;

2. Resolution of the problem based on those boundary
conditions at the mesoscale;

3. From mesoscale to macroscale: the fluxes of the
mesoscale are homogenised into a unique flux for
each Gauss point of the macroscale;

4. Resolution of the boundary value problem at the
macroscale.
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Figure 1. Representation of the iterative process performed on each Gauss point of the mesh during the multiscale
computation.

This iterative process is represented in the Figure 1.
In the example of an application on an engineering
structure, the macroscale would represent its mesh,
where four elements are shown, each containing four
Gauss points. The conditions applied to this structure
(i.e. water pressure and pollutant concentration) and
the gradients created by those are first localised in the
mesoscale, represented by a slice of concrete multi-
centimetres large. Then, based on those gradients and
mean values, the boundary value problem is solved at
the mesoscale and fluxes are deduced from it. How-
ever, all those fluxes must then be homogenised to
obtain an unique value for the Gauss point studied.
Then, once each Gauss point of each element used
to mesh the engineering structure have a macroscopic
flux assigned, the boundary value problem is solved at
the macroscale.

2 METHODOLOGY

2.1 General multiscale formulation

The start of every multiscale formulation is the split-
ting of the scalar field φ in an additive manner, such
that it contains both the macroscale part φM and the
subscale part φf which contains the fluctuations of the

total scalar field (Bertrand, Buzzi, Bésuelle, & Collin
2020; Nilenius 2014):

φ=φM + φf (1)

On the boundaries � of the RVE, it is assumed that
φ=φM and therefore φf = 0.

Following a Taylor expansion, limited to its first
order inside the macroscale continuum, the homogeni-
sation follows the assumption that φM varies linearly
within the RVE, yielding the following equation:

φM (x, x̄)≈ φ̄(x̄)+ ḡ(x̄)× (x − x̄) ∀x ∈� (2)

which is represented in the Figure 2 for a 1D RVE. In
this formulation, x̄ is the center of the RVE and ḡ is a
gradient defined such that:

ḡ(x̄)= grad φ̄ (x̄) (3)

In the subscale, the scalar field is not necessarily
continuous and therefore, the higher order terms of
the Taylor expansion cannot be neglected. They are
then replaced by the fluctuation field, noted φf and
resulting from the variations in the material properties
of the RVE:

φ(x, x̄) = φM (x, x̄)+ φf (x̄)

= φ̄(x̄)+ ḡ(x̄)× (x − x̄)+ φf (x̄) (4)
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Figure 2. Illustration of the φM properties and its linear variations within a 1D RVE domain � (modified from Nilenius
(2014, 2015)).

As the equality between the macroscale-part and the
subscale-part of the field is to be true for any point of
the macroscale, it follows that:

ḡ(x̄)× (x − x̄)+ φf (x̄)� φ̄(x̄) (5)

which is the concept of separation of scales: the
subscale characteristic length ls

c must be negligible
compared to the characteristic fluctuation length LM

c
of the macroscopic field:

ls
c �LM

c (6)

If this assumption doesn’t hold, then the boundary
conditions of the subscale boundary value prob-
lem cannot be determined by the local macroscale
pressure/concentration gradient, at least not under
first-order homogenisation.

The transition from the subscale to the macroscale
has an important characteristic that is the transfer of the
flux. Indeed, in stationary conditions, the mass balance
equation is:

∇J = 0 in� (7)

where J is the flux and � the domain where the mate-
rial heterogeneities are embedded (i.e. the mesoscale).
Splitting the scalar field as shown previously, in addi-
tion to first order homogenisation, allows to identify
the volume average of the flux inside the RVE, that is
the macroscale flux J̄ :

J̄ = 1

|�|
∫

�

J (x) d� (8)

where � denotes the reference domain occupied by
the RVE.

2.2 RVE generation

The first step to a multiscale FE2 study is the genera-
tion of the RVE. The RVE is multiphasic: impervious
natural aggregates are considered inside a porous
mortar matrix. For the case of RCA, an additional

mortar gangue is also considered, whose properties
are different of the ones of the mortar matrix.

The RVE must be representative of the material
studied, and it is therefore essential to use and respect
properties related to the concrete: the surface fraction
of aggregates, the aspect ratio and the particle size dis-
tribution of the aggregates are used in the generation.
Each aggregate has a random size, position and orien-
tation following the properties given above. Therefore,
it is impossible to generate two times the same RVE.

Then, using an algorithm adapted from the one of
Nilenius (Nilenius 2014), a 2D RVE is generated and
meshed in 2D by the software GMSH (Geuzaine &
Remacle 2009), according to the Frontal-Delaunay
algorithm for quads, with a simple recombination algo-
rithm applied to all surfaces, ensuring that all elements
are quads.

The size of the RVE is dictated by the maximum
aggregate diameter, so as to keep a size of at least 3
times that diameter. An example of a RVE with RCA
of 8mm of maximum diameter is represented in the
Figure 3.

Figure 3. Example of an RVE generated for RAC.

One may see that the mesh is more refined around
the aggregates. It is due to the octagonal form of the
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aggregates that requires many points and elements.
Even though the sample is small, its complexity is
therefore resulting in a high number of nodes and ele-
ments, which is not ideal for the multiscale modelling,
but required for precision purposes.

One of the assumptions of this method is that the
volume fraction is directly changed into a surface frac-
tion, which is inaccurate because the aggregates are
not spherical and therefore, the transformation from
a volume to a surface may modify the granulometric
curve, which is not accounted for here.

Modelling concrete should be performed with a
three dimensional model as it is highly heterogeneous
and its 3D porous structure may create preferential
path in all directions. However, it requires a greater
computational power and the equations solving the
problem are also harder to develop.

In this research, the two-dimensional approach is
preferred, keeping in mind that other authors, such as
(Nilenius 2014), have done the comparison between
2D and 3D, yielding diffusivity coefficients up to 40%
higher in 3D than in 2D. This is easily explained by the
restriction created in 2D where the flow is required to
by-pass the aggregates in the plane, while in 3D, an
out-of-plane solution is possible.

Those hypotheses could be corrected by direct mod-
elling methods and inverse modelling: the modelling
of the experiments done will allow to verify that the
sample is correct and if not, a penalisation will be
applied to correct it.

2.3 Multiscale ingress modelling under saturated
conditions

The first development of the models are performed
under saturated conditions. The boundary conditions,
i.e. water pressure and pollutant concentration vari-
ations, are applied on the macroscale. Gradients are
then computed for each Gauss point and transmit-
ted to the mesoscale, as well as the average pressure/
concentration at that point. At the mesoscale, each
integration point has an assigned value for the water
pressure and pollutant concentration, based on the
average pressure/concentration and theur respective
gradients localized from the macroscale. Once those
conditions are applied, the resolution can start.

2.3.1 Mesoscale water flows under saturated
conditions

The mass balance equation of water, in a fixed and
undeformable system, under saturated conditions and
under the assumption of steady-state, is:

∂

∂xi

(
ρw vw

i

)= 0 (9)

where ρw is the water density [kg/m3] and vw
i is the

fluid flow rate per unit area [m/s].
The Equation 9 represents the mass variation of liq-

uid water inside the porous matrix of concrete.The first

factor of the equation, the water density, varies with
the internal pressure of the matrix (noted Pw,average):

ρw = ρw0 ×
(

1+ Pw,average − Pw0

χw

)
(10)

where ρw0 [kg/m3] and Pw0 [Pa] are, respectively, the
initial density of liquid water and the initial pressure
inside the porous structure. This relation is dependent
on the fluid compressibility, noted χw [Pa−1] (at 20◦C,
1/χw = 5 10−10 Pa−1).

The second factor of the Equation 9 is related to
the liquid water convection. The Darcy’s law is used
to describe the movement of a fluid (water) inside
a porous medium. Under the hypothesis of a homo-
geneously permeable medium, and in the absence of
gravitational forces, the fluid flux is directly propor-
tional to the gradient of pressure (noted ∇Pw):

vw
i =−

k

µw

∂Pw

∂xi
(11)

where k [m2] is the intrinsic permeability of the porous
medium, and µw [kg/m.s] is the dynamic viscosity of
the fluid.

The stifness matrix, under saturated conditions and
for water flows only, is quite simple:

K =
⎡

⎢
⎣

∂∇(ρw vw
1 )

∂∇Pw

∂∇(ρw vw
1 )

∂Pw

∂∇(ρw vw
2 )

∂∇Pw

∂∇(ρw vw
2 )

∂Pw

⎤

⎥
⎦=

⎡

⎣

k×ρw
µw

0

k×ρw
µw

0

⎤

⎦ (12)

2.3.2 Mesoscale pollutant flows under saturated
conditions

The mass balance equation of the pollutant, under
saturated conditions, is:

∂

∂xi
(vc

i )= 0 (13)

where vc
i is the pollutant flow rate per unit area [m/s].

The pollutant flows are caused by three phe-
nomenon: advection, dispersion and diffusion. The
advection is a movement of the pollutant inside the
fluid, due to fluid flows. The dispersion is due to
the irregularity of the porous system, causing pol-
lutant concentration to vary locally inside the fluid
to accommodate for geometrical constraints. Finally,
the diffusion is due to a gradient of concentration of
the pollutant inside the fluid itself, and is not caused
by a fluid flow. The pollutant flow can therefore be
calculated according to the following equation:

vc
i = vadvection

i + vdispersion
i + vdiffusion

i

= C ui −
������
Ddispersion

∂C

∂xi
− Ddiffusion

∂C

∂xi
(14)

where the dispersion is neglected, and the diffusion
coefficient Ddiffusion, also noted D, is taken as the
diffusion coefficient obtained experimentally.
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Figure 4. Comparison of the results obtained from a purely 4-node macroscale model and the developed multiscale model
(in both 4 and 8-node configurations).

The contribution of the water flows on the pollutant
flows are transmitted through the water velocity ui,
taken equal to:

ui = vw
i

ρw
(15)

The stiffness matrix is obtained by derivation of the
nodal fluxes:

KLK =
∫

V
∇NK D∇NLdV −

∫

V
NK u∇NLdV (16)

2.3.3 Homogenized macroscale response
Once the mesoscale fluxes are obtained, they must be
homogenized for the macroscale. The fluxes of each
integration point are therefore summed up, proportion-
ally to the surface of each integration point.

Once the macroscale has fluxes values for each of
its integration point, the forces are computed and the
problem is finally solved.

The stiffness matrix of the mesoscale is com-
puted by perturbations: each variable coming from
the macroscale (gradient of pressure and mean pres-
sure, gradient of pollutant concentration and mean
concentration) are perturbed and the computation is
performed at the mesoscale. Then, the results are
saved at the macroscale depending on the perturbation
applied.

3 RESULTS

The model is fully functional for water flows or diffu-
sion of pollutant. Nonetheless, this paper focuses on
the pollutant diffusion only. The results available are
therefore:

• Comparison of the multiscale model with a vali-
dated macroscale model;

• Comparison of the results for several microstruc-
tures: a plain mortar paste, a concrete made from
natural aggregates (NAC) and another one from
recycled concrete aggregates (RAC);

• Comparison of the results and computation cost for
several sizes of RVE.

3.1 Comparison with a validated macroscale model

The multiscale model can easily be validated by com-
paring the results obtained with the results of an
already validated macroscale-only model. The applied
conditions and the macroscale meshes used are iden-
tically the same for both models, and the microscale
RVE consist of a plain material with no aggregates, so
that the results can be compared.

The macroscale model is composed of a law for
pollutant transport inside porous media (Biver 1992)
and its 4-noded elements, while our multiscale model
is developed for both 4-node and 8-node elements.The
comparison is therefore made for the three possible
cases: 4 or 8-node multiscale elements, and 4-node
macroscale elements. The results are available in the
Figure 4.

The applied conditions are the following: the right
border has a fixed concentration of 0, while the left
border sees an increase of concentration from 0 to 100,
varying linearly from 0s. to 86400s., then kept constant
until the end of the simulation.

All the models have the exact same response, except
for meshing differences between 4-noded and 8-noded
elements. One can therefore assess that the multiscale
model is valid and represents the diffusion of pollutant
inside a porous medium accurately.
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Figure 5. Results obtained for the diffusion of pollutants amongst several types of microstructure: a plain mortar paste, a
NAC and a RAC.

3.2 Comparison of several microstructures

For the first application, a 1D diffusion experiment
is modelled for different microstructures. The applied
conditions on the left border are the following:

• Pollutant concentration of 0% at 0 seconds;
• Pollutant concentration of 100% at 1E5 seconds,

and kept constant until 1E7 seconds. The evolution
is linear in between 0 and 1E5 seconds;

• Pollutant concentration of 0% at 1E10 seconds, with
a linear decrease too.

The microstructure is modelled by a square RVE
of 15mm sides1. The NAC and RAC microstructures
are exactly the same, except for the adherent mortar
paste that can be found around the recycled concrete
aggregates and that decrease the size of the impervious
aggregates inside.

The new mortar paste has a diffusion coefficient
of 1E-12 m2/s while the adherent mortar paste of the
RCA has a diffusion coefficient of 5E-12 m2/s.

The results are available at Figure 5. The first time
represented is at 1E8s., when the concentration is
already decreasing at the surface.At that time, the RAC
has the greater concentration of the three microstruc-
tures, followed by the mortar paste and then the NAC.
Once the fluxes start going from inside the material
towards the exterior surface, the RAC also displays
higher exchange rates than the other microstructures,
its concentration being the smallest.

This may be surprising as it shows that the
small proportion of adherent mortar, whose diffu-
sion coefficient is higher, plays an important role on

1 A size of 25mm would have been more adequate to respect
the 3Dmax rule. However, the computational cost would have
been too high for a simple application as this one.

the diffusion of pollutants. It indeed decreases the
total impermeable surface, therefore directly increas-
ing the diffusion capacity of the material. Furthermore,
compared to plain mortar paste, the overall diffusion
coefficient of the RAC may be higher due to the higher
coefficient of the aggregates alone.

Another point worth mentioning is that the two con-
crete RVE create pollutant fluxes along the y-axis, even
though the applied conditions are solely along the x-
axis. This is due to the impermeable surfaces that must
be by-passed.

3.3 Computational cost dependency

The next results concern the influence of the RVE size.
Four RVE of 10mm, two times 15mm and 20mm sides
have been used, firstly with NAC microstructure and
then with RAC. Using two RVE of the same size is
useful to observe whether the random disposition and
size of the aggregates impact the overall results of the
diffusion experiment or not. The two RVEs of 15mm
sides are visible on the Figure 6 for the NAC.

Figure 6. Two RVEs of 15mm side based on the NAC.
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Figure 7. Results obtained for the diffusion of pollutants amongst several sizes of RVE for NAC: 10mm, two times 15mm
and 20mm.

Figure 8. Results obtained for the diffusion of pollutants amongst several sizes of RVE for RAC: 10mm, two times 15mm
and 20mm.

Figure 7 represents the evolution of the concentra-
tion for the NAC RVE. The first observation is that
the two RVE with 15mm side exhibit the same results,
which is comforting. Then, one can also observe that
the smaller the RVE, the bigger the pollutant fluxes
are. This is due to the inability of the RVE generation
algorithm to adequately represents the requested gran-
ulometric curve when the size of the RVE decreases.

There is therefore less aggregates and more mortar
paste through which the pollutant can diffuse.

Figure 8 also represents the evolution of the con-
centration for the same RVE sizes, but for a concrete
made from RCA. What is interesting is that the RAC
results seem to depend less on the RVE size than the
NAC. That may be due to the permeable surface of the
RVE being already bigger than for the NAC, leading
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to fluxes that may not be limited by the permeable sur-
face area but rather by the intrinsic properties of the
material.

On Figure 9, representing the computation time
with respect to the number of degree of freedom of
the RVE, one observes that the computation time is
directly linked to both the RVE size and the type of
microstructure studied (the RAC is more complex than
the NAC and therefore possesses more DOF). Fitting
the numerical results with a power equation gives a
R-squared value of 0.997 for the following equation:

y= 3.46× 10−12 × x4.793 (17)

It is therefore crucial to carefully choose the RVE to
be used as it impedes on both the accuracy of the results
and the computational time, both being in opposition
with each other. In order not to sacrifice one or the
other, parallelisation will be necessary.

Figure 9. Evolution of the computational cost with respect
to the number of Degree of Freedom (DOF) of the problem.

4 CONCLUSION

In conclusion, three observations were made:

1. The multiscale model allows the simulation of a
pollutant diffusion inside a porous media, with an
accuracy equal to the one of a classical simple-
scale model. However, it has the advantage of using
intrinsic properties instead of homogenized one,
possibly depicting results closer to the reality;

2. The model replicates what has been found exper-
imentally: the greater cement content of the RAC
allows a greater chloride diffusion than the NAC;

3. The choice of the RVE has a great influence on
the results performed; the aggregates add a cer-
tain complexity that increases the computation time
while also increasing the accuracy of the results for
a porous media such as concrete.

ACKNOWLEDGEMENTS

Funding: This work is supported by the Wallonia
regional government (Belgium) in the framework of a
FRIA (Fund for Industrial and Agricultural Research)
grant.

COMPETING INTERESTS

The authors declare that they have no known compet-
ing financial interests or personal relationships that
could have appeared to influence the work reported in
this paper.

REFERENCES

Akbarnezhad, A., K. C. G. Ong., C. T. Tam, & M. H. Zhang
(2013, December). Effects of the Parent Concrete Proper-
ties and Crushing Procedure on the Properties of Coarse
Recycled Concrete Aggregates. Journal of Materials in
Civil Engineering 25(12), 1795–1802.

Angst, U., B. Elsener, C. K. Larsen, & Ø. Vennesland (2009).
Critical chloride content in reinforced concrete -A review.
Cement and Concrete Research 39, 1122–1138.

Bear, J. & A. Verruijt (1987). Modeling Groundwater Flow
and Pollution. D. Reidel Publishing Company.

Belin, P., G. Habert, M. Thiery, & N. Roussel (2014,
September). Cement paste content and water absorption
of recycled concrete coarse aggregates. Materials and
Structures 47(9), 1451–1465.

Bertrand, F., O. Buzzi, P. Bésuelle, & F. Collin (2020).
Hydro-mechanical modelling of multiphase flowin nat-
urally fractured coalbed using a multiscale approach.
Journal of Natural Gas Science and Engineering 78,
103303.

Biver, P. (1992). Phenomenal and Numerical study on the
propagation of pollutants. Ph. D. thesis, University of
Liége.

European Commission (2019, August). Construction and
Demolition Waste (CDW). https://ec.europa.eu/environ-
ment/waste/construction_demolition.htm. Accessed:
28/08/2020.

Garboczi, E. J. & D. P. Bentz (1998). Multiscale Analyt-
ical/Numerical Theory of the Diffusivity of Concrete.
Advanced Cement Based Materials 8, 77–88.

Geuzaine, C. & J.-F. Remacle (2009). Gmsh: a three-
dimensional finite element mesh generator with built-in
pre- and post-processing facilities. International Journal
for Numerical Methods in Engineering 79(11), 1309–
1331.

Hu, Z., L. Mao, J. Xia, J. Liu, J. Gao, J.Yang, & Q. Liu (2018).
Five-phase modelling for effective diffusion coefficient
of chlorides in recycled concrete. Magazine of Concrete
Research 70(11), 583–594.

Hussain, H., D. Levacher, J.-L. Quenec’h, A. Bennabi, &
F. Bouvet (2000). Valorisation des aggrégats issus de
bétons de démolition dans la fabrication de nouveaux
bétons. Sciences et techniques 19, 17–22.

Kouznetsova, V., W. A. M. Brekelmans, & F. P. T. Baai-
jens (2001). An approach to micro-macro modeling of
heterogeneous materials. Computational Mechanics 27,
37–48.

Mangat, P. S. & B. T. Molloy (1994). Prediction of long
term chloride concentration in concrete. Materials and
Structures 27, 338–346.

Morga, M. & G. C. Marano (2015, June). Chloride Pen-
etration in Circular Concrete Columns. International
Journal of Concrete Structures and Materials 9(2),
173–183.

Nagataki, S.,A. Gokce,T. Saeki, & M. Hisada (2004).Assess-
ment of recycling process induced damage sensitivity
of recycled concrete aggregates. Cement and Concrete
Research 34, 965–971.

74



Nilenius, F. (2014). Moisture and Chloride Transport in
Concrete - Mesoscale Modelling and Computational
Homogenization. Ph. D. thesis, Chalmers University of
Technology, Gothenburg, Sweden.

Rao,A., K. N. Jha, & S. Misra (2007). Use of aggregates from
recycled construction and demolition waste in concrete.
Resources, Conservation and Recycling 50, 71–87.

Smit, R. J. M., W. A. M. Brekelmans, & H. E. H. Meijer
(1998). Prediction of the mechanical behavior of nonlin-
ear heterogeneous systems by multi-level finite element
modeling. Computer Methods in Applied Mechanics and
Engineering 155, 181–192.

Sun, C., Q. Chen, J. Xiao, & W. Liu (2020). Utilization
of waste concrete recycling materials in self-compacting
concrete. Resources, Conservation & Recycling 161,
104930.

Xi, Y. & Z. P. Bazant (1999, February). Modeling Chloride
Penetration in Saturated Concrete. Journal of Materials in
Civil Engineering 11(1), 58–65.

Zhao, Z., L. Courard, S. Groslambert, T. Jehin, A. Léonard, &
J. Xiao (2020). Use of recycled concrete aggregates from
precast block for the production of new building blocks:
An industrial scale study. Resources, Conservation and
Recycling 157, 104786.

75



Computational Modelling of Concrete and
Concrete Structures – Meschke, Pichler & Rots (Eds)

© 2022 Copyright the Author(s), ISBN: 978-1-032-32724-2

Computational modelling of material behaviour of layered 3D printed
concrete

O. Shkundalova & T. Molkens
KU Leuven, campus De Nayer, Sint-Katelijne Waver, Belgium

M. Classen
RWTH University, Institute of Structural Concrete, Aachen, Germany

B. Rossi
KU Leuven, campus De Nayer, Sint-Katelijne Waver, Belgium
New College, University of Oxford, Oxford, UK

ABSTRACT: Based on mechanical test results performed parallel, perpendicular and at an angle to the print
direction, an attempt is made to describe the laminar material behaviour of 3D printed concrete. With the resulting
material model, several possible mathematical simulation techniques are compared to propose the most suitable
design method. In addition to modifying the material properties, equivalent geometrical quantities can also
be used to correctly estimate the bending stiffness and resistance with a homogeneous material model. The
paper discusses critical aspects of current modelling strategies for 3D printed concrete and highlights possible
improvements that are the subject of ongoing research. Together with that, influence, and consequences of
uncertainties in the design with extrusion-based concrete are discussed in this paper. The results obtained are
analysed in line with the models for conventionally cast concrete, and the discrepancies are addressed in detail.

1 INTRODUCTION

1.1 State of the art

Additive manufacturing technologies have become
actively used in the construction sector over the past
decades (Meurer et al. 2021).Three-dimensional print-
ing of concrete (3DPC) has numerous advantages
over conventional production techniques, allowing fast
and cost-efficient fabrication of complex geometrical
shapes right on the construction site and eliminating
the need for formwork, at the same time.

Due to the features of layer-by-layer production pro-
cess, the mechanical properties of 3D printed concrete
differ from conventionally cast concrete owing to a
wide variety of different parameters:

– features of production techniques (e.g., layered
extrusion, shotcrete, powder-based concrete print-
ing);

– climatic conditions during and after manufacturing;
– material behaviour (flowability of the mixture,

faster shrinkage, sensitive interlayer bonding,
unstable reaction at elevated temperatures due to
hydration processes), etc.

The speed of concrete extrusion, as well as the
environmental conditions, such as temperature and
humidity, have a big influence on the speed of shrink-
age of material, rheological and hardened properties

of 3DPC, its quality and material strength. The inter-
val time between subsequent extrusion of layers and
the speed of printing can also have a big influence
on a final product (Panda et al. 2019). Thus, having a
shorter interlayer time, the previous layer may not be
hard enough to carry subsequently printed layers. This
means that when the next layer of concrete is printed,
the bottom layer can be squashed and structural failure
of the component may occur during printing.

In July 2020, a first house was completely printed
in Belgium as one piece with, at that time, the largest
3D printer in Europe (Figure 1).

Figure 1. The 3D printed house at KampC – Oevel,
Belgium.
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To ensure safe design, stability and durability
over the intended service life of the structures, a
more thorough investigation into the modelling of
3D printed concrete behaviour is needed. Facing the
actual tools used by design engineers, the complex
material behaviour should by preference be trans-
lated in a straightforward way into more commercial
numerical tools as the ones based on the finite element
method.

1.2 Design tools

Numerical modelling is one of the widely used meth-
ods for predicting the structural performance of a
material under loads. Though, material models for
computer simulation of layered concrete have not yet
been sufficiently developed. In this paper, proposals
to describe the material behaviour in a straightfor-
ward way will be discussed based on proper test
results.

Computational modelling of layered 3D printed
concrete is a complex endeavour. 3DPC has
anisotropic material properties. Material strength
varies depending on the raster orientation of the lay-
ers. The emphasis is made on explicit modelling of
3DPC material behaviour focusing on a geometri-
cal equivalent description. The first step in the pro-
cess is to find the proper constitutive law(s) that
can de scribe the relation between stresses/strains or
forces/displacements. In a second step also failure
criteria should be applied to determine the bearing
capacity of a bearing element.

The attempt was already made to model structural
response of 3DPC at fire (Ni et al. 2021). Several mod-
els are proposed for modeling of 3DPC taking into
consideration the fresh concrete material strength and
avoiding a structural failure during concrete printing
process (Nedjar et al. 2021).

In this paper, the accent was made on the use
of regular construction software for fast and effi-
cient prediction of structural behaviour available on
the market, and which is widely used by specialists
in industry. In this case, Diamonds BuildSoft was
used.

2 CONSTITUTIVE LAWS, YIELD AND
FAILURE CRITERIA

2.1 Constitutive laws

For brittle materials subjected to and failing in ten-
sion, to which concrete belongs, the maximum applied
stress is proportional to the maximum strain. This
means, that when designing with conventional con-
crete based on EC2 recommendations, the tensile
strength of concrete would be a determining factor
prescribing the strength limit and linear-elastic mate-
rial response. A distinction should, however, be made
between linear and 2D structural elements.

Failure would be expected when the material
strength reaches its maximum capacity and can be cal-
culated by a first or second order analysis, assuming a
constant geometry of the sample until failure.

When designing with 3D printed concrete, the
anisotropic material properties need to be taken into
consideration (Liu et al. 2021). The material strength
in different direction with respect to the print line can
be different due to different printing parameters.

2.1.1 One dimensional beam element
The well-known Hook’s constitutive law describing the
relation between stresses and deformation is defined
as Eq. (1):

σ = F

A
=E · ε (1)

where σ is the applied stress, F is the applied force, A
is a cross sectional area, E is the Young modulus, and
ε represents the strain.

2.1.2 Orthotropic plate
Considering the design features of 3D printed con-
crete, anisotropic material properties should be taken
into account. Regarding the elastic properties of the
material of the plate, three different planes of sym-
metry can be considered as the coordinate planes in
rectangular coordinates (Stephen et al. 1970). The
stress-strain relation in this case can be described as
follows:

σx = E′xεx + E′′εy

σy = E′yεy + E′′εx (2)

τxy = Gγxy

where σx, σy are normal components of stress parallel
to x and y axes; xy is a middle plane of the plate before
loading; τxy is a shear stress component in xy plane;
E′x, E′y, E′′, G are four constants (modulus of elastic-
ity) in different directions and in shear; εx, εy are unit
elongations in x and y directions; γxy is a shear strain
component.

When taking into consideration the curvature of
the deflection curve equal to d2w/dx2, where w is a
deflection in a z direction, the following equation for
the strain components at a distance z from the middle
surface is obtained:

εx =−z
∂2w

∂x2
; εy =−z

∂2w

∂y2
; γxy =−2z

∂2w

∂x∂y
(3)

The expression for the stress components can be
defined as:
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σx = −z

(
E′x

∂2w

∂x2
+ E′′

∂2w

∂y2

)

σy = −z

(
E′x

∂2w

∂y2
+ E′′

∂2w

∂x2

)
(4)

τxy = −2Gz
∂2w

∂x∂y

The bending moment of the plate can be calculated
as follows:

Mx =
∫ h

2

− h
2

σxzdz=−
(

Dx
∂2w

∂x2
+ D1

∂2w

∂y2

)

My =
∫ h

2

− h
2

σyzdz=−
(

Dy
∂2w

∂y2
+ D1

∂2w

∂x2

)
(5)

Mxy =
∫ h

2

− h
2

τxyzdz= 2Dxy
∂2w

∂x∂y

in which:

Dx = E′xh3

12
; Dy =

E′yh3

12
; D1= E′′h3

12
; Dxy = Gh3

12
(6)

where Dx,Dy,Dxy,D1, is a flexural rigidity of the plate
(Stephen et al. 1970). It is important to notice that
the rigidity coefficients are each time the product of a
Young modulus and a height.

2.2 Yield and failure criteria

Three basic failure criteria were developed in the plane
stress states for tensile, compressive failure and a
failure in shear.

Based on material strength test results, no yield was
observed in flexure and compression, and the 3DPC
samples failed in brittle way at maximum load (Feng et
al. 2015). The maximum stress criterion is suggested
to be used to describe the mechanical behaviour of
3DPC (Jones 1998):

– tension: σ1 <Xt σ2 <Yt σ3 <Zt

– compression: σ1 >Xc σ2 >Yc σ3 >Zc (7)

– shear: σ12 >S12 σ23 >S23σ31 >S31

where σ1, σ2, σ3 are maximum principal stresses; Xi,
Yi, Zi are maximum allowable stresses in different
directions; S12, S23, S31 are maximum allowable shear
stresses in different planes.

The yield criteria for other materials, such as timber
and fibre reinforced polymer (FRP) composites were
considered instead.

2.2.1 Analogy based on the criteria for timber
Although timber can have a non-linear post-peak
capacity, timber structures are generally designed in
a linear elastic range. The failure in plane stress
state for timber structures is described by three basic
orthotropic strengths criteria, also known as plastic-
ity conditions (Haasbroek et al. 1994). As timber is a
brittle material, and there is almost no ductility in the
tensile zone, but linear elastic-plastic behaviour of tim-
ber in compression can be assumed.The elastic-plastic
behaviour can be described by applying the Hook’s low
for the elastic part, and the yield function for the plastic
part. The typical stress-strain relation for timber can
be seen in Figure 2 (Sørensen et al. 2022).

Figure 2. Typical stress-strain curve of timber (Sørensen
et al. 2022).

Due to the orthotropic material properties of timber,
the compressive stress at an angle to the grain can be
calculated as follows (Section 6.2.2, EC5):

σc,α,d ≤ fc,0,d
fc,0,d

kc,90 fc,90,d
sin2α + cos2α

(8)

where σc,α,d is a compressive stress at an angle α to the
grain; kc,90 is the factor which takes into consideration
the effect of any stresses perpendicular to the grain.

2.2.2 The ice crushing failure equivalence
The tensile strength of ice is substantially lower than its
compressive strength, which allow us to consider ice as
an orthotropic material. Referring to the principal axes
of anisotropy, the yield criteria for columnar-grained
structure of ice can be described as follows (Chen et al.
1988):

f
(
σij

) = a1

[(
σy − σz

)2 + (σz − σx)
2
]

+ a3
(
σx − σy

)2 + a4(τ 2
yz + τ 2

zx)

+ 2 (a1 + 2a3) τ
2
xy + a7

(
σx + σy

)

+ a9σz − 1= 0 (9)
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where coefficients a1, a3,a7, a9 are the tensile and com-
pressive strength measurements and can be found as
follows:

a1 = 1

2CzTz
a3= 1

CxTx
− 1

2CzTz
a7= 1

Tx
− 1

Cx

a9 = 1

Tz
− 1

Cz
(10)

where Tx,Tz , Cx,Cz, are the tensile and compressive
strength values. The value of a4 can be determined
from the shear tests or compressive tests of the sam-
ples with an angle to the vertical direction. Assuming
a plane stress conditions, the simplification can be
applied:

σz = τyz = τxz = 0 (11)

Having x and y the principal stress directions, the
equation takes form (Chen et al. 1988):

a1

(
σ 2

x + σ 2
y

)
+ a3

(
σx − σy

)2 + a7
(
σx + σy

)= 1

(12)

3 TRANSLATING MATERIAL ANISOTROPY

3.1 Stiffness properties = constitutive laws

Instead of working with different Young moduli like
follows out of Eq. (6), in this paper, it is proposed to
adopt the geometry of the section by changing the sec-
ond moment of area (by the height h). This is needed
as most elastic software tools cannot handle differ-
ences inYoung modulus. However, it is mostly possible
to work with ribbed slabs or waffle floors. Mate-
rial orthotropy is in this way replaced by geometrical
orthotropy.

Equal stiffness can be presented by respecting the
flexural rigidity EI and adapting I instead of E in both
parallel and transverse directions with respect to the
print-line. Once cracking occurs in reinforced concrete
the second moment of area is significantly reduced.
To define the cracked area and by that way the influ-
ence on the deformations the cracking moments (Mcr)
should be properly calculated. Also, here a geometri-
cal equivalent is proposed, by respecting the outcome
of the product Mcr = σ cr ·W. Direction dependent max-
imum stresses σ cr will be replaced by different moduli
of resistance W .

When using ribbed slabs, differences in height and
width of the ribs in each direction can be worked out
to fit simultaneously the second moment of area and
the resistance modulus in each direction.

3.2 Material behaviour = failure criteria

Till so far, the research is limited to 3DPC unreinforced
concrete applications. Brittle behaviour of 3DPC is
each time observed in the performed test, which will
be discussed in this contribution. Reason why, at this

moment there is not yet a need for more advanced fail-
ure criteria which do account for plasticity. This will
be observed when failure in the compression zone can
be expected, as for reinforced concrete applications.
While, this is the final goal of the research team this
field is not yet exploited.

3.3 Cracking behaviour

The cracking behaviour of 3D printed concrete signifi-
cantly differs from that of conventionally cast concrete
due to the nature of layer-by-layer extrusion process
(Liu et al. 2021). The print layer interfaces and the
defects appearing during the printing process lead
to different material properties in different directions
with respect to the print line (Jenkins et al. 2021).
There is insufficient knowledge about the effect on
fracture mechanics in weaker interlayer regions (Ven
den Heever et al. 2021). By improving the quality of
the interlayer interface, the anisotropy can be reduced
(Babafemi et al. 2021).

Considering the micro-structure of 3DPC, the pores
volume distribution in 3DPC is different compared
to conventionally cast concrete and the porosity is
primarily aligned with the printing direction (Moini
et al. 2021). This will not be usually the case for
conventionally cast concrete members with spherical
pores randomly distributed in the material (Moini et al.
2021).

There is a large number of factors affecting mate-
rial strength and structural performance of 3DPC, i.e.
speed of concrete extrusion, interlayer time between
deposition of the layers, environmental conditions
(temperature and humidity in the built chamber).
This, in its turn, will influence the quality of the
final product, material strength, level of porosities
and uncertainties in the material, speed of shrinkage,
structural performance under loads.

Together with that, 3DPC has high surface rough-
ness. Concrete slump during the extrusion process is
another important parameter to consider. This might
have negative influence on bending strength of the pro-
duced element. Assuming a good quality of material
with low level of porosities, the crack in most cases
will be initiated at the surface at the point of geo-
metrical nonlinearity where the stress will reach its
extremum.

When choosing a test method it is important to
mention that different testing methods can lead to a
different results depending on the size of the speci-
men, support conditions, loading rate, etc (Meurer et
al. 2021).

The expected failure modes in 3DPC can be the
following (Van den Heever et al. 2021):

– interfacial delamination,
– interface shear-slip,
– intralayer tensile cracking,
– intralayer cracking under compression-shear,
– crushing.
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Summarising all mentioned above, crack in 3D
printed elements can be initiated due to different rea-
sons: geometrical nonlinearities, inner pores, debond-
ing and lack of fusion between concrete layers leading
to the interfacial delamination, which can arise when
the interlayer time during printing is too big, and the
non-uniform shrinkage takes place.

4 MATERIAL PROPERTIES

4.1 Material used for 3D concrete printing

The concrete mixture “Weber 3D 145-2, 3D concrete
printing mortar C35/45 – 1 mm – CEM I” was used
for the proof of the concepts described in this paper. It
is a factory-produced dry mortar made in accordance
with EN 206 and available in the market. Properties of
concrete mixture can be seen in Table 1.

Table 1. Properties of Weber 3D 145-2 mortar used in the
study.

Compressive strength class C35/45
Largest grain size: D-max 1 mm
Density (28 days, EN 12390-7) 2200 kg/m3

Compressive strength >45 MPa

Mechanical material characteristics will be dis-
cussed in the next sections for 3DPC tested following
different directions and compared with those obtained
by casting monolithic beams of equal dimensions as a
reference base.

4.2 Material strength based on test results

The wall was extruded at ambient temperature with the
effective thickness of 40 mm (taken without slumps
appearing during concrete extrusion process, Fig-
ure 3). The reduced effective thickness is considered
for the evaluation of the mechanical properties of the
3DPC and in structural design (Asprone et al 2018).

Figure 3. Wall panel for production of test specimens.

The height of each concrete layer extruded by a 3D
printer was 15 mm. The samples for material strength
tests were cut out of this wall at longitudinal printing
direction, perpendicular and at an angle of 45 degrees
to the print-line The samples were cut with the con-
sideration of having a smooth surface without visible
connection line between different layers.

For the 3 points bending tests a sample dimension
of 40 mm x 40 mm x 160 mm were used, a speed of
0.25 mm/min were used for the displacement control.
For the compressive tests, two residual parts of the
beam elements with a load surface of 40 mm by 40
mm were used, with a speed of 2.4 kN/s in accordance
with EN 196, ISO 679 and EN 12390-5:2009, Fig-
ure 4. Preliminary study was based on limited amount
of tests.

Figure 4. Dimensions of the 3D printed test specimen for
flexural tests.

It is worth to mention, that due to the thickness of the
printing layer (effective thickness 40 mm + slumps) the
water is easily penetrated through connecting surfaces
between the layers.

This became clear during sawing operations to pre-
pare the test specimens. The Figure 5 gives a clear
representation of the water penetration process. In
real life application, this will also happen for the ele-
ments subjected to humid environmental conditions
and produced with 3D printing technique. This is an
important point to consider in the design when choos-
ing the thickness of the printed layer for the real-world
application of 3D concrete printing technique.

Figure 5. Water penetration in 3D printed concrete sample.

The samples for material strength tests were cut with
the consideration of having as smooth outer surfaces as
possible, e.g. without visible connection line between
different layers to achieve more accurate results. Out
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of preliminary tests it was observed that the irregu-
lar surface made it very hard to respect an acceptable
coefficient of variation when tensile stresses appear
perpendicular to the interface.

4.3 Material behaviour parallel to the layers

Due to the layered structure of 3D printed element,
the material strength is highly dependent on the print-
ing direction. It is already well-known, that bending
strength of orthotropic materials, such as timber and
fibre reinforced polymer (FRP) composites, is higher
in the direction of the fibres. When it comes to 3D
printed concrete, a thorough investigation was made,
and it was proven that extrusion based concrete has
the same tendency: material strength is higher in the
direction of the print-line.

In accordance with EN 1990:2002+A 1 :2005 (E),
Annex D, the normal and lognormal distribution can be
used for the material properties calculation. The JCSS
Probabilistic Model Code suggests to use a lognormal
distribution for calculation of material properties of
concrete. In this study, the lognormal distribution was
used for the calculation of the average 3DPC material
strength values. Therefore, with the known coefficient
of variation VX calculated with a normal distribution,
and the standard deviation sy applied on the lognor-
mal values of measurements, the sy was calculated as
follows:

sy =
√

ln (V 2
X + 1)≈VX (13)

The average values of material strength is the
exponent of the averaged lognormal values of the
measurements.

Table 2 shows the material strength of 3DPC in flex-
ure and compression in longitudinal direction parallel
to the layers, the layers were oriented horizontally and
vertically as depicted in Figure 6.

Table 2. Mechanical properties of 3DPC in longitudinal
direction.

Average
Number strength

Test Orientation of spec. (MPa) sy ≈VX

Sample size: flexural test 40 x 40 x 160
compression tests 40 x 40

Flexure Horiz. 10 7.54 0.1
Vertic. 5 7.1 0.15

Compression Horiz. 6 42.52 0.08
Vertic. 9 47.36 0.1

According to the table above, the average flexu-
ral strength in longitudinal direction with horizontal
and vertical layer orientation has similar values of
7,54 MPa and 7,1 MPa respectively, which is twice

Figure 6. Horizontal and vertical orientation of the 3DPC
samples parallel to the layers.

higher than the mean tensile strength for the same class
concrete according to EC2 (3.21 MPa for C35/45).

Based on the compressive tests, the compressive
strength equals to 42.52 MPa and 47.36 MPa for hor-
izontal and vertical sample orientations respectively.
This values are within the safe variation limit to the
data provided in product description of the mortar.

4.4 Material behaviour perpendicular to the layers

Two series of tests were performed for the samples
with transverse raster orientation perpendicular to the
payers. Figures 7, 8 represent two variations of surface
treatment.

Figure 7. 3-point bending test of the sample with transverse
raster orientation (series 1).

Figure 8. 3-point bending test of the sample with transverse
raster orientation (series 2).

It can be observed that the samples from series-1
with dimensions 40 x 40 x 160 had higher surface
roughness, and the samples from series-2 with dimen-
sions 35 x 35 x 160 had smooth surface treatment.

All the samples were tested with the load applied
along the interlayer interfaces as the strength of the
samples highly depend on the bond strength between
the concrete layers.
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Mechanical properties in transverse raster orien-
tation perpendicular to the layers can be seen in
Table 3.
Table 3. Mechanical properties of 3DPC in transverse
direction.

Number of Average
Test specimens strength (MPa) sy ≈VX

Sample size: flexural test 40 x 40 x 160
compression tests 40 x 40

Flexure 3 4.56 0.13
Compression 8 49.16 0.11

Sample size: flexural test 35 x 35 x 160
compression tests 35 x 40

Flexure 5 7.74 0.04
Compression 9 47.36 0.1

It can be observed that the flexural strength in
transverse direction was 4.56 MPa, and compressive
strength equals to 49.16 MPa for the samples with
higher surface roughness.

For the samples with smooth surfaces, the material
strength was 7.74 MPa and 47.36 MPa in flexure and
compression respectively.

4.5 Material behaviour with an angle to the
print-line

The material strength in the direction of 45 degrees
was also measured, and the test results in compression
and flexure can be seen in Table 4.
Table 4. Mechanical properties of 3DPC in direction of 45
degrees to the print-line.

Number of Average
Test specimens strength (MPa) sy ≈VX

Flexural 2 5.75 0.13
Compressive 4 44.48 0.05

In case of the samples with the orientation of 45
degrees to the layer direction, the crack started at the
connection between two layers, Figure 9.

The average flexural strength was 5.75 MPa, and
compressive strength was 44.48 MPa.

4.6 Material strength of the cast specimens

To be able to compare results, the series of the cast
specimens were also tested, produced from the same
mortar Weber 3D 145-2 in conventional way in the
formwork. The results can be seen in Table 5.

As it can be seen from the table above, the flexural
strength of the cast specimens is 7.48 MPa, and the
compressive strength is 51.03 MPa.

Figure 9. 3-point bending test of the sample with printing
orientation of 45 degrees to the print-line.

Table 5. Mechanical properties of the cast samples from the
mortar Weber 3D 145-2.

Number Average
Test of specimens strength (MPa) sy ≈VX

Flexural 6 7.48 0.06
Compressive 12 51.03 0.02

4.7 Cracking behaviour

The crack in 3D printed elements was initiated due to
different reasons: geometrical non-linearities at outer
surfaces, inner pores, debonding. For the cases with
transverse layer orientation, the crack initiated at the
external surfaces and broke along the interlayer inter-
faces (Figures 7, 8, 10). This can be caused by initial
geometrical imperfections and is also influenced by
the bond strength of the interlayer surface.

Figure 10. Cracks in 3DPC samples with transverse raster
orientation.

Another one important fact is that the 3D printed
concrete is not compacted while printing compared
to the conventionally cast concrete. This leads to
increased number of voids and uncertainties in extru-
sion based material. This inner voids can be the
locations of crack initiation, and it can be seen in
Figure 11.

It can be seen, that the crack didn’t take a usual shape
while breaking in flexure, and had a small inclination.
This was caused by a porosity and voids inside the
printed material.
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Figure 11. Voids initiating the crack in 3DPC (cast sam-
ples).

5 DESIGN EXAMPLE

In order to design material behaviour of 3DPC using
conventional construction software, a plate with the
dimensions 550 mm x 300 mm x 40 mm was used,
with the thickness corresponding to the layer effective
thickness during concrete extrusion (40 mm in case of
this study). This is due to reduced contact efficiency
resulting from the features of 3D printing technology
that affect specific layer geometries, which should be
taken into account during design (van den Heever et
al. 2022).

Based on the material strength test results, the
Young’s moduli for the 3D printed concrete in dif-
ferent direction to the print-line were calculated. An
approximation was used, since the tensile strength for
the samples with longitudinal print direction placed
horizontally (7.54 MPa) and vertically (7.1 MPa) was
similar to that of the samples cast in conventional way
(7.48 MPa). The results are as follows:

−Elong = 14 GPa

−Etransv = 10.5 GPa

−Econven= 14 GPa

where Elong , Etransv, Econven are the Young’s moduli for
3D printed concrete in longitudinal and transversal
directions, and for the samples cast conventionally.

It can be observed that the elastic modulus in
transversal direction Etransv is approximately 75%
of that in longitudinal direction Elong . Two material
models were used:

1) homogeneous isotropic material properties of
3DPC based on mechanical properties of the
mortar used;

2) orthotropic model with the transverse stiffness
equal to 75% of the longitudinal (main) layer
direction.

Generally, there are two ways to estimate flexural
rigidity EI of the plate (where E=modulus of elastic-
ity; I=moment of inertia): to modify E in longitudinal
and perpendicular printing directions respectively, or
by adapting I by changing the geometry of the section
in perpendicular direction, in this case by assigning
the plate thickness= 36 mm with E= constant in all
directions.

At this stage the influence on the resistance mod-
ulus is not yet included as the slab part cut out of
an unreinforced wall will behave brittle without any
post-cracking behaviour. As already described in sec-
tion 3.1, this is easily feasible without a need of
advanced skills.

The plate was modelled with supports at three
points, and loaded up to 0.65 kN. Figure 12 represents
both design concept for homogeneous isotropic (left)
and orthotropic (right) material models respectively.

Figure 12. Support and loading conditions of the plate.

The vertical displacement was calculated for
both homogeneous and orthotropic material models
(Figure 13).

Figure 13. Vertical displacement of the plate.

6 VALIDATION

To validate the results of FE simulations, the real 3d
printed concrete plate of the same dimensions 550 mm
x 300 mm x 40 mm was tested.

The plate was supported and loaded in the same way
as it was previously designed: three point supports and
two points of load application.

The vertical displacement was measured at two free
corners of the plate: left (L) and right (R). The plate
loaded up to 0.65 kN can be seen in Figure 14.
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Figure 14. Vertical displacement of the plate.

The loading steps and the values of vertical dis-
placement from the tests and FE simulation for homo-
geneous and orthotropic material models can be seen
in Table 6. Red circles in Figure 14 represents vertical
displacement measurement locations.

Table 6. Vertical displacement of free corners of the plate
during test and FE simulation (mm).

L R

Load ort. hom. ort. hom.
(kN) test model model test model model

0.15 −0.01 −0.070 −0.047 0.01 0.021 0.006
0.25 −0.08 −0.117 −0.078 0.015 0.035 0.009
0.35 −0.15 −0.163 −0.109 0.04 0.050 0.013
0.45 −0.23 −0.210 −0.140 0.06 0.064 0.017
0.55 −0.29 −0.256 −0.171 0.08 0.078 0.020
0.65 −0.36 −0.303 −0.202 0.11 0.092 0.024

This study clearly reflects the well-corresponding
values of the vertical displacement between tests and
FE simulation for the orthotropic material model,
which are −0.36 mm and −0.303, respectively, at the
maximum applied load on the left corner (L). For the
homogeneous material model in the simulation, the
vertical displacement was underestimated by about
30% and was −0.202 mm.

A similar situation was observed for the right free
corner of the 3DPC plate (R). The lift of the plate
during the test corresponds to that in the orthotropic
material model, having similar values of 0.11 mm
and 0.092 mm, respectively. This was not the case
for a model with homogeneous material properties, in
which the vertical displacement was underestimated
by a factor of 4 and, according to FE simulation, was
0.024 mm.

The vertical displacement at each load step during
the test can be seen in Figure 15. A linear increase in

vertical displacement in line with the increase in load
can be observed.

Figure 15. Vertical displacement at left (L) and right (R)
corners of the plate at each load step.

7 SUSTAINABILITY

3D printing technology has a bright future, espe-
cially when it comes to sustainable construction. New
environmental friendly materials can be used for
3D printing, e.i. geopolymers replacing the standard
binders, and recycled aggregates. The attempts have
been already made, and according to the cost analysis
the use of sustainable materials in 3D printing reduces
construction time and decreases the energy demand
by around 50% compared to the conventional produc-
tion techniques, as well as reducing the CO2 emission
(Munir at el. 2021).

8 CONCLUSIONS

This paper proposes a simple and efficient approach
to computational modeling of deformationbehaviour
of 3D printed structures prior to failure using conven-
tional construction software that does not require any
add-ons for complex material designs.

Material properties of 3DPC were studied empiri-
cally:

– the samples oriented parallel to the layers had sim-
ilar strength to that of conventionally cast samples;

– samples with a transverse raster orientation perpen-
dicular to the printing layers with smooth outer sur-
faces (series-2) showed results close to the results
of samples with a longitudinal orientation and of
samples cast conventionally.

– Mechanical properties of the samples in series-1
with higher surface roughness was lower compared
to the samples series-2. This is due to the quality
of the interlayer interfaces and defects of external
surfaces, which were partially removed for the sam-
ples in series-2. Having smaller cross section, the
samples showed higher mechanical strength.
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Taking into account anisotropic material proper-
ties of 3D printed concrete, two material models were
designed using Diamonds BuildSoft, and the results
were verified by tests. This is the first attempt to
simulate the pre-peak behaviour of 3DPC with com-
mercial software. It is meant to define the deformation
behaviour prior to failure, but does not allow to predict
the strength of a 3d printed element.

It can be concluded that material anisotropy for
3DPC can be modelled by adjusting the geometry
of the designed element proportionally reducing the
geometry of the samples in transversal direction. This
approach was verified empirically, and the results
obtained correspond well to the material model with
the orthotropic material properties. The model with
homogeneous material properties showed the results
underestimating the vertical deflection at around four
times.
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healing for Fibre-Reinforced Cementitious Composites (FRCCs)
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ABSTRACT: Aiming to predict long-term performance of advanced cement-based materials and design more
durable structures, a reliable modelling of the autogenous healing of cementitious materials is crucial. A dis-
crete model for the regain in terms of water tightness, stiffness and strength induced by the autogenous and/or
“žstimulate’ž autogenous healing was recently proposed for ordinary plain concrete. The modelling proposal
stemmed from the coupling of two models, namely the Hygro-Thermo-Chemical (HTC) model, on one side,
and the Lattice Discrete Particle Model (LDPM), on the other side, resulting in the Multiphysics-Lattice Dis-
crete Particle Model (M-LDPM). Being this approach not customised only for ordinary concrete, but for the
whole broad category of cementitious materials, in this paper, its application to Fibre-Reinforced Cementitious
Composites is presented. To accurately simulate what has been experimentally observed so far, the mechanical
model is updated to also include the self-healing of the tunnel cracks at the fibre-matrix interfaces. Therefore,
the self-repairing process is modelled to develop on two independent stages: (a) matrix cracks healing, and
(b) fibre bridging action restoring. This research activity is part of the modelling tasks framed into the project
ReSHEALience, funded from the European Union’s Horizon 2020 Research and Innovation Programme.

1 INTRODUCTION

The unavoidable concrete cracking and the ensu-
ing degradation phenomena have encouraged many
researchers to increase the efforts in enhancing the
comprehension of such processes and the capability of
modelling the concrete long-term performance. In this
framework, the inherent healing capacity of cement
based materials has been gaining an increasing interest
by the concrete professional and scientific community.
As demonstrated by several authors since its discov-
ery (Snoeck & De Belie 2015), and mainly in the last
decades, the self-healing of concrete can lead to a
considerable recovery of physical and, in some cases,
mechanical properties of damaged concrete.

Through a painstaking literature survey, an unbal-
anced scientific production clearly stands out. Over the
years, an extensive research effort has been placed on
the experimental investigation of the self-healing phe-
nomenon, aiming to detect its peculiar features and
which techniques were worth being further explored
to turn it into a predictable and/or engineered process.
On the contrary, few models have been developed to
account for the healing-induced effects on both dura-
bility performance and mechanical behaviour. As a
consequence, in literature there is a limited number
of numerical studies on this phenomenon (Aliko-
Benítez et al. 2015; Barbero et al. 2005; Chen et al.
2021; Davies & Jefferson 2017; Di Luzio et al. 2018;
Hilloulin et al. 2014; Hilloulin et al. 2016; Mergheim

& Steinmann 2013; Oucif et al. 2018; Voyiadjis et al.
2011). The majority of them relies on continuum-
based approaches, leading to consider the aforemen-
tioned effects on the mechanical properties only as
a smeared contribution in terms of either stiffness
and/or strength regain in the cracked state. Likewise,
the impact of the crack self-repairing on durability
performance indicators, e.g. permeability, can be sim-
ulated only as an overall effect, missing in simulating
the local nature of the phenomena, e.g. where the water
permeability increases dramatically and restores after
healing.

The research activity presented in this paper aims to
formulate a discrete model for capturing the mechani-
cal recovery induced by an actual damage healing into
which the cracks sealing might eventually evolve.

Building more durable structures in order for con-
crete to result in a more sustainable material, develop-
ing sound models to predict the structural life span of
concrete structures, and accounting for durability as
a governing performance within the design process:
these are only three of the many concurrent causes that
have made the concrete durability worthwhile deserv-
ing an increasing interest by the scientific community.
These issues also represent the guidelines of the Hori-
zon 2020 project ReSHEALience, in which this work
is framed. The project aims to define the concepts of
Ultra High Durability Concrete (UHDC) and Dura-
bility Assessment-based Design (DAD). The UHDC
material concept encompasses advanced cementitious
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materials which fully exploit their own inherent capac-
ity of autonomously repairing the cracks. To the
purpose, supplementary cementitious materials, such
as slag and crystalline admixtures, are included into
the mixture. In the project ReSHEALience, the iden-
tification of a quantitative approach to predict long-
term performance of concrete structures, even when
exposed to extremely aggressive environments, was
performed through both laboratory experimental tests
and monitoring campaigns on pilot UHDC structures
exposed to real exposure conditions, together with the
development of numerical models at meso- and macro-
scale (Al-Obaidi et al. 2020, 2021; Lo Monte & Ferrara
2020, 2021).

2 RESEARCH BACKGROUND

The modelling proposal stems from the coupling
of two models, namely the Hygro-Thermo-Chemical
(HTC) model, on one side, and the Lattice Discrete
Particle Model (LDPM), on the other side (Di Luzio
& Cusatis 2009a, 2009b; Cusatis et al. 2011a, 2011b;
Pathirage et al. 2019). The result is the Multiphysics-
Lattice Discrete Particle Model (M-LDPM) (Abdel-
latef et al. 2015; Alnaggar et al. 2017; Cibelli et al.
2022; Yang et al. 2021).

2.1 Lattice Discrete Particle Model

In LDPM the geometrical configuration is generated
by a trial-and-error random procedure, in which the
aggregate particles, whose size distribution derives
from a Fuller-type curve, are assumed to have spheri-
cal shape and are randomly placed within the volume.
Then, zero-radius particles are located along the exter-
nal surfaces to facilitate the imposition of boundary
conditions. Based on the Delaunay tetrahedralisation
of the generated system of points, a three-dimensional
domain tessellation is carried out, and linear segments,
namely tetrahedra edges, are generated to connect all
particles centres. The outcome is a system of lattice-
connected cells interacting through triangular facets:
the mechanical interaction among particles is based
on four particle-subsystems (Figure 1a), in which the
spheres (nodes) are connected by struts (edges), hav-
ing cross section (triangular facets) resulting from the
volume tessellation (Figure 1b).

In LPDM, rigid body kinematics is employed to
describe the deformation of the lattice particle system,
and the displacement step [[uC ]] at the centroid of each
facet, Ck (Figure 1b), is used to define the strain mea-
sures which read εN = (nT [[uC ]])/l; εL= (lT [[uC ]])/l;
εM = (mT [[uC ]])/l, where n, l, m are the unit vectors
which identify a local reference system on each facet
in normal and shear directions, respectively.

Vectorial constitutive laws are defined at the cen-
troid of each projected facet to describe the meso-
scopic stress. In the elastic regime, normal and shear
stresses are proportional to the corresponding strains:

σN =EN εN ; σL=ET εL; σM =ET εM , where the elas-
tic moduli are EN =E0 and ET =αE0, in which E0 is
the effective normal modulus and α the shear-normal
coupling parameter. One of the unique feature of the
LDPM formulation consists of being able to automat-
ically capture the effects of the heterogeneity of the
concrete, such as splitting cracks and failure in com-
pression, which can not be achieved by employing the
classical theory of elasticity, e.g. see (Cusatis et al.
2011).

Figure 1. (a) four-particle subsystem; (b) triangular facets.

When in a facet under tension the strain reaches
the tensile elastic limit, the meso-scale crack open-
ing is calculated as wN = l (εN − σN /EN ); wL= l(εL −
σL/ET ); wM = l (εM − σM/ET ). Then, the crack open-
ing vector associated to each facet is wc=wN n+
wLl + wM m, where wN is the actual opening/closure of
the crack, along the direction orthogonal to the facet,
while wL and wM are two sliding components, catching
shear displacements at crack surfaces.

The non-linear behaviour is analysed considering
three non-linear meso-scale phenomena: (1) fracture
and cohesion, (2) compaction and pore collapse, and
(3) friction. For the latter two and further details about
the model calibration and validation, the reader can
refer to (Cusatis et al. 2011a, 2011b). Hereinafter, for
the sake of clarity, the constitutive law for the fractur-
ing behaviour is briefly recalled as the healing effect
is therein implemented.

In LDPM the fracture behaviour is mod-
elled by setting damage-type constitutive laws,
which stem from the definition of effective
strain, ε=

√
ε2

N + α
(
ε2

L + ε2
M

)
, and stress, σ =

√
σ 2

N +
(
σ 2

L + σ 2
M

)
/α. Then, for tensile loading (ε >

0), the effective mechanical parameters permit to
define the following relationships between strain and
stress in the local reference systems: σN = εN (σ/ε) ;
σL=α εL (σ/ε);σM =α εM (σ/ε).The effective stress
σ is incrementally elastic (σ̇ =E0 ε̇) and must satisfy
the inequality 0≤ σ ≤ σbt(ε, ω), in which σbt(ε,ω) is
a yield surface enforced by means of a vertical (at
constant strain) return algorithm.The strain-dependent
limit can be expressed as

σbt(ε,ω)= σ0(ω) exp
[
−H0 (ω)

〈εmax − ε0〉
σ0(ω)

]
(1)

where the brackets 〈·〉 are used in Macaulay sense:
〈x〉=max{x, 0}, and H0 is the post-peak softening
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modulus, whose formulation allows for a smooth tran-
sition from a softening behaviour under pure tensile
stress (H0(ω=π/2)=Ht) to perfectly plastic response
under pure shear (H0(0)= 0). In fact, the formulation
of H0 reads H0(ω)=Ht(2ω/π )nt , with nt softening
exponent.

In Eq. 1, ω is the parameter representing the degree
of interaction between shear and normal loading. It is
worth noting that εmax is a history-dependent variable,
making, on turn, the yield surface a history-dependent
exponential function. Therefore, the actual fracture
strength is assumed dependent on the actual level of
damage. Finally, in Eq. 1 the function σ0(ω) is the
strength limit for the effective stress and is formulated
as

σ0(ω)= σt

−sin(ω)+
√

sin2(ω)+ 4αcos2(ω)/r2
st

2αcos2(ω)/r2
st

(2)

in which rst = σs/σt is the ratio between the shear
strength, σs (cohesion), and the tensile strength, σt .

2.2 Lattice Discrete Particle Model for FRC
(LDPM-F)

The extension of LDPM to include fibre-reinforcing
mechanisms is obtained by inserting straight fibers,
in proportion to the volume fraction Vf , with random
positions and orientations, into the LDPM geomet-
rical configuration. The geometry of each individual
fiber is characterised by the diameter df and length Lf .
The fibre system is overlapped to the polyhedral cell
system, and each facet is paired with its intersecting
fibres.At the facet level, the matrix-fibre interaction is
described by the bridging forces carried by the fibres
crossing the facet, which are activated when the crack
opening initiates. In this configuration, equilibrium
considerations permit to reasonably assume a parallel
coupling between the fibres and the surrounding con-
crete matrix. Then, the total stresses on each LDPM
facet can be computed as σ = σc + (

∑
f ∈Ac

Pf )/Ac,
where Ac is the facet area, and Pf represents the
crack-bridging force for each fibre crossing the given
facet.

Since the mechanical interaction between the fibres
and the surrounding matrix occurs at a scale smaller
than the typical modelling scale of LDPM, the
micromechanics governing such interaction is not
explicitly simulated in the mesoscopic LDPM numeri-
cal framework. The micro-mechanical crack-bridging
mechanisms, featuring the bond between the single
fibre and the embedding matrix, are implemented into
the model within the formulation for computing the
bridging force Pf , briefly reported hereinafter as it was
published by (Schauffert & Cusatis 2012).

In addition to the above consideration, additional
hypothesis are postulated: (i) the contribution of fibres
to the equilibrium is negligible in case of either com-
pression stress on the facet or stress not exceeding
the elastic limit; (ii) the interaction between adjacent

fibres and the effect that adjacent mesoscale cracks
are both neglected; (iii) each fibre is assumed to
be straight, elastic, with negligible bending stiffness,
and non-circular cross sections are simulated through
an equivalent diameter, calculated as df = 2(Af /π )1/2

with Af fibre cross-sectional area.
As proposed by Li et al. (Lin et al. 1999), in LDPM-

F the slippage at full debonding vd is computed as vd =
(2τ0L2

e)/(Ef df )+ [(8GdL2
e)/(Ef df ]1/2, in which Le is

the embedment length, Ef the modulus of elasticity of
the fibre, τ0 the constant value of frictional stress for
the portion of the embedded fibre that has debonded,
and Gd the bond fracture energy. The parameters τ0
and Gd govern the debonding stage, modelled as a
tunnel-type cracking process (Yang et al. 2008).

During the debonding stage (v < vd ), the fibre
bridging force is given as (Lin et al. 1999)

P(v)=
[
π2Ef d3

f

2
(τ0v + Gd)

]1/2

(3)

After full debonding (v > vd ), the mechanism is
entirely frictional and the fibre load results from (Lin
et al. 1999)

P(v)=P0

(
1− v − vd

Le

)[
1+ β (v − vd)

df

]
(4)

where P0=πLedf τ0, whereas β is the coefficient in
charge of shaping the relationship to capture the high
variability of the frictional interface nature (Lin &
Li 1997). When the friction at the interface does not
depend on the slippage, β is set to zero. In case
of either slip hardening or slip softening friction, it
assumes positive (β > 0) or negative (β < 0) values,
respectively.

If the orientations of the embedded and free fibre
portions is different, at the point where the fibre exits
the matrix and changes orientation, the bearing stress
is partially supported by the underlying matrix. When
this localised stress field reaches a sufficient inten-
sity, spalling occurs, and the embedment length of the
fibre is consequently reduced by a length sf . Further-
more, when the fibre exits the tunnel crack, the latter
shortened because of the spalling, it wraps around the
intact matrix. This phenomenon is generally referred
to as snubbing effect, and it is modelled through the
frictional pulley idealisation (Li et al. 1990), which
complies with the fibre pull-out model adopted in the
LDPM-F model (Yang et al. 2008). The fibre load is
updated to account for spalling and snubbing phenom-
ena (see (Schauffert & Cusatis 2012)). The updated
value of the fibre load must comply with its rup-
ture strength, then the following relationship must

always hold: σf = (4Pf )/(πd2
f )≤ σu.f exp

(
−krupϕ

′
f

)
,

in which krup is a material parameter, and σu.f the ulti-
mate tensile strength of the fibre. In case of fibre stress
exceeding the corrected value of strength, Pf is set
to zero. The exponentional term reflects experimental
evidence showing lower rupture loads in single fibre
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pull-out tests for increasing values of ϕ′f (Kanda & Li
1998).

For a generic fibre, with embedment segment ori-
entation nf , subject to pull-out from both embedment
depths due to a crack opening w, and with a spalling
length sf on both sides, the crack-bridging force is
given by Pf =Pf n′f , with the crack-bridging seg-
ment computed as ||w′|| = 2sf + vs + vl and ||n′|| =
w′/||w′||, where ||w′|| is the vector length, and sf the
slippage reduction due to the matrix spalling. The
embedment segments have the relative slippage vs
and vl , respectively. The pullout resisting forces is

then Pf =P(vs) exp
(

ksnϕ
′
f

)
=P(vl) exp

(
ksnϕ

′
f

)
, and

on each side must be the same. From the last equal-
ity, the relative slippages vs and vl can be computed
by an interactive procedure in which the compatibil-
ity between the bridging segment and the slippages is
enforced.

Further details on the constitutive relations of fibres
and matrix-fibre interaction as well as on the cali-
bration of the governing parameters can be found in
(Schauffert & Cusatis 2012; Schauffert et al. 2012).

3 MESOSCALE HEALING MODEL

The modelling approach relies on the identification of
two different levels of damage: (i) matrix and (ii) fibre-
matrix interface cracks. The matrix cracks (Figure 2a)
are induced by the loads, either mechanical or environ-
mental, and are responsible of the fibres mechanical
activation: as long as no cracks intersect a fibre, the
latter does not play any role in the structural response.
The fibre-matrix interface cracks (Figure 2b) develop
during the interface debonding instead, and are here-
inafter also referred to as tunnel cracks between the
fibre and the surrounding embedding matrix.

Figure 2. Two levels in the damage modelling: (a) matrix
cracks at the mesoscale; (b) fibre-matrix interface cracks
at the microscale.

The self-healing model is in line with the LDPM
approach, dealing with matrix and tunnel cracks sep-
arately. The autogenous repairing of the former is
implemented within the constitutive fracture law at the
mesoscale, whereas the effect of healing on the fibres
response is taken into account within the calculation
of the bridging force carried by the steel reinforce-
ment. This approach stems from the idea for which the
recovery of matrix damage and tunnel cracks along
fibre-mortar interface affect the material mechanical
behaviour differently.

3.1 Healing characterization

The healing kinetic law formulated for plain cemen-
titious materials (Di Luzio et al. 2018; Cibelli et al.
2022) presents no limitations in being used for fibre-
reinforced composites as well. Following the concep-
tual differentiation between matrix and tunnel cracks,
it can be exploited for capturing the autogenous, and
eventually stimulated, healing of the matrix cracks. On
the other hand, in order to have two separate internal
variables feeding the mechanical model at two dif-
ferent levels, in the improved version of M-LDPM
a distinction is made between the normalised heal-
ing degree for matrix cracks and that for fibre-matrix
interface cracks, λm

sh and λ
f
sh respectively. In the fol-

lowing the formulation emphasising such splitting is
reported, with no theoretical differences with respect
to the original one (Di Luzio et al. 2018).

The kinetic laws for matrix (superscript m) and
tunnel (superscript f ) cracks read

λ̇m
sh= Ãm

sh

(
1− λm

sh

)
(5a)

λ̇
f
sh= Ãf

sh

(
1− λ

f
sh

)
(5b)

in which Ãm
sh and Ãf

sh, inversely proportional to the
reaction characteristic times, are calculated as

Ãm
sh= Ãm

sh0 · fh(h) · f m
w (wc) · e[−Em

sh/R(1/T−1/Tref )] (6a)

Ãf
sh= Ãf

sh0 · fh(h) · f f
w (wc) · e

[
−Ef

sh/R(1/T−1/Tref )
]

(6b)

where Ãm
sh.0 and Ãf

sh.0, namely the inverse of the
reaction characteristic times in standard conditions
(RH=100%, T =Tref , wc= 0), value

Ãm
sh0= Ãm

sh1

(
1− αsh0

c

)
c+ Ãm

sh2 · ad (7a)

Ãf
sh0= Ãf

sh1

(
1− αsh0

c

)
c+ Ãf

sh2 · ad (7b)

where c and ad are the cement and healing-promoting
admixture content, respectively. The material param-
eters Em

sh, Ef
sh, Ãm

sh1, Ãf
sh1, Ãm

sh2, and Ãf
sh2 are calibrated

against experimental data, allowing to catch the pecu-
liarities of phenomena occurring at two different
scales. Furthermore, the double degree of freedom
permits to properly simulate the effect of crack open-
ing, modelled through the coefficient fw(wc), on the
process evolution. The coefficient fh(h) accounts for
relative humidity and simulates the relevant role played
by the moisture supply, making the process proceed
or stop whether the healing water-driven reactions are
fed or not. In the Eqs. the relative humidity, h, and
temperature, T , fields are provided by the HTC model.

3.2 Healing implementation in LDPM and
LDPM-F

The healing-induced effect on the mechanical response
of the cementitious materials involves recovery of
post-cracking residual fracture strength. Depending on
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which cracks are healed, the aforementioned recovery
is the result of different physical phenomena. For this
reason, the implementation in the mechanical models
follows two separate dedicated approaches.

3.2.1 Matrix cracks
For matrix cracks, the healing effect is modelled by
enforcing a homothetic expansion of the boundary
limit curve σbt(ε,ω) (Eq. 1), as more pronounced as
more the repairing process has developed.

What has been experimentally observed so far is that
plain concrete specimens, once loaded, fractured and
unloaded, might show a recovery in strength and stiff-
ness if re-loaded after a long enough curing period. It
is due to the concurring delayed hydration and carbon-
ation self-healing mechanisms. This partially restores
the material continuity, having straightforward con-
sequences on the concrete bulk permeability and its
proneness to the attacks of environmental aggres-
sive agents. The effects on the mechanical response,
instead, depend on the chemical bounds between the
filling products and the crack walls; then, it is not
granted that the recovery in water tightness and the
regain in strength and stiffness proceed to the same
extent. In fact, the crack sealing might not result in an
actual concrete healing.

With reference to plain concrete specimens, pre-
cracked by means of three-point bending tests up to
damage threshold beyond the material linear limit (Eq.
2), the healing effect on fracture behaviour might be
measured by carrying out the same fracture tests after
varying curing periods. The recorded load-CMOD
curve may show reloading branches (1) stiffer than
the unloading ones, and (2) crossing the un-healed
material boundary curve (Figure 3).

Figure 3. An example of the experimental curves gained in a
laboratory campaign to assess the mechanical regain induced
by the autogenous healing (Ferrara et al. 2014).

In this work, the modelling strategy adopted aims
at preserving the inherent mechanical meaning of the
impact due to the healing on the fracture strength, and
relies on the homothetic expansion of the boundary
curve (Figure 4). The expansion extent is assumed to
be proportional to the healing degree λm

sh, thus cap-
turing the recovery in strength, without varying the

Figure 4. matrix cracks - Effect of healing on the boundary
curve for the fracturing behaviour.

crack width within the numerical framework. In other
words, the boundary expansion is conceived to catch
the behaviour described above: the material must be
allowed to overcome the strength value reached at
the beginning of the unloading branch, for the pre-
viously reached value of crack width, if any healing
has occurred.

In LDPM, the healing implementation affects the
strength limit calculation (Eq. 2), thus, on turn, the
limit curve (Eq. 1). The updated version of the heal-
ing dependent-constitutive law relevant to the fracture
behaviour reads

σ0(ω, λm
sh)= σ0(ω)

(
1+ csh · λm

sh

)
(8a)

σbt(ε,ω, λm
sh)= σ0(ω, λm

sh) e

[
−H0 (ω) 〈εmax−ε0〉

σ0(ω,λm
sh )

]

(8b)

In Eq. 8a, csh is an empirical coefficient governing
the impact of crack closure on mechanical strength.
It is defined as healing mechanical impact coefficient.
The parameter csh depends on several aspects, e.g. cur-
ing conditions and mixture composition, therefore, it
has to be calibrated experimentally.

Looking at the updated equation of the boundary
curve (Eq. 8b), it is important to notice that the healing
plays an active role as internal variable in both shaping
the softening branch and setting the stress limit for the
earlier stage of the constitutive law, namely when the
maximum strain does not exceed the elastic limit. It is
worth emphasising that, though the modelling strategy
yields a recovery of both linear and post-peak behav-
ior,the former is never imposed at the mesoscale, being
only the limit curve expanded exclusively on those
facets which experience cracking and healing.

3.2.2 Fibre-matrix interface cracks
With single-fibre pull-out tests, stopped after the first
load drop and resumed up to rupture after curing
periods featuring different duration and exposure con-
ditions, it has been observed that the healing of the
interface cracks does affect the pull-out strength.
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Whenever the healing process happens, it yields
delayed hydration products and CaCO3 crystals fulfill-
ing the tunnel between the fibre and the surrounding
mortar ((Qiu et al. 2019)). This results in a recovery
of the interface frictional bond. The phenomenon is
implemented in LDPM-F by updating the value of the
fibre bridging force P(v) with a coefficient propor-
tional to λf

sh. The updated constitutive law for the fibre
load reads

P
(

v, λf
sh

)
=

(
1+ γsh · λf

sh

)
P(v)≤α · P0 (9)

Referring to a single-fibre pull-out test, in Fig-
ure 5 the effect of the tunnel crack self-healing on
the mechanical response is qualitatively shown. After
the loading and unloading stages (branches L and U),
the specimen is exposed to given environmental con-
ditions for a time span long enough to permit the
self-healing process to develop. The cured specimen
is then reloaded (branch R) up to rupture. Due to the
recovered frictional bond, the specimen might experi-
ence a recovery in stiffness and strength, to an extent
proportional to the degree of completion of the heal-
ing process. By means of the device in Eq. 9 LDPM-F
is updated to be capable of capturing this experimen-
tal evidence. In Figure 5 the updated constitutive law
is plotted with reference to increasing self-healing
degrees, in the hypothesis of γsh= 1.00.

Figure 5. fibre-matrix interface cracks - Effect of healing
on the fibre load vs. slippage law.

The coefficientγsh has a physical meaning similar to
csh. It governs the impact that the healing of the tunnel
cracks has on the fibres contribution to the mechanical
equilibrium. With γsh= 0 it is possible to capture the
crack sealing, whereas if γsh≥ 0 the load carried by the
fibre is enhanced thanks to the increased friction along
the crack walls. The latter has an upper bound (α · P0)
in which the bridging force at full debonding P0 is
either amplified or reduced by the coefficient α. Both
γsh and α are material parameters to calibrate against
experimental data. Depending on the composition of
the cementitious composites, the technique adopted
to engineer the process, the fibres nature, the curing

conditions, and the loading regimes the healing might
allow to recover either partially or entirely the fibre
load bearing capacity. The parameter α sets the max-
imum achievable level of recovery. Once calibrated
experimentally, γsh must comply with the condition for
which, in case of full fulfilment of the tunnel crack:

if λ
f
sh= 1.00 =⇒ γsh≤ α · P0

P(v)
− 1 (10)

4 NUMERICAL SIMULATIONS

4.1 Healing of matrix cracks

The concrete self-healing is expected to affect the
meso-scale mechanical response of the material, in
tension as much as in shear. The model has been
implemented to catch this phenomenon, with the pos-
sibility of calibrating the entity of the induced strength
recovery by means of the parameter csh. In order to
investigate the model capability of capturing the self-
repairing effect on tensile and shear behaviours, the
numerical simulations of how two ordinary plain con-
crete (OPC) specimens behave after being damaged in
tension and brought to collapse, after curing, either in
pure tension or shear have been executed.

Table 1. Mix composition of the reference concrete
(dosages in kg/m3).

constituent content

cement 300
water 190
aggregates 5.5-16 mm 1950

The material adopted has been an ordinary plain
concrete whose mix composition is presented in
Table 1.

Concerning the geometry, the collapse in tension
has been investigated for a dogbone specimen, as usual
for pure tensile tests, having the dimensions reported
in Figure 6a and thickness of 20 mm. These dimen-
sions have been chosen in order to have the narrowest
part of the sample larger than the maximum aggregate
size of the adopted material, and, at the same time, as
smaller as possible to localise there the damage. The
other geometrical characteristics have been set accord-
ingly, with the aim of having a sample weak at the
midspan, and the parts 70 mm wide covering a portion
of the total length as smaller as possible. For the shear
failure, instead, a bi-notched prismatic specimen has
been used (Figure 6b), having dimensions 100x70x20
mm3, and the notches 2 mm wide and 25 mm deep.
In this case, it has been necessary to avoid a slender
sample, as the dog-bone specimen presented above is.
In fact, a stocky element presents a larger proneness
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Figure 6. Geometrical dimensions of the simulated specimens in millimetres.

Figure 7. LDPM modelled specimens for assessing the influence of healing implementation on (a) tension and (b) shear
behaviours.

to shear failure. However, likewise for the investiga-
tion in pure tension, it has been necessary to shape the
sample in order to have all the mechanical energy chan-
nelled into the growth of the fracture at the mid-span,
with no dispersion due to multi-cracking scenarios. For
this reason, it has been used a bi-notched shape, with
narrow and deep notches. It is worth mentioning that

also in this case the narrowest sample cross-section
has been set in order to have the smallest dimension
larger than the maximum aggregate size. The other
dimensions have been derived to result in a stocky
sample.

Once the samples geometry has been generated,
both specimens have been damaged by means of

92



an increasing tensile loading, up showing a single
crack roughly 350µm wide (Figures 7a,b).Afterwards,
the dog-bone sample has been brought to failure in
tension, whereas the bi-notched one in shear. This
second stage has been repeated after having imposed
increasing value of the normalised healing degree, λm

sh,
ranging from 0.00 to 1.00, and in the hypothesis of
having unit healing mechanical impact coefficient, csh.
Then, in Figures 7c,d, the model ability of catching the
healing-induced recovery in tensile and shear strength
is shown plotting the (e) tensile load vs. displacement
and (f) shear load vs. slippage curves.

4.2 Healing of tunnel cracks

The dogbone specimen in Figure 6a has been used also
for testing the implementation of the tunnel cracks
healing, by generating a FRC-based mesh with the
same geometry. The concrete composition is reported
in Table 2, where it is possible to see that the aggregate
size has been reduced in order to have fibres length
complying with specimen dimensions and aggregate
size: Lf ≥ 3Dmax.

Table 2. Mix composition of the reference fibre-reinforced
concrete (dosages in kg/m3).

constituent content

cement 600
water 200
aggregates 3-6 mm 1518
steel fibres df = 0.22 mm, Lf = 20 mm 0.50% by volume

As for matrix cracks, the purpose of investigat-
ing if the healing implementation affects the fibre
load-slippage constitutive law as shown in Figure 5
is achieved through a simple set of numerical simu-
lations. The dogbone specimens has been loaded in
pure axial tension up to feature a single prominent
crack approximately 60µm wide. Then, it has been
completely unloaded. After having reached the zero-
load condition, the sample has been reloaded up to
failure. The reloading stage has been performed by
assuming for the tunnel cracks self-healing degree,
λ

f
sh, increasing fixed values between 0.00 and 1.00,

namely 0.00, 0.25, 0.50, 0.75, and 1.00.The numerical
simulations have been carried out in two different sce-
narios: with no matrix cracks healing, λm

sh= 0.00, and
in the hypothesis of matrix and tunnel cracks healing
evolving identically, λm

sh= λ
f
sh.

Firstly, it is important to assess how the model per-
forms at the single fibre-facet intersection, to see if the
P-v curve actually evolves as presented in Figure 5.The
comparison between the fibre load vs. slippage curves
on one of the most damaged LDPM facets obtained
with λ

f
sh equals to 0.00 and 1.00 are shown in Figure

8b. The effect of healing acts as expected, though the

re-loading in presence of healing stops before reach-
ing the ultimate slippage (Figure 8b). In fact, as stands
out from Figures 8c,d, in the numerical simulations
the specimen experiences a sudden drop in strength,
disregarding whether the healing of the matrix cracks
is considered or not.

5 CLOSING REMARKS

The healing implementation for both matrix and tun-
nel cracks show promising capability in capturing the
experimental evidence.

The healing of the matrix cracks affects the
macroscale response of the two specimens as expected,
in tension as much as in shear. With an increasing
healing degree, in the hypothesis of csh= 1.00, the
material experiences increasing stiffness during the re-
loading and higher strength. It is worth underlining that
the full recovery occurs at the mesoscale, shaping the
macroscale behaviour accordingly. The peak load after
re-loading, even in case of csh · λm

sh= 1.00 on the dam-
aged facets, is not equals to the peak load of the virgin
material.This is in line with laboratory results showing
that the hydration outcomes at the crack faces, the main
contributors to autogenous cracks healing, have gen-
erally lower performance compared to those in bulk
cement paste.

With λm
sh= 0.00 and increasing λf

sh (γsh= 1.00), the
model returns a recovery in stiffness and strength dur-
ing the re-loading, even though the numerical results
do not show a stable re-loading branch when the slip-
page overcomes the value of the pre-cracking stage.
This is likely due to the limited energy redistribution
allowed by the specimen geometry, imposed by the
necessity of having localised damage. This deduction
is justified also by the fibre load vs. slippage curve on
the most damaged facets. It is evident that the specimen
failure anticipates the full depletion of the load-bearing
capacity of the system fibre-matrix.

In case of λm
sh= λ

f
sh (γsh= 1.00), the recovery in

stiffness and strength is more pronounced as expected.
Also in this condition, the limited energy redistribution
due to specimen geometry does not permit to exploit
the full material ductility.

The model presented seems to have the potential
for capturing phenomenological trends and mechan-
ics standing out from the experimental investigations
available in the literature. However, the calibration and
validation against laboratory results, currently matter
of study, will help in further improving the proposed
approach.
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Experimental and computational micromechanics of dental cement paste
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ABSTRACT: Biodentine, a cementitious material used in dentistry, significantly outperforms the stiffness and
strength properties reached by standard construction cements. This motivates a deeper mechanical analysis, both
experimentally and computationally, at different observation scales. At the tens of microns scale, normalized his-
tograms of hardness and modulus, obtained from more than 5000 nanoindentation tests, are suitably represented
by the superposition of three lognormal distributions (LNDs) with increasing median values in stiffness and hard-
ness (Dohnalík et al. 2021). The two lower LNDs characterize two variants of calcite-reinforced hydrates, while
the highest LND underestimates the elastic properties of the small, very stiff inclusions of unhydrated clinker
and zirconium dioxide. In order to quantify the micromechanical interactions of the aforementioned material
constituents, the LNDs of the two calcite-reinforced hydrate types enter a self-consistent elastic homogenization
scheme, which, at the millimeter scale, is linked to the elastic properties obtained from longitudinal and trans-
verse ultrasonic wave velocities. This reveals the existence of defects, acting as an additional micromechanical
phase, and also provides detailed insight into the microstress fluctuations within the key element of Biodentine’s
mechanics: the calcite-reinforced hydrates.

1 INTRODUCTION

Over the little less than the two decades which have
passed since the pioneering works of Constantinides
& Ulm (2004), the combination of grid nanoinden-
tation and micromechanical modeling has become
a broadly accepted standard for the state-of-the-art
characterization of cementitious construction materi-
als (Königsberger et al. 2018; Němeček & Lukeš 2020;
Sarris & Constantinides 2013; Vandamme & Ulm
2009). The high level of maturity reached in the afore-
mentioned studies motivates to enter, with very similar
methods, the somehow related, still distinct, world of
dental cement pastes, a fascinating field where both
experimental and computational micromechanics play
an only minimal role (if any).

The present contribution concisely summarizes
very recent experimental results obtained at the Insti-
tute for Mechanics of Materials and Structures of
TU Wien (Vienna University of Technology, Aus-
tria) in cooperation with Septodont, Saint-Maur-le-
Fossés, France. The portfolio of the latter company
comprises a cementitious product called Biodentine
which largely outperforms the mechanical strength
properties of ordinary construction cement pastes,
by reaching compressive strengths of some 300 MPa
(Butt et al. 2014). In this context, the obviously arising

question concerns the microstructural and microme-
chanical features which lie at the origin of this
impressive mechanical competence; and an interest-
ing answer to this question comes from evaluating
the aforementioned experimental data in the frame-
work of an innovative modeling technique which
blurs the border between statistical and deterministic
micromechanics.

2 WIDE GRID NANOINDENTATION OF
ULTRASMOOTH SURFACES –
IDENTIFICATION OF MATERIAL PHASES

It is well known that a sufficiently smooth surface is
the key to reliable and informative data obtained from
nanoindentation tests (Donnelly et al. 2006; Miller
et al. 2008): The smoother the surface, the smaller
the minimum indentation depth needed to obtain the-
oretically meaningful experimental results, and hence,
the higher the microstructural resolution at which the
material properties can be deciphered.

Aiming at diving as deeply as possible into the
origin of the fascinating mechanical properties of
Biodentine, particular precautions were taken in
order to attain a new level of surface smoothness
(Dohnalík et al. 2021): In more detail, the top surface
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of a well-hardened Biodentine specimen measuring
12× 7× 3 mm3 was first ground by hand. Subse-
quently, it was polished by means of a PM5 precision
polishing machine (Logitech, Scotland), operated for
20 hours at 40 to 50 revolutions per minute, using sili-
con carbide (SiC) grinding paper with a grain size of 5
microns. This resulted in a root-mean-squared average
roughness, which was as low as 18 nm, when aver-
aged over a quadratic test area with 50 microns side
length. To the best knowledge of the authors, this has
significantly shifted the limits in the field, where cus-
tomary roughnesses, when averaged over 50 microns,
are about 36 nanometers (Miller et al. 2008).

Also in terms of number of indentations making
up the testing grid per sample, customary numbers
of indentations per sample, typically amounting to
some two hundred, were significantly increased in
the present study, with more than 5000 tests having
been performed on a sample of Biodentine. We also
note that the grid was very wide, with its spacing of
70 microns being orders of magnitude larger than the
on average 140 nm nanoindentation depth. In this way,
it reflects the properties of wide testing area span-
ning some 5 times 5 mm, while guaranteeing virtually
total independence of the individual nanoindentation
test results. In this context, the individually obtained
hardness and elastic properties refer to representative
volume elements with a characteristic length amount-
ing to half of the indentations depths (Jagsch et al.
2020; Königsberger et al. 2021), i.e. to around 70 nm.

The aforementioned, very high number allowed
for a quantitative assessment of distribution functions
used for the representation of the histograms of hard-
ness and modulus values obtained from the nanoin-
dentation tests: While Gaussian functions have been
adopted as the standard choice, the very high number

Figure 1. Nanoindentation modulus values obtained from microscopic characterization of Biodentine: histogram and
representation in terms of superimposed lognormal probability distributions (LND).

of tests performed on dental cement pastes could be
remarkably better described by means of lognormal
distributions, more precisely by the superposition of
three such probability density functions, see Figures 1
and 2. As explained in further detail in (Dohnalík
et al. 2021), the three lognormal distributions refer
to cement clinker and zirconium dioxide (with a
median modulus of 92.2 GPa and a median hard-
ness of 6.66 GPa), to high-density calcite-reinforced
hydrates (with a median modulus of 62.6 GPa and
a median hardness of 2.78 GPa), and to less dense
calcite-reinforced hydrates (with a median modulus
of 45.1 GPa and a median hardness of 1.15 GPa).
Moreover, these lognormal distributions, rather than
Gaussians, naturally reflect the physical nature of stiff-
ness and hardness, the values of which need to be
strictly positive.

However, one must be cautious when evaluating the
force-displacement curves of the indents made into
the relatively small inclusions made up of the stiffest
phases (i.e. of cement clinker and zirconium dioxide -
see the light gray and white inclusions in Figure 3)
through the standard Oliver-Pharr formulae for infinite
halfspaces (Oliver & Pharr 1992). Such an evaluation
typically delivers insufficiently high elastic values;
and this is because the indenter does not so much
probe the stiff, small inclusion, but the latter acts as
kind of a larger indenter pressed into the surrounding
matrix (with smaller elastic properties than those of the
inclusion). This has been explicitly shown by a combi-
nation of imaging and nanoindentation, applied to two
different types of supplementary cementing materi-
als (Königsberger et al. 2021; Ma et al. 2017). In full
accordance with these deliberations, the indentation
modulus of clinker has been reported to amount to
125 GPa (Constantinides & Ulm 2007).
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Figure 2. Nanoindentation hardness values obtained from microscopic characterization of Biodentine: histogram and
representation in terms of superimposed lognormal probability distributions (LND).

Figure 3. Black-and-white light microscopy image of a
polished surface of Biodentine, magnification of 200 fold.

3 ULTRASONIC TESTING –
MACROSTIFFNESS CHARACTERIZATION
AND DETECTION OF “ZERO-VOLUME”
DEFECTS

The non-destructive ultrasonic pulse transmission
technique was used to characterize the macroscopic
elastic properties of hardened Biodentine. Both longi-
tudinal and transversal waves, with frequencies in the
kHz and MHz regime, were sent through the material.

The test setup consisted of a serial arrangement of a
pulse generator, a layer of honey (serving as a coupling
medium), a plastic foil, the specimen, another plastic
foil, another layer of honey, and a pulse detector. The
plastic foils protected the sample against contamina-
tion of its open porosity with the coupling medium.

The specimens, the test setup, and its surrounding
environment were conditioned to 37◦C.

The wave velocities v of Biodentine are equal to the
height b of the tested specimens divided by the time
of flight tf of the ultrasonic pulse through the tested
specimen,

v= b

tf
. (1)

tf cannot be directly measured, but results from the
difference of two other time measurements,

tf = ttot − td , (2)

where ttot is the travel time of the pulse from the trans-
ducer – through the coupling medium, the plastic foils,
and the specimen – to the receiver, while the delay
time td is needed by the pulse to just travel from the
generator, through honey and plastic foils (but without
specimen), to the receiver.

325 measurements of longitudinal waves were per-
formed at material ages from 7 to 28 days. The central
excitation frequencies amounted to 50 kHz, 500 kHz,
1 MHz, 2.25 MHz, 5 MHz, 10 MHz, and 20 MHz. The
longitudinal wave velocities were fairly independent
of the material age as well as the testing frequency.
On average, they amount to 4.977 km/s, see (Dohnalík
et al. 2021) and Figure 4.

122 measurements of transversal waves were per-
formed at material ages from 7 to 28 days. The central
excitation frequencies amounted to 2.25 MHz and
5 MHz. The transversal wave velocities are also fairly
independent of the material age and the testing fre-
quency. On average, they amount to 2.473 km/s, see
Figure 5.
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Figure 4. Longitudinal wave velocities sent at different fre-
quencies through cylindrical samples of Biodentine, with
of 5 mm diameter and 10 mm height; the mean longitudinal
wave velocity is equal to vL= 4.977 km/s; the pink markers
correspond to 50 kHz transducers’ central frequency, red to
500 kHz, cyan to 1 MHz, black to 2.25 MHz, green to 5 MHz,
blue to 10 MHz, and yellow to 20 MHz transducers’ central
frequency, after (Dohnalík et al. 2021).

Figure 5. Transversal wave velocities vT as a function of
the material age ranging from 7 to 28 days after produc-
tion, for different central frequencies: 2.25 MHz (black ‘×’)
and 5 MHz (green ‘◦’); the mean transversal wave velocity
amounts to vT = 2.473 km/s.

The principle of separation of scales states that the
wavelengths λ must be significantly larger than the
size �rve of a representative volume element of the
tested material (Kohlhauser & Hellmich 2013; Zaoui
2002), and that �rve must be significantly larger than
the characteristic size �het of the microheterogeneities:

λ� �rve� �het . (3)

Residual clinker grains are the largest microhetero-
geneities of hardened Biodentine. Their characteristic
size amounts to some 4 microns (Dohnalík et al. 2021):
�het ≈ 4 µm. The characteristic size of a representa-
tive volume of Biodentine is some three times larger
(Drugan & Willis 1996; Pensée & He 2007). Thus,
�rve≈ 12 µm. This size is to be compared with the
wavelenghts of the ultrasonic pulses.

The wavelength is indirectly proportional to the
ultrasonic frequency. Therefore, the largest testing fre-
quency yields a lower bound for the wavelengths. As
for the longitudinal waves, this lower bound follows as

λL≥ vL

max f
= 4.977 km/s

20 MHz
= 249 µm . (4)

As for the transversal waves, it follows as

λT ≥ vT

max f
= 2.473 km/s

5 MHz
= 495 µm . (5)

Eqs. (4) and (5) underline that the wavelengths were by
a factor of 20 (longitudinal waves) and 40 (transversal
waves) larger than �rve≈ 12 µm.The principle of sepa-
ration of scales, see Eq. (3), is fulfilled (Kohlhauser &
Hellmich 2013; Zaoui 2002). This provides evidence
that wave velocities of Figs. 4 and 5 are representative
for the homogenized composite Biodentine.

According to the theory of wave propagation
through isotropic linear-elastic media, longitudinal
and transversal wave velocities, together with the mass
density ρ of the tested material, allow for quantify-
ing the bulk modulus, k , and the shear modulus, µ,
as (Achenbach 1973; Carcione 2007; Kohlhauser &
Hellmich 2012),

k = ρ

(
v2

L −
4

3
v2

T

)
, (6)

µ = ρ v2
T , (7)

respectively. Evaluation of Eqs. (6) and (7) based on
ρ= 2.311 kg/dm3 (Dohnalík et al. 2021) and the wave
velocities of Figs. 4 and 5 gives access to constant
isotropic elastic properties, namely to a bulk modulus
of 38.4 GPa and a shear modulus of 14.1 GPa. These
stiffness properties are lower than all of the different
phase properties identified by nanoindentation. This
indicates that another, “zero-volume” material phase
is mechanically active at the single-microns scale.
This additional phase may be called “microcracks”,
or more appropriately “micro-defects”, with the lat-
ter probably arising from non-perfect bonding of the
calcite-reinforced hydrate and clinker phases alluded
to before.

4 STATISTICAL MICROMECHANICS –
DEFECT DENSITY AND MICROSTRESS
DISTRIBUTIONS

In order to elucidate the mechanical functioning
within a representative volume element of Bioden-
tine, we resort to the theoretical framework of Eshelby
problem-based continuum micromechanics (Eshelby
1957; Pensée et al. 2002; Zaoui 2002). However,
extending the traditional types of homogenization
schemes, we introduce infinitely many spherical
hydrate phases with micro-elastic properties following
the lognormal probability distributions associated with
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Figure 6. Micromechanical representation of Biodentine
(“material organogram”): the two-dimensional sketch shows
qualitative properties of a three-dimensional representative
volume element.

the high-density and lower-density calcite-reinforced
hydrates, as given in Figure 1. The model is com-
pleted as seen in Figure 6, by two additional spher-
ical phases representing clinker and zirconium diox-
ide, and by zero-shear-stiffness, isotropically oriented,
infinitely many flat spheroidal phases representing
defects (Dormieux et al. 2006). Phase input proper-
ties comprise bulk and shear moduli for the non-defect,
non-hydrate phases as known from literature sources
(Hussey and Wilson 1998; Pichler & Hellmich 2011),
and the lognormal distributions of the indentation
modulus of the two hydrate phases, whereas the crack
or defect density parameter in the sense of Budian-
sky & O’connell (1976) and Poisson’s ratio of the
hydrate phases remain a priori unknown, and are back-
computed from the model predictions for the bulk and
shear moduli of the homogenized material, given in
more detail in (Dohnalík et al. 2022). The resulting
crack (or defect) density parameter amounting to 0.77,
underlines the pronounced micromechanical effect of
the defects (much more pronounced than e.g. the crack
density parameter found in nanoindentation-probed
rail steel (Jagsch et al. 2020)); while the Poisson’s ratio
of calcite-reinforced hydrates, amounting to 0.20, is
smaller than the standard value of 0.24 known from
construction cements (Constantinides & Ulm 2004).

Having in this way elucidated the microelasticity of
Biodentine, the understanding of strength upscaling is
a still open topic. As a first steps towards the latter
endeavor, it is illustrative to evaluate the concentra-
tion components quantifying the relation between the
(macro-)stresses subjected to a piece of Biodentine
and the (micro-)stresses prevailing in the individual
hydrate phases, in terms of probability distributions.
As shown by example of the deviatoric portion of
the stress concentration tensor (see Bvol in Figs. 7
and 8), the corresponding probability distributions
are not any more of the lognormal, but of the beta
type. Their shape makes simple statements, like one
hydrate being more loaded than the other one, obsolete,
and given also the distributed nature of the phase-
specific hardness properties, indicates a quite complex
microstructural interaction pattern which eventually
determines the fascinatingly high strength properties
at the Biodentine level.

Figure 7. Probability distribution of the deviatoric com-
ponent of the stress concentration tensors providing the
scale-transition from Biodentine to the lower-density calcite-
reinforced hydrates.

Figure 8. Probability distribution of the deviatoric com-
ponent of the stress concentration tensors providing the
scale-transition from Biodentine to the high-density calcite-
reinforced hydrates.

5 CONCLUSIONS

Combining microscopic characterization (grid nanoin-
dentation), macroscopic experiments (ultrasonic pulse
velocity testing) with multiscale modeling (Eshelby-
problem-based self-consistent scheme) allowed for
developing a realistic micromechanics model for hard-
ened dental cement paste “Biodentine”. This model
provides quantitative insight into microscopic stress
fluctuation resulting from corresponding microstruc-
tural stiffness distribution.
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ABSTRACT: Autogenous healing induced by the dissolution of C-S-H and CH in a cracked cement paste was
modelled in this study, at the mesoscale of tens of nanometres. The pore solution contains carbon dioxide (CO2)
resulting in the precipitation of calcium carbonate (CaCO3) into the crack. The simulations were performed
using MASKE, a recently developed coarse-grained Kinetic Monte Carlo framework where the molecules of
the solid phases are modelled as mechanically interacting particles that can also precipitate and dissolve. The
precipitation of CaCO3 molecules was initially observed in tiny gel pores within the C-S-H, but eventually
extends completely filling the crack. The mechanical properties of the healed system were also investigated by
straining the simulation box, computing the corresponding virial stress, and plotting the resulting stress-strain
relationship.

1 INTRODUCTION

1.1 Self-healing in concrete

Concrete from Ordinary Portland Cement (OPC) is
quasi-brittle construction material which can with-
stand high compressive load. During its life cycle,
microcracks can develop within its structure. Micro-
cracks are too small (<0.1 mm) to significantly
affect the mechanical strength of a structure, but they
do make the cement matrix more permeable. This
increases the likelihood of chemical attack and cor-
rosion of reinforcement, which may ultimately com-
promise the structural integrity of concrete (Qureshi
et al. 2018). Self-healing is a possible solution to this
issue.

Self-healing is classified as (1) Autogenous heal-
ing: where the materials in concrete continue to react
with water in the cement paste forming new hydra-
tion product that seal the cracks, or (2) Autonomous
healing: where sealing agents (such as bacteria) are
encapsulated in the cement matrix and become active
when a crack changes its local exposure conditions.

1.2 Autogenous healing models

Autogenous healing in cement/concrete can occur in
2 ways: (1) Continuous hydration at the crack where
previously anhydrous cement comes in contact with
water/moisture. The anhydrous cement reacts with
water producing hydration products, such as calcium

silicate hydrate (C-S-H) and calcium hydroxide (CH);
Another way is (2) the dissolution of C-S-H, CH and
other hydration products that have already formed in
the cement matrix, releasing ions that react with dis-
solved carbon dioxide (CO2) in the pore solution. This
process eventually precipitates carbonates that fill the
cracks (mainly calcium carbonate, CaCO3, although
other alkali ions, such as Na or K, may contribute
with other carbonates too, especially in low-calcium
cements).

Very few models exist which describe autogenous
healing. Some models were proposed to predict the
amount of unhydrated cement present in the matrix
after hydration based on the water-cement (w/c) ratio
and the fineness of cement (He et al. 2007). This is
an indirect measure of the self-healing potential of the
sample.Traditionally, continuous hydration of residual
anhydrous phases was believed to be the governing
self-healing mechanism. However, in recent years it
has been shown that continued hydration reduces in
a few weeks after casting, whereas calcite forma-
tion from existing hydration product becomes the
main mechanism of healing afterwards (Van Tittel-
boom & De Belie 2013). Numerical models have been
proposed for autogenous healing by both the mecha-
nisms (further hydration and calcite formation). Huang
et al. (2013) proposed a reactive transport model
for the self-healing of microcracks in cement paste
by further hydration. They established the relation-
ship between self-healing efficiency and extra water
provided. Hilloulin et al. (2014) reported a combined

102 DOI 10.1201/9781003316404-12



hydro-chemo-mechanical model to simulate autoge-
nous healing which also predicts the mechanical regain
after healing. Chitez and Jefferson (2016) combined
the existing approaches to propose a comprehensive
mathematical model for early age autogenous heal-
ing. The model uses reactive water transport to predict
the movement of healing materials (C-S-H and CH)
under a thermo-hygro-chemical (THC) framework.
This model also predicts early age crack healing due
to continuous hydration and is not applicable to long
term calcite formation. It was only in recent years that
calcite formation induced healing was attempted to
be modelled. Ranaivomanana and Benkemoun (2017)
proposed a numerical model in which chemical reac-
tions and transport phenomena were modelled for
the porous matrix and the crack by diffusion and
permeation. .

While hydration induced self-healing has been stud-
ied extensively, models on calcite formation induced
autogenous self-healing are far and few between. The
existing models have their own strength, but also are
limited in the mechanistic description of CaCO3 pre-
cipitation, and this limits the possibility to use them
to explore new solutions. For instance, altering the
chemistry of the phases favouring CaCO3 formation
as a way to control the rate of the process or even
the morphology of the carbonates to optimize healing.
This study aims to address calcite induced self-healing
and the resulting mechanical regain using a discrete
particle-based model.

2 METHODOLOGY

2.1 Overview

In this study we have examined autogenous healing
by simulating a crack in a paste of C-S-H and CH
under the assumption of full hydration. The size of the
simulated system is kept very small, with crack with
size of 1 nm only. In this way we can use kinetic con-
stants for individual reactions and model these directly
from Transition State Theory, without involving addi-
tional assumptions to further coarse grain the system
(Shvab et al. 2017). Once generated, the crack was
filled with water and CO2 at atmospheric saturation
level which was kept constant throughout the simula-
tion. This induces the dissolution of both C-S-H and,
most significantly, CH releasing free calcium ions.
These ions then react with the CO2 resulting in the
precipitation of CaCO3 and healing the crack.

2.2 MASKE: A kinetic Monte Carlo framework

The simulations were performed using MASKE, a
recently developed Kinetic Monte Carlo framework
(Shvab et al. 2017). In MASKE, the system is dis-
cretized representing the mineral phases as agglom-
erates of nanoparticles which interact via effective
potentials (energy as a function of distance) whose

spatial derivatives are the interaction forces. The par-
ticles can dissolve and precipitate via reaction rates
obtained from transition state theory (TST). These
rates depend on macroscopic rate constants for the
chemical reactions involved, the saturation index of the
solution with respect to each reaction and the excess
free energy coming from the interactions between par-
ticles.This excess free energy is particularly important
because it renders the solubility of individual parti-
cles dependent on local morphology i.e. the number
of interacting neighbours as well as the presence of
any local mechanical stress.

The dissolution and precipitation rates for a particle
are described by Equations 1 and 2.

rdiss= kBT

h
Vm

c∗

γ ∗
exp

[
−
G∗

kBT

]
exp

[−
Udiss−Ukink

kBT

]

(1)

rprec= kBT

h
Vm

c∗

γ ∗
exp

[
−
G∗

kBT

]
βprec (2)

where kB: Boltzmann constant; T : temperature, K ;
h: Planck constant; γ ∗: activity coefficient; c∗: stan-
dard state concentration; VM : molar volume of the
particle;
G∗: standard state activation energy for dis-
solution; βprec: saturation index of the solution. 
Udiss
is the change in interaction energy following the dis-
solution of a particle and 
Ukink is the interaction
energy between kink particle and its nearest neigh-
bour. The derivation and physical meaning of these
equations and its validation are discussed in detail in
earlier works (Coopamootoo & Masoero 2020; Shvab
et al. 2017).

2.3 Simulation steps

The simulations were carried out in 6 steps:

(1) Starting from an initially empty simulation
box, CH crystals were created by agglomer-
ating nanoparticles representing individual CH
molecules, until reaching a volume fraction of
28% in the box. This is the theoretical volume
fraction of CH in a paste obtained from fully
hydrated C3S if the C-S-H is assumed to have
a gel porosity of 34.5% (Masoero et al. 2014).

(2) A spherical agglomerate of randomly closed
packed C-S-H particles was created separately
and parametrized to get the correct interaction
potential parameters for C-S-H. This ensured
that the C-S-H grain made of the agglomerated
particles is at equilibrium (no dissolution nor pre-
cipitation). The equilibrium is reached when the
activity product of the surrounding solution coin-
cides with the equilibrium constant of C-S-H (i.e.,
saturation index (β = 1)).

(3) Other interaction potentials such as C-S-H/CH,
C-S-H/CaCO3 and CH/CaCO3 were analytically
determined averaging the interaction strength
between pure phases.
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(4) Once the interaction potentials were determined,
the box was filled to the prescribed volume frac-
tion of solid C-S-H (47%). This leaves 25% gel
porosity in the system.

(5) The C-S-H / CH system was then cracked by carv-
ing out a 1nm thick slice of particles from the
center of the box.

(6) The dissolution-mineralization in and around the
crack was finally simulated using MASKE.

These steps are detailed in the sections below.

2.4 Creating Ca(OH)2 crystals

This first simulation was to create two crystallites of
Ca(OH)2, targeting a desired volume fraction η = 28%.
This η assumed that the paste was pure C3S and was
fully hydrated, hence leading only to C-S-H gel and
Ca(OH)2 as hydration products. The C-S-H gel was
assumed to have an internal gel porosity of approxi-
mately 34.5%, whereas the Ca(OH)2 was considered
be a solid crystal. The volume fractions occupied by
the two minerals were then obtained from the stoi-
chiometry and molar volumes (Masoero et al. 2014).
It was also assumed that the uncracked paste features
no capillary pores.

Two small face centered cubic (FCC) nuclei of
Ca(OH)2 were created (Figure 1 (a)) with different
orientations, and setting the solution to a high concen-
tration of Ca2+ and OH−, so that further precipitation
will occur. Snapshots were saved during the simula-
tion and a configuration with η≈ 28% was chosen
(Figure 1(b)).

2.5 Parameterising amorphous C-S-H for solubility

The particles in MASKE interact via harmonic poten-
tials as described in Coopamootoo and Masoero
(2020).

U (r)= 1

2
k(r − r0)2 − ε0 (3)

Figure 1. Box size 14x14x10 nm. CH (red) and C-S-H (blue). (a) Two FCC seeds of CH were placed in the box (b) CH
precipitation carried out to the desired 28% and (c) C-S-H packed to 47%.

where U is the interaction energy, r is the interparticle
distance, k =EA/r0, E being the Young’s modulus of
the particle and r0=πD2

0/4 and ε0 is the minimum
energy at equilibrium. ε0= γ�/nkink , where γ is the
surface energy, � is the surface area of particle and
nkink number of neighbors for a kink particle. A kink
particle has half the number of neighbors as a bulk par-
ticle. For an FCC packed CH nkink is easily determined.
However, for amorphous C-S-H it was estimated by a
trial-and-error process.

A random close packing (RCP) of C-S-H particles
were created separately in another simulation box.This
was done using the random space filling algorithm
in Masoero & Di Luzio 2020. The equilibrium dis-
tance between interacting C-S-H particles was set to
be smaller than the actual molecular diameters, to com-
pensate for the porosity of a random close packing and
eventually obtain a dense C-S-H with same density as
solid C-S-H without pores. See Coopamootoo 2020
paper for a similar approach, although there aimed at
producing non-porous C3S. Attention was paid to zero
the average axial stresses on the dense C-S-H system.

An iterative scheme was employed to compute
the number of interacting neighbors in the bulk of
the dense C-S-H domain, which in turn defines the
interaction potential between C-S-H particles: see
Coopamootoo and Masoero (2020) for details on how
the number of neighboring particles in the bulk and the
water-solid interfacial energy of a phase can be used
to obtain interaction parameters. When the RCP with
consistent interactions was obtained, a spherical grain
was carved out and the surrounding solution was set to
match the equilibrium constant for C-S-H dissolution.
At this stage, the bond energy of C-S-H was tweaked
until the correct zero-rate of dissolution/precipitation
was obtained.

2.6 Parameterising amorphous C-S-H/CH

The relations described in section 2.5 were used to
determine the interaction potentials of particles from
the same solid phase. However, for two particles
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Figure 2. Number of particles vs time as the simulation
proceeds. Results are provided for the first 15000 steps.

representing different phases, 1 and 2, such as C-S-H
and CH, it was assumed that the minimum interaction
energy can be determined by the expression

ε12= ε21= (k12γ1 + k21γ2)
A1

n
(4)

where k12= k21 was assumed to be on average 0.5.
This factor is a measure of individual surface energy

Figure 3. Box size 14x14x10 nm. Crack size 1nm. CH (red) and C-S-H (blue) dissolves precipitating CaCO3 (yellow).
Snapshots at 3 consecutive stages (T1, T2, T3) were saved and the evolution of mechanical properties as the crack heals was
determined by the stress-strain plot.

contribution towards the interaction potential between
surfaces of particles 1 and 2. Detailed atomic scale
simulation studies may give a better estimate of k.

2.7 Packing and relaxing

Once the interaction potentials between all possible
combination of particles were determined, C-S-H was
packed to a volume fraction of 47% around the pre-
existing CH grains, as presented in Figure 1(c). This
leaves 25% of gel pores. This simulation box was
then relaxed by energy minimization ensuring that the
pressure in all directions was zero. A crack of 1 nm
was then created at the centre of the box as shown in
Figure 3 (T0).

The concentration of carbonate ions in the implicit
solution was fixed to atmospheric saturation levels as
determined by Henry’s law. Finally, the dissolution-
precipitation reactions were run with MASKE and the
results were obtained as detailed in the next section.

3 RESULTS AND DISCUSSION

Number of particles of C-S-H, CH and CaCO3 vs
time for the first 15000 steps of the simulation is
shown in Figure 2. The rates of dissolution of CH and
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precipitation of CaCO3 were found to be constant at
this stage. Initially, dissolution of C-S-H particles was
observed close to the crack due to the amorphous struc-
ture of C-S-H. However, CH dissolution takes over and
for the rest of the simulation CH dissolution drives the
precipitation of CaCO3. It was observed that initially,
the CaCO3 precipitation was predominantly in the gel
pores. However, as simulation proceeds precipitation
was observed in the crack as well.

3.1 Mechanical properties

The crack was entirely bridged by CaCO3 when CH
had completely dissolved. The volume occupied by
solid particles in the box (with fixed box sizes)
increased by 15-20% due to the larger size of CaCO3
compared to CH.

When the crack started to heal (T1 in Figure 3),
a snapshot was saved and the box was strained per-
pendicular to the crack. Stress in the direction of load
was determined as the negative of pressure, this lat-
ter obtained from the virial method implementation in
LAMMPS (Thompson et al. 2022). Stress-strain rela-
tionship was plotted as shown in Figure 3. There was
a slight regain of mechanical strength (∼100 MPa)
at this point. Consequently, on further bridging this
regain increases steadily up to ∼1000 MPa of ulti-
mate strength (T3 in Figure 2) once the crack was fully
bridged.

These strength values are clearly much greater than
the tensile strength of cement paste, but one must con-
sider that these simulations are at the nanoscale, hence
fracture-inducing defects are very small (consider the
scaling of strength with defect size e.g. from Griffith’s
law). Such high tensile strengths are indeed typically
obtained from simulations at the nanoscale on cement
hydrates (Lolli et al. 2018).

These simulations show that MASKE is a pow-
erful tool to model the calcite precipitation induced
autogenous healing in cementitious systems. Further
investigations need to be done on how the chemistry
of the solution evolves during the dissolution and pre-
cipitation process. Furthermore, all the observations
in this work were made at nanoscale. Future research
will address the scaling-up to micro and macro scale.

4 CONCLUSIONS

• MASKE was used to simulate dissolution of
C-S-H and CH and precipitation of CaCO3 in a
model cement paste, leading to autogenous healing.

• A crack of size 1 nm was bridged completely by the
precipitated CaCO3. A volume gain of 15–20% was
obtained.

• Mechanical properties of the system steadily
improved with time.

• A clear strength gain was measured as the crack
healed.
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Numerical investigations of discrete crack propagation in Montevideo
splitting test using cohesive elements and real concrete micro-structure
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ABSTRACT: The paper is aimed at accurately predicting the discrete fracture process in concrete specimens
under complex stress states in two dimensional (2D) simulations. Plain concrete specimens subjected to Monte-
video splitting test (MVD) were used for consideration due to non-negligible shear stresses impact in this type of
test. In order to reflect the heterogeneous nature of the concrete, the meso-structure of the samples was included
in the numerical models. The concrete was modelled as a four-phase material consisting of a cement matrix
with air voids, aggregates and Interfacial Transitions Zones (ITZ) between aggregates and cement matrix. The
meso-structure was created on the basis of X-ray µCT image of real specimens. The analysis was performed
using the finite element method (FEM) with cohesive interface elements in a quasi-static approach carried out
by Abaqus. The results of the numerical simulations were compared with the values obtained experimentally in
terms of crack patterns and force versus crack mouth opening displacement (CMOD) diagrams.

1 INTRODUCTION

The phenomenon of cracking is particularly impor-
tant in detailed predictions of the behavior of concrete
and reinforced concrete elements in service state,
because it is an unavoidable feature and it also deter-
mines the key mechanical parameters of concrete such
as strength and stiffness (e.g. Tejchman & Bobiński
2013).

The nature of concrete cracking is described as
quasi-brittle, meaning that a complete material failure
does not occur immediately after the material reaches
its tensile strength. For quasi-brittle materials, reach-
ing stresses equal to the tensile strength results in the
initiation of a crack.Then the crack begins to propagate
due to loading into the creation of a fracture surface
until complete dissipation of the elastic strain energy.
In other words, the cracked material can still transfer
the stress although the weakening of the material by
cracking causes a decrease in its strength relatively to
the initial value. The behaviour of the material after
crack initiation can be described in terms of fracture
energy GF . The fracture energy is a material constant
which is defined as the amount of energy required
to nucleate a finite unit crack area (Hillerborg et al.
1976).

Among the tests to determine fracture energy, three
main groups of test methods can be distinguished:
direct uniaxial tension tests (UTT) and indirect experi-
ments based on beam bending i.e. 3-point bending test
(3PBT/TPBT) (Hillerborg 1985) or specimen splitting
i.e. wedge splitting test (WST) (Brühwiler &Wittmann
1990; Linsbauer & Tschegg 1986). Due to the fact that

the direct UTT method is time-consuming and requires
special equipment, while the results obtained depend
on the interaction of the machine with the specimen,
indirect methods TPBT and WST are most frequently
used (Löfgren et al. 2005).

In the TPBT, single edge pre-notched concrete
beams are tested. During the test, the CMOD and the
applied force are measured. Thus, the work required
to create the crack can be determined and then the
fracture energy can be calculated by dividing by the
fracture surface (in perpendicular plane to the tensile
stress direction). Main disadvantage of this method
is relatively large size of specimens (150× 150×
600 mm) which requires a quantity of concrete equiv-
alent to making four standard concrete cubes (150×
150× 150 mm).

The main idea of the WST approach is to convert
the vertical compressive force into splitting hori-
zontal forces. This is achieved by pressing a rigid
wedge into a pre-prepared notch in the cube speci-
men. Thus, the test requires smaller specimens (150×
150× 150 mm) and it can be performed with basic
test equipment. An additional advantage of using cube
specimens is the ability to test on specimens taken
directly from the existing structure or to use speci-
mens prepared for compressive strength testing. An
important consideration in WST is to eliminate the
effect of wedge-notch interaction on the test results.
To reduce friction between the steel wedge and the
concrete, special frames with bearing rollers or addi-
tional steel spacers and cylinders in contact with the
surface of the wedge placed directly in the notch
are used (Figure 1A). However, these procedures
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require additional widening of the notch and as a
result, the notch is divided into two parts of different
widths.

Figure 1. Load application schemes for different types of
tests A) WST, B) MVD, C) simplified MVD.

Therefore, efforts are being made to develop even
more simplified testing methods such as Montevideo
Splitting Test (MVD) (Segura-Castillo et al. 2018)
in which additional rollers are omitted, friction is
allowed to occur between the wedge and the spec-
imen and the effect of friction is considered in the
calculation of the effective splitting force Peff . The
authors focused on the effect of friction on the test
results and the correlation of the Force-CMOD dia-
grams of the MVD test with the results obtained from
the TPBT according to EN 14651. The fracture energy
can be determined from the corresponding F-CMOD
diagram, although this quantity was not determined in
the paper (Segura-Castillo et al. 2018).

Studies on the crack formation process in materi-
als built of cementitious matrices can be successfully
supported by numerical simulations. Computational
methods allow quickly and easily create and test var-
ious types of specimens in complex stress states that
are often difficult and time consuming to perform in
laboratory conditions. There are two main methods
to simulate cracking process - using continuous mod-
els, where the crack is interpreted as a strains band
on which microcracks occur (Desmorat et al. 2007;
Grassl et al. 2013; Marzec & Bobiński 2019; Mene-
trey & Willam 1995; Meschke et al. 1998; Skarżyński
et al. 2017, 2020) or discontinuous models (Marzec
& Bobiński 2022; Moes & Belytschko 2002; Welss &
Sluys 2001), where the formation of the actual crack
is considered.

Currently, due to high accuracy and wide availabil-
ity, approaches based on the fictitious crack model
(Hillerborg et al. 1976) implemented in the Finite
Element Method are particularly interesting. These
approaches usually use XFEM or interface elements
(IE) which are available in the standard element
libraries of widely used calculation software such as
Abaqus or ANSYS. They allow for an almost accurate
representation of the crack paths obtained in exper-
imental tests especially when the mesoscale of the
concrete is sufficient mapping (Trawiński et al. 2016;
Zhang et al. 2018).

The topic of modeling crack propagation in quasi-
brittle materials at the mesoscale level is currently
still dynamically developed especially in the field of
multiaxial stress cases.

The paper aims to investigate the applicability of
a discrete crack approach using cohesive elements

to model concrete mesoscale specimens (taking into
account the following phases in concrete: cement
matrix, aggregate, interfacial transition zones (ITZ)
and air voids) in complex stress states which occur
in MVD testing. The successful correlation of sim-
plified experimental testing with advanced numerical
methods will allow for a significant acceleration of
mesoscale concrete research.

2 EXPERIMENTAL TEST

2.1 Standard Montevideo splitting test

As mentioned the MVD is a simplified variant of the
Wedge Splitting Test. It allows to obtain meaningful
fracture parameters results without the need for addi-
tional apparatus and a complex specimen shape to
eliminate the influence of vertical forces due to fric-
tion between the wedge and the specimen. Another
advantage of the simplified variant of the test is the
possibility to test specimens of different sizes, which
allow simultaneous X-ray µCT imaging of the speci-
men (Skarżyński & Suchorzewski 2018).The simplifi-
cation of the procedure has the consequence that more
parameters will eventually be taken into account when
interpreting the results. When the MVD approach is
used the wedge is applied through steel angles (Fig-
ure 1B) or directly (Figure 1C) (Segura-Castillo et al.
2018; Skarżyński & Suchorzewski 2018) to the sur-
face of the notch, the vertical stresses components are
significant and affect the formation of the crack. As
the original authors of the MVD method recommend
the use of steel angles in the test, alternative variant
with direct steel-concrete contact has been named as
“simplified MVD” for the purposes of this work.

2.2 Simplified Montevideo splitting test

The experimental simplified Montevideo splitting
tests were carried out on cubic specimens with dimen-
sions 70× 70× 70 mm supported along its entire
length by a steel flat bar. An initial notch was placed
in the center of the upper surface of the specimen. The
dimensions of the notch were 15 mm high and 5 mm
wide.

The concrete mix consisted of cement CEM II/A-
LL 42.5R, flying ash, aggregate and water (Table 1).
Aggregate was divided into three main fractions i.e.

Table 1. Concrete recipe details.

Concrete components Concrete mix
(d50= 2 mm,
dmax = 16 mm)

Cement CEM II/A-LL 42.5R (c) 300 kg/m3

Sand (0 – 2 mm) 735 kg/m3

Gravel aggregate (2 – 8 mm) 430 kg/m3

Gravel aggregate (8 – 16 mm) 665 kg/m3

Fly ash (a) 70 kg/m3

Superplasticizer (s) 1,8 kg/m3

Water (w) 150 kg/m3
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sand with maximum grain size equal 2 mm, gravel with
the grain size in the range of 2 mm and 8 mm and gravel
with the maximum grain size equal 16 mm.

The sand point was equal to 41% and the water to
cement ratio was established at w/c= 0.50.

The test consisted in quasi-static pressing of a steel
wedge (with an inclination of 10◦) into a notch of the
specimen by the loading machine Instron 5569 with a
constant controlled crack mouth opening displacement
(CMOD) rate (Figure 2). Vertical force and CMOD
were measured during the experiment.

Figure 2. Experimental tests set-up of Montevideo splitting
test: A) 1173 Skyscan X-ray micro-tomograph, B) Instron
5569 static machine, C) cubic concrete specimen with notch.

Additionally, µCT imaging by the X-ray micro-
tomography Skyscan 1173 (Figure 2) was performed
to show the real 3D meso-structure of the specimen
and shape of the resulting crack. Finally, the crack
pattern was extracted in three different sections of the
test specimen: S1-S3 as a reference data to numerical
investigation (Figure 3).

Figure 3. Schematic representation of the scanning
sections.

The basic parameters of the hardened concrete i.e.
compressive strength fc, tensile strength ftand flexural
strength ft,flex were tested on additional cube speci-
mens and beams. The measured parameters are listed
in Table 2.

Table 2. Experimental mechanical properties of hardened
concrete.

Parameter Type Number Average Average
of sample of samples density stress

[-] [kg/m3] [MPa]

Compressive Cube* 6 2359.2 47.60
strength - fc
Tensile Cube* 6 2361.1 3.46
strength - ft
Flexural Beam** 6 - 3.60
strength - ft,flex

* Cube specimen dimensions 150× 150× 150 mm.
** Beam specimen dimensions 600× 150× 150 mm.

2.3 Experimental test results

The vertical force versus CMOD curve, which is
shown in Figure 4, was determined on the basis of
experimental studies. Furthermore three µCT scans
(Figure 5) showing the crack patterns and meso-
structure of the tested specimen were also taken.

Figure 4. Experimental vertical reaction force vs. CMOD
curve.

Figure 5. Experimental crack patterns A) section S1,
B) section S2, C) section S3.
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3 CONSTITUTIVE LAWS

3.1 Solid elements

Two-dimensional three-node elements in the plane-
stress (CPS3 in Abaqus nomenclature) were used to
represent the linear-elastic behaviour of the cement
matrix, aggregate, steel support and wedge. Relation
between strains ε and stresses σ in solid elements
was described by the Hooke’s law using two material
constants Young’s modulus E and Poisson’s ratio v:
⎡

⎣
�11
ε20
ε12

⎤

⎦= 1

E

⎡

⎣
1 −v 0
−v 1 0
0 0 (1− v)

⎤

⎦

⎡

⎣
cT11
T22
c12

⎤

⎦ (1)

3.2 Interface cohesive elements

To take into account the crack initiation and prop-
agation in the analyzed numerical models of the
tested specimens, zero-thickness interface 2D ele-
ments (COH2D4 in Abaqus nomenclature) with built-
in traction-separation law were used. Interfaces can be
modelled as elements with zero thickness. This gives
the possibility to introduce a strong discontinuity into
the continuous model by inserting IE between solid
elements.

3.2.1 Traction-separation law
Traction-separation law describes the relationship
between vectors of cohesive tractions and relative
separation displacements. For the 2D problem, this
relation can be defined as follows:
[

tn
ts

]
=

[
kn 0
0 ks

] [
δn
δs

]
(2)

where tn and ts are normal (mode I) and shear in tan-
gential direction tractions (mode II) respectively, kn,
ks are interface stiffness in the corresponding direc-
tions, whereas δn, δs are the displacements related to
the directions of traction.

Quadratic nominal stress criterion was assumed as
the crack initiation criterion:
{ 〈tn〉

tn0

}2

+
{

ts
ts0

}2

= 1 (3)

where tn0, ts0 are the critical stress in the normal
and tangential direction respectively and 〈 〉 denotes
Macaulay bracket which represents ramp function:

〈tn〉=
{

0, tn < 0
tn, tn ≥ 0 (4)

Equation 4 implies that crack initiation cannot occur
due to compressive stresses. In order to describe dam-
age under a combination of normal and tangential
shear deformations across the interface, the effective
relative displacement δm was introduced:

δm=
√
〈δn〉2 + δ2

s (5)

where symbol 〈 〉 means Macaulay bracket which
represents ramp function. It implies that negative dis-
placements shall not be taken into account in the
description of the crack propagation:

〈δn〉=
{

0, δn < 0
δn, δn≥ 0 (6)

Figure 6. Exponential traction-separation law curve.

When the initiation criterion described by Equa-
tion 3 is fulfilled in a particular cohesive element,
the stiffness degradation process begins (Figure 6). To
describe this effect scalar variable Dwas used:

kn = (1− D)kn0 (7)

ks = (1− D)ks0 (8)

where kn0 and ks0 mean initial interface stiffness in
normal and tangential direction, respectively. The evo-
lution of the D parameter can be described by different
curves. For materials based on cementitious matri-
ces, the bilinear (Petersson 1981) or exponential curve
(Barenblatt 1962) are most commonly used. In this
paper numerical model with an exponential softening
curve defined using effective relative displacements
was assumed:

D=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
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{
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m
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⎩
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[
−α

(
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m −δ0

m

δ
f
m−δ0

m

)]

1−exp(−α)

⎫
⎬

⎭
,

δmax ≤ δ
f
m

1, 0, δmax > δ
f
m

(9)

where δ0
m means the effective, relative displacement

at the crack initiation, δf
m is the effective relative dis-

placement at the complete stiffness degradation, δmax
m

stands for maximum effective relative displacement
obtained during the loading history and α is a non-
dimensional material parameter that defines the rate
of damage evolution.

4 MESH DEFINITION

DXF files containing the shapes and distribution of
aggregate grains and air pores were created from the
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µCT scans. A finite element mesh containing solid
elements was created in Abaqus/CAE on the basis
of these DXF drawings. In conventional Cohesive
Zone Model (CZM) it is necessary to a priori insert
cohesive interfaces in the path of predicted crack prop-
agation. If propagation path cannot be assumed in
advance, it is therefore required to place cohesive ele-
ments between all the solid elements. Due to the fact
that crack propagation through the aggregate usually
only occurs in high strength concretes, the possibil-
ity of cracks forming within the aggregate grains was
excluded. Thus, interfaces elements were created only
between the cement matrix elements (CM-CM) and
represents ITZs between the aggregate and the matrix
(CM-AGG) (Figure 7). A suitably modified program
DEIP (Truster 2018) written in MATLAB was used to
place the interfaces into the finite element mesh.

Furthermore, in order to simplify the model for
reduce time-consuming computing and unwanted
numerical issues of the cohesive elements appearing in
areas of excessive compressive stress concentrations
(the contact points between the specimen and the

Figure 7. Localization of interfaces in the mesh: A)
CM-CM, B) CM-AGG (ITZ) for section S1.

wedge and the steel flat bar). It was decided to gen-
erate cohesive elements only in the central area of the
specimen where a crack was most expected to occur
(Figure 7). The area containing the cohesive elements
was connected to the rest of the model using “elastic"
interface elements without a defined cohesive law.

5 FE SIMULATIONS

5.1 Material parameters

On the basis of experimental tests it was determined
that Young’s modulus for concrete specimens was
Ec= 34 GPa. Then, based on the ratio of the area of
the aggregate and the matrix, theYoung’s modulus was
estimated for the aggregate of Ea= 40 GPa and the
cement matrix of Ecm= 20 GPa. The Poisson’s ratio
v= 0.2 was assumed for all phases of the concrete.
For the secondary steel elements (flat bar support and
wedge), parameters corresponding to structural steel
Es= 200 GPa and v= 0.3 were assumed.

Different material parameter values were consid-
ered for both types of interfaces used. The input
parameters of the CM-CM interfaces were taken from
the experimental strength results, specifying the ten-
sile strength as ft,CEM = 3.5 MPa. The strength of the
cohesive elements in the normal and tangential direc-
tions was assumed to be the same (Trawiński et al.
2016). Parameters of ITZ interfaces (CM-AGG) were
determined based on parametric studies and recom-
mendations from the literature (Xi et al. 2021). The
ratio of tensile strength and fracture energy of CM-CM
interfaces - ft,CEM to ITZ interfaces ft,ITZ was assumed
as 0.5. The initial stiffnesses of the cohesive elements
in both directions were assumed to kn0= ks0= 106

MPa/mm, consistent with the observations of other
authors (Trawiński et al. 2016; Wang et al. 2019). The
values for were calculated from assumed value of the
fracture energy. All material parameters used in the
model are listed in Table 3.

5.2 Numerical results

2D simulations in plane stress state were performed
for three different meshes including different aggre-
gate and air voids distribution based on µCT scans
S1–S3. The load was applied by displacement of a lin-
ear elastic steel wedge. A contact law with defined
tangential penalty friction was assumed between the
edges of the wedge and the specimen. A steel-concrete
friction coefficient µ= 0.5 was preliminary assumed
as a default value. In order to avoid stress concentra-
tion at the contact point and to take into account the
actual contact area of the wedge with the specimen, a
two-sided edge slope was made in the specimen model
at 1/3 of the notch height to match the wedge slope
(Figure 7).

Finite element size of 1 mm was assumed. As it
was shown in other studies (Trawiński et al. 2016), in
the case of 2D numerical simulations at the mesoscale
level with this FE size there is no mesh dependence on
the results.
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The result for FE simulation for different section
S1–S3 for initial values of material constants are given
on Figures 8 and 9.The F-CMOD curves obtained from
the numerical calculations remain consistent with the
experimental results (Figure 8). The best convergence
in terms of force peak was obtained for section S2, the
other two sections had a higher peak value but simi-
lar post-peak characteristic and total fracture energy.
Whereas comparing the crack patterns obtained by the
numerical analysis (Figure 9) with theµCT scans from
the experiment (Figure 5), the greatest correspondence
of the crack pattern was observed for section S3. It
was observed that the largest inconsistency, both in
the curve and the crack pattern appeared in the case
of section S1. It can be clearly noticed that this was
caused by the large aggregate grain near the notch
(Figure 9A). The aggregate which was surrounded by
a weaker ITZ layer has attracted the crack. This is
consistent with predictions because cracking is a three-
dimensional phenomenon and strongly depends on the
location of grains and air voids over the sample vol-
ume, whereas two-dimensional simulations consider
only three selected sections and can be perturbed by
local conditions.

Table 3. Material parameters in FEA.

Solid elements

Material Aggregate Cement Steel
Parameter matrix

E [GPa] 40 20 200
v [-] 0.2 0.2 0.3

Cohesive elements – displacement approach

Material “Elastic” Cement ITZ
Parameter matrix

(CM–CM) (CM–AGG)

kn0 [MPa/mm] 106 106 106

ft.n= ft,s [MPa] - 3.5 1.75
α [-] - 7.5 7.5
GF [N/m] - 70 35

Figure 8. Calculated force vs. CMOD curves for different
sections.

Figure 9. Crack patterns obtain from numerical simulations
(ft,ITZ /ft,CEM = 0.5, GF ,ITZ/GF ,CEM = 0.5) from: A) section
S1, B) section S2, C) section S3.
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The results of numerical parametric study as com-
pared to experiments for section S2 are shown on Fig-
ures 10–14. The influence of different tensile strength
ratio ft,ITZ /ft,CEM , fracture energy ratio GF ,ITZ/GF ,CEM
and various friction coefficient was investigated. In
creasing the tensile strength and the fracture energy of
ITZ relative to the tensile strength and fracture energy
of cement matrix leads to evident increase of vertical
force (Figures 10 and 11) for section S2.

Figure 10. Calculated force vs. CMOD curves for section
S2 (ft,CEM = 3.5 MPa, GF ,CEM = 70 N/m, GF ,ITZ = 35 N/m)
for ft,ITZ to ft,CEM ratio equal to: 0.5 (a), 0.75 (b) and 0.25 (c).

Figure 11. Calculated force vs. CMOD curves section S2
(ft,CEM = 3.5 MPa, ft,ITZ = 1, 75 MPa, GF ,CEM = 70 N/m) for
GF ,ITZ to GF ,CEM ratio equal to: 0.5 (a), 0.25 (b) and 0.75 (c).

Figure 12. Calculated force vs. CMOD curves for sec-
tion S2 (ft,ITZ /ft,CEM = 0.5, GF ,ITZ/GF ,CEM = 0.5) for different
friction coefficient µ: 0.5 (a), 0.4 (b) and 0.3 (c).

Figure 13. Influence of ITZ fracture energy GF ,ITZ
on the numerical crack pattern obtain in section
S2 (ft,CEM = 3.5 MPa, ft,ITZ = 1, 75 MPa, GF ,CEM = 70 N/m):
A) GF ,ITZ /GF ,CEM = 0.25, B) GF ,ITZ /GF ,CEM = 0.50,
C) GF ,ITZ /GF ,CEM = 0.75.
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Figure 14. Influence of friction coefficient µ on the numer-
ical crack pattern obtain in section S2 (ft,CEM = 3.5 MPa,
ft,ITZ = 1, 75 MPa, GF ,CEM = 70 N/m, GF ,ITZ = 35 N/m):
A) µ= 0.30, B) µ= 0.40, C) µ= 0.50.

Despite the influence on Force-CMOD curves, the
change in tensile strength and fracture energy for the
ITZ did not significantly affect the crack pattern (Fig-
ure 13), the only difference noted being the number of
elements that fully degraded.

As expected, friction has a significant effect on
simplified MVD splitting test results, the friction co
efficient is strongly correlated with the calculated
vertical force in terms of F-CMOD curve response
(Figure 12). Simultaneously, reduction of the friction
coefficient did not affect the crack path for the section
S2 (Figure 14).

Analogous series of FE simulation was performed
also for section S1. The analysis of the result of these
calculations exhibits the same trends and leads to sim-
ilar conclusion in case of influence of fracture energy
ratio GF ,ITZ/GF ,CEM and friction coefficient. Interest-
ingly, varying the tensile strength ratio ft,ITZ /ft,CEM had
only minor influence of vertical force, in particular for
ratio larger then 0.5 (Figure 15). Instead of increase
the value of vertical force the response became more
ductile with ft,ITZ /ft,CEM = 0.75. Moreover, the shape of
crack changed significantly with increasing the tensile
strength of ITZ (Figure 16).

Figure 15. Calculated force vs. CMOD curves section S1
(ft,CEM = 3.5 MPa, ft,ITZ = 1, 75 MPa, GF ,CEM = 70 N/m) for
GF ,CEM to GF ,ITZ ratio equal to: 0.5 (a), 0.25 (b) and 0.75 (c).

Figure 16. continued.
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Figure 16. Influence of ITZ tensile strength ft,ITZ
on the numerical crack pattern obtain in section S1
(GF ,ITZ = 35 N/m, GF ,CEM = 70 N/m): A) ft,ITZ /ft,CEM = 0.25,
B) ft,ITZ /ft,CEM = 0.50, C) ft,ITZ /ft,CEM = 0.75.

6 CONCLUSIONS

The following basic conclusions may be derived from
our preliminary calculation for simplified MVD split-
ting test using cohesive elements and real concrete
micro-structure:

– Due to the predominant crack length runs through
the ITZ interfaces, the F-CMOD response strongly
depends on the tensile strength and fracture energy
of this zone.

– Modification of the ITZ strength and fracture
energy may also lead to change of the shape of crack.
In particular for very small or very large value of
ft,ITZ /ft,CEM and GF ,ITZ /GF ,CEM ratios respectively.

– Since, the friction coefficient plays a crucial role
for obtaining the proper results for MVD splitting
test, it is advisable to calibrate the ITZ strength and
fracture energy based on separate tests (e.g. simple
bending) before calibrating the friction.

The numerical calculations also investigated the
possibility of simulating this issue using a quasi-static
simulation with explicit integration. However, due to
too many variable parameters, including the large
effect of specimen inertia, the axial location of the
wedge and support, and the definition of the contact,
stable and repeatable simulation parameters could not
be established at this stage of the study. Nevertheless,
this will be the subject of future research.
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A 3D coupled chemo-mechanical model for simulating transient
damage-healing processes in self-healing cementitious materials

B.L. Freeman & A.D. Jefferson
Cardiff University, Cardiff, UK

ABSTRACT: This study presents a 3D coupled chemo-mechanical finite element model for the simulation
of the damage-healing behaviour of cementitious materials with embedded vascular networks. The mechanical
damage-healing behaviour is described using a cohesive zone model that is implemented into an embedded
strong discontinuity element. The mechanical model allows for damage and healing to occur simultaneously,
and places no restrictions on the number of damage-healing events. An important feature of the damage-healing
model is the inclusion of a healing strain that ensures thermodynamic consistency when healing takes place in
non-zero strain conditions. The mechanical model is coupled to a reactive transport model that describes the
transport of healing agent to the damage site, along with the chemical reaction governing crack healing. The
model considers the reactive transport of healing agent within the discrete cracks, the surrounding cementitious
matrix and the embedded vascular network. Richard’s equation describes the matrix flow, which is coupled to
the mass balance equation combined with Darcy’s law for the flow in the discrete cracks and embedded vascular
network. For the crack and embedded vascular network flow, a cut finite element framework is employed that
allows for discontinuities, such as those found at the fluid interface, internal to the elements. The performance of
the model is demonstrated through comparison to data from an experimental investigation undertaken at Cardiff
University. The results of the comparison show that the model is able to predict realistic transport of healing
agents, as well as being able to represent the damage-healing behaviour with good accuracy.

1 INTRODUCTION

Researchers have shown self-healing systems to be
an effective means of mitigating the cracking-related
durability problems associated with cementitious
materials. A wide range of approaches have been
developed, many of which employ embedded healing
agents that are transported to damage sites when crack-
ing occurs. Inspired by biological systems, vascular
networks represent an effective method of embedding
the healing agent into the cementitious matrix. The
form of vascular networks utilised ranges from lin-
ear channels (Selvarajoo et al. 2020), to mini-vascular
networks (De Nardi et al. 2020) and complex 3D
biomimetic networks (Li et al. 2020).

Alongside the experimental work on developing
self-healing cementitious materials (SHCMs), there
has been a great deal of research effort aimed towards
the development of numerical models for simulating
SHCMs (Di Luzio et al. 2018; Freeman & Jeffer-
son 2022; Granger et al. 2007; Huang & Ye 2016;
Koenders, 2012; Oucif et al. 2018; Romero Rodríquez
et al. 2019; Zhang & Zhuang 2018;). In spite of
the complexity associated with simulating the many
interacting physical processes that govern SHCMs,
significant progress has been made and research has
shown that numerical models can accurately capture
various aspects of their behaviour.

The focus of the present study is the simulation of
SHCMs with embedded vascular networks.To this end,
a 3D coupled chemo-mechanical finite element model
is presented.The model comprises a number of compo-
nents for simulating the interacting physical processes
and accounts for transient damage-healing behaviour,
healing agent transport and healing agent curing that
governs the mechanical healing.

This paper presents an outline description of the
model along with an illustrative example concerning
a direct tension test on a SHCM with an embedded
vascular network.

2 TRANSPORT MODEL

The healing agent transport model comprises flow
through the cementitious matrix, discrete cracks and
the embedded vascular networks and builds upon that
presented in Freeman and Jefferson (2020).

2.1 Matrix transport

The transport of the healing agent in the cementitious
matrix is governed by Richard’s equation, given as:

∂ (ρnS)

∂t
+∇ · Jh + Qmtx = 0 (1)
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where ρ is the healing agent density, n is the porosity,
S is the degree of saturation, Qmtx represents the flux
between the matrix and discrete cracks and Jh is the
healing agent flux, given by Darcy’s law:

Jh=−ρKiKr (S)

µ
(∇Ph − ρg) (2)

where Ki is the intrinsic permeability of the medium,
µ is the dynamic viscosity, g is the acceleration due
to gravity, Ph is the healing agent pressure and Kr is
the relative permeability that depends on the degree of
saturation according to:

Kr(S)= Sλ
(

1−
(

1− S
1
m

)m)2
(3)

where λ accounts for the connectivity and tortuosity
of the pores.

The degree of saturation is related to the capillary
pressure, Pc, through the moisture retention curve that
reads:

Pc(S)= a
(

S−
1
m − 1

)1−m
(4)

where a and m are constants that depend on the medium
and Pc=Pg − Ph, where Pg is the gas pressure.

Finally the flux between the matrix and discrete
cracks is given by:

Qmtx = 2nβcrk (Ph − Phcrk) (5)

where βcrk is a transfer coefficient and Phcrk is the
healing agent pressure in the crack.

2.2 Discrete crack and embedded vascular network
transport

The transport of the healing agent in discrete macro-
cracks and embedded vascular networks is governed
by the mass balance equation combined with Darcy’s
law, given as:

u=− k

µ
(∇Phcrk − uQmtx + ρuQch − ρg) (6)

∂ (ρA)

∂t
+∇ · (ρAu)− AQmtx + ρAQch= 0 (7)

where u is the healing agent velocity vector, A is the
area, k is the permeability and Qch is the flux between
the discrete cracks and embedded vascular channels.
For discrete cracks, the area and permeability terms
are given as A=w × 1 and k =w2/12, where w is the
crack width, whilst for the embedded vascular chan-
nels, A=πr2 and k = r2/8, where r is the channel
radius.

The boundary conditions for (7) are given as:

Phcrk =Papp on�app, Phcrk =Pc(w, θd ) on�f (8)

where Papp and Pc are the pressure applied to the net-
work and capillary pressure in the crack respectively,
�app and �f are the parts of the boundary to which the
applied pressure, and free surface stress balance are
applied and θd is the dynamic contact angle that is a
function of the fluid velocity.

An outline description of the cut finite element
framework employed to capture discontinuities asso-
ciated with the discrete crack transport is presented in
Freeman and Jefferson (2021). A full description is the
subject of a forthcoming journal paper.

3 MECHANICAL MODEL

The mechanical model describes the damage-healing
behaviour using a cohesive zone model that is imple-
mented into an embedded strong discontinuity ele-
ment. A description of the 2D version of the element
is presented in Freeman et al. (2020).

The cohesive zone model is applied to a crack plane
that contains a macro-crack and relates the crack-plane
traction vector (τ cp) to the relative displacement vector
(d) as follows:

τ cp= (1− ω) ·K : d+ h ·K : (d− dh) (9)

where K is the elastic stiffness, h is the degree of
healing, dh is the relative displacement at the time of
healing and ω is the damage variable that is governed
by an exponential softening function (Freeman et al.
2020):

ω= 1− dt

ς
e−c1 ς−dt

dm−dt (10)

in which dt = ft
/

K , where ft is the tensile strength
of the material, c1= 5 is a softening constant, dm is
the relative displacement at the end of the softening
curve and ς is the damage evolution parameter that
depends on the maximum value of the inelastic relative
displacements.

In order to account for re-damage and re-healing
the evolution of the healing variable is described by:

h= h · e−
t
τ + a ·

(
1− e−


t
τ

)
(11)

in which the relative area of the crack exposed to
healing agent reads:

a= a+
ac −
aredam +
arec (12)

where 
ac is the incremental area of virgin filled
crack, 
aredam is the incremental area of re-damaged
material and 
arec is the incremental area of re-filled
cracks.
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In order to ensure that healing takes place in a stress-
free state the following expression is derived from (9)
for a healing update with d remaining constant:

(h+
h) ·K : (d− dh −
dh)− h ·K : (d− dh)= 0 (13)

that is used to derive an update for (
dh) as:


dh= 
h

(h+
h)
(d− dh) (14)

A full description of the damage-healing cohesive
zone model is presented in Jefferson and Freeman
(2022).

4 CHEMICAL MODEL

In the present work, the healing agent considered is
cyanoacrylate. The chemical model therefore simu-
lates the curing of cyanoacrylate that is a polymeriza-
tion reaction driven by the transport of moisture into
the glue from the substrate or surrounding air. This
type of reaction can be simulated as the propagation
of a reaction front that is diffuse in nature, and can be
described by (Freeman & Jefferson 2020):

φx(x, t)= 1

2

⎛

⎜
⎝1− tanh

⎛

⎜
⎝

(
2√
π

)
⎛

⎜
⎝

x − z(t)− zc

zc +
√

z(t)
zc1

⎞

⎟
⎠

⎞

⎟
⎠

⎞

⎟
⎠ (15)

where x denotes the position measured from the crack
face, zc is a wall factor, zc1 is a diffusion coefficient
and z(t) is the position of the reaction front.

The propagation of the reaction front is
described by:

z(t)= zc0

(
1− e−

t
τ

)
(16)

where zc0 is the critical reaction front depth and τ is
the curing time parameter.

The effect of the chemical reaction on the mechan-
ical properties is accounted for through the degree of
mechanical healing that –in the absence of re-damage-
is given as the degree of cure at the center of the
crack:

h(w, t)=φx(
w

2
, t) (17)

Finally, the effect of the healing agent curing on the
transport properties is accounted for using a chemo-
rheological model that relates the degree of cure with
the associated increase in viscosity as follows (Castro
& Macosko 1980):

µ=µi

(
φg

φg − φ

)nv

(18)

where µi is the initial viscosity, nv is an exponent, φg
is the degree of cure at the gel point at which a rapid
increase in viscosity is observed andφ is overall degree
of cure across the width of the crack.

5 SOLUTION STRATEGY

Having presented the various model components, the
solution strategy is now described. In the present
work, the finite element method is used to solve the
nonlinear-coupled problem using a staggered solution
method. The algorithm employs a sequential coupling
procedure that utilises sub-stepping for the transport
problem. The nonlinearity of the mechanical model
and matrix transport model is dealt with using a
Newton-Raphson procedure, whilst a Picard proce-
dure is employed to deal with the nonlinearity of the
discrete crack and embedded vascular network trans-
port. Iterative updates are terminated once the L2 norm
of the error meets a specified tolerance.

6 EXAMPLE PROBLEM

To illustrate the performance of the model an exam-
ple problem is considered. The example concerns
the a direct tension test on doubly notched concrete
specimens containing an embedded vascular network
(Selvarajoo et al. 2020). In the test, the specimen
was loaded until a macro-crack opened to a given

Figure 1. Schematic of test set up elevation (top) and
cross-section (bottom) (after Freeman et al. 2020).
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crack mouth opening displacement (CMOD). Follow-
ing this, the healing agent was released and the crack
held at the specified CMOD value for a range of heal-
ing periods. Finally, the specimen was loaded further
until the CMOD reached 0.3 mm. The tests considered
crack openings of 0.1 and 0.2 mm and healing periods
ranging from 0-1200s.

Figure 2. Comparison of load-CMOD curve with exper-
imental data for a healing period of 60 s and crack width
of 0.1 mm (top) and 0.2 mm (bottom) (after Freeman et al.
2020).

A schematic of the test set up, including the loca-
tion of the embedded vascular channels can be seen
in Figure 1. It is noted that in this example, following
experimental observations, the degree of healing was
limited to 85%. This was due to the fact that the heal-
ing agent was in constant flux and therefore did not
stabilize and cure.

A comparison of the predicted load response with
the experimental data can be seen in Figure 2, whilst
the prediction of the crack filling for the 0.1mm
CMOD can be seen in Figure 3. Finally, the compari-
son of predicted and experimental crack pattern can be
seen in Figure 4. It can be seen from the Figures that the
numerical simulations accurately capture the experi-
mental behaviour. In addition, the crack completely
filled during the healing period.

Figure 3. Coverage of 0.1 mm CMOD crack with healing
agent as indicated by level set after 0 s (top left), 5.616 s (top
right), 6.48 s (bottom left) and 8.64 s (bottom right).

Figure 4. Comparison of numerically computed and exper-
imentally observed crack pattern (after Freeman et al. 2020).
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7 CONCLUDING REMARKS

This paper has provided an outline description of a
3D coupled chemo-mechanical model for simulating
transient processes in self-healing cementitious mate-
rials. The model considers the mechanical damage-
healing behaviour, allowing for damage and healing
to occur simultaneously, transport of healing agent
in the cementitious matrix, discrete macro-cracks and
embedded vascular networks and the chemical reac-
tion governing mechanical healing. The performance
of the model has been demonstrated through the con-
sideration of a direct tension test and subsequent
comparison with experimental data. The results of the
comparison showed that the model is capable of pre-
dicting realistic transport of healing agents, in addition
to accurately capturing the damage-healing behaviour.
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Meso-scale simulation of non-uniform steel corrosion induced damage in
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John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, USA

ABSTRACT: Engineered cementitious composite (ECC) is a ductile construction material with higher damage
tolerance compared to conventional concrete. This paper investigates the damage pattern and propagation of
reinforced recycled aggregate concrete (RAC) using finite element simulation. Simulations were conducted on
RAC members containing brittle matrix and ductile matrix (ECC) subject to uniform and non-uniform corrosion
product expansion loads. A two-dimensional five-phase meso-scale level analysis approach was adopted by
implementing individual material properties of aggregates, adhered mortar to the aggregates, old interfacial
transition zone (ITZ), new ITZ, and cement matrix. Prescribed deformations were applied to the steel concrete
interface as corrosion product expansion loads. The physical geometry of each aggregate was mapped from
experimental images. The obtained results indicated that the damage first appeared around the ITZs and then
propagated into matrix and mortar. It was also found that damage propagated much slower in RAC with ductile
matrix compared to that of RAC with brittle matrix. Furthermore, RAC with ductile matrix showed distributed
damage pattern while RAC with brittle matrix showed localized damage pattern. Simulation results also showed
that non-uniform corrosion product expansion induced faster damage propagation than uniform rust expansion.
The new ITZ had higher cracking susceptibility in the RAC composite structure due to its lower tensile strength.
With the meso-level modeling technique, aggregate shape and orientation effects on cracking propagation in
RAC due to corrosion product expansion were obtained. The uneven damage propagation patterns were observed
with the increasing loading level due to the confinement to cement matrix from the aggregate. The less confined
area showed more extensive damage areas but lower damage levels. The ITZs experienced less cracking along
locations where the aggregates facing the corrosion product expansion load. In contrast, the locations where
the faces of aggregates parallel to the load direction had severe damage. It was mainly because of the higher
tensile and shear stresses in the parallel direction, even though the distance to the expansion load was greater.
The aggregate shape and orientation had significantly less impact on damage pattern and propagation in ductile
matrix RAC members than brittle matrix ones. The reason was that ECC material has distributed cracking
behavior instead of major cracking in the damage propagation stage even though the studied members have
the same tensile strength. The meso-scale numerical simulations of RAC under expansion load around rebar
provide insights into the influences of non-uniform corrosion on damage propagation in brittle and ductile RAC
members.

1 INTRODUCTION

Concrete made from recycled concrete aggregate has
been used to minimize construction industry’s impact
on climate change due the large greenhouse gas foot-
print in concrete productions (Winfield & Taylor
2005). However, such efforts were hampered because
the major quantity of RAC is used in non-structural
works, such as road base, rip rap, and general fill
purpose (Du & Jin 2014). The further application of
RAC to structural components needs to use recycled
concrete aggregate where good aggregate sources are
required (Du & Jin 2014).

RAC is a five-phased material with different meso-
scale structures, which includes natural aggregate,

adhered mortar to the aggregates, old ITZ, new ITZ,
and cement paste (Jayasuriya et al. 2018). A hetero-
geneous material like RAC may be highly susceptible
to cracks due to the incompatible material properties
of each phase (Jayasuriya et al. 2018). In structural
applications, the cement paste can be either brittle or
ductile. Ductile cement paste may be useful in cracking
suppression. For example, ECC is a ductile construc-
tion material characterized by pseudo-strain hardening
behavior under tension and exhibits multiple fine
cracks prior to localized cracks (Li 2003).

Corrosion of reinforcing bar is one of the main dete-
rioration mechanism that shortens the service life of
normal reinforced concrete structures, or even caus-
ing catastrophic structural failures (Broomfield 2003).
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Steel reinforced RAC could also undergo durability
issues. Although a large amount of research has been
conducted in studying the corrosion behavior of steel
reinforced concrete, the meso-scale investigate is lim-
ited (Peng et al. 2019; Zhao et al. 2016). The aggregate
geometry may affect the harmful material transport
process in the concrete system and consequently influ-
ence the corrosion behavior of the steel in reinforced
concrete (Yu & Lin 2020). Furthermore, a meso-scale
study can provide insights on the cracking initiation
and propagation process caused by corrosion product
expansion.

The research conducted herein identifies the impact
of ductile materials and aggregate geometry on the cor-
rosion initiation and propagation in concrete. Quanti-
tative and qualitative results of chloride concentration,
corrosion production expansion, and damage pat-
terns of both brittle and ductile reinforced RAC are
explored. The results can used to understand how
ductile construction materials can be used to inhibit
non-uniform corrosion induced damage.

2 SIMULATION DESCRIPTION AND
MODELING PARAMETERS

In this study, one chloride diffusion model, one corro-
sion development model, and four rust expansion mod-
els were completed. The cross section of 100 mm×
100mm of a known RAC system was selected from
literature (Abbas et al. 2009). The geometry of each
material was mapped from the image of an exper-
imental study. The reinforcement bar diameter used
was 10 mm. As shown in Figure 1, the reinforcing bar
was placed in a location to avoid overlapping with the
aggregates. The material properties and distribution of
ITZs in RAC with ECC were assumed to be the same
as ITZs in RAC with normal mortar, so as to avoid
variations and focus on the ductility of the cement
matrix.

Figure 1. Finite element model set up for RAC system with normal mortar and RAC system with ECC.

2.1 Analysis procedures

First, a diffusion model was set up to study the
chloride transport process in RAC system consid-
ering the aggregate geometry. Then the steel cor-
rosion model was set up to simulate the corrosion
current densities and electrolyte potential distribu-
tions. Corrosion product expansion thickness was
then calculated based on previous step simulation
results. Finally, the rust expansion load was applied
to the steel concrete interface and the damage initia-
tion and propagation was studied through mechanical
models.

A time-dependent simulation procedure was inte-
grated in the diffusion and corrosion simulations.
Chloride concentration at the steel surface that reached
critical chloride content increases as chloride expo-
sure continues. At each time step, the anode area was
determined according to the chloride concentration at
the steel surface. Therefore, the anode/cathode area
of the steel surface becomes a time-dependent factor
that needs to be updated at each selected time step.
A 10 days time interval was selected in this study
to ensure analysis accuracy and maintain computing
efficiency.

2.2 Diffusion and corrosion model setup

The two-dimensional diffusion and corrosion finite
element model set up in COMSOL Multiphysics Ver-
sion 5.4 (COMSOL 2021) is shown in Figure 1.
A 0.5 mm× 0.5 mm size quadrilateral element was
used to simulate the ECC and normal concrete materi-
als. Oxygen and chloride were assumed to enter only
from the bottom side. Blocking of mass transport by
reinforcing bars was considered. Natural aggregates
were assumed to be impenetrable (Tian et al. 2019).
The mass transport properties of adhered mortar, old
ITZ, and new ITZ were assumed to be the same as mor-
tar since the volume fraction of them were relatively
small compared to cement paste. Diffusion coefficient
of oxygen is DO2 = 3.0E − 9m2/s (Rafiee 2012). The
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diffusion coefficient of chloride in the mortar was
calculated from (Zheng & Zhou 2008):

DCl = 2.14× 10−10V 2.75
P

V 1.75
P (3− VP)+ 14.44(1− VP)2.75

(1)

where VP is the porosity fo cement paste, and it is given
by

VP = w/c− 0.17α

w/c+ 0.32α
(2)

where w/c is the water to cement ratio and was selected
as 0.45 in this study, α denotes the hydration level and
was assumed to be 90% (Mouret et al. 1997).

2.3 Mechanical model setup

The two-dimensional rust expansion finite element
model set up in DIANA FEA Version 10.5 (DIANA
2021) is shown in Figure 1. A total strain based fixed-
crack constitute law was implemented in this study.
Four-noded 0.5mm × 0.5 mm size quadrilateral ele-
ments were used. All the bottom nodes were restrained
in the vertical direction, and the node at the bottom-left
of the model was restrained in both vertical and hori-
zontal directions. Rust thickness was calculated from
(Böhni 2005)

σ (t)=
∫ t

0 icorr(t)dt ·Ms

ZFe · F · ρs
(3)

where t gives the corrosion time (seconds), Ms=
55.85 g/mol is the atomic mass of the iron, ZFe= 2 is
the valency of anodic reaction, F = 96485 C/mol is the
Faraday’s constant,ρs= 7800 kg/m3 is the steel den-
sity. The applied displacement load at the steel cement
matrix interface was obtained from

u(t)= (n− 1)σ (t) (4)

where n is rust to steel volume expansion ratio and is
assumed to be 3 in this study (Cao et al. 2013).

Displacement load in the non-uniform rust expan-
sion simulations was based on previous step study-
corrosion simulation. However, an average displace-
ment load around the reinforcement bar circumfer-
ential was applied in the uniform rust expansion
simulations.

2.4 Material properties and parameters in
simulations

Diffusion and polarization parameters such as chloride
and oxygen diffusion coefficients (DCl ,DO2 ), Tafel
slopes (βFe,βO2 ), equilibrium potentials (φ0

Fe,φ0
O2

), and
exchange current densities (i0

Fe,i0
O2

) are summarized in
Table 1 (Rafiee 2012). Surface chloride concentration
(Clsurf ) was 2% of the concrete mass (Cao 2014). Sur-
face oxygen concentration (O2surf ) was 0.268mol/m3

(Cao 2014). Critical chloride content (Clcrit) was

Table 1. Mass transport and corrosion polarization param-
eters.

Input parameters units Values

Clsurf % 2
O2surf mol/m3 0.268
DCl m2/s 4.3E-12
DO2 m2/s 3.0E-9
θc S/m 0.0063
Clcrit % 0.06
βFe mV/dec 65
βO2 mV/dec 139
φ0

Fe mV -600
φ0

O2
mV 200

i0
Fe A/m2 2.75E-4

i0
O2

A/m2 6E-6

adopted as 0.06% of concrete mass. Concrete conduc-
tivity (θc) was obtained from experimental results from
Rafiee (Rafiee 2012).

Each of the five-phased materials were defined in
the simulations. Mechanical material properties such
as elastic modulus, Poisson’s ratio of natural aggre-
gates, adhered mortar, and cement paste were obtained
from literature (Xiao et al. 2013). Other material prop-
erties of the aggregates listed in Table 2 were taken
from Winkler (2013). Modulus of elasticity and Pois-
son’s ratio of the old ITZ and new ITZ were determined
from Ramesh et al. (1996). The material properties
of ECC were obtained from experimental work of
Moreno-Luna (2014). The tensile strength of ECC
was adjusted from 2.9MPa to 3.0MPa to avoid ten-
sile strength variation and focus on the ductility of
the cement matrix. Compressive strength was adjusted
from 55MPa to 45.4MPa for the same purpose. The
tensile strain at onset of softening of ECC was 0.75%
while normal cement paste had an onset softening
strain of 0.015% (Moreno-Luna 2014).

3 SIMULATION RESULTS AND DISCUSSION

3.1 Chloride concentrations

Figure 2 shows the chloride content contour of the
RAC systems after 1200 days of chloride exposure.
The natural aggregates and reinforcement bar were
assumed to be impenetrable (Tian et al. 2019). Thus
there was no chloride in those areas. The aggregate
geometry played an important role in chloride trans-
port process. As shown in Figure 2, aggregates that
stayed further away from each other provided easier
path for chloride to transport. For example, the chlo-
ride content in area A (0.89%wt.) is higher than that of
area B (0.55%wt.) at 16 mm distance to the chloride
exposure surface (Figure 2).

Figure 3 shows the chloride concentration of the
steel surface that reached the critical chloride content.
The chloride concentration at the steel surface was
developing unsymmetrically due to the impenetrable
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Table 2. Mechanical properties.

Material Modulus of Compressive Tensile Posisson’s Tensile fracture
type elasticity strength strength ratio energy

Aggregate 80 GPa 144.0 MPa 9.60 MPa 0.16 0.163 N/mm
Adhered mortar 25 GPa 45.0 MPa 3.00 MPa 0.22 0.051 N/mm
Old ITZ 23 GPa 41.4 MPa 2.76 MPa 0.22 0.041 N/mm
New ITZ 20 GPa 36.0 MPa 2.40 MPa 0.20 0.037 N/mm
Mortar 19.5 GPa 45.4 MPa 3.00 MPa 0.15 0.047 N/mm
ECC 17.2 GPa 45.4 MPa 3.00 MPa 0.15 6.1 N/mm

Figure 2. Chloride concentration contour for RAC system with normal mortar and RAC system with ECC.

Figure 3. Chloride concentration development for all systems over time at (a) 1170 days, (b) 1200 days, (c) 1290 days of
chloride exposure.

feature of aggregates and the unsymmetrical distri-
bution of the aggregates. Consequently, the corrosion
front area center was shifted to the left of the reinforce-
ment bar (location C in Figure 3) surface instead of the
closest point (location D in Figure 3) to the chloride
exposure surface. The result proved the effectiveness
of a meso-scale study in terms of mass transport
problems including chloride and oxygen diffusion in
concrete materials.

3.2 Corrosion behaviors

As a result of unsymmetrical corrosion front area,
the electrolyte potential in the RAC system was also
unsymmetrical to the reinforcement bar. As shown in
Figure 4, the left to the reinforcement bar had higher
electrolyte potential of 0.47V at location E while the
electrolyte potential at location F was 0.48V .

Figure 5 shows the oxygen level in the RAC system.
The area near the reinforcement bar had lower oxygen
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Figure 4. Electrolyte contour.

Figure 5. Oxygen level of the specimen.

level compared to areas that had further distance to
the bar. It was ascribed to the cathodic reaction at the
steel surface, which consumed the initial oxygen in the
cement matrix and insufficient oxygen was provided
from the specimen surface. The oxygen distribution
was also affected by the blocking effect of aggregates
since oxygen diffusion in aggregates was negligible.
For example, at the same distance to the oxygen expo-
sure surface (bottom side), the oxygen level at location

G is 0.16 mol/m3 while location H had an oxygen level
of 0.11 mol/m3 (in Figure 5).

3.3 Corrosion product distribution

Corrosion product distribution along the reinforce-
ment bar surface is shown in Figure 6. The rust
thickness showed an unsymmetrical pattern due to
the unsymmetrical development of chloride concentra-
tion and oxygen supply. The maximum rust expansion
thickness was 45.1µm while the minimum was zero at
9.5 to 10mm along the reinforcement bar in horizontal
direction.

Figure 6. Rust distribution along the reinforcement bar
surface.

3.4 Corrosion induced damage

Figure 7 (a) shows the cracking pattern of RAC at
high rust expansion level. The damage index scale in
Figure 7 indicates the cracking level of the material.
The damage index number of zero means the mate-
rial is still in elastic while number 1 indicates the
material is softened. In both uniform and non-uniform
cases, RAC with ECC matrix had lower damage level
compared to RAC with normal cement matrix. High
cracking suppression ability of ECC contributed to
the low damage level in RAC with ECC matrix. RAC
under uniform loading conditions had more damage
compared to non-uniform rust expansion cases. The
reason was that only the front of the steel surface was
applied with displacement load in non-uniform cases
while all the direction of the steel-cement interface
was applied with displacement load in uniform cases.
Additionally, RAC with normal cement paste under
uniform load (13.3 µm) had the same severe damage
level compared to non-uniform loading (maximum
45.1 µm). This was because the damage tolerance of
the normal cement matrix was low and the applied load
in the uniform case was big enough to cause severe
damage in all directions. In contrast, RAC with ECC
had the same low level of damage even though the
damage area in uniform case was bigger. The only
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Figure 7. Damage pattern of RAC for all systems (a) at high rust expansion level, (b) at low rust expansion level.

Figure 8. Cracking pattern of RAC with normal cement paste. The damage index number of zero means the material is still
in elastic while number 1 indicates the material is softened.

difference of the mechanical properties between nor-
mal cement paste and ECC was the ductility, in which
ECC had 50 times larger onset softening strain than
normal cement paste. Therefore, ductile material such
as ECC can provide better cracking resistance than
normal concrete material.

Figure 7 (b) shows the cracking pattern of RAC at
a relatively lower rust expansion level. Same as the
cases in high displacement loading conditions, RAC
with ECC showed lower cracking compared to RAC
with normal cement paste. However, contradictory to
high rust expansion thickness cases, RAC with nor-
mal cement paste under uniform loading (2.6 µm)
condition had lower damage level than non-uniform
(9.0 µm) cases under low loading condition. It was
because the uniform load was smaller than the non-
uniform load. And more importantly, the uniform
load had not exceed the threshold to cause severe

damage while the maximum rust expansion load in
the non-uniform case was big enough to induce major
cracking.

3.5 Aggregate geometry effect

Figure 8 shows the cracking at the interfaces and
adhered mortar near the reinforcement bar. The new
ITZ had higher cracking level in the RAC composite
structure due to its lower tensile strength. The uneven
damage pattern was ascribed to the randomly dis-
tributed aggregates. As shown in Figure 8, the area on
the right of the reinforcement bar experienced more
extensive damage but lower damage levels. The ITZs
had less cracking along locations (e.g. area I in Figure
8) where the ITZs were perpendicular to the corrosion
product expansion load. In contrast, the ITZs experi-
enced severe damage at the locations (e.g. area J and
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K in Figure 8) where the ITZs were parallel to the
loading direction. The main reason was that the ten-
sile and shear stresses in the parallel direction were
higher, even though the distance to the expansion load
was larger. The aggregate shape and orientation had
significantly less impact on damage pattern in ductile
matrix RAC than brittle matrix ones. It was beacuse
ductile materials such as ECC has distributed cracking
characteristics instead of localized cracking pattern
even though the studied members have the same tensile
strength.

As shown in Figure 8, the adhered mortar in area
L had lowest damage level due to its higher tensile
strength than the old ITZ and new ITZ materials.

4 CONCLUSIONS

Time-dependent two dimensional five-phased meso-
scale nonlinear finite element simulations of chloride
diffusion, corrosion, and rust expansion were carried
out on RAC members. Both uniform and non-uniform
corrosion cases, ductile and brittle cement matrix were
considered.

Simulation results showed that aggregate geometry
had significant influence on corrosion initiation pat-
tern and lead to unsymmetrical non-uniform corrosion
production development. The maximum rust expan-
sion thickness was 45.1 µm while the minimum was
zero.

Ductile material such as ECC exhibited higher
cracking resistance compared to normal cement paste
material. It was because the multiple fine cracking
behavior of ECC material.

Non-uniform corrosion at early stage may cause
same damage level but less damage to all the systems
due to the low and localized internal pressure. How-
ever, non-uniform corrosion induced higher damage
level at later stage of the corrosion even though the
damage area may be smaller.

Aggregate geometry affects the cracking initiation
and propagation in RAC systems. The ITZs parallel to
the rust expansion direction had higher cracking sus-
ceptibility compared to ITZs perpendicular to the rust
expansion direction.Adhered mortar had less cracking
susceptibility in comparison to old ITZs and new ITZs
due to its higher tensile strength.

A complete set of meso-scale models including
harmful material ingress, corrosion initiation and
propagation, and corrosion product induced damage
simulations provide a more reliable prediction to the
service life performance of reinforced RAC systems.
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ABSTRACT: Ultra-high performance fibre reinforced concrete (UHPFRC) is an emerging material with a
high scientific and technological interest due to its outstanding mechanical behaviour. However there are aspects
of its mechanical characterisation that need to be solved. In particular, this work focuses on the determination of
the tensile strength, interpreted as the stress at which the crack initiates in pure tension and softening begins. In
a recent study, applicability of the Brazilian test or diagonal compression splitting test to determine the tensile
strength of UHPFRC was assessed from the results of numerical simulations and experiments conducted on
specimens with three contents of fibres and specimens without fibres. From the numerical simulations it was
demonstrated that a local maximum in stress may occur in the test for a stress very close to the tensile strength
of the material, which can be detected as a pop-in in the curves of results of experiments run under load control
with the adequate instrumentation, thus providing an adequate approximation of the tensile strength. In this
paper, a numerical study of the Brazilian test is presented which continues the previous work and investigates
the size effect and the influence of the material properties. Simulations of the tests have been carried out within
the finite element framework COFE (Continuum Oriented Finite Element), which implements elements with an
embedded adaptable cohesive discrete crack. To reproduce the cracking behaviour, the softening law is assumed
to present a steep initial softening, predominantly due to cracking of the matrix, followed by a long tail, due
to the contribution of the fibres. In this study, influence of the content of fibres is analysed by modifying the
parameters of the softening curve, while the size effect is analysed by modifying the ratio between a fracture
length of the matrix, which is defined in detail in the paper, and the diameter of the specimen. The results show
a high effect of the size and material properties on the test results, which may guide through the proper design
of the experiments in order to ensure appearance of a measurable sufficiently-accurate local maximum.

1 INTRODUCTION

Ultra-high performance fibre-reinforced concrete
(UHPFRC) is an emerging material firstly introduced
in 1972 (Roy, Gouda, & Bobrowsky 1972; Yudenfre-
und, Odler, & Brunauer 1972), with a high scientific
and technological interest due to its excellent mechan-
ical behaviour (seeYoo &Yoon 2016 for a review of its
structural behaviour, design and application). However
there are aspects of its mechanical characterisation that
still need to be solved. In particular, this work focuses
on the determination of the tensile strength, interpreted
as the stress at which the crack initiates in pure tension
and softening begins. Direct tests are mainly found in
the literature (see as examples Habel,Viviani, Denarié,
& Brühwiler 2006; Hassan, Jones, & Mahmud 2012;
Nguyen, Ryu, Koh, & Kim 2014; Park, Kim, Ryu, &
Koh 2012; Toledo Filho, Koenders, Formagini, & Fair-
bairn 2012; Wille, El-Tawil, & Naaman 2014; Wille &
Naaman 2010; Xu & Wille 2015), but they present the

inconvenience that failure out of the plane can occur
with the subsequent loss of symmetry, as discussed in
(Hordijk 1991; Noghabai 1998); hence the interest of
using indirect tests.

The diagonal compression splitting test, also known
as the Brazilian test, has been widely used in the case
of ordinary concrete, since it provides a sufficiently
accurate approximation of the tensile strength of quasi-
brittle materials from the record of the maximum load,
as discussed in detail in (Rocco 1996; Rocco, Guinea,
Planas, & Elices 1999a; Rocco, Guinea, Planas, &
Elices 1999b), provided that the loading rate and
the width of the bearing bands are properly limited.
However, in the case of fibre-reinforced materials
the maximum load occurs for a stress much higher
than the tensile strength due to the contribution of
the fibres and, thus, performing a standard Brazil-
ian test might be not sufficient. Nevertheless, in a
recent experimental and numerical study presented in
(Sanz, Planas, Rey de Pedraza, Sancho, Sancho, &
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Figure 1. Sketch of the Brazilian test and geometry of the specimen (a), and representative curve of stress versus horizontal
displacement, with a local maximum occurring for a stress fts close to the tensile strength of the material (b).

Gálvez 2022) about the applicability of this test to
the case of UHPFRC, it was disclosed that a local
maximum in stress occurs at initiation of cracking,
which can be detected in experiments with the ade-
quate instrumentation, thus, demonstrating the interest
of the Brazilian test in the determination of the tensile
strength of UHPFRC.

Figure 1(a) shows a sketch of the version of the
test used in (Sanz et al. 2022), in which the horizontal
displacement u between the points labeled as A and
B was measured perpendicular to the plane of load-
ing. Simulations of the tests were carried out using
bi-dimensional models of the specimens by using ele-
ments with an embedded adaptable cohesive crack
(Sancho, Planas, Cendón, Reyes, & Gálvez 2007; San-
cho, Planas, Fathy, Gálvez, & Cendón 2007). From the
numerical results, it was verified that a local maximum
occurs in the curves of nominal stress versus the hori-
zontal displacement, as illustrated in Figure 1(b), for a
stress fts very close to the tensile strength of the mate-
rial ft . The dotted line in the figure shows the result of
a representative simulation, which corresponds to the
theoretical curve of a stable test. In practise, experi-
ments are typically run under load control, in order to
ensure a constant loading rate, since it has a high influ-
ence on the measured strength, as discussed in (Rocco
et al. 1999b). Consequently, a net pop-in —an abrupt
increase of the measured displacement under almost
constant load— may occur, resulting the bold line in
the figure. Note that, even in that case, the stress fts cor-
responding to the local maximum could be measured,
provided that the length of the pop-in is sufficient.

This was verified in an experimental campaign with
specimens with 2%, 3.25% and 4% of fibres by volume
and specimens without fibres.

In the current paper a numerical study is presented
which continues the previous work and investigates
the size effect and the influence of the material prop-
erties on the local maximum, since concrete displays
a size effect (Bažant & Planas 1998), which may
condition the local maximum and length of the pop-
in. Dimensionless simulations have been conducted
assuming a softening curve which presents a steep
initial softening, due to cracking of the matrix, fol-
lowed by a long tail, due to the contribution of the
fibres. Influence of the fibres is analysed by modify-
ing the shape of the softening curve, while the size
effect is analysed by modifying the ratio between a
fracture length of the material which is described in
detail in the corresponding section, and the diameter
of the specimen.

In the paper, Section 2 explains the basis of the sim-
ulations and the model parameters; Section 3 presents
the results of the numerical study and discusses the
influence of the material properties and size effect,
and, finally, Section 4 presents the main conclusions
of this work.

2 NUMERICAL SIMULATIONS

The basis of the simulations are as those reported in
(Sanz et al. 2022), which are summarised next for
completeness of the text.
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2.1 Fracture behaviour of concrete

For the fracture behaviour of concrete, a generalisation
of the cohesive crack model was assumed, based on
the main principles firstly introduced by Hillerborg
et al (Hillerborg, Modéer, & Petersson 1976). In that
model, it is assumed that when a crack develops in pure
opening (Mode I), it still transmits stress σ at its faces
depending on the crack width w following a unique
relation f (w) which is called the softening curve. For
general loading, a vectorial traction-separation law is
assumed considering the traction vector t acting on
one of the faces of the crack and the crack separation
vector w.

In this work, the damage-based vectorial model pro-
posed in (Planas, Sanz, & Sancho 2020) has been used,
which is a generalisation of the models found in the
literature. This considers a parameter α2 as the ratio
between the fracture energies in modes II and I, and a
parameterβ2 as the ratio between the shear and normal
stiffnesses, resulting in the following vectorial law:

t= f (κ)

κ
(wnn+ β2ws), κ =max[weq(w)] (1)

where wn and ws are the normal and shear components
of the displacement vector, respectively, which are cal-
culated by considering the unit normal of the reference
face of the crack n as wn=w · n and ws=w− wnn,
and κ is a damage variable which is computed as
the maximum value of an equivalente separation weq.
This parameter is defined together with an equivalent
traction teq as

weq :=
√

w2
n +

β2

α2
w2

s , teq :=
√

t2
n +

t2
s

α2β2
(2)

where ws is the modulus of the shear component of
the displacement vector, and tn and ts the moduli of
the normal and the shear components of the traction
vector, respectively, which are computed analogously
to wn and ws. In this work we assume α=β = 1.0,
according to the results reported in (Planas et al. 2020).

A bilinear curve has been used to reproduce the soft-
ening curve of concrete, as sketched in Figure 2. This
can be defined by the following four parameters: the
tensile strength ft , the stress at the kink point f1, the
horizontal intercept of the first branch with the abscis-
sas axis w1, and the crack width wc corresponding to
zero stress. To account for the bridging effect of fibres,
bilinear curves with a softening tail much longer than
that of ordinary concrete have been considered, with
a final crack width wc= 117w1. For convenience, the
stress of the kink point is written as f1= γ ft , where γ
is a parameter ranging from 0.0 to 1.0. In this work,
five values of γ ranging from 0.5 to 0.95 and γ = 0.0
have been considered, as indicated in Table 1, in order
to study the effect of the material parameters. Note
that the curve with γ = 0.0 corresponds to a linear
softening curve as that sketched by the dotted line in
the figure, and is interpreted as the behaviour of the
material without fibres.

Figure 2. Sketch of the linear and bilinear softening curves
of concrete, and parameters defining them.

2.2 Dimensionless simulations

Dimensionless simulations have been conducted, fol-
lowing the reasoning in (Planas, Sanz, & Sancho
2021), by considering a dimensionless softening func-
tion f̂ :

σ = f (w)= ft f̂

(
w

w1

)
. (3)

where ft and w1 are the tensile strength and the horizon-
tal intercept of the first segment of the bilinear curve,
respectively, as introduced in Figure 2. This implies
that all the resulting values of stress and crack traction
are divided by ft , and all the values of displacement
and crack separation are divided by w1. Dimension-
less geometrical lengths have been considered as well
by dividing all the lengths by the specimen diameter D.

The uncracked material has been modelled as lin-
ear elastic, with Poison’s ratio ν= 0.17 and an elastic
modulus E which is scaled as follows. Let us consider
Hooke’s law of a unidimensional problem σ =Eε=
E∂u/∂x, and define the unidimensional variablesσ ∗ =
σ/ft , u∗ = u/w1 and x∗ = x/D. Then a dimensionless
version of Hooke’s law is obtained as

σ ∗ = Ew1

ftD

∂u∗

∂x∗
= �2

D

∂u∗

∂x∗
, �2 := Ew1

ft
(4)

where �2 is a brittleness length of the material which
we call the second brittleness length. From the previ-
ous equation, it follows that the dimensionless elastic
modulus of the model is calculated as

E∗ = �2

D
(5)

It implies that the size effect can be analysed by
modifying the size of the specimens, or by modifying
any of the parameters of the brittleness length. The
option adopted in this work has been to modify the
elastic modulus; in particular, ratios �2/D equal to 1.0,
2.0 and 4.0 have been studied. Note that an increase in
the ratio �2/D is equivalent to diminishing the size of
the specimen or to considering a less brittle material
with a greater brittleness length.
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Figure 3. Mesh and boundary conditions in the numerical simulations.

2.3 Characteristics of the simulations

Numerical simulations have been carried out within
the finite element framework COFE (Continuum Ori-
ented Finite Element). It implements elements with an
embedded adaptable crack (Sancho et al. 2007; Sancho
et al. 2007), in which the crack is allowed to change its
direction to adapt to the local stress field, until a given
threshold crack width wth is reached. This is calculated
as wth=α′w1, where α′ is the adaption factor of the
crack, for which a value of 0.2 was adopted according
to the results of (Sancho et al. 2007).

Bi-dimensional models of the specimens were used,
as those sketched in Figure 3, in which the mesh was
generated by using the program Gmsh (Geuzaine &
Remacle 2009), with the meshing algorithm set to
“Delaunay”. All the elements are constant strain gra-
dient triangles with an embedded cohesive crack. A
uniform load was applied at the two lines of nodes
marked in blue, simulating the bearing strips of the
experiments. The maximum value b/D within the rec-
ommended range in (Rocco et al. 1999b) was selected,
since it leads to the less brittle behaviour, which is
the most unfavourable for the verifications of this
work. The simulations were driven by the horizontal
displacement u between the two nodes labeled as A
and B in the figure, in order to obtain stable calcu-
lations. For each family of simulations, a given total
displacement was applied in 59 steps with three differ-
ent magnitudes, in order to capture the local maximum
with enough resolution, with a final dimensionless dis-
placement of 1.745 in the case �2/D= 1.0, 1.386 for
�2/D= 2.0 and 1.199 for �2/D= 4.0.

Table 1 summarises the range of values of the
parameters used to investigate the effect of the mate-
rial as explained in Section 2.1, and to investigate the
size effect as explained in Section 2.2.

Table 1. Parameters of the numerical study, where γ is the
ratio of the stress of the kink point of the bilinear curve and
the tensile strength, �2 the selected brittleness length of the
material, and D the specimen diameter.

Parameter Range of values Effect

γ 0.0, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95 Material effect
�2/D 1.0, 2.0, 4.0 Size effect

3 RESULTS AND DISCUSSION

In this section, dimensionless plots of results are
presented, following the basis described in Sec-
tion 2.2. From the recorded load P, the nominal stress
σN is computed, according to the formula of the
ASTM-C496 standard as

σN = 2P

πDL
(6)

where D is the specimen diameter and L the speci-
men length. Then dimensionless nominal stress σN /ft
is calculated.

Figure 4 shows the curves of dimensionless stress
σN /ft versus dimensionless horizontal displacement
u/w1, organised in subfigures by the ratio �2/D.
From the results of the first family, �2/D= 1.0, Fig-
ure 4(top), it is observed that a local maximum occurs
in all the cases for a stress very close to the tensile
strength (σN /ft = 1.0), followed by a softening seg-
ment, and a hardening branch in the simulations with
γ > 0, i.e. with a bilinear softening. The effect of the
material, which is analysed by modifying the shape of
the softening curve through the value of the parameter
γ , influences the hardening brach. In particular, as the
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Figure 4. Dimensionless curves of nominal stress versus
dimensionless horizontal displacement for ratios of �2/D
equal to 1.0 (top), 2.0 (middle) and 4.0 (bottom) for several
values of γ .

Figure 5. Dimensionless curves of nominal stress versus
dimensionless maximum crack width for ratios of �2/D
equal to 1.0 (top), 2.0 (middle) and 4.0 (bottom) for several
values of γ .
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value of γ increases: (1) the stress is greater; (2) as
a consequence, the pop-in that would be obtained in
load-controlled experiments presents a smaller length,
although for this family it is detectable even for the
curve corresponding to γ = 0.95; (3) the stress of the
local maximum does not vary.

With regard to the size effect (see the three sub-
figures of Figure 4) it is observed that as the ratio
�2/D increases, i.e., as the size of the specimen is
smaller or the material is less brittle: (1) the stress
of the local maximum slightly grows; (2) the slope of
the loading branch of the curves is greater, in accor-
dance with the increase in the elastic modulus of the
simulations; (3) the curve corresponding to γ = 0.0
is less straight; (4) the slope of the hardening branch
increases; (5) for a ratio �2/D= 4.0 and γ > 0.8 the
local maximum disappears or is very difficult to detect
due to the small length of the pop-in, which could be
the case of a material exhibiting a high value of the
length �2 and a high content of fibres. This problem
could be avoided with a proper test design, by increas-
ing sufficiently the specimen size, in order to obtain an
adequate ratio �2/D which results in a measurable pop-
in, precisely taking into account the size effect. Note
that using sophisticated techniques could be consid-
ered as another solution in order to detect the change in
slope and the corresponding stress, but it may entail a
greater error, and, whenever possible, the first solution
is recommended.

Figure 5 shows the curves of dimensionless stress
σN /ft versus dimensionless maximum crack width
w/w1, with the same organisation as the previous fig-
ure. Note that similar curves to those in Figure 4 are
obtained, except for the elastic contribution of the
material. In the new curves, the size effect on the local
maximum is more evident. Moreover, completing the

Figure 6. Zoom views of the curves of dimensionless nominal stress versus the dimensionless maximum crack opening.

list of the previous paragraph, it can be detected that as
the ratio �2/D increases: (6) the crack opening of the
local maximum is greater. This effect can be observed
more accurately in the zoom views of Figure 6.

Table 2 displays the values of dimensionless nomi-
nal stress and dimensionless maximum crack opening
corresponding to the local maximum for each ratio
�2/D. Note that the stress of the local maximum dif-
fers less than 5.1% from the tensile strength in all the
cases, which entails an assumable error. Higher errors
might be obtained for higher ratios of �2/D, but in
such cases, it is recommended to modify the size of the
specimen, as previously explained, in order to obtain
a more brittle behaviour.

In the tests presented in (Sanz et al. 2022) a marked
pop-in was detected in all the tests, which means that
the size of the specimens was adequate. Further work
is in progress in order to determine the main fracture
parameter, disclose the ratio �2/D and the error of the
test, and to verify that the local maximum occurs for
an opening smaller than that of the kink point of the
bilinear curve. Note that in the presented numerical
study, this was the case for all the simulations except
for �2/D= 4.0 and γ > 0.8.

Table 2. Data of the local maximum, where l2/D is the
ratio of the characteristic length and the specimen diame-
ter, σN /ft the dimensionless nominal stress and wmax/w1 the
dimensionless maximum crack width.

�2/D σN /ft wmax/w1

1.0 1.014 0.00898
2.0 1.021 0.0230
4.0 1.051 0.120
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Figure 7. Numerical crack pattern and dimensionless crack width corresponding to the local maximum for �2/D= 1.0 (a),
�2/D= 2.0 (b) and �2/D= 4.0 with γ ≤ 0.8 (c).

For completeness of the results, Figure 7 displays
the dimensionless crack pattern obtained for the local
maximum for �2/D equal to 1.0 and 2.0, and 4.0
with γ ≤ 0.8. In coherence with the results of Table 2,
the local maximum of the more brittle behaviour —
smaller ratio �2/D— occurred for a crack less widen
and less propagated than that in the other cases.

4 CONCLUSIONS

A numerical analysis of the Brazilian test with applica-
tion to UHPFRC has been presented, in order to inves-
tigate the effect of the material properties, through the
modification of the shape of the softening curve, and
the size effect, through the modification of the ratio of
a brittleness length of the material and the size of the
specimen. From the foregoing analysis, the following
conclusions are drawn:

• For a wide range of combinations of material prop-
erties and specimen size a local maximum exists in
a Brazilian test that occurs for a stress very close to
the tensile strength. Such maximum can be detected
with an adequate instrumentation if the test is prop-
erly designed. In stable tests there is a softening
branch after the local maximum, followed by a sec-
ond hardening branch, while in load-controlled tests
a pop-in would be obtained.

• An increase in the stress of the kink point of the
bilinear softening curve results in a greater stress of
the hardening branch and a diminution of the length
of the pop-in, but does not affect the value of the
local maximum.

• A diminution in the size of the specimen or an
increase in the brittleness length results in a slight
increment in the stress of the local maximum, a
marked one in the crack opening at which it occurs,
and a growth in the slope of the hardening branch.

• The study of the influence of the material properties
and the size effect may guide in the proper design of
the tests, in order to ensure appearance of a measur-
able local maximum sufficiently proximate to the
tensile strength of the material.
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ABSTRACT: Calcium silicate hydrates (C-S-H) and Alkali-SiIlica Reaction (ASR) products exhibit a gel
mesostructure in which solid colloidal particles are arranged in the mesoscale forming a phase with mesoporosity.
The mesotexture determines the properties of the gel. Modeling the gel scale is challenging since the system
sizes required to have a representative volume of the gel can be prohibitive for full atomistic simulations, whereas
the approaches based on the continuum mechanics (e.g., homogenization) need to be proven valid at that scale.
Coarse-grained (CG) simulations, in which the particles represent chunks of the phase considered interacting
via potentials of mean force, enable assessing the gel scale. So far, no study has proposed CG simulations to
understand ASR gels’ mesostructuration. CG simulations have been successfully applied to model C-S-H, but
to date, the flexibility of the layers has not been taken into account. Here, we deploy CG simulations to study the
mesotexture of ASR and C-S-H gels using the effective interactions identified at the molecular scale. In the case
of C-S-H, we propose an original strategy to incorporate the flexibility of the layers. The CG simulations provide
configurations of gels at various packing densities, and these configurations are used to assess the structural
features and properties at the gel scale.

1 INTRODUCTION

Calcium silicate hydrate (C-S-H) is the main prod-
uct of cement hydration and is responsible for several
important properties of concrete, including setting,
hardening, shrinkage, and creep. Alkali-silica reac-
tion (ASR) products are formed from the reaction
between the alkali present in the cement paste (gen-
erally, sodium or potassium) and the disordered silica
present in some of the aggregates (e.g., (Rajabipour
et al. 2015)). Both C-S-H and crystallineASR products
are calcium silicates in a hydrated form and present a
layered molecular structure (i.e., they are phyllosili-
cates). C-S-H molecular structures share similarities
with defective structures of tobermorite or jennite
(Richardson 2004) as a function of the Ca/Si molar
ratio, while crystalline ASR products structures are
similar to that of shlykovite (Shi et al. 2019). Both
C-S-H and ASR products present a gel mesostructure
in which solid colloidal particles (i.e., particles with a
characteristic size of 1-100 nm (Buckley & Greenblatt
1994)) are arranged in the mesoscale forming a phase
with a gel mesoporosity.

Several studies focus on the molecular modeling of
the various phases in cement systems. Full atomistic
simulations, i.e., simulations in which each atom is
explicitly represented, have been deployed to success-
fully model various properties of the phases relevant
to the cement system, including C-S-H (Mishra et al.
2017) and crystalline ASR products (Honorio et al.

2020, 2021; Kirkpatrick et al. 2005). Simulating the
gel scale is a more challenging task because the sys-
tem sizes required to have a representative volume of
the gel can be prohibitive for full atomistic simulations
(the characteristic size of the gel scale being comprised
in the range 100 nm – 10 µm). A strategy to cope
with this limitation is employing a coarse-grained
(CG) representation of the gel. In coarse-grained sim-
ulations, the particles represent chunks of the phase
considered interacting via potentials of mean force
(PMF), i.e. potentials that captures the effective inter-
actions from the molecular scale (Ioannidou et al.
2017). Several studies have focused on investigating
C-S-H gel behaviour using coarse-grained simulations
(Goyal et al. 2020; Ioannidou et al. 2016, 2017; Liu
et al. 2019; Masoero et al. 2012, 2013; Masoumi et al.
2020). To date, the majority of approaches for CG sim-
ulations of the C-S-H gel relies on a representation
of C-S-H grains as mono- or poly-dispersed spheres
(Goyal et al. 2020; Ioannidou et al. 2016; Masoero et al.
2013) or by rigid ellipsoidal particles (Masoumi et al.
2020, 2017b; Yu et al. 2016). Experimental evidence
shows that C-S-H exists with different mesotextures:
including nanometric spherical grains, fibrils, or foils
(Richardson 2004), with 2D foils being one of the
most prevalent morphologies observed in transmis-
sion electron microscopy (TEM) images. Studies on
other phyllosilicates (e.g., clays (Honorio et al. 2018))
suggest that the flexibility of the layers can play a sig-
nificant role in mesostructuration. And experimental
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evidence shows that C-S-H layers may appear in bent
configuration (Marty et al. 2015). To the best of the
author’s knowledge, there are no simulations of the
gel scale in the literature that take into account the
flexibility of the C-S-H layers.

The physical origin of the expansive behavior, the
structure, and the properties of the ASR products have
not yet been completely understood (Rajabipour et al.
2015). Recently, the effective interactions between the
layers of crystallineASR products have been computed
at ambient temperature for liquid water-saturated sys-
tem (Honorio et al. 2020). This study shows that the
effective interactions in crystalline ASR products are
depended on the charge balance cation (Na or K). To
date, there is no study in the literature dealing with the
modeling of ASR products at the gel scale.

The objective of this study is to deploy coarse-
grained simulations to study the mesostructuration of
(i) ASR gels, using the effective interactions identified
for both Na- and K-shlykovite (Honorio et al. 2020);
(ii) C-S-H gel, using the effective interactions (Hono-
rio et al. 2021) identified for a realistic C-S-H model
(Kunhi Mohamed et al. 2018), and taking into account
the flexibility of C-S-H layers. The CG simulations
enable obtaining configurations of gels at a function of
the packing density η. These configurations are then
used to assess the structural features and properties
at the gel scale. We compare our simulation results
with experimental data from the literature whenever
possible.

2 MATERIALS AND METHODS

2.1 ASR gels

We adopt a multi-scale approach by collecting infor-
mation at the molecular scale, namely the effective
interaction of PMF, and using it as input at the gel scale.
The PMF was computed using the atomic structure of
(K-)shlykovite resolved by Zubkova et al. (Zubkova
et al. 2010); the most relevant alkali in ASR, potas-
sium, and sodium, are considered as charge-balancing
cations in shlykovite in the simulations (Honorio et al.
2020). The effective interactions between two lay-
ers of K- and Na-shlykovite products are obtained
using hybrid GCMC-MD simulations considering
ambient temperature and liquid saturate conditions
(RH= 100%) (Honorio et al. 2020). This PMF rep-
resents the interactions between the ASR solid lay-
ers in a drained environment (i.e., water is allowed
to ingress or leave the pore in systems controlled
according to the interlayer distance, as it is generally
done for nanolayered materials (Bonnaud et al. 2016;
Honorio et al. 2017, 2019; Masoumi et al. 2017a)).
Figure 1 shows the effective interactions for both K-
and Na-shlykovite.

The use of PMFs computed from crystalline sys-
tems to represent the interaction at the gel scale relies
on the assumption that the ASR gel is constituted of
particles presenting at least some of the structural fea-
tures of crystalline products. In (Honorio et al. 2020),

Figure 1. PMF of Na-shlykovite (a) and K-shlykovite (b) as
a function of r − σ .

comparisons of diffraction patterns and pair distri-
bution functions obtained from simulated crystalline
systems (based on shlykovite structure) with data from
experiments in ASR gels (Benmore & Monteiro 2010)
shows that both systems indeed share some structural
features.

2.1.1 Coarse-grained simulations
Gaboriaud et al. (Gaboriaud et al. 1999) showed that
colloidal species in ASR gel could be represented by
spheres with the same radius close to 10 Å, what-
ever the alkaline ions (Li+, Na+, or K+). Therefore,
we represent ASR gel as an ensemble of monodis-
perse spherical grains with a diameter σ = 20 Å. The
use of monodisperse spheres limits the maximum
packing density that can be obtained in simulations
under zero stress (e.g., (Torquato 2002)): η= 0.64
for the maximum random packing density and 0.74
for the close-packing for face-centered cubic (fcc) or
hexagonal close-packed (hcp) spheres. ASR gels are
reported to present a porosity φ ranging from 0.4 to
0.8 (Geng et al. 2021), which corresponds to a packing
density (φ= 1− η) ranging from 0.2 to 0.6. Monodis-
perse spheres can fully describe this range of packing
density.

The formation of ASR gel via precipitation and
aggregation of the spherical grains is simulated here
by using hybrid grand canonical Monte Carlo and
Molecular Dynamics (GCMC-MD) simulations, as
in (Ioannidou et al. 2014). We use LAMMPS soft-
ware (Plimpton 1995). Starting from an initially empty
cubic box of size L= 1000 Å, the simulation box is
filled with grains during the GCMC stages follow-
ing the usual probabilities distributions for insertion
(Frenkel & Smit 2002) P=min{1, exp(− (
U−µ
N )

kBT )}
where kB is the Boltzmann constant,T the temperature,

U the variation in potential energy caused by the
trial insertion/removal, 
N the variation in the num-
ber ofASR grains andµ the chemical potential. For the
chemical potential, we have chosen a value that favors
the insertion of grains in the simulation box and drives
the system towards progressive densification.
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Coupling the GCMC insertion/removal events to
MD simulation enables investigating specifically the
development of the gel properties process under non-
equilibrium conditions (Ioannidou et al. 2014). In this
context, each GCMC cycle consists of NMC attempts of
particle insertion or deletion through MD simulation,
which is conducted in the canonical ensemble (NVT)
and then the isothermal-isobaric ensemble (NPT). A
timestep of 1 fs is adopted. Nosé-Hoover thermostats
and barostat are adopted, when relevant, in NVT and
NPT simulations. The GCMC process was invoked
every NMD = 100 MD steps, and in each GCMC stage,
NMC = 100 attempts for deletion or insertion of the
grains are performed. The ratio Rprec= NMC

NMD
between

NMD and NMC is related to the precipitation kinetics
rate, i.e. the rate of producing hydrates as determined
by the chemical environment (Ioannidou et al. 2016).
No experimental value for Rprec can be found in the
literature for ASR products, therefore we adopt typical
Rprec used in CG simulation for other silicate gels (Hou
et al. 2021; Ioannidou et al. 2016).

2.2 C-S-H gels

As for ASR gels, a multi-scale strategy is also adopted
to investigate the mesostructuration of C-S-H gel,
but here we follow an original approach to take
into account the flexibility of C-S-H layers. At the
molecular scale, the elastic properties of C-S-H are
computed to obtain layers’ longitudinal rigidity and
flexibility. Then the PMF associated with C-S-H is
described. Finally, this information is used as input in
the coarse-grained simulation.

At the molecular scale, we adopt the model of Kunhi
et al. (Kunhi Mohamed et al. 2018) with molecular
formula C1.7SiO3.7. 1.3H2O, consistent with the values
of Ca/Si ratio of C-S-H observed in Portland cement
(Richardson 2004). The interactions among atoms in
C-S-H are described by using ClayFF (Cygan et al.
2004) and SPC/E water model (Berendsen et al. 1987).

2.2.1 Flexibility of C-S-H layers
To account for the C-S-H layer’s flexibility, we con-
sider the C-S-H solid layer as a thin homogeneous
layer. This approximation is valid given the fact that
C-S-H layer length L is much larger than its thick-
ness hs and the characteristic size of atoms (i.e., its
atomic granularity), and by assuming that: (i) L is
much smaller than the persistence length ξp, (ii) C-S-H
sheet is symmetric to the midplane and (iii), there are
no topological changes under moderate loads. In this
context, we can use the thin plate theory in which the
energy of shear is neglected, and the free energy associ-
ated with bending takes the form (Honorio et al. 2018):

U = 1

2

∑

i,j,k ,l∈{x,y}
Dijkl

∂2uz

∂i∂j

∂2uz

∂k∂l
(1)

where Dijkl is the bending modulus, and uz is the
displacement orthogonal to the plane of the plate.
The bending modulus is a key property in the char-
acterization of phyllosilicate nanotexture (Honorio

et al. 2018). For a thin plate of thickness h the latter
parameter is determined by:

Diiii = h3Ei

12(1− νijνji)
(2)

with h= 12.85 Å being the C-S-H layer thickness, Ei
theYoung’s modulus in the i direction and νij the Pois-
son’s ratio in the i direction under a load in the j direc-
tion. Hence, we need to determine the elastic proper-
ties E and ν to estimate the bending modulus. To do so,
we perform a minimization simulation with LAMMPS
in which the system is first relaxed under Parinello-
Rahman barostat. Then, imposed displacements are
performed according to each one of the six directions
of interest to compute the full (symmetric) stiffness
tensor (xx, yy, zz, xy, xz, yz) . Both positive and neg-
ative displacements are performed in each case. The
displacement is chosen to keep the same deformation
level (on the order of 10−5) in each direction. Voigt-
Reuss-Hill (VRH) approximation is used to compute
(quasi-)isotropic values for E and ν and compare with
the available experimental data from indentation.

Table 1 shows our values of elastic constants and
values from the literature for crystalline calcium sili-
cate hydrates (tobermorite 11 Å, tobermorite 14 Å and
jennite (Shahsavari et al. 2009)) and another molec-
ular model of C-S-H (cCSH) (Pellenq et al. 2009),
based on defective crystalline structures. Our results
are generally closer to those of the cCSH model.

The VRH estimate of the elastic properties are gath-
ered inTable 2, along with experimental values of Pois-
son’s ratio ν and indentation modulus M = 4G 3K+G

3K+4G

Table 1. Comparison between elastic constants of C-S-H
(model based on defective tobermorite), and crystalline
calcium silicates hydrates as reported in the literature.

Elastic
const. Our cCSH Tober. Tober. Jennite
[GPa] values 11 Å 14 Å

C11 72.74 93.49 116.95 77.6 100.1
C22 81.15 94.87 126.1 104.5 45.7
C33 83.33 68.46 126.35 32.05 59.15
C12 21.24 45.37 45.83 35.9 26.85
C13 41.85 26.07 27.88 20.18 32.03
C23 18.62 30.06 46.2 26.3 4.4
C44 23.33 19.22 30.2 24.5 21.95
C55 17.71 16.11 20.75 14.65 21
C66 23.49 31.23 44.35 38.1 26.55
C14 6.35 0.58 0 0 1.3
C15 −6.84 −0.05 0 0 −6.2
C16 4.15 1.26 0.3 3.08 3.3
C24 1.09 −4.6 0 0 7.35
C25 6.34 1.79 0 0 −6.2
C26 4.67 −3 −14.93 −1.75 −3.18
C34 9.09 −4.6 0 0 −1.3
C35 3.61 1.79 0 0 1.4
C36 0.68 −0.57 −9.35 3.03 0.07
C45 0.72 0.33 −11.1 −9.43 1.73
C46 1.68 1.82 0 0 −1.6
C56 3.61 −0.4 0 0 2.73
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Table 2. Elastic properties of C-S-H: comparison between
VRH approximation with experiments on cement hydrate
samples.

Elastic constants VRH approx. Experiment

K [GPa] 43.7 –
G [GPa] 22.5 –
E [GPa] 55.3 –
M [GPa] 60.4 65
ν [–] 0.29 ≈0.3

(a parameter to measure material compressive stiff-
ness and relates to bulk and shear moduli (Pellenq
et al. 2009)). The indentation modulus and Poisson
ratio obtained in our simulation are in agreement with
the experiments.

To account for the flexibility of the C-S-H layer, we
calculate the rigidities k2b and k3b. We consider the C-
S-H layer as a structure discretized in spherical mass
points, with 2-body interactions defining the stretch
potential between mass points i and j (U2b). Similarly,
3-body interactions define bending potential between
mass points i, j and m (U3b). Then this approach is
combined with linear elastic beam and plate theory by
equating the harmonic potentials used in CG simula-
tions with the free energy expressions of beam theory
(Keremides et al. 2018). Therefore k2b and k3b take the
forms:

k2b=EA/L; k3b= 12EI/L (3)

where E is the (in-plan)Young’s modulus, L= 12.85 Å
(= σ ) is the distance between the center of two mass
points (taken as the diameter of each spherical mass),
A=πσ 2/4 is section of each mass point, and I =
1
4π (σ/2)4 is moment of geometric inertia of each
mass point. The bending modulus D and rigidities
obtained with this approach are displayed in Table 3.

Table 3. Bending modulus (D) and
rigidities (k2b and k3b) of C-S-H layers.

D [N.m] 1.66×10−17

k2b [kcal/mol.Å2] 80.3
k3b [kcal/mol.rad2] 9950

Our value of bending modulus is in the same order
as that found in a previous study on the flexibility of
tobermorite (Honorio & Brochard 2017). To the best
of our knowledge, there is no other study where the
rigidities of C-S-H layers were calculated. To verify
our results, we performed a coarse grained simulation
on a single fibril (chain of spherical grains) in which a
flexion effort was generated through an imposed dis-
placement δi = δi−1 +
δ, with 
δ= 0.02 Å at the
distance of one-quarter from each edge of the chain.
Based on the Kirchhoff-Love plate theory, for this

configuration the elastic free energy is a quadratic
function of the displacement δ: U = 6

(
4
L

)3
Dδ2. Our

values are in agreement with Kirchhoff-Love plate the-
ory and also the expression proposed by (Prathyusha
et al. 2018) linking D and k3b: D= k3b × 2 σ

Ltot
(with

Ltot being the length of the spherical grain chain)

2.2.2 Inter- and Intra-particules interactions
The PMF for C-S-H representing the effective inter-
actions between the layers under ambient temperature
and (liquid) saturated conditions is taken from (Hono-
rio et al. 2021)(Figure 2), where hybrid GCMC-NVT
simulations were performed on the C-S-H model of
Kunhi et al. (Kunhi Mohamed et al. 2018) using as
reaction path the interlayer distance. Critical informa-
tion for the mesoscale simulations can be derived from
the PMF: (i) the well depth ε, which is a measure
of how strongly two particles attract each other, and
(ii) the distance at which the potential crosses zero σ
representing the distance between two C-S-H layers
when they touch each other.

Figure 2. Potential of mean force (PMF) of C-S-H as a
function of basal spacing from (Honorio et al. 2021).

Here, we fit the PMF with a Mie (or generalized
Lennard-Jones) potential:

ULJ−G = 4ε
[(σ

r

)2α −
(σ

r

)α]
(4)

with σ = 12.85 Å, ε= 200 kJ/mol, and α= 20 being a
coefficient that controls the narrowness of the potential
well.

Intra-particle 2- and 3-body interactions are mod-
eled respectively by the harmonic potentials:

U2b(r)= k2b (r − r0)
2 ; U3b(θ )= k3b (θ − θ0)

2 (5)

where the rigidities are computed from the in-plan
Young modulus as detailed above.

2.2.3 Coarse-grained simulations
The details of the morphological representation based
on the 2D foil-like particles and the CG simulations
are presented in this section.The grain size was chosen
based on experimental values and in agreement with
the PMF (Maruyama et al. 2021). Indeed σ is consid-
ered to be the grain’s diameter with a value of 12.85 Å,
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and the disk thickness since the latter is filled with
the grains, while the diameter’s disk value is 308.4 Å,
which is close to the average diameter D ≈ 320 Å
reported by Maruyama et al. (Maruyama et al. 2021)
for a disk form in C-S-H gel.

In order to create a single 2D C-S-H disk, spherical
grains are generated in a cubic lattice with a lattice
constant equal to σ . Covalent bonds with rigidity k2b
are created for all first neighbors in the cubic lattice.
Three-body interactions are defined with a rigidity k3b
for all relevant triples of grains. Since the resulting
structure is hypostatic, we also create covalent bonds
with a k2b (computed for a distance L=√2σ ) for all
first neighbors in the diagonal of the cubic lattice to
brace the resulting layout. This single 2D disk is used
as a template to generate the initial mesostructure.

In a simulation box of 1000 nm, 400 disks are ran-
domly placed. Then, we adopt the method proposed
by (Masoumi et al. 2020) using high-frequency pres-
sure oscillations and annealing in MD simulations for
bringing the system to the most favorable packing den-
sity. We use the Nosé-Hoover thermostat and barostat.
We begin our simulation with small timesteps to avoid
numerical instabilities, then we impose the following
cycle of simulation: (i) NVT simulations at a tempera-
ture T = 3000 K and then at ambient conditions (T =
300 K); and (ii) NPT simulations at T = 300 K with
at first a pressure P= 200 atm, followed by a gradual
decrease to 1 atm.

To investigate the effect of layers flexibility on the
meso-structuration of C-S-H gel, we launched three
simulations named F01, F1, and F10, meaning that the
rigidities used as input in coarse-grained simulations
were multiplied respectively by 0.1, 1, and 10.

2.3 Structural features at mesoscale

The pore size distribution is determined by using the
algorithm PSDsolv (Bhattacharya & Gubbins 2006),
which is based on a Monte Carlo approach cou-
pled with nonlinear optimization. The isosurfaces and
specific surface area were determined using the alpha-
shape algorithm described in (Stukowski 2014) as
implemented in Ovito program.

2.4 Mechanical properties at mesoscale

2.4.1 Elasticity
Elastic constants are computed using the same strategy
adopted at the molecular scale for C-S-H. We perform
a minimization simulation with LAMMPS in which
the system is first relaxed; then, to each of the six
directions of interest, displacements are imposed, and
the pressure is sampled in the system to compute the
full (symmetric) stiffness tensor. Due to long-range
disorder, the response is expected to be isotropic at the
mesoscale.

2.4.2 Viscosity
In molecular simulations, the shear and bulk viscosi-
ties can be computed using the Green-Kubo formalism

with the expressions below. For the shear viscosity
(Medina et al. 2011; Allen and Tildesley 1989):

ηshear = 1

5

∑

α,β

lim
t→∞

V

kBT

∫ ∞

t=0
〈pαβ (t)pαβ (0)〉dt (6)

where pαβ are three out-of-diagonal components of
stress tensor pxy, pxz , and pzy, and the differences
between the diagonal elements (pxx − pyy)/2 and
(pyy − pzz)/2. For the bulk viscosity (Allen and Tildes-
ley 1989):

ηbulk = 1

3

∑

α,β

lim
t→∞

V

kBT

∫ ∞

t=0
〈pαβ (t)pαβ (0)〉dt (7)

where pαβ are three diagonal components of stress
tensor pxx, pyy, and pzz . The stress auto-correlations
in these expressions decay fast, allowing adopting an
upper integration limit of a few tens of picoseconds.

3 RESULTS AND DISCUSSIONS

3.1 ASR gels

As an illustration of the mesostructuration process,
Figure 3 displays the network of particle forming
clusters as a function of the packing density η. The
space occupied by the solid and the void phases is
more visible in Figure 4, which shows the isosurfaces
of the gel. The maximum packing fraction simulated
in this work for both Na-ASR gel and K-ASR gel is
η= 40%, which means a porosity of 60%. To the best
of the author’s knowledge, there are no experimen-
tal values for the porosity of ASR gel. However, our
results are in agreement with those of Geng et al. (Geng
et al. 2021) who estimated that the porosity of the ASR
gel is between 40 and 80% using the Mori-Tanaka
homogenization scheme.

The pore size distributions (PSD), in Figure 5, show
that as packing fraction increases, the average pore
size decreases for both Na-ASR and K-ASR gel. From
η= 30%, the emergence of two populations can be
noticed: (i) the pores between the grains in a close-
packing (which could be associated with the porosity
of systems in equilibrium basal spacing) and (ii) the gel
pores per se. At the maximum packing fraction simu-
lates here, the size of the pores between the grains is
around 6 Å for Na-ASR and K-ASR, while the gel pore
size is approximately 28 Å for Na-ASR and 24 Å for
K-ASR. This observation suggests that the charge bal-
ance cation plays a significant role in the pore structure
of ASR gels. It is noteworthy that even small changes
in pore size can lead to significant changes in effec-
tive transport properties such as the permeability (the
permeability scale as Kperm∝φR2

p, e.g., (Nishiyama &
Yokoyama 2017)) even if the total porosity is kept
constant.

Figure 6 shows how the SSA varies as a func-
tion of η. First, when η increases, the SSA increases,
indicating that the grains appear mainly as indepen-
dent particles (i.e., not a cluster). Then, when the
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Figure 3. Mesostructuration of Na-ASR and K-ASR gels as a function of packing fraction η.

Figure 4. Isosurfaces of Na-ASR and K-ASR gels as a function of packing fraction η.

Figure 5. Pore size distribution of Na-ASR and K-ASR gels.
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grains begin to aggregate and form clusters, the SSA
decreases. We remark that the grains start to aggregate
from a packing fraction of 15% for both Na-ASR and
K-ASR gel. This process coincides with a significant
increase in both bulk and shear viscosity, as can be seen
in Figure 7, which suggests a transition from a liquid
to an arrested solid-like behavior. In that direction, Del
Gado et al. (Del Gado et al. 2002) point out that the
bulk viscosity diverges at the percolation. For small
values of η, both Na-ASR and K-ASR gel viscosities
are low, but their values begin to increase from a pack-
ing fraction of roughly 24%, with a higher viscosity
for Na-ASR than K-ASR.

Figure 6. Specific surface area of Na- and K-ASR gels as
a function of the packing density.

Figure 7. Evolution of (a) the bulk viscosity and (b) the
shear viscosity as a function of the packing density.

The evolution ofYoung modulus as a function of the
packing density at zero stress η0 is shown in Figure 8
for both Na- and K-ASR gels. The results follow the
self-consistent (SC) estimated for spherical inclusions

(for these estimates, we have used the VRH estimates
for the bulk and shear moduli obtained from molecular
simulations on Na and K-shlykovite from (Honorio
et al. 2020)).

Figure 8. Evolution of Young modulus as a function of the
packing density at zero stress η0 of (a) Na- and (b) K-ASR
gels: comparison with the self-consistent estimate. The VRH
bulk and shear moduli obtained from molecular simulations
on Na and K-shlykovite were used as input in the SC scheme.

3.2 C-S-H gels

The aggregation of C-S-H layers forming the C-S-H
gel is displayed in Figure 9 (a). The three configura-
tions F01, F1, and F10 composed of stacks of layers
have differences that can be visually identified. For
example, the layers in F01 being less stiff appears
in more pronounced bent/curved configurations than
those in F1 and F10. Moreover, for F1, there is predom-
inately face-to-face contact between the layers, while
for F10 there is also face to edge contact. The number
of layers in stacks had been investigated in some exper-
imental and simulation studies. Chiang et al. (Chiang
et al. 2012) experiments found an average number of
layers n= 10.9 for a C-S-H microstructure at water
content of 30%, while Masoumi et al. (Masoumi et al.
2020) simulations found clusters containing up to forty
stacked layers at η= 70%. In our simulations, it can be
visually identified stacks constituted of at least 10 lay-
ers. Finally, Figure 9 (b) gives a better view of the space
occupied by the solid part and the remaining void.

The pore size distribution is plotted in Figure 10.
The population of pores with a radius of about
3 Å represents the voids between the grains inside
the disks or neighboring particles in close pack-
ing. This population has a similar prevalence in the
three configurations. When compared to F1 and F10,
the configuration F01 shows a smaller number of
intermediary pores with a radius between 9 and 40 Å
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Figure 9. Layers aggregation (a) and isosurface (b) of C-S-H gel according to the flexibility of the layerss for η= 0.25.

Figure 10. PSD of C-S-H gel according to the flexibility of
the layers for η= 0.25.

Figure 11. Specific surface area of C-S-H gel according to
the flexibility of the layerss for η= 0.25.

but a slightly larger frequency of large pores with a
radius 90–100 Å.As discussed in the case ofASR gels,
having a population of larger pores lead to a critical
increase in the permeability since this property scales
with the square of pore radius.

The SSA shows no significant dependence on the
flexibility of the layers (Figure 11).

Figure 12. Bulk and shear viscosity of C-S-H according to
the flexibility of the layers for η= 0.25.

Figure 13. Effective Young modulus of C-S-H a func-
tion of the packing density at zero stress η0 according to
the flexibility of the layers. the estimate of self-consistent
scheme for ellipsoidal inclusion with an aspect ratio of
ar = 12.85/154.2= 0.0833 is provided for comparison.

We also compute the effective Young modulus of
C-S-H as a function of the packing density at zero
stress η0 according to the flexibility of the layers (Fig-
ure 13). Higher flexibility leads to a slightly larger
Young modulus, but the results are within the stan-
dard deviations and are therefore inconclusive. For
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comparison, we also provide the estimates of the self-
consistent scheme for ellipsoidal inclusion with an
aspect ratio of ar = 12.85/154.2= 0.0833. The VRH
moduli of C-S-H calculated at the molecular scale
(Table 2) are used as input in the homogenization. The
percolation threshold of the self-consistent scheme
with this oblate inclusion is ηp= 0.28, which is in
agreement with previous work (Sanahuja et al. 2007).
CG simulation leads to a slightly earlier percolation.
Other packing densities are yet to be assessed. For this,
longer simulations (on the order of the µs (Masoumi
et al. 2020)) are needed to get configurations at larger
packing densities.

4 CONCLUSIONS

Coarse-grained simulations were deployed to under-
stand the mesostructuration and properties ofASR and
C-S-H gels.

We simulated the formation of ASR gels for
the first time using coarse-grained simulations. We
have adopted a mesoscale representation described by
mono-disperse spheres. Two different ASR gels were
simulated: (i) Na-ASR and (ii) K-ASR gel, respec-
tively, for gel formed from the reaction between the
main alkalis present in cement paste and the silica
present in aggregates. We simulated systems with
packing fraction ranges close to the range of (high)
porosity observed in ASR gels (Geng et al. 2021). We
have noticed differences between Na-ASR and K-ASR
gel structures emerging from the fact that these two
gels have different interaction potentials at the molec-
ular level. Na-ASR gels exhibit a coarser gel pore size
and higher viscosity than K-ASR.

We proposed an original multi-scale approach to
simulate the meso-structuration of C-S-H gel by con-
sidering the flexibility of its layers. We investigated
the effect of accounting for the layers flexibility by
considering three scenarios: one with rigidities as ini-
tially determined named F1, another with less rigid
layers (F01, with k2b and k3b multiplied by 0.1), and
the last one with more rigid layers (F10, k2b and k3b
multiplied by 10). Our results showed a difference in
the layer aggregation and orientation, with face-to-face
contact between the stacked layers being favored for
F1 while there is face-to-edge contact for F10. For the
same packing density, F01 shows a larger population
with large size pores compared to F1 and F10.

Perspectives include using poly-disperse disks to
represent the C-S-H gel to reach higher packing frac-
tions reported by (Jennings 2008) for C-S-H gel
(between 60 and 70%). Also, future work can deal
with the computation of the other properties of ASR
gel and take into account the temperature effect on the
ASR product morphology.
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ABSTRACT: In this paper, the effectiveness of CNNs trained on the spectrograms of impact echo is examined
for micro cracks in concrete caused by corrosion expansion of reinforcing bars. As results of the study, this
method is confirmed to be able to detect internal cracks caused by corrosion of reinforcing bars with cover
concrete. In addition, the possibility of recognizing the slight change in impact echo by the development of
internal cracks and evaluating the progress of deterioration is found.

1 INTRODUCTION

Impact echo method is widely used as an inspec-
tion method because it is non-destructive and simple
method to conduct. However, impact echo method is
not a quantitative judgment because it depends on the
skill of the engineer. In addition, the number of skilled
engineers is expected to decrease due to the declin-
ing birthrate and aging population. Also, the demand
for inspection is rapidly increasing with the aging of
existing structures. To deal with this situation, detailed
maintenance plans should be developed by efficiently
judging the initial deterioration. With the above back-
ground, quantitative inspection methods to efficiently
judge the initial deterioration are required.

To respond to this demand, quantitative detection
of defects by impact echo is attempted. For exam-
ple, if micro cracks appear in the specimen, the sound
wave shape will be differed from the normal part
because elastic waves by impact are reflected by the
cracks. Thus, a method has been proposed to quantita-
tively judge defects based on the characteristics of the
waveform by recording the impact echo with a micro-
phone. Kamata et al. 2002 and Miyoshi et al. 2009
have reported that this method can judge the defective
part.

Furthermore, as the characteristics of the waveform
are different between the normal part and the defec-
tive part, machine learning may be able to judge the
defective part automatically and quantitatively. There-
fore, in this study, quantitative and automatic judgment
of micro cracks in the initial stage of deterioration
caused by corrosion expansion of reinforcing bars in

concrete is attempted by machine learning of impact
echo. Specifically, a method is proposed that trans-
forms the impact echo into a spectrogram image using
the Short Time Fourier Transform (STFT) and con-
ducts machine learning using a Convolutional neural
network (CNN). CNN is a machine learning method
that shows high performance in image recognition by
image convolution and pooling. Shimbo et al. (2019;
2020) reported that this method can judge defects with
the same level of accuracy as humans on specimen
embedded with pseudo defects, and that it can also
judge defects in existing structures. Therefore, gener-
alization performance to judge the defects of existing
structures from the impact echo of different specimens
is aimed to be obtained. However, the impact echo
of the specimen is different from that of the existing
structures due to its size and simulated defects.

Therefore, obtaining the generalized performance
to judge the internal cracks of the real structure by
the impact echo of the specimen is considered to
be difficult, which is the current issue. So, in this
study, reinforced concrete specimen with dimensions
of 1800x1800x600mm is placed according to the mix-
ing conditions and shape (thickness, arrangement of
reinforcement, diameter of reinforcement and cover
concrete) of existing structures, and internal cracks
are generated by electrical corrosion. In this way,
the impact echo closer to those of existing structures
can be obtained. Then, as the first step to obtain the
generalization performance, the possibility of detect-
ing micro cracks caused by corrosion of reinforcing
bars is examined by this method. Figure 1 shows the
appearance of the specimen.
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Figure 1. Appearance of the specimen.

2 EXPERIMENTAL METHODS

2.1 Specimen and electrical corrosion experiment

Reinforced concrete specimen is placed according to
the mixing conditions and shape (thickness, arrange-
ment of reinforcement, diameter of reinforcement and
cover) of concrete piers.

The dimensions of the specimen are 1800 mm
(length)× 1800 mm (width)× 600 mm (height), and
the reinforcement was arranged in D25 and D19. The
rebar spacing was 300 mm and 200 mm, and the cover
concrete was 70 mm. Table 1 shows the mix propor-
tion of concrete. In addition, three strain gauges are
embedded in the specimen for the purpose of mon-
itoring the internal conditions of the specimen. The
positions of the strain gauges are shown by the red cir-
cle in Figure 2. Next, the reinforcing bars in the center
of the specimen are corroded and expanded by elec-
tric corrosion, and micro cracks are produced. Then,
this experiment aims to produce floating in the cen-
ter of the specimen by the expansion of micro cracks.
Figure 2 shows an overview of electrical corrosion.
In this experiment, electrophoresis method conducted
by Hanaoka et al. 2007 and Toda et al. 2010 is used.
This method can produce the actual corrosion of rein-
forcing bars. Electrical corrosion starts at 23 days after
concrete placement and is carried out for 50 days, then
stop for 100 days, and resume after that.

Table 1. Mix proportion of concretes.

Unit amount

W C S G Ad
W/C S/a
% % kg/m3

56 49 175 313 861 914 3.76

Figure 2. Outline of the specimen and corrosion method of
reinforcing bars by electric corrosion.

2.2 Measurement of impact echo

Measurement of impact echo is carried out once a week
after the start of electrical corrosion. Also, the initial
measurement is carried out two weeks after the speci-
men is placed, which is before the start of the electrical
corrosion.A hammer with the mass of about 1.5 kg and
the length of about 330 mm is used for the measure-
ment. The recordings are carried out at a distance of 10
cm from the hitting point, and the impact echoes are
recorded in succession so that one audio file is created
for each hitting point. The sampling frequency of the
recording is set to 96.0 kHz. The hitting points are 121
intersections of a grid with 100 mm intervals in the
center of the specimen to avoid the influence of the
edge. This is because the sound wave shape is differ-
ent from the existing structures due to the reflection
of elastic waves at the edge, which may decrease the
generalization performance. Figures 2 and 3 show the
locations of the measurement lines. In Figure 3, the
measurement range of impact echo is surrounded by
a square, and the range of electric corrosion is shown
by the square in the center. The number of hits is set

Figure 3. Position of the measurement line.
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Figure 4. Changes in strain and cumulative current.

at 5 hits per point. As the initial measurements and the
measurements on the 60th and 211th day after the start
of electrical corrosion are adopted as the training data,
16 hits per point are performed in the measurements
on those days.

3 RESULT OF ELECTRICAL CORROSION

Figure 4 shows the strain and the cumulative amount
of current per unit surface area of the reinforcing bars
from the start of the electrical corrosion until the 211th
day. Strain gauge 2 is not measured until the 7th day
after the start of electrical corrosion, so the strain is
shown from the 7th day. From Figure 4, rapid changes
in strain occur around 30, 50, 153, and 188 days. These
strain changes are assumed to be due to internal cracks
caused by corrosion of the reinforcing bars.

The core is drawn out from the center of the spec-
imen near the reinforcing bars on the 211th day
after the start of electrical corrosion. As the results,
micro internal cracks (crack width of about 0.05
mm) are observed. Figure 5 shows the internal cracks
observed. From the corrosion products observed inside
the cracks, these cracks are assumed to be caused by
the corrosion of reinforcing bars.These internal cracks
may also occur around 30, 50, 153, and 188 days.

Figure 5. Internal cracks at 211th day.

On the surface of the specimen, several surface
cracks are observed in the central part of the specimen
on the 81st day after the start of electrical corrosion.
The crack width at the 81st day is 0.02 mm. These sur-
face cracks continue to expand, and by the 116th day,
all cracks become 0.1 mm wide. Figure 6 shows the
sketch of the surface cracks at 116 days.

Figure 6. Surface cracks at 116th day.

4 DATA PREPROCESSING

4.1 Cutting process of impact echo

The impact echoes are normalized so that the maxi-
mum absolute value of the waveform is 1 and then cut
to a length of 400 ms using MATLAB ver.R2019b,
a numerical analysis software from MathWorks. The
timing of the cutout is set to when the absolute value
of the waveforms change exceeded 0.1.

4.2 Converting impact echo into spectrogram

Next, the waveform cut out to 400ms is converted to
a spectrogram using “MATLAB”. Short-time Fourier
transform (STFT) is used to transform the data
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into spectrograms. The transformed spectrogram is
cropped in the lower left corner and made into a
28x28 pixel spectrogram. Because the accuracy tends
to increase as the time axis become longer, the time
axis of the spectrogram is limited to 125 ms, and
the frequency axis is limited to about 12 kHz. Fig-
ure 7 shows the cut-out range of the spectrogram using
STFT with a red frame.

Figure 7. Cut-out range of the spectrogram.

5 MACHINE LEARNING

CNN is trained on the created spectrograms in a super-
vised training. The network structure of the CNN is 3
convolutional layers. The learning rate is 0.001 and
the number of epochs is 150. Two patterns of training
data are used. Pattern 1 is the impact echoes before
the start of the electrical corrosion and the 60th day
after the start of the electrical corrosion, and pattern 2
is the impact echoes before the start of the electrical
corrosion and the 211th day after the start of the elec-
trical corrosion. In the labeling of the training data,
all the data before the start of electrical corrosion are
normal. The data measured after the start of electrical
corrosion are labeled as defective at the center and nor-
mal at the surroundings, based on the results of impact
echo method by a skilled engineer conducted on the
56th day after the start of electrical corrosion. Figure 8
shows the locations of normal and defects. 20% of the
training data is used as validation data, for the purpose
of checking whether overtraining is occurred.

After the training is completed, the network is eval-
uated for accuracy of defect detection by judging the
test data. The test data are collected during the period
of 18–53 days and during the period of 88–193 days.
MATLAB is used for machine learning and judging.

Table 2 shows the number of data used for training
and the accuracy at the end of training. The accuracy
at the end of training is 100% for Pattern 1 and about
98% for Pattern 2. So, both patterns are able to learn
with sufficient accuracy.

Figure 8. Position of Normal and Defective.

Table 2. Overview of the machine learning conducted.

Number of data Number of data Accuracy
Pattern (normal) (defective) %

Pattern 1 6294 1440 100.0
Pattern 2 6294 1440 98.3

6 RESULTS OF JUDGMENT AND DISCUSSION

6.1 Results and discussion for 18th day to 53rd day

When the network judges the impact echo, an evalua-
tion score of 1 to 0 is output. 1 means normal, 0 means
defective, and 0.5 is the threshold between normal and
defective. The scores are arranged in the order of the
hitting points on the specimen as shown in (a) of Figure
9. Then, arranged scores are converted into a contour
map as shown in (b) of Figure 9. The score is shown
in a three-color scale, where 1 is green, 0.5 is yellow,
0 is red, and the color gradually changes in between.
Also, the score is the average score in the hitting points
because multiple impact echoes are measured for each
hitting point.

Figure 9. Conversion to contour map.

The results of judgment from 18th to 53rd day are
shown in Figure 10. In Figure 10, 18th day from the
start of electrical corrosion is represented as Event 1,
27 days as Event 2, and so on. From Figure 10, almost
the entire surface is judged to be normal in Events 1
and 2 for both patterns 1 and 2. Also, the central part
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Figure 10. Results of judgment of specimen from 18th day to 53rd day.

of the specimen is judged to be defective in Events 3
through 5. The part judged to be defective is the part
undergoing electrical corrosion.

Until Event 2, the corrosion of the reinforcing
bars does not progress sufficiently to produce internal
cracks. Thus, the judgment of normal from Event 1 to
2 is a reasonable judgment. In addition, as described in
Chapter 3, internal cracks are considered to occur after
30 days after the start of the electrical corrosion, when
the strain changed rapidly. So, the judgment of defect
in the center of the specimen after Event 3 is also rea-
sonable. Therefore, the trained network is considered
to be able to judge the internal cracks.

In addition, the range of defects increased signif-
icantly in the judgment results at Event 3 and Event
5. Thus, the trained network can sensitively reflect the
changes in the specimen due to the growth of inter-
nal cracks. Therefore, the trained network may be able
to evaluate the progress of degradation. From these
results, this method can detect internal cracks caused
by corrosion of reinforcing bars with a cover of 70 mm.

However, from Event 3 to Event 4 in Pattern 1,
the area judged to be defective became smaller, even
though the strain did not change significantly. This
may be due to the shrinkage of the concrete and the
decrease of micro cracks caused by the decrease in
concrete temperature from 30◦C to 25◦C during this
period. The decrease in the concrete temperature is
caused by the decrease in the temperature near the test
site. Figure 11 shows the concrete temperature, the air
temperature near the test site, and the strain values
from strain gauge 1.

Next, the judgment results for each pattern are com-
pared with each other. As a result, the range of pattern
2 judged as a defect is smaller than that of pattern 1.
In Pattern 1, the data at 60th day is used as the training
data, and in Pattern 2, the data at 211th day is used as
the defect training data. Figure 4 shows that the values
of strain gauge 1 and 2 at 60th day are about 450 µ
and 20 µ, while the values of strain gauge 1 and 2 at
210th day are about 530 µ and 100 µ. So, the strain
values are larger than that at the 210th day. Therefore,
between the 60th day and the 210th day, the deterio-
ration is more severe and the range of deterioration is

Figure 11. Concrete temperature and temperature near the
test site.

larger in the 210th day. Thus, in Pattern 2, the impact
echo of the more degraded specimen is learned, which
may cause such a change.

In addition, when these two data are used as training
data respectively, the judgment results are different,
which suggests that CNN using spectrogram may be
able to recognize these two data as different data.

6.2 Results and discussion for 53rd day to
193rd day

Next, the results of judgment from 53rd to 193rd day
are shown in Figure 12. In Figure 12, 53rd day from
the start of electrical corrosion is represented as Event
5, 88 days as Event 6, and so on. Figure 12 shows that
the range of defects judged in Event 9 is larger than
that in Event 5 for both patterns 1 and 2. Also, after
Event 6, there was no clear difference in judgments
between patterns 1 and 2.

As mentioned in Section 6.1, the strains in Figure
4 indicate that the degradation is more severe on the
210th day than on the 60th day. Therefore, the degra-
dation is considered to be more severe and the range
of degradation is larger in Event 9 than in Event 5. So,
the judgment result that the range of defects is larger
in Event 9 than in Event 5 is reasonable. This result
suggests that the trained network is able to detect the
progress of internal cracks and degradation even when
the specimen is degraded by more electrical corrosion.

152



Figure 12. Results of judgment of specimen from 53rd day to 193rd day.

Figure 13. Changes in average score.

Next, the judgment results in Events 6 and 7 are
focused on. This is the period when electric corrosion
is stopped and the specimens are dried. As a result, the
range of defects judged in Event 7 is the largest for
both patterns 1 and 2 over the entire period. In order
to visualize this, the average of the scores obtained by
the judgment for each measurement day is shown in
Figure 13.

From Figure 4, the values of strain around the day
of Event 7 are the smallest among Event5 to 9. So, the
range of defects is expected to be smaller, but the actual
result is not smaller. This result is probably caused by
the micro cracks that increased due to the drying of the
specimens and are judged as defects. When electrical
corrosion is resumed, the micro cracks may be closed
by the water, and the range of defects may be judged
smaller. Also, the characteristics of the impact echo
may change by drying of the specimen, which may
affect the judgment. The effect of the wet condition of
the concrete on the impact echo needs to be studied in
the future.

7 CONCLUSION

In this paper, the possibility of the CNN trained on the
spectrogram of impact echo to detect the micro cracks
in the concrete caused by the corrosion expansion of
reinforcing bars is examined.The findings of this study
are presented below.

(1) The CNN trained on the spectrogram converted
from the impact echo by STFT is confirmed to

be able to detect the internal cracks caused by the
corrosion of reinforcing bars with deep cover.

(2) This method has potential for recognizing slight
changes in impact echo caused by the growth of
internal cracks and for judging the progress of
deterioration.

If this method can be applied to existing structures,
more detailed maintenance management plans can be
developed. As a result, the life-cycle cost of structures
can be reduced. To apply to existing structures, this
method needs to acquire generalization performance.
However, in existing structures, internal cracks larger
than those in this study may exist. So, generalization
performance is difficult to obtain with the current
data. Therefore, in the future, the degradation will
be advanced by further electrical corrosion to obtain
generalized performance.
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ABSTRACT: In several recent mesoscale and macroscale material model formulations, the authors hypoth-
esized that fatigue evolution in the material structure can be realistically modeled by defining a cumulative
measure of inelastic shear strain as the fatigue driving mechanism. The standard method of fatigue characteriza-
tion using cylinder compression tests induces shear only as a secondary effect within the volume of the specimen.
To validate the hypothesis that fatigue at subcritical load levels is determined by a cumulative measure of inelastic
shear strain, experimental methods with dominant shear strain appear more appropriate. In the present work,
the punch-through shear test (PTST) setup is used to induce shear-dominated strain within the volume of the
specimen. Furthermore, the ability to control and measure lateral confinement is utilized. An experimental study
of the fatigue behavior of a high-strength concrete is presented, in which the influence of different degrees of
confinement on the fatigue life of the concrete at subcritical load levels is evaluated. The study analyzes the
accelerating or retarding effect of confinement on the development of fatigue damage that occurs as a result
of compressive normal stress. To enable an efficient and realistic representation of the pressure-sensitive, shear
dominated fatigue response, an axisymmetric idealization of the PTST test is proposed, modeling the shear liga-
ment using the fatigue microplane model MS1. In this model, the tangential damage at the microplane is linked
to a cumulative inelastic strain to reflect the accumulation of fatigue damage owing to internal shear/sliding
between aggregates at subcritical load levels. The model aims to capture the basic inelastic mechanisms that
are driving the tri-axial stress redistribution within the material zone during the fatigue damage process in
concrete.

1 INTRODUCTION

Over the last decade, many endeavors have been made
to reduce the amount of concrete, and thus CO2 emis-
sions, necessary to meet the legitimate demands of
an increasingly growing population. Therefore, new
materials, design techniques and numerical models
have been developed. Fatigue response of normal and
high strength concrete has been extensively investi-
gated in the literature during the last decades e.g., (Do,
Chaallal, & Aïtcin 1993; Kim & Kim 1996; Song,
Konietzky, & Cai 2021; Oneschkow, Timmermann, &
Löhnert 2022; Schäfer, Gudžulić, Breitenbücher, &
Meschke 2021).

While high-cycle fatigue of metals has been thor-
oughly studied and described so that reliable pre-
dictions of fatigue life are available for engineering
practice, a complete understanding of the processes of
fatigue damage propagation in concrete is still lacking.
In spite of a remarkable progress in recent years made
in modeling and characterizing the concrete fatigue
behavior e.g., (Desmorat, Ragueneau, & Pham 2007;
Kirane & Bažant 2015; Rybczynski, Schaan, Dosta,
Ritter, & Schmidt-Döhl 2021), many open questions
remain that need to be fundamentally addressed in

order to develop a deep and general insight into the
fatigue phenomenology.

A promising hypothesis in this context postulates
that fatigue evolution in concrete material struc-
ture is primarily driven by oscillating local shear
strains at subcritical load levels within the hetero-
geneous cement-aggregate material structure. This
theory has been investigated in recent publications,
where a microplane fatigue material model for con-
crete showed very promising results under com-
pressive loading (Baktheer, Aguilar, & Chudoba
2021).

To isolate the fundamental fatigue damage mech-
anisms in high-performance concrete, a new exper-
imental setup “cylindrical punch through shear test
(PTST)” has been developed by the authors to charac-
terize the behavior of concrete under combined shear
and normal loading. By capturing the fatigue behav-
ior of the PTST for a wide range of loading scenarios
and confinement levels, we aim to create an alternative
method for characterizing the fatigue behavior of con-
crete. The controllable degree of confinement extends
the scope of validation of both the model and the under-
lying hypothesis, which is the main goal of the ongoing
research.
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2 EXPERIMENTAL INVESTIGATION

The cylindrical punch thorough shear test (PTST)
(Luong 1989) was used to investigate the material
behavior of high-strength concrete under combined
shear and compression load. Through preliminary
studies on similar specimens, the strong influence
of compressive stress on fatigue life under mode II
fatigue load was investigated at (Becks & Classen
2021). A new test setup was developed to allow simul-
taneous control of shear and compressive stresses to
systematically investigate the influence of the degree
of confinement on the fatigue life of high-strength
concrete under subcritical fatigue shear loading.

2.1 Specimen geometry

With the aim of obtaining an approximately straight
shear failure surface, the geometry of the specimen
shown in Figure 1 was designed to introduce two dif-
ferent diameters of circular notches and minimize the
occurrence of radial tensile stresses on the ligament.
In addition, four notches were introduced in the outer
concrete ring to prevent the occurrence of radial cracks
on the outer cylinder of the specimen and to allow
direct transfer of the compressive load to the ligament.

Figure 1. Specimen geometry and loading condition.

2.2 Materials

A high-strength concrete with a maximum aggregate
size of 8 mm was used for all tests. To evaluate the
material properties, concrete specimens were prepared
from the same batch and tested after 28 days. The
compressive strength was tested on cube specimens
(a = 150 mm) and was 96 MPa. The modulus of

elasticity and splitting tensile strength were deter-
mined on cylinders (h/d= 300 mm/150 mm) and were
39.226 MPa and 4.3 MPa, respectively. The specimens
were produced in steel forms, cured for one day and
then stored exposed in air until testing.

2.3 Test setup and instrumentation

The geometry of the PTST setup is shown in Figure 2.
The radial compression stress is controlled by two
hydraulic cylinders and applied to the entire surface
of the outer ring specimen via four steel jaws. Full-
surface support on the outer concrete ring and load
application to the entire inner concrete cylinder intro-
duces the mode II load along the test ligament between
the upper and lower notches. The relative displace-
ment of the outer and inner rings was measured using
six linear variable displacement transducers (LVDTs)
attached to the bottom and top of the specimen to
capture possible tilting of the inner cylinder.

Figure 2. Test setup.

2.4 Experimental results

Monotonic tests. To investigate the effect of com-
pression stress on the ultimate shear load, PTSTs
were loaded at four different levels of compression
σc (load I) and subjected to a monotonically increas-
ing displacement-controlled (load II) at a rate of
0.2 mm/min up to a maximum relative displacement of
the inner and outer rings of 6 mm. The precompression
stress has been evaluated as the radial confinement
force normalized w.r.t. surface area of the ligament.

As the experimental results given in Figure 3 show,
the precompression load has a clear influence on the
pre-peak and post-peak behavior.While the shear force
of the specimens with 16 and 32 MPa precompression
level steadily decreases after reaching the maximum
shear force, the specimen with 4 MPa compression
load exhibits a post-peak sudden slippage of the inner
concrete core. Specimens without compressive load-
ing fail immediately after reaching the maximum shear
load and therefore do not show any post-peak behavior.
The peak shear stress and the residual shear force after
the peak increase with increasing compressive stress.

155



Figure 3. Stress-displacement curve of monotonic shear
tests with different compressive loadings.

Fatigue tests. To investigate the material behavior
under combined precompression and subcritical shear
fatigue loading, eight fatigue tests were performed
with three different precompression levels, namely 5,
15, and 30 MPa. The range of the shear fatigue load
was set to Smax = 0.85 and Smin= 0.05 in relation to
the respective monotonic ultimate load. All tests were
performed with a cycling frequency of 5 Hz.

Figure 4 shows the force-displacement curve of one
selected test with 15 MPa compression load, together
with the corresponding monotonic reference test. This
test withstood 747 cycles and failed at the displace-
ment of about 0.6 mm.An overview of the results of the
experimental fatigue tests is given in Table 1. As can
beseen from the experimental studies, the fatigue life
under mode II loading increases by two orders of mag-
nitude with each considered increase in compressive
loading.

Figure 4. Stress-displacement curve of test F5 with 15 MPa
compressive loading.

It should be noted that in the test with the low con-
finement and the low number of cycles to failure, it was
not possible to achieve uniform load amplitudes during
the first cycles. Also, the maximum load achieved was

Table 1. Summary of all conducted fatigue tests.

Test Smax Smin σc Number of cycles N f

F1 0.80 0.05 5 9
F2 0.80 0.05 5 57
F3 0.80 0.05 5 54
F4 0.85 0.05 15 9454
F5 0.85 0.05 15 747
F6 0.85 0.05 15 3296
F7 0.85 0.05 30 92.349
F8 0.85 0.05 30 201.420

lower than the desired Smax = 0.85. Despite this defi-
ciency, the qualitative trend shown in Figure 5 can be
considered relevant and serves as a basis for the inves-
tigations with the microplane material model MS1.

Figure 5. Fatigue life for the studied confinement levels.

3 MICROPLANE MODEL FOR FATIGUE MS1

The recently introduced microplane material model
MS1 (Baktheer, Aguilar, & Chudoba 2021) for the
fatigue behavior of concrete is used in the current
study. The key idea of this material model is to link
the evolution of fatigue damage to a measure of
cumulative inelastic shear strain (Baktheer & Chu-
doba 2018a). This hypothesis is based on experimental
observations, e.g. by Skarzynski et al. (Skarzynski,
Marzec, & Tejchman 2019), indicating that crack ini-
tiation and propagation during fatigue loading occurs
along the interfaces between the hardened cement
paste and aggregates. The model has been formu-
lated within the microplane framework, exploiting
the principle of energy equivalence to transform the
material state representation on a unit hemisphere to
the tensorial stress and stiffness representation. Using
this homogenization framework, thermodynamically
based constitutive laws that govern the macroscopic
behavior can be defined at the level of a microplane,
that can be thought of as an oriented plane with an
ascribed dissipation behavior within a 3D material
structure.
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The macroscopic thermodynamic potential is
expressed as the sum of the microplane normal and
tangential Helmholtz free energies:

ψmac= 3

2π

∫

�

ψmicd�= 3

2π

∫

�

ψNd�+ 3

2π

∫

�

ψTd�.

(1)

The projection of the thermodynamic potentials
onto the normal and tangential direction allows intro-
ducing distinguished dissipative mechanisms for each
direction, which are summarized in Figure 7.

Normal direction:
The microplane thermodynamic potential of the nor-
mal direction was defined as

ρψmic
N = 1

2
[1− H (σN)ωN] EN(εN − ε

p
N)2 + 1

2
KNz2

N

+ 1

2
γNα

2
N + f (rN), (2)

where ρ represents the material density and EN is the
normal elastic stiffness given as

EN = E

(1− 2ν)
, (3)

with E denoting the elastic modulus and ν the Pois-
son’s ratio. To capture the switch of normal behavior
between tension and compression, the Heaviside func-
tion H (σN) was introduced. If the microplane is sub-
jected to tension in the normal direction, H (σ+N )= 1 ,
then normal damage can develop while plastic defor-
mation remains unchanged. In case of compression
H (σ−N )= 0, the plastic process can take place while
the normal damage does not evolve. KN and γN are
the isotropic and the kinematic hardening moduli,
respectively. Here the thermodynamic internal vari-
ables include: the plastic normal strain εp

N, the damage
variable ωN, the isotropic and kinematic hardening
variables zN,αN, respectively. The consolidation func-
tion f (rN) controls the evolution of tensile damage.The
conjugate thermodynamic forces are determined by
differentiating the thermodynamic potential (2) with
respect to each internal variable.

Figure 6. Calibration and validation procedure used for the developed microplane model (MS1) for concrete C80.

Tangential direction:
In the tangential direction, cumulative damage is con-
sidered as the main source of fatigue damage. This
mechanism drives the material deterioration at pul-
sating subcritical stress levels. The pressure-sensitive
interface model presented in (Baktheer & Chudoba
2018b) with fatigue damage due to cumulative inelas-
tic slip is used to describe the tangential constitutive
behavior of a microplane. The thermodynamic poten-
tial of the microplane in the tangential direction is
therefore given as

ρψmic
T = 1

2
(1− ωT)ET(εT − επ

T ) · (εT − επ
T )

+ 1

2
KTz2

T +
1

2
γTαT · αT, (4)

where and ET is the tangential elastic stiffness given as

ET= E(1− 4ν)

(1+ ν)(1− 2ν)
, (5)

while KT and γT are the isotropic and kinematic strain
hardening moduli, respectively. The thermodynamic
internal variables are the inelastic tangential strain vec-
tor, i.e. the strain vector defining the irreversible strain
επ

T , the damage variable ωT, the isotropic hardening
internal variable zT and the kinematic hardening vec-
tor αT. Similar to the normal direction, the conjugate
thermodynamic forces are obtained by differentiating
the thermodynamic potential (4) with respect to each
internal variable.

The model was calibrated and validated using
experimental data for the compressive behavior of
concrete under a wide range of loading scenarios as
reported in (Baktheer & Chudoba 2021). The results
of the validation are exemplified in Figure 6 present-
ing the ability of the model to reproduce the response
under monotonic, cyclic, and fatigue loading with a
single set of material parameters. The ability of the
macroscale MS1 model to reflect the fatigue induced
tri-axial stress redistribution in a material zone using
a single point idealization is particularly important
in view of high-cycle fatigue modeling when simu-
lating the response cycle by cycle. Further features

157



and capabilities of the microplane material model
MS1 are discussed at (Baktheer, Aguilar, & Chudoba
2021). The breakdown of energy release with fractions
ascribed to the included dissipation mechanisms under
fatigue loading has been quantified using the MS1
model and discussed in detail in (Aguilar, Baktheer, &
Chudoba 2021).

4 PTST NUMERICAL INVESTIGATION

A numerical idealization with a minimal complexity,
that would still realistically capture the governing prin-
ciples of fatigue evolution, is sought with the goal
to allow for an efficient cycle-by-cycle simulation of
the fatigue response. Moreover, a consistent represen-
tation of the fatigue and monotonic degradation for
shear dominated loading is required. Therefore, the
numerical model only includes the ligament of the
PTST, assuming the surrounding bulk material rigid as
shown in Figure 7. The axisymmetric representation
of the strain and stress state using a FE discretiza-
tion requires only several degrees of freedom. The

Figure 7. Idealization of the PTST with axi-symmetric representation and microplane material model MS1.

Figure 8. Shear behavior of the ligament under varying normal stresses. Top left panel depicts the applied decohe-
sion/confinement level, top middle panel displays the corresponding force-displacement curve, while the top right panels
shows the corresponding evolution of dilatancy displacement. The bottom row displays a measurement of the damage in the
radial, hoop and shear directions. Material parameters: E = 30000.0, ν = 0.18, Ad = 5000.0, ε0 = 0.0001, KN = 0.0, σ 0

N =
1000.0, γN = 2000.0, σ 0

T = 5.0, KT = 0.0, γT = 2000.0, ST = 0.001, cT = 2.0, rT = 3.0, mT = 0.1, pT = 1.0.

microplane fatigue model MS1 is used to model the
inelastic phenomena that take place in the ligament.
On the inner boundary of the ligament, displacement
is constrained in all directions. On the outer ligament
boundary, a uniform profile of vertical and horizon-
tal forces/displacements is applied, as visualized in
Figure 7.

4.1 Elementary studies

Monotonic behavior. Numerical simulations evaluat-
ing the monotonic behavior of the ligament are shown
in Figure 8. A displacement-controlled shear load was
introduced at three different levels of normal stress
as depicted in Figure 8a. The normal stress acting on
the ligament was applied first and then held constant
while the control slip increased. In Figure 8b, it can be
seen that the peak shear force decreases for the tensile
normal stress due to normal decohesion. On the other
hand, the peak load increases when compressive stress
is applied. This result highlight the ability of MS1 to
reflect the pressure sensitivity of the shear response
observed in the experimental results. The deformation
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Figure 9. Cyclic shear behavior of the ligament under varying normal stresses. Top left panel depicts the amount of applied
cycles for each decohesion/confinement level, top middle panel displays the corresponding force-displacement curve, while
the top right panels shows the corresponding evolution of fatigue creep displacements. The bottom row displays a measurement
of the damage in the radial, hoop and shear directions. The material parameters are shown in the caption of Figure 8.

of the ligament in the normal direction plotted in Fig-
ure 8c reveals a dilatancy effect, which depends on the
level of confinement. The obtained dilatancy displace-
ments are of the same order of magnitude as those
reported in (Wong, Ma, Wong, & Chau 2007). The
lower row in Figure 8 shows the damage evolution in
the radial, hoop, and shear directions. In case of the ten-
sile normal loading represented by the black curves,
a significant damage develops prior to the application
of the sliding displacement.

Cyclic behavior.To examine the ability of the model
to reproduce the shear fatigue response under var-
ied normal decohesion/confinement stress, Figure 9
presents a study under subcritical cyclic shear force,
with the same material parameters and degree of deco-
hesion/confinement load as in the monotonic studies.
The loading range of the cyclic shear force was set
between 120 kN for the upper level and 6 kN for the
lower level. The number of cycles sustained for the
three considered levels of normal stress are shown in
Figure 9a. For the tensile normal stress of 5 MPa,
the failure occurred after 7 cycles. In the uncon-
fined case the ligament withstood 56 cycles, while for
the confined case with precompression of 10 MPa,
the material failed after 394 cycles. Figure 9b dis-
plays the corresponding force-displacement curves
with the opening of the hysteretic loops decreasing
for increasing confinement.

The fatigue creep curves showing the slip along
the lifetime of the specimen are plotted in Figure 9c
for the three levels of lateral stress. These values of
slip were recorded in each cycle at the upper load
level of the applied shear force. This diagram shows

a moderate slope of fatigue creep displacement in its
first part for the case associated with the initial com-
pressive level of 10 MPa, which increases drastically
during the last cycles until failure. On the other hand,
the specimens with normal and zero tensile stress do
not exhibit a stable fatigue induced degradation.

This behavior is also reflected in the damage evolu-
tion shown in the bottom row of Figure 9 for the radial,
hoop and shear damage projections. At a confinement
level of 10 MPa, radial and hoop damage dominate
during the early cycles. During fatigue loading, dam-
age evolved in a non-proportional manner, reaching
higher values of the shear damage right before the lig-
ament failure. The damage accumulation in the radial
and circumferential projections results from the tri-
axial stress redistribution during the fatigue life due to
the cumulative shear damage. Note that the material
model does not explicitly account for tensile damage
accumulation during fatigue.

4.2 MS1 calibration for monotonic behavior

In order to quantitatively reproduce the experimen-
tal behavior of the considered concrete, the material
parameters of the MS1 model were calibrated using
a uniaxial stress state to reproduce the strength and
stiffness characteristics summarized in Sec. 2.2. The
simulated compressive and tensile response plotted
Figure 10a and b demonstrate a good fit with the pre-
scribed compressive strength and tensile strength of
96 MPa and 4.3 MPa, respectively.

The calibration of the shear behavior of the mate-
rial model was performed using the axisymmetric
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Figure 10. Monotonic compressive, tensile and shear behavior with increasing confinement level. Parameters: E= 39226.0,
ν = 0.18, Ad = 7000.0, ε0 = 1e-5, KN = 10000.0, σ 0

N = 40.0, γN = 60000.0, σ 0
T = 2.0, KT = 500.0, γT = 5000.0, ST = 0.003,

cT = 10.0, rT = 13.0, mT = 0.1, pT = 6.0.

idealization shown in Figure 7. The ligament was sub-
jected to 4 precompression levels, namely 0, 5, 15
and 30 MPa. The experimental trend obtained for the
monotonic case could be reproduced, as can be seen
in Figure 10, with the ultimate loads with the values
of 141.99, 162.00, 191.58 and 224.24 kN.

Even though the fatigue behavior, including the
tri-axial stress redistribution during subcritical pulsat-
ing loading, can already be qualitatively well repro-
duced, further refinements are required to improve the
quantitative representation of the fatigue process.

In particular, the interaction of the normal and tan-
gential dissipative effects at the inter-aggregate level
needs to be considered. Integration of the coupled
slip-decohesion-compression interface model pre-
sented in a companion paper (Chudoba, Vořechovský,
Aguilar, & Baktheer 2022), where the behavior of the
microplanes in the normal and tangential directions
would be coupled in a clear and transparent manner,
would allow for a more flexible control of the over-
all macroscopic response. Further aspects need to be
considered at the microplane level to reflect the inter-
aggregate consolidation in the initial part of the fatigue
creep curve.

5 CONCLUSIONS

The performed studies examine the ability of the
fatigue microplane material model MS1 to capture the
behavior of concrete subjected to cyclic shear loading
under confinement or decohesion normal load. Based
on the hypothesis of cumulative shear sliding within
the material structure, the study focused on the simu-
lation of the punch-through shear test. This test setup
provides the possibility to control the stress config-
uration along a test ligament in a more flexible way
compared to the common cylinder test.

The studies demonstrated the ability of the model
to reproduce the qualitative trends observed in the
experiments for varied levels of normal decohe-
sion/confinment loads both for monotonic and fatigue
types of loading. To enable an efficient simulation

of the dissipative mechanisms cycle-by-cycle, the
axisymmetric shape of the punch-through shear test
was exploited. This modeling concept will be further
refined with the aim to effectively support the devel-
opment of an innovative experimental method for the
characterization of concrete fatigue response intro-
ducing a flexible control of the normal/shear stress
configuration along the test ligament.
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Simulation of self-compacting steel fibre reinforced concrete using an
enhanced SPH methodology
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ABSTRACT: Accurate prediction of self-compacting fibre reinforced concrete (SCFRC) flow, passing and
filling behaviour is not a trivial task, particularly in the presence of heavy reinforcement, complex formwork
shapes and large size of aggregates. In this regard, complex formwork shapes and large size of aggregate can play
an important role in fibre orientation and distribution during the flow of fibre reinforced self-compacting concrete
and can thus significantly influence mechanical behaviour of the hardened material. Due to the nature of self-
compacting concrete mix and widely varying properties of its constituents, it is hugely challenging to understand
the rheological behaviour of the concrete mix. For this reason, it is necessary to thoroughly comprehend fresh
property by understanding its rheology. The quality control and accurate prediction of the SCFRC rheology are
crucial for the success of its production.

A three-dimensional meshless smoothed particle hydrodynamics (SPH) computational approach, treating
the SCFRC mix as a non-Newtonian Bingham fluid constitutive model has been coupled with the Lagrangian
momentum and continuity equations to simulate the flow. The aim of this numerical simulation is to investigate
the capabilities of the SPH methodology in predicting the flow and passing ability of SCFRC mixes through gaps
in reinforcing bars. To confirm that the concrete mixes flow homogeneously, the distribution and orientation
of steel fibres in the mixes have been simulated and compared against observations made in the laboratory
experiments. It is revealed that the simulated flow behaviour of SCFRC compares well with results obtained in
the laboratory tests.

Keywords: Self-compacting steel fibre reinforced concrete, Fibre orientation and distribution, Smooth particle
hydrodynamic, 3D simulation.

1 INTRODUCTION

Self-compacting steel fibre reinforced concrete (SCS-
FRC) may contribute to significant development of
high quality complex concrete structures and open
new applications for concrete. The addition of fibres
makes the fresh concrete stiffer and reduces its worka-
bility. This also limits the number of fibres that can be
uniformly orientated and distributed in the presence
of heavy reinforcement, complex formwork shapes
and large aggregates. As the orientation of fibres
alter throughout the production of the concrete, it is
essential to understand these changes in the fibre ori-
entation. In particular, the orientation and distribution
of fibres may be significantly affected, especially when
the concrete is cast in the presence of heavy reinforce-
ments. In the past, most of the study focused on visual
inspection of fibres in hardened concrete parts cut after
casting (Bernasconi et al. 2012; Lee et al. 2002; Zak
et al. 2001) and the prediction of the typical orienta-
tion factor of fibres from the cut sections (Martinie &
Roussel 2011).

The prediction of SCSFRC flow and its passing
and filling behaviour is very challenging particularly

within the congestion of reinforced formwork geome-
try and in the presence of reinforcing steels. However,
an understanding of the flow behaviour and its proper-
ties is important for producing high-quality SCC. The
most cost-effective way to gain such an understand-
ing is by performing computational simulations, which
will enable one to fully characterize the flow behaviour
of SCSFRC and to reveal the orientation of fibres
inside the complex formwork shapes. The rheological
behaviour of fresh concrete mix must be consistent
with the formworks of complex shapes to ensure the
production of complete and high-quality casting of
structural elements. In this work, a three-dimensional
Lagrangian smooth particle hydrodynamics (SPH)
method is used to simulate and predict the flow of
SCSFRC. SPH method is ideal for simulating the
flow to analyze the passing ability and filling ability
of SCSFRC mixes, irrespective of their character-
istic compressive strength. These simulations will
provide information about the distribution and orienta-
tion of fibres throughout the entire process of casting
SCSFRC into the formworks of complex shapes to
ensure that the mixture flows as a homogeneous mass
without any sign of segregation or blockage. In this
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paper, a simple method has been established to pre-
dict the distribution and orientation of steel fibres
in self-compacting concrete mixes during flow-ability
(Slump Flow test), pass-ability and fill-ability (L-box
test) tests.

2 DEVELOPMENT OF THE SELF
COMPACTING NORMAL-STRENGTH STEEL
FIBRE REINFORCED CONCRETE MIXES.

A laboratory study was conducted to produce vari-
ous grades of SCSFRC mixes (with nominal 28 days
cube compressive strengths of 30 MPa,40 MPa,50
MPa,60 MPa and 70 MPa). The fundamental mate-
rials and secondary materials for the SCC mix are
produced following the European Federation of Spe-
cialist Construction Chemicals and Concrete Sys-
tems (EFNARC) guidelines (EFNARC 2005). These
mixes were developed using a mix design method
for SCC based on the desired target plastic-viscosity
and compressive strength in accordance with mix
design method proposed byAbo Dhaheer et al. (2016a,
2016b), which rationalized and simplified the method
recommended previously by Karihaloo and Ghanbari
(2012), Deeb and Karihaloo (2013). As an example,
the amounts and specifications of the components
used in the SCC design mix with target compres-
sive strength 40MPa are shown in Table 1. Portland
limestone cement (PLC) (CEM II/A-L/32.5R) con-
forming to (BS EN 197-1 2011) with a specific gravity
of 2.95 and Ground granulated blast-furnace slag
(GGBS) with a specific gravity of 2.40 were used as
the main cement and cement replacement materials
respectively. A new generation of polycarboxylic

Table 1. Constituents and proportions for SCSFRC mixes
(kg/m3).

Mix strength grade 40 MPa

Cement: kg/m3 270
GGBS*: kg/m3 90
Cementitious materials (cement + GGBS): kg/m3 360
Water: kg/m3 205
Superplasticiser: kg/m3 2.3
Water/cementitious materials ratio 0.57
Superplasticiser/cementitious materials ratio 0.64
Limestone powder: kg/m3 143
steel fibre volume (SF) (0.5%): kg/m3 40
Fine aggregate (<2 mm)** 740
FAa: kg/m3 240
FAb: kg/m3 500
Coarse aggregate: kg/m3 (size of 10 mm) 839
t500 in flow: s 1.40
Slump Flow spread : mm 600
Plastic viscosity (PV): Pa. S 27

*Ground granulated blast-furnace slag.
**Fine aggregate <2 mm (Note: a part of the fine aggregate
is the coarser fraction of the limestone powder, FAa125 µm–
2 mm, whereas FAb refers to natural river sand < 2 mm).

ether-based superplasticiser (SP) with specific gravity
of 1.07 was used in all the test mixes. Crushed lime-
stone coarse aggregate with maximum particle size of
20 mm and a specific gravity of 2.80 was used, while
the fine aggregate was river sand (less than 2 mm)
having a specific gravity of 2.65. Limestone powder
(LP) as a filler with maximum particle size of 125
µm (specific gravity 2.40) was used. A part of the
river sand was substituted by an equal amount of the
coarser fraction of LP in the size range 125 µm – 2
mm. All mixes were tested in the fresh state utilizing
slump flow and L-box tests. The plastic viscosity of
each mix was calculated using the micro-mechanical
procedure described by (Ghanbari & Karihaloo 2009).

3 MODELLING THE FLOW-ABILITY,
PASSING-ABILITY AND FILLING-ABILITY
OF STEEL FIBRE SUSPENDED
SELF-COMPACTING CONCRETE BASED ON
EXPERIMENT

In the rheological studies to characterize fresh con-
crete, SCSFRC is understood as a suspension of solid
particles (coarse aggregate and steel fibre) in a fluid
phase (cement paste), in which various of particle size
distribution and fluid stage are typically enhanced to
meet the three main properties of SCSFRC in the fresh
state: filling ability, passing ability, and segregation
resistance.

SCSFRC mixes are designed to meet flowability
and cohesiveness (i.e., resistance to segregation) stan-
dards utilizing the slump cone test. In this test, the
time for the SCSFRC mix to spread to a diameter of
500 mm (T500) after the cone filled with the mix has
been suddenly lifted is recorded, as well as the diame-
ter of the spread when the flow stops (EFNARC 2005).
The resistance to segregation and blockage is checked
visually between the coarse aggregate and steel fibre
(Figure 1).

Figure 1. Dimension of Flow test of SCSFRC.
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To test the ability of a SCSFRC mix to pass and fill
the formwork containing reinforcement under its own
weight, the L-box apparatus is used (EFNARC 2005).
The vertical leg of the L-box is initially filled with the
SCSFRC mix. At the bottom of this leg is a gate with
two or three rods in front of it. When the gate is lifted,
the mix flows into the horizontal part of the L-box
through the gaps between the rods. The times for the
mix to reach 200 mm (T200) and 400 mm (T400) from
the gate are recorded, as well as the time it takes the mix
to level off in the horizontal leg of the L-box. Again, it
is required that no coarse large aggregate particles or
steel fibres be blocked by the rods (Figure 2).

Figure 2. Dimension of L-box test of SCSFRC.

The addition of steel fibres enhances the mechani-
cal characteristics and the ductility of SCC in much the
same approach as in vibrated concrete (VC). Neverthe-
less, the fibres significantly impair the workability of
SCC due to their elongated shape and large surface
area. The volume of fibre added to a SCC mixture is
therefore limited and depends on the fibre type used
and the composition of the SCC mix. Therefore, the
maximum volume of fibres is decided in such a way to
manage the workability, whilst maintaining excellent
flowing and passing ability. For the optimum results,
the fibres require to be homogeneously distributed
in the mixture without clustering or segregation and
blockage.

4 MODELLING SIMULATION THE
FLOW-ABILITY, PASSING-ABILITY AND
FILLING-ABILITY OF SCSFRC

Since fresh SCSFRC flow in slump and L-box test
configurations is a gravitational flow with large defor-
mations, a three-dimensional smooth particle hydro-
dynamic (SPH) mesh-less numerical methodology is
chosen here to simulate the fresh state. This section
briefly introduces the fundamental governing equa-
tions, numerical model and the boundary conditions
required for modelling SCSFRC flow in slump flow
and L-box of tests with 3D-Lagrangian SPH method.

4.1 Governing equations

Fresh SCSFRC mix is a non-Newtonian incompress-
ible fluid which can be described by a bilinear
Bingham-type model with relation between the shear
stress and shear strain rate which includes two material
parameters: the yield stress (τy) (Badry et al. 2014) and
the plastic viscosity (η) (Ghanbari & Karihaloo 2009)
(Papanastasiou 1987).

τ = ηγ̇ + τy
(
1− e−mγ̇

)
(1)

Where m is a very large number (e.g., m= 100).
There are two basic equations to be solved in the
SPH method, together with the constitutive relation –
the incompressible mass and momentum conservation
equations.

1

ρ

Dρ

Dt
+ ∇v= 0 (2)

To include the effect of immersed boundary, the
momentum conservation equation is modified:

Dv

Dt
=− 1

ρ
∇P + 1

ρ
∇.τ + g + f (3)

where ρ, t, v, P, g and τ represent the fluid particle
density, time, particle velocity, pressure, gravitational
acceleration, and shear stress tensor, respectively.
Here, f represents the effective reaction force of the
fibres on the fluid at any chosen location. However, the
reaction force f will not be acting on the fluid parti-
cles which do not fall within the radius of influence (or
smoothing length) of any boundary particles of a given
fibre. In the proposed numerical procedure, fibres are
described by immersed boundaries.

4.2 Numerical implementation

A projection method based on the predictor–corrector
time stepping scheme was adopted to track the
Lagrangian non-Newtonian flow. The prediction step
is an explicit integration in time without enforcing
incompressibility. Only the viscous stress and grav-
ity terms are considered in the momentum equation
(Equation 3) and an intermediate particle velocity is
obtained as:

v∗n+1= vn +
(

g + f + 1

ρ
∇.τ

)

t (4)

in which vn and v∗n+1 are the particle velocity and
intermediate particle velocity at time tn and tn+1,
respectively. Then the correction step is performed by
considering the pressure term in Equation 3

vn+1 − v∗n+1


t
=−

(
1

ρ
∇Pn+1

)
(5)

Rearranging Equation 5 gives

vn+1 − v∗n+1


t
=−

(
1

ρ
∇Pn+1

)
(6)
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where vn+1 is the corrected particle velocity at time
step tn+1. By imposing the incompressibility condition
in the mass conservation equation (Equation 2), the
pressure Pn+1 in Equation 6 will be obtained. As the
particle density remains constant during the flow, the
velocity vn+1 is divergence-free so that Equation 2 can
be simplified as.

∇ · vn+1= 0 (7)

Substitution into Equation 6 gives

∇
(

1

ρ
∇Pn+1

)
= ∇ · v

∗
n+1


t
(8)

which can be rewritten as

∇2Pn+1= ρ


t
∇v∗n+1 (9)

where ∇2 is the Laplacian. Solution of the second-
order Poisson equation (Equation 9) gives the pressure
from which the particle velocity is updated (see Equa-
tion 6). Finally, the instantaneous particle position is
updated using the corrected velocity.

xn+1= xn + vn+1
t (10)

where xn+1 and xn are the particle positions at ttn+1 and
tn, respectively.

The interaction between SPH fluid particles sur-
rounding the rigid fibres can be modelled by treating
fibres as immersed boundaries (Figure 3). This would
offer a simple and efficient methodology to determine
fibre orientations and distribution during the flow.

Figure 3. Schematic diagram of the flow of SCSFRC with
rigid steel fibres.

5 INITIAL CONFIGURATION AND
BOUNDARY CONDITION

When solving the Navier-Stokes and continuity equa-
tions, appropriate initial and boundary conditions need
to be applied.Three types of boundary conditions need
to be considered in the simulation of slump cone test;

a zero-pressure condition on the free surface, Dirichlet
boundary condition at the wall of the cone, and Neu-
mann conditions on the pressure gradient as illustrated
in Figure 4.

Figure 4. Slump flow and L-box test initial condition.

Four arrays of rigid dummy particles placed outside
the wall of the cone were used to implement the wall
boundary conditions with space ro between the arrays,
where ro is the initial particle spacing. To represent the
non-slip boundary conditions along the cone wall, the
velocity of both the wall and dummy particles must
be zero. Friction between SCC flow and boundaries
was also considered and imposed on the cone wall and
the bottom plate with a dynamic coefficient of friction
between the SCC mix and steel equal to 0.55 Ns/m.

6 THREE-DIMENSIONAL SIMULATION
RESULTS

To examine how the steel fibres will distribute and
orient themselves throughout the filling process, flow
(slump flow) and pass/fill (L-box) tests were con-
ducted for SCC mix with steel fibre (Mix 40 MPa,
Table 1). The steel fibres were treated as described
above.The plastic viscosity (i.e. 27 Pa s) of the mix was
estimated analytically using micro-mechanics based
formulations. The yield stress and the dynamic coeffi-
cient of friction with the steel wall of the cone and the
base plate were assumed to be 200 Pa and 0.55 Ns/m
respectively.

Figure 5 illustrate the distribution of fibres and
their orientation during the numerical simulation of
slump flow. During the simulation of slump flow,
the time for the mixtures to spread to a diameter of
500 mm (T500= 1.45 sec) matches closely with the
time measured in the laboratory (Table 2). The surface
of the spread is smooth, and the fibres stay homoge-
neously always distributed during the flow. Similarly,
the L-box tests also produced comparable results with
experimental observations

The proposed method can be successfully applied in
the numerical simulation of SCSFRC flow to analyze
the flow, passing and filling behavior of these highly
viscous fluids. The numerical results are in excellent
agreement with experimental results and validate that
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Figure 5. 3D numerical simulation of slump flow test for
SCSFRC (0.5%vol fibre).

Table 2. Comparison of experimental and simulations
results for slump flow and L-box tests.

Mix strength grade: 40 MPa

Simulation Experiment

t500 mm in Flow: s 1.45 1.40
Flow spread mm 615 600
T200 in L-box: s 0.90 0.93
T400 mm in L-box: s 1.90 1.90

the 3D SPH methodology can effectively predict the
flow of fresh SCSFRC mix.

7 CONCLUSIONS

A Lagrangian SPH method has been used to simu-
late the flow of self-compacting normal performance
concrete with steel fibre during the slump flow and
L-box tests in 3-dimensional configurations. A appro-
priate Bingham model (Ghanbari & Karihaloo 2009)

Figure 6. Experiment of slump flow test for SCSFRC
(0.5%vol fibre).

has been coupled with the Lagrangian Navier-Stokes
and continuity equations to model this flow. The mix-
ture characteristics of the SCSFRC mix have been fully
incorporated implicitly through the plastic viscosity,
which has been assessed exploiting the microme-
chanical model described in (Ghanbari & Karihaloo
2009).

The simulation of SCSFRC mixes focused on the
orientations of fibres and their distributions during the
flow, passing, and filling phases of the slump flow
and L-box tests. The established numerical method-
ology is able to capture the flow, passing, and filling
behaviour of SCSFRC mixes and to provide insight
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into the distribution of fibres and their orientations dur-
ing these phases. The comparison of the experimental
and the simulation results is very encouraging. More
flow simulations and validations of SCSFRC mixes
(with nominal 28 days cube compressive strengths
between 30 to 70 MPa) to be carried out to perform
additional parametric studies and to further establish
the accuracy of the numerical model.
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ABSTRACT: Concrete is a key enabler for modern infrastructures but also a top source of carbon emissions
in societal development. Because of the high degree of freedom in concrete mixture design, the optimization of
concrete formulas remains broadly empirical and inefficient. Further, the concrete carbon footprints is seldomly
considered in the conventional mixture design protocols. Here, we approach the concrete optimization from a
novel angle of artificial intelligence, where a machine learning model is trained based on a large dataset of 1,150
representative concrete formulas that are developed in a quality control lab for guiding real concrete production.
The results demonstrate that our model achieved an unprecedented accuracy for predicting concrete strength at
various ages. By further associating each model input with the corresponding carbon embodiment, the machine
learning model is used for designing high-performance concrete mixtures that are optimized for both strength
and sustainability.

1 INTRODUCTION

Concrete, a man-made stone with rocks and sands
bonded by cement, is the most produced engineering
material. The ease of fabrication, low cost, and self-
hardening nature make concrete ubiquitous in modern
construction (Mehta & Monteiro 2014). With annual
production estimated at 33 billion tons over the past
years (Bauchy 2017), the consumption of concrete
(and cement thereof) surpasses any other alternatives
by a large margin and the huge demand for con-
crete materials will continue surging in the predictable
future (CEMBUREAU 2015). Meanwhile, concrete
takes a considerable share (approximately 7%) of the
global CO2 emissions (Ali et al. 2011). Given the mas-
sive scale of the concrete industry, addressing the high
carbon emissions in concrete in the concrete indus-
try is pressing than ever. On the other hand, even
a slight drop of CO2 emissions in concrete produc-
tion matters for achieving the United Nations’ goal of
global carbon neutrality by 2050 (Carbon neutrality by
2050: the world’s most urgent mission |United Nations
Secretary-General 2021). However, despite the pro-
found advances in fundamental concrete science over
the past decades, there is still a huge potential to reduce
its carbon embodiment.

Among all the influencing factors, the mixture
design resides at the core of determining the per-
formance of concrete materials, as well as the car-
bon embodiment (which is primarily correlated to
the cement usage) (Ali et al. 2011). In that regard,
continuous efforts have been devoted over the past
decades to developing models for predicting the per-
formance of a given concrete design, especially the

compressive strength (Breysse & Martínez-Fernández
2014; Chopra et al. 2018; Chou et al. 2011, 2014;
Gupta n.d.; Khoury et al. 2002; Moutassem & Chidiac
2016). From a practical perspective, an ideal model
should be able to predict the performance of new
concrete mixtures, so that it can offer a holistic opti-
mization for multiple performance metrics, such as
mechanical properties, constructability, durability, as
well as material cost (Biernacki et al. 2018; Provis
2015). With the pressing need for construction sustain-
ability, it is also imperative to extend the scope of the
optimization to reduce the carbon footprint in concrete.
To this end, conventional studies have achieved differ-
ent levels of success by building physics/chemistry-
based models (Popovics 1998; Powers 1960; Zain &
Abd 2009). However, due to the high degree of free-
dom in concrete mix design (e.g., water-to-cement
ratio, dosage of supplementary cementitious materials,
aggregate property and gradation, effects of chemical
admixtures, etc.) and practical constraints that have to
be reconciled (e.g., workability, setting behavior, air
content, corrosion potential, etc.), the existing knowl-
edge about concrete materials is often limited to ideal-
ized conditions and hard to be systematically scaled to
real production (Burris et al. 2015; Wild et al. 1995).

The recent advances in artificial intelligence (AI)
provide a promising route for projecting the design
of a concrete mixture to its actual engineering per-
formance. In particular, machine learning models are
excel at finding the implicit pattern between the input
features (e.g., raw material proportions) and output
target (e.g., concrete strength), whereby the complex
relationship can be established without the need for
explicit knowledge (Pedregosa et al. 2011). In recent
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years, the use of machine learning has become an
emerging trend in concrete research. A number of
recent studies placed their focuses on applying various
machine learning techniques to predict the macro-
scopic performance of cementitious materials such
as strength (Chou et al. 2014; Chou et al. 2011;
Chopra et al. 2018; Gupta n.d.; Oey et al. 2020;
Ouyang et al. 2021, 2020; Young et al. 2019), dura-
bility (Das et al. 2019; Cai et al. 2020; Hoang et al.
2017; Okazaki et al. 2020), and various material qual-
ities (Bangaru et al. 2019; Das et al. 2020; Song
et al. 2020). However, limited success is seen in using
machine learning models as an innovative tool for
the design of concrete mixtures (Choi et al. 2020;
Ziolkowski & Niedostatkiewicz 2019), especially for
reducing carbon footprints in concrete production.

This study aims to apply state-of-the-art artificial
intelligence techniques to model the concrete strength
at various ages and further turn the model into a use-
ful tool for guiding the design of sustainable concrete
mixtures. To this end, we build a neural network model
that can predict concrete strength based on a series of
design parameters of a concrete mixture. Our model
is trained based on a large concrete database of 1,150
individual mixture formulas that are validated by an
industrial lab for guiding the production of more than
20,000 real concrete mixtures.Test results demonstrate
that our model achieved unprecedented accuracy in
predicting the strength development of these concrete
mixtures, where the average prediction error is closed
to the intrinsic strength variation of concrete. To the
best of our knowledge, this is the first time that AI
consistently reaches this level of accuracy on such a
large-scale dataset. By using this model to predict a
series of mixtures that are never involved in the model
training, we further illustrate that AI has a vast poten-
tial in advancing the concrete mixture design, wherein
the carbon embodiment of many existing concrete
mixtures can be slashed without sacrificing concrete
strength.

2 METHODOLOGY

2.1 Concrete dataset

Data is fundamental to enable any machine learning
analysis. In this study, we adopt a concrete dataset
comprising 1,150 concrete formulas, as generated by a
quality control lab of a major concrete producer in the
USA. These lab mixtures are designed and tested for
guiding the production of more than 20,000 concrete
mixtures in real production, based on the three-point
curve method as specified by ACI 318 (ACI CODE-
318-19: Building Code Requirements for Structural
Concrete and Commentary 2021). Herein, we con-
sider a total number of 20 features as the inputs of
the model, which include water-to-cementitious ratio
(w/cm), mass fractions between the solid materials
(cement, class F fly ash, slag, coarse and fine aggre-
gates), properties of both coarse and fine aggregates

(specific gravity, fineness, absorption), dosages of
different chemical admixtures involved (high-, mid-,
low-range plasticizers, air entrainer, retarder, viscosity
modifying admixture, shrinkage reducing admixture)
as normalized based on the weight of cementitious
materials, along with the age of hydration. On the
other side, the labels of those mixtures for training
and testing the model are their compressive strengths
measured at 3, 7, 28, and 56 days. It should be noted
that, due to the actual test schedule from the lab, some
of the mixtures do not have the strength measurements
at all four ages. The actual numbers of strength labels
are 599, 1137, 1183, and 787, chronologically. In this
study, since our primary focus of the strength predic-
tion is on the 28-day strength, the fewer labels for 3
and 56 days are not considered to have an impact on
our machine learning analysis. As a reference, some
correlations between the key input features and 28-
day strength from the curated dataset are displayed
in Figure 1. It can be seen that the datapoints are
distributed widely over the maps, which also indi-
cates the difficulties for achieving an accurate strength
prediction.

Figure 1. Correlations between the 28-day com-
pressive strength and some key input features: (a)
water-to-cementitious ratio and the mass fractions of
(b) cement, (c) fly ash, and (d) coarse aggregate over all the
solid materials used for each concrete mixture.

2.2 Machine learning modeling

In terms of the machine learning model, we build
an artificial neural network for the strength predic-
tion. Herein, the neural network is adopted since is
one of the most versatile learning algorithms for var-
ious regression tasks. Based on the size of the dataset
and our previous studies (Ouyang et al. 2020). Using
machine learning to predict concrete’s strength: learn-
ing from small datasets – IOPscience 2021), we design
the neural network with two hidden layers, respectively
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with twelve and three artificial neurons. The modeling
work is carried out in PyTorch (Paszke et al. 2019),
with the use of Adam optimizer, Rectified Linear
Unit (ReLU) activation function, and L2 loss function.
Unless specified, the modeling procedures involved in
this work broadly follow the machine learning pipeline
as detailed in a previous study (Song et al. 2021), and
readers are also referred to other studies for additional
technical details (Oey et al. 2020; Ouyang et al. 2020).

2.3 Pipeline of the machine learning analysis

To build a robust neural network model, we use 85%
of the samples to train our model (i.e., training set),
while keeping the remaining 15% hidden to assess
the model accuracy on generalizing to new samples
(i.e., test set)—this is, the test set is reserved to evalu-
ate the model’s accuracy for predicting the strength of
unknown concrete mixtures that are not involved in the
model training. To ensure a fair selection of the testing
mixtures, we implement a stratified sampling strategy
(Ouyang et al. 2021), so that the potential bias asso-
ciated with random sampling (e.g., the test mixtures
are concentrated at a low/high strength range) can be
minimized. This approach has been approved to be an
important step for improving the efficiency of machine
learning analysis on concrete material datasets with
uneven label distribution (Ouyang et al. 2021, Song
et al. 2021).

In order to determine the optimal configurations
of the neural network (i.e., hyperparameters (Demir-
Kavuk et al. 2011)), we split the training set samples
with stratified five-fold cross-validation (Pedregosa
et al. 2011). In detail, the optimal hyperparameters are
identified based on the averaged model performance
when using each of the five folds for evaluation. In that
regard, we conduct a systematic grid search on four
common hyperparameters, which are batch size (16 to
512; selected as 64), learning rate (0.0001 to 1; selected
as 0.001), weight decay (0.00001 to 0.1; selected as
0.02), and epoch number (100 to 1000; selected as
300). For both model training and testing, we assess
the model performance primary based on the coeffi-
cient of determination (R2) of the strength prediction.
Except that, root mean square error (RMSE) and mean
absolute percentage error (MAPE) are also adopted as
additional accuracy metrics for the model evaluation.
Further details about the grid search and hyperparam-
eter optimization are available from previous studies
(Ouyang et al. 2020; Song et al. 2021).

3 RESULTS AND DISCUSSION

3.1 Model accuracy on predicting concrete strength

After optimizing the hyperparameters for our neural
network model (see Sec. 2.3), we use all the training
set samples to retrain a final model for predicting the
strength of the test set samples at the four ages—3,
7, 28, and 56 days. This is done by fixing the time
input of our model at these specific hydration ages.

Figure 2 display the comparisons between the actual
strength measurements and our model predictions on
the concrete strength at the four ages. Note that the
accuracy matrices (i.e., R2, MAPE, RMSE; see Sec.
2.3) reported for each age are calculated only based
on test set samples that are not involved in the train-
ing of our machine learning model, whereby these
metrics provide robust indications of the model per-
formance on predicting never-seen concrete formulas.
From the individual accuracy plots, we first observe
that, regardless of age, the scatters are all distributed
evenly along the line of equality. This suggests that,
across the different strength levels, the model predic-
tion does not exhibit an obvious sign of bias (i.e.,
systematically predict the strength higher or lower).
In addition, we note that there are no strong outliers
as typically seen in machine-learning-based concrete
strength prediction when the database is generated
based on the samples collected from the real pro-
duction (EBOD: An ensemble-based outlier detection
algorithm for noisy datasets - ScienceDirect 2021;
Young et al. 2019). Although this outlier-free pre-
diction is primarily attributed to the higher quality
of lab-generated data, the consistent distribution of
each scatters nonetheless demonstrates that our neu-
ral network successfully considers the widespread mix
designs involved in the adopted concrete dataset.

Figure 2. Comparisons between the neural network pre-
dicted vs. lab measured compressive strength of the concrete
mixtures at (a) 3, (b) 7, (c) 28, and (d) 56 days after fabri-
cation. The orange datapoints correspond to the 15% test set
samples that are kept hidden from the model training, and
the test set accuracy indicates the true model performance
on predicting the strength of new concrete mixtures. The
dash in each plot highlights the line of equality, i.e., perfect
predictions.

Across the different ages, the changes in R2 and
MAPE metrics indicate a monotonic increase of the
model accuracy over time. In comparison, the increase
in RMSE is mainly raised from the fact that the
averaged sample strength becomes higher as the age
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extends (whereas this effect is naturally eliminated
in the calculation of R2 and MAPE). The increas-
ing model accuracy can be partially explained by the
higher uncertainty involved with measuring the con-
crete strength at early ages, as concrete properties
are more sensitive to the curing and testing condi-
tions at early ages (Juan Luis et al. 2019; Yang 2007;
Zhenchao 2020). Among the four ages, the least accu-
rate case is found on predicting 3d strength, but it
is actually encouraging to find that the model still
gains a fairly high R2 accuracy of 0.88 (Choi et al.
2020; Ziolkowski & Niedostatkiewicz 2019), espe-
cially given that the corresponding strength values
vary within a relatively short range between 5 to 50
MPa. In contrast, the model achieves an impressively
high test R2 accuracy of 0.92 on 56-day strength, which
varies between 20 and 110 MPa. It should be men-
tioned here that even an R2 increase of 0.01 is of
significance here, as it becomes exponentially chal-
lenging to improve the R2 accuracy when the baseline
accuracy is already close to the maximum (i.e., 1).

To the best of our knowledge, on the same levels
of scale (i.e., number of datapoints) and scope (i.e.,
real production data), our model has surpassed the
state-of-the-art accuracy among the studies focusing
on using machine learning for concrete strength pre-
diction. As a matter of fact, the prediction accuracy
of this model (e.g., RMSE of the 28d test set sam-
ples; see Figure 2c) is likely approaching the intrinsic
strength variation of concrete under a well-controlled
production environment (Zhenchao 2020).This means
that any further improvement could be challenging in
principle, as it is inevitable to have this kind of intrin-
sic strength variation involved in any production-based
concrete datasets. From a practical viewpoint, this real-
istic variation also opens up a new possibility of using
machine learning to model the strength uncertainty of
a given concrete design, which is an important point to
be considered in the real concrete production. Hence,
the model of this study also represents a key step from
simply using machine learning as a predictive model
to deploying AI to create new concrete formulas and
to guide the routine concrete prediction.

3.2 Effects of SCMs on the strength development

The optimized machine learning model can be used as
a comprehensive design tool for analyzing the effect
of the individual features on the expected concrete
strength. As a demonstration, herein we showcase an
investigation on the influence of partially replacing
cement with two types of supplementary contentious
materials (SCMs)—Class F fly ash and slag. To this
end, we first select a plain concrete mixture as the
baseline mixture, as shown in Table 1. To ensure a fair
investigation, this baseline mixture is down-selected
from the test set samples, and further narrowed down
to the presentative mixtures without complex dosages
of chemical and mineral admixtures.

First, we use the optimized model to predict the
strength development of the baseline mixture. This
is done by using the model to make predictions on

strength of a series of assumed inputs, wherein the
input of the time is jittered between 1 and 70 days and
all the other features related to the mix design remain
unchanged (see Table 1). As such, the strength of the
baseline mixture is predicted as a function of time, as
displayed in Figure 3. Here, we find that our model pre-
dicts the strength to increase monotonically over time,
while a progressive decline of the rate of strength gain
is observed, and the strength gain becomes minuscule
after 56 days. In fact, the predicted strength curve also
passes through the actual strength of this mixture as
measured at 3, 28, and 56 days (7d strength is not avail-
able in the dataset), which is also marked in Figure 3.
These agreements further confirm that our model is not
only able to accurately predict the concrete strength at
specific ages, but also offers realistic predictions on
the strength evolution of concrete.

Table 1. Comparison of the baseline and modified mix
designs investigated in the feature analysis. The solid mate-
rials are presented based on their mass fractions.

Fly Coarse Fine
Cem. ash Slag agg. agg. S.P.∗

w/cm % % % % % ml/kg∗

Baseline 0.41 17 0 0 46.6 36.3 2.6
design

Modified A 0.41 12 5 0 46.6 36.3 2.6
Modified B 0.41 12 0 5 46.6 36.3 2.6

∗Superplasticizer, unit based on the total cementitious

Then, we use the same model to predict two new
designs that are modified from the baseline mixture,
where we assume 30% of cement is now replaced by
the Class F fly ash and slag, respectively (see Table
1). Compared with the baseline, the predicted strength
development of the modified mixtures (see Figure 3)

Figure 3. Comparison of the strength developments of three
concrete mixtures that are predicted by the optimized neural
network machine learning model. Here, the baseline mixture
is an actual sample extracted from the test set (see the scatters
for its true strength measured at 3, 28, and 56 days). The
other two mixtures are modified by replacing 30% of the
cement in the baseline mixture with Class F fly ash and slag,
respectively.
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exhibits very similar trends in terms of strength devel-
opment. However, the early-age strength of both the
assumed mixtures is predicted to be lower than the
baseline, though the strength gap between the base-
line and modified mixtures is gradually closed up in
the long term. In comparison, the analysis also sug-
gests that the 30% fly ash replacement of cement also
leads to an even lower early-age strength than that of
slag, whereas the slag-replaced mixture reaches the
same strength level as the baseline mixture at around
21 days and surpasses it with a margin afterward.These
predicted strength behaviors are broadly in line with
the characteristic pozzolanic reactions of Class F fly
ash and slag, and their featured influence on concrete
strength development (Bentz et al. 2013; Chelberg
2019; Durdziński et al. 2017; Menéndez et al. 2003)—
both of the materials have less strength contribution at
the first few days of hydration (especially for Class
F fly ash), but they eventually boost the long-term
strength gain of concrete (e.g., after 28 days).

From the modeling perspective, it is encouraging to
observe that the machine learning model can predict
the unique influence of fly ash and slag replacements
on concrete at the different hydration stages. It should
be noted again that we did not intentionally encode
the effect of any input features to the model. Stated
another way, the effects of fly ash and slag, as well as
time, are purely learned by our model from the data.
On account of the ability to capture the true effects of
different input features, our model exhibits a strong
potential for predicting the strength performance of
new mix designs that are outside of the curated dataset
(i.e., extrapolation). This ability provides a foundation
for further turning our machine learning model into a
tool for discovering new concrete mixtures to pursue
many different target performances (e.g., optimal use
of a specific material, optimal strength gain at different
ages, etc.).

3.3 AI-guided concrete carbon reduction

Based on the evidence observed from Sections 3.1 and
3.2, now we extend the investigation to evaluate the
potential of using the trained neural network model
to guide the optimization of concrete mix design. To
this end, we further develop the feature effect analysis
in Section 3.2 to investigate the concrete performance
under the variation of multiple features. With the aim
of improving concrete sustainability in mind, here we
focus on reducing the carbon embodiment of the con-
crete mixture (in terms of the mass of embodied CO2
in one cubic meter of concrete) while maintaining the
28d strength performance. For calculating the mass of
CO2, we refer to the carbon embodiments of the raw
materials as reported in a recent study (Zjup &Adesina
2020), with the exact assumed values provided in
Table 2. The concrete optimization is done using a
brute force search within the reasonable feature ranges
around the baseline design (i.e., the design needs to be
optimized). To avoid any implausible assumptions of
the design during the searching, we constraint the fea-
ture values to satisfy basic physical rules; for instance,

Table 2. Embodied carbon of each concrete ingredient
considered in this study (Zjup & Adesina 2020).

Embodied Carbon
Raw material ton CO2/ton

Cement 0.930
Fly ash 0.010
Slag 0.083
Coarse agg. 0.006
Fine agg. 0.025
Superplasticizer 0.720

the solid fractions are always summed up to 100%.
Further, the total mass and volume of the new mixture
are recalculated yield one cubic meter of concrete for
the correct computation of the embodied carbon.

As an illustration, here we use the example mix-
ture discussed in the last section (see Tab. 1) as the
baseline to showcase theAI concrete optimization, and
the result of the optimization is displayed in Figure 4.
It should be noted that the actual AI optimization as
demonstrated in Figure 4 is done automatically and
is not broken into steps, since all the design features
are simultaneously involved in the optimization pro-
cess; however, for a rationalized understanding of the
optimization outcome, Figure 4 shows the change of
both 28d strength and embodied carbon in a discretized
fashion, which corresponds to the modification of each
feature involved in this optimization.

Figure 4. Step-wise decomposition of the AI optimization
for the baseline concrete design (see Table 1). The goal of
this optimization is to minimize the carbon embodiment of
the concrete mixture while preserving the 28d strength at
the same level. Here, the changes in carbon embodiment and
strength in the individual optimization steps are shown to
facilitate the interpretation of the AI optimized design (i.e.,
Step 6).

In terms of the overall optimization, it can be seen
that, between the baseline and the optimized design
(Step 6 in Figure 4), our AI-optimization achieves a
significant reduction on the carbon embodiment by
about 30% (from 0.39 to 0.27 ton/m3), without sac-
rificing the 28d strength (which remains at around
46 MPa). The optimized mixture comes with a 35%
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cement replacement by both slag and fly ash, slightly
increased w/cm (by 0.01), increased coarse-to-fine
aggregate ratio, and switched aggregate types (based
on searching within a list of available aggregates
associated with the raw material database).

Regarding the step-wise AI optimization, we first
highlight the contribution of slag and fly ash replace-
ments for reducing the carbon embodiment in con-
crete, which is attributed to the low embodied carbon
in these raw materials (see Tab. 2). When it comes to
the other features in Steps 3-to-6, their influence is
much smaller yet still notable in sense of the huge vol-
ume of concrete production. For example, although
switching the coarse aggregate type in Step 5 (to a
high-quality rock with a higher density) results in a
higher 28d strength, it also leads to an indirect reduc-
tion in the volume fraction of the coarse aggregate (as
its mass fraction is fixed)—hence, the overall carbon
is slightly increased when rebalancing the total volume
back to one cubic meter.

4 DISCUSSION

In this study, we demonstrate the potential of using
an AI-based machine learning model for designing
concrete mixtures with significantly reduced carbon
embodiment. The pipeline of mixture optimization
showcased in Section 3.3 can be generalized for guid-
ing the development of almost any given concrete mix-
tures to meet different demands of the construction. To
gain a further understanding of the plausible ranges
of carbon reduction at different strengths, we imple-
ment theAI model to optimize the carbon embodiment
of three groups of mixtures from the dataset, with
their 28-day strength values at 30± 5, 30± 5, and
70± 5 MPa. Similar to the spirit of the optimization
in Figure 4, here we still implement the goal of mini-
mizing the carbon embodiment in each mixture under
no reduction on the 28d strength. Figure 5 provides a
summary of variation of their embodied carbon before
and after the optimization.

In general, it can be seen from Figure 5 that the
embodied carbon increases with concrete strength,
which echoes the trend as reported in several previous
studies (Fantilli et al. 2019; Lei et al. 2011; Optimiza-
tion of the Mixture Design of Low-CO2 High-Strength
Concrete Containing Silica Fume 2021; Park et al.
2012). This rise in carbon can be attributed to the
improved demand for the minimum cement to achieve
the higher strength. Interestingly, the AI model pre-
dicts different degrees of potential for trimming the
carbon in concrete mixtures at various strengths, where
a much higher relative carbon reduction (e.g., >60%)
can be fulfilled in the relatively low-strength mix-
tures at 30 MPa. This should be primarily related to
the fact that the low-strength mixtures, such as con-
trolled low strength materials (CLSM) (Brewer 1996;
Kaliyavaradhan et al. 2019; Song & Lange 2019),
can accommodate a high-volume cement replacement
with SCMs that have much lower carbon footprints.

Figure 5. Comparison of the carbon embodiments of three
groups of concrete mixtures before and after the AI opti-
mization. The baseline carbon embodiments are calculated
directly based on the actual mix designs from the dataset,
and reduction on 28d strength of the optimized mixture is not
allowed during the AI optimization. The half-length of each
error bar in this plot corresponds to one standard deviation.

In comparison, a 15-to-20% carbon reduction in the
high-strength mixtures at 70 MPa is still expected to
be achievable based on our model prediction, where
the contribution from SCMs should be lighter.

Given the fact that the global production of SCMs
like fly ash has been rapidly decreasing (American
Coal Ash Association 2018; Benhelal et al. 2013;
Schneider et al. 2011), the typical solution of cement
replacement for reducing the concrete carbon embod-
iment may become less efficient in the predictable
future. Thus, reducing the embodied carbon from
the other materials (e.g., Step 3-to-6 in Figure 4) is
expected to become more critical for curbing the car-
bon demand in concrete production. For optimizing
concrete mixtures either across all strength ranges or
with the availability of SCMs constrained, we fore-
see that the AI model should exhibit its advantages
over the conventional trial-and-error approach. This is
based on the fact that the AI model can maximize the
marginal carbon reduction by optimizing each feature
simultaneously, so as to yield a holistic optimization
on concrete sustainability.

Admittedly, the carbon optimization demonstrated
in this paper should be further improved from sev-
eral practical aspects. Regarding the calculation of the
embodied carbon, it should be noted that the embod-
ied carbon of the raw materials considered herein
only covers the carbon emissions involved in the
production, whereas other sources such as the car-
bon footprints from the material transportation are
not neglectable in real concrete production, which
can be sometimes equally influential (CO2 Emissions
From Cement Production – CivilDigital – 2013, Envi-
ronmental impacts and decarbonization strategies in
the cement and concrete industries | Nature Reviews
Earth & Environment 2021; Lei et al. 2011). With the
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incorporation of all the sources of the carbon embod-
iment, it is undoubtful that there is a strong potential
to further strengthen the concrete AI optimization
in the actual production. Another factor that should
be stressed here is that the required concrete perfor-
mance is barely prescribed by any single criteria in real
concrete applications. For instance, the optimization
displayed in Figure 4 is very likely involved with a phe-
nomenal strength reduction at an early age (due to the
cement replacement; see Figure 3), hence impeding the
constructability of the optimized design. For a robust
AI concrete optimization, it is of special importance
to train the model(s) to optimize the concrete design
under multiple constraints, such as early-age strength,
slump, air content, etc. Moreover, it is also critical to
minimize the material cost, which is of special impor-
tance from an operational perspective. In that regard,
the cost optimization can be fulfilled in the same spirit
of the carbon optimization as discussed in this paper.
However, viewing the problem another way, the above
requirements further stress the need for a holistic opti-
mization for designing new concrete formulas in the
next decades.Therefore, developing theAI-based opti-
mization methodology is found fundamental to fulfill
this goal.

5 CONCLUSIONS

In this study, we investigated the use of artificial intelli-
gence (AI) as a tool for designing sustainable concrete
mixtures, by specially focusing on reducing its carbon
embodiment. To this end, we train a neural network
model to predict the concrete strength based on a large
lab concrete dataset. The trained AI model is used for
finding new concrete formulas that are involved with
lower embodied carbon overall the design variables,
without compromising strength. Major findings from
our investigation are summarized as follows.

• Our model achieves unprecedented accuracy for
predicting the 3, 7, 28, and 56-day compressive
strength of concrete mixtures that are never involved
with the model training. For example, the test R2

reaches an accuracy of 0.91 for predicting 28-day
strength.

• The trainedAI model offers continuous and realistic
predictions on the strength development for a given
concrete design. Our model also accurately cap-
tures the influence of raw materials such as fly ash
and slag on the time-dependent strength behavior of
concrete.

• We demonstrate that theAI model can autonomously
discover new high-performance sustainable con-
crete designs that successfully reduce the concrete
carbon embodiment by more than 50%, at no cost
of 28-day strength.

• Rather than solely relying on cement replacement,
the AI-based concrete optimization reduces the
embodied carbon by considering the influence of
each design feature, such that a holistic mixture
optimization can be actualized.

• With the global reduction of SCMs, we believe
that AI-based concrete design optimization repre-
sents one of the most promising solution to revolute
concrete industry in the next decades.
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Comparison of perfect and cohesive adhesion between globules on
mechanical properties of C-S-H gel RVE with FEM method
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ABSTRACT: In this paper, we connected both cement research on nanoscale and sub-microscale with FEM
method. By adopting parameters transfer and cohesive zone model, C-S-H globule was calibrated from MD
results as solid element and interaction between C-S-H globules was represented by cohesive element in The
FE software ABAQUS. Then according to the LD/HD C-S-H distribution generated by a particle’s placement
algorithm, we constructed C-S-H RVE model under 250 nm by assembly C-S-H globule and inserted with
cohesive element. Validated by Bolomey formula, this model well exhibits strong coherent results between
density and tensile/shearing performances. Finally, we compared mechanical properties under tensile loading
for both perfect adhesion and cohesive adhesion.

1 INTRODUCTION

1.1 Structural elucidation of C-S-H

Cement concrete is the most widely applied human-
made materials in the world (Courland 2011). As the
direct blending product of Portland cement hydration,
calcium silicate hydrate (hereafter as C-S-H), the near
amorphous delicate nanoscale structures which makes
up more than 50 vol% among all the hydration phases
(Barnes & Bensted 2002; Hewlett & Liska 2019; Olson
& Jennings 2001), controls many critical engineering
properties (Jennings & Bullard 2011).

As well known, there has been long-lasting diffi-
culties to elucidate the microstructure of C-S-H due
to the complexities underlying its composition and
structure. Some new insights on cement hydration
mechanisms and fundamental explanation towards the
nature of C-S-H have been given in (Scrivener &
Nonat 2011; Scrivener et al. 2015, 2019).Also, various
microstructural characterization methods and nano-
technologies to characterize C-S-H hydrates have been
reviewed in (Monteiro et al. 2019; Sanchez & Sobolev
2010).

With the interpretation of experimental results of
scattering and water sorption isotherms, Jennings
established the colloid model (CM-II) to describe
nanostructure of C-S-H, where the most significant
feature is the presumption of two types of C-S-H, low
density C-S-H and high density C-S-H (hereafter as
LD C-S-H and HD C-S-H), in distinct stages (Jen-
nings 2000, 2008; Tennis & Jennings 2000). During
the hydration reaction, the formation of HD C-S-H
concentrates in the late stage with the packing density

as 74%, while LD C-S-H mainly formed in early stage
of hydration reaction and the packing density remained
around 64% (Jennings et al. 2007).

However, the correlation those exciting advances
in nanoscale with practical engineering behaviors in
macroscale remains challenging. We must admit that
our current understandings are still not adequate, espe-
cially on nanostructure under the mesoscale level
(Jennings & Bullard 2011; Tennis & Jennings 2000).
Therefore, how to seamlessly integrate fundamental
data from nanoscale into the coarser model of the
microstructure of C-S-H between 1-500 nm precisely
has been the long-lasting spot.

1.2 Upscaling techniques and its challenges

It has been consensus among the research community
that upscaling methods such as bottom-to-up approach
and multi-scale modeling would be the essence to
the gap between nanoscale and the upper levels (de
Souza et al. 2022). Various methods have been pro-
posed to investigate in mesoscale. On the one side,
some researchers directly started from MD simula-
tion in nanoscale. Coarse grain molecular dynamic
simulation could reach the spatial scale as 500 nm by
only keeping the essential information (Qomi et al.
2020). Hou et al. (2021) have applied Grand Canon-
ical Monte Carlo and Peridynamic method to model
unilateral tension of C-S-H under the size of 100 nm.
Yaphary et al. (2021) have established MD model
which incorporated as many as 10000 particles and
the size of simulation box could reach as large as
228 nm. The directly upscaling could provide accurate
and convincing results, however, it is at the cost of
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computation capacity and the extension in further is
still a doubt.

On the other side, a trendier way is to construct
hierarchical multi-scale model to correspond different
level. Parameter transfer is the most directly method
to established multi-scale model. With transferring
essential parameters including Young’s modulus, ten-
sile strength, and fracture energy, Hlobil et al. (2016)
established four level hierarchical multi-scale model
to explore compressive strength. Similar as the hierar-
chical model, Li et al. (2013) developed contact model
within DEM method to study the C-S-H clustering.
Parameter transfer is a widely used method, but it
highly relies on the calibration of parameter and the
model in each scale lack interaction each other.

Voxel-based model integrated in spatial distribution
has emerged to introduce porosity to assembly C-S-
H RVE. The assembly in spatial distribution could
increase the reliability for upscaling from nanoscale
to mesoscale. The spatial distribution can be accessed
by experimental method such as µCT image or in ran-
domly distribution algorithm (Montero-Chacón et al.
2014).

Combined with parameter transfer and Voxel-based
model integrated in spatial distribution, MuMoCC
(Multi-scale Modeling of Computational Concrete
numerical platform was developed to simulate the
mechanical and transport properties of cementitious
materials as well as the building of RepresentativeVol-
ume Elements (RVE) from microscale to mesoscale
and macro scale (Bernard & Kamali-Bernard 2010a,
2010b; Fu et al. 2018). Multi-scale model could well
couple the MD with other numerical simulations such
as FEM, DEM, and even Lattice Boltzmann method,
which exhibit the better extension degree towards
upper scale.

Among the upscaling methods, characterization of
interaction between C-S-H globules has always been
the one of focus. Recently, Goyal et al. (2021) stud-
ied the essential physics mechanism underlying C-S-H
cohesion via semi-atomistic simulation.The interlock-
ing of water/ions of C-S-H surfaces consecutively slow
down the dielectric screening, which finally resulted
in the cohesion between C-S-H layers. Other authors
have employed potential of mean force in MD simula-
tion as an effective approach to investigate interaction
between C-S-H layers, whose results could be valuable
references for the higher scale (Bonnaud et al. 2016;
Masoumi et al. 2017, 2019).

Origin from metal & alloy area (Lloyd et al. 2011;
Zhou et al. 2009), using cohesive zone models based on
MD parameters to simulate adhesion also emerged in
cement concrete area recently. There are some papers
on developing cohesive zone model at the level of
cement paste (Fan &Yang 2018;Trawiñski et al. 2018),
but currently there have not been reported cohesive
zone model for C-S-H RVE at sub-microscale yet.

1.3 Highlights of this paper

In this paper, we have constructed a multi-scale model
to upscale MD simulation of mechanical properties of

C-S-H globule in nanoscale to FEM model of C-S-H
RVE in sub-micro scale. The FEM model consists of
two types of elements, solid element denotes for C-
S-H globule; cohesive elements denote for adhesion
between C-S-H globules. Main propose of FEM model
is to investigate and compare the influence of per-
fect adhesion and cohesive adhesion between C-S-H
globules on final RVE. With combined three differ-
ent modelling techniques, the highlights of this paper
could be listed as:

A Brittle Cracking model inside the FE software
package ABAQUS is used to calibrate the mechanical
behavior of solid elements, i.e. C-S-H globules.To this
purpose, the parameter transfer has to ensure the solid
element could have the same tensile performance as
MD model.

Furthermore, a cohesive element inside ABAQUS
is considered to model cohesive adhesion based on
calibration from MD results. The cohesive zone model
could ensure that the adhesion in FEM exhibits the
same traction-separation behaviors as in MD model.

For spatial distribution, assembling C-S-H RVE
with introducing porosity and spatial distribution gen-
erated by a voxel-based model integrated in spatial
distribution could ensure the upscaling from 5 nm at
nanoscale to 250 nm at sub-microscale.

2 MODELLING

2.1 Calibration on mechanical properties: solid
element

Brittle Cracking model in ABAQUS is applicable to
brittle materials whose pre-cracking tensile behav-
ior can be represented through linear elasticity. It is
accurate enough in application where the brittle behav-
ior dominates. As for tension results by molecular
dynamic simulation, hereby we adopted Fu’s results
as reference (Fu 2016). In this work, atomistic simu-
lation of critical component and monolithic structure
of C-S-H were conducted to explore the mechanical
properties. According to his results such as Young’s
modulus, the performance of C-S-H globule is brit-
tle enough to apply with *Brittle Cracking model (Fu
2016).

Figure 1. C-S-H globule under tension of MD model
(Fu 2016).

The first step is to reproduce C-S-H globule model
and impose tension loading with the FE method.
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According to Jennings’ colloidal model (Jennings
2008), C-S-H globule is as the brick shape. Therefore,
we have built cubic solid elements in 3D and 2D with
almost the same size of MD model to represent the
globules.

Based on tensile performance of MD results, strain-
stress curves of C-S-H globule could be calibrated as
close as possible to original MD results, as shown in
Figure 3.

Figure 2. a) C-S-H MD Model, size 5.352× 4.434× 4.556
nm3 (Fu 2016); b) 2D C-S-H globule FEM Model, size 5 nm;
c) 3D C-S-H globule FEM Model, size 5 nm.

Figure 3. Comparison of strain-stress curve of 2D/3D
calibrated model and original MD model.

Figure 4. Schematic of building RVE from 2D slice voxels
denotes spatial distribution to microstructure of 3D C-S-H
LD RVE.

2.2 Upscaling from globule to RVE: perfect
adhesion

According to literature, there are summarized as three
main categories of porosity in hydrated ordinary
cement pastes. From the biggest to the smallest, they
are compaction/air void, capillary porosity, and gel
pores. The size of compaction/air void vary between
a few micrometers to a few millimeters. The capil-
lary cavities are reported to be larger than 10 nm to
few micrometers. The gel pores can be regarded as the

intrinsic porosity of C-S-H hydrate, which know to be
nanometer size. Considering the complexity of repre-
senting the porosity in C-S-H, we decided not to assign
porosity any element but leave it as void. Therefore,
C-S-H RVE model would be a scaffold model.

For microstructure digitalization of C-S-H RVE.
Bentz and Garboczi in 1989 developed the pro-
gram entitled as 3-Dimensional CEMent HYDration
and microstructure development modeling package
(CEMHYD3D), which is a digital-image based com-
puter program to simulate the process of cement
hydration (Bentz 2000). There are already plenty of
published research on C-S-H RVE meso-structure
are based CEMHYD3D (Bernard & Kamali-Bernard
2010b; Hlobil et al. 2016; Montero-Chacón et al.
2014). Besides, recently, some research focused on
formation of porosity during cement hydration process
and proposed sheet growth model (Etzold et al. 2014;
Nguyen-Tuan et al. 2020). We hereby still adopt the
program of CEMHYD3D package devoted to gener-
ating random spatial distribution of voxels. One vowel
represents here a C-S-H globule. The porosity for
LD/HD C-S-H RVE was adopted as 37% and 26%,
respectively. The procedure of assembly C-S-H RVE
could be found in Figure 4.

2.3 Calibration on interaction properties: Cohesive
element

The definition of cohesive elements between C-S-H
and C-S-H were referenced from Bonnaud’s work
(Bonnaud et al. 2016). Traction modulus of cohesive
element of elastic behavior is analyzed as 4 GPa for the
normal and the two shear stiffnesses (denoted respec-
tively as Enn, Ess, and Ett), which is quite close to
Nemeck’s value as 2.5 GPa (Němeček et al. 2018).Ten-
sile strength and cracking displacement are taken equal
to respectively 931 MPa and 0.341 nm. With those
referenced parameters, we established a correspond-
ing FEM model of a cohesive element layer within
two C-S-H globules to validate the elastic behavior
in the early stage of traction-separation and calibrate
the stiffness degradation stage, as shown in Figure 5.
According to the Figure 6, we could see that both
the elastic behavior in the early stage and the stiff-
ness degradation stage of FEM results are calibrated
as close to MD results.

Figure 5. Face-to-face configuration of a) 2D
C-S-H globule and b) 3D FEM C-S-H globule
simulation.
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Figure 6. Traction stress - Separation calibration for apply-
ing tension between two C-S-H globules.

2.4 Insertion of cohesive element: cohesive
adhesion

It has been years that researchers applied cohesive ele-
ment to investigate the fracture (Nguyen et al. 2001;
Schwalbe et al. 2012; Zhou & Molinari 2004), and the
insertion techniques have gotten developed (Su et al.
2010; Vocialta et al. 2017). In this project, we indi-
vidually developed python script to fulfill the globally
insertion of cohesive element both in 2D and 3D mod-
elling.The schematic of insertion process can be found
in Figure 7.

Figure 7. Schematic of insertion process of cohesive ele-
ment into solid element both in 2D/3D modeling.

The insertion process could be summarized as three
stages: break the previous perfection adhesion by
construct solid element individually (i.e. not sharing
nodes), detect and judge the contacts between solid
elements, insert cohesive element and assembly as C-
S-H RVE with cohesive adhesion. The final LD C-S-H
RVE with cohesive adhesion are display in Figure 8.
One thing should be noted, since we have introduced
the cohesive element, whose thickness is 0.4 nm which
cannot be neglected when comparing with dimension
of C-S-H globule or porosity, 5nm, therefore, it is nec-
essary to recalculate the number of C-S-H globules

and porosities to ensure the porosity percentage can
be kept as 37% and 26%.

Figure 8. Schematic of adhesion in LD C-S-H RVE model
of three dimensions, inferior view of cohesive element.

3 RESULTS AND DISCUSSION

3.1 Mechanical performance and fitting with
Bolomey Formula

Tensile and pure shearing loading were imposed
respectively for all LD, HD, and Pure C-S-H RVE
cohesive model to check the mechanical performance.
The stress-strain curve is as shown in Figure 9
and 10. Young’s moduli E and shearing moduli G
can be regressed and the results are summarized in
Table 1.

To validate the RVE model with cohesive adhe-
sion, we fitted the revised porosity with moduli by
Bolomey formula (Nielsen 1993) in format as E=
E0 (1-Porosity)n as shown in Figure 11. Similarly,
Figure 12 represents the evolution of the tensile
strength.

According to the fitting results, correlation coeffi-
cients of both shearing and tension are high enough. It
proves that the current C-S-H RVE model with cohe-
sive adhesion could present the coherent relationship
between porosity mechanical performances.

Table 1. Tension and shearing moduli and tensile strength
of C-S-H RVE.

Revised Young’s Shearing Tensile
Porosity Moduli E Moduli G Strength

GPa GPa MPa

LD RVE 37.44% 10.64 4.07 362.30
HD RVE 25.81% 19.15 6.44 839.26
Pure C-S-H 13.78% 28.86 12.08 1730.80
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Figure 9. Stress-strain curve of LD/HD/Pure C-S-H RVE
model under tensile loading

Figure 10. Stress-strain curve of LD/HD/Pure C-S-H RVE
model under shearing loading.

Figure 11. Fitting results by Bolomey’s Formula between
porosity and moduli.

Figure 12. Fitting results by Bolomey’s Formula between
porosity and tensile strength.

3.2 Perfect adhesion vs cohesive adhesion

Then, we compared the tensile stress-strain results of
C-S-H with perfect adhesion and cohesive adhesion,
respectively, as shown in Figure 13. In addition, we
included the microbending experimental value, whose
scale is under 20 µm, from reference (Němeček et al.
2016) to compare with results of perfect adhesion and
cohesive adhesion in Table 2, where HD C-S-H corre-
sponds to inner product while LD C-S-H corresponds
to outer product.

Figure 13. Tensile stress-strain curve for C-S-H RVE:
perfect adhesion vs cohesive adhesion.

Table 2. Tensile strength and Young’s moduli for C-S-H
RVE: perfect adhesion vs cohesive adhesion.

Density Adhesion Tensile Young’s
Type Type Strength Moduli

MPa GPa

Pure C-S-H Perfect adhesion 3904.87 60.38
Cohesive adhesion 1730.80 28.86

HD C-S-H Perfect adhesion 2395.57 47.88
Reference value 700.2±198.5 34.00
Cohesive adhesion 839.26 19.15

LD C-S-H Perfect adhesion 1678.26 32.91
Reference value 264.1±73.4 23.90
Cohesive adhesion 362.30 10.64

By comparison, it is clear that packing density and
adhesion influence the mechanical properties of C-S-
H RVE together. For Young’s Modulus, RVE model
with perfect adhesion is obviously larger than ref-
erenced experimental value as expected while RVE
model with cohesive adhesion is less than referenced
experimental value. For tensile strength, results of per-
fect adhesion are still largely higher than referenced
experimental value while results of cohesive adhesion
almost fall into the range of referenced experimental
value. It means that current RVE model with cohe-
sive adhesion has a quite good prediction in tensile
strength.

4 CONCLUSION

A multi-scale method was proposed to connect C-S-H
globule in nanoscale and C-S-H RVE in microscale. A
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FEM model is constructed, where the solid elements
denote C-S-H globule were calibrated by *Brittle
cracking to simulate mechanical performances of C-
S-H globule obtained by MD simulation; cohesive
element under traction-separation law were employed
to simulate the interaction between C-S-H globules;
and the C-S-H RVE was assembly according to a
random distribution of voxels.

According to validation of fitting results of
Bolomey formula, current C-S-H RVE model can
exhibit well coherent relationship between packing
density and tensile/shearing properties. By compar-
ing the tensile strength and Young’s moduli between
perfect adhesion and cohesive adhesion as well as ref-
erenced experimental value, preliminary conclusions
could be drawn as that: packing density and adhe-
sion type influence tensile strength andYoung’s moduli
mutually. Current RVE model with cohesive adhesion
gives quite valuable results and especially favored with
experimental value of tensile strength.
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ABSTRACT: The size effect on plain concrete specimens is well known and can be correctly captured when
performing numerical simulations by using a well characterised softening function. Nevertheless, in the case
of polyolefin-fibre-reinforced concrete (PFRC), this is not directly applicable, since using only diagram cannot
capture the material behaviour on elements with different sizes due to dependence of the orientation factor of the
fibres with the size of the specimen. In previous works, the use of a trilinear softening diagram proved to be very
convenient for reproducing fracture of polyolefin-fibre-reinforced concrete elements, but only if it is previously
adapted for each specimen size. In this work, a predictive methodology is used to reproduce fracture of polyolefin-
fibre-reinforced concrete specimens of different sizes under three-point bending. Fracture is reproduced by means
of a well-known embedded cohesive model, with a trilinear softening function that is defined specifically for
each specimen size. The fundamental points of these softening functions are defined a priori by using empirical
expressions proposed in past works, based on an extensive experimental background. Therefore, the numerical
results are obtained in a predictive manner and then compared with a previous experimental campaign in which
PFRC notched specimens of different sizes were tested with a three-point bending test setup, showing that
this approach properly captures the size effect, although some values of the fundamental points in the trilinear
diagram could be defined more accurately.

1 INTRODUCTION

Size effect on plain concrete is well known and is the
reason why fracture develops at lower values of the
nominal strength when the size of a concrete specimen
increases while keeping the same proportions (Bažant
1984). The size effect in fracture of plain concrete is
numerically reproduced by means of a cohesive zone
formulation that uses a well-characterised softening
diagram (Bažant & Planas 1997; Planas, Guinea, &
Elices 1999; Jirásek, Rolshoven, & Grassl 2004). The
cohesive crack model proposed by Hillerborg can be
considered as the most realistic among simple models
when quasi-brittle fractures are studied (Bažant & Yu
2009).

Steel fibres as reinforcement in concrete has been
used and studied for decades (Di Prisco, Lamperti,
Lapolla, & Khurana 2008; Ward & Li 1991), being
boosted in recent years, and the range of fibres used
for this purpose has increased (Banthia & Gupta 2006;

Brandt 2008; Shah & Rangan 1971; Zollo 1997),
with polyolefin fibres being one of the most recent
types. The use of polyolefin-fibre-reinforced concrete
(PFRC) is growing in recent years, due to its good
mechanical behaviour and the fact that it reduces and,
in some cases, even eliminates some of the problems
observed in steel-fibre-reinforced concrete (SFRC)
such as corrosion, sensitivity to magnetic fields, or
wear and tear of machinery related to its production
(concrete pumps and mixers, for example), making
PFRC particularly suitable for some uses.The effect of
these fibres on the properties of PFRC has been studied
in depth during the last years for traditional vibrated
concrete (Alberti, Enfedaque, & Gálvez 2015), self-
compacting concrete (Alberti, Enfedaque, Gálvez, &
Cortez 2020), and in combination with steel fibres
(Alberti, Enfedaque, & Gálvez 2017). Many aspects
of PFRC are already studied, such as the fibre distri-
bution depending on the production process (Alberti,
Enfedaque, Gálvez, & Agrawal 2016) or how it affects
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fracture in mode I (Alberti, Enfedaque, Gálvez, &
Reyes 2017) and mode II (Picazo, Gálvez, Alberti, &
Enfedaque 2018). Although this material is starting to
count with initial examples of use as a structural mate-
rial (Alberti, Gálvez, Enfedaque, Carmona, Valverde,
& Pardo 2018; Enfedaque, Alberti, Gálvez, Rivera, &
Simón-Talero 2018), there is scarce experience with
it and the uncertainty on its behaviour in real engi-
neering works under certain situations. One of the key
aspects that must be clarified is the size effect; espe-
cially to fill the gap if the material properties measured
at a laboratory scale are to be used for designing larger
structures.

There is not much information about the size effect
in fibre-reinforced concrete (FRC), especially in the
case of PFRC. In the case of SFRC, some studies can be
found (di Prisco, Felicetti, Lamperti, & Menotti 2004;
Yoo, Banthia, Yang, & Yoon 2016), and in the case of
PFRC, an experimental campaign has been recently
carried out (Picazo, Alberti, Gálvez, Enfedaque, &
Vega 2019), which has shown that the nominal strength
at the limit of proportionality is governed by the matrix
(concrete), and the post-cracking residual strength is
governed by the fibres.

In previous works, the use of a cohesive zone
formulation fed with a trilinear softening curve has
proven to be very convenient for reproducing the frac-
ture process in FRC (Enfedaque, Alberti, Gálvez, &
Domingo 2017), but it must be adapted depending on
several factors such as the fibre length, the fibre pro-
portion (Alberti, Enfedaque, Gálvez, & Reyes 2017),
and the specimen size (Suárez, Gálvez, Enfedaque,
& Alberti 2019). The adopted trilinear softening dia-
gram describes the contribution of matrix and fibres in
the fracture process which, due to the different elastic
moduli of both materials, begin to significantly work at
different stages of load transmission. Considering the
trilinear diagram shown in Figure 1, the initial point
t identifies the fracture of the concrete matrix, k the
point at which the contribution of fibres starts to pre-
dominate over the contribution of the matrix, r the
maximum remanent contribution of fibres, and f the
eventual failure of the material.

Figure 1. (a) Load–displacement diagram obtained in a three-point bending test with a PFRC specimen; (b) trilinear softening
diagram.

In (Alberti, Enfedaque, Gálvez, & Reyes 2017),
some parameters of the PFRC mix were identified,
and some expressions were also proposed to define
the fundamental points of the trilinear diagram (k and
r points). In (Enfedaque, Alberti, & Gálvez 2019)
the length and orientation of fibres were observed as
key parameters to define the trilinear diagram, also
identifying a higher threshold of the PFRC behaviour
obtained testing specimens with long fibres oriented
in the optimum direction.

There are some approaches and models to simulate
fracture. In many cases, these models are calibrated
using the experimental results of the test simulated,
but this does not guarantee that the parameters repre-
sent any other case different from the one under study.
From this point of view, the most interesting approach
consists of finding models that can reproduce fracture
in a predictive way, that is, a model that is fed with
parameters obtained by experimental tests that are dif-
ferent from the loading case that wants to be simulated.
This type of model is considered more representative
of the material than a specific loading case.

The main aim of this contribution is to repro-
duce fractures on different size specimens of PFRC
using a predictive approach. A cohesive model and
a softening diagram that corresponds to a trilinear
function defined a priori was employed. Using the
knowledge obtained in previous works, the coordi-
nates of each of the fundamental points t, k, r and f
were identified. To do this, the experimental results
of (Picazo, Alberti, Gálvez, Enfedaque, & Vega 2019)
were reproduced and compared through a finite ele-
ment analysis by using an embedded cohesive crack
formulation. In the following sections, the experi-
mental work used as a reference of the size effect in
PFRC is briefly described, then the main features of
the embedded cohesive crack model used to numeri-
cally reproduce fracture are presented, and the trilinear
softening functions used with each specimen size are
obtained by means of the expressions proposed in
(Alberti, Enfedaque, Gálvez, & Reyes 2017). There-
fore, in the final part of this paper some conclusions
are highlighted.
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2 EXPERIMENTAL BENCHMARK

The campaign described in (Picazo, Alberti, Gálvez,
Enfedaque, & Vega 2019) was used to compare with
the nuemrical simulations. For a detailed description of
this campaign, the reader is addressed to the referenced
work. Table 1 shows the concrete composition, which
corresponds to a self-compacting concrete with 10 kg
of fibres per m3 (SCC10).

Table 1. Concrete composition.

Material SCC10

Cement (kg/m3) 375
Limestone (kg/m3) 200
Water (kg/m3) 188
w/c 0.5
Gravel (kg/m3) 245
Grit (kg/m3) 367
Sand (kg/m3) 918
Superplasticiser (% cement weight) 1.25
PF48 (kg/m3) 10

Concrete reinforcement consists of 48 mm long
polyolefin macrofibres with an embossed surface. The
main properties of these fibres can be consulted in
Table 2. More information on these fibres can be found
in (Alberti, Enfedaque, & Gálvez 2015).

Table 2. Fibres properties.

Material density (g/cm3) 0.910
Eq. diameter (mm) 0.903
Tensile strength (MPa) >500
Modulus of elasticity (GPa) >9

Figure 2. Left: scheme of a three-point bending test and specimen geometry; right: scheme of crack propagation from the
notch tip during the test.

The experimental campaign of reference involved
three-point bending tests carried out on three samples
of each size, following the guidelines of the EN-14651
standard (European Committee for Standardization
2007) (except for the specimen sizes and notch dimen-
sions). Figure 2 shows a schematic drawing of the
experimental setup, and Table 3 shows the dimensions
of the specimens. In all cases, the concrete composi-
tion was the same, and 48 mm long polyolefin fibres
were used in a proportion of 10 kg/m3.

The load and the displacement were recorded by
the testing machine, and the evolution of the crack
mouth opening displacement (CMOD) was measured
by means of a digital image correlation system (DIC).
To compare the experimental results, two main dia-
grams were employed: load versus displacement of
the application point of the load and load versus
CMOD. Figure 2 shows these values in the scheme
of a damaged specimen during the test.

Table 3. Specimens’ dimensions.

Length Width Height Notch
(mm) (mm) (mm) (mm)

Large 1350 50 300 150
Medium 675 50 150 75
Small 340 50 75 37.5

3 EMBEDDED COHESIVE CRACK MODEL

The crack process is modelled by using the finite ele-
ment analysis and adapting a formulation based on
the cohesive zone approach developed by Hillerborg
(Hillerborg, ModÃ©er, & Petersson 1976), inspired
by the work of Dugdale (Dugdale 1960) and Baren-
blatt (Barenblatt 1962). This formulation simulates
fracture inside an element using the strong discontinu-
ity approach and was initially developed for concrete
(Sancho, Planas, Cendón, Reyes, & Gálvez 2007;
Gálvez, Planas, Sancho, Reyes, Cendón, & Casati
2013) but later adapted to brickwork masonry ele-
ments (Reyes, Gálvez, Casati, Cendón, Sancho, &
Planas 2009) and fibre-reinforced cementitious mate-
rials (Alberti, Enfedaque, Gálvez, & Reyes 2017;
Enfedaque,Alberti, Gálvez, & Domingo 2017; Suárez,
Gálvez, Enfedaque, & Alberti 2019).
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The cohesive zone approach relies on the experi-
mental evidence that fracture usually develops under
a predominant local mode I. Thus, this approach
assumes that the cohesive stress vector t is perpen-
dicular to the crack opening and parallel to the crack
displacement vector w, which is expressed by (1).

t= f (w̃)

w̃
w with w̃=max( |w| ) (1)

where f ( |w̃| ) stands for the material softening func-
tion, defined in terms of an equivalent crack opening
w̃. This equivalent crack opening stores the maxi-
mum historical crack opening to account for possible
unloading scenarios. In this case, the softening dia-
gram is defined as trilinear, as shown in Figure 3, and
the load–unload branches follow lines towards the ori-
gin in all cases. The trilinear diagram is defined by the
following expression:

σ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

fct +
(
σk − fct

wk

)
· w if 0<w≤wk

σk +
(
σr − σk

wr − wk

)
· (w − wk ) if wk <w≤wr

σr +
( −σr

wf − wr

)
· (w − wr) if wr <w≤wf

0 if w>wf

(2)

In the finite element models presented later, the
embedded cohesive crack formulation is used with
constant strain triangular elements. Cracking can only
develop in three directions, each parallel to the element
sides and at mid height, which guarantees that local
and global equilibria are satisfied. Figure 4 shows the
only three possible crack paths in an element.

Figure 3. Scheme of a trilinear softening function.
Load–unload branches follow a line towards the origin.

Once the crack direction is defined, the element is
divided into two parts,A+ andA−, and the stress vector
t is constant along the crack, expressed by (3).

t= A

hL
σ · n (3)

where A stands for the area of the element, h for the
height of the triangle over the side opposite to the soli-
tary node, L for the crack length in the element, and n
for the unit vector normal to that side and to the crack.
Since the crack is parallel to one side of the triangular
element and is placed at mid height, Expression (3)
turns into t= σ · n (the reader can find more details of
this and other aspects of the model in (Sancho, Planas,
Cendón, Reyes, & Gálvez 2007)).

The material outside the crack is assumed to be
elastic, and the crack displacement vector w is solved
considering that the stress tensor can be obtained
by subtracting an inelastic part, which considers the
contribution of the crack displacement to the elas-
tic prediction computed using the apparent strain by
means of (4).

σ =E :
[
εa − (

b+ ⊗ w
)S
]
· n (4)

where E is the elastic tangent tensor, εa the apparent
strain vector obtained with the nodal displacements,
b+ the gradient vector of the shape function that cor-
responds to the solitary node, which can be easily
obtained in this case by (5), superscript S indicates the
symmetric part of the resulting tensor, : the double-dot
product ((A : b)ij =Aijklbkl), and ⊗ the direct product
((a⊗ b)ij = aibj).

b+ = 1

h
n (5)

Since the stress vector t can be obtained as t= σ · n,
using the expression of σ obtained with (4) and the
expression of t in terms of the crack opening (1), the
following expression is defined:

f (w̃)

w̃
w= [E : εa] · n−

[
E :

(
b+ ⊗ w

)S
]
· n

which can be rewritten as
[

f (w̃)

w̃
1+ n · E · b+

]
· w= [E : εa] · n (6)

where 1 stands for the second-order identity tensor.
Using an iterative process (such as the Newton–
Raphson method), the crack displacement w that
satisfies (6) can be obtained.

This model is implemented using a UMAT subrou-
tine in ABAQUS and, since vectors n, b+, crack length
L, and the element area A are computed using the nodal
coordinates for each element, it reads an external file
with this information.

4 DEFINITION OF THE TRILINEAR
SOFTENING DIAGRAMS

According to (Alberti, Enfedaque, Gálvez, & Reyes
2017), there are several parameters that can be exper-
imentally measured and help to define the trilinear
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Figure 4. Potential crack paths (left) and geometrical definitions of w, n, and b+ (right).

Figure 5. Identification of k point of the trilinear diagram
by means of the angle φ.

diagram for the PFRC. Apart from the fracture param-
eters of plain concrete (GF and ft), which define the
first part of the diagram, these parameters are the vol-
ume of fibres (Vf ), the orientation factor (θ ) and the
percentage of pulled out fibres at the fracture surface
(%Pulled − out). With the help of Vf , the angle φ can
be obtained by means of (7).

φ=−3.6046+ 5.0625 · (1− e(−6.55·Vf )) (7)

This angle serves to identify the second point of the
diagram (point k), which is the intersection of the soft-
ening function of plain concrete (here considered as an
exponential function: σ = ft · exp (− ft ·w

GF
)) with a line

Table 4. Intermediate values for obtaining point k of the trilinear diagram.

ft (MPa) GF (N/mm) φ wk (mm) σ k (MPa)

Small/Medium/Large 3.2 0.13 1.448 0.07143 0.57715

passing through the origin with a direction defined by
φ (see Figure 5).

By using the three main parameters mentioned
before and the ultimate tensile strength of the fibres
(σu), the maximum remaining strength (σr) can be
obtained with (8).

σr = (1−%Pulled − out) · Vf · θ · σu (8)

Considering the scheme of the trilinear diagram
shown in Figure 1, the first two points can be iden-
tified as follows: point t is identified by ft , which can
be experimentally obtained, while point k depends on
the volume fraction of fibres (Vf ) by means of the φ
angle defined with (7) and the softening function of
plain concrete. Table 4 shows the intermediate values
that result of this calculation.

As regards the remaining two points, r and f , the
value of σr can be obtained with (8). Table 5 shows
the results of this calculation for each size, and σf
is, obviously, equal to 0, but wr and wf must be esti-
mated; they depend on the fibre length, but there are
no specific expressions to obtain them. In this case,
wr is estimated as equal to 1.65 mm, since this was
the value adopted in (Suárez, Gálvez, Enfedaque, &
Alberti 2019) for simulating fracture in specimens
made with 48 mm long fibres of the same kind as
those used here. As regards wf , this value is related
to the maximum crack opening before completely los-
ing the bonding between the fibres and the matrix;
therefore, it is assumed to be proportional to the fibre
length. Thus, since in (Alberti, Enfedaque, Gálvez, &
Reyes 2017) specimens made with 60 mm long fibres
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Table 5. Intermediate values for obtaining σr for all three considered sizes.

θ % Pulled − Out Vf σ u (MPa) σ r (MPa)

Small 0.63 0.54 0.011 376 1.20
Medium 0.62 0.54 0.011 376 1.18
Large 0.72 0.54 0.011 376 1.37

Figure 6. Initial trilinear softening diagrams.

were modelled using wf = 7.5 mm, here, a value of
wf = 48

60 · 7.5= 6.0 mm is adopted. Figure 6 shows
the resulting trilinear softening diagrams for all three
sizes.

5 RESULTS AND DISCUSSION

Fracture of the three specimen sizes analysed in
(Alberti, Enfedaque, & Gálvez 2015) was carried
out using the finite element method, and a displace-
ment control was used to drive the fracture evolution
with good convergence. The simulations were com-
puted using ABAQUS (Smith 2009), and the fracture
was reproduced by means of a UMAT subroutine
that implemented the previously described material
behaviour.

Figure 7 shows the three meshes used in this work
with the same scale. In all three meshes, the region con-
necting the notch tip with the load application point
was refined in order to better capture the fracture
process, while the rest of the specimen was meshed
with larger elements, which helped to notably reduce
the time of computation. The models were formed by
a number of nodes smaller than 800 and a number
of triangular finite elements smaller than 1500, thus
keeping the model size small enough to have models
that perform efficiently. These simulations were run
on a computer with an Intel Xeon E5-1620 processor
with 4 cores at 3.5 GHz, although only one was used
since the user subroutine that reproduces the material

behaviour does not allow parallel computing; all the
simulations took around 150 min to run. In the case
of the large size model (L), the side of minimum ele-
ment size was around 7 mm, in the case of the medium
size model (M), 3.5 mm, and in the case of the small
size model (S), 2 mm. The refinement of these meshes
was designed based on previous works (see (Suárez,
Gálvez, Enfedaque, & Alberti 2019)), in which the
mesh dependence was already analysed.

Figure 8 shows the load–load displacement and
load–CMOD diagrams for all three sizes and compares
them with the experimental results. Each specimen
size is identified by a different colour: red for large
size, blue for medium size, and green for small size.
The shades behind the diagrams correspond to the
experimental envelopes, with the same colour code
used in the diagrams; therefore, the red shade cor-
responds to the experimental envelope of the large
specimens, the blue shade to the experimental enve-
lope of medium specimens, and the green shade to the
experimental envelope of small specimens.Apart from
the overestimation of the initial peak, which is a known
issue when this type of numerical modelling is used,
especially in large-sized specimens (Elices, Guinea,
GÃ³mez, & Planas 2002), the models reproduce the
experimental results reasonably well. This agreement
is particularly good, in the case of the medium size,
and presents some differences in the last part of the
load–load displacement diagrams, in the cases of large
and small sizes, in which the numerical model tends
to underestimate the specimen’s remaining strength.
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Figure 7. FEM meshes used in the simulations for each specimen size.

Figure 8. Numerical results compared with the experimental envelopes; each specimen size is identified by a different
colour. Experimental envelopes correspond to three specimens tested.

It is also worth noting that in the case of the exper-
imental results, the maximum remanent load occurs
at a larger load displacement if compared with the
medium and large sizes, while in the case of the numer-
ical results, this maximum load after the first peak
occurs approximately at the same load displacement
and, in all cases has been retained, following a very
linear trend. These trends are depicted by dashed lines
on the load–load displacement diagrams of Figure 8.

These results show that expressions (7) and (8),
defined in the past by analysing the fracture behaviour
of different PFRC mixes, well describe the general
behaviour of this material and take into account the
main parameters: the volume of fibres in the mix (Vf ),
the orientation of fibres with respect to the fracture sur-
face (θ ), and the quality of bonding between the fibres
and concrete, expressed by the fraction of fibres that
are pulled out at the fracture surface (%Pulled − out).

Nevertheless, the parameters used to define the trilin-
ear softening diagrams, abscissa values of points k and
f , are only estimated based on previous experiences
with this type of model, but there are no expressions
proposed for them yet. In the following section, the
influence of these two values, wr and wf , is studied to
understand how they modify the diagrams, which can
help to propose expressions to quantify them.

6 CONCLUSIONS

In this work, the numerical modelling of the size
effect by means of a cohesive model fed with a trilin-
ear softening function was studied using a predictive
method. A three-point bending test on specimens of
three sizes was numerically reproduced and com-
pared with experimental data from previous works.
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The trilinear diagrams for each size were defined by
expressions obtained in previous experimental cam-
paigns, resulting in good agreement with the lab
observations.

From the work presented above, the following
conclusions can be drawn:

1. The complete fracture behaviour of PFRC speci-
mens can be numerically simulated using a pre-
dictive trilinear cohesive crack model, which can
be defined a priori by means of empirical expres-
sions obtained with lab tests different from those
simulated. This diagram is defined by four points,
with coordinates that depend on PFRC mechani-
cal characteristics, i.e., the tensile strength of the
matrix, the proportion of fibres, and the orientation
factor. Abscissa values wr and wf (see Figure 3)
are fixed based on experimental results obtained in
previous literature. It is still an unsolved challenge
to obtain expressions to estimate wr and wf using
the mechanical characteristics of the PFRC.

2. The softening diagrams are not equal for all speci-
men sizes and should be adjusted for each of them.
This is mainly due to a different orientation factor
that varies with the size of the specimen.

3. The maximum remanent loads obtained for each
size present a linear trend on the load–displacement
diagram, which does not agree completely with
the experimental observations, although the load–
displacement and load–CMOD curves properly
agree with the experimental envelopes for the three
studied sizes.
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ABSTRACT: Concrete structures are damaged by environmental factors and loads to which they are subjected.
To maintain such structures, it is necessary to properly determine the mechanical properties and degree of
damage suffered by concrete using core tests. The relationship between the stress level of damaged concrete
under compression and acoustic emission (AE) parameters was investigated using clustering and regression
analysis with random forests to identify the most important AE parameters. For clusters 1 and 3, R2 was higher,
and RMSE and MAE were lower than for non-clustered cases. Therefore, cluster analysis can be expected to
improve the accuracy of AE testing. Finally, the most important parameter was determined to be rise time, the
second was the centroid frequency. These two parameters can be used to clarify compressive fracture behavior
of damaged concrete.

1 INTRODUCTION

Concrete structures become decrepit and damaged
over time. To maintain them, it is necessary to prop-
erly assess their condition and damage levels. This is
usually done by determining the mechanical proper-
ties of the concrete and the degree of damage using
core tests. The acoustic emission (AE) technique is
recognized as one of many practical ways to quan-
titatively estimate damage in concrete (Grosse et al.
2021). By means of data collected from AE tests of
concrete structures, damage origin (Li et al. 2017;
Van Steen et al. 2019; Zhou et al. 2018), type (Alver
et al. 2017; JCMS-IIIB5706 2003; Prem et al. 2021;
Tayfur et al. 2018; Zhang et al. 2020; location (Boni-
face et al. 2020; Mirgal et al. 2020; Rodríguez &
Celestino 2020; Soltangharaei et al. 2021), and sever-
ity (Abouhussien & Hassan 2020; Burud & Kishen
2021) can be determined.

Micro-cracking damage appears predominantly
under compression. The increasing number of aging
structures and the amount of disastrous damage from
recent earthquakes have focused attention on the need
to repair damaged concrete structures. Inspection of
concrete structures in service is currently done using
both destructive and non-destructive tests. Destruc-
tive testing uses concrete core samples drilled from

structures in use. The cores’ chemical and phys-
ical properties are then measured. The concrete’s
uniaxial compressive strength and Young’s modulus
are genterally specified for testing. The accuracy of
non-destructive testing is evaluated by correlating
non-destructive monitoring indices with mechanical
properties obtained from desructive testing. Thus, the
concrete’s level of damage is estimated using only
properties that correlate with the measured mechanical
properties.To date, there are few well established tech-
niques for estimating distributed microscopic damage.
Ohtsu proposed measuring AE activity in uniaxial
compression testing of core samples because AE-
generating behavior is closely associated with the
presence of micro-cracks in concrete (Ohtsu 1987).
To analyze the occurrence of AE events quantitatively,
the rate-process theory was introduced (Ohtsu 1992).
Suzuki, one of the co-authors of this article, proposed
evaluating concrete damage using AE rate-process
analysis and damage mechanics (Suzuki et al. 2007).
The procedure is named DeCAT (Damage Estimation
of Concrete by Acoustic Emission Technique). It is
based on estimating an intact modulus of elasticity
in concrete (Suzuki et al. 2007), and suggests quan-
titatively evaluating concrete damage by applying AE
and X-ray CT techniques to core testing (Suzuki et
al. 2010; 2014; 2017). Suzuki then improved DeCAT,
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creating the i-DeCAT system, and proposed that AE
energy can be useful for damage evaluation (Suzuki
et al. 2019; 2020; Shimamoto & Suzuki 2021). A sim-
ilar approach has been experimentally tested in studies
such as Wu (Wu et al. 2019) and Karcili (Karcili et al.
2016). Other studies have evaluated the damage and
fracture behavior of concrete by analyzing various AE
parameters such as amplitude and frequency (Shah &
Ribakov 2010; Shang et al. 2021; Schiavi et al. 2011.
In recent years,AE waves have been classified in detail
not only focusing on a single AE parameter but also
applying machine learning to multiple AE parameters.
By integrating AE with random forests, support vector
machines, or neural networks, cracks’ locations can be
identified for structural inspection (Crivelli et al. 2014;
Hübner et al. 2020; Kane & Andhare 2020; Wotzka
& Cichoń 2020). AE waves can be classified by fre-
quency characteristics in fracture process (Zhang et
al. 2021), damage levels and types in reinforced con-
crete members can be estimated (Guofeng & Du. 2020;
Soltangharaei et al. 2021; Thirumalaiselvi & Sasmal
2021), leakage in tanks can be automatically detected
(Rahimi et al. 2020), andAE activities can be localized
(Morizet et al. 2016; Suwansin & Phasukkit 2021).

As described above, the usefulness of many AE
parameters for evaluating the fracture process is evi-
dent, but the effective mix of AE parameters has not
been sufficiently identified. In this study, the rela-
tionship between the stress level of concrete under
compression and AE parameters was investigated by
regression analysis with machine learning to identify
the most important AE parameters. For this purpose,
concrete core samples were drilled out from a head-
work which had been subjected to the freeze and
thaw process. A random forest regression analysis was
used for the machine learning algorithm. In addition,
whether prediction accuracy could be improved by
clusteringAE activities as a preprocessing method was
investigated.

2 ANALYTICAL PROCEDURE

2.1 AE parameter analysis

According toASTM E 1316, acoustic emission (AE) is
defined as an event producing transient elastic waves
by releasing of a number of local sources in materials
under stress (ASTM E1316 2002). From a physical
viewpoint, fracture in a material takes place as the
release of stored strain energy, which is consumed by
nucleating new external surfaces (cracks) and emitting
elastic waves (Grosse et al. 2021). The elastic waves
propagate inside the material and are detected by AE
sensors.AE signals are detected as dynamic motions at
the surface of a material, and are converted into elec-
tric signals. Then the electrical signals are amplified
and filtered.

The total AE activity (simply how many “hits”
are recorded by any sensor) is indicative of the phe-
nomenon being monitored. When the phenomenon
is a fracture, the number of hits is related to the

Table 1. Basic AE parameter.

AE parameter Meaning

Hit A signal that exceeds the threshold and
causes a system channel to record data.

Energy The signal strength of the AE waveform
Duration The time interval between the 1st count

and the last descending
threshold crossing.

Rise Time The time interval between the triggering
time of AE signal (1st count) and the time
of the peak amplitude.

RMS Root mean square value of AE signal.
Peak
frequency

The frequency with the highest magnitude
in the FFT.

Centroid
frequency

The centroid frequency of the FFT.

degree of damage and the rate of crack formation and
propagation (Grosse et al. 2021). In addition, the shape
of the waveform yields important information about
the source of the emission. Therefore, many param-
eters are used to quantify the waveform. The basic
parameters are shown in Table 1. Frequency content is
also essential for AE analyses.

In this study, concrete fracture behavior was eval-
uated using the number of hits, duration, rise time,
energy, root mean square value (RMS), centroid fre-
quency and peak frequency of AE signals. AE energy
is defined by the following equation:

EAE =
(
ap
)2
. (1)

where EAE is detected AE energy (V2) and ap is the
peak amplitude of the detected AE wave (V). Peak
frequency and centroid frequency are additionally
determined in real time from the fast Fourier transform
(FFT) of the recorded waveforms. Peak frequency is
the frequency with the highest magnitude in the FFT
and centroid frequency is the centroid of the FFT.

2.2 k-means clustering algorithm

k-means clustering is one of the simplest and most
commonly used clustering algorithms. It tries to find
cluster centers that are representative of certain regions
of the data.The algorithm consists of two steps: assign-
ing each data point to the closest cluster center, and
setting each cluster center as the mean of the data
points that are assigned to it (Andreas & Sarah 2017).
Finally, the initial classification is completed when
no point is pending. From this point forward, new
positions of the centroid must be recalculated until
the objective function, J , which sums the distances to
the centroids, is minimized. It is calculated using as
follows (Kaufman & Rousseeuw 2008):

J =
k∑

j=1

n∑

i=1

‖x(j)i − cj‖2. (2)
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Here, ‖x(j)
i − cj‖2 is the specific length between the

point and the cluster center cj , which is an indicator
of the nth point from the respective cluster centers. In
other words, the last step is repeated until the cen-
troids no longer move and the objects are separated
into classes for which the distances are minimized.

In this study, AE data have been classified into
three clusters based on three AE parameters: peak
amplitude, peak frequency, and centroid frequency.

2.3 Regression analysis using random forests

2.3.1 Random forest algorithm
In this study, the relationship between the stress level
of concrete in compression and the various AE param-
eters was examined using random forest regression
analysis, which is an ensemble of decision trees.

Decision trees are widely used models for classi-
fication and regression tasks (Figure 1). Essentially,
they pose a hierarchy of if/else questions, leading to a
decision (Beyeler 2018). Each node in the tree either
represents a question or terminal node (also called a
leaf) that contains the answers. Decision trees have two
advantages over many other algorithms: the resulting
model can easily be visualized, and the algorithm is
completely invariant to scaling of the data. As each
feature is processed separately and the possible splits
of the data do not depend on scaling, no preprocessing
such as normalization or standardization of the fea-
tures is needed for decision tree algorithms (Beyeler
2018).The main downside of decision trees is that even
when pre-pruning is used, they tend to overfit and are
not highly generalizable. Therefore, in most applica-
tions, ensemble methods are usually used in place of
a single decision tree.

Figure 1. Decision tree method (concept).

Random forests are an ensemble learning algorithm
for decision trees. In random forests, a decision tree
is constructed from bootstrap data, which are sam-
pled from training data with some overlap (Figure 2).
The variables for achieving optimal segmentation are

Figure 2. Random forest method (concept).

searched for some randomly selected variables among
the d variables (instead of all variables in the d-
dimensional feature vector) to suppress the correlation
among decision trees and to produce more accurate
output (Beyeler 2018).

In this study, the CART (ClassificationAnd Regres-
sion Tree) method was used to determine the branches
of the tree. This method uses the Gini coefficient as
a criterion for branching. The Gini coefficient L(t),
which represents the impurity at node t, is given by
the following equation (Beyeler 2018):

L(t)=
K∑

i=1

p (ci|t) (1− p(ci|t))= 1−
K∑

i=1

p2(ci|t). (3)

Here, p(ci|t) is the probability that the ith class of
data is selected at nodet. In this study, the tree was
branched in such a way that the decrease in impurity as
measured by the change in the Gini coefficient, 
L(t)
(shown in Eq. (4)) is maximized.


L(t)=L(t)− (pLL(tL)+ pRL(tR)) (4)

In this equation, pL and pR are the probabilities of
being classified into the left and right branches after
splitting, respectively, and tL and tR are the nodes at
the end of the left and right branches, respectively.

2.3.2 Cross-validation
Cross-validation is a statistical method of tun-
ing hyper-parameters. In cross-validation, the data
are instead split repeatedly and multiple models
are trained. The most commonly used version of
cross-validation is k-fold cross-validation. The k-
partitioning cross-validation method is to train a model
by dividing the training data into k parts, using k-1
datasets as the training set and 1 dataset as the val-
idation set. The method is repeated k times so that
every partition becomes a validation set at least once
(Beyeler 2018).

Accordingly, in this study, parameter tuning was
conducted using a 3-fold cross-validation method. As
a result, the tree depth was determined to be 10 in a
random forest with 300 trees.
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2.3.3 Verification of accuracy
Common quantitative performance measures in
regression modeling include the coefficient of deter-
mination (R2), root mean square error (RMSE), and
mean absolute error (MAE) (Chai & Draxler 2014;
Chatur et al. 2013).These metrics, coupled with model
diagnostic plots and visualization of predicted ver-
sus observed output values, provide a comprehensive
picture of a model’s performance (Beyeler 2018).

R2 is a measure of the proportion of the variance in
the data that is explained by the model. Accordingly,
R2 is calculated as follows:

R2= 1−
∑n

i=1

(
yi − ŷi

)2

∑n
i=1 (yi − ȳ)2 . (5)

where yi is an observed value from the data, ŷi is the
predicted value from the model, and ȳ is the average
output from the data.

The value of R2 ranges from zero to one, with higher
values indicating a model’s better ability to explain
the variation in the data. However, R2 is a measure
of correlation, not accuracy, and should be used with
other performance measures because it is dependent
on the variance of the output variable.

RMSE indicates how closely the data fit around the
model. t is measured on the same scale as the out-
put variable, and is always positive due to the squared
residuals in its calculation. Using the RMSE accen-
tuates the effect of outliers in the error metric. This
means that if median error of the model (usually cap-
tured by the mean absolute error) is low, the RMSE
of the model can still be large due to the inability to
model some outliers in the data. RMSE is calculated
as follows:

RMSE=
√√√√1

n

n∑

i=1

(
yi − ŷi

)2
. (6)

MAE is a measure of prediction accuracy of a model
that uses the absolute value of the errors rather than
a squared value. Using the absolute value reduces the
influence of very large errors on the measure of perfor-
mance. Thus, MAE is a measure of the median error of
the model and complements the use of R2 and RMSE.
MAE is calculated as follows:

MAE= 1

n

n∑

i=1

∣∣yi − ŷi

∣∣. (7)

3 EXPERIMENTAL PROCEDURE

3.1 Concrete specimens

Nine cylindrical specimens which were severely dam-
aged by frost were drilled out from the side walls
and bottom slabs of a headwork located in Hokkaido,
Japan, which was constructed in 1963 (Figure 3).

Figure 3. Headwork overview.

3.2 Compression test with AE

Each core specimen was monitored for AE in com-
pression testing. The test setup for AE monitoring in
a uniaxial compression is shown in Figure 4. Silicon
grease was pasted on the top and the bottom of the
specimen, and aTeflon sheet was inserted to reduceAE
events generated by friction. The SAMOS-AE system
(manufactured by PAC) was employed as a measur-
ing device. AE hits were detected and recorded at a
threshold level of 42 dB with a 40 dB gain in the
pre-amplifier and 20 dB gain in the main amplifier.
Hits were counted with six AE sensors of 150 kHz
resonance (R15α, PAC).The frequency range and sam-
pling frequency were set from 5 kHz to 400 kHz and 1
MHz, respectively. For event counting, the dead time
was set as 2 ms.

Figure 4. AE monitoring of the compression test.

4 DATASETS FOR ESTIMATION OF STRESS
LEVEL BY AE PARAMETERS

The flow of the analysis is shown in Figure 5. After
compression tests with AE monitoring, the statistics
of AE parameters were calculated for every 20×10−6

of strain. The total AE hits; the total, mean, standard
deviation, and maximum value of AE energy; and the
mean, standard deviation, and maximum value of the
other five parameters (duration, rise time, RMS, cen-
troid frequency, and peak frequency) were evaluated.
These 20 parameters were used as features (explana-
tory variables) and the stress level of the concrete under
compression was used as the target variable. The stress
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Figure 5. Analytical flowchart.

level was calculated by dividing the stress at every
20×10−6 increment of strain by the maximum stress.
The accuracy of the regression analysis was compared
for seven cases: one for all AE waves (non-clustered)
and the others for only AE waves after cluster analy-
sis (six cases). The total data size was 326, where 217
were used for training and 109 for testing.

5 RESULTS AND DISCUSSION

5.1 Mechanical properties of the concrete core
samples

The mechanical properties of the samples tested under
compression are shown in Table 2. The average com-
pressive strength was 15.4 N/mm2, ranging from 7.2 to
31.7 N/mm2. The design standard strength of durable
agricultural water utilization facilities is 24 N/mm2.
Only one of the nine sample specimens exceeded this
value (31.7 N/mm2).

Table 2. Mechanical properties of the samples.

Standard
Statistics Mean Deviation

Compression strength (N/mm2) 15.4 8.1
Maximum strain ×10−6 715 410
Initial tangent modulus (GPa) 25.0 8.5
of elasticity
Modulus of elasticity (GPa) 23.2 9.0
Strain energy (J) 10.2 11.7

The average maximum strain was 726×10−6, which
was lower than the standard maximum strain of
2,000×10−6 for all specimens. The ratio of the
initial tangential modulus to the modulus of elasticity

averaged 1.1. The average strain energy was 10.7 J,
ranging from 2.7 to 38.5 J. These results suggest that
the specimens had become brittle due to accumulated
frost damage.

5.2 Characteristics of AE waves classified by
cluster analysis

AE data obtained from the compression tests were
classified into three clusters based on three AE param-
eters: peak amplitude, peak frequency, and centroid
frequency. The means of the AE parameters are shown
in Table 3. As can be seen, the non-clustered data and
cluster 2 are significantly different from cluster 1 or
cluster 3 in “rise time” and “centroid frequency” using
Tukey’s HSD tests (p< 0.05), and cluster 3 is signif-
icantly different from the other clusters in “duration”
(p< 0.05). Average peak amplitude is 53 dB, and has
no significant differences. On the other hand, there
are significant differences in “RMS” and “peak fre-
quency” among all clusters (p< 0.05). The RMS of
cluster 3 is the highest and cluster 1 is lowest. The
peak frequency of cluster 3 is the highest and that of
cluster 2 is the lowest.The difference between cluster 2
and cluster 3 is about 50 kHz. Of all theAE parameters,
peak frequency is the most effective in distinguishing
the clusters. The values of these parameters for each
cluster show that activities having lower rise times and
peak frequencies (cluster 2) can be attributed to micro-
scale damage, while those with higher rise times and
peak frequencies (clusters 1 & 3) can be attributed to
macro or mezzo-scale damage (Aggelis et al. 2013; De
Rousseau et al. 2019). Comparing peak frequencies of
clusters 1 and 3, cluster 3 appears to be associated with
larger damage than cluster 1, which can be thought of
as macro-scale damage.

Table 3. Comparison of AE parameters among clusters.

Non-
clustering

Cluster (all data) Cluster 1 Cluster 2 Cluster 3

Statistics Mean SE* Mean SE Mean SE Mean SE

Rise time 774 818 693 833
(µs) 6 11 9 16
Duration 3,175 3,013 3,028 3,815
(µs) 37 52 58 108
Peak amplitude 53 53 53 53
(dB) 0.021 0.034 0.034 0.048
RMS 0.0532 0.0480 0.0566 0.0583
(V) 0.0001 0.0002 0.0002 0.0004
Centroid 134 139 126 140
frequency
(kHz) 0.04 0.07 0.07 0.07
Peak frequency 93 103 68 118
(kHz) 0.10 0.17 0.13 0.21

*SE: Standard error

The trend for totalAE hits in compressive fracturing
of No. 4 is shown in Figure 6. No. 4 is the sample
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Figure 6. Total AE hit trends in the compressive fracture
process (No. 4: 16.1 N/mm2).

whose compressive strength is closest to the average
value. The AE hit trends of clusters 1 & 3 overlap or
have similar rates of change. The other samples show
the same results as No. 4. These results suggest that
the factors for AE occurrence for clusters 1 & 3 differ
from those of cluster 2, corresponding with the scale
of damage outlined above. The total number of AE
hits detected in 9 samples is 258,295. Of them 43%
(111,324) fall in cluster 1, 37% (96,492) are in cluster
2, and 20% (50,479) are in cluster 3.

5.3 Characteristics of AE waves classified by
cluster analysis

5.3.1 Accuracy of regression analysis
Because the purpose of this paper is to clarify the rela-
tionship between the compressive fracture process and
AE parameters in damaged concrete, we attempted to
estimate stress levels using the AE parameters. The
accuracy of the regression analysis is summarized in
Table 4. Estimations for all AEs (non-clustered) and
the results for the clustered AEs are shown in Figure 7.
When AEs classified as clusters 1 & 3 are used, R2

increases (R2= 0.720), and RMSE and MAE decrease
compared to the non-clustered case. In Figure 7 the
error ranges for clusters 1 & 3 are smaller with a 95%
confidence interval. In particular, the error range is
smaller and the accuracy improves above a stress level
of 0.6 (60%). On the other hand, the accuracy decreases
when cluster 2, cluster 3, and clusters 2 & 3 AEs are

Table 4. Regression analysis accuracy using random
forests.

Index R2 RMSE MAE

Non-clustered 0.62 0.183 0.142
Clustered Cluster 1 0.603 0.187 0.154

Clusters 1&2 0.648 0.176 0.135
Clusters 1&3 0.72 0.157 0.126
Cluster 2 0.492 0.211 0.173
Clusters 2&3 0.471 0.216 0.171
Cluster 3 0.538 0.202 0.161

Figure 7. Stress levels estimated by the random forests.

targeted. In particular, R2 is below 0.5 for cluster 2
and clusters 2 & 3. These cases have the largest RMSE
and MAE values of all the cases. The average peak fre-
quency of cluster 2 is about 30–50 kHz lower than that
of clusters 1 & 3 (Table 3). The decrease in accuracy
for cluster 2 could be because that cluster comprises
micro-scale activities which are seen throughout the
test and are not capable of defining damage as well
as macro-scale activities. Therefore, identifying AEs
due to crack initiation using cluster analysis can be
expected to improve accuracy.
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5.3.2 Identification of effective AE parameters for
evaluation of compressive fracture process

The most commonly used method of comparing fea-
tures to rate each one’s importance in producing a
random forests outcome. These are numbers between
0 and 1 that always sum to 1. There are two methods
for calculating importance: one is to use the amount
of decrease in the Gini coefficient and the other is to
use the variation in the Out-Of-Bag (OOB) error rate
(Chai & Draxler 2014). In this study, the Gini coef-
ficient method was adopted. The feature importance
was determined by aggregating the amount of decrease
in the Gini coefficient for all nodes by dividing them
using a chosen variable and averaging the results.

The importance AE parameters are compared
between the case of non-clustered and the case of clus-
ters 1 & 3, which had the highest the R2. Features’
importance values for the non-clustered case and for
clusters 1 & 3 are shown in Figure 8. The average
values of the AE parameters with high importance
at each stress level in the non-clustered case and for
clusters 1 & 3 are shown in Figures 9–11. In the non-
clustered case, the important AE parameters are peak
frequency, rise time, and AE hits, while for clusters
1 & 3, the important AE parameters are rise time,
centroid frequency, and AE hits. In both cases, the
importance of rise time is high, suggesting that it is
a useful AE parameter. Peak frequency is the most
important parameter in the non-clustered case, while

Figure 8. Importance of explanatory variables.

Figure 9. Relation between the average of peak frequency
and the stress level (all samples).

Figure 10. Relation between the average of rise time and
the stress level (all samples).

Figure 11. Relation between the average of centroid fre-
quency and the stress level (all samples).

it is the least important for clusters 1 & 3. In this
study, the clustering was analyzed based on peak fre-
quency, peak amplitude, and centroid frequency. Peak
frequency was shown to be the most effective of all AE
parameters in distinguishing the clusters (see 5.2). As
a result, the difference in peak frequencies with respect
to different stress levels was smaller in the clustered
cases (see Figure 9), and the importance of peak fre-
quency decreased. As seen in Figure 10, the rise time
increased rapidly above a stress level of 0.9 (90%).This
could be due to macro-cracks caused by the consoli-
dation of micro- and mezzo-cracks during the final
fracture process. This trend has also been shown by
Shahidan et al. (Shahidan et al. 2013). At the centroid
frequency, the trends of the two cases are similar. The
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centroid frequency is high at stress levels above 0.6
(60%) (see Figure 11). For clusters 1 & 3, only AEs
with high centroid frequencies were picked up by clus-
ter analysis. For this reason, the difference of centroid
frequency does not show as clearly as rise time for the
various stress levels.

6 CONCLUSION

This study aimed to identify effective AE parameters
for evaluating compressive fracture processes using
machine learning. To do so, core samples were drilled
out from a damaged concrete structure, and uniaxial
compressive strength tests were conducted in which
the fracture processes were monitored using the AE
method. In order to clarify the trends ofAE parameters
during the compressive fracture process, regression
analysis correlating the stress level of the concrete
under compression and AE parameters was performed
using random forests. In addition, we have investigated
whether the prediction accuracy can be improved by
clustering AE activities as a preprocessing method.
The conclusions can be summarized as follows:

(1) AE waves were classified into three clusters using
a k-mean clustering algorithm based on peak fre-
quency, centroid frequency, and peak amplitude.
By evaluating AE features of the clusters, the
degree of concrete damage was attributed to the
clusters since the characteristics of AE parameters
in cluster 2 (micro-scale damage) and in clusters
1 & 3 (mezzo and macro-scale damage) were dif-
ferent. In this process, the most distinctive cluster
was identified.

(2) Machine learning is useful for estimating the stress
level of the concrete undergoing compressive fail-
ure.When theAEs were classified into clusters 1 &
3 (mezzo and macro-scale damage), R2 increased,
and RMSE and MAE decreased compared to the
non-clustered case. In other words, the accuracy
of the stress level estimation using random forests
increased after clustering analyses.

(3) For the clustered AE data, the most important
parameter was determined to be rise time, the
second was the centroid frequency. These two
parameters can be used to clarify the compressive
fracture behavior.
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Fiber orientation modeling during extrusion-based 3D-concrete-printing
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ABSTRACT: Fibers tend to align in printing direction during fiber-reinforced 3D-concrete-printing processes,
which allows for the orientation of the fibers in desired directions by controlling the printing process. This
enables the production of components with advantageous fiber orientation states, which is not possible with
conventional casting methods to this extent.To understand correlations between fiber orientation and process (e.g.
printing speed or flow rate) and geometric (e.g. extrusion nozzle size and shape) parameters during the printing
process, a fiber orientation model is implemented into a framework based on the Particle Finite Element Method
(PFEM) to simulate extrusion processes during fiber-reinforced 3D-concrete-printing. The fiber orientation
model is based on a representation using a second order orientation tensor, which is combined with an anisotropic
Bingham viscsosity constitutive law and upscaling relations for the viscosity and yield stress from literature. A
robust PFEM-compatible implementation of the fiber orientation model is proposed and verified using different
convergence and parametric studies. Numerical analyses of fiber-reinforced 3D-concrete-printing in 2D revealed
that fibers tend to align stronger in printing direction for larger printing speeds, smaller extrusion nozzles and
smaller fiber aspect ratios.

1 INTRODUCTION

Automated construction techniques are playing an
increasingly important role in the modern construc-
tion industry, bringing advantages such as greater
efficiency, accuracy and safety. One area of these tech-
niques is additive manufacturing or more specifically
extrusion-based 3D-concrete-printing (Mechtcherine
et al. 2020). In 3D-concrete-printing, the material is
extruded layer-wise via an extrusion nozzle which
allows for the construction of novel designs and com-
ponents. More details related to 3D-concrete-printing
can be found in (Buswell et al. 2018; Mechtcherine
et al. 2020). Among the many challenges of 3D-
concrete-printing, incorporating reinforcement into
current production techniques is one of the biggest
to solve to increase the product quality and to yield a
more effective manufacturing method (Mechtcherine
et al. 2021). A possible solution is based on printing
technologies using fiber-reinforced fresh concrete. In
traditional casting processes of fiber-reinforced con-
crete the fiber orientation state is greatly influenced
by the casting process (e.g. casting direction or flow
rate). This can lead to undesired and impractical fiber
orientation states in the final product. It was shown
that 3D-concrete-printing allows for the orientation of
fibers in printing direction (Arunothayan et al. 2021;
Huang et al. 2021; Mechtcherine et al. 2021), which
can be used to control the printing process and obtain
desired fiber orientation states in the final component.
To allow for accurate calibration of fiber-reinforced

3D-concrete-printing processes and to understand the
correlations between process parameters (e.g. print-
ing speed or flow rate) and the fiber orientation
state in printed components, this work focuses on the
development and application of a numerical model
for simulating fiber-reinforced 3D-concrete-printing
extrusion processes.

The most used fiber orientation model is the Folgar-
Tucker fiber orientation model (Advani & Tucker
1987; Folgar and Tucker 1984). To get around the
huge computational resources needed for discrete
fiber modeling approaches, the Folgar-Tucker model
translates the evolution law of a single fiber into a
probabilistic form representing a fiber bundle to yield
a continuity equation for orientation tensors. In case
of polymers, such models were already successfully
applied to extrusion processes in Fused Deposition
Modeling (FDM) for example by using a finite element
model in (Heller et al. 2019) or a Smoothed Parti-
cle Hydrodynamics (SPH) implementation in (Ouyang
et al. 2019). With respect to fiber-reinforced fresh
concrete, in (Gudzulic et al. 2018) a Folgar-Tucker
fiber orientation model was implemented into a SPH
code and applied to different benchmark problems.
Beside this approach using a Folgar-Tucker fiber ori-
entation model, mostly discrete approaches were used
for modeling of fiber-reinforced fresh concrete, e.g.,
see (Ŝvec 2013) for a Lattice-Boltzmann based formu-
lation, (Deeb et al. 2014a; 2014b) for a SPH model
where fibers have been modeled discretely by link-
ing individual SPH particles or (Ferrara et al. 2012)
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for a discrete approach based on the Distinct Element
Method.

The implementation proposed in this work is based
on the combination of two previous works: Due to
the successful simulation of extrusion processes dur-
ing 3D-concrete-printing using the Particle Finite
Element Method (PFEM) in (Reinold & Meschke
2019; Reinold et al. 2020), this model is extended by an
improved implementation of the Folgar-Tucker fiber
orientation model from (Gudzulic et al. 2018). The
Folgar-Tucker fiber orientation model is based on the
solution of an evolution equation of a second order ori-
entation tensor, which is combined with an anisotropic
constitutive model for fiber-reinforced fresh concrete
using upscaling relations for the plastic viscosity and
yield stress from literature.

The structure of the paper is as follows: Section 2
presents the theoretical and numerical framework of
the model, which provides a brief overview of PFEM,
the Folgar-Tucker fiber orientation model, the consti-
tutive model for fiber-reinforced fresh concrete and the
solution scheme within the PFEM framework. In Sec-
tion 3 representative numerical studies are discussed
to outline characteristics of the proposed implemen-
tation and to analyze 3D-concrete-printing extrusion
processes in a 2D setup.

2 THEORETICAL AND NUMERICAL
FRAMEWORK

In the course of this section, a coherent theoretical
and numerical framework for modeling the flow of
fresh fiber-reinforced concrete is outlined. First, in
Section 2.1 a brief overview about the Particle Finite
Element Method (PFEM) and its governing equations
for large deformation problems is given. Second, in
Section 2.2 the fiber orientation model based on a
Folgar-Tucker fiber orientation model is introduced.
Section 2.3 introduces a constitutive model for fiber-
reinforced fresh concrete and a solution procedure for
the PFEM Folgar-Tucker fiber orientation model is
presented in Section 2.4. The solution scheme is for-
mulated such that only minor changes to an existing
PFEM code are required to couple the fiber orientation
model with it.

2.1 Particle Finite Element Method

The Particle Finite Element Method (PFEM) is a
numerical method for fluid dynamics and large defor-
mation problems given in an updated Lagrangian
description (Idelsohn et al. 2004; Oñate et al. 2004).
The spatial discretization is based on linear triangular
or tetrahedral finite elements which allow for efficient
remeshing algorithms based on the Delaunay triangu-
lation to deal with severe mesh distortions during the
simulation. Originally, the free surface of the domain
is obtained from the alpha shape method (Edelsbrun-
ner & Mücke 1994). In contrast, for applications with
a smooth evolving free surface, constrained Delaunay

triangulations are advantageous compared to the alpha
shape method with respect to free surface modelling
and contact (?). In this paper, PFEM is only summa-
rized in a condensed version. Further information can
be found in the original work (Idelsohn et al. 2004;
Oñate et al. 2004), in a more recent state of the art
report (Cremonesi et al. 2020) and in previous works
of the authors (Reinold & Meschke 2019; Reinold et al.
2020; ?).

In all PFEM implementations, at least the balance of
momentum and mass must be solved. The discretized
residuals of the balance of momentum and mass in a
quasi-incompressible framework are summarized as

Rv =Mvv ˙̄v + Fv,int − Fv,ext = 0, (1)

Rp=GT
vpv̄ − Kpp ˙̄p− Sppp̄ = 0, (2)

in which Rv denotes the residual of the balance of
momentum, Mvv denotes the lumped mass matrix, v̄
denotes the nodal velocities, Fv,int denotes the internal
force vector, Fv,ext denotes the external force vec-
tor, Rp denotes the residual of the balance of mass,
Gvp denotes the velocity-pressure gradient matrix, Kpp
denotes the compressibility matrix, p̄ denotes the nodal
pressure and Spp denotes a stabilization matrix in case
of incompatible orders of finite element approxima-
tions of the velocity and pressure fields. The set of
equations (1) and (2) can be solved using any possible
solution method and temporal discretization scheme.
Here, the set of equations is solved monolithically
using an implicit backward Euler discretization in
time. This solution procedure is explicitly coupled
with the fiber orientation model to yield a robust and
efficient algorithm presented in the following sections.

2.2 Folgar-Tucker fiber orientation model

A fiber suspension can be characterized into dilute
(c< 1/r2), semi-concentrated (1/r2 < c< 1/r) and
highly concentrated regimes (c> 1/r) (Doi and
Edwards 1978), with the fiber volume fraction c and
the aspect ratio r of a single fiber. Due to the low
fiber content in case of a dilute suspension, the motion
of a fiber is dominated by drag forces from the sur-
rounding fluid. For semi-concentrated regimes also
hydrodynamic interactions between fibers may influ-
ence the fiber motion. In highly concentrated regimes,
the fiber motion is characterized by direct contacts
between fibers. Much work has been done in charac-
terization and modeling of fiber-reinforced polymer
suspensions, e.g., see (Chung & Kwon 2002; Petrie
1999) for an overview. In contrast, only few funda-
mental studies have been carried out in case of fresh
concrete, e.g., see (Férec et al. 2015; Grünewald 2004;
Martinie et al. 2010; Perrot et al. 2013). The fiber
orientation model in this work is based on well val-
idated approaches from polymer science and builds
upon a previous work, given in (Gudzulic et al. 2018),
which was successfully applied to fiber-reinforced
fresh concrete flow problems.
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Due to the high amount of computational resources
needed in simulation approaches using discrete fibers,
the majority among the modeling approaches are based
on a representation and solution procedure using so-
called orientation tensors (Advani & Tucker 1987;
Folgar and Tucker 1984). Such models are derived
from the continuity equation of a fiber orientation dis-
tribution function ψ representing the orientation state
of a fiber bundle as (Phelps & Tucker 2009)

ψ̇ = −∇S
i (ψ

(
Wijpj + λ(Dijpj − Dklpk plpi)

)

︸ ︷︷ ︸
=ṗh

i

(3)

−CI |γ̇ |∇S
i ψ︸ ︷︷ ︸

qi

),

where∇S
i is the gradient operator over the unit sphere,

Wij = 1
2

(
∂vi
∂xj
− ∂vj

∂xi

)
is the skew-symmetric part of

the velocity gradient, Dij = 1
2

(
∂vi
∂xj
+ ∂vj

∂xi

)
is the sym-

metric part of the velocity gradient, λ= r2−1
r2+1 is a

shape factor, |γ̇ | =√
2DijDij is the strain rate mag-

nitude, CI is the isotropic rotary diffusivity factor and
p= [sin(θ )cos(ϕ), sin(θ )sin(ϕ), cos(θ )]T is the direc-
tion of a single fiber in a Cartesian frame with the
azimuth angle ϕ and the polar angle θ ; see Figure 1.

Figure 1. Fiber orientation state in a Cartesian frame.

The hydrodynamic part ṗh
i of (3) is the well-known

fiber orientation evolution law of a single fiber in a
Newtonian liquid matrix by Jeffery (Jeffery and Filon
1922). The second part in (3) is the diffusivity term qi,
which accounts for fiber-fiber interactions to reach a
steady fiber orientation state during flow (Folgar and
Tucker 1984). The isotropic rotary diffusivity factor
is obtained from the empirical relation in (Phan-Thien
et al. 2002) as CI = 0.03(1.0− e−0.224cr). Based on the
orientation distribution function ψ and the direction
of a fiber p, the second and fourth order orientation
tensors are defined as

a2,ij =
∫

S

pipjψ dS, (4)

a4,ijkl =
∫

S

pipjpk plψ dS, (5)

with the surface of the unit sphere S. The evolution
law of the second order orientation tensor is obtained
by differentiation of (4) in time, taking into account
(3) and integration by parts (Advani & Tucker 1987),
yielding

ȧ2,ij = Wik a2,kj − a2,ik Wkj + λ(Dik a2,kj (6)

+ a2,ik Dkj − 2(a4,ijkl + (1− κ)(Lijkl

−Mijmna4,mnkl))Dkl)+ 2CI |γ̇ |(δij − 3a2,ij),

where δij is the Kronecker delta and Lijkl =∑3
m=1

λm em,i em,j em,k em,l and Mijkl =∑3
m=1 em,i em,j em,k em,l

denote tensors from to the reduced strain closure
(RSC) (Wang et al. 2008) with the m-th eigenvalue
λm and eigenvector em of a2 and the RSC tuning
factor κ , which takes a value between 0 and 1. The
reduced strain closure is introduced to empirically
slow down the orientation kinetics, as the unmodi-
fied version was shown to overestimate the orientation
kinetics compared to experiments (Sepehr et al. 2004).
Note that the evolution law of any orientation tensor
can be derived in the same way. As seen in (6), the
solution of the evolution equation requires a higher
order orientation tensor, which also holds for evolution
equations of higher order orientation tensors. In order
to solve (6) for a2, the fourth order orientation ten-
sor a4 must be known. This contradiction is typically
treated by approximating the higher order orienta-
tion tensor with the lower one using so-called closure
approximations. Among the many possible closure
approximations found in literature, the orthotropic fit-
ted closure (ORW3) (Chung & Kwon 2001) is one of
the most accurate ones and is adopted in this work.
Solution approaches, which are solely based on a2, as
in the current case, were found to be sufficiently accu-
rate in most applications (Advani & Tucker 1987). An
appropriate solution scheme in a PFEM framework for
(6) is given in Section 2.4.

2.3 Constitutive model for fiber-reinforced fresh
concrete

Fresh concrete consists of water, cement, different
types of aggregates and admixtures leading to a rhe-
ological behavior, which is dominated by particle
interactions depending on the size, shape and rough-
ness of the particles. Due to very different particle sizes
and flocculation mechanisms on the nano-scale, fresh
concrete rheology cannot be easily modeled in their
entirety over all length scales, which is why in most
cases empirical macroscopic approaches are chosen.
The Bingham fluid model is the most general approach
to model the response of materials which exhibit a
solid and fluid like behavior, such as fresh concrete.
In simple shear flow, the response of a Bingham fluid
is summarized as

τxy = τ0 + µγ̇xy for |τxy| ≥ τ0, (7)

γ̇xy = 0 for |τxy|<τ0,
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with the shear stress τxy, the shear rate γ̇xy, the plastic
viscosity µ and the yield stress τ0. In case the stress
state lies below the yield point, no deformation is
expected. When the stress state exceeds the yield
stress, the material response of a Bingham model is
similar to that of a Newtonian fluid with a constant
plastic viscosity.

2.3.1 Anisotropic viscosity model for
fiber-reinforced fresh concrete

In case of fiber-reinforced fresh concrete, the mate-
rial can no longer be described by a standard Bingham
model due to fiber reorientation effects during flow,
resulting in an anisotropic material behavior, which
depends on the current fiber orientation state. An
anisotropic constitutive model for the flow of fiber
suspensions have been porposed by Sommer et al.
(Sommer et al. 2018; Favaloro et al. 2018). Based on
the second and fourth order orientation tensors, in this
approach a transversely anisotropic fluid model is vol-
ume averaged, as described in (Advani &Tucker 1987).
Assuming identical inplane shear and transverse shear
viscosity, as specified in (Sommer et al. 2018; Faval-
oro et al. 2018), the fourth order viscosity tensor is
defined via

µijkl = 4η23(Rη − 1)
[

a4,ijkl (8)

− 1

3

(
a2,ijδkl + a2,klδij − 1

3
δijδkl

)]

+ 2η23 I d
ijkl + 2

τ0

|γ̇ |
(
1− e−m|γ̇ |) I d

ijkl ,

where I d
ijkl = (δikδjl + δilδkj)/2− 1

3 δijδkl , m denotes
a regularization parameter of the Bingham model,
η23 denotes the transverse shear viscosity and Rη

denotes the anisotropy ratio. The last part of (8) is
a modification with respect to a regularized Bingham
model (Papanastasiou 1987) which penalizes the rigid
response below the yield stress with a large viscosity
controlled by m. In this work a value of m= 1000 is
used.

Compared to the standard Bingham model pre-
sented in Section 2.3, the constitutive model given in
(8) depends on the second and fourth order orientation
tensors and the anisotropy ratio as an additional mate-
rial parameter. The anisotropy ratio becomes one in
case of the absence of fibers and increases to a larger
number depending on the aspect ratio and fiber volume
fraction, which would increase the anisotropic behav-
ior of the material by several magnitudes. As given in
(Favaloro et al. 2018; Pipes et al. 1994) for the case
of a highly concentrated Newtonian suspension, the
anisotropy ratio is defined as Rη = 1+ 1

8 c
√

12c/πr2.
Note that no constitutive assumption for Rη is available
in case of fiber-reinforced fresh concrete in litera-
ture so far. An approximation for the yield stress and
the transverse shear viscosity are provided in the next
section. Using (8), the Cauchy stress tensor can be
given as

σij =µijklDkl + pδij. (9)

Due to major and minor symmetries, the viscosity ten-
sor in (8) can be written in Voigt notation as a 6x6
matrix.

2.3.2 Rheological properties of fiber-reinforced
fresh concrete

Due to additional contacts and hydrodynamic inter-
actions in a fiber suspension, increasing the fiber
volume fraction leads to an increase of the viscos-
ity and yield stress (Grünewald 2004). In case of a
Newtonian fluid matrix, various rheological upscaling
relations of the viscosity were developed and validated
for polymer suspensions, e.g.; see (Chung & Kwon
2002; Petrie 1999). In case of a Bingham fluid matrix
or fresh concrete only few theoretical models exist
(Férec et al. 2015; 2017 ), which are not very prac-
tical within the adopted fiber orientation modeling
framework. Therefore, empirical and experimentally
validated upscaling relations for the viscosity and yield
stress of fiber-reinforced fresh concrete are taken from
the literature. According to (Ghanbari & Karihaloo
2009), a micromechanically motivated approach for
the viscosity of a fresh concrete mix including random
isotropic oriented rigid fibers is given as

µ= µ̃

(
(1− c)+ πc r2

3 ln(2 r)

)
, (10)

where µ̃ is the viscosity of the mixture without fibers.
To enforce that (8) yields (10) for a random isotropic
fiber orientation state, the transverse shear viscosity
must be given as η23= 15

4Rη−11µ, which can be found

by using ψ = 1
4π to yield an isotropic fiber orientation

state.
Similarly, based on (Martinie et al. 2010; Sultan-

galiyeva et al. 2020) the yield stress of a fresh concrete
mix including random isotropic oriented rigid fibers
is given as

τ0= τ̃0

(
1− c

φfm
− φs

φsm

)−2

, (11)

with the dense packing fraction of fibers φfm= 4/r,
the volume fraction of solid particles φs and the maxi-
mum packing fraction φsm≈ 0.65. In contradiction to
(11), τ̃0 must be the yield stress of the cement paste,
while µ̃ may also be the viscosity of the mixture with-
out fibers. As observed in (Férec, Perrot, & Ausias
2015; Martinie, Rossi, & Roussel 2010), the yield
stress may also be influenced by the fiber orientation
state. However, to the best of the authors knowledge,
no experimental data or models are available in liter-
ature accounting for such phenomena, which is why
the influence of fiber orientation on the yield stress is
neglected in this work.

2.4 Solution scheme

In PFEM a Lagrangian description of motion is used
for the governing equations. The derivative of the ori-
entation tensor can be defined in the same reference
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frame to yield ȧ2= ∂a2/∂t. As a consequence, no
spatial derivative of a2 appears in (6), which can be
solved in the strong form directly. To obtain nodal val-
ues of the orientation tensor, a node-based smoothed
velocity gradient, inspired by the Smoothed Finite
Element Method (Liu et al. 2009), is used to calcu-
late a nodal velocity gradient and to solve (6). Note
that the smoothed velocity gradient is only used to
solve (6). The balance of momentum and mass are
still solved using standard linear triangular or tetra-
hedral elements. For linear triangular and tetrahedral
elements the nodal velocity gradient is simply obtained
as the volume average of the velocity gradient of all
adjacent elements to a certain node (Liu et al. 2009).
To improve the robustness of the implementation, an
explicit forward Euler time integration scheme is cho-
sen to solve (6). To compensate for the "relatively"
large time steps of the implicit PFEM algorithm, a
time step n is split into multiple smaller time steps m
for the solution of (6) as

ām+1
2,n+1 = ām

2,n+1 +

t

mmax
[W̃ m+1

n+1 · ām
2,n+1 (12)

− ām
2,n+1 · W̃ m+1

n+1 + λ(D̃m+1
n+1 · ām

2,n+1

+ ām
2,n+1 · D̃m+1

n+1 − 2(ām
4,n+1

+ (1− κ)(L̄m
n+1 − M̄ m

n+1 : ām
4,n+1)) : D̃m+1

n+1 )

+ 2CI | ˙̃γ |(I − 3ām
2,n+1)]

in which
t is the time step size, mmax is the number of
explicit sub-steps and the superimposed bar and tilde
denote nodal quantities and quantities obtained from
the smoothed nodal velocity gradient, respectively.
The deformation rate and spin tensors are defined for
an explicit time step as

D̃m+1
n+1 =

1

mmax

[
(mmax − m)D̃n + mD̃n+1

]
, (13)

W̃ m+1
n+1 = 1

mmax

[
(mmax − m)W̃n + mW̃n+1

]
. (14)

To yield an efficient solution scheme, first the orig-
inal PFEM equations (1) and (2) are solved based
on the orientation tensor from the previous time step.
Afterwards, (13) is successively solved mmax times for
the updated a2. Here, mmax = 1000 was chosen, which
yielded sufficiently accurate results. The solution
scheme within a time step n can be summarized as

1. tn+1= tn +
t. Time step initialization, remesh-
ing and constrained Delaunay triangulation of the
domain.

2. Implicit solution of (1) and (2) using ā2,n and update
the velocity, pressure and nodal coordinates.

3. Looped solution of (13) to obtain ām+1
2,n+1. In each

solution step of (13) update m=m+ 1 until m=
mmax.

4. Post-processing of (solution) variables and go back
to step 1 until the desired maximum time step tn+1=
tmax is reached.

3 REPRESENTATIVE NUMERICAL STUDIES

In the following sections some representative numer-
ical studies are discussed to verify and discuss char-
acteristics of the proposed implementation. The first
example is the planar Poiseuille flow, which was
adopted to analyze fiber orientation in pipe flow prob-
lems. Based on these results, plausible inlet fiber
orientation states were formulated for 3D-concrete-
printing examples studied in a 2D setup. Various
convergence and parametric studies were analyzed
with respect to the obtained final fiber orientation state
in a printed layer.

3.1 Planar Poiseuille flow

The planar Poiseuille flow is a classical benchmark
example of a pipe flow problem for which a number
of analytical solutions are available for different fluid
models (Bird et al. 2002). The numerical simulations
were carried out by modeling a part of the pipe using
a height of h= 3 cm, a mean velocity of vmean= 0.05
m/s, µ̃= 10 Pas, τ̃0= 28.4024 Pa, φs= 0.45, c= 0.01
and κ = 0.2. The parameters were chosen to yield
values which lie in a range typical for 3D-concrete-
printing (Reinold et al. 2020). Simulations with the
proposed anisotropic viscosity model and a purely
isotropic version (by enforcing Rη = 1) using two
different fiber aspect ratios r= 30 and r= 90 were
performed. Both aspect ratios lie within the range of
the semi-concentrated regime according to the defini-
tions given in Section 2.2. The initial fiber orientation
state was chosen as random isotropic using a2,ij = δij/3
as the initial second order orientation tensor.

The obtained velocity vx in flow direction x over the
height for each numerical model and both aspect ratios
are given in Figures 2 a) and b) along with the analyti-
cal solution for the isotropic case (Bird et al. 2002). A
perfect match between analytical and numerical results
can be observed. In addition, only marginal differences
between the isotropic and anisotropic model are found,
which are more pronounced using a larger aspect ratio
due to the larger anisotropy ratio. The shear viscos-
ity during steady state can be compared by neglecting
the contribution from the Bingham regularization in
the viscosity term. The shear viscosity for r= 30 was
µ1212= 32.18 Pas considering anisotropy and µ1212=
32.92 Pas considering an isotropic constitutive model
using Rη = 1 showing only a small shear thinning
effect due to fiber reorientation. For the larger aspect
ratio r= 90, the shear viscosity was µ1212= 150.4619
Pas considering anisotropy and µ1212= 173.24 Pas
considering an isotropic constitutive model using Rη =
1, which is already a non-negligible shear thinning
effect due to fiber reorientation. By increasing the
aspect ratio, viscosity and yield stress also increase.
This can lead to a contradictory effect with respect
to the height of the plug flow as a larger viscosity
decreases and a larger yield stress increases the height
of the plug flow. In this example the yield stress effect
dominates the influence of the viscosity on the plug
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flow size due to the larger plug flow size for r= 90,
which may not necessarily be the case when using
different parameters.

Figure 2. Planar Poiseuille flow: Velocity distribution along
the height obtained from the purely isotropic and anisotropic
viscosity model and the analytical solution. a) Fiber aspect
ratio r= 30. b) Fiber aspect ratio r= 90.

Figure 3 illustrates how a steady state fiber ori-
entation develops from the random isotropic initial
orientation over time across the height. The second
order orientation tensor is visualized as an ellipsoid as
discussed in (Gudzulic et al. 2018). A long needle-
shaped ellipsoid pointing in a certain direction can
be interpreted as a high probability of fibers point-
ing in the same direction. As can be observed, in
Figure 3 fibers are aligned in flow direction only in
the shear zones near the boundaries. Within the plug
flow the fiber distribution remains random isotropic
due to the absence of a velocity gradient. Based on
these observations, fiber alignment in flow direction
can be increased by minimizing the height of the plug
flow and increasing the height of the shear zone at the
boundary.

Figure 3. Planar Poiseuille flow: Evolution of the orienta-
tion tensor over the height and time showing the component
a2,xx of the orientation tensor for r= 30.

The time evolution of different orientation tensor
entries for both aspect ratios at a height of 1 cm are
given in Figures 4 a) and b). The analytical solu-
tion is obtained from the analytical velocities of the

isotropic viscosity model showing a perfect match with
the simulations. In addition, small differences between
the isotropic and anisotropic model can be observed
in case of r= 90. The steady state solution remains
almost identical.

Figure 4. Planar Poiseuille flow: Evolution of orientation
tensor components over time at a height of 1 cm. a) Fiber
aspect ratio r= 30. b) Fiber aspect ratio r= 90.

3.2 Fiber-reinforced 3D-concrete-printing
study in 2D

3.2.1 General analysis
In this section the fiber orientation state of rigid fibers
in a 3D-concrete-printing extrusion process is mod-
eled in 2D using the proposed model. The material
and fiber properties were the same as in Section 3.1
and the geometry of the printing process is depicted
in Figure 5 a). The fiber aspect ratio was r= 30. The
extrusion nozzle width d and separation distance h
were d = h= 2 cm, the printing speed was vp= 5 cm/s
and the flow rate was Qinlet = 0.98 · vp · h. Conver-
gence studies with varying extrusion nozzle modeling
heights were conducted using different fiber orienta-
tion inlet conditions and the analytical solution of the
velocity profile of the planar Poiseuille flow was pre-
scribed at the inlet nodes at the top of the extrusion
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nozzle. A spatial discretization with a nodal spacing of
approximately 1/15 cm was used; see Figure 5 b). No-
slip boundary conditions were applied to the ground
and the nozzle boundaries. The flow inside the extru-
sion nozzle can be interpreted as the planar Poiseuille
flow problem discussed in the previous section.

Figure 5. Fiber-reinforced 3D-concrete-printing in
2D: a) Geometry and parameters of the numerical
3D-concrete-printing study. b) Finite element discretization
around the extrusion nozzle for the nozzle height l= 3d.

In Figure 6 a) the orientation tensor ellipsoids and
a2,xx are depicted for l= 3d for the case of a random
isotropic fiber orientation inlet condition at the top of
the extrusion nozzle. As can be observed, fibers tend
to align in printing direction due to increased a2,xx val-
ues, especially at the boundaries where the material is
subjected to high shear stresses. Indicated by varying
orientation states within the extrusion nozzle, the noz-
zle height l is not large enough to yield a steady fiber
orientation state in the nozzle in case of the random
isotropic orientation state at the inlet. More realistic
results can be obtained by applying the steady fiber
orientation state as an inlet condition at the top of
the extrusion nozzle, given in Figure 6 b). The steady
fiber orientation state was obtained from the analyti-
cal solution of the planar Poiseuille flow discussed in
Section 3.1. In accordance to observations in exper-
iments (Arunothayan et al. 2021; Huang et al. 2021;
Mechtcherine et al. 2021), the final orientation state in
the printed layer is dominated by the fiber orientation
state developed inside the extrusion nozzle and shear-
ing under the extrusion nozzle is only of secondary
importance.

The mean value over the layer height of the ori-
entation tensor component a2,xx and a2,yy are given
over different extrusion nozzle modeling heights l for
both orientation tensor inlet conditions in Figures 7 a)
and b). As can be observed, with an increasing noz-
zle height, the final orientation tensor values converge
to the steady fiber orientation inlet solution, which is
plausible. However, very large extrusion nozzle mod-
eling heights l would be necessary to obtain plausible
results. The final orientation state remained almost
unaffected by the modeling height of the extrusion
nozzle in case of the steady state fiber orientation
inlet condition, which is supported by observations
in Figure 6 b) with respect to the almost constant
fiber orientation state within the extrusion nozzle. In

Figure 6. Fiber-reinforced 3D-concrete-printing in 2D:
Fiber orientation state and a2,xx around the extrusion noz-
zle for the nozzle height l= 3d. a) Random isotropic fiber
orientation inlet condition. b) Steady state fiber orientation
inlet condition.

conclusion, the steady state fiber orientation inlet con-
dition yields more plausible and reproducible results,
which are independent of the extrusion nozzle mod-
eling height l and should be used in fiber-reinforced
3D-concrete-printing extrusion flow simulations.

Figure 7. Fiber-reinforced 3D-concrete-printing in 2D:
Mean value over the printed layer height of the orientation
tensor component a) a2,xx and b) a2,yy over different extru-
sion nozzle modeling heights l and orientation tensor inlet
conditions.

3.2.2 Parametric studies
To understand the correlations between process param-
eters (printing speed, separation distance and extrusion
nozzle width) and the fiber orientation state in printed
layers, representative parametric studies are discussed
in this section. The results may help to tune the print-
ing process for optimizing the printing processes with
respect to the desired fiber orientation states in the
printed component. Material parameters and geome-
try of the printing process are taken from Section 3.2.1,
which remain unchanged unless otherwise specified.

The influence of different fiber aspect ratios and
a purely isotropic (Rη = 1) and anisotropic viscosity
model on the distribution of the second order orien-
tation tensor component a2,xx over the height of the
printed layer are given in Figure 8 a) using the steady
fiber orientation inlet condition. Similar as for the
Poiseuille flow problem in Section 3.1, only marginal
differences are observed between the isotropic and
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anisotropic viscosity modeling approach. Larger a2,xx-
values over the height, which would lead to a larger
mean value of a2,xx over the height, can be interpreted
as a higher probability of fiber alignment in printing
direction. Fibers with a smaller aspect ratio tend to
align more in printing direction due to smaller diffu-
sivity factors for fibers with a smaller aspect ratio (cf.
(3)), which leads to a smaller second order orienta-
tion tensor component value in flow direction during
steady state in the extrusion nozzle. Figure 8 b) shows
a2,xx over the height of the printed layer for different
printing speeds. As observed, a higher printing speed
leads to more fiber alignment in printing direction due
to higher shear stresses and a larger shear layer size
within the extrusion nozzle. The magnitude of a2,xx in
the shear layers (top and bottom of the layer) are the
same for different printing speeds due to the same fiber
aspect ratio and fiber volume fraction.

Figure 8. Fiber-reinforced 3D-concrete-printing in 2D: Ori-
entation tensor component a2,xx over the height of the printed
layer. a) Different fiber aspect ratios and a purely isotropic and
anisotropic viscosity model. b) Different printing speeds vp.

As depicted in Figure 9 a), a smaller extrusion noz-
zle width leads to more fiber alignment in printing
direction due to higher shear stresses and a larger shear
layer size in the extrusion nozzle, which results from
larger velocities in the extrusion nozzle when using a
constant flow rate Qinlet for different nozzle widths.
Figure 9 b) shows the influence of a geometrically
scaled printing process by consistently changing the
separation distance, nozzle width and flow rate. Note
that the height of the printed layer in Figure 9 b) is nor-
malized by the separation distance.As observed, fibers
tend to align more in printing direction on a smaller
geometric scale due to higher shear stresses and larger
shear layer sizes in smaller extrusion nozzles.

4 CONCLUSIONS

In this work, a fiber orientation model was imple-
mented into a numerical framework based on PFEM
to model fiber orientation states during extrusion
processes of fiber-reinforced 3D-concrete-printing. A
brief introduction of the PFEM model was given,
which was based on a previous work of the authors

Figure 9. Fiber-reinforced 3D-concrete-printing in 2D: Ori-
entation tensor component a2,xx over the height of the printed
layer. a) Different nozzle widths. b) Different nozzle widths
and separation distances.

(Reinold & Meschke 2019; Reinold et al. 2020). The
fiber orientation state was expressed using a Folgar-
Tucker fiber orientation model (Gudzulic et al. 2018).
An efficient and robust PFEM compatible solution
scheme for the evolution equation of the second order
orientation tensor was introduced, which only requires
minimal adaptions to an existing PFEM code.The con-
stitutive model for the fiber-reinforced fresh concrete
suspension was based on an anisotropic Bingham vis-
cosity model using experimentally validated upscaling
relations for the macroscopic plastic viscosity and
yield stress from literature.

In representative numerical studies, important fea-
tures and characteristics of the numerical model were
discussed. The planar Poiseuille flow was used to ver-
ify the numerical implementation and to discuss the
general problem of fiber orientation in Bingham flu-
ids in pipes. It was found, that only in the shear zone
at the boundaries fibers tend to align in the flow direc-
tion. In the plug flow zone in the channel center, fibers
are not influenced due to the absence of a velocity gra-
dient. Steady state fiber orientation solutions from the
Poiseuille flow problem were used to model plausible
initial flow conditions for 3D-concrete-printing extru-
sion processes, which were studied in a 2D setup. By
applying the steady fiber orientation state as an ini-
tial condition at the top of the modeled part of the
extrusion nozzle, the final fiber orientation state was
unaffected by the modeling height of the extrusion
nozzle. Further parametric studies revealed that fibers
tend to align more in printing direction for processes
with fibers owing a smaller aspect ratio, a higher print-
ing speed and a smaller extrusion nozzle width. These
results may help to tune the printing process to yield
optimal fiber orientation states in printed components.
In all numerical studies the effect of anisotropic vis-
cosity effects were negligible. Such effects may only
become important, when higher fiber volume fractions
and fibers with a larger aspect ratios are used in the
printing process, which is typically not the case for
practical reasons.

The numerical examples in this work demonstrated
the effectiveness of the proposed model to simulate
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fiber orientation processed during extrusion based 3D-
concrete-printing. Further numerical 3D analyses and
experiments are necessary to verify and validate the
proposed model.
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ABSTRACT: Cracking in cementitious materials still poses significant and interesting modelling challenges
and structural designers need reliable tools for an accurate prediction of crack widths. The paper presents a
numerical study into cracking mechanisms in cement based materials using lattice simulations employing the
model of Grassl & Antonelli (2019). Furthermore, a micromechanics based constitutive model is proposed
that focuses on representing the transition from diffuse microcracking to localized macrocracking. The model
includes an Eshelby based two-phase composite solution to represent the aggregate particles embedded in a
cementitious matrix, directional microcracking and a criteria for the transition from diffuse microcracking to
localised macrocracking. By removing the macrocrack fracture strain component from the strain which drives
microcrack growth, the effect of macrocrack development on microcrack growth in various other directions is
included. Numerical simulations show that the model captures well the mechanical behaviour as well as key
characteristics of the cracking mechanism in cementitious materials.

1 INTRODUCTION

Microcracks are present in concrete before loading is
applied and are concentrated at the interfacial transi-
tion zone (ITZ) between the cementitious matrix and
aggregate particles (Slate& Hover 1984). If an applied
tensile load is increased past the initiation threshold,
the microcracks propagate and further microcracks are
progressively initiated in the ITZ of smaller aggre-
gate particles (Karihaloo 1995). As the load increases
further, some microcracks will grow and coalesce to
form a macrocrack (Jenq & Shah 1991). For both uni-
axial tension and uniaxial compressive loading, these
macrocracks tend to form around the peak load and
propagate unstably with the material around the zone
of macrocracking unloading (Shah et al. 1995; Vonk
1992; i.e., cracking becomes concentrated within a
certain zone. The process of cracking becoming con-
centrated to macrocracks formed by the coalescence
of diffuse microcracks is often referred to as crack
localisation.

This paper presents the main details of a microme-
chanics based constitutive model for cementitious
materials that simulates crack localization. A series of
numerical experiments employing a lattice model were
carried out to study the transition from discrete micro-
cracking to localized macrocracking and the results
from these studies were used guide the development
of the constitutive model.

2 CRACK LOCALIZATION STUDY

2.1 Lattice model

A study into the transition from diffuse microcracking
to localized macrocracking was carried out with the
lattice model of Grassl &Antonelli (2019) which relies
on periodic meso-structure generation by employing
a representative cell with a periodic lattice network
and periodic boundary conditions. Within the com-
putational cell, the meso-structure of concrete was
modelled considering three material phases; namely
the mortar matrix, the coarse aggregate particles and
the ITZ respectively (Figure 1). The aggregate parti-
cles are idealized as ellipsoids, the size distribution
of which is determined based on Fuller’s grading
curve.

2.2 Constitutive relationships for the lattice model

For this study, the aggregate particles are assumed to
have a linear elastic behaviour and the scalar dam-
age relationship in Equation 1 is employed to simulate
the mechanical behaviour of both the matrix and
the ITZ.

σ = (1− ωa)Deε (1)

where σ is the stress vector, ε is the strain vector,
De is the elastic stiffness matrix and ωa is a scalar
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damage variable which is 0 at no damage and gradu-
ally increases to 1 for complete damage. The damage
evolution is given in Equation 2:

(1− ωa)Eκd = fte

(
− ωahκd

wf

)

(2)

where E is the Young’s modulus, ft is the tensile
strength, wf is a parameter that controls the slope
of the softening curve and is related to the fracture
energy Gf as follows; wf =Gf /ft . κd is an equivalent
strain parameter gouverned by a damage surface based
on an ellipsoidal strength envelope in the stress space
and standard loading/unloading conditions (Grassl &
Bolander 2016).

Figure 1. Representative computational cell showing the
material phases; mortar matrix (yellow), corase aggregate
particles (blue) and the ITZ (red).

2.3 Crack localization

A series of lattice simulations using the formula-
tion described above were carried out, employing a
50× 50× 100 (mm) periodic cell and the material
parameters given in Table 1. Moreover, following a
series of convergence studies, a lattice element size of
1.6 mm and aggregate particle diameters ranging from
10 mm to 20 mm were selected respectively.

Table 1. Material parameters - lattice simulations.

Em(MPa) 30 000
EITZ (MPa) 45 000
E�(MPa) 90 000
ft,m (MPa) 3
ft,ITZ (MPa) 1.5
Gf ,m (J/m2) 120
Gf ,ITZ (J/m2) 60
Volume fraction of aggregate, V�40%

A typical stress-relative displacement curve from a
uniaxial tension simulation is presented in Figure 2 and
associated crack patterns at different stages are pre-
sented in Figure 3, noting that only the active, growing
cracks are shown at each stage.

Figure 2. Stress-relative displacement curve from lattice
model simulation of uniaxial tension (tension +ve).

Figure 3. Crack patterns at different stages of damage. The
different stages b - f correspond to those marked in Figure 2.

The crack patterns in Figure 3 show a number
of cracking mechanisms, captured well by the lat-
tice model. Microcracks are initiated at the matrix-
aggregate interface and subsequently propagate in the
cementitious matrix to a state of diffuse microcracking
associated with pre-peak non-linearity (stages b-d). By
contrast, the post-peak response is characterized by a
single localized macrocrack (stages e-f).

The representation of these two distinct cracking
stages and the transition from diffuse microcracking to
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localized macrocracking is the focus of the constitutive
model presented in Section 3.

3 MICROMECHANICS BASED
CONSTITUTIVE MODEL

3.1 Model concepts

The constitutive model presented here aims to repre-
sent the behaviour at two stages of cracking; (i) the
diffuse microcracking stage characteristic of the pre-
peak behavior in tension and (ii) the localized macro-
crack stage, characteristic of the post-peak behaviour
respectively.

In the elastic state, before any damage occurs, the
concrete material is modelled as a two-phase compos-
ite comprising a matrix representing the mortar and
spherical inclusion representing the coarse aggregate
particles. The diffuse microcracking stage is repre-
sented using a directional microcracking formulation
based on the Budiansky & O’Connell (1976) solution.
The localised macrocrack stage is then represented
by removing a macrocrack fracture strain component
from the strain which drives microcrack growth.

3.2 Two-phase composite

The elastic constitutive relationship for the two-phase
composite is obtained by making use of the microme-
chanics Eshelby matrix-inclusion solution and the
Mori-Tanaka homogenisation scheme (Mura, 1987)
for a non-dilute distribution of inclusions:

σ̄ =Dm� : ε̄ (3)

where σ̄ and ε̄ are the average far-field stress and
strain respectively. Dm� is the elasticity tensor of the
composite:

Dm�= (fmDm + f�D� ·T�) ·
(
fmI4s + f�T�

)−1
(4)

in which Dβ represents the elasticity tensor and fβ the
volume fraction of β-phase (β =m or �), fm+ f�= 1.
I4s is the fourth order identity tensor and

T� = I4s + S� · [(D� − Dm) · S� + Dm]−1

· (Dm − D�) (5)

S� is the Eshelby tensor for spherical inclusions
(Nemat-Nasser & Hori, 1993).

3.3 Directional microcracking

A solution based on the work of Budiansky &
O’Connell (1976) is employed to address microcrack-
ing by evaluating the added strain εa from series of
penny-shaped microcracks of various orientations dis-
tributed according to a crack density function f (θ ,ψ).
The added strains resulting from the microcracks

are superimposed on the composite such that the
constitutive relationship in Equation 3 becomes:

σ̄ =Dm� : (ε̄ − εa) (6)

The added strain are as follows (Budiansky &
O’Connell, 1976):

εa=
⎛

⎜
⎝

1

2π

∫

2π

∫

π/2

Nε : Ca : Nf (θ ,ψ)sin(ψ)dψdθ

⎞

⎟
⎠ :σ̄ (7)

in which Ca is the local compliance tensor in the local
coordinate system of a microcrack (r,s,t) and N the
stress transformation tensor. In each direction, defined
by (θ , ψ), the crack density parameter is related to
a directional scalar damage parameter ω (0≤ω≤ 1)
such that:

f (θ ,ψ)Ca= ω(θ ,ψ)

1− ω(θ ,ψ)
CL=Cα(θ ,ψ) (8)

where CL= 1
Em

⎡

⎣
1 0 0
0 4

2 -νm
0

0 0 4
2 -νm

⎤

⎦ is the local elastic

compliance tensor, with νm and Em being Poisson’s
ratio and Young’s modulus of the matrix phase respec-
tively.

The local damage function from Mihai & Jeffer-
son (2011) is employed to govern the evolution of the
damage parameter ω and is given by:

Fζ (εL, ζ ) =
(
εLrr

1+ αL

2
+

√

ε2
Lrr

(
1− αL

2

)2

+ r2
L

(
ε2

Lrs + ε2
Lrt

)
⎞

⎠− ζ (9)

in which αL= νm
1−νm

, rL= νm−1/2
νm−1 and noting that the

following loading/unloading conditions apply:

Fζ ≤ 0; ζ̇ ≥ 0; Fζ ζ̇ = 0 (10)

Introducing Equation 7 and Equation 8 into Equa-
tion 6 and rearranging gives:

σ̄ =Dmc : ε̄ (11)

where;

Dmc =
⎛

⎜
⎝I4s + Dm�

2π

∫

2π

∫

π
2

Nε : Cα(θ ,ψ) :

× N · sin (ψ)dψdθ

⎞

⎟
⎠

−1

· Dm� (12)
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3.4 Macrocracking

The model assumes that macrocracks form when the
overall stress reaches its peak value i.e.:

dσI

dεI
= 0 (13)

whereσI and εI are the major principal stress and strain
respectively. Under tensile loading, the normal direc-
tions of macrocrack plane are based on the orientations
of the major principal strains and a maximum of two
macrocracks are allowed to form. Under compressive
loading, a macrocrack forms with the normal to the
crack plane given by the direction which maximises
the effective strain parameter at the peak stress.

Macrocrack formation is taken into account in
the overall constitutive relationship by removing the
macrocrack inelastic strain from the average strain:

s̄=Dmc :

(

+̄−
nsd∑

i=1

Nε(αi,βi) : ε̂i

)

(14)

where nsd is the total number of macrocrack planes
and ε̂ is the macrocrack inelastic strain. αand β are
the orientation angles of the macrocrack plane. The
local stress of macrocrack planes σ̃ is given by the
following local constitutive relationship:

s̃(α,β)= (1− ω̃(α,β)I4s)C−1
L : +̃(α,β) (15)

where +̃ is the macrocrack local strain, ω̃ is the
macrocrack damage parameter. From the above, the
inelastic strain of macrocracks can be written in terms
of the local strain of macrocracks: +̂i = (I4s − M̃si ) :
+̃i where M̃si = (1− ω̃i)I4s. The dependencies of ω̃,
including orientation, have been dropped for clarity.

The same damage surface (Eq. 9) employed for
microcracks applies for calculating the effective strain
parameter of macrocracks ζ̃ and the evolution of the
macrocrack damage parameter ω̃ respectively.

Once the transition to localised damage has been
initiated, inelastic strain +̂ due to macrocracking
starts to progress. But it is assumed that microcracks
are still present in the band of material outside of
the zone of localised cracking. Therefore, to capture
the effect of macrocracking on microcrack growth, the
inelastic macrocrack strain is removed from the local
macrocrack strains:

+L(ψk , θk )=
N+(ψk , θk ) :

(
+̄−

nsd∑

isd=1
Nε(αisd ,βisd ) : +̂(αisd ,βisd )

)
(16)

A staggered solution is used to calculate the inelas-
tic strain +̂, the full details of which are presented in
a forthcoming publication.

4 NUMERICAL SIMULATIONS

Uniaxial tension predictions from the two versions of
the model (only microcracking and both microcrack

and macrocrack growth) were compared to uniaxial
tension lattice simulations of 10 random arrangements
of aggregate particles. The intention of the com-
parisons is to show how a micromechanics based
constitutive model for concrete which includes a crack
localisation mechanism agrees well with more compu-
tationally expensive lattice simulations that discretely
model the influence of the heterogeneous material
structure of concrete at the meso-scale.

The material parameters employed in the constitu-
tive model for these numerical simulations are given in
Table 2. The lattice simulations were carried out using
a 40% total volume fraction of aggregate particles and
by maintaining the periodic cell and element, dimen-
sions and material parameters described in Section 2

Table 2. Material parameters for the micromechanics based
constitutive model.

Em(MPa) 30 000
E�(MPa) 45 000
νm 0.19
ν� 0.21
fm 0.6
f� 0.4
ft (MPa) 3
ε0 0.003

The numerical results are presented in Figure 4.
When macrocrack localization is not included the
response is overly ductile, whereas the inclusion of the
transition to localized cracking leads to more realistic
results and a better agreement with the lattice simula-
tions. It can be observed in Figures 4b&c that in the
micro-macro transition model, after the peak stress,
damage becomes localised to a macrocrack plane and
microcrack growth is stalled, much like what has been
observed from the lattice experiments. In contrast, in
the microcracking only model the microcrack planes
continue to become damaged.

Figure 4. Uniaxial tension predictions. a) Stress-strain
response. b) Damage evolution for the microcracking-only
model. c) Damage evolution for the micro-macro transition
model.
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The proposed constitutive model captures well
the characteristic behaviour of cementitious materi-
als and associated cracking mechanisms, including
the transition from diffuse microcracking to localized
macrocracking.

5 CONCLUSIONS

A micromechanics based constitutive model for
cementitious materials that addresses the transition
from diffuse microcracking to localized macrocrack-
ing was presented. The good agreement between the
proposed constitutive model and the lattice simula-
tions demonstrated the potential of the constitutive
model which captures well the characteristic mechan-
ical behaviour of these materials and associated crack-
ing mechanisms.
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ABSTRACT: Fiber reinforced cementitious matrix (FRCM) is a noncorrosive two-dimensional high strength
fiber reinforced polymer (FRP) mesh saturated with inorganic cementitious mortar.This novel system is evolving
as a viable option for retrofitting damaged RC structures.This system is fire resistant, easy to apply and eliminates
the toxic hazard of epoxy bonded FRP. While past research investigated the potential of FRCM in shear and
flexural applications, limited studies explored the confinement of short columns with different cross sections,
particularly using finite element (FE) analysis. In this study, a three-dimensional (3D) nonlinear finite element
(FE) model is developed using ABAQUS to investigate the performance of the retrofitting system on corrosion
damaged RC columns. Poly-paraphenylene-ben-zobisoxazole (PBO) fibers are modeled in this study. Loading
condition is displacement-controlled loading condition and material nonlinearities in concrete, cement mortar
and composite are adapted in the FE model.The FE models are validated against experimental studies in published
literature. A total of 40 columns are modeled and a parametric study is conducted considering the effects of
cross section type (square vs circular), number of FRCM layers (1, 2, 3 and pre-damage severity (mild, moderate
and severe). Retrofitting corrosion damaged RC columns with PBO-FRCM effectively resorted and enhanced
the original axial capacity and ductility at all damage levels irrespective of cross section shape. Enhancement in
axial capacity of 20% was observed in square and 35% in circular columns while axial ductility enhancement
of 42% was observed in square and 164% in circular columns. Results also indicated a positive correlation
between number of FRCM Layers and axial capacity and ductility enhancement. The performance enhancement
is more pronounced in the circular columns. All strengthened specimens failed by matrix damage, indicating
effectiveness of the strengthening system. Comparison of column axial capacity computed using ACI 549.4R-13
provisions against FEA revealed that the code provisions underestimate the axial capacity of square and circular
short RC columns retrofitted with PBO-FRCM by an average of 20%.

1 INTRODUCTION

1.1 Background

Reinforced concrete is the most common choice of
construction material in the gulf region due to numer-
ous advantages such as durability, versatility and eco-
nomic advantages. Concrete structures however suffer
from adverse deterioration over their service life. The
high temperature, humidity, and chloride content cre-
ate the perfect condition for corrosion in RC structures.
Coastal structures are at higher risk of extensive chlo-
ride attack causing reinforcement corrosion, severe
cracking and concrete spalling at the youth age of 10
years [1].The deterioration of RC structures can lead to
catastrophic consequences such as the recent collapse
of the surfside condominium in Florida. Strengthening
of damaged structures is therefore a necessity to avoid
disasters during the lifetime of structure.

The cost of infrastructure rehabilitation using tra-
ditional approaches such as jacketing, bonded steel

plates and load path redistribution using additional
elements is typically high and messy. The need for
a simpler yet effective solution is imminent. The most
practiced approach of strengthening RC columns, the
focus of this study is using externally bonded fiber
reinforced polymers (FRP) to provide additional con-
finement. These fibers are corrosion resistant, durable
and have a high strength to weight ratio [2].

There is precedence for the potential of exter-
nally bonded FRP in strengthening structures how-
ever limited research investigates post repair per-
formance. Additionally, epoxy bonded FRP include
loss off mechanical, chemical, and bond properties
[3] at elevated temperatures leading to delamina-
tion [4]. Additional drawbacks to epoxy bonded FRP
include the toxic nature of the epoxy and poor com-
patibility with concrete substrates. These combined
drawbacks raise a question on the feasibility of exter-
nally bonded FRP in the UAE and regions with high
temperatures.
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Fiber Reinforced Cementitious Matrix (FRCM)
reduce the drawbacks of epoxy bonded FRP. FRCM
consist of FRP impregnated in cementitious mortar
which not only bonds the fibers to the concrete member
but also protects the fibers from external environmen-
tal factors and is also fire rated. Poly-paraphenylene-
ben-zobisoxazole (PBO) are investigated in this paper.
This novel system is lightweight, and easy of applica-
tion in addition to the fire resistance capabilities of
the cementitious mortar layers through shielding the
embedded fibers and minimizing its vulnerability haz-
ard makes it extremely appealing over epoxy bonded
FRP system. The compatibility between the cementi-
tious mortar and the concrete substrate is inherent as
both materials have a common cement “base”, adding
to the various mentioned advantages of FRCM sys-
tems. FRCM systems, with their innovative features,
ensure the endurance of the rehabilitation process
and consequently the sustainability of the repaired
structure.

Numerous studies proved the potential of FRCM for
structural strengthening.These studies investigated the
performance of the novel system in flexural and axial
strengthening. Three studies by El Ghazy et al. [5], [6]
and [7] investigated different parameters on flexural
strengthening such as the effects of FRCM types and
bonding schemes on corroded RC beams. The authors
concluded that the strengthening system was able to
restore original capacity of the corrosion-damaged
beams with the level of enhancement in the strength
depended on the amount and type of FRCM irrespec-
tive of damage severity with enhancement in both ulti-
mate and yield strength as the number of FRCM plies
increased. The observed failure modes are slippage
and delamination of the fabric within the cementi-
tious mortar. Axial strengthening studies conducted
by Colajanni et al. [8], Parretti et al. [9] explored the
performance of circular and square column geome-
tries through varying FRCM layers and orientation.
The authors reported axial strength enhancement of
around 23% with 0.236% confinement ratio for circu-
lar columns compared to 0.175% for square columns.
A ductile behavior was also observed. The authors also
suggested that wrapping the columns with the fibers
in the direction of the ties proved optimal. A study by
Tello et al. [10] studied the effect of different number
of PBO-FRCM layers on square and circular columns.
Results revealed higher axial capacity enhancement up
to 36% with confinement more pronounced in circu-
lar columns than their square counterparts. Ductility
enhancement was also observed in the strengthened
columns over the control counterparts with activation
of the confinement system delayed by the presence
of the cementitious mortar. Obaidat [11] developed
a nonlinear finite element framework to investigate
CFRP on concrete beams using material models from
literature and contrasted the results to experimental
studies. The author concluded that FEM is capa-
ble of predicting the performance and behavior of
strengthened beams.

1.2 Objectives

The main objective of this study is to develop FE
models using material models to investigate the behav-
ior of circular and square corrosion damaged RC
columns strengthened with 1, 2, 3 and 4 PBO-FRCM.
The potential of PBO-FRCM in restoring the original
behavior and axial capacity of the pre-damaged RC
columns is investigated and the performance of the
system on square and circular geometries is contrasted.
Recommendations on modeling FRCM strengthened
columns are provided to overcome the drawbacks of
epoxy based FRP as a structurally effective system.

2 MATERIALS AND METHODS

Finite element analysis of FRCM strengthened RC
columns is a highly nonlinear analysis numerically due
to the interaction between the different elements and
the plastic behavior of concrete. Simplified numer-
ical material models based on established laws and
mechanics are selected and incorporated in the FE
model.

2.1 Concrete

Concrete compressive behavior is initially linearly
elastic proportional to the elastic modulus followed by
the onset of micro cracking introducing nonlinear plas-
tic behavior until the ultimate compressive strength is
reached. The curve is completed with a descending
branch with increasing strain. Concrete tensile behav-
ior is initially linear up to failure stress (or cracking
strain) followed by softening with induces a brittle
failure.

In this study, concrete damaged plasticity (CDP)
model is adapted to model the plastic damage behavior
of concrete. This model assumes tensile cracking and
compressive crushing as the two main failure mecha-
nisms [11]. Concrete compressive strength is 30MPa
and Poisson’s ratio is 0.2. Plastic damage parameters
area defined as follows: dilation angle is 30 degrees,
eccentricity is. 0.1, fb0/fc0 is 1.16, k is 0.667 and
viscosity is 0.001 as recommended by the Abaqus
manual [12].

2.2 Steel

Steel typical behavior is initially linearly elastic up to
the yield stress followed by nonlinear branch up to
the ultimate tensile stress. Generally, an elastic-plastic
behavior (with or without strain hardening) is an ade-
quate representation of steel behavior in finite element
modelling. The steel reinforcement in this study is
considered to have elastic-perfectly plastic behavior
in both tension and compression with Poisson’s ratio
of 0.3, elastic modulus 200 GPa and yield strength
500 MPa.
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2.3 FRCM composite

FRCM in this study is composed of poly-
paraphenylene-ben-zobisoxazole (PBO) FRP fibers
embedded in cementitious mortar. The mortar is com-
patible with concrete substrates and provides near
perfect bond while distributing the load between the
fibers while the fibers provide stiffness and load bear-
ing capacity. PBO fibers have a linear elastic behavior
until failure. Elastic modulus is 270 GPa and tensile
strength is 5800 MPa [10]. The cementitious mor-
tar used has a compressive strength of 30MPa and is
assumed to crack under slight loading due to its neg-
ligible thickness and therefore provides no additional
axial capacity to the columns.

3 FINITE ELEMENT MODEL

3.1 Element types & constraints

Three-dimensional FE models are developed on com-
mercial software package ABAQUS [12] to simulate
the behavior of FRCM strengthened columns. Nonlin-
ear damage initiation and propagation is monitored
to observe the failure mode therefore symmetry is
not assumed. Standard 2-node 3D wire truss elements
T3D2 are used to model the embedded reinforc-
ing steel. Three-dimensional hexagonal 8-node linear
brick stress elements with reduced integration C3D8R
are used to model concrete. The FRCM is split into
two components. Standard four-node extruded thin
shell element with reduced integration S4R is selected
to model the PBO fibers with and assembled using
composite layup of conventional shell with each ply
thickness of 0.5mm. A total of 4 layers are modeled
with fiber orientation along the direction of the ties.
Standard 8-node 3D cohesive element COH3D8 is
used to model the cementitious mortar. Embedded
region is used to constraint the steel reinforcement in
the concrete. Tangential contact with a penalty for-
mulation and friction coefficient 0.1 is defined for
the region between the column and FRCM. The bond
between reinforcing steel and concrete is considered
to be perfect.

3.2 Boundary & loading conditions

Displacements and rotations in the three axes are
restrained using the ENCASTRE option at the fixed
end of the column.The free end of the column is loaded
using a displacement-controlled boundary condition
restraining all displacements and rotations except U3.
Both boundary conditions are assigned to a reference
point on a rigid steel plate to ensure even deforma-
tion and stress distribution at the ends of the column.
Smooth step linearly increasing static displacement
is assigned as the loading condition with a time
period of 1 second and 0.001 step increment. The
step increment is selected to ensure a smooth step
displacement-controlled analysis.

3.3 Mesh configuration

A mesh sensitivity conducted different mesh sizes
revealed that 15mm to 25mm mesh is optimal therefore
20mm mesh is used which ensured results obtained
are within 5% deviation and computational time was
between 3 to 4 hours. NLGEOM option is activated
to account for large deformations in the nonlinear
analysis.

Figure 1. Complete model assembly.

3.4 Model verification

Results obtained from the FE model are validated
against published literature by Tello et al. [10]. This
study presented the behavior of circular and square
RC columns strengthened with 1, 2, and 4 layers of
PBO-FRCM shown in Figure 2. Results revealed that
FE model is capable of predicting the axial capacity
to within 4% of the published experimental data. The
axial capacity obtained from the FE model is slightly
higher than the benchmark experimental results due to
imperfections that occur during specimen preparation
and testing in the lab. Table 1 presents the comparison.

Table 1. Model verification (FEM vs Tello [10]).

Pn FE Pn [10]
Column ID (kN) (kN) % Diff

S0-0-0-SH 740 722 2
S0-0-1-SH 787 759 4
S0-0-2-SH 872 821 6
S0-0-4-SH 896 847 5
C0-0-0-SH 702 687 2
C0-0-2-SH 891 845 5
C0-0-4-SH 964 935 3

Avg 4
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Figure 2. Experimental specimens used in model verifica-
tion Tello et al. [10].

Furthermore, the axial capacity obtained from the
FE models is compared to the recommendations pub-
lished in ACI 549.4R-13 [13]. The recommendations
however are mostly conservative as there are a lot of
safety factors embedded in the equations to ensure safe
design.

3.5 Axial ductility

In this study, axial ductility (η− axial), is determined
by recording the ratio of the axial deformation values at
85% of the axial capacity. The ratio of the deformation
post the peak to that prior the peak is a dimensionless
value given by equation 1 as defined by Kyaure et al.
[14] and illustrated in Figure 3.

Figure 3. Axial ductility determination (Kyaure et al. [14]).

η−−axial= 
0.85−−post


0.85−−prior
(1)

4 PARAMETRIC PROGRAM

A total of 40 FE models are developed in this study, 20
square and 20 circular columns. The square columns
are identified with a prefix S while the circular
columns are designated with a prefix C. Each set of 20
columns contains 4 subgroups of 5 columns which are
assigned corrosion pre-damage in form of percentage
loss in steel yield stress. The pre-damaged levels are
0%, 30%, 50% and 70% for undamaged, mild, moder-
ate, and severely damaged columns, respectively. The
5 columns are strengthened with 0, 1, 2, 3 and 4 layers
of PBO-FRCM.

Table 2. Parametric program.

FRCM Ply 0L, 1L, 2L, 3L, 4L

Corrosion Damage 0%, 30%, 50%, 70%
(% loss in yield stress)
Cross Section Square, Circular

5 RESULTS

Figure 4 below presents a summary of the axial capac-
ity obtained for the 40 specimens. From the chart
it is visible that the circular columns demonstrated
higher axial capacity enhancement than their square
equivalents.

Figure 4. Axial capacity comparison between square and
circular columns.

5.1 Performance enhancement

Figures 5–8 represent the load versus axial defor-
mation plots of all the specimens. The PBO-FRCM
system was successful in restoring the original axial
capacity of the corrosion damaged columns. Signif-
icant enhancement in the axial capacity is observed
with increase in number of PBO-FRCM layers. Mildly
damaged specimens required 1 achieve the original
capacity of the undamaged column in both square and
circular group with axial capacity enhancement of 5%
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and 6% respectively. In order to achieve maximum
ductility enhancement, 4 layers are required for square
to reach enhancement of 34% while only 2 layers are
required for maximum ductility enhancement of 154%
for circular columns. Similar behavior is observed for
the moderately and severely damaged specimens.

In all cases, the axial capacity and ductility enhance-
ment in circular columns is significantly higher their
square counterparts indicating better performance for
circular cross-sections. This is because the circular
columns distribute the stresses evenly to the strength-
ening system as opposed to square columns which has
stress concentrations in the corners. It is recommended
to round the edges of square columns before strength-
ening to reduce the stress concentrations at the corners
and improve the distribution of stresses from the col-
umn the strengthening system. Axial capacity and
ductility of 13% and 35%, respectively was observed
based on the ability of the cross-section to be effec-
tively confined with circular columns outperforming
their square counterparts. This finding is consistent
with published literature [10].

Figure 5. Axial load vs deformation (0% damage) (a) square
(b) circular.

5.2 Failure modes

The primary failure modes observed are concrete
crushing in the control specimens and matrix damage

Figure 6. Axial load vs deformation (30% damage) (a)
square (b) circular.

Figure 7. Axial load vs deformation (50% damage) (a)
square (b) circular.
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Figure 8. Axial load vs deformation (70% damage) (a)
square (b) circular.

in the strengthened columns.Yielding of the steel rein-
forcement is observed and monitored using the strain
levels in the steel. The confinement pressure from the
strengthening system delayed the crushing of concrete
and as a result the failure mode induced is matrix
damage. The circular columns also exhibited a duc-
tile failure mode relative to their square counterparts,
visible in the axial load vs deformation plots. Com-
plete damage of the cementitious mortar was achieved
during loading proving that the cementitious mortar
only contributed to the bond and not the column axial
capacity as intended.

5.3 Code comparison

Comparison of the results obtained from FE against
ACI 549.4R-13 [13] recommended equations for com-
puting axial capacity revealed that the code provisions
are over conservative. This is related with the multi-
ple safety factors such as penalizing the axial capacity
contribution of the FRP, the environmental safety and
the approximation of the confinement contribution
incorporated in the code equations. Percentage differ-
ence in the prediction of axial capacity of 19% and
22% was observed for square and circular columns
respectively. The charts below present a summary of
the differences.

Figure 9. Concrete damage (a) compressive (b) tensile.

Figure 10. Axial capacity comparison between ACI and
FEM (a) square (b) circular.

6 CONCLUSIONS & RECOMMENDATIONS

The potential of strengthening corrosion damage RC
columns using PBO-FRCM is investigated and the
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conclusions and recommendations are presented in
this section.

1. PBO-FRCM is capable of restoring and enhanc-
ing the axial capacity and ductility of corrosion
damaged RC columns.

2. Circular columns outperformed square counter-
parts than in the square columns. It is recommended
to round off the corners of square columns to
improve stress distribution in the PBO-FRCM.

3. All columns exhibited similar behaviour irrespec-
tive of damage level and number of FRCM layers.
This is visible from the load–deformation plots.

4. A positive relationship is established between per-
formance enhancement in axial capacity increasing
number of PBO-FRCM layers.

5. A sudden failure mode was observed in the square
columns due to stress concentration in the corners
of the PBO-FRCM. Primary failure mode observed
is concrete crushing in control columns and matrix
damage in strengthened columns for both square.
And circular cross-sections.

6. The ACI 549.4R-13 provisions are conservative
in predicting the actual capacity of PBO-FRCM
strengthened RC columns by about 20%. There
is room to relax some of the safety factors with.
Further research.
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ABSTRACT: The structural performance of concrete columns with multispiral reinforcement (MSR) devel-
oped inTaiwan is significantly superior to conventionally reinforced columns.The increased strength and ductility
stem from the passive confinement produced by the partially overlapping spirals which cover almost the entire
cross-section. Because of the complex structural behavior and insufficient experimental data, which are limited
to monotonic axial compression or cyclic lateral drift with increasing magnitude under constant compression,
and due to the novelty of this reinforcement layout, the MSR is not recognized in the design codes. To utilize
its full potential, the carrying capacity can be determined computationally for arbitrary loading history via the
nonlinear finite element method and the design strength can be obtained by employing the global safety factor
approach. The interaction diagram (ID) is a strength envelope surrounding all admissible states of the internal
forces and is perfect for assessing the safety and efficiency of the structural design of columns. The ID can
be constructed by processing repeatedly run simulations with different loading combinations. This approach
is computationally demanding, but the analyses can be defined automatically, run in parallel, and the results
for different combinations of material properties and reinforcement layout can be precomputed and stored in a
database.

One of the objectives of the current bilateral Czech-Taiwanese project is to develop this approach for the
columns with MSR. In summer 2021, within the scope of the present project, the Taiwanese laboratories MOST
tested 5 geometrically identical specimens with MSR subject to compression with different values of eccentricity.
The aim of this conference contribution is to compare the global behavior of these specimens expressed in the
M-N diagram with the blind prediction using FEM and to construct the corresponding ID. In the simulations,
concrete is described with CDPM2, the second generation of the well-known Concrete Damage Plastic Model
originally proposed by Grassl and Jirásek.

1 INTRODUCTION

The structural performance of concrete columns with
multispiral reinforcement (MSR) developed in Taiwan
(Yin 2005) is significantly superior to convention-
ally reinforced columns. The increased strength and
ductility (Yin, Wang, & Wang 2012; Yin, Wu, Liu,
Sheikh, & Wang 2011) stem from the passive con-
finement produced by the partially overlapping spirals
which cover almost the entire cross-section.This struc-
turally efficient design is also very economical. Highly
automated production lines incorporated in the man-
ufacturing process decrease human labor and thus
cost. However, more importantly, the MSR reduces the
demand on the raw materials; the performance of con-
ventionally reinforced columns can be reached with
less reinforcement or possibly with a lower concrete
grade.

The most promising configuration of MSR for
square columns is the 5-spiral layout (5S4, Figure 1).
This setup uses a large spiral in the center and small
spirals at the corners. In contrast to the columns
with rectilinear transverse reinforcement the 5S4 MSR
design offers a superb resistance to the combination of
compression with bending and shear, which is salient
for seismic active areas. Moreover, on contrary to ordi-
nary circular columns with a single spiral, which also
partially benefit from the enhanced behavior of con-
fined concrete, the multispiral concept offers shape
variability of the cross-section.

The topology of the transverse reinforcement has
a strong influence on both the strength and post-
peak response. The topology is fully described by five
parameters: pitch of the spirals, H (Figure 2), small
spiral outer diameter dS and the diameter of the large
and small spiral rebars, DL and DS . The outer diameter
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Figure 1. Cross-section in the central part of the specimen.

Figure 2. Symmetric half of the column loaded in eccentric
compression.

of the large spiral dL and the position of the small spi-
rals in the plan view are determined by the thickness
of the concrete cover, c.

Up till now, no closed-form expressions have been
developed to predict the carrying capacity and ductil-
ity for an arbitrary combination of these parameters.
Therefore, it is not surprising that the current codes for
the design of concrete structures do not allow to utilize
the full potential of this novel type of reinforcement
layout. The updated version of Eurocode 2 (Euro-
pean Committee for Standardization 2018), which
stems from the fib Model Code 2010 (Fédération

Internationale du Béton 2012), recognizes confined
strength only in axially compressed structural mem-
bers with the most typical and conventional reinforce-
ment layouts. Furthermore, the American standard
ACI 318 (ACI 2019) defines only criteria on trans-
verse reinforcement but does not permit to further
benefit from the confined strength. To overcome these
obstacles, the carrying capacity can be determined
computationally for an arbitrary loading history via
nonlinear finite element method (NLFEM) and the
design strength can be obtained by employing the
global safety factor approach. Using such an approach,
two recent computational studies (Havlásek, Lepš, &
Bittnar 2021; Lepš & Havlásek 2021) have demon-
strated that the best performance under axial compres-
sion is reached when the reinforcement ratios of the
small and large spirals are similar.

The interaction diagram (ID) is an envelope sur-
rounding all statically admissible combinations of
internal forces and is perfectly suitable for the assess-
ment of safety and efficiency of the structural design
of columns. The ID can be computed with different
approaches. For simple cross-sections and code-like
assumptions on the distribution of stress in concrete,
the ID can be determined even from hand calcula-
tion. An automated computer routine is necessary for
more advanced stress-strain relationships for concrete,
such as the Mander’s model (Mander, Priestley, & Park
1988) whose response depends on the magnitude of
lateral confinement (Ngo & Ou 2021). In such a rou-
tine, the cross-section is spatially discretized and is
repeatedly subjected to different combinations of pre-
scribed axial strain and curvature. The resulting cou-
ples of normal force and bending moment are obtained
by integrating the stress response over the cross-
section, and the interaction diagram is subsequently
constructed as a convex envelope.

A similar numerical technique is presented in this
contribution to evaluate the ID of a column with a
square cross-section and 5S4 MSR layout. In contrast
to the previously outlined procedure, the computa-
tional model is loaded by an eccentric force and
the resulting couple [M,N] of the ID is obtained
as the maximum loading force and the correspond-
ing moment. This is repeated for different values of
eccentricity.

2 EXPERIMENTAL PROGRAM

The experimental part examined the behavior of five
geometrically identical columns with a square cross-
section and MSR subject to compression with different
eccentricity and one axially loaded companion spec-
imen with conventional rectilinear reinforcement and
a similar reinforcement ratio. The tests were done at
NCREE, Taipei, Taiwan on Multi-Axial Testing Sys-
tem (MATS) with the maximum compression capacity
of 58.84 MN. The loading was driven by a displace-
ment control and was applied in several subsequent
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steps with partial unloading to document the evolu-
tion of a crack pattern. The initial idea was to utilize
the unique capabilities of MATS which can indepen-
dently prescribe loading for 6 degrees of freedom
and to conduct the experimental study on prismatic
short columns subject to a combination of vertical
displacement and rotation of the bases. However, sev-
eral technical obstacles appeared and it was decided
that a simple eccentric compression is a more robust
approach to measure the response to the combination
of bending with compression.

The final design of the experimental specimens,
their cross-section, and reinforcement is a result of an
iterative process; the number of specimens and their
dimensions were strictly constrained by the project
budget. The typical cross-section of MSR columns
0.6× 0.6 m had to be scaled down to 0.4× 0.4 m
to double the number of specimens from 3 to 6. Yet,
it was not possible, in a similar fashion, to rescale
the reinforcement. Already the typical design uses
the smallest rebars available in Taiwan. Preserving
the cross-section diameter of a rebar means signifi-
cantly higher confining stress, which can be allevi-
ated by increasing the spiral pitch. However, this in
turn rapidly decreases the confinement effectiveness
and makes the stress distribution less uniform. The
resulting reinforcement design presents an acceptable
compromise.

A simplified geometry of the specimens is outlined
in Figures 1 and 2. The investigated middle prismatic
part has a square cross-section with B= 0.4 m and
is 0.8 m long. Towards the base, the cross-section is
widened to 0.6 m to prevent concrete crushing due to
eccentric loading. The out-of-plane thickness is con-
stant and equal to 0.4 m.The cross-section is reinforced
with 16 longitudinal rebars #5 (DV = 16 mm) spaced
approximately uniformly about the circumference of
the large spiral #4 (DL= 13 mm) shown in blue color.
The outer diameter dL= 360 mm is defined by the
concrete cover c= 20 mm. The small spirals at the cor-
ners drawn in red have outer diameter dS = 120 mm
and rebar cross-section #3 (DS = 10 mm). The pitch
of all spirals is identical and equal to H = 60 mm. In
the vertical direction, the reinforcement ratio is 2.0%
while the lateral reinforcement ratio (wrt. entire cross-
section) is 2.51%. The previous five-spiral designs
usually arranged 4 longitudinal rebars in every small
spiral to facilitate the construction. The specimens
design for this experiment, however, only have 3 lon-
gitudinal rebars located in every small spiral to reach
a reasonable longitudinal reinforcement ratio.

The magnitude of eccentricity e (Figure 2) was con-
trolled by accurately positioning the specimen between
the massive steel hinges. The concrete specimen was
connected to a 50 mm thick steel plate by shear studs,
afterwards this plate was welded to the hinge. The
eccentricity varied from e= 0 mm (axial compression)
to e= 200 mm (resultant at the edge of the cross-
section) with 50 mm step. The investigated loading
paths should cover the most interesting part of the
interaction diagram typical for columns and prove

the non-negligible increase in strength under eccentric
loading due to the lateral confinement.

The specimens were cast in horizontal position
from concrete with cement content 430 kg/m3, water-
to-cement ratio w/c= 0.44, and weight proportions
among cement, fine and coarse aggregates c : af : ac=
1 : 1.82 : 2.13. The specimen is reinforced with steel
class SD420W. In the supplementary experiments, the
yielding occurs on average around 480 MPa and the
peak stress ≈ 700 MPa is reached at approx. 10%.

The compressive strength of concrete was checked
on 3 sets of 3 cylinders 120× 240 mm at the age of 7,
28, and 100 days. The corresponding values and stan-
dard deviations were 31.6 (1.64), 43.0 (4.04), and 44.8
MPa (1.13), all in MPa. The last test was done under
displacement control and with externally mounted
extensometers to determine the Young modulus.

3 COMPUTATIONAL MODELING

3.1 FEM models

Two different finite element models with different lev-
els of complexity and computational demands were
developed to investigate the behavior of columns sub-
jected to eccentric compression and to construct the
interaction diagram of its typical cross-section.

Figure 3. Computational model of a representative section.

The first and computationally more efficient
approach uses a model which corresponds to a rep-
resentative section of the central square part of the
column with a height equal to the spiral pitch H ,
see Figure 3. Provided that the failure mode is not
localised, this approach (Havlásek, Jirásek, & Bit-
tnar 2019) enables to introduce a significantly denser
FE mesh using which the differences among various
reinforcement alternatives can be thoroughly identi-
fied. The mesh of the finite element model, generated
by a preprocessor Malcolm (Havlásek 2019), com-
bines a structured mesh (linear hexahedral elements,
reference model 32× 32× 8 elements) with a regu-
larly and irregularly discretized longitudinal and spiral
reinforcement (truss elements). The two meshes are
interconnected using the concept of hanging nodes,
and the bond between concrete and steel is treated

228



as rigid. The disabled slip is justified by the assump-
tion that the tensile force in the steel spirals should be
almost uniform over the length.

The model uses a generalized master-slave condi-
tion to impose periodicity in the axial direction of the
column. In the horizontal direction, the nodal displace-
ments on the top horizontal surface are fully linked
to the corresponding degrees of freedom on the bot-
tom surface, otherwise the lateral deformation is not
restrained as depicted in Figure 3 by the rollers. In
the vertical direction, the displacement on the bot-
tom surface is fixed, while on the top surface it obeys
a kinematic condition which allows the vertical dis-
placement of the entire surface and its rotation about
both horizontal axes.

There are two different approaches to subject the
first computational model to the combination of nor-
mal force and bending moment. The loading can be
defined by means of an eccentric force, in such a case
the ratio between the bending moment and normal
force remains constant; therefore, in the M-N graph
the loading path is a straight line which reaches the
interaction diagram at the maximum value of the load-
ing force. In the other approach, the loading can be
defined by a fixed ratio of axial deformation and cur-
vature. Then the response becomes highly nonlinear as
the loading path approaches the interaction diagram,
which might not be reached at the maximum load.This
implies that in the latter approach the interaction dia-
gram needs to be extracted as a convex shape of all
computed responses which is not favorable.

For this reason, in the present study, the model
is loaded by a single force F with eccentricity e.
Hereafter, this position is defined by a normalized
eccentricity ê= e/(B/2) so that position ê= 0 corre-
sponds to axial compression and ê= 1 to the outer
fibers. The analysis is run under an indirect dis-
placement control. The magnitude of the eccentricity
determines whether the controlled displacement cor-
responds to the overall vertical displacement or to the
rotation of the top surface. To construct the interac-
tion diagram the response needs to be investigated for
different values of eccentricity ê between 0 and 1. A
direct displacement control is only used to compute
the maximum moment under pure bending (zero nor-
mal force). In that case, the controlled displacement
represents the rotation of the top surface and the axial
deformation is left unrestrained.

The second computational model used in this study
is a horizontally symmetric half of the column. The
geometry complies with the actual specimens and
includes widening at the ends and a realistic definition
of the reinforcement topology. Vertically restrained
displacement on the bottom face imposes the symme-
try conditions. To properly capture the geometrically
nonlinear behavior, the prescribed vertical displace-
ment w with eccentricity e is not defined at the top
surface of the concrete specimen but is shifted upwards
and coincides with the axis of the steel hinge. The
response was evaluated only for the 5 values of eccen-
tricity in the experiment. An in-house mesher T3D

(Rypl 2004) was used for spatial discretization. The
mesh is structured and predominantly composed of
linear hexahedral elements. Due to the computational
demands, a coarser mesh had to be adopted in the
central part of the column. In the horizontal direc-
tion, the difference in the mesh density is insignificant
(30× 30 instead of 32× 32 elements) while in the ver-
tical direction the element size was almost doubled to
13.33 mm (4.5 elements per H ). Altogether, the model
is composed of 63445 elements and 68001 nodes.

3.2 Material models and calibration

In the finite element simulations, the behavior of con-
crete is described using the Damage-Plastic Model
for Concrete Failure (CDPM2) (Grassl, Xenos, Nys-
tröm, Rempling, & Gylltoft 2013). This model is an
improved and extended version of Concrete damage-
plasticity model (CDPM) (Grassl & Jirásek 2006).
Both models were implemented by their authors in the
finite element package OOFEM (Patzák 2000; Patzák
2012), which is used here in all numerical simulations.

The model CDPM2 is based on plasticity with
isotropic hardening and nonassociated flow combined
with a scalar damage model with damage driven by
plastic flow and by the elastic strain. The yield con-
dition is formulated in the effective stress space and
depends on all three stress invariants. The flow rule
is derived from a plastic potential that depends only
on the hydrostatic stress and the second deviatoric
invariant, which improves the efficiency of the imple-
mentation and robustness of the model (Grassl &
Jirásek 2006).

The model deals with the effective stress

σ̄ =De(ε − εp) (1)

which is computed using the plastic part of the model.
Here, De is the elastic material stiffness matrix, ε is
the total strain and εp is the plastic strain.

The model uses two independent scalar damage
variables ωt and ωc for tension and compression,
respectively, which enable the transition from the
effective to nominal stress. To achieve that, the effec-
tive stress is first split into the positive part, 〈σ̄ 〉+,
and the negative part, 〈σ̄ 〉−. The nominal stress is then
computed as

σ = (1− ωt)〈σ̄ 〉+ + (1− ωc)〈σ̄ 〉− (2)

To prevent mesh-dependent results, the model is regu-
larized using the crack-band approach (Bažant & Oh
1983).

CDPM2 uses a large number of input parameters.
In the present case, one of the key parameters is the
uniaxial compressive strength at the time of testing
(age 100 days), fcm. The compressive strength is used
to estimate the tensile strength and fracture energy as
recommended in (Fédération Internationale du Béton
2012). The value of tensile strength is here of cru-
cial importance—surprisingly not because of tensile
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cracking but because it is one of the parameters influ-
encing the shape of the yield surface which in turn
defines the response under lateral confinement.

The measured secant modulus of elasticity accu-
rately corresponds with the prediction according to
ACI 318 (ACI 2019).As explained in (Bažant & Jirásek
2018) the mean and not the characteristic (specified)
value of compressive strength should be used and the
formula

Ecm = 4733
√

fcm (3)

gives 31.7 GPa. To reflect the highly compliant nature
of the local aggregates, the Taiwanese national stan-
dard recommends to reduce this value by 20% which
results into 25.3 GPa. This value is consistent with the
measured value 26.9 GPa at stress level 40% fcm. To be
consistent with the measurements, the parameter q0h
which controls the onset of nonlinear behavior is set
to 0.4.

The postpeak behavior can be tuned by the param-
eter AS whose lower value means faster softening.
The uniaxial response computed with a single finite
element with AS = 10 and 20 is compared with the
experimental data in Figure 4 the first of which will be
used hereafter. Even though the experimental scatter of
the compressive strength is very small, the postpeak
behavior and measurement were not stable which is
evident from the grey curves.

Figure 4. Calibration of CDPM2 on uniaxial compression
of concrete cylinders.

The most important material parameters of CDPM2
are summarized in Table 1, the remaining constants
were taken with their default recommended (Grassl,
Xenos, Nyström, Rempling, & Gylltoft 2013) values.

In a circular column reinforced with hoops or spi-
rals, the average value of passive lateral confinement
σL (compression treated as positive) can be derived
from the condition of equilibrium of stress resultants
of confined concrete and yielding reinforcement (in
tension).

σL= 2Aø fy
DH

(4)

Table 1. Summary of the parameters of CDPM2.

Parameter Value Meaning

E 26.9 GPa Young’s modulus
ν 0.2 Poisson’s ratio
fc 44.8 MPa compressive strength
ft 3.32 MPa tensile strength
GF 144.7 N/m fracture energy
qh0 0.4 elastic limit in compression
Hp 10−2 hardening modulus
Df 0.85 dilation factor
AS 10 softening parameter
εfc 10−4 softening par. for compression

In the above equation, Aø is the cross-sectional area
of the reinforcing bar, fy is its yield strength, D is the
diameter (center-line) and H is the vertical spacing of
the hoops.

CDPM2 is an advanced material model which real-
istically captures the influence of confinement on
strength. Even though the increase in strength
fc,c due
to confinement σL cannot be determined analytically,
at least it can be accurately approximated (Havlásek
2021) as


fc,c= kσ p
L

[
1+ c (fcm/MPa − 28)q] (5)

with constants k = 7.65, p= 0.80 and strength correc-
tion c= 0.0085 and q= 1.00. As shown in Figure 5,
this resulting dependence is very similar to the formula
proposed in fib MC2010.

Figure 5. Increase of strength under confined as predicted
by the models from the literature, and by the CDPM2 and its
approximation given by (5).

To introduce non-uniformity of lateral confine-
ment and to treat different reinforcement layouts, the
average confinement is reduced by a multiplicative
confinement effectiveness factor. Recently, it has been
shown (Havlásek 2021) that for both spiral and cir-
cular hoops this factor matches a simple rule ke=
(1− 0.5H/D)2≈ 1− H/D.

In the present case, the average confinement inside
the small and large spirals equals 10.76 MPa and
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6.18 MPa, respectively, and the effective confinement
7.82 MPa and 5.65 MPa. As shown in Figure 5, the
confined strength is expected to be around 70 and
100 MPa in the large and small spirals, respectively,
and above 100 MPa in the double-confined region
where the spirals overlap.

The response to active and passive confinement is
(for the present calibration) depicted in Figure 6. Inter-
estingly, the confined strength is almost independent
of the nature of confinement (active or passive), what
matters is the magnitude. The strain at peak stress
increases with the confinement magnitude. For this
reason, in a structurally sound design, the confinement
in small and large spirals should not be too much differ-
ent to reach the peak stress simultaneously (Havlásek,
Lepš, & Bittnar 2021).

Figure 6. Response of CDPM2 under constant active and
passive confinement with magnitude 0.625–10 MPa.

Figure 7 presents experimental data on #3 (10 mm)
spiral and #4 (13 mm) spiral and rebar (color lines)
compared to the calibrated Mises plasticity material
with hardening and damage (black lines with the same
pattern). The data for #5 (16 mm) rebar are not avail-
able, so the calibration for #4 is adopted. The material
is significantly hardening, its strength exceeds the
yield stress (≈ 500 MPa) by approx. 150-200 MPa and

Figure 7. Calibration of Mises plasticity with hardening and
damage.

is attained at approx. 10% elongation.TheYoung mod-
ulus is set to 200 GPa, the constitutive law as well as
its parameters are not presented here.

4 RESULTS AND DISCUSSION

4.1 Representative section

The results computed with the representative section
approach are presented first. In Figure 8 the lines
with circles correspond to the interaction diagram
obtained from FEM simulations with CDPM2 for dif-
ferent alternatives of reinforcement: no reinforcement
(grey color), longitudinal reinforcement (green color),
and finally, the MSR (blue color). The significant
difference between the last two is the increase origi-
nating from lateral confinement. Apparently, this gain
is much higher than what would have corresponded to
the reinforcement ratio (2.5% laterally, 2.0% longitu-
dinally.) In this particular case, the increase in strength
ranges from 25 to 40%, see Figure 9.

Figure 8. Comparison of ID computed with CDPM2 in
OOFEM, and according to ACI-318 and EC2 for plain con-
crete, CS with longitudinal reinforcement and MSR. The
numbers correspond to the normalized eccentricity, ê.

Figure 9. Normalized increase in strength under eccentric
compression. Strength of MSR is expressed with respect to
cross-section with longitudinal reinforcement only.
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A comparison of the numerical results with the
code expressions (assuming mean values of the mate-
rial properties) demonstrates a realistic nature of the
simulations of the unreinforced and longitudinally
reinforced section. ACI 318 (red dashed line) is more
conservative compared to EC2 (black dash-dot lines).

In contrast to ordinary columns with conventional
rectilinear reinforcement not designed or detailed to
produce confinement, the MSR leads to a highly
uneven distribution of normal stress in axial direction.
This is illustrated in Figure 10 for uniaxial com-
pression and the peak load. To emphasize the stress
non-uniformity, the contour plot is vertically warped.

Figure 10. Distribution of vertical stress at peak load under
uniaxial compression of a representative section with MSR.

Five regions with different structural responses can
be distinguished:

1 Unconfined concrete cover is gradually softening
after reaching its uniaxial compressive strength.
It needs to be noted that in the simulations the
concrete cover does not abruptly spall off.

2+3 Single-confined concrete inside large (2) and
small (3) spirals is hardening until the spiral starts
yielding. Similar reinforcement ratios imply sim-
ilar strain at which the peak stress is attained.
Magnitude and distribution of lateral confine-
ment is significantly affected by the confinement
effectiveness factor.

4 Double-confined concrete whose strength is due
to larger confinement higher than that of a sin-
gle confined concrete. The stress distribution is
extremely nonlinear.

5 Concrete just outside the small spiral and inside
large spiral, referred to here as reduced con-
finement, is affected by a small deficiency in
lateral confinement. The confinement here is
smaller than the average value inside the large
spiral and leads to earlier onset of compressive
damage and therefore reaches a lower strength.
The significance of this phenomenon which is
caused by continuity of the displacement field

depends on the balance between lateral confine-
ment in the small and large spirals.As shown later,
neglecting this phenomenon can cause significant
overestimation of the carrying capacity.

The benefit of the MSR concept is apparent from
Figure 11 which compares the distribution of normal
stress in the vertical (axial) direction for different val-
ues of eccentricity and for the case with and without
spiral reinforcement. The color scale is the same for all
six cases and the state always corresponds to the peak
load. With longitudinal reinforcement only, the maxi-
mum value of compressive stress in concrete is equal
to its uniaxial strength, while with MSR the stresses
more than double this value. The increased magnitude
of the compressive resultant leads to a slight shift of the
neutral axis towards the compression part. The graph-
ical results indicate that with increasing eccentricity,
the stresses in double-confined area and small spi-
ral decrease and the confined strength becomes more
uniform.

Figure 11. Normalized eccentricity 0.25 (top), 0.5 (middle),
and 1.0 (bottom): distribution of vertical stress at peak load
without (left) and with multi-spiral reinforcement (right).

4.2 Mesh sensitivity

As illustrated in Figure 12, in contrast to plain cross-
section (grey color) or cross-section with longitudinal
reinforcement only (green color), the mesh discretiza-
tion has a significant impact on the ID computed
for MSR (blue color). Without MSR, the strength
increases with mesh refinement, which is varied
between 8× 8× 2 elements to 46× 46× 12 ele-
ments; except for the coarsest mesh, the differences
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are almost not noticeable (different line types in 12).
On contrary to this, the results for the MSR differ
up to 10% as shown in Figure 13. In this Figure the
strength is normalized with respect to the reference
mesh 32× 32× 8 (the strength under pure bending is
not presented). Interestingly, the differences for differ-
ent mesh densities are almost constant independently
of the normalized eccentricity ê.

Figure 12. Influence of FE mesh density on the computed
ID, v. coarse = 8× 8× 2, coarse = 16× 16× 4, medium,
reference = 32× 32× 8, fine = 46× 46× 12 elements.

Figure 13. Dependence of the normalized strength of MSR
cross-section on the normalized eccentricity evaluated for
different FE discretizations. The strength is normalized wrt.
medium mesh size, 32× 32× 8 elements.

The explanation needs to be sought in the distri-
bution of compressive damage and stress computed
on different meshes as shown in Figure 14. Despite
very large differences in the mesh density, the overall
stress distribution is almost identical. The most sig-
nificant difference is the response of the region with
reduced confinement, labelled “5" in Figure 10. With
a fine mesh, the decrease in confinement causing a
substantial reduction of strength is captured correctly,
but as the mesh becomes coarser, this effect tends to
be smeared until it completely disappears.

Figure 14. Distribution of compressive damage (contours)
and vertical stress (warped grey surface) at peak load com-
puted with coarse (left) and fine (right) finite element mesh
and normalized eccentricity 0.5.

The corresponding computational times (1 CPU @
4.6 GHz) needed to reach the peak load at ê= 0.5
are summarized in Table 2. If the computed con-
stant differences hold also for different reinforcement
configurations and concrete strengths, then in practi-
cal applications the response can be evaluated on the
coarse or very coarse mesh in almost no time and then
reduced to ≈ 90%.

Table 2. Computational times needed to reach the peak load
of a representative section with MSR reinforcement and ê=
0.5 and different mesh densities.

Mesh Computational time [s]

v. coarse, 8× 8× 2 21
coarse, 16× 16× 4 168
medium, 32× 32× 8 1518
fine, 46× 46× 12 5284

4.3 Comparison with experimental data

The experimental setup was designed to produce as
constant response as possible in the central part of
the specimen (square cross-section). This would have
facilitated a direct comparison with the results com-
puted using the representative section presented in the
previous Section. However, the color contours in Fig-
ure 15 suggest that this is not be the case as the response
computed on the symmetric half is nonuniform over
the height. This implies that only the same quantities
can be compared with the experiment and that the
representative section should be used merely for the
ultimate strength while the axial strain and curvature
should be interpreted carefully.

A global response of the columns loaded in eccen-
tric compression is presented in Figure 16. Smooth
solid lines correspond to FE simulations while the
experimental results are shown in noisy lines. Data for
the same value of eccentricity are displayed in a similar
color. First of all, it is obvious that the strength com-
puted with the symmetric half crosses the boundary of
the interaction diagram computed with the represen-
tative section. The horizontal discretization was very
similar in both cases (32 and 30 elements per edge).
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Figure 15. Warped contours of normal stress in vertical
direction and stress in the spirals (peak load, normalized
eccentricity 0.5).

The reason is the vertical discretization (8 vs. 4.5 ele-
ments per height H ). Insufficient number of elements
per height spuriously improves confinement effective-
ness and as a consequence enhances strength. Next, the
P-
 effect (second-order moment caused by specimen
deflection) makes the structural response in the M-N
diagram highly nonlinear. This contribution is signifi-
cant especially in the cases with small eccentricity (e.g.
ê= 0.25). The reference first-order moment is shown
in thin dashed lines of the same color. The intended
position where the M-N curve reaches the strength
envelope can eventually become significantly shifted
due to the geometrically nonlinear behavior.

The noisy trends in the experimental data have
two sources: i) partial unloading during the experi-
ment to document the progress of the crack pattern
(approx. 10× in one experiment), ii) tensile cracking
in the cases with higher eccentricity. Comparison of the
numerical results to the experimental data shows that
the overall trend is captured very well if ê≥ 0.5. With
ê= 0.75 and ê= 1.0 the strength is slightly overesti-
mated by the numerical model. The sudden drops due
to cracking (on the tensile face) cause that the exper-
imental curves fill almost the entire region between
the ID with longitudinal reinforcement only (green
color) and MSR. With ê= 0.5, the strength exceeds
the prediction of the numerical model. Additionally,
the experiment demonstrates that a constant moment
capacity is maintained even when the normal force
decreases to half of its maximum value.

In the cases of low eccentricity, ê= 0.0 and 0.25,
the insufficiently designed lateral reinforcement at the
ends of the specimen triggered vertical splitting cracks
at one of the supports. The primary reason was that the
lateral rectilinear reinforcement composed of stirrups

Figure 16. Comparison of the ID evaluated for representa-
tive cross-sections (solid lines with circles), FE simulations
on a symmetric half (smooth solid lines), and experimental
data (noisy thin lines). The numbers correspond to nor-
malized eccentricity. The P-
 indicates the contribution
of geometrical nonlinearity (difference between dashed and
solid lines).

was not welded. For this reason, the structural response
shown in Figure 16 does not correspond to the behav-
ior of the region of interest because the loading force
started decreasing prematurely. In the FEM analysis,
the lateral reinforcement was defined without these
defects and the bond between the loading plate and
the specimen was defined as perfect, therefore the ID
was reached with ê= 0.25. Under axial compression
(ê= 0.0) the specimen laterally deflects because of the
eccentric nonsymmetric widening at the base and fails
by a vertical splitting crack, which also appeared in
the FEM simulation.

5 CONCLUSIONS

A new experimental study investigated the behavior of
geometrically identical concrete columns reinforced
with multispiral reinforcement and subjected to eccen-
tric compression.These data will provide a basis for the
calibration of the computational models which can be
used for the evaluation of the interaction diagrams of
MSR columns. The main conclusions are summarized
as follows:

• In the case of longitudinal reinforcement only, the
numerical results obtained with the representative
section approach and CDPM2 material model com-
ply with the design codes. The MSR reinforcement
enhances strength from ≈ 25% (high eccentricity)
to 40% (low eccentricity).

• The peak load is reached at the onset of spi-
ral yielding, which corresponds to the maximum
confinement.

• A considerable mesh dependence of the MSR sim-
ulations has been detected. The explanation was
found in the behavior of the zone with reduced
confinement, just outside the small spirals. Coarser
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meshes lead to strength overestimation because this
effect is not considered properly.

• Second-order moments are important in both exper-
iments and modeling. An exceptional agreement
between the experiments and numerical results was
obtained, which proves the superior performance
of MSR layout stemming from laterally confined
concrete.
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ČR), project number TM01000059 (Reducing mate-
rial demands and enhancing structural capacity of
multi-spiral reinforced concrete columns - advanced
simulation and experimental validation) and by the
Ministry of Science and Technology of Taiwan
under Contract No. 109-2923-M-002-006-MY3. The
authors acknowledge support from National Center
for Research on Earthquake Engineering (NCREE) of
Taiwan.

The numerical analyses have been performed with
OOFEM, an open-source object-oriented finite ele-
ment program (Patzák 2000). The finite element
meshes have been prepared with the T3D mesh gener-
ator (Rypl 2004).

REFERENCES

ACI (2019). ACI 318-19 Building Code Requirements for
Structural Concrete and Commentary.American Concrete
Institute.

Bažant, Z. & M. Jirásek (2018, January). Creep and
hygrothermal effects in concrete structures, Volume 225
of Solid Mechanics and its Applications.

Bažant, Z. P. & B. H. Oh (1983, May). Crack band theory
for fracture of concrete. Matériaux et Construction 16(3),
155–177.

European Committee for Standardization (2018). Eurocode
2: Design of concrete structures – Part 1-1: General
rules, rules for buildings, bridges and civil engineer-
ing structures, Final Version of PT1-draft prEN 1992-1-1
2018 D3.

Fédération Internationale du Béton (2012). Model Code
2010. Number vol. 65 in fib Bulletin. International Fed-
eration for Structural Concrete (fib).

Grassl, P. & M. Jirásek (2006). Damage-plastic model for
concrete failure. International Journal of Solids and
Structures 43(22), 7166 – 7196.

Grassl, P., D. Xenos, U. Nyström, R. Rempling, & K. Gylltoft
(2013). CDPM2: A damage-plasticity approach to mod-
elling the failure of concrete. International Journal of
Solids and Structures 50(24), 3805 – 3816.

Havlásek, P. (2019). MaLCoLM, multi-spiral column
simulation module version 1.0. http://mech.fsv.cvut.cz/∼
phavlasek/projects/2018_cestar.

Havlásek, P. (2021). Numerical modeling of axially com-
pressed circular concrete columns. Engineering Struc-
tures 227, 111445.

Havlásek, P., M. Jirásek, & Z. Bittnar (2019). Modeling of
precast columns with innovative multi-spiral reinforce-
ment. fib Proceedings, pp. 2301–2307. FIB - Féd. Int. du
Béton.

Havlásek, P., M. Lepš, & Z. Bittnar (2021). Optimum design
of axially compressed concrete columns with multi-spiral
reinforcement. AIP Conference Proceedings 2322(1),
020002.

Lepš, M. & P. Havlásek (2021). Optimum performance
of axially compressed concrete columns with multi-
spiral reinforcement. Concrete Structures: New Trends
for Eco-Efficiency and Performance, 18th fib Symposium
Proceedings, 2175–2184.

Mander, J. B., M. J. N. Priestley, & R. Park (1988). Theoret-
ical stress-strain model for confined concrete. Journal of
Structural Engineering 114(8), 1804–1826.

Ngo, S.-H. & Y.-C. Ou (2021). Expected maximum moment
of multi-spiral columns. Engineering Structures 249,
113386.

Patzák, B. (2000). OOFEM home page. http://www.oofem.org.
Patzák, B. (2012). OOFEM - an object-oriented simulation

tool for advanced modeling of materials and structures.
Acta Polytechnica 52(6), 59–66.

Rypl, D. (2004).T3D mesh generator. http://mech.fsv.cvut.cz/
∼dr/t3d.html.

Yin, S. (2005). Helical rebar structure. US Patent 6,860,077.
Yin, S.Y.-L., J.-C. Wang, & P.-H. Wang (2012). Development

of multi-spiral confinements in rectangular columns for
construction automation. Journal of the Chinese Institute
of Engineers 35(3), 309–320.

Yin, S. Y.-L., T.-L. Wu, T. C. Liu, S. A. Sheikh, & R. Wang
(2011). Interlocking spiral confinement for rectangular
columns. Concrete International 33(12).

235



Computational Modelling of Concrete and
Concrete Structures – Meschke, Pichler & Rots (Eds)

© 2022 Copyright the Author(s), ISBN: 978-1-032-32724-2

FEM modelling of FRP reinforced concrete with a shell element approach

I. De Beuckeleer, T. Molkens & A. Van Gysel
KU Leuven – De Nayer Campus, Sint-Katelijne-Waver, Belgium

E. Gruyaert
KU Leuven – Ghent Technology Campus, Ghent, Belgium

ABSTRACT: This paper outlines a simplified 2D FEM approach to model FRP reinforced concrete members
with commercial FEM software. Due to limitations in this type of software, engineers can overcome these
design problems with some creative modelling techniques. When linear-elastic calculations are performed, the
uncracked behaviour is well captured. As soon as the first crack appears, designers should manually reduce the
bending stiffness to investigate the cracked behaviour accurately. In the proposed FEM model, a lumped and
smeared cracked stiffness was used to get more realistic simulation results for the cracked phase during the
loading process. Moreover, a shell element model was chosen to account for shear deformations of the concrete
cross-section, whereas these mechanical effects are neglected in slab or beam models. The reinforcement is
included as one single beam element with equivalent stiffness properties in the FEM approach. Finally, a case
study for future shear tests will be presented.

1 INTRODUCTION

1.1 Problem setting

Fiber Reinforced Polymer (FRP) reinforcement mate-
rials, composed of mineral (and sometimes organic)
fibers and a polymeric resin matrix, are promising
substitutes for conventional carbon steel reinforce-
ment. This non-metallic material is not sensitive to
corrosion, even in harsh environmental conditions. A
chemical barrier to water, oxides and chlorides is not
required anymore, which allows to reduce the con-
crete cover. Moreover, the overall dimensions of the
concrete cross-section and the reinforcement can be
diminished owing to the exceptionally high tensile
strength of FRPs in comparison with carbon reinforc-
ing steel. As a direct consequence, structures are built
with smaller volumes of concrete which implies that
the construction industry becomes a more sustainable
sector (Bielak et al. 2019). Since FRP reinforcement
materials outperform conventional steel reinforcement
with regard to their service life, maintenance and
reconstruction works are rarely required. These future
material savings further reduce the environmental
pressure that the concrete industry has caused ever
since (El-Sayed et al. 2007).

Despite the ecological and economic benefits of
FRPs, engineering practitioners tend to be reluctant
to provide this reinforcement type in their design as
the underlying mechanisms of the structural behaviour
are not fully understood so far. Some preliminary
design models for bending have been published in the

scientific literature and some experimentally based
shear design formulas are at hand (Pilakoutas et al.
2011) As a result, large safety margins are applied
in design practice to cover the uncertainties, which
restricts an evolution towards more sustainable and
economic project designs. (Gudonis et al. 2014) The
great potential of FRP reinforcement can only be
exploited if all scientific lacunas about the shear
behaviour of this brittle matrix composite material are
sorted out.

As a starting point, an alternative 2D FEM shell
element modelling approach is proposed in this paper,
which addresses both the shortcomings of simple 1D
beam models and avoids the far-reaching complexity
of advanced 3D models, that are time-consuming in
terms of input and calculation. The outcomes of this
modelling technique will be validated by comparing
the numerical results with the experimental results of
a dataset of 35 shear tests.

1.2 Current shear design models

The background of shear behaviour of longitudinally
reinforced members without shear reinforcement has
been studied in several theoretical approaches and
the interplay of several shear transfer mechanisms
has been thoroughly analysed e.g. (Classen 2020). It
has turned out (Yang 2014) that the transverse stiff-
ness of the reinforcement bars directly contributes to
shear force transfer through dowel action. In addition,
the bending stiffness of concrete members reinforced
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with conventional carbon steel reinforcement is sig-
nificantly higher than of those reinforced with FRP
reinforcement. Hence, their mechanical behaviour is
considerably different during the loading process.
Larger deflections and crack widths are expected in
FRP reinforced elements (Pilakoutas et al. 2011).

The transverse stiffness of the reinforcing materials
is not always inserted in design guidelines, even though
this variable is of crucial importance. An overview of
several shear models, implemented in current design
practice, will be provided in the following paragraphs
to indicate the absence of this parameter.

1.2.1 ACI 318-19
Design formula for the shear capacity (Vn) 1.2.2 pre-
scribed by the American Institute does not take the
bending stiffness of the reinforcing materials into
account. The main influencing parameters are the size
effect factor (λs), longitudinal reinforcement ratio (ρl),
concrete compressive strength (f ′c ), width (bw) and
effective depth (d). (Lima et al. 2021).

Vn=min

⎧
⎪⎨

⎪⎩

1.33 ∗
(

2

3
∗ λs ∗ ρ

1
3

l ∗
√

f ′c ∗ bw ∗ d

)

5

6
∗√f ′c ∗ bw ∗ d

(1)

where

λs=
√

2

1+ 0.004 ∗ d
(2)

1.2.2 Eurocode 2
The European design standard also does not acknowl-
edge the contribution of the bending stiffness of
the reinforcing materials in design formula 1.2.3.
The shear capacity (VRd,c) is determined by the size
effect factor (k), longitudinal reinforcement ratio (ρl),
concrete compressive strength (fck ), width (bw) and
effective depth (d). (EN 1992-1-1, 2005)

VRd,c=max

{
CRd,c ∗ k ∗ (100 ∗ ρl ∗ fck )

1
3 ∗ bw ∗ d

0.035 ∗ k
3
2 ∗ f

1
2

ck ∗ bw ∗ d
(3)

where

k = 1+
√

200

d
≤ 2.0 (4)

1.2.3 Simplified Compression Field Theory
This shear model by Bentz et al. shows a simplified
design approach of the theoretical model by Vecchio
& Collins. Shear stresses (vc) are calculated by means
of the tensile stress factor (β) in the cracked concrete
and concrete compressive strength (f ′c ) (Lima et al.
2021). As can be noticed in formula 1.2.4, the effect
of the bending stiffness is included in this model.

νc=β ∗√f ′c (5)

where

β = 0.4

1+ 1500 ∗ εsl
∗ 1300

1000+ sxe
(6)

1.2.4 AASHTO-LRFD
The shear model by Bentz et al. is also at the basis
of the AASHTO-LRFD formulas. The ultimate shear
load results from an analogous design formula (Lima
et al. 2021)

νc=β ∗√f ′c (7)

where

β = 0.4

1+ 750 ∗ εsl
∗ 1300

1000+ sxe
(8)

1.2.5 Zsutty
According to Zsutty, ultimate shear stresses (τ c) can be
calculated based on the concrete compressive strength
(f ′c ), longitudinal reinforcement ratio (ρl) and effective
depth to shear span ratio (d/a). Two distinct formulas
(9) and 1.2.6 are valid for slender elements (a/d ≥ 2.5)
and short elements (a/d < 2.5), respectively (Lima et
al. 2021). This approach also neglects the effect of the
bending stiffness of the reinforcement.

τu= 2.17 ∗
(

f ′c ∗ ρl ∗ d

a

)1
3

(9)

τu= 5.4 ∗ (f ′c ∗ ρl
) 1

3 ∗
(

d

a

)3
4

(10)

1.2.6 Russo et al.
The maximum diameter of the coarse aggregates (da),
effective depth (d), longitudinal reinforcement ratio
(ρl), concrete compressive strength (f ′c ), yield stress
of the longitudinal reinforcement (fyl) and the shear
span to effective depth ratio (a/d) are regarded as
principal variables contributing to the ultimate shear
capacity (τ u) (Lima et al. 2021). As many other
researchers, they disregard the bending stiffness of the
reinforcement.

τu = 1.13 ∗
⎡

⎢
⎣

1+
√

5.08
da√

1+ d
25∗da

⎤

⎥
⎦ ∗

[
ρ0.4

l ∗ f ′0.39
c + 0.5∗

ρ0.83
l ∗ f 0.89

yl ∗
( a

d

)−1.2−0.45∗ a
d

]
(11)

2 EXPERIMENTAL DATA

In this paper a Finite Element Method (FEM) model
is proposed. The results of this numerical model are
compared with experimental test data of 35 rein-
forced concrete slabs without shear reinforcement
from the literature to determine the validity of the
FEM approach; 16 tests are performed by (Acciai et al.
2016), 2 tests are described in (Noël & Soudki 2014)
and 17 tests are carried out by (Abdul-Salam et al.
2016).
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2.1 Acciai et al.

Acciai et al. (2016) executed a research program to
compare the mechanical behaviour of 16 longitudi-
nally reinforced members, see Table 1. In this study,
three different influencing parameters were consid-
ered: (1) the cross-sectional geometry, (2) the concrete
compressive strength and (3) the type of longitudinal
reinforcement. These researchers tested a first series
with a shallow rectangular cross-section (w = 200 mm;
h = 100 mm) and a second series with a deep rectan-
gular cross-section (w = 100 mm; h = 200 mm). All
specimens with a total length of 2800 mm spanned
2000 mm and were subjected to a concentrated load at
midspan in a three-point bending test.

Table 1. Overview of the specimens out of (Acciai et al.
2016)

N◦ Reinforcement Concrete Failure

1 1x GFRP (ø = 13 mm) 10.2 kN
fu = 690 MPa fc= 49 N/mm2 FC∗
E= 40.8 Gpa dc= 20 mm 82 mm#

2 2x GFRP (ø= 13 mm) 15.6 kN
fu = 690 Mpa fc= 49 N/mm2 FC∗
E= 40.8 Gpa dc= 20 mm 82 mm#

3 1x CFRP (ø= 9 mm) 15.8 kN
fu = 2068 Mpa fc= 80 N/mm2 FC∗
E= 124 Gpa dc= 20 mm 78 mm#

4 2x CFRP (ø= 9 mm) 32.8 kN
fu = 2068 Mpa fc= 80 N/mm2 FC∗
E= 124 Gpa dc= 20 mm 82 mm#

5 1x Steel (ø= 8 mm) 4.5 kN∗∗
fu = 634 Mpa fc= 39 N/mm2 FT∗
E= 206 Gpa dc= 20 mm 10 mm#

6 2x Steel (ø= 8 mm) 9 kN∗∗
fu = 634 Mpa fc= 39 N/mm2 FT∗
E= 206 Gpa dc= 20 mm 18 mm#

7 1x Steel (ø= 14 mm) 13 kN∗∗
fu = 666 Mpa fc= 39 N/mm2 FT∗
E= 206 Gpa dc= 20 mm 21 mm#

8 2x Steel (ø= 14 mm) 25 kN∗∗
fu = 666 Mpa fc= 39 N/mm2 FT∗
E= 206 Gpa dc= 20 mm 22 mm#

9 1x GFRP (ø= 13 mm) 19.90 kN
fu = 690 Mpa fc= 49 N/mm2 S∗
E= 40.8 Gpa dc= 20 mm 28 mm#

10 2x GFRP (ø= 13 mm) 24.00 kN
fu = 690 Mpa fc= 49 N/mm2 S∗
E= 40.8 Gpa dc= 20 mm 18 mm#

11 1x CFRP (ø= 9 mm) 17.70 kN
fu = 2068 Mpa fc= 80 N/mm2 S∗
E= 124 Gpa dc= 20 mm 13 mm#

12 2x CFRP (ø= 9 mm) 27.90 kN
fu = 2068 Mpa fc= 80 N/mm2 S∗
E= 124 Gpa dc= 20 mm 12 mm#

13 1x Steel (ø= 8 mm) 12 kN∗∗
fu = 634 Mpa fc= 39 N/mm2 B∗
E= 206 Gpa dc= 20 mm 3 mm#

(continued)

Table 1. Continued.

N◦ Reinforcement Concrete Failure

14 2x Steel (ø= 8 mm) 22 kN∗∗
fu = 634 Mpa fc= 39 N/mm2 FS∗
E= 206 Gpa dc= 20 mm 8 mm#

15 1x Steel (ø= 14 mm) 34 kN∗∗
fu = 666 Mpa fc= 39 N/mm2 FS∗
E= 206 Gpa dc= 20 mm 10 mm#

16 2x Steel (ø= 14 mm) 49 kN∗∗
fu = 666 Mpa fc= 39 N/mm2 S∗
E= 206 Gpa dc= 20 mm 12 mm#

(*) FC= flexural (compression excess in concrete)
FT= flexural (tension excess in reinforcement)
S= brittle shear
FS= flexural shear
B= rupture of bar
(**) Exact failure load not mentioned in the article, so the
value is inferred from Fig. 3 and Fig. 6 in (Acciai et al.,
2016)
(#) Deflection at failure of FRP reinforced elements (or
deflection at yielding for steel reinforced elements) collected
out of Fig. 3 and Fig. 6 in (Acciai et al. 2016).

2.2 Noël & Soudki

Noël and Soudki (2014) performed a four-point bend-
ing test with a 1000 mm constant moment region
on two GFRP reinforced members with a rectangular
cross-section (w = 600 mm; h= 300 mm) to examine
the effect of the reinforcement ratio. Both specimens
have identical dimensions: a total length of 5000 mm
and a total span of 4500 mm. Only data of the slabs
without shear reinforcement are presented in Table 2.

Table 2. Overview of the specimens out of (Noël & Soudki,
2014)

N◦ Reinforcement Concrete Failure

G1 6 GFRP (ø= 15.9 mm) 150 kN∗
fu = 683 MPa fc=C30/37∗∗ /∗
E= 48.2 GPa dc= 30 mm 97 mm∗

G2 12 GFRP (ø= 15.9 mm) 220 kN∗
fu = 683 MPa fc=C30/37∗∗ /∗
E= 48.2 GPa dc= 30 mm 73 mm∗

(*) Unknown failure load, failure mode and deflection at fail-
ure. Data collected out of Fig. 8 in (Noël & Soudki 2014).
(**) Not mentioned in the article, so this value is based on
assumptions.

2.3 Abdul-Salam et al.

Abdul-Salam et al. (2016) tested 17 one-way slabs
(w = 1000 mm; h= 200 mm) under four-point bend-
ing with a constant moment region of 1800 mm. The
total length and total span of all specimens is equal to
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4000 mm and 3500 mm, respectively. The test speci-
mens are subdivided in six categories according to the
separate parameters studied in this research project.

In order to properly investigate the influence of one
single parameter, the axial stiffness of the reinforce-
ment was kept similar for each group. The first group
reveals the influence of the bar surface texture on the
bond and shear behaviour. The second and fifth group
are used to explain the effect of the concrete com-
pressive strength on the shear resistance. The third,
fourth and sixth group are meant to compare the impact
of different reinforcement types. The different groups
are indicated by subsequent white or shaded areas in
Table 3, remark that test 3 and 8 are identical.

Table 3. Overview of the specimens out of (Abdul-Salam
et al. 2016).

N◦ Reinforcement Concrete Failure

1 5x GFRP (ø= 19.05 mm◦ ) 188 kN
Helically wrapped fc= 47.9 N/mm2 DT∗
E= 40.8 GPa dc= 48 mm∗∗ 118 mm#

2 4x GFRP (ø= 19.05 mm◦ ) 211 kN
E= 49.8 GPa fc= 48.4 N/mm2 SC∗s
dc= 48 mm∗∗ 93 mm#

3 5x GFRP (ø= 19.86 mm◦) 309 kN
E= 67.8 GPa fc= 42.9 N/mm2 DT∗
dc= 48 mm∗∗ 92 mm#

4 5x GFRP (ø= 19.86 mm◦ ) 327 kN
E= 67.8 GPa fc= 77.4 N/mm2 SC∗
dc= 48 mm∗∗ 71 mm#

5 5x GFRP (ø= 19.86 mm◦ ) 290 kN
E= 67.8 GPa fc= 82.6 N/mm2 SC∗
dc= 48 mm∗∗ 91 mm#

6 5x CFRP (ø= 13.72 mm) 237 kN
E= 139.2 GPa fc= 49.7 N/mm2 SC∗s
dc= 48 mm∗∗ 78 mm#

7 5x GFRP (ø= 25.40 mm) 242 kN
E= 43.9 GPa fc= 47.9 N/mm2 DT∗s
dc= 48 mm∗∗ 67 mm#

8 5x GFRP (ø= 19.86 mm◦ ) 309 kN
E= 67.8 GPa fc= 42.9 N/mm2 DT∗
dc= 48 mm∗∗ 92 mm#

9 6x GFRP (ø= 19.86 mm◦ ) 335 kN
E= 67.8 GPa fc= 49.4 N/mm2 DT∗
dc= 48 mm∗∗ 79 mm#

10 6x CFRP (ø= 13.72 mm) 282 kN
E= 147.8 GPa fc= 49.4 N/mm2 SC∗s
dc= 48 mm∗∗ 76 mm#

11 7x CFRP (ø= 13.72 mm) 317 kN
E= 144 GPa fc= 52.0 N/mm2 SC∗
dc= 48 mm∗∗ 77 mm#

12 7x CFRP (ø= 13.72 mm) 336 kN
E= 144 GPa fc= 76.0 N/mm2 SC∗s
dc= 48 mm∗∗ 76 mm#

13 7x CFRP (ø= 13.72 mm) 274 kN
E= 144 GPa fc= 86.2 N/mm2 SC∗s

dc= 48 mm∗∗ 35 mm#

14 8x CFRP (ø= 16.82 mm◦ ) 385 kN
E= 141 GPa fc= 41.3 N/mm2 SC∗s

dc= 48 mm∗∗ 47 mm#

(continued)

Table 3. Continued.

N◦ Reinforcement Concrete Failure

15 12x GFRP (ø=19.86 mm◦ ) 340 kN
E= 67.8 GPa fc= 48.6 N/mm2 SB∗

dc= 48 mm∗∗ 45 mm#

16 5x Steel (ø= 19.05 mm◦ ) 252 kN
E= 200 GPa fc= 47.9 N/mm2 FC∗

dc= 48 mm∗∗ 126 mm#

17 7x GFRP (ø= 30.45 mm◦ ) 426 kN
E= 65.4 GPa fc= 50.3 N/mm2 SB∗

dc= 48 mm∗∗ 70 mm#

(*) DT= diagonal tension failure
DTs = diagonal tension failure+ cover splitting
SC= shear-compression failure
SCs = shear-compression failure followed by FRP
shearing off
SB= shear-bond failure
FC= flexural-compression failure

(**) Not directly mentioned in the article, this value is based
on a derivation out of the reinforcement ratio
(◦) Since some contradictions were noticed, the diameter is
derived from the reinforcement area mentioned in the refer-
ence article and not taken as the specified diameter
(#) Deflection at failure derived from maximum strains

While the authors recognize the effect of the arch
action, it is not clear which provisions have been made
in the test set-up to avoid this phenomenon.

2.4 Discussion

To compare the different test results to a certain extent
and to visualize the risk of premature bending failure
instead of shear failure, Figure 1 shows the relationship
between the normalized shear stress and the reinforce-
ment ratio. The normalized shear stress is in this case
the ratio between the shear force due to the applied
load and self-weight divided by the product of the
width, effective depth and square root of the concrete
compressive strength. The reinforcement ratio is the

Figure 1. Relation between normalized shear stress and
reinforcement ratio for all reference tests.
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ratio between the cross-sectional area of the reinforce-
ment (without accounting for the different material
properties) and the product of the width and effec-
tive depth. No significant differences have been found
between the different reinforcement materials, and
also the stress levels of the different articles seem to be
comparable. The R2-value of the proposed logarithmic
regression by (Abdul-Salam et al. 2016) is relatively
weak (0.43). On the other hand, the whole practical
application area of reinforcement ratios (ρ < 0.040) is
covered.

Beside the previous relationship, it is also interest-
ing to have an idea about the sensibility of the test to
a shear failure. For that purpose, the ultimate bend-
ing capacities (Mu) based on the characteristics of the
reinforcement and concrete have been calculated and
compared to the applied bending moments (Ma) at fail-
ure. Ratios smaller or equal to 1 mean that bending
failure can occur, see Figure 2. Only the steel rein-
forced specimens, which are surrounded by a dashed
line in the graph, are prone to bending or combined
failure.

Figure 2. Relation between normalized shear stress and
bending resistance level.

As for the design of ordinary reinforced concrete
at this stage moment/shear interaction is neglected.
Nevertheless, this should be studied in detail.

3 FEM-MODEL

Current design models (see Section 1.2) are mostly
based on semi-empirical formulas or a combination
between theoretical derivations and regression work
out of experimental data. There is however, a tendency
to develop models based on mechanics (Xing-lang
(2020); Classen (2020)) or kinematic considerations
(Mihaylov, (2017). All of them do have a number of
advantages but sometimes suffer a limited (practical)
application area. To enhance the understanding of dif-
ferent phenomena and for validation purposes also a
lot of research is using FEM models. With advanced
models, however, it is a challenge to arrive at under-
standable result processing, reason why a simplified
2D shell model is proposed.

3.1 Linear elastic material behaviour

Based on the load-displacement measurements out
of the reference articles (Abdul-Salam et al. 2016;
Acciai et al. 2016; Noël & Soudki 2014), a bi-linear
behaviour can be observed. The first and most stiff
reaction is observed when the section is uncracked,
and a second linear branch starts when the first crack
appears and continues linearly till failure for FRP rein-
forced elements. Figure 3 out of (Acciai et al. 2016)
clearly illustrates the differences in behaviour between
FRP (without plastic plateau) and steel reinforcement
(including the effect of plasticity).

Figure 3. Bi-linear load-displacement graph (Acciai et al.,
2016).

To obtain insights in the development of internal
forces into the reinforcement, and stresses into the con-
crete, an approach with shell elements will be worked
out.This means that the whole thickness of the element
is concentrated into a surface element, which allows
for relatively simple postprocessing of data. FEM anal-
ysis can be based on linear elastic assumptions as long
as the effects of cracking are properly included (see
Section 3.4).

An advantage of the use of shell elements is that
shear deformations are accounted for in the analysis.
This is not the case when slab or beam models are
used based on the Bernoulli assumption that straight
planes perpendicular to the undeformed axis line stay
normal to the deformed axis line of the element. In
the proposed FEM approach, reinforcement will be
modelled as a beam element with applicable stiffness
properties of the provided reinforcement. In that way
an overlap of both materials is realized. However, due
to the boundary conditions, explained in section 3.4,
the influence is minimal.

3.2 Geometrical and material non-linearity

As shown in Figure 3, the behaviour of reinforced
concrete is defined by the material properties of the
reinforcement. The linear behaviour of FRPs leads to
an almost perfect elastic response after the appear-
ance of the first cracks. For steel reinforcement, a
high degree of ductility is present ensuring large
displacements before failure.
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In case of fire, material properties are (rapidly)
decreasing and the material behaviour becomes non-
linear with some softening effects in the concrete and
FRP bars. For the latter a critical temperature of 350◦
C is mentioned by different authors (Kashwani &
Al-Tamimi 2014; Wang et al. 2003). Unfortunately,
material models accounting for the heating effects on
the fibers, the resin matrix and the bond between them
are missing so far.

Designers should be aware that even due to the
decrease in concrete properties at elevated tempera-
tures, the bearing system and failure mode can change.
During a fire, it is already reported (Molkens et
al. 2017) that a slab working in compressive mem-
brane action (CMA) may switch to cantilever action
due to a loss of compression resistance at the lower
heat-affected part of the slab, see Figure 4. In this
simulation, the concrete element was modelled as a
sequence of layers with shell elements in order to
assign different temperature profiles to them varying
in time.

Figure 4. CMA in ULS conditions and cantilever in
fire conditions. Principal tensile stresses= red, compressive
stresses= blue (Molkens et al. 2017).

3.3 Equivalent reinforcement bar properties

Once a shell element approach is used, all bar proper-
ties must be concentrated into one beam element. As
the axial and bending stiffness will influence respec-
tively the bending and shear behaviour (dowel effect),
a rectangular equivalent section with a width beq and
height heq are used to meet both requirements. By fill-
ing in Eq. (12) into Eq. (13), Eq. (14) can be worked
out, defining the equivalent height only depending of
the bar diameter. By the use of Eq. (12), also beq is
known.

A= n · π∅
2

4
= beq · heq (12)

I = n · π∅
4

64
= beq · h3

eq

12
(13)

I = A · h2
eq

12
yields→ heq=

√
12 · I

A
=∅

√
3

4
(14)

3.4 Lumped and smeared cracked stiffness

To enhance a correct bending capacity simulation,
each model is built up with symmetrical boundary
conditions at the middle of the span. At the location of
the concrete material, boundary conditions permit hor-
izontal compressive forces but no tensile forces. Only

at the location of the reinforcement, compression and
tension forces are allowed.

By doing so, a correct tensile force and/or stress
is obtained in the reinforcement bars. As the mate-
rial is calculated in a linear way, this single or lumped
numerical initiated crack will lead to a stiffer reac-
tion of the beam to the failure load. Based on the
Bernoulli-Euler beam theory, the deformation is the
double integral of the the moment-curvature relation
(y=∫ ∫M/(EI)dx) over the length. The additional sur-
face of a single crack with a limited width will be
minor compared to an uncracked calculation. Reason
why, beside the adapted boundary conditions, also the
stiffness of the concrete material should be adapted for
failure analysis purposes.

As following (EN 1992-1-1 2005), an adequate
prediction of a deformation parameter y is given by
Eq. (15), for members mainly subjected to flexure. In
a simplified way, this deformation parameter may be
set equal to the deformation y. While looking to (ACI
440.1R-15 2015), the second moment of area should
be adopted, and Eq. (16) becomes valid:

y=
(

1− β

(
Mcr

Ma

)2
)

ycr + β

(
Mcr

Ma

)2

yuc (15)

Ie= Icr

1− γ
(

Mcr
Ma

)2 [
1− Icr

Iuc

] ≤ Iuc (16)

where, Mcr and Ma are the cracking and applied
moment (Ma≥Mcr), respectively, y, ycr and yuc are the
deflections, ycr based on a fully cracked section and
yuc based on an uncracked section. The coefficient β
is taking the influence of the duration of the loading or
the repetition on the average strain into account. It is
set equal to 1 for a single short-term loading and 0.5 for
a sustained or repeated loading. Ie, Icr and Iuc are the
effective, cracked and uncracked moments of inertia,
respectively and γ depends on load and boundary con-
ditions and accounts for the length of the uncracked
regions of the member and for the change in stiffness
in the cracked regions. The factor can be taken equal to
γ = 1.72–0.72(Mcr /Ma), which is in fact only valid for
a simply supported beam with a uniformly distributed
load.

At first glance, there are a few similarities between
the two approaches of the EC and ACI, but after
reworking and using the inverse relationship between
deformation and second moment of area, we arrive at
the very similar equations (Eqs. (17) and 3.5). Both
are referring to the uncracked behaviour, which are
the results of a linear elastic analysis. While Eq. (17)
is expressing a magnification factor applicable on
the deformation, Eq. 3.5 acts as a reduction factor
on the moment of inertia or results in an increased
deformation.

y=
[(

1− β

(
Mcr

Ma

)2
)

Iuc

Icr
+ β

(
Mcr

Ma

)2
]

yuc (17)
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Ie=

⎡

⎢⎢
⎣

1
(

1− γ
(

Mcr
Ma

)2
)

Iuc
Icr
+ γ

(
Mcr
Ma

)2

⎤

⎥⎥
⎦Iuc (18)

Note that for Eq. (15), in the original formula (EN
1992-1-1 2005) the ratio of the stress in the reinforce-
ment corresponding to the first cracking and the one
with the applied moment is used (σ sr /σ s) instead of
(Mcr/Ma). Further on, it can be observed that both
equations will lead to identical results for short term
loading if β = 1= γ which means if Mcr /Ma= 1.

It is now proposed to account for cracking in the
region where moments and shear will interact by a
smeared approach, not by reducing the inertia but by
adjusting the Young’s modulus in an artificial way as
the product of EI is determining the flexural behaviour.

3.5 Results

To account for the influence of cracking between the
middle and the supports, the reduction according to
Eq. (17) was used (smeared cracking) in combination
with the adapted boundary conditions. The results of
the FEM analysis will be discussed per article. In the
scope of this contribution, attention is mostly given to
the simulations with FRP reinforcement.

3.5.1 Acciai et al.
Out of the complete data and simulation set only eight
results are presented in Figure 5, showing the influence
of the boundary conditions by means of the princi-
pal stresses. Compression arch effects become visible
when the horizontal displacement at the support is pre-
vented. This finding illustrates the importance of the

Figure 5. Principal stresses for test 1-4 (top) and 9-12
(bottom), simply supported (left) and with fixed horizontal
displacement (right).

bearing supports. Unfortunately, none of the articles
describe this aspect in detail.

Internal normal forces into the reinforcement are
developing in a logical way with 0 kN at the supports
and maximum values at the symmetrical boundary
conditions, see discussion is section 3.4 and Figure 6.

Figure 6. Normal forces into the reinforcement for test 1-4
(left) and 9-12 (right), simply supported conditions.

One of the observations that can be made is that also
shear forces are developing in the reinforcement which
means that a dowel effect will be activated.The highest
shear force and shear deformation region exactly cor-
responds with the location where shear cracks start. For
the slender elements (left hand side of Figure 7) some
irregularities will be observed due to the boundary
conditions.

Figure 7. Shear forces into the reinforcement for test 1-4
(left) and 9-12 (right), simply supported conditions.

3.5.2 Noël & Soudki
Only two tests have been taken out of this study. Prin-
cipal stresses are showed in Figure 8 for two types
of boundary conditions. The development of normal
forces into the reinforcement for the simply supported
slab is depicted in Figure 9, and the development of
shear forces in Figure 10.

Figure 8. Principal stresses for test G1 (top) and G2 (bot-
tom), simply supported (left) and with fixed horizontal
displacement (right).
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Figure 9. Normal forces into the reinforcement for test G1
(left) and G2 (right), simply supported conditions.

Figure 10. Shear forces into the reinforcement for test G1
(left) and G2 (right), simply supported conditions.

3.5.3 Abdul-Salam et al.
The advantage of the latest reference, is the clearly
described and illustrated shear failures. A first figure
illustrates the changing mechanical stresses (Figure
11) with two types of boundary conditions. Further
on, the development of normal (Figure 12) and shear
forces (Figure 13) into the reinforcement for the simply
supported slab are also shown.

Figure 11. Principal stresses for test 1-17, simply supported
(left) and with fixed horizontal displacement (right).

3.5.4 Validation
Based on the reduced Young’s modulus, following the
Eurocode (17), the calculated deformations do show

Figure 12. Normal forces into the reinforcement for test 1-9
(left) and 10-17 (right), simply supported conditions.

Figure 13. Shear forces into the reinforcement for test 1-9
(left) and 10-17 (right), simply supported conditions.

the same magnitude as the measured ones at failure
load, see Figure 14. Results of the tests with steel rein-
forcement are excluded as they show a plastic plateau
which makes the linear elastic approach not appro-
priate till failure. In general, the calculated values do
show an underprediction, so an unsafe result.

Reworking with the ACI approach, 3.5 delivers a
slightly better approach but not yet satisfying. This
all despite the known and confirmed agreement of
both approaches looking to the deformation at the start
of yielding (not at failure) when verifying steel rein-
forced test specimens (Molkens & Van Gysel, 2021).
The deviation to the safe side for the tests out of(Noël
& Soudki, 2014) can be explained by the relatively
low concrete quality which was assumed (C30/37,
remember that this information was lacking). With a
higher concrete grade, a lower deformation should be
calculated resulting in a better agreement.

243



Figure 14. Ratio calculated versus measured deformation
(without steel reinforced tests).

4 CASE STUDY (PIER BLANKENBERGE)

4.1 Description

The coastal pier in Blankenberge (Belgium) is a car-
bon steel reinforced concrete construction supporting
a walkway of 350 m in the North Sea. Being exposed to
a vast amount of chloride ions over the years, the pier
has suffered from severe corrosion. Since sustainable
concrete repair is not possible anymore, the construc-
tion needs to be completely demolished and will be
rebuild again according to the original design of 1933.
Two alternative reinforcing materials were considered
for the new bridge decks: (1) stainless steel rebars and
(2) glass fiber rebars. Only the reinforcement config-
uration with GFRP rebars will be discussed in this
paper.

Figure 15. Pier in Blankenberge (Belgium Pier, n.d.).

As can be seen from Figure 16, the structure is
composed of two repetitive zones. The axis lines of
the longitudinal girders and transverse beams create
a field pattern, of which only one plate element in
zone 1 will be investigated. It spans 2.69 m and 4

Figure 16. 3D model of the concrete structure.

m in the pier’s longitudinal and transverse direction,
respectively.

Table 4 and Table 5 present the geometrical charac-
teristics and mechanical properties of the materials.

Table 4. Geometrical characteristics.

Concrete

Slab Thickness 180 mm
Concrete cover 25 mm

Glasspree bars of supplier Sireg

Diameter (top and bottom reinforcement M19
in both directions)
Spacing 80 mm

Table 5. Mechanical properties.

Concrete

Grade (characteristic/mean compressive C35/45
strength)

Glasspree bars of supplier Sireg

Modulus of elasticity 46 GPa
Characteristic tensile strength 800 MPa
Transverse shear strength >150 MPa
Bond strength >8 MPa

4.2 Test arrangements

In the near future, shear tests will be performed on two
floor slabs with a length of 3 m and a single span of
2.70 m, which is similar to the distance between the
secondary transverse beams in the original design of
the pier in Blankenberge.

During the first reference test, a simply supported
slab will be loaded up to failure. This specimen only
requires 8 GFRP bars (ø = 16 mm) with a spacing of
100 mm at the bottom face, see Figure 17 left hand side.

Figure 17. Reference test (left) and test with restrained
boundary conditions (right).

During the second test, a slab restrained and
clamped at both ends will be tested for the purpose of a
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robustness check in accidental situations (e.g. collapse
of a boat, truck, and even fire). These fixed ends are
provided by threaded anchor bar connections through
the bottom flange of 2 stiff beams and the concrete
slab. In order to check whether membrane action can
be formed in this element, it is required to provide 8
GFRP bars (ø = 16 mm) with a spacing of 100 mm
at the top face as well. It is generally known that FRP
reinforcement only exhibits an elastic behaviour. Due
to the lack of a plastic behaviour, FRP bars cannot
benefit from any redistribution of forces in acciden-
tal conditions. Nevertheless, it might be possible that
catenary action develops in such cases thanks to the
intact reinforcement at two critical locations. The bot-
tom reinforcement is expected to fail at midspan while
failure of the top reinforcement will presumably occur
near the supports.

5 FUTURE RESEARCH

As mentioned in chapter 4, the FEM modelling
approach will be validated with the experimental
results of both shear tests that will take place in the near
future. In addition to the shear behaviour, robustness
aspects and post-failure behaviour will be investigated.

As earlier discussed, moment/shear interaction
should be studied in a more profound way.

Lacking non-linear material models do obstruct
further research on the behaviour of FRP-reinforced
concrete when subjected to fire.

6 CONCLUSIONS

A wide set of experiments was used to validate the
developed FEM approach, in which concrete was
modelled as a shell element and the reinforcement
was converted to a single rectangular beam element
with an effective width and depth. Some lacking
information in the data sets of the reference articles
hindered an appropriate comparison of the numerical
and experimental results.

A closer prediction of the cracked deformation is
also needed in order to determine the ultimate defor-
mation capacity of FRP reinforced elements in a better
way. With a better understanding of this aspect, failure
mechanisms can also be predicted more accurately.
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ABSTRACT: In this paper, computer-based simulation is carried out using the Finite Element Analysis
(FEA) package Abaqus to study crack widths in reinforced concrete beams. A set of experimentally tested
beams are investigated, and measured crack widths are compared with crack widths predicted by nonlin-
ear FEA (NLFEA) and relevant design codes. It is shown that Eurocode 2 (EC2), fib Model Code 2010
(MC2010) and the draft for new EC2 underestimates the crack widths at the outermost concrete face to
different extents while they are conservative at reinforcement level. Crack widths predicted by NLFEA, on
the other hand, provides good crack width predictions at the outermost concrete face for both investigated
beams.

1 INTRODUCTION

Crack widths in concrete structures should be limited
due to aesthetics, durability, and functional require-
ments (e.g., tightness). Although research related
to this topic has been ongoing since modern time,
large uncertainties and large need for further research
remains. The large uncertainties are especially due to
large scale concrete structures, the large concrete cov-
ers applied for structures in harsh environments, and
introduction of more eco-friendly modern concretes
(Basteskår et al. 2018). Strict crack width limits lead to
increased amount of reinforcement and the economic
consequences are proven to be large (Basteskår et al.
2019).

The work presented is part of the PhD-project of the
first author and are related to the large research activity
funded by the large Norwegian infrastructure project
“Ferry-free E39” and the PhD work of Reignard Tan
(Tan, Reignard 2019).

The main objective of this paper is to investi-
gate how nonlinear finite element analysis (NLFEA)
can be applied to predict maximum crackwidths,
which furthermore are compared to crack widths pre-
dicted by analytical calculation methods in design
codes such as Eurocode 2 (EC2) and fib Model
Code 2010 (MC2010). The study is benchmarked
against the experimental results from the comprehen-
sive and well documented beam tests of Hognestad
(1962).

2 CONCRETE DAMAGE PLASTICITY

The Concrete Damage Plasticity (CDP) model is a con-
tinuum, plasticity-based, damage model for concrete
and is in Abaqus based on the models proposed by
Lubliner et al. (1989) and by Lee and Fenves (1998).
It is assumed that the two main failure mechanisms
are tensile cracking and compressive crushing of the
concrete material. The evolution of the yield (or fail-
ure) surface is controlled by two hardening variables
in tension (εpl

t ) and compression (εpl
p ), linked to the

respective failure mechanisms.
The experimental behaviour of reinforced concrete

beams cannot be captured by elastic damage models or
elastic-plastic constitutive laws only. Because in such
models irreversible strains cannot be captured. In Fig-
ure 1b it can be noticed that a zero stress corresponds
to a zero strain which makes the damage value under-
estimated. On the other hand, when an elastic plastic
relation is adopted, the strain will be overestimated
since the unloading curve will follow the elastic slope
as shown in Figure 1c.

Figure 1. Elastic plastic damage law (Jason et al. 2004).
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The CDP model is combining the stress-strain
curves in Figure 1b and c into Figure 1a so that we can
better capture the constitutive behaviour of concrete.
In SLS-design, compressive crushing of the concrete
is generally not a problem and therefore the damage
model for compression is excluded from the analyses
described in this paper.

2.1 Material constitutive behaviours

The applied numerical models for the constituent
material properties are described in this section

2.1.1 Concrete model
CDP describes the constitutive behaviour of concrete
by introducing scalar damage variables. Both tensile
and compressive response of concrete can be charac-
terized by CDP, and the tensile response is depicted
in Figure 2. Concrete behaviour in compression are
not explained in this section due to investigated beams
being within the elastic compression range.

Figure 2. Behaviour of concrete under axial tension accord-
ing to CDP (Abaqus User Manual 2014).

As shown in Figure 2, the unloading response of
concrete specimen is weakened because the elastic
stiffness of the material appears to be damaged or
degraded. Damage associated with the failure mecha-
nisms of the concrete (cracking and crushing) results
in a reduction in the elastic stiffness. The CDP-model
characterizes this by a scalar damage variable, dt which
can take values from zero (undamaged material) to
one (fully damaged material). (Abaqus User Manual
2014). E0 is the initial (undamaged) elastic stiffness of
the material and ε

∼pl
t and ε∼in

t are tensile plastic strain
and inelastic strain respectively. The stress-strain rela-
tion under uniaxial tension is taken into account in
Eq. (1).

σt = (1− dt) · E0 · (εt − ε
∼pl
t ) (1)

A strain softening behaviour at the crack is assumed
in the model. Thus, it is necessary to define the
behaviour of plain concrete in tension for the CDP-
model. ABAQUS allows the user to specify concrete

Figure 3. Hordijk softening curve (Hordijk & Dirk Arend
1991).

by post a failure stress-strain relation or by apply-
ing a fracture energy cracking criterion (Abaqus User
Manual 2014) The former relation is used by the
authors.

The stress strain relation for concrete in tension
must be given to Abaqus in terms of the cracking
strains, ε∼ck

t , and corresponding yield stresses σt0
which are determined from the nonlinear Hordijk
curve (Hordijk, Dirk Arend. 1991). The exponential-
type of softening diagram shown in Figure 3 will
typically result in localized strains when the concrete
in a structural member crack.

The area under the stress-strain curve should be
equal to the fracture energy (Gf ) divided by the equiv-
alent length (heq) often called crack bandwidth. After
complete softening i.e., when virtually no stresses
are transmitted, the crack is said to be “fully open”.
The ultimate strain parameter in case of the Hordijk
softening curve is given by

εu= 5.136
GF

heqft
(2)

where ft is the tensile strength of the concrete. The
softening curve is given by

σ =

⎧
⎪⎨

⎪⎩
ft

⎛

⎝

(
1+

(
c1

εcr

εu

)3
)

exp
(

c2
εcr

εu

)

− εcr

εu

(
1+ c3

1

)
exp (− c2)

⎞

⎠ 0≤ εcr ≤ εu

0 εcr >εu

(3)

where c1 and c2 are parameters used to obtain the
stress-crack width opening relation for concrete from
deformation-controlled uniaxial tensile tests (Hordijk
& Dirk Arend 1991). The recommended values are 3
and 6.93 respectively and are also applied in this study.
The determination of the fracture energy Gf in tension
is more complicated, and the authors have chosen this
value to be as recommended by the Dutch guidelines
(Hendriks 2017) and fib Model Code 2010 (fib 2013).

GF = 0.073f 0.18
cm (4)

The tension softening data according to the Hordijk
curve in Equation 3 are given to Abaqus in terms of
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cracking strain ε∼ck
t and yield stress σt0 as shown in

Figure 2. When the unloading data are available, the
data are provided toAbaqus in terms of tensile damage
curves, dt − ε∼ck

t . Abaqus automatically converts the
cracking strain values to plastic strain values using the
relationship given by:

ε
∼pl
t = ε∼ck

t − dt

(1− dt)

σt

E0
(5)

From this equation the effective tensile cohesion
stress (σ̄t) determines the size of the yield (or failure)
surface as:

σ̄t = σt

(1− dt)
=E0(εt − ε

∼pl
t ) (6)

In Abaqus the parameters required to define the
CDP-model consists of four constitutive parameters.
First the angle of internal material friction of the con-
crete ‘ψ’ measured in the p-q plane at high confining
pressure, and in this study, is chosen as recommended
default value. The second parameter is the eccentricity
? which defines the rate at which the hyperbolic flow
potential flow potential approaches its asymptote and
is chosen as default value of 0.1. The third parameter
is the ratio of initial biaxial compressive yield stress
to initial uniaxial compressive yield stress, ‘fb0/fc0’,
with a default value of 1.16. The fourth parameter
is the ratio of the second stress invariant on the ten-
sile meridian to the compressive meridian at initial
yield with a default value of 2/3 (Abaqus User Manual
2014).

The parameter ‘Kc’ should be defined based on
the full triaxial tests of concrete, moreover, a biax-
ial laboratory test is necessary to define the value of
‘fb0/fc0’. This paper does not discuss the identifica-
tion procedure for parameters ‘ε’, ‘fb0/fc0’, ‘Kc’ or
‘ψ’ because the test series that is in this study does not
have such information. Therefore, default values have
been chosen.

In nonlinear finite element programs, the material
models softening behaviour and stiffness degradation
can often lead to severe convergence difficulties. A
common technique to overcome some of these dif-
ficulties is the use of a viscoplastic regularization of
the constitutive equations, which causes the consistent
tangent stiffness of the softening material to become
positive for sufficiently small-time increments. The
CDP-model in Abaqus can be regularized by using
viscoelasticity to permit stresses to be outside of the
yield surface. Using a small value for the viscosity
parameter (µ) (small compared to the characteristic
time increment) usually helps to improve the rate of
convergence of the model in the softening regime,
without compromising the results (Abaqus User Man-
ual 2014). The viscosity value used by the authors in
this work was chosen as 0 and 0.0001 which is shown to
be sufficiently low to give realistically results (Demir
et al. 2018). The plasticity damage parameters used by
the authors are shown in Table 1.

Tension stiffening is implicitly modelled by the cho-
sen tensile softening law and corresponding chosen

mesh, thus causing localization of cracking strains in
the tensile zone of the investigated beams for the con-
crete elements. Distance between localized cracking
strains becomes analogous to a crack spacing. This in
turn should result in steel strains varying between the
crack spacing, having its maximum at a crack and its
minimum between two consecutive cracks. This also
means that tension stiffening should be accounted for
without having to explicitly model the bond between
concrete and steel.

3 PREDICTION OF CRACK WIDTHS

The crack width calculation methods according to
EC2, MC2010 and the drafts for the new versions of
EC2 are briefly highlighted in the following. Chosen
values for the parameters used in the subsequent crack
width calculates are also addressed.

3.1 Eurocode 2 Part 1-1

The method for calculation of crack widths applies the
following equation:

w= Sr,max(εsm − εcm) (7)

Where Sr,max is the maximum crack spacing for a
stabilized cracking stage expressed as:

Sr,max = k3c+ k1k2k4
ϕ

ρs,ef
(8)

Here k1= 0.8, k2= 0.5, k3= 3.4 and k4= 0.425 are
chosen, while ϕ is the diameter of longitudinal rein-
forcement and ρs,ef is the reinforcement ratio in the
effective concrete tensile zone. The difference in mean
strains is calculated according to:

(εsm − εcm)=
σs − kt

fctm
ρs,ef

(
1+ αeρs,ef

)

Es
≥ 0.6

σsr

Es
(9)

where σs is the reinforcement stress, and kt is depen-
dent on load duration (short- or long-term loading) and
varies from 0.4 to 0.6.The authors have chosen kt = 0.6
due to the probable absence of creep and shrinkage
in the experimental results and applies in general as
a chosen value for the other codes as well. The ratio
between steel and concreteYoung’s modules is defined
as αe=Es/Ecm (Eurocode 2 Part 1-1, 2004).

Table 1. Plasticity damage parameters.

! E fb0/fc0 Kc µ

35 0.1 1.16 0.667 0 and 0.0001
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3.2 Model Code 2010

The maximum calculated crack width at the height of
the reinforcement is found by:

w= 2ls,max(εsm − εcm) (10)

when the term related to shrinkage strains is neglected.
Here, ls,max denotes the length over which slip between
concrete and steel is assumed to occur and is expressed
by:

ls,max = k · c+ 1

4

fctm

τbms

ϕs

ps,ef
(11)

where k = 1 is an empirical parameter considering the
influence of the concrete cover chosen according to
the recommended value and c is the concrete cover.
The mean bond strength between steel and concrete
is chosen as τbms= 1.8fctm. The relative mean strain in
Equation 10 is the same as chosen in Equation 9 but
the lower bound limits between the mean strains are
different.

MC2010 allows for extrapolation of the crack width
at the reinforcement height given in Equation 10 by
a factor (h-x)/(d-x) where, h is cross-section height,
x is the height of the compressive sone, and d is the
effective height.This extrapolation is valid for cover up
to 75mm. For larger covers a more detailed analysis is
required and procedures based on fracture mechanics
approach would be appropriate.

3.3 Draft for the new Eurocode 2, 2022 (pr EN
1992-1-1)

In the draft for the new Eurocode 2 the calculation of
crack width is expressed as:

wk ,cal = kwSrm,cal(εsm − εcm) (12)

where kw = 1.7 is a factor converting the mean crack
width into a calculated crack width and is chosen
according to the recommended value. Srm,cal is the cal-
culated mean crack spacing assumed to be valid for
both initial cracking and a stabilized crack pattern.

For elements subjected to direct loads or subjected
to imposed strains εsm − εcm can be expressed as:

εsm − εcm= k1/r

σs − kt
fctm
ρs,ef

(
1+ αeρs,ef

)

Es
≥ 0.6

σsr

Es
(13)

Where k1/r is a coefficient to account for the
increase of crack width due to curvature which is
expressed as:

k1/r = h− x

h− ay.i − x
(14)

Here x is the distance to the neutral axis, and ay.i
is the cover distance plus rebar size. The mean crack
spacing is:

Sr,m,cal = 1.5c+ kflkb

7.2
· ϕ

ρp,ef
(15)

where c is cover to the longitudinal reinforcement, ϕ is
bar diameter, kb= 0.9 is a coefficient for bond proper-
ties for ordinary reinforcement chosen according to the
recommended value and kfl = (h− hc,eff )/h, where h
is cross-section height and hc,eff is the effective tension
area.

3.4 NLFEA and codes

EC2 and MC2010 both state that SLS verifications
using NLFEA can be performed a posteriori. In the
case of bending cracks, the crack opening (w) may be
calculated according to Dutch guidelines (Hendriks
2017):

w= Sr,max · ε̄s (16)

Where ε̄s is the mean strain value of the longitu-
dinal reinforcement in the cracked zone obtained in
the analysis and Sr,max is the maximum crack spacing
according to EC2.

4 EXPERIMENTAL TEST AND FEA
MODELLING

4.1 Hognestad beam tests, control of flexural
cracking

From the established database, the investigation car-
ried out by Hognestad (1962) was chosen as appropri-
ate for this paper. This experimental work involved 36
rectangular beams with a length of 3429 mm. Different
parameters were chosen as major variables such as bar
diameter, bar type, concrete strength, reinforcement
ratio, beam width and depth and thickness of cover as
shown in Table 2 (Hognestad 1962). All beams were
loaded by twin-loads at the third points of the span. To
prevent shear failures, the outer thirds were reinforced
with ø10 stirrups. The beams examined in this study
are No 31 and 32, with respective properties given in
Table 3. The different parameter variables shown in
Table 2 are included to highlight the extensive work
done by Hognestad and are relevant for further work.

Table 2. Parameter variations done by Hognestad.

Beams No. Major Variable Description

1–4 Bar diameter Size and number of rebars
5–7 Bar diameter Size and number of rebars
8–10 Bar diameter Size and number of rebars
11–12 Bar diameter Size and number of rebars
13–16 Bar diameter Size and number of rebars
17–20 Bar diameter Size and number of rebars
21–24 Beam width Size and number of rebars
25–28 Beam depth Size and number of rebars
29–32 Concrete cover horizontal cover
33–36 Concrete cover vertical and horizontal cover

* Both compressive and tensile concrete strength varied for
the test series (Hognestad 1962).
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Table 3. Geometrical and material properties for Beam No
31 and 32.

Description mm Description MPa

Beam height* 406 fck* 25,1
Beam width* 203 fct* 2,57
Cover vertical B31 63 Es* 200.000
Cover vertical B32 112 Ec* 31.504
Cover horizontal* 25
Effective depth B31 322
Effective depth B32 294.5
Beam length* 3429
Bar size* 22
Number of bars* 2

* Properties shared by both beams No 31 and 32.

Figure 4. Softening branch of concrete in tension with
corresponding damage parameter development applied by
Abaqus.

Table 4. Stress-strain values for reinforcement and steel
plates.

Yield Stress Plastic Strain
(σt) MPa ε∼pl

Reinforcement:
575* 0.0
Steel plates:
275* 0.0

* Both steel plates and reinforcement never reach yield-
ing during the analysis and plastic strains are therefore not
calculated

4.2 Finite element modelling of the RC beams

To develop the FE models of the RC beams, steel
loading- and support plates as well as the concrete
cross-section were modelled using 3D brick elements.
The FE models thus consist of three types of materials
(concrete, steel plate, reinforcement). The embedded
reinforcement technique available in ABAQUS is also
used. The beams are reinforced with 22 mm rebar
diameters with either 84 mm or 122.5mm distance
from the outermost surface to the centroid of the
reinforcement.

The elements chosen for concrete and steel plates
in Abaqus is C3D20R quadratic brick elements with
reduced integration (20 nodes and 8 integration
points). The element size is approximately 20x20x20
mm and chosen in accordance with Dutch guidelines
(Hendriks 2017) maximum element size for NLFEA.
For the longitudinal reinforcement wire elements each
with a length of 20 mm is used. The loading of both
beams are displacement controlled.

There is a mesh sensitivity problem in cases with
little or no reinforcement with the specification of a
post failure stress-strain relation, in the sense that the
finite element predictions do not converge to a unique
solution as the mesh is refined because mesh refine-
ment leads to narrower crack bands. In these beam
models a post failure material behaviour as explained
earlier with tension stiffening derived from Hordijk
softening curve is applied and the cracking failure are
distributed evenly and results in additional cracks and
mesh sensitivity analysis with other element sizes is
not performed.

Figure 5. Model of Hognestad Beam in Abaqus.

5 RESULTS

5.1 Load displacement behaviour

The load displacement curves were not reported by
Hognestad and therefore the FEA load-displacement
is used as an indicator for crack development and used
to compare when cracking occurs.Also, some sensitiv-
ity checks applying various values for the previously
discussed viscosity parameter are performed. Viscos-
ity parameters equal to 0 and 0.0001 were used, and
from 5.2 we can observe that for beam No. 31 that
when initial cracking occurs at approximately 20 kN
loading there is a slight difference between the two
solutions. This is due to that the viscosity parameter
greater than 0 allows for stresses outside the yield sur-
face but provides accurate enough results. For beam
No. 32 the Viscosity parameter of 0 are not done
due to the iterative process and length of the analysis
required.

5.2 Experimental crack widths

From the Hognestad beam tests measured surface
crack widths at both the height of the steel centroid
and concrete top face are reported. The results for
the selected beams are given in 5.3. From the mea-
sured crack widths, we notice that the crack widths at
the height of reinforcement are similar regardless of
concrete cover.
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Figure 6. Load deflection curve for different viscosity
parameter.

Figure 7. Experimental maximum crack widths vs steel
stresses for beam No. 31 and No. 32 (Hognestad 1962).

5.3 Maximum crack width predicted by design
codes

The predicted maximum crack widths according to
EC2, MC2010 and the draft for new EC2 from
equations 7,10 and 12 are compared in Figure 8.

It can be noted that for both beams the estimated
crack widths are conservative at the height of rein-
forcement but underestimated at the outermost con-
crete face for EC2 and the draft for new EC2. MC2010
predict the crack width at the outermost concrete face
to a good extent for 62 mm cover but underestimate it
for 112 mm cover. The extrapolation of the results to
get the crack width at the outermost concrete face are
not valid for a larger cover than 75mm but are chosen
to be included here.

The new term (k1/r) accounting for the curvature
in the new EC2 looks to provide a better result for
the crack width at increased steel stresses beyond 250
MPa for both beams than the current EC2.

5.4 Calculations of crack widths combining
NLFEA and EC2

The maximum crack width is calculated from Equation
16. Mean steel strains (ε̄s) for Beam No. 31 and 32 are
extracted from the NLFEA.The maximum crack spac-
ing (Sr,max) is calculated from equation 8 in accordance
with EC2. In addition, the measured maximum spacing
between the cracks in the constant moment zone from
the Abaqus models at the stabilized cracking stage is
also used (steel stress close to 350MPa).

Figure 8. Crack widths predicted by design codes, (a) Beam
No. 31, (b) Beam No. 32.

From Figure 9 we can determine the maximum
crack spacings from where we have a stabilized
cracking pattern at σs= 350 MPa, to (a) Sr,max = 240
mm and (b) Sr,max = 300 mm.

Figure 9. Steel stress levels and corresponding strains
along the rebar length in the cracked concrete zone (con-
stant moment), (a) Beam No. 31 numbers 1-5 indicate the
localization of cracking strains in Figure 13, (b) Beam
No. 32.
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From Figure 10 the method based on extracting
mean steel strains from the NLFEA and using the EC2
formulation for Sr,max and the maximum crack spac-
ing from the analysis shown in Figure 9 to calculate
the crack widths at the reinforcement height are con-
servative. On the other hand, the EC2 formulation for
maximum crack spacing fits better at the outmost con-
crete face than the maximum crack spacing from the
analysis.

Figure 10. Crack widths estimated by extracting steel
strains from NLFEA, (a) Beam No. 31, (b) Beam No. 32.

5.5 Crack width determined by the Concrete
Damage Plasticity model

From the results in Abaqus the cracking strains are
found meaning we can determine the crack width as:

w= εcr · heq (17)

The cracks localize within the brick elements, and at
the top face of the beam the crack widths vary over the
width of the beam. The crack widths are calculated
by selecting the cracked elements across the beam
width and using average cracking strain εcr multiplied
with the crack band width (heq) which is an essential
parameter in constitutive models that describe the soft-
ening stress-strain relationship. The preferred method
is a method based on the initial direction of the crack
and the element dimensions (Hendriks 2017). For both
beams the length of the crack band width is 20mm.
The development of the crack width using this method
is shown in Figure 11. The crack localizations are
visualized in 6.

Crack 1 in Figure 11 is selected representing the
maximum crack width for both beams and compared

Figure 11. Crack widths of major cracks in the constant
moment zone estimated by NLFEA, (a) Beam No. 31, (b)
Beam No. 32.

to the reported experimental crack width values in
Figure 12.

It is observed that the NLFEA with CDP-model can
accurately predict the crack width at the concrete face
for the two experimental beams.

Figure 12. Maximum crack widths estimated by NLFEA
CDP-model vs experimental values, (a) Beam No. 31, (b)
Beam No. 32.
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Figure 13. Visualization of localized cracking strains in
between the supports for Beam No. 31 at σsr = 350MPa.

6 DISCUSSION

By applying the CDP-model with embedded reinforce-
ment (no-slip) and calculating the crack width directly
(Equation 18) by the cracking strain and the selected
bandwidth as shown in Figure 14, we were able to
obtain good crack width predictions of the reported
experimental results at the outer most concrete face.
Using the Dutch guidelines (Equation 16) with maxi-
mum crack spacing (Sr,max) defined in EC2 (Equation
8) provided also good agreement for beam No. 31 with
cover 63 mm, while for beam no. 32 with cover 112
mm the results are to the unconservative side at the
outermost concrete face. One reason looks to be that
the maximum crack spacing (Sr,max) in EC2 does not
fully consider the curvature effect for beams in bend-
ing and the impact of large concrete covers do not seem
to be fully accounted for in the current code.

EC2 underestimate the maximum crack width at
the outermost concrete face. In fact, it is observed that
the underestimation is increasing for larger concrete
cover. This seems to be addressed better in the draft
for the new EC2 which introduces a coefficient (k1/r)
to account for increased crack widths due to the curva-
ture from bending. However, it is still underestimating
the crack widths at the outermost concrete face, but
the results look to be more consistent in comparison
with the current EC2. The need for this coefficient for
concrete beams subjected to pure bending is supported
by the observed results shown in Figure 7 and 14, as
it is noticed that both beams have quite similar mea-
sured experimental crack widths at the reinforcement
level.

MC2010 predict the crack width at the outermost
concrete face for beam No. 31 to a very good extent
by extrapolating the calculated crack width at rein-
forcement level, while being conservative at the rein-
forcement level. The corresponding result for Beam
No. 32 by using MC2010 might be considered invalid
since the distance from the reinforcement level to the
outmost concrete face is larger than 75 mm. It is not
clear to the first author how the code accounts for
this except stating the following: “For larger concrete
cover a more detailed analysis is required. Procedures
based on the fracture mechanics approach would be
appropriate”. However, it seems that methods like the
CDP-model are applicable.

From the investigated beams it can be noted that a
pivotal question has risen. At which location should

Figure 14. Crack widths vs steel stress for different
approaches, (a) Beam No. 31, (b) Beam No. 32.

the maximum crack width be determined? The term
accounting for the curvature in the new EC2 (k1/r)
is logical, but especially for beams with large con-
crete cover this gives large crack widths at outermost
concrete face. This increase in calculated crack width
might have large economic consequences if not the
allowed crack limits in the codes are adjusted to this
increase. A relevant observation for this discussion is
that both beams have quite similar measured experi-
mental crack widths at the reinforcement level that we
want to protect with a concrete cover.
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7 CONCLUSIONS

In this paper NLFEA with the concrete damage plas-
ticity (CDP) model has been used to calculate the
maximum crack widths in beams. The results have
been compared to experimental values and results
from various analytical prediction models. The results
suggest that the following conclusion can be drawn:

1. 3D NLFEA analysis with the CDP model and
embedded reinforcement is used to calculate the
maximum crack width by multiplying the largest
average cracking strain at the concrete face through
the width of the beam with the selected bandwidth
(Equation 18). The resulting crack widths gave pre-
dictions in good agreement with the experimental
values at the outer most concrete face regardless of
the cover size. This suggests that this method take
the effect of cover and curvature due to bending into
account better than the other NLFEA solutions and
the analytical methods in the codes.

2. EC2 gave conservative results for the maximum
crack width at the reinforcement level but under-
estimate the crack width at the outermost concrete
face for the investigated beams. This suggest that
the current EC2 do not correctly account for the
concrete cover and the curvature effect.

3. MC2010 gave conservative results for the maxi-
mum crack width at the reinforcement level for both
beams. While it gave good predictions at the exper-
imental values at the outermost concrete face for a
cover of 63 mm, the prediction was poor for cover
size 112 mm. This cover size is greater than the
allowed value of 75 mm and thereby clearly shows
the limited validity range for beams subjected to
bending in MC2010.

4. Calculating the maximum crackwidth from the
draft of the new EC2, accounting for the increase in
curvature by the factor k1/r gives better agreement
than the current EC2 for crackwidth at the outer-
most concrete surface for increased steel stresses
but is still slightly to the unconservative side. This
suggests that the introduction of a curvature effect
is a more correct solution for beams in bending, but
this is based on only two examined beams.

5. Crackwidth calculations based on extracting the
average steel strains from the NLFEA with a maxi-
mum crack spacing have been performed using two
approaches:

(a) With Sr,max from EC2: Good agreement with
crack widths at the outermost concrete face
was achieved for beam no. 31 but were uncon-
servative for beam no. 32. This suggest that
the maximum crack spacing in EC2 do not
fully account for the effect of large concrete
covers.

(b) The approach with Sr,max extracted directly
from the NLFEA is considerably underestimat-
ing the crackwidth at the outermost concrete
face but is conservative at the reinforcement
level.

6. From the conclusions in 1-5 the following can be
derived:

• Predicting crack widths at the outer most concrete
face 3D NLFEA with CDP-model using cracking
strains and a selected bandwidth (Equation 18)
have no visible cover restrictions and gave the
best results for the methods involving NLFEA.

• From the applied codes, the draft for new EC2
seems best suited for a general crack width esti-
mation regardless of concrete cover for beams
subjected to bending.

8 FURTHER WORK

The authors are currently establishing a larger crack
width database including a large number of experimen-
tal studies. Some of these will be investigated further
with NLFEA to supply more raw data for recommen-
dations on different solutions for better crack width
prediction in beams subjected to bending with large
concrete covers.
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ABSTRACT: For the finite element (FE) simulation of reinforced concrete (RC) structures, the concrete-steel
“bond” is crucial, especially for the precast structural connection. Despite the wide adoption in practice, there
is an insufficient understanding of the “bond” behaviour within the grout sleeve connector, and current design
of the connector parameters is largely based on empirical data from the experiment. For seismic applications
the ductility of the connection region is a key and this is dependent upon the deformability of the connector;
however information about the overall deformation capacity of a sleeve connector is scarce in the existing
literature. On the other hand, the ductility of a connection region depends not only on the deformation capacity
of the connector itself but also on the interaction between the connector and the surrounding concrete. To
cater for these features, a computation model should be capable of representing both the “microscopic” interior
rebar-grout-sleeve interaction and the more “macroscopic” exterior sleeve-concrete bond behaviour. This paper
presents an overview of an equivalent transitional layer approach which adopts a perfect “bond” at the grout-
rebar interface and representing macroscopic “bond strength” “slip” through the strength and deformation of the
transition layer. The experimentally observed (macro) bondslip phenomenon is realised through modifying the
stressstrain behavior of the solid transitional elements with mesh-objective equivalent properties The proposed
bond scheme is verified by FE simulation in ABAQUS for various scenarios included a general pullout test, a
grout sleeve connector test, and a precast column test.

1 INTRODUCTION

In a low-carbon oriented era, prefabrication of con-
crete structures provides a holistic route to reducing
environmental impact from construction by enabling
more efficient fabrication and increased scope for
structural optimisation. While primary components
can typically be fabricated at pre-fab plants, the con-
nection is generally done on-site and can significantly
affect the assembled structural system’s performance.

Various connection methods have been developed,
and a representative method is by means of grouted
sleeve connectors. Despite the wide adoption in prac-
tice, there is an insufficient understanding of the bond
behaviour within the sleeve connector, and the current
design of the connector parameters is largely based
on empirical data from the experiment. For seismic
applications, the ductility of the connection region is
a key, dependent upon the connector’s deformability;
however, information about the overall deformation
capacity of a sleeve connector is scarce in the existing
literature. Furthermore, the ductility of a connection
region depends not only on the deformation capacity of
the connector itself but also on the interaction between
the connector and the surrounding concrete. This
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means to simulate the inelastic behaviour of a connec-
tion reliably, a computation model should be capable
of representing both the “microscopic” interior rebar-
grout-sleeve interaction and the more “macroscopic”
exterior sleeve-concrete bond behaviour.

In this paper, we present an overview of the
establishment of the above rebar-concrete interac-
tion model. To cater for the needs for modelling
the concrete-rebar interaction (bond) at both levels
while minding the computational effort, an equivalent
rebar-concrete interaction model has been developed.
The model adopts a perfect “bond” at the geomet-
ric interface but reflects the “slip” in a macroscopic
manner through a transitional layer. A generalised
formulation has been proposed to derive the equiv-
alent properties for the transitional layer, preserving
the equivalence of the bond strength as well as the
macroscopic slip as generally observed from physical
experiments.

The model is validated against classical bond tests
from the literature, and it is then applied in the sim-
ulation of the tensile performance of typical sleeve
connectors. Results demonstrate that the model is
effective and efficient, and comparison with relevant
experiments generally show good agreement. Finally,
an example application of the proposed model in
analysing the plastic behaviour of a concrete column
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with a bottom connection via sleeve connectors is
given, and the results are discussed.

2 OVERVIEW OF THE EQUIVALENT
TRANSITION LAYER SCHEME

In modelling the interface between rebar and con-
crete with a “perfect bond” scheme, the bond strength
is indirectly represented by the shear strength of the
transition layer concrete elements in a confined con-
dition. At the same time, the so-called “slip” is also
indirectly represented by the shearing deformation
of the concrete transition layer. Therefore, the shear
behaviour of the concrete transition elements needs to
be examined carefully. The macroscopic equivalence
bond behaviour needs to be achieved in the follow-
ing aspects: a) the “bond strength”, which is realised
through the confined shear strength; b) macroscopic
“slip”, which is measured as the shear displacement
of the transitional layer. General-purpose FE software
ABAQUS is used in this study, and concrete is mod-
elled with Concrete Damage Plastic (CDP) material
constitutive model.

In the present model, the macroscopic bond strength
is realized through the shear strength of transition
layer concrete elements. The shear force that is trans-
ferred from rebar through an inner concrete element
is governed by the equivalent material strength in the
transitional layer, and is affected by the hydrostatic
pressure, as well as the mesh size of the transition
layer. The mesh size aspect is particularly important
because the total amount of “bond” force between
rebar and concrete at a particular location should be
invariant regardless the mesh size of the concrete ele-
ments in the inner (transitional) layer surrounding the
rebar.

The derivation of the equivalent properties for the
transitional layer is demonstrated here using a 2D-
axisymmetric numerical scenario with solid elements
for both rebar and the concrete, but the same idea can
be used when the steel bar is modelled as 1D elements.
A simple mesh with square elements is adopted, and
for each section the inner layer of concrete surrounding
the rebar is the transition layer equivalent properties.
The maximum bond force Vb,u can be expressed in
terms of bond strength τu as:

Vb,u=πdb × τudx (1)

where τu= pullout bond strength, db= diameter of
the rebar, dx= incremental length in the longitudinal
direction.

In the numerical model, the “bond” force Vb,num that
may be transferred through the inner layer of concrete
can be expressed in terms of the shear force devel-
oped in the concrete elements surrounding the rebar,
Vc,in, as:

Vb,num=Vc,in= τc,in × Ac,in (2)

where τc,in= shear stress in the inner layer concrete,
Ac,in= effective shear transfer area in each inner con-
crete element,

Ac,in= 2π
(
db/2+ Lc,in/2

)
dx (3)

where Lc,in= transition layer thickness. The shear
strength in the inner layer concrete τc,in may be
expressed as a function of the compressive strength
of concrete f ′c and hydrostatic pressure (confinement)
pc,in as:

τc,in= τ̂c,in(f ′c,in, pc,in) (4)

Let the theoretical maximum bond force be equal to
bond force in the numerical model, i.e. Vb,u=Vb,num.
By substituting Equation 1, 3 & 4 into Equation 2, the
equivalent strength for the transitional layer concrete
can be determined by:

db

db + Lc,in
= τc,in(f ′c,in, pc,in)

τu
(5)

Thus,

f ′c,in= f̂ ′c,in(pc,in, τu, db, Lc,in) (6)

It should be noted that the equivalent method
applies in the presence of the hydrostatic pressure
of the transition element pc,in. Thus, beside being
mesh-size objective, the equivalent strength properties
are affected by other pertinent parameters, includ-
ing geometric dimensions (e.g. rebar/concrete cover
sizes).

As the transition layer element width Lc,in directly
influences the determination of the equivalent
strength, it makes sense to choose a value in a physi-
cally meaningful range. Considering the bond damage
zone as generally observed from experiments, the size
of the equivalent concrete layer Lc,in maybe defined
on the order of the radius of the rebar. In the situ-
ation where 1D truss/beam-element is employed to
model the rebar, the Lc,in should therefore be defined
to be close to the rebar diameter. For a 2D model, the
equivalent concrete strength f ′c,in in the inner layer ele-
ments can then be determined in terms of bond strength
τu, rebar diameter db and mesh-size Lc,in as well as a
nominal pressure pc,in which may be established from
preliminary FE modelling trials.

As can be seen, in the above described steel-
concrete interaction modelling scheme, the “bond”
strength and “slip” are equivalently represented by the
shear strength and deformation of the transition layer
concrete element. A single element test, which allows
incorporation of varying confining stress, is employed
to examine the basic shear behaviour of the concrete
constitutive model and the effects of adjusting perti-
nent model parameters. The CDP constitutive modelin
ABAQUS is chosen in this study.

The setup of a single element shear test is indicated
in Figure 1. A 10x10mm single element is attached
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Figure 1. Illustration of the single element test: (a) Sin-
gleelement test setup; (b) Deformation of the single element.

on one (right) side to an elastic element which is in
turn fixed on the far right side. The load (shear force)
is applied on the left side of the main element while
the lateral movement is restrained. The involvement
of the elastic element is to simulate a flexible con-
straint to the main element in a way similar to what
happens to the transitional layer elements from the
outer concrete in an actual bond region. Class C20
class concrete is selected, and the material property
parameters in ABAQUS is determined according to
theABAQUS manual (Hibbitt et al. 2011) and existing
literature (Jankowiak & Lodygowski 2005), as shown
in Table 1.

Table 1. CDP material parameter for C20 class concrete.

Young’s modules
Density MPa Poisson’s ratio

2.40E − 09 26200 0.2

Dilation Ratio of Viscosity
angle ψ Eccentricity stresses K parameter

31 0.1 1.16 0.666 0.001

Figure 2. Single element shearing test result of C20 concrete
in a flexibly confined condition.

The shear strain-stress test result of the C20 con-
crete single element is plotted in Figure 2.

As mentioned earlier, the shear strength of the
equivalent concrete elements may be expressed in

Table 2. CDP material parameter for C20 class concrete:
uniaxial compressive behavior.

Yield stress - Inelastic strain Damage -Inelastic strain
MPa

6 0 0 0
8 7.47E-005 0 7.47E-05
12 9.88E-005 0 9.88E-05
16 0.000154123 0 0.000154
20 0.000762 0 0.000762
16 0.002558 0.19 0.002558
12 0.005675 0.59 0.005675
2 0.011733 0.89 0.011733

0.99 0.02

Table 3. CDP material parameter for C20 class concrete:
uniaxial tensile behavior.

Yield stress Gf

MPa N/mm
2.21 133

terms of concrete strength f ′c,in and hydrostatic pres-
sure pc,in following a general form (Sonnenberg et al.
2003), and after fitting with the CDP concrete material
model, the relationship is found as:

τc,in/f ′c,in= 0.75(pc,in/f ′c,in)+ 0.068 (7)

Combining with Equation 5 the equivalent strength
f ′c,in can be determined to represent the “bond” strength
in terms of the expected hydrostatic pressure, the
“real” bond strength, steel diameter and transition layer
thickness.

3 CALIBRATION AND VALIDATION

3.1 Calibration of CDP model to represent
softening branch of bond-slip law

Following the realisation of the “bond” strength, here
we aim to achieve macroscopic “slip”, which is indi-
rectly represented by the shear displacement of the
transitional layer.

The single element test results in Figure 2 exhibit a
late stage shear stress increase in the overall softening
phase.This behaviour can be explained by the constant
and continued dilation of concrete elements as large
shear strain develops in the numerical model. In most
situations, we may not be interested in what happens in
the late stage shear behavior after the concrete mate-
rial is severely damaged, but in present situation, it
is meaningful to calibrate damage evolution to obtain
a smooth decrease of shear stress-strain relationship
to represent the softening branch of the bond-slip
behaviour.
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Extensive calibration analysis has been carried out
to evaluate the effect of modifying the damage evolu-
tion rule to achieve a more realistic shear behaviour in
the descending phase. The modified damage evolution
and corresponding numerical test result are shown in
Figure 3 Further calibration of the damage evolution
with 10mm element size has also been carried out,
and the resulting shear strain-stress relationship in the
equivalent concrete material is plotted in Figure 4. On
the other hand, in order to represent the macroscopic
“slip”, the mesh sensitivity of the softening branch
also needs to be examined. By varying the softening
law (damage), it is possible to achieve a meshindepen-
dent representation of the bond stress-slip law in the
equivalent transition layer.

Figure 3. Single element test result of initial calibrated
concrete.

Figure 4. Single element test result of further calibrated
concrete model.

3.2 Verification of proposed equivalent transition
layer scheme by pullout experiment

A typical pullout experiment is firstly modelled to
verify the above-proposed bond-slip representation
method with the equivalent transition layer for the
bond behaviour. The experimental pullout test con-
ducted by Chu and Kwan (2018) schematically shown

Figure 5. Sketch of pullout experiment (Chu & Kwan
(2018)) and 2D axisymmetric model.

in Figure 5, is selected. 12-mm rebar is used with 530
MPa yield strength and 663 MPa ultimate strength.
The concrete strength is 50.8 MPa, and the embedded
length is 50 mm.

The nominal “bond” strength τu from the experi-
ment is calculated as the pullout failure load divided by
the surface area of the bonded length of the reinforcing
bar:

τu= F

πdbl
(8)

where F = pullout failure load, db= diameter of the
steel bar, and l= embedded length of the steel bar. The
experimental “bond strength” is 19.95MPa, which will
be the target “bond” strength in the numerical model.

The properties for the equivalent transition layer
elements in the numerical model are determined as fol-
lows.The average pressure at concrete steel interaction
is assumed based on trial analysis to be pc,in= 20MPa.
From Equation 10, for an element size of 4mm (smaller
but close to the rebar radius), the transition element
can be assigned with 20MPa equivalent strength.
The corresponding numerical model is labelled as
M4-C20MD.

The numerical result of specimen M4-C20MD is
shown in Figure 6. It can be seen that the numerical
“bond” strength matches well with experimental and
theoretical macroscopic “bond” strength.

In order to indicate the effectiveness of the mesh-
objective equivalent transitional layer, the numerical
specimens without adjustment are also compared in
Figure 6. The numerical specimen which applied
50MPa normal concrete strength into transitional ele-
ments while keeping 4mm mesh size for transitional
elements, is labelled as M4-C50MD. The same 20MPa
concrete strength, numerical specimens with 7.5mm
and 10mm mesh size, labelled as M7.5-C20MD and
M10-C20MD, are also plotted in Figure 6. It is obvi-
ous that the equivalent “bond”-“slip” is mesh-sensitive
and the equivalent properties is mesh-objective. Over-
all, the numerical result indicates that the equivalent
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Figure 6. Sketch of pullout experiment and schematic
illustration of 2D axisymmetric model.

concrete transition layer scheme effectively represents
the macroscopic pullout bond behaviour.

4 APPLICATION OF PROPOSED EQUIVALENT
TRANSITION LAYER SCHEME IN PRECAST
GROUT SLEEVE CONNECTOR

The proposed equivalent bond modelling scheme can
be applied for the general FE analysis of RC structures
and in some bond sensitive regions. One motivation of
the proposed equivalent bond scheme is to model the
grout sleeve connector and the connection as a whole in
precast RC members. Compared with the general pull-
out scenario validated in Section 2, relatively sizeable
hydrostatic pressure will be generated at the impending
pullout of rebar in grout sleeve connectors. Therefore,
parameter identification is employed to calibrate the
grouting material property. The grouting thickness in
the grout sleeve connector is usually around 0.5 to 2
times of rebar diameter, which means the whole grout-
ing material can be regarded as the transition layer in
some cases.Application examples are then given using
a sleeve connector axial loading experiment.

4.1 Calibration for grout sleeve connector

The confinement in a grout sleeve connector can usu-
ally reach a very high level, to around 40 to 60MPa at
the grout-steel interface at the stage when the ultimate
axial load is reached. In the preliminary simulation,
the confinement generated in the transition grout-
ing elements is however much lower than the above
experimental observation. In fact, the development
of pressure in concrete under a shearing load in a
confined condition is very complex and it is diffi-
cult to simulate such a phenomenon accurately for a
continuum-based material constitutive model. There-
fore, it is not unreasonable to employ a parameter
identification process to calibrate the material proper-
ties for the grouting concrete in a steel tube confined

situation, so as to match the hydrostatic pressure as
observed from the experiment.

The parameters of grouting materials include the
elastic modulus, compressive and tensile strengths,
strain-stress relationship, damage evolution (soften-
ing) and plastic flow. The confinement in grout sleeve
connector is understood to be mainly generated by
shear-kind dilation of the grouting material.Therefore,
we can expect that the hydrostatic pressure is sensitive
to the definition of the dilation angle ψ .

A group of short-anchorage sleeve connectors
tested by (Zhang 2020) is selected as the reference
benchmark. 12mm, 16mm and 20mm deformed bars
are used in the experiments, and specimens with a
shorter anchorage length of 3db to 4db are selected for
benchmarking. High strength 108-MPa grouting mate-
rial is used for all specimens.To reduce the uncertainty
in the calibration, only those specimens with a pullout
failure are selected. In the experiment, the hoop strain
of the steel sleeve εt,sl is measured, so if we assume a
uniform distribution of bond stress (due to short bond
length), the longitudinal strain of steel sleeve εl,sl can
be derived as all axial force will be transferred between
the (discontinued) rebar and the steel sleeve.

The derivation of pressure at the grouting-rebar
interface is shown as follows with the consideration
of the Poisson’s ratio υ of steel sleeve. The confining
stress at the grouting sleeve interface is σsl and the
hydrostatic pressure at the grouting rebar interface σ0,
can be expressed by Equation 12 & 13:

σsl = 2Esl(εt,sl + υεl,sl)tsl

dsl,i(1− υ2)
(9)

σ0= dsl,iσsl

db
(10)

where εl,sl = sleeve longitudinal strain, εt,sl =measured
hoop strain, Esl = elastic modulus of steel sleeve,
tsl = thickness of the sleeve, dsl,i = sleeve inner surface
diameter, db= rebar diameter.

Table 4 summarises the selected specimens and the
corresponding grouting-rebar interface confinement
calculated from the strain measurements.

For general applications, the default dilation angle
in the concrete damage plastic (CDP) model is given
as 31◦. Through the parameter identification, a dila-
tion angle around a value of 44◦ would be required to

Table 4. Confinement stress of selected experimental ref-
erence specimens.

Maximum Bond
axial force strength Confinement

Specimen kN MPa MPa

S12-0.14-D12-4d 58.5 32.34 28.63
S16-0.14-D16-3d 98.66 40.91 57.84
B12-0.14-D12-4d 61.65 34.09 38.47
B16-0.14-D16-3d 108.44 44.97 42.72
B20-0.14-D16-4d 134.76 41.91 50.12
B20-0.14-D12-4d 63.73 34.68 28.93
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result in the level of high confining stress in the grout-
ing material as observed from the sleeve connector test
mentioned earlier.An example of pressure distribution
using the default and calibrated dilation angles, respec-
tively, is shown in Figure 7. It can be seen that marked
difference is made by using the two dilation values
and the pressure generated using the calibrated dila-
tion angle value matches well the experimental data
given in Table 4.

Figure 7. Hydrostatic pressure distribution at the grout-
ing-rebar interface with different dilation angle definition.

4.2 Application for grout sleeve connector

In the experiment conducted by Chen et al. (2020) a
half grout connector was tested and four groups of
longitudinal and hoop strain gauges were mounted on
the sleeve surface at four different locations, which
allows an estimation of the bond stress distribution.

The experiment was set up with the rebar inserted
in the half connector by grouting while the other half
was connected by a thread rod to facilitate the test
using a universal tension machine. The rebar is 20mm
in diameter with a yield strength of 429 MPa, ultimate
strength of 578 MPa and 24.08% elongation capac-
ity. The steel sleeve has 396MPa yielding strength and
629MPa ultimate strength. The elastic modulus and
Poisson’s ratio are 210GPa and 0.269, respectively.
The grouting material has a compressive strength is
99 MPa and the rebar anchorage length is 160mm

The measured tension force vs displacement rela-
tionship is reproduced with dashed curve in Figure 8.
Since the steel rebar is terminated at the middle of the
specimen, all the bond force between the rebar and the
grout transfers to the steel tube at the middle section
of the sleeve connector. We can also consider that the
tension force carried by the grouting material is very
small and negligible.Therefore, the experimental bond
stress distribution can be derived from four groups of
hoop/longitudinal strain measurements on the sleeve
surface, and the result is plotted in Figure 9.

Figure 8. Experimental and numerical displacement-force
relationship.

Figure 9. Derived bond stress distribution from strain
measurement on the sleeve surface.

The equivalent bond model with a transition layer
is employed to simulate the tension behavior of the
grouted sleeve connector. The deformed shape of the
connector from the numerical model is plotted in Fig-
ure 10 with axial loading applied at the left end. The
grouting material is modelled by a single layer of
transition elements. A large “slip” can be observed
at the loaded end between the rebar and the sleeve.
The specimen fails by steel rebar reaching ultimate
strength as expected from the experimental result. Fig-
ure 8 plots the displacement-force relstionship from
the simulation. The “slip” from the numerical model
is generally 20% smaller than that measured from
the experiment. This may be explained by the fact
that the measured displacement in the experiment was
the total displaceemnt at the rebar loading end and it
included the elongation of the threaded rod, which is
not considered in the numerical model.

The bond stress distribution from the numerical
result is shown in Figure 11. A comparison of the
numerical and experimental bond stresses at the exper-
imentally measured locations is shown in Figure 12.
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Figure 10. Computed deformed shape of grouted sleeve
connector after ultimate axial loading.

Figure 11. Numerical bond stress distribution.

Figure 12. Comparison of numerical and experimental bond
stress distribution results (Solid lines= numerical, dashed
lines= experimental).

It can be seen that the numerical results match very
well the experimental data before rebar yielding. After
yielding, the numerical model also undergoes degra-
dation of the “bond” stress near the loading end,
similar to the experimental result. However, the bond
stress distribution from the numerical model exhibits
an increase of the bond stress near the rebar termi-
nation (free) end, whereas this phenomenon is not
obvious from the experimental data. Neverthless, such
behaviour is not unreasonable in a sleeve connection
scenario, and could be explained by the interaction
between the steel sleeve and the grout concrete around

the rebar termination end (middle of the connector), in
that the longitudinal stretching (tension) of the sleeve
tube at this location will tend to induce an enhanced
pressure on the grout material, which in turn enhances
the bond stress between the grout and the rebar. In fact,
in both numerical and experimental results this passive
“bond” stress near the rebar ternmination end can be
observed.

Overall, the numerical result indicates that the
equivalent concrete transition layer scheme works
effectively in representing the macroscopic bond
behavior in a grouted sleeve connector

5 MODELLING PRECAST RC MEMBER

In this section the equivalent transitional layer scheme
is applied to model an experimental precast column
tested by M. J. Ameli and Chris (2016), labelled as
GGSS-1 in the original paper. The half-length col-
umn has an octagonal cross-section with an outer
diameter of 533 mm, and is connected with grouted
sleeve connectors at the column base. The height of
the test column is 2600 mm, and the horizontal load
is applied at an elevation of 2400 mm in a displace-
ment controlled manner The longitudinal steel bars
have a diameter of 25.4 mm, yield strength of 469 MPa
and ultimate strength of 641 MPa. The transverse rein-
forcement is in spiral form and has a diameter of 12.7
mm, yield strength of 434 MPa and ultimate strength
of 710 MPa.The spiral has a pitch of 64 mm with a dou-
ble hoop. The concrete has a compressive strength of
40 MPa on the test day, and the high strength grouting
material in the steel sleeve has a compressive strength
of 99 MPa. The length of the grout connectors is 370
mm, and the length of each dowel bar anchorage in the
connector is 180 mm.

In the experiment the column was subjected to
cyclic loading. For an illustration purpose, the column
is analysed under monotonic loading in the numerical
simulation. The equivalent bond model with a transi-
tion layer is employed to simulate the bond behaviour
of rebar and the grout in the connectors on the tension
side of the column, using 3D solid elements. The rest
of the steel bars are assigned with 1D beam element
and embedded in the surrounding concrete. The setup
of the numerical model of the selected grouted sleeve
connected precast column is shown in Figure 13.

The concrete vertical strain contour is shown in Fig-
ure 14 to illustrate the distribution of damage. It can be
seen that the model can successfully capture the con-
crete damage above and below the connection region
at the column base, which indicate the effects of the
presence of connector. The rebar axial strain distribu-
tion at various lateral displacement levels can also be
extracted from the numerical model, plotted in Figure
15 The coordinate origin point of x-axis (x=0) indi-
cates the position at the center of the connector, , and
the negative and positive x-axis represent the direc-
tion upwards and downwards, respectively. It can be
seen from Figure 15 that strain concentrates at both

261



Figure 13. Illustration of grouted sleeve connected precast
column numerical model.

Figure 14. Vertical strain contour of numerical column
specimen GGSS-1 and within tensile side connector.

upwards and downwards of connector end, and the
yielding rebar is firstly observed at the downwards
of connected region with the increase of overall lateral
displacement.

The above application of the proposed equivalent
bond (transition) layer method shows that the scheme
can effectively simulate the structural behaviour in the
bond sensitive region. Both the “macroscopic” exte-
rior sleeve-concrete bond behaviour and the “micro-
scopic” interior rebar-grout-sleeve interaction, such as
strain and bond stress distribution, can be well cap-
tured in the numerical model. The proposed bond
scheme provides a computational effective and effi-
cient means for modelling and further investigation
into the nonlinear behaviour of RC members and pre-
cast structures involving complex plastic deformation
and bond-sensitive effects in the plastic regions.

Figure 15. Connector rebar axial strain distribution.

6 CONCLUSIONS

An equivalent bond model with a transitional layer
scheme has been developed to cater for the need
of modelling both the local bond-related nonlinear
behavior in adequate detail and also the global struc-
tural response at a large scale. The bond model pre-
serves both the bond strength in a mesh-objective
manner and also the macroscopic slip through the shear
deformation of the transition layer.

In this paper the proposed bond model is firstly
verified by simulating a short anchorage pullout test,
showing satisfactory result. The model is then applied
in the simulation of grout sleeve connectors, in which
parameter identification has been used to calibrate
the grouting material property in a consistent man-
ner. Comparison with the relevant experiments shows
that the model can capture not only the global force-
displacement behaviour in all stages of the response,
but also the detailed distribution of the bond stress
and strain in the rebar. It is interesting to note that the
bond stress distribution exhibits noticeable enhance-
ment towards the rebar termination end (middle of
connector), which can be explained by the interac-
tion between the steel tube and the grouting material
around the rebar termination point in the middle of the
connector.

The model is subsequently applied in the analysis
of a precast column with grounted sleeve connectors.
The results shows that the model can effectively repre-
sent both the local steel-concrete interaction behavior
and the nonlinear global structural response for both
general and precast RC members in the FE analysis.

REFERENCES

Chen, J. & Wang, Z. & Liu, Z. & Ju, S. 2020. Experi-
mental investigation of mechanical behaviour of rebar
in steel half-grouted sleeve connections with defects in
water/binder ratio. Structures, 26, 487–500.

262



Chu, S. H. & Kwan, A. K. H. 2018. A new method for pull
out test of reinforcing bars in plain and fibre reinforced
concrete. Engineering Structures, 164, 82–91.

Hibbitt, H. & Karlsson, B. & Sorensen, P. 2011. Abaqus
analysis user’s manual version 6.10. Dassault Systèmes
Simulia Corp.: Providence, RI, USA.

Jankowiak, T. & Lodygowski, T. 2005. Identification of
parameters of concrete damage plasticity constitutive
model. Foundations of civil and environmental engineer-
ing, 6, 53–69.

M. J. Ameli, D. N. B. J. E. P. & Chris, P. P. 2016. Seismic
Column-to-Footing Connections Using Grouted Splice
Sleeves. ACI Structural Journal, 113, 1021–1030.

Sonnenberg, A. M. & Al-Mahaidi, R. & Taplin, G. 2003.
Behaviour of concrete under shear and normal stresses.
Magazine of concrete research, 55, 367–372.

Zhang, F. 2020. Experimental study on bond-slip perfor-
mance of steel bars and sleeve constrained grouting
material. Mater, Hunan University.

263



Computational Modelling of Concrete and
Concrete Structures – Meschke, Pichler & Rots (Eds)

© 2022 Copyright the Author(s), ISBN: 978-1-032-32724-2

Structural behavior of fiber reinforced concrete foundations

Guomin Ji
Department of Manufacturing and Civil Engineering, Norwegian University of Science and Technology (NTNU),
Norway

Terje Kanstad
Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Norway

Steinar Trygstad
Dr. Ing. Steinar Trygstad, Norway

ABSTRACT: The paper presents a study of application of Fiber Reinforced Concrete (FRC) in foundation
slabs through experimental tests and numerical simulations. The fibers are the main reinforcement to take up
bending moments and shear stresses in the structural fiber applications. A series of full-scale tests of foundation
slabs reinforced with either steel fibers, a composite mineral fiber or ordinary rebars were performed at NTNU.
Comparisons between the test results and simplified methods based on recommendations from COIN, NB38,
DAfStb, and the recently launched draft of the new Eurocode 2, showed that the calculation methods are highly
conservative for the moment capacity. The numerical simulations are performed to investigate the structural
behavior under ultimate limit states (ULS). A numerical model closely representing the test setup was established
in the finite element software DIANA and the simulation results were compared with test results for fiber
reinforced, rebar reinforced and plain concrete foundations. A parameter study has been performed to investigate
the effect of shear stiffness of the isolation layer on the structural behavior of the foundations. The research work
provide basis for technical approval for application of Structural Fiber Reinforced Concrete (SFRC) in foundation
slabs and may contribute to increase use of fibers in load carrying structures.

1 INTRODUCTION

Fiber reinforcement has been used in concrete in many
decades, either as a replacement or as a supplement
to traditional reinforcement. Over the years, various
types of fiber have been researched and developed
with different materials, where steel fiber is most
widely used. [1] Various studies shows that by using
fiber reinforcement material savings, financial sav-
ings and reduction of environmental emissions may
be achieved [2, 3, 4, 5, 6, 7]. It has been shown
that fiber reinforcement has a strong crack-limiting
effect, therefore it is widely used in the applications
such as industrial floors. In these structures, fiber has
mainly been used for crack prevention, and not in so
much for load bearing [8]. The reason is mainly lack
of guidelines for dimensioning with fiber-reinforced
concrete.

In researches from recent years, however, it is shown
that fiber reinforced concrete structures may have suf-
ficient load-bearing capacity and ductility, and that
fiber reinforcement may be used as replacement for
reinforcement bars in certain situations [9, 10, 11,
12, 13, 14, 15]. In March 2020, the Norwegian Con-
crete Association published NB38: Fiber-reinforced

concrete in load-bearing structures to meet the desire
for common guidelines for dimensioning and exe-
cution of SFRC structures and elements fulfilling
a structural function [16]. Such structures need to
withstand different types of loads, like wind loads,
earthquake loads and various live loads. Foundation
slabs are an example of such a structural fiber rein-
forced concrete application. Foundations must transfer
loads from the structure down to the ground, and fibers
might be the main or the complementary reinforce-
ment to take up bending moments and shear stresses
[9]. The application of fibers in concrete foundations
is advantageous to reduce the amount of reinforcement
bars and the concrete thickness, but also to improve the
structural behavior through the fibers’ability to bridge
cracks. Fiber reinforcement might therefore increase
both the capacity and durability.

The chemical properties of various composite min-
eral fiber make it an excellent material for use in
particularly corrosion-prone areas, which would nor-
mally be challenging for steel reinforcement [6]. Use
of such types of fiber will therefore be relevant in
parking garages, in structures along the coast and in
foundations, which are often placed in salt and humid
environment. [3]
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In this paper a part of the research activities in a col-
laborative project between NTNU and several industry
partners is presented. In order to achieve technical
approval for fiber reinforced concrete in foundations
and to increase the use of fibers in load carrying struc-
tures in general, full-scale tests of foundation slabs
were performed at NTNU [20]. The concrete slabs
were reinforced with either steel fibers, a composite
mineral fiber or with ordinary rebars. The test results
are compared with the analytical results of simplified
methods based on recommendations from the com-
prehensive research project COIN [1], the FRC guide-
lines published by the Norwegian concrete association
NB38 [16], the German rules DAfStb [17], and the
recently launched draft of the new Eurocode 2 [18, 19].

Furthermore, numerical simulations are performed
in the finite element software DIANA to investigate the
structural behavior under ultimate limit states (ULS),
and to provide further insight into the failure mech-
anisms of the fiber reinforced solutions and thereby
contribute to new knowledge and improved design of
fiber reinforced foundations.

2 EXPERIMENTAL PROGRAM

Four different foundation types and a total of
nine full-scale foundation slabs with dimension of
2.0× 2.0× 0.25 m were tested under a point load in
the center. The foundations were unreinforced, rein-
forced with rebars, composite mineral fibers or steel
fibers respectively. The overview of the test program
is shown in Table 1. The foundations that were unrein-
forced or reinforced with rebars were used as a basis
for comparison for the fiber-reinforced foundations.

Table 1. Overview of test program of foundation slabs.

Foundation Test ID Reinforcement

1 UA Unreinforced
2 and 3 SA1, SA2 Steel rebars
4, 5 and 6 BF1, BF2, BF3 10kg/m3 composite fiber
7, 8 and 9 SF1, SF2, SF3 30kg/m3 steel fiber

The setup of the full-scale test represented typi-
cal column foundations of buildings and consists of
four components: concrete foundation, vapor barrier,
isolation layer and ground base combined of concrete
blocks and filled sand as shown in Figure 1 a) and c).
The insulation layer (Sundolitt XPS700SL) is used to
simulate the realistic subgrade of the foundation. The
two layers of vapor barrier with a thickness of 0.20 mm
allow the gliding between the insulation and the foun-
dation. The floor in the laboratory consists of concrete
block and cavities, and the cavities were filled up with
sand to create a flat and stable surface which could
withstand the slab under loading as shown in Figure 1
a) and b).

2.1 Material

A B35 M45 self-compacting concrete (SCC) was used
in the foundations because a stable SCC achieves a
better distribution of fibers and a more favorable fiber
orientation with more fibers in the longitudinal direc-
tion [15]. The maximum aggregate size used in the
mix design is 22 mm. The fresh concrete has a slump
flow of 600-650 mm and air content of 2.5%. The con-
crete recipe shown in Table 2 is the same for all the
foundations apart from the amount of added fibers.

Figure 1. Test setup.

Table 2. Concrete mix design.

Material Content (kg/m3)

Cemex, Miljøsement 380
(Cem II/B-S 52,5 N)
Sand (0–8 mm) 1062.0
Coarse aggregate 8–16 mm 350.0
Coarse aggregate 16–22 mm 400.0
Water 176.55
Super-plasticizer 4.18
Micro silica 15.0
Air Entraining Agent 0.38

Two types of fibers: composite mineral (CM) fibers
and steel fibers with hooked ends were used in this
research as shown in Table 3. The composite mineral
fibers are made of mineral threads twisted and glued
together by vinyl resin, and the helical surface structure
ensures adhesion of the composite fiber in the concrete
matrix in the same way as steel fiber with end hooks,
as shown in Figure 2 a) and b). The rebars applied in
foundations (SA1 and SA2) are shown in Figure 3.
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Table 3. Properties of composite mineral and steel fibers.

Fiber Type Composite Steel

Length (mm) 43 50
Diameter (mm) 0.72 0.75
E-modulus (MPa) 44 000 210 000
Tensile strength (MPa) 900 1550
Density (g/cm3) 2.1 7.85
Number of fibers/1 kg 29000 6000

Figure 2. Fibers used in the foundation slabs.

Figure 3. Foundation with steel rebars

2.2 Experimental tests of material properties

The compressive strength and E-modulus test (Figure 4
a)) were performed for steel fiber concrete. In addi-
tion, the three-point bending test was performed for six
beams with 10 kg/m3 composite fiber and five beams
with 30 kg/m3 steel fiber to determine the residual
flexural tensile strength for fiber reinforced beams in
accordance with EN14651 (Figure 4b)).The properties
of the steel fiber concrete are reported in Table 4.

The nominal flexural stress σN -CMOD curves from
the three-point bending tests is shown in Figure 5.

Figure 4. E-modulus and three-point bending beam test.

Table 4. Properties of fiber concrete.

Properties Steel fiber concrete

E-modulus Ecm= 30.9 GPa
Compressive strength fck = 54.2 MPa

Figure 5. Nominal stress vs crack mouth-opening displace-
ment (CMOD) from three-point bending tests.

The limit of proportionality fLOP , the residual flexu-
ral tensile strengths fR1, fR2, fR3 and fR4 for a CMOD of
0.5, 1.5, 2.5 and 3.5 mm, respectively, were assessed
for all the specimens. The corresponding mean and
characteristic values are reported in Table 5 and
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Table 6. The beam test results show that both steel
and composite fiber concrete have softening post-
cracking behavior and the steel fiber gave higher
residual flexural tensile strengths than the composite
fiber at the large crack widths. The beams reinforced
with composite fiber had approximately the same
residual tensile strength as steel fiber at smaller crack
widths, but at CMOD 2.5 the value was more than
halved. This is in accordance with the mechanical
properties of composite fibers and the post-cracking
strength could therefore be classified as “R2.0a”. The
post-cracking strength of steel fiber concrete was clas-
sified as “R2.5c” according to fib Model Code 2010
specifications [21] with reference to the characteristic
values.

In the planned revision of EN 206 and Eurocode 2
an upper bound, κk ,max, of the characteristic values will
be introduced and the adjusted characteristic residual
strengths shown in Table 5 and Table 6 could be used
as basis for design.

fR,1kcor =min(fR,1k ; κk ,max · fR,1m) (1)

fR,3kcor =min(fR,3k ; κk ,max · fR,3m) (2)

κk ,max = 0.6

Table 5. Three-point bending test results for beams with 10
kg/m3 composite mineral fibers according to EN 14651 [22].

Reference
values (MPa) fLOP fR1 fR2 fR3 fR4

Mean fR,im 5.94 3.12 2.44 1.56 1.17
St. dev. 0.25 0,50 0,41 0,21 0,32
fR,ik 5.51 2.27 1.74 1.20 0.96
fR,ikcor 1.87 0.94

Table 6. Three-point bending test results for beams with 30
kg/m3 steel fibers according to EN 14651 [22].

Reference
values (MPa) fLOP fR1 fR2 fR3 fR4

Mean fR,im 5.98 3.57 3.48 3.30 3.10
St. dev. 0.65 0,42 0,41 0,34 0,39
fR,ik 4.68 2.73 2.66 2.61 2.31
fR,ikcor 2.14 1.98

The E-modulus of the isolation material (XPS700SL)
was measured in laboratory as shown in 2.3 and the
value is 36.2 MPa.

2.3 Test results of foundation slabs

The load was applied in the center of slab in a
deformation-controlled manner and a constant speed
of 0.4 mm/min was used in the tests. The logging fre-
quency was at 2 Hz throughout the experiment. The

Figure 6. E-modulus test of isolation material.

vertical displacements at 175, 250 and 950 mm from
the center of the jack were measured by LinearVariable
Displacement Transducers (LVDTs).

Experimental results are presented in terms of ver-
tical load versus relative displacement between 250
mm and 950 mm from center as shown in Figure 7.
The curve of load and deflection is more or less linear

Figure 7. Measured load and relative displacement between
250mm and 950mm from center.
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before the first cracking occurs. The load level at ini-
tiation of cracking for composite fiber, steel fiber and
rebar reinforced slabs is in the similar range, which is
between 345 to 445kN as shown in Table 7, and the
load level for plain concrete is slightly lower at about
297kN.

The post-cracking behavior of the SFRC slabs is sig-
nificantly different from the plain concrete slab. The
steel fiber effectively enhances the bearing capacity of
the slab up to a maximum load of 600kN, and the steel
fibers assure a ductile failure while the plain concrete
slab showed a brittle failure when the maximum load
reached 297kN as shown in Table 7. The composite
mineral fiber reinforced slabs reached its capacity at
the initiation of crack, but they showed a clear duc-
tility before failure. The test results of the slabs are
consistent with the test results of three-point bending
beam test. The test results of composite fiber concrete
showed larger scatter both for the beam bending and
the full-scale test.

Table 7. Load and displacement at 250mm from center.

Initiation of cracking Maximum loading

Test Load Displacement Load Displacement
ID (kN) (mm) (kN) (mm)

BF1 440.8 3.97 477.7 6.59
BF2 371.4 3.48 371.4 3.48
BF3 344.4 3.18 344.4 3.18
SF1 384.0 3.41 672.1 9.75
SF2 353.8 3.83 592.8 10.58
SF3 445.7 4.30 618.7 9.37
SA1 424.7 2.75 930.4 5.67
SA2 355.4 3.02 963.5 8.77
UA 297.2 2.82 297.2 2.82

The final crack patterns for the slabs are presented
in 3. All the cracks were initialed at the center of the
slab and developed further to the edges of slab. The
plain concrete slab has only one crack. The final crack
patterns for the composite fiber and steel fiber slabs
are similar. For composite fiber the crack pattern is
characterized by three or four major cracks starting
from the slab center, while the steel fiber has five
or six major cracks starting from the slab center. The
slabs with rebars have more than 10 major cracks start-
ing from the center. It shows that the ductility of the
slab is correlated with the crack patterns: more final
cracks better ductility, and larger possibilities for load
redistribution.

3 ANALYTICAL ANALYSIS

The moment capacity of the slab is calculated by
several simplified methods which are based on rec-
ommendations from the guidelines published by the

Figure 8. Final crack patterns of slabs.

Norwegian concrete association NB38 [16], the com-
prehensive research project COIN [1], the German
rules DAfStb [17], and the recently launched draft of
the new Eurocode 2 Annex L [19]. The methods are
described in following section.

3.1 NB38 og Eurocode 2 Annex L

The same approach is adopted for NB38 and Eurocode
2Annex L.The characteristic residual flexural strength
is given in equations 1 and 2:

fR,1kcor =min(fR,1k ; 0.6 · fR,1m)

fR,3kcor =min(fR,3k ; 0.6 · fR,3m)

This approach is included to open up for unfac-
tored design strengths up to 90% of the mean strengths
which contributes to economical, safe and robust
solutions. [19]

Assuming orientation factor ko= 1.0, which is
acceptable for the considered structural members, the
uniaxial residual tensile strength is given as:

fFtsk = 0.40 · fR,1kcor for SLS (3)

fFtuk = 0.37 · fR,3kcor for ULS (4)

The design residual tensile strength should be taken as
follows:

fFtsd = fFtsk/γSF for SLS (5)

fFtuk = fFtuk/γSF for ULS (6)

γSF = 1.5
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Figure 9. Static equilibrium of the cross section under
bending.

The bending moment capacity is calculated based
on the static equilibrium shown in Figure 9, and the
moment capacity for fiber-reinforced cross-sections
without conventional longitudinal reinforcement is
written as:

MRd = Sf (0.5h+ 0.1x) (7)

Sf = (h− x) bfftud (8)

x= hfFtud

0.8fcd + fFtud
(9)

3.2 COIN

The characteristic residual strength is given as:

fftk ,rec2.5= 0.37 · fR,3k for ULS (10)

The design residual tensile strength is given as:

fftd,rec2.5= fftk ,rec2.5/γSF for ULS (11)

γSF = 1.5

By replacement of fftud with fftd,rec2.5 in equations 7-
9 moment capacity for fiber-reinforced cross-sections
without conventional longitudinal reinforcement can
be calculated.

3.3 DAfStb

Two stress-stain relationships (stress block and tri-
linear) are specified in DafStb for the tension zone
at ULS. The ratio L2/L1 determines which one needs
to be used. The design residual tensile strength is
obtained by multiplying the characteristic residual
flexural strength with certain factors and the detailed
description may be found in [17].

The bending moment capacity of the cross sec-
tion without conventional longitudinal reinforce-
ment can be calculated by equations similar to
equation 7.

3.4 Results of analytical analysis

The moment capacity per meter width of the slab is cal-
culated with the design residual tensile strength with
material factor γSF = 1.0 and the mean residual ten-
sile strength. The results are presented in Table 8. The
moment capacity based on the design residual tensile
strength is about 60% to 80% of the moment capacity
based on the mean residual tensile strength.

Table 8. Moment capacity of SFRC slabs

Moment NB38 and
capacity Eurocode 2
(kNm/m) Annex L COIN DafStb

BF Design 10.8 13.7 11.2
Mean 17.8 17.8 18.6

SF Design 22.5 29.6 23.5
Mean 37.3 37.3 38.8

Based on yield line analysis the upper bound solu-
tions for the collapse load of a square spread footing
with the edges free to move in vertical direction were
presented in [23], and the two failure patterns showed
in 4 are similar to the observed final crack pattern of
the SFRC slabs in the experiment. The collapse loads
for those two failure patterns maybe determined as:

P= 8m
(
1− a1

a

)2 Failure pattern+ (12)

P= 24m
(
1− a1

a

)2 (
2+ a1

a

) Failure pattern x (13)

In which m=M/a the flexural strength of the foot-
ing slab per unit width; a1=the width of the column
section; a =the width of the footing slab

Figure 10. Failure patterns.

The collapse loads are calculated by equations 12
and 13 for composite fiber and steel fiber reinforced
slabs. The collapse loads are about 50% higher for
failure pattern x compared to the failure pattern +. The
collapse loads for both composite fiber and steel fiber
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reindorsed slabs are significantly lower when they are
compared to the test results. It should be noted that
the subgrade in the test is not homogeneous and the
stiffness properties therefore are different from soil
subgrade.

Table 9. Collapse load of SFRC slabs

Collapse load (kN) NB38 COIN DafStb

BF Design + 100.9 128.5 105.0
x 145.8 185.8 151.8

Mean + 166.9 166.9 173.7
x 241.3 241.3 251.1

SF Design + 210.7 276.4 219.2
x 304.6 399.6 317.0

Mean + 348.9 348.9 362.9
x 504.4 504.4 524.7

4 NUMERICAL ANALYSIS

A nonlinear finite element model (NLFE) closely rep-
resenting the test setup was established in the finite
element software DIANA 10.4 [26] and the simulation
results were compared with test results for composite
and steel fiber reinforced, rebar reinforced and plain
concrete foundations.

4.1 Numerical model

The fracture behavior of concrete was simulated by
the total strain rotating crack model. The compressive
behavior of concrete was represented by the parabolic
stress-strain relationship with compressive strength
reduction due to lateral cracking, originally proposed
by Vecchio & Collins [24]. The tensile behavior is
modelled by tensile failure model for fiber reinforced
concrete as defined by the FIB working group [21].
The tensile behavior was considered linear elastic up
to the mean tensile strength (fctm) and the post-peak
behavior of the constitutive law is defined based on
a linear model with two reference values: serviceabil-
ity residual tensile strength fFts and ultimate tensile
residual strength fFtu.They can be determined by resid-
ual values of flexural strengths by using the following
equations [21]:

fFts= 0.45fR1 (14)

fFtu= 0.5fR3 − 0.2fR1≥ 0 (15)

The fFts and fFtu of composite and steel fiber rein-
forced concrete were determined from mean and
characteristic flexural residual tensile strengths as
presented in Table 10. The tensile constitutive law
based on mean (fFts,m and fFtu,m) and characteristic
(fFts,k andfFtu,k ) values are shown in Figure 11. The
numerical simulations were performed for both the
mean and characteristic curves.

The expression of the tensile constitutive law used
in simulation is different from the ones specified in
Eurocode 2 (equations 3 and 4) and DAfStb.

Table 10. Properties of basal and steel fiber reinforced
concrete used in simulation

Material
Property

Designation Unit CM SF

Classification 2.0a 2.5c
(according MC2010)
Mean modulus of MPa 30900
elasticity (Ecm)
Poisson’s ratio (υ) 0.15 0.15
Mean compressive MPa 57.3
strength (fcm)
Compressive fracture N/mm 37.8
energy Gf
Mean tensile MPa 3.20
strength ((fctm)
Characteristic tensile MPa 2.20
strength ((fctk )
Mean serviceability residual MPa 1.40 1.61
tensile strength (fFts,m)
Mean ultimate residual tensile MPa 0.16 0.94
strength (fFtu,m)
Characteristic serviceability MPa 1.02 1.23
residual tensile strength (fFts,k )
Characteristic ultimate residual MPa 0.15 0.76
tensile strength (fFtu,k )

Figure 11. Constitutive law in tension for SFRC material
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The material properties of rebar and concrete used
in simulation for rebar reinforced and plain concrete
slabs and the material properties of the isolation mate-
rial XPS700SL are presented in Table 11. The material
models used in the FE modelling are presented in
Table 12.

The schematic figure of the FE model used in the
simulations is shown in Figure 12 for normal mesh
size. The slab and isolation layer are model by solid
elements with 20 nodes (CHX60) and the vapor bar-
rier is model by 3D surface interface elements with
nonlinear elasticity, and the tension and shear force
become zero when the slab and isolation layer is sep-
arated. The subgrade is also modeled by 3D surface
interface elements with nonlinear elasticity to allow
separation between isolation layer and subgrade. The
subgrade is divided into two areas: concrete and sand
subgrade as shown in Figure 12 b). The normal and
shear stiffness of surface interface elements used in
simulation is presented in Table 13.

Table 11. Properties of rebar and plain concrete used in
simulation

Property Unit

Rebar

E-modulus (Es) MPa 200000
Poisson’s ratio (υ) 0.3

Concrete

E-modulus (Ecm) MPa 30900
Poisson’s ratio (υ) 0.2
Compressive strength (fcm) MPa 43.0
Compressive fracture energy Gf N/mm 35.9
Mean tensile strength ((fctm) MPa 2.90
Tensile fracture energy N/mm 0.15

Isolation XPS700SL

E-modulus MPa 36.2
Poisson’s ratio 0.3

Table 12. The material models used in FE modeling.

Tensile Compressive Steel
model model rebar

BF Mode Code 2010 Parabolic [25] –
SF Mode Code 2010 Parabolic –
SA Hordijk [25] Parabolic Ideal
UA Hordijk Parabolic –

The load is applied as prescribed displacements in
the vertical direction and the iterative process used to
solve the equations was the Newton-Raphson iteration
method. To reach convergency the model was checked
to a force norm and energy norm. The mesh sensitivity
study is performed for coarse, normal, and fine mesh

Figure 12. Schematic figure of the finite element mesh of
slab (Normal mesh).

Table 13. Normal and shear stiffness of 3D surface interface

Normal Shear
3D surface stiffness stiffness
interface modulus modulus
element (N/mm3) (N/mm3)

Vapor barrier 10 0.1
Concrete subsurface 309 1.0
Sand subsurface 0.005 [25] 0.001

to decide optimal mesh size for the simulations, and
the element number of the models with different mesh
sizes are shown in Table 14. The simulation results
of load-displacement relationship at center of slab are
shown in Figure 13, and the three mesh sizes have same
results before the maximum load is reached and it is
seen that the result with coarse mesh deviates from the
other two only at the last stage of loading. The normal
mesh size is then selected for the numerical analysis.

4.2 Simulation results

The load and relative displacement diagrams in Figure
14 compare the response of the numerical simulations
with the results from the full-scale tests.

The numerical response of the steel fiber rein-
forced slab is in good agreement with the experimental
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Table 14. Element number for three mesh sizes

Element number Coarse Normal Fine

Solid element 1320 3843 12510
Contact element 528 1098 2502

Figure 13. Load-displacement curve at center of slab for
three different mesh sizes.

ones in terms of initial stiffness and maximum capac-
ity for the input with mean residual tensile strength.
The maximum capacity is about 20% lower for the
input with characteristic residual tensile strength. At
smaller deflections the results applying the charac-
teristic strengths are in better agreement with the
experiment.

Although the full-scale test results of the compos-
ite fiber reinforced slabs had relatively large scatter the
numerical simulation has a reasonable agreement with
the test data. The predicted maximum capacity based
on mean residual tensile strength is slightly higher
than the maximum capacity of BF1 slab. The maxi-
mum capacity based on characteristic residual tensile
strength is between BF1 and the other two slabs (BF2
and 3).

There is good agreement between the numerical
response and the test results for both the rebar rein-
forced and the plain concrete slabs. The difference
between results based on mean and characteristic
residual tensile strength is small for both cases.

The numerical crack patterns at the bottom of the
slabs are shown in Figure 15. For the composite and
steel fiber slabs the crack initiated at the center of slab
and further developed into a cross pattern with one ver-
tical and one horizontal crack path which was located
in the area of sand subgrade. For slab with rebars a
pattern with multiple crack paths around the center
appeared which was also observed in the full-scale test.
The numerical and experimental crack pattern was the
same for plain concrete, simply a single crack. The
good agreement between numerical and experimental
crack patterns at failure indicates that the numerical
model is reliable.

Figure 14. Experimental vs numerical load – relative dis-
placement curve

4.3 Parameter study

In the test setup the vapor barrier was used to provide
less resistance for lateral movement of the slab when
it is under vertical loading. The lateral restraint in the
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Figure 15. Numerical crack pattern at bottom of slabs.

bottom surface of the slab could be important for the
load bearing capacity of slabs. In the parameter study
the shear stiffness of the interface between slab and
isolation layer is varied from 0.01N/mm3 to 1.0N/mm3

which corresponds to loose sand and the concrete sur-
face, and the simulation results are shown in 5. The
increase of shear stiffness increases the failure capac-
ity of the slab, but the residual capacity drops sharply
at large deformation for the higher shear stiffness.

Figure 16. The influence of shear stiffness of interface
between slab and isolation layer.

5 CONCLUSION

The results presented and discussed in the manuscript
lead to the following remarks:

• The steel fiber effectively enhances the load-
carrying capacity of slabs on ground and makes
the structural response more ductile; The composite
mineral fibers have minor effect on the increase of
load-carrying capacity, but the structural response
shows certain increased ductility.

• Comparisons between the test results and the simpli-
fied methods based on COIN, NB38, DAfStb, and
the draft of the new Eurocode 2, show that the cal-
culation methods are conservative for the moment
capacity and collapse loads. The main reason for the
large deviation between the simplified methods and
the experimental results is that a uniform ground
pressure over entire foundation slab is assumed in
simplified method.

• The analyses of SFRC slabs based on NLFM predict
the slab response with sufficient or good accu-
racy with the input from material testing in the
laboratory.

• The lateral constraints provided by the layer under
the slabs may have significant effect on the load
bearing capacity.

• The results showed that it is safe to use steel fibers or
composite mineral fibers as the only reinforcement
in column foundations on solid ground.

• The comparison between the experimental results,
the simplified calculations and the numerical sim-
ulations shows that considerably more economic
solutions can be determined if numerical simulation
are applied in design.
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ABSTRACT: In this study, three-dimensional (3D) finite element modeling (FEM) analysis of the disk shear-
key was conducted in consideration of the material properties of the existing concrete surface for the application
of the disk shear-key to the seismic retrofitting joint without removal of the finishing material. For this, a 3D
FEM model was constructed to reproduce a previous shear element experiment. Subsequently, the analysis was
conducted using a model in which the existing concrete surface had a finishing material with a thickness of 10 mm.
The results confirmed that the shear resistance performance of the disk shear-key was reduced considerably.
Furthermore, the stress state inside the member indicated that the embedded depth of the steel disk, hd , is an
important parameter. As a result of the analysis based on the use of hd , it was discovered that the shear resistance
performance was ensured by extending hd from 20 to 30 mm.

1 INTRODUCTION

The external seismic retrofitting illustrated in Fig-
ure 1 is a seismic retrofitting method used for exist-
ing reinforced concrete buildings. External seismic
retrofitting is useful as it can be constructed while
maintaining the current functions of the building.
The joints of seismic retrofitting are required to have
sufficient shear strengths and high stiffness values
to achieve the reinforcing effect of the reinforcing
members.

The disk shear-key depicted in Figure 2(a) is a com-
posite shear resistance system composed of a steel disk
and anchor bolt. Because the disk shear-key resists
shear force primarily owing to the bearing resistance of
concrete, it has a high stiffness value and shear strength
compared with the general post-installed anchor illus-
trated in Figure 2(b).Therefore, the material properties
of the concrete surfaces are crucial. In a previous study,
the mechanical behavior of the disk shear-key was
verified experimentally and analytically. The existing
concrete in the test specimens and analysis models
used in the experiments and analyses conducted thus
far have been in good conditions. However, there are
finishing materials on the concrete surfaces in actual
concrete buildings. Thus, it is usually necessary to
remove all the finishing materials before installing
the disk shear-key. However, removing the finishing

Figure 1. Outline of external seismic retrofitting.

material leads to an increase in the construction period
and cost. In addition, it is necessary to consider the
prevention of dust, noise, vibration, and fall accidents
of the scraped finishing material that occurs when the
finishing material is removed. Hence, it is desirable
for the disk shear-key to be installed without removal
of the finishing material.

In this study, three-dimensional (3D) finite ele-
ment modeling (FEM) analysis of the disk shear-key
was conducted based on considerations of the mate-
rial properties of the existing concrete surface. The
study aimed at applying the disk shear-key to the seis-
mic retrofitting joint without removal of the finishing
material.
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Figure 2. Outline of joint elements.

2 OUTLINE OF STANDARD FEM MODEL

Model 1 is the standard FEM model used in this
research. A 3D FEM model of the disk shear-key
was constructed by applying the 3D FEM model of
the post-installed anchor constructed in a previous
study (Ishida et al. 2018). The standard FEM model
reproduced the shear element experiment of a seismic
retrofitting joint to which a disk shear-key had been
applied (Satoh et al. 2017).

2.1 Outline of target experiment

2.1.1 Outline of specimen
The specimen was composed of the existing concrete, a
disk shear-key, and retrofitting concrete, as illustrated
in Figure 3. First, the concrete on the existing side
was cast, and after demolding, a hole was drilled to
install the disk shear-key. After sufficient drying, an
epoxy resin adhesive was injected, and the disk shear-
key was installed. Reinforcements and a steel plate
with welded headed studs were then installed, and the
grout on the reinforcing side was cast.

Figure 3. Details of specimen (unit: [mm]).

For the construction of the disk shear-key, a wet core
drill was used as the piercing device, and it pierced the
concrete in the downward direction.

2.1.2 Loading device and measurement plan
The loading device is illustrated in Figure 4. Hydraulic
jacks were attached to the left and right sides accord-
ing to the height of the joint surface, and a shear force
was then applied by pressing either of the jacks. In
addition, a hydraulic jack was attached in the verti-
cal direction. Subsequently, a constant compressive
stress of 0.5 N/mm2 was applied in accordance with a

prior study (Takase et al. 2014). A parallel crank was
attached to the top of the U-shaped loading beam to
maintain it in a parallel orientation.

Figure 4. Loading setup (unit: [mm])

The relative horizontal displacement was measured
at two positions, as depicted in Figure 5, and their
average value was evaluated as δh.

Figure 5. Measurement plan (unit: [mm]).

The loading plan in Figure 6 demonstrates the cyclic
loading patterns in the positive and negative direc-
tions. Each positive and negative load cycle pattern
was applied once up to a relative horizontal displace-
ment of 0.5 mm, and it was then loaded repeatedly
twice in each direction up to a relative horizontal dis-
placement of 4 mm. Finally, the specimen was loaded
once up to a relative horizontal displacement of 6 mm
in the positive and negative directions, and it was then
pushed to the positive side until failure.

Figure 6. Loading cycle.
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2.2 Analysis conditions

A general nonlinear FEM analysis program (ITOCHU
Techno-Solutions Corporation 2016) was used for the
analysis. An outline of the FEM analysis model is
depicted in Figure 7. In this analysis model, owing to
the symmetry, only half of the construction is modeled
against the vertical plane (X-Z plane), which passes
through the force axis.

Figure 7. Outline of standard finite element model.

On the sectioned surface, only theY-translation was
restrained. All the degrees-of-freedom were restrained
on the lower surface of the concrete, and the upper sur-
face of the grout and U-shaped loading beam were kept
parallel to each other. In addition, the X-translational
degrees-of-freedom of the concrete both ends in the
Y-Z plane were restrained. The total support reaction
force in the X-direction was then doubled and used as
shear force, Q.

The concrete, grout, and disk shear-key were mod-
eled as hexahedral elements (eight-node isoperimetric
elements), and the epoxy resin between the con-
crete and anchor bolt was modeled as a joint ele-
ment (eight-node isoperimetric joint elements) with
a finite thickness. Finally, depending on the interface,
a joint element with zero thickness was inserted to
model the bonding properties between the materials,
as illustrated in Figure 7.

For loading, a forced displacement was applied to
the force application points on the right and left side
of the U-shaped loading beam that was modeled with
beam elements with large stiffness values. In this anal-
ysis, loading was applied in one direction until the
relative horizontal displacement reached 4 mm.

2.3 Material configuration rule

2.3.1 Concrete and grout
The material configuration rules of the concrete and
grout are presented in Figure 8. The modified Ahmad
model (Naganuma 1995) was used to determine the
characteristics of the concrete and grout until the
compressive strength was reached. The Nakamura–
Higai model (Nakamura & Higai 1999), which is
based on fracture energy, was then used to charac-
terize the compression softening zone. In addition,
for the failure condition subjected to triaxial stress,

the five-parameter model by William–Warnke and the
coefficients of Ohnuma and Aoyagi (1981) were used.

Figure 8. Material configuration rules (concrete and grout).

In contrast, the tensile side was assumed to be lin-
ear until it reached the tensile strength. In this analysis
model, the anchor bolt was modeled with hexahedral
elements, and the joint elements described below were
used. The reinforcements were modeled as embedded
reinforcements in concrete and grout elements, and
the tension stiffening characteristics were reproduced
using the Izumo model (Izumo et al. 1987). Thus,
parameter C was set to 1.0 to avoid the doubling of the
count of the adhesion property. The Poisson’s ratios of
the concrete and grout were set to 0.2.

Herein, the material specifications of the concrete
and grout used the values of the target experiment, as
listed in Table 1(a).

2.3.2 Disk shear-key and reinforcement
The material constitution rules for the disk shear-key
and reinforcement are illustrated in Figure 9. Both the
compression and tensile sides were modeled as bilin-
ear. The stiffness after yielding was 1/100 Es (where
Es is the Young’s modulus).

Figure 9. Material configuration rules (disk shear-key and
reinforcement).

In addition, the yielding condition of von Mises was
used for the yield condition in the case in which the
disk shear-key was exposed to multiaxial stress. The
Poisson’s ratio of the disk shear-key was set to 0.3.

The numerical values according to the Japanese
Industrial Standards were used as the material specifi-
cations of the steel material, as indicated in Table 1(b).
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Table 1. Materials specifications (unit: [N/mm2]).

Material type σ B, σGc Ec, EG σ t , σGt

(a) Concrete and grout.
Concrete 15.8 23,200 1.7
Grout 67.9 22,100 3.2

σ B,σGc: Compressive strength, Ec,EG : Young’s modulus,
σ t , σGt : Tensile strength

Material type Diamter σ y Es

(b) Steel
Anchor bolt M20 325 205,000
Connection bolt M20 725 205,000
Steel disk ϕ90 345 205,000
High nut M20 400 205,000
Reinforcement D10 295 205,000

σ y: Yield strength, Es: Young’s modulus

2.4 Characteristics of joint elements

2.4.1 Interface between concrete and epoxy resin
The characteristics of the shear direction are illustrated
in Figure 10(a). The characteristics were determined
based on the adhesion performance experiments of the
post-installed adhesive anchors constructed using the
same materials and construction method as the test
specimen in Setoguchi et al. (2010).

Conversely, the vertical characteristics were mod-
eled to have a large stiffness value during compression
and to not transmit tension stress, as depicted in
Figure 10(b).

Figure 10. Characteristics of joint element (interface
between concrete and epoxy resin).

2.4.2 Epoxy resin between concrete and anchor bolt
Previous studies (Nakano et al. 2009; Setoguchi et al.
2010) have reported that adhesion sliding occurs at the
interface between the concrete and epoxy resin. Hence,
the adhesion property, depicted in Figure 10(a), was
inserted between the concrete and epoxy resin, and the
epoxy resin and anchor bolt were rigidly connected, as
illustrated in Figure 7.

The characteristics of the epoxy resin in the shear
direction are already included in the adhesion prop-
erty, depicted in Figure 10(a). Therefore, in this part,

the characteristic in the shear direction has a large
stiffness, as illustrated in Figure 11(a).

The characteristic in the vertical direction is
assumed to be bilinear, as illustrated in Figure 11(b).
The material specifications of the epoxy resin are: spe-
cific gravity db is 1.2; compressive strength σ bc is 109
N/mm2; tensile strength σ bt is 75.7 N/mm2, and the
Young’s modulus Eb is 2730 N/mm2 based on the ref-
erence (Takase et al. 2016). In this study, the thickness
values of the adhesive were 2 mm around the anchor
bolt and 2.5 mm around the steel disk. The coordi-
nates of the break points were calculated from the
specifications and thickness of the epoxy resin.

Figure 11. Characteristics of joint element (epoxy resin
between concrete and anchor bolt).

2.4.3 Interface between connection bolt and grout
The characteristics in the shear direction were deter-
mined with reference to the results of the adhesion
performance experiment between the concrete and
deformed rebar (Nakano et al. 2009), as illustrated in
Figure 12(a).

The vertical characteristics were modeled in a way
similar to that of the interface between the concrete
and epoxy resin, as illustrated in Figure 12(b).

Figure 12. Characteristics of joint element (interface
between connection bolt and grout).

2.4.4 Interface around steel disk and high nut
The characteristics of the joint element around the steel
disk and the high nut are illustrated in Figure 13. In
this analysis, because the surfaces of the steel disk and
high nut were smooth, adhesion did not occur at the
interfaces around them, and the shear stress was set so
that it could not to be transmitted.

The characteristics in the vertical direction were
modeled in the same manner, as depicted in Figures
10(b) and 12(b).
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Figure 13. Characteristics of joint element (interface
around steel disk and high nut).

2.4.5 Interface between concrete and grout
The shear direction characteristics are illustrated in
Figure 14(a). The shear stress owing to the adhesion
between the concrete and grout was set to 0.01 N/mm2

to ensure that it did not affect the overall shear strength.
When compressive stress was applied, the increase in
shear stress due to friction was considered.The friction
coefficient µ was set to 0.974, which is the appar-
ent shear friction coefficient attributed to mechanical
mechanisms, such as the shear friction force of the
joint surface and the meshing of the aggregate from a
previous study (Katori et al. 1998).

Figure 14. Characteristics of joint element (interface
between concrete and grout).

The vertical characteristics are illustrated in Fig-
ure 14(b). When compressive stress was applied, the
interface yielded a large stiffness. The tensile side also
had the same stiffness up to the tensile strength. After
reaching the tensile strength, the bond was released,
and the normal and shear stresses of the joint elements
were zero. According to Kimu et al. (2008), the tensile
strength was set to one-sixth of the tensile strength of
concrete, σ t .

2.5 Verification of analysis accuracy

To verify the accuracy of the analysis, the correspon-
dence between the shear force and relative horizontal
displacement is illustrated in Figure 15. The target
range of the analysis was up to 4 mm. This value
is twice the allowed value of 2 mm for the amount
of displacement deformation according to the litera-
ture Japan Building Disaster Prevention Association
(2002).

While the target shear element experiment was con-
ducted with cyclic loading, this analysis was based
on monotonic loading from the viewpoint of limiting

Figure 15. Verification of analysis accuracy (shear force vs.
relative horizontal displacement).

the analysis time and ensuring the analysis stability.
Although the loading conditions were different, it is
judged that the general tendency can be evaluated
herein.

3 ANALYSIS USING THE MATERIAL
PROPERTIES OF THE EXISTING CONCRETE
SURFACE

3.1 Outline of the analysis

In this section, the analysis of a model with a fin-
ishing material on the surface of existing concrete is
presented. Subsequently, the influence of the mate-
rial properties of the existing concrete surface on the
shear resistance performance of the disk shear-key was
considered based on comparisons with the analyzed
results of Model 1.

3.2 Analysis parameters

As illustrated in Figure 16, the parameter used for
analysis was the existence of the finishing material
on the existing concrete surface, and the model with
the finishing material was labelled as Model 2. In this
analysis, the thickness of the finishing material was
set to 10 mm.

Figure 16. Analysis parameters (unit: [mm]).
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There are various types of finishing materials with
different material properties. Therefore, in this analy-
sis, the finishing material was modeled subject to strict
conditions. The finishing material was modeled with
an elastic body, and the Young’s modulus was set to
1.0 × 10−4, as a sufficiently low value.

The standard embedded depth of the steel disk, hd ,
was 19 mm. Because the thickness of the finishing
material in Model 2 was set as 10 mm, the embedded
depth in concrete became equal to 9 mm. In addition,
the embedded length of the anchor bolt, le, was mod-
eled such that it did not change at 4.5da (=90 mm),
where da is the diameter of the anchor bolt.

3.3 Results and discussions

3.3.1 Shear force vs. relative horizontal
displacement

The relationship between the shear force, Q, and the
relative horizontal displacement, δh, is illustrated in
Figure 17. Figure 17 also depicts the design shear
strength, Qjd , calculated using the current design shear
strength evaluation formula as follows:

Qjd = 0.8 · Qdisk (1)

Qdisk = 0.24 · K1 · K ′
2 · AB

√
EC · σB (2)

AB=
π/4∫
−π/4

hd · Rd

2
dθ = π · Rd · hd

4
(3)

where Qdisk is the ultimate shear strength of the disk
shear-key [N]; Qjd is the design shear strength of the
disk shear-key [N]; AB is the effective contact area for
obtaining the bearing stress [mm2]; hd is the embed-
ded depth of the steel disk [mm]; K1 is the correction
coefficient by edge; K ′

2 is the correction coefficient
by the embedded length of the anchor bolt; Ec is the
Young’s modulus of concrete [N/mm2], and σ B is the
compressive strength of the concrete [N/mm2]. In the
analysis model used in this research, K1=K ′

2= 1.0.

Figure 17. Shear force vs. relative horizontal displacement.

It can be observed that Model 2 has a lower stiffness
and shear strength than Model 1, and the shear resis-
tance performance is reduced considerably. The shear

strength when the relative horizontal displacement was
2 mm was also lower than the designed shear strength,
Qjd . This result suggests that it is not practical to apply
a standard disk shear-key to existing frames.

3.3.2 Mises stress distribution of disk shear-key
Figure 18 illustrates the Mises stress distribution
occurring in the disk shear-key when the relative hor-
izontal displacement, δh, is 2 mm. The amount of
deformation was displayed five times.

The maximum Mises stress increased by approxi-
mately 6% compared with Model 1. In addition, the
Mises stress was concentrated and distributed in the
anchor bolts embedded in the existing part. This ten-
dency was particularly remarkable at the position of
the finishing material. Conversely, the Mises stress
generated in the connection bolt was small.

Figure 18. Mises stress distribution of disk shear-key
(deformation magnification: five times).

3.3.3 Curvature distribution of anchor bolt and
connection bolt

The curvature was calculated from the strain in the
Z-direction of the outermost element in the cross sec-
tion, and the curvature distributions at δh = 1, 2, and
3 mm are illustrated in Figure 19. The curvature was
calculated using Eq. (4).

ϕ= (εL − εR) /da (4)

where ϕ is the curvature [µ/mm]; εL and εR are the
strains in the Z-direction of the outermost element in
the cross-section [µ], and da is the diameter of the
anchor bolt and connection bolt [mm].

Moreover, the curvature when εL and εR reach
the yield strain is obtained from Eq. (5), and is also
depicted in Figure 19.

ϕy = 2εy/da (5)

where ϕy is the curvature when either εL or εR reaches
εy [µ/mm], and εy is the yield strain of the anchor bolt
and the connection bolt [µ].
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Figure 19. Curvature distributions of anchor bolt and con-
nection bolt.

As indicated by the Mises stress distribution
depicted in Figure 18, it is confirmed that the curvature
of the anchor bolt increases at the position of the fin-
ishing material. Compared with Model 1, it increased
at a rate of +80% at δh = 1 mm, +42% at δh = 2 mm,
and +35% at δh = 3 mm.

In addition, the curvature is maximized at a dis-
tance of 3da (da: diameter of the anchor bolt) from
the joint surface inside the existing concrete. This ten-
dency is the same in both models. The curvature of
that position reaches ϕy when the relative horizontal
displacement of δh = 1 mm, and it is inferred that it
yields.

3.3.4 Minimum principal stress distribution of
concrete

Figure 20 illustrates the minimum principal stress dis-
tribution of the concrete when the relative horizontal
displacement, δh, was 2 mm.

From the distribution of the minimum principal
stress, Model 2 yielded values that were smaller than
those of Model 1. The maximum value of the mini-
mum principal stress for Model 2 was -33% of that
for Model 1. Therefore, it is considered that the shear
resistance performance of the disk shear-key decreases
owing to the decrease in the bearing resistance of the
concrete.

Figure 20. Minimum principal stress distribution of
concrete.

4 ANALYSIS USING THE SHAPE OF THE DISK
SHEAR-KEY

4.1 Outline of the analysis

The analysis results of Model 2 presented in Section
3 suggest that it would be difficult to apply the stan-
dard disk shear-key to the existing structure with the
finishing material. This is attributed to the fact that
in the case where there is a finishing material on the
surface of the existing concrete, hd—which denotes
the depth at which the steel disk is embedded in the
concrete—becomes smaller. In other words, the main
factor is that the concrete bearing capacity is not fully
achieved.

According to the aforementioned listings, it is nec-
essary to improve the shape of the disk shear-key to
obtain sufficient bearing pressure resistance of the
concrete even at the joint with the finishing material.
Therefore, a model with an improved shape of the disk
shear-key was constructed and analyzed.

4.2 Analysis parameters

Because the shear resistance performance of the disk
shear-key was insufficient at hd = 9 mm in Model 2,
further analysis was conducted with a model in which
the embedded depth of the steel disk, hd , was extended,
as illustrated in Figure 21.

There are two models, Model 3 with hd = 20 mm
and Model 4 with hd = 30 mm. Herein, considering the
position of the reinforcements inside the concrete, it
appears that the maximum hd is approximately 30 mm.

Figure 21. Analysis parameters (unit: [mm]).

4.3 Results and discussions

4.3.1 Shear force vs. relative horizontal
displacement

The relationship between the shear force, Q, and
the relative horizontal displacement, δh, is illustrated
in Figure 22. Both models exceed the design shear
strength of the disk shear-key, Qjd , within a rela-
tive horizontal displacement of 2 mm, and the shear
resistance performance is improved compared with
Model 2.
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The response of Model 3 is slightly lower than that
of Model 1 but that of Model 4 is above it. However,
it should be noted that Model 4 also has a stiffness
response up to a relative horizontal displacement of 1
mm, which is less in magnitude than that of Model 1.

Figure 22. Shear force vs. relative horizontal displacement.

4.3.2 Mises stress distribution of disk shear-key
Figure 23 illustrates the Mises stress distribution
that occurs in the disk shear-key when the relative
horizontal displacement, δh, is 2 mm.

Increasing the embedded depth of the steel disk, hd ,
tends to reduce the Mises stress of the anchor bolt and
tends to increase the Mises stress of the connection
bolt. In other words, it is suggested that the bearing
pressure of concrete becomes dominant, and the shear
force is transmitted sufficiently.

Figure 23. Mises stress distribution of disk shear-key
(deformation magnification: five times).

4.3.3 Curvature distribution of anchor bolt and
connection bolt

The curvature distributions of the anchor bolt and con-
nection bolt are depicted in Figure 24. Model 3 has
almost the same curvature distribution as Model 1.
It was also discovered that the bending deformation

could be suppressed by increasing the embedded depth
of the steel disk, hd , even in the presence of a finishing
material.

Conversely, Model 4 yielded smaller bending defor-
mation than Model 1, thus suggesting that the shear
force generated by the anchor bolt is reduced.

Figure 24. Curvature distributions of anchor bolt and con-
nection bolt.

4.3.4 Minimum principal stress distribution of
concrete

Figure 25 illustrates the minimum principal stress dis-
tribution of the concrete when the relative horizontal
displacement, δh, is 2 mm.

In both models, the minimum principal stress
increased over a wide range compared with Model 2,
thus indicating that the bearing resistance of concrete
was achieved. This tendency is particularly remark-
able near the bottom of the steel disk. Furthermore,
because the highest value of minimum principal stress
in Model 4 is higher than Model 3, the embedded depth
of the steel disk, hd , is considered to be one of the most
important parameters.

Figure 25. Minimum principal stress distribution of con-
crete.

5 CONCLUSIONS

In this study, 3D FEM analysis of the disk shear-key
was conducted considering the material properties of
the existing concrete surface. Based on these results,
the following findings were reported:
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1. If the standard disk shear-key is applied when the
existing concrete surface has a finishing material
with a thickness of 10 mm, the shear resistance
performance will decrease, and it will be lower than
the design shear strength, Qjd

2. It was clarified—based on the stress state inside
the member—that the bearing resistance of the
concrete decreased, and the deformation was con-
centrated on the anchor bolt. Based on this result,
it was demonstrated that the embedded depth of
the steel disk, hd , was one of the most important
parameters related to this problem

3. When the embedded depth of the steel disk, hd ,
was extended to 20 mm, the results indicated
that the design shear strength was satisfied within
the relative horizontal displacement δh= 2 mm.
Furthermore, it was suggested that when hd was
extended to 30 mm, the shear resistance perfor-
mance was almost the same as that of the original
one

The results of this study were obtained subject to
the condition that the thickness of the finishing mate-
rial was 10 mm. In addition, the embedding depth of
the steel disk, hd , was treated as an important analysis
parameter. In the future, analysis will be conducted
with increased number of parameters, such as the
thickness of the finishing material and the diameter
of the steel disk.
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ABSTRACT: New experimental data obtained from Falling Weight Deflectometer (FWD) tests performed on
two concrete slabs is presented. Geophones measured deflections along 8 directions, in a star-shaped configu-
ration. The asymmetry index developed by (Díaz Flores et al. 2021) is used in order to evaluate the new set of
data. The results show significant asymmetries in a 22-year-old loaded slab, while a new, freshly installed slab
behaved in a virtually double-symmetric manner. A structural analysis of the new slab is performed based on
Kirchhoff-Love plate theory with free-edge boundary conditions and a Winkler foundation at the bottom, again
following (Díaz Flores et al. 2021). The modulus of subgrade reaction and an auxiliary surface load are used as
optimisation variables. This allows for a very satisfactory reproduction of the measured deflections. From this
model, a non-linear distribution of the effective modulus of subgrade reaction arises. FE simulations underline
the robustness and accuracy of the used method.

1 INTRODUCTION

Falling Weight Deflectometer (FWD) tests are per-
formed worldwide in order to quantify and evaluate
the state of pavement structures and their subgrade.
For these tests, a standardised mass falls freely from
a given height and hits a load plate located on top
of the pavement’s surface. Displacement sensors, also
known as geophones, are used to measure the deflec-
tion of the pavement’s surface along a specific radial
direction. The measured deflections are then used as
basis for a backcalculation procedure in which the
stiffness of the slab and of the layers underneath may be
obtained.

The goal of the backcalculation is to find the elastic
properties of the subgrade in such a way that the result-
ing deflections agree with the ones measured by the
geophones. In this context, several types of structural
models have been used. These include, e.g., slabs that
are lying on top of elastic foundations (Biot 1937;Win-
kler 1867), multi-layered slabs which are lying on top
of a Winkler foundation (Girija Vallabhan et al. 1991),
and multi-layered solids (Abd El-Raof et al. 2018;
Kausel and Roësset 1981; Pan 1989a, 1989b). How-
ever, it has been previously described (Mehta & Roque
2003) that, despite its wide use, the backcalcula-
tion procedure is mathematically “ill-posed’: different
combinations of elastic properties and thickness may

result in the same deflection field. In other words, the
inverse problem may have multiple solutions. For this
reason, the evaluation of FWD tests requires much
care, experience and expertise.

When using Winkler foundations, the elastic prop-
erties of the whole subgrade are summarised by one
value: the modulus of subgrade reaction (Winkler
1867). It has been noted before, however, that the mod-
ulus of subgrade reaction, is rather a structural than a
material property (Aristorenas & Gómez 2014). Fur-
thermore, if a spatially uniform modulus is used, then
unrealistic results may arise (Daloglu and Vallabhan
2000; Eisenberger 1990; Smith 1970). For this reason,
non-uniform distributions of the modulus of subgrade
reaction have been previously introduced, see e.g. the
analysis of concrete slabs (Roesler et al. 2016), and
circular plates (Foyouzat et al. 2016).

The present study is based on a method proposed
by (Díaz Flores et al. 2021). From the deflections mea-
sured by the displacement sensors, they were able to
calculate a distribution of the stresses appearing at the
bottom of the pavement slab.The resulting distribution
of stresses was found to be realistic. Based upon this
distribution, a highly non-linear effective modulus of
subgrade reaction was also found (Díaz Flores et al.
2021). Furthermore, they developed an index which
helps to assess the asymmetry of a structure on the
basis of experimental results.
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The purpose of this study is to use the methods pro-
posed by (Díaz Flores et al. 2021) for new experimental
data, and to find out whether the conclusions drawn are
still applicable. In this context, two original slabs are
newly investigated: A freshly installed, new slab, and a
22-year-old loaded slab already scheduled for replace-
ment. This is presented in Section 2. The asymmetry
index proposed by (Díaz Flores et al. 2021) is used to
evaluate the asymmetry of both structures.This is help-
ful in order to gain further insight into the asymmetry
index and assess its informative content. In Section 3,
a structural analysis is performed for the virtually
double-symmetric new slab. A realistic distribution of
the subgrade pressure was found after considering an
auxiliary surface load, in the same way as in (Díaz Flo-
res et al. 2021). This model was able to reproduce the
measured deflections very satisfactorily. The deflec-
tions obtained with the method from (Díaz Flores et al.
2021) are compared with those from an FE simula-
tion under the same conditions. Finally, conclusions
are drawn based on the results, see Section 4.

2 STAR-SHAPED FWD TESTING

FWD tests were performed on two concrete slabs on
the “A1” highway, in LowerAustria.The concrete slabs
were 5.5 m long, 4.2 m wide and 0.22 m thick. The
maximum force produced by the falling weight was
202 kN, see Table 1.

Table 1. Properties of the slabs and of the equipment used.

Property Value

Length of Slab, a 5.50 m
Width of Slab, b 4.20 m
Thickness of Slab, h 0.22 m
Flexural Stiffness of Slab, K 49.5 MNm
Maximum Impact Force 202 kN
Modulus of Elasticity of Concrete, E 36.5 GPa
Poisson’s Ratio of Concrete, ν 0.2
Mass Density of Concrete, ρ 2,452 kg/m3

Both tested slabs were located on the first lane of the
highway. They were connected by means of steel bars
to their neighbours along all edges: tie bars connected
their right and left edges while dowels connected their
two edges orthogonal to the driving direction

2.1 Test protocol

FWD tests in the centre of the slabs were carried out in
eight directions (in a star-shaped manner) described by
a local cardinal system, where N refers to the driving
direction, see Figure 1 of (Díaz Flores et al. 2021). The
angles between neighbouring directions amounted to
either 38◦ or 52◦, rather than to 45◦, due to constraints
from the FWD machine, see Figure 1 and Table 2
of (Díaz Flores et al. 2021).

The tests were performed in the following sequence
of directions: N, NE, E, SE, S, SW, W and NW. Three
tests were carried out in every direction, except for the

Figure 1. Results from star-shaped FWD testing on the new
slab: 243 deflections measured by the geophones along the
(a) N, S, E and W directions, as well as (b) the diagonal
directions; the lines refer to splines interpolating between the
average deflections measured at each location, see Eq. (1).

N direction, where six tests were carried out (three
at the start and three at the end of the protocol).
This allows for an assessment of the quality of test
repeatability. The six tests in the N direction allow for
checking the repeatability of the tests at the start and
end of the protocol.
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Table 2. Coefficients of variation, CVN ,g , of the deflections
measured by each geophone in the N -direction of the new
slab, see Eqs. (1)–(3), based on the results of the first and the
last three tests (nd = 6), see also Table 6.

Geophone

g= 1 g= 2 g= 3 g= 4 g= 5 g= 6 g= 7 g= 8 g= 9

2.81% 1.42% 1.54% 1.46% 2.05% 1.70% 1.71% 5.68% 4.28%

Nine geophones recorded the deflections during
every single FWD test. Geophone 1 was always located
at the centre of the falling weight experiments. The
other eight geophones were fixed to a bar, ensuring
that the radial distances between them were always
the same. In the N, NE, E, S, W and NW directions,
the default distances of the machine were used. In the
SE and SW directions, further structural constraints of
the machine forced the bar to be adjusted. It was thus
located 15 cm further away from the centre, seeTable 3
of (Díaz Flores et al. 2021).

Table 3. Coefficients of variation, CVN ,g , of the deflections
measured in the N -direction of the old slab, see Eqs. (1)–
(3), based on the results of the first and the last three tests
(nd = 6), see also Table 8.

Geophone

g= 1 g= 2 g= 3 g= 4 g= 5 g= 6 g= 7 g= 8 g= 9

1.92% 3.12% 2.83% 2.83% 4.27% 4.05% 3.04% 3.80% 4.73%

2.2 Experimental data from the new slab

The first set of tests was performed on a concrete slab
which was only a few weeks old at the time of testing.
Before that, only site traffic may have passed over the
slab.

A total of 27 individual FWD tests were carried out:
three tests were performed in every direction and an
extra set of three tests was performed in the N direc-
tion. A total of 243 individual deflections were thus
recorded, see (Table 6 in Appendix A), also illustrated
in Figure 1.

The symbols seen in Figure 1 refer to the 243 deflec-
tions measured. The symbols that correspond to the
same location are barely different from each other,
given that the geophones measured almost the same
deflections at each location. The avereage values for
the deflections are calculated as (Díaz Flores et al.
2021)

wd,g = 1

nd

nd∑

i=1

max
t

wd,g,i(t), (1)

where nd stands for the number of tests performed
in direction d. In Figure 1, this results in n1= 6 for
the N direction and nd = 3 for all other measurement
directions. In Eq. 1, index d refers to measurement
directions (with d = 1⇔N, d = 2⇔NE, …, d = 8⇔

NW), index g refers to the geophones, and index i for
the ith test in direction d.

Coefficients of variation are used to study how well
the tests repeated results. These are calculated as

CVd,g = σd,g

wd,g
. (2)

The corresponding standard deviations read as

σd,g =
√√√√ 1

nd − 1

nd∑

i=1

[
max

t
wd,g,i(t)− wd,g

]2
. (3)

The quality of repeatability is quantified for all sets
of three tests in the same direction. For this pur-
pose, Eqs. (1)–(3) are evaluated for each of the nine
directions, and for each of the nine geophones, see
Table 7. The obtained 81 coefficients of variation are
smaller than 6%, indicating an acceptable level of test
repeatability.

The six tests performed in the N direction are
evaluated as one sample (nd = 6). Given that the coef-
ficients of variation in this set are smaller than 6%, see
Table 2, it is concluded that an acceptable level of test
repeatability was ensured.

2.3 Experimental data from the old slab

The second set of tests was performed on a 22-year- old
concrete slab. It was scheduled to be replaced shortly
after the star-shaped FWD testing. It was located on
the first lane of the highway.

During the 27 FWD tests, a total of 243 individual
deflections were recorded, see (Table 8 inAppendix B),
and in Figure 2. The quality of repeatability is quan-
tified for all directions based on coefficients of vari-
ation. The obtained 81 coefficients of variation are
smaller than 7%, indicating an acceptable level of test
repeatability.

2.4 Asymmetries of the structural behaviour of the
tested slabs

The asymmetries in the structural behavior of the slabs
are studied based on the index developed in (Díaz Flo-
res et al. 2021) and on the results from star-shaped
FWD experiments (Figures 1 and 2). Such asymme-
tries may result, for the new slab, from the dowels
and tie bars connecting it to its neighbours. Regarding
the old slab, asymmetries may also result from long-
term service loads. Given that the dowels and tie bars
were positioned symmetrically along all edges, it is
expected that the deflections of the new slab are vir-
tually the same in the N and S, NE and SE, SW and
NW, E and W, NE and NW, SW and SE, NE and SW,
as well as the NW and SE directions.

The asymmetry index from (Díaz Flores et al. 2021)
reads as

Ad,δ =

√√√√
√

1

2.1 m

2.1 m∫

r=0

[
wd (r)

wd (0)
− wδ(r)

wδ(0)

]2

dr , (4)
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Figure 2. Results from star-shaped FWD testing on the old
slab: 243 deflections measured by the geophones along the
(a) N, S, E and W directions, as well as (b) the diagonal
directions; the lines refer to splines interpolating between the
average deflections measured at each location, see Eq. (1).

where wd (r) refers to the spline in the d direction,
and r≥ 0 denotes the radial coordinate. For this index,
larger values of Ad,δ refer to a larger asymmetry of the
deflections along the d and δ directions. The asym-
metry indicators AN ,S , ANE,SE , ASW ,NW , AE,W , ANE,NW ,
ASW ,SE , ANE,SW , and ANW ,SE for both the new and the
old slab are listed in Table 4.

Table 4. Asymmetry indicators for both slabs, see Eq. (4).

New Slab Old Slab

AN ,S = 1.65% AN ,S = 2.30%
ANE,SE = 1.96% ANE,SE = 3.00%
ASW ,NW = 3.57% ASW ,NW = 5.03%

mean value= 2.39% mean value= 3.54%

AE,W = 2.98% AE,W = 7.56%
ANE,NW = 1.24% ANE,NW = 2.29%
ASW ,SE = 2.62% ASW ,SE = 4.31%
ANE,SW = 3.03% ANE,SW = 7.17%
ANW ,SE = 1.63% ANW ,SE = 1.38%

mean value= 2.30% mean value= 4.54%

Regarding the new slab, the eight asymmetry indi-
cators are on average equal to 2.34%. The mean
value of the first three asymmetry indicators is vir-
tually the same as that of the last five indicators, see
Table 4. The largest values of the asymmetry indi-
cators are ≤4%. This shows that the slab behaved
double-symmetrically.

Regarding the old slab, the eight asymmetry indica-
tors are on average equal to 4.17%. This is 1.78 times
larger than the average of the new slab. The largest
values of the asymmetry indicators of the old slab are
≥7% and refer to the E-W and the NE-SW axes. From
these results it is concluded that the old slab behaved
asymmetrically.This asymmetry may be explained due
its long-term service with traffic occasionally turning
from and to the second lane along its Western edge.
The asymmetry indicators evaluated for the old slab
suggest a necessity for replacement.

3 STRUCTURAL ANALYSIS OF THE NEW
SLAB

The new slab from Section 2.2 is studied based on
Kirchhoff-Love’s linear theory of thin plates. A Carte-
sian coordinate system is used, with the x-axis oriented
in the driving direction, see Figure 1 of (Díaz Flores
et al. 2021).

The boundary value problem consists of one field
equation and boundary conditions. The field equation
in the static case reads as (Díaz Flores et al. 2021;
Vlasov 1966)

K

(
∂4w(x, y)

∂x4
+ 2

∂4w(x, y)

∂x2∂y2
+ ∂4w(x, y)

∂y4

)

(5)+ k w(x, y)= p(x, y) ,

where K =E h3/[12 (1− ν2)] denotes the flexural
stiffness of the plate, E the modulus of elasticity of
concrete and ν its Poisson’s ratio, see Table 1. Further-
more, w(x, y) denotes the deflection of the plate, p(x, y)
its external load per area and k the modulus of sub-
grade reaction. Regarding the boundary conditions,
all four lateral edges of the rectangular plate are free
edges, see (Díaz Flores et al. 2021) as well as (Höller
et al. 2019; Vlasov 1966) for the full details. This was
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shown to be a reasonable assumption in (Díaz Flores
et al. 2021), since it was found that the dowels and
tie bars had no significant influence on the structural
behaviour of the slabs analyzed.

The deflection field w(x, y) consists of a Fourier
series of double-symmetric deflection modes, see
(Díaz Flores et al. 2021) for more details:

w(x, y) =
N∑

m=0

N∑

n=0

Cm,n cos
mπx

a
cos

nπy

b
,

(6){
m = 0, 1, 3, 5, . . . , N ,
n = 0, 1, 3, 5, . . . , N .

The external loading of the plate at the time instant
at which the maximum force is produced reads as

p(x, y)=
{

202 kN
r2
cπ

. . .
√

x2 + y2≤ rc ,

0 . . . . . . .
√

x2 + y2 > rc ,
(7)

where rc= 0.15 m denotes the radius of the load plate.

3.1 Identification of the modulus of subgrade
reaction

The modulus of subgrade reaction k is optimised
in the interval [ 0.1 ; 1.0 ] MPa/mm, in order to best
reproduce the measured deflections. The differences
between measured deflections and simulation results
are assessed based on the following square-root of sum
of squared errors (SRSSE):

SRSSE=
√√√√ 1

72

8∑

d=1

md∑

g=1

[
w̄d,g − w(xd,g , yd,g)

]2
, (8)

with md = 9.
A value of k = 0.575 MPa/mm yields the best

reproduction of the measured deflections for the new
slab, see Figure 3. The residual error according to
Eq. (8) is 33 µm. The agreement between the simu-
lated and the measured deflections is not convincing,

Figure 3. Results of the optimisation of k: SRSSE between
measured deflections and simulation results, see Eq. (8).

Figure 4. Results of the optimisation of k: measured deflec-
tions (points) and simulation results (lines) obtained with the
optimal value of k = 0.575 MPa/mm.

see Figure 4. It is concluded that a uniform modulus
of subgrade reaction cannot explain the measured
deflections satisfactorily.

3.2 Extension towards consideration of an
auxiliary surface load

In order to increase the quality of reproduction of the
measured deflections, the same strategy is used as
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in (Díaz Flores et al. 2021), where a uniform auxiliary
load is introduced at the top-surface of the plate. Thus,
Eq. (7) is replaced by

p(x, y)=
{

paux + 202 kN
r2
cπ

. . .
√

x2 + y2≤ rc ,

paux . . . . . . . . . . .
√

x2 + y2 > rc .
(9)

The values of the modulus of subgrade reaction
and of the auxiliary load are optimised within
the intervals k ∈ [0.1 ; 2.0] MPa/mm and paux ∈
[−0.01 ; +0.1] MPa. The values k = 1.55 MPa/mm
and paux = 0.08 MPa ensure the best reproduction of
the measured deflections, see Figure 5. The error
according to Eq. (8) is 11 µm. It can thus be concluded
that the agreement between the simulated and the mea-
sured deflections is satisfactory in a qualitative as well
as a quantitative level, see Figure 6.

Figure 5. Optimisation of k and paux: SRSSE between
measured deflections and simulation results, see Eq. (8).

A Finite Element (FE) analysis was further per-
formed in order to verify the accuracy of the method
proposed. It consisted of a thin plate with free edges
with the properties shown in Table 1, on top of an
elastic foundation with k = 1.55 MPa/mm. As exter-
nal loads, a point load of 202 kN was placed at the
centre of the plate, and a uniform surface load of
paux = 0.08 MPa was placed to act downwards. Given
that there is virtually no difference between the results
from FE simulation and from the proposed method,
see the green dashed line in Figure 6, it is con-
cluded that the method does indeed provide accurate
results.

The auxiliary load influences the structure in a way
that the effective modulus of subgrade reaction is spa-
tially distributed. In order to show this influence, the
plate is conceptually cut free from the Winkler foun-
dation, see also (Díaz Flores et al. 2021) for more
details. This way, the auxiliary loading is moved from
the top to the bottom of the plate with a changed
sign. There, it is superimposed with the stresses result-
ing from the springs of the Winkler foundation. The
resulting distribution at the bottom surface reads as
k w(x, y)− paux. This is a realistic distribution of the

Figure 6. Results of the optimisation of the values of
k and paux: measured deflections (points) and simula-
tions results (lines) obtained with k = 1.55 MPa/mm and
paux = 0.08 MPa.

pressure exerted from the subgrade onto the bottom-
surface of the plate: It is in equilibrium with the falling
weight, while the corresponding deflection field
w(x, y) satisfies the plate’s field equation and bound-
ary conditions, and it reproduces the measurements
accurately.
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3.3 Effective modulus of subgrade reaction

The effective modulus of subgrade reaction is calcu-
lated as

keff (x, y)= σzz,eff (x, y)

weff (x, y)
, (10)

where σzz,eff (x, y) refers to the effective pressure at the
bottom of the plate, and weff (x, y) refers to the effective
deflection field.

The superposition principle applies to both the pres-
sure (numerator) and to the deflections (numerator)
in Eq. (10). However, the superposition principle is
not applicable to the effective modulus of subgrade
reaction. This happens because keff is inversely pro-
portional to weff . Thus, Eq. (10) must be evaluated for
the total load case. This consists of the dead load of
the plate together with the falling weight.

The dead load is given by a uniform load with a
value of ρgh= 5.29 kPa, where g= 9.81 m/s2 refers
to gravity. Equilibrium conditions mean that the cor-
responding subgrade pressure has the same value.
The deflection resulting from the dead load, wρgh,
can be calculated as the subgrade pressure divided
by the modulus of subgrade reaction:wρgh= ρgh/k .
Since the value of k for this case is unknown, a
sensitivity analysis is performed in the range k ∈
[ 0.20 ; 0.30 ] MPa/mm, seeTable 5.The chosen range
was defined in accordance with existing studies (Mar-
tin et al. 2016; Murthy 2011; Nielson et al. 1969; Ping
and Sheng 2011; Putri et al. 2012).

Table 5. Sensitivity analysis regarding the deflection result-
ing from the dead load.

ρgh [MPa], k [MPa/mm] wρgh [mm]

0.00529 0.2 0.026
0.00529 0.3 0.018

Superposition of the load cases “dead load” and
“falling weight” at the bottom of the plate, and
insertion into Eq. (10), yields

keff (x, y)= ρgh+ k w(x, y)− paux

wρgh + w(x, y)
. (11)

This provides a distribution of the effective modulus
of subgrade reaction that is realistic. Interestingly, it is
not uniform, but strongly non-linear, see Figure 7.

The distribution of the pressure at the bottom
surface of the plate may be calculated as: ρgh+
k w(x, y)− paux, see also Figure 8. Given the rectan-
gular geometry of the plate, the subgrade stresses are
found to be double-symmetric with respect to the N-
S and E-W axes. The maximum pressure amounts to
0.174 MPa.

Figure 7. keff , in [MPa/mm], according to Eq. (11) with
(a) wρgh= 0.026 mm and (b) wρgh= 0.018 mm, see Table 5.

Figure 8. Distribution of pressure exerted from the subgrade
onto the bottom-surface of the plate: ρgh+ k w(x, y)− paux ,
in [MPa].
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4 CONCLUSIONS

The results of the star-shaped FWD tests allow for the
following conclusions to be drawn:

• By confronting the asymmetry index developed by
(Díaz Flores et al. 2021) to a new set of original
measurement data, it was found that the index was
successful in predicting the symmetry or asymmetry
present in the behavior of both slabs.

• It can be concluded that values of the asymmetry
index amounting to less than 7% refer to virtually
double-symmetric structural behaviour. This pro-
vides a further tool for decision-making regarding
the repair of pavement slabs. This is particularly
interesting in the case of slabs exposed to long-term
non-symmetric loading.

The structural analysis of the new slab allows for the
following conclusions to be drawn:

• A non-linear distribution of the modulus of subgrade
reaction is necessary to explain the measurements
accurately. The use of a uniform modulus of sub-
grade reaction was found to be not realistic enough
for the purpose of reproducing deflections measured
during FWD testing, also for the new experimental
data.

• Such a distribution is realistic because it is in equi-
librium with the dead load of the plate and the falling
weight, the plate’s field equation and free-edge
boundary conditions are fulfilled, and the deflec-
tions obtained from star-shaped FWD testing are
reproduced accurately.

• The displacements obtained with the method pro-
posed by (Díaz Flores et al. 2021) and those from
FE simulations were virtually the same. This further
verifies the robustness and accuracy of the method.

• The structural analysis was limited to the concrete
slab and its subgrade. A multi-layered analysis is
indispensable if the stresses of the individual layers
underneath the slab are of interest.
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A RESULTS OF STAR-SHAPED FWD TESTING
ON THE NEW SLAB

Table 6. Maximum deflections measured during all FWD tests on the new slab [mm].

Geophone
Test Test
Direction Number g= 1 g= 2 g= 3 g= 4 g= 5 g= 6 g= 7 g= 8 g= 9

d = 1 (N) i= 1 0.159 0.125 0.119 0.107 0.091 0.075 0.061 0.051 0.041
d = 1 (N) i= 2 0.153 0.123 0.117 0.105 0.091 0.074 0.061 0.049 0.041
d = 1 (N) i= 3 0.152 0.123 0.115 0.104 0.088 0.073 0.060 0.048 0.039
d = 2 (NE) i= 1 0.152 0.122 0.119 0.104 0.086 0.071 0.058 0.046 0.036
d = 2 (NE) i= 2 0.150 0.122 0.115 0.102 0.086 0.071 0.056 0.043 0.035
d = 2 (NE) i= 3 0.151 0.122 0.115 0.102 0.086 0.071 0.056 0.044 0.033
d = 3 (E) i= 1 0.152 0.120 0.112 0.102 0.083 0.068 0.051 0.038 0.032
d = 3 (E) i= 2 0.150 0.119 0.112 0.101 0.083 0.068 0.050 0.038 0.032
d = 3 (E) i= 3 0.150 0.118 0.113 0.102 0.083 0.068 0.051 0.038 0.032
d = 4 (SE) i= 1 0.152 0.112 0.111 0.097 0.076 0.063 0.051 0.040 0.030
d = 4 (SE) i= 2 0.151 0.111 0.104 0.094 0.075 0.063 0.049 0.037 0.029
d = 4 (SE) i= 3 0.152 0.112 0.104 0.096 0.078 0.064 0.049 0.039 0.031
d = 5 (S) i= 1 0.150 0.125 0.115 0.106 0.091 0.072 0.056 0.047 0.037
d = 5 (S) i= 2 0.148 0.121 0.117 0.108 0.091 0.071 0.059 0.047 0.037
d = 5 (S) i= 3 0.149 0.123 0.116 0.108 0.090 0.071 0.059 0.047 0.039
d = 6 (SW) i= 1 0.149 0.112 0.106 0.095 0.079 0.065 0.052 0.044 0.038
d = 6 (SW) i= 2 0.147 0.110 0.106 0.095 0.079 0.067 0.052 0.044 0.038
d = 6 (SW) i= 3 0.147 0.110 0.106 0.095 0.079 0.067 0.052 0.044 0.038
d = 7 (W) i= 1 0.148 0.123 0.117 0.105 0.084 0.068 0.055 0.044 0.034
d = 7 (W) i= 2 0.149 0.123 0.115 0.105 0.083 0.068 0.054 0.044 0.031
d = 7 (W) i= 3 0.149 0.124 0.117 0.105 0.085 0.068 0.055 0.044 0.033
d = 8 (NW) i= 1 0.148 0.118 0.113 0.101 0.083 0.068 0.053 0.043 0.033
d = 8 (NW) i= 2 0.148 0.118 0.113 0.101 0.083 0.067 0.053 0.043 0.032
d = 8 (NW) i= 3 0.149 0.121 0.109 0.101 0.084 0.067 0.055 0.043 0.033
d = 1 (N) i= 4 0.148 0.120 0.115 0.104 0.086 0.072 0.059 0.049 0.037
d = 1 (N) i= 5 0.148 0.122 0.115 0.103 0.087 0.073 0.059 0.047 0.038
d = 1 (N) i= 6 0.149 0.122 0.116 0.106 0.088 0.074 0.060 0.043 0.039

Table 7. Coefficients of variation, CVd,g , of the maximum deflections measured by each geophone on the new slab, during
three subsequent tests in the same direction (nd = 3), calculated according to Eqs. (1)–(3), see also Table 6.

Geophone
Test
Direction g= 1 g= 2 g= 3 g= 4 g= 5 g= 6 g= 7 g= 8 g= 9

d = 1 (N) 2.24% 1.16% 1.85% 1.24% 1.73% 1.44% 0.78% 2.80% 2.26%
d = 2 (NE) 0.73% 0.31% 2.12% 1.14% 0.23% 0.65% 1.70% 3.45% 5.06%
d = 3 (E) 0.75% 0.48% 0.57% 0.35% 0.44% 0.23% 1.03% 0.61% 0.79%
d = 4 (SE) 0.50% 0.60% 3.64% 1.52% 2.00% 0.40% 2.82% 3.91% 3.41%
d = 5 (S) 0.51% 1.31% 0.65% 1.11% 0.69% 0.72% 3.10% 0.89% 2.74%
d = 6 (SW) 0.80% 0.59% 0.19% 0.11% 0.29% 1.45% 0.59% 0.60% 0.76%
d = 7 (W) 0.37% 0.32% 0.63% 0.29% 1.21% 0.22% 1.32% 1.12% 5.28%
d = 8 (NW) 0.29% 1.24% 1.97% 0.21% 0.77% 0.39% 1.69% 0.59% 2.48%
d = 1 (N) 0.42% 0.67% 0.81% 1.56% 0.98% 1.84% 0.96% 6.99% 2.73%
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B RESULTS OF MULTI-DIRECTIONAL FWD
TESTING ON THE OLD SLAB

Table 8. Maximum deflections measured during all FWD tests on the old slab [mm].

Geophone
Test Test
Direction Number g= 1 g= 2 g= 3 g= 4 g= 5 g= 6 g= 7 g= 8 g= 9

d = 1 (N) i= 1 0.322 0.295 0.274 0.246 0.203 0.157 0.114 0.081 0.057
d = 1 (N) i= 2 0.329 0.292 0.277 0.250 0.204 0.155 0.114 0.079 0.052
d = 1 (N) i= 3 0.329 0.292 0.275 0.246 0.204 0.159 0.114 0.084 0.059
d = 2 (NE) i= 1 0.321 0.279 0.263 0.234 0.182 0.138 0.099 0.070 0.052
d = 2 (NE) i= 2 0.326 0.280 0.266 0.235 0.183 0.137 0.099 0.070 0.046
d = 2 (NE) i= 3 0.327 0.281 0.262 0.233 0.183 0.135 0.099 0.070 0.048
d = 3 (E) i= 1 0.324 0.274 0.252 0.218 0.160 0.116 0.082 0.056 0.049
d = 3 (E) i= 2 0.323 0.268 0.250 0.216 0.159 0.115 0.080 0.054 0.046
d = 3 (E) i= 3 0.322 0.270 0.250 0.216 0.159 0.114 0.079 0.054 0.046
d = 4 (SE) i= 1 0.320 0.260 0.243 0.217 0.167 0.124 0.090 0.066 0.045
d = 4 (SE) i= 2 0.320 0.265 0.244 0.214 0.168 0.124 0.089 0.065 0.044
d = 4 (SE) i= 3 0.320 0.264 0.245 0.216 0.168 0.124 0.090 0.064 0.044
d = 5 (S) i= 1 0.322 0.288 0.273 0.250 0.205 0.164 0.121 0.088 0.062
d = 5 (S) i= 2 0.319 0.286 0.272 0.248 0.202 0.161 0.119 0.089 0.063
d = 5 (S) i= 3 0.318 0.286 0.269 0.248 0.203 0.160 0.119 0.087 0.060
d = 6 (SW) i= 1 0.318 0.272 0.257 0.232 0.184 0.142 0.104 0.074 0.050
d = 6 (SW) i= 2 0.317 0.269 0.255 0.230 0.182 0.142 0.104 0.073 0.049
d = 6 (SW) i= 3 0.317 0.270 0.255 0.230 0.182 0.142 0.104 0.073 0.049
d = 7 (W) i= 1 0.319 0.284 0.274 0.247 0.194 0.144 0.099 0.067 0.047
d = 7 (W) i= 2 0.318 0.282 0.273 0.245 0.193 0.144 0.099 0.067 0.046
d = 7 (W) i= 3 0.321 0.283 0.275 0.247 0.195 0.145 0.101 0.064 0.042
d = 8 (NW) i= 1 0.314 0.274 0.261 0.236 0.189 0.141 0.102 0.073 0.046
d = 8 (NW) i= 2 0.315 0.274 0.265 0.236 0.189 0.141 0.102 0.073 0.050
d = 8 (NW) i= 3 0.315 0.274 0.261 0.237 0.189 0.141 0.102 0.073 0.049
d = 1 (N) i= 4 0.317 0.276 0.262 0.235 0.188 0.146 0.108 0.078 0.053
d = 1 (N) i= 5 317 0.278 0.260 0.235 0.189 0.146 0.108 0.076 0.053
d = 1 (N) i= 6 0.317 0.277 0.263 0.235 0.188 0.147 0.108 0.077 0.054

Table 9. Coefficients of variation, CVd,g , of the maximum deflections measured by each geophone on the old slab, during
three subsequent tests in the same direction (nd = 3), calculated according to Eqs. (1)–(3), see also Table 8.

Geophone
Test
Direction g= 1 g= 2 g= 3 g= 4 g= 5 g= 6 g= 7 g= 8 g= 9

d = 1 (N) 1.23% 0.56% 0.63% 0.84% 0.27% 1.13% 0.26% 3.27% 6.02%
d = 2 (NE) 0.91% 0.31% 0.83% 0.58% 0.46% 1.10% 0.36% 0.52% 6.72%
d = 3 (E) 0.33% 1.10% 0.45% 0.40% 0.46% 0.87% 2.01% 2.34% 4.11%
d = 4 (SE) 0.10% 0.97% 0.45% 0.74% 0.48% 0.20% 0.22% 1.55% 1.70%
d = 5 (S) 0.55% 0.37% 0.71% 0.46% 0.68% 1.09% 0.79% 1.11% 1.90%
d = 6 (SW) 0.16% 0.55% 0.34% 0.36% 0.47% 0.11% 0.34% 1.07% 1.68%
d = 7 (W) 0.46% 0.27% 0.31% 0.34% 0.50% 0.41% 0.98% 2.87% 5.97%
d = 8 (NW) 0.24% 0.09% 0.85% 0.19% 0.08% 0.04% 0.20% 0.08% 4.44%
d = 1 (N) 0.05% 0.37% 0.48% 0.07% 0.37% 0.34% 0.19% 1.01% 0.66%
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ABSTRACT: The effect of concrete age on the bond performance of GFRP bars was investigated by per-
forming pullout tests on ribbed GFRP bars partially embedded in a concrete cube with 200 mm edge length.
The experiments performed showed that the bond strength increased by 19% after 98 days compared to 7 days.
Based on the experimental data, a time dependent analytical model was developed to predict the bond strength
and bond-slip curves at different ages. A finite element model of the experimental bond test was developed in
commercial software ABAQUS using cohesive interaction between the bonded surfaces and concrete damage
plasticity law. The damage parameter is defined from the bond-slip curve obtained analytically or experimentally.
Parametric studies were conducted to study the effect of concrete strength and rebar diameter on bond strength
of GFRP bars.

1 INTRODUCTION

Extensive research over more than two decades in
the application of glass fiber reinforced polymers
(GFRPs) has contributed to the recent rapid increase
in the acceptance, standardization, and widespread
use of GFRP bars in concrete structures. State-of-the-
art manufacturing processes and advances in polymer
technology have helped improve mechanical prop-
erties such as tensile strength and durability. The
advantages over steel, such as high strength-to-weight
ratio, ease of handling and low maintenance costs,
have made FRP bars a compelling substitute for
epoxy-coated steel bars.

In reinforced concrete structures, the bond between
reinforcing bars and concrete is an important aspect
responsible for the transfer of stresses between the
two components of the composite material. The bond
strength depends on surface finish and strength of
the FRP bars, as well as the strength of the concrete
(Achillides & Pilakoutas 2004; Maranan et al. 2015;
Tekle et al. 2017). The surface texture and tensile
strength of GFRP bars are essentially invariant with
time.The bond between GFRP bars and concrete, how-
ever, evolves with time as the concrete matures and
gains strength with time. The time evolution of bond
of GFRP bars is of significance, since most RC com-
ponents are demolded after only 7 days, when only
about 65% of the ultimate strength is reached. There is
an extensive literature examining the bond strength of
different types of GFRP bars, concrete strengths, bar
diameters, and the effects of exposure (Parvizi et al.
2020; Rolland et al. 2020; Solyom & Balázs 2020).The
authors could not find a study examining the effects of
concrete age on the bond performance of GFRP bars
embedded in concrete

In order to quantify the evolution of the bond
strength of GFRP bars with the age of concrete, an
experimental program was conducted to evaluate the
bond strength and bond-slip response of GFRP bars
in concrete. Pullout tests were performed on GFRP
bars embedded in 200 × 200 × 200 mm3 concrete
cubes at 7, 40, and 98 days. Based on the experi-
mental data a new analytical bond-slip model (called
as KFM model) capable of predicting the bond-slip
response for any age of concrete was developed. A
3D finite element model of the pullout test was devel-
oped in ABAQUS with the concrete and GFRP bars
modelled with C3D8R brick elements. A concrete
damage plasticity (CDP) model was used for the con-
crete and an elastic-brittle material model was used
for GFRP bars. The bond-slip curve obtained exper-
imentally or by the proposed analytical model was
used to develop the bond interaction between concrete
and GFRP bar and the damage due to slip. The pro-
posed KFM bond-slip analytical model for GFRP bars
and the FE model developed in ABAQUS captured
the experimental pullout behavior with good accu-
racy. Finally, parametric studies were performed with
the validated finite element model to investigate the
effects of variables such as the concrete compressive
strength and the diameter of the GFRP bars.

2 EXPERIMENTAL INVESTIGATIONS

2.1 Materials

The concrete was produced with a cement content of
320 kg/m3 and a water-cement ratio of 0.4.The average
cube compressive strength of the concrete after 7, 15,
40, and 98 days was found to be 45.2 MPa, 48.9 MPa,
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51.1 MPa, and 51.5 MPa, respectively. A ribbed GFRP
bar (Figure 1) with a nominal diameter of 14 mm and
a measured diameter (by dip testing) of 13.7 mm, was
used for the present study. Testing in accordance with
ASTM D7205M-06 (ASTM 2016), yielded an average
tensile strength of 866 MPa and an average modulus
of elasticity of 49.5 GPa.

Figure 1. Surface texture characteristics of GFRP bar used.

2.2 Bond specimen preparation

For the fabrication of the composite specimens, part of
the 980 mm long GFRP bar was embedded in concrete
cubes with 200 mm edge length. The bar was inserted
into the specimen so that it passed through the center
of gravity of the opposite sides of the cube. The part
of the GFRP bar in the concrete cube was divided into
two zones: 70 mm (5 times the nominal diameter of the
rod, db) of the bar had full contact with the concrete,
while the remaining 130 mm had no contact with the
concrete with a bond-breaker formed by a PVC pipe.
The loaded end of the specimen was provided with
anchors made of galvanized iron pipes (GI) with a
diameter of 42 mm and a length of 380 mm according
to ASTM D7205M-06 (ASTM 2016). The schematic
diagram of the specimen can be seen in Figure 2.

Figure 2. Schematic representation of pullout specimens.

2.3 Testing setup and instrumentation

To perform the bond test on a displacement-controlled
universal testing machine, a bond test apparatus with
dimensions 500 × 300 × 300 mm3 was fabricated
to hold the specimen, as shown in Figure 3. A slot
was milled in the base plate so that the bar specimen
could be inserted into the fixture. The upper plate of
the fixture was attached to the crosshead of the test-
ing machine. The schematic diagram of the setup and
an actual loaded specimen are shown in Figures 3a
and 3b, respectively. The force was measured using a
load cell with a capacity of 250 kN, which was placed
between the crosshead and the loading device. The slip
of the GFRP bar in the concrete was measured at two
locations during the experiment. First, at the free end
of the bar with three LVDTs placed between the free

Figure 3. Bond test apparatus: (a) schematic; and (b)
experimental setup.

end and the top of the concrete cube to measure the
slip at the free end, and second, at the loaded end with
two LVDTs placed between the bar and the bottom of
the concrete cube to measure the slip at the loaded end.
The elongation of the GFRP during the experiment was
measured using an extensometer with a gauge length
of 50 mm. All sensors were connected to a data log-
ger for data acquisition. Pullout on the GFRP bars was
performed by applying a monotonic quasi-static load
at a rate of 1.0 mm per minute, according to ASTM
D7913M-14 (ASTM 2014).

2.4 Bond strength and bond-slip response

Bond samples were tested at 7, 40, and 98 days.
All bond specimens tested failed when the bars were
pulled out of the concrete, without splitting or crack-
ing the concrete cube. The average bond stress was
calculated according to ASTM D7913M-14 (ASTM
2014) and is given by:

τ = F

cbl
(1)

where τ is the average bond stress in MPa, F is the
tensile force in N, cb is the effective diameter of the
GFRP bar, and lis the bonded length in mm. Slip at
the free end of the bar during the pullout tests was
measured.

The evolution of the average bond strength of the
tested specimens is shown in Figure 4. The aver-
age bond strengths were 12.4 MPa, 18.8 MPa, and
19.9 MPa at ages of 7, 40 and 98 days, respectively.
Figure 5 shows typical bond stress-slip responses of
pullout specimens at different ages. The response is
characterized by three curves (i) an ascending part of
the response, which is nonlinear up to the peak bond
stress. The peak stress is the point where the loss of
bond between the GFRP bar and the concrete com-
mences, (ii) a linear descending part from the peak
value of the bond stress, (iii) a horizontal part showing
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Figure 4. Evolution of average bond strength with time.

Figure 5. Bond stress, τ (MPa) versus free-end slip, s (mm)
at various ages.

the slippage of bars at constant bond stress, indicating
complete debonding.

Figure 6 shows the nature of bond failure of the
GFRP bar in the embedded zone of the concrete.

Figure 6. Failed bond specimen split open after test.

It can be seen that bond failure took place due to
shearing of the core of the GFRP bars from the ribs,
leaving the lugs with the bonded concrete (Figure 7).
No damage in the concrete cube was observed in any
specimen.

Figure 7. Mechanism of bond loss due to shearing of lugs.

3 ANALYTICAL MODEL

Several analytical models exists in the literatures to
predict the bond-slip behavior rebars in concrete, such
as the BPE model (Eligehausen et al. 1982) for steel,
the modified BPE (Cosenza et al. 1997), the Malvar
model (Malvar 1994), the CMR model (Cosenza, E.,
Manfredi, G. & Realfonzo 1995) for FRP bars. Sev-
eral international codes have also proposed analytical
models to determine the bond strength of FRP bars
including the ACI 440.1R-15 (ACI 2015) and CSA
S806-02 (CSA 2007). As far as the authors are aware,
none of the proposed models in literature considered
the evolution of bond strength with the age of concrete
and predictions bond strength based on tests carried
out at an age of 28-days. At an early age, when the
strength and stiffness of the concrete are low, the bond
strength is expected to be lower, and it enhances with
age.The experimental program conducted in this study
focused on evolution of bond strength with time.

Based on the experimental studies conducted, a
time dependent analytical model is proposed to predict
the bond strength and bond-slip response of a GFRP
bar embedded in concrete until failure. The proposed
model, referred to as “KFM Model” shown in Figure
8 consists of two parts: a non-linear part increasing up
to the peak bond stress τ b, reached at slip sb, and a
linearly decreasing curve.

Figure 8. Proposed bond stress-slip model.

The equations proposed for the KFM model are
shown in Equations 2 and 3. The equation consists
of the parameter α, a shape factor to define the rising
curve, and k1 to define the slope of the falling curve.
Equations 4–8 define different parameters used in the
proposed equations. k2 and k3 define the maximum
bond stress (τ b) and the corresponding slip (sb). The
age of the concrete, t in days, is used to generate the
age-dependent behavior of the bond-slip relationship.

τ1= τb

(
s

sb

)α

(2)

τ2= τb − k1

(
s

sb
− 1

)
(3)

where

τb= 2.6
(

fc
db

)k2

(4)
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sb= k3

(
Ec

EGFRP

)
(5)

k1= t0.48 (1− 0.07t0.45) (6)

k2= t0.1 (7)

k3= 2.6− 0.0044t (8)

The peak bond stress, τ b in the proposed KFM
model is a function of concrete strength, fc, diame-
ter of the GFRP bar db, and time-dependent parameter
k2. The slip corresponding to the peak stress, sb is a
function of Young’s modulus of concrete, Ec, Young’s
modulus of GFRP bar, EGFRP and time-dependent fac-
tor, k3. The calibration of the KFM analytical model
was performed using experimental results from the
present study to include the influence of time on bond
strength.

In the absence of concrete strength data, the evolu-
tion of concrete compressive strength with time, and
the 28-day compressive strength, the concrete com-
pressive strength at any given time t may be predicted
using the following simple equation:

fc (t)= fc,28
(
1− e−tλ) (9)

where λ is the shape factor to fit the curve of concrete
strength evolution. For the present experimental data,
λ = 0.3 gave an acceptable fit. By simply varying
the age of concrete, the proposed model was used to
predict the bond strength-slip response at 7, 40 and 98
days, as shown in Figure 9. The analytical response
shown in the figure was obtained by simply varying
the age of the concrete.

The KFM model was also validated against the
results of an independent study conducted by the
authors to test the bond performance of a similar type
of bar with a different concrete strength. The 28-days
compressive strength of the concrete was reported to
be 38.9 MPa. The response from experimental data
and the KFM model is shown in Figure 10. Further
improvement and validation of the model using other
published data is in progress.

Figure 9. Calibration of model with experimental data.

Figure 10. Validation of proposed analytical model.

4 FE MODELING OF PULLOUT TEST

Three-dimensional finite element model of the pullout
specimens was developed using the commercial finite
element softwareABAQUS CAE to simulate the bond-
slip behavior of GFRP bars in concrete. The dynamic-
explicit module with displacement-controlled loading
was used. The geometry of the model simulated the
experimental pullout test specimen. The 200 mm con-
crete cube and the GFRP bars used in pullout test
were modeled using 3D 8-noded linear brick ele-
ments (C3D8R), as shown in Figure 11. The inelastic
mechanical properties of the 50 MPa concrete were
modeled using the concrete damage plasticity (CDP)
model, which is commonly used for the analysis of
quasi-brittle materials such as concrete, rock, and
ceramics. The GFRP bars are modelled as elastic-
brittle material with an ultimate strength of 866 MPa.
The constitutive relationship for concrete in compres-
sion was modeled using the Kent and Park model
(Kent & Park 1971) and in tension using Wahalathantri
et al. (Wahalathantri et al. 2011) model. Concrete dam-
age parameters were determined based on Birtel and

Figure 11. FE model of pull-out specimen developed in
ABAQUS: a) 3D geometry; and b) concrete-rebar interface.
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Mark model (Birtel & Mark 2006) for tension and the
Yu et al. model (Yu et al. 2010) for compression.

A surface-based cohesive interaction was assigned
at the concrete- GFRP bar interface, in the bonded
part of the sample. A gap of 1 mm was inserted in the
unbonded portion of the specimen to simulate the gap
between the inner face of PVC and the rebar surface.
The cohesive interaction model required three stiffness
parameters, namely knn, kss and ktt . The elastic bond
shear stiffness (ktt) was calculated using ktt = τb/sb
(Rezazadeh et al. 2017), where τ b is the peak bond
stress and sb is the corresponding slip.

The boundary conditions of the model were
assigned according to the experimental setup. The
face of the concrete at the loaded-end was assumed
to be pinned (U1=U2=U3= 0). The displacement-
controlled load was applied at the loaded-end of the
GFRP bar.

4.1 Validation of the numerical model

The proposed KFM analytical model was used to cal-
culate the cohesive stiffness (ktt) and its degradation
(damage evolution) at the concrete-rebar interface.The
98-day bond-slip curve obtained from the KFM analyt-
ical model was used to validate the numerical model.
The elastic bond shear stiffness factor (ktt) was calcu-
lated based on the bond stress (τ ) at 10% of the slip s0.
The damage evolution curve was developed using the
following equation for D(s) (Dugdale 1960; Rolland
et al. 2020):

D(s)= 1− τ (s)

ktts
(10)

where τ (s) is the bond stress corresponding to the
slip s. The damage curve for the 98-days analytically
developed bond-slip curve is plotted in Figure 12.

The experimental, analytical, and numerically
developed bond-slip response of the 98-day bond spec-
imen is compared in Figure 13. The numerical model
accurately predicted the bond-slip response of the
analytical model and experimental data.

In addition, the bond-slip response was obtained
using the validated FE model for the 7-days and 40-
days pullout tests from ABAQUS. The response from
analytical KFM model and the FE simulation are
shown in Figures 14 and 15.

Figure 12. Damage evolution of 98-days bond.

Figure 13. Comparison of experimental, analytical, and
numerical 98-days bond-slip responses.

Figure 14. Comparison of analytical and numerical 7-days
bond-slip responses.

Figure 15. Comparison of analytical and numerical 40-days
bond-slip responses.

4.2 Results from finite element modeling

The stress contours from the numerical model are
shown in Figures 16 and 17. Figure 16a illustrates the
gradient of maximum principal stresses developed in
the bonded region of the specimen. Figure 16b shows
the concrete stress bulb in the vicinity of the bonded
region. Figure 17 shows the damage to the concrete
bonded to the GFRP bar. The mode of failure achieved
from the numerical model is consistent with the fail-
ure mode observed in the experimental work, shown
in Figure 6.
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Figure 16. Stress contours: (a) rebar; and (b) concrete.

Figure 17. Tension damage.

4.3 Parametric studies

Parametric studies were conducted to investigate the
effect of parameters such as concrete strength and
GFRP bar diameter. First, the analytical model was
used to generate the bond-slip curve. Then, the cohe-
sion parameters in the numerical model were cal-
culated and used to analyze the pullout response in
ABAQUS.

4.3.1 Concrete strength
The bond strength and bond-slip behavior of 30 MPa
and 60 MPa were investigated. For the concrete cube,
the constitutive law and damage evolution were gener-
ated using the KFM analytical bond model employing
the bond-slip response obtained at 28 days.

Tensile strengths of 3.4 MPa and 5.2 MPa were
assumed for 30 MPa and 50 MPa concrete, to gen-
erate the constitutive relationships. From Figure 18, it
is evident that the strength of concrete plays a crucial
role in the bond-slip response of GFRP bar embedded
in concrete.

Figure 18. Effect of concrete strength on bond-slip
response.

Figure 19. Effect of bar diameter on bond-slip behavior.

4.3.2 Bar diameter
GFRP bars with diameters of 12 mm and 16 mm were
used to investigate numerically the effect of bar diam-
eter on the bond-slip response of 50 MPa concrete at
an age of 28 days. Smaller diameter bars were found
to have a slightly larger bond strength as compared to
larger diameters (Figure 19).This is consistent with the
finding of the experimental work done by Gao et al.
(Gao et al. 2019).

5 CONCLUSION

The bond strength of GFRP bars evolves with time as
a function of several factors, with concrete strength
playing the most dominant role. Experimental investi-
gations have shown that the bond strength increases by
about 19% at 98 days compared to the 7-day strength.
A new analytical model (KFM Model) is proposed to
predict the evolution of bond strength with time. The
model captures the experimental response with good
accuracy. The nonlinear finite element model of the
pullout tests in ABAQUS using cohesive interaction
between the bonded surfaces and damage evolution
obtained from bond-slip response predicted the exper-
imental response both during the nonlinear response
up to bond strength of GFRP bar and subsequent bond
degradation. Parametric studies using the calibrated
finite element model showed that concrete strength
has a significant effect on early age response. Smaller
diameter bars have slightly higher bond strength than
larger diameter bars.
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ABSTRACT: An experimental program was conducted to monitor the development of strains and cracking in
large-scale concrete slabs reinforced with GFRP bars that experience drying shrinkage under ambient conditions.
Six slabs reinforced with two types of GFRP bars, namely ribbed and sand-coated with different spacing (200
mm and 300 mm), a slab reinforced with steel bars, and a plain slab were cast on lean concrete layer 100 mm
thick laid over compacted soil. This paper presents the development of a numerical model for the slab subjected
to drying shrinkage under ambient conditions. The developed finite element model of the slab on grade predicted
with reasonable accuracy the evolution of environmentally induced stresses and cracking in the concrete slab.
Parametric studies were performed with the validated FE model to investigate the effect of parameters such as
concrete strength, bar diameter and slab thickness.

1 INTRODUCTION

After more than two decades of intensive research, con-
crete structures reinforced with glass fiber-reinforced
polymer (GFRP) bars have become increasingly pop-
ular worldwide in recent years. Advances in manufac-
turing processes and resin types, as well as improve-
ments in mechanical properties with advantages in cor-
rosion resistance, ease of construction, and favorable
life-cycle costs, have made GFRP bars competitive
with epoxy-coated bars. The largest concrete structure
in the world reinforced with GFRP bars, a flood con-
trol channel, was recently built in Saudi Arabia. While
there is an abundance of research literature on the use
of GFRP bars in reinforced concrete columns, beams,
and shear walls, limited research has been reported in
GFRP bars reinforced grade supported structures.

There are several research papers in the literature
on the practical application of GFRP bars as embed-
ded reinforcement and dowels in pavements such as
continuous reinforced concrete pavements (CRCP),
jointed reinforced concrete pavements (JRCP), and
jointed plain concrete pavements (JPCP). The first
field application of CRCP reinforced with GFRP bars
was reported by Benmokrane et al. (Benmokrane et
al.) on Highway 40 East (Montréal) in Canada. Anal-
ysis of shrinkage and thermal stresses in CRCPs and
GFRP reinforcement required in CRCPs was studied
by Chen and Choi (Chen & Choi 2011; Choi & Chen
2015).

One of the most common causes of cracking in con-
crete slabs on ground is the phenomenon of drying
shrinkage, in which the concrete loses moisture, caus-
ing it to dry out and thus experience a reduction in
volume (Carlson 1938). Shrinkage of concrete slabs
supported on the ground is resisted by various types
of restraints, such as reinforcing bars, friction between
the slab base and subgrade, and moisture gradient
across the depth.The restraint to free shrinkage leads to
the development of tensile stresses in the concrete slab.
When tensile stress in concrete exceeds the modulus of
rupture, it leads to cracking (ACI 2008). Shrinkage of
concrete slabs on grade leads to two other phenomena,
namely warping and curling (NP et al. 2002). Warping
is developed due to the differential moisture distribu-
tion in the concrete and causes the corners of the slab
to lift. This leads to loss of support in the slab from the
subgrade and failure due to fatigue under impact loads
such as traffic loads (Suprenant 2002; Wei & Hansen
2011). Curling is a phenomenon that occurs in concrete
grade slabs when they undergo dimensional changes
due to uneven moisture/temperature distribution over
the depth of the concrete (Shadravan et al. 2015).

An experimental program was carried out to mon-
itor the development of strains and cracks in full-
scale GFRP bar reinforced concrete grade slabs with
dimensions 6000× 1100× 200 mm3 undergoing dry-
ing shrinkage under ambient conditions. Six slabs
reinforced with two types of GFRP bars (ribbed and
sand-coated types) with different spacing (200 mm and
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300 mm), one slab reinforced with steel bars and an
unreinforced concrete slab cast on lean concrete sub-
base was monitored for a duration of approximately
180 days.

Computational modeling of the time-dependent
evolution of stresses, cracks, and damage in the exper-
imental slabs due to shrinkage was performed using
the commercial finite element software ABAQUS.
Although the time-dependent behavior of concrete,
such as shrinkage, cannot be modeled directly in
ABAQUS, the user-defined subroutine feature was
used to simulate these phenomena. Two subroutines
were developed, USDFLD to define field variables and
UEXPAN for calculating the shrinkage strains, which
calculate the strains at the beginning of each incre-
mental time step and pass them to the implicit solver
of ABAQUS.

The developed finite element model of the slab on
ground predicted with reasonable accuracy the evo-
lution of environmentally induced stresses and the
cracking of the concrete.After validating the FE model
of the slab, numerical parametric studies were per-
formed to investigate the effects of parameters such as
the concrete tensile strength, diameter of GFRP bars
and slab thickness.

2 EXPERIMENT

2.1 Materials

In the present experimental work, concrete with an
average 28-day cube compressive strength of 40.2 MPa
and split cylinder tensile strength of 3.1 MPa was used.

Three types of reinforcing bars were used in the
study, namely ribbed GFRP bars, sand-coated GFRP
bars and steel bars. The mechanical properties of these
bars are listed in Table 1.

Table 1. Mechanical properties of rebars.

Ribbed
Sand-coated Conventional
GFRP GFRP ribbed steel

Property

Tensile 1046 1030 575 (yield)
strength (MPa)
Young’s 49 43.5 174
Modulus (GPa)
Diameter (mm) 13.7 13.5 12

2.2 Exposure

The slab on grade specimens were exposed to ambi-
ent environmental conditions in a field station for 180
days.Ambient temperature and relative humidity (RH)
were continuously monitored using a weather station
installed at the field station (Figure 1). The slabs were
cast in January 2021, at an average temperature of

Figure 1. Field exposure conditions: Temperature and rela-
tive humidity (1-day moving average).

20◦C, which increased gradually to about 40◦C in 4
months. The average RH was about 60% at the time of
casting and decreased to less than 20% after 4 months.

2.3 Specimens and instrumentation

Six slabs on ground specimens were cast in the field to
study the response under ambient environment. Spec-
imens measuring 6000× 1100× 200 mm3 (Figure 2)
were cast on a 100 mm lean concrete subbase resting on
compacted soil subgrade in the field station, as shown
in Figure 3. Two slabs were reinforced with ribbed
GFRP bars spaced at 200 mm (PG-200) and 300 mm
(PG-300), two specimens with sand-coated GFRP bars
spaced at 200 mm (GG-200) and 300 mm (GG-300),
one slab with conventional steel bars spaced at 200
mm (S-200) and one was unreinforced slab (PL). For
all reinforced slabs, the clear cover to the rebars was
50 mm from the top of specimens, as per ACI 360R-10
(ACI 2010). These specimens were reinforced in both
longitudinal and transverse directions.

Figure 2. Schematic of slab on ground specimen.

Strain gauges were attached to the reinforcing bars
at selected locations of the slab specimens, such
as mid-span and quarter-span to monitor the strain
under environmental loadings. Strain gauges were also
embedded in concrete slab at rebar level at midspan.
The cables from the strain gauges were routed to a
monitoring room in the field station near the slab spec-
imens. The cables were connected to a data logger to
automatically record and monitor the data. Ambient
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temperature and relative humidity were also recorded
using a field weather station (Figure 3).

Figure 3. Slab on ground specimens: a) field station; and b)
PG-300 specimen: erected reinforcement cage (left) and cast
specimen (right).

3 OBSERVATIONS & DISCUSSION

3.1 Crack mapping

Figures 4a-4f show the evolution of the cracks in the
grade supported slab specimens. The numbers in the
circle mark the day the crack occurred. All specimens
exhibited cracks varying in locations, lengths, time
of occurrence and widths. The four GFRP reinforced
slabs and the normal plain concrete slab exhibited a
prominent full-depth central drying shrinkage crack.
Minor surface cracks, not more than 0.1 mm wide and
0.1 mm deep, were developed at different ages at sev-
eral other locations along the length of the slab as seen
in the figures.

The full-depth transverse central crack developed
across the width in the slab with ribbed GFRP bars
spaced at 200 mm c/c, had an average crack width of
0.41 mm, while for the slab with bars spaced at 300
mm c/c it was 0.46 mm. The smaller spacing resulted
in the development of multiple cracks, while only one
crack was observed at 300 mm spacing c/c.

In contrast to the ribbed GFRP bars, the sand-coated
GFRP bar reinforced slabs showed an opposite pattern
in terms of the number of cracks but the crack width
was smaller for the slab with GFRP bars spaced at
200 mm c/c (0.31 mm) than the slab with GFRP bars
spaced at 300 mm c/c (0.49 mm).

The steel reinforced slab (Figure 4d), however, did
not develop any full-depth central crack. Multiple fine
cracks of different lengths are observed in the central
portion of the slab. The steel reinforcement effectively

Figure 4. Crack mapping of field specimens.

distributed the cracks preventing the formation of a
wide central crack. The unreinforced concrete slab
however, developed a wide full-depth central crack of
width 0.46 mm, and had multiple random cracks.

According toACI Committee 224’s guide to reason-
able crack width (ACI 2008), the maximum allowable
crack width in steel-reinforced concrete slabs for
humid, moist air and soil exposure condition is 0.3 mm.
ACI-440.1R-15 (ACI 2015) limits the maximum crack
width to 0.7 mm in grade-supported GFRP bar rein-
forced slabs. Higher crack widths are permitted in view
of the non-corroding GFRP bars.

3.2 Strain in the reinforcing bars and concrete

The total strains recorded for 50 days on the longitu-
dinal reinforcing bar at the middle of the six slabs are
shown in Figure 5. The first four days of the plots
show expansion due to swelling that occurs in the
concrete when the slabs are subjected to water cur-
ing (Kucharczyková et al. 2017). When the slabs were
exposed to the environment, drying shrinkage ensued
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Figure 5. 3-days moving average plot of longitudinal rebar
strains up to 50 days.

and cracks were developed in the concrete slab and
tensile stresses were generated in the reinforcing bars.
The steep increase in tensile strain in the rebars occurs
when the wide central cracks develop in the slabs. The
onset of cracking in the PG-200 and PG-300 slabs
occurred at 8 and 10 days, respectively, while crack-
ing in the GG-300 slab occurred at 11 days. On the
other hand, for the GG-200 slab cracking occurred at
17 days. The strain in slab reinforced with steel bars,
was compressive during the first 60 days and no cracks
were observed in the vicinity of the instrumented rebar.
After 150 days, a cracked developed near the middle
of the slab and tensile stress was measured.

Table 2 shows the maximum strains measured in
the rebars of the experimental slabs during the six
months and the calculated stresses. Higher strains with
a corresponding lower stress developed in GFRP bars
compared to the steel rebars due to its lower elastic
modulus.

Table 2. Peak strains in rebars within 180 days.

Calculated % of
Maximum Day stress ultimate

Specimen strain (µε) (days) (MPa) strength

PG-200 +1816 142 89.0 8.5
PG-300 +2040 142 100.0 9.6
GG-200 +2401 142 104.4 10.1
GG-300 +1374 166 59.8 5.8
S-200 +774 158 134.7 23.4

The measured total strain in the concrete at the cen-
ter of the slabs in the longitudinal direction, near the
rebars at the rebar level, is shown in Figure 6.The max-
imum total strain in concrete occurs in sand-coated
(GG-300) and ribbed (SS-300) GFRP bars spaced at
300 mm c/c (−375µε and−395µε), which decreases
significantly for a spacing of 200 mm c/c (−150 µε
and −200 µε). In steel bar reinforced slab, the mea-
sured concrete strain is −310 µε. The strain in plain
concrete slab is the lowest, which could be due to
the misalignment of the embedded strain gauge. The
higher concrete strain in slabs with GFRP bars spaced

Figure 6. Evolution of concrete stresses at rebar level at
mid-span of specimen in the longitudinal direction up to
180 days.

at 300 mm c/c is due to the lower restraint to shrink-
age as compared to the slabs with bars spaced at
200 mm c/c.

4 NUMERICAL SIMULATION

4.1 Model properties

Numerical finite element (FE) simulations of the
slabs monitored in the experimental program were
performed with the widely used and powerful com-
mercial software ABAQUS/CAE 2020 (Elchalakani
et al. 2018; Abed et al. 2021). The standard module
in ABAQUS, typically used for static and low-speed
dynamic processes was used. The concrete in the
model was assigned as a solid homogeneous material
with the concrete damage plasticity model and C3D8R
8-noded linear brick elements with reduced integra-
tion. The rebars were modeled as wires with T3D2
2-noded linear displacement truss element assumed to
be embedded in concrete using the embedment region
constraint. GFRP bar was modelled to be elastic-brittle
material with elastic modulus of 49 GPa and ulti-
mate strength of 1046 MPa.The mechanical properties
of concrete and GFRP reinforcements adopted in the
model are tabulated in Table 3.

ABAQUS does not have the built-in functional-
ity for modeling time-dependent phenomenon such
as shrinkage, creep, and thermal loads. For modeling
the time-dependent shrinkage in the slabs on grade,
two user-defined subroutines were developed in FOR-
TRAN (F95).The subroutine, USDFLD to define field
variables and UEXPAN for calculating the shrinkage

Table 3. Mechanical properties of materials for numerical
simulation.

Young’s Ultimate
Density Poisson’s modulus, strength

Material (kg/m3) ratio, ν Ec (MPa) (MPa)

Concrete 2440 0.18 29799 40.2 (comp.)
3.1 (tens.)

GFRP 2200 0.25 49000 1046
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strains, which calculate the strains at the beginning
of each incremental time step and pass them to the
implicit solver of ABAQUS.

Figure 7 shows the constitutive relationships for
concrete in compression and tension and the GFRP
bars used in the numerical study.

Figure 7. Constitutive relations: a) Concrete in compres-
sion; b) concrete in tension; and c) GFRP.

4.2 Concrete damage plasticity model

The concrete damage plasticity model in ABAQUS,
requires data of compressive stress and inelastic strain.
The stress-strain relationship captures the compres-
sion behavior starting from the inelastic rising curve,
the ultimate stress (peak) and the post-peak response.
The present study uses the Kent & Park (1975) model
for concrete. The model consists of two parts: a non-
linear curve up to the peak stress at 0.002 mm/mm
strain, and beyond this strain, a linear descending path
up to failure. In order to simulate the tension behavior
of reinforced concrete, the stress-strain relationship
proposed by Wahalanthantri et al. (Wahalathantri et
al. 2011), which is a modified version of Nayal
and Rasheed’s model (Nayal & Rasheed 2006) was
used. This model efficiently accounts for the inter-
action between reinforcement and concrete, tension
stiffening and strain softening.

4.3 Concrete slab and subbase interaction

The contact behavior between the slab and the lean
concrete subbase was modelled to have a surface-
based cohesive behaviour with the traction-separation
behavior defined by the stiffness coefficients knn, kss

and ktt . The relationship between the uncoupled stiff-
ness coefficients knn, kss and ktt given by Henriques
et al. (Henriques et al. 2013) as kss= ktt = τm/sm and
knn= 100kss= 100ktt , where τm is the maximum bond
strength and sm is the corresponding slip.

4.4 Shrinkage modeling

The focus of the numerical analysis is to develop a
finite element model capable of predicting shrinkage
induced stresses, strains, and damage in the concrete
slab at any given point of time. The free-shrinkage
strain data for the concrete used in the experimental
program was obtained from concrete prisms placed at
the site instrumented with embedded strain gauges.
ACI 209 shrinkage model was then fitted to match the
free-shrinkage strain extracted from the experimental
model. The ACI 209 shrinkage curve is a function of
ultimate free shrinkage strain εshu, constant f , shape
function α and time from the end of initial curing (t −
tc) as shown in Equation 1.

εsh (t, tc)= (t − tc)
α

f + (t − tc)
α εshu (1)

Figure 8 shows the plot of experimental free shrink-
age strain curve and the ACI 209 equation fitted to
the experimental data. Based on the factors f , α and
εshu, the shrinkage strain function for the UEXPAN
subroutine was developed.

Figure 8. Free shrinkage curves.

4.5 Calibration of numerical model

The restraint provided to the concrete slab by the lean
concrete subbase has a strong influence on the devel-
opment of tensile stresses at the top of the slab. The
tensile stress, when it exceeds the tensile strength of
concrete, leads to the formation of cracks. Various
values of the uncoupled stiffness coefficients knn, kss
and ktt were employed in the finite element model
and the cracking patterns in the slab was investigated.
DAMAGET (tensile damage, dt) option in the con-
crete damage plasticity model was used to define
post-cracking stiffness degradation. Based on several
iterations performed with several values of knn, kss and
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Figure 9. Calibration of model using concrete slab-subbase
iteration stiffness parameters.

ktt , as shown in Figure 9, the development of crack
patterns was observed.

Based on the above simulations, knn, kss and ktt
values of (100, 1, 1) closely resembled the experi-
mental observations, in terms of time of appearance
of midspan crack and crack pattern. Thus, further
numerical parametric studies were done using these
values.

4.6 Parametric studies

Effects of parameters such as concrete tensile strength,
diameter of GFRP bars, and thickness of the slab on
cracking and rebar stresses were investigated based on
the finite element model developed.

4.6.1 Tensile strength
The effect of concrete tensile strength (2 MPa and
4 MPa) are shown in Figure 10. For lower concrete
tensile strength, a central crack appeared on the 6th
day, followed by cracks at quarter spans on 16th and
19th days. However, for a 4 MPa-tensile strength con-
crete, only a central crack was developed on the 11th
day. Figure 11 shows the stresses developed in a cen-
tral longitudinal GFRP bar concrete on the 90th day.
Although the concrete with a tensile strength of 2 MPa
cracked at three locations, the stresses were less than

Figure 10. Effect of concrete strength on cracking.

Figure 11. Effect of concrete tensile strength on axial
stresses in central longitudinal rebars.

100 MPa, while the stresses were approximately the
same at higher concrete strengths (3.1 and 4 MPa).
This suggests that the crack width may be wider in
higher tensile strength concretes. The stresses devel-
oped in higher strength concrete are only up to 14% of
the tensile strength of the GFRP bar.

4.6.2 Bar diameter
No changes in the crack pattern of the slab were
observed when the diameter of the embedded GFRP
bars was increased from 12 mm to 16 mm (Fig-
ure 12). Cracks in both slabs developed on 8th day
from the commencement of shrinkage.The axial stress
in the 12 mm dia. GFRP bar was higher compared to
the 16 mm diameter bars in the vicinity of the crack
(Figure 13). Thus, changing the bar diameter does not
have significant effect in terms of crack development.

Figure 12. Effect of rebar diameter on cracking.

Figure 13. Effect of GFRP rebar diameter on axial stresses
in central longitudinal rebars.
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4.6.3 Slab thickness
The effect of slab thickness on the development of
shrinkage cracks was investigated. As shown in Fig-
ure 14, the 150 mm thick slab showed cracking in the
center on day 7 and in the quarters on days 26 and 53.
The 250 mm thick slab, on the other hand, showed only
one crack at the center on the day 10. Axial stresses
in the central longitudinal bar in 150 mm-thick slab
peaks at about 110 MPa at midspan and about 72 MPa
at quarter spans, while the 250 mm thick slab devel-
oped stresses of approximately 145 MPa at midspan
(Figure 15).

Figure 14. Effect of slab thickness on cracking.

Figure 15. Effect of slab thickness on axial stresses in
central longitudinal rebars.

5 CONCLUSIONS

Field monitoring of GFRP bar reinforced slabs on
ground provided valuable information on the initiation
and evolution of cracks and shrinkage strains in con-
crete and reinforcements. Slabs with larger bar spacing
exhibited larger crack widths. Finite element model
of the slab captured the experimental response and
predicted the strains and onset of cracking with good
accuracy. Parametric investigations showed that the
concrete tensile strength and slab thickness influences

the number, width, and age at which cracks are devel-
oped. Changing bar diameter from 14 to 16 mm did
not affect the cracking pattern. Further studies are in
progress.
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ABSTRACT: Analysis methods based on the rigid-plastic material models, such as the strut-and-tie method
(STM), are often used to validate the designs of solid reinforced concrete structures in the ultimate limit state.
However, the validation can be quite cumbersome since it involves much manual labor. Another analysis method
based on the rigid-plastic material model is Finite Element Limit Analysis (FELA). The workflow when using
FELA is easily automatized since the method is fully numerical. The capacity, stress fields, and collapse mode
of the structure are the results that can be obtained from a FELA analysis. Another fully numerical method
for validating solid reinforced concrete structures is the Non-Linear Finite Element Method (NLFEM). Using
advanced material models, NLFEM programs such as DIANA FEA can accurately describe the structural behav-
ior of reinforced concrete structures, even post the peak load. However, this modeling precision comes at the
cost of increased complexity, and many material parameters are required for the models. This trade-off between
precision and complexity in NLFEM is in contrast to FELA, which requires very few material parameters but
only provides information about the structure at peak load. In this paper, the two methods are briefly introduced,
whereafter they are compared by analyzing two four-pile cap experiments. Results obtained from the two models
are presented and compared both to each other and to the experimental results. At the end, conclusions about the
strengths and weaknesses of the two types of analysis are drawn.

1 INTRODUCTION

Design and validation of pile caps for the ultimate
limit state are often performed using the Strut-and-Tie
Method (STM). This method is based on the lower
bound theorem for rigid-plastic materials and thus
provides safe designs. However, STM can be inef-
ficient to use, especially when many load cases and
different geometries need to be considered. Numeri-
cal rigid-plastic limit analysis can be performed using
Finite Element Limit Analysis (FELA) (Anderheggen
& Knöpfel 1972). The method utilizes a rigid-plastic
material model and is, similarly to STM, based on
the extremum principles for rigid-plastic materials
(Drucker, Prager, & Greenberg 1952; Gvozdev 1960).
FELA has been known since the seventies and has been
used for geotechnical calculations for several years.
Recently, FELA has become popular in reinforced
concrete design and has been applied to slab struc-
tures (Jensen, Poulsen, & Hoang 2018), wall structures
(Poulsen & Damkilde 2000; Herfelt 2017), and solid
structures (Vincent,Arquier, Bleyer, & de Buhan 2018;
Vincent, Arquier, Bleyer, & de Buhan 2020; Andersen,
Poulsen, & Olesen 2021). FELA has reached a mature
state for plane reinforced concrete structures, and the

first commercial programs are now in use to design
and evaluate these structures (Herfelt, Krabbenhøft,
& Krabbenhøft 2019).

A requirement for the use of FELA is that the struc-
ture should have sufficient deformation capability
to enable redistributing of stresses and the develop-
ment of the predicted collapse mechanism. That is,
the structures should exhibit a sufficiently ductile
behavior. Ductility is normally achieved by ensur-
ing that yielding of the reinforcement is governing
for the capacity, rather than crushing of concrete or
rupture of reinforcement. Plane structures that are
designed using codes and guidelines possess this duc-
tility provided by minimum reinforcement. For solid
reinforced concrete structures, which often do not have
minimum reinforcement, the presence of sufficient
ductility is not always guaranteed. The presence of
the required ductility can be shown by full-scale test-
ing. However, this is not feasible in practice. Instead,
advanced non-linear finite element (NLFEM) cal-
culations can be performed, giving a more realistic
prediction of the behavior of the structure before the
collapse.

This paper studies a series of experiments of rein-
forced concrete four-pile caps subjected to central
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compressive loading (Miguel-Tortola, Miguel, & Pal-
larés 2019). The pile caps are analyzed using FELA
and NLFEM. In the FELA model, constant stress ele-
ments with normal traction continuity on inter-element
surfaces and shear equilibrium in the nodes are used
(Andersen, Poulsen, & Olesen 2022). The Modified
Mohr-Coulomb yield criterion is used for the con-
crete with a possible inclusion of the effectiveness
factor on the concrete compressive strength and with
the inclusion of smeared reinforcement. The NLFEM
is modeled in DIANA FEA (DIANA 2017), where
a smeared cracking approach is used for concrete in
tension, and lateral cracking is considered for reduc-
tion of the concrete compressive strength.The material
parameters for FELA and NLFEM are based on model
codes and guidelines for an objective comparison. The
results obtained using the two numerical methods are
compared to experimental results, and conclusions are
drawn concerning the usefulness of FELA compared
to NLFEM for analysis of pile caps.

2 FINITE ELEMENT LIMIT ANALYSIS

Finite Element Limit Analysis (FELA) combines the
domain discretization of the finite element method
with limit analysis based on a rigid-plastic material
model. FELA was first suggested by Anderheggen &
Knöpfel (1972) for reinforced concrete membranes
and plates and are now used to analyze both geotech-
nical and reinforced concrete structures in the ultimate
limit state.

Limit analysis with a rigid-plastic material model
was developed independently by Gvozdev (1960) and
Drucker, Prager, & Greenberg (1952) who formulated
the extremum principles of rigid-plastic materials.
These extremum principles are the lower bound the-
orem, the upper bound theorem, and the uniqueness
theorem. For a thorough review, see (Nielsen & Hoang
2011).

FELA can be based on either the lower bound theo-
rem where a statically admissible stress state is sought
or on the upper bound theorem where a kinematically
admissible collapse mode is sought. The method used
in this paper is based on the lower bound theorem but in
a relaxed manner. Consequently, a lower bound on the
failure load is not guaranteed. However, the solution
will still converge towards the failure load.

In FELA, the structure is divided into several stress-
based finite elements. The element which is used is
the Normal Traction element (Andersen, Poulsen, &
Olesen 2022), which is a partially mixed lower bound
element. The element has a constant stress field and
thus only one stress point per element. Each stress
point corresponds to a full triaxial stress state:

σ� = [
σxx σyy σzz σxy σxz σzy

]
(1)

The stress state of the element needs to be in equi-
librium with that of neighboring elements through

the force equilibrium of corner nodes and traction
equilibrium of the faces.

The shear stress contributions are placed in the cor-
ner nodes. The equilibrium for a single node is given
by:

m∑

i=1

Qi,n(σ i)=Pn (2)

where Qi,n is the force contribution in the node from
element i, which is a function of the stress state of ele-
ment i, and Pn is the external loading of the node. The
subscript n, denotes either the x, y, or z direction. Sim-
ilarly, the traction equilibrium for an interface between
two elements is given by:

t1,n(σ 1)+ t2,n(σ 2)= qn (3)

where t1,n and t2,n is the traction for the elements on
either side of the interface, and qn is a traction load
on the interface. Here the subscript n denotes the
normal direction on the interface since the element
only considers strict traction continuity for the normal
traction.

The stress point vectors are collected into the system
stress vector, β� = [

σ�1 . . . σ�n
]
. The stress continuity

between the elements and the elements and the load-
ing is ensured via the equilibrium matrix H, which has
contributions from each of the elements. The equi-
librium matrix, H, multiplied with the system stress
vector, β, should be in equilibrium with the constant
loads R0 and scalable loads Rλ, where λ is the so-
called load-factor, which is sought to be maximized.
Furthermore, the stress state in each element should
abide by the employed yield criteria. Combined, this
gives an optimization problem on the form:

max. λ Load (4a)

s.t. Hβ =R0 + λR Stress equilibrium (4b)

fi(σ i)≤ 0 Yield conditions (4c)

The optimization problem above is convex and can
to be efficiently solved when certain criteria are met.
For the present case the yield conditions (4c) are
modeled as semidefinte constraints, and these cou-
pled with an affine objective function (4a) and affine
equality constraints (4b) are indeed convex (Boyd &
Vandenberghe 2004).

In the following the basis of the stress equilibrium
(4a) and the yield conditions (4c) will be briefly elab-
orated. However, for a thorough examination of the
model see Andersen, Poulsen, & Olesen (2022).

2.1 Stress equilibrium

The element used for the FELA analysis of this paper is
the Normal Traction element. A sketch of the element
can be seen in Figure 1. The element is a so-called
partially mixed lower bound element. Partially mixed
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Figure 1. Configuration of the Normal Traction element
(Andersen, Poulsen, & Olesen 2022).

because it has strict normal traction continuity on
the element faces, but only a relaxed shear traction
continuity moved unto the corner nodes as a force
equilibrium.

The element contains only one stress node and
consequently only one material point, which means
that each element has a computational requirement
of only one-third of a regular linear stress element.
This reduced computational cost per element is desir-
able when large solid geometries must be modeled,
requiring many elements to mesh adequately. Further-
more, the element has proved to have fast convergence
(Andersen, Poulsen, & Olesen 2022).

2.2 Reinforced concrete yield condition

The stress state of each element needs to abide by a
yield condition. In this paper, a yield condition for rein-
forced concrete based on a separation of stresses into
concrete stresses and reinforcement stresses is utilized
(here shown as tensors):

σ�= σ�,c + ρσ�,s (5)

where σ� is the total stress tensor, σ�,c is the concrete
stress tensor given by:

σ�,c=
⎡

⎣
σc,xx σc,xy σc,xz
σc,xy σc,yy σc,zy
σc,xz σc,zy σc,zz

⎤

⎦ (6)

and ρσ�,s is the smeared reinforcement stress tensor
given by:

ρσ�,s=
⎡

⎣
ρx 0 0
0 ρy 0
0 0 ρz

⎤

⎦

⎡

⎣
σs,xx 0 0

0 σs,yy 0
0 0 σs,zz

⎤

⎦ (7)

where ρ contains the reinforcement degree in each of
the three normal directions, and σ�,s is the stress in
the reinforcement. As can be seen this assumes that
the reinforcement is placed in accordance with the
xyz-coordinate system, and that only normal stresses
can be carried by the reinforcement. This separation
of stresses is analogue to the way the Nielsen yield
criterion is developed (Nielsen & Hoang 2011).

2.2.1 Concrete yield criterion
For the concrete stresses the Modified Mohr-Coulomb
yield criterion is used. The yield criterion consist of
a friction and a separation criterion and are cast in
principal stresses:

σ1 ≤ νt ft (8a)

kσ1 − σ3 ≤ νfc (8b)

here σ1 and σ3 is the largest and smallest principal
stress respectively, k is the friction coefficient usually
taken as 4, and νt ft and νfc are the effective tensile and
compressive strength, respectively.

The effective tensile strength is chosen as a small
fraction of the effective compressive strength, νt ft =
νfc/C≈ 0, where C is a number larger than 1000.
The small value of the tensile strength has a neg-
ligible influence on the capacity, but improves the
quality of the dual variables of the equilibrium equa-
tions (4b). The dual variables can be interpreted as
the collapse mechanism of the structure (Poulsen &
Damkilde 2000).

The conditions of (8a) and (8b) can be cast as a set of
two semidefinite constraints with two additional linear
constrains and auxiliary variables (Larsen 2010; Mar-
tin & Makrodimopoulos 2008; Krabbenhøft, Lyamin,
& Sloan 2008; Bisbos & Pardalos 2007):

σ�,c + (kα1)I� 0

σ�,c − α2I 0

α2≤ νt ft
α1 + α2≤ νfc/k

(9)

where I is the identity matrix of order 3, α1 and α2
are auxiliary variables, and the symbols  0 and �
0 designate positive and negative semi-definiteness,
respectively.

2.2.2 Reinforcement yield conditions
The reinforcement stresses are constrained using a set
of simple linear constraints on the form:

−fs,c ≤ σs,xx ≤ fs (10a)

−fs,c ≤ σs,yy ≤ fs (10b)

−fs,c ≤ σs,zz ≤ fs (10c)

where fs,c is the reinforcement compressive yield
strength, which is set to 0, and fs is the reinforcement
tensile yield strength.

3 NON-LINEAR FINITE ELEMENT ANALYSIS

The commercial program DIANA FEA (DIANA
2017) is used to perform the analysis.

The total strain crack model in DIANA FEA is used,
which is based on the modified compression theory
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(Vecchio & Collins 1986). The reinforcement bars are
modeled with embedded truss elements with bond slip.

The concrete in the model is discretized with solid
hexahedron elements with 20 nodes and a quadratic
displacement interpolation. The average side length
of the element is 50 mm. The reinforcement bars are
modeled with embedded truss elements and connected
to the solid elements with line interface elements
to enable modeling of the bond-slip between the
reinforcement and the concrete.

The equilibrium between the external and inter-
nal forces is achieved iteratively with the Newton-
Raphson method and line-search. For the convergence
criterion, the energy norm is chosen with a tolerance of
0.001. The step sizes used in the analyses are between
0:25 mm and 1:00 mm.

3.1 Material models

The following material models are used in the NLFEA.

Concrete
The material parameters not presented in the follow-
ing sections are calculated with the equations stated
in fib model code 2010 (Fib 2013), and the guidelines
from the Dutch Rijkwaterstaat (Hendriks, de Boer, &
Belletti 2017).

The Total Strain Crack Model in DIANA FEA is
used, which is based on the modified compression the-
ory (Vecchio & Collins 1986). The implementation in
3D is according to Selby (1993). The post-peak ten-
sile behavior is modeled as exponential softening with
a crack band based on the individual element size. The
damage due to cracking reduces the Poissons ratio at
the same pace as the reduction of the secant modulus
(see (DIANA 2017)).

The compression behavior is modeled with a
parabolic stress-strain relation (Feenstra 1993). The
relation is based on Young modulus Ec, the compres-
sive strength fc, the compressive fracture energy Gc,
and the crushing bandwidth hc (which is equivalent to
the crack bandwidth).The compressive fracture energy
Gc determine the ductility for the concrete. The guide-
lines (Hendriks, de Boer, & Belletti 2017) recommend
Gc= 250Gf , where Gf is the tensile fracture energy.
However, this value is based on experiments with con-
crete strength up to 50 MPa (Nakamura & Higai 2001)
and is considerately higher than reported elsewhere
(Vonk 1992; Lertsrisakulrat, Watanabe, Matsuo, &
Niwa 2001). In (Vonk 1992), the compressive fracture
energy is reported as 50Gf − 100Gf . The influence
of the compressive fracture energy on the compres-
sive softening behavior is shown in figure 2. The
figure shows that the stress-strain relationship for
compressive fracture energy of 50Gf results in a signif-
icantly more brittle failure when compared to 250Gf .
However, to be consistent with the guidelines, initial
compressive fracture energy of 250Gf is chosen.

The reduction of the compressive strength due to lat-
eral cracking is considered with model B described in
(Vecchio & Collins 1993), as shown in Equation (11).

Figure 2. Stress-strain for concrete in compression

In FELA, this effect is taken into account by the
effectiveness factor.

βσcr =
1

1+ 0.27
(
− αlat

ε0
− 0.37

) ≤ 1 (11)

where αlat =
√
α2

l,1 + α2
l,2 and αl,1 and αl,2 are the

lateral strains.

Reinforcement
The reinforcement steel is modeled with Von Mises
plasticity and a bilinear plastic strain-stress relation
for hardning. The simple stress-strain relationship is
estimated to have a minor effect on the behaviour.

The bond between the reinforcement and the con-
crete is modeled with interface elements. The bond-
slip material model from fib model code 2010 (Fib
2013) is used where “good bond condition” and
pull-out failure are assumed.

4 FOUR-PILE CAP COMPARISON

4.1 Presentation of specimens

The two methods are used to analyze some specimens
of four-pile caps from an experimental campaign by
Miguel-Tortola, Miguel, & Pallarés (2019).The exper-
imental campaign consisted of 21 square four-pile caps
with slab width of 1.15 m, height varying from 0:25 m
to 0:45 m, varying reinforcement layout, and varying
loading setup.

In this paper specimens 4P-N-C2 and 4P-N-C3 are
considered. These specimens are loaded by a central
normal force and have a height of 0.45 m. The geom-
etry of the four-pile cap can be seen in Figure 3. Both
have mesh reinforcement at the bottom face. However,
only specimen 4P-N-C3 has shear reinforcement. The
reinforcement layouts can be seen in Figure 4. The
mesh reinforcement had hooked ends to ensure proper
anchorage, which the figure does not show. The num-
ber of bars can be seen in Table 1, where AsB is the
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Figure 3. Geometry of the four-pile cap specimens.

Figure 4. Reinforcement layout of the specimens.

bunched bars over the piles, AsH is the bars between
the piles, and AsV is the shear reinforcement. The yield
and ultimate strength of the individual bars can be seen
in Table 2.

In the experimental setup, the column was fixed,
while the load was applied by actuators in each pile to
ensure uniform distribution of pile reactions. One actu-
ator was deformation controlled, and the remaining
three were synchronized with this and load controlled.
The load on the piles was applied through a hinge capa-
ble of both rotation and in-plane translation, meaning
that only vertical load was applied to the piles.

Table 1 also contains the experimental results of the
two specimens with Vy,e being the load correspond-
ing to yielding of the bunched reinforcement AsB,
Vu,e being the ultimate load, and uz being the vertical
deformation at peak load.

Table 1. Results from the testing of the two specimens (Miguel-Tortola, Miguel, & Pallarés 2019). * Punching after yielding
of bunched reinforcement.

fc ft Vy,e Vu,e uz
Specimen [MPa] [MPa] AsB AsH AsV [kN ] [kN ] [mm] Failure mode

4P-N-C2 36.3 2.8 4× (2Ø10+ 1Ø12) 2× 5Ø8 960.4 1173.9 5.7 Punching*
4P-N-C3 34.0 2.7 4× (2Ø10+ 1Ø12) 2× 5Ø8 4× 5Ø8 1014.1 1317.3 9.7 Flexural

Table 2. Material parameters of the reinforcement used in
the experiments.

Ø fy fu
[mm] [MPa] [MPa]

8 573.3 650.9
10 519.3 634.7
12 553.8 641.8

4.2 Description of FELA model

The FELA calculations are performed using the COWI
software package fela programmed in Python. The
software package uses GMSH as a mesher and Mosek
as a solver.The size of the elements in the model can be
adjusted by the so-called characteristic length lc of the
elements. The characteristic length is the side-length
of the tetrahedral elements, which the mesher aims at
providing.

The reinforcement is modeled as smeared reinforce-
ment, as described earlier. The smeared reinforcement
approach means that some choices have to be made
regarding how detailed the model needs to be. The
most detailed model would be to smear out every
reinforcement rod independently. However, this cre-
ates a model with numerous overlapping solid regions,
which would be complicated both to model and mesh.
A less detailed way is to separate the reinforcement
into groups and model each group as separate smear
regions. The less detailed way is often the most prac-
tical solution and can adequately capture the effect of
the reinforcement in the model. In this paper, the lat-
ter method is used. The reinforcement at the bottom
face is separated into two groups; the main bend-
ing reinforcement over the piles is in one group, and
the reinforcement between the piles in another. The
reinforcement groups are then further separated for
reinforcement in the x- and y- directions, respectively.
The stirrups are separated such that each leg of the
stirrup, the bottom, and the top part belong to sepa-
rate groups. The thickness of the smear regions for the
bending reinforcement is set to 50 mm, and the thick-
ness of the shear reinforcement regions is set to 25 mm.
Figure 5 shows the smeared reinforcement regions of
the model for a mesh with lc= 50 mm.

4.2.1 Convergence study
A convergence study is made to make sure that
the capacity from the calculations is sufficiently
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converged. Five computations with characteristic
lengths varying between 100 mm and 25 mm is per-
formed. For the convergence study, an effectiveness
factor of ν= 1.0 is used. The result of the convergence
study can be seen in Figure 6.The solution is converged
from the third data point, but the solution precision is
adequate from even the first data point. The middle
data point of the figure is with a characteristic length
of lc= 50 mm and has 48610 elements. This mesh is
used for the rest of the calculations in this paper.

Figure 5. Smeared reinforcement regions for a mesh with
characteristic length lc = 50 mm.

Figure 6. Convergence study for the FELA model.

4.2.2 Influence of effectiveness factor
The influence of the effectiveness factor on the capac-
ity is studied by varying the effectiveness factor
between 0.2 and 1.0. A plot of the capacity of the two
models as a function of the effectiveness factor can be
seen in Figure 7. Interestingly, the effectiveness factor
does not significantly influence the capacity unless a
very low value below 0.4 is used, which is seldom the
case for this type of structure.

This observation indicates that the capacity is
mainly limited by yielding of the reinforcement, which
would indicate that the failures should be flexural or
governed by yielding. This is supported by the failure
modes from the experiments, which both had yielding
of the primary bending reinforcement before failure
(Miguel-Tortola, Miguel, & Pallarés 2019). Conse-
quently, an effectiveness factor of ν= 1.0 is used for
the FELA calculations in the remainder of this paper.

Figure 7. Influence of the effectiveness factor ν on the
capacity.

4.3 Description of DIANA model

The material properties, not given in Table 1 and
Table 2, are based on (Fib 2013) and the guidelines
from the Dutch Rijkwaterstaat (Hendriks, de Boer, &
Belletti 2017) to ensure an objective comparison. In
Table 2, only fy and fu are given as material properties
for the reinforcement.Thus, a post-yielding stiffness of
0.01Es is chosen to account for the hardening.After the
ultimate capacity, fu, is reached the stiffness is reduced
to zero. The model consist of elements with a size of
0.05 m. To get the post peak, deformation controlled
load is applied. The load and support are applied on a
load-plate, as shown in Figure 3, which is connected
to the concrete in the pile cap with an soft interface.

In the following the results from the two different
methods are presented, compared, and discussed. First
a comparison of the capacity predicted from the two
models are performed, as well as the load displacement
plot for the DIANA FEA calculations and the experi-
ments. Thereafter the stress flow from the two models
are studied. Finally the predicted collapse from the two
models are discussed.

4.4 Results

4.4.1 Capacity and load-deflection
Figure 8 shows the load-displacement plot of the two
specimens as well as the same predicted from the
DIANA FEA calculations. The capacity found from
the FELA calculations is also indicated. The plot
shows that the ductility of the two specimens varies
quite significantly, with the maximum deflection of the
4P-N-C3 specimen being almost twice that of the 4P-
N-C2 specimen. The NLFEA show a more stiff initial
behavior compared with the experiments.The material
stiffness from the experiments was not measured, so
the relation between fc and Ec was used, which is not
an accurate relation. Furthermore, the deformation for
the NFLEA is the difference between the top-centre
and the point above the supports. After the linear part,
both results from the NLFEA shows a decrease of the
load. The decrease might be due to the relative low
amount of reinforcement which result in small differ-
ence between the theoretical uncracked capacity and
cracked capacity of the pilecap.
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Figure 8. Load-displacement plot for the two specimens. Note that the y-axis shows the load in one pile only.

Figure 9. Principal stress flow predicted from by the FELA models for the two specimens. Bottom: Third principal stress,
top: first principal stress.

Contrary to the NLFEA calculation, FELA cal-
culations do not give any information about the
load-displacement behavior of the model. Instead, the
presence of sufficient ductility is a requirement for
the safe use of the method. In the present case,
even with a brittle failure of specimen 4P-N-C2, the
capacities found from FELA are found to be safe.

For both specimens, the capacity found from the
FELA calculations is lower than the ultimate load.
However, they are in both cases larger than the load,
which gives yielding of the bunched reinforcement
AsB. From this observation, we can conclude that
the FELA calculations can utilize at least some of
the reinforcement between the piles. Also, the inclu-
sion of the shear reinforcement makes the FELA
model better able to utilize this reinforcement, which
can be seen from the larger difference between the
yielding of bunched reinforcement and the FELA
capacity for specimen 4P-C2-N3 compared to spec-
imen 4P-C2-N2. In other words, the presence of the
shear reinforcement allows for new load-paths. Con-
sequently, the capacity is about 200 kN higher when

the shear reinforcement is introduced, which is 20%
higher than without shear reinforcement. The DIANA
FEA calculations are able to very accurately determine
the ultimate loads for both specimens. One of the rea-
sons for the accurate calculation, and difference from
the FELA model, is that hardening is included in the
NLFEA model so the ultimate capacity of the rein-
forcement can be reached. From 2, it is seen that the
ultimate strength of the reinforcement is in average
17% higher than the yield strength.

4.4.2 Stress flow
Figure 9 shows the stress flow found from the FELA
calculations by plotting the first and third principal
stress vectors of the two specimens. The stress flow
for specimen 4P-C-N2 is entirely predictable with a
strut originating at each pile and terminating at the
column, utilizing the bunched reinforcement and, to a
lesser degree, the reinforcement between the piles to
carry the tie forces. The stress flow plot is clear and
looks similar to a strut-and-tie model. The stress flow
for specimen 4P-C-N3 is a bit more complicated since,
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besides the main strut action, secondary load paths are
also present utilizing the shear reinforcement between
the piles. For both specimens, it can be seen that the
struts terminate on the very edge of the column, which
makes sense since this will give the most direct transfer
of compression from the piles to the column.

Figure 10. Third principal stress plot for the Diana model
of specimen 4P-N-C2 at peak load.

Figure 11. Third principal stress plot for the Diana model
of specimen 4P-N-C3 at peak load.

Figure 12. Collapse mode predicted from by the FELA models for the two specimens. The coloring of the faces is the relative
vertical displacement.

4.4.3 Deformation and collapse mode
The flow of compression at the peak load in the DIANA
FEA model can be seen in Figure 10 for specimen 4P-
N-C2 and in Figure 11 for specimen 4P-N-C3. The
figures show surface plots through the diagonal. The
results are quite similar to the FELA results, with a
concentrated strut from the pile towards the edge of
the column for 4P-N-C2, and a more complicated load
path for 4P-N-C3. In both cases the load transferred
at the edge of the column, which is also similar to the
FELA calculations.

The NLFEA model, which uses a deformation-
based model, can show the deformation state at any
point in the load history. This is not the case for FELA,
which has no information about the deformation due
to the rigid-plastic material model. However, the dual
variables of the stress equilibrium (4b) can be inter-
preted as a collapse mode. The collapse mode shows
how each part of the model will move with respect
to each other at collapse but says nothing about the
magnitude of the deformations.

A plot of the collapse mode from the FELA calcula-
tions for the two specimens can be seen in Figure 12,
and a deformation plot at peak load for the NLFEA
calculations can be seen in Figure 13.

Specimen 4P-N-C2 shows a localized collapse with
the piles moving upwards. This collapse seems con-
sistent with a punching failure after yielding of the
bunched reinforcement, as reported by the experi-
ment. The deformation plot from the NLFEA calcu-
lations also shows a localized failure indicative of the
aforementioned punching failure mode.

Specimen 4P-N-C3 was reported to have a flexural
failure in the experiments, and this also seems consis-
tent with the FELA collapse mode, and the NLFEA
deformation plot.

Even if the FELA calculations yield no information
about the load-displacement behavior, in this case, the
collapse mode still reveals something since a punching
failure would generally be assumed to be less ductile
than a flexural one.
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Figure 13. Collapse mode predicted from by the NLFEA models for the two specimens.

5 CONCLUSION

Computational models of two four-pile cap experi-
ments using Finite Element Limit Analysis (FELA)
and the Non-Linear Finite Element Method (NLFEM)
software DIANA FEA have been presented. Results
obtained from the two models have been compared to
each other and the experimental findings from the liter-
ature. Both models were able to determine the capacity
to a satisfactory degree and foresee the mode of col-
lapse. The load-displacement plot obtained from the
DIANA FEA model showed good agreement with the
experimental results.

While DIANA FEA, and NLFEM in general, can
describe the behavior of a structure very accurately, the
precision also comes at the cost of increased complex-
ity. On the other hand, FELA can only give information
about the ultimate limit state. However, the model is
also simpler. The simplicity can mean faster model-
ing time and calculation time, but the structures must
be ductile to use FELA safely. In conclusion, both
methods have their strengths and weaknesses, and it
is essential to be mindful of these and use the right
tool for a given task. Furthermore, the two methods
can be used as independent model control for each
other.
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ABSTRACT: Concrete has been traditionally reinforced with steel rebars that confer good tensile properties
to this material. Nevertheless, concrete can also be reinforced with fibres, which have been traditionally made
of steel, although in the last years new types of fibres have appeared, such as polypropylene fibres, glass fibres
or polyolefin fibres. Their use widens the range of application of fibre-reinforced concrete (FRC) and has
experienced an significant boost by national and international standards, which now include guidelines for their
use in structures. More specifically, textured polyolefin macro-fibres have proved to provide very good tensile
properties in concrete. The use of these fibres has significant advantages when compared with traditional steel
fibres, since they reduce the tear and wear of devices involved in their production, avoid corrosion problems in
concrete and have no influence on magnetic fields, which can be very important in some situations. Concrete
properties, both in fresh and hardened states, have been extensively studied in the last years, proving to be a
promising alternative to steel fibres. Fracture of FRC, and more specifically of PFRC, has been successfully
reproduced using the finite element analysis by means of an embedded cohesive model with a trilinear softening
function. On another note, concrete has a good behaviour when subjected to high temperatures and fire, especially
when it is compared with other traditional construction materials, such as wood or steel. Nevertheless, concrete
reinforcement is usually made of materials that are critically sensitive to these events and the behaviour of the
composite material must be assessed to meet the requirements described in the structural standards. With regard
to polyolefin-fibre reinforced concrete (PFRC), a recent study has analysed how the fracture properties of this
material degrade when subjected to high-temperatures, ranging from 20ÂºC to 200ÂºC.As temperature increases,
fibres modify their geometry and their mechanical properties, which leads to a reduction of their effectiveness.
In this work, the fracture behaviour of PFRC specimens subjected to high temperatures is reproduced by using
an embedded cohesive model that uses a trilinear softening function. The specific trilinear softening diagram
that provides a good numerical simulation of fracture is obtained for each temperature increment. This helps to
understand how the trilinear diagram must be adapted when PFRC is subjected to high temperatures and will
allow the use of this model to a wider range of situations.

1 INTRODUCTION

The use of reinforced concrete (RC) in the confine-
ment of nuclear reactors boasted the studies regarding
the fire resistance of concrete in the last decades of the
last century (Bažant & Kaplan 1996). In such studies
it was evident that, not only the resistance of concrete
was essential, but also the properties of the reinforcing
steel that was used to enhance the flexural and tensile
strength of RC. Analogously, when fibres are added to
concrete forming fibre reinforced concrete (FRC) the
response of fibres to high temperatures influences the
fire resistance of the material. Such influence might be
beneficial as in the case of polypropylene fibres (PF).
Using PF fibres in determined dosages has proved
to reduce the risk of explosive spalling in concrete

(Liu, Ye, De Schutter, Yuan, & Taerwe 2008; Varona,
Baeza, Bru, & Ivorra 2018a). PF fibres melt when
subjected to high temperatures and generate a capil-
lary network that reduces the high pressures preventing
the spalling of the concrete element. However, the
contribution of the PF to the structural behaviour of
the concrete element cannot be considered due to its
reduced mechanical properties.

Steel fibres (SF) have been traditionally employed
in structural applications obtaining successful results
(Lopez, Serna, Camacho, Coll, & Navarro-Gregori
2014). Moreover, if certain requirements are met, some
standards and recommendations enable to reduce,
or even substitute, the steel reinforcing bars of the
concrete element. However, structural elements man-
ufactured with steel fibre reinforced concrete (SFRC)
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exhibits explosive spalling no matter the dosage of
steel fibres used. Cocktails of fibres, obtained by
mixing SF and PP, have been successfully applied in
elements where not only the mechanical behaviour has
been improved but also its fire resistance (Varona,
Baeza, Bru, & Ivorra 2018a; Yermak, Pliya, Beau-
cour, Simon, & Noumowé 2017; Varona, Baeza, Bru,
& Ivorra 2018b). Moreover, it should be mentioned
that several authors have devoted studies to model the
constitutive behaviour of SFRC when subjected to high
temperatures (Abdallah, Fan, & Cashell 2017; Moradi,
Bagherieh, & Esfahani 2020; Ruano, Isla, Luccioni,
Zerbino, & Giaccio 2018).The existence of these mod-
els is of importance as they might help to estimate the
residual load bearing capacity of the material and con-
sequently the reliability of the structural elements after
being subjected to high temperatures.

The appearance of polyolefin macro fibres with
structural capacities have shown their suitability for
their use in structural elements when added to con-
crete forming polyolefin fibre reinforced concrete
(PFRC) (Alberti, Enfedaque, & Gálvez 2015; Alberti,
Enfedaque, Gálvez, & Pinillos 2017; Picazo, Gálvez,
Alberti, & Enfedaque 2018). In addition, there are
recent studies that have analysed the influence of high
temperatures in the mechanical behaviour of PFRC
(Alberti, Gálvez, Enfedaque, & Castellanos 2021).
However, there are not numerous studies concerning
the changes that temperature generates in the consti-
tutive models used in the structural design of PFRC
structural elements.

Among all the mechanical properties of PFRC, the
one that determines the structural character of the
material is the fracture behaviour when subjected to
flexural stresses. Due to this, significant effort has
been recently devoted to find constitutive models that
reproduce the flexural fracture behaviour of PFRC.
One of the most successful attempts has been car-
ried out by using a cohesive crack approach and an
inverse analysis. Merging both concepts, the mate-
rial behaviour obtained in experimental tests has been
reproduced. It has been shown that the trilinear soften-
ing functions implemented were capable of consider-
ing the dosage of fibres (Alberti, Enfedaque, Gálvez,
& Reyes 2017), their orientation (Enfedaque, Alberti,
& Gálvez 2019) or even the size effect (Suárez, Gálvez,
Alberti, & Enfedaque 2021). Moreover, they were
apt also for simulating the behaviour of the material
when subjected to tensile streses (Enfedaque, Alberti,
Galvez, & Beltran 2018) or a combination of flexural-
shear stresses (Suárez, Gálvez, Enfedaque, & Alberti
2019).

Based on the results shown in (Alberti, Gálvez,
Enfedaque, & Castellanos 2021) this contribution
seeks to determine the changes that should be per-
formed in the constitutive model of PFRC when
subjected to a flexural fracture test after being exposed
to a range of temperature from 20 Â°C to 200 Â°C.
Although in the referred work two PFRC mixes were
analysed, with 3 kg of fibres per m3 (HF3) and with

10 kg of fibres per m3 (HF10), here only the results of
the first of them are numerically reproduced.

2 EXPERIMENTAL BENCHMARCK

The experimental campaign was carried with spec-
imens manufactured by using the concrete formu-
lations and procedures described in (Alberti 2015).
Portland cement type EN-197-1 CEM I 52.5 R-SR
and Sika Viscocrete 5720, a policarboxylic superplas-
tisicer, were mixed with siliceous aggregates (12.7 mm
of maximum size). In addition, a limestone powder
with a content of content of 98% calcium carbonate
was employed. The mix formulation can be seen in
Table 1.

Table 1. Mix proportions used concrete in the experimental
campaign (Alberti, Gálvez, Enfedaque, & Castellanos 2021).

HF HF3 HF10

Cement (kg/m3) 375 375 375
Limestone powder 100 100 100
(kg/m3)
Water (kg/m3) 187.5 187.5 187.5
Sand (kg/m3) 916 916 916
Gravel (kg/m3) 300 300 300
Grit (kg/m3) 450 450 450
Superplasticiser 0.75 0.75 0.75
(% cement weight)
Polyolefin fibres – 3 10
(kg/m3)

In the formulations with fibres 60 mm-long poly-
olefin fibres were added. Such fibres have a superficial
treatment and embossed surface in order to provide a
proper response of the fibre-matrix interface. The out-
look of the fibres can be seen in Figure 1. Besides,
the most representative properties of the fibres can be
seen in Table 2.

Figure 1. Appearance of the fibres used (scale in mm).

Table 2. Fibre properties and dimensions.

Density (g/cm3) 0.91
Length (mm) 60
Eq. diameter (mm) 0.92
Tensile strength (MPa) >500
Modulus of elasticity (GPa) >9
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The specimens were heated in a convection oven
at an approximate heating rate of 2.80 Â°C/min. The
specimens remained at the chosen temperature for 3
hours after being cooled progressively during 7 hours
inside the oven. The flexural tests were performed
after the cooling period. The characterisation of the
concrete elements was performed considering three
temperatures as reference: room temperature, 150◦C
and 200◦C. The latter two temperatures correspond
to a temperature at which the fibres still maintained
some integrity and a temperature at which the fibres
were remarkably damaged respectively. In order to
determine the influence of temperature in a PFRC for-
mulation that was considered as a structural material
(HF10) several increments of temperature were chosen
between 150◦C and 200◦C.

The flexural fracture behaviour of the material was
determined following the standard RILEM TC-187-
SOC (Planas, Guinea, Gálvez, Sanz, & Fathy 2007).
The test setup can be seen in Figure 2.

Figure 2. Scheme of the three-point bending test used in
(Planas, Guinea, Gálvez, Sanz, & Fathy 2007).

As can be observed in Figure 2, the notch length
was equal to D/3 and the span between the bearing
cylinders was equal to 3D. In this figure, a0 corre-
sponds to the notch length, hsp to the ligament length
and P to the applied load. The test data was acquired
by means of two Linear Variable Differential Trans-
former (LVDT) placed at each side of the specimens
and a Crack Mouth Opening Displacement (CMOD)
mounted in the lips of the notch. In addition, the load
borne by the sample, the position of the actuator and
the elapsed time were also recorded.

In Figure 3 the average load-deflection curves
obtained in the tests can be seen.

3 NUMERICAL SIMULATION

In this section the numerical work carried out to repro-
duce the experimental diagrams obtained for HF3
specimens is described. Firstly, the embedded cohe-
sive crack model used to reproduce fracture is briefly
described and, secondly, the finite element models
are described. The description of the fracture model
is very concise, since its development is not new,
and the reader can find it in previous works (Gálvez,
Planas, Sancho, Reyes, Cendón, & Casati 2013; Reyes,
Gálvez, Casati, Cendón, Sancho, & Planas 2009;
Sancho, Planas, Cendón, Reyes, & Gálvez 2007).

Figure 3. Load-load displacement curves of HF3 at various
temperatures (average at each temperature) (Alberti, Gálvez,
Enfedaque, & Castellanos 2021).

3.1 Embedded cohesive crack model

The cracking process is reproduced by means of
the finite element method (FEM) by using an ele-
ment formulation that takes advantage of the cohe-
sive zone concept developed by Hillerborg (Hiller-
borg, Modéer, & Petersson 1976), inspired by the
work of Dugdale (Dugdale 1960) and Barenblatt
(Barenblatt 1962). This formulation constitutes a
strong discontinuity approach proposed by Oliver
(Oliver 1996a; Oliver 1996b) that was initially devel-
oped for concrete (Gálvez, Planas, Sancho, Reyes,
Cendón, & Casati 2013; Sancho, Planas, Cendón,
Reyes, & Gálvez 2007), but has also been suc-
cessfully adapted for brickwork masonry (Reyes,
Gálvez, Casati, Cendón, Sancho, & Planas 2009) and
fibre-reinforced cementitious materials (Enfedaque,
Alberti, Gálvez, & Domingo 2017). Since the cohe-
sive zone approach assumes that fracture develops
under mode I conditions, this approach considers that
the cohesive stress vector t is perpendicular to the
crack opening and parallel to the crack displacement
vector w:

t= f (w̃)

w̃
w with w̃=max( |w| ) (1)

where f ( |w̃| ) stands for the material softening func-
tion, defined in terms of an equivalent crack opening
w̃, which represents the maximum historical crack
opening to account for possible unloading scenar-
ios. In the case of PFRC, past works have proved
that trilinear diagrams as shown in Figure 4 properly
simulates fracture of this material with varying propor-
tions of fibres, either with vibrated or self-compacting
concrete, under mode I or a combination of mode
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I and mode II fracture conditions (Suárez, Gálvez,
Enfedaque, & Alberti 2019) and correctly capturing
fracture on different size specimens (Suárez, Gálvez,
Alberti, & Enfedaque 2021). Unloading and reloading
branches are aligned with the origin and the softening
function is defined by four points (t, k, r and f ). The
following expression provides the trilinear diagram
shown in Figure 4.

σ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

fct +
(
σk − fct

wk

)
· w if 0<w≤wk

σk +
(
σr − σk

wr − wk

)
· (w − wk ) if wk <w≤wr

σr +
( −σr

wf − wr

)
· (w − wr) if wr <w≤wf

0 if w>wf

(2)

Figure 4. Scheme of the trilinear softening function used
for modeling fracture of PFRC specimens.

This element formulation is programmed for con-
stant strain triangular elements, thus accounting for
an only integration point. Only three crack directions
are considered, each of which are parallel to the trian-
gle sides, and crack is placed at midheight; Figure 5
depicts these characteristics of the fracture model.

Once the crack direction is determined, the element
is divided into two parts, A+ and A−, and the stress
vector t, constant along the crack, can be obtained as:

t= A

hL
σ · n (3)

Figure 5. Embedded cohesive crack element.

Where A represents the area of the element, h the
triangle height over the side opposite to the solitary
node, L the crack length, σ the stress tensor and n the
unit vector normal to that side and to the crack. Given
that the crack is parallel to one side of the triangular
element and is placed at midheight, (3) turns into t=
σ · n. The reader can find a more detailed description
of the model in (Sancho, Planas, Cendón, Reyes, &
Gálvez 2007).

Inside the element, outside the crack the material
remains elastic, thus the crack displacement vector
w is solved assuming that the stress tensor can be
obtained by subtracting an inelastic behaviour, which
corrects the elastic prediction of the element by includ-
ing the effect of the crack displacement, as expressed
by (4).

σ =E :
[
εa − (

b+ ⊗ w
)S
]
· n (4)

where E stands for the elastic tangent tensor, εa for
the apparent strain vector obtained with the nodal
displacements, b+ for the gradient vector correspond-
ing to the solitary node, which in this case can be
obtained with (5). Superscript S denotes the sym-
metric part of the resulting tensor, : the double-dot
product ((A : b)ij =Aijklbkl), and ⊗ the direct product
((a⊗ b)ij = aibj).

b+ = 1

h
n (5)

Given that t= σ · n and by using expression (4) for
σ and expression (3) for t, the following expression is
obtained:

f (w̃)

w̃
w= [E : εa] · n−

[
E :

(
b+ ⊗ w

)S
]
· n

which can be rewritten as
[

f (w̃)

w̃
1+ n · E · b+

]
· w= [E : εa] · n (6)

where 1 stands for the identity tensor. By means of
an iterative algorithm (such as the Newton-Raphson
method), the value of w can be computed to satisfy
(6).

This model is implemented for ABAQUS® by
means of an UMAT subroutine and, since vector n,
b+, crack length L and the element area A are com-
puted with the nodal coordinates of each element, it
reads an external file that stores this information.

3.2 FEM models

In order to reproduce the experimental results of
(Alberti, Gálvez, Enfedaque, & Castellanos 2021), a
bidimensional mesh, shown in Figure 6, has been used
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and plane stress conditions applied. This mesh is finer
in the region where damage develops and coarser out
of it, since only the vertical ligament above the notch
is relevant in terms of the nonlinear problem to be
solved. The adequacy of this refinement has been
validated in previous works by the authors (Suárez,
Gálvez, Alberti, & Enfedaque 2021; Suárez, Gálvez,
Enfedaque, & Alberti 2019). The specimen size is 100
mm × 430 mm, supports are symmetrically placed at
300 mm from each other and loading is applied in the
middle point of the upper side of the specimen, aligned
with the notch, which is 33.3 mm long.

Figure 6. FEM model used in the numerical simulation.

4 RESULTS

In this section the results of the numerical simula-
tions are presented, firstly introducing the trilinear
softening diagrams used and, secondly, showing the
load-deflection diagrams obtained, which are com-
pared with the experimental results of (Alberti, Gálvez,
Enfedaque, & Castellanos 2021).

4.1 Trilinear softening diagrams

The trilinear softening diagram is shown in Figure 4,
the coordinates of four points must be fixed in the σ -w
plane, t, k, r and f. In order to use a coherent approach
to define the coordinates of these points as temperature
increases, the following criteria have been employed:

• Point t. Due to the different elastic moduli of poly-
olefin and concrete, together with the negligible
proportion of fibres in comparison with concrete,
this point represents the tensile strength of concrete.
This value is considered to reduce as concrete is sub-
jected to higher temperatures, assuming a gradual
degradation of the material.

• Point k. This point represents the crack opening at
which fibres begin to assume tensile stresses across
the crack, thus reinforcing the material and produc-
ing a load recovery for subsequent load increments.
This value has been obtained based on the softening
diagram of a plain concrete, that is to say, without
fibres. This simplification assumes that fibres con-
tribution to the abscissa of this point is negligible,
therefore the material follows the behaviour of a
plain concrete.

• Point r. The abscissa of this point, wr , has been
fixed with a value of 2.25 mm; this assumption is
based on previous works by the authors (Suárez,
Gálvez,Alberti, & Enfedaque 2021; Suárez, Gálvez,
Enfedaque, & Alberti 2019). Regarding the value
in the ordinate axis, σr , it has been considered to
have the highest value at 20◦C and only equal or
smaller values for higher temperatures have been
contemplated. Since this parameter is related to the
strength capacity of the fibres, it is assumed that
higher temperatures can only degrade the material
or the fibres surface, thus leading to equal or smaller
values of σr .

• Point f . This value is related to the fibre length and,
following past results, a value of wf =7.5 mm has
been considered for all temperatures.

Following these criteria, the results that are presented
in the following section are obtained with the trilinear
softening diagrams shown in Figure 7 (the coordinates
of these points for each trilinear diagram can be con-
sulted in Table 3). It can be observed that σk becomes
lower as high temperature increases and σr is remark-
ably similar for 20◦C and 150◦C, unlike in the case of
200◦C, for which it drops dramatically.

Figure 7. Trilinear softening diagrams used for simulating
PFRC fracture specimens with a fibre proportion of 3 kg/m3

subjected to different high-temperature conditions.

Table 3. Coordinates of t, k, r and f points of the trilinear
softening diagrams shown in Figure 7.

20◦C 150◦C 200◦C

wt 0.000 0.000 0.000
σt 3.630 2.120 2.030
wk 0.102 0.113 0.182
σk 0.173 0.108 0.015
wr 2.250 2.250 2.250
σr 0.389 0.372 0.065
wf 7.500 7.500 7.500
σf 0.000 0.000 0.000
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Figure 8. Comparison of load-deflection diagrams obtained
numerically and experimentally for specimens of PFRC with
3 kg of fibres per m3 subjected to different temperature
conditions: a) 20◦C, b) 150◦C, and c) 200◦C.

4.2 Load-deflection diagrams

Figure 8 shows the load-deflection diagrams obtained
with the trilinear softening diagrams of Figure 7.These

results are presented with the same colours used in Fig-
ure 7 for each temperature and compare the numerical
results, displayed in solid lines, with the experimental
curves, in dotted lines.

In general, the initial peak load is well reproduced in
all cases considering the inherent experimental scatter
in this type of materials. The minimum load after the
initial peak load is also very well captured, as well as
the remnant peak load that takes place around w= 4
mm for all temperatures. In the case of 150◦C, the
remnant peak load is numerically reproduced at an
earlier value of w if compared with the experimen-
tal result but in the authorsâŁ™ opinion this can be
considered as valid, since only one experimental value
for each temperature is available and, based on pre-
vious works, if a higher number of specimens had
been tested for each case, the experimental envelopes
would very likely cover the experimental results in all
cases.

These results show that, up to temperatures below
200◦C, σt and σk decrease as temperature increases.
This can be a consequence of moderate concrete
and fibre degradation. Nevertheless, for temperatures
below 200◦C, σr , which is responsible for the rem-
nant peak load of PFRC, seems to be unaffected and a
fixed value of 1.418 provides good numerical results
for all temperatures below 200◦C. On the contrary,
simulation of PFRC subjected to 200◦C requires a very
different trilinear diagram that, not only requires lower
values of σt and σk , but a very low value of σr . This
is a consequence of a high degradation of fibres at
this temperature, that reduces their size, modifies their
shape and their mechanical properties, as reported in
(Alberti, Gálvez, Enfedaque, & Castellanos 2021).

5 FINAL COMMENTS

In this work, the numerical simulation of fracture of
PFRC specimens exposed to high temperatures has
been explored. To do this, some experimental results
presented in (Alberti, Gálvez, Enfedaque, & Castel-
lanos 2021) have been considered; the numerical
results reproduce the behaviour of PFRC specimens
manufactured with a fibre proportion of 3 kg/m3 (HF3)
and exposed to three temperatures: 20◦C, 150◦C and
200◦C. The numerical simulation of fracture has been
carried out by means of a cohesive model fed with a
trilinear softening function that had been successfully
used in the past to reproduce the fracture behaviour of
this material.

High temperatures modify the mechanical proper-
ties of polyolefin fibres, which results into variations
of the softening diagram. The assumptions made to
define the modified trilinear diagrams, described in
section 4.1, have proved to be reasonable enough to
correctly capture the main differences observed in the
load-deflection diagrams induced by high tempera-
tures. The softening diagram for a high-temperature
exposure of 150◦C only presents slight modifications
with respect to the ambient temperature of reference,
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20◦C. On the contrary, the softening diagram corre-
sponding to a high-temperature exposure of 200◦C
has notable differences, remarkably reducing their
reinforcing capacity.This is related to the severe degra-
dation that polyolefin suffers at temperatures over
200◦C, which include a change of the fibre shape and
modified mechanical properties of the material.

In (Alberti, Enfedaque, Gálvez, & Reyes 2017) the
relation of the parameters of points t, k, r and f of
the trilinear diagram (see Figure 4) with some measur-
able values and characteristics of the manufacturing of
PFRC were explored and some expressions proposed
with the aim of providing a predictive model of fracture
for PFRC. The results presented in this work help to
better understand how to numerically reproduce frac-
ture of PFRC subjected to high temperatures, how to
adapt the trilinear softening diagram when a cohesive
model is employed and will hopefully help in provid-
ing a predictive fracture model of this material that also
includes the effect of exposure to high temperatures.
Nevertheless, this work only covers a limited number
of temperature and an only fibre proportion (3 kg/m3),
and should be extended to a wider range of cases.
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ABSTRACT: Numerical investigations from a recent blind prediction of T beams with steel-fibers and con-
ventional reinforcement are presented. The blind prediction was organized by the fib Working Group Modelling
of Fiber Reinforced Concrete Structures in 2019, where two identical, simply supported T beams were loaded in
three point bending up to failure. Both beams failed in shear, reaching an average maximum capacity of 336kN.
The submitted prediction resulted in a failure load of 331kN and was ranked 1st among 34 predictions from
research and industry. In this paper, first the numerical model used for the blind prediction is presented, which
consisted of a two-dimensional FE model with smeared reinforcement calibrated using notched beam tests made
available to the participants. Next, analyses addressing objectivity of results with mesh refinement and the choice
of constitutive modelling parameters is presented. The influence on the load-displacement response, longitudinal
strain underneath the point of load application and crack pattern is investigated.

1 INTRODUCTION

1.1 The fib blind prediction contest

A blind prediction contest was organized in March
2020 by the fibWorking GroupWG 2.4.2 Modelling of
Fiber Reinforced Concrete Structures on the capacity
of steel fiber reinforced concrete (SFRC) beams with
the objective of verifying the performance of current
models for numerical simulation. Details on the exper-
imental testing and outcomes of the blind simulations
can be found elsewhere (Barros et al. 2020). In the
following, a brief description of the test is presented.

Two identical T-beams were tested in March 2020
in the laboratory of Structural Division of the Depart-
ment of Civil Engineering of Minho University
(LEST) under three-point bending (Figure 1). The
external load was applied eccentrically at 1.5m from
the left support. No shear reinforcement was placed
in this region, meaning that most of the shear force
has to be transferred through concrete and fiber con-
tributions. The right shear span was well reinforced
with "6/75 stirrups. 3"25 bars were provided for
the bottom longitudinal reinforcement, resulting in a
reinforcement ratio of ρ= 1.5%.

In addition to conventional reinforcement, hooked-
end steel fibers were added to the concrete mix with a
content of 60 kg/m3 (0.76%-Vol). For the characteri-
zation of the SFRC, four cylinder tests were performed
for the evaluation of compressive strength andYoung’s
modulus, and six three-point notched beam tests for the
evaluation of the residual tensile strength parameters
according to Model Code 2010.

Figure 1. Blind prediction T-Beam: geometry, cross-section
and reinforcement (Barros et al. 2020).

The two beams were tested under displacement
control at 50 µm/s until failure. The following mea-
surements were taken: (i) deflection below the point
of load application, (ii) applied load and (iii) concrete
strain at the level of longitudinal reinforcement in the
loaded section.

Information regarding material properties (fiber
and SFRC properties) as well as load-crack mouth
opening displacement (CMOD) curves from 10
notched beam tests at 7 days and 14 days were
made available for model calibration. Participants
were asked to submit the load-displacement curve and
the load-concrete strain curve at the loaded section.

2 BLIND PREDICTION OF THE T-BEAM

2.1 FE model

A 2D FE model of the T-beam was created using
the in-house FE program IDEEA. The beam was
discretized with four-node membrane (plane-stress)
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elements with a total of 45× 5= 225 elements, 5
across the depth and 45 along the span (Figure 2).
The thickness of the elements in the flange was set
to 400mm and the rest to 200mm. In order to address
mesh sensitivity, the element size was refined by a fac-
tor of 2, which did not show significant differences in
terms of force-displacement response.

Figure 2. 2D FE model of the T-beam used for the blind
prediction.

The nonlinear material model for SFRC was
a smeared-crack fixed-crack orthotropic model
developed by the author and previously verified for
reinforced concrete members (Kagermanov 2019;
Kagermanov & Ceresa 2016, 2018) (Figure 4). In
these type of models, equivalent constitutive laws in
tension and compression are applied in the crack direc-
tions. The compressive strength, for example, may be
reduced due to orthogonal tensile strains (compression
softening) or increased due to biaxial confinement.
Shear stresses and strains arising on the crack are
related through a shear retention factor, which was
assumed constant after cracking but different for the
left and right shear span of the beam.

For steel a uniaxial elasto-plastic model with strain
hardening of 0.5% was used. Both transverse and
longitudinal reinforcement were smeared within the
membrane elements according to the provided rein-
forcement layout. The bottom longitudinal reinforce-
ment was smeared within the bottom two rows of
elements, resulting in ρx = 3.4%. The top longitudi-
nal reinforcement was assigned to the flange elements
only, resulting in ρx = 1.0%. A shear reinforcement
ratio of ρy = 0.4% was assigned to the flange elements
and the web elements with shear reinforcement. As a
result of this distribution, a portion of elements in the
unreinforced web region had neither longitudinal nor
shear reinforcement.

The SFRC constitutive law in tension is shown in
Figure 4. For simplicity, the same exponential curve
implemented for reinforced concrete was used for
SRFC. The curve is defined based on two parame-
ters: the tensile strength, ft, and the exponential decay
parameter Ct, which is a function of the fracture energy
and characteristic length. These parameters were cali-
brated based on FEA of the notched beams using the
data provided from flexural tensile tests at 14 days.
Figure 3 shows the calculated and experimental load
versus CMOD curves. It can be seen that the initial
stress drop immediately after cracking and subsequent
tension stiffening is not accurately captured. A more
reasonable agreement can be observed afterwards in
the tension-softening phase up to a CMOD of 4mm.

The final values selected for the blind prediction were
ft = 1.75 MPa and Ct = 40.

Figure 3. Summary of the orthotropic smeared crack model
(top) and tension-softening model calibration using notched
beam tests (bottom).

The rest of modeling parameters were relatively
straightforward. For the compressive strength of
concrete the mean value at 14 days was used,
fcm = 64.2 MPa, and similarly for the modulus of
elasticity with Ecm = 32900 MPa. The peak strain cor-
responding to fcm was chosen as εo= 0.003. For the
shear retention factor a value close to zero (β= 0.001)
was chosen for the region without shear reinforce-
ment, whereas β= 0.15 was assigned for the region
with shear reinforcement. The analysis was performed
under displacement control with a step of 0.1mm
using the vertical displacement at the point of load
application as the controlling degree of freedom.

2.2 FE results and comparison with experiment

Results from the numerical simulation of the T-beam
and comparison against the average experimental
response in terms of load-displacement and strain-
displacement curves is shown in Figure 5. A very
good agreement was obtained for the initial elastic
stiffness, cracking and post-cracking phases as well
as maximum capacity. The numerical prediction for
the maximum capacity was within 1.5% error on the
safe side (331kN vs. 336kN). The corresponding peak
displacement was predicted as 16.8mm, whereas the
experimentally observed one was 16.1mm. The anal-
ysis stops at 19.2mm due to loss of convergence.
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Table 1. Material parameters used to model SFRC of the
T-beam.

SFRC Parameters

Compression Tension

fcm (MPa) Ecm (MPa) εo fct (MPa) Ct
64.2 32900 0.003 1.75 40

Shear

Go (MPa) β (left shear span) β (right shear span)
16450 0.001 0.15

Figure 4. Predicted and experimental load-displacement
and strain-displacement responses of the SFRC T-beam.

In the experiment, however, a pronounced soften-
ing response was observed which was not captured
numerically.

The agreement in terms of longitudinal strain under-
neath the point of load application was also very good,
especially given the complexities associated with cap-
turing (and measuring) local response parameters.
The maximum strain remained below the yield strain
of 2.3‰, hence shear failure was attained without
yielding of longitudinal reinforcement.

It can be seen that several models overestimated
the failure load, predicting a ductile flexural failure.
Also initiation of cracking was overestimated, which

affects the development of the critical shear crack and
maximum capacity. Note that the value adopted for the
“effective” tensile strength, calibrated from notched
beam tests, was 1.75MPa which is lower than typical
values.

Tensile strains acting in the crack directions and
crack patterns at different displacement levels are
shown in Figure 6. Flexural cracks appear at the begin-
ning further developing diagonal shear cracks in the
web region. The maximum tensile strains reached 9‰
at failure, which corresponds to crack widths in the
order of 5mm. Given the smeared nature of the model
and relatively coarse mesh, cracks appear rather dis-
tributed in the web region. Note that for graphical
representation thin cracks were filtered out at peak
load.

Figure 5. Predicted crack tensile strains and crack patterns
at different levels of displacement.

3 INFLUENCE OF MODELLING
PARAMETERS

3.1 Mesh sensitivity

In the original mesh five elements were used across the
depth (“h/5”) and forty-five along the span, resulting
in an element size of 100×107mm2. This mesh was
refined to an element size of approximately twice the
maximum aggregate size (“2dmax”), with 20 elements
across the depth and 180 along the span, resulting in
an element size of 25×27mm2. Two cases of the 2dmax
mesh were investigated: with and without regulariza-
tion. Regularization was based on keeping the same
fracture energy as that of the original coarse mesh. For
the exponential tensile-softening law, used to model
SFRC, the fracture energy is given as:

Gf = fct lch

Ct
(1)

where fct is the effective tensile strength, lch is the
characteristic length, chosen as the diagonal of the ele-
ment, and Ct is the exponential decay parameter. For
the coarse mesh, equation (1) yields a value of fracture
energy equal to 6.43N/mm, which is reasonable for a
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fiber content of 60kg/m3 (Barros & Sena Cruz 2001).
Based on equation (1), the Ct parameter for the regu-
larized 2dmax mesh is 10. Table 2 summarizes investi-
gated mesh and material parameters and Figure 6 the
load-displacement and strain-displacement response.
Figure 7 shows the crack patterns at different load
levels for the coarse and fine (regularized) mesh.

Table 2. Mesh and material parameters for the investigated
meshes.

Mesh El.Size(mm2) lch(mm) Ct Gf (N/mm)

h/5 100× 107 147 40 6.43
2dmax 25× 27 37 40 1.61
2dmax 25× 27 37 10 6.43

Figure 6. Load-displacement and strain-displacement
responses of the T-beam for different meshes and regular-
ization.

The following observations can be made. The
applied regularization technique improves objectivity
of results. Up to the peak load no significant differ-
ences between coarse and fine mesh occur. However,
the influence of mesh refinement on the peak load
can be still observed. Refining the mesh decreases the
peak load about 2% and slightly increases the strain in
the bottom reinforcement. Both crack patterns shown
the development of a critical shear crack (or cracks)
across the web. fct and Ct parameters of the coarse
mesh model were calibrated based on FEA of notched

beam tests. These FE analyses used a similar mesh dis-
cretization to that of the T-beam (6 elements across the
depth). fct and Ct parameters of the fine mesh model
were derived from the coarse mesh model based on
the constant fracture energy regularization, using the
elements diagonal as the characteristic length.

Figure 7. Crack patterns in the left shear span at different
load levels for the coarse and fine mesh (regularized).

3.2 Critical material parameters

Given the type of failure mechanism (diagonal-tension
shear), material parameters related to the tensile and
shear response of SFRC were selected for sensitivity
analysis. The following parameters were investigated:
(i) tensile strength (fct), (ii) tension-softening param-
eter (Ct) and (iii) shear retention factor (β) in the left
shear span. Sensitivity studies were performed starting
from the blind prediction (BP) model and introduc-
ing variations to each parameter separately according
to Table 3. The coarse mesh (h/5) was used for all
investigated models hereafter.

Table 3. Investigated material parameters for each model.

Model Parameter fct (MPa) Ct β (left)

BP* – 1.75 40 0.001
1 fct 3 40 0.001
2 fct 4 40 0.001
3 Ct 1.75 30 0.001
4 Ct 1.75 50 0.001
5 B 1.75 40 0.005
6 B 1.75 40 0.01

*BP: blind prediction model

Figures 8 to 10 show the force-displacement and
strain displacement responses for each model.

It can be observed that the tensile strength (fct),
besides affecting the cracking point and cracked stiff-
ness, produces a change in the failure mode from
brittle shear to flexure-shear, causing yielding of bot-
tom reinforcement and increasing the maximum load
by approximately 35%.
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Figure 8. Caption of a typical figure. Photographs will be
scanned by the printer. Always supply original photographs.

Figure 9. Caption of a typical figure. Photographs will be
scanned by the printer. Always supply original photographs.

The tensile-softening parameter (Ct) especially
affects the maximum load, increasing or decreasing

Figure 10. Caption of a typical figure. Photographs will be
scanned by the printer. Always supply original photographs.

it by±10%. Displacement capacity is affected as well
but to a lesser extent. Crack initiation and cracked stiff-
ness remains unaffected. Low values of Ct can lead to
yielding of bottom reinforcement.

Low values of the shear retention factor (β), below
approximately 0.005, do not affect significantly the
response. For β> 0.005 the maximum load increases.
The failure mechanism, however, remains the same.
No yielding of bottom reinforcement is observed. For
β= 0.005 some numerical fluctuations were observed
in the strain response when approaching failure.

Given the coarse mesh and smeared model of rein-
forcement, all crack patterns were similar to those
reported in Figure 5, starting with vertical flexural
cracks followed by diagonal shear cracks. For the case
of fct = 3MPa more bottom flexural cracks develop
compared to diagonal shear cracks in the web.

4 CONCLUSIONS

The blind prediction FE model of a shear critical T-
beam and its performance have been presented in
detail highlighting the capabilities of numerical sim-
ulations for assessment of structural members with
conventional reinforcement and steel fibers. Given
the relative simplicity of the model, i.e. 2D model,
coarse mesh, two-parameter tension-softening model,
constant shear retention factor and smeared reinforce-
ment, very good agreement with the experimental
failure load, longitudinal strain in the bottom rein-
forcement and failure mode were achieved. Further
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investigations concerning mesh sensitivity and mate-
rial modelling parameters were undertaken. It was
shown that reducing the mesh size by a factor of 4
reduced the failure load by 15%, if no regulariza-
tion was implemented, and by 2% with regularization
based on constant fracture energy. The global response
was found to be most sensitive to the following mate-
rial modelling parameters: (i) tensile strength (fct), (ii)
tension-softening parameter (Ct) and (iii) shear reten-
tion factor (β). Among these, changes in the failure
mode from brittle to ductile were observed when the
tensile strength was increased.
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ABSTRACT: This study presents a general simulation methodology to assess both full and partial composite
action of steel-concrete-steel (SCS) structures. This refined methodology, using 3D finite elements, is applied to
two three-point bending beams in which a different composite action is provided through variation of the number
of studs. The comparison to experimental results validates the methodology and the global and local behavior
can be reproduced. However, the important calculation cost reduces the use of this numerical strategy to more
complex structures. A simplified methodology is proposed with 1D finite elements to represent the connectors.
This modelling choice allows to greatly reduce the computational cost. It also imply a reduction of the reproduced
phenomena. Particularly, local damage of the concrete core around the dowels is slightly different. Nevertheless,
this strategy allows to accurately reproduce the global behavior as well as the failure modes of SCS beams with
full and partial composite action.

1 INTRODUCTION

The Strength, stiffness and durability requirement for
civil engineering constructions are steadily increas-
ing. To fulfil these new needs, studies are launched to
develop new structural materials with higher specifi-
cations. Steel-concrete-steel (SCS) composite struc-
tures are one of them (Leekitwattana et al. 2010;
Leng & Song 2016; Varma et al. 2015). This compos-
ite structure is composed of a concrete core caught
between two steel plates. The bond between the
components is made thanks to a connection system,
generally performed through steel dowels and/or ties
(Figure 1). This component is responsible for com-
posite action and ensures the overall behavior of the
SCS structure. The structure thus composed has the
advantages of reinforced concrete like a good strength
and stiffness thanks to the optimal use of the con-
crete and of the steel. Moreover, the external place of
the steel plate increases the stiffness, the sustainabil-
ity, and the strength under some extreme solicitations
(Booth et al. 2015; Bowerman et al. 2002; Oduyemi
& Wright 1989; Yan et al. 2015). It also allows their
use as lost formwork, which can be prefabricated and
SCS are modular structures (Leekitwattana et al. 2010;
Schlaseman 2004; Varma et al. 2015). SCS structures

structures have been gradually used in bridge deck
(Yan et al. 2015), for the construction of shear walls
in high buildings (AISC 2017), for submerged tun-
nels (Calatrava 2013; Bekarlar 2016) and for blast
and impact shield walls or liquid and gas containers
(Wright et al. 1991, Liew et al. 2016).

Figure 1. Geometry of a SCS beam with dowels and ties.

The study of bending beams allows to better under-
stand the behavior of this type of structural material.
With this aim, the number of research on SCS beams
has increased since 1975 (Montague 1975). Several
behaviors have been identified depending on the geo-
metric and material characteristics of the structures
(Sener et al. 2016; Wright et al. 1991; Yan et al.
2014). Particularly, depending on the degree of com-
posite action, the SCS beam present a full or a partial
composite action. Directly affected by the number of
connectors, the difference of composite action will
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impact the global behavior and the failure mode of the
structure (Dogan & Roberts 2010; Zhang et al. 2020).
The study of both types of behavior is necessary to
consider all scenarios, such as design and construc-
tion choices, loss of structural integrity or construction
difficulties, among others (Lin et al. 2019; Qin et al.
2015; Zhang et al. 2020).

2 MODELING STRATEGY

In this section, a numerical methodology is proposed
to represent both full and partial composite actions
in SCS structures. It is applied on two representative
three-point bending beams.

2.1 Experiment

The SP1-1 and SP1-2 beams of the experimental
study of Sener et al. (2016) are considered. They
have the same geometry (Figure 2 and Table 1) but
include a different number of welded headed shear
studs. The beams are loaded in three-point bending
(simply supported with a load applied at the mid-
span). The applied load, the vertical displacements
under the loading point, and the cracking evolution
are experimentally monitored.

The experimental material properties are given in
Tables 2 and 3.

Figure 2. Geometry of SP1 beam.

Table 1. Geometrical parameters of SP1-1 and SP1-2
beams.

Symbol SP1-1 SP1-2

Nr of dowels per steel plate nstud 40 20
Spacing of dowels (length) S (mm) 152.4 304.8

Length of beam L (mm) 2896
Width of beam B (mm) 305
Thickness of steel plates ts (mm) 6.5
Height of concrete core hc (mm) 445
Diameter of dowels dstud (mm) 12.7
Height of dowels hstud (mm) 63.5
Spacing of dowels (width) sl (mm) 152

Table 2. Concrete properties.

Compressive strength fc (MPa) 42
Tensile strength* fct (MPa) 3.15
Young modulus* Ec (GPa)* 33.85
Poisson’s ratio* νc (–) 0.2

* Obtained with Eurocode 2 (CEN 2004a) formulas

Table 3. Steel properties.

Plates Dowels

Yield limit fy (MPa)) 448 489
Young modulus Es (GPa) 201 201
Hardening modulus ET (GPa) 0.42 0.42
Poisson’s ratio νs (–) 0.3 0.3

2.2 Material behavior modeling

Concrete behavior is simulated using an isotropic dam-
age model based on Mazars’ model (Mazars 1984)
with a regularized damage evolution in tension and
in compression through the Hillerborg et al. (1976)
method. This law introduces a scalar variable D that
quantifies the influence of microcracking:

σij = (1− D)Cijklεkl (1)

where σij and εkl are respectively the stress and strain
components, respectively, Cijkl is the fourth order elas-
tic tensor and D is the damage variable. For the
description of the damage growth, an equivalent strain
is introduced from the local strain tensor:

εeq=
√√√√

3∑

i=1

(<εi >+ )2 (2)

where <εi>+ are the positive principal strains.
The loading surface g is defined by:

g(ε, D)= d̃(ε)− D (3)

where the damage variable D is also the history vari-
able which takes the maximum value reached by d̃
during the history of loading

D=max(d̃, 0) (4)

d̃ is defined by an evolution law which distinguishes
the mechanical responses of the material in tension and
in compression by introducing two scalars Dt and Dc.

d̃ (ε)=αt (ε)Dt
(
εeq

)+ αc (ε)Dc
(
εeq

)

Dt = 1− κ0

εeq
exp

(
le.fct

GF

(
κ0 − εeq

))

Dc= 1− κ0 (1− Ac)

εeq
− Ac

exp
[
Bc

(
εeq − κ0

)] (5)
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αt,c=
(

3∑

i=1

<ε
t,c
i ><εi >+

ε2
eq

)β

Dt and Dc are the tensile and compressive parts of
the damage, respectively. The weights αt and αcare
computed from the strain tensor. They are defined as
functions of the principal values of the strains εt

ijand εc
ij

due to positive and negative stresses respectively. The
parameter β reduces the effect of damage under shear
compared to tension. For the regularization in tension,
Dt involves le, the average size of the finite element
(cubic root of the element volume), GF the fracture
energy and fct the tensile strength. κ0 is a parameter
(equal to the ratio between the tensile strength and the
Young’s modulus) and represents the initial threshold
from which damage grows. Ac and Bc are two param-
eters for the compression damage evolution. For the
regularization in compression, they are calibrated from
uniaxial compression simulations to obtain the same
stress – displacement curve for different values of ele-
ment size le. The calibration process is thus based on
a constant compressive cracking energy concept, as
defined by van Mier 1984.

Dc= 1− κ0 (1− Ac)

εeq
− Ac

exp
[
Bc

(
εeq − κ0

)] (6)

The Kuhn – Tucker conditions finally determines
the evolution of damage:

g≤ 0, ˙̃d ≥ 0, g ˙̃d = 0 (7)

From the experimental data resumed in Table 2 the
model parameters in Table 4 are chosen to reproduce
the concrete behavior.
Table 4. Concrete model parameters.

Ac 68l2
e + 19le ∗

Bc 26000le + 1 ∗
GF (J·m−2) 150
κ0 9.31 10−5

β 0.6

* For le in m

For the steel plates and the steel dowels, an elastic
plastic behavior with an isotropic hardening is chosen.

To be able to capture the shear failure of the dowel,
an extremely refined mesh would be required in the
plate-stud interface area, leading to very high compu-
tational costs. To avoid this, zero-dimension junction
elements are used, connecting each stud node to the
associated plate node. Their force-displacement law is
elastoplastic in the tangential direction, with a very
stiff elastic part (Ks= 1012N/m). Each junction ele-
ment has a yield limit proportional to the area attached
to the node. The sum of the yield limits of the junction
elements is equal to the shear failure of the stud PRd
which is calculated as in the Eurocode 4 (CEN 2004b)
without the safety factor:

PRd = 0, 8fyAstud = 49.5kN (8)

2.3 Refined numerical modelling

Considering the symmetries, only one fourth of the
beams are modelled (Figure 3 and Figure 4). The size
of the concrete finite elements ranges from 1.6 mm
(near the dowels connector) to 25 mm (far from the
connectors).

Given the expected behavior of the structure, a par-
ticular attention is paid to the bond between concrete
and steel (Figure 5). A one-sided contact relationship
is considered between steel plates and concrete, that
allows for normal separation and a free slip in the
tangential directions (partial bond). The same condi-
tion is applied between concrete and dowels. The stud
heads are not meshed in detail. A simple perfect bond
is imposed at the end of each dowel.

Figure 3. Mesh of SP1-1 beam.

Figure 4. Mesh of SP1-2 beam.

Figure 5. Interfacial bonds between steel and concrete.
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The global boundary conditions on the beam are
symmetry conditions and displacement in the verti-
cal direction blocked along lines at the position of the
experimental support (Figure 6). Finally the loading
is imposed through a vertical displacement applied on
the upper steel plate at the position of the experimental
loading system.

Figure 6. Boundary conditions on the beam.

The simulations are performed using the implicit
finite element code Cast3M (CEA 2021).

3 NUMERICAL SIMULATIONS

3.1 SP1-1 beam

Figure 7. Load – midspan vertical displacement curves for
the SP1-1 beam.

Figure 7 presents the global response of SP1-1
beam.

The general mechanical behavior is obtained by the
simulation (elastic regime and mechanical degrada-
tion). The structural strength is reproduced. For a 13.9
mm deflection (the one of the experimental ruin), the
strength obtained with the 3D simulation is 382.02 kN,
6% different of the experimental result. Several par-
tial discharges are observed in the numerical curve.
The first one corresponds to the initiation of the ver-
tical flexural crack. As for the test, this crack appears
quickly and modifies the stiffness of the structure. The
second unloading represents the opening of the 45◦
inclined concrete shear crack. This crack appears for
an applied force of 258 kN. The following discharge
corresponds to the opening of concrete cracks in the
lower part of the beam, illustrating the propagation of
damage parallel to the bottom plate.

Figure 8. Final damage distribution in concrete for the
SP1-1 beam.

Figure 9. Experimental final crack pattern for SP1-1 beam.

The damage distribution obtained in the simulation
(Figure 8) is like the experimental crack pattern (Fig-
ure 9). The experimental and numerical longitudinal
strains in the steel plates are also in agreement (Fig-
ure 10). A local yielding of the bottom steel plate is
observed near the position of the shear crack feet for
the numerical simulation. For the experimental results,
this yielding is visible in the right span of the beam, at
the same distance of the midspan. It is to be noted that
the pic of strain in the top steel plate at the midspan
for the simulation is due to the concentrated applied
load (on a line).

Figure 10. Longitudinal strain in the plates along SP1-1
beam for a deflection of 13.9 mm.

3.2 SP1-2 beam

The global mechanical behavior of SP1-2 beam is also
correctly captured (Figure 11). The strength is lower
(250 kN compared to 400 kN for SP1-1).
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Figure 11. Load – midspan vertical displacement curves for
the SP1-2 beam.

As for the SP1-1 beam, the first discharge corre-
sponds to the initiation of a vertical flexural crack at the
dowel near the midspan. The second discharge appears
at a deflection of 13.9 mm and a load of 256.15 kN.
This drop of load corresponds to the apparition of
a shear crack inclined at more than 45◦ (Figure 12)
which is not mentioned experiment-ally. However,
Zang et al. (2020) obtained this fai-lure mode for
beams with a low number of dowels.

Figure 12. Final damage distribution for the SP1-2 beam.

After the peak load, a constant force is observed
for an increasing displacement. Due to the yielding
of the dowels, the shear force that can be transferred
between the stud and the bottom steel plate has reached
its maximum. This is coherent with the experimental
failure due to a vertical flexural crack as seen on Figure
13. One can observe a break in the connection of the
lower plate due to the failure of the studs.

Finally, the numerical curve shows a strength of the
beam of 231.7 kN at a deflection of 25.4 mm (the one
of the experimental ruin), less than 8% different of the
experimental result.

The simulation of the longitudinal strain of the steel
plate shows a slight underestimation of the bottom
plate tensile strains compared to the experimental one
(Figure 14).

Figure 13. Experimental failure of SP1-2 beam.

Figure 14. Longitudinal strain in the plates along SP1-2
beam for a deflection of 24.3 mm.

3.3 Discussion

The observed differences between experiment and
simulation may be explained by some model simplifi-
cations: the contact relation without friction between
the concrete core and the steel plate, the simplifica-
tion of the stud heads by a perfect bond to the concrete
or the simplification of the behavior of the dowel –
steel plates junction elements with a perfect elastic
plastic constitutive law. However, the proposed numer-
ical methodology can reproduce the global and local
behaviors for both beams. Especially, the differences
between a full and a partial composite action beams
are obtained: the decrease in the strength and the stiff-
ness, the increase in the ductility and the change in the
failure mode.

As the experimental results, the numerical results
show a difference in strength and failure behavior
between the SP1-1 and SP1-2 beams. In the first one,
the number of dowels is sufficient to assure a full com-
posite action. The connection system can support the
shear force corresponding to the yielding of the bot-
tom steel plate (Figure 10). This yielding corresponds
to the ultimate strength reachable, even with a per-
fect bond between steel and concrete. It is to be noted
that the bottom steel plate is more loaded plate due to
the cracking of concrete in tension. On the contrary,
in the second one, the connection system is not strong
enough and is the weak link. It fails before reaching the
yielding of the bottom plate, as it can be seen in Figure
14. In this case there is a partial composite action.
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Based on this modeling strategy, one can perform
different simulations increasing progressively the
number of dowels in the beam and determine the mini-
mum number of studs to reach a full composite action.
This work has been done, including a comparison to
the provisions of different design codes (Calixte 2021).

4 SIMPLIFIED MODELING

The numerical modelling strategy previously devel-
oped allows to represent finely the behavior of the
composite structure connection system in shear. How-
ever, it can be costly in terms of implementation and
calculation time, which reduces its use for SCS indus-
trial structures with larger dimensions and complex
geometries. To propose a less expensive numerical
simulation, a 1D simplification of the connectors is
studied. The representation of the connectors by one-
dimensional beam finite elements anchored in the
concrete will facilitate the realization of the mesh,
reduce the number of nodes and elements, and simplify
the interfacial conditions between the components of
the system.

4.1 Simplified modeling

The implementation of the 1D simplification requires
the modification of the interfacial bond conditions
(Figure 15). A perfect bond between the concrete and
the studs is imposed through kinematic conditions
(Lagrange multipliers). A particular attention is paid
to the concrete mesh around the studs. The 1D steel
beam element nodes should be in the middle of the
concrete solid element in which they are embedded,
and the size of these solid elements should be near the
dowel diameter dimension. For the interface between
the stud and the steel plate, a 0D plastic junction ele-
ment represents the bond between the stud and the steel
plate. Finally, the rotation of the studs around their axis
are blocked.

Figure 15. Interfacial bonds of the 1D simplified modelling.

Simulations on push-out tests with 1D elements
for the studs showed that, compared to experimental
results, the connection system modeled in this way
leads to an over-rigidity of the connection behavior
(Calixte 2021). The 1D modelling of the studs does
not allow to reproduce finely the interactions with
the concrete core because the perfect bond reduce the
allowable strain of the system. On the other hand, the
yield plateau of the stud – steel beam interface junc-
tion element is found, thanks to the plastic behavior of
the 0D junction element at the stud foot.

To implicitly consider all the phenomena charac-
terizing the shear response of the connection system
(crushing and tearing of the concrete, shearing of the
connectors, yield of the steel beam), a constitutive law
reproducing of the push-out test response is adopted
for the 0D junction element at the studs – steel plate
interfaces. The chosen law is the one developed by
Ollgaard et al. (1971) (Figure 16):

P=PRd

(
1− exp

(
− 18

25.4
δ

)) 2
5

(9)

where PRd is the shear strength of the connection in
the push-out test, including the shear failure of the
stud and the failure of the concrete under the pulling
out of the stud:

PRd =min
(

0.8fyAstud ; 0.5Astud

√
fcEc

)
(10)

Calixte (2021) showed that with this nonlinear
behavior for the 0D element at the dowel foot, the
simulations on push-out tests gave a good agreement
with the experiment in the global force - displace-
ment response. This is evident since it is the input in
the model. But the damage evolution in the concrete
around the 1D stud elements is also like the one in
the 3D reference simulations, which is not the case if
there is no 1D elements (only 0D elements connecting
directly steel plate to concrete core).

Figure 16. Ollgaard et al. (1971) push-out law.

4.2 Numerical simulations with simplified model

The results of the simplified modeling of SP1-1 SCS
beam are presented in Figure 17 to Figure 19. The
global force-displacement curve of the simplified
modeling is like the one of the refined simulation
(Figure 17). The difference lies in the forces where
the shear crack appears, and where it propagates. The
diagonal crack apparition is for a force F = 338kN
instead of F = 258kN in the refined simulation with a
3D mesh for the dowels. The mechanical degradation
is delayed in the simulation with the 1D beam elements
for the dowels.
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Figure 17. Displacement-force curves for SP1-1 specimen
(simplified simulation).

At the end, the damage distribution for the sim-
plified simulation is like the refined simulation one
(Figure 18 compared to Figure 8). For the strains in
the steel plates (Figure 19), one can see that the yield-
ing in the bottom plate is still not reached in the 1D
simulation for a displacement equal to 13.4 mm while
it is for the 3D simulation. But the pic near the shear
crack foot is here and yielding will soon appear.

Figure 18. Final concrete damage pattern for the simplified
simulation of SP1-1 specimen.

Figure 19. Longitudinal strain in the plates along SP1-1
beam for a deflection of 13.9 mm (simplified modeling
simulation).

Equivalent observations are visible for the model-
ing of the SP1-2 beam (Figures 20 to 22). With this
simplified 1D modeling, the crack inclined at more
than 45◦ is not visible displacing the maximum longi-
tudinal strains in the lower plate at the single vertical
crack position.

Figure 20. Displacement-force curves for SP1-2 specimen
(simplified simulation).

Figure 21. Final concrete damage pattern for the simplified
simulation of SP1-2 specimen.

Figure 22. Longitudinal strain in the plates along SP1-2
beam for a deflection of 24.3 mm (simplified modeling
simulation).
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The main advantage of the simplified simulation is
the time to prepare the mesh and the great gain in the
computation time (Table 5).

Table 5. Comparison of calculation times.

SP1-1 SP1-2

3D 1D 3D 1D
Number of nodes 51,410 17,160 34,940 15,900
Calculation time (h) 334 78 258 70

5 CONCLUSION

Steel-concrete-steel composite structures are sand-
wich composite structures combining steel plates and
a concrete core through a connection system, which
ensures the overall behavior. The structure combines
the advantages of reinforced concrete and provides
a greater resistance under extreme loading, sustain-
ability, and durability. Moreover, the external position
of the steel plates allows their use as formwork and
leads to a modular structure, which tends to reduce
and ease the construction phase. All these advantages
make SCS construction a competitive choice in the
construction field.

In this contribution, a general simulation method-
logy was proposed to assess both full and partial
composite actions using 3D finite elements. It was val-
idated by comparison to experimental results on three
point bending beams. The full composite action was
associated to a core concrete shear failure and a local
yielding of the bottom steel plate, while the partial
composite action was driven by a shear failure of the
studs.

Nevertheless, the refined modeling strategy leads to
significant computation times. Based on this model-
ing, a simplified modeling strategy with 1D elements
to represent the studs has been develop-ped. The con-
stitutive law of the junction element at the interface
stud-plate includes the global law of the push-out test
to implicitly consider the concrete – stud interaction
not represented by this 1D modelling of the studs.
Simulations with this simplified strategy led to sig-
nificantly reduced computation times and the results,
both in terms of global behavior and local degrada-
tion, are very similar to those obtained with the refined
modeling.
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ABSTRACT: The paper presents a study on the seismic performance of an unreinforced (URM) two-storey
terraced house, a real building located in the north of the Netherlands, which is assessed via both nonlinear
pushover (NLPO) and nonlinear time history (NLTH) analyses. The results of both NLPO and NLTH analyses
can be considered sufficiently reliable, despite a large number of non-converged steps, mainly due to the use
of several different nonlinear constitutive laws. The detailed modelling of connection and floor nonlinearities
allows for a more precise definition of the stiffness evolution of the structure at the different storey levels, but it
does not affect significantly the ultimate performance of the building at global level. Finally, the assessment of
the building via NLPO is highly dependent on the followed assessment procedure, with the original N2 method
(recommended by the Eurocode) providing largely unconservative predictions.

1 INTRODUCTION

Nonlinear finite element analyses are often used
to assess the seismic vulnerability of unreinforced
masonry (URM) structures. Although different mod-
elling strategies may be adopted (D’Altri et al. 2019),
the accuracy of the assessment depends in any case on
the correctness and on the level of detail of the model
created for the analysis, as well as also on the assess-
ment methodology selected (Nakamura et al. 2017).
Nonlinear time history (NLTH) analyses are usually
considered the most precise tool that may be used
to assess the response of a structure to a dynamic
input, such as a seismic ground motion. However,
NLTH analyses are computationally very demanding,
since multiple ground motions should be considered
to avoid uncertainties related to the specific charac-
teristics of the imposed shock and for this reason
are less frequently used for the assessment of com-
plete buildings. As an alternative, nonlinear pushover
(NLPO) analyses have the advantage of decoupling
the calculation of the capacity of the structure from
the demand. Besides, the loads are imposed monoton-
ically and quasi-statically, resulting in less demanding
computations and NLPO analyses are therefore more
commonly used for the seismic assessment of com-
plete structures and even building aggregates (e.g.
Grillanda et al. 2020; Ramos & Lourenço 2004). On
the other hand, due to such simplifications, the analy-
ses disregard the hysteretic behaviour of the structure,
which must be therefore included indirectly. Differ-
ent methods have been proposed in the literature and

then adopted by the standards, but they lead to differ-
ent results of the assessment. For these reasons, few
past studies focused on the comparison between the
seismic performances of a URM structure computed
based on NLTH and NLPO analyses, such as the stud-
ies performed by Mendes and Lourenço (2009), Pelà
et al. (2013) or Endo et al. (2015). Other works inves-
tigated how the use of different methods that were
developed to take into account the hysteretic behaviour
of the structures in NLPO analyses may lead to differ-
ent outcomes of the assessment (Guerrini et al. 2017,
2021).

This manuscript presents a study on the seismic
performance of a URM two-storey terraced house,
considering as case study a real building located in
the north of the Netherlands. The paper has a three-
fold goal: first, to discuss the modelling assumptions
made for the modelling of a URM building, includ-
ing the modelling of connections, constitutive models
and material properties; second, to discuss the robust-
ness and stability of the analyses in connection to the
static versus dynamic fashion of the analyses; third,
to compare the outcomes of the assessment as com-
puted according to the NLTH and the different NLPO
assessment procedures.

The building is modelled via the commercial soft-
ware Diana FEA 10.4 (Diana 2020) as part of a larger
project that aimed to cross-compare the seismic assess-
ment of four URM buildings performed with different
modelling approaches and software packages. More
details on the performed analyses can be found in

DOI 10.1201/9781003316404-41 343



Longo et al. (2020), while a description of the out-
comes of the whole project is presented in ARUP et al.
(2021).

2 METHODOLOGY

2.1 Building overview

The assessed building comprises three terraced units.
The structure, built in 1973 in the North of the Nether-
lands, is made of URM cavity walls. The inner leaf and
internal walls are made of calcium silicate (CS) bricks
while the outer leaf is made of baked clay bricks. Wall
ties connects the two masonry leaves. Each unit has
two storeys plus an attic level. Also three appendices
and an extra one-storey building are connected to the
main structure. A picture of the building is shown in
Figure 1.

Figure 1. The building assessed: the modelled end unit is
identified via a yellow rectangle.

The ground floor is made of prefabricated arched
concrete elements (Kwaaitaal floor), while the first
and second (attic) floors are made of cast in-situ rein-
forced concrete (RC) slabs. The roof is composed of
timber purlins and trusses with concrete roof tiles. The
total mass of each unit is approximately 126 tons, and
the height measured at the ridge beam is 8.2 m.

The expected peak ground acceleration (PGA) at the
building location is equal to 0.148 g (NEN 2018b).

2.2 Analysis methods

Two different methods have been used to assess the
vulnerability of the terraced house at the near col-
lapse (NC) limit state, namely the quasi-static NLPO
analyses and the dynamic NLTH.

The NLPO bilinear capacity curves and the
inelastic acceleration-displacement response spectra
(ADRS) are defined in accordance with the procedure
described in Annex G of NPR9998 (NEN 2018a). The
latter is derived from the elastic spectrum, defined for
a return period of 2475 years, by taking into account
energy dissipation, ductility and damping of the non-
linear system. The elastic spectrum response is shown
in Figure 2 in combination with the accelerograms
used for the NLTH analyses. The intersection point of
the capacity and the demand curves approximates the
seismic response of the structure: if the capacity curve

intersects the inelastic ADRS demand curve the struc-
ture meets the safety criteria. Both global and local
acceptance criteria are considered: the global crite-
ria are applied to the building as a whole, whereas
the local criteria are applied to the single structural
elements, such as piers and spandrels. The global
NC limit state is exceeded at the occurrence of one
of the following criteria: (i) exceedance of the drift
limit defined at either interstorey level or at the effec-
tive height, as reported in Table 1; (ii) drop of the
total lateral resistance (base shear) below the 50% of
the peak resistance of the structure; (iii) divergence
of the analysis related to instability of the structure;
(iv) exceedance of the local drift limit for a num-
ber of load-bearing elements, whose collapse would
lead to an extensive partial collapse of the building.
The local acceptance criteria recommended in sections
G.9.2.2 and G.9.2.3 of NPR9998 are considered for
piers. The masonry spandrels are assumed not to be
essential for the stability of the load-bearing system.
Therefore, a maximum drift of 2% is assigned to both
non-load bearing and load-bearing spandrels, in accor-
dance with the recommendations provided in section
G.9.3.1(8) of NPR9998. The effective height is com-
puted by dividing the roof height by the transformation
factor (�), as defined in B.2 of NEN-EN 1998-1 (NEN
2005) and recommended in Annex G of NPR9998 too
(NEN 2018a). This results in a value of about 5 m,
slightly below the attic level (5.4 m).

Figure 2. Acceleration-period elastic response spectrum
and ground motions used for the assessment of the build.

Table 1. Drift limits defined at near collapse limit state.

Ductile behaviour Brittle behaviour

Effective height 0.8% 0.4%
Interstorey 1.5% 0.6%

As regards the NLTH analyses, the structural per-
formance is assessed via an indirect check, for which
the deformation of the structure is checked against the
same drift limits defined for the NLPO assessment,
as recommended in Annex F of NPR9998. A set of 11
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tri-directional ground motions (two horizontal and one
vertical) is employed: the use of multiple motions pro-
vides a more reliable estimate of the expected response
of a structure since this latter depends on the character-
istics of each single motion. The site-specific ground
motions have a PGA in the horizontal directions that
ranges from 0.12 g to 0.18 g, with a mean value equal
to 0.14 g, in line with the expected PGA at the build-
ing location, which is equal to 0.148 g, based on the
NEN web tool (NEN 2018b), Ground Motion Model
v5 (01-10-2018). The original site-specific motions
are scaled up to identify the performance at collapse
of the building, which is obtained when the safety cri-
teria are exceeded by the mean of the response of the 11
simulations. The force-displacement curves obtained
for each ground motion are also used to create a tri-
linear backbone curve with the scope to compare the
capacity of the building defined via NLTH and NLPO
analyses.

2.3 Modelling approach

The terraced house is numerically modelled by means
of the software package Diana FEA 10.4. Since the
three units have same dimensions and nor the loadbear-
ing walls nor the concrete floors of the different units
are connected one another, only one building unit is
modelled (highlighted in Figure 1). Besides, the three
appendices and the extra one-storey building are not
modelled since they are not interlocked with the load
bearing inner leaves of the structure. A representation
of the model is provided in Figure 3.

Figure 3. Finite element model of the left unit of the
modelled terraced house.

All the masonry walls are modelled via shell ele-
ments, and the Engineering Masonry Model (EMM)
is used as constitutive model (Schreppers et al. 2016).

The EMM is a total-strain based continuum model
that accounts for tensile, shear and compression fail-
ure of the masonry. The model considers the local
axes oriented parallel and perpendicular to the bed
joints, respectively. The orthotropy of the masonry is
considered by assigning different elastic and inelastic
properties for each local direction. The internal walls
are explicitly modelled in order to include the extra
stiffness that they can provide to the whole building.
An overview of the internal walls is shown in Figure 4.
The loadbearing internal walls, running transversely in
the middle of the building unit, are fully connected to
both bottom and top floor and to the longitudinal exter-
nal façades. The nonloadbearing internal walls are
disconnected from the floor above so that no force may
be transferred. In addition, the lateral connections with
the transversal external façades are modelled with a
strip of weak elements that simulates a vertical mortar
joints. This is obtained by rotating the local axes of the
elements and reducing both the elastic and nonlinear
material properties by 30%.

Since the shear stiffness of the wall ties is negligi-
ble (Skroumpelou et al. 2018), these ties are assumed
to be able to transfer axial loads only. For this reason,
the cavity wall system is modelled by explicitly mod-
elling the loadbearing inner leaves and considering the
outer leaves as dynamic mass acting in the direction
perpendicular to the plane of the walls. The chimney,
which runs from the first storey up to the roof, is also
included in the model as dynamic mass. The mass den-
sity (static and dynamic) assigned to the different walls
of the façades is depicted in Figure 5.

Figure 4. Modelling of the internal walls.

The Kwaaital floor and the RC slabs are modelled
via non-linear shell elements, using the Total Rotating
Strain Crack Model for the concrete and the Von Mises
Plasticity model for the steel reinforcement (Diana
2020). The grid reinforcement at top and bottom of
the slab is modelled with an embedded sheet reinforce-
ment, defined via the bar diameter and spacing in the
two directions.The reinforcement in the concrete joists
is modelled explicitly as line bar reinforcement.

Strips of linear elastic isotropic shell elements, as
high as the concrete floor thickness, are modelled
between the elements of the masonry façades to sim-
ulate the real thickness of the concrete slabs, which
cannot otherwise be properly represented by the shell
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Figure 5. Material density (static and dynamic) assigned to
the external loadbearing walls depending on the considered
mass.

elements. The concrete lintels above the openings are
also modelled via linear elastic shell elements.

The roof purlins, struts, ties and the ridge beam
are modelled via beam elements using a linear elastic
isotropic material (Figure 6).The connections between
the gable and the purlins/ridge beams are modelled
with point interface elements using a Coulomb-
friction material model to simulate the possible sliding
of the beams in the pocket connections. Where the
timber beams are connected to the URM walls via a
L-shaped steel anchor, no point interface is used and
the connection is modelled as rigid. The timber boards
are modelled as shell elements using a linear elastic
orthotropic material. Dummy beams having negligi-
ble stiffness and small cross-section are added on the
edges of the roof planks to improve the numerical
stability of the analyses (Figure 7).

Figure 6. Modelling of beams and connections at the roof
level.

Figure 7. Modelling of roof boards and dummy beams
(highlighted in red).

The horizontal components x and y from the NEN
web tool are aligned with the respective global x and
y axes defined for the numerical models. Since the
non-linearities provided by the ground below the foun-
dation are expected to be negligible, a “fixed base”
boundary condition is chosen. In this case, the surface
level ground motions are applied directly to the base
of the building.

Both NLPO and NLTH analyses are performed.
For the NLPO analyses, the model is initially sub-
jected to the gravity loads applied in ten equal steps.
Then, either mass proportional lateral loads, applied
via a uniform lateral acceleration, or modal distributed
lateral loads, based on the main eigen-mode of the
structure (and the corresponding participating mass),
obtained via an eigen-value analysis, are applied so
that an average displacement rate of 0.1 mm/step is
recorded at floor level. It should be noted that the uni-
form lateral acceleration does not account for the extra
dynamic mass. The Secant BFGS (Quasi-Newton)
method is adopted as iterative method in combina-
tion with the Arc-Length control. Both displacement
and force norms must be satisfied during the iterative
procedure within a tolerance of 1%. For the NLTH
analyses, the model is first subjected to gravity loads,
again applied in ten equal steps. Then, the different
acceleration motions are applied in the longitudinal,
transversal and vertical direction at the base nodes,
using a time step of 2.5 milliseconds. A Rayleigh
damping of 2% is accounted in the calculation. The
Secant BFGS (Quasi-Newton) method is employed as
iterative method. Energy norm must be satisfied dur-
ing the iterative procedure with a tolerance of 0.01%.
For both analyses, the Parallel Direct Sparse method
is employed to solve the system of equations. The sec-
ond order effects are considered via theTotal Lagrange
geometrical nonlinearity.

2.4 Material properties

Since no information was available on the values
of the material parameters for the specific modelled
building, such values were selected based on the
recommendations given in Table F.2 of the Dutch
guidelines NPR9998 (NEN 2018a) as well as from
experimental tests performed at component or build-
ing level and already available in the literature. As
regards the masonry properties, the masonry quality
was assumed excellent, and the properties provided
in the guidelines were used without the application of
any reduction factor (CVW 2018). An overview of the
parameters employed for the CS masonry is shown in
Table 2. For the NLTH calculations, the elastic proper-
ties are halved in order to properly capture the cyclic
strength degradation, not explicitly described by the
EMM.

As regards the modelling of the timber elements,
the elastic properties of the timber planks of the roof
(tabulated in Table 3) were calibrated based on labora-
tory experiments performed at TU Delft on similar
diaphragms (Mirra et al. 2020). The value of the
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Table 2. Material properties assigned to the masonry ele-
ments. In parenthesis the values used for the NLTHA.

CS – Regular CS – Weak*

Ey [MPa] ** 4000 (2000) 2800 (1400)
Ex [MPa] 2667 (1334) 1867 (934)
G [MPa] 1650 (825) 1155 (578)
ρ [kg/m3] 1850 1850
fy [MPa] ** 0.15 0.10
fx,min [MPa] 0.30 0.20
Gf ,I [N/m] 10 8.1
α [rad] 0.62 0.62
fc [MPa] 7.0 7.0
Gc [N/m] 15,000 15,000
φ [rad] 0.54 0.54
c [MPa] 0.25 0.175
Gs [N/m] 100 100

* Rotated local axis
** Local y axis is perpendicular to bed joint

Table 3. Elastic properties assigned to the timber planks.

Timber Planks

Ex [MPa] 1.5
Ey [MPa] 11
Ez [MPa] 400
ρ [Kg/m3] 380
υ [-] 0.0
Gxy [MPa] 1100
Gyz [MPa] 1100
Gxz [MPa] 500

Young’s modulus assigned to the ridge beam, timber
purlins, strut and tie beams is 9 GPa, and the Poisson’s
ratio is 0.35.A smaller value of theYoung’s modulus (1
GPa) is assigned to the dummy beams. The material
properties selected for the Coulomb-Friction model
used for the point interfaces between the URM gable
walls and the timber purlins are listed in Table 4. The
properties attributed to the concrete elements of the
floors are defined based on the median values defined
for C12/15 in EN 1992-1-1, with aYoung’s modulus of
27 GPa, and uniaxial tensile and compressive strength
of 1.57 MPa and 20 MPa, respectively.AYoung’s mod-
ulus of 200 GPa and a yield strength of 400 MPa is
used for the rebars. A plastic behaviour described by
Von Mises equations is employed.

Table 4. Properties of the interface elements which simulate
the connections between the timber beams and the gable wall.

Point Interface

kn [N/mm3] 1000
kt [N/mm3] 100
φ [rad] 0.60
! [rad] 0
c [MPa] 0.02

3 ANALYSIS RESULTS

3.1 NLPO Results

The NLPO analyses are performed by applying two
different distributions of lateral loads: either a uniform
or a modal distribution is considered. The former dis-
tribution is achieved by using a horizontal equivalent
acceleration, increased incrementally. The latter distri-
bution is computed on the basis of the eigen-mode with
the highest participating mass. This is the first natural
mode (shown in Figure 8), which depicts a global in-
plane mechanism of the structure with an almost linear
increase of the lateral displacements over the height.

Figure 8. First natural mode of the building model. Plot of
the displacements in the longitudinal direction.

For each load distribution, the loads are applied both
in the positive and negative directions. The outcomes
of the four analyses are qualitatively similar: the failure
is governed by a soft-storey mechanism at the ground
floor level, characterised by rocking of the piers on
both facades and of the internal walls (Figure 9). The
horizontal cracks that start from the bottom corners of
the windows propagates in the transversal walls too. In
case of uniform distributed loads, an additional verti-
cal crack develops between the transversal wall and the
internal partition wall, probably due to the larger lat-
eral force applied at the ground location with respect to
the modal distribution, but no significant out-of-plane
deformations are observed (Figure 10).

Figure 9. Longitudinal displacements at step 385 of the
NLPO analysis for the modal (a) and uniform distribution (b).
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Figure 10. Principal crack width plot at step 385 of the
NLPO analysis for the modal (a) and uniform distribution (b).

Figure 11. Normalized force-first floor displacement
curves of the NLPO analyses. NPR9998 drift limits applied.

The observed global failure mechanism mainly
depends on the flexural failure of the piers, so that the
global failure may considered ductile. For such mech-
anisms, the Dutch guidelines recommend a maximum
allowable storey drift of 1.5%, a value that is used
to cap the capacity curves obtained for each analy-
sis. Figure 11 shows the four base shear-displacement
curves, where the base shear is normalized by the
effective mass of the building and the displacement is
computed at the attic level. The dashed black line rep-
resents the NPR9998 limit for the NC displacement,
which is equal to 40.4 mm. The relevant displacements
and normalized base shear forces of the corresponding
bilinearized curves are reported in Table 5.

Table 5. Summary of bilinearized NLPO curves.

Yield NC Norm.
Disp. [mm] Disp. [mm] Force [g]

Mod. Positive 4.02 40.35 0.259
Mod. Negative 4.21 40.35 0.207
Unif. Positive 4.00 40.35 0.367
Unif. Negative 4.10 40.35 0.306

3.2 NLTH results

The studied building is assessed also via NLTH analy-
ses. As for NLPO analyses, an indirect method recom-
mended in section F.6.3 of NPR9998 (NEN 2018a) is

employed to estimate the NC of the building. Both site-
specific and scaled ground motions are investigated.
The mean value of the 11 performed simulations is
adopted to verify the compliance with the failure cri-
teria. For the site-specific analysis (with an expected
PGA of 0.148 g) the building complies with the crite-
ria.The average maximum displacement in x-direction
recorded at the first floor location is 8.2 mm, equal
to 0.31% of the effective height. The average peak
force is equal to 449.7 kN. The 11 records are then
amplified in order to evaluate the PGA that corre-
sponds to the exceedance of the failure criteria, which
is first achieved for a PGA of 0.33 g. A soft-storey
at the ground floor along the weak x direction is the
global failure mechanism observed for all the applied
motions, similar to that observed for the NLPO anal-
yses. An overview of the force-displacement curves
computed for the building subjected to all the ground
motions is given in Figure 12. The average maximum
displacement in x direction recorded at the first floor
is 35.5 mm, equal to 1.32% drift, smaller than the
drift limit from normative. The displacements in the
y direction are relatively small, and at the first floor
level equals to 1.54 mm. Extra calculations show that
the in-plane interstorey drift limit (1.5%) is exceeded
on average for the 11 ground motions having a PGA
value comprised between 0.35 g and 0.40 g. The aver-
age peak force is equal to 692.8 kN. The overall results
are reported in Table 6.

Figure 12. Force-displacement at effective height of the
model subjected to scaled motion of 0.33 g.

Table 6. Summary of NLTH data for amplified PGA of
0.33 g.

GM Peak Disp. Peak Drift Peak Base
ID Floor 1 [mm] Floor 1 [%] Shear [kN]

1 15.3 0.57 514.9
2 44.5 1.65 760.9
3 66.1 2.46 717.0
4 24.7 0.92 616.5
5 32.1 1.19 665.4
6 39.1 1.45 627.6
7 25.7 0.95 740.7
8 45.2 1.68 826.4
9 31.1 1.16 725.7
10 35.4 1.32 687.2
11 31.2 1.16 738.7
Mean 35.5 1.32 692.8
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4 DISCUSSION

4.1 Convergence of NLPO and NLTH analyses

The convergence of the calculations is hereinafter dis-
cussed in order to assess the reliability of the outcomes.
An overview of the converged steps is shown in Fig-
ure 13 for the negative direction of the modal NLPO
analysis. In total, 69 of the 437 steps (15.8%) do not
satisfy the convergence criteria (the orange dots in Fig-
ure 13), which are set in terms of residual forces and
displacements, with a maximum norm of 1% to be
achieved simultaneously in not more than 25 iterations.
The residual norms of the steps for which the criteria
are not met are plotted in Figure 14. For only 18 of the
69 non-converged steps the criteria are not respected
for none of the two residual norms, and the maximum
residual norms obtained in those steps are 5.2% for
the forces and 2.8% for the displacements. For all the
other steps, at least one of the two residual norms is
smaller than 1%. The sporadic lack of convergence is
mainly caused by the small number of allowed iter-
ations (maintained low to shorten the computational
time), the large number of elements cracking simul-
taneously at the same step, and the use of non-linear
constitutive laws for several different materials. Over-
all, the obtained results are considered sufficiently
reliable for an NLPO analysis.

Figure 13. Overview of converged and not converged
steps for the modal NLPO analysis with negative loading
direction.

Figure 14. Residual force and displacement of
non-converged steps for the modal NLPO with nega-
tive loading direction. Selected 1% norm applies for both
criteria.

Figure 15 shows the residual energy of both con-
verged and non-converged steps of a NLTH calcula-
tion. In total, the 53.6% of the steps do not converge,
and the average residual energy evaluated from all
steps is equal to 1.9%.The limited number of iterations
allowed per step (once more to limit the computational
time), the strict tolerance and the multiple nonlinear
laws implemented in the model are the cause of such
lack of convergence. However, it can be noted that con-
vergence is always reached after few non-converged
steps, and the check of the strain contours does not
show any unexpected strain localization. For these
reasons, also the results of the NLTH analyses are
considered sufficiently reliable.

Figure 15. Residual energy of both convergence and
non-convergence steps for the GM 8 NLTH with PGA of
0.33 g. Selected 0.01% norm applies.

4.2 Influence of model assumptions on the outcome

Both NLPO and NLTH simulations require a number
of assumptions, which affect the outcomes of the anal-
yses. In the following, three relevant assumptions are
discussed. The NLPO analysis subjected to positive
uniform distributed load is considered for this scope.

First, the connection between the internal walls and
the transversal external façades is examined: either
with or without weak elements that simulates the con-
tinuous vertical mortar joints. For these two alternative
models, the base shear is plotted against the displace-
ment at the first storey level in Figure 16. The model
with weak elements results more flexible and achieves

Figure 16. Comparison of the base shear-first floor dis-
placement curves for different modelling of the connection
between walls.
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Figure 17. In-plane principal stress components (at step
385): active flange at ground level of model with (a) or with-
out (b) weak elements; passive flange at first level of model
with (c) or without (d) weak elements.

a slightly lower force capacity. When the internal wall
is connected to the facades, the latter acts as a flange
in a T-shape section beam and the internal wall as a
web. The different distribution of the in-plane prin-
cipal stresses in case of an active flange (which is a
flange subjected to a reduction of the vertical axial
load due to the frame effect determined by the lateral
loading) at the ground floor is shown in Figure 17,
for both the models with (Figure 17a) and without the
row of weak elements (Figure 17b. The comparison
shows that the stronger connection at the corner con-
tributes to limit the horizontal rocking crack opening
at the base of the internal wall. As a result, the diag-
onal compressive strut localizes in a smaller area and
it results in higher compressive stresses at the toe of
the wall. Similarly, the stress distribution for a passive
flange (which is a flange subjected to an increase of
the vertical axial load due to the frame effect deter-
mined by the lateral loading) is shown in Figures 17c
and 17d. The latter shows how the presence of a weak
row of elements allows a large part of the internal wall
to detach from the transversal wall, so that the long
internal wall behaves similar to a self-standing wall.

Second, the connection between the timber beams
and the masonry walls is modelled by means of point
interface elements.This detail allows to provide a more
realistic description of the roof stiffness, and to exploit
the ductility provided by the local nonlinear mecha-
nism. On the other hand, the elements adopted do not
allow for the definition of a maximum limit for the slid-
ing, so that the relative displacement must be checked
in the post-processing phase. The in-plane relative dis-
placements of the interface elements are extrapolated
and depicted in Figure 18, showing a maximum abso-
lute value of 1.05 mm. It is noted that the nonlinear
behaviour is activated for all the connections, but the
relative displacements are extremely small compared
to the sliding that would lead to the local collapse of
the connection (which can be estimated as the length

of the supported part of the beam within the pocket,
which is typically 60–80 mm for single wythe walls).

Figure 18. Interface relative in-plane displacement (at step
385).

Third, the nonlinear behaviour of the reinforced
concrete floors has been explicitly modelled. Figure 19
shows the cracking in the three concrete floors dur-
ing the application of the pushover load. Large cracks
(up to 0.45 mm) are detected locally at the ground
floor, where the rocking of the internal walls largely
increases the stresses and causes bending of the floor,
but this does not compromise the stability of the sup-
ported masonry walls, nor leads to a global failure of
the floor system.

Figure 19. Principal crack width of concrete floors (at step
385).

4.3 Comparison NLPO-NLTH

4.3.1 NLTH backbone curve
To compare the outcomes of the NLPO and NLTH
analyses, first a backbone curve is defined starting
from the set of performed NLTH analyses to define an
average global behaviour of the building. The maxi-
mum (and minimum) base shear force is extrapolated
from each analysis and correlated with the correspond-
ing maximum (and minimum) displacement. Both the
site-specific hazard and the scaled-up analyses are
used to define a trilinear backbone curve, whose sig-
nificant points (yielding, peak, NC displacement) are
obtained from the average of the results of analyses
having consistent outcomes (linear behaviour; non-
linear behaviour without exceedance of the failure
criteria; exceedance of the failure criteria). The maxi-
mum and minimum base shear of the backbone curve
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are equal to 613.0 kN and −598.6 kN at peak dis-
placements of 22.2 mm and −31.7 mm, respectively.
The NC displacement is computed by averaging the
maximum displacement of the analyses which show a
global drift higher than 1.5%. The computed collapse
displacements are 35.0 mm and−56.4 mm for the pos-
itive and negative direction, respectively. The NLTH
backbone curve is plotted in Figure 20 in comparison
with the pushover curves.

Similarities between the curves are observed:
namely, the peak base shear of the NLTH backbone
curve lies in between the peak forces of the two
pushover curves, whereas the NLPO ultimate dis-
placement capacity is comprised between the defined
negative and positive values for the NLTH analy-
ses. Finally, the NLPO curves obtained for mass
proportional loading match the envelope of the force-
displacement curves obtained for the NLTHA. This
suggests the fact that the NLPO analysis can be used
for reliable predictions of the capacity of a regular
URM building such the one considered in this paper.

Figure 20. Backbone curve calculated from site-specific
and scaled NLTHA analyses.

4.3.2 Different ADRS methods for NLPO analyses
The assessment of the building for the NLPO analy-
ses is carried out according to the capacity spectrum
method (CSM) as described in Annex G of NPR9998
(NEN 2018a). The CSM, initially proposed by Free-
man et al. (1975), is now used in codes and guidelines
from New Zealand (NZSEE 2017) and Italy (NTC
2018), besides the Dutch ones, and a modified version
has been proposed also in the FEMA 440 guidelines
(FEMA 440 2005). When the site-specific hazard
is considered (PGA of 0.148 g), all the capacity
curves intersect the elasticAcceleration-Displacement
Response Spectrum (ADRS) demand. The governing
NLPO analysis, i.e. the one with the smallest capacity
over demand (C/D) ratio, is the modal NLPO with the
loading in the negative direction.The capacity curve of
this analysis is used also to define the ADRS demand
for which the C/D ratio is equal to one, or (in other
words) the maximum PGA for which the building still
complies to the failure criteria. It is assumed that all
the coordinates of the curve are scaled proportionally
as the PGA. So, for instance, at an increase of 50% of
the PGA corresponds also an increase of 50% of the

displacement of the final vertical branch of the curve.
The iterative procedure returns a value of the scaled
PGA equal to 0.28 g (Figure 21).

A similar calculation is repeated for two alternative
assessment procedures, namely the N2 method, which
is recommended by the Eurocode EN 1998-1 (NEN
2005) and an alternative modified version (MN2), pro-
posed by Guerrini et al. (2017) for short-period struc-
tures. The PGA corresponding to the capacity of the
structure is equal to 0.55 g and 0.37 g for the original
and modified N2-methods, respectively. All the scaled
ADRS curves (including the inelastic curve for the
CSM) and the capacity curve of the building are shown
in Figure 21. Both the MN2 and the CSM provide sen-
sible estimates of the PGA at failure compared to that
predicted via NLTH analyses (0.33 g): while the MN2
slightly overestimates it (+12%), the CSM underesti-
mates it (−15%). On the opposite, the original N2 is
largely unconservative (+66%), showing to be unsuit-
able for short-period buildings such as the one ana-
lyzed in this paper and consistently with the outcomes
of the research presented in Guerrini et al. (2021).

Figure 21. Assessment of the NLPO negative modal
pushover for different assessment methods.

5 CONCLUSIONS

This work presents a study on the seismic performance
of an unreinforced (URM) two-storey terraced house
by considering a real building located in the north of
the Netherlands, assessed via both nonlinear pushover
(NLPO) and nonlinear time history (NLTH) analyses.
The paper discusses the relevance of the modelling
assumptions and the stability of the analyses, and pro-
vides a comparison between the assessment performed
via NLPO and NLTH analyses.

The study highlights that, despite the presence of
dummy elements in the roof structure which improve
the stability of the solution, the use of non-linear con-
stitutive laws for several materials leads to a large
number of non-converged steps, especially for NLTH
analyses. However, convergence is always reached
after few non-converged steps, and the check of the
strain contours does not show any unexpected strain
localization. For these reasons, the results of both
NLPO and NLTH analyses are considered sufficiently
reliable.
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Modelling a weak connection between the inter-
nal non-loadbearing walls and the loadbearing façades
returns a lower peak capacity of the structure, but
larger flexibility.

The explicit modelling of the nonlinear behaviour of
the timber-masonry connections allows for a more pre-
cise definition of the stiffness evolution of the structure
at the different storey levels, but it does not affect the
ultimate performance of the building. In both cases,
the nonlinear behaviour activates, but it does not lead
to any failure of the elements which can modify the
structural behaviour at the global building level.

The assessment of the building via NLPO is highly
dependent on the followed assessment procedure: both
a modified version of the N2 method and the capac-
ity spectrum method provide sensible estimates of the
PGA at failure compared to that predicted via NLTH
analyses, whereas the original N2 is largely unconser-
vative, proving to be unsuitable for buildings with a
short-period like the one analysed in this paper.

Overall the paper shows the relevance of the selec-
tion of accurate modelling assumptions to properly
describe the seismic behaviour of a URM terraced
building, which can be adequately described via either
NLPO or NLTH analyses.
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Numerical evaluation of mortarless interlocking masonry walls under
in-plane lateral loading
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ABSTRACT: Interlocking masonry systems have the potential to increase capacity while reducing construc-
tion time and cost, particularly in seismic applications. Salient among the challenges faced in advancing this
technology is the selection and optimization of the block geometries and interlocking patterns. In this prelimi-
nary numerical study, masonry wallets comprised of interlocking units were loaded in-plane until failure using
the distinct element program 3DEC. Twenty unique block geometries were used to create wallets of various
aspect ratios, and the wallets were simulated under several overburden pressures. To study block splitting, some
geometries were altered to include predefined splitting planes and were simulated using several masonry unit
strengths. The failure mode and lateral load capacity of each simulation was compared to a control geometry with
the same wall aspect ratio and overburden stress. The results (without block splitting) showed that interlocking
can force different failure modes and substantially increase lateral load capacity, depending on the wall aspect
ratio and the lock location, number and orientation. For slender walls with an aspect ratio of 2, little change
versus the control was observed and the lateral load capacity was slightly reduced in most cases; this agrees with
expectations as rocking failure governed in all cases including the control. For aspect ratios of 1 and 2/3, the
controls and geometries with locks only on the head joints experienced sliding failure along the top course, while
samples with locks on the bed joints showed stair-stepping shear failure along the joints which corresponded to a
significant increase in lateral load capacity. Lateral load capacity was improved by as much as 130%. However,
this substantial increase in lateral load capacity does not reflect block splitting. In the simulations which included
predefined splitting planes, the prevalence of block splitting increased with increasing overburden stress and
decreased with increasing masonry unit strength. In simulations where little to no splitting was observed (low
overburden pressure or high masonry unit strength), results largely agreed with earlier conclusions. On the
other hand, samples with low masonry unit strength simulated under high overburden pressure showed little
improvement in lateral load capacity. Future investigations will include adding greater complexity to existing
models, input parameter sensitivity studies, evaluation of additional interlocking geometries and load patterns,
and experimental validation.

1 INTRODUCTION

Masonry is among the oldest forms of construction
and continues to be a common building material
today. While masonry construction has evolved to
include reinforcement in applications where addi-
tional strength and ductility are required, the form of
masonry units generally remains unchanged. Unre-
inforced masonry (URM) structures are relatively
easy to construct but often perform poorly in seis-
mic events (Lourenço, Leite, & Pereira 2009; Totoev
2015). Despite the danger, URM structures are still
constructed today and constitute a substantial portion
of existing buildings in regions of seismicity where
more advanced construction techniques are not readily
available (Ali, Briet, & Chouw 2013; Calvi, Kings-
ley, & Magenes 1996; Magenes, Kingsley, & Calvi
1995; Magenes & Calvi 1997). Motivated by the need
to improve earthquake resistance without increasing

construction complexity, interlocking masonry sys-
tems have garnered attention for their potential to
increase the capacity of masonry structures while
reducing or eliminating the need for formwork, rein-
forcement and mortar. Non-structural advantages of
interlocking masonry systems include suitability for
use in automated construction systems, the archi-
tectural appeal of tessellating block geometries and
decreased environmental impact by minimizing con-
struction waste (Loing, Baverel, Caron, & Mesnil
2020; Stinson 2019).

The term interlocking masonry system describes an
assemblage of masonry units with locking between
adjacent units beyond the contribution of mortar and
reinforcement (if present). Interlocking can be pro-
duced using one or many masonry unit geometries.
Interlocking masonry systems can be comprised of
hollow or solid units bonded with or without mor-
tar in a variety of bond patterns. Members can be
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load-bearing or non-load bearing, reinforced or unre-
inforced. The method of interlocking creates cate-
gories specific to interlocking systems. For example,
they can be topologically interlocking (locking by the
contact of adjacent surfaces) or mechanically inter-
locking (locking by protrusions and grooves). The
location and orientation of locks plays an impor-
tant role; e.g., locks on the bed joint orthogonal to
the lateral direction will restrict in-plane translation
between block courses, while locks on the head joint
orthogonal to the vertical direction will restrict trans-
lation between adjacent units in the same course.
With many possible configurations, the selection of
novel block geometries and interlocking patterns for
improved structural performance presents a chal-
lenge. A limited number of studies have evaluated
the structural performance of interlocking masonry
systems.

Among the first set of experimental tests on inter-
locking masonry involved hollow, mechanically inter-
locking units developed by Thanoon et al. 2004
intended for use in load bearing, mortarless walls
(Thanoon, Jaafar, Abdul Kadir, Abang Ali, Trikha,
& Najm 2004). Alwathaf et al. 2005 studied the
shear characteristics of this interlocking system, Jaa-
far et al. 2006 investigated the behavior of a prism
of similar interlocking blocks in pure compression,
Thanoon et al. 2007 tested the same specimen under
axial compression with various eccentricities, and
Safiee et al. 2011 tested 1m×1.2m wall panels (par-
tially reinforced) under out-of-plane loading at dif-
ferent compressive stresses, (Alwathaf, Thanoon, S.,
J., & R. 2005; Jaafar, Thanoon, Najm, Abdulkadir,
& Abang Ali 2006; Nor, Jaafar, & Alwathaf 2011;
Thanoon, Jaafar, Noorzaei, Kadir, & Fares 2007).
More recently, Safiee et al. 2018 investigated the lat-
eral load-displacement behavior of masonry wallets
under several overburden stresses. The experimental
setup used in Safiee et al. 2018 is similar to that cho-
sen for the present numerical study and the results
are useful for order of magnitude comparison (Nor,
Mohd Nasir, Ashour, & Abu Bakar 2018).

In a separate series of experiments, the behavior of
masonry infill panels consisting of units that lock only
in the out-of-plane direction was investigated, the sys-
tem was coined semi-interlocking masonry by (Totev
2010).The semi-interlocking system allows for sliding
between block courses in the in-plane direction, dissi-
pating energy through friction (Totoev 2015). Using a
select few semi-interlocking geometries, experiments
were conducted to study the hysteretic behavior of
infill panels with various fillers between neighboring
masonry units and between the wall boundaries and
frame (Hossain, Totoev, & Masia 2016; Masia, Totoev,
& Hossain 2019; Liu, Liu, Lin, & Zhao 2016). Results
from the few experimental tests on interlocking
masonry systems show promise for improved struc-
tural performance; however, experimental methods
are infeasible for testing many interlocking geome-
tries. Developing this technology requires optimiz-
ing the interlocking geometry and bond pattern, a

task which is more easily approached in a numerical
setting.

An ongoing series of numerical studies within the
framework of 3D limit analysis have been conducted
in an effort to create structurally informed interlocking
configurations for masonry assemblages of arbitrary
shape. Mousavian et al. 2020 investigated the friction
coefficient of dry stacked masonry at the limit state
for corrugated block geometries (rectangular grooves)
with various lock orientations (Mousavian & Casa-
pulla 2020c). Mousavian and Casapulla 2020a/b cre-
ated a feasibility check, the sliding infeasible measure,
to quantify the performance of interlocking structures
of arbitrary assemblage shape, again using corrugated
block geometries (Mousavian & Casapulla 2020b).
An optimization tool in MATLAB was then used
to determine the lock orientation which minimizes
sliding infeasibility (Mousavian & Casapulla 2020a).
This series of studies demonstrates that the numerical
setting allows for evaluation of many more interlock-
ing configurations. However, the scope is restricted
by solely using the corrugated masonry unit shape.
Additionally, while limit analysis provides a power-
ful tool for optimizing some performance parameter
of interlocking assemblages at the limit state, for
seismic applications other important aspects of struc-
tural response are desired, including the displacement
capacity and the hysteretic behavior.

The present study uses 3DEC, a 3-Dimensional
Discrete Element Code, to capture the response of
interlocking masonry walls under in-plane lateral load-
ing. This study is limited to topologically interlocking
mortarless walls with no additional items, focusing on
the effect of block geometry. To further confine the
problem, each wall was composed of a single inter-
locking block geometry. Several wall aspect ratios,
overburden pressures and masonry unit compressive
strengths were investigated. In total, over 300 simula-
tions were completed for 20 masonry unit geometries.
The lateral load capacity and deformed shape of each
simulation was used to evaluate the relative perfor-
mance of each configuration. This study is intended
as a preliminary stage in a series of numerical and
experimental tests. Future investigations will include
numerical testing of additional geometries, assem-
blage shapes and modes of loading, in addition to
experimental tests on the best performing geometries.

2 METHODOLOGY

Interlocking block geometries were generated and
assembled into masonry wallets using RHINO6, then
converted to a geometric input for 3DEC. A standard
masonry block of form factor 2× 1× 1, (0.4× 0.2×
0.2) m, was used as the control. The control geome-
try can be thought of as a starting point from which
point locations are modified to produce other geome-
tries. With this in mind, an equal volume constraint
was imposed by moving all points along a line in the
direction of change by the same distance. The depth
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of locks relative to the characteristic dimension was
kept constant at 0.2 (i.e. 0.2(0.2)= 0.04 m). Note that
holding the depth of locks constant while increasing
the number of locks per face increases the lock angle.

18 unique interlocking unit geometries were cate-
gorized by three features: (1) location of interlocking,
bed joint-only (B), head joint-only (H), or both bed
and head joints concurrently (Both); (2) the orientation
of locks, preventing translation in-plane (IP), out-of-
plane (OP), vertically (V), or a combination referred
to as diagonally (D); and (3) the number of locks per
face, either 1 or 2. The sample naming system refers
to features 1, 2, and 3 in order. For example, a unit
with two locks on the bed joints and lock orientation
restricting in-plane translation is abbreviated as BIP2,
Figure 1a. Figure 1c shows the BothIPOP2 geometry:
two locks on each face, in-plane locks on the bed joints
and out-of-plane locks on the head joints. For the sam-
ple group with locks on both the head and bed joints,
bed joint locks restricted in-plane translation exclu-
sively while the head joint locks could take any of the
possible orientations (since this study involved only
in-plane loading).

Several geometries were selected to include prede-
fined splitting planes: BIP1, BIP2, and Butterfly. In
addition, the control geometry was altered to allow
splitting vertically through the middle of each unit. In
comparison to the BIP1 and BIP2 units where the cross
sectional area in the y-z plane is maintained, the But-
terfly unit has reduced cross sectional area toward the
middle. Figure 1a and 1b show the BIP2 and Butterfly
geometries in elevation view with red lines indicating
the predefined splitting planes.

A single masonry unit geometry was used in each
wall. Units were stacked in a running bond pattern to
create walls of three different aspect ratios: H/D=[2/3
1 2], where H=1.6 m. Figure 2 displays the 3DEC test
setup.The top and bottom of each masonry wallet ends
at a half-course of blocks fixed to the applicator plate
and base plate. The base plate was fully fixed while
the applicator plate was allowed to translate in the
x-direction (in-plane). The applicator plate was con-
strained against rotation about the x and y axes as
well as against translation in the y-direction (into the
page). Each wall was loaded by a velocity field in the
x-direction uniformly applied to the applicator plate.

Both the applicator plate and base plate were mod-
eled as rigid while masonry units were modeled as
deformable. A linearization of the Feenstra-De Borst
plasticity model for concrete was adopted to cap-
ture crushing failure. The tensile strength of the FE
mesh was set artificially high such that tensile fail-
ure could occur only along predefined splitting planes.
The Coulomb slip model was used for all joints and
potential splitting planes. The compressive strength of
masonry units, fcm, was used to calculate other param-
eters. Simulations were conducted with three different
values for fcm: 10, 15, and 20 MPa.Table 1 summarizes
the values and equations used for the input parame-
ters. Each simulation captured the load-displacement
response through a specified number of time steps,

Figure 1. Interlocking geometries (red lines indicate poten-
tial splitting planes).

106≤ n≤ 206. The lateral load was taken as the sum
of shear forces along the nodes connecting the bottom
course of masonry to the base plate, i.e., base shear.
Lateral displacement was recorded at the midpoint of
the top-right edge.

3 RESULTS

Figures 3 and 4 show two typical lateral load-
displacement curves obtained in this study. In Figure
3, the base shear (lateral load) is plotted against the
lateral displacement for the Control, BIP2 and Both-
IPV2 geometries with a wall aspect ratio of 2/3 under
each overburden pressure. Notice the control quickly
plateaued to pure sliding while the BIP2 and BothIPV2
samples strengthened significantly. Additionally, ver-
tical locks on the head joints increased the lateral load
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Figure 2. 3DEC setup.

Table 1. General 3DEC, Mohr-Coulomb and Feenstra-De Borst parameters.

E (Pa) L (m) φ G kn ks

1010 0.4 31◦ 0.4E E/L G/L
fcm (MPa) ftb ftj cj ftsp csp

∗

[10 15 20] ∞ 0 0 0.1fcm
fcm(1−sin φ)

2 cosφ
h (m) Gc (MPa) † fc3

‡ fc7 ke
‡ ku

‡

0.15 15+ 0.43fcm − 0.0036f 2
cm fcm/3 fcm/7 4fcm

3E ke + 1.5 Gc
(.001)hfcm

∗ (Piratheepan, Gnanendran, & Arulrajah 2012; Lelovic & Vasovic 2020; Selimir LELOVIĆ, Dejan VASOVIĆ, & Dragoslav
STOJIĆ 2019)
† (Lourenço 2009)
‡ (Feenstra & De Borst 1996)

Figure 3. Lateral load-displacement, BIP2, BothIPV2, con-
trol without splitting, H/D=2/3.

capacity of BothIPV2 beyond that of BIP2 as slid-
ing over the bed joints forces the head joint locks
to engage. Figure 4 shows the base shear versus lat-
eral displacement for the control and BIP2 geometries
with splitting. At the lowest overburden stress, the

Figure 4. Lateral load-displacement, BIP2, control with
splitting, H/D=2/3.

response of samples with splitting is nearly identi-
cal to the corresponding samples without splitting.
However, at higher levels of overburden stress, ten-
sile failure through units begins to occur and the
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load-displacement curves experience sudden jumps.
Strengthening occurs even after the onset of block
splitting, typical of squat walls. The lateral load capac-
ity of each simulation was taken as the peak base shear,
indicated by green marks in Figure 4.

3.1 Without splitting

Figures 5a-5c show the lateral load capacity of all
simulations which did not include block splitting;
horizontal lines indicate the control value at each over-
burden stress. The controls for walls with aspect ratios
of 2/3 and 1 experienced sliding failure along the top
course as the predominant failure mode, while the
controls for walls with an aspect ratio of 2 exhib-
ited rocking failure, as shown in Figure 6a. All walls
with an aspect ratio of 2 experienced rocking failure
which corresponded to a slight reduction in the lat-
eral load capacity compared with the control, Figure
5c. Across all aspect ratios, interlocking only on the
head joints—HV, HOP, HD—had little effect, display-
ing the same failure modes as the respective controls.
For walls with aspect ratios of 2/3 and 1, samples
with locks on either the bed joint only or both the
bed joint and head joint concurrently showed substan-
tial increases in lateral load capacity. Larger increases
in capacity were recorded for geometries with two
locks, simulations under lower overburden stress and
for walls with an aspect ratio of 2/3. For the geome-
tries with interlocking only on the bed joints, locks
normal to in-plane translation resulted in the greatest
increases in capacity. For the geometries with inter-
locking of both the bed and head joints, the addition
of locks normal to vertical translation increased capac-
ity the most. In general, the samples with interlocking
on both the bed and head joints showed higher lateral
load capacity than the bed-only group. Across all sim-
ulations, the BothIPV2 geometry in a wall aspect ratio
of 2/3 under 0.3 MPa overburden stress produced the
highest increase of 130% over the control.

3.2 With splitting

Figures 6c and 7b-d show contours of x-displacement
for several samples with predefined splitting planes. It
can be observed that the tensile failure of units has a
strong effect on the failure mode for samples with the
lowest compressive strength of units, fcm= 10 MPa.
Figure 8 presents the normalized lateral load capac-
ity of simulations which included block splitting with
fcm= 10 MPa; each data point is normalized by the
corresponding control. Walls with an aspect ratio of
2 showed primarily rocking failure with some block
splitting at an overburden pressure of 0.9 MPa; a slight
reduction in capacity was observed for all cases. For
wall aspect ratios of 2/3 and 1, substantial increases
in lateral load capacity were recorded, particularly for
the BIP2 geometry and for cases with lower overbur-
den pressure. It is important to note that while Figure
8 gives the impression of correlation between normal-
ized capacity and aspect ratio, this trend is only clear

Figure 5. Lateral load capacity, without splitting.

for the BIP2 geometry. Due to the available predefined
splitting paths, the BIP2 geometry was forced to split
along multiple diagonal bands, Figure 7b, whereas a
single band forms for the BIP1 geometry, Figure 6c.
Higher overburden pressure correlated to a reduction
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Figure 6. Control and BIP1 x-displacement contour, all aspect ratios.

in lateral load capacity normalized by the control, this
correlation was present even for tests without splitting
although to a lesser extent.

To more clearly distinguish the relation between
overburden pressure and reduction in normalized
capacity resulting from block splitting, the lateral load
capacity of samples with splitting was normalized
by the corresponding interlocking geometries without
splitting for walls with an aspect ratio of 1 in Fig-
ure 9. Intuitively, higher overburden stress caused an
increase in block splitting, thereby reducing the nor-
malized capacity in comparison to simulations without
splitting. It can be seen that the reduction in normal-
ized capacity at higher overburden stress for samples
with splitting goes beyond that recorded for sam-
ples without splitting and a negative correlation exists
between overburden pressure and normalized capac-
ity, this is associated with block splitting. The greatest
increase in capacity among samples with fcm= 10 MPa
occurred for BIP2 with a wall aspect ratio of 2/3 under
overburden stress 0.3 MPa, a 66% increase.

In passing we mention the results for the butterfly
geometry; this geometry was not classified along with
the other interlocking shapes because it is unique in the
sense that the cross sectional area in the y-z plane is not
constant.The Butterfly geometry was found to perform
poorly in each case, producing at most a 4% increase
in capacity.This poor performance clearly results from
the reduced cross-sectional area at the critical section,
where splitting occurred.

The compressive strength of masonry units, fcm,
had a significant effect on the failure of walls
which include splitting. Increasing the compressive
strength increased the cohesion, tensile strength of
the Coulomb slip model and increased the parame-
ters of the crushing model. As a result, increasing fcm
is reflected by an increase in lateral load capacity, par-
ticularly at higher overburden stress where splitting
becomes more important. Naturally, increasing the
strength of masonry units should result in a decrease in
block splitting within a sensitive range of overburden
pressures, as was the case even for simulations where
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Figure 7. BIP2 x-displacement contour, H/D=1, σN = 0.9 MPa.

Figure 8. Normalized lateral load capacity (with splitting). Figure 9. Normalized capacity ( with
without ) splitting vs. over-

burden stress.
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overburden pressure was highest, σN = 0.9 MPa, as
shown in Figure 7. Rather than opening at the joints
as in Figure 7a (without splitting), masonry units split
along the predefined planes in Figure 7b (with splitting
and fcm= 10 MPa). Figure 7c shows that increasing
fcm to 15 MPa eliminated the majority of tensile fail-
ure through units, with only one splitting plane at the
right toe. Upon increasing fcm to 20 MPa only a slight
change occurs, preventing virtually all splitting in Fig-
ure 7d. Figure 10 shows the lateral load capacity of
all simulations which included block splitting at each
value for the compressive strength of masonry units:
10, 15, 20 MPa. The change in capacity shown in Fig-
ure 9 is noticeable from fcm= 10 MPa to fcm= 15 MPa
and negligible from 15 MPa to 20 MPa. Once the
majority of splitting is prevented, further increasing
the compressive strength has little effect.

Figure 10. Lateral load capacity (with splitting) varying fcm.

4 DISCUSSION

4.1 Without splitting

While ignoring splitting results in an overestimate
of the lateral load capacity of interlocking masonry
walls, the results (without splitting) confirmed the
expected effects of interlocking and provide model
validation through agreement with well known con-
cepts of masonry mechanics. For instance, it is well
understood that slender walls are susceptible to rock-
ing failure and rocking failure was, in fact, observed
for all numerical simulations on walls with an aspect
ratio of 2. It follows that if the failure is controlled by
rocking, the interlocking of masonry units should have
little effect, see Figure 5c.

Another obvious prediction confirmed by analysis
in 3DEC is that under the load pattern used in the
present study, walls comprised of blocks which inter-
lock only on the head joints should experience sliding
failure along the flat bed joints as the head joint locks
are never engaged (center column of Figures 5a-c).
On the other hand, geometries which included locks

on the bed joints perpendicular to the lateral direction
should be expected to produce the greatest increase in
lateral load capacity of all possible bed joint lock ori-
entations, as was found. Further, the uplifting of block
courses resulting from sliding over locks on the bed
joints engages locks on the head joints, increasing the
lateral load capacity most significantly for geometries
with vertical head joint interlocking, see the rightmost
columns of Figures 5a/b.

As noted in section two, increasing the number of
locks per face while holding the depth of locks con-
stant effectively increases the angle of the locks. It
is then expected that samples with two locks should
produce a greater increase in lateral load capacity, as
confirmed by 3DEC. We also note that the observation
that capacity was increased the most for walls with an
aspect ratio of 2/3 is in agreement with expectations
since a less direct failure path from the top-left to the
bottom-right corner is available.

4.2 With splitting

The results of simulations which included splitting also
agree with expected masonry behavior. For the most
slender walls, although some splitting occurred at the
higher overburden pressures, rocking failure remained
the controlling mechanism and these samples showed
no improvement over the control, Figure 8. Secondly,
walls with an aspect ratio of 2/3 were able to maintain
capacity and even strengthen slightly after the onset
of tensile failure through units, a well known char-
acteristic of masonry walls with low aspect ratio, see
Figure 4.

The significant change between simulations con-
ducted with and without splitting demonstrates the
importance of selecting realistic splitting planes. It
should be expected that if little to no splitting occurs,
the behavior of walls which included splitting should
largely agree with those which did not include split-
ting. This prediction is verified by simulations at the
lowest overburden pressure where results with splitting
were closest to the same geometries without split-
ting; notice the normalized capacity of roughly 1
at σN = 0.3 MPa in Figure 9. Moreover, as splitting
becomes increasingly pervasive with increasing over-
burden pressure, the lateral load capacities recorded
for samples with and without splitting diverge; under
high overburden pressure, samples which included
splitting failed at comparatively lower peak loads.

Of course, the strength of masonry units is essen-
tial for accurately modelling the behavior of a masonry
assemblage. In this study the compressive strength of
units was used to determine several input parameters in
the Coulomb-split model (used for tensile failure) and
the Feenstra-De Borst model (used for crushing fail-
ure). As a result, increasing the compressive strength
reduced the prevalence of block splitting. It should be
expected that if the strength of units is sufficient to pre-
vent nearly all splitting, the results of simulations with
splitting should agree with those without splitting, a
prediction confirmed by the observed failure modes of
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the simulations conducted with fcm= 15 MPa and 20
MPa, Figure 7. Additionally, because nearly all split-
ting was prevented at fcm= 15 MPa, little change in
capacity occurred beyond this value (see Figure 10).

5 CONCLUSION

Masonry structures have existed for millennia and
abound in today’s built environment, yet the form
of masonry units remains relatively unchanged. The
inherent heterogeneity of masonry structures makes
their analysis particularly challenging, in large part due
to the complex interaction between masonry units. In
this paper, the behavior of masonry walls comprised
of novel block geometries was studied using the dis-
crete element software 3DEC. Interlocking between
masonry blocks was shown to produce a substantial
increase in lateral load capacity depending on the
wall aspect ratio and the lock location, number and
orientation.

The response of masonry wallets simulated in
3DEC agreed well with masonry mechanical phenom-
ena. For instance, slender walls experienced rocking
failure and the effect of interlocking was, as a result,
negligible. Walls consisting of blocks with flat bed
joints experienced sliding failure as with the control.
On the contrary, walls with an aspect ratio of 2/3 or
1 showed large increases in lateral load capacity, par-
ticularly in cases where interlocking was engaged to
the fullest extent, as for sample BOTHIPV2. Samples
with two locks on the bed joint (increased lock angle),
showed consistently higher lateral load capacity; the
relation between lock angle and capacity is the focus
of a follow-up study to the present work.

Simulations which included predefined splitting
paths provide internal model verification, again con-
firming predicted behavior. The prevalence of block
splitting correlated with overburden pressure and the
strength of masonry units. In cases where the overbur-
den pressure was low or the strength of units was high,
little splitting occurred and the lateral load capacity
and failure mode was consistent with models where
splitting was neglected. The converse was also true;
simulations conducted under high overburden pressure
or with low strength of units showed that block split-
ting allowed for a more direct failure path, reducing the
relative lateral load capacity. This exercise expresses
the importance of selecting appropriate predefined
splitting paths for a given load case.

Although the scope of this study is modest in
comparison to the infinite number of possible inter-
locking masonry structure configurations, the results
demonstrate the potential for interlocking to produce
improved structural performance. 3DEC provides a
useful environment for studying the many aspects of
interlocking masonry behavior that remain to be con-
sidered. Future investigations will include additional
geometries, load patterns, and the study of inter-
locking assemblages with mortar, reinforcement, and
within framed structures. Eventually, the geometries

which perform best in the numerical setting will be
experimentally tested.
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ABSTRACT: The microporomechanics theory, which combines the mean-field homogenization method and
linear fracture mechanics theory, has been successfully adopted to study the nonlinear behavior of composite-
like materials, such as alloy, rocks and concretes. The application of such theory is however mainly limited to
the isotropic quasi-brittle materials and the study of crack propagation in an initially anisotropic materials, as
masonry, has received limited attention. This paper aims to derive the nonlinear material behavior of masonry
by adopting microporomechanics theory. In this study, masonry is treated as a composite material, made of
bricks, mortar joints and microcracks. At constituents’ level, cracks are idealized as three orthotropic families of
penny-shaped inclusions, which are then embedded in an undamaged effective masonry matrix formed by bricks
and mortar joints. A crack density variable, containing the information of each crack family (e.g., crack radius),
is adopted to define the damage state of masonry. The propagation of each crack family is governed by the
energy release rate and its critical value. The results shows that the microporomechanics theory can successfully
derive the nonlinear behavior of masonry (e.g., the tensile softening). The proposed model allows using limited
input parameters mainly related to properties of constituents, and elastic modulus and tensile strength of the
composites. However, it should be mentioned that the model developed in this study only considers the cohesive
mechanics by modelling the propagation of open cracks, while the friction on the lips of closed microcracks is
not taken into consideration and it will be objective of further study.

Keywords: Masonry; Mean-field homogenization; Microporomechanics: Nonlinear behavior; Anisotropic.

1 INTRODUCTION

As one of oldest construction techniques, masonry
buildings represent a large number of structures as res-
idential dwellings and heritages throughout the world.
Although masonry is not seen as a high-tech material,
it is difficult to characterize masonry material and con-
duct structural analysis accordingly due to its complex
mechanical behaviour.

Considering the derivation of the nonlinear
response of masonry based on contituentes’ behavior,
three categories of modelling approaches can be dis-
tinguished: discrete models, computational multiscale
models and continuum micromechanical approaches
(D’Altri et al. 2020). In the discrete models, every
brick is separately connected by interfaces (Lourenço
1996) or contact elements (D’Altri et al. 2020). Com-
putational multiscale models (Massart et al. 2007;
Petracca et al. 2016) numerically derive the structural
response from the behaviour of the homogenized mate-
rial by means of computational homogenization of
a representative element volume (REV). Continuum
micromechanical approaches (Addessi et al. 2010;
Gambarotta & Lagomarsino 1997; Marfia & Sacco

2012) define the damage evolution starting by postu-
lating the behaviour of a single defect (crack or void)
and obtaining the behaviour of the material as a contin-
uum by applying statistical averaging to an ensemble
of defects in a REV. Compared with the other two kinds
of methods, the continuum micromechanically based
approach results in one of the most efficient methods
also being user-friendly for their use in practice.

Among various continuum micromechanically
based approaches, large numbers of research works
mainly focused on phenomenological damage models
to describe the induced damage in materials (Chow
& Wang 1987; Swoboda & Yang 1999). These phe-
nomenological damage models are easy to be imple-
mented into computer codes and to conduct structural
analysis accordingly. However, many assumptions
lacking clear physical meaning are made in these
models. Additionally, some important physical mech-
anisms at microscopic scale, such as unilateral effects
and frictional sliding, are not properly described in
these models (Zhu et al. 2008).The microporomechan-
ics theory provides an efficient solution to overcome
these limitations of phenomenological damage mod-
els. In this theory, the global (effective) properties of

DOI 10.1201/9781003316404-43 363



the cracked material, which is deemed as a composite
formed by a matrix-inclusion system, can be calculated
following a rigorous upscaling procedure (Dormieux
et al. 2006).

Following Eshelby’s solution (Eshelby 1957) to the
elastic matrix-inclusion problem, several mean-field
homogenization models have been proposed, creating
a new field which can be named as Eshelby-based con-
tinuum micromechanics. By imposing that the size
of the heterogeneity is one scale lower than the size
of a RVE of the continuum material, the strain of
the continuum material can be calculated as average
strain by considering linear displacements, periodic
boundary conditions or uniform traction at the bound-
ary of the volume (Nemat-Nasser & Hori 2013). The
global stiffness tensor of the composite can thus be
determined by considering the elastic tensors of con-
stituents and the concentration tensor related to the
inclusions which contain information regarding their
shapes, orientations and volume concentrations.

By combining the mean-field homogenization
method and linear elastic fracture mechanics theory,
Dourmieux, Kondo and Ulm developed the so-called
microporomechanics theory to explain the elastic and
strength properties of saturated and unsaturated porous
media (Dormieux et al. 2006). The scope was to
explain phenomena such as failure of rock, hydra-
tion of cementitious materials, degradation processes
in concrete in which the combined action of pore pres-
sure and external mechanical load can trigger crack
propagation generated by the internal porosity of the
material (e.g. Lemarchand et al. 2003). Due to a simple
averaging method proposed by the mean-field homog-
enization technique, the microporomechanics theory
has been adopted to study the nonlinear behavior of
composite-like materials in different fields ranging
from metal composites (Doghri et al. 2016; Pierard et
al. 2004), alloys (Pardoen & Hutchinson 2003), rocks
(Deude et al. 2002; Pensée et al. 2002), cementitious
materials (Pichler et al. 2007; Ulm et al. 2004), geo-
materials (Zhu et al. 2009) and bones (Fritsch et al.
2013; Morin et al. 2017). The application of such the-
ory is however mainly limited to isotropic quasi-brittle
materials and the study of crack propagation in an ini-
tially anisotropic materials, as masonry, has received
limited attention.

This paper aims to derive the nonlinear material
behaviour of unreinforced brick masonry (URM) by
using limited input parameters mainly related to the
elastic properties of the constituents (i.e., bricks and
mortar) and the elastic properties and tensile strength
of the masonry composites. To achieve this target,
the microporomechincs theory, which combines the
mean-field homogenization method and linear frac-
ture mechanisms theory, is used by following a stan-
dard two-step homogenization procedure. In this study,
masonry is treated as a composite material, made of
bricks, mortar joints and microcracks. In the first
step, the orthotropic elastic properties of uncracked
masonry are calculated from the isotropic elastic prop-
erties of its constituents by an improved mean-field

homogenization model. In the second step, microc-
racks are idealized as three orthotropic families of
penny shape inclusions, which are then embedded in
the effective uncracked masonry homogenized from
the first step. A crack density variable, containing the
information of each crack family (e.g., crack radius),
is adopted to define the damage state of masonry. The
propagation of each crack family is governed by the
energy release rate and its critical value. The nonlinear
behaviour of masonry is then derived as a result of the
evolution and propagation of the microcracks.

2 METHOD

2.1 Model for orthotropic elastic properties

In this study, an improved mean-field homogenization
scheme is presented to compute the effective elas-
tic properties of masonry. The state-of-the-art for the
mean-field homogenization theory and the formation
of the proposed model are briefly described.

By considering an inclusion embedded in an infinite
elastic matrix subjected to homogeneous boundary
conditions (uniform displacement or uniform trac-
tions), the effective (macroscopic) stiffness and com-
pliance tensors, C∗ and D∗, for a composite material
can be expressed in the following forms (Klusemann
& Svendsen 2010):

C∗ = Cm +
∑

i

ϕi (Ci − Cm) : Ai (1a)

D∗ = Dm +
∑

i

ϕi (Di − Dm) : Bi (1b)

where the matrix phase is labeled by m and the inclu-
sion of type-i is labeled by i for a matrix-inclusion
system. The colon denotes the tensor operation for the
double dot product. C and D are the stiffness and com-
pliance tensors, respectively. ϕi is the volume fraction
of type-i inclusion. Ai and Bi are the average strain
and stress concentration tensors, respectively.

Various homogenization schemes adopt different
expressions for Ai and Bi to evaluate the interac-
tion degree between matrix and inclusions. One of
the most used mean-field homogenization schemes
is the interaction direct derivative (IDD) scheme.
This method assumes that each inclusion (�i) is first
embedded into a finite matrix (�m) and then the type-
i inclusion-matrix cell denoted by �Di, with �Di =
�i +�m, is embedded in the infinite homogenized
effective medium denoted by �E with unknown effec-
tive (macro) stiffness tensor C∗. The average stress
concentration tensor of IDD scheme is determined as
follows (Zheng & Du 2001):

B(IDD)
i =B(Dilute)

i :
[

I −
∑

i

ϕi (Di − Dm) : B(Dilute)
i : Cm :

(
I − Sm

Di

)
]−1

with B(Dilute)
i =Ci : A(Dilute)

i : Dm (2)
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where I is the fourth-order symmetric identity tensor.
Sm

i and Sm
Di are the Eshelby tensors for type-i inclusion

and type-i inclusion-matrix cell, respectively. A(Dilute)
i

is the average strain concentration tensor estimated by
the dilute scheme, according to:

A(Dilute)
i = [I + Sm

i : C−1
m : (Ci − Cm) ]−1 (3)

By properly choosing an interpolation between the
IDD and the inverse IDD models, a new homogeniza-
tion model is proposed. The IDD method assumes
mortar joints as inclusions, while the inverse IDD
method assumes the bricks as inclusion phase.

Cs=
[
(1− ζ (ϕi))D∗(IDD) + ζ (ϕi)D∗(IDD−1)

]−1
(4)

where C s is the stiffness estimate of the proposed
model. ζ (ϕi)= 1/2(

∑
ϕi)

(
1+∑

ϕi
)

is a smooth
function of interpolation proposed by Lielens (1999).

Figure 1 presents the assumptions of the matrix-
inclusion system for the proposed model, where all
the inclusions are approximated by elliptical cylindri-
cal inclusions, following the work by (Bati et al. 1999).
Each elliptical cylindrical inclusion is first embedded
into a matrix-inclusion cell (REV) that is also ideal-
ized as an elliptical cylinder. The elliptical cylindrical
matrix-inclusion cell is then embedded into the infi-
nite matrix. For the expression of Eshelby’s tensor of
elliptic cylindrical inclusions, the readers are referred
to (Mura 2013).

Figure 1. matrix-inclusion assumption for the proposed
model.

The proposed model is compared with some clas-
sical mean-field homogenization models, including
the Reuss, Voigt, dilute, Mori-Tanaka, double inclu-
sion (D-I), self-consistent scheme (SCS), effective
self-consistent scheme (ESCS) and interaction direct
derivative (IDD) models. For a detailed description
of these classical models, the readers are referred to
(Klusemann & Svendsen 2010). For each of the classi-
cal models, two assumptions regarding the inclusion-
matrix system are considered: the assumption with
mortar joints as inclusion phase (bricks as matrix) cor-
responds to the model itself, and the inverse model

corresponds to the opposite assumption with bricks as
inclusions (mortar as matrix).

Figure 2 shows the prediction results for effective
vertical Young’s modulus obtained from the proposed
model, the classical mean-field homogenization mod-
els and a finite element analysis (FEA) for stack
bonded masonry. Herein, the dimensions of bricks are
210× 52× 100mm3 (Length× height× thickness),
and a value of 10mm is adopted for the thickness
of mortar joints. The Young’s modulus and Poisson’s
ratio of bricks are 20 GPa and 0.15, respectively.
The Poisson’s ratio of mortar is 0.15. The Young’s
modulus of mortar is varied to evaluate the influ-
ence of the brick-to-mortar stiffness ratio from 1 to
1000 (1≤Eb/Em≤ 1000) on the elastic properties of
masonry. The results demonstrate that the proposed
model outperforms the classical mean-field homog-
enization models and provides results in very good
agreement with the detailed FEA. For a more detailed
description of the proposed model, please refer to our
recent work in which the proposed model is demon-
strated to be able to make accurate evaluation of
the three-dimensional orthotropic elastic properties of

Figure 2. The macroscopic vertical Young’s moduli E∗y cal-
culated by different mean-field homogenization models for
stack bonded masonry: (a) the models with mortar joints as
inclusions; (b) the inverse models with bricks as inclusions.
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stack bonded, running bonded and Flemish bonded
masonry (Zhou et al. 2021).

2.2 Model for nonlinear behaviour

2.2.1 Effective elastic properties of cracked
masonry

The homogenized masonry derived from Section
2.1 is hereby named as solid matrix. After deriv-
ing the orthotropic elastic properties of masonry
from the isotropic properties of its constituents, three
orthotropic families of microcracks, which are ide-
alized as penny shaped inclusions, are then embed-
ded in the solid matrix. Description of the two-scale
matrix-inclusion system is shown in Figure 3.

Figure 3. Description for the two-scale matrix-inclusion
system.

In the following analysis, the orthotropic stiffness
tensor of the solid matrix is denoted by Cs (calculated
by Eq. (4)). Each family of penny-shaped cracks is
characterized by its normal n, radius a and thickness c.
For the i-th crack family (i= 1, 2and3), its aspect ratio
Xi and volume fraction ϕci are defined as follows:

Xi = ci

ai
(5)

ϕci = 4

3π
cinia

2
i (6)

where ni is the number of cracks per unit of volume
(crack density).

For a given damage state, the effective stiffness ten-
sor of the cracked masonry Chom is calculated by the
Mori-Tanaka method.

Chom=Cs :

(

I −
3∑

i=1

ϕciAci

)

with Aci =A(Dilute)
ci : (ϕsI +

3∑

i=1

ϕciA
(Dilute)
ci )−1 (7)

where ϕs= 1−
3∑

i=1
ϕci is the volume fraction of solid

matrix. A(Dilute)
ci is the average strain concentration

tensor estimated by the dilute scheme:

A(Dilute)
ci = [I − Ss

ci]
−1 (8)

where Ss
ci is Eshelby’s tensor which depends on the

orientation and aspect ratio of i-th crack family and
the stiffness tensor of the solid matrix (Cs).

The explicit expression for the Eshelby’s tensor is
however only available for the isotropic or transverse
anisotropic matrix. In this study, the stiffness tensor of
solid matrix Cs is orthotropic. Therefore, a numerical
solution is used. For a generic anisotropic material,
the Eshelby tensor is given by the following surface
integral (Mura 2013):

Ss
ci(ijkl)=

1

8π
Cs

ijkl∫1
−1dζ3∫2π

0

{
Gimjn

(
ζ̄
)+ Gjmin(ζ̄ )

}
dw

with Gimjn
(
ζ̄
)= ζ̄k ζ̄lNij

(
ζ̄
)
/D

(
ζ̄
)

ζ̄i = ζi/ai; ζ1= cos w 1/2
√

1− ζ 2
3 ;

ζ2= sin w 1/2
√

1− ζ 2
3 ;

D
(
ζ̄
)= εmnlKm1Kn2Kl3; Nij

(
ζ̄
)= 1

2
εiklεjmnKkmKln;

Kik =Cs
ijkl ζ̄j ζ̄l (9)

where εmnl is the third-order permutation tensor and
Cs

ijkl are the components of the orthotropic stiffness
tensor of the solid matrix Cs.

The numerical scheme for the evaluation of Ss
ci(ijkl)

developed by Gavazzi and Lagoudas (1990) is adopted
in this study. The double integration in Eq. (9) is
transferred into the following form by using Gaussian
quadrature formula:

Ss
ci(ijkl) =

1

8π

M∑

p=1

N∑

q=1

Cs
ijkl

{
Gimjn

(
wq, ζ3p

)

+Gjmin
(
wq, ζ3p

)}
Wpq (10)

where M and N refer to the points used for the integra-
tion over ζ3p and w, respectively. Wpq is the Gaussian
weight. In this study, 60×60 Gaussian points are used
(M =N = 60). For detailed discussion of the determi-
nation of the Gaussian points and weight, please refer
to the book by Press et al. (2001).

In addition, it should be mentioned that the effective
stiffness tensor Chom calculated from Eq. (7) – (10)
is asymmetric. Therefore, a simple symmetrization
technique is adopted:

Chom
sym =

1

2

{
Chom + (Chom)T } (11)

where (Chom)T is the transpose of Chom.

2.2.2 Damage criterion
The damage criterion adopted in this study is formu-
lated in the framework of linear fracture mechanics
theory. When the cracked masonry is subjected to a
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uniform macroscopic strain E, the state equation can
be expressed as follows:

�=Chom
sym : E (12)

where � is the macroscopic stress. The potential
energy density (i.e., free enthalpy) W can be deter-
mined as follows:

W = 1

2
� :: E= 1

2
E : Chom

sym : E (13)

Considering the crack propagation for the i-th crack
family, the damage state is characterized by a crack
density variable εi (Budiansky & O’connell 1976):

εi = ain
3
i (14)

where ni is the number of cracks per unit of the i-
th crack family. Accordingly, the damage criterion is
formed in the framework of linear fracture mechanics
theory (Dormieux et al., 2006):

Gi − Gci ≤ 0;
.
εi ≥ 0; (Gi − Gci)

.
εi = 0 (15)

where Gi and Gci are the energy release rate and its crit-
ical value (threshold value), respectively. The energy
release rate Gi acts as the driving force for the damage
process, which is determined as the potential energy
density conjugate to the crack density variable. For the
i-th crack family, the energy release rate Gi reads:

Gi
(
E,

.
εi
)= ∂W

∂εi
= ∂

∂εi

(
1

2
E : Chom

sym (εi) : E

)
=

1

2
E :

∂Chom
sym

∂εi
: E (16)

where E is positive part of the effective strain E, which
is used to exclude the influence of compressive strain
(the damage process is only governed by the model-
I tension fracture (Dormieux et al. 2006; Zuo et al.
2006).

The critical energy release rate Gci acts as the thresh-
old value for the formation of new crack surface. Gci
is associated with the microscopic fracture energy gf
and the damage state (i.e., the crack density variable
εi).

Gci (εi)= 2π

3
gf

(
ni

εi

) 1
3

= 2π

3

gf

ai
(17)

3 NUMERICAL ASPECTS

3.1 Model application

This section gives a detailed description for the imple-
mentation of the model introduced in Section 2. The
numerical algorithm used in this study is developed on
the basis of the work by Esposito and Hendriks (2016)
for the fracture process of concrete. Now, consider the

cracked masonry subjected to a uniform macroscopic
imposed strain E=Eapplied . The macroscopic strain E
can be expressed by Eq. (18).

E=αEmax (18)

where Emax is the largest component of the macro-
scopic strain E. α is the macroscopic strain coefficient
tensor, which is determined as follows:

αmax = 1; αij = Eij

Emax
(19)

Likewise, the macroscopic stress can also be
expressed as follows:

�=β�max

with βmax = 1;βij = �ij

�max
(20)

Accordingly, the state equation in Eq. (12) can be
transferred into the following form:

β�max =Chom
sym :αEmax (21)

To solve the damage propagation problem, two
important issues should be properly addressed: one is
to identify the critical crack family that is propagating
and the other is to determine the new stress and strain
states by applying an (arbitrary) increase of damage
variable δ? to the critical crack family.

Consider the three orthotropic crack families char-
acterized by their crack density variables ε1, ε2 and ε3.
The critical k-th crack family can be identified as the
one with the lowest value of the largest component of
the macroscopic strain Emax. According to the known
imposed boundary condition �, the values of strain
coefficient tensor β can be calculated. The effective
stiffness tensor of the cracked masonry Chom

sym can also
be determined via the volume fractions ϕci and the
aspect ratios Xi of the three crack families (related to
the crack density variable εi), and the stiffness of the
solid matrix Cs. The macroscopic strain coefficient
tensor α can thus be calculated by Eq. (21).

To identify the critical k-th crack family, the critical
macroscopic strain tensors Ecr,i (i=1, 2 and 3), which
leads to the propagation of each crack family, are cal-
culated by imposing the energy release rate (Eq. (16))
is equal to its critical value (Eq. (17)):

−1

2
α :

∂Chom
sym

∂εi
:α

∣∣Ecr,i
max

∣
∣2= 2π

3

gf

ai
(22)

where Ecr,i
max is the largest components (in absolute

sense) of Ecr,i.
Comparing the calculated values of Ecr,1

max , Ecr,2
max and

Ecr,3
max , the critical k-th crack family can be identified

as:

Ecr,k
max =min

{∣∣Ecr,1
max

∣
∣,
∣
∣Ecr,2

max

∣
∣,
∣
∣Ecr,3

max

∣
∣} (23)
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The value of macroscopic strain in current damage
sate E∗ is then determined as follows:

E∗ =αEcr,k
max (24)

Using Eq. (12), the macroscopic stress in current
damage state�∗ can be calculated based on the macro-
scopic strain E∗ and the effective stiffness tensor of
the cracked masonry Chom

sym in current damage state
(the constitutive law under current damage state is
established). To continue the analysis and derive the
constitutive law under new damage state (character-
ized by the effective stiffness tensor of the cracked
masonry Chom

sym ), an (arbitrary) increase of damage
variable δε is applied to the critical crack family.

{
εi+1= εi + δε i= k
εi+1= εi i 	= k (25)

The loop is continued until the moment at which the
sum of volume fractions of the three crack families

is equal to 1 (
3∑

i=1
ϕci = 1). In the final damage state,

the effective stiffness tensor of the cracked masonry
Chom

sym(final) and the macroscopic stress �(final) are equal
to zero, and the macroscopic strain E(final) reaches its
maximum value.

3.2 Model calibration

This section provides a description for the calibra-
tion procedure of the proposed microporomechanical
model.

The proposed model requires a limited number of
initial variables, which can be divided into input and
calibrated parameters. The input parameters include
the volume fracture (ϕb, ϕm), Young’s modulus (Yb,
Ym), Poisson ratio (vb, vm), and porosity (θb, θm) val-
ues of bricks and mortar together with the vertical
Young’s modulus (Yinitial) and tensile strength (ft,initial)
of the undamaged masonry and the initial volume frac-
tion and the initial crack thickness (ϕc,initial and c).
It is assumed that initially the three crack families
have identical properties. The initial volume fraction
of cracks ϕc,initial is determined as the average of
the porosities of bricks and mortar (ϕc,initial = (θbϕb +
θmϕm)/(ϕb + ϕm), for which a large number of exper-
imental values are available in literature (Cobîrzan et
al. 2016; Sassoni et al. 2013). The initial crack thick-
ness c is assumed to be constant and equal to 0.1mm.
These input parameters have clear physical meanings
and can be experimentally determined.

The calibrated parameters include the initial aspect
ratio of the crack Xinitial and the microscopic fracture
energy gf , which can be determined following a two-
step calibration procedure as proposed by Esposito and
Hendriks (2016) and shown in Figure 4.

The initial distribution of the three orthotropic
cracks is assumed uniform, namely each crack fam-
ily has the same initial radius (a1,initial = a2,initial =
a3,initial = ainitial) and volume fraction (ϕc1,initial =

Figure 4. Calibration procedure of the proposed microp-
oromechanical model.

ϕc2,initial =ϕc3,initial =ϕc,initial/3). The crack thickness
c and the number of cracks per unit n are assumed as
unchanged constants (i.e., damage is only induced by
the growth of crack radius, while the crack nucleation
and the opening/closing transformation of cracks are
ignored). The cracks are then embedded in the solid
matrix which is an orthotropic medium derived from
Eq. (4). The stiffness tensor of undamaged masonry
Chom

sym(initial) calculated from Eq. (11) is orthotropic and
its components can be associated to the experimental
value of the vertical Young’s modulus Yinitial obtained
by testing masonry with a loading vector perpendicular
to bed joints. Consequently, the initial aspect ratios of
the cracks Xinitial can be calibrated.With the known val-
ues of Xinitial and c (crack thickness), the initial crack
radius ainitial , the number of cracks per unit n and the
initial crack density variable εinitial can be determined
(Eq. (5), (6) and (14)).

After determining the initial status of the three fam-
ilies of microcracks, the microscopic fracture energy
gf can be calibrated. By imposing the macroscopic
stress of the critical crack family equal to the exper-
imental value of the tensile strength of the undam-
aged masonry ft,initial in a uniaxial tensile test, the
microscopic fracture energy gf can be determined:

Gi

(
Ecr,initial =Dhom

sym(initial) :�cr,initial , εi = εinitial

)

=Gci
(
εi = εinitial , gf

)
(26)
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where Ecr,initial and �cr,initial are the critical strain and
stress tensors of the initial crack status (characterized
by εinitial). �cr,initial has only one no-zero-component
(�cr,initial

ii = ft,initial). In addition, gf is assumed as a
constant that is unchanged in the damage process.

4 RESULTS

To evaluate the performance of the proposed micro-
poromechanical model, in this section, the proposed
model is validated for the case of uniaxial tension
against experiments and its performance regarding
compression and pure shear loading is evaluated
accordingly. As a case study, the uniaxial tensile
tests by Van der Pluijm (1997) are considered. The
tests were performed on couplets made of wire cut
clay brick, having nominal dimensions 100× 50×
100 mm3(length× height× thickness), and hydrated
shell lime mortar with joint thickness of 12.5 mm.
Table 1 lists the input and calibrated parameters of
the proposed model, where the mechanical proper-
ties of masonry and its constituents are from the test
data by Van der Pluijm (1997), and the porosities of
bricks and mortar are based on the experimental data
from the research by Cobîrzan et al. (2016) and Sas-
soni et al. (2013) where the authors provided the data
of the porosities for different types of mortars and
bricks. In this section, a right-hand Cartesian frame

Table 1. Input and calibrated parameters of proposed model.

Properties Values Unit

Input parameters

Brick Young’s modulus, Ybricks 16.7 GPa
Mortar Young’s modulus, Ymortar 1.22 GPa
Brick Poisson’s ratio, vbrick 0.20 -
Mortar Poisson’s ratio, vmortar 0.15 -
Brick volume fraction, ϕbricks 0.89 -
Mortar volume fraction, ϕmortar 0.11 -
Brick porosity, θbricks 0.235 -
Mortar porosity, θmortar 0.127 -
Masonry vertical Young’s modulus, Yinitial 2.37 GPa
Masonry tensile strength, ft,initial 0.40 MPa
Crack thickness, c* 0.10 mm

Calibrated parameters

Initial aspect ratio, Xinitial 14.68 -
Microscopic fracture energy, gf 6.42e-5 N/mm

Dependent parameters

Solid matrix Vertical Young’s modulus, 7.93 GPa
Y (Dhom

sym(initial))
Number of cracks per unit, n 0.0823 mm−3

Initial crack radius, ainitial 1.468 mm
Initial crack density, εinitial 0.260 -
Initial crack volume fraction, ϕc,initial 0.223 -

*Crack thickness, c: assumed value.

is defined, with the y-axis aligning with the uniaxial
loading direction.

Figure 5 shows the prediction results of the pro-
posed model for masonry under uniaxial tension test,
which is compared with the experimental data by Van
der Pluijm (1997). The results show that the proposed
model can successfully predict the tensile softening
behaviour of masonry under uniaxial tension. The
model results agree well with the experimental results;
the Model-I tensile fracture energy predicted by the
proposed model is 7.7 N/mm which is close to the
average experimental value of 5.5 N/mm. As shown in
Figure 6, the evolution of the three orthotropic crack
families under tension is consistent with the experi-
mental cracking behaviour in the uniaxial tensile test,
namely only the crack family normal to the loading
direction (y-axis) propagates.

Figure 5. Model performance: uniaxial tension.

Figure 6. Crack evolution: uniaxial tension.

Figure 7 shows the prediction results of the pro-
posed model for masonry under uniaxial compressive
loading. The proposed model is able to capture the
complete nonlinear behaviour (including the post-peak
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Figure 7. Model performance: uniaxial compression.

Figure 8. Crack evolution: uniaxial compression.

behaviour) of masonry under compression. The corre-
sponding crack evolution under uniaxial compressive
loading is given in Figure 8. The cracking behaviour of
the three orthotropic crack families agrees well with
the experimental observation in masonry compres-
sive test, e.g. (Jafari et al., 2019). The radius of the
crack family normal to the loading direction (y-axis)
keeps unchanged, while the other two crack families
propagate. Additionally, compared to the crack fam-
ily normal to the horizontal direction (x-axis), the
crack family normal to the thickness direction (z-axis)
shows a lower increment in crack radius for the same
strain value. This can be explained by the fact that the
Young’s modulus and Poisson’s ratio of masonry in wall
thickness direction are larger than those in the horizon-
tal direction, resulting in a weaker resistance for the
formation of crack surface in horizontal direction.

The results of the nonlinear behaviour and crack
evolution simulated by the proposed model for
masonry under pure shear are shown in Figures 9 and
10, respectively. It should be mentioned that only the
nonlinear behaviour associated with the de-cohesive
mechanism is considered in the model. As a results,
in term of stress-strain diagram, the derived material

Figure 9. Model performance: pure shear.

Figure 10. Crack evolution: pure shear.

behaviour under shear is similar to that of a tensile test.
As shown in Figure 10, for the loading case of pure
shear in xy plane, the cracks normal to x- axis and
z-axis propagate. This conflicts with the experimental
observations in a shear test due to the lack of consider-
ation of the friction mechanism in the proposed model.
In the future, the shear-sliding mechanisms should be
further considered in the proposed model. By mod-
elling the coupling between Mode-I tensile fracture
damage and the friction, the nonlinear behaviour of
isotropic rocks under shear loading case has been
successfully modelled (Zhu et al., 2009).

5 CONCLUSION

This paper proposes a novel nonlinear constitutive
model for masonry in the framework of the micro-
poromechanics theory. The masonry is considered
as a composite formed by bricks, mortar joints and
penny-shaped microcracks. The orthotropic elastic
properties of uncracked masonry are calculated from
the isotropic elastic properties of its constituents by
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an improved mean-field homogenization model. The
nonlinear behaviour of masonry is derived as a result of
the evolution and propagation of penny-shaped cracks.
The results show that the proposed model is able to
predict the post-peak nonlinear behaviour of masonry
by using a limited number of input parameters mainly
related to the elastic properties of the masonry con-
stituents, and the vertical Young’s modulus and the
tensile strength of masonry.

However, a limitation of the proposed model should
be mentioned. According to masonry mechanics, both
cohesion and friction mechanisms play a crucial role
in the fracture process of quasi-brittle materials, as
masonry. Currently, the proposed model only consid-
ers the cohesion mechanisms by modelling Mode-I
fracture damage.The role of friction between the inter-
face of mortar joints and bricks is ignored.As a results,
the shear-sliding behaviour of masonry cannot prop-
erly be described by the proposed model. In future
work, the coupling between the cohesive damage and
the friction mechanism will be investigated.
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ABSTRACT: About one third of the world population lives in earthen dwellings. Adobe connotes an ancient
masonry whose bricks and mortar are made out of clay, silt sand and fibres, mixed using water and dried under
the sun. The composition of adobe is not standardized yet, namely locally available soil and fibre materials are
mixed together, often regardless strict rules on the nature and proportions of these constituents. As a result,
adobe mixtures in the field are usually accompanied by a high level of heterogeneity at micro and macro scales.
This requires proper assessment of the influence of heterogeneity on the mechanical performance of the finite
products at macro-scale. A large portion of the thousands of new and historical adobe buildings in the world
are indeed not engineered constructions, often built by house owners themselves with inherent safety issues.
Moreover, this building technology is recently gaining significant relevance in light of its good sus-tainability
features. This paper investigates the effect of heterogeneity in the mixture on the strength of adobe elements of
different sizes. Size dependence is a well-known phenomenon for masonry elements. For indus-trially produced
bricks, it is known that larger sizes are generally accompanied by comparatively lower strength values and several
theories have been consolidated over the years. In this research, specimens of adobe mortar of different aspect
ratios have been statically tested in compression. Nominal values of strength have been calculated and compared.
Contrary to initial expectations, lower strength levels appeared to be as-sociated to smaller dimensions. First, this
observation has been interpreted as a possible consequence of the effects of the heterogeneity level (sizes and
distribution) in the mixture compared to mixture granulometry property. Mixtures which are not standardized
and may compromise structural performance of comparatively smaller specimens. Next, this hypothesis has
been numerically tested via a series of numerical simulations. A recently developed isotropic damage model
called ’Adobe delta damage model’ presented at EURO-C 2018, has been used to replicate the observed size
effect. This model uses a damage delay framework to obtain mesh-size independent results for both static and
dynamic loads in quasi brittle material simulations. Ex-perimental results, physical interpretation and numerical
simulations are presented in this paper.

1 INTRODUCTION

Masonry design requires the assessment of its mechan-
ical parameters i.e. compressive strength and critical
strain (Kaushik et al. 2007). In building codes, these
parameters are often related to the mechanical per-
formance of their constitutive units, namely bricks
and mortar (Ingham et al. 2014). Material properties
such as compressive strength or the Young’s modulus
must be determined experimentally on representa-
tive samples according to technical standard, which
often prescribe strict requirements for the experi-
mental setup or the specimen geometry (Fódi 2011).
However, these prescriptions cannot always be met

during this material characterization phase, which may
happen in the laboratory but also directly in the field,
due to limitations of testing machines, site equipment,
extracting machineries or simply availability of mate-
rials (Bohdan & Tomasz 2013) This often results into
the inconsistent evaluation of fundamental material
properties on specimens of different proportions or
dimensions than the prescribed ones. This is the case
for the nominal material strength used for design pur-
poses and calculated as the ratio of the peak load on the
sample over its initial cross section area. In fact, it is
well known in literature that sample geometry is prone
to significantly affect the assessment of the nominal
strength for masonry units. Large attention has been
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devoted to the assessment of the influence of specimen
height given the same width. Based on experimental
datasets and numerical validations, several functions
of correction factors have been proposed to unify nom-
inal strengths of specimens of different slenderness
(MacGreggor 1994). Taking into account the specific
differences of the various functions proposed in liter-
ature, these all show that a smaller slenderness gives
a higher apparent nominal strength (HB 195 – The
Australian earth building handbook-Standards Aus-
tralia International, NSW 2001, 2001) In samples with
low slenderness, an artificial strengthening is caused
by the restraining effects of the steel material platens
of the testing apparatus. As a result, lateral expan-
sion is prevented and an increment in the maximum
force (thus in nominal strength) is observed (Page &
Marshall 1985). This effect appears to steeply reduce
above slenderness’s of 2 (MacGreggor 1994). If the
influence of slenderness on mechanical parameters of
units is translated into building standards for masonry
design, minor certainty refers to the influence of spec-
imen dimensions given a same slenderness (Krishna
et al. 2011) Several theories have been proposed over
the past years. When dealing with size effects on
masonry materials, the statement “the smaller, the
stronger” is usually valid; that is the apparent perfor-
mance in strength decays for larger samples (Bohdan
& Tomasz 2013). To this effect, not only restrain-
ing mechanisms of steel platens contribute. According
to probabilistic principles, the general theory of size
dependence explains that larger a volume of material
is, the most likely a defect, heterogeneity or void is con-
tained within it, and thus, earlier the specimen is prone
to fail (Fódi 2011) The influence of shape and size
dependence have been studied for modern construc-
tion materials, namely produced according to rigorous
product and process standard, which include the phases
from raw soil element selection until finite product
delivery and certification. In the world, construction
technologies which are ‘not engineered’ still exist,
namely these are generally produced using materials
and techniques not univocally shared nor standardized
in building codes. This is the case of adobe. Adobe
is the most ancient masonry technology, whose bricks
are made out of soil possibly mixed with fibres and
joint together using mud mortar (Austin 1984). Locally
available materials are often used and final products
are air dried in the field consistently with local build-
ing traditions, which of course, also vary over different
regions (Varum et al. 2007). Despite not fully standard-
ized yet, almost 1/3 of the world population still lives
in earthen dwellings, which are spread in areas of the
world prone to earthquakes or involved into military
operations (Li Piani 2021). Earthen based architec-
ture is gaining renovated attention also in European
urban environments in light of its eco-friendly material
properties (Parra-Saldivar & Batty 2006). The seek for
product and process standardization is of paramount
importance for restoration as well as for new build-
ing design purposes all around the world. Still, the
nature of the material and building process technology

traditions require the proper assessment of the influ-
ence of geometry of adobe masonry specimens on the
nominal strength parameter.

In the next section, an experimental campaign of
material characterization on one mixture of fibre
reinforced adobe mortar is reported. Static uniaxial
compression tests have been performed on samples of
different sizes while keeping the slenderness the same.
Resulting values of nominal compressive strengths
for the different geometries of the same mortar have
been compared. Next, the derived trend has been
critically assessed against main theories developed
for industrially produced masonry materials. A pos-
sible hypothesis prone of justifying the observed trend
has been proposed and tested via numerical simula-
tions. A numerical model developed for simulating the
dynamic performance of adobe masonry materials has
been used. Numerical results have been finally val-
idated against the hypothesis. Numerical simulation
robustness is finally investigated against numerical
pathology of mesh dependence.

2 THE EXPERIMENTAL PROGRAM

2.1 Material selection

Adobe samples were produced at the royal military
laboratories of the Netherlands, NLDA. Soil bags and
fibres were selected from a German producer of tradi-
tional adobe materials. Soil granulometry is shown in
Figure 1. The mixture is classified as a “sandy silt with
some clay” (Li Piani et al. 2018). Maximum aggregate
size in the soil mixture is 2mm. Soil bags contained
natural fibres up to 3% by weight. Fibre reinforce-
ment consisted of straw and chopped wood. Not an
unique geometry of fibre was observed, but an average
dimension of 12 mm was measured.

Figure 1. Soil granulometry and fibres in the mixture.

2.2 Samples production

Soil, fibre and water were mixed in a concrete mixing
machine as prescribed by the company. Next, fresh
mortar was poured into prismatic wooden moulds of
four different sizes. All sample have the same slen-
derness equal to two, while square cross section side
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was progressively increased starting from 40mm with
a factor of 1.25 (Figure 2). In the following, the result-
ing four specimen types are named as Size A, B,
C, D. Final dimensions are also reported in Table 1.
Mortar specimens were air cured at controlled labora-
tory conditions for 28 days. After drying, all surfaces
were rectified to ensure plan parallelism. The smallest
cross section tested was a square of 40x40mm (EN
772-1:2000, Methods of test masonry units Part 1:
determination of compressive strength 1999).

Figure 2. Poured mortar (top) and air drying specimens
(bottom).

Table 1. Specimens dimensions.

Size L x t xH [mmxmmxmm]

A 40x40x80
B 55x55x110
C 67x67x135
D 80x80x160

2.3 Test setup

Compressive tests were performed according to UNI
EN 772-1. Six samples per type were subjected to dis-
placement controlled tests at a speed rate of 1 mm/min.
For each sample, the apparent stress strain diagram was
recorded by dividing the force and displacements by
cross sectional areas and specimen height (Figure 3).

2.4 Results

From each stress-strain plot, nominal compressive
strength and critical strain values were calculated.
Mean values for each sample size are plotted in
Figure 4. For all types a relatively high scatter in
results is observed. Nevertheless, an increasing trend
of compressive strength with sample sizes is observed.
Type A mortar possesses an average strength of 1.24

Figure 3. The four different mortar specimens sizes (A-D).

Figure 4. Nominal strength (MPa) for the different mortar
sizes (A-D).

Table 2. Mean values (and standard deviations) for com-
pressive strength and strain for sizes A-D.

Type Strength Strain
- MPa Mm/mm

A 1.24(0.11) 1.23(0.15)
B 1.32(0.12) 0.91(0.11)
C 1.37(0.14) 0.88(0.09)
D 1.41(0.13) 0.91(0.07)

MPa, whereas this value increases up to 1.41 MPa for
Type D.

Conversely, smaller samples are more ductile,
namely the highest strain at peak is displayed by the
sample with 40mm cross section, which is typically
characterized by a more diffuse set of cracks at failure
(Figure 5).

Figure 5. Typical cracking patterns for the different sizes
(A-D).
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3 INTEPRETATION

3.1 Physical hypothesis

In this section, a possible explanation of the observed
experimental trend related to the increase of nomi-
nal strength levels for larger specimens of adobe is
hypothesized. Materials as cement or clay are consid-
ered as homogeneous only at a large scale with respect
to the dimensions of the largest aggregate. This hap-
pens because heterogeneity is intrinsically present in
the material. In quasi brittle materials, failure is dic-
tated by the coalescence and propagation of defects
and/or voids inside the volume at micro and meso-
scales (Phu Nguyen et al. 2010). Probability suggests
that the larger the volume, the most probable that a
defect is contained in the material is, thus resulting
into a reduction of the nominal strength.These theories
have been validated for industrially produced mate-
rials, where raw elements and inherent proportions,
including production processes, are fully standardized
to ensure the minimization of the likelihood of the
presence and relative dimensions of defects in the
final product. In the case of adobe, raw elements in
the field are picked up according to local availabil-
ity, whereas production processes are not defined to
ensure the elimination of micro-defects in the final
product. As a result, the level of heterogeneity in the
mixture of adobe are often significant, both in terms
of size and proportions. Namely, in mixtures of adobe
currently produced in the field, the presence of defects
are more not only probable, but almost sure. This espe-
cially counts for fibre reinforced adobes. The presence
of fibres in the mixtures of adobe is originally meant
to reduce shrinkage rates in the (sun)drying material,
limiting the formation of cracks as a consequence of a
more efficient drainage system (Li Piani et al. 2018).
However, its contribution on the mechanical properties
of the resulting brick, especially in terms of the influ-
ence of fibre materials is more controversial. Despite
still considered as a natural reinforcement in many
building guidelines for adobe, the most recent experi-
mental evidence in the field show that the presence of
fibres in the mixture usually reduces the mechanical
performance of the plain adobe (New Zeland Stan-
dards 1998). This can be explained as the result of
a lack of adherence between fibres and soil aggre-
gates at micro-scale caused by the non-optimal choices
of raw elements and inherent proportions (Li Piani
et al. 2020) Fibres are most often chosen based on
local availability and different materials, forms and
dimensions can be often observed in the same soil
mixture. This was evident also in the experimental
campaign herein presented. The average geometrical
dimensions of the fibre reinforcement of the tested
mortar samples was characterized by a considerable
scatter. Granulometry analysis on mixtures revealed
the presence of large straw and wood elements quite
off from the medium declared values for maximum
dimensions. This difference could easily correspond
i.e. to the 15–18% of the cross section side of “Size A”
(Figure 6).

Figure 6. Specimens of adobe with large wood reinforce-
ment visible on the surface (left) and example of fibre
geometrical properties revealed in granulometry test (right).

In this setting, not only the likelihood of defects in
the mixture, but their relative proportions and dimen-
sions with respect to the specimen size are important
matters to consider. The presence of fibres, already
associated to a decay of strength with respect to plain
adobe in recent literature (Li Piani 2019) is considered
in this study the responsible also for the ‘opposite’
size effect observed. Principles of fracture mechan-
ics can be linked with probability theories considering
the effect that one or more large heterogeneity can
cause on the capability to withstand external loadings.
In particular, it is hypothesized that the sure presence
of relatively large areas of de-adherence in the mate-
rial with respect to specimen size, which are caused
by fibre inclusion in the mixture of adobe have a
high probability to significantly impact the resistance
especially of relatively smaller bricks, namely the like-
lihood to compromise the overall capability of smaller
specimens to redistribute internal stresses. In this set-
ting, this hypothesis explains in the observed opposite
trend in nominal strength, where larger specimens
appears to be stronger than smaller specimens.

3.2 Numerical model

The hypothesis presented in Par. 3.1. on the influ-
ence of defect sizes at a meso-scale on the struc-
tural mechanical performance of masonry elements
is herein numerically tested. To this end, a numerical
model recently developed to assess the performance
of Adobe bricks and mortar was used (Li Piani et al.
2019). This is an isotropic local damage model (eq.1),
which incorporates a smoothed Drucker-Prager fail-
ure surface (eq.2). The thermodynamic variables of
the material states are expressed as equivalent strains
for compression crushing (εeqc) and tensile cracking
(εeqt). Damage starts when the loading function ψ
becomes positive (eq.3). Damage evolution laws dic-
tate the softening process (eq.4). Evolution of damage
is directly related to the growth of two monotonic
internal variables which account for the maximum
equivalent strains reached during loading history in
case of non-monotonic loadings (eq.5) Without proper
treatment, the local damage model suffers from the
well-known numerical pathology called mesh depen-
dence (Sluys & de Borst 1992). In order to solve
mesh dependence while keeping physical consistency
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with a typically rate dependent material, a viscosity
based local regularization algorithm has been devel-
oped (Allix 2012) The local damage evolution law has
been made directly dependent on the loading history
based on a decomposition of the Dirichlet boundary
condition. Given an arbitrary displacement law eval-
uated in N points by the Newton-Raphson solver, at
each progressive discretized time τ of the analysis after
damage initiation, the loading evolution law shows an
exponential damage delay to account for a “delta”(δ)
od increment based on the prescribed loading history
(eq.6).

σ = (1− D)σeq (1)

εeq= aεoct + bγoct (2)

ψ = εeq − k0 (3)

d = 1− 1

eC1(k−k0)
− k0

C2k
(4)

k =max
(
εeq (1− rα) , k0

)
(5)

δDτ =Dτ − Dτ−1= 


N
e(dτ−dτ−1) (6)

Where D is the damage variable, σ eq is the effective
stress vector, εoctand γoct are the normal and tangential
components of the first and second deviatoric invari-
ants, respectively, k0 is the damage initiation strain,
k the historical maximum equivalent strain reached
during loading history, d is the local damage variable
before regularization, C1 and C2 are material con-
stants, r is derived from the triaxiality factor proposed
by Lee and Fenves, α is 0.1, 
 represents a further
non-dimensional material parameter and N is needed
to make the results independent of discretization of the
applied law.

For more detailed information on the model, the
reader is referred to (Li Piani, Weerheijm, Koene, et al.
2019) for statics and (Li Piani et al. 2019) for dynamic
problems.

3.3 Numerical simulations of experiments

Numerical simulations of uniaxial compression tests
were performed It is worthy to stress out that the
herein presented numerical simulations do not mean
to exactly replicate the experimental tests performed.
This is an exercise meant to validate a possible
hypothesis on a general detected experimental trend.
Specimens of 1:2 slenderness were defined as from
experiments (Figure 7). Three specimens with the
same geometry of Size A, B, D in Par.2 were
implemented. Displacement controlled tests were exe-
cuted consistently with the experimental setup. Static
simulations were performed and a constant step dis-
placement history was uniformly applied at the top
side of the specimen. A mechanical imperfection was
still needed to trigger localization in statics. A small
area (in grey in Figure 7) at the left corner of each spec-
imen was connoted by a 30% lower damage initiation
strain compared to the one associated to the rest of the

volume. Quadrilateral element mesh with four integra-
tion points were used.A precision of 10−4 was required
for the Newton Raphson solver. Values of the parame-
ters of the model were taken from the ones calibrated
with respect to another mortar of adobe tested by the
authors in (Li Piani et al. 2019). These are: ko= 7%,
A= 160,
= 4.5, N= 2000, E= 200MPa, ν= 0.1.At
first, numerical simulations were meant to replicate
the theoretical condition of absence of defects in the
material. Thus, only the small imperfection needed
to trigger localization was present. The results of the
numerical simulations are presented in the following
for each size. These consist of the normalized stress-
strain plots obtained by dividing numerical forces and
displacements per the cross section areas and height,
respectively and of the damage patterns at failure as
numerically obtained (Figure 8).

Figure 7. Numerical setup.

Figure 8. Normalized stress-strain plots and corresponding
cracking patterns for Size A, B, D.
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The damage pattern is more spread for smaller sam-
ples as experimentally exhibited. However, the smaller
samples are also the strongest. Next, the same simu-
lations were performed by introducing the effects of
possible defects in the mixture. The same weak area
approach just presented was used. However, in the
following simulations, the value of the weak region
was kept the same for all specimen sizes. Three
series of simulations were performed by progressively
enlarging the area of the weak region from 32mm2

(corresponding to a 8x4mm defect size) up to 128 mm2

and 256 mm2. Results of numerical simulations are
presented for Size A and D in terms of compressive
strength (Figure 9) and damage spread (Figure 10).

Figure 9. Nominal strength values for progressively larger
defect areas in Size A and Size D samples.

Figure 10. Percentages of damaged areas over cross sections
for Size A and Size D for progressively increasing defect
areas.

From results, it appears that progressively increas-
ing defect sizes, nominal strength of smaller samples
diminishes proportionally faster than for larger sam-
ples. At an area of 256 mm2, Size D possesses a higher
strength than SizeA, while damage patterns keep being
larger for smaller samples (Figure 10). This implies
that in the comparison of two samples of given initial
geometry with a given initial defect, there is a certain
defect size above which smaller samples proportion-
ally lose sooner their mechanical integrity, whereas
larger samples still keep the capability of internally
redistributing loads (Figure 11).

Figure 11. Trends in compressive strength as a function of
cross section area.

3.4 Mesh sensitivity analysis

In order to guarantee the trustworthiness of the
depicted results, a mesh sensitivity analysis has been
performed. The same simulations of compression tests
as presented in Par.3.3 have been executed using three
different mesh sizes from 5mm to 1.25mm. Results are
presented in terms of damage patterns and normal-
ized curves. For all simulations, it counts that mesh
independence is preserved (Figure 12).

Figure 12. Example of mesh independent results in terms
of damage pattern and force-displacement plot.

4 CONCLUSIONS

In this paper, the results of an experimental campaign
on adobe mortar has been presented. Size dependency
on masonry units has been studied. Static compression
tests were executed on specimens with progressively
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larger sizes and constant slenderness. Results were
compared in terms of nominal compressive strength.
Contrary to the general trend valid for industrially
produced quasi brittle materials, larger samples of
adobe comparatively exhibited a higher strength. Prob-
abilistic theories coupled with principles of fracture
mechanics have been used to interpret this trend. For
not industrialized materials as adobe, the presence of
defects inside the mixture is highly probable. These
may reach significant dimensions with respect to the
dimension of the overall specimen. It is hypothesized
that there may exists a certain area of weakness with
respect to the overall specimen size which causes the
loss of structural integrity of the specimen. Therefore,
for a given defect size, larger samples are capable
of re-distributing stresses more easily with respect to
smaller ones, thus resulting in a higher compressive
strength. Overall, for materials as adobe the probabil-
ity that a defect appears in a given volume must be
pondered with the probability that its relative exten-
sion is prone to affect or even compromise its load
bearing capacity. This especially counts when fibres,
usually picked in the field, without proper knowledge
on the exact bonding mechanisms with the binder frac-
tion of the mixture are added in the mixture.These may
correspond to large areas of de-adherence which com-
promise the structural integrity of the specimen. In the
likelihood of a defect within a given volume of mate-
rial, the probability that it does affect the mechanical
performance of the material depends on its exten-
sion with respect to the total volume. This hypothesis
has been numerically validated. An isotropic dam-
age model developed for adobe materials has been
used to replicate compression tests on specimens with
larger sizes. Numerical simulations have shown that
the larger the defect size inside the specimen is, the
lower its overall capability to withstand the external
loads compared to larger specimens. These simula-
tions confirm existing trends of analytical functions
of stress intensity factors with respect to initial flaws
size (Rooke & Cartwright 1976). If this is sufficiently
large, the geometrical correction factor can be larger
than 1, thus resulting in a reduced specimen strength.
Finally, the reliability of the results of the numerical
simulations shown in this paper has been checked. In
fact, local damage models are prone to suffer from
mesh dependence, thus resulting in inconsistent results
with respect to the discretized mesh size. In this study,
a mesh sensitivity analysis has been performed. The
properties of mesh independence of the model have
been confirmed. These are guaranteed by the imple-
mentation of a local regularization algorithm which
introduces a damage delay consistent with the prop-
erty of rate dependence experimentally attributed to
adobe masonry materials.
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ABSTRACT: The finite sized shear band finally transitions to the assembly of sand and gravel particles owing
to meso-scale damaging of cementitious binders. This paper proposes shear band kinetics in consideration of
disintegration and/or gravelization of cementitious composites. A model that presents the transient features of
confinement from cementitious composites to the rock/soil foundation is proposed. The model is applied to
two different structures for verification and validation. One structure is double-beam coupling beams, where the
unreinforced concrete strip sandwiched by reinforced concrete beams experiences large shear deformation under
seismic load. The other structure is masonry structures, where mortar joints can be a relative weak zone. From
the comparison of past experimental results of these structures with local weakness and the analysis results, it
was determined that the proposed model may improve and widen the scope of nonlinear analysis in spite of its
simplicity.

1 INTRODUCTION

The shear band is a source of nonlinearity and size
effect of structural concrete.This paper proposes shear
band kinetics in consideration of disintegration and/or
gravelization of cementitious composites. The finite
sized shear band ultimately transitions to the assembly
of sand and gravel particles owing to meso-scale dam-
aging of cementitious binders. It is well known that
the characteristics of confinement of concrete differ
from those of the soil foundation. The proposed model
presents the transient features of confinement from
cementitious composites to the rock/soil foundation
(Yamanoi & Maekawa 2020).

The main frame of the concrete constitutive model
used in this study (Maekawa et al. 2003) applies
for shear transfer on the crack surface represented
by a contact density model where the ultimate shear
transfer hardly depends on the confinement pressure.
On the other hand, the mechanical behavior of the
assembly of sand and gravel particles can be repre-
sented by the elasto-plasticity subjected to the friction
law (Towhata 2008). In the proposed model, the two
models are combined depending on the degree of
disintegration which is expressed as a function of
the fracture parameter used in the elasto-plastic and
fracture model of concrete.

The proposed model was originally developed for
low-strength concrete of lesser cementation. In this
case, the localized shear band was experimentally

observed being damaged beyond the scope of con-
ventional concrete. Previously, constitutive modeling
for soft rocks and cement improved ground has been
proposed (Abdulla & Kiousis 1997; Hirai et al. 1989;
Namikawa & Mihira 2007; Shen et al. 2019; Sun &
Matsuoka 1999) and formulated with respect to the
degree of damage (Desai 1996; Yu et al. 1998). The
applicable range of these models is limited to uniaxial
compressive strength of 2 MPa or less and elasto-
plasticity being the basis of the formulation. On the
other hand, the constitutive model of concrete has gen-
erally targeted concrete with compressive strength of
15 MPa or more. The main scope of the proposed
model in this study is situated somewhere between
these two cases.

As a new application target of the model, we focus
here on two different types of structure. One is double-
beam coupling beams (DBCB: Choi et al. 2018)
and the other is masonry walls. In the former, the
unreinforced concrete strip sandwiched by reinforced
concrete beams experiences large shear deformation
under seismic load. In the case of masonry structures,
mortar joints have been modeled by volume-less joint
elements subjected to the friction law. By combin-
ing the proposed model with the active crack method,
these local weaknesses can be modeled by 3D solid
elements.

First, the details of the proposed model are
explained. Next, the applicability of this model to the
two types of structure is verified by comparison of
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the analysis results with existing experimental results.
Consideration of the changes in material properties
associated with shear localization is necessary for
structural post-peak analysis to assess the risk of resid-
uals beyond design loads. In addition, the occurrence
of crushed areas caused by ground rock faults is an
important factor in the risk assessment of underground
structures during earthquakes. Opening/exploring a
way to comprehensively deal with such aspects to meet
future needs is another purpose of this study.

Transition shear band modeling is being applied for
engineering practice. One is 3D urban spaces with
diversifying underground spaces for the assessment
of urban safety and the other is fault attack on under-
ground utility ducts in nuclear power plants (Aoki et al.
2021).

2 TRANSITION MODEL FROM CONCRETE TO
GRAVEL IN SHEAR

Concrete and assembly of gravels have different
shear resistance mechanisms in the deformed local-
ized bands (Figure 1). The former transmits shear
force mainly by the aggregate interlock, and the lat-
ter mainly by the contact friction between particles.
In the former, the aggregate is fixed by the cement
paste binder, while it is rotatable in the latter. Hence,
we have different effects of confinement on shear
strength and ductility. The contact density model of
cracked concrete (Bujadham et al. 1992; Li et al. 1989)
was formulated based on this mechanism. Thus, the
confinement effect on shear transfer along concrete
cracks is comparatively lower than that of sand particle
assembly when confinement is higher. For sand-like
granules, shear strength is generally proportional to

Figure 1. Overview of the transition model from concrete to gravel.

confinement pressure, and elasto-plastic constitutive
models that follow the Mohr-Coulomb and Drucker-
Prager fracture criteria fit well (Towhata 2008).

The difference between two materials will reduce
as the concrete deteriorates to disintegrated graveling
by large shear deformation. The transition model is
formulated based on this idea (Yamanoi & Maekawa
2020), and we have the total stress σij of the localized
bands as,

σij = σcij (K)+ Z (K) σsij , σsij = Sij + δij I1 (1)

where σcij is the stress tensor yielded by the constitu-
tive model for cracked and uncracked concrete, σsij is
the stress yielded by a perfect elasto-plastic model for
sand, Sij , I1 are the deviator stress tensor and the first
invariant of stress tensor, δij is Kronecker’s delta, and
K is a concrete fracture parameter.

The rate of transition to graveling is specified by
Z(K), which is the function of the fracture parameter
of concrete denoted as K . No damage of the initial state
corresponds to K = 1, and complete damage is K = 0.
In this study, Z(K) is tentatively set as Equation 2.

Z (K)= 1− K (2)

In the conventional concrete model, which can con-
sider up to 6 cracks, the stress is calculated with regard
to the crack state, as shown in Figure 2 (Maekawa &
Fukuura 2013). The fracture parameter is calculated
based on the elastic strain invariant before cracking.
After cracking, it is allocated to each crack as a his-
torical variable. For each crack, the fracture parameter
is calculated based on the uniaxial compression frac-
ture in two directions, normal and parallel to the crack
surface, and the smaller one represents the fracture of
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Figure 2. Flow of computing stress in the proposed model.

the crack. As a result, up to 7 fracture parameters can
be recorded per Gaussian point. The smallest one is
given to the transition model to calculate the ratio of
transition.

The stress component of disintegrated graveling
(σsij) is obtained by elasto-plastic modeling for the
soil foundation. In this study, we have inelastic flow
normal to the deviatoric plane of stresses and Drucker-
Prager’s yield criterion in Equation 3. Since we have
large shear deformation at the time of disintegration,
shear dilatancy in progress is assumed to be nil.

F = J2 − Su= J2 − (A− BI1) , J2=
√

1

2
SijSij (3)

where, A, B are constants of the largest yield surface.
In the case of dry sand particle assembly, parameters
A and B are decided based upon the cohesive strength
denoted as c and the internal friction angle denoted
as φ. Thus, we have the simple model of A= c= 0,
B= tanφ=µ (µ: frictional coefficient).

In previous research, we validated this model for
low-strength concrete (Uniaxial compressive strength:
f ′c ≈ 8MPa). A three layers beam with intermediate
weak layer was prepared and bending shear force was
applied as shown in Figure 3 (Yamanoi & Maekawa
2020). In the experiment, damage was concentrated
along the weak layer and the shear band was dispersed
and bifurcated. The low-strength concrete observed on
the failure surface was pulverized and was like gravel
assembly.

Comparing the load-displacement relations and
strain distribution between the experiment and anal-
ysis, the proposed model successfully reproduced the
experimental results (Figure 3). Incidentally, the strain
in the experiment was measured by the digital image
correlation system (Sutton et al. 2009).

3 APPLICATION OF TRANSITION MODEL TO
DBCB (DOUBLE-BEAM COUPLING BEAM)

There are two types of coupling beams: the conven-
tional type consisting of longitudinal main reinforce-
ment and transverse reinforcement, and the diagonally
reinforced coupling beam surrounded by shear rein-
forcement (Lim et al. 2016; Naish 2013). Choi et
al. (2018) propose the double-beam coupling beam
(DBCB). In DBCB, reinforcement cages are arranged
in two stages, and the central part is unreinforced.
The unreinforced part may absorb shear deformation,
and the upper and lower parts are bent and damaged
like double beams. Despite the relatively simple rein-
forcement arrangement, greater toughness is exhibited
throughout the structure. It is expected that the central
unreinforced part will undergo large shear deforma-
tion locally, and the damage level will exceed the
applicable range of the existing concrete constitutive
model. In addition, due to repeated loading, gravel-
ing will easily proceed. Thus, the authors conducted
the experimental verification with the repeated load-
ing experiment of DBCB by Choi and Chao (2020), as
shown in Figure 4a.

The analysis model is shown in Figure 4b. The
displacement of the lower and side surfaces of the
fixed block was confined, and the upper and lower
surfaces of the loading block were forcibly displaced.
The loading block is always displaced while maintain-
ing parallelism with the fixed block. In the experiment,
since the loading block is connected to the fixed block
by a steel link, strictly speaking, horizontal displace-
ment occurs in the direction in which the specimen is
shortened as the vertical displacement increases. How-
ever, the maximum deformation angle loaded in this
experiment was about 6 degrees, which is equivalent to
10% of the beam chord rotation. As the displacement
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Figure 3. Validation of the proposed model by the experiment of beam with intermediate weak layer (Yamanoi & Maekawa
2020).

error due to the elastic deformation of the steel link
and the engagement of the jig is also considered, it
was judged that the horizontal displacement can be
ignored.

The transition model described in Section 2 was
applied to the reinforced and unreinforced concrete
parts. The compressive strength was computationally
set to the measured value at the test, andYoung’s mod-
ulus and tensile strength were set based on the JSCE
code specification (JSCE 2010) from the compressive
strength of 30 MPa. Rebar was modeled as smeared
reinforcement and the property assuming Grade 60
(fy = 420MPa) was set.The coefficient of friction after
graveling was tentatively set 1.0 according to the past
experimental fact by Lim and Maekawa (1987). The
loading and the fixed blocks were modeled with elastic
bodies. The stiffness of those blocks was set to 28 GPa,
the same as the initial Young’s modulus of concrete.

Figure 5 is a comparison of the experimental results
and analysis results. The transition model is shown
to be able to capture the experimental results from
the viewpoint of both the shear force-beam chord
rotation relation (Figure 5a) and failure mode (Fig-
ure 5b, c). The DBCB is at its maximum load with
damage to the unreinforced parts. As the deformation
angle increases, the damage to the unreinforced part
increases, but the ductility is large, and it has a resid-
ual strength of 60% or more even after peak loading.
Focusing on the damage when the deformation angle is
3%, shear cracks occur on the diagonal line of the beam
in the experiment. This means that the damaged unre-
inforced part maintains shear transfer.These behaviors
of the experiment can be reproduced accurately with
transition of shear localized bands.

We have a tendency to overestimate the energy
absorption capacity during repeated loading.A similar

tendency is seen when damage to the beam-loading
block joint is dominant (Naish 2013, Lim et al. 2016).

Next, we checked the sensitivity of the coefficient of
friction in the ultimate state (Figure 6). The maximum
shear force does not change significantly even if the
coefficient of friction changes from 1.0 to 0.6. On the
other hand, the residual strength is greatly affected by
the friction angle, and 45 degrees (equivalent to the
coefficient of friction of 1.0) appears highly consistent
with the experimental result.

It was confirmed that the transition model can be
applied not only to low-strength concrete but also
normal-strength concrete when the disintegration of
the composition becomes significant.

4 APPLICATION OF TRANSITION MODEL TO
MASONRY WALL

4.1 Extended multi-directional fixed crack model

In the previous sections, large shear deformations
occurred in the intended weak zones, which were the
application targets for the transition model. In this sec-
tion, we focus on masonry structures called mortar
joints, which have a lot of local weakness.

Aiming for more sophisticated seismic capacity
evaluation, various methods for evaluating the seismic
performance of existing masonry structures have been
developed (Hashimoto et al. 2017; Lourenço & Rots
1997; Pandey & Meguro 2004).There are several types
of numerical modelling of masonry structures in order
to deal with the high nonlinearity of many mortar joints
(Facconi et al. 2014; Lourenço et al. 2007; Maier et al.
1991). However, the authors know of no analysis mod-
els capable of handling the state where cracks intersect
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Figure 4. Target experiment of double-beam coupling beam
(DBCB) and mesh discretization for FEM analysis.

in multiple directions within masonry blocks having
interaction with multi-directional masonry joints.

Therefore, the authors proposed an extended model
of multi-directional fixed crack model as a model of
masonry structures (Yamanoi et al. 2021).

Currently, a constitutive model that can con-
sider non-orthogonal cracking in 6 directions is used
(Maekawa & Fukuura 2014). For 3-directional quasi-
orthogonal crack planes, a non-orthogonal coordinate
system is applied. Further, a 3D space averaged consti-
tutive law for a total of six directions of crack groups
has been formulated with the addition of a new crack
coordinate system.

The authors opted to allocate one of the above two
quasi-orthogonal crack coordinate systems to mortar
joint planes orthogonal to each other. The remaining
quasi-orthogonal coordinate system was allocated to
the behavioral analysis of the constituent blocks. This
makes it possible to handle kinetics in which multi-
ple cracks occur not only in mortar joints but also in
masonry blocks under complex load histories.

Figure 5. Comparison of experimental results and analysis
results (DBCB).

Figure 6. Sensitivity of the ultimate friction in the transition
model (DBCB).

The crack criterion and the shear transfer charac-
teristics of cracks can be set separately for the mortar
joint and block. The transition model is applied only to
the shear of mortar joints. Further details are available
in Yamanoi et al. (2021).
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4.2 Validation by the experiment of Ganz’s wall

Ganz andThurlimann (1984) reported a loading exper-
iment on masonry shear walls. As two types of nonlin-
earities, slips in the joints and cracks in the masonry
blocks, are provided, this experiment was consid-
ered appropriate for the verification of the extended
multi-directional crack model. Figure 7 shows the
dimensions of the specimen in the experiment and the
mesh division diagram for FEM analysis.

The specimen consists of hollow clay bricks stacked
in 10 layers. The bricks are bonded to each other with
10 mm of mortar. Each brick measures 300 mm× 190
mm× 150 mm. The finite elements placed in the wall
were 300 mm× 200 mm× 150 mm, almost the same
dimensions as the brick blocks.Thus, one element may
contain at most one joint.

An RC constitutive model was applied to the load-
ing beams and specimens (Maekawa et al. 2003).
Horizontal displacement was applied to the top plate
under a vertical load of 415 kN.

Figure 7. Target experiments of masonry wall and mesh
discretization for FEM analysis.

Experimental values were used for the strength of
the masonry bricks (Ganz & Thurlimann 1982). Here,
the aforementioned transition model was applied to
the shear transfer characteristics of the cracks in the
mortar joint. From sensitivity analysis and in reference
to the commonly known internal friction angle of sands
and clays (Rowe 1962; Skempton 1985), the assumed
friction coefficient was set to 0.4 for the case when the
solidification caused by cement paste disappears.

Figure 8 shows a comparison of the experimental
and analysis results obtained by applying the proposed

Figure 8. Comparison of experimental results and analysis
results (Masonry wall).

model. In this analysis, the exact position of the joint
is not specified within the finite element, but space
averaged continuous strain distribution within the ele-
ment is addressed. The shear strain distribution and
the load-displacement relations were reasonably well
reproduced by the analysis.

In previous research, the effect of the shear transfer
model of mortar joints on the analytical accuracy was
investigated (Yamanoi & Maekawa 2021). It was con-
firmed that the concrete model overestimated the load
capacity and failed to reproduce the ultimate failure
mode, while the cohesionless friction model underes-
timated the load capacity. As a result, the validity of
the transition model was verified. Further, the sensi-
tivity of the friction angle was newly investigated in
this study.
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Figure 9. Sensitivity of the ultimate friction angle in the
transition model (Masonry wall).

The analysis results when the friction coefficient of
the transition model is changed from 0.2 to 0.6 are
compared in Figure 9. The higher the coefficient of
friction, the higher the shear capacity and stiffness of

the wall. When the frictional resistance of the mor-
tar joint is small (µ= 0.2), calculated shear strain
distributes horizontally, which indicates that the slip
along the horizontal mortar joint is dominant. On the
other hand, assuming a higher coefficient of friction
(µ= 0.6), the diagonal cracks in the brick appear to
be dominant, and the failure mode is determined to be
shear compression failure. This is similar to the results
of the analysis where shear transfer model on the crack
surface of concrete is applied to the mortar joint. This
sensitivity analysis shows that the initially assumed
coefficient of friction (µ= 0.4) is appropriate.

5 CONCLUSION

For the purpose of evaluating the response of con-
crete structures beyond the ultimate state, a transition
model that can consider the change of shear transfer
characteristics of concrete with disintegration has been
proposed. It was confirmed that this model originally
developed for low-strength concrete can be applied to
DBCB made of normal-strength concrete and to mor-
tar joints in masonry structures. The main conclusions
are given below.

1. The proposed model can accurately evaluate the
capacity and ductility of DBCB.

2. There was room for improvement of the model
regarding cyclic behavior.

3. The transition model was preferable for the shear
transfer model of mortar joints in masonry.

4. From the transition model, the coefficient of fric-
tion after disintegration was inversely identified as
1.0 for normal concrete and as 0.4 for mortar.

It was clarified that the proposed model may
improve and widen the scope of nonlinear analysis in
spite of its simplicity. As this model can be a mere
frictional material model by setting a small concrete
strength, it is expected to replace the joint elements
with no volume conventionally used in various joints.
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ABSTRACT: Masonry constructions are a significant part of the existing civil, architectural and cultural her-
itage. The preservation of their structural integrity requires developing efficient and accurate tools to represent
their degradation and assess their safety and vulnerability under complex loading. In this paper, a constitutive
model, built within the framework of thermodynamics of irreversible processes, describes the nonlinear mechan-
ical response of masonry by introducing couplings in the free energy and the pseudo-dissipation potential of the
material. The damage model decomposes the effects of cracks families that behave independently on the compli-
ance tensor. Plastic flow develops independently along with the orthotropic directions of masonry, which allows
friction effects to be decoupled. The unilateral effect related to crack closure during alternating loading is also
modelled. A coupling between orthotropic elasticity and damage is introduced for the normal components and
an additional coupling between damage and internal friction for the shear components. Using this formalism, the
contributions to the overall dissipation of each degradation mechanism can be evaluated. Comparisons between
experimental and numerical results performed on masonry shear panels under monotonic and cyclic loading
are hereby presented. The model is able to satisfactorily describe the experimental outcomes, reproducing the
damage distribution, the hysteresis loops and dissipative processes.

1 INTRODUCTION

Masonry is a composite material that has been widely
used in construction and still accounts for about 70%
of existing buildings (Wang et al. 2018). Faced with
degradation due to human activity and increasingly
strong and recurrent environmental hazards (earth-
quakes, floods), a growing concern for preserving
these structures has emerged because of their aesthetic,
social, archaeological, cultural, economic and techno-
logical values. The risk assessment of these buildings
is a challenging task involving developing efficient
techniques to represent their degradation and anal-
yse their structural integrity and safety conditions.
Recent seismic events such as the Le Teil earthquake
(France, 2019) have highlighted the need to correctly
estimate the vulnerability of unreinforced masonry
structures (Taillefer et al. 2021), both locally and glob-
ally, under complex loads. By identifying the weakest
areas, maintenance and strengthening interventions
can be designed to reduce their collapse. To this end,
several models have been developed or adapted for
masonry in the previous decades (Addessi et al. 2014;
D’Altri et al. 2019; Roca et al. 2010; Sacco et al.
2018). However, masonry modelling shows several
difficulties related to its composite nature and the
specific characteristics of masonry structures. Indeed,

its material properties and structural behaviour are
difficult to assess.

Masonry is a quasi-brittle material characterised by
a heterogeneous nature (bound or unbound blocks),
nonlinear and non-symmetric behaviour with the pres-
ence of softening branches. Due to the poor resistance
of mortar joints to tension stresses, low tensile strength
is usually associated with high compressive strength.
This led to the ‘no-tension material’ modelling strat-
egy developed by (Heyman 1966) through the limit
analysis method considering simple hypotheses (i.e.,
no tensile strength, infinite compressive strength and
no possible sliding between blocks). This method
has been widely used to determine the upper and
lower bounds of the collapse load for masonry struc-
tures. Although these analytical methods successfully
simulate the static response of masonry structures,
numerical approaches have been developed to model
complex geometries and accurately represent degra-
dation and collapse mechanisms under static and
dynamic conditions. These approaches are based on
different descriptions – discrete or continuum – and
scales of analysis – micro/meso-scale, macro-scale
and multiscale. The discrete approach (Cundall 1971;
Lemos 2007), which represents masonry as a discrete
system of elements (units, joints, interfaces) exhibiting
different behaviours (e.g. Pina-Henriques & Lourenço
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2006) and buildings as an assemblage of distinct
blocks interacting along the boundaries (e.g. Acary
& Jean 1998), efficiently describes the cracking and
structural failure of masonry structures. Similarly,
macro-elements models are used for large buildings
where each wall is discretised as an assemblage of
piers, spandrels and rigid nodes (e.g. Brencich et al.
1998; Lagomarsino et al. 2013). The structural com-
ponents are connected by special interfaces adopting
nonlinear constitutive laws (e.g. Marques & Lourenço
2014). The continuum approach modelled masonry
as an equivalent continuum media. On the one hand,
micro-mechanical methods are based on the distinct
modelling of masonry components through different
constitutive laws and a detailed description of the
interaction between units and joints (e.g. Combescure
1996; Lotfi & Shing 1994; Sacco & Toti 2010). They
reproduce the masonry micro-structure to provide
accurate and reliable results but require high computa-
tional efforts, limiting their application to small parts
of buildings. On the other hand, macro-mechanical
models substitute the masonry material with a fic-
titious homogeneous continuum medium described
by phenomenological constitutive laws (e.g. Addessi
2014; Lourenço et al. 1997). These laws rely on dam-
age and/or plasticity model. Macro-models provide
high computational efficiency keeping an appropri-
ate numerical accuracy, considering moderate loading
that does not lead to complete failure. Macro-models
can also be enriched at a lower scale to describe
the anisotropic behaviour of masonry structures (e.g.
computational homogenisation Petracca 2016, Trans-
formation Field Analysis Marfia & Sacco 2015).

Today, macro-mechanical finite element models are
the most convenient ones to describe large masonry
structures, but some of them present difficulties in rep-
resenting the nonlinear anisotropic nature of masonry
subjected to alternate loading. For this purpose, this
paper develops a macro-model based on the Contin-
uum Damage Mechanics by proposing a description
of the orthotropic damage through a decomposition
of crack families following the natural directions of
masonry joints. Unilateral effect and internal sliding
coupled with damage are introduced to reproduce the
hysteretic behaviour of masonry under cyclic loading.

This paper is organised as follows: first, the theo-
retical formulation of the proposed damage-friction
macro-model within the framework of the thermo-
dynamics of irreversible processes and the adopted
regularisation technique are presented. The Gibbs
energy of such a model arises the formulation of
intrinsic dissipative energy, ensuring the considera-
tion of degradation mechanisms. Then, a study at the
local scale on a single finite element is performed to
illustrate the response of the model and its related
dissipative processes. Finally, comparisons between
experimental campaigns and global numerical anal-
yses are carried out using the tools developed at the
local scale. Special attention is brought to the descrip-
tion of the dissipation in relation with the nonlinear
mechanisms introduced in the model.

2 MACRO-MODEL FOR MASONRY

This section describes the model used to capture the
nonlinear behaviour of masonry. It is based on non-
linear macro-scale constitutive equations formulated
in the continuous media framework with small pertur-
bation assumption. This model is used in the follow-
ing to numerically reproduce the structural response
of the masonry panels under monotonic and cyclic
loading regarding two experimental campaigns. A
brief description of the main mechanisms modelled
is given, then the intrinsic dissipation arising from
the thermodynamic framework of irreversible pro-
cesses is detailed. Finally, the regularisation technique
employed to overcome the mesh dependency of the
finite element solution is briefly presented.

2.1 Damage-friction model

Masonry is a quasi-fragile material. The constitutive
model describes three phases: an orthotropic linear
elastic phase, a degradation phase with cracking evolv-
ing along three predefined orthogonal planes and a
degraded phase considering the unilateral effect as
well as the internal shear friction in the cracks. The
objective of this continuous modelling is to provide a
physical interpretation of the dissipative mechanisms
related to crack propagation so that it is possible to
reproduce the monotonic and cyclic behaviour of the
structure using consistent material parameters, within
a 3D framework.

Thermodynamic framework
This model is built within the framework of the ther-
modynamics of irreversible processes. The nonlinear
mechanical response of the masonry is described by
introducing couplings in the free energy and dissipa-
tion potential. The defined energy takes into account
the degradation mechanisms related to damage and
friction: a coupling between orthotropic elasticity and
damage is introduced for the normal tensile com-
ponents and coupling between damage and internal
friction for the shear components.

Orthotropic elasticity
Due to the architectured nature of the studied masonry,
joints correspond to three orthogonal planes whose
normal vectors define the orthotropic basis of the
material. Its elastic behaviour is therefore charac-
terised by an elastic compliance tensor S

0 which
depends on Ei, νij , and Gij corresponding respectively
to Young’s moduli, Poisson’s ratios and shear moduli
in the masonry natural basis.

Damage model
The damage model is based on the decomposition of
the compliance tensor representing the impact of a net-
work of orthogonal cracks. This approach, also used
for composite materials (Marcin et al. 2011), considers
families of independent cracks that are associated with
each of the three orthotropic directions of the masonry
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(Kachanov 1993).The damage then affects the compli-
ance tensor by means of an effect tensor A

(i) (Zheng &
Betten 1996), which expression can be found in (Tis-
serand 2020), and a scalar damage variable di ranging
from 0 for no cracks in direction (i) to infinity for
the material completely degraded along this direction.
Noting S

0 as the initial compliance tensor, the effective
compliance tensor S

eff can be decomposed as

S
eff =S

0 +
S=S
0 +�i

(
diA

(i) : S
0) . (1)

Damage therefore leads to an increase of the mate-
rial compliance.

The evolution of cracking is governed by the exten-
sion of the material. In the case of shear stress,
a coupling has been established since two cracking
planes are activated. Thus, a measure of the equivalent
strain with respect to (i) direction (ε̃i) is defined as1

ε̃i =
√
〈εi〉2+ + βijε

2
ij + βikε

2
ik (2)

where βij and βik are material coefficients modulating
the impact of shear strains on the yield strength and
damage evolution.

Thus, it is possible to define threshold functions
fi that transcribe the evolution of damage-related
softening to an evolution of equivalent strains:

fi =χi (ε̃i − ki)− ln
[
(1+ di)

ki

ε̃i

]
≤ 0, (3)

where ki is the equivalent strain threshold that initiates
damage and χi is a brittleness parameter. Checking the
condition fi = 0, the damage is written as

di = ε̃i

ki
exp

[
χi (ε̃i − ki)

]− 1. (4)

Unilateral effect
Under alternating loading, cracks initially open in ten-
sion and then close in compression, restoring largely
the stiffness. Thus, to study seismic (cyclic) load-
ing, the unilateral effect related to this crack closure
is modelled using a stress partition into a positive
and a negative part for the normal components as in
(Ladevèze 1983):

for i∈ {1, 2, 3}, σi =〈σi〉+ + 〈σi〉−. (5)

This partition is then used directly in the thermo-
dynamic potential expression from which the model
constitutive equations are derived.

Friction model
Damage created during the degradation phase induces
internal friction modelled by a plastic-type behaviour.

1 In this paper, the Kelvin notation in the Bechterew basis is
considered to decompose stresses and strains by components.
In addition, all constitutive equations are written in the natural
basis of the masonry.

Indeed, when cracks appear, the opposing surfaces of
these cracks can rub against each other and thus give
rise to anelastic frictional stresses and strains.

Non-associated threshold functions are used to
introduce the loading-unloading conditions and are
constructed by considering frictional resistance and
confinement effects. Again, the plastic flow develops
independently along with the orthotropic directions of
the masonry, thus decoupling the effects of friction.
Notingσπ

k the anelastic frictional stresses, Xk the strain
hardening variables and µk the frictional coefficients,
the threshold function f πk is written

f πk =
∣∣σπ

k − Xk

∣∣+ µk
[〈σp〉− + 〈σq〉−

]≤ 0 (6)

with (p) and (q) corresponding to the normal directions
associated with the shear one (k).

Without the application of confinement, kinematic
strain hardening induces a slight hysteretic behaviour.
This effect increases significantly when confinement
is applied due to higher friction inside the cracks.

2.2 Strain-stress law

The strain-stress laws can be determined by differenti-
ating the state potential. From the previous description
of the dissipative mechanisms, the total normal strains
depend on the elastic characteristics and the damage.
Thus, taking (j, l, m)= (1, 2, 3) or any permutation of
the set, they can be expressed as

εj =
(
1+ dj

) 〈σj〉+
Ej

+ 〈σj〉−
Ej

− νjl σl

Ej
− νjm σm

Ej
. (7)

Total shear strains are impacted by the damage and
frictional degradation mechanisms. For k ∈ [[4; 6]],

εk = 1

2Gpq

[
σk − σπ

k

1− gk
(
dp, dq

)

]

, (8)

where (p, q)∈ [[1; 3]]2 are the normal directions asso-
ciated with the shear direction (k). gk represents
the effect function of the damage variables on shear
component and is defined as

gk
(
dp, dq

)= A(p)
kk dp + A(q)

kk dq

1+ A(p)
kk dp + A(q)

kk dq

(9)

with A(p)
kk and A(q)

kk the components of the effect tensors
A

(p) and A
(q) in the shear direction (k).

2.3 Dissipation

The study of energy dissipation ensures that dissipative
phenomena are correctly taken into account. Using the
Clausius-Duhem inequality, dissipation can be calcu-
lated by differentiating the thermodynamic potential
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(Lemaitre et al. 2009). Noting Yj the thermodynamic
forces associated with the damage variable dj , the
intrinsic dissipation is expressed by

D=Yjḋj + σπ
k ε̇

π
k − Xk α̇k ≥ 0 (10)

and can be divided into two terms: one related to dam-
age Ddamage=Yjḋj and the other related to friction
Dsliding = σπ

k ε̇
π
k − Xk α̇k . Each term has to remain pos-

itive to ensure the thermodynamic consistency of the
model.

The variables expressions can be determined using
state laws or evolution laws related to the dissipa-
tion processes. For j ∈ [[1; 3]], damage release rates are
calculated as follows

Yj = 1

2

〈σj〉2+
Ej

+ A(j)
kk

4Gjp

[
(
σk − σπ

k

)2 −
(
σπ

k

)2

A(j)
kk dj + A(p)

kk dp

]

+ A(j)
ll

4Gjq

[
(
σl − σπ

l

)2 −
(
σπ

l

)2

A(j)
ll dj + A(q)

ll dq

]

, (11)

where k and l are the shear directions respectively
linked to jp and jq considering (j, p, q)= (1, 2, 3).

For k ∈ [[4; 6]], the shear frictional stresses are
written as

σπ
k = 2Gpqgk

(
dp, dq

) (
εk − επk

)
(12)

and the kinematic back stresses are expressed as

Xk = bkαk (13)

with bk representing the sliding intensity along (k)
direction and αk the variable driving the energy stored
by work hardening during the friction mechanism.

2.4 Mesh-dependency and regularisation issues

Different techniques can be adopted to overcome the
mesh-dependency of the finite element solution when
constitutive laws with strain-softening are developed.
In the model presented above, a fracture energy regu-
larisation is implemented to prevent this pathological
mesh-sensitivity. This approach relies on the assump-
tion that dissipation within a single finite element has
to be independent of its size. It is based on an appropri-
ate adjustment of certain model parameters that control
softening (post-peak phase of the stress-strain dia-
gram), taking into account mesh characteristics such as
element size (Hillerborg et al. 1976). The constitutive
law is then properly modified such that the energy dis-
sipated in one element is equal to the assigned fracture
energy Gf . For each element, a characteristic length lc
is defined, and the fracture energy is then written

Gf =
∫ +∞

0
σdw= lc

∫ +∞

0
σdεf = lc gf , (14)

where w and εf correspond respectively to the crack
opening and the crack opening deformation. The spe-
cific fracture energy gf is then scaled so that Gf

remains constant for any size lc of the element (i.e.
it results gf lc=Gf for each element). This formula-
tion remains local and the algorithmic structure of the
finite element code requires only minor adjustments.
However, it involves firstly to be able to calculate
analytically the expression of gf by the model, and sec-
ondly to be able to express a parameter of the model
as a function of the latter. The presented macro-model
fulfilled both conditions.

The load-displacement diagram and the energy dis-
sipated by fracture become insensitive to the mesh size
but fracture still localises in a single layer of elements.
Consequently, the results may suffer by sensitivity to
the element shape and orientation (Jirásek & Grassl
2008). Their objectivity with respect to the total dissi-
pated energy is no longer verified when the path or the
length of the localisation zone depends on the mesh.
Also, formulae to estimate the characteristic length are
only approximate and partly empirical.These deficien-
cies can be alleviated by more sophisticated techniques
such as a non-local regularisation method for inter-
nal variables (integral Pijaudier-Cabot & Bazant 1987;
gradient Peerlings et al. 1996).

3 NUMERICAL APPLICATIONS

Local results are presented for a discriminant shear
application. The methods used to calculate the dissi-
pated energies are presented and applied to study the
non-linear mechanisms implemented. Then, to vali-
date the proposed damage-friction model and show its
effectiveness in describing the nonlinear behaviour on
a global scale, responses of masonry shear walls exper-
imentally tested under monotonic and cyclic loading
are investigated. The macro-model presented in sec-
tion 2 is thus used to perform nonlinear static analyses
on masonry panels loaded in-plane, investigating their
global load-displacement response, damage distri-
bution and energy dissipated. All numerical results
presented in this section were obtained using the finite
element solver Cast3M (CEA, www-cast3m.cea.fr), in
which the model was implemented.

3.1 Local scale

To study the relevance and robustness of the model,
numerical tests on a linear cubic element (CUB8) were
carried out. The mechanical response of this CUB8
element was analysed in tension, compression and
shear for monotonic and cyclic load cases. Table 1
gives the material parameters used. The parameters
related to shear influence on damage (i.e. shear com-
ponent of fabric tensor A

(i) and coefficient βij) are

taken equal to 0.5 except for A
(1)
66 and A

(2)
66 , which

are assumed equal to one (influence in the (12) shear
direction). These values were chosen from literature
to represent the orthotropic behaviour of conventional
arranged masonry (e.g. MADA database Augenti et al.
2012).
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Table 1. Local scale: material properties with i ∈ {1, 2, 3}
or ij ∈ {23, 13, 12} corresponding to the directions (in that
order).

Elastic parameters

Young’s modulus Ei [GPa] 2.0 1.0 2.3
Poisson’s ratio νij [-] 0.20 0.20 0.20
Shear modulus Gij [GPa] 1.03 1.35 0.95

Damage parameters

Strain threshold ki [10−4] 2.0 1.8 1.0
Fracture energy Gfi [J/m2] 100 80 100

Friction parameters

Friction coefficient µij [-] 0.3 0.3 0.3
Hardening parameter aij [-] 10−4 10−4 10−4

Sliding intensity bij [-] 108 108 108

The focus here is on shear loading. Such a loading
emphasises the main nonlinear phenomena (damage
and internal friction) compared to tension or com-
pression. An imposed displacement in direction (1)
is applied on the cube’s top face while the bottom face
is clamped (see Figure 1). An initial loading to initi-
ate damage in directions (1) and (2) is first applied,
followed by an unloading-reloading phase leading to
the activation of friction in the cracks. Figure 1 illus-
trates the stress-strain diagram obtained under shear
loading. As described in section 2.1, the linear elastic
phase is followed by a softening phase as the mate-
rial becomes damaged. This then leads to progressive
degradation of the shear modulus. Damage is coupled
to the friction that develops during the unload-reload
phase, as shown by the hysteresis loop. To ensure that
these dissipation phenomena have been considered, a
study of the dissipation defined by equation (10) has
been carried out. In Figure 1, it is possible to estimate
graphically the value of the energy dissipated 2 per unit
volume (E(1)

d ) during loading since it corresponds to
the area under the stress-strain curve:

E(1)
d =

∫

εj

σjdεj. (15)

It can be compared with E(2)
d calculated from the

dissipation D as

E(2)
d = 1

V

∫

V

∫

t
Ḋdtd�. (16)

By comparing these numerical values with those
obtained experimentally on a global scale, the con-
tribution of each degradation phenomenon on energy
dissipation during the loading process can be deter-
mined.

2 It corresponds to the total energy after total unloading,
which means that the elastic contribution has been restored.

Figure 1. Stress-strain response in 12-shear loading. σ12
stress component is represented on the ordinate while
γ12= 2ε12 strain component is displayed on the abscissa

Energy dissipation values obtained for this local test
are given in Table 2. Four cases are presented: cases
1 and 2 correspond to a monotonic loading (without
unloading-reloading phase), considering respectively
the effect of internal friction and not (friction param-
eters taken equal to zero). Likewise, cases 3 and 4
correspond to the case where the unloading-reloading
phase is modelled, considering respectively the effect
of internal friction and not. For each case, the element
is fully discharged at the end of the test (see Figure 1)
to calculate the dissipated energy using equation (15).

Figure 2 shows the numerical dissipation measure-
ments during the loading time for a case without
(case 1) and with (case 3) unloading-reloading phase.
Arbitrary units are set for time considering the test
occurs in 10 units, corresponding to a strain γ12 of
3.0e-3.

Table 2. Numerical values of dissipated energy in J/m3.

Case 1 2 3 4

Method 1 (based on area measurement)

monotonic 497 445 497 445
hysteretic loop 0 0 16 0
E(1)

d 497 445 513 445

Method 2 (based on D calculation)

damage 445 445 445 445
sliding 56 0 72 0
E(2)

d 501 445 517 445

If no friction is considered (cases 2 and 4), the
energy density E(1)

d measured by the area under

the stress-strain curve is equal to E(2)
d calculated

with the dissipation (445 J/m3) regardless of the
unloading-reloading phase presence. Furthermore, it
can be observed that this phase does not influence
the damage-related dissipation Ddamage, which is con-
sistent with the fact that the damage does not evolve
during this phase (see Figure 2); the energy is then
only dissipated by friction between the crack surfaces.
By comparing dissipative energies of cases 1 and 2,
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it can be noticed that the dissipation due to friction
within the cracks occurs also during direct loading
(i.e. when there is no hysteretic loop). Indeed, even
during pure monotonic loading, the energy dissipated
E(1)

d (497J/m3) is greater than 445J/m3. The differ-
ence is related to the frictional dissipation Dsliding ,
which is 52J/m3 regarding method 1 (it corresponds to
497-445J/m3) and 56J/m3 according to method 2. The
micro-cracks that develop when the material under-
goes damage induce internal friction when loaded in
shear. Case 3 shows that the hysteresis loop dissi-
pates 16J/m3. When no confinement is applied, this
value remains low compared to the damage dissipa-
tion. Ddamage higher than Dsliding is consistent with the
fact that the main dissipation mechanism is damage
when loading is monotonic (see Figure 2).

Figure 2. Evolution of dissipation (total, damage, friction)
during shear loading (the time step considered is different for
the two cases).

This method of calculating dissipated energy is used
below at the global scale.

3.2 Solid wall under monotonic shear loading

The experimental campaign conducted within the
scope of the CUR project (Vermeltfoort et al. 1993)
and presented in (Lourenço 1996) is here considered.
The geometry of the studied shear wall without open-
ing is shown in Figure 3. The specimen is subjected to
shear in a confined way: a uniformly distributed verti-
cal pre-compression load p of 0.3MPa is first applied,
followed by a top horizontal displacement d monoton-
ically increased. Bottom and top sides of the wall are
kept horizontal and vertical movement is restrained
during the second phase (see Figure 3).

Figure 3. Geometry and load phases for JD shear walls:
(a) vertical loading (b) horizontal loading under displacement
control (Lourenço & Rots 1997).

Figure 4 compares the numerical (solid line) and
experimental (dashed line) in-plane envelope capacity
curves representing the total base shear as a function
of the top horizontal displacement. The macro-model
satisfactorily represents the global behaviour of the
masonry shear wall for the elastic and degraded parts.

Figure 4. Monotonic response curves of the JD shear wall.
PBL Experimental 1, 2 and PBL Numerical correspond
respectively to the curves obtained experimentally for walls
J4D, J5D and numerically with the micro-model (Lourenço
1996). Macro-model (solid line) shows the global response
obtained with the presented macro-model.

Figure 5 shows the evolution of the damage profile
in direction (2) with increasing imposed displace-
ment. The model rather well captures the shear wall
behaviour. As explained in (Lourenço & Rots 1997),
its behaviour is characterised by two initial horizontal
tension cracks that develop at the bottom and top of the
wall. That is indeed the first damage phase observed
for a displacement of 2.2mm (Figure 5(2)). A diago-
nal shear crack immediately follows for a displacement
lower than 2.4mm (Figure 5(3)). However, due to the
macroscopic nature of the model, its stepped aspect
cannot be observed through the head and bed joints.
The crack starts in the middle of the wall and, with
increasing deformation, progresses towards the sup-
ports until it becomes a full diagonal crack. This type
of failure is specific to walls loaded in confined shear.

It can be pointed out that the energy regularisation
method used is not optimal as damage tends to localise
when the mesh is not sufficiently refined. The crack
tends to follow the mesh orientation. An analysis of
the crack pattern should be carried out using a non-
local regularisation method to avoid this directionality
problem.

Figure 5. (a) D2 damage distribution at (1) d = 1.5mm,
(2) d = 2.2mm, (3) d = 2.4mm, (4) d = 4mm (b) Experimental
crack patterns (Lourenço 1996).
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As for the local case (section 3.1), dissipated ener-
gies are calculated using the capacity curves (Figure 4)
and are given in Table 3. In this way, the contribu-
tion of each modelled dissipation mechanism can be
estimated. As expected, damage prevails over friction,
which accounts for only one fifth of total dissipation.

It can be noticed that calculated dissipated energies
are in good agreement with the experiment. Due atten-
tion should be given to the slightly higher value of E(2)

d

compared to E(1)
d for the numerical model caused by

what appears to be an overestimation of slip dissipa-
tion. Yet, this satisfactory result allows to estimate the
contribution of each mechanism. As expected, dam-
age prevails over friction, which accounts for only one
fifth of total dissipation.

Table 3. Numerical values of dissipated energy in J.

Case Method 1 Method 2
(area) (dissipation D)
E(1)

d damage sliding E(2)
d

PBL Exp. 1 89 – – –
PBL Exp. 2 88 – – –
PBL Num. 87 – – –
Macro-model 93 81 18 99

3.3 Masonry panels under cyclic loading

Cyclic tests were carried out and compared with
the experimental campaign conducted by (Anthoine
et al. 1995) to analyse the model’s ability to describe
hysteretic response at the structural scale. In this
campaign, two solid masonry panels characterised by
different height-width ratios are analysed to highlight
the effect of geometry on collapsing mechanisms.
Specimens geometry, loading and boundary condi-
tions are shown in Figure 6. Experimental boundary
conditions have been reproduced: the bottom side of
the walls is entirely blocked, while the top side is pre-
vented from rotating. A distributed vertical load p of
0.6MPa is first applied and kept constant during the
test, while a cyclic horizontal displacement is applied

Figure 6. Geometry of the (a) high panel (b) low panel
(Gatta et al. 2018).

at the top of the walls (for the applied top displacement
evolution with respect to fictitious time variable see
Figure 7). Two or three cycles were performed at each
amplitude (Anthoine et al. 1995). The main material
properties are described in (Nocera et al. 2021).

The cyclic responses of both panels are shown in
Figure 7. Under cyclic shear loading, a behaviour
change is visible. Indeed, a hysteretic phenomenon
appears as the material degrades, indicating friction
occurs in the cracks. It can be seen that when the
masonry is not yet cracked, the behaviour is elastic
and there is no friction.The more cracked the masonry,
the more critical the friction, which can be seen from
the growth of its related dissipation, estimated by the
increased area of the hysteresis loops. As the loading
progresses, the shear modulus degrades, causing the
loops to tilt horizontally (less rigid behaviour). At the
end of the test, the stiffness drops and the last loops
are very large for the low panel, indicating the failure
of the specimen.

Figure 7 illustrates a different trend for the global
response curves of both geometries, which is explained
by the different damage mechanisms that arise during
the loading. From an envelope point of view, the force-
displacement curves obtained numerically are quite
satisfactory except for the compression part of the
high panel, which does not take a convex shape like
the experimental curve but tends to remain straight.
At a glance, the numerical model seems to be able to
describe the hysteretic dissipation mechanisms, i.e. the
area under the experimental cyclic curves. This will be
developed in more detail in the following.

Figure 7. Comparisons between experimental and numeri-
cal force-displacement response curve under cyclic loading
for the (top) high panel (bottom) low panel.

Dissipations measured on the experimental curve
and calculated with the macro-model are presented in
Figure 9. In order to compare them, the measurements
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Figure 9. Comparisons of secant stiffness and loop dissipation between experimental and numerical data for the (left) high
panel (right) low panel.

Figure 8. Determination of the secant stiffness of a loop.

are carried out loop by loop. The discrepancy between
the experimental and numerical data is significant
due to the fact that the loops are not very accurately
reproduced as shown in Figure 7. Indeed, the total dis-
sipation obtained for the whole loading is respectively
for E(1)

d (experimental), E(1)
d (macro-model) and E(2)

d
(macro-model):

• for the low panel: 2205J, 1750J and 1650J;
• for the high panel: 1615J, 1165J and 1040J.

As shown in Figure 9, the general trend in the dissi-
pation evolution is well represented but the numerical
values are underestimated by about 25%.

Contrary to the monotonic loading, it can be noticed
that in the cyclic case friction is the main degrada-
tion mechanism. As the damage does not evolve until
the maximum value previously reached is attained, the
damage dissipation is low when cycling. Indeed, the
histograms show that damage dissipation is almost
zero when the imposed strain does not exceed that
imposed in the previous cycle. For instance, that is
the case for loops b4 and b5 for the low wall. It can

be attributed to the fact that damage is not triggered
until the strain threshold is exceeded (and its value has
not changed between the two loops), resulting in no
damage evolution and therefore no dissipation by this
mechanism. The friction dissipation is almost identi-
cal between the two loops, which leads to a drop in the
total dissipation that is found both experimentally and
numerically.

Figure 9 also shows the evolution of the secant stiff-
ness Ksec of the loops during loading. Ksec has been
calculated as shown in Figure 8, and is defined as

Ksec,loop= Fmax,loop

dmax,loop
. (17)

There is a decrease in secant stiffness as the loading
rises, which is consistent with the fact that the loops
tilt towards the horizontal as the cycles are completed
and the shear modulus degrades. The values obtained
experimentally are in good agreement with the experi-
mental data, which implies that the model is capable of
representing the degradation of the masonry material
properties.

4 CONCLUDING REMARKS

A damage-friction model has been proposed with
the aim of investigating the nonlinear structural
response of unreinforced masonry elements with par-
ticular attention to dissipative mechanisms. The non-
linear mechanisms and their interactions have been
developed in the framework of thermodynamics of
irreversible processes. This macro-model, which con-
siders orthotropic elasticity, compliance growth with
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damage, unilateral effect and hysteretic mechanisms,
has been implemented in the finite element solver
Cast3M. For both damage and friction, a direction-
driven behaviour has been defined in order to repro-
duce the masonry orthotropic behaviour and simplify
the numerical implementation of the model. A sim-
ple fracture energy regularisation technique has been
considered to limit the mesh-sensitivity classically
observed for softening media. Numerical analyses
have been performed on a local scale on a single finite
element and a global scale on experimentally tested
shear walls under monotonic and cyclic loading.

The local scale study has illustrated the shear
response of the model and the associated dissipative
mechanisms.The contributions of friction and damage
dissipations could be estimated. It has validated that
damage is the main degradation mechanism for mono-
tonic loading. However, friction takes over as soon as
a cyclic behaviour or a discharge phase is initiated.
Tools developed for analysing the dissipated energy
were reused at the structural scale.

Structural tests have shown some shortcomings.
Indeed, although the numerical analyses showed good
agreement in reproducing the force-displacement
curves, the damage distributions were not completely
satisfactory. The regularisation technique used is not
efficient enough as the crack pattern tends to follow the
orientation of the mesh, distorting the damage profile.
The use of a non-local method that considers as non-
local quantities the equivalent strains that determine
the damage evolution is an ongoing development.

Regarding the monotonic case, numerical results
highlighted the main features of the experimental
load-displacement curve and damage distribution.
Indeed, maximum loads, energy dissipations and col-
lapse mechanisms are in good agreement with the
experimental observations.

For the cyclic case, the general behaviour of the
hysteresis mechanism was well represented, notably
with the fall in secant stiffness of the loops and the
increase in their size linked to rising energy dissipated
by friction. Despite a good qualitative distribution of
loop dissipation, an underestimation of the total dissi-
pation was observed when compared to experimental
results.

In conclusion, the conducted analyses have shown
that the proposed model is a suitable and reliable
tool to reproduce experimental results and predict the
response of masonry walls under monotonic loading.
However, some improvements need to be made under
cyclic loading, particularly regarding the regularisa-
tion method and shear stiffness recovery to represent
the crack pattern accurately and not underestimate the
dissipated energies.
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Numerical modeling of compression tests on masonry cores
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ABSTRACT: To assess the safety of existing masonry buildings, one fundamental step is the determination of
the mechanical properties of the materials. To evaluate the masonry compressive strength, compression tests on
masonry cores can be performed. This is not a standard testing technique: dimensions and bond pattern of the
samples may vary together with the mortar cap properties. The objective of the present paper was the study of the
behavior of masonry cores subject to uniaxial compression test by performing nonlinear numerical analyses. For
this purpose, a 3D numerical model with a brick-to-brick micro-modeling approach was adopted. The results of
the nonlinear analyses were compared with the results of a laboratory experimental campaign in which several
compression tests on masonry cores were performed, obtaining a good agreement. The numerical results also
allowed to better interpret the tests and to investigate the role of confinement, as will be discussed in the paper.

1 INTRODUCTION

In the framework of the vulnerability assessment of
existing masonry buildings, one important phase is
devoted to the determination of the masonry mechan-
ical properties. To this aim, experimental tests may be
performed directly in situ or in laboratory on materials
extracted in situ. Generally, the testing techniques can
be classified as non-destructive, slightly-destructive
or destructive according to their invasiveness on the
existing construction (Binda et al. 2000; Ferretti et al.
2019; Jafari et al. 2022).

To determine the masonry compressive strength,
one possibility, among the different slightly-
destructive testing techniques (ASTM C1197–14,
Binda & Tiraboschi 1999), is to extract masonry cores
from the load-bearing walls of the building under
investigation. After the extraction, high-strength mor-
tar caps are casted at the top and at the bottom of the
core samples prior to perform uniaxial compression
tests in order to regularize the surfaces, creating hori-
zontal loading planes, and to simulate the confinement
of the surrounding masonry on the cores (Brencich &
Sterpi 2006; Ispir et al. 2009; Sassoni & Mazzotti
2013).

The compression test on masonry cores is not a
standard testing technique: dimensions and bond pat-
tern of the samples, i.e. including horizontal mortar
joints only or vertical mortar joints as well, may vary
together with the properties of the high-strength mor-
tar cap. In recent years, several research focused on
the study of this testing technique by comparing the
masonry compressive strength obtained from tests on
masonry cores and from standard compression tests
on masonry wallets and by establishing correlations
between the results obtained with the two tests (Jafari

et al. 2019; Pelà et al. 2016; Sassoni et al. 2014). In
the cited works, different geometrical and mechanical
properties of the masonry cores and of the high-
strength mortar cap were considered to cover a variety
of possibility, trying to identify the optimal testing
methods. In some cases, numerical analyses were also
performed to better investigate the reliability of this
testing technique in estimating the masonry compres-
sive strength, obtaining interesting results (Pelà et al.
2019). However, the research on this topic is still open
and further studies are recommended for the definition
of a standard testing method.

The objective of the present paper was the study
of the behavior of masonry cores subject to uniaxial
compression test by performing nonlinear numerical
simulations. For this purpose, a brick-to-brick micro-
modeling approach was adopted, and a 3D numerical
model was created: the bricks, the mortar joint and
the high-strength mortar cap were singularly mod-
elled, and interface elements were included to sim-
ulate the interaction between the different materials.
A nonlinear behavior was assigned to the materials
with the objective of properly describing the crack
development and the failure mode of the masonry
cores.

In the following, the numerical results, includ-
ing some parametric analyses, will be presented and
compared with the results of a laboratory experimen-
tal campaign in which several compression tests on
masonry cores were performed.

2 COMPRESSION TEST ON MASONRY CORES

The experimental tests here considered for the compar-
ison with the results of the numerical simulations were
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conducted on masonry cores extracted from a double-
wythe masonry panel, built using fired clay bricks and
natural hydraulic lime-based mortar. The cores, hav-
ing a diameter equal to 100 mm, were characterized by
the presence of a horizontal joint only, characterized by
a thickness of 10 mm (Figure 1). After the extraction
procedure, the cores were cut to obtain single-wythe
samples, with a length of 125 mm. To apply a com-
pressive load and provide an adequate confinement to
the samples, the masonry cores were capped with a
high-strength cement-based mortar. The geometry of
the cap, with a width equal to 80 mm and a height
of 30 mm, was chosen according to previous studies
(Sassoni & Mazzotti 2013; Sassoni et al. 2014).

The compression tests were performed under dis-
placement control, using a servo-hydraulic actuator
having a maximum capacity of 100 kN. The adopted
displacement rate was equal to 0.02 mm/s. Vertical
displacements were monitored during the tests using
Linear Variable Differential Transducers (LVDTs),
positioned on both sides of the masonry core (Figure 1)
with a gage length of approximately 50 mm.

Figure 1. Compression test setup.

Standard laboratory tests, such as three-point bend-
ing tests (EN 1015-11, EN 12390-5), and monotonic
and cyclic uniaxial compression tests (EN 772-1, EN
1015-11, EN 12390-13) were performed to determine
the mechanical properties of the constituent materials,
i.e., clay brick, lime-based mortar and high-strength
cementitious mortar.The obtained material properties,
in terms of compressive strength fc, flexural strength
ffl and elastic modulus E are reported in Table 1. It is
worth mentioning that mortar samples were extracted
as well from the horizontal joints of the masonry panel,

and they were subject to double punch test (Henzel &
Karl 1987). The obtained compressive strength fdp was
equal to 6.8 MPa, much higher than the value obtained
from the standard compression tests. As evidenced by
other authors (Pelà et al. 2016), this can be due to the
curing conditions of the mortar in the bed joints of
the wall panels, significantly different with respect to
the curing conditions of the standard prismatic speci-
mens used for the mechanical characterization.

Table 1. Mechanical properties of the materials.

Material fc (MPa) ffl (MPa) E (MPa)

Brick 18.7 4.6 6846
Mortar 1.4 0.4 2549
Cap 22 5.7 20000∗

∗given by the producer.

Results in terms of stress at first cracking fcr ,
masonry compressive strength fM and masonry elastic
modulus EM are reported inTable 2. Stresses were here
obtained considering the entire area of the mortar joint.
The elastic modulus was evaluated as the secant modu-
lus between 1/10 and 1/3 of the applied load. It should
be mentioned that, in the same experimental pro-
gram, uniaxial compression tests on masonry wallets
were also performed (EN 1052-1), obtaining an aver-
age masonry compressive strength equal to 6.4 MPa.
It is interesting to observe that the results obtained
by testing cores overestimated the masonry compres-
sive strength by 67%, coherently with what observed
in previous research on similar masonry typologies
(Sassoni & Mazzotti 2013; Sassoni et al. 2014).

Table 2. Results of compression tests on masonry cores.

Sample fcr fM EM
Code (MPa) (MPa) (MPa)

C1 6.4 11.1 2746
C2 – 11.2 3774
C3 6.1 10.7 3591
C4 8.5 11.3 2326
C5 4.4 9.1 1932
C6 7.7 10.7 2858

The failure mode of the cores was characterized
by the presence of several vertical cracks, both in the
center of the sample and in correspondence with the
extremities of the high-strength mortar cap. Results in
terms of stress vs strain curves will be shown along
with the results of the numerical simulations for sake
of comparison.

3 NUMERICAL SIMULATIONS

3.1 Numerical model

The modeling strategies which can be adopted to
model masonry structural elements differ between one
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another depending on the way in which the constituents
and their interactions are considered (Lourenço et al.
1995, Rots 1997). In general, it is possible to distin-
guish between micro-modeling and macro-modeling
approaches. The former is also denoted as brick-to-
brick modeling approach or block-based modeling
(D’Altri et al. 2019), in which units and mortar are sep-
arately modeled and interface elements are adopted to
simulate interactions between them.The latter imply to
model masonry as a continuum, by adopting specific
homogenization techniques. To investigate the behav-
ior of a masonry core subject to compression, given
the small geometry of the sample, a micro-modeling
strategy was adopted in this research. The numerical
simulations were performed with the software DIANA
FEA (v.10.5).

In this framework, a three-dimensional model was
considered, in which the bricks, the mortar joint and
the high-strength mortar cap were modeled using solid
brick elements (cubic, pyramid or tetrahedron), based
on quadratic interpolation. To account for the nonlin-
ear behavior of the materials, the rotating total strain
crack model (Rots & Blaauwendraad 1989, Selby &
Vecchio 1993) was adopted, which follows a smeared
approach for the fracture energy. Concerning the ten-
sile behavior of the materials, a linear elastic law was
considered until the tensile strength ft was reached;
then, an exponential softening curve was adopted,
based on fracture energy GI

f and related to a crack
bandwidth h, as follows:

f = fte
− ft h

GI
f
αj

, (1)

where αj is a generic strain, bounded between the
strain value at peak and the ultimate strain, the latter
corresponding to zero residual stress.

In compression, a parabolic behavior was assumed,
according to the function (Diana Manual):

f =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−fc 1
3

αj
αc/3

if αc/3 <αj ≤ 0

−fc 1
3

(
1+ 4

(
αj−αc/3
αc−αc/3

)
−

(
αj−αc/3
αc−αc/3

)2
)

if αc <αj ≤αc/3

−fc

(
1−

(
αj−αc
αu−αc

)2
)

if αu <αj ≤αc

0 if αj ≤αu

,

(2)

where fc is the compressive strength of the material
under consideration, αj is a generic strain, αc/3 is the
strain at which one-third of the compressive strength
is reached, according to an elastic behavior, αc is the
strain at peak, and αu is the ultimate strain, defined as:

αc=−5

3

fc
E

(3)

αu=min
(
αc − 3

2

Gc
f

h · fc ; 2.5αc

)
, (4)

where Gc
f is the compressive fracture energy. To prop-

erly account for the higher deformability and nonlinear

Table 3. Input parameters for the numerical model.

Parameter Unit Value

Brick Elastic modulus (Eb) MPa 6846
Poisson’s ratio (νb) – 0.10
Tensile strength ( ft,b) MPa 2.95
Tensile fracture energy (GI

f ,b) N/mm 0.036
Compressive strength ( fc,b) MPa 18.7
Compr. fracture energy (Gc

f ,b) N/mm 3.62
Mortar Elastic modulus (Em) MPa 2549

Poisson’s ratio (νm) – 0.20
Tensile strength ( ft,m) MPa 0.26
Tensile fracture energy (GI

f ,m) N/mm 8.0e-04
Compressive strength ( fc,m) MPa 4.1
Compr. fracture energy (Gc

f ,m) N/mm 0.4
Mortar Elastic modulus (Ecap) MPa 20000
cap Poisson’s ratio (νcap) – 0.17

Tensile strength ( ft,cap) MPa 3.65
Tensile fracture energy (GI

f ,cap) N/mm 6.1e-03
Compressive strength ( fc,cap) MPa 22
Compr. fracture energy (Gc

f ,cap) N/mm 0.613

behavior of mortar, the strain at peak (αc) for the mortar
joint was increased 5 times.

The effect of lateral confinement, crucial for the
correct description of the problem, is directly taken
into account in the adopted model (Selby & Vecchio
1993) by modifying the compressive stress-strain rela-
tion to incorporate the effects of an increase in the
isotropic stress.

Plane quadrilateral 8+8 nodes interface elements
were adopted to model the interaction between the
bricks and the horizontal mortar joint, and between
the bricks and the high-strength mortar cap. Initially,
the behavior of these interfaces was assumed elas-
tic and rigid, therefore, the interface elastic stiffness
parameters were set to a very high value (106 N/mm3).
The choice of assigning a linear behavior to these
interface elements was supported by the fact that,
experimentally, cracks did not appear in these loca-
tions.

The input parameters adopted in the numerical
model are reported in Table 3. Some of them were
directly obtained from the standard laboratory tests
described in Section 2 (Table 1). To be specific, the
tensile strength was here determined making use of
an empirical formula provided by Eurocode 2, which
correlates tensile ( ft) and flexural ( ffl) strength as
follows:

ft = ffl
1.6− d/1000

, (5)

where d is the depth of the tested samples in the stan-
dard tests (see Section 2), equal to 40 mm. Regarding
the mortar compressive strength, a value of 4.1 MPa
was adopted in the numerical simulations, evaluated as
the average between the values of compressive strength
obtained from the standard laboratory test and the dou-
ble punch test. Other input parameters, e.g., fracture
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energy, were determined considering analytical for-
mulations available in literature (Cervera et al. 2010,
Diana Manual).

A mesh sensitivity analysis was performed to deter-
mine the dimensions of the finite elements, appro-
priate in terms of a balance between efficiency and
accuracy. The adopted mesh is shown in Figure 2. The
core sample was considered clamped at the base, while
on the top cross section of the high-strength mortar cap
a vertical displacement was uniformly applied, with
displacement increments equal to 0.02 mm. The non-
linear numerical simulations were performed with the
software DIANA FEA (v.10.5). A modified Newton-
Raphson method was adopted to control the nonlinear
problem solution.

Figure 2. Mesh of the 3D model.

3.2 Numerical results

The numerical results are presented in terms of stress
vs vertical strain diagram in Figure 3, in which the
experimental curves are also reported for compari-
son. As anticipated, stresses were here calculated as
the ratio between the applied load and the area of
the horizontal mortar joint. To calculate the vertical
strain for the numerical simulation, the displacements
of two points, positioned in correspondence with the
gage points of the LVDTs with a distance of 50 mm
between each other, were considered. A good agree-
ment between numerical and experimental results can
be noticed, especially in terms of initial stiffness and
peak strength. In the post-peak phase, the numerical
curve lies below the experimental ones, but it should
be taken into account that the behavior of the sam-
ples was quite scattered after the development of the

cracking process. It is also worth mentioning that, in
some cases, deformations were not registered until the
end of the experimental tests due to detachment of the
LVDTs.

Figure 3. Stress vs vertical strain diagram: comparison
between numerical and experimental results.

The evolution of the horizontal strain on the external
surface of the masonry core is presented in Figure 4.
In more detail, specific steps of the numerical sim-
ulation are here considered, indicated with numbers
along the stress vs vertical strain curve of Figure 3.
The development of the cracking process can be rec-
ognized, with positive horizontal strain progressively
involving wider portions of the masonry core and prop-
agating towards the extremities of the high-strength
mortar cap. By comparing the horizontal strain con-
tour at the end of the test and the experimental failure
mode (Figure 5), a good correspondence was found.

By looking at the horizontal stress evolution
reported in Figure 6 at different steps of the analysis, it
is possible to notice that, as expected, the mortar joint
was confined by bricks, which were subject to ten-
sion in the central part of the masonry core. Indeed,
the cracking process started within the bricks and it
involved later the mortar joint as well. It can also
be observed that the lateral compressive stress on the
mortar exceeded, in some points, the mortar compres-
sive strength. The effect of confinement, determining
a strength increase of the material, was indeed taken
into account in the numerical model.

With reference to the interaction between the high-
strength mortar cap and the bricks, it can be noticed
from Figure 4 and Figure 6 that bricks were laterally
restrained by the presence of the cap, i.e., lower hor-
izontal strains were registered in the upper and lower
portion of bricks with respect to the portions in the
center of the masonry core. Correspondingly, high val-
ues of horizontal compressive stress were observed in
the bricks in correspondence with the extremities of
the cap, i.e. on the left- and right-hand sides of the
masonry core, while tensile stresses (positive) were
registered in the middle of the cap.

The confinement effect determined by the bricks
on the mortar can be considered a local confinement,
due to the intrinsic properties of the constituents. The

402



Figure 4. Horizontal strain evolution on the external surface
of the masonry core (the reported numbers correspond to the
points highlighted in Figure 3).

Figure 5. Failure mode: comparison between numerical and
experimental results.

Figure 6. Horizontal stress evolution on the external surface
of the masonry core (the reported numbers correspond to the
points highlighted in Figure 3).

confinement effect determined by the high-strength
mortar cap, instead, can be considered a global phe-
nomenon, since it affects the entire masonry core. Of
course, both the effects influenced the results of the
compressive test, as discussed.

A focus about the distribution of the vertical stresses
is reported in Figure 6. In particular, the vertical
stress contour plot in correspondence with an applied
displacement equal to 0.1 mm is shown. It is represen-
tative of the stress distribution in the first phase of the
analysis, i.e. before cracking. The vertical stress distri-
bution on the mortar joint only is also presented. The
diffusion of the stresses from the high-strength mortar
cap to the masonry core is clearly visible and it can be
highlighted that the entire mortar joint was subject to
compression, with lower values at the extremities only.
Therefore, it is considered reasonable to calculate the
average stress on the masonry core by considering the
entire area of the mortar joint.

4 PARAMETRIC ANALYSES

In this work, parametric analyses were also performed
with the objective of investigating the confinement
effect determined, on the one hand, by the high-
strength mortar cap on the masonry core and, on the
other hand, by the bricks on the mortar joint. To this
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Figure 7. Vertical stress distribution on the entire masonry
core and on the mortar joint at a vertical displacement equal
to 0.1 mm.

aim, variations in terms of shear stiffness of the inter-
face elements between bricks and mortar and in terms
of elastic modulus of the high-strength mortar cap were
considered. In more detail, two additional numerical
analyses were performed, in which the following mod-
ifications with respect to the initial numerical model
(reference) were considered:

– PA-01: in the first parametric analysis, the shear
stiffness parameters of the brick-to-mortar inter-
faces were set equal to 40 N/mm3, while the normal
stiffness parameter was maintained equal to 106

N/mm3 as in the previous simulation.
– PA-02: in the second parametric analysis, the elas-

tic modulus of the high-strength mortar cap was
reduced to 8250 MPa, a value which is approxi-
mately 2.5 times lower than the initial one.

The results of the parametric analyses are here
reported in terms of stress vs vertical strain diagram
(Figure 8). For the first parametric analysis (PA-01), a
slight reduction in terms of peak compressive strength
was registered with respect to the reference model
previously presented. This is coherent with the fact
that the horizontal mortar joint was less confined, due
to the reduced shear stiffness of the interface ele-
ments and, consequently, to the presence of relative

displacements between the two materials. In the sec-
ond parametric analyses (PA-02), a stiffness reduction
in the first phase of the analysis was registered, as
expected, together with an increase in the vertical strain
at peak. Almost no differences were instead observed
in terms of peak compressive strength. This can be
explained by the fact that, within the variation here
considered, the confinement due to the presence of the
high-strength mortar cap could depend on the shape of
the cap itself rather than on its elastic modulus.

Figure 8. Parametric analyses: stress vs vertical strain
diagrams.

5 CONCLUSIONS

The objective of the present paper was the study of
the behavior of masonry cores subject to uniaxial
compression test by performing nonlinear numerical
simulations on a 3D numerical model, in which a
brick-to-brick micro-modeling approach was adopted.
A nonlinear behavior was assigned to the materials
with the objective of properly describing the crack
development and the failure mode of the masonry
cores. The mechanical properties of the materials were
obtained from experimental tests or calibrated through
available formulations. The results of the nonlinear
analyses were then compared with the results of a
laboratory experimental campaign in which several
compression tests on masonry cores were performed.
The comparison was carried out in terms of com-
pressive strength, post-peak behavior and specimen
deformability, obtaining a good agreement.

The results of the numerical simulations allowed
to better interpret the results of compression tests
on masonry cores, such as the interaction between
the different materials. Parametric analyses were also
performed to investigate the role of confinement,
determined both by the bricks on the mortar joint and
by the high-strength mortar cap on the masonry core.
The effect of confinement was, indeed, quite signifi-
cant and allowed to explain the differences observed in
the experimental campaign between the compressive
strength obtained from compression tests on masonry
cores and from standard compression tests on masonry
wallets.
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How gap tests of ductile and quasibrittle fracture limit applicability of
phase-field, XFEM, cohesive, nonlocal and crack-band models?
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ABSTRACT: The recently developed gap test exploits the size effect method to determine the effect of crack-
parallel compression σ xx on the material fracture energy, Gf , as well as the characteristic size cf of the fracture
process zone (FPZ). The previous gap tests demonstrated that the Gf of concrete can get doubled or reduced
to almost zero according to the T-stress (crack-parallel stress) level. A subsequent study of aluminum fracture
(Nguyen, Dönmez and Bažant, 2021) concluded that a similar effect exists in ductile fracture of polycrystalline
plastic-hardening metals.This paper strengthens this conclusion by presenting and interpreting further gap tests of
aluminum. Together with the results of the recent gap tests of crack-parallel stress effect in quasibrittle materials,
the experimental evidence shows that the linear elastic fracture mechanics (LEFM), its computational versions
XFEM and Phase-Field, and the cohesive crack models are inapplicable in the presence of significant crack-
parallel stress—not only for concrete and other quasibrittle materials but also for plastic-hardening polycrystalline
metals. On the other hand, the applicability of the crack band model with a realistic tensorial damage law is not
limited.

1 INTRODUCTION

A complicating feature of the plastic-hardening metals
is that large hardening yielding zone surrounding the
fracture front in which the material undergoes soften-
ing damage was studied analytically, considering only
σxx in the propagation direction, although the out-of-
plane normal and shear components, σzz and σ xz , of the
crack-parallel stress are also expected to play a signif-
icant role, as already confirmed for σzz in concrete (H.
Nguyen et al. 2020) and shown here for aluminum.
Asymptotic matching was used to formulate the gen-
eral scaling laws of plastic-hardening polycrystalline
metals. These laws were related to the material frac-
ture energy Gf as well as the effective radius of the
yielding zone, rp.

In this study, an extension of these gap tests and their
theoretical consequences is presented. The changes
in the energetic size effect are studied experimentally
over a much broader range of crack-parallel compres-
sive stress σxx and a broader size range. Then the size
effect method (Bažant et al. 1991; Bažant & Planas
1997; Nguyen et al. 2021) is used to deduce from
these changes the effect of σxx on the material fracture
energy, Gf , and on the effective radius rp of the yielding
zone (YZ) of aluminum.The effect ofσxx on the scaling

asymptotes of the small-scale-yielding is also clari-
fied. However, because the range of specimen sizes
in this study is much greater than the inhomogeneity
size (which is the size of a polycrystalline grain, about
2 to 50 micrometers), the change in the size of the
YZ and the fracture process zone (FPZ) can only be
distinguished using numerical models.

2 ASYMPTOTIC SCALING REGIMES

The analytical solution of the role of the large yield-
ing zone surrounding the fracture front was studied in
recent works (Bažant et al. 2022; Nguyen et al. 2021).
A brief review of the hardening plasticity and yielding
zone effect on fracture is given here.

The polycrystalline metals have very small FPZ,
of micrometer-scale, compared to the millimeter-scale
plastic hardening part or the yielding zone. This intro-
duces one more transitional range in the original SEL
of Type 2. That additional transition is shown in Figure
1. As shown in Figure 1, three size effects can be con-
sidered in the Al alloys and other polycrystalline met-
als; the transition from the FPZ to large-scale yielding,
the transition from the large-scale to small-scale yield-
ing, or LEFM (linear elastic fracture mechanics—the

DOI 10.1201/9781003316404-48 409



Figure 1. Description of the three transitional zones and the
asymptotes in fracture of plastic-hardening polycrystalline
metals.

large-scale asymptote for LEFM), and finally the
overall transition from the FPZ (micrometer-scale)
to small-scale yielding (LEFM). The second transi-
tion involves a deviation from the original size effect
law. The third transition corresponds to the SEL and
is probably the most important one among the three
transitional regimes.

3 REVIEW OF STRESS-STRAIN RELATION OF
PLASTIC-HARDENNING METALS

The plastic hardening response of metals can be
defined by the Ramberg-Osgood model for the uni-
axial stress-strain law (Fig. 2) (Ramberg & Osgood
1943).

ε

εy
= σ

σy
+ αp

(
σ

σy

)n

(1)

where εy = initial yield strain, σy = initial yield
strength; αp= empirical parameter (usually denoted
as α, although α is the standard notation for a dimen-
sionless crack length); and n = plastic hardening
exponent, typically 3 to 20. For analysis, it is help-
ful that the n, the hardening exponent, is so high
that the plastic strain dominates and the elastic strain
can be ignored. This assumption was the basis of the

Figure 2. (a) Stress-strain behavior of plastic-hardening
metals and response curves for various n(hardening expo-
nent). (b) Approximation when elastic strain is ignored;
Elastoplastic constitutive law with various n; (c,d) The
partition of strain energy into released and dissipated.

classical Hutchinson-Rice-Rosengren (HRR) theory
(Hutchinson 1968; Rice & Rosengren, 1968).

The advantage of the power law in Eq. (1) is that
the stress-strain law becomes self-similar for the strain
or stress magnitude. Together with the divided form
of the power-law singularity, broadly presented as
required (Nguyen et al. 2021), the deformation-field at
the near-tip asymptote becomes self-similar to radial
affine transformations, which makes it feasible for
an analytical solution. The uniaxial stress-strain rela-
tion is therefore stated as (Hutchinson 1968; Rice &
Rosengren 1968):

ε

εy
− αp

(
σ

σy

)n

(2)

eij − 3αpεy

2σy

(
σef

σy

)n−1

(3)

σef =
√

3

2
sklskl (4)

The uniaxial yield stress, σ y, and the uniaxial yield
strain, εy, in Eq. (2-4) are the limiting parameters for
the effective (or equivalent) yield stress. These param-
eters point out the distinction of the power-law strain
from the previous (largely elastic) regime. The σ y in
Eq. (4) is the scalar effective stress.

Hutchinson and Paris in (Hutchinson & Paris 1979)
showed that the deformation theory of plasticity is
very accurate in this problem, although its use is a
simplifying assumption in the HRR theory and the
J -integral.

Figure 3. (a) Actual and equivalent (equal area or volume)
yielding zones; (b) displacement of the equivalent yielding
zone with the crack growth.

Figure 3 illustrates the yielding zone and the
approximately equivalent crack growth model. In Fig-
ure 3, the (r, θ ) are the polar coordinates centered at
the tip of the crack. The angle θ is measured from the
crack extension line and rp is the effective size of the
hardening part (or the yielding zone, YZ).

4 SIZE EFFECT DUE TO ENERGY RELEASE

The energy balance equation can be constructed by
using the physical similarities of the ductile and
quasibrittle failures with respect to the transitional
regimes, as used in (Nguyen et al. 2021). The energy
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release rates, Gs and Gp arise from two different loca-
tions in the structure. The Gs is the rate of energy
release from the elastic zone in the structure (or from
the undamaged volume of the structure). This energy
release is approximately proportional to the charac-
teristic size, D. Second, Gb is the energy release rate
from the elastic material traversed by the front of the
crack band. It does not depend on D. Note that there
is no plastic yielding zone in quasibrittle materials,
unlike the plastic hardening metals where the large
yielding zone causes a transition between the FPZ and
the elastic zone of the structure.

The yielding zone, which is typically of millimeter
scale, plays three roles in the failure mechanism. First,
it transfers the energy-flux to the FPZ via the yielding
zone. The energy is conserved in this transfer. Sec-
ond, the yielding zone dissipates energy in its wake,
with the rate of Gp, as the plastically strained material
undergoes unloading. Third, the unloading of the plas-
ticized material in the wake of the advancing yielding
zone releases its strain energy, with the rate of Gb.
The Gb is defined as the strain energy, (γcσN )2/2E′,
that was contained in the band of width 2rp prior to
the arrival of the yielding zone. Therefore, the energy
balance during fracture can be written as:

Gs + Gb=Gf + Gp (5)

We may use a fixed characteristic length scale for
Gb, similar to cf , defined by the yielding zone width
(2rp): Gb= (σ 2

N /E′)2rp. For Gs we can use the same
expression as in quasibrittle materials. Inserting in
(5) the energy release rate expressions, we obtain the
condition of energy conservation:

σ 2
N

E′
Dg0 + σ 2

N

E′
2rp=Gf + Gp (6)

Solving forσN , we get the size effect law for fracture
of plastic-hardening metals in small-scale yielding:

σN = σ0√
1+ D/D0

(7)

Eq. (7) has the same form as the SEL for quasibrittle
failures. However, the definitions of its coefficients are
not the same:

σ 2
0 =E′Gf /2rp + σ 2

p , D0= 2rp/g0 (8)

σ 2
p =

1

2
E′σy?yQp (9)

The asymptotes of this law have the same slopes as
SEL:

σN ⇒
D→0

σ0= constant, σN ⇒
D→0

D−1/2 (10)

The underlying assumption is that rp is about the
same for all specimen sizes. The “triaxiality number”
(Anderson 2017) is assumed to remain constant, too.

5 SIZE EFFECT METHOD FOR DUCTILE
FRACTURE

The size effect on structural strength is the main conse-
quence of fracture behavior, and the size effect method
is the most straightforward and unambiguous proce-
dure to identify the material fracture properties. Eq.
(7) can be restated as linear regression:

Y =AX + CwhereX =D; Y = 1/σ 2
N (11)

A= 1/σ 2
0 D0, C= 1/σ 2

0 (12)

The fracture energy, Gf , and the effective width of
the yielding zone, 2rp, can be obtained by fitting these
equations with the test results. The required test data
consist only of the peak loads (max. loads) of differ-
ently sized specimens with a sufficiently broad size
range. After getting the dimensionless energy release
rate g0 (and E′), one can find the A and C values by a
linear regression of the data in the plane (X , Y ). Then
one can get σ0= 1/

√
C and D0=C/A using these val-

ues from the regression analysis. Finally, the fracture
parameters can be obtained as:

Gf = (C− 1
2 − cp)g0/E′g2

0 A, rp= g0

2σ 2
0 A

(13)

6 GAP TESTS OF ALUMINUM

In the standard fracture specimens, the stresses
σxx, σzz , σxz parallel to the crack plane (x, z) are zero
or negligible. It has been implicitly assumed that the
cracks are planes with zero thicknesses. If this assump-
tion were correct, then no effect of σxx, σzz , σxz on the
crack propagation could be expected. Actually, the
FPZ, located in front of the crack tip, has always a finite
width, δy, measured normal to its plane.This is the fun-
damental characteristic of the blunt crack (Bažant &
Cedolin 1991) and crack band (Bažant 1993; Bažant
& Oh 1983) models, which revealed already in 1979
that, if δy is finite, the effect of σxx, σzz , σxz must be
important and the damage tensor inside the fracture
process zone must play a role, and that the scalar stress-
displacement law of the cohesive (or fictitious) crack
model is inadequate. Some role of the crack-parallel
compression in concrete has long ago been suspected
by a few researchers (Bažant 1993; Bažant & Cedolin
1979; Bažant & Oh 1983; Tschegg et al. 1995), but
a simple unambiguous test had been unavailable until
the new gap test was developed, in 2020 (Bažant et
al. 2022; H. Nguyen et al., 2020; H. T. Nguyen et al.,
2020; Nguyen et al. 2021).

The gap tests conducted here involve notched beam
specimens of aluminum, the 6061 series. The speci-
mens are scaled geometrically in compliance with the
2D scaling laws, with a fixed width of 10 mm, as shown
in Figure 4a, b. Their depths are 12, 24, 48 and, 96
mm. Figs. 4c, d show the results of standard three-
point bend tests (no crack-parallel compression). The
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Figure 4. The geometrical properties of the specimens; (b)
the scaled specimens of four sizes, with the fixed thickness;
(c) Load vs. mid-span deflection curves; (d) the post-failure
image showing the crack in the largest specimen.

deformed state of the largest specimen can be seen in
Figure 4d.

The resulting size effect curves are shown in Figure
5. The data points in Figure 5a represent the measured
peak values of nominal strengthσN for scaled gap tests
of 4 different sizes D= 12, 24, 48, 96 mm, and for three
different levels of crack-parallel compression.

In Figure 5a, the crack-parallel stress, σxx, is pre-
sented relative to the yield strength (fy) of the Al alloy,
which is has been measured as 450MPa in the uniax-
ial compression tests. The three solid curves display
the best-fit curves obtained by multivariate nonlin-
ear regression analysis of the data points with the
size effect law. The systematic pattern of the curves
shows the scatter to be relatively small compared to
the overall scatter of all data.

In Figure 5a, the LEFM size effect slope of −1/2
is still far from being achieved, even for the largest
specimens. This means that a much larger size would
be needed to reach the LEFM range (which is the
small-scale yielding range). Furthermore, the position
of the LEFM asymptote of −1/2 determines the frac-
ture energy, Gf (which is equal to Jcr and represents a
new way of measuring it). The LEFM is displayed as
the dashed line for the case of the largest crack-parallel
compression. A translation of the LEFM asymptote
to the right implies an increase of Gf . These LEFM
asymptotes for the three levels of crack-parallel com-
pression (σ xx) are shifted relative to each other (Fig.
5a), which means that the fracture energies of these
three cases are different.

The estimates of GFPZ , asapartof the 
Gf , can be
evaluated from the size effect curves and their cor-
responding fracture parameters. It is known that, for
the same crack-parallel stress σxx (also called the T -
stress), the size of the yielding zone in front of the
crack tip does not change and stays approximately the
same for every size, D. In other words, the dissipa-
tion of the energy from the wake of the yielding zone
is size-independent for the same T -stress. Thus, the
discrepancy in the size effect fits from the gap tests,
must be explained by a change of the energy dissipa-
tion in the micrometer-scale fracture process zone of
the polycrystalline metal.

Figure 5. (a) Measured size effect data of aluminum for
four different specimen sizes D and three different ratios of
crack-parallel stress σxx to yield strength fy , in logarithmic
scales; Experimentally obtained data on the dependence of
(b) fracture energy Gf and (c) half width of yielding zone rp
on the ratio of crack-parallel compressive stress σxx to yield
strength fy .

Consequently, the variation of the fracture energies
(Gf ) presented in Figure 5b results from a change of
both the FPZ (at the micrometer scale) and the yielding
zone. Nevertheless, this difference was around 10-30
mm, implying a much more marked contribution from
the yielding zone. To differentiate the contributions
from these two zones would require either micrometer-
scale gap tests or numerical computational results with
a realistic damage constitutive model for aluminum.
The numerical models for capturing the effects of
crack-parallel compression on the strength, size effect,
and fracture parameters, require a tensorial damage
constitutive law.The phase-field, XFEM, and cohesive
crack model cannot capture such effects.
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7 CONSEQUENCES FOR APPLICABILITY OF
LEFM (WITH XFEM), PHASE-FIELD AND
COHESIVE CRACK MODELS

Extension of the gap tests of aluminum to three differ-
ent levels of the crack-parallel compressive stress σxx
provides clear evidence of the effect of σxx on the size
effect, which is found to be strong. Regression analysis
of the gap tests of different sizes for the same σxx level
yields unambiguous evidence of the σxx effect on the
fracture energy Gf of aluminum. Increasing σxx from
0 to 0.4fy, causes Gf to approximately double and rp
to triple (see Fig. 5c). Although no tests were made at
|σxx|> 0.4fy, the extension of the curve of Gf versus
σxx is expected not to tend to 0 at σxx →−fy because,
in contrast to concrete, aluminum yielding under com-
pression in x-direction suffers no softening damages
and yields at increasing strength in the y-direction. To
reproduce the present experiments mathematically, a
fracture process zone of correct finite width, described
by a realistic tensorial damage constitutive model for
aluminum, will be used in subsequent work. The finite
element crack band model serves well for that.

Figure 6. Path dependence of Gf as a function of σxx (if
path dependence were absent, the terminal points encircled
by ellipses would have to coincide).

It might be thought that the aforementioned mod-
els could be used if the fracture energy, Gf , were
considered to be a function of σxx. However, this
is not possible because the dependence of Gf on
σxx is enormously path-dependent (H. Nguyen et al.,
2020; H. T. Nguyen et al., 2020), as shown in Fig. 6.
There is no way to shrink the FPZ to a line and thus
obtain a line crack, except if the crack-parallel stresses
are negligible, which is, however, a rare situation in
practice.

8 CONCLUSIONS

As a result of the gap tests, the classical fracture
mechanics dealing with line cracks is now seen to
be severely limited. Nevertheless, this fundamental
theory remains necessary for the understanding of
brittle and quasibrittle structural failures, for underpin-
ning blunt crack models, and for teaching the fracture
behavior of structures.
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ABSTRACT: In this paper, a pseudo dynamic (PsD) hybrid experimental setup allows for assessing the nonlin-
ear behaviour of a reinforced concrete (RC) column/beam junction under earthquake is proposed. The specimen
is linked to a numerical substructure made of multifibre beam elements modelling the other parts of the build-
ing. To reduce the CPU time related to the numerical substructure, a proper orthogonal decomposition (POD)
projection modal basis is computed from an offline implicit finite element analysis and used to reduce the size
of the matrix system. A bilinear elastic-plastic law is used for steel rebars, and a unilateral damage law is used
for concrete. Step-by-step calculations are performed using a non-iterative, unconditionally stable and explicit
α-OS splitting scheme during the hybrid test (i.e. the online phase). A substructuring method is applied to the
column-beam junction located at the first-floor level. The reliability of the modelling assumptions as well as
the use of POD-modes in the case of quasi-brittle materials are discussed. The analyses are performed by using
MATLAB© software. In a first attempt, the column-beam junction response is computed using a 2D nonlinear
numerical model defined in Cast3M© software. Results show that using a POD projection modal basis does not
significantly reduce the computational cost when the α-OS method is used but improves the response of both
numerical and tested substructures thanks to the nonlinearities taken into account into the POD-modes.

1 INTRODUCTION

It is sometimes necessary to perform tests on struc-
tural elements to study their behaviour under seismic
loading (damage, failure mechanisms, …) in the civil
engineering field. For this purpose, it is possible to
carry out quasi-static “push-over” tests (consisting of
stressing the specimen by applying step by step the
shape of the first vibratory mode) or dynamic tests on a
reduced specimen (on a shaking table or in a centrifuge
facility). Although, even if these tests are commonly
used, they have many limitations. It is impossible to
consider the inertial and viscous forces in the first case.
In the second one, the similitude theory leads to the
addition of masses, sometimes leading to unrealistic
collapse mechanisms due to local stresses.

To overcome these limitations, “hybrid tests” have
been developed over the last few decades. They allow
the assessment of the response of structural elements
under seismic loading at full scale by considering the
environment in which they are installed. The specimen
is loaded at its ends by actuators whose displace-
ments are computed through numerical calculations
carried out simultaneously on a complete structure.

Displacements are applied at each time step by actua-
tors, and the corresponding measured restoring forces
are used as boundary conditions for the numerical
substructure. The results give the displacements of
actuators for the next time step and so on.

The key idea was introduced by Hakuno et al.
(1969), who proposed solving the harmonic oscilla-
tor equation by measuring the restoring force of an
embedded beam specimen in real-time. However, its
study showed that many technical limitations related
to the control and delay of actuators do not allow to
perform the test in real-time. To overcome these limits,
Takanashi et al. (1969) proposed to carry out Pseudo
dynamic (PsD) hybrid tests. Actuators thus apply the
displacements in deferred time. As a result, only the
static restoring forces are measured, while the viscous
damping and the inertial forces related to the tested
substructure remain unknown. To assess them, Buchet
et al. (1994) showed that it is possible to compute
them numerically by adding the tested substructure
to the numerical model. The specimen can thus be
modelled on the common degrees of freedom (DOFs)
by a nonlinear oscillator (semi-global approach) or by
a complete numerical model (global approach). As a
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result, the viscous damping and the inertial forces are
assessed according to the measured restoring forces
but depend on the damping applied numerically.

Performing dynamic finite element analyses in the
framework of PsD hybrid tests requires specific non-
iterative methods to avoid the risk of overshoot (i.e.
sudden collapse of the specimen) as well as nonlinear
material laws modelling the decrease of stiffness due
to damage on the numerical substructure. Nakashima
(1992) proposed to implement an Operator Splitting
(OS) method to assess the nonlinear restoring forces.
The vector is split into a nonlinear term computed from
an explicit prediction and a linear term depending on
the displacements on the time step. Thus, this scheme
remains linearly implicit but becomes nonlinearly
explicit, so iterations are unnecessary. The accuracy of
this integration scheme, called α-OS, was assessed by
Combescure (1997), who showed its reliability when
the loss of stiffness does not imply a significant shift
in frequency of the high-frequency modes. The α-
OS method was later successfully applied by several
researchers, including Pegon et al. (2000) and Souid
(2009).

Carrying out real-time hybrid tests is still chal-
lenging due to many technical limitations related to
the delay of the actuators and the computational cost
required to solve the nonlinear numerical substruc-
ture. However, the CPU time can be reduced by using
simplified models, such as macro elements (Moutous-
samy 2013), elastic-plastic hinges (Nguyen 2012),
and multifibre beam elements (Lebon 2011), as well
as reduced-order modelling (ROM) methods (POD-
ROM, POD-DEIM, …). To the best of our knowledge,
the use of ROM on RC structures made of multifibre
beam elements has not been investigated yet in the
framework of hybrid tests.

Due to their highly nonlinear behaviour under earth-
quakes, several researchers performed quasi-static
tests on column beam junctions (Iskef 2016). How-
ever, in the case of a PsD hybrid test, relevant boundary
conditions need to be applied to the specimen to obtain
valuable results.Thus, carrying PsD hybrid tests on RC
column/beam junctions remains a challenging task.

In this paper, a PsD hybrid experimental setup
allows for assessing the nonlinear behaviour of a RC
column/beam junction under earthquake is proposed.
The modelling of the numerical substructures (made
of multifibre beam elements) is first described. The
α-OS time integration scheme and the substructuring
method are then detailed. A POD projection modal
basis (computed from the results of an offline finite
element analysis) is also added to the procedure to
reduce CPU time. Note that the experimental setup is
not yet available in our research. The tested specimen
is then replaced by a 2D numerical model defined in
Cast3M© software. The reliability of POD projection
modal bases in the case of hybrid tests is next assessed
by comparison with the offline and full order model
(FOM) solutions. The boundary conditions applied
to the specimen are finally discussed based on the
damage index distribution.

2 NONLINEAR MODELLING OF THE
SUBSTRUCTURES

2.1 Timoshenko multifibre beam elements

The hybrid test framework requires low time-
consuming analyses with numerical models taking
account of the loss of stiffness due to damage on
the numerical substructure. So, to correctly model the
behaviour of RC elements under earthquake, a highly
nonlinear “unilateral” damage law needs to be used
for concrete. Thus, to ensure a quick convergence of
the results and perform real-time or quick PsD hybrid
tests, local scale models are usually not used. Semi-
global approaches (multifibre beams and multilayer
shells) are chosen instead (cf. Figure 1). They describe
the global kinematic by using a beam (or shell) model
whose integration points are linked to a section made
of 1D nonlinear fibres (or layers). The deformation
of each fibre (or layer) is assessed assuming that the
beam cross-sections remain plane. Nonlinear damage
laws are then used to update the properties of the
fibres at each iteration. Generalized stresses are com-
puted through a double integration: one on the sections
and the other on the beam elements. Multifibre beams
were previously used by Lebon (2011) to perform PsD
hybrid tests on RC frames. In this work, the structure
is modelled using the Timoshenko multifibre beam
elements developed by Kotronis (2004).

Figure 1. Simply supported RC beam on nodes 1 and
3 (a) and multifibre mesh with two Timoshenko beam
elements (b).

2.2 Nonlinear material laws

In the case of hybrid tests, nonlinear material laws are
required to model the decrease of stiffness due to dam-
age during earthquakes. In addition, cyclic movements
generate hardening of plastic steel rebars and open-
ing/closing of cracks in damaged concrete, leading to
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the appearance of a “unilateral” effect (i.e. progres-
sive recovery of stiffness when the cracks are closing).
Material laws modelling these phenomena are thus
required.

Figure 2. Uniaxial bilinear elastic-plastic law with kine-
matic hardening for steel rebars under cyclic loading (a) and
uniaxial damage law of La Borderie with opening/closing of
cracks (b).

The steel rebars are modelled by using a bilin-
ear elastic-plastic law with kinematic hardening (cf.
Figure 2 (a)). Fe500 steel rebars are used for the
reinforcement, with an elastic stiffness of 210 GPa,
a yielding stress of 500 MPa and a strain harden-
ing modulus of 1000 MPa. The concrete is modelled
with a “unilateral” damage law of La Borderie (1991),
commonly used to model quasi-brittle materials under
dynamic or cyclic loadings (cf. Figure 2 (b)). The
parameters of the law of La Borderie are defined by
considering an elastic stiffness of 31 GPa, a yielding
tensile stress of 3.5 MPa, a yielding compressive stress
of−10 MPa and a crack reclosing stress of−3.5 MPa.

3 TIME INTEGRATION SCHEME

Hybrid tests consist in linking a simulated numeri-
cal substructure to a tested specimen. An efficient
substructuring technique is thus required to introduce
the measured restoring forces to the numerical sub-
structure and a non-iterative and unconditionally stable
integration scheme dissipating high-frequency content
due to the measures on the experimental setup (avoid-
ing the risk of overshoot, i.e. collapse of the specimen).

Several time-integration schemes were used in the
literature to solve the spatially discrete equation of
motion (1) during hybrid tests.

M · ü(t)+ C · ü(t)+ r (u(t))=F (t)
(1)

F(t)=−M · � · üg(t)

where M is the mass matrix, C the damping matrix,
r(u(t)) the restoring force vector, F(t) the external
force vector, � the vector used to select the direc-
tion of the earthquake at the level of each DOF, üg(t)
the ground acceleration, and u(t), ü(t) and ü(t) the
displacement, velocity and acceleration vectors.

Some authors, such as Shing (1991), chose to use
an implicit scheme based on the Hilber-Hugues-Taylor
(HHT) method (Hilber et al 1977), also called α-
method The equation of motion is solved at time
(n + 1 + α) where α is a parameter usually set between
−1/3 and 0 This scheme is implicit since un+1 depends
on ün+1. The restoring force vector rn+1(un+1) being a
function of un+1, an iterative procedure is thus required
to solve (1). This approach was successfully used
by Shing (1991) to perform PsD tests. However, in
the case of real-time or quick PsD hybrid tests, non-
iterative time-integration schemes are used instead to
decrease CPU time and the risk of overshoot. To main-
tain the stability of implicit schemes without iterating,
Nakashima (1992) proposed to use an operator split-
ting (OS) method, based on a linear approximation of
the restoring force vector (2).

rn+1(un+1) ∼= KI · un+1

+ (r̃n+1 (ũn+1)− KI · ũn+1) (2)

where KI is a secant or tangent stiffness matrix, cho-
sen to be as close as possible to the elastic stiffness
matrix KE (for the sake of stability), and rn+1(ũn+1)
the prediction of the restoring force vector (Combes-
cure 1997). The system of linear equations to solve in
order to compute ün+1 is thus given in (3).

M̂ · ün+1= F̂n+1+α (3)

where M̂ is the pseudo mass matrix (4), and F̂n+1+α

the pseudo force vector (5).

M̂ =M + γ ·
t · (1+ α) · C +β ·
t2 · (1+ α) · KI

(4)

F̂n+1+α = (1+ α) · Fn+1 − α · Fn

+ α · rn − (1+ α) · r̃n+1
(5)+ α · C · ˜̇un − (1+ α) · C · ˜̇un+1

+ α · (γ ·
t · C + β ·
t2 · KI
) · ün

Note that ũ and ˜̇u are the explicit predictions of the
displacement and velocity vectors (6), and β and γ
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are the parameters of the time-integration scheme of
Newmark, defined according to the α parameter (7).

ũn+1=un +
t · ün +
t2 ·
(

1

2
− β

)
· ün

(6)˜̇un+1= ün +
t · (1− γ ) · ün

α is used to dampen the high-frequency content,
mainly introduced by the measures in the case of
hybrid tests. Its value of commonly set at −0.05
(Hilber et al. 1977).

β = (1− α)2

4
&γ = (1− 2 · α)

2
(7)

The α-OS method is implicit in the linear phase
and explicit in the nonlinear phase. As demonstrated
by Combescure et al. (1995) in practical cases, the α-
OS method competes very well in terms of accuracy
with iterative implementations of the α-method, even
if a residual error appears due to the approximation
in (2). Note that the predictive restoring force vector
r̃n+1 (ũn+1) is assessed once per time step: it is thus not
necessary to solve (6) in increments. In addition, since
KI =KE , the matrix M̂−1 is computed before entering
the time step loop, decreasing CPU time.

4 SUBSTRUCTURING METHOD

In the case of hybrid tests, numerical and experi-
mental substructures are split to introduce the mea-
sured restoring forces as external loads on common
DOFs. The complete structure is thus substructured,
as described in the example in Figure 3.

Figure 3. Substructuring of an in-plane two-storey frame:
complete structure with 72 nodes, the tested specimen with
19 nodes, and numerical substructure with 56 nodes.

Among the N DOFs in the matrix system of (1),
NS DOFs only belong to the modelled substructure

(subscript i, j, etc.), NC belong to both the mod-
elled substructure and the tested specimen (subscript
δ, θ , etc.) and NT only belong to the tested specimen
(subscript I , J , etc.).

By distinguishing in (3) the systems of equations
coming from the numerical substructure (subscripted
S) and the tested specimen (subscripted T ), it is pos-
sible to reorganize the matrix M̂ and the related terms
as described in (8).

⎡

⎢
⎣

SM̂ij
SM̂iθ 0

SM̂δj
SM̂δθ + T M̂δθ

T M̂δJ

0 T M̂Iθ
T M̂IJ

⎤

⎥
⎦ ·

⎡

⎢
⎣

üj,n+1

üθ ,n+1

üJ ,n+1

⎤

⎥
⎦

=
⎡

⎢
⎣

S F̂i,n+1+α

S F̂δ,n+1+α + T F̂δ,n+1+α

T F̂I ,n+1+α

⎤

⎥
⎦ (8)

where üj,n+1, u̇θ ,n+1 and üJ ,n+1 are the acceleration
vectors respectively related to the simulated, common,
and tested DOFs. So, by condensing the components
of üj,n+1, (8) can be rewritten on the DOFs related to
the tested specimen (9).

[
T M̂δθ + SM̂ ∗

δθ
T M̂δJ

T M̂Iθ
T M̂IJ

]

·
[

üθ ,n+1

üJ ,n+1

]

=
[

T F̂δ,n+1+α + S F̂∗δ,n+1+α

T F̂I ,n+1+α

]

(9)

where SM̂ ∗
δθ and S F̂∗δ,n+1+α are the condensed pseudo

mass matrix and pseudo force vector defined in (10)
& (11).

SM̂ ∗
δθ = SM̂δθ − SM̂δj · SM̂−1

ij · SM̂iθ (10)

S F̂∗δ,n+ 1+ α= S F̂δ,n+ 1+ α− SM̂δj · SM̂−1
ij · S F̂i,n+1+α

(11)

The measured restoring force vector T r̃δ,n+1 is
introduced in the pseudo force vector T F̂δ,n+1+α (5),
whereas the restoring force vectors computed on the
numerical substructure S r̃i,n+1 and s r̃δ,n+1 are intro-
duced in S F̂i,n+1+α and S F̂δ,n+1+α.

Note that the components related to the internal
tested DOFs (indexed I , J in Figure 3) are computed
by modelling the tested specimen. The same finite ele-
ments and nonlinear material laws are usually used
on both the numerical and tested substructures. The
elastic stiffness matrix of the tested specimen can be
initially set based on measurements performed on the
experimental setup. The displacement of the tested
DOFs (stored in T ũJ ,n+1) can either be predicted or
measured at the level of the neutral axis (by using field
measurements or interpolation methods). Knowing the
values of the reactions applied to the common DOFs,
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it is thus possible to approximate the restoring force
vector T r̃I ,n+1 as well as the displacements of the tested
specimen under earthquake (stored in T uJ ,n+1).

At the time step (n + 1), (9) is firstly solved to com-
pute the acceleration vector on the common DOFs.
Once üθ ,n+1 is known, the acceleration vector related
to the simulated DOFs (named üj,n+1) is then assessed
by solving (12).

SM̂ij · üj,n+1= SC F̂n+1+α (12)

where SC F̂n+1+α is the condensed pseudo force vector
defined in (13).

SC F̂n+1+α= S F̂i,n+1+α − SM̂iθ · üθ ,n+1 (13)

During hybrid tests, (9) and (12) are solved on
two computers exchanging data, decreasing CPU time.
The first one (called master PsD computer) is respon-
sible for the tested specimen. It sends instructions
to the experimental setup and receives measures. It
ensures the analogue to digital (A/D) conversion of
data with the help of an acquisition card and com-
putes the acceleration vector üθ ,n+1 by solving (9). The
second computer is responsible for the modelled sub-
structure and computes the acceleration vector üj,n+1,
according to (12).

5 REDUCED ORDER MODELLING BY USING
A POD-ROM METHOD

In the case of hybrid tests, solving nonlinear substruc-
tures at each time step increases CPU time, even if
a non-iterative time-integration scheme is used. Car-
rying these tests in real-time can thus be difficult
due to the additional delay of the actuators, espe-
cially when the numerical substructure is modelled
with a high number of DOFs. In the literature, most
of the researchers use either a linear model (Bonnet et
al. 2008) or nonlinear macroelements (Moutoussamy
2013). Other methods need to be used to reduce the
CPU time with many DOFs and nonlinear material
laws during the online phase (i.e. during hybrid tests).
Among them, the POD-ROM method allows reducing
the size of matrix systems by projecting equations on
a basis made of few nonlinear POD-modes.

The key idea is to perform first a full offline step-
by-step nonlinear analysis on the complete structure
(including both numerical and tested substructures).
Snapshots are then extracted from the results to com-
pute N nonlinear POD-modes by using a Singular
Value Decomposition (SVD) procedure (with N the
number of DOFs). m POD-modes are then selected
to build a modal projection basis. This reduces the
number of DOFs and decreases CPU time during the
online phase. The displacement vectors uj(t) (related
to the simulated DOFs) can thus be expressed in a
new basis = [ϕ1 · · · ϕm] of dimension m � N
as described in (14).

uj(t)∼= · q (t) (14)

where q(t) is the vector of size m × 1 containing the
coordinates of displacements in the new basis  and
ϕi=1,...,m the POD-modes computed from a SVD pro-
cedure. So, by substituting üj,n+1 with q̈n+1 in (12), it
comes:

T · SM̂ij ·" · q̈j,n+1=T · SC F̂n+1+α (15)

Note that when the α-OS time-integration scheme
is used, operator T · SM̂ij · is computed once and
set as a constant during the online phase. However, the
nonlinear restoring force vectors Srn+1 always needs
to be computed in the full coordinates, making this
operation the most time-consuming part of the entire
process. The use of a non-iterative α-OS method is
thus relevant to avoid multiple reassessments of Srn+1
at each time step.

6 APPLICATION

6.1 Case study

One of the aims of this paper is to propose a PsD
hybrid experimental set that allows for assessing
the behaviour of a RC column/beam junction under
earthquake. In the following, all the simulations are
performed using the ground x-acceleration drawn in
Figure 4. It is an artificial signal typical of a French
average (close to strong) seismic hazard area. Its peak
ground acceleration (PGA) equals 2.32 m/s2 and is
reached at time 3.16 s.

Figure 4. Ground acceleration versus time.

The case study is a three-storey RC frame of 3 m
long spans and 3 m high storeys (cf. Figure 5). All the
columns are fixed to the foundation level and have a
15×15 cm square cross-section, while the beams have
a 15×25 cm rectangular one. The diameter of each
longitudinal steel rebar is set at 12 mm, and the steel
coating is equal to 20 mm (cf. Figure 6 (a)). A mass per
unit of length equal to 900 kg/m is applied to each floor
via the longitudinal beams (live loads), in addition to
the dead loads. The last storey is two-span long, while
the others are made of four spans: a rooftop is thus
located at the 2nd-floor level. As a result, the masses
and the dead loads are the highest on the 1st-floor
column/beam junction located on the western side of
the building. This structural element is thus assumed
as the tested specimen in the following.
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Figure 5. Elevation view of the three-storey RC frame.

A viscous damping ratio set at 2 % at f1 = 1.19 Hz
(i.e. the main eigenfrequency) is applied to dampen the
high-frequency content. The damping matrix is thus
defined such as C =βM · KE , with βM = 0.02 /(π ·f1),
i.e. βM = 5.3×10−3 s/rad. Several researchers showed
from experiments that this damping matrix is well
suited to model damaging reinforced concrete struc-
tures, knowing that the damping cannot depend on the
mass matrix when the section is fully broken (Faria
2002). The damping is thus managed by the concrete
damage in the low-frequency range.

Figure 6. Cross-section of the beams (a) and mesh of the
cross-section of the beams (b).

The complete structure comprises 798 free DOFs
(i.e. 271 nodes), while all the cross-sections are divided
into 1×5 surface elements. The concrete fibres are
located at the integration points of the surface ele-
ments (grey dots), while the steel fibres (blue dots) are
located at 32 mm from the edges of the cross-sections
(cf. Figure 6 (b)).

During the hybrid test, the restoring forces applied
to the common DOFs (see blue dots in Figure 5) are
measured on a specimen of the columns/beam junc-
tion. Thus, relevant boundary conditions need to be
applied to the experimental setup to achieve viable
results, as described in Section 6.2.

6.2 Virtual experimental setup

The column/beam junction includes the mid-length
of the right beam and the mid-heights of the upper
and lower columns. Even if all ends are embedded
in an actual structure, several simplifications can be
assumed on the experimental setup based on the prop-
erties of the building as well as the loading applied
on it.

Firstly, it is commonly assumed in earthquake engi-
neering that the mass of the building is mainly located
at floor level. As a result, the bending moment evolves
linearly along the columns when horizontal forces are
applied to the floors, as it is the case during earth-
quakes. So, the bending moment can be considered as
close to zero at mid-heigh of the storeys (as shown
in Figure 7 (b)). Pin connections are thus applied at
the ends of the half-columns on the tested specimen,
allowing them to rotate freely.

Figure 7. Distribution of the bending moment on a
two-storey frame under vertical live loads (a) and horizontal
earthquake (b).

Secondly, by considering that the PGA of the
ground acceleration in Figure 4 (equal to 2.16 m/s2) is
more than four times lower than the gravitational accel-
eration (equal to 9.81 m/s2), it is reasonable to consider
that the horizontal earthquake has a low influence on
the vertical displacements of the spans (compared to
the dead and live loads). As a result, the beams are
mainly loaded by the vertical live loads, so the bending
moment reaches an extremum close to the mid-length
of the spans (cf. Figure 7 (a)). The end of the half-beam
is thus not able to rotate on the experimental setup.

Vertical and horizontal displacements Ux1, Ux2 and
Uz2 are applied at the ends of the upper half column and
half beam by using three actuators (cf. Figure 8). Fz1
is applied at the top of the upper half column by using
pre-stressed steel rebars. Its value is set as a constant
and equal to 27.8 kN according to the dead and live
loads (the earthquake is thus neglected).

The live loads are applied to the half beam by using
an additional static actuator. Knowing that the mass
per unit length is 900 kg/m and that the half beam is

419



Figure 8. Elevation view of the three-storey RC frame.

1.5 m long, the force applied by this actuator is equal
to 13.2 kN. This vertical load is transmitted to the half
beam via a 50 cm long simply supported steel beam.
The forces Fx3 and Fz3 (applied to the pin connection
at the end of the lower half column) are measured,
whereas the moment My2 at the end of the half beam
can be assessed by writing the equilibrium of the tested
specimen.

As a result, the restoring forces vector T ṙδ related
to the common DOFs has seven non-zero components:
Fx1, Fz1,Fx2, Fz2, My2, Fx3, Fz3. Note that this exper-
imental setup is complex but realistic. If necessary,
the vertical live load F = 13.2 kN can be reason-
ably neglected on the span linked to the column/beam
junction (on both substructures).

6.3 Numerical modelling of the experimental setup

Before performing the PsD hybrid test, a detailed finite
elements analysis is firstly required to set the prop-
erties of the actuators (strength, stroke, …) as well
as to check the reliability of the boundary conditions
detailed in Section 6.2. To do so, the tested specimen is
replaced by a 2D numerical model of the column/beam
junction defined in Cast3M© software.

Here, the concrete is modelled by using 980
quadratic surface elements, while the steel rebars
are made of 624 uniaxial rods whose properties are
defined per unit of length (cf. Figure 9). The trans-
verse steel rebars are explicitly modelled, contrary to
the multifibre beam elements. Their spacing varies
between 5 and 15 cm. They are mainly placed at the
ends of the specimen and at the level of the connec-
tion between the beam and the columns (to avoid the

appearance of shearing collapse mechanisms in case of
earthquake). The area of the longitudinal steel rebars
is equal to 15.1 cm2/m, while it is set at 8.3 cm2/m for
the transverse ones.

Figure 9. Elevation view of the 2D mesh of the tested
specimen (a) and steel rebars (b) defined in Cast3M©

software.

Note that 2.5 cm thick steel plates are located at
the ends of the specimen and at the location of the
actuators (as it is the case during actual experiments
on RC structures). This avoids the appearance of local
stress concentrations and prevents the concrete from
tearing off.

The bilinear elastic-plastic law with kinematic hard-
ening defined in Section 2.2 is used with the same
parameters to model the behaviour of the steel rebars.
The concrete is modelled by an accurate quasi-brittle
material law available in Cast3M© software. The stiff-
ness recovery, inelastic strains and frictional sliding are
all considered (Richard et al. 2010). The law is defined
by considering an elastic stiffness of 31 GPa, a yield-
ing tensile stress of 3.5 MPa, a Poisson ratio of 0.2, a
tension brittleness of 1.10−2, a compression brittleness
of 4.710−4, a kinematic hardening of 7.109 Pa and a
nonlinear hardening of 7.10−7 Pa−1. Contrary to the
La Borderie damage law, the energy dissipation due to
frictional sliding is modelled, although the “unilateral”
effect is partial (cf. Figure 10).

The finite element analysis is next performed on the
simulated substructure (made of multifibre beam ele-
ments) by using a solver defined in MATLAB©, while
the displacements of the actuators are sent to a con-
sole running Cast3M© software in parallel. Restoring
forces are then computed and sent to MATLAB©

for the next time step and so on. The analysis is
first performed using the full order model (FOM).
A POD projection modal basis is then added to the
α-OS solver, as described in Section 5. The results are
compared and discussed in Section 6.4.
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Figure 10. Uniaxial damage law of concrete under cyclic
loading with partial “unilateral” effect and frictional sliding.

6.4 Results with the full and reduced models

The numerical substructure is reduced by using a
modal projection basis made of POD-modes computed
from the results of an offline implicit finite element
analysis performed on the entire structure.

Figure 11. POD-modes of the numerical substructure: 1st

mode (a), 2nd mode (b), 3rd mode (c) and 4th mode (d).

The use of POD-modes introduces additional infor-
mation on the nonlinearities (i.e. location of damage
and plasticity, as it is clearly visible in the shape of the
2nd POD-mode drawn in Figure 11 (b)) as well as the
global response of the building, despite cutting part
of the high-frequency content. As a result, their use
to perform hybrid tests can change the displacements
applied to the tested specimen and the response of the
numerical substructure. To assess the reliability of the
reduced-order model (ROM) in the framework of PsD
hybrid tests, a comparison with the full order model
(FOM) is thus necessary.

According to Ayoub (2021), the number of POD-
modes can reasonably be assessed by guaranteeing
that at least 99 % of the total system energy is con-
sidered for the ROM. Knowing that the singular value
#i indicates the amount of energy brought by the ith

POD-mode, the energy criterion used to assess m can
thus be written as described in (16).

∑m
i=1#i

∑N
j=1#j

≥ 0.99 (16)

Figure 12 shows that this criterion is fully reached
with m = 10 POD-modes: this value is thus used to
build the POD projection modal base related to the
numerical substructure.

Figure 12. Energy criterion based on the singular values.

The displacement response is plotted in Figure 13 at
times t= 4.78 s and t= 5.38 s (i.e. when the horizontal
displacements reach their extrema during the strong
motion phase). Results related to the implicit offline
phase, hybrid test with the FOM and hybrid test with
the ROM are compared. Note that the displacements
of the tested specimen are plotted by post-processing,
and that deformations are amplified by a factor 50.

The global responses of the RC frame computed in
hybrid test conditions fit well with the implicit New-
mark reference, despite the simplifications made on
the boundary conditions applied to the tested speci-
men. However, with the FOM, note that the numerical
model of the tested specimen undergoes lower defor-
mations than the other RC column/beam junctions,
leading to lower horizontal displacements on the com-
plete structure, especially at the top of the building.
On the contrary, the dynamic response is similar on all
junctions with the ROM, leading to more consistent
and “realistic” results, each POD-modes carries infor-
mation about the local nonlinearities and the global
response of the RC frame.

Simplifications being most of the times necessary
on PsD experimental setups, these results show that
using POD-modes computed from a fully numeri-
cal implicit finite element analysis carried out on
the complete structure partially corrects the induced
error and improves the consistency of the dynamic
responses of both the numerical substructure and the
tested specimen. However, it should be noted that the
CPU time related to the numerical substructure (mod-
elled on an Intel™ Core™ i9-10900K CPU @ and 64
GB RAM personal computer using MATLAB© soft-
ware) is approximately equal to 42 s with the FOM and
40 s with the ROM. As a result, the number of DOFs
is not high enough to save significant CPU time when
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Figure 13. Response in displacements of the entire RC
frame at times t = 4.78 s (a) and t = 5.38 s (b).

a POD projection modal base is used, the α-OS time
integration scheme is non-iterative and all operators
are pre-computed. To save more CPU time and allow
for faster testing, it is thus necessary to reduce the
computational cost due to assessing the restoring force
vector S r̃

(
u
)

at each time step. This can be achieved by
using a POD Discrete Empirical Interpolation Method
(DEIM) approach.

To ensure that the boundary conditions applied to
the tested specimen lead to actual damage mecha-
nisms, the distributions of the damage index computed
with the FOM and the ROM are compared in Figure 14.

Contrary to the dynamic response of the full struc-
ture, the static response of the tested specimen is
almost the same with the FOM and the ROM (cf. Fig-
ure 15). As a result, the same damage mechanisms
appear. Damage index at time t = 2.60 s shows that
cracks due to bending first appear at the transverse
steel rebars (where the reinforced concrete is locally
stiffer). Then, at time t = 2.73 s, shearing led to the
appearance of a 45˚ inclined crack on the node con-
necting the columns to the beam. At the end of the
hybrid test (i.e. t = 16.79 s), damage is thus mainly
located around these areas. These results are in accor-
dance with the experiments performed by Masi et
al. (2013), which highlighted similar damage mech-
anisms and shear/drift behaviour (cf. Figure 15). As
a result, the boundary conditions applied to the speci-
men can be considered as well suited to perform hybrid
tests on column/beam junctions.

The minimum requirements to consider for the actu-
ators applying the displacements Ux1, Ux2 and Uz2 are
finally assessed based on the previous results. Note
that the data given in Table 1 will be soon used to
perform an actual PsD hybrid test on a column/beam
junction.

Figure 14. Damage index of specimen: FOM at times
t = 2.60 s (a), t = 2.73 s (b) and t = 16.79 s (c), and ROM
(m = 10) at times t = 2.60 s (d), t = 2.73 s (e) and t = 16.79 s (f).

Figure 15. Shear/drift response of the tested specimen.

Table 1. Minimum requirements to consider for the
actuators.

Strength Stroke
Displacement kN mm Type

Ux1 4.2 52.6 Double acting
Ux2 4.6 28.9 Double acting
Uz2 9.0 2.7 Simple acting

7 CONCLUSIONS

In this paper, a PsD hybrid experimental setup allows
for assessing the nonlinear behaviour of a RC col-
umn/beam junction under earthquake is proposed.
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Pins connections are applied to the ends of the half-
columns, while the rotations are not allowed at the end
of the half beam. The static loads applied to the upper
storeys are modelled by pre-stressing the half-columns
with steel rebars, while the displacements at the ends
of the tested specimen are applied by using three actua-
tors. The numerical substructure is modelled by using
nonlinear multifibre beam elements, and the use of
a POD projection modal basis to reduce its computa-
tional cost is investigated. FEM analyses are carried in
hybrid test conditions by substituting the tested spec-
imen with a numerical model defined in Cast3M©

software.
Results showed that using a POD projection modal

basis computed from an offline implicit finite element
analysis improves the consistency of the response of
both numerical and tested substructures (additional
information on the global response of the structure
as well as nonlinearities being added) but does not
significantly reduce the CPU time. In addition, the
simplified boundary conditions applied to the speci-
men led to actual damage mechanisms, showing their
relevancy.

To reduce the computational cost due to the assess-
ment of the restoring force vector S r̃i

(
ũj
)
, further

investigations are led to assess the reliability of the
POD-DEIM hyper reduction method in the framework
of PsD hybrid tests.
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ABSTRACT: In order to evaluate the cracking process in large reinforced and pre-stressed concrete structures,
a predictive model of concrete damage with refined mesh and a nonlinear law can be required. Because of
the computational load, such modelling is not applicable directly on large-scale structures whose characteristic
dimensions are over several meters. To overcome this difficulty, a method based on the static condensation [1],
called “ASC” has been proposed. It concentrates the computational effort on the damaged area, which can evolve
due to crack propagation or initiation [2].

In order to reach a higher level of representativeness, mesh refinement is integrated into the ASC method
in the proposed contribution. The method first uses a coarse initial mesh and refines it only in the domain of
interest (DI) to reach a density of mesh adapted to a non-local model (order of the centimeter). This principle of
refinement, integrated in the ASC method, is described. It is then applied to a notched bending beam. The use
of mesh refinement combined to ASC method allow to keep results similar to a calculation with a fine mesh
on the entire structure. However, it also allows a saving in computational time and in memory occupation that
increases with the increase in the mesh density of the refined zones.

1 INTRODUCTION

When designing civil engineering structures, it is nec-
essary to take into account all the factors that can
lead to the ruin and to predict their effects. As the
experiments at the scale of the large structures are
very limited, it is often necessary to use the numer-
ical modeling. These models must be able to predict
the behavior of these structures for the different load-
ing cases that are likely to occur during the life of the
structure.

In this contribution, cracking in concrete for large
structures (e.g. containment vessel) is studied, which is
a localized phenomenon. Its modeling requires a non-
linear constitutive law with a fine mesh of the order
of one centimeter in order to achieve a good accuracy
and robust simulations. This type of modeling can be
expensive and sometimes unattainable on large struc-
tures. Several solutions for solving this problem exist
in the literature.

One of the possible solutions is the adaptive mesh
refinement method (AMR) which consists in locally
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increasing the fineness of the mesh in the areas where
it is essential to calculate the solution with greater
precision than in the rest of the structure. In [3],
the concept of mesh refinement was introduced first
for the resolution of hyperbolic partial differential
equations in 1984. In [4], it was then proposed an
adaptive version of 2D mesh refinement for conser-
vation laws .The efficiency of AMR for gas dynamics
was shown in 1989. More recently, the AMR method
has been adapted to several fields of physics such
as compressible and incompressible fluid dynamics,
solid mechanics and combustion [5,6]. Two families
of adaptive mesh refinement techniques exist: re-
meshing techniques and refinement techniques. The
first consists in completely reconstructing the mesh
where it is necessary as in [7–9] or to move the
mesh to generate adaptive meshes as in [10,11]. The
second is based on the elements of the initial mesh
to generate a new one by locally enriching the spa-
tial discretization [12]. The advantage of the AMR
method lies mainly in its performance in terms of
memory size and CPU time [13]. However, with this
approach, the whole structure is modelled with a non-
linear behavior even in the part where the materials
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stay in the linear part of the behavior. In the case of
localized damaged zones, this step can become very
costly and the solution is not very satisfying. The
decomposition of the system combined to the use of
parallel computation to exploit several computation
units simultaneously is another possible solution. It
can significantly reduce the calculation time. Several
approaches have been developed for parallel compu-
tation analysis. A review of the fundamental concepts
and issues of parallel processing is made in [14]. The
parallel processing can be applied in fluid mechan-
ics [15], for nonlinear analysis of reinforced concrete
three-dimensional frame [16], among others domains.
Parallelism brings a computing power and a storage
capacity, which increases with the increase of the num-
ber of processors. This makes it possible to reach
higher simulation levels, within a reasonable time-
frame [17]. However, with this type of approach, the
overall computational load increases because of the
cost of communication between the different calcula-
tion units.Therefore, for a given computing power, this
method does not improve the computation and even
with this approach. In computational mechanics, static
condensation is a model reduction method that reduces
the number of degrees of freedom by eliminating vari-
ables from the linear system in the stiffness matrix.
Condensed substructures are thus created. “Super-
elements” are generally defined by eliminating the
internal unknowns in the condensed zones. Complex
problems, whose complexity is related to their size, can
be calculated at a more reasonable cost. The condensa-
tion method was first introduced by Guyan in 1965 [9]
and has been widely used in mechanics. The method
is called “static condensation” since it is only exact
for static problems, even if it has been widely applied
in structural dynamics. In this case, the condensation
of mass is approximated [1]. The initial formulation
have been gradually improved in dynamic calculations
[6,18,19] and/or associated with substructuring [20] in
the analysis of structures with localized nonlinearities.
In [13], the static condensation was used for efficient
conceptual-level aerospace structural design.

Regarding nonlinear cracking in reinforced con-
crete structures, a so-called adaptive static conden-
sation method has been developed [2]. It consists in
concentrating the computational effort of the non-
linear calculation on preliminary defined “zones of
interest” (zones with expected cracking behavior), by
“eliminating” the zones with a linear elastic behav-
ior. This approach uses Guyan’s static condensation
method [1] to replace the elastic zones by a set of
boundary conditions applied at the boundaries of the
zones of interest. As the system evolves (evolution of
a given crack or apparition of a new one), criteria are
used to detect if damage is likely to appear and to
make evolve the geometry of the zones of interest.This
method enables to reduce the dimension of the nonlin-
ear problem without altering the quality of the results
compared to a complete reference computation. The
method was applied to several structures: a notched
bending beam, a prestressed beam and a simplified

containment building in reinforced concrete subjected
to an internal pressure. Results were identical to a
complete reference computation (without condensa-
tion) with a very variable time saving compared to
the complete computation. This gain varied between 3
and reached 15 for the case of prestressing. However,
even with the ASC method, elements size of 1 cm still
seems impossible to reach with current machines for
the simulation of very large structures and in particular
containment vessels. In order to overcome this diffi-
culty, the principle of mesh refinement is integrated in
the ASC method. The main idea is to refine only the
domain of interest by keeping a coarse mesh for the
rest of the structure.

After a brief description of the ASC method in part
2, the integration of the mesh refinement in the ASC
method is presented in section 3.1. In section 3.2, this
approach is applied on a notched bending beam to test
the efficiency of the method.

2 ASC METHOD

The first section presents Guyan’s static condensation
principle on which the ASC method is based. Then,
the second one details the algorithm of the method.

2.1 Guyan’s static condensation [1]

Static condensation, also known as Guyan reduc-
tion simplifies the resolution of linear systems of
large dimensions by eliminating part of the degrees
of freedom (DoF). For a given mechanical problem
discretized on n dofs, the static equilibrium can be
expressed by the equation (1):

K u= f (1)

where K represents the stiffness matrix of the structure,
u is the displacement vector and f the nodal force vec-
tor. We broke down the structure into two subdomains
�C (slave) and �M (master):

⎛

⎝
KC,C KC,M
KM ,C KM ,M

⎞

⎠
(

UC
UM

)
=

(
fC
fM

)
(2)

with KC,C (εRp,p); KM ,M (εRq,q); KM ,C εR
p,q (εRp,q)

KC,M (εRq,p) fC , Uc (εRp); fM , UM (εRq); n= p+ q.
By developing equation (2), a reduced (condensed)

problem can be defined by:

K̂ .UM = F̂ (3)

The condensed force F̂ and the reduced stiffness
matrix K̂ are given by the system of two equations:

{
K̂ =KM ,M − KM ,cK−1

c,c Kc,M

F̂ = fM − KM ,cK−1
c,c fc

(4)
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The reduced system given by equation (3) is of
dimension q that is smaller than n and its resolution
gives the solution on the master domain�M . However,
it is always possible to obtain the vector Uc by applying
a “decondensation” given by equation (5):

UC =K−1
c,c (fc − Kc,M .UM ) (5)

It is noted that if the domain �C is large, the
computation of the inverse term K−1

c,c can become an
expensive task. It is also noted that the static condensa-
tion is only exact if the condensed domain has a linear
elastic behavior.

2.2 Detailed algorithm of the ASC method

This ASC method was developed to deal with the
problems of large dimension structures with localized
damage. It uses Guyan’s static condensation method
to transform the elastic zones to a set of boundary
conditions applied to the boundaries of the DI. If dam-
age evolves, criteria allow evolving the DI with the
evolution of damage and maintain the accuracy of the
calculation. Figure 1 presents the algorithm of theASC
method.

Figure 1. Algorithm of the ASC method.

The first step consists in carrying out a linear
precomputation on the whole structure to obtain a
distribution of the elastic strain. A quantity of inter-
est is then calculated. In this contribution, related to
damage mechanics, this quantity is Mazars’s equiva-
lent strain, εeq, which is computed using the following
equation [21]:

εeq=
√
〈ε1〉2+ + 〈ε2〉2+ + 〈ε3〉2+ (6)

where 〈εi〉+ represents the principal positive value of
the strain.The next step is to partition the structure into
zones. This partitioning is carried out using an auto-
matic cutting procedure adapted to the ASC method
[22]. This partitioning is based on the distribution of
the elastic strain and takes into account the initiation
and propagation of the damage over time. Then we
carry out the “first condensation” in which each zone is
condensed and replaced by equivalent boundary condi-
tions on its borders. This step is done only once before
starting the computation and the condensed matrices
are saved and used when needed during all the sim-
ulation. Then, the next step called “construction of
domains” consists in building the two domains: the DI
that will be fully represented and the elastic domain
(ED) which is represented by a set of boundary condi-
tions on the borders of the DI (second condensation).
Our starting DI is defined from the zone, which is
most likely to be damaged based on the elastic strain
distribution that has been already calculated (the zone
associated to max (εeq)). All these steps, colored in
orange on the figure, forms what is called the prepa-
ration phase. Now, the system on which we carry out
the nonlinear calculation is built from the domain of
interest and the boundary conditions which represent
the rest of the structure and which has a reduced size
compared to the global system.

As we have already mentioned, the condensation is
only exact if the condensed part has an elastic behavior.
To keep the accuracy of the method, we test the elas-
ticity of the elastic domain during the calculation. This
is done using a verification procedure, which has two
criteria: the propagation and the initiation criteria. The
first one evaluates the potential propagation of damage
from the existing DI to neighboring condensed zones.
It detects if the damage is approaching the border of
the DI. Propagation bands are defined over a width
L around the border of the DI (in orange on the Fig-
ure 3). If damage reaches this band, the neighboring
zone is added to the DI. This criterion ensures that the
interface between the DI and the elastic domain has
an elastic behavior during computation. As this test is
only geometric, the associated computational cost is
not expensive. This criterion is thus checked at the end
of each time step.The second one is the initiation crite-
rion that evaluates the potential apparition of damage
on all the condensed zones. It supposes to check the
elasticity of the condensed zones. To do so, a double
“decondensation” is performed to obtain the values of
the displacements in the overall structure then we test
if we are still in the elastic domain. Otherwise, if the
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Figure 2. The preparation phase, a: linear pre-calculation,
b: partitioning of the structure, c: first condensation, d: the
starting DI.

Figure 3. a: Detection of the propagation criterion; b:
evolution of the DI.

elasticity threshold is exceeded in a given zone out-
side the DI, this zone has to be included in the new DI.
Because of the cost of the double “decondensation”,
which has a significant cost and especially if the ED is
large and finely meshed, this criterion is only checked
after each p loading steps.

In the case of an evolution of the DI (evolu-
tion of damage to the condensed domain), a domain
reconstruction procedure is used in which only the sec-
ond condensation is carried out. It especially shows
the advantage of the double condensation as a re-
condensation of the whole structure is not needed. It

is to be noted that in both cases, if the DI is changed,
previous loading steps need to be recalculated (p steps
in case of initiation, one-step for propagation). In the
case of detection of initiation of the damage in a new
zone, this zone was condensed between the step N
and the stepN − p. To avoid any loss of information
in this case, we return to the step numberN − p, the
step during which this zone was elastic and does not
present any damage. To ensure in the case of propa-
gation at the step N that the borders between the two
domains always have elastic behaviors, we recalculate
the step N by adding the new detected zone.The imple-
mentation of the method is done on the finite element
computation software cast3m [23].

3 MESH REFINEMENT

In order to improve the representativeness of the mod-
elling strategy and to overcome the problem of mesh
dependence, the use of a regularization technique is
necessary. The use of these techniques and in particu-
lar the integral method [24] requires a mesh fineness
of the order of one centimeter. However, on a large
structure, the use of a fine mesh over the entire struc-
ture may not be applicable because of the calculation
cost and the memory occupation. On the other hand,
in the case where the damage is located in a small part
of the structure, the use of a fine mesh in the areas
outside the areas of interest is not necessary.

For this, we have introduced the principle of mesh
refinement with the ASC method. The objective is to
apply the regularization (a nonlocal model) in the DI
only, while keeping the initial coarse mesh in the con-
densed elastic domain. The main idea in this approach
is not to use, in any step of the method, a fine mesh
on the entire structure but only on the DI while main-
taining the accuracy of the ASC method. The reason
is that even a linear operation may be inapplicable on
a large structure with a very fine mesh.

In this part, we first present the steps necessary for
the integration of the approach of mesh refinement in
the ASC method then one application of this approach
on a notched bending beam is presented.

3.1 Method

The principle is to use a fine mesh only where it is
necessary. Let us take the algorithm of the method
presented in Figure 1. The linear precomputation, the
partitioning of mesh into zones, which is done using
an automatic partitioning procedure independent of
mesh size, the first and the second condensation do
not require a fine mesh. The entire preparation phase
that contains the four first steps (in orange) is thus
carried out on the initial coarse mesh.

The first intervention for the application of mesh
refinement in the ASC method takes place after this
phase and just before starting the nonlinear computa-
tion. Once we detect the starting DI, we refine it by sub-
dividing the elements until we reach the required mesh
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density using a hierarchical h-refinement method [25].
We chose this method because of its hierarchical nature
which makes it easy to implement and can ease the pro-
jection of the fields of the initial mesh on the new fine
one (all the nodes of the initial mesh exist in the new
mesh). The target density is related to the application
of a non-local damage model (order of 1 cm).

As explained in part 2, with the propagation criteria
and the recalculation steps, it is ensured that the first
row of elements cannot be damaged during compu-
tation. That is why, in order to optimize the refined
part of the domain of interest, we refine only the
inner part of the DI without modifying the bound-
ary elements. Figure 4 shows an application of this
refinement on simplified containment vessel (Figure
4-a), the initial coarse mesh of the structure (Figure
4-b) and the domain of interest refined and without
boundary refinement (Figure 4-c).

Figure 4. Example of refined DI on a cylindrical reinforced
concrete structure; a: the structure; b: the initial coarse mesh;
c: the mesh of the DI after refinement.

With the process of mesh refinement and in particu-
lar when using several mesh sizes, a nonconformity in
the mesh occurs. This results in the creation of hang-
ing nodes, which are generated after each refinement
if the adjacent elements do not have the same size.
Figure 6 shows on the right an example of a confor-
mal mesh and on the left a non-conforming mesh that
contains one “hanging node”. Usually, with a finite
element mesh, the vertices are shared with their other
neighboring elements, but the node circled in red in
the figure (node C) does not belong to the top triangle
[12]. The hanging nodes are either removed, by con-
necting it to another vertex and thus creating two new
elements as in [26], or by imposing relations on the
hanging node, what is called compatibility relations by
imposing for example in this case Uc= 0.5(UA + UB)
[27]. The second option is chosen here. These rela-
tions are imposed via Lagrange multipliers [28] in the
same way that the boundary conditions of Dirichlet .
This refinement step is performed each time the DI
evolves.

As already explained in part 2.2, some computa-
tion steps must be recalculated when the DI evolves to
ensure the accuracy of the calculation. To initialize the
results in the new activated zones, a decondensation is
carried out to obtain the results in these zones because
these zones were condensed and therefore the results
did not exist. However, this decondensation gives the

Figure 5. The algorithm of the ASC method after the
integration of the mesh refinement into it.

results on the coarse mesh because the condensation is
carried out on the initial coarse mesh during the prepa-
ration phase. To go to the fine mesh, remappings are
performed for all the required fields on the new fine
mesh. It is noted that with the hierarchical refinement,
this remap step is only exact in the case of linear elas-
tic behavior and the remap problem is one of the main
reasons why many studies based on automatic mesh
refinement are limited to the elastic frame [12]. In the
ASC method and with the recalculations that we per-
form (see paragraph 2.2), we ensure that all the zones
that we activate have linear behaviors at the time of
the projection and therefore this projection is exact.

428



Figure 6. Illustrative example of the difference between
conformal and non-conforming mesh.

The fields defined at the nodes of the initial mesh
are transferred to the new refined one by using the
interpolation of the form functions [29] [30]. In the
case of the fields defined at the Gauss points (like
the constraints and internal variables), no continuous
approximation of this fields overall the space but only
in discrete points. The method used for these fields is
that presented in [29]. This method consists in build-
ing a continuous approximation of these fields while
passing by a field at the nodes of the initial mesh then
to interpolate it on the Gauss points of the new mesh.

Loadings like the internal pressure, the prestressed
and the self-weight must be projected on the new mesh
when the DI evolves. The kinematic relations (steel-
concrete bonding links for example) and the boundary
conditions must also be updated with every DI evo-
lution. Figure 5 presents the updated algorithm of the
ASC method after the integration of the principle of
mesh refinement into it. The new required tasks are
those in blue on this algorithm.

3.2 Application: notched bending beam

To test the applicability of the method, we apply the
ASC method with the approach of mesh refinement
on the example of the notched bending beam. It is
noted that in [2], theASC method was validated on this
structure and on a simplified containment vessel and
results similar to a complete reference computation
(without condensation) in the DI were obtained.

The beam is 160 cm long and 40 cm high and
notched at mid span. The notch is 80 mm high and 8
mm large. It is modeled in two dimensions (plane stress
with thickness of 20 cm), although the method allows
the use of 3D elements. The initial (coarse) mesh is
made with 610 quadrilateral elements of 4 cm length
(Figure 8).

Concrete is modeled using Mazars’s damage model
[31] with the same parameters as in [32]. It gives
a compressive strength of 41.4 MPa and a tensile
strength of 3.0 MPa. The load is applied on a 8 cm
zone on the top of the beam, through an imposed ver-
tical displacement downwards increasing from 0 up to

20 mm. Vertical displacement is blocked at the sup-
port points and horizontal displacement is blocked at
the top middle point only and free elsewhere. For the
application of the condensation, the structure is parti-
tioned into 35 zones using the automatic partitioning
procedure that we have developed (see Figure 7).

Figure 7. The notched beam partitioned into 35 zones.

Figure 8. Geometry, mesh and load of the notched in
bending.

Once the DI is detected, we refine it until we reach
a final density of 1cm. This density allows us to apply
a nonlocal integral method [24] to limit the damage
mesh dependency in concrete with an internal length
Lc= 3cm.

The calculation results using the ASC method with
the DI refinement approach are presented in Figure 9.
In this figure, we see the evolution of the DI (in blue
on the figure) and the damage over time. The damage

Figure 9. Evolution of the DI (in blue) and the damage.
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starts around the notch, then propagates, and initiates
at the support zones. On these profiles, we can very
well notice that all the damaged part is refined and that
all the part, which has a coarse mesh, does not show
any damage.

To compare the results with a reference computation
in order to see the effect of the mesh refinement on the
accuracy of computation, we carried out a complete
computation (without condensation) on the same beam
starting from a fine initial mesh on the entire structure
(of 1 cm of length). Results similar to the condensed
calculation are found at all times during the simulation.
Figure 10 presents the damage distribution at the end
of computation using the ASC method and this same
profile resulting from the complete computation.

Figure 10. Damage profile of the condensed calculation
(top) and the complete calculation (bottom) at the end.

A comparison was made and showed that these two
profiles are similar in the DI.

Finally, to test the efficiency in terms of computa-
tional performance, we performed a third computation
with the ASC method but this time starting from a fine
mesh (1cm) on the entire structure. It is noted that the
three computations were performed on the same com-
putation node (32 cores).The computation time results
of the three computations are shown in Table 1.

Table 1. Numerical efficiency results.

ASC ASC
Complete computation computation
computation (1 cm) (4 cm – 1cm)

Time 549,57 s 87,52s 57,70 s
Gain 1 6,2 9,6
Factor

A time saving factor of 9.6 instead of 6.2 with
respect to the complete computation is obtained by
integrating the mesh refinement approach in this
example while keeping the same results in the DI;

4 CONCLUSION AND PERSPECTIVES

The adaptive static condensation (ASC) method con-
sists in reducing the size of the system on only the

damaged parts of the structure by condensing the elas-
tic part. It also consists in testing the elasticity of
the condensed zones during computation to allow the
promotion of condensed zones into zones of inter-
est if necessary. This method initially proposed in [2]
was developed and became totally automatic and its
field of application was extended (in particular on
prestressing).

In order to improve the representativeness of com-
putation with the ASC method, the principle of auto-
matic mesh refinement of the DI has been integrated.
The main objective is not to make operations using a
fine mesh on the entire structure but only on the DI
(where it is necessary). This approach was applied to
an example of a notched bending. Results similar to
a fine calculation on the totality of the structure were
obtained and this principle of refinement brought a
saving of time of the order of 1.5 for the ASC method.

In the next future, applications to more complex and
representative structures are expected to fully evaluate
the efficiency of the proposed developments.
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ABSTRACT: Sequentially Linear Analysis (SLA) type non-incremental non-iterative solution procedures;
wherein a sequence of scaled linear analyses is performed with decreasing secant stiffness of one integration point
per analysis, representing local damage increments; are proven robust alternatives to traditional incremental-
iterative simulations of quasi-brittle fracture. Although several enhancements have been made over the last
two decades, this class of methods is still not a practical alternative to the traditional incremental-iterative
class of solution procedures. To this end, more recently, SLA has been extended to 3D simulations, and under
non-proportional loading conditions, using total strain based 3D smeared cracking models – both fixed and
rotating, and a composite interface constitutive model allowing for cracking-shearing-crushing failures, typical
of masonry damage. Furthermore, the approach has been made relatively efficient using tailor-made solvers
which efficiently use the favourable event-by-event approach of SLA. The global stiffness matrix is factorised
intermittently at only a certain number of linear analyses, and the solution for the remaining intermediate linear
analyses is found for low-rank corrections to the factorised stiffness matrix, which is possible using additional
matrix-vector manipulations. Moreoever, in a first of its kind, several experimental benchmarks that exhibit
structural collapse were simulated both using SLA and an incremental sequentially linear approach, the Force-
Release method to gain further insight into the topic of non-proportional loading in such approaches. This
article presents an overview of all these recent developments which pushes the SLA type of solution procedures
towards being a practical alternative to NLFEA in engineering practice. Additionally, simulations of a reinforced
concrete slab subject to one-way brittle shear failure, a skew-notched beam subject to prestress and bending
load, and a squat shear masonry wall exhibiting a brittle diagonal shear failure are shown to illustrate the
developments.

1 INTRODUCTION

Sequentially Linear Analysis (SLA) is a proven alter-
native to incremental-iterative solution methods in
nonlinear finite element analysis (NLFEA) of quasi-
brittle specimen. The core of the method is in its
departure from a load, displacement or arc-length
driven incremental approach, aided by internal iter-
ations to establish equilibrium, to a damage driven
event-by-event approach that approximates the non-
linear response by a sequence of scaled linear anal-
yses. The constitutive relations are discretised into
secant-stiffness–based saw-tooth laws, with succes-
sively reducing strengths and stiffnesses. In each
linear analysis, the global load is scaled such that
the critical integration point, with the largest stress,
jumps to its next saw-tooth representing local damage
increments.

The approach has been under development from the
early 2000s and is a proven alternative for applications
in masonry (Giardina et al. 2013), reinforced concrete
(Van de Graaf 2017) and glass (Invernizzi et al. 2011).
Advancements in SLA include contributions to make
the procedure mesh-objective (Van de Graaf 2017;
Rots et al. 2008); saw-tooth laws for extremely brit-
tle materials like glass (with snap-back at constitutive
level) (Invernizzi et al. 2011); approaches to non-
proportional loading situations (DeJong et al. 2008;
Eliáš et al. 2010; Eliáš 2015; Graça-E-Costa et al.
2013; Pari et al. 2018; Pari et al. 2019); incremental
sequentially linear approach (Yu et al. 2018); exten-
sions to interface elements with discrete cracking
(Van de Graaf et al. 2010), bond-slip (Ensink et al.
2012), and step-wise secant Coulomb friction laws
(Van de Graaf 2017); creep induced cracking (Hen-
driks and Rots 2009); combined incremental-total
approaches like Non-Iterative Energy based Method
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(NIEM) and the automatic method (Graça-E-Costa
et al. 2013); efficient linear solvers to improve the
speed of SLA (Pari et al. 2020); SLA in a stochastic set-
ting (Georgioudakis et al. 2014); combining SLA with
crack tracking technique (Slobbe 2014); and mesh free
SLA (Al-Sabah & Laefer 2016).

SLA is a feature, as a part or whole, of several state-
of-the-art solution methods which are hereon referred
to as Sequentially Linear Methods (SLM), although
alternatively referred to as non-iterative methods in
literature (Graça-E-Costa et al. 2013). These methods
can be classified into three categories: purely total
approaches (Alfaiate and Sluys 2018; DeJong et al.
2008; Van de Graaf 2017) wherein unloading and
reloading are done non-proportionally, purely incre-
mental approaches (Eliáš et al. 2010; Eliáš 2015;
Graça-E-Costa et al. 2013) wherein the stress and load-
ing history is explicitly tracked, and finally, a class
of combined incremental-total approaches (Graça-E-
Costa et al. 2013).

Despite the advantages of simplicity and numeri-
cal robustness in comparison to NLFEA, SLM as a
class of solution procedures still needed significant
developments to be used in engineering practice as a
numerical tool for structural applications, such as the
pushover analysis of a masonry structure or the capac-
ity assessment of a shear-critical reinforced concrete
slab. To this end, the following scientific contributions
were made recently. Firstly, there was lack of com-
plete understanding on the non-proportional loading
problem in the sequentially linear class of solution pro-
cedures and the associated redistributed mechanisms.
An extensive qualitative review was made on the differ-
ent SLM highlighting the primary differences in load
modification, and on how they address the multiple
failures. Simultaneously, in a first of its kind, case stud-
ies involving real structural collapse were analysed to
exemplify the differences between a total approach:
SLA with the double load multiplier strategy, and an
incremental approach: the Force-Release method. The
latter is an incremental sequentially linear method that
allows for gradual stress redistribution after each dam-
age increment, while simultaneously keeping track of
the loading history. The findings of these studies are
summarised in Section 3. Secondly, most of the exist-
ing constitutive formulations used in SLA were rather
simplistic. Structural level simulations motivate the
need for elaborate constitutive formulations with view
to non-proportional loading conditions. Accordingly,
3D Orthogonal smeared fixed and rotating crack-
ing models (Bresser 2019; Pari et al. 2018) (with
additionally possibility of crushing failures) under
non-proportional loading conditions were revisited in
the SLA set-up. Furthermore, composite interface con-
stitutive models suitable for 2D and 3D sequentially
linear simulations were also proposed. These are sum-
marised in Section 4 with illustrations. Finally, to
improve on solution times which have been a bottle-
neck for the SLM, two tailor-made solvers capable of
re-using the factorised stiffness matrix were proposed
and this is touched upon in Section 5.

2 SLA: METHODOLOGY

Sequentially Linear Analysis (SLA) is a non-
incremental (total) secant stiffness-based event-by-
event approach, wherein one linear analysis is per-
formed at a time to identify and damage the critical
integration point in the FE model.Therefore, it approx-
imates the nonlinear response as a sequence of linear
analyses with gradually increasing damage (damage-
driven). The definition of the load multiplier per
analysis step j for each integration point i, over all
elements in the FE model, is shown below in a general
sense, where f j

i and σgov,i are the corresponding allow-
able strengths and the governing stresses respectively.
The critical integration point is identified as the one
with the minimum of all such positive load multipliers:
the critical load multiplier λcrit .
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f j
i

σ
j
gov,i

, λ
j
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i
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λ

j
crit,i

)
∀ λ

j
crit,i > 0 .

(1)

The linear analysis results i.e. displacements, forces,
stresses and strains are then scaled using the criti-
cal load multiplier λcrit . Subsequently, the strength
and stiffness of this integration point are reduced in
a step-wise manner based on a discretised constitutive
relation, with successively reducing secant stiffnesses
and allowable strengths, called the saw-tooth law
(Figure 1). This process of identifying critical events
and load scaling is repeated until a user-defined stop
criteria is reached or when the FE model is completely
damaged. In summary, the method avoids multiple

Figure 1. Linear tension softening saw tooth law, with p
the saw-teeth discretisation factor, based on the band width
ripple approach to ensure mesh objectivity. In this approach, a
strength range p is defined as a percentage of the undamaged
material strength ft and a band is introduced into the softening
part of the base curve, enclosing it such that the upper and
lower triangles cancel each other out to eventually yield the
same fracture energy.
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integration points being pushed simultaneously into
failure, as in an incremental-iterative approach, and is
therefore robust. In other words, SLA traces through
every event, i.e. a jump or snap back, that may occur
in the response of the structure. The combination of a
total (load-unload) approach and the saw-tooth laws
forms the crux of the method.

Figure 2. SLA workflow for proportional loading condi-
tions.

The aforementioned methodology was initially con-
ceived for proportional loading conditions, and sub-
sequently, modified for real loading schemes which
very often have multiple loads. The simplest and most
common case is when there are constant loads on the
structure like dead loads, precompression, overburden
etc., and the structure is subsequently subject to vari-
able loads like earthquake or wind or vehicle loads.
Under such situations, the loading is considered to be
non-proportional and in the total approach of SLA,
the system is loaded by constant loads (Lcon) and a
unit variable load (Lvar). The stresses are expressed as
the superposition of the stresses due to constant and the
scaled variable loads as shown in Eq. 2 for each inte-
gration point i. The governing stress is then limited by
the allowable strengths f , corresponding to the failure
criterion, as shown in Eq. 3, such that only the critical
integration point i lies on the failure surface while all
non-critical points lie below it. These equations apply
for orientations depending on the failure criterion and
the type of element (continuum or interfaces). As long
as Eq. 3 holds, Eq. 4 applies at the global level. Con-
trarily, when Eq. 3 fails in a certain analysis step j,
the simulation runs into a so-called limit point and the
procedure is steered into the Intermittent Proportional
Loading (IPL) (Van de Graaf 2017), while implicitly
reducing the constant load, as shown in Eq. 5 to rein-
state Eq. 3. Such regions indicate the need for multiple
failures representing a sudden propagation of damage.

σi = σi,con + λ σi,var (2)

(σi,con + λ�σi,var)= f (3)

∀i �= k : (σk ,con + λ�σk ,var)< f

Lj
crit = λconLcon + λvarLvar (4)

where λcon = 1 and λvar = λcrit

Lipl=Lcon + λj−1
crit Lvar (5a)

Lj
ipl= λj

crit Lipl (5b)

Alternatively, in an incremental version like the
Force-Release method (Eliáš et al. 2010), the non-
proportional load path is discretised into a series
of piece-wise proportional loading paths. Each pre-
scribed load is discretised into a series of load vectors
with magnitudes ensured to be non-decreasing, so that
the proper loading/stress history is taken care of. Lin-
ear analyses are performed with load increments of a
certain load vector, each of which may or may not lead
to damage at a critical integration point i according to
Eq. 6, wherein all quantities with� are the correspond-
ing incremental values caused by the load increment.
Upon damage, the stress from a damaged element is
released gradually through a sequentially linear redis-
tribution loop wherein the unbalanced forces due to
the previous damage are the applied as loads on the
FE model, while all previously applied loads are kept
constant, and other elements may be damaged. When
the redistribution loop does not lead to further dam-
age, the response stays in equilibrium. Otherwise, it
evolves through states of disequilibrium and eventu-
ally returns to equilibrium.A comprehensive overview
on the workflow of SLA and the Force-Release meth-
ods and on the differences between such total and
incremental sequentially linear methods for contin-
uum applications can be found in Reference (Pari et al.
2020), and for lattice applications in References (Eliáš
et al. 2010; Liu & Sayed 2012).

(σi + λ�σi)= f ∧ ∀i �= k : (σk + λ�σk )< f (6)

Unlike NLFEA which is considered as one anal-
ysis containing several steps, SLA comprises several
linear analysis which are referred interchangeably as
‘analysis steps’ or ‘steps’ as such.

3 NON-PROPORTIONAL LOADING

The redistribution mechanism involved in SLA under
non-proportional loading problems is more promi-
nent in real-life quasi-brittle problems/experiments,
at component or structural level, rather than in sim-
ple experimental benchmarks. Such redistributions,
for instance previously observed with a masonry
facade settlement example (Van de Graaf 2017), were
attributed to the lack of crack closure algorithm in SLA
but there was still a lack of complete understanding on
this topic. The need for redistribution stems from the
the fundamental problem of using a static approach
to model an intrinsically dynamic phenomenon like
cracking or crushing; and in an attempt to understand
this, investigations were made at structural level and
under non-proportional loading conditions. In a first of
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Figure 3. (a) FE model of the TUDCOMP20 test, (b) the base shear vs top displacement response for SLA & Force-Release
methods compared against the experimental backbone curve - including the reference points during the collapse mechanism,
and (c) evolution of the precompression load (normalised) during the simulations.

its kind, several experimental benchmarks that exhibit
structural collapse were simulated both using SLA
and an incremental sequentially linear approach, the
Force-Release method; thereby comparing the inher-
ent differences in their redistribution mechanism and
a qualitaive overview on several methods was made
(Pari 2020). One of these studies is also presented here
for illustrative purposes.

The explosive failure in a non-proportionally loaded
pushover experiment on a Calcium silicate masonry
wall (Esposito & Ravenshorst 2017) was simulated
using the SLA and Force-Release methods. The explo-
sive failure led to instability of the wall and its eventual
collapse (refer Figure 4). Information about the sim-
ulation can be found in Pari (2020). The explosive
failure is captured adequately by both methods, but the
mechanism of redistribution differs.The point of onset
of the mechanism is denoted by a green mark in the
Figure 3(b), and it occurs around the same imposed dis-
placement for both simulations. The damage patterns
are also identical as seen in Figure 5(a) where DmSS
is the amount of damage accumulated in the discrete
cracking interface and the crushing continuum. DmSS
ranges from 0 to 1, which corresponds to undamaged
and fully damaged conditions. It is clear that the two
continuum elements at the bottom right corner of the
wall are fully crushed and that all interface elements to

Figure 4. Failure pattern of masonry wall in the TUD-
COMP20 experiment before collapse (left) and after collapse
(right).

the left of this region are completely cracked, leaving
a tiny portion which effectively supports the wall. The
ensuing mechanism is described by both approaches

differently. On the one hand, SLA runs into the
limit point situation described previously in Section 2,
where there is no constitutively admissible critical load
multiplier. The intermittent proportional loading (IPL)
commences and the last successful load combination
is scaled proportionally. Firstly, the IPL occurs a little
before the onset of collapse as well but recovers back
to the conventional non-proportional loading. How-
ever, once the collapse begins, the IPL never recovers
which is evident from the amount of precompression,
the first load applied (constant), that remains on the
structure in the rest of the simulation, refer Figure 3(c).
The IPL implicitly reduces the constant load, thereby
describing the entire dynamic brittle collapse mech-
anism while maintaining equilibrium. On the other
hand, the Force-Release method runs into an avalanche
of ruptures while going through disequilibrium states.
Since the previously applied load can not be altered, for
the same imposed displacement and the full value of
precompression, the Force-Release method attempts
to allow for redistribution due to successive failure
events by gradually releasing the stresses. The ongo-
ing failure is therefore captured differently by both
approaches as seen in Figure 5(b).

Figure 5. Failure patterns of SLA & Force-Release simu-
lations of the TUDCOMP20 experiment: (a) at the onset of
collapse, and (b) during collapse, in relation to Figure 3.
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The difference between the approaches in describ-
ing collapse may be interpreted as two extremes of the
time scales for a dynamic redistribution process (Eliáš
2015). SLA in this situation is essentially assuming
that the loading equipment is fast enough to react to the
collapse mechanism, alter the load and consequently,
release the stresses quickly to avoid further failures.
This is clear as the eventual failure pattern addition-
ally only involves the crushing of the tiny effective
portion supporting the wall before the onset of col-
lapse. The crush zone appears to be more realistic, in a
quasi-static sense, wherein SLA gives room for dam-
age propagation while quasi-statically releasing the
loads. The Force-Release method, on the other hand,
stays true to the displacement controlled experiment,
and realises the full collapse by gradually releasing
the stresses in a sequentially linear redistribution loop.
Although the process is dynamic, the Force-Release
method effectively neglects all inertial forces. Since
vertical equilibrium is not possible anymore, the simu-
lation could be interpreted to have been completed, and
the wider crush-zone is indicative of this instability. In
summary, both approaches adequately describe a real
non-proportionally loaded experiment involving true
brittle collapse, in terms of the failure patterns and the
eventual mechanism, differing only in their respective
approaches to the latter.

The conclusions on suitability of either methods
drawn from the studies are summarised below:

1. Comparative studies between the SLA and Force-
Release approaches (Pari 2020) substantiate the
difference in their approaches to the dynamic prop-
agation of damage, which is addressed statically
by both approaches through a sequence of failures
referred to as the avalanche of ruptures. On the one
hand, the SLA approach does so by temporarily
releasing existing loads and maintaining equilib-
rium, while the Force-Release traverses through
disequilibrium states for a constant imposed dis-
placement. These main points of attention are as
follows:

• The differences in the Force-Release and SLA
force-displacement curves are due to their inher-
ent load modification approaches. Since every
damaged element’s stress is released instan-
taneously in SLA, the neighbouring elements
whose stresses are close to their respective allow-
able strengths, subsequently, become critical at
a considerably lower load. This is possible in
SLA only by the temporary release of the load,
which essentially explains the snap-backs. The
Force-Release, on the other hand, releases the
stresses gradually through disequilibrium states
while maintaining all previously applied loads
(displacement history), and therefore shows
drops of load for constant displacements.

• In general, it is observed across the case stud-
ies that the non-proportional loading strategy
in a total approach like SLA, and the incre-
mental solution obtained using a Force-Release

method result in the qualitatively similar results
i.e. damage patterns. The contrasting differences
observed between the approaches in lattice mod-
elling applications, for e.g. in the elemental
failure sequence as in the work of Eliáš et al.
(2010), are not observed in structural case studies
since the change in stiffness due to a single dam-
age event is not so abrupt and large. Therefore,
the redistribution of the energy into the vicin-
ity as is done in the Force-Release method does
not cause further failure before attaining equilib-
rium. In principle, it could also be extended that
a very fine saw-teeth formulation would result
in near-equivalent responses using the SLA and
Force-Release methods.

• The suitability of the two methods depends on
the type of problem/experiment being simulated.
Force-Release method is suitable for typical dis-
placement controlled experiments which actually
exhibit instabilities. On the other hand, it may not
be suitable for physical processes which exhibit
snap backs or for truly quasi-static experiments.
SLA is more preferable when the damage pro-
cess zone is unique and controlled for quasi-static
evolution in an experiment (Rots et al. 2006).
However, for a CMOD controlled experiment
with multiple cracking zones, SLA may not be
appropriate. Force-Release method, in this case,
may increase the CMOD due to the redistribu-
tion. In a quasi-static sequentially linear setup, a
truly CMOD controlled experiment with multi-
ple evolving damage zones can be appropriately
simulated by the general method (Eliáš 2015).

2. It was clear from several case studies (Pari 2020)
that the limit point situation, and the associated
need for intermittent proportional loading in SLA,
is not an artefact of the stress locking problem in
a typical smeared fixed model (also verified for
smeared rotating cracking model (Bresser 2019)),
Coulomb friction model, or even the discrete crack-
ing model. It means that irrespective of the con-
stitutive model used, there is a need for multiple
failures at certain points in an SLA simulation
(as previously concluded (Van de Graaf 2017)).
In such a scenario in SLA, a problem arises
owing to the inherent non-proportional unloading
& reloading on a damaged state of the structure,
and therefore intermittent proportional loading
follows.

3. It was also clear that the oncoming dynamic failure
processes at limit points in an SLA type response
for structural level examples can be distinguished
into intermediate local instabilities or the eventual
collapse mechanism. In case of intermediate local
instabilities, if the intermittent proportional load-
ing allows for a redistribution which helps recover
the full value of constant load, the redistribution is
deemed acceptable. However, if the redistribution
results in gradual loss of constant loads to extremely
low values, much ahead of the actual structural
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collapse, this could either correspond to alternate
equilibrium paths of damage propagation that do
not culminate in the actual expected collapse mech-
anism or be interpreted as premature structural
failure. On the contrary, in case of the eventual col-
lapse, the intermittent proportional loading forces
a relaxed mechanism maintaining equilibrium all
through the simulation. In other words, SLA lets
the damage progress quasi-statically by releasing
previously applied loads thereby allowing the struc-
ture to relax during a dynamic collapse. Herein, as
against overall unloading of the structure, only the
elastic parts on either side of active damage zones
unload. This is acceptable under non-proportional
loading conditions only if the experiments are con-
trolled quasi-statically. Since the system as whole
is allowed for an overall quasi-static damage prop-
agation, it may be interpreted to be equivalent to
CMOD controlled experiments as in Reference
(Rots et al. 2006) which involve a unique damage
process zone. In case of multiple cracks developing
in the system, SLA does not control a unique dam-
age process zone as in a CMOD experiment, and
therefore may incorrectly decrease it.

4 CONSTITUTIVE MODELLING
DEVELOPMENTS

4.1 Total strain based smeared cracking models

4.1.1 Fixed crack model
The Fixed Crack Model (FCM), a type of total strain
based smeared cracking model allows for orthogonal
cracking (e.g. Reference (Feenstra et al. 1998)) and
describes the cracking/crushing that arises in the frac-
ture zone to be smeared over the continuum. It is rather
straightforward to use since it describes the tensile and
compressive behaviour of a material along orthogonal
directions, that are fixed upon crack/crush initiation
governed by the principal stress criterion, with uniaxial
tensile and compressive saw-tooth laws. They are suit-
able for the sequentially linear framework due to the
simplicity, and similar to the 2D plane stress version, in
a 3D stress state as soon as the principal stress violates
the allowable strength at an integration point in tension
or compression, the isotropic stress-strain relation σ =
Dε transforms into a 3D orthotropic relation as σ nst =
Dnstεnst , and the cracked coordinate system denoted
by nst is fixed along the directions of the principal
stresses. A simple Rankine type failure surface is used
to initiate damage for tension or compression failures
in the fixed crack set-up. The primary principal stress
direction’sYoung’s modulus and strength are damaged
according to the uniaxial saw-tooth law of the appro-
priate failure mode. In the event that normal stresses
in the orthogonal direction (secondary) violates the
corresponding allowable strength, caused by stress
rotations or redistribution of stresses or application of
another load non-proportionally, damage is introduced
in that direction similarly. So every integration point

essentially requires three uniaxial saw-tooth laws each
for tension and compression.

Figure 6. The change in isotropic to orthotropic formulation
(nst crack coordinate system) upon damage initiation in a
fixed crack framework for 3D stress states.

Furthermore, the model uses the crack band
approach proposed by Bazant and Oh (Bažant and
Oh 1983), which states that fracture energy is spread
over the cracked area characterised by a certain crack
band length h, to ensure that the constitutive curve
depends on the size of the crack band. This, therefore,
triggers the energy consumed due to smeared crack-
ing in the FCM to be mesh independent. Alternative
projection based crack band approaches are also avail-
able (Oliver 1989; Slobbe et al. 2013; Volokh 2013)
but have been sparsely used in the SLM set-up. The
shear behaviour is represented using a variable shear
retention function that reduces with increasing dam-
age in normal directions of the cracked/crushed plane
(Slobbe et al. 2012).Also, the Poisson’s ratio is reduced
at the same rate as the associated Young’s modulus.
The orthotropic degradation i.e. the crux of the fixed
crack set up necessitates the simultaneous reduction
of Poisson behavior during damage to avoid spurious
lateral cracking/crushing. Furthermore, this yields a
favourable symmetric reduced stress-strain relation-
ship in which the orthotropic degradation is solely
dependent on the reduced moduli of elasticity. In the
current framework, immediately upon violation of the
allowable strengths either along the maximum or min-
imum principal stress direction, the transition from an
isotropic to orthotropic formulation is made, and the
3D orthogonal fixed crack system (nst) is established.
Alternatively, the fixing of the secondary and tertiary
directions of the crack system could be postponed
until failure in the secondary direction, due to vio-
lation of the allowable strength by the principal stress
(computed anew) in that direction. This is a more real-
istic representation of the multi-directional cracking
phenomenon in comparison to the simplified former
approach.

4.1.2 Elastic-brittle fraction model
Within a Rotating Crack Model (RCM), the crack
directions co-rotate with the principal stress directions
such that the development of spurious stresses due to
the fixed cracking planes is avoided. In the sequen-
tially linear set-up several researchers tried to envisage
a RCM compatible to the event-by-event approach.
Since only update of one integration point at a time is
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allowed, whilst the RCM requires the crack directions
of all cracked integration points to be updated during
each event; and furthermore the rotation of the prin-
cipal stresses and strains is non-linearly related to the
load multiplier (Vorel & Boshoff 2015); several par-
tial rotating crack models were proposed (Cook et al.
2018; Slobbe 2010; Vorel & Boshoff 2015).

Hendriks and Rots (Rots & Hendriks 2015) devel-
oped the Elastic-brittle fraction approach in order
to simulate the effects of rotational cracking within
sequentially linear analysis; and is also essentially a
partial rotating crack model. This model divides each
element in a set of N parallel fractions, each of which
is elastic-perfectly brittle with tensile strength, stiff-
ness and thickness chosen appropriately to represent
the continuum’s constitutive law. The total behaviour
is found by the superposition of the stresses and strains
of the perfectly brittle fractions, all of whose strains
are the same (refer Figure 7).

Each fraction, denoted by the subscript k , essen-
tially is isotropic to begin with and as soon as the
principal stress violates the allowable strength at an
integration point, the isotropic stress-strain relation
σ k = Dkε transforms into an orthotropic relation as
σ k ,nt = Dk ,ntεk ,nt with nt denoting the fixed cracked
coordinate system. The fraction is fully cracked but
still retains strength in the tangential direction which
can also be damaged upon rotation of stresses. Once
the fraction is lost, the next layers are damaged and
the model thereby describes softening as a grad-
ual reduction of the cross-sectional area, which is
physically in accordance with the micro-cracking coa-
lescing to form a macro-crack as in the fictitious crack
model (Hillerborg et al. 1976). The superposition of
fixed crack fractions results in a rotating effect of
the crack as shown in Figure 7. Since the fractions
may also be seen as sublayers, the model is alter-
natively referred to as the sublayer model. A recent
study (Bresser 2019) shows that the fraction model
consistently exhibits sharper crack localisation, lesser

Figure 7. Schematic representation of the elastic per-
fectly-brittle fraction model.

stress-locking, generally more flexible behaviour for
several experimental plain-concrete benchmarks, and
sometimes overcomes bifurcations that may be missed
with SLA using the FCM. The approach was also
extended to 3D fractions in the same study (Bresser
2019) with appreciable results.

The fraction model is similar to the approaches
of Slobbe (Slobbe 2010) and Vorel (Vorel & Boshoff
2015) in the sense that only the critical point under-
goes crack rotation but there are differences. Slobbe’s
approach differentiates damage and crack rotation
as two different events, while the fraction model
introduces crack rotation with each damage. In com-
parison to Vorel’s approach which explicitly allows
for redistribution by gradual release of forces due to
damage (avalanche of ruptures using the force-release
approach), the redistribution in the fraction model
is implicit with each event. The fraction model also
shows similarities with the approach of Cook et al.
(Cook et al. 2018) in the sense that both approaches
allow for multiple cracking planes per integration
point. The difference lies in the fact that the orien-
tation of the cracking planes are predefined in Cook’s
approach while each of the fractions in the fraction
model can have their own cracking direction depend-
ing on the principal stress. More recently, Liu (Liu
2018) proposed the sub-element method which is fun-
damentally similar to the fraction model but is applied
for lattice problems.

4.1.3 Illustrations
The fixed-crack and elastic brittle fraction models are
exemplified here using a 3D non-planar curved crack
propagation problem with the aid of the skew-notched
beam in a three-point bending test. The skew-notched
beam has been used by others as a benchmark test to
verify 3D (often XFEM related) numerical algorithms
(Ferté et al. 2016; Jäger et al. 2008). The geometry, FE
model and its associated parameters and other details
can be found in the studies of Pari et al. (2018), Bresser
(2019).

5 types of simulations are run. the first two are with
the fixed crack and fraction models using SLA, and the
rest are all nonlinear finite element analyses (NLFEA)
based on the choice of variable or constant shear and
Poisson reductions. The force-displacement curves of
the simulations are shown in Figure 8. NLFEA with
the FCM and damage based Poisson’s ratio and shear
reduction shows very good agreement with SLA with
FCM. The constant Poisson’s ratio NLFEA is not in
line with the theoretical framework of fixed crack
framework of SLA and therefore clear differences are
found between both NLFEA and SLA. Since Pois-
son’s ratio is not reduced during damage increments,
larger spurious stresses develop within the crack plane,
ensuring quicker application of damage increments
and therefore, the post-peak load reduces relatively
fast as well. In the NLFEA with the RCM, a more flex-
ible response is found compared to SLA with FCM.
The load displacement curve is qualitatively similar to
the curve of the fraction model: the same peak load
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Figure 8. Geometry of the skew-notched beam in a
three-point bending test with all dimensions in mm (left), and
Load F versus mid-span displacement for the skew-notched
beam for SLA with the FCM, the fraction model and NLFEA
with FCM and RCM.

is predicted and both analyses seem to converge to
approximately the same load. However, as has already
been discussed in previous case studies, the fraction
model is not able to exactly match with the RCM due
to previously cracked fractions (with outdated crack
angles) contributing to the total behaviour. To that end,
it is a remarkable finding that the fraction model for
this case results in an even more flexible response
than the RCM, indicating the presence of even less
spurious stresses, where one would contrarily expect
a somewhat stiffer response; which in turn is due to
pronounced crack rotations at the top of the crack path
(Bresser 2019). It can however be concluded that better
agreement with the RCM is encountered by invoking
the 3D implementation of the fraction model.

A curved three-dimensional crack pattern is
observed for all methods: Starting from the front side,
the straight vertically directed crack gradually trans-
fers to an inclined curved crack at the rear side of the
beam, see Figure 9. Furthermore, starting from the
bottom side of the beam, the crack gradually straight-
ens towards the top, rotating from the notch direction
towards the direction of the line load. In this way,
a non-planar 3-dimensional crack path is obtained
above the inclined notch. Furthermore, the crack strain
plots of NLFEA FCM and SLA FCM are very simi-
lar as shown in Figure 9. Although FCM results in a
slightly wider localization band, both exhibit the same
main crack path and a U-turn type of behaviour at

Figure 9. Comparison of crack paths FCM and RCM of
NLFEA with regular SLA and the elastic-brittle fraction
model in vertical slicing planes at 1 and 119 mm from front
side for a mid-span displacement of 1.2 mm.

the top, troubling further crack propagation. The simi-
larity also explains the excellent agreement between
the load-displacement curves of NLFEA FCM and
SLA FCM. The crack strain plots of NLFEA RCM
and the fraction model also show similarities. The
fully developed crack paths show an almost one-to-one
agreement. Also, the additional crack zone next to the
notch is similarly captured by both analyses. However,
as becomes very clear from subfigures (B) and (F) in
Figure 9, RCM results in a wider band of spurious
stresses compared to the fraction model. Apparently,
the SLA-type of procedure restricts the development
of spurious crack paths, explaining the even more flex-
ible behaviour that is obtained by the fraction model
in the load-displacement curve. A possible cause of
this remarkable observation might be that for SLA-
type of procedures, only a single damage increment
is performed at a time, potentially allowing for a cer-
tain degree of self-correction in the next steps, while
for NLFEA, damage increments are performed in any
step anywhere throughout the structure, such that a
complete zone of integration points can enter the spu-
rious regime simultaneously. To this end, it is less
likely for SLA-type of procedures that large zones
of spurious stresses develop. A more thorough study
on the generation of spurious stresses in RCM and
FCM is necessary, especially compared to SLA-type
of analyses.

4.2 Composite interface model

A discretised tension-shear-compression criterion for
2D line interfaces and 3D planar interfaces was also
recently proposed. This discretised composite inter-
face model makes it possible to analyse quasi-brittle
structures in a sequentially linear framework using
predefined interfaces as potential discrete cracks,
shear or crush planes. It is especially suitable for
masonry, with the simplified micro-modelling strategy
separating the continuum as linear bricks and nonlin-
ear interfaces, to simulate cracking-shearing-crushing
failures typical of masonry damage until structural col-
lapse. The model uses a tension gap criterion coupled
with a uniaxial tensile softening law, a compression
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Figure 10. Failure surface for the 3D planar interfaces; and the saw-tooth laws from (a) tension, (b) cohesion and (c)
compression.

cut-off criterion coupled with a compressive parabolic
hardening-softening law, and an uncoupled step-wise
Coulomb friction formulation with cohesion soften-
ing and without dilatancy effects (refer Figure 10).The
model (Pari et al. 2021) was validated using a pushover
experiment of a masonry wall subject to precompres-
sion followed by an in-plane lateral load, and is shown
to ably reproduce the force-displacement curves and
the brittle diagonal shear failure followed by toe-
crushing due to the compressive strut action (refer
Figure 11). Furthermore, the formulation was also
extended to the 3D case of planar interfaces, and val-
idated using the same case study thereby enabling 3D
masonry applications with SLA (Pari et al. 2021). The
extension to include dilatancy and a more advanced
cap-type model for compression are features to be
investigated in the future.

5 SOLVER IMPROVEMENTS

Structural simulations of SLA were extremely compu-
tationally intensive. Computational intensity has been
pointed out previously to be one of SLA’s major bot-
tlenecks (Alnaas 2016; Al-Sabah & Laefer 2016; Van
de Graaf 2017; Vorel & Boshoff 2015). For instance,
considering an SLA simulation to predict tensile fail-
ure in an FE model with x truss elements, there can
be a maximum of x × y × z linear analyses or damage
events, where y & z correspond to the number of inte-
gration points per truss element, and the number of
saw-teeth in tension per integration point respectively.
This would become 2 or 3 times larger in case of 2D
or 3D elements considering the appropriate directions
of the orthogonal smeared cracking model, and possi-
bly even more if compression nonlinearities were to be
considered. This indicates the need for an extremely
high number of linear analyses (each corresponding to
a unique damage location) to bring about an equivalent
nonlinear response as in traditional NLFEA (damaging
multiple locations). A departure from the event-by-
event nature of SLA into multiple failures per analysis
could be considered, but the robustness may be lost
in the process in attempting to establish equilibrium
using internal iterations.

Under such a premise where the event-by-event
nature of SLA is not compromised, the time taken
to solve the system of linear equations using direct
solvers was targeted, which was the most dominant part
of the computing time in each SLA step. Since only one

Figure 11. Force-displacement curves from SLA and
Force-Release method compared to the experiment; and the
damage plots of SLA simulation.

element is effectively damaged at a time, the system of
linear equations to be solved actually changes locally
between these analyses. Traditional direct solution
techniques do not exploit this property and calculate
a rather expensive stiffness matrix factorisation every
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step, resulting in high computational times. This led
to the proposal of two tailor-made solvers (Pari et al.
2020) which efficiently use the favourable event-by-
event approach of SLA. Both solvers factorise the
global stiffness matrix intermittently at only a certain
number of linear analyses.The solution for the remain-
ing intermediate linear analyses is found for low-rank
corrections to the factorised stiffness matrix, which is
possible using additional matrix-vector manipulations.
The first is a direct solver based on the Woodbury-
Identity matrix to find the inverse of an arbitrary rank-r
corrected matrix. The second is a Preconditioned Con-
jugate Gradient (PCG) solver that uses the factorised
stiffness matrix as the preconditioner for the remaining
analyses. When the elapsed time in these intermediate
analyses grows, a restart step is prescribed wherein a
new factorisation is calculated. These points of restart
are deduced such that the total analysis times are min-
imised. The performance of the solvers are analysed
using a 2D and 3D case study, including additional
saw-teeth and mesh sensitivity studies. Both solvers
perform better than a traditional direct solver like
Intel’s Parallel Direct Sparse Solver (Pari et al. 2020),
especially for large 3D problems, and the Woodbury-
Identity based direct solver is more efficient among
the two. Additionally, some branches of the work-
flow of SLA are now computed in parallel, using
multi-threading.

6 CONCLUSIONS

This article presents the recent advancements made
in the realm of Sequentially Linear Methods, towards
the topics of non-proportional loading, constitutive
modelling and computational efficiency. The class of
methods has been extended to 3D structural applica-
tions involving cracking, crushing, and shear failures,
both in a smeared and discrete manner. The method
in general has also been made relatively efficient.
Nevertheless, approach still needs to be extended on
important topics such as crack-closure effects, which
requires a dedicated event & an algorithm and is
possibly difficult to incorporate in the total frame-
work. The computational intensity could be further
addressed using smart damage tracking algorithms
that distinguish the potential elements to be damaged;
or a departure to the incremental SLA which needs
investigation on constitutive and performance aspects.
Furthermore, topics including influence of tension-
compression interactions for damage initiation and
propagation in 2D and 3D stress states, and the exten-
sion to anisotropic failure surfaces are important from
a constitutive modelling aspect.
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ABSTRACT: For concrete, the dependence of the creep strain rate on the acting stress under high stress levels is
nonlinear. Furthermore, very high stress levels may lead to a growth of microcracks resulting in material failure.
For the realistic life time assessment of creep sensitive concrete structures by means of numerical simulations,
the appropriate description of nonlinear creep is crucial. However, many material models developed for concrete
focus on either time-dependent behavior, restricted to linear creep, or nonlinear short-term material behavior.
This is the motivation for an extended damage-plasticity model, aiming at a unified and computational efficient
approach for representing the highly nonlinear time-dependent behavior in large-scale finite element simulations.
Well established approaches for modeling the evolution of material properties, inelastic deformation, damage,
creep and shrinkage serve as basis for considering nonlinear creep and material failure due to creep.

1 INTRODUCTION

For the detailed study of the mechanical long-term
behavior of concrete structures by means of numeri-
cal simulations the appropriate representation of the
creep behavior is of vital importance: Whereas for
moderate stress levels the creep strain rate is approx-
imately proportional to the acting stress, for higher
stress levels the relation between the creep strain rate
and the acting stress becomes nonlinear. Furthermore,
very high sustained stress levels lead to an increase of
the creep strain rate due to growth of microcracks, pos-
sibly resulting in material failure. Even though many
material models have been developed for describing
either linear creep behavior or the evolution of mate-
rial damage of concrete under short-term loading, only
few focus on nonlinear creep and the coupling of creep
and material damage in the literature, cf. e.g. Mazzotti
& Savoia (2003); Boumakis, Di Luzio, Marcon, Vorel,
& Wan-Wendner (2018); Ren, Wang, Ballarini, & Gao
(2020).

Currently, a material model for concrete, focusing
on the appropriate representation of nonlinear creep
and damage due to high sustained degrees of mate-
rial utilization, is developed (Dummer, Neuner, &
Hofstetter 2022). In this contribution some features
of the model are investigated and its time-dependent
response is compared to experimental results of the
creep tests in moderate uniaxial and multiaxial com-
pression by Kim, Kwon, Kim, & Kim (2005) and the
creep tests in moderate and high uniaxial compression
up to failure by Rüsch (1968).

2 CONSTITUTIVE MODEL

The model is based on the well-known damage-
plasticity model by Grassl & Jirásek (2006), the Solidi-
ficationTheory by Bažant & Prasannan (1989) and the
B4 model by Bažant, Jirásek, Hubler, & Carol (2015).
The nonlinear stress-strain relation is expressed in rate
form as

σ̇= (1− ω) ˙̄σ= (1− ω) C : ε̇el

(1)
= (1− ω) C :

(
ε̇− ε̇p − ε̇ve − ε̇f − ε̇dc − ε̇shr

)
,

in which σ denotes the nominal stress tensor, i.e. force
per total area, σ̄ the effective stress tensor, i.e., force per
undamaged area, ω the isotropic damage variable and
C the fourth order instantaneous elastic stiffness ten-
sor. The total strain tensor ε is decomposed additively
into the instantaneous elastic strain εel, the plastic
strain εp, the viscoelastic strain εve, the viscous strain
εf, the drying creep strain εdc and the total shrinkage
strain εshr.

The evolution of the shrinkage strain εshr is
described by means of the B4 model proposed by
Bažant, Jirásek, Hubler, & Carol (2015). Therein, the
evolution of the total shrinkage strain εshr is assumed
to be the sum of the autogenous shrinkage strain εshr,au

and the drying shrinkage strain εshr,d. The autogenous
shrinkage strain εshr,au is described as

εshr,au(t)= I εshr,au
∞

[
1+

( τshr,au

t

)α]rt

(2)
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in which εshr,au∞ is the ultimate autogenous shrinkage
strain, τshr,au is the autogenous shrinkage halftime, and
α and rt are parameters depending on the concrete
composition and on the cement type.

The evolution of the drying shrinkage strain εshr,d is
described as

εshr,d(t)= I εshr,d
∞ kh tanh

√
〈t − t0〉
τshr,d

, (3)

in which 〈•〉 are the Macauly brackets. In Eq. 3,
εshr,d∞ denotes the ultimate drying shrinkage strain, kh a
parameter depending on the ambient relative humidity
henv, t0 the start of drying and τshr,d the drying shrinkage
halftime.

The evolution of the instantaneous elastic strain and
the basic creep strain are represented by the Solidifica-
tion Theory proposed by Bažant & Prasannan (1989),
generalized to three dimensional stress states.Thereby,
the evolution of the instantaneous elastic strain εel, the
viscoelastic strain εve and the viscous (flow) strain εf

are defined as

ε̇el= q1 Dν : ˙̄σ(t), (4)

ε̇ve= F(σ̄, t)

v(t)

∫ t

0
�̇(t − t′) Dν : dσ̄(t′), (5)

ε̇f= q4
F(σ̄, t)

t
Dν : σ̄(t), (6)

in which Dν denotes the unit compliance tensor
(Jirásek & Bažant 2002). The evolution of the vis-
coelastic strain, cf. Eq. (5), is formulated in terms of
the the solidified volume function v(t) and the compli-
ance rate of the hydrated constituent �̇. The solidified
volume function

v(t)=
[(
λ0

t

)m

+ q3

q2

]−1

, (7)

controls the time-dependent aging of the material.
Therein, m and λ0 are material parameters with default
values m= 0.5 and λ0= 1 d according to Bažant &
Prasannan (1989). The anti-derivative of the compli-
ance rate �̇ in Eq. (5) is defined as

�(t − t′)= q2 ln
(

1+
(

t − t′

λ0

)n)
, (8)

in which n is the exponent of the log-power law. In Eqs.
(4) and (6) to (8), q1, q2, q3 and q4 are the compliance
parameters.

The evolution of the drying creep strain εdc is
defined as

ε̇dc= q5
F(σ̄, t)

exp (p5H/2)

∫ t

0
�̇d(t, t′, t0) Dν : dσ̄(t′), (9)

in which q5 is the drying creep compliance parameter,
p5H a parameter depending on the cement type and �̇d

the drying creep compliance rate. The anti-derivative
of the drying creep compliance rate is defined as

�d(t, t′, t0)=
√〈

exp
(

b tanh
√
ξ − ξ0

)
− exp

(
b tanh

√−ξ0
)〉

(10)

considering the dimensionless times ξ= (t − t′)/τshr,d
and ξ0= (t0 − t′)/τshr,d, and b= p5H(1− henv).

In order to account for a nonlinear dependence of
the creep strain rates ε̇ve, ε̇f and ε̇dc on the acting
stress, the creep amplification function F(σ̄, t), orig-
inally introduced by Bažant & Prasannan (1989) for
basic creep, is reformulated as

F(σ̄, t)= 1+ acr U (σ̄, t)2, (11)

in which, U (σ̄, t) represents the degree of material uti-
lization, and acr is a parameter for scaling the influence
of the stress level.

The elastic domain is delimited by the time-
dependent generalization of the yield function of the
CDP model by Grassl & Jirásek (2006) as introduced
by Neuner, Gamnitzer, & Hofstetter (2017). It is for-
mulated in terms of three invariants of the effective
stress tensor, i.e., the effective mean stress σ̄m, the
effective deviatoric radius ρ̄ and the Lode angle θ, as

fp(σ̄, qh(αp), t)=
(

(1− qh(αp))
(

ρ̄√
6fcu(t)

+ σ̄m

fcu(t)

)2

+
√

3

2

ρ̄

fcu(t)

)2

+ m0 q2
h(αp)

(
ρ̄√

6fcu(t)
r(θ)+ σ̄m

fcu(t)

)
− q2

h(αp).

(12)

In Eq. (12), r(θ) is a function proposed by Willam &
Warnke (1975) defining the shape of the yield function
in the deviatoric sections, qh denotes the normalized
stress-like internal hardening variable, and m0 is the
friction parameter, defined in terms of the current
material strength parameters, i.e., the uniaxial com-
pressive strength fcu(t), the uniaxial tensile strength
ftu(t) and the equi-biaxial compressive strength fcb(t).
The evolution of the plastic strain εp is described by
means of a non-associated flow rule as

ε̇p= λ̇ ∂gp(σ̄, qh(αp), t)

∂σ̄
, (13)

with the plastic multiplier λ̇ and the plastic poten-
tial function gp according to Neuner, Gamnitzer, &
Hofstetter (2017).

The hydration-dependent evolution of the uniaxial
compressive strength is assumed to follow the relation
by CEB-FIP (2013) as

fcu(t)= f (28)
cu exp

([

1−
√

28

t

]

sf

)

, (14)
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in which f (28)
cu denotes the uniaxial compressive

strength at the material age of 28 days, and sf is a
parameter controlling the time-dependent evolution of
the material strength.

The evolution of the scalar damage variable ω is
formulated in the framework of the gradient-enhanced
continuum theory by means of the exponential soften-
ing law

ω= 1− exp
(−β̄d

)
, (15)

in which β̄d is the nonlocal damage driving variable.
The nonlocal damage driving field of β̄d is defined
implicitly by the screened Poisson equation in terms
of its local counterpart βd as

β̄d − l2∇β̄d=βd. (16)

The evolution of the local damage driving variableβd is
driven by (i) the accumulation of plastic deformation,
and (ii) high sustained degrees of material utilization
for modeling tertiary creep as

β̇d= α̇
(p)
d

εf
+ α̇(cr)

d , (17)

in which α̇(p)
d is an equivalent plastic strain rate mea-

sure, εf is the softening modulus, and α̇(cr)
d is an

equivalent creep strain rate measure related to high
sustained acting stress. For describing the evolution
of material damage due to inelastic deformation by
means of the first term in (17), the equivalent plas-
tic strain rate is defined according to Grassl & Jirásek
(2006). For describing the evolution of material dam-
age due to high sustained acting stress by means of
the second term in (17), for α̇(cr)

d a constitutive law
inspired by the 1D damage model proposed by Bažant
& Jirásek (2018) is employed as

α̇
(cr)
d = 1

τf
U (σ̄, t)nf , (18)

depending on the degree of material utilization U (σ̄, t)
and the material parameters τf and nf.

The degree of material utilization for the constitu-
tive model is expressed in terms of the fully hardened
yield function, cf. Eq. (12), as

U (σ̄, t)= 〈
1+ fp(σ̄, qh(αp= 1), t)

〉=
〈

3

2

(
ρ̄

fcu(t)

)2

+ m0

(
ρ̄√

6fcu(t)
r(θ)+ σ̄m

fcu(t)

)〉

.

(19)

Figure 1 shows the degree of material utilization
U for common stress paths and variable stress inten-
sity, i.e., the ratio of nominal stress σ to the respective
material strength f . While equality of the degree of
material utilization and the stress intensity holds for
uniaxial tension, a nonlinear relation is predicted for
uniaxial and equi-biaxial compression.

Figure 1. Illustration of the degree of material utilization
for different stress intensities and stress paths.

3 INVESTIGATION OF THE MODEL
EXTENSIONS FOR NONLINEAR CREEP

The formulations for (i) the nonlinear dependence of
the creep strain rate on the acting stress, cf. Eq. (11),
and (ii) the evolution of material damage due to creep,
cf. Eq. (18), are investigated using a fictive uniaxial
compressive creep test. For all examples, a uniaxial
compressive stress intensity, i.e., the ratio of the nom-
inal compressive stress to the uniaxial compressive
strength σ/fcu(t′), is assumed at t′ = 28 days and kept
constant throughout the test. The evolution of uniax-
ial compressive strength is taken into account with
sf= 0.25 for normal hardening cement according to
CEB-FIP (2013).

Figure 2 shows the evolution of the creep amplifi-
cation factor F(σ̄, t) considering acr= 1 (solid lines),
acr= 2 (dashed lines) and acr= 3 (dash-dotted lines).
Therein, for an isolated investigation of the nonlinear
creep amplification factor the evolution of damage due
to creep is neglected. It can be seen that for moderate
loading levels, i.e., σ/f (28)

cu ≤ 0.4, the creep amplifi-
cation factor equals approximately 1, resulting in an
approximately linear dependence of the creep strain
rate on the acting stress. For higher loading levels
F(σ̄, t) increases disproportionately. As the load dura-
tion increases, the material strength evolves, and thus,
the degree of material utilization decreases, resulting
in a decreasing creep amplification factor F(σ̄, t).

Figure 2. Evolution of the creep amplification factor F(σ̄, t)
in a uniaxial compressive creep test loaded at t′ = 28 days
considering acr= 1 (solid lines), acr= 2 (dashed lines) and
acr= 3 (dash-dotted lines).
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Figure 3 shows the time-dependent evolution of
material damage considering an evolving material
strength due to hydration, i.e., aging material behav-
ior with sf= 0.25 (solid lines), and constant material
strength, i.e., non-aging behavior with sf= 0 (dashed
lines). The parameters for the creep damage law, cf.
Eq. (18) are chosen as τf= 0.4 h and nf= 18. It can
be seen that for the non-aging material the damage
variable increases continuously and failure occurs for
all investigated stress intensities after a certain time.
In contrast, if the evolution of material strength is
taken into account, the evolution of material dam-
age is slowed down as the material strength evolves.
For the chosen parameters the model predicts failure
only for sustained loads higher than σ/f 28

cu = 0.7 within
the usual life time of concrete structures i.e., approxi-
mately 4× 104 days. This is in line with experimental
observations, cf. e.g. Rüsch (1968).

Figures. 4 and 5 illustrate the influence of the mate-
rial parameters τf and nf on the predicted failure time,

Figure 3. Evolution of the damage variable ω in a uniax-
ial compressive creep test loaded at t′ = 28 days considering
sf= 0.25 (solid lines) and sf= 0 (dashed lines).

Figure 4. Influence of parameter τf on the predicted fail-
ure time in a uniaxial compressive creep test loaded at
t′ = 28 days considering sf= 0.25 (solid lines) and sf= 0
(dashed lines).

considering a constant material strength, i.e., non-
aging behavior, and an evolving material strength, i.e.,
aging behavior, respectively.

For investigating parameter τf in Figure 4, a constant
creep damage exponent nf= 18 is assumed. It can be
seen that an increase of τf yields an increase of the
failure time.

For investigating parameter nf in Figure 5, a
constant creep damage time parameter τf= 0.4 h is
assumed. In contrast to the influence of the creep
damage time parameter τf, a change in nf yields a dis-
proportionately higher increase of the predicted failure
time with a decreasing initial stress intensity.

Figure 5. Influence of parameter nf on the predicted fail-
ure time in a uniaxial compressive creep test loaded at
t′ = 28 days considering sf= 0.25 (solid lines) and sf= 0
(dashed lines).

4 NUMERICAL IMPLEMENTATION FOR
FINITE ELEMENT SIMULATIONS

For the present constitutive model the screened Pois-
son equation Eq. (16), which defines the nonlocal
damage driving field, and the quasi-static equilibrium
equation

∇σ + f = 0, (20)

with f denoting the body forces, form a fully coupled
system of partial differential equations.

The weak forms of the governing equations, cf.
Eqs. (16 20, are discretized in space by finite elements
and subsequently discretized in time. The solution of
the fully coupled, time-dependent, quasi-static prob-
lem is then computed by means of an incremental-
iterative Newton-Raphson scheme employing full
algorithmic tangent operators. This way, quadratic
convergence is achieved in the global iterative solution
procedure.

At integration point level, the evolution of the
plastic strain is computed by means of the fully
implicit return mapping algorithm. In order to achieve
quadratic convergence and stability within the return
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mapping algorithm, the Jacobian of the local prob-
lem is computed using automatic differentiation (Leal
(2018)). The evolution of the viscoelastic strain and
drying creep strain is computed by means of step-by
step integration of two Kelvin chains which corre-
spond to the Dirichlet series approximations of the
respective compliance functions, cf. Eqs. (8 and 10.
The determination of the coefficients in the Dirichlet
series is based on an approximation of the continu-
ous retardation spectrum of the compliance function.
In this context, for a k-th order approximation of the
continuous retardation spectrum, the k-th derivative of
the compliance function is required. Especially for the
approximation of the drying creep compliance func-
tion higher order derivatives are required for sufficient
accuracy. Due to the fact that the manual derivation of
Eq. (10) is laborious and error-prone, automatic differ-
entiation is employed for computing the higher order
derivatives.

The constitutive model is implemented within the
framework of the Marmot material modeling tool-
box (Dummer, Mader, Neuner, & Schreter 2018)
which is based on the C++ programming language.
In order to achieve high computational efficiency, the
Eigen library (Guennebaud, Jacob, et al. 2010) is
used for linear algebra computations. Employing the
Marmot framework, the constitutive model can be used
in in-house finite element codes directly as well as
in the finite element software Abaqus (2015) as a
user-defined subroutine.

5 CALIBRATION AND VALIDATION

The constitutive model is calibrated and validated by
means of numerical simulations at material point level
using experimental data provided by (i) Kim, Kwon,
Kim, & Kim (2005) for moderate uniaxial and multi-
axial compression, and (ii) Rüsch (1968) for moderate
and high uniaxial compression up to failure.

Basic Creep in Moderate Multiaxial Compression

Kim, Kwon, Kim, & Kim (2005) studied the creep
behavior of concrete in multiaxial compression on
sealed cubic specimens with an edge length of 200 mm
considering three different concrete compositions. For
the present numerical study, the mixture CI is cho-
sen. The specimens were loaded at the material age of
28 days with the loading scheme outlined in Table 1.
The strain was measured using embedded gauges with
a measurement length of 100 mm.

Since the uniaxial test U2 exhibits the highest
loading, corresponding to only about 37% of the
uniaxial compressive strength at loading of f 28

cu =
26 MPa, nonlinear creep behavior is not expected in
this experiments.

Hence, the capability of the constitutive model
to represent approximately linear creep behavior
for moderate uniaxial and multiaxial stresses will
be demonstrated. In lack of experimental data for

Table 1. Loading conditions of the creep tests carried out on
the concrete mixture CI by Kim, Kwon, Kim, & Kim (2005).

acting stress
designation σ1 σ2 σ3

(MPa) (MPa) (MPa)

U1 –4.90 – –
U2 –9.80 – –

B1 –4.90 –0.98 –
B2 –4.90 –1.96 –
B3 –9.80 –1.96 –

T1 –4.90 –0.49 –0.49
T2 –4.90 –0.98 –0.98
T3 –4.90 –1.96 –1.96
T4 –4.90 –1.96 –0.98

calibrating the creep amplification factor for nonlinear
creep acr, it is assumed acr= 7.6 as identified from the
creep experiments by Rüsch (1968) later on. For the
evolution of material strength sf= 0.25 is assumed for
normal hardening cement according to the recommen-
dation by CEB-FIP (2013).As reported in Kim, Kwon,
Kim, & Kim (2005), the effective Poisson’s ratio is
chosen as ν= 0.17. The compliance parameters q1 and
q4 are estimated according to Bažant, Jirásek, Hubler,
& Carol (2015). The parameters n, q2 and q3, which
control the aging viscoelastic behavior, are calibrated
by means of a nonlinear least square optimization pro-
cedure using experimental data for the axial strain of
the uniaxial creep test U2. The parameters obtained by
this calibration procedure are summarized in Table 3.

Figure 6 shows a comparison of the experimental
results and the numerical predictions by the constitu-
tive model. Except for the uniaxial test U2, which was
used for model calibration, all numerical simulations
can be viewed as prediction. Accordingly, it is con-
cluded that the predictions of the model are in very
good agreement with the experimental data reported
by Kim, Kwon, Kim, & Kim (2005).

Creep at drying conditions up to failure

Rüsch (1968) studied the evolution of deformations of
dog-bone like unsealed concrete specimens in mod-
erate and high sustained uniaxial compression for
different concrete compositions. For the present inves-
tigation, the uniaxial creep tests of the set denoted as
S3 are chosen.

Table 2. Applied compressive stress in the uniaxial creep
tests of set S3 by Rüsch (1968). The * and † indicate tests
used for model calibration.

t′ applied compressive stress in MPa

20 d –16.9* –18.5 –20.2 –21.9 –24.6
56 d –16.5 –19.8 –23.1 –26.5† –29.8 –37.8
170 d –23.1 –26.5* –29.8 –33.1*† –37.2 –39.4
600 d –29.7 –31 –32.1 –33.1 –33.5 –34.7 –40.9
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Figure 6. Comparison of the experimental results, provided
by Kim, Kwon, Kim, & Kim (2005), with the respective
numerical predictions for the evolution of the principal strain
components ε1 (rectangles and solid lines), ε2 (circles and
dashed lines) and ε3 (triangles and dotted lines).

The tests loaded at the material age of 56 days
and 170 days are used for evaluating the capabilities
of the constitutive model for representing nonlinear
creep and failure due to creep by means of numerical
simulations at material point level.

The calibration of the constitutive model is per-
formed employing the following strategy:

(i) The evolution of the uniaxial compressive
strength is calibrated by means of the uniaxial
compression tests on cylinders at 14 days and
28 days material age.

(ii) The parameters for autogenous shrinkage and dry-
ing shrinkage are estimated based on the concrete
composition and the experimental data from the
accompanying shrinkage tests on unsealed spec-
imens according to Bažant, Jirásek, Hubler, &
Carol (2015).

(iii) The parameters q1 and q4 are estimated according
to Bažant, Jirásek, Hubler, & Carol (2015) based
on the provided Young’s modulus at the material
age of 28 days of E28= 29.5 MPa and the concrete
composition.

(iv) The parameters n, q2, q3, q5 and acr are calibrated
by means of a nonlinear least-square optimization
using the tests marked with * in Table 4.

(v) The creep damage parameters in Eq. (18) are cho-
sen as nf= 16.5 and τf= 0.77 h, for representing
the failure times of the creep tests marked with †

in Table 4.

The parameters resulting from this calibration pro-
cedure are summarized in Table 4.

Figures. 7 and 8 depict the experimental results for
the tests loaded at 56 days and 170 days respectively,
together with the response of the calibrated consti-
tutive model. Excellent agreement of the numerical
simulations with the experimental results can be seen
for all tests.

Figure 7. Evolution of the total axial strain in uniaxial com-
pressive creep tests loaded at the concrete age of 56 days:
experimental data provided by Rüsch (1968) together with the
predictions by the calibrated material model. The † indicates
the test used for model calibration.
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Table 3. Material parameters used for the uniaxial and multiaxial creep tests by Kim, Kwon, Kim, & Kim (2005).

ν n q1 q2 q3 q4 acr sf f (28)
cu

(-) (-) (1/MPa) (1/MPa) (1/MPa) (1/MPa) (-) (-) (MPa)

0.17 0.21 29.2× 10−6 28.5× 10−6 16.4× 10−6 10.2× 10−6 7.6 0.25 26

Table 4. Material parameters for the uniaxial creep tests by Rüsch (1968).

q1 q2 q3 q4 q5 acr εshr,d∞ τshr,d εshr,au∞ τshr,au sf f (28)
cu

(1/MPa) (1/MPa) (1/MPa) (1/MPa) (1/MPa) (-) (‰∞) (h) (‰∞) (h) (-) (MPa)

23.7× 10−6 118× 10−6 19.4× 10−6 9.3× 10−6 420× 10−6 7.6 –0.627 2215 –0.065 72.7 0.55 29.6

Figure 8. Evolution of the total axial strain in uniaxial com-
pressive creep tests loaded at the concrete age of 170 days:
experimental data by Rüsch (1968) together with the predic-
tions by the calibrated material model. The * and † indicates
tests used for model calibration.

6 SUMMARY AND CONCLUSIONS

An extended material model for concrete with a novel
formulation for modeling nonlinear creep and the
evolution of damage due to high sustained degrees
of material utilization was investigated. In particu-
lar the determination of the degree of material uti-
lization, the influence of evolution of the material
strength, and the influence of the material parameters
on the nonlinear creep behavior and damage due to
creep were discussed. Finally, the experimental results
provided by Kim, Kwon, Kim, & Kim (2005) and
Rüsch (1968) were compared to the predictions by
the calibrated constitutive model. It was shown that
excellent agreement of the model prediction and the
experimental results is obtained for various loading
conditions.
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3D DEM simulations of fracture in reinforced concrete beams

M. Nitka & J. Tejchman
Faculty of Civil and Environmental Engineering, Gdańsk University of Technolog, Gdańsk, Poland

ABSTRACT: The paper deals with the behaviour of a reinforced concrete beam without vertical reinforcement
under three-point bending. The beam failed in shear due to over-reinforcement. The experiments were performed
at the laboratory scale using a micro-CT system. They were next reproduced in numerical analyses using the 3D
discrete element method (DEM). The 4-phase model of concrete was used with meso-strucure, based directly on
micro-CT images. A satisfactory agreement between experimental and numerical outcomes was achieved with
respect to the location and direction of a critical macro-crack.

1 INTRODUCTION

Quasi-brittle multiphase materials, such as concrete,
are largely used in engineering structures. Concrete
is generally referred to as a strongly heterogeneous
and discontinuous material (Königsberger et al. 2018;
Pichler & Hellmich 2011; Skarżyński & Tejchman
2013). It may be considered at the meso-scale as
a composite material wherein four key constituents
(phases) may be isolated: aggregate, cement matrix,
interfacial transition zones (ITZs) between aggre-
gates and cement matrix and macro-pores. The meso-
scopic material heterogeneity has a pronounced influ-
ence on complex crack growth trajectory paths at
the macro-scale, composed of various macro-crack
branches, complementary cracks and micro-cracks.
The mechanical concrete performance depends on
material properties of all its constituents and their
mutual interaction which makes the modelling of the
crack formation and development at the meso-scale
a real challenge in terms of efficiency and accuracy.
The optimization and safety assessment of structures
composed of quasi-brittle materials (like concrete)
requires, however, a comprehensive understanding of
the initiation, formation and propagation of micro- and
macro-cracks. Recently, great efforts were made to
accurately and efficiently capture the failure behaviour
(damage and fracture) of concrete structures at the
aggregate level by meso-scale models.The meso-scale
behaviour of concretes may be modelled with continu-
ous (e.g. Gitman et al. 2008; Kim &AbuAl-Rub 2011;
Shahbeyk et al. 2011; Skarżyński & Tejchman 2010;
Zhou & Chen 2019) and discontinuous models (Yang
et al. 2009, Su et al. 2010, Wang et al. 2016, Trawin-
ski et al. 2016, 2018) within continuum mechanics
and discrete models, including lattice models (e.g.
Cu-satis et al. 2011; Herrmann et al. 1989; Karavelić
et al. 2019; Kozicki & Tejchman 2007, 2008; Lil-
liu & van Mier 2003; Pan et al. 2018; Schlangen &

Figure 1. Geometry of RC beam (Skarżyński & Tejchman
2021).

Gar-boczi 1996; Šavija et al. 2019), interface models
based on fracture mechanics (Carol et al. 2001; López
et al. 2008) and particulate discrete models (e.g. Donze
et al. 1999; Dupray et al. 2009; Groh et al. 2011; Hentz
et al. 2004; Krenzer et al. 2019; Nguyen et al. 2019;
Nitka & Tejchman 2018, 2020; Rangari et al. 2018;
Skarżyński et al. 2015).

The main objective of the current paper is to clar-
ify the usefulness of the discrete element method
(DEM) for studying a fracture pattern in reinforced
concretes under 3D conditions and 2) to achieve a
better insight regarding micro- and macro-cracks at
the mesoscopic level. The DEM calculations were
carried out for one RC beam under three-point bend-
ing without vertical reinforcement that was tested
in experiments (Skarżyński & Tejchman 2021). The
beam-meso-structure was assumed, based on micro-
CT images. The 3D particulate discrete element model
YADE was employed that was developed at the Uni-
versity of Grenoble (Kozicki & Donze 2008; Šmilauer
& Chareyre 2011). As compared to mesoscopic con-
tinuum calculations, DEM is able to simulate fracture
from the beginning of deformation since it possesses
strongly diverse local failure criteria. It does not also
need material softening to be imposed.
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2 OWN EXPERIMENTS

The experiments were carried out on a RC beam under
three-point bending without vertical reinforcement
(length of 80 mm, span length of 60 mm, cross-section
of 40×40 mm2 and shear span ratio a/D= 0.75, Fig-
ure 1), composed of round aggregate particles (the
maximum diameter dmax = 16 mm and mean diame-
ter d50= 2 mm) (Skarżyński & Tejchman 2021). The
effective height was D= 30 mm. The average uniaxial
compressive strength of concrete was fc= 49.75 MPa,
mean tensile strength during bending was ft = 3.96
MPa, average Young’s modulus E= 34.8 GPa and
mean Poisson’s ratio ν= 0.21. The initial concrete
porosity was 2.7%. The reinforcement ratio was high
to avoid reinforcement yielding (ρ= 1.8%). As rein-
forcement, a steel bar with a diameter of d = 6 mm)
was used. The laboratory tests were performed with a
displacement-controlled option using the rate of 0.002
mm/min. The beam was continuously scanned using
the micro-CT system SkyScan 1173, mounted on the
Instron 5569 loading machine (Figure 2). It was three
times scanned by micro-CT for different beam deflec-
tions: close to the peak load, after the peak load in a
softening regime and close to the failure. The scan-
ning process lasted 45 minutes. The voxel size was 46
microns and the exposure time was 3000 ms.The beam
was scanned at 180◦ with a single rotation step of 0.6◦.

The beam failure took place in a rapid brittle due
to a diagonal shear crack moving from the support
region through a beam compressive zone towards the
loading point. (Figure 3). The critical shear crack
propagated as the outermost crack. Some secondary
cracks also occurred on the lateral end sides of the
beam just before the beam failure. The maximum
vertical force of the RC beam was F = 10.46 kN,
shear strength was V=F/bD=8.72 MPa and flexural
strength was 14.71 MPa. The beam deflection corre-
sponding to the maximum force was 0.26 mm. The
force-deflection diagram indicated a pre-peak harden-
ing region, softening after the peak load, re-hardening
and re-softening The mean inclination of the critical
shear crack to the bottom was 59o (front side) and 57◦
(rear side). The critical shear crack width in the ten-
sile region non-linearly changed with the beam height
from wcs= 0.19 mm to wcs= 1.25 mm (the average
value was 0.61 mm). The relationship between the
crack volume and beam deflection (based on micro-CT
measurements) was bilinear. The change of the curve
inclination occurred at the peak load region where the
crack volume was about 0.2–0.5%. The final crack
volume was about 3.3%.

3 DEM MODEL

DEM directly simulates meso-structure and thus it may
be used to comprehensively study the mechanism of
the initiation, growth and formation of localized zones,
cracks and fractures that greatly affect the macroscopic
behaviour of frictional-cohesive materials (Skarżyński

Figure 2. General view on non-cracked RC beam and dis-
tribution of aggregates and steel bar in 3D micro-CT images
before loading (Skarżyński & Tejchman 2021).

et al. 2015, Suchorzewski et al. 20118a, 2018b, Nitka
& Tejchman 2018, 2020). It easily represents discon-
tinuities caused by cracking or fragmentation. The
disadvantages are the huge computational cost. For
normal contacts, a linear relationship between forces
and displacements in compression and tension was
assumed with a limit tensile force Fn

min. For tangen-
tial contacts, the bi-linear cohesive-frictional law was
chosen with the initial cohesive force Fs

max. The bond
breakage between elements appeared if the tensile
force/shear force reached their limits. If any contact
between spheres after the failure re-appeared, the cohe-
sion was not considered. The critical cohesive Fs

max
and tensile forces Fn

min were assumed as a function of
the cohesive stress C, tensile normal stress T and ele-
ment radius R.The following five main local material
parameters were needed for our discrete simulations:
Ec (modulus of elasticity of the grain contact), υc
(Poisson’s ratio of the grain contact),µc (inter-particle
friction angle)C (cohesive stress) and T (tensile nor-
mal stress). In addition, the particle radius R, particle
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Figure 3. 3D micro-CT images of RC beam reinforced on
both sides at failure.

mass density ρ and damping parameters αd were
required.

The concrete was numerically modelled as a 4-
phase material composed of aggregate, cement matrix,
ITZs (interfacial transitional zones) and pores. The
aggregate range was assumed to be between 2 mm and
16 mm. The aggregate particles consisted of clusters
of spheres (each sphere had a diameter varying from
0.9 mm to 2.40 mm). The size, shape and position of
each aggregate were taken directly from the real spec-
imen, based on micro-CT images. The macro-voids
(modelled as empty spaces) were also determined with
the aid of micro-CT images (Skarżyński & Tejchman
2021). The cement matrix in the beam was modelled
with spheres of the diameter between 0.50 mm and 2
mm, with an initial porosity of 2.7% (as in the experi-
ment). ITZs were modelled as weaker contact between
aggregates and mortar particles (they had no physi-
cal width). The geometry of the steel bar with ribs
was again transferred from the micro-CT image. The
bar was fulfilled with spherical elements with a diam-
eter 0.25–2 mm that were very tightly packed. The
rib height was 0.85 mm. The contact model between
steel spheres was linear both in compression and ten-
sion (without a plastic region). The contact stiffness
was matched with the global elastic modulus of steel
(about 200 GPa). The concrete parameters were cal-
ibrated with uniaxial compression and tension tests
(Nitka & Tejchman 2018, 2020) (Table 1). The mod-
ulus elasticity of contacts spheres in the steel bar was
small due to their high density (coordination number
was about 100).

Table 1. DEM parameters for different phases in
simulations.

Parameters Cement ITZs Bar

Contact stiffness E [GPa] 11.2 11.2 1.4
kn/ks [−] 0.2 0.2 0.1
friction angle µ [◦] 18 18 7
cohesion C [GPa] 22.5 22.5 100
tensile normal stress T [GPa] 22.5 22.5 100

4 NUMERICAL RESULTS

The numerical beam had the same geometry as in the
experiment. The total number of DEM elements was
about 200 000 (15 000 in the steel bar and 15 600 in
aggregates) (Figure 4).

First, the calculated global force-deflection curve
(F = f(u)) was compared with the experimental one
(Figure 5). The maximum value of the force was simi-
lar as in the experiment, about F = 10,5 kN. The initial

Figure 4. 3D DEM model: a) view on aggregates and steel
bar (based on Figure 2) and b) view on steel bar with ribs.

Figure 5. Macroscopic force-deflection curve: a) exper-
iment (Skarżyński & Tejchman 2021) and b) 3D DEM
calculations.
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Figure 6. Final critical shear macro-crack path in beam
mid-part: a) experiment (Skarżyński & Tejchman 2021) and
b) 3D DEM simulation (white colour corresponds to steel
bar, black colour to aggregates and light grey colour denotes
cement matrix, macro-crack was enlarged 10 times).

Figure 7. Contact forces from 3D DEM calculations in
beam mid- cross-section: a) before peak, b) after peak and
c) at test end (red colour denotes compressive normal forces
and blue colour tensile normal forces (green colour shows
small force values).

global stiffness was also similar. However, the post-
peak behaviour was different. In the DEM analysis,
rapid damage appeared for the deflection u> 0.35 mm.
In contrast, in the experiment, the re-hardening
response occurred for 0.4 mm< u< 0.6 mm. The
maximum normal stress in the bar was about 85 MPa.

The calculated final critical shear macro-crack in
the beam mid-part is shown in Figure 6. Its location
is similar to that in the experiment. The crack prop-
agated along the steel bar and later up to the loading
point. The inclination of the macro-crack was about
45–50◦. The experimental secondary cracks were not
obtained in calculations. In Figure 7, the contact nor-
mal forces between DEM elements are presented in
three steps: before the peak, just after peak and at the
test end (the red colour denotes compressive and blue
colour tensile forces, and the green colour corresponds
to small force values).The strong compressive stresses
appeared below the loading point and at two supports.
Some high compressive forces were also observed
along the beam. Strong interlocking appeared in the
macro-crack (Figures 7b and 7c).

The evolution of broken contacts is shown in
Figure 8. The cracking process already started for
u= 0.15 mm. It was well visible after u= 0.2 mm
(far before the peak force). A pronounced increase

Figure 8. Broken contacts: A) total number and B) percent
content with respect to initial one for beam deflection u (a)
inside cement matrix, b) in ITZs and c) at steel bar surface.
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of broken contact took place after the force peak
u= 0.33 mm. The total number of broken contacts was
more than 100 000. Most contacts were damaged in
the cement matrix (Figure 8Aa), then in ITZs (about
10 000, Figure 8Ab) and the least at the steel bar inter-
face (about 5 000, Figure 8Ac). However, if the percent
of broken contacts was plotted with respect to initial
contacts (Figure 8B), the most damaged region was the
steel bar interface (Figure 8Bc) wherein almost 23%
of all initial contacts were broken. In ITZs 20% of ini-
tial contacts were damaged, and in the cement matrix,
9% were broken.

5 CONCLUSIONS

The DEM model proved to be realistic for describ-
ing fracture in a reinforced concrete beam failing in
shear.The calculated final macro-crack path was found
to be similar to the experimental one. The micro-
cracking process started far before the peak force.
Most contacts were damaged in the cement matrix,
then in ITZs and at the steel bar interface. If the per-
cent volume of broken contacts was considered with
respect to the initial one, the most damaged region
was the steel bar interface. The calculated maximum
vertical force matched the experimental value. How-
ever, a different post-peak behaviour was obtained
in DEM simulations (material softening instead of
re-hardening/re-softening material).
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ABSTRACT: There are many material models dedicated to concrete, but they have their limitations and draw-
backs and FEM software users should be aware of them. The models would give very similar results for simple
loading tests, e.g. uniaxial tension, but they can produce completely different results for the mixed-mode frac-
ture. The authors of this paper have chosen the following tests (at the structural level): Nooru-Mohamed test,
Schlangen test and L-specimen test under quasi-static loads. The tests are performed with two concrete models
implemented in the Abaqus software: Concrete Damaged Plasticity (CDP) and Concrete Smeared Cracking
(CSC). Results of the tests allow to compare the behavior of both models in the mode-I and mode-II of crack
growth. Additionally some important practical issues concerning the FEM modeling are analyzed in the paper:
influence of a type of a FEM mesh – structural vs. random and influence of a finite element type – 4-node vs.
3-node.

1 INTRODUCTION

Proper numerical modeling of concrete behavior
demands use of a carefully checked, robust mate-
rial model. The Abaqus (2012) software offers a few
models, of which two were selected by the authors
of this paper for further analysis. These two models
are: Concrete Damaged Plasticity (CDP) and Concrete
Smeared Cracking (CSC). The authors have already
gained some experience using the CDP model, espe-
cially in analysis of concrete frame corners (Szczecina
& Winnicki 2018 2021). The next stage of the ongo-
ing work is the comparison of behavior of the CDP
and CSC models in three selected numerical tests
for plain concrete. The main goal of the research
was a verification which of the two selected models
“passed” the tests. Furthermore, some important prac-
tical issues were also analyzed, namely influence of a
type of a FEM mesh and influence of a finite element
type.

The three selected tests are: the Nooru-Mohamed
test (Bobiñski & Tejchman 2016; Nooru-Mohamed
1992), the Schlangen test (Gontarz & Podgórski 2020;
Schlangen 1993) and the L-specimen test (Winkler et
al. 2001), all described in details in the next section.
The first andsecond tests allow to observe mixed-mode
fracture (mode-I and mode-II – see the Figure 1).
Results obtained by the authors were compared with
laboratory and numerical results presented in the cited
works.

This paper is the continuation of research presented
at the CFRAC 2019 conference (Szczecina &Winnicki

Figure 1. A general view of two modes of fracture: mode-I
(opening mode) and mode-II (shearing mode).

2019). The authors have also some experience with the
Willam test performedusing a few selected material
models (Wosatko et al. 2020).

2 OVERVIEW OF REPRODUCED TESTS

2.1 Nooru-Mohamed test

In the Nooru-Mohamed test rectangular concrete spec-
imens of different sizes with notches under differ-
ent in-plane load paths were examined. The authors
decided to reproduce numerically the load-path 4, i.e.
axial tension at a constant shear force Ps = 5 kN. In the
first step of the test, a compressive shear force Ps is
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applied to the specimen, which is then accompanied in
the following step by an axial tensile force P till failure.
Geometry and loading of the specimen are shown in
the Figure 2. The main goal of laboratory tests was to
obtain reliable mixed-mode results.

Figure 2. Geometry (dimensions in [mm]) and loading of
the specimen in the Nooru-Mohamed test.

2.2 Schlangen test

In the Schlangen test, single edge notched (SEN)
and double edge notched (DEN) beams with dif-
ferent cross sections and lengths were tested in a
four-point shear. This test is useful for assessing the
performance of concrete models in the simulation of
the mixed-mode cracking (the mode I and mode II).
Schlangen investigated experimentally the influence
of boundary conditions and different materials (ordi-
nary concrete, lightweight concrete, fiber reinforced
concrete) on the fracture process. He also examined the
experimentally obtained fracture energy in the mode
I and mode II tests. The authors decided to repro-
duce numerically the SEN specimen. Geometry of the
SEN specimen tested by Schlangen is shown in the
Figure 3.

Figure 3. Geometry (dimensions in [mm]) of the SEN
specimen in the Schlangen test.

2.3 L-specimen test

The L-specimen test had been performed by Win-
kler et al. (2001) and then reproduced numerically by
Ožbolt et al. (2002), Ožbolt & Sharma (2012) and also
tested in laboratory by Ožbolt et al. (2015). The latter
authors considered a few different loading rates and a
quasi-static load as well. The L-specimen test is often
used to demonstrate the correctness and capabilities of
material models. Moreover, it is also used to show the
problem of mesh sensitivity. Dimensions and loading
of the L-specimen are shown in the Figure 4.

Figure 4. Geometry (dimensions in [mm]) of the
L-specimen.

3 OVERVIEW OF APPLIED MATERIAL
MODELS

Numerical models for concrete can be based on differ-
ent theoretical formulations, e.g. plasticity, damage,
smeared crack approach, discrete cracks (Hillerborg
et al. 1976; Lubliner et al. 1989; Willam et al. 1987).
There are many material models dedicated to concrete,
e.g. Cichoñ & Winnicki 1998, band numerical repro-
duction of laboratory tests for plain concrete using
different models is a current scientific issue, espe-
cially using X-FEM approach (Gontarz & Podgórski
2020) or smeared-cracking modeling(Chen & de Borst
2019).As mentioned before, the authors decided to use
two material models implemented inAbaqus software.
Especially the CDP model (also called “the Barcelona
model”) is very popular and widely applied in numer-
ical simulations of RC structures, e.g. Kossakowski &
Uzarska (2019), Szczecina & Winnicki (2021).

3.1 Concrete Damaged Plasticity (CDP)

The CDP model was theoretically described by
Lubliner et al. (1989, 1990) and developed by Lee
(1996) and Lee & Fenves (1998).

The yield function and the flow potential function
in the CDP model are presented below, respectively:

σ = (1−−d)Del
o : (ε −−εpl) (1)
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F = 1

1−−α
(

q−−3αp+ β(ε̃pl)
〈
σ̂max

〉

− γ
〈
−σ̂max

〉)
−−σc(ε̃pl)= 0 (2)

G=
√
(εσt0 tanψ)2 + q2 −−p tanψ (3)

where σ is a stress tensor, Del
o denotes an initial elas-

ticity matrix, d is a damage parameter, α, β and γ
are parameters of the yield surface, p is a hydrostatic
equivalent pressure stress, q is von Mises equivalent
effective stress, ε is a flow potential eccentricity and
ψ is a dilatation angle. The yield function is presented
in the plane stress state in Figure 5.

Figure 5. Yield function in the plane stress state.

The viscoplastic regularization in the CDP model
can be introduced according to Duvaut-Lions (Duvaut
& Lions 1976) approach. A plastic viscous strain rate
is obtained from the formula (4):

ε̇pl
v =

1

µ

(
εpl − εpl

v

)
(4)

where µ denotesthe relaxation time (the so-called
viscosity parameter in Abaqus software).

The tension behavior of concrete in the post-critical
range in the CDP model can be defined in three dif-
ferent ways: by defining the σ − εin or σ -ucr curves,
or by inputting the fracture energy Gf . The compres-
sive behavior is defined with the σ − ε relation for
the compression of concrete. The proper choice of the
two crucial CDP model parameters, i.e. the dilatation
angle and the relaxation time was discussed in previous
papers (Szczecina & Winnicki, 2016, 2021).

3.2 Concrete Smeared Cracking (CSC)

The CSC model inAbaqus is based on the classical the-
ory of plasticity in compression and the fixed smeared
crack model in tension. It is intended for mono-
tonic loadings under low confining pressures. A crack
occurs when stresses reach the so-called ”crack detec-
tion surface”. The post-failure behavior of cracked
concrete is described with damaged elasticity and the

compressive behavior of concrete is ruled by the com-
pressive yield surface. The plastic flow is associated
and an isotropic hardening is used in the CSC model.

In the CSC model, the strain rate in compression
and in tension is decomposed into elastic and plastic
strain rate. A compression yield surface is described
by the Coulomb-Mohr criterion (5):

Fpl
c = q−−√3aop−−√3τc= 0 (5)

where ao is a constant defining the slope of the surface
and τ c is the yield stress in pure shear. The associated
flow equation in compression is expressed in the form
(6):

dεpl
c = dλc

(

1+ co

(
p

σc

)2
)

· ∂F
pl
c

∂σ
(6)

where co is a constant and λc is the hardening param-
eter in compression.

The uniaxial behavior assumed in the CSC model
is presented in the form of a graphs in the Figures 6a
and 6b:

Figure 6. Uniaxial behavior of concrete in the CSC model:
a) in compression, b) in tension.

The crack detection surface is described with the
formula (7):

Fpl
t = q̂−

(
3−−bo · σt

σ u
t

)
p̂

−
(

3− bo

3
· σt

σ u
t

)
σt = 0 (7)
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and the associated flow equation with the formula (8):

dε
pl
t = dλt · ∂F

pl
t

∂σ
(8)

where bo is a material parameter andλt is the hardening
parameter in tension.

The cracking behavior in the CSC model is based
on the fracture energy. After cracking, components of
stress are rotated to remain in the local coordinates
system defined by the crack orientation vector normal
to the crack faces. The CSC is therefore a fixed crack
model.

4 SETUP OF NUMERICAL TESTS

For all the performed tests, the compressive behavior
of concrete was defined as non-linear according to the
Eurocode 2 (2004) and the tensile behavior of concrete
was defined by inputting the fracture energy Gf . Cal-
culations were performed in plane stress state using
displacement control.

4.1 Nooru-Mohamed test

The Nooru-Mohamed test was performed using 4-
node or 3-node finite elements and a structural or
random mesh. The finite element size varied from 2.5
to 5.0 mm. For the sake of brevity, only a coarse mesh
for all the cases is presented in the Figure 7.

Figure 7. Meshing of the specimen in the Nooru-Mohamed
test: a) 5 mm structural mesh, b) 5 mm random mesh, c) 5
mm structural mesh, d) 5 mm random mesh.

The authors performed also calculations using a
refined mesh (mesh size: 2–5 mm), presented in the
Figure 8.

The properties of concrete and input variables of the
CDP and CSC models are presented in the Tables 1–3.

Figure 8. Refined mesh in the Nooru-Mohamed test.

Table 1. Properties of concrete in the numerical reproduc-
tion of the Nooru-Mohamed test.

Input variable [unit] Value

Compressive strength [MPa] 46.24
Tensile strength [MPa] 3.67
Tangent modulus of elasticity [GPa] 35.00
Poisson’s ratio 0.167

Table 2. Parameters of the CDP model.

Input variable [unit] Value

Fracture energy [Nm−1] 145.55
Dilatation angle [deg] 5.00
Eccentricity [–] 0.10
fb0/fc0 [–] 1.16
K parameter [–] 0.67
Relaxation time [s] 10−6

Table 3. Parameters of the CSC model.

Input variable [unit] Value

Failure ratio 1 1.160
Failure ratio 2 0.079
Failure ratio 3 1.280
Failure ratio 4 0.333
Tension stiffening defined by 0.079
displacement [mm]

4.2 Schlangen test

In the Schlangen test also 4-node or 3-node finite ele-
ments with structural or random mesh were used. The
finite element size varied from 2.5 to 5.0 mm. Cal-
culations were also performed for a refined mesh.
Some sample meshing is presented in the Figures 9
and 10. The properties of concrete and input vari-
ables of the CDP and CSC models are presented in the
Tables 4–6.
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Figure 9. Meshing of the specimen in the Schlangen test:
a) 5 mm structural mesh, b) 5 mm random mesh.

Figure 10. Refined mesh in the Schlangen test.

Table 4. Properties of concrete in the numerical reproduc-
tion of the Schlangen test.

Input variable [unit] Value

Compressive strength [MPa] 46.60
Tensile strength [MPa] 3.44
Tangent modulus of elasticity [GPa] 35.00
Poisson’s ratio 0.20

Table 5. Parameters of the CDP model.

Input variable [unit] Value

Fracture energy [Nm−1] 145.76
Dilatation angle [deg] 5.00
Eccentricity [–] 0.10
fb0/fc0 [–] 1.16
K parameter [–] 0.67
Relaxation time [s] 10−4

Table 6. Parameters of the CSC model.

Input variable [unit] Value

Failure ratio 1 1.160
Failure ratio 2 0.074
Failure ratio 3 1.280
Failure ratio 4 0.333
Tension stiffening defined by 0.085
displacement [mm]

4.3 L-specimen test

In the latter test a random, refined mesh, presented in
the Figure 11, was applied. Four variants of specimen
were taken into consideration, namely:

– a specimen without reinforcement, called “series
A” in the Winklertest et al. (2001) work,

– a specimen reinforced with four φ6 bars (see the
Figure 12a) – “series B”,

– a specimen reinforced with an orthogonal mesh
consisted of φ6 bars (the Figure 12b) – “series C”,

– a specimen reinforced with a diagonal mesh con-
sisted of φ6 bars (the Figure 12c) – “series D”.

Boundary conditions, identical for each series, are
presented in the Figure 12d.

Figure 11. Meshing of the L-specimen test.

Figure 12. Reinforcement of the a) series B, b) series C, c)
series D and d) boundary conditions of the L-specimen test.
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Properties of concrete and reinforcing steel in the
L-specimen test are presented in the Tables 7 and
8. For all the series, Poisson’s ratio was assumed
as 0.18.

Table 7. Properties of concrete in the L-specimen test.

Parameter Series Series Series Series
[unit] A B C D

Compressive 31.00 34.85 38.90 29.45
strength [MPa]
Tangent modulus of 25.85 27.98 29.30 26.08
elasticity [GPa]
Tensile strength [MPa] 2.66 2.39 3.28 2.88
Fracture energy [Nm−1] 60.00 60.00 60.00 60.00

Table 8. Properties of reinforcing steel in the L-specimen
test.

Parameter Series Series Series
[unit] B C D

Yield strength [MPa] 544.8 533.2 526.3
Ultimate strength [MPa] 603.7 597.2 584.5
Ultimate strain [%] 19.19 20.30 23.23
Tangent mod. of elast. [GPa] 193.2 201.6 197.1

5 RESULTS OF FEM CALCULATIONS

For all the performed tests, a few common results
and output variables are presented in this section,
namely:

– a graph of a force-displacement relationship, cre-
ated for a node where the displacement is imposed,

– a map of the equivalent plastic strain in tension
(PEEQT) when using the CDP model,

– a map of the plastic strain (PE) in the CSC model.

The results are compared with those obtained in
laboratory tests and/or numerical tests of the above
mentioned authors.

5.1 Nooru-Mohamed test

Results obtained in the Nooru-Mohamed test are pre-
sented in the Figures 13-19. A general conclusion is
that the CDP model returns quite correct results while
the CSC model does not cope well with the test. A
proof of this statement are: a post-peak behavior (see
the Figure 14) and a very limited crack propagation
(e.g. the Figure 15c) and d)).

An impact of a mesh size and a mesh type can be
particularly visible when considering the crack prop-
agation. For the regular mesh, the crack propagates in
one row of finite elements while for the random mesh
it resembles that from the Nooru-Mohamed laboratory
test (see the Figure 19c)).

Figure 13. Force-displacement curves obtained in the
Nooru-Mohamed test using the CDP model.

Figure 14. Force-displacement curves obtained in the
Nooru-Mohamed test using the CSC model.

Figure 15. PEEQT or PE output variable in case of a) CDP,
5 mm 4-node random mesh, b) CDP, 2.5mm 4-node random
mesh, c) CSC, 5 mm 4-node random mesh, d) CSC, 2.5 mm
4-node random mesh.
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Figure 16. PEEQT or PE output variable in case of a) CDP, 5
mm 4-node structural mesh, b) CDP, 2.5 mm 4-node structural
mesh, c) CSC, 5 mm 4-node structural mesh, d) CSC, 2.5 mm
4-node structural mesh.

Figure 17. PEEQT or PE output variable in case of a) CDP,
5 mm 3-node random mesh, b) CDP, 2.5mm 3-node random
mesh, c) CSC, 5 mm 3-node random mesh, d) CSC, 2.5 mm
3-node random mesh (magnified notched area).

Figure 18. PEEQT or PE output variable in case of a) CDP, 5
mm 3-node structural mesh, b) CDP, 2.5 mm 3-node structural
mesh, c) CSC, 5 mm 3-node structural mesh, d) CSC, 2.5 mm
3-node structural mesh (magnified notched area).

Figure 19. PEEQT or PE output variable in case of a) CDP,
refined mesh, b) CSC, refined mesh (magnified notched area)
compared with c) comparison of a crack pattern of the spec-
imen in the Nooru-Mohamed laboratory test (in white) and
in Abaqus using CDP model (colored map).

5.2 Schlangen test

The results of the numerically reproduced Schlangen
test (the Figures 20-26) allow to draw very similar
judgment as for the Nooru-Mohamed test. Once again

Figure 20. Force-displacement curves obtained in the
Schlangen test using the CDP model.

Figure 21. Force-displacement curves obtained in the
Schlangen test using the CSC model.
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Figure 22. PEEQT or PE output variable in case of a) CDP,
5 mm 4-node random mesh, b) CDP, 2.5 mm 4-node random
mesh, c) CSC, 5 mm 4-node random mesh, d) CSC, 2.5 mm
4-node random mesh.

Figure 23. PEEQT or PE output variable in case of a) CDP, 5
mm 4-node structural mesh, b) CDP, 2.5 mm 4-node structural
mesh, c) CSC, 5 mm 4-node structural mesh, d) CSC, 2.5 mm
4-node structural mesh.

the CSC model returns unsatisfactory results, although
there is also one optimistic crack pattern (see the Fig-
ure 23c)). On the other hand, the CDP model behaves
correctly regardless of a mesh size or a mesh type.
The only problem is that the crack does not reach the
opposite side of the specimen, as it happened in the
laboratory test (see the Figure 26).

Figure 24. PEEQT or PE output variable in case of a) CDP,
5 mm 3-node random mesh, b) CDP, 2.5 mm 3-node random
mesh, c) CSC, 5 mm 3-node random mesh, d) CSC, 2.5 mm
3-node random mesh.

Figure 25. PEEQT or PE output variable in case of a) CDP,
refined mesh, b) CSC, refined mesh.

Figure 26. Comparison of a crack pattern of the specimen
obtained in the Schlangenlaboratory test (in white) and in
Abaqus using CDP model (colored map).

5.3 L-specimen test

The above mentioned problems with the CSC model
are still present in the L-specimen test (the Figures
27–29), even for the specimens with reinforcement.
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Still the crack propagation is limited (the Figure 29)
and the force-displacement curves seem to terminate
prematurely.

The CDP model once again reproduces the labora-
tory test pretty well. The numerically obtained force-
displacement curves are comparable with those plotted
in the experiment. The crack propagation depends on

Figure 27. Force-displacement curves obtained numerically
for the a) series A, b) series B, c) series C, d) series D.

a kind of the provided reinforcement (the Figure 28).
For the series B and C a crack occurs outside the cor-
ner zone and for the series D there are three concurrent
cracks.

Figure 28. PEEQT variable in the L-specimen test using the
CDP model: a) series A, b) series B, c) series C, d) series D.

Figure 29. PE output variable in the L-specimen test using
the CSC model: a) seriesA, b) series B, c) series C, d) series D.

Figure 30. Force-displacement curves for different values
of the fracture energy Gf .

The authors performed also a parametric study ana-
lyzing how does the force-displacement relationship
depend on the fracture energy value in the CDP model.
Three values of Gf were assumed: 120, 90 and 60
Nm−1. Results of the study are presented in the Figure
30. An increase of the fracture energy value (with the
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unchanged value of the tensile strength) leads to a
significant increase of the load peak. Such behavior
indicates the stable crack propagation in the pre-peak
regime typical for elements with notches or singular
points.

6 CONCLUSIONS

The results of the calculations presented in the paper
allow to draw the following conclusions:

– the CDP model deals with all the tests satisfactorily
well,

– on the other hand, the results obtained using the
CSC model do not match the experimental obser-
vations; the crack propagation is limited and the
post-peak behavior is improper,

– the influence of the finite element type (3-node vs.
4-node) is not that significant, but the choice of the
structural mesh can force a crack to be localizedin
one row of finite elements, which is not consistent
with the analyzed laboratory tests,

– the CDP model is recommendable for FEM calcu-
lations both for plain and reinforced concrete,

– some effort should yet be done to explain the
improper behavior of the CSC model.
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Comparison of classical and higher order continuum models for shear failure
of concrete

P. Hofer, M. Neuner & G. Hofstetter
Institute of Basic Sciences in Engineering Sciences, University of Innsbruck, Austria

ABSTRACT: Classical and higher order continuum formulations of the widely used Concrete Damage Plas-
ticity model by Grassl & Jirásek (2006) are assessed with regard to their ability to represent shear failure of plain
concrete in an objective manner. To this end, a transverse shear test for anchor channels serves as benchmark.
The experimental results are compared with the results of complex 3D numerical simulations, performed on
the basis of (i) a classical local formulation with mesh-adjusted softening modulus, (ii) a higher order gradient-
enhanced formulation by Poh & Swaddiwudhipong (2009) and (iii) a recently proposed gradient-enhanced
micropolar formulation by Neuner et al. (2020). The comparison highlights the limitations of the classical local
formulation, whereas the higher order continuum approaches show great potential, in particular for modeling
the structural post-peak response of the anchoring system. Moreover, the load-displacement behavior, which is
associated with different failure modes observed for varying values of the edge distance of the anchor channel is
accurately predicted by means of the higher order continuum formulations, further highlighting their predictive
capabilities.

1 INTRODUCTION

Predicting the mechanical behavior of concrete struc-
tures in the pre- and post-peak domain of the struc-
tural response has been the subject of extensive
research endeavors for many decades. In this context,
damage-plasticity continuum models allow describ-
ing the inelastic material behavior in combination
with the degradation of elastic properties due to dam-
age. Accordingly, they represent a popular class of
material models for the highly nonlinear mechani-
cal behavior of concrete. One prominent member of
this group is the Concrete Damage Plasticity (CDP)
model proposed by Grassl & Jirásek (2006).The model
serves as the core of the formulations used in this
contribution, and encompasses a smooth, pressure-
dependent yield surface formulated in invariants of the
effective stress tensor, as well as hardening and soft-
ening behavior driven by the evolution of the plastic
strain. It is suitable for describing concrete subjected
to a broad range of stress states, and it has been
successfully used for large scale simulations of con-
crete structures in the past (Neuner et al. 2022; Poh
& Swaddiwudhipong 2009; Valentini & Hofstetter
2013).

Failure in cohesive-frictional materials like con-
crete is typically accompanied by the emergence of
highly localized deformation. For classical contin-
uum models, the onset of localization results in the
loss of ellipticity of the governing boundary value
problem entailing loss of uniqueness of the solution

and a pathological dependence of numerical results
on the employed discretization. This is especially
true for plasticity models with pressure-dependent
yield surfaces exhibiting softening behavior and/or
non-associated plastic flow Rudnicki & Rice (1975).
Without remedy, localized failure will emerge in the
smallest possible bandwidth, causing the results to
be dependent on the numerical discretization. Con-
sequently, objectivity of the results with respect to the
discretization may not be expected.

Various approaches for objectively describing the
material behavior of concrete have been developed
in the past. On the one hand, the classical remedy
of the mesh-adjusted softening modulus is available,
which serves as a numerical regularization technique.
It is, however, characterized by deficiencies as high-
lighted in Jirásek & Bauer (2012). On the other hand,
higher order continuum approaches, like nonlocal or
gradient-enhanced formulations offer superior alter-
natives by introducing intrinsic material length scales,
which naturally provide a remedy for the pathologi-
cal mesh-sensitive behavior. Special attention has to
be paid to the fact that localization may arise also in
modes deviating from pure mode I failure. In partic-
ular, the realistic representation of shear dominated
failure is an important aspect, which is often paid little
attention compared to mode I failure.

Due to the local character of the resulting formu-
lation, the mesh-adjusted softening modulus allows
for an efficient and simultaneously simple numeri-
cal implementation. The numerical regularization of
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the problem is approximately achieved by adjust-
ing the softening behavior of the underlying material
based on characteristic length scales of the numerical
discretization.

In contrast to classical local models, gradient-
enhanced continua account for the nonlocal character
of material damage. This is achieved by additional
balance equations concerning the gradients of inter-
nal variables, which describe the spatial interaction of
micro cracks during the evolution of material damage.
The localization of deformation is thereby limited and
a finite size of the fracture process zone is ensured,
especially for mode I failure.

The micropolar continuum, which goes back to the
work of the Cosserat brothers Cosserat & Cosserat
(1909), accounts for averaged rotations within the
material microstructure, and naturally introduces an
intrinsic length scale for shear failure. Accordingly, it
provides a remedy for pathological behavior related
to the localization of shear dominated deformation
in cohesive-frictional materials. A remedy for the
pathological behavior related to the localization of
deformation in mode I failure is, however, not pro-
vided by the micropolar continuum Iordache &Willam
(1998).

This work is motivated by an apparent lack of large
scale 3D numerical studies investigating the predictive
capabilities of classical and higher-order continuum
material models for concrete, particularly for complex
shear dominated failure modes.

Accordingly, the performance of (i) a classical con-
tinuum version of the CDP model Grassl & Jirásek
(2006) using the mesh-adjusted softening modulus,
herein simply denoted as the CDP model, is compared
to (ii) a gradient-enhanced continuum formulation of
the CDP model by Poh & Swaddiwudhipong (2009),
denoted as the GCDP model and (iii) a gradient-
enhanced micropolar continuum formulation of the
CDP model by Neuner et al. (2020), denoted as the
GMCDP model.

The comparison is performed by means of 3D
finite element simulations of a transverse shear test
for anchor channels. During this displacement con-
trolled test, a cast-in anchor channel, which is placed
in close proximity to the edge of a concrete slab, is
transversely loaded up to failure, closely resembling
a typical loading scenario of such anchor channels
in real structures. Experimental data indicates that
the expected failure mode depends on the edge dis-
tance of the anchor channel, making clear that the
chosen benchmark example is a perfect candidate for
assessing the classical and higher order continuum
formulations of the CDP model.

In particular, the aim of the present contribution is
to provide additional results of recent work performed
by the authors, which were not presented in Neuner
et al. (2022).

By comparing the predicted results of the three for-
mulations with experimental data, it will be shown
that their performance varies considerably. For obtain-
ing meaningful results, proper knowledge of both

their capabilities and limitations are thereby deemed
imperative.

2 CLASSICAL AND HIGHER ORDER
CONTINUUM FORMULATIONS OF THE
CDP MODEL

The Concrete Damage Plasticity (CDP) Model by
Grassl & Jirásek (2006) is based on a combination of
the flow theory of plasticity and the isotropic contin-
uum damage theory. Hence, the nominal stress tensor
σij , which in combination with the vector of body
forces fj satisfies the equilibrium conditions

σij,i + fj = 0, (1)

is related to the effective stress tensor σ̄ij using a scalar
damage parameter ω as

σij = (1− ω)σ̄ij. (2)

Using the fourth order elastic stiffness tensor Cijkl
and performing an elastic-plastic split of the linearized
strain tensor εij into an elastic part εe

ij and a plastic part
ε

p
ij , the effective stress tensor is related to the elastic

strain as

σ̄ij =Cijkl(εkl − εp
kl)=Cijklε

e
kl . (3)

The yield function of the model

fp(σ̄m, ρ̄, θ , qh)=

=
(

(1− qh)
(
ρ̄√
6fcu

+ σ̄m

fcu

)2

+
√

3

2

ρ̄

fcu

)2

+ m0q2
h

(
ρ̄√
6fcu

r(θ )+ σ̄m

fcu

)
− q2

h (4)

and the corresponding yield surface fp= 0 are formu-
lated in terms of the three invariants of the effective
stress tensor, i.e., the mean effective stress σ̄m, the
effective deviatoric radius ρ̄ and the Lode angle θ . The
material strength parameters, i.e., the uniaxial com-
pressive strength fcu, the biaxial compressive strength
fcb and the uniaxial tensile strength ftu enter the yield
function either directly or via the friction-like param-
eter m0. The evolution of the yield surface due to
hardening material behavior is controlled by a single
scalar stress-like internal variable qh. The shape of the
yield surface in deviatoric sections is controlled by the
Willam-Warnke polar radius function r(θ ) (Willam &
Warnke 1975). Its influence is, however, depending on
the levels of hardening and confinement.

The non-associated plastic flow rule

ε̇
p
ij = λ̇

∂gp

∂σ̄ij
= λ̇ ∂gp(σ̄m, ρ̄, qh)

∂σ̄ij
(5)
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with the plastic multiplier λ̇ makes use of a plastic
potential function gp.

The exponential evolution of the scalar damage
variable

ω= 1− exp
(
−αd

εf

)
(6)

is driven by the internal variable αd, which is driven by
the rate of volumetric plastic strain ε̇p.The initial slope
of the evolution of the damage variable is controlled
by the softening modulus εf .

2.1 CDP model with mesh-adjusted softening
modulus

For the local version of the CDP model, the softening
behavior of each finite element is adjusted by mod-
ifying the softening modulus εf in (6) based on the
characteristic element length lchar , the specific mode I
fracture energy Gf

I , the uniaxial tensile strength ftu and
the Young’s modulus E acc. to Valentini (2011):

εf = Gf
I

ftulchar
− ftu

2E
. (7)

2.2 Gradient-Enhanced Concrete
Damage-Plasticity (GCDP) model

Poh & Swaddiwudhipong (2009) formulated an
implicit gradient-enhanced continuum version of the
CDP model. To this end, the damage driving vari-
able αd in (6) is replaced by its nonlocal counterpart
α̃d, which is implicitly defined as the solution of the
screened Poisson equation

α̃d − l2
d
∂2

∂xi∂xi
α̃d =αd. (8)

Therein, αd acts as the driving variable on the right
hand side, and ld is a length parameter.

2.3 Gradient-Enhanced Micropolar Concrete
Damage-Plasticity (GMCDP) model

In a recent publication (Neuner et al. 2020), both
the benefits of the gradient-enhanced continuum for
describing mode I failure and the micropolar contin-
uum for describing shear failure were incorporated
into a new framework for cohesive-frictional mate-
rials, and applied to the CDP model resulting in a
gradient-enhanced micropolar version.

For the micropolar continuum, the displacement
field ui is complemented by a field of independent
micro-rotations wi. Making use of the Levi-Civita
symbol εijk , the linearized strain tensor εij is defined as

εij = uj,i − εijk wk . (9)

In addition to the translational equilibrium condi-
tions (1) the rotational equilibrium conditions

mij,i + εjklσkl + cj = 0 (10)

serve as the governing balance equations. Therein, mij
denotes the nominal couple-stress tensor, and cj is the
body couple vector.

The gradient of the micro-rotations is denoted as
the linearized micro-curvature measure κij

κij =wj,i, (11)

for which an additive split into an elastic part κe
ij and

a plastic part κp
ij is assumed.

By analogy to the definition of the effective force-
stress tensor (2), the effective couple-stress tensor m̄ij
is related to the nominal couple-stress tensor mij:

mij = (1− ω)m̄ij. (12)

The effective couple-stress tensor m̄ij is related to
the elastic part of the micro-curvature κe

ij using the
fourth order elastic stiffness tensor C

m
ijkl as

m̄ij =C
m
ijkl(κij − κp

kl)=C
m
ijklκ

e
kl . (13)

The fourth order stiffness tensors Cijkl and C
m
ijkl

which relate the linearized strain tensor and the lin-
earized micro-curvature measure to the respective
effective stress measures

σ̄ij = (G + Gc)εe
ij + (G − Gc)εe

ji + λεe
kkδij =

=Cijklε
e
kl , (14)

m̄ij = (γ + β)κe
ij + (γ − β)κe

ji + ακe
kkδij =
=C

m
ijklκ

e
kl , (15)

are defined by 6 material parameters, i.e., the LamÃ©
parameters λ and G, the coupling modulus Gc, and
3 micropolar elastic parameters γ , β, and α, which
are commonly expressed in terms of the polar ratio
ψ , the characteristic length for bending lb and the
characteristic length for torsion lt :

ψ = 2γ

2γ + α , lb=
√
γ + β

4G
, lt =

√
γ

G
. (16)

The plasticity part of the micropolar GMCDP model
is formulated by replacing the invariants of the effec-
tive stress tensor σ̄m, ρ̄, and θ in the yield function
(4) and the plastic potential function (5) by general-
ized invariants ˜̄σm, ˜̄ρ and θ̃ , formulated in terms of
the states of the effective force-stress and the effective
couple-stress. The evolution of εp

ij and κp
ij is then given

by the generalized flow rule

ε̇
p
ij = λ̇

∂gp

∂σ̄ij
, κ̇p

ij = λ̇
∂gp

∂m̄ij
. (17)
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The damage part of the GMCDP model is identical
to the one of the gradient-enhanced GCDP model for
all intents and purposes of this contribution.

In summary, three independent fields are consid-
ered for the GMCDP model: (i) the displacement field
ui, (ii) the field of micro-rotations wi describing aver-
aged rotations of the microstructure, and (iii) the field
of the nonlocal damage-driving variable α̃d.

3 FINITE ELEMENT MODEL OF THE
TRANSVERSE SHEAR TEST

Anchor channels are used in the construction of super-
structures to transfer forces between load bearing
reinforced concrete structures and other components.
Typical applications include the anchorage of curtain-
wall facades or elevator and tunnel equipment. One
important component test for obtaining the technical
approval for anchor channels is the transverse shear
test. In this test a cast-in anchor channel in close prox-
imity to the edge of a concrete slab is subjected to
tensile forces acting in the direction normal to the
edge of the slab. The resulting failure mode depends
on the edge distance of the anchor channel, and it is
dominated by concrete failure. Hence, this test is a
well-suited benchmark example for investigating the
performance of different material models for concrete.

The model setup of the transverse shear test is illus-
trated in Figure 1. It consists of (i) a concrete body
representing a part of the concrete slab, (ii) a cast-
in anchor channel, (iii) a load transfer plate which is
connected to the anchor channel via a T-bolt as well
as (iv) a steel support. The anchor channel consists
of a C-shaped steel channel and two headed anchors.
Symmetry of the test setup is exploited in the numer-
ical simulations. The test procedure is represented in
the numerical simulations by increasing the horizontal
displacement at the outer end of the load transfer plate
as indicated in Figure 1.

A penalty based node to surface contact formulation
is used for modeling contact between the steel and con-
crete components. Frictional contact with coefficients
of µs/s= 0.2 (steel to steel) and µs/c= 0.35 (steel to
concrete) is assumed. The individual contact pairs are
illustrated in Figure 2.

Experimental results for the transverse shear test for
two values of the edge distance of the anchor channel
in the form of normalized load-displacement curves
serve for validating the predicted numerical results.

3.1 Material parameters

For calibrating the core of the CDP model a set of
standard material parameters for concrete is used,
which can be determined from laboratory tests. These
material parameters are the Young’s modulus E, the
Poisson’s ratio ν, the uniaxial compressive strength fcu,
the uniaxial yield stress fcy, the biaxial compressive
strength fcb and the uniaxial tensile strength ftu.

Figure 1. Illustration of the transverse shear test, showing
the considered part of the concrete slab and the steel parts,
boundary conditions and exploited symmetry. Modified
reprint from Neuner et al. (2022).

Figure 2. Section through the test setup with de indicating
the edge distance. The considered contact interfaces are indi-
cated as dotted lines. Modified reprint from Neuner et al.
(2022).

The choice of material parameters for the investi-
gated test setup is based on a set of standard parameters
for the specified grade C20 of the investigated concrete
according to Model Code fib (2013). The material
parameters used in the numerical model are listed in
Table 1.

An additional set of 6 model parameters, i.e., Ah, Bh,
Ch, Dh, Df , and As is used, which cannot be directly
related to standard lab test results. The default values
proposed in Grassl & Jirásek (2006) are used for the
present study. They are summarized in Table 2.

The remaining parameters are the softening mod-
ulus εf , as well as the additional parameters for the
higher order continuum GCDP and GMCDP mod-
els. Softening material behavior is calibrated using a
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Table 1. Material parameters for the CDP, GCDP and
GMCDP model for the concrete grade C20 acc. to Model
Code fib (2013).

E ν fcu fcy ftu fcb
(GPa) (−) (MPa) (MPa) (MPa) (MPa)

30.3 0.2 28 9.33 2.2 31.4

Table 2. Model parameters according to Grassl & Jirásek
(2006) for the CDP, GCDP and GMCDP model.

Ah Bh Ch Dh Df As

0.08 0.003 2.0 1e-6 0.85 15

specific mode I fracture energy of Gf
I = 133 N/mm

according to Model Code fib (2013) for the given
concrete grade.

For the CDP model with mesh-adjusted softening
modulus, the softening modulus εf is computed from
the specific mode I fracture energy and the character-
istic element length lchar according to (7). Assuming
that localization of deformation occurs in a crack band
with a width of a single finite element, the charac-
teristic element length is computed directly from the
volume of a finite element Ve as

lchar = 3
√

Ve. (18)

For perfectly cubic elements with linear shape func-
tions this approach yields accurate results when the
direction of crack opening is aligned with the edges
of the finite element. However, for other directions
the determination of the characteristic element length
becomes inaccurate leading to an overestimation of the
dissipated energy during crack opening, and for higher
order elements localization of deformation may arise
in sub-domains of the element Jirásek & Bauer (2012).
While various improved approaches for computing the
characteristic element length have been proposed e.g.,
(Oliver 1989), such methods have to be implemented
at finite element level losing the simplicity of the
mesh-adjusted softening modulus approach. Since the
practice of relating the characteristic element length
to the volume of the finite element (18) enjoys some
degree of popularity in engineering practice, and due to
its forementioned simplicity, this method is employed
in the present contribution.

For the GCDP model, the softening modulus εf is
chosen in such a manner that the specific mode I frac-
ture energy is reproduced in a direct uniaxial tension
test with the characteristic length parameter ld being
specified in advance. While both the physical interpre-
tation of ld and its determination are still the subject
of research, it is commonly related to the character-
istic size of the microstructure of the material, as it
determines the size of the damaged zone. By choos-
ing a value of ld = 4 mm the thickness of the damaged

zone obtained in the numerical analyses is approxi-
mately equal to the experimentally observed thickness
of the fracture process zone, which is two to three times
the maximum aggregate size (Bažant & Pijaudier-
Cabot 1989). The same value of the length parameter
has been successfully employed in the past for the
numerical analysis of experimental tests on concrete
specimens (Neuner et al. 2020). For the length param-
eter of ld = 4 mm and the given fracture energy of
Gf

I = 133 N/mm calibration of the softening modulus
resulted in a value of εf = 0.0064.

In addition to the parameters required for the
GCDP model, for the GMCDP model the micropo-
lar constants Gc, lb, lJ2, lt and ψ need to be specified.
The coupling modulus Gc is commonly chosen in a
range between 0.1G and 1.0G, with G denoting the
shear modulus. In this contribution, a value of 0.1G is
assumed, and the characteristic length for bending is
chosen as lb= 2 mm. The length scale parameter lJ2
controls the resistance against plastic shear deforma-
tion of the microstructure. It is chosen as lJ2= 2 mm.
The remaining parameters are chosen as lt = 2lb and
ψ = 3

2 , satisfying the principle of bounded stiffness
(Neff, Jeong, & Fischle 2010). For an in depth discus-
sion of the choice of material parameters the reader is
referred to (Neuner et al. 2020).

A summary of the model-specific parameters for
the three investigated models is presented in Table 3.

Table 3. Model-specific parameters for the investigated
material models.

εf ld Gc/G lb lt ψ lJ2

(−) (mm) (−) (mm) (mm) (−) (mm)

CDP acc. to (7)
GCDP 0.0064 4
GMCDP 0.0064 4 0.1 2 4 3

2 2

3.2 Numerical implementation of the material
models and employed software

The three investigated models were implemented in
Abaqus/Standard (Abaqus 2015) using the respec-
tive UMAT (CDP model) and UEL (GCDP and
GMCDP models) interfaces. For the GCDP and
GMCDP models, user defined finite elements are
employed, as fully coupled problems are being solved.
All models were implemented in the Marmot material
modeling toolbox library (Dummer, Mader, Neuner, &
Schreter 2021) using C++ programming language. For
achieving a quadratic rate of convergence in nonlinear
simulations, the consistent tangent operators are com-
puted for all models. To this end, the Eigen template
library (Guennebaud et al. 2010) is used for linear alge-
bra computations for the CDP and the GCDP models,
while for the GMCDP model tensor contraction opera-
tions are performed using the Fastor library (Poya, Gil,
& Ortigosa 2017) at material and finite element level.

471



Figure 3. Finite element mesh for the load transfer plate
with mountedT-bolt and the anchor channel. Modified reprint
from (Neuner et al. 2022).

The Fastor library provides a convenient and perfor-
mant way of implementing tensor operations using the
Einstein notation and utilizing SIMD vectorization.

The visualization capabilities of Abaqus/CAE for
simulation results produced with user defined ele-
ments (UEL) are severely limited. Therefore, after
exporting all results using the fil file format, they
are converted to the open Ensight Gold for-
mat employing the AbaqusFilFile-Translator software
(Neuner 2021). Using ParaView (Ahrens, Geveci, &
Law 2005), the converted results in Ensight Gold
format are read and visualized.

3.3 Finite element discretization

For the respective edge distances of the anchor chan-
nel, finite element meshes employing hexahedral ele-
ments are used to discretize the concrete slab. The
finite element mesh for the small edge distance is illus-
trated in Figure 4. For an illustration of the very similar
finite element mesh employed for the large edge dis-
tance the reader is referred to (Neuner et al. 2022).
For the steel parts, finite element meshes employing
mainly hexahedral and a few pentahedral elements for
easing the meshing procedure are used (Figure 3).

Since the use of elements with quadratic shape
functions is not advised when the mesh-adjusted soft-
ening modulus is utilized (Jirásek & Bauer 2012),
for use with the CDP model fully integrated 8-node
elements with linear shape functions are employed,
whereas for the higher order continuum GCDP and
GMCDP models 20-node hexahedral elements with
quadratic shape functions and reduced integration
are used in order to represent the steep gradient of
the nonlocal damage-driving field α̃d with sufficient
accuracy.

For all steel parts, 8-node hexahedral elements with
an enhanced assumed strain formulation (Simo &
Rifai 1990; ?) with 13 incompatible modes (C3D8I

Figure 4. Finite element mesh for the concrete slab for
the small edge distance of the anchor channel and the steel
support.

in Abaqus/Standard) are used to prevent numerical
locking.

4 RESULTS

The predicted load-displacement behavior on the basis
of the three material models for both edge distances of
the anchor channel is depicted along with results from
experimental tests in Figures 5 and 7. The respective
failure modes predicted by the CDP and GMCDP mod-
els are illustrated in Figures 6, 8 and by means of
contour plots of the first invariant of plastic strain I p

1
as a measure for accumulated plastic deformation. The
illustration of the results for the GCDP model is omit-
ted here, since they are very similar to the results of
the GMCDP model (Neuner et al. 2022).

4.1 Large edge distance of the anchor channel

In the experimental tests for the large edge dis-
tance of the anchor channel, a virtually linear load-
displacement relation is observed until the peak load is
attained.The load subsequently drops in a quasi-brittle
fashion until a plateau of residual load is attained. A
further increase of displacement leads to no substantial
increase of the attained load level.

After an initially too soft mechanical response, con-
sistent results closely matching the experimentally
observed stiffness are obtained with all of the three
material models up to the initiation of concrete dam-
age. The initiation of concrete damage occurs near
the lower front edge of the steel channel. For the
higher order GCDP and GMCDP models the subse-
quent propagation of damage and the accompanying
development of plastic deformation mark the attain-
ment of the peak load and the onset of softening in the
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Figure 5. Normalized predicted load-displacement curves
for the large edge distance of the anchor channel: Results
obtained with the three material models, and the results from
three experimental tests. Modified reprint from (Neuner et al.
2022).

load-displacement curves. This is in sharp contrast to
the behavior predicted by the CDP model: While the
initiation of damage is predicted approximately at the
same time as for the higher order models, the damage
progression is associated with continuing hardening
behavior, leading to a considerable overestimation of
the peak load.

While the peak load is only slightly underesti-
mated by the higher order models, the immediate
post-peak response is in very good agreement with
the experimental data. However, as indicated in Fig-
ure 5 an abrupt loss of the load level in the post
peak regime is predicted by the GCDP model, con-
trasting the experimental data. This loss of load level
is attributed to pathological localization behavior not
being completely ruled out by the employed gradient
enhancement. The micropolar GMCDP model serves
as a remedy for this behavior, which is further coun-
teracted by higher values of the parameter lJ2, as
demonstrated in (Neuner et al. 2022).

In contrast to the experimental data and the results
obtained with the higher order models, no significant
softening behavior is predicted with the CDP model,
despite the fact that the plastic zone is nearly fully
developed. This behavior is explained by two con-
tributing factors: Firstly, due to the spatial orientation
of the crack the employed simple method of determin-
ing the characteristic element length (18) leads to an
overestimation of the fracture energy. Secondly, the
employed 8-node hexahedral elements are prone to
locking, especially in situations when volumetric and
deviatoric plastic flow are coupled, as is here the case
(de Borst & Groen 1995; ?).

Although the illustrations of the predicted failure
modes on the basis of the CDP and GMCDP models
in Figure 6 show some similarities, by means of the
CDP model branching of the plastic zone with a mesh
bias in close proximity to the concrete edge can be
observed, while the higher order models do not show
this spurious behavior.

Figure 6. Predicted failure modes for the large edge distance
of the anchor channel on the basis of the CDP and GMCDP
material models. First invariant of plastic strain I p

1 . Displace-
ments are scaled by a factor of 3. Results from (Neuner et al.
2022).

4.2 Small edge distance of the anchor channel

In contrast to the large edge distance of the anchor
channel and despite some experimental scatter, experi-
mental results for the small edge distance of the anchor
channel unambiguously show distinct nonlinear pre-
peak hardening behavior with gradually decreasing
slope followed by post-peak softening persisting up
to the termination of the experimental procedure. No
residual plateau is observed for the small edge distance
of the anchor channel.

The pre-peak hardening behavior, which is asso-
ciated with gradual failure of the concrete edge is
predicted by all of the three investigated material mod-
els. Its onset coincides with the initiation of concrete
damage, and marks the point where the predicted load
displacement curves start deviating from each other.
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Figure 7. Normalized predicted load-displacement curves
for the small edge distance of the anchor channel along with
the results from three experimental tests.

As for the large edge distance of the anchor channel,
the ultimate load bearing capacity is slightly underes-
timated by the higher order GCDP and GMCDP mod-
els. The post-peak regime predicted by these models
is characterized by pronounced softening behavior,
which ultimately leads to a total loss of load bearing
capacity. By means of the micropolar GMCDP model,
a slightly higher peak load and a less brittle post-peak
response are predicted compared to the GCDP model.
These differences are due to the mobilization of the
micropolar part of the model as a result of localized
shear deformation of the concrete.

Although the load-displacement behavior predicted
by the CDP model is in very good agreement with the
experimental data, this should not disguise the fact
that the same deficiencies as mentioned above are still
present. Mesh bias of the results is clearly apparent in
Figure 8, and despite the fully developed plastic zone
a significant residual load is predicted.

5 CONCLUSION

Three formulations of a popular damage plasticity
model for concrete, i.e., (i) a classical local formula-
tion with mesh-adjusted softening modulus denoted as
the CDP model, (ii) a higher order gradient-enhanced
formulation denoted as the GCDP model and (iii)
a recently proposed higher order gradient-enhanced
micropolar formulation denoted as the GMCDP model
were outlined. In the subsequent finite element analy-
ses of transverse shear tests for anchor channels with
varying edge distances, their predictive capabilities for
complex structural applications were investigated.The
following conclusions are drawn:

• The experimentally observed nonlinear pre-peak
hardening behavior for the small edge distance of
the anchor channel is predicted by all of the investi-
gated material models. While a significant amount
of residual load is retained with the CDP model,
the higher order models accurately predict distinct
softening behavior and the eventual total loss of the

Figure 8. Failure modes for the small edge distance of the
anchor channel on the basis of the CDP and GMCDP material
models. First invariant of plastic strain I p

1 . Displacements are
scaled by a factor of 3.

load bearing capacity associated with the break out
of the whole anchor channel.

• For the large edge distance of the anchor channel,
apart from a slight underestimation of the peak load,
the structural behavior predicted by means of the
higher order GCDP and GMCDP models is in good
agreement with the experimental results. An abrupt
loss of load level in the post-peak domain observed
for the GCDP model is attributed to pathological
localization behavior. The GMCDP model serves
as a remedy for this behavior.

• The predicted failure modes for the CDP model
exhibit severe mesh bias, which is not the case for
the investigated higher order models. Moreover, the
peak load for the large edge distance of the anchor
channel is considerably overestimated by means of
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the CDP model and post-peak softening is under-
predicted for both edge distances. This is due to the
employed method for determining the characteris-
tic element length, and due to suspected locking
behavior of the employed 8-node hexahedral finite
elements.

• For both edge distances of the anchor channel, the
higher order GCDP and GMCDP models represent
very well the experimental results, which is apparent
from the load-displacement curves.

• The edge distance of the anchor channel affects the
failure pattern and the size of the broken out part
of the concrete edge. This circumstance is quanti-
tatively and qualitatively reflected by means of the
higher order GCDP and GMCDP models. In the
present study, the CDP model employing the mesh
adjusted softening modulus is not able to compete
in this regard.
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ABSTRACT: In this work, the efficacy and efficiency of a discretization technique based on virtual ele-
ments (VEs) and non-linear interface elements (IEs) are assessed for the modelling of representative boundary
value problems (BVPs) of fracture processes in concrete components characterized by tortuous crack propa-
gations. In particular, the efficiency of randomness in mesh refinement is evaluated for meshes comprising
polyhedral VEs.

The results demonstrate the limitations of structured meshes and the effectiveness of random polyhedral vir-
tual meshes in modelling the tortuous propagation of cracks in concrete subjected to mode II fracture, or shear.
It is concluded that random h refinement applied to polyhedral meshes allows a statistically accurate prediction
of the crack path. In particular, the influence of random mesh generation is studied. The results demonstrate that
the average predictions generated by a series of random coarse mesh perturbations of polyhedral elements are
very accurate, particularly in terms of peak load and crack path. Finally, an adaptative refinement technique is
discussed as a possible technique for efficient identification of the localization zones.

1 INTRODUCTION

Failure analysis of concrete components requires effi-
cient and effective numerical procedures to reproduce
the complex fracture mechanisms that develop in this
composite material. This is due to its severe brittle-
ness under tension and shear states as a consequence
of unstable and abrupt processes of coalescence of
microdefects during loading beyond the elastic limit.
During failure only a small portion of the relevant
boundary value problem (BVP) is involved in govern-
ing the failure behavior while in other, considerably
larger, subdomains homogeneous and elastic stress
states develop. This dichotomy motivates the con-
sideration of discretization strategies that allow for
abrupt jumps between the passive, or elastic, subdo-
mains and the active, and strongly inelastic, subdomain
where the failure processes are localized. At the same
time, appropriate discretization densification strate-
gies need to be considered to allow strong concentra-
tion of degrees of freedom in the active subdomains
through non-regular arrangements and densifications
that favor the tortuous and intricate propagation of
cracks during the evolution of the failure processes.

By exploiting the great versatility of virtual ele-
ments (VEs) with respect to meshing it is possible to

strongly modify the concentration of elements along
the boundary between regions. In this work VEs are
used to model the abrupt jumps between elastic and
inelastic regions of concrete components involved in
failure processes. In the zones of the BVP where
the processes of cracks and inelastic dissipation are
concentrated VEs are combined with inelastic inter-
face elements (IEs) that define potential lines of
cohesive-frictional crack propagations.

Regarding the VE and IE strategy considered in
the inelastic subdomains, the need arises to evalu-
ate the influence of the discretization density on the
failure mechanics and crack paths predictions. In that
sense, and based on the geometric versatility of the
VEM, it is convenient to analyze comparatively the
efficacy of meshes based on rectangular and polyhe-
dral elements, as well as the sensitivity of the results
with respect to discretization density and random-
ness. In addition, the non-trivial question that arises
is the identification of the active zone before running
numerical analysis. This is particularly important in
the case of highly hyperstatic and complex concrete
components.

To evaluate the efficacy of the proposed strategy
based on VEs and IEs, and provide answers to the
aforementioned questions, in this work the failure
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predictions obtained with discretizations of the active
zones composed of rectangular and polyhedral virtual
elements are comparatively evaluated. Additionally,
random h densification strategies are considered for
the polyhedral VEs located in the failure concentra-
tion zones. Finally, an elastic analysis of the considered
BVP using the VE refinement technique proposed in
van Huyssteen et al. (2022) is performed to assess
its capability to predict the active zones of failure
localization.

From the results obtained it is clear that polyhe-
dral VEs provide the necessary mesh irregularity to
reproduce tortuous crack propagations such as those
that occur during concrete fracture. Additionally, the
mean values of peak load, ductility at peak load, and
crack path, obtained from random mesh perturbations
of coarse meshes with polyhedral VEs, lead to simi-
lar predictions to those obtained with highly refined
meshes. This suggests that a strategy based on the
application of the discrete crack approach with a series
of perturbed coarse discretizations of polyhedral VEs
and IEs can efficiently and effectively predict the
failure behavior of quasi-brittle materials such as con-
crete. Finally, it is found through an elastic analysis
that the adaptive refinement procedure proposed in
van Huyssteen et al. (2022) for VEs is able to provide
an accurate prediction of the active/localization zone
of the BVP.

2 FRAMEWORK AND FORMULATION

2.1 Fundamental equations of the mixed
variational form for fracture equilibrium
problems.

The approach for the fracture problem consists of a
cohesive zone model implemented in a mixed formu-
lation based on an augmented Lagrangian functional.
A summary of the basic elements of this approach is
provided in this section. For a complete description
refer to Rivarola et al. (2020). Further details can be
found in Labanda et al. (2018a) and Labanda et al.
(2018b) for implementation issues and Doyen et al.
(2010) for theoretical aspects.

Figure 1. Domain decomposition of � considering a cohesive fracture �. Continuum and discrete notation with DOFs
corresponding to a 2nd order VEM discretization.

The symbols L2 and H1 denote the classical Sobolev
spaces of square integrable functions and functions
with square integrable weak first derivatives whose
trace vanishes on the Dirichlet boundary ∂u�. The
energetic behaviour of an infinitesimally deformable
body in R

d with a discontinuity in the displacement
field, as schematically represented in Figure 1, can be
expressed in its weak form as follows:

Given f ∈L2(�), p∈L2
(
∂ t�

)
and a penalty param-

eter γ ∈R
+, find (u, λ)∈V ×X such that

a(u, δ, λ, v) = l(v), ∀v ∈V (1)

b(u, δ, λ, µ) = 0, ∀µ∈X (2)

c(u, δ, λ) = 0, δ ∈W (3)

where u and λ are fixed in collocation points of the
interface in equation (3) and the functional operators
are given by

a(u, δ, λ, v) =
∫

�

ε(u) : C : ε(v) d� (4)

+
∫

�

[λ+ γ ([[u]]− δ)] · [[v]] d� , (5)

l(v) =
∫

∂ t�

p · v d∂ t�+
∫

�

f · v d� , (6)

b(u, δ, λ, µ) =
∫

�

[[[u]]− δ(u, λ)] · µ d� , (7)

c(u, δ, λ) = ∂δ� (δ, κ)− λ− γ ([[u]]− δ(u, λ)) ,(8)

with

V
(
���

) = {
v ∈H1 : v|∂u

h�
= 0

}
,

W (�) =
{

w ∈H
1
2 : w · n≥ 0,∀w ∈�

}
, (9)

X (�) =
{

x ∈H− 1
2

}
.

The definition of V
(
���

)
indicates that the func-

tions v ∈V belong to H1 in the open set defined by
the continuous body minus the set of points that define
the interface.
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In the above equations ∂ t� represents the Neumann
boundary, u is the displacement field, v is the test dis-
placement field, p∈L2

(
∂ t�

)
is a prescribed boundary

traction, C the elastic tensor, ε is the strain tensor,
γ is a penalty parameter, λ represents the Lagrange
multipliers, µ the test Lagrange multipliers, f ∈L2 (�)
are the volumetric loads, [[•]]= (•) |�+ − (•) |�− rep-
resents the jump of field (•)over domain�. Finally, δ is
a supplementary variable and � is a pseudo-potential
over the discontinuity � (Lorentz 2008) defined as

� (δ, κ)= IR+ (δn)+ ψ (δ, κ) , (10)

with IR+ an indicator function to prevent penetra-
tion in the normal direction n, and ψ representing the
cohesive free energy function. The internal variable κ
controls the irreversible nature of the process.

Note that outside of the discontinuity �, the body
remains elastic. Equation (1) represents the balance
between internal and external forces. Equation (2)
weakly enforces the equality [[u]]= δ. The supple-
mentary variable δ is solved in a staggered scheme
motivated by the coordination decomposition method
(Fortin and Glowinski 1983) in the collocation points
along the interface. The traction-separation law is
solved in an inverse way for the supplementary vari-
able, starting with a predicted Lagrange multiplier and
displacement field. To this end c(u, δ, λ) in equation
(3), is defined for each collocation point, and solved
independently from the rest of the system, as u, δ and λ
are fixed in each iteration step and for each collocation
point.

We note that in this paper we are not considering
a fully mixed VEM formulation. Rather, the standard
VEM formulation is used to discretize the displace-
ment field on each element and a mixed formulation
is only present on the element boundaries. Here, inter-
face elements are added to account for the involved
function spaces of displacements, interface stresses,
and interface gaps.

2.2 Traction-separation law

The free energy on the interfaces is defined as
follows:

ψ
(
δeq

)=
{

Gc
δeq

δc

[
2− δeq

δc

]
, if δeq≤ δc

Gc, if δeq>δc
(11)

where Gc= 1
2σcδc is the fracture energy, σc the critical

tension and δc the critical displacement. The potential
from which the free energy is derived is defined by
only two of the three parameters (Gc, σc, δc).This gives
rise to a simple traction-separation law consisting of
a linear cohesive zone model, presented in Figure 2
(a) and (b) for the cases of pure Mode II and Mode
I separation, respectively. The formulation results in
an extrinsic law, as the interface remains completely
closed until the critical tension is reached. Contact and

adhesion regimes are considered, with linear unload-
ing. An equivalent displacement scalar δeq drives the
cohesive forces in the crack and is defined as

δeq=‖δ‖=
√

δ · δ . (12)

This choice of δeq is symmetric in the normal and
tangential components and results in the same criti-
cal tension for both directions, but other choices are
possible. Furthermore, non linear damage curves can
be obtained by varying the exponent of δeq in (11). An
irreversibility variable κ is introduced to control the
crack opening/closure:

κ (t)= sup
t′<t∗
δeq

(
t′
)

, (13)

where t∗ is the current time. The initiation criteria used
to detect the cracking onset is shown in Figure 2 (c).
Note that coupling between responses in the normal
and tangential directions is present in eq. (11) through
the computation of δeq in eq. (12). For a more compre-
hensive description and for the final algorithm of the
constitutive model integration the reader is referred to
Labanda et al. (2018b).

2.3 The virtual element method

The VEM is a generalization of the standard finite ele-
ment method (FEM) to meshes comprising arbitrary
polyhedra. It was first introduced in Beirão da Veiga
et al. (2013) and the basic ideas are recalled here for
the case of the general second order elliptic equations
(as described in Beirão da Veiga et al. (2016)).

A summary of the VEM numerical procedure will
be given in this section. For more details see Artioli
et al. (2017).

Discretization Given a domain � divided into a
mesh τh, for a desired order of accuracy k and with
the space Pk of polynomials of maximum degree k , let
us define the local space V El

k ,h as

V El
k ,h = {vh ∈H1(El) : vh|∂El ∈C0(∂El),

vh|e ∈ Pk (e) ∀e⊂ ∂El, �vh ∈Pk−2(El)}, (14)

where h is a mesh parameter, El is an element of the
mesh, ∂El is its boundary and e an edge. From the defi-
nition it can be seen that the base functions in the VEM
space are not explicitly known for the entire domain,
i.e.hey are only known on the boundary of an element.

The global virtual element space is then

Vk ,h = {vh ∈H1
D(�) ∩ C0(�) : vh|El

∈VEl
k ,h,∀El ∈Th} . (15)

As in the FEM the discrete solutions of the variational
problem are required: Find uh ∈Vk ,h such that

ah(uh, vh)= lh(vh) ∀vh ∈Vk ,h . (16)
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Figure 2. Proposed traction separation law with linear unloading. (a) Tangential traction-separation law (pure Mode II). (b)
Normal traction-separation law (pure Mode I). (c) Initiation criteria.

The discrete version of the bilinear form is defined
element-wise as

ah(uh, vh) =
∑

El∈Th

aEl
h (uh, vh) (17)

=
∑

El∈Th

∫

El
ε(uh) : C : ε(vh) dx . (18)

As the base functions in the local spaces are not explic-
itly known inside an element the introduction of a
projection operator is required.

Projection operator The local projector operator
�El

k : VEl
k ,h→ [Pk (El)]2 acting on a function vh ∈VEl

k ,h
is defined by

aEl
h (�El

k (vh), p)= aEl
h (vh, p) ∀p∈ [Pk (El)]2 . (19)

In this work it is assumed that the coefficients in C are
constant within each element. Although the base func-
tions are not known in the interior of the elements, the
projector can be exactly computed for functions in the
local space in terms of the DOFs using integration by
parts. The definition of the projection operator guar-
antees exact results when tested against polynomials
of degree up to k .

Stiffness matrix The local bilinear form needs to be
decomposed into a consistency and a stability term

aEl
h (uh, vh)= aEl

h (�E
k (uh),�El

k (vh))
︸ ︷︷ ︸

consistency

+ sEl(uh −�El
k (uh)), vh −�El

k (vh))
︸ ︷︷ ︸

stabilization

. (20)

The consistency term approximates the bilinear form
using the projection operator, while the stabilization
term is applied to the higher order terms (> k) whose
contribution is not accounted for by the projection.
The latter is taken simply as the scalar product of the
values at the DOFs of the difference between the VEM
function and its projection,

sEl(uh −�El
k (uh), vh −�El

k (vh))

= τ
2nEl

k ,D∑

l=1

dof l(uh −�El
k (uh)) dof l(vh −�El

k (vh)),

(21)

where dofl is the value at the l-th DOF, and τ is a
material parameter which for linear elasticity is con-
stant and depends on Young’s modulus and Poisson’s
ratio (see Artioli et al. (2017)).

By defining a base for the local space
{
ϕi

}
i=1,...,2nEl

k ,D
,

where each function takes the value 1 at its asso-
ciated DOF and 0 otherwise, the stiffness matrix is
computed as

[
kEl]

ij = aEl
h (ϕi, ϕj) i, j= 1, ..., 2nEl

k ,D . (22)

The assembly of the global matrices system is done as
in standard FEM.

Loading terms As the base functions are known on
the element boundaries, load terms are treated just
as in standard FEM. Volumetric terms will not be
considered in this work.
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3 SUBDOMAIN DISCRETIZATION

In addition to the benefit of the VEM allowing for ele-
ments with complex polygonal geometries, the method
also allows for discrete jumps in mesh size between
selected subdomains of a given geometry.

This feature is particularly useful in BVP under-
going localized failure processes. Here, the transition
between the active zone, requiring fine meshes, and
the passive zone, where coarse meshes are sufficient,
can be easily created.

The main assumptions made in this work are: (i)
the continuum VEs remain elastic throughout the
entire deformation history, (ii) the entire inelastic
behaviour and energy dissipation is concentrated in
the interfaces. For this purpose, once the specimen dis-
cretization with continuum VEs is completed, IEs are
introduced only within the pre-established active zone.
For the special case of an interface between active and
passive zones a perfectly bonded interface is consid-
ered, i.e. a null displacement jump is strongly enforced
using Lagrange multipliers.This is necessary since the
interfaces generated by the meshing algorithm entirely
surround the virtual elements.

3.1 Zero-thickness interface elements

Interface elements are added on edges of the VE
mesh. Since the functions in the local VEM spaces
are polynomials on the boundaries of the element, the
insertion of the interface elements is the same as with
standard FEM. These interfaces must form a closed
path on the mesh, or else a physically inconsistent
non-propagating crack would occur.

In this work the interfaces surround any solid ele-
ment but only in the active zone, and therefore, a
closed loop is always ensured. This is particularly
beneficial for remeshing as the process is performed
locally for each element. However, the effectiveness
and accuracy of this procedure strongly depends on
the discretization to avoid introducing constraints on
the crack evolution during the deformation history of
the concrete component.

4 NUMERICAL EXAMPLES

4.1 Three point concrete beam problem

In this work the proposed procedure is used to model a
notched concrete specimen tested under a three point
bending problem set-up.

The geometry and boundary conditions of the prob-
lem are shown in Figure 3, where the values are in
[mm]. The specimen comprises a vertical notch of
30mm height and 4mm in width. A prescribed ver-
tical displacement is applied at the mid point of the
top edge. All numerical simulations of this problem
assume plane stress conditions and load results are
reported as per unit of width (in [mm]). Material
parameters are shown in Table 1.

Figure 3. Three-point beam geometry.

Table 1. Material properties.

Continuum

Young’s modulus [MPa] 22750
Poisson’s ratio 0.19

Interface

Critical stress σc [MPa] 1.3
Fracture energy Gc [N/mm] 0.07

The method proves very stable during crack initia-
tion and propagation, and is able to reach the post-peak
behaviour without the need of any special solution
algorithms other than classical Newton iterations to
reduce residual forces and achieve equilibrium on
every load step.

4.1.1 Discretization strategy
Based on prior knowledge of the problem an active
zone was pre-established. This region is where the
inelastic behaviour and cracking process localizes,
and is shown in Figure 3 in dark grey. In this zone
finer meshes with interface elements along all ele-
ment edges are used to capture the fracture process.
Details of the refinement are given in the next sec-
tions. A coarser mesh of elastic elements is used for
the rest of the domain, shown in light grey.

The influence of the discretization of the elastic
zone has been analyzed in Rivarola et al. (2020). Sev-
eral different mesh refinements were tested to evaluate
their influence on the global response behaviour and
failure prediction. It was found that the crack path did
not change and the peak load and residual strength
were very similar for all meshes. The discretization
of the elastic zone mainly modifies the elastic stiff-
ness, which is overestimated in coarser meshes. This
indicates that discretization of the active zone is of
significantly greater importance than that of the elas-
tic zone. For this reason a coarse discretization was
used for the elastic zone and all meshes considered
have the same discretization in this region, as depicted
in Figure 3.

4.2 Structured mesh refinement

In this section we evaluate the failure predictions gen-
erated using structured rectangular VEs and IEs in
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the active zone. Six different meshes were considered,
where the active zone was divided into 48, 96, 192,
384, 768 and 1536 elements. A diagram comparing
total applied force vs. displacement of the top cen-
tral node for all cases can be found in Figure 4. The
different meshes resulted in almost identical force vs.
displacement curves.

Figure 4. Force vs. displacement curve for structured
meshes.

In Figure 5 the considered mesh discretizations and
resulting crack paths can be seen. In all cases the
crack propagates in a straight line, which explains why
in Figure 4 the curves were almost identical. Thus,
refining using a structured mesh does not improve the
prediction of either the peak load or crack path.

4.3 Unstructured mesh refinement

In this section we evaluate the failure predictions
generated using polygonal meshes. These polygons
can be numerically generated through the so-called
Voronoi/Delaunay tessellation and slightly perturbing

Figure 5. Mesh and crack paths for the structured meshes.

a structured set of seed points before the tessellation
procedure.

Six different mesh refinement levels were con-
sidered, with the active zone divided into 50, 100,
200, 400, 800 and 1600 polygonal elements. For
each refinement level an ensemble of 20 different
randomized mesh perturbations was considered.

Figure 6 shows a sample mesh for each refinement
level with the crack path indicated in red. The final
deformed configuration, magnified 200 times, for the
case with 1600 elements in the active zone is shown
in Figure 7. Here it is clear that the failure is driven
by both mode I and mode II fracture. showing clearly
the failure mode. In all cases the failure process starts
at the top of the notch and propagates upwards and
slightly towards the applied load. These crack paths
show good agreement with experimental results, as
can be seen in Carpinteri & Brighenti (2010).

Figure 8 shows the force-displacement curves for
the 20 different cases at each refinement level. Addi-
tionally, the mean peak load and mean displacement
are reported along with their maximum absolute devi-
ations. A summary of the results is presented in
Table 2, where the mean load and displacement val-
ues at the peak load are detailed, as well as the
standard deviation (σ ) for each case. Additionally,
post-peak energy dissipation up to a displacement of
0.2mm was calculated from the area under the force-
displacement curve between the peak value and the
specified displacement.

It is clear that as the mesh is refined, the predictions
of the peak load and ductility at peak load improve. A
relatively wide spread can be found in the results of
the coarser meshes, which becomes progressively nar-
rower at higher mesh refinement levels. The deviation
decreases by approximately 25% for each refinement
level, which doubles the amount of elements in the
active zone.
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Figure 6. Mesh and crack paths for one case of each refinement level for unstructured meshes.

Figure 7. Final deformed configuration (magnified x200) for one case with 1600 elements in the active zone.

Additionally, it is note that a reduction in peak load
occurs with increasing mesh refinement, although the
difference is small. This decrease in peak load can be
attributed to the fact that a finer discretization of the
crack zone introduces more favorable crack paths as
more elements/interfaces are added. Interestingly, the
mean results generated using meshes of 100 elements
in the active zone could be considered sufficiently
accurate as they differ by less than 2% from those
generated using 1600 elements.

The crack paths that resulted from the ensemble
of 20 meshes at each refinement level are shown in
Figure 9 in blue, and the mean crack path for each
case in red. Once again, a wider spread of results is
observed in the case of coarser meshes. However, the
spread of crack paths becomes progressively narrower
as the mesh is refined. The average crack path for all
refinement levels resulted in an almost straight line
with a similar inclination angle, given in Table 4.3.
This shows, once again, that the mean results gen-
erated using an ensemble of random coarse meshes
could prove to be sufficiently accurate. Running sev-
eral coarse meshes and calculating the average can

not only be computationally more efficient than run-
ning just one very fine mesh but could also be more
precise.

4.4 Future work – adaptative refinement

The presented results have shown that unstructured
refinement of the active zone improved the accuracy of
the results and led to better crack path precision when
compared to experimental results. It can, however, be
computationally expensive to use very fine meshes in
non-linear problems, as is the case of failure processes
in concrete components. This is particularly impor-
tant when using interface elements, as the amount of
degrees of freedom more than doubles in the subdo-
mains where they are used. The non-trivial question
that arises is the identification of the active zone. If
this zone is not known in advance IEs need to be added
everywhere in the domain.

An adaptive refinement procedure could be used
to a priori identify the active zones of localized
stresses/strains where failure processes are likely to
take place. The zone where IEs are added can then be
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Figure 8. Force vs. displacement curve for all cases of each refinement level.

Table 2. Summary of results from unstructured meshes.

Mean Load σ Load Mean Disp. σ Disp. Mean Energy σ Energy Mean crack angle
Elements [N] [N] [mm] [mm] [Nmm] [Nmm] [°]

50 48.57 2.858 0.06345 0.003771 3.368 0.2129 70.31
100 48.13 1.845 0.06292 0.002642 3.308 0.1221 65.24
200 46.73 1.478 0.06247 0.001773 3.187 0.1406 70.57
400 46.60 1.335 0.06217 0.001975 3.232 0.09642 70.12
800 47.22 0.9682 0.06345 0.002580 3.254 0.1411 69.69
1600 47.19 0.7372 0.06322 0.001705 3.261 0.07644 69.39
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Figure 9. Crack paths for all cases of each refinement level.

restricted to where the mesh most refined. This could
lead to a computationally efficient procedure, as an
adaptive procedure usually takes much less run time
than using IEs in the entire domain. In the context
of adaptive remeshing, the VEM provides significant
advantages over the FEM as additional nodes may
be inserted arbitrarily along element edges with no
consideration or treatment of hanging nodes required.

In van Huyssteen et al. (2022) a variety of novel
approaches for the computation of isotropic and
anisotropic mesh refinement indicators suited for
the VEM were presented and comparatively assessed
through a range of numerical examples for the case
of two-dimensional linear elasticity. In particular,
the refinement technique based on displacement and
strain indicators demonstrated the best performance in
terms of efficacy and efficiency.

Figure 10 depicts the resulting refined mesh
obtained with the refinement procedure of van

Figure 10. Adaptive mesh refinement of the three-point
beam.

Huyssteen et al. (2022) for the three points beam prob-
lem considered in this work. The initial discretization
comprised a coarse mesh of structured rectangular
elements.

The refined mesh shows a greater refinement in
the subdomains close to the top of the notch and
the supports. Figure 11 shows the elastic von Mises
stresses obtained with the refined mesh, in a logarith-
mic scale. The compressive arch that characterizes the
beam behavior can be clearly recognized as well as
the localization of stresses above the notch, indicating
a possible location of fracture initialization.

In the framework of this research program the
refinement procedure will be extended to polyhe-
dral VEs. This could be an efficient procedure for
identifying in advance the zones of localized failure
processes requiring the inclusion of IEs between the
elastic VEs.

Figure 11. Stress field for the adaptive mesh refinement.
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5 CONCLUSIONS

In this work, the efficiency of structured and unstruc-
tured discretizations of virtual elements and non-linear
interface elements was assessed for modelling local-
ized failure processes of BVPs representing concrete
components subject to tortuous crack propagations. In
addition, the efficiency of random mesh refinement
for meshes comprising rectangular and polyhedralVEs
was analyzed.

Refinement of structured meshes did not improve
the prediction of either the peak load or crack path.
However, refining unstructured polygonal meshes did
improved the results.The obtained results demonstrate
the effectiveness of ensembles of random polyhedral
VE meshes for modelling the tortuous propagation of
cracks in active concrete zones subject to mode II type
of fracture. The crack paths also show good agree-
ment with the experimental results.Additionally, it was
found that the average values of peak load, ductility,
and crack path, generated from a series of pertur-
bations of coarse polygonal meshes, provide similar
predictions to those obtained with fine meshes. Run-
ning several coarse meshes and calculating the average
could be computationally more efficient and give more
precise results than running just one very fine mesh.
Thus, the discrete crack approach based on the use of
polyhedral VEs and non-linear interfaces in the active
failure zone is efficient and effective for the prediction
of the failure behavior of quasi-brittle materials such
as concrete.

Finally, the results also indicate that the extension
of the adaptive refinement method proposed in van
Huyssteen et al. (2022) to elements could provide an
effective method for the a priori determination of the
active zones in which failure processes occur.
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ABSTRACT: The performance of advanced isotropic constitutive laws under complex stress states in plain
and reinforced concrete specimens is investigated. Three different formulations are chosen: original Mazars
model, Mazars µ model and model proposed by Pereira and coworkers. The degradation of the material in all
formulations is described via a single variable, but a strain/stress state is taken into account via quite sophisti-
cated relationships. In order to better reproduce experimentally observed stress-strain curves in uniaxial tension
and compression, some modifications and extensions are proposed. An integral non-local approach is used to
ensure FE mesh insensitive results. Two benchmarks are simulated. Nooru-Mohamed test is chosen to anal-
yse numerically the growth of cracks in plain concrete under mixed-mode stress conditions. A geometrically
scaled set of longitudinally reinforced beams under four-point bending load serves to assess the ability of repro-
ducing different failure mechanisms. All results obtained from calculations are compared with experimental
outcomes.

1 INTRODUCTION

Cracks in quasi-brittle materials like concrete are the
primary source of their complex behaviour observed
as nonlinear stress-strain relationship with hardening
and softening phases, material orthogonality and dif-
ferent strengths under different loading conditions.
The proper capture of mentioned phenomena in the
formulation of a constitutive law for concrete is a
highly demanding task. Usually some simplifying
assumptions are made and only selected subset of
experimentally observed properties is included in the
model. In numerical simulations of concrete and rein-
forced concrete (RC) members at the macro-scale
there is a huge number of alternative formulations
defined within elasto-plasticity, continuum damage
mechanics (CDM) and also based on coupling two
aforementioned approaches. Constitutive laws defined
within CDM are the most popular among them, espe-
cially their isotropic versions. They are widely used
not only to simulate cracks in a smeared sense but
also to describe the behaviour of discrete cracks in
connection with interface elements. The proper choice
of basic ingredients (like equivalent strain definitions,
evolution laws) and the adequate combination of terms
describing the behaviour under simple loading cases
(e.g. uniaxial tension, uniaxial compression) defines
the group of problems, to which a selected constitutive
law can be applied properly.

The simplest formulation of the constitutive law
defined within continuum damage mechanics requires
two variables to be defined: an equivalent strain mea-
sure and the damage (degradation) evolution law.

Usually one equivalent strain measure and one evolu-
tion law is declared explicitly defined from the known
strain state. The influence of the stress (strain) state
is taken into account in the definition of the equiva-
lent strain only. There are several examples using this
approach. The most popular definitions of the equiva-
lent strain to describe concrete were given by Mazars
and Pijaudier-Cabot (1989), de Vree et al. (1995),
Jirásek (2004) or Haüsler-Combe & Pröchtel (2005).
They are used with the evolution laws adopting linear,
exponential or polynomial relationships.

More advanced constitutive laws still defined as
isotropic damage models introduce e.g. two indepen-
dent state variables or/and two independent damage
evolution curves to describe selected degradation pro-
cesses independently, e.g. in tension and compression.
Such split enables also to simulate stiffness recov-
ery. The resultant damage variable may be averaged
by using appropriate weights, which take into account
the stress/strain state in a material point. Alternative
formulations do not follow the explicit dependence
of the strains; degradation of a material is obtained
implicitly based e.g. on the formulation analogous
to elasto-plasticity (Comi & Perego 2001; Qi et al.
2020).

Proposed formulations are then confronted with
selected experimental outcomes or with other con-
stitutive laws. Plain concrete specimens subjected to
uniaxial tension tests or/and beams under bending
are usually simulated first. More sophisticated bench-
marks create more complex stress state in material
(mixed mode failure mode). The replicability of the
observed failure mechanism and crack patterns in RC
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elements is also examined. The most popular speci-
mens are beams with different reinforcement schemes,
but other elements can be also tested, e.g. columns,
corbels.

In the paper the performance of three different
isotropic damage constitutive laws under complex
stress state is examined.All models share several com-
mon features and the origin from the same root, a
classical formulation by Mazars (1986). His model
evolved later into so called µ model (Mazars et al.
2014, 2015). On that basis Pereira et al. (2017, 2018)
proposed another constitutive law.

The intention of the paper is to examine the
behaviour of all three above constitutive laws under
complex stress state. Two test simulations are be per-
formed. The first benchmark is to verify the ability to
simulate the crack growth in plane concrete specimens
in dominated tensile loading. In the second bench-
mark the behaviour of a reinforced concrete beam
under bending is reproduced. It should be emphasized
that not only tension-like, but also failure mechanism
governed by compression will be simulated.

In order to simulate the concrete behaviour in plane
specimens classical Nooru-Mohamed (1992) test is
applied. It has been simulated by many researchers
and some of them used isotropic and anisotropic dam-
age models. Grassl & Jirásek (2004) used anisotropic
micro-plane model equipped with the external algo-
rithm for crack propagation tracking. Patzák & Jirásek
(2004) applied micro-plane based anisotropic damage
model regularized by a non-local integral theory with
adaptive remeshing technique. Later Jirásek & Grassl
(2008) adopted orthogonal fixed-crack approach with
crack band regularisation. Similar idea was employed
by Cervera & Chiumenti (2006). Based on Mazar’s
definition of the equivalent strain Desmorat et al.
(2007) created anisotropic damage model enhanced
by integral non-local theory with characteristic length.
Recently the performance of different isotropic for-
mulations was investigated by Bobiński & Tejchman
(2016).

As a second benchmark experimental results from
Suchorzewski et al. (2018) are chosen. In the test a
reinforced concrete beam with different dimensions
under four-point bending was examined and differ-
ent failure mechanisms were observed. Such topic
has been investigated experimentally by many authors.
Kim & Park (1994) investigated the behaviour and
ultimate shear capacity of strongly reinforced, high
strength concrete beams without stirrups. Belgin &
Şener (2008) analysed the size effect phenomenon
in beams under four-point bending. Tan et al. (2005)
investigated the effects of shear span-to-depth ratio
l/d and effective depth d on shear strength and on the
behaviour of large beams. Ghahremannejad & Abol-
maali (2018) used concrete damaged plasticity model
fromAbaqus to calculate the ultimate shear strength of
RC beams. Marzec et al. (2019), Marzec & Bobiński
(2020), and Marzec & Tejchman (2021) carried out a
series of finite element analysis of RC beams using
different continuum constitutive laws. Sanabria Diaz

et al. (2020) combined nonlinear finite element anal-
ysis with reliability theory approaches for advanced
safety assessment of deep beam design. In numeri-
cal calculations concrete fracture and plasticity theory
with crack band approach was employed.

2 CONSTITUTIVE LAWS

2.1 General relationship

All constitutive laws analysed here fall within isotropic
continuum damage mechanics (CDM) where the
degradation of the material is described via a single
scalar variable D. The following general constitutive
relationship holds:

σ = (1− D)Ceε (1)

where σ = stress vector; Ce= elasticity matrix; and
ε= strain vector. The variable D changes from 0
(undamaged state) to 1 (fully damaged state), so it can
be interpreted as a stiffness reduction factor. The evo-
lution of the variable D is governed by a state variable
κ defined as:

κ (t)=maxτ≤t ε̃ (τ ) (2)

where so called equivalent strain measure ε̃ transforms
strain vector into a scalar value. There are several dif-
ferent proposals presented in literature how to define
the equivalent strain measure and how to calculate the
degradation variable D.

2.2 Original Mazars model

The first constitutive law chosen for comparison was
formulated by Mazars (1986). The equivalent strain
measure ε̃ is defined here as:

ε̃=
√∑

ε2
i (3)

where εi = i-th principal value of the strain vector and
a symbol 〈�〉 stands for a Macaulay bracket (it returns
given number for positive values and zero for nega-
tive values). Degradation variable D is defined via the
following formulae:

D=αtDt + αcDc (4)

Damage variable Dt describes the degradation in
the tension as an exponential softening with the
parameters At and Bt :

Dt = 1− κ0

κ
(1− At)− Atexp(−Bt (κ − κ0) ) (5)

while the damage variable Dc reflects the softening in
compression (again using an exponential curve with
the parameters Ac and Bc):

Dc= 1− κ0

κ
(1− Ac)− Acexp(−Bc (κ − κ0) ) (6)
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Figure 1. Exponential softening curve by Equation (5).

In Equations (5) and (6) κ0 is a threshold value
of the κ state variable when the damage starts. Note
that the same value of κ0 is applied to both damage
mechanisms, i.e. in tension and compression. Fig-
ure 1 presents schematically the shape of this curve
(a hardening – dashed line – is obtained if Bt < 1/κ0).

Coefficients αt and αc reflect the stress state (for-
mally strain state) in a point under consideration and
they are defined as:

αt =
(∑3

i=1

εtiεi

ε̃2

)β
,αc=

(
1−

∑3

i=1

εtiεi

ε̃2

)β
(7)

where εti = i-th principal strain of positive strains
and β = coefficient that slows the degradation process
under shear. In the original paperβ = 1.0 was assumed,
but later a slightly larger value was taken as β = 1.06.

2.3 Mazars µ model

The second constitutive law analysed in this paper was
proposed again by Mazars and his coworkers (Mazars
et al. 2014, 2015). Two equivalent strain measures are
defined here to describe the behaviour in tension:

ε̃t = 1

2

I1

1− 2ν
+ 1

2

√
3J2

1+ ν (8)

and in compression:

ε̃c= 1

5

I1

1− 2ν
+ 6

5

√
3J2

1+ ν (9)

In two above equations I1 is the first invariant of the
strain tensor, while J2 stands for the second invariant of
the deviatoric strain tensor. Similarly, two independent
state variables are also introduced; in tension:

κt =max(κt0, max (ε̃t) ) (10)

and in compression:

κc=max(κc0, max (ε̃c) ) (11)

where κ t0= initial threshold value of κ t (in tension)
and κc0= initial threshold value of κc (in compres-
sion).The weighted state variable κ is used to calculate
the value of the degradation variable D:

κ = rκt + (1− r)κc (12)

with the weighted initial threshold value κ0:

κ0= rκt0 + (1− r)κc0 (13)

The weight factor r in Equations (12) and (13)
reflects the stress state and it is defined as (Lee &
Fenves 1998):

r=
∑

iσ̄i

|σ̄i| (14)

where =i-th principal effective stress (i.e. calcu-
lated with Eqn. (1) and D=0). The weight factor r
changes from 0 (only negative i.e. compressive prin-
cipal stresses) to 1 (only positive, i.e. tensile principal
stresses).

The evolution of the degradation variable D is
governed (as in original model by Mazars) by the
exponential law:

D= 1− κ0

κ
(1− A)− Aexp(−B (κ − κ0) ) (15)

with the parameters A and B declared as:

A=At
[
2r2 (1− 2k)− r(1− 4k)

]+ Ac[Ar] (16)

B=Btr(
r2−2r+2) + Bc

[
1− r(r2−2r+2)

]
(17)

and auxiliary variable Ar :

Ar = 2r2 − 3r + 1 (18)

A parameter k in Equation (16) is used to tune the
behaviour of the model in pure shear. By default the
value k = 0.7 is applied (Mazars & Grange 2015).

2.4 Pereira model

The third constitutive law (called here ‘Pereira model’)
was formulated by Pereira and coworkers (Pereira et
al. 2017, 2018). It is based on the Mazars µ model
described in Section 2.3 with some modifications. As
in the Mazars µ model two equivalent strain mea-
sures are defined using Equations (8) and (9). Two
state variables are also defined, but using alternate
formulas:

κt =max(κt0, κt (τ ) , rα max (ε̃t) ) (19)

κc=max(κc0, κc (τ ) , (1− r)α max (ε̃c) ) (20)

where α=coefficient. The calculation of the damage
variable D is changed; the following relationship is
assumed here:

D= 1− (1− Dt)(1− Dc) (21)
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with damage variables Dt and Dc calculated as in the
original Mazars model using Equations (5) and (6).
The only improvement in Pereira model is fact that
different threshold values κ t0 and κc0 are substituted
as κ0 in Equations (5) and (6), respectively.

2.5 Non-local regularization

Finite element calculations with conventional consti-
tutive laws (i.e. with stress-strain relationships) require
the special treatment of the softening phase in order
to ensure the mesh sensitivity of the results. Here an
integral non-local approach is used as a regularisation
technique.

In original Mazars model (Section 2.2) the equiva-
lent strain measure in Equation (2) is replaced by its
non-local counterpart defined as:

ε̄ (x)=
∫
α0 (x − y) ε̃ (y) dy
∫
α0 (x − y) dy

(22)

where x= a considered point; y= a neighbour point;
and α0=weight function declared for 2D case as:

α0 (r)= 1

l
√
π

exp
(
−
( r

l

)2
)

(23)

where r= distance between two points and l= a char-
acteristic length of a microstructure.

In Mazarsµmodel (Section 2.3) and Pereira model
(Section 2.4) equivalent strains ε̃t and ε̃c are averaged
independently using the Equation (22).Then the values
ε̄t and ε̄c replace their local counterparts in Equations
(10) and (11) in Mazarsµmodel and in Equations (19)
and (20) in Pereira model, respectively.

2.6 Softening curves

All three models roughly use the same exponential
relationship originally proposed by Mazars (1986).
Despite its apparent attractiveness, simplicity and abil-
ity to produce (under specific circumstances) stress-
strain curves in uniaxial tension and compression close
to realistic outcomes (Pijaudier-Cabot et al. 1991) this
relationship has two serious drawbacks. It does not
allow for independent definition of the peak point
(strain and stress values) and the fracture energy
density (it is extremely important in compression).
Moreover, it does not allow for easy scaling the soft-
ening regime (fracture energy density) in order to
obtained physically sound total fracture energy when
small widths of the localisation zones are assumed.
The fracture energy density gf for the 1D case and
damage evolution curve defined by Equations (5), (6)
or (15) can be derived as (assuming α= 1, otherwise
this energy is infinite):

gf =
∫ ∞

0
σ (ε) dε= 1

2
Eκ2

0 +
E

β2
(βκ0 + 1) (24)

Application of the curve by Mazars with sug-
gested parameter values (Pijaudier-Cabot et al. 1991)
with small localization widths (small characteristic
lengths l) results in unrealistically small values of the
total fracture/compression energy, i.e. almost perfectly
brittle behaviour. For instance, taking values after
Pijaudier-Cabot et al. (1991): E= 40 GPa, κ0= 1.1 ·
10−4, β = 2 · 104 the fracture energy density is equal
to gf = 562 N/m2. Pereira et al. (2017) assumed the
following set of parameters: E= 36 GPa, κ0= 1.06 ·
10−4, β = 104, which gives gf = 944 N/m2. Multiply-
ing the second value by the width of the localisation
zone (here it can be assumed as w= 3.5l) for l= 5
mm the total fracture energy is calculated as GF = 16.5
N/m. This result is much lower than a realistic value
for concrete (about 100 N/m).

Therefore slightly modified exponential relation-
ship is used thorough the paper (Figure 2):

D= 1− κ0

κ
[(1− A)− Aexp(−B (κ − κ0) )] (25)

as a replacement (with required index adjustments) for
Equations (5), (6) and (15).This relationship allows for
easy scaling of the softening regime, but still does not
include a nonlinear hardening phase (compression).
In order to eliminate this deficiency another curve
in compression has been proposed with a hardening
region described by a parabola and a softening phase
with exponential curve (Figure 3). In the hardening
regime stress (uniaxial case) is calculated as:

σ =− (
fc − Eκp

) ( κ − κp

κp − κ0

)2

+ Eκ (26)

while the softening part is described as:

σ = fc
[
(1− Ac)− Acexp(−Bc

(
κ − κp

)
)
]

(27)

Then the damage variable D can be retrieved as:

D= 1− σ
Eκ

(28)

In Equations (26) and (27) fc is the compressive
strength, κp is the value of the state variable κ (uniaxial

Figure 2. Exponential softening curve by Equation (25).
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Figure 3. Softening curve by Equations (26) and (27).

compression strain) at the peak (when stress is equal
to fc), κ0 stands here for the value of the state variable
κ when a nonlinear hardening starts, and E=Young
modulus. Note this curve cannot be used for Mazarsµ
model (Section 2.3) where only one evolution curve is
defined (Equation (15)). It means a hardening phase is
not defined. In original Mazars model (Section 2.2) in
uniaxial compression the following relationship holds
between the strain ε and the state variable κ (in plane
stress):

κ = ν√2|ε| (29)

Therefore the parameters describing the stress-
strain relationship in compression, namely κp, fc and
βc, have to modified in the model definition in order
to retrieve assumed curve based on experimental
outcomes.

3 NOORU-MOHAMED TEST

3.1 Experiment

In order to examine the performance of all con-
stitutive laws under complex stress state (but with
dominating tension load) in plain concrete as a first
benchmark a double edge notched (DEN) specimen
under combined tension and shear was chosen. This
problem was formulated and experimentally exam-
ined by Nooru-Mohamed (1992). In his PhD thesis he
analysed specimens with different dimensions and dif-
ferent loading scenarios. In the paper the most popular
configuration is numerically reproduced.The concrete
specimen had a length and height of 200 mm (with
thickness equal to 50 mm) and two notches 25x5 mm2

at the middle of the vertical edges, see Figure 4. The
test consists of two phases. First a horizontal shear
force Ps is applied until a specific value is reached,
while the vertical edge if force free. Then the force
Ps is held constant and the vertical displacement δ
is imposed. As a consequence two cracks are formed
starting from the notches, see Figure 5.Their curvature
and “distance” between them depend on the prescribed
value of the shear force Ps. The obtained maximum

Figure 4. Nooru-Mohamed test: geometry and schematic
boundary conditions (dimensions in mm).

Figure 5. Nooru-Mohamed test: experimental crack pattern
for Ps= 10 kN.

force in vertical direction decreases with increasing
the level of the shear force Ps. However, in the paper
simulations with only one value of the shear force,
namely Ps=10 kN, will be presented.

3.2 FE calculations

The following elastic parameters are taken in FE cal-
culations:Young modulus E= 32.8 GPa and Poisson’s
ratio ν= 0.2. Plane stress conditions are assumed.
Three node triangle elements and four node quad
elements are defined in FE mesh. The characteristic
length is equal to l= 2 mm.

3.2.1 Original Mazars model
In the simulations the in tension the softening curve
given by Equation (25) with parameters κ0= 7 · 10−5,
At = 0.98 and Bt = 220. It corresponds approximately
to the fracture energy GF = 100 N/m in uniaxial
tension. In compression parabolic-exponential rela-
tionship is assumed (Equations (26) and (27)) with
the parameters κ0= 7 · 10−5, κp= 0.622 · 10−3, fc=
10.86 MPa, Ac= 0.98 and Bc= 141.4. All above
parameters (except Ac) are modified to take into
account the performance of the equivalent strain
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Figure 6. Nooru-Mohamed test and original Mazars model:
force-displacement diagram (top) and cracks pattern (damage
variable D bottom).

measure (Equation (3)) in uniaxial compression
(Equation (29)) and to define physically sound rela-
tionship in uniaxial compression with the strength
38.4 MPa and strain 0.22%. The crushing energy Gc
is approximately equal to 8000 N/m. The β expo-
nent is set to its default value 1.06. Figure 6 presents
force-displacement curve and obtained cracks pattern.
Sudden drop of the force is observed after the peak
and only one horizontal crack is formed. Definitely
original Mazars model is not capable to simulate prop-
erly Nooru-Mohamed test. This behaviour is similar
to results obtained with isotropic damage constitu-
tive laws and ‘Rankine’ equivalent strain (Bobiński &
Tejchman 2016).

3.2.2 Mazars µ model
The threshold values are set as κ t0= 7 · 10−5 and κc0=
1.17 · 10−3 (fc/E) in tension and compression, respec-
tively. Two cases are investigated. First, Equation (25)
with parameters At = 0.98 and Bt = 220 (as in Section
3.2.1) is used (model A). Second, original evolution
law (using Equations (16) and (17)) but with Equation
(25) instead of Equation (15) is tested (model B). The
following parameters are assumed then: At = 0.98 and

Figure 7. Nooru-Mohamed test and Mazars µ model:
force-displacement diagrams (top) and cracks pattern
obtained with model A (damage variable D, bottom).

Bt = 220, Ac= 0.98.0 and Bc= 40 and k = 0.7. In both
cases the same fracture energy is set GF = 75 N/m.
Figure 7 shows obtained results. It clear that despite
some minor discrepancies, obtained results are in good
agreement with experiment.

3.2.3 Pereira model
Finally, a model by proposed Pereira et al. (2018)
is verified. In tension a softening curve given by
Equation (25) with parameters κ t0= 7 · 10−5, At =
0.98 and Bt = 220 is set. In compression a parabolic-
exponential relationship (Equations (26) and (27))
with the parameters κc0= 3.5 · 10−4, κp= 2.2 · 10−3,
fc= 38.4 MPa, Ac= 0.98 and Bc= 40 is set. It can
be easily checked that this model returns the same
stress-strain curve in uniaxial tension in compres-
sion as original Mazars model from Section 3.2.1
(despite different parameters in compression). Such
uniqueness with the respect to Mazars µ model
holds only for uniaxial tension case. Coefficient α
in Equations (19) and (20) is assumed to its default
value 0.1.

Figure 8 presents force-displacement diagram and
cracks patterns. Results are very close to those
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Figure 8. Nooru-Mohamed test and Pereira model:
force-displacement diagram (top) and cracks pattern (damage
variable D, bottom).

obtained with Mazars µ model. A good correlation
with experimental outcomes is achieved. The only
differences occur at the late phase of the loading
(numerically too small vertical force is reproduced).
Also slightly too curved curves are obtained (simi-
larly as for isotropic damage model with modified
von Mises definition as the equivalent strain mea-
sure, see Bobiński & Tejchman 2016). It is worth to
mention that α coefficient a has a minimal impact on
results. Simulations with α= 1.0 give almost identical
results comparing with outcomes with the basic set of
parameters.

3.2.4 Failure envelopes
Additionally, in order to understand the obtained
results, limit failure envelopes are created for local
versions (the characteristic length is not taken into
account) of all three models with parameters defined
in previous sections. Figure 9 shows obtained failure
envelopes for plane stress case. All formulations cor-
rectly reproduce tensile and compressive assumed uni-
axial strengths. The original Mazars constitutive law
gives unrealistic output, especially in biaxial compres-
sion. The Mazars µmodel significantly overestimates

Figure 9. Nooru-Mohamed test: Failure envelopes.

the material strength in tension-compression regime.
Its performance in biaxial compression is quite realis-
tic. The best envelope is produced with Pereira model
(in biaxial compression it coincides with Mazars µ
curve). The detailed analysis shows, however, that in
tension compression regime an increase of the ten-
sile strength is found (from 2.3 MPa to 3.5 MPa). The
similar trend was observed in FE simulations with
simple isotropic laws and modified von Mises defi-
nition of the equivalent strain measure (Bobiński &
Tejchman 2016). This phenomenon was not observed
in the model with original damage evolution formula-
tion (Pereira & et al. 2017).The differences between all
envelopes in biaxial tension and tension-compression
regimes (biaxial compression is not active in this test)
does not allow to draw ultimate conclusions. Further
study is required on this topic.

4 REINFORCED CONCRETE BEAM TEST

4.1 Experiment

As a second benchmark reinforced concrete beams
under four-point bending are numerically reproduced
based on experimental campaign run at Gdańsk Uni-
versity of Technology (Suchorzewski et al. 2018). The
goal of this research was to investigate a size effect
phenomenon in RC beams with independently scaled
their height or length. In total four series were exe-
cuted: S1 and S2 with specimens with longitudinal
reinforcement only and S3 and S4 with added stir-
rups. As a consequence different failure mechanism
were obtained.

In the paper only two selected geometries from the
series S1 and S2 (without stirrups) will be analysed.
The geometry of the beams is shown in Figure 10.
In the first series S1 the effective depth D was taken
as 18 cm, 36 cm and 72 (ratio 1:2:4) for a specimen
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Figure 10. Geometry and boundary conditions for the series
S1 (top), series S2 (middle) and cross sections (bottom).

labelled as S1D18a108, S1D36a108 and S1D72a108,
respectively. In this series the span length was equal
leff = 270 cm and the distance between the support
and a loading point (shear span length) was taken as
a= 108 cm for all geometries. The distance between
two loads was fixed as b= 54 cm. In the second series
S2 the shear span length a was defined as 36 cm, 72
cm and 108 cm (ratio 1:2:3) for a specimen named
as S2D36a036, S2D36a072 and S2D36a108, respec-
tively. The effective height was D= 36 cm and the
distance b= 54 cm were fixed, so the span length leff
was determined as 126 cm, 198 cm and 270 cm for
the beam S2D36a036, S2D36a072 and S2D36a108,
respectively. The thickness of all beams in both series
was constant t= 25 cm.

Longitudinal reinforcement consisted of bars with
diameter of 20 mm. The reinforcement ratio was
fixed as ρ= 1.4% in all beams in both series. The
beam S1D18a108 had two bars, beams S1D36a108,
S2D36a36 and S236a72 – four bars, and the beam
S1D72a108 – eight bars (located in two rows).

Different failure mechanisms were observed. In
the beam S1D18a108 yielding of the reinforcement
occurred. The beam S1D36a108 was destroyed in so
called shear-tension failure mode with normal crack
displacements. In the beam S1d72a108 significant

Figure 11. Experimental crack pattern for the beam
S1D18a108 (top) and S2D36a36 (bottom).

normal and tangential displacements in the criti-
cal crack were observed (diagonal shear-compression
mode). Combined shear and compression caused the
failure of the beam S2D36a36. Finally two fail-
ure mechanisms were observed in the specimens
S2D36a72: diagonal shear-tension or diagonal shear-
compression mode. Figure 11 presents experimen-
tal cracks patterns for the beams S1D18a108 and
S2D36a36 (only these beams are simulated in this
paper).

4.2 FE calculations

In all simulations of both beams elastic parameters are
taken as: Young modulus E= 34.2 GPa and Poisson’s
ratio ν= 0.2. Plane stress conditions are assumed.
Three node triangle elements and four node quad
elements are defined in FE mesh. The characteris-
tic length is equal to l= 5 mm (in order to speed
up calculations). In the calculations with original
Mazars model the following parameters are set: κ0=
9.4 · 10−5, At = 0.98 and Bt = 550 for exponential
softening in tension and κ0= 9.4 · 10−5, κp= 0.622 ·
10−3, fc= 17.36 MPa, Ac= 0.98 and Bc= 441.9 for
parabolic-exponential relationship in compression. In
simulations with Mazars µ law the threshold val-
ues are set as κ t0= 9.4 · 10−5 in tension and κc0=
1.81 · 10−3 compression. The softening is described
via the exponential curve with At = 0.98 and Bt = 550.
In Pereira model the following set of parameters is
assumed: κ t0= 9.4 · 10−5, At = 0.98 and Bt = 550 in
tension andκc0= 3.5 · 10−4,κp= 2.2 · 10−3, fc= 61.5
MPa, Ac= 0.98 and Bc= 125 in compression. Rein-
forced bars are modelled as 1D truss elements with
an elasto-perfectly plastic material law and the fol-
lowing parameters: Young modulus Es= 200 GPa and
yield strength σ y = 650 MPa. Perfect bond (no slip)
between concrete and bars is set.

4.2.1 Beam S1D18a108
Figure 12 shows obtained force-displacement curves
while computed crack patterns are presented in Fig-
ure 13. It can be clearly seen no of all three formula-
tions is capable to correctly reproduce the experimen-
tal failure mechanism i.e. longitudinal reinforcement
yielding. Obtained maximum forces are smaller than
experimental values. In simulations the premature
shear crack is responsible for failure in all simulations.
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Figure 12. Beam S1D18a108: force-displacement curves.

Figure 13. Beam S1D18a108: crack pattern (damage vari-
able D) obtained with original Mazars model (top), Mazars
µ model (middle) and Pereira model (bottom).

Figure 14. Beam S2D36a108: force-displacement curves.

4.2.2 Beam S2D36a108
The results of analysis of the beam S2D36a108 are
depicted on Figures 14 (force-displacement curves)
and 15 (crack patterns). The experimental failure
mechanism is moderately reproduced. A critical shear
crack is not fully developed, but it starts to dom-
inate (with a small exception for original Mazars
model). However obtained maximum loads are heav-
ily underestimated. Also obtained stiffness is too large
comparing to experiments.

Figure 15. Beam S2D36a108: crack pattern (damage vari-
able D) obtained with original Mazars model (top), Mazars
µ model (middle) and Pereira model (bottom).

5 CONCLUSIONS

In the paper three advanced isotropic damage constitu-
tive laws were discussed and their ability to reproduce
concrete’s behaviour under complex stress state was
examined. Two benchmarks were simulated: Nooru-
Mohamed test and RC beam with different failure
mechanisms.

FE calculations have shown that none of all three
damage material laws is able to follow properly experi-
mental outcomes. While Mazarsµ and Pereira models
were able to simulate Nooru-Mohamed test, they failed
in simulations of both cases of the RC beam due to pre-
mature shear. Original Mazars constitutive law did not
succeed in any analysed benchmarks.
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ABSTRACT: Size-effect of quasi-brittle materials such as concrete defines the relation between nominal
strength and structural size when material fractures. One main type of size-effect, which is the focus of this
manuscript, is the so-called energetic size-effect and is due to the release of stored energy of the structure
into the fracture front. In contrast to brittle materials, the fracture process zone size has a non-negligible size
in concrete, which makes the size-effect law non-linear. In order to simulate size-effect, a numerical model
must be able to describe accurately the development and propagation of the fracture process zone. Over the
years, a number of models have been proposed to describe the fracturing process in concrete. Nevertheless, it
appears challenging to obtain a correct description of fracture and size-effect when the structural dimension
and shape are varying. In this study, the Lattice Discrete Particle Model (LDPM) was proposed to overcome
this lack of accurate models. The use of mesoscale discrete models such as LDPM, which describes concrete
at the aggregate level, is especially adequate in simulating complex cracking mechanisms. In order to investi-
gate the effect of structural dimension and geometry on the fracturing process and the nominal strength, one
of the most comprehensive experimental data set available in the literature was considered, which includes
three-point bending tests of notched and unnotched beams. First, the relevant material parameters in LDPM
were calibrated on a single size notched beam on the corresponding entire load-Crack Mouth Opening Dis-
placement (CMOD) curve. The model was then used to predict the load-CMOD curves of different beam
sizes with the same notch length. Predictions on one unnotched beam were also made to test the model’s
capability to simulate crack initiation from a smooth surface. Preliminary results show very a good agree-
ment with the experimental data, which suggests that LDPM is an efficient model in predicting concrete
size-effect.

1 INTRODUCTION

The effect of structural size on the nominal strength
of concrete and other quasi-brittle materials has been
explored numerous times in the literature, experimen-
tally, theoretically, and numerically. In quasi-brittle
materials, an increase in structural size is accompanied
by a reduction in strength for geometrically similar
structures. This phenomenon is the so-called size-
effect and was confirmed experimentally for a wide
variety of materials and in particular for plain con-
crete (see for instance the work of Bažant & Pfeiffer

1987; Grégoire et al. 2013; Hoover et al. 2013). Size-
effect is mainly caused by two distinct phenomena:
(i) the stress redistribution due to stable crack prop-
agation and release of stored energy into the fracture
front, and (ii) the randomness in material strength. The
reader is referred to the seminal work of Bažant and
coworkers (Bažant 2002; Bazant & Le 2017; Bažant &
Planas 1997) for extensive details. This study focuses
solely on the energetic size-effect which is by the way
a purely deterministic process. The release of stored
energy in the structure combined with the finite nature
of the fracture process zone size in concrete make the
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size-effect behavior deviate from classical linear elas-
tic fracture mechanics predictions. In order to describe
the non-linear scaling in concrete and the development
and propagation of the fracture front for different spec-
imen sizes and shapes, one often needs to carry out
numerical modeling.

Over the years, a number of models have been
proposed to describe the fracturing process and size-
effect in concrete. The major ones are the cohe-
sive (Elices et al. 2002) and crack-band model
(Bažant & Oh 1983), non-local continuum damage
models (Bažant & Jirásek 2002; Pijaudier-Cabot &
Bažant 1987), and discrete models (Bolander et al.
2021). In the aforementioned models, the two ingredi-
ents necessary to capture strain softening and size-
effect in concrete are taken into account: (i) crack
localization and (ii) existence of an internal charac-
teristic length related to the size of the heterogeneity.
In this regard, random lattice or particle models are
especially appealing as crack formation, localized and
oriented events such as frictional slip can be naturally
captured. Moreover, realistic features can be taken into
account such as the actual particle size distribution
used in the mix design and the randomness in the
spatial distribution of particles which reproduces the
statistically isotropic nature of the material and avoids
directional mesh bias during the fracturing process.
A recent argument in favor of lattice particle models
is the necessity to capture the effect of stress paral-
lel to cracks on the size of the fractured zone, which
was shown to be significant in concrete (Nguyen et al.
2020a, 2020b).

In this study, the Lattice Discrete Particle Model
(Cusatis et al. 2011a, 2011b) is adopted. This model
has been used extensively to simulate the behav-
ior of concrete and other granular materials at the
mesoscale, i.e. at the coarse aggregate level, by mod-
eling their interaction. Size and geometry effects are
here investigated by considering the experimental data
set generated by Grégoire and coworkers (Grégoire
et al. 2013) which includes three-point bending tests
of notched and unnotched concrete beams. This data
set is among one of the very few available in the liter-
ature that encompasses a large range of beam depths,
two notch sizes and unnotched beams. It is worth not-
ing that two previous studies attempted to simulate this
data set. In the first study, an integral-type non-local
model was used but was unsuccessful in capturing size
and geometry effects (Grégoire et al. 2013). Whereas
the second study was able to simulate the data with a
good accuracy (Grassl et al. 2012), the discrete lattice
model used in that work falls in the miniscale cate-
gory, where each particle is discretized along with the
matrix and the aggregate-matrix interface, making any
simulations quickly computationally prohibitive as the
structural size increases. Another limitation is the use
of a two-dimensional model, which might however not
affect the fracture test results of similar specimens.

In the following, LDPM is first explained with a
focus on the constitutive equations describing the frac-
turing behavior. The relevant model parameters were

calibrated on the load-CMOD curve corresponding
to one beam configuration and on the compressive
strength. Size-effect predictions were then performed
on different sizes of beams. Preliminary results on one
unnotched beam are also provided.

2 LATTICE DISCRETE PARTICLE MODEL

The Lattice Discrete Particle Model was proposed
by Cusatis and coworkers to simulate the mechanical
behavior of concrete (Cusatis et al. 2011a, 2011b). It
has also been used to simulate a wide range of gran-
ular quasi-brittle materials such as mortar (Han et al.
2020; Pathirage et al. 2019), fiber reinforced concrete
and engineered cementitious composites (Feng et al.
2022; Rezakhani et al. 2021; Schauffert & Cusatis
2011), irregular stone masonry (Angiolilli et al. 2020,
2021; Mercuri et al. 2020, 2021a, 2021b, 2022), shale
(Li et al. 2017) and to reproduce multi-physics phe-
nomena such as hygro-thermo-chemical processes,
alkali-silica reaction, aging, and self-healing in con-
crete (Alnaggar et al. 2013; Cibelli et al. 2019, 2022;
Pathirage et al. 2018, 2019; Yang et al. 2021, 2022).

In this model, spherical particles are placed in
the considered volume of material following a spe-
cific particle size distribution given the cement con-
tent c, the water-to-cement ratio w/c, the density
ρ, and the maximum and minimum aggregate size
da and d0, respectively. The geometry of the inter-
action between aggregates is described as follows:
first, a lattice system is defined to describe the inter-
action between particles by means of a Delaunay
tetrahedralization performed with the centers of the
particles; next a domain tessallation is performed to
define the potential failure locations, which finally
generates a system of polyhedral cells. The surface
of each polyhedral cell is composed of triangular
facets where the LDPM constitutive equations, facet
stresses and strains are formulated in a vectorial
form. The interaction between polyhedral cells is gov-
erned by specific constitutive equations describing
tensile fracturing with strain-softening, cohesive and
frictional shearing, and compressive response with
strain-hardening. In particular, the fracturing behavior
in LDPM incorporates effective strains and stresses
through a damage-type constitutive equation. The
strain-dependent limiting boundary is characterized by
an exponential decay which starts when the maximum
effective strain reaches its elastic limit. The relevant
constitutive equations are given next. For the complete
set of constitutive equations, as well as the compati-
bility and equilibrium equations, the reader is referred
to the original work of Cusatis et al. 2011.

Let us denote by xi and xj the positions of nodes
i and j, adjacent to the facet k , the facet strains are
defined as ek = [eN eM eL]T = [nT

k [[uk ]]/l mT
k [[uk ]]/

l lT
k [[uk ]]/l]T , where eN is the normal strain compo-

nent, and eM , eL are the tangential strain components,
[[uk ]]=uj − ui is the displacement jump at the cen-
troid of the facet k , l=‖xj − xi‖2 is the distance
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between the two nodes, nk = (xj − xi)/l and mk , lk
are two unit vectors mutually orthogonal in the facet
plane projected orthogonally to the line connecting the
adjacent nodes. One can define the traction vector as
tk = [tN tM tL]T , where tN is the normal component,
tM and tL are the shear components. For the sake of
readability, the subscript k that designates the facet is
dropped in the following equations.

2.1 Elastic behavior

The elastic behavior is defined through linear rela-
tions between the normal and shear stresses, and the
corresponding strains as

tN =EN eN , tM =ET eM , tL=ET eL (1)

where EN =E0 and ET =α0E0, E0 ≈ E/(1− 2ν) and
α0 ≈ (1− 4ν)/(1+ ν) are the effective normal mod-
ulus and the shear-normal coupling parameter, respec-
tively, and E is the macroscopic Young’s modulus and
ν is the macroscopic Poisson’s ratio.

2.2 Fracture behavior

Although three-point bending tests are designed to
generate pure mode I opening, some facets in LDPM
might be under a mixed-mode tension-shear because
of the irregular shape of the polyhedral cells, very
much like in real fracture taking place at the inter-
face of aggregates. It is therefore important to explain
the fracturing and cohesive behavior under tension but
also tension/shear. It occurs for eN > 0. One can define
an effective strain as e= (e2

N + α0(e2
M + e2

L))
1
2 , and an

effective stress as t= (t2
N + (t2

M + t2
L)/α0)

1
2 and write

the relationship between stresses and strains through
tN = teN /e, tM =α0teM/e and tL=α0teL/e. The effec-
tive stress t is defined incrementally as ṫ=EN ė and its
magnitude is limited by a strain-dependent boundary
0 � t � σbt(e,ω) in which

σbt(e,ω) = σ0(ω) exp
[
−H0(ω)

〈emax − e0(ω)〉
σ0(ω)

]
(2)

〈x〉=max(x, 0), ω is a variable defining the degree of
interaction between shear and normal loading defined
as tan(ω)= (eN )/(

√
α0eT ) = (tN

√
α0)/(tT ); eT is the

total shear strain defined as eT = ( e2
M + e2

L)
1
2 , and tT

is the total shear stress defined as tT = ( t2
M + t2

L)
1
2 .

The maximum effective strain is time depen-
dent and is defined as emax(τ ) = (e2

N ,max(τ )+
α0e2

T ,max(τ ))
1
2 , where eN ,max(τ )=max

τ ′<τ
[eN (τ ′)] and

eT ,max(τ ) = max
τ ′<τ

[eT (τ ′)]. The strength limit of the

effective stress that defines the transition between pure
tension and pure shear is

σ0(ω)= σt

− sin(ω)+
√

sin2 (ω)+ 4α0 cos2 (ω)/r2
st

2α0 cos2 (ω)/r2
st

(3)

where rst = σs/σt is the shear to tensile strength ratio,
σs is the shear strength and σt is the tensile strength.
The post-peak softening modulus is controlled by the
effective softening modulus H0(ω)=Hs/α0 + (Ht −
Hs/α0) (2ω/π)nt , in which Ht = 2E0/(lt/l − 1), Hs=
rsE0 and nt is the softening exponent; lt is the ten-
sile characteristic length defined as lt = 2E0Gt/σ

2
t ,

Gt is the mesoscale fracture energy. The model was
recently implemented by the authors in the finite ele-
ment solver CAST3M (Verpeaux et al. 1988) (2020
version) within a dynamic implicit framework (Pathi-
rage et al. 2022). All the simulations presented in this
study were performed using CAST3M.

3 MODEL CALIBRATION

3.1 Experimental data

The experiments performed by Grégoire et al. 2013
included three-point bending tests of four different
sizes of geometrically similar specimens, with depths
D varying between 50 mm and 400 mm, span-to-depth
ratio of 2.5, and out-of-plane thickness of 50 mm.
Three different notch-to-depth ratios α were tested
in the experimental work. However only one ratio,
namely α= 0.2, was considered in this paper. The
tests were performed under CMOD control in order
to obtain a stable post-peak. For unnotched beams,
the plates of the extensometer were glued at a dis-
tance from mid-span of half the beam depth to ensure
that crack initiates between the plates. In addition,
unconfined compression tests on cylinders were con-
ducted and elastic parameters were measured. For
more details on the experimental program and the con-
crete mix design, the reader is referred to Grégoire
et al. 2013.

3.2 Calibration process

First, the mix design parameters used to define the
LDPM geometry were identified based on the actual
mix used in the experiments. The particle size dis-
tribution given in Grégoire et al. 2013 was matched
exactly with a cut-off size at d0= 4 mm and val-
ues of da= 10 mm, c= 260 kg/m3, w/c= 0.626, and
ρ = 2121 kg/m3 were taken.

Next, the parameters related to the elastic behavior
were identified. More specifically, the elastic modulus
and Poisson’s ratio were taken as E= 37000 MPa and
ν= 0.176 based on the mean values obtained by mea-
surements on cylinders. Values of E0= 57180 MPa
and α0= 0.25 were then deduced from the equations
listed in section 2.1. Finally, notched three-point bend-
ing and unconfined compression simulations were
performed to calibrate the model parameters in the
inelastic regime. The mesoscale tensile strength σt =
2.9 MPa, characteristic length lt = 400 mm, and shear-
to-tensile strength ratio σs/σt = 3.276 were obtained
simultaneously based on: (i) the load-CMOD response
corresponding to the medium size beam of depth
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Figure 1. Calibration results: (a) stress-strain curve of
unconfined compression test on cylinder of diameter Dc = 74
mm and height Hc = 142 mm, (b) load-CMOD curve of
three-point bending test with D= 200 mm and α= 0.2.

D= 200 mm with α= 0.2 and (ii) the compressive
strength obtained from cylinders of diameter Dc= 74
mm and height Hc= 142 mm. For the compression
tests, rigid plates at the top and bottom of the speci-
mens were used. High friction between steel plates and
concrete was simulated through a classical Coulomb
friction law with a friction coefficient of µ= 0.13.
Both fracture and compression tests were conducted
under displacement control and with a constant veloc-
ity of 0.01 mm s−1 to ensure quasi-static conditions.
For all the simulations, three different random particle
placements were used to take into account the spatial
variability of aggregate size and distribution. In addi-
tion, values of nt = 0.2 and rs= 0 were assumed fixed.
The remaining parameters, not related to unconfined
compression or fracture, were assumed based on sec-
tion 5.3 in Cusatis et al. 2011 and are listed here for the

sake of completeness: σc0 = 120 MPa, Hc0/E0= 0.4,
kc0= 2, kc1= 1, kc2= 5, µ0= 0.2, µ∞= 0, σN0= 600
MPa, and Ed/E0= 1. Last but not least, the simulations
were performed in dynamic implicit with a constant
time step of �t= 0.1 s and a criterion on the residual
of 10−3.

Figure 1(a) shows the simulated stress-strain curve
and the compressive strength obtained experimentally.
Figure 1(b) shows the load-CMOD curves for the
bending test. On each figure, three dashed lines are
displayed: they correspond to three simulations per-
formed with different particle distributions. The solid
line is the mean of the latter three curves.The grey area
represents the experimental scatter where the bounds
corresponds to the maximum and minimum values.
One can see that the LDPM responses match well with
experiments within the scatter of the data.

4 PREDICTION RESULTS

4.1 Size-effect

In order to assess the capability of the model to predict
size-effect, blind predictions were carried out without
adjusting the model parameters on the three remain-
ing sizes of the bending tests while keeping the same
notch-to-depth ratio. Figure 2(a) shows the full pre-
dictions of the load-CMOD curves for sizes D= 50
mm, D= 100 mm, and D= 400 mm. One can see that
the predictions are in good agreement with the exper-
imental curves since all the simulations lie within the
scatter of the experimental data. Figure 2(b) shows the
mesoscale crack opening in the four samples at some
displacement in the post-peak, more specifically at a
displacement 0.05 mm for D= 50 mm, 0.05 mm for
D= 100 mm, 0.10 mm for D= 200 mm, and 0.15 mm
for D= 400 mm. As expected, cracks are localized
and propagate through the sample almost vertically:
the slight deviations are due to the heterogeneity of
the material.

4.2 Crack initiation from smooth surface

Preliminary work was also done on evaluating the
capability of LDPM to predict fracture propagation
in samples without notch, i.e. to simulate crack initia-
tion from a smooth surface. Figure 3(a) shows the full
prediction of the load-CMOD curve for the beam of
depth D= 50 mm. One can see again a good agree-
ment experiments. The predicted mean peak value is
slightly higher than the experimental one. In addition,
there is a relatively small difference between exper-
iments and simulation in the mid-far post-peak. The
reason for these slight deviations in predictions might
be the size of the beam, i.e. D= 50 mm. Indeed,
this depth is very close to the smallest beam one
could cast or simulate with a maximum aggregate
size of 10 mm. Moreover, one might amplify addi-
tional sources of errors when considering such small
specimen sizes, for instance the correct application of
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Figure 2. Size-effect predictions: (a) load-CMOD curves
for the four beam depths (D= 200 mm is the calibration,
the remaining curves are full predictions) and (b) mesoscale
crack opening.

boundary conditions. Figure 3(b) shows the mesoscale
crack opening for a displacement of 0.05 mm. The
main crack does not initiate exactly at midspan, which
is of course expected and observed in experiments.
This is well captured by the model since the hetero-
geneity of the material is reproduced in the LDPM
internal geometry. The presence of individual cracks,
sometimes located far from the main propagating
crack, is due to the large time step taken for the sim-
ulation. This spurious noise effect does not affect the
accuracy of the load-displacement curve as almost all
the energy is dissipated in the main crack. As a matter
of fact, these individual cracks can be eliminated by
reducing the time step or by running a static simulation
(these results are not shown here).

Figure 3. Unnotched beam: (a) load-CMOD curve for beam
depth D= 50 mm and (b) mesoscale crack opening.

5 CONCLUSIONS

A set of numerical simulations were performed in order
to study fracture and size-effect in concrete. For this
purpose, the Lattice Discrete Particle Model was used
to simulate experimental data of four different sizes
notched three-point bending specimens reported in
Grégoire et al. 2013. The model was first calibrated
on one size bending beam and on a compression test.
Predictions of load-CMOD curves were finally made
on the remaining three sizes and on one unnotched
beam. Results show that:

• LDPM is able to predict the fracture propagation
and size-effect for a wide range of beam depths.

• Results on the unnotched beam confirms that the
model is able to capture crack initiation and propa-
gation from a smooth surface.

Ongoing work focuses on extending this study by
predicting size-effect on beams with different notch
lengths including unnotched specimens.
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ABSTRACT: There are in general two classes of time integration algorithms for dynamics problems, namely
implicit and explicit methods. While explicit methods are conditionally stable and often require a very small
time step, implicit algorithms are unconditionally stable and larger time steps can be used. In terms of memory
usage, implicit algorithms require more memory as a system of equations needs to be solved one or several
times per step for the solution to advance. Implicit methods are usually used to solved problems in which low
frequency modes dominate. Nevertheless, one often faces convergence issues when the material behavior is highly
nonlinear and explicit methods seem more appropriate in that case. In this study, the performance of the Lattice
Discrete Particle Model (LDPM), newly implemented in the implicit solver CAST3M was investigated. LDPM
is a mesoscale model developed to simulate concrete and other granular quasi-brittle materials. It incorporates
complex nonlinear constitutive equations and for this reason, it is currently used within the dynamic explicit
framework ABAQUS Explicit. This manuscript presents preliminary results on the comparison between explicit
central difference algorithm and implicit average acceleration scheme for LDPM. For this purpose, a classical
three-point bending test under quasi-static conditions was considered. Three different integration methods were
used: dynamic explicit, dynamic implicit and static implicit. Load-displacement responses were obtained and
discussed, along with the force imbalance at loading points to assess static equilibrium. For each simulation,
the computational cost was also obtained. Results show that quasi-static simulations can be performed using
dynamic explicit integration method if the effect of inertia is small enough. In addition, the computational cost
for static and dynamic implicit simulations is much lower than for dynamic explicit calculations. Last but not
least, the time step size in the dynamic implicit method needs to be chosen carefully to avoid spurious energy
growth or higher modes due to time discretization.

1 INTRODUCTION

In computational mechanics, there are in general two
classes of time integration algorithms designed to
solve dynamic problems, namely implicit and explicit
methods. In implicit algorithms, a system of equations
needs to be solved one or several times at each step.
Equilibrium conditions are considered at the same
time step for which the solution is sought. In con-
trast, explicit algorithms do not require to store in
memory a system of equations if the mass matrix is
diagonal or lumped, which is most often the case in
practice. Implicit methods are either conditionally or
unconditionally stable. In the Newmark family, the

average acceleration method is for instance uncon-
ditionally stable. It is one of the reason why this
method has become popular over the years in the
field of structural dynamics. The time step in such
methods can be large and its maximum size is only
governed by the solution accuracy and not the sta-
bility of the integration scheme. On the other hand,
explicit methods are always conditionally stable (at
least for linear problems) and the maximum time step
is inversely proportional to the highest frequency of the
discrete system, which in many cases is much smaller
than what is needed to obtain a reasonably accurate
solution for engineering problems. In terms of com-
putational cost, implicit methods are expensive since
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a system of equation needs to be solved at least one
time per step and a large amount of memory can be
required. However depending on the size of the prob-
lem, i.e. the number of degrees of freedom, the time
step can be set large enough to compensate the afore-
mentioned cost. In explicit algorithms, the cost and
the required memory per step are low but the size of
the critical time step prohibits simulations of moder-
ate and long-term dynamic problems. For more details
on the different integration schemes, the reader is for
example referred to Zienkiewicz et al. 2005, Hughes
2012 or Belytschko et al. 2014. In general, implicit
methods are preferred over explicit algorithms for
low-velocity dynamic problems where the response
is mostly governed by a few low-frequency modes
(Subbaraj & Dokainish 1989).Wave propagation prob-
lems and high-velocity dynamics are usually better
handled with explicit methods (Dokainish & Sub-
baraj 1989). However, the choice of one algorithm
over the other also depends strongly on the behavior
of the material model. For highly non-linear mate-
rial models, low frequency mode simulations are often
performed with explicit algorithms because of conver-
gence issues observed in implicit schemes. Although
nonlinear computations are usually guided by lin-
ear stability estimates (Belytschko et al. 2014), there
is no general rule and the type of time integration
scheme needs to be chosen carefully and is problem-
dependent.

In this study, the Lattice Discrete Particle Model
(LDPM) (Cusatis et al. 2011a, 2011b) is considered.
LDPM is a mesoscale model that simulates concrete
at the aggregate particle level. In this model, the spa-
tial discretization is intrinsically performed when the
LDPM geometry is defined (see Section 2) and only
time discretization should be considered. This mate-
rial model incorporates complex and highly non-linear
constitutive equations. Over the years, all the calcula-
tions with LDPM to simulate the mechanical behavior
of concrete have been performed using the dynamic
explicit central difference method in order to avoid
convergence issues (due to the nonlinear nature of the
model) that one would typically face if an implicit
method was used. LDPM is currently used within the
ABAQUS Explicit solver.

For the first time, LDPM was implemented within
an implicit solver, in the general finite element pro-
gram CAST3M (Verpeaux et al. 1988) (2020 ver-
sion) which incorporates a robust implicit average
acceleration time-integration scheme.This manuscript
explains the details of this implementation and
shows preliminary results on the comparison between
dynamic explicit and implicit methods for LDPM. For
this purpose, a three-point bending test was performed
under displacement control and the load-displacement
curves were obtained for dynamic explicit, dynamic
implicit and static implicit methods. The simulations
were performed under quasi-static conditions and the
force imbalance from equilibrium was evaluated for
each case. Last but not least, the computational cost
was obtained and is discussed.

2 LATTICE DISCRETE PARTICLE MODEL

The Lattice Discrete Particle Model was proposed
by Cusatis and coworkers to simulate the mechanical
behavior of concrete (Cusatis et al. 2011a, 2011b). It
has also been used to simulate a wide range of granular
quasi-brittle materials and complex failure mecha-
nisms. For instance, LDPM was used to simulate
mortar (Pathirage et al. 2019) and fracture propaga-
tion in scratch testing (Han et al. 2020). The effect
of fibers in concrete was also studied (Feng et al.
2022; Rezakhani et al. 2021; Schauffert & Cusatis
2011). Other materials such as irregular masonry were
simulated and realistic and complex damage patterns
were successfully reproduced (Angiolilli et al. 2020,
2021; Mercuri et al. 2020, 2021a, 2021b, 2022). In
addition, long-term behavior of concrete was also
considered, such as hygro-thermo-chemical processes,
alkali-silica reaction, aging, and self-healing in con-
crete (Alnaggar et al. 2013; Cibelli et al. 2019, 2022;
Pathirage et al. 2018, 2019; Yang et al. 2021, 2022).
In LDPM, spherical particles are placed in the consid-
ered volume of material following a specific particle
size distribution given the cement content c, the water-
to-cement ratio w/c, the density ρ, and the maximum
and minimum aggregate size da and d0, respectively.
The geometry of the interaction between aggregates is
described as follows: first, a lattice system is defined
to describe the interaction between particles by means
of a Delaunay tetrahedralization performed with the
centers of the particles; next a domain tessallation
is performed to define the potential failure locations,
which finally generates a system of polyhedral cells.
The surface of each polyhedral cell is composed of tri-
angular facets where the LDPM constitutive equations,
facet stresses and strains are formulated in a vectorial
form.

The relevant constitutive equations for the descrip-
tion of fracture in three-point bending configuration
are given next. Let us denote by xi and xj the posi-
tions of nodes i and j, adjacent to the facet k , the
facet strains are defined as ek = [eN eM eL]T =
[nT

k [[uk ]]/lk mT
k [[uk ]]/lk lT

k [[uk ]]/lk ]T , where eN is the
normal strain component, and eM , eL are the tangential
strain components, [[uk ]]=uj − ui is the displacement
jump at the centroid of the facet k , lk =‖xj − xi‖2 is
the distance between the two nodes, nk = (xj − xi)/lk
and mk , lk are two unit vectors mutually orthogo-
nal in the facet plane projected orthogonally to the
line connecting the adjacent nodes. One can define
the traction vector as tk = [tN tM tL]T , where tN is
the normal component, tM and tL are the shear com-
ponents. For the sake of readability, the subscript
k that designates the facet is dropped in the fol-
lowing equations. The elastic behavior is defined
through linear relations between the normal and shear
stresses, and the corresponding strains as tN =EN eN ,
tM =ET eM , tL=ET eL, where EN =E0 and ET =α0E0,
E0 ≈ E/(1− 2ν) and α0 ≈ (1− 4ν)/(1+ ν) are the
effective normal modulus and the shear-normal cou-
pling parameter, respectively, and E is the macroscopic
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Young’s modulus and ν is the macroscopic Poisson’s
ratio. Although three-point bending tests are designed
to generate pure mode I opening, some facets in
LDPM might be under a mixed-mode tension-shear
because of the irregular shape of the polyhedral cells,
very much like in real fracture taking place at the
interface of aggregates. It is therefore important to
explain the fracturing and cohesive behavior under
tension but also tension/shear. It occurs for eN >
0. One can define an effective strain as e= (e2

N +
α0(e2

M + e2
L))

1
2 , and an effective stress as t= (t2

N +
(t2

M + t2
L)/α0)

1
2 and write the relationship between

stresses and strains through tN = teN /e, tM =α0teM/e
and tL=α0teL/e.The effective stress t is defined incre-
mentally as ṫ=EN ė and its magnitude is limited by a
strain-dependent boundary 0 � t � σbt(e,ω) in which
σbt(e,ω) = σ0(ω) exp [−H0(ω)〈emax − e0(ω)〉/σ0(ω)]
〈x〉=max (x, 0), ω is a variable defining the degree
of interaction between shear and normal loading
defined as tan (ω)= (eN )/(

√
α0eT )= (tN

√
α0)/(tT );

eT is the total shear strain defined as eT = ( e2
M +

e2
L)

1
2 , and tT is the total shear stress defined as tT =

(t2
M + t2

L)
1
2 . The maximum effective strain is time

dependent and is defined as emax(τ )= (e2
N ,max(τ )+

α0e2
T ,max(τ ))

1
2 , where eN ,max(τ )=max

τ ′<τ
[eN (τ ′)] and

eT ,max(τ )=max
τ ′<τ

[eT (τ ′)]. The strength limit of the

effective stress that defines the transition between
pure tension and pure shear is σ0(ω)= σt(− sin (ω)+√

sin2 (ω)+ 4α0 cos2 (ω)/r2
st)/(2α0 cos2 (ω)/r2

st) where
rst = σs/σt is the shear to tensile strength ratio, σs
is the shear strength and σt is the tensile strength.
The post-peak softening modulus is controlled by the
effective softening modulus H0(ω)=Hs/α0 + (Ht −
Hs/α0) (2ω/π)nt , in which Ht = 2E0/(lt/lk − 1), Hs=
rsE0 and nt is the softening exponent; lt is the tensile
characteristic length defined as lt = 2E0Gt/σ

2
t , Gt is

the mesoscale fracture energy. For the complete set of
constitutive equations, compatibility and equilibrium
equations, definitions of mass and strain-displacement
matrices, the reader is referred to the original work of
Cusatis et al. 2011.

3 INTEGRATION ALGORITHMS

The general dynamic nonlinear structural equation
without damping writes as follows:

MẌ + P=F (1)

where M is the mass matrix (lumped in this study),
P is the vector of nodal points containing nonlinear
internal forces, and F is the vector of nodal points con-
taining externally applied forces. Ẍ is the acceleration
vector which is the second derivative in time of the
displacement vector X. Equation (1) is an initial-value

problem described by a system of differential equa-
tions in which the initial conditions are X(0)=X0 and
Ẋ(0)= Ẋ0 where Ẋ is the velocity vector.

Each tetrahedral element in LDPM is composed of
12 facets (equivalent of integration points in classical
finite elements). For each facet k , the traction vector
tk defined in Section 2 can be formally written as tk =
tk (ek ), where ek is the facet strain vector. The internal
force vector can then be calculated as:

P=
∑

e

12∑

k=1

lk Ak Bt
k tk (ek ) (2)

where Bt
k is the transpose of the strain-displacement

matrix for facet k , Ak is the projected facet area and lk is
the length of the edge shared by facet k (see Section 2).
The sum is performed over the 12 facets of each LDPM
element and over all the elements of the considered
volume.

The Newmark family of methods are based on the
following two time-discretizations:

Ẋt+�t = Ẋt +�t[(1− γ )Ẍt + γ Ẍt+�t] (3)

and

Xt+�t =Xt +�tẊt + (�t)2[(1/2− β)Ẍt + βẌt+�t]

(4)

where Xt (and Xt+�t), Ẋt (and Ẋt+�t), Ẍt (and Ẍt+�t)
are the displacement, velocity, and acceleration vectors
at time t and t +�t, respectively.�t is the time step. γ
and β are constants defining the stability and accuracy
of the algorithm.

For γ = 1/2 andβ = 0, the integration scheme is the
so-called central difference method (if M is diagonal,
which is the case here). This method is the one used
in ABAQUS Explicit and is conditionally stable. The
central difference method is known to have the highest
accuracy and maximum stability limit among explicit
methods of second order in time (Dokainish & Sub-
baraj 1989). It is worth noting that the algorithm does
not possess numerical dissipation. The semi-discrete
dynamic equation to be solved for LDPM at time t
then becomes:

MẌt =Ft − Pt (5)

where Ft and Pt are the external and internal force
vectors at time t, respectively.

When γ = 1/2 and β = 1/4, the algorithm is called
average acceleration method and is the one used in
CAST3M. This scheme is unconditionally stable and
the global rate of convergence for displacements and
velocities is second-order in time. There is no numer-
ical dissipation associated with this method, similarly
to the central difference method. In this case, the
semi-discrete dynamic equation writes as:

4M
(�t)2

(Xt+�t−Xt)=Ft+�t+Ft−Pt+�t−Pt+ 4MẊt

�t
(6)

505



This equation cannot be solved directly since Pt+�t is
not known. In CAST3M, a global residual is defined
and minimized. For static simulations, the mass matrix
term drops, i.e. the inertia is not considered. It is
worth noting that the calculation of acceleration is not
required to make the scheme progress in the average
acceleration method.

4 COMPARISON IMPLICIT/EXPLICIT

4.1 Three-point bending as case study

In order to compare the performance of the new
implicit implementation, a classical three-point bend-
ing simulation was considered. To provide realistic
numerical data, the mix design and dimensions of the
beam were chosen based on a real set of experimental
data (Grégoire et al. 2013). The depth of the beam was
D= 100 mm, with a span-to-depth ratio of 2.5, and
out-of-plane thickness of 50 mm. The specimen was
notched and the notch-to-depth ratio was α= 0.2. The
LDPM geometry were identified based on the actual
mix design used in the experiments. The particle size
distribution given in Grégoire et al. 2013 was matched
exactly with a cut-off size at d0= 4 mm and val-
ues of da= 10 mm, c= 260 kg/m3, w/c= 0.626, and
ρ = 2121 kg/m3 were taken. The model parameters
were taken as follows: E0= 57180 MPa, α0= 0.25,
σt = 2.9 MPa, lt = 400 mm, σs/σt = 3.276, nt = 0.2,
rs= 0. The reader is referred to Pathirage et al. 2022
where the calibration process to obtained these param-
eters is discussed in detail. The remaining parameters
not related to fracture were assumed based on section
5.3 in Cusatis et al. 2011 and are listed here for the sake
of completeness: σc0 = 120 MPa, Hc0/E0= 0.4, kc0=
2, kc1= 1, kc2= 5, µ0= 0.2, µ∞= 0, σN0= 600 MPa,
and Ed/E0= 1.

Three types of simulations were performed:
dynamic explicit, dynamic implicit, and static implicit.
All the simulations were performed with one single
mesh, i.e. one random particle placement to avoid
the scatter in the numerical data due to the spatial
variability of aggregate size and distribution.The spec-
imen was loaded under displacement control. For both
explicit and implicit methods, the same velocity of
1 mm s−1 was used. For the implicit calculation,
the criterion on the global residual was set equal
to 10−3 and three different times steps were used:
�t = 10−2 s, 10−3 s, and 10−4 s. The data output fre-
quency was set equal to the time step. For the explicit
calculation, the time step required for stability was
�tcr = 2.32× 10−7 s, and results were outputted every
10−4 s.

4.2 Load-displacement

Figure 1 shows the load-displacement curves for the
three types of time integration and for the three differ-
ent time steps in the implicit calculations. Two impor-
tant points should be here highlighted. First, a velocity
of 1 mm s−1 in combination with the density and

Figure 1. Load-displacement curves: time step in implicit
calculations of (a) �t= 10−2 s, (b) �t= 10−3 s, and (c)
�t = 10−4 s.
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the model parameters defined earlier ensures a quasi-
static loading condition. In addition, this result proves
that one can perform quasi-static tests in dynamic
explicit, as long as the effects of inertia are negligi-
ble, which is the case here since the dynamic explicit
and static implicit curves overlap. In the implicit calcu-
lations, when the time step becomes smaller, i.e. from
Figure 1(a) to (c), one can make two additional obser-
vations: (i) the static implicit result gets closer to the
explicit one, not so much because the results gets more
accurate but because there is an increase in the num-
ber of data points appearing in the figure, and (ii) high
frequency oscillations appear in the post-peak for the
smallest time step�t= 10−4 s and the source of these
oscillations is explained next.

4.3 Force imbalance from static equilibrium

As shown above, the simulations were performed
under quasi-static conditions. Therefore, a useful indi-
cator, aside from comparing the load-displacement
curves obtained with static implicit and dynamic
explicit/implicit simulations, is the force imbalance
from the static equilibrium at the loading points.
This imbalance in percentage is here defined as
� = 100(Fl − Fs)/Fs where Fl is the force at the
loading points at mid-span and Fs is the vertical resul-
tant reaction from the left and right supports. Figure 2
shows the force imbalance as a function of displace-
ment for the three different time steps. At the very
beginning of the simulation, there is a large force
imbalance which increases if smaller time steps are
considered, simply because the specimen is loaded
from the top with a non-zero force whereas the reac-
tions at the supports are initially zero. For the static
implicit case, results showed that the imbalance was
in the order of 10−11% whatever the value of time step
and for any value of displacement, i.e. in the elastic
regime and in the post-peak. For the explicit simula-
tion (see for example Figure 2(a)), the deviation �
decreases up to the displacement corresponding to the
peak load (about 0.37 mm).

This is due to the fact that the reactions at the
supports slowly compensate the top force. However,
before a steady state is reached, e.g. where the ampli-
tude of the imbalance remains constant since there
is a minimal or no energy dissipation, a small jump
appears at peak load. Next, one can observe a con-
tinuous decrease up to 0.15 mm. This latter decrease
is due to the energy dissipation in the fracture process
and correspond the post-peak of the load-displacement
curve. For the dynamic implicit simulations, the imbal-
ance decays up to the displacement corresponding to
the peak. As a matter of fact, the dynamic explicit
and dynamic implicit curves shown in Figure 2(b) and
(c) overlap up to 0.37 mm. In the post-peak regime,
one can observe three different behaviors for the three
time steps. When�t= 10−2 s (Figure 2(a)), the imbal-
ance increases in time, even though the energy should
be dissipated in damage. The reason might be that
the chosen time step is too large and spurious energy
growth (larger than the amount dissipated in fracture)

Figure 2. Force imbalance from static equilibrium: time step
in implicit calculations of (a) �t= 10−2 s, (b) �t= 10−3 s,
and (c) �t = 10−4 s. The red dashed vertical line is the
limit after which the first crack appears, i.e. start of inelastic
behavior.
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Table 1. Computational cost in implicit calculations.

Time step Memory Real time Time step Memory Real time Time step Memory Real time
Integration scheme [s] [Gb] [hh:mm] [s] [Gb] [hh:mm] [s] [Gb] [hh:mm]

Dynamic implicit 10−2 14.16 00:17 10−3 16.71 00:35 10−4 46.86 10:22
Static implicit 10−2 13.82 00:15 10−3 13.12 00:22 10−4 46.99 10:08

occurs when integrating the internal forces in pres-
ence of softening behavior (Hughes 1976; Verpeaux
& Charras 2013). This is a well-known phenomenon
in the average acceleration method: the energy is not
conserved when the material is nonlinear. When�t=
10−3 s (Figure 2(b)), it seems that the energy dissipated
in cracks compensates the aforementioned spurious
energy growth: the average amplitude remains the
same but with periodic growth and decay events which
might be related to the spurious energy introduced in
the system and dissipated in damage periodically. Last
but not least, when�t= 10−4 s (Figure 2(c)), one can
observe an almost exponential increase of the force
imbalance as displacement increases. For such a small
time step, the spurious energy growth due to the inte-
gration of the internal force becomes negligible. The
increase of � can be here explained by the presence
of high-frequency modes that do not attenuate and is
larger than the dissipation of energy in the fracturing
process.These modes are artefacts of the discretization
in time and does not originate from the actual model
behavior (Hughes 2012). These higher-modes appear
in the tail of the load-displacement curve in Figure1(c).
It is worth noting that for�t= 10−2 s and�t= 10−3 s,
low-modes of frequency dominate and the simulations
are not plagued by these numerically introduced high-
frequency modes. Finally, it is interesting to note that
the criterion on the global residual was set equal to
10−3 for the dynamic implicit simulations. The rea-
son why the force imbalance could exceed this value
is that the global residual is computed by taking into
account the overall specimen volume whereas the mea-
sure of imbalance at the loading points is much more
conservative as it is a local measurement to assess
equilibrium.

4.4 Computational cost

All the simulations were performed in Quest high
performance computing facility at Northwestern Uni-
versity. For each simulation, 16 cores were used.
Tables 1 and 2 provides the memory (RAM) and
the wall-clock time used for each integration method.
One can observe that the performance of the static
implicit and dynamic implicit methods are equivalent.
With respect to the accuracy reached using�t= 10−2 s
and �t= 10−3 s in the implicit calculations (see Fig-
ure 1(a) and (b)), one can conclude that using the static
or dynamic implicit solver is much faster than the
dynamic explicit calculation in terms of running time,
at least for this case study. In terms of memory, the
implicit method requires more resources than for the
explicit algorithm, which is expected. It is worth noting

Table 2. Computational cost in explicit calculation.

Stable time step Memory Real time
Integration scheme [s] [Gb] [hh:mm]

Dynamic explicit 2.32 × 10−7 2.79 06:30

that increasing the output frequency in the explicit cal-
culation increases the running time, which might be
due to disk access time and other processes. A fair
comparison would require to run the simulations with-
out any output. However, the difference in running time
would remain consequent and the conclusions in terms
of computational cost would be unchanged.

5 CONCLUSIONS

In this study, preliminary results on the newly imple-
mented Lattice Discrete Particle Model within the
implicit solver CAST3M are presented. In order to
compare it with the current implementation in Abaqus
Explicit, a classical three-point bending test under
quasi-static conditions was considered. Three differ-
ent integration methods were used: dynamic explicit,
dynamic implicit and static implicit. The results of
the simulations were discussed in terms of load-
displacement response and force imbalance at loading
points to assess static equilibrium. The computational
costs for each simulation were also obtained. Results
show that:

• Quasi-static simulations can be performed using
dynamic explicit integration method, with a higher
velocity as compared to the actual velocity used in
the test, if the effect of inertia is small enough.

• In the studied example, the computational cost for
static and dynamic implicit simulations is much
lower than for the dynamic explicit case.

• If the dynamic implicit method is employed, the time
step size is to be chosen appropriately to avoid spu-
rious energy growth or higher modes due to time
discretization.
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Monotonic and fatigue behavior of cementitious composites modeled via a
coupled sliding-decohesion-compression interface model
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ABSTRACT: In this paper we introduce a consistent constitutive model capturing the behavior of a 3D interface
under both monotonic and cyclic loading. The model accounts for the interaction of dissipative effects during
a combined decohesion-compression and sliding loading introduced through a smooth cap threshold function
and non-associative flow potential. The proposed flow potential provides the possibility to couple the damage
evolution of decohesion and sliding and to control the degree of this coupling. High computational efficiency
is achieved by requiring a constant gradient of the threshold function in the normal direction with respect to
the yield locus. As a result, a single-step return-mapping procedure without the need for iteration increases the
computational efficiency. To capture the fatigue behavior in heterogeneous structures, the model consistently
reflects the dissipative mechanisms of fatigue damage evolution at subcritical load levels using a cumulative
measure of deformation as a damage-driving variable. Further effects of the interface response, such as shear
dilatancy and vertex effect, are captured by the proposed model as demonstrated using elementary studies. A sys-
tematic calibration and validation procedure is included for selected applications showing a pull-out response of
concrete-steel interface under monotonic and cyclic loading captured with a consistent set of material parameters.

1 INTRODUCTION

A deep understanding of the interfacial behavior is an
essential prerequisite for realistic modeling and valid
prediction of material behavior in various applications.
To capture the behavior of an interface, it is necessary
to construct the relationship between the main kine-
matic components such as decohesion-compression
and sliding along the interface, which play the main
role in the failure process of the interface. The crucial
importance of a general and realistic description of
the interfacial behavior lies in the fact that interacting
effects of decohesion-compression and sliding deter-
mine the overall behavior of heterogeneous material
structures and components.

The development of interface models has been one
of the major research topics over the last decades. Sev-
eral cohesive zone interface models have been devel-
oped by many authors, e.g., (Högberg 2006; McGarry,
Máirtín, Parry, & Beltz 2014) to capture the mode I and
mode II fracture, as well as the mixed mode loading
condition (Dimitri, Trullo, Zavarise, & De Lorenzis
2014). An example of a thermodynamic consistent
mixed-mode cohesive interface model with a single
scalar damage variable can be found in (Serpieri,
Sacco, & Alfano 2015). All these cohesive models

focused on the monotonic behavior of the material
interfaces.

The use of interface models to simulate the cyclic
behavior of interface materials has been widely
reported in the literature. General cohesive contact
models have been introduced to study the response
of material interfaces to cyclic loading histories in
(Roe & Siegmund 2003; Harper & Hallett 2010).A slip
based thermodynamic formulation of zero thickness
interface model capable of capturing pressure sensitive
bond behavior, interaction of damage and sliding at the
interface was presented in (Ragueneau, Dominguez, &
Ibrahimbegović 2006). Another bond model with an
independent slip field has been used to study the bond
behavior for cyclic loading histories in (Kwak & Kim
2006). Further model proposed recently in (Huang,
Chi, Xu, & Deng 2019) has been applied for simu-
lation of the bond in RC members under monotonic
and cyclic loading. It should be noted that in all these
models, however, no damage accumulation mecha-
nism upon loading and reloading was considered, an
effect that the authors consider essential for modeling
of the fatigue behavior (Baktheer & Chudoba 2019;
Baktheer, Aguilar, & Chudoba 2021).

To consider fatigue degradation, a thermodynami-
cally consistent model coupling damage and plasticity
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to describe the fatigue behavior of interfaces between
FRP sheets and concrete surface under shear cyclic
loading conditions has been introduced in (Carrara &
De Lorenzis 2015). Another fracture mechanics based
model used to simulate the monotonic and fatigue
behavior of FRP/concrete interface proposed in (Mar-
tinelli & Caggiano 2014). A one dimensional ther-
modynamic based numerical model for bond fatigue
behavior recently proposed by the authors (Baktheer &
Chudoba 2018a, 2018b) is based on a coupled dam-
age and inelastic slip within the bond interface with
sensitivity to the lateral pressure/tension. The fatigue
damage in this model is governed by a cumulative
measure of the inelastic slip.

The objective of the present work is to pro-
mote a recent publication by the authors (Chudoba,
Vořechovský, Aguilar, & Baktheer 2022) which intro-
duces a general thermodynamically based 3D interface
model that can consistently capture the monotonic
and fatigue responses under all possible modes, i.e.,
mode I, mode II, and mixed mode, with a cou-
pling of damage evolution in normal and tangen-
tial directions. The proposed constitutive model can
be applied at different structural scales: 1) fatigue
pull-out behavior of metallic and non-metallic fibers
embedded in concrete, reflecting the effect of lat-
eral pressure/tension, 2) microplane model for con-
crete with the microplane response governed by the
described interface model, 3) discrete lattice or particle
mesoscale model with the inter-aggregate interaction
represented by the described interface model, 4) dis-
crete crack models, including XFEM and embedded
crack models, cohesive-zone models, semi-analytical
models for shear crack propagation. Furthermore, the
thermodynamic formulation of the model provides
the possibility to evaluate the individual fractions of
energy dissipated due to damage or plasticity in either
tension, shear or compression. This feature will serve
as a basis for a sound specification of regularized
fatigue propagation criteria applicable in a broad range
of applications.

2 THERMODYNAMIC BASED FORMULATION

2.1 Free energy potential, state variables and
thermodynamic forces

The relative displacement of two points connected via
the interface is represented by a normal (out-of-plane)
component uN ≡ uz and an (in-plane) sliding vector

Figure 1. Transition between elliptic and linear domains of the introduced threshold function.

uT={ux, uy}T.The vector of kinematic variables defin-
ing the irreversible state of the interface is introduced
as follows

E ..= [
up

N, ωN, up
T, ωT, z, α

]
. (1)

To provide a transparent representation of dissipative
mechanisms in the normal and tangential directions,
the free energy is introduced as a sum of out-of-plane
opening (N) and in-plane sliding (T) contributions

ρψ(E) ..= ρψN(E)+ ρψT(E). (2)

Free energy associated with interface opening and
closing (N) is defined as a function of total dis-
placement uN, plastic displacement up

N, and damage
ωN as

ρψN(uN, up
N,ωN) ..= 1

2

(
1− H (σN)ωN

)
EN(uN − up

N)2, (3)

where EN denotes the stiffness. The Heaviside step
function H (.) is used to introduce the unilateral effect
by activating the damage only for positive values of the
traction stress σN. The free energy associated with the
interface sliding is defined as a function of total sliding
vector uT, plastic sliding vector up

T, tangential damage
ωT, and the displacement variables corresponding to
isotropic and kinematic hardening, z and α= [αx,αy],
respectively, as

ρψT(uT, up
T,ωT, z, α) ..= 1

2
(1− ωT)ET (4)

[
(uT − up

T)T · (uT − up
T)
]+ 1

2
Kz2 + 1

2
γ (αT · α),

where ET denotes the tangential stiffness, K the
isotropic and γ the kinematic hardening moduli. The
thermodynamic forces are obtained by differentiating
the free energy with respect to the kinematic state
variables

S =ϒ
∂ρψ(E)

∂E . (5)

The sign vector operator ϒ is introduced to render pos-
itive thermodynamic force for positive state variable.
To distinguish the thermodynamic forces based on the
in correspondence with the definition of the state vec-
tor in Eq. (1), let us introduce the generalized vector
of thermodynamic forces as

S ..= [
σ

p
N, YN, σ

p
T, YT, Z , X

]
. (6)
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The individual components of this vector can be
obtained using Eq. (5) The individual components of
this vector are obtained using Eq. (5). The normal
plastic stress σ p

N and normal energy release rate YN
read

σ
p
N =−ρ

∂ψ(E)

∂up
N

= (
1− H (σ p

N)ωN

)
EN(uN − up

N), (7)

YN =−ρ
∂ψ(E)

∂ωN

= 1

2
EN(uN − up

N)2. (8)

The Heaviside switches off the damage in compres-
sion to represent the stiffness recovery upon interface
closure. The tangential plastic stress vector σ

p
T, energy

release rate YT, isotropic hardening stress Z and back
stress X ={Xx, Xy}T are obtained as follows

σ
p
T=−ρ

∂ψ(E)

∂up
T

= (1− ωT)ET(uT − up
T) (9)

YT=−ρ
∂ψ(E)

∂ωT

= 1

2
ET

[
(uT − up

T)T · (uT − up
T)
]

(10)

Z = ρ ∂ψ(E)

∂z
=Kz, X = ρ ∂ψ(E)

∂α
= γ α. (11)

2.2 Threshold function

The threshold function defines the elastic domain in
terms of the effective normal and tangential stresses
σ eff

N , σ eff
T , which represent the stress level in the

undamaged skeleton of material. Therefore, the elastic
threshold function expressed in effective stress space.
The envelope represents an intrinsic material property
prescribing the character of interaction between nor-
mal and shear response of the material interface. The
relationship between the effective stresses σ eff

N , σ eff
T

and apparent stresses σN, σ T can be established by
realizing that they are identical with their plastic coun-
terparts σ p

N, σ p
T. With reference to Eqs. (7) and (9) we

can write

σ eff
N (σ p

N,ωN)= σ
p
N

1− H (σ p
N)ωN

=EN(uN − up
N) (12)

σ eff
T (σ p

T,ωT)= σ
p
T

1− ωT

=ET(uT − up
T). (13)

The shape of the elastic domain in the effective
stress space displayed in Figure 1b. It is convenient
to introduce the norm qeff

T representing a stress-like
variable related to the elastic-plastic behavior of the
material skeleton. It is defined as the norm of the dif-
ference between the effective tangential elastic σ eff

T
and the tangential back stress X representing the shift
of the origin of the elastic domain, i.e.

qeff
T =‖σ eff

T − X ‖ (14)

The shear limit, fT, follows the Mohr-Coulomb crite-
rion, which represents the frictional, pressure-sensitive

interface enhanced with kinematic and isotropic hard-
ening as

fT(σ eff
N , qeff

T , Z ; fcs, m)= qeff
T − (fcs + Z)+ m σ eff

N (15)

where fcs denotes the shear stress limit and m is the
pressure sensitivity factor.This form of threshold func-
tion has been used by the authors in (Baktheer &
Chudoba 2018b) to simulate the fatigue behavior of
the bond loaded in pull-out condition. Since the shear
stress dominates in the pull-out problem, the thresh-
old function given in Eq. (15) was sufficient to deliver
realistic results. However, for structural configurations
affected by an interaction of normal and tangential
dissipative mechanisms, the threshold function must
be extended to account for the tensile and compres-
sive strength limits. The mathematical formulation
of the multi-domain level set function satisfies the
requirements of convexity, continuity and smoothness
at an arbitrary level f (E , S)= �. It consists of three
parts corresponding to the tension-, compression-
and shear-dominated subdomains within the effective
stress half-space shown in Figure 1b. The subdomains
associated with the tensile and compressive limits in
normal direction are introduced using elliptical func-
tions f t

N and f c
N, respectively, which are connected by

the linear, pressure-sensitive shear threshold fT given
in Eq. (15) as illustrated in Figure 1b.

The elliptical parts of the threshold function f t
N

and f c
N with smooth transition to the linear part fT

are derived by imposing the continuity and smooth-
ness conditions displayed in Figure 1a. The derivation
starts with the parameterized form of the linear and
the elliptic part within the (x, y) domain:

flin(x, y; ȳ, x0, m) := |y| − ȳ + m(x − x0), (16)

fell(x, y; x̄, ȳ, x0, m) :=
√

y2

b2
+ (x − x0 − xc)2

a2
− c,

where the parameters x̄, x0, ȳ, m prescribe the shape of
the envelope and a, b, c, xc are unknown variables that
are solved to comply the following compatibility and
smoothness conditions:

Table 1. Threshold compatibility and smoothness
conditions.

Normal limit: fell|x=x̄,y=0= 0

Tangential limit: fell|x=x0,y=ȳ = 0

Compatible N-T transition: flin(xc, 0)= fell(xc, 0)

Smooth N-T transition:
fell,x

fell,y

∣
∣∣∣
x=x0,y=ȳ

=−m

By introducing the distance between the normal
limit x̄ and the transition point x0 as x̂= x0 − x̄ the
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parameters a, b, c and xc satisfying these conditions
are obtained as follows

c= ȳ + m2x̂2

2mx̂ + ȳ
, a=− ȳ − mx̂

ȳ − 2mx̂
· x̂

c
, (17)

b= ȳ − mx̂
√

ȳ − 2mx̂
·
√

ȳ

c
, xc=− mx̂2

2mx̂ + ȳ

After substituting these values in flin and fell in
Eqs. (16), the solution of the smooth transition between
the linear and elliptic parts shown in Figure 1a can be
instantiated to the tensile and compression domains as
illustrated in Figure 1b using the substitutions

N t ..= {x= σ eff
N , y= qeff

T , x̄=fct , ȳ=fcs+Z , x0=0}
N c ..= {x=−σ eff

N , y= qeff
T , x̄=fcc,

ȳ=fcs+mfc0+Z , x0=fc0} (18)

To compose the multi-domain threshold function,
the transition line between the linear and elliptical
domains, plotted as a dashed line in Figure 1a is
defined as the line connecting the points [xc, 0] and
[x0, ȳ]. Then, the subdomains of the elliptic part can
be readily expressed using a level set function

T (x, y; x̄, ȳ, x0) ..= ȳ

x0 − xc
(x − xc)− |y|> 0, (19)

which is instantiated for the tensile or compressive sub-
domains in Figure 1b using the substitutions T (N t)
and T (N c) given in Eq. (18). The threshold func-
tion within the effective stress space {σ eff

N , σ eff
T }⊂

Seff consisting of the tensile, shear and compres-
sive subdomains can now be defined as a piecewise
function

f (Seff ) ..=

⎧
⎪⎪⎨

⎪⎪⎩

f t
N = fell(N t) if T (N t)> 0

f c
N = fell(N c) if T (N c)> 0

fT otherwise

(20)

Note that the parameters defining the shape of the
yield locus fct , fcs, fcc, fc0 are substituted for the param-
eters x̄, ȳ, x0 appropriately in the two instantiations
of fell for the tensile and compressive subdomains.
Finally, to transform the threshold function f (Seff ) into
the apparent stress space {σN, σ T}⊂S, the effective
stresses in Eq. (20) must be substituted using Eqs. (12)
and (13).

f (E , S)= f (Seff )
∣∣
σ eff

N = σN
1−ωN

, σ eff
T =

σT
1−ωT

(21)

After this substitution, the threshold function becomes
dependent on the damage variablesωN,ωT. By includ-
ing the internal variables E explicitly in the argument
list of f (E , S), we emphasize the fact that f depends
on the internal variables E not only indirectly, via the
constitutive laws S(E) given in Eqs. (7)-(11), but also
directly, via {ωN,ωT}⊂E .

2.3 Non-associative flow potential accounting for
damage interaction

The flow potential extends the threshold function
f (E , S) with additional terms controlling the evolution
of damage. The goal of the flow potential definition is
to account for all possible interactions between the nor-
mal damage and shear damage (ωN andωT) in a general
and transparent way.

To define the level of interaction between damage in
normal direction (compression-decohesion) and shear
direction (sliding), we introduce a material parameter
η∈ 〈0, 1〉, which provides a smooth transition between
an uncoupled damage potential (η= 0) and a fully
coupled potential (η= 1). In particular, we propose
a linear transition between the limiting cases of fully
uncoupled and fully coupled damage potentials. The
transition is controlled via η parameter by reweighting
the uncoupled and fully coupled contributions to the
dissipation potential

ϕ(E , S) ..= f (E , S)+ (1− η) (ϕN + ϕT

)

︸ ︷︷ ︸
ϕu ...uncoupled

+η ϕNT︸︷︷︸
coupled

(22)

in which the term ϕN depends solely on the normal
(out-of-plane) displacement and the related material
parameters for the normal direction and, analogously,
ϕT depends solely on the shear (in-plane) displacement
and the related material parameters. A particular form
of the ϕN and ϕT can be inferred by realizing that the
damage evolution law is obtained by differentiating the
damage potential terms w.r.t. energy density release
rates YN and YT, respectively.

The potential functions corresponding to the normal
and shear directions are defined as follows

ϕN
..= (

1− ωN

)cN
SN

r + 1

(
YN

SN

)r+1

H
(
σ

p
N

)
(23)

ϕT
..= (

1− ωT

)cT
ST

r + 1

(
YT

ST

)r+1

(24)

These potential functions allow to obtain a damage
evolution equation in the form of the first ordinary dif-
ferential equation which results in a damage law that
asymptotically approach the value of 1. The Heavi-
side function H

(
σ

p
N

)
applied to the normal direction

in Eq. (23) secures that damage is accumulated only
when the stress σ p

N is positive (tension).
Analogously to the formulations for normal and

shear directions above, the fully coupled (mixed) flow
potential term is proposed to read

ϕNT
..= (1− ωNT)cNT

SNT

r + 1

(
YN + YT

SNT

)r+1

(25)

where we introduce the geometric mean values for the
two material parameters: the exponent, cNT, and the
SNT parameter related to material ductility as

SNT
..=√

SNST, cNT
..=√cNcT (26)
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Apart from the averaged material parameters, the
coupled term introduces a single damage parameter,
ωNT. We propose to derive the damage of the fully
coupled model from the two damage parameters for
normal and shear directions. We again introduce a kind
of averaging between the two damage parameters ωN
and ωT. However, instead of averaging the damage
variables, we average their complementary values, i.e.
the integrity parameters

1− ωNT
..=

√(
1− ωN

) (
1− ωT

)
(27)

The reason for this choice that for small values of ωN
and ωT, this formulation behaves similar to the arith-
metic average ωNT≈ 1

2 (ωN + ωT) which is intuitively
acceptable. However, when any of the two damages
becomes large, Eq. (27) sets ωNT closer to the max-
imum of the two: max (ωN,ωT) while the arithmetic
average would simply take the average integrity.

2.4 Evolution equations

The corresponding directions of flow is given as the
product of the sign operator ϒ and of the derivatives
with respect to state variables ϒ ∇S ϕ. This renders the
following flow direction vector

�(E , S)=−ϒ ∂ϕ(E , S)

∂S(E)
(28)

The evolution equations (normality rule) of the state
variables can then be written as follows

Ė = λ�(E , S)=−λϒ ∂ϕ(E , S)

∂S(E)
(29)

2.5 Energy dissipation

The thermodynamic admissibility of the proposed
interface model for any kind of loading scenario can
be evaluated with the help of the Clausius-Duhem
inequality (D≥ 0). Where D is the dissipated energy
given as the sum of the normal and tangential dissi-
pated energy

D = DN +DT=−∂ρψ(E)

∂E · Ė

= −
[
∂ρψN(E)

∂E · Ė + ∂ρψT(E)

∂E · Ė
]

, (30)

where the normal dissipated energy DN is given as

DN =−∂ρψN(E)

∂E · Ė = σ p
N u̇p

N + YN ω̇N, (31)

and the tangential dissipated energy DT is obtained as

DT=−∂ρψT(E)

∂E · Ė = σ
p
T · u̇p

T (32)

−(Z ż + X · α̇)+ YT ω̇T.

The energy dissipation owing to plasticity i.e. plastic
dissipation for both normal and tangential directions
can be written as

DP=DP
N +DP

T = σ p
N u̇p

N + σ
p
T · u̇p

T (33)
−(Z ż + X · α̇),

which represents the difference between the plas-
tic work WP and the plastic free energy related to
the isotropic and kinematic hardening, respectively
U iso, Ukin (Yang, Sinha, Feng, McCallen, & Jeremić
2018).

DP=WP − (U iso + Ukin) (34)

The plastic work for both normal and tangential
direction reads

WP= σ p
N u̇p

N + σ
p
T · u̇p

T, (35)

and the free isotropic and kinematic energy can be
written as

U iso=Z ż, Ukin =X · α̇. (36)

In similar way to the plastic dissipation Eq. (33),
the damage dissipation can be written as

Dω =DωN +DωT =YN ω̇N + YT ω̇T (37)

The total input work W tot can be defined as a sum of
the elastic strain energy i.e stored energy Wel and the
inelastic work W in of both the damage and the plastic
mechanism

W tot =Wel +W in (38)

where the inelastic work is the sum of the plastic work
and the damage dissipation

W in =WP +Dω (39)

To demonstrate the described different parts of the
energy, elementary example of the model behavior
under monotonic loading is presented in Sec. 3.4
showing the described portions of the energy.

3 ELEMENTARY STUDIES

3.1 Coupled sliding-decohesion-compression
behavior under proportional loading

An elementary example of the coupled sliding-
decohesion-compression behavior of a single material
point under proportional loading is summarized in
Figure 2. Five different loading scenarios are con-
sidered, including pure tension, pure compression,
pure sliding, and sliding with tension or compres-
sion, as depicted in Figure 2a. The decohesion-
compression response of the normal direction for
the studied proportional loading is shown in Fig-
ure 2b. This response demonstrates the decrease of

514



Figure 2. Elementary study showing the coupled sliding-decohesion-compression behavior under simultaneous loading.

Figure 3. Elementary study showing the damage interaction feature between decohesion and sliding.

the decohesion/compression strength in case of com-
bined normal-tangential loading in comparison to the
pure decohesion/compression behavior. This mutual
interaction on the achieved strength is governed by the
introduced smooth threshold cap function, where the
maximum tensile/compression strength fct , fcc can be
only achieved in case of pure decohesion/compression
loading. The corresponding damage evolution curves
are shown in Figure 2c. This shows that the normal
damage develops only under tension, while no normal
damage can develop in the cases of compression. This
feature of the proposed model is introduced through
the Heaviside function in Eq. (3). On the other hand, the
model considers that plastic deformation can develop
under both tensile and compressive normal loading,
as shown in Figure 2d. Although the tensile behav-
ior of cementitious materials is usually described in
terms of pure damage behavior, experimental obser-
vations of the tensile behavior of various materials
such as concrete inherently exhibit inelastic defor-
mation e.g. (Hordijk 1992; Horii, Shin, & Pallewatta
1992). The effect of decohesion/compression on the
sliding behavior is summarized in Figures. 2f, g, h.
The response to the studied loading scenarios, i.e.
pure sliding, sliding under lateral compression and

sliding under lateral tension, is illustrated in Figure 2f.
The response shows that the achieved shear strength
increases under lateral compression and decreases
under lateral tension. This response represents a plau-
sible trend that has been observed experimentally for
many types of interfaces, such as the bond behavior
between concrete and steel reinforcement e.g. (Elige-
hausen, Popov, & Bertero 1982; Lindorf, Lemnitzer, &
Curbach 2009). The corresponding evolutions of dam-
age and plastic deformation for the studied cases are
shown in Figure 2g, f, respectively. This qualitative
study highlights that the sensitivity of the sliding
behavior with respect to lateral compression/tension is
reflected by the model, thus providing a solid represen-
tation of the underlying physical phenomenon. Further
more, the recorded number of iterations needed for the
return mapping is shown in Figure 2e which demon-
strates the single step return mapping needed in most
of the cases.

3.2 Decohesion-sliding damage interaction

The aim of the study shown in Figure 3 is to highlight
the damage interaction feature of the proposed model.
Besides the coupling between the decohesion and
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Figure 4. Elementary study showing the captured shear dilatancy and the evaluation of energy dissipation.

sliding through the threshold function Eq. (20) which
governs the strength both of decohesion-compression
and sliding, another level of coupling has been intro-
duced through the non-associative flow potential
Eq. (22). Due to this coupling, the sliding damage can
develop under purely decohesion loading, as well as
the decohesion damage can develop under purely slid-
ing loading, which indicates the mutual interaction of
decohesion and sliding damage controlled by the mate-
rial parameter η. The left part of Figure 3 represents
the pure decohesion case, while the pure sliding case
is shown in the right part of Figure 3. The relationship
between the evolution of decohesion and sliding dam-
age for the pure decohesion and pure sliding responses
is illustrated in Figures. 3b, d, respectively, for varied
interaction parameter η, ranging from the uncoupled
case (η= 0) to the fully coupled case (η= 1).

3.3 Shear dilatancy

The aim of the study shown in Figure 4 is to highlight
the shear dilatancy behavior captured by the proposed
model. In this study, the interface is subjected to pure
sliding loading, where the shear stress-displacement
response is depicted in Figure 4a. However, during
the shear loading especially after the elastic range the
decohesion behavior exhibits a growth of compressive
stress when the pressure sensitivity parameter m> 0
as shown in Figure 4b. This phenomenon is known
as shear dilatancy, where a compression stress in the
normal direction are induced by the shearing of the
interface (Bažant & Gambarova 1984). The perpen-
dicular return mapping to the yield surface for the
cases with pressure sensitivity parameter m> 0 leads
to the occurrence of compressive stresses in the nor-
mal direction. Indeed, such a phenomenon has been
observed experimentally in the behavior of some inter-
faces, e.g., the frictional behavior of the crack surface
in concrete, as documented in (Bažant & Gambarova
1980; Paulay & Loeber 1974).

3.4 Analysis of energy dissipation

Energy dissipation in a mechanical system represents
the irreversible process, e.g., plastic deformation and
damage in which energy is transformed from one form
to another.The determination of the individual propor-
tions of energy dissipation is of great importance, as it
can be considered as an effective indicator of the main

dissipative processes. Such an indicator can serve as
a basis to capture the thermo-mechanical interaction
effects within the material structure, especially under
cyclic and fatigue loading. A comprehensive analysis
of the energy dissipation of an elasto-plastic material
behavior within the framework of thermodynamics
was presented in (Yang, Sinha, Feng, McCallen, &
Jeremić 2018). In this analysis, the separation of plas-
tic work into two parts, namely plastic free energy and
plastic dissipation, was introduced.

To highlight the possibility to evaluate the individ-
ual portion of energy with the proposed model, the
example of pure sliding behavior presented in Fig-
ure 4a is accompanied with the evaluation of energy
dissipation as shown in Figure 4c. With the thermody-
namic base formulation of the proposed model, the
energy fractions of the total input work, i.e. stored
energies as well as dissipated energies, can be clearly
evaluated and distinguished for any type of load-
ing scenario as depicted in Figure 4c based on the
description in Sec. 2.5.

3.5 Cumulative damage for fatigue simulation

In the classical damage models, the damage usu-
ally evolves once the control state variable, e.g.
displacement, exceeds the last maximum displace-
ment obtained so far during the loading history e.g.,
(Ragueneau, Dominguez, & Ibrahimbegović 2006),
which can be only used to simulate the monotonic
behavior. However, to obtain a unified model for
monotonic, cyclic and fatigue behavior, it is essential
that the damage evolution is governed by cumulative
measure of strain/displacement allowing the dam-
age to evolve during the unloading and reloading
conditions (Baktheer, Spartali, Hegger, & Chudoba
2021; Desmorat, Ragueneau, & Pham 2007; Kirane &
Bažant 2015; Lemaitre & Desmorat 2005), which is
establishing a mechanism driving the material deteri-
oration under cyclic and fatigue loading. This feature
has been introduced through the non-associative flow
potential Eq. (22), resulting that the damage evolu-
tion is linked with the plastic multiplier similar to the
potential proposed in (Lemaitre & Desmorat 2005).

The study shown in Figure 5 presents an exam-
ple of monotonic and cyclic behavior of the proposed
model under shear/sliding displacement. The degra-
dation of the sliding behavior under monotonic and
cyclic loading with constant range of slip applied for
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Figure 5. Elementary study showing the feature of cumulative damage for fatigue simulation.

Figure 6. Bond between concrete and plain rebar steel reinforcement under lateral compression: comparison with experimental
data.

50 cycles is presented in Figure 5a. The correspond-
ing sliding damage evolution for monotonic and cyclic
loading is depicted in Figure 5b, which show the fea-
ture of damage accumulation during unloading and
reloading stages.As demonstrated in (Kirane & Bažant
2015) when linking the damage to a cumulative mea-
sure of strain/displacement with the goal to cover the
high cycle fatigue behavior, damage must be accu-
mulated slowly, within a large range of cumulative
strain approaching ω= 1.0 asymptotically. Another
view of the damage accumulation is depicted in Fig-
ure 5c, showing the sliding and decohesion damage
grow during the loading history for both monotonic
and cyclic cases. The shape of the damage accumula-
tion during the cyclic loading resulting in asymptotic
manner. This feature has been covered by introducing
a modified function of the Lemaitre’s damage poten-
tial (Lemaitre & Desmorat 2005). The corresponding
evolution of the plastic slip and irreversible open-
ing displacement are plotted in Figure 5d for both
monotonic and cyclic cases.

4 NUMERICAL APPLICATIONS

4.1 Bond between concrete and steel under lateral
compression

In this example we study the ability of the model
to reproduce the pullout behavior of plain steel rein-
forcement from concrete block and subjected to lateral
pressure Figure 6. The results of the test program
performed by (Xu, Wu, Zheng, Hu, & Li 2014) have

been used in this study. Plain steel reinforcement with
bar diameter of ds= 16 mm in combination with con-
crete matrix C40 were used. The bond length was set
to Lb= 5ds. The experimental results show no dif-
ference between the pullout response of the loaded
and unloaded ends. Therefore, the assumption of con-
stant bond stress distribution along the bond length cab
be considered valid in this experimental study. There-
fore, a single material point simulation of the interface
is sufficient to reproduce the observed experimental
behavior Figure 6a. The shear behavior has been stud-
ied for different levels of lateral pressure.The obtained
results show an increase of the maximum bond stress
with the increase of the level lateral pressure. The fit
of the model response with the experimental data is
shown in Figure 6b. The horizontal axis is normalized
with respect to the concrete compressive strength. As
a result of the maximum bond stress fit, the obtained
slip values at the maximum bond stress are compared
with the values recorded during the tests as shown in
Figure 6c.The obtained numerical results show similar
trend to the experimental results, especially the inter-
esting dramatic drop of the slip value for the cases
under lateral pressure in comparison to the case with-
out lateral pressure shown in Figure 6c as discussed in
(Xu, Wu, Zheng, Hu, & Li 2014).

4.2 Bond between concrete and steel under cyclic
loading

To demonstrate the applicability of the model to the
monotonic and cyclic behavior, another numerical
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Figure 7. Bond between concrete and plain rebar steel reinforcement under cyclic loading: comparison with experimental
data.

example is presented in Figure 7, where the bond
behavior between concrete and plain steel reinforce-
ment under monotonic and cyclic loading are studied
and compared with the results of the test program pre-
sented in (Verderame, Ricci, Carlo, & Manfredi 2009).
Due to the short bond length used in the test pro-
gram, single material point simulations of the interface
have been used in this study as well. In the experi-
mental program, the bond behavior has been studied
under monotonic and reversed slip control cyclic load-
ing with constant amplitude i.e. pull-out and push-in
loading. Two different amplitudes have been used i.e.
1.0 mm and 16.0 mm with two repetitions for each
case. As a constant bond stress distribution along the
bond length has been observed in the tests, the exper-
imentally obtained pull-out/push-in curves have been
normalized with respect to the contact area and plotted
as bond stress vs. slip as shown in Figures. 7a, e. The
obtained numerical curves of bond stress vs. slip are
depicted in Figures. 7b, f. The bond stress degradation
under cyclic loading is shown in Figures. 7c, g, where
experimental and numerical results are compared. The
evaluated energy dissipation from the experimental
results are compared with the numerically evaluated
energy dissipation obtained from the thermodynamic
state variables as explained in Sec. 2.5 as depicted
in Figures. 7d, h. It should be noted that the mate-
rial model parameters have been identified to obtain
a reasonable fit of the monotonic response, as well as
the cyclic response with the slip amplitude equal to
1.0 mm see Figures. 7a-d. The model has been used to
predict the cyclic response under the larger slip ampli-
tude as depicted in Figures. 7e-h. The proposed model
show the ability to reproduce the monotonic and cyclic
behavior of the concrete-steel interface with consistent
set of material parameters.

5 CONCLUSIONS

The introduced model was shown capable of simulat-
ing both monotonic and cyclic behavior of a material
interface, e.g., between steel and concrete, using a con-
sistent set of material parameters. The introduced
hypothesis of damage accumulation using a cumu-
lative deformation measure as the damage driving
variable allows the model to consistently reflect the
dissipative mechanisms of fatigue damage develop-
ment at subcritical load levels. In addition, the model
accounts for the interaction of dissipative effects under
combined decohesion-compression and sliding load-
ing through a smooth cap threshold function and
a non-associative flow potential that couple damage
evolution in the normal and tangential directions.
All these features makes the proposed constitutive
model applicable to different structural scales of
representations.
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based damage model for concrete
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ABSTRACT: Concrete strength is reported in literature to increase with increasing strain rate, which needs
to be considered in concrete constitutive models used for finite element analyses of concrete structures. One
attractive group of constitutive models for concrete failure are scalar damage models using the crack band
approach. These models are computationally efficient for rate independent loading because they produce mesh
independent results with coarse discretisations as long as the strain field localises in mesh-dependent zones.
The aim of this study is to incorporate the strain rate dependence in crack band based damage models while
maintaining their ability to produce mesh-independent results. First the proposed model is described. Then, it
used for direct tensile analysis in which strain softening occurs. It is demonstrated that a combination of strain
rate dependent model for the undamaged response combined with a relative displacement rate dependent model
for the damaged response provides stress-displacement curves which converge with mesh refinement.

1 INTRODUCTION

Critical infrastructure made of reinforced concrete are
required to be designed to resist fast dynamic loading
in the form of impact, sudden ground acceleration and
blast, which can arise due to collisions, earthquakes
and explosions, respectively. Concrete structures sub-
jected to dynamic loading exhibit a complex nonlinear
failure response which differs significantly from the
one due to quasi-static loading. For instance, structures
subjected to impact and blast can exhibit localised
shear failure for loads, which, if they were applied
slowly, would result in bending failure. Furthermore,
dynamic loading produces compressive shock waves
which can cause tensile spalling of the concrete cover,
if reflected at free boundaries. Fast dynamic loading
produces higher stiffness and strength than quasi-
static loading. Strength of concrete is reported in
the literature to be significantly increased for high
strain rates (Bischoff & Perry 1991; Malvar & Ross
1998), whereas for fracture energy the results are less
conclusive (Doormaal et al. 1994; de Pedraza et al.
2018).

For finite element modelling of failure of con-
crete structures, constitutive models for concrete are
required, which can model localised tensile and dif-
fuse compressive fracture.Approaches suitable for this
are regularised continuum approaches which describe
tensile fracture by means of mesh-independent zones
of localised strains. One group of these regularised
models for dynamic loading are based on the con-
cept of damage delay (Häussler-Combe and Kühn

2012; Piani et al. 2019). One of the limitations of
these approaches is that a very fine mesh is needed so
that the zones of localised strain are modelled mesh-
independently. Therefore, this approach less suitable
for modelling structural components of reinforced
concrete. Alternatively, discrete element approaches,
in the form of lattice or particle models are used
to model fracture in concrete. In these approaches,
rate dependence of strength is modelled by cohe-
sive laws which depend on the rate of the crack
opening (Cusatis 2011). The third group of consti-
tutive models are hybrid approaches in which the
continuum and discrete models are combined. One
numerically efficient hybrid approach are crack band
models (Bažant & Oh 1983; Pietruszczak & Mróz
1981; Willam et al. 1986). In these approaches, cracks
are described by using strain softening, which results
in mesh-dependent localised zones. Mesh dependence
of load displacement curves is avoided by adjusting
the softening part with respect to the element size.
These crack band models are popular choice for con-
crete, because they produce mesh-independent results
for coarse discretisations. Therefore, they can be used
for analysing the failure response of reinforced con-
crete components.The challenge for formulating crack
band approaches for dynamic loading as a function of
the strain rate is that the strain profiles obtained are
mesh-dependent. As a consequence, the strain rate in
the localised zones are also mesh-dependent. As the
mesh is refined, the strain rate in the localised zones
increases, which results in an artificial strengthening
of the material.
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The aim of the present study is to propose a tech-
nique to provide mesh-independent load-displacement
curve for strain rate dependent material responses used
within the crack band approach. We use a scalar dam-
age model to the illustrate the modelling concept.
However, crack band models can be applied to a range
of constitutive models, such as plasticity and damage-
plasticity models (Grassl et al. 2013). The first part
of the paper is used to introduce the rate dependent
damage model. This is done in three steps. First, the
standard rate independent model is presented. Next,
the approach in which the damage evolution is made
a function of the strain rate. Finally, the newly pro-
posed formulation which produces mesh-independent
results is presented.All three approaches are applied to
an one-dimensional bar subjected to uniaxial tension
to illustrate the differences of the formulations.

2 SCALAR DAMAGE MODEL

The approach to model the rate dependence of con-
crete is demonstrated here by a scalar damage model.
First, the standard rate independent model is presented.
This is followed by a description of the extension of
the model that is modified to take into account rate
dependence.

2.1 Rate independent model

The constitutive model used here is a strain based
damage model for which the nominal stress σ is

σ = (1− ω) σ̄ = (1− ω)De : ε (1)

where De is the elastic stiffness based on the Young’s
modulus E and Poisson’s ratio ν, σ̄ is the effective
stress, tensor ε is the strain tensor and ω is the dam-
age variable ranging from 0 (undamaged) to 1 (fully
damaged).

The damage variable ω is determined from a his-
tory variable κ . The history variable κ is obtained by
a damage loading function of the form

f = ε̃ − κ (2)

with the loading and unloading conditions

f ≤ 0 κ̇ > 0 κ̇f = 0 (3)

Here, the equivalent strain ε̃ is

ε̃= 1

E

√√
√√

3∑

I=1

〈σ̄I〉2 (4)

where σ̄I are the principal values of the effective stress
and 〈σ̄I〉 are their positive parts. This equivalent strain
definition gives a modified Rankine strength enve-
lope at the onset of damage as shown in Figure 1. For
ε̃ > ft/E, damage occurs. The evolution of the dam-
age variable is formulated so that in uniaxial tension

Figure 1. Strength envelope.

Figure 2. Stress crack-opening curve in uniaxial tension.

an exponential stress-crack opening curve as shown in
Figure 2 is obtained. This is achieved by solving

(1− ω)Eκ = ft exp
(−ωκhe/wf

)
(5)

for ω using the standard Newton-Raphson method.
Here, he is the characteristic element length, ft repre-
sents the tensile strength and wf is the crack opening
threshold in Figure 2. The left hand side of (5) is equal
to the expression for σ in (1) for the case of monotonic
uniaxial tension with the uniaxial strain replaced by κ .
The right hand side shows the exponential softening
law (Figure 2) whereby the crack opening is expressed
by ωκhe.

2.2 Extension to strain rate dependence

The scalar damage model presented in the previous
section is for quasi-static loading in which the strength
is independent of the strain rate. The main purpose of
this work is to introduce a modification of the damage
model so that strain rate dependence of strength can
be taken into account in the constitutive model. One
approach would be to delay the evolution of the equiva-
lent strain so that damage is initiated at a higher stress.
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This can be achieved by reformulating expression (5)
to be

(1− ω)Eκ1= ft exp
(−ωκ2he/wf

)
(6)

where κ1 and κ2 are determined in rate form as

κ̇1= κ̇/α and κ̇2= κ̇α (7)

Here,α is a (scalar) strain rate dependent factor, which,
in this work, is based on fib Model Code (CEB-FIP
2012). It has the form

α=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 for ˙̃ε≤ ε̇1( ˙̃ε
ε̇1

)0.018

for ε̇1≤ ˙̃ε≤ ε̇2

0.0062

( ˙̃ε
ε̇1

)1/3

for ε̇2≤ ˙̃ε

(8)

where ε̇1= 1× 10−6 s−1 and ε̇2= 10 s−1. It should be
noted that the specific expression of α is not impor-
tant for this study, since it is not aimed to reproduce
experimental results, but to propose a formulation that
is mesh-independent. Comparing expression (6) with
(5), the term κ on the left hand side of (6) is replaced
by κ1 so that for strain rates which result in α > 1, the
stress at which damage starts is greater than the tensile
strength. Keeping the same spirit, the term κ2 is used
on the right hand side of (6) for the crack opening in
order to ensure that the fracture energy remains con-
stant with increasing strain rate. Both κ1 and κ2 are
given in rate form as described in (7).

The problem with this formulation is that the rate
factor α is a function of the strain rate, which for
the crack band model is mesh-dependent once dam-
age is initiated. Therefore, finer meshes will produce
greater rate factors and therefore, higher strengths. To
overcome this mesh dependence, the rate factor α is
made a function of the displacement rate once dam-
age is induced. To achieve a continuous evolution of
the rate factor for the transition from undamaged to
damage state, the strain rate before the onset of dam-
age is linked to the displacement rate after the onset
of damage by means of the incremental form

ε̃n − ε̃n−1

tn − tn−1
=βhe

ε̃n+1 − ε̃n

tn+1 − tn
(9)

where n+ 1 is the first step where damage is nonzero.
The parameter β is determined once at the start of
damage and then kept constant. The material models
described above were implemented in the open source
finite element program OOFEM (Patzák 2012).

3 MESH DEPENDENCE STUDY

The response of the three crack band damage models
above, namely rate-independent, strain-rate dependent
and displacement rate dependent is investigated for

possible mesh-dependence by means of a direct ten-
sile analysis. For being able to investigate the material
response independent of wave propagation, the prob-
lem is solved assuming zero mass for the material.
Consequently, the results presented here are based on
force equilibrium only without the inertia term. The
geometry of the bar is shown in Figure 3. One element
in the centre of the bar is strongly weakened to trigger
the onset of failure. The length of the bar is L= 0.1 m
and the cross-sectional area is A= 0.01 m2. Four
meshes with 1, 5, 10 and 20 equally sized elements
are used. For the weakened element, the properties are
ft = 3 MPa, Young’s modulus E= 30 GPa and frac-
ture energy GF= 100 N/m. The adjacent elements
have the same Young’s modulus, but a much higher
strength of 15 MPa so that damage is limited to the
weakened element for all the analyses. The analysis
is displacement controlled at the end of the specimen
with a displacement rate of 5 m/s. For the elastic stage
during which the strain is uniformly distributed, this
corresponds to a strain rate of 50 1/s and rate factor
of α= 2.28 according to (8). The first set of analy-
ses were carried out with the strain-rate independent
model.The load displacement curve and strain profiles
are shown in Figures 4 and 5, respectively. The load-
displacement curves are mesh-independent. However,
the strain profiles depend on the number of elements.
This is a typical result for crack band models with rate
independent material models in which the cracks are
represented by mesh-dependent zones of high strain
values. In the present setup, the high strain occurs
in the weakened element, whereas in the other ele-
ments unloading occurs. For quasi-static simulation,

Figure 3. Geometry of specimen for mesh dependence
study.

Figure 4. Normalised stress versus displacement for four
meshes for the rate independent damage model.
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Figure 5. Strain versus x-coordinate for four meshes for the
rate independent damage model at a displacement of 0.1 mm.

Figure 6. Normalised stress versus displacement for four
meshes for the strain rate dependent damage model.

the mesh-dependent zones are not problematic, since
in general the main aim is to obtain mesh-independent
load-displacement curves. However, this is not the
case for strain rate dependent models as the mesh-
dependence of the strain causes problems which will
be illustrated in the next part.

In the second part, the results for the strain rate
dependent scalar damage model are presented. In Fig-
ures 6 and 7, the load-displacement and rate factor are
shown, respectively. The load-displacement response
in Figure 6 and the rate factor in Figure 7 are strongly
mesh-dependent. The finer the mesh is, the greater
is maximum peak load and rate factor. This mesh-
dependence of the load-displacement response and
rate factor is explained by Figure 5.The strain localises
in mesh-dependent region.Therefore, for the same dis-
placement, the strain and also strain rate in smaller
zones is greater. Therefore, the finer the mesh, the
greater is the strain rate and the rate factor. Note that
an increase in the rate factor does not result in a jump
in the stress, because the history variables κ1 and κ2
are formulated in rate form in 7.

In the next part, the results of the modified rate-
dependent damage model is presented. In this model,
the rate factor is determined from the deformation
rate in the element once damage has started. The

Figure 7. Rate factor versus x-coordinate for four meshes
for the strain rate dependent damage model at a displacement
of 0.1 mm.

Figure 8. Load-displacement curves for four meshes for the
deformation rate dependent damage model.

Figure 9. Rate factor profile for four meshes for the defor-
mation rate dependent damage model at a displacement of
0.1 mm.

normalised stress versus displacement is shown in
Figure 8. Furthermore, the rate factor versus the x-
coordinate is shown in Figure 9. The normalised stress
displacement curves are converging as the mesh is
refined. Also, the rate factor in the damaged element
converges with mesh refinement. Still, there is some
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mesh dependence visible, because the rate factor in
the damaged element is obtained from the total defor-
mation rate in the element and not the crack opening
rate. The crack band model describes crack openings
mesh-independently, but not the deformation of the
damaged element. Nevertheless, the finer the mesh,
the smaller is the difference between deformation and
crack opening rate.

4 CONCLUSIONS

We proposed a new approach to make a scalar
damage model based on the crack band approach
rate-dependent by switching at the onset of dam-
age from a strain rate based to a deformation rate
based formulation. It is shown that this formulation
provides load-displacement curves which converge
with mesh refinement. In the next step, the approach
presented here will be applied to more comprehen-
sive damage-plasticity models reported in (Grassl,
Xenos, Nyström, Rempling, & Gylltoft 2013) and then
used to investigate problems with wave propagation
such as the spalling experiments reported in (Schuler,
Mayrhofer, & Thoma 2006).

REFERENCES

Bažant, Z. P. & B.-H. Oh (1983). Crack band theory
for fracture of concrete. Materials and Structures 16,
155–177.

Bischoff, P. H. & S. H. Perry (1991). Compressive behaviour
of concrete at high strain rates. Materials and struc-
tures 24(6), 425–450.

CEB-FIP (2012). CEB-FIP Model Code 2010, Design Code.

Cusatis, G. (2011). Strain-rate effects on concrete behavior.
International Journal of Impact Engineering 38, 162–170.

de Pedraza, V. R., F. Galvez, & D. C. Franco (2018). Measure-
ment of fracture energy of concrete at high strain rates. In
EPJ Web of Conferences, Volume 183, pp. 02065.

Doormaal, J. C. A. M. V., J. Weerheijm, & L. J. Sluys (1994).
Experimental and numerical determination of the dynamic
fracture energy of concrete. Le Journal de Physique
IV 4(C8), C8–501.

Grassl, P., D. Xenos, U. Nyström, R. Rempling, & K. Gylltoft
(2013). CDPM2: A damage-plasticity approach to mod-
elling the failure of concrete. International Journal of
Solids and Structures 50(24), 3805–3816.

Häussler-Combe, U. & T. Kühn (2012). Modeling of strain
rate effects for concrete with viscoelasticity and retarded
damage. International Journal of Impact Engineering 50,
17–28.

Malvar, L. J. & C. A. Ross (1998). Review of strain rate
effects for concrete in tension. ACI Materials Journal 95,
735–739.

Patzák, B. (2012). OOFEM – An object-oriented simulation
tool for advanced modeling of materials and structure.
Acta Polytechnica 52, 59–66.

Piani, T. L., J. Weerheijm, & L. J. Sluys (2019). Dynamic
simulations of traditional masonry materials at different
loading rates using an enriched damage delay: Theory
and practical applications. Engineering Fracture Mechan-
ics 218, 106576.

Pietruszczak, S. T. & Z. Mróz (1981). Finite element analysis
of deformation of strain-softening materials. International
Journal for Numerical Methods in Engineering 17(3),
327–334.

Schuler, H., C. Mayrhofer, & K. Thoma (2006). Spall experi-
ments for the measurement of the tensile strength and frac-
ture energy of concrete at high strain rates. International
Journal of Impact Engineering 32(10), 1635–1650.
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ABSTRACT: The growing adoption of fiber reinforced concrete (FRC) as a structural material is motivating
plenty of research in this field, especially those regarding the experimental aspects and the development of
numerical models. The composite nature of the material suggests that the final mechanical performance is due
to the contribution of both components and to their interaction. In this respect, the experimental research has a
fundamental importance for the identification of the mechanical response scatter, as the natural heterogeneity
of concrete is further incremented by the randomness of fiber distribution.

When the mechanical behavior of FRCs is simulated numerically, this aspect needs to be properly reproduced
to get a reliable response of the fiber reinforced concretes. In this framework, the present paper illustrates a
numerical model describing the behavior of a FRC concrete reinforced with polymeric fibers, developed with
the Lattice Discrete Particle Model (LDPM). This theory is able to reproduce the behavior of only concrete
(LDPM), by describing the mechanical interaction between the aggregates, and also the interaction with fibers
(LDPM-F). The model has been already validated for the plain concrete short- and long-term behavior (M-
LPDM); in the recent years, the fiber-bridging action due to the reinforcement has been introduced.

Many numerical parameters concerning the fiber geometry and its mechanics determine the whole response:
the discretization of each fiber, the definition of its shape, its elastic modulus and also the orientation of the
fibrous reinforcement in the concrete matrix. Furthermore, polymeric fibers may be characterized by a crimped
profile to improve the matrix-to-fiber bond and, so, it is fundamental to consider their actual shape also numer-
ically. Their geometry is defined by the number of segments in which each fiber is divided and its tortuosity.

This paper performs a parametric analysis of these specific aspects showing how they affect the flexural
behavior of macro-synthetic fiber reinforced concrete beams. The fiber elastic modulus handles the force trans-
ferring when concrete is cracked so defines the post-peak strength in the flexural behavior: a value between the
tangent and secant elastic modulus has to be considered in the calibration. The orientation of the reinforcement,
especially in the crack surroundings, drives the crack development: the randomness is what influences more
the scatter in the response that, in turn, depends on the number of fibers connecting the crack. In this numer-
ical approach the counting of fibers has been also performed and, at a given fibers dosage, the orientation is
a parameter calibrated to make the numerical count close to the experimental. Finally, regarding the concrete
composition, the aggregates are here generated according to the minimum and maximum size: the minimum
value given is shown to influence the post peak behavior especially in terms of cracking evolution under flexural
load.

1 INTRODUCTION

The increasing number of structural applications
for fiber reinforced concretes (FRCs) are fostering
research on the experimental investigation of their
performance and on the development of numeri-
cal advanced numerical models (Di Prisco et al.
2013). The durability improvement given by the

adoption of plastic fibers (Xu et al. 2021), is pro-
moting their use instead of those made of steel
(Camille et al. 2021; Nana et al. 2021). On the other
side, the identification of the creep deformations of
FRCs with MS fibers is widely studied in the per-
spective of the test method standardization and the
quantification in terms of deformations (Llano-Torre
et al. 2021).
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In this scenario, many advances have been done in
the numerical simulation of the FRCs performance: the
formulation of material models (Blanco et al. 2013;
Thai et al. 2020), and the calibration of predicting
models using different approaches, parametric stud-
ies (Liu et al. 2022), multi-scale models (Nonato Da
Silva et al. 2020) and meso-scale analysis (Gal &
Kryvoruk 2011). One of the main physical phenom-
ena to be reproduced in FRC models is the effective
dispersion and orientation of the fibers (Ferrara et al.
2012; Leporace-Guimil et al. 2021; Nonato Da Silva et
al. 2020); fundamental in defining the post-cracking
performance and the variability of results, proper of
FRC. The relation between the number of fibers on
the cracked surface on FRCs specimens in tension or
bending, and the residual strength is considered in the
studies (Del Prete et al. 2017), also for the long term
deformations (C. Del Prete et al. 2021; Vrijdaghs et al.
2020).

The study here presented concerns a paramet-
ric analysis of the Lattice Discrete Particle Model
(LDPM-F) applied to FRCs (Jin et al. 2016; Schauffert
et al. 2011). This model has been also extended to the
viscoelasticity of concrete (Abdellatef et al. 2019) and
of macro-synthetic fibers (C. Del Prete et al. 2021).
The formulation depends on two sets of parameters,
those of concrete and fibers: here the effect of the
geometrical and mechanical fiber parameters and the
aggregate size is discussed.

When dealing with the geometry of the fibers for
the numerical model, they must be in compliance with
the geometry is intended to reproduce. For example,
a crimped shape improves the fiber-to-matrix bond
strength so, beside the geometry, also the mechani-
cal parameters should be calibrated, bond strength and
debonding fracture energy. The total framework must
be reliable with the mechanics.

2 LATTICE DISCRETE PARTICLE MODEL FOR
FIBER REINFORCED CONCRETE (LDPM-F)

The Lattice Discrete Particle Model (LDPM) approach
is a mesoscale theory used to describe the concrete par-
ticles interaction by means of constitutive laws applied
on the internal facets in which the matrix structure is
organized (Cusatis, Mencarelli, et al. 2011; Cusatis,
Pelessone, et al. 2011). The aggregates are connected
and merged into a unique matrix with the Delaunay
tetrahedralization that connects four particles center,
so producing the tetrahedron in Figure 1, creating a
lattice system.

So, the LDPM formulation consists of the solution
of the Principle ofVirtual Work (PVW), or equilibrium
of the internal and external work, and the compati-
bility of displacement, applied on the facets of each
tetrahedron (Figure 1).

The concrete structure is generated according to the
mix design properties, i.e. w/c ratio, cement content
and aggregate minimum and maximum size.

The mechanics of concrete depend on a set of
parameters, describing the elastic, E0 effective normal

Figure 1. LDPM tethraedron connecting four particles
(Cusatis, Pelessone, et al. 2011).

modulus and α the shear-normal coupling parameter,
and inelastic phase.This stage includes different mech-
anisms, each of them regulated by a specific group
of parameters: those calibrated for the present study
have been σ t , tensile strength, lt , characteristic length,
nt , softening exponent, σ s/σ t the shear strength ratio.
The other parameters, listed and detailed described in
(Cusatis, Mencarelli, et al. 2011), have been assumed
from literature.

The LDPM approach has been extended to include
the effect if fibers and describe their crack-bridging
mechanism (Jin et al. 2016; Schauffert et al. 2011).
They are quasi-randomly generated in the concrete
volume and, so, intersect the facets of the system:
their orientation is defined by the intersection of each
element with a facet (Figure 2).

Figure 2. Fiber intersecting the facet (Jin et al. 2016).

Fibers are geometrically and mechanically described
by a wide set of parameters. The diameter df , length
lf , edges per fiber and tortuosity. Their dosage is set
according to a volume fraction. It is straightforward
to get the key role of the fiber orientation in the
failure mechanism, i.e. fiber debonding and pull-out
(Del Prete et al. 2019). These mechanisms are depen-
dent on a set of parameters including, the debonding
fracture energy Gd , the frictional stress τ 0, a dimen-
sionless factor β. The mechanical behaviour of the
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fibers is described by their tensile strength σ fu and
elastic modulus Ef .

Furthermore, the snubbing, spalling and cook-
Gordon effects starting at the fiber-matrix interface
are also simulated through this formulation, by means
of additional parameters (Jin et al. 2016; Schauffert et
al. 2011).

The LDPM-F formulation considered in the present
paper is implemented in the MARS (Modeling and
analysis of the Response of Structures) software.

3 EXPERIMENTAL TESTS SIMULATED

In this study the influence of different parameters
on the mechanical response of MSFRCs, is ana-
lyzed by examining the flexural response of prismatic
specimens in bending (Figure 3).

Figure 3. Geometry of the samples used for the simulations.

In a first phase, experimental data from bending
and compression tests are considered for calibrat-
ing the LDPM-F parameters (Tables 1 and 2). In
Figure 4 the black dashed line represents the mean
experimental curve whose scatter is identified by the
grey area, while the black solid line represents the
mean numerical curve. Numerically four different
arrangements of fiber and aggregates, named seeds,
are simulated to describe the actual variability inside
the concrete particles and fibers distribution (grey

Table 1. LDPM parameters.

E0 α σt lt σ s /σt nt σc0 Hc0/E0 kc0 nF
[GPa] [–] [MPa] [mm] [–] [–] [MPa] [–] [–] [–]

40 0.25 2.0 800 4.0 1.5 190 0.4 2 0.5

kc1 kc2 µ0 µ∞ σN0 d0 da c w/c ρ a/c

[–] [–] [–] [–] [MPa] [mm] [mm] [kg/m3] [–] [kg/m3] [–]

1 5 0.35 0 600 8∗ 15 400 0.46 2400 4.34

Table 2. LDPM-F parameters.

Gd τ0 β ksp ksn σuf krup Ef tortuosity Edg

[N/m] [MPa] [–] [–] [–] [MPa] [–] [GPa] [–] [–]

1.0 4.0 0.5 6.2 1.0 473 0.0 3.3∗ 0.6∗ 8∗

lf df Vf ρ shape orientation(x)

[mm] [mm] [%] [kg/m3] [–] [–]

54 0.81 0.85 946 crimped 10∗

Figure 4. MSFRC bending tests calibration.

dashed lines).The procedure of calibration parameter
is detailed described in (C. Del Prete et al. 2019; C.
Del Prete, Boumakis, et al. 2021).

4 INFLUENCE OF AGGREGATE SIZE AND
FIBER GEOMETRY PARAMETERS ON
MSFRCS FLEXURAL BEHAVIOUR

The parameters investigated, highlighted with a (∗)
in Tables 1 and 2, are: minimum concrete aggregate
size, fiber tortuosity, orientation, edges number and
elastic modulus. The parameters are varied respect to
the reference set in Tables 1 and 2 and four seeds are
generated for each variation.

4.1 Minimum aggregate size

In LDPM models, the aggregate size range is typi-
cally included between the real maximum aggregate
diameter and half of it (for computational time rea-
son), so the lower bound of the range is set according
to the maximum size. The influence of this parameter
is investigated by considering three different sizes: 5
mm, 6 mm, 8 mm (this last is used as a reference). For
each dimension, four seeds are simulated, i.e. four dif-
ferent distributions of aggregates and fibers. For each
value of the minimum aggregate size Figure 5 reports

Figure 5. MSFRC bending tests – influence of the minimum
aggregate size.
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the mean curve obtained combining the results of the
four seeds.

Looking at Figure 5, it can be clearly seen that a
lower aggregate size implies a slightly lower post-peak
strength in the range of 1.5 mm<CMOD< 2.5 mm.

After this CMOD value, the responses appear to be
more similar. Furthermore, the curve for a minimum
aggregate size of 8 mm presents stronger disconti-
nuities than the other curves. This can be explained
considering that the neutral axis of the cracked cross
section is very close to its top, at a distance that
can become lower than the aggregate size in exper-
imental tests. Therefore, the jumps in the post-peak
curve are attributed to progressive cracking of con-
crete. Figures 6 and 7 show examples of the particle
distribution in the cracked section for 5 mm and 8 mm,
respectively.

Figure 6. Notched cross section of the numerical model:
distribution of aggregates with 5 mm minimum diameter.

Figure 7. Notched cross section of the numerical model:
distribution of aggregates with 8 mm minimum diameter.

4.2 Fiber elastic modulus (Ef )

The elastic modulus of the fibers influences the force
transfer between the concrete matrix and the fibers.
Three different values of this parameter are considered
here, i.e. 2600 MPa, 3300 MPa and 3900 MPa.

In Figure 8 each curve represents the mean value of
four seeds and, at a value of CMOD 0.5 mm, the resid-
ual strength is 3.3 MPa for Ef 2600 MPa, 3.5 MPa for
Ef 3300 MPa and 3.7 MPa for Ef 3900 MPa. Further-
more, the valley of the curves after the first peak shifts
towards larger CMOD values as the elastic modulus
decreases. In fact, a fiber with lower elastic modu-
lus requires a larger elongation to take the same force
taken by a stiffer fiber.

Figure 8. MSFRC bending tests – influence of fiber elastic
modulus.

4.3 Fiber discretization: edges per fiber

In the LDPM-F formulation considered here, each
fiber is divided into a number of segments, named
edges. Defining one edge (Figure 9), the fiber appears
straight, while setting a number of edges higher than
one, a curved shape is obtained. In the present study 1,
4 and 8 edges are considered. Referring to Figure 10,
it is possible to observe that when the number of edges
per fiber is increased, the residual strength decreases:
examining the strength at CMOD 0.5 mm (fR1 as in

Figure 9. Fiber profile at different edges.
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Figure 10. MSFRC bending tests – influence of the number
of edges per fiber.

Table 3. Number of fibers counted on the notched section
for fibers with 1, 4 and 8 edges.

Edges per fiber

1 4 8

Number of fibers

354 272 218

Model Code 2010 (Di Prisco et al. 2013)), we have a
residual strength of 3.5 MPa, 3.8 MPa and 4.1 MPa
passing from 8 to 1 edges per fiber. The number of
edges affects the distribution of fibers in the specimen.
If they are straight (one edge), they will tend to ori-
ent along only one axis of the beams, while, if curved,
they will have a more random orientation. This can be
revealed by counting the fibers crossing mid-span sec-
tion of surfaces of the prismatic model (Table 3). The
number of fibers drastically decreases passing from 1
to 4 edges, while closer values are obtained for 4 and
8 edges. Figure 11 shows histograms with the inclina-
tion of the fibers crossing the mid span section with
respect to the cross-section plane (the inclination is
defined considering a straight segment connecting the
ends of the fiber). Clearly with 1 edge there are more
fibers with an inclination higher that 85◦.

4.4 Fiber orientation

The orientation of the fibers is a parameter that can
be specified: it is possible to indicate a value of ori-
entation between 0 and 10 (a sort of weight) along
the three axis, x, y and z. Indicating this value is
possible to enforce the orientation of the reinforce-
ment along a specified direction: in these simulations
this parameter – orientation – along the x-axis is var-
ied, with values of 1, 4 and 10. When they are more
distributed along the x-axis, corresponding to the lon-
gitudinal direction of the prism, the residual strength
increases because the number of fibers on the middle
cross section (notched section) is higher (Figure 12).

Figure 11. N◦ of fibers vs fibers inclination at different
edges specification.

Figure 12. MSFRC bending tests – influence of fiber
orientation.

Table 4 reports the number of fibers at the three
values of the fiber orientation parameter, as a mean
value of four seeds.

Table 4. Number of fibers counted on the notched section
at fibers orientation of 1, 4 and 10 along x-axis.

Orientation of fibers x-axis

1 4 10

Number of fibers

161 192 218

Moreover, in Figures 13 and 14 the fiber distribution
on the notched surface and their inclination is repre-
sented, given the same volume fraction; the histograms
suggest that the number of fibers increases especially
at higher inclination (after 80◦).
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Figure 13. N◦ of fibers vs fibers inclination at different
orientation.

Figure 14. N◦ of fibers vs fibers inclination at different
orientation.

4.5 Fiber tortuosity

The shape of the fiber can be also defined by the tor-
tuosity parameter, calibrating a value between 0 and 1.
The profile changes as in Figure 15 when a tortuos-
ity equal to 0 or 1 (the lower and upper bound of the
range) is set. The curves in Figure 16 suggest that a
lower value of the parameter produces a higher tough-
ness in the response, increasing the residual strength.
Moreover, comparing the behavior of a straight fiber

Figure 15. Fiber profile at tortuosity 0, 0.2, 0.6 and 1.

Figure 16. MSFRC bending tests – influence of fiber
tortuosity.

Table 5. Number of fibers counted on the notched section
at fibers tortuosity of 0, 0.2, 0.6, 1.

Tortuosity

0 0.2 0.6 1

Number of fibers

336 321 218 150

(solid black line) with a crimped one (dashed grey
line) the shape of the curve becomes more irregular.
This can be due to the different interlock at interface
that produces a different slip mechanism between a
crimped fiber, rather than a straight one.

A different value of the tortuosity, generates a dif-
ferent number of fibers that crosses the prism section:
in particular, counting the fibers on the notched section
(Figure 17), the total amount changes a lot between 0
and 1. The increment of the fibers is more pronounced
when passing from 0.6 to 0, also the orientation moves
from higher values of the angle inclination, from 60◦
to 80◦.

5 CONCLUSIONS

The research presented deals with the calibration of
the parameters for the LDPM-F model used to simu-
late the behaviour of macro-synthetic fiber reinforced
concretes.

The results shown make possible to draw the fol-
lowing conclusions:

– The minimum aggregate size specified to generate
the aggregates influences the cracking behaviour,
especially under flexural loads, since the height of
the compression zone is similar to the aggregate
size;

– The orientation of the fibers along one direction
determines the effective number of fibers involved
in the cracking process;
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Figure 17. N◦ of fibers vs fibers inclination at different
tortuosity.

– The specification of the tortuosity and the number
of edges per fiber strongly influences the fibers
shape and their contribution to the mechanical
response after the crack formation: the number and
inclination of the fibers crossing the middle section
strongly depends on this variable;

– The elastic modulus of the fibers influences the
stress transfer for the concrete matrix to fibers, in
particular right after crack formation.

Thus, the geometrical parameters can be strongly
defined by the effective number of fibers experimen-
tally counted (Bernard 2017).
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ABSTRACT: Many reinforced concrete structures are validated in the ultimate limit state (ULS) using analysis
methods based on the theorems of plasticity and the rigid-plastic material model.The rigid-plastic material model
significantly simplifies the actual stress-strain relationship of reinforced concrete. However, good agreement with
capacities found from experiments has been shown when a reduced or so-called effective concrete compressive
strength is used. The effective strength is mainly dependent on the transverse tensile strain when a single material
point is considered, and well-accepted expressions are given in the codes. The Modified Mohr-Coulomb yield
criterion with an effective strength is combined with the elasto-plastic behavior of the reinforcement to create
an effective yield surface for reinforced concrete for plane stress states. Based on this, the paper presents
an approximate convex effective yield surface, which can be used for Finite Element Limit Analysis (FELA)
calculations. The convex effective yield surface is based on auxiliary strains linked to the reinforcement stresses
on a material point level. The effective yield surface is tested on a material point level using an experimental
database for reinforced concrete panels and on a structural level with an example of a reinforced concrete deep
beam with holes. Both tests yield satisfactory results.

1 INTRODUCTION

Concrete is a material with a highly non-linear material
behavior in both compression and tension. Advanced
Non-Linear Finite Element Analysis (NLFEA) pro-
grams such as Diana (Ferreira 2020), and Atena
(Červenka & Červenka 2017) can account for the non-
linearity using expressions from, for instance, the fib
Model Code (fib 2013). By using these non-linear
expressions, detailed modeling of structures is possi-
ble. However, the analysis can also be cumbersome and
requires expert knowledge to alleviate convergence
problems in the loading of the structures. Furthermore,
many material parameters are needed to describe the
non-linear relationship, which can be challenging to
determine.

For these reasons, many designs are validated in the
ultimate limit state (ULS) using limit analysis methods
based on the theorems of plasticity and the rigid-
plastic material model (Drucker, Prager, & Greenberg
1952; Gvozdev 1960). Finite Element Limit Anal-
ysis (FELA) applies the theorems of plasticity and
is a numerical method based on optimization, and
since the problem can be posed as a convex problem,
it can be solved efficiently (Anderheggen & Knöpfel
1972).

In a FELA framework based on the lower bound the-
orem, the structure is divided into stress-based finite
elements. Scalable load is applied to the structure,
and equilibrium is ensured in elements and on bound-
aries, while a yield surface constrains the stress state
of the elements. The largest possible load which the
structure can sustain is then sought. For reinforced
concrete, the yield surface is often based on the Mod-
ified Mohr-Coulomb yield criterion with the possible
inclusion of smeared reinforcement using additional
linear constraints.

Using a rigid-plastic material model is an extreme
simplification compared to the actual stress-strain
relationship. However, in combination with a reduced
concrete compressive strength, the load-bearing
capacities obtained using these methods have shown
good agreement with those obtained from experiments
on beams, plates, and other structural elements. The
reduced concrete compressive strength is obtained by
multiplying the cylinder compression strength with
a so-called effectiveness factor, ν. Historically, the
effectiveness factor has been obtained empirically for
individual problem types, such as beams in bending
and beams in shear, through the fitting of experimental
results with results from exact rigid plastic solutions.
Large test databases exist to make these fits for many
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different structure types. However, all situations can-
not be tested, and a general method is needed. For
FELA this would mean the development of an effective
yield surface, which is the topic of this paper. Previ-
ously the topic has been treated in a purely stress-based
approach (Herfelt, Poulsen, & Hoang 2018).

To determine how an effective yield surface would
look a deformation-based model is considered since
several authors have suggested that the effective com-
pressive strength of concrete is linked to the transverse
tensile strain ε1 (Collins & Vecchio 1982; Hoang,
Jacobsen, & Larsen 2012). Expressions to determine
the effectiveness factor based on ε1 exist in, for exam-
ple, the fib model code. Using these expressions
combined with a linear elastic perfectly plastic con-
stitutive law for concrete and reinforcement, the stress
state for a given strain state can be found. By repeat-
ing this calculation for many different strain states,
effective yield surfaces are found in the stress space,
depending on the degree of allowed strain. The effec-
tive elasto-plastic yield surfaces found in this manner
are clearly reduced compared to yield surfaces where
the effective strength of concrete is not considered.

The next step is to develop a yield surface that
can be used in FELA, approximating the yield sur-
faces from the deformation-based model.The effective
elasto-plastic yield surfaces are not convex due to
the expression for the effectiveness factor. Therefore,
linearization is performed. Furthermore, the elasto-
plastic yield surfaces require knowledge of the strains.
However, strains are not available on a structural level
in FELA due to the rigid-plastic material model. This
challenge is overcome by introducing strains as an aux-
iliary variable on a material point level. The auxiliary
strains are constrained and linked to the stresses of the
reinforcement by assuming an elasto-plastic behavior.
In this way, an effective and convex yield surface is
established.

The effective rigid-plastic and convex yield surface
for plane reinforced concrete is tested in two exam-
ples.The first example is of a reinforced concrete panel
loaded in shear, with and without biaxial compression
or tension, to test the performance of the yield surface
on a material point level. The second example is of a
reinforced concrete deep beam with holes, this exam-
ple is made to see the performance of the yield surface
on a structural level.

2 FINITE ELEMENT LIMIT ANALYSIS

Finite Element Limit Analysis (FELA) is a combina-
tion of the domain discretization of the Finite Element
Method and limit analysis based on the extremum
principles of plasticity as postulated by Gvozdev
(1960), and Drucker, Prager, & Greenberg (1952). The
method was first proposed byAnderheggen & Knöpfel
(1972). This paper will only give a brief explanation
of the method. For further information, refer to, e.g.,
Andersen, Poulsen, & Olesen (2022).

The FELA method of this paper is based on the
lower bound theorem and is posed as a constrained
optimization problem in the following way:

max. λ Load parameter (1a)

s.t. Hβ =R0 + λR Stress equilibrium (1b)

fi(σ i)≤ 0 Yield conditions (1c)

The parameter λ scales the load, and is maximized
via the objective function (1a). Equation (1b) ensures
the stress equilibrium between internal and external
forces. The stress continuity is ensured by Hβ where
H is the so-called equilibrium matrix, which consists
of contributions from each of the elements, and β
which is a vector collection of the stress variables.
The element used for the calculations is a mixed lin-
ear lower bound triangle (Herfelt 2017; Krabbenhøft
2016), which is a relaxed version of the lower bound
element by Poulsen & Damkilde (2000). The external
forces are given by the constant loads R0 and scalable
loads λR.

The last part of the optimization problem is the yield
conditions (1c). The elements have a number of mate-
rial points which contain stress variables. For a plane
model the stress variables will be described by the
vector:

σ =
⎡

⎣
σxx
σyy
σxy

⎤

⎦ (2)

Equation (1c) states that the stresses of the material
points should be on or inside the yield surfaces defined
by fi. These yield surfaces are the subject of this paper.

3 MODELING OF PLANE REINFORCED
CONCRETE

The models of this paper all use the so-called smeared
reinforcement approach, whereby the reinforcement
bars are assumed to be placed sufficiently close for
this to be a reasonable simplification. Furthermore, the
reinforcement is assumed to be orthogonally placed
coinciding with the x- and y-axis of the Cartesian
coordinate system. The amount of reinforcement is
described as the reinforcement ratios ρs,x and ρs,y, see
Figure 1. The yield strength of the reinforcement is
fs and the reinforcement is assumed to carry normal
tensile stresses only.

The concrete is assumed to be a material with com-
pressive strength, fc, and negligible tensile strength.
Consequently, the reinforced concrete is considered a
composite material, where the compressive capacity
comes from the concrete and the tensile capacity from
the reinforcement.

The elasto-plastic models also use the modulus of
elasticity of concrete and steel, Ec and Es, as well as the
crushing strain of concrete εcu and the rupture strain
of the reinforcement εsu. This paper considers a fixed
set of parameters which can be seen in Table 1.
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Figure 1. Representative reinforced concrete membrane.

Table 1. Material parameters used to
generate the yield surfaces.

fc [MPa] 30
Ec [GPa] 33
εcu [‰] 3.5
fs [MPa] 500
Es [GPa] 210
εsu [‰] 50
ρs,x = ρs,y [%] 0.6

3.1 Separation of stresses

Separation of the total stress into concrete and rein-
forcement stresses is performed to enable the modeling
of the yield surfaces:

σ�= σ�,c + ρσ�,s (3)

where σ� is the total stress tensor given by:

σ�=
[
σxx σxy
σxy σyy

]
(4)

and σ�,c is the concrete stress tensor given by:

σ�,c=
[
σc,xx σc,xy
σc,xy σc,yy

]
(5)

and ρσ�,s is the reinforcement stress tensor given by:

ρσ�,s=
[
ρx 0
0 ρy

] [
σs,xx 0

0 σs,yy

]
(6)

This separation of stresses is analogue to the way the
Nielsen yield criteria is developed (Nielsen & Hoang
2011).

3.2 The effectiveness factor

The effectiveness factor, ν, is a parameter introduced
to enable the usage of limit analysis methods based
on the theory of rigid-plastic materials for reinforced
concrete structures, even though the actual material
behavior is not rigid-plastic. However, the limit analy-
sis methods can still be used to provide failure loads in

good agreement with tests when a reduction of the con-
crete compressive strength via the effectiveness factor
is applied:

fc,eff= νfc (7)

where fc,eff is the effective concrete compressive
strength. The effectiveness factor accounts for several
different strength reduction effects related to soften-
ing, micro-, and macro-cracking (Nielsen & Hoang
2011). Several authors have suggested formulas for
determining the effectiveness factor based on different
geometrical and material properties. See Ref. (Hoang,
Jacobsen, & Larsen 2012) for an overview of differ-
ent works. Several of these authors suggest that the
effectiveness factor should be a function of the trans-
verse tensile strain, ε1, and this has also been adopted
in the fib model code 2010 (fib 2013) and in the new
enquiry version of Eurocode 2 (pr EN1992-1-1 2021).
The effectiveness factor for structures that meet the
demand for minimum reinforcement may be written
in the following way:

ν(ε1)= ηfcηε(ε1) (8)

The first factor, ηfc , accounts for the brittleness of
the concrete and can according to (pr EN1992-1-1
2021) be taken as:

ηfc = 3
√

fc0/fc ≤ 1.0, fc in MPa (9)

where fc0 is a reference strength in the order of 30–
40 MPa. In this paper, the value is taken as 30 MPa.
The second factor, ηε , is dependent on the transverse
tensile strain and can be formulated as:

ηε(ε1)= 1

c1 + c2ε1
≤ c3 (10)

where c1, c2, and c3 are some calibration constants.
Herfelt, Poulsen, & Hoang (2018) chose values of
c1= 1, c2= 80, and c3= 1, which have also been
adopted here.

The left hand side of equation (10) is non-convex
and thus also equation (8), making the formula unus-
able in a convex optimization framework. For his
reason, a simple linear relation is adopted in the convex
approximations:

ηε(ε1)= 1− aε1≤ 1 (11)

where a is the proportionality factor. Figure 2 shows
the graph of the left hand side of Expression (10) and
the simple linear expression with different values of
the a-parameter. The a-parameters in the figure corre-
spond to the slope required to get a reduction similar to
Expression (10) for different maximal strains ε1,max, at
a transverse strain corresponding to the yielding strain
of the reinforcement.
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Figure 2. Effectiveness factor as a function of the transverse strain with linear approximations yielding the same reduction
at εy , as Expression (10) yields for ε1,max.

4 YIELD SURFACES

Four implementations of yield surfaces for plane rein-
forced concrete are shown in the following. The yield
surfaces are plotted in the (σxx, σyy, σxy)-coordinate
system. Only the positive values of the shear stress
are plotted since the yield surfaces are symmetrical
with respect to the (σxx, σyy)-plane.

The rigid-plastic yield surface for plane stress
states, is presented as a reference. The rigid-plastic
yield surface can only consider a constant reduction
of the compressive strength. Therefore, it is a helpful
comparison, to see the effect of the reductions due to
the transverse strain. Thereafter, two effective elasto-
plastic yield surfaces are developed, one as a lower
envelope and one as an upper envelope of the effective
yield surface. Lastly, a convex effective rigid-plastic
yield surface is developed.

4.1 Rigid-plastic reinforced concrete yield surface

If only a fixed value of the effectiveness factor is con-
sidered, a rigid-plastic yield surface can be developed
based only on the concrete compressive strength fc, the
reinforcement yield strength fs, and the reinforcement
ratios ρs,x and ρs,y.

The Rigid-plastic reinforced concrete yield sur-
face separates stresses into concrete and reinforcement
stresses as described above. The concrete should then
abide by the Modified Mohr-Coulomb yield criterion
with a tensile cutoff of zero and the reinforcement by a
simple uni-axial relation.The mathematics of the yield
surface is described in Nielsen & Hoang (2011), and
a convex implementation can be found, e.g., in Her-
felt (2017). A plot of the yield surface can be seen in
Figure 3 using the material parameters of Table 1.

It should be noted that Nielsen proposed introduc-
ing the effectiveness factor by an additional constraint
|σxy| ≤ 0.5 νfc on the shear stress. This additional
constraint is omitted for the comparisons in this paper.

Figure 3. The rigid-plastic reinforced concrete yield for
parameters in Table 1.

4.2 Effective elasto-plastic reinforced concrete
yield surface

The following shows the methodology used to gener-
ate two different effective elasto-plastic yield surfaces.
These two yield surfaces will represent an upper and a
lower bound envelope, of which the significance will
be explained later.

The model takes a strain tensor in the form:

ε�=
[
εxx εxy
εxy εyy

]
(12)

and based on the constitutive equations of the rein-
forcement and concrete determines a stress state. This
process is repeated many times for different strain ten-
sors. The strain tensors are generated in a step-wise
process. A unit strain tensor is generated, which is
equivalent to a direction in the strain space. The unit
strain tensor is then multiplied by a linearly increas-
ing factor to control the magnitude. By repeating this
for many different unit strain tensors the strain space
is covered. Applying the non-linear constitutive rela-
tion will result in many different stress tensors, and
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thus a so-called point cloud will be generated in the
plane stress space. The two yield surfaces can then be
determined from the point cloud by certain criteria.

4.2.1 Constitutive relation of the reinforcement
The constitutive relation for the reinforcement is a
simple uniaxial relation in each of the two direc-
tions, since the reinforcement is assumed only to carry
normal stresses and to be placed according to the (x, y)-
coordinate system. The linear elastic perfectly plastic
material model is applied:

σs,n(εn)=

⎧
⎪⎨

⎪⎩

0, εn≤ 0
εnEs, 0≤ εn≤ εs
fy, εs ≤ εn

(13)

where the subscript n denotes either the x- or y-normal.
A graph of the relation can be seen in Figure 4.

Figure 4. Constitutive relation of the reinforcement.

4.2.2 Constitutive relation of the concrete
The constitutive relation of the concrete is based on a
linear elastic perfectly plastic relation, same as for the
reinforcement. However, the effective uniaxial com-
pressive strength depends on the transverse strain via
the effectiveness factor. For these reasons, the consti-
tutive relation of the concrete is based on principal
stresses and principal strains. Due to the effect of
the transverse strain and the potentially complicated
expression for the effectiveness factor, the equations
are not easily posed with limits. However, they can be
posed in the following way:

σc,1(ε1, ε2)=min {max {Ecε1, ν(ε2)fc} , 0} (14)

σc,2(ε1, ε2)=min {max {Ecε2, ν(ε1)fc} , 0} (15)

With the usual ordering of the principal strains and
stresses, that is, ε1≥ ε2 and σc,1≥ σc,2, only the sec-
ond principal concrete stress can be influenced by the
transverse strain, since if ε2 is positive ε1 must also be
positive, which implies that σc,1 is zero.

A plot of the constitutive relation of the second
principal concrete stress as a function of the princi-
pal strains can be seen in Figure 5, where material
parameters fromTable 1 are used. With tensile strain in
both principal directions, no concrete stress is present,
whereas a linear relation is seen with increasing

negative principal strains. The effective compressive
strength limits the maximum principal stress, and
the increasing transverse strain makes the strength
decrease.

Figure 5. Constitutive relation of the second concrete prin-
cipal stress in principal strain space.

4.2.3 Generation of yield surfaces
With the constitutive relation of the concrete and the
reinforcement established, it is possible to determine
the corresponding stress state of the composite mate-
rial for a given strain. The calculation procedure is as
follows:

1. Given a strain tensor in the form of equation (12).
2. Compute reinforcement stresses by equation (13)

using εxx and εyy.
3. Compute principal strains and then compute prin-

cipal concrete stresses from equations (14) and
(15).

4. Transform concrete principal stresses back into
directions of original coordinate system.

5. Compute the composite stress state from equa-
tion (3).

The above algorithm is used to generate the point
cloud of possible stress states from which the yield
surfaces are generated. The first yield surface will be
called the upper envelope (UE) yield surface, which
will be generated from the concave envelope of the
entire point cloud. The second yield surface will be
called the lower envelope (LE) yield surface, which
will be generated from the concave envelope of the
points where there is either no tension and the con-
crete has reached the crushing strain εcu, or for points
with tension, where the maximum normal tensile strain
reaches ε1,max= 10‰. With these criteria, very similar
stress states can exist with varying shear capacity. In
these situations, the point with the least shear capacity
is shown. The choice of the value 10‰ is arbitrary, and
it could be argued that a larger value should be cho-
sen. For instance, the ductility requirement according
to the Eurocode for type B reinforcement is required
to be 50‰ (Eurocode 2 2008). However, a transverse
strain of 50‰ would correspond to a prohibitively
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large reduction of the concrete strength, and therefore
a lower value is used for these examples.

A plot of the UE yield surface with material param-
eters fromTable 1 can be seen in Figure 6.The coloring
on the surface is the perpendicular distance from the
current yield surface to the rigid-plastic reinforced
concrete yield surface, which can be used to dis-
tinguish what has been cut away by introducing the
effectiveness factor.

Figure 6. Upper envelope (UE) yield surface.

Firstly, it can be seen that a cone in the compression
side of the plot remains unaltered, which is the part cor-
responding to concrete in biaxial compression. These
stresses can be carried without activating the reinforce-
ment in tension, and therefore are not influenced by the
effectiveness factor.

Notably, “the right-hand side” of the plot is no
longer shaped like a cone. From the coloring of the
figure, it can be seen that the reduction is most pro-
nounced in a band around the middle of the yield
surface. These are stress states with either predomi-
nately shear stress, or shear stress with normal stresses
of opposite signs.

From the unaltered part, a decrease in the shear
capacity and the maximum compression with trans-
verse tension is seen. Looking at the σxxσyy-plane, for
maximum transverse tension, it can be seen that the
effective compressive strength is reduced from 30 MPa
to about 25 MPa. This reduction is equivalent to the
effectiveness factor for a transverse strain of εy, which
is also the required transverse tension to activate the
reinforcement fully and thus as expected for the upper
envelope.

A plot of the lower envelope yield surface with
material parameters from Table 1 can be seen in Fig-
ure 7. The cone in the compression part of the yield
surface corresponding to biaxial compression is still
unaltered. However, the rest of the yield surface is
much more reduced due to the larger strains mean-
ing an additionally reduced compressive strength.
Looking at the σxxσyy-plane, the effective concrete
compressive strength is reduced from 30 MPa to about
17 MPa, which is consistent with a transverse strain of
ε1,max= 10‰.

Figure 7. Lower envelope (LE) yield surface.

4.3 Effective rigid-plastic reinforced concrete yield
surface

To develop a yield surface that can be used in a
FELA context, it must be convex and based on the
available variables, which are stresses. However, aux-
iliary strains can be introduced on a material point
level by assuming a restriction between the stresses
of the model and the auxiliary strains. The strains are
introduced as variables: [εxx, εyy, εxy]. The strains are
linked to the material point and not to a structural
deformation-based model, and therefore the strains of
the material point are only indirectly influenced by the
rest of the structure via the stress equilibrium.

The strains are introduced in relation to the rein-
forcement stresses in the following way:

σs,xx − εxxEs ≤ 0 (16a)

σs,yy − εyyEs ≤ 0 (16b)

The relations above create a link between the strains
and the reinforcement stresses. So in order for the
reinforcement to be activated, positive strains are
required.

From the plane strains, principal strains can be
found in the following way:

Cε = 1/2(εxx + εyy) (17a)

Rε =
√

1/2(εxx − εyy)2 + ε2
xy (17b)

ε1 = Cε + Rε (17c)

where ε1 is the transverse strain. Equation (17b) is
equivalent to a second-order cone and can therefore
be cast in a convex form. Hereby the transverse strain
is available for the implementation.

The concrete stresses should abide by the Modified
Mohr-Coulomb yield criterion:

σ1 ≤ 0 (18a)

kσ1 − σ3 ≤ ν(ε1)fc (18b)

where σ1, and σ3 are the largest and smallest princi-
pal stress, respectively, and k is the frictional parameter
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usually taken as 4. Equation (18a) describes the separa-
tion criterion meaning that no concrete tensile strength
is considered, and equation (18b) describes the friction
criterion. The compressive strength is now a function
of the transverse strain via the effectiveness factor.
For the proposed yield surface to be convex, the lin-
ear approximation of the strain-dependent part of the
effectiveness factor, equation (11), is used. The Modi-
fied Mohr-Coulomb yield criterion is implemented in
the usual manner.

The reinforcement stresses are restricted by simple
uni-axial bounds:

0 ≤ σs,xx ≤ fs (19a)

0 ≤ σs,yy ≤ fs (19b)

where fs is the strength of the reinforcement. With
this the effective rigid-plastic reinforced concrete yield
surface is presented.

Figure 8 shows the yield surface generated for the
material parameters of Table 1 and with the slope
parameter a in equation (11) of 67, which is equivalent
to a straight line rendering the same value as expres-
sion (10) at a transverse strain equal to the yield strain
of the reinforcement. The surface is colored after the
distance to the UE yield surface shown in Figure 7.
The rigid-plastic yield surface generally has the same
shape as the UE yield surface, however, as can be seen
from the red coloring, the rigid-plastic yield surface is
generally less conservative. Figure 9 shows the yield
surface with a slope parameter of 187, which is equiv-
alent to a reduction from Expression (10) of 10‰, but
at the yielding strain of the reinforcement. This figure
is equivalent to the lower envelope and is colored by
the distance to the LE yield surface.Again the approxi-
mation is quite good. However, there are still areas that
are non-conservative with respect to the elasto-plastic
yield surface. Nevertheless, this is expected since the
non-convex parts can not be accurately captured in a
convex approximation.

Figure 8. Effective rigid-plastic yield surface with a= 67.

Figure 9. Effective rigid-plastic yield surface with a= 187.

5 EXAMPLE: REINFORCED CONCRETE
PANEL IN SHEAR WITH AND WITHOUT
NORMAL FORCE

The effective yield surface is tested on some experi-
ments of reinforced concrete panels. The reinforced
concrete panel experiments have been collected by
Hoang, Jacobsen, & Larsen (2012). However, a mod-
ified version of the database by Brask & Xuan (2019)
is used. The modified database omitted panels that
experienced local failure or failure in the experimental
setup.

The setup of the panel experiments varies. However,
they all seek to emulate a reinforced concrete panel
with a concrete stress state in pure shear or shear with
biaxial compression or tension.The idealized model in
FELA can be seen in Figure 10. The database consists
of 72 specimens, with 60 panels in pure shear, 5 in
shear with biaxial tension, and 7 with shear and biaxial
compression. The biaxial compression and tension are
included as a fraction κ of the shear. Of the 72-panels,
roughly half (N = 34) is isotropically reinforced. The

Figure 10. Reinforced concrete panel with shear and normal
load.
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Figure 11. Capacity comparison with reinforced concrete panel experiments.

material parameters for the tests vary, and all the details
will not be given here, but they can be found in Brask
& Xuan (2019).

The FELA calculations are performed using two
yield surfaces. First the rigid-plastic reinforced con-
crete yield yield surface, where the effectiveness factor
is simply 1.0 everywhere (Figure 3), and secondly the
effective yield surface with a maximum transverse ten-
sile strain of ε1,max= 10‰, where the effectiveness
factor can vary from 1.0 (Figure 9). The yield surfaces
use the material parameters of the specimen and will
therefore not be exactly equal to the ones presented
so far.

Figure 11 shows a comparison between the exper-
imental capacity τexp on the ordinate and the capac-
ity found from the FELA calculations τFELA on
the abscissa. The specimens have different markers
depending on the loading scenario. The plots also
shows a thick line corresponding to τexp= τFELA, and
two additional lines on either side corresponding to
a 5% and 10% deviation. Observations to the right
of the thick line will have an overestimated capacity
and opposite for points to the left. Furthermore, the
plot also shows the basic statistics of the capacity ratio
τexp/τFELA, where a mean value close to 1 and a low
standard deviation would indicate a good fit between
the experimental and calculated capacity.

The rigid-plastic reinforced concrete yield gener-
ally overestimates the capacity with several data points
way outside the 10% deviation line. The result using
the effective yield surface is much improved. Almost
all the worst outliers are now within the 10% deviation
line, and the mean value of the capacity ratio went from
0.925 to 0.982, while the standard deviation has gone
down, which indicates that the effective yield surface
works well on a material point level. However, one
thing to consider is which values of ε1,max and the cal-
ibration parameters c1, c2, and c3 from equation (10),

are used to find the slope parameter a. Since the slope
parameter is what defines how much the yield surface
is reduced.

6 EXAMPLE: DEEP BEAM WITH HOLES

The previous example showed the behavior of the
effective yield surface when compared to experiments
performed on reinforced concrete panels. Here the
effective yield surface improved the scatter of the
results. However, the FELA calculations of those
experiments yield a constant stress state over the entire
model, and therefore it is also desirable to see the effect
on an example with a complicated stress distribution.
Therefore, an example for a reinforced concrete deep
beam with holes is considered.

A sketch of the beam can be seen in Figure 12. The
beam is thicker at the top and the bottom, with the

Figure 12. Reinforced concrete deep beam with holes.
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Figure 13. Smallest principal concrete stress for the rigid-plastic reinforced concrete yield surface (left), and the effective
yield surface with a= 187 (right).

Figure 14. failure mode of the model for the rigid-plastic reinforced concrete yield surface (left), and the effective yield
surface with a= 187 (right).

top and bottom flanges being three times the thick-
ness of the rest of the beam. The material parameters
are the same as listed in Table 1, except for the thick-
ness and the reinforcement ratio. These vary between
the web and the flanges. The vertical reinforcement
in the flanges is chosen to correspond to the ratio
between the thickness of the flanges and the web. Fur-
thermore, horizontal bending reinforcement is added
to the bottom flange.

The model is supported vertically at the left end
with a support width of 300 mm, and with a symmetry
boundary condition on the section at the right-hand
side. The loading consists of a distributed load of λp
on the top face and λp/4 on the bottom face.

For the calculations, an unstructured mesh with
an element side length of 25 mm is used, which
corresponds to 17160 elements.

The resulting load factor λ is 0.455 using the Rigid-
plastic reinforced concrete yield surface and 0.415
using the effective yield surface, which corresponds
to p= 273 kN/m and p= 249 kN/m, respectively.The
capacity is thus reduced by 9% when the effective yield
surface is used.

Figure 13 shows the value of the smallest prin-
cipal concrete stress for the model using the rigid-
plastic reinforced concrete and effective yield sur-
faces, respectively. A clear difference between the
layout of the compressive stresses is visible. For the

rigid-plastic reinforced concrete yield surface, the
compression is carried through struts with more or
less constant spread and stresses close to fc, whereas
the struts are more diffused in the example with the
effective yield surface. This effect is especially visible
between the first and the second window when count-
ing from the right, where the strut for the effective yield
surface looks like a typical bulging strut, and as such,
also has a decreased effective compressive strength.

A comparison of the failure mode using the two
different yield surfaces can be seen in Figure 14. The
failure mode for the model using the rigid-plastic rein-
forced concrete yield surface is a combination of a
bending and shear failure, whereas the failure mode
is much more localized when using the effective yield
surface.

7 CONCLUSION

The yield surface of a plane reinforced concrete mate-
rial point considering the effect of transverse tension
on the effective compressive strength has been exam-
ined with the goal of developing a convex yield surface
for use in Finite Element LimitAnalysis (FELA). First,
a strain-based elasto-plastic model was developed uti-
lizing an expression for the effectiveness factor similar
to the one given in the fib model code. Secondly, a

541



stress-based convex effective yield surface was devel-
oped. The yield surface limits the effective concrete
compressive strength by introducing strains linked to
the reinforcement stresses on a material point level.
The convex yield surface applied a linearized approx-
imation of the effectiveness factor expression. The
convex effective yield surface was compared to the
elasto-plastic yield surface and was found to be a
good approximation. After that, two examples were
shown utilizing the effective yield surface compared
to the rigid-plastic reinforced concrete yield surface
where the effective compressive strength is not con-
sidered. The first example used a test database of
reinforced concrete panels. The panels were subjected
to shear stresses with and without biaxial compres-
sion or tension. The effective yield surface improved
the predicted failure load compared to the experimen-
tal failure load, which indicates that the effective yield
surface works well on a material point level. The sec-
ond example was of a reinforced concrete deep beam
with holes. Here the use of the effective yield surface
reduced the capacity of the beam by 9%, and a dif-
ference in the stress flow and failure mode was seen,
which indicates that the effective yield surface also
works well on a structural level.
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ABSTRACT: According to the design codes, the concrete cover is simply selected based on the predefined
exposure classes. This implies a thicker concrete cover if moisture or chloride is expected to attack the concrete.
However, a thicker concrete cover will result in larger cracks assuming the same area of reinforcement and
dimensions of the reinforced concrete (RC) structure, or the area of reinforcement has to be increased. Considering
chloride ingress as observed in marine environment, the ion transport is significantly affected by the crack pattern,
which is characterized by a remarkable degree of uncertainty. In the scope of this work, by considering aleatory
and epistemic uncertainties, an optimal concrete cover is determined using a multiphysics finite element model
(FE). Since usually a large number of realization is needed, which will result in high computation time of a fully
coupled multiphysical FE model, two subproblems are solved. The first FE model simulates tensile cracking of a
concrete beam under mechanical loading, and the second FE model computes the coupled moisture and chloride
transport within the cracked unsaturated concrete. Additionally, the enhanced diffusion of cracked concrete is
accounted for by adjusting the diffusion coefficients of moisture and chloride. In this concept, the uncertainty
of the design parameter (concrete cover) is quantified by an interval. This uncertain parameter and uncertain
structural actions lead to polymorphic uncertain prognoses of cracks and subsequently to a polymorphic uncertain
prediction of corrosion initiation. In conclusion, within the framework of this work, the crack induced corrosion
initiation time will be maximized by optimizing the concrete cover.

1 INTRODUCTION

Corrosion of reinforcing steel is one of the most com-
mon damage mechanisms of reinforced concrete and
can significantly affect the safety and serviceability
of the structure. Therefore, predicting chloride ingress
into concrete is critical to accurately determine the
service life of structures. Over the past few decades,
extensive research has been conducted to investigate
the transport properties of concrete.A major drawback
of some models is the formulation based on perfect lab-
oratory condition for uncracked concretes (eg. Pack et
al. 2010; Song et al. 2008; Wang et al. 2005; Zhang
& Gjorv O.E. 1996). In reality, however, cracks in
concrete are unavoidable. For example, the choice
of reinforcement position can have a decisive influ-
ence on concrete cracking. According to the design
rules, the concrete cover is selected based on prede-
fined exposure classes. Respectively, for a structure in
marine environment, it is recommended to place the
reinforcement deeper into the concrete, thus increas-
ing the transport path to the reinforcement. However,
greater concrete cover will lead to cracks, which may
act as flow channels for chlorides, thus accelerating

chloride penetration and the onset of corrosion (Djerbi
et al. 2008 and Rodriguez 2001).

In this paper, considering aleatory and epistemic
uncertainties, an optimal concrete cover is determined
using finite element (FE) models. For durability-
oriented design the consideration of aleatoric and epis-
temic uncertainties enables probabilistic lifetime prog-
noses, substituting classical safety factors. Aleatory
uncertainty is characterized by a known variabil-
ity and can be modeled by stochastic distributions,
while epistemic uncertainty is quantified by a lack of
knowledge and therefore can be modeled by unver-
vals or fuzzy numbers (Möller & Beer 2008). In
the framework of this paper, the uncertainty of the
design parameter (concrete cover) is quantified by an
interval. Additionally, the uncertainties of the mesh
topology are considered by running the model with
different meshes. The analysis of a model with uncer-
tainty parameters usually requires a large number of
realizations. Since this leads to a high computation
time for a fully coupled FE model, two subprob-
lems are solved sequentially. In the first FE simula-
tion concrete tensile cracking is simulated with the
help of cohesive zero thickness interface elements
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(Snozzi & Molinari 2012), while for steel reinforce-
ment a discrete representation is applied. The interac-
tion between concrete and steel is taken into account by
a contact-based tying algorithm using bond-slip char-
acteristics (Gall et al. 2018).The second FE simulation
computes the moisture transport within the cracked
concrete, whereby coupled transport of moisture and
chloride in unsaturated concrete is considered Samson
& Marchand (2007). Additionally, the enhanced diffu-
sion of cracked concrete is accounted for by adjusting
the diffusion coefficients of moisture and chloride
Zhang et al. (2017). To further reduce the computa-
tion time for solving the optimization problem, the
FE simulation models are approximated by artificial
neural network surrogate models.

2 MATERIAL MODEL FOR REINFORCED
CONCRETE

In order to assess the influence of cracks in reinforced
concrete on the corrosion initiation of reinforcement,
the crack pattern should first be determined as accu-
rately as possible using finite element simulation. To
model propagating cracks, a discrete crack finite ele-
ment model (Carol et al. 2001; Ortiz & Pandolfi
1999 and Snozzi & Molinari 2012) is utilized. This
model is characterized by cohesive zero-thickness
interface elements, which are inserted between small-
strain linear-elastic triangular finite elements (i.e. bulk
elements). The fracture behavior of plain concrete is
modeled by a nonlinear traction-separation law of the
interface elements. The cohesive traction acting on the
interface element is evaluated as follows (Gudzulic &
Meschke 2021, Snozzi et al. 2012)

t= t(α)

ũmax
Ki

⎡

⎢⎢⎢⎢⎢
⎣

||u||n
β2

κ
||u||t

β2

κ
||u||s

⎤

⎥⎥⎥⎥⎥
⎦
= (1− d) Ki

⎡

⎢⎢⎢⎢⎢
⎣

||u||n
β2

κ
||u||t

β2

κ
||u||s

⎤

⎥⎥⎥⎥⎥
⎦

,(1)

where d is the scalar damage variable and Ki is the
initial stiffness. The loading criterion is defined as a
function of the displacement

f (ũ,α)= ũ− u0 − α≤ 0, (2)

where u0 corresponds to the limit state of the elastic
interface with a tensile strength fct and is defined as

u0= fct

Ki
, (3)

and ũ is the effective separation and defined as

ũ=
√

||u||2n +
β2

κ2
||u||2t +

β2

κ2
||u||2s . (4)

In Eq. (4), ||u||n, ||u||t , ||u||s are the normal and
tangential components (local x-, y- and z- direction
respectively) of the displacement jump ||u|| across the
element. The two mixed mode parameters β and κ
represent the ratio between shear and tensile strength
(Eq. (5)) and the ratio between mode II and mode I
fracture energy as in Eq. (6), respectively (Gudzulic &
Meschke 2021, Snozzi et al. 2012).

β = fcs

fct
(5)

κ = Gf ,II

Gf ,I
(6)

In Eq. (2),α is the internal parameter defining the max-
imum value of the effective separation appeared during
the loading history

α=〈ũmax − u0〉, (7)

where ũ is always positive, regardless of the sign of u
(see Eq. (4)).
Considering exponential softening for plain concrete
according to Karihaloo (1995), the traction-separation
relationship is defined as

t(α)= fct exp (− α fct

Gf
), (8)

from which the scalar damage variable, as used in
Eq. (1) can be derived as

d(α)= 1− t(α)

Ki α
. (9)

The Reinforcement is accounted for by a discretization-
independent embedded rebar model with geomet-
rically linear truss elements. The steel proper-
ties are considered with an elasto-plastic mate-
rial behavior using the v. Mises yield criterion
with linear hardening. The interaction between
rebar and concrete is established with a bond-
slip-law according to the fib Model Code 1990
(International Federation for Structural Concrete) .The
internal force contribution of the rebar slip with respect
to the bulk matrix is penalized to enforce a displace-
ment constraint between the rebar and the concrete
bulk (Gall et al. 2018). In the fib Model Code, the
bond stress τb between concrete and rebar is formu-
lated for monotonic loading as a function of the relative
displacement s (see Figure 1 and Eq. (10)).

τb=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

τmax

(
s

s1

)α
0≤ s≤ s1

τmax s1≤ s≤ s2

τmax − (τmax − τf )
(

s− s2

s3 − s2

)
s2≤ s≤ s3

τf s3< s
(10)
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Figure 1. Schematic representation of the analytical bond
stress-slip relation according to fib Model Code.

3 MASS TRANSPORT MODEL

The development of moisture content and ion con-
centration within cracks should be taken into account
when estimating the service life of concrete structures.
Using a second FE simulation, the coupled moisture
and chloride transport within an unsaturated cracked
concrete is modeled.

3.1 Moisture transport model for unsaturated,
uncracked concrete

Assuming that the transport process takes place in a
fully hardened concrete, the moisture transport can be
described by the volume fraction of pore water in the
concrete using Richards’ equation (Ozbolt et al. 2010)

∂θ

∂t
− ∂
∂x

(
Dθ
∂θ

∂x

)= 0, (11)

where t is the time [s] and θ (t, x) is the fractional
volume of water content [m3 water per m3 con-
crete] whose maximum possible value is the concrete
porosity, i.e. θ ∈ [0,φ]. Dθ in Eq. (11) represents the
moisture diffusion coefficient [m2/s]

Dθ = K(θ )
∂ θ
∂ h

, (12)

where h is the pressure head and K(θ ) is the hydraulic
conductivity written as

K(θ )=Kr(θ ) Ks. (13)

In Eq. (13) Kr , represents the relative hydraulic con-
ductivity, while Ks is the hydraulic conductivity for
a fully saturated and undamaged porous medium.
According to Van Genuchten (1980) the relative
hydraulic conductivity is computed as

Kr(θ )= Se
l [1− (1− θ 1

m )m], (14)

where Se is the normalized moisture content

Se= θ − θr
θs − θr , (15)

and θs and θr are the moisture content corresponding
to the fully saturated and the dry state, respectively. In
Eq. 14, l, α and m are material dependent parameters.

3.2 Modification of moisture transport model for
cracked concrete

Cracks in concrete accelerate the moisture transport.
Therefore, the crack pattern should be included in the
transport equation. Ozbolt et al. (2010) argued that the
relative increase in water diffusivity corresponds to the
relative increase in water conductivity of the concrete,
and therefore the hydraulic conductivity is written as

K(θ )=Kr(θ ) Ks Kcr(wcr), (16)

where Kcr(wcr) is the normalized conductivity coeffi-
cient, which is obtained by dividing the conductivity
coefficient corresponding to cracked concrete by that
of the uncracked.

3.3 Transport of chloride ions in unsaturated
uncracked concrete

In unsaturated porous materials, the transport of chlo-
ride ions occurs as a combination of diffusion and
advection. As explained in Bear & Bachmat (1991),
the transport process of ions is modeled by averaging
the extended Nernst-Planck equation with an advec-
tion term over a Representative Elementary Volume
(REV) and leads to the following transport equation

∂(θ c)

∂t
− ∂
∂x

(
θ Dc
∂c

∂x︸ ︷︷ ︸
diffusion

+ c Dθ
∂θ

∂x︸ ︷︷ ︸
advection

)
= 0, (17)

where c is the chloride concentration of the species
in solution [mmol/L], and Dc the chloride diffusion
coefficient [m2/s]. According to Samson & Marchand
(2007), Dc is expressed as

Dc= τD0
( θ7/3

φ7/3

)
, (18)

where τ [–] andφ [m3/m3] are the tortuosity and poros-
ity, respectively. D0 describes the diffusion coefficient
in freewater for chloride ions [m2/s]. The term τD0

in Eq. (18) represents the diffusion coefficient for a
saturated material. However, to take the reduction of
diffusion properties due to the volume decrease of the
aqueous phase into account, the term in parenthesis in
Eq. (18) is needed and based on the power relationship
derived by Millington & Quirk (1961).
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3.4 Modification of chloride transport for cracked
concrete

Similar to moisture transport, the chloride transport is
accelerated through cracks in concrete. For this reason,
the chloride diffusion coefficient needs to be adjusted
for the cracked concrete.Accoring to Jang et al. (2011),
the relationship between crack width and diffusivity
of concrete is similar with an analogy to the relation-
ship between diffusion and pore structure of hardened
cement paste. Therefore, the diffusion coefficient in a
single crack is defined as

Dc,cr =βcrD0, (19)

where βcr is the “crack geometry factor”ž account-
ing for tortuousness, connectivity and constrictivity of
the crack path perpendicular to the flow direction. To
account for crack width, Zhang et al. (2017) expanded
Eq. (19) as:

Dc,cr=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dc wcr ≤w1

Dc +D0

2
+ D0 −Dc

2
sin (α) w1<wcr≤w2

D0 wcr ≥w2

(20)

with α= π

w2 − w1

(
wcr − w2 + w1

2

)
,

where w1 and w2 are threshold values of the crack
width in the concrete.According to Zhang et al. (2017),
Akhavan (2012) and Djerbi et al. (2008), it can be
assumed that up to a minimal crack width of w1, the
transport is equal to that in the uncracked state, and
above a maximal crack width of w2, the transport is
equal to that in the fully cracked concrete (see Figure 2)

Figure 2. Schematic representation of the relationship
between crack width (wcr) and chloride diffusion coefficient
within a crack (Dcr).

4 VALIDATION OF THE PROPOSED
MODELING CONCEPT

The two FE models described in the previous sections
are validated separately. The two FE models described
in the previous sections are first validated separately

from each other. Afterwards, the coupling of the two
models, which is influenced by the mesh topology of
the mechanical model, is explained.

4.1 Validation of the proposed material model

In order to investigate the admissibility of the fracture
process of the described reinforced concrete model, a
flexural test was simulated as performed experimen-
tally by Suchorzewski et al. (2018). The test setup is
presented in Figure 3 and the material properties are
listed in Tables 1 and 2. In the experiment as well as in
the finite element simulation the reinforced concrete
beam failed in bending by reinforcement yielding (Fig-
ure 4). Moreover, it can be observed that the proposed
finite element model determines the crack pattern with
sufficient accuracy (see Figure 5).

Figure 3. Experimental setup of the reinforced concrete
beam under four-point bending according to Suchorzewski
et al. (2018).

Table 1. Material properties of concrete C 45/55 for the
mechanical model.

Property Value Unit

Young’s modulus E 34000 N/mm2

Poisson’s ratio ν 0.2 -
Tensile strength fct 3.2 N/mm2

Compressive strength fcm 60 N/mm2

Fracture energy Gf 0.12 N/mm

Table 2. Material properties of steel B500 for the mechan-
ical model.

Property Value Unit

Young’s modulus E 205000 N/mm2

Yield stress σys 560 N/mm2

Area A 2ø20 mm2

4.2 Validation of the proposed transport model

To verify the accuracy of the proposed approach
to model mass transport in uncracked and cracked
concrete, a chloride ion transport as performed by Sah-
maran (2007) has been simulated. The experimental
setup is illustrated in Figure 6 and the diffusion prop-
erties of the concrete beam are provided in Table 3
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Figure 4. Comparison of experimental data reported by
Suchorzewski et al. (2018) and the results of the proposed
numerical model.

according to Zhang et al. (2017). In the experiment per-
formed by Sahmaran (2007), the cracked surface of the
concrete beam was exposed to a chloride concentration
of 0.51% by weight (wt.) of cement (CMT) solution
for 30 days. Subsequently, the chloride concentration
was measured over the depth of the beam for different
crack widths. Figure 7 presents the penetration depth

Figure 5. Comparison of the crack pattern evolution of the experiment according to Suchorzewski et al. (2018) (top) and the
proposed numerical model (bottom) for the vertical force of a) P= 60 kN and b) P= 90 kN.

of chloride concentration after 30 days in the exper-
iment and in the numerical model for different crack
width. It can be observed that the proposed numerical
model gives quite satisfying results for the uncracked
concrete sample as well as for the two cracked concrete
samples.

Figure 6. Locations of the sampling for chloride profiling
Sahmaran (2007).

Table 3. Chloride diffusion properties of the concrete beam.

Property Value Unit

Diff. coef. in freewater D0 2 · 10−9 m2/s
Diff. coef. in concrete Dc 2.34 · 10−11 m2/s
Threshold values w1 0.03 mm

w2 0.12 mm
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Figure 7. Comparison of experimental data reported by
Sahmaran (2007), the numerical data presented by Zhang
et al. (2017) and the results of the proposed numerical model
for a crack width of 0 mm, 49 mm and 102 mm.

4.3 Combining the mechanical model and the mass
transport model

To ensure that the concrete properties from the
mechanical model correspond to those within the
transport model, a direct correlation between the
mechanical and the transport model is necessary.
According to experiments (eg. Chindaprasirt et al.
2009, Lian et al. 2011 and Stroeven 2000) the rela-
tionship between porosity and concrete strength can
be formulated as

φ=
ln (

fcm

231.44
)

−9
, (21)

and additionally,the porosity correlation to the con-
crete tortuosity as

τ = 1
3
2 − 1

2 · φ
. (22)

Furthermore, to determine the initiation time, the deci-
sive crack is determined from the mechanical model
and its crack geometry (crack width and crack depth)
is passed to the transport model as input parame-
ters. However, the use of cohesive interface elements
allows cracks to propagate only across the bound-
aries between solid finite elements. In other words,
the topology of the mesh forces the cracks to follow
paths that generally require more energy per unit crack
extension (larger driving forces) than the paths they
would follow in the original continuum. This means
that the crack geometry is mesh dependent and by pass-
ing it to the transport model, the initiation time will
also dependent on the FE mesh. To determine the rela-
tionship between mesh topology and initiation time,
a mesh analysis was performed based on the exam-
ple from the previous section with a concrete cover of

cnom= 50 mm, using ten different FE meshes with the
same element size (15 mm). For the mesh analysis, the
amount of reinforcement and the material properties
of the reinforced concrete are taken from Table 1 and
2. In addition,Table 4 and 5 summarize the parameters
utilized within the transport model. These parameters
are based on purely experimental boundary conditions
and imply that the dry reinforced concrete beam is con-
stantly exposed to very high humidity and an extremely
salty atmosphere.At this point, it should be mentioned,
that for the determination of the Initiation time only the
range of the service load (P= 30± 10 kN according
to the design rules) is relevant. Moreover, a maximum
value of 0.6 % by weight of cement at the reinforce-
ment was defined as the end of the initiation time
(Gehlen 2000).

Table 4. Properties of concrete for the moisture transport.

Property Value Unit

Degree of saturation Se 0.2 (dry) %
Porosity φ 0.15 −
Tortuosity τ 0.70 −
Relative humidity RH 82 %
Initial moisture content θ (0) 0.077 mm3/mm3

Table 5. Properties of concrete for the chloride ion trans-
port.

Property Value Unit

Diff. coef. in freewater D0 2 · 10−9 m2/s
Initial chloride content c(0) 0.0 % by wt. of CMT
Chloride exposure c(t) 1.88 1 % by wt. of CMT
Threshold values w1 0.03 2 mm

w2 0.08 2 mm

1 (Gehlen 2000), 2 (Djerbi et al. 2008)

For a better illustration of the results, only the band-
width obtained by the ten meshes, i.e. the upper (solid
line) and lower bounds (dotted line) are shown in Fig-
ure 8 to 10. Figure 8 presents the load-displacement
curve for the range of the expected service load. Here,
when the first crack propagates, the curve of the upper
bound mesh is only slightly above the lower bound
one. Thus, if one considers the overall mechanical
model, based on the load-displacement curve, one
may assume that the mesh geometry has almost no
influence. However, if the macroscopic level is exam-
ined, the crack geometry strongly dependence on the
mesh topology as it can be seen in Figure 9. This
graph depicts the evolution of the maximum crack
width wcr of the beam for an increasing load P. Due
to the later cracking of the upper bound mesh, the
curve is shifted to the right with regard to the lower
limit mesh. This leads to the fact that, for instance,
the lower bound mesh reaches a maximal crack width
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Figure 8. Load-displacement curve for results of different
FE-meshes for a concrete cover of cnom= 50 mm.

Figure 9. Crack evolution computed by different
FE-meshes for a concrete cover of cnom= 50 mm.

of wcr,l = 0.16 mm at a load of P= 31 kN, while the
maximal crack width for the upper bound is barely
wcr,u= 0.03 mm for the same load.
In Figure 10, the initiation time is plotted as a function
of the load. Until the first crack (wcr <w1) develops,
the initiation time is constant and equal for all meshes,
because here the initiation time only depends on the
transport model. Then, the curve of the initiation time
has a sharp drop until the cracks are large enough
(wcr >w2 up to the reinforcement) that freewater trans-
port in the crack can be assumed. Here again, for large
cracks, the initiation time only depends on the trans-
port model. It is also worth mentioning once again that,
since the cracks in the upper bound mesh develop at a
higher load, the drop of the initiation time occurs at a
higher load compared to the lower bound mesh.
In Figure 11 the initiation time t is plotted as a func-
tion of the concrete cover cnom for different values of
the load P. It can be noted that, regardless of the mesh
topology and the load P, the curve of the initiation
time follows the path of the uncracked concrete until
the first crack (wcr <w1) appears at a certain concrete

Figure 10. Band width of initiation time computed by
different FE-meshes for a concrete cover of cnom= 50 mm.

cover. Then the curve drops and follows the path of
the completely cracked concrete (wcr >w2 assump-
tion of free-water transport up to the reinforcement).
In between this extrema the ignition time is depending
on the mesh topology which can be seen as ranges in
Figure 11.

Figure 11. Initiation time over the concrete cover for
different loads.

At this point it can be summarized, that the mesh
topology has an influence to the initiation time. How-
ever, it should be noted that for all investigated load
levels, one out of the ten meshes yields the lower bound
results and one out of the ten meshes yields the upper
bound results.The eight other tested meshes are within
the bandwidth. This means, that the mesh topology
uncertainty is considered as an interval by evaluating
the corresponding lower bound mesh and the upper
bound mesh in further computations.

The FE simulations performed by the two lower and
upper bound meshes are replaced by two artificial neu-
ral networks with feed forward architecture to speed
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up the computation time for further investigations, i.e.
uncertainty quantification and durability optimization.
For each mesh, an ANN with two inputs (cnom) and P),
10 hidden neurons and one output neuron t is sufficient
to approximate the FE simulations with an accuracy of
R= 0.998.

5 DESIGN MODEL WITH CONSIDERATION
OF POLYMORPHIC UNCERTAINTY

After the models have been validated in the previous
section, now the optimal concrete cover of a reinforced
concrete structure with respect to a maximal corrosion
initiation time is investigated. The maximal initializa-
tion time is determined for the previously validated
reinforced concrete beam (see Figure 3) with the same
material parameters (see Table 1 and 2 for the mate-
rial model and Table 4 and 5 for the transport model,
respectively) by optimizing the concrete cover cnom. In
addition to the mesh uncertainty modeled as an inter-
val, the load is assumed as a normal distributed random
variable (stochastic a priori parameter) with different
mean values investigated in a range of [20; 40] kN and
a fixed standard deviation σ (P)= 1000 kN. Two opti-
mization problems are formulated, where the concrete
cover has to be optimized. For Problem 1, the concrete
cover is modeled as a deterministic design variable and
for Problem 2 as an interval design parameter with
an interval radius of rcnom= 5mm and interval mid-
point to be optimized. The objective is to maximize
the mean value of corrosion initiation time and can be
formulated as

max : ẑ=µ (t (cnom, P))

s.t. : cnom ∈ [20; 100]
, (23)

for Problem 1 and

max : ẑ= lµ (t (cnom, P))

s.t. : mcnom ∈ [25; 95]
, (24)

for Problem 2. For the optimization, the Particle
Swarm Optimization (PSO) Kennedy & Eberhart.
(1995) is applied with an extension to consider
aleatory and epistemic uncertainty Edler et al. (2019).

In Figure 12 and Figure 13, the optimized concrete
cover c∗nom and the corresponding mean value of the ini-
tiation time µ(t)∗ are shown for different mean values
of the load are shown for Problem 1. With increas-
ing mean value of the load, the optimized value of the
concrete cover for both, upper and lower bound mesh,
decreases until a value of c∗nom= 41.5 mm is reached
at µ(P)= 30.75 kN for the lower bound and c∗nom=
41.6 mm at µ(P)= 32.50 kN for the upper bound,
respectively. With further increase of the mean value
of the load, the optimized concrete cover increases
again. The jump from small optimal concrete covers
at loads around µ(P)= 30 kN to the maximal possi-
ble concrete cover of cnom= 100 mm can be explained
by the fact, that for higher loads, the crack width wcr

exceeds the threshold value of w2= 0.08 mm, for all
concrete covers within the design space. This means
that in this case, the optimal concrete cover is equal to
the longest distance from the concrete surface to the
reinforcement.

It can be observed, that the mesh topology has an
influence on the optimized concrete cover as well.
For instance, due to the uncertain mesh topology,
for a mean value of the load of µ(P)= 30 kN the
optimized concrete cover is in the range of c∗nom=
[44.1, 50.9] mm and the mean value of the correspond-
ing initiation time is in the range of µ(t)∗ = [0.8, 1.2]
years, as can be seen in Figure 13. This small range is
acceptable and can be taken as the interval width for
the optimum.

Figure 12. Optimized concrete cover c∗nom for different mean
values of the load µ(P) using the upper and lower bound
meshes.

Figure 13. Mean value of the initiation time µ(t)∗ for dif-
ferent the mean values of the load µ(P) using the upper and
lower bound meshes.

In Figure 14 and Figure 15, the optimized midpoint
of the concrete cover mc∗nom and the corresponding
worst case mean value of the initiation time lµ(t)∗
are shown for different mean values of the load, for
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Problem 2. It can bee seen, that the optimized mid-
point of the concrete cover does not significantly
differ from the optimized concrete cover of Problem
1 (cf. Figure 12 and Figure 14), while the worst case
of the mean value of initiation time is smaller com-
pared to Problem 1 for all mean values of the load
(cf. Figure 13 and Figure 15). For instance, µ(P)=
30 kN, the optimized concrete cover is in the range
of mcnom= [43.2, 50.1] mm and the mean value of
the corresponding initiation time is in the range of
lµ(t)∗ = [0.65, 0.93] years.

Figure 14. Optimized midpoint of the concrete cover mc∗nom
over the mean value of the load µ(P) for an interval radius of
5 mm.

Figure 15. Worst case mean value of the initiation time
lµ(t)∗ over the mean value of the load µ(P).

6 CONCLUSION

Within this paper, two FE models, one simulating
the tensile cracking of concrete structures and the
other one computing the coupled moisture and chlo-
ride transport within the cracked unsaturated concrete,

have been introduced and validated using experimen-
tal data. Within a mesh study of the structural model
it has been figured out, that the crack pattern and
consequently also corrosion initiation time of the rein-
forcement is influenced by the mesh topology. The
uncertainty resulting from the mesh topology has
been taken into account as an interval by evaluating
the corresponding lower bound mesh and the upper
bound mesh for the durability optimization of a simple
reinforced concrete beam. For maximizing the corro-
sion initiation time of the reinforcement, the concrete
cover has been optimized in two different optimization
problems considering a stochastic load.

The results of both optimization problems have
shown, that the uncertain mesh topology has an influ-
ence on the optimization by resulting in a range of
the optimal concrete cover and corresponding initia-
tion time. For small as well as for high mean values
of the load, the optimized concrete cover is the maxi-
mal value of the design space, because in these cases,
the optimum is driven only by the transport model.
More precisely, if the transport distance is larger, the
initiation time is longer in case of very small cracks
(wcr <w1) or very large cracks (wcr >w2). For mean
values of the load between µ(P)= 22 kN and µ(P)=
34 kN, the initiation time is driven by two counter-
acting mechanisms. On the one hand, it makes sense
to choose a higher concrete cover to maximize the
transport distance for chlorides to the reinforcement,
but on the other hand, a higher concrete cover leads
to higher crack width, which increases the transport
velocity of the chloride ions. Therefore, a balance
between these two mechanisms is found as a result
of the optimization.

In future works, the distribution of the results is
investigated using random fields. It will be analyzed, if
the uncertainty resulting from different mesh topology
can be reduced by applying random fields.
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ABSTRACT: Reinforced concrete structures must be designed to withstand extreme-case scenarios such as
fires. Structural engineers are interested to analyze the behavior of reinforced concrete structures subjected to
a combination of mechanical loads and elevated temperatures. In the present study, an engineering mechanics
approach is used to describe the structural behavior of a segment of a subway station subjected to regular service
loads and a moderate fire. This approach combines fundamental concepts of thermo-elasto-mechanics with
beam analysis software. The three-dimensional reinforced concrete structure is idealized as a frame consisting
of straight beams. The rectangular columns are transformed into cylindrical ones with equivalent extensional
stiffness. The obtained temperature changes of the structural elements are used to quantify thermal eigenstrains.
The latter are decomposed into three parts: an eigenstretch and an eigencurvature of the axis of the structural
element, as well as an eigenwarping of its cross-sections. Beam analysis software is used to study the load
carrying behavior of the frame structure subjected to mechanical loads as well as to thermal eigenstretches
and eigencurvatures of all structural elements. The obtained axial forces and bending moments result in axial
stresses which are linear across the cross-sections. The latter remain plane even under combined mechanical
and thermal loading. This activates self-equilibrated thermal eigenstresses which are spatially nonlinear across
the cross-sections. Total axial stresses are obtained from adding the thermal eigenstresses to the axial stresses
quantified based on the axial forces and bending moments. The total stresses agree well with the results of a
three-dimensional thermo-elastic Finite Element simulation. It is concluded that the subdivision of the developed
engineering mechanics approach into a sequence of several smaller problems allows for relating causes to effects
in a clear and insightful fashion, such as appreciated by structural engineers.

1 INTRODUCTION

Reinforced concrete is the most commonly used and
one of the most intensively investigated construc-
tion materials in the world. Structural engineers are
interested in the load-carrying behavior of reinforced
concrete structures. The development of appropri-
ate models that reliably and efficiently predict their
behavior when subjected to a combination of elevated
temperatures and mechanical loads, however, remains
a challenge.

Investigations in this area can be separated into two
main fields of research, which are very often found in
combination with each other: experimental investiga-
tions based on large-scale tests, and numerical simu-
lations. The latter address either the full complexity of
a full-scale test, or a simplified subproblem referring
to a specific element of a structure. As regards experi-
mental campaigns, Vecchio & Sato (1990) performed
three large scale tests to reinforced concrete frames
subjected to a combination of mechanical loads and

controlled thermal loads specified at the inner sur-
face of the frame. Ring et al. (2014a) performed a
large-scale fire test on an underground concrete frame
structure, the results of which were used for the elab-
oration and validation of numerical Finite Element
simulations in (Ring et al. 2014b). Kamath et al. (2015)
conducted a full-scale fire test on a reinforced concrete
frame, which was first subjected to simulated seismic
damage to investigate the material behavior of rein-
forced concrete due to fire following an earthquake.
Recently, Lu et al. (2018) performed a large-scale fire
test on a segment of a subway station.

Regarding purely numerical simulations, thermo-
mechanical three-dimensional Finite Element (FE)
simulations have been performed in order to study
reinforced concrete beams (Albrifkani & Wang 2016;
Gao et al. 2013; Ozbolt et al. 2014; Sun et al. 2018;
Zha 2003) or columns (Bratina et al. 2005; Zha
2003) subjected to elevated temperatures. Diaz et al.
(2018) modeled, by means of three-dimensional FE
simulations, the structural behavior of an underground
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frame structure subjected to the first 30 minutes of
the fire test presented in (Lu et al. 2018), represen-
tative of a moderate fire scenario (Diaz et al. 2018).
Simplified methods have also been developed in order
to reduce the computational power required by com-
plex FE simulations that attempt to reproduce fire
scenarios. In this context, simple numerical models
have been developed to analyze the response of rein-
forced concrete frames (Vecchio 1987), the resistance
of reinforced beams (Choi and Shin 2011; Dwaikat &
Kodur 2008; Kodur & Dwaikat 2008) and of cylindri-
cal columns (Franssen & Dotreppe 2003). El-Fitiany
& Youssef (2017) presented a simplified method to
calculate internal compression forces and correspond-
ing moments for heated concrete structures that can
be easily applied using available commercial linear
structural analysis software to predict the fire per-
formance of reinforced concrete structures. El-Tayeb
et al. (2017) gave a more intuitive insight into the effect
of thermal loads on reinforced concrete structures by
separating the temperature distribution into a uniform,
a linear and a non-linear contribution, and described
the importance of the non-linear part, exclusive of
non-stationary thermal conditions. Wang et al. (2019)
further advanced this method by introducing a semi-
analytical solution which determines the non-linear
thermal stresses developed by concrete pavements due
to temperature changes on the top surface in non-
stationary thermal conditions. Finally, Schmid (2020)
extended this solution for concrete pavements with
temperature changes on both, the top and bottom
surface.

The present study attempts to describe the struc-
tural behavior of the segment of a subway station
presented in (Lu et al. 2018) subjected to a moder-
ate fire scenario, as described in (Diaz et al. 2018),
by means of an inexpensive, practice-oriented model
that combines the use of inexpensive beam models and
thermo-elasto-mechanics fundamentals. This simula-
tion is organized in five steps.The first one refers to the
idealization of the originally three-dimensional struc-
ture into a frame structure with one-dimensional beam
elements, where the Euler-Bernoulli beam theory is
applicable. In order to consider the reinforcement of
the structure and its mechanical properties, the ini-
tially non-uniform cross section is transformed into
an equivalent cross-section with uniform properties.
The second step refers to the solution of the non-
stationary heat conduction problem. The third step
refers to the quantification of the thermal stress contri-
butions, based on a thermo-elasto-mechanics analysis
and semi-analytical solutions of the heat conduction
problem. The fourth step refers to the use of beam
analysis software in order to predict the internal forces
resulting by the combination of the mechanical and
the thermal loading. The fifth and last step refers
to the superposition of the stresses resulting from
both load cases and the self-equilibrated, nonlinear
part of the thermal stresses, resulting from prevented
eigenwarping of the cross-section.

The present paper is organized as follows: Section 2
refers to the prerequisites for this study, see (Diaz et al.
2018) for details. Section 3 refers to the engineering
mechanics analysis pushed forward in this study. In
Section 4, the results of the engineering mechanics
analysis are compared with those from the FE simu-
lation. Section 5 contains the conclusions drawn from
the present study.

2 PREREQUISITES FOR THE PRESENT
STUDY

A scaled fire test was performed (Lu et al. 2018) on a
structure inspired by the upper floor of a three-span,
two-floor reinforced concrete frame, commonly used
in underground stations in China. The motivation to
perform the test, was to identify the temperature at
the inner surface as well as the temperature histories
and strains inside the structure. The tested structure
was placed sidelong on top of a furnace and closed
with a fire-resistant cover. A frame of steel with
hydraulic presses and supports was located around the
model to simulate service conditions. The real struc-
ture described in (Diaz et al. 2018) was tested at a scale
of 1:4. Only the columns were scaled by 1:5, see (Diaz
et al. 2018) for details. The structure was produced
with normal concrete “C40”, with a mass density of
2373 kg/m3 and a concrete cover of 30 mm. Before the
concrete was cast, the temperature and strain sensors
at the slabs and walls were installed, see (Diaz et al.
2018) for details. During the first 1800 s of heating the
inner surface, the temperature of the outer surface was
constant. The temperature sensors recorded readings
every 20 s.

Based on the scaled fire test, the structure was sim-
ulated by means of three-dimensional, non-stationary
Finite Element (FE) simulations using the commer-
cial software Abaqus FEA 2016, for details see (Diaz
et al. 2018). Figure 1 illustrates the idealized geomet-
ric boundary conditions and their locations as well
as the locations of the point loads P1= 192.0 kN,
P2= 151.2 kN, and P3= 120.0 kN, that represent the
hydraulic presses. Given that the thermal properties
of the tested structure were unknown, the values of
the specific heat capacity and the thermal conductiv-
ity were estimated in accordance with building codes

Figure 1. Support and loading conditions of the tested
structure (Diaz et al. 2018).
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and scientific studies, see Table 1. According to the
insights in (Diaz et al. 2018), the temperature change
at the steel bars may be assumed to be equal to that of
the concrete at its immediate vicinity. Thus, this ther-
mal simulation of the structure depends on the thermal
properties of concrete only.

Table 1. Thermal properties of concrete (Diaz et al. 2018).

Property Value

Specific heat capacity [J/kgK] 900
Thermal conductivity [W/mK] 1.6

For the thermo-mechanical analysis, the steel needs
to be taken into account. The reinforcement were mod-
eled as one-dimensional truss elements. The values of
specific properties of concrete and steel, defined in
(Diaz et al. 2018), were assigned to the corresponding
elements, see Table 2.

Table 2. Mechanical properties of concrete and steel at
room temperature (Diaz et al. 2018).

Property concrete steel

Modulus of elasticity [GPa] 33.4 195
Poisson’s ratio [–] 0.2 0.3
Thermal expansion [10−6 ◦C−1] 9.03 12.2
coefficient

For simulation of non-stationary heat conduction
withABAQUS CAE (Dassault Systemes Simulia Corp
2019) the temperature data of the scaled fire test was
used to approximate the temperature histories at the
inner surface of the structure, see (Diaz et al. 2018)
for details. The thermo-mechanical results of the FE
simulation were evaluated at selected sections of the
structure, representing the stress component σxx of
Cauchy’s stress tensor at the mid-plane in axial direc-
tion.The linear shape-functions of the chosen elements
yield element-wise constant stresses.

3 ENGINEERING MECHANICS ANALYSIS

In the following, a simplified engineering mechanics
analysis of the scaled fire test in (Lu et al. 2018) is
performed using a beam analysis software under the
assumption of the first-order beam theory. For this
analysis, the slabs and walls of the structure will be
simulated as prismatic beams with double-symmetric
cross-sections in a Cartesian coordinate system with
origin at the axis of the beam. Because of the geome-
try of the plates and the constant temperature at the
outer surface, the generally three-dimensional heat
conduction problem may be approximated as a one-
dimensional heat conduction in thickness direction.
The prismatic columns, located in the mid-plane of

the structure, are thermally loaded on all four lateral
surfaces. To reduce the two-dimensional heat conduc-
tion problem to a one-dimensional one, the prismatic
columns will be transformed into cylindrical ones with
axisymmetric cross-sections in a Polar coordinate sys-
tem with origin at the axis of the column. In order to
consider the reinforcement of concrete, a non-uniform
modulus of elasticity E(y, z) and thermal expansion
coefficient αT (y, z) are considered at a cross-sectional
scale.

3.1 Semi-analytic solutions of the heat conduction
problem

The isotropic form of the heat equation for the case of
three-dimensional heat conduction problem reads as

Ṫ − a∇ · (I · ∇T )= 0 , (1)

where a denotes the thermal diffusivity, ∇ denotes

the nabla operator and I =
3∑

i=1
ei ⊗ ei denotes the

second order identity tensor. The partial differential
equation (1) will be solved for one-dimensional heat
conduction in thickness direction of prismatic beams
and radial heat conduction of cylindrical columns with
time-dependent boundary conditions at the surfaces
according to the temperature histories documented in
(Diaz et al. 2018). At the beginning, the temperature at
the surface is equal to a reference temperature T (z, t=
0)=Tref (initial condition). This yields a constant
initial condition for solving the heat conduction prob-
lem. Because of the linearity of the partial differential
equation (1), the superposition principle applies and
the time-dependent boundary conditions in tempera-
ture can be discretized in NT temperature increments
�Tk at the surfaces, where k = 1, 2, ..., NT . Elemen-
tary solutions referring to each temperature increment
�Tk are superimposed to a semi-analytical solution
for the given boundary conditions. In this context, the
constant boundary condition at the surface for one
increment reads as:

�Tk =T (tk )− T (tk−1) (2)

where tk and tk−1 are time instants.

3.1.1 One-dimensional heat conduction in
thickness direction of prismatic beams

Specification of the heat equation (1) for a Cartesian
coordinate system and one-dimensional heat conduc-
tion in thickness direction z with temperature T =
T (z, t) and thermal diffusivity a, yields:

∂T

∂t
− a
∂2T

∂z2
= 0 . (3)

After each time step tk with k = 1, 2, ...NT , where NT is
the total number of temperature increments, the tem-
perature of the bottom surface of the beam T bot

k is
constant and depends on the temperature histories as
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documented in (Diaz et al. 2018). It is assumed that
the heat flux across the lateral surfaces is equal to zero
and the one-dimensional heat equation (3) is appli-
cable. The temperature of the top surface is equal to
Tref . In this case the initial condition and the boundary
conditions can be written as:

T (z=− h
2 , t)=Tref

T (z=+ h
2 , t)=T bot

k

}

boundary conditions. (4)

The solution of the one-dimensional heat equation (3)
for one temperature increment is documented in the
literature, e.g., (Ausweger 2016). Summation of the
elementary solutions of NT temperature increments at
the bottom surface of prismatic beams reads as

�T (z, t)=
NT∑

k=1

�T bot
k

(1

2
+ z

h

)

+
∞∑

n=1

exp
(
− (2n−1)2π2a〈t−tk 〉

h2

)

[ 2�T bot
k (−1)n

(2n− 1)π
cos

(
−(2n−1)π

z

h

)]

−
∞∑

n=1

exp
(
− (2nπ )2a〈t− tk 〉

h2

)[�T bot
k (−1)n

nπ
sin

(
−2nπ

z

h

)]
,

(5)

where�T bot
k denotes the temperature step at the inner

surface at time tk , h denotes the thickness of the cross-
section and the angled brackets denote the Macaulay
operator, see, e.g., (Wang et al. 2019).

3.1.2 Radial heat conduction in axisymmetric
cylindrical columns

Specification of the heat equation (1) for a cylindri-
cal coordinate system with spatially uniform boundary
conditions at the lateral surface delivers an axisymmet-
ric heat conduction problem where the temperature
T =T (r, t) is a function of the radial coordinate r
and the time t. The resulting partial differential equa-
tion with variable coefficients is also known as Bessel
differential equation. It reads as

∂T

∂t
− a

(∂2T

∂r2
+ 1

r

∂T

∂r

)
= 0 . (6)

After each time step tk with k = 1, 2, ...NT , where NT is
the total number of temperature steps, the temperature
of the lateral surface of the column T lat is constant
and depends on the temperature history as documented
in (Diaz et al. 2018). The boundary condition can be
written as:

T (r=R, t)=T lat . (7)

The solution of the radial heat conduction problem in
Eq. (6) for one temperature increment prescribed on
the lateral surface�T lat

k of the structure as defined in
Eq. (2) is derived analogous to the one-dimensional

solution of prismatic beams. Summation of the ele-
mentary solutions of NT temperature increments on the
lateral surface of cylindrical columns and subtracting
the reference temperature Tref reads as

�T (r, t)=�T lat −
NT∑

k=1

2�T lat
k

R

∞∑

n=1

J0(λnr)

J1(λnR)λn
exp (− λ2

na〈t − tk 〉) , (8)

where �T lat denotes the total temperature change on
the lateral surface, defined as the summation of all
temperature increments �T lat

k in Eq. (2). J0 and J1
denote the Bessel functions of the first kind with their
eigenvalues λn, R denotes the radius of the column and
the angled brackets denote the Macauley operator.

3.2 Engineering mechanics modeling at
cross-sectional scale

The thermal eigenstrains, εe, developed at the points y
and z inside the cross-section of a beam, see Figure 2,
are equal to the thermal expansion coefficient eval-
uated at those points, αT =αT (y, z), multiplied with
the change of temperature, measured relative to the
reference configuration, �T (z, t)=T (z, t)− Tref , as

εe
xx = εe

yy = εe
zz =αT�T . (9)

In a non-stationary heat conduction problem, the
thermal eigenstrains are spatially nonlinear along
the thickness direction, see e.g., (Hasenbichler 2019;
Schmid 2020; Wang et al. 2019). When it comes to the
quantification of thermal stresses, the question must be
answered whether the eigenstrains are free to develop,
constrained, or prevented. This question is answered
partly at the larger, structural level, and partly at the
smaller, cross-sectional level. To this end, the spatially
nonlinear eigenstrains are subdivided into three parts,

αT�T = εe
0 + κe

0 z + εe
w , (10)

where εe
0 refers to an eigenstretch of the beam, κe

0
refers to an eigencurvature of the beam, and εe

w refers
to an eigenwarping of the cross-section (?). The eigen-
stretch and the eigencurvature of the axis of the beam
cause axial stresses depending on the boundary con-
ditions that constrain the deformation of the structure.
On the other hand, the assumption that plane sec-
tions remain plane means that the eigenwarping of the
cross-section of the beam is prevented, thus always
resulting in nonlinear thermal stresses. Herein, we
focus on double-symmetric cross-sections with non-
uniform modulus of elasticity and thermal expansion
coefficient, E(y, z) and αT (y, z), respectively, assum-
ing a coordinate system with origin at the axis of the
beam, see Figure 2.

The kinematics of the Euler-Bernoulli theory for
slender beams, that essentially describes that cross-
sections remain plane and normal to the deformed axis
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Figure 2. Local coordinate systems describing positions inside and at the boundary of the structural elements: x denotes the
longitudinal axis; y and z denote Cartesian coordinates of the cross-section; r and ϕ denote cylindrical coordinates.

of the beam, also in the deformed configuration (=
Euler-Bernoulli hypothesis), reads as

u= u0 − ∂w0

∂x
z , (11)

where u denotes the displacement components in x-
direction, at any point within the volume of the beam
and u0 and w0 denote the displacement components at
the axis of the beam. Inserting Eq. (11) in the (“total”)
axial strain component εxx of the linearized strain ten-
sor and in Hooke’s law for thermoelasticity, yields the
axial stress component σxx of Cauchy’s stress tensor.
This reads as

σxx =E (ε0 + κ0 z − αT�T ) , (12)

where ε0= ∂u0/∂x is the stretch of the axis of the
beam, and κ0=−∂2w0/∂x2 its curvature. Herein, the
modulus of elasticity is a function of the y- and
z-coordinates which describe points inside the cross-
sections of the beam, i.e. E=E(y, z). Thus, one can
conclude from inserting Eq. (12) in the definition of
the axial force N , which is energetically conjugate to
the displacements u0, that the eigenstretch of the axis
of the beam is calculated as

εe
0=

1

EA

∫

A

E αT�T dA , (13)

where EA= ∫
AE dA is the effective extensional stiff-

ness of the beam. In the case of a reinforced concrete
beam, that presents a constant temperature in each
reinforcement bar, Eq. (13) reads as

εe
0=

1

Atr

⎡

⎣
∫

Ac

αT ,c�T dA+ nE

L∑

j=1

αT ,s�TjAs,j

⎤

⎦ ,

(14)

where nE refers to the ratio between the modulus of
elasticity of steel, Es, and concrete, Ec, αT ,c is the
coefficient of thermal expansion of concrete and αT ,s
is that of steel, j refers to each one of the L indi-
vidual reinforcement bars of the cross-section, and
Atr =Ac + nE

∑L
j=1 As,j refers to the total area of the

âŁœtransformedâŁž section with Ac denotes the area
of concrete and As denotes the area of steel. In Eq. (10),
εe

0 denotes a spatially constant contribution according
to Eq. (13), representing an eigenstretch of the beam.

Inserting Eq. (12) in the definition of the bending
moment M , that is energetically conjugate to the cross-
sectional rotation ∂w0/∂x, leads to the expression for
the eigencurvature of the beam as

κe
0 =

1

EI

∫

A

E αT�T z dA , (15)

with EI = ∫
A E z2 dA is the effective bending stiff-

ness of the beam. In the case of a reinforced concrete
beam that presents a constant temperature within each
reinforcement bar, Eq. (15) reads as

κe
0 =

1

Itr

⎡

⎣
∫

Ac

αT ,c�Tz dA+ nE

L∑

j=1

αT ,s�TjAs,jzs,j

⎤

⎦ .

(16)

where Itr = Ic + nE
∑L

j=1 As,j z2
s,j refers to the second

moment of inertia of the âŁœtransformedâŁž cross
section, and zs,j refers to the distance between each
individual reinforcement bar and the axis of the beam.
In Eq. (10), κe

0 z denotes a spatially linear contribution
with vanishing mean value, see Eq. (15), represent-
ing an eigencurvature of the beam. Rearranging the
definitions of the stress resultants, M and N , consid-
ering the axial stress σxx, for the stretch of the axis of
the beam, ε0, and its curvature, κ0, and inserting this
expressions in Eq. (12) yields

σxx(y, z)= N E(y, z)

EA
+ M E(y, z)

EI
z

− E(y, z)
[
αT (y, z)�T (z)− εe

0 − κe
0 z

]
. (17)

The expression in the square brackets of Eq. (17) is
equal to the nonlinear part of the eigenstrains, εe

w, rep-
resenting an eigenwarping of the cross-section of the
beam, see Eq. (10).

3.3 Engineering mechanics modeling at the
structural scale

In thermoelasticity the internal forces M and N depend
on the eigenstretch and eigencurvature εe

0 and κe
0 :

N =EA
(
ε0 − εe

0

)
, M =EI

(
κ0 − κe

0

)
. (18)

In statically determinate structures, the thermal eigen-
stretches εe

0 and eigencurvatures κe
0 are free to develop.
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Thus, there are no internal forces. As a consequence,
the total internal forces depend on the mechanical
loading only. In case of a statically indeterminate struc-
ture, the boundary conditions constrain the thermal
eigenstretches and eigencurvatures. Corresponding
stresses need to be quantified based on a simulation of
the behavior of the whole structure, accounting for its
boundary conditions. The tested structure (Diaz et al.
2018) will be modeled with the beam analysis software
RStab (Dlubal Software GmbH 2020) using first-order
beam theory.

In a first step, the three-dimensional FE model
(Diaz et al. 2018) will be used as a basis in order to
build a simplified one-dimensional beam model. For
this purpose, the structure will be idealized. Rigid con-
nections between the structural elements are assumed.
In order to perform the simulation as simple as possi-
ble and as complex as necessary, the tapered part of the
top slab will not be part of the model. This yields an
idealized structure for the simulation with beam anal-
ysis software which is statically indeterminate to the
twelfth degree (n= 12), see Figure 3. The local coor-
dinate system of the frame is defined by the dashed
line, see Fig 2. x1 denotes the axial location at which
results will be discussed.

Figure 3. Idealized representation of the tested segment of
a subway station, as the basis for structural analysis using
beam analysis software: for the numerical values of the point
loads P1, P2, and P3.

Table 3. Cross-sectional properties of the structural elements: “transformed properties” refer to a cross-section consisting of
concrete only, but being equivalent to the actual reinforced concrete cross-section, “real properties” refer to the actual concrete
part of the actual cross-section, “ratio factors” are defined in Eq. (19).

cross-section transformed property real property ratio factors
Atr [mm2], Itr [mm4] A [mm2], I [mm4] [–], see Eq. (19)

Top Slab Atr = 2.684× 105 A= 2.520× 105 ηA= 1.065
Itr = 1.037× 109 I = 9.261× 108 ηI = 1.120

Bottom Slab Atr = 2.411× 105 A= 2.280× 105 ηA= 1.058
Itr = 7.529× 108 I = 6.859× 108 ηI = 1.098

Lateral Wall Atr = 2.279× 105 A= 2.100× 105 ηA= 1.085
Itr = 6.073× 108 I = 5.359× 108 ηI = 1.133

Columns Atr = 4.387× 104 A= 3.840× 104 ηA= 1.143
Itr = 1.388× 108 I = 1.173× 108 ηI = 1.183

In a second step, the cross-section of the columns
is transformed from its prismatic shape with dimen-
sion 160/240 mm to a circular shape with diameter
D= 221.1 mm, equivalent in extensional stiffness.The
expectation of a predominance of axial force at the
columns provides the motivation for performing this
transformation. In a third step, the reinforced con-
crete cross-sections of the structure will be idealized as
transformed cross-sections depending on the material
behavior of concrete. The ratio between the modu-
lus of elasticity of steel and concrete reads as nE =
5.838, see Table 2. The “transformed” cross-sectional
properties are input for the beam analysis software
RStab (Dlubal Software GmbH 2020). This requires
the quantification of ratio factors defined as

ηA= Atr

A
, ηI = Itr

I
, (19)

where A denotes the real area defined as A=Ac +
As and I denotes the real second moment of inertia
defined as I = Ic + Is. The ratio factors of each part of
the structure as defined in Eq. (19) are documented in
Table 3.

Material properties that are required for simulation
with beam analysis software RStab (Dlubal Soft-
ware GmbH 2020) based on the simulation with FE
software ABAQUS CAE in (Diaz et al. 2018) are
documented in Tables 1 and 2.

4 RESULTS AND DISCUSSION

4.1 Results from the simulation of heat conduction

The non-stationary heat conduction problem described
in Section 3.1 is solved by inserting the thermal
properties of concrete from Table 1 and the surface
temperature histories (Diaz et al. 2018) into the derived
semi-analytical solutions, see Eqs. (5) and (8). The
infinite sums are approximated based on the first 1000
terms. This is more than sufficient to obtain a well-
converged solution. The temperature change obtained
half an hour after the start of the fire is illustrated,
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for the top slab, as a solid line in Figure 4. It is com-
pared with results from the FE simulation by Diaz et al.
(2018), see the dashed line in Figure 4.

Figure 4. Temperature changes at the top slab obtained half
an hour after the start of the fire test.

4.2 Decomposition of thermal eigenstrains

In order to compute thermal eigenstrains for all struc-
tural elements, the temperature changes (e.g., of the
top slab, see Figure 4) are multiplied with the coeffi-
cients of thermal expansion of steel and concrete; e.g.,
see the dotted red line in Figure 5 for the eigenstrain
distribution of the top slab experienced by concrete.
This spatially nonlinear distribution is subdivided into
(i) a constant part, related to the eigenstretch, εe

0, of
the axis of the structural element, see Eq. (13) and
(14) as well as the blue solid line in Figure 5, (ii) a
linear part, related to the eigencurvature, κe

0 , of the
axis of the structural element, see Eqs. (15) and (16)
as well as the blue dashed line in Figure 5, and (iii) the

Figure 5. Thermal eigenstrains of the concrete at the top
slab half an hour after the start of the fire, obtained with the
engineering mechanics analysis: the dotted graph refer to total
eigenstrains, the solid graph to the eigenstretch, the dashed
graph to the eigencurvature, and the dash-dotted graph to the
eigenwarping of the cross-section of the structural element.

nonlinear rest, representing the thermal eigenwarping
of the cross-section of the structural element:

εe
w =αT�T − εe

0 − κe
0 z , (20)

and the dash-dotted blue line in Figure 5. The numer-
ical values of the eigenstretches and eigencurvatures
of all structural elements are listed in Table 4.

Table 4. Numerical values of the thermal eigenstretches and
eigencurvatures of the axes of the structural elements, half an
hour after the start of the fire, obtained with the engineering
mechanics approach, see Eqs. (14) and (16).

Cross-section Eigenstretch Eigencurvature
[10−4] [10−6 mm−1]

Top Slab εe
0= 1.1848 κe

0 = 2.4632
Bottom Slab εe

0= 1.2860 κe
0 = 2.8946

Lateral Wall εe
0= 1.1362 κe

0 = 2.7662
Columns εe

0= 12.5200 κe
0 = 0.0000

4.3 Structural analysis using beam analysis
software

Two simulations are carried out. The first one refers
to the point loads representing ground pressure. This
simulation provides insight into the structural behav-
ior before the start of the fire. The second simulation
refers to the point loads representing ground pressure
and eigenstretches as well as eigencurvatures repre-
senting the thermal loading half an hour after the start
of the fire.

4.4 Stress distribution at the top slab

Under combined mechanical and non-stationary ther-
mal loading, axial stresses result, in every cross-
section, from three contributions: the axial force, the
bending moment, and eigenstresses. In the present
context of reinforced concrete members, we focus
on the axial stresses of the top slab experienced by
the concrete. The axial force refers to spatially con-
stant axial stresses, the bending moment to spatially
linear stresses, and the eigenstresses are nonlinearly
distributed across the cross-section. The axial forces
and the bending moments depend on the mechanical
loading as well as the thermal eigenstretches and the
eigencurvatures of all structural members. These con-
tributions are accounted for by means of the simulation
with the beam analysis software, see Section 4.3. The
eigenstresses account for the non-stationary nature of
the heat conduction problem. They are equal to the
eigenwarping-part of the thermal eigenstrains, mul-
tiplied with the modulus of elasticity and −1. The
eigenwarping-parts of the thermal eigenstrains were
determined in Section 4.2.

Axial stresses at position x1 of the top slab are dis-
cussed in two diagrams. The first diagram displays,
with blue graphs, the stress distribution σxx,c of con-
crete resulting from the point loads only, referring to
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the service condition before the fire, see Figure 6a.The
second diagram displays, with red graphs, the stresses
of concrete computed for the time instant half an hour
after the start of the fire, see Figure 6b. In both cases,
results from the simulation with beam analysis soft-
ware, from the engineering mechanics analysis, and
from FE simulation are compared.

Figure 6. Top slab location x1= 0.958 m: axial stresses of
concrete (a) before the fire, and (b) half an hour after the start
of the fire.

As for the situation before the fire, the stress
distributions obtained from the FE simulation and
from the engineering mechanics analysis are virtually
linear and perfectly linear, respectively. The engi-
neering mechanics analysis is reproducing the overall
structural behavior very well.

As for the time instant half an hour after the start of
the fire, the total stresses are nonlinearly distributed
over the height of the cross-section. It is appealing
that the engineering mechanics analysis allows for a
decomposition of the total stresses into (i) spatially
linear stress contributions resulting from the axial
forces and the bending moments, as well as (ii) spa-
tially nonlinear stress contributions resulting from the
prevented eigenwarping of the cross-sections. Both
simulation approaches suggest that the maximum ten-
sile stresses are activated inside the volume of the top
slab rather than at the upper or lower surface. These
tensile stresses amount to some 3 MPa. It is to be
expected that the tensile strength of concrete would
be reached during the third quarter of an hour after the
start of the fire, and that cracking of concrete will occur
visually unnoticeable inside the bulk of the top slab.

5 CONCLUSIONS

A reinforced concrete segment of a subway station sub-
jected, in a large-scale laboratory test (Lu et al. 2018),
to ground pressure and a moderate fire, was analyzed
based on an engineering mechanics model, in order
to check whether or not it can reproduce the results
from a linear-elastic three-dimensional Finite Element
analysis (Diaz et al. 2018). From this analysis, several
conclusions are drawn.

The first set of conclusions refers to the question
whether or not spatially nonlinear temperature fields,
which are a characteristic of non-stationary heat con-
duction problems, can be translated into statically
equivalent linear temperature fields. Non-stationary
heat conduction orthogonal to the axis of a reinforced
concrete beam is associated with spatially nonlinear
distributions of thermal eigenstrains inside individual
cross-sections. The nonlinear part of the eigenstrains
represents an eigenwarping of the cross-sections. The
latter remain plane in slender beams, even in case
of non-stationary heat conduction. This planarity is
related to spatially linear total strains. Thus, the spa-
tially nonlinear part of the thermal eigenstrains is
prevented at the scale of the cross-sections. Because
the resulting thermal eigenstresses have a vanishing
mean value and a vanishing first moment, they are
“self-equilibrated”, i.e. they do neither contribute to
the axial force nor to the bending moment. Subtract-
ing from the total thermal eigenstrains the nonlinear
part, results in eigenstrains which are related to the
thermal eigenstretch and the thermal eigencurvature of
the axis of the beam analyzed. Whether eigenstretch
and eigencurvature are free to develop, constrained,
or prevented must be answered at the scale of the
entire structure. They are free to develop in statically
determinate structures. They are at least constrained
in statically indeterminate structures. Because eigen-
stretches and eigencurvatures are constrained at the
larger scale of a statically indeterminate reinforced
concrete structure, and because the eigenwarping is
prevented at the smaller scale of the cross-sections, it
is impossible to translate spatially nonlinear tempera-
ture fields into statically equivalent linear temperature
fields.

The second set of conclusions refers to the potential
of the engineering-mechanics approach, regarding the
reproduction of results obtained with a computation-
ally much more expensive three-dimensional Finite
Element model. Commercially available beam anal-
ysis software is typically capable of accounting for
eigenstretches and eigencurvatures. This allows for
computing axial forces and bending moments as well
as the related axial stresses which are linear functions
within the individual cross-sections. Adding to these
stress fields the spatially nonlinear thermal eigen-
stresses resulting from the prevented eigenwarping of
the cross-sections delivers total stresses which are in
good agreement with the results from the elaborate
Finite Element model. FE analyses intrinsically suffer
from a discretization error. Its quantification requires
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convergence analyses, i.e. the same problem must be
solved based on different Finite Element meshes, and
important output quantities are illustrated as a function
of the discretization effort, in order to find a trade-
off between discretization effort and reliability of the
results obtained. Such convergence analyses require a
significant amount of time, given that pre-processing
of FE simulations frequently represents a large (if not
the dominating) part of the time investments required
for the overall analysis. The remaining discretization
error manifests itself in frequently kinky rather than
smooth distributions of output quantities.

Overall, it is concluded that the developed mode
of thermo-elastic analysis provides interesting insight
into nontrivial aspects of the structural behavior. Still,
the current limitations of the presented engineering
mechanics analysis shall also be addressed. Because
a moderate fire was analyzed, mechanical properties
of concrete were treated as constants and set equal to
values at room temperature. In the future, these con-
stants can be replaced by functions of temperature.
Such mathematical relationships are provided by many
codes for the design of reinforced concrete structures.
The simulation with beam analysis software is based
on the Euler-Bernoulli hypothesis. The latter is ques-
tionable, e.g. in the immediate vicinity of connections
of different structural elements and of point loads. In
order to gain detailed insight into stress distributions
in such regions, Finite Element simulations appear to
be indispensable.
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ABSTRACT: Concrete pavements are mostly subjected to unsteady heat conduction, resulting in spatially
nonlinear temperature distributions in thickness direction, and leading to thermal stresses. Thermal stresses of
a concrete slab are analyzed based on in-situ temperature measurements and the evaluation method proposed in
(Schmid et al. 2022). Temperature data are taken from the same field testing site as in (Schmid et al. 2022), but
from a different monitoring period covering 7-days in spring. Unsteady heat conduction in vertical direction is
simulated using histories of surface temperatures as boundary conditions. Their numerical values are obtained
by spatial extrapolation of temperatures measured in four depths of the slab. Temperature profiles are computed
and translated into thermal eigenstrains. The latter are split into three parts: eigenstretches of the slab, which
are unconstrained, eigencurvatures of the slab, which are constrained by its support conditions such that curling
stresses are activated, and eigendistortions of plate-generators, which are virtually prevented such that self-
equilibrated eigenstresses are activated. The latter are evaluated analytically. Curling stresses are quantified
numerically, prescribing a modulus of subgrade reaction of 100 MPa/m. Disregarding thermal eigenstresses
overestimates tensile stresses in the afternoon, at the bottom of the slab, in its central region, by 14 %. Disregarding
thermal eigenstresses underestimates tensile stresses in the morning, at the top of the slab, in its corner regions,
by 59 %.

1 INTRODUCTION

Daily and seasonal temperature fluctuations are
responsible for mostly nonlinear temperature pro-
files in thickness direction of a pavement slab and
the activation of thermal stresses (Thomlinson 1940;
Westergaard 1927). Total thermal stresses quantified
in concrete slabs consist of spatially linear thermal
stresses (= curling stresses) and spatially nonlinear
thermal stresses (= eigenstresses) (Choubane & Tia
1992). Although the existence of self-equilibrated
eigenstresses is known since Thomlinson (1940)
decomposed nonlinear temperature distributions into
a constant, a linear, and a nonlinear part, they are
not accounted for in current codes of practice for
the design of concrete pavements. Instead, concrete
pavements are designed using the linear part of the
temperature distribution, which corresponds to the
temperature gradient, and thus to the effective differ-
ence between the top and bottom surface temperature
(Janssen & Snyder 2000; Westergaard 1927). How-
ever, thermal eigenstresses have a significant impact
on total thermal stresses in extreme weather situations

(Wang et al. 2019) as well as in regular climatic con-
ditions (Choubane & Tia 1992; Choubane & Tia 1995;
Schmid et al. 2022). Consideration of thermal stresses,
and especially of eigenstresses, requires (nonlinear)
temperature profiles in thickness direction of the slab.
They can either be simulated from climatic condi-
tions, e.g. air temperature, wind velocity and solar
radiation (Barber 1957; Bentz 2000), or quantified
using directly measured data (Bayraktarova et al. 2021;
Choubane & Tia 1992; Teller & Sutherland 1935).
The latter requires an approach to spatially interpo-
late and extrapolate the pointwisely recorded tem-
perature measurements. The simplest way to account
for the nonlinearity of the temperature field is to
approximate measurements using a low degree poly-
nomial function, e.g. a quadratic or cubic polynomial
(Choubane & Tia 1992; Ioannides & Khazanovich
1998; Mohamed & Hansen 1997). Schmid et al. (2022)
used a semi-analytical series-solution for simulating
one-dimensional unsteady heat conduction in order
to obtain nonlinear temperature profiles in thickness
direction of the slab. For this, surface temperatures are
prescribed as boundary conditions. They are obtained
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Table 1. Material properties of the slab and of concrete

Property and source Numerical value

length of the slab �x = 5.50 m
width of the slab �y = 2.70 m
thickness of the slab h= 0.25 m

Thermal diffusivity a= 1.4× 10−6 m2/s
(Schmid et al. 2022)
Coefficient of thermal αT = 1.153× 10−5 /◦C
expansion (Wang et al. 2019)
Modulus of elasticity E= 31.76 GPa
(Wang et al. 2019)
Poisson’s ratio ν= 0.203
(Wang et al. 2019)
Mass density ρ= 2,400 kg/m3

by fitting quadratic polynomials to the temperature
measurements taken in four specific depths of a con-
crete pavement slab and extrapolating these functions
to its top and bottom surface.The obtained temperature
profiles are used to quantify thermal eigencurvatures
of the plate and eigendistortions of the generators
of the plate. Eigencurvatures and eigendistortions are
translated into curling stresses and into eigenstresses,
respectively (Schmid et al. 2022).

Herein, this procedure is taken over and applied to
a set of temperature measurements monitored in the
concrete pavement slab, which is part of the highway
“A2 – Süd Autobahn” in Lower Austria (Schmid et al.
2022). The temperature was recorded during one week
in April 2015 in 5 cm, 9 cm, 14 cm, and 19 cm under
the top surface of the slab using PT100A tempera-
ture sensors. Material properties, such as the thermal
diffusivity, the coefficient of thermal expansion, the
modulus of elasticity and Poisson’s ratio are taken
from (Schmid et al. 2022). Curling stresses are quanti-
fied numerically in nonlinear Finite Element analyses,
whereby the elastic subgrade of the slab is modeled
by means of an elastic Winkler foundation (Winkler
1867). Kinematic restrictions of the plate referring
to Kirchhoff’s hypothesis, prevent the development

Figure 1. Recorded and temporally interpolated temperature data within the volume of the slab, referring to depths of 5 cm,
9 cm, 14 cm and 19 cm measured from the top surface.

of thermal eigendistortions (Wang et al. 2019; Höller
et al. 2019). They are nullified by mechanical strains
which activate thermal eigenstresses.

The study is organized as follows. Section 2 is
devoted to the application of the thermal stress evalu-
ation method proposed in (Schmid et al. 2022) to a set
of temperature data measured in spring. In Section 3,
curling stresses and eigenstresses are quantified and
discussed in the context of total thermal stresses pre-
scribing a modulus of elasticity of 100 MPa/m. This
part is followed by the conclusions drawn from the
presented analysis.

2 TEMPERATURE MONITORING AND
THERMO-MECHANICAL ANALYSIS OF A
CONCRETE SLAB

2.1 Temperature monitoring in a concrete slab

Schmid et al. (2022) proposed an evaluation method
for quantification of thermal stresses based on in
situ temperature measurements recorded in a concrete
pavement slab during a 23 days period in autumn 2015.
This method is applied to temperature data obtained
from a 7-days measurement period in the same slab in
spring 2015.

Temperature data were recorded in the concrete
pavement slab, located in Lower Austria at kilome-
ter 21 of the highway “A2”. The length, width, and
thickness of the slab and the material properties of
concrete are provided in Table 1.

From 9 Apr. 00:00 to 15 Apr. 24:00, four sensors of
type PT100A logged temperature data every 30 min-
utes in depths amounting to 5 cm, 9 cm, 14 cm, and
19 cm measured from the top surface of the slab. The
vertical positions of the sensors are described by the
z-coordinate of a Cartesian coordinate system. Its ori-
gin corresponds to the center of gravity of the slab.
The positive z-axis runs downwards in the direction of
thickness.Thus, the z-coordinates of the sensors follow
to z1=−0.075 m, z2=−0.035 m, z3=+0.015 m and
z4=+0.065 m. Spline functions are used to tempo-
rally interpolate the measured data. They are evaluated
every three minutes, see Figure 1.
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For every time instant, a set of four temperature
values, represented by Ts(z1, t), Ts(z2, t), Ts(z3, t), and
Ts(z4, t), is obtained.

2.2 Unsteady heat conduction in thickness
direction of the slab

Daily temperature variations go along with (one-
dimensional) unsteady heat-conduction in thickness
direction of the slab during most of the time. Heat-
conduction is a boundary value problem. Solutions
of such problems require a field equation, an ini-
tial condition and boundary conditions, for details see
(Schmid et al. 2022; Wang et al. 2019).

The field equation is the heat equation ∂T (z, t)/∂t=
a · ∂2T (z, t)/∂z2. Thereby, T stands for the tempera-
ture, t for the time variable and a denotes the thermal
diffusivity, see Table 1.

The initial condition corresponds to a linear tem-
perature distribution:

T (z, t=0)= T bot
ini + T top

ini

2
+ [

T bot
ini − T top

ini

] z

h
. (1)

T top
ini and T bot

ini denote the temperature at the top and
bottom surface, respectively, at the starting point of
the simulation on 9 Apr. at 00:00.

Boundary conditions correspond to the histories of
surface temperatures. As to obtain them, every set of
four temperature values is best-fitted using a quadratic
polynomial which is spatially extrapolated to the top
and bottom surface (Schmid et al. 2022). The surface
temperatures follow as:

Ttop(t) = +2.3701 Ts(z1, t)− 0.6527 Ts(z2, t)

−1.5309 Ts(z3, t)+ 0.8135 Ts(z4, t) , (2)

Tbot(t) = +1.1223 Ts(z1, t)− 1.5082 Ts(z2, t)

−1.3261 Ts(z3, t)+ 2.7119 Ts(z4, t) , (3)

and are exemplarily illustrated for 10 Apr., see
Figure 2. The temperature histories T top(t) and T bot(t)

Figure 2. Surface temperatures obtained for 10 Apr.

are approximated by a superposition of temperature
steps �T loc

i with loc={top, bot}, using the Heaviside
function H (t − ti):

T (zloc, t) = T loc
ini +

Ni∑

i=1

�T loc
i H (t − ti) , (4)

where Ni denotes the number of considered tempera-
ture steps. They are prescribed every three minutes.

The semi-analytical solution of the unsteady heat
conduction problem is the temperature solution and
reads as:

T (z, t)= T bot(t)+ T top(t)

2
+ [

T bot(t)− T top(t)
] z

h

−
Ni∑

i=1

(
�T top

i −�T bot
i

) ∞∑

n=1

(− 1)n

nπ
sin

(2nπz

h

)

exp
(
− (2nπ )2 a〈t − ti〉

h2

)

+
Ni∑

i=1

(
�T top

i +�T bot
i

) ∞∑

n=1

2(− 1)n

(2n− 1)π
cos

( (2n− 1)πz

h

)

exp
(
− (2n− 1)2π2 a〈t − ti〉

h2

)
,

(5)

where the angled brackets denote the Macaulay oper-
ator. Once the surface temperatures are quantified,
Eq. (5) enables the reproduction of spatially nonlin-
ear temperature profiles for slabs subjected to a series
of temperature steps at its top and bottom surface
(Schmid et al. 2022). Reliable temperature results are
obtained for time instants more than 12 hours after
the starting time of the simulation. The infinite sums
are truncated after 9 summands. The numerical value
of the thermal diffusivity is taken from (Schmid et al.
2022), see Table 1.

The simulation of unsteady heat conduction starts
at 00:00 on 9 Apr. This results in reliable temperature
profiles from 9 Apr. 12:00 onwards. Such temperature
profiles are exemplarily illustrated for representative
time instants on 10 Apr. in Figure 3. For the sake of
simplicity, the quality of reproduction of temperature
measurements is evaluated only for 10 Apr. to 15 Apr.,
referring to 288 time instants times four temperature
measurements in four depths. The quality of reproduc-
tion is quantified by means of the square-root of the
mean of squared errors:

SRMSE=
√√√
√ 1

4× 288

4∑

s=1

288∑

m=1

[
T (zs, tm)−Tm(zs, tm)

]2
,

(6)

and amounts to 0.3◦C. This corresponds to the quality
reached for the autumn-period analyzed in (Schmid
et al. 2022).

2.3 Decomposition of thermal eigenstrains

The temperature solution, see Eq. (5), result in spatially
nonlinearly distributed temperature profiles. They are
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translated into total thermal eigenstrains εe
xx (= εe

yy =
εe

zz) by multiplying the coefficient of thermal expan-
sion αT by the change of temperature, measured
relative to the reference temperature Tref :

εe
xx =αT [T (z, t)− Tref ] . (7)

The input values amount to αT = 1.153× 10−5/◦C
and Tref = 17◦C (Wang et al. 2019). Total thermal
eigenstrains are distributed nonlinearly in thickness
direction, compare Eqs. (5) and (7). The decom-
position rules of eigenstrains for quantifying eigen-
stretches εe(t) and eigencurvatures κe(t) as well as
eigendistortions εe

dist(z, t) follow from the structural
behavior of the slab according to the Kirchhoff-Love
hypothesis, for details see (Schmid et al. 2022):

εe
xx(z, t)= εe(t)+ κe(t) z + εe

dist(z, t) . (8)

The decomposition is exemplarily shown for 11 Apr.,
13:00 in Figure 4.

Thermal stresses are activated if thermal eigen-
strains are constrained or prevented (Wang et al. 2019).
Schmid et al. discuss in detail that predominantely
eigencurvatures of the slab and eigendistortions of the
generators of the slab contribute to thermal stresses:

• Eigencurvatures of the slab result in convex or con-
cave curling. This is constrained by the pavement
layers on which the slab rests, and activates linearly
distributed curling stresses.They can be either quan-
tified semi-analytically (Höller et al. 2019) or by
means of a nonlinear Finite Element simulation.

• Eigendistortions of the generators of the slab are
essentially prevented, because the generators of the
plate remain straight according to the Kirchhoff-
Love hypothesis. Thus, the eigendistortions are

Figure 3. Temperature profiles referring to 10 Apr.: the cir-
cles label the temperature measurements, the solid lines refer
to the computed distributions of temperature (= solution of
the heat conduction problem).

Figure 4. Decomposition of total thermal eigenstrains into
a constant, linear and nonlinear part, shown exemplarily for
11 Apr., 13:00.

nulliï¬'ed by mechanical strains of the same size and
distribution, but of opposite sign. Multiplying them
with E/(1− ν), where E and ν denote the modulus
of elasticity and the Poisson’s ratio, compareTable 1,
leads to thermal eigenstresses:

σT (εe
dist)=

E

1− ν × (−εe
dist) . (9)

They are distributed nonlinearly in thickness direc-
tion.

3 THERMAL STRESSES RESULTING FROM
TEMPERATURE VARIATIONS

3.1 Curling stresses

Curling stresses result from constrained eigencurva-
tures and can be computed in a Finite Element analysis
according to e.g. (Schmid et al. 2022). The geometric
dimensions of the simulated plate are listed in Table 1.
The plate has free edges and rests on an elastic Winkler
foundation (Winkler 1867), see Figure 5. The modulus
of subgrade reaction is set equal to ks= 100 MPa/m.
The plate is subjected to eigencurvatures computed in
Section 2.3, and its dead load, amounting to p= ρgh=

Figure 5. One-dimensional heat conduction in thick-
ness-direction of a rectangular plate resting on a Winkler
foundation.
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5.89 kN/m2, where ρ and h are given in Table 1 and g
stands for the gravitational acceleration. The eigencur-
vatures vary between −6.61× 10−4/m and +2.13×
10−4/m. The negative extreme value lies outside the
interval of [−5× 10−4/m;+5× 10−4/m], for which
numerical results of the nonlinear FE simulation are
available (Schmid et al. 2022). To cover the total range
of computed eigencurvatures, the FE simulation is per-
formed analogously to (Schmid et al. 2022), prescrib-
ing eigencurvatures amounting to −6× 10−4/m and
−7× 10−4/m, respectively. The FE software RFEM,
version 5.27.01 (Dlubal Software GmbH 2020), is
used, considering 110× 54= 5,940 quadratic, 5 cm
long Finite Elements of type “Kirchhoff bending the-
ory”. The result of interest is the largest principal
tensile curling stress, for numerical results see Table 2
and for computational details see (Schmid et al. 2022).

Table 2. Results from nonlinear FE analyses, partly taken
over from (Schmid et al. 2022): largest principal tensile curl-
ing stress as a function of the eigencurvature κe, prescribing
the modulus of subgrade reaction as ks= 100 MPa/m.

ks= 100 MPa/m

κe =−7× 10−4 m−1 1.800 MPa
κe =−6× 10−4 m−1 1.739 MPa
κe =−5× 10−4 m−1 1.627 MPa
κe =−4× 10−4 m−1 1.404 MPa
κe =−3× 10−4 m−1 1.171 MPa
κe =−2× 10−4 m−1 0.801 MPa
κe =−1× 10−4 m−1 0.422 MPa
κe =+1× 10−4 m−1 0.140 MPa
κe =+2× 10−4 m−1 0.253 MPa
κe =+3× 10−4 m−1 0.333 MPa

The obtained stress values are interpolated using
spline functions. Thus, the maximum tensile curling
stresses can be now quantified for all values of κe from
Section 2.3. As the curling stresses are distributed lin-
early in thickness direction, these values are sufficient
to determine the total curling stress profile, as it is
exemplarily shown for 10 Apr. in Figure 6. For the cor-
rect assignment of tensile stresses to the top or bottom
surface of the slab, two types of structural behavior are
distinguished:

• Positive eigencurvatures correspond to concave
curling. The top surface of the plate is cooler than
its bottom.The corners of the plate lose contact with
the foundation, whereas the central region is pressed
downwards into the base layer. This leads to tensile
stresses at the top surface. This behavior occurs pri-
marily during nighttime and the early morning, see
the blue and black curves in Figure 6.

• Negative eigencurvatures correspond to convex
curling. The top surface of the plate is warmer than
its bottom. The corners of the plate are pressed into
the foundation, whereas the central region loses con-
tact with the base layer. This leads to tensile stresses

at the bottom surface. This behavior occurs primar-
ily during daytime, see the orange, red, and green
curve in Figure 6.

For the analyzed monitoring period, the maximum val-
ues of the tensile curling stresses amount to 0.27 MPa
and 1.77 MPa at the top and the bottom of the slab,
respectively.

Figure 6. Exemplary results of nonlinear FE analyses: ther-
mal stresses resulting from constrained eigencurvature of the
slab; the results refer to 10 Apr.

3.2 Thermal eigenstresses

Thermal eigenstresses are quantified according to
Eq. (9). They are nonlinear functions of the vertical
coordinate z, but independent of the modulus of sub-
grade reaction. For specific values of z and arbitrary
values of |x| ≤ �x/2 and |y| ≤ �y/2, eigenstresses are
constant throughout the entire observed plane of the
slab. The obtained stress distributions have a vanish-
ing mean value and a vanishing first moment, see
Figure 7. Heating of the slab results in compressive
stresses at the top and bottom surface, and tensile
stresses in the region around the midplane, see the
magenta, orange and red curves in Figure 7. The max-
imum tensile stresses are reached around noon. Vice
versa, cooling of the plate yields tensile stresses at the
surfaces, and compressive stresses around the mid-
plane, see the blue, green and black curve in Figure 7.
For the analyzed monitoring period, the maximum val-
ues of the tensile eigenstresses amounted to 0.64 MPa
and 0.41 MPa at the top and the bottom of the slab,
respectively. In the region around the midplane, the
maximum value was 0.43 MPa.

3.3 Total thermal stresses

The summation of the thermal eigenstresses and curl-
ing stresses result in total thermal stresses. They are
distributed nonlinearly in thickness direction of the
slab, see Figure 8. This underlines that eigenstresses
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Figure 7. Exemplary results of engineering thermo-
mechanical analysis: thermal stresses resulting from virtu-
ally prevented eigendistortions of the generators of the slab;
the results refer to 10 Apr.

Figure 8. Exemplary results of engineering thermo-
mechanical analysis: total thermal stresses; the results refer
to 10 Apr.

have a significant impact on the total thermal stresses
(Choubane & Tia 1992; Schmid et al. 2022). The
design of concrete pavements focuses on primarily ten-
sile thermal stresses. Thus, they are here discussed in
more detail with respect to six specific time instants on
10 Apr. by comparing Figs. 6 and 7 with Figure 8, and
with respect to the quasi-continuous temporal stress
evolution illustrated in Figure 9 for 10 Apr.

At the midplane, non-zero eigenstresses are super-
imposed with permanently vanishing curling stresses.
Thus, the total thermal stresses are equal to the thermal
eigenstresses. The largest tensile stresses occur around

noon and amounts to+0.43 MPa, see the red diamond
at the mid-gray curve in Figure 9.

At the top surface of the slab, the largest tensile
stresses occur during nighttime in corner regions, see
e.g. the black stress profile in Figure 8 and the red
diamond on the dark-gray solid line in Figure 9. At
that time, the curling stresses and eigenstresses are
both tensile and amplify each other, see the dark-gray
dashed and dotted curves in Figure 9 around 01:30.
During the entire monitoring period, the largest tensile
thermal stress amounted to +0.62 MPa. The largest
compressive stresses occurred around noon in the cen-
tral region, see the dark-gray solid line in Figure 9.
Curling stresses and eigenstresses again amplify each
other.The compressive total stresses were smaller than
or equal to −2.78 MPa during the entire observation
period.

At the bottom surface of the slab, the largest tensile
stresses occur in the early evening in the central region,
see the green curves of Figure 8 and the red diamond
on the bright-gray solid line in Figure 9. At the same
time, curling stresses are tensile, but eigenstresses are
compressive, compare the dashed and dotted bright-
gray curves in Figure 9 around 18:00.Thus, the curling
stresses and eigenstresses diminish each other, see also
the orange and red curves in Figure 8. During the
entire monitoring period, the largest tensile thermal
stress amounted to +1.59 MPa. The largest compres-
sive stresses occurred in the morning, see the blue
and magenta curves of Figure 8 and the bright-gray
solid line in Figure 9. The curling stresses vanish for
this time instant and the total thermal stresses are
exceptionally equal to the eigenstresses. For the entire
observation period, the total compressive stresses were
always smaller than or equal to −0.31 MPa.

The maximum value of tensile curling stresses
occur with a time lag to the maximum value of
tensile eigenstresses, compare the red stars and cir-
cles, respectively, at the dashed and dotted curves of
Figure 9, labeling the maximum tensile stresses of
curling stresses and eigenstresses, respectively. As a
consequence, the sum of the largest curling stresses
and eigenstresses is larger than the largest total thermal
stress. The latter occurs between the extreme values
of curling stresses and eigenstresses, compare the red
symbols in Figure 9, referring to three curves of the
same color.

For the quantification of the significance of eigen-
stresses and curling stresses on total thermal stresses,
the daily maxima of tensile total stresses and tensile
curling stresses are computed for the top and bottom
surface, respectively, for day 2 onwards to the end of
the monitoring period, see Table 3.

At the top surface, the mean value of the daily max-
imum of total thermal stresses amounts to 0.54 MPa,
whereas the mean value of the daily maximum of curl-
ing stresses reads as 0.22 MPa. Disregarding the (non-
linear) eigenstresses would underestimate the largest
tensile stresses in the slab by 59 %. At the bottom of
the slab, the mean value of the daily maximum of total
thermal stresses amounts to 1.51 MPa, whereas the
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Figure 9. Exemplary results of engineering thermo- mechanical analysis: temporal evolution of thermal stresses on 10 Apr.
The red markers label the maximum values of tensile stresses at the top, the midplane, and the bottom of the slab, where the
diamond refers to total stresses, the stars to curling stresses and the circles to eigenstresses.

Table 3. Mean values of daily tensile stress maxima for curl-
ing stresses and total thermal stresses at the top and the bottom
of the slab for the time period of 10 Apr. to 15 Apr., and
quantification of misestimations.

ks= 100 [MPa/m] top surface bottom surface

total thermal stresses [MPa] 0.54 1.51
curling stresses [MPa] 0.22 1.72
misestimations [–] −59 % +14 %

mean value of the daily maximum of curling stresses
reads as 1.72 MPa. Disregarding the (nonlinear) eigen-
stresses would here overestimate the largest tensile
stresses in the slab by 14 %.

4 CONCLUSIONS

Temperature measurements from a 7-days monitoring
period were analyzed based on the evaluation method
proposed in (Schmid et al. 2022). The analysis has led
to the following conclusions:

• The value of the thermal diffusivity quantified in
(Schmid et al. 2022) for 2 Oct. also holds for the
same slab in spring.

• Curling stresses, resulting from constrained eigen-
curvatures of the plate, were computed by means of
nonlinear Finite Element analyses. The modulus of
subgrade reaction of the simulated Winkler foun-
dation was set equal to 100 MPa/m. The obtained
results extend the curling stress data provided in
(Schmid et al. 2022).

• Thermal eigenstresses follow simply from the
spatially nonlinear eigendistortions of the plate-
generators, which are virtually prevented, because

the generators remain straight according to the
Kirchhoff-Love hypothesis.

• The slab exhibits concave curling during night-
time and the early morning. Curling stresses and
eigenstresses are both tensile at the top surface and
amplify each other. At the bottom surface, compres-
sive curling stresses are partly balanced by tensile
eigenstresses.

• The slab exhibits convex curling during daytime
and the early evening. Curling stresses and eigen-
stresses are both compressive at the top surface and
amplify each other. At the bottom surface, tensile
curling stresses are partly balanced by compressive
eigenstresses.

• The temporal evolution and the magnitude of the
curling stresses, the eigenstresses, and the total ther-
mal stresses are similar to those obtained in (Schmid
et al. 2022).

• Disregarding the nonlinear eigenstresses underesti-
mates tensile stresses at the top surface of the slab
during the early morning in the corner regions by
59%. This misestimation is by 14 percentage points
larger than the one quantified for the observation
period in autumn.

• Disregarding the nonlinear eigenstresses overesti-
mates tensile stresses at the bottom surface of the
slab during the early evening in the central region by
14%. This misestimation is by 15 percentage points
smaller than the one quantified for the observation
period in autumn.
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ABSTRACT: A novel coupled approach to modelling hydraulic- and capillary-driven two-phase water flow
in unsaturated concrete was formulated. The flow process was numerically analyzed at meso-scale in two-
dimensional (2D) conditions by combining the discrete element method (DEM) with computational fluid
dynamics (CFD) under isothermal conditions. Fully coupled hydro-mechanical simulation tests were carried
out on small concrete specimens of a simplified particulate meso-structure. The pure DEM represented by
bonded spheres was calibrated with the aid of uniaxial compression while the pure CFD was calibrated with
the aid of a permeability and sorptivity test for a sphere assembly. DEM/CFD calculations were successively
performed for specimens of the pure cement matrix, cement matrix including aggregate and cement matrix
including aggregate and interfacial transition zone (ITZ) of a defined thickness. The major goal of investigations
was to show the effect of ITZs on fluid flow in unsaturated concrete driven by hydraulic/capillary pressure.

1 INTRODUCTION

Concrete is a strongly heterogeneous, discontinu-
ous and porous composite material with four crucial
phases at the meso-scale: aggregates, cement matrix,
interfacial transition zones (ITZs) between aggregates
and cement matrix and macro-pores. ITZs are adjacent
to aggregates and indicate pronounced compositional
differences against the cement matrix (Bentz 1992).
They possess e.g. more and larger pores, smaller par-
ticles and less anhydrous cement and C-S-H (calcium
silicate hydrate) gel which causes higher transport
properties (i.e. permeability, diffusivity and conduc-
tivity) than the cement matrix (Delagrave et al. 1997;
Schwartz et al. 1995; Stroeven et al. 2017a,b). They
facilitate penetration of external aggressive agents into
concrete that deteriorates both concrete and reinforce-
ment. They promote also humidity transport through
concrete (Stroeven et al. 2017a). If the moisture con-
tent inside concrete is less than its saturation level,
water may be absorbed into the concrete by capillary
forces arising from a contact of very small pores with
a liquid phase. This is an important mechanism of
water flow into concrete that is often observed in field
applications subjected to wetting and drying cycles.

Water acts as a transport means for aggressive
agents (e.g. chlorides, sulfates, carbon dioxides).
Therefore, the durability of concrete structures largely
depends on their resistance to water transport and dis-
solved aggressive species. Penetration, diffusion and
absorption are three main transport mechanisms in
concrete materials (Ababneh et al. 2003; Šavija et al.
2013). The spatial distribution of water in concrete
depends on applied external loading (Wyrzykowski
& Lura 2014) that deforms the concrete structure

by re-sizing pores and capillaries, promotes a crack
generation and development that increases a water
penetration rate. For investigating fluid problems in
concrete, it is important to take porous ITZs around
aggregates into account since they usually allow for
the faster penetration of external aggressive agents
(Stroeven et al. 2017a).

The current paper demonstrates a novel mathemat-
ical mesoscopic approach to modelling viscous and
capillary-driven two-phase fluid flow in unsaturated
uncracked concrete at the meso-scale under isothermal
conditions. In the model, aggregates and ITZs were
explicitly taken into account. Since an understanding
of the pore-scale behaviour is essential to a success-
ful interpretation and prediction of the macroscopic
behaviour, DEM was applied to capture the mechan-
ical behaviour of concrete and CFD was used to
describe the laminar viscous two-phase liquid/gas flow
in pores between the discrete elements by employing
fluid flow network.

The main goal of our simulations was to show
the effect of ITZs on fluid flow in unsaturated
concretes driven by both hydraulic and capillary
pressure that cannot be easily evaluated experimen-
tally. Fully coupled hydro-mechanical simulation tests
were carried out on unsaturated specimens of a
simplified meso-structure imitating the pure cement
matrix, cement matrix including aggregate and cement
matrix including aggregate with ITZ of a defined
thickness.

The physics of capillary-driven fluid flow at the
mesoscale is complex (Chatzis & Dullien 1983; Mason
& Morrow 1991; Tsakiroglou et al. 2007). In general,
the capillary pressure constitutes a difference between
partial pressures of liquid (wetting) and gas phases.
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Consequently, capillary pressure exists wherever a
liquid phase and a gas phase coexist. Three types of
pore-level physics exist that are relevant to dynamic
pore-scale modelling: 1) piston-like displacement, 2)
pore cooperative filling and 3) snap-off. For a piston-
like displacement, one phase completely displaces the
other from the pore space. The capillary pressure is
defined by a local geometry and radius of curvature
of the interface. For the pore co-operative filling, the
displacement of one fluid by another depends not
only on a local pore geometry but also on whether
there exist other adjacent pinned interfaces (Hughes
& Blunt 2000). For snap-off, the interface movement
occurs in the form of films through corners and rough
surfaces. The wetting phase maintains hydraulic con-
tinuity, leading to pore filling ahead of the connected
front (Rossen 2003).

Capillary-driven fluid flow in porous materials
at the meso-scale was studied using a variety of
approaches and models. In general, three types of mod-
els to determine the liquid conductivity function can
be distinguished (empirical, tube and network mod-
els). The empirical models are the most simplified
ones. They provide a set of analytical functions to be
adjusted to measured data (Galbraith 1992; Pedersen
1990). However, due to their limited flexibility and
adjustability as well as the implied restrictions to a
specific moisture range such models are not appli-
cable for an entire moisture range description. By
contrast, network models are the most extensive ones
(Carmeliet & Roels 2001; Descamps 1997; Dullien
1979; Fatt 1956; Roels et al. 2003; Scheffler & Plagge
2010; Xu et al. 1997). Their basic idea is to approxi-
mate the pore structure by a lattice of tubes and bonds
at the meso- or micro-scale. The tubes are randomly
distributed. The tube radii follow the measured pore
structure data of the material. Simulating the pene-
tration of the network by fluid, storage and transport
functions based on the measured pore volume dis-
tribution data can be derived. The main advantage
of the network approaches is the ability to approxi-
mate the pore structure and to account for structural
effects by percolation rules.An extensive review of the
existing capillary-driven fluid flow models based on
the pore-network approach is presented by Sheng and
Thompson 2016. However, they did not couple DEM
with CFD.

The innovative element of the numerical meso-
scopic coupled DEM/CFD approach developed by the
authors for modelling hydraulic- and capillary-driven
fluid flow in unsaturated concrete at the meso-scale
subjected to the external load as compared to other
existing models in the literature is the detailed track-
ing of water/gas fractions in pores regarding their
varying geometry, size and location. There are no
available in the literature coupled hydro-mechanical
DEM/CFD models of multi-phase fluid flow that
might be employed to simulate capillary-driven multi-
phase flow in unsaturated concrete subjected to exter-
nal loads. The ability of the approach to faithfully
reproduce the material meso-structure (based e.g. on

micro-computed tomography (Skarżyński et al. 2015;
Zeng et al. 2021)) allows for realistic studying fluid
flow in ITZs. The approach enables also to study
of capillary-driven multiphase flow in unsaturated
concrete during initiation and propagation of cracks.

The arrangement of the current paper is as fol-
lows. After the introductory Section 1, the discrete
element method (DEM) is summarized in Section 2.
Section 3 describes a coupled DEM/CFD approach
for two-phase flow. A discussion on the model cal-
ibration is in Section 4. Section 5 includes some
numerical simulation results on capillary-driven water
flow in unsaturated cement matrix/concrete speci-
mens. Finally, some concluding remarks are offered
in Section 6.

2 DEM FOR COHESIVE-FRICTIONAL
MATERIALS

DEM calculations were performed with the 3D spheri-
cal explicit discrete element open codeYADE (Kozicki
& Donzé 2011; Šmilauer & Chareyre 2011). The
method allows for a small overlap between two con-
tacted bodies (the so-called soft-particle model).Thus,
an arbitrary micro-porosity can be obtained in DEM. In
DEM, particles interact with each other during trans-
lational and rotational motions through a contact law
and Newton’s 2nd law of motion using an explicit
time-stepping scheme (Cundall & Strack 1979). In
the model, a cohesive bond is assumed at the grain
contact exhibiting brittle failure under the critical nor-
mal tensile load. The shear cohesion failure initiates
contact slip and sliding obeying the Coulomb friction
law under normal compression. Damage occurs if a
cohesive joint between spheres disappears after reach-
ing a critical threshold. If any contact between spheres
after failure re-appears, the cohesion does not appear
more. A simple local non-viscous damping is used
(Cundall & Strack 1979) to accelerate convergence
in quasi-static analyses. Note that material softening
is not considered in the DEM model.

In general, the material constants are identified in
DEM with the aid of simple laboratory tests on the
material (uniaxial compression, uniaxial tension, shear
and biaxial compression).The detailed calibration pro-
cedure for frictional-cohesive materials was described
by Nitka and Tejchman (2015) and Suchorzewski et
al. (2018).

The DEM model demonstrated its usefulness for
both local and global simulations of macro- and
micro-cracks in concretes under bending (2D and 3D
analyses) (Kozicki et al. 2014; Nitka & Tejchman
2015) uniaxial compression (2D and 3D simulations)
(Caggiano et al. 2018) and splitting tension (2D anal-
yses) (Kozicki et al. 2014; Skarżyński et al. 2015).
The combined DEM/x-ray µ-CT images mesoscopic
approach proved to be an extremely appealing com-
putational tool for investigating fracture in concrete.
In those calculations, ITZs had no either physical
width and were simulated by weaker contacts between
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aggregates and cement matrix (Nitka & Tejchman
2015; Skarżyński et al. 2015) or had a defined width
with higher porosity (Nitka & Tejchman 2020). To
study coupled mechanical-hydro-thermal problems in
concrete, the second approach should be used. The
coupled problems must, namely, take porous ITZs into
account since their porosity favours heat and fluid
transport (Stroeven et al. 2017a).

3 LAMINAR TWO-PHASE FLUID FLOW
MODEL

The 2D laminar two-phase fluid flow model was
described in detail by Krzaczek et al. (2021) and Abdi
et al. (2021). Here, the most important information
is provided for the sake of clarity. The original sys-
tem consists of two coexisting domains: 3D discrete
domain (one layer of spheres) and 2D fluid domain.
The gravity centers of spheres are located on the XOY
specimen mid-plane.To create a two-dimensional fluid
domain, spherical 3D particles are projected onto the
mid-plane of the specimen. Consequently, a remeshing
procedure interprets the set of 3D spheres as a set of 2D
disks (circles). The remeshing procedure discretizes
the overlapping circles (projected spheres), determines
the contact segments and deletes the overlapping areas
(Krzaczek et al. 2020). The algorithm of discretization
is based on theAlfa Shapes theory (Bernardini & Bajaj
1997). The displacements of spheres in the perpendic-
ular direction OZ and the rotations around the axes OX
and OY are fixed. The remeshing procedure results in
a triangular mesh representing the fluid domain. The
gravity centers of the mesh triangles (VP) between
the discrete elements are connected by channels com-
posed of two parallel plates that form a virtual network
of pores (VPN) to accurately reproduce their chang-
ing geometry (shape, surface and position) (Figure 1).
The isolated pores in 2D are not isolated in 3D. The
virtual (artificial) channels are introduced in the 2D
fluid flow network to reproduce real flow in 3D. They
are located between spheres in contact and connect the
isolated pores.

Two types of channels are introduced (Krzaczek et
al. 2020, 2021) (Figure 1): 1) the channels between
spheres in contact (called here the virtual ‘S2S’ chan-
nels) and 2) the channels connecting grid triangles in
pores (called here the ‘T2T’ channels). The channel
length is equal to the distance between the gravity
centers of adjacent grid triangles. The hydraulic aper-
ture h (height) of virtual channels ‘S2S’ is related to
the normal stress by a modified empirical formula of
(Hökmark et al. 2010) and calculated as

h=β(hinf + (h0 −−hinf )e−1.5·10−7σn ) (1)

where – the hydraulic aperture for the infinite nor-
mal stress, – the hydraulic aperture for the zero normal
stress, – the effective normal stress at the particle
contact and β – the aperture coefficient.

Figure 1. Fluid flow network in non-homogeneous granu-
lar specimen with triangular discretization of pores: types of
channels (A) virtual channel type ‘S2S’ (red colour) and B)
channel type ‘T2T’ (blue colour)).

The hydraulic aperture of the channel type ‘T2T’
is directly related to the geometry of the adjacent
triangles as

h= γ e cos (90◦ − ω) (2)

where e – the edge length between two adjacent trian-
gles, ω – the angle between the edge with the length
e and the centerline of the channel that connects two
adjacent triangles and γ – the reduction factor, neces-
sary to fit the fluid flow intensity to real complex fluid
flow conditions in concrete. The reduction factor γ is
determined to keep the maximum Reynolds number
Re below 2100.

There is no fluid flow in triangles by assumption.
VPs accumulate pressure and store fluid phase frac-
tions and densities. The mass change in VPs is related
to the density change in a fluid phase that results in
pressure variations. The equation of momentum con-
servation is, thus, neglected in triangles but the mass
is still conserved in the entire volume of triangles. The
equations of state and continuity are employed to com-
pute the density of fluid phases stored in VPs. The
fluid phase fractions in VPs are calculated by apply-
ing the continuity equation for each phase assuming
that fluid phases share the same pressure. The fluid
flow in channels is estimated by solving continuity
and momentum equations for the laminar flow of the
incompressible fluid.As a result of discretization, each
pore is discretized into several triangles (VP). The
channels connect the gravity centers of triangles and
create a fluid flow network (VPN). The liquid and gas
may initially exist in virtual pores.

In capillary-driven water flow calculations, piston
displacement, snap-off physics and viscous flow are
taken as the primary fluid flow mechanisms. Due to
the discretization of a single pore, the cooperative pore
filling effect is indirectly taken into account.The liquid
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phase is assumed to be a wetting (invading) fluid and
the gas phase is a non-wetting (defending) fluid. Three
flow regimes are distinguished: a) single-phase flow of
gas with αp=1 (αp is the volume fraction of the gas-
phase), b) single-phase flow of liquid with αq=1 (αq
is the volume fraction of the liquid phase) and c) two-
phase flow (liquid and gas) with 0<αq<1. Capillary
pressure is solely considered in flow regime (b) when
VP completely pre-filled with a liquid (wetting) phase
is adjacent to VP partially filled with a liquid-phase
(or only a gas-phase). In this flow regime, the fluid
flows in channels through a thin film region separated
by two closely spaced parallel plates according to a
classical lubrication theory (Reynolds 1883), based on
the Poiseuille flow law (Batchelor 2000).

To link viscous forces and capillary forces, the
Washburn (Washburn 1921) equation is combined
with the Poiseuille equation. Hence, the mass flow rate
of the capillary-driven flow along channels for flow
regime (b) (single-phase flow) in channels (capillaries)
is

Mx = ρ h3

12µ

Pi − Pj − Pc

L
, (3)

where Mx = the mass fluid flow rate (per unit length)
across the film thickness in the x-direction [kg/(m s)],
h = the hydraulic channel aperture (its perpendicular
width) [m], ρ = the fluid density [kg/m3], t = the time
[s], µ = the dynamic fluid (liquid or gas) viscosity [Pa
s] and P = the fluid pressure [Pa], Pi and Pj are the
pressure in adjacent VPs, Pc is the capillary pressure
and L is the length of the channel connecting VPs. The
capillary pressure Pc due to the interface between the
two phases (a meniscus) is given by Young-Laplace
law

Pc= 2σ cos�

rt
(4)

where σ is the interfacial tension [N/m], � is con-
tact angle [deg] and rt is the throat radius equal to
half the channel aperture [m]. However, the capillary
sorption and water/gas permeability of cement-based
materials are physically determined by their current
pore structure and current water distribution which
change during a pore filling process with water. Hence,
the capillary pressure in individual capillaries or pores
varies with time and depends on the local current con-
centration of water. The problem was investigated in
(Aker et al. 2000) for the drainage-dominated fluid
displacement. They proposed the dependence of Pc on
the position of the meniscus in the tube (capillary).
This concept is adopted to relate the capillary pressure
in the channel to the liquid phase fraction in VP. In
the piston displacement scenario, VPi is filled in with
water while the adjacent pore VPj is partially filled in
with water. VPs are connected by the ‘S2S’ or ‘T2T’
channel that can perform a capillary function depend-
ing on their dimensions (height) only. It is assumed
that the capillary pressure is greater than zero in the
channels 1×10−9 m to 1×10−6 in height. Moreover, it

is assumed that the relative position of the meniscus in
the channel is equal to the liquid phase fraction αq in
the partially filledVP.The corrected capillary pressure
is computed as

P̃c= ecorPc, (5)

where ecor is the correction coefficient

ecor = 1

2
(1− cos (2παq))(1− k)+ k (6)

with αq as the liquid phase fraction in the partially
filled VP and as is the calibration parameter. It can be
noted that the correction coefficient ecor in Eq. 5 varies
in the range (k , 1) and reaches the maximum value for
αq=0.5.

The maximum corrected capillary pressure is equal
to the capillary pressure in Eq. 4. For the snap-off fill-
ing, the movement of the interface occurs in the form
of films through corners of the pore space (the cor-
ners are formed by edges of triangles that make up the
throat). The wetting phase maintains hydraulic conti-
nuity, leading to the pore filling ahead of the wetting
front.Adopting a concept of Hughes and Blunt (2000),
a criterion for the snap-off threshold capillary pressure
is implemented:

Pcr = σ
rt

( cos�− sin ) (7)

where ω is the half-angle of the pore corner. If the
hydraulic pressure difference �Pij in adjacent virtual
pores is greater than Pcr and both virtual pores are not
fully saturated, the liquid phase fraction αq,i is set to
1.0 (full saturation). When the adjacent virtual pores
are partially filled with the liquid phase, a two-phase
flow (flow regime (c)) of two immiscible and incom-
pressible fluids in a horizontal channel is assumed to
simulate two-phase isothermal fluid flow, driven by
a pressure gradient in adjacent VPs. The liquid/gas-
phase surface is assumed to be horizontal and constant
along the channel. A detailed description of the two-
phase fluid flow was presented in (Krzaczek et al.
2021). The fluid flow model is coupled with DEM
and is implemented into the open-source code YADE
(Kozicki & Donzé 2011).

When the external load is applied, the material
structure becomes significantly deformed. This can
result in significant variations in the pore-capillary
system topology. The topology of the fluid flow net-
work may change as well as the dimensions of pores
and capillaries. As a consequence, the pressure and
fluid phases fractions in pores are affected.The numer-
ical algorithm is divided into 4 main stages (Krzaczek
et al. 2020, 2021):

a) computing the mass flow rate for fluid flowing in
channels surrounding VPi,

b) calculating liquid and gas phase fractions in VPi by
employing the continuity equations,

c) computing density of phases in VPi by employing
the equation of state,
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d) calculating pressure in VPi by employing the equa-
tion of state.

This algorithm is repeated for each VP in VPN
using an explicit formulation. The discretization algo-
rithm is based on the alpha-shape theory and the
Delaunay triangulation. The grid remeshing is auto-
matically performed when the topological properties
of the grid geometry change (Krzaczek et al. 2020).
The computational results (e.g. pressures) are accu-
rately transformed from the old grid to the new one
by assuming that the mass is a topological invariant.
The coupling scheme of DEM with CFD is described
in detail in (Krzaczek et al. 2020).

The results of high-pressure fluid flow in
densely packed granules with the coupled DEM/CFD
approach were successfully compared with the full 3D
CFD model (Abdi et al. 2021).

4 MODEL CALIBRATION

The pure DEM represented by spheres was calibrated
with the aid of a simple uniaxial compression test
while the pure CFD was calibrated with the aid of
a permeability and sorptivity test for an assembly of
spheres.

In the first step, an extremely simple 2D DEM
mesoscopic structure was chosen to imitate the cement
matrix/ concrete in contrast to our previous detailed 3D
simulations (Nitka & Tejchman 2018). Spheres as dis-
crete elements were chosen only.A small bonded gran-
ular specimen of 10×10 mm2 included 400 spheres.
One layer of spheres was applied along with the spec-
imen depth. The sphere diameter was in the range
0.25-0.75 mm (with the mean sphere diameter of
d50=0.5 mm). The macro-pores were neglected for the
sake of simplicity.The same simplified meso-structure
of concrete was assumed in simulations (Section 5).
The coupled DEM/CFD calculations were carried out
on 3 different bonded specimens: pure cement matrix
specimen (the so-called 1-phase concrete material),
cement matrix specimen with one aggregate (the so-
called 2-phase concrete material) and cement matrix
specimen with one aggregate and ITZ around (the
so-called 3-phase concrete material) (Figure 2).

Figure 2. Numerical specimens in DEM/CFD calculations:
a) pure cement matrix (grey colour) with initial porosity
p=5%, b) cement matrix including aggregate (dark grey
colour) with initial porosity p=5% and c) cement matrix
including aggregate with initial porosity p=5% and ITZ layer
around it (light grey colour) with initial porosity p=20%.

The micro-pores corresponded to the free space
between spheres. A non-spherical aggregate was mod-
elled as a rigid non-breakable cluster composed of 12
spheres. ITZ was assumed in the form of 3 layers of
spheres of d=0.25 mm around the aggregate with the
initial porosity of p=20% (the cement matrix had the
initial porosity of p=5%).

Both the initial porosities of the cement matrix
(5%) and ITZ (20%) were assumed from experiments
(Nitka & Tejchman 2020). The width of ITZ was about
tITZ =0.75 mm, i.e. was 10 times higher than this in
real concrete, measured with the scanning electron
microscope (SEM) (Nitka & Tejchman 2020).

4.1 Calibration of CFD

The fluid flow model was calibrated on an already
calibrated DEM specimen. Calibration constituted a
two-step procedure: 1) permeability tests (Darcy test)
and 2) sorptivity test.

Permeability test

A simple permeability Darcy test with two cement
matrix specimens of Figure 2a was performed for
calibration purposes of the CFD model (Figure 3).
Single-phase flow was assumed. Two 2D DEM spec-
imens with different initial porosity were prepared.
Their size was again 10×10 mm2 (Figure 3).

The first specimen ‘1’ simulated the cement matrix
and had the initial porosity of p=5% and the sec-
ond specimen ‘2’ simulated ITZ around aggregates
and had the initial porosity of p=20%. The number
of spheres and the number of contacts were equal to
470 and 1280 (specimen ‘1’) and 370 and 830 (spec-
imen ‘2’). The constant water pressure of 4 MPa was
applied to the bottom edge and the constant water
pressure of 1 MPa was applied to the top edge. At
the left and right edges, the zero-flux conditions were
imposed (Figure 3c). The following material constants
were assumed. The dynamic viscosity of water was
µ=10.02·10−4 Pa·s, its compressibility C=4.0•10−10

Pa−1 and density ρ0=998.321 kg/m3 for the refer-
ence pressure P0=0.1 MPa. The virtual S2S channel
apertures in Eq.1 were equal to hinf =4.5·10−7 m and
h0=3.25·10−6 m. The reduction factor in T2T channels
was γ=0.012 in Eq. 2 and the aperture coefficient was
β=1.0 in Eq. 1 (in virtual S2S channels).

Assuming that the volumetric flow rate at horizontal
walls was the same at the equilibrium state, the macro-
scopic permeability coefficient κ was calculated using
Darcy’s law:

κ = Q

A
µq

L

�P
(8)

where Q is the volumetric flow rate at the equilibrium
state [m3/s], A is the specimen cross-section [m2], L
denotes the specimen height and �P is the pressure
difference between the bottom and top edges [Pa].

For the further numerical tests, the permeability
coefficient of κ=4e-16 m2 was chosen for the cement
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Figure 3. Cement matrix specimen in permeability test: a)
and b) DEM granular specimens composed of spheres with
different initial porosity p: 5% (a) and 20% (b), c) boundary
and initial conditions.

matrix that agreed well with laboratory test results for
ordinary cement matrices with the water/cement ratio
of 0.40 and degree of hydration of 0.95 (Stroeven et al.
2017a). For ITZ with p=20%, the permeability coeffi-
cient was 10 times higher κ=4e-15 m2 (in agreement
with test results for high saturation degrees (Stroeven
et al. 2017a)).

Sorptivity test

The dry specimen of porosity 5% (Figure 9a) was used.
The initial fluid (gas phase) pressure was 0.1 MPa. To
fill in the pores in contact with water, constant pres-
sure of 0.14 MPa was adopted as a boundary condition
at the lower specimen edge. The boundary pressure
maintains a small pressure gradient on the boundary
simulating a slight fluid flow, replenishing the water in
the specimen.At the top edge of the specimen, constant
pressure of 0.10 MPa was defined. No mass flow rate
was defined along the vertical edges of the specimen.
The simulations were carried out in isothermal condi-
tions at the temperature of 293.16 K. The permeability
κ=4e-16 m2 was assumed.

The calculated sorptivity S0 of the cement matrix
specimen was 0.405 mm/min1/2, being in agreement
with laboratory tests results (Hall 1989).

5 NUMERICAL RESULTS OF
CAPILLARY-DRIVEN FLUID FLOW IN
CEMENT MATRIX SPECIMENS

Three bonded granular specimens of Figure 2 were
again selected for capillary-driven fluid flow testing.
The cement mortar with the initial porosity of 5% had
a permeability coefficient of κmort=4•e−16 m2, and
ITZ with the initial porosity of 20% had a perme-
ability coefficient of κ ITZ =4•e−15 m2 (Section 4.1).
The basic material constants for the cement matrix and
fluid were adopted. The initial conditions and bound-
ary conditions were the same for all specimens. The
initial pressure of the fluid (gas and liquid phase) was
set at 0.1 MPa (close to the atmospheric pressure).
The initial saturation degree was 0.0 (dry specimen).
To simulate the pore filling with water, constant pres-
sure of 0.14 MPa was chosen. The boundary pressure
maintained a small pressure gradient on the boundary
simulating a slight fluid flow, replenishing the water in
the specimen. It was defined in pores in contact with
the specimen bottom.This pressure was slightly higher
than the initial pressure in the fluid domain (0.1 MPa)
to fill in the pores with the water before the capillary
pressure became effective. Along the remaining spec-
imen boundaries, a mass flux rate of zero was defined
(the so-called sealed surfaces). Hence, the dominant
factor driving the fluid flow was the capillary pressure.
The transient process took place under isothermal con-
ditions. A constant and uniform temperature of 293.16
K was defined in the solid-fluid domain. The external
pressure equal to the atmospheric pressure (0.1 MPa)
was also applied to sealed surfaces. The fluid flow in
the specimens was observed at three stages: 1. the first
stage - after the zone of full saturation reached the
height of 0.15H (where H is the specimen height),
2. the second stage – after the zone of full satura-
tion reached the height of 0.33H (corresponds to the
lower surface of the aggregate grain) and 3. the third
stage – after the zone of full saturation reached the
height of 0.60H (corresponds to the upper surface of
the aggregate).

5.1 Pure cement matrix

Once the pores in contact with their surroundings were
filled in with water, capillary pressure appeared in the
virtual S2S channels and fluid began to flow. The cap-
illary pressure depended on the channel aperture and
its maximum value reached 3.52 MPa. The capillary
pressure started to drive the fluid from one virtual
pore to the adjacent virtual pore. It solely affected
the mass flow rate through the common edge of two
adjacent virtual pores. The pressure in virtual pores
depended on the amount of mass flowing to or from
virtual pores, properties of compressible fluids in vir-
tual pores, virtual pore volume changes (due to the
mechanical interaction with spheres) and pressures in
surrounding pores. Therefore, the pressure in virtual
pores differed from the capillary pressure. In addi-
tion, the fluid flow rate depended on the gas-phase
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fraction in virtual pores and channels. The fluid flow
rate between two adjacent virtual pores that were not
fully water-filled was strongly affected by permeabil-
ity while the fluid flow rate between the fully saturated
virtual pore and adjacent partially water-filled virtual
pore was affected by the capillary pressure. Figure 4
shows the capillary-driven fluid flow at the third stage
of fluid flow. The capillary pressure solely appeared
along the surface that separated fully saturated virtual
pores from partially saturated virtual pores, hereinafter
referred to as the wetting front.

Figure 4. Calculation results of capillary-driven fluid flow
in a specimen of the cement matrix at third stage of fluid
flow: (a) capillary pressure, b) water phase fraction in range
from 0.0 to 0.999 and c) full saturation state of water content
and d) high hydraulic pressure zone).

At the first stage of fluid flow, the virtual pores were
only partially filled in with water above the wetting
front and under the wetting front, the virtual pores
were completely filled in with water (fully saturated).
At this stage, the progress of the wetting front was
relatively fast. The fluid flow above the wetting front
was driven solely by the hydraulic pressure.

At the second flow stage, the fluid slightly slowed
down due to an increasing distance from the specimen
bottom, resulting in a hydraulic pressure reduction
below the capillary pressure in the wetting front. The
mean capillary pressure remained the same as in the
first flow stage. The influence of vertical boundary
conditions on the shape of the wetting front increased.
It was lower in partially saturated virtual pores. The
increased hydraulic pressure zone was more dispersed
than in the first flow stage.

At the third flow stage (Figure 4), the fluid contin-
uously continued to slow down. The mean capillary
pressure remained the same (Figure 4a) as in the pre-
vious flow stages The influence of vertical boundary
conditions on the shape of the wetting front remained
the same (Figure 4c) – it was again lower in partially
saturated virtual pores. The increased hydraulic pres-
sure zone was not dispersed as in the second stage. The

area with the increased hydraulic pressure was much
larger than in the previous flow stages. The calculated
sorptivity S0 was 0.405 mm/min1/2 and corresponded
to that of the mortar (cement/sand ratio 1:7) (Hall
1989).

5.2 Cement matrix with aggregate

After filling in boundary pores with water to full
saturation, the fluid started to flow into the fluid
domain (capillaries and pores) under the capillary
pressure. Figure 5 presents the third flow stage of the
capillary-driven flow.

At the first stage of fluid flow, the capillary pressure
was present in the cement matrix only. Thus, fewer
capillaries were involved in driving the fluid flow.
Unexpectedly, the increased hydraulic pressure zone
concentrated just below the aggregate.The area of fully
saturated virtual pores coincided with the increased
hydraulic pressure zone. The fluid flow, driven solely
by the hydraulic pressure (apparent pores not filled
in with water) was the strongest outside the area of
interaction between the aggregate and vertical spec-
imen surface boundaries. The fluid flow in this area
was highly dependent upon permeability.

Figure 5. Computation results of capillary-driven fluid flow
in cement matrix with aggregate at third fluid flow stage: (a)
capillary pressure, b) water content (water phase fraction) in
range from 0.0 to 0.999 and c) full saturation state of water
content and d) high hydraulic pressure zone).

In contrast to the cement matrix specimen (Section
5.1), the fluid slowed down at the second flow stage
due to the presence of the aggregate, being an obsta-
cle to the flowing fluid. A significant influence of the
aggregate on the shape of the wetting front occurred.
The largest area of the increased hydraulic pressure
zone was between the aggregate and vertical speci-
men boundaries. The highest hydraulic pressure was
in this zone, reaching the value of 1.18×106 Pa.

At the third flow stage (Figure 5), the fluid contin-
ued to flow more slowly than at the first flow stage.The
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presence of the aggregate still affected the shape of the
wetting front (Figure 5a). Above the wetting front, the
fluid flow was driven by the hydraulic pressure only
(Figure 5b). Due to the presence of the aggregate and
its shape, the increased hydraulic pressure zone was
asymmetric and its right part between the aggregate
and the right vertical specimen boundary was closer to
the upper specimen boundary (Figures 5d).As a result,
the fluid moved slightly faster along the right vertical
specimen boundary surface than along its left vertical
specimen boundary (Figure 5c). The calculated sorp-
tivity S0 was 0.401 mm/min1/2 and corresponded to
that of the concrete cement/sand/aggregate ratio 1:2:4
and water/cement ratio 0.4) (Hall 1989).

5.3 Cement matrix with aggregate and ITZ

A strong influence of the presence of the aggregate
and ITZ on the wetting front took place at the first
fluid flow stage. The maximum capillary pressure was
3.54 MPa and the maximum hydraulic pressure was
1.16 MPa. At the first stage, the mass flow rate of the
fluid above the wetting front depended on the perme-
ability only. Hence, the highest flow rate occurred in
ITZ. Thus, the water content and hydraulic pressure
increased most rapidly in ITZ and not in the cement
matrix.

In contrast to the cement matrix with the aggregate
(Section 5.2), the lowest height of the full saturation
zone was just below the aggregate and ITZ since the
water moved much faster through ITZ than through
the cement matrix. As a result, the time was long to
fill in the pores below the aggregate and ITZ.

Figure 6. Computation results of capillary-driven fluid flow
in cement matrix with aggregate and ITZ at third fluid flow
stage: (a) capillary pressure, b) water phase fraction in range
from 0.0 to 0.999 and c) full saturation state of water content
and d) high hydraulic pressure zone).

At the second fluid flow stage, the water completely
filled in the pores in the cement matrix almost to half
the specimen height but not in ITZ. At this stage,

the fluid mass flow rate above the wetting front still
depended on the permeability only. Thus, the highest
mass flow rate of the fluid took place in and above ITZ.
Along the surface of the wetting front, the capillary-
driven fluid flow dominated. The wetting front was
not present in ITZ. The highest hydraulic pressure was
not thus in ITZ but in the cement matrix. Due to the
high porosity of ITZ (porosity 20% in contrast to the
cement matrix porosity of 5%), the pores and capil-
laries in ITZ were too large for developing capillary
pressure. Despite the greater permeability of ITZ, the
pores fully filled in with water at a slower rate than in
the cement matrix. As in the first stage, the maximum
capillary pressure was 3.54 MPa and the maximum
hydraulic pressure was 1.07 MPa.

At the third stage of the fluid flow, the wetting front
passed ITZ (Figure 6a). The process of full filling
of pores with water accelerated caused by a signifi-
cant growth of the number of pores and capillaries in
which the capillary pressure developed. Even if the
pores outside ITZ were fully saturated (Figure 6b),
the pores in ITZ were not filled in with water (Figure
6c). At this stage, the highest hydraulic pressure was
observed in ITZ (Figure 6d). The calculated sorptivity
S0 was 0.276 mm/min1/2 and corresponded to that of
the concrete (cement/sand/aggregate ratio 1:2:4 and
water/cement ratio 0.6 (Hall 1989)). There existed a
significant difference in sorptivity between the speci-
men of the cement matrix with the aggregate (S0=0.67
mm/min1/2) and the specimen of the cement matrix
with the aggregate and ITZ (S0=0.48 mm/min1/2) ).

It can be concluded that ITZs in concrete decelerate
the capillary fluid flow and consequently reduce sorp-
tivity. However, for the sufficiently high hydrostatic
pressure of water on the outer surface of a structural
element made of concrete, the hydraulic pressure and
not the capillary pressure becomes the dominant fac-
tor driving the fluid flow in unsaturated concretes. In
this case, ITZs accelerate the fluid flow and the pro-
cess of filling the pores with water due to the higher
permeability of ITZ than the cement matrix. This
conclusion is consistent with the results in (Stroeven
et al. 2017a). This is of particular importance when
designing water-tight concretes as the presence of ITZs
with high permeability accelerates the penetration of
water through the concrete. It should be noted that the
DEM-CFD model in the current paper solely repro-
duces the free water flow under isothermal conditions
(the mass and heat transfer in porous materials under
non-isothermal conditions may be more complex).

6 SUMMARY AND CONCLUSIONS

The paper proposes a novel hydro-mechanical
DEM/CFD model of multi-phase fluid flow in unsat-
urated concretes under isothermal conditions. The
model enables the detailed tracking of liquid/gas frac-
tions in pores and fractures concerning their varying
geometry and topology, size and location. The model
results provide a deeper understanding of the effects
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of ITZ on water transport through cementitious mate-
rials. The following main conclusions can be offered
from our numerical analyses:

– Porous ITZs in concretes decelerate the capillary
fluid flow and consequently reduce its sorptivity.

– Sufficiently high hydraulic water pressures become
the dominant factor driving the fluid flow in unsatu-
rated concretes. In this case, porous ITZs accelerate
the full saturation of pores. For low hydraulic pres-
sures, the capillary pressure becomes the dominant
factor driving the fluid flow in unsaturated con-
cretes. In this case, porous ITZs slow down the full
saturation of pores. The aggregates without ITZs
increase the fluid flow time as compared to the
pure cement matrix under the capillary pressure
and do not have an influence on fluid flow under
the hydraulic pressure.

– The direction of the applied external pressure
affects the fluid flow velocity in cement matrix
specimens. The fastest fluid flow takes place for the
horizontal external pressure and the slowest one for
the vertical external pressure.
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ABSTRACT: This paper proposes a multi-chemo-physics model to incorporate carbonation, de-carbonation
and re-carbonation processes under high temperature. Experimental validation of the proposed integrated model
is conducted by using the thermo-gravimetry experiments of cement paste and the strength of mortar composites
immediately after high-temperature heating and after post-fire-curing. The CO2 concentration and the humidity
are experimentally changed as the thermodynamic boundary conditions for wide-range verification and valida-
tion. The compressive strength is treated not as the material property but the computed structural capacity of a
cylindrical solid in which the temperature, hydration degree and carbonation develop non-uniformly. The pro-
posed model allows practically reasonable assessment of fire-damaged and moist-cured concrete as a multi-scale
composite.

1 INTRODUCTION

In fire-exposed structural concrete, various changes in
chemical and mechanical properties proceed because
of the complex combination of thermal, hygral, chem-
ical and mechanical phenomena (e.g. Hertz 2003; Liu
et al. 2018; Phan et al. 2001). The authors have pro-
posed some models (Higuchi et al. 2021; Iwama et
al. 2020, 2021) aiming at performance evaluation dur-
ing and after fire of concrete structures (see Figure
1) by integrating the characteristics of concrete and
reinforcing bars at high temperature into a multi-scale
platform (Maekawa et al. 2003, 2008), as shown in
Figure 1. The meso-scale modeling of cementitious
composite is linked with the macroscopic model of
large referential volume including multi-directional
cracks. Then, reinforced concrete that was exposed to
fire can be rebuilt inside the computer system and its
capacity and ductility can be simulated as shown in
Figure 2.

This paper is part of the upgrading multi-scale
modeling (Higuchi et al. 2021; Iwama et al. 2020,
2021), and the authors focus on the carbonation of
cement hydrates during and after heating as well as
carbonation under normal climate conditions where
neutralization is the major factor affecting durabil-
ity. There are studies investigating the carbonation
depth of fired concrete and the rate of carbonation
after heating (Li et al. 2013, 2014; Oliveira et al.
2019; Yatsushiro et al. 2019). On the other hand, car-
bonation has the effect of densifying the micro-pore
structure of concrete and increasing its strength. Thus,

these conflicting effects on solid mechanics may be
prominent especially at elevated temperature.

According to the analysis of combustion gas gen-
erated at fire sites in Japan (Suzuki et al. 1989), the
carbon dioxide (CO2) concentration often rises to 5%,
but there are also sites where it rises to 15% depend-
ing on the fire situation. Recent years have seen the
emergence of studies focusing on carbonation during
heating (e.g.Yatsushiro et al. 2019). However, strength
gain by carbonation during fire has received compar-
atively little attention. It is surmised that increase in
strength related to changed pore structure is a non-
negligible aspect that ought to be considered in the
performance assessment of structural concrete.

In this paper, the authors introduce carbonation and
de- and re-carbonation models of cement hydrates
in all processes of fire heating. The proposed mod-
els are computationally verified and validated by
multifaceted experiments, and further refinement of
the existing multi-scale modeling for fire conditions
(Higuchi et al. 2021; Iwama et al. 2020, 2021) is
envisaged to extend its applicability and versatility.

2 CARBONATION, DE-CARBONATION AND
RE-CARBONATION MODELS DURING
HIGH TEMPERATURE AND
POST-FIRE-CURING

Three models are proposed and described, namely
a carbonation model of quicklime (CaO), which
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Figure 1. Outline of multi-scale modeling including upgrading models in fire conditions (Iwama et al. 2020, Higuchi et al.
2021). A) Multi-component cement heat hydration model, B) Solidified micro-pore structure formation model according to the
hydra-tion and carbonation, C) Deterioration and re-hydration model of CSH and CH solids with moisture and carbon dioxide,
D) Sto-chastic model of micro-pores, E) Moisture equilibrium and kinetics inside the micro-pores, F) Coupled migration and
equilibri-um of pore solutions, G) Spalling model and transient boundary condition, H) Aggregate-cement binder interaction
and solidification, I) Smeared crack modeling for structural concrete elements.

can be created by dehydration of calcium hydrox-
ide (Ca(OH)2) at high temperature, a de-carbonation
model of calcium carbonate (CaCO3), which can be
generated by carbonation of calcium silicate hydrate
(C-S-H), Ca(OH)2, and CaO, and a re-carbonation
model of Ca(OH)2, which is created by CaO rehydra-
tion at post-fire-curing. These models are integrated in
a multi-scale platform (Maekawa et al. 2003, 2008),
allowing automatic prediction of the properties of solid
concrete as accurate as the previous models (Higuchi
et al. 2021; Iwama et al. 2020, 2021).

The base multi-scale platform (Maekawa et al.
2003, 2008, Figure 3A) incorporates the carbonation
models of C-S-H and Ca(OH)2, and its applicability

has been confirmed at normal ambient room tem-
perature (Ishida & Li 2008; Ishida et al. 2004). This
system also computes the migration of carbon dioxide
and moisture and their thermodynamic equilibrium.
As chemo-physics events are not uniform in space,
dense clusters of carbonated solid are computationally
generated near the surface of structural concrete.

In this study, the existing carbonation model at
ambient states is kept unchanged and the character-
istic events at high temperature as stated above are
further focused on, as shown in Figure 3, to extend the
scope of the platform. This is expected to allow the
assessment of structural concrete performance under
accidental events to upgrade the resilience.
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Figure 2. Shear capacity of RC beams under fire actions
(Higuchi et al. 2021).

Figure 3. Outline of carbonation, de-carbonation and
re-carbonation models during and after heating.

2.1 Carbonation of CaO over 400◦C

The model of CaO quicklime carbonation generated
by the dehydration of Ca(OH)2 is introduced at high
temperature heating exceeding the boiling point of
100◦C. According to a previous study (Yatsushiro et
al. 2019), it has been confirmed that CaO generated
by the decomposition of Ca(OH)2 instantly reacts with
CO2 gas to generate CaCO3 in the temperature range of
400◦C to 500◦C. It is generally held that in this temper-
ature range, the strength of concrete decreases sharply
(Schneider 1988, Li et al. 2018) due to the increase
in porosity of cement paste caused by dehydration of
Ca(OH)2.

However, according to Yatsushiro et al. (2019), in
the presence of high concentrations of CO2, carbona-
tion may densify the micro-pore structure and increase
its strength. In the present study, it is assumed that CaO
generated by the decomposition of Ca(OH)2 directly
reacts with CO2 gas in micro-pores to generate CaCO3
(see Figure 3B). Thus, we simply propose the CaO
carbonation model as,

RCaO =
∫

CCaO ·MCO2 (1)

where RCaO = the amount of reacted CaO with CO2
gas (mol/m3), which does not exceed the amount of
CaO (mol/m3) generated by dehydration of Ca(OH)2
(Iwama et al. 2020); CCaO = the reaction rate of CaO at
high temperature, which is tentatively assumed as 1.0;
and MCO2= the amount of CO2 gas in the micro-pores
(mol/m3), which is calculated by the base original car-
bonation model (Ishida & Maekawa 1999; Maekawa
et al. 2003, 2008). This base model is a linear rate
model of the amount of CO2 gas whose migration
and diffusion are computed in parallel and linked with
the updated micro pore structures (Ishida et al. 2004;
Maekawa et al. 2003).

2.2 De-carbonation of CaCO3 at 600◦C to 800◦C

As one of the decomposition models of cement
hydrates at high temperature, the de-carbonation
model of CaCO3 calcium carbonate, which is gen-
erated by carbonation of C-S-H, Ca(OH)2, and CaO,
is introduced. According to previous studies (Alonso
& Fernandez 2004; Sabeur et al. 2016), CaCO3 de-
carbonation is reported to take place in the temperature
range of 600◦C to 800◦C. In the micro-pore structure
previously densified by carbonation, it is considered
that porosity increases rapidly due to the decomposi-
tion of CaCO3, and that this de-carbonation of CaCO3
has a great effect on the strength of concrete exposed
to high temperature.

In this study, CaCO3 generated by carbonation of
C-S-H, Ca(OH)2, and CaO is assumed to be gradually
decomposed from 600◦C to 800◦C (Figure 3C). Thus,
we have the simplified de-carbonation model as,

Wd(CO2),CaCO3 = WCO2,CaCO3

(
Tmax − 600

800− 600

)
(2)

(600◦ ≤Tmax ≤ 800◦)
Wd(CO2),CaCO3 = WCO2,CaCO3 (3)

(800◦<Tmax

where Wd(CO2),CaCO3= the amount of CO2 gen-
erated by de-carbonation of CaCO3 (mol/m3);
WCO2,CaCO3= the amount of CO2 chemically bound
in CaCO3 (mol/m3); and Tmax = the past maximum
temperature. The progression in the quantity of these
minerals is used to identify porosity and the distri-
bution of pore sizes based upon a statistical function
(Maekawa et al. 2003).

2.3 Re-carbonation of Ca(OH)2 during
post-fire-curing

An event that occurs in concrete after a fire is the
rehydration of CaO during post-fire-curing (Park et
al. 2015; Poon et al. 2001; Suh et al. 2020). This is
attracting attention as a self-healing process of con-
crete exposed to high temperatures, and in the previous
upgrading of the multi-scale platform (Higuchi et al.
2021; Iwama et al. 2020), it has been introduced and
verified.
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In this study, this rehydration model is integrated
with the carbonation model. Specifically, not only CaO
generated by dehydration of Ca(OH)2 but also CaO
generated by de-carbonation of CaCO3 are assumed
to rehydrate during post-fire-curing and return to
Ca(OH)2, as shown in Figure 3D.

It is assumed that in the presence of CO2 in the atmo-
sphere, Ca(OH)2 produced by rehydration of CaO is
carbonated again (re-carbonation) by the same process
as the existing carbonation model (Ishida & Maekawa
1999; Maekawa et al. 2003, 2008), as shown in Fig-
ure 3. The upgraded rehydration model is succinctly
expressed as,

Wr(CH ),CaCO3=
∫

Crh,CaCO3 ·
(

Wd(CO2),CaCO3 · 18.0

44.0

)
·Wfree · dt (4)

Wr(CH )=Wr(CH ),Ca(OH )2 +Wr(CH ),CaCO3 (5)

where Wr(CH ),CaCO3= the weight of rehydrated crys-
tallized water of Ca(OH)2 created by rehydration
of CaO, which is generated by de-carbonation of
CaCO3 (kg/m3); Crh,CaCO3= the reaction rate of rehy-
dration of CaCO3-based CaO, which is tentatively
assumed as 0.5; Wfree= the weight of free water that
reacts with CaO; Wr(CH )= the weight of all rehy-
drated crystallized water of Ca(OH)2 (kg/m3); and
Wr(CH ),Ca(OH )2= the weight of rehydrated crystallized
water of Ca(OH)2 created by rehydration of Ca(OH)2-
based CaO, which is proposed in Iwama et al. (2020)
(kg/m3).

The rehydrated Ca(OH)2 can be carbonated again
(re-carbonated) based on the existing original car-
bonation model (Ishida & Maekawa 1999; Maekawa
et al. 2003, 2008), as shown in Figure 3E. It was
also reported that expansion of concrete composites
and adhesion appear when Ca(OH)2 is generated by
rehydration of CaO (Higuchi et al. 2021). It is sim-
ply assumed in this study that this property does
not change, even in the rehydration model that is
incorporated in the carbonation model.

On the contrary, according to previous studies (e.g.
Kangni-Foli et al. 2021; Powers 1962), it has been
also reported that shrinkage occurs in the process
of carbonation of the hardened cement paste. In this
study, the model includes both events, i.e., volumetric
shrinkage is introduced at carbonation of Ca(OH)2 in

Table 1. Mix proportion of mortar specimens.

Unit weight (kg/m3

W/C

(%) s/c W C S SP

25 1.2 242 968 1162 14.5

W: water, C: cement, S: fine aggregate*1, SP: super plasti-
cizer, s/c: fine aggregate to cement ratio
*1 river sand, surface-dry density=2.58g/cm3, rate of water
absorption=2.21%

addition to the expansion at rehydration of CaO. Thus,
the overall volumetricchange can be positive or nega-
tive according to the balance of both chemical events
related to the mechanistic actions.

3 EXPERIMENTAL STUDY OF COMPRESSIVE
STRENGTH WITH CO2 CONCENTRATION
DURING HEATING

The varying compressive strength was presented in the
presence of high-concentration CO2 especially during
heating. Here, a high CO2 concentration environment
was experimentally created by placing dry ice (CO2
solidified under low temperature) in an electric fur-
nace at high temperature, as illustrated in Figure 4.
As a result, the chamber of the furnace was mostly
occupied by carbon dioxide when heating began.

Figure 4. Outline of experiments related in this study.

Table 1 shows the mix proportion of the high
strength mortar with water to cement ratio of 25%
using ordinary Portland cement. The specimen was
cured in sealed condition under constant temperature
of 20◦C for 28 days after casting. In this experi-
ment, the compressive strength was compared with
four levels of heating temperatures of 400, 600, 800
and 1,000◦C with and without dry ice (source of CO2
in the furnace) during heating. The heating rate was
2◦C/min for heating and cooling, and the temperature
was maintained at the specified level for one hour.
When the surface temperature of the test pieces was
about the same as room temperature, the compres-
sion test was promptly performed. The compressive
strength of all cases is shown in Figure 5.

An increase in compressive strength is clearly seen
around the temperature of 400◦C, when a high concen-
tration of CO2 was achieved in the furnace through
the introduction of dry ice. We can say that a high
CO2 environment is effective for strength gain. It is
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Figure 5. Experimental results of effect of CO2 during
heat-ing for change in compressive strength.

thought that the micro-pore structure would become
denser and the compressive strength would increase
based on the carbonation of CaO in the temperature
range of 400˚C to 500◦C as reported in Yatsushiro et

al. (2019). In the multi-chemo-physics analysis, the
diffusion of CO2 gas is considered through the media
with cracking. Thus, gas penetration reaches deeper
inside the specimens compared with the case of nor-
mal temperature, in which the densified carbonation
layers are limited to around the surface.

However, the impact of CO2 was not shown in the
case of 600◦C. There are two possible causes: a) CO2
gas was emitted quickly from the heating furnace, and
the CO2 concentration had already dropped in the tem-
perature range of 400◦C to 500◦C, b) de-carbonation
that occurs usually at about 600◦C to 800◦C occurred
from a slightly lower temperature. At any rate, it can
be said that the CO2 concentration during heating
may have an impact on the compressive strength of
cementitious composites with micro-pores.

4 EXPERIMENTAL VALIDATION OF
PROPOSED MODEL

4.1 Thermo-gravimetric analysis

The weight change of the hardened cement paste
during high temperature heating was confirmed by
using thermo-gravimetric analysis (TGA). The con-
firmed weight change due to dehydration and carbon-
ation of cement paste during high-temperature heating
may lead to validation of the proposed model for
micro-pore structures associated with the CO2 related
chemical reactions.

According to the previous study byYatsushiro et al.
(2019), the test specimen used for TGA was made of
cement paste with water to cement ratio of 40%, using
ordinary Portland cement. After placing, the specimen
was sealed and cured for 28 days in a constant temper-
ature environment of 20◦C. Then, the specimen was
crushed into a powder sample. The mass change when
the temperature was raised to 1,000◦C at 10◦C/min
under N2 flow and CO2-5% flow was measured.

The comparison of the experiment and simulation
is shown in Figure 6.As for the N2 flow, although mass
loss due to dehydration of Ca(OH)2 in the temperature
range of 400◦C to 450◦C was less overestimated in the
proposed model, the proposed model could reproduce
the experimental facts. Looking at the case of CO2-5%
flow, the proposed model can capture the tendency of
mass gain due to CaO car bonation around 400◦C to
500◦C and mass loss due to de-carbonation of CaCO3
around 600◦C to 800◦C. Thus, the proposed model
can be said to be capable of reproducing the trend of
experimental results.

4.2 Compressive strength after heating with and
without dry ice

The proposed model is further validated by using the
strength immediately after heating with and without
dry ice during heating described in Section 3.1. The
compressive strength is the computed structural capac-
ity of the cylinder in which the local temperature
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Figure 6. Validation:Thermogravimetric analysis (the cases
of N2 flow and CO2-5% flow).

and strains are not uniform place-by-place (see Fig-
ure 4). The local strength of meso-scale cement paste
is computed based upon the micro-pore structures and
examined with a wide range of water to cement ratio,
curing, and material age by Otabe and Kishi (2005) as,

fc= f∞
{

1− exp
(
−αDβhyd.out

)}
(6)

where fc= compressive strength of concrete (MPa);
f∞= ultimate compressive strength (MPa), which is
determined in Otabe and Kishi (2005); Dhyd.out = ratio
of the volume of cement hydrates created outside of
cement particles to the amount of capillary porosity
when hydration is started (Otabe & Kishi 2005); α,
β = constant value (3.0 and 4.0, respectively).

Micro-cracking and its impact on local stresses are
taken into account (Maekawa et al. 2003, 2008). The
mix proportion, curing conditions, heating conditions
and other items are described in Section 3.1.

The measured concentration of CO2 was 95% in the
furnace at the start of heating and decreased to 0.03%
of general atmospheric CO2 concentration at the end
of the experiments after 3 hours. The concentration
could not be measured when the temperature inside

the furnace was high. Thus, linear change of CO2 con-
centration is assumed for the boundary conditions of
the multi-chemo-physics simulation.

Figure 7 shows the validation of compressive
strength. The average value of the compressive
strength yielded by the experiment and the calculated
value obtained by the proposed model were compared
for all 5 levels. The proposed model can be said to
roughly grasp the experimental results. Although the
compressive strength was underestimated at 400◦C,
the proposed model can reproduce the difference due
to the presence of dry ice. According to the TGA result
in the CO2 flow of Section 4.1, there are some dif-
ferences in mass loss due to the amount of C-S-H
and Ca(OH)2 produced and the degree of carbona-
tion. Large mass loss indicates greater decomposition
of the cement hydrates. Thus, it is considered that
the porosity of the micro-structure increases owing to
decomposition of cement hydrates, and this leads to
reduced compressive strength.

Figure 7. Compressive strength just after heating with
and without high CO2 concentration due to introduction of
dry ice.

4.3 Deformation during post-fire-curing

The proposed model was examined by using the exper-
imentally measured size change of the specimen dur-
ing post-fire-curing. The mix proportion of the mortar
was the same as that listed in Table 1. In this experi-
ment, the sole heating temperature case was 1,000◦C,
but four levels of relative humidity (RH) environment
at the post-fire-curing were prepared: 30%, 60% and
RH-90% curing, and wet curing in water. The heating
rate was 2◦C/min for raising and lowering the temper-
ature, and the temperature was maintained at 1,000◦C
for 1 hour. After heating and cooling, the specimens
were cured for 21 days in each RH environment, and
the changes in specimen height and strength were mea-
sured. A detailed explanation of this experiment can
be found in Higuchi et al. (2021). Figure 8 shows the
validation of the deformation after the heating. The
proposed model was found to be able to capture the
specimen size change trend.
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Figure 8. alidation: Size change of specimen height dur-ing
post-fire-curing: Left: E=experiment, S=simulation, right:
S=simulation, WG=model without carbonation, WS=model
without considering shrinkage by carbonation.

Figure 8 shows the results of the parametric study.
Expansion by absorption of atmospheric moisture can
be seen to be small in the model that does not consider
carbonation itself (the previous model by the authors).
This is because the amount of CaO generated with
consideration of carbonation is larger than that with-
out carbonation. It can also be seen that the expansion
after 21 days is more than twice that of the proposed
model when the shrinkage due to carbonation is not
considered. It was confirmed that the effect of shrink-
age due to carbonation of Ca(OH)2 has a large effect
on the calculation. The authors plan to carry out more
detailed experiments related to the volumetric change
due to carbonation.

4.4 Compressive and tensile strength after
post-fire-curing

The proposed model was examined by using the exper-
imentally obtained compressive and tensile strength
after post-fire-curing in various RH environments.
After 21 days of post-fire-curing under various RH
conditions as shown in Section 4.3, the compression
test and the split tensile test were analytically con-
ducted and the strengths were calculated as shown in
Figure 9.

Figure 9. Validation: Compressive and tensile strength after
post-fire-curing.

The results of the proposed model show that the
experimental results can be reproduced with high
accuracy. At RH-30% curing, both compressive and
tensile strength are lower than those immediately after
heating. The proposed model can express that the neg-
ative effect of expansion during post-fire-curing is
predominant at low humidity. In the model that does
not consider the effect of shrinkage due to carbona-
tion, the strength after post-fire-curing is also small.
This is because the negative effect of expansion due to
rehydration exceeds the positive effect of self-healing
behavior since the shrinkage due to carbonation is not
taken into account.

5 CONCLUSIONS

The authors undertook this study with the aim to extend
the applicability of multi-scale modeling at carbona-
tion during and after high temperature heating. The
conclusions reached in this study are summarized as
follows.

I. Three models related to carbonation are proposed:
1) carbonation model of CaO at high temperature,
2) de-carbonation model of CaCO3 at the temper-
ature range 600◦C to 800◦C and 3) re-carbonation
model of Ca(OH)2 at post-fire-curing, incorporated
in the multi-scale platform for structural concrete.
By multifaceted experiments in terms of weight
change, moisture migration, compressive strength
and CO2 environment, the proposed models were
validated with sufficient accuracy.

II. Compressive strength was experimentally con-
firmed to clearly increase around the temperature
of 400◦C with CO2 gas release from dry ice and
the strength gain was quantitatively reproduced by

588



simulating the micro-structures resulting from de-
and re-carbonation.

III. Based on the experimental and analytical inves-
tigations, it was clarified that there are positive
and negative effects on the strength of the solidi-
fied media during the post-fire-curing, to wit, the
positive effect of the self-healing process of rehy-
dration and re-carbonation, and the negative effect
of the self-destruction process due to structural
expansion.
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ABSTRACT: Ultra-high performance concrete (UHPC) is a novel construction material associated with
enhanced mechanical and durability characteristics compared to traditional concrete, such as very high compres-
sive and tensile strengths, high ductility, and low permeability to aggressive materials. In reinforced concrete
structures, the development of cracks accelerates the corrosion of steel as water and aggressive ions are able
to infiltrate the concrete more easily. Accelerated steel corrosion leads to increased corrosion products which
subsequently induces more cracks. Consequently, the corrosion of steel in cracked concrete is a time-dependent
coupled process. Additionally, reinforced concrete structures are often under sustained loading, which can affect
the initial and time-dependent damage state of the structure. In this paper, the steel corrosion process and flexural
behavior of both reinforced concrete and reinforced UHPC beams subjected to sustained loading and chloride
attack are investigated through multi-physics simulation techniques. Numerical simulations are conducted on
members considering the time-dependent deterioration process. First, a service load acting on the beams was
selected to induce an initial damage state. Second, the mass transport of chloride in normal reinforced concrete
and reinforced UHPC was modeled considering the initial cracking due to the service load. Next, the active area
of the rebar was chosen based on the critical chloride value to initiate corrosion. The corrosion of the reinforce-
ment was then simulated and the resulting rust expansion thickness was calculated. Finally, the combined effects
of corrosion product expansion and mechanical loading was simulated. In the next time step, the process was
repeated until severe damage was observed. The simulation results show that the reinforced UHPC beams exhibit
distributed cracking patterns and smaller crack widths while the reinforced concrete beams had localized crack-
ing behavior and major cracks under initial mechanical loading. Unlike the pitting corrosion mode in concrete
without initial damage reported from many experimental results, both reinforced concrete and reinforced UHPC
beams have more uniform corroding areas of the reinforcing bar when initial cracks from mechanical loading are
simulated. Reinforced UHPC beams experienced significantly slower chloride ingress than reinforced concrete
beams due to smaller crack widths and higher material density. Furthermore, the reinforced UHPC beam showed
smaller corrosion current densities along the reinforcing bar resulting in less rust expansion. With lower rust
expansion and higher damage tolerance, the reinforced UHPC beam shows better damage control after corrosion.
The simulation results show that the reinforced concrete beam experiences much faster deterioration. In contrast,
the reinforced UHPC beam provides excellent resistance to chloride attack and negligible increase of damage
area under sustained loading even after a much longer time in a harmful environment.

1 INTRODUCTION

Across a range of durability challenges, corrosion is
the most common source of deterioration mechanism
in normal reinforced concrete structures that causes
loss to the economic life of a structure (Broomfield
2003; Zhao & Jin 2016). With widespread interest
in mitigating corrosion induced service life disrup-
tion issues, innovative alternative material systems
with superior durability properties have been used
to achieve improved life-cycle performance (Alka-
ysi et al. 2016). Ultra-high-performance concrete
(UHPC) is one such material that may slow down
chloride ingress and corrosion initiation and restrain

the damage that is caused or promoted by corrosion
(Sohail et al. 2021).

UHPC is a ductile high strength material associ-
ated with fine cracking characteristics. Furthermore,
UHPC is distinguished from conventional concrete
because of its improved durability performance. Due
to its low permeability and distributed cracking pat-
tern, UHPC has shown outstanding resistance to
harmful materials (Alkaysi et al. 2016).

A substantial number of studies have been con-
ducted to investigate the mass transport and corrosion
features of UHPC members. The oxygen diffusiv-
ity, and chloride permeability are reported to be at
least one order of magnitude smaller than normal
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reinforced concrete (Voort 2008). The corrosion rate
of a UHPC member was approximately two times
lower than that of reinforced high performance con-
crete according to Ghafari et al. (2015). However,
the previously mentioned research did not include
cracking of UHPC. Although the cracks in UHPC
are well distributed, the material’s durability perfor-
mance could be adversely influenced by the multiple
cracks induced by the combined mechanical loading
and environmental conditions(Lv et al. 2021).

Among the limited studies considered cracking
effects in UHPC corrosion, most are focused on
the material transport phase of cracked UHPC (Lv
et al. 2021). However, the cracking in the reinforced
UHPC system has an impact on material transport
and corrosion propagation stage.A fully coupled time-
dependent multi-physics analysis method considering
the damage effects throughout the corrosion process is
needed to better predict the service life of reinforced
UHPC system.

The steel’s corrosion under coupled sustained load-
ing and chloride ingress is a dynamic process. The
cracks accelerate the corrosion of the steel, and in
return, the accelerated corrosion of the steel causes
more damage to the reinforced system. A time-
dependent model that updates the corrosion initiation
status and corrosion propagation conditions in each
time step has rarely been implemented in reinforced
concrete (Firouzi et al. 2020; Li et al. 2021), while
no such fully coupled studies have been conducted on
UHPC system to the authors’ knowledge to date.

This paper presents a fully coupled time-dependent
multi-physics numerical study on the steel corrosion
of reinforced concrete and reinforced UHPC beams
under sustained loading and chloride ingress. The
comparison study of reinforced concrete and rein-
forced UHPC systems accounts for differences in
electrochemical process and mechanical properties.
This study allows the complex process of structural
deterioration under combined mechanical and envi-
ronmental loading conditions to be investigated in an
efficient and reliable way.

2 SIMULATION DESCRIPTION AND
MODELING PARAMETERS

In this study, mechanical models were coupled to chlo-
ride diffusion models and steel corrosion models. A
time-dependent simulation framework incorporating
different simulation platforms was integrated. Mul-
tiple phenomena were simulated in the study, such
as mass transport in porous media, electrochemical
process, and structural responses.

2.1 Analysis procedures

A time-dependent simulation procedure was inte-
grated in the diffusion and corrosion simulations.
First, a structural analysis was conducted for sim-
ply supported beams under three point bending. The

transport properties of the cementitious systems were
then assigned based on the simulated crack widths
under a service loading, set to 80% of the yielding
load level. A diffusion model was set up to study the
chloride transport process in the reinforced concrete
and reinforced UHPC systems considering the dam-
age condition and cracking from the initial structural
analysis. At each time step, the anode area was deter-
mined according to the chloride concentration at the
steel surface. The steel corrosion behavior was mod-
eled based on this information, and a rust expansion
load was applied to the structural model at the steel-
concrete interface. The process was repeated until next
time step. The time intervals for reinforced concrete
and reinforced UHPC systems were 180 days and 720
days, respectively.

2.2 Mechanical model setup

The nonlinear finite element model set up in DIANA
FEAVersion 10.5 (DIANA 2021) is shown in Figure 1.
The longitudinal reinforcement was symmetrically
placed on top and bottom with areas of 258 mm2,
respectively.The transverse reinforcement was 16 mm2

in area and was placed with spacing of 75 mm. Ele-
ment size was 10 mm× 10 mm . The beam was simply
supported and the span was 2160 mm. Rust thickness
was calculated from (Böhni 2005):

σ (t)=
∫ t

0 icorr(t)dt ·Ms

ZFe · F · ρs
(1)

where t is the corrosion time (seconds), Ms=
55.85 g/mol is the atomic mass of the iron, ZFe= 2
is the valency of anodic reaction, F = 96485 C/mol
is the Faraday’s constant, ρs= 7800 kg/m3 is the steel
density. The rust expansion thickness was applied at
the steel concrete interface as a displacement load and
was obtained from:

u(t)= (n− 1)σ (t) (2)

where n is rust to steel volume expansion ratio and is
assumed to be 3 in this study (Cao et al. 2013).

2.3 Diffusion and corrosion model setup

The two-dimensional diffusion and corrosion model-
ing was conducted in COMSOL Multiphysics Version
5.4 (COMSOL 2021). A 25mm size triangular ele-
ment was used. Oxygen were assumed to enter from
four sides of the beam while chloride was assumed
to ingress only from the bottom side of the beams.
The diffusion coefficient of chloride in the cracked
concrete was calculated from (Djerbi et al. 2008):

DCl concrete=

⎧
⎪⎨

⎪⎩

2× 10−11w − 4× 10−10,
30µm≤w≤ 80µm

14× 10−10, w≥ 80µm
(3)
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Figure 1. Mechanical model set up and geometry configuration.

where w is crack width (µm). A modified equation for
diffusion coefficient in cracked UHPC based on data
in literature and inverse analysis is proposed by the
authors of this study (e.g., equation 4).

DCl UHPC =

⎧
⎪⎪⎨

⎪⎪⎩

4× 10−12w − 3× 10−11,

10µm≤w≤ 80µm

3× 10−10, w≥ 80µm

(4)

Oxygen transport in cracks is described as follows:

Dcrack
O2

=
⎧
⎨

⎩

Dsound
O2

, w≤wcr

Dsound
O2

× (w/wcr)3, w≥wcr

(5)

where wcr is the critical crack width and is adopted as
100µm. The oxygen transport in the cracked concrete
and UHPC was assumed to be the same due to insuf-
ficient test data on air permeability of the materials
(Beglarigale et al. 2021; Guo et al. 2019).

2.4 Parameters in the simulations

Surface chloride concentration (Clsurf ) was assumed to
be 2% of the concrete/UHPC mass (Cao 2014). Sur-
face oxygen concentration (O2surf ) was 0.268 mol/m3

(Cao 2014). Mass transport properties and electro-
chemical reaction parameters such as chloride and
oxygen diffusion coefficients (DCl , DO2 ), Tafel slopes
(βFe, βO2 ), equilibrium potentials (φ0

Fe, φ0
O2

), and
exchange current densities (i0

Fe, i0
O2

) are summarized
in Table 1 (Rafiee 2012). The critical chloride content
(Clcrit) of concrete was adopted as 0.06% of concrete
mass (Isgor & Razaqpur 2006), which is one magni-
tude of order smaller than that of UHPC (0.65% of
UHPC mass) (Dauberschmidt 2006). The mechani-
cal properties such as compressive strength, modulus
of elasticity, tensile and compressive fracture energy,
PoissonâŁ™s ratio strain at crack initiation, and strain
at onset of softening were collected from literature
(Moreno-Luna 2014; Shafieifar et al. 2017). Modulus
of elasticity and yield strength of the reinforcement bar

Table 1. Mass transport and corrosion polarization param-
eters.

Input parameters Units Values Resources

Clsurf % 2 1
O2surf mol/m3 0.268 1
DCl_concrete m2/s 1.3E-11 3
DO2_concrete m2/s 3.02E-9 3
θ_concrete S/m 0.0063 3
Clcrit_concrete % 0.06 2
βFe_concrete mV/dec 65 3
βO2_concrete mV/dec -138.6 3
φ0

Fe_concrete mV -600 3
φ0

O2_concrete mV 200 3
i0
Fe_concrete A/m2 2.75E-4 3

i0
O2_concrete A/m2 6E-6 3

DCl_UHPC m2/s 4.5E-13 3
DO2_UHPC m2/s 4.2E-10 3
θ_UHPC S/m 4.33E-5 3
Clcrit_UHPC % 0.65 4
βFe_UHPC mV/dec 61 3
βO2_UHPC mV/dec -130.9 3
φ0

Fe_UHPC mV -600 3
φ0

O2_UHPC mV 200 3
i0
Fe_UHPC A/m2 2.75E-4 3

i0
O2_UHPC A/m2 6E-6 3

[1] Cao et al. (2013),[2] Isgor and Razaqpur (2006),[3] Rafiee
(2012),] [4] Dauberschmidt (2006).]

were assumed from experiments (Bandelt & Billing-
ton 2016). The mechanical properties are summarized
in Table 2.

3 SIMULATION RESULTS AND DISCUSSION

3.1 Damage patterns

Figure 2 shows the cracking strain contour of the
reinforced concrete and reinforced UHPC system
before and after corrosion.The reinforced UHPC beam
showed excellent crack suppression during the cor-
rosion propagation phase. As illustrated in Figure 2,
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Table 2. Mechanical properties.

Properties Unit UHPC Normal Concrete Longitudinal Steel Transverse Steel

Tensile strength MPa 9.7 3.98 – –
Strainat crack inititation % 0.019 0.01 – –
Strain at onset of softening % 0.2 0.01 – –
Tensile fracture energy MPa-mm 19.1 0.154 – –
Compressive strength MPa 138 63.4 – –
Compressive fracture energy MPa-mm 184 38.5 – –
Modulus of elasticity GPa 54.7 39.8 200 205
Poisson’s ratio mm/mm 0.18 0.18 0.30 0.30
Yield strength MPa – – 455 690
Ultimate strength MPa – – 675 –
Strain at hardening % – – 1.36 –
Strain at ultimate strength % – – 16 –
Resources 1,2 3 4 4

[1] Shafieifar et al. (2017), [2] Moreno-Luna (2014), [3] de Putter (2020), [4] Bandelt and Billington (2016).]

Figure 2. Cracking strain contour of reinforced concrete and reinforced UHPC (a) and (c) before corrosion, (b) 3 years after
corrosion, (d) 12 years after corrosion.

the damage area of reinforced concrete beam expe-
rienced an increase of 77.0% while the UHPC beam
increased 3.1%.

3.2 Chloride concentrations

The chloride accumulated quickly in reinforced con-
crete beams and reached 2% of concrete mass within
half a year. However, the chloride concentration at
the same location in the reinforced UHPC beam did
not exceed 1% of UHPC mass. Chloride penetration
depth at the end of three years of chloride exposure
was shown in Figure 3. The chloride concentration
of the reinforced concrete beam remained steady and
was close the surface concentration within a 50mm
range from the chloride ponding surface. However, the
chloride concentration of the reinforced UHPC beam Figure 3. Chloride profile along beam depth at the midspan.
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dropped sharply within the same depth. It was because
of the dense material properties and distributed fine
cracks of UHPC, which suppressed the diffusion of
chloride process.

3.3 Corrosion product distributions

From the simulation results, the rust thickness in rein-
forced concrete developed much faster than that of
reinforced UHPC beam. The reinforcing bar closer to
chloride exposed soffit of the beams (bottom reinforc-
ing bar) had a rust thickness of 189µm after 3 years of
chloride exposure. In contrast, the bottom reinforcing
bar of the reinforced UHPC beam had a rust thickness
of 80.8µm after 12 years.

The corrosion product was distributed uniformly
along the bottom reinforcing bar in reinforced con-
crete beams while the corrosion product was localized
in the center of the beam in reinforced UHPC beams.
The uniform corrosion pattern in reinforced concrete
beams was due to the rapid chloride ingress in the
cracked zone of the specimen. However, most of the
cracks in reinforced UHPC that were further away from
the midspan were too small to allow for accelerated
chloride diffusion.

4 CONCLUSIONS

The paper presents a time-dependent multi-physics
simulation of concrete structural durability.The frame-
work proposed here is able to capture the corrosion
and structural response of conventional and ductile
concrete systems in a time efficient manner.

The simulation results show that the UHPC material
exhibited excellent resistance to chloride intrusion and
corrosion propagation. This behavior is attributed to
the smaller crack widths and higher material density
in reinforced UHPC system. The corrosion product
development in reinforced concrete was twelve times
faster than that of reinforced UHPC. The reinforced
concrete beam had a rust layer thickness of 79µm after
one year while the reinforced UHPC beam developed
a similar level of rust layer thickness (80.8µm) after
twelve years.

The reinforced concrete beam deteriorated faster
than the reinforced UHPC beam under sustained
mechanical loading and rust expansion. The dam-
aged area and cracking in the reinforced concrete
beams provided a path for chloride and oxygen, which
promoted the corrosion initiation and propagation,
respectively.

A coupled mechanical-electrochemical model con-
sidering time-dependent loading and environmental
conditions provides an approach to predict the service
life performance of reinforced concrete structures.
Furthermore, the time-dependent multi-physics mod-
els can be extended to various loading conditions and
material systems.

ACKNOWLEDGMENT

The authors gratefully acknowledge the support of
JohnA. Reif, Jr. Department of Civil and Environmen-
tal Engineering at New Jersey Institute of Technology
and by the New Jersey Department of Transportation
(NJDOT) through Contract ID# 19-60155.

REFERENCES

Alkaysi, M., S. El-Tawil, Z. Liu, & W. Hansen (2016). Effects
of silica powder and cement type on durability of ultra
high performance concrete (uhpc). Cement and Concrete
Composites 66, 47–56.

Bandelt, M. J. & S. L. Billington (2016). Impact of reinforce-
ment ratio and loading type on the deformation capacity
of high-performance fiber-reinforced cementitious com-
posites reinforced with mild steel. Journal of Structural
Engineering 142(10), 04016084.

Beglarigale, A., D. Eyice, B. Tutkun, & H. Yazıcı (2021).
Evaluation of enhanced autogenous self-healing ability
of UHPC mixtures. Construction and Building Materi-
als 280, 122524.

Böhni, H. (2005). Corrosion in reinforced concrete struc-
tures. Elsevier.

Broomfield, J. (2003). Corrosion of steel in concrete: under-
standing, investigation and repair. CRC Press.

Cao, C. (2014). 3D simulation of localized steel corrosion in
chloride contaminated reinforced concrete. Construction
and Building Materials 72, 434–443.

Cao, C., M. M. Cheung, & B. Y. Chan (2013). Modelling
of interaction between corrosion-induced concrete cover
crack and steel corrosion rate. Corrosion Science 69, 97–
109.

COMSOL (2021). COMSOL Multi-physics. https://www.
comsol.com/ .

Dauberschmidt, C. (2006). Untersuchungen zu den kor-
rosionsmechanismen von stahlfasern in chloridhaltigem
beton. Technischen Hochschule Aachen.

de Putter,A. (2020).Towards a uniform and optimal approach
for safe NLFEA of reinforced concrete beams: quantifi-
cation of the accuracy of multiple solution strategies using
a large number of samples.

DIANA (2021). DIANA FEA. https://dianafea.com/ .
Djerbi, A., S. Bonnet, A. Khelidj, & V. Baroghel-Bouny

(2008). Influence of traversing crack on chloride diffu-
sion into concrete. Cement and Concrete Research 38,
877–883.

Firouzi, A., M. Abdolhosseini, & R. Ayazian (2020). Service
life prediction of corrosion-affected reinforced concrete
columns based on time-dependent reliability analysis.
Engineering Failure Analysis 117, 104944.

Ghafari, E., M. Arezoumandi, H. Costa, & E. Julio (2015).
Influence of nano-silica addition on durability of UHPC.
Construction and Building Materials 94, 181–188.

Guo, J.-Y., J.-Y. Wang, & K. Wu (2019). Effects of self-
healing on tensile behavior and air permeability of high
strain hardening UHPC. Construction and Building Mate-
rials 204, 342–356.

Isgor, O. B. & A. G. Razaqpur (2006). Modelling steel
corrosion in concrete structures. Materials and Struc-
tures 39(3), 291–302.

Li, C.-z., X.-b. Song, & L. Jiang (2021). A time-dependent
chloride diffusion model for predicting initial corrosion
time of reinforced concrete with slag addition. Cement
and Concrete Research 145, 106455.

594



Lv, L.-S., J.-Y. Wang, R.-C. Xiao, M.-S. Fang, & Y. Tan
(2021). Chloride ion transport properties in microcracked
ultra-high performance concrete in the marine environ-
ment. Construction and Building Materials 291, 123310.

Moreno-Luna, D. M. (2014). Tension stiffening in rein-
forced high performance fiber reinforced cement based
composites. Stanford University.

Rafiee, A. (2012). Computer modeling and investigation on
the steel corrosion in cracked ultra high performance
concrete, Volume 21. kassel university press GmbH.

Shafieifar, M., M. Farzad, & A. Azizinamini (2017). Exper-
imental and numerical study on mechanical properties of

Ultra High Performance Concrete (UHPC). Construction
and Building Materials 156, 402–411.

Sohail, M. G., R. Kahraman, N. Al Nuaimi, B. Gencturk,
& W. Alnahhal (2021). Durability characteristics of high
and ultra-high performance concretes. Journal of Building
Engineering 33, 101669.

Voort, T. L. V. (2008). Design and field testing of tapered
H-shaped Ultra High Performance Concrete piles. Iowa
State University.

Zhao, Y. & W. Jin (2016). Steel corrosion-induced concrete
cracking. Butterworth-Heinemann.

595



Computational Modelling of Concrete and
Concrete Structures – Meschke, Pichler & Rots (Eds)

© 2022 Copyright the Author(s), ISBN: 978-1-032-32724-2

A novel DEM based pore-scale thermo-hydro-mechanical model

M. Krzaczek, M. Nitka & J. Tejchman
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ABSTRACT: Concrete is a strongly heterogeneous, discontinuous and porous material. Under non-isothermal
conditions, the movement of fluid in the pore and capillary system is strongly coupled with heat transfer. In
such conditions, the pores and cracks facilitate the penetration of external aggressive agents into concrete that
degrades both concrete and reinforcement. An innovative DEM-based thermo-hydro-mechanical model was
developed to track in detail the liquid/gas fractions in pores and cracks with respect to their different geometry,
size, location and temperature. A coarse 2D mesh was generated to create a fluid flow network and to solve the
energy conservation equation. The thermo-hydro-mechanical model was verified by comparing the results with
the analytical solution to the problem of one-dimensional heat transfer in a solid. Finally, the relevance of a fully
coupled thermo-hydro-mechanical model is illustrated by the simulation of an experiment in which a saturated
porous specimen is subjected to a cooling process.

1 INTRODUCTION

Most of physical phenomena in engineering problems
occur under non-isothermal conditions. Moreover,
even if the physical system is initially in a state of
thermodynamic equilibrium, the physical phenomena
or chemical reactions that occur may lead to local tem-
perature changes and, consequently, to heat transfer.
Therefore, understanding heat transfer in particulate
systems is of great interest to many scientific disci-
plines and engineering applications such as environ-
mental science, chemical and food processing, powder
metallurgy, energy management, geotechnics, or geo-
logical engineering. The need to take into account the
effect of heat transfer becomes critical in the analysis
of many multi-field problems in porous and frac-
tured materials. Complex thermo-hydro-mechanical
(THM) processes, including heat transfer, fluid flow,
and material deformations occur simultaneously and
are affected by many non-linear processes.

The most common approach in THM models is
the continuous medium phenomena approach, which
is based on a mathematical framework linking sets
of equations to describe the laws of thermodynam-
ics, solid mechanics, and hydraulics, e.g. the finite
element implementations of such concepts (Kolditz
et al. 2012; Olivella et al. 1996; Rühaak and Sass
2013; Selvadurai et al. 2015; Tang et al. 2021; Zarei-
darmiyan et al. 2020) or the finite difference scheme
(Rutqvist et al. 2002). Nonetheless, even though attrac-
tive for macro-scale applications, continuum modeling
approaches based on the finite element method (FEM)
or the finite volume method (FVM) suffer critical com-
putational and continuity limitations when applied to
discontinuous and highly deformable media such as

packed or fluidized beds and granular or fractured
porous materials.

In porous media with low porosity (less than about
15%), such as concrete or rocks, classical methods
lead to huge problems with generating sufficiently fine
mesh (Abdi et al. 2022). The problem increases when
simulating the crack initiation and propagation process
in porous materials with low porosity (e.g. concrete).

On the other hand, discrete approaches like, for
instance, the discrete element method (Cundall &
Strack 1979) or the finite-discrete element method
(FDEM) prove successful at modeling the behavior
of these discrete systems. FDEM method was used by
Yan and Zheng 2017 to formulate a thermo-mechanical
model for simulating thermal cracking of rock and by
Yan et al. (2022) to develop a 2D coupled thermal-
hydro-mechanical model for describing rock hydraulic
fracturing.

The strength of DEM in modeling particulate sys-
tems opened up recent efforts to extend its predictive
capabilities to meso- and micro-scale THM processes.
Different approaches have been used to couple DEM
with fluid flow and heat transfer models. Direct numer-
ical simulations (DNS) can be used to couple TH
processes with DEM. To solve governing equations,
DNS models can use different numerical methods (e.g.
FEM, FVM). Deen et al. (2012) proposed immersed
boundary implementation that does not require using
any effective diameter. The method was dedicated to
THM processes in dense fluid–particle systems. How-
ever, the proposed method was limited to invariant
geometries, their topologies and relatively high poros-
ity (porosity greater than that of concrete or rock). In
practice, DNS-DEM models are restricted to systems
comprised of a smaller number of particles than CFD.
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Another approach is based on the lattice Boltzmann
method (LBM) (Chen et al. 2018; Jiao et al. 2021;
Yang et al. 2017). LBM relies strongly on the accu-
rate representation of solid-fluid boundaries which can
be difficult both numerically and computationally and
can lead to the same limitations as with DNS-DEM
models.

The use of DEM to study THM processes in very
dense fluid-particle systems with very low porosity
(even below 5%), such as concrete or rocks, fluid flow
and heat transfer models should be simplified in order
to reduce computational costs and avoid numerical
limitations. Most of the recently available DEM-based
THM models separate the fluid flow in the reser-
voirs (pores, macropores, pre-existing cracks, etc.) and
flow between the reservoirs. The assumption is that
the fluid in the reservoirs is compressible, while the
fluid flowing between the reservoirs is incompressible.
This concept of simplification was first introduced and
developed by (Al-Busaidi et al. 2005; Cundall 2000;
Hazzard et al. 2002). In addition to highlighting the
properties of fluids, fluid flow regimes are also dis-
tinguished. The fluid flow regime is stagnant or close
to stagnation in the reservoirs, while the fluid flow
between the reservoirs is laminar to estimate the mass
flow rates at the reservoirs’ boundaries. In most cases,
a Poiseuille flow model in pipes or between two par-
allel plates is adopted to estimate mass flow rates. The
pressure in the pore is computed directly from assumed
the equation of state (Al-Busaidi et al. 2005; Hazzard
et al. 2002) or solving Stocks equation (Catalano et
al. 2014; Papachristos et al. 2017). All models assume
a single-phase fluid flow of a pure liquid or mixture.
However, in the case of a mixture, the phase fractions
are not tracked. The fluid is barotropic according to
the assumption. In this approach, different heat trans-
fer models are coupled with DEM-CFD approaches.
Tomac and Gutierrez 2017 solved the energy conser-
vation equation for each cell (reservoir) volume. The
adopted energy conservation equation corresponded to
the energy transport in the laminar flow of an incom-
pressible fluid. Caulk et al. (2020) proposed more
advanced DEM-based THM model. They proposed
a 3D model based on the framework of the pore-
scale finite volume (PFV) scheme initially proposed
by Chareyre et al. (2012) and extended by Scholtès
et al. (2015) for up-scaling compressible viscous flow
and oriented toward dense grain packing applications.

The goal of the current paper is to demonstrate
the DEM-based pore-scale thermal-hydro-mechanical
model of two-phase fluid flow coupled with heat trans-
fer in porous materials of very low porosity (e.g.
concretes). Calculations were carried out with a 3D
DEM model coupled with a 2D CFD and 2D heat trans-
fer model that combined solid mechanics with fluid
mechanics and heat transfer at the meso-scale. Previ-
ously, our coupled DEM/CFD model was successfully
used to describe a hydraulic fracturing process in rocks
with one- or two-phase laminar viscous two-phase
fluid flow composed of a liquid and gas (Krzaczek
et al. 2020, 2021).

The innovative elements of our DEM-based THM
mesoscopic approach for modelling fluid flow and
heat transfer as compared to other existing models in
the literature are: the detailed tracking of water/gas
fractions in pores regarding their varying geometry,
size and location; an algorithm for automatic meshing
and remeshing domains of solids and fluids to cap-
ture changes in geometry and their topology; the use
of a coarse mesh of solid and liquid domains to gen-
erate a virtual fluid flow network (VPN) and solve
energy conservation equation; adoption of the cor-
rected Peng-Robinson equation of state for both fluid
phases to study supercritical fluids flow (necessary e.g.
for the study of THM processes in the hydrofracturing
process); FVM was used to solve the energy conser-
vation equation on a very coarse mesh of cells in both
domains.

The current paper is structured as follows. After
the introductory Section 1, a mathematical model of
the DEM based coupled thermal-hydro-mechanical
approach is presented. The model validation is pre-
sented in section 3. Section 4 analyzes the effect of
advection on the cooling of a cohesive granular bar
specimen. Section 5 discusses the mechanism of dam-
age of the cohesive granular bar due to cooling. Finally,
some concluding remarks are offered in Section 6.

2 THERMO-HYDRO-MECHANICAL MODEL

The novel concept of the model is based on the assump-
tion that two different domains coexist in a physical
system: the 3D discrete (solid) domain and the 2D con-
tinuous (fluid) domain. Originally, the solid domain is
consisted of one layer of 3D spherical elements while
the fluid domain is two-dimensional (Figure 1a).

Figure 1. Two domains coexisting in one physical system: a)
co-existing domains before projection and discretization, b)
solid and fluid domains after discrete elements projection and
discretisation (fluid domain in red colour and solid domain
in black colour).

Spheres are arranged in such a way that their gravity
centres are located on a mid-plane (2D surface). The
spheres are projected onto the plane to form circles
(Figure 1b). After projection, both the domains are
discretized into a very coarse grid of cells (triangles)
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(Figure 1b). Consequently, the equations of motion of
discrete elements are solved in the 3D discrete domain
and the equations of fluid flow are solved in the 2D
fluid continuous domain (red colour in Figure 1b) and
heat transfer equations are solved in the 2D fluid and
solid continuous domains (red and black colours in
Figure 1b).

2.1 DEM for cohesive-frictional materials

DEM calculations were performed with the 3D spheri-
cal explicit discrete element open codeYADE (Kozicki
& Donzé 2008; Šmilauer & Chareyre 2011). The
method allows for a small overlap between two con-
tacted bodies (the so-called soft-particle model).Thus,
an arbitrary micro-porosity can be obtained in DEM
wherein particles interact with each other during trans-
lational and rotational motions through a contact law
and Newton’s 2nd law of motion using an explicit
time-stepping scheme (Cundall & Strack 1979). In
the model, a cohesive bond is assumed at the grain
contact exhibiting brittle failure under the critical nor-
mal tensile load. The shear cohesion failure initiates
contact slip and sliding obeying the Coulomb friction
law under normal compression. Damage occurs if a
cohesive joint between spheres disappears after reach-
ing a critical threshold. If any contact between spheres
after failure re-appears, the cohesion does not appear
more. A simple local non-viscous damping is used
(Cundall & Strack 1979) to accelerate convergence
in quasi-static analyses. The material softening is not
considered in the DEM model.

In general, the material constants are identified
in DEM with the aid of simple laboratory tests on
the material (uniaxial compression, uniaxial tension,
shear, biaxial compression). The detailed calibra-
tion procedure for frictional-cohesive materials was
described in (Nitka & Tejchman 2015; Suchorzewski
et al. 2018).

The DEM model demonstrated its usefulness for
both local and global simulations of macro- and
micro-cracks in concretes under bending (2D and 3D
analyses) (Nitka & Tejchman 2015) uniaxial compres-
sion (2D and 3D simulations) (Caggiano et al. 2018)
and splitting tension (2D analyses) (Skar¿yñski et al.
2015). The combined DEM/x-rayµ-CT images meso-
scopic approach proved to be an extremely appealing
computational tool for investigating fracture in con-
crete. In those calculations, ITZs had no either physical
width and were simulated by weaker contacts between
aggregates and cement matrix (Nitka & Tejchman
2015; Skar¿yñski et al. 2015) or had a defined width
with higher porosity (Nitka & Tejchman 2020). To
study combined mechanical-hydro-thermal problems
in concrete, the second approach should be used.

2.2 Fluid flow model

The general concept of a fluid flow algorithm using
DEM was adopted from (Al-Busaidi et al. 2005; Cun-
dall 2000; Hazzard et al. 2005). The model in the
current paper significantly differs from this general

concept. The reservoirs (pores, cracks, pre-existing
cracks, etc.) store now not only pressures but also
phase fractions, fluids densities, energy and tempera-
ture. The continuity equation is employed to compute
the density of fluid phases stored in reservoirs. The
fluid phase fractions in reservoirs are computed by
applying the equation of state for each phase assum-
ing that fluid phases share the same pressure (as in the
Euler model of multi-phase flow). The mass flow rate
in artificial channels of fluid flow network is now esti-
mated by solving continuity and momentum equations
for laminar flow of incompressible fluid.

The gravity centres of the 3D spheres are located
on the XOY plane. The 3D spherical particles are pro-
jected onto the 2D midplane and next discretized into
the 2D polygons (Krzaczek et al. 2020). To get a more
realistic distribution of the unknown variables (pres-
sure, fluid-phase fractions and densities), a remeshing
procedure discretizes the overlapping circles, deter-
mined the contact lines and deletes the overlapping
areas (Krzaczek et al. 2020). As a result, each reser-
voir is discretized into a number of triangles (in 2D
problem). Each triangle in the fluid domain is called
the Virtual Pore (VP) (Figure 3). The artificial chan-
nels connect the gravity centres of triangles (VPs) to
create a fluid flow network called the Virtual Pore
Network (VPN). VPs accumulate pressure, store both
fluid-phase fractions and densities, energy and temper-
ature. The mass change in VPs is related to the density
change in a fluid phase that results in pressure varia-
tions. There is no fluid flow in triangles by assumption
(flow regime is close to stagnant). The equation of
momentum conservation is thus neglected in triangles
but the mass is to be still conserved in the entire volume
of triangles. The numerical algorithm can be divided
into 5 main stages:

a) estimating the mass flow rate for each phase of
fluid flowing through the cell faces (in chan-
nels surrounding VP) by employing continuity and
momentum equations,

b) computing the phase fractions and their densities in
VP by employing equations of state and continuity,

c) computing pressure in VP by employing the equa-
tion of state,

d) solving energy conservation equation in fluid and
solids,

e) updating material properties.

This algorithm is repeated for each VP in VPN and
each solid cell (stage (d)) using an explicit formula-
tion.According to the above algorithm, incompressible
laminar two-phase fluid (liquid/gas) flow under non-
isothermal conditions is assumed in the channels of
the fluid flow network. The liquid and gas initially
exist in the matrix and pre-existing discontinuities.
Two channel types in the Virtual Pore Network are
introduced (Krzaczek et al. 2020): (A) the channels
between discrete elements of the material matrix in
contact (called the ‘S2S’ channels) and (B) the chan-
nels connecting grid triangles in pores that touch each
other by a common edge (called the ‘T2T’ channels).

598



The channel length is assumed to be equal to the
distance between the gravity centres of adjacent grid
triangles. In real 3D problems, the fluid flows around
the spheres in contact. However, in 2D problems, there
is no free space for fluid flow. Therefore, the concept
of virtual S2S channels is introduced (Krzaczek et al.
2020).

2.2.1 Mass flow rate estimation in channels
Three flow regimes in the VPN channels are dis-
tinguished: a) single gas-phase flow with gas phase
fraction αp= 1, b) single liquid-phase flow with liquid
phase fractionαq= 1 and c) two-phase flow (liquid and
gas) with 0<αq< 1. For single-phase flow in channels
(flow regime ‘a’ and ‘b’), the fluid moves in channels
through a thin film region separated by two closely
spaced parallel plates.

A two-phase flow of two immiscible and incom-
pressible fluids in a channel is assumed to simulate
two-phase fluid flow (flow regime ‘c’), driven by a
pressure gradient in adjacentVPs.The liquid-gas inter-
face is parallel to channel plates and constant along the
channel. Gravity forces are neglected. The interface
between the fluids, labelled as j= q,p (q – the lower
liquid-phase, p – the upper gas-phase), is assumed to be
flat in the undisturbed flow state. Under this assump-
tion, the model allows for a plane-parallel solution.The
interface position is known and is related to fractions
of fluid phases in adjacent VPs while the volumetric
flow rates of fluid phases are unknown.

The method of the mass flow rate estimation in
channels was described in detail by Krzaczek et al.
2021.

2.2.2 Fluid flow in virtual pores
Contrary to the model of fluid flow in the channels,
the VPs assume that the fluid is compressible. In some
problems, incl. during the hydraulic fracturing pro-
cess, the fluid pressure exceeds 70 MPa. Under these
conditions, the gas phase exceeds the critical point
and becomes a supercritical fluid. To describe the
behaviour of the fluid above the critical point, the Peng-
Robinson equation of state is adopted for both the fluid
phases in VP:

P= RT
(
Vq/p − bq/p

) − aq/p(
V 2

q/p + 2bq/pVq − b2
q/p

) , (1)

where P is the pressure [Pa], R = 8314,4598 J/(kmol
K) is the gas constant, Vq/p the molar volume of liq-
uid (q) and gas (p) fraction [m3/kmol] and T is the
temperature [K]. Equations 1 provide a good fit of
the vapor pressure for most substances but the pre-
diction of molar volumes can be seriously in error. In
particular, the prediction of saturated liquid molar vol-
umes can be in error by l0–40% (Mathias et al. 1989).
An effective correction term was already suggested by
Peneloux and Rauzy 1982:

V corr
q =Vq + s, (2)

where s is the small molar volume correction term
that is component dependent, Vq is the molar volume
predicted by Eqn. 1 and V corr

q refers to the corrected
molar volume.

By solving the mass conservation equation for both
the phases, the density of the liquid and gas phases can
be computed. Since the fluid phases share the same
pressure, the fluid phase fractions can be computed.

2.3 Heat transfer in fluid

A homogeneous heat transfer model in multiphase
fluid flow is assumed. For simplicity, incompressible
and homogeneous fluid is assumed. The viscous dissi-
pation of energy is neglected. The energy conservation
equation is shared among the phases in homogeneous
model, and is expressed in integral form:

∫

V

∂

∂t

(
ρeff E

) · dV +
∮
∇ ·

(
ρeff

⇀
v E

)
· d →A

=
∮ (
λeff ∇T

) · d →A +
∫

V
Sh, (3)

where ρeff is the effective fluid density [kg/m3], E is
the total energy [J], t is time [s], v is velocity vector
[m/s], T is the temperature [K], λeff is the effective
thermal conductivity of fluid [W/(mK)] and Sh is a
source term that includes energy sources. Assuming
an incompressible and laminar flow of a homogeneous
fluid, the enthalpy h equation of state is:

h=
∫ T

Tref

cpdT , (4)

where Tref is the reference temperature [K] and cp
is specific heat in constant pressure [J/(kg·K)]. The
effective fluid properties and velocity are computed
by volume averaging over the phases. If the time
derivative is discretized using backward differences
and assuming that the total energy E is equal to the
enthalpy h and applying the enthalpy h equation of
state to Eq.3, the energy conservation equation can be
expressed in terms of temperature T :

T n+1=Tref +
cn

p,eff

(
T n − Tref

)

cn+1
p,eff

+ �t

Vρncn+1
p,eff

Nfaces∑

f

λeff ∇T n
f ·

→
Af − �t

Vρncn+1
p,eff

×
Nfaces∑

f

ρn
f
⇀
v

n

f cn
p,eff

(
T n

f − Tref

)
· →Af + �t

ρn+1cn+1
p,eff

Sh,

(5)

where Nfaces is the number of faces enclosing the cell,
Tf is the value of T on the face f , ρ f vf · Af is the
mass flux through the face f , Af is the area vector of the
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face f , ∇Tf is the gradient of T at the face f , V is the
cell volume and Sh is related to the internal enthalpy
source of diffusive energy [W/m3] of heat transferred
by diffusion along the channel S2S.

The FVM method is used to solve the energy
conservation equation (Eqn. 5).

2.4 Heat transfer in solids

Assuming no convective energy transfer, no internal
heat sources and constant density ρs, in solid regions,
the energy conservation equation has the following
integral form:

ρs

∫

V

∂E

∂t
· dV =

∮
(λs∇T ) · d→A (6)

where E is the total energy and is equal to enthalpy
h, ρs is the density of solid [kg/m3], λs is the solid
thermal conductivity [W/(mK)], Tref is the reference
temperature and cp is the specific heat in constant
pressure.

Equation 6 is applied to each cell (triangle) in the
solid domain. The discretization of Eq. 6 yieldsfor a
given cell

T n+1=T n + �t

Vρscp

Nfaces∑

f

λs∇T n
f ·

→
Af (7)

The FVM method is used to solve Eq.7.

3 VALIDATION OF THM MODEL

First, the THM model was calibrated. The calibration
procedure was presented by Krzaczek et al. 2021. The
model validation was carried out by comparing the
numerical results with the analytical solution of the
1D heat transfer problem

∂T

∂t
=αeqv

∂2T

∂x2
, (8)

where αeqv is the effective value of thermal diffusiv-
ity [m2/s] and t is time [s]. The analytical solution of
the 1D heat equation is constrained by the following
initial and boundary conditions: T (x,t)= 323.16 K for
x ∈< 0, L> and T (0,t)=T (L, t)= 293.16 K for t≥ 0,
where L is the length of the bar specimen.The unsteady
solution to Eq.8 was obtained using the Fourier series.
For model validation, a specimen with a random distri-
bution of spheres (Figure 2a) and porosity p= 10.70%
was selected.

The assumed effective thermal diffusivity and
boundary conditions imitated heat transfer only by dif-
fusion in an equivalent solid bar, made of a fictitious
homogeneous material with effective thermal prop-
erties (volume-averaged over the phases).The effec-
tive material properties of the equivalent solid were:

Figure 2. Cohesive granular bar specimen used to validating
purposes: a) random distribution of spheres and b) initial and
boundary conditions (q – fluid mass flow rate and qh – heat
transfer rate).

λeff = 3.357 W/(m·K), cp,eff = 929.51 J/(kg·K), ρeff =
2422.74 kg/m3. The comparison is shown in Figure 3
for two different time steps (100 s and 400 s) and the
corresponding Fourier numbers.

Figure 3. Temperature along vertical center line of bar spec-
imen in Figure 2a: a) after 100 s (Fo= 0.0227), b) after 400
s (Fo= 0.0907).
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The numerical results are in good agreement with
the results of the analytical solution. The maximum
discrepancy between numerical and analytical results
was 0.52 K after 400 s of cooling. Figure 4 shows the
temperature distribution and liquid density in the bar
specimen after 400 s of cooling. The density varied
from 1000.02 kg/m3 to 1014.28 kg/m3. The Peng-
Robinson equation of state (Eq. 1) with correction (Eq.
2) introduced a very small error (less than 1.3%) in the
estimation of the water density.The density of the fluid
was slightly overestimated.

Figure 4. Cohesive granular bar specimen with random dis-
tribution of spheres after 400 s of cooling: a) temperature
distribution and b) liquid density distribution.

4 ADVECTION INFLUENCE ON COHESIVE
GRANULAR BAR COOLING

The influence of advection on the cooling of the bar
specimen was investigated. The specimen of a struc-
tured distribution of spheres (Figure 5a) was chosen.
The simulation results were compared with the simu-
lation results of the diffusion test (not presented here)
carried out on a specimen with a structured distribu-
tion of spheres. The single-phase flow of water was
assumed. The adopted initial and boundary conditions
(Figure 5b) simulated heat transfer by diffusion and
advection in the bar.

The maximum temperature difference between
cooling by diffusion and diffusion with advection was
2.26 K after 400 s of cooling (Figures 6a and 6b).
Advection slightly speeded up the cooling process.
However, it should be noted that the pressure differ-
ence between the lower and upper boundary was very
small, 0.05 MPa (Figure 7a). This resulted in very
low fluid velocity. The maximum fluid velocity did
not exceed 1.8·10-5 m/s (Figure 7c). Generally, the

Figure 5. Specimen used for validating purposes (diffusion
and advection): a) structured distribution of spheres and b)
initial and boundary conditions (q – fluid mass flow rate and
qh – heat transfer rate).

Figure 6. Temperature in cohesive granular bar specimen
after 400 s of cooling (diffusion and advection): a) in entire
specimen and b) along vertical center line.

velocity vectors were parallel to the vertical bound-
aries (Figure 7c) which confirmed a 1D fluid flow in
the specimen.The fluid pressure varied almost linearly
along the bar (Figure 7a) from the lower boundary
to the upper boundary. The fluid density ranged from
1002.3 kg/m3 to 1010.5 kg/m3 (Figure 7b) after 400 s
of cooling. The Peng-Robinson equation of state (Eqn.
1) with correction (Eqn. 2) introduced a very small
error (less than 1.3%) in the estimation of the density.
The fluid density was slightly overestimated.

5 THERMAL EXPANSION TEST OF COHESIVE
GRANULAR BAR DURING COOLING

The bar specimen of random sphere distribution
(Figure 2a) was used to perform a thermal expansion
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Figure 7. Cohesive granular bar specimen after 400 s of
cooling (diffusion and advection): a) pressure distribution,
b) density distribution and c) velocity vectors.

test during bar cooling. The boundary and initial con-
ditions were adopted to eliminate advection (Figure
8) and keep the fluid out of phase change conditions.
The single-phase flow of water was investigated. Dis-
placements and rotations of the discrete elements at
lower and upper boundaries were fixed. In the test,
the influence of temperature changes on the mechani-
cal properties was obtained. The initial temperature of
the bar (solids and fluid) was relatively high (368.16
K) but still below the boiling point. The bar was
then cooled at the lower and upper boundaries by
defining a constant temperature of 278.16 K at the
boundaries. The simulation was stopped after 700 s.
Figure 9a shows the temperature distribution in the bar
after 700 s. The maximum temperature was 302.74 K
(Figure 9b).

Figure 8. Initial and boundary conditions in thermal expan-
sion test (q – fluid mass flow rate and qh – heat transfer
rate).

Figure 9. Temperature in bar after 700 s of cooling (thermal
expansion test): a) in entire specimen and b) along vertical
center line.

During the test, the high vertical tensile forces
appeared due to temperature changes (Figure 10).
The forces grew in the specimen quite homoge-
nously (Figures 10a and 10b). The mean tensile force
increased up to 42.5 N (with the maximum force
equal to 132 kN). Simultaneously, the mean radius of
the element decreased from 3.016 mm to 3.014 mm
(∼0.07%). After reaching the maximum tensile stress,
the 5 contacts were broken (Figure 10c). The mean
tensile force decreased down next to 15 N.

602



Figure 10. Internal contact forces (tensile) in bar specimen
during cooling test after time : a) t= 41 s, b) t= 413 s and c)
t= 447 s.

The final macro-crack after 700 s is presented in
Figure 11. It appeared exactly at the same place as
during pure uniaxial tension.

Figure 11. Final macro-crack in specimen during cooling
test: a) tensile normal contact forces (green – broken contacts)
and b) deformed specimen (macro-crack is in red).

6 SUMMARY AND CONCLUSIONS

The paper presents a novel DEM-based pore-scale
thermal-hydro-mechanical model of two-phase fluid

flow coupled with heat transfer in porous materials of
very low porosity (e.g. concrete or rocks). The vali-
dation of the model was performed by comparing the
numerical results with the analytical solution of the 1D
heat transfer problem in an equivalent bar specimen.
Two different cohesive granular bar specimens with
initial porosity of 10–13% were tested.

The maximum discrepancy between the numeri-
cal and analytical results during the 1D heat transfer
problem were solely 0.52–0.64 K.

Advection speeded a cooling process of the
bar specimen. The maximum temperature difference
between cooling by diffusion and cooling by diffusion
with advection was 2.26 K after 400 s of cooling for
a small pressure drop (0.05 MPa) along the specimen
height.

The thermal shrinkage of the bar specimen during
cooling showed the same tensile failure mechanism as
in the purely mechanical uniaxial tension.
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ABSTRACT: Evaluating the risk of inundation flooding and its deleterious effects in urban environments is
key, considering that such natural disasters are poorly predictable, costly, and are expected to increase with global
warming. To insight and evaluate flooding impact in cities and the role played by city textures, we propose a
statistical physics computational approach called on-lattice density functional theory. Originally developed in
Materials Science, the model is applied to the city scale, considered here as a porous media. We thus show that
the strength of such an equilibrium-based approach stems from the combination of three aspects: i. the model
has a minimum of inputs and an efficient computational time, ii. the model comes with an ease of modeling
a variety of city elements that are critical for inundation flooding (e.g., buildings, pavements, permeable soils,
and drainage systems), iii. the model has physically meaningful output parameters, such as adsorption and
desorption isotherms, which can be linked to a city’s drainage capacity and steady-state gage heights. We found
that isotherms exhibit a pronounced hysteresis, indicating that flooding and draining properties can be blocked
in metastable microstates. Such behavior is key since it provides a fundamental means to qualitatively identify
the risk of inundation flooding.

1 INTRODUCTION

Floods are one of the most common and costliest
natural disasters in the United States and worldwide
(FEMA 2021). Urban flooding is one of the greatest
challenges to human safety, and it can cause severe
damage to the economy and lead to high devastation
(Tsubaki & Fujita 2010). The main factor that affects
floodwater inundation and movement is the devel-
opment of impervious surfaces, which do not allow
natural drainage and inhibit infiltration of stormwa-
ter (Shuster et al. 2005). In addition to this, urban
flooding may also occur due to non-mandatory build-
ing ordinances and non-consideration of the impact
the city texture has. Specifically, the development
of very dense building areas is prone to floods
(National Academies of Sciences, Medicine, et al.
2019). Flood problems are expected to continue to rise
and worsen due to climate change, as well as the expan-
sion of cities and the increase of urban population
(Pielke et al. 2002; Velasco et al. 2016). Studies have

also shown that high atmospheric CO2 concentrations
lead to increased frequency of heavy daily precipita-
tion events (Schreider et al. 2000). So, it is predicted
that by 2100 the precipitation rates are expected to
increase by 10–30% (Group 2021), and at the same
time, the urban population is projected to increase from
55% to 68% by 2050 (UN 2018). These projections
emphasize the importance of urban flood modeling
and highlight the need for further development of
existing flood models. In particular, they call for new
reliable tools, that go beyond coarse grained empir-
ical urban planning approaches based on mean land
occupation density values (buildings, streets, drainage,
green areas) (Özgen et al. 2016); empirical flood maps
(FEMA 2018); and high-resolution empirical, hydro-
dynamic (2D shallow water equations (Teng et al.
2017)), and simplified conceptual models appropriate
for building-project scale evaluation of flood inunda-
tion (Özgen et al. 2016). More specifically, to enhance
the resilience of cities, there is a need to ascertain
both a qualitative and quantitative link between city
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texture parameters, characteristic of the neighborhood
scale in urban environment, and the risk of inundation
flooding.

We approach this problem by means of a ‘physics-
by-analogy’ simulation using on-lattice Density Func-
tional Theory (DFT) (Kierlik et al. 2002; Zhou
et al. 2019). This method, 1 was originally developed
in statistical physics for pore-size characterization,
gas adsorption-desorption, and capillary condensa-
tion phenomena in micro- and mesoporous materials
(Lowell et al. 2006; Monfared et al. 2020; Rigby
& Chigada 2009). In the DFT simulations, a virtual
reservoir of particles is connected to the simulation
box (here a portion of city as shown in Figure 1(a)),
and particles are exchanged depending on the water
particles chemical potential µ, which mimics the pre-
scribed precipitation. This is being done to establish

Figure 1. City model and isotherms. (a) Schematic of
urban topography of side-length Lx =Ly = 36 m and height
H = 10 m, consisting of buildings, and impermeable surface;
(b) Adsorption - desorption density isotherms as a func-
tion of the dimensionless chemical potential, µ∗ =µ/(kBTc)
and simulation parameters corresponding to: ax,y/az = 10,
T ∗ = 0.8, w0

sf = 3, w0
ff = 6.

1 The DFT method herein employed should not be confused
with the solid-state physics computational approach by the
same name employed for electronic structure investigations
of atoms and molecules (Roy 2019).

adsorption–desorption isotherms [Figure 1(b)], which
can be used to qualitatively pin down the risk of inun-
dation. The DFT-method hence minimizes the Grand
potential [Eq.1], to determine the local equilibrium
density on each lattice site i, with ρi ∈ [0, 1] (ρ= 0
dry site,ρ= 1 water saturated site). In the system, each
site interacts with its nearest neighbors (Kierlik et al.
2002), while those located at system edges interact
through boundary periodic conditions. In addition, for
the system we consider an unstructured lattice, allow-
ing to locally increase the number of lattice sites, and
so the accuracy of calculations in those regions. Thus,
in this work, the lattice size in the elevation direction
(z-direction) has been fixed smaller than the in-plane
one in (x,y) directions.

2 METHODOLOGY

For a given urban configuration, the DFT method min-
imizes the dimensionless Grand potential, by adjusting
iteratively the local densities ρi ∈ [0, 1] (Kierlik et al.
2001):

�

kBTc
=min
ρi

(

T ∗
∑

i

[ρi ln ρi + (ηi − ρi) ln (ηi − ρi)]

−
∑

<i,j>

(wi
ff ρiρj + wi

sf [ρi(1− ρj)+ ρj(1− ηi)])

−µ∗
∑

i

ρi

)

=T ∗
∑

i

ηi ln (1− ρi

ηi
)+

∑

<i,j>

wi
ff ρiρj

(1)

where the local density of sites i read:

ρi = ηi[1+ exp

(

− veff
i

T ∗

)

]−1. (2)

Here, ηi is the occupation number of site i; T ∗ =T/Tc
is the (kinetic) temperature, normalized by the critical
temperature, Tc; µ∗ =µ/(kBTc) is the dimension-
less chemical potential; ωi

ff =wff /(kBTc) and ωi
sf =

wsf /(kBTc) stand for dimensionless fluid-fluid and
solid-fluid interaction parameters [in units of kBTc,
with kB the Boltzmann constant]; and veff

i stands for
the dimensionless effective potential of site i,

veff
i = veff

i

kBTc
=µ∗ +

∑

j/i

[wi
ff ρj + wi

sf (1− ηj)]. (3)

The sum over j is limited to the nearest neighbors of
site i.

The Grand potential is minimized in a range of
chemical potentials chosen to cover a full isotherm. To
do so, we incrementally increase the chemical potential
µ∗ during the adsorption steps, from a large nega-
tive value, where no water adsorption occurs, up to a
maximum value corresponding to the water saturation.
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Once the adsorption phase is fully covered, we progres-
sively decreaseµ∗ to simulate the desorption. For each
subsequent value of µ∗n =µ∗n−1 ±�µ∗, we use the
converged values of ρi at µ∗n−1 as initial condition for
the next adsorption or desorption step (µ∗n). For each
µ∗, the convergence is considered to be reached when
the density of two subsequent iterations is smaller than
a threshold defined as, (1/N )

∑
i (ρ(m+1)

i − ρ(m)
i )2<

10−8 (Kierlik et al. 2002). Moreover, �µ∗ step sizes
ranging from 10−1 to −10−3 have been chosen. The
determination of isotherms, is finally obtained by aver-
aging the full density as the sum of local densities as,
<ρf >= 1

N

∑
i ρi.

In the resulting isotherms, the water level or gage
height, and the hysteresis loop qualitatively pin down
the risk of inundation, and the city drainage efficiency,
[Figure 1(b)] depending on the specific role played
by city elements in the system. It is worth mention-
ing that for a linear filling process in a flat terrain,
the average density <ρf >, coincides with the nor-
malized gage height; whereas it is an integrated value
of gage height distribution for complex terrains and
city elements, that define the inundation risk of urban
environments.

The entire system is composed of N lattice sites,
occupied by either a fluid or a solid to delineate
city elements (building, road, etc). This is defined by
an occupation number η with fixed values 0 and 1,
for solid and liquid sites, respectively. Hence, build-
ings are considered as repulsive surfaces with η=
0. Furthermore, η= 0 describes impermeable (e.g.,
streets) surfaces; whereas permeable surfaces (e.g.,
green areas) are identified by a mixture of occupa-
tion numbers of both ones and zeros, representative of
the soil’s porosity, φ= ηsoil, where an overbar stands
for averaging. Depending on the surface density of
zero occupation numbers, we can identify soils with
different porosities. Finally, water retention or the
drainage system is identified as areas underground
with η= 1, indicating sites where water can be stored
before accumulating on the surface. Table 2 sum-
marizes city elements with corresponding occupation
numbers.

Table 1. Occupation number of city elements.

City elements Occupation number η

Building 0
Street 0
Impermeable Soil 0
Permeable soil 0 & 1
Drainage System 1

One original addition to the DFT method for inun-
dation modeling in urban environments is the eleva-
tion (z-direction) dependent fluid-fluid and solid-fluid
interaction parameters, which were in the original
model constant (Ioannidou et al. 2014; Pellenq et al.
2009). This allows us to consider the gravity-driven
water filling process during precipitation. Thus, the

z-direction dependency ensures a bottom-up filling
during the adsorption process, and a top-down reced-
ing of the fluid phase during the desorption process.
Following a constant hydrostatic gradient, we then use
a linear relationship of the form:

wi
kk =w0

kk (1− zi − z0

α1 · Href
); (kk = ff , sf ), (4)

where 1/(α1 · Href ) defines the hydrostatic gradient,
with α1 a constant, and Href a reference height; zi
is the lattice site elevation; z0 is the elevation of the
lattice at the origin; and w0

kk (kk = ff , sf ) stand for
reference values of the interaction parameters, with
ω=w0

sf /w
0
ff in a dimensionless form. In the origi-

nal DFT model, the interaction parameters ratio for
water adsorption in cement has been reported as
wsf /wff = 2.5 (Bonnaud et al. 2012). However, such
a parameter has been determined for capillary con-
densation in microscale structures, irrelevant at the
city scale where such an effect is meaningless. For
city modelization, dimensionless interaction parame-
ters are city-specific, require a dedicated calibration,
and will be discussed bellow. They need to be chosen
with care in order to avoid occurrence of microscale
phenomena that are irrelevant at city scale, such as
capillary bridges (Zhou et al. 2019).

3 ISOTHERMS AS A MEANS TO ASSESS RISK
OF INUNDATION FLOODING

To illustrate our purpose, we present below some fea-
tures of the isotherms in section 3.1 in function of the
most important DFT model parameters, and in section
3.2 for different drainage systems. As model system,
we consider the city block displayed in Figure 1(a).

3.1 Influence of model parameters

To insight effects of DFT parameters on the water
isotherm, we evaluate changes induced by the lattice
sizes and their geometries, the effect of the temperature
T ∗ =T/Tc, and the ratio of solid-fluid and fluid-fluid
interactions, ω=wsf /wff .

In Figure 2, we evidenced a negligible effect of
the lattice sizes in the isotherm. A negligible effect is
also found when varying the lattice geometry (keep-
ing constant lattice sizes, ax,y = 0.5 m and ax,y = 1 m),
from an isotropic case where α= ax,y/az = 1, to highly
anisotropic ones, up to α= 100. The lattice distortion,
with a finer lattice discretization in the elevation direc-
tion, is found to be an important parameter affecting
isotherm accuracy. More specifically, a fine enough
elevation discretization reduces the size of finite jumps
in the isotherms, while it does not modify the isotherm
shape, value, or hysteresis loop. Thus, for determining
relevant information about inundation gage heights,
a fine enough elevation discretization is needed (typi-
cally, az = 0.05 m), whereas the in-plane discretization
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Figure 2. Impact of lattice size on isotherms: ax,y,z = 0.5m
(blue line), ax,y = 1m and az = 0.1m (black line), ax,y = 1m
and az = 0.05m (green line), ax,y = 1m and az = 0.01m (red
line). The inset corresponds to the isotherm integral, plot-
ted as the log of the lattice distortion α. Other simulation
parameters correspond to T ∗ = 0.8, ω= 0.5.

Figure 3. Impact of dimensionless temperature T ∗ on
isotherms: T ∗ = 0.7 (red); T ∗ = 1.8 (green); T ∗ = 2.5 (pink);
and T ∗ = 3.1 (black). The inset corresponds to the isotherm
integral plotted vs. the dimensionless temperature T ∗. Other
simulation parameters correspond to α= 10, ω= 0.5.

is fixed from the size of city elements (buildings,
streets, green areas, etc.).

We now look at the effect of the temperature T ∗ =
T/Tc in isotherms. We recall that T ∗ is a dimension-
less parameter, where the temperature T is normalized
by the critical temperature Tc. In the simulations, we
observe that values T ∗> 1 entail a diffuse boundary
between the gage height (water level) and the air, with
density values ρ varying between 0 (gas) and 1 (liquid)
over a finite thickness, whereas the (free) water bound-
ary is demarcated for T ∗< 1.This diffuse boundary for
T ∗> 1 affects the adsorption-desorption isotherms,
both in size and absolute values, as shown in Figure 3.

In contrast to the overall role of T ∗ in the system’s
response, the fluid-fluid and solid-fluid interactions,
or more specifically the interaction parameter ratio
ω=wsf /wff , play a prominent role in capturing the
physics of adsorption and desorption of liquid into
the city texture. This prominent role is shown in form
of the adsorption-desorption isotherm in Figure 4 (a),

and the snapshots shown in Figures. 4 (b) and (c) for
two different values, ω= 0.5 and ω= 5. Figure 4 (a)
shows that the onset of adsorption occurs at lower
chemical potentials with increasing value of ω; and
the same shift occurs at the end of the desorption
process. This shift is due to the increase in the solid-
fluid interaction, which favors the adsorption of water
onto surfaces leading eventually to menisci formation
[compare Figures. 4 (b) and (c)]. Such menisci are
highly relevant for wetting phenomena at nano- and
mesoscale of porous materials, but they do not rep-
resent the physics of inundation at the city scale, and
need to be avoided.

Figure 4. (a) Impact of interaction parameter ratio
ω=wsf /wff on isotherms: ω= 0.5 (red line); ω= 1 (green
line); ω= 2.5 (black line); ω= 5 (pink line). (b1-c2) Snap-
shots of surface filling for different values of ω and chemical
potential µ∗: (b1) ω= 0.5 & µ∗ =−24; (b2) ω= 0.5 &
µ∗ =−19 ; (c1) ω= 5 &µ∗ =−98; (c2) ω= 5 &µ∗ =−69.
Other simulation parameters correspond to α= 10, T ∗ = 0.8.
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Figure 5. Impact of the city’s drainage system on isotherms:
No sewer (red line); 5% sewer (black line); 20% drainage
(blue line); the inset corresponds to the area of hysteresis loop
for the adsorption - desorption loop of the sewer vs. sewer
concentration. Other simulation parameters correspond to
α= 10, T ∗ = 0.8.

3.2 Impact of drainage and soil porosity on risk of
inundation flooding

Inundation flooding of urban environments results
from the imbalance between precipitation and
drainage. While precipitation is incorporated in the
DFT approach by the chemical potential,µ∗, drainage
in our DFT approach is captured in form of either a pipe
system or a distributed soil drainage system, consider-
ing a spatial distribution of the occupation number in
the soil (see Table 2). We compare the impact of pipe
and soil drainage on isotherms.

Simulations are carried out for three drainage sys-
tem concentrations, 0, 5, and 20% representative of
the volume fraction of the underground where water
can accumulate. The adsorption-desorption isotherms
for the three systems are shown in Figure 5. These
isotherms are characterized by a change in slope, from
the almost horizontal branch during pipe drainage, fol-
lowed by an almost vertical branch once the pipes are
filled. The necking point,<ρf >d , between these two
regimes [denoted by (A) in Figure (5)] increases with
the drainage concentration, from <ρf >d= 0 for the
system without drainage, to <ρf >d= 0.06 for the
20%-drainage system. This density shift is constant
over the entire adsorption-desorption isotherm [point
(B) in Figure (5)], and can thus be considered as a
qualitative measure of the impact of drainage at the
scale of the simulated city block. If one considers an
adsorption-desorption loop to the chemical potential
µd at the necking point, the area below the curve can
be viewed as a measure of building block’s drainage
capacity [see inset of Figure 5]. This means that the
effective gage height above ground is reduced by this
drainage (water storage) capacity.

Similar drainage capacity measures are obtained
when considering a permeable soil, i.e. a soil which
can retain water in our equilibrium-based approach.
Such a soil is modeled in the DFT approach through
an occupation number distribution in the soil, with a

porosity of φ= ηsoil and surface solid-fluid interac-
tions, ω= 1. A comparison for three different porosity
values, φ= 0, 25, 50%, is shown in Figure 6 in terms
of the adsorption-desorption isotherms. Similar to pipe
drainage [Figure 5], a porous soil entails a vertical shift
of the isotherms, defined by a necking point. How-
ever, the drainage capacity calculated from the integral
over the adsorption-desorption hysteresis loop [inset
of Figure 6], exhibits smaller values when compared
to pipe drainage [inset of Figure 5]. This observation
can be attributed to the distributed nature of the poros-
ity in the ground when compared to the concentrated
nature of drainage pipes. While difference in differ-
ent drainage systems merits further investigation, it
shows the potential of the DFT approach to qualita-
tively discern the role of city-scale drainage systems
in inundation flooding.

Figure 6. Impact of the soil’s permeability on isotherms:
Impermeable soil φ= 0% (red line); permeability φ= 25%
(black line); permeability φ= 50% (blue line); the inset cor-
responds to the area of hysteresis loop for the adsorption -
desorption loop of the soil vs. soil porosity. Other simulation
parameters correspond to α= 10, T ∗ = 0.8.

4 CALIBRATION

This on-lattice DFT approach requires calibration of
theα1 and the w0

kk parameters of the interaction param-
eters, and the chemical potential µ∗, to gain quantita-
tive capabilities for urban flood risk evaluation. For
that purpose, we use an optimization algorithm, the
genetic algorithm (GA) (MathWorks 2021), and a ref-
erence model developed by the MIT Office of Sustain-
ability (MITOS), against which we calibrate the model
parameters. MITOS is using the InfoWorks ICM (Inte-
grated Catchment Modelling) model (Innovyze 2021),
a software platform for integrated 1D /2D hydrody-
namic modeling (Ltd 2021). The applied optimization
algorithm finds the best fit for the three model param-
eters by minimizing the mean of the height difference
between the DFT model and the reference predictions:

fl= min
α1,w0

kk ,µ∗

(
mean

[
ICMHeight - DFTHeight

]2
)

, (5)
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Figure 7. Results for Danforth St. sub-catchment for the 100 year storm event under current climate conditions (a) ICM vs.
DFT height values; water distribution for (b) the ICM model; (c) the DFT model at µ∗ =−0.577.

where fl is the minimized function; ICMHeight are
the flood heights obtained by the ICM model for
six precipitation events (see Table 5); and DFTHeight
are the equivalent flood heights obtained by the DFT
model.

For the model calibration, we have chosen as our
study area the MIT campus, and more specifically, the
sub-catchment on Danforth Street.This sub-catchment
is considered for the calibration with impermeable sur-
faces and no city elements. InTable 5 we see the results
after the calibration for the average flood heights for
the ICM and the DFT model and the corresponding
chemical potentialµ∗. The quality of the calibration is
illustrated by comparing the ICM and DFT height val-
ues for the same (x,y) points. Figure 7 (a) displays the
spread of height values obtained from the two mod-
els for the 100-year storm event under current climate
conditions in the form of a cross plot. The R2-value
for the simulation is 0.9154 showing a close to lin-
ear correlation. The corresponding water distribution
on the sub-catchment for the 100-year precipitation
event, shown in Figure 7 (b) and (c), indicate that both
models are mainly flooding the same areas. The cor-
rectness of this distribution must be further studied and
validated.

5 DISCUSSION

The proposed DFT-model for inundation flooding
departs from the premise that an equilibrium-based
model built around the minimization of the Grand
potential [i.e., Eq. (1)] can capture essential features
of the physics of inundation of urban environments.
It is thus of interest to test this conjecture by com-
paring the DFT approach with the most common
approach for inundation modeling, which is based
upon the shallow-water equations (SWE). The SWE-
model condenses the laws of mass and momentum
conservation into a continuum 2D-boundary layer in
between terrain height b(x, y) and free surface height

b+ h, considering the in-plane flow velocity vector
�u(x, y, t)= (u, v). Mass conservation reads (Vreugden-
hil 1994):

∂h

∂t
+ ∇ · (h�u)= pz − dz , (6)

and momentum conservation:

∂(h�u)

∂t
+ ∇ · (h�u⊗ �u)=−gh∇(b+ h), (7)

where pz is the precipitation rate; dz the drainage rate; g
the earth acceleration, b the terrain height (measured
e.g. w.r.t. seal level). The underlying assumptions of
the SWE-model are (Teng et al. 2017; Vreugdenhil
1994): (1) horizontal variations in velocity are much
greater than vertical variations, so that the velocity
�u(x, y, t) can be viewed as depth-averaged in-plane
velocities; (2) vertical accelerations can be neglected
(boundary layer assumption); and (3) the pressure
gradient over the height is negligible compared to in-
plane pressure gradients. The focus of this discussion
is to identify commonalities and differences with the
proposed DFT approach.

The first point in common is the outcome of both
approaches, namely spatially resolved flood height
estimates, coined gage height in the case of clas-
sical approaches (Ali et al. 2016), and adsorption-
desorption isotherms in the DFT approach. In the
SWE approach, this gage height at a point (x, y) is
attained once mass and momentum conservation has
balanced in time the imbalance between precipitation
and drainage rate. In the DFT approach the system is
put in contact with an (outside) virtual bath of parti-
cles at a chemical potentialµ, and so in first order, the
precipitation rate, pz , can be captured by a Newton-
type kinetics law of the form pz ∼ µ

∗
0−µ∗
kp

, with kp an
exchange coefficient. Similarly, it is tempting to for-
mulate the drainage rate in terms of DFT modeling
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quantities. For instance, for drainage by a perme-
able soil, the drainage rate, dz , is driven by the soil

saturation rate S, meaning dz ∼ dS
dt , where S ∼ ηρsoil

ηsoil .

Herein, ηsoil is the soil porosity, whereas ηρsoil is the
part of this porosity saturated by the fluid phase. The
determination of the drainage rate in the SWE model
thus requires additional information about water reten-
tion in order to become operational (Massari et al.
2014). In contrast, in the DFT model, the soil and its
water retention capacity are explicitly included in the
minimization of the Grand potential [see Eq. 1 and
Table 2].

Table 2. Calibration results for Danforth Street.

Storm ICM Height µ∗ DFT Height

10Y 24H today 0.1255 –0.5824 0.1235
10Y 24H 2030 0.1439 –0.58 0.1789
10Y 24H 2070 0.163 –0.5789 0.2121
100Y 24H today 0.2267 –0.577 0.2444
100Y 24H 2030 0.2598 –0.5743 0.2783
100Y 24H 2070 0.2982 –0.571 0.3148

In the equilibrium-based DFT approach, all rela-
tions are time-independent. It excludes flash flood
phenomena (Vreugdenhil 1994), the complex inter-
play between soil saturation and drainage (Teng et al.
2017), and the non-stationarity of gage height distri-
bution in urban environments (Group 2021). In return,
it can be viewed as an asymptotic state of inundation
flooding for urban environments, and hence an appro-
priate means for a first-order evaluation of the risk of
inundation flooding. Finally, it should be noted that the
assumption of stationarity does not necessary imply a
zero-flow velocity. It only means that the first term on
the l.h.s. of respectively Eq. (6) and Eq. (7) is zero, but
not the second one.

6 CONCLUSIONS AND PERSPECTIVES

The method herein proposed provides a simulation-
based adsorption technique dedicated to urban envi-
ronments at the city scale. To the best of our knowl-
edge, such an approach is original in its attempt
to transpose by analogy the physics of coarse-grain
adsorption techniques commonly employed in Materi-
als Science to city scale. While the equilibrium-based
approach discards the time-dependence of flooding,
the strength of the DFT method stems from a combina-
tion of a minimum of input quantities, the ease of mod-
eling city elements (buildings, pavements, drainage
systems, soil saturation, etc.), and physically meaning-
ful output parameters which can be linked to a city’s
drainage capacity, risk of inundation flooding and so
on.A further strength of the approach is the well-posed
and computationally efficient minimization problem.

While the results so far obtained illustrate the poten-
tial to qualitatively capture inundation features in an
urban environment, there are several steps required
for the approach to gain quantitative capabilities for
risk evaluation. This includes (1) the further devel-
opment of the calibration by adding more elements
into the calibration, such as permeable soils, drainage
systems, etc.; (2) the water distribution validation via
the so-called two-point correlation function; (3) the
systematic investigation of the role of city texture
parameters; and (4) based on a clear understanding
of the governing city texture parameters, it should be
possible to identify means of mitigating the impact
of inundation flooding. It is expected that the pro-
posed approach will contribute to the emerging field
of ‘urban physics’ (Sobstyl et al. 2018).
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Weak finite-discrete element coupling for the simulation of drying
shrinkage cracking in concrete
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ABSTRACT: Micro-cracks can appear at the surface of concrete specimens due to differential drying along
their depth. The influence of those micro-cracks on the mechanical behavior is studied. The proposed sequential
analysis is composed of two steps: hydric modeling via a finite element model and mechanical modeling via
a beam-particle model. This latter model provides an explicit description of cracking and the associated mech-
anisms: initiation, propagation and contact during closing. The approach allows a weak coupling between the
hydric and mechanical phenomena achieved in a non-intrusive way in both models. The study of cracking under
drying conditions followed by three-points bending test is realized. Numerical results are compared with an
available experimental campaign.

1 INTRODUCTION

The drying of concrete structures modifies their
mechanical and transport properties, and especially
because of the appearance of cracks on the surface.
This cracking is due to the difference in humidity
between the core of the material and the external
environment. Indeed, a hydraulic moisture gradient
induces local tension and compression stresses, which
can lead to surface cracking (Bisschop & van Mier
2002; Hossain & Weiss 2004).

Drying shrinkage is a strongly coupled problem.
Indeed, moisture transport induces shrinkage which
can lead to the development of cracks. These cracks
will then interfere with moisture transport since they
constitute preferential pathways for water flow. Thus,
the study of drying shrinkage should theoretically
require the simultaneous analysis of water transport
and mechanical failure. However, these two can be
solved separately, by first performing the water trans-
port analysis, then calculating the shrinkage strain,
and finally deducing the mechanical strain and crack
propagation. This weak coupling method is justi-
fied by the fact that, experimentally, the drying
rate of mortars and concretes has been shown to
be scarcely influenced by the presence of surface
cracks.

In this study, the moisture field in the concrete spec-
imen during drying is obtained with a water transport
model developed in the finite element code Cast3m.
The fracture modeling is then performed with a beam-
particle model. The coupling variable is the shrinkage
strain field which is calculated from the moisture
field and applied through an external force in the
mechanical model.

The beam-particle model is used here because it
offers an explicit description of cracking. It is com-
posed of randomly distributed rigid particles con-
nected by Euler-Bernoulli brittle beams. The develop-
ment of cracking is a consequence of the breaking and
the removal of those cohesive beams. In addition, inter-
actions between particles, such as contact and friction,
are considered to manage crack closure.

To correctly reproduce the impact of drying on
the mechanical behavior, the positive contribution of
the capillary pressure is modeled. Indeed, drying in a
porous network – such as the one found in concrete
– generates a pore pressure which leads to the pre-
stressing of the solid part of the microstructure. Here,
the influence of this capillary pressure is added to the
failure criterion of discrete beams.

The formation and influence of surface drying
cracks on the mechanical behavior are studied. For
this purpose, numerical analyses are performed on
three-point bending tests of specimens kept under
autogenous drying conditions. The results are com-
pared with experimental results obtained on concrete
specimens by Soleilhet et al. (2021). Simulations are
performed on notched and unnotched specimens, as
these specimens are not affected by surface cracks in
the same way.

2 FINITE-DISCRETE ELEMENT MODELING

2.1 Weak coupling principle

Drying shrinkage is a strongly coupled problem that
theoretically requires the simultaneous analysis of
moisture transport and mechanical strains. Indeed, the
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moisture transport induces shrinkage which might lead
to cracking. Those cracks will then affect the moisture
transport as they are ideal paths for the
water flow. Models exist to study this strong coupling
between transport and cracking (Grassl & Bolander
2016; Roth et al. 2020). However, this problem is clas-
sically solved by analyzing water transport and fracture
separately and successively.

This weak coupling method is justified by experi-
mental observations. Indeed, the drying rate of mortars
and concretes is scarcely influenced by the presence
of micro-cracks (Bisschop & van Mier 2008).

In this study, the moisture field due to drying is
obtained with a hydric transport model implemented
in the finite element code Cast3m. The shrinkage
strain field is then computed for this moisture field
and applied through an external force in the discrete
beam-particle model. The cracking patterns due to
drying followed by mechanical loadings can be thus
obtained.

2.2 Hydric transport model

Although drying is related to the combined transport of
liquid water, water vapor and dry air, it can be studied
by considering only the mass balance equation for the
liquid water:

dS

dPc

dPc

dt
= div

(
Kkr

µlϕ
grad (Pc)

)
(1)

where S is the degree of saturation, Pc is the capillary
pressure, K is the intrinsic permeability, kr is the rela-
tive permeability,µl is the viscosity of the liquid water
and φ is the porosity.

To solve equation (1), the relations proposed by van
Genutchen (1980) are used which linked together the
degree of saturation, the capillary pressure and the
relative permeability:

kr =
√

S

(
1−

(
1− S

1
β

)β)2

(2)

S =
(

1+
( |Pc|

P0

) 1
1−γ

)−γ
(3)

where β, γ and P0 are material parameters.
A linear relationship is then used to obtain the dry-

ing shrinkage rate from the variation of the degree of
saturation:

ε̇sh= κshṠ1 (4)

where κsh is a hydrous compressibility factor and 1 is
the unit matrix.

A more complete description of this model as well as
the procedure used to identify the material parameters
are presented in Soleilhet et al. (2020).

2.3 Beam-particle model

The beam-particle model has been developed to explic-
itly simulate cracking in concrete (Delaplace 2008;
Vassaux et al. 2016). This discrete model is constituted
by a set of polygonal rigid particles.A center, randomly
placed in a grid dividing the specimen into regions of
constant size, is associated with each of these particles
(see Figure 1a). Those particles are connected together
with Euler-Bernoulli beams to represent the cohesion
between particles (see Figure 1b-c).

Figure 1. Generation of the random mesh (a-b) and
mechanical interactions between the particles (c-e) for the
beam-particle model.

The Euler-Bernoulli beams constitute a lattice of
stiffness matrix K . To obtain the displacement vector
due to the external forces, the global equilibrium of
the lattice system must be solved at each time step:

K �u= �f ext + �f sh (5)

To compute the shrinkage forces vector, it is sup-
posed that each beam pq undergoes a shrinkage strain
in its axis only that is constant along its length
and corresponds to the average of the values at its
two extremities. Those values are obtained from the
finite element hydric simulation and projected on the
discrete beam-particle mesh following the method pro-
posed by Oliver-Leblond et al. (2013). The vector of
shrinkage forces for the particle p is thus given by:

�f sh
p =E

∑Np

q=1
Apq

εsh
p + εsh

q

2
�npq (6)

where Np is the number of particles q connected to p by
a beam pq,E is the Young modulus of the beams, Apq
is the section of the beam pq, �npq is the axial vector of
this beam and εsh

p (resp. εsh
q ) is the value of the finite

element shrinkage strain interpolated on the node p
(resp. q).The forces acting on the particles at both ends
of the beam compensate each other, so the resulting
shrinkage force on all particles is zero.
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A brittle behavior is imposed to the beams in order
to introduce cracks.The beams are removed one by one
once they reach their failure criteria (see Figure 1d).
The failure criterion for the beam linking the particles
p and q is written as:

εpq − εsh
pq + α

∣∣κpq

∣∣

εcr
pq − bεεsh

pq

> 1 (7)

The failure of the beam pq thus depends on:

• the axial strain of the beam εpqcomputed from the
displacement vectors of the centroids of the particles
p and q;

• the curvature of the beam κpq computed from the
rotation of the particles p and q around their cen-
troids multiplied here by the material parameter α
to reproduce the dissymmetric tension/compression
behavior;

• the shrinkage strain of the beam defined as

εsh
pq=

(
εsh

p + εsh
q

)
/2;

• the critical strain of the beam εcr
pq randomly gen-

erated following a Weibull distribution in order
to introduce material heterogeneities allowing to
obtain the quasi-brittle behavior of concrete;

• the capillary pressure calculated in a simplified way
here as proportional to the drying strain with a factor
bε , linked to the Biot coefficient, which must be
positive to ensure the positive effect of the capillary
pressure during shrinkage.

Once a beam is removed between two particles as a
result of its failure, the crack can close which leads to
the appearance of contact between these two particles
(see Figure 1e). In this case, geometric interpenetration
is allowed and a repulsive contact force proportional
to the interpenetration area is computed.

3 APPLICATION

The test cases studied here are derived from the exper-
imental campaign of Soleilhet et al. (2021). Concrete
beams of section 10cm x 10cm and length 84cm were
subjected to drying conditions at 30% relative humid-
ity for 70 days or kept in water for the same duration.
Half of those beams were then sawn to obtain a notch of
2cm. Those beams are then submitted to a three-points
bending test. The experimental Force-Displacement
responses of the beams under three-points bending test
are presented on Figure 2 for the unnotched beams and
Figure 3 for the notched beams.

First, the three-point bending tests on wet speci-
mens are simulated using the beam-particle model.
The 2D discrete mesh of the concrete specimens con-
sists of 21000 particles. Thus, the average length of the
lattice beams is 2 mm. The parameters of this discrete
model are identified in order to find the average Force-
Displacement responses for notched and unnotched
specimens (see Figures 4 and 5). Since the model intro-
duces heterogeneity, it is necessary to perform several

Figure 2. Force-Displacement responses of the unnotched
beams under three-point bending tests from the experimental
campaign of Soleilhet et al. (2021).

Figure 3. Force-Displacement responses of the notched
beams under three-point bending tests from the experimental
campaign of Soleilhet et al. (2021).

Figure 4. Numerical (average curve, standard deviation and
extremum) and Experimental Force-Displacement responses
of the wet unnotched beams under three-point bending tests.

simulations. The average results are derived from 100
Monte-Carlo runs.

Firstly, 3D finite element hydric simulations are per-
formed to obtain the drying shrinkage field. Then, 2D
discrete simulations allow to capture the displacement
field and the cracking pattern. As observed on Figure
4, the cracks are distributed on the whole periph-
ery of the beam in a perpendicular way. Their size
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Figure 5. Numerical (average curve, standard deviation and
extremum) and Experimental Force-Displacement responses
of the wet notched beams under three-point bending tests.

and opening are not constant since the beam-particle
model introduces randomness in the mesh and fracture
properties.

Figure 6. Numerical concrete beam after 70 days of drying.

Figure 7 shows the distribution of drying micro-
crack lengths obtained for all 100 Monte Carlo runs.
The majority of the cracks are millimeter long and very
few are centimeter long. However, these longer cracks
will create preferential paths for cracking during the
three-point bending test.

Figure 7. Distribution of microcrack lengths on the 100
numerical specimens subjected to 70 days of drying.

Three-point bending tests on specimens subjected
to 70-day drying conditions were simulated for two
values of the capillary pressure coefficient: bε= 0,0
and bε= 0,1. On Figures 8 and 9, the initial bending
stiffness is reproduced regardless of the value of this
coefficient. On the other hand, its influence is impor-
tant for the maximum bending strength. The capillary
pressure acts here as a pre-stress that will prevent
cracking (Bažant et al. 1997).

Figure 8. Numerical and Experimental Force-Displacement
responses of the dried unnotched beams under three-point
bending tests.

Figure 9. Numerical and Experimental Force-Displacement
responses of the dried notched beams under three-point
bending tests.

4 DISCUSSION AND CONCLUSIONS

The following remarks can be made on the use of
a weak finite-discrete element coupling approach to
study differential drying shrinkage cracking in con-
crete:

• This approach is simple to implement since the cou-
pling only requires the interpolation of the shrinkage
field on the discrete mesh to perform the coupling.
The method is therefore non-intrusive.

• The use of a beam-particle model allows to obtain a
fine description of the cracking. It is therefore pos-
sible to numerically quantify the penetration depth
of micro-cracks following drying shrinkage as well
as their openings.

• It is possible to perform mechanical test simula-
tions on the cracked specimens under drying. These
studies allow to quantify the impact of these drying
micro-cracking on the mechanical properties.

A strong assumption is made on the choice to
consider the positive effect of capillary pressure on
the mechanical strength of concrete after drying.
This allows us to correctly approximate the peak
loads during three-point bending tests on notched and
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unnotched specimens. Indeed, the predicted bending
strength would be lower without considering the cap-
illary pressure. A next step is to consider creep, both
basic and drying creep, which would reduce drying-
related micro-cracking and thus also have a positive
impact on post-drying mechanical strength.
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ABSTRACT: A computational homogenization approach for mesoscale discrete models of coupled mechanics
and mass transport in concrete is developed via asymptotic expansion. Primary fields of the model (pressure,
displacements and rotations) are decomposed into macroscopic and microscopic components.Taylor expansion is
then applied to relate field values between the neighboring nodes.The expanded primary fields propagate through
geometric, constitutive and balance equations to provide a two-level model.At the microscale, heterogeneous and
discrete Representative Volume Element (RVE) problem is obtained. The homogenization renders the RVE to be
steady state even for transient tasks. Periodic boundary conditions are applied and the load is imposed in a form
of eigen pressure gradient, eigen strains and eigen curvatures, which are computed as projections of macroscopic
tensors of pressure gradient, strain and curvature. The mechanical RVE is solved first as it is independent on
the transport part. The transport RVE is then solved taking into account crack openings from the mechanical
RVE. At the macrocale, homogeneous and continuous coupled transient equations emerge. These equations are
solved with a help of the finite element method with a mechanical and transport RVE couple attached to each
integration point. Biot’s coupling terms between transport and mechanics appear at the macroscale only. Simple
examples are presented verifying the homogenization technique.

1 INTRODUCTION

Transport of a fluid in heterogeneous quasi brittle
materials is strongly coupled with their mechanical
behavior. The pressure affects the stress state in the
solid phase according to the Biot’s theory (Detournay
& Cheng 1993), while volumetric changes and crack-
ing have an effect on pressure and material conduc-
tivity. Recently, fully coupled models were developed
in a discrete framework at mesoscale. Their advan-
tage in the coupled analysis is a detailed representation
of the cracking pattern, including transition from dif-
fused to localized cracking state and anisotropy of
the cracking phenomenon (Bolander, Eliáš, Cusatis, &
Nagai 2021).The mechanical model at hand uses phys-
ical discretization, i.e., the mechanical rigid bodies
correspond to the heterogeneous units of a mate-
rial internal structure. It is similar to the LDPM
approach (Cusatis, Mencarelli, Pelessone, & Baylot
2011; Cusatis, Pelessone, & Mencarelli 2011) but the
domain tessellation is treated differently. Geometry of
the transport part of the model is conveniently built as
a dual diagram to the mechanical part (Grassl 2009;
Grassl & Bolander 2016). Each transport element is
then aligned with some potential crack direction and

can therefore easily accommodate an effect of cracking
on its permeability coefficient. Consequently, realistic
anisotropic transport behavior in the inelastic regime
is provided.

Since the model geometry is generated according
to material heterogeneities, there is a large compu-
tational cost associated with it. Various techniques
are available to reduce this cost including the clas-
sical computational homogenization technique. Such
homogenization was already derived for mechani-
cal discrete models (Rezakhani, Alnaggar, & Cusatis
2019; Rezakhani & Cusatis 2016; Rezakhani, Zhou,
& Cusatis 2017) via an asymptotic expansion. This
contribution extends the homogenization further con-
sidering the mechanical part being fully coupled with
the mass transport part.There are two coupling mecha-
nisms considered: (i) the Biot’s theory and (ii) an effect
of cracking on the conductivity as the open cracks
create channels for the fluid.

Two verification examples are included: flow
through a compresses cylinder and hydraulic fractur-
ing of a hollow cylinder. Reasonable correspondence
between results from the full and homogenized model
is obtained, time savings in a form of speed-up factors
are reported.
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2 FORMULATION OF THE DISCRETE MODEL

The discrete model at hand is generated by ran-
dom placing of spherical aggregates into the domain.
Aggregate diameters are drawn according to the Fuller
curve and they are placed without any overlapping.
Weighted Delaunay triangulation is performed on
centers of the spheres to define mechanical connec-
tivity and tetrahedrons serving as control volumes for
flow. Dual power/Laguerre tessellation serves to find
connectivity of the transport part of the model and
polyhedral shapes of the mechanical rigid bodies. Each
rigid body therefore contains one mineral grain and
surrounding matrix.

Centers of the spherical grains bear six degrees of
freedom (three translations, u, and three rotations, θ ),
nodes of the power tessellation bear one degree of
freedom with meaning of fluid pressure, p. Contact
between rigid bodies I and J is provided by mechan-
ical elements, e, with length xIJ = l, normal n and
projected area A!. One also defines a local coordi-
nate system at each mechanical contact by orthogonal
unit vectors eN =n, eM and eL, or shortly eα , α ∈
{N , M , L}. Conduit elements, d, connecting transport
nodes P and Q have length xPQ = h, normal eλ and
projected area S!.The volume of a polyhedral mechan-
ical particle is denoted V , the volume of a transport
tetrahedron is W .

The first set of equations provides pressure gradi-
ent, q, between transport nodes P and Q and strain, ε,
and curvature, χ , at the contact between rigid bodies
I and J

g= pQ − pP

h
(1)

εα = 1

l

(
uJ − uI + E : (θ J ⊗ cJ − θ I ⊗ cI )

) · eα
(2)

χα = 1

l

(
θ J − θ I ) · eα (3)

where vectors cI and cJ vectors point from the nodes
I or J to the centroid of the mechanical contact face,
E is the third order Levi-Civita tensor.

The second set of equations, called constitutive,
gives the flux scalar, j, the total traction vector, t,
and the couple traction vector, m. The form of these
equations can be arbitrary (providing they are ther-
modynamically admissible) but one needs to know
at this point all the variables which are entering the
constitutive functions. Examples in the last section
of this contribution use simplified LDPM mechani-
cal constitutive equations (Cusatis & Cedolin 2007)
and fluxes dependent on crack openings, δλ, and the
average pressure, pλ, in the conduit element

j= fj(pλ, g, δλ)=−λ(pλ, δλ)g (4)

t= fs (ε)− bpaeN (5)

m= fm (χ) (6)

b is Biot coefficient and pa is an average pressure in
the mechanical element.

The final set of equations describe balance of fluid
mass in the control volume (Delaunay tetraheron) of
a fully saturated medium and balance of forces and
moments at each rigid polyhedral body.

∑

Q∈W

[
S!j − ρw0W v̇c

(
1+ b+ pλ − p0

Kw

)

−ρw0Wvc
ṗλ
Kw

]
− ρw0

(
3bε̇V + ṗλ

Mb

)
W −Wq= 0

(7)

VρüI +Muθ · θ̈ I − V b=
∑

J

A!tαeα (8)

Mθ · θ̈ I +MT
uθ · üI =

∑

J

A! [w + mαeα] (9)

ρ is the density of the solid, Muθ and Mθ are moment
of inertia tensors, b is the volumetric load, w=E :
(cI ⊗ t)= tαE : (cI ⊗ eα) is the moment of traction
with respect to the mechanical node I , ρw0 is the initial
fluid density, vc is the crack density (volume of cracks
over the total volume), p0 is the reference pressure, εV
is the volumetric strain, Kw is the fluid bulk modulus
and Mb is Biot modulus.

3 ASYMPTOTIC EXPANSION

The homogenization assumes one global macroscopic
reference system X and infinite number of local sys-
tems y defined at every macroscopic material point.
It is assumed that the material appears continuous and
homogeneous from the viewpoint of the global system,
while discrete and heterogeneous from the viewpoint
of the local reference system. The scale factor that
relates X to y is η. It is called separation of scales con-
stant and expected to be positive but much lower than
one.

The primary fields are now expanded into macro-
scopic terms, •(0), fluctuating terms, •(1), and higher
order terms that are eventually omitted. Such expan-
sion assumes that the material internal structure is
composed of some period units called Representa-
tive Volume Elements (RVE) and that the fluctu-
ating terms are periodic and zero on average over
the RVEs .

p(X, y)= p(0)(X, y)+ ηp(1)(X, y)+ . . . (10)

u(X, y)=u(0)(X, y)+ ηu(1)(X, y)+ . . . (11)

θ (X, y)= η−1ω(−1)(X, y)+ ω(0)(X, y)

+ ϕ(0)(X, y)+ ηϕ(1)(X, y)+ . . . (12)

The special type of expansion of rotations is adopted
from Rezakhani & Cusatis (2016).

The second fundamental component is the Taylor
series expansion of the primary fields around nodes I
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or P to estimate values at neighboring nodes J or Q
for mechanical or transport fields, respectively. This
expansion is developed according to Fish, Chen, & Li
(2007)

p(XQ, yQ)= p(XP , yQ)+ ∂p(XP , yQ)

∂Xi
xPQ

i

+ 1

2

∂2p(XP , yQ)

∂XiXj
xPQ

i xPQ
j +O(h3) (13)

u(XJ , yJ )=u(XI , yJ )+ ∂u(XI , yJ )

∂Xj
xIJ

j

+ 1

2

∂2u(XI , yJ )

∂XjXk
xIJ

j xIJ
k +O(l3) (14)

θ (XJ , yJ )= θ (XI , yJ )+ ∂θ (XI , yJ )

∂Xj
xIJ

j

+ 1

2

∂2θ (XI , yJ )

∂XjXk
xIJ

j xIJ
k +O(l3) (15)

Expansions (10)-(15) are now substituted into the
equations for pressure gradient (1), strain (2) and
curvature (3) to obtain expansion of these variables.
Then, an expansion of flux, traction and couple trac-
tion is developed using the Taylor series expansion of
functions fj , fs and fm (Eqs. 4-6) with respect to all
its input variables. Finally, all these expansions are
substituted into the balance equations of the discrete
model (7)-(9). The set of three balance equations falls
apart into several such sets collecting expressions with
the same power of the scale separation constant η.
Each of the sets is then solved independently resulting
in (i) mechanical and transport RVE problems at the
mesoscale and (ii) a continuous differential equations
of the macroscale problem.

The macroscale problem is defined as

∇X · f = ρw0

[
v̇c0

(
1+ b+ p(0) − p0

Kw

)

+vc0
ṗ(0)

Kw
+ 3bε̇(0)

V + ṗ(0)

Mb

]
+ q (16)

∇X · σ s − ∇X p(0) · ξ =〈ρ〉v̈(0) − b (17)

∇X · µs − ∇X p(0) · ζ + E : σ s − p(0)E : ξ =
= η−1I0 · ω̈(−1) (18)

with degrees of freedom being macroscopic pressure
p(0), macroscopic displacement v(0) and macroscopic
rotation η−1ω(−1). Tensor I0 denotes inertia tensor of
the whole RVE with entries

I 0
ij =

1

V0

∑

I∈V0

[
VρEiklEljm

(
ηr0

k

) (
ηr0

m

)+M θij
]

(19)

Vectors r are positions of the centroid of rigid bodies
in the reference system y and V0 is the volume of the

whole RVE. Symbol vc0 in Eq. (16) is the average crack
volume density in the RVE

vc0= 1

V0

∑

P∈V0

∑

Q∈W

v(0)
c W (20)

Tensors f , σ s, µ are macroscopic flux, stress in the
solid and couple stress in the solid, respectively. Along
with the two auxiliary tensors ξ and ζ they read

f = 1

V0

∑

d∈V0

hS!j(0)eλ (21)

σ s= 1

V0

∑

e∈V0

lA!s(0)
α eN ⊗ eα (22)

µs= 1

V0

∑

e∈V0

lA!eN ⊗
[
ηm(1)
α eα + s(0)

α E : (xc ⊗ eα)
]

(23)

ξ = 1

V0

∑

e∈V0

lA!beN ⊗ eN (24)

ζ = 1

V0

∑

e∈V0

lA!beN ⊗ [E : (xc ⊗ eN )] (25)

The flux scalar j(0), the traction vector in the solid
s(0) and the couple traction vector ηm(1) are com-
puted at each integration point of the macroscale
problem by solving a couple of RVE problems (one
for mechanics and one for mass transport). RVEs are
loaded by projection of macroscopic tensors of pres-
sure gradient, Cosserat strain and curvature that comes
from macroscale kinematics. The projection gener-
ates eigen components of the pressure gradient, strain
and curvature in the discrete elements. The mechan-
ical RVE is completely independent on the transport
RVE, while the transport RVE requires on its input
information about crack openings in the mechani-
cal RVE. The Biot’s coupling effects appears only at
the macroscale. Both mechanical and transport RVEs
are steady state, transient terms appear only at the
macroscale.

4 VERIFICATION

Two examples are presented to verify the derived
homogenization scheme. Results of the full and
homogenized model are compared by simulating (i)
a compressed cylinder where fluid flows parallel to
the loading direction and (ii) a hydraulic fracturing
of a hollow cylinder. Cosserat trilinear isoparametric
brick elements are used at the macroscale to solve weak
form of Eqs. (16)-(18). Mechanical constitutive equa-
tions of the discrete model are implemented according
to on the older LDPM version (Cusatis & Cedolin
2007) and simplified, see Eliáš (2016). Definition of
the permeability coefficient, λ, is adopted from Grassl
& Bolander (2016). The maximum diameter of the
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aggregates in the discrete model is 10 mm, the min-
imum diameter directly represented in the model is
4 mm. Smaller aggregates are left to be phenomeno-
logically included in the constitutive model. RVE
size considered in the examples is 50× 50× 50 mm3.
An adaptive switching from linear pre-computed RVE
states to full nonlinear states is implemented according
to Rezakhani, Zhou, & Cusatis (2017).

4.1 Flow through compressed cylinder

The first test features cylinder of diameter 0.1 m and
depth 0.1 m compressed vertically, see Figure 1. There
is also prescribed fluid pressure difference 1 MPa
between the top and the bottom specimen surface. The
steady state solution is calculated considering Biot
coefficient b= 0. The test is performed to asses the
effect of cracks on the permeability coefficient, λ. The
full model has 32, 500 degrees of freedom and took 68
minutes to run.

Figure 1. Cylindrical specimen: the full model and the
homogenized model composed of a single brick element
along with an RVE at one integration point.

The homogenized model is represented by a sin-
gle Cosserat brick element (of equivalent cross section
area) with eight integration points and therefore eight
RVE couples. The total number of degrees of freedom
(RVEs plus the macroscale) is 33, 416 and compu-
tational time is 25 minutes. The speed-up factor is
therefore about 2.7.

A comparison of results obtained by the two models
is presented in Figure 2. Both stresses and fluxes show
good correspondence, therefore one can conclude that
the homogenization correctly preserves the effect of
cracks on material conductivity. The strain localiza-
tion, taking place at the end of the simulation, is in this
case analyzed correctly by both (full & homogenized)
models, because the size of the RVEs approximately
corresponds to the volume associated with integration
points (Rezakhani & Cusatis 2016).

Figure 2. Mechanical responses and fluxes obtained from
the full and homogenized model during the virtual compres-
sion test.

4.2 Hydraulic fracturing of hollow cylinder

The second verification example applies the homog-
enization to hydraulic fracturing. A hollow cylinder
of outer diameter 0.4 m, inner diameter 0.1 m and
depth 0.05 m is fractured by an increasing fluid pres-
sure in the hole. The outer fluid pressure is set to
zero. The simulation is transient, the inner pressure
increases by 200 Pa per second. Different Biot coeffi-
cients are considered, b∈ {0, 0.5, 1}. The full model
contains approximately 150, 000 degrees of freedom
and takes about 500 (b= 0), 315 (b= 0.5) and 200
(b= 1) minutes to run. It is terminated by divergence of
the implicit solver when the fluid pressure becomes too
large and macroscopic cracks over the whole thickness
of the cylinder develop.

The homogenized model is composed of 40
Cosserat brick elements, total number of degrees of
freedom is approximately 1.3× 106. Speed-up factors
obtained by the homogenization are 1.2, 5.2 and 5 for
Biot coefficient 0, 0.5 and 1, respectively. In this case,
the homogenized models have many more degrees of
freedom at the end of the simulation when all the RVEs
are switched from the linear pre-computed state to the
full nonlinear state.

The RVE volume does not correspond to the mate-
rial volume associated with the integration point. The
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Figure 3. Left: fluid pressure inside the hole and fluxes through the cylinder for different Biot coefficients; right: cracks at
the final step of the full and homogenized model simulation. �Vh is change of volume of the hole and Vh0 is the original
volume of the hole.

strain localization phenomenon, which is generally
considered unfeasible for homogenization (Gitman,
Askes, & Sluys 2007), plays an important role and
causes discrepancies between responses from the full
and homogenized model in the terminal stages of
the simulation, see Figure 3 left. Another issue is
that the periodic boundary conditions of the RVE
do not allow the localized crack to propagate under
arbitrary angle (Stránský & Jirásek 2011; Coenen,
Kouznetsova, & Geers 2012). For that reason, all the
RVEs are rotated so that their y reference system i
aligned with the cylindrical coordinate system at the
integration point. Unfortunately, such a rotation con-
stitutes perfect symmetry in the homogenized model
and the strain localization does not take place before
the simulation is terminated, Figure 3 right.

5 CONCLUSIONS

An asymptotic expansion homogenization of discrete
models for coupled mechanics and mass transport in
a fully saturated media is developed. The homogeniza-
tion derives Cosserat type equations for mechanics and
a standard differential equation of mass transport at
the macroscale, there are however several additional
coupling terms.At the mesoscale, two periodic steady-
state RVE problems emerge. The mechanical RVE is
independent on the transport one, while the transport
RVE depends on crack openings from the mechanical
RVE problem, they are therefore solved in a sequence.

Two verification examples showed reasonably small
errors of the homogenized solution. The errors are
mostly attributed to (i) a poor approximation of the
primary fields at the macroscale, (ii) the strain local-
ization phenomenon present in late stages of sim-
ulations and (iii) a boundary layer or wall effect

(Eliáš 2017). The first error source can be easily
reduced by improving the mesh or type of elements, but
such improvement would also increase computational
time. The second error source is not easy to elimi-
nate as the homogenization actually does not apply
in the case of the strain localized into a macroscopic
crack. There are few remedies suggested in the liter-
ature (Unger 2013; Coenen, Kouznetsova, Bosco, &
Geers 2012), but this issue is left for further research.

The speed-up factors achieved by the homogeniza-
tion are not astonishing. There is, however, possibility
to distribute RVE computations over several compu-
tational cores. Since they are independent, distributed
computing should be trivial and extremely effective.
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PARC_CL 2.1: Modelling of the time-dependent behaviour of reinforced
concrete slabs
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ABSTRACT: During their lifetime, reinforced concrete (RC) structures may suffer a combination of time-
dependent effects that are directly associated to properties of concrete, loading, humidity, temperature, and other
environmental actions. For the prediction of long-term strains and cracking, creep and shrinkage should be
accurately considered. In particular, the underestimation of cracks width and deflections of RC elements can be
identified as primary consequences of the inadequate evaluation of time-dependent effects.

The present study focuses on the modelling of a RC slab by considering the time-dependent effects of concrete.
To this aim, a non-linear finite element approach, based on multi-layer shell elements, named PARC_CL 2.1,
is adopted. Finally, considering deemed-to-satisfy approach previsions, preliminary considerations on cracks
width induced by corrosion deterioration are carried out.

As a conclusive remark, the PARC_CL 2.1 crack model can be considered as a useful tool for the time-
dependent modelling of RC elements.

1 INTRODUCTION

The service life design of new reinforced concrete
(RC) structures and the residual life estimation of
existing RC structures, require an appropriate descrip-
tion of the mechanical properties of the materials,
including the time-dependent strains of the concrete
(induced by creep and shrinkage effects) and the
deterioration phenomena (induced by environmental
exposure).

Creep and shrinkage have a considerable impact
upon the performance of RC structures by inducing
unexpected excessive cracking and deformations over
time. Therefore, to properly determine the structural
performances at serviceability limit state (SLS), the
detrimental effects of shrinkage and creep must be
accurately considered with the aim to ensure ade-
quate safety and durability throughout the life of the
structure.

In this framework, several experimental research
has been carried out to quantify the effects of creep and
shrinkage, Bazant & Li (2008). On the other hand, sci-
entific committee such as ACI Committee 209 (2008)
and Model Code 2010 (fib 2013) proposed determinis-
tic models that correlate analytical formulations based
on sectional analysis and experimental data tests.

Nevertheless, Standard Codes and Guidelines are
lacking provisions for the assessment of the rheologi-
cal phenomena, coupled with the deterioration induced
by corrosion.

Nowadays, existing structures and infrastructures –
such as road, motorway, rail network – show evi-
dent signs of deterioration and requires a huge

number of investments for repairing and main-
tenance. For this reason, the forthcoming chal-
lenges on the assessment of existing structures
affected by aging and deterioration are address-
ing the scientific debate. An example, is the inter-
national workshop on the capacity assessment of
corroded structures (https://www.cte-it.org/attivita-e-
programmi/cacrcs-days-2021/) that since 2019 has
seen the increasing participation of international
experts coming from universities, public institutions,
and private studios. Several cases study of struc-
tures requiring proactive or reactive interventions are
reported in the proceedings of CACRCS DAYS (2020,
2021). In particular, the case of RC slabs in under-
ground car parking are frequently cited as members
affected by durability problems. Durability problems
are caused at the extrados by excessive crack open-
ing combined with deficiencies in the water drainage
system, and use of water, salt, and chemical agents
for the de-icing solutions, while at the intrados by
relative humidity, temperature and carbonatation, as
highlighted in Figure 1.

In the absence of specific requirements, crack con-
trol at SLS is imposed by Eurocode 2 (2004). Accord-
ing to the deemed-to-satisfy approach, crack opening
widths must be limited, under the quasi-permanent
combination of loads and during the entire service live
of members, to defined values of wmax, that depend on
the class of exposure.

The present paper deals with the evaluation of
the crack opening and the deflection of RC slabs
over time to appreciate the effects of shrinkage and
creep.

624 DOI 10.1201/9781003316404-74



Figure 1. Durability problems and excessive cracking of RC
slab.

The calculation of the deflection of RC slabs over
time had been deeply investigated by Kilpatrick &
Gilbert (2017) and by Bertero & Bertero (2018).

Referring to scientific literature – among the oth-
ers – Motter et al. (2018) proposed a single function
for the combination of creep and shrinkage effects,
while a non-linear shrinkage profile along both depth
and width of RC elements was applied by Sirico et al.
(2017) and Hasan et al. (2018). Moreover, a finite ele-
ment analysis method based on CEB-FIB MC 90 was
suggested by Hossain & Vollum (2002). However, it
is worth to mention that most of the available numeri-
cal models consider creep and shrinkage as separated
phenomena, even if, their action is coupled.

The paper focuses on the response prediction over
time of continuous RC slabs by adopting non-linear
finite element analyses (NLFEA), based on multi-
layer shell elements and PARC_CL 2.1 crack model,
(Belletti at al. 2017; Shu et al. 2017). The presented
numerical approach is validated by comparing NLFEA
results with experimental outcomes on RC slabs tested
by Gilbert & Guo (2005).

The PARC_CL 2.1 model, that stands for Physical
Approach of Reinforced Concrete for Cyclic Load-
ing, is a model developed at the University of Parma
that incorporates different cyclic constitutive laws of
materials and the evolution of corrosion deterioration,
shrinkage, and creep over time (Belletti et al. 2019;
2020).

In the present work, the time-dependent effects
of creep and shrinkage are evaluated by adopting
the Model Code 2010 formulations (fib 2013). How-
ever, to properly calibrate creep and shrinkage strains,
experimental measurements on the variation of the
mechanical properties of concrete are considered and
directly used as an input data for the analysis.

Based on the obtained results, the new updated ver-
sion of PARC_CL 2.1 crack model can be considered
as a useful tool for the time-dependent modelling of
RC and prestressed concrete (PC) members.

Finally, some remarks on the evolution of the cracks
over time with regards to the crack control verification
imposed in the framework of the deemed-to-satisfy
approach for service life design will be pointed out.

2 MAIN FEATURES OF PARC_CL 2.1

The PARC_CL 2.1 is a smeared and fixed crack model
in which the reinforcement is assumed smeared in the
hosting concrete element.

As widely discussed in previous works carried out
by the Authors (Belletti et al. 2017; Franceschini et al.
2021;Vecchi & Belletti 2021), the PARC_CL 2.1 crack
model is implemented in a user subroutine (UMAT.for)
implemented in the software Abaqus.

The PARC_CL 2.1 crack model was previously val-
idated against the capability to predict the response of
RC elements subjected to static, cyclic and dynamic
loading conditions (Franceschini et al. 2021; Vecchi
& Belletti 2021). The paper presents, as main nov-
elty of the new release, the implementation of the
time-dependent effects of creep and shrinkage.

Figure 2 shows that the PARC_CL 2.1 crack model
is characterized by two reference systems at each inte-
gration point, denoted as (i) the local x, y-coordinate
system and (ii) the 1,2-coordinate system, related to
the fixed crack orientation. In detail, the parameter
ψ stands for the angle between the 1-direction, per-
pendicular to cracks, and the x-direction, while the
parameter θ i corresponds to the angle between the
direction of the ith order of rebars and the x-direction.

Figure 2. (a) Plane stress state of a RC element and (b) crack
pattern (Belletti et al. 2017).

For a clear understanding, the main steps of the
implemented algorithm are given in the flowchart
reported in Figure 3.

2.1 Strain field for concrete

The PARC_CL 2.1 crack model is suitable for mem-
brane elements of multi-layered shell elements sub-
jected to plane state of stresses. Given the strain field
of the element, {εx,y}, at each integration point in the
global system (x, y-coordinate system), the strain field
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Figure 3. Flowchart of the PARC_CL 2.1 crack model for
creep and shrinkage analysis.

for concrete in the 1,2-coordinate system, {ε1,2} can
be obtained, as expressed by Eq.(1):

{
ε1,2

}= [
Tψ

]{
εx,y

}
(1)

where (Tψ ) is the transformation matrix.
In particular, the concrete behaviour is assumed

orthotropic both before and after cracking.

However, the total strain field of concrete results to
be strictly affected by the long-term strains induced by
shrinkage and creep effects.

In this context, the total strain of a RC element at
a time t, εc(t), – that has been subjected to a uniaxial
load at time t0 – can be expressed as the sum of three
different components, as highlighted in Eq.(2):

εc (t)= εci (t0)+ εcc (t, t0)+ εcs (t, ts) (2)

where εci(t0) is the instantaneous deformation,
εcc(t, t0) is the strain due to creep, and εcs(t, ts) is
the strain due to shrinkage. In particular, as shown
in Figure 4, εcc(t, t0) is related to the age of the load-
ing application, t0; whereas εcs(t, ts) is expressed as
a function of the concrete age at the beginning of
drying, ts.

Figure 4. Example of sustained load and strain components
development in a concrete specimen over time.

2.1.1 Shrinkage effect
Shrinkage is a load-independent strain due to the vol-
ume reduction of concrete at constant temperature,
which is primarily caused by drying and hydration. In
the PARC_CL 2.1 crack model, shrinkage is consid-
ered to be direction independent, while the shrinkage
shear strain is assumed equal to zero. The shrink-
age strain vector is applied along the x, y-coordinate
system of the element, Figure 2(a), according to Eq.(3).
{
εx,y

cs (t, ts)
}= {
εcs(t, ts) εcs(t, ts) 0

} t
(3)

The axial shrinkage strain, εcs(t, ts), is negative and
its magnitude is calculated by Model Code 2010 (fib
2013). In detail, the axial shrinkage strain εcs(t, ts),
which occurs between times ts at the beginning of
shrinkage and time t (as shown in Figure 4), can be
evaluated as the sum of the basic shrinkage εcbs(t) and
the drying shrinkage εcds(t, ts). Eq.(4) reports the entire
formulation:

εcs (t, ts)= εcbs(t)+ εcds(t, ts) (4)

where, the basic shrinkage component, εcbs(t), evalu-
ated through Eq.(5), depends on the notional shrinkage
coefficient, εcbs0(fcm), which is evaluated as a function
of the mean compressive strength at the age of 28 days,
fcm, and on the time function βbs, expressed by Eq.(6).

εcbs (t) = εcbs0(fcm) · βbs(t) (5)

βbs (t) = 1− exp (−0.2
√

t) (6)
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On the other hand, the evolution of the drying
shrinkage strain, εcds(t, ts), is given in Eq.(7) by
multiplying the notional drying shrinkage coefficient
εcds0(fcm) by the coefficientβRH for taking into account
the effect of ambient relative humidity RH (in %)
and by the time-dependent function βds, expressed by
Eq.(8):

εcds (t, ts) = εcds0(fcm) · βRH (RH ) · βds(t − ts) (7)

βds (t − ts) =
(

(t − ts)

0.035h2 + (t − ts)

)0.5

(8)

where h stands for the notional size of the mem-
ber, which is calculated as the ratio between two
times the cross-section area and the perimeter of the
cross-section in contact with the atmosphere.

2.1.2 Creep effect
Creep is a time-dependent deformation that devel-
ops at a decreasing rate under a sustained loading. In
the PARC_CL 2.1 crack model the creep strain vec-
tor is formulated in the local 1, 2-coordinate system
of the element (Figure 2), assuming the shear strain
component equal to zero, as reported in Eq.(9).

{
ε1,2

cc (t, t0)
}= {
εcc,1(t, t0) εcc,2(t, t0) 0

} t
(9)

The creep strain in the 1-direction (perpendicu-
lar to the crack direction), εcc,1(t, t0), is evaluated in
function of the stress, σ1, while the stress, σ2, determi-
nates the creep strain in the 2-direction (parallel to the
crack direction), εcc,2(t, t0). The axial creep strains are
evaluated according to Model Code 2010 (fib 2013).

In particular, the creep is assumed to be linearly
related to stress within the range of service stresses,
σ 1,2

c ≤ 0.4fcm. The creep strains in the 1, 2-coordinate
system, εcc(t, t0), are defined in Eq.(10):

εcc(t, t0)= σ1,2(t0)
/

Ec · ϕ(t, t0) (10)

where Ec is the modulus of elasticity at the age of 28
days, and ϕ (t, t0) is the creep coefficient calculated
through Eq.(11).

φ(t, t0)= [φbc(t, t0)+ φdc(t, t0)] (11)

As highlighted by Eq.(11), the total creep coef-
ficient is given by the sum of two components:
the basic creep coefficient, ϕbc(t, t0), estimated
through Eq.(12)-(14), and the drying creep coefficient,
ϕdc(t, t0), calculated by means of Eq.(15)–(20).

φbc(t, t0)=βbc(fcm) · βbc(t, t0) (12)

being:

βbc(fcm) = 1.8
/
(fcm)

0.7 (13)

βbc(t, t0) = ln

((
30

t0
+ 0.035

)2

(t − t0)+ 1

)

(14)

φdc(t, t0) = βdc(fcm) · β(RH ) · βdc(t0) · βdc(t, t0) (15)

where:

βdc(fcm) = 412

(fcm)
1.4 (16)

β(RH ) = 1− RH
100

3
√

0.1 h
100

(17)

βdc(t0) = 1

0.1+ t0.2
0

(18)

βdc(t, t0) =
[
(t − t0)

βh + (t − t0)

]γ (t0)

(19)

being:

γ (t0)= 1

2.3+ 3.5√
t0

(20)

It is worth noting that the previous formulations are
established for concrete in compression. Therefore, as
suggested by Li et al. (2002) and Kristiawan (2006),
the magnitude of tensile creep – considering the same
stress magnitude – is assumed equal to three times the
magnitude of creep in compression.

2.2 Stress field for concrete

As highlighted in Figure 3, once the shrinkage and
creep strains are evaluated, the concrete stress field,
Eq.(21), in the 1,2-coordinate system {σ 1,2} is deter-
mined by adopting the cyclic constitutive relationship
proposed by He-Wu (2008) and implemented in the
PARC_CL 2.1 crack model, Figure 5.The bi-axial state
of concrete in compression is modelled by adopting the
relationship proposed by Vecchio & Collins (1993) –
extended to cyclic loading. The aggregate interlock
law proposed by Gambarova (1983) is implemented in
the PARC_CL 2.1 crack model.

Figure 5. Cyclic behaviour of concrete, Belletti et al. (2017).

The stress field for concrete is given by Eq.(21):

{
σ1,2

}=
⎧
⎨

⎩

σ1
σ2
τ1,2

⎫
⎬

⎭
(21)
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while [D1,2] the stiffness matrix for concrete given in
Eq.(22):

[
D1,2

]=

⎡

⎢⎢⎢⎢⎢⎢
⎣

∂σ1

∂ε1

1
(
1− υ2

) ∂σ1
∂ε2

υ
(
1− υ2

) 0

∂σ2

∂ε1

υ
(
1− υ2

) ∂σ2
∂ε2

1
(
1− υ2

) 0

0 0
∂τ1,2

∂γ1,2

⎤

⎥⎥⎥⎥⎥⎥
⎦

(22)

For the sake of brevity, refer to Belletti et al. (2017)
for more details.

2.3 Strain and stress field for steel

Similarly to concrete, the strain field for steel along
the reference system of each bar, {εxi,yi}, is evaluated
by rotating the strain field in x, y-coordinate system,
{εx,y}, by means of the transformation matrix (TOi),
according to Eq.(23):

{
εxi,yi

}= [Tθ i]
{
εx,y

}
(23)

Thereafter, the stress field, {σ xi,yi}, for each ith

order of bars in the xi, yi-coordinate system, reported
in Eq.(24), can be evaluated by adopting three differ-
ent stress-strain relationships: (i) the uniaxial model
introduced by Menegotto & Pinto (1973), the model
proposed by Monti & Nuti (1992), and (iii) the relation
suggested by Kashani et al. (2015). The implemented
models are graphically reported in Figure 6. In partic-
ular, the last two models are useful to reproduce the
buckling phenomenon of reinforcements subjected to
cyclic loading.

Figure 6. Stress-strain relationships implemented in the
PARC_CL 2.1: (a) Menegotto-Pinto law, (b) Monti-Nuti law,
and (c) Kashani et al. law (Vecchi & Belletti (2021).

The stress field for steel is given by Eq.(24):

{
σxi ,yi

}=
⎧
⎨

⎩

σxi

σyi

τxi ,yi

⎫
⎬

⎭
=
⎧
⎨

⎩

σxi

0
0

⎫
⎬

⎭
(24)

while [Dxi,yi] the stiffness matrix for steel given in
Eq.(25):

[
Dxi ,yi

]=
⎡

⎢
⎣

∂σxi

∂εxi

0 0

0 0 0
0 0 0

⎤

⎥
⎦ (25)

For more details regarding the implemented mod-
els and the effect of corrosion on the mechanical
properties of steel refer to Vecchi & Belletti (2021).

2.4 Total stress field

Finally, the total stress field in the x, y-coordinate sys-
tem, {σ x,y}, is obtained by coupling the concrete and
the reinforcement behaviour as two springs working in
parallel, according to Eq.(26) – Figure 3.

{
σx,y

}= {
σx,y

}
c +

n∑

i=1

ρi
{
σx,y

}
s,i (26)

where the two components of the stress field in x, y-
coordinate system are calculated according to Eq.(27)
and Eq.(26), respectively.

{
σx,y

}
c =

[
Tψ

]t · {σ1,2
}

(27)
{
σx,y

}
s,i =

[
Tϑi

]t · {σxi ,yi

}
(28)

3 VALIDATION OF PARC_CL 2.1

In the present work, the updated version of the
PARC_CL 2.1 crack model – characterized by the
implementation of creep and shrinkage effects – is val-
idated through the comparison of NLFE results and
the experimental outcomes of a continuous RC flat
slab investigated by Gilbert & Guo (2005), named S7,
subjected to sustained uniformly distributed service
loads.

3.1 Details of RC flat slab

The slab S7 consisted of four identical square panels
with dimensions 3000× 3000 mm and a cantilevered
region 600 mm long over the external columns at the
eastern and western edge that led to an overall plan
dimension of 7200× 6200 mm in longitudinal and
transversal direction, respectively, see Figure 7(a). The
thickness of slab S7 was equal to 90 mm and the clear
concrete cover was equal to 8 mm.

The analysed slab was supported by a total of nine
square RC columns – indicated with the letter C in
Figure 7 – with dimensions of the transversal cross
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Figure 7. (a) Plan view of the investigated continuous RC
flat slab, and (b) top reinforcement layout of slab S7.

section equal to 200× 200 mm and height of about
1250 mm.All columns were fixed and clamped at their
base.

Considering mechanical properties of concrete –
measured at 14 days –, the compressive, fc, and the ten-
sile, fct , strength were equal to 15.4 MPa and 2.37 MPa,
respectively, while the elastic modulus of concrete, Ec,
was equal to 19030 MPa. The relative humidity (RH ),
the time at the beginning of shrinkage (ts), and the
notional size of the member (h) were assumed equal
to 70%, 9 days, and 88.89, respectively.

Referring to reinforcements, the average yield
strength, fy, was equal to 650 MPa with an elastic
modulus, Es, of 219 GPa. The bottom reinforcement
consisted of ϕ10 with a spacing equal to 300 mm in
both directions, while the top reinforcement layout is
reported in Figure 7(b).

Figure 8 shows the loading history for slab S7.
In detail, fourteen days after casting, the constraints
were removed, and the slab started to deflect under

Figure 8. Loading history for slab S7.

the combination of superimposed loads (3.41 kPa) and
self-weight (2.16 kPa). Indeed, the total load equal to
5.57 kPa was applied until reaching 508 days.

For more details on the RC flat slab and loading
setup refer to Gilbert & Guo (2005).

3.1.1 Experimental evaluation of creep coefficient
and shrinkage strain

Throughout the period of testing, the variation of
concrete mechanical properties was experimentally
measured by referring to cylindrical or prismatic sam-
ples with dimensions of 100 mm of diameter and
100× 100× 150 mm, respectively. These latter sam-
ples were casted together with the reference slab under
the same curing and drying conditions.

It is worth noting that the creep coefficient was eval-
uated by taking into account samples subjected to a
constant sustained stress of 5 MPa applied at the same
age as the corresponding slab; whereas the shrinkage
strain was measured on unloaded shrinkage samples.

On the basis of the available data, the creep strains
were determined by subtracting the free shrinkage

Figure 9. Mechanical properties variation over time: (a)
shrinkage strain, and (b) creep coefficient.
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strain and the instantaneous strain from the total creep
strain measured on the creep specimens, while the
creep coefficient was defined as the measured creep
strain divided by the instantaneous strain.

Referring to Figure 9(a) and Figure 9(b), the square
dots show the experimental trend of the shrinkage
strain and the creep coefficient over time, respectively.
In particular, the experimental outcomes are compared
with the dashed lines obtained by adopting the Model
Code 2010 formulations (MC 2010) (fib 2013). From
the comparison of the two trends, it is possible to
observe how the experimental measurements over time
of shrinkage strain and creep coefficient were respec-
tively underestimated and overestimated by adopting
the MC 2010 formulations. To better reproduce the
creep and shrinkage effects, further trends, identified
by a continuous line in Figure 9(a) and Figure 9(b),
were calibrated on the basis of experimental measure-
ments and directly used as an input data for the analysis
carried out by adopting the PARC_CL 2.1 crack model.

3.2 NLFE model

The mesh of the slab S7 has been modelled on the basis
of the following assumptions:

• the symmetry of geometry and loading conditions
is considered by modelling only a quarter of the RC
flat slab S7 and by imposing appropriate boundary
conditions;

• four node multi-layered shell elements with reduced
integration schemes are adopted;

• seven layers are used to describe the thickness of the
slab: (i) two layers of concrete cover, (ii) four layers
for reinforcements, and (iii) an intermediate layer
between reinforcements.Three Simpson integration
points for each layer are used resulting in a total of
twenty-one integration points along the thickness,
Figure 10.

• brick elements are used for modelling columns and
a linear elastic material is assigned to columns;

• uniformly distributed pressure is applied on the slab
to reproduce the loading time history previously
reported in Figure 8;

• the Regular Newton-Raphson method is used to
reach the solution at each load increment;

• since the slab is thin, the profile of drying shrinkage
strain is assumed to be uniform.

Figure 10. Subdivision in layers to describe the thickness
of the slab.

4 RESULTS

4.1 Deflections

In this paragraph the comparison between experimen-
tal results and NLFE outcomes in terms of deflections
recorded at various position over time is illustrated.
In detail, Figure 11(a) and Figure 11(b) report the
deflection trends at position 4 and at position 8 –
identified in Figure 7(a) – that correspond to the mid-
panel and the mid-span between adjacent columns,
respectively.

Several NLFE analyses were carried out to properly
estimate the effects associated to creep and shrinkage
over time, as reported in Figure 11:

• the black dashed line in bold represents the NLFE
analysis performed by adopting the MC 2010 for-
mulations for creep and shrinkage without calibra-
tion;

• the black continuous line in bold represents the
NLFE analysis obtained by considering the MC
2010 formulations calibrated on the basis of exper-
imental outcomes;

• the grey dashed line stands for the NLFE analysis
carried out by neglecting both creep and shrinkage
effects;

Figure 11. Deflection measurements of slab S7 over time:
(a) at mid-panel, and (b) at mid-span between adjacent
columns.
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• the dotted line represents the experimental results in
terms of average, maximum, and minimum deflec-
tions measured – in correspondence of each panel
of the slab – by means of dial gauges throughout the
period of testing.

Based on the obtained results, the PARC_CL 2.1
crack model is able to reproduce the experimental
trend of the investigated continuous RC flat slab in
terms of long-term deflections, as shown in Figure 11.

Firstly, a strong underestimation of the experimen-
tal trends is observed by neglecting the time-dependent
effects of creep and shrinkage, as shown by the com-
parison between the black dashed line in bold and the
grey dashed line.

Secondly, even if the use of MC 2010 formula-
tions can generally catch the experimental trend in
terms of deflections, a not negligible overestimation
of experimental results is obtained.

Finally, a good approximation of experimental out-
comes is achieved by adopting the PARC_CL 2.1
crack model when the creep and shrinkage effects are
calibrated based on experimental measurements and
directly used as an input data for the analysis.

4.2 Crack pattern and crack opening width

Figure 12 show the position where the crack open-
ing widths are measured over time, together with
the experimental and numerical crack pattern at the
extrados of the slab at the end of the test (508 days).

Figure 12. (a) Experimental crack pattern at the extrados of
the slab, Gilbert & Guo (2005), (b) predicted crack pattern
from NLFE analysis – at the extrados of slab S7 after 508
days, and (c) focus on the NLFEA crack pattern in proximity
to column C5.

As shown in Figure 12(a), the most relevant cracks
occurred at the extrados of the slab over each column,
while – as pointed out by Gilbert & Guo (2005) –
no significant cracks were observed at the intrados of
slab S7.After 508 days, the maximum crack width was

measured in proximity to columns C5 and was equal to
1.00 mm. On the contrary, the maximum crack width
at the intrados was significantly smaller and resulted
equal to 0.175 mm, Gilbert & Guo (2005).

Referring to Figure 12(b), similarly to the exper-
imental evidence, the cracks develop in both the
tangential and radial directions and are properly repro-
duced by the NLFE analysis crack pattern. On the other
hand, the longitudinal cracks – that were observed
between columns C4–C5 and C5–C2 at the end of the
test Figure 12(a) – are not well predicted in the NLFE
analysis.

Figure 12 shows the value of tangential crack open-
ing width measured at the extrados of the slab in
positions TC1 and TC2 over time, see Figure 12.

As reported in Table 1 the crack control limit value
defined by Eurocode 2 (2004) is irrespective of crack
opening forming at the extrados or intrados of slabs
and exposure classes, except for exposure class X0 and
XC1. It is interesting to observe that the crack opening
width evaluated by neglecting the creep and shrinkage
effects results lower that the limit value while if rhe-
ological phenomena are considered the crack control
results not satisfied.

Table 1. Limit value of crack opening, wmax , for different
exposure classes, Eurocode 2 (2004).

Exposure Class wmax for RC members [mm]

X0, XC1 0.4
XC2, XC3, XC4 0.3
XD1, XD2 0.3
XS1, XS2, XS3 0.3

Figure 13. Evolution over time of tangential crack opening
in proximity to column C5 in position TC1 and TC2, by con-
sidering: (i) Experimental results, (ii) NLFEA outcomes, and
(iii) deemed-to-satisfy limitations.
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The dependency of the corrosion rate on crack
opening width will be better evaluated in future
works to appreciate the reliability of deemed-to-satisfy
approach for RC slabs.

5 CONCLUSIONS

In this paper the crack model PARC_CL 2.1, for the
response prediction of two-dimensional RC element
subjected to time-dependent effects (i.e. creep and
shrinkage) is presented. The proposed model incor-
porates the Model Code 2010 formulations of the
time-dependent values of creep and shrinkage with
the possibility to consider – as input parameters –
the experimental outcomes resulting from the vari-
ation of the mechanical properties of concrete over
time. Secondly, the applicability and accuracy of the
PARC_CL 2.1 crack model are validated through the
analysis of a continuous RC flat slab, named S7, tested
by Gilbert & Guo (2005). Finally, some remarks on the
crack opening width assessment for the crack control
in the framework of the deemed-to-satisfy approach
are given.

Based on the obtained results, the following con-
clusions can be drawn:

• creep and shrinkage effects play a fundamental role
in the durability assessment and serviceability limit
state verification of RC flat slab;

• the PARC_CL 2.1 crack model is able to accurately
predict the long-term effects induced by creep and
shrinkage; in detail, accurate predictions in terms of
long-term deflections and crack pattern are obtained
by adopting the proposed model;

• the use of MC 2010 formulations for time depen-
dent properties of concrete generally leads to the
overestimation of long-term deflections of the anal-
ysed slab; whereas the same formulations calibrated
by means of experimental outcomes allows a better
approximation of the experimental behaviour;

• the crack opening width is strongly influenced by
rheological phenomena and the coupled effects of
environmental exposure will be deeply investigated
in future works.
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ABSTRACT: Multi-layer concrete systems have been widely used in bridge decks, rigid pavements, and
floors. The restrained drying shrinkage of the overlay is of great concern as it can lead to overlay cracking
and/or interfacial debonding. In such constructions, a transverse slope is typically considered to drain off the
surface water. Despite advances made in understanding the drying shrinkage of non-sloped concrete-concrete
composites, there are still standing questions regarding the overlay cracking, as well as bond failure, in sloped
concrete-concrete composites. The current study establishes a high-fidelity computational model validated with
experimental tests to evaluate the structural performance of sloped, double-layer overlay systems under drying
shrinkage. The simulation scenarios systematically cover the effects of key overlay properties and interface
conditions.The numerical analysis results reveal the critical role of overlay thickness and mechanical properties in
the time of overlay cracking and interfacial debonding failures. Based on the obtained results, the implementation
of a cross slope may delay the failures, depending on the initial thickness. Higher interfacial stiffness also induces
stronger restraint against overlay shrinkage strain, leading to a faster overlay cracking.

1 INTRODUCTION

Concrete overlays have been used to protect con-
crete structures exposed to the excessive loading and
harsh environmental conditions (Emmons 1994). Not
limited to repair applications, concrete overlays have
also been employed in large concrete structures where
several concrete pours are required at various stages
of construction (Loo et al. 1995). Thus, the use of
multi-layer concrete systems covers a wide range of
applications such as bridge decks, rigid pavements,
dams, slabs and floors. According to the American
Concrete Pavement Association (ACPA), the use of
concrete overlays has rapidly increased from 2% in
2000 to 12% of the entire concrete paving applications
in 2017 (Gross & Harrington 2018).As a durable, cost-
effective, and sustainable solution, concrete overlays
provide additional strength and protect the underly-
ing reinforced concrete layer from deleterious agents
(Harrington et al., 2007). Therefore, it is essential for
the overlays to retain their strength under a wide vari-
ety of mechanical and environmental stressors (Çolak
et al. 2009; Daneshvar et al. 2021; Emmons 1994).

Drying shrinkage represents a major issue upon
constructing overlays. In multi-layer concrete systems,
the water loss from the overlay is attributed to the envi-
ronmental drying, ongoing hydration, and moisture

absorption by the concrete substrate. As the drying
shrinkage-induced strains of the concrete overlay are
restrained by the concrete substrate, they cause tensile
stresses in the overlay, and additional shear (friction)
and normal (delamination) stresses at the interface of
the overlay and the concrete substrate (Li & Li 2006).
These induced stresses are influenced by the magni-
tude of overlay’s shrinkage such that larger shrinkage
of the overlay results in higher stresses and hence a
higher risk of failure. Overlay cracking and/or inter-
face debonding are the most common types of failures
observed in concrete-concrete composites (Emmons
& Vaysburd 1994). The outlined failure modes impact
the load transfer mechanism between concrete lay-
ers, causing a non-monolithic behavior that eventu-
ally jeopardizes the load-bearing capacity and overall
structural performance of the concrete-concrete com-
posites. Such defects can also facilitate the ingress
of water and deleterious agents into the composite
system, resulting in long-term durability issues and
extensive repair needs.

Moreover, during the lifetime of concrete overlays,
standing surface water is a major concern. Ponding
of water on the overlay surface can result in slippage,
hydroplaning, and icing in winter, while facilitating
the gravitational ingress of standing water into the
reinforced concrete substrate (Smith et al. 2014). A
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sufficient transverse slope, however, can ensure the
proper drainage of surface water from the overlay and
minimize its associate issues. To drain off the surface
water, a transverse cross slope is typically considered
for the overlay. The American Association of State
Highway and Transportation Officials (AASHTO)
policy on geometric design of highways and streets
recommends a cross slope of 2% for usual conditions
to mitigate the risk of hydroplaning. Depending on the
rainfall and application, a lower or higher cross slope
can also be implemented (AASHTO 2011).

Previous studies investigated the effects of overlay
properties, interface conditions, external environmen-
tal conditions, and boundary conditions on the struc-
tural performance and durability of concrete-concrete
composites subjected to drying shrinkage (Li & Li
2006; Santos & Julio 2011). Despite advances made
in understanding the drying shrinkage of non-sloped
concrete-concrete composites, there are still stand-
ing questions regarding the crack formation, as well
as bond failure, in sloped concrete-concrete com-
posites. Furthermore, numerous shrinkage and creep
prediction models have been developed based on
extensive experimental datasets. Although these mod-
els have been widely and successfully used, most of
the finite-element (FE)-based studies used an analyti-
cal or semi-analytical approach to take shrinkage and
creep behavior of concrete into consideration. These
approaches, in most cases, employed a heat transfer
analysis, missing factors contributing to shrinkage and
creep.

Given the outlined research gaps and questions,
the current study established a high-fidelity compu-
tational model validated with experimental tests to
evaluate sloped, double-layer concrete systems under
drying shrinkage. For this purpose, three-dimensional
FE simulations were performed. The shrinkage strain
and creep coefficient of concrete were incorporated
as a function of time based on the criteria of the
empirical American Concrete Institute model (ACI
209.2R-08 2008). The simulation scenarios under
consideration systematically cover the effects of key
overlay properties and interface conditions, such as
overlay geometry (thickness and slope), overlay mate-
rial properties, and interfacial degree of restraint. The
outcome sheds light on the optimized combinations of
overlay geometries and interfacial conditions required
to enhance the short- and long-term performance of
concrete-concrete composites.

2 MODELLING AND VALIDATION

2.1 Numerical model

The Abaqus software package (2021) was used in
this study. The concrete overlay was modeled with a
length of 5 m and a width of 2 m. The overlay length
was selected long enough (greater than 2 times of the
width) to account for the continuity of the overlay. The
thickness and slope of the overlay were varied between
20 and 200 mm, and 0 and 10% slope, respectively.The

overlay crowned surface slopes from both sides of the
centerline. The substrate length was 8 m with a width
of 4 m and a constant thickness of 200 mm. Due to the
symmetry of the models, a quarter of the described
concrete-concrete composites were modeled. Figure 1
shows the generated 3D FE model.

Figure 1. 3D FE model generated for numerical simula-
tions.

As for boundary conditions, the bottom surface of
the substrate was fixed against translation in all three
orthogonal directions. Due to the restraint provided
by adjacent layers, the movement of the lateral faces
of the substrate were fixed via a roller support. 20-
node quadratic brick elements (C3D20) were used for
the model. Considering the mesh sensitivity analy-
sis and cracking occurrence in the overlay, a finer
mesh was employed for the overlay while the sub-
strate was modeled with a coarser mesh. The interface
between concrete layers was modeled by including
a cohesive contact behavior. This contact allows to
capture possible delamination at the interface. The
bi-linear separation-traction and force-slip constitu-
tive curves were employed to formulate the cohesive
contact behavior. They are typically characterized by
penalty stiffness defined as the slope of linear elastic
part (pre-damage response) and peak strength (damage
initiation). The normal and shear bond strength was
assumed as 1.5 and 3.0 MPa, respectively, according
to the experimental values reported in the literature
(Momayez et al. 2005). Depending on the degree of
restraint between concrete layers, a wide range of
interfacial normal and shear stiffnesses is proposed
(Tsioulou & Dritsos 2011). To account for this, and
based on the experimental results reported in the liter-
ature, the interfacial stiffness between concrete layers
was modeled with values in the range of 0.5 to 100
N/mm3. The concrete damage plasticity model (CDP)
was utilized to represent the behavior of the concrete
layer in both elastic and plastic domains. Depending on
the application and field requirements, various types of
overlays have been utilized, among which the normal-
strength concrete (NC) and ultra high-performance
concrete (UHPC) are the most common types (Gross &
Harrington 2018; Haber et al. 2017). Therefore, to
compare their structural performance, these two con-
crete types (i.e., NC and UHPC) were considered for
the overlay while the substrate was modeled with NC.
For this purpose, experimental tests including uni-
axial tensile, compressive and elastic modulus tests
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were carried out to capture their behavior at 28 days.
Table 1 presents the experimental results used for the
properties of concrete overlay and substrate in the
simulations.

Table 1. Experimental results of concrete properties at 28
days.

Value

Properties NC UHPC

Tensile strength (MPa) 3.6 8.3
Compressive strength (MPa) 63.4 134.3
Elastic modulus (GPa) 26.3 36.2
Density (kg/m3) 2400 2500
Poisson’s ratio 0.2 0.2

2.2 Drying shrinkage simulation

The empiricalACI 209 shrinkage and creep model was
employed to simulate the shrinkage strain and creep of
concrete as a function of time (ACI 209.2R-08 2008).
Thermal loading was artificially used to input shrink-
age and creep. For this purpose, the UEXPAN and
USDFLD user subroutines were developed. The UEX-
PAN subroutine applied a thermal strain increment,
which represented the defined time-dependent strain
caused by the shrinkage and creep of concrete. The
USDFLD subroutine stored the elastic strains in each
increment as state variables, which were used in creep
strain calculations. In ACI 209, the time-dependent
shrinkage and creep strain are described based on the
age of the concrete, curing method, time of drying,
relative humidity, volume to surface ratio, slump, fine
aggregate to total aggregate ratio, cement content, and
air content (ACI 209.2R-08 2008). Table 2 lists the
coefficients and correction factors used in the FE sim-
ulations. The age of concrete at the start of drying and
loading was set to 2 days. In this study, the develop-
ment of drying shrinkage was considered during the

Table 2. Correction factors for shrinkage strain and creep
coefficient based on ACI 209 model.

Value

Correction factor Shrinkage Creep

Initial moist curing 1.13 –
Age of loading – 1.15
Ambient relative humidity 0.69 0.8
Member size factor 0.33 0.67
Slump factor 1.03 1.05
Fine aggregate factor 1 1
Cement content factor 0.97 1
Air content factor 0.99 6
Time ratio (α, ψ) 0.85 0.6
Time ratio (f, d) 35 15
Ultimate shrinkage strain 1.3 –
Ultimate tensile creep – 1.8
Ultimate compressive creep – 1.4

first three months of casting so that the time period of
analysis was set at 9 × 106 seconds (104 days).

2.3 Validation

To validate the developed FE models, the structural
performance of a concrete-concrete composite model
was compared to the experimental results reported by
(Li & Li 2006). Similar material properties, geom-
etry and boundary conditions were employed in the
model. Figure 2 compares the end corner delamina-
tion height of the overlay in the model with the data
measured experimentally. As can be seen, the results
extracted from the FE simulation are consistent with
those experimental measurements. Specifically, a sim-
ilar evolution of delamination height tends to prove
consistent drying shrinkage strain and stress distri-
bution in both cases. Moreover, the overlay cracking
occurred within the first 7 days in both cases. It must be
pointed out that the Abaqus standard solver was used
to capture the failure occurrence and its corresponding
time in each simulation.Therefore, the numerical anal-
ysis continued only until cracking occurrence. Thus,
large plastic deformations are not part of this study.

Figure 2. Comparison of the FE model results with the
experimental test data recorded for the corner delamination
height in concrete-concrete composites over time.

3 NUMERICAL ANALYSIS AND RESULTS

Overlay cracking and interface debonding make up a
majority of failures in concrete-concrete composites.
Therefore, the emphasis of this study is on evaluating
the occurrence of these two types of failure, as a func-
tion of overlay geometry (thickness and slope), overlay
material properties, and interfacial degree of restraint
(normal and shear stiffness). Specifically, the onset of
the development of maximum principal plastic strain,
based on the CDP model, was considered as the overlay
cracking occurrence. To determine the interfacial fail-
ure, based on the defined bi-linear traction-separation
behavior, the corresponding time to the state in which
the separation and/or slip between layers exceeds
the maximum allowable strength (damage initiation)
was taken as the interfacial debonding/slippage fail-
ure. Before damage initiation, the behavior of the
cohesive contact is ensured. This was defined as a
linear elastic behavior so the interfacial debonding
and slippage thresholds are calculated by dividing the
defined bond strength to the corresponding interfacial
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stiffness. It must be highlighted that debonding was
the only type of interfacial failure that occurred in
the models that experienced failure. Figure 3 show the
typical 3D stress distribution and deformed shaped of
the concrete overlay subjected to the restrained drying
shrinkage.

Figure 3. Typical 3D deformed shape of the overlay in the
FE model subjected to restrained drying shrinkage. The con-
tours represent the maximal principal stress before damage
initiation. Deformations are amplified by a factor of 3000 for
visualization purposes.

3.1 Thickness

The concrete overlay thickness varies depending on the
purpose of the application, overlay material proper-
ties, and field limitations. Thus, based on the reported
values in the literature, a broad range of thicknesses,
between 20 and 200 mm, was considered in this study.
Figure 4 shows the overlay cracking and interfacial
debonding corresponding times. To capture the effect
of thickness on concrete-concrete composites failure,
the thresholds for cracking of NC overlay and debond-
ing of the interface were set at 3.6 MPa and 0.03 mm,
respectively. As can be seen, increasing the overlay
thickness from 20 mm to 100 mm leads to a neg-
ligible increase (2 days) in overlay cracking time.
However, further increasing the thickness results in
a drop of overlay cracking time by 10 days. Moreover,
the interface debonding occurred earlier than over-
lay cracking in composites containing thick overlays
(above 100 mm).

Figure 4. Overlay drying shrinkage cracking and inter-
face debonding corresponding times as a function of overlay
thickness.

The drying shrinkage cracking in overlays with a
thickness up to 100 mm was initiated from the center
part of the overlays where the induced tensile stress
was highest. However, further increasing the thickness
resulted in the shift of cracking location to the end
corners of the overlay. To compare the stress evolu-
tion in overlays with different thicknesses, the stresses
induced by the restrained drying shrinkage are plotted
in Figure 5 and Figure 6. It must be highlighted that
the results are plotted at time of 1.75 × 106 seconds
(20 days). This time was the latest possible time at
which all the composites were still intact (without any
overlay cracking and interface debonding) so that the
development of the stresses was not influenced by any
stress release through failure occurrence. As shown in
Figure 5 and Figure 6, the interfacial shear and nor-
mal stresses are predominant at the outer edge and
gradually increase in thicker overlays. This is mainly
attributed to the significantly higher differential dis-
placement between the top free surface and the bottom
restrained surface in thicker overlays. Specifically, this
was found to increase from 0.004 to 0.042 mm upon
increasing the overlay thickness from 20 to 200 mm.
In case of having interfacial restraint, the higher ten-
dency of the overlay to move, the greater the induced
interfacial normal and shear stresses. In thick overlays,

Figure 5. Distribution of interfacial shear stress along the
width of concrete overlays with thicknesses from 20 to
200 mm.

Figure 6. Distribution of corner interfacial normal stress
along the width of concrete overlays with thicknesses from
20 to 200 mm.
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the interfacial normal stresses in end corners exceeded
the thresholds earlier than the center part, resulting
in a faster occurrence of debonding and develop-
ment of plastic strains. On the other hand, in thin
overlays where the differential shrinkage deformation
between the bottom and the top overlay surfaces was
not remarkable, the induced tensile stress was concen-
trated in the center part of the overlay, and therefore,
surface cracking was the predominant type of failure.

3.2 Slope

To evaluate the effect of slope in various applications,
the overlay cross slope up to 10% was considered with
crowned surfaces such that the overlay surface slopes
from either side of the centerline. Figure 7 compares
the corresponding overlay cracking times. In thin over-
lays (20 and 50 mm in the outer side, i.e., thinnest part),
implementation of a cross slope up to 5% provides bet-
ter resistance against induced tensile stress and hence
extends the overlay cracking time. However, employ-
ing a cross slope of 10% in thin overlays and all cross
slopes in thick overlays (100 and 150 mm) results in
a faster overlay cracking. Furthermore, in each spe-
cific cross slope, increasing the thickness from 20
to 50 mm leads to an increase in overlay cracking
time. It must be pointed out that overlay cracking loca-
tion was observed at the end corners in case of thick
sloped overlays. These results are consistent with the
effect of thickness described in the previous section,
i.e., increasing the cross slope leads to a transverse
increase in the overlay thickness and intensifies end
corner delamination.

Interfacial debonding occurred prior to the overlay
cracking in thick overlays (100 and 150 mm) includ-
ing all implemented slopes. For thinner overlay, the
interface failure was never observed within the studied
time.

Figure 7. Overlay drying shrinkage cracking times as a
function of overlay cross slope and thickness.

3.3 Interfacial stiffness

The non-sloped overlay with a thickness of 100 mm
was used in this set of simulations. Greater interfacial
stiffness typically induces stronger restraint against
overlay displacement along the interface, inducing
higher shear and tensile stress. This led to an overlay

cracking in composites with an interfacial stiffness
greater than 1 N/mm3 (Figure 8). Specifically, there is
a sharp drop of 30 days in overlay cracking time upon
increasing the interfacial stiffness from 2 to 20 N/mm3.
In composites with a smoother interface and lower
interfacial stiffness (0.5 and 1 N/mm3), the drying
shrinkage of the overlay is less restrained and hence
the induced tensile and shear stress stayed below the
overlay strength, and thus, cracking was not observed
within the studied time period (104 days).

Figure 8. Overlay drying shrinkage cracking times as a
function of interfacial stiffness. The cross marks represent
points where failure did not occur during analysis time period.

3.4 Overlay strength

The effect of overlay characteristics was assessed by
comparing the structural performance of UHPC with
conventional NC.The non-sloped overlay with a thick-
ness of 100 mm was used in the simulation. Figure 9
compares the structural performance of normal and
UHPC overlays in concrete-concrete composites sub-
jected to the restrained drying shrinkage. In all the
studied cases, the UHPC resisted the induced tensile
and shear stress, and hence the drying shrinkage crack-
ing did not occur within the studied period time (104
days). This is mainly due to the superior mechanical
properties of UHPC and specifically its high tensile
strength, which was 2.3 times greater than that of NC.
It must be highlighted that the main part of induced
stress was released thorough end corner interface

Figure 9. Comparison of NC and UHPC overlay drying
shrink-age cracking times. The cross marks represent points
where failure did not occur during the analysis time period.
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delamination. Increasing the overlay thickness inten-
sified this phenomenon and resulted in early-stage
interfacial debonding failure.

Figure 10 shows the interfacial performance of
composites including UHPC and NC overlay. As
described before, the greater resistance of UHPC
against induced tensile and shear stresses leads to the
predominant mechanism of stress release through end
corner interface delamination. Therefore, the debond-
ing failure occurs (3–10 days) earlier in UHPC overlaid
composites than NC ones.

Figure 10. Comparison of NC and UHPC overlay drying
shrinkage cracking times. The cross marks represent points
where failure did not occur during the analysis time period.

4 CONCLUSIONS

The effects of overlay geometry (thickness and slope),
overlay material properties, and interface restraint con-
ditions were investigated in concrete-concrete com-
posites subjected to drying shrinkage. The numerical
analysis results showed that the overlay thickness plays
a pivotal role in the structural performance of the com-
posites. It was found that there is an optimum point for
the overlay thickness (in this study, 100 mm), below
which the overlays are more vulnerable to restrained
shrinkage and demonstrate earlier cracking. Employ-
ing thicker overlays, on the other hand, was found to
result in a significant end corner delamination and
hence early-stage interfacial debonding. Consistent
with this, the effect of overlay transverse slope was
determined to depend on the initial thickness of the
overlay such that for the overlays up to 50 mm thick,
the overlay crack can be delayed by employing a cross
slope up to 5%.

Further increasing the cross slope and employing
higher initial thickness would adversely impact the
structural performance of concrete-concrete compos-
ites through early-age overlay cracking and/or interfa-
cial debonding. Furthermore, the interfacial degree of
restraint was found to significantly affect the perfor-
mance of the double-layer concrete systems such that
a sharp drop of 30 days in overlay cracking time was
observed upon increasing the interfacial stiffness from
2 to 20 N/mm3. In the case of smoother interfaces, i.e.,
with an interfacial stiffness less than 2 N/mm3, the
overlay restrained shrinkage strain was insignificant

to the extent that overlay drying shrinkage cracking
did not occur. The type and mechanical properties
of the overlay materials also influenced the behavior
of the concrete-concrete composites under restrained
drying shrinkage conditions. It was found that applica-
tion of UHPC overlay can delay the overlay shrinkage
cracking at least 60 days compared to the NC over-
lays. However, the end corner interface delamination
occurred earlier in UHPC overlays.
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ABSTRACT: Predicting the behavior of reinforced concrete structures beyond the construction phase is a
critical aspect of structural design. In particular, the differential shortening of columns due to varying stress
conditions over time can significantly impact the long-term health of a structure. This effect is not always
considered at low building heights as the comparative effect might be minimal – e.g. 1% shortening in a single
story building is on the order of millimeters. However, as the number of stories increases, this effect compounds,
such that column shortening for a 60 story structure might be on the order of 30 mm. At this scale the shortening
can cause problems not only within the structural members but in the nonstructural components as well, such
as partitions and pipe lines. It is therefore necessary to design a structure such that it is able to mitigate the
shortening which occurs in the years and decades following construction.

Such is the case for the twisted columns of the New Marina Casablanca Tower in Morocco. This 160 m tall
tower (currently in conception) was designed as part of a new convention center along the coast in Casablanca.
The primary architectural feature is exhibited in the form of a spiraling tower where each successive floor is
rotated as the building ascends, amounting to a total of 135◦ twist. The structural system consists of an inner core
and inclined columns which follow the angle of rotation. Although a system of core and columns is common, the
introduction of the inclined columns leads to unique behavior of the structure, and the time-dependent shortening
effects cannot be assumed based on previous work intended for straight columns.

In this study the authors analyze the time-dependent behavior of these columns at two scales. At the building
scale, the construction procedure is simulated to determine the load history of the columns and initial elastic
deformations. Multiple construction analysis methods are considered. Then, based on the results from this global
simulation, a single-story column is modeled to the material level, providing more nuanced analysis. First the
hygro-thermal-chemical (HTC) theory is used to determine the temperature and relative humidity in the column
under actual environmental conditions. This is then coupled with the mechanical loads determined from the
global analysis to model the mechanical behavior using the solidification-microprestress-microplane (SMM)
model. This analysis is then repeated at multiple angles to determine the effects of inclination on the shortening
behavior.

1 INTRODUCTION

1.1 Time dependent behavior of concrete

The time-dependent material behavior of concrete is
well studied (Bažant & Jirasek 2018), and its appli-
cation to structural scale deformations has been con-
sequently investigated by many authors (ACI 2008;
Khan, Cook, & Mitchell 1997). The two primary
mechanisms of time-dependent deformations in con-
crete, and the two considered in this study, are creep
and shrinkage.

Shrinkage in concrete arises as a result of both
mechanical and chemical behaviors. These behaviors
may be classified as: a) plastic (due to water loss),

b) drying (due to reduction in capillary water by
cement reaction), c) autogenous (due to change in
particle volume after hydration), and d) carbonation
(due to reaction of water with CO2). All of these fac-
tors depend on the initial water-to-cement ratio, the
volume-to-surface area ratio, and the environmental
conditions at the surface of the concrete specimen
(Bažant & Wittmann 1982). Also related is the ther-
mal expansion due to the heat of hydration (Aitcin,
Neville, & Acker 1997). Generally, shrinkage is here
treated load-independent strain.

Creep is generally defined as a continued increase in
strain under a sustained constant load. In application to
concrete these deformations are caused by both ’basic’
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creep and drying creep (Bažant & Yunping 1994).
Basic creep is so-called as it is an intrinsic property
not dependent on the specimen size or environmental
conditions. Drying creep, conversely, is an additional
deformation due to changes in relative humidity, sim-
ilar to (but separate from) shrinkage. It is therefore a
factor of both size and environmental conditions. In
addition, temperature changes can result in transient
thermal creep (Bažant, Cusatis, & Cedolin 2004).

The modern approach to comprehensively describe
concrete creep is taken by a combination of the solid-
ification theory (Bažant & Prasannan 1989a, 1989b)
and the microprestress theory (Bažant, Hauggaard, &
Baweja 1997; Bažant, Hauggaard, Baweja, & Ulm
1997). In this framework, the hardening cement gel
is age-independent, the chemical aging is simulated
by a reaction degree, and the sum of creep behav-
ior (basic, drying, and transient) are described by the
same theory, where the relaxation of self-equilibriated
stresses occurs due to hydration and chemical potential
imbalance of water phases.This approach has shown to
match well with experimental data (Di Luzio & Cusatis
2009a, 2009b).

Both creep and shrinkage depend heavily on sur-
rounding environmental conditions. In particular, the
relative humidity, temperature, and their correspond-
ing rates and time histories, are necessary for accurate
material modeling, even at a structure scale.

It has been shown that both drying and wetting
induce higher creep than that of concrete at constant
moisture content (Gamble & Parrott 1978; Pickett
1942). Similar behavior is found during tempera-
ture changes (Chern, Bažant, & Marchertas 1985;
Fahmi, Polivka, & Bresler 1972). From this it can be
determined that long-term deformations of concrete
structures must take into account the hygrothermal
phenomenon to accurately predict total creep.

1.2 Column shortening

Any material which creeps will lead to the shorten-
ing of vertical structure members. This is a common
concern even in “traditional” concrete structures with
columns under pure vertical loading and even spacing.
Figure 1 illustrates how such vertical deformations can

Figure 1. Vertical differential shortening schematic.

cause, for example, a differential shortening effect in a
structure where the columns are under higher vertical
stress than a lateral-force-resisting core. For unique
structural systems as the one considered here, the ver-
tical shortening behavior may cause even more of a
concern. Furthermore, the shortening of columns due
to varying stress conditions over time can significantly
impact the long-term health of a structure.

Though the effect may vary depending on stress,
floor plan, and mitigating design, column shorten-
ing for a 60 story structure might be on the order
of 30 mm (Pan, Liu, & Bakoss 1993). At this scale
the shortening can cause problems not only within the
structural members, but the nonstructural components
as well, such as partitions and pipe lines. Furthermore,
as construction technologies advance, engineers and
architects are able to design increasingly complex and
unique structural elements. These result in unusual
movements not necessarily designed for or observed
during construction, but rather occur due to the stress
state during service, over the lifespan of the building.
Unique structural systems must thus be given addi-
tional consideration, which they often do not receive.

2 CASE STUDY: NEW MARINA
CASABLANCA TOWER

The New Marina CasablancaTower (Figure 2) was pro-
posed as part of new development in the Casablanca

Figure 2. Rendering of New Marina Casablanca Tower
(Wimberly Allison Tong & Goo).
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Marina, Morocco. Although construction was not
completed according to schedule, it remains a unique
structural case-study. The award-winning design was
intended to revitalize the skyline and deploy innova-
tive building techniques and components (Folco 2017).
The designers achieved these goals primarily through
the unique column structure, which presents a striking
twisting profile. Each floor (see Figure 3) has been
rotated slightly, amounting to a total 135◦ twist over
43 stories.

Figure 3. Typical floor plan.

The focus of this study will be on the external
circular columns, which undergo the most dramatic
change in geometry. The diameter varies between 1 to
0.6 meters, with a corresponding variation in concrete
design strength from 50 MPa to 30 MPa. It is impor-
tant to note the difference in design specification,
as mix design has a significant impact on the long-
term behaviors which contribute to vertical shortening,
including both stress variation as well as moisture and
temperature diffusion.

3 ANALYSIS METHOD

A two-scale approach is taken for this structure. First,
a global model of the tower is analyzed in a struc-
tural finite element program (MIDAS). Typical loads
were applied, and built-in code equations were used for
material behavior, including creep. The global model
also considers include construction stage analysis.

Following this, a single-story base column is simu-
lated in a general finite element program (ABAQUS)
with boundary conditions according to the global
model. Here both moisture diffusion and heat trans-
fer are considered, and creep behavior was mod-
eled according to the well-established SMM theory
(Di Luzio & Cusatis 2013). This provides more
nuanced results which would be too computationally
intensive to calculate for the entire structure.

The combination of these results are then reviewed
and conclusions regarding expected structural behav-
ior are discussed.

3.1 Global

The global model is composed of beam, plate, and wall
elements defined by MIDAS. Beam elements have
12 degrees of freedom (DOFs), and are formulated
according to Timoshenko beam theory. The plate ele-
ments are analogous to shell elements in typical finite
element programs, formulated with two in-plane trans-
lation DOFs , one out-of-plane rotational DOFs and
two out-of-plane rotational DOFs. Wall elements are a
MIDAS specific formulation intended for shear wall
use in structural application, and is composed of a plate
element with beam elements at the perimeter nodes.
The model is built as seen in Figure 4.

Figure 4. Global model.

The global model was analyzed for the duration of
construction, using a multi-step construction analysis
in-built in MIDAS. In the conventional analysis, floors
are loaded simultaneously, while in multi-phase anal-
ysis each floor is “built” and then sequentially loaded,
leading to a varying stress history within the members.
This is relevant for time-dependent behaviors such as
creep, particularly when the construction process is
prolonged, as in tall structures.

To define material behavior, MIDAS has a num-
ber of built-in creep and shrinkage models. For
the purposes of this analysis, the fib Model Code
2010 was used, where the coefficients were calcu-
lated by the software based on the provided material
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properties – standard EN04(RC) was adopted. Section
properties were also assigned as given.

During construction analysis, only gravitational
loads are considered: self-weight, dead load, and
reduced live loads (30%). Dead and live loads vary
by floor depending on use, but are typically 2 kPa
and 3 kPa (1 kPa reduced) respectively. For model-
ing purposes, each floor was built in 8 days, and at
mid-construction (192 days) dead loads are applied
starting at the base, with sequential floor dead loads
added after 4 days.

3.2 Local

Following the global analysis, a single-story column
from the base floor (Figure 5) is modeled using a more
refined approach. First, the three dimensional tem-
perature and humidity field histories were computed.
These field histories were passed to the mechanical
model through ABAQUS, where the displacements
over 400 days are modeled.

Figure 5. Local column model.

The temperature and humidity fields were calcu-
lated using the hygrothermochemical model (HTC),
as formulated by Di Luzio & Cusatis (2009a) and
(2009b). Boundary conditions were assumed to 23◦C
and sealed (i.e., no change in humidity across the
boundary).

The temperature and humidity results were passed
to ABAQUS for use in the mechanical analysis.
The SMM formulation as described by Di Luzio &
Cusatis (2013) was used. The base of the column was
constrained and the three-dimensional column load
history was calculated from the global analysis.

4 RESULTS

An elastic analysis was first performed to quantify
the important of utilizing a multi-phase construction
model. Figure 6 shows the results, which indicate
that simultaneous loading would produce significant

Figure 6. Comparison of elastic vertical displacement using
conventional vs multi-phase constructing analysis.

unnecessary deformation at the height of the structure.
Though this may be considered a more conservative
approach, in the case of such unique geometry it limits
a realistic understanding of the column behavior.

Vertical displacements and rotations of the structure
are calculated for 30000 days (roughly 100 years –
the expected service life). Results are shown in Fig-
ure 7. Here we see the importance of a viscoelastic
analysis, as the displacement curve through the height
is clearly different after 100 years, compared with an
elastic calculation.

Figure 7. Vertical viscoelastic displacements.

When looking at the lateral displacements, the
asymmetric nature of the structure is clear.Although in
the elastic case it may be assumed to have similar dis-
placements in the two directions, this is clearly no the
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Figure 8. Lateral viscoelastic displacements.

case in the viscoelastic analysis. Furthermore the abso-
lute lateral displacements are quite large, 5–10 cm.
This must clearly be considered during the design pro-
cess, and would not be expected for a building with
vertical columns.

In addition to the overall displacements, there is
also a local variation in vertical displacements which
results in differential shortening. Figure 9 shows
a clear difference between the core and exterior
columns, and furthermore this difference increases
over the service life of the structure from<1 cm up to
4 cm difference.

Figure 9. Differential viscoelastic displacements.

When looking at a more nuanced analysis for a
single column, we can see there is actually an ini-
tial upwards displacement due to thermal expansion
as a result of hydration. This takes course over a cou-
ple days, but the trend back to neutral displacement
(and then compression) takes multiple weeks. This is

Figure 10. Viscoelastic displacements for a single column.

a critical consideration for construction as long-term
mitigation techniques for creep may be exacerbated by
this effect initially.

Figure 11 shows an analysis of the column under
varying angles. Here it is clear that while the ver-
tical deformations are not significantly impacted by
the geometry, the lateral displacements can more than
double from a single change in degree. Although it
was assumed a constant angle through the structure,
the reality is that not all the floors where the same
in this respect, and thus the “twisting” effect could
be severely exacerbated over time if the angle is not
correctly considered.

Figure 11. Viscoelastic displacements as a function of
column angle.

5 CONCLUSIONS

The time-dependent behavior of twisted concrete
columns was analyzed at two scales to explore
the long-term effects of a unique structural geome-
try. Results demonstrate that the three dimensional
displacements of the overall structure are notably
asymmetric, and furthermore the use of multi-phase
construction loading is necessary to accurately under-
stand this behavior. The effect of column angle is
also pronounced, as expected, and show how depen-
dent long-term effects are on geometry. Both models
showed a trend of delayed creep and shrinkage effects,
with the local model also producing an early-stage
thermal dilation effect, indicating the need for a com-
prehensive design approach to properly manage the
resulting deformations.
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ABSTRACT: The dissolution of portlandite leads to carbonation, which affects the sustainability of the con-
crete. Therefore, it is important to understand the dissolution behavior at the portlandite-water interface. The
current contribution aims at the development of a multi-scale bridging modeling approach that connects the
atomistic scale to the (sub-) micro scale. In this work, first, the biased molecular dynamics, metadynamics
coupled with ReaxFF is employed to calculate the reaction path as a free energy profile of calcium dissolution
at 298K in diluted water from the different surfaces of portlandite. The reason for the reactivity of (010) crystal
plane is higher compared to the (001) surface is explained. In addition the influence of neighboring Ca on the
dissolution rate is also investigated. The calculated rate constant of most important atomistic reaction steps
provided an input for developing the upscaled model using a kinetic Monte Carlo (KMC) method.

1 INTRODUCTION

The portlandite (Ca(OH)2) is a major by-product of
the cement hydration reaction, which results in the
passivation of steel reinforcement. The dissolution of
portlandite leads to the carbonation that accelerates
the corrosion of the reinforcement by dropping the
pH value of the pore solution by approximately three
units. Which plays a vital role in the reduction of the
service life of the concrete (Taylor 1997). The car-
bonation of portlandite is also played a critical role
during the setting of the concrete mixture, since the
calcite formed by carbonation is comparatively less
soluble than the portlandite itself. During the hydration
of cement, portlandite is not only precipitated in the
hardened cement paste but also forms a thin crystalline
layer between the steel reinforcement and aggregate.
Those interfacial layers of portlandite influence the
resistance of the reinforced concrete (Lea 2004).

Therefore, it is important to understand the dis-
solution behavior at the portlandite-water interface.
Moreover, due to portlandite’s relatively simple crys-
tal structure, therefore, it has proposed benchmarking
minerals in developing atomistic modeling approaches
for the dissolution/precipitation process of other (more
complex) cementitious minerals in general. The disso-
lution of cementitious minerals especially at an atom-
istic scale is not fully understood yet due to the lack of
experimental techniques available to reach this reso-
lution. Within the last decade, computational methods

∗Corresponding Author

have been expanded to the atomistic description of
cementitious materials. Atomistic simulation using
Reactive Force Fields (ReaxFF) parameterized by
quantum mechanical calculation, in combination with
metadynamics (metaD) can be an effective solution to
study the chemical reactions pathways with sufficient
accuracy and reasonable computing times.

ReaxFF has been developed to investigate the reac-
tion mechanism at the material interface. It has already
been implemented successfully in many materials,
i.e. hydrocarbons (Chenoweth et al. 2008), polymer
chemistry (Senftle et al. 2016), metal oxides (Si/SiO2)
(Fogarty et al. 2010), metal hydrides (Cheung et al.
2005). ReaxFF usually calculates molecular dynam-
ics in femtosecond (i.e. 10−15 seconds) time steps.
Therefore, it could be computationally expensive espe-
cially during the Transition state calculation despite its
efficiencies compared to classical force field theory.
Metadynamics (metaD) is integrated into ReaxFF to
solve these timescale issues. Metadynamics is an effi-
cient algorithm to accelerate observing the rare events
by adding biased potential on a selected number of
collective variables (CVs) (Barducci et al. 2011). Dur-
ing the MD simulation, the bias potential is applied as
a sum of Gaussian acting directly on the microscopic
coordinates of the system (Aktulga et al. 2012).

The combined approach has already been imple-
mented successfully to calculate the dissolution mech-
anism and the reactivity of different surfaces of Port-
land cement clinkers at the atomistic scale (Salah
Uddin et al. 2019). The current contribution aims to
develop the links between the atomistic scale to the
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(sub-)micro-scale. It will explain new insights into the
dissolution mechanism of portlandite.

In this work (Part-1), a multistep modeling
approach has been taken to get depth information of
the dissolution and reactivity of different surfaces of
Portlandite at room temperature (298K). At first, the
hydration of (001), (100), (010) surfaces of portlandite
were allowed for 600 picoseconds. Later, all pre-
hydrated surfaces were used as an input to study the
dissolution mechanism of calcium by using ReaxFF
coupled with metaD. Afterward, the reactivity of sur-
faces was compared with the dissolution profile (free
energy surface) of calcium. Besides, the orientation
of calcium and the number of neighbors is different
on each surface. Therefore, the influence of crystal
site neighbors was also be calculated. Finally, all the
calculated microscopic rate constant using transition
state theory (TST) will be provided as an input for
upscaling (in Part-2 contribution presented within this
conference proceedings) using a Kinetic Monte Carlo
(KMC) approach and calculating the overall rate of the
dissolution (Martin et al. 2021).

2 COMPUTATIONAL DETAILS

Many simulation methods have been developed over
the decade. Density functional theory (DFT) using
quantum mechanics is accurate compared to the force
field in general (Izadifar et al. 2021). However, due
to its higher computational cost, this method becomes
practically not applicable for a large system.

In contrast, classical force field theory is unable
to explain the chemical reaction (bond formation and
bond breaking). The ReaxFF parameterized by DFT
has been considered a comparatively efficient method
of calculating the reaction mechanism with reason-
able simulation cost. It has been implemented to the
cementitious system by combining two parameter sets
(Si-O-H and Ca-O-H) developed individually by Fog-
arty et al. (Fogarty et al. 2010) and Manzano et al.
(Manzano et al. 2012), respectively. This parameter
set already has explained the absorption of water
to C3S clinker phases (Manzano et al. 2015). The
computations were carried out by using ReaxFF in
LAAMPS (Large-scale Atomic/Molecular Massively
Parallel Simulator) platform (Plimpton 1995).

In addition, the metaD, (history-dependent bias
potential) is applied as a sum of Gaussians directly
on the microscopic coordinates of the system. Those
small hills in energy representation are placed on top
of the underlying free energy landscape. MetaD is
not only able to explore the new pathways but also
reconstruct the free energy surfaces (FES).

2.1 Model construction

The fresh cleaved (001) surface of portlandite (Busing
& Levy 1957) orthogonal periodic (17.80× 19.64×
38.65) × 10−30 m3 simulation cell composed of 1302
atoms was constructed by virtual nano lab (VNL)

(Schneider et al. 2017) and Avogadro (Hanwell et al.
2012). Then the geometry has been optimized using
with Hessian-free truncated Newton algorithm (htfn)
(Tuckerman et al.2006) with the cutoff tolerances
(energy and force) of 4.18× 10−4 and 4.18× 10−8 kJ
mol−1. Maximum iterations for the minimizer were
100. Later on, an additional 6.99 × 10−27 m3periodic
cell filled with water was added to the optimized (001)
portlandite surface using packmole (Martínez et al.
2009). The number of water molecules matched a
density of 1000 kg m−3 with a random distribution.

The simulation cells were equilibrated to 298K for
150 picoseconds with 0.5 femtoseconds time steps
using canonical ensemble (not) with a Nose−Hoover
thermostat, integrating the non-Hamiltonian equations
of motion (Tuckerman et al. 2006). Subsequently, they
were hydrated for 600 picoseconds using Nose-Hoover
barostat (npt) with all three diagonal components of the
pressure tensor to be coupled together (iso).A periodic
boundary condition was applied during the simulation.

The last geometry after 600 picoseconds of hydra-
tion for (001) surface was considered as an initial
geometry to calculate the dissolution mechanism of
calcium using the combined approach of ReaxFF and
metaD. The PLUMED package (Bonomi et al. 2009;
Laio & Gervasio 2008; Tribello et al. 2014) was used
as an extension of LAMMPS for metaD simulation.

The central calcium (Ca-588) of hexagonally ori-
ented neighboring Ca of portlandite surface from (001)
surface was selected. A well-tempered metaD scheme
was applied to remove calcium from the surface to
pore solution. The distance between the center of mass
(COM) and the selected calcium atom is selected
as CVs and computed by adding biased potential in
every 40 time steps. Besides, Gaussian hills height
of 6.28 kJ /mol and a full width at half-maximum of
0.2× 10−10 m are added every 0.02 picoseconds. The
simulation was performed for 500 picoseconds (till
converged) using NPT ensemble at temperature 298K.

Table 1. Crystallographic data for the orthogonal simula-
tion cells of Portlandite consisting of different crystalline
planes at 298K.

Orthogonal Cell
Crystal plane of dimension No. of atoms in
portlandite (Å3 / 10−30 m3) the simulation cell

(100) 20.75, 19.94, 38.42 1431
(010) 17.67, 20.75, 34.94 1155

A similar approach was applied and calculated the
FES central Ca in absence of 1,2,3,4,5,6 hexagonally
oriented neighbors (total 7 scenarios) removed clock-
wise in order to understand the effect of neighbors.

The same modeling approach was used for other
simulation cells of portlandite containing (100) and

(010) surfaces (Tab. 1). Unlike (001), the Ca are
arranged differently (in a rowing manner) on both
(100) and (010) surfaces. Therefore, a total of three
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scenarios was considered to calculate the dissolution
profile of the central Ca before and after removing 1
and 2 neighboring Ca located on both sides in the same
row. The reactivities were calculated from the disso-
lution profile (FES) of the calcium of the particular
surface.

Finally, the free energy of activation of all selected
events for three different surfaces of portlandite was
analyzed to calculate the individual rate constant of all
individual events using transition state theory (TST)
and provided the results as an input of KMC simulation
for calculating the overall rate of the dissolution.

3 RESULTS AND DISCUSSION

3.1 Hydration of portlandite

To investigate the interfacial interaction between port-
landite surfaces and water bulk, the hydration was run
for 600 picoseconds at room temperature (298K) and
pressure applying periodic boundary conditions.

In order to capture the movement of the lighter ele-
ment, hydrogen 0.5 fs (femtosecond) time steps were
used for the entire simulation. Since lighter atom usu-
ally vibrates so fast and if we increase the time steps
the distance between two atoms increases. As ReaxFF
considers bond order at a higher distance these atoms
are considered as non-bonded which provides wrong
results.

According to our observation, the water molecules
interact with the surfaces of portlandite initially and
dissociate to hydroxyl pair by protonating the oxygen
on the (010) surface. Afterward, the proton transfer
(hopping process) from the hydroxyl to inner oxygen
by leaving the first oxygen-free for further reaction
as described by Manzano et al (Manzano et al. 2015).
Hydration is carried out only for 600 picoseconds.

The (010) surface of portlandite (Figure 1c, II)
shows higher reactivity during hydration compared to
the (100) (Figure 1c, I) and (001) (Figure 1b) surfaces
due to water tessellation at the (001) surface which pre-
vents water from penetration into the crystal and the
dissolution of calcium ions from the surface. However,
further study is required to get a clear overview of the
different reactivity of different crystal surfaces. The
dissolution profile of calcium from three surfaces of
portlandite can deliver a proper explanation about the
reactivity by comparing the total free energy changes
during dissolution.

3.2 Dissolution of calcium from (001) surface of
Portlandite

Free energy calculations have received significant
importance in molecular dynamics (MD) simulation
for proper understanding of reaction mechanisms
including transition state.A straightforward traditional
sampling approach is often not possible in order to get
FES due to the higher barrier.

Figure 1. (a) SEM image of the hexagonal Single crys-
tal of portlandite Comparison of different reactivity of (a)
basal (001) surface and (b) prismatic (100), (010) surface of
portlandite during hydration for 600 picoseconds at 298K.

Well-tempered metaD is able to force the system
to overcome the free energy barriers by selecting the
correct CVs. It offers to control and compute the region
of FES that we are interested in. MetaD simulation was
performed to investigate the dissolution mechanism of
calcium from the hydrated (001) surface of portlandite.

Figure 2a represents the free energy surface for the
dissolution of calcium (red Ca) from (001) crystal
surface of portlandite at 298K. Where the distance
between the central Ca-588 surrounded by six Ca
neighbors and the center of mass of the crystal was
selected as CVs. The x-axis represents the reaction
coordinate in terms of distance in Å (10−10 m).
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Figure 2. The representative dissolution profile (free energy
surface) of the hexagonally oriented central Ca (red Ca)
from (001) surface of Portlandite in different scenarios: the
presence of all six Ca neighbors (a-g) and absence of the
different number of 1,2,3,4,5,6 hexagonally oriented neigh-
bors at 298K. CV represents the distance in Angstrom (Å)
(10−10 m).

The free energy surface represents the movement of
central Ca from the surface to the pore solution by over-
coming the huge barrier of 352.00 kJ/mol (Figure 2a).
The total free energy change of (�G) of +280.80
kJ/mol indicated the endergonic, thermodynamically
unfavorable, and less reactive surface (Table 2). How-
ever, in absence of the first and second neighbors, the
activation energy was reduced to 175.40 kJ/mol and
the dissolution process becomes thermodynamically
favorable (Figure 2b, c). Further removal of neighbors
one by one anti-clockwise decreases the activation
energy and reaches the minimum value of 25.90 kJ/mol
when all six neighbors are missing (Figure 2g). The
results were in good agreement with the surface inter-
action with water during pre-hydration, where (001)
surface was found less reactive due to water tessella-
tion (Manzano et al. 2015). Therefore, the surface is
not favorable for Ca dissolution, however, the crystal
defect and missing neighbors increase its reactivity.

3.3 Dissolution of calcium from (100) and (010)
surface of portlandite

The FES for the dissolution of central Ca (red marked)
from (010) surface of portlandite shows higher reactiv-
ity as observed after the 600 picoseconds of hydration
(Figure 1c II). The complete dissolution of Ca from
(010) surface required a comparatively lower energy
barrier of 29.90 kJ/mol at 298K (Figure 3a). Besides,
the free energy change (�G) of −299.69 kJ/mol
indicates the exergonic and thermodynamically favor-
able process which, explains the higher interaction

Figure 3. (a–c) Representative snapshot of the dissolution
profile (represents the activation barrier) of the central cal-
cium (red Ca) from (010) crystalline plane of portlandite in
different scenarios (in absence of the different number of
neighbors) at 298K. CV represents the distance in Angstrom
(Å) (10−10 m).
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Figure 4. (a-c) Representative snapshot of the dissolution
profile (represents the activation barrier) of the central cal-
cium (red Ca) from (100) crystalline plane of portlandite in
different scenarios (in absence of the different number of
neighbors) at 298K. CV represents the distance in Angstrom
(Å) (10−10 m).

with water. In addition, Further reduction of acti-
vation barrier (same red Ca) to 20.55 kJ/mol and
7.10 kJ/mol in absence of first and second neigh-
boring Ca indicate the increase of reactivity toward
dissolution (Figure 3b, c)

Among the prismatic surfaces of portlandite, the
reactivity and effect of neighbors for the dissolution
of (100) surface follows the same trend as the basal
(001) surface. The dissolution of central calcium (Ca-
542) in presence of all neighbors needs to overcome
195.30 kJ/mol which is lower than the (001) sur-
face in a similar scenario (Figure 4a). The �G of
+111.15 kJ/mol at 298 K represents the endergonic
and thermodynamically unfavorable process. After
removing the first neighbor the activation barrier was
reduced to 114.60 kJ/mol but remained unfavorable.
Nevertheless, in absence of both neighbors (Figure 4b,
c) results in the further reduction of the activation bar-
rier (70.00 kJ/mol) as well as the dissolution process
becomes favorable (�G=−62.33 kJ/mol) (Table 2).

Table 2. Free energy change of the different surfaces of
Portlandite during the dissolution of calcium.

Free Free
Energy Energy

Scenarios of Activation Change
dissolution of of (�G∗) (�G)
central Ca kJ/mol kJ/mol

(001) In presence of 6 neighbors 352.00 +280.80
After removing 1 neighbor 199.10 +117.70

(continued)

Table 2. Continued.

Free Free
Energy Energy

Scenarios of Activation Change
dissolution of of (�G∗) (�G)
central Ca kJ/mol kJ/mol

After removing 2 neighbors 175.40 −23.60
After removing 3 neighbors 56.14 −180.57
After removing 4 neighbors 55.80 −44.30
After removing 5 neighbors 54.90 −130.00
After removing 6 neighbors 25.90 −147.60

(100) In presence of 2 neighbors 195.30 +111.15
After removing 1 neighbor 114.60 +5.60
After removing 2 neighbors 70.00 −62.33

(010) In presence of 2 neighbors 29.90 −299.69
After removing 1 neighbor 20.55 −237.96
After removing 2 neighbors 7.10 −126.00

4 CONCLUSION

The objective of this contribution was to elucidate the
dissolution mechanism of portlandite and developed
the upscaling approach which connects the atomistic
simulation using ReaxFF coupled with metaD and sub-
micro KMC method.

The free energy calculation at different scenarios
was indicated the variation of reactivity of different
surfaces of portlandite. Both (001) and (100) surfaces
were found less reactive initially, however, the reac-
tivity increases with increasing the number of missing
neighbors.Among them, (010) surface was found most
reactive. The reactivity of the surfaces of portlandite
is in following order:

(010)> (100)> (001)

The calculated activation barrier obtained in the
current contribution by MD simulations for most
important scenarios provided input data for KMC
simulations in Part 2 proceedings, where the rate of
individual scenarios for calcium dissolution was cal-
culated using transition state theory. Furthermore, the
MD-KMC simulation enabled to calculate the overall
mesoscopic rate of portlandite dissolution in far from
equilibrium conditions.
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ABSTRACT: Portlandite or calcium hydroxide (Ca(OH)2) is considered as a most soluble hydration product,
which is formed through the hydration reaction of tricalcium silicate (alite) and dicalcium silicate (belite)
with water during curing of concrete. In the present work, an atomistic kinetic Monte Carlo (KMC) upscaling
approach is implemented in MATLAB code in order to investigate the dissolution time of portlandite crystal.
First simulations demonstrate far-from-equilibrium dissolution behavior, which encompass 119323 atoms and
26011 initial surface sites. First, the atomistic rate constants of individual Ca dissolution events are computed
for three different morphologies of 100 or 1̄00, 010 or 01̄0, and 001 or 001̄ crystal planes, resulting in a total
of 13 different scenarios. We observed that the dissolution process preferentially takes place from edges, sides,
and surfaces of 010 or 01̄0 crystal plane. Those sites have a significantly higher event probability to be selected,
as the event probability is proportional to the atomistic rate constant. On the one hand, the dissolution time of
sites follow a liner trend up to 23000, and then the time of site dissolution increases due to the reduction of
the surface sites, i.e., the active surface area of the crystal, for the computation of the total rate constant. The
steady-state dissolution rates are 0.706 mol/ (s cm2) for 010 or 01̄0, 1.548× 10−7 mol/ (s cm2) for 001 or 001̄,
and 1.58× 10−17 mol/ (s cm2) for 100 or 1̄00 surfaces.

1 INTRODUCTION

Concrete is the most used man-made construction
material and extensively exerted for the construction of
railways, dams, roads, skyscrapers, bridges, and pub-
lic infrastructure globally. The mixture of cement as a
major material with water, resulting in the production
of calcium silicate hydrate (CSH) gel to bind coarse
and fine aggregates in concrete. On the other hand,
portlandite or calcium hydroxide (Ca(OH)2) is also
a significant mineral precipitated through the hydra-
tion of tricalcium silicate (alite) and dicalcium silicate
(belite) with water during. It plays a substantial role in
mechanical and durability properties of cement paste
(Perko et al. 2020). Portlandite in other words is widely
exerted in multiple aspects, such as dewatering sludge
(Czechowski & Marcinkowski 2006; Ma et al. 2019),
improving the mechanical properties of fly ash cement
(Wang 2014; Yu & Ye 2013), delaying steel corrosion
(Glass et al. 2000), water (Perko et al. 2020; Sato et al.
2007; Sun et al. 2012) and acid (Drugă et al. 2018;
Ukrainczyk et al. 2019) resistance.

The main disadvantage of cement clinker is its enor-
mous environmental CO2 footprint. Producing cement
clinker not only requires high amounts of energy, but
it also releases approximately 5% of the global anthro-
pogenic CO2 (Worrell et al. 2001) and retreats 1.7% of
total global freshwater (Miller et al. 2018). Portlandite

presents the most soluble hydration phase (Perko et al.
2020), and an intense reactivity to the CO2 resulting
entire re-crystallization of portlandite into the cal-
cite in a short while (Gu et al. 2006; Regnault et al.
2005). In fact, the process of degradation of concrete
can be ascribed through the interaction of portlandite
with CO2 from the ambient atmosphere in the pres-
ence of water, producing calcium carbonate (CaCO3)
via the following reaction (Ca (OH)2+CO2+H2O→
CaCO3+ 2H2O), which is oriented on the portlandite
substrate. Although, the pH of the Portland cement
(PC) in the absence of carbonation or any other attack
can almost reach to the value of 14.1, carbonation of
portlandite causes a low-pH of 12.5 aqueous solution
due to the dissolution of hydrates; and therefore, mak-
ing concrete mass porous, resulting in lower strength,
and durability due to the subsequent corrosion of
reinforcement steel (Boualleg et al. 2017).

Hence, the main objective of this study is to develop
an elementary physical/chemical bridging model for
the initial dissolution of portlandite. It is proposed
here, as the simplest benchmark representative of
cementitious minerals, for a long-sought goal of con-
necting the nanoscale to the upscaled microscale
level. To understand the effects of equilibrium crys-
tal morphology of portlandite (Galmarini et al. 2011)
during the dissolution process, different surface ori-
entations of 100 or 1̄00, 001 or 001̄, and 010 or
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01̄0 according to Wulff construction were selected to
upscale the atomistic dissolution rates by employment
of far-from-equilibrium kinetic Monte Carlo (KMC)
approach, representing forward reaction rate. More-
over, to implement the KMC approach in a proper and
accurate way, Uddin et al. in parallel study (Part 2
contribution of this conference proceedings) provided
input information about the reaction energy barriers
(ED) of Ca dissolution for different (depending on the
neighbors) scenarios of different surface orientations
(crystal planes) at the room temperature by a molecular
dynamic (MD) coupled with metadynamics simula-
tion method in order to compute the dissolution rates
(rD). In fact, in the KMC upscaling approach, the dis-
solution and precipitation energy barriers for a given
site are sometimes written as the sum of the contribu-
tion of the n bonded neighbors. Then, by application
of a MATLAB code, the time of dissolution of Ca
is computed dependent on the dissolution rates of Ca
already computed for different scenarios through the
KMC approach.

2 METHODOLOGY

In order to implement kinetic Monte Carlo (KMC)
upscaling approach for dissolution of portlandite in the
aqueous ambient atmosphere, a MATLAB code was
developed to compute the time of dissolution of port-
landite for a supercell consisting of 119323 atoms and
26011 sites. To execute the MATLAB code, initially
was needed to compute the dissolution rate constant of
Ca for seven various scenarios depending on the exist-
ing neighbors for the surface orientation of 001 or 001̄;
moreover, three different scenarios for the surface ori-
entations of 100 or 1̄00, and 010 or 01̄0 as shown in
Figures 1 and 2, respectively. The reason of choosing
different scenarios (also called atomistic events) for
computation of each atomistic Ca dissolution rate is
due to the effects of the neighbors on the computa-
tion of activation energy barrier during the dissolution
of a particular Ca. In this way, reaction energy bar-
rier (activation energy) of Ca for each scenario has
been calculated in order to compute the dissolution
rate constant according to the equation reported by
Martin (Martin et al. 2021).

Figure 1. Illustration of seven different scenarios for red Ca
dissolution depending on the existing neighbors on the 001
or 001̄ surface orientations of portlandite employing KMC
upscaling approach.

Figure 2. Illustration of three different scenarios for red Ca
dissolution depending on the existing neighbors on the 100
or 1̄00, and 010 or 01̄0 surface orientations of portlandite
employing KMC upscaling approach.

3 RESULTS AND DISCUSSIONS

According to the reported energy barrier (�G) by
Uddin et al. regarding Ca dissolution for the three dif-
ferent surface orientations, we initially computed the
rate constants for all possible scenarios on the three
different surface orientations of 001 or 001̄, 100 or
1̄00, and 010 or 01̄0.

Regarding Figure 1, (001 or 001̄ surface orienta-
tions), the rate constant of the red Ca dissolution for
seven different scenarios depending on the existing
all 6 neighbors, and 1, 2, 3, 4, 5 ,6 missed neighbors
were computed to be 1.2432∗10−49, 7.8493∗10−23,
1.1193∗10−18, 0.8077∗103, 1.0290∗103, 1.4797∗103,
and 1.7918∗108s−1, respectively. The rate constant of
the red Ca dissolution for three different scenarios as
shown in Figure 2 (100 or 1̄00 surface orientations)
depending on the present all 2 neighbors, and 1, 2,
missed neighbors were computed to be 3.6382∗10−22,
5.0813∗10−8, and 3.3377 s−1, respectively. Moreover,
the rate constants of 3.5659∗107, 1.5525∗109, and
3.5362∗1011 s−1 were computed for three different
scenarios of red Ca dissolution on the 010 or 01̄0
surface orientations as illustrated in Figure 2.

After computation of the rate constants for different
scenarios of all surface orientations, we implemented
our MATLAB code to compute the time of disso-
lution for the system consisting of 26011 sites as
shown in Figure 3 from two different perspectives. The
following process briefly explains how to implement
KMC algorithm for dissolution time computation of
each site. Each time iteration, it is initially needed
to update all surface sites of crystal after dissolution
of each site to compute the total rate constant (ktot).
Tabulate probability of each event between 0 to 1 (13
possible events for all different scenarios) is computed
by normalizing the rate of each event, which is mul-
tiplied by the number of sites and then dividing to
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Figure 3. Snapshots of the initial simplified portlandite
crystal system consisting of 26011 sites from two various
perspectives.

the ktot . A random number between 0 to 1 is then gen-
erated to select the probability of occurring event; and
consequently, random selection of the site from that
event. Finally, the time of selected site for dissolu-
tion is then computed by division of another random
number between 0 to 1 with ktot .

Figure 4 shows site-by-site dissolution model along
6000 (a,d), 18000 (b,e), and 23000 (c,f) steps. Each
step is representative of one site dissolution. In fact,
the dissolution process of the crystal is performed for
scenarios of 010 or 01̄0 surface orientations, the com-
mon sides with 010 or 01̄0, and the common edges with
001 or 001̄ due to the greater value for event probability
according to the greater computed rate constants.

Figure 4. Process of site-by-site dissolution model of 26011
sites for 6000 (a,d), 18000 (b,e), and 23000 (c,f) dissolution
steps. Each step is representative of one site dissolution.

In other words, all different events for 100 or 1̄00,
and 001 or 001̄ have very small chance for event prob-
ability to be selected by the initial random number due
to their small rate constants. Figure 5 has also been
plotted to illustrate the time evolution of sites dissolu-
tion after 6000 (a), 18000 (b), and 23000 (c) steps. The
slope of the line stays constant up to almost 23000 sites
dissolution. This is due to the almost identical total

Figure 5. Time evolution of sites dissolution for the crystal
consisting of 26011 sites after 6000 (a), 18000 (b), and 23000
(c) dissolution steps. Each step is representative of one site
dissolution.

rate constant for computation of dissolution time. On
the one hand in Figure 6, we showed the dissolution
time of each individual sites along 6000 (a), 18000
(b), and 23000 (c) steps. It is clear that the majority
of sites have been dissolved between 10−11 to 10−14

seconds for 23000 steps. Those sites which have been
dissolved for the time less than 10−14second is con-
cerning to the larger second random number selection
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Figure 6. Individual Point represents the dissolution time
for each site for 6000 (a), 18000 (b), and 23000 (c) steps.
Each step is representative of one site dissolution.

close to 1 for dissolution time computation. However,
the trend of random number selection is uniform and
it is impossible to avoid those larger number selec-
tions close to 1. Finally, from the total number of
dissolved sites for the crystal as shown in Figure 7 (a),
can be observed that the dissolutions time of remain-
ing sites between 23000 to 26011 increase resulting a
decreasing trend in the average dissolution rate due to
the smaller ktot since the number of updated surface
sites declined dramatically. The dissolutions time of
all individual site of crystal have also been shown in

Figure 7. (a) shows the total time evolution of all dissolved
sites of crystal. (b) illustrates the dissolution time of each
individual site for the whole crystal.

Figure 7(b), and those between 10−10 to 10−11 second
belong to the remaining sites between 23000 to 2601.
From the slope of the curve in Figure 7a, the steady-
state dissolution rate for the most reactive facets (010
or 01̄0) was computed to be 0.706 mol/ (s cm2) by
considering the Avogadro’s constant and that the ini-
tial facet area of the most reactive (010 and 01̄0) facets
is in total 226.319 nm2 (= 8.768 nm× 12.906 nm× 2
facets). Obtained steady-state dissolution rates are in
decreasing order for the rest of less reactive surface
orientations as follows: 1.548× 10−7 mol/ (s cm2) for
001 or 001̄, and 1.58× 10−17 mol/ (s cm2) for 100
or 1̄00.

4 CONCLUSIONS

MATLAB code was developed to employ a far-from-
equilibrium kinetic Monte Carlo (KMC) upscaling
approach in order to investigate the dissolution time
of portlandite crystal consisting of 119323 atoms and
26011 sites. To perform the KMC approach, Uddin
et al. in parallel study provided necessary input infor-
mation about the reaction energy barriers (ED) of Ca
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dissolution. This allowed to compute KMC for upscal-
ing of the atomistic rate constants of the different
scenarios into mesoscale rate and enabled to visual-
ize the evolution of crystal morphologies during the
dissolution process. In fact, seven different atomistic
scenarios for Ca dissolution were considered depend-
ing on the existing neighbors for surface orientation of
001 or 001̄; moreover, three different scenarios for sur-
face orientations of 100 or 1̄00, and 010 or 01̄0. The
results showed that 001 or 001̄, and 100 or 1̄00 sur-
face orientations represented very small dissolution
rate constant, which allowed scenarios of 010 or 01̄0
surface orientations, adjoining edge with 001 or 001̄,
and adjoining side with 100 or 1̄00 to be dissolved.
Moreover, the dissolution time of sites follow almost
a liner trend up to 23000, and then the upscaled time
of site dissolution increases due to the reduction of
the surface sites for the computation of the total rate
constant resulting a decreasing trend in the average dis-
solution rate. The steady-state dissolution rate for the
most reactive facets (010 or 01̄0) was also reported to
be 0.706 mol/ (s cm2), followed by less reactive surface
orientations: 1.548× 10−7 mol/ (s cm2) for 001 or 001̄,
and 1.58× 10−17 mol/ (s cm2) for 100 or 1̄00.
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ABSTRACT: To meet the climate objectives, there is a clear need to deal differently with our building patrimony.
In the future, building structures must be re-used as much as possible, if necessary, in combination with changes in
their intended function. In this contribution, an overview is given of mostly known but often not yet fully exploited
techniques that can be applied for reliability assessment of existing structures. Obviously, the starting point is the
load history of the building, although this is not a conclusive verification. An often-underestimated aspect here
is the modelling of the load arrangements. Despite that this is the starting point of further (advanced) analyses,
disproportionally little research attention has been given to this to date. Furthermore, advanced structural analysis
methods as well as testing and monitoring of structures are also discussed, followed by some sub-aspects. To
conclude, three practical examples are given, underlining the importance of this work.

1 INTRODUCTION

1.1 Global challenges of the construction sector

The impact of the construction sector on climate
change can be called massive; about 8% of the world-
wide greenhouse gasses is dedicated to the production
of cement, again 8% to the production of steel. The
share is even greater when looking to the whole live-
time consumption for buildings: 40% of the green-
house gasses, 33% of the water consumption, 35% of
the waste generation, 50% of the raw (primary) mate-
rials and 50% of the energy consumption (Level(s)
2019; #EUGreendeal 2020).

Before discussing the use of “green” cements or
recycling of materials, the first step should be to assess
whether the re-use of a structure is possible or not,
facing the direct impact on the items listed above. To
achieve the intended goals of the climate objectives
(UN 2015; COP26 2021), the re-use of structures with
admittedly different functions will become more com-
mon or even compulsory. It is even stated that greater
material efficiency can save up to 80% of the emissions
(#EUGreendeal 2020).

Besides the needed change towards more sustain-
able and responsible use of existing building struc-
tures, a market change is also starting to develop.

The origin of this market evolution can be found in
the more stringent urban requirements for the design
of new buildings. Existing building permits allow for
denser land use and sometimes also a higher number of
storeys. The authors performed a small survey by sev-
eral real estate developers active in city centres on the
Belgian market. Based on historical numbers and their
prediction for the near future, the reinstatement mar-
ket of existing structures, Figure 1 (solid lines), will
be as important as the development of new buildings
(dashed lines). Ratios are given for a mix of dwellings

Figure 1. Market evolution following real estate developers
active on the city market in Belgium.
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and offices, and are based on the balance weighted
average, around 2025.

1.2 Assessment of existing structures

Building owners and authorities should be aware that
the outcome of a cost-benefit analysis of such more
time-consuming engineering work is totally different
for the assessment of existing buildings compared to
the design of new buildings. A more thorough analysis
can lead to an upgrade of the calculated load-bearing
capacity depending on the structural system. For the
design of new buildings, the study cost will be gov-
erned by the market and the floor area (as a first
approximation), so an easy comparison of offers is
possible. The opposite is true for assessing an existing
building; technical means and a high skill environment
can lead to significant savings or influence even the
feasibility of a project.

More advanced calculation models are then used to
define more realistic load arrangements and structural
response. The latter is based on the classical bending
theory and membrane effects, either in compression or
tension. In this case, the assessment is no longer made
at the element level but at the system level since the
system dictates the boundary conditions for making
additional or alternative load-bearing paths possible.
Typically, the use of non-linear finite element analy-
sis (NLFEA) is performed, including geometrical and
material non-linear behaviour

The principles of such advanced load and structural
models are well known and often applied in accidental
situations such as fire or robustness checks. However,
its full potential for ordinary renovation and re-use
design situations has not yet been fully exploited so
far. Research to date has focused on numerical simula-
tions of simple idealised models (Genikomsou & Polak
2017; Thoma & Malisia 2018; Kang et al. 2020) or the
consequences of a column loss scenario in the context
of a robustness check (Botte et al. 2014; Belletti et al.
2016; Xiao & Hedegaard 2018).

1.3 Design codes

While for the design of new buildings, codes are
available with several requirements for resistance, ser-
viceability, durability and fire, this type of information
is mostly lacking for existing buildings.

At a European level, a technical specification
is recently released (TS17440, 2020) dealing with
assessing and retrofitting procedures in a general way.
It is worth mentioning the work of the fédération
international du béton (fib bulletin 80, 2016), which
facilitates insights into the composition of the par-
tial safety factors and the desired reliability level for
existing concrete structures. In the United States, inter-
esting work is published by the American Concrete
Institute (ACI), which describes some aspects more
in detail. The (ACI364.1, 2007) permits the use of
secondary elements as structural elements in exist-
ing concrete structures but requires, on the other hand,

that the rules for new buildings should be followed.
Furthermore, (ACI562.13, 2016) states in section 6.5,
analysis shall consider the load path from the load
applied through the structure to the foundation.Three-
dimensional distribution of loads and forces in the
complete structural system shall be considered unless
a two-dimensional analysis represents the part of the
structure". The guidelines also stipulate that time-
dependent effects should be considered to account for
material degradation and the load history.

From these general statements, it follows that, as
stated before, more advanced analyses can and should
be performed at the level of load arrangements and
structural models. Methodologies to execute such
analysis are surprisingly still missing and are there-
fore the focus of this contribution. Nevertheless, the
problem of model uncertainties of advanced structural
analysis shows scientific interest with several publi-
cations (Gino et al. 2021; Engen et al. 2021; Castaldo
et al. 2018).

1.4 Assessment procedure

At the start of the assessment of an existing building a
first verification can be done by checking the load his-
tory of the building. A warehouse for example, could
have been heavily loaded in the past, more than what
can be derived from the available reinforcement. In this
contribution, an assessment methodology for existing
buildings is proposed, as shown in Figure 2; the full
detailed explanation of each step is elaborated in the
following sections.

The load arrangement is determined based on linear
elastic models, using 3D finite element analysis (3D-
FEA).The reason for the elastic approach can be found
in the validity of the superposition principle. It allows
a straightforward combination of load cases. Next, the

Figure 2. Assessment procedures for existing buildings.

660



decisive load combination is imposed on a numerical
model that can handle nonlinearities in the material and
structural behaviour (NLFEA). For example, shell ele-
ments are used here instead of plate elements for the
floors.

With this proposed weak-coupling strategy, an iter-
ation is needed whether the deformation from the
NLFEA model is compatible with the assumptions
used to calculate the load arrangement (3D-EFEA).
If necessary, several iterations should be executed. In
the end, the conditions for a monitoring campaign shall
be pointed out.

To conclude this paper, three case studies will be
presented to validate the proposed methodology. The
advanced theoretical analysis results are compared
with two in-situ large-scale load tests on existing struc-
tures in Brussels and Paris. A transformation of an
office and a parking garage to flats and offices at those
locations became possible.

2 LOAD HISTORY

In the first respect, a quick estimation of the bearing
capacity could be established by evaluating the his-
torical load. If this historical load level exceeds the
projected load level, there is a tendency, out of prac-
tice, to claim that the structure is safe. Especially when
the foundation system of an existing building is to be
assessed, there is often a lack of information, and no
other option than using the load history for its capacity
assessment is available.

Unfortunately, such a statement is not justified from
the point of view of structural reliability. There is lack-
ing knowledge about uncertainties and quantification
of risks with such a practical approach.

On the other hand, also the reversal is true; if the
historical load level was below the future desired level,
it does not give a verdict on the actual bearing capacity.
It is commonly recognised that only a large number of
tests, which conflicts with practical issues in the case of
real buildings, or calculation can justify the reliability
level of a structure.

Nevertheless, the building can and will tell the
observer how it reacted to previous loads. Such
insights are crucial for determining the boundary con-
ditions of the structural system, at least during service
conditions assuming that no failure occurred in the
past. In this way, this is the first important step.

3 LOAD ARRANGEMENT

3.1 Manual methods – element level

Manual methods, which are in practice till today fre-
quently if not primarily used, start from the assumption
that gravity loads just descend vertically without any
redistribution depending on the axial stiffness of verti-
cal elements and bending stiffness of horizontal ones.

In other words, the stiffness of the surrounding struc-
ture is neglected; for that reason, it can be called an
element level approach. Loads from slabs are only
transferred in the shortest span direction or in a slightly
more advanced way following the yield line theory, but
again without any redistribution.

This historical way of working deviates from the
natural load arrangement due to simplifications. How-
ever, this type of elementary models is used here to
illustrate the possible benefits that can be realised and
underline this work’s research relevance. Assume a
supporting beam with a wall on it and a maximum
load p (kN/m), a span of L and, a bending stiffness
EI wherein E represents the Young modulus and I the
second moment of area. Internal shear forces, bending
moment and deflections can be expressed as given by
Eqs. (1) to (3).

VMax =αV pL (1)

MMax =αM pL2 (2)

δMin=αD
pL4

EI
(3)

Dimensionless parametersαV ,αM , andαD are used,
respectively valid for shear, moments and displace-
ments. Those factors can be found in Table 1 and
depends on the load arrangements type going from
a rectangular to a triangular shape. With relative α-
factors next to the absolute values compared to the
values obtained for a uniform load case. Separate
columns are used for the forces while the relative
αD-factor can be found behind the bar (/).

Table 1. Internal force and deformation parameters for a
simply supported beam.

Internal forces Relative forces
Load Deformation
arrangement αV αM Shear Moment αD/rel.

Uniform
0.50 0.125 1.00 1.00 0.013/1.00

Parabolic

0.33 0.104 0.67 0.83 0.011/0.81
Sinusoidal

0.32 0.101 0.64 0.81 0.010/0.79
Bloc (L/2)

0.25 0.094 0.50 0.75 0.009/0.71
Triangle

0.25 0.083 0.50 0.67 0.008/0.64

Table 1 shows that a significant reduction in inter-
nal forces can be obtained if some compression arch
effect can be accounted for in the masonry wall above
(parabolic load). This reduction becomes more impor-
tant with a strut and tie model (triangular load).
Savings up to 50% and 33% of the uniform load case
are possible. Also, for the deformations, which will
influence the serviceability, a saving of 36% is possible
in the most favourable case.
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For the design of new buildings, it is a com-
mon practice to keep the distribution of shear forces,
moments, and displacements constant for service limit
state (SLS) and ultimate limit state (ULS). The dis-
tinction between both limit states in analysis is only
reflected by the applied safety factors. However, the
action on the bearing element can be completely dif-
ferent depending on the stiffness ratio between the
bearing and loading element. Presume a beam that will
transfer from bending (in SLS) to catenary (in ULS)
action. Table 1 shows that even a smooth transition
of load arrangement can result in meaningful reduc-
tions of loads on bearing elements. So, differentiation
should be made between models suitable for SLS and
ULS assessment.

3.2 System approach by 3D-FEA

The effect of implementing a system approach instead
of a calculation on element level will be pointed out
using a case study. Project Haagbeuk was assigned
to Sweco (engineering office) to assess the fire resis-
tance of the transfer slab above a parking garage with
apartments on top of it; see also section 7.3.

After a revision of the original design from another
party, a serious mistake was discovered, which under-
mined the structural reliability of the building. The
building was fully equipped and almost in service.
However, no signs of damage or extensive deforma-
tions could be observed while the construction was
already finished.

A major structural issue was pointed out in a transfer
slab that was foreseen supported by columns to realise
in the basement an open parking space: a flat slab of
40 cm thickness in concrete class C30/37 with mainly
one-directional reinforcement. Figure 3 shows the
bearing elements in the basement with a grey shade;
columns, beams and concrete walls are indicated. The
superstructure, made out of glued lime blocks, can be
recognised; a hallway and square-shaped apartments.
A reinforcement ratio of 3664 mm2/m BE500 was
available from W05 to W07, while perpendicular to
this direction (transverse), only 524 mm2/m was avail-
able. Upper reinforcement was also foreseen but not
discussed. Note that the wide beam (2×0.6 m3) does
not add much stiffness and is eccentrically loaded. On
top of that, the slab next to the beam is thinner, namely
only 20 cm. Based on a linear elastic approach, it can
be expected that the reinforcement ratios should be
comparable in both directions.

The transfer slab was reassessed using a 3D-FEA
in the software package Diamonds of Buildsoft to
define the load arrangement in combination with soft-
ware package SAFIR® (Franssen & Gernay 2017)
for the structural analysis. The latter is a temperature-
dependent, geometrical and material non-linear soft-
ware. Simulations had been started up with this
software due to the in origin fire-related questionary.

By using 3D-FEA, the differences in stiffness of
surrounding elements could be taken into account.
Figure 3 shows the differences in load arrangements

applied on the transfer slab. At the top are the results
of a manual calculation, and at the bottom, the results
of the 3D FEA can be found. This analysis excluded
the compression arch effect in the bearing walls on top
of the transfer slab.

Firstly, a difference in the shape of the line load can
be found. While the manual load arrangement con-
siders a uniform line load, the 3D FEA indicates a
triangular distribution in combination with concen-
trated loads. It should be considered in the comparison
that a double value of a triangular load corresponds to
the same total load as a uniformly distributed load.

The other relevant difference is the distribution of
the loads. While the manual load arrangement results
in high loads in the upper wall (W06, Figure 3) next
to the hallway, the 3D FEA reduces this load. On the
other hand, the load increases in the directly supported
W07.The opposite is observed for some partition walls
(W02_2, W02_3) between apartments. In the manual
calculation, only the own weight of the walls was taken
into account, while by the 3D-FEA, those walls are
heavily loaded.

Figure 3. Comparison of loads using a manual calculation
on an element level (a) and a system approach with a linear
elastic FEA (b).

Numerical values have been set next to each other in
Table 2, to facilitate a comparison of the results. Loads
are guided towards the parts of the slab directly sup-
ported by bearing elements and in the direction of the
reinforcement. This redistribution causes a decrease
in bending moment in the transfer slab and, there-
fore, decreases the need for longitudinal and transverse
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reinforcement.Activation of the upper structure makes
such favourable load flow possible.

Table 2. Numerical comparison of loads (service limit state)
using a manual calculation on element level and a system
approach with a linear elastic FEA for the same building.

Req [kN]
Relative

Wall Manual 3D-FEA FEA/Man

W05 107.5 124.9 1.17
W06 342.0 255.1/210.8 0.75/0.62
W07 231.5 384.9/556.9 2.41/1.66
W02_1 159 684.4 4.30
W02_2 12.0 700.8 58.4
W02_3 12.0 540.7 45.1

The system approaches using software package
Diamonds does not explicitly consider non-linear
behaviour. Effects of cracking ask for iterative simu-
lations, and creep is introduced by reducing theYoung
modulus. In reality, additional compressive and ten-
sile membrane action will lead to a more rigid slab.
Therefore, in a next step, the line loads, derived from
the linear elastic FEA, are implemented in the non-
linear software to consider the previously mentioned
membrane effects.

4 ADVANCED ANALYSIS METHODS

4.1 Linear and non-linear effects

Due to a lack of numerical tools, older existing build-
ings are designed mainly by tabulated data, based on
an elastic structural response (i.e., the strip method
starts from a Poisson coefficient= 0) and idealised
supports. Nowadays, with FEA as a numerical tool,
it is possible to analyse the exact shape of the slab,
while this is not always the case using tabulated data.
Time-dependent effects as creep, nonlinearities due to
cracking and even orthotropy caused by a difference
in reinforcement can be accounted for.

Table 3 makes the comparison between the maxi-
mum reaction forces and internal moments (pro unit
width) of a slab with a short span of 5 m, a total load of
10 kN/m, a thickness of 0.20 m and a Young modulus
of 33 GPa. An analysis is performed with the aid of
a commercial software tool (Diamonds, by Buildsoft)
that allows for linear elastic calculations with cracked
sections, including creep effects based on triangular
Kirchhoff elements.

It is seen that for linear elastic approaches, the
influence of the method of analysis is minimal on the
internal forces. Only one exception can be made if
the slab is calculated using a crude single strip model
without any interaction of the secondary direction.The
reaction force would be in 10 · 5/2= 25 kN/m and the

Table 3. Comparison of the outcomes following differ-
ent slab analysis methods for a simply supported slab ratio
L1/L2= 2.

Assessment parameters

Method R(kN/m) M(kNm/m) δ (mm)

Tabulated data* 18.75 23.58 −2.89
Linear elastic◦ 18.16 25.14 −2.75
Cracked and 18.21 24.53 −7.87

min. reinf.
With practical 18.20 24.45 −7.71

reinforcement

* Based on the strip method of Marcus (Girkmann 1986).
◦ No influence was found by the presence of min. reinf.

moment 10 · 52/8= 31.25 kNm/m. However, impor-
tant differences can be found in the calculated defor-
mations once cracking, and creep are accounted for.
This phenomenon is widely known. Note that includ-
ing the practical reinforcement, using a higher mini-
mum (mesh) reinforcement only slightly decreases the
calculated theoretical deformations.

A much more pronounced difference can be found
by adapting the boundary conditions.Assume that after
a survey of the local situation, one long side of the
previous slab reacts as fixed for rotational moments
parallel along the long edge of the slab. A significant
change in reaction forces, moments and deformation
is observed, see Table 4. For the moments not only the
positive values are given (with tension at the bottom
side of the slab= span) but also the negative ones (with
tension at the upper side= at the support).

Table 4. Comparison of the outcomes following different
slab analysis methods for a simply supported slab (except
one long side L1= fixed) ratio L1/L2= 2.

Assessment parameters

Method R(kN/m) M(kNm/m) δ (mm)

Tabulated data* 25,85 15.2/−30,49 −1.38
Linear elastic◦ 25,68 16.7/−30,44 −1.37
Cracked and min. reinf. 25,39 16.9/−26,50 −4.23
With practical 25,62 16.4/−30,43 −3.77

reinforcement

* Based on the strip method of Marcus.
◦ No influence was found by the presence of minimum reinf.

So far, only linear elastic results are shown, but
in some way already accounting for creep and crack-
ing. In the previous examples, the line support blocks
any vertical and horizontal displacements. With the
plate elements used, no normal stresses will be gen-
erated even with the calculated vertical deformations.
Once shell elements are involved in the analysis, also
membrane effects can develop, discussed in the fol-
lowing two sections. This requires that the software
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used can handle geometrical nonlinearities. Mostly
these tools include also material nonlinearity like the
software SAFIR® (Franssen & Gernay 2017), used in
section 3.2.

4.2 CMA

When horizontal displacements and rotations are (par-
tially) blocked, two types of successive membrane
effects can develop, see Figure 4, called compressive
(CMA) and tensile membrane action (TMA). CMA
can develop as long as the section height allows for
the development of moderate compression stresses
without entering too far in the plastic region (to limit
deformations). Accounting for this, also called arch
effect, has the advantage that deformations stay lim-
ited, and deformations are almost reversible, making
it suitable to combine with service limit states.

Figure 4. Successive development of CMA and TMA,
adopted from (Botte et al. 2014).

As shown in Figure 4, CMA is in some way an
unstable situation; a slightly higher deformation will
end in lower load-bearing capacity, followed by even
higher deformations and the development of tensile
membrane action.

4.3 TMA

While for CMA, the presence of reinforcement is
of lesser importance (except to limit compression
stresses), TMA depends mainly on the reinforcement,
its yield strength and deformation properties. It is
necessary to investigate the reinforcement’s proper-
ties (strength and ductility) when using this type of
action. Reflecting on the needed substantial deforma-
tions, this type of action can only validate an ultimate
limit state and/or accidental situation.

While the difference in bending moments are minor
(although membrane forces are developing), a signif-
icant difference can be found in reaction forces and
the calculated deformations. The decrease in deforma-
tions is due to the membrane effect, introducing CMA
into the slab. The maximum reaction forces are in line

Table 5. Comparison of NLFEA (including CMA) results
for a simply supported slab and one long edge fixed, ratio
L1/L2= 2.

Assessment parameters

Method R(kN/m) M(kNm/m) δ (mm)

SAFIR® – simply 25.16 −24.90 −3.57
supported

SAFIR® – one long 31.13 −16.7/25.77 −1.74
edge fixed

with the values obtained using a simple single strip
model. As vertical equilibrium must be respected, the
increase in maximum values can only be compensated
by another shape of the load arrangement.

5 MONITORING

As mentioned before in Section 2, understanding the
system behaviour of an existing structure is extremely
important to assess the reliability of the structure for
its different limit states. Unfortunately, not all design
assumptions and execution details are available, which
makes a possible conflict of unknowns.

Monitoring of the structure can fill, or at least
reduce, this gap of unknowns and deliver the needed
proof of evidence.

5.1 Acceptance criteria

Acceptance criteria can be formulated at two levels.
In a preliminary phase, before assessing the structure
and after finishing refurbishment works.

Load tests can be executed on the existing struc-
ture until service and ultimate load level to understand
the structure and its system behaviour better. A com-
parison of measured and calculated deformations will
confirm the model assumptions or will create the need
for an update of the model. This way of working is
supported by the (TS17440, 2020); which allows test-
ing and monitoring of existing structures to verify and
improve structural analysis assumptions. In Figure 6
the configuration of a swimming pool test can be seen
to validate CMA in an existing 16 cm thin, 4.58 m span
concrete slab.

After the reinstatement of an existing building in its
new configuration, it can be useful to continue or set up
a monitoring campaign to verify if the time-dependent
behaviour is consistent with what was predicted by
numerical models. In general, an asymptote should be
reached, which makes this type of measurement more
frequently repeated in the beginning and will end after
some time (can be years).
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5.2 Model updating

According to (TS17440, 2020) the measurement of
static or dynamic properties should be compared with
those predicted by structural analysis models based on
the actual conditions of the existing structure. When a
significant deviation from the prediction is observed,
the reasons should be investigated and explained,
requiring additional tests or model updating. The latter
can be expressed in modifications of the load arrange-
ment, boundary conditions, type of analysis or the
reliability level. Threshold values should be agreed
upon for a specific project by the relevant parties to
start up interventions.

5.3 Intervention procedures

To limit risks or achieve an adequate reliability level, it
should be considered to prepare some intervention pro-
cedures. When passing some threshold values, a sce-
nario should be available about possible maintenance,
replacing, repair, or strengthening works.

Typical threshold values are based on measurements
of deformations at well positioned and indicated sur-
vey points. On the other hand, dynamic measuring
techniques have also been developed to monitor the
state of health of a structure. It is always the purpose
to verify if the exposed existing construction is react-
ing as assumed in the assessment documents. When
a specified deviation from the prediction is observed,
the reason should be investigated and explained.

In a post-intervention file belonging to the building,
it can be determined i) which possible damage should
be considered as normal, ii) which should lead to a
higher inspection frequency and/or additional inves-
tigations, iii) from which limit strengthening works
are necessary and iv) in the worst case from which
extreme limit even evacuation should be proceeded
with. Sometimes it is stated that a relative rotation of
1/150 would cause an ultimate limit state.

6 ADDITIONAL ASPECTS

6.1 Reliability level

For buildings categorised in standard Consequence
Class 2 (EN 1990, 2015), the reliability index β cor-
responds to a probability of failure of 7.23 · 10−5 and
equals 3.8 (Gulvanessian et al. 2012). It has previously
been shown by some researchers (Sykora et al. 2017),
(Caspeele et al. 2013) that there should be a distinction
between new, existing and even temporary structures
regarding their reliability indexes.

The reliability index depends on the structural
safety level as well as cost optimizations. As the cost
for increasing “beta” is generally larger in case of exist-
ing structures compared to an adaptation of a still to
build design, “beta” may be reduced as a result of
the effect of cost implications on the optimization (fib
bulletin 80, 2016).

Following ISO 2394 (ISO 2394, 2015) it is proposed
to limit β to a lower limit of 3.3 for an existing build-
ing in the post-fire condition, for which societal and
human risks are still satisfactory (Sykora et al. 2017).
Another reason to adopt this reliability factor is the
reduced projected lifetime (Holicky et al. 2013).

6.2 Model uncertainties

Model uncertainties arise at the load level (γSd) and
resistance (γRd) side. The fib recommendation (Mod-
elcode 2010, 2012) allows a reduced value of 1 instead
of 1.06 when evidence of the model validation of
the design conditions is available. However, it was
proven that this γRd-factor for NLFEA should be
slightly higher than for more conventional methods
(1.15 instead of 1.06) (Castaldo et al. 2018).

In line with these findings, upcoming documents
such as Modelcode 2020 (Engen et al. 2021) and the
new version of Eurocode 2 (in annex F) show the
tendency to increase the safety factor for the model
uncertainty if it was not derived from probabilistic
calibrations.

6.3 Fire

One of the most challenging and rare events for a
building is a fire. Seldom, a full compartment fire
can develop, and mostly the area affected by a fire
is relatively limited. Assessment procedures should
be adapted when the re-use of a building after a
well-documented or forgotten fire will be consid-
ered. Different formats make such assessment possi-
ble, reference is made to literature handling concrete
(Van Coile 2015; Molkens 2022) and steel buildings
(Molkens et al. 2021; Molkens et al. 2021).

During a fire, it is already observed by the authors
(Molkens et al. 2017) that a slab working in CMA may
switch to cantilever action due to a loss of compression
resistance at the lower heat-affected part of the slab,
see Figure 5 which is taken from the example discussed
in section 7.1.

Figure 5. CMA in ULS conditions and cantilever in fire con-
ditions. Principal tensile stresses= red, compressive= blue.

7 CASE STUDIES

Validation of solution strategies and economic rele-
vance should be based on several benchmark analyses
relevant for the type of retrofitting works at hand. So
far, no codified minimum number of benchmark stud-
ies is available. Referring to (Engen et al. 2021), a
minimum of 2 to 3 should be available.
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7.1 Brussels, Leopold II-building

In the ’70s there was a great need for offices buildings
in Brussels in the area between the city centre and the
national airport. With the known evolution of HVAC
techniques and other office equipment, the Leopold II
building was outdated and needed a serious upgrade.
However, the relatively low ceiling height was seen as
an obstacle, and on the market, there was a more impor-
tant (and beneficial) demand for dwellings instead of
offices.

Questions arose about the bearing capacity of the
slabs in ambient under fire conditions. The building
was constructed before the actual fire regulation, but
the real estate developer wanted to meet the latest
requirements. By means of the thermo-plastic FEA
software SAFIR® developed at the University of Liège
(Franssen & Gernay 2017), mechanical response in
service, ultimate, and fire limit state has been assessed.
For model validation, load tests (up to 80 cm of water)
have been performed with the aid of swimming pools,
see Figure 6.

7.2 Paris

In the early years when cars entered the city cen-
tres, parking buildings were constructed that offered
a parking place and other services. Maintenance and
cleaning works were offered so that the driver was
assured about a safe journey back homewards out the
city. From our present point of view, this is relatively
strange, but those buildings are still present in city
centres nowadays.

The location of the envisaged building in Paris is
uniquely located close to the city centre and pub-
lic transport but hidden in a densely populated area.
Due to the actual urban regulations, it would never be
allowed to rebuild the building at the same spot and
with the same number of levels or building height.This
is the reason why the real estate developer opted for
retrofitting, while the passage for fire brigade should
be increased, the free room between the columns
should be respected and the fire resistance guaranteed.

A first assessment claimed that these goals could
not be met based on simple design models and current
codes. However, the beams have been fixed (without
rotational freedom) to the columns, the slab was rein-
forced in a continuous way, and the second bearing
direction was fully disregarded. With the aid of a sim-
ple LE-FEA it could be shown that the structure met all
targets. This model was validated by a load test (exe-
cuted up to 60 cm water load), see Figure 7. In the end,
NLFEA has been applied to assess fire resistance.

7.3 Haagbeuk

An apartment building in Belgium, Figure 8, was
designed with a structural system of load bearing
masonry starting from the ground floor, as discussed
in section 3.2. Remember a design error was found
while the building was almost in service.

Figure 6. Building before, during load test and after reha-
bilitation.

Figure 7. Load test existing parking building.

Extensive strengthening seemed to be needed. To
reduce the influence on the free height in the base-
ment and avoid conflicts with the technical equipment
suspended on the ceiling, this would be executed with
CFRP (carbon fibre reinforced polymer) laminates.
Unfortunately, the glues applied in these strengthen-
ing systems are very sensitive to high temperatures and
should be protected for a critical temperature of around
75◦C. Benefits in height realised with those laminates
would be lost in combination with a 10 cm thick fire
protection, where only 15 mm space was available.

As previously discussed (section 3.2), many efforts
have been made from the engineering side to define a
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Figure 8. Views on the transfer slab with 10 mm of fire
protection added.

more realistic load arrangement on the transfer slab.
After analysis of the transfer slab by NLFEA in ambi-
ent conditions, it was found that by doing so, the
reinforcement was capable of guaranteeing the sys-
tem’s structural reliability. Redistribution of internal
forces and activation of membrane forces made it
possible.

However, in the case of fire, the loss of compressive
strength at the lower part of the slab would be disas-
trous. Finally, it was decided that only a 10 mm thick
fire protection was needed and no strengthening at all
(Van Hout & Molkens 2021).

8 CONCLUSIONS

There is a clear need for a more uniform methodology
for assessing existing buildings. A consistent proposal
was worked out in this contribution.

Besides historical load data, most of the attention is
given to load arrangements. Based on simple models,
savings up to 50% can be obtained by proper load
arrangements. This was illustrated by a case study of
a real-life application.

Advanced structural analysis has been subsequently
discussed, and it is found that including membrane
effects can significantly impact the calculated struc-
ture’s bearing capacity. NLFEA opens many possi-
bilities but also creates a need for knowledge about
the system behaviour, which can be validated by
monitoring and load tests.

Additional aspects have been briefly discussed, such
as the reliability level of existing structures, model
uncertainties, and fire assessment.

Three benchmark case studies have been presented,
which also underlined the possible unexpected out-
comes in view of fire protection to guarantee the
compressive resistance, for example, when counting
for membrane effects.

9 FUTURE RESEARCH

In this publication, the importance of a correct load
arrangement was underlined. Unfortunately, accurate
data from tests on scaled models or in real scale are
lacking. The influence of system parameters such as
axial stiffness of load bearing walls and bending stiff-
ness of slabs is missing in scientific literature and
publications.

Future research will aim at contributing to this not
yet fully recognised field, focussing on validation of
presumed load arrangements, results of monitoring,
model uncertainties, applicability, and valorisation.
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Modelling aspects of non-linear FE analyses of RC beams and
slabs failing in shear
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ABSTRACT: Complex 3-dimensional FE models are increasingly used in practice for the design and evaluation
of new and existing concrete structures, respectively. In this paper, the difficulties of realistic finite element
modelling of shear failure in simple reinforced concrete beams and slabs, for which experimental results are
available, are presented. The results show that a comprehensive validation of the used software for each field of
application is required. The paper aims to discuss challenges in the user’s decision of modelling parameters for
concrete and their influence in the calculated load bearing capacity.

1 INTRODUCTION

It is well-known that the utilization of non-linear finite
element analyses (NLFEA) for practical applications
is accompanied by uncertainties and requires expe-
rience in this field (Rombach 2011). This applies to
the evaluation of existing reinforced concrete struc-
tures as well as the design of new structures. As a
result of increased computation performance and the
desire to more accurately describe structural behav-
ior of RC structures, the application of NLFEA has
become increasingly common.

Finite element analyses are oftentimes classified
by structural elements or by the failure mode of the
experiments, especially when model uncertainties are
regarded. In Hendriks et al. (2017a, 2017b) recom-
mendations for NLFEA of concrete structures for
ultimate limit state considerations are made. There-
fore, numerous tests were simulated, treating bending
failure, bending shear in beams and shear in slabs sep-
arately. It was found that simulating shear failure in
slab specimen is rather challenging (Hendriks et al.
2017a). The failure mechanisms in slabs subjected to
single loads are more diverse compared to beams due
to load transfer actions in transversal direction, which
can additionally influence the load bearing capacity
(Hendriks et al. 2017a, b).

At Hamburg University of Technology (TUHH)
test series investigating shear failure in beams with-
out stirrups (Rombach & Jauk 2022) and in slabs
without stirrups subjected to single loads (Rombach
& Henze 2017) have been conducted. To gain more
insight into the structural behavior of shear failure
in both structural members, the test specimens are
analyzed by means of NLFEA. Simulating shear fail-
ure in beams has the advantage of a significantly

lower computational effort compared to slab struc-
tures. Therefore, one RC beam of the test series from
Rombach and Jauk (2022) is selected to validate the
finite element (FE) model. The resulting FE-model
decisions are checked by the shear failure analysis of
a second beam and compared to two test results of slabs
subjected to single (block) loads. It is discussed to what
extent the modelling decisions regarding shear fail-
ure in beams can be applied to describe the structural
behavior of slabs subjected to single loads. Various
modelling aspects and challenges, that arise during
the definition of a NLFEA are emphasized. NLFEA
for ultimate limit state by means of mean values of
material properties for two different structural mem-
bers failing in shear are evaluated and compared to test
results without regard to reliability considerations.

The commercial software ATENA Studio (Version
5.6.1) and GiD (Version 14.0.5), the fracture-plastic
constitutive model CC3DNonLinCementitious2 for
concrete (Cervenka & Papanikolaou 2008, Cervenka
et al. 2020) and three-dimensional (3D) modelling
were used for all non-linear simulations.

2 TESTS ON CONCRETE MATERIAL VERSUS
CODE PROVISIONS

When modelling concrete structures by means of
NLFEA the designer may use material properties
based on material tests conducted additionally for the
regarded test specimen. In practice such measure-
ments, like e.g. for the elastic modulus Ec or the
tensile strength fct of concrete, are not available and
code provisions for material properties are used. These
formulations are oftentimes based on the concrete
compressive strength fc. In ATENA-GiD (Cervenka
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et al. 2020), one can choose to use recommenda-
tions for additional parameters for the concrete model
CC3DNonLinCementitious2 (Cervenka & Papaniko-
laou 2008; Cervenka et al. 2020) based on fc or adjust
individual values.

The necessity to include predefined material val-
ues for a certain software increases, as the applica-
tion of NLFEA for common practice is used more
frequently. This applies especially in the case of
modelling concrete. The material itself scatters and
testing procedures induce a certain variance in such
a way that resulting uncertainties can be specified as
aleatory or epistemic depending on the particular case
(Gino 2019).

Two material parameters that have a great influence
on the results of a FEA – the Young’s modulus Ec and
the fracture energy Gf – are presented in the following
section to illustrate this. Material tests conducted at
the Institute for Structural Concrete at TUHH on both
variables are taken and compared to code provisions.

2.1 Young’s modulus

The Young’s modulus describes the relation between
stress and strain in uncracked concrete structures for
uniaxial compression and by approximation for uni-
axial tension (fib Bul. No. 70 2013). It can be defined
as tangent or secant modulus. Fib Model Code 2010
(2013) (‘MC10’) defines the Young’s modulus Eci as
the tangent modulus at the origin of the stress-strain
diagram according to Equation 1.

Eci= 21.500 · αE · (fcm/10)1/3 · (Eci and fcm in MPa) (1)

To account for initial plastic deformations, Eci is
reduced to Ec by a factor αi according to Equation 2:

Ec=αi · Eci (MC10 2013) (2)

with: αi= 0.8+ 0.2 (fcm/88)≤ 1.0
The modulus of elasticity predominantly depends

on the properties of its components (fib Bul. No. 70
2013). The factor αE in Equation 1 varies between
−30% and+20% depending on the type of aggregate
and is set to αE= 1.0 for quartzite aggregates (MC10
2013).

According to DIN EN 1992-1-1 (2011) (‘EC2’)
the tangent modulus of elasticity for concrete with
quartzite aggregates is defined as Ec. Ecm is specified
as the secant modulus of elasticity (Eq. 3, 4).

Ec= 1.05 · Ecm (tangent modulus) (3)

Ecm = 22.000 · (fcm/10)0.3 (secant modulus) (4)

Figure 1 shows the results of 75 material tests which
were conducted in the laboratory of the Institute for
Structural Concrete (TUHH) in 2015 – 2021 (Schütte
2018; Rombach & Henze 2017; Rombach & Jauk
2022) following the testing procedure (static tests)
given in DIN EN 12390-13 (2014). Ec,0 and Ec,s are
values from material tests explained in the following.

For comparison, the Young’s modulus according to
EC2 (2011) and MC10 (2013) are displayed in Fig-
ure 1. The secant modulus of elasticity Ecm according
to EC2 (2011) shows higher values compared to Ec
according to MC10 (2013).

Figure 1. Young’s modulus Ec – material tests versus code
provisions.

The Young’s modulus Ec does not only depend on
the composition of concrete but also on the used testing
method and the storage conditions. To identify realis-
tic material properties for the structural members, the
material tests were conducted on cylindric specimens
with 300 mm height and a diameter of 150 mm on the
same day as the large-scale specimen were tested. Fur-
ther, the cylinders were stored under the same ambient
conditions as the large-scale specimen, not in water
as specified in DIN EN 12390-13 (2014). The com-
position of aggregates differs and the aggregates were
not clearly specified. For the comparison with code
provisions the factor αE= 1.0 for quartzite aggregates
was assumed. To identify theYoung’s modulus for one
structural member the mean value Ecm out of three
tested dry cylinders was calculated. Figure 1 shows the
results of the single cylinders. According to DIN EN
12390-13 (2014) two testing methods A and B exist.
For Method A, three preloading cycles and three main
loading cycles are applied. An initialYoung’s modulus
Ec,0 is then calculated between the end of the preload-
ing and the first loading cycle of the upper proof stress
σm

a (Figure 2).

Figure 2. Loading sequence acc. to DIN EN 12390-13
(2014).
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The stabilized modulus of elasticity Ec,S is deter-
mined between the last lower proof stress σm

b and the
upper proof stress σm

a of the last loading cycle. For
Method B solely three main loading cycles are pro-
vided and the stabilized modulus of elasticity Ec,S is
calculated.

Method A was applied for the material tests dis-
played in Figure 1. Since the equations according to
MC10 (2013) and EC2 (2011) account for the con-
crete compressive strength fc and Young’s modulus Ec
tested 28 days after concreting, the measured prop-
erties were calculated back following EC2 (2011).
The calculated values for fcm (28d), that were deter-
mined from dry cylinders tested at t> 28 days, fit
well to the concrete compressive strength measured
fcwm after 28 days on wet cylinders acc. EC2 (2011)
(−5%< fcm,calc/fcwm(28d)<+15%). Therefore, it is
assumed that cylinders stored and tested under the
same ambient conditions as the structural members
can be used to calculate the values for 28 days and can
then be compared to code provisions.

The tested values are slightly smaller compared
to the code provisions, which may be caused by
the inherent aggregates. Further, when the ratio
γ =Ec,28d/Ec,MC10 is regarded, the initial modu-
lus of elasticity Ec,0 (mean mγ = 0.89) is gener-
ally smaller compared to the stabilized modulus
Ec,S (mean mγ = 0.99). Despite that, the variance
of the test results is comparably small since con-
crete suppliers presumably use similar materials of
the same origin and all tests were executed in the
same laboratory (CoV = sγ /mγ ; CoV (Ec,0)= 0.057;
CoV (Ec,S)= 0.051). In comparison, for in-situ concrete
deviations of the exemplary tested Young’s modulus
compared to the values in a structural member of about
10 % cannot be controlled according to DAfStb (2020).
Faber & Vrouwenvelder (2001) recommend to use a
lognormal distribution with a coefficient of variation
of CoV (Ec)= 0.15 and mean m= 1.0 for the Young’s
Modulus of concrete used for statistical finite element
analyses. The influence of Ec on the results of NLFEA
are presented in Section 4.2. Since material tests for
both test series were available, particularly the appli-
cation of the measured initial and stabilized Young’s
modulus is examined.

Figure 3. Fracture energy GF – measured data (Rombach &
Jauk, 2022) versus different approaches.

2.2 Fracture energy

The fracture energy GF is a material parameter that
describes the energy required to cause a surface to
tear up such that stresses can no longer be transferred,
thus causing a crack to form.

A pure tensile test is the most accurate method
to determine the fracture energy. For simplification,
Hillerborg (1985) developed an easy-to-implement
experimental setup, namely a notched three-point
bending beam. This was the basis for the Rilem Draft
Recommendation (1985) for determining the fracture
energy for plain concrete.

The latter procedure was used for the test series
from Rombach and Jauk (2022). For maximum aggre-
gates of 8 mm and 16 mm, the beam has a depth and
width of 10 cm each and a length of 84 cm with a
span width of 80 cm. The notch is located in the form-
work. After the concrete specimens have cured, they
are stored under water until about 30 min before the
start of the experiment. The tests were conducted 28
days after concreting.

However, if this parameter is not determined by
tests, formulas can be used. Equation 5 is given
in CEB-FIB Model Code 1990 (1993) (‘MC90’),
whereby GF depends on the type of aggregates and
fcm.

GF=GF0 · (fcm/10 MPa)0.7 where: fcm < 80 MPa (5)

In the current MC10 (2013), another formula
(Eq. 6) is given because, according to the state of the
art, the influence of the aggregate size is negligible.
Therefore, GF depends only on fcm.

GF= 73 · f 0.18
cm (6)

Remmel (1994) proposed a formula (Eq. 7), where
the fracture energy depends on the mean tensile
strength fctm only.

GF= 0.0307 · fctm for fcm ≤ 80 MPa (7)

with: fctm = 2.12· ln {1+ (fcm/10 MPa)}
In Figure 3, the results of the before mentioned

approaches and the values from the tests according to
the RILEM Draft Recommendation (1985) are plotted.
An important factor in determining the fracture energy
is the ambient condition during storage and testing of
the notched beams. Mi et al. (2020) conducted a test
series, where the beams were not stored under water.
The fracture energies determined are in the same order
of magnitude as the dry stored ones of the present test
series.

3 NUMERICAL SIMULATION

Mean material values, which were derived from mate-
rial tests for every specimen, are used as input
parameters for concrete and reinforcement for the
FE analyses in ATENA – GiD (Cervenka et al.
2000). Where no material parameters were measured
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by means of material tests, recommendations of the
CC3DNonLinCementitious2 constitutive model (Cer-
venka & Papanikolaou 2008, Cervenka et al. 2020)
based on the tested mean compressive strength fc
are applied. The concrete is modeled by means of
20 noded brick elements with identical edge lengths
and quadratic form functions. The reinforcement is
inserted discretely into the concrete elements. Perfect
bond is assumed.

Steel plates, used in the tests for spreading the load
from the jack and at the supports, are modeled as
linear-elastic material. Fixed contact is assumed.

In the first step, the dead load of the concrete
volume is applied. Subsequently, the steel plate
is deflected incrementally. Newton-Raphson method
with a maximum of 50 iterations is used for the
simulations. Errors for force equilibrium are set to
0.01 and the relative error in energy is limited to
0.0001.

For the evaluation, load-deflection-curves and
crack patterns are compared to the test results.

4 NUMERICAL SIMULATION OF BEAMS

4.1 Test series on beams

A series of beam tests was conducted at the TUHH to
study the influence of crack kinematics on the shear
or torsional strength (Rombach & Jauk 2022). In this
paper experimental and numerical results of concrete
test beam no. B1.1 and B4.1 without stirrups will be
presented. All details of the beams are given in Figure
4 and Table 1. The FE-simulations and the necessary
parameters are calibrated on the RC beam B1.1.

First, the load on the test beam B1.1 was increased
in 3 steps of 25 kN. Then a displacement-controlled
load with 0.012 mm/sec was applied until the fail-
ure. The first bending cracks start to open at a load
of approx. 10 kN. The failure shear crack starts to
develop at a load of more than 100 kN. After the
maximum load of Fmax = 106.7 kN and a deforma-
tion of wmax= 6.35 mm was reached, the shear crack
gets unstable and the beam fails.

Table 1. Material test results for RC beams B1.1 and B4.1
(Rombach & Jauk 2022).

B1.1 B4.1

aggregate size ag [mm] 16 8
mean compressive strength fcm [MPa] 45.6 40.4
splitting tensile strength fct,sp [MPa] 3.55 3.53
initial Young’s modulus Ec,0 [MPa] 28,290 26,127
stabilized Young’s modulus Ec,S [MPa] 32,940 29,350
fracture energy Gf [N/m] 102.1 75,3
yield strength of rebar ReL [MPa] 528.7 528.7
tensile strength of rebar Rm,sl [MPa] 648.1 648.1
failure load Fmax [kN] 106.7 154.2
deflection at failure wmax [mm] 6.35 12.22

Figure 4. RC beams B1.1 and B4.1 (Rombach & Jauk
2022).

4.2 Parameter study on RC beam B1.1

The FE-model of the beam is shown Figure 5. To
reduce the calculation time, symmetry constraints are
considered by cutting the beam along the longitudi-
nal plane and providing the nodes with appropriate
boundary conditions. For the FE analysis, the mate-
rial parameters from Table 1 were used. The anal-
ysis proceeds with an incremental deformation by
0.08 mm/step due to convergence criteria.

First, the influence of the element size on the results
is studied. For this purpose, the beam is analyzed with
different edge lengths of 20 mm, 31 mm, 40 mm, 50
mm and accordingly 20, 13, 10 and 8 finite elements
over the height of the beam (h= 0.40 m). The finite
elements were supposed to have a quadratic shape.
Therefore, 4, 3, 2, 1 elements are arranged over the
width of 0.075 m. The load-deformation curve, the
crack pattern and the calculation time are evaluated.
Crack patterns showed a best fit compared to the test
results when a finite element size of 20 mm was used.
The results with an element size of 40 mm was found
to be sufficient regarding the crack pattern as well as
load-deflection curves.

Figure 5. FE-Model for beam B1.1.

Next, the influence of the Young’s modulus is stud-
ied. While the stabilized Young’s modulus Ec,s was
found to be in good accordance with the code pro-
visions according to MC10 (2013) (see Sec. 2.1), the
analysis with the initial Young’s modulus Ec,0 shows
a slightly better agreement with the load-deflection
curve of the tested beam B1.1 (see Figure 6).The initial
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Figure 6. Load-deflection curves for beam B1.1 and
FE-simulations with Ec0= 28,290 MPa and Ec,s= 32,940
MPa (measured material parameters, FIX= 1.0, sF= 30).

Young’s modulus was utilized for NLFEA simulations
of RC beams in Schuette (2018) as well.

In Cervenka et al. (2016) the shear factor sF was
described as a parameter which has a great influence on
the results of the non-linear simulations of RC beams.
The shear factor is defined as the ratio between the
shear stiffness and the normal stiffness in the crack
(Cervenka et al. 2020).The parameter sF was varied for
the analysis of beam B1.1 as a mechanical based value
is not available. Best results were obtained with a shear
factor sF= 30. That means that the shear stiffness of a
crack is 30 times greater than the normal stiffness of
the crack. It was found that if a shear factor is applied,
the crack pattern of the simulation can be improved.

The comparison of measured fracture energy Gf and
code provisions in Section 2.2 showed significant dif-
ferences. Thus, analyses with different Gf -values were
conducted. The load deflection curves are shown in
Figure 7. The calculated failure load varies between
Fu = 101 kN (95 %) with GF= 87 N/m (MC 90 1993)
and Fu = 129 kN (121 %) with GF= 145 N/m (MC10
2013). The analysis with the measured fracture energy
GF= 102.1 N/m is in good agreement with the results
of the beam test (Fu = 111 kN (104 %), wmax = 6.1 mm
(96 %)). Usually, tests to determine the fracture energy
are not conducted.

Figure 7. Load-deflection curves for B1.1 – variation of
fracture energy Gf (FIX= 1.0, sF= 30).

In such a case, the approach of Remmel (1994)
based on the concrete tensile strength fctm appears to

Figure 8. Load-deflection curves for B1.1 – fixed and
rotated cracks.

be most appropriate.The experimental value fctm= 3.20
MPa gives a fracture energy of Gf = 98.2 N/mm. As
expected, good results for the load-deflection curve in
the range of the simulation with mean measured val-
ues was achieved (load bearing capacity Fu = 106.6
kN (100 %) and deflection of wmax = 5.90 mm (93%)).

Simulations have been conducted with the fixed
crack model for smeared cracks. The fixed crack
model is applied in other publications when the
regarded constitutive model and software ATENA are
used for nonlinear simulations (Cervenka et al. (2016),
Cervenka et al. 2018). For the fixed crack model (Cer-
venka 1985) material axes for cracked elements are
defined according to a fixed crack direction while
the orientation of principal strains rotates independent
from the material axes. This results in shear stresses
parallel to the crack surface (Cervenka et al. 2020).
A rotated crack model for smeared crack simulations
is also provided in ATENA (Cervenka et al. 2000).
This model is based on the fact that the principal
stresses and strains have the same direction at each
load level. The CC3DNonLinCementitious2 material
model (Cervenka & Papanikolaou 2008; Cervenka
et al. 2020) offers the option to apply a combina-
tion of the fixed crack and the rotated crack model.
In this case, the direction of the cracks is fixed, when
the residual tensile stress is below a defined level of
tensile strength (Cervenka et al. 2020). It was found,
that this parameter can be used to regulate the load
bearing behavior in the FE-simulation when fracture
energy according to MC10 (2013) was applied. Figure
8 shows the load-deflection curves for different fixed
crack factors (FIX). When the fracture energy accord-
ing to MC10 (2013) was combined with a fixed crack
factor of FIX = 0.5, a maximum load of Fu = 108.7
kN (102 %) and a deflection of wu = 6.08 mm (96 %)
was calculated leading to a very good agreement with
the test results.

The combination of both, the rotated and fixed crack
model for a simulation, was a new aspect of the param-
eter study and little literature on the topic was found.
In Cervenka & Bergmeister (1999), the simulation of
a reinforcement bar embedded into a concrete prism
subjected to tension with the concrete model SBETA
(Cervenka et al. 2020) for two-dimensional simula-
tions in ATENA is presented. It was found, that the
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rotated crack model and the fixed crack model deliver
a lower and upper boundary when the formed cracks
in the simulations are compared to the test results
(Cervenka & Bergmeister 1999). Since the option
was available as a modelling aspect for the consti-
tutive model CC3DNonLinCementitious2 (Cervenka
et al. 2020) and delivered good convergence behavior,
it was additionally regarded. The modelling aspects
according to Model A, B and C (see Tab. 2) should
be transferred to the other structural members due to
a good agreement with the load-deflection curves and
crack pattern.

In Figure 9, crack patterns for the simulations with
parameter sets A, B, and C are compared to the test
specimen B1.1. A good agreement between the beam
tests and the numerical analysis can be seen.

Table 2. Parameter sets for simulation A – C.

A B C

fct [MPa] 0.9·fct,sp 0.9·fct,sp 0.9·fct,sp
Ec [MPa] Ec,0 Ec,0 Ec,0
Gf [N/m] from tests Remmel MC10

(1994) (2013)
sF [–] 30 30 30
fix [–] 1.0 1.0 0.5

Figure 9. Crack patterns at failure for B1.1 – test results
(Rombach & Jauk 2022) versus analysis to model set A, B, C.

4.3 Simulation of RC beam B4.1

According to the previous simulation of concrete beam
B1.1, good agreement between test and simulations
can be achieved by setting the element size to 40 mm
and use the parameter setsA – C (seeTable 2).To verify
these parameter sets, the slab-like beam B4.1 from the
test series (Rombach & Jauk 2022) is analyzed.

The results of the FE analyses are shown in Table 3
and Figure 10. The gradients of the load-deflection
curves are identical for all parameter sets, but a clear
difference in ultimate loads of models A – C can
been seen. The main parameter that was varied is the
fracture energy. Table 3 shows that the ultimate load
also increases with increasing fracture energy. In the
case of B4.1, the FE analysis of set A with a mean
measured fracture energy gives significantly underes-
timated values compared to the ultimate loads of the
test (71.9%).

Table 3. B4.1 – Fracture energy and results of simulation
A – C.

A B C

Gf [N/m] 75.3 97.5 142.1
Fmax,FE [kN] 110.7 137.3 163.3
Fmax,FE/Fmax 71.7% 89.0% 105.8%

Figure 10. Load-deflection curves for B4.1.

Figure 11. Crack patterns at failure for B4.1 – test results
(Rombach & Jauk 2022) versus analysis to model set C.
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Set B with the fracture energy according to Remmel
(1994) provides sufficient results with respect to the
ultimate load (89.0%), but an early failure occurs, so
that the deformation is significantly underestimated.
Set C provides the best results of the three parameter
sets. Both the ultimate load (105.8%) and the defor-
mation agree well. Furthermore, the comparison of the
crack patterns (set C) is shown in Figure 11. Here there
is also a high degree of agreement.

Based on the performed FE-analyses, it can be
shown that the experimental determination of the frac-
ture energy can lead to significant deviations in the
models. The approach of the fracture energy accord-
ing to MC10 (2013) with FIX= 0.5 provides very
acceptable results for B1.1 as well as for B4.1.

5 NUMERICAL SIMULATION OF SLABS

5.1 Test series on slabs

In the test series on slabs (Rombach & Henze 2017),
14 identical large-scale cantilever slabs without stir-
rups were loaded by a concentrated force up to failure.
The length of the cantilever was lc= 1.9 m, the slab
had a total width of b= 4.5 m and an effective depth
d = 0.215 m. Block loads were applied by means of
steel plates with a contact area of 0.4 m× 0.4 m.

For one specimen with a load distance to the edge of
the support of av = 4·d the longitudinal reinforcement
was reduced. These two slabs P3/4d-1 with longitu-
dinal reinforcement of Ø16/80 mm (ρl= 1.16%) and
the test P13/4d-2 with a reduced longitudinal rein-
forcement of Ø14/100 mm (ρl= 0.71%) are modelled
according to the before mentioned modelling aspects.
The geometry and support conditions of the slab tests
are shown in Figure 12. Mean values for the tested
material properties are given in Table 4.

In Rombach and Henze (2017) the behavior of the
slab during failure was described as follows: Since
the slab thickness was measured during testing, cracks
developing inside the slab could be detected.

Figure 12. Test setup for P3/4d-1 and P13/4d-2 – section
view (Rombach & Henze 2017).

During testing, the loading plate was pressed into
the slab and failure occurred in the region of the steel
plate, when one block load was applied. For both test
specimen inclined cracks close to the loading plates
were obtained when the intersections were analyzed
after testing (Rombach & Henze 2017).

Table 4. Material test results for slabs P3/4d-1 and P13/4d-2
(Rombach & Henze 2017).

P3/4d-1 P13/4d-2

mean compressive strength fcm [MPa] 40.0 47.1
splitting tensile strength fct,sp [MPa] 2.78 3.86
initial Young’s modulus Ec,0 [MPa] 29,660 26,733
stabilized Young’s modulus Ec,S [MPa] 32,753 30,473
yield strength of long· rebar Rel [MPa] 522 559
tensile strength of [MPa] 625 682

long· rebar Rm
failure load Fu [kN] 677.4 725.5

In Henze (2019) it was discussed, that test P13/4d-
2 had a higher risk of bending failure due to the low
reinforcement ratio but the specimen showed a diag-
onal crack. Further, the load-deflection curve for slab
P13/4d-2 shows an increase of deformation when a
load of 600 kN was reached (Henze 2019).

Since this specimen is more in the threshold region
between shear and bending failure it is investigated
in the following to what extent the modelling aspects
chosen for shear failure can be applied here as well.

5.2 Simulation of slab P3/4d-1

For the simulation of slab P3/4d-1 the general assump-
tions for numerical simulations according to Section
3 were applied. Symmetry conditions were consid-
ered and half of the slab with a width of 2.25 m was
modelled to minimize the computational effort. Fixed
contact conditions in transverse direction were applied
for all surfaces in the cross section where the slab was
cut in half. Since the symmetry axis is in the middle of
the load application the development of cracks in this
section were visualized during calculation. The dead
weight was applied in a first step before the load was
incrementally increased by means of displacements
steps of 0.16 mm. Other than for the test execution,
no preloading up to 200 kN and unloading is applied
for the simulations. Monitors for resulting deflection
were set to a point on the bottom side of the load plate
and the applied force was obtained from reactions in
the middle of the top surface of the loading plate where
the displacements were applied.

The parameter set C (Table 2) showed a best fit for
both analyzed beams B1.1 and B4.1 and a FE-size of 40
mm. Further, no material tests for the fracture energy
according to simulation A were available for the slab
specimen.Therefore, parameter set C is analyzed in the
following. Figure 13 shows the load-deflection curves
of the regarded FE-models compared to the test results
for P3/4d-1.

For the simulations of P3/4d-1, single steps at a load
of about 145 kN fail to fulfill the convergence criteria
for the relative error of residual forces. Here, flexural
cracks in the support region occur. It is assumed that
the resulting error has little influence on the ongo-
ing analysis. Further, when the load bearing capacity
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of the model is reached, convergence criteria usually
can’t be achieved for several steps. The simulation
is not interrupted but it can’t be assured that the
non-converged steps have no influence on the further
analysis.Therefore, the next steps are displayed in grey
color (Figures 13 and 15). Due to the extensive cal-
culation time the applied step size is not reduced to
overcome convergence difficulties in this case.

In simulation C, the diagonal crack forms at a
load level which is in good agreement with the test
(Fu = 687,5 kN (101,5%)). The flexural crack width in
the support region matches the test results quite well.
Cracks with a minimum width of 0.1 mm for simula-
tion C and the crack pattern of the test specimen are
displayed in Figure 14.

In Figure 13, FE-models with a fracture energy
according to MC10 (2013) and a fixed crack model
FIX = 0.7 and FIX = 1.0 are displayed. The calculated
load bearing capacity of these additional simulations
exceed the test results more clearly.

5.3 Simulation of slab P13/4d-2

The finite element model for slab P13/4d-2 is, disre-
garding the lower bending reinforcement ratio, iden-
tical to P3/4d-1. Due to the lower longitudinal rein-
forcement ratio, more flexural cracks appeared in
the simulations of slab P13/4d-2. Therefore, the dis-
placements were applied with an increment of 0.054
mm/step for simulation C, which led to a comparably
high number of load steps. In Figure 15, the load-
deflection curve of simulation C is compared to the
test specimen P13/4d-2.Additionally, simulations with
a fracture energy according to MC10 (2013) and a fac-
tor FIX = 0.7 and FIX =1.0 are displayed (displacement
increment for block load: 0.107 mm/step).

For the simulation with parameter set C, first
diagonal cracks in the cutting plane appear for a load
of F ≈ 570 kN. These cracks are visualized by a
step change in the load-deflection curve, where sev-
eral steps in a row can’t find convergence criteria for
residual forces.

Figure 13. Load-deflection curves for slab P3/4d-1 – test
results versus numerical simulations.

Thereafter, the load is further increased until
another step change occurs for a load F = 678 kN
(93,5%). To gain reliable results for loading F > 550

Figure 14. Crack patterns for slab P3/4d-1 and deflection
at midspan (Rombach & Henze 2017).

Figure 15. Load-deflection curves for slab P13/4d-2 – test
results versus numerical simulations.

Figure 16. Crack patterns for slab P13/4d-2 and deflection
at midspan (Rombach & Henze 2017).

kN, the step size would have to be reduced signifi-
cantly to meet convergence criteria for residual forces.
Despite this consideration, the further redistribution
and course of the load-deflection curve of the simu-
lation decreased slightly compared to the test results
and it can be seen, that cracks around the loading plate
appear in the simulation as in the test where it was
pushed into the slab.

Unlike for the previously considered specimen,
when the fracture energy according to MC10 (2013)
with a fixed crack model (FIX = 1.0) is used, the load-
deflection curve matches the test specimen better, but
no step change occurs. The curve is almost horizontal
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for deflections greater than 25 mm.This refers to bend-
ing failure and the longitudinal reinforcement shows
plastic strains near the support. Here, a first diagonal
crack appears for a deflection of about 35 mm. Plastic
strains in the longitudinal reinforcement in the support
region occur at a load F > 500 kN while yielding was
measured for F > 550 kN during slab test. Where the
fracture energy according to MC10 (2013) with FIX
= 0.7 is regarded, the first diagonal crack appears for
F = 722 kN (99,5%) and 24 mm maximum deflec-
tion. Plastic strains in the reinforcement occurred for
F > 550 kN. For P13/4d-2 the combination of a fixed
and rotated crack model with a higher factor FIX >
0.5 seems to meet the test results better compared to
P3/4d-1 or the regarded beams.

The description of the load bearing behavior for
P13/4d-2 is clearly more complex, since failure is more
in the threshold between shear and bending failure as
expected by Henze (2019). The crack patterns after
diagonal cracks were formed are compared to the cut
out of the test specimen in Figure 16 (min. crack width
0.1 mm).

6 CONCLUSIONS

The following conclusions can be drawn from the
presented investigations on beams and slabs without
stirrups failing in shear.

Generally, NLFEM models for shear failure in RC
beams can be modeled by means of different mod-
elling aspects with good accordance to the test results.
The fracture energy had a high influence on the results
of the regarded FE-models. Measured values for the
fracture energy should be handled with care, since test-
ing procedures may induce an additional uncertainty
due to the difficult testing procedure. The combina-
tion of a rotated and fixed crack model with a factor
of FIX = 0.5 resulted in good accordance with the
beam tests, when a fracture energy according to MC10
(2013) and a relatively large FE size of 40 mm was
applied.

The transfer of modeling decisions for shear fail-
ure in beams to shear failure in slabs is possible with
limitations. Generally, the failure mechanisms in slabs
are more versatile and therefore it is more difficult to
achieve reliable NLFEM models. While the failure in
P3/4d-1 can be displayed well when modelling aspects
from beams are transferred, the load bearing behavior
of P13/4d-2 diverges more significantly and a fracture
energy according to MC10 (2013) with a fixed crack
model (FIX = 1.0) or a factor FIX = 0.7 delivers signif-
icantly better results compared to the before regarded
specimen.

The conducted numerical simulations demonstrate
that a software user should have an in-depth knowledge
of the software, especially the used material model.
Validation for each structural type and failure mode
(bending, shear, ..) is required. Material parameters
used in NLFEM should always be considered in rela-
tion to the basics of the material model. Values from

codes, like EC2 (2011) or MC10 (2013), may be better
than the values from material tests.
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ABSTRACT: Performance and lifetime assessment of new and existing concrete structures is a complex
multidisciplinary topic that has been developed and intensively discussed for many years. The non-linear finite
element analysis (NLFEA) can support significantly in this issue because NLFEA is used to develop safety
formats that allow to guaranty the safety demands of our society. The provisions associated with NLFEA in
codes enable a range of interpretation which values of material input parameters should be or must be used in
order to derive reliability-consistent design values of the structural resistance. The objectives of this contribution
are as follows: Non-linear analysis safety formats and deterministic equations for the derivation of the fracture
energy are examined and subsequently it is investigated how uncertainties in the input variables of the resistance
model and the different equations for the fracture energy affect the system responses and the design values of
the structural resistance.

1 INTRODUCTION

The assessment of the performance and reliability of
new and existing structures is a complex multidisci-
plinary topic and becomes more important due to aging
infrastructure buildings across Europe. This topic has
been discussed and developed for many years and
non-linear numerical modelling or non-linear finite
element analysis (NLFEA) can support in this issue.
There are different levels of numerical finite element
modelling – from linear to non-linear, from determin-
istic to probabilistic, from holistic system modelling
to detail modelling. This assessment of the reliability
and safety can be performed with different methods
and approaches, which represent the resistance side
with different accuracy, and differ in accounting for
the uncertainties.

NLFEA in praxis has become quite common and
a widely used tool in the design of new and in the
assessment of existing structures. In particular, these
methods are the basis of advanced safety assessment
methods like the ECOV method or the full probabilistic
reliability assessment methods, as proposed in the fib
Model Code 2010 (2013) and EN 1992 (CEN 2008)
and in literature by several authors (Castaldo et al.
2019; Červenka 2013; Strauss et al. 2018). Nonethe-
less, the NLFEA associated provisions in such codes
enable a more or less wide range of interpretation.
For instance, in some of the proposed procedures it
is not clearly defined which values of material input
parameters should be or must be used in order to

match the level of safety that exists in reality or to
derive reliability-consistent design values of the struc-
tural resistance. Since the input material parameters,
which are continuously adjusted during a non-linear
numerical analysis, have a significant influence on
the calculation results and in consequence on the
safety and reliability computed by e.g. classical and
advanced reliability-based methods, the objectives of
this contribution are as follows:

Non-linear analysis safety formats and the deter-
mination of the material parameters are examined
and subsequently investigated how uncertainties in
the input variables of the resistance model affect the
system responses, especially the influence of differ-
ent equations for the deterministic determination of
the fracture energy are a matter of interest. These
analyses are carried out on two critical details of rein-
forced concrete structures for which size effects and
second-dependent effects are dominant.

2 SAFETY FORMATS IN FIB MODEL CODE
2010 (MC2010)

In fib Model Code 2010 (2013) the design principles
for the analysis and assessment of non-linear analysis
is based on the global resistance design method and
the design condition can be written as

Fd ≤Rd , with Rd = Rm

γR · γRd
, (1)
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where Fd is the design value of external actions, Rd is
the design value of the structural load bearing capacity,
Rm is the mean value of the structural load bearing
capacity, γR is the global resistance factor and γRD is
the model uncertainty factor.

There are three different methods proposed in fib
Model Code 2010 (2013) how to derive the design
structural resistance Rd

(1) the probabilistic method for a required reliability
index β

(2) global resistance methods
(3) partial safety factor method.

In this document only the global resistance methods
and the partial safety factor method will be discussed
and presented in more detail, as they were applied to
the case studies.

2.1 Global resistance methods

Global resistance methods and safety formats were ini-
tiated by the increasing use of non-linear analysis for
safety assessment since it is based on a global struc-
tural model.The uncertainties in these types of formats
are described on the level of structural resistance (fib
2013).As these methods use a more general and global
approach than the partial factor method, it is more sim-
ilar to the probabilistic safety concept. To derive the
design resistance Rd using a global resistance approach
the design resistance computed with a NLFEA with
chosen representative values frep is divided by a global
safety factor γ ∗R . (Castaldo et al. 2019; fib 2013)

The global safety factor γ ∗R is accounting for both
the uncertainties of the materials γR and the model
formulation γRD. The uncertainties related to the ran-
domness of the model parameters especially of mate-
rial properties (aleatory uncertainties) are accounted
for using the global resistance factor γR (Castaldo et
al. 2019; fib 2013). To account for uncertainties due
to the model formulation, a separate safety factor for
model uncertainty γRD needs to be applied. Typical
values for the model uncertainty can be found in fib
Model Code 2010 (2013).The global design resistance
can be derived as follows:

Rd = R
(
frep,....

)

γR · γRd
. (2)

In fib Model Code 2010 (2013) there are two alter-
native safety formats proposed: the method of estimat-
ing a coefficient of variation of the resistance (ECOV
method) and the global resistance factor method.

2.1.1 Global resistance factor method
For the calculation according to the global resistance
factor method (GRF), mean values shall be used for the
material properties for the NLFEA (fib 2013). Equa-
tion 3 and equation 4 are used to determine the mean
values for concrete and reinforcing steel, respectively,
where fck and fyk are the corresponding characteristic
material parameters. The mean compressive strength

of the concrete as well as all resulting parameters are
assumed to be 85% of the characteristic values, the
mean value of the tensile strength of the reinforcing
steel is assumed to be 110% of the corresponding
characteristic value.

fcm, GRF = 0.85 · fck (3)

fym,GRF = 1.1 · fyk (4)

The global safety factor γ ∗R is calculated from the
product of the model uncertainty factor γRD= 1.06
and the global resistance safety factor or partial factor
for resistance γR= 1.20 and results in γ ∗R = 1.27 (fib
2013; Hendriks et al. 2017). It should be noted that
the ratio 1.27/0.85 corresponds to the partial factor for
resistance for concrete with 1.5 and the ratio 1.27/1.1
corresponds to the partial factor for steel with 1.15
(Castaldo et al., 2019; Hendriks et al. 2017).

2.1.2 Method of estimation of coefficient of
variation of resistance (ECoV)

Using the ECoV method (Červenka 2013) the safety
factor for material uncertainties (the global safety
factor) can be estimated assuming a log-normal distri-
bution for the load bearing capacity of the resistance
structure according to Eq. (4):

γR= eαr ·β·VR , (5)

where α R is the FORM sensitivity factor, β the relia-
bility index and VR is the coefficient of variation (CoV)
of the resistance side. For ultimate limit states, a tar-
get lifetime of 50 years and moderate consequences
of failure the values αR= 0.8 and β = 3.8 are to be
used according to Schneider and Schlatter (1994), EN
1990:2002 (CEN, 2013) and fib Model Code 2010
(2013). Using this approach just two simulations of
NLFEA are needed and CoV can be calculated, assum-
ing the resistance follows a log-normal distribution, by
the means of two nonlinear models:

VR= 1

1.65
ln ·

(
Rm

Rk

)
, (6)

where Rm and Rk are the structural resistance deter-
mined by performing an NLFEA with mean values
and with characteristic values of the input random
variables, respectively (Červenka 2013). Taking into
account the model uncertainty γRD= 1.06, accord-
ing to MC2010 (2013), the design resistance can be
derived, according to Equation (1).

2.2 Partial safety factor method

Using the partial factor method (PFM) according to
(fib, 2013), the design resistance Rd is determined by
means of a single non-linear FE analysis (NLFEA),
where the material parameters are selected with the
design values of the material resistances fd . By divid-
ing the design resistance RNLFEA(fd ) obtained from
this NLFEA by the safety factor accounting for model
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uncertainties γRD, the design resistance Rd is estimated
(Castaldo et al. 2019; fib 2013). However, it should be
mentioned that the use of design values of the mate-
rial properties when performing an NLFEA can lead
to an incorrect assessment of the structural load bear-
ing capacity, especially in the case of slender columns
(Allaix et al. 2013; CEB 1995).

3 FRACTURE ENERGY

To realistically describe the non-linear behavior of
concrete structure, the non-linear effects of the con-
crete material properties need to be considered
(Červenka 2013; Slowik et al. 2021; Sucharda 2020).
According to Zimmermann et al. (2014) the non-linear
material properties of concrete can be characterized by
its variable modulus of elasticity (Youngs Module) Ec,
its tensile strength ft and its specific fracture energy
Gf as well as the material and geometric uncertainties
(i.e. aleatory uncertainties).

As stated in the introduction, one key parameter for
reliable non-linear modelling is the fracture energy
GF and its stochastic parameters and it has been a
research subject for various authors (Bažant & Becq-
Giraudon 2002; Bažant & Planas 2019; Červenka
2013; Sucharda 2020). The fib Model Code 2010
(2013) defines the specific fracture energy of concrete
Gf as the energy that is required to propagate a tensile
crack of unit area.The fracture energy Gf is defined by
Bažant and Becq-Giraudon (2002) as the area under
the complete stress-separation curve of the cohesive
crack model and it can be obtained by dividing the
area under the measured load-deflection curve by
the ligament area using the work-of-fracture method.
(Bažant & Becq-Giraudon 2002; Bažant & Planas
2019; Hillerborg 1985; Zimmermann et al. 2014).

In fib Model Code 2010 (2013) and in publications
(Czernuschka et al. 2018; Zimmermann et al. 2014)
it is suggested that the determination of the fracture
parameters should be done by related tests, e.g. the
uniaxial tension test, the three-point bending test, the
wedge-splitting test, the Brazilian splitting test or the
compact tension test.

In the absence of experimental data there are sev-
eral different deterministic equations in publications
(CEB-FIP 1993; CEB-FIP 2008; fib 2013; Marí et
al. 2015; Vos 1983) to estimate the fracture energy
for ordinary concretes of normal weight. The differ-
ent deterministic equations to determine the fracture
energy used for the NLFEA as input parameter leaves
a wide range of uncertainty for the designer of the
non-linear finite element model (NLFEM). Especially
in structures where the failure mode is shear failure,
as in the case studies presented later in this contri-
bution, the choice of fracture energy can lead to an
over- and underestimation regarding the assessment
of the maximal load bearing capacity and the safety
level of the structure. Figure 1 shows the relation of
fracture energy of concrete versus the characteristic
compressive strength for Equations 7–10.

Figure 1. Fracture energy of concrete versus character-
istic compressive strength – comparison of deterministic
equations (7–10).

3.1 Formulation VOS/EC2/ATENA-GID

The NLFEAs presented in this paper are performed
in ATENA Studio and ATENA-GID (Červenka et al.
2013). When generating concrete material proper-
ties using the EC2 code generator implanted within
ATENA-GID software (Červenka et al. 2013), the fol-
lowing equation is used to derive the fracture energy
from the tensile strength fct (Sucharda 2020).

Gf = 25fct . (7)

The formulation is based on the relationship accord-
ing toVos (1983) and Červenka et al. (2013) and results
in much lower values for the fracture energy (see Fig-
ure 1) compared to fib Model Code 2010 (2013) or
compared to the proposed formulation in the draft for
fib Model Code 2020 (2022).

3.2 Formulation in CEB-FIP Model Code 1990
(MC90)

The following deterministic equation is recommended
in CEB-FIP Model Code 1990 (1993) in the absence
of experimental data:

Gf =GF0

(
fcm

fcmo

)0.7

, (8)

where fcmo = 10 MPa and GF0is the base value of the
fracture energy that depends on the maximum aggre-
gate size dmax (see Table 1). According to CEB-FIP
Model Code 1990 (1993) the equation does not take
into account the size of structural members and other
concrete properties resulting in deviations of ± 30%.
This equation (8) also shows a too pronounced effect
of the compressive strength on the fracture energy
Gf when compared to experimental data (CEB-FIP
2008).
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Table 1. Base values of fracture energy GF0.

dmax [mm] 8 16 32

GFo [N/mm] 0.025 0.03 0.058

3.3 Formulation in fib Model Code 2010 (MC2010)

In absence of experimental data, fib Model Code
2010 (2013) following deterministic equation for nor-
mal weight concrete is given to estimate the value of
the fracture energy Gf from the mean compressive
strength fcm:

Gf = 73f 0.18
cm . (9)

A similar formulation has already been mentioned
in fib Bulletin 42 (CEB-FIP 2008), where the under-
estimation of the value of the fracture energy using
Eq. 8 for low-strength concretes and the overestima-
tion of the fracture energy for high-strength concretes
is shown.

3.4 Formulation in fib Model Code 2020 (MC2020)

In the proposal for fib Model Code 2020 (2022) the
formulation for the deterministic determination for the
estimation of the value for the fracture energy is mod-
ified in comparison to fib Model Code 2010 (2013).
The equation is based on the characteristic compres-
sive strength fck in contrary to the mean compressive
strength fcm in equation (9). This formulation results in
slightly lower values for the fracture energy Gf for con-
crete with a characteristic strength lower than 18 MPa,
and slightly higher values for a compressive strength
between 20 to 100 MPa (see Figure 1).

GF = 85f 0.15
ck . (10)

4 CASE STUDIES AND METHOLOGY

In order to show the impact of the safety formats
and the choice of material parameters in the appli-
cations of these on assessment of the load bear-
ing capacity and subsequently on the safety level
and the reliability index, two different structures are
selected. These structures were investigated within
European INTERREG AUSTRIA-CZECH REPUB-
LIC "ATCZ190 SAFEBRIDGE" project. The project
focused on advanced numerical analysis of existing
bridges and their safety formats. In particular, this
paper presents an in-situ produced reinforced concrete
bridge in Austria and a fictive reinforced T-beam both
failing in shear:

(a) reinforced concrete bridge (detail v2-1): detailed
model of a reinforced T-beam concrete bridge

(b) set 8: a simple reinforced T-beam

For both case studies the same methodology has
been applied. To study the influence of the determin-
istic equations of the fracture energy on the assess-
ment of structures, NLFEMs for the 4 formulations
described in Section 3 have been created. For the
computation of the parameters for Model Code 90
(CEB-FIP,1993) the maximum aggregate size was
assumed with dmax = 8 mm resulting in a base value
of the fracture energy GF0= 0.03 N/mm.

This approach has been applied for the three safety
formats briefly presented in Section 2. As mentioned
in the introduction, in the proposed procedures and
safety formats it is not clearly defined which values
of material input parameters should be or must be
used in order to derive reliability-consistent design val-
ues of the structural resistance. There is more or less
conflicting information and guidelines, which input
parameters need to be changed for a specific safety
format and how to derive these values (Belletti et al.,
2011, Belletti et al., 2017, fib, 2013, Hendriks et al.,
2017). In order to take into account the scope of inter-
pretation left by the codes, the ECoV method and the
PFM is computed with 2 variants of input parameters
of the material properties and the GRF method with 3
variants, resulting in 8 NLFEM per code and 27 design
values Rd for the structural resistance per case study.

4.1 Reinforced concrecte bridge

The first investigations focused on the Freudenauer
Hafenbrücke B0209 with a span length of 352.6 m
and a width of 15 m. The bridge was built in the years
1957/1958. The superstructure of the bridge relevant
to the analysis and discussed in this paper is a four-
span, four-girder T-beam bridge with cross girders at
the abutments and in the center of the span. The anal-
ysed section has a total length of 105.25 m and a span
length of 26.20 m. The width is about 15.50 m and
the width for traffic lanes is 12 meters. The bridge
structure was designed for the load models accord-
ing to the standards at the time of the construction
(Ing. Mayreder et al., 1957) and the structure was also
recalculated in 1984 according to relevant standards
of the time (Fritsch and Chiari, 1984). As part of the
research Project ATCZ190 SAFEBRIDGE, the bridge
was recalculated to modern load models according to
Eurocode (CEN 2010) with the relevant traffic load
model LM 1. With a span of 12 m, the bridge is
designed to accommodate four traffic lanes (Sattler
et al. 2022).

An initial linear FE assessment has been performed
for the whole bridge structure using SOFiSTiK soft-
ware (SOFiSTiK 2020). The goal of the linear assess-
ment was to find the areas of the structures with the
highest bending moments and highest shear forces - the
areas that are likely to cause failure of the structure -
and the corresponding load cases (Sattler et al. 2022).

The non-linear finite element analyses are per-
formed in ATENA Studio developed by Cervenka
Consulting (Červenka et al. 2013). In the NLFEM,
only the edge beam is modelled as shown in Figure 2.
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This model is a cut-out of the bridge including parts of
field one, support G, and parts of field two. These are
the parts of the edge beam with the highest bending
moments and highest shear forces and the areas where
the verification of for shear force capacity according
to Eurocode 2 (CEN 2004) in the initial linear assess-
ment could not be achieved.The beginning and the end
of the detail model are respectively the points of the
zero crossing of the bending moment, i.e., the points
where the curvature of the deformation line changes
(Sattler et al. 2022).

A preliminary study comparing the edge beam
model presented here with larger mode in the trans-
verse directions and comparing it to different load
cases showed that the model presented here has the
same failure mechanism and achieves similar ultimate
loads (Sattler & Strauss 2022). Due to the reduced
size of the model, the calculation time is significantly
reduced modelling just the edge beam. The cross sec-
tion for the NLFEM is created as a three-dimensional
system using volumes/brick elements (Sattler et al.
2022).

Figure 2. Generated mesh and the cross section of model
v2-1.

The generated mesh for the NELFM consists of
15,422 hexahedral finite elements shown in Figure
2. The concrete type B300 is modelled using the
advanced material model CC3DNonLinCementious2
in ATENA-GID (Červenka et al. 2013, Strauss et al.
2018).The longitudinal reinforcement of the beam and
the slab as well as the stirrup reinforcement is modelled
as discrete 1D reinforcement according to the original
drawings. To reduce the model size and increase the
computation time, the transverse reinforcement of the
slab is modeled as smeared reinforcement (Sattler et al.
2022).

As shown in Figure 3, the loading has been applied
stepwise to the yellow, pink, blue and green colored
areas, whereas the loads are applied uneven in order
to take into account the different length on the left
and right side of the support, respectively. To take
into the load model LM1 according to EN 1991 (CEN
2010), configuration of the different traffic lanes, the
loads are applied uneven in transverse direction, also
shown in Figure 3 (bottom). Regions of 10 to 20 cm
of linear elastic materials at the areas of the boundary
conditions and the loading have been applied to avoid
unrealistic non-linear effects resulting from singulari-
ties, see Figure 3 (top). The horizontal displacements
are restricted along the concrete slab as well as along
the crossbeam at the level of the support in order to
simulate the subsequent parts of the remaining bridge.

To prevent tipping and instability a boundary condition
hindering the vertical and longitudinal displacement at
the bottom area of the support has been applied (Sattler
et al. 2022).

Figure 3. Boundary conditions of model v2-1 (top), load
configuration and application to account for eccentricity
(bottom).

The material parameters from the bridge’s origi-
nal design – concrete B300 and reinforcement steel,
type Torstahl 40 (RT40) were transformed to mean
values according to the applied codes (ASI 2018; CEB-
FIP 1993; fib 2013; fib 2022). For the stochastic and
semi-probabilistic evaluation, 6 random variables were
chosen for the concrete B300 and 2 random vari-
ables for the reinforcement RT40 and these are as
follows:Young’s modulus of concrete Ec, compressive
strength of concrete fc, tensile strength of concrete fct ,
fracture energy Gf , Plastic Strain and Onset of crush-
ing, Young’s modulus of reinforcement Ey and yield
strength fy. The mean values for the concrete corre-
sponding to the code formulation are displayed inTable
2 (Sattler et al. 2022).

The random variables for the NLFEA using char-
acteristic material parameters for ECoV format, mean
material parameters for the GRF format and design
material parameters for the PFM as input variables
were derived according to different interpretations of
proposals in the literature (Belletti et al., 2011, 2017;
fib 2013; Hendriks et al. 2017). The input values of
concrete for the corresponding NLFEM are displayed
in Table 2. For the fracture energy Gf , the formulations
according to Section 2 were used.

4.1.1 Results
For the non-linear finite element models, the design
values of resistance Rd are determined under the
assumption of a log-normal distribution with the target
reliability factor βULS = 3.8 and the FORM sensitivity
factor αR set equal to 0.8. To account for model uncer-
tainties, the design values are reduced by the model
uncertainty factor γRd = 1.06, as recommended in EN
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Table 2. Material parameters for concrete B300 for the different safety formats used for the semi-probabilistic assessments.

Model Code 1990, Model Code 2010, Model Code 2020

mean characteristic characteristic 2
unit values (k) (k2) GRF GRF2 GRF3 PFM PFM2

Ec N/mm2 29488 29488 26056 29488 24682 25065 29488 22762
fcs N/mm2 25.8 17.8 17.8 15.13 15.13 15.13 11.87 11.87
ft N/mm2 2.045 1.432 1.432 1.217 1.111 1.217 0.954 0.954
Gf (MC90) N/m 58.24 44.92 44.92 38.18 40.09 38.18 33.82 33.82
Gf (MC2010) N/m 131.04 122.57 122.57 104.19 119.04 104.19 113.95 113.95
Gf (MC2020) N/m 130.91 130.91 130.91 111.28 114.13 111.28 130.91 130.91

Eurocode 2

unit mean values characteristic (k) characteristic 2 (k2) GRF GRF2 GRF3 PFM PFM2

Ec N/mm2 29200 29200 26056 29200 24682 24820 29200 23159
fc N/mm2 25.8 17.8 17.8 15.13 15.13 15.13 11.87 11.87
ft N/mm2 2.045 1.432 1.432 1.217 1.111 1.217 0.954 0.954
Gf (VOS) N/m 51.13 35.79 35.79 30.42 27.78 30.42 23.86 23.86

1992-2 (CEN 2008) and in line with the proposals of
the fib Model Code 2010 (2013). The maximum load
capacity was selected for each NLFEM by means of
a chosen failure criterion with respect to the delta of
the displacement from one calculation step to the next
calculation step. Figure 4 shows an example of the
load versus delta-displacement curves of the NLFEAs
performed with mean material parameters (see Table
2). Please note that the reference to the specific code
refers to the corresponding formulation of the frac-
ture energy, where EC2 corresponds to the formulation
according to VOS (1983). In this plot it can be clearly
seen that the different formulations of the fracture
energy have an influence on the maximum load bearing
capacity of the structure.

The design values for the resistance Rd have been
determined using the ECoV approach, the global resis-
tance factor method (GRF) and the partial factor
method (PFM) as described in Section 2.

Figure 4. Load versus delta of the displacement curves of
model v2-1 with mean material parameters.

The mean value of the results of the design value
Rd , the derived mean value Rm as well as the CoV and
the global resistance factor safety factor γR are shown
in Table 3 grouped by the applied code for determining
the value of the fracture energy. In Figure 5 the derived
design values Rd (Figure 5 left) and the CoV (Figure 5
right) of the design values are displayed as a bar chart.
For the sake of comparison, the mean design value of
all derived design values and the corresponding CoV
is also displayed. The design values obtained using the
draft of fib Model Code 2020 (2022) lead to the highest
design loads and are roughly 16% higher compared to
the values obtained from EC2 input parameters. How-
ever, compared to the formulations of Model Code
2010 (2013), the difference with just 2% is negligible.
Figure 6 shows the obtained design load of model v2-
1 in relation to the input value of the fracture energy,
again grouped by the 4 different codes as scatter plot.
One can see that there is a correlation between the
value of fracture energy and the corresponding design
load.

Table 3. Derived design value Rd , mean value Rm and CoV
of the resistance R for model v2-1 grouped by applied code.

Model v2-1

Rd Rm CoV γR γrd
Code [kNm] [kNm] [-] [-] [-]

MC 90 10692 14762 0.076 1.13 1.06
MC 2010 11308 14856 0.064 1.11 1.06
MC 2020 11560 16443 0.084 1.16 1.06
EC2 9975 12730 0.056 1.09 1.06
mean of
all NLFEA 10884 15786 0.089 1.17 1.06

684



Figure 5. Bar chart of the derived design values for model v2-1(left), derived CoV for the design values of model v2-1 (right).

Figure 6. Scatter plot model v2-1: derived design values Rd
versus fracture energy Gf .

Figure 7. Scatter plot model v2-1: maximum load capacity
versus fracture energy using GRF input parameters.

The calculation of the correlation coefficient ρ
delivers a value of ρ= 0.6236. However, there are 4
NLFEM simulations that do not correspond to that

trend. An overestimation compared to the expected
design load Rd for a certain value of fracture energy
Gf occurs for variants MC90-GRF and MC90-GRF3
(north-west side of the plot) and an underestimation
occurs for variant MC2010-PFM and MC2020-PFM
(south-east side of the plot).

Figure 7 shows the ultimate loads derived from
the modelled variants of the Global Resistance Fac-
tor Method (GRF1-3) with mean material parameters
(see Table 2) as input variables. They are grouped by
specific markers regarding the used code and differ-
entiated by color regarding the used variant (GRF1-3).
A notable change in the maximum load capacity can
only be determined for the variants of Model Code
1990 (diamond marker) and EC2 (+ Marker).

4.2 T-beam set 8

In the context of the ATCZ project, an analysis was
carried out to determine the optimum between com-
putation time and computational accuracy of a specific
non-linear finite element model. This study was per-
formed on a structural system with similar geometry
and reinforcement layout as detail v2-1, i.e. based on
the detail of the Freudenauer harbor bridge. Thirteen
sets of mesh sizes and reinforcement layouts were
modelled and the resulting crack widths and crack
developments, steel stresses and reaction forces were
calculated and analyzed. In general, a distinction was
made between two mesh sizes, two variants of beam
geometry and 1-span beams and 2-span beams. The
T-beam described in this section (set 8) is a result of
this NLFEA study and Figure 8 shows the dimensions
of the modelled T-beam and the position of the loading
force. For set 8 a fictitious load position was selected
and applied as point-like displacement to the system.
The loading force is distributed via a 60× 60× 15 mm
steel plate (Figure 8). A solid Elastic 3D material
model implanted within ATENA-GID (Červenka et
al. 2013) using a Young Modulus of 2*105 MPa was
utilized for the plate. The NLFEM consists of 19,650
elements of hexahedra type, whereby the ratio between
edge sizes of a single element never exceeds 3:1. For
general numerical stability and for mesh compatibility
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Figure 8. Geometry and loading configuration of set8, dimensions in [cm].

Table 4. Material parameters for concrete C30/37 for the different safety formats used for the semi-probabilistic assessments.

Model Code 1990, Model Code 2010, Model Code 2020

mean characteristic characteristic 2
unit values (k) (k2) GRF GRF2 GRF3 PFM PFM2

Ec N/mm2 33551 33551 31008 33551 29373 28518 33551 27088
fcs N/mm2 38 30 30 25.50 25.50 25.50 20 20
ft N/mm2 2.896 2.028 2.028 1.723 2.022 1.723 1.35 1.35
Gf (MC90) N/m 76.38 64.73 64.73 55.02 57.77 55.02 48.74 48.74
Gf (MC2010) N/m 140.50 134.65 134.65 114.45 130.77 114.45 125.17 125.17
Gf (MC2020) N/m 141.58 141.58 141.58 120.34 130.58 120.34 141.58 141.58

Eurocode 2

mean characteristic characteristic 2
unit values (k) (k2) GRF GRF2 GRF3 PFM PFM2

Ec N/mm2 32837 32837 30589 32837 29133 27911 32837 27085
fc N/mm2 38 30 30 25.50 25.50 25.50 20 20
ft N/mm2 2.896 2.028 2.028 1.723 2.022 1.723 1.35 1.35
Gf (VOS/EC2) N/m 72.41 50.69 50.69 43.09 50.55 43.09 33.79 33.79

between two connected volumes, brick elements were
used (Sattler et al., 2022).

Moreover, brick elements allow an easy defini-
tion and application of a structured mesh using hex-
ahedral elements. The concrete of the beam type
C30/37 is modelled using the advanced material
model CC3DNonLinCementious2 in ATENA-GID
(Červenka et al. 2013; Strauss et al. 2018). The longi-
tudinal reinforcement and the stirrup reinforcement
is modelled as discrete 1D reinforcement material,
the reinforcement in the slab is modelled as smeared
reinforcement (Červenka et al. 2013).

4.2.1 Results
The maximum load capacity was obtained for each
NLFEM, Figure 9 shows an example of the load ver-
sus displacement curves of the NFLEMs obtained
with mean values for material parameters. Please note
that the reference to the specific code refers to the
corresponding formulation of the fracture energy.

As described in section 4.1.1, the design values
of resistance Rd of the performed NLFEM are deter-
mined under the assumption of a log-normal distribu-
tion with the target reliability factor βULS = 3.8 and
with αR set equal to 0.8. To account for model uncer-
tainties the design values are reduced by the model
uncertainty factor γRd = 1.06. The design values were

obtained using the safety formats described in sec-
tion 2. Figure 10 shows the derived mean design values
Rd (Figure 10 left) as well as the CoV (Figure 10
right) of the design values for the corresponding code
as bar chart. For comparison the mean design value
and CoV of all four codes is also displayed. One can
see that the differences between the design values Rd
of MC2020 and MC2010 are negligible (1.5%), but

Figure 9. Load versus displacement curves for set 8 using
mean material parameters
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Figure 10. Bar chart of the derived design values for set 8 (left), derived CoV for the design values of set 8 (right).

the differences compared to MC90 and EC2 are 32%
and 43% respectively. This results in a high coeffi-
cient of variation (CoV) for the mean of all design
values. Figure 11 shows the obtained design values of
the structural resistance to the corresponding value of
fracture energy used in the NLFEA. In comparison to
Figure 6 the correlation between the two values Rd and
Gf is more pronounced and the correlation coefficient
ρ= 0.9329 can be computed. Figure 12 displays the
ultimate loads derived from the 3 modelled variants of
the Global Resistance Factor Method (GRF1-3) with
mean material parameters as input variables.

Figure 11. Scatter plot set 8: derived design values Rd
versus fracture energy Gf .

Table 5. Derived design value Rd , mean value Rm and CoV
of the resistance R for model set 8 grouped by applied code.

set 8

Rd Rm CoV γR γrd
Code [kN] [kN] [-] [-] [-]

MC 90 1425 2077 0.090 1.24 1.06
MC 2010 1856 2524 0.073 1.20 1.06
MC 2020 1882 2591 0.076 1.20 1.06
EC2 1311 1614 0.045 1.14 1.06
mean of
all NLFEA 1619 3658 0.175 1.61 1.06

Figure 12. Scatter plot set 8: maximum load capacity versus
fracture energy using GRF input parameters.

They are grouped by specific markers regarding the
used code and differentiated by color regarding the
used variant (GRF1-3). Please note that the same eval-
uations were performed for the other safety formats but
are not presented due to space limitations.

5 CONCLUSIONS

On the basis of the results of the two case studies
presented in Section 4, it can be concluded that the
deterministic formulations for the fracture energy (7-
8) according to VOS/EC2 (1983) and according to
fib Model Code 1990 (CEB-FIP, 1993) lead to sim-
ilar design values Rd . On the other hand, the NLFEM
with these two formulations of the fracture energy
(7-8) leads to significantly lower design values of
the resistance side compared to the formulations (9–
10) according to fib Model Code 2010 (2013) and
fib Model Code 2020 (2022), respectively. Conse-
quently, the safety index Beta and the safety margin
also increase with these newer deterministic equa-
tions. Furthermore, the analyses show that with the
new formulations of the fracture energy, the CoV also
increases.
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Further literature research and calculations are
needed to show the influence of fracture energy on dif-
ferent structures and to give a recommendation for the
choice of the deterministic fracture energy equation.
It is necessary to investigate which of the determinis-
tic fracture energy equations are compatible with the
models implemented in the NLFEA to best reproduce
the results compared to laboratory experiments. Nev-
ertheless, it would be necessary for users to include
clear formulations in this regard in future codes.
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ABSTRACT: Probabilistic analysis is best suited to cover a wide range of concrete and steel properties including
corrosion effects and its influence on structural behaviour. If a reduction of the computational time to calculate
sufficient samples is needed, a use of submodels might be very useful. The general idea is to compute very
accurately only a relatively small section that is of interest to capture the nonlinear steel properties including any
localized corrosion and its bond with the concrete. The rest of the structure is considered either with simple FE
elements or with an analytical solution. The procedure was verified by large-scale tests on cantilever walls with
artificially induced corrosion and with a conventional nonlinear FE analysis. The presented method combines
the advantages of a detailed and complex nonlinear FE analysis with the applicability and performance of an
analytical solution or simple FE calculation. The advantages, accuracy and limitations of the method are broadly
discussed, and the field of application is described.

1 MOTIVATION

Although nonlinear modeling of a reinforced concrete
has become state-of-the-art, managed by most of FE
software, it is still a time-consuming process. A major
problem is that the obtained results are highly depen-
dent on the assumed material parameters. With careful
model updating or material testing, it is possible to
obtain correct parameters that lead to a satisfactory
result. In the case of corrosion modeling of reinforce-
ment bars, which was a main topic of the presented
studies, there is yet another uncertainty in the estima-
tion or prediction. Therefore, it is important to acquire
the full range of possible solutions in order to obtain
the reliability and the possible structural behavior. In
such a case, probabilistic analysis is best suited to cover
a wide range of concrete and steel properties includ-
ing corrosion effects and its influence on structural
behavior. Reduction of the computational time needed
to calculate a sufficient number of samples is achieved
by using submodels which are described in detail.

2 METHODOLOGY

2.1 Submodeling technique

If only a few parts of a structure require detailed anal-
ysis whereas the rest could be greatly simplified, it
is a common practice in the FE computation to use a
submodel. It can be divided into two categories: one

where a general behavior is independent on the local
stress – strain correlation and second where the local
behavior is crucial for the global deformation state.
The first one is frequently used for example in fatigue
assessment of weld joints, where the stress level at
given point can be obtained with a detailed model
by applying the deformation resulting from a coarse
model of the whole structure as a boundary condition
(FKM-Richtlinie 2020). The latter, which is in focus
of this paper, works the other way around. Firstly, a
very precise model of a small detail is created, from
which the dependency between force and deformation
or bending moment and rotation is extracted. Once it is
done, it can be simplified as nonlinear spring element
or described with an analytical equation and used for
assessing the behavior of the whole structure.

2.2 Detailed model and parameters

Presented study focuses on the pitting corrosion of
reinforcing bars in RC-structures and its influence on
the deflection and inclination changes of the structure.
The submodel consists of concrete, reinforcing bars
and nonlinear springs representing the bond connec-
tion (Figure 1). Material properties of concrete, steel
and bond were distributed using values taken from
the model code (fib model code 2010). The corrosion
itself was included by decreasing of the cross section
over the chosen length and by reducing the bond to the
concrete according to (Bhargava 2007).
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Figure 1. Submodel consisting of reinforcing bars and
concrete.

Corrosion extend was also a probabilistic parame-
ter, with separately generated values for each bar. It
was an important issue, as it is in compliance with
repeated observations during the inspections of the
corroded structures, mostly retaining walls and with
validation tests in the lab. It was noticed, that corro-
sion ratio often varies strongly within a single element
which leads to strongly corroded bars neighboring
almost healthy ones. Providing accurate corrosion dis-
tributions was definitely a difficult and uncertain task.
An example of 500 generated samples is shown on
Figure 2.The average values were based on inspections
data (Vollenweider 2014) where also the indication on
the distribution could be found.

Figure 2. Range of ccorrosion rates of reinforcement bars

The assumption of an existing crack where a cor-
rosion damage can occur was made. An example of a
detail is shown on Figure 1. Submodel is cut from a
tension side of the wall having the dimension of one
meter length and a thickness equals double of the con-
crete cover. Height was chosen as anchor length in each
direction starting from the induced crack. An appro-
priate number of bars was included and fixed with the

concrete in transversal directions, whereas in longitu-
dinal a nonlinear springs representing bond were used.
Reduction of bond and bar cross section was under-
taken only at the given corrosion length, whereas the
rest was considered healthy.

Averaged length change for calculating the spring
characteristic of all corroded reinforcing bars was
determined with equation 1:

�lm=
∑n

i εi

n
∗ lk (1)

where �lm=Averaged length change of bars; εi=
strain of single reinforcement bar in corroded section;
n = bar amount and lk = notch length.

3 VALIDATION

The simulation procedure, chosen material parameters
and their distributions were carefully validated using
full-scale tests and conventional FE analysis. The lat-
ter was also compared to the test results. Detailed
information about the test procedure and results are
described (Rebhan 2020).

3.1 Test setup

The corrosion of the reinforcement bars in the zone
of the construction joint between the foundation and
the wall segment was measured on several test spec-
imens. For this purpose, U-shaped test specimens
(Figure 3) were made of reinforced concrete. The test
planning, test layout and execution were accompanied
by numerical calculation models.

Figure 3. Geometry of a retaining test wall; bars subjected
to corrosion marked in red.
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The more massive of the two vertical legs was used
as an abutment for the load application, the second
(thinner) one formed the vertical wall leg of an angle
retaining wall. The horizontal foundation bar of the
structure served on the one hand as a force short-circuit
between the two vertical segments, and on the other
hand as a foundation. This was necessary to represent
not only the vertical wall but also the connection area
to the foundation and thus the area of the construc-
tion joint. The stressing of the structure was achieved
by a concentrated load at the head, resulting in a lin-
ear moment load (earth pressure on an angle retaining
wall) that increases towards the bottom.

By using the process of electrochemical erosion,
it is possible to reproduce artificial corrosion in the
form of cross-section reduction. The process of elec-
trochemical ablation makes it possible to achieve a
continuous reduction in diameter. On the one hand,
this can be achieved by arranging a continuous cath-
ode for the corrosion of all bars; on the other hand, local
cathodes can also be used to weaken only individual
reinforcing bars.

3.2 Comparison between test results and
conventional FE method

The design of the test geometry and its execution was
accompanied by nonlinear numerical simulations. The
computations were a very helpful tool for a success-
ful test program but could not obtain the exact values
that were than measured during corrosion and ultimate
loading process even if some of the material param-
eters were known beforehand. The agreement could
be achieved by a model update once the measurement
was fully analyzed (Figure 4).

Figure 4. Comparison of the force – inclination diagrams
showing test results (orange) and full FE simulations (blue).

This leads to an obvious conclusion that even very
sophisticated analysis does not ensure obtaining accu-
rate results while using a deterministic approach. In
most cases it is thus more useful to make probabilis-
tic analysis and be able to work with probabilities of

obtaining certain values and with a range of possi-
ble solutions. This is true even if some simplifications
must be done in order to reduce the computational
effort.

3.3 Comparison with the deterministic solution

One of the test scenarios described in 3.1 was, that
a wall with around 50% corrosion ratio of reinforce-
ment was subjected to an additional load until the bars
plastified and fracture. Resulting inclination was mea-
sured and after substruction of the part resulting from
elastic wall movement an increase due to corrosion
was estimated.These values are marked in the Figure 5
with dots, showing the increase of force with 2kN step,
starting with 36kN until the ultimate force of 44kN.
Solid lines with the same colors represent the solution
based on FE submodel and analytical rigid body rota-
tion. Although a perfect match could not be reached,
the method can be evaluated as thoroughly satisfactory.
It is also to be noted, that the corrosion level obtained
in the lab was measured manually which might lead to
minor uncertainty.

Figure 5. Comparison of a corrosion dependent inclination
between test (dots) and mixed FE and analytical solution.

3.4 Comparison with a probabilistic study

The main advantage of using submodels was a simplic-
ity and quickness of performing probabilistic analysis.
To verify its accuracy, it was confronted with the results
of all five test wall setups. It is visualized on Fig-
ure 6 with solid lines showing test results and each
dot representing generated sample.

To compare different wall configurations the dia-
gram was generated using force to the wall collapse
on the vertical axis. It results from the substruction of
the current force from the ultimate force and therefore
must always be negative. It was introduced to repre-
sent the remaining capacity of a retaining wall and
is used in further assessment of existing and generic
walls described in 4.1. Horizontal axis represents a
corrosion caused increase of inclination on the top of
the wall.
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Figure 6. Comparison of a corrosion dependent inclination
between five tests (solid lines) and mixed FE and analytical
solution.

By generating over 10,000 samples with differ-
ent material properties and corrosion extend a wide
range of results was calculated. Test results seam to
behave slightly more ductile in comparison to the
computation, but a match was satisfactory.

4 CASE STUDIES

A nonlinear probabilistic analysis was carried out for
two different tasks, both of which should estimate the
influence of the corrosion on the deformation of the
structure. One was a broad population of retaining
walls with varying thickness and reinforcement ratio
being subjected to a pitting corrosion located at the
construction joint. The other was a rail bridge with a
corrosion problem in the mid span. Exactly the same
procedure to divide the calculations into two parts
could be used: detailed submodel and a simplified
evaluation of the whole structure.

4.1 Retaining walls

The most common location of the corrosion problems
of the retaining walls is clearly defined as the con-
struction joint. Thus, it can be solely modeled with
a detailed submodel, whereas the rest of the wall is
considered as rigid body with induced rotation over
the construction joint. It must be stated that only an
increase of deformation due to corrosion is of inter-
est, so the elastic load-dependent deformation was not
calculated. No additional cracks ware expected, as the
load (earth pressure) remains constant and introduc-
ing a week section amplified the existing crack at this
point.

For each wall configuration a submodel was created
and for each sample a force – deflection dependence
was extracted. The recalculation into bending moment
– rotation allowed a direct output as a corrosion
dependent increase of inclination/deformation. Those
were used as a basis for an analytical dependency

between earth pressure and wall inclination change
(Figure 7).

Figure 7. Results from a probabilistic analysis of the
corroded retaining walls.

The most interesting was to assess the probabil-
ity of damage detection with a given measurement
accuracy. In order to do it, another parameter has to
be involved, namely a possible change of the earth
pressure due to for example increase of water satura-
tion of the soil. A detailed outcome can be found in
(Final Report on SIBS 2019) one example is shown in
Figure 8. It shows a dependency of the probability of
detection and the relative change of the earth pres-
sure. The results are clustered into three categories
based on diversity of corrosion: mainly uniform (blue),
nonuniform (red) and purple in between. According
to expectation, the chances of damage detection are
raising the less uniform the corrosion is.

Figure 8. Probability of detection dependent on the change
of earth pressure and uniformity of corrosion.

4.2 Generic bridge

The second use case is a rail bridge with an anticipated
corrosion problem in the midspan. It consists of three
spans, whereas the middle one is with 13m the longest.
It was assumed, that the corrosion would take place

692



locally which implies it could be represented with a
rotational spring elements evenly distributed over the
bridge width. Over this line representing corrosion,
shell elements used for the bridge deck are split with
a hinge so that only translational degree of freedom
are coupled. Rotation over the axis in a transversal
direction is overtaken by the implemented additional
spring elements, having properties extracted from the
submodel (Figure 9).

Figure 9. FE shell bridge model with marked section where
nonlinear spring elements were implemented.

The submodel was created in the same manner as in
4.1 but instead of an analytical equation describing the
deflection a simple FE model was used. Between each
corrosion step the bridge was exposed to a norm train
load, but the resulting deflection was read after the
unloading, with the dead load only. It was consistent
with the usage of the result, as the deformation should
be investigated in an unloaded state.

Probabilistic analysis involved one thousand sam-
ples generated using Latin hypercube which indicated
the correlation between additional deformation and
corrosion as can be seen in figure 10. The increase
number of observation measurements would reduce
the uncertainty due to unknown parameters.

Figure 10. Influence of the corrosion on the bridge deflec-
tion.

5 CONCLUSIONS

The presented method combines the advantages of a
detailed and complex nonlinear FE analysis with the
applicability and performance of an analytical solution
or simple FE calculation. The advantages, accuracy
and limitations of the method are discussed, and the
field of application is described. The method and its
application have been described in detail, validated
and the application presented on several case studies.A
natural limitation is a relatively small region of interest
i.e., corrosion or other nonlinear behaviour. Other-
wise, if the corrosion extend is large, the advantage
of splitting of the model becomes insignificant.
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ABSTRACT: The critical parts of structures are typically discontinuity regions, where abrupt changes in geom-
etry occur or large concentrated loads are applied. In engineering practice the verification of the ultimate limit
stage of such discontinuity regions employs strut-and-tie models or stress fields based on the lower bound theo-
rem of plasticity theory. These models are mechanically consistent but they can be prohibitively time consuming
and are not directly applicable for serviceability limit state analysis as they do not consider strain compatibility.
To overcome these limitations the Compatible Stress Field Method (CSFM) was developed for the design and
assessment of discontinuity regions in concrete structures. The CSFM consists of a simplified nonlinear finite
element-based stress field analysis procedure. Considering compatibility and equilibrium conditions at stress-
free cracks, uniaxial constitutive laws as provided in concrete standards are used. While the concrete tensile
strength neglected in terms of strength, the CSFM accounts for tension stiffening to obtain realistic predic-
tions of deflections and crack widths, and cover the deformation capacity aspects. The effective compressive
strength of concrete is automatically evaluated based on the transverse strain state. The present work validates
the ability of the CSFM to reproduce the observed behaviour of experimentally tested frame corners with an
opening moment. A quantitative comparison between the outcomes from the numerical analyses and reported
experimental results proves the CSFM to be a reliable tool for assessing the structural behaviour of discontinuity
regions. In addition, a numerical study is conducted to investigate the sensitivity of the CSFM to several input and
model parameters.

1 INTRODUCTION

Reinforced concrete structures can be divided into
“B” (Bernoulli) and “D” (Discontinuity) regions (see
Figure 1). In “B” regions, the hypothesis of plane
strain distribution is satisfied and conventional design
approaches are applicable (e.g. cross-section analysis).
In “D” regions the strain distributions are nonlinear
(due to abrupt changes in the geometry or concen-
trated loads), and sectional design is not applicable.
Common examples of “D” regions include corbels,
dapped-ends, deep beams, anchorage zone, walls with
openings or frame corners. Strut-and-tie models and
stress fields (Marti 1985; Schlaich et al. 1987) are
common methods in engineering practice for the ulti-
mate limit design of “D” regions. These models are
mechanically consistent, powerful tools that yield
direct insight into the load-carrying behaviour and give
the engineer a high level of control over the design.Yet,
being based on the lower bound theorem of plasticity
theory, they do not consider compatibility and hence,
they are not directly applicable for verification of ser-
viceability criteria (e.g. deformations, crack widths).

Figure 1. Examples of Bernoulli (B) and discontinuity (D)
regions in a concrete frame structure.

Furthermore, the design of real-life structures using
strut-and-tie models or stress fields is often tedious
due to the iterative nature and typically hand calcula-
tions, particularly where different load arrangements
and combinations need to be considered.

Several attempts were made in the past to automate
the development of stress fields in “D” regions by
using computer-aided models. Some applications were
developed explicitly for the design of “D” regions such
as e.g. CAST (Tjhin & Kuchma 2002) and AStrutTie
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(AStrutTie 2020). However, the user has to manu-
ally propose a truss model beforehand and assign the
effective concrete compressive strength to each truss
member and node, which makes the design process
inefficient and user unfriendly. To overcome these
drawbacks, (Fernández Ruiz & Muttoni 2007) devel-
oped the elastic-plastic stress field method (EPSF),
where a nonlinear finite element procedure is used
to automatically generate suitable solutions for the
design and considering the influence of cracking on
the concrete strength. The EPSF method has shown
to be robust to predict the failure load and associated
mechanisms, but as its use requires Java coding, user-
friendliness is limited. Furthermore, the EPSF method
is not suitable for realistic serviceability checks since
tension stiffening is neglected. A more refined mod-
elling of the material behaviour is possible by using
more sophisticated nonlinear finite element tools such
as e.g. Abaqus, Atena, Ansys or MASA. Although
these tools may give a deeper insight in the “real”
structural behaviour, they have not found widespread
application in engineering practice, mainly due to the
large number of required input parameters, typically
including non-standard material properties unknown
in the design stage, causing a certain arbitrariness of
the results; in addition, the modelling effort is typically
excessive for common design tasks.

The Compatible Stress Field Method (CSFM)
(Kaufmann et al. 2020; Mata-Falcón et al. 2018) was
developed to overcome the limitations of classical
design tools and existing computer-aided models. This
papers recapitulates the basic principles of the CSFM
and validates its capability to capture the strength and
deformation capacity of reinforced frame corners, a
common type of discontinuity region, by the analysis
of selected experiments from literature. Furthermore,
based on the CSFM analyses, a numerical study is
conducted to investigate the sensitivity of the CSFM
results to selected input and model parameters (e.g.
tensions stiffening, finite element mesh size). Finally,
the main findings are summarised, allowing to iden-
tify remaining open points of the method. A detailed
description of the CSFM and an extensive validation
against test results can be found in (Kaufmann et al.
2020; Mata-Falcón et al. 2018).

2 COMPATIBLE STRESS FIELD METHOD

The CSFM consists of a nonlinear finite element-
based stress field analysis procedure suitable for the
code-compliant design and assessment of discontinu-
ity regions subjected to in-plane loadings. Common
uniaxial constitutive laws provided in concrete codes
and specified in the design stage are used for con-
crete and reinforcement, explicitly accounting for
concrete and reinforcement strain limitations. Hence
the designers do not have to provide additional, often
uncertain and/or highly stochastic material properties
as typically required for nonlinear FE analysis, making
the method perfectly suitable for engineering practice.

Since the state of strain is evaluated through the analy-
sis of the structure, the effective compressive strength
of concrete can be automatically computed based on
the state of transverse strain. Moreover, the CSFM con-
siders tension stiffening, providing realistic stiffness
and covering all design code prescriptions includ-
ing serviceability and deformation capacity aspects,
which are not consistently addressed by previous strut-
and-tie or stress field approaches. The CSFM has
been implemented into the finite element software
IDEA StatiCa Detail, a user-friendly software devel-
oped jointly by ETH Zurich and the software company
IDEA StatiCa s.r.o.

2.1 Assumptions and idealisations

The CSFM considers fictitious rotating cracks, which
open perpendicularly (see Figure 2a). Furthermore,
a discrete crack spacing is assumed, and any vari-
ation in the stresses due to bond stresses between
the cracks is neglected. Hence, the orientation of the
cracks depends on the stress state, and the cracks are
stress-free. Equilibrium is formulated at the stress-free
cracks, while compatibility is expressed in terms of
average strains of the reinforcement εm. Hence, the
model considers maximum concrete stresses σc3r and
reinforcement stresses σsr at the cracks while neglect-
ing the concrete tensile strength (σc1r = 0), expect for
its tension stiffening effect on the reinforcement (see
Figure 2b).According to the assumptions of the model,
the directions of the principal strains and stresses
coincide (compatibility condition: θr = θσ = θε), and
the principal directions are decoupled expect for the
compression softening effect.

2.2 Constitutive models

2.2.1 Concrete
The CSFM considers the uniaxial compression con-
stitutive laws provided by EN 1992-1-1 (EN 1992-1-1
1 01). As seen from Figure 2c the stress-strain rela-
tionship is defined by the compressive strength fc,
the modulus of elasticity Ec and the strain εc0 at the
compressive strength as well as the ultimate strain
εcu (which all are given by the strength class of the
concrete). To account for compression softening, the
compressive strength fc and the strain εc0 are reduced
by the factor kc, which is calculated based on the
transverse tensile strain ε1 (see Figure 2e). The imple-
mented relationship is a generalisation of the fib
Model Code 2010 (Taerwe, Matthys, et al. 2013) pro-
posal for shear verification, but without the limitation
kc ≤ 0.65 that is incompatible with other actions than
shear. This is consistent with the main assumptions
of the CSFM (see Sec. 2.1), since it is also derived in
terms of maximum stresses at the cracks:As previously
mentioned, the CSFM neglects the tensile strength of
concrete in terms of strength just as in standard struc-
tural concrete design, which justifies higher values
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Figure 2. Compatible stress field model: (a) principal stresses in concrete and reinforcement; (b) stresses in the reinforcement
direction; (c) constitutive law for concrete ; (d) constitutive law for reinforcement; (e) compression softening law; (f) bond
shear stress-slip relationship (adapted from Mata-Falcón et al. 2018).

of kc than according to models accounting for aver-
age stresses, such as the Modified Compression Field
Theory.

2.2.2 Reinforcement
As defined in design codes, a bilinear idealisation of
the stress-strain relationships of the bare reinforcing
bars is used in the CSFM by default (see Figure 2d).
The definition of this stress-strain curve only requires
basic properties of the reinforcement, such as the yield
strength fy, ultimate strength ft as well as the ultimate
strain εu and the modulus of elasticity Es (which all
are well-known during the design phase by the spec-
ified strength and ductility class). Where known, the
actual stress-strain relationship of the reinforcement
(hot-rolled, cold-worked) can be considered instead.
While an elastic-perfectly plastic characteristic (as
implemented in EPSF) is also possible, it would not
allow verifying deformation capacity due to the lack
of explicit failure criteria.

2.2.3 Tension stiffening
The effect of bond on the load-deformation behaviour
of reinforced concrete members loaded in tension is
known as tension stiffening. In the CSFM, tension
stiffening is captured by modifying the input stress-
strain relationship of the bare reinforcing bar in order
to capture the overall stiffer response of cracked rein-
forced concrete compared to bare reinforcing bars
of equal cross-section. Basically, the CSFM differ-
entiates between stabilised and non non-stabilised
cracking.

Stabilised cracking exists in regions where rupture
of the reinforcement at cracking is avoided by a geo-
metric reinforcement ratio ρ higher than the minimum
reinforcement
amount ρcr . Formulating equilibrium on a tension
chord subjected to its cracking load, one gets the
required minimum reinforcement amount pcr :

ρcr = 1

fy/fct − n+ 1
(1)

where fct and n= Es
Ec

correspond to the concrete tensile
strength and modular ratio, respectively.

In case of stabilised cracking, tension stiffening is
implemented by means of the Tension Chord Model
(TCM) (Alvarez 1998). The TCM assumes a stepped,
rigid-perfectly plastic bond shear stress-slip relation-
ship along a cracked element (i.e. a tension chord ele-
ment bounded by two cracks according to Figure 3a).
Hence, the bond shear stresses τb are independent of
the slip δ and are fully determined at a specific loca-
tion with τb= τb0= 2fct for σs ≤ fy and τb= τb1= fct
forσs ≥ fy.Therefore, the steel stressesσsr at the cracks
follow directly from equilibrium in a closed analytical
form as a function of the crack spacing srm, the bond
stresses τb and the average reinforcement strain εm.
The average concrete strains in the crack element due
to composite action are small compared to the average
steel strains and are neglected in the determination of
crack widths. The crack spacing srm is given by λsrm0,
where the maximum crack spacing srm0 is determined
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Figure 3. Tension-stiffening models: (a) tension chord element for stabilised cracking with distribution of bond shear, steel
and concrete stresses, and steel strains between cracks; (b) pull-out assumption for non-stabilised cracking with distribution
of bond shear and steel stresses and strains around the crack (c) resulting tension chord behaviour in terms of reinforcement
stresses at the cracks and average strains for B500B steel; (d) detail of the elastic part of the tension chord response (adapted
from Mata-Falcón et al. 2018).
.

from the stress distribution along the crack element
according to Figure 2, provided that σc1 is limited to
the concrete maximum tensile strength at the centre
between two cracks. The crack spacing coefficient λ
is assumed to be 2/3 by default in CSFM, based on
statistical considerations and experimental evidence
(Beeby 1979).

Since the crack spacing srm according to the TCM
depends on the reinforcement ratio, an appropriate
concrete area acting in tension between the cracks
needs to been assigned to each reinforcing bar. To
this end, an automatic procedure is used to determine
the corresponding geometric reinforcement ratio ρ for
any configuration of the reinforcing bars. A detailed
description about this algorithm is found in (Kaufmann
et al. 2020; Mata-Falcón et al. 2018).

In regions where ρ is smaller than ρcr cracking
is non-stabilised and tension stiffening is consid-
ered using the Pull-Out Model (POM), described in
Figure 3b. The POM analyses the behaviour of a sin-
gle crack (i) considering no mechanical interaction
between cracks, (ii) neglecting tensile concrete strains
and (iii) assuming the same bond shear stress-slip rela-
tionship as used in the TCM. Given the fact that the
crack spacing is unknown for a non-fully developed
crack pattern, the average strain is computed for any
load level over the distance between points with zero
slip, when the reinforcement bar reaches its tensile
strength ft at the crack. Similar as in the TCM, this
allows determining the average reinforcement strain

εm for any steel stress at the crack σsr directly from
equilibrium.

Figure 3 c) and d) illustrate the behaviour includ-
ing tension stiffening for the most common European
reinforcing steel (B500B, with ft/fy = 1.08 and εu=
5%). Obviously, the consideration of tension stiffen-
ing increases the stiffness and reduces the ductility
depending on the reinforcement ratio ρ, but does not
affect the ultimate strength.

The use of a stepped, rigid-perfectly plastic bond
shear stress-slip relationship in the TCM and POM,
simplifies the formulation of the load-deformation
behaviour of tension chords significantly since no inte-
gration of the differential equation of bond is necessary
as used in other approaches. Hence, tedious iterations
within the nonlinear numerical procedure are reduced,
which improves the stability and robustness of the
analyses.

2.2.4 Bond and anchorage
To verify the anchorage prescriptions according to
design codes, the simplified, perfectly plastic consti-
tutive relationship presented in Figure 2d is imple-
mented, with fbd being the design value of the ultimate
bond stress for anchorage specified by the design
codes. Since none of the analysed experiments in Sec. 3
exhibited an bond or anchorage failure, this verifica-
tion was switched off for the analyses described in this
paper.
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Figure 4. Crack width calculation: (a) considered crack
kinematics; (b) projection of crack width into principal direc-
tions of stresses and strains (adapted from Mata-Falcón et al.
2018).

2.3 Crack width calculation

Based on the presented tension stiffening models, the
crack width wb in the direction of the reinforcement θb
(see Figure 4a) is consistently calculated by integrat-
ing the reinforcement strains. For those regions with
stabilised cracking, the average strains εm along the
reinforcement are integrated along the crack spacing
srm. For the case of non-stabilised cracking the crack
width calculation based on the maximum strains at the
cracks, which in this case are more reliable than the
average strains (see (Mata-Falcón et al. 2018)).

The crack width w perpendicular to the crack open-
ing is given by the projection of the crack width wb in
the direction of the principal stresses and strains (see
Figure 4b). This is consistent with the main model
assumptions, since the inclinations of the cracks θr are
coincide with the principal directions of stresses θσ
and strains θε (compatibility condition, see Sec. 2.1).

2.4 Numerical implementation

The CSFM introduced in the previous sections is
implemented in the user-friendly finite element soft-
ware environment IDEA StatiCa Detail. The structure
to be analysed is discretised using 1D bar elements
for the reinforcement and 2D plane elements for the
concrete.The reinforcement and concrete elements are
connected using rigid multi-point constraint elements
to ensure the relative position of the reinforcement in
relation to the concrete. Full Newton-Raphson algo-
rithm is used to solve the set of nonlinear equations.

3 EXPERIMENTAL VALIDATION

This section validates the capability of the CSFM
to capture the observed behaviour of the frame cor-
ners, which were experimentally tested by (Campana
et al. 2013; Muttoni et al. 2011)). This paper compares
the ultimate loads and failure modes predicted by the
CSFM against the experimental results. Furthermore,
the CSFM predicted load-deformation responses are
compared to these observed during the experiments
in order to verify the applicability of the CSFM for
serviceability checks.

If not stated otherwise, the CSFM analyses use the
default material and analysis parameters as described
in previous sections. However, in the present study,
concrete crushing was defined as soon as the prin-
cipal stress σc3 reaches the effective compressive
strength. Hence, the horizontal plateau of the con-
stitutive law for concrete according to Figure 2c is
neglected (εc0=εcu).

3.1 Specimens

(Campana et al. 2013; Muttoni et al. 2011) studied
the load-deformation response of 16 simply supported
frame corners with a corner angle of 125◦ subjected
to opening moments through four-point bending. The
corresponding test setup is shown in Figure 5. For

Figure 5. Experimental programme: (a) test setup; (b) com-
pression reinforcement and stirrups; (c) flexural reinforce-
ment layout; (d) secondary reinforcement; and (e) transverse
reinforcement (adapted from Campana et al. 2013).
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Table 1. Designation of the test specimens and combinations of the reinforcement layout.

Flexural Reinforcement Secondary Reinforcement Transversal Reinforcement Concrete

Test Layout
D

[mm]
fy

[MPa]
ft

[MPa]
εu

[%] Layout
D

[mm]
fy

[MPa]
ft

[MPa]
εu

[%] Layout
D

[mm]
fy

[MPa]
ft

[MPa]
εu

[%]
fc

[MPa]
SC 26 D1 22 515 630 11.1 a - - - - i - - - - 41.9
SC 27 D1 22 515 630 11.1 b 22 515 630 11.1 i - - - - 41.6
SC 30 D2 22 515 630 11.1 a - - - - i - - - - 42.0
SC 31 D2 22 515 630 11.1 b 22 515 630 11.1 i - - - - 41.7
SC 34 B 22 515 652 11.6 a - - - - i - - - - 41.4
SC 35 B 22 515 652 11.6 b 22 515 630 11.1 i - - - - 42.1
SC 38 C 22 500 596 11.4 c1 12 555 610 4.70 ii 10 568 641 6.20 31.3
SC 39 C 22 500 596 11.4 c1 12 555 610 4.70 iii 10 568 641 6.20 31.1
SC 40 C 22 500 596 11.4 c2 14 560 600 4.10 ii 10 568 641 6.20 30.9
SC 41 C 22 500 596 11.4 c2 14 560 600 4.10 iii 10 568 641 6.20 30.9
SC 42 C 22 500 596 11.4 c3 10 575 620 3.60 iii 10 568 641 6.20 31.0
SC 43 C 22 500 596 11.4 c4 12 555 610 4.70 iii 10 568 641 6.20 31.0
SC 44 C 22 500 596 11.4 c5 14 560 614 4.30 ii 10 568 641 6.20 30.9
SC 45 C 22 500 596 11.4 c5 14 560 614 4.30 iii 10 568 641 6.20 30.8

all members the cross section (b=300 mm width and
h=400 mm height) was kept constant. The main test
parameter was the layout of the flexural, transverse
as well as the secondary reinforcement. Four different
layouts for the flexural reinforcement (details C, D1,
D2 and B in Figure 5c) were investigated, which were
provided either alone or in combination with different
arrangements of secondary reinforcement (details a, b
and c1 to c5 in Figure 5d) and/or transverse reinforce-
ment (details i, ii and iii in Figure 5e).The designations
of the specimens and the corresponding combination
of the reinforcement details are summarised inTable 1.

It should be noted that the specimens SC 22 and
SC 23 reported in (Campana et al. 2013) were not
analysed with the CSFM, since they exhibited a pre-
mature failure due to lack of reinforcement for crack
control. In general such failures are difficult to be cap-
tured with approaches such as the CSFM method, since
these presume structural continuity and are not capa-
ble of predicting such local failure modes caused by
inadequate detailing.

3.2 Material properties

Table 1 summarises the material properties of the con-
crete and reinforcement used in the CSFM analyses.
All material properties listed were available in the test
report. For all analyses the Youngs’ moduli of con-
crete and reinforcement were assumed as Ec=35 GPa
and Es=200 GPa, respectively. The concrete ultimate
strain was approximately the same for all experiments
and therefore fixed at εc0= 2.1‰ for all analyses.

3.3 CSFM modelling

The geometry, reinforcement, support and loading
conditions were modelled in CSFM according to the
experimental setup. Figure 6 shows the modelling
of specimen SC45 as an example. By default, the
mesh was generated automatically in Idea StatiCa
Detail, which leads to 4 elements over the frame
depth for all analyses. As described in Sec. 2.2.3, ten-
sion stiffening is included by means of the TCM for
the flexural reinforcement (ρflex = 2.1%>ρcr ≈ 0.6%
with fct ≈ 2.9MPa and fy ≈ 500MPa) and the POM for
the transverse reinforcement (ρtrans= 0.16%<ρcr ≈
0.5% with fct ≈ 2.9MPa and fy ≈ 570MPa).

Figure 6. CSFM modelling of specimen SC 45: geometry,
loading and supports.

3.4 Results of the numerical investigation

Figure 7 summarises the ratios of experimental and
predicted peak loads (Qu,exp/Qu,CSFM ) for the inves-
tigated experiments, including the mean value and
coefficient of variation (CoV) of this ratio. Q denotes
the applied force at each side of the specimens (see Fig-
ure 5a). Ratios Qu,exp/Qu,CSFM > 1 denote conservative
predictions of the ultimate load. The predictions of the
ultimate loads are very satisfactory, yielding slightly
conservative results on average (Qu,exp/Qu,CSFM =1.02
for all experiments), with reasonable scatter among
the analysed frame corners (CoV=16.3%). Note that
the latter would be significantly reduced by excluding
Specimen SC 30, whose strength was clearly below
the predicted value. As discussed in the test report,
this might have been a consequence of a an assembly
error, affecting the strength by causing a premature
failure in the experiment, cf. (Campana et al. 2013;
Muttoni et al. 2011).

Figure 7. Ratio of experimentally observed to predicted
(CSFM) ultimate load.
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In all of the numerical analyses, failure was trig-
gered by concrete crushing, preceded by yielding
of the flexural reinforcement. This agrees with the
experimental observations except for some specimens
with low transverse reinforcement, which exhibited
a premature brittle failure without yielding of the
reinforcement cf. (Muttoni et al. 2011).

Figure 8a shows the calculated stress fields (prin-
cipal compressive stresses σc and steel stresses σsr at
the cracks) for specimen SC 27 with marks for the pre-
dicted failure mode and location as an example for the
analyses conducted in this study. In addition, the com-
putation of cracked regions and the magnitudes of the
crack widths (represented by the length of the lines) at
the onset of yielding are plotted in Figure 8b. The pre-
dicted cracked regions and crack orientations agree
well with the experimental observations at failure
illustrated in Figure 8c.

Figure 8. Results for SC 27: (a) CSFM stress fields at ulti-
mate load, (b) CSFM crack pattern at reinforcement yielding,
(c) experimentally observed crack pattern at ultimate load
(from Campana et al. 2013)

Figure 9 compares the load-deformation responses
(Q-δext) predicted by CSFM with the measured load-
deformation responses of the experiments. δext corre-
sponds to the vertical deflection at the loading point of
the frame (see Figure 5a). Up to yielding of the rein-
forcement, the calculated load-deformation responses
agree very well with the experimental results. After
the one-set of yielding, the numerical analyses tend
to overestimate the deformation capacity particularly
for tests with low transverse reinforcement ratios. For
those tests, the deformation behaviour were not prop-
erly recaptured by the numerical analyses, as these
predict a pronounced yielding of the reinforcement
at failure as opposed to the experimentally observed
sudden loss of strength due to brittle failure of the
concrete (vertical separation of the compression zone

from the remaining part of the specimen).These differ-
ences highlight, that the CSFM, similarly to classical
strut-and-tie models and stress fields, cannot account
well for such brittle failures caused by strain locali-
sation in regions without any (transverse) minimum
reinforcement. Regarding specimen SC 30, the same
observations as made above in relation to the predicted
and observed strength apply.

4 PARAMETRIC STUDY

In this section a discussion of a sensitivity study
towards the default parameters of the CSFM used in
Sec. 3 is presented. The sensitivity analysis inves-
tigates the dependence of the CSFM results on the
mesh size (default: 4 elements over the depth of the
frame) and on the consideration of tension stiffen-
ing (default: tension stiffening is included by means
of the TCM and POM). Based on these analyses,
the suitability of the default values can be judged.
The corresponding variations of the CSFM compu-
tational parameters are outlined within the subsequent
subsections accordingly.

4.1 Influence of mesh size

The influence of the mesh size is studied for the two
test specimens SC 26 (brittle failure in experiment)
and SC 45 (ductile failure in experiment). The mesh
size is varied from 4 elements (default element size
in Idea StatiCa Detail used in the previous section)
to 8 and 16 elements over the cross-sectional depth.
Figure 10 shows the ratio of observed to predicted
ultimate loads Qu,exp/Qu,CSFM for the different mesh
sizes. It can be seen that the smaller the finite ele-
ment mesh, the lower and more conservative are the
strength predictions by the CSFM. This dependency
is mainly due to the more pronounced localisation of
the transverse strains for smaller finite element mesh
size, which reduces the compressive strength via the
compression softening factor and causes failure at a
lower load. The failure mode remains insensitive to the
considered mesh size, except that yielding of the rein-
forcement was prevented using a very fine mesh (16
elements over frame’s depth) for SC 26 (as observed
in the experiment).

4.2 Influence of tension stiffening effects

The influence of considering the tension stiffen-
ing effect during CSFM computations is studied for
Test Specimen SC 45 (ductile failure during experi-
mentation) only. The corresponding load-deformation
response is shown in Figure 11 on the example of
SC 45. Tension stiffening has neither a significant
influence on the stiffness and ductility, nor on the ulti-
mate load and failure mechanism. This is due to the
fact that the reinforcement ratio of the flexural rein-
forcement (which governs the structural behaviour, see
Sec. 2.2.3) is very high (ρflex = 2.1%, see Sec. 3.1)
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Figure 9. Load-deformation responses: (a) SC 26 (b) SC 27 (c) SC 30 (d) SC 31 (e) SC 34 (f) SC 35 (g) SC 38 (h) SC 39 (i)
SC 40 (j) SC 41 (k) SC 42 (l): SC 43 (m) SC 44 (n) SC 45.

and therefore, tension stiffening does not significantly
reduce the deformation capacity of the reinforcement.
This behaviour applies to all analysed experiments in

Sec. 3, since the flexural reinforcement amount was the
same for all specimens. It should be noted however,
that tension stiffening could have a relevant impact,
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Figure 10. Comparison of results for the mesh sensitivity
study for specimen SC 26 and SC 45.

Figure 11. Comparison of results for the sensitivity study
for specimen SC 45 (TS=tension stiffening).

if the amount of reinforcement would be low (see
Sec. 2.2.3). Neglecting tension stiffening, in spite of
not affecting the strength of the reinforcement, could
lead to a pronounced overestimation of the ultimate
load in such cases, and therefore to an unsafe design
(see (Mata-Falcón et al. 2018)). On the other hand,
if concrete crushing is governing the failure, neglect-
ing tension stiffening of the transverse reinforcement
could result in overly conservative predictions of the
failure load due to the overestimation of transverse
strains and hence, compression softening.

5 SUMMARY AND CONCLUSIONS

The paper recapitulates the basic principles of the
Compatible Stress Field Model (CSFM), a consistent
nonlinear finite element-based stress field analysis
procedure suitable for the design and assessment of
discontinuity regions subjected to in-plane loadings.
To validate its capability towards capturing ultimate
strength and deformation capacity of reinforced frame

corners, all experiments of the campaign reported in
(Campana et al. 2013; Muttoni et al. 2011) were anal-
ysed. A sensitivity study investigated the influence of
the mesh size as well as accounting for the tension stiff-
ening effect. Summarising, the following conclusions
can be drawn from the numerical analyses:

• The comparison of the CSFM results with experi-
mental results in terms of ultimate load and failure
modes shows a good agreement.

• The use of the default parameters in Idea StatiCa on
average leads to slightly conservative estimates of
ultimate loads.

• The results show that the deformation capacity for
brittle failure cannot be predicted with the same
accuracy as failures modes with a certain deforma-
tion capacity by the CSFM approach. This could be
expected since the CSFM, similar to classic stress
fields, is not intended for such types of failure.
In design this is compensated by the higher safety
coefficient for concrete in compression than for
reinforcement yielding.

• The analysis of the sensitivity of the model to param-
eters differing from the default ones in Idea StatiCa
Detail shows that the most relevant parameter in this
case is the mesh size: The smaller the finite element
mesh size, the lower the strength predicted by the
CSFM. To guarantee a safe design, it is thus recom-
mended to use a finer mesh than the default one in
the CSFM, in particular if a brittle failure is to be
expected. Furthermore, it is highly recommended
that the sensitivity of the model to changes in the
mesh size is always investigated.
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bridge girder using finite element modelling for multiple limit states

Rutger Vrijdaghs & Els Verstrynge
Department of Civil Engineering, KU Leuven, Leuven, Belgium

ABSTRACT: In this paper, an combined approach based on response surface sampling and importance sam-
pling is developed to efficiently assess the structural reliability of a corroding concrete bridge girder. The
approach employs cubic surface sampling with smart parameter updating and directed importance sampling to
limit the computational cost of the reliability assessment. The case study considers a post-tensioned concrete
bridge girder undergoing severe corrosion. Multiple limit states and various stochastic parameters related to the
material and damage properties are considered in a finite element based reliability assessment. The combined
approach limits the required number of simulations as much as possible and yields relatively quick convergence.
The results show that the corrosion level and compressive strength play a significant role in the structural behav-
ior. Given the high post-tensioning loads, the girder is limited by its ultimate capacity rather than serviceability
constraints.

1 INTRODUCTION AND STATE OF THE ART

Corrosion of the reinforcement is a major problem
that can seriously endanger the durability and struc-
tural safety of reinforced concrete elements as they
age. Recently, corrosion led to structural failures
with fatalities in Genoa (Ponte Morandi bridge) and
Miami (Champlain Towers North). Despite decades
of research, the structural effects of corrosion induced
damage are not easily assessed due to the number of
variables involved, the loading and damage history and
the complex interaction of the various materials. To
predict the structural behavior of corroding elements,
complex non-linear models are needed.Assessing then
the reliability of these elements requires an efficient
computational scheme.

Indeed, the assessment of the structural reliability is
an important task in civil engineering (Melchers 1999).
The reliability is often expressed through the reliability
index β, which is related to the failure probability pf

according to the well-known Eq. 1, where �−1 is the
inverse cumulative standard normal distribution.

β =�−1(1− pf ) (1)

The Eurocode for structural design imposes limits for
β based on the consequence class (European Commit-
tee for Standardization 2002). For structures with great
consequences of failure, the reliability index β = 4.3
in the ultimate limit state (ULS) for a 50 year ref-
erence design period. The failure probability can be
determined by integrating the joint probability density

function (PDF) fX(x) of the m variables x in the fail-
ure domain D (where the limit state function (LSF)
g(x)< 0). Mathematically, the failure probability is
defined in Eq. 2.

pf =
∫

D
fX(x)dx (2)

While Eqs. 1–2 can be used to determine the structural
safety theoretically, in practice, a number of prob-
lems arise: an analytical expression for the joint PDF
is often not available, nor can it be easily integrated
over the failure domain. Therefore, a number of dif-
ferent methods are developed to approximate pf or
β. The most commonly used methods are the first
(or second) order reliability method (Hasofer & Lind
1974) and Monte-Carlo sampling (Zio 2013). Other
methods include subset sampling (Au & Beck 2001),
importance sampling (Melchers 1989), response sur-
face sampling (Bucher & Bourgund 1990) or sur-
rogate modelling (Hu, Nannapaneni, & Mahadevan
2017). For a comprehensive comparison between these
(and other) methods, reference is made to literature
(Ditlevsen & Madsen 1996; Aldosary, Wang, & Li
2018; Shittu, Kolios, & Mehmanparast 2021).The first
and second order reliability methods (FORM/SORM)
remain the preferred method for reliability assessment
thanks to their ease of use but require an analytical
expression of the limit state function, which might
hamper general usage. For realistic structural engi-
neering cases, the limit state functions are non-linear,
time-dependent or implicit (or all three simultane-
ously). Similarly, the high computational requirements
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of solving complex, non-linear systems often impedes
the use of Monte-Carlo sampling.

Probabilistic studies and the associated reliability
assessment of corroding (reinforced) concrete struc-
tures are published in literature (Bastidas-Arteaga
2018; Gu, Guo, Zhou, Zhang, & Jiang 2018;
Kioumarsi, Hendriks, Kohler, & Geiker 2016; Lim,
Akiyama, & Frangopol 2016; Zhang, Song, Lim,
Akiyama, & Frangopol 2019). In most cases, the reli-
ability assessment and probabilistic studies are based
on sectional design approaches which cannot take into
account the change in failure mode and/or the change
in bond strength. However, pairing a complete finite
element model with a probabilistic analysis is very
computationally intensive.

In this paper, a combined approach based on sub-
sequent response surface sampling and importance
sampling is developed. A cubic response surface is
proposed, where a novel coefficient selection scheme
is implemented to take only the most important param-
eters into account, rather than updating all parameters
consecutively. In this way, significant computational
gains can be achieved. The combined methodology is
presented and applied to a corroding post-tensioned
concrete bridge girder for assessing the ULS and SLS.
Reference is made to the literature for a comprehen-
sive discussion and analysis of the structural behavior
of the corroded concrete bridge girder (Vrijdaghs &
Verstrynge 2022).

2 PROBABILISTIC FRAMEWORK

As shown in the state of the art, correctly assessing
the reliability of a complex or degrading structure is
a difficult task due to the high number of variables
involved. In this paper, a so-called response surface
sampling+ importance sampling (RSS+IS) approach
is developed to be compatible with implicit (numer-
ical model-based output) and multiple limit state
functions.

A short summary of the implemented RSS+IS
method is presented below; for more details refer-
ence is made to a previous publication (Vrijdaghs,
Van Steen, Nasser, & Verstrynge 2020). RSS+IS com-
bines the quick convergence to a solution and the accu-
racy and robustness of Monte Carlo based sampling
methods. In this two-step approach, the response sur-
face sampling aims to locate the most probable point
(MPP) in the U-space, which is the space composed
of independent standard normal variables, which are
related to the variables through a Rosenblatt transfor-
mation. Here, a full cubic description of the response
surface (RS) is employed, Eq. 3.

G(u)≈ G̃(u)= a+
m∑

i=1

biui

+
m∑

i=1

m∑

j=i

cijuiuj +
m∑

i=1

m∑

j=i

m∑

k=j

dijk uiujuk (3)

Herein, m is the dimensionality and ui is the indepen-
dent standard normal variable i in the U-space. Starting
with a linear hyperplane, the coefficients a and bi are
calculated to best fit (in a least-square sense) the first
m+ 1 function evaluations G(ui). A FORM analysis
is then performed on the linear hyperplane to estimate
the location of the MPP ũMPP . An exact LSF evalua-
tion is performed at ũMPP , yielding g(x̃MPP). The new
information is used to take an additional coefficient
of the cubic hyperplane into account. The coefficient
that is taken into account has the highest associated
weight wi as determined by the normalized weight
vector w= [1 w1 w2 w3], which is based on the linear
coefficients bi, see Eq. 4.

w1= |b1|/‖b1‖
= [|b1| ... |bm|] /‖b1‖

w2= |b2|/‖b2‖
= [|b2

1| |b1b2| ... |bmbm−1| |b2
m|
]
/‖b2‖

w3= |b3|/‖b3‖
= [|b3

1| |b2
1b2| ... |b2

mbm−1| |b3
m|
]
/‖b3‖

(4)

Then, in subsequent function evaluations, additional
coefficients are taken into account. The main advan-
tage of the proposed method is that the various higher-
order coefficients cij and dijk are taken into account
and updated in order of importance. Subsequent itera-
tions in the RSS algorithm further refine the response
surface and converge to the MPP (Başağa, Bayrak-
tar, & Kaymaz 2012; Guan & Melchers 2001). RSS
convergence is reached if at least m simulations pre-
dict failure. The RSS output is used as input for the
IS algorithm. In this second step, random samples are
taken around the MPP. Here, convergence is reached
if the number of failed simulations is at least 60 (a
user-defined parameter based on previous experience).
Once the IS method is converged, an estimation of the
failure probability can be calculated, and consequently,
the reliability index β is obtained.

In (Vrijdaghs, Van Steen, Nasser, & Verstrynge
2020), the combined RSS+IS approach is calibrated
with 52 benchmark examples, chosen for their (highly)
non-linear behavior, non-Gaussian distributions or
mathematical complexity.The predicted failure proba-
bility of the RSS+IS approach differs 0.69% (median
value) compared to Monte-Carlo sampling at a relative
computational cost of 7.5 · 10−4, boasting a very good
accuracy with minimal computational effort.

3 CASE STUDY: POST-TENSIONED HIGHWAY
BRIDGE GIRDER

The combined approach is applied to a concrete bridge
girder (built in 1957) with a total length of 40.9 m
which carries highway traffic in and out of Brussels,
Belgium. It consists of three spans. The outer span
girders (9 m span) are made of reinforced concrete,
while 13 I-shaped post-tensioned reinforced concrete
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girders with a center-to-center distance of 1.3 m cross
the central span of 22.9 m. The girders are experienc-
ing severe corrosion damage and are subject of the
numerical study. The girders are monolithically con-
nected with an in-situ cast concrete slab. In Figure 1,
a photo of the bridge is shown.

Figure 1. Global photo of the bridge.

3.1 Geometry and reinforcement of the bridge
girders

The post-tensioned girders have a height and (maxi-
mum) width of 0.72 m and 0.7 m, respectively with
a web thickness of 0.25 m. On top of the girder, a
0.18 m thick concrete slab is cast which brings the
total height to 0.9 m. A schematic cross-section of one
girder is shown in Figure 2.

Figure 2. Cross-section of the post-tensioned bridge girder
with longitudinal reinforcement (diameters not to scale,
stirrups not shown).

All mid-span girders are post-tensioned with 10
strands which are routed upwards near the beams’
ends. The strands consist of 12 wires with diameter of
7 mm and are divided over two layers, with a minimum
concrete cover at the bottom layer of 50 mm. Addi-
tional tensile reinforcement (6× 16 mm+ 4× 8 mm)

is placed in the flanges and web of the girder. Stirrups
(8mm) are used for shear reinforcement with a center-
to-center distance of 200 mm. It should be noted that all
dimensional data are deduced from the original design
plans.

The central span girders have experienced signifi-
cant corrosion damage. A visual inspection revealed
longitudinal cracks at the bottom face of the girders
which run along the post-tensioning strands. Severe
concrete spalling leads to exposed rebars and strands
in some places, where the ducts of the post-tensioning
strands are completely corroded away (Figure 3). A
material characterization and long-term monitoring is
planned in the near future.

Figure 3. Corrosion damage of the reinforcement in the
central bridge girders.

3.2 Modelling approach and mesh size

A 2D plane stress analysis is performed on a mid-span
girder in a finite element model (built in DIANA).
The mesh size for the entire model is 0.1 m, such
that the model consists of 14106 nodes and 2310 ele-
ments. Cracks are modelled through a smeared crack
approach, and reinforcement elements that represent
the corroding rebars are defined independently from
the mesh of concrete elements.

3.3 Stochastic parameters and limit states

In total, 6 stochastic parameters are taken into account:
(1) the rebar yield strength x1= fyk , (2) the strand yield
strength x2= fpk , (3) the concrete compressive strength
x3= fck , (4) the length of the corrosion zone x4= �CL,
(5) the corrosion level x5=CL, which is defined as
the mass loss fraction or fraction of broken wires, and
(6) the post-tensioning load ratio x6=LR. The various
parameters and their distributions are shown in Eq. 5–
10 and Figure 4, and are discussed in more details in
the following sections.

x1 = fyk ∼LN (400, 20) [MPa] (5)

x2 = fpk ∼LN (1400, 100) [MPa] (6)

x3 = fck ∼LN (50, 5) [MPa] (7)

x4 = �CL∼LN (0.1, 0.04) [m] (8)
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Figure 4. Distribution of all stochastic parameters.

x5 = CL∼β(0.1, 0.04) [-] (9)

x6 = LR∼β(0.65, 0.05) [-] (10)

Two limit states are implemented in the model. The
first limit state g1(x) is related to the ULS, while g2(x)
refers to the allowable crack width in the SLS. The
global limit state g(x) is then the minimum of g1(x)
and g2(x), as expressed mathematically in Eq. 11–13.

g1(x) = 1− Ed

Rd (x)
(11)

g2(x) = 1− w(x)

wlim
(12)

g(x) = min[g1(x), g2(x)] (13)

Herein, Ed is the applied load of the LM1 load model
from Eurocode in ULS (discussed later) and wlim is the
allowable bending crack width in SLS, here set equal
to 0.3 mm (European Committee for Standardization
2003). It should be noted that the model allows for the
easy definition of additional limit states in this form,
e.g. for limiting deflections or vibrations if needed.

3.4 Material properties

Different material models are incorporated in the
numerical model, namely a non-linear concrete model,
and a Von Mises plasticity model for both the tradi-
tional as well as the post-tensioning reinforcement. A
bond-slip interface is also defined for the reinforce-
ment elements, as it may affect the crack widths.

3.4.1 Non-linear concrete
The characteristic compressive strength of the concrete
is lognormally distributed fck ∼LN (50, 5) MPa. This
value is based on commonly used concrete strength
classes for bridge girders, and the standard deviation
corresponds to a coefficient of variation of 10%. All
other (elastic) parameters are based on the value of

fck as defined in Eurocode 2. The compressive behav-
ior is modelled as a Thorenfeldt curve determined by
fcd = fck/γc, with γc= 1 or 1.5, in the SLS or ULS,
respectively. In SLS tension, a Hordijk curve is imple-
mented. In ULS, the tensile behavior of concrete is
neglected.

3.4.2 Non-linear steel
The steel reinforcement is described by a Von Mises
plasticity yield criterion and a elastoplastic stress-
strain curve. The yield strength is a lognormal parame-
ter fyk ∼LN (400, 20) and fpk ∼LN (1400, 100) for the
rebars and strands. In ULS, the design yield strengths
are used fyd = fyk/γs and fpd = fpk/γs with γs= 1.15.
The stiffness of the strands and rebars is set to 190 and
200 GPa, respectively.

3.4.3 Bond-slip interface
The rebars and strands are allowed to undergo relative
deformations with respect to the surrounding concrete.
For the ribbed rebars, the bond-slip interface during
pull-out is described for good bond conditions by the
relative deformation-shear stress relation proposed in
Model Code 2010 (fédération internationale du béton
(fib) 2010). The shear stiffness (unit: N/mm3) is equal
to the slope of of the shear-slip curve at the origin. The
normal stiffness is set to 10 times the shear stiffness
(DIANA FEA ). For the strands, a Dörr interfacial
behavior is chosen with the shear stiffness Ks being
equal to the slope at the origin Ks= 5 · fctm/s0, and the
normal stiffness Kn= 10 · Ks.

3.4.4 Corrosion damage
The focus of this paper lies on the structural effects of
corrosion damage and its influence on the reliability.
Here, the corrosion damage is considered over a length
x4= �CL∼LN (0.1, 0.04) m with a corrosion level x5=
CL∼β(0.1, 0.04).
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The length of the corrosion zone �CL is the length –
at mid-span – over which significantly degraded mate-
rial properties are implemented for all bottom 7
strands. This length is lognormally distributed with a
mean of 0.1 m. The corrosion level in this zone rep-
resents the sectional loss of the steel due to corrosion
and wire rupture and it is Beta distributed with a mean
of 0.1, i.e. 10% corrosion level. The Beta distribution
ensures that the corrosion level is bound between 0
and 1.

The effects of corrosion are taken into account on
three levels: (1) a linear sectional reduction of the
strand, (2) an exponential change of the bond-slip rela-
tion and (3) exponential embrittlement of the rebars
and strands.

Sectional reduction
The reduced section of the strand Acorr =A0 · (1− CL)
is only implemented in the corroded length �CL. While
this is a simplification, preliminary analyses and engi-
neering judgement show that the effect of corrosion
is mostly of importance at mid-span, i.e. between the
axle loads of the LM1 load model (discussed later).

Bond-slip relation
Due to corrosion, the tension stiffening effect can
be degraded and a shift in failure mode can be
observed from bending to a shear-splitting failure
(Nasser, Van Steen, Vandewalle, & Verstrynge 2021).
This degradation of the bond-slip relation applied
here is based on experimental data reported in litera-
ture (Koulouris & Apostolopoulos 2021) (rebars) and
(Wang, Zhang, Zhang,Yi, & Liu 2017) (strands), refer
to Figure 5.

Figure 5. Bond-slip relation of corroded (left) rebars and
(right) strands.

Embrittlement of the steel
Research has shown that corrosion decreases the duc-
tility, i.e. ultimate strain, of steel reinforcement. The
exponential relations in literature are implemented
here (Fernandez, Bairán, & Marí 2015).

3.5 Boundary conditions and loading

The girder is simply supported in the vertical direction,
and supported in the horizontal direction with a spring
with a stiffness corresponding to the bending stiffness
of the column.

The initial load on the model is the self weight of
the girder and slab (SW) and the post-tensioning loads.
As stated before, the post-tensioning load ratio (LR) is
a stochastic parameter, with the post-tensioning load
P per strand calculated as P=LR · Ap · fpk . The vari-
able load on the girder is the Eurocode EN 1991-2
Load Model 1 (LM1), refer to Figure 6 (European
Committee for Standardization 2003). LM1 consists
of a distributed load of αq1 · 9 kN/m2 on the heav-
iest loaded lane of the bridge deck together with 2
concentrated axle loads of αQ1 · 300 kN, consisting of
two wheel loads (center-to-center distance of 2 m) of
150 kN each.

Figure 6. Load Model 1 (LM1) according to EN
1991-2. Lane number 1-3: Q1k = 300 kN, q1k = 9 kN/m2,
Q2k = 200 kN, q2k = 2.5 kN/m2, Q3k = 100 kN,
q3k = 2.5 kN/m2.

In ULS, the loads are multiplied by the safety factors
γg = 1.35 and γq= 1.5 for the permanent and variable
loads. In the SLS, both safety factors are set equal to
1. In Table 1, a comparison between the SLS and ULS
models is given.

3.6 Loading sequence, analysis parameters and
outputs

Each FE analysis consists of two phases. In the first
phase, the SW+post-tensioning load is applied at the
anchor ends. In the second phase, the bond between
the post-tensioning cables and concrete is developed
and the LM1 load model is applied.

The iterative method in both phases is a Quasi-
Newton method (BFGS) with a relative displacement
convergence criterion equal to 5% and 1% in the first
and second phase, respectively.

In an SLS analysis, the output is the crack width
under full load, i.e. under self-weight and the LM1 load
model, while in a ULS analysis, the primary output is
the load ratio Ed/Rd (x).
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Table 1. Comparison between the model parameters in SLS and ULS.

SLS ULS

Concrete strength fck fcd = fcm/γc
Tensile strength fctm 0
Rebar yield strength fyk fyd = fyk/γs
Strand yield strength fpk fpd = fpk/γs
Self-weight SW γg · SW
LM1 11.7 kN/m+ 2× 150 kN γq · 11.7 kN/m+ 2× γq · 150 kN
Output Crack width w(x) Load/resistance Ed/Rd (x)

From national annex to Eurocode 2: γc = 1.5, γs= 1.15, γg = 1.35, γq= 1.5

4 RESULTS AND DISCUSSION

4.1 Calculation of the reliability index

The RSS+IS algorithm required 8 limit state evalua-
tions (referred to as g-evals), each consisting of an SLS
and ULS simulation, to converge to an estimated MPP.
Of these 8 simulations, 6 predicted failure (g(x)< 0).
In the RSS, the reliability index βRSS is defined as the
Euclidean distance from the origin to the MPP which
is equal to βRSS = 2.12.

In the second step, importance sampling is set up
around the MPP. The importance sampling required
492 g-evals. The reliability index is calculated and is
equal to βIS = 1.40. The most probable failure point in
the U-space is shown in Eq. 14.

uMPP =

⎡

⎢⎢⎢⎢⎢
⎣

0.21
−0.47
−0.85
−0.84
1.20
0.73

⎤

⎥⎥⎥⎥⎥
⎦

(14)

This reliability index is quite low. Often, a range is
given for the target reliability index of existing struc-
tures between 1 and 3, depending on the consequence
class and the age of the structure (Sýkora, Holický, &
Marková 2012). Furthermore, since IS is a random
process and the number of (failed) simulations is rel-
atively low, variation on the reliability index can be
expected. Nevertheless, the high corrosion level and
its associated damage would decrease the reliability
index.

4.2 Analysis of the importance factors

The importance factor αi is defined as the normalized
partial derivative of a linear response surface around
the MPP, as shown in Eq. 15.

αi =

∣∣∣∣
∣
∂G̃lin(uMPP)

∂ui

∣∣∣
∣∣

||∇G̃lin(uMPP)|| (15)

The importance factors indicate how sensitive the
result is to changes in a certain parameter. Higher val-
ues indicate that that parameter has a large effect on
the response surface, and thus on the failure probability
and reliability.

For the bridge girder, the resulting importance fac-
tors are shown in Figure 7. It is clear that the reliability
is mainly determined by (changes of) the corrosion
level, accounting for over 60 percent. Next, the com-
pressive strength of the concrete plays an important
role as well, where lower concrete strengths cause
earlier failure due to concrete crushing in the com-
pressive zone between the axle loads. Together, these
two parameters account for 80% of the sensitivity of
the model to changes in its parameters. Then in order
of decreasing importance, the following importance
cadence is determined: strand yield strength > corro-
sion length> post-tensioning load ratio> rebar yield
strength.

Figure 7. Importance factors for the 6 stochastic variables
of the bridge girder.

Figure 7 can be used to rank the variables in order
of importance when performing an on-site inspection.
Indeed, from this analysis, correctly identifying the
corrosion level and the concrete compressive strength
are very important. On-site investigations can then be
used to update the stochastic distribution for those
parameters through Bayesian updating.
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4.3 Analysis of the limit states

The minimum, median, mean and maximum value for
the load factor LF at ULS and the crack width and
deflection at full SLS load is shown in Table 2.

Table 2. Results of all iterations at ULS and SLS (LF is the
load factor, w the crack width and δ the midspan deflection.

LF ULS [%] wmax [mm] δmax [mm]

Minimum 8.8 0 28.8
Median 109 0.023 37.6
Mean 102 0.029 38.4
Maximum 119 0.21 51.7

The histograms across all simulations for the three
key performance indicators (LF, w, L/δ) are shown
in Figure 8. The results show that all simulations
remain below the SLS requirement by a large mar-
gin. All simulations that predict failure, i.e. g(x)< 0,
are due to ULS load exceedance. The ULS thus seems
the limiting factor across all simulations for the LSF
considered.This result is not unexpected, as the consid-
ered girders are heavily post-tensioned, thereby largely
reducing the occurrence of bending cracks. However,
it should be noted that corrosion induced cracking can-
not be considered in this analysis and would require
a very different type of model compared to the struc-
tural approach presented here. In Figure 9, the LF-δ
curves in ULS are shown on the left, the right fig-
ure shows the crack width vs the LF in SLS. In this
figure, some curves do not reach LF = 1 in the ULS,
constituting a failure mode while all simulations pre-
dict that wmax < 0.3 mm at the SLS load. Moreover, the
crack width limit is only reached (and exceeded) at an

Figure 8. Histograms of the (left) LF in ULS, (middle) w in
SLS, (right) L/δ in SLS.

Figure 9. (left) LF-δ curves in ULS (right) w-LF curves
in SLS.

SLS load factor equal to 2.25 on average (minimum =
1.72, maximum = 2.58). This means that the SLS load
can – on average – be 2.25 higher for the crack width
to be the relevant failure mode. Note that the deflec-
tions are not included in the reliability assessment as
there is no generally accepted limit on the L/δ range.
Here, the calculated values lie between 442 and 796
(mean: 596), which is close to the span-to-deflection
limit (600) for train bridges (case 1) (European Com-
mittee for Standardization 2003), but does not satisfy
the limit according to AASHTO for new bridges (800,
case 2) (American Association of State Highway and
Transportation Officials (AASHTO) 2020). Indeed,
should the SLS deflection be taken into account,
then nearly 45% and 100% of the simulations would
become deflection limited based on the δ <L/600 and
δ <L/800 limit respectively. This means that the SLS
becomes nearly as dominant (case 1) or the dominant
limit state (case 2) in the simulations.

5 CONCLUSION

The correct assessment of the structural reliability of
existing structures is often a difficult task, due to the
multitude of stochastic variables, the determination of
a correct and adequate limit state function and the
required computational effort. In this paper, a com-
bined approach based on subsequent response surface
sampling (RSS) and importance sampling is presented
and applied to a real-life case study, where a corroding
post-tensioned concrete bridge girder is modelled in a
2D finite element analysis.

It is found that the developed RSS+IS algorithm
is very efficient for structural reliability assessment
of a post-tensioned corroding concrete bridge girder,
with stochastic material and damage properties. From
the (computationally free) analysis of the importance
factors, it is shown that the corrosion level and concrete
compressive strength influence the reliability the most.
The bridge girder is ULS limited in all simulations,
owing to the high post-tensioning load and the absence
of generally accepted deflection criteria.

The research has shown the potential of the com-
bined RSS+IS approach in a practical application.
The limited number of required simulations allows
the approach to be used in a variety of different real-
life use cases such as existing structures, and the
importance factors can provide valuable input for on-
site investigations to further improve the reliability
assessment.
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ABSTRACT: In old inner cities of the Netherlands a lot of steel-concrete bridge decks are built in the period
between 1880 till 1960. Some of these bridges are renovated while the bearing capacity had to be upgraded by
introducing the tram as public transport possibility. The assessment of those existing structures aren’t covered
by the current Eurocode of steel-concrete bridge decks. A minimum of interaction between the steel part and
the concrete part should be present in the current design. However the old designed steel-concrete bridge decks
show proven bearing capacity, so the feeling is that there is a lot of hidden bearing capacity in this type of
historical bridge decks. Renovation can be avoided, which saves a lot of money and hindrance for the inhabitants
of Amsterdam. To get more insight information of the bearing capacity of the historical bridge decks some in-situ
load tests combined with nonlinear analysis were planned to setup an additional part for the recommendation
for existing steel-concrete bridge decks.

1 INTRODUCTION

The current design of steel-concrete bridge decks show
a lot of interaction behaviour between the steel part
and the concrete part. Of course this interaction can
be split into no interaction, partial interaction and full
interaction. No interaction isn’t allowed anymore in
the current Eurocode design code for steel-concrete
decks. Upon the steel girders are dowels installed to get
a distributed shear force interaction behaviour between
the two material parts. Full interaction beha-viour
can be assumed when a fixed connection is assumed
between concrete and steel parts. Partial behaviour is
assumed when there is a type of interaction present
which doesn’t fit to a full interaction behaviour, but
still transfers shear forces from the concrete to the steel
girders.

At the end of the 19th century Melan [1], bridge
designer from Austria, published analytical formulas
to examine the strain behaviour over the bridge deck
height including the type of interaction between the
concrete part and the steel part.

Later on in between 1940 and1956 the interaction
behaviour was discussed by Utescher [2] and resulted
in to an update of these analytical formulas. However
the historical steel-concrete bridge decks installed in a
lot of European countries, based on the Melan design
theory, were still in operation and didn’t got automati-
cally a renovation. Later on a lot of research is done to

include dowels to the old bridge decks.A nice overview
is given by Goralski[3] in 2006.

The last 20 years the structural safety of existing
infra structures got more interest and became an impor-
tant issue in asset management of the infra network of
countries, provinces and towns. Now, by law the gov-
ernment has to prove that the structures have enough
bearing capacity to ensure the structural safety of the
recommendations. Beside the Eurocode set of recom-
mendations there is a need for recommendations for
existing structures. In relation to the Eurocode set of
new structures, a start is made with de basic principles
and the loads. Later on the set will be extended with
the material related Eurocode set, like concrete, steel
etc.

The steel-concrete design checks are mainly cov-
ered by the separated design rules of concrete and steel
recommendations for the existing structures. However
the historical steel-concrete bridge decks are already
not covered by the current Eurocode set by the missing
link to no interaction between the steel and concrete
structural parts. Also the quality of the material prop-
erties on concrete and steel were on a lower level then
today, so there could be some discrepancies between
the used material in the past and the material of today.
The interaction between a plane steel profile girder is
also different from a steel reinforcement bar with ribs.
So the first stage is to setup an inventory about all
those aspects.
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2 INVENTORY

The inventory of the steel-concrete bridge decks shows
the following aspects:

– the number of bridges with a steel-concrete bridge
deck

– the number of lanes
– the span lengths and the type of those bridges
– the variation of the dimensions of the cross section
– the two phase in constructing the bridge
– information of inspection reports
– support conditions

2.1 Number of steel-concrete bridge decks

The estimated number of bridges with a steel-concrete
bridge deck is 150 bridges. More then 30 of these
bridge decks donn’t have dowels placed on the steel
girders. There is also only shrinkage reinforcement
present on the top side of the bridge deck. That means
that the structural safety isn’t covered by the current
Eurocode. More then 50 bridge decks have reinforce-
ment on the top, bottom and edge side of the concrete.
Sometimes there are small L-profiles installed at the
start and end of the steel girders installed. These
L-profiles doesn’t fulfil the requirements of the cur-
rent Eurocode related to a fixed interaction between
the steel girders and the belonging concrete part. The
first amount of 30 bridges means an renovation bud-
get of 60 million euros, which gives the relevance of
further research to keep the bridges in operation.

2.2 Number of lanes

The number of lanes is important for the traffic load
of the bridges. Almost all bridges have 2 lanes for the
road traffic. Additional there are mostly always lanes
for bicycles and pedestrian on both edges of the bridge
deck. That means that the traffic load can be spread
over more than the lane width. On the other hand it is
also possible that a vehicle takes a parking area on the
bike or pedestrian lane, while the difference in height
of the lane levels is mostly 10 cm, which is less then
the Eurocode recommendation of 20 cm.

2.3 Span length and bridge type

A lot of bridges in the inner city show one or two
side spans, where the span length varies from 5 till
8 meter. The main span of the bridges are 8.5 till 14
meter long. Mainly the spans are statically determi-
nate. Sometimes the bridge type is coming from a
renovation of a bridge type with steel girders and a
timber deck. Here the steel girders are stabilized with
truss cables or small steel girders to keep the deck
in the right shape. When the timber deck is removed,
the concrete deck is casted on a formwork with was
temporarily placed on the bottom flange of the steel
girders. Another renovation was the introduction of
the tram as public transport in the city. In this period
the steel girders were replaced by higher and wider

steel girders, to increase the bearing capacity of this
part of the bridge deck.

Another aspect is the pre cambering of the steel
girders. To get a arching effect over the span length
of the bridge the steel girders were cambered at the
midspan cross section of each girder.

2.4 Variation of the dimensions of the cross section

The used steel girders are very different and related to
the use of the bridge deck by traffic or tram. The steel
girders are starting with DIN type steel profiles with
heights form 260 mm to 700 mm. Also DIR, NP, BP,
INP or HE profiles are found in the technical archive of
the city with heights in the same order like the already
mentioned DIN profile.

The head to head distance between the steel girders
is stark related to the height of the steel girder and
differs from 600 mm till 800 mm. The bridge decks
with lanes for trams have mostly head to head distances
of 700 till 750 mm.

The belonging concrete part have mostly 150 mm
till 200 mm height. This means that there is also a
spreading length for the wheel print load with an
Eurocode are of 400 by 400 mm2 of 300 mm till
400 mm. The height of the asphalt layer upon the con-
crete part is 70 mm, so that means another spreading
length of 140 mm. Between the bottom flanges there
is always a cut out with a height of 140 mm. The length
of the cut out is related to the head to head distance of
the steel girders. Figure 1 shows an idea of the cross
section of a steel girder with the belonging concrete
part.

Figure 1. Cross section of a historical steel-concrete bridge
deck.

Figure 1 shows the cross section of a steel girder
(DIN26) and the concrete part. Here the overall con-
struction height is 0.43 meter and the head to head
dimension of the steel girders is 0.72 meter.

Between the surfaces of the steel and concrete part
are interface assumed, which properties can be related
to the partial interaction of the composite cross sec-
tion. This interaction can be divided into slip with a
belonging slip limit and friction.

The center of the cross-sectional area of the
uncracked cross section lies always under the top
flange of the steel girder, so it is assumed that the con-
crete part lying under the top flange of the steel girder is
cracked. The crack width in this area are dependent of
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the (overloaded) traffic loads passing the bridge decks
during the lifetime of the structure.

2.5 Constructing the bridge deck

The technical archive shows mostly three construction
stages. The first stage is the installation of the steel
girders crossing the side and/or main span. The second
stage shows placing the formwork on top oof the bot-
tom flanges of the steel girder.The third stage is casting
the green concrete, what implies only an additional
load to the steel girder coming from the dead weight
of the concrete. When the concrete got his stiffness
the formwork is removed and other loads are added to
the structure. These stages are important for the yield
limit of steel girders, while the assumed yield limit of
the used steel is probably 230 MPa, where the starting
stress after stage three is already 25 MPa. The concrete
stress is after that stage three still 0.0 MPa.

2.6 Information from the inspection reports

The periodic inspection reports show some corrosion
attacks of the top surface of the bottom flange of the
steel girder. Sometimes the coating on the bottom of
the bottom flange of the steel girder is gone. Also
delamination over the thickness of the bottom flange
is observed in those case. Beside that there are some-
times cracks found at the bottom fibre of the bottom
surface of the concrete starting at the voute of the cut-
out of the concrete part, see Figure 2. The depth of the
crack is never measured and there are also no cores
drilled to get a better idea of the crack depth.

Figure 2. Concrete cracks located at the voute.

The surfaces of the bottom flanges of the steel gird-
ers are green coated, where the concrete is showing a
grey surface.

2.7 Support conditions

The analytic formulas show a statically dependent sys-
tem with the support lines at the start and end of
the bridge decks. However almost all historical steel-
concrete bridge decks show a support length of 0.45
meter and a width similar to the width of flange of
the steel girder. Above this support area the concrete
doesn’t have a cut-off anymore, so a rectangle cross

beam is casted, where reinforcement is included. This
part of the structure is supported by masonry, which
can be seen as a structural part with its own nor-
mal stiffness. A rather thick steel plate between the
masonry and the bottom flange of steel girder will dis-
tribute the reaction forces over the masonry area, see
Figure 3.

Figure 3. Additional support plate.

Again the green coating is the steel girder, where
the support plate is crumbling and corroded.

3 THE IN-SITU TESTS

3.1 Preparation

During the period of the inventory of the historical
steel-concrete bridge decks, a renovation of a heavy
traffic corridor to the inner city of Amsterdam was in
a construction phase. Some bridge decks should be
demolished, where a period of 2 weeks was open for
testing for the West side. The East side of the bridge
is staying open for the traffic. One of these corridor
bridges was a 3 span bridge with a bridge deck without
any dowels inside.

Figure 4. Side view of the tested 3 span bridge deck.

This was an opportunity to setup some load tests in-
situ on a historic steel-concrete. Only the side spans
could be used for testing because of the fact that the
main span has to be open for 24 hours a day for the
business and tourists boats.

The tested part are the 6 girders left of the pedestrian
path, where the height of the bridge deck is given in
Figure 5. This means that there is an uplift support at
the 6th girder, which is also indicated in Figure 5.
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Figure 5. Cross sectional abutment pier view.

Before testing the bridge deck, material tests were
done by drilling concrete cylinders from the bottom
side of the bridge deck to minimize hindrance for the
traffic, which is passing the bridge on the East side.

Of course there are made some FE simulations to
get an idea of the deflections of the deck and the strains
of the steel girders. The results of the FE simulations
show that the longitudinal bearing capacity should be
sufficient, however the transversal bearing capacity is
not sufficient. The FE shell model of the orthotropic
bridge deck doesn’t give the right results, where the
more advanced FE solid models give realistic results.

The focus of the tests was to get insight informa-
tion of the punching behaviour of the concrete part
between the girders. The construction documents are
signed in 1934, where there was only a concept design
recommendation for traffic loads in the Netherlands.
The expected lifetime of the bridge is already passed,
but the condition is rather good. However the current
heavy traffic flow for a corridor to the inner city is
insufficient.

3.2 In-situ tests

In total there has been 5 wheel print load locations
over the length of the spans. The tested bridge deck
part counts 6 girders with a total width of 3.95 meter
over a length of 6.5 meter. This part is sawn over the
length and the width, so there should be no connec-
tion anymore with the rest of the bridge deck. The
support lines should be similar to the original bridge
deck. Therefor the wheel print load locations are cho-
sen to be symmetric.The north side span is tested at the
1/4L and 3/4L location, the south side span is tested
first at the midspan location and later on at 1/6L and
5/6L location. Only the midspan load location test is
described more in detail in this contribution. Figure 6
gives the setup of the load and measurement locations
of the midspan load test.

Figure 6 shows the blue rectangles as the locations
of the strain sensors on the bottom flange of the steel
girders, the orange circles as the vertical displacement
lasers locations, the green lines as the horizontal dis-
placements between the bottom flanges of the steel
girders and at least the red rectangle the load cell loca-
tion. On the top the 6 girders are numbered, at the
left the rows where the measurements rows which are
related to the ratio of the span length on the right side
of the figure.

The load counts some stepwise load levels, where
every level will have 3 cycles. The load levels are 0,

Figure 6. Load and sensor location midspan test.

50, 100, 200, 300, 400 and 475 kN. The capacity of
the foundation, which has to be intact after these test,
has a limit of 500 kN. For safety reasons, regarding the
foundation capacity and the used load cell, the in-situ
an overall load of 475 kN. Figure 7 shows the load
scheme during all five tests. The load speed is set to
2.5 kN/sec. A realistic modified wheel print area of
230×300 mm2 is chosen as load area between girder
3 and 4.

Figure 7. Load scheme 5 performed tests.

Figure 7 shows also that there has been intermediate
load steps of 25 kN, when the first cycle is started to
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a new mail load level. Every load test takes 3.5 hours,
which results in 2 weeks of testing in total.

After these 2 weeks each bridge deck part were
splitted into 2 parts, which are stored for additional
laboratory tests later on. Also a 3 girder width bridge
deck part from the main span of the bridges is stored
and will be tested also in the laboratory in the future.

4 EVALUATION OF THE MEASUREMENTS

The most important aspects of the measurement was
behaviour of the concrete, which was cracking only on
the micro level at a wheel print load level of 475 kN.
From the strain measurements of the bottom flange
of the steel girders and the vertical displacements of
the steel girders the conclusion can be set to a force
distribution over four neighbouring steel girders. How-
ever the expected stiffness of the bridge deck is higher
than assumed and there is not always symmetry in the
measurements when there is symmetry at the symmet-
ric loading tests. Unfortunely we didn’t measure the
vertical displacements of the support lines.

Another aspect is the slipping behaviour over the
width at the midspan load test. The other four tests
doesn’t show this slip behaviour. The slipping beha-
viour isn’t only measured at the steel girder next to the
load cell, but later on it is also measured at the next
cycle at the other two girders left and right of the mid
girders, so all girders shows this slip behaviour in the
transversal direction of the bridge deck. Figure 8 shows
the transversal displacement of cycles 1-3 for girders
1 and 3. The first cycle of in the load levels from 50 till
475 kN shows no transversal displacement but the fol-
lowing cycles show at a lower load force level. Girder
1 which is laying on the edge of the bridge deck part
shows also a similar transversal displacement. Then
an extra girder with belonging concrete is demolished
complete at the store location. This operation results
in a very smooth surface of the outline of the 85 year
old steel girder, so the stick/slip behaviour should be
an additional aspect for the nonlinear FE analysis.

Figure 8. Displacement in transversal direction.

Later on when the bridge deck parts were lifted out
of the bridge not all parts were free fully sawn over
the height of the bridge deck from the original bridge
deck.

Also an additional steel plate was part of the sup-
port area between the bottom flange of the steel girder
and the masonry pier and abutment pier. An additional
observation was that some steel girders seemed to be
partly fixed to the top surface of the abutment pier.
That causes a hidden internal bending moment at the
support line during the tests of the bridge deck.

5 INPUT FE SIMULATION

The FE model of the six steel girders and the concrete is
a complete quadratic solid element model, with inter-
face elements between the outline of the steel girder
and the concrete part, see figure 9 and 10.

Figure 9. FE solid model bridge deck.

Figure 10. Top flange of a steel girder with interface
elements.

The support areas contain also interface elements
to simulate the observed internal bending moment
behaviour.

The interface elements are divided in separate sets,
while the web and the flanges can get different material
properties. The different colors in Figure 10 indicate
this difference in material properties. At the start stage
of simulations the material properties of the interface
elements are similar.

The size of the elements of the steel girder and the
interface elements can also be seen in Figure 10. The
width of the steel girder counts 4 large elements and 2
small elements. With steel girders DIN26 and DIN28
the element size over the width various in ge-neral
from 65 till 70 mm. The height of the flange counts
2 elements, so this element size is 10 mm. Over the
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length of the bridge deck the element size is 100 mm.
All interface elements on the outline of the steel girders
have an height of 1 mm, where the support interface
elements have an height of 10 mm. The cross sectional
area of one steel girder with its belonging concrete part
is shown in Figure 11.

Figure 11. Cross section one steel girder + concrete.

The mean value of the concrete cylinders show
a value of 50.9 MPa, with a standard deviation of
6.2 MPa. Later on there are also concrete cylinders
bored from the side of the bridge deck and the skew
cut-off side. The concrete strength in the horizon-
tal direction show a mean value of 42.1 MPa with a
standard deviation of 3.3 MPa. The concrete strength
perpendicular drilled in the cut-off skew direction have
a value of 49.1 MPa with a standard deviation of
6.9 MPa.

Four samples were taken from one steel girder to
get an idea of the yield stress value and the Young’s
modulus. A mean peak stress value of 261.8 MPa was
observed at these tests, followed by a yield level of
233.8 MPa with a standard deviation of 9.0 MPa. One
of these sample results is shown in Figure 12.

Figure 12. Stress strain relation steel sample.

Also Ultrasonic Pulse Velocity(UPV) research has
been done to the drilled concrete cylinders, which
results in a mean value for the Young’s modulus of
52461 MPa and a standard deviation of 5923 MPa.
The UPV mean value is rather high related to the

ModelCode2010 [4]. For the FE simulations the com-
mon relations of the MC2010 are used based on the
compression strength.

The ultimate mean stress of the four steel samples
was 317.5 MPa, where the standard deviation counts
2.6 MPa.

The most unknown material properties are the
slip behaviour of the different surfaces between
the steel girders and the belonging concrete and
the friction angle between steel and concrete after 80
years lifetime. Different authors like Leskela(2000),
Takami(2005) and Hegger(2005) and others did in the
past research to slip behaviour between concrete and
steel. The maximum stress value can be set to 1.0 MPa
with a belonging slip limit value of 0.1 mm. Of course
the worst case is a slip limit value of 0.0 mm and a
belonging stress of 0.0 MPa. The influence of these
value variations can be found by running different
FE simulations. Table 1 shows the different material
properties for the FE simulations.

Table 1. Overview material properties.

Material property Symbol Value

Concrete
Young’s modulus E 37 900 N/mm2

Poisson ratio ν 0.15
Density ρ 2 400 kg/m3

Type curve softening Hordijk
Mean tensile strength fctm 3.88 N/mm2

Fracture energy Gf 105 N/m
Crack bandwidth method Govindjee
Reduction Poisson ratio Damage based
Type curve compression Parabolic
Mean compression strength fcm 54.6 N/mm2

Compressive fracture energy Gc 32 000 N/m
Reduction lateral cracks Yes
Minimum reduction factor 0.4
Influence lateral locking Yes

Steel
Young’s modulus E 210 000 N/mm2

Poisson ratio ν 0.3
Density ρ 7 850 kg/m3

Yield stress σ 235 N/mm2

Hardening method Strain, EN1993-1-5

6 FE SIMULATION PUNCHING BEHAVIOUR

6.1 Analysis type

Following the Guidelines for Nonlinear Finite Element
Analysis for Concrete Structures(2020) shows table 1
already the nonlinear parameters so the FE simula-
tion will be a nonlinear analysis. The used method is
Newton Raphson Regula with convergence tolerances
based on energy with a basic tolerance of 1.E-3. The
load increments are similar to the in-situ tests with val-
ues of 100 kN and 25 kN between after the load level
of 300 kN. Cracking of concrete is expected after a
load level of 300 kN.
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Related to the construction stages a phased analysis
is added. In the first phase only the steel girders are
active with the dead load of the steel girders and con-
crete. In this first stage the dead weight of the concrete
is simulated as an distributed load to the top surface of
the top flange of the steel girder. In the second phase
the dead weight of steel and concrete parts will be the
starting load and will be added with the punching load,
the wheel print load between the steel girders three and
four on the midspan location.

6.2 Output nonlinear analysis

Several aspects could be concluded from the nonlinear
analysis like:

– Crack pattern punching behaviour
– Slip behaviour
– Load displacement diagram till 475 kN
– Distribution wheel print load over a row of girders

The first aspect was the punching behaviour of the
bridge deck with the belonging crack pattern. The
crack pattern at a load level of 475 kN can be shown
in Figure 13a and 13b.

Figure 13. Crack patterns load level 475 kN.

As expected the most cracks are developed in the
area of the wheel print load in de concrete of girder 3
and 4. There is almost no cracking pattern at the other
girders. The maximum crack width is 0.02 mm, so the
observation after the in-situ load tests was right that
only micro cracks could be observed. The depth of the
crack was 60 mm, starting from the bottom fibre of
the cut-out of the concrete bridge deck. This is shown
in Figure 14.

The length of the relevant crack pattern in longi-
tudinal direction is 1100 mm. The axle load distance
of the Eurocode tandem axle configuration is head
to head 1200 mm, so both wheel print loads together
will influence the overall crack pattern of an axle load.
However the netto wheel print load in the Eurocode is
150 kN, so still there is a factor of 3.0 present. . Over
the width of the bridge deck the Eurocode distance is
2 meters, so that belongs to two other concrete parts
of the bridge deck.

Figure 14. Crack strain including the orientation.

To get more information about the influence fields
of the crack pattern in longitudinal direction the FE
simulation is continued till an unrealistic ultimate limit
load, like 1900 kN. Similar pictures, like Figure 14, can
be shown on different load levels in Figure 15, but now
over the height of the bridge deck.

Figure 15. Crack strain development.

Figure 15 shows that the cracks is reaching at a
load level of 675 kN the top surface to the top flange
of the steel girder. To ensure that there is always an
uncracked concrete part above the top flange the extra
load capacity should not come above the 675 kN
for two wheel print loads. The partial factor in the
Eurocode for axles is 1.5, so there is enough space
between the calculated 675/300 = 2.25 and the EC
factor 1.5. The netto concrete length of the girders 3
and 4 is 730− 270= 560 mm, where the wheel print
width was 230 mm. In this case the punching cone
under the wheel print could occur.

Meanwhile the main goal of the in-situ tests was
successful. A second goal was the slip behaviour
between the steel girders and the belonging concrete.
Variations of the slip limit from 0.1 mm till a value of
0.0 mm were done with the FE model. The slip values
at a load level of 475 in both directions are shown in
Figure 16.
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Figure 16. Slip results at girders 3 and 4 in longitudinal(X)
and transversal direction(Y).

Figure 16 shows very clear that the slip behaviour
at the load level of 475 kN is still almost uniform
distributed in transversal direction, where the slip
beha-viour in longitudinal direction is already vary-
ing. Nearby the wheel print load location at midspan
the dark blue and dark red colored parts are also beyond
the chosen sliplimit of 0.1 mm. The interface elements
on the bottom flange of the steel girders show already
slip behaviour beyond the chosen sliplimit of 0.1 mm.
When the sliplimit is decreasing to a value of 0.05 or
0.025 mm these areas will be reached at a lower load
level of the wheel print load.

Further research has to be done to tackle this
phenomena more in detail.

The load displacement diagram of the in-situ test is
still very lineair, so it is not so important to include a
figure of this results. However it is good to know that
an engineer can simulate this behaviour with a linear
elastic analysis.

The wheel print load is equally distributed over
4 girders as result from the measurements of all in-
situ tests which is also simulated by the described FE
model.

7 FUTURE RESEARCH

As mentioned before three parts of the bridge deck
were shipped to the laboratorium in Delft to get better
measurement conditions then at the in-situ test loca-
tion. Nevertheless the in-situ tests are madee to create
some ‘virgin’ tests, while the negative effects of lift-
ing and transporting of bridge deck samples to the lab
were not predictable on forehand.

The results of the foreseen lab tests can be compared
with the results of the in-situ tests. The prediction of
the lab tests can be done based on the results of the in-
situ tests. In that way the measurement plan of sensor
locations etc. can be planned more in detail.

8 CONCLUSIONS

The following conclusions can be drawn from the
in-situ tests and FE simulations sofar:

– The in-situ tests show a linear behaviour till a wheel
print loa of 475 kN

– The maximum acceptable wheel print load is prob-
ably 675 kN

– Four girders are bearing one wheel print load
equally distributed

– Slip behaviour was assumed and is measured in one
of the in-situ tests

– Slip behaviour will be tested further on in a more
conditioned environment like the laboratorium

– The phase analysis showed an maximum intital
stress in the steel girders, which has an influence of
10% to the yield stress of steel

– The FE ULS simulation has reached a load level
of 1900 kN which shows that there should be a lot
of extra bearing capacity for these type of bridge
decks

– Additional lab tests are needed to prove more in
detail the above mentioned conclusions

Most important conclusion is that the authors have
the feeling, that design recommendations, like the
Eurocode need additional articles for re-examination
of historical steel-concrete bridge decks without
dowels.
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ABSTRACT: Concrete has been widely used in the construction of roads, highways, industrial floors and
pavements since early twentieth century. Construction methods generally include placement of joints at specific
distances to control the cracking phenomenon. The latter is due to the development of tensile strains caused by
the shrinkage of concrete and by environmental factors, such as temperature gradient. However, joints result
in reduced load carrying capacity, local failure, and pavement damage. To reduce the number of joints, the
fracture toughness of concrete can be enhanced by adding fibers. As the models available for conventional
fiber-reinforced concrete (FRC) cannot be extended to high-performance fiber-reinforced concrete (HPFRC),
the aim of this work is to describe a new model to design HPFRC joint free slabs. Specifically, a composite cross
section made of soil and concrete, which is subjected to imposed strains, is modelled through the Colonnetti’s
theory of elastic coactions. In this way, not only the effect produced by concrete shrinkage but also the nonlinear
response of HPFRC in the strain hardening stage are taken into account. For given maturity curves, crack does
not appear if the maximum tensile strain provided by the model is lower than the strain that produces localization
in HPFRC.

1 INTRODUCTION

Nowadays, reinforced concrete is the most used build-
ing material, especially in structures and infrastruc-
tures. Focusing on pavements, concrete is almost the
only alternative to asphalt, and the first guidelines
for the design of concrete pavements were introduced
about 30 years ago (AASHTO 1993). Afterwards, sev-
eral guidelines were also proposed (Choi et al. 2005;
Rasmussen et al. 2009; Roesler et al. 2016; Söderqvist
2006).

Although concrete slabs guarantee longer term ser-
vice life and can be easily built, a specific attention is
required during the first days of curing. Indeed, due
to the shrinkage phenomenon and to the low strength
in tension, concrete is prone to cracking at early age.
More precisely, when applied stress overcomes the ten-
sile strength, concrete fails and crack growths. It can
occur just after casting, when strength increases at a
slower rate than the constrained stresses induced by
the reduction of volume.

As cracks can compromise both durability and func-
tionality of pavement, contraction joints are frequently

used to control the cracking phenomenon (FHA 2019).
In practice, the upper side of the slabs is sawn at regular
intervals during the first hours after casting.

Nevertheless, joints generate several problems to
the pavement in service. Traffic movements can dam-
age the joint (joint-edge chipping and cracking) and
facilitate the penetration of aggressive chemicals,
which in turn affect the durability of pavements.
For these reasons, jointless pavements, also made
with fiber reinforced concrete, have been proposed
(ChunPing et al. 2015; Larrard et al. 2011; Zhang
et al. 2013). In fact, several studies have shown that the
addition of fibers, either steel or polymeric, improves
the mechanical properties in tension, and controls the
widening of cracks (Tehmina et al. 2014; Yoo et al.
2018). At early age, experimental results show that the
presence of 0.2 ÷ 0.3% of nylon fibers may reduce
the effect of drying shrinkage (up to 75%) in a cemen-
titious matrix (Choi et al. 2011). Furthermore, the
performances improve when high performance fiber
reinforced concrete (HPFRC) is used to cast thin con-
crete pavements, even in the case of instant repairs or
quick renewal of roads (Burger 2010; Hachiya et al.
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2006, R. 2009). As HPFRC shows a strain-hardening
behavior (Graybeal 2016) before reaching the local-
ization of tensile strain (Ramadoss 2008; Savino
et al. 2018), the fibers may completely substitute the
conventional reinforcement, and reduce/eliminate the
presence of joints.

For instance, Destrée et al. (2016) discussed the
main parameters of concrete shrinkage and provided a
model for the analysis of slab made of FRC (see Fig-
ure 1). It is based on the classical tension stiffening
equations of RC structures, and includes the bond slip
mechanisms between soil and FRC and between fiber
and matrix, and the fracture mechanics of the matrix
in tension.

Figure 1. Mechanical behavior of cracked fiber-reinforced
cementitious composite (Destrée et al. 2016): (a) stress-strain
relationship of the cement-based material; (b) bond-slip
model between FRC and soil; (c) bond-slip model of the fiber
within the matrix.

Although the model can be used to design joint-
less slabs using steel fibers, the application cannot be
extended to HPFRC, because, for this cement-based
material, the strain localization in tension, εc,cp, does
not occur at the first cracking, εc,cr (see Figure 2b).
Accordingly, a new model, able to predict the mechan-
ical behavior of slabs on grade is proposed. More
precisely, a composite cross-section made of concrete
and elastic soil (see Figure 3), and subjected to the
imposed strain εsh (sh = shrinkage), is analysed. The
proposed model calculates the internal states of stress
and strain by means of the Colonnetti’s theory of elastic
coactions (Colonnetti 1950), when material properties
are known at every stage of curing. The model works
within Stage I (i.e., in absence of strain localization)
and can be applied also in the cases of conventional
concrete and FRC, in which εc,cr = εc,cp (Figure 2a).

2 PROPERTIES OF MATERIALS

The model analyzes slabs on ground during the cur-
ing stage, just after casting. To evaluate the state of
stress and strain in this scenario, it is necessary to

Figure 2. Tensile behavior of (a) conventional FRC and (b)
HPFRC.

Figure 3. Composite cross-section analyzed by the pro-
posed model, in the case of uniform shrinkage strain εsh.

know the mechanical properties of concrete, includ-
ing shrinkage, at any time. However, each parameter
(e.g., shrinkage strain, tensile strength, compressive
strength, etc.) shows different rate of development
after casting.

2.1 Mechanical performances of concrete and soil

HPFRC has a strain hardening response in tension
(as depicted in Figure 2b) and a linear elastic behav-
ior in compression. The parameters of a possible
stress-strain relationship are described by exponen-
tial equations (Eurocode 2 1-1 1992; fib Model Code
2010; ACI 209R-92 1997). However, tensile strength
tends to increase more rapidly than the compressive
strength (Bentur 2003).

Some studies (Boshoff 2012; Combrinck et al.
2019; Hammer et al. 2007; Roziere et al. 2015) defined
the tensile strain capacity of concrete at early age,
which reaches the minimum during the setting time
(up to 10 hours) and before early hardening (see Fig-
ure 4). This is due the fact that a significant increase of
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the elastic modulus occurs earlier than the increment
of the tensile strength. For this reason, two types of
analyses are carried out after casting:

• short term analysis (STA), from 2 hours to 96 hours;
• long term analysis (LTA), from 4 days to 28 days.

Figure 4. Tensile strain capacity vs. time (Boshoff 2012).

In both the cases, the equations provided by
Eurocode 2 are taken into consideration. Specifically,
compressive strength of concrete, at various ages, may
be estimated as follows:

fcm (τ )=βcc (τ ) · fcm (1)

βcc (τ )= exp

{

s

[

1−
(

28

τ

)½
]}

(2)

where fcm(τ )=mean concrete compressive strength
at time τ ; fcm =mean compressive strength at 28
days; βcc(τ )= coefficient which depends on τ ; and
s= coefficient that depends on the type of cement.

As a first approximation, the value of the tensile
strength with time, fctm(τ ), is given by:

fct (τ )= (βcc (τ ))
α · fctm (3)

where fctm =mean tensile strength at 28 days of curing;
and α= 1 when τ < 28 days.

Focusing on the stiffness, the variation of the
modulus of elasticity with time, Ecm(τ ), is:

Ecm (τ )=βcc (τ )
0.3 Ecm (4)

where Ecm =modulus of elasticity at 28 days.
Tensile strain at cracking can be calculated by using

the modulus of elasticity in compression, Ecm(τ ), and
the tensile strength fctm(τ ):

εc,cr (τ )= fct (τ )
/
Ecm(τ ) (5)

To take into account the results of previous studies
(Boshoff 2012; Combrinck et al. 2019; Hammer et al.
2007; Roziere et al. 2015), in the case of STA, the ten-
sile strain capacity is calculated by means of a suitable
correction:

εc,cr (τ )= ε (τ ) · εc,cr (τ = 96h)

ε (τ = 96h)
(6)

where ε(τ )= ε (τ = 96 h)= tensile strain at first crack-
ing, calculated at τ = 96 h, respectively on the function
drawn in Figure 4; and εc,cr (τ = 96 h)= strain at first
cracking calculated through Eq.(5).

In other words, the tensile strain at first crack-
ing is calculated by scaling the curve reported in
Figure 4 (Boshoff, 2012), with respect to the value
computed at 96h (Eurocode 2 1-1 1992).Young’s mod-
ulus is consequently updated with respect to the new
value of tensile strain capacity by means of Eq. (5).
Ultimate tensile strain (i.e., εc,cp in Figure 2b) and
the slope of the hardening branch can be similarly
calculated.

The soil, assumed as an aged material, is character-
ized by an elastic modulus, Eto, at the interface with
the slab. It linearly increases with the depth according
to the coefficient Kt, as shown in Figure 5. Hence, for
a given thickness, SS, of the soil, the average value of
the elastic modulus is given by:

Et

(
z= SS

2

)
=Et0 + Kt · Ss

2
(7)

Figure 5. The Young’s modulus of soil.

2.2 Shrinkage model

Focusing on the curing of concrete, several studies
have been carried out in the last years. The shrink-
age strain εcs is composed by the drying, εcd, and the
autogenous, εca, contributions:

εcs (τ )= εcd (τ )+ εca (τ ) (8)

Drying shrinkage strain develops slowly, since it
is a function of the migration of the water through the
hardened concrete. As autogenous shrinkage increases
during the hardening of concrete, a major part of
εca develops in the early days, as illustrated in Fig-
ure 6a, where the two components of shrinkage are
plotted as a function of concrete aging (Gribniak et al.
2011).

Zhang et al. (2003) noted that most of the total
shrinkage in high-strength concrete can be attributed
to autogenous shrinkage (see Figure 6b), rather than
drying shrinkage. Whereas, due to the higher water-
binder ratio, drying shrinkage is dominant in normal
concrete (Yoo et al. 2018).
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Figure 6. Shrinkage strain components in (a) normal and
(b) high-strength concrete.

Gardner & Lockman (2001) provided the GL-2000
model, which can be applied to conventional concrete
having the water-cement ratio within the range 0.4–
0.6, and a compressive strength lower than 82 MPa (at
28 days). Another model was proposed by Bazant &
Baweja (2001). It is called B3 Model and shows very
low coefficient of variations, if compared with the
results provided by ACI209R (1997) and Eurocode 2
1-1 (1992). In the latter, used herein for the structural
analysis, the drying shrinkage strain with the time can
be calculated as follows:

εcd (t)=βds (τ , τs) · kh · εcd,0 (9)

where kh = coefficient depending on the notional size,
and:

εcd,o = 0.85
[
(220+ 110 ∗ αds1) ∗ exp

(
−αds2

fcm

fcmo

)]

∗ 10−6 ∗ βRH (10)

βRH = 1.55

[

1−
(

RH

RHo

)3
]

(11)

βds (τ , τs)= (τ − τs)
(τ − τs)+ 0.04

√
h3

o

(12)

In these equations, fcmo= 10 MPa; αds1 and
αds2= coefficients depending on the type of cement;
RH = ambient relative humidity (%); RHo = 100%;
τs= age of concrete (days) at the beginning of drying
shrinkage (or swelling); and h0= notional size of the
cross-section.

The autogenous strain can be calculated as:

εca (t)=βas (t) εca (∞) (13)

where:

εca (∞)= 2.5 (fck − 10) 10−6 (14)

βas (t)= 1− exp
(−0.2t0.5) (15)

The maximum shrinkage strains computed with the
previous formulae can vary between 300 and 900 µε.
However, some researchers (Al-Saleh 2014; Gűneyisi
et al. 2014; Yoo et al. 2014; Zhang et al. 2013) sug-
gested an increment of the upper bound, in order to
maximize the structural effect of shrinkage on the slabs
on ground. Moreover, also the distribution within the
thickness of a slab needs to be better investigated. For
instance, Rasmussen & McCullough (1998) assumed
a linear distribution, in which the full shrinkage strain
appears on the surface of the concrete pavement,
whereas zero shrinkage is at the mid-depth of the slab.
Heath & Roesler (1999) measured the distribution of
drying shrinkage by installing strain gauges at differ-
ent depths of a full-scale slabs on grade.They observed
a remarkable difference of shrinkage strain on the top
and the bottom of the slab. Thus, shrinkage strain can-
not be neglected also on the bottom surface, but, at the
same time, it cannot be equal to that on the top. More
recently, a new model (Tiberti et al. 2018) assumes
100% of total shrinkage, calculated through Eq. (8),
on the free surface. Then, a linear decrement of the
drying shrinkage strain is assumed in the rest of the
cross-section (it is 50% or 75% lower on the bottom
surface).

3 A NEW MODEL FOR SLABS ON GROUND

Referring to the composite cross-section depicted in
Figure 3, and made by HPFRC and soil, a new algo-
rithm for measuring the effect of shrinkage of the
cement-based material can be developed. To be on the
safe side, the stress in the HPFRC is maximized by
assuming the existence of the perfect bond between
the two layers. Indeed, if a slip between HPFRC and
soil exists, both strain and stress reduce in the upper
layer.

According to Figure 3, the geometrical input data
of the problem are S (= thickness of the slab), SS
(= thickness of the soil), and b (= width of both slab
and underlying soil). If the whole cross-section resists
to the external actions, the soil can be considered as
the steel reinforcement in a reinforced concrete cross-
section. After casting, the only load applied on the slab
is the shrinkage, which can be considered as imposed
strain acting in the concrete layer. Consequently, both
stresses and strains in the composite cross-section of
Figure 3 can be calculated by using the Colonnetti’s
theory of elastic coactions (Colonnetti, 1950).

Obviously, the elastic properties of the HPFRC layer
vary with the time, therefore, at a fixed time τ > 0, the
homogenized geometrical parameters of the composite
cross-section are calculated:

Eo=Ec(τ ) (16)
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Ao= Ec

Eo
· S · b+ Et

Eo
· Ss · b (17)

YG = Sx0

A0
= b · s ( S

2 + Ss
)+ Et

Ec
· b · S2

s
2

A0
(18)

Ix0 =
[

bS3

12
+ b · S

(
S

2
+ Ss − YG

)2
]

+
[

bS3
s

12
+ b · Ss

(
Ss

2
− YG

)2
]

Et

Ec
(19)

where, Eo=Young’s modulus of elasticity used to
homogenize the cross-section; Ao= homogenized
area of the cross-section; Yg= ordinate of the
centroid; Sxo= homogenized static moment; and
Ix0= homogenized moment of inertia.

Assuming that plane section remains plane, the state
of stress in concrete (σz,c) and soil (σz,s) are orthog-
onal to the Z direction (see Figure 3). They can be
calculated as:
{
σz,c=E (λ+ µx · y − εim) if 0≤ y≤ S
σz,s=E (λ+ µx · y) if S ≤ y≤ Ss

(20)

where, y = ordinate of the point with respect to the
intrados; εim = imposed strain (in this case, t is due to
shrinkage); λ = total axial deformation; and µx = in
plane total curvature.

The strain parameters (i.e., λ and µx) are the sum
of the elastic contribution, due to the external explicit
actions (i.e., λel andµel), and of the effect produced by
imposed strain (λpl and µpl). As no external loads are
applied (i.e., λel=µel= 0) the total strain parameters
are calculated as follows:

λ= λtot = λel + λpl = 1

A0
∫
Ac

Ec

Ec
· εimdA (21)

µx =µtot,x =µel + µpl = 1

A0
∫
Ac

Ec

Ec
· εim · ydA (22)

However, when the non-linear stage of the cemen-
titious matrix is reached (i.e., εc,cr ≤ ε≤ εcp in Fig-
ure 2b), Eqs.(18)–(19) are not valid.

Nevertheless, according the Colonnetti’s theorem
(Colonnetti 1950), nonlinear contributions can be
taken into account by introducing suitable imposed
strain, εnl, as shown in Figure 7 (where the subscripts
“E” = “elastic” and “R” = “real law” indicate the
type of stress calculation, respectively). In practice,
for a given ε, the linear stress-strain relationship is
translated up to the real relationship through εnl:

εnl= E · ε− σ (ε)

E
(23)

Finally, the state of stress can be calculated with
Eqs.(21)–(22) by assuming εim = εsh + εnl.

Figure 7. Effect of nonlinear behavior of the constitutive
law and calculation of the εnl .

As εnl has to be continuously updated, an iterative
procedure for the calculation of the states of stress
and strain is introduced. The iterations end when the
difference between two consecutive values of εnl is
negligible (i.e., when two consecutive states of stress
are mathematically coincident).

If the strain in each point of the cross-section is
lower than the strain at beginning of strain localization:

ε (y, τ)≤ εc,cp (τ ) 0≤ y≤ S (24)

macrocracks do not appear (or crack width is much
lower than the admissible values). In these cases, joints
are not necessary.

As tensile stresses in the soil are not allowed, the
thickness SS must be iteratively changed until only
compressive stresses are present in the soil (see Fig-
ure 3). In other words, the thickness of the soil substrate
is not input of the problem. In this way, the whole pro-
cedure is composed by the two encapsulated iterative
parts shown in Figure 8.

4 NUMERICAL RESULTS

The procedure previously described is herein applied
in two different slabs: slab_1 and slab_2. In both the
cases, the thickness is the same (S= 100 mm), whereas
the mechanical parameters of soil are summarized in
Table 1.

The slabs are made with different types of concrete,
normal concrete (C30/37) in the slab_1, and HPFRC in
slab_2, whose mechanical properties are illustrated in
Table 2. The properties of C30/37 are those suggested
by Eurocode 2 1-1 (1992) and measured at 28 days.
On the contrary, the properties of HPFRC have been
provided by a building material supplier, and concern
a product available on the market (Esser et al. 2015).

The model computes the states of stress and strain in
both the slabs under the hypothesis of a curing at 20◦C
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Figure 8. Flowchart of the proposed model.

Table 1. Mechanical properties of
the soil.

Et0 (MPa) 5000
Kt (MPa/mm) 5

Table 2. Mechanical properties of concrete and HPFRC.

slab_1 slab_2

b (mm) 5000 5000
S (mm) 100 100
Cement class 32.5N 42.5R
Rck (MPa) 37 50
fck (MPa) 30 40
Ecm (MPa) 33000 36300
fct (MPa) 2.00 2.50
fct,max (MPa) 2.00 3.00
εc,cr (‰) 0.06 0.07
εcp (‰) 0.06 2.00
εcu (‰) 3.5 3.5

(RH= 50%) for 28 days. In this period, the shrinkage
is assumed to be the only external action on the slab.

The dashed curves reported in Figure 9a and 9b
show the maximum tensile strains reached in the
slab_1 and slab_2, respectively. More precisely, these
strains are calculated after considering three differ-
ent distributions of shrinkage (Tiberti et al. 2018). In
the same figures, the maximum strain capacity of the
cement-based materials is also reported.

Figure 9. Numerical outcomes in case of (a) slab_1
(C30/37) and (b) slab_2 (HPFRC).

Figure 9a is representative of a concrete that pro-
duces a crack 7 hours after casting (i.e., when the
strain capacity of concrete is the lowest). In this sit-
uation the presence of joints is necessary. In the case
of HPFRC (see Figure 9b), due to the absence of crack
localization, contraction joints may be avoided.

Nevertheless, in both the slabs, the bi-logarithmic
diagrams do not show remarkable variation of tensile
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strains with the shrinkage distribution. On the con-
trary, numerical results show that the most important
parameters to obtain jointless slabs on ground are the
tensile properties, especially the strain capacity, and
shrinkage evolutions (both autogenous and drying).

5 CONCLUSION

Tensile strain capacity of the cementitious matrix is
important for designing jointless slabs, and control-
ling crack widths after strain localization, as well.
Current methods for the characterization of tensile
properties in concrete and FRC cannot be extended
to HPFRC, because in the latter strain localization in
tension does not occur at cracking (enhanced capac-
ity). At the same time, mechanical models devoted to
the analysis of conventional reinforced concrete (or
FRC) slabs on ground behave differently than those
made with HPFRC. Hence, a new model for design-
ing jointless slab on ground, made with HPFRC (i.e.,
a strain hardening material) has been proposed. Based
on the results of the analyses previously described, it
can be observed that to avoid shrinkage cracking few
hours after casting, it is of fundamental importance
to know the mechanical properties of cement-based
materials at very early age. Specifically, the evolutions
of tensile strengths and strains with time are the most
significant parameters, like the shrinkage actions. If
the tensile strain capacity increases, as in the case of
HPFRC, the jointless slabs can be built.
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ABSTRACT: Due to time constraints on structural design processes, modelling and computational complexity
is often a key concern in limit state analysis of reinforced concrete (RC) structures, causing practitioners to
choose efficient but inaccurate methods of analysis over more advanced ones. Recently, a framework using
convex optimization for elasto-plastic, geometrically linear analysis of RC walls was proposed, enabling analysis
of models with more than 10,000 finite elements within minutes on a standard PC. In order to improve the
applicability and relevance of the framework as a design tool, this paper proposes an extension that enables
the determination of the critical buckling load. Based on the nonlinear solution obtained from the elasto-plastic
optimization problem, the cracked tangent stiffness of the RC sections is determined, and a linearized buckling
problem is posed and solved as a linear eigenvalue problem. This allows the actual critical buckling load to
be determined by solving a sequence of optimization and eigenvalue problems. The accuracy of the proposed
method is assessed, and its applicability to practical design scenarios is demonstrated by an analysis of an RC
wall with a door hole, showing an average solution time of approximately 30 seconds per load step.

1 INTRODUCTION

When designing reinforced concrete (RC) structures,
the attractiveness of a given method for structural anal-
ysis is highly affected by its computational efficiency
and robustness. Consequently, one of the most popular
methods of analysis among practitioners of structural
engineering is still the linear-elastic, displacement-
based finite element method (FEM). Being based
upon a linear-elastic and isotropic material model,
however, linear-elastic FEM produces somewhat inac-
curate results when applied to structures with non-
linear material behaviour, e.g. reinforced concrete
stressed beyond the cracking limit for the concrete.
Consequently, for reinforced concrete structures, the
applicability of linear-elastic FEM is mainly limited
to serviceability limit state (SLS) analysis.

In recent years, the concept of finite element limit
analysis (FELA) has proven to be an efficient and
robust method for ultimate limit state (ULS) anal-
ysis of reinforced concrete structures. By use of a
rigid-plastic material model and stress-based finite
elements, a load-maximization problem based on the
lower bound theorem can be cast as a convex opti-
mization problem that can be solved using commercial

solvers. Currently, numerical frameworks for limit
analysis of reinforced concrete structures have been
developed for a variety of stress-based finite ele-
ment types, e.g., membranes, solids, plates, and shells
(Herfelt 2017; Jensen 2019; Larsen 2011; Poulsen
& Damkilde 2000). Due to the rigid-plastic mate-
rial models, however, the solutions do not include any
finite deformations, meaning that they cannot be used
to assess structural ductility, crack widths, or structural
displacements.

To overcome this shortcoming, a framework for
efficient elasto-plastic analysis of reinforced concrete
walls subjected to in-plane loading was recently pro-
posed (Vestergaard et al. 2021). Using stress-based
finite elements and a hyper-elastic material model,
the framework poses the principle of minimum com-
plementary energy as a convex optimization problem.
Since this approach does not rely on incremental load-
stepping, it enables the analysis of models with more
than 10,000 finite elements within a few minutes on
a standard PC. An extension of the framework was
proposed, enabling the analysis of thin walls sub-
jected to combined in-plane and transverse loading
(Vestergaard et al. 2022). This extension, which uses a
layer-based submodel to represent the nonlinear stress

728 DOI 10.1201/9781003316404-87



variation over the wall thickness, increases the num-
ber of variables per finite element by a factor of
approx. 10.

In order to improve the applicability and relevance
of the framework as a design tool, it should be able
to assess structural stability. To this end, this paper
proposes an extension of the framework that enables
the determination of the critical buckling load. Based
on the nonlinear solution obtained from the comple-
mentary energy minimization problem, the stress and
strain state are known, enabling the determination of
the tangent stiffness of the RC sections. Using the
well-established displacement-based CST and Specht
(Specht 1988) finite elements, and by applying a non-
linear strain measure, the linearized buckling problem
is formulated as an eigenvalue problem, which is
solved using the tangent stiffness matrix. With this
approach, the actual critical buckling load can be deter-
mined more accurately as the load is increased by
solving a sequence of optimization and eigenvalue
problems.

Initially, a description is given of the proposed
procedure of analysis, and the applied constitutive
model is presented. Subsequently, expressions for
the linearized (i.e., tangent) sectional stiffness are
derived, followed by a description of the stress-based
and displacement-based finite elements and the cor-
responding discretized expressions. Based on these
expressions and the principle of virtual work, the
linearized buckling problem is derived. Finally, the
accuracy of the method is assessed using a simple vali-
dation example, and its applicability to practical design
scenarios is demonstrated using an example involving
a wall with a door hole.

2 ANALYSIS PROCEDURE

As described in the Introduction, the framework
presented by (Vestergaard et al. 2021) has proven
extremely efficient for the analysis of fully cracked
reinforced concrete structures with nonlinear material
behaviour. By posing the principle of minimum com-
plementary energy as a convex optimization problem
(more specifically, a Second-Order Cone Programme),
this framework uses stress-based finite elements and
state-of-the-art commercial convex optimization algo-
rithms to solve the finite element (FE) problem with-
out the need of incremental application of loads. This
is the case even for nonlinear material behaviour as
long as the stiffness is positive and non-increasing,
e.g., reinforcement with yielding, and concrete with
crushing and zero tensile strength (cracking). Thus,
the framework provides a method for structural analy-
sis which is efficient both in terms of modelling effort
and computational complexity while being substan-
tially more accurate than the traditional linear-elastic
FE methods often applied in practice.

Since the principle of minimum complementary
energy is based upon a linear strain-displacement
relation, the framework described above is not directly

applicable to structures where geometrical nonlinear-
ity is of importance. However, due to its efficiency
for solving geometrically linear problems, it can be
used to predict the through-thickness strain field, and
thereby the (cracked) tangent section stiffness in a
pre-buckling state where geometrical nonlinearity is
negligible.

The approach proposed in this paper is based on pos-
ing and solving the linearized buckling problem as a
linear eigenvalue problem. In its essence, the method
is closely linked to the modification to Euler’s crit-
ical load originally proposed by (Engesser 1889) to
account for material nonlinearity by simply substitut-
ing the elastic modulus with the tangent modulus; this
concept is illustrated in Figure 1.

Figure 1. Load-displacement curves with bifurcations.

Since this approach presupposes knowledge of the
stiffness for a given static/kinematic configuration, the
method proposed in this paper consists of a two-step
procedure in which the existing framework based on
the principle of minimum complementary energy is
used to predict the state of the sections of the structure
in a geometrically linear analysis, based upon which
the linearized buckling problem is posed and solved as
a linear eigenvalue problem.As Figure 1 illustrates, the
accuracy of the linearization increases as the applied
load approaches the critical buckling load, meaning
that the two-step procedure is to be repeated for a range
of load factors to estimate the critical buckling load. In
order to take into account the adverse effects of geo-
metrical imperfections, the analysis is performed on
a slightly modified geometry which is constructed by
imposing upon the original geometry a scaled version
of the critical buckling mode for the first load step.

3 CONSTITUTIVE MODEL

3.1 Material models

The material considered in this paper is reinforced
concrete with orthogonal reinforcement. The concrete
is assumed to be fully cracked, i.e., with no tensile
stresses, and with a Poisson’s ratio of νc= 0. The rein-
forcement is considered smeared in the in-plane direc-
tions with full strain compatibility with the concrete,
and it is assumed to carry axial stresses only, i.e., dowel
action is neglected.The concrete and the reinforcement
are modelled independently as piecewise-linear elastic

729



materials with stress-strain curves as illustrated in Fig-
ure 2. These models apply to the axial reinforcement
stress components {σsx, σsy} and the (in-plane) princi-
pal concrete stress components {σcI, σcII}, respectively.
Note that the slope of the concrete hardening branch
may be chosen as close to zero as numerical stability
allows.

Figure 2. Material stress-strain curves.

3.2 Section model

Given that buckling generally concerns slender struc-
tures, the section model is based on Kirchhoff shell
theory for thin plates, i.e., only the in-plane stress
and strain components, σ = [ σxx, σyy, τxy ]T and ε=
[εxx, εyy, 2εxy]T , are considered. The in-plane section
forces n= [ nxx, nyy, nxy ]T and the section moments
m= [ mxx, myy, mxy ]T are related directly to the in-
plane stresses as

n=
∫ t

2

− t
2

σ dz , m=
∫ t

2

− t
2

zσ dz (1)

where z is the thickness coordinate starting at the cen-
ter plane, and component-wise integration is implied.
The in-plane strain components are assumed to vary
linearly over the shell thickness, allowing them to be
stated as

ε= ε0 + zκ (2)

where ε0= [ε0
xx, ε0

yy, 2ε0
xy]T are the center-plane strain

components, and κ = [κxx, κyy, 2κxy]T are the curva-
ture components.

Assuming moderate displacements, the center-
plane strain is related to the displacement field u=
[ ux, uy, uz ]T by the Green strain measure, while the
curvature κ is described with sufficient accuracy using
the small-strain measure. Using comma derivative
notation, i.e., u,x = ∂u/∂x, these relations are

ε0= ∂1u+ 1

2

⎡

⎣
uT

,xu,x

uT
,yu,y

uT
,xu,y + uT

,yu,x

⎤

⎦ , κ = ∂2u (3)

where the operators

∂1=
⎡

⎣

∂
∂x 0 0
0 ∂
∂y 0

∂
∂y

∂
∂x 0

⎤

⎦ , ∂2=
⎡

⎢
⎣

0 0 ∂2

∂x2

0 0 ∂2

∂y2

0 0 ∂2

∂x∂y

⎤

⎥
⎦ (4)

have been introduced.

4 STIFFNESS LINEARIZATION

To simplify notation, the section forces n and section
moments m, and the center-plane strain ε0 and curva-
ture κ , are collected in the generalized stress and strain
vector, respectively:

σ̄ =
[

n
m

]
, ε̄=

[
ε0
κ

]
(5)

In the neighborhood of a given state of generalized
strain and stress, {ε̄0, σ̄ 0}, the generalized stress-strain
relation is assumed to be well-approximated by the
first-order Taylor expansion:

σ̄ = σ̄ 0 + ∂σ̄
∂ ε̄

∣∣∣∣
0

(ε̄ − ε̄0) := σ̄ 0 + DT(ε̄ − ε̄0) (6)

where

DT=
∫ t

2

− t
2

[ (
∂σ
∂ε

)
z
(
∂σ
∂ε

)

z
(
∂σ
∂ε

)
z2

(
∂σ
∂ε

)
]

0

dz (7)

is the tangent constitutive matrix. As seen, DT is fully
determined by the stress-strain gradient,

∂σ

∂ε
= ∂σ s

∂ε
+ ∂σ c

∂ε
(8)

where the subscript “s” and “c” refer the steel rein-
forcement and the concrete, respectively. The first
term of (8) is given directly in terms of the tangent
reinforcement stiffness EsT(ε):

∂σ s

∂ε
=
⎡

⎣
EsT(εxx)

EsT(εyy)
0

⎤

⎦ (9)

Since the model defines the tangent stiffness of con-
crete EcT(ε) in the principal directions (which are
co-aligned for both stresses and strains),

∂σ cp

∂εp
=
[

EcT(εI)
EcT(εII)

]
(10)

the second term of (8) should be expressed using the
chain rule. Viewing σ c as a function of the principle
stress magnitudes σ cp= [ σcI, σcII ]T and orientation θ ,

σ c= 1

2

⎡

⎣
(1+ cos 2θ) σcI + (1− cos 2θ) σcII
(1− cos 2θ) σcI + (1+ cos 2θ) σcII

− sin 2θσcI + sin 2θσcII

⎤

⎦ (11)
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the chain rule takes the form

∂σ c

∂ε
= ∂σ c

∂σ cp

∂σ cp

∂εp

∂εp

∂ε
+ ∂σ c

∂ cos 2θ

∂ cos 2θ

∂ε
(12)

where cos 2θ has been chosen as the principal ori-
entation angle variable for convenience. By intro-
ducing εm = (εxx + εyy)/2, εd = (εxx − εyy)/2 and εr =√
ε2

d + ε2
xy, the double-angle sine and cosine can be

expressed simply as

sin 2θ =−εxy

εr
, cos 2θ = εd

εr
(13)

and the derivatives of εI= εm + εr and εII= εm − εr
can be found directly as

∂εp

∂ε
= 1

2εr

[
(εr + εd) (εr − εd) εxy
(εr − εd) (εr + εd) −εxy

]
(14)

Based on (11) and the relations in (13), the remaining
components of (12) can be established as

∂σ c

∂σ cp
= 1

2εr

[
(εr + εd) (εr − εd) εxy
(εr − εd) (εr + εd) −εxy

]T

(15)

and

∂σ c

∂ cos 2θ
= σcI − σcII

2εxy

[
εxy, −εxy, −εd

]T

∂ cos 2θ

∂ε
= εxy

2ε3
r

[
εxy, −εxy, −εd

]
(16)

where it is utilized that d( sin 2θ )/d( cos 2θ )=
− cot 2θ =−εd/εxy. In effect, (12) is seen to yield a
positive semidefinite matrix for εr > 0. Since εr = 0
corresponds to an un-strained material, the concrete
stiffness can be taken as uncracked and linear-elastic in
this special case. Due to the complexity of the expres-
sion for ∂σ c/∂ε, the integrals in (7) are evaluated
numerically.

5 FINITE ELEMENT MODEL

5.1 Stress-based, geometrically linear model

For the geometrically linear analysis, a stress-based
finite element introduced by (Vestergaard et al. 2022)
is used within a convex optimization framework based
on the principle of minimum complementary energy.
Using the in-plane section forces and moments n
and m as the primary degrees-of-freedom (dofs), this
type of finite element rigorously satisfies equilibrium
within and between elements. The dofs are chosen
such that they define a linear and quadratic varia-
tion of n and m, respectively, and in 10 points within
the element, these generalized stresses are coupled
to the section stress variation using a discrete layer

model. Based on these stress variations, the comple-
mentary energy is given for each submodel point,
which is interpolated and integrated assuming a cubic
variation within each element. The element and the
layer submodel are illustrated in Figures 3 and 4,
respectively.

Figure 3. Stress-based element. Left: Location of dofs and
submodel points. Right: Equilibrium between element sides.

Figure 4. Layer submodel with five discrete layers.

By stating the principle of minimum complemen-
tary energy as a convex optimization problem, the
problem can be solved efficiently and robustly by
commercial convex optimization algorithms.

5.2 Displacement-based, geometrically nonlinear
model

In the geometrically nonlinear analysis, the Constant
Strain Triangle (CST) and Specht’s element (Specht
1988) are used to model the in-plane and out-of-plane
(bending) behavior, respectively. The elements and
their dofs are illustrated in local coordinates (denoted
by a superscript “�”) in Figure 5.

Figure 5. CST and Specht element dofs.

731



Collecting the CST and Specht’s element dofs in
v�ε and v�κ , respectively, the three-dimensional element
displacement field can be represented as

[
uε(ξ )
uκ (ξ )

]

︸ ︷︷ ︸
u(ξ )

=
[

Nε(ξ )
Nκ (ξ )

]

︸ ︷︷ ︸
N(ξ )

[
v�ε
v�κ

]

︸ ︷︷ ︸
v�

(17)

where uε(ξ ) and uκ (ξ ) are the in-plane and out-of-
plane displacement fields, and Nε(ξ ) and Nκ (ξ ) are
the CST and Specht interpolation matrices. In the fol-
lowing, the dependence on the spatial coordinates ξ is
made implicit to simplify notation.

Introducing the linear and nonlinear strain interpo-
lation matrices B and {Gxx, Gyy, Gxy}

B=
[

∂1
∂2

]
N , Gij =NT

,i N,j + NT
,j N,i (18)

as well as the index vectors I1= [ 1, 0, 0, 0, 0, 0 ]T ,
I2= [ 0, 1, 0, 0, 0, 0 ]T , and I3= [ 0, 0, 1, 0, 0, 0 ]T ,
the generalized strain-displacement relation (3) can be
expressed as

ε̄=Bv� + 1

2
I1

(
v�
)T

Gxxv�...

...+ 1

2
I2

(
v�
)T

Gyyv� + 1

2
I3

(
v�
)T

Gxyv�

:= ε̄L(v�)+ ε̄NL(v�)

(19)

where ε̄L and ε̄L are introduced as the linear and
nonlinear generalized strain functions, respectively.

Any virtual displacement field δu is represented
analogously to the physical displacement field, i.e., as
δu=Nδv�, giving rise to a virtual generalized strain
field of the form

δε̄= ∂ ε̄
∂v�
δv�=Bδv� + I1

(
v�
)T

Gxxδv�...

...+ I2
(
v�
)T

Gyyδv� + I3
(
v�
)T

Gxyδv�

:= δε̄L(δv�)+ δε̄NL(v�, δv�)

(20)

where δε̄L and δε̄L are introduced as the linear and
nonlinear generalized virtual strain functions, respec-
tively.

6 STABILITY ANALYSIS BY THE PRINCIPLE
OF VIRTUAL WORK

The displacement field within an element is decom-
posed into a component related to the element nodal
forces, u1(q�), and an independent perturbation, εu2
where ε� 1:

u=u1(q�)+ εu2=N
(
v�1(q�)+ εv�2

)
(21)

In the neighborhood of a given state {u0,q�0}, the
relation between the nodal load vector q�= λq�0 and

the load-dependent nodal displacement vector v�1 is
assumed to be well-approximated by the first-order
Taylor expansion:

λq�0=q�0 +
∂q�

∂v�1

∣∣∣∣
0

(
v�1 − v�1,0

)

�v�1= (λ− 1)v̂� + v�1,0 , v̂�= (
k�T

)−1
q�0

(22)

where k�T= (∂q�/∂v�1)|0 is identified as the element
tangent stiffness matrix. Assuming that the strain field
produced by u1 is dominated by the linear term, the
strain field can be approximated as

ε̄� ε̄L(v�1 + εv�2)+ ε̄NL(εv�2)

= ε̄L(v�1 + εv�2)+O(ε2)

= (λ− 1)Bv̂� + Bv�1,0 + εBv�2 +O(ε2)

(23)

where O(ε2) is negligible since ε� 1. The virtual
strains are assumed to be load-independent, i.e.,

δε̄= δε̄L(δv�)+ δε̄NL(v�2, δv�)

=
(

B+ εI1
(
v�2
)T

Gxx + εI2
(
v�2
)T

Gyy ...

... +εI3
(
v�2
)T

Gxy

)
δv�

(24)

Using the linearized relation between the generalized
stresses and strains (6), the virtual internal work in a
finite element can be approximated as

δW e
int =

∫

A
δε̄T σ̄ dx�

∫

A
(δv�)T (

BT ...

... +εGxxv�2IT
1 + εGyyv�2IT

2 ...

... +εGxyv�2IT
3

) (
σ̄ 0 + (λ− 1)DTBv̂ ...

... +DT
(
Bv�1,0 − ε̄0

)+ εDTBv�2
)

dA

(25)

where, by definition, Bv�1,0 − ε̄0= 0 and σ̂ =DTBv̂�
σ̄ 0 for a well-interpolated strain field. By expanding
the expression and neglecting terms containing ε2, the
virtual internal work can be approximated as

δW e
int � (δv�)T (q�0 + (λ− 1)k�Tv̂...

...+ ε
[
k�T + k�g + (λ− 1)k̂

�

g

]
v�2
) (26)

where

q�0=
∫

A
BT σ̄ 0 dA , k�T=

∫

A
BT DTB dA

k�g=
∫

A
IT

1 σ̄ 0Gxx + IT
2 σ̄ 0Gyy + IT

3 σ̄ 0Gxy dA

k̂
�

g=
∫

A
IT

1 σ̂Gxx + IT
2 σ̂Gyy + IT

3 σ̂Gxy dA

(27)
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To allow evaluation of the integrals containing DT, its
components are assumed to vary linearly between the
submodel points.

By expanding (26) to system level,

δWint = δVT
(

Q0 + (λ− 1)KTV̂ ...

... +ε
[
KT +Kg + (λ− 1)K̂g

]
V2

) (28)

and stating the external virtual work in terms of the
current load vector R0,

δWext = λδVT R0 (29)

the principle of virtual works leads to the following
equation:

(λ− 1)
(

KTV̂− R0

)
...

...+ ε
[
KT +Kg + (λ− 1)K̂g

]
V2= 0

(30)

It is seen that the first term is simply a linear system
of equations requiring equilibrium of the current state,
while the second term is a linear eigenvalue problem
which must be satisfied for any nonzero perturbation
ε. Note that for a well-interpolated strain field where
Kg= K̂g, this closely resembles the well-known linear
buckling problem from linear elasticity.

7 EXAMPLES

7.1 Validation: Euler column

To assess the accuracy of the proposed method, a rein-
forced concrete concrete wall with simple end-point
supports is analyzed and compared to the solution for
an Euler column. The wall has the height h= 3 m, the
width b= 1 m and the thickness t= 0.2 m, and it is
reinforced in the longitudinal direction with two lay-
ers of Ã˜8 mm bars per 150 mm (As= 335 mm/m)
positioned as zs=±71 mm. The reinforcement has
the stiffness Es= 200 GPa for absolute stress values
smaller than fY = 500 MPa, and the reduced stiff-
ness Hs= 0.08fY/(εu − fy/Es)=Es/257.5 for stresses
beyond this limit where εu = 0.05 is the ultimate rein-
forcement strain. Note that this corresponds to the
requirements for Class B reinforcement as specified
in (EN1992 2004). The concrete has the compres-
sive stiffness Ec= 33 GPa for compressive stresses
not exceeding fc= 30 MPa, and the reduced stiffness
Hc=Ec/2575 for compressive stresses exceeding this
value. The maximum initial eccentricity of the wall is
taken as e1= 20 mm.

A simple approach for estimating the critical buck-
ling load of an Euler column consists of analyzing
the stress/strain state of the critical section only (the
mid-section), and including the second-order effect in
terms of an initial imperfection e1 and an assumed cur-
vature variation along the column. Thus, by assuming
a triangular curvature distribution at the critical load

(which is more accurate than a sine distribution when
localization can occur), a baseline result for the critical
buckling load can be determined using the following
approach:

1. Choose the applied axial compressive load p> 0
2. Assume ε0
3. Find κ ≥ 0 such that n(ε0, κ)=−p and compute

m(ε0, κ)
4. Compute the mid-section displacement e2=(

L2

12

)
κ

5. Compute the residual moment capacity m0=
m(ε0, κ)− p (e1 + e2)

The steps 2–5 are repeated for different values of ε0 as
to find the maximum of m0. By performing this process
for increasing values of p, the critical load pcr can be
found as the axial load for which the residual moment
capacity m0 vanishes. Using this approach, the critical
load is estimated as pest

cr = 4.37 · 103 kN/m.
The wall cross-section is modelled using 10 con-

crete layers in the stress-based analysis and a regular
mesh of 3× 10 rectangular tiles of 4 finite elements
each. The predicted critical load pcr is shown as a
function of the applied load p in Figure 6.

Figure 6. Predicted critical load for Euler wall as a function
of the applied load.

For low load levels, the predicted critical load cor-
responds to the Euler load for an uncracked section,
pE= 24.9 · 103 kN/m= 5.70pest

cr , since the whole sec-
tion is in compression. For higher load levels, the
predicted critical load decreases until crossing the line
pcr = p at p= 1.11pest

cr , i.e., 11% higher than the esti-
mated value. This corresponds to the critical buckling
load as predicted by the proposed method. Note that
the pest

cr is expected to be lower than the actual critical
buckling load due to the simplified calculation pro-
cedure, e.g. the assumed curvature variation. Thus, a
part of the 11% deviation is presumably due this, while
another part is due to the assumption of a linear strain-
displacement relation for loads lower than the critical
buckling load in (23).

7.2 Demonstration: wall with door hole

As a demonstration of the applicability of the method
to practical design scenarios, a rectangular reinforced
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concrete wall with a door hole is considered; see Fig-
ure 7.The wall is b= b1 + b2 + b3= 5 m wide and h=
h1 + h2= 3 m high, and the door hole with dimensions
b2 × h1= 1 m × 2 m is positioned b1= 3 m from the
leftmost edge. The wall is supported along all direc-
tions along the bottom and against transverse move-
ment along the top, and it is subjected to a distributed
vertical load p with an out-of-plane eccentricity ep=
20 mm causing also the bending moment mp= pep. As
in the previous example, the wall is t= 0.2 m thick, it
is orthogonally reinforced with two layers of Ã˜8 mm
steel bars per 150 mm positioned at zs,i =±71 mm, and
the material strength and stiffness parameters are taken
as fY = 500 MPa, Es= 200 GPa and Hs=Es/257.5 for
the reinforcement, and fc= 30 MPa, Ec= 33 GPa and
Hc=Ec/2575 for the concrete.

Figure 7. Wall with door hole.

In this case, a simple estimate for the critical buck-
ling load can be obtained by considering the segment
to the right of the door hole as an Euler column sub-
jected to the axial load (1+ b2/2b3)p= 1.5p. Using
the approach described in Section 7.1, this results in
the estimate pest

cr = 2.92 · 103 kN/m.
The wall cross-section is modelled using 5 concrete

layers in the stress-based analysis, and an unstructured
mesh of 345 elements produced by MESH2D (Eng-
wirda 2014). The predicted critical load pcr is shown
as a function of the applied load p in Figure 8 where
the axes have been normalized with respect to pest

cr .

Figure 8. Predicted critical load for wall with door hole as
a function of the applied load.

It is seen that the range of the initial and final nor-
malized critical buckling loads are similar to those of
the previous example; however, the decrease in the
critical buckling load is more gradual than in the pre-
vious example due to the progression of the tensile
zone in the lintel. The buckling modes obtained from
the eigenvectors in load steps 1 and 10, respectively,
are shown in Figure 9. From these, it is clear that in
load step 1 the part to the right of the door hole is stiff-
ened by the lintel, whereas in load step 10 the buckling
mode has localized due cracking and yielding in the
lintel.

Figure 9. Buckling modes for wall with door hole.

The solution time for the geometrically linear and
geometrically nonlinear problem is shown for each
load step in Figure 10. It is seen the solution time is
approximately 30 s per load step, and that approx. 75%
of the solution time goes to solving the geometrically
linear problem. Note that each load step is indepen-
dent, i.e., in the context of design verification, a single
load step is, in principle, sufficient to check if the
design load is higher or lower than the critical buckling
load.
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Figure 10. Solution time for wall with door hole.

8 CONCLUSIONS

A framework for stability analysis of cracked rein-
forced concrete walls has been presented. Consisting
of a two-step procedure, the framework finds the
cracked tangent stiffness of the reinforced concrete
sections in a stress-based, geometrically linear finite
element analysis using convex optimization, and sub-
sequently poses a linearized buckling problem which
is solved as a linear eigenvalue problem. By perform-
ing the two-step procedure for a sequence of loads,
the critical buckling load is estimated with increasing
accuracy as the applied load approaches the critical
buckling load. The method was validated by com-
paring the solution for a wall with simple end-point
supports to that of an Euler column, showing a slight
overestimation of the critical buckling load. Finally,
the applicability of the method to practical design
scenarios was demonstrated on a reinforced concrete
wall with a door hole, which produced results in the
expected range and solution times of approximately
30 seconds per load step.
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Design of steel fiber reinforced concrete tunnel lining segments by nonlinear
finite-element analysis with different safety formats

G.E. Neu, V. Gudžulić & G. Meschke
Institute for Structural Mechanics, Ruhr University Bochum, Germany

ABSTRACT: The use of Nonlinear Finite Element Analysis (NLFEA) for the assessment of structures requires
special considerations regarding the employed safety format. While some guidelines are available, the provided
information is focused on Reinforced Concrete (RC) and the application for Steel Fiber Reinforced Concrete
(SFRC) structures is not addressed. In order to evaluate the application of NLFEA and the use of SFRC as
reinforcement scheme for segmental tunnel lining design, a multi-level model for the analysis of SFRC structures
is used. This multi-level SFRC model allows to directly assess the influence of a chosen fiber type, content and
fiber orientation on the structural response. The post-cracking behavior is captured by a discrete crack model
based on cohesive interface elements. After a brief introduction of the numerical model and the use of safety
formats in NLFEA, the influence of the applied safety format on the local structural response of a SFRC beam
subjected to 3-point bending is investigated. The proposed multi-level SFRC model is used to carry out a full
probabilistic analysis due to its capability to capture the influence and scatter of important SFRC parameters.
Finally, a segmental lining ring subjected to earth & water pressure is designed using different safety formats.
In order to discuss the influence of the reinforcement scheme, the design by NLFEA is carried out for SFRC as
well as RC segments. It is shown that the use of NLFEA can result in a greatly increased design resistance and
that SFRC segments offer a better performance compared to RC segments.

1 INTRODUCTION

The circular lining in mechanized tunneling consists
of concrete segments, which are exposed to different
loading cases during tunnel construction. Reinforced
concrete linings were typically designed using tradi-
tional steel reinforcement bars, but SFRC is used in
more and more mechanized tunneling construction
projects due to their economic benefits and service-
ability performance (Bakshi & Nasri 2017; Carlo,
Meda, & Rinaldi 2016). Difficulties arise for the
design of SFRC segmental linings, because the cur-
rent versions of many design codes do not explicitly
account for the dimensioning and design of SFRC
structures and therefore a specific set of guidelines
determining the SFRC design process must contrac-
tually be agreed upon. In general, the post-cracking
response of SFRC is affected by the size, shape, con-
centration as well as orientation of the fibers. Within
the framework of available guidelines, the residual
strength of an SFRC is characterized by bending tests
and therefore the above listed fiber properties are
not explicitly accounted for in the design. In this
contribution, a multi-level model for the analysis of
SFRC structures is used, which allows to directly
assess the influence of a chosen fiber type, con-
tent and fiber orientation on the structural response

(Zhan & Meschke 2016). Based on the explicit fiber
geometry, the interface conditions, the material prop-
erties and an assumed fiber orientation, the model
generates an equivalent traction-separation law. In
order to evaluate the post-cracking response of SFRC
structures by Finite-Element (FE) analysis, a discrete
crack approach using interface-elements (Ortiz & Pan-
dolfi 1999), whose post-cracking behavior is governed
by the derived traction-separation law, is used.

The focus of this work is to use non-linear FE
analysis (NLFEA) to design a SFRC tunnel lining
segment. The use of NLFEA requires special con-
siderations regarding the employed safety concept
(Castaldo, Gino, Bertagnoli, & Mancini 2018) and
heavily influences the resulting structural design. In
order to ensure the required probability of failure,
(fib Model Code for Concrete Structures 2010 2013)
proposes different methods for the verification of a
structural system. While (fib Model Code for Con-
crete Structures 2010 2013) provides some guidance
for the use of these safety formats in conjunction
with NLFEA, only with (Hendriks & Roosen 2020)
a specific guideline for the application of NLFEA
for the design of concrete structures is available. Fur-
thermore, the provided information is focused on
RC and the application on SFRC structures is not
addressed.
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The structure of the paper is as follows: After a
brief introduction of the numerical model (Section 2)
and the use of safety formats in NLFEA (Section 3),
the influence of the applied safety format on the local
structural response of a SFRC member is investigated
(Section 4). For this purpose, 3-point bending tests of a
previously carried out systematic validation campaign
(Gudzulic, Neu, Gebuhr, Anders, & Meschke 2020)
are re-analyzed by adopting the different safety for-
mats. For a fully probabilistic analysis the proposed
multi-level SFRC model is employed so that the influ-
ence and scatter of important material parameters can
be assessed. In the last section (Section 5), a segmen-
tal lining ring subjected to earth & water pressure is
designed using different safety formats. In order to
discuss the influence of the reinforcement scheme, the
design by NLFEA is carried out for SFRC as well as
RC segments.

2 MODELING OF STEEL FIBER AND
CONVENTIONAL REINFORCED CONCRETE

Steel fibers provide a residual strength after onset of
cracking depending on the type, content and orienta-
tion of the fibers. Available guidelines (i.e. (fib Model
Code for Concrete Structures 2010 2013)) characterize
the residual strength of SFRC based on bending tests
and derive uniaxial stress-strain relationships for Ulti-
mate Limit State (ULS) and Service Limit State (SLS)
design. As an alternative, a multi-level SFRC model

Figure 1. Multi-level modelling of SFRC: Semi-analytical model for single fiber pull-out considering various ’key states’
during elongation, plastification and concrete spalling of hooked-end fibers (fiber Scale); Integration of the pull-out response
of all fibers crossing a representative crack and considering their orientation to calculate the traction-separation law (Crack
Scale); Modeling of discrete cracks via zero-thickness interface elements inserted between the regular bulk elements and
validation for bending tests on notched beams (Structural Scale).

has been developed in (Zhan & Meschke 2016), which
allows to directly assess the influence of the individ-
ual fiber type and the fiber cocktail on the structural
behavior.As illustrated in Figure 1, the proposed multi-
level model consists of submodels related to three
different scales involved in the numerical analyses of
SFRC structures.

2.1 Fiber scale – single fiber pullout behavior

At the level of the individual fibers and the matrix, the
pull-out behavior of a single fiber is controlled by the
interface conditions, the fiber shape and the fiber incli-
nation with respect to a crack.A semi-analytical model
predicting the pullout force-displacement relation of
single fibers F(w, θ , x̃), which depends on the posi-
tion of the centroid x̃ and the inclination θ of the fiber
with respect to the crack plane (Figure 1, left) has been
developed in (Zhan & Meschke 2014). The model is
capable of capturing the major mechanisms (straight-
ening of the hooked-end, concrete spalling and fiber
rupture) activated during the pullout of a single steel
fiber embedded in a concrete matrix, accounting for
different configurations of fiber type and strength,
concrete strength, fiber inclination and embedment
length (see Figure 1, left). The basis of the semi-
analytical model is the specification of a stress-slip
relationship τ (s) along the interface between fiber and
concrete (Figure 1, left), which reflects the three stages
of the single fiber pull-out process (bonded state,
debonding stage and sliding phase). The plastification
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of the hooked-end and thereby its straightening during
pull-out is captured by multiple characteristic key-
states (Figure 1, left bottom) based on (Laranjeira,
Molins, & Aguado 2010). The contribution of the
hooked-end is calculated by taking the explicit fiber
hooked-end geometry and the interaction with the
surrounding concrete matrix into account. Concrete
spalling and fiber rupture are considered based on
(Laranjeira, Molins, & Aguado 2010).

2.2 Crack scale – crack bridging stress

At the level of an opening crack within the fiber-
concrete composite, the fibers crossing the crack are
activated and ensure a residual post-cracking strength
depending on the fiber content and the fiber orienta-
tion. In the multi-level SFRC model, the post cracking
response is approximated by a traction-separation law
which is derived via the integration of the pullout
force-displacement relations F(w, θ , x̃) of all single
fibers intercepting the crack (Figure 1, center) and
taking an anisotropic orientation of fibers into consid-
eration (Zhan & Meschke 2016). According to (Wang,
Backer, & Li 1989), the bridging stress of SFRC
tfibers(w) is estimated by

tfibers(w)=
Lf /2∫

x̃=0

⎡

⎢
⎣

acos(2x̃/Lf )∫

θ=0

F(x̃, θ , w) p(θ ) dθ

⎤

⎥
⎦ ...

... p(x̃) dx̃ · cf

Af
, (1)

where cf is the volume fraction of the fibers and Af
and Lf are the cross-section area and length of one
fiber, respectively. The spatial dispersion characteris-
tics of the fibers in the composite is represented by
the probability densities p(θ ) as functions of the incli-
nation angle θ and embedment length x̃ of the fiber.
The spatial orientation of fibers is depending on the
dimensions of the structural member and the cast-
ing direction. In principle, the complete and general
description of the fiber orientation requires a distri-
bution function w.r.t. all spatial directions, which can
be obtained by simulations of the casting procedure
(Gudzulic, Dang, & Meschke 2018). In order to cap-
ture the anisotropic fiber orientation as a consequence
of the casting procedure in a straightforward and prac-
tical manner, (Zhan & Meschke 2016) proposed a
method to compute the probability density p(θ ) based
on a given fiber orientation profile λcast = [a, b, c].
The spatial preference of the fibers in the global
coordinate system is represented by means of an ellip-
soid, with the semi-axes a, b, and c representing the
assumed fiber orientation profile (Figure 1, center).
An isotropic fiber orientation can be graphically rep-
resented by a sphere with the fiber orientation profile
λcast = [0.33, 0.33, 0.33]). The distribution of fibers is
considered to be homogeneous, so that p(x̃) is reduced
to the constant 2

Lf
(Wang, Backer, & Li 1989).

The resulting post cracking response of the fiber-
concrete composite t(w) is composed of the fiber

bridging stresses tfibers(w) and the cohesive traction
of the plain concrete tcoh(w)

t(w)= tcoh(w)+ tfibers(w) , (2)

where the cohesive traction of the plain concrete
tcoh(w) is described by an exponential softening law
taking the uniaxial tensile strength ft of the SFRC and
the mode I fracture energy GF ,I into account.

2.3 Structural scale – discrete crack model with
interface elements

At the structural level, the post-cracking behavior is
captured by a discrete crack model based on cohesive
interface elements (Ortiz & Pandolfi 1999). Between
the regular finite elements (bulk elements), zero-
thickness interface elements are inserted (Figure 1,
right), which allow a discrete mapping of cracks and
provide direct information on crack widths. There-
fore, a sufficiently fine mesh is required to accurately
predict the crack pattern and not restrict the crack
initiation and propagation. The behavior of the zero-
thickness interface elements is governed by the trac-
tion separation law derived on the crack scale with
the multi-level SFRC model, but it should be noted
that also arbitrary stress-crack opening relationships
can be used (i.e. the stress-crack opening relationships
proposed in the fib model code 2010 for modeling
the tensile behavior of SFRC at SLS and ULS). The
bulk material is assumed to behave as a linearly elastic
material.

For the convenient use of the traction-separation
law in FE simulations, the integral in Eq. (1) is numer-
ically evaluated and replaced by an analytical surrogate
function

t(α) = ( ft − t1) exp(− α

Gf /ft
)+ ... (3)

...+ t1
wu − α

wu
+ t2 α exp(c1 − c2α) ,

where t1, t2, c1 and c2 are coefficients, which are
determined by fitting the surrogate function to the
numerical evaluation of Eq. (1). The parameter wu
represents the ultimate crack opening and can also be
used for obtaining a better fit. The crack opening w is
replaced by the effective separation α to account for
multi-axial stress states:

α=
√

u2
N +
β2
τ

κ2
u2

T . (4)

In Eq. (4), uN is the normal and uT the tangen-
tial separation of the interface element. Based on
(Snozzi & Molinari 2013), the parameter βτ controls
the shear strength (τSFRC =βτ ft) and the parameter κ
defines the ratio between mode II and mode I fracture
energy (κ = GF ,II

GF ,I
). In this study values of βτ = 5 and

κ = 20 are used. The integration of the constitutive
rate equations is performed following the IMPL-EX
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algorithm (Oliver, Huespe, & Cante 2008) to enhance
the robustness of the solution procedure.

In order to account for reinforcement bars if present,
the rebars are modeled as linear trusses and coupled
with the concrete matrix using a constraint condition
between control points located on the rebar elements
and their respective projection points within the solid
elements in which they are embedded (Gall, Butt,
Neu, & Meschke 2018). The constraint condition
includes the bond-slip mechanism as provided in (fib
Model Code for Concrete Structures 2010 2013). The
steel behavior itself is considered with an elastoplastic
v. Mises yield surface with linear hardening.

3 SAFETY CONCEPTS

A structure should be designed that the action E is not
exceeding the resistance R as

E(e)≤R(r). (5)

The action as well as the resistance are in general ran-
dom variables and may vary throughout the lifetime
of a structure. Loads can be acting persistently, tem-
porarily or on rare occasions and therefore result in
different states of actions. Those situations have to be
taken into account during the design and their respec-
tive frequency should be considered accordingly. The
resistance is depended on the structural properties,
which can be time dependent as well as scattering due
to material uncertainties. In order to verify entire struc-
tures, structural elements or local regions, limit state
design principles are adopted which using a limit state
function g to separate acceptable from unacceptable
states of the structure. An unacceptable state or failure
is represented as

g(E, R)=R(r)− E(e)≤ 0, (6)

when the limit state function can be separated into a
resistance and a loading function. It is assumed that the
action E(e) and the resistance R(r) can be described by
log-normal distributions (fib Model Code for Concrete
Structures 2010 2013). The area between the probabil-
ity density functions, where E(e) is greater than R(r)
represents the failure probability Pf (Figure 2, shaded
area). The purpose of structural design is to reduce the
failure probability to an acceptable value. Often the
reliability index β is used to ensure a sufficient dis-
tance between the limit state g(E, R)= 0 and the two
probability density functions (Figure 2).The reliability
index β is related to the failure probability by the dis-
tribution function of standardized normal distribution
� as

Pf =�(− β). (7)

The safety formats given in (fib Model Code for
Concrete Structures 2010 2013) as well as the (Euro-
pean Comittee for Standardisation 2002) are formu-
lated to ensure a certain failure probability Pf . The

Figure 2. Definition of the limit state regarding log-normal
distributions of actions E and the resistance R. The failure
probability Pf corresponds to the area where the resistance
is smaller than the action.

definition of the failure probability is a compromise
between the economic feasibility and the safety of the
structure. The variability of the loads and the mate-
rial parameters is taken into account so that a certain
failure is accepted under rare conditions (i.e. strongest
loading and worst possible material strength).The con-
sequence and type of failure is also considered by
different failure probabilities in the Ultimate Limit
State (ULS) as well as the Service Limit State (SLS).
For example, a failure probability of Pf = 7.2 · 10−5

for the load bearing capacity in the ULS and a fail-
ure probability of Pf = 0.067 in the SLS are required
for a reference period of 50 years assuming conse-
quence class CC2 (i.e. reliability class RC2) according
to (European Comittee for Standardisation 2002).
Expressed in terms of the reliability index, a value
of β = 1.5 for the SLS and β = 3.8 for the ULS are
required.

3.1 Safety formats for NLFEA

In order to assess the structural reliability by NLFEA,
the design criterion according to (fib Model Code for
Concrete Structures 2010 2013) can be expressed as

Fd ≤Rd = RNLFEA

γR · γRd
, (8)

where Fd is the design value of actions (i.e. formu-
lated in terms of external loads or displacements)
and RNLFEA is the global resistance of a structure
evaluated by NLFEA. The global resistance safety
factor γR accounts for the uncertainty of the mate-
rial properties and is dependent on the chosen safety
format. The global safety factor γRd accounts for the
model uncertainties and its value has not been con-
clusively clarified. In (fib Model Code for Concrete
Structures 2010 2013), values from γRd = 1.06 for
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non-linear models with low uncertainty up toγRd = 1.1
for non-linear models with high uncertainty are pro-
posed. Explicit definitions to classify the uncertainty
of the model are not provided. In case of bending fail-
ure, (Hendriks & Roosen 2020) recommends a value
of γRd = 1.06. If other or mixed types of failure occurs,
a value of γRd = 1.15 should be used.

In contrast to the assessment of structural members
by local cross-sectional verification used in engineer-
ing practice, a NLFEA of a structural member can
capture the redistribution of stresses and therefore
offers a higher level of approximation of the global
behavior. This also requires a global definition of
failure and a evaluation if the model can capture
all possible failure modes. In the following differ-
ent safety formats proposed in (fib Model Code for
Concrete Structures 2010 2013) are described.

Partial Safety Factor method (PSF)
The most common approach for the verification of
structures is the partial safety factor method and is
commonly applied for the evaluation of local material
points. It is a simplified verification concept where
actions and material properties are modified by partial
safety factors to achieve the required level of safety.
The partial safety factors given in (European Comit-
tee for Standardisation 2002) are based on reliability
indexes β = 1.5 for the SLS and β = 3.8 for the ULS
for a period of 50 years. If a different failure proba-
bility is required, the partial safety factors has to be
adjusted. The design resistance is obtained by using
the design values of the material properties in a single
NLFEA:

Rd,PSF = R( fcd , fctd , ...)

γRd
. (9)

No global resistance safety factor γR is applied,
because the material properties are already modified
by partial safety factors (i.e. fcd = fck/1.5). A concern,
especially when using the PSF in NLFEA, is that the
application of safety factors on the material properties
can influence the global failure mode.

Global Resistance Factor method (GRF)
Using the global resistance factor method, the struc-
tural resistance can be expressed by

Rd,GRF = RNLFEA( fcmd , fctmd , ...)

1.2 · γRd
. (10)

The global resistance safety factor is chosen to γR=
1.2 according to (fib Model Code for Concrete Struc-
tures 2010 2013). The material properties for the
GRF are derived from the characteristic mechanical
properties. The characteristic material properties of
the concrete (fracture energy, compressive and ten-
sile strength) are multiplied by a factor of 0.85 (i.e.
fcmd = 0.85fck ) while the yield strength of the rein-
forcement is calculated by fym= 1.1fyk . In this way,
the GRF is approximately consistent with the PSF and
therefore based on the same reliability index β = 3.8
(Castaldo, Gino, Bertagnoli, & Mancini 2018).

Method of estimating the coefficient of variation of
the structural resistance (ECoV)
The global resistance using the ECoV method can be
calculated by

Rd,ECoV = RNLFEA( fcm, fctm, ...)

γR · γRd
(11)

using the structural resistance predicted by a NLFEA
considering the mean values of the material properties.
A log-normal distribution for the global load bearing
capacity is assumed (see Figure 2) and therefore the
global resistance safety factor can be written as:

γR= exp(αR · β · VR), (12)

where αR is the FORM sensitivity factor (αR= 0.8 in
accordance to (fib Model Code for Concrete Struc-
tures 2010 2013)), β is the required reliability index
(can be explicitly defined) and VR is the coefficient
of variation of the the global structural resistance. The
coefficient of variation can be estimated as

VR= 1

1.65
ln

(
RNLFEA( fcm, fctm, ...)

RNLFEA( fck , fctk , ...)

)
, (13)

where the variance between the structural resistance
predicted by two NLFEA, considering the mean as well
as the characteristic values of the material properties,
are used.

Probabilistic Method (PM)
The structural reliability can directly be calculated by
the probabilistic method. In order to do so, the material
parameters have to be modeled by a suitable uncer-
tain variable. In general, a parameter is uncertain, if
it is concerned with randomness or a lack of knowl-
edge, and it can be classified into aleatory or epistemic
uncertainty. Aleatory uncertainty is characterized by
variability and can be represented by random variables,
which are quantified by probability density functions.
For example, the concrete strength can be modeled by
a log-normal distribution (distribution parameters has
to be chosen on the corresponding strength class) and
material parameters with a strong correlation (i.e. the
tensile strength and the fracture energy) can derived
from the concrete strength by the formulas given in
(fib Model Code for Concrete Structures 2010 2013).
In case of epistemic uncertainty, which is characterized
by limited data and lack of knowledge, intervals can
be used to quantify the range of a parameter (i.e. the
influence of the fiber orientation on the post-cracking
behavior of SFRC).

By adopting a sampling technique, i.e Latin Hyper-
cube Sampling, corresponding input data for the spec-
ified number of samples is generated. In order to cal-
culate the failure probability explicitly, the following
Equation has to be evaluated:

Pf (RNLFEA − Fd ≤ 0)≤Pf ,requiered . (14)

A number of NLFEA in the magnitude of the fail-
ure probability (≈ 106 for ULS) has to be carried out
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for an accurate estimate of the failure probability. To
overcome the related computational costs, surrogate
models can be used to replace the simulation model
(Neu, Edler, Freitag, Gudzulic, & Meschke 2022) or
the numerical results of several NLFEA can be fitted
by an appropriate probabilistic model (Castaldo, Gino,
Bertagnoli, & Mancini 2018).

4 INFLUENCE OF THE SAFETY FORMAT ON
THE SFRC STRENGTH

In order to investigate the influence of the applied
safety concept on the local structural response, the
results of a previously carried out validation campaign
of the Multi-Level FRC model (Sec. 2) for Dramix
3D 65/60 hooked-end steel fibers are taken as a basis
(Gudzulic, Neu, Gebuhr, Anders, & Meschke 2020).
The experimental results (light grey) and the numerical
prediction (straight black line, donated as ’Valida-
tion’) of the 3-point bending tests on notched beams
(150x150x600 mm) with a fiber content of 57 kg/m3

are shown in Figure 3.

Figure 3. Experimentally and numerically obtained nom-
inal Stress vs. CMOD curves of 3-point bending tests on
notched SFRC beams. A comparison between the validation
results and the different investigated safety concepts.

4.1 Safety formats – PSF, GRF & ECoV

Within the framework of the experimental campaign,
only the mean value of the compressive strength
was determined ( fc= 112 N/mm2) and therefore a
C100/115 concrete is assumed for the following eval-
uation of the different safety formats. The material
properties are calculated in accordance to (fib Model
Code for Concrete Structures 2010 2013). For the
post-cracking response of the SFRC, the traction-
separation law tfibers(α) including the values for the
coefficients (see Eq. 3) derived in (Gudzulic, Neu,
Gebuhr, Anders, & Meschke 2020) is used as a basis.
The material parameters are given in Table 1. None
of the available guidelines for the structural design

by NLFEA contains information regarding the use of
SFRC. Therefore, the same reduction factors for the
post cracking response of SFRC as for the concrete
properties are used (Tab. 1, right column). As no char-
acteristic values for the residual strength of SFRC are
defined, the fiber response tfibers(α) is reduced through
a multiplication of the traction by a value of 0.85.

Table 1. Material properties used in the NLFEA.

ft [N/mm2] GF ,I [N/mm] γFRC · tFRC (α)

PM Log-Normal 0.073 · f 0.18
c 1.0

PSF 2.47 (fcd ) 0.0797 1/1.5
GRF 3.16 (0.85 fctk ) 0.1016 0.85
ECoVm 5.30 (fctm) 0.1707 1.0
ECoVk 3.71 (fctk ) 0.1195 0.85

The resulting nominal stress – Crack Mouth Open-
ing Displacement (CMOD) curves are shown in Figure
3. In terms of the three-point bending test all safety
concepts show a similar response. The ECoV method
utilize a higher tensile strength, which results in a
higher first peak in comparison to the GRF and PSF
method. The assumption for the characteristic val-
ues of the residual SFRC strength seems reasonable
due to the good agreement between the PSF and the
GRF/ECoV approaches.

4.2 Probabilistic method

The choice of the model used to capture the uncer-
tainty of a material property and the considered range
have a great influence on the calculated failure prob-
ability by the PM. In order to quantify the influence
of the different material parameters on the structural
response, a parametric study is carried out first. Three
different sets of input parameters are identified:

• Concrete strength: The tensile strength is mod-
eled as log-normal distribution corresponding to a
C100/115 concrete (µ= 5.3, σ = 0.94). The com-
pressive strength, the elasticity modulus and the
fracture energy are calculated according to (fib
Model Code for Concrete Structures 2010 2013)
based on the tensile strength.

• Fiber orientation and distribution:An isotropic fiber
orientation is considered by a spherical distribu-
tion of the probability density p(θ ) (see Eq.1), with
the semi-axis λcast = [λF , 1−λF

2 , 1−λF
2 ] in which the

fiber orientation parameter λF is modeled as an
interval λ̄F = [0.25, 0.5]. This assumption is based
on suggestions in (Tiberti, Germano, Mudadu, &
Plizzarri 2018), where the average fiber inclination
in cross-sections was investigated for more than 500
bending tests on notched beams. The inclination
was measured to be in a range of 34.9◦ to 53.1◦,
which correspond to a fiber orientation parameter
λF between 0.3 and 0.45. Here, this range is slightly
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Figure 4. Experimentally and numerically obtained nominal Stress vs. CMOD curves of 3-point bending tests on notched
SFRC beams. A comparison between the validation results, the different investigated safety concepts and samples covering
the complete material input space is provided (top, left). In addition, different sets of material parameters were independently
sampled to investigate their influence on the structural response (rest).

extended in order to be on the save side. A random
variation of the fiber content of +/-10% is assumed.

• Concrete-Fiber interface: Based on the investiga-
tions of fiber pull-out tests in (Gudzulic, Neu,
Gebuhr, Anders, & Meschke 2020), the bond
strength τmax is modeled as an interval τ̄max = [1.5,
5.0] N/mm2 as well as the residual bond strength
τ̄0= [0.5, 4.0] N/mm2 and the reference slip
s̄ref = [0.02, 0.25] mm (see Figure 1, left).

A total number of 128 samples is generated by LHS
and the numerical results of the corresponding simula-
tions are show in Figure 4 (top, left). It can be observed
that the samples can capture the experimental scatter
and also that the lower bound samples predict a smaller
residual strength than predicted by the different safety
concepts. This indicates that the assumed ranges for
the material uncertainty, especially regarding the fiber
orientation, are too conservative. In order to evaluate
the influence of each set of input parameters on the
post-cracking response of SFRC, only samples in the
according set are generated while all other material
parameters are fixed to their values used in (Gudzulic,
Neu, Gebuhr, Anders, & Meschke 2020). The over-
all greatest influence on the post cracking behavior of

SFRC has the fiber orientation and distribution (Fig-
ure 4 – top, right). The concrete strength parameters
are onlyn affecting the structural response for CMOD
values smaller than 1.0mm while the concrete-fiber
interface parameters have a great influence at higher
CMOD values (Figure 4).

For the calculation of the design resistance by the
PM, a feed-forward Artificial Neural Network (ANN)
with two hidden layers is used as a surrogate model to
replace the FE model of the beam. The ANN is trained
by 700 samples generated in the material parameter
space and provide the maximum nominal stress fmax
as an output. The interval to account for the fiber
orientation is adjusted to λ̄F = [0.3, 0.45] due to the
previous findings (assumed range for the fiber orien-
tation too conservative). Figure 5 shows the histograms
based on 10 000 samples evaluated by the ANN (light
grey, ’Refined Samples’) and based on the 128 sam-
ples used in the parametric study (dark grey, ’Random
Samples’).

In order to calculate the design resistance corre-
sponding to a probability index of β = 3.8, a log-
normal distribution is fitted to both histograms. The
’refined’ samples lead to a≈ 13% higher design resis-
tance in comparison to the ’random’ samples (6.88 vs
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Figure 5. Histograms of the two sample sets for applying the
Probability Method (PM) and comparison of the calculated
design resistances Rd .

6.06 N/mm2). When compared to the other safety for-
mats, the PM offers a similar design resistance (PSF:
6.51 N/mm2, GRF: 6.83 N/mm2).

The calculated failure probability Pf is depen-
dent on the chosen distribution fitted to the gen-
erated samples. To quantify the influence, the fail-
ure probability regarding a assumed failure load of
fmax,fail = 7.0 N/mm2 is calculated directly by using
106 samples in conjunction with the ANN and by fit-
ting the samples to different distribution functions.
While a failure probability of 0.0013 is calculated
by the direct evaluation of samples, the fit to a log
normal distribution lead to a value of 0.002. Using

Figure 6. Left – Dimension of the ring and the longitudinal joint, the maximum principal stresses in the segmental lining
model and an indication of potential failure mechanisms. Right – Characteristic normal force and bending moment distribution
from a linear elastic analysis compared to the stress resultants obtained by a bedded beam model.

only 128 samples for fitting a log normal distribution
results in a calculated failure probability of 0.0026.
This emphasize how sensitive the estimation of the
failure probability is to the fitted probability density
distribution function.

5 DESIGN OF A SEGMENTAL LINING RING

In order to investigate the potential use of SFRC as
a reinforcement scheme for segmental linings and
show the potentials of numerical design, a compari-
son between conventional reinforced and steel fiber
reinforced segmental linings for a reference tunnel
project was carried out. The overburden of the tun-
nel is 21.5 m and the lowest ground water level is
assumed at 13.7 m. The surrounding sandy soil has an
elasticity modulus of 120 N/mm2 with a saturated and
unsaturated weight of 11 and 21 kN/m3, respectively.
For the lateral earth pressure coefficient K0 a value
of 0.4 is assumed. The dimensions and the resulting
stress resultants from the earth & water pressure load-
ing are given in Figure 6. A conventionally reinforced
segment (φ10-10 + additional rebars in high stressed
regions) is compared to a SFRC segment reinforced
by 57 kg/m3 of steel fibers. The overall steel content
of the investigated segments is comparable (RC≈ 260
kg/segment and SFRC≈ 258 kg/segment). The mate-
rial properties used in Section 4 are used. For the rebars
an elasticity modulus of 200 000 N/mm2 and a yield
strength according to B500 rebars (European Comittee
for Standardisation 2005) is chosen (Validation: 550
N/mm2, GRF: 550 N/mm2, ECoVk := 500 N/mm2,
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ECoVm:= 550 N/mm2, PM: Gaussian – µ= 500.0,
σ = 32.6). The bond slip behavior is assumed accord-
ing to (fib Model Code for Concrete Structures 2010
2013), where the bond strength is based on the com-
pressive strength. A plane strain numerical model is
used with an element size of 25mm (155 825 elements)
and the external load is increased by a factor λ. A load
increment of �λ= 0.0005 is used.

5.1 SFRC vs. RC segments – SLS

In order to evaluate the model response and to compare
the conventional with the fiber reinforced segment,
their serviceability performance is analyzed. The SLS
verifications are carried out by mean values of the
material properties without the application of safety
factors. Therefore, only the results using the ’Valida-
tion’ material parameters (see Sec. 4) are evaluated.
The corresponding load factor – maximum crack width
curves are shown in Figure 7 (black lines).Three stages
can be identified: Up to a maximum crack width of
0.06 mm bending cracks are initiated and propagate at
the crown segment (Figure 7,A).Then a splitting crack
at the bottom longitudinal joint is initiated and propa-
gates together with the bending cracks in the crown
segment (Figure 7, B). In Stage C, splitting cracks
at the remaining longitudinal joints are initiated and
propagating until failure occurs due to a chipping of
the longitudinal joint at the bottom.

Figure 7. Load-crack width curves for the lining ring
containing RC as well as SFRC segments.

In order to ensure a sufficient serviceability perfor-
mance, the maximum crack width is restricted to 0.2
mm. Both reinforcement schemes show a similar per-
formance up to a crack width of 0.07 mm (Figure 7).
After this point, the SFRC segments provide a better
crack width control as well as a ≈18% higher peak
load (λd,SFRC = 4.1 vs. λd,RC = 3.47). While the SFRC
segment achieves a higher peak load, a less ductile
response (failure occurs at smaller crack widths and is
not announced by strongly increasing crack widths) in
comparison to the RC segment can be observed.

5.2 Application of safety concepts in nonlinear
FEA – ULS

The assessment of the ULS by nonlinear FEA requires
a definition of the segmental lining ring failure.
As structural failure criteria the development of a
failure strain or crack width can be considered. In
case of RC, (European Comittee for Standardisation
2005) suggests for ductile rebars an ultimate strain
of εud = 25 %o. For SFRC, an ultimate crack open-
ing of wu= 2.5 mm (or expressed as strain εFu= 2%)
is suggested by (fib Model Code for Concrete Struc-
tures 2010 2013) as failure criterion. This large crack
width cannot develop in a confined system such as
the investigated segmental lining ring (see Figure 7).
Therefore, the shear opening is restricted to 0.2 mm,
because such large shear deformations indicate the
initiation of a brittle chipping failure. In addition,
the principal compressive stresses can be limited (a
compressive stress in the magnitude of the compres-
sive strength σcomp= fck = 100 N/mm2 is reached at at
approximately λ= 5) to prevent brittle failure.

The design resistance is calculated by using the PM
and the GRF method. For the PM, 128 samples are
generated for the SFRC as well as RC segmental lining
and fitted to a log normal distribution (analog to Sec-
tion 4). The corresponding histograms and log-normal
distributions are shown in Figure 8. It can be observed
that the SFRC segment provides a≈16% greater mean
resistance (λmean,SFRC = 3.96 vs. λmean,RC = 3.4) and
≈19% greater design resistance (λmean,SFRC = 3.0 vs.
λmean,RC = 2.55). In comparison to the design resis-
tance obtained by the GRF method, the PM provides a
≈8% greater design resistance for SFRC segments and
a≈18% greater design resistance for RC segments. If
the design resistance of the bottom joint is calculated
by a strut and tie model (German Tunnelling Commit-
tee (DAUB) 2013) based on the existing reinforcement
area, the design by NLFEA using the GRF can provide
a ≈36% higher design resistance.

Figure 8. Histograms of 128 samples related to SFRC as
well as RC segments. The calculated design resistances Rd
by the PM are compared to the ones obtained by the GRF
method.
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6 CONCLUSION

In this work, the application of NLFEA and poten-
tial benefits for the verification of segmental tunnel
linings were addressed. The proposed multilevel mod-
eling approach for SFRC is suitable for the model
based full probabilistic design of SFRC structural
members. Investigations on notched beams subjected
to 3-point bending showed that the model is capable
to predict the scatter caused by the variance of the
concrete properties and the fiber orientation due to
the explicit consideration of these important parame-
ters. The chosen uncertainty models for the material
properties has a noticeable influence on the predicted
design resistance and therefore the material input
space was verified by comparing the design resis-
tance obtained by a full probabilistic analysis with the
one obtained by simplified safety formats proposed
in available guidelines for the assessment of struc-
tures by NLFEA. Finally, a design of segmental lining
ring subjected to earth & water pressure loading by
NLFEA was carried out. It is shown that SFRC seg-
ments provide a better crack width control as well as
a ≈18% higher peak load in comparison to a con-
ventional RC segment while a less ductile response is
observed. The design resistance obtained by NLFEA
is increased by up to 36% when compared to a conven-
tional design carried out by a strut and tie model. The
chosen safety format for the nonlinear design has also
a noticeable effect on the calculated design resistance.
This contribution highlights, how advanced numeri-
cal models used in the nonlinear design of structures
could reduce material consumption and therefore pro-
vide more cost-effective segmental lining designs with
a reduced environmental impact.
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ABSTRACT: The structural designer has to take serviceability - and ultimate- limit states into account when
choosing layout and materials as there exists no universally used tool, which can consider both simultaneously.
A tool for the ultimate limit state is the Finite Element Limit Analysis, which can perform material optimisation
on a ground structure, which has been proven effective. Here the serviceability limit state is adapted to fit the
optimisation in order to handle both limit states simultaneously in a convex solver.

As a first step towards a general tool, the method is set up for bar elements and applied to concrete structures
yielding a so-called strut and tie model. For simple ground structures, the tool reproduces known solutions. For
large scale structures subjected to multiple load cases the tool shows good results but did suffer from minor
numerical instabilities.

1 INTRODUCTION

When designing structures, the designer has to ensure
that the structure adheres to requirements in both the
Serviceability Limit State (SLS) and the Ultimate
Limit State (ULS). Today many design tools exist that
can help the designer. These tools can help by visu-
alising the force distribution in the structure or help
minimise the material usage through material optimi-
sation. However, in general, these tools do not consider
both SLS and ULS requirements simultaneously when
doing the material optimisation. In ULS, very effective
methods for solid concrete structures exist, which can
find optimal designs of large scale structures with rea-
sonable computational cost, e.g. Finite Element Limit
Analysis (FELA) (Andersen, Poulsen, & Olesen 2022).
These design tools utilise material optimisation on a
ground structure as the method of finding optimised
designs. The feasible set of FELA is convex, from
which the global minimum is directly found by means
of a convex solver.

For SLS structural optimisation, no universally used
tool exists. One of the most commonly used elasticity
based methods is Topology Optimisation (Bendsoe &
Sigmund 2003). However, this method is based upon
linear material models and is originally not suitable
for modelling the non-linear behaviour of cracking in
concrete. The cracking of concrete can be modelled
with numerical tools, as seen in (Vestergaard, Larsen,
Hoang, Poulsen, & Feddersen 2021), from which the
current papers has drawn its inspiration. However, the
referenced paper, does not performer material opti-
misation. In general, there is a lack of methods for
material optimisation while considering the cracking
of concrete. Thus a design tool taking into account

the cracking of concrete, as well as both SLS and
ULS requirements, is needed. The effectiveness of the
methods for material optimisation in ULS applying
FELA is due to the convex solver that effectively solves
large-scale problems (Boyd &Vandenberghe 2004).To
solve the combined problem of SLS and ULS require-
ments the aim is to also include the SLS requirements
in the convex solver. However, the SLS requirements
are non-convex.

For the convex solver to be used on a non-convex
problem, the problem must be reformulated. Approx-
imations can be made in several ways, such as lineari-
sation of the model or second-order Taylor expansion.
For the second order Taylor expansion, the hessian has
to be positive-definite for a convex solver. If the hes-
sian is not positive-definite, it can be approximated
by removing the negative eigenvalues of the hessian
(Duchi 2018). However, in this paper, only a first-order
Taylor expansion is applied.

A first step in developing a general tool for solids
is presented in this paper, where bar elements are used
instead of solids. For reinforced concrete structures,
the use of bar elements is often called a strut and
tie model (Schlaich, Shafer, Jennewein, & Kotsovos
1987).

2 CONSTITUTIVE MODEL

To simulate the behaviour of reinforced concrete, a
constitutive model is needed. The behaviour is approx-
imated by a bi-linear model in both compression and
tension, such that plastic and elastic behaviour can be
represented.The difference in stiffness of concrete and
reinforcement is furthermore included in the model.
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This leads to a quad-linear stress-strain curve which,
as seen in Figure 1.

Figure 1. Constitutive model.

Where Ec and Es are the young’s moduli and Hc and
Hs is the hardening modulus of concrete and reinforce-
ment, respectively. fc and fs are the yield strengths,
and εcu and εuk are the ultimate strain of concrete and
reinforcement, respectively.

Table 1 shows the parameters used in the model.
The values correspond to those found in (for Stan-
dardization 2005). The first set of parameters in
Table 1 represents an SLS condition, i.e. a pure elas-
tic behaviour, where no hardening is allowed, and the
stresses are constrained to be within the pure elastic
domain of reinforced concrete. The limit of the elas-
tic regime is chosen to be half of the yield strength.
The second set of parameters represents ULS condi-
tions, where strains can reach the ultimate strain of the
respective material.

Table 1. Material parameters.

SLS

σc,max εc,max Ec Hc
17.5 MPa 0.000515 34 GPa 6.63 Mpa
σs,max εs,max Es Hs
250 MPa 0.00125 200 Gpa 410 MPa

ULS

fc εcu Ec Hc
35 MPa 0.0035 34 GPa 6.63 Mpa
fy εuk Es Hs
500 MPa 0.05 200 Gpa 410 MPa

For modelling purposes, the strains in the model
have to be split into different parts. The strains in an
element are given as the sum of the concrete strains
and the reinforcement strains. As the reinforcement is
in tension it is given that ε−l ≥ 0 and ε−h ≥ 0. While for
the concrete in compression, and the strains are thus
negative, a minus is introduced such that ε+l ≥ 0 and
ε+h ≥ 0. This is expressed as:

εe= ε+l,e + ε+h,e − ε−l,e − ε−h,e

This formulation does not ensure compatible solu-
tions. However, as minimum potential energy is
obtained, compatibility is ensured at the optimal point.
To use this model in a FEM formulation the strains in
the element, εe, is calculated as:

εe=Beve (1)

where ve is the nodal displacement of element e and
Be is the global strain-displacement matrix as defined
in e.g. (Kuna 2013).

3 MINIMUM POTENTIAL ENERGY

The principle of minimum potential energy is utilised
to ensure an admissible displacement field, which
states: The actual displacement, which satisfies stable
equilibrium, renders the potential energy minimum.

The total potential energy can be found as the sum
of the strain energy and the potential energy associated
with applied forces:

Etot
pot =Ein

pot + Eext
pot

This method can find the displacement field for the
quad-linear model without using a stiffness matrix.

The internal strain energy can be determined as the
integration of the potential energy density.

Ein
pot =

∫

�

P′d�

The strain energy is given as the absolute sum
of areas under the stress-strain curve. This can be
expressed through two triangular contributions from
the concrete and reinforcement, along with a rectangu-
lar contribution from each material. This is expressed
in Equation 2 for element e.
∫

�e

P′d�e= 1
2 EcAc,eLe(ε−l,e)2 + 1

2 HcAc,eLe(ε−h,e)2

+ 1
2 EsAs,eLe(ε+l,e)2 + 1

2 HsAs,eLe(ε+h,e)2

+ Ac,eLefc(ε−h,e)+ As,eLefy(ε+h,e) (2)

where As,e and Ac,e are the reinforcement and con-
crete areas of element e respectively, with Le being
the length of the element. P′ is the potential energy
density which is integrated over the domain �. This
can be written as a second order equation:
∫

�e

P′d�e= 1
2 xT

e Qexe + cT
e x (3)

Where Qe, xe and ce are given by

Qe=
⎡

⎢
⎣

EcAc,eLe 0 0 0
0 HcAc,eLe 0 0
0 0 EsAs,eLe 0
0 0 0 HsAs,eLe

⎤

⎥
⎦

xe=
⎡

⎢
⎣

εc,l,e
εc,h,e
εs,l,e
εs,h,e

⎤

⎥
⎦ , ce=

⎡

⎢
⎣

0
Ac,eLefc

0
As,eLefy

⎤

⎥
⎦
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The external potential energy can be found by the
product of external forces and displacements, which
can be expressed in a vectorised form, as seen below.

Eext
pot =−

∑

i

Fiui =−RTV

Where F is a force and u is the displacement. R is
the nodal load vector, and V is the nodal displacement
vector.

To find the displacement field that leads to mini-
mum potential energy, a convex optimisation problem
is presented. The objective is to minimise the poten-
tial energy while adhering to equilibrium and stress
constraints, which is presented in Equation 4.

Min.
nel∑

e=1

γe − RTV (4a)

S.t. H(E A ε)=R (4b)

Beve= ε+l,e + ε+h,e − ε−l,e − ε−h,e, ∀e (4c)
1
2 xT

e Qexe + cT
e xe − γe ≤ 0, ∀e (4d)

Where ε is a strain vector, and H is the equilibrium
matrix (see e.g. (Damkilde 1991)), which is assembled
from contributions of each element. A and E are the
generalised areas and Young’s moduli of the elements,
consisting of contributions from the reinforcement and
concrete for both A and E, while contributions from
both the linear and hardening stiffness are also given
in E.The symbol is the Hadamard product signifying
entrywise product.

In Equation 4 the objective Equation 4a is to
minimise the potential energy, Equation 4b is the
equilibrium constraint, Equation 4c is the strain split
constraint and Equation 4d is the constraint, defin-
ing the potential energy at the optimal point. It should
be noted that equilibrium is ensured at the point
of minimum potential energy. However, for the use
with material optimisation, the equilibrium is also
formulated explicitly.

This minimisation problem can be solved directly as
the problem is convex, which it is since the objective
along with the equilibrium, and yielding constraints
are linear and thus convex. The potential energy con-
straint is, however quadratic, and is only convex if Q is
symmetric and positive semidefinite, which is true as
Q is diagonal with non-negative diagonal entries. This
rotated quadratic cone can be assembled for all ele-
ments, such that a single cone can be used to represent
the total potential energy of the structure. The inequal-
ity in Equation 4d is needed for convexity. However, in
the case of minimum potential energy, the inequality
becomes an equality.

4 MATERIAL OPTIMISATION

The theory of minimum potential energy will lead
to a stable deformation field and thus an admissible
strut and tie model. However, this is not a optimal
model as redundant material might be used. Thus the

use of material optimisation is needed. The areas of
reinforcement and concrete are introduced as vari-
ables. This is added as an objective function, along
with the potential energy, which leads to the following
multi-criterion optimisation problem.

Min.
[∑nel

e=1 γe − RTV
∑nel

e=1

( fy
fc

As,e + Ac,e
)]T

S.t. H(E A ε)=R

Beve= ε+l,e + ε+h,e − ε−l,e − ε−h,e, ∀e
∫

�i

P′d�e ≤ γe, ∀e

The problem is, however, non-convex, which can
be seen by investigating the potential energy density
given by the first equation in Equation 2. It is noted
that this is given as a third-order polynomial, which
can never be convex. To solve the problem, a sequen-
tial convex program is formulated, where a series of
convex approximations of the problem is solved.

4.1 Local convex approximation

The potential energy density defined by Equation 2,
where the reinforcement and concrete areas and strains
are split into an increment and a value given from the
former iteration. This is illustrated for the reinforce-
ment area in Equation 5.

As,e=As,0,e +�As,e (5)

The same is introduced for the concrete area, as
well as all strains. When introduced into Equation 2
a third order equation arises, which is approximated
by a first-order Taylor expansion, leading to a purely
linear model, as seen in Equation 6.

∫

�e

P′d�e≈ cT
lin,e�xe, �xe=

⎡

⎢⎢⎢⎢⎢⎢
⎣

�ε−l,e
�ε−h,e
�ε+l,e
�ε+h,e
�Ac
�As

⎤

⎥⎥⎥⎥⎥⎥
⎦

clin,e=

⎡

⎢⎢⎢⎢⎢
⎢
⎣

LeEcAc,0,eε
−
l,0,e

LeHcAc,0,eε
−
h,0,e + Lefck Hcε

−
h,0,e

LeEsAs,0,eε
+
l,0,e

LeHsAs,0,eε
+
h,0,e + LefyLHsε

+
h,0,e

Le
2

(
Ec(ε−l,0,e)2 + Hc(ε−h,0,e)2

)+ fckε
−
h,0,e

Le
2

(
Es(ε

+
l,0,e)2 + Hs(ε

+
h,0,e)2

)+ fyε
+
h,0,e

⎤

⎥⎥⎥⎥
⎥⎥
⎦

(6)

This can be formulated as an equality constraint, as
it is linear and convex.

The equilibrium constraint can be proven to be
non-convex, by writing it in a second order form,
and proving that the matrix coefficient of the second
order term is not positive-semidefinite. Thus a approx-
imation based upon a first order Taylor expansion is
used:

H(E A0 �ε + E �A ε0) ≈R −H0 (7)
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where H0=H(E A0 ε0). This approximation is
obviously linear and thus convex. The yielding con-
straints are still found to be linear and are thus convex
as is.

The convex approximations are only viable when
the changes are small. A limit on the design vari-
ables is thus implemented, through a box constraint,
to ensure adequately good approximations. These
approximations also turn the second-order cone pro-
gram described in Equation 4 into a linear program.

4.2 Weighted sum method

The weighted sum method is used to solve the multi-
criterion optimisation problem, where the two objec-
tives are combined in a weighting sum. If the weighting
on the potential energy is high, the algorithm will
increase the material to minimise the potential energy.
If the weight is low, minimum potential energy will not
be guaranteed for the observed structure. The weight-
ing is chosen as unity on the material optimisation and
a weighting of αws on the potential energy. This leads
to the following problem.

Min. αws

(
nel+1∑

e=1

γe − RTV

)

+
nel∑

e=1

fy
fc

As,e + Ac,e

S.t. H(E A0 �ε + E �A ε0)=R −H0

Beve= ε+l,e + ε+h,e − ε−l,e − ε−h,e, ∀e

clin,exlin,e= γe, ∀e

(8)

With the volume given in m3 and the potential
energy given in MJ, it was empirically found that a
weighting of αws= 10−2 lead to reliable results.

A pseudo-code that represents the algorithm can be
seen in Algorithm 1.

Algorithm 1: Pseudo-code for the sequential
convex program for strut and tie.

Initialisation of Topology;
FELA;
Update Areas;
Solve Equation 4;
Define Strains;
for i= 1 To n do

Solve Equation 8;
Update Areas;
Solve Equation 4;
Define Strains;

end

Note that Equation 8 utilise changes of design vari-
ables and is solved through approximations, while
Equation 4 is solved with the total design variables
and is solved precisely in each iteration.

4.3 Multiple load cases for different limit states

The method is expanded to contain several load cases
where each load case can be of a different limit state.
This is done by allocating the respective material
properties to each load case, depending on if the cal-
culations belong to SLS or ULS. Each new load case
will introduce new strain variables, each independent
of the other load cases. However, the cross-sectional
areas are shared between all load cases.

5 RESULTS

The method will be applied to two examples, where
the solution is presented.

5.1 Example 1 – deep beam

The first example is a deep beam loaded at the quarter-
point. The structure is illustrated in Figure 2.

Figure 2. First Example - deep beam.

The example will be investigated for two differ-
ent ground structures. The first one is given as coarse
mesh, while the second will be for a finer mesh. The
parameters for the model are summarised in Table 2.

Table 2. Parameters for example 1.

a b P Limit State

5 m 10 m 200 kN ULS

First, the coarse ground structure is chosen, with 15
nodes, where each node is connected to other nodes by
bar elements, leading to a total of 105 elements. The
ground structure, as well as the optimised structure,
can be seen in Figure 3 and Figure 4 respectively.

The optimised strut and tie is seen to be relatively
simple and is verifiable by hand calculation.
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Figure 3. Course ground structure of first example.

Figure 4. Optimised structure of first example with course
ground structure. Only elements with a capacity of more than
1% of the highest capacity is plotted.

Figure 5. Optimised structure of first example with fine
ground structure. Only elements with a capacity of more than
1% of the highest capacity is plotted.

As stated, the example is also investigated with
a much finer mesh, given by 153 nodes, which are
connected with elements, leading to 11628 elements.

The results in Figure 5 is seen to be similar to a well-
known Michell structure (Michell 1904). Notably,

some bars seem to change thickness, even though there
is no joint with other elements. This is due to the num-
ber of elements connecting to each node along with
the elements. These elements are tiny in area and are
thus below the plotting threshold. However, the sum of
the normal forces in these elements is enough to accu-
mulate a significant force to facilitate these changes
in thickness.

An example is also run to investigate if the Michell
structure is also present for two load cases, where a
second load case is added, with an equal force in the
3/4 point.

Figure 6. First example with fine ground structure and two
load cases. Only elements with a capacity of more than 1% of
the highest capacity is plotted. L1 and L2 indicates the loads
for the first and second load case respectively.

Here the Michell-like structure disappears, and a
more straightforward structure is achieved.

To investigate the robustness of the solution, the
coarse mesh is also optimised based upon a homo-
geneous initial guess of material instead of a FELA
optimised initial guess. When doing this, the solu-
tions converged slowly to the same solution as the
initial guess of FELA, indicating that even though the
method is non-convex and globally optimal solutions
are not guaranteed, the method seems to find solution
solutions close to the initial guess of FELA.

5.2 Example 2 – multi-storey shear wall

The second example is given as a multi-storey shear
wall with holes, which can be seen in Figure 7.

Each floor of the wall is 5 m wide and 5 m tall.
Furthermore, the door opening is 1 m wide and 3 m
tall.The structure is loaded by four different load cases,
which are summarised in Table 3.

The ground structure, along with the optimised
strut and tie, can be seen in Figure 8 and Figure 9
respectively.

It is noted that the optimised strut and tie is too
complex to be found by hand and probably also too
complex ever to be built in reality. However, this model
could be used for an engineer to understand the stress
distribution and create a simpler strut and tie model
based upon the material distribution.
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Figure 7. Mesh of structure for second example.

Table 3. Load cases for example 2.

Load q1 q2 p Limit
Case kN/m kN/m kN/m state

1 20 0 30 ULS
2 0 20 30 ULS
3 13.3 0 30 SLS
4 0 13.3 30 SLS

6 DISCUSSION

The strut and tie models found by the method are
seen to be very complex, and some post-processing
is needed. The strut and tie models often produce
Michell-like structures and would thus lead to designs
where reinforcement bars need to be bent into curves,
which is often not practical. Thus the designs should
be used as an initial model for understanding the
stress-distribution in the structure, and a simpler and
reasonable strut and tie model could be created based
upon the knowledge acquired. Furthermore, the local
stress state in the nodes have to be investigated,
however this is not considered in this paper.

When investigating example 2, the method was
unstable, and the optimisation could become infeasi-
ble before convergence. This behaviour was especially

Figure 8. Ground structure of second example.

Figure 9. Optimised structure of Second example with
course ground structure. Only elements with a capacity of
more than 1% of the highest capacity is plotted.
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present when optimising for many load cases simul-
taneously. This is a problem that can occur when
performing sequential convex programming (Duchi
2018).

This is thought to be caused by the narrow solution
space of the elastic solutions. Widening of the solution
space might lead to better stability, which could be
done through relaxation of the constraints. To ensure
that the method will converge to a feasible solution,
when the relaxation is applied, a penalty function could
be introduced, where the constraints are introduced
into the objective function, such that relaxation of the
constraints are allowed at a price.

Along with this an obvious next step is to expand
the method to 3-dimensional solid elements, such that
realistic structures can be represented.

7 CONCLUSION

In this paper, a method for finding Strut andTie models
for reinforced concrete structures, subjected to both
SLS and ULS load cases is presented.

The method suffers from instability and effec-
tiveness issues, which was mostly seen for large
scale structures, especially when subjected to many
load cases, where the sequential convex program-
ming could be infeasible after some iterations, before
convergence was achieved. The convergence of the
methods is also quite slow as the step-size has to be
small to mitigate this instability. However, for sim-
ple structures, well-known solutions were reproduced,
with Michell-like structures being achieved for fine
meshed ground structures. The method also produced
reliable results for relative complex structures, which
were loaded with multiple load cases where both SLS
and ULS were considered, despite the instability and
effectiveness issues stated earlier.
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Němeček, J. 59
Neu, G.E. 736
Neuner, M. 443, 467
Nguyen, H.T. 3, 409
Nitka, M. 451, 572, 596
Nojima, J.-I. 148

Olesen, J.F. 308, 533, 746
Oliver-Leblond, C. 613
Ou, Y.-C. 226
Ouyang, B. 168
Ozeki, T. 148

Pari, M. 432
Pathirage, M. 46, 496, 503
Pellenq, R.J.-M. 605
Pichler, B.L.A. 96, 284, 555, 564
Pijaudier-Cabot, G. 46, 496, 503
Planas, J. 130
Poulsen, P.N. 308, 533, 728, 746

Quansah, A. 712

Ragueneau, F. 389, 414, 613
Rahbar, N. 22
Rahman, M.K. 294, 301
Ralbovsky, M. 689
Rebhan, M. 689

Reinold, J. 202
Richard, G. 96
Rivarola, F.L. 476
Robisson, A. 634
Rombach, G.A. 669
Rossi, B. 76
Rostagni, H. 389
Rots, J.G. 343, 432

Sakata, H. 275
Salah Uddin, K.M. 646, 652
Sancho, J.M. 130
Sano, S. 148
Sant, G. 168
Sanz, B. 130
Sato, T. 275
Sattler, F. 679
Schmid, S.J. 564
Schoen, S. 545
Schönnagel, J. 486
Shafei, B. 634
Shimamoto, Y. 193
Shimbo, H. 148
Shkundalova, O. 76
Silva, L.C. 30
Singla, A. 343
Sluijs, L.J. 363
Sluys, L.J. 373
Šmejkal, F. 8
Šmilauer, V. 59
Song, Y. 168
Sorgner, M. 555
Steinmann, P. 476
Strauss, A. 679
Suzuki, T. 193
Suárez, F. 184, 318
Szczecina, M. 457

Takase, Y. 275
Tan, R. 246
Tayfur, S. 193
Tejchman, J. 451, 572, 596

Terjesen, O. 246
Thierry, F. 496, 503
Titirla, M. 414
Tong, D. 496, 503
Toussaint, D. 46
Trygstad, S. 264

Ukrainczyk, N. 646, 652
Ulm, F.-J. 22, 605

Van Gysel, A. 236
Van Hout, S. 659
van Huyssteen, D. 476
Vartziotis, E.D. 605
Vartziotis, T. 22
Vecchi, F. 624
Vermorel, R. 46
Verstrynge, E. 659, 704
Vestergaard, D. 728
Volpatti, G. 720
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