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How Do Health, Care Services Consumption and Lifestyle Factors Affect the Choice of Health
Insurance Plans in Switzerland?
Reprinted from: Risks 2020, 8, 41, doi:10.3390/risks8020041 . . . . . . . . . . . . . . . . . . . . . . 137

v





About the Editor

Mogens Steffensen is professor of Life Insurance Mathematics at the University of Copenhagen.

He earned his Ph.D. degree from the same university in 2001. After visiting positions in Germany,

England, and the USA, he became a professor in 2008. He has contributed to the development of

market-based valuation methods in insurance. His research also covers various decision-making

problems within insurance and finance, and, recently, he is mainly interested in integrating insurance

and pension decisions into classical consumption–investment problems. He has written 45 articles

and 2 monographs in the areas of actuarial science and mathematical finance. He participates actively

in industrial discussions about accounting, solvency, and risk management, and he has taken part in

several research projects together with partners in the Danish pension industry. He is member of the

Solvency and Accounting Committee under the Danish Actuarial Association. He is member of the

board of directors and the audit committee of PFA Pension, the largest Danish commercial pension

fund and the 10th largest pension fund in Europe.

vii





Preface to ”Risks: Feature Papers 2020”

The advancements and applications of risk modeling, and the impact on individual, institutional,

and national decision-making is the broad scope of Risks. Actuarial mathematics and mathematical

finance is at the core of this area, where institutional is in reference to insurance and financial

institutions. But around this core we find, more generally, actuarial science and financial economics.

Actuarial science can be thought of as combining economic and other social scientific elements with

actuarial mathematics, expanding the insurance domain beyond its formalizations. Further away

from the core, but still within the scope of acturial mathematics and mathematical finance, we find

other branches that either draw on the advances in risk modeling, or relate to the insurance and

financial decision-making with new insights and ideas but not necessarily advancements in risk

modeling itself.

This book contains eight articles that explore advancements that are being developed across the

diverse range that this area touches upon, all encompassed within the description of the scope above.

Advancements of probabilistic models beyond the standard, and their impact on pricing and hedging,

is at the core of mathematical finance. Such studies are, currently, rarely found in finance journals but

frequently, and most appropriately, found in Risks. Much of financial research over the past decade

has evolved into taking more standard models and drawing new insights from the financial data, and

such research is certainly also welcome in Risks. Real estate and agricultural economics is also about

effectively pricing assets, the financial contracts written on those prices, and the understanding of

the dynamics of observed prices. The methods of machine learning, their predictive power, and the

statistical assumptions and methods behind them, are tools that will inevitably find their place in the

market. Modeling pandemic risk is, for obvious reasons, topical in health science, but its applications

in health and life insurance are similarly of keen interest at the moment. Finally, understanding the

behavior of health insurance policy holders is a core aspect of actuarial science. We hope you enjoy

this collection of feature articles and find it insightful!

Mogens Steffensen

Editor
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Abstract: An approach to the modelling of volatile time series using a class of uniformity-preserving
transforms for uniform random variables is proposed. V-transforms describe the relationship between
quantiles of the stationary distribution of the time series and quantiles of the distribution of a
predictable volatility proxy variable. They can be represented as copulas and permit the formulation
and estimation of models that combine arbitrary marginal distributions with copula processes for the
dynamics of the volatility proxy. The idea is illustrated using a Gaussian ARMA copula process and
the resulting model is shown to replicate many of the stylized facts of financial return series and to
facilitate the calculation of marginal and conditional characteristics of the model including quantile
measures of risk. Estimation is carried out by adapting the exact maximum likelihood approach to
the estimation of ARMA processes, and the model is shown to be competitive with standard GARCH
in an empirical application to Bitcoin return data.

Keywords: time series; volatility; probability-integral transform; ARMA model; copula

1. Introduction

In this paper, we show that a class of uniformity-preserving transformations for uniform random
variables can facilitate the application of copula modelling to time series exhibiting the serial dependence
characteristics that are typical of volatile financial return data. Our main aims are twofold: to establish
the fundamental properties of v-transforms and show that they are a natural fit to the volatility
modelling problem; to develop a class of processes using the implied copula process of a Gaussian
ARMA model that can serve as an archetype for copula models using v-transforms. Although the
existing literature on volatility modelling in econometrics is vast, the models we propose have some
attractive features. In particular, as copula-based models, they allow the separation of marginal and
serial dependence behaviour in the construction and estimation of models.

A distinction is commonly made between genuine stochastic volatility models, as investigated by
Taylor (1994) and Andersen (1994), and GARCH-type models as developed in a long series of papers
by Engle (1982), Bollerslev (1986), Ding et al. (1993), Glosten et al. (1993) and Bollerslev et al. (1994),
among others. In the former an unobservable process describes the volatility at any time point while in
the latter volatility is modelled as a function of observable information describing the past behaviour
of the process; see also the review articles by Shephard (1996) and Andersen and Benzoni (2009). The
generalized autoregressive score (GAS) models of Creal et al. (2013) generalize the observation-driven
approach of GARCH models by using the score function of the conditional density to model time
variation in key parameters of the time series model. The models of this paper have more in common
with the observation-driven approach of GARCH and GAS but have some important differences.

In GARCH-type models, the marginal distribution of a stationary process is inextricably linked
to the dynamics of the process as well as the conditional or innovation distribution; in most cases,
it has no simple closed form. For example, the standard GARCH mechanism serves to create

Risks 2021, 9, 14; doi:10.3390/risks9010014 www.mdpi.com/journal/risks1



Risks 2021, 9, 14

power-law behaviour in the marginal distribution, even when the innovations come from a lighter-tailed
distribution such as Gaussian (Mikosch and Stărică 2000). While such models work well for many
return series, they may not be sufficiently flexible to describe all possible combinations of marginal
and serial dependence behaviour encountered in applications. In the empirical example of this paper,
which relates to log-returns on the Bitcoin price series, the data appear to favour a marginal distribution
with sub-exponential tails that are lighter than power tails and this cannot be well captured by standard
GARCH models. Moreover, in contrast to much of the GARCH literature, the models we propose
make no assumptions about the existence of second-order moments and could also be applied to very
heavy-tailed situations where variance-based methods fail.

Let X1, . . . , Xn be a time series of financial returns sampled at (say) daily frequency and assume
that these are modelled by a strictly stationary stochastic process (Xt) with marginal distribution
function (cdf) FX. To match the stylized facts of financial return data described, for example, by
Campbell et al. (1997) and Cont (2001), it is generally agreed that (Xt) should have limited serial
correlation, but the squared or absolute processes

(
X2

t

)
and (|Xt|) should have significant and persistent

positive serial correlation to describe the effects of volatility clustering.
In this paper, we refer to transformed series like (|Xt|), in which volatility is revealed through

serial correlation, as volatility proxy series. More generally, a volatility proxy series (T(Xt)) is obtained
by applying a transformation T : R �→ R which (i) depends on a change point μT that may be zero, (ii)
is increasing in Xt − μT for Xt ≥ μT and (iii) is increasing in μT −Xt for Xt ≤ μT.

Our approach in this paper is to model the probability-integral transform (PIT) series (Vt) of a
volatility proxy series. This is defined by Vt = FT(X)(T(Xt)) for all t, where FT(X) denotes the cdf of
T(Xt). If (Ut) is the PIT series of the original process (Xt), defined by Ut = FX(Xt) for all t, then a
v-transform is a function describing the relationship between the terms of (Vt) and the terms of (Ut).
Equivalently, a v-transform describes the relationship between quantiles of the distribution of Xt and
the distribution of the volatility proxy T(Xt). Alternatively, it characterizes the dependence structure
or copula of the pair of variables (Xt, T(Xt)). In this paper, we show how to derive flexible, parametric
families of v-transforms for practical modelling purposes.

To gain insight into the typical form of a v-transform, let x1, . . . , xn represent the realized data
values and let u1, . . . , un and v1, . . . , vn be the samples obtained by applying the transformations
vt = F(|X|)

n (|xt|) and ut = F(X)
n (xt), where F(X)

n (x) = 1
n+1
∑n

t=1 I{xt≤x} and F(|X|)
n (x) = 1

n+1
∑n

t=1 I{|xt |≤x}
denote scaled versions of the empirical distribution functions of the xt and |xt| samples, respectively.
The graph of (ut, vt) gives an empirical estimate of the v-transform for the random variables (Xt, |Xt|).
In the left-hand plot of Figure 1 we show the relationship for a sample of n = 1043 daily log-returns of
the Bitcoin price series for the years 2016–2019. Note how the empirical v-transform takes the form of
a slightly asymmetric ‘V’.

Figure 1. Scatterplot of vt against ut (left), sample acf of raw data xt (centre) and sample acf of

zt = Φ−1(vt) (right). The transformed data are defined by vt = F(|X|)n (|xt|) and ut = F(X)
n (xt) where F(X)

n

and F(|X|)n denote versions of the empirical distribution function of the xt and |xt| values, respectively.
The sample size is n = 1043 and the data are daily log-returns of the Bitcoin price for the years 2016–2019.
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The right-hand plot of Figure 1 shows the sample autocorrelation function (acf) of the data given
by zt = Φ−1(vt) where Φ is the standard normal cdf. This reveals a persistent pattern of positive serial
correlation which can be modelled by the implied ARMA copula. This pattern is not evident in the acf
of the raw xt data in the centre plot.

To construct a volatility model for (Xt) using v-transforms, we need to specify a process for (Vt).
In principle, any model for a series of serially dependent uniform variables can be applied to (Vt). In
this paper, we illustrate concepts using the Gaussian copula model implied by the standard ARMA
dependence structure. This model is particularly tractable and allows us to derive model properties
and fit models to data relatively easily.

There is a large literature on copula models for time series; see, for example, the review papers
by Patton (2012) and Fan and Patton (2014). While the main focus of this literature has been
on cross-sectional dependencies between series, there is a growing literature on models of serial
dependence. First-order Markov copula models have been investigated by Chen and Fan (2006),
Chen et al. (2009) and Domma et al. (2009) while higher-order Markov copula models using D-vines
are applied by Smith et al. (2010). These models are based on the pair-copula apporoach developed
in Joe (1996), Bedford and Cooke (2001, 2002) and Aas et al. (2009). However, the standard bivariate
copulas that enter these models are not generally effective at describing the typical serial dependencies
created by stochastic volatility, as observed by Loaiza-Maya et al. (2018).

The paper is structured as follows. In Section 2, we provide motivation for the paper by
constructing a symmetric model using the simplest example of a v-transform. The general theory of
v-transforms is developed in Section 3 and is used to construct the class of VT-ARMA processes and
analyse their properties in Section 4. Section 5 treats estimation and statistical inference for VT-ARMA
processes and provides an example of their application to the Bitcoin return data; Section 6 presents
the conclusions. Proofs may be found in the Appendix A.

2. A Motivating Model

Given a probability space (Ω,F , P), we construct a symmetric, strictly stationary process (Xt)t∈N\{0}
such that, under the even transformation T(x)=|x|, the serial dependence in the volatility proxy series
(T(Xt)) is of ARMA type. We assume that the marginal cdf FX of (Xt) is absolutely continuous and the
density fX satisfies fX(x) = fX(−x) for all x > 0. Since FX and F|X| are both continuous, the properties
of the probability-integral (PIT) transform imply that the series (Ut) and (Vt) given by Ut = FX(Xt)

and Vt = F|X|(|Xt|) both have standard uniform marginal distributions. Henceforth, we refer to (Vt) as
the volatility PIT process and (Ut) as the series PIT process.

Any other volatility proxy series that can be obtained by a continuous and strictly increasing
transformation of the terms of (|Xt|), such as

(
X2

t

)
, yields exactly the same volatility PIT process.

For example, if Ṽt = FX2

(
X2

t

)
, then it follows from the fact that FX2(x) = F|X|

(
+
√

x
)

for x ≥ 0 that

Ṽt = FX2

(
X2

t

)
= F|X|(|Xt|) = Vt. In this sense, we can think of classes of equivalent volatility proxies,

such as (|Xt|),
(
X2

t

)
, (exp

∣∣∣Xt
∣∣∣) and (ln(1+|Xt|)). In fact, (Vt) is itself an equivalent volatility proxy to

(|Xt|) since F|X| is a continuous and strictly increasing transformation.
The symmetry of fX implies that F|X|(x) = 2FX(x)− 1 = 1− 2FX(−x) for x ≥ 0. Hence, we find that

Vt = F|X|(|Xt|) =
{

F|X|(−Xt) = 1− 2FX(Xt) = 1− 2Ut, ifXt < 0
F|X|(Xt) = 2FX(Xt) − 1 = 2Ut − 1, ifXt ≥ 0

which implies that the relationship between the volatility PIT process (Vt) and the series PIT process
(Ut) is given by

Vt = V(Ut) = |2Ut − 1| (1)

whereV(u)=|2u− 1| is a perfectly symmetric v-shaped function that maps values of Ut close to 0 or
1 to values of Vt close to 1, and values close to 0.5 to values close to 0. V is the canonical example

3



Risks 2021, 9, 14

of a v-transform. It is related to the so-called tent-map transformation T (u) = 2 min(u, 1− u) by
V(u) = 1−T (u).

Given (Vt), let the process (Zt) be defined by setting Zt = Φ−1(Vt) so that we have the following
chain of transformations:

Xt
FX→ Ut

V→ Vt
Φ−1
→ Zt. (2)

We refer to (Zt) as a normalized volatility proxy series. Our aim is to construct a process (Xt) such
that, under the chain of transformations in (2), we obtain a Gaussian ARMA process (Zt) with mean
zero and variance one. We do this by working back through the chain.

The transformationV is not an injection and, for any Vt > 0, there are two possible inverse values,
1
2 (1−Vt) and 1

2 (1 + Vt). However, by randomly choosing between these values, we can ‘stochastically
invert’V to construct a random variable Ut such thatV(Ut) = Vt, This is summarized in Lemma 1,
which is a special case of a more general result in Proposition 4.

Lemma 1. Let V be a standard uniform variable. If V = 0, set U = 1
2 . Otherwise, let U = 1

2 (1−V) with
probability 0.5 and U = 1

2 (1 + V) with probability 0.5. Then, U is uniformly distributed andV(U) = V.

This simple result suggests Algorithm 1 for constructing a process (Xt) with symmetric marginal
density fX such that the corresponding normalized volatility proxy process (Zt) under the absolute
value transformation (or continuous and strictly increasing functions thereof) is an ARMA process.
We describe the resulting model as a VT-ARMA process.

It is important to state that the use of the Gaussian process (Zt) as the fundamental building block
of the VT-ARMA process in Algorithm 1 has no effect on the marginal distribution of (Xt), which is FX

as specified in the final step of the algorithm. The process (Zt) is exploited only for its serial dependence
structure, which is described by a family of finite-dimensional Gaussian copulas; this dependence
structure is applied to the volatility proxy process.

Algorithm 1:

1. Generate (Zt) as a causal and invertible Gaussian ARMA process of order (p, q) with mean zero and
variance one.

2. Form the volatility PIT process (Vt) where Vt = Φ(Zt) for all t.
3. Generate a process of iid Bernoulli variables (Yt) such that P(Yt = 1) = 0.5.

4. Form the PIT process (Ut) using the transformation Ut = 0.5(1−Vt)
I{Yt=0} (1 + Vt)

I{Yt=1} .
5. Form the process (Xt) by setting Xt = F−1

X (Ut).

Figure 2 shows a symmetric VT-ARMA(1,1) process with ARMA parameters α1 = 0.95 and
β1 = −0.85; such a model often works well for financial return data. Some intuition for this observation
can be gained from the fact that the popular GARCH(1,1) model is known to have the structure of an
ARMA(1,1) model for the squared data process; see, for example, McNeil et al. (2015) (Section 4.2) for
more details.

4
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Figure 2. Realizations of length n = 500 of (Xt) and (Zt) for a VT-ARMA(1,1) process with a marginal
Student t distribution with ν = 3 degrees of freedom and ARMA parameters α = 0.95 and β = −0.85.
ACF plots for (Xt) and (|Xt|) are also shown.

3. V-Transforms

To generalize the class of v-transforms, we admit two forms of asymmetry in the construction
described in Section 2: we allow the density fX to be skewed; we introduce an asymmetric
volatility proxy.

Definition 1 (Volatility proxy transformation and profile). Let T1 and T2 be strictly increasing, continuous
and differentiable functions on R+ = [0,∞) such that T1(0) = T2(0). Let μT ∈ R. Any transformation
T : R→ R of the form

T(x) =
{

T1(μT − x) x ≤ μT

T2(x− μT) x > μT
(3)

is a volatility proxy transformation. The parameter μT is the change point of T and the associated function
gT : R+ → R+ , gT(x) = T−1

2 ◦ T1(x) is the profile function of T.

By introducing μT, we allow for the possibility that the natural change point may not be identical
to zero. By introducing different functions T1 and T2 for returns on either side of the change point, we
allow the possibility that one or other may contribute more to the volatility proxy. This has a similar
economic motivation to the leverage effects in GARCH models (Ding et al. 1993); falls in equity prices
increase a firm’s leverage and increase the volatility of the share price.

Clearly, the profile function of a volatility proxy transformation is a strictly increasing, continuous
and differentiable function on R+ such that gT(x) = 0. In conjunction with μT, the profile contains all
the information about T that is relevant for constructing v-transforms. In the case of a volatility proxy
transformation that is symmetric about μT, the profile satisfies gT(x) = x.

The following result shows how v-transforms V = V(U) can be obtained by considering different
continuous distributions FX and different volatility proxy transformations T of type (3).

5
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Proposition 1. Let X be a random variable with absolutely continuous and strictly increasing cdf FX on R and
let T be a volatility proxy transformation. Let U = FX(X) and V = FT(X)(T(X)). Then, V = V(U) where

V(u) =

⎧⎪⎪⎨⎪⎪⎩ FX
(
μT + gT

(
μT − F−1

X (u)
))
− u, u ≤ FX(μT)

u− FX
(
μT − g−1

T

(
F−1

X (u) − μT
))

, u > FX(μT) .
(4)

The result implies that any two volatility proxy transformations T and T̃ which have the same
change point μT and profile function gT belong to an equivalence class with respect to the resulting
v-transform. This generalizes the idea that T(x)=|x| and T(x) = x2 give the same v-transform in
the symmetric case of Section 2. Note also that the volatility proxy transformations T(V) and T(Z)

defined by
T(V)(x) = FT(X)(T(x)) = V(FX(x))
T(Z)(x) = Φ−1

(
T(V)(x)

)
= Φ−1(V(FX(x)))

(5)

are in the same equivalence class as T since they share the same change point and profile function.

Definition 2 (v-transform and fulcrum). Any transformationV that can be obtained from Equation (4) by
choosing an absolutely continuous and strictly increasing cdf FX on R and a volatility proxy transformation T is
a v-transform. The value δ = FX(μT) is the fulcrum of the v-transform.

3.1. A Flexible Parametric Family

In this section, we derive a family of v-transforms using construction (4) by taking a tractable
asymmetric model for FX using the construction proposed by Fernández and Steel (1998) and by
setting μT = 0 and gT(x) = kxξ for k > 0 and ξ > 0. This profile function contains the identity profile
gT(x) = x (corresponding to the symmetric volatility proxy transformation) as a special case, but
allows cases where negative or positive returns contribute more to the volatility proxy. The choices we
make may at first sight seem rather arbitrary, but the resulting family can in fact assume many of the
shapes that are permissible for v-transforms, as we will argue.

Let f0 be a density that is symmetric about the origin and let γ > 0 be a scalar parameter. Fernandez
and Steel suggested the model

fX(x;γ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2γ

1+γ2 f0(γx) x ≤ 0
2γ

1+γ2 f0
(

x
γ

)
x > 0 .

(6)

This model is often used to obtain skewed normal and skewed Student distributions for use as
innovation distributions in econometric models. A model with γ > 1 is skewed to the right while
a model with γ < 1 is skewed to the left, as might be expected for asset returns. We consider the
particular case of a Laplace or double exponential distribution f0(x) = 0.5 exp(−|x|) which leads to
particularly tractable expressions.

Proposition 2. Let FX(x;γ) be the cdf of the density (6) when f0(x) = 0.5 exp(−|x|). Set μT = 0 and let
gT(x) = kxξ for k, ξ > 0. The v-transform (4) is given by

Vδ,κ,ξ(u) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1− u− (1− δ) exp

(
−κ
(
− ln
(

u
δ

))ξ)
u ≤ δ,

u− δ exp
(
−κ−1/ξ

(
− ln
(

1−u
1−δ
))1/ξ

)
u > δ,

(7)

where δ = FX(0) =
(
1 + γ2

)−1
∈ (0, 1) and κ = k/γξ+1 > 0.

6
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It is remarkable that (7) is a uniformity-preserving transformation. If we set ξ = 1 and κ = 1,
we get

Vδ(u) =
{

(δ− u)/δ u ≤ δ,
(u− δ)/(1− δ) u > δ

(8)

which obviously includes the symmetric modelV0.5(u) = |2u− 1|. The v-transformVδ(u) in (8) is a
very convenient special case, and we refer to it as the linear v-transform.

In Figure 3, we show the v-transformVδ,κ,ξ when δ = 0.55, κ = 1.4 and ξ = 0.65. We will use this
particular v-transform to illustrate further properties of v-transforms and find a characterization.

Figure 3. An asymmetric v-transform from the family defined in (7). For any v-transform, if v = V(u)
and u∗ is the dual of u, then the points (u, 0), (u, v), (u∗, 0) and (u∗, v) form the vertices of a square.
For the given fulcrum δ, a v-transform can never enter the gray shaded area of the plot.

3.2. Characterizing v-Transforms

It is easily verified that any v-transform obtained from (4) consists of two arms or branches,
described by continuous and strictly monotonic functions; the left arm is decreasing and the right
arm increasing. See Figure 3 for an illustration. At the fulcrum δ, we have V(δ) = 0. Every point
u ∈ [0, 1]\{δ} has a dual point u∗ on the opposite side of the fulcrum such that V(u∗) = V(u). Dual
points can be interpreted as the quantile probability levels of the distribution of X that give rise to the
same level of volatility.

We collect these properties together in the following lemma and add one further important
property that we refer to as the square property of a v-transform; this property places constraints on the
shape that v-transforms can take and is illustrated in Figure 3.

Lemma 2. A v-transform is a mappingV : [0, 1]→ [0, 1] with the following properties:

1. V(0) = V(1) = 1;
2. There exists a point δ known as the fulcrum such that 0 < δ < 1 andV(δ) = 0;
3. V is continuous;

7
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4. V is strictly decreasing on [0, δ] and strictly increasing on [δ, 1];
5. Every point u ∈ [0, 1]\{δ} has a dual point u∗ on the opposite side of the fulcrum satisfyingV(u) = V(u∗)

and |u∗ −u
∣∣∣= V(u) (square property).

It is instructive to see why the square property must hold. Consider Figure 3 and fix a
point u ∈ [0, 1]\{δ} with V(u) = v. Let U ∼ U(0, 1) and let V = V(U). The events {V ≤ v} and{
min(u, u∗) ≤ U ≤ max(u, u∗)

}
are the same and hence the uniformity of V under a v-transform

implies that
v = P(V ≤ v) = P(min(u, u∗) ≤ U ≤ max(u, u∗)) = |u∗ − u| . (9)

The properties in Lemma 2 could be taken as the basis of an alternative definition of a v-transform.
In view of (9), it is clear that any mapping V that has these properties is a uniformity-preserving
transformation. We can characterize the mappingsV that have these properties as follows.

Theorem 1. A mappingV : [0, 1]→ [0, 1] has the properties listed in Lemma 2 if and only if it takes the form

V(u) =

⎧⎪⎪⎨⎪⎪⎩ (1− u) − (1− δ)Ψ
(

u
δ

)
u ≤ δ,

u− δΨ−1
(

1−u
1−δ
)

u > δ,
(10)

where Ψ is a continuous and strictly increasing distribution function on [0, 1].

Our arguments so far show that every v-transform must have the form (10). It remains to verify
that every uniformity-preserving transformation of the form (10) can be obtained from construction (4),
and this is the purpose of the final result of this section. This allows us to view Definition 2, Lemma 2,
and the characterization (10) as three equivalent approaches to the definition of v-transforms.

Proposition 3. Let V be a uniformity-preserving transformation of the form (10) and FX a continuous
distribution function. Then,V can be obtained from construction (4) using any volatility proxy transformation
with change point μT = F−1

X (δ) and profile

gT(x) = F−1
X (FX(μT − x) +V(FX(μT − x))) − μT, x ≥ 0. (11)

Henceforth, we can view (10) as the general equation of a v-transform. Distribution functions
Ψ on [0, 1] can be thought of as generators of v-transforms. Comparing (10) with (7), we see that our
parametric familyVδ,κ,ξ is generated by Ψ(x) = exp(−κ(−(ln x)ξ)). This is a 2-parameter distribution
whose density can assume many different shapes on the unit interval including increasing, decreasing,
unimodal, and bathtub-shaped forms. In this respect, it is quite similar to the beta distribution which
would yield an alternative family of v-transforms. The uniform distribution function Ψ(x) = x gives
the family of linear v-transformsVδ.

In applications, we construct models starting from the building blocks of a tractable v-transform
V such as (7) and a distribution FX; from these, we can always infer an implied profile function gT

using (11). The alternative approach of starting from gT and FX and constructing V via (4) is also
possible but can lead to v-transforms that are cumbersome and computationally expensive to evaluate
if FX and its inverse do not have simple closed forms.

3.3. V-Transforms and Copulas

If two uniform random variables are linked by the v-transform V = V(U), then the joint
distribution function of (U, V) is a special kind of copula. In this section, we derive the form of the
copula, which facilitates the construction of stochastic processes using v-transforms.

8
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To state the main result, we use the notationV−1 andV′ for the the inverse function and the gradient
function of a v-transformV. Although there is no unique inverseV−1(v) (except when v = 0), the fact
that the two branches of a v-transform mutually determine each other allows us to defineV−1(v) to be the
inverse of the left branch of the v-transform given by V−1 : [0, 1]→ [0, δ], V−1(v) = inf

{
u :V(u) = v

}
.

The gradientV′(u) is defined for all points u ∈ [0, 1]\{δ}, and we adopt the convention thatV′(δ) is
the left derivative as u→ δ .

Theorem 2. Let V and U be random variables related by the v-transform V = V(U).

1. The joint distribution function of (U, V) is given by the copula

C(u, v) = (U ≤ u, V ≤ v) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 u <V−1(v)

u−V−1(v) V−1(v) ≤ u <V−1(v) + v
v u ≥ V−1(v) + v .

(12)

2. Conditional on V = v, the distribution of U is given by

U =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
V−1(v) withprobabilityΔ(v)i f v � 0
V−1(v) + v withprobability1− Δ(v)ifv � 0

δ i f v = 0
(13)

where
Δ(v) = − 1

V′(V−1(v))
. (14)

3. E(Δ(V)) = δ.

Remark 1. In the case of the symmetric v-transform V(u)=|1− 2u|, the copula in (12) takes the form
C(u, v) = max

(
min
(
u + v

2 −
1
2 , v
)
, 0
)
. We note that this copula is related to a special case of the tent map copula

family CT
θ

in Rémillard (2013) by C(u, v) = u−CT1 (u, 1− v).

For the linear v-transform family, the conditional probability Δ(v) in (14) satisfies Δ(v) = δ. This
implies that the value of V contains no information about whether U is likely to be below or above the
fulcrum; the probability is always the same regardless of V. In general, this is not the case and the
value of V does contain information about whether U is large or small.

Part (2) of Theorem 2 is the key to stochastically inverting a v-transform in the general case. Based
on this result, we define the concept of stochastic inversion of a v-transform. We refer to the function Δ
as the conditional down probability ofV.

Definition 3 (Stochastic inversion function of a v-transform). LetV be a v-transform with conditional
down probability Δ. The two-place function V−1 : [0, 1] × [0, 1]→ [0, 1] defined by

V−1(v, w) =

{
V−1(v) i f w ≤ Δ(v)

v +V−1(v) i f w > Δ(v).
(15)

is the stochastic inversion function ofV.

The following proposition, which generalizes Lemma 1, allows us to construct general asymmetric
processes that generalize the process of Algorithm 1.

Proposition 4. Let V and W be iid U(0, 1) variables and let V be a v-transform with stochastic inversion
functionV. If U =V−1(V, W), thenV(U) = V and U ∼ U(0, 1).

9
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In Section 4, we apply v-transforms and their stochastic inverses to the terms of time series
models. To understand the effect this has on the serial dependencies between random variables, we
need to consider multivariate componentwise v-transforms of random vectors with uniform marginal
distributions and these can also be represented in terms of copulas. We now give a result which
forms the basis for the analysis of serial dependence properties. The first part of the result shows the
relationship between copula densities under componentwise v-transforms. The second part shows
the relationship under the componentwise stochastic inversion of a v-transform; in this case, we
assume that the stochastic inversion of each term takes place independently given V so that all serial
dependence comes from V.

Theorem 3. LetV be a v-transform and let U = (U1, . . . , Ud)
′ and V = (V1, . . . , Vd)

′ be vectors of uniform
random variables with copula densities cU and cV, respectively.

1. If V = (V(U1), . . . ,V(Ud))
′, then

cV(v1, . . . , vd) =
2∑

j1=1

· · ·
2∑

jd=1

cU
(
u1 j1 , . . . , udjd

) d∏
i=1

Δ(vi)
I{ ji=1}(1− Δ(vi))

I{ ji=2} (16)

where ui1 = V−1(vi) and ui2 = V−1(vi) + vi for all i ∈ {1, . . . , d}.
2. If U =

(
V−1(V1, W1), . . . ,V−1(Vd, Wd)

)′
where W1, . . . , Wd are iid uniform random variables that are

also independent of V1, . . . , Vd, then

cU(u1, . . . , ud) = cV(V(u1), . . . ,V(ud)). (17)

4. VT-ARMA Copula Models

In this section, we study some properties of the class of time series models obtained by the
following algorithm, which generalizes Algorithm 1. The models obtained are described as VT-ARMA
processes since they are stationary time series constructed using the fundamental building blocks of a
v-transformV and an ARMA process.

We can add any marginal behaviour in the final step, and this allows for an infinitely rich choice. We
can, for instance, even impose an infinite-variance or an infinite-mean distribution, such as the Cauchy
distribution, and still obtain a strictly stationary process for (Xt). We make the following definitions.

Definition 4 (VT-ARMA and VT-ARMA copula process). Any stochastic process (Xt) that can be generated
using Algorithm 2 by choosing an underlying ARMA process with mean zero and variance one, a v-transformV,
and a continuous distribution function FX is a VT-ARMA process. The process (Ut) obtained at the penultimate
step of the algorithm is a VT-ARMA copula process.

Figure 4 gives an example of a simulated process using Algorithm 2 and the v-transformVδ,κ,ξ

in (7) with κ = 0.9 and MA parameter ξ = 1.1. The marginal distribution is a heavy-tailed skewed
Student distribution of type (6) with degrees-of-freedom ν = 3 and skewness γ = 0.8, which gives rise
to more large negative returns than large positive returns. The underlying time series model is an
ARMA(1,1) model with AR parameter α = 0.95 and MA parameter β = −0.85. See the caption of the
figure for full details of parameters.

10
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Figure 4. Top left: realization of length n = 500 of (Xt) for a process with a marginal skewed Student
distribution (parameters: ν = 3, γ = 0.8, μ = 0.3, σ = 1) a v-transform of the form (7) (parameters:
δ = 0.50, κ = 0.9, ξ = 1.1) and an underlying ARMA process (α = 0.95, β = −0.85, σε = 0.95). Top
right: the underlying ARMA process (Zt) in gray with the conditional mean (μt) superimposed in
black; horizontal lines at μt = 0.5 (a high value) and μt = −0.5 (a low value). The corresponding
conditional densities are shown in the bottom figures with the marginal density as a dashed line.

Algorithm 2:

1. Generate (Zt) as a causal and invertible Gaussian ARMA process of order (p, q) with mean zero and
variance one.

2. Form the volatility PIT process (Vt) where Vt = Φ(Zt) for all t.
3. Generate iid U(0, 1) random variables (Wt).

4. Form the series PIT process (Ut) by taking the stochastic inverses Ut =V−1(Vt, Wt).
5. Form the process (Xt) by setting Xt = F−1

X (Ut) for some continuous cdf FX.

In the remainder of this section, we concentrate on the properties of VT-ARMA copula processes
(Ut) from which related properties of VT-ARMA processes (Xt) may be easily inferred.

4.1. Stationary Distribution

The VT-ARMA copula process (Ut) of Definition 4 is a strictly stationary process since the joint
distribution of

(
Ut1 , . . . , Utk

)
for any set of indices t1 < · · · < tk is invariant under time shifts. This

property follows easily from the strict stationarity of the underlying ARMA process (Zt) according to
the following result, which uses Theorem 3.

Proposition 5. Let (Ut) follow a VT-ARMA copula process with v-transformV and an underlying ARMA(p,q)
structure with autocorrelation function ρ(k). The random vector

(
Ut1 , . . . , Utk

)
for k ∈ N has joint density

11
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cGa
P(t1,...,tk)

(V(u1), . . . ,V(uk)), where cGa
P(t1,...,tk)

denotes the density of the Gaussian copula CGa
P(t1,...,tk)

and

P(t1, · · · , tk) is a correlation matrix with (i, j) element given by ρ
(∣∣∣tj − ti

∣∣∣).
An expression for the joint density facilitates the calculation of a number of dependence measures

for the bivariate marginal distribution of (Ut, Ut+k). In the bivariate case, the correlation matrix of the
underlying Gaussian copula CGa

P(t,t+k)
contains a single off-diagonal value ρ(k) and we simply write

CGa
ρ(k)

. The Pearson correlation of (Ut, Ut+k) is given by

ρ(Ut, Ut+k)= 12
∫ 1

0

∫ 1

0
u1u2cGa

ρ(k)(V(u1),V(u2))du1du2 − 3 . (18)

This value is also the value of the Spearman rank correlation ρS(Xt, Xt+k) for a VT-ARMA process
(Xt) with copula process (Ut) (since the Spearman’s rank correlation of a pair of continuous random
variables is the Pearson correlation of their copula). The calculation of (18) typically requires numerical
integration. However, in the special case of the linear v-transform Vδ in (8), we can get a simpler
expression as shown in the following result.

Proposition 6. Let (Ut) be a VT-ARMA copula process satisfying the assumptions of Proposition 5 with linear
v-transformVδ. Let (Zt) denote the underlying Gaussian ARMA process. Then,

ρ(Ut, Ut+k) = (2δ− 1)2ρS(Zt, Zt+k) =
6(2δ−1)2 arcsin

(
ρ(k)

2

)
π . (19)

For the symmetric v-transformV0.5, Equation (19) obviously yields a correlation of zero so that,
in this case, the VT-ARMA copula process (Ut) is a white noise with an autocorrelation function that
is zero, except at lag zero. However, even a very asymmetric model with δ = 0.4 or δ = 0.6 gives
ρ(Ut, Ut+k) = 0.04ρS(Zt, Zt+k) so that serial correlations tend to be very weak.

When we add a marginal distribution, the resulting process (Xt) has a different auto-correlation
function to (Ut), but the same rank autocorrelation function. The symmetric model of Section 2 is a
white noise process. General asymmetric processes (Xt) are not perfect white noise processes but have
only very weak serial correlation.

4.2. Conditional Distribution

To derive the conditional distribution of a VT-ARMA copula process, we use the vector notation
Ut = (U1, . . . , Ut)

′ and Zt = (Z1, . . . , Zt)
′ to denote the history of processes up to time point t and ut and

zt for realizations. These vectors are related by the componentwise transformation Zt = Φ−1(V(Ut)).
We assume that all processes have a time index set given by t ∈ {1, 2, . . .}.

Proposition 7. For t > 1, the conditional density fUt |Ut−1(u | ut−1) is given by

fUt |Ut−1(u | ut−1) =
φ
(

Φ−1(V(u))−μt
σε

)
σεφ(Φ−1(V(u)))

(20)

where μt = E
(
Zt | Zt−1 = Φ−1(V(ut−1))

)
and σε is the standard deviation of the innovation process for the

ARMA model followed by (Zt).

When (Zt) is iid white noise μt = 0, σε = 1 and (20) reduce to the uniform density
fUt |Ut−1(u | ut−1) = 1 as expected. In the case of the first-order Markov AR(1) model Zt = α1Zt−1 + εt,
the conditional mean of Zt is μt = α1Φ−1(V(ut−1)) and σ2

ε = 1 − α2
1. The conditional density (20)

12



Risks 2021, 9, 14

can be easily shown to simplify to fUt |Ut−1(u | ut−1) = cGa
α1
(V(u),V(ut−1)) where cGa

α1
(V(u1),V(u2))

denotes the copula density derived in Proposition 5. In this special case, the VT-ARMA model falls
within the class of first-order Markov copula models considered by Chen and Fan (2006), although the
copula is new.

If we add a marginal distribution FX to the VT-ARMA copula model to obtain a model for (Xt) and
use similar notational conventions as above, the resulting VT-ARMA model has conditional density

fXt |Xt−1(x | xt−1) = fX(x) fUt |Ut−1(FX(x) | FX(xt−1)) (21)

with fUt |Ut−1 as in (20). An interesting property of the VT-ARMA process is that the conditional density
(21) can have a pronounced bimodality for values of μt in excess of zero that is in high volatility
situations where the conditional mean of Zt is higher than the marginal mean value of zero; in low
volatility situations, the conditional density appears more concentrated around zero. This phenomenon
is illustrated in Figure 4. The bimodality in high volatility situations makes sense: in such cases, it is
likely that the next return will be large in absolute value and relatively less likely that it will be close to
zero.

The conditional distribution function of (Xt) is FXt |Xt−1(x | xt−1) = FUt |Ut−1(FX(x) | FX(xt−1)) and
hence the ψ-quantile xψ,t of FXt |Xt−1 can be obtained by solving

ψ = FUt |Ut−1

(
FX
(
xψ,t
)
| FX(xt−1)

)
. (22)

For ψ < 0.5, the negative of this value is often referred to as the conditional (1−ψ)-VaR
(value-at-risk) at time t in financial applications.

5. Statistical Inference

In the copula approach to dependence modelling, the copula is the object of central interest
and marginal distributions are often of secondary importance. A number of different approaches
to estimation are found in the literature. As before, let x1, . . . , xn represent realizations of variables
X1, . . . , Xn from the time series process (Xt).

The semi-parametric approach developed by Genest et al. (1995) is very widely used in copula
inference and has been applied by Chen and Fan (2006) to first-order Markov copula models in the time
series context. In this approach, the marginal distribution FX is first estimated non-parametrically using
the scaled empirical distribution function F(X)

n (see definition in Section 1) and the data are transformed
onto the (0, 1) scale. This has the effect of creating pseudo-copula data ut = rank(xt)/(n + 1) where
rank(xt) denotes the rank of xt within the sample. The copula is fitted to the pseudo-copula data by
maximum likelihood (ML).

As an alternative, the inference-functions-for-margins (IFM) approach of Joe (2015) could be
applied. This is also a two-step method although in this case a parametric model F̂X is estimated under
an iid assumption in the first step and the copula is fitted to the data ut = F̂X(xt) in the second step.

The approach we adopt for our empirical example is to first use the semi-parametric approach to
determine a reasonable copula process, then to estimate marginal parameters under an iid assumption,
and finally to estimate all parameters jointly using the parameter estimates from the previous steps as
starting values.

We concentrate on the mechanics of deriving maximum likelihood estimates (MLEs). The problem
of establishing the asymptotic properties of the MLEs in our setting is a difficult one. It is similar to, but
appears to be more technically challenging than, the problem of showing consistency and efficiency
of MLEs for a Box-Cox-transformed Gaussian ARMA process, as discussed in Terasaka and Hosoya
(2007). We are also working with a componentwise transformed ARMA process, although, in our case,
the transformation (Xt)→ (Zt) is via the nonlinear, non-increasing volatility proxy transformation
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T(Z)(x) in (5), which is not differentiable at the change point μT. We have, however, run extensive
simulations which suggests good behaviour of the MLEs in large samples.

5.1. Maximum Likelihood Estimation of the VT-ARMA Copula Process

We first consider the estimation of the VT-ARMA copula process for a sample of data u1, . . . , un.
Let θ(V) and θ(A) denote the parameters of the v-transform and ARMA model, respectively. It follows
from Theorem 3 (part 2) and Proposition 5 that the log-likelihood for the sample u1, . . . , un is simply the
log density of the Gaussian copula under componentwise inverse v-transformation. This is given by

L
(
θ(V),θ(A) | u1, . . . , un

)
= L∗

(
θ(A) | Φ−1

(
Vθ(V) (u1)

)
, . . . , Φ−1

(
Vθ(V) (un)

))
−

n∑
t=1

lnφ
(
Φ−1
(
Vθ(V) (ut)

)) (23)

where the first term L∗ is the log-likelihood for an ARMA model with a standard N(0,1) marginal
distribution. Both terms in the log-likelihood (23) are relatively straightforward to evaluate.

The evaluation of the ARMA likelihood L∗(θ(A) | z1, . . . , zn) for parameters θ(A) and data z1, . . . , zn

can be accomplished using the Kalman filter. However, it is important to note that the assumption
that the data z1, . . . , zn are standard normal requires a bespoke implementation of the Kalman filter,
since standard software always treats the error variance σ2

ε as a free parameter in the ARMA model. In
our case, we need to constrain σ2

ε to be a function of the ARMA parameters so that var(Zt) = 1. For
example, in the case of an ARMA(1,1) model with AR parameter α1 and MA parameter β1, this means
that σ2

ε = σ
2
ε(α1, β1) =

(
1− α2

1

)
/
(
1 + 2α1β1 + β2

1

)
. The constraint on σ2

ε must be incorporated into the
state-space representation of the ARMA model.

Model validation tests for the VT-ARMA copula can be based on residuals

rt = zt − μ̂t, zt = Φ−1(Vθ̂(V) (ut)) (24)

where zt denotes the implied realization of the normalized volatility proxy variable and where an
estimate μ̂t of the conditional mean μt = E(Zt | Zt−1 = zt) may be obtained as an output of the Kalman
filter. The residuals should behave like an iid sample from a normal distribution.

Using the estimated model, it is also possible to implement a likelihood-ratio (LR) test for the
presence of stochastic volatility in the data. Under the null hypothesis that θ(A) = 0, the log-likelihood
(23) is identically equal to zero. Thus, the size of the maximized log-likelihood L(θ̂(V), θ̂(A) ; u1, . . . , un)

provides a measure of the evidence for the presence of stochastic volatility.

5.2. Adding a Marginal Model

If FX and fX denote the cdf and density of the marginal model and the parameters are denoted
θ(M), then the full log-likelihood for the data x1, . . . , xn is simply

Lfull(θ | x1, . . . , xn) =
n∑

t=1
ln fX

(
xt ; θ(M)

)
+L
(
θ(V),θ(A) | FX

(
x1 ; θ(M)

)
, . . . , FX

(
xn ; θ(M)

)) (25)

where the first term is the log-likelihood for a sample of iid data from the marginal distribution FX and
the second term is (23).

When a marginal model is added, we can recover the implied form of the volatility proxy
transformation using Proposition 3. If δ̂ is the estimated fulcrum parameter of the v-transform, then
the estimated change point is μ̂T = F−1

X (δ̂; θ̂(M)) and the implied profile function is

ĝT(x) = F̂−1
X

(
F̂X(μ̂T − x) −Vθ̂(V)

(
F̂X(μ̂T − x)

))
− μ̂T. (26)
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Note that is is possible to force the change point to be zero in a joint estimation of marginal
model and copula by imposing the constraint FX(0;θ(M)) = δ on the fulcrum and marginal parameters
during the optimization. However, in our experience, superior fits are obtained when these parameters
are unconstrained.

5.3. Example

We analyse n = 1043 daily log-returns for the Bitcoin price series for the period 2016–2019;
values are multiplied by 100. We first apply the semi-parametric approach of Genest et al. (1995)
using the log-likelihood (23) which yields the results in Table 1. Different models are referred to by
VT(n)-ARMA(p, q), where (p, q) refers to the ARMA model and n indexes the v-transform: 1 is the
linear v-transformVδ in (8); 3 is the three-parameter transformVδ,κ,ξ in (7); 2 is the two-parameter
v-transform given byVδ,κ := Vδ,κ,1. In unreported analyses, we also tried the three-parameter family
based on the beta distribution, but this had negligible effect on the results.

Table 1. Analysis of daily Bitcoin return data 2016–2019. Parameter estimates, standard errors (below
estimates) and information about the fit: SW denotes Shapiro–Wilks p-value; L is the maximized value
of the log-likelihood and AIC is the Akaike information criterion.

Model α1 β1 δ κ ξ SW L AIC

VT(1)-ARMA(1,0) 0.283 0.460 0.515 37.59 −71.17
0.026 0.001

VT(1)-ARMA(1,1) 0.962 −0.840 0.416 0.197 92.91 −179.81
0.012 0.028 0.004

VT(2)-ARMA(1,1) 0.965 −0.847 0.463 0.920 0.385 94.73 −181.45
0.011 0.026 0.001 0.131

VT(3)-ARMA(1,1) 0.962 −0.839 0.463 0.881 0.995 0.407 94.82 −179.64
0.012 0.028 0.001 0.123 0.154

The column marked L gives the value of the maximized log-likelihood. All values are large and
positive showing strong evidence of stochastic volatility in all cases. The model VT(1)-ARMA(1,0) is a
first-order Markov model with linear v-transform. The fit of this model is noticeably poorer than the
others suggesting that Markov models are insufficient to capture the persistence of stochastic volatility
in the data. The column marked SW contains the p-value for a Shapiro–Wilks test of normality applied
to the residuals from the VT-ARMA copula model; the result is non-significant in all cases.

According to the AIC values, the VT(2)-ARMA(1,1) is the best model. We experimented with
higher order ARMA processes, but this did not lead to further significant improvements. Figure 5
provides a visual of the fit of this model. The pictures in the panels show the QQplot of the residuals
against normal, acf plots of the residuals and squared residuals and the estimated conditional mean
process (μ̂t), which can be taken as an indicator of high and low volatility periods. The residuals and
absolute residuals show very little evidence of serial correlation and the QQplot is relatively linear,
suggesting that the ARMA filter has been successful in explaining much of the serial dependence
structure of the normalized volatility proxy process.

We now add various marginal distributions to the VT(2)-ARMA(1,1) copula model and estimate
all parameters of the model jointly. We have experimented with a number of location-scale families
including Student-t, Laplace (double exponential), and a double-Weibull family which generalizes the
Laplace distribution and is constructed by taking back-to-back Weibull distributions. Estimation results
are presented for these three distributions in Table 2. All three marginal distributions are symmetric
around their location parameters μ, and no improvement is obtained by adding skewness using the
construction of Fernández and Steel (1998) described in Section 3.1; in fact, the Bitcoin returns in this
time period show a remarkable degree of symmetry. In the table, the shape and scale parameters of the
distributions are denoted η and σ, respectively; in the case of Student, an infinite-variance distribution
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with degree-of-freedom parameter η = 1.94 is fitted, but this model is inferior to the models with
Laplace and double-Weibull margins; the latter is the favoured model on the basis of AIC values.

Figure 5. Plots for a VT(2)-ARMA(1,1) model fitted to the Bitcoin return data: QQplot of the residuals
against normal (upper left); acf of the residuals (upper right); acf of the absolute residuals (lower left);
estimated conditional mean process (μt) (lower right).

Table 2. VT(2)-ARMA(1,1) model with three different margins: Student-t, Laplace, double Weibull.
Parameter estimates, standard errors (alongside estimates) and information about the fit: SW denotes
Shapiro–Wilks p-value; L is the maximized value of the log-likelihood and AIC is the Akaike
information criterion.

Student Laplace dWeibull

α1 0.954 0.012 0.953 0.012 0.965 0.021
β1 −0.842 0.026 −0.847 0.025 −0.847 0.035
δ 0.478 0.001 0.480 0.002 0.463 0.000
κ 0.790 0.118 0.811 0.129 0.939 0.138
η 1.941 0.005 0.844 0.022
μ 0.319 0.002 0.315 0.002 0.192 0.001
σ 2.427 0.003 3.194 0.004 2.803 0.214

SW 0.585 0.551 0.376
L −2801.696 −2791.999 −2779.950
AIC 5617.392 5595.999 5573.899

Figure 6 shows some aspects of the joint fit for the fully parametric VT(2)-ARMA(1,1) model with
double-Weibull margin. A QQplot of the data against the fitted marginal distribution confirms that the
double-Weibull is a good marginal model for these data. Although this distribution is sub-exponential
(heavier-tailed than exponential), its tails do not follow a power law and it is in the maximum domain
of attraction of the Gumbel distribution (see, for example, McNeil et al. 2015, Chapter 5).
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Figure 6. Plots for a VT(2)-ARMA(1,1) model combined with a double Weibull marginal distribution
fitted to the Bitcoin return data: QQplot of the data against fitted double Weibull model (upper left);
estimated volatility proxy profile function gT (upper right); estimated v-transform (lower left); implied
relationship between data and volatility proxy variable (lower right).

Using (26), the implied volatility proxy profile function ĝT can be constructed and is found to lie just
below the line y = x as shown in the upper-right panel. The change point is estimated to be μ̂T = 0.06.
We can also estimate an implied volatility proxy transformation in the equivalence class defined by ĝT

and μ̂T. We estimate the transformation T = T(Z) in (5) by taking T̂(x) = Φ−1(Vθ̂(V) (FX(x; θ̂(M)))). In
the lower-left panel of Figure 6, we show the empirical v-transform formed from the data (xt, T̂(xt))

together with the fitted parametric v-transform Vθ̂(V) . We recall from Section 1 that the empirical

v-transform is the plot (ut, vt) where ut = F(X)
n (xt) and vt = F(T̂(X))

n (T̂(xt)). The empirical v-transform
and the fitted parametric v-transform show a good degree of correspondence. The lower-right panel of
Figure 6 shows the volatility proxy transformation T̂(x) as a function of x superimposed on the points(
xt, Φ−1(vt)

)
. Using the curve, we can compare the effects of, for example, a log-return (× 100) of −10

and a log-return of 10. For the fitted model, these are 1.55 and 1.66 showing that the up movement is
associated with slightly higher volatility.

As a comparison to the VT-ARMA model, we fit standard GARCH(1,1) models using Student-t
and generalized error distributions for the innovations; these are standard choices available in the
popular rugarch package in R. The generalized error distribution (GED) contains normal and Laplace
as special cases as well as a model that has a similar tail behaviour to Weibull; note, however, that, by
the theory of Mikosch and Stărică (2000), the tails of the marginal distribution of the GARCH decay
according to a power law in both cases. The results in Table 3 show that the VT(2)-ARMA(1,1) models
with Laplace and double-Weibull marginal distributions outperform both GARCH models in terms of
AIC values.

Figure 7 shows the in-sample 95% conditional value-at-risk (VaR) estimate based on the
VT(2)-ARMA(1,1) model which has been calculated using (22). For comparison, a dashed line
shows the corresponding estimate for the GARCH(1,1) model with GED innovations.
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Table 3. Comparison of three VT(2)-ARMA(1,1) models with different marginal distributions with two
GARCH(1,1) models with different innovation distributions.

Parameters AIC

VT-ARMA
(Student) 7 5617.39

VT-ARMA
(Laplace) 6 5596.00

VT-ARMA
(dWeibull) 7 5573.90

GARCH
(Student) 5 5629.02

GARCH (GED) 5 5611.53

Figure 7. Plot of estimated 95% value-at-risk (VaR) for Bitcoin return data superimposed on log returns.
Solid line shows VaR estimated using the VT(2)-ARMA(1,1) model combined with a double-Weibull
marginal distribution; the dashed line shows VaR estimated using a GARCH(1,1) model with GED
innovation distribution.

Finally, we carry out an out-of-sample comparison of conditional VaR estimates using the same
two models. In this analysis, the models are estimated daily throughout the 2016–2019 period using a
1000-day moving data window and one-step-ahead VaR forecasts are calculated. The VT-ARMA model
gives 47 exceptions of the 95% VaR and 11 exceptions of the 99% VaR, compared with expected numbers
of 52 and 10 for a 1043 day sample, while the GARCH model leads to 57 and 12 exceptions; both models
pass binomial tests for these exception counts. In a follow-up paper (Bladt and McNeil 2020), we
conduct more extensive out-of-sample backtests for models using v-transforms and copula processes
and show that they rival and often outperform forecast models from the extended GARCH family.

6. Conclusions

This paper has proposed a new approach to volatile financial time series in which v-transforms
are used to describe the relationship between quantiles of the return distribution and quantiles
of the distribution of a predictable volatility proxy variable. We have characterized v-transforms
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mathematically and shown that the stochastic inverse of a v-transform may be used to construct
stationary models for return series where arbitrary marginal distributions may be coupled with
dynamic copula models for the serial dependence in the volatility proxy.

The construction was illustrated using the serial dependence model implied by a Gaussian ARMA
process. The resulting class of VT-ARMA processes is able to capture the important features of
financial return series including near-zero serial correlation (white noise behaviour) and volatility
clustering. Moreover, the models are relatively straightforward to estimate building on the classical
maximum-likelihood estimation of an ARMA model using the Kalman filter. This can be accomplished
in the stepwise manner that is typical in copula modelling or through joint modelling of the marginal
and copula process. The resulting models yield insights into the way that volatility responds to returns
of different magnitude and sign and can give estimates of unconditional and conditional quantiles
(VaR) for practical risk measurement purposes.

There are many possible uses for VT-ARMA copula processes. Because we have complete control
over the marginal distribution, they are very natural candidates for the innovation distribution in
other time series models. For example, they could be applied to the innovations of an ARMA model to
obtain ARMA models with VT-ARMA errors; this might be particularly appropriate for longer interval
returns, such as weekly or monthly returns, where some serial dependence is likely to be present in the
raw return data.

Clearly, we could use other copula processes for the volatility PIT process (Vt). The VT-ARMA
copula process has some limitations: the radial symmetry of the underlying Gaussian copula means that
the serial dependence between large values of the volatility proxy must mirror the serial dependence
between small values; moreover, this copula does not admit tail dependence in either tail and it seems
plausible that very large values of the volatility proxy might have a tendency to occur in succession.

To extend the class of models based on v-transforms, we can look for models for the volatility PIT
process (Vt) with higher dimensional marginal distributions given by asymmetric copulas with upper
tail dependence. First-order Markov copula models as developed in Chen and Fan (2006) can give
asymmetry and tail dependence, but they cannot model the dependencies at longer lags that we find
in empirical data. D-vine copula models can model higher-order Markov dependencies and Bladt and
McNeil (2020) show that this is a promising alternative specification for the volatility PIT process.
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Appendix A. Proofs

Appendix A.1. Proof of Proposition 1

We observe that, for x ≥ 0,

FT(X)(x) = P
(
μT − T−1

1 (x) ≤ Xt ≤ μT + T−1
2 (x)

)
= FX

(
μT + T−1

2 (x)
)
− FX

(
μT − T−1

1 (x)
)
.
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{
Xt ≤ μT

}⇔ {U ≤ FX(μT)
}

and in this case

V = FT(X)(T(Xt)) = FT(X)(T1(μT −Xt))= FX
(
μT + T−1

2 (T1(μT −Xt))
)
− FX(Xt)

= FX
(
μT + gT

(
μT − F−1

X (U)
))
−U.

{
Xt > μT

}⇔ {U > FX(μT)
}

and in this case

V = FT(X)(T(Xt)) = FT(X)(T2(Xt − μT))= FX(Xt) − FX
(
μT − T−1

1 (T2(Xt − μT))
)

= U − FX
(
μT − g−1

T

(
F−1

X (U) − μT
))

.

Appendix A.2. Proof of Proposition 2

The cumulative distribution function F0(x) of the double exponential distribution is equal to 0.5ex

for x ≤ 0 and 1− 0.5e−x if x > 0. It is straightforward to verify that

FX(x;γ) =

⎧⎪⎪⎨⎪⎪⎩ δeγx x ≤ 0

1− (1− δ)e−
x
γ x > 0

andF−1
X (u;γ) =

⎧⎪⎪⎨⎪⎪⎩
1
γ ln
(

u
δ

)
u ≤ δ

−γ ln
(

1−u
1−δ
)

u > δ .

When gT(x) = kxξ, we obtain for u ≤ δ that

Vδ,κ,ξ(u) = FX

(
k
γξ

(
ln
(
δ
u

)ξ)
;γ
)
− u= 1− u− (1− δ) exp

(
− k
γξ+1

(
− ln
(u
δ

))ξ)
.

For u > δ, we make a similar calculation.

Appendix A.3. Proof of Theorem 1

It is easy to check that Equation (10) fulfills the list of properties in Lemma 2. We concentrate on
showing that a function that has these properties must be of the form (10). It helps to consider the
picture of a v-transform in Figure 3. Consider the lines v = 1− u and v = δ− u for u ∈ [0, δ]. The areas
above the former and below the latter are shaded gray.

The left branch of the v-transform must start at (0, 1), end at (δ, 0), and lie strictly between these
lines in (0, δ). Suppose, on the contrary, that v = V(u) ≤ δ− u for u ∈ (0, δ). This would imply that the
dual point u∗ given by u∗ = u + v satisfies u∗ ≤ δ which contradicts the requirement that u∗ must be on
the opposite side of the fulcrum. Similarly, if v = V(u) ≥ 1− u for u ∈ (0, δ), then u∗ ≥ 1 and this is
also not possible; if u∗ = 1, then u = 0, which is a contradiction.

Thus, the curve that links (0, 1) and (δ, 0) must take the form

V(u) = (δ− u)Ψ
(u
δ

)
+ (1− u)

(
1−Ψ

(u
δ

))
= (1− u) − (1− δ)Ψ

(u
δ

)
where Ψ(0) = 0, Ψ(1) = 1 and 0 < Ψ(x) < 1 for x ∈ (0, 1). Clearly, Ψ must be continuous to satisfy the
conditions of the v-transform. It must also be strictly increasing. If it were not, then the derivative would
satisfyV′(u) ≥ −1, which is not possible: if at any point u ∈ (0, δ), we haveV′(u) = −1, then the opposite
branch of the v-transform would have to jump vertically at the dual point u∗, contradicting continuity; if
V′(u) > −1, thenV would have to be a decreasing function at u∗, which is also a contradiction.

Thus, Ψ fulfills the conditions of a continuous, strictly increasing distribution function on [0, 1],
and we have established the necessary form for the left branch equation. To find the value of the right
branch equation at u > δ, we invoke the square property. SinceV(u) = V(u∗) = V(u−V(u)), we
need to solve the equation x = V(u− x) for x ∈ [0, 1] using the formula for the left branch equation
of V. Thus, we solve x = 1 − u + x − (1− δ)Ψ

(
u−x
δ

)
for x, and this yields the right branch equation

as asserted.
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Appendix A.4. Proof of Proposition 3

Let gT(x) be as given in (11) and let u(x) = FX(μT − x). For x ∈ R+, u(x) is a continuous, strictly
decreasing function of x starting at u(0) = δ and decreasing to 0. Since Ψ is a cumulative distribution
function, it follows that

u∗(x) = u(x) +V(u(x)) = 1− (1− δ)Ψ
(

u(x)
δ

)

is a continuous, strictly increasing function starting at u∗(0) = δ and increasing to 1. Hence,
gT(x) = F−1

X (u∗(x)) − μT is continuous and strictly increasing on R+ with gT(0) = 0 as required of the
profile function of a volatility proxy transformation. It remains to check that, if we insert (11) in (4), we
recoverV(u), which is straightforward.

Appendix A.5. Proof of Theorem 2

1. For any 0 ≤ v ≤ 1, the event {U ≤ u, V ≤ v} has zero probability for u <V−1(v). For u ≥ V−1(v),
we have

{U ≤ u, V ≤ v} =
{
V−1(v) ≤ U ≤ min

(
u,V−1(v) + v

)}
and hence P(U ≤ u, V ≤ v) = min

(
u,V−1(v) + v

)
−V−1(v) and (12) follows.

2. We can write P(U ≤ u, V ≤ v) = C(u, v), where C is the copula given by (12). It follows from the
basic properties of a copula that

P(U ≤ u, V = v) =
d

dv
C(u, v) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 u <V−1(v)

− d
dvV−1(v) V−1(v) ≤ u <V−1(v) + v

1 u ≥ V−1(v) + v

This is the distribution function of a binomial distribution, and it must be the case that Δ(v) =
− d

dvV−1(v). Equation (14) follows by differentiating the inverse.
3. Finally, E(Δ(V)) = δ is easily verified by making the substitution x = V−1(v) in the integral

E(Δ(V)) = −
∫ 1

0
1

V′(V−1(v))dv.

Appendix A.6. Proof of Proposition 4

It is obviously true thatV
(
V−1(v, W)

)
= v for any W. Hence,V(U) = V

(
V−1(V, W)

)
= V. The

uniformity of U follows from the fact that

P
(
V−1(V, W) = V−1(v) | V = v

)
= P(W ≤ Δ(v) | V = v) = P(W ≤ Δ(v)) = Δ(v) .

Hence, the pair of random variables (U, V) has the conditional distribution (13) and is distributed
according to the copula C in (12).

Appendix A.7. Proof of Theorem 3

1. Since the event {Vi ≤ vi} is equal to the event
{
V−1(vi) ≤ Ui ≤ V−1(vi) + vi

}
, we first compute the

probability of a box [a1, b1] × · · · × [ad, bd] where ai = V−1(vi) ≤ V−1(vi) + vi = bi. The standard
formula for such probabilities implies that the copulas CV and CU are related by

CV(v1, . . . , vd) =
2∑

j1=1

· · ·
2∑

jd=1

(−1) j1+···+ jd CU
(
u1 j1 , . . . , udjd

)
;
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see, for example, McNeil et al. (2015), p. 221. Thus, the copula densities are related by

cV(v1, . . . , vd) =
2∑

j1=1

· · ·
2∑

jd=1

cU
(
u1 j1 , . . . , udjd

) d∏
i=1

d
dvi

(−1) ji ui ji ,

and the result follows if we use (14) to calculate that

d
dvi

(−1) juij =

⎧⎪⎪⎨⎪⎪⎩
d

dvi

(
−V−1(vi)

)
= Δ(vi) if j = 1,

d
dvi

(
vi +V−1(vi)

)
= 1− Δ(vi) if j = 2.

2. For the point (u1, . . . , ud) ∈ [0, 1]d, we consider the set of events Ai(ui) defined by

Ai(ui) =

{
{Ui ≤ ui} ifui ≤ δ
{Ui > ui} ifui > δ

The probability P(A1(u1), . . . , Ad(ud)) is the probability of an orthant defined by the point
(u1, . . . , ud) and the copula density at this point is given by

cU(u1, . . . , ud) = (−1)
∑d

i=1 I{ui>δ}
dd

du1 · · ·dud
P

⎛⎜⎜⎜⎜⎜⎝
d⋂

i=1

Ai(ui)

⎞⎟⎟⎟⎟⎟⎠ .

The event Ai(ui) can be written

Ai(ui) =

{ {
Vi ≥ V(ui), Wi ≤ Δ(Vi)

}
ifui ≤ δ{

Vi >V(ui), Wi > Δ(Vi)
}

ifui > δ

and hence we can use Theorem 2 to write

P
(

d⋂
i=1

Ai(ui)

)
=
∫ 1
V(u1)

· · ·
∫ 1
V(ud)

cV(v1, . . . , vd)
d∏

i=1
Δ(vi)

I{ui≤δ}(1− Δ(vi))
I{ui>δ}dv1 · · ·dvd .

The derivative is given by

dd

du1···dud
P
(

d⋂
i=1

Ai(ui)

)
= (−1)dcV(V(u1), . . . ,V(ud))

d∏
i=1

p(ui)
I{ui≤δ}(1− p(ui))

I{ui>δ}V′(ui)

where p(ui) = Δ(V(ui)) and hence we obtain

cU(u1, . . . , ud) = cV(V(u1), . . . ,V(ud))
d∏

i=1

(−p(ui))
I{ui≤δ}(1− p(ui))

I{ui>δ}V′(ui).

It remains to verify that each of the terms in the product is identically equal to 1. For ui ≤ δ, this
follows easily from (14) since−p(ui) = −Δ(V(ui)) = 1/V′(ui). For ui > δ, we need an expression
for the derivative of the right branch equation. SinceV(ui) = V(ui −V(ui)), we obtain

V′(ui) = V′(ui −V(ui))(1−V′(ui)) = V′
(
u∗i
)
(1−V′(ui)) =⇒V′(ui) =

V′
(
u∗i
)

1 +V′
(
u∗i
)
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implying that

1− p(ui) = 1− Δ(V(ui)) = 1− Δ
(
V
(
u∗i
))
= 1 +

1

V′
(
u∗i
) = 1 +V′

(
u∗i
)

V′
(
u∗i
) =

1
V′(ui)

.

Appendix A.8. Proof of Proposition 5

Let Vt = V(Ut) and Zt = Φ−1(Vt) as usual. The process (Zt) is an ARMA process with acf ρ(k)
and hence

(
Zt1 , . . . , Ztk

)
are jointly standard normally distributed with correlation matrix P(t1, . . . , tk).

This implies that the joint distribution function of
(
Vt1 , . . . , Vtk

)
is the Gaussian copula with density

cGa
P(t1,...,tk)

and hence by Part 2 of Theorem 3 the joint distribution function of
(
Ut1 , . . . , Utk

)
is the copula

with density cGa
P(t1,...,tk)

(V(u1), . . . ,V(uk)).

Appendix A.9. Proof of Proposition 6

We split the integral in (18) into four parts. First, observe that, by making the substitutions
v1 = V(u1) = 1− u1/δ and v2 = V(u2) = 1− u2/δ on [0, δ] × [0, δ], we get

∫ δ
0

∫ δ
0

u1u2cGa
ρ(k)(V(u1),V(u2))du1du2= δ

4
∫ 1

0

∫ 1

0
(1− v1)(1− v2)cGa

ρ(k)(v1, v2)dv1dv2

= δ4E((1−Vt)(1−Vt+k))

= δ4(1− E(Vt) − E(Vt+k) + E(VtVt+k)) = δ
4E(VtVt+k)

where (Vt, Vt+k) has joint distribution given by the Gaussian copula CGa
ρ(k)

. Similarly, by making the

substitutions v1 = V(u1) = 1− u1/δ and v2 = V(u2) = (u2 − δ)/(1− δ) on [0, δ] × [δ, 1], we get

∫ δ
0

∫ 1
δ

u1u2cGa
ρ(k)

(V(u1),V(u2))du1du2

=
∫ 1

0

∫ 1
0 δ

2(1− δ)(1− v1)(δ+ (1− δ)v2)cGa
ρ(k)

(v1, v2)dv1dv2

= δ3(1− δ)E(1−Vt) + δ2(1− δ)2E((1−Vt)Vt+k) =
δ2(1−δ)

2 − δ2(1− δ)2E(VtVt+k)

and the same value is obtained on the quadrant [δ, 1] × [0, δ]. Finally, making the substitutions
v1 = V(u1) = (u1 − δ)/(1− δ) and v2 = V(u2) = (u2 − δ)/(1− δ) on [δ, 1] × [δ, 1], we get

∫ 1
δ

∫ 1
δ

u1u2cGa
ρ(k)

(V(u1),V(u2))du1du2

=
∫ 1

0

∫ 1
0 (1− δ)2(δ+ (1− δ)v1)(δ+ (1− δ)v2)cGa

ρ(k)
(v1, v2)dv1dv2

=
∫ 1

0

∫ 1
0 (1− δ)2

(
δ2 + δ(1− δ)v1 + δ(1− δ)v2 + (1− δ)2v1v2

)
cGa
ρ(k)

(v1, v2)dv1dv2

= δ2(1− δ)2 + δ(1− δ)3E(Vt) + δ(1− δ)3E(Vt+k) + (1− δ)4E(VtVt+k)

= δ(1− δ)2 + (1− δ)4E(VtVt+k)

Collecting all of these terms together yields

∫ 1

0

∫ 1

0
u1u2cGa

ρ(k)(V(u1),V(u2))du1du2= δ(1− δ) + (2δ− 1)2E(VtVt+k)
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and, since ρS(Zt, Zt+k) = 12E(VtVt+k) − 3, it follows that

ρ(Ut, Ut+k) = 12E(UtUt+k) − 3 = 12
∫ 1

0

∫ 1
0 u1u2cGa

ρ(k)
(V(u1),V(u2))du1du2 − 3

= 12δ(1− δ) + 12(2δ− 1)2E(VtVt+k) − 3
= 12δ(1− δ) + (2δ− 1)2(ρS(Zt, Zt+k) + 3) − 3
= (2δ− 1)2ρS(Zt, Zt+k) .

The value of Spearman’s rho ρS(Zt, Zt+k) for the bivariate Gaussian distribution is well known;
see, for example, McNeil et al. (2015).

Appendix A.10. Proof of Proposition 7

The conditional density satisfies

fUt |Ut−1(u | ut−1) =
cUt (u1,...,ut−1,u)
cUt−1 (u1,...,ut−1)

=
cGa

P(1,...,t)
(V(u1),...,V(ut−1),V(u))

cGa
P(1,...,t−1)

(V(u1),...,V(ut−1))
.

The Gaussian copula density is given in general by

cGa
P (v1, . . . , vd) =

fZ
(
Φ−1(v1), . . . , Φ−1(vd)

)
∏d

i=1 φ(Φ
−1(vi))

where Z is a multivariate Gaussian vector with standard normal margins and correlation matrix P.
Hence, it follows that we can write

fUt |Ut−1(u | ut−1) =
fZt(Φ−1(V(u1)),...,Φ−1(V(ut−1)),Φ−1(V(u)))

fZt−1 (Φ
−1(V(u1)),...,Φ−1(V(ut−1)))φ(Φ−1(V(u)))

=
fZt |Zt−1(Φ−1(V(u))|Φ−1(V(ut−1)))

φ(Φ−1(V(u)))

where fZt |Zt−1 is the conditional density of the ARMA process, from which (20) follows easily.
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Abstract: We consider several market models, where time is subordinated to a stochastic process.
These models are based on various time changes in the Lévy processes driving asset returns, or on
fractional extensions of the diffusion equation; they were introduced to capture complex phenomena such
as volatility clustering or long memory. After recalling recent results on option pricing in subordinated
market models, we establish several analytical formulas for market sensitivities and portfolio performance
in this class of models, and discuss some useful approximations when options are not far from the money.
We also provide some tools for volatility modelling and delta hedging, as well as comparisons with
numerical Fourier techniques.

Keywords: Lévy process; subordination; option pricing; risk sensitivity; stochastic volatility; Greeks;
time-change

1. Introduction

In this opening section, we provide a general introduction to the class of subordinated market models;
we also present the key points investigated in the paper, as well as the work’s overall structure.

1.1. Time Subordination in Financial Modelling

Among the most striking patterns that are observable in financial time series are the phenomena of
regime switching, clustering, and long memory or autocorrelation (see e.g., Cont (2007) and references
therein). Such stylized facts have been evidenced for several decades, Mandelbrot famously remarking
in Mandelbrot (1963) that large price changes tend to cluster together (“large changes tend to be followed
by large changes, of either sign, and small changes tend to be followed by small changes”), thus creating
periods of market turbulence (high volatility) alternating with periods of relative calm (low volatility).
These empirical observations can be described, among other approaches, by agent based models focusing
on economic interpretation, such as Lux and Marchesi (2000); Niu and Wang (2013), by tools from statistical
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mechanics and econophysics (Krawiecki et al. 2002), or by the introduction of multifractals (Calvet and
Fischer 2008).

Another prominent approach to describe this subtle volatility behavior consists of introducing a time
change in the stochastic process driving the market prices. Besides stochastic volatility, time changed
market models also capture several stylized facts, like non-Normality of returns (the presence of jumps,
asymmetry) and negative correlation between the returns and their volatility (see a complete overview
in Carr and Wu (2004)). They are motivated by the observation that market participants do not operate
uniformly through a trading period, but, on the contrary, the volume, and frequency of transactions greatly
vary over time. Following the terminology of Geman (2009), the time process is called the stochastic clock,
or business time, while the stochastic process for the underlying market (a Brownian motion, or a more
general Lévy process) is said to evolve in operational time.

Historically, the first introduction of a time change in a diffusion process goes back to Bochner
(1949); it was first applied to financial modeling in Clark (1973) in the context of the cotton futures
market and for a continuous-time change. During the late 1990s and early 2000s, the approach was
extended to discontinuous time changes, with the introduction of subordinators (i.e., non-negative
Lévy processes, see the theoretical details in Bertoin (1999)). In other words, the business time now
admits increasing staircase-like realizations, describing peak periods of activity (following, for instance,
earning announcements, central bank reports, or major political events) alternating with less busy periods.
Perhaps the best-known subordinators are the Gamma process, like in the Variance Gamma (VG) model
by Madan et al. (1998), and the inverse Gaussian process, like in the Normal inverse Gaussian (NIG) model
by Barndorff-Nielsen (1997). Let us also mention that subordination has been successfully applied in many
other fields of applied science. For instance, Gamma subordination has been employed for modeling the
deterioration of production equipment in order to optimize their maintenance (see de Jonge et al. (2017) and
references therein), and inverse Gaussian subordination was originally introduced in Barndorff-Nielsen
(1977) to model the influence of wind on dunes and beach sands.

Recently, a new type of time subordination, based on fractional calculus, has emerged. Indeed,
Lévy processes are closely related to fractional calculus because, for many of them (including stable and
tempered stable processes), their probability densities satisfy a space fractional diffusion equation (see
details and applications to option pricing in Cartea and del-Castillo-Negrete (2007) and in Luchko et al.
(2019)). By also allowing the time derivative to be fractional, as, e.g., in Jizba et al. (2018); Kleinert and
Korbel (2016); Korbel and Luchko (2016); Tarasov (2019); Tomovski et al. (2020), it provides a new type of
subordinated models: while the order of the space fractional derivative controls the heavy tail behavior
of the distribution of returns, the order of the time fractional derivative acts as a temporal subordination
parameter whose purpose is to capture time-related phenomena, such as temporal risk redistribution. This
model, which we shall refer to as the fractional diffusion (FD) model, is an alternative to time-change
models, or to subordinated random walks (Gorenflo et al. 2006).

Regarding the practical implementation and valuation of financial derivatives within subordinated
market models, the literature is dominated by numerical techniques. In time changed models notably, tools
from Fourier transform (Lewis 2001) or Fast Fourier transform (Carr and Madan 1999), and their many
refinements, such as the COS method by Fang and Osterlee (2008) or the PROJ method by Kirkby (2015).
These methods are popular, notably because such models’ characteristic functions are known in relatively
simple closed-forms. Similarly, Cui et al. (2019) provides a numerical pricing framework for a general
time changed Markov processes, and Li and Linetsky (2014) employs eigenfunction expansion techniques.
However, recently, closed-form pricing formulas have been derived, for the VG model in Aguilar (2020a)
and for the NIG model in Aguilar (2020b). The technique has also been employed in the FD model,
for vanilla payoffs in Aguilar et al. (2018) and for more exotic options in Aguilar (2020c).
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In this paper, we extend these pricing tools to the calculation of risk sensitivities and to profit-and-loss
(P&L) explanation, and we provide comparisons between time changed models (such as the NIG and
the VG models) and the FD model. Like for the pricing case, risk sensitivities in the context of time
changed market models (and of Lévy market models in general) are traditionally evaluated by means of
numerical methods based on Fourier inversion (Eberlein et al. 2010; Takahashi and Yamazaki 2008); in the
present paper, we will therefore show that they can be expressed in a tractable way, under the form of
fast convergent series whose terms explicitly depend on the model parameters. This will allow for us to
construct and compare the performance of option based portfolios, and discuss, both quantitatively and
qualitatively, the impact on the parameters on risks and P&L. Related topics, such as volatility modeling,
will also be discussed.

1.2. Contributions of the Paper

Our purpose in the present work is to investigate and provide details on the following key points:

(a) demonstrate that the recent pricing formulas for the VG, NIG and FD models are precise and fast
converging, and can be successfully used for other applications (e.g., calculations of volatility curve);

(b) provides efficient closed-form formulas for first and second-order risk sensitivities (Delta, Gamma)
and compare them with numerical techniques; and,

(c) deduce from these formulas several practical features regarding delta-hedging policies and portfolio
performance.

1.3. Structure of the Paper

The paper is organized as follows: in Section 2 we recall some fundamental concepts on Lévy
processes and option pricing and, in Section 3, we introduce the class of subordinated market models and
their main implications in financial modeling.Subsequently, in Section 4, we mention the various closed
pricing formulas that have been obtained for this class of models. Approximating these formulas when
options are not far from the money, we establish formulas for computing the market volatility in this
configuration, thus generalizing the usual Black-Scholes implied volatility. In Section 5 (resp. Section 6),
we derive the expressions for the first (resp. second) order market sensitivities, and for the P&L of a
delta-hedged portfolio; the impact of the subordination parameter is discussed, and a comparison with
numerical techniques is provided. Last, Section 7 is dedicated to concluding remarks.

2. Exponential Lévy Processes

Let us start by recalling some fundamentals on Lévy processes (see full details in Sato (1999) and
in Cont and Tankov (2004) for their applications to financial modeling) and, following the classical setup
of Schoutens (2003), how they are implemented for the purpose of option pricing.

2.1. Basics of Lévy Processes

Let (Ω,F , {Ft}t≥0,P) be a probability space that is equipped with its natural filtration. Recall
that a Lévy process {Xt}t≥0 is a stochastically continuous process satisfying X0 = 0 (P-almost surely),
and whose increments are independent and stationary. This implies that the characteristic function
Ψ(u, t) := EP [eiuXt ] of a Lévy process has a semi-group structure and it admits an infinitesimal generator
ψ(u), called Lévy symbol or characteristic exponent, which satisfies

Ψ(u, t) = etψ(u), ψ(u) := log Ψ(u, 1). (1)
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The characteristic exponent is entirely determined by the triplet (a, b, Π(dx)), which corresponds to
Lévy–Khintchine representation

ψ(u) = a iu − 1
2

b2u2 +

+∞∫
−∞

(
eiux − 1 − iux {|x|<1}

)
Π(dx), (2)

where a is the drift and is b the Brownian (or diffusion) component. The measure Π(dx), assumed to be
concentrated on R\{0} and satisfy

+∞∫
−∞

min(1, x2)Π(dx) < ∞, (3)

is called the Lévy measure of the process, and determines its tail behavior and the distribution of
jumps. When Π(R) < ∞, one speaks of a process with finite activity (or intensity); this is the case
for jump-diffusion processes, like in the Kou Model (Kou 2002) or the Merton model (Merton 1976),
where only a finite number of jumps can occur on each time interval. When Π(R) = ∞, one speaks of a
process with infinite activity (or intensity); this class is far richer, because an infinite number of jumps
can occur on any finite time interval and, as a consequence, no Brownian component b is even needed
to generate a very complex dynamics. A prominent model with infinite activity is the Variance Gamma
process, introduced in Madan et al. (1998). When Π(R−) = 0 (i.e., the process has only positive jumps),
one speaks of a subordinator.

An important class of Lévy measures, which will be of particular interest to us in this paper,
corresponds to the so-called class of tempered stable processes:

Π(dx) :=

[
c+e−λ+x

x1+α+ {x>0} +
c−e−λ−|x|

|x|1+α− {x<0}

]
dx. (4)

This class contains several sub-classes, such as the tempered stable subordinators (c− = 0) or the
stable processes (λ+ = λ− = 0). When c+ = c− := C, α+ = α− := Y, λ− := G and λ+ := M, one speaks
of a CGMY process (introduced in Carr et al. (2002)). By requiring the further restriction that Y = 0,
we obtain the Variance Gamma process of Madan et al. (1998); the symmetric case G = M was considered
earlier in Madan and Seneta (1990). We also note that the CGMY (and VG) models are members of the
KoBoL family, see Boyarchenko and Levendorskiĭ (2000).

2.2. Exponential Lévy Motions

Let T > 0 and S : t ∈ [0, T] → St be the market price of some financial asset, seen as the realization of
a time dependent random variable {St}t∈[0,T] on the canonical space Ω = R+. We assume that there exists
a risk-neutral measure Q under which the instantaneous variations of St can be written down as:

dSt

St
= (r − q)dt + dXt (5)

where r ∈ R is the risk-free interest rate and q ≥ 0 is the dividend yield (both being assumed to
be deterministic and continuously compounded), and where {Xt}t∈[0,T] is a Lévy process. Under the
dynamics (5), the terminal market price is given by

ST = Ste(r−q+ω)τ+Xτ , (6)
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where τ := T − t is the time horizon and ω is the martingale adjustment (also called convexity adjustment,
or compensator), which is determined by the martingale condition

EQ [ST | Ft] = e(r−q)τSt. (7)

Given the form of the exponential process (6), the condition (7) is equivalent to:

ω = −ψ(−i) = − logEP
[
eX1

]
. (8)

2.3. Option Pricing

Given a path-independent payoff function P , i.e., a positive function depending only on the terminal
value ST of the market price and on some strike parameters K1, . . . , KN > 0, then the value at time t of a
contingent claim delivering a payoff P at its maturity is equal to the following risk-neutral expectation:

C = EQ [
e−rτP(ST , K1, . . . , Kn) | Ft

]
. (9)

If the Lévy process {Xt}t∈[0,T] admits a density f (x, t), then the conditional expectation (9) can be
achieved by integrating all possible realizations for the payoff over the Lévy density, thus resulting in:

C = e−rτ

+∞∫
−∞

P(St e(r−q+ω)τ + x, K1, . . . , Kn) f (x, τ)dx. (10)

3. Subordinated Models

In this section, we introduce the class of subordinated market models, which is, models for which
time is driven by a particular subordinator. We also provide a review of their main financial applications.

3.1. Exponential VG Model

3.1.1. Model Characteristics

In the exponential VG model by (Madan et al. 1998), one chooses the Lévy process in (5) to be a VG
process; this process is defined by

X(VG)
t := θGt + σWGt (11)

where Wt is the standard Wiener process, and γ(t, 1, ν) is a Gamma process (i.e., a process whose increments
γ(t + h, 1, ν)− γ(t, 1, ν) follow a Gamma distribution with mean 1 × h and variance ν × h). It follows from
definition (11) that the VG process is actually distributed according to a so-called Normal variance–mean
mixture (see Barndorff-Nielsen et al. (1982)), where the mixing distribution is the Gamma distribution;
this distribution materializes the business time, and it is a particular case of a tempered stable subordinator,
as it admits the following Lévy measure (see Sato (1999) for instance):

ΠG(dx) =
1
ν

e− 1
ν x

x {x>0} dx. (12)

It follows from (12) that ΠG(R) = ∞, which means that the Gamma process has infinite activity;
note also that the Gamma measure (12) is concentrated around 0, which means that most jumps in
the business time are small, and become bigger in the high ν regime. The VG process is actually a
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tempered stable process itself (and, more precisely, a CGMY process), its Lévy measure admitting the
following representation:

ΠVG(dx) =
e

θx
σ2

ν|x| e
−

√
θ2
σ2 + 2

ν

σ |x| dx. (13)

Note that (13) is symmetric around the origin when θ = 0 (i.e., positive and negative jumps in asset
prices occur with the same probability). The density function of the VG process is obtained by integrating
the normal density conditionally to the Gamma time-change, and it reads:

fVG(x, t) =
2eθ x

σ2

ν
t
ν
√

2πσΓ( t
ν )

(
x2

2σ2

ν + θ2

) t
2ν − 1

4

K t
ν − 1

2

(
1
σ2

√
2σ2

ν
+ θ2|x|

)
(14)

where Ka(X) denotes the modified Bessel function of the second kind, sometimes also called MacDonald
function (see definition and properties in Abramowitz and Stegun (1972)). The Lévy symbol is known in
the exact form:

ψVG(u) = −1
ν

log
(

1 − iθνu +
σ2ν

2
u2

)
, (15)

allowing for a simple representation for the VG martingale adjustment:

ωVG = −ψVG(−i) =
1
ν

log
(

1 − θν − σ2ν

2

)
. (16)

Remark 1. Note that, when θ = 0 and ν → ∞, then ωVG → − σ2

2 , which is the usual Gaussian adjustment,
and, in this limit, the exponential VG model degenerates into the Black–Scholes model (Black and Scholes 1973).

The limiting regime, VG(σ, ν, 0) ν→0−→ BS(σ), is illustrated in Figure 1 for decreasing ν. In particular, ν directly
controls the excess kurtosis for the VG model.

-1.5 -1 -0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

Figure 1. Black–Scholes (circles) as the limit of VG(σ, ν, 0) ν→0−→ BS(σ).
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3.1.2. Financial Applications

As already noted, the presence of the subordination parameter ν is particularly attractive for modeling
time-induced phenomena, as it allows for a non-uniform passage of time. When ν is small, realizations
of the Gamma subordinator are quasi-linear, which corresponds to a situation where the business time
is the same as the operational time. On the contrary, for bigger values of ν, realizations of the Gamma
process are highly discontinuous and staircase-like (because the process is non decreasing), capturing the
alternation of intense and quieter trading periods.

The exponential VG model has been successfully tested on real market data and shown to perform
better than Black–Scholes or Jump-Diffusion models in multiple situations, e.g., for European-style options
on the HSI index in Lam et al. (2002) or for currency options in Madan and Dual (2005). Several extensions
of the model have been subsequently developed, such as the generalization of the subordination to
a bivariate or multivariate Brownian motion (Luciano and Schoutens 2006; Semeraro 2008) (with an
application to basket options calibration in Linders and Stassen (2015)). Other recent extensions include
the possibility of negative jumps in the linear drift rate of the price process in Ivanov (2018). Last, let us
also mention that the exponential VG model has also found its way to applications in other fields of
quantitative finance, such as credit risk in Fiorani et al. (2007).

3.2. Exponential NIG Model

3.2.1. Model Characteristics

In the exponential NIG model (see Barndorff-Nielsen (1997)), one chooses the Lévy process in (5) to
be the NIG process, defined by

X(NIG)
t = βδ2 It + δWIt (17)

where {It}t∈[0,T] follows an Inverse Gamma distribution of shape δ
√

α2 − β2 and mean rate 1. α > 0 is
a tail or steepness parameter controlling the kurtosis of the NIG distribution; the large α regime gives
birth to light tails, while small α corresponds to heavier tails. β ∈ (−α, α − 1) is the skewness parameter:
β < 0 (resp. β > 0) implies that the distribution is skewed to the left (resp. the right), and β = 0 that the
distribution is symmetric. δ > 0 is the scale parameter and it plays an analogous role to the variance term
σ2 in the Normal distribution. Let us mention that a location parameter μ ∈ R can also be incorporated,
but it has no impact on option prices (see e.g., Aguilar (2020b)), and, therefore, we will assume that it is
equal to 0. Let us also note that, again, we are in the presence of a tempered stable subordination, as the
Lévy measure of the Inverse Gamma process {It}t∈[0,T] satisfies

ΠIG(dx) =
e−

δ2(α2−β2)
2 x

x
3
2

{x>0} dx, (18)

while the Lévy measure of the NIG process itself is given by

ΠNIG(dx) :=
αδ

π
eβx K1(α|x|)

|x| dx. (19)

It follows from definition (17) that, like in the VG case, the NIG process is also distributed according
to a Normal variance-mean mixture, where the mixing distribution is now the IG distribution; this mixture
is a particular case of the more general class of hyperbolic processes (see discussion and applications to
finance in Eberlein and Keller (1995)), the mixing distributions in that case being the Generalized Inverse
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Gaussian (GIG) distribution. The probability density function for the NIG process is obtained by an
integration of the Normal density over the IG distribution and it reads

fNIG(x, t) :=
αδt
π

eδt
√

α2−β2+β(x−μt)
K1

(
α
√
(δt)2 + (x − μt)2

)
√
(δt)2 + (x − μt)2

, (20)

and its Lévy symbol is given by

ψNIG(u) = − δ

(√
α2 − (β + iu)2 −

√
α2 − β2

)
. (21)

It follows that the NIG convexity adjustment reads

ωNIG = −ψNIG(−i) = δ

(√
α2 − (β + 1)2 −

√
α2 − β2

)
. (22)

Remark 2. When α → ∞ (large steepness regime), then ωNIG → − σ2

2 (1+ 2β) where σ2 := δ
α ; when, furthermore,

β = 0 (symmetric process) then one recovers the usual Gaussian adjustment − σ2

2 and the exponential NIG model
degenerates into the Black–Scholes model.

3.2.2. Financial Applications

The exponential NIG model has been proved to provide a distinguished fitting to financial data
many times. Let us mention, among others, initial tests for daily returns on Danish and German markets
in Rydberg (1997) and, subsequently, on the FTSE All-share index (also known as “Actuaries index”)
in Venter and de Jongh (2002). More recently, the impact of high-frequency trading has also been taken into
account, and calibrations have been performed on intraday returns, e.g., in Figueroa-López et al. (2012) for
different sampling frequencies. Like in the VG case, multivariate extensions have also been considered
(see Luciano and Semeraro (2010) and references therein), and applications to credit risk have also been
provided (Luciano 2009).

In Figure 2, we display the log-return density for a VG and NIG example, each being recovered
from their characteristic functions while using the method of Kirkby (2015). While both models exhibit
heavy-tails, the VG model is characterized by a pronounced cusp, especially for shorter maturities.
This near singular behavior presents challenges for Fourier pricing methods, and techniques, such as
spectral filtering, have been proposed as a remedy Cui et al. (2017); Phelan et al. (2019); Ruijter et al. (2015).
In contrast, the closed form pricing formulas presented here exhibit smooth exponential convergence
without special handling, as demonstrated in Section 4.
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Figure 2. Log-return densities for several maturities τ, for the VG(0.3, 0.5, 0) model (Left) and the
NIG(9.0, 0, 1.2) model (Right).

3.3. Fractional Diffusion Model

The FD model by Kleinert and Korbel (2016); Korbel and Luchko (2016) aims at generalizing the
Lévy stable model by introducing a time-fractional derivative in the equation governing the probability
densities, whose order will be interpreted as a subordination parameter. Before introducing the model and
its characteristics, we briefly recall some basics of stable distributions and their link with fractional calculus.

3.3.1. Lévy-Stable Processes and Fractional Derivatives

Taking λ+ = λ− = 0 and α+ = α− := α ∈ (0, 2) in (4) yields the Lévy measure of the stable
(or α-stable) process {X(stable)

t }t∈[0,T]:

Πstable(x) =
c−

|x|1+α {x<0} +
c+

x1+α {x>0}. (23)

It is known that, when using Feller’s parametrization,⎧⎪⎨⎪⎩
σα := −(c+ + c−)Γ(−α) cos

πα

2

β :=
c+ − c−
c+ + c−

(24)

then the Lévy symbol of the stable process can be written as

ψstable(u) = σα|u|α
(

1 − iβ tan
απ

2
sgnu

)
+ iau (25)

where the drift term a equals the expectation EQ[X(stable)
t ] as soon as α ∈ (1, 2), that is, for the class of

stable Paretian distributions. This class is the one with the greatest financial meaning and historical
importance, with initial calibrations going back to Mandelbrot (1963) with α � 1.7 for cotton prices; see a
comprehensive overview of these distributions in Zolotarev (1986), and of their financial applications
in Mittnik and Rachev (2000). However, we may note that, due to the polynomial decay of (23) on the
positive axis, the moment generating function and moments of all order do not exist unless c+ = 0, or,
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equivalently, in terms of the parametrization (24), β = −1. This condition, which is known as the maximal
negative asymmetry (or skewness) hypothesis, is the key assumption in the Finite Moment Log Stable
(FMLS) model by Carr and Wu (2003); it follows from (25) that the FMLS martingale adjustment is

ωFMLS =

(
σ√
2

)α

cos πα
2

=
1
π

Γ
(

1 − α

2

)
Γ

(
1 + α

2

) (
σ√
2

)α

(26)

where we have introduced the
√

2 normalization, so as to recover the Gaussian adjustment when α = 2,
and where the second equality is a consequence of the reflection formula for the Gamma function; in the
limiting case α = 2, the stable distribution degenerates into the Normal one, and, therefore, the FMLS
model recovers the Black–Scholes model.

Another consequence of the characteristic exponent (25) with β = −1 is that the FMLS probability
density fFMLS(x, t) satisfies the space fractional diffusion equation

∂ fFMLS
∂t

+ ωα Dα
x fFMLS(x, t) = 0, x ∈ R, t ∈ [0, T], (27)

where Dα
x :=α−2 Dα

x is a particular case of the Riesz–Feller derivative defined (via its Fourier transform) by

̂θDα
x f (u) = |k|αei(signu)θπ/2 f̂ (u) , |θ| ≤ min{α, α − 2}. (28)

Remark 3. When θ = 0, the Riesz–Feller derivative is simply called Riesz derivative (as the operator inverse to
the Riesz potential, see all details and definitions e.g., in the classical monograph Samko et al. (1993)); the choice
θ = α − 2 in Equation (27) is the fractional calculus analogue to the maximal negative asymmetry hypothesis
β = −1. When α = 2 then the Riesz-Feller derivative degenerates into the usual second derivative; in that case,
(27) becomes the usual heat equation, whose fundamental solution (the heat kernel) is the probability density of the
Wiener process.

3.3.2. Model Characteristics

The FD model generalizes the FMLS model, by allowing the time derivative in the Equation (27) for
the probability density to be fractional as well:(∗Dγ

t + ωFD Dα
x
)

fFD(x, t) = 0, x ∈ R, t ∈ [0, T], (29)

where α ∈ (1, 2], γ ∈ (0, α] and ∗Dt
γ denotes the Caputo fractional derivative (see the definitions and

properties in Li et al. (2011) for instance); when γ = 1, it coincides with the usual first-order derivative.
The fundamental solution to (29) has been determined in Mainardi et al. (2001) and admits the

following Mellin–Barnes representation

fFD(x, t) =
1

αx

c+i∞∫
c−i∞

(
G∗
+(s) {x>0} + G∗−(s) {x<0}

) (
|x|

(−μα,γtγ)
1
α

)s
ds

2iπ
, (30)

where we have defined

G∗
+(s) :=

Γ(1 − s)
Γ(1 − γ s

α )
, G∗−(s) :=

Γ
( s

α

)
Γ

(
1 − s

α

)
Γ(1 − s)

Γ
(
1 − γ

α s
)

Γ
(

α−1
α s

)
Γ

(
1 − α−1

α s
) . (31)
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By analogy with (10), the price of a contingent claim C delivering a path independent payoff P at its
maturity is defined to be

C = e−rτ

+∞∫
−∞

P(St e(r−q+ωFD)τ + x, K1, . . . , Kn) fFD(x, τ)dx (32)

and the martingale adjustment is defined in terms of the cumulant generating function by

ωFD = − log
+∞∫

−∞

ex fFD(x, 1)dx. (33)

It has been shown in Aguilar et al. (2018) that ωFD can be conveniently expressed in the form of
a series

ωFD = − log
∞

∑
n=0

(−1)n

n!
Γ(1 + αn)

Γ(1 + γαn)
ωn

FMLS (34)

where ωFMLS is the FMLS martingale adjustment that is defined in (26), and under the condition that
γ ∈ (1 − 1

α , α); using a first-order Taylor expansion for log(1 + u) and the expression (26), we obtain the
useful approximation:

ωFD =
1
π

Γ(1 + α)Γ
(

1−α
2

)
Γ

(
1+α

2

)
Γ(1 + γα)

(
σ√
2

)α

+ O
(

σ2α
)

. (35)

Remark 4. When α = 2, we are left with

ωFD = − σ2

Γ(1 + 2γ)
+ O

(
σ4

)
(36)

which coincides with the Black–Scholes adjustment − σ2

2 when γ = 1; we call the situation α = 2 and γ ∈ (0, 2]
the “subordinated Black-Scholes” (sub-BS) model. This is a slight abuse of terminology, because we are not
directly in the presence of a subordinating process (i.e., a non decreasing Lévy process) like in the VG and the
NIG cases; subordination is achieved here via the introduction of a fractional time derivative whose order γ acts
as a supplementary degree of freedom in the time dynamics. When γ = 1, then the sub-BS model recovers the
Black–Scholes model, like the VG model with ν → 0 and the NIG model with α → ∞; we summarize the situation
in Table 1.

Table 1. Some subordinated market models, and their limiting cases. Time changed models (exponential
VG and NIG), FD, and sub-BS models recover the Black–Scholes (BS) model for specific values of their
subordination parameters.

Subordinated Model Limiting Regimes

VG(σ, ν, θ) VG(σ, ν, 0) ν→0−→ BS(σ)
NIG(α, β, δ) NIG(α, 0, δ)

α→∞−→ BS(
√

δ/α)

FD(σ, α, γ) FD(σ, α, γ)
γ→1−→ FMLS(σ, α)

α→2−→ BS(σ)

sub-BS(σ,γ) := FD(σ, 2, γ) sub-BS(σ, γ)
γ→1−→ BS(σ)
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3.3.3. Financial Applications

The purpose of the FD model is to allow more flexibility in the risk redistribution of returns. When the
tail index α departs from 2, the model shifts the returns towards more significant losses due to the
presence of the left fat tail. Similarly, when the order of the fractional derivative γ is different from 1,
the risk is shifted either towards shorter (γ < 1) or longer (γ > 1) maturities: for instance, when γ < 1,
the prices of short term options increase while the prices of long term options slightly decrease (see
details, e.g., in Korbel and Luchko (2016)). This behavior is particularly relevant in periods of stressed
market conditions: for instance, it has been observed during the 2020 market turmoils (consecutive to
the COVID19 pandemics) that short-term implied volatility on the Euro Stoxx 50 index had increased
sharply while remaining more stable for long-term options. Several calibrations have been made, notably
on market data from turbulent times; in particular, in Kleinert and Korbel (2016), the FD model has been
calibrated on data from S&P 500 options traded during November 2008. Such calibrations have shown
that α could be quite different from 2: typically, α � 1.6–1.7, that turns out to be quite remote from the
log-normal hypothesis (α = 2), but relatively close to the initial Mandelbrot estimate for the stable law on
cotton futures market (Mandelbrot 1963). Moreover, it has been noted that both fractional parameters α

and γ appeared to vary simultaneously and in the same direction, leaving the diffusion scaling exponent
γ/α relatively stable.

4. Pricing and Volatility Modelling

In this section, we first recall the pricing formulas that were obtained in recent works for the VG, NIG,
and FD models, in the case of a European option C delivering a payoff equal to [ST − K]+ at maturity.
Then, we discuss some volatility properties when asset prices are not far from the money. In all of the
following, we will denote the forward strike price and the log-forward moneyness by

F := Ke−rτ , k := log
St

K
+ (r − q)τ. (37)

We will also use the notations

kVG := k + ωVGτ , kNIG := k + ωNIGτ , kFD := k + ωFDτ (38)

and, in the specific case of the VG model, we will denote

τν :=
τ

ν
− 1

2
σν := σ

√
ν

2
. (39)

We will assume that the underlying VG (resp. NIG) processes are symmetric, which is, θ = 0
(resp. β = 0); this is to simplify the notations, but also because symmetric time-changed models extend
the Black–Scholes setup (see Table 1). Therefore, we will be better able to compare the results with usual
formulas known in the Black-Scholes model. We will also assume that τν /∈ Q; note that this condition
is not restrictive, due to the density of Q in R: if τν ∈ Q, it is easy to make τν irrational by adding an
arbitrary small perturbation, for instance, τν → τν + e/1010). Last, whenever the exponential NIG model
is concerned, we will always assume that

|kNIG|
δτ

< 1 (40)

to ensure the convergence of the series. Please note that this condition is automatically satisfied when
options are not far from the money because, in this case, kNIG is small. When St is far from K, condition (40)
necessitates a restriction on options maturities in order to be satisfied; for a typical set of parameters,
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maturities shorter than two or three months should be excluded, which remains a reasonable limitation
(see details in Aguilar (2020b)).

For convenience, we summarize the pricing formulas for a European call option.

Formula 1 (European call: pricing formulas).
(i) The value at time t of a European call option in the exponential VG model is:

- (OTM price) If kVG < 0,

C−
VG(kVG, σν) =

F
2Γ( τ

ν )

∞

∑
n1=0
n2=1

(−1)n1

n1!

[
Γ(−n1+n2+1

2 + τν)

Γ(−n1+n2
2 + 1)

(−kVG
σν

)n1

σn2
ν

+ 2
Γ(−2n1 − n2 − 1 − 2τν)

Γ(−n1 +
1
2 − τν)

(−kVG
σν

)2n1+1+2τν

(−kVG)
n2

]
. (41)

- (ITM price) If kVG > 0,
C+

VG(kVG, σν) = Ste−qτ − F − C−
VG(kVG,−σν). (42)

- (ATM price) If kVG = 0,

C−
VG(kVG, σν) = C+

VG(kVG, σν) =
F

2Γ( τ
ν )

∞

∑
n=1

Γ( n+1
2 + τν)

Γ( n
2 + 1)

σn
ν . (43)

(ii) The value at time t of a European call option in the exponential NIG model is:

CNIG =
Fαeαδτ

√
π

∞

∑
n1=0
n2=1

kn1
NIG

n1!Γ(1 + −n1+n2
2 )

K n1−n2+1
2

(αδτ)

(
δτ

2α

)−n1+n2+1
2

. (44)

(iii) The value at time t of a European call option in the FD model is:

CFD =
F
α

∞

∑
n1=0
n2=1

kn1
FD

n1!Γ(1 + γ−n1+n2
α )

(−ωFDτγ)
−n1+n2

α . (45)

Proof. (i) is proved in Aguilar (2020a), (ii) is proved in Aguilar (2020b) and (iii) in Aguilar et al. (2018).

The pricing formulas in Formula (1) converge exponentially fast to the true prices, as exhibited in
Figure 3 for the VG model (Left). The reference prices are obtained with N = 50 terms, and they are

verified by the method of Kirkby (2015). Recalling Remark 1, VG(σ, ν, 0) ν→0−→ BS(σ), and fewer terms are
required to accurately price the option as ν → 0. A nearly identical convergence profile is observed for
NIG (Right), displayed for several values of α. Recalling that NIG(α, 0, δ)

α→∞−→ BS(
√

δ/α) (see Table 1),
we again see that fewer terms are required in order to accurately price under NIG for larger α.

39



Risks 2020, 8, 124

0 2 4 6 8 10 12 14 16
-14

-12

-10

-8

-6

-4

-2

0

2

4

0 2 4 6 8 10 12 14 16
-14

-12

-10

-8

-6

-4

-2

0

2

4

Figure 3. Exponential convergence of pricing Formula (1) for a call option: τ = 1, St = K =

4000, r = 0.01, q = 0. (Left) VG(σ, ν, 0) with σ = 0.3. (Right) NIG(α, 0, δ) with δ = 1.2. Here N = n1 = n2

is the number of terms in the truncated series.

4.1. At-the-Money Forward Approximations

Let us assume that options are at-the-money forward (ATMF), that is, St = F (or, equivalently, k = 0).
If we approximate the European call price in the exponential VG model by the first term of the series (41),
which is, the term for n1 = 0, n2 = 1, we obtain (recall that Γ(3/2) =

√
π/2):

C−
VG =

St√
2π

Γ( 1
2 + τ

ν )

Γ( τ
ν )

σ
√

ν. (46)

Using the Stirling approximation for the Gamma function, we know that

Γ
(

1
2 + τ

ν

)
Γ

(
τ
ν

) ∼
ν→0

√
τ

ν
, (47)

and, therefore, in the low variance regime, we recover the well-known approximation for the ATMF
Black–Scholes price

CBS � St√
2π

σ
√

τ. (48)

The approximation (48) is often known to market practitioners under the form C � 0.4Sσ
√

τ,
because 1/

√
2π = 0.399 . . . , and it was first derived in Brenner and Subrahmanyam (1994).

In a similar way, the ATMF price in the exponential NIG model can be approximated by the first term
of the series (44), resulting in

CNIG =
Stδτeαδτ

π
K0(αδτ). (49)

Using the large argument behavior of the Bessel function (see Abramowitz and Stegun (1972))

K0(αδτ) ∼
α→∞

√
π

2αδτ
e−αδτ , (50)
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it is immediate to see that (49) also recovers the approximation (48) in the large steepness regime,
with σ2 := δ/α. Likewise, in the FD model, the ATMF price is approximated by the first term of the
series (45), resulting in

CFD =
St

α

1
Γ(1 + γ

α )
(−ωFDτγ)

1
α . (51)

Taking α = 2 and using (36), the ATMF price in the sub-BS model becomes

Csub−BS =
St

2
1

Γ(1 + γ
2 )

√
Γ(1 + 2γ)

στ
γ
2 (52)

which recovers (48) when γ → 1.

4.2. Implied Volatility

One key benefit of the subordinated models is their ability to capture the heavy-tails that were
observed in financial markets. For the VG model, ν directly controls the tail-heaviness, as illustrated in
Figure 4. In particular, large values of ν lead to steep implied volatility smiles. The ATMF prices that are
obtained in Section 4.1 are helpful to approximate the implied volatility σI of the subordinated models,
when St is close to F. Denoting by Ct the market price of an ATMF European call option at time t and
inverting (46), we immediately see that the VG implied volatility is

σVG =

√
2π

ν

Γ( τ
ν )

Γ( 1
2 + τ

ν )

Ct

St
, (53)

and, similarly, inverting Equation (52), the sub-BS implied volatility is

σsub−BS =
2
√

Γ(1 + 2γ)Γ(1 + γ
2 )

τ
γ
2

Ct

St
. (54)

As expected, VG and sub-BS both implied volatilities recover the BS implied volatility in their limiting
regimes (ν → 0 and γ → 1):

σBS =

√
2π

τ

Ct

St
. (55)

In the NIG case, things are a bit more complicated, because one has to solve

Stδτeαδτ

π
K0(αδτ) = Ct (56)

for which there is no exact solution in an analytical form. Nevertheless, an analytical approximation can be
determined by using Hankel’s expression for the Bessel function (see Andrews (1992) or any monograph
on special functions), which goes, as follows: define, for ρ ∈ R,⎧⎪⎨⎪⎩

a0(ρ) = 1

ak(ρ) =
(4ρ2 − 12)(4ρ2 − 32) . . . (4ρ2 − (2k − 1)2)

k!8k , k ≥ 1,
(57)
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then, for large z and fixed ρ, we have:

Kρ(z) =
z→∞

√
π

2z
e−z

∞

∑
k=0

ak(ρ)

zk . (58)
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Figure 4. Implied volatility smiles of VG(σ, ν, 0) obtained by Formula (1). Params: σ = 0.3, τ = 0.2,
r = 1%, q = 0%, St = 4000. The moneyness is determined by F := St exp((r − q)τ).

In particular, when 4ρ2 − 1 = 0, i.e., when ρ = 1
2 , all the ak(ρ) are null in definition (57) when k ≥ 1,

and we are left with:

K 1
2
(z) =

√
π

2z
e−z (59)

for all z. Using (58) up to k = 1 for z = αδτ and inserting into (56), we are left with the quadratic equation

X2 − α
√

2π
Ct

St
X − 1

8
= 0 (X :=

√
αδτ), (60)

whose positive solution reads

X =
1
2

(
α
√

2π
Ct

St
+

√
2πα2 C2

t
S2

t
+

1
2

)
. (61)

Taylor expanding for large α and turning back to the δ variable, we obtain

δ =
2πα

τ

C2
t

S2
t
+

1
4ατ

+ O
(

1
α3

)
(62)

which, at first order, recovers (55) for σ2 := δ/α. We summarize these results in Table 2.
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Table 2. Volatility modelling for ATMF options in various subordinated models, and their limiting cases.

ATMF Implied Volatility (European Options)

Exponential VG σVG =
√

2π
ν

Γ( τ
ν )

Γ( 1
2 +

τ
ν )

Ct
St

Low variance regime (ν → 0):

σVG →
√

2π
τ

Ct
St

Exponential NIG Solve Stδτeαδτ

π K0(αδτ) = Ct
Large steepness regime (α → ∞):

δ = 2πα
τ

C2
t

S2
t
+ 1

4ατ + O
(

1
α2

)
At order α0:

σNIG :=
√

δ
α =

√
2π
τ

Ct
St

sub-BS σFD =
2
√

Γ(1+2γ)Γ(1+ γ
2 )

τ
γ
2

Ct
St

Non-fractional regime (γ → 1):

σFD →
√

2π
τ

Ct
St

5. First-Order Sensitivities

The sensitivity of a contingent claim C to the underlying asset, often denoted Delta or Δ, is defined
by Δ := ∂C/∂St; by deriving Formula (1) with respect to St and re-arranging the terms, we obtain the
following expressions for European options in subordinated market models:

Formula 2 (European call: Delta).
(i) The Delta at time t of a European call option in the exponential VG model is:

- (OTM sensitivity) If kVG < 0,

Δ−
VG(kVG, σν) =

F
2StΓ( τ

ν )

∞

∑
n1=0
n2=1

(−1)n1

n1!

[
−n1Γ(−n1+n2+1

2 + τν)

Γ(−n1+n2
2 + 1)

(−kVG
σν

)n1−1
σn2−1

ν

+ 2
Γ(−2n1 − n2 − 2τν)

Γ(−n1 +
1
2 − τν)

(−kVG
σν

)2n1+1+2τν

(−kVG)
n2−1

]
. (63)

- (ITM sensitivity) If kVG > 0,

Δ+
VG(kVG, σν) = e−qτ − Δ−

VG(kVG,−σν). (64)

- (ATM sensitivity) If kVG = 0,

Δ−
VG(kVG, σν) = Δ+

VG(kVG, σν) =
F

2StΓ( τ
ν )

∞

∑
n=1

Γ( n
2 + τν)

Γ( n+1
2 )

σn−1
ν . (65)

(ii) The Delta at time t of a European call option in the exponential NIG model is:

ΔNIG =
Fαeαδτ

St
√

π

∞

∑
n1=0
n2=1

kn1
NIG

n1!Γ(−n1+n2+1
2 )

K n1−n2
2 +1

(αδτ)

(
δτ

2α

)−n1+n2
2

. (66)
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(iii) The Delta at time t of a European call option in the FD model is:

ΔFD =
F

αSt

∞

∑
n1=0
n2=0

kn1
FD

n1!Γ(1 + γ−n1+n2
α )

(−ωFDτγ)
−n1+n2

α . (67)

For illustration, in Figure 5 we compare the Delta of VG(σ, ν, 0) while using Formula (2) with that of
BS(σ). Similarly, we compare the Dollar Gamma using Formula (3). Figure 6 provides a comparison for
NIG(α, 0, δ). For both models, we can see the substantial impact of the heavy-tailed assumption and its
implications for hedging. In the next section, we discuss delta hedging in more detail, and provide some
simplified approximations for the ATMF case.
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Figure 5. Delta (Left) and Dollar Gamma (Right) of a call option under VG(σ, ν, 0) using Formula (2)
and Formula (3). Greeks of BS(σ) are provided for reference (dash lines). Params: σ = 0.3, τ = 1,
r = 1%, q = 0%, K = 4000.
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Figure 6. Delta (Left) and Dollar Gamma (Right) of a call option under NIG(α, 0, δ) using Formulas (2)
and (3). Greeks of BS(σ = 0.3) are provided for reference (dash lines). Params: δ = 1.2, τ = 1, r = 1%,
q = 0%, K = 4000.
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5.1. Delta Hedging

The leading term for the Delta of the European option in the exponential VG case is given for
n1 = n2 = 1 in (63) and it reads:

Δ−
VG =

F
2StΓ( τ

ν )

[
Γ

(
1
2
+ τν

)
− 2

Γ(−3 − 3τν)

Γ(− 1
2 − τν)

(−kVG
σν

)−3+2τν
]

; (68)

In the ATMF situation (St = F, i.e., k = 0), we can re-write the martingale adjustment and Taylor
expand for small σ

kVG = ωVGτ = −σ2

2
τ + O

(
σ4

)
(69)

and, recalling τν = τ
ν − 1

2 , we obtain

Δ−
VG =

1
2
+ O

(
σ4(τν+1)

)
. (70)

It is interesting to note that, in the ATMF situation, Δ−
VG � 1

2 , which is, it suffices to be long one unit
of the asset S and short two units of an European call written on this asset, to offset the impact of the
variations of S on a portfolio; this fact is well-known in the usual Black–Scholes theory, and is therefore
preserved in the exponential VG model. The same observation actually also holds for the exponential NIG
model: indeed, the leading term in the series (66) (obtained for n1 = 0, n2 = 1) reads

Fαeαδτ

St
√

π
K 1

2
(αδτ)

√
δτ

2α
=

F
2St

(71)

where we have used the particular value of the Bessel function of index 1
2 (59) in order to simplify

the expression; when F = St, we obtain ΔNIG = 1
2 , which, again, turns out to be similar to the usual

Black–Scholes behavior. This effect is clearly illustrated in Figures 5 and 6. We can conclude that in both the
exponential VG and NIG models, the presence of a time subordination does not modify the delta hedging
policy, at least when options are not far from the money. In contrast, the option Gamma is significantly
influenced by time subordination, and it is discussed further in Section 6.

In the FD model, things are a bit different; keeping only the leading term (n1 = n2 = 0) in (67) yields

ΔFD =
F

αSt

St→F−→ 1
α

(72)

which explicitly depends on the tail parameter α and resumes to 1
2 in the sub-BS model, for any

subordination parameter γ. Again, the subordination parameter plays no role in the delta-hedging
policy of the portfolio, which is entirely governed by the tail parameter α; in other words, it suffices to be
long one unit of the underlying asset S and short α European calls to offset the effect of the variations of S
on the portfolio’s value.

5.2. Comparisons with Numerical Techniques

In this subsection, we show that the series formulas for the first order sensitivity Δ provided
by Formula (2) are a very efficient alternative to Fourier-based computations. Such calculations are
typically based on a representation for the price of an European call in terms of Arrau–Debreu securities
(see e.g., Lewis (2001))

EQ [
e−rτ(ST − K)+ | St

]
= Ste−qτΠ1 − Ke−rτΠ2, (73)
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where e−qτΠ1 is the option’s Delta. This quantity is known to admit a convenient representation in the
Fourier space:

Δ = e−qτΠ1 =
1
2
+

1
π

∞∫
0

Re

[
eiukΨ̃(u − i, τ)

iu

]
du (74)

where k is the log forward moneyness defined in (37), and the “risk-neutralized” characteristic function is
defined by:

Ψ̃(u, t) := eiuωtΨ(u, t) = e(iuω+ψ(u))t (75)

In the case of the exponential VG and NIG models, the integral in (74) can be easily carried out by
inserting the expressions for the Lévy symbol ψ(u) and the martingale adjustment ω, and by evaluating
the integral by any classical recursive algorithm (such as a simple trapezoidal rule, for instance). In Table 3,
we compare the results of such numerical evaluations, with several truncations of the series in Formula (2),
and for various market configurations. We can observe that the convergence is extremely accurate and
fast, notably in the ATM region: this is because, in that case, k � 0, which tends to accelerate the overall
convergence of the series.

Table 3. First order sensitivity (Delta) of European call options in the exponential VG and NIG models,
obtained by truncations of Formula (2), and by a numerical evaluation of (74). Here, N = n1 = n2 is the
number of terms in the truncated series. Parameters: K = 4000, r = 1%, q = 0%, τ = 1.

Exponential VG Model [σ = 0.2, ν = 0.85]

Formula (2) Lewis (74)

N = 3 N = 5 N = 10 N = 15

Deep OTM (St = 3000) 2.1823 0.6347 0.0941 0.0940 0.0940
OTM (St = 3500) 0.4113 0.2567 0.2455 0.2455 0.2455
ATM (St = 4040.90) 0.5703 0.5718 0.5719 0.5719 0.5719
ITM (St = 4500) 0.7569 0.8113 0.8134 0.8134 0.8134
Deep ITM (St = 5000) 0.4729 0.8589 0.9206 0.9206 0.9206

Exponential NIG Model [α = 9, δ = 1.2]

Formula (2) Lewis (74)

N = 3 N = 5 N = 10 N = 15

Deep OTM (St = 3000) 0.2921 0.2722 0.2747 0.2748 0.2748
OTM (St = 3500) 0.4289 0.4309 0.4311 0.4311 0.4311
ATM (St = 4234.09) 0.6336 0.6410 0.6412 0.6412 0.6412
ITM (St = 4500) 0.6936 0.7030 0.7033 0.7033 0.7033
Deep ITM (St = 5000) 0.7827 0.7966 0.7971 0.7971 0.7971

6. Second-Order Sensitivities and Portfolio Performance

6.1. Gamma, Dollar Gamma

The second order derivative of a contingent claim C with respect to St is often denoted
by Γ := ∂2C/∂S2

t . It is closely related to the performance, or Profit and Loss (P&L) of a portfolio: if t2 > t1

are two trading days, then the P&L between t1 and t2 is

P&L = Θ Δt + market P&L , Δt := t2 − t1, (76)
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where Θ is the time sensitivity of the portfolio, and the market P&L is, at order 2:

market P&L := Δ(ΔSt) +
1
2

Γ(ΔSt)
2 ΔSt := St2 − St1 . (77)

Assuming that the portfolio has been delta-hedged, then we are left with

market P&L = $Γ
(

ΔSt

St

)2
(78)

where the Dollar Gamma has been defined by $Γ := 1
2 S2

t Γ; relation (78) is widely employed in financial
engineering, because it allows for expressing the performance of the portfolio as a simple function of the
realized variance of the underlying S. In the usual Black–Scholes theory, it is well known that the Dollar
Gamma of the European call is

$ΓBS =
St

2σ
√

2πτ
. (79)

Remarkably, as shown by Formula (3), the Gamma of European options admits a simple form in
subordinated market models: while the series expansion for the price or the first-order sensitivity is
expressed in terms of a double sum, the Gamma can be expressed as a sum over a single index.

Formula 3 (European call: Gamma).
(i) The Gamma at time t of a European call option in the exponential VG model is:

- (OTM sensitivity) If kVG < 0,

Γ−
VG(kVG, σν) =

F
2S2

t σνΓ( τ
ν )

∞

∑
n=0

(−1)n

n!

[
Γ(− n

2 + τν)

Γ(−n+1
2 )

(−kVG
σν

)n

+ 2
Γ(−2n − 2τν)

Γ(−n + 1
2 − τν)

(−kVG
σν

)2n+2τν
]

. (80)

- (ITM sensitivity) If kVG > 0,
Γ+

VG(kVG, σν) = −Γ−
VG(kVG,−σν). (81)

- (ATM sensitivity) If kVG = 0,

Γ−
VG(kVG, σν) = Γ+

VG(kVG, σν) =
F

2
√

πS2
t σνΓ( τ

ν )

Γ(τν − 1
2 )

Γ( τ
ν )

. (82)

(ii) The Gamma at time t of a European call option in the exponential NIG model is:

ΓNIG =
Fαeαδτ

S2
t
√

π

∞

∑
n=0

kn
NIG

n!Γ(−n+1
2 )

K n
2 +1(αδτ)

(
δτ

2α

)− n
2

. (83)

(iii) The Gamma at time t of a European call option in the FD model is:

ΓFD =
F

αS2
t

∞

∑
n=0

kn
FD

n!Γ(1 − γ
α (n + 1))

(−ωFDτγ)−
n+1

α . (84)
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Proof. The formulas are all straightforward to obtain, by deriving the series in Formula (2) with respect to
St and making an appropriate change of variables. For instance, in the NIG case, we have

ΓNIG =
Fαeαδτ

S2
t
√

π

⎡⎢⎢⎣− ∞

∑
n1=0
n2=1

kn1
NIG

n1!Γ(−n1+n2+1
2 )

K n1−n2
2 +1

(αδτ)

(
δτ

2α

)−n1+n2
2

+
∞

∑
n1=1
n2=1

kn1−1
NIG

(n1 − 1)!Γ(−n1+n2+1
2 )

K n1−n2
2 +1

(αδτ)

(
δτ

2α

)−n1+n2
2

⎤⎥⎥⎦ . (85)

Performing the change of variables ñ1 := n1 + 1, ñ2 → n2 + 1 in the second sum shows that only the
terms for ñ2 = 0 survive; renaming ñ1 := n yields Formula (83).

6.2. Properties and Particular Cases

Let us discuss some useful approximations and qualitative properties of Formula (3). First, in the VG
case, the leading term (n = 0) in (80) is

F
2S2

t σνΓ( τ
ν )

[
Γ(τν)√

π
+ 2

Γ(−2τν)

Γ( 1
2 − τν)

(
− kVG

σν

)2τν
]

. (86)

Taylor expanding the VG martingale adjustment for small ν and assuming that we are not far from
the money forward (St → F), we have

kVG ∼
ν→0

k − σ2

2
τ ∼

St→F
−σ2

2
τ, (87)

therefore, the Gamma writes, at first order:

Γ−
VG =

1
2
√

πStσν

Γ( τ
ν − 1

2 )

Γ( τ
ν )

(88)

and the Dollar Gamma immediately follows:

$Γ−
VG =

St

4
√

πσν

Γ( τ
ν − 1

2 )

Γ( τ
ν )

. (89)

While using the functional relation Γ(z + 1) = zΓ(z) and the Stirling approximation (47), we have:

Γ( τ
ν − 1

2 )

Γ( τ
ν )

=
1

τ
ν − 1

2

Γ( τ
ν + 1

2 )

Γ( τ
ν )

∼
ν→0

√
ν

τ
(90)

and, therefore, we obtain the behavior of (89) in the low variance regime:

$Γ−
VG

ν→0−→ St

2σ
√

2πτ
, (91)

thus recovering the Black–Scholes Dollar Gamma (79) in this limit. It is interesting to note that, contrary to
the first order sensitivity Delta (70), which appeared to be independent of ν; this is no longer the case with
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the second order sensitivity Gamma (89) that explicitly depends on the subordination parameter. In other
words, while the subordination parameter does not modify the Delta Hedging policy of the portfolio
(when not far from the money), it directly impacts its performance. This observation also holds in the
exponential NIG model; indeed, the leading term in (83) for St → F reads

ΓNIG =
αeαδτ

πSt
K1(αδτ) (92)

and therefore the Dollar Gamma is

$ΓNIG =
αSteαδτ

2π
K1(αδτ). (93)

Using the asymptotic behavior for large argument (58) for the Bessel function, we know that

K1(αδτ) ∼
α→∞

√
π

2αδτ
e−αδτ (94)

and, therefore

$ΓNIG
α→∞−→ St

2σ
√

2πτ
, σ2 :=

δ

α
, (95)

recovering the Black–Scholes Dollar Gamma (79). Last in the FD model, the leading term in the series (84)
for St → F is

ΓFD =
1

αSt

(−ωFDτγ)− 1
α

Γ(1 − γ
α )

, (96)

and, in the sub-BS model (α = 2), using the approximation (36) for the martingale adjustment,

Γsub−BS =
1

2St

√
Γ(1 + 2γ)

Γ(1 − γ
2 )στ

γ
2

. (97)

Therefore, the Dollar Gamma in the sub-BS model is

$Γsub−BS =
St

4

√
Γ(1 + 2γ)

Γ(1 − γ
2 )στ

γ
2

. (98)

and, in the non fractional limit (γ → 1), we have, again,

$Γsub−BS
γ→1−→ St

2σ
√

2πτ
. (99)

In Table 4, we summarize these observations, as well as the properties that are discussed for the
first-order sensitivity in Section 5.
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Table 4. First and second order market sensitivities (ATMF situation) for European call options in various
subordinated models, and their limiting cases. Time subordination does not affect the Delta, but it directly
impacts the Gamma of options.

1st Order (Δ) 2nd Order (Γ)

Exponential VG 1
2

1
2
√

πStσν

Γ( τ
ν − 1

2 )
Γ( τ

ν )

Low variance regime (ν → 0):
1

Stσ
√

2πτ

Exponential NIG 1
2

αeαδτ

πSt
K1(αδτ)

Large steepness regime (α → ∞):
1

Stσ
√

2πτ
, σ2 := δ

α

FD 1
α

1
αSt

(−ωFDτγ)− 1
α

Γ(1− γ
α )

sub-BS 1
2

1
2St

√
Γ(1+2γ)

Γ(1− γ
2 )στ

γ
2

Non fractional regime (γ → 1):
1

Stσ
√

2πτ

7. Concluding Remarks

In this article, we have provided a review of several subordinated market models and recalled their
main properties. We have also recalled recent formulas while used for European option pricing in this
context. Our main conclusions are the following:

(a) The pricing formulas are smooth and fast converging, and provide excellent agreement with efficient
numerical techniques (such as the PROJ method). Moreover, these formulas can provide useful
approximations for at-the-money options, and allow for the construction of volatility curves.

(b) We have derived several analytical formulas for risk sensitivities and shown that they also provide
excellent agreement with standard numerical (Fourier) evaluations.

(c) Thanks to these formulas, we were able to show that the presence of a time subordination in the VG,
NIG, and FD models has a minimal impact on the delta hedging policy of an at-the-money option,
but, on the contrary, has a direct impact on the P&L of the delta hedged portfolio.

Future work should include extending the pricing and sensitivities formulas to path-dependent
instruments or to options written on several assets. It would also be interesting to determine whether these
analytical results could be extended if the risk-neutral hypothesis is replaced, for instance, by approaches
based on optimal quadratic hedging or utility functions.
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1. Introduction

Urban economy and real estate markets are two interconnected fields of research. They overlap
in so far as the real estate price evolution is analyzed under an urban approach: it has been shown
that less than 8% of the variation in price levels across cities can be accounted for by national effects
Glaeser et al. (2014), while the remaining part is explained by local factors. In other words, national
macroeconomic variables such as population growth, global migration, interest rates or national
income, have really tiny power in explaining the real estate market, comparing with the macroeconomic
variables accounted at a local level, such as the city population, the migration towards a particular
city or the opportunities of jobs in a given urban area, that directly press on built environment and
housing demand. On the other hand, the local real estate market influences the urban economy as long
as it offers advantageous investment opportunities and facilities able to attract w orkers and economic
activities: according to Arvanitidis (2014), the property market institution has a pivotal role through
which local economic potential can be realized and served. In this sense, urban economy and real
estate market influence each other.

Recently, some phenomena are affecting both urban economy and real estate market evolution.
According to the United Nations (2019), the world’s population is expected to grow by 5.9 billion
by the end of the century, and about the 80% of which is expected to live in or move toward cities,
due to economic and political motivations. Moreover, the population is aging and the proportion
of elderly who remains to live in the city is increasing, thanks to alternative pension products
based on the property value, like home equity plan and reverse mortgages Di Lorenzo et al. (2020a).
In Europe, 25% of the population is already aged 60 years and the proportion who lives in city is
growing: by 2050, two-thirds of the world population are expected to live in cities Lopez-Alcala (2016).
A complete overview of the urban situation has to take into account data on migration: according to
the International Organization of Migration, in 2015 in Europe there have been one million migrants,
and many of them stay i n cities McKinsey (2016). As population grows and the urbanization goes on,
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real estate markets have to face pressure on prices and affordability van Doorn et al. (2019), caused by
the mismatch between demand and supply: inflows of people in cities are pressing and asking for new
buildings. On the other hand, the increase of working population into metropolitan areas are bearing
long-term opportunities for investors. In this context, understanding real estate market evolution is
crucial for various real estate stakeholders such as house owners, investors, banks, insurances and
other institutional investors like real estate funds. The housing demand is supported by both the
need of a house to live in and the research of competitive yields. As highlighted by the emerging
trend in Real Estate Europe survey Morrison et al. (2019), real estate has grown as a proportion
of the balance sheets of many institutional investors because it has provided the yield and returns
that other asset types have not. In particular, in the last decade we have experienced geopolitical
uncertainty and decrease in the interest rate and this has reinforced the longing of secure and profitable
long-term income. Moreover, many financial intermediaries offer financial and insurance products
whose valuation is influenced by the expectation on the real estate market, like mortgages or reverse
mortgages Di Lorenzo et al. (2020a). The link between real estate markets and financial market is
evident from the recent world economic crisis. Moreover, real estate property represents a major
part of the individual wealth Arvanitidis (2014), so it is clear that real estate pricing mechanism is an
important driver of the economy.

In light of these considerations, the importance of a precise awareness of the inner workings in
the real estate market and an accurate price prediction is evident. The academic literature on this topic
is fervent. In order to describe the dynamics of the market and produce predictions, the features that
influence the real estate price have to be identified. Gao et al. (2019) grouped these features into two
categories: non-geographical factors, that concern the peculiarities of the house, such as the number of
bedrooms or the floor space area; and geographical factors, such as the distance to the city center and to
main services like the schools. Rahadi et al. (2015) divide the variables explanatory of the house price
into three groups: physical conditions, concept and location Chica-Olmo (2007). Physical conditions
are properties possessed by the house; the concept concerns internalized ideas of home like minimalist
home or healthy and green environment (Ozdenerool et al. 2007; Miller et al. 2009; Coen et al. 2018).
Another point of view is the macroeconomic perspective Grum and Govekar (2016), according to
which many factors drive the behavior of the real estate market, such as interest rates, government
regulation, economic growth, political instability and so on. However, Glaeser et al. (2014) presents
an urban approach and show how most variation in housing price changes is local and not national.
The empirical evidence confirms that the most important factors driving the value of a house are the
size and the location: (Bourassa et al. 2010; Case et al. 2004; Gerek 2014 and Montero et al. 2018) show
how different locations have a strong impact on their prices. Spatial location broadly aims to analyze
the role of geography and location in economic phenomena, and a particular strand of research is
devoted to the analysis of real estate market fluctuations as one of the economic phenomenon in a
particular geographic area.

Once the explanatory variables have been chosen, the prediction model has to be identified.
The hedonic pricing model has proposed extensively in the literature of house price prediction (Krol 2013;
Selim et al. 2009; Del Giudice et al. 2017b). It is essentially used for analyzing the relationship between house
price and house features through classical regression methods, assuming that the value of a house is the
sum of all its attributes value Liang et al. (2015). Manjula et al. (2017) uses multivariate regression models.
Some related works Greenstein et al. (2015) are concerned with trying to estimate the health of a real estate
market using the housing index price. Alfiyatin et al. (2017) model house price combine regression analysis
and particle swarm optimization. In the last few years, with the diffusion of the application of artificial
intelligence in various fields and in the context of real estate Zurada et al. (2011), many authors have used
machine learning algorit hms to gain a better fitting of the models. House price predictions have been
produced through machine learning (Baldominos et al. 2018; Winson 2018) and deep learning methods,
such as artificial neural networks (Nghiep et al. 2001; Selim et al. 2009; Yacim et al. 2016; Yacim et al. 2018;
Di Lorenzo et al. 2020b), support vector machine (Gu et al. 2011; Wang et al. 2014) and adaptive boosting
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Park and Bae (2015). Other contributions deepen the expert systems based on fuzzy logic (Sarip et al. 2016;
Del Giudice et al. 2017a; Guan et al. 2008). Guan et al. (2014) propose adaptive neuro-fuzzy inference
systems for real estate appraisal. Park and Bae (2015) analyze the problem of classification of an
investment in worthy or not, performing different algorithms: decision trees, Naive Bayes and AdaBoost.
Manganelli et al. (2007) study the sales of residential property in a city in the Campania region in Italy
using linear programming to analyze the real estate da ta. Del Giudice et al. (2017b) predict house price
through a Markov chain hybrid Monte Carlo method, and test neural networks, multiple regression
analysis and penalized spline semiparametric method. Gao et al. (2019) describe a multi task learning
approach to predict location centered house price.

This paper follows the recent developments of the literature on real estate and proposes to take
advantage of the random forest algorithm to better explain which variables have more importance in
describing the evolution of the house price following an urban approach. To this aim, we focus on a
given city, and analyze the local variables that influences the interaction between housing demand and
supply and the price. We perform random forest on real estate data of London, that already in the 1990s
was attracting literature attention for the economy of its agglomeration Crampton and Evans (1992)
and continues to stimulate the international debate for having experienced in the three last decades
an extraordinary building boom National Geographic (2018). The novelty of our paper consists in
deepening a machine learning (ML) technique for real estate price prediction under an urban approach.
In order to achieve this goal, we insert in the algorithm the house price in London as output variable,
and some local urban economic variables as input variables. The random forest provides useful
support for understanding the relationships between information variables and the target variable and
highlighting the importance of each factor. There is a lot of research articles that employ the random
forest approach. For instance, it has been considered in early warning systems that signal a country’s
vulnerability to financial crises. Tanaka et al. (2016) proposed a novel random forests-based early
warning system for predicting bank failures. Tanaka et al. (2019) developed a vulnerability analysis by
building bankruptcy models for multiple industries using random forests to predict the probability
of firm bankruptcy. Beutel et al. (2019) compared the predictive performance of different machine
learning (including random forest) models applied to early warning for systemic banking crises.

In the research concerning real estate, several articles use different ML algorithms to calculate
housing prices, such as (Antipov and Pokryshevskaya 2012; C̆eh et al. 2018; Hong et al. 2020 and
Pai and Wang 2020).

Moreover, we use different explanatory variables with respect to those previously listed.
The variables choice is based on an urban point of view, where the main force driving the market is the
interaction between local demand and supply, explained by factors like the population growth or the
net migration for the demand side, and new buildings and net supply.

The paper is structured as follows. Section 2 describes the regression tree architecture, the random
forest technique and the variable importance measure. In Section 3 we present the case study based on
the London real estate market. Final remarks are provided in Section 4.

2. The Model

In this section we introduce machine learning techniques for regression problems. In Section 2.1
we briefly describe the regression tree architecture on which the random forest algorithm is based.
In Section 2.2 we illustrate the functioning of the random forest and in Section 2.3 we present the
variable importance measure used in the case study to catch the importance of each predictor in
predicting the target variable.

Machine learning is generally used to perform classification or regression over large datasets.
However, it is also proved useful in small datasets to identify hidden patterns that are difficult to
detect through more traditional regression techniques such as Generalized Linear Models (GLMs) and
Generalized Additive Models (GAMs).
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Consider a generic regression problem to estimate the relationship between a target (or response)
variable, Y, and a set of predictors (or features), X1, X2, . . . , Xp:

Y = f (X1, X2, . . . , Xp) + ε (1)

where ε is the error term. The quantity E(Y − Ŷ)2 represents the expected squared prediction error.
It can rewritten as the sum of the reducible error E[ f (X1, X2, . . . , Xp) − f̂ (X1, X2, . . . , Xp)]2 and the
irreducible error Var(ε). A machine learning technique aims at estimating f by minimizing the
reducible error.

Among the machine learning algorithms, we refer to the random forest that falls into the category
of the ensemble methods. It allows obtaining the error decrease by reducing the prediction variance,
maintaining the bias, which is the difference between the model prediction and the real value of the
target variable.

2.1. Regression Tree Architecture

The random forest algorithm is founded on the regression tree architecture. The regression trees
enable attaining the best function approximation f̂ (X1, X2, . . . , Xp) through a procedure consisting in
the following steps Loh (2011):

• The predictor space (i.e., the set of possible values for X1, X2, . . . , Xp) is divided into J distinct
and non-overlapping regions, R1, R2, . . . , RJ .

• For each observation that falls into the region Rj, the algorithm provides the same prediction,
which is the mean of the response values for the training observations in Rj.

As described in James et al. (2017), the fundamental concept is to split the predictors’ space into
rectangles, identifying the regions R1, . . . , RJ that minimize the Residual Sum of Squares (RSS):

J

∑
j=1

∑
i∈Rj

(yi − ŷRj)
2

Once building the regions R1, . . . , RJ , the response is predicted for a given test observation using
the mean of the training observations in the region to which that test observation appertain.

The consideration of all the possible partitions of the feature is computationally infeasible, thus we
use a top-down approach through a recursive binary partition Quinlan (1986): the algorithm starts at
the top of the tree, where all values of the target variable stand in a single region, and then successively
partitions the predictors’ space. The best split is identified according to the entropy or the index of
Gini that is a homogeneity measure for every node. The highest homogeneity (or purity) is achieved
when only one class of the target variable is attending the node.

Breiman (2001) has listed the most interesting properties of regression tree-based methods.
They belong to non-parametric methods able to catch tricky relations between inputs and outputs,
without involving any a-priori assumption. They manage miscellaneous data by applying features
selection so as to be robust to not significant or noisy variables. They are also robust to outliers or
missing values and easy to be unfolded.

2.2. Random Forest

The random forest (RF) algorithm creates a collection of decision trees from a casually variant of
the tree. Once one specific learning set is defined, the RF presents a random perturbation to the learning
procedure and in this way a differentiation among the trees is produced. Successively the predictions of
all these trees is derived through the impelementation of aggregation techniques. The first aggregation
procedure was described by Breiman (1996); the authors proposed the well know bagging based on
random bootstrap copies of the original data to assemble different trees. Later in 2001 the same authors
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Breiman (2001) proposed the random forest as an extention of the procedure of the bagging such
that it combines the bootstrap with randomization of the input variables to separate internal nodes t.
This means that the algorithm does not identify the best split st = s∗ among all variables, but firstly
creates a random subset of K variables for each node and among them determines the best split.

The RF estimator of the target variable ŷRj is a function of the regression tree estimator, f̂ tree(X) =

∑j∈J ŷRj 1{X∈Rj}, where X = (X1, X2, . . . , Xp) is the vector of the predictors, 1{.} represents the indicator
function and (Rj)j∈J are the regions of the predictors space obtained by minimizing RSS. It is identified
by the average values of the variable belonging to the same region Rj. Therefore, denoting the number
of bootstrap samples by B and the decision tree estimator developed on the sample b ∈ B by f̂ tree(X|b),
the RF estimator is defined as follows:

f̂ RF(x) =
1
B

B

∑
b=1

f̂ tree(X|b) (2)

The choice of the number of trees to include in the forest should be done carefully, in order to
reach the highest percentage of explained variance and the lowest mean of squared residuals (MSR).

2.3. Variable Importance

ML algorithms are usually viewed as a black-box, as the large number of trees makes the
understanding of the prediction rule hard. To get from the algorithm interpretable information
on the contribution of different variables we follow the common approach consisting in the calculation
of the variable importance measures.

Variable importance is determined according to the relative influence of each predictor,
by measuring the number of times a predictor is selected for splitting during the tree building process,
weighted by the squared error improvement to the model as a result of each split, and averaged over
all trees.

According to the definition provided by Breiman (2001), the RF variable importance is a measure
providing the importance of a variable in the RF prediction rule. These measures are often able to
detect the interaction effects, i.e., when the predictor variables interact with each other, without any a
priori specification Wright et al. (2016).

A weighted impurity measure has been proposed in Breiman (2001) for evaluating the importance
of a variable Xm in predicting the target Y, for all nodes t averaged over all NT trees in the forest.
Among the variants of the variable importance measures, we refer to the Gini importance, obtained
assigning the Gini index to the impurity i(t) index. This measure is often called Mean Decrease Gini,
here denoted by IncNodePurity:

IncNodePurity(Xm) =
1

NT
∑
T

∑
t∈T:v(st)=Xm

p(t)Δi(st, t, tl , tr) (3)

where v(st) is the variable used in split st and Δi(st, t, tl , tr) is the impurity decrease of a binary split st

dividing node t into a left node tl and a right node tr:

Δi(st, t, tl , tr) = i(t)− Ntl

Nt
· i(tl)− Ntr

Nt
· i(tr) (4)

where N is the sample size, p(t) = Nt
N the proportion of samples reaching t, and p(tl) =

Ntl
N and

p(tr) =
Ntr
N are the proportion of samples reaching the left node tl and the right node tr respectively.

The IncNodePurity(Xm) defined in Equation (3) provides the importance of feature Xm,
which takes into account the number of splits enclosing the variable. The study of the importance of
the feature provides more insight into the learning mode of the algorithm.
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3. Case Study

As highlighted in Section 1, in this research we look for the urban explanatory variables of the
house price starting from the consideration that the main force driving the market is the interaction
between demand and supply. For this reason, we select some local variables that influence the need of
house and its the demand, like the population growth or the net migration, and other linked to supply,
like new buildings and net supply.

3.1. Data Description

We consider data on survey “Housing in London 2018”, collected by the Greater London Authority
City Hall Survey (2018), that provides the average house price (AHP) and the following set of
explanatory variables over the period 1997–2016 that are the input of our regression model:

• POP: historic London population
• OO: annual trend in household tenure owned outright
• OM: annual trend in household tenure owned with mortgage
• NB: new build homes
• NS: net housing supply
• NM: net migration (domestic and international)
• TJ: trend of jobs in London

The output variable is the average price across the whole of London. The data considered are
purposely generic to highlight the generality of the approach used; it is evident that further ad hoc
analyzes can be conducted for individual neighborhoods or areas to obtain more specific results. In this
application we are not interested so much in explaining the real estate market of a specific area as in
highlighting the results of the application of RF to real estate market. For the precise description of all
predictors we refer to Survey (2018).

The Survey (2018) describes the urban situation of London: the London’s population has reached
a new peak in 2016, becoming estimated equal to 8.8 million. London’s population boom has been
driven by both net international migration and natural change due the annual surplus of births over
deaths. Net international migration has risen from around 50,000 a year in 1996 to over 100,000 a
year in 2016 and also has explained a part of the increase in natural change, because reducing the
average age of London’s population. Moreover net domestic migration has been less volatile than
net international migration and has been negative throughout the last 20 years with a net outflow
from London equal to 93,000 in 2016. In the same year, more homes than households have been
recorded, in contrast to the first half of the 20th century, because the number of people for every
home has risen, while falling across the rest of the country. We are attending the declining share of
mortgagors for ho me ownership and the growth in people living in a shared private rented home.
The number of homes built in London in 2017 is the highest since 1977, but in the same time the
population is projected to be equal to 10.5 in 2035, so two thirds of Londoners say they would support
new homes being built. Another aspect that detects the home demand is its composition, that is
changing: the proportion of households that own their home with a mortgage fell from 38% in 2000 to
29% in 2011, while the proportion that rent privately rose from 15% to 25%. In particular, in 2017 22%
of households in London owned their home outright, 29% had a mortgage, 27% rented privately and
21% were in social housing. Another factor that has influenced the urbanization of London has been
its flourishing economy. Since 1997, both London’s population and economy have grown consistently.
In the last two decades, the number of jobs in London grew by 42%, while the population grew by
26%. However, this rap id economic and demographic growth was not matched by an increase in the
housing stock: the new buildings have increased the number of homes by 16% over the same period.
The constructions of new buildings are expected to further increase to satisfy the growing demand.
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3.2. Regression Model and Main Statistics

In order to understand how this scenario influences the house price, the regression problem is
then formulated as follows:

AHP ∼ YEAR + POP + OO + OM + NB + NS + NM + TJ (5)

Table 1 shows the summary statistics for the input variables in the data. In addition to mean
(μ) and standard deviation (σ), we also show the coefficient of variation (CV), or relative standard
deviation, that is a standardized measure of dispersion of frequency distribution. It shows the extent
of variability in relation to the mean of the average house price (cv = σ

μ ).

Table 1. Summary statistics across years 1997–2016.

Variable Summary Statistics

POP μ = 7,776,538.90 σ = 554,808 CV = 7.13%
OO μ = 21.56 σ = 1.00 CV = 4.64%
OM μ = 33.33 σ = 3.96 CV = 11.88%
NB μ = 18,385.00 σ = 3695.46 CV = 20.10%
NS μ = 27,314.00 σ = 7929.26 CV = 29.03%
NM μ = 23,752.40 σ = 24,129.15 CV = 101.59%
TJ μ = 4,857,200.00 σ = 424,621.52 CV = 8.74%
AHP μ = 320,045.95 σ = 89,380.52 CV = 27.93%

In addition, we show in Figure 1 a graphical display of the correlation matrix. Positive correlations
are depicted in blue and negative correlations in red color. The color intensity and the size of the circle
are proportional to the correlation coefficients. We observe strong correlations between some of the
features. The average house price (AHP) is positively strongly correlated with YEAR and then with
the population (POP) and trend of jobs (TJ) while it is negatively correlated with the annual trend in
household tenure—owned with mortgage (OM). Moreover, POP is in turn positively correlated with
TJ and YEAR and negatively correlated with OM.
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Figure 1. Correlation matrix.
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3.3. RF Estimation of AHP

We solve Equation (5) through the random forest algorithm presented in Section 2. We denote
ÂHP the random forest estimator, obtained by applying the random forest algorithm implemented in
the R package randomForest Liaw (2018) to the London average house prices.

A machine learning algorithm provides different outcomes when changing the seed and the
number of trees. Therefore, we initially consider a set of 1000 random seeds for the pseudo-random
generator used in the RF algorithm, as well as a set of reasonable number of trees (≤50) and we
choose the combination of seed/number of trees producing the lowest mean of squared residuals,
MSR. This allows to obtain a high percentage of variance explained and avoid model’s over-fitting.
Therefore, the algorithm’s parameters have been set as follows: number of trees (ntrees) equal to 21 and
the number of input variables to be used in each node (mtry) equal to 3. The percentage of variance
explained by the random forest algorithm, RSS, and the level of MSR resulting from the application of
the RF algorithm to the dataset are given in Table 2.

Table 2. Residual Sum of Squares (RSS) and mean of squared residuals (MSR) by the random forest
algorithm. Years 1997–2016.

Indicator Value

RSS 94.01%
MSR 454,451,969

In order to find the best model explaining our data, we have to balance bias and variance.
Models with high bias simplify the relationship between target variable and predictors, providing a
high error on both training and test set. Meanwhile, models with high variance, focusing too much on
the training set, lose the generalization capacity providing a very low error on the training set and
very high error on the test set. Models trained on small datasets could result in high variance and high
error on the test set, giving rise to overfitting. This can be avoided by reducing the maximum depth so
improving the model’s ability to disregard patterns that do not exist. To this purpose, we calculate
the distribution of the mean minimal depth, illustrated in Figure 2. The mean value placed at the
vertical bar indicates the mean minimal depth: the smaller its value, the more important the variable
is. The rainbow gradient provides the minimum and maximum minimal depth for each predictor.
The higher the width of red blocks, more frequently the variable is the root of a tree. As missing values
appears when a feature is not used for tree splitting, the higher the width gray blocks, less frequently
the variable is used for splitting trees.
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The values of the mean decrease Gini of features attributed by the algorithm, in descending
order from top to bottom, are depicted in Figure 3. It allows to identify which predictor are the most
important to understand the underlying process that is the average house price. Despite the decline in
the proportion of households that own their home with a mortgage Survey (2018), the annual trend in
household tenure owned with mortgage (OM) is the one of most explanatory variables of the house
price between those selected. Quite the opposite, annual trend in household tenure owned outright
(OO) is one of the less important variable, supporting by the data according to which the proportion of
households owned their home outright is very low. We can note that RF algorithm selects POP as the
most explicative variable, but since it is strongly positively correlated with YEAR the two variables
have the same explicative power in the description of the output. Consequently, the algorithm includes
just one of these latter variables among those having a greater importance. Instead, since POP and OM
are negatively correlated, they offer different information in the prediction of AHP, so they are both
selected as important.

NM

OO

NB

YEAR

TJ

NS

OM

POP

0.0 1.0 10 2.0 3.0

Figure 3. Mean decrease Gini values of features.

Figure 4 shows the marginal effect of the three most important predictors on the the target variable
averaged over the joint values of the other predictors. These plots are called partial dependence plots.
We show the effect of the population, annual trend in household tenure—owned with mortgage and
net housing supply on the London average house price.

Figure 4. Single variable partial dependence plot. Predictors: POP, OM and NS.

All these variables clearly show non-linear pattern, further confirming the choice of the RF model.
In fact, in case of linear pattern a simple linear (or logistic for binary target variables) regression
model should be preferable to more complex ones. While, if the data shows non-linear and irregular
pattern, like in our dataset, then random forest can be widely considered a very good choice, as we
will demonstrate in the following.
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3.4. Sensitivity to Predictor

As shown in the previous sub-section, the IncNodePurity, measuring the importance of the
variables, provides the highest value of node purity for POP, which therefore represents the most
important variable in the RF (Figure 3). In this sub-section we perform a predictors sensitivity analysis
by progressively adding one predictor in modeling ÂHP, aiming at measuring the contribution of
each predictor to refine the model accuracy. Then, we combine the selected predictors two by two.
We consider the first three predictors in terms of importance. Table 3 shows the values of ÂHP obtained
by RF algorithm in a regression model based on one/two predictors. While, Figure 5 reports the
residuals of these models. Looking at the panels with POP, NS, POP + NS and OM + NS predictors,
the highest values of residuals correspond to years 1997 and 2003, when the London population data
show two inflection points (Figure 6).

Table 3. RF estimation of ÂHP according to different predictors.

YEAR POP OM NS POP + OM POP + NS OM + NS Obs.

1997 183,781 177,594 220,706 177,349 199,614 202,211 149,616
1998 193,924 173,391 225,909 157,184 214,491 198,730 170,720
1999 211,542 212,472 208,978 198,043 202,130 229,106 179,888
2000 217,570 178,742 201,503 203,084 195,192 187,088 217,691
2001 236,617 205,580 199,442 237,029 228,907 208,593 243,062
2002 264,721 317,158 190,907 328,907 254,313 273,101 272,549
2003 271,452 301,789 215,949 275,967 261,350 262,067 322,936
2004 331,517 342,420 354,699 339,730 352,269 342,233 332,406
2005 348,727 334,189 346,321 331,844 341,708 332,266 342,173
2006 346,830 347,434 349,716 353,006 352,616 339,709 344,887
2007 343,530 351,773 377,760 354,995 377,016 368,037 369,225
2008 361,114 363,370 373,558 359,544 357,437 354,736 395,803
2009 364,396 365,626 350,713 355,699 349,910 353,876 335,008
2010 352,958 345,881 344,328 343,831 341,911 340,788 357,004
2011 351,097 346,328 340,926 348,378 339,996 354,018 349,730
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Figure 5. Residuals of the RF model based on different predictors.
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Figure 6. Historic London population. Years 1997–2011.

As shown in Table 4, the results of RF prediction confirm that POP is the most explicative feature
with a percentage of explained variance (RSS) equal to 91.29%, followed by OM with 86.74%.

Table 4. RF estimation of ÂHP according to different predictors: % of explained variance (RSS).

Predictor RSS

POP 91.29%
OM 86.74%
NS 69.08%
POP + OM 87.53%
POP + NS 84.77%
OM + NS 82.41%

3.5. RF Predictive Performance and Comparison with GLM

To perform the prediction we partition the dataset into training set (1997–2011) and testing set
(2012–2016). The data have been randomly partitioned, however there are a set of popular data splitting
methods that could potentially work well with alternative data. Among them, cross-validation (CC)1,
bootstrapping, bootstrapped Latin partition, Kennard-Stone algorithm (KS) and sample set partitioning
based on joint X-Y distances algorithm (SPXY) (see e.g., Xu and Goodacre (2018) for further details).

The ability of the RF algorithm to predict the average house price according to our sample is
compared to the performance of a GLM.

In a GLM, the explanatory variables, X = (X1, X2, . . . , Xp), are related to the response variable, Y,
via a link function, g(). Denoting η = g(E(Y)) the linear predictor, the following equation describes
how the mean of the response variable depends on the linear predictor:

η = β0 + β1X1 + ... + βpXp (6)

where β1, . . . , βp are the regression coefficients that need to be estimated and β0 is the intercept.
We assume a Gaussian distribution for Y and an identity for the link function, so that: η = E(Y).
To assess the importance of variables, we measure the significance of the predictors by the Wald test
with the null hypothesis: H0 : β = 0. The GLM performance and the estimate of the regression

coefficients are reported in Table 5, where z = β̂

SE(β̂)
is the value of the Wald test, Pr(> |z|) is the

corresponding p-value, and SE(β̂) is the standard error of the model.

1 e.g., k-fold cross-validation where the original sample is randomly partitioned into k equal size subsamples, leave-p-out
cross-validation (LpOCV) which considers p observations as the validation set and the remaining observations as the
training set, or Leave-one-out cross-validation (LOOCV) that is a particular case of the previous method with p = 1)
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Table 5. GLM results.

Coefficient β̂ SE(β̂) z Value Pr(> |z|)
(Intercept) −1.004 × 108 3.099 × 107 −3.239 0.00789 **
YEAR 5.092 × 104 1.542 × 104 3.302 0.00705 **
POP −2.961 × 10−1 1.932 × 10−1 −1.533 0.15363
OO −1.094 × 104 1.240 × 104 −0.882 0.39640
OM 1.972 × 104 2.287 × 104 0.862 0.40706
NB 1.606 3.738 0.430 0.67569
NS −8.192 × 10−1 2.453 −0.334 0.74467
NM −4.009 × 10−1 3.267 × 10−1 −1.227 0.24538
TJ 8.134 × 10−2 1.138 × 10−1 0.715 0.48958

Significance codes: p < 0.1, ** p < 0.01.

Apart from the intercept, the GLM assigns the greatest importance to the predictor YEAR.
This result differs from that obtained through the RF algorithm, which ascribes greater importance to
the variables population and household tenure owned with mortgage (POP and OM).

We measure the goodness of prediction through the root mean square error (RMSE) and mean
absolute percent error (MAPE), respectively defined as:

RMSE =
∑i(yi − ŷi)

2

n
(7)

MAPE =
100
N ∑

i

∣∣∣yi − ŷi
yi

∣∣∣ (8)

The resulting values of RMSE and MAPE are shown in Table 6 for RF and GLM: the improvement
in the prediction obtained by applying RF with respect to the traditional GLM is strong, reducing the
MAPE from 5.75% to 1.68%.

Table 6. RMSE and MAPE on predicted values, years 2012–2016.

Measure RF GLM

RMSE 8505 24,416
MAPE 1.68% 5.75%

Figure 7 illustrates the predicted average house prices obtained by the random forest algorithm
compared to the values predicted by GLM. We can observe that GLM overestimates the AHP values in
the period 2012–2014 and underestimates them in 2015–2016. The RF algorithm turns out to be more
flexible, characterized by a better adaptive capacity.

In addition, we apply the Diebold–Mariano test (Diebold and Mariano 1995) for comparing the
accuracy of forecast performance between RF and GLM. We define the forecast error eit as:

eit = ŷit − yt i = 1, 2 (9)

where ŷit and yt are the predicted and actual values at time t, respectively. The loss associated with
forecast i is assumed to be a function of the forecast error and is denoted by g(eit). We assume
g(eit) = e2

it. The two forecasts have equal accuracy if and only if the loss differential between the two
forecasts, dt = g(e1t)− g(e2t), has zero expectation for all t.

The DM test statistic is defined as follows:

DM =
d̄√

s
N

(10)

66



Risks 2020, 8, 112

where d̄ is the sample mean of the loss differential, s is the variance, and N the sample size. The null
hypothesis of this test is that the models have the same forecast accuracy, i.e., H0 : E[dt] = 0, ∀t,
while the alternative hypothesis is that H1 : E[dt] �= 0, ∀t. If H0 is true, then the DM statistic is
asymptotically distributed as a normal standard normal distribution with 0 mean and standard
deviation equal to 1.

Figure 7. AHP: predicted (RF, GLM) versus observed values (Obs), years 2012–2016.

According to the DM test, since DM = −2.416 with p-value = 0.0365, the null hypothesis is
rejected at the 5% level of significance, indicating that the observed differences between RF and GLM
are significant and the forecasting accuracy of RF is better than that of GLM.

At the end of this section we briefly focus on a problem often ignored by the literature:
the endogeneity of predictors that produces bias in the forecast results of regression algorithms.
In our case, for instance, newly built homes may certainly affect home prices, but also the opposite
could be true as well. The endogeneity could generate bias in the regression models and impacts on
statistical significance of the coefficients. In the ordinary least square regression the bootstrapping
method is used to reduce the bias of the coefficients. However, nonlinear methods in machine learning
cannot provide coefficients of each feature, and thus it is not possible to bias correct the nonlinear
regression. Recently, to overcome this problem Ghosal (2018) develop the one-step boost random forest
for bias correction.

4. Conclusions

In this paper we have implemented a machine learning algorithm, RF, to predict houses price
with an application to UK real estate data. In particular, we have analyzed the average house price of
the center of London, taking in consideration urban explicative variables of the demand and supply of
the houses. The point of view offered is different and complementary with respect to the literature on
the field, which considers features attaining the buildings like size and location, and is based on an
urban perspective to explain the evolution of the local real estate market. This is the main reason our
data set has been selected. Despite the dataset size being small, the numerical results show a better
prediction improvement by RF with respect to the traditional regression approach based on GLM.
The use of RF in small datasets is common among data scientists as the bootstrapping, on which RF is
based, allows the algorithm to perform well anyway. RF is relatively easy to build and does not require
expensive hyperparameters tuning. Besides, to avoid overfitting that generally affects the models
trained on small datasets, we control both the number of trees and the maximum depth. This improves
the model’s ability to do not see patterns that do not exist. As regard to the importance of variables,
the algorithm selects the local population as the most predictive variable. This result confirms that the
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demand size is the main driver of the real estate market. The space for further works is twofold: on one
hand the model presented is flexible and can be easily extended to combine variables related to supply
and demand with others attaining to the physical features of the house, on the other hand, different
machine learning algorithms, like that deals with the problem of the endogeneity of predictors and the
bias of results, can be implemented and compared. The research conducted can be reproduced for the
analysis of other real estate dataset. A more accurate forecast of the evolution of real estate market
prices must exploit not only variables relating to local characteristics of the market, but also combine
them with different information sources such as macroeconomic ones. The improvements achieved
can show practical feedback for the whole society. As population and urbanization grow, the need
for models able to catch the possible evolution of the real estate market concerns more stakeholders,
from homeowners to real estate companies to insurance companies and so on. In modern society we
are witnessing the growth of the elderly “cash poor house rich”, those who own a home but have
retirement incomes so low that they cannot ensure a decent survival and the necessary medical care.
Faced with this phenomenon, the insurance market of Reverse Mortgage is developing considerably.
In this context, the role that data play will be at the core of the forecasting of assets future value in
terms of real-world evaluation and of the cost of insurance contracts related to house valuation.
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Abstract: In the information-based pricing framework of Brody, Hughston & Macrina, the market
filtration {Ft}t≥0 is generated by an information process {ξt}t≥0 defined in such a way that at some
fixed time T an FT-measurable random variable XT is “revealed”. A cash flow HT is taken to depend
on the market factor XT , and one considers the valuation of a financial asset that delivers HT at time
T. The value of the asset St at any time t ∈ [0, T) is the discounted conditional expectation of HT
with respect to Ft, where the expectation is under the risk neutral measure and the interest rate is
constant. Then ST− = HT , and St = 0 for t ≥ T. In the general situation one has a countable number
of cash flows, and each cash flow can depend on a vector of market factors, each associated with an
information process. In the present work we introduce a new process, which we call the normalized
variance-gamma bridge. We show that the normalized variance-gamma bridge and the associated
gamma bridge are jointly Markovian. From these processes, together with the specification of a
market factor XT , we construct a so-called variance-gamma information process. The filtration is then
taken to be generated by the information process together with the gamma bridge. We show that the
resulting extended information process has the Markov property and hence can be used to develop
pricing models for a variety of different financial assets, several examples of which are discussed
in detail.

Keywords: information-based asset pricing; Lévy processes; gamma processes; variance gamma
processes; Brownian bridges; gamma bridges; nonlinear filtering

1. Introduction

The theory of information-based asset pricing proposed by Brody et al. (2007, 2008a, 2008b) and
Macrina (2006) is concerned with the determination of the price processes of financial assets from first
principles. In particular, the market filtration is constructed explicitly, rather than simply assumed, as it
is in traditional approaches. The simplest version of the model is as follows. We fix a probability space
(Ω, F ,P). An asset delivers a single random cash flow HT at some specified time T > 0, where time
0 denotes the present. The cash flow is a function of a random variable XT , which we can think
of as a “market factor” that is in some sense revealed at time T. In the general situation there will
be many factors and many cash flows, but for the present we assume that there is a single factor
XT : Ω → R such that the sole cash flow at time T is given by HT = h(XT) for some Borel function
h : R → R+. For simplicity we assume that interest rates are constant and that P is the risk neutral
measure. We require that HT should be integrable. Under these assumptions, the value of the asset at
time 0 is

S0 = e−r T E [h(XT)] , (1)

Risks 2020, 8, 105; doi:10.3390/risks8040105 www.mdpi.com/journal/risks
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where E denotes expectation under P and r is the short rate. Since the single “dividend” is paid at
time T, the value of the asset at any time t ≥ 0 is of the form

St = e−r (T−t) 1{t<T} E
[
h(XT)

∣∣ Ft
]

, (2)

where {Ft}t≥0 is the market filtration. The task now is to model the filtration, and this will be
done explicitly.

In traditional financial modelling, the filtration is usually taken to be fixed in advance.
For example, in the widely-applied Brownian-motion-driven model for financial markets, the filtration
is generated by an n-dimensional Brownian motion. A detailed account of the Brownian framework
can be found, for example, in Karatzas and Shreve (1998). In the information-based approach, however,
we do not assume the filtration to be given a priori. Instead, the filtration is constructed in a way that
specifically takes into account the structures of the information flows associated with the cash flows of
the various assets under consideration.

In the case of a single asset generating a single cash flow, the idea is that the filtration should
contain partial or “noisy” information about the market factor XT , and hence the impending cash
flow, in such a way that XT is FT-measurable. This can be achieved by allowing {Ft} to be generated
by a so-called information process {ξt}t≥0 with the property that for each t such that t ≥ T the
random variable ξt is σ{XT}-measurable. Then by constructing specific examples of cádlàg processes
having this property, we are able to formulate a variety of specific models. The resulting models
are finely tuned to the structures of the assets that they represent, and therefore offer scope for a
useful approach to financial risk management. In previous work on information-based asset pricing,
where precise definitions can be found that expand upon the ideas summarized above, such models
have been constructed using Brownian bridge information processes (Brody et al. (2007, 2008a, 2009,
2010, 2011), Filipović et al. (2012), Hughston and Macrina (2012), Macrina (2006), Mengütürk (2013),
Rutkowski and Yu (2007)), gamma bridge information processes (Brody et al. (2008b)), Lévy random
bridge information processes (Hoyle (2010), Hoyle et al. (2011, 2015, 2020), Mengütürk (2018))
and Markov bridge information processes (Macrina (2019)). In what follows we present a new model
for the market filtration, based on the variance-gamma process. The idea is to create a two-parameter
family of information processes associated with the random market factor XT . One of the parameters is
the information flow-rate σ. The other is an intrinsic parameter m associated with the variance gamma
process. In the limit as m tends to infinity, the variance-gamma information process reduces to the type
of Brownian bridge information process considered by Brody et al. (2007, 2008a) and Macrina (2006).

The plan of the paper is as follows. In Section 2 we recall properties of the gamma process,
introducing the so-called scale parameter κ > 0 and shape parameter m > 0. A standard gamma
subordinator is defined to be a gamma process with κ = 1/m. The mean at time t of a standard gamma
subordinator is t. In Theorem 1 we prove that an increase in the shape parameter m results in a transfer
of weight from the Lévy measure of any interval [c, d] in the space of jump size to the Lévy measure of
any interval [a, b] such that b − a = d − c and c > a. Thus, roughly speaking, an increase in m results
in an increase in the rate at which small jumps occur relative to the rate at which large jumps occur.
This result concerning the interpretation of the shape parameter for a standard gamma subordinator is
new as far as we are aware.

In Section 3 we recall properties of the variance-gamma process and the gamma bridge, and in
Definition 1 we introduce a new type of process, which we call a normalized variance-gamma bridge.
This process plays an important role in the material that follows. In Lemmas 1 and 2 we work out
various properties of the normalized variance-gamma bridge. Then in Theorem 2 we show that the
normalized variance-gamma bridge and the associated gamma bridge are jointly Markov, a property
that turns out to be crucial in our pricing theory. In Section 4, at Definition 2, we introduce the so-called
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variance-gamma information process. The information process carries noisy information about the
value of a market factor XT that will be revealed to the market at time T, where the noise is represented
by the normalized variance-gamma bridge. In Equation (58) we present a formula that relates the
values of the information process at different times, and by use of that we establish in Theorem 3 that
the information process and the associated gamma bridge are jointly Markov.

In Section 5, we consider a market where the filtration is generated by a variance gamma
information process along with the associated gamma bridge. In Lemma 3 we work out a version of
the Bayes formula in the form that we need for asset pricing in the present context. Then in Theorem 4
we present a general formula for the price process of a financial asset that at time T pays a single
dividend given by a function h(XT) of the market factor. In particular, the a priori distribution of the
market factor can be quite arbitrary, specified by a measure FXT (dx) on R, the only requirement being
that h(XT) should be integrable. In Section 6 we present a number of examples, based on various
choices of the payoff function and the distribution for the market factor, the results being summarized
in Propositions 1–4. We conclude with comments on calibration, derivatives, and how one determines
the trajectory of the information process from market prices.

2. Gamma Subordinators

We begin with some remarks about the gamma process. Let us as usual write R+ for the
non-negative real numbers. Let κ and m be strictly positive constants. A continuous random variable
G : Ω → R+ on a probability space (Ω, F , P) will be said to have a gamma distribution with scale
parameter κ and shape parameter m if

P [G ∈ dx] = 1{x>0}
1

Γ[m]
κ−m xm−1 e−x/κ dx , (3)

where
Γ[a] =

∫ ∞

0
xa−1 e−x dx (4)

denotes the standard gamma function for a > 0, and we recall the relation Γ[a + 1] = aΓ[a].
A calculation shows that E [G] = κ m, and Var[G] = κ2 m. There exists a two-parameter family
of gamma processes of the form Γ : Ω ×R+ → R+ on (Ω, F , P). By a gamma process with scale
κ and shape m we mean a Lévy process {Γt}t≥0 such that for each t > 0 the random variable Γt is
gamma distributed with

P [Γt ∈ dx] = 1{x>0}
1

Γ[m t]
κ−m t xm t−1 e−x/κ dx . (5)

If we write (a)0 = 1 and (a)k = a(a + 1)(a + 2) · · · (a + k − 1) for the so-called Pochhammer
symbol, we find that E[Γn

t ] = κn(mt)n. It follows that E[Γt] = μ t and Var[Γt] = ν2 t, where μ = κ m
and ν2 = κ2 m, or equivalently m = μ2/ν2, and κ = ν2/μ.

The Lévy exponent for such a process is given for α < 1 by

ψΓ(α) =
1
t

logE [exp(αΓt)] = −m log (1 − κα) , (6)

and for the corresponding Lévy measure we have

νΓ(dx) = 1{x>0} m
1
x

e−x/κ dx . (7)

One can then check that the Lévy-Khinchine relation
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ψΓ(α) =
∫
R

(
eαx − 1 − 1{|x|<1} αx

)
νΓ(dx) + pα (8)

holds for an appropriate choice of p (Kyprianou 2014, Lemma 1.7).
By a standard gamma subordinator we mean a gamma process {γt}t≥0 for which κ = 1/m.

This implies that E[γt] = t and Var[γt] = m−1 t. The standard gamma subordinators thus constitute a
one-parameter family of processes labelled by m. An interpretation of the parameter m is given by
the following:

Theorem 1. Let {γt}t≥0 be a standard gamma subordinator with parameter m. Let νm[a, b] be the Lévy
measure of the interval [a, b] for 0 < a < b. Then for any interval [c, d] such that c > a and d − c = b − a
the ratio

Rm(a, b ; c, d) =
νm[a, b]
νm[c, d]

(9)

is strictly greater than one and strictly increasing as a function of m.

Proof. By the definition of a standard gamma subordinator we have

νm[a, b] =
∫ b

a
m

1
x

e−m x dx . (10)

Let δ = c − a > 0 and note that the integrand in the right hand side of (10) is a decreasing function of
the variable of integration. This allows one to conclude that

νm[a + δ, b + δ] =
∫ b+δ

a+δ
m

1
x

e−m x dx <
∫ b

a
m

1
x

e−m x dx , (11)

from which it follows that 0 < νm[c, d] < νm[a, b] and hence Rm(a, b ; c, d) > 1. To show that
Rm(a, b; c, d) is strictly increasing as a function of m we observe that

νm[a, b] = m
∫ ∞

a

1
x

e−m x dx − m
∫ ∞

b

1
x

e−m x dx = m (E1[m a]− E1[m b]) , (12)

where the so-called exponential integral function E1(z) is defined for z > 0 by

E1(z) =
∫ ∞

z

e−x

x
dx . (13)

See Abramowitz and Stegun (1972), Section 5.1.1, for properties of the exponential integral. Next,
we compute the derivative of Rm(a, b ; c, d), which gives

∂

∂m
Rm(a, b ; c, d) =

1
m (E1[m c]− E1[m d])

e−m a
(

1 − e−m Δ
) (

Rm(a, b ; c, d)− em(c−a)
)

, (14)

where
Δ = d − c = b − a . (15)

We note that
1

m (E1[m c]− E1[m d])
e−m a

(
1 − e−m Δ

)
> 0 , (16)

which shows that the sign of the derivative in (14) is strictly positive if and only if

Rm(a, b ; c, d) > em(c−a). (17)
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But clearly ∫ Δ m

0

e−u

u + a m
du >

∫ Δ m

0

e−u

u + c m
du (18)

for c > a, which after a change of integration variables and use of (15) implies

em a
∫ b m

a m

e−x

x
dx > em c

∫ d m

c m

e−x

x
dx, (19)

which is equivalent to (17), and that completes the proof.

We see therefore that the effect of an increase in the value of m is to transfer weight from the Lévy
measure of any jump-size interval [c, d] ⊂ R+ to any possibly-overlapping smaller-jump-size interval
[a, b] ⊂ R+ of the same length. The Lévy measure of such an interval is the rate of arrival of jumps for
which the jump size lies in that interval.

3. Normalized Variance-Gamma Bridge

Let us fix a standard Brownian motion {Wt}t≥0 on (Ω, F , P) and an independent standard
gamma subordinator {γt}t≥0 with parameter m. By a standard variance-gamma process with
parameter m we mean a time-changed Brownian motion {Vt}t≥0 of the form

Vt = Wγt . (20)

It is straightforward to check that {Vt} is itself a Lévy process, with Lévy exponent

ψV(α) = −m log
(

1 − α2

2 m

)
. (21)

Properties of the variance-gamma process, and financial models based on it, have been investigated
extensively in Madan (1990), Madan and Milne (1991), Madan et al. (1998), Carr et al. (2002) and many
other works.

The other object we require going forward is the gamma bridge (Brody et al. (2008b),
Emery and Yor (2004), Yor (2007)). Let {γt} be a standard gamma subordinator with parameter
m. For fixed T > 0 the process {γtT}t≥0 defined by

γtT =
γt

γT
(22)

for 0 ≤ t ≤ T and γtT = 1 for t > T will be called a standard gamma bridge, with parameter m,
over the interval [0, T]. One can check that for 0 < t < T the random variable γtT has a beta distribution
(Brody et al. 2008b, pp. 6–9). In particular, one finds that its density is given by

P [γtT ∈ dy] = 1{0<y<1}
ymt−1(1 − y)m(T−t)−1

B[mt, m(T − t)]
dy , (23)

where

B[a, b] =
Γ[a] Γ[b]
Γ[a + b]

. (24)

It follows then by use of the integral formula

B[a, b] =
∫ 1

0
ya−1(1 − y)b−1dy (25)
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that for all n ∈ N we have

E [γn
tT ] =

B[mt + n, m(T − t)]
B[mt, m(T − t)]

, (26)

and hence

E [γn
tT ] =

(mt)n

(mT)n
. (27)

Accordingly, one has

E[γtT ] = t/T , E[γ2
tT ] = t(mt + 1)/T(mT + 1) (28)

and therefore

Var[γtT ] =
t(T − t)

T2(1 + mT)
. (29)

One observes, in particular, that the expectation of γtT does not depend on m, whereas the
variance of γtT decreases as m increases.

Definition 1. For fixed T > 0, the process {ΓtT}t≥0 defined by

ΓtT = γT
− 1

2 (Wγt − γtT WγT ) (30)

for 0 ≤ t ≤ T and ΓtT = 0 for t > T will be called a normalized variance gamma bridge.

We proceed to work out various properties of this process. We observe that ΓtT is conditionally
Gaussian, from which it follows that E [ΓtT | γt, γT ] = 0 and E

[
Γ2

tT | γt, γT
]

= γtT (1 − γtT).
Therefore E[ΓtT ] = 0 and E[Γ2

tT ] = E[γtT ]−E[γ2
tT ] ; and thus by use of (28) we have

Var [ΓtT ] =
mt (T − t)
T (1 + mT)

. (31)

Now, recall (Yor (2007), Emery and Yor (2004)) that the gamma process and the associated gamma
bridge have the following fundamental independence property. Define

G ∗
t = σ {γs/γt, s ∈ [0, t]} , G +

t = σ {γu, u ∈ [t, ∞)} . (32)

Then, for every t ≥ 0 it holds that G ∗
t and G+

t are independent. In particular γst and γu are
independent for 0 ≤ s ≤ t ≤ u and t > 0. It also holds that γst and γuv are independent for
0 ≤ s ≤ t ≤ u ≤ v and t > 0. Furthermore, we have:

Lemma 1. If 0 ≤ s ≤ t ≤ u and t > 0 then Γst and γu are independent.

Proof. We recall that if a random variable X is normally distributed with mean μ and variance ν2 then

P [X < x] = N
(

x − μ

ν

)
, (33)

where N : R → (0, 1) is defined by

N(x) =
1√
2π

∫ x

−∞
exp

(
−1

2
y2

)
dy . (34)
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Since ΓtT is conditionally Gaussian, by use of the tower property we find that

FΓst , γu(x, y) = E
[
1{Γst≤x} 1{γu≤y}

]
= E

[
E

[
1{Γst≤x} 1{γu≤y}

∣∣∣ γs , γt , γu

]]
= E

[
1{γu≤y} E

[
1{Γst≤x}

∣∣∣ γs , γt , γu

]]
= E

[
1{γu≤y} N

(
x (γst (1 − γst))

− 1
2
)]

= E
[
1{γu≤y}

]
E

[
N

(
x (γst (1 − γst))

− 1
2
)]

,

(35)

where the last line follows from the independence of γst and γu.

By a straightforward extension of the argument we deduce that if 0 ≤ s ≤ t ≤ u ≤ v and t > 0
then Γst and γuv are independent. Further, we have:

Lemma 2. If 0 ≤ s ≤ t ≤ u ≤ v and t > 0 then Γst and Γuv are independent.

Proof. We recall that the Brownian bridge {βtT}0≤t≤T defined by

βtT = Wt − t
T

WT (36)

for 0 ≤ t ≤ T and βtT = 0 for t > T is Gaussian with E [βtT ] = 0, Var [βtT ] = t (T − t)/T,
and Cov [βsT , βtT ] = s(T − t)/T for 0 ≤ s ≤ t ≤ T. Using the tower property we find that

FΓst , Γuv(x, y) = E
[
1{Γst≤x} 1{Γuv≤y}

]
= E

[
E

[
1{Γst≤x} 1{Γuv≤y}

∣∣∣ γs , γt , γu , γv

]]
= E

[
E

[
1{Γst≤x}

∣∣∣ γs , γt , γu , γv

]
E

[
1{Γuv≤y}

∣∣∣ γs , γt , γu , γv

]]
= E

[
N

(
x ((1 − γst) (γst))

− 1
2
)]

E
[

N
(

y ((1 − γuv) (γuv))
− 1

2
)]

, (37)

where in the final step we use (30) along with properties of the Brownian bridge.

A straightforward calculation shows that if 0 ≤ s ≤ t ≤ u and t > 0 then

Γsu = (γtu)
1
2 Γst + γst Γtu . (38)

With this result at hand we obtain the following:

Theorem 2. The processes {ΓtT}0≤t≤T and {γtT}0≤t≤T are jointly Markov.

Proof. To establish the Markov property it suffices to show that for any bounded measurable function
φ : R×R → R, any n ∈ N, and any 0 ≤ tn ≤ tn−1 ≤ . . . ≤ t1 ≤ t ≤ T, we have

E
[
φ(ΓtT , γtT)

∣∣ Γt1T , γt1T , Γt2T , γt2T , . . . , ΓtnT , γtnT
]

= E
[
φ(ΓtT , γtT)

∣∣ Γt1T , γt1T
]

. (39)
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We present the proof for n = 2. Thus we need to show that

E
[
φ(ΓtT , γtT)

∣∣ Γt1T , γt1T , Γt2T , γt2T
]

= E
[
φ(ΓtT , γtT)

∣∣ Γt1T , γt1T
]

. (40)

As a consequence of (38) we have

E
[
φ(ΓtT , γtT)

∣∣ Γt1T , γt1T , Γt2T , γt2T
]

= E
[
φ(ΓtT , γtT)

∣∣ Γt1T , γt1T , Γt2t1 , γt2t1

]
. (41)

Therefore, it suffices to show that

E
[
φ(ΓtT , γtT)

∣∣ Γt1T , γt1T , Γt2t1 , γt2t1

]
= E

[
φ(ΓtT , γtT)

∣∣ Γt1T , γt1T
]

. (42)

Let us write
f ΓtT , γtT , Γt1T , γt1T , Γt2t1 , γt2t1

(x, y, a, b, c, d) (43)

for the joint density of ΓtT , γtT , Γt1T , γt1T , Γt2t1 , γt2t1 . Then for the conditional density of ΓtT and γtT
given Γt1T = a, γt1T = b, Γt2t1 = c, γt2t1 = d we have

g ΓtT , γtT (x, y, a, b, c, d) =
f ΓtT , γtT , Γt1T , γt1T , Γt2t1 , γt2t1

(x, y, a, b, c, d)

f Γt1T , γt1T , Γt2t1 , γt2t1
(a, b, c, d)

. (44)

Thus,

E
[
φ(ΓtT , γtT)

∣∣ Γt1T , γt1T , Γt2t1 , γt2t1

]
=

∫
R

∫
R

φ(x, y) g ΓtT , γtT (x, y, Γt1T , γt1T , Γt2t1 , γt2t1)dx dy . (45)

Similarly,

E
[
φ(ΓtT , γtT)

∣∣ Γt1T , γt1T
]

=
∫
R

∫
R

φ(x, y) g ΓtT , γtT (x, y, Γt1T , γt1T)dx dy , (46)

where for the conditional density of ΓtT and γtT given Γt1T = a, γt1T = b we have

g ΓtT , γtT (x, y, a, b) =
f ΓtT , γtT , Γt1T , γt1T (x, y, a, b)

f Γt1T , γt1T (a, b)
. (47)

Note that the conditional probability densities that we introduce in formulae such as those above
are “regular” conditional densities (Williams 1991, p. 91). We shall show that

g ΓtT , γtT (x, y, Γt1T , γt1T , Γt2t1 , γt2t1) = g ΓtT , γtT (x, y, Γt1T , γt1T) . (48)

Writing

FΓtT , γtT , Γt1T , γt1T , Γt2t1 , γt2t1
(x, y, a, b, c, d)

= E
[
1{ΓtT<x}1{γtT<y} 1{Γt1T<a}1{γt1T<b} 1{Γt2t1<c}1{γt2t1<d}

]
(49)
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for the joint distribution function, we see that

FΓtT , γtT , Γt1T , γt1T , Γt2t1 , γt2t1
(x, y, a, b, c, d)

= E
[
1{ΓtT<x}1{γtT<y} 1{Γt1T<a}1{γt1T<b} 1{Γt2t1<c}1{γt2t1<d}

]
= E

[
E

[
1{ΓtT<x} 1{γtT<y} 1{Γt1T<a} 1{γt1T<b} 1{Γt2t1<c}1{γt2t1<d}

∣∣∣ γt2 , γt1 , γt, γT

]]
= E

[
1{γtT<y} 1{γt1T<b} 1{γt2t1<d} E

[
1{ΓtT<x} 1{Γt1T<a} 1{Γt2t1<c}

∣∣∣ γt2 , γt1 , γt, γT

]]
= E

[
E

[
1{ΓtT<x} 1{γtT<y} 1{Γt1T<a} 1{γt1T<b}

∣∣∣ γt1 , γt, γT

]
× N

(
c√

(1 − γt2t1) (γt2t1)

)
1{γt2t1<d}

]
,

(50)

where the last step follows as a consequence of Lemma 2. Thus we have

FΓtT , γtT , Γt1T , γt1T , Γt2t1 , γt2t1
(x, y, a, b, c, d)

= E

[
1{ΓtT<x} 1{γtT<y} 1{Γt1T<a} 1{γt1T<b} N

(
c√

(1 − γt2t1) (γt2t1)

)
1{γt2t1<d}

]

= E
[
1{ΓtT<x} 1{γtT<y} 1{Γt1T<a} 1{γt1T<b}

]
E

[
N

(
c√

(1 − γt2t1) (γt2t1)

)
1{γt2t1<d}

]
= FΓtT , γtT , Γt1T , γt1T (x, y, a, b)× FΓt2t1 , γt2t1

(c, d) ,

(51)

where the next to last step follows by virtue of the fact that Γst and γuv are independent for 0 ≤ s ≤
t ≤ u ≤ v and t > 0. Similarly,

FΓt1T , γt1T , Γt2t1 , γt2t1
(a, b, c, d)

= E
[
1{Γt1T<a}1{γt1T<b} 1{Γt2t1<c}1{γt2t1<d}

]
= E

[
E

[
1{Γt1T<a}1{γt1T<b} 1{Γt2t1<c}1{γt2t1<d}

∣∣∣ γt2 , γt1 , γT

]]
= E

[
1{γt1T<b} 1{γt2t1<d} E

[
1{Γt1T<a} 1{Γt2t1<c}

∣∣∣ γt2 , γt1 , γT

]]
,

(52)

and hence

FΓt1T , γt1T , Γt2t1 , γt2t1
(a, b, c, d)

= E

⎡⎣N

⎛⎝ a√(
1 − γt1T

) (
γt1T

)
⎞⎠ 1{γt1T<b} N

(
c√

(1 − γt2t1) (γt2t1)

)
1{γt2t1<d}

⎤⎦
= E

⎡⎣N

⎛⎝ a√(
1 − γt1T

) (
γt1T

)
⎞⎠ 1{γt1T<b}

⎤⎦ E

[
N

(
c√

(1 − γt2t1) (γt2t1)

)
1{γt2t1<d}

]

= FΓt1T , γt1T (a, b)× FΓt2t1 , γt2t1
(c, d) .

(53)
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Thus we deduce that

f ΓtT , γtT , Γt1T , γt1T , Γt2t1 , γt2t1
(x, y, a, b, c, d) (54)

= f ΓtT , γtT , Γt1T , γt1T (x, y, a, b)× f Γt2t1 , γt2t1
(c, d) , (55)

and

f Γt1T , γt1T , Γt2t1 , γt2t1
(a, b, c, d) = f Γt1T , γt1T (a, b)× fΓt2t1 , γt2t1

(c, d) , (56)

and the theorem follows.

4. Variance Gamma Information

Fix T > 0 and let {ΓtT} be a normalized variance gamma bridge, as defined by (30). Let {γtT}
be the associated gamma bridge defined by (22). Let XT be a random variable and assume that XT ,
{γt}t≥0 and {Wt}t≥0 are independent. We are led to the following:

Definition 2. By a variance-gamma information process carrying the market factor XT we mean a process
{ξt}t≥0 that takes the form

ξt = ΓtT + σ γtT XT (57)

for 0 ≤ t ≤ T and ξt = σXT for t > T, where σ is a positive constant.

The market filtration is assumed to be the standard augmented filtration generated jointly by {ξt}
and {γtT}. A calculation shows that if 0 ≤ s ≤ t ≤ T and t > 0 then

ξs = Γst (γtT)
1
2 + ξt γst . (58)

We are thus led to the following result required for the valuation of assets.

Theorem 3. The processes {ξt}0≤t≤T and {γtT}0≤t≤T are jointly Markov.

Proof. It suffices to show that for any n ∈ N and 0 < t1 < t2 < · · · < tn we have

E
[
φ(ξt, γtT)

∣∣ ξt1 , ξt2 , . . . , ξtn , γt1T , γt2T , . . . , γtnT
]
= E

[
φ(ξt, γtT)

∣∣ ξt1 , γt1T
]

. (59)

We present the proof for n = 2. Thus, we propose to show that

E
[
φ(ξt, γtT)

∣∣ ξt1 , ξt2 , γt1T , γt2T
]
= E

[
φ(ξt, γtT)

∣∣ ξt1 , γt1T
]

. (60)

By (58), we have

E
[
φ(ξt, γtT)

∣∣ ξt1 , ξt2 , γt1T , γt2,T
]

= E
[
φ(ξt, γtT)

∣∣ ξt1 , ξt2 , γt1T , γt2t1

]
= E

[
φ(ξt, γtT)

∣∣ ξt1 , Γt2t1 , γt1T , γt2t1

]
= E

[
φ(ΓtT + γtT σ XT , γtT)

∣∣ Γt1T + γt1T σ XT , Γt2t1 , γt1T , γt2t1

]
.

(61)
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Finally, we invoke Lemma 2, and Theorem 2 to conclude that

E
[
φ(ξt, γtT)|ξt1 , ξt2 , γt1T , γt2,T

]
= E

[
φ(ΓtT + γtT σ XT , γtT)

∣∣ Γt1T + γt1T σ XT , γt1T
]

= E
[
φ(ξt, γtT)|ξt1 , γt1T

]
.

(62)

The generalization to n > 2 is straightforward.

5. Information Based Pricing

Now we are in a position to consider the valuation of a financial asset in the setting just discussed.
One recalls that P is understood to be the risk-neutral measure and that the interest rate is constant.
The payoff of the asset at time T is taken to be an integrable random variable of the form h(XT) for
some Borel function h, where XT is the information revealed at T. The filtration is generated jointly by
the variance-gamma information process {ξt} and the associated gamma bridge {γtT}. The value of
the asset at time t ∈ [0, T) is then given by the general expression (2), which on account of Theorem 3
reduces in the present context to

St = e−r (T−t) E [h(XT) | ξt, γtT ] , (63)

and our goal is to work out this expectation explicitly.
Let us write FXT for the a priori distribution function of XT . Thus FXT : x ∈ R → FXT (x) ∈ [0, 1]

and we have
FXT (x) = P (XT ≤ x) . (64)

Occasionally, it will be typographically convenient to write F(x)
XT

in place of FXT (x), and similarly
for other distribution functions. To proceed, we require the following:

Lemma 3. Let X be a random variable with distribution {FX(x)}x∈R and let Y be a continuous random
variable with distribution {FY(y)}y∈R and density { fY(y)}y∈R. Then for all y ∈ R for which fY(y) �= 0
we have

F(x)
X|Y=y =

∫
u∈(−∞,x] f (y)Y|X=u dF(u)

X∫
u∈(−∞,∞) f (y)Y|X=u dF(u)

X

, (65)

where F(x)
X|Y=y denotes the conditional distribution P (X ≤ x | Y = y), and where

f (y)Y|X=u =
d

dy
P (Y ≤ y | X = u) . (66)

Proof. For any two random variables X and Y it holds that

P (X ≤ x, Y ≤ y) = E
[
1{X≤x} 1{Y≤y}

]
= E

[
E

[
1{X≤x}

∣∣Y]
1{Y≤y}

]
= E

[
F(x)

X|Y 1{Y≤y}
]

. (67)
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Here we have used the fact that for each x ∈ R there exists a Borel measurable function Px : y ∈
R → Px(y) ∈ [0, 1] such that E

[
1{X≤x}

∣∣Y]
= Px(Y). Then for y ∈ R we define

F(x)
X|Y=y = Px(y) . (68)

Hence

P (X ≤ x, Y ≤ y) =
∫

v∈(−∞,y]
F(x)

X|Y=v dF(v)
Y . (69)

By symmetry, we have

P (X ≤ x, Y ≤ y) =
∫

u∈(−∞,x]
F(y)

Y|X=u dF(u)
X , (70)

from which it follows that we have the relation∫
u∈(−∞,x]

F(y)
Y|X=u dF(u)

X =
∫

v∈(−∞,y]
F(x)

X|Y=v dF(v)
Y . (71)

Moving ahead, let us consider the measure FX|Y=y(dx) on (R,B) defined for each y ∈ R by setting

FX|Y=y(A) = E
[
1{X∈A}

∣∣Y = y
]

(72)

for any A ∈ B. Then FX|Y=y(dx) is absolutely continuous with respect to FX(dx). Indeed, suppose

that FX(B) = 0 for some B ∈ B. Now, FX|Y=y(B) = E
[
1{X∈B}

∣∣Y = y
]
. But if E

[
1{X∈B}

]
= 0, then

E
[
E

[
1{X∈B}

∣∣Y]]
= 0, and hence E

[
1{X∈B}

∣∣Y]
= 0, and therefore E

[
1{X∈B}

∣∣Y = y
]
= 0. Thus

FX|Y=y(B) vanishes for any B ∈ B for which FX(B) vanishes. It follows by the Radon-Nikodym
theorem that for each y ∈ R there exists a density {gy(x)}x∈R such that

F(x)
X|Y=y =

∫
u∈(−∞,x]

gy(u)dF(u)
X . (73)

Note that {gy(x)} is determined uniquely apart from its values on FX-null sets. Inserting (73) into (71)
we obtain ∫

u∈(−∞,x]
F(y)

Y|X=u dF(u)
X =

∫
v∈(−∞,y]

∫
u∈(−∞,x]

gv(u)dF(u)
X dF(v)

Y , (74)

and thus by Fubini’s theorem we have∫
u∈(−∞,x]

F(y)
Y|X=u dF(u)

X =
∫

u∈(−∞,x]

∫
v∈(−∞,y]

gv(u)dF(v)
Y dF(u)

X . (75)

It follows then that {F(y)
Y|X=x}x∈R is determined uniquely apart from its values on FX-null sets,

and we have

F(y)
Y|X=x =

∫
v∈(−∞,y]

gv(x)dF(v)
Y . (76)

This relation holds quite generally and is symmetrical between X and Y. Indeed, we have not
so far assumed that Y is a continuous random variable. If Y is, in fact, a continuous random variable,
then its distribution function is absolutely continuous and admits a density { f (y)Y }y∈R. In that case,
(76) can be written in the form
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F(y)
Y|X=x =

∫
v∈(−∞,y]

gv(x) f (v)Y dv , (77)

from which it follows that for each value of x the conditional distribution function {F(y)
Y|X=x}y∈R is

absolutely continuous and admits a density { f (y)Y|X=x}y∈R such that

f (y)Y|X=x = gy(x) f (y)Y . (78)

The desired result (65) then follows from (73) and (78) if we observe that

f (y)Y =
∫

u∈(−∞,∞)
f (y)Y|X=u dF(u)

X , (79)

and that concludes the proof.

Armed with Lemma 3, we are in a position to work out the conditional expectation that leads to
the asset price, and we obtain the following:

Theorem 4. The variance-gamma information-based price of a financial asset with payoff h(XT) at time T is
given for t < T by

St = e−r (T−t)
∫

x∈R
h(x)

e(σ ξt x− 1
2 σ2 x2 γtT) (1−γtT)

−1∫
y∈R e(σ ξt y− 1

2 σ2 y2 γtT) (1−γtT)
−1

dF(y)
XT

dF(x)
XT

. (80)

Proof. To calculate the conditional expectation of h(XT), we observe that

E [h(XT) | ξt, γtT ] = E

[
E [h(XT) | ξt, γtT , γT ]

∣∣∣∣ ξt, γtT

]
, (81)

by the tower property, where the inner expectation takes the form

E [h(XT) | ξt = ξ, γtT = b, γT = g] =
∫

x∈R
h(x)dF(x)

XT |ξt=ξ, γtT=b, γT=g . (82)

Here by Lemma 3 the conditional distribution function is

F(x)
XT |ξt=ξ, γtT=b, γT=g =

∫
u∈(−∞, x ] f (ξ)

ξt | XT=u, γtT=b ,γT=g dF(u)
XT | γtT=b ,γT=g∫

u∈R f (ξ)
ξt | XT=u, γtT=b ,γT=g dF(u)

XT | γtT=b ,γT=g

=

∫
u∈(−∞, x ] f (ξ)

ξt | XT=u, γtT=b ,γT=g dF(u)
XT∫

u∈R f (ξ)
ξt | XT=u, γtT=b ,γT=g dF(u)

XT

=

∫
u∈(−∞, x ] e(σ ξ u− 1

2 σ2 u2 b) (1−b)−1
dF(u)

XT∫
R e(σ ξ u− 1

2 σ2 u2 b) (1−b)−1
dF(u)

XT

. (83)
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Therefore, the inner expectation in Equation (81) is given by

E [h(XT) | ξt, γtT , γT ] =
∫

x∈R
h(x)

e(σ ξt x− 1
2 σ2 x2 γtT) (1−γtT)

−1∫
y∈R e(σ ξt y− 1

2 σ2 y2 γtT) (1−γtT)
−1

dF(y)
XT

dF(x)
XT

. (84)

But the right hand side of (84) depends only on ξt and γtT . It follows immediately that

E [h(XT) | ξt, γtT ] =
∫

x∈R
h(x)

e(σ ξt x− 1
2 σ2 x2 γtT) (1−γtT)

−1∫
y∈R e(σ ξt y− 1

2 σ2 y2 γtT) (1−γtT)
−1

dF(y)
XT

dF(x)
XT

, (85)

which translates into Equation (80), and that concludes the proof.

6. Examples

Going forward, we present some examples of variance-gamma information pricing for specific
choices of (a) the payoff function h : R → R+ and (b) the distribution of the market factor XT .
In the figures, we display sample paths for the information processes and the corresponding prices.
These paths are generated as follows. First, we simulate outcomes for the market factor XT . Second,
we simulate paths for the gamma process {γt}t≥0 over the interval [0, T] and an independent Brownian
motion {Wt}t≥0. Third, we evaluate the variance gamma process {Wγt}t≥0 over the interval [0, T] by
subordinating the Brownian motion with the gamma process, and we evaluate the resulting gamma
bridge {γtT}0≤t≤T . Fourth, we use these ingredients to construct sample paths of the information
processes, where these processes are given as in Definition 2. Finally, we evaluate the pricing formula
in Equation (80) for each of the simulated paths and for each time step.

Example 1: Credit risky bond. We begin with the simplest case, that of a unit-principal credit-risky
bond without recovery. We set h(x) = x, with P(XT = 0) = p0 and P(XT = 1) = p1, where
p0 + p1 = 1. Thus, we have

FXT (x) = p0δ0(x) + p1δ1(x) , (86)

where

δa(x) =
∫

y∈(−∞,x]
δa(dy) , (87)

and δa(dx) denotes the Dirac measure concentrated at the point a, and we are led to the following:

Proposition 1. The variance-gamma information-based price of a unit-principal credit-risky discount bond
with no recovery is given by

St = e−r (T−t) p1 e(σ ξt − 1
2 σ2 γtT) (1−γtT)

−1

p0 + p1 e(σ ξt − 1
2 σ2 γtT) (1−γtT)

−1 . (88)

Now let ω ∈ Ω denote the outcome of chance. By use of Equation (57) one can check rather directly
that if XT(ω) = 1, then limt→T St = 1, whereas if XT(ω) = 0, then limt→T St = 0. More explicitly,
we find that

St

∣∣∣∣
XT(w)=0

= e−r(T−t)
p1 exp

[
σ

(
γ−1/2

T (Wγt − γtT WγT )− 1
2 σ γtT

)
(1 − γtT)

−1
]

p0 + p1 exp
[
σ

(
γ−1/2

T (Wγt − γtT WγT )− 1
2 σ γtT

)
(1 − γtT)−1

] , (89)
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whereas

St

∣∣∣∣
XT(w)=1

= e−r(T−t)
p1 exp

[
σ

(
γ−1/2

T (Wγt − γtT WγT ) +
1
2 σ γtT

)
(1 − γtT)

−1
]

p0 + p1 exp
[
σ

(
γ−1/2

T (Wγt − γtT WγT ) +
1
2 σ γtT

)
(1 − γtT)−1

] , (90)

and the claimed limiting behaviour of the asset price follows by inspection. In Figures 1 and 2 we
plot sample paths for the information processes and price processes of credit risky bonds for various
values of the information flow-rate parameter. One observes that for σ = 1 the information processes
diverge, thus distinguishing those bonds that default from those that do not, only towards the end of
the relevant time frame; whereas for higher values of σ the divergence occurs progressively earlier,
and one sees a corresponding effect in the price processes. Thus, when the information flow rate is
higher, the final outcome of the bond payment is anticipated earlier, and with greater certainty. Similar
conclusions hold for the interpretation of Figures 3 and 4.

Figure 1. Credit-risky bonds with no recovery. The panels on the left show simulations of trajectories
of the variance gamma information process, and the panels on the right show simulations of the
corresponding price trajectories. Prices are quoted as percentages of the principal, and the interest rate
is taken to be zero. From top to bottom, we show trajectories having σ = 1, 2, respectively. We take
p0 = 0.4 for the probability of default and p1 = 0.6 for the probability of no default. The value of m is
100 in all cases. Fifteen simulated trajectories are shown in each panel.
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Figure 2. Credit-risky bonds with no recovery. From top to bottom we show trajectories having
σ = 3, 4, respectively. The other parameters are the same as in Figure 1.

Figure 3. Log-normal payoff. The panels on the left show simulations of the trajectories of the
information process, whereas the panels on the right show simulations of the corresponding price
process trajectories. From the top to bottom, we show trajectories having σ = 1, 2, respectively.
The value for m is 100. We take μ = 0, ν = 1, and show 15 simulated trajectories in each panel.
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Figure 4. Log-normal payoff. From the top row to the bottom, we show trajectories having σ = 3, 4,
respectively. The other parameters are the same as those in Figure 3.

Example 2: Random recovery. As a somewhat more sophisticated version of the previous example,
we consider the case of a defaultable bond with random recovery. We shall work out the case where
h(x) = x and the market factor XT takes the value c with probability p1 and XT is uniformly distributed
over the interval [a, b] with probability p0, where 0 ≤ a < b ≤ c. Thus, for the probability measure of
XT we have

FXT (dx) = p0 1{a≤x<b} dx + p1 δc(dx) , (91)

and for the distribution function we obtain

FXT (x) = p0 x 1{a≤x<b} + 1{x≥c} . (92)

The bond price at time t is then obtained by working out the expression

St = e−r (T−t) p0
∫ b

a x e(σ ξt x− 1
2 σ2 x2 γtT) (1−γtT)

−1
dx + p1 c e(σ ξt − 1

2 σ2 γtT) (1−γtT)
−1

p0
∫ b

a e(σ ξt x− 1
2 σ2 x2 γtT) (1−γtT)

−1
dx + p1 e(σ ξt − 1

2 σ2 γtT) (1−γtT)
−1 , (93)

and it should be evident that one can obtain a closed-form solution. To work this out in detail, it will
be convenient to have an expression for the incomplete first moment of a normally-distributed random
variable with mean μ and variance ν2. Thus we set

N1(x, μ, ν) =
1√

2 π ν2

∫ x

−∞
y exp

(
−1

2
(y − μ)2

ν2

)
dy , (94)

and for convenience we set

N0(x, μ, ν) =
1√

2 π ν2

∫ x

−∞
exp

(
−1

2
(y − μ)2

ν2

)
dy . (95)
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Then we have

N1(x, μ, ν) = μ N
(

x − μ

ν

)
− ν√

2 π
exp

(
−1

2
(x − μ)2

ν2

)
, (96)

and of course

N0(x, μ, ν) = N
(

x − μ

ν

)
, (97)

where N( · ) is defined by (34). We also set

f (x, μ, ν) =
1√

2 π ν2
exp

(
−1

2
(x − μ)2

ν2

)
. (98)

Finally, we obtain the following:

Proposition 2. The variance-gamma information-based price of a defaultable discount bond with a
uniformly-distributed fraction of the principal paid on recovery is given by

St =e−r (T−t) p0
(

N1(b, μ, ν)− N1(a, μ, ν)
)
+ p1 c f (c, μ, ν)

p0
(

N0(b, μ, ν)− N0(a, μ, ν)
)
+ p1 f (c, μ, ν)

, (99)

where

μ =
1
σ

ξt

γtT
, ν =

1
σ

√
1 − γtT

γtT
. (100)

Example 3: Lognormal payoff. Next we consider the case when the payoff of an asset at time T is
log-normally distributed. This will hold if h(x) = ex and XT ∼ Normal(μ, ν2). It will be convenient
to look at the slightly more general payoff obtained by setting h(x) = eq x with q ∈ R. If we recall
the identity

1√
2 π

∫ ∞

−∞
exp

(
−1

2
Ax2 + Bx

)
dx =

1√
A

exp
(

1
2

B2

A

)
, (101)

which holds for A > 0 and B ∈ R, a calculation gives

It(q) :=
∫ ∞

−∞
eq x 1√

2 π ν
exp

[
−1

2
(x − μ)2

ν2 +
1

1 − γtT

(
σ ξt x − 1

2
σ2 x2 γtT

) ]
dx

=
1

ν
√

At
exp

(
1
2

B2
t

At
− C

)
, (102)

where

At =
1 − γtT + ν2σ2 γtT

ν2(1 − γtT)
, Bt = q +

μ

ν2 +
σ ξt

1 − γtT
, C =

1
2

μ2

ν2 . (103)

For q = 1, the price is thus given in accordance with Theorem 4 by

St = e−r(T−t) It(1)
It(0)

. (104)

Then clearly we have

S0 = e−r T exp
[

μ +
1
2

ν2
]

, (105)
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and a calculation leads to the following:

Proposition 3. The variance-gamma information-based price of a financial asset with a log-normally distributed
payoff such that log (ST−) ∼ Normal(μ, ν2) is given for t ∈ (0, T) by

St = er t S0 exp
[

ν2 σ2 γtT (1 − γtT)
−1

1 + ν2 σ2 γtT (1 − γtT)−1

(
1

σ γtT
ξt − μ − 1

2
ν2

)]
. (106)

More generally, one can consider the case of a so-called power-payoff derivative for which

HT = (ST−)q , (107)

where ST− = limt→T St is the payoff of the asset priced above in Proposition 3. See Bouzianis and
Hughston (2019) for aspects of the theory of power-payoff derivatives. In the present case if we write

Ct = e−r (T−t) Et
[
(ST−)q] (108)

for the value of the power-payoff derivative at time t, we find that

Ct = er t C0 exp
[

ν2 σ2 γtT (1 − γtT)
−1

1 + ν2 σ2 γtT (1 − γtT)−1

(
q

σ γtT
ξt − q μ − 1

2
q2 ν2

)]
, (109)

where

C0 = e−r T exp
[

q μ +
1
2

q2 ν2
]

. (110)

Example 4: Exponentially distributed payoff. Next we consider the case where the payoff is
exponentially distributed. We let XT ∼ exp(λ), so P [XT ∈ dx] = λ e−λ x dx, and take h(x) = x.
A calculation shows that∫ ∞

0
x exp

[
−λ x +

(
σ ξt x − 1

2
σ2 x2 γtT

)
(1 − γtT)

−1
]

dx =
μ − N1(0, μ, ν)

f (0, μ, ν)
, (111)

where we set

μ =
1
σ

ξt

γtT
− λ

σ2
1 − γtT

γtT
, ν =

1
σ

√
1 − γtT

γtT
, (112)

and ∫ ∞

0
exp

[
−λ x +

(
σ ξt x − 1

2
σ2 x2 γtT

)
(1 − γtT)

−1
]

dx =
1 − N0(0, μ, ν)

f (0, μ, ν)
. (113)

As a consequence we obtain:

Proposition 4. The variance-gamma information-based price of a financial asset with an exponentially
distributed payoff is given by

St =
μ − N1(0, μ, ν)

1 − N0(0, μ, ν)
, (114)

where N0 and N1 are defined as in Example 2.
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7. Conclusions

In the examples considered in the previous section, we have looked at the situation where there
is a single market factor XT , which is revealed at time T, and where the single cash flow occurring
at T depends on the outcome for XT . The value of a security St with that cash flow is determined by
the information available at time t. Given the Markov property of the extended information process
{ξt, γtT} it follows that there exists a function of three variables F : R× [0, 1]×R+ → R+ such that
St = F(ξt, γtT , t), and we have worked out this expression explicitly for a number of different cases,
given in Examples 1–4. The general valuation formula is presented in Theorem 4.

It should be evident that once we have specified the functional dependence of the resulting asset
prices on the extended information process, then we can back out values of the information process
and the gamma bridge from the price data. So in that sense the process {ξt, γtT} is “visible” in the
market, and can be inferred directly, at any time, from a suitable collection of prices. This means,
in particular, that given the prices of a certain minimal collection of assets in the market, we can then
work out the values of other assets in the market, such as derivatives. In the special case we have just
been discussing, there is only a single market factor; but one can see at once that the ideas involved
readily extend to the situation where there are multiple market factors and multiple cash flows, as one
expects for general securities analysis, following the principles laid out in Brody et al. (2007, 2008a),
where the merits and limitations of modelling in an information-based framework are discussed in
some detail.

The potential advantages of working with the variance-gamma information process, rather than
the highly tractable but more limited Brownian information process should be evident—these include
the additional parametric freedom in the model, with more flexibility in the distributions of returns,
but equally important, the scope for jumps. It comes as a pleasant surprise that the resulting formulae
are to a large extent analytically explicit, but this is on account of the remarkable properties of the
normalized variance-gamma bridge process that we have exploited in our constructions. Keep in
mind that in the limit as the parameter m goes to infinity our model reduces to that of the Brownian
bridge information-based model considered in Brody et al. (2007, 2008a), which in turn contains the
standard geometric Brownian motion model (and hence the Black-Scholes option pricing model) as a
special case. In the case of a single market factor XT , the distribution of the random variable XT can
be inferred by observing the current prices of derivatives for which the payoff is of the form

HT = erT1XT≤K, (115)

for K ∈ R. The information flow-rate parameter σ and the shape parameter m can then be inferred from
option prices. When multiple factors are involved, similar calibration methodologies are applicable.
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Poisson autoregression of the daily new observed cases, and can reveal whether contagion has a trend,
and where is each country on that trend. Model results are exemplified from some observed series.

Keywords: poisson autoregressive models; contagion; predictive monitoring

1. Motivation

The spread of the COVID-19 virus at the beginning of 2020 caught many countries and
governments by surprise and unveiled a widespread lack of pandemic preparedness at the global and
national level.

Currently, given the absence of a vaccine and the incomplete information about several aspects
of contagion, such as the role of different risk factors, the dynamics of transmission and the role
of asymptomatic transmission, governments operate under significant uncertainty. Against this
background, data from countries where the virus has initially spread (notably China) are a precious
source of information for the countries that are fighting against the virus. The more data becomes
available, the more policies can be formulated with the backing of evidence as regards the “curve” and
the “peak” of the contagion.

Early attempts to model the contagion curve of the COVID-19 include (Danon et al. 2020),
which predicted that the outbreak would peak 126 to 147 days (around 4 months) after the start
of person-to-person transmission in England and Wales, at a time in which the virus had been
found in just 25 countries; and (Kucharski et al. 2020), which combines a stochastic transmission
model with four datasets on cases of COVID-19 originated in Wuhan to estimate how transmission
varied over time, and calculate the probability that newly introduced cases might generate outbreaks
in other areas. In Imperial College COVID-19 Response Team (2020), researchers modified an
individual-based simulation model developed to support pandemic influenza planning to explore
scenarios for COVID-19 in Great Britain.

Particularly relevant studies for our work are Gu et al. (2020) and Giordano et al. (2020) which,
while mathematically expressing the current practices in the modelling on the global spread of diseases,
draw policy making suggestions. We follow the same line of research, combining mathematical rigour
with attention to drawing results that can be useful for policy makers. Specifically, our contribution
is a new statistical model for disease spread which, by taking dependence between daily contagion
counts into account, can better capture the contagion curve dynamics and, thus, can draw further light
on the understanding of its possible future path.

Our approach is connected to the exponential growth models employed in the SIR literature
(Biggerstaff et al. 2014), to which we contribute by including an autoregressive component in the
growth dynamics.
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2. Methodology

We aim to build a monitoring model which can provide support to policy makers engaged in
contrasting the spread of the COVID-19, and their economical consequences. To this aim, we propose a
statistical model that can estimate when the peak of contagion is reached, so that preventive measures
(such as mobility restrictions) can be applied and/or relaxed.

To be built the model requires, for each country (or region), the daily count of new infections. In the
study of epidemics, it is usually assumed that infection counts follow an exponential growth, driven by
the reproduction number R (see, e.g., Biggerstaff et al. 2014). The latter can be estimated by the ratio
between the new cases arising in consecutive days: a short-term dependence. This procedure, however,
may not be adequate: incubation time is quite variable among individuals and data occurrence and
measurement is not uniform across different countries (and, sometimes, along time): these aspects
induce a long-term dependence.

From the previous considerations, it follows that it would be ideal to model newly infected counts
as a function of both a short-term and a long-term component. A model of this kind has been recently
proposed by Agosto et al. (2016), in the context of financial contagion. We propose to adapt this model
to the COVID-19 contagion.

Formally, resorting to the log-linear version of Poisson autoregression, introduced by Fokianos
and Tjøstheim (2011), we assume that the statistical distribution of new cases at time (day) t, conditional
on the information up to t − 1, is Poisson, with a log-linear autoregressive intensity, as follows:

yt|Ft−1 ∼ Poisson(λt)

log(λt) = ω + α log(1 + yt−1) + β log(λt−1),

where Ft−1 denotes the σ-field generated by {y0, ..., yt}, yt ∈ N, ω ∈ R, α ∈ R, β ∈ R. Note that the
inclusion of log(1 + yt−1), rather than log(yt−1), allows to deal with zero values.

In the model, ω is the intercept term, whereas α and β express the dependence of the expected
number of new infections, λt, on the past counts of new infections. Specifically, the α component
represents the short-term dependence on the previous time point. The β component represents
a trend component, that is, the long-term dependence on all past values of the observed process.
The inclusion of the β component is analogous to moving from an ARCH (Engle 1982) to a GARCH
(Engle and Bollerslev 1986) model in Gaussian processes, and allows to capture long memory effects.
The advantage of a log-linear intensity specification, rather than the linear one known as integer-valued
GARCH (see, e.g., Ferland et al. 2006), is that it allows for negative dependence. From an inferential
viewpoint, Fokianos and Tjøstheim (2011) show that the model can be estimated by a maximum
likelihood method.

3. Results

The model can be applied to any country, region, and in different time periods. We exemplify
its usage, without loss of generality, using data available until 31 March 2020. The data source is the
daily World Health Organisation reports (see World Health Organisation 2020), from which we have
extracted the “Total confirmed new cases”. Figure 1 presents the observed evolution of the daily new
cases of infection: for China (starting from 20 January), Iran, South Korea and Italy (starting from
21 February). We choose to consider data until the end of March (Figure 1) and make predictions
for the beginning of April because at that time contagion counts in the analysed countries were still
high and predictions challenging. Being the count response variable a Poisson, its variance depends
on the number of observed counts, a number which has been declining in the considered countries,
from April onwards, when not before.
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Figure 1. Observed infection counts.

Figure 1 shows that, as of 31 March 2020, COVID-19 contagion in China has completed a full
cycle, with an upward trend, a peak, and a downward trend. South Korea seems to have had a
similar situation, with a smaller intensity. Italy has followed a similar path, with a larger intensity.
The contagion dynamics in Iran is more difficult to interpret, and is still quite erratic.

The application of our model can better qualify these conclusions. The estimated model parameters
for China, using all data available until 31 March, are shown in Table 1.

Table 1. Model estimates for China, with standard errors and p-values.

Parameter Estimate Std Error (p-Value)

ω 0.337 0.247 (0.177)
α 0.823 0.069 (0.000)
β 0.133 0.062 (0.016)

Table 1 shows that all estimated autoregressive coefficients are significant, confirming the
presence of both a short-term dependence and a long-term trend. From an interpretational viewpoint,
the estimate of α shows that, if the expectation of new cases for yesterday was close to 0, 100 new cases
observed yesterday generate about 40 new expected cases today. According to the value estimated for
β, an expectation of 100 new cases for yesterday generates instead about 2 new expected cases today,
if no cases were observed yesterday.

With the aim of better interpreting the time series of the other countries, which on 31 March
seem not to have completed their contagion cycle yet, we repeatedly fit the model to the Chinese data,
using increasing amounts of data, in a retrospective way. More precisely, we first fit the model on the
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first 15 counts from China (a minimal requirement for statistical consistency of the results), then on the
first 16, and so on. For each fit we plot the estimated α and β parameters in Figure 2.

Figure 2. Evolution of the α and β parameters for Chinese daily infection counts.

Figure 2 shows that, until February 11th (the 23rd day reported) β is greater than α, indicating
the presence of a still increasing trend (the β component) that absorbs the short-term component.
After that time, downward trend data is accumulated, β starts decreasing and α increasing. The results
approximate the values in Table 1 around 20 February: after this date the estimated parameters become
stable, as the difference between subsequent estimates becomes lower than 0.01.

What obtained from the Chinese data suggests to use the PAR model to assess at which stage
the contagion cycle is in the other countries. We thus estimate the model parameters for the other
three countries, using the data available until 31 March. Our results show that, for Iran, on that date
the α parameter prevails, with an estimated value equal to 0.96, indicating a process mainly driven
by a short-term dependence on the previous time points. However, further analyses reveal that the
parameters estimated for Iran are very unstable. The estimated β parameter for South Korea is not
significant, indicating absence of a trend effect on the daily counts, consistently with what observed
in Figure 1. For Italy, instead, α is about 0.51, higher than β 0.38, similarly to China but with a lower
difference between the two parameters, indicating that, at the end of March, the trend component
is weakening.

To conclude, we believe that our model can constitute a useful statistical tool for decision makers:
in each country, once a minimal series of data is collected (we suggest 15 days) the values of α and β

can be monitored along time, to reveal at which stage the contagion dynamics is: well beyond the peak
(as in China and South Korea); close to or right after the peak (as Italy on 31 March); or in a situation
that could indicate that the peak has been reached, but which needs more data to be understood
(as Iran at the end of March).
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The full reproducibility of our model can easily extend its application to more countries and time
periods as data becomes available.

To better understand the advantages of our proposed specification and, at the same time, to show
its possible improvement, we now compare it with two alternative models, one simpler and one
more complex.

The first one is a classic exponential growth model, that is a regression of the number of daily
new cases on the time, expressed as days since the outbreak:

log(yt) = κ0 + κ1t. (1)

The second alternative model we consider is a PARX model Agosto et al. (2016), that is a Poisson
autoregressive model with a covariate. As a covariate we use time: the number of days since the
outbreak, as in the classical exponential model. Thus, we extend the PAR model as follows:

log(λt) = ω + α log(1 + yt−1) + β log(λt−1) + γt,

We now apply the three models-estimated using data until the end of March - to make 10-day
ahead predictions of the daily new cases. The results obtained for South Korea, Iran and Italy are
shown in Figures 3–5.

Figure 3. Daily infection counts in South Korea: observed and predicted values.
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Figure 4. Daily infection counts in Iran: observed and predicted values.

Figure 5. Daily infection counts in Italy: observed and predicted values.
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Figures 3–5 all show the limits of the exponential model, which, being a “static” model, cannot
capture time variations in the contagion dynamics, differently from both the PAR and the PARX.
The latter, being dynamic models, can better adapt to disease count variations, without the need to
often adjust the estimates and find a saturation point, as it would be the case for the exponential model.

To compare the models in terms of out-of-sample predictive performance, in Table 2 we
report the value of Root Mean Squared Error (RMSE) and Mean Percentage error (MPE) for the
three specifications.

Table 2. Out-of-sample error measures.

South Korea Iran Italy

Model RMSE MPE RMSE MPE RMSE MPE

PAR 19.48 −31.04% 2426.2 −0.29% 551.79 −7.69%
PARX 14.18 −14.44% 6996.1 −49.33% 2633.4 59.63%
Exponential 47.28 −103.1% 8399.5 −156.30% 13,441 −269.17%

The results in Table 2 show that the PAR model always outperforms the other two,
except in the case of South Korea, for which the preferable specification turns out to be Poisson
autoregression including the time since outbreak as a covariate. This finding is consistent with what
observed in Figures 3–5 and confirms the superiority of Poisson autoregressive models over the
exponential growth model. This advantage explains the potential impact of our proposal, which is
successfully implemented and weekly updated in the infographic website of the Center for European
Policy Studies1.
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Abstract: The purpose of this paper is to analyze market reflexivity in agricultural futures contracts
with different maturities. To this end, we apply a four-dimensional Hawkes model to storable and
non-storable agricultural commodities. We find market reflexivity for both storable and non-storable
commodities. Reflexivity accounts for about 50 to 70% of the total trading activity. Differences between
nearby and deferred contracts are less pronounced for non-storable than for storable commodities.
We conclude that the co-existence of exogenous and endogenous price dynamics does not change
qualitative characteristics of the price discovery process that have been observed earlier without the
consideration of market reflexivity.

Keywords: agricultural commodity futures; price discovery; market reflexivity; Hawkes process

JEL Classification: G14; C49

1. Introduction

Prices of commodity futures contracts with different maturities are linked through the forward
curve. Understanding of the shape and the characteristics of the term structure is of utmost importance
for storage decisions, hedging and roll-over strategies as well as calendar spread trading. Several
strands of literature address this topic. The theoretical underpinning of the forward curve goes back
to Working’s (1949) theory of storage that establishes an equilibrium relation between nearby and
distant futures contracts and explains storage under backwardation by the concept of convenience
yield (Brennan 1958). In contrast, Keynes’ theory of normal backwardation decomposes a futures price
into an expected future spot price and an expected risk premium that risk-averse hedgers grant to
speculators (Fama and French 1987). The statistical modelling of the forward curve has benefitted from
Nelson and Siegel’s (1987) proposal to describe the term structure parsimoniously in terms of level,
slope and curvature. A dynamic version of this model has been introduced by Diebold and Li (2006).
Applications to commodity futures can be found in Karstanje et al. (2017). An alternative method uses
a set of state variables (factors), particularly spot price, convenience yield, and interest rate, to derive the
forward curve under no-arbitrage conditions (Gibson and Schwartz 1990; Schwartz 1997). Applications
of this approach to agricultural futures include Geman and Nguyen (2005) and Sorensen (2002),
among others.

With the rise of the modern market microstructure, interest has shifted from the estimation of
equilibrium relations towards the understanding of price discovery, i.e., the question of how new
information is absorbed in asset prices and how this information is transferred along the forward
curve. Since there is no explicit market microstructure theory designed for commodity futures with
different maturities, most studies in this area are non-structural and try to identify empirical patterns in
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data. Mallory et al. (2015) use contemporaneous and time-lagged correlations of nearby and deferred
futures contracts for corn to investigate the speed at which liquidity providers revise their beliefs in
response to the occurrence of an information event. They find that the correlation of price revisions
disappears even for short time lags and conclude that new information to the market is immediately
transmitted across all contract maturities. Hu et al. (2017) pursue a similar objective, but instead of
simple correlations, they apply co-integration techniques to explore price discovery among nearby
and deferred futures contracts of corn and live cattle. They report a larger share of price discovery in
nearer to maturity contracts. The dominance of nearer contracts, however, is less pronounced for live
cattle than for corn, which is explained by differences in the storability of these commodities. Recently,
Volkenand et al. (2019) investigate the duration dependence among agricultural futures with different
maturities, exploiting the fact that the time between market events (transactions or price changes)
carries information (Easley and O’Hara 1992). They apply an autoregressive conditional duration
(ACD) model to price durations for corn, wheat, live cattle, and lean hog. The authors report linkages
between nearby and deferred futures contracts. They conclude that information is quickly processed
along the forward curve.

The aforementioned studies rest on a traditional view of the price discovery mechanism according
to which price revisions are driven by the arrival of exogenous information. This view has been
challenged by the concept of market reflexivity (Soros 1987) which assumes that trading activity
is also endogenously driven by positive feedback mechanisms. Sources of potential endogeneity
encompass informational cascades leading to herding, as well as speculation based on technical
analysis (e.g., momentum trading) and algorithmic trading (Filimonov et al. 2014). Furthermore,
hedging strategies combined with portfolio execution rules can lead to self-excitement of price moves
(Kyle and Obizhaev 2019). While this co-existence of exogenous and endogenous price dynamics
contradicts the efficient market hypothesis (Fama 1970), it can be helpful to understand puzzling
phenomena on financial markets, such as “flash crashes” or excess volatility (Hardiman et al. 2013).
The concept of market reflexivity has originally been introduced in a narrative, non-technical manner,
but since then it experienced an underpinning by statistical methods that allow one to disentangle
exogenous and endogenous sources of market activities and thus measure the degree of market
reflexivity. More specifically, self-exiting Hawkes processes have been proposed as a device to quantify
reflexivity (e.g., Filimonov and Sornette 2012). Bacry et al. (2016), for example, find that less than 5%
of the price changes in the DAX (German stock index) and BUND (German Bond) futures markets
are driven by external sources. In the context of commodity futures markets, Filimonov et al. (2014)
find that reflexivity has increased since the mid-2000s to 70%. They trace this back to the increase
in automated trading in the course of the transition to an electronic trading environment. In fact,
automated trading generated about 40% of the total futures volume traded in the grain and oilseed
markets between 2012 and 2014 (Haynes and Roberts 2015).

Despite the increasing interest in market reflexivity as an alternative to the prevalent tenet of
market efficiency and rational expectations, there exists no empirical study applying this concept
to the forward curve of commodities. Against this backdrop, our objective is to examine price
discovery in nearby and deferred agricultural futures contracts while explicitly taking into account
potential market reflexivity. We apply a four-dimensional Hawkes model to storable and non-storable
agricultural commodities. The Hawkes model allows us to divide the intensity of the trading activity
in a futures contract with a certain maturity into three parts: a reaction on external sources like new
information, market reflexivity, and reactions on trading activity in contracts of different maturities.
Using this approach, we review previous findings regarding price discovery in nearby and deferred
futures contracts. In particular, we examine whether nearby contracts dominate deferred contracts
in price discovery while accounting for potential market reflexivity (e.g., Gray and Rutledge 1971).
We also explore whether price discovery and potential market reflexivity differ between storable
and non-storable commodities. In line with Hu et al. (2017), we expect that dominance of nearby
contracts in price discovery is more pronounced for storable commodities. Moreover, we conjecture
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that commodities with a high share of automated trading, such as grains and oilseeds, show a higher
level of endogeneity. Since market microstructure theory emphasizes the importance of the direction
of the transactions in the price discovery process (cf. Glosten and Milgrom 1985), we differentiate
between buyer- and seller-initiated transactions in our analyses.

The remainder of the paper is organized as follows: Section 2 explains the statistical methods
used in the analyses. Section 3 presents the dataset and the results of the empirical application and
Section 4 concludes.

2. Methodology

The price discovery process has been mainly examined using two measures: The Hasbrouck
information share (Hasbrouck 1995) and the Harris–McInish–Wood component share (Harris et al. 2002).
Both measures are derived from a reduced form vector error correction model that is estimated based
on equidistant time intervals. However, Easley and O’Hara (1992) show that liquidity providers
also consider the time between market events within the price setting process. Since the timing
of transactions and the frequency in which they occur have information value of their own,
fixed-interval aggregation schemes lead to a loss of information (cf. Bauwens and Hautsch 2007).
Taking into account the irregular occurrence of transactions requires one to consider the data as a
point process. The simplest type of point process is the homogeneous Poisson process. Since the
homogeneous Poisson process assumes independently distributed events, it is not suited to
describe well-known structures such as correlations and clustering of transactions. The ACD model
(Engle and Russell 1998), in contrast, accounts for correlation structures in the data and can be used to
model the time between transactions. However, in a multivariate framework, the asynchronous arrival
of transactions renders the application of the ACD model difficult and dynamic intensity models are
preferable. In autoregressive conditional intensity (ACI) models (Russell 1999), the intensity is directly
modeled in terms of an autoregressive process. On the other hand, Hawkes processes (Hawkes 1971)
describe the intensity in terms of an additive structure and can be regarded as clusters of Poisson
processes. According to this view, all events belong to one of two classes—immigrants and descendants.
The exogenous immigrants can trigger clusters of descendants, each of whom in turn can trigger own
descendants. In this branching process, the so-called branching ratio is defined as the average number
of daughter events per mother event. Hautsch (2004), Bowsher (2007), and Large (2007) confirm that
Hawkes processes model the dynamics in financial point processes remarkably well. Since the linear
structure of the Hawkes model allows one to separate external influences on the process from internal
feedback mechanisms, it is well suited to examine price discovery and potential market reflexivity.
Technically speaking, Hawkes processes refer to a class of models for stochastic self-exciting and
mutually exciting point processes (Hawkes 1971). These can be regarded as non-homogeneous Poisson
processes whose intensity depends on both time t and the history of the process. The intensity function
λi(t) of a Hawkes process is defined as:

λi(t) = μi +
D∑

j=1

∑
tj
k<t

φi j
(
t− tj

k

)
,∀i, j ∈ [1 . . .D] (1)

where D is the number of dimensions in the process. The non-negative parameter μ is the baseline
intensity and commonly assumed to be constant. The baseline intensity describes the arrival rate of
events triggered by external sources. In our analysis, we use μ to examine how futures contracts of
different maturities react to new information. The non-negative kernel function, φ, describes the arrival
rate of events that are triggered by previous events within the process. Various kernel functions can be
found in the literature. The most widely used are power-law and exponential parameterizations of the
kernel function. In our analysis, we follow Bacry et al. (2017) and choose the following exponential
parametrization of the kernel functions:

||φ ||i j(t) = αi jβi jexp
(
−βi jt

)
1t>0 (2)
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where α and β > 0. In this parametrization, α describes the degree of influence of past points on the
intensity process and β determines the time decay of the influence of past points on the intensity
process. From the chosen parametrization, it follows∫ ∞

0
φ(t)dt = α = ||φ ||1 (3)

where ||φ ||1 is a matrix of kernel norms. Each matrix element describes the total impact that events of
the type defined by a column of the matrix has on events of the type defined by a row of the matrix.
According to the population representation of a Hawkes process (Hawkes and Oakes 1974), the process
is considered stable if ||φ ||1 < 1. For a stable Hawkes process, a kernel norm ||φii||1 stands for the
average number of events of type i that is directly triggered by a past event of the same type i. In our
analysis, we use ||φii||1 to measure market reflexivity in futures contracts with different maturities.
On the other hand, a kernel norm ||φi j||1 with i � j stands for the average number of events of type i that
is directly triggered by an event of a different type j. We use ||φi j||1 to measure price discovery between
futures contracts with different maturities. Furthermore, following Bacry et al. (2016), the ratio between
the baseline intensity μi and the average intensity γi describes an exogeneity ratio, i.e., the ratio between
the number of events that is triggered by external sources and the total number of events of type i:

Ri =
μi

γi
(4)

where the average intensities can be derived by

γ = (I − ||φ ||1)−1μ (5)

with I as the identity matrix.
Various methods to estimate Hawkes processes have been proposed in the literature. Estimation

procedures include maximum likelihood estimation (Ogata 1998) and the resolution of a Wiener–Hopf
system (Bacry et al. 2016). In our analysis, we follow Bacry et al. (2017) and estimate the Hawkes
process with least-squares. To assess the goodness-of-fit of the estimated Hawkes model, we carry
out a residual analysis according to Ogata (1989). Ogata’s residual analysis of point process data is
based on the random time change theorem by Meyer (1971). The random time change theorem states
that a point process is transformed into a homogeneous Poisson process by its compensator Λ(t). The
compensator is determined by the Doob–Meyer decomposition of a point process and is described by
the following monotonically increasing function:

Λ(t) =
∫ t

0
λ(t)dt. (6)

In accordance with Ogata (1989), we use the compensator with the conditional intensity λ̂ of
the estimated Hawkes model to transform the observed data and regard the resulting process as a
residual process. In line with the random time change theorem, if the residual process behaves like
a homogeneous Poisson process, then the conditional intensity λ̂ of the estimated Hawkes model is
a good approximation to the true intensity λ of the observed point process. To check whether the
residual process behaves similar to a homogeneous Poisson process, we apply Kolmogorov–Smirnov
and Ljung–Box tests. On the one hand, the Kolmogorov–Smirnov test examines the null hypothesis
that the distribution of the residuals is a homogeneous Poisson distribution. On the other hand,
the Ljung–Box test examines the null hypothesis that the residuals are independently distributed. If
the null hypothesis of both the Kolmogorov–Smirnov test and the Ljung–Box test cannot be rejected at
the 5% significance level, we conclude that the estimated Hawkes process is a good approximation of
the observed point process.
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3. Empirical Application

3.1. Data

Empirical analyses of market reflexivity can be conducted for different time horizons. Long term
analyses are useful if the development of endogeneity and its determinants over time are of interest.
Long-term reflexivity is expected to be caused mainly by herding. In this paper, however, we focus on
the analysis of short-term reflexivity. Short-term reflexivity is expected to be caused by algorithmic
trading (Filimonov et al. 2014) that is supposed to distort the price discovery process in electronic
commodity futures markets (cf. Tang and Xiong 2012; Bicchetti and Maystre 2013). For our analysis
we utilize the Chicago Mercantile Exchange (CME) Group’s best-bid–best-offer (BBO) futures data.
We focus on corn, wheat, live cattle and lean hog. These commodities represent the most actively
traded storable and non-storable agricultural futures contracts, respectively. The analysis is based on
futures contracts of the first two maturities, i.e., the nearest (front contract) and the next to nearest (back
contract).1 We confine our analysis to the daytime trading session because the trading activity is much
higher compared to the evening trading session. At the beginning of the daytime trading session, orders
that have accumulated in the previous night are processed (cf. Gurgul and Syrek 2017), which can lead
to a distorted picture of the price discovery process. Therefore, we exclude the first hour of the daytime
trading session. Furthermore, to ensure stationarity of the parameters of the estimated Hawkes process,
we follow Filimonov et al. (2014) and base our estimations on intervals of 10 min. Intervals of 10 min
are considered to contain a sufficient number of events for reliable estimation. It can be assumed that in
short intervals of 10 min, market reflexivity is not caused by behavioral mechanisms, such as herding,
but instead is mainly caused by automated trading. The observation period covers all trading days in
March 2016, which corresponds to 528 intervals of 10 min. March has been chosen as the observation
period, because we want to exclude a rollover of contracts and the effect of a new harvest. On the other
hand, we are interested in the effect of a release of three public reports on the short-term reflexivity:
a World Agricultural Supply and Demand Estimates (WASDE) report on world agricultural supply
and demand estimations, the United States Department of Agriculture (USDA) report on prospective
plantings, and a National Agricultural Statistics Service (NASS) report on grain stocks. BBO data
contain top-of-book quotes, transactions, and corresponding time stamps with a resolution of one
second. In line with the above-mentioned market microstructure models, we regard the trading activity
as the starting point of the price formation process and base our analyses on transactions. However,
many transactions share the same time stamp. Therefore, to take all transactions into account, we follow
Wang et al. (2016) and simulate sub-second time stamps. In addition, BBO data do not include the
direction of transactions. Therefore, to distinguish between buyer- and seller-initiated transactions,
we apply the trade classification algorithm proposed by Lee and Ready (1991). To summarize,
we analyze a four-dimensional point process whose dimensions are buyer- and seller-initiated
transactions in a futures front and back contract for corn, wheat, live cattle and lean hog.

3.2. Descriptive Statistics

Table 1 contains descriptive statistics for the considered commodities. The total number of buyer-
and seller-initiated transactions is considerably higher in the front contract than in the back contract for
corn and wheat. In contrast, the total number of transactions is similar in the front and back contract
for live cattle and lean hog. The number of seller-initiated transactions is higher than the number of
buyer-initiated transactions in both the front and back contract for corn. In contrast, the number of
seller-initiated transactions is lower than the number of buyer-initiated transactions in both the front

1 An inclusion of further contracts with longer maturities would be desirable to obtain a clearer picture of price discovery
along the entire term structure curve. However, this comes at the cost of increasing the dimension of the Hawkes model.
Moreover, the number of transactions becomes rather small for futures contracts with longer maturity, which renders the
estimation unreliable.
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and back contract for live cattle. The coefficients of variation show that the number of transactions
varies more widely over the intervals for storable than for non-storable commodities.

Table 1. Descriptive statistics.

Variable

Commodity Corn Wheat

Contract Front Back Front Back

Type Buy Sell Buy Sell Buy Sell Buy Sell

Number of
Transactions

Total 102,778 105,822 30,607 31,762 80,038 77,586 22,873 23,273
Min. 14 34 1 4 12 11 1 1
Mean 194.655 200.420 58.078 60.155 145.524 141.065 41.815 42.469
Max. 2127 2519 946 889 1237 1392 349 277

Std Dev 177.603 191.665 67.799 66.629 129.876 127.539 37.675 36.888
CV 1.096 1.046 0.857 0.903 1.120 1.106 1.110 1.151

Volume
(number of
contracts)

Min. 149 110 4 12 50 84 8 4
Mean 1991 2083 402 434 781 763 180 175
Max. 22,131 29,561 5926 7546 6771 6,206 2127 1468

Std Dev 2009 2467 516 596 775 714 197 174
CV 1.009 1.185 1.284 1.372 0.993 0.937 1.099 0.995

Mid-quotes
(cents per

bushel)

Min. 348 352 446 453
Mean 364 369 466 472
Max. 373 377 479 486

Std Dev 5.683 5.594 8.199 8.341
CV 0.016 0.015 0.018 0.018

Variable

Commodity Live Cattle Lean Hog

Contract Front Back Front Back

Type Buy Sell Buy Sell Buy Sell Buy Sell

Number of
Transactions

Total 35,801 35,474 36,426 35,025 25,077 26,892 25,160 23,845
Min. 1 1 1 1 1 1 1 1
Mean 70.061 69.285 71.424 68.811 49.364 52.833 49.237 46.755
Max. 426 373 532 584 371 371 261 328

Std Dev 52.744 50.727 52.819 54.116 44.705 43.991 36.408 34.376
CV 1.328 1.366 1.352 1.272 1.104 1.201 1.352 1.360

Volume
(number of
contracts)

Min. 2 2 2 2 0 0 0 0
Mean 248 249 237 232 171 179 152 142
Max. 2532 1512 1962 2416 1586 1661 106 1343

Std Dev 225 210 209 214 181 179 135 128
CV 0.905 0.842 0.882 0.922 1.058 1.003 0.883 0.898

Mid-quotes
(cents per

pound)

Min. 131 123 68 80
Mean 137 127 70 82
Max. 142 131 73 84

Std Dev 2.553 2.131 0.937 1.040
CV 0.019 0.017 0.013 0.013

The trading volume is much higher for storable than for non-storable commodities. Moreover,
the trading volume is significantly higher in the front contract than in the back contract for corn and for
wheat. In contrast, the trading volume is similar in both the front and back contract for live cattle and
lean hog. Furthermore, the imbalance between the buy-and-sell volume is larger for corn and wheat
than for live cattle and lean hog. A high coefficient of variation indicates that the trading volume varies
considerably over the intervals. The coefficient of variation is highest for corn.

To avoid bid–ask bounce effects, our descriptive statistics are based on mid-quotes rather than
transaction prices. The mid-quotes are higher in the back contract than in the front contract for corn,
wheat, and lean hog. This points to a normal forward curve during the observation period. In contrast,
mid-quotes are higher in the front contract than in the back contract for live cattle. This points to an
inverted forward curve during the observation period. The standard deviation of the mid-quotes is
higher for storable than for non-storable commodities. However, low coefficients of variation for all
commodities indicate that prices exhibit little volatility during the observation period.
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3.3. Results

Table 2 shows the estimated baseline intensities μ, the derived average intensities γ, and exogeneity
ratios R. All figures for μ, γ, and R are mean values over 528 intervals of 10 min. As a robustness check,
we conducted additional calculations with a different time interval length (30 min) for corn and lean
hog (see Tables A1 and A2, Figure A1 in the Appendix A). The qualitative findings are similar and,
thus, we focus on the discussion of the results of the 10-min intervals in what follows.

Table 2. Estimated baseline intensities, average intensities, and exogeneity ratios.

Contract Front Back Front Back

Transaction Buy Sell Buy Sell Buy Sell Buy Sell

Commodity Corn Wheat

Baseline intensity 0.194 0.193 0.061 0.062 0.15 0.149 0.046 0.048
Average intensity 0.327 0.337 0.097 0.101 0.25 0.241 0.071 0.072
Exogeneity ratio 0.636 0.629 0.663 0.67 0.654 0.657 0.704 0.726

Commodity Live cattle Lean Hog

Baseline intensity 0.077 0.078 0.083 0.081 0.058 0.063 0.061 0.059
Average intensity 0.119 0.117 0.121 0.117 0.085 0.09 0.085 0.08
Exogeneity ratio 0.701 0.699 0.714 0.733 0.743 0.741 0.76 0.772

Commodity Corn Wheat

Baseline intensity 0.194 0.193 0.061 0.062 0.150 0.149 0.046 0.048
Average intensity 0.327 0.337 0.097 0.101 0.250 0.241 0.071 0.072
Exogeneity ratio 0.636 0.629 0.663 0.670 0.654 0.657 0.704 0.726

Commodity Live cattle Lean Hog

Baseline intensity 0.077 0.078 0.083 0.081 0.058 0.063 0.061 0.059
Average intensity 0.119 0.117 0.121 0.117 0.085 0.090 0.085 0.080
Exogeneity ratio 0.701 0.699 0.714 0.733 0.743 0.741 0.760 0.772

The baseline intensity μ is by far the highest for the front contract of corn. This means that in
absolute terms, the number of transactions that is triggered by external sources is highest for the front
contract of corn. In addition, μ is of similar size for buyer- and seller-initiated transactions in a contract
of a certain maturity for all commodities. It is striking that μ is noticeably larger in the front contract
than in the back contract for corn and wheat. In contrast, μ is of similar size in the front contract and
back contract for live cattle and lean hog. This suggests that price discovery takes place in the front
contract for storable commodities, but not for non-storable commodities. These estimation results
for the baseline intensity μ are therefore in line with Working (1949) and Gray and Rutledge (1971).
Compared to the baseline intensity, the derived average intensity γ is higher for all examined contracts.
Similar to the baseline intensity, γ is considerably larger in the front contract than in the back contract
for corn and wheat. In contrast, γ is of similar size in the front and back contract for live cattle and
lean hog. The derived exogeneity ratio R is higher for non-storable than for storable commodities.
About 75% (65%) of all observed transactions in the lean hog (corn) futures are triggered by external
sources. The results also find that R is of similar size for buyer- and seller-initiated transactions
in a commodity futures contract of a certain maturity. Moreover, R is slightly higher in the back
contract than in the front contract for all commodities. Apparently, the derived exogeneity ratio is
considerably higher for the examined agricultural futures contracts than for the DAX and BUND
futures contracts examined by Bacry et al. (2016). Moreover, the derived exogeneity ratios are higher
than the corresponding figures in Filimonov et al. (2014).

Figure 1 presents the estimated matrices of kernel norms ||φ ||1. Each kernel norm describes the
total impact that transactions of a certain contract type have on transactions of the same or on other
contracts. Figure 1 has to be interpreted column-wise. A darker background color of a kernel norm
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illustrates a larger impact than a lighter color. A kernel norm ||φ ii||1 on the diagonals of the matrices
describes the impact that transactions of a certain type have on transactions of the same type. A kernel
norm ||φi j||1 on the off-diagonals of the matrices describes the impact that transactions of a certain
type have on transactions of a different type. In general, the kernel norm values are higher for storable
than for non-storable commodities. According to the population representation of the Hawkes process,
each buyer-initiated (seller-initiated) transaction directly triggers 0.3102 buyer-initiated transactions
(0.3147 seller-initiated) on average in the front contract for corn. The respective values for other
commodities are slightly smaller. Apparently, the kernel norm values on the diagonals of the matrix
are considerably higher compared to those on the off-diagonals for all commodities. This indicates that
a substantial part of the observed transactions is endogenously driven and points to the presence of
market reflexivity for all commodities. In addition, the kernel norm values on the diagonals of the
matrix are higher in the front contract than in the back contract for corn and wheat. In contrast, the
kernel norm values on the diagonals are of similar size in the front and back contract for live cattle and
lean hog. As expected, the estimation results for the matrices of kernel norms ||φ ||1 show that differences
between front and back contracts are less pronounced for non-storable than for storable commodities.

Corn 
Front Back  

Wheat 
Front Back 

Buy Sell Buy Sell  Buy Sell Buy Sell 

Front 

Buy 0.3102 0.0315 0.0128 0.0100  

Front 

Buy 0.2868 0.0288 0.0152 0.0106 

Sell 0.0284 0.3147 0.0094 0.0138  Sell 0.0344 0.2828 0.0091 0.0136 

Back 

Buy 0.0531 0.0375 0.2434 0.0252  

Back 

Buy 0.0570 0.0389 0.1946 0.0206 

Sell 0.0363 0.0596 0.0186 0.2301  Sell 0.0421 0.0634 0.0228 0.1787 

Live 
cattle 

Front Back  
Lean hog 

Front Back 
Buy Sell Buy Sell  Buy Sell Buy Sell 

Front 

Buy 0.2132 0.0170 0.0488 0.0184  

Front 

Buy 0.1925 0.0179 0.0377 0.0172 

Sell 0.0197 0.2490 0.0136 0.0236  Sell 0.0163 0.2012 0.0191 0.0272 

Back 

Buy 0.0675 0.0181 0.2046 0.0169  

Back 

Buy 0.0359 0.0188 0.1718 0.0199 

Sell 0.0186 0.0269 0.0165 0.2137  Sell 0.0161 0.0405 0.0156 0.1611 

Figure 1. Estimated matrices of kernel norms.

The kernel norms on the off-diagonals show that in the cases of corn and wheat, the impact
of front contracts on back contracts is larger than vice versa. This relationship, however, is not
prevalent for live cattle and lean hog. Thus, our results are in line with Hu et al. (2017), who show
that nearby futures contracts dominate deferred futures contracts in price discovery for storable
commodities, but not for non-storable commodities. No differences can be identified between buyer-
and seller-initiated transactions.
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Table 3 contains the results of the residual analyses of the estimated Hawkes processes. For more
than about 80% of the 10-min intervals, the Kolmogorov–Smirnov test does not reject the null hypothesis
that the distribution of the residuals is homogeneous Poisson at the 5% significance level for the
considered commodities. Except for the front contracts of corn and wheat, for more than approximately
90% of the 10-min intervals, the Ljung–Box test does not reject the null hypothesis that the residuals are
independently distributed at the 5% significance level. We can therefore conclude that the estimated
Hawkes process with the chosen parameterization of the kernel function is a good approximation of
the observed point process.

Table 3. Residual analyses.

Contract Front Back Front Back

Transaction Buy Sell Buy Sell Buy Sell Buy Sell

Commodity Corn Wheat

Kolmogorov–Smirnov 0.84 0.84 0.88 0.89 0.87 0.83 0.89 0.89
Ljung–Box 0.64 0.67 0.94 0.92 0.78 0.80 0.94 0.94

Commodity Live cattle Lean Hog

Kolmogorov–Smirnov 0.91 0.87 0.91 0.88 0.93 0.93 0.91 0.90
Ljung–Box 0.92 0.91 0.91 0.91 0.94 0.93 0.93 0.93

Figure 2 displays the evolution of the average intensity γ over the whole observation period.
The figure is based on daily mean values of the average intensity. In general, the evolution of γ for the
front contract is similar to the evolution of γ for the back contract for all commodities. In particular, γ
is higher for the front contract than for the back contract throughout the whole observation period
for corn and wheat. In contrast, for live cattle and lean hog, γ is higher for the front contract than
for the back contract in the first half of the observation period only. In addition, the evolution of the
average intensity of buyer-initiated transactions is similar to the evolution of the average intensity of
seller-initiated transactions in a contract of a certain maturity for all commodities.

In general, the average intensity shows a relatively constant progression for all commodities;
however, γ increases around certain days where public information became available. For instance,
the average intensity increases for all commodities on 9 March 2016 when the USDA released its
monthly WASDE report (USDA 2016b). Furthermore, γ increases for live cattle on 22 March 2016
following a USDA cattle on feed report (USDA 2016c). Most notably, γ increases considerably towards
the end of the observation period for corn and wheat on 31 March 2016. On this day (11:00 a.m.),
the USDA reported an unexpected increase in the corn acreage (USDA 2016a). On the same day, the
USDA published its quarterly grain stocks reports (USDA 2016d). This may explain why the increase in
average intensities is rather pronounced at that time. Overall, Figure 2 documents that the publication
of USDA reports affects not only volatility and trading volume, but also the intensity of trading activity.
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Figure 2. Evolution of average intensities (y-axis) in both buy and sell transactions for corn, wheat, live
cattle, and lean hog in March 2016.

Figure 3 depicts the evolution of the baseline intensity μ on 31 March 2016 for corn. The figure
is based on 24 intervals of 10 min. The baseline intensity μ increases considerably at the time of
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the publication of the USDA report for transactions in both the front and back contract. Moreover,
the evolution of μ for seller-initiated transactions is similar to the evolution of μ for buyer-initiated
transactions at the time of the publication of the USDA report for the front contract. In contrast, for
the back contract, the evolution of μ for seller-initiated transactions differs from the evolution of μ for
buyer-initiated transactions at the time of the publication of the USDA report.
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Figure 3. Evolution of the baseline intensity (y-axis) for corn on 31 March 2016.

The evolution of the baseline intensity for corn on 31 March 2016 suggests that new information is
quickly incorporated into market prices through trading activity. Moreover, it is becoming clearer that
new information does not only affect nearby futures contracts, but also affects deferred futures contracts.

Figure 4 presents the estimated matrix of kernel norms ||φ ||1 for corn on 31 March 2016. The figures
are mean values over 24 intervals of 10 min.

Corn Front Back 
(March 31, 2016) Buy Sell Buy Sell 

Front 

Buy 0.3770 0.0290 0.0170 0.0130 

Sell 0.0360 0.4380 0.0120 0.0290 

Back 

Buy 0.0370 0.0420 0.2660 0.0260 

Sell 0.0120 0.1090 0.0200 0.2990 

Figure 4. Estimated matrix of kernel norms for corn on 31 March 2016.

Compared to the whole observation period, the kernel norm values ||φii||1 on the diagonal of
the matrix are considerably higher for corn on 31 March 2016. This indicates an increase in market
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reflexivity on the publication day of the USDA report. Moreover, compared to the whole observation
period, the kernel norm values ||φi j||1 on the off-diagonal of the matrix are higher for the back contract
for corn on 31 March 2016. This indicates an increase in the impact that transactions in the back contract
have on transactions in both the front and back contract on the publication day of the USDA report.

To gain an overall picture of the price formation process in agricultural futures contracts with
different maturities, Figure 5 illustrates the composition of the estimated intensity of the trading activity
in both the front and back contract exemplarily for corn and live cattle. The figure is based on mean
values of 528 intervals of 10 min. It shows the relative contribution of the estimated baseline intensity
μi and the kernel norms ||φii||1 and ||φi j||1 to the total intensity λ̂i.

 

Figure 5. Composition of the estimated intensity for corn and live cattle.

The relative contribution of the baseline intensity μi to the total intensity λ̂i is largest for the
front contract of corn. It amounts to approximately 30%. This means that external sources, such as
new information, account for approximately 30% of the total intensity of both buyer-initiated and
seller-initiated transactions for the front contract of corn. Moreover, the relative contribution of μi
is noticeably larger in the front contract than in the back contract for corn. In contrast, the relative
contribution of μi is of similar size in the front and back contract for live cattle. Therefore, in line with
Working Working (1949) and Gray and Rutledge (1971), the composition of the estimated intensity
suggests that nearby futures contracts dominate deferred futures contracts in price discovery for
storable commodities, but not for non-storable commodities.

Compared to the relative contribution of μi, the relative contribution of the kernel norms ||φii||1 to
the total intensity is considerably larger. More specifically, the relative contribution of ||φii||1 to the total
intensity is largest for the back contract of corn. It amounts to roughly 70%, which means that market
reflexivity accounts for about 70% of the total intensity of both buyer-initiated and seller-initiated
transactions for the back contract of corn. Moreover, the relative contribution of ||φii||1 is clearly larger
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in the back contract than in the front contract for corn. In contrast, the relative contribution of ||φii||1 is
of similar size in the front and back contract for live cattle.

As expected, the composition of the estimated intensity shows that differences between front
and back contracts in the degree of market reflexivity are less pronounced for live cattle than for corn.
Compared to the relative contribution of ||φii||1 , the relative contribution of the kernel norms ||φi j||1
to the total intensity is considerably smaller. More specifically, the relative contribution of ||φi j||1 to
the total intensity is higher for live cattle than for corn. It is shown that buyer-initiated transactions
in the back contract account for almost 20% of the total intensity of buyer-initiated transactions in
the front contract for live cattle. On the other hand, buyer-initiated transactions in the back contract
account for approximately 10% of the total intensity of buyer-initiated transactions in the front contract
for corn. Therefore, in line with Kendall (1982), the composition of the estimated intensity suggests
that interdependencies of current and subsequent supply might link futures contracts of different
maturities to non-storable commodities.

4. Conclusions

This paper is the first to examine price discovery in nearby and deferred agricultural commodities
futures contracts while explicitly considering potential market reflexivity. For this purpose, we apply
a four-dimensional Hawkes model with an exponential parametrization of the kernel functions to
storable and non-storable agricultural commodities. We find market reflexivity for both storable
and non-storable commodities. Reflexivity accounts for about 50 to 70% of the total trading activity,
irrespective of whether transactions have been buyer- or seller-initiated. Storable commodities show a
higher level of reflexivity than non-storable commodities and differences between nearby and deferred
contracts are less pronounced for non-storable commodities than for storable ones. We conjecture
that the degree of reflexivity is related to the trading intensity and the amount of automated trading.
Endogeneity results from backward-looking trading strategies, which exploit information from previous
trading activities. Most likely, this source of endogeneity is more prevalent in liquid markets than
in thin markets. Storable commodities are more frequently traded compared with non-storable
commodities, but this holds only for the front contract (c.f. Table 1). Moreover, grains show a higher
share of automated trading than livestock contracts (e.g., Haynes and Roberts 2015; Couleau et al. 2019).
It appears that these differences are reflected in the endogeneity of the price formation process.

What are the implications of these findings for the price discovery process in agricultural
commodity futures? The presence of market reflexivity seems to contradict the efficient market
hypothesis, and Filimonov et al. (2014) argue that reflexivity is likely to result in a less efficient price
discovery process. Though our analysis does not allow an evaluation of the presence of reflexivity,
we can at least compare our results with previous empirical findings on price discovery in agricultural
commodity futures markets and screen them for irregularities. Regarding the relation between nearby
and deferred futures contracts, our results are in line with Mallory et al. (2015), who find that new
information to the market is immediately transmitted across all contract maturities. Moreover, we can
replicate the finding of Hu et al. (2017) that nearby contracts are dominant in price discovery for storable
commodities, but not for non-storable commodities. Finally, we observe an increased baseline intensity
at the time of a USDA publication, suggesting that external information is quickly incorporated into
market prices through trading activity despite the presence of market reflexivity. From these findings,
we conclude that the co-existence of exogenous and endogenous price dynamics does not change
qualitative characteristics of the price discovery process that have been observed earlier without the
consideration of market reflexivity.

Some aspects could be incorporated in further empirical analyses to obtain a clearer picture about
price discovery in agricultural commodity futures in the presence of market reflexivity. The empirical
basis could be broadened by including additional commodities. Moreover, price discovery and market
reflexivity should be examined over a longer observation period covering, for example, markets in
normal backwardation and in contango. From a methodological point of view, the Hawkes model
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can be extended and amended in several ways. Covariates such as order imbalances between buyer-
and seller-initiated transactions can be included into the intensity function. Other parameterizations
of the kernel function such as power-law parameterizations or other estimation methods such as
non-parametric estimation techniques can be applied to check the robustness of the results. Finally,
methods allowing the assessment of the direct impact of market reflexivity on the price formation
process need to be explored.

Author Contributions: Conceptualization, S.V., G.F. and M.O.; data curation, S.V. and G.F.; formal analysis, S.V.;
methodology, S.V. and G.F.; software, S.V.; supervision, M.O.; validation, S.V. and G.F.; visualization, S.V. and G.F.;
writing—original draft, S.V., G.F. and M.O.; writing—review and editing, S.V., G.F. and M.O. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: We thank three anonymous reviewers for helpful comments and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Estimated baseline intensities, average intensities, and exogeneity ratios (corn, lean hog) for
a 30-min interval.

Contract Front Back Front Back

Transaction Buy Sell Buy Sell Buy Sell Buy Sell

Commodity Corn (30-min interval) Lean Hog (30-min interval)

Baseline intensity 0.164 0.163 0.054 0.056 0.052 0.058 0.054 0.052
Average intensity 0.303 0.312 0.089 0.093 0.087 0.091 0.087 0.082
Exogeneity ratio 0.567 0.565 0.643 0.638 0.669 0.681 0.683 0.697

Table A2. Residual analyses (corn, lean hog) for a 30-min interval.

Contract Front Back Front Back

Transaction Buy Sell Buy Sell Buy Sell Buy Sell

Commodity Corn (30-min interval) Lean Hog (30-min interval)

Kolmogorov–Smirnov 0.460 0.465 0.758 0.757 0.830 0.800 0.794 0.790
Ljung–Box 0.373 0.374 0.791 0.770 0.807 0.785 0.829 0.860

Corn 
30 min 

Front Back  Lean Hog 
30 min 

Front Back 

Buy Sell Buy Sell  Buy Sell Buy Sell 

Front 
Buy 0.3696 0.0403 0.0103 0.0079 

 Front 
Buy 0.2294 0.0210 0.0520 0.0274 

Sell 0.0369 0.3727 0.0082 0.0126 
 

Sell 0.0188 0.2331 0.0241 0.0486 

Back 
Buy 0.0585 0.0434 0.2766 0.0275 

 Back 
Buy 0.0552 0.0287 0.2183 0.0216 

Sell 0.0315 0.0570 0.0152 0.2747 
 

Sell 0.0252 0.0488 0.0247 0.1951 

Figure A1. Estimated matrices of kernel norms (corn, lean hogs) for a 30-min interval.
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Abstract: This paper investigates dynamic correlations of stock–bond returns for different stock
indices and bond maturities. Evidence in the US shows that stock–bond relations are time-varying
and display a negative trend. The stock–bond correlations are negatively correlated with implied
volatilities in stock and bond markets. Tests show that stock–bond relations are positively correlated
with economic policy uncertainty, however, are negatively correlated with the monetary policy and
fiscal policy uncertainties. Correlation coefficients between stock and bond returns are positively
related to total policy uncertainty for returns of the Dow-Jones Industrial Average (DJIA) and the
S&P 500 Value stock index (VALUE), but negatively correlated with returns of S&P500 (Total market),
the NASDAQ Composite Index (NASDAQ), and the RUSSELL 2000 (RUSSELL).
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1. Introduction

The investigation on correlations of stock and bond returns has long been a key concern of
portfolio managers and financial market strategists (Connolly et al. 2005; Panchenko and Wu 2009;
Baur and Lucey 2009; Li et al. 2019, among others). This is because the derived parametric relations
could provide useful guidance in portfolio selection, dynamic asset allocation, and risk management.
For most of this time, two questions have dominated the literature. First, are stock returns and bond
returns positively or negatively correlated? Second, what are the factors that cause correlations to
vary over time? The theoretical claim of the first issue contends that both required rates of return
for stock and bond yields are viewed as part of a discount factor to calculate the future cash flows
of investments. This argument is based on the valuation model that has been adopted and used in
the “Fed model” (Kwan 1996; Yardeni 1997). It is observed that any economic shocks, such as income,
inflation rate, policy innovation, or external shock that disturb an existing equilibrium, will cause
investors to reallocate their funds between assets with lower returns to ones with higher returns.
An efficient arbitrage will eliminate the return differentials and establish return parity conditions after
executing full adjustment (Tobin 1969). This view focuses on economic fundamentals analyzed over a
long-run perspective.

However, evidence of the decoupling phenomenon observed by Gulko (2002) finds a negative
sign for the correlation that obviously occurred in the crisis period; this finding reflects a short run
“flight-to-quality” process (Baur and Lucey 2009). To advance the study, Connolly et al. (2005) examine
the US market and discover that the implied stock volatility (VIX) spikes during periods of market
turmoil leads to decline in stock prices (Whaley 2009). It is argued that the VIX variable has a power
in predicting stock returns (Connolly et al. 2005) and find that VIX displays a negative effect on the
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stock–bond correlation. Further study by Chiang et al. (2015) documents that both implied volatility
of stock and conditional volatility of bond returns have significantly negative effects on variations in
stock–bond returns.

To distinguish their work from previous models, some researchers identify economic policy
uncertainty (EPU) as a key factor that dictates the time-varying correlations between stock and bond
returns (Antonakakis et al. 2013; Jones and Olson 2013; Li et al. 2015). Antonakakis et al. (2013) show
that the dynamic correlation between EPU and S&P500 returns is consistently negative over time, with
exception of a financial crisis period. Li et al. (2015) report that innovations in EPU have a negative and
asymmetrical impact on subsequent stock–bond correlations, since a rise in EPU will likely prompt risk
averse investors to sell off risky stocks and purchase lower risk bonds, leading to a negative correlation.1

Considering the above evidence of risk/uncertainty on stock returns, this paper attempts to
contribute to the study of the effects of policy uncertainty on stock–bond relations. This study differs
from existing models in the following ways. First, this study focus on broad information in developing
measures of financial risks such as VIX, Merrill Lynch Option Volatility Estimate (MOVE) and
uncertainty (EMU) to explain the time-varying correlations between stock and bond returns. Second,
in addition to EPU, this study investigates the impact of categorical policy uncertainties, including both
fiscal policy uncertainty (FPU) and monetary policy uncertainty (MPU). The testing result suggests
that the FPU and MPU give rise to different effects vis-à-vis that of EPU. Third, instead of testing a
correlation coefficient derived from a single measure of aggregate stock returns that covaries with a
specific bond yield, this study conducts tests on the return correlations involving different measures of
aggregate stock returns and a spectrum of bond yields for different maturities. Thus, the estimated
results will provide broad coverage of dynamic correlation behavior. Fourth, the net effect of various
policy uncertainty is summarized in total policy uncertainty (TPU). Evidence demonstrates that the
results are mixed due to the different impact, which the income and substitution effects have on
stock–bond return correlations.

The remainder of the paper is structured as follows. Section 2 describes a dynamic correlation model
and derives the time-varying correlations. Section 3 provides rationales for using risk and uncertainty
variables to explain the time-varying behavior of stock–bond return correlation. Section 4 describes the
sample data. Section 5 reports the estimates developed from the use of policy uncertainty to explain the
dynamic stock–bond correlations. Section 6 provides robustness tests. Section 7 concludes the paper.

2. The Relationship between Stock Returns and Bond Returns

As mentioned earlier, stock and bond returns are positively correlated since both stock and bond
markets commonly react to economic news, such as changes in inflation rate, economic growth, the real
interest rate, and business cycle, in similar ways. When investors perceive that economic prospects
are good, demand for bonds increase, as does demand for stocks, leading to a positive correlation.
Experience from the late 1990s suggests that an upward shift in the wealth effect encourages investors
to hold both types of assets simultaneously. Campbell and Ammer (1993), Kwan (1996), and d’Addona
and Kind (2006) document this phenomenon.

Historical experience also reveals a negative correlation between stock–bond returns, which is
especially noticeably in the stock market during a downturn period or a financial crisis. When the stock
market plummets, risk averse investors may move funds from the stock market to safer assets and
increase the demand for bond market, forming a “flight-to-quality” phenomenon (Baur and Lucey 2009;
Hakkio and Keeton 2009). On the contrary, when the economy recovers and stock prices start to rally,
investors become less risk averse and opt to switch back to stock market, leading to a “flight-from-quality”

1 Li et al. (2015) argue that when EPU declines, a flight from quality could also occur, resulting in a reduction in the correlations.
However, the reduction in EPU can signify an improvement in the market environment, which would raise investors’ demand
for both stocks and bonds, thereby pushing up their correlations. This could produce an asymmetric effect.
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phenomenon. Thus, the correlation between stock and bond returns displays a negative relation.
Evidence by Gulko (2002), Connolly et al. (2005), Baur and Lucey (2009), and Chiang et al. (2015) support
this hypothesis.

Despite their contributions, which use VIX as a measure to explain the time-varying correlation of
stock–bond returns, their work appears to inadequately capture all the necessary information associated
with uncertainty. For instance, President Trump revealed in the first week of October that high-level trade
negotiations between the US and China had concluded in a “very substantial phase one deal” and that
phase two would start almost immediately after phase one was signed. This statement, a sure sign of
reduced uncertainty, would be expected to improve investors’ sentiment, and indeed, Wall Street stocks
closed higher on 11 October 2019 as the S&P 500 gained 32.14 points (or 1.09%), DJIA moved ahead
319.92 points (or 1.21%) and Nasdaq 106.26 advanced points (1.34%). This episode motivates this study to
investigate the role of economic policy uncertainty on asset prices. In addition, the impacts of monetary
policy uncertainty (MPU) and fiscal policy uncertainty (FPU) are also included to the test equation as a
way of differentiating the impact of dynamic correlation behavior of stock–bond returns.

It is generally recognized that a sudden rise in EPU is likely to impede the smoothness of operations
in economic activities and hence cause income uncertainty, which tamps down liquidity (Brunnermeier
and Pedersen 2009) and leads to a decline in demand for assets (Bloom 2009, 2014; Chiang 2019).
This phenomenon may be called the income uncertainty effect. Conversely, as EPU lessens, investors
feel less uncertain about the future and more encouraged to increase their demand for assets, driving a
positive correlation between stock and bond returns (Hong et al. 2014).

On the other hand, the substitution effect describes a phenomenon in which stock and bond returns
move in opposite directions as uncertainty about economic activity changes in the market. This occurs
as uncertainty heightens; investors then sell off their riskier assets (stock) and move their funds into
safer assets (bond). This shift results in a negative relation between stock and bond returns. Further, as
uncertainty declines, investors then switch from lower return assets (bond) to higher return assets (stocks),
causing a negative relation between stock and bond returns (Li et al. 2015). Thus, the substitution effect
tends to produce a negative relation between stock and bond returns. In fact, the concept of income effect
is essentially derived from Tobin (1969) and then applied by Barsky (1989), Hong et al. (2014), and Li et al.
(2015) to analyze the impact of economic uncertainty, triggered by economic policy uncertainty, on asset
returns. The analysis can be extended to examine the impacts of monetary policy uncertainty (MPU) and
fiscal policy uncertainty (FPU). As stated above, the impacts of MPU and FPU on stock return and bond
return could also be attributed to the income effect and substitution effect; the ultimate impact on the
returns of these two asset classes depends on the relative influence of these two forces.

3. A Dynamic Conditional Correlation Model

To derive the dynamic correlation series, the literature follows a seminal study by Engle (2002)
who proposes a dynamic conditional correlation model, which is designed to estimate asset market
returns (de Goeij and Marquering 2004; Chiang et al. 2007; Yu et al. 2010; Antonakakis et al. 2013; Jones
and Olson 2013; Li et al. 2015; Ehtesham and Siddiqui 2019; Allard et al. 2019). This model is frequently
used because of its ability to capture a vector of return correlations and describe the volatility clustering
phenomenon. Moreover, it could alleviate the heteroscedasticity problem (Forbes and Rigobon 2002).
In this study, {Rt} represents a bivariate return series, expressed as

Rt = μt + ut (1)

where Rt = [R1,t R2,t]
′ is a 2 × 1 vector for stock market returns, μt is the mean value of asset 1 or 2,

which has the conditional expectation of multivariate time series properties2, ut|Ft−1 = [u1,tu2,t]
′ ∼

2 Some researchers use domestic macroeconomic factors, such as inflation rate, business cycle patterns, and policy stance, on
the stock–bond correlation (Ilmanen 2003; Yang et al. 2009; Dimic et al. 2016; Pericoli 2018).
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N(0, Ht), Ft−1 is the information set up for (and including) time t − 1. In the context of this study,
it is convenient to treat R1,t as the return on stocks and R2,t as the bond return for one of the bond
instruments. In the multivariate DCC-GARCH structure, the conditional variance-covariance matrix
Ht is assumed to be

Ht = DtPtDt (2)

where Dt = diag{Ht}−1/2 is the 2 × 2 diagonal matrix of time-varying standard deviations from
univariate models, and Pt is the time-varying conditional correlation matrix, which satisfies the
following conditions:

Pt= diag{Qt}−1/2Qtdiag{Qt}−1/2 (3)

Now Pt in Equation (3) is a correlation matrix with ones on the diagonal and off-diagonal elements
that have an absolute value less than one. Use of an asymmetric DCC model recognizes a shock
dynamic adjustment of correlation for negative shock may be different than it is for a positive outcome
(Cappiello et al. 2006; Engle 2009).3 In this expression, it can be written as:

Qt = Ω + a εt−1ε
′
t−1 + γηt−1η

′
t−1 + βQt−1 (4)

where the Qt is positive definite and ηt−1 = min[εt , 0].
The product of ηi,tη j,t will be nonzero; only these two variables are negative. Thus, a positive

value of γ indicates that correlations increase more in response to market falls than they do to market
rises. The equation is written as

Ω̂ = (1− α− β)Q− γN (5)

where Qt =
(
Qij,t
)

is the 2 × 2 time-varying covariance matrix of εt, Q = E[εtε′t ] is the 2 × 2 unconditional

variance matrix of εt (where εi,t = ui,t/
√

hii,t, i = 1 and 2), N = E
[
γηtη′t

]
is the 2 × 2 unconditional

variance matrix of ηt; a, β, and γ are non-negative scalar parameters satisfying (1− α− β− γ) > 0.
The substitution of Equation (5) for four yields

ρi j,t =
Qij,t√

Qii,t
√

Qjj,t
(6)

which can be used to calculate the correlations for the two assets. As proposed by Engle (2002, 2009)
and Cappiello et al. (2006), the asymmetric dynamic correlation (ADCC) model can be estimated by
using a two-stage approach to maximize the log-likelihood function.

4. Data

The data in this study cover the US aggregate stock market index (TTMK-US$RI) for the monthly
observations spanning from January 1990 through June 2019. To measure the risks in the stock and
bond markets, I use the implied stock market volatility (VIXt) obtained from the S&P 500 index options
and MOVEt, the one-month Merrill Lynch Option Volatility Estimate of bond volatility. To conduct
robustness tests, the US aggregate stock market indices also include the Dow-Jones Industrial Average
(DJIA), the NASDAQ Composite Index (NASDAQ), the RUSSELL 2000 (RUSSELL), and the S&P 500
Value stock index (VALUE). For bond markets, the data cover the bond price indices of maturities
for 30 years, 10 years, seven years, five years, and two years. The data for the total stock market,
VIX, MOVE, and bond markets indices are obtained from Thomson Reuters’ Datastream. Returns are
constructed by taking the log-difference of the price indices times 100.

The data for the categorical uncertainty indices are equivalent to the economic policy uncertainty
(EPU) data used by Baker et al. (2016). The construction of the EPU index is based on the following
components: newspaper coverage of policy-related economic uncertainty, which is based on 10 large

3 This section follows closely to Engle (2009, pp. 45–49).
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newspapers; the number of federal tax code provisions set to expire in future years; and disagreements
among economic forecasters, which are used as a proxy for uncertainty. Based on a similar procedure,
Baker, Bloom, and Davis (BBD) construct categorical indices, including the MPU and FPU indices.
Of these indices, the MPU and FPU are based on several dimensions of information: (i) the Access
World News database of over 2000 newspapers; (ii) a balanced panel of 10 major national and
regional US papers, including a broader set of terms designed to capture domestic and foreign
sources of monetary policy and fiscal policy uncertainties; and (iii) data scaled by the total number
of articles. The term sets for economic policy, monetary policy, and fiscal policy uncertainty indices
are given in the Appendix A. These data can be downloaded from the link given below: http:
//www.policyuncertainty.com/categorical_terms.html.

Note that the choice of the US data is based on the rationale that these data can be used to construct
a dynamic correlation between stocks and bonds with combinations of different stock indices and
maturities of bonds. More importantly, our goal is to use policy uncertainty, including economic
policy uncertainty, fiscal policy uncertainty and monetary policy uncertainty to explain the dynamic
correlations. These data are more consistently available in the US market and not as accessible in other
markets. The data constraint limits our research scope.

5. Empirical Estimations

5.1. Estimated Stock–Bond Dynamic Correlations

Table 1 provides different correlation matrices of stock returns, bond returns, risk and uncertainty.
Panel A. reports the correlations of total stock market (TTMK) return and bond returns with
different maturities. The statistics show negative correlation coefficients ranging from −0.12 to −0.15.
The corresponding t-ratios are statistically significant, the only exception is the coefficient of a two-year
bond. The other elements in this table are the correlations of bond returns, which range between 0.59
and 0.98. Panel B presents the correlations among different measures of stock returns and range from
0.74 to 0.95 (VALUE and DJIA). Due to the high correlation in both types of assets, most researchers
tend to use only one type of stock measure, i.e., total market return, and one type of bond return,
i.e., 10-year bond, to engage empirical analysis. Panel C provides a correlation matrix that illustrates
the correlation of VIX and different categorical policy uncertainties. It shows that FPU and MPU are
highly correlated with EPU, and VIX has the highest correlation with MOVE. To visually demonstrate,
Figure 1 presents time varying correlations for VIX, MOVE, EPU, FPU, and MPU in the US market.
Panel D reports the summary of statistics for VIX and uncertainty variables. Among them, the FPU
surprisingly has the highest standard deviation, while the VIX has the lowest. The information is not
usually observable by the public.

Table 1. Correlation matrices of stock returns, bond returns, risk, and uncertainty.

Correlation (t-Statistic) Rm_TTMK Rb_30Y Rb_10Y Rb_7Y Rb_5Y Rb_2Y

Rm_TTMK 1
—–

Rb_30Y −0.1209 1
−2.28 —–

Rb_10Y −0.1191 0.9215 1
−2.24 44.39 —–

Rb_7Y −0.1191 0.8638 0.9809 1
−2.24 32.08 94.42 —–

Rb_5Y −0.1456 0.7798 0.9407 0.9701 1
−2.75 23.31 51.87 74.76 —–

Rb_2Y −0.1544 0.5934 0.7764 0.8278 0.9073 1
−0.15 13.79 23.05 27.60 40.37 —–

Panel A. Correlations of bond index returns.
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Table 1. Cont.

Correlation (t-Statistic) Rm_TTMK R_DJIA R_Nasdaq R_Russell R_Value

Rm_TTMK 1
—–

R_DJIA 0.9333 1
48.70 —–

R_Nasdaq 0.8752 0.7391 1
33.90 20.56 —–

R_Russell 0.8466 0.7543 0.8552 1
29.80 21.52 30.92 —–

R_Value 0.9447 0.9451 0.7350 0.8101 1
53.96 54.19 20.31 25.89 —–

Panel B. Correlations of stock index returns.

Correlation (t-Statistic) VIX MOVE EPU FPU MPU

VIX 1
—–

MOVE 0.5969 1
13.84 —–

EPU 0.4099 0.2997 1
8.36 5.84 —–

FPU 0.2945 0.1490 0.8974 1
5.73 2.80 37.84 —–

MPU 0.3803 0.3020 0.7659 0.5515 1
7.65 5.89 22.16 12.30 —–

Panel C. Correlations of financial risk and categorical uncertainty.

Statistics VIX MOVE EPU FPU MPU

Mean 19.32 93.84 96.74 101.71 87.58
Median 17.40 91.30 85.92 81.96 71.37

Maximum 59.89 213.90 271.83 374.31 407.94
Minimum 9.51 46.20 37.27 23.05 16.57
Std. Dev. 7.44 27.16 41.05 63.54 56.14
Skewness 1.72 0.95 1.18 1.59 1.80
Kurtosis 7.60 5.24 4.26 5.68 8.06

Observations 348.00 348.00 348.00 348.00 348.00

Panel D. Summary of statistics of risk and uncertainty.

 

Figure 1. Time-varying VIX, MOVE, EPU, FPU, and MPU in the US market.
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5.2. Estimated Stock–Bond Correlation Coefficients

Table 2 contains parametric estimates of the covariance between stock and various bond returns
using the ADCC-GARCH model as represented by the system of Equations (1)–(5). Estimates in Table 2
are pairwise covariances between TTMK stock returns and one of the bond returns from 30 year to two
year bonds, hij(RmR30y

b ), hij(RmR10y
b ), hij(RmR7y

b ), hij(RmR5y
b ), and hij(RmR2y

b ). The reported statistics for
conditional variances indicate that the lagged conditional variance, βi j, and the lagged shock squared,
αi j, are largely statistically significant except for α11. This result indicates that the GARCH-type model
is relevant. Turning to the asymmetric impact of shocks on conditional variance, we find that most of
the estimated coefficients in the stock and bond markets

(
γi j
)

are highly significant. The exception is
γ11, which is not consistent with the expected sign. Judging from the estimated coefficient and the
associated t-statistics, the variance equation is apparently dominated by the predictive power from the

lagged variance term.4 Having estimated hij(Rm, Rb), it can derive: ρ̂i j,t =
hij,t√

hii,t
√

hjj,t
.

Table 2. Estimates of the asymmetric dynamic correlation (ADCC) models parameters for stock–bond
return correlations.

Parameters hij(RmR30y
b ) hij(RmR10y

b ) hij(RmR7y
b ) hij(RmR5y

b ) hij(RmR2y
b )

ω11 0.708 2.21 1.281 2.70 1.357 2.62 1.169 2.35 1.280 2.68
ω12 0.030 0.80 0.002 0.02 −0.066 −1.05 −0.088 −2.09 0.002 0.02
ω22 0.865 2.44 0.325 1.81 0.121 1.41 0.050 1.30 0.325 1.79
α11 0.082 1.57 0.094 1.42 0.099 1.29 0.120 1.54 0.094 1.39
α12 0.022 4.03 0.138 4.83 0.094 2.79 0.067 2.46 0.138 4.21
α22 0.136 3.03 0.096 2.79 0.106 2.41 0.103 2.29 0.096 2.70
γ11 0.070 1.40 0.175 2.33 0.192 2.31 0.133 1.67 0.175 2.30
γ12 −0.052 −3.71 −0.057 −1.50 0.033 0.52 0.073 1.36 −0.058 −0.92
γ22 −0.206 −3.71 −0.149 −3.55 −0.150 −2.88 −0.118 −2.40 −0.149 −3.39
β11 0.844 19.49 0.743 12.38 0.728 11.35 0.746 11.49 0.743 12.38
β12 0.998 17.63 0.823 23.69 0.843 21.83 0.859 24.09 0.823 23.68
β22 0.898 21.75 0.897 17.83 0.918 19.57 0.914 18.19 0.897 17.62

LLF −1844 −1672 −1594 −1488 −1673

Note: This table estimate the parameters for conditional variance and covariance between total
stock returns and various bond returns. For an ADCC(RmR10y

b ) model, the model is given by:⎡⎢⎢⎢⎢⎢⎢⎣
h11,t
h12,t
h22,t

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣
ω11
ω12
ω22

⎤⎥⎥⎥⎥⎥⎥⎦+
⎡⎢⎢⎢⎢⎢⎢⎣
α11 0 0
0 α12 0
0 0 α22

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎣

ε2
1,t−1

ε1,t−1ε2,t−1
ε2

2,t−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦+
⎡⎢⎢⎢⎢⎢⎢⎣
γ11 0 0
0 γ12 0
0 0 γ22

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎣

η2
1,t−1

η1,t−1η2,t−1
η2

2,t−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦for (η1,t−1 < 0, η2,t−1 < 0)

+

⎡⎢⎢⎢⎢⎢⎢⎣
β11 0 0
0 β12 0
0 0 β22

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣

h11,t−1
h12,t−1
h22,t−1

⎤⎥⎥⎥⎥⎥⎥⎦
.

The estimated result for ADCC(RmR10y
b ) model is given by:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
h11,t

h12,t

h22,t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.280
0.002
0.325

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦+
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.094 0 0
0 0.138 0
0 0 0.096

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε2
1,t−1

ε1,t−1ε2,t−1

ε2
2,t−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦+
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.175 0 0
0 −0.057 0
0 0 −0.149

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

η2
1,t−1

η1,t−1η2,t−1

η2
2,t−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.743 0 0

0 0.823 0
0 0 0.897

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h11,t−1

h12,t−1

h22,t−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

4 To illustrate the model, in the footnote of Table 2, one can plug the estimated parameters into the model using hij(RmR10y
b ).
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The parameter hij,t is the variance and covariance of asset i and j in the estimated equation
(subscripts i = (Rm) and j = (Rb), which stand for stock and bond returns, respectively); ω, α, and β
are the parameters for the conditional variance equation; and γ is an asymmetric parameter. The first
column is the estimated parameters and the second column is the t-statistics. The critical values at the
1%, 5%, and 10% are 2.60, 1.97, and 1.65, respectively. LLF denotes the log-likelihood function.

Figure 2 shows time series plots of dynamic conditional correlations for the monthly data between
TTMK return and bond returns with different maturities based on Equation (6). Correlations between
the returns of the two assets display noticeable variations throughout the sample period. In general,
the plots clearly show a downward slope up to the time of 2004. During the beginning of the 2000s
when the US market suffered from the dotcom collapse, the stock market dropped dramatically,
and there was less of a decline in bond returns, causing the correlation to move downward as shown
in the Figure 2 in this period. These results are consistent with the findings of Connolly et al. (2005),
Chiang et al. (2015), and Li et al. (2015). However, during the global financial crisis period in 2008–2010,
the stock market plummeted again, and the correlation coefficient also deepened in this period. After
this crisis time the relationships become stationary and fluctuate around a very mild negative regime.
A special feature derived from this study is that despite of their common movement around turning
points, the dynamic paths show that the stock–bond return correlations vary with different bond
maturities, which reflect different market conditions and preferences for bond maturities with different
bondholders. These results suggest that the path of ρSB,t is based on only one stock return and one bond
return, as is the case in conventional studies, which could produce a misleading and biased estimator.

 

Figure 2. Dynamic correlations between stock (TTMK) and various bond returns in the US.

5.3. The Role of Uncertainty

Early studies by Connolly et al. (2005), Andersson et al. (2008), and Chiang et al. (2015) stress
the notion of using volatility measure as a proxy for uncertainty. Connolly et al. (2005) find that the
correlation between stock and bond returns declines during periods with substantial increases in VIX.
Andersson et al. (2008), Chiang et al. (2015), and Dimic et al. (2016) report that periods of elevated
stock market uncertainty cause a decoupling between the relation of stock and bond returns, which
is consistent with the “flight-to-quality” phenomenon. Antonakakis et al. (2013) and Li et al. (2015)
employ the economic policy uncertainty in modeling the dynamic correlations. The current study
extends this approach by adding monetary policy uncertainty and fiscal policy uncertainty in the
test equation to explain the dynamic correlations between stock and bond returns. This notion is
summarized in the regression model as follows:
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ρ̂∗Sb,t= ϕ0 + ϕ1VIXt−1+ϕ2MOVEt−1+ϕ3EPUt−1+ϕ4MPUt−1+ϕ5FPUt−1+ϕ6Trend + εt (7)

where ρ̂∗Sb,t is a Fisher transformation of stock–bond correlation coefficient, ρ̂SB,t, that is, ρ̂∗Sb,t =

1
2 ln[ 1+ρ̂SB,t

1−ρ̂SB,t
] and is bound to interval [−1,+1]. VIXt−1 and MOVEt−1 are the 1-month implied volatility

in stock and bond markets, respectively. The EPUt−1 is the economic policy uncertainty at time t − 1,
while MPUt−1 and FPUt−1 are the monetary policy and fiscal policy uncertainties at time t − 1. Two
special features are included in Equation (7). First, the financial risk and uncertainty are treated as
independent factors to explain the stock–bond return correlations; second, in addition to the EPUt−1, the
categorical policy impacts, such as the MPUt−1 and FPUt−1, are included to highlight their distinctive
effects. In the last term, the trend factor is added to capture of the presence of non-stationarity.

Table 3 presents consistent estimates (Newey and West 1987) of Equation (7) without including
EPUt−1, MPUt−1 and FPUt−1, while Table 4 shows results for this equation where the restriction of
ϕ3 = ϕ4 = ϕ5 = 0 has been relaxed. Both models perform very well, the adjusted R-squares for the
unrestricted model, which range from 0.48 to 0.81, are notably higher than those of the restricted model,
indicating that the inclusion of the uncertainty variables helps to increase their explanatory power.
Since the results in Table 3 are nested in Table 4, our interpretations focus on Table 4. Several points
are noteworthy.

Table 3. Estimates of aggregate and categorical EPU, FPU, and MPU and on stock (TTMK)–bond
return correlations.

PI = TTMK ^
ρ
∗
t(RmR30y

b )
^
ρ
∗
t(RmR10y

b )
^
ρ
∗
t(RmR7y

b )
^
ρ
∗
t(RmR5y

b )
^
ρ
∗
t(RmR2y

b )

C 0.945 14.34 0.668 8.80 0.642 5.26 0.673 13.27 0.781 12.79
VIXt−1 −0.006 −2.52 −0.005 −1.73 0.001 0.25 0.001 0.56 −0.005 −2.33

MOVEt−1 −0.002 −2.15 −0.003 −3.10 −0.001 −1.33 −0.002 −3.74 −0.003 −5.30
Trend −0.004 −24.65 −0.003 −14.28 −0.003 −10.93 −0.003 −27.75 −0.002 −15.42

R
2 0.68 0.41 0.71 0.72 0.48

Note: This table presents evidence of VIX and MOVE on ρ̂∗t , the Fisher transformation of ρ̂t, which is the dynamic

correlations between value stock–bond returns. That is, ρ̂∗Sb,t(· · · ) =
1
2 ln[ 1+ρ̂t

1−ρ̂t
]). The subscript “sb” is suppressed to

save space in table. For each model, the first column reports the estimated coefficients, the second column contains
the estimated t-statistics. The critical values of t-distribution at the 1%, 5%, and 10% levels of significance are 2.60,

1.98, and 1.66, respectively. The numbers in the brackets are the p-values. R
2

is the adjusted R-squared.

Table 4. Estimates of aggregate and categorical EPU, FPU, and MPU, and on stock (TTMK)–bond
return correlations.

PI = TTMK ^
ρ
∗
t(RmR30y

b )
^
ρ
∗
t(RmR10y

b )
^
ρ
∗
t(RmR7y

b )
^
ρ
∗
t(RmR5y

b )
^
ρ
∗
t(RmR2y

b )

C 0.000 0.00 0.370 1.91 −0.680 −5.91 −0.444 −3.66 0.513 3.13
VIXt−1 −0.007 −2.00 −0.003 −1.00 −0.002 −1.73 −0.001 −0.99 −0.005 −2.12

MOVEt−1 −0.001 −1.40 −0.002 −2.97 −0.001 −3.82 −0.002 −5.27 −0.003 −5.54
EPUt−1 0.857 6.15 0.674 5.43 0.766 10.79 0.715 9.34 0.406 3.96
FPUt−1 −0.409 −4.59 −0.415 −6.11 −0.231 −5.67 −0.250 −5.79 −0.203 −3.57
MPUt−1 −0.254 −4.55 −0.222 −5.01 −0.236 −9.25 −0.217 −8.18 −0.157 −4.60

Trend −0.004 −11.98 −0.002 −11.93 −0.003 −28.00 −0.003 −27.70 −0.002 −14.60
χ2(3) 38.12 [0.00] 18.30 [0.00] 197.92 [0.00] 127.64 [0.00] 21.86 [0.00]
χ2(2) 29.81 [0.00] 17.60 [0.00] 91.81 [0.00] 74.36 [0.00] 21.85 [0.00]

R
2 0.73 0.48 0.81 0.79 0.51

Note: This table presents evidence of financial risk and policy uncertainty on ρ̂∗Sb,t, the Fisher transformation of ρ̂t,

which is the dynamic correlations between TTMK stock–bond returns. That is, ρ̂∗Sb,t(· · · ) =
1
2 ln[ 1+ρ̂t

1−ρ̂t
]. The subscript

“sb” is suppressed to save space in the table. For each model, the first column reports the estimated coefficients, the
second column contains the estimated t-statistics. The critical values of t-distribution at the 1%, 5%, and 10% levels
of significance are 2.60, 1.98, and 1.66, respectively. The numbers in the brackets are the p-values. R

2
is the adjusted

R-squared.
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First, the coefficients of the trend factor are negative, indicating that in general the correlations
between stock and bond returns slope downward, although feathering in the stochastic process is present.
This result is consistent with the findings reported by Connolly et al. (2005) and Chiang et al. (2015).

Second, the risk variables of VIXt−1 and MOVEt−1 are negative, revealing that investors are actively
switching between stock and bond depending on the level of risk in the market. This movement
resembles a flight-to-quality as risk increases and flight-from-quality as risk declines. This finding is
consistent with the results in the literature (Gulko 2002; Connolly et al. 2005; Andersson et al. 2008;
Chiang et al. 2015).

Third, the estimated coefficients of EPUt−1 are positive and highly significant. This conforms with
a market phenomenon in which a sudden rise in uncertainty impedes prospects for economic activities,
thereby dampening output production and future cash flows. Facing weakening liquidity, investors
tend to sell off stocks and bonds. The dominance of this income effect will lead to a positive movement
between stock and bond prices, a reaction that is consistent with a study by Hong et al. (2014), which
emphasizes the response to market volatile.

Fourth, the estimated coefficients for FPUt−1 and MPUt−1 are negative and significant at the one
percent level. This should not be surprising, since a rise in MPU tends to increase uncertainty in
interest rate, which is more likely to create a strong substitution effect that causes a shift from high
uncertainty asset-stocks to relatively low uncertainty asset-bonds and leads to a decoupling of stock
and bond returns. A similar shift also holds true for an upward shift in FPU, especially in the case of
bond financing of government deficits. It is recognized that an increase in FPUt−1 and MPUt−1 could
create an income effect; however, the negative coefficients imply that the substitution effect dominates
the income effect.

Fifth, the estimated results favor the inclusion of uncertainty variables as incremental variables.
This can be seen in the reported χ2(3) statitic, which tests the joint significance of the coefficients with
ϕ3 = ϕ4 = ϕ5 = 0. The p-values of the Chi-squared test, which are in brackets, indicate the rejection of
the null, suggesting that the inclusion of the uncertainty variables helps to improve the explanation of
the dynamic correlations between stock and bond returns. Evidence thus indicates that the exclusion of
uncertainty variables in the literature (Connolly et al. 2005; Andersson et al. 2008; Chiang et al. 2015) is
subject to an omitted variable problem. In addition, the χ2(2) statistic for testing equality of coefficients
for ϕ4 = ϕ5 = 0 against alternatives is also significant in all of cases, this test indicates the exclusion of
categorical uncertainty even in the case of EPU (Antonakakis et al. 2013; Li et al. 2015) suffers from a
missing variable problem.

In summary, this study contributes to the literature in two ways. First, the effect of risk is separated
from the uncertainty effect, showing both types of variables contribute to the variations of stock–bond
correlations. Second, unlike the EPU, evidence shows the coefficients of FPU and MPT are negative,
which provides an incremental contribution in the ability to predict time-varying correlations of stock
and bond returns, ρ̂∗Sb,t. These categorical uncertainty variables have not been explored in the literature.

6. Robustness Tests

6.1. Difference of Stock Indices

Despite of successful outcomes of the time-varying behavior of ρ̂∗Sb,t in relation to the
risk/uncertainty, it is important to examine the robustness of the parametric relations, which can be
done by using alternative measures of stock indices. In this section, the test equations apply to stock
indices including the DJIA, NASDAQ, RUSSELL, and VALUE. Pairings of stock returns with bond
returns of maturities of 30 years, 10 years, seven years, five years, and two years are used to derive
ρ̂∗Sb,t(·). The estimated equations are reported in Tables 5–8, and the test results are summarized
as follows.
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Table 5. Estimates of aggregate and categorical EPU, FPU, and MPU and on stock (DJIA)–bond
return correlations.

PI = DJIA ^
ρ
∗
t(RmR30y

b )
^
ρ
∗
t(RmR10y

b )
^
ρ
∗
t(Rm(RmR7y

b )
^
ρ
∗
t(RmR5y

b )
^
ρ
∗
t(RmR2y

b )

C −1.148 −4.66 −1.116 −9.04 −1.019 −9.09 −0.834 −7.19 0.100 0.93
VIXt−1 −0.016 −4.62 0.000 −0.04 −0.004 −3.08 0.003 2.59 0.000 0.11

MOVEt−1 −0.001 −0.69 −0.002 −3.62 −0.000 −0.63 −0.002 −4.87 −0.002 −3.90
EPUt−1 1.003 7.35 0.874 9.94 0.725 9.04 0.706 8.43 0.279 3.56
FPUt−1 −0.252 −3.20 −0.229 −4.79 −0.172 −3.96 −0.203 −4.56 −0.127 −3.09
MPUt−1 −0.308 −5.16 −0.274 −8.63 −0.215 −7.30 −0.233 −7.86 −0.104 −3.83

Trend −0.004 −10.01 −0.004 −23.49 −0.003 −24.63 −0.003 −21.82 −0.002 −16.65
χ2(3) 76.80 [0.00] 216.77 [0.00] 232.68 [0.00] 130.12 [0.00] 15.60 [0.00]
χ2(2) 28.91 [0.00] 74.98 [0.00] 53.30 [0.00] 62.22 [0.00] 15.52 [0.00]

R
2 0.73 0.82 0.84 0.77 0.61

Note: This table presents evidence of financial risk and policy uncertainty on ρ̂∗Sb,t, the Fisher transformation of ρ̂t,

which is the dynamic correlations between DJIA stock–bond returns. That is, ρ̂∗Sb,t(· · · ) =
1
2 ln[ 1+ρ̂t

1−ρ̂t
]. The subscript

“sb” is suppressed to save space in the table. For each model, the first column reports the estimated coefficients,
the second column contains the estimated t-statistics. The critical values of t-distribution at the 1%, 5%, and 10%
levels of significance are 2.60, 1.98, and 1.66, respectively. The numbers in the brackets are the p-values. R

2
is the

adjusted R-squared.

Table 6. Estimates of aggregate and categorical EPU, FPU and MPU and on stock (NASDAQ)–bond
return correlations.

PI = NASD ^
ρ
∗
t(RmR30y

b )
^
ρ
∗
t(RmR10y

b )
^
ρ
∗
t(RmR7y

b )
^
ρ
∗
t(RmR5y

b )
^
ρ
∗
t(RmR2y

b )

C −0.641 −4.21 0.100 0.76 0.056 0.46 0.182 1.51 0.307 2.76
VIXt−1 0.003 1.29 0.003 1.27 0.003 1.71 0.002 1.20 0.001 0.76

MOVEt−1 −0.002 −1.89 −0.002 −4.50 −0.003 −5.20 −0.003 −6.12 −0.003 −6.07
EPUt−1 0.670 4.08 0.467 5.31 0.438 5.17 0.357 4.20 0.285 3.52
FPUt−1 −0.258 −3.33 −0.293 −6.18 −0.265 −5.87 −0.211 −4.63 −0.188 −4.34
MPUt−1 −0.186 −2.83 −0.145 −4.76 −0.139 −4.76 −0.124 −4.28 −0.093 −3.37

Trend −0.003 −7.14 −0.002 −11.36 −0.001 −9.84 −0.001 −11.66 −0.002 −13.7
χ2(3) 20.07 [0.00] 50.21 [0.00] 44.47 [0.00] 30.44 [0.00] 29.01 [0.00]
χ2(2) 11.36 [0.00] 40.53 [0.00] 36.68 [0.00] 24.90 [0.00] 19.78 [0.00]

R
2 0.67 0.48 0.41 0.46 0.52

Note: This table presents evidence of financial risk and policy uncertainty on ρ̂∗Sb,t, the Fisher transformation

of ρ̂t, which is the dynamic correlations between NASDAQ stock–bond returns. That is, ρ̂∗Sb,t(· · · ) =
1
2 ln[ 1+ρ̂t

1−ρ̂t
]).

The subscript “sb” is suppressed to save space in the table. For each model, the first column reports the estimated
coefficients, the second column contains the estimated t-statistics. The critical values of t-distribution at the 1%, 5%,
and 10% levels of significance are 2.60, 1.98, and 1.66, respectively. The numbers in the brackets are the p-values. R

2

is the adjusted R-squared.

First, the evidence clearly indicates that the coefficients of stock–bond return correlations slope
downward as indicated by the negative sign and are statistically significant. However, the coefficients
of VIXt−1 have mixed signs. Although most of them are negative, yet, the coefficients of VIXt−1 in
the NASDAQ and RUSSELL stock returns are positive, reflecting the possibility that investors with
different stocks holding have different degrees of sensitivity to financial shock and react differently.
From an econometric point of view, this may also result from a spurious correlation. Another financial
risk variable, MOVEt−1, however, presents consistent results. Except ρ̂∗t(RmR7y

b ) (in Tables 7 and 8),
the coefficients show negative signs and are statistically significant.
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Table 7. Estimates of aggregate and categorical EPU, FPU, and MPU and on stock (RUSSELL)–bond
return correlations.

PI = RUSS ^
ρ
∗
t(RmR30y

b )
^
ρ
∗
t(RmR10y

b )
^
ρ
∗
t(RmR7y

b )
^
ρ
∗
t(RmR5y

b )
^
ρ
∗
t(RmR2y

b )

C −0.258 −1.37 −0.160 −1.46 −1.440 −5.56 −0.037 −0.38 0.231 2.35
VIXt−1 0.005 1.84 0.004 2.76 −0.023 −7.96 0.003 2.41 0.003 1.84

MOVEt−1 −0.001 −0.92 −0.002 −4.31 0.001 0.94 −0.002 −4.70 −0.002 −4.16
EPUt−1 0.555 3.26 0.465 4.83 1.063 7.83 0.269 3.49 0.181 2.53
FPUt−1 −0.321 −3.47 −0.273 −5.81 −0.215 −2.77 −0.157 −4.05 −0.143 −3.76
MPUt−1 −0.152 −2.17 −0.138 −3.62 −0.400 −9.01 −0.094 −3.16 −0.065 −2.40

Trend −0.002 −5.23 −0.001 −8.38 −0.002 −11.31 −0.001 −9.62 −0.001 −12.26
χ2(3) 14.87 [0.00] 37.73 [0.00] 190.74 [0.00] 19.85 [0.00] 29.16 [0.00]
χ2(2) 12.08 [0.00] 34.93 [0.00] 81.31 [0.00] 16.67 [0.00] 14.17 [0.00]

R
2 0.49 0.39 0.47 0.37 0.45

Note: This table presents evidence of financial risk and policy uncertainty on ρ̂∗Sb,t, the Fisher transformation of

ρ̂t, which is the dynamic correlations between Russell stock–bond returns. That is, ρ̂∗Sb,t(· · · ) =
1
2 ln[ 1+ρ̂t

1−ρ̂t
]). The

subscript “sb” is suppressed to save space in the table. For each model, the first column reports the estimated
coefficients, the second column contains the estimated t-statistics. The critical values of t-distribution at the 1%, 5%,
and 10% levels of significance are 2.60, 1.98, and 1.66, respectively. The numbers in the brackets are the p-values. R

2

is the adjusted R-squared.

Table 8. Estimates of aggregate and categorical EPU, FPU, and MPU and on stock (VALUE)–bond
return correlations.

PI = VALUE ^
ρ
∗
t(RmR30y

b )
^
ρ
∗
t(RmR10y

b )
^
ρ
∗
t(RmR7y

b )
^
ρ
∗
t(RmR5y

b )
^
ρ
∗
t(RmR2y

b )

C −1.259 −3.62 −1.241 −9.10 −1.910 −8.44 −0.871 −7.28 0.249 1.95
VIXt−1 −0.022 −4.90 −0.003 −2.07 −0.027 −8.63 0.003 2.06 −0.002 −1.23

MOVEt−1 −0.000 −0.38 −0.001 −1.78 0.002 3.11 −0.002 −3.71 −0.002 −3.33
EPUt−1 1.209 7.61 0.947 9.32 1.235 8.24 0.763 9.04 0.326 3.82
FPUt−1 −0.315 −3.03 −0.227 −4.29 −0.263 −3.08 −0.225 −4.98 −0.150 −3.23
MPUt−1 −0.381 −5.43 −0.294 −7.55 −0.399 −7.79 −0.246 −8.05 −0.136 −4.60

Trend −0.004 −9.37 −0.004 −23.90 −0.003 −15.83 −0.003 −23.56 −0.002 −17.94
χ2(3) 70.86 [0.00] 233.42 [0.00] 219.45 [0.00] 140.30 [0.00] 21.86 [0.00]
χ2(2) 33.35 [0.00] 57.04 [0.00] 61.84 [0.00] 66.15 [0.00] 21.85 [0.00]

R
2 0.67 0.83 0.65 0.80 0.60

Note: This table presents evidence of financial risk and policy uncertainty on ρ̂∗t , the Fisher transformation of ρ̂t,

which is the dynamic correlations between Value stock–bond returns. That is, ρ̂∗t(· · · ) =
1
2 ln[ 1+ρ̂t

1−ρ̂t
]). The subscript

“sb” is suppressed to save space in the table. For each model, the first column reports the estimated coefficients,
the second column contains the estimated t-statistics. The critical values of t-distribution at the 1%, 5%, and 10%
levels of significance are 2.60, 1.98, and 1.66, respectively. The numbers in the brackets are the p-values. R

2
is the

adjusted R-squared.

Turning to the performance of the coefficients of EPUt−1, FPUt−1, and MPUt−1, the signs are
consistent with the results in Table 4. That is, the coefficients of EPUt−1 continue to present positive
signs, showing the impact of a positive income effect on the stock–bond return correlation, while the
coefficients of FPUt−1 and MPUt−1 display negative signs, revealing that stock and bond returns are
dominated by a substitution effect and move in diverse directions. The testing results suggest that a
portfolio combination of stocks and bonds are a better hedge against uncertainty if it originates from
monetary policy or fiscal policy uncertainty. However, the benefits of stock and bond diversification
are less apparent if the uncertainty is the result of a general economic policy uncertainty, since its
impact on economic activity is pervasive.5

5 Instead of stressing the sources of policy uncertainty, Baele et al. (2010) analyze monetary policy impact on the direction of
equity-bond correlation by focusing on the effects of inflation. In periods with a contractionary monetary policy, which is
usually associated with low inflation rate, the correlation displays a positive relation; nonetheless, during periods of high
inflation, the stock–bond correlation presents a negative relation. Thus, it is hard to justify whether inflation plays a role in
uncertainty or a real income effect. However, Pericoli (2018) shows that inflation rate is a significant factor. Further, instead
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6.2. Total Policy Uncertainty

The above tests suggest that the EPUt−1 has a positive effect, while FPUt−1 and MPUt−1have a
negative effect on the ρ̂∗Sb,t(·). It is natural to pool all the uncertainty information together regardless of
the sources of uncertainty. To this end, I define TPUt = EPUt + FPUt +MPUt as total policy uncertainty
(TPUt). Table 9 reports the estimates of the test equation, which uses TPUt as a measure of uncertainty.
Consistent with previous findings, the coefficients of VIXt−1 have mixed signs. However, the signs for
MOVEt−1 consistently present negative signs and most of them are statistically significant.

Table 9. Estimates of correlations of total stock market returns and 10-year bond returns in response to
financial risk and total policy uncertainty.

Indpt.
Variable

TTMK DJIA NASDAQ RUSSELL VALUE

^
ρ
∗
t(RmR10y

b )
^
ρ
∗
t(RmR10y

b )
^
ρ
∗
t(RmR10y

b )
^
ρ
∗
t(RmR10y

b )
^
ρ
∗
t(RmR10y

b )

C 1.239 7.59 −0.207 −1.77 0.704 6.87 0.427 3.96 −0.270 −2.06
VIXt−1 −0.001 −0.47 0.000 0.04 0.004 1.78 0.005 3.34 −0.003 −1.68

MOVEt−1 −0.002 −2.80 −0.002 −2.89 −0.002 −4.23 −0.002 −4.10 −0.001 −1.37
TPUt−1 −0.048 −4.23 0.060 7.28 −0.032 −4.49 −0.023 −3.18 0.074 8.18
Trend −0.003 −13.08 −0.003 −19.94 −0.002 −12.61 −0.001 −9.15 −0.004 −20.60

R
2 0.43 0.73 0.42 0.33 0.75

Notes: This table presents evidence of financial risk and policy uncertainty on ρ̂∗Sb,t, the Fisher transformation of ρ̂t,

which is the dynamic correlations between Value stock–bond returns. That is, ρ̂∗Sb,t(· · · ) =
1
2 ln[ 1+ρ̂t

1−ρ̂t
]). The subscript

“sb” is suppressed to save space in the table. For each model, the first column reports the estimated coefficients, the
second column contains the estimated t-statistics. The critical values of t-distribution at the 1%, 5%, and 10% levels
of significance are 2.60, 1.98, and 1.66, respectively. R

2
is the adjusted R-squared.

With respect to the sign of TPUt−1, evidence shows that the coefficients on TTMK, NASDAQ, and
RUSSELL exhibit negative signs and are statistically significant. This result is consistent with market
behavior of investors who during a rise in TPUt−1 tend to sell offmore uncertain stock and move their
funds to bonds, effectively exhibiting the substitution effect. However, the coefficients of TPUt−1 for the
DJIA and VALUE stocks are positive and statistically significant, indicating a dominance of the income
effect. A review of the S&P 500 Value index, which has a style-concentrated index designed to track
the performance of stocks that exhibit the strongest value, shows that the value of these stocks is very
much in line with that of the DJIA. In sum, estimates of correlations between total stock market returns
and 10-year bond returns show different signs in response to total policy uncertainty is essentially
executed under different degrees of force from income effect and substitution effect.

7. Conclusions

This paper examines the impact of financial market risk and policy uncertainties on the correlation
between stock and bond returns. Analyzing the financial data of US markets for the period January
1990–June 2019, I derive several important empirical conclusions. First, empirical estimations based
on the asymmetric dynamic correlation model (ADCC) suggest that stock–bond correlations are
time-varying and display a negative relation overtime, especially for the period before 2002.

Second, evidence confirms that the stock–bond relationship is negatively correlated with the
implied volatility in stock market (VIX), suggesting a higher market risk would cause a “flight-to-safety.”
This phenomenon appears in stock markets of TTMK and VALUE. However, for indices such as the
DJIA (with two-year and five-year bonds), the NASDAQ and RUSSELL, the sign turns out to be positive.
The mixed results reflect differing attitudes toward risks of investors who hold different stock portfolios.
This finding suggests that the use of a single stock index to measure stock returns and one specific

of using government bonds, one might use junk bonds to trace the dynamic correlations (Glassman 2018), which will be the
subject of future research.
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form of bond maturity (10-year bond) as was done in the previous research (Connolly et al. 2005) could
produce a biased estimator and hence a misleading statistical inference.

Third, with respect to the performance of implied bond volatility (MOVEt−1), this study arrives
at more consistent results. In this case, the coefficients tend to have negative signs with a couple
of exceptions. For this reason, we can reach a more concrete conclusion that a rise in MOVEt−1

leads to a decoupling of stock and bond returns. Thus, MOVEt−1 to some extent reflects different
market information and complementarily contributes to explaining movements in stock and bond
return correlations.

Fourth, this study find evidence that estimated coefficient of the EPUt−1 has a positive and
significant effect on the stock–bond return correlation. This result is consistent with a dominant income
effect resulting from a rise in economic policy uncertainty that impedes economic activities and leads
to a decline in income. This decline brings about a decrease in liquidity and in turn weakens demand
for both stocks and bonds. Therefore, both stock and bond prices move in the same direction.

Fifth, testing results conclude that the estimated coefficients for both FPUt−1 and MPUt−1 are
negative and highly significant. The negative sign of this policy uncertainty is mainly due to the
dominance of the substitution effect, which prompts investors to replace higher uncertainty assets with
lower uncertainty assets due to an upward shift in policy uncertainty. This occurs because of a policy
stance that causes a sudden rise in MPUt−1 (or FPUt−1 in bond financing) and increases uncertainty
in interest rates, prompting a selloff in stocks and a flight-to-quality phenomenon. Note that this
market action essentially stems from a heightened fear from policy uncertainty rather than something
of inherent in the asset’s return. It is possible that a rise in MPUt−1 (or FPUt−1) could threaten the
future cash flow and reduce the demand for both stocks and bonds. However, the evidence of a
negative coefficient indicates the dominant force of the substitution effect. An implication of a negative
coefficient suggests that a portfolio can benefit from a combination of stocks and bonds as a way of
diversification and hedging against monetary policy or fiscal policy uncertainty.

Sixth, by testing the total policy uncertainty on the dynamic correlations between stock–bond
returns, the evidence turns out to display mixed signs. For DJIA and VALUE stocks, the correlation
coefficients present positive signs, indicating the dominance of an income effect attributable to general
economic policy uncertainty; however, correlations of the TTMK, NASDAQ, and RUSSELL stocks
with bond returns display negative signs, suggesting the dominance of a substitution effect, resulting
from the reallocation of assets from ones with higher uncertainty to those with lower uncertainty in
response to a rise in total policy uncertainty.

In sum, this paper provides significant empirical evidence to support the impact of MPUt−1 and
FPUt−1 on stock–bond correlations. In addition to the VIXt−1, MOVEt−1 and EPUt−1, our Chi-squared
statistics consistently suggest the rejection of the null, MPUt−1 = FPUt−1 = 0, and support the incremental
significance of MPUt−1 and FPUt−1 in the test equation. This evidence has not previously been shown
in the literature to explain the stock–bond return correlation.

Further, this study has practical implications for investment firms by tracing the time-varying
correlations and is distinct from more commonly taken approaches by calculating the individual,
constant correlations (Forbes and Rigobon 2002) within a given period of time. This study identifies
categorical policy uncertainties as factors to explain the change in stock–bond correlations over time.
Given the model parameters, firms can access information via newspapers to make projections related
to stock–bond dynamics.
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Appendix A

Table A1. Some major term sets for policy category uncertainty indices.

Variable Description Source

EPUt

Economic policy uncertainty index involves: “economic” or “economy”;
“uncertain” or “uncertainty”; and one or more of “Congress,” “deficit,” “Federal
Reserve,” “legislation,” “regulation,” or “White House” in 10 major newspapers.

Baker et al.
(2016) *

FPUt

Fiscal policy uncertainty index involves terms of “government budget” or
discretionary fiscal policy”, “government revenue”, “tax” or “Taxation”,

“government deficit”, “government spending” or “government expenditure”,
“social security expenditures”, “defense spending”, “Legislation”, “public debt”

or “government debt”, “National bonds”, among others.

Davis (2016) **

MPUt

Monetary policy uncertainty index involves terms of “monetary policy”,
monetary easing”, quantitative easing”, “negative interest rate”, “official
discount rate”, “monetary operation(s)”, “inflation target”, among others.

Davis (2016) **

* Baker et al. (2016). http://www.policyuncertainty.com. ** Source: ‘Measuring Economic Policy Uncertainty’ by
Scott Baker, Nicholas Bloom and Davis, S.J. at www.PolicyUncertainty.com.
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Abstract: In compulsory health insurance in Switzerland, policyholders can choose two main features,
the level of deductible and the type of plan. Deductibles can be chosen among six levels, which range
from CHF 300 to 2500. While the coverage and benefits are identical, insurers offer several plans
where policyholders must first call a medical hotline, consult their family doctor, or visit a doctor
from a defined network. The main benefit of higher deductibles and insurance plans with limitations
is lower premiums. The insureds’ decisions to opt for a specific cover depend on observed and
unobserved characteristics. The aim of this research is to understand the correlation between
insurance plan choices and lifestyle through the state of health and medical care consumption
in the setting of Swiss mandatory health insurance. To do so, we account for individual health and
medical health care consumption as unobserved variables employing structural equation modeling.
Our empirical analysis is based on data from the Swiss Health Survey wherein lifestyle factors like
the body mass index, diet, physical activity, and commuting mode are available. From the 9301
recorded observations, we find a positive relationship between having a “healthy” lifestyle, a low
consumption of doctors’ services, and choosing a high deductible, as well as an insurance plan with
restrictions. Conversely, higher health care services’ usage triggers the choice of lower deductibles
and standard insurance plans.

Keywords: medical services’ consumption; lifestyle factors; insurance plan; structural equation model

1. Introduction

Health insurers try to foster healthy lifestyles among their insureds by promoting exercise,
supporting fitness center memberships, and more recently, the use of wearable connected devices.
The data collected from the latter permit insurance companies to track the individual’s physical activity,
diet, or sleep patterns for instance. Subsequently, insureds carrying on a healthy lifestyle benefit from
premium discounts or other kinds of monetary rewards. Why health insurers promote a healthy
lifestyle is not unfounded. There is a strand of medical literature assessing the effect of the lifestyle
on health documenting that a healthier lifestyle leads to better health, relating to lower medical costs
(Johansson and Sundquist 1999; Andersen et al. 2000; Lee and Skerrett 2001; Joshipura et al. 2001;
Penedo and Dahn 2005; Dauchet et al. 2006; Inyang and Okey-Orji 2015; Miller et al. 2017). However,
the relationship between health and health insurance decisions has been sparsely investigated.
While there is a clearly demonstrated link between lifestyle and health in the medical literature,
this relation has not been used in actuarial science, leaving the field with little or no evidence of the
effect of lifestyle on health insurance decisions.

Risks 2020, 8, 41; doi:10.3390/risks8020041 www.mdpi.com/journal/risks137
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In our study, using data from the Swiss Health Survey (SHS), we aim to seize the indirect effect of
lifestyle—encompassed by the body mass index (BMI), diet, physical activity and commuting mode—on
health insurance decisions, i.e., the choice of the plan and the level of deductible. We consider that the
decisions are mediated through latent variables linked to health and health care consumption. We set up
a structural equation modeling (SEM) framework that allows capturing such indirect effects. We define
health as a latent variable embodied by the self-assessed health, as well as chronic and limiting daily
activities health conditions. Thereby, the latter offer an objective measure. Further, health directly impacts
health care consumption, our second latent variable captured by the number of doctor visits and hospital
stays. Additionally, the model is able to account for the bidirectional relationship between health care
consumption and the choice of the insurance plan and the deductible level.

The results from our model provide empirical support for the correlation between health insurance
choice and lifestyle via health and health care consumption. Using 9301 observations obtained from the
SHS dataset, we control the choice of deductible and insurance plan for socio-economic characteristics
(gender, nationality, education, income, number of children in the household, importance of freedom
of choice of the specialist doctor, linguistic region, and urbanization) and allow for the two endogenous
variables to correlate. We show that an increase in age and BMI correlates with a decrease in health,
whereas an increase in the number of portions of fruits and vegetables eaten per day, the number of
physical activities performed in a week, and the usage of a bike to commute correlates with an increase
in health. Further results display a negative correlation between health and health care consumption,
where the latter variable is positively associated with the choice of a standard, i.e., non-restricting,
health insurance plan. Similarly, an increase in health care consumption correlates positively with
a low level of deductible. Linking our results, we obtain the indirect effect of lifestyle on insurance
decisions. Thereby, an increase in age and BMI is associated with having a low deductible and opting
for a standard insurance plan whereas, having a “healthy” lifestyle (good diet and physical activity)
correlates with having a high deductible and preferring a more restrictive insurance plan at lower cost.

The remainder of this paper is organized as follows: In Section 2, we briefly review the Swiss
health insurance system, as well as the literature related to the development of our research hypotheses.
In Section 3, we pursue the setup of the model. Results are displayed along with a discussion in
Section 4. Finally, we conclude in Section 5.

2. Background Information and Research Hypotheses

2.1. Insurance Plans and Deductibles in the Swiss Health System

Before developing our research, we expose some basic features of the Swiss health insurance
system that are relevant for the matter of this study. Basic health insurance in Switzerland is mandatory
and regulated by Federal law, which sets up the reimbursement policies. Under Federal law, basic
health insurance coverage is compulsory for all residents and organized through private insurance
companies. All insurance companies proposing basic health insurance are obliged to accept any
individual independently of the health status. Premiums are calculated by the insurers, are determined
by regions along cantons and urbanicity, and are validated by the Swiss government. Note that prices
are the same for all individuals within the three age classes: up to 18 years, 19 to 25 years, and 26 years
or more. Thus, insurers are not allowed to take into account other variables like gender, exact age,
or health status. Beyond the basic plan, individuals can subscribe to private complementary health
insurance. Regarding the catalog of reimbursements, on the one hand, the basic plan covers basic
health risks, but does not extend to dental treatments, to alternative medicine techniques, nor to glasses
or lens purchases, with exceptions made for some specific medical conditions. On the other hand,
complementary health policies cover the costs that go beyond the basic insurance scheme. In this study,
we focus on the decisions on basic health insurance by individuals aged 18 years and older. These
individuals face several choices for their insurance plan and deductible level.
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2.1.1. Insurance Plans

The insurance policies currently offered in Switzerland can be grouped into four families. The first
plan is the “standard” plan, and it is chosen by most individuals. This policy offers the freedom of
choice to visit any doctor or specialist and presents no specific restriction. This plan has the highest
premium. The second most popular plan is the so-called “family doctor” model. Its peculiarity lies in
the importance of the general practitioner (GP) that acts as a gatekeeper and centralizes information
of the individual. Indeed, holders of this type of policy commit to always consulting the same GP
in case of any health issues. They have to chose their doctor in advance from a list of recognized
GPs provided by their health insurer. As a gatekeeper, the GP transfers the patient to a specialist if
necessary. This plan typically displays premiums that are 15 to 20% lower than those of standard plans.
The third most common plan is known as “CallMed”. As its name suggests, this model brings the
constraint of calling a medical hotline prior to physically seeking advice from a doctor. Depending on
the specific policy rules, there may be an unrestricted choice of the doctor after the phone consultation.
Policyholders from this scheme profit from premium reductions of up to 20%. Finally, there is the
“HMO” model where the acronym stands for health maintenance organization. Under this model,
the insureds commit to always pass through a doctor affiliated with the selected HMO group for
a first consultation. Like in the CallMed model, if necessary, the following consultation may take place
outside of the HMO medical team, depending on the health insurer. This last type of plan can come
with premiums up to 25% below the standard plan.

2.1.2. Deductible Levels

In all insurance plans and on a yearly basis, policyholders chose a deductible. Here, the decision
environment is less complex. With amounts regulated by the health insurance law, there exist six levels
of deductibles, namely CHF 300, 500, 1000, 1500, 2000, and 2500. Once medical costs up to the chosen
level are paid out-of-pocket, there only remains a co-payment of 10% up to CHF 700 on the additional
costs, whereafter the health insurer entirely reimburses the spending.

2.2. Literature Review and Development of the Hypothesis

While partial insights into our research can be gained by studying descriptive statistics, we propose
to structure our analyses around selected conjectures and embed the latter in the body of existing
literature. A recent study conducted by Li et al. (2018) identified five health risk-reducing lifestyle
factors. Among them, three characteristics are of particular interest for our study. Indeed, three lifestyle
indicators are found to play a role in mortality. More specifically, life expectancy increases with a BMI
ranging between 18.5 and 24.9, 30 min or more per day of exercising, and a healthy diet. In addition to
these measures, we considered in our research another factor: the commuting mode. This variable has
been found to be a relevant factor for health conditions in the literature (Oja et al. 1991; Pucher et al. 2010
and Riiser et al. 2018). Since these factors are relatively easily trackable and modifiable, as opposed to,
for example, alcohol or tobacco consumption, we used them as determinants for lifestyle.

2.2.1. BMI

The effect of BMI on health outcomes has been extensively studied, and the results are unambiguous.
In reports published as early as 1959, the Society of Actuaries has assessed this link by studying the
relationship between mortality rates and weight (Society of Actuaries 1959; Courtland C. and Edward A.
1979). It was found that as weight increases, so does the mortality rate. Following studies have confirmed
and extended the negative effect of a high BMI on health. Indeed, a higher BMI is associated with a higher
risk for coronary heart disease (CHD), cardiovascular disease (CVD), and for congestive health failure
(Hubert et al. 1983; Jousilahti et al. 1996). An increase in BMI also increases the vulnerability to endometrial,
sigmoidal, colorectal, and hormone-related cancer and type II diabetes (non-insulin dependent diabetes
mellitus; see Pi-Sunyer 1991; Le Marchand et al. 1992; World Health Organization 2000; Stommel and
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Schoenborn 2010). Overall, a higher BMI is associated with higher incidence rates of diseases (see also, e.g.,
Felson et al. 1992; Stommel and Schoenborn 2010).

2.2.2. Diet

The old adage “You are what you eat” has been proven right in multiple stances. Two literature
reviews (Block et al. 1992; Steinmetz and Potter 1996) assessed the incidence of fruit and vegetable
intake on several cancers, reporting their protective effect. A healthier diet composed of a greater
number of fruits and vegetables decreases the likelihood of cancers like esophagus, pancreas, and breast
cancer. Other studies focused on the beneficial impact of an increase of fruit and vegetable consumption
on CHD or CVD and reported a lower incidence, as well as lower mortality related to heart deficiencies
(Joshipura et al. 2001; Bazzano et al. 2002; Dauchet et al. 2006; Oyebode et al. 2014; Miller et al. 2017).

2.2.3. Physical Activity

Similar to the effect of the diet on health, the positive effect of physical activity on health is
well established. A literature review conducted by Warburton et al. (2006) assessed 152 studies and
highlighted that increased levels of physical activity were found to reduce relative risks of death by
20 to 35%; inversely, individuals in the lowest quantiles of physical activity had an increased risk
of death from any cause compared to those in the top quantiles. They also accounted for a reduced
incidence of type II diabetes in those individuals who reported weekly physical activity. Other studies
also investigated this relationship and backed up the review of Warburton et al. (2006). Johansson and
Sundquist (1999), Lee and Skerrett (2001), and Matthews et al. (2007) associated a higher frequency
of physical activity to a reduced mortality rate and better overall health, while Gerhardsson et al.
(1988), Thune et al. (1997), Thune and Furberg (2001), and Penedo and Dahn (2005) related a less active
lifestyle to increased risks of colon, breast, prostate, and colorectal cancers.

2.2.4. Commuting Mode

The mode of commuting most frequently used to go to work, to school, for grocery shopping,
or other activities is an integral part of the lifestyle definition. The medical literature has especially
aimed its attention at walking and cycling as a means of transportation. Most papers pool together
individuals who walk or cycle to commute; when a distinction was made, the results may present
slight differences, but overall, they pointed to similar effects. For instance, Oja et al. (1991) and
Riiser et al. (2018) both found a positive effect of walking or cycling on health measures such as having
a high level of good cholesterol (HDL) or a decreased heart rate and systolic tension. The authors also
identified an inverse relationship between walking or cycling to work and the risk of having diabetes,
results that were equally found by Pucher et al. (2010). Aside from these pooled analyses, the literature
review by Oja et al. (1991) focused on the effect of cycling on health. Of the 16 cycling-specific studies
considered therein, all but two showed that cycling provided a health benefit and particularly for CVD
and CHD risks.

Conjecture 1. An increase in BMI negatively influences health, while an increase in fruit and
vegetable intake and an increase in physical activity frequency positively relate to health. Walking and
cycling for commuting also enhance health.

2.2.5. Health Care Utilization

The usage of health care services is most often approximated by the number of doctor visits (GP
and specialist), outpatient and inpatient hospitalization, or drug use. In the literature from the medical
and economics fields, health care seeking has been studied under several perspectives, theoretically
and empirically (to cite a few, Grossman 1972; Pohlmeier and Ulrich 1995; Ang 2010). Many of them
addressed the demand for health care from a socio-economic, including from an insurance, point of
view. However, health, as a determinant, has seldom been investigated, as the relationship may seem
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trivial. Fylkesnes (1993) found that self-rated health was the most important driver of health care
utilization.

Another factor that could lead to the increase in health care consumption is the enrollment in
health insurance. This incentive effect has been extensively studied, and the conclusion was shared
among the literature reviews of Schmitz (2012) and Prinja et al. (2017): insurance take up leads to
an increase in health care services’ utilization. Schmitz (2012) specified that insurance plans with
a deductible had lower consumption compared to plans without such a feature. Gardiol et al. (2005)
performed this analysis in Switzerland and outlined that 25% of health care expenditures could
be attributable to the incentive effect linked to deductibles. Further, alternative plans have been
introduced in Switzerland to contain health costs by limiting doctors’ visits through the primary usage
of telephone hotlines and directing patients to the most efficient doctors’ networks. Thus, we expected
health care utilization to be negatively linked to alternative insurance plans.

Conjecture 2. Health is the most important driver of health care consumption. As health improves,
health care consumption declines. Further, a low deductible and standard insurance plan should
incentivize health care consumption.

2.2.6. Insurance Demand

The empirical literature on health insurance demand is relatively limited. Firstly, health as
a component of the decision-making process has been less exploited, probably due to the endogeneity
it may present and the difficulty to deal with it. Secondly, papers rather address the demand for
complementary (private) health insurance through expected health care expenditures. In our context,
we focused on the choices made in a compulsory health insurance environment. Finally, we note that
other socio-economic variables have nonetheless been used as drivers of health insurance demand:
e.g., gender, age, marital status, country of origin, education, occupation, or income (Van de Ven and
Van Praag 1981; Cameron et al. 1988). Among these covariates, it is the effect of income that has been
the most extensively estimated (see Schneider 2004 for a literature review). It is needless to emphasize
the lack of empirical evidence linking health and health insurance demand, let alone the effect of
lifestyle. Our research aims at providing an instance of the relationship between lifestyle and health
insurance demand via the health and health care consumption channels.

Conjecture 3. The effect of socio-economic covariates, namely gender, education, and income,
on decisions for the insurance plan and the deductible is significant.

Linking the arguments on health, health care utilization, and insurance demand, we further
propose the following conjecture:

Conjecture 4. The effect of health through health care consumption is believed to be significant
for the health insurance decisions. Higher health care usage is associated with a low deductible and
a standard insurance plan.

Finally, it is interesting to consider Conjectures 2 and 4 together. When reconsidering Conjecture 2,
we can state that riskier individuals, i.e., unhealthy individuals, come along with higher health care
consumption, which, in line with Conjecture 4, is associated with choosing a standard insurance
contract with a low insurance deductible. This is aligned with the common contributions in the
insurance economics literature (Zweifel and Eisen 2012). In our model framework, we will consider
the bidirectional relationship between health care consumption and insurance decisions. Indeed,
while our main interest is on how one’s own health and health care consumption trigger insurance
decisions (deductible, insurance plan). We know from the economics literature that a given insurance
coverage will also have an impact on the consumption (cf. the presence of moral hazard; see the above
discussion in the section “Health Care Utilization”).
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3. Model Framework and Available Data

3.1. Structural Equation Model

To study the above questions and conjectures, the choice of SEM was guided by the several
advantages that this technique presents. Health is a difficult concept to quantify and is oftentimes
estimated by its outcomes, namely chronic disease occurrence or mortality rates. This method, however,
does not provide a complete, nor a sufficient picture of the individual’s state of physical and mental
well-being. In view of these elements, in our SEM model, we let health be a latent variable, influenced
by the lifestyle. Doing so, we avoided at the same time any reporting bias and measurement errors of
health-related variables (on which Crossley and Kennedy (2002) shed light). Indeed, some authors
used the self-assessed health of the individual as a proxy for the unobserved health, especially in the
labor market field (see Haan and Myck 2009; Strully 2009; Böckerman and Ilmakunnas 2009, for a few
examples). The issue in this procedure lies in the unobserved characteristics such as risk aversion,
which may, for instance, affect both one’s own health perception and health insurance demand. Solely
relying on the self-reported health at face value is also prone to severe measurement biases highlighted
in the literature (mostly attributed to social desirability, discussed in Huang et al. 1998 and Van de
Mortel et al. 2008). In an SEM setting, on the contrary, health can be captured by several more objective
measures called manifest variables and, by this means, minimize the bias. The same rationale applies to
the latent variable of health care seeking. Like health, the unobservable variable of the demand of
health care services is a difficult notion to grasp by a single variable or even a set (as for instance in
Bourne et al. 2009) and may be subject to omitted variables’ bias. Again, SEM is well suited for using
several variables at once to define the concept.

Additionally, in dealing with the above issues, SEM can indicate simultaneous direct relationships
called paths. These paths can be specified as well between exogenous as between endogenous variables,
thus allowing for a more thorough and exhaustive analysis. Because of this convenient ability of the
model to assess the simultaneous relationship between multiple unobserved variables and observed
outcomes, SEM frameworks have been widely used in the sociology- and psychology-related literature
(Sobel 1987; Cuttance and Ecob 2009; MacCallum and Austin 2000; Martens 2005). Moreover, we note
that usual econometric methodologies like fixed effects regressions cannot be applied in our context due
to the cross-sectional nature of data from surveys. In an SEM, the estimation of the parameters comes
from a maximization of likelihood between the actual covariance matrices of the relationships between
variables and the estimated covariance matrices of the model (for more information, see Bollen 1989).

Our research aims to assess the relationship between lifestyle and health insurance decisions.
Figure 1 gives a graphical representation of the model that we employed. We measured lifestyle
from four behaviors, namely BMI (BMI), diet (DIT), sports (SPT), and commuting modes (CMW,
CMB, CMP, CMV), while we controlled for age (AGE). In our model, however, lifestyle was not
assumed to have a direct effect on insurance decisions (insurance plan PLN and deductible DED),
but rather an indirect one mediated via health (HLT) and health care consumption (HCC). Health
was hypothesized to play a role in health care usage, which in turn was conjectured to drive health
insurance decisions, thus creating a bridge to lifestyle. Finally, the health insurance choice was
controlled by socio-demographic characteristics (gender SEX, nationality NAT, education EDU and
income INC levels, number of children in the household KID, freedom of choice for specialist doctors
SPE, language region LNR, and urbanicity RUR). Further, health was measured using information on
self-reported health SRH, chronic health conditions CHR, and limiting health conditions LIM, while
health care consumption was evaluated from GP visits (GPV), specialist and gynecologist visits (SPV),
and hospital stays (HOS). In Table 1, we summarize and describe the variables that we used.
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Figure 1. Illustration of the path diagram of the structural equation model.

Table 1. Description of the variables used in the model.

Variables Type Description Values

AGE Exogenous Age integer (19+)
BMI Exogenous BMI according to the WHO scale categories: 0–18.4, 18.5–24.9, 25–29.9, 30+
DIT Exogenous Diet, portions of fruits and vegetables categories: 0–2, 3–4, 5+consumed on average per day
SPT Exogenous Sports sessions with perspiration, per week categories: 0, 1–2, 3+
CMW Exogenous Commuting mode: walking no, yes
CMB Exogenous Commuting mode: biking no, yes
CMP Exogenous Commuting mode: public transportation no, yes
CMV Exogenous Commuting mode: motorized vehicle no, yes
HLT Latent Health –
SRH Manifest Self-reported health, (Likert scale) 0 (very bad), 0.25 (bad), 0.5 (average),

0.75 (good), 1 (very good)
CHR Manifest Chronic health conditions lasting no, yesat least 6 months
LIM Manifest Limiting health conditions no, yesin everyday activities
HCC Latent Health care consumption –
GPV Manifest Number of general practitioner and family integerdoctor visits in the past 12 months
SPV Manifest Specialist and gynecologist visits integerin the past 12 months
HOS Manifest Any hospital stays of at least one night no, yes
SEX Exogenous Gender male, female
NAT Exogenous Nationality Swiss, other
EDU Exogenous Level of education primary, secondary (professional and general),

tertiary (professional and general)
INC Exogenous Level of income in CHF categories: 0–3000, 3001–4500, 4501–6000, 6001+
KID Exogenous Number of children in household < 18 y.o. categories: 0, 1, 2, 3, 4+
SPE Exogenous Freedom of choice of specialist important no, yes
LNR Exogenous Language region German, French, Italian
RUR Exogenous Rural region no, yes
PLN Endogenous Insurance plan standard, other (HMO, family doctor,

telmed, other)
DED Endogenous Deductible in CHF high (2500), low (300)
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3.1.1. Measurement of Health

To run the analysis, we designed our model with health (HLT) as a latent variable. This latent
variable was measured by three observed variables: the self-rated health (SRH), having or having had
a chronic health condition lasting at least six months (CHR), and having health conditions limiting
daily activities during the past six months (LIM). These three indicators were assumed to correlate
perfectly with the unobserved health variable. We considered the following set of equations:

SRHi = κSRH HLTi + εSRH,i

CHRi = κCHR HLTi + εCHR,i

LIMi = κLIM HLTi + εLIM,i

(1)

In the system of Equation (1), κSRH , κCHR, and κLIM are the loading factors. ε ·,i are the error
terms for the individual i linked to each of the indicator variables. For our modeling, we assumed the
error terms to be uncorrelated with each other and with the latent variable HLT, as well as having an
expectation value of zero.

3.1.2. Regression Model for Health

The following Equation (2) describes the regression of health on the lifestyle variables including
a control for age as depicted in the left-hand part of the graph in Figure 1.

HLTi = β0 + βAGE AGEi + βBMI BMIi + βDIT DITi + βSPTSPTi + βCMWCMWi

+ βCMBCMBi + βCMPCMPi + βCMVCMVi + εHLT,i
(2)

The respective β0 and β· coefficients correspond to the baseline, respectively the regression
coefficients linked to the variables. The error term εHLT,i was assumed to have a zero expected value
and to be uncorrelated with the error terms in the other submodels.

3.1.3. Measurement of Health Care Consumption

Our second latent variable was the individual’s inherent health care consumption (HCC).
Three variables were used to approximate this behavior: the number of GP or family doctor visits (GPV),
the number of specialists visits (SPV), and whether the respondent had an inpatient hospitalization
(HOS). All three variables were accounted for during the past 12 months and were assumed to correlate
perfectly with our unobserved health variable.

GPVi = λGPV HCCi + εGPV,i,

SPVi = λSPV HCCi + εSPV,i,

HOSi = λHOSHCCi + εHOS,i

(3)

In the system of Equation (3), λGPV , λSPV , and λHOS are the loading factors. ε ·,i denote the error
terms for the individual i in each indicator variable. The errors were assumed to be uncorrelated with
each other and with the latent variable HCC. Errors were supposed to have an expected value of zero.

3.1.4. Regression Model for Health Care Consumption

The following Equation (4) is the regression of health care consumption on health (HLT) and the
insurance characteristics (plan PLN and deductible DED):

HCCi = δ0 + δHLT HLTi + δPLN PLNi + δDEDDEDi + εHCC,i (4)
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The respective δ0 and δ· coefficients correspond to the baseline, respectively the variables’
regression coefficients. The error term εHCC,i was assumed to have a zero expected value and to
be uncorrelated with other error terms.

3.1.5. Regression Models for Health Insurance Decisions

The two following regressions express the choice of the insurance plan (PLN) and deductible
level (DED) according to health care consumption and socio-demographic characteristics. The variable
PLN takes the value of one if the respondent chooses an alternative plan (HMO, family doctor, telmed,
other) and zero for the standard plan. Concerning the deductible levels DED, if the individual has
opted for a yearly deductible of CHF 300, the variable takes the value of zero. The value is one if
the chosen deductible is CHF 2500. Here, we built a simple model by selecting only the two extreme
values because we considered that they unveiled a clear choice towards the highest versus the lowest
coverage. We disregarded all individuals with other choices. The resulting respective probit models
(choices 0 and 1) were modeled through latent variables. Indeed, for our SEM, we supposed there
existed auxiliary random variables PLN∗ and DED∗ such that:

PLN∗
i = γPLN

0 + γPLN
HCC · HCCi + γPLN

SEX · SEXi + γPLN
NAT · NATi + γPLN

EDU · EDUi + γPLN
INC · INCi

+ γPLN
KID · KIDi + γPLN

SPE · SPEi + γPLN
LNR · LNRi + γPLN

RUR · RURi + εPLN,i
(5)

and:

DED∗
i = γDED

0 + γDED
HCC · HCCi + γDED

SEX · SEXi + γDED
NAT · NATi + γDED

EDU · EDUi + γDED
INC · INCi

+ γDED
KID · KIDi + γDED

SPE · SPEi + γDED
LNR · LNRi + γDED

RUR · RURi + εDED,i
(6)

for which we had PLN and DED variables acting as indicators:

PLNi =

{
1 if PLN∗

i > 0

0 otherwise
(7)

and:

DEDi =

{
1 if DED∗

i > 0

0 otherwise
(8)

The values γPLN
0 and γPLN· , respectively γDED

0 and γDED· , follow the standard notations for
regression coefficients. Further, the error terms εPLN,i and εDED,i were assumed to come from a standard
normal distribution and were allowed to correlate with each other.

3.2. Swiss Health Survey Data

We based our study on data obtained from the Swiss Health Survey, a cross-sectional nation-wide
survey (Swiss Federal Statistical Office 2019; Swiss Federal Statistical Office 2018).1 The survey was
carried out by the Swiss Federal Statistical Office on behalf of the Federal Council every five years
since 1992. In the following, we used the wave of 2017, which was the sixth and most recent one.
The survey responses were firstly collected via computer-assisted telephone interviews and followed
up by an additional written questionnaire available in the three official Swiss languages (German,
French, and Italian). The included population was aged 15 years or over and lived in Switzerland
in a private household. The total sample of 2017 included 22,134 telephone interviews and 18,832
subsequently completed and returned questionnaires. The information collected concerned the state of
health of each individual (e.g., physical and mental well-being, health conditions, health limitations),

1 For more information, see https://www.bfs.admin.ch/bfs/fr/home/statistiques/sante/enquetes/sgb.html.
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the use of health care (e.g., doctor consultations, hospitalization, use of drugs), the health insurance
status (e.g., insurance plan, deductible, purchase of complementary insurance), behaviors susceptible
to have an influence on health (e.g., alcohol intake, drug consumption), and socio-demographic
characteristics (e.g., employment status, income, nationality).

To conduct our empirical analysis, we extracted a sample of “complete” answers comprising 9301
observations. The completeness of an observation was defined by the absence of entries that were not
available (NA). We could consider that the NAs were distributed randomly across the original data
since our extracted sample was not markedly different from the original one. Regrading the lifestyle
indicators, our final sample had a slightly higher median age, i.e., 52 versus 49 years. As concerned
the BMI, the diet (number of portions of fruits and vegetables eaten per day) or the frequency of
physical activity2, and commuting, the average values and shares were very close. Regarding the
other exogenous variables, the original sample displayed the same level of self-rated health (good),
and a smaller percentage had health conditions limiting daily activities, which was most probably due
to a lower proportion of individuals aged over 50 years; our final sample contained a higher number
of individuals with chronic health conditions. Overall, we considered that our extracted sample did
not present any selection bias thanks to the sampling performed beforehand by the Swiss Federal
Statistical Office and the relatively large sample size when compared to other surveys (where the
number of observations is often considerably smaller).

3.3. Descriptive Statistics

3.3.1. Exogenous Characteristics Affecting Health

In Table 2, we present some descriptive statistics based on our data along with the variables
appearing in our hypotheses. The lifestyle was conjectured to have an effect on health, which was
defined in our model by the self-rated health (SRH), the past or ongoing existence of a chronic disease
lasting for six months or more (CHR), and a health condition coming with a limitation in daily activities
(LIM). Subsequently, through health, they impacted health care consumption, gauged in our model
by the number of GP visits (GPV), the number of specialists visits (SPV, gynecologists excluded, to
avoid pregnancy-related bias), and the individual’s hospital stays of one night or over (HOS). The first
column in Table 2 counts the number of observations N per category in each variable, while the second
represents the corresponding share from the whole sample of 9301 observations (total N). The other
six columns display the mean for each manifest variable. Over the total sample (cf. the last row of
the table), the mean self-rated health was at 0.81, that is good health on average; 35% of the sample’s
population reported chronic, and 21% health conditions limiting daily activities. Alongside this, the
average number of GP visits was 2.27, and the number of visits to specialists was 1.99. Finally, 18% of
the sampled individuals stayed in a hospital for more than one night during the 12 months preceding
the survey.

Concerning the lifestyle variables, when grouping individuals by BMI categories, we deciphered
the pattern that was documented in the literature, i.e., respondents with a BMI comprised between
18.5 and 24.9 declared the highest self-rated health (0.84) and the lowest propensity of having a chronic
or a limiting health condition (0.31 and 0.18). Additionally, as the BMI increased, the SRH decreased
(from 0.84 to 0.72 for the category with highest BMI), and the proportion of individuals having
chronic or limiting health conditions increased (moving from 0.31 and 0.18 to 0.50 and 0.30 for CHR,
respectively LIM, in the group with the highest BMI), thus matching observations from the literature
(cf. Section 2.2). An increase in BMI was also positively associated with health care services’ utilization.
According to our descriptive statistics, the effect of the diet on the health and health care usage proxies
was mitigated. Two associations could be made: an increase in the number of fruits and vegetables

2 Note that we excluded individuals not being able to walk at least 200 m by themselves.
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eaten on average per day came with an increase in self-rated health (0.80 to 0.83), but also with
an increase of visits to specialists (1.33 to 1.66). Further analysis, including the study of significance,
was performed in our SEM. When it came to physical activity, however, the relationship seemed
indisputable. As the frequency of sports activities increased, the data presented a clear increase in the
self-rated health variable (0.74 to 0.85), coupled with a decrease in the occurrence of health conditions
(0.42 to 0.30 for CHR and 0.26 to 0.18 for LIM). This beneficial association continued on health care
seeking through all indicators where we observed declining consumption. Concerning the effect
on the commuting mode, we observed that it largely depended on the type. Biking as a means of
transportation exhibited the most notable link to our indicators: individuals who bike reported a
higher self-rated health (0.85 against 0.80) and a lower in-group propensity to have a chronic or limiting
health condition (0.33 versus 0.36 for CHR and 0.19 versus 0.21 for LIM). By the same token, the
number of GP visits dropped from 2.42 to 1.82 on average, the number of visits to specialists from
1.48 to 1.32, and the inpatient stays going down by three percentage points. Finally, age displayed the
expected effect, that is as age increased, the self-rated health decreased, and the propensity in each
category of having a chronic or a limiting health condition increased, along with the frequency of all
medical visits. Finally, to supplement our descriptive statistics, we document in Table 3 the correlation
coefficients between our proxy variables, as well as their standard deviations.

Table 2. Descriptive statistics of the exogenous characteristics affecting health.

N (%) SRH CHR LIM GPV SPV HOS

BMI
0–18.4 260 (2.8) 0.82 0.35 0.20 2.10 1.72 0.12
18.5–24.9 5075 (54.6) 0.84 0.31 0.18 1.99 1.37 0.10
25.0–29.9 2973 (32.0) 0.79 0.37 0.22 2.36 1.42 0.12
30.0+ 993 (10.7) 0.72 0.50 0.30 3.42 1.76 0.17

Diet
0–2 portions per day 4309 (46.3) 0.80 0.35 0.21 2.33 1.30 0.12
3–4 portions per day 3043 (32.7) 0.82 0.35 0.20 2.15 1.49 0.11
5+ portions per day 1949 (21.0) 0.83 0.35 0.21 2.30 1.66 0.11

Sports
No activity 2947 (31.7) 0.74 0.42 0.26 2.91 1.72 0.14
1–2 times per week 3641 (39.1) 0.84 0.33 0.18 1.92 1.24 0.10
3+ times per week 2713 (29.2) 0.85 0.30 0.18 2.02 1.39 0.11

Commuting: walking
No 4732 (50.9) 0.81 0.34 0.20 2.28 1.46 0.11
Yes 4569 (49.1) 0.81 0.36 0.21 2.25 1.42 0.11

Commuting: biking
No 6892 (74.1) 0.80 0.36 0.21 2.42 1.48 0.12
Yes 2409 (25.9) 0.85 0.33 0.19 1.82 1.32 0.09

Commuting: public transport
No 6000 (64.5) 0.81 0.34 0.20 2.30 1.38 0.12
Yes 3301 (35.5) 0.81 0.36 0.22 2.21 1.54 0.11

Commuting: motorized vehicle
No 3092 (33.2) 0.81 0.35 0.21 2.23 1.50 0.11
Yes 6209 (66.8) 0.81 0.35 0.21 2.28 1.41 0.11

Age
19–26 568 (6.1) 0.87 0.21 0.14 1.95 1.20 0.08
25–40 2117 (22.8) 0.87 0.23 0.13 1.80 1.38 0.11
41–50 1732 (18.6) 0.83 0.29 0.17 1.86 1.15 0.09
51–60 1840 (19.8) 0.79 0.38 0.21 2.28 1.71 0.10
61–70 1552 (16.7) 0.77 0.46 0.26 2.58 1.55 0.13
71–80 1173 (12.6) 0.75 0.48 0.31 3.06 1.61 0.17
81+ 319 (3.4) 0.72 0.45 0.36 3.55 1.06 0.15

Total 9301 (100.0) 0.81 0.35 0.21 2.27 1.99 0.18
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Table 3. Correlation coefficients and standard deviation of the indicator variables.

SRH CHR LIM GPV SPV HOS

SRH 1.00 −0.58 −0.50 −0.53 −0.46 −0.31
CHR −0.58 1.00 0.49 0.35 0.27 0.14
LIM −0.50 0.49 1.00 0.27 0.18 0.15
GPV −0.53 0.35 0.27 1.00 0.51 0.39
SPV −0.46 0.27 0.18 0.51 1.00 0.33
HOS −0.31 0.14 0.15 0.39 0.33 1.00

Std. dev. 0.19 0.48 0.40 3.85 3.86 0.32

3.3.2. Exogenous Characteristics Affecting Health Insurance Decisions

In the following Table 4, we provide an overview of the distribution of the observations along
the second set of exogenous variables, i.e., the socio-demographic characteristics, linked to insurance
decisions. We provide the shares of individuals along the insurance plan and deductible choices.
In addition to the control variables, we present the distribution along the health and health care
utilization indicator variables.

Firstly, when comparing the statistics of health insurance decisions based on socio-demographic
variables, we observed several trends. Between both genders, we noted one important difference
with women being more likely to choose a lower deductible when compared to men (65.9% of the
women, 52.2% of the men). Regarding the nationality, Swiss nationals tended to opt more often for
an alternative plan, whereas non-Swiss individuals rather went for the standard one. Education,
income, and the number of children in the household seemed to demonstrate differences. As the
level of education, income, or the number of children increased, the majority switched from the low
to the high level of deductible. Moreover, increasing education levels came along with a favor for
alternative insurance plans. Along the two other variables, the majority already favored alternative
plans with a slight increase in the share as income and number of children became higher. Finally, the
last markedly different result with respect to the socio-demographic variables was the specificity of
German-speaking respondents regarding the choice of the insurance plan: most individuals from the
German-speaking language area tended towards alternative models, which was not the case in the
French- and Italian-speaking regions.

Secondly, when focusing on health-related variables, we observed that higher levels of self-rated
health went along with individuals that had chosen the high level deductible, as well as an alternative
insurance plan. This observation was not at odds with economic logic as an individual with a lower
self-rated health may expect to have higher yearly expenses and hence would prefer to pick a model
with a higher coverage. The same observation could be drawn for individuals disclosing chronic or
other limiting health conditions. The distribution of individuals who did not report having or having
had any chronic health conditions was fairly even among both models (43.3% standard) and deductible
levels (49.7% low). For individuals with a limiting health condition, the figures were still very similar.
When focusing on people reporting any chronic or limiting health conditions, the shares regarding the
model choices remained in fact relatively stable, but presented a strong increase in the share opting for
the low deductible, i.e., 77.8% for CHR and 78.5% for LIM.

Finally, concerning our manifest variables accounting for health care consumption, the observations
met the economic intuition. Regarding the models, the relationship was constant: as the number of
visits, disregarding the type of doctor, increased, health care consumption did as well. Respondents
typically favor an alternative insurance plan. Strong differences appeared with regard to the deductible.
As an example, individuals not reporting any visits to a GP were 36.6% in the low deductible category;
this percentage rose to 84.4% for those reporting four visits or more during the past 12 months. The same
pattern could be observed throughout all three variables.
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Table 4. Descriptive statistics of the exogenous characteristics affecting insurance decisions.

Insurance Plan Deductible

N (%) Std. (%) Oth. (%) Low (%) High (%)

Gender
Male 4343 (46.7) 43.9 56.1 52.2 47.8
Female 4958 (53.3) 43.1 56.9 65.9 34.1

Nationality (baseline: Swiss)
Swiss 7633 (82.1) 40.7 59.3 60.3 39.7
Other 1668 (17.9) 55.8 44.2 55.6 44.4

Education
Primary 1152 (12.4) 55.2 44.8 83.4 16.6
Secondary: professional 3384 (36.4) 44.6 55.4 68.0 32.0
Secondary: general 1213 (13.0) 43.9 56.1 57.0 43.0
Tertiary: professional 1280 (13.8) 33.8 66.2 50.9 49.1
Tertiary: general 2261 (24.3) 40.6 59.4 40.7 59.3

Income
0–3000 3502 (37.7) 45.8 54.2 70.1 29.9
3001–4500 1949 (21.0) 45.9 54.1 64.5 35.5
4501–6000 1738 (18.7) 39.8 60.2 54.0 46.0
6001+ 2112 (22.7) 40.2 59.8 41.7 58.3

Children in household
0 6 720 (72.3) 45.6 54.4 65.9 34.1
1 354 (3.8) 42.1 57.9 56.8 43.2
2 774 (8.3) 42.4 57.6 45.1 54.9
3 220 (2.4) 43.6 56.4 47.3 52.7
4+ 1233 (13.3) 32.5 67.5 36.4 63.6

Freedom of choice of specialist important
No 2436 (26.2) 33.9 66.1 52.4 47.6
Yes 6865 (73.8) 46.8 53.2 62.0 38.0

Language region
German 6273 (67.4) 39.0 61.0 60.1 39.9
French 2295 (24.7) 52.6 47.4 58.8 41.2
Italian 733 (7.9) 53.1 46.9 56.3 43.7

Rural region
No 6412 (68.9) 44.6 55.4 59.5 40.5
Yes 2889 (31.1) 40.9 59.1 59.4 40.6

Self-rated health
Very bad 32 (0.3) 46.9 53.1 87.5 12.5
Bad 212 (2.3) 57.5 42.5 93.4 6.6
Average 1020 (11.0) 51.9 48.1 90.3 9.7
Good 4218 (45.3) 43.2 56.8 66.6 33.4
Very good 3819 (41.1) 40.6 59.4 41.2 58.8

Chronic health conditions
No 6062 (65.2) 43.3 56.7 49.7 50.3
Yes 3239 (34.8) 43.7 56.3 77.8 22.2

Limiting health conditions
No 7385 (79.4) 43.2 56.8 54.5 45.5
Yes 1916 (20.6) 44.5 55.5 78.5 21.5

Visits to general practitioner
0 2623 (28.2) 43.0 57.0 36.6 63.4
1 2459 (26.4) 41.7 58.3 54.0 46.0
2–3 2503 (26.9) 43.9 56.1 71.5 28.5
4+ 1716 (18.4) 45.9 54.1 84.8 15.2

Visits to specialist
0 5111 (55.0) 42.7 57.3 50.0 50.0
1 1977 (21.3) 42.1 57.9 64.9 35.1
2–3 1265 (13.6) 44.6 55.4 74.6 25.4
4+ 948 (10.2) 48.6 51.4 78.7 21.3

Hospital inpatient stay
No 8243 (88.6) 43.3 56.7 57.3 42.7
Yes 1058 (11.4) 44.3 55.7 76.5 23.5

Total 9301 (100.0) 59.5 40.5 43.4 56.6
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4. Model Results and Discussion

In this section, we document the SEM results for our health measurement for the model defined
through Equation (1), followed by the regression model for health, i.e., the coefficients of the lifestyle
effects on health (see Equation (2)), the health care consumption measurement as modeled through
Equation (3), succeeded by the health care consumption regression (Equation (4)). Finally, we present
the results for the regression models on health insurance demand for both insurance plan (Equation (5))
and deductible (Equation (6)).

We estimated the SEM using diagonally weighted least squares, which best fits binary observed
variables as it does not make any distributional assumptions, nor consider continuity contrary to the
maximum likelihood method (for more information, see Muthén 1984 or Li 2016). To run our empirical
analysis, we made use of the lavaan package in R (Rosseel 2012). Before presenting the model results
and coefficients, we lay out the goodness-of-fit measures. The measures and indicators calculated
for the overall model were the following. We obtained a comparative fit index (CFI) of 0.959 and
a Tucker–Lewis index (TLI) of 0.995 for the incremental fit measures and a root mean squared error
of the approximation (RMSEA) of 0.028 and a standardized root mean squared residual (SRMR) of
0.043 for the absolute fit indices. According to the cut-off values of Hooper et al. (2008), our model
presented a good fit, and an RMSEA lower than 0.03, as in our case, was indicative of an excellent fit.
In the following paragraphs and Tables 5–9, we display our results.

4.1. Measurement of Health

Our first results were on the establishment of the health latent variable. We set the loading factor
κSRH to one as it set the scale of the HLT variable. The model results in Table 5 lay out that, expectedly,
as individuals reported chronic or limiting health conditions, their health significantly decreased.
Indeed, both variables CHR and LIM were highly significant at the 0.001 p-level, and the related κ

coefficients were negative.

Table 5. Results for the measurement of health (Equation (1)).

Health Measurement

κ Sig.

SRHi ∼ κSRH HLTi 1.000
CHRi ∼ κCHR HLTi −1.760 ***
LIMi ∼ κLIM HLTi −1.047 ***

Note: *** p < 0.001.

4.2. Regression Model for Health

In Table 6, we report the coefficients stemming from the regression Equation (2), i.e., the results for
the effect of lifestyle-defining behavior on the latent health variables. The first variable of interest was
the BMI, and the displayed results were in line with the existing literature. The baseline category was
a BMI ranging from 18.5 and 24.9 and showing no statistical difference with the lower category of BMI.
However, when moving to higher categories, the obtained regression coefficients suggested that the
negative effect on health became more salient: the value of the coefficient was multiplied by a factor
of three between the third and last group, both coefficients being highly significant at the 0.001 level.
Regarding the diet variable, which was characterized by the number of fruits and vegetables eaten
on average per day, there was no strong effect in our sample. The only change in health may occur
from an increase from 0–2 portions per day to 3–4 resulting in an increase with a 0.1 significance level.
This result was somehow expected from our descriptive statistics where no striking differences between
the several categories were observed. Sports activities when compared to the baseline of no activity
were significantly linked to better health. When comparing individuals performing 1–2 sessions or 3+
sessions per week with the baseline, we observed very similar coefficient values. That is, an increase in

150



Risks 2020, 8, 41

the number of sessions enhanced health rather similarly between both categories with a coefficient of
0.053 (1–2 sessions), respectively 0.057 (3+ sessions). We note that our findings concerning diet and
sports were found to follow the same pattern as in Blanchard et al. (2004). Indeed, they found that
among cancer survivors, individuals following the five fruits and vegetables per day recommendation
did not witness an increase in their health-related quality of life contrary to individuals who performed
physical activities. If we classified the commuting modes according to their impact on health, biking
would be the most interesting way of transportation in this regard, and walking would come second.
The stronger effect of biking rather than walking was also documented by Matthews et al. (2007).
Using a motorized vehicle was still linked to better health, but with a lower significance (p-value of 0.1);
using public transport was linked to worse health (significance level of 0.1). Finally, with increasing
age, individuals had worse health levels. Overall, having a BMI lower than 25, eating three to four
portions of fruits and vegetables per day on average, exercising with perspiration at least once per
week, and biking or walking as a way to commute represented a lifestyle relating to better health. In
the opposite manner, having a high BMI, a greens-deprived diet, as well as a sedentary lifestyle were
linked to worse health levels. These results supported and specified our first conjecture.

Table 6. Results for the regression model for health (Equation (2)).

Health

β Sig.

BMI category (baseline: 18.5–24.9)
0–18.4 −0.016
25.0–29.9 −0.032 ***
30.0+ −0.090 ***

Diet (baseline: 0–2 portions per day)
3–4 portions per day 0.007 .
5+ portions per day 0.002

Sports (baseline: No activity)
1–2 times per week 0.053 ***
3+ times per week 0.057 ***

Commuting mode: walking (baseline: No)
Yes 0.010 *

Commuting mode: biking (baseline: No)
Yes 0.016 ***

Commuting mode: public transport (baseline: No)
Yes −0.008 .

Commuting mode: motorized vehicle (baseline: No)
Yes 0.008 .

Age (baseline: 25–40)
19–24 −0.001
41–50 −0.029 ***
51–60 −0.061 ***
61–70 −0.080 ***
71–80 −0.103 ***
81+ −0.107 ***

Note: . p < 0.1, * p < 0.05, *** p < 0.001.

4.3. Measurement of Health Care Consumption

Moving to the second latent variable construction defined in Equation (3), we set the loading
factor λGPV to one defining the scale of the health care consumption variable HCC. From the results in
Table 7, one can observe a positive relationship between the number of visits to specialist doctors or
inpatient stays and health care consumption (both with a p-level of 0.001).
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Table 7. Results for the measurement of health care consumption (Equation (3)).

Health Care Consumption Measurement

λ Sig.

GPVi ∼ λGPV HCCi 1.000
SPVi ∼ λSPV HCCi 0.828 ***
HOSi ∼ λHOS HCCi 0.042 ***

Note: *** p < 0.001.

Regression Model for Health Care Consumption

In Table 8, we display the results of the variables conjectured to affect health care consumption.
Undoubtedly, health had the strongest impact on health care consumption. Indeed, the health variable
was highly significant at the 0.001 p-value level and showed a negative sign, i.e., better health came
with lower care consumption. This confirmed the first part of the second conjecture.

Table 8. Results for the regression model for health care consumption (Equation (4)).

Health Care Consumption

δ Sig.

Health
−14.109 ***

Insurance plan (baseline: standard)
Other 0.096 .

Deductible (baseline: Low)
High 0.284 *

Note: . p < 0.1, * p < 0.05, *** p < 0.001.

Further, we found that the type of plan, as well as the level of deductible played some role in
the amount of health care services used. Our results suggested that an alternative insurance plan
and a high level of deductible were related to higher health care consumption. These results were
counterintuitive since higher deductibles and alternative insurance plans were thought to diminish
care service utilization (see our Conjecture 2 and Gardiol et al. 2005; Schmitz 2012; Prinja et al. 2017).
First, care must be taken when concluding since significance levels for both variables were much less
strong then the one for the health variable. Second, the results contradicted our findings from the
“reverse” regression models in Equations (5) and (6) where health care consumption was a predictor for
insurance decisions (see below). Finally, the observed relationship linking the high deductible to higher
consumption might be that individuals who already experienced expenses reaching the deductible may
want “to make the most out of it” and use more services that they have been postponing beforehand.
Thus, individuals with a low deductible may have less incentives to “overuse” health care services.
More research, beyond the data available to us, is needed to resolve this issue.

At this stage, we remained with the one conclusion that health status was probably the single
primary driver for health care consumption.

4.4. Regression Models for Health Insurance Decisions

Finally, we now turn to the probit regression models defined in Equations (5) and (6) linking the
previously discussed variables and results to health insurance decisions. The results are presented in
Table 9. We considered two insurance decisions. The first column of the table reports the coefficients
of the model related to the decision of choosing an alternative or “other” insurance plan (versus the
baseline of the standard plan). The second part of the table relates to choosing the high deductible
(versus the baseline of the low deductible). The first and foremost result concerned health care
consumption. For both the alternative insurance plan and the high level of deductible choices,
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HCC displayed a negative sign with statistical significance above 0.001. This meant that higher
care utilization went along with the choice of the standard insurance plan and the low deductible.
This confirmed our fourth conjecture. It is noteworthy that both coefficients were statistically very
strong (as was for example the case of health on health care consumption in Table 8). Assembling
the results from the entire model, we could put forward the following reasoning: when we defined
a healthy lifestyle as having a low BMI, a diet of 3+ portions of fruits and vegetables per day, practicing
sports or commuting by bike or walking, such a lifestyle enhanced health; higher levels of health
were associated with lower health care consumption, which in turn correlated with the choice of
an alternative insurance model and a high deductible.

Table 9. Results for regression models for health insurance demand (Equations (5) and (6)).

“Other” “High”
Insurance Plan Deductible

γ Sig. γ Sig.

Health care consumption
−0.030 *** −0.308 ***

Gender (baseline: Male)
Female 0.059 . −0.405 ***

Nationality (baseline: Swiss)
Other −0.362 *** −0.060

Education (baseline: primary)
Secondary: professional 0.198 *** 0.462 ***
Secondary: general 0.105 * 0.271 ***
Tertiary: professional 0.314 *** 0.486 ***
Tertiary: general 0.191 *** 0.627 ***

Income (baseline: 0–3000)
3001–4500 0.003 −0.001
4501–6000 0.064 0.052
6001+ −0.004 0.229 ***

Children in household (baseline: 0)
1 0.067 -0.108
2 0.058 0.021
3 −0.005 0.039
4+ 0.201 *** 0.115 *

Freedom of choice of specialist important (baseline: No)
Yes −0.317 *** −0.268 ***

Language region (baseline: German)
French −0.284 *** 0.064 .
Italian −0.235 *** 0.258 ***

Rural region (baseline: No)
Yes 0.059 . 0.099 **

Note: . p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001.

Regarding the further control variables, we found several significant relationships that supported
Conjecture 3. For example, we observed that women rather tended to prefer a low level of deductible
when compared to men. Another notable difference lied in the choice of the insurance plan
regarding the nationality: non-Swiss individuals rather selected a standard insurance plan while
Swiss individuals, who might be more knowledgeable about the system and have a family doctor,
rather went for other plans (p-value of 0.001). Next, an increase in the level of education correlated with
the choice of an alternative insurance plan and a higher level of deductible. This might correlate with
better system understanding or potentially an interaction with better health. Similarly, individuals from
very high income classes rather selected a higher deductible. This somewhat unexpected observation
about wealthier families opting for the higher level of deductible may be explained by two factors.
Firstly, in Switzerland, health insurance subsidies are commonplace, and they may incentivize the
uptake of a lower deductible. The second element could be the diminishing level of risk aversion with
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wealth. As highlighted by, e.g., Schneider (2004), less wealthy households may be more risk averse than
wealthier ones as unexpected medical expenses could push them into financial distress. Concerning
the number of children in the household, only the last category was markedly different with larger
households going for the less expensive alternative plan and the high deductible. Further, we found
that respondents for whom the freedom of choice for the specialist doctor was important preferred the
standard insurance plan and a low level of deductible. This was intuitive. Finally, our model included
geographical control variables, as well as a variable controlling for urbanicity. We observed regional
differences between German-speaking respondents and French- or Italian-speaking ones. The latter
rather chose a standard insurance plan, but a high deductible (as seen already from the descriptive
statistics). Regarding rural regions, individuals were more prone to choose an alternative insurance
plan coupled with a high deductible.

5. Concluding Remarks

Using data from the Swiss Health Survey, we successfully established the relationship between
lifestyle-defining behavior and decisions in a compulsory health insurance environment. Employing
a structural equation model with health and health care consumption characterized by latent variables,
we gave proof for the following conjectures. Firstly, we empirically demonstrated that an increase
in BMI was negatively correlated with health, whereas an increase in fruit and vegetable intake,
as well as an increase in the number of sports sessions with perspiration were linked to better health.
Additionally, we found that biking and walking for commuting were also related to better health.
Secondly, our results indicated health as being the most significant driver of health care consumption.
In a third step, we confirmed that socio-economic, as well as geographic covariates played a role in
health insurance decisions. Finally, we were able to document the positive relationship between the
choice of an alternative health insurance plan coupled with a high deductible in the case where health
care consumption was lower. Bridging the different findings, we understood that health-enhancing
behavior correlated with decreased health care services’ consumption, the choice of an alternative
health insurance plan, and a high level of deductible.

Our research bound medical and actuarial aspects to provide a better understanding of health
insurance. Most of the results were intuitive, but have not been researched so far for significance in
a regression framework. Our results, although, were very specific to the Swiss health insurance scheme,
and conclusions have to be drawn carefully. For further comprehension of the decision process, it may
be interesting to perform analyses under other insurance environments, as well as make use of panel
data, where available, for the implementation of other econometric techniques.
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