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Preface to ”Advances in Cereal Crops Breeding”

This Special Issue presents some advances in the results of cereal crop breeding. These studies

address only some of the bottlenecks in the breeding of specific crops. At the same time, the advances

in the modern breeding of grain crops are multifaceted and diverse, occurring in different countries

and different continents of the world. At present, in the breeding of agricultural crops, the factor of

climate change and the associated changing conditions for the cultivation of many crops important

for humanity are becoming increasingly important. Climate change can lead to an excess and a sharp

shortage of precipitation, coupled with an increase in temperature, which will affect edaphic factors

of plant growth and development, expressed in the salinization/acidification or drying out of the

soil. On the other hand, this can lead to the emergence of new diseases and stronger epiphytoties of

already known diseases, or to a greater spread of agricultural pests. The above factors ultimately

affect the productivity and quality of the products obtained, on which the food security of each

country depends. In future, breeders of the world will be assisted in solving many of these problems,

along with the traditional ones, using recently developed “omix” genotyping technologies.

Igor G. Loskutov

Editor
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Cereals are the main food and feed crops on our planet, with wheat, rice, and maize
occupying three-quarters of the total acreage. The vast majority of plant breeders and
plant geneticists around the world are engaged in cereal breeding. The genetic resources
for crop genepools, including breeding and research materials, landraces, and wild crop
relatives, which collectively are the pillars of modern plant breeding, are maintained ex situ
in gene banks. The main challenges or bottlenecks in the advanced breeding techniques
currently used in cereals are connected with concerns related to climate change, with
breeding programs aiming to increase yield and tolerance to biotic and abiotic stresses
(e.g., yield potential and resistance to main diseases and pets, as well as increased drought,
heat tolerance, and nutrient efficiency). In the last few years, a trend has occurred in
cereal crop breeding aimed at combining high agronomic and biochemical parameters in a
single cultivar. Currently, traditional genetic and innovative molecular genetic methods are
widely used in the breeding of grain crops. The success of biotechnology approaches has
expanded the breeding possibilities and allowed interspecies and intergenus hybrids to be
obtained. The development of molecular biology and genomics has completely overcome
the barriers limiting the breeding of living organisms, while methods for genome editing
of agricultural crops are still being improved to achieve higher levels of accuracy. Studies
aimed at finding genes and quantitative traits loci (QTLs) that affect the main breeding
traits and at identifying the desired allelic variants are currently relevant. In the field
of genetic sequencing, genotyping by sequencing, also called GBS, is a method used to
discover single-nucleotide polymorphisms (SNP) in order to perform genotyping studies,
such as genome-wide association studies (GWAS).

The acquisition of large-scale phenotypic data has become one of the major bottlenecks
hindering crop breeding and functional genomics studies. Nevertheless, recent technologi-
cal advances have provided potential solutions to relieve such bottlenecks and to explore
advanced methods for large-scale phenotyping, data acquisition, and data processing in
the coming years. The phenomics data generated are already beginning to be used to
identify genes and QTL through QTL mapping, association mapping, and genome-wide
association studies (GWAS), in order to achieve crop improvements through genomics-
assisted breeding (GAB). There is no doubt that accurate high-throughput phenotyping
platforms will accelerate improvements in plant genetics.

This Special Issue on ‘Advances in Cereal Crops Breeding’ comprises 9 papers covering
a wide array of aspects, ranging from the expression-level investigation of genes in terms of
salinity stress adaptations and their relationships with proteomics in rice, the use of genetic
analysis to assess the general combining ability (GCA) and specific combining ability
(SCA) in promising hybrids of maize, the use of DNA markers based on PCR in rice, the
identification of quantitative trait loci (QTLs) in wheat and simple sequence repeats (SSR)
in rice, the use of single-nucleotide polymorphisms (SNP) in a genome-wide association
study (GWAS) in cereals, and Nanopore direct RNA sequencing of related with LTR RNA
retrotransposon in triticale prior to genomic selection of heterotic maize hybrids.

In order to better understand the mechanisms involved in salinity stress adaptations
in rice, two contrasting rice cultivars were compared in a recent study—Luna Suvarna, a
salt-tolerant cultivar, and IR64, a salt-sensitive cultivar. The expression-level investigation
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of auxin signaling pathway genes revealed increases in the transcript levels of several auxin
homeostasis genes in Luna Suvarna compared with IR64 under salinity stress. Furthermore,
protein profiling showed 18 proteins that were differentially regulated between the roots of
two cultivars, some of which were salinity-stress-responsive proteins found exclusively in
the proteome of Luna Suvarna roots, revealing the critical role of these proteins in imparting
salinity stress tolerance. The results show that Luna Suvarna involves a combination of
morphological and molecular traits of the root system that could prime the plant to better
tolerate salinity stress [1].

The tolerance of rice to salinity stress involves diverse and complementary mecha-
nisms, such as the regulation of genome expression, activation of specific ion transport
systems to manage excess sodium at the cell or plant level, and anatomical changes that
mitigate sodium penetration into the inner tissues of the plant. The identification of salinity
tolerance QTLs associated with different mechanisms involved in salinity tolerance requires
the greatest possible genetic diversity to be explored. In the investigation of genotyped
rice landraces, SNP markers were used, with the aim of identifying new QTLs involved
in salinity stress tolerance via a genome-wide association study (GWAS). Twenty-one
identified QTLs colocalized with known QTLs. Several genes within these QTLs have func-
tions related to salinity stress tolerance and are mainly involved in gene regulation, signal
transduction, and hormone signaling. This study provides promising QTLs for breeding
programs to enhance salinity tolerance and identifies candidate genes that should be further
functionally studied to better understand salinity tolerance mechanisms in rice [2].

In addition to water flooding and salinity, rice growers in some parts of the world are
also facing drought; thus, developing new rice genotypes tolerant to water scarcity is one of
the best strategies to maximize yield potential and achieve water savings. In a recent study,
rice genotypes were characterized for grain and agronomic parameters under normal and
drought stress conditions and genetic differentiation was determined via specific DNA
markers related to drought tolerance using simple sequence repeats (SSR) and cultivar
grouping, establishing their genetic relationships with different traits. All genotypes were
grouped into two major clusters with 66% similarity based on Jaccard’s similarity index.
As a result of the study, genotypes were identified that could be included as appropriate
materials for developing a drought-tolerant breeding program. Genetic diversity is needed
to grow new rice cultivars that combine drought tolerance with high grain yields, which is
essential to maintaining food security [3].

Recent studies on the tolerance to biotic and abiotic stressors in rice hybrids with
donor lines of the genes of interest showed the effectiveness of such hybrids. As a result
of the studies carried out using molecular marking based on PCR in combination with
traditional breeding, early-maturing rice lines with genes resistant to salinity (SalTol) and
flooding (Sub1A) were obtained, which are suitable for cultivation in southern Russia. The
development of resistant rice varieties and their introduction into production will allow us
to avoid the epiphytotic development of the disease, preserving the biological productivity
of rice and resulting in environmentally friendly agricultural products [4].

The combining ability and genetic diversity of plants are important prerequisites for
the development of outstanding hybrids that are tolerant to high plant density. A recent
study was carried out to assess general combining ability (GCA) and specific combining
ability (SCA), identify promising hybrids, estimate genetic diversity among the inbred
lines, and correlate genetic distance (GD) to hybrid performance and SCA across different
plant densities. As a result, no significant correlation was found between GD and either
hybrid performance or SCA for grain yield and other traits, proving to be of no predictive
value. Nevertheless, SCA could be used to predict hybrid performance across all plant
densities. Overall, this study presents useful information regarding the inheritance of
maize grain yield and other important traits under high plant density [5].

In addition to studying the productivity of plants and genes associated with general
adaptability, the genetic improvement of root systems is of interest as an efficient approach
to improve the yield potential and nitrogen use efficiency (NUE) of crops. QMrl-7B is a
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major stable quantitative trait locus (QTL) controlling the maximum root length in wheat.
Two types of near isogenic lines (A-NILs with superior and B-NILs with inferior alleles)
were used to specify the effects of QMrl-7B on root, grain output, and nitrogen-related
traits under both low-nitrogen (LN) and high-nitrogen (HN) environments. The QMrl-7B
A-NILs manifested larger root systems compared to the B-NILs, which is favorable to N
uptake and accumulation, and eventually enhanced grain production. This study provides
valuable information for the genetic improvement of root traits and breeding of elite wheat
varieties with high yield potential [6].

Traditional plant breeding approaches supplemented with SNP markers used for
genome-wide associative studies (GWASs) and genetic editing, as well as high-throughput
chemotyping techniques, are exploited to speed up the breeding of desired genotypes.
To enrich cereal grains with functional components, the new breeding programs need a
source of genes in order to improve the contents of the beneficial components. The sources
of these valuable genes are plant genetic resources deposited in genebanks, including
landraces, rare crop species, and even wild relatives of cultivated plants. Correlations
between the contents of certain bioactive compounds and the resistance to diseases or
tolerance to certain abiotic stressors suggest that breeding programs aimed at increasing
the levels of health-benefiting components in cereal grain might at the same time allow the
development of cultivars adapted to unfavorable environmental conditions [7].

Using Nanopore long-term forward RNA sequencing, functionally important but un-
explored RNA molecules have been identified, including long non-coding RNAs (lncRNAs),
as they are often associated with repeat-rich regions of genomes and transposon-derived
transcripts expressed during early stages of seed development in triticale. Detailed analysis
of the protein-coding potential of the RTE-RNAs showed that 75% of them carry open
reading frames (ORFs) for a diverse set of GAG proteins, the main components of virus-
like particles of LTR retrotransposons. This demonstrated experimentally that certain
RTE-RNAs originate from autonomous LTR retrotransposons, with ongoing transposition
activity during early stages of triticale seed development. Overall, these results provide
a framework for further exploration of the newly discovered lncRNAs and RTE-RNAs
in functional and genome-wide association studies in triticale and wheat. The results
also demonstrate that Nanopore direct RNA sequencing is an indispensable tool for the
elucidation of lncRNA and retrotransposon transcripts [8].

Genomic selection (GS) shows great promise in terms of strongly increasing rates
of genetic improvement in plant breeding programs. It allows for comparative larger
gains from selection by estimating all marker effects simultaneously, while the subsequent
selection of genetically superior individuals is based on their genomic estimated breeding
value (GEBV) instead of using a few significant markers, as is the case in classical marker-
assisted selection (MAS). GS is ideal for complex traits with lower heritability and complex
genetic architectures.

Genomic selection (GS) can accelerate variety improvement when the training set
(TS) size and its relationship with the breeding set (BS) are optimized for the prediction
accuracies (PAs) of genomic prediction (GP) models. Sixteen GP algorithms were run on
phenotypic best linear unbiased predictors (BLUPs) and best linear unbiased estimators
(BLUEs) of resistance to both fall armyworm (FAW) and maize weevil (MW) in a tropical
maize panel. Random-based training sets (RBTS) and pedigree-based training sets (PBTSs)
were designed to study biotic resistance. For PBTS, the FAW resistance PAs were generally
higher than those for RBTS, except for one dataset. GP models generally showed similar
PAs across individual traits, whilst the TS designation was determinant, since a positive
correlation between TS size and PAs was observed for RBTS, while for the PBTS, this
correlation was negative. The resulting population could be of interest in future breeding
activities targeted at improving insect resistance in maize and could be potentially useful
for GS of complex traits with low to moderate heritability. This study has pioneered the
use of GS for maize resistance to insect pests [9].
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Advances in cereals breeding to develop new improved cultivars are some of the
most important factors in agricultural production, playing an essential role in ensuring
sustainable agriculture. Along with classical breeding goals, innovative, modern plant
breeding methodologies are applied here to create new cultivars of crops for current and
future agriculture applications. This endeavor includes the development of cultivars for
stress cultivation conditions to achieve sustainable agricultural production, increased food
quality, and increased security, and to supply raw materials for innovative industrial
products and to meet the needs of mankind.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: Cereal grains provide half of the calories consumed by humans. In addition, they contain
important compounds beneficial for health. During the last years, a broad spectrum of new cereal
grain-derived products for dietary purposes emerged on the global food market. Special breeding
programs aimed at cultivars utilizable for these new products have been launched for both the main
sources of staple foods (such as rice, wheat, and maize) and other cereal crops (oat, barley, sorghum,
millet, etc.). The breeding paradigm has been switched from traditional grain quality indicators (for
example, high breadmaking quality and protein content for common wheat or content of protein,
lysine, and starch for barley and oat) to more specialized ones (high content of bioactive compounds,
vitamins, dietary fibers, and oils, etc.). To enrich cereal grain with functional components while
growing plants in contrast to the post-harvesting improvement of staple foods with natural and
synthetic additives, the new breeding programs need a source of genes for the improvement of the
content of health benefit components in grain. The current review aims to consider current trends and
achievements in wheat, barley, and oat breeding for health-benefiting components. The sources of
these valuable genes are plant genetic resources deposited in genebanks: landraces, rare crop species,
or even wild relatives of cultivated plants. Traditional plant breeding approaches supplemented with
marker-assisted selection and genetic editing, as well as high-throughput chemotyping techniques,
are exploited to speed up the breeding for the desired genotуpes. Biochemical and genetic bases for
the enrichment of the grain of modern cereal crop cultivars with micronutrients, oils, phenolics, and
other compounds are discussed, and certain cases of contributions to special health-improving diets
are summarized. Correlations between the content of certain bioactive compounds and the resistance
to diseases or tolerance to certain abiotic stressors suggest that breeding programs aimed at raising
the levels of health-benefiting components in cereal grain might at the same time match the task of
developing cultivars adapted to unfavorable environmental conditions.

Keywords: barley; breeding; marker-assisted selection; genes; genetic resources; genome editing;
health benefits; metabolomics; oat; QTL; wheat

1. Introduction

Cereal crops are the main food and feed sources worldwide, supplying more than half
of the calories consumed by humans [1]. An overwhelming majority of plant breeders and
geneticists work on no other crops but cereals. Breeding methods depend on the biological
features of a crop and on the genetic research standards, traditions, economic objectives,
and levels of agricultural technologies in the country where plant breeding is underway.
The general breeding trend of the past decades, however, was finding solutions to the
problem of higher yields in cereal crops; furthermore, special attention was paid in many
countries to increasing plant resistance against diseases and various abiotic stressors. The
concentration of all efforts on these two targets and none other resulted in a certain decline
in the genetic diversity in those plant characters that are associated with the biochemical
composition of cereal grain [2]. In the last few years, cereal crop breeding generated a trend

Plants 2021, 10, 86. https://doi.org/10.3390/plants10010086 https://www.mdpi.com/journal/plants
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aimed at combining high biochemical and agronomic parameters in one cultivar [3–5]. In
addition to protein, cereal grains are rich in other chemical compounds, such as fats with
their good assimilability by the organism and a well-balanced composition of chemical
constituents, including fatty acids [6–10], vitamins of the B, A, Е, and F groups, organic
compounds of iron, calcium, phosphorus, manganese, copper, molybdenum, and other
trace elements [3], and diverse biologically active compounds–polysaccharides, phenolic
compounds, carotenoids, tocopherols, avenanthramides, etc.

In recent years, the world food market has seen the emergence of a wide range of
new cereal crop products designed for dietetic purposes. Currently, available data confirm
the importance of biochemical composition in cereal crop grains since it underpins their
dietetic, prophylactic, and curative effect on the human organism [11]. Cereals are rich in
protein, starch, oils, vitamins, micronutrients, and various antioxidants. The research that
examines the potential of a number of cereal crops for prophylactic or medicinal uses has
been expanding from year to year [12–16]. In addition to determining types of bioactivity
for different grain components, an important challenge is to concentrate further efforts of
researchers on disclosing the mechanisms of their effect [17].

It is admitted that breeding techniques can help to increase the percentage of indi-
vidual constituents in the grain to a very high level. An important role in promoting this
breeding trend is played by the achievements in modern genetics of cereal crops and traits
associated with the quality and dietary value of their products. New breeding programs
imply that the developed high-yielding cultivars will combine maximum contents of the
abovementioned components and optimal correlations among them with other grain qual-
ity indicators and resistance to biotic stressors. Marker-assisted selection techniques are
used more and more often to accelerate the development of cultivars enriched in useful
grain components [4,18]. There are examples of the works employing genetic editing
technologies for these purposes [19–21]. The current review aims to consider current trends
and achievements in wheat, barley, and oat breeding for health-benefiting components.

2. Major Dietary Components in Grain and Breeding Programs for Health Benefit

2.1. Micronutrients

The long-standing problem of micronutrient deficiencies in human diets is the most
significant for public healthcare worldwide. It is especially true for cereal-based diets:
They are poor in both the number of micronutrients and their bioavailability for the
organism since breeding of these major food and feed crops primarily aims at developing
higher-yielding varieties to meet global demand. Due to dilution effects, an increase in
grain mass sometimes causes a reduction in micronutrient contents. In most countries,
people eat meals produced from cereal crops with low micronutrient content; it is a serious
global problem invoked by the uniformity of different diets and may lead to significant
health deteriorations [22,23]. Iron-deficiency anemia is one of the most widespread health
disorders provoked by the worldwide deficit in micronutrients [24], while zinc deficiency
in food is faced on average by one-third of the world’s population [25]. Increasing the
content of these trace elements in wheat by breeding techniques is considered one of the
ways to enhance the consumption of micronutrients with food [26].

It has been noticed that cereal crop cultivars can be enriched in the desired micronu-
trients through the application of agricultural practices or by plant breeding [22,27–30].
Such procedures, however, might lead to an increase in micronutrient content in leaves but
not in grain [31]. Methods combining breeding and agrochemical approaches were pro-
posed to solve this problem: They helped accumulate micronutrients in the edible parts of
plants [27–29,32]. There are considerable variations in the concentration of micronutrients
in seeds or kernels of most crops [3,32]. Genetic variability in the micronutrient content is
often observed to be less expressed in fruit and more in leaves. Nevertheless, screening
large collections of staple cereal crops reveals extensive diversity of micronutrient concen-
trations in their grains [26,32,33]. Increased content of most micronutrients was observed
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in local varieties and landraces of wheat and other cereals, compared with improved
commercial cultivars [34].

The content of micronutrients in grain was analyzed in 65 commercial Russian cul-
tivars of four major cereal crops: wheat, barley, rye, and oat. Statistically significant
variations were found in the content of all studied trace elements (Fe, Zn, and Mn). The
highest levels were registered for barley and oat cultivars. Among barley genotypes, the
content of Fe, Zn, and Mn varied with a 3-to 5.5-fold difference between the extremes
(Table 1). Oat cultivars manifested a 7-fold difference between the extremes in the Zn
content and nearly 3-fold in Mn [3].

Table 1. Average values and ranges for the content of micronutrients (Fe, Mn, Zn) in caryopses of
cereal crops [3].

Crops
Content, mg/kg

Fe Mn Zn

Winter soft wheat (Triticum aestivum L.) 21.8 (19−4) 4.3 (3.3−4.9) 17.1 (13−21)
Spring soft wheat (T. aestivum) 17.5 (15−22) 3.3 (2.4−4.1) 19.2 (14−22)

Soft wheat (mean) 19.7 (15−24) 3.8 (2.4−4.9) 18.2 (13−22)
Winter and spring rye (Secale cereale L.) 20.3 (14−30) 4.2 (2.6−7.0) 18.4 (15−24)

Spring barley (Hordeum vulgare L.) 33.2 (24−79) 10.1 (7−21) 10.6 (6−33)
Oats (Avena sativa L.) 26.7 (19−37) 6.1 (3.5−9.9) 26.3 (10−70)

A detailed study of a set of commercial oat cultivars of different geographical origin
in the context of their micronutrient content and biochemical parameters showed that
genotypic differences in the Fe and Zn levels in grain were small (1.9–2.7 times), but in
Mn, they were relatively high (10.5 times). A 1.8-fold difference was observed between the
lowest (10.9%) and the highest (19.3%) protein content levels in oat grain [3]. A wide range
of variation in oil content (2.7–8.1%) was found in all studied oat accessions. The amounts
of protein, oil, oleic acid, and Zn in grain demonstrated statistically significant positive
correlations among themselves [3]. The identified oat cultivars with high nutritive value
will be included in breeding programs and used directly in high-quality food production.

Molecular-genetic research on 335 spring barley accessions was conducted for more
effective utilization of the micronutrient diversity in cereal crop breeding. A genome-wide
association study (GWAS) was employed for mapping quantitative trait loci (QTL) linked
to the content of macro- and micronutrients in grain (Fe, Zn, Ba, Ca, Cu, K, Mg, Mn, Na, P,
S, Si, and Sr). The analyses of the tested populations helped to identify specific QTL for
each of the studied indicators and map them on chromosomes. The QTL identified are
valuable for the future development of barley cultivars with increased content of nutrients,
especially Zn and Fe [35].

2.2. β-glucans

A physiologically important dietary component in the grain is (1,3;1,4)-β-D-glucan,
or the non-starchy water-soluble polysaccharide β-glucan. This component is reported
to be typical of some species of the Poaceae family: its content varies within 3–11% in
barley, 1–2% in rye, and <1% in wheat, while in other cereals, it is present only in trace
amounts [36]. At the same time, the content and composition of dietary fibers in various
cereal crop species are genetically determined. It means, as opined by many scientists, that
it is possible to produce new lines of such crops with different correlations between the
levels of β-glucan polysaccharides and arabinoxylans that would be optimal for various
uses [37–39]. Studying of the β-glucan content in oat and barley cultivars is associated
with their uses for dietetic and medical purposes [37,38].

The β-glucans are not evenly distributed within a grain: its larger amount is found
in the endosperm cell walls, aleurone, and subaleurone layers, and its content varies
from 1.8 to 7% [40,41]. The concentration of β-glucans in oat grain and their degree of
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polymerization depend not only on the cultivar but also on the conditions of cultivation,
grain processing, and post-harvest storage [42].

The presence in the grain of a higher amount of β-glucans, which are dietary soluble fiber
(or soluble non-starch polysaccharide), determines the viscosity of oat and barley broths, which
have a beneficial effect on important functions of the human gastrointestinal tract, so they are
widely used in the food industry for dietetic and curative purposes [36,43]. Among numerous
products of barley and oat biosynthesis, probably the most valuable for the human organism
is soluble cellulose fibers and β-glucans first of all (also arabinoxylan, xyloglucan, and some
other secondary cellulose components), as they can reduce the level of cholesterol in the blood
and noticeably mitigate the risk of cardiovascular diseases [38,44,45]. Multiple evidence of the
beneficial role played by β-glucans impelled the U.S. Food and Drug Administration (FDA)
to make an official statement that soluble dietary fibers extracted from whole oat grain to
produce flakes, bran, or flour helped to reduce the risks of cardiovascular diseases [46].
Insoluble fractions of dietary fiber are partly cellulose, xylose, and arabinose [39]. Insoluble
dietary fiber has general gastrointestinal effects and, in most cases, has an impact on weight
loss. There is convincing evidence that β-glucans contained in oat grain are partially
responsible for decreasing the levels of glucose in the human blood and of cholesterol in
serum [12]; it is associated with its physicochemical and rheological characteristics, such as
molecular weight, solubility in water, and a viscosity [42,47].

Genetic diversity of barley and oats in the content of β-glucans in their grain was eval-
uated in the framework of two European Union (EU) programs. The HEALTHGRAIN Di-
versity Screen project resulted in finding significant differences in the content of β-glucans
and antioxidants in the grain of five tested oat cultivars [48]. The AVEQ project (Avena
genetic resources for quality in human consumption) analyzed 658 oat cultivars and con-
firmed the contribution of both genetic and environmental aspects to the formation of the
tested character [49]. It is worth mentioning that, compared with cultivated and other wild
di- and tetraploid oat species, higher contents of β-glucans and other antioxidants were
found in the hexaploid (wild) A. fatua, A. occidentalis, and (cultivated) A. byzantina, and
diploid (wild|) A. atlantica [38,39,49–51].

Measuring the content of β-glucans in oat grain in large and diverse sets of cultivars
and species showed that its values were significantly dispersed [37,38,49]. Naked oat
forms demonstrated a higher total content of the analyzed polysaccharide than hulled
ones, but the latter contained more insoluble β-glucans in their grain [52–54]. Computer
modeling helped to provide a ranking of the factors affecting the β-glucan content in hulled
and naked oat cultivars during their cultivation. The analysis showed that the selection
of the cultivar is the most important parameter of the model for determining the final
β-glucan accumulation in grain, among the other factors [55]. There are contradictory data
concerning the results of comparative studies on naked and hulled barley as well. Some
authors failed to disclose significant differences between these two forms of the crop [56,57],
while others found that naked barleys contained more β-glucans than hulled ones [43,58].
Meanwhile, the group of Tibetan naked barleys was reported to have the highest content
of β-glucans in their grain [59].

In the meantime, the amount of β-glucans in oat grain is associated with protein and
fat accumulation, grain volume weight, and grain productivity [60,61]. The content of
these polysaccharides depended on meteorological conditions and agricultural practices
used in oat cultivation [61]. The content of β-glucans in barley grain is determined by
both the genotype and the growing conditions [43,59,62]; some authors insist that it is
the genotype that plays a decisive role [63,64], while others give preference to the envi-
ronmental conditions [65,66]. When 33 barley cultivars and lines were tested in two arid
areas in the United States, it was shown that the variability in the content of β-glucans
in grain was determined by the genotype for 51% [64] to 66% [67]. At the same time, the
protein content in grain depended on environmental conditions for 69%, whereas yield
size and the grain volume weight for 83 and 70%, respectively [64]. The study of 9 barley
cultivars and 10 oat ones showed that cultivar-specific differences in the β-glucan content
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persisted across the years [63]. The content of β-glucans in the grain is also influenced
by plant development phases. It was reported that the content of β-glucans gradually
increased in the process of grain formation, and in the maturation phase, it either reached
the plateau or decreased [57]. At present, there are contradictory data concerning the
linkage of β-glucan accumulation in barley grain with 1000 grain weight, protein content,
or starch content [56,62]. Some authors did not find any interplay between these characters,
while others reported a positive correlation. When the content of β-glucans was measured
in the grain of six-row and two-row barley cultivars, no differences between these two
cultivar groups were reported [43].

The 1700 oat lines with mutations induced by TILLING of high-frequency mutagenesis
have been produced for breeding purposes with molecular-based, high precision selection
methods from cv. ‘Belinda’ (Sweden) to evaluate the variability of β-glucans content in this
crop [68]. Their assessment resulted in identifying 10 lines with β-glucan concentrations
in their grain higher than 6.7% and 10 lines with the content of β-glucans less than 3.6%
(β-glucan concentration in cv. ‘Belinda’ was 4.9%). The maximum range of variation in
the content of these polysaccharides was from 1.8 to 7.5% [69]. The comparatively recent
identification of genes participating in the biosynthesis of β-glucans in cereals [70] and
their first genetic map open new opportunities for genetic improvement of grain quality
indicators and resulting food products, which is very important for human health [71].

Three markers (Adh8, ABG019, and Bmy2) significantly linked to β-glucan content
regulation were identified in barley grain, and a group of HvCslF genes was mapped: At
least two of them were in the region of barley chromosome 2H explained by the QTL for
(1,3;1,4)-β-glucan near the Bmy2 marker [72]. A genome-wide association study (GWAS)
employing oat germplasm of worldwide origin from the American Gene Bank was aimed
at the identification of QTL linked to β-glucan content in grain and resulted in finding three
independent markers closely associated with the target character. A comparison of these
results with the data obtained for rice showed that one of the described markers, localized
on rice chromosome 7, was adjacent to the CslF gene family responsible for β-glucan
synthesis in grain. Thus, GWAS in oat can be a successful QTL detection technique with
the future development of higher-density markers [73].

By now, the GWAS approach has already started to be used to analyze the association
between the genotype and the content of β-glucans and fatty acids in oats. Researchers
have identified four loci contributing to changes in the fatty acid composition and content
in oat grain. However, genome regions conducive to changing the content of proteins,
oils, saccharic and uronic acids, which, in their turn, produce a direct effect on grain
quality, remain unexplored [74]. Furthermore, positive correlations were demonstrated in
barley between 1000 grain weight and tocol concentration, between dietary fiber content
and phenolic compounds, and between husk weight and total antioxidants in hulled
barley [38,50].

2.3. Antioxidants

Cereal crop grains are known to have high nutritive value and contain diverse chemical
compounds with antioxidant properties. Research efforts have been undertaken in recent
years to study the content of antioxidants in the grain of various cultivated cereals [50,75–79].

Starting in the mid-1930s, oat flour has been used as a natural antioxidant. Later,
more in-depth research was done to assess the antioxidative properties of oat flour versus
those of chemical antioxidants. It was ascertained that adding sterols extracted from oat to
heated soybean oil significantly decelerated its oxidation compared with the reference. At
present, along with the extensive utilization of synthetic antioxidants, oat flour has found
its stable niche as a natural ingredient in eco-friendly food products [7].

A comparison of bakery products made from wheat that synthesized such antioxidant
compounds as anthocyanins with those from an anthocyanin-free wheat line demonstrated
that the presence of anthocyanins increased the shelf life of bakery products and their
resistance to molding under provocative conditions [80]. Cereal crops contain secondary

9



Plants 2021, 10, 86

metabolites with antioxidant activity belonging to three groups: phenolic compounds,
carotenoids, and tocopherols [81].

2.4. Phenolic Compounds and Avenanthramides

Oat and barley grains contain a considerable amount of various phenolic compounds
exhibiting biological activity, including antioxidative, anti-inflammatory, and antiprolif-
erative (preventive activity against cancerous and cardiac diseases) effects [50]. One of
the most abundant and powerful antioxidants found in nature, the flavonoid quercetin,
has been found in wheat. It is characterized by numerous biological effects, including
antithrombotic activity [82].

Many published studies testify that a major part of phenolic compounds in grain
occurs in a bound form: Their content in oat and wheat grains reaches 75% [83,84]. Phenolic
acids, like most flavonoids in cereal crops, are concentrated in structures bound to the cell
wall: 93% of the total flavonoid content in wheat and 61% in oats [83]. The highest level
of total flavonoids is characteristic of maize grain, followed by wheat, oats, and rice [83].
Phenolic acids are the most widespread phenolic compounds in oats, especially ferulic acid
(250 mg/kg), which is present mainly inbound forms linked through ester or ether bonds
to cell wall components but also exists in the free form [85].

Bioactive chemical compounds are unevenly distributed within the grain. Grains of
four naked barley cultivars were divided into five layers to measure the total phenolic
content and total antioxidant activity. The total content of soluble phenolic compounds
was observed to decrease from the outer layer (2.8–7.7 μg/g) towards the inner endosperm
structures (0.87–1.35 μg/g) [78,86]. It has been proven that most antioxidants contained in
whole grain are located in the bran and germ fractions of the grain. For example, whole-
grain wheat flour was found to contain in its bran/germ fraction 83% of the total phenolic
content in grain and 79% of total flavonoids [87].

In the study of molecular mechanisms of ‘melanin-like’ black seed pigments known
to be strong antioxidants, comparative transcriptome analysis of two near-isogenic lines
differing by the allelic state of the Blp (black lemma and pericarp) locus revealed that black
seed color is related to the increased level of ferulic acid and other phenolic compounds [88].
The melanic nature of the purified black pigments was confirmed by a series of solubility
tests and Fourier transform infrared spectroscopy, while intracellular pigmented structures
were described to appear in chloroplast-derived plastids designated “melanoplasts” [89].
The most frequently mentioned flavonoids of cereal crops are the flavonols kaempferol and
quercetin, the flavanone naringenin and its glycosylated forms, catechin, and epicatechin
in barley [90–93].

Pigmentation of the grain’s outer coating can be analyzed as an important indicator of
antioxidant activity. A barley cultivar with purple grain contained 11 anthocyanins, while
only one anthocyanin was observed in black and yellow barley grains. The purple barley
bran extract had the highest total antioxidant activity [94]. Another study of naked barley
demonstrated the presence of higher antioxidant activity in pigmented grains compared with
non-pigmented ones [78]. A study of naked and hulled oats showed that naked oat cultivars
had significantly higher values of total antioxidant activity. Among hulled oat cultivars, these
values were higher in dark-hulled forms compared with white-hulled oats [50].

Differences between naked and hulled oats and barleys, generated a perfect model
interesting for comparative analyses: the mutant barley line for the Nud gene (nakedness),
derived by gene editing from cv. ‘Golden Promise’ [21]. Using this model will help to
distinguish the pleiotropic effects of the Nud gene on the grain’s biochemical composition
from the influence of closely linked genes.

Analyzing grain extracts of wheat lines with different combinations of the Ba (Blue
aleurone) and Pp (Purple pericarp) genes on the genetic background of elite cultivars demon-
strated a higher diversity of flavonoid compounds in the carriers of dominant alleles of
Ba and Pp genes. Comparing the products made from the grain of a purple-grained line
with those from an anthocyanin-free isogenic line revealed significant differences, which
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was also true for the samples that had passed a full processing cycle, including baking
at elevated temperatures [80,95]. The analysis of anthocyanin extracts obtained under
conditions simulating those of food digestion by a human organism showed that ingesting
100 g of bread crisps or biscuits made from flour with added purple wheat grain bran raised
the assimilation of anthocyanins to 1.03 and 0.83 mg, respectively, i.e., 100 g of bran would
supply the organism with up to 3.32 g of anthocyanins. Besides, purple-grained wheat
matched or even exceeded the reference line in the quality and taste of its products [95].

Recently, new high-yielding wheat cultivars, resistant to fungal diseases and having
high anthocyanin content in grain have been developed [4]. The efficiency of the breeding
strategy lasting only three years from the first cross until the state cultivar competitive
testing has been demonstrated. The strategy is based on marker-assisted selection (MAS) [4].
MAS also demonstrated its efficacy in creating barley with certain alleles of anthocyanin
regulatory genes [18]. For breeding blue-grained wheat, besides molecular markers, FISH
or C-banding are needed since the Ba gene is alien for wheat and can be inherited from
wheat lines with either 4B or 4D chromosome substituted by the Thinopyrum ponticum
chromosome 4 [96,97]. Unlike bread wheat, barley has its own Ba gene. Recent findings
of regulatory features of anthocyanin biosynthesis in barley [98] are useful for both MAS-
based and genetic editing-based breeding strategies.

Interestingly, 30 years ago, the purple- and blue-grain characters were regarded
as having “a limited practical use from a scientific point” [99]. Since that time, some
studies demonstrating the health benefit of plant anthocyanins, including those from
wheat grain [16], have been carried out, denying the old point of view and proving
these traits to be economically important. Commercial cultivars of wheat with increased
anthocyanin content have been released in Canada, China, Japan, and several European
countries [100,101].

The class of phenolics with antioxidative effect and bioactivity includes avenan-
thramides (AVA), a class of hydroxycinnamoyl anthranilate alkaloids contained only
in oats. Twenty-five components of these compounds were detected in kernels, and
twenty in hulls [102]. The most widespread in oats are AVA-A (2p), AVA-B (2f), and
AVA-C (2c) [9,103,104]. There is documented evidence that avenanthramides demonstrate
antioxidant, anti-inflammatory, antiatherogenic, and antiproliferative activity [105–107].

It has been shown that oat cultivars differed in the AVA content in grain. The cultivated
diploid species A. strigosa had a very high AVA content reaching 4.1 g/kg, and the hexaploid
A. byzantina contained 3.0 g/kg. Contrariwise, wild oat species with different ploidy
levels were characterized by relatively low AVA content values (240–1585 mg/kg) [108].
Analyzing a representative set of cultivated and wild oat species revealed an even wider
diversity of the AVA content in grain [109]. A conclusion has been made that wild oat
species are an important source of diversity for breeding programs, which dictates the
necessity of further studies into the pattern of AVA content and composition variability
across the genus Avena L. Wild oat species might incorporate a unique AVA composition,
promising for crosses with cultivated oats.

2.5. Tocols

The health benefits of oats are also associated with the presence of several antioxidant
compounds known as tocols, specifically tocopherols and tocotrienols. The fat-soluble
vitamin E contains tocopherols and tocotrienols [110], which make the oil more resistant to
oxidation. Both tocopherols and tocotrienols have several isomeric forms designated as α,
β, γ, and δ [111]. All in all, vitamin E can comprise eight isomers, with prevailing α-isomers
(70–85%) and δ-isomers not exceeding 1%. The total tocopherol content in oat cultivars can
reach 2.6–3.2 mg/100 g, which is many times lower than in barley [101]. Tocopherols are
mainly present in the germ fraction of grain, while tocotrienols are found in the pericarp
and endosperm. Tocotrienols prevail in oats, barley, and wheat; their concentrations vary
from 40 to 60 μg/g depending on the crop [112].
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Eight isomers of tocols have been found in barley grain oil (four tocopherols and
four tocotrienols). They play an exceptionally important role, regulating cholesterol in
human blood. Tocols also demonstrate very high activity as antioxidants, blocking harmful
peroxidation of lipids in cell membranes [101]. Tocols (16–94 mg/kg) consist of a polar
chromanol ring linked to an isoprenoid-derived hydrocarbon chain. They are powerful
scavengers of free radicals, also demonstrating an ability to inhibit the proliferation of
some cancer cells [108].

Furthermore, positive correlations were demonstrated in barley between 1000 grain
weight and tocol concentration, between dietary fiber content and phenolic compounds,
and between husk weight and total antioxidants in hulled barley [38,50]. Presently,
molecular-genetic studies of this type of antioxidant are based on simple-sequence re-
peats (SSR) markers. It is worth mentioning that the naked barley with the Waxy gene and
zero amylase content in starch has higher contents of both β-glucans and tocols [113].

2.6. Sterols

Sterols are important components of vegetable oils. Their content in oat grain varies, ac-
cording to different sources, from 0.1% to 9.3% of the total fatty acid content. This indicator
often depends not only on the oat genotype but also on the extraction technique. Cultivars
of rye, wheat, barley, and oats grown in the same year and same location were compared,
the highest plant sterol content was observed in rye (mean content 95.5 mg/100 g, wb),
whereas the total sterol contents (mg/100 g, wb) of wheat, barley, and oats were 69.0, 76.1,
and 44.7, respectively [114]. Among the six components of sterol content, the main one is
sitosterol, whose content reaches 70% of the total sterol content; additionally, about 20%
are allocated to campesterol and stigmasterol [7,101]. The content of sterols in oats can
reach 447 mg/kg and include, in addition to the abovementioned, D-5 and D-7 avenas-
terols [114] and phytic acid (5.6–8.7 mg/g); the latter manifests antioxidant activity due to
its ability to chelate metal ions, thus making them catalytically inactive and inhibiting the
metal-mediated formation of free radicals. However, this chelating activity reduced the
bioavailability of major minerals [110].

2.7. Carotenoids

Carotenoids (yellow, orange, and red pigments) relating to isoprenoids are among
the most widespread plant antioxidants. Carotenoid content in oat grain can reach
1.8 μg/g [86]; besides, lutein is considered the main xanthophyll in wheat, barley, and
oat grains, and zeaxanthin is the secondary one [115].

Comparative investigation of four groups of wheat genotypes (spelt wheat, landraces,
old cultivars, and primitive wheat) for carotenoid content and composition in grain re-
vealed a high level of variation among the genotypes and the groups in the content of
carotenoids. Lutein contributed 70–90% of the carotenoids in the grain [116]. In durum
wheat, which is used for the production of pasta, carotenoid content is also an important
technological and market indicator. In semolina and pasta, a yellow color is desirable, and
it depends on the carotenoid accumulation in kernels. Genetic dissection of the carotenoid
content character showed quantitative trait loci (QTL) on all wheat chromosomes [117].
The major QTL, responsible for 60% of heritability, is located on the long arms of chromo-
somes 7A and 7B. Variability in these QTL is explained by allelic variations of the phytoene
synthase (PSY) genes. Molecular markers for MAS-based breeding programs aimed at the
enrichment of durum wheat grain with carotenoid content are available [117].

2.8. Other Antioxidant Compounds

Oat is the only cereal grass that contains saponins, steroidal glycosides known as
avenocosides A and B (65.5 and 377.5 mg/kg, respectively), which exhibit anticancer
activity at the expense of diverse, complex mechanisms, including inhibition of neoplasm
cell growth through cell cycle arrest and, inter alia, stimulation of cancer cell apoptosis [13].
Oat also accommodates two classes of saponins: avenocosides (steroid-linked saccharides)
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and avenacides (triterpenoid-linked saccharides), which were shown to drop the cholesterol
level, stimulate the immune system, and demonstrate anticancer properties [14]. Targeted
breeding for increased content of these compounds in oat lines has not yet been attempted,
but interline and interspecies differences in this indicator have already been identified [118].
Grains of five Finnish barley cultivars grown in 2006–2008 were analyzed for their total
content of folic acid. It was noted that the external and germ-containing grain layers had
the highest levels of this compound (up to 1710 ng/g) [77,79].

3. Assessment of Cereal Crop Genetic Resources According to the Diversity and
Concentration of Health-Friendly Dietary Grain Components

Secondary metabolites associated with quality traits in the released and processed
products are presently identified using metabolomic profiling or chemotyping. Such an
approach enables researchers to evaluate plant genetic resources according to these traits,
including varieties of cultivated species and populations of wild ones. Chemotyping the
grain of cultivated and wild Avena L. spp. showed that the range of variability in the
metabolomic profile of improved cultivars was significantly narrower than that of wild
species. Metabolites, the content of which may have been reduced in the process of domes-
tication and breeding in comparison to wild oats, are identified [2]. Presumably, it might
be connected with the selection during oat domestication and a decline of metabolome
diversity while “domestication syndrome” traits were shaped [119]. The diversity of
metabolomic profiles may be lost in the process of selection when highly specialized single-
line intensive-type cultivars are developed because this process is always accompanied by
a decrease in genetic polymorphism in a breeding object compared with the metagenome
of numerous ecotypes, local varieties, and natural races of dozens of wild species [2,119].
A study of naked and hulled oat forms disclosed differences in their metabolites, which
serves as an additional justification of the differentiation between these subspecies of
common oat [2]. Landraces, which are plant varieties selected and grown regionally but
not officially tested and released as registered varieties, are a source of special genetic
characteristics derived by (many years of) adaptation to the respective territory. Such local
varieties are often more resistant to biotic and abiotic stresses typical for their environment.
In addition, such varieties may be a source for special phytochemicals (also known as
bioactives) considered as health-beneficial, while the content of these compounds may be
lower in commercial cultivar [2,120].

The bands of secondary metabolites in oat accessions exposed to Fusarium infection
were analyzed, and correlations between metabolites and resistance were disclosed. High-
protein oat forms with increased content of certain secondary metabolites demonstrated
less damage from Fusarium, accumulated fewer toxins, and were more adaptable to the
biotic stress [121].

Matthews et al. [122] used metabolite profiling to compare 45 lines of tetraploid and
hexaploid wheat. The extracts were analyzed by the ultraperformance liquid chromatogra-
phy coupled with time-of-flight mass spectrometry (UPLC-TOF-MS). Two different species
of bread and durum wheat formed two distinct groups differing in sterols, fatty acids, and
phospholipids, while T. aestivum L. split into two groups (corresponding to hard and soft
bread wheat) according to differences in heterocyclic amines and polyketides. This and
similar studies underpin the use of chemotyping in breeding both for desired agronomic
traits and for higher contents of health-benefiting compounds in cereal grain.

Information obtained with the molecular metabolomic approach on mQTL (metabo-
lite quantitative trait loci) and mGWAS (metabolome-based GWAS) ensures a new level
for qualitative and quantitative characterization of secondary metabolites interesting for
breeding. Such analyses can provide knowledge about the interactions among metabolites
themselves and between them and important breeding indicators. It may lead to the
development of more rational models linking a certain metabolite with such characters
as plant productivity or end-product quality. Even more promising is the possibility to
examine the interplay between quantitative variation in metabolites and changes in the
plant phenotype [123].
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Due to the genetic potential of grain crops through the directed formation of the
properties and structure of the kernel in the process of ontogenesis, when developing new
cultivars, it is possible to attend to the target component composition of the final product.
Wider application of chemotyping, chemical research methods, metabolomic analysis
of grain quality, and searching for high content of rare beneficial (dietary or curative)
components will result in the release of new crop cultivars, thus promoting next-generation
breeding trends and technologies [50].

4. The Effect of Dietary Components in Grain on Life Functions of Plants Themselves

Content of all biochemical components in the grain of cereal crops there are variations
in the composition of it. These variations arise from differences between environments,
variation in the genotype of the crop, and interactions between biotic and abiotic factors
and genotype. Biotic and abiotic factors change depending on climate change, soil, and
various stressors affecting plants. The genotypic variation includes the differences between
individual genotypes.

4.1. Biotic Stress Resistance

Generally, an explanation why grain in the soil is not affected by microorganisms
despite the environmental conditions favorable for infection was given by the presence
of antimicrobial flavonoid compounds in extracts from barley and wheat grains soaked
in water [124]. Higher disease resistance of plants with enhanced flavonoid biosynthe-
sis has been described in rye, barley, and wheat [125]. In vitro infection of developing
barley caryopses of wild type and proanthocyanidin-free mutants with fungal pathogens
Fusarium poae, F. culmorum, and F. graminearum revealed mutants to be more sensitive to
Fusarium attack than wild-type plants [126].

Considering the available data on interactions between compounds with antioxidant
properties in cereal crop kernels and Fusarium spp., it seems appropriate to suppose that
some of the former could significantly contribute to the grain’s protection mechanism
against toxicogenic fungi and mycotoxin accumulation. It has been proven that the crucial
role in Fusarium Head Blight (FHB) resistance is played by five main classes of antioxidant
metabolites: phenolic acids, flavonoids, carotenoids, tocopherols, and benzoxazinoids [127].

Cereal crop diseases caused by pathogenic and toxicogenic species of the Fusarium genus
(FHB) inflict serious economic losses worldwide. Therefore, the development of sustainable
strategies to prevent FHB contamination and mycotoxin accumulation has become a target
of intensive research in recent years, and the use of FHB-resistant genotypes has been chosen
as one of the prioritized trends in breeding practice [121,128,129]. Even now, however, the
knowledge of complex mechanisms regulating resistance in cereal crops is still insufficient,
and selecting resistant genotypes remains a difficult task for breeders. It has been established
that, in addition to their fungicidal properties, a number of antioxidant secondary metabolites
in cereals can regulate mycotoxin production by various pathogenic fungi [127].

The first weighty general argument in favor of phenolic compounds, carotenoids,
and tocopherols is their ability to suppress reactive oxygen species (ROS), thus protecting
biological cells. Besides, tocopherols and carotenoids can entrap free radicals of lipid
peroxides and, therefore, arrest lipid peroxidation chain development [130]. Cinnamic
acid derivatives, such as sinapic, caffeic, p-coumaric, chlorogenic, and ferulic acids, are
effective inhibitors of F. graminearum and F. culmorum development, while benzoic acid
derivatives, except syringic acid, produce an antiactivating effect [131,132]. There is an
opinion that cereal crop metabolites with antioxidant activity suppress toxigenic action
of a fungal infection. Numerous research works demonstrated the efficiency of phenolic
compounds [133,134], carotenoids [135], tocopherols, and even benzoxazinoids [136] in
restraining the growth and mycotoxin production of toxigenic Fusarium fungi. Finally,
phenolic compounds partaking in plant structure enforcement are known to contribute to
building a physical barrier against pathogenic infection. There is a positive interrelation
between the content of phenolic acids, both free and bound to the cell wall, and FHB
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resistance in wheat [137]. A high level of FHB resistance in barley with the black-pigmented
grain is supposedly associated with increased content of phenolic compounds [133].

High-protein oat forms were observed to be less affected by Fusarium head blight
and accumulate fewer toxins; they are more adaptable to biotic stress. A relationship was
identified between FHB resistance and accumulation of pipecolic acid, monoacylglycerols,
tyrosine, galactinol, certain phytosterols, saccharides, and adenosine [121].

There were, however, many unproven assumptions on the participation of metabolites
in the FHB resistance mechanism in cereals. Although the genetic architecture that supports
secondary metabolite synthesis and regulation in cereal crops is exceptionally intricate, such
proof may be retrieved in the process of comprehensive genetic and functional genomic
studies [127].

Accumulation of avenanthramides in oats is also associated with the penetration of a
fungal infection. Avenanthramides are mostly contained in oat grain, but under an attack by
crown rust or leaf blotch, they start to synthesize in leaves as a means of protection against
disease agents [110]. The fact that the amount of avenanthramides in grain significantly
increases during imbibition [138], plant development [139], steeping [140], and storage [141]
is also related to plant protection against potential susceptibility to pathogenic flora.

4.2. Abiotic Stress Resistance

Polyphenolic compounds in grain may protect seeds from unfavorable abiotic envi-
ronmental conditions. Some of these compounds may act as sunscreens against potentially
damaging UV-B radiation [142]. This may explain the presence of a purple grain color and
other parts of the plant in tetraploid wheat T. aethiopicum Jakubz. [143] adapted to intensive
solar UV-B radiation in highland areas in Ethiopia. Studies of near-isogenic wheat lines
differing in the anthocyanin content in the pericarp and coleoptile under various stress
conditions showed that both pericarp and coleoptile anthocyanins protected seedlings from
osmotic stress [144], while protection of seedlings under a moderate irradiation dose (pre-
treatment of dry seeds with 50 Gy before sowing) or moderate Cd toxicity (25 μM CdCl2)
was due to the coleoptile’s anthocyanins only [145,146]. Flavonoid substances can prevent
negative effects of excessive moisture, such as pre-harvest seed sprouting by reducing the
permeability of seed coat to water [147], inhibiting α-amylase (an enzyme whose activity is
directly related to seed germination of grain) [148], or inactivating dehydrogenase required
for the initial phase of respiration in ripening grain and young shoots [149].

Avenanthramide accumulation in oat grain is affected by weather and geographic
conditions under which the studied material is cultivated [109,150–153]. Changes in the
concentration of avenanthramides in response to salinity stress in CBF3 transgenic oat
demonstrated that these compounds might have a potential role in enhancing abiotic stress
tolerance in oats [154]. Havrlentova et al. [155] suggested that oats with higher β-D-glucan
content may have thicker and, therefore, more insulating cell walls, better adapted to heat
stress conditions. The same conclusion between higher content of β-D-glucan and greater
cell wall thickness has been reported in barley [156]. Sterol might be important for cold
acclimation of wheat [157,158] and oat [159]. Thus, breeding programs aimed at an increase
in the content of health benefit components in cereal grain are at the same time eligible to
solve the task of cultivar adaptability to unfavorable environmental conditions.

5. Conclusions

Each of the abovementioned natural components (dietary or curative) is promising
for use as a food additive or an ingredient of pharmaceutical and cosmetic products. They
are expected to play an ever-growing role in food industries, expanding the assortment
of healthy food for the population. The demand for such products has already instigated
plant breeders to launch new breeding programs aimed at the development of cereal crop
cultivars with higher contents of bioactive components in grain. Such programs have often
been based on molecular breeding techniques from the very beginning. Screening promis-
ing cultivars and hybrids for the content of antioxidants and other bioactive compounds in
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the grain is required to expand and promote this breeding trend. It also seems expedient to
apply simple, undamaging and, as a rule, indirect techniques of plant genotype assessment
for the levels of antioxidants in the grain to increase the performance and efficiency of
such screening, employing the entire genetic diversity of cereal crops for identification
of contrasting initial sources for breeding food and feed cultivars. The results obtained
in the process of studying already existing cereal cultivars and the achievements of plant
breeding in releasing new high-yielding and high-quality cultivars enable producers to
use them in the development of a wide assortment of health-friendly dietary products
contributing to the physical fitness of the human organism.
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Abstract: Knowledge of combining ability and genetic diversity are important prerequisites for the
development of outstanding hybrids that are tolerant to high plant density. This work was carried out
to assess general combining ability (GCA) and specific combining ability (SCA), identify promising
hybrids, estimate genetic diversity among the inbred lines and correlate genetic distance to hybrid
performance and SCA across different plant densities. A total of 28 F1 hybrids obtained by crossing
eight adverse inbred lines (four local and four exotic) were evaluated under three plant densities
59,500 (D1), 71,400 (D2) and 83,300 (D3) plants ha−1 using spilt plot design with three replications at
two locations during 2018 season. Increasing plant density from D1 to D3 significantly decreased
leaf angle (LANG), chlorophyll content (CHLC), all ear characteristics and grain yield per plant
(GYPP). Contrarily, days to silking (DTS), anthesis–silking interval (ASI), plant height (PLHT), ear
height (EHT), and grain yield per hectare (GYPH) were significantly increased. Both additive and
non-additive gene actions were involved in the inheritance of all the evaluated traits, but additive gene
action was predominant for most traits. Inbred lines L1, L2, and L5 were the best general combiners for
increasing grain yield and other desirable traits across research environments. Two hybrids L2 × L5

and L2 × L8 were found to be good specific combiners for ASI, LANG, GYPP and GYPH. Furthermore,
these hybrids are ideal for further testing and promotion for commercialization under high plant
density. Genetic distance (GD) among pairs of inbred lines ranged from 0.31 to 0.78, with an average
of 0.61. Clustering based on molecular GD has effectively grouped the inbred lines according to their
origin. No significant correlation was found between GD and both hybrid performance and SCA
for grain yield and other traits and proved to be of no predictive value. Nevertheless, SCA could be
used to predict the hybrid performance across all plant densities. Overall, this work presents useful
information regarding the inheritance of maize grain yield and other important traits under high
plant density.

Keywords: maize; density tolerance; combining ability; gene effects; genetic diversity
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1. Introduction

Maize (Zea mays L.) is one of the main economic crops that subsidize global food security. It is
widely used for food, animal feed, edible oil and fuel worldwide [1]. In Egypt, maize is considered
the second most important crop, with the annual production of the grain reaching about 7.30 Mt
from approximately 0.94 Mha in 2018 [2]. This production is insufficient to meet the demands of a
fast-growing population. The gap between production and consumption is approximately 45% [3].
This gap could be narrowed by further increase in the hybrids yield potential and total yield production
from unit area. [4]. Increasing planting density is required to increase grain yield production in
maize [5]. The average density of intense maize cultivation in the USA is 97,500 plants ha−1 [6]. The
recommended planting density in Egypt is 53,533 plants ha−1 [7], which is around half the amount
used in the USA. The use of lower plant densities decreases light interception, leading to high grain
production per plant but low grain production per unit area [8]. The yield production could be
maximized by growing maize hybrids that can tolerate high plant density up to 100,000 plants ha−1.
However, high plant densities enhance interplant competition for light, nutrients, and water [9].
Additionally, it increases the anthesis–silking interval [10], thereby increasing kernel abortion [11] and
reducing single plant yield. Al-Naggar et al. [12] showed that with increased planting density, plant
and ear heights increased, whereas chlorophyll content, grains per ear and thousand grain weights
decreased. The tolerance of the current Egyptian maize hybrids to high plant densities is low. This
probably attributed to their tallness, decumbent leaf, one-eared and large size [7,13]. Conversely,
modern maize hybrids in developed countries are characterized by early silking, short anthesis–silking
interval and prolificacy, which are essential adaptive traits to high plant density tolerance [10,14–16].

Breeding programs should be directed towards the development of hybrids that are not only
high yielding, but also show enhanced adaptability to high plant density tolerance. The successful
identification of desirable hybrid combinations depends on the combining ability of the parents and
the gene effects involved in the expression of target trait [17]. Furthermore, knowledge of gene
action is important to devise an appropriate breeding strategy [18]. General combining ability (GCA)
and specific combining ability (SCA) are widely used in selection of good parents and hybrids,
respectively [19]. Among different biometrical approaches, the diallel mating design is commonly
used by maize breeders to estimate GCA and SCA effects [20–22]. GCA is associated with additive
gene effects, whereas SCA is typically associated with non-additive gene effects [23]. Both additive
and non-additive gene actions were reported to be important in the inheritance of maize grain yield
under high plant density [24]. However, the grain yield and other assessed traits under different plant
densities among selected maize inbred lines were mostly controlled by additive gene action [7,25].

The assessment of the diversity and genetic distance in the available maize inbreds is important for
a hybrid breeding program, in order to identify inbreds that would produce crosses with good levels of
heterosis without testing all hybrids combinations [26,27]. Different types of DNA markers are available
to estimate genetic distance. The simple sequence repeat (SSR) markers or microsatellites have been
considered as the markers of choice owing to their co-dominant, high polymorphic, multi-allelic nature
and high reproducibility [28–30]. However, contradictory results have been reported with respect to the
relationship between genetic distance and hybrid performance in maize. Significant correlations were
reported between molecular marker-based GD and F1 hybrid grain yield in maize [31,32]. Whereas,
other studies reported no significant correlation [33,34]. The objectives of this study were (i) to estimate
GCA of the inbred lines and SCA of the hybrids under different plant densities; (ii) to determine the
mode of gene action controlling grain yield and other important agronomic traits; (iii) to identify
promising hybrids that yield well at high plant density; and (iv) to assess genetic diversity among the
eight inbred lines and correlate genetic distance to hybrid performance and SCA.

24



Plants 2020, 9, 1140

2. Results

2.1. Analysis of Variance

The analysis of variance (ANOVA) revealed highly significant mean squares for locations (L),
densities (D), hybrids (H) and their interactions (L × D, H × L, H × D and H × D × L) for all the studied
characteristics (Table 1). Moreover, general combining ability (GCA) and specific combining ability
(SCA) mean squares were highly significant for all the measured traits. The magnitude of GCA mean
squares was higher than that of SCA mean squares (the ratio of GCA/SCA was higher than the unity)
for all the studied traits, except number of kernels per row (NKPR) trait. Significant mean squares of
GCA × L, SCA × L, GCA × D, SCA × D, GCA × L × D, SCA × L × D interactions were detected for all
the studied traits, except GCA × L and GCA × L × D for leaf angle (LANG) and chlorophyll content
(CHLC), GCA × D for ear diameter (ED) and SCA × D for EHT, LANG and ED were not significant.

Table 1. Analysis of variance for the evaluated crosses under three plant densities combined across
two locations for all the studied traits.

SOV DF DTS ASI PLHT EHT LANG CHLC

Locations (L) 1 1114.26 ** 12.87 ** 16,592.96 ** 6489.21 ** 108.64 * 400.29 **
Rep (L) 4 15.14 0.58 325.06 138.65 14.87 10.84

Densities (D) 2 1899.48 ** 73.14 ** 23,422.30 ** 9384.04 ** 603.65 ** 1585.67 **
L × D 2 308.23 ** 22.39 ** 9852.25 ** 5708.38 ** 27.17 ** 180.79 **

Error a 8 1.07 0.19 121.77 53.15 3.33 2.34
Hybrids (H) 27 28.04 ** 7.89 ** 6842.02 ** 2056.81 ** 425.82 ** 119.32 **

GCA 7 57.16 ** 12.03 ** 11,397.27 ** 2447.44 ** 836.14 ** 162.00 **
SCA 20 17.85 ** 6.44 ** 5247.69 ** 1920.08 ** 282.20 ** 104.38 **

H × L 27 61.66 ** 0.83 ** 796.40 ** 362.93 ** 4.15 ** 3.61 **
GCA × L 7 52.48 ** 0.88 ** 915.53 ** 309.35 ** 3.16 3.57
SCA × L 20 64.88 ** 0.81 ** 754.71 ** 381.68 ** 4.49 ** 3.62 *

H × D 54 5.01 ** 0.31 ** 254.88 ** 60.51 ** 4.57 ** 10.19 **
GCA × D 14 4.54 ** 0.30 ** 212.94 ** 78.99 * 6.63 ** 19.13 **
SCA × D 40 5.18 ** 0.31 ** 269.56 ** 54.03 3.85 7.06 **

H × D × L 54 63.25 ** 0.88 ** 592.24 ** 397.54 ** 4.11 * 4.30 **
GCA × L × D 14 64.03 ** 0.86 ** 544.25 ** 363.40 ** 3.90 2.64
SCA × L × D 40 62.97 ** 0.88 ** 609.03 ** 409.48 ** 4.19 * 4.88 **

Error b 324 0.81 0.14 84.07 42.33 2.69 1.93
GCA/SCA 3.20 1.87 2.17 1.27 2.96 1.55

SOV DF ED NRPE NKPR TKW GYPP GYPH

Locations (L) 1 2.09 * 36.35 ** 353.21 ** 8232.88 ** 12,079.40 ** 40.40 **
Rep (L) 4 0. 26 1.35 12.53 225.52 285.31 0.78

Densities (D) 2 21.93 ** 88.74 ** 2229.25 ** 91,176.13 ** 50,563.13 ** 58.38 **
L × D 2 1.78 ** 6.33 ** 331.20 ** 3151.63 ** 14,971.59 ** 54.39 **

Error a 8 0.18 0.52 3.09 192.11 56.68 0.30
Hybrids (H) 27 1.01 ** 8.75 ** 56.88 ** 10,944.20 ** 9941.33 ** 49.21 **

GCA 7 1.07 ** 16.50 ** 41.59 ** 12,835.71 ** 13,527.67 ** 67.17 **
SCA 20 0.99 ** 6.04 ** 62.24 ** 10,282.17 ** 8686.11 ** 42.93 **

H × L 27 1.25 ** 18.90 ** 21.01 ** 2126.28 ** 1230.60 ** 4.24 **
GCA × L 7 1.56 ** 20.27 ** 17.14 ** 2328.04 ** 1621.69 ** 5.61 **
SCA × L 20 1.14 ** 18.42 ** 22.36 ** 2055.67 ** 1093.72 ** 3.75 **

H × D 54 0.20 ** 0.98 ** 8.77 ** 360.55 ** 187.93 ** 0.71 **
GCA × D 14 0.24 1.45 ** 10.49 ** 560.46 ** 166.93 ** 0.73 **
SCA × D 40 0.19 0.82 ** 8.17 ** 290.58 ** 195.28 ** 0.70 **

H × D × L 54 1.27 ** 13.20 ** 16.84 ** 621.87 ** 1517.64 ** 5.45 **
GCA × L × D 14 1.45 ** 11.20 ** 19.16 ** 529.08 ** 1951.52 ** 6.99 **
SCA × L × D 40 1.21 ** 13.89 ** 16.02 ** 654.34 ** 1365.78 ** 4.91 **

Error b 324 0.15 0.38 2.41 143.75 45.22 0.25
GCA/SCA 1.08 2.73 0.67 1.25 1.56 1.57

* and ** significant at 0.05 and 0.01 levels of probability, respectively. DTS: days to 50% silking, ASI: anthesis–silking
interval, PLHT: plant height, EHT: ear height, LANG: leaf angle, CHLC: chlorophyll content, ED: ear diameter,
NRPE: number of rows per ear, NKPR: number of kernels per row, TKW: thousand kernel weight, GYPP: grain yield
per plant and GYPH: grain yield per hectare.
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2.2. Changes in the Studied Traits Due to Increased Plant Density

Across the two locations, the mean of grain yield per plant (GYPP) was significantly decreased
as plant density increased from D1 to D2 and D3 by −9.60 and −20.59%, respectively, as compared
to D1 (Figure 1A). This reduction was accompanied by reductions in leaf angle (LANG) (−5.97 and
−11.23%), chlorophyll content (CHLC) (−5.48 and −12.15%) and all yield attributes; ear diameter (ED)
(−7.68 and −14.01%), number of rows per ear (NRPE) (−6.21 and −9.83%), number of kernels per row
(NKPR) (−7.38 and −17.77%), and thousand kernel weight (TKW) (−6.39 and −13.13%) at plant density
of D2 and D3, respectively, as compared to D1. Conversely, high plant density (D2 and D3) caused a
significant increase in grain yield per hectare (GYPH) compared with the low density (D1) by 8.48
and 11.23%, respectively (Figure 1B). Similarly, D2 and D3 caused significant increases in days to
50% silking (DTS) (5.10 and 11.31%), anthesis–silking interval (ASI) (12.87 and 39.88%), plant height
(PLHT) (3.78 and 9.75%) and ear height (EHT) (6.64 and 12.86%) as compared with low plant density
(D1), respectively.

(A) 

(B) 

Figure 1. Shows the changes due to increased plant density: (A) reduction in leaf angle (LANG),
chlorophyll content (CHLC), ear diameter (ED), number of rows per ear (NRPE), number of kernels per
row (NKPR), thousand kernel weight (TKW) and grain yield per plant (GYPP); (B) increase in days to
50% silking (DTS), anthesis–silking interval (ASI), plant height (PLHT), ear height (EHT) and grain
yield per hectare (GYPH) under D2 and D3 in compared with D1.

2.3. Performance of F1 Hybrids

The mean performances of the 28 F1 hybrids and the commercial check hybrid SC128 for all the
studied characteristics are provided in Supplementary Materials, Table S1. The evaluated hybrids
showed a wide variation for all studied traits under all plant densities. The mean values for DTS were
58.22 days in D1, 61.19 days under D2, and 64.80 days in D3 (Table 2). The earliest hybrids were L1 × L3

at D1, L3 × L4 at D2 and L1 × L4 at D3, while the latest hybrids were L6 × L8 under D1 and D2 and L3

× L6 under D3 (Table 2). A total of 21, 17 and 4 hybrids were significantly earlier than the check hybrid
SC128 under D1, D2 and D3, respectively (Supplementary Materials, Table S1). Likewise, the means
of ASI were 3.26 days in D1, 3.68 days under D2, and 4.56 days in D3. The longest ASI was shown
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by the hybrid L3 × L7, and the shortest one was shown by L2 × L5 under the three plant densities
(Table 2). The highest PLHT mean was 263.52 cm in D3, while it was 240.122 cm and 249.20 cm in
D1 and D2, respectively. The tallest hybrids were L4 × L7 under D1 and D3, and L2 × L4 under D2,
while the shortest hybrid was L2 × L6 under the three plant densities (Table 2). The means of the EHT
were 117.86, 125.68 and 133.02 in D1, D2 and D3, respectively. A total of 12, 11 and 14 hybrids were
significantly shorter than the check hybrid SC128 under D1, D2 and D3, respectively (Supplementary
Materials, Table S1).

Table 2. Minimum, maximum and mean values of all the studied traits under three plant densities
across two locations.

Trait Parameter
D1 D2 D3

Value Hybrid Value Hybrid Value Hybrid

DTS
Minimum 56.17 L1 × L3 58.50 L3 × L4 62.52 L1 × L4
Maximum 61.50 L6 × L8 65.00 L6 × L8 67.60 L3 × L6

Mean 58.22 61.19 64.80

ASI
Minimum 2.15 L2 × L5 2.28 L2 × L5 3.12 L2 × L5
Maximum 4.65 L3 × L7 5.20 L3 × L7 5.65 L3 × L7

Mean 3.26 3.68 4.56

PLHT (cm)
Minimum 203.17 L2 × L6 206.00 L2 × L6 213.35 L2 × L6
Maximum 283.00 L4 × L7 290.63 L2 × L4 304.35 L4 × L7

Mean 240.12 249.20 263.52

EHT (cm)
Minimum 104.32 L3 × L6 109.49 L2 × L6 116.42 L2 × L6
Maximum 144.14 L6 × L7 151.23 L6 × L7 160.29 L6 × L7

Mean 117.86 125.68 133.02

LANG (◦)
Minimum 25.70 L4 × L5 24.40 L4 × L5 22.00 L4 × L5
Maximum 45.35 L3 × L7 42.30 L3 × L7 39.05 L3 × L7

Mean 34.03 32.00 30.21

CHLC (SPAD unit)
Minimum 44.37 L7 × L8 41.80 L7 × L8 39.39 L7 × L8
Maximum 54.50 L2 × L8 53.13 L2 × L8 50.20 L2 × L8

Mean 50.34 47.59 44.23

ED (cm)
Minimum 4.70 L1 × L7 4.20 L2 × L4 3.60 L2 × L4
Maximum 5.80 L1 × L8 5.15 L1 × L3 5.00 L1 × L4

Mean 5.16 4.76 4.44

NRPE
Minimum 13.00 L3 × L7 12.30 L3 × L4 12.18 L1 × L3
Maximum 16.40 L2 × L5 15.20 L1 × L5 14.70 L1 × L5

Mean 14.83 13.91 13.37

NKPR
Minimum 35.20 L1 × L5 34.00 L1 × L5 30.29 L1 × L5
Maximum 45.10 L2 × L8 42.00 L2 × L8 37.95 L2 × L8

Mean 40.28 37.31 33.12

TKW (g)
Minimum 315.00 L3 × L8 291.00 L5 × L6 276.00 L5 × L7
Maximum 405.00 L2 × L8 374.00 L1 × L4 353.50 L1 × L4

Mean 356.00 333.24 309.26

GYPP (g)
Minimum 130.88 L3 × L7 122.71 L3 × L8 103.75 L3 × L7
Maximum 236.45 L2 × L8 215.01 L2 × L8 187.44 L2 × L8

Mean 170.11 153.78 135.09

GYPH ( t ha−1)
Minimum 7.79 L3 × L7 8.76 L3 × L8 8.78 L3 × L7
Maximum 14.07 L2 × L8 15.35 L2 × L8 15.61 L2 × L8

Mean 10.12 10.98 11.26

The hybrid L6 × L7 had the highest ear height under the three plant densities, while the hybrids
L3 × L6 in D1 and L2 × L6 under D2 and D3 had the lowest ear heights (Table 2). A total of 13, 20
and 19 hybrids had significantly lower ear placement than the check hybrid SC128 under D1, D2 and
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D3, respectively (Supplementary Materials, Table S1). Furthermore, the hybrid L4 × L5 displayed
the lowest LANG, while L3 × L7 gave the highest one under the three plant densities. The means of
CHLC were 50.34, 47.59 and 44.23 SPAD units under D1, D2 and D3, respectively. The highest hybrid
in CHLC was L2 × L8, while the lowest hybrid was L7 × L8 across the three plant densities (Table 2).
Moreover, the hybrids L5 × L6 at D1, L3 × L4 at D2 and L1 × L5 at D3 significantly surpassed the check
hybrid SC128 for this trait (Table S1). The means of ED were 5.16 cm in D1, 4.76 cm under D2, and 4.44
cm in D3. The hybrid L1 × L7 at D1 and L2 × L4 at D2 and D3 exhibited the lowest ED, while L1 × L8,
L1 × L3 and L1 × L4 gave the highest ones under D1, D2 and D3, respectively (Table 2). The mean for
the NRPE was 14.83 in D1 and 13.91 in D2, while it was 13.37 in D3. The hybrid L2 × L5 under D1 and
L1 × L5 under D2 and D3 exhibited the highest NRPE, while L3 × L7 in D1, L3 × L4 under D2 and L1

× L3 in D3 had the lowest mean values (Table 2). Additionally, two hybrids under D1, four hybrids
at D2 and three hybrids at D3 possessed higher NRPE than the check hybrid SC128 (Supplementary
Materials, Table S1). The mean values of the NKPR were 40.28, 37.31 and 33.12 for D1, D2 and D3,
respectively. The hybrid L2 × L8 had the highest NKPR, but the hybrid L1 × L5 displayed the lowest
one under the three plant densities. Means of the TKW were 356.0 g, 333.24 g, and 309.26 g in D1,
D2, and D3, respectively. The heaviest TKW was assigned for the hybrids L2 × L8 under D1 and L1

× L4 under D2 and D3, whereas the hybrids L3 × L8 in D1, L5 × L6 under D2 and L5 × L7 under D3
exhibited the lightest TKW (Table 2). Furthermore, four hybrids under D1, five hybrids at D2 and three
hybrids at D3 significantly exceeded the check hybrid SC128 for this trait (Supplementary Materials,
Table S1). The highest mean of GYPP was 170.11 g in D1, while it was 153.78 and 135.09 g in D2 and D3,
respectively. Conversely, the highest mean of GYPH was obtained in D3 (11.26 t ha−1), followed by D2
(10.98 t ha−1) and then by D3 (10.12 t ha−1) (Table 2). The hybrid L2 × L8 was the top yielding hybrid
and significantly out-yielded the check hybrid SC128 by 9.98, 13.16 and 10.26% under D1, D2 and D3,
respectively. Moreover, the hybrid L2 × L5 significantly surpassed the check hybrid SC128 by 5.26%
only under D2 (Supplementary Materials, Table S1). The optimum plant density for obtaining the
highest GYPH was D3 for all hybrids, except the hybrids; L2 × L7, L3 × L4, L3 × L7 and L2 × L8, where
the optimum density was D2 (Supplementary Materials, Table S1). This indicates that the optimum
plant density is genotype dependent and should be identified separately for each hybrid.

2.4. General Combining Ability (GCA) Effects

Estimates of GCA effects are presented in Table 3. High positive values of GCA effects would be of
interest for all studied characteristics in question, except DTS, ASI, PLHT, EHT and LANG where high
negative values would be desirable from the breeder point of view. Results showed that the highest
significant and negative GCA effects under the three plant densities were obtained by the inbred lines
L1 and L3 for DTS; L1, L2 and L5 for ASI; L1, L5, L6 and L8 for PLHT; L3, L5 and L8 for EHT and L1, L2

and L4 for LANG. Additionally, the inbred lines L4 in D1 and D2, as well as L5 in D3 for DTS; L4 in D3
and L8 in D1 and D2 for ASI; L2 in D3 and L3 under D1 and D3 for PLHT; and L5 under D1 and D3 for
LANG also expressed significant and negative GCA effects for these traits. In contrast, the inbred lines
L1 in D2 and D3, L5 under D1 and L2 under the three plant densities possessed significant and positive
GCA effects for CHLC. Regarding ED, the inbred lines L1 and L8 in D1 and D3 as well as L3 in D2 had
significant and positive GCA effects.

The highest positive and significant GCA effects for NRPE belonged to L1 in D2 and D3, L5 and
L8 in D1 and D3, and L2 under the three plant densities. Likewise, the inbreds L3 and L7 in D1; L1 and
L6 in D3 and L2 under the three plant densities were determined and considered to be good general
combiners for NKPR. The highest positive and significant GCA effects for TKW belonged to L1 and L2

under the three plant densities, L4 under D1 and D2 and L6 under D3. Furthermore, the inbred lines
L1, L2 and L5 under the three plant densities and L8 under D3 had significant and positive GCA effects
for GYPP and GYPH. Based on the summarized results, it can be concluded that parental lines L1, L2

and L5 had the highest GCA effects for grain yield and the majority of studied traits.
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Table 3. General combining ability (GCA) effects of the eight parental inbred lines for all the studied
traits under three plant densities across two locations.

Inbred Line
DTS ASI PLHT EHT

D1 D2 D3 D1 D2 D3 D1 D2 D3 D1 D2 D3

L1 −0.84 ** −0.94 ** −1.08 ** −0.27 ** −0.26 ** −0.16 ** −7.22 ** −10.48 ** −3.92 ** 10.29 ** 8.20 ** 5.43 **
L2 −0.21 −0.27 0.07 −0.28 ** −0.31 ** −0.30 ** −0.90 −2.58 −7.66 ** −1.35 −1.28 −1.54
L3 −0.62 ** −0.81 ** −0.38 ** 0.43 ** 0.48 ** 0.37 ** −3.52 * −1.12 −4.93 ** −3.74 ** −4.22 ** −3.03 **
L4 −0.74 ** −0.60 ** −0.20 −0.05 −0.09 −0.23 ** 18.43 ** 24.20 ** 22.27 ** 1.48 3.60 ** 4.25 **
L5 0.62 ** 0.34 * −0.56 ** −0.31 ** −0.43 ** −0.30 ** −4.29 ** −3.48 * −2.93 * −4.21 ** −6.60 ** −6.32 **
L6 1.28 ** 1.49 ** 1.32 ** 0.65 ** 0.58 ** 0.42 ** −8.60 ** −9.06 ** −5.94 ** 1.38 1.93 3.43 **
L7 0.09 0.30 * 0.95 ** 0.02 0.14 * 0.13 * 10.17 ** 8.45 ** 9.75 ** 3.13 ** 3.12 ** 1.33
L8 0.43 ** 0.49 ** −0.12 −0.19 ** −0.11 * 0.07 −4.05 ** −5.94 ** −6.64 ** −6.99 ** −4.75 ** −3.55 **

LSD 0.05 0.28 0.11 2.82 2.00
LSD 0.01 0.36 0.15 3.70 2.63

Inbred Line
LANG CHLC ED NRPE

D1 D2 D3 D1 D2 D3 D1 D2 D3 D1 D2 D3

L1 −2.31 ** −2.55 ** −3.35 ** 0.07 0.80 ** 2.13 ** 0.13 * 0.08 0.20 ** −0.14 0.33 ** 0.45 **
L2 −1.81 ** −1.62 ** −0.92 ** 1.72 ** 2.58 ** 3.18 ** 0.11 −0.08 −0.19 ** 0.39 ** 0.43 ** 0.50 **
L3 5.51 ** 5.71 ** 5.63 ** −1.13 ** −1.32 ** −0.74 ** −0.02 0.13 * 0.06 −0.73 ** −0.55 ** −0.51 **
L4 −3.77 ** −2.92 ** −2.87 ** −0.20 −0.42 −1.20 ** 0.04 −0.03 −0.06 0.13 −0.29 ** −0.19 *
L5 −0.62 * −0.13 −0.75 ** 1.19 ** −0.38 0.16 −0.09 0.02 −0.02 0.42 ** 0.27 ** 0.16
L6 0.84 ** 0.55 * 1.34 ** −0.44 * −0.61 ** −1.81 ** −0.21 ** −0.11 −0.06 0.16 −0.07 −0.08
L7 1.74 ** 1.18 ** 1.15 ** −0.97 ** 0.00 −1.34 ** −0.13 * −0.12 * −0.07 −0.72 ** −0.52 ** −0.37 **
L8 0.42 −0.21 −0.23 −0.24 −0.66 ** −0.38 0.17 ** 0.09 0.13 * 0.48 ** 0.40 ** 0.04

LSD 0.05 0.50 0.43 0.12 0.19
LSD 0.01 0.66 0.56 0.15 0.25

Inbred Line
NKPR TKW GYPP GYPH

D1 D2 D3 D1 D2 D3 D1 D2 D3 D1 D2 D3

L1 −0.55 * −0.14 0.58 * 12.63 ** 16.08 ** 17.98 ** 12.19 ** 9.92 ** 8.79 ** 0.73 ** 0.71 ** 0.73 **
L2 1.47 ** 1.06 ** 1.15 ** 18.79 ** 16.50 ** 10.23 ** 19.20 ** 19.23 ** 15.67 ** 1.14 ** 1.37 ** 1.30 **
L3 0.68 ** −0.55 * −1.17 ** −17.88 ** −10.58 ** −6.60 ** −16.55 ** −16.58 ** −16.95 ** −0.98 ** −1.18 ** −1.39 **
L4 −0.62 * 0.08 −0.71 ** 6.63 ** 3.75 * 1.81 −3.93 ** 0.90 −0.58 −0.23 ** 0.06 −0.05
L5 −1.43 ** −0.73 ** −0.48 * 0.46 −3.08 −5.10 ** 6.92 ** 4.29 ** 4.19 ** 0.41 ** 0.31 ** 0.34 **
L6 −0.27 0.46 0.62 * −5.21 ** −2.58 4.73 * −13.70 ** −10.97 ** −7.49 ** −0.82 ** −0.78 ** −0.63 **
L7 0.56 * −0.01 0.05 −9.04 ** −13.08 ** −13.27 ** −4.05 ** −4.52 ** −6.16 ** −0.24 ** −0.32 ** −0.50 **
L8 0.15 −0.17 −0.05 −6.38 ** −7.00 ** −9.77 ** −0.08 −2.27 * 2.53 * 0.00 −0.16 * 0.21 **

LSD 0.05 0.48 3.68 2.07 0.15
LSD 0.01 0.63 4.84 2.72 0.20

* and ** significant at 0.05 and 0.01 levels of probability, respectively. DTS: days to 50% silking, ASI: anthesis–silking
interval, PLHT: plant height, EHT: ear height, LANG: leaf angle, CHLC: chlorophyll content, ED: ear diameter,
NRPE: number of rows per ear, NKPR: number of kernels per row, TKW: thousand kernel weight, GYPP: grain yield
per plant and GYPH: grain yield per hectare.

2.5. Specific Combining Ability (SCA) Effects

The estimated SCA values under the three plant densities across two locations are presented in
Table 4. The hybrids that presented the highest significant and negatives SCA effects (desirable) under
the three plant densities were L1 × L6, L2 × L4, L3 × L5, L3 × L8, L4 × L7 for DTS; L1 × L7, L2 × L5, L2 ×
L7, L2 × L8, L3 × L4, L3 × L6 and L4 × L5 for ASI; L1 × L4, L2 × L6, L2 × L7, L2 × L8, L3 × L4 and L3 ×
L7 for PLHT; L1 × L7, L1 × L8, L2 × L6 and L3 × L6 for EHT and L1 × L4, L1 × L5, L1 × L6, L1 × L7, L2

× L5, L2 × L8, L3 × L4, L3 × L6, L4 × L5, L4 × L7 and L7 × L8 for LANG. On the contrary, the hybrid
combinations; L1 × L7, L2 × L8, L3 × L4 and L5 × L6 for CHLC; L2 × L5 and L2 × L7 for ED; L1 × L5, L2

× L3, L3 × L6 and L6 × L7 for NRPE; L1 × L6, L2 × L8 and L6 × L7 for NKPE; L1 × L4, L1 × L6, L2 × L5,

L2 × L8, L3 × L5, L4 × L5, L6 × L7 and L7 × L8 for TKW and L1 × L3, L1 × L6, L2 × L5, L2 × L8, L3 × L4,

L3 × L6, L4 × L5, L6 × L7 and L7 × L8 for GYPP and GYPH had the highest significant and positive SCA
effects (desirable) under the three plant densities. Moreover, the hybrids L1 × L5 in D2 and D3, L4 × L7

in D1 and D2 and L2 × L4 and L5 × L7 under D3 displayed significant and positive SCA effects for
GYPP and GYPH. It is notable that the crosses that showed high SCA effects for GYPP and GYPH also
showed desirable SCA effects for some other traits, i.e., DTS, LANG, NKPE and TKW for the hybrid L1

× L6; ASI, LANG and TKW for the two hybrids L2 × L5 and L4 × L5; ASI, PLHT, LANG, CHLC, NKPR
and TKW for the hybrid L2 × L8 and PLHT, NRPE, NKPR and TKW for the hybrid L6 × L7.
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2.6. SSR Polymorphisms, Genetic Distance (GD) and Cluster Analysis

Out of twenty-two SSR primer pairs analyzed, ten were polymorphic among the eight inbreds
studied (Table 5). The primer pairs generated a total of 80 polymorphic fragments (Figure 2). The
number of alleles per locus ranged from 2 to 6, with an average number of 2.7 alleles/locus (Table 5).
The major allele frequency had an average of 0.59 with a range extended from 0.25 to 0.88. The gene
diversity and polymorphic information content (PIC) averaged 0.50 and 0.41, with ranges of 0.22–0.81
and 0.19–0.79, respectively. The umc1033 locus showed the highest gene diversity and PIC (Table 5).
Genetic distance estimates based on SSR markers ranged from 0.31 to 0.78 with an average of 0.61
(Table 6). The lowest genetic distance (0.31) was obtained between the inbred lines (L1 and L4), whereas
the highest genetic distance (0.78) was observed between the inbred lines (L1 and L8), (L2 and L5), (L2

and L6) and (L2 and L8). The dendrogram constructed based on GD revealed two main clusters; L1, L2,
L3 and L4 constituted the first group, while L5, L6, L7 and L8 formed the second one (Figure 3).

Table 5. Number of alleles, major allele frequency, gene diversity and polymorphic information content
(PIC) of the ten SSR markers used in this study.

Marker Ch. Size Range (bp) No. of Alleles Major Allele Frequency Gene Diversity PIC

phi308707 1 125–140 2 0.63 0.47 0.36
phi96100 2 150–200 2 0.88 0.22 0.19

phi453121 3 150–200 2 0.50 0.50 0.38
phi072 4 100–150 2 0.75 0.38 0.30
phi024 5 100–200 2 0.50 0.50 0.38

umc1014 6 100–150 3 0.50 0.59 0.51
phi112 7 150–200 3 0.50 0.59 0.51
phi015 8 50–150 3 0.50 0.59 0.51

umc1033 9 50–200 6 0.25 0.81 0.79
phi301654 10 100–150 2 0.88 0.22 0.19

Mean 2.7 0.59 0.50 0.41

 

Figure 2. Amplification pattern of representative SSR markers with the eight maize inbred lines (L1–L8).
M refers to the 100 bp DNA ladder.
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Table 6. Genetic distance (GD) matrix among the eight maize inbred lines based on SSR analysis.

Parent L1 L2 L3 L4 L5 L6 L7 L8

L1 - 0.43 0.53 0.31 0.71 0.71 0.71 0.78
L2 - 0.43 0.53 0.78 0.78 0.71 0.78
L3 - 0.43 0.63 0.63 0.63 0.71
L4 - 0.63 0.71 0.63 0.71
L5 - 0.63 0.43 0.71
L6 - 0.43 0.63
L7 - 0.53
L8 -

Figure 3. Dendrogram of the eight maize inbred lines constructed from SSR data using (UPGMA)
according to Jaccard’s coefficients.

2.7. Association between Genetic Distance, F1 Hybrid Performance and SCA

Correlations between GD estimated for pairs of inbred lines with each of F1 hybrid performance
and SCA were not significant for all measured traits (Table 7, Figure 4A,B). However, significant and
positive association was observed between F1 hybrid performance and SCA for all the studied traits
across the three plant densities (Table 7).

Table 7. Correlation coefficients among parental genetic distance (GD), F1 hybrid performance and
SCA for all studied traits across all environments.

Trait DTS ASI PLHT EHT LANG CHLC ED NRPE NKPR TKW GYPP GYPH

r (GD, F1) 0.20 −0.26 −0.20 −0.60 −0.09 0.30 0.13 0.26 0.04 −0.21 0.05 0.05
r (GD, SCA) 0.01 −0.26 0.00 −0.55 −0.07 0.29 0.11 0.12 −0.25 −0.26 0.04 0.04
r (F1, SCA) 0.69 ** 0.78 ** 0.75 ** 0.83 ** 0.70 ** 0.80 ** 0.85 ** 0.71 ** 0.90 ** 0.83 ** 0.80 ** 0.80 **

** significant at 0.01 level of probability.
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(A) (B) 

Figure 4. Corrplot depicting correlation coefficient of genetic distance based on molecular data with
F1 hybrid performance (A) and SCA (B) for all studied traits. GD: genetic distance, DTS: days to 50%
silking, ASI: anthesis–silking interval, PLHT: plant height, EHT: ear height, LANG: leaf angle, CHLC:
chlorophyll content, ED: ear diameter, NRPE: number of rows per ear, NKPR: number of kernels per
row, TKW: thousand kernel weight, GYPP: grain yield per plant and GYPH: grain yield per hectare.

3. Discussion

3.1. Analysis of Variance and Hybrid Performance

The significant mean squares of L, D and H observed for all the studied characteristics (Table 2),
indicate that the tested locations and densities were dissimilar and there were adequate genetic
differences among the hybrids for effective selection of all the studied traits. Significant differences
among maize hybrids under different plant densities were also reported [10,35–37]. The presence of
significant mean squares for H×D interaction, indicated inconsistent performance of the hybrids across
plant densities. In that context, the ranks of maize hybrids differed from one density to another for all
measured traits. Therefore, selection of hybrids under various plant densities may be a promising
strategy to improve the adaptation of maize hybrids to higher plant density. These results are consistent
with the findings of other studies [12,13,36,38].

The significant GCA and SCA effects imply that both additive and non-additive gene effects are
involved in governing all traits. The inheritance of a specific trait could be identified based on the
ratio of GCA/SCA variances. In the present study, the GCA/SCA ratio was greater than unity for all
evaluated characteristics, except NKPR, which indicated the preponderance of additive gene effects
in controlling the inheritance of all measured traits, except NKPR which was mainly controlled by
non-additive gene action. Therefore, selection breeding methods can be effective for improvement of
these traits. This finding is in agreement with that of Mason and Zuber [25] and Al-Naggar et al. [7],
who reported that additive genetic effects were important in the inheritance of grain yield and other
agronomic traits under different plant densities. However, this result is in contrast to the findings of
other studies [36,39], who reported that non-additive gene effects were found to be more important in
controlling grain yield inheritance under varying plant densities.

The significant GCA × L and GCA × D interactions mean squares for most traits in the present
study indicate that the GCA effects of the inbred lines varied significantly under different environments.
This result is in agreement with the findings of several authors [17,26,40,41]. Likewise, the significant
SCA × L and SCA × D interactions observed for most traits implied that the performance of the
hybrids was not consistent under varying research environments. This suggests the need for extensive
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evaluation of the hybrids in multiple environments in order to identify high yielding and most stable
hybrids tolerant to high plant densities [39].

The highest GYPP of all evaluated hybrids in this study was observed under low density (D1),
where competition between plants is minimum [12]. As planting density increases, resources to each
plant (water, nutrients and light interception) decrease, increasing plant–plant competition and in
turn reducing the assimilated supply to developing cobs and, consequently, resulting in a reduction in
grain yield per plant [42–44]. The observed reduction in GYPP due to elevating plant density from D1
to D2 and D3 in this study could be a result of the reduction in all yield attributesED, NRPE, NKPR
and TKW. These results are consistent with Tang et al. [45], who stated that increasing plant density in
maize leads to a reduction in ear diameter, grains per ear, thousand kernels weight and finally single
plant yield. Hashemi et al. [46] also demonstrated that grain yield per plant and all yield components
linearly decreased with increasing plant density. Moreover, increasing plant density also reduced
LANG and CHLC. The decrease in the leaf angle and chlorophyll content in response to high plant
density has also been reported previously in maize [13,47,48].

On the other hand, high plant density (D3) caused significant increases in DTS, ASI, PLHT,
EHT and GYPH compared with the low density (D1). Delayed silking and increased ASI period, as
symptoms of intense interplant competition for growth resources, can be associated with significant
yield reductions [15,49]. Increasing plant density initiated greater stress during pollination that can
lead to increasing kernel abortions and decreasing grain fill [8,11]. These two traits (early DTS and
short ASI) could be effective indicators for selecting high density tolerance hybrids [50]. The increased
values of PLHT and EHT might be related to the stress imposed on maize plants due to competition
for light resulting from elevated plant density which potentially increase stem elongation [51,52]. The
increase in GYPH with increasing plant density is largely attributed to the higher number of plants
per unit area. This suggested that the increase in GYPH due to increased plant density may offset the
reduction in GYPP due to competition between plants. These results are in accordance with the results
reported in other studies [10,12,53,54].

The two hybrids L2 × L5 and L2 × L8 had the highest GYPP and GYPH under three plant densities,
and could be considered the most highly responsive and tolerant to high plant density. Interestingly,
the hybrid L2 × L8 significantly outyielded the check hybrid SC128 under all densities; moreover, it
had outstanding features, such as short ASI, short plant and ear position, erect leaf under high plant
density. Therefore, this hybrid should be tested extensively in multilocation trials and promoted for
adoption to high plant density tolerance. Similar to our results, Al-Naggar et al. [12] reported that the
selection of hybrids with high grain yield, better plant and ear heights, short ASI, and erect leaf under
high plant density stress is important for the development of tolerant hybrids to high plant densities.

3.2. GCA and SCA Estimates

Combining ability analysis helps in the identification of parents with good GCA effects and
hybrids with good SCA effects [23]. Selection of parents giving good-performing hybrids is one of
the challenges facing breeders. Parents with desirable GCA effect for the target traits can be used
to accumulate favorable alleles by recombination and selection [55]. In the current study, high GCA
values for the evaluated traits were scattered among the eight inbred lines and changed across plant
densities, demonstrating the effects of plant densities on GCA values. Moreover, none of the inbred
lines exhibited significant GCA effects for all the measured traits under any of the testing densities.
Similar results were reported by other researchers [56,57]. The significant and negative GCA effects
were displayed by the inbreds L1 and L3 for DTS and L1, L2 and L5 for ASI across the three plant
densities, indicating that, these inbreds could be good combiners and possessed favorable alleles
towards earliness. Likewise, inbred lines L5 and L8 were the best general combiners for reduced plant
and ear heights which are important for lodging tolerance especially under high plant density. The
inbred line L2 had the highest positive GCA values for CHLC, NRPE, NKPR and TKW suggesting that
this line could be good combiner for improving these traits. Moreover, the best general combiners for
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GYPP and GYPH were L1, L2, and L5 under the three plant densities and L8 under D3. These inbreds
could transfer desirable alleles for improved grain yield to their progenies to develop hybrids tolerant
to high plant density. The superiority of these inbreds in GCA effects for grain yield was associated
with their superiority in GCA effects for some other traits. Interestingly, the inbred line L1, which
had desirable GCA effects for GYPP and GYPH, was also found to be good a general combiner for
earliness, short ASI, short PLHT, reduced LANG and increased TKW. Previous findings proved that
positive GCA effects for grain yield and negative GCA effects for DTS, PLHT, and LANG traits are a
good indicator of high plant density tolerance [13]. Thus, the inbred line L1 has potential to be used to
improve maize grain yield under high plant density.

Estimates of SCA effects provide important information about the non-additive gene effects
(dominance and epistatic interaction), which can also be related to hybrid vigor, assisting in the
selection of the best hybrid combinations [58]. The highly positive and significant SCA effects for
grain yield and its components indicated that the produced hybrids were good specific combiners for
developing high-yielding hybrids [1]. In the present study, the most promising specific combiners
for grain yield (GYPP or GYPH) and some of its components were L1 × L3, L1 × L6, L2 × L5, L2 × L8,
L4 × L5 and L7 × L8 under the three plant densities. These hybrids involved at least one high GCA
parent, which could be exploited by conventional breeding procedures. This finding is in line with the
result reported in other studies [56,59]. In their studies, high SCA was observed in cross combinations
involving one line with high GCA and another with low GCA effects.

Two hybrids, L2 × L5 and L2 × L8, had desirable significant positive SCA coupled with high mean
grain yield under the three plant densities, revealing good correspondence between mean grain yield
and SCA effects [1]. Regardless of their significant SCA effects, three crosses L3 × L4, L3 × L6 and L6

× L7, constituted from parents with low × low GCA effects for GYPP and GYPH were not favorable
due to insufficient additive variance. This indicates that both GCA and SCA should be taken into
consideration in the selection of elite parents for the development of heterotic hybrids [18]. It is notable
that none of the hybrids exhibited significant SCA effects for all the traits. However, the hybrids L2

× L5, L2 × L8 and L4 × L5 were found to be good specific combiners for more than one trait, such as
ASI, LANG, TKW, GYPP and GYPH. Accordingly, these hybrids would be useful to increase maize
grain yield under high plant density for their complementary characteristics, including, short ASI,
erect leaf and high grain yield under high plant density. In concordance with the findings reported
here, desirable significant SCA under high plant density for ASI, LANG and grain yield has previously
been reported by Al-Naggar et al. [13].

3.3. SSR Polymorphisms, Genetic Distance (GD) and Cluster Analysis

The mean number of alleles (2.7) per locus obtained in this study was close to the values reported
by other researchers [26,27,34], who detected averages of 2.9, 2.57 and 3.0 alleles per locus, respectively.
However, it was lower than the 6.21 alleles/locus reported by Oppong et al. [60] or the 5.7 alleles/locus
found by Oyekunle et al. [61] in maize inbred lines using SSR markers. The differences in the means of
alleles among different studies could be attributed to the differences in sample size, repeat length and
number of the SSR markers involved in the studies [27]. The lower values observed in this study could
arise from the small number of lines used for genotyping.

The PIC demonstrates the informativeness of the SSR loci and their potential to detect differences
among the inbred lines based on their genetic relationships [62]. Informative markers can be categorized
as highly informative (PIC > 0.5), reasonably informative (0.5 < PIC < 0.25) and slightly informative
(PIC < 0.25), as reported by Botstein et al. [63]. Accordingly, four markersumc1014, phi112, phi015 and
umc1033 with high PIC values, and hence high discriminatory power, were identified. The average
gene diversity (0.50) detected among the tested inbred lines in this study indicated high levels of
polymorphisms within the inbred lines. This result is in close agreement with the findings reported
in other studies [30,64]. The frequency of the most common (major) alleles had an average of 0.59,
suggesting that 59.0% of the studied inbreds shared a common major allele at any of the tested loci.
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Assessing the genetic diversity is essential for enhancing the yield and conservation strategies of
main crops [65–70], such as maize that has high an economic importance [71]. The average genetic
diversity existing among all the inbred lines was relatively high (0.61). This indicated that there was
considerable genetic diversity among the inbreds based on the microsatellite markers analysis [72].
The largest GD in this study was between the Egyptian (local) and CIMMYT (exotic) inbred lines.
The relatively large genetic distance between local and exotic lines, suggesting the opportunity to
use these lines for the development of high-yielding and stress-tolerant hybrids. Indeed, the two
high-yielding hybrids (L2 × L5 and L2 × L8) under the three plant densities consisted of local × exotic
line combinations. This indicates that novel and complementary alleles existing in the germplasm
from the two countries can be exploited for superior maize hybrid development and population
improvement [73]. Moreover, it implies the potential benefits of exchanging germplasm between
breeding programs for the development of high yielding and density tolerant hybrids.

The dendrogram constructed using the UPGMA clustering grouped the inbred lines into two
main clusters, which generally agreed with their origin. One cluster was composed of CIMMYT
inbred lines, while the other consisted of local inbreds. This result is consistent with the findings of
Mageto et al. [17], who reported that clustering based on GD grouped maize inbred lines according to
their origin. Similarly, [34,64] revealed the effectiveness of SSR markers for classifying maize inbreds
according to their origin in their studies.

3.4. Association between Genetic Distance, F1 Hybrid Performance and SCA

Our results showed that GD of the parental inbreds was not significantly correlated with the mean
of F1 hybrids for any of the evaluated traits across the tested environments. This implied that the
SSR-based GD could not be used to predict the performance of F1 hybrids in this study. This result
is consistent with those reported by [26,33,34,40]. Bernardo [74] attributed this poor correlation to
the lack of linkage between genes controlling the trait and markers used to estimate GD, inadequate
genome coverage and different levels of dominance among hybrids. Contrary to the current finding, a
significant correlation was reported between molecular GD and F1 hybrid performance [32,75]. There
was no significant correlation between GD and SCA for all the traits, suggesting that SSR-based GD
might not be effective in predicting SCA effects in the studied materials. Similarly, non-significant
association between genetic distances and SCA was reported by [40,76]. However, Betran et al. [75]
reported a significant correlation between GD and SCA for maize grain yield. Furthermore, our results
showed that SCA effects were significantly correlated with F1 hybrid performance for all the traits. This
indicated that SCA could be used to predict the performance of F1 hybrids. This result is in agreement
with the findings of [17,26].

4. Conclusions

This study revealed a considerable variability among F1 hybrids for all traits under different plant
densities. Additive and non-additive gene effects are involved in the genetic control of all traits, with a
predominance of the additive gene action for most traits. Selection of potential hybrids for density
tolerance breeding programs should be based on both GCA and SCA effects. The inbred lines L1 and
L3 were identified as excellent combiners for earliness, L5 and L8 for reduced plant and ear heights and
L1, L2, and L5 for increased grain yield under varying plant densities. The best hybrids L2 × L5 and L2

× L8 for grain yield and other multiple traits were identified for further evaluation. The estimated GD
based on SSR markers in this study could not be used to predict the hybrids performance and SCA
effects. Nevertheless, SCA could be used to predict the hybrids performance across all plant densities.
Although SSR determined that GD was not useful in predicting hybrid performance and SCA effects, it
was effective in classifying the inbred lines according to their origin, signifying the efficiency of SSR
marker for diversity and clustering analyses. The findings of the present study might have important
implications for breeding programs designed to improve density tolerance in maize.
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5. Materials and Methods

5.1. Plant Materials

Eight white maize (Zea mays L.) inbred lines showing clear differences in grain yield and other
agronomic characteristics were chosen as parents in this study. Four inbreds (L1, L2 L3 and L4) were
obtained from Maize Research Department, Agricultural Research Center (ARC) in Egypt and the
other four (L5, L6, L7 and L8) were introduced from the International Maize and Wheat Improvement
Center (CIMMYT). The parental codes, names and sources of these inbred lines are listed in Table 8.

Table 8. Code, name and source of the parental maize inbred lines.

Parent Code Name Source

L1 IL36 ARC-Egypt
L2 IL94 ARC-Egypt
L3 IL53 ARC-Egypt
L4 IL38 ARC-Egypt
L5 CML538 CIMMYT-Mexico
L6 CML203 CIMMYT-Mexico
L7 CML206 CIMMYT-Mexico
L8 CML441 CIMMYT-Mexico

5.2. Production and Evaluation of F1 Hybrids

In the 2017 season, all possible diallel crosses (excluding reciprocals) were made among the eight
inbred lines to obtain seeds of 28 F1 hybrids. In the 2018 season, the resulting 28 F1 white hybrids plus
the commercial check hybrid SC128 were evaluated under three plant densities, i.e., 59,500 (D1), 71,400
(D2) and 83,300 (D3) plants ha−1 at two locations. The two locations were El-Mahmoudia, El-Behira,
Egypt ((31◦3′ N, 30◦48′ E)) in a private farm, and the Experimental Farm, Faculty of Agriculture,
Kafrelsheikh University, Egypt ((31◦6′ N, 30◦56′ E)). A split-plot design in randomized complete blocks
(RCB) arrangement with three replications was used in each location. The three plant densities were
located at the main plots, while the hybrids were located at the sub plots. Each subplot consisted of
one ridge of 6 m long and 0.7 m width. Two seeds were sown in hills at 24, 20 and 17 cm apart, and
thereafter (before the 1st irrigation) were thinned to one plant/hill to achieve the three plant densities,
i.e., D1, D2 and D3, respectively. Phosphorus at the rate of 476 kg ha−1 in the form of calcium super
phosphate (15.5% P2O5) was added to the soil during seedbed preparation, and potassium sulphate
(48% K2O) at a level of 120 kg ha−1 was applied after thinning. Moreover, nitrogen at the rate of 286 kg
ha−1 was added in two equal doses before the first and second irrigation. All other standard agronomic
practices including weed control were followed in each location. Soil analysis was conducted on soil
samples collected from 30 cm depth from each location according to Association of Officinal Analytical
Chemists (A.O.A.C 2005) [77] (Supplementary Materials, Table S2). Additionally, the meteorological
data are presented in the Supplementary Materials, Figure S1.

5.3. Data Collection

Data were collected on days to 50% silking (DTS, days from the planting to 50% extrusion of
silks from the plants), anthesis–silking interval (ASI, calculated as the difference between days to 50%
silking and days to 50% anthesis), plant height (PLHT, measured in cm as the distance from the soil
surface to the top of the first tassel branch) and ear height (EHT, measured in cm as the distance from
the soil surface to the base of the topmost ear). Leaf angle (LANG) (◦) was measured as the angle
between stem and blade of the leaf just above ear leaf. Chlorophyll content (CHLC, SPAD units) was
measured by hand-held chlorophyll meter (SPAD-502; Minolta Sensing Co., Ltd., Hangzhou, Japan)
from the leaf of the top-most ear. The LANG and CHLC values were recorded on ten guarded plants
within each plot, and then the values were averaged per plot. At harvest, ear diameter (ED), number of
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rows per ear (NKPR), number of kernels per row (NKPR), thousand kernel weight (TKW), grain yield
per plant (GYPP, in g plant−1) and grain yield per hectare (GYPH, in ton ha−1) were estimated. Plots
were hand-harvested, and the weight of the shelled grain (adjusted to 15.5% grain moisture content)
was used to calculate GYPP and GYPH. Grain moisture at harvest was measured using a hand-held
moisture meter.

5.4. Molecular Analysis

5.4.1. DNA Isolation

Leaves were sampled from 10 to 15 seedlings of each inbred line after twenty days from planting.
Genomic DNA was isolated using CTAB method [78]. DNA quantity as well as quality was assessed
using NanoDrop spectrophotometer (ND-1000, USA).

5.4.2. SSR Primers and PCR Amplification

Twenty-two SSR markers were randomly selected from the MaizeGDB database (www.maizegdb.
org). The 22 primer pairs were tested to identify the polymorphic ones. Only ten markers were found
to be polymorphic and they used for the SSR analysis (Supplementary Materials, Table S3). PCR was
performed in a volume of 10 μL reaction mixture containing 1 μL of 20 ng/μL genomic DNA template,
1 unit Taq DNA polymerase (Promega, Madison, WI, USA), 2 mM MgCl2, 0.2 mM dNTPs and 0.5
μM of reverse and forward primer. The PCR reaction was initially started by denaturation at 94 ◦C
for 2 min, followed by 35 cycles consisting of denaturation at 94 ◦C for 30 sec, 30 sec of annealing at
55 ◦C, 30 sec of extension at 72 ◦C and a final extension of 3 min at 72 ◦C. Amplified products were
electrophoresed on 1.5% agarose gel. The gels were stained with ethidium bromide and then distained
with tap water and photographed using gel documentation system (UVITEC, Cambridge, UK).

5.5. Statistical Analysis

Analysis of variance (ANOVA) was computed for all data using SAS software (SAS Institute Inc,
2008). Combined analysis of variance of the split-plot design across the two locations was performed if
the homogeneity test was non-significant. Least significant difference (LSD) values were calculated to
test the significance of differences between means according to Steel et al. [79]. General combining
ability (GCA) effects of the parents and specific combining ability (SCA) effects of the hybrids as
well as their mean squares were computed according to Griffing’s method 4 model I [80], using the
DIALLEL-SAS program [81]. The testing of significance of GCA and SCA effects was done at 5% and
1% probability. Pearson’s coefficients of correlation (r) were calculated and plotted using the package
corrplot [82]. Based on the mean of each trait the reduction or increase due to increased plant density
was calculated as follow:

Change% = 100(D2 or D3 − D1)/D1

5.6. SSR Data Analysis

The amplified bands were scored for each SSR marker based on the presence or absence of bands,
generating a binary data matrix of (1) and (0) for each marker. The number of alleles per locus, major
allele frequency, gene diversity and polymorphic information content (PIC) were calculated to assess
allele diversity of each marker. The value of polymorphic information content (PIC) of each SSR marker
was determined as described by Botstein et al. [63] as follows:

1−
n∑

i=1

P2
j −

n−1∑

i=1

n∑

j=i+1

2P2
i P2

j

where Pi and Pj are the frequencies of the ith and jth allele of a given marker, respectively.
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Genetic distances between pairs of inbred lines were calculated according to [83], using the
PAST program. The dendrogram tree was generated with the unweighted pair group method using
arithmetic averages (UPGMA) by the computational package MVSP version 3.1.

Supplementary Materials: The following are available online at http://www.mdpi.com/2223-7747/9/9/1140/s1.
Table S1: Mean performance of the 28 F1 crosses and the check hybrid SC128 for all the studied traits under the
three plant densities across the two locations. Table S2: Physical and chemical soil properties for the two locations
during 2018 season. Table S3: List of SSR primers and their sequences used in the present study. Figure S1: Daily
maximum temperature (T max), minimum temperature (T min) and solar radiation (SRAD) for the two locations
during 2018 season.
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Abstract: The article concentrates on studying tolerance to soil salinization, water flooding, and blast
in Russian and Asian rice varieties, as well as hybrids of the second and third generations from their
crossing in order to obtain sustainable paddy crops based on domestic varieties using DNA markers.
Samples IR 52713-2B-8-2B-1-2, IR 74099-3R-3-3, and NSIC Rc 106 were used as donors of the SalTol
tolerance gene. Varieties with the Sub1A locus were used as donors of the flood resistance gene:
Br-11, CR-1009, Inbara-3, TDK-1, and Khan Dan. The lines C101-A-51 (Pi-2), C101-Lac (Pi-1, Pi-33),
IR-58 (Pi-ta), and Moroberekan (Pi-b) were used to transfer blast resistance genes. Hybridization
of the stress-sensitive domestic varieties Novator, Flagman, Virazh, and Boyarin with donor lines
of the genes of interest was carried out. As a result of the studies carried out using molecular
marking based on PCR in combination with traditional breeding, early-maturing rice lines with genes
for resistance to salinity (SalTol) and flooding (Sub1A), suitable for cultivation in southern Russia,
were obtained. Introgression and pyramiding of the blast resistance genes Pi-1, Pi-2, Pi-33, Pi-ta,
and Pi-b into the genotypes of domestic rice varieties were carried out. DNA marker analysis revealed
disease-resistant rice samples carrying 5 target genes in a homozygous state. The created rice varieties
that carry the genes for blast resistance (Pentagen, Magnate, Pirouette, Argamac, Kapitan, and Lenaris)
were submitted for state variety testing. The introduction of such varieties into production will allow
us to avoid epiphytotic development of the disease, preserving the biological productivity of rice and
obtaining environmentally friendly agricultural products.

Keywords: rice; salinity; submergence tolerance; blast; SSR markers; PCR analysis

1. Introduction

Rice (Oryza sativa L.) is the most important food crop for more than half of the world’s population
(China, Japan, India, Bangladesh, etc.). Biotic and abiotic stressors are the main obstacles to increasing
global crop production and expanding rice production. It was found that only about 10% of the world’s
agricultural land is located in areas that do not suffer from stress factors [1].

Decreased rice yields in adverse climatic conditions threaten global food security. Genetic loci
that ensure productivity in difficult conditions exist in the germplasm of cultivated plants, their wild
relatives, and species adapted to extreme conditions [2].

One-fifth of the world’s irrigated land (North Africa, Central and South-East Asia, etc.) is adversely
affected by high soil salinity [3]. About 45 million hectares in the world are subject to soil salinization [4].
In the Russian Federation, rice is grown on an area of about 200 thousand hectares, of which about
80 thousand hectares are saline [5]. The decline in productivity on saline soils can be overcome by
developing rice varieties tolerant to salinity and introducing them into agricultural production. Several
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non-allelic genes provide tolerance to salinity during ontogenesis [6]. The main locus of salt tolerance
is SalTol, which was first identified in some rice varieties [7,8]. This locus is mapped on chromosome 1
and its main function is to control the balance of Na+/K+ ions in rice plants [9].

One of the serious abiotic stress factors for rice, which inhibits plant growth and affects crop
yield, is prolonged submersion of plants under water, which often happens to large areas of land in
the rice-growing regions of South-East Asia [5]. Rice dies if total flooding lasts more than two weeks.
A negative effect on the growth and development of rice plants at this time is exerted by a lack of
oxygen (O2) and limited diffusion of carbon dioxide (CO2). Lack of light due to turbid flood water in
the rice paddies during this period limits the ability of plants to photosynthesize and can even lead to
their death [4–6].

Scientists in Asia have found the Sub1A gene, which regulates the response of plant cells to
ethylene and gibberellin, leading to restriction of carbohydrate intake and dormancy of shoots under
water, which contributes to tolerance to immersion [10,11]. In Russia, this gene can be used to develop
varieties resistant to a large layer of water during the germination phase, which will become an effective
way to protect rice from weeds without herbicides. Most weeds die under water without oxygen,
and rice can survive. To develop such varieties, it is necessary to combine in one genotype genes
with increased energy of initial growth, the ability to anaerobic germination, resistance to prolonged
flooding and lodging.

In all countries of the world, including Russia, blast is among the most dangerous fungal diseases
of rice and causes large yield losses in the years of epiphytoty. The most effective way to protect
rice without fungicides is to grow blast-resistant varieties. More than 50 genes of resistance to this
pathogen are known: Pi-1, Pi-2, Pi-33, Pi-b, Pi-ta, Pi-z, etc. [12]. Combining several effective resistance
genes with their contribution on the genetic basis of the best varieties is an effective breeding strategy
for resistance to variable fungal pathogens. Lines with a combination of 3–5 resistance genes show an
increase and broadening of the spectrum of blast resistance in comparison with lines with separate
genes. A number of successful breeding programs have already been carried out abroad to develop
blast-resistant rice varieties by the gene pyramiding method using marker breeding [13].

Resistance to various biotic and abiotic factors is one of the traits that are difficult to assess when
the assessment of the breeding material is possible only in the presence of an appropriate stress factor.
At present, during the breeding of agricultural plants for resistance, the splitting population obtained
from the crossing of resistance sources with genotypes that have productivity is tested against a natural
background, or artificial infection is carried out under controlled conditions. This procedure, although
it gives excellent results, is quite lengthy and costly. In addition, there are always susceptible plants
that have escaped damage [14].

The use of DNA markers allows us to speed up the assessment and conduct selection without
phenotypic assessment, at an early stage, regardless of the external conditions. In recent years,
great progress has been made in the development of molecular marking technologies and their
application to control complex agronomic traits using marker breeding [15]. The technology of
molecular marking of resistance loci makes it possible to quickly select plant forms with target genes
without using provocative backgrounds [16]. The identification of molecular markers linked to genes
of resistance to these factors facilitates breeding work. The use of DNA markers brings the breeding of
agricultural plants to a qualitatively new level, making it possible to evaluate genotypes directly and
not through phenotypic manifestations, which, ultimately, is realized in the accelerated development
of varieties with a complex of valuable traits [14]. Therefore, it is relevant to develop new rice varieties
by marking [17].

The purpose of the study was the development of initial rice material using DNA markers
for breeding highly productive varieties resistant to biotic and abiotic environmental stress factors:
soil salinity, prolonged flooding, and blast.
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2. Materials and Methods

We used samples from the collection of the Institute of Agricultural Genetics (Vietnam) as donors
of the transferred salt tolerance gene: IR 52713-2B-8-2B-1-2, IR 74099-3R-3-3, and NSIC Rc 106,
which were crossed with the early–maturing Krasnodar variety Novator. These varieties carry the
SalTol locus, which has been mapped near the centromeric region of the first chromosome. RM493 and
RM7075 [18] were used as flanking SSR-markers of this locus, with the greatest difference in the length
of microsatellite repeats between the parental forms.

Varieties with the Sub1A locus were used as donors of the flooding resistance gene: BR-11,
CR-1009, Inbara-3, TDK-1, and Khan Dan. The early-ripening variety Novator and rice lines with the
introgressed genes for blast resistance Pi-2 and Pi-33 were also taken as recipients. The Sub1A locus is
mapped to an interval of 0.06 morganides in chromosome 9 [11]. We used microsatellite markers for
the Sub1A gene, CR25K and SSR1A. The Sub1A gene was identified by molecular marking based on
PCR using specific primers.

When transferring blast resistance genes, lines C101-A-51 (Pi-2), C101-Lac (Pi-1, Pi-33), IR-58
(Pi-ta), and Moroberekan (Pi-b) were used. To identify the Pi-1 gene, we used primer pairs of the
flanking microsatellite SSR markers RM224 and RM144; for the Pi-2 gene, we used RM527 and SSR140;
for the Pi-33 gene, RM310 and RM72; for the Pi-b and Pi-ta genes, intragenic markers developed in the
laboratory of biotechnology, Federal Scientific Rice Centre. They are localized on chromosomes 11, 6, 8,
2, and 12, respectively (Table 1) [19,20].

Table 1. Nucleotide sequences of codominant markers for identification of the allelic status of genes
Pi-1, Pi-2, Pi-a, and Pi-b.

Resistance
Gene

Chromosomal
Localization of Gene

Marker Sequence

Pi-2 6
Rm 527

F GGC TCG ATC TAG AAA ATC CG
R TTG CAC AGG TTG CGA TAG AG

SSR140
F AAG GTG TGA AAC AAG CTA GCA
R TTC TAG GGG AGG GGT GTA GAA

Pi-33 8
Rm 72

F CCG GCG ATA AAA CAA TGA G
R GCA TCG GTC CTA ACT AAG GG

Rm310
F CCA AAA CAT TTA AAA TAT CATG
R GCT TGT TGG TCA TTA CCA TTC

Sub1A 9
Sub1A203

F GAT GT GT GGAGGAGAAGT GA
R GGTAGAT GCCGAGAAGT GTA

Rm 7481
F CGACCCAATATCTTTCTGCC
R ATTGGTCGTGCTCAACAAG

SalTol 1
Rm 493

F GTACGTAAACGCGGAAGGTGACG
R CGACGTACGAGATGCCGATCC

Rm 7075
F TATGGACTGGAGCAAACCTC
R GGCACAGCACCAATGTCTC

The early-ripening released rice varieties Boyarin, Flagman, and Virage served as the paternal
form. During plant hybridization, pneumocastration of maternal forms and pollination by the Twell
method were used [21]. Hybrid plants were grown on checks of Federal State Unitary Enterprise
“Proletarskoe” (Rostov region) and the Federal State Unitary Elite Seed-growing Enterprise “Krasnoe”
of the Federal Scientific Rice Centre, Krasnodar region. From the selected rice leaves, genomic DNA
was isolated under laboratory conditions at the Federal Scientific Rice Centre, the Academy of Biology
and Biotechnology of the Southern Federal University, and the All-Russian Research Institute of
Agricultural Biotechnology. PCR products were separated by electrophoresis in 2.5% agarose and
8% acrylamide gels. The experimental data were statistically processed using Microsoft Excel and
Statistica 6 software.
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The account of the degree of damage to plants (in percentages) was carried out on the 14th day
after inoculation, in accordance with the express method for assessing rice varietal resistance to blast.
The assessment was carried out by taking two indicators into account: the type of reaction (in points)
and the degree of damage (in percentages), using the ten-point scale of the International Rice Research
Institute [12]:

• resistant: 0–1 point—no damage, small brown spots, covering less than 25% of the total leaf surface;
• medium resistant: 2–5 points—typical elliptical blast spots, 1–2 cm long, covering 26–50% of the

total leaf surface;
• susceptible: 6–10 points—typical blast spots of elliptical shape, 1–2 cm long, covering 51% or

more of the total leaf surface.

The intensity of disease development (IDD, %) was calculated by the formula (Equation (1)):

IDD =
∑

(a × b)/n × 9 (1)

where IDD is the intensity of disease development (%),
∑

(a × b) is the sum of the products of the
number of infected plants multiplied by the corresponding damage point, and n is the number of
recorded plants (pcs).

Depending on the damage points, all varieties wee conventionally divided into 4 groups: resistant,
intermediate, susceptible, and strongly susceptible.

3. Results and Discussion

The development of blast-resistant varieties and their rapid introduction into production is the
most promising solution in the fight against this disease. However, the development of resistant
varieties is one of the most difficult areas of breeding. The causative agents of the disease have a
great potential for variability, which, combined with its colossal reproduction capabilities, provides
the pathogen with the highest adaptive capabilities. Combining several effective genes of resistance
on a genetic basis of the best varieties widely used in production is an effective breeding strategy for
long-term resistance to variable fungal pathogens.

Based on the use of DNA marker breeding (marker-assisted selection (MAS)—breeding with use
of DNA markers towards genes of interest), we introduced 5 blast resistance genes into domestic rice
varieties adapted to the agro-climatic conditions of rice cultivation in southern Russia.

A series of crosses made it possible to obtain rice lines based on the varieties Boyarin, Flagman and
Virage with the introgressed and pyramided blast resistance genes Pi-1, Pi-2, Pi-33, Pi-ta, and Pi-b in a
homozygous state. During all cycles of backcrossing, the transfer of the dominant alleles of each such
gene in the offspring was controlled by closely linked molecular markers. Plants with no resistance
alleles in the genotype were discarded.

At the first stage of work in 2005 at Agrarian research center “Donskoy”, 6 hybrids were obtained
from crossing the varieties Boyarin and Virage with three donors of blast resistance carrying the Pi-l,
Pi-2, and Pi-33 genes. After analysis at the Federal Scientific Rice Centre, homozygous forms were
identified for the dominant alleles.

At the second stage of work (2008), after crossing the Pi-1+ 33× Boyarin and Pi-2× Boyarin hybrids
between themselves, it was possible to obtain forms with three pyramided genes simultaneously: Pi-1,
Pi-2, and Pi-33 in a homozygous state.

At the third stage of work (2010), they were hybridized with varieties—donors of the Pi-ta and
Pi-b genes—for combining 5 genes. There were two types of crosses: ((Pi-1 + 2 + 33) × Pi-ta) × Pi-b and
Pi-1 + 2 + 33 × (Pi-ta × Pi-b).

Leaves were selected from the best F2 hybrid plants for DNA analysis at All-Russian Research
Institute of Agricultural Biotechnology and the Federal Scientific Rice Centre using one marker for each
gene. Based on the analysis results, it was possible to isolate two rice samples that were homozygous
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for all five dominant alleles. Reanalysis of the leaves of these samples confirmed last year’s results,
i.e., homozygosity for the dominant alleles of all five loci.

Figures 1 and 2 show the panicles of two lines, 1225/13 and 1396/13, which show the presence of
dominant alleles at five loci in the homozygous state: Pi-1, Pi-2, Pi-33, Pi-b, and Pi-ta.

 
Figure 1. Panicle of the early-ripening line 1225/13.

 
Figure 2. Panicle of the mid-ripening line 1396/13.

Line 1225/13 is early maturing, matures in 110 days, and dwarfish (80 cm), with a small panicle
(15 cm) (Figure 1).

The second line 1396/13 is mid-ripening, the period to maturity is 120 days, and it is taller (100 cm),
with a large long panicle (22 cm) (Figure 2).

Against the infectious background in the Federal Scientific Rice Centre, the index of disease
development (IDD) in this line was only 1.4%, while the variety Novator was damaged by 67.7%.
The results of the analysis made it possible to send these lines to the breeding nursery in 2014–2015
for testing for yield and blast resistance. The variety Pentagen (1396/13), carrying 5 genes for blast
resistance, is widely used in hybridization with high-yielding Russian varieties.

In the process of work at the Federal Scientific Rice Centre in 2007–2008, crosses were carried out
and F1 hybrids were obtained from the combination (Flagman × C101-Lac) × (Flagman × C-101-A-51),
which have the blast resistance genes Pi-33 and Pi-2 in their genotypes, respectively. The resulting
F1 generation was used in backcrosses with the recipient parental forms. It should be noted that
the F1 plants had a high degree of sterility (up to 95%). After the first series of backcrosses in 2008,
the BC1 and BC2 generations were obtained in artificial climate chambers. In BC1 populations, fertility
increased and averaged about 50%. Starting from the first backcrossing, marker control was carried
out for the presence of transferred donor alleles in the hybrid offspring. In 2009, plants of the BC3 and
BC4 generation were obtained. Among these plants, we selected the forms with the shortest growing
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season and the highest panicle fertility. From the BC4F1 stage (the first self-pollination of rice plants,
which makes it possible to transfer the donor allele to a homozygous state), individual selection was
carried out. Segregation for Pi-2, Pi-33, and Sub1A genes fit into the Mendelian framework: in the
second generation as a result of DNA analysis of the obtained plants, the ratio was 1:2:1 by genotype
and 3:1 by phenotype.

Plants were selected that were closest in morphotype to the recipient parental form and had
donor genes for resistance to the pathogen Pyricularia oryzae Cav. in their genotype in a homozygous
state [22].

Figure 3 shows the results of PCR analysis for identification of the Pi-33 blast resistance gene in
the BC4F3 hybrid material.

 
Figure 3. Electrophoregram of genomic DNA amplification products at the loci RM310 and RM72: 1–4,
7–12, analyzed hybrid BC4F3 plants; 5, donor line of the Pi-33 gene C101-Lac; Flagman, maternal form.

The figure shows that plants Number 2, 4, and 7–12 are homozygotes for the dominant allele;
plants Number 1 and 3 are heterozygous. The size of the PCR product in varieties with the dominant
allele of the Pi-33 gene, which determines the resistance, is 198 bp; in varieties with a recessive allele,
it is 152 bp.

In 2015–2016, the resulting rice lines with introgressed blast resistance genes Pi-2 and Pi-33 were
crossed with the variety Khan Dan (Vietnamese breeding): the donor of the Sub1A gene. This work was
performed for obtaining breeding material with combined genes for disease resistance and tolerance to
prolonged immersion of plants under water. In 2017–2020, F4 and BC2F3 generations were obtained
using climate chambers at the Federal Scientific Rice Centre (All-Russian Rice Research Institute,
Krasnodar, Russia).

To increase economic efficiency and reduce labor costs, multi-primer systems have been developed
to identify two genes (Pi and Sub1A) in a hybrid material simultaneously.

At the first stage, when we selected DNA markers for reliable interpretation of PCR products
and identification of non-specifically amplified fragments, the following parameters were taken into
account: the annealing temperature of specific pairs introduced into the reaction mixture, the difference
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in the size of PCR products synthesized during amplification with specific primer pairs (at least
100 base pairs), and the self-complementarity of the primer sequences.

The results of testing the combination of primer pairs flanking the marker regions of the
Pi-2 + Sub1A genes are shown in Figure 4.

 

Figure 4. Electrophoregram of multiplex PCR of genomic DNA amplification products at the loci
RM527 and SSR140 for the Pi-2 gene and at the Sub1A203 locus for the Sub1A gene: 1–5, 9–13, analyzed
hybrid plants of the BC2F3 generation; 6, Khan Dan, donor of the Sub1A gene; 7, Flagman, maternal
form; 8, C101Lac-A-51, donor line of the Pi-2 gene.

The electrophoregram shows that when PCR with such a combination of molecular markers is
carried out, the target products specific for DNA markers of the desired genes are reliably amplified.
Samples Number 3 and 12 have dominant alleles of the genes Pi-2 and Sub1A in a homozygous
state in their genotype; Samples 1, 4, 5, and 9 are homozygous for the Sub1A gene and have the Pi-2
gene in the genotype in a heterozygous state; Sample 10 is a recessive homozygote for two target
genes and was rejected. The size of the PCR product in varieties with the dominant allele of the Pi-2
gene, which determines the resistance, is 233 bp. The size of the PCR product in varieties with the
dominant allele of the Sub1A gene, which determines the resistance, is 118 bp. Clear identification
on the electrophoregram makes it possible to reliably identify the presence of dominant alleles of the
target genes.

The introduction of such varieties into production will allow us to avoid epiphytic development
of the disease, preserving the biological rice productivity, and obtaining environmentally friendly
agricultural products.

Magnat is the first cultivar in Russia created at the Agrarian Research Center Donskoy together
with the Federal Scientific Rice Centre by the method of marker selection from a hybrid population
(C101A-51 × Boyarin) × (C101 LAC × Boyarin) with transfer of blast resistance genes. Sample C101
LAC is a donor of the genes Pi-1 and Pi-33, and C101A-51 is a Pi-2. The growing season is 125 ± 1 days
and the plant height is 96 ± 2 cm. The panicle is erect and compact, 17.5 ± 0.5 cm long, and bears
185 ± 5 spikelets. The grain is oval, 8.3 ± 0.2 mm long, 3.1 ± 0.1 mm wide, and 2.2 ± 0.1 mm thick and
weighs 24.0 ± 2.0 mg. The yield of the Magnat variety was 8.25 t/ha, which is 1.1 t/ha higher than that
of the Boyarin standard.

The rice variety Pirouette was bred at the Agrarian Research Center Donskoy, together with the
Federal Scientific Rice Centre, by the method of stepwise hybridization and marker breeding from a
hybrid population (C101-A-51 (Pi-2) × Boyarin) × (C101-Lac (Pi-1 + 33) ×Virazh). It contains three blast
resistance genes: Pi-1, Pi-2, and Pi-33. The variety is mid-ripening, the growing season from flooding
to full ripeness is 124 ± 1 days. The average yield of the variety Pirouette was 9.57 t/ha, which is
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1.13 t/ha higher than that of the standard variety Yuzhanin. Plant height is 88 ± 2 cm; the panicle is
erect, compact, and 17.5 ± 0.5 cm long and carries 165 ± 5 spikelets. The spikelets are oval, 8.9 ± 0.2
mm long, and 3.7 ± 0.1 mm wide. The weight of 1000 grains is 31.6 ± 2.0 g. The variety is resistant to
lodging and shedding, is cold-tolerant, and germinates well from under a layer of water. It has been
ncluded in the Register of Breeding Achievements of the Russian Federation for the North Caucasus
region since 2020.

The rice variety Kapitan was bred at the Agrarian Research Center Donskoy in cooperation with
the Federal Scientific Rice Centre by the method of triple backcrossing and marker breeding from the
Flagman × IR-36 hybrid population. The variety is mid-ripening and the growing season from the
flooding to full ripeness is 120 ± 1 days. On average, over the years of competitive testing, the yield of
the variety Kapitan was 8.13 t/ha, which is 0.64 t/ha higher than that of the variety Yuzhanin. A higher
yield of this variety is formed due to more grain in the panicle and an increased weight of the caryopsis.
The average height of plants is 90 ± 2 cm; the panicle is semi-inclined, compact, and 18.5 ± 0.5 cm long;
and the average number of spikelets is 140 ± 10 pieces (Figure 5). The grains are oval, 9.5 ± 0.2 mm
long, and 3.6 ± 0.1 mm wide. The average weight of 1000 grains is 35.0 ± 2.1 g. The variety carries the
Pi-ta gene and is resistant to blast, lodging, and shedding. The variety has been under state testing
since 2019.

 

Figure 5. Rice panicles of the variety Kapitan.

The rice variety Argamak was bred at the Agrarian Research Center Donskoy by
individual multiple selection of plants with the largest panicles from a hybrid population Il.
14 (Pi-1, Pi-2, Pi-33) × Kuboyar. The variety belongs to the mid-ripening group, and the growing
season from flooding to full ripeness is 119 days. On average, over the years of competitive testing
(2017–2019), the yield of the variety was 8.79 t/ha, which is 1.59 t/ha higher than that of the variety
Yuzhanin. The maximum yield was formed in 2019: 10.1 t/ha, 2.55 more than the standard. The high
yield of this variety was formed due to the greater grain content of the panicle than that of the standard
and the increased density of the stem. Plant height is 93 ± 2 cm on average; the panicle is erect,
compact, and 16 ± 0.5 cm long; the average number of spikelets is 142 ± 6 pieces. The grains are oval,
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8.4 ± 0.2 mm long, 3.3 ± 0.1 mm wide. Weight of 1000 grains—31.1 ± 1.9 g. The variety is resistant to
blast, lodging, and shedding. It has been tested at state varietal testing since 2020.

The rice variety Lenaris (Federal Scientific Rice Centre) had shown high adaptability, non-lodging,
and the possibility for straight combine harvesting. Its yield was 10.6 t/ha. Plants had high spikelet
fertility and short stems (77 ± 5 cm) and were resistant to the Krasnodar population of P. oryzae as well.
Their panicle is slightly drooping and compact; its length is 18 ± 1.0 cm. The mass of 1000 grains is
about 30.4 ± 1.8 g.

In 2013–2014, the Agrarian Research Center Donskoy conducted crosses and obtained F1–F2

hybrids of the variety Novator with Asian donor rice varieties carrying the SalTol and Sub1A genes.
The hybrids of the second generation varied significantly in terms of quantitative traits: growing
season (from early ripening to non-flowering), plant height (75–122 cm), panicle length (14–25 cm),
number of filled grains (80–206 pcs), number of spikelets (99–300 pcs), panicle density (4.4–16.6 pcs/cm),
1000-grain weight (26.3–34.9 g), grain weight per panicle (2.1–5.5 g), etc.

Hybridization of the salt-sensitive domestic variety Novator with the lines IR52713-2B-8-2B-1-2,
IR74099-3R-3-3, and IR61920-3B-22-2-1 (NSIC Rc 106)—SalTol locus donors—was carried out. The first
generation of hybrids was used to generate an F2 hybrid population. From the populations of plants of
the second generation, 90 early-ripening samples with well-ripened grains (30 in each combination of
crossing) were selected, which were analyzed by PCR for the presence of introduced SalTol alleles. As an
example, Figure 2 shows the data of electrophoretic analysis of PCR products with the Rm493 marker.
The donor allele of the parental line NSIC Rc 106, designated as 2.2, was found in a homozygous state in
Sample 282. The rest of the plants, whose amplification spectra are presented in this electrophoregram,
carried the alleles of the donor and the variety Novator; that is, they were heterozygous for the SalTol
locus (Figure 2). Similar results were obtained during DNA analysis of the studied rice samples with
the RM7075 marker (Figures 6 and 7).

 

Figure 6. Electrophoregram of genomic DNA amplification products with RM 493: 1.1, Novator; 1.2,
NSIC Rc 106; 17–296, hybrid plants NSIC Rc 106 × Novator; DNA marker (100–1500 bp).

 
Figure 7. Electrophoregram of genomic DNA amplification products with RM 7075: 1.1, Novator; 2.1,
NSIC Rc 106; 17–286, hybrid plants NSIC Rc 106 × Novator; DNA marker (100–1500 bp).
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In general, according to the results of DNA analysis of F2 hybrids, 17 plants homozygous for the
dominant allele of the SalTol locus were identified, 29 samples carried SalTol in a heterozygous state,
and 44 plants showed only recessive alleles inherited from the variety Novator.

Segregation for SalTol genes did not fit into the Mendelian framework, since the sample was
unrepresentative due to selection. Plants with recessive alleles of the gene prevailed, and the number
of salt-tolerant dominant homozygotes was less than the expected number. This is due to the linkage
of SalTol genes with genes unfavorable for plants in our conditions: photosensitivity, late maturity,
spikelet shedding, and spinosity.

Testing plants under salinity in the early stages of development is a quick, common method
based on simple criteria. It was shown that at the initial vegetation stage, the length of the root
and shoots and seed germination are potential indicators of resistance to the effects of increased
salt concentrations [18,19]. Evaluation of the potential salt tolerance of the studied rice hybrids and
their parental forms revealed significant variations in salinity tolerance depending on the genotype.
The greatest decrease in seed germination—52%—was found in the salt-sensitive variety Novator.
The line NSIC Rc 106 and second-generation plants, which were homo- and heterozygous for the
SalTol locus, showed the highest resistance by seed germination (germination decrease of less than 5%).
The donor lines IR52713-2B-8-2B-1-2, and IR74099-3R-3-3 and hybrid combinations obtained on their
basis with the SalTol gene in a homozygous state also showed high resistance for this trait.

The least suppression of growth indices, as well as in the case of seed germination, was recorded
in the lines NSIC Rc 106, IR52713-2B-8-2B-1-2, IR74099-3R-3-3, and SalTol homozygous plants from the
F2 generation; the greatest decrease in the length of shoots and roots under salt stress was shown in
the variety Novator and in hybrid plants that did not inherit the SalTol locus according to molecular
analysis data. Thus, DNA analysis made it possible to simplify the breeding scheme and obtain
salt-tolerant F2 hybrids carrying the SalTol locus in a homozygous state. These results indicate that
the developed codominant markers of the SalTol locus RM 493 and RM 7075 are an effective tool for
marker-assisted selection of salt-tolerant forms based on domestic rice genotypes.

Rice samples with SalTol genes in 2018–2020 were studied in a control nursery and in competitive
variety testing; productive forms were identified.

At the same time, in 2013, hybrids were obtained by crossing the variety Novator with donors of
the Sub1A gene. The Asian varieties turned out to be late-ripening and photosensitive and did not
flower under our conditions. Hybridization was carried out only with the help of artificial climate
chambers. The first generation in 2013 was characterized by a high degree of sterility (90–95%)
and brown color of the flowering scales during maturation, which indicates significant genetic
differences between the parental forms. In the second generation in 2014, a very large spectrum
of splitting was observed in terms of the growing season, plant height, panicle length and shape,
number of spikelets, and spinosity (Table 2).

Table 2. Variations in the quantitative traits in F2 hybrids from crossing submergence-resistant samples
with the variety Novator, 2014.

Trait
Crossing Combination

BR 11 ×Novator CR-1009 ×Novator Inbara 3 ×Novator TDK-1 ×Novator

Plant height, cm 71–129 (97.5) 57–131 (89.4) 60–149 (100.2) 45–138 (99.9)
Panicle length, cm 11.5–27 (18.4) 10–26 (17.7) 9.5–32 (19.1) 9–27 (18.9)

Number of grains, pcs 10–220 (77.1) 2–201 (50.3) 4–343 (60.2) 4–180 (55.3)
Number of spikelets, pcs 57–322 (174.6) 38–273 (133.8) 18–411 (137.0) 17–261 (122.2)

Spikelet length, mm 6.1–10.1 (8.1) 6.8–9.8 (8.0) 6.1–11.9 (9.1) 7.2–11.3 (9.3)
Spikelet width, mm 2.3–3.8 (3.1) 2.5–4.0 (3.1) 2.1–3.8 (2.9) 2.3–3.9 (3.0)

Mass of 1000 grains, g 11–38 (25.4) 10–35 (23.2) 12–37 (25.9) 13–39 (25.8)
Mass of grain from the

panicle, g 0.72–5.54 (1.98) 0.03–5.90 (1.22) 0.06–5.42 (1.54) 0.07–6.09 (1.79)

Note: The average value is indicated in brackets.
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This wide range of variability is not observed in other crops. This is due to the genetic and
ecological-geographical remoteness of the crossed forms. In each combination, about 400 plants were
selected for morphometric and genetic analysis. Among the F2 hybrids, we managed to select the best
plants according to many traits, combining early maturity, optimal plant height, good grain size in
panicles, non-shattering, and fertility of spikelets (Table 3).

Table 3. Selected F2 hybrid plants from crossing submergence-resistant samples with Novator, 2014.

Hybrid
Duration,

Days
Plant Height,

cm
Panicle

Length, cm

Number of
Grains in

Panicle, pcs

Mass of 1000
Grains, g

Novator, st 112 97.5 16.5 110 31.8
176(BxN) * 120 108.0 21.5 146 27.0
334 (BxN) 118 96.7 17.3 145 21.6
34 (CxN) 121 81.2 16.5 109 25.3
390 (CxN) 122 82.0 17.5 122 27.7
273 (IxN) 120 95.4 15.1 151 24.4
507 (IxN) 119 97.2 19.0 138 29.3
81 (TxN) 123 96.5 17.2 159 32.0
393 (TxN) 121 97.3 14.9 152 25.2

Note *: (BxN), BR 11 × Novator; (CxN), CR-1009 × Novator; (IxN, Inbara 3 × Novator; (TxN), TDK-1 × Novator.

PCR analysis of leaves was carried out in 20 plants of each of the four hybrids, as a result of
which, forms with the Sub1A flood resistance gene were isolated. The electrophoretic analysis of
PCR products with the RM 7481 marker is shown in Figure 8. The donor allele of the parental line
CR-1009 was homozygous in Samples 2, 3, 5, 9, 13 and 17. Plants 2, 4, 6–8, 10, 11, 16, 18, and 19 were
heterozygous at the Sub1A locus; that is, they carried both the alleles of the donor and the recessive
alleles inherited from the variety Novator. Thus, according to the results of PCR analysis with the RM
7481 marker, 14 homozygotes of F2 plants at the Sub1A locus were identified, 40 samples carried Sub1A
in a heterozygous state, and 22 plants inherited only the recessive allele from the variety Novator.

 
Figure 8. Electrophoregram of the amplification products of rice genomic DNA with the primer RM
4781. 1–19, F2 (Novator × CR-1009); TDK-1 and CR-1009, donor of the Sub1A gene. Molecular weight
marker, 1 kb.

Of the analyzed BR-11 × Novator hybrid plants, the Sub1A gene (in homo- and heterozygous
state) was present in nine, i.e., in a ratio of 9:11, although with monohybrid segregation, it should have
been 15:5. In the hybrid combination CR-1009 ×Novator, F2 segregated in a ratio of 18:2, i.e., almost all
of the selected plants had the Sub1A gene. In the hybrids Inbara-3 ×Novator and TDK-1 ×Novator,
segregation took place in a ratio of 14:6 or approximately 3:1, i.e., close to Mendelian.
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The deviations in segregation of the two combinations can be explained by the influence of
selection and gene linkage. A total of 55 plants with the target gene in the homo- and heterozygous
state were isolated from 80 plants of four hybrids. The selected samples with the Sub1A gene in
2015 were reproduced in the Federal State Unitary Enterprise “Proletarskoye”of the Rostov Region,
where the best F3 plants were selected from them for DNA analysis.

In F3 plants, significant morphological and biological segregation continued. Significant variation
was noted for the growing season, plant height, size of panicles and caryopses, fertility, grain shedding,
etc. The best forms were selected from them and leaves were taken for DNA analysis. At the next stage
of work, in 2016–2020, constant lines carrying the Sub1A gene in a homozygous state were selected and
tested for yield and resistance to prolonged water flooding. As a result, rice varieties for herbicide-free
technologies will be developed, vigorously overcoming a deep layer of water in the germination phase
with minimal seed loss.

4. Conclusions

1. As a result of the studies carried out using molecular marking based on PCR in combination
with traditional breeding, early-maturing rice lines with genes for resistance to salinization (SalTol)
and to flooding (Sub1A), which are suitable for cultivation in the south of Russia, were isolated.

2. Rice lines have been developed, the genotype of which contains five effective blast resistance
genes (Pi-1, Pi-2, Pi-33, Pi-ta, and Pi-b). The introduction of such varieties into production will allow us
to avoid epiphytotic development of the disease, preserving the biological productivity of rice and
obtaining environmentally friendly agricultural products.

3. Samples of the F4 and BC2F3 generations were obtained with combined blast resistance (Pi)
and prolonged flooding tolerance (Sub1A) genes as a factor in the control of weeds in the homo- and
heterozygous state, which was confirmed by the data of their DNA analysis. The testing of the obtained
rice breeding resources for submergence tolerance under laboratory conditions made it possible to
select tolerant rice forms that will be studied in the breeding process for a complex of agronomically
valuable traits. Their use will reduce the use of chemical plant protection products against diseases
and weeds, thereby increasing the ecological status of the rice-growing industry.
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Abstract: The intergenic space of plant genomes encodes many functionally important yet unexplored
RNAs. The genomic loci encoding these RNAs are often considered “junk”, DNA as they are frequently
associated with repeat-rich regions of the genome. The latter makes the annotations of these loci and
the assembly of the corresponding transcripts using short RNAseq reads particularly challenging.
Here, using long-read Nanopore direct RNA sequencing, we aimed to identify these “junk” RNA
molecules, including long non-coding RNAs (lncRNAs) and transposon-derived transcripts expressed
during early stages (10 days post anthesis) of seed development of triticale (AABBRR, 2n = 6x = 42),
an interspecific hybrid between wheat and rye. Altogether, we found 796 lncRNAs and 20 LTR
retrotransposon-related transcripts (RTE-RNAs) expressed at this stage, with most of them being
previously unannotated and located in the intergenic as well as intronic regions. Sequence analysis of
the lncRNAs provide evidence for the frequent exonization of Class I (retrotransposons) and class
II (DNA transposons) transposon sequences and suggest direct influence of “junk” DNA on the
structure and origin of lncRNAs. We show that the expression patterns of lncRNAs and RTE-related
transcripts have high stage specificity. In turn, almost half of the lncRNAs located in Genomes A and
B have the highest expression levels at 10–30 days post anthesis in wheat. Detailed analysis of the
protein-coding potential of the RTE-RNAs showed that 75% of them carry open reading frames (ORFs)
for a diverse set of GAG proteins, the main component of virus-like particles of LTR retrotransposons.
We further experimentally demonstrated that some RTE-RNAs originate from autonomous LTR
retrotransposons with ongoing transposition activity during early stages of triticale seed development.
Overall, our results provide a framework for further exploration of the newly discovered lncRNAs
and RTE-RNAs in functional and genome-wide association studies in triticale and wheat. Our study
also demonstrates that Nanopore direct RNA sequencing is an indispensable tool for the elucidation
of lncRNA and retrotransposon transcripts.
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1. Introduction

Long non-coding RNAs (lncRNAs) are a diverse set of RNAs longer than 200 bp with no or very
little coding potential. Traditionally, lncRNAs are considered to be protein non-coding, although
many of them carry small open reading frames and encode functional peptides in different plants [1].
A broad range of functionality has been described for lncRNAs in plants, including the miRNA sponge,
protein scaffolding, and post-transcriptional regulation of target genes via antisense pairing followed
by mRNA decoy [2]. Based on their genomic localization regarding other genes, lncRNAs are broadly
grouped into different classes: (1) lincRNAs or long non-coding intergenic RNAs; (2) NAT lncRNAs or
natural anti-sense lncRNAs; (3) intronic lncRNAs, located in the introns; and (4) sense lncRNAs [3].
LncRNAs have been identified in many plant species and their expression in response to various
abiotic and biotic stresses has been investigated, although our knowledge about lncRNA functions is
still very limited [4–9]. However, the catalogue of lncRNAs for some plants with complex polyploidy
and repeat-rich genomes, including wheat (Triticum aestivum L.), remains mainly underexplored [10].

Intergenic space and introns are frequently sources of lncRNA origin, although these genomic
regions are enriched by insertions or remnants of transposable elements (TEs) [11]. Corroborating this,
lncRNA sequences are more often associated with TEs than protein-coding genes and the bulk of them
possess TE-related sequences [11–16]. For example, up to 75% of human lncRNAs have at least one exon
with sequences originating from TEs [12,17]. A similar trend was demonstrated in some plant species,
including maize, where 65% of lncRNAs had similarities to TEs [18]. More intriguingly, the TE-derived
sequences may trigger the origin of new lncRNAs, providing a positive feedback loop with the
evolution of lncRNAs [11,19]. TE-derived lncRNAs can have important and conserved biological
functions [20]. For example, the rice lncRNA MIKKI is derived from LTR retrotransposons and has been
shown to sequestrate miR171 and prevent degradation of its targets, mRNAs of SCARECROW-Like
(SCL) transcription factors, in roots [20]. It is important to note that TEs can become transcriptionally
and transpositionally active under certain circumstances, including stressful conditions, and in some
developmental stages (e.g., microsporogenesis) and tissues (e.g., developing endosperm) [21–23].
However, individual TE transcripts and their coding potential have only been studied episodically
in plants. The association of lncRNAs with repeat sequences like TEs makes the annotation of many
lncRNAs challenging because of the ambiguity in the mapping of repeat-derived short RNAseq
reads. RNAseq reads with multiple mapping positions in the genome sequence are frequently
discarded from further analysis. Although some tools have been developed so far to overcome these
obstacles, most of the lncRNA identification pipelines still ignore ambiguously mapped reads [24,25].
Thus, long-read sequencing technologies provide a great opportunity for transcriptome exploration,
including the identification of transcribed repeats (e.g., transposable elements) or repeat-related
transcripts [26]. Moreover, Panda and Slotkin [26] showed that by using Nanopore long cDNA
reads, it is even possible to trace the expression of individual TEs from multicopy families in
Arabidopsis and maize. The application of long-read technologies to the exploration of the lncRNA
repertoire in plants has been demonstrated for several plant species, including Oryza sativa L. ssp.
japonica [27], Populus simonii [28], P. qiongdaoensis [29], poplar “Nanlin 895” [30], Trifolium pratense [31],
Cardamine violifolia [32], and Vigna angularis [33]. These studies demonstrated that long-read sequencing
can be used to obtain a comprehensive catalogue of lncRNAs.

Grain development is one of the most important and practically relevant biological processes.
It involves massive biochemical, physiological, and transcriptomic changes [34–36]. Wheat grain
development is divided into five stages: (i) undifferentiated embryo and cellularization of the
endosperm (0–7 days post anthesis (dpa)); (ii) embryo differentiation the embryo with formation of
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the main cell types (transfer cells, aleurone, starchy endosperm and the surrounding cells) (7–14 dpa);
(iii) root and leaf primordia differentiation, full kernel development and the milk-ripe stage (14–21 dpa);
(iv) further growth and differentiation of primary and lateral roots, and the dough stage of endosperm
(21–31 dpa); (v) fully differentiated embryo (31–50 dpa) [34]. Studies of the transcriptome during
wheat seed development have been extensively elucidated using RNAseq sequencing [35,37–43].
Global transcriptome analysis of developing seeds has shown that the expression of protein-coding genes
is highly dynamic. Recently, Madhavan et al. (2020) used publicly available Illumina RNAseq reads
and identified 443 lncRNAs expressed during the grain filling stage (14 and 30 dpa) [44]. It is currently
unknown which types of lncRNA are expressed during other stages of wheat seed development.

Here, we used Nanopore long-read sequencing to discover lncRNAs, TE transcripts, and TE-related
lncRNAs that are specifically expressed during the cell proliferation stage of seed development (10 dpa)
in triticale (× Triticosecale Wittmack, AABBRR genome, 2n = 6x = 42) an interspecific hybrid between
wheat and rye (Secale cereale L.). We identified 796 lncRNAs and 20 LTR retrotransposon-derived
transcripts, with most of them being previously unannotated. The majority of the detected
retrotransposon RNAs had a single intron, carried open reading frames (ORFs) encoding for a
diverged set of GAG proteins, and were encoded by potentially autonomous and non-autonomous
retrotransposons. The lncRNAs were also expressed during wheat seed development and had high
stage specificity. Moreover, we found that lncRNA loci were biased toward frequent TE sequence
exonization and were mainly located in the intergenic regions of A and B genomes of triticale. Our work
explored the lncRNA landscape during the early stage of wheat and triticale seed development and
provides a unique dataset for further functional studies of lncRNA and TEs, and their implications
for seed development. Finally, the identified lncRNAs can be further incorporated into genome-wide
association studies for marker-assisted improvement of the bread quality of modern triticale genotypes.

2. Material and Methods

2.1. Plant Material and DNA Isolation

For this study, the spring triticale line “L8665” obtained from the Department of Genetics, Russian
State Agrarian University, was used. For DNA isolation, seeds of this line were germinated in the dark
(room temperature) during 5–7 days and genomic DNA was isolated by the cetyltrimethylammonium
bromide (CTAB) protocol [45].

2.2. Sample Collection and RNA Isolation

Plants of the spring triticale line “L8665” were grown in a greenhouse under natural light
conditions. Developing seeds at 10 days post anthesis and flag leaves were dissected and placed
into liquid nitrogen. RNA was isolated by the ExtractRNA kit (Evrogen, Moscow, Russia) following
the manufacturer’s instructions. The RNA concentration and integrity were estimated by Nanodrop
(Nanodrop Technologies, Wilmington, CA, USA) and gel electrophoresis using an 1.2% agarose gel
with ethidium bromide staining.

2.3. RT-PCR

For RT-PCR, RNA was treated by DNAse I (Qiagen, Hilden, Germany, Q-79254) following the
manufacturer’s instruction and used for cDNA synthesis. cDNA was synthesized using the MMLV RT
kit (Evrogen, Moscow, Russia). Primers used for RT-PCR and the expected fragment lengths are listed
in Table 1. The CDC (Cell division control protein, AAA-superfamily of ATPases; Ta54227) gene was
used as a reference because of its high expression stability as shown by a previous study [46].
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Table 1. Primers used for RT-PCR.

Target Primer Sequences Amplicon Size

Lnc001 lncTR001/F: AGGTTGCAAGTCTCTTGCTCTTGA
lncTR001/R: TCATGCCCGCTAAGAATTACAGTGT RNA/DNA = 500 bp/~1100 bp

Lnc002 lncTR002/F: TGGGTTGTGACTTGTGATACGCA
lncTR002/R: CGGTTAGGGCTGGGCTGAATG RNA/DNA = 300 bp/300 bp

Lnc003 lncTR003/F: ACAGTATGAAGCTAGCCGGCTTG
lncTR003/R: TATCCTGTCGTCCTCTCGTCTCG RNA/DNA = 303 bp/303 bp

CDC (the cell division control
protein), Ta54227 [47]

CDC/F: GCCTGGTAGTCGCAGGAGAT CDC/R:
ATGTCTGGCCTGTTGGTAGC RNA/DNA = 76 bp/76 bp

gRNA TaeST2.19707.1 gRNATae_19/F: ATTACACCCCCAAACCGCCAAAT
gRNATae_19/R:TGGGGAATTTTCCACACCCACTT RNA/DNA = 490 bp/490 bp

shGAG TaeST2.19707.1
shGAGTae_19/F: TTGATTGCCGCCTGGTTATCACA

shGAGTae_19/R:
AGTGGGAATCGGAGGAACTGGAA

RNA/DNA = 560 bp/3200 bp

gRNA TaeST2.45518.1 gRNATae_19/F: ATTACACCCCCAAACCGCCAAAT
gRNATae_19/R: TGGGGAATTTTCCACACCCACTT RNA/DNA = 417 bp/417 bp

shGAG TaeST2.45518.1

shGAGTae_45/F:
GCTTACTCTTGTCTACTCCACGCA

shGAGTae_45/R:
GGACTGGAGAAGCGAATGCATCT

RNA/DNA = 500 bp/897 bp

The PCR conditions were 94 ◦C for 1 min; 35 cycles of 94 ◦C for 1 min, 58 ◦C for 1 min, and 72 ◦C
for 1 min; and a final elongation of 72 ◦C for 3 min.

2.4. Nanopore Direct RNA Sequencing and Transcript Assembly

Poly-A+ mRNA was purified from 100 μg of total RNA by the Dynabeads mRNA DIRECT
Kit (ThermoFisher Scientific, Waltham, MA, USA) following the manufacturer’s instructions. Final
poly-A+ RNA concentration was measured using a Quantus Fluorometer (Promega Corporation,
Madison, WI, USA) and checked by gel electrophoresis. For Nanopore sequencing, a library was
prepared from 1 μg Poly-A+ using the nanopore Direct RNA Sequencing Kit SQK-RNA002 (Oxford
Nanopore Technologies, Oxford, UK). Direct RNA Sequencing (DRS) was carried out using MinION
and flow cell FLO-MIN106. Basecalling was performed by Guppy (Version 4.0.11).

For transcript assembly, sequences of the A and B genomes and unanchored scaffolds (Un)
of Triticum aestivum ([48]) downloaded from the EnsemblPlants server (https://plants.ensembl.org/
Triticum_aestivum/Info/Index) were combined with Secale cereale genome sequences [49] into a single
fasta file. Reads were mapped to the obtained fasta file by minimap2 software [50] with the ‘-ax
splice’ argument. The obtained sam file was converted to a bam file by samtools [51] (samtools view
-Sb) followed by sorting of the bam file by bamtools [52]. Transcript assembly was performed by
StringTie2 [53] with the following arguments: –L –j 2 –f 0.05. The obtained gtf file was converted to gff
format by the gffread tool [54]. The sorted bam and gff files were used for read mapping visualization
by the locally installed JBrowse [55].

To obtain a high-confidence set of transcripts, we extracted transcript sequences using gtf from
StringTie2 assembly by the gffread tool [54]. The reads were then mapped back to the transcripts
using minimap2 software (settings: -ax map-ont), and the bam file with only primary alignments and
mapping quality > 30 was obtained using samtools with –F 256 –q 30 –b parameters. This bam file was
used to count the number of reads per transcripts and transcripts with > 5 DRS reads were selected.

2.5. Long Non-Coding RNA Prediction

To identify lncRNAs, all high-confidence transcripts with a length of >200 bp were selected using
biopython [56]. Transcripts with open reading frame (ORF) lengths of >300 bp predicted by getorf
were filtered out. Protein coding potential was calculated by three tools: LncFinder [57], PLEK [58],
and CNCI [59]. LncFinder [57] was run in Rstudio Version 1.2.1335 (http://www.rstudio.com/) with R
version 3.6.0. The following parameters were utilized: parallel.cores = 20, SS.features = TRUE, format
= “DNA”, frequencies.file = “wheat”, svm.model = “wheat”. PLEK [58] and CNCI [59] were run with
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the default settings. Only transcripts identified by all three tools as non-coding and without similarity
to Pfam domains were classified as lncRNAs.

To identify lncRNAs with exons overlapping the annotated TEs, we intersected CLARITE TE
annotation (https://urgi.versailles.inra.fr/download/iwgsc/IWGSC_RefSeq_Annotations/v1.0/) with the
genomic coordinates of the assembled exons.

2.6. Retrotransposon-Related Transcript Annotation

LTR retrotransposons (RTEs) were predicted in the genome using LTRharvest 1.5.10 with the
default parameters [60] and LTRdigest 1.5.10 [61] with the following parameters: -aaout yes -pptlen 10
30 -pbsoffset 0 3 -pdomevalcutoff 0.001. Hidden markov model (HMM) profiles of RTE domains were
downloaded from the GyDB database [62]. The gff3 file from the LTRdigest analysis was treated by a
custom Python script (https://github.com/Kirovez/LTR-RTE-analysis/blob/master/LtrDiParser_v2.2.py)
to extract sequences of LTR retrotransposons possessing similarity to any RTE domains including GAG,
reverse transcriptase, RNAse H, aspartic protease, and integrase. To identify retrotransposon-related
transcripts, the TEsorter tool (parameters: -eval 0.00001 -db gydb) was run with the set of all
high-confidence transcripts. The transcripts with a similarity to RTE domains were manually checked
in the locally installed JBrowse [55]. TEsorter data were also used for RTE classification. We also ran
TEsorter with confident transcripts and the RExDB [63] database (-db rexdb) to identify the transcripts
of Class II transposons but no transcripts were detected.

2.7. GAG Protein Analysis

To find GAG proteins, ORFs were predicted for RTE transcripts and Blastp with corresponding
proteins was run followed. GAG proteins were aligned by MAFFT [64] with the standard parameters
and a phylogenetic tree was constructed using iTOL [65]. The multiple alignment visualization was
carried out in Jalview version 2.11.1.3 [66]. RNA-binding motifs (CX2CX4HX4C, where X is any amino
acid) were identified by a custom Python script (https://github.com/Kirovez/LTR-RTE-analysis/blob/
master/RBM_GAG_screen.py).

2.8. Gene Ontology Enrichment

Gene ontology (GO) enrichment analyses was performed using ShinyGO v0.61 [67] (http://
bioinformatics.sdstate.edu/go/) with an false discovery rate (FDR) <0.01.

2.9. Expression Analysis

For RNA-Seq analysis of lncRNA and RTE transcript expression in different organs and
development stages, publicly available data were used (Table 2). Reads were mapped on the
de novo assembled transcriptome by Hisat2 [68] with the default options. The obtained files with
alignments were used to calculate RPM (read per million reads) values for every transcript. For this
purpose, we used Salmon v0.8.1 [69] and the quant command with the default parameters.

Table 2. Publicly available RNAseq data used in this study.

SRA Accession Number of Reads Development Stage/Organs Reference

ERR392055 26,791,465 10 dpa/seed [39]
ERR392076 29,714,230 20 dpa/seed [39]
ERR392069 31,433,795 30 dpa/seed [39]

SRR10522394 39,611,224 Leaves [70]
SRR1175868 64,825,850 Pistils [71]
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2.10. Extrachromosomal Circular DNA Isolation

Extrachromosomal circular DNA (eccDNA) was isolated and amplified according to the protocol
of Lanciano et al. [72] with several modifications. Briefly, 5 μg of genomic DNA was treated by
Plasmid-Safe ATP-Dependent DNAse (Epicenter, Madison, WI, USA) for 48 h according to the
manufacturer’s instructions. DNA precipitation was carried out by 0.1 volume 3 M sodium acetate
and 2.5 volume absolute ethanol, followed by overnight incubation at −20 ◦C. After centrifugation,
the eccDNA pellet was obtained and exposed to the rolling circle amplification (RCA) reaction by the
Illustra TempliPhi 100 Amplification Kit (GE Healthcare, Chicago, IL, USA) for 65 h at 28 ◦C. Detection
of the eccDNA of LTR retrotransposon TaeST2.45518.1 (named ‘MIG’, location in wheat genome: 7B:
312,336,869 . . . 312,341,902 (5 kb)) was performed by inverse PCR with specific primers: Forward:
CACACCACTAGCAACCTCCA ; Reverse: TGCTTGTGACAAGATGGGCA. The PCR conditions were
94 ◦C for 1 min; 35 cycles of 94 ◦C for 1 min, 58 ◦C for 1 min, 72 ◦C for 1 min; and final elongation at
72 ◦C for 3 min.

2.11. Statistics and Visualization

Statistical analysis was done in Rstudio Version 1.2.1335 (http://www.rstudio.com/) with R version
3.6.0. Bar plots, density plots, and box plots were drawn by ggplot2 [73]. Heatmaps were constructed
by the ComplexHeatmap [74] R package.

3. Results

3.1. Direct Oxford Nanopore RNA Sequencing

Total RNA was isolated from whole spikes of hexaploid triticale (AABBRR) cv. L8665 at 10 days
post anthesis (dpa). This RNA was used for direct RNA sequencing by MinION (Oxford Nanopore).
In total, 1,100,000 direct RNA sequencing (DRS) reads with N50~1.1 kb were obtained (Figure 1).
To assemble the transcripts, reads were mapped to the genome sequence created artificially by
combining the A and B genome sequences of the wheat chromosome-level assembly and rye draft
genome contigs. Overall, 82,785 transcripts from 74,904 loci were assembled with 47,378 and 26,169
loci located in genomes A/B (AB lncRNAs) and R. A total of 36,490 transcripts had >5 mapped DRS
reads, representing a set of transcripts with high confidence that was used for further analysis.

To estimate the triticale seed development phase used for Nanopore sequencing, we determined
the expression values (reads per million mapped reads (RPM)) of the key genes involved in starch
biosynthesis (expression started at Phase 1), the genes of storage proteins (high molecular weight
glutenins and gliadins), and those of the wbm protein (Table 3), which are expressed during the grain
filling stage. We identified the expression of starch biosynthesis genes, while no genes of storage
proteins or the wbm protein were expressed. This suggests that the seeds used for Nanopore sequencing
were in the early stages of seed development (before 14 dpa).

Thus, using direct Nanopore RNA sequencing, we assembled a high-confidence transcriptome of
triticale seed at the early development stage and detected the expression of key genes known to be
involved in the biological process (starch biosynthesis) occurring at this stage.

3.2. Long Non-Coding RNA Prediction

The assembled high-confidence set of transcripts was used for long non-coding RNA (lncRNA)
prediction. The following criteria were applied to distinguish lncRNAs from protein-coding transcripts:
(1) transcript length of >200 bp; (2) transcripts with an ORF length of <300 bp; (3) transcripts classified
as non-coding by three tools including LncFinder [57], PLEK [58], and CNCI [59]; and (4) transcripts
with no similarity to any Pfam domains. Using these criteria, we identified 796 triticale lncRNAs
(Supplementary Files S1 and S2) encoded by 780 loci in Genomes A (167 lncRNAs), B (212 lncRNAs),
and R (410 lncRNAs) and in unanchored wheat scaffolds (seven lncRNAs) (Figure 1A). Most of the
lncRNAs had lengths of <1000 bp (Figure 1B). LncRNAs (386 transcripts) encoded by the loci of
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Genomes A and B or unanchored wheat scaffolds (AB lncRNAs) were used for further analysis because
of the significantly better annotation of these genomes compared with the R genome. Intersection
of the genome position of the AB lncRNA loci with lncRNA and mRNA loci previously annotated
in the A or B wheat genomes showed that 281 (73%) of the triticale AB lncRNAs are located in the
previously unannotated genomic regions (Figure 1C). This number is significantly higher (Fisher’s
Exact Test, p-value < 2.2 × 10−16) than that for non-lncRNA AB transcripts (10%, 2523), pointing to the
underexplored nature of lncRNA loci. Moreover, only 13% (106) of the AB lncRNAs in our dataset
were previously known.

Figure 1. Identification and classification of triticale long non-coding RNAs (lncRNAs). (A) Bar plot
showing the number of triticale lncRNA loci located on different chromosomes of Genomes A, B, and R
and unanchored wheat contigs (Un). Sc indicates loci mapped to Secale cereale contigs. (B) Density plot
of the lncRNA length distribution. (C) Pie graph showing the portion of the AB lncRNAs located in the
unannotated genomic regions. (D) The portion of genes encoding AB lncRNAs and other RNAs (not
classified as lncRNAs) that have exons with transposable elements. Three stars (***) indicate significant
differences based on Fisher’s Exact Test for Count Data, p-value < 0.001. (E) RT-PCR with specific
primers on three genic lncRNAs of distinct types (F), and RNA isolated from developing grain (10 days
post anthesis (dpa)) and flag leaves. CDC: reference gene (the cell division control protein). (F) Types
of genic lncRNAs and the corresponding wheat genes.

Table 3. Expression of the key genes of the starch biosynthesis pathway and wheat storage proteins.

Wheat Gene ID
Gene Expression,

+/−
Reads per

Million (RPM)
Gene Annotation Genomic Coordinates

TraesCS4A02G418200 + 76 GBSS/Starch synthase,
chloroplastic/amyloplastic 4A:688,097,145–688,100,962

TraesCS4B02G029700 + 7 (BGC1) Flo6/5′-AMP-activated
protein kinase subunit beta-2 (PTST)

4B:21,937,120–21,944,075

TraesCS4A02G284000 + 3 4A:590,660,989–590,667,561

TraesCS7B02G139700 + 6
ISA

7B:175,999,323–176,007,332

TraesCS7A02G251400 + 15 7A:235,460,629–235,468,417

TraesCS6A02G048900 − 0

α/β-gliadins

6A:24,921,651–24,922,607

TraesCS6A02G049200 − 0 6A:25,203,493–25,204,413

TraesCS6A02G049100 − 0 6A:25,107,550–25,108,401

TraesCS6A02G049600 − 0 6A:25,472,841–25,473,704

TraesCS1A02G007400 − 0 γ-gliadin-A3 1A:4,033,339–4,034,196

TraesCS7A02G531903 − 0 wbm 7A:710,471,331–710,471,679

TraesCS1A02G317311 − 0 HMW Glu-1Ax 1A:508,723,999–508,726,319

TraesCS1B02G329711 − 0 HMW Glu-1Bx 1B:555,765,127–555,766,152
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LncRNAs are frequently associated with transposons. We found that 111 (29%) AB lncRNAs had
exons that had transposon sequences with a length of >50 bp (Figure 1D). This was significantly more
than that expected by chance (10%, Fisher’s exact test, p-value< 2.2× 10−16). Of the TE-related lncRNAs,
61, 47, and 3 lncRNAs had exons with similarity to Class I, Class II, and unclassified TEs, respectively.

The AB lncRNAs were classified regarding the position of the annotated wheat protein-coding
genes, resulting in 17 genic lncRNAs. Gene ontology analysis revealed that the genes overlapping
with genic lncRNAs were significantly enriched (FDR < 0.01) in several Gene Ontology categories
including “vesicle-mediated transport”, “lipid modification”, “ATPase activity”, and “hydrolase
activity”. The genic lncRNAs were of different types, with Intronic-antisense (two lncRNAs, Figure 1F
(top)), exonic-anti-sense (five lncRNAs, Figure 1F (middle)), and exonic-sense (nine lncRNAs, Figure 1F
(bottom)) transcripts being the most common types. In addition, exonic (sense and anti-sense) lncRNAs
were found. The expression levels of three types of genic lncRNA (depicted in Figure 1F) belonged
to the distinct types estimated in developing grain (10 dpa) and flag leaves (Figure 1E). The RT-PCR
results suggested that two lncRNAs (lnc001 and lnc003) were expressed in both samples, while the
expression of one type of lncRNA (lnc002) only occurred in developing grain (10 dpa).

Altogether, we identified hundreds of previously unknown genic and intergenic lncRNAs
of triticale and showed that they frequently possess the remnants of Class I and Class II
transposable elements.

3.3. AB lncRNAs Are Prone to Tissue-Specific Expression

To find lncRNAs with possible specific roles during seed development, we used wheat RNAseq
data to estimate lncRNA expression in several seed developmental stages, leaf tissues, and pistils
of wheat.

A non-zero expression value in at least one condition was obtained for 351 AB lncRNAs. To estimate
any biases in AB lncRNA expression compared with all high-confidence transcripts assembled from
DRS reads, we calculated the tissue-specificity index (TSI). The results showed that the TSI was
significantly (according to the Wilcoxon rank sum test with continuity correction, p-value < 2.2 × 10−16)
higher for lncRNAs, suggesting high tissue specificity of lncRNA expression (Figure 2A). We further
found that 46% of the lncRNAs had their highest level of expression at 10, 20 or 30 dpa, with 107
lncRNAs having their maximum expression level at 10 dpa; this is in accordance with the type of our
triticale sample (10 dpa) used for RNA isolation (Figure 2B). Moreover, we identified 95 AB lncRNAs
for which >90% of the sum of RPKM (reads per kilobases per million reads) values across all the
samples accounted for the 10, 20, and 30 DPA stages (Figure 2C).

Thus, the expression pattern of the identified lncRNAs was found to be tissue-specific, with almost
half of the lncRNAs demonstrating the maximum expression level during seed development.

3.4. Retrotransposon-Related Transcripts Encoding GAG Proteins Are Expressed during Early Seed
Development in Triticale

Early embryonic and endosperm development may be accompanied by the activation of
transposable element (TE) activity [22]. Therefore, we analyzed the assembled transcripts for the
presence of open reading frames encoding TE-related proteins. We focused on the transcripts of
Genomes A/B because of the high quality of wheat genome assembly and annotation compared
with the rye genome. No transcripts corresponding to DNA transposons were detected. However,
we found 20 transcripts (RTE-RNAs) carrying a single ORF with similarities to distinct proteins of
LTR retrotransposons. Surprisingly, we found no transcripts encoding for the full set of RTE proteins
(GAG and POL). To check whether any RTE-RNAs were encoded by LTR retrotransposons with
detectable LTR sequences (RTEs), we predicted RTEs in Genomes A and B. The results showed that 5
and 10 RTE-RNAs (15) were transcribed from full-length (potentially autonomous) or non-complete
(one or more RTE domains were not detected while both LTRs were present) RTEs, respectively.
Thus, almost 25% of the RTE-RNAs were found to be transcribed from potentially autonomous RTEs.
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For five RTE-RNAs, no associated RTEs were predicted, but 75% (15) of the RTE-RNAs were found
to carry an ORF encoding a single GAG protein (GAG-RNAs). Of those, eight (53%) and five (33%)
GAG-RNAs were encoded by full-length (Figure 3A) and non-complete copies of LTR retrotransposons,
respectively. For two (14%) GAG-RNAs, no corresponding RTEs were identified (Table 4). It should
be noted that four GAG-RNA genes were found to be located in the introns of three annotated
protein-coding genes in the sense or anti-sense orientation, including TraesCS2B02G261900 (sense
and anti-sense), TraesCS5A02G298800 (anti-sense), and TraesCS1B02G222500 (sense). Two GAG-RNA
genes (TaeST2.11597.1 and TaeST2.11598.1) were found to be located in the introns of the same gene
(TraesCS2B02G261900).

Figure 2. Expression patterns of triticale AB lncRNAs based on wheat RNAseq data. (A) Boxplot of the
tissue-specificity index (TSI) for lncRNAs and all AB high-confidence transcripts assembled from direct
RNA sequencing (DRS) reads (TSI values close to 1 represent high tissue specificity). Stars indicate
significant differences estimated by the Wilcoxon rank sum test with continuity correction (p-value <
2.2 × 10−16). (B) Bar plot showing the number of AB lncRNAs with the maximum expression (reads per
kilobases per million reads, RPKM) level at a specific stage of wheat development (10, 20, and 30 days
post anthesis (dpa)) or tissue (leaves and pistils). (C) Heatmap of expression values (log(RPKM)) of
AB lncRNAs with >90% of RPKM values based on wheat RNAseq data (10, 20, and 30 dpa; pistils
and leaves).
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Figure 3. Identification, phylogenetic analysis, and expression pattern of RTE-related transcripts.
(A) Full-length LTR retrotransposons of Tork (TaeST2.19707.1) and Retrofit (TaeST2.45518.1) lineages
expressing a short isoform encoding the GAG protein (shGAG). The dark blue rectangles show ORFs
encoding all retrotransposon proteins (genome scheme) and the GAG protein (isoform scheme). Orange
color indicates untranslated regions (UTRs). The Nanopore direct RNA read alignment on the LTR
retrotransposon genome sequence is also shown. (B) Neighbor-joining phylogenetic tree built from 15
GAG proteins. Red and gray highlight the GAG proteins expressed from RTEs without one or more
encoded proteins and from loci without predicted RTEs, respectively. Red stars indicate GAG proteins
with <300 aa. The vertical red line indicates a group of GAGs encoded by truncated retrotransposons
possessing only GAG ORFs. (C) Multiple alignment of Ty1/Copia GAG proteins. Green and red
highlight variable regions between the Tork and Retrofit regions. Gray shows the RNA-binding motif
(CX2CX4HX4C, where X is any amino acid). (D) Heatmap of the log(RPKM) expression of isoforms
encoding GAG proteins in wheat leaves and pistils, and during seed development.
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Table 4. Number of retrotransposon-related transcripts (RTE-RNAs) in different groups based on
completeness of associated LTR retrotransposons (RTEs) and the type of predicted RTE proteins encoded
by open reading frames (ORFs) (reverse transcriptase, RT; aspartic protease, AP; RNAse H).

RTE Group

Encoded proteins
Full-length RTEs
(all domains are

detectable)

Non-complete
RTEs (one or more
canonical protein
domains are not

detectable)

No associated RTEs
identified

Total number
of RTE-RNAs

GAG 8 5 2 15
Other RTE proteins
(AP, RT, RNAse H) 1 1 3 5

Total number of
RTE-RNAs

9 6 5 20

We further focused on GAG-encoding RTE-RNAs (GAG-RNAs) as the most represented group.
Oxford Nanopore RNA sequencing provides a unique opportunity to analyze the exon–intron structure
of GAG-RNA-encoded loci and predict the deduced full GAG protein sequences. Classification of
the deduced GAG proteins showed that 85% (14) and 15% (1) of them belong to Ty1/Copia and
Ty3/Gypsy elements, respectively. Based on the information from the transcript assembly, we grouped
all GAG-RNAs into three categories based on the number of introns they possessed: (1) a single intron,
(2) two introns, and (3) no introns. The vast majority (86%, 13) of GAG-RNAs were found to carry
a single intron (Figure 3A), while one GAG-RNA from Ty3/Gypsy had no introns, showing that the
exon–intron structure may differ between the two LTR retrotransposon superfamilies. To understand
the functional role of splicing in the generation of GAG-RNA transcripts, we also predicted ORFs for
unspliced RNA variants corresponding to the regions between two LTRs. We observed that unspliced
transcripts expressed from the whole RTEs had significantly longer ORFs, resulting in GAG proteins
being fused with other RTE proteins. Additionally, for two GAG-RNA encoding RTEs (TaeST2.19707.1
and TaeST2.45518.1, Figure 3A), only one very long ORF (>4000 bp) was predicted, while other RTEs
were found to have two or three ORFs encoding distinct proteins. Thus, we showed that the splicing of
the GAG-RNA isoform is critical to ensure the production of the entire GAG protein.

We next performed a comparison and phylogenetic analysis of the amino acid sequences of the
15 GAG proteins. The multiple alignment revealed significant differences between one Ty3/Gypsy GAG
(TaeST2.45979, GAG length 514 aa) and the Ty1/Copia GAG proteins. We compared the Ty1/Copia
GAG sequences and found that Ty1/Copia GAGs originated from two RTE lineages, Tork (seven
sequences) and Retrofit (seven sequences). Phylogenetic tree analysis revealed three and two groups
of highly similar (up to 99%) GAG proteins in the Retrofit and Tork lineages, respectively (Figure 3B).
In addition, we detected pronounced sequence divergence between the GAG proteins of Tork and
Retrofit lineages. The GAG protein of the Retrofit lineage has a ~50 aa-specific C-end which is not
found in the Tork GAG sequences (Figure 3C). In turn, Tork GAGs have specific amino acid sequences
before the RNA-binding motif (RBM) site. These differences are also reflected in the phylogenetic tree’s
topology, where the branches corresponding to the Tork and Retrofit Ty1/Copia lineages are readily
distinguishable (Figure 3B).

In addition, we noticed that the divergence of groups in a single lineage correlated well with the
completeness of the RTEs expressing corresponding GAG-RNAs; the most diverged group of GAG
was the one with the Tork lineage and encoded by truncated retrotransposons (Figure 3B) that had a
single ORF-encoding GAG.

We then analyzed the GAG protein sequences in more detail. In particular, we estimated the
presence of the RNA-binding motif (RBM)(CX2CX4HX4C, where X is any amino acids), a specific
part of GAG proteins, which is responsible for GAG–RNA interactions. We found that RBM could
be identified in all except three GAG proteins, including one Ty3/Gypsy (TaeST2.45979.1) and two
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Ty1/Copia elements (TaeST2.14377.1, TaeST2.16660.1) of the Tork lineage. The Ty1/Copia GAG-RNAs
without the CX2CX3GHX4X motif (TaeST2_14377 and TAeST_16660) are truncated GAG proteins with
smaller protein lengths (175 aa and 182 aa vs >300 aa for the full-length Ty1/GAG protein) and probably
very limited functionality. Altogether, the results of the phylogenetic analysis suggest that a divergent
set of GAG proteins, including truncated GAGs with no RNA-binding capacity, is expressed during
triticale seed development.

We then estimated the expression patterns of the GAG-RNAs in several seed developmental
stages and in leaf tissues and pistils of wheat. Nine of the 15 GAG-RNA loci had a specific expression
pattern with maximum expression levels at early developmental stages or in pistils. For two GAG-RNA
loci (TaeST2.14377.1 and TaeST2.44075.1), the expression level was too low, indicating a possible
triticale-specific expression pattern (Figure 3D). Thus, the expression data showed that most of the
identified triticale GAG-RNAs were also expressed during wheat seed development, and some RTEs
expressed genomic RNA (gRNA) as well as a short isoform (shGAG) carrying ORF for GAG protein.

Overall, our results suggested that tens of transcripts encoded by full-length and truncated LTR
retrotransposon copies are expressed at early stages of triticale seed development. Three-fourths of
these RNAs carry ORFs for encoding a set of GAG proteins of variable length and phylogenetic diversity.

3.5. A Full-Length Ty1/Copia LTR Retrotransposon Is Active in Triticale Seeds

To transpose in the genome, RTEs need to express the full-length genomic RNA (gRNA). Although
we did not detect gRNA for the RTEs expressing TaeST2.19707.1 (RTE3B, location in wheat genome:
3B:555,156,557 . . . 555,163,131 (6.58 kb)) and TaeST2.45518.1 (named ‘MIG’, location in wheat genome:
7B:312,336,869 . . . 312,341,902 (5 kb)) shGAG RNAs by Nanopore sequencing (Figure 3A), we performed
RT-PCR with primer pairs designed to detect (a) shGAG isoforms and (b) gRNA isoforms. The RT-PCR
analysis resulted in detection of the expression levels of shGAG and gRNAs in developing triticale
seeds (10 dpa) and flag leaves, although the gRNA expression level was lower (Figure 4A). Next, we
assessed whether the RTEs were capable of transposing. To answer this question, we determined
the generation of the extrachromosomal circular DNA (eccDNA) by these RTEs using inverted PCR.
EccDNAs are byproducts of RTE activity in plants [71]. We first determined that inverted PCR with
the designed primers did not produce PCR products with genomic DNA. Unfortunately, the primers
on RTE3B produced PCR fragments with genomic DNA; therefore, the activity of RTE3B could not be
assessed by inverted PCR. We continued eccDNA detection only for MIG (Supplementary File S3).
For this, we enriched the eccDNA fraction by exonuclease treatment of total genomic DNA using an
enzyme that specifically cut linear DNA while leaving circular DNA molecules intact. The product
was then amplified by rolling circle amplification, and inverted PCR was carried out. We enriched
eccDNA in genomic DNA isolated from developing grain at 10 dpa, as well as glume and lemma tissue.
The specific products were detected only for eccDNA isolated from developing grain, and no products
were obtained with eccDNA of glume and lemma tissues. Thus, our results showed that RTE MIG
expresses both shGAG RNA and gRNA isoforms and has transposition activity.

Here, we provide experimental evidence suggesting that some detected RTE-RNAs originate from
autonomous LTR retrotransposons with ongoing transposition activity in triticale at early stages of
seed development.
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Figure 4. Expression and extrachromosomal circular DNA (eccDNA) formation. (A) RT-PCR detection
of the shGAG (a short isoform carrying ORFs for GAG protein) and gRNA isoforms of RTE3B and
MIG full-length RTEs. CDC: reference gene (the cell division control protein). (B) Inverted PCR with
genomic DNA and eccDNA-enriched fractions obtained from developing seeds (10 dpa) and glume and
lemma triticale tissues. The positions of the primers on eccDNA are shown in the small representation
in the right. PCR with shGAG primers with total and eccDNA-enriched DNA was used as a control.

4. Discussion

4.1. A Set of Intergenic lncRNAs Detected by Nanopore Sequencing Is Expressed during the Early Stage of
Triticale Seed Development

Wheat seed development is a dynamic multistage process that involves significant changes in the
transcriptome landscape. Here, we uncovered the lncRNA transcriptome of triticale seed at 10 days
post anthesis (dpa), corresponding to the second stage of grain development, known as embryo
differentiation (7–14 dpa) [34]. This stage is characterized by the formation of Type A starch granules
and the expression of genes involved in starch biogenesis [36]. In turn, the genes encoding for the
main storage proteins (the high molecular weight (HMW) glutenins and gliadin [36]) and the genes
involved in storage protein biogenesis (e.g., wbm [75]) are expressed during the mid-development
stage (14–21 dpa). In agreement with this, we detected the expression levels of the starch metabolism
genes (Table 3), while expression of the storage protein genes (HMW glutenins and gliadins) and
the wbm gene (found recently in the analyzed line (L8665) [76]) was not detected by Nanopore read
analysis. These results prove that the analyzed triticale transcriptome corresponds to the early stage of
grain development.

Our analysis showed that hundreds (798) of lncRNAs were expressed during this stage.
Surprisingly, we found that 87% of the A and B lncRNAs were expressed from as yet unannotated
regions of Genomes A and B. LncRNAs are often underrepresented in plant genome annotation.
For example, 8009 lncRNAs were previously identified in the intergenic regions of barley [77], and 1760
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unannotated lncRNAs were identified in foxtail millet [78]. The annotation of the lncRNAs expressed
from the intergenic space can be challenging because of the biological properties of lncRNAs, including
their high tissue- and stage-specificity. Indeed, we identified a high tissue-specificity index for triticale
lncRNAs, suggesting that a large number of lncRNAs are expressed during a narrow time window.
Additionally, lncRNAs often possess exons containing transposon-similar multicopy sequences that
make the transcript assembly difficult because of unambiguity in short RNAseq read mapping. Here,
we found that almost 30% of the triticale lncRNAs possessed exons with similarity to TEs. This is
in accordance with previous reports on rice [79], where 73% lncRNAs were found to overlap with
different TEs. Furthermore, 9.18% of sunflower lncRNAs have TE-related exons [80]. In these terms,
RNAseq-based lncRNA identification can underestimate the number of lncRNAs in a cell or lead to
transcript misassembly, because short reads from the repeat regions are often mismapped or discarded
from the analysis [25]. However, notably, the study of plant lncRNAs and transposon-derived
transcripts has mostly been limited by short read RNAseq data. Here, to escape lncRNA identification
biases because of the short length of the RNAseq reads, we applied Nanopore direct RNA sequencing.
This approach allowed us to precisely determine the transcribed regions in a complex wheat genome.
In addition, Nanopore direct RNA sequencing is strand-specific and can be used to identify natural
anti-sense lncRNAs. The application of third-generation sequencing could help to illuminate “the dark
side” of developing seed transcriptomes involving lncRNAs and transposon-derived loci, thereby
overcoming the obstacles in lncRNA discovery by short RNAseq reads. It will be especially useful
for crop plants where lncRNA loci can be included into genome-wide association studies (GWAS) to
determine which of them can influence key agronomical traits. Notably, lncRNA loci have not been
well used for GWAS analysis so far [81]. We believe that the triticale lncRNAs identified in this study
could act as valuable new targets for marker-assisted selection.

4.2. Transcripts Encoding Diverse GAG Proteins Are Expressed during the Early Stage of Seed Development

Seed development is accompanied by epigenetic relaxation, which may trigger retrotransposon
(RTE) activity [21–23]. Here, we identified 20 transcripts with similarities to RTE proteins. Interestingly,
we found that 75% of the RTE-related transcripts carry ORFs encoding GAG proteins, the main
component of the RTE virus-like particle. It is known that during their lifecycle, RTEs have to produce
significantly more GAG proteins that other RTE proteins. To ensure that there are excess GAG proteins
compared with other RTE proteins, an Arabidopsis RTE called EVD encodes a special isoform (shGAG)
encoding the GAG protein [82]. Because almost no systematic studies of RTE transcripts have been
carried out at the single isoform level in crop plants, it was not previously clear whether shGAG
transcript production is a common pattern for plant species. In this study, we detected isoform
production for several full-length triticale RTEs and showed their transcription in wheat, implying
that shGAG is a very common pattern for plants. Moreover, we showed that one of the full-length
RTEs, TaeST2.45518.1, is capable of producing extrachromosomal circular DNAs (eccDNA), which are
a byproduct of RTE activity and have been used to isolate transpositionally active RTEs [74]. Whether
this RTE is active in the triticale embryo and can produce copies that are transmitted to the next
generation or whether it is active in other tissues of developing grains (e.g., endosperm) warrants
further investigation.

Based on the knowledge of splicing patterns of GAG-encoding isoforms, we were able to predict
the GAG protein sequence and analyze it in more detail. Our results point to the existence of a
divergent group of GAG proteins expressing during triticale and wheat seed development. These
GAG proteins and the RTEs encoding them have several distinct features: (1) the RTEs encoding
these GAG proteins are non-autonomous elements and possess no similarity to POL proteins; (2) the
lengths of most of these GAG proteins (169–270 aa) are less than that of the conventional GAG protein
(>300 aa); and (3) half of these GAG proteins lack the RNA-binding motif and cannot interact with
RTE RNAs. The elements encoding GAG-RNA consist of two LTRs and the internal part is similar
to the GAG protein. This structure makes these elements very similar to the previously described
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TR-GAG elements (terminal repeat with GAG domain) ([83]) found in many angiosperm species.
However, the TR-GAG elements described in the current paper are classified as Ty1/Copia, while GAG
proteins of previously identified TR-GAG elements are similar to both Ty1/Copia and the Ty3/Gypsy
superfamily. While further functional and evolutionary studies are required, we suggest that these
GAG loci are intermediate products of RTE diversification or “domestication”. The “domestication”
of GAG proteins has been documented in animals and insects [84–87]. Because of the short lengths
of these GAG proteins, it can be also suggested that they may be involved in control of the activity
of functional RTEs via incorporation into their virus-like particles. The mechanism of copy number
control of RTEs via virus-like particles (VLP) misassembly, which is caused by a truncated GAG form,
known as dominant-negative factor, has been well described for yeast [88,89]. No such examples
have been described in plants. In the future, it will be intriguing to check whether TR-GAG proteins
are capable of interacting with normal GAG proteins of full-length RTEs, which, as we showed here,
are expressed in the same developmental stage.

Previously, Nanopore long-read sequencing of transcriptomes was used to annotate expressed
transposons in Arabidopsis mutants lacking key systems of TE suppression, resulting in elevated
expression of transposons [26]. The authors detected the expression of almost 1300 TEs. However,
elucidation of transposon expression a “wild-type” genetic background would provide a unique
opportunity to trace natural evolutionary forces shaping plant retrotranscriptome and to more deeply
understand the features of host–transposon interactions. Recent studies on maize and sunflower [26,90]
and our current results point to the great advantage of Nanopore RNA sequencing to decipher RTE
expression in crop plants, even those with complex genomes such as triticale. Together with the
growing number of publicly available long-read RNA sequencing datasets, this opens a broad avenue
for studies of transposon expression in plants on the isoform-based level.

5. Conclusions

Here, using Nanopore direct RNA sequencing, we identified hundreds of previously unknown
lncRNAs and LTR retrotransposon-derived transcripts that are expressed in the early stages of triticale
and wheat seed development. We showed that triticale lncRNAs often possess similar sequences to
transposons and their expression has high stage and tissue specificity, with half of the lncRNAs having
the highest expression level at 10–30 days post anthesis in wheat. In addition, we found that most of the
detected retrotransposon-related RNAs have a single intron, carry ORFs encoding for a divergent set
of GAG proteins, and are encoded by potentially autonomous and non-autonomous retrotransposons.
Of these, we identified one Ty1/Copia LTR retrotransposon that produces extrachromosomal circular
DNA, and we suggest that it has transposition activity in developing triticale seeds. Finally, this study
identified a unique set of lncRNAs and LTR retrotransposons expressed in the early stages of seed
development, which we believe will be useful for further exploration of their functional potential and
the association with phenotypic variation in triticale and wheat.
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Abstract: Genomic selection (GS) can accelerate variety improvement when training set (TS) size
and its relationship with the breeding set (BS) are optimized for prediction accuracies (PAs) of
genomic prediction (GP) models. Sixteen GP algorithms were run on phenotypic best linear unbiased
predictors (BLUPs) and estimators (BLUEs) of resistance to both fall armyworm (FAW) and maize
weevil (MW) in a tropical maize panel. For MW resistance, 37% of the panel was the TS, and the BS
was the remainder, whilst for FAW, random-based training sets (RBTS) and pedigree-based training
sets (PBTSs) were designed. PAs achieved with BLUPs varied from 0.66 to 0.82 for MW-resistance
traits, and for FAW resistance, 0.694 to 0.714 for RBTS of 37%, and 0.843 to 0.844 for RBTS of 85%,
and these were at least two-fold those from BLUEs. For PBTS, FAW resistance PAs were generally
higher than those for RBTS, except for one dataset. GP models generally showed similar PAs across
individual traits whilst the TS designation was determinant, since a positive correlation (R = 0.92***)
between TS size and PAs was observed for RBTS, and for the PBTS, it was negative (R = 0.44**). This
study pioneered the use of GS for maize resistance to insect pests in sub-Saharan Africa.

Keywords: prediction accuracy; mixed linear and Bayesian models; machine learning algorithms;
training set size and composition; parametric and nonparametric models

1. Introduction

Insect damage on maize plants and stored grains potentially impedes food security
in Africa [1–3]. The fall armyworm (FAW) and stem borers in the field, and the maize
weevils (MWs) in storage facilities, are some of the most devastating insect pests on the
continent. These insect pests cause yield losses ranging from 10–90% leading to loss of
grain marketability, and consumer health concerns due to the possible contamination of the
grain with mycotoxins, such as aflatoxins [3–6]. In Africa, tremendous efforts were made
during the last two decades to build host plant resistance to insect pests in maize through
traditional pedigree (phenotypic)-based selection (PS) with substantial desirable results.
Several Africa-adapted maize lines were developed and successfully tested for resistance to
MW damage on grains [7–12]. Some of the success stories are from the International Center
for Maize and Wheat Improvement (CIMMYT) of Kenya through the Insect Resistant Maize
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for Africa project (IRMA) that produced several storage pest and stem borer resistant maize
lines [7,8,13–15]. On the other hand, the FAW is a new pest on the continent, first reported
in 2016 in West and Central African countries [16], from where it spread throughout the
African continent [17]. Hence, although efforts to develop FAW resistant varieties are
underway at several institutions, including CIMMYT, published reports of FAW resistant
varieties are not yet available [18,19].

The complex nature of insect resistance traits makes PS slow and expensive, and thus,
difficult to implement, especially for resource-constrained breeding programs [20]. Appli-
cation of traditional marker-assisted selection (MAS) is hampered by the necessity to first
discover resistance-associated genomic regions through genetic linkage and genome-wide
association mapping methods, both with several shortcomings, especially for complex
traits [21–23]. In addition, genetic linkage and genome-wide association mapping studies
have seldom been explored in African germplasm [8,24], which further impedes the ap-
plication of MAS in the development of insect resistance maize germplasm in Africa. In
a previous study, we discovered several quantitative trait nucleotides and genes that are
putatively associated with FAW and MW resistance, confirming the quantitative nature of
these traits, hence the difficulty in improving these traits through MAS [25]. An alternative
to both PS and MAS is genomic selection (GS), which uses whole-genome markers to per-
form genomic prediction (GP) of breeding values of unphenotyped genotypes, from which
one can select superior candidate genotypes for crossing to produce hybrids or to advance
to the next generation [26]. GS was reported to achieve up to threefold annual genetic
gain in maize improvement when compared to MAS, due to a more efficient accounting of
trait-associated quantitative trait loci (QTL), faster selection cycles, and lower phenotyping
costs [27–33].

Several statistical and machine learning GP models with various strengths and weak-
nesses have been developed to adapt to different contexts that are partly influenced by
the genetic architecture of traits (number and effect size of QTL, proportions of additive
and non-additive genetic effects) and reproductive classes of plants (allogamous vs. auto-
gamous vs. clonally propagated) [34–36]. Therefore, to effectively implement GS in crop
improvement programs, it is necessary to employ a holistic approach to determine the
best GP strategy for particular breeding targets for given crop species [31,37]. Statistical
models for GS vary in their prior assumptions and treatment of marker effects [31]. Para-
metric models focus on parameter estimates rather than prediction, while nonparametric
algorithms give priority to prediction and have fewer assumptions [38]. Some parametric
methods assume the SNP effects follow a normal distribution with equal variance for all
loci, which seems unrealistic in practice.

Representative parametric methods are ridge regression best linear unbiased predic-
tors (RR-BLUP) [39] and genomic BLUP (GBLUP) [40]. GBLUP was the first GP method
to be developed, and it replaced the traditional pedigree-based relationship matrix with a
genomic information-based matrix to improve prediction accuracies (PAs) [41]. Parametric
methods BayesA [26] and weighted Bayesian shrinkage regression (wBSR) [42], on the
other hand, consider a prior distribution of effect with a higher probability of moderate
to large effects. Regarding parametric models such as BayesB [43] and BayesCπ [44], as-
sumptions are made that consider the effects of some SNPs to be zero. The Bayesian least
absolute shrinkage and selection operator (Bayesian LASSO) assumes that the effects of all
markers follow a double exponential distribution [45], whilst the Bayesian sparse linear
mixed model (BSLMM), a parametric method developed by Zhou et al. [46], combines the
hypotheses of both GBLUP and Bayesian methods and achieves higher PAs than BayesCπ

and BayesLASSO. Nonparametric or semi-parametric approaches such as random forest
and reproducing kernel Hilbert space (RKHS) [47,48] are better suited for accounting for
non-additive genetic effects (37,38), in contrast with parametric genomic prediction mod-
els [23,38,47,49]. Several studies compared the performances of GP models under different
conditions. In a simulation study, Meuwissen et al. [26] found that while GBLUP achieved
PAs of up to 73.2%, BayesA and BayesB comparatively provided additional increases of
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around 9% and 16%, respectively. However, when a population is composed of close rela-
tives and the target traits are controlled by several small effect genes, the different methods
perform similarly [50–52]. On the contrary, BayesB and BayesCπ are better when dealing
with distant relatives and traits affected by a small number of large-effect loci [23]. Kernel
methods such as RKHS are robust in predicting non-additive effects and in solving complex
multi-environment multi-trait models [53,54]. Compared to the above-mentioned paramet-
ric methods, deep learning techniques such as support vector regression (SVR), multilayer
perceptron, and convolutional neural networks models performed poorly in some stud-
ies [55,56]. However, there are also instances where RKHS outperformed one or several
of the parametric methods, for instance, GBLUP, rrBLUP, and Bayesian algorithms, in
terms of several traits in several crops including maize [51,57–59]. These results were most
likely because nonparametric GS models capture more adequately the non-additive genetic
components which are an essential characteristic of complex traits [23,37,38] and hence
could be good candidate tools for the prediction of FAW and MW-resistance traits which are
controlled by both additive and non-additive gene action [21,23,31,41,60]. Therefore, since
GP for maize resistance to insect pests such as FAW and MW is not yet well explored, it is
pivotal to compare performances of several available prediction algorithms to inform better
future GS programs. Therefore, the Genomic Prediction 0.2.6 plugin of the KDCompute
1.5.2. beta (https://kdcompute.igss-africa.org/kdcompute/home), an online database
developed by Diversity Array Technologies (DArT, https://www.diversityarrays.com)
for the analysis of DArT marker data, presents great interest for this purpose. It hosts
a suite of parametric, semiparametric, and nonparametric GP methods that can be run
simultaneously on genotype-phenotype datasets.

Additional factors that influence PAs are the different sizes of the training sets (TSs)
and breeding sets (BS) and their genetic relationships, the number of markers used to
estimate genomic estimated breeding values (GEBV) of lines, the population structure,
and the extent of linkage disequilibrium [21,23,31,41,60]. Since phenotyping is the current
bottleneck in plant breeding and one of the disadvantages of GP is the requirement of
large TSs for high PAs to be achieved, determination of effective TS composition and size
is critical for effective implementation of GS in crop improvement programs [21,61–64].
Additionally, the best TS determination will depend on the genetic architecture and the
extent of population structure of the trait targeted for GP [63], two parameters that are
substantially variable among plant breeding traits. Another factor that is a determinant of
the predictive ability is the kinship between the TS and the BS (63). Several methods are
used for TS optimization and these generally fall into two categories—namely, untargeted
and targeted approaches. For the untargeted approach, the TS is determined independently
of its genomic information, whereas the targeted method considers the genomic relationship
between the TS and the BS as a means of maximizing PAs [65]. However, deciding on the
best TS selection method is not straightforward and depends on context [66].

Furthermore, in maize, GPs were previously conducted using either genotypic best
linear unbiased estimators (BLUEs) [67–69] or best linear unbiased predictors (BLUPs) [31,
41,70] as means of phenotypic correction [70]. BLUEs are obtained by treating the genotypic
effect of a mixed linear model as fixed effects and provide an estimated mean for each
individual of a population equal to its true value. On the other hand, BLUPs generated
by considering the genotypic factors as random and allowing for the shrinkage of the
means towards the population mean [71]. Whether to use BLUPs or BLUEs in GP is
debatable. Phenotypic BLUEs allow avoiding double penalization which BLUPs suffer
from. With phenotypic BLUPs, this double penalization is, however, compensated through
maximization of the correlation between predicted and true line values, while phenotypic
BLUEs do not rely on this shrinkage [70]. However, the shrinkage in the BLUP procedure
accounts better for outliers and environmental variabilities [72], permitting better estimates
of individual genetic effects than BLUEs [71], and therefore, it usually yields more accu-
rate predictions of phenotypic performance [70,72,73]. Furthermore, BLUPs are better in
handling unbalanced data, wherein, for example, the number of individuals is not the
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same in different locations or in the different replications of an experiment [49,70]. On that
basis, the current study was conducted to evaluate the efficacies of different parametric,
semiparametric, and nonparametric methods from both statistical and machine learning
GP models in generating prediction accuracies (PAs) for maize resistance to FAW and MW
in a diverse panel using both genotypic BLUEs and BLUPs.

2. Material and Methods

2.1. Genetic Material and Field Experiments

The panel used in this study consisted of 358 maize lines with diverse genetic and
geographic backgrounds, and they were sourced from the National Crop Resources Re-
search Institute (NaCRRI/Namulonge, Uganda), the International Institute for Tropical
Agriculture (IITA/Ibadan, Nigeria), and The International Maize and Wheat Improvement
Center (CIMMYT/Nairobi, Kenya). The panel consisted of 71 inbred lines developed for
various purposes at NaCRRI; 28 and five stem borer (SB)-resistant inbred lines from CIM-
MYT [6,13,14] and IITA, respectively; 19 storage pest (SP)-resistant inbred lines [7,8]; and a
doubled haploid (DH) panel of 235 lines developed at CIMMYT using six parents—three
of which were stem borer-resistant, one was a storage pest-resistant inbred line (these were
also included in the population), and two were CML elite lines (one, CML132 was included
in the panel) (Supplementary Materials Table S1).

The panel was planted and evaluated in three environments, at Mubuku Irrigation
Experimental Station in Kasese, western Uganda in 2017 (316 lines) during the second rainy
season (2017B) and the National Crop Resources Research Institute (NaCRRI), Namulonge,
central Uganda in 2018 (92 lines) and 2019 (252 lines) both during the first rainy seasons
(2018A and 2019A, respectively). Detailed information on these locations is presented
in Table 1.

Table 1. Geographical, climatic, and soil characteristics of the planting locations [74].

Locations
Geographical
Coordinates

Altitude above
Sea Level

Minimum
Rainfall

Soil
Characteristics

Kasese 0◦16′10” N
30◦6′9” E 1330 m asl 1000 mm Sandy loam soils

with a pH of 5.68

Namulonge 0◦31′30” N
32◦36′54” E 1160 m asl 1300 mm Oxisols with a

pH of 5.8

Each combination of location and season was considered an environment, resulting
in a total of three environments. An augmented experimental design was adopted in all
three environments using six checks in 2017B, two in 2018A, and four in 2019A replicated
in all the blocks. The experiments in 2017B, 2018A, and 2019A consisted of twelve, five,
and ten blocks, respectively, containing the replicated checks and unreplicated lines and
the experiment in 2018A was replicated twice.

2.2. Genotyping, Quality Control, and Imputation for Genomic Prediction Analyses

Genotyping of the panel and SNP quality were described in our previous study [25].
In brief, maize leaves at the sixth-leaf stage of development were harvested from 341 of the
358 lines of the panel (5–10 plants per line) in 2017B and 2018A (for lines not captured in
2017B). The leaf samples were oven-dried overnight at 36 degrees Celsius and shipped to
the Biosciences east and central Africa (BecA) Laboratory of the International Livestock
Research Institute (ILRI, Nairobi, Kenya) for DNA extraction and genotyping. Diversity
Array Technology (DArT) genotyping facilities (44) were used to successfully identify
34,509 SNPs from 341 of the 358 lines composing the panel; hence, only these lines were
considered for the GP analyses. Duplicate SNPs were first removed using the R package
DartR (45), leaving 28,919 unique SNPs (DRSNP) distributed across all the 10 chromosomes
of the entire maize genome.
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The DRSNP dataset was imputed before GP using KDCompute 1.5.2. beta (https://
kdcompute.igss-africa.org/kdcompute/home), an online database developed by Diversity
Array Technologies (DArT, https://www.diversityarrays.com) for the analysis of DArT
marker data. KDCompute uses a suit of imputation methods to impute the SNP dataset
and scores the imputation results by calculating simple matching coefficient (SMC). The
method with the highest SMC is considered as optimal and used to impute the original
genotypic dataset.

2.3. FAW and MW Resistance Phenotyping

After germination, plants were left unprotected to allow sufficient natural pressure
of fall armyworm (FAW) population to build up. FAW damage scoring in all the three
environments was carried out two months after planting when adequate natural FAW
infestation levels had manifested, and scoring was based on a visual assessment using a
scale of 1 (no or minor leaf damage) to 9 (all leaves highly damaged) [75], illustrated in
Figure S1 [18].

Rearing of and bioassays for MW were performed as described in previous experi-
ments carried out at NaCRRI [76,77]. Weevils were reared prior to the MW bioassay to
obtain enough insects aged between 0 to 7 days for infestation. During rearing, standard
conditions were provided for weevils to ensure proper acclimatization during the exper-
iment. Rearing was carried out by preparing a weevil-maize grain culture of 300–400
unsexed insects and 1.5 kg of grains contained in 3000 cm3 plastic jars incubated for 14 days
in the laboratory at a temperature of 28 ± 2 ◦C and relative humidity of 70% ± 5%, to
enhance oviposition. The lids of the jars were perforated and a gauze-wire mesh with a
pore size smaller than one mm was fitted on each lid to allow proper ventilation while
preventing the weevils from escaping.

After harvesting and shelling, grains of each line were bulked across environments.
Then, samples of 30 g were weighed from each grain bulk, aiming to produce three
replicates per line for the MW bioassay experiment. However, due to the lack of an
adequate amount of grains for most of the lines of the panel, only 64, 123, and 132 lines
could generate three, two, and one replicates, respectively, and were therefore considered
for the MW bioassay experiment. Each of these samples was wrapped in polythene bags
and kept at −20 ◦C for 14 days to eliminate any weevil infestation prior to the start of the
experiment. After this disinfestation process, samples were left to thaw and transferred
into 250 cm3 glass jars and infested with 32 unsexed weevils. After 10-days of incubation
to allow oviposition, all dead and living adult insects were removed. One month after
infestation (MAI), each sample was removed from its jar, and the grains and the flour
were isolated and their weights were recorded. The total number of holes inflicted by
the weevils on the grains was counted along with the number of grains affected by such
damages. Additionally, the numbers of dead and living weevils were recorded. After
these measurements were collected, the grains were returned to their respective jars and all
the measurements were repeated at two and three MAI. The collected data were used to
infer, for each sample, the cumulative grain weight loss (GWL), the cumulative number of
emerged adult weevil progenies (AP), and the final number of damage-affected kernels
(AK).

2.4. Statistical Analyses of the Phenotypic Data

Both best linear unbiased estimators (BLUEs) and predictors (BLUPs) were generated
using the general linear model with only phenotype option of the software Trait Association
through Evolution and Linkage (TASSEL) [78] and the ranef function of the R package [79]
lme4 [80], respectively. The mixed linear model for generating BLUEs (all factors considered
as fixed) and BLUPs (all factors considered as random) for MW traits (GWL, AP, AK, NH,
and FP) was as follows:

Y = μ + Replication + Genotype + Error
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The mixed model for generating BLUEs (all factors considered as fixed) and BLUPs
(with all factors considered as random) for FAW damage scores across environments model
was:

Y = μ + Location + Block + Genotype + Location : Genotype + Error

where μ in the two equations is the intercept.

2.5. Strategies for TS and BS Determination
2.5.1. MW Resistance Traits

Due to inadequate amount of seeds, only 37% (126 out of 341 that had genotypic data)
of lines from the panel had phenotypic data on grain weight loss (GWL), adult progeny
emergence (AP), and number of affected kernels (AK). Therefore, to estimate GP accuracies
for MW resistance, these 126 lines were used as the TS and the remaining 215 lines with
only genotypic data constituted the breeding set (BS).

2.5.2. FAW Damage Resistance

The GP analyses for FAW resistance were carried out on the 341 lines of the panel
that were genotyped and phenotyped for FAW damage resistance. To determine TS and
BS sizes and compositions for the evaluation of maize resistance to FAW damage, two
strategies, namely, random-based TS (RBTS) and pedigree-based TS (PBTS), were used.

2.5.3. Random-Based TS Determination

For the RBTS, 126 (37%) lines used for GPs of MW-resistance traits were used as the
TS for FAW to predict the GEBVs of the remaining 215 lines first. To build the second TS for
FAW, the 215 (63%) lines used earlier as BS were considered as a TS. Then to determine the
third and fourth TSs for FAW, random selections of 75 and 85% of the lines in the entire panel
were performed through the Excel formula “=INDEX($A:$A,RANDBETWEEN(1,COUNTA
($A:$A)),1)” and dragging until the adequate number of lines for each percentage deter-
mined above was obtained.

2.5.4. Pedigree-Based TS Determination

The four datasets determined based on the pedigrees of the lines in the panel (PBTS
strategy) are presented in Table 2. For the first dataset (FAW.Ped1), the 235 (68.91%)
CIMMYT doubled haploid (DH) lines were used as a TS and the remainder (106 lines)
as a BS. Regarding the second dataset, the TS and BS were switched to consider the TS
in FAW.Ped1 as BS, and BS in FAW.Ped1 as the TS. The third dataset, FAW.Ped3, had
a TS composed of the 294 that were neither stem borer (SB) resistant nor storage pest
(SP)-resistant lines from CIMMYT, whilst the 28 SB and 19 SP-resistant lines from CIMMYT
constituted the BS. In the last dataset, FAW.Ped4, the 235 DH lines, the 28 SB and 19 SP-
resistant lines from CIMMYT, and the five SB-resistant lines from IITA amounting to 287
(84.16%) genotypes were considered as the TS and the remaining 54 lines from NaCRRI
lines were considered as the BS (Table 2).

Table 2. Compositions of the pedigree-based test sets (TSs) for fall armyworm (FAW) datasets.

FAW Datasets FAW.Ped1 FAW.Ped2 FAW.Ped3 FAW.Ped4

TS composition 235 DH
CIMMYT lines

106 Non-DH
lines

294
Non-CIMMYT

SB and SP
resistant lines

287 DH and
CIMMYT and

IITA SB and SP
lines

TS/Panel (%) 68.91 31.09 86.22 84.16

DH = doubled haploid; FAW, fall armyworm; FAW.Ped1 to 4, FAW datasets 1–4 with TS based
on pedigree information of the lines in the panel; SB, stem borer; SP, storage pest; TS, training set;
CIMMYT, International Center for Maize and Wheat Improvement; IITA, International Institute for
Tropical Agriculture.
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2.6. Genomic Prediction Algorithms

The GP analyses were performed using the BLUEs and BLUPs of the phenotypes and
the 28,919 DRSNPs. Sixteen algorithms available in 10 GP methods were implemented
using the Genomic Prediction 0.2.6 plugin of the KDCompute 1.5.2. beta. The 10 methods
were directly translated from functions of five R packages designed for GP analyses:

2.6.1. Bayesian Models

Bayesian models have different prior distributions with a general model that can be
as follows: y = 1nμ + Zμ + ε, where y is the vector of observations, Z is the design matrix
for random effects, and μ is the vector of random effects [31].

The BLR (Bayesian Linear Regression) algorithms from the BLR R Package [81] are
used to fit the Bayesian ridge regression. The marker effects are assumed to have a Gaussian
prior distribution with mean 0 and variance σ2, where σ2 is unknown and assumed to
have scaled x2 distribution. In the KDCompute genomic prediction 0.2.6 plugin, the
Gibbs sampler is run with 4000 iterations and 1000 iterations for burn-in period as default
parameters.

The Bayesian Generalized Linear Regression (BGLR) package fits various types of
parametric and semi-parametric Bayesian regressions. The parametric Bayesian algorithms
used from this package rely on different prior distributions that induce different types
of shrinkages of the marker effects [82], including: Gaussian (Bayesian ridge regression,
BRR [83]), scaled-t (BayesA [26]), double-exponential (Bayesian LASSO, BL [84]), and two
component mixtures with a point of mass at zero and a distribution with a slab that can
be either Gaussian (BayesC [44]) or scaled-t (BayesB [43]). In the KDCompute genomic
prediction 0.2.6 plugin tool, defaults parameters for running the Gibbs sampler were used:
4000 iterations and 1000 iterations for burn-in period.

Reproducing kernel Hilbert space (RKHS) [47,48] is a semiparametric Bayesian method
from the BGLR package implemented on the KDCompute genomic prediction 0.2.6 plugin.
The RKHS methods employs a kernel function to convert the molecular markers as a
between pairs of observations distances, thereby, generating a square matrix that fits in a
linear model. This non-linear regression method is expected to capture dominance and
epistasis effects more efficiently. This approach can be modelled as:

y = Wμ + Khα + ε,

where μ represents the fixed effects vector and ε is a vector of random residuals. The
parameters α and ε are assumed to have independent prior distributions α ∼ N(0, Khσ2

α
)

and ε ∼ N(0, Iσ2
ε
), respectively, and the matrix Kh relies on a reproducing kernel function

with a smoothing parameter h. The parameter h measures the genomic distances among
genotypes that can be interpreted as a correlation matrix and it controls the rate of decay
of the correlation among genotypes [51]. To perform this analysis, the same number of
iterations and burn-in parameters as for the other Bayesian methods described above were
set on the KDCompute genomic prediction 0.2.6 plugin.

2.6.2. Mixed Models

The Sommer (solving mixed model equations in R) package [85] was used to imple-
ment the mmer (mixed model equations in R) function on the KDCompute genomic predic-
tion 0.2.6 plugin. The package solves mixed model equations proposed by Henderson [86].
It works incidence matrices and known variance covariance matrices for each random
effect using four algorithms: efficient mixed model association (EMMA) [87], average infor-
mation (AI) [88], expectation maximization (EM) [89], and the default Newton–Raphson
(NR) [90].
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The model by Sommer can be formulated as [85]: y = Xβ + Zμ + ε with variance
V(y) = V(Zμ + ε) = ZGZ′ + R Additionally, the mixed model equations for this model
are: [

X′R−1X X′R−1Z
Z′R−1X Z′R−1Z + G−1

]−1[ X′R−1y
Z′R−1y

]
=

[
β
μ

]

where G = Kσ2
ω is the variance covariance matrix of the random effect μ, from a multi-

variate normal distribution μ ∼ MVN(0, Kσ2
μ), K is the additive or genomic relationship

matrix (A or Ag) in the genomics context, X and Z are incidence matrices for fixed and
random effects, respectively, and R is the matrix for residuals (here Iσ2

e ). A mixed model
with a single variance component other than the error (σ2

e ) can be used to estimate the ge-
netic variance (σ2

μ) along with genotype BLUPs to exploit the genetic relationships between
individuals coded in K(A). The genomic relationship matrix was constructed according to
VanRaden where K = ZZ′/2 ∑ pi(1 − pi) [91].

The ridge regression best linear unbiased predictor (rrBLUP) packages can either
estimate marker effects by ridge regression, or alternatively, BLUPs can be calculated based
on an additive relationship matrix or a Gaussian kernel. Additionally, using the rrBLUP
package, the mixed model solution (MMS) that calculates the maximum-likelihood (ML)
or restricted-ML (REML) solutions for mixed models to perform GP [92] was fitted in the
KDCompute genomic prediction 0.2.6 plugin.

The mixed models fitted by rrBLUP can be formulated as:

y = Xβ + Zμ + ε,

where β is a vector of fixed effects and μ is a vector of random effects with variance
Var[μ] = Kσ2

μ
. The residual variance is Var[ε] = Iσ2

ε
. This class of mixed models, in which

there is a single variance component other than the residual error, has a close relationship
with ridge regression (ridge parameter λ = σ2

ε /σ2
μ) (https://kdcompute.igss-africa.org/

kdcompute/home).

2.6.3. Machine Learning Algorithms

The R package RandomForest that implements Breiman’s random forest algorithm
for classification and regression [93] was used on the KDCompute genomic prediction
0.2.6 plugin to fit the function missForest. Random forest is a non-linear machine learning
algorithm that uses a two-layer randomization process to build decorrelated bootstrapped
trees. As a first randomization layer, it builds multiple trees using a bootstrap sample
of the marker data in the training. Then, a second randomization process is carried at
the novel nodes to grow final trees. The random forest method selects at each node of
each tree, a random subset of variables, and only those variables are used as candidates
to find the best split for the node [94]. To predict the breeding value of a line in the TS,
predictions over trees for which the given observation was not used to build the tree are
averaged [51]. On the KDCompute 1.5.2. beta platform, both options for the mtry, square
root and regression (sqrt(p) and p/3, respectively, where p is number of variables in x), for
the classification of the number of variables randomly sampled as candidates at each split
were implemented in this study. Additionally, the trees to grow (ntree) was set to 10, while
node size (minimum size of terminal nodes) and max nodes (maximum number of terminal
nodes trees in the forest can have) were set to 5 and 10, respectively. The 16 methods used
in this study and their statistical characteristics are presented in Table 3.
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Table 3. Genomic prediction methods used for the analysis of the different traits and datasets.

GP Algorithms Abbreviations Method Type

1 Sommer with Average Information
(AI) mmer_AI Parametric/Mixed model

2 Sommer with Expectation
Maximization (EM) mmer_EM Parametric/Mixed model

3 Sommer with Efficient Mixed Model
Association (EMMA) mmer_EMMA Parametric/Mixed model

4 Sommer with default
Newton-Raphson (NR) mmer-NR Parametric/Mixed model

5 Ridge-regression Best linear unbiased
Predictor rrBLUP Parametric/Mixed model

6 Mixed Model solution with
Maximum Likelihood (ML) mms_ML Parametric/Mixed model

7 Mixed Model solution with Restricted
Maximum Likelihood (REML) mms_REML Parametric/Mixed model

8 BayesB BayesB Parametric/Bayesian
9 BayesA BayesA Parametric/Bayesian

10 BayesC BayesC Parametric/Bayesian

11 Bayesian least absolute shrinkage and
selection operator (LASSO) BL Parametric/Bayesian

12 Bayesian Ridge Regression BRR Parametric/Bayesian
13 Bayesian Linear Regression BLR Parametric/Bayesian
14 Reproducible kernel Hilbert space RKHS Semi-parametric/Bayesian
15 Random Forest with Square root missForest_Sqt Nonparametric/Machine Learning
16 Random Forest with Regression missForest_Reg Nonparametric/Machine Learning

2.7. Cross-Validations and PA Estimation

To calculate the predictive accuracies of each of the 17 methods, a cross-validation
approach was performed using the data for the TS with 10 folds and five repetitions
amounting to 50 replications. The PAs were estimated as the correlation coefficient (R2)
averaged across the 50 cross-validation replications between the observed phenotypic
values and the predicted genomic-estimated breeding values (GEBV) (https://kdcompute.
igss-africa.org/kdcompute/plugins).

3. Results

3.1. Higher PAs Achieved for FAW and MW-Resistance Traits with BLUPs when Compared to
BLUEs across GP Algorithms

Both genotypic BLUEs and BLUPs for resistance to FAW and MW traits such as AK,
AP, and GWL were used in GPs. In general, BLUPs produced better predictions than BLUEs
by at least two orders of magnitude in terms of PAs (Figure 1). The PAs realized with
BLUEs (Figure S2) varied from −0.246 for FAW (mms_ML) to 0.299 for AP (BayesB), while
PAs for BLUPs ranged from 0.668 for AP (mmer_NR) to 0.823 for AP (missForest_Reg).
The differences in terms of accuracies between BLUEs and BLUPs were high, despite the
highly significant (p < 0.001) correlations between BLUEs and BLUPs for each trait ranging
from 0.93 for FAW to close to 1 for AP, AK, and GWL (presented in Figure 1); therefore,
only results for BLUPs will be presented hereafter.
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Figure 1. Boxplot of PAs (prediction accuracies) for best linear unbiased estimators
(BLUEs) (in pink) and predictors (BLUPs) (in blue) of maize resistance to FAW and MW
across prediction models and correlations (r) between BLUEs and BLUPs for each trait.
FAW, fall armyworm; GWL, grain weight loss; AP, adult progeny emergence; AK, number
of affected kernels. *** significant at p < 0.001.

3.2. PAs for MW Resistance Traits Using BLUPs

The PAs were generally high for the tested MW traits, mostly above 0.668 across the
12 GP models that were successfully run on the datasets (Figure 2); however, RKHS failed to
work for AK. The highest PAs were achieved for AP with missForest_reg (0.823), followed
by BRR (0.805), and RKHS (0.804), whilst mmer_NR algorithm had the lowest prediction
accuracy of 0.667 (Figure 2). The PAs achieved for GWL ranged from 0.742 for missFor-
est_Sqt to 0.795 for mmer_NR, while for AK, they varied from 0.749 for missForest_sqrt
to 0.779 for BRR (Figure 2). In general, Bayesian models predicted better than both mixed
model and machine learning methods, although the differences were small (Figure S3).
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Figure 2. Boxplots of the genomic prediction accuracies of BLUPs for MW-resistance traits: GWL, grain weight loss; AP,
adult progeny emergence; AK, number of affected kernels (See Table 3 for GP algorithms).

3.3. PA for FAW Resistance Using BLUPs

The different maize resistance to FAW datasets showed high predictive abilities with
10 of the 16 GP algorithms used in the study. For the RBTS approach, the PAs were lowest
with the dataset that had a TS composed of 37% (lowest size) of the panel and highest with
the largest TS (85% of the panel). Even with a TS of 37%, the PAs were still high, ranging
from 0.694 to 0.714 for mms_ML and BLR methods, respectively (Figure 3). However,
it should be noted that with equal TS sizes and same composition (37% of the panel),
higher PAs were achieved for MW-resistance traits (GWL, AP, and AK) compared to FAW-
resistance ones (Figure S3). The PA for the RBTS of 63% varied from 0.833 for BL method
to 0.838 for the missForest_Sqt; thus, there was a small variation among different methods.
Similarly, there was minimal variation among GP algorithms on the dataset with a 75% TS
whose PAs varied from 0.838 for mms_REML to 0.843 for MissForest_Reg. The same trend
was obtained on the dataset with a RBTS of 85% of the panel, with PAs ranging from 0.843
for the BRR model to 0.847 for the missForest_Reg method. Furthermore, there was a high
and significant (p < 2.2.10−16) positive correlation of 0.92 (Figure 4) between the PAs and
TS sizes for FAW datasets for the RBTS denoting a steady improvement of the PAs as the
TS size increased. However, the PAs for FAW resistance reached a plateau at TS size above
63% of the panel (Figure 5).

91



Plants 2021, 10, 29

  

  

Figure 3. Boxplot of PAs for maize resistance to the fall armyworm (FAW) datasets with the RBTS approach with random
selection of 37, 63, 75, and 87% of the entire panel (see Table 3 for GP algorithms).

  
(A) (B) 

Figure 4. Pearson correlation between training set (TS) sizes and prediction accuracies (PAs) across the 10 genomic prediction
algorithms conducted on RBTS (A) and PBTS (B) datasets for fall armyworm resistance (FAW) resistance.
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Figure 5. Prediction accuracies for FAW with RBTS across algorithms and training sets with different sizes in percent of the
total panel.

Although the PAs did not vary much among GP algorithms, especially when the
analyses involved larger TS sizes equal or bigger than 63% of the panel, the machine
learning methods slightly outperformed other GP algorithms for all the traits, except for
the TS of 37% where Bayesian methods such as BLR and BayesC showed a slight advantage
over the machine learning methods (Figure S4). The PAs for FAW-resistance datasets with
PBTS were generally high, mostly above 0.82 (Figure 6). For the first dataset (FAW.Ped1)
with a TS of 68.91% of the panel (see Table 2), the PAs varied between 0.828 for BLR to 0.835
for missForest_Sqt. For FAW.Ped2 (TS = 31.09%), the PAs ranged from 0.862 for BayesC to
0.864 for mms_REML.

  

  

Figure 6. Boxplots of PAs for maize resistance to the fall armyworm (FAW) datasets using the PBTS approach (see Table 2
for the PBTS strategy and Table 3 for GP algorithms).

93



Plants 2021, 10, 29

For FAW.Ped4, with a TS of 84.16%, PAs varied between 0.860 to 0.864 for missFor-
est_Sqt and mms_ML, respectively. However, for FAW.Ped3 with the largest TS (86.22%),
eight of the 10 algorithms achieved low PAs (below 0.20) and only missForest_Reg and
missForest_Sqt attained PAs of 0.749 and 0.750, respectively. Thus, the Pearson correla-
tion between the sizes of the PBTS datasets and the predictions accuracies for the 10 GP
algorithms revealed a significant (p > 0.0036) negative relationship of r = −0.45 (Figure 4).

In the FAW datasets, the PAs were more influenced by the composition of the TS and
its genetic relationship with the BS (see Table 2). Using the doubled haploid (DH) lines as
TS (FAW.Ped1) and vice-versa (FAW.Ped2) or DH and stem borer (SB) and storage pest
(SP)-resistant lines as TS (FAW.Ped4) permitted achieving relatively high PAs from all the 10
algorithms, which when considering the CIMMYT SB and SP-resistant lines as BS and the
remainder as a TS (FAW.Ped3), only resulted in machine learning algorithms missForest_reg
and missForest_Sqt achieving relatively high PAs. Furthermore, the composition of the
TS and its relationship with the BS determined which GP methods achieved the highest
Pas; machine learning algorithms worked best on FAW.Ped1 and FAW.Ped3, linear mixed
model approaches outperformed Bayesian and machine learning algorithms on FAW.Ped2
and FAW.Ped4, and Bayesian methods ranked either second or third on all datasets (Figure
S5). It should be noted that the PBTS strategy generally achieved better PAs than the RBTS
irrespective of the size of the TS, except for the FAW.Ped3 dataset (Figures 3 and 6).

4. Discussion

Tropical maize germplasm is characterized by rapid linkage disequilibrium (LD) decay
with high diversity [95]. These germplasm genetic characteristics make genomic selection
(GS) a promising approach to integrate into African breeding programs [96]. However,
genomic prediction (GP) models are very diverse and their differential performances
depend on crops and trait architectures, besides other parameters such as the size of the
training set (TS) and its genetic relationship with the breeding set (BS) [31,37]. Therefore,
this study aimed at assessing the feasibility of genomic selection for maize resistance
to FAW and MW through estimation of the genomic prediction accuracies achieved by
parametric, semiparametric, and nonparametric (machine learning) genomic prediction
(GP) algorithms using phenotypic BLUEs and BLUPs, and random and pedigree-based TS
determination strategies.

4.1. Higher Pas Were Achieved for BLUPs Compared to BLUEs for Both FAW and MW-resistance Traits

With a RBTS of 37% of the panel, which was the smallest and expected to give the
worst PAs, PAs were higher (at least two-fold) across both FAW and MW-resistance traits
and for all GP models when trait BLUPs were used as phenotypes compared to BLUEs,
although there were high Pearson correlations between these two categories of phenotypic
data for each trait. In general, BLUPs were reported to have higher predictability than
BLUEs owing to better accounting for outliers and environmental variabilities permitted by
the shrinkage procedure in BLUPs, which results in more accurate estimates of individual
genetic effects [70–73]. Furthermore, most of the predictive differences between BLUPs
and BLUEs might have stemmed from BLUPs being more suitable than BLUEs in fitting
data recorded from unbalanced experiments [49,70] as was the case for both FAW damage
scores across environments and MW bioassay in this study. Therefore, for all subsequent
analyses with higher RBTS sizes and the PBTS strategy for FAW, only BLUPs were focused
at in this study and will be further discussed.

4.2. High PAs Were Achieved for FAW and MW-Resistance Traits Using Moderately Sized
Training Sets

The obtained PAs were high for both MW and FAW-resistance traits even with TS
of moderate sizes confirming the potential of genomic selection (GS) in Africa-adapted
germplasms [28–30,33]. With a TS of 37% of the entire panel, high PAs (above 0.70) for MW-
resistance traits, grain weight loss (GWL), adult progeny emergence (AP), the number of
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affected kernels (AK), and FAW resistance were achieved in agreement with the moderate
to high heritability values for these traits as, reported earlier [21,31,41]. These results are
significantly important considering that one of the disadvantages of GS is the requirement
of large TS which negatively impacts the reduction of phenotyping cost [62,64].

The PAs increased up to above 0.85 in proportion to the increase in TS (RBTS approach)
size for FAW resistance which was the only trait phenotyped for all the lines of the panel.
It would be interesting to phenotype other lines of the panel that were not evaluated
for MW-resistance traits to establish larger TS which may improve the PAs [31,65,97,98].
Very few reports of GP are available for maize resistance to biotic stresses. High PAs
were achieved for maize resistance to chlorotic mottle virus (up to 0.95) and maize lethal
necrosis (reaching 0.87) in tropical germplasm [67]. However, lower PAs of up to 0.59 were
obtained in a study that assessed the predictability of maize resistance to the European
corn borer [99] in temperate germplasm. Additionally, Gowda et al. (69) reported moderate
PAs (close to 0.60) for maize resistance to a biotic stress, maize lethal necrosis in tropical
maize populations.

4.3. GP Algorithms Performed Differently on FAW and MW Maize Resistance Traits

In this study, several GP models that included statistical and machine learning al-
gorithms from parametric, semi-parametric, and nonparametric approaches were used
to predict FAW and MW-resistance traits. These GP algorithms, as expected, performed
differently on the different traits although the predictive variations were generally min-
imal, especially when large TS were involved, similarly to earlier model benchmarking
reports [100,101]. Bayesian models (parametric: BLR and BRR, and semi-parametric: RKHS)
performed better on MW traits, GWL, AP, and AK, while nonparametric machine learning
algorithms (missForest, here), and to a lesser extent, the linear mixed model (especially in
the PBTS approach), achieved the highest PAs on FAW datasets. The differential perfor-
mances of the different GP algorithms on the insect resistance traits evaluated in this study
could be due to differences in the genetic structures (extent of additive vs. non-additive
gene action) of the respective traits [23,38,47,49]. Maize resistance to FAW, which was
moderately heritable across environments [25], would be expected to be controlled by
both additive and non-additive genetic factors, including epistasis [102–104], whereas,
MW-resistance traits such as GWL, AP, and AK with heritability values above 90% [25]
were most likely characterized by a prevalence of additive gene action [105,106] in the
current panel.

This supposed genetic architecture difference between FAW and MW-resistance trait
could be the reason for non-linear methods such as random forest performing better at
predicting FAW resistance, since these are more capable of integrating epistasis in the
statistical modelling [27,51]. However, the RKHS algorithm, also a non-linear GP approach
known to efficiently handle epistatic genetic relation [51,59], did not successfully run on
FAW dataset, although it was among the best models for predicting MW-resistance traits,
except BLUPs for the number of affected kernels (AK), for which the RKHS algorithm did
not run successfully. In this study, the reasons for some GP algorithms failing to run either
on MW or FAW-resistance datasets are unclear, but this could be related to the BLUPS
structure of the datasets that failed to run. It should be noted that all the algorithms ran
successfully on phenotypic BLUEs datasets with the smallest TS (37% of the panel) being
used to compare PAs between BLUPs and BLUEs in this study. However, the two to
three-fold predictive ability gain with BLUPs compared to BLUEs would be an incentive
to consider BLUPs in future GS activities for maize resistance to MW and FAW. Overall,
future GS efforts for maize resistance to MW and FAW are recommended to focus more on
Bayesian and machine learning algorithms such as random forest, BayesA, BayesB, BayesC,
BRR, and BLR which outperformed mixed linear models for most datasets considered in
the current study.
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4.4. Influences of the Sizes and the Compositions of TS and BS on PAs

Two factors, the relative sizes of the TS and BS (RBTS approach) and their genetic
relationship (PBTS approach), influenced the levels of PAs across FAW-resistance datasets,
corroborating earlier reports [31,63,65,97,98,107,108]. A net increase in PAs for maize
resistance to FAW was realized when the size of the TS was increased from 37% (0.694 to
0.714) to 63% (0.833 to 0.838), similar to earlier reports on wheat yield [109]. This increase
was followed by a slight gain in predictability at 75% (0.837 to 0.843) and 85% (0.843 to
0.847), and thus, the PAs plateaued when TS sizes above 63% were considered in this
study as reported earlier in other studies [21,64,109–111]. Thus, future GS programs for
maize resistance to FAW could be designed around TS composed of a minimum of 60% of
the entire breeding germplasm to achieve high genetic gains. These results were further
supported by the highly significant (p > 2.2.10−16) positive correlation (R = 0.92) between
TS size and PAs. Similarly, positive correlations between the number of lines in the TS and
the PAs, and plateau for the PAs were also reported by Edwards et al. [109].

The composition of the TS and its relationship with the BS are determinant factors
for the genomic predictability of complex traits [63,112–114]. In the current study, using
the PBTS approach, these two parameters were more important than the size of the TS
since higher PAs were achieved in FAW.Ped2 (0.862 to 0.864) with a TS of 31.09% compared
to all other FAW PBTS datasets, including FAW.Ped3 (0.114 to 0.750), with the largest TS
of 66.22%. In fact, FAW.Ped3 achieved the lowest PAs among all the PBTS FAW datasets.
These results were further illustrated by the significantly (p < 0.0036) negative correlation
(R = −0.45) between the sizes of the PBTS and the achieved PAs.

However, it is not very clear why the predictions for the BS FAW.Ped3 (47 CIMMYT
SB and SP-resistant lines) and the TS (DH, IITA SB, and NaCRRI lines) led to lower PAs for
FAW.Ped3. A possible explanation could be that these two sets were distantly related since
only two and one CIMMYT SB and SP-resistant lines, respectively, were used as parents to
develop the DH lines. Spindel et al. [111] argued that high PAs can be achieved with small-
sized TS when lines in the TS and the BS are closely related, since such TS would sample
the full genetic diversity of the population. However, the more distantly related the TS and
the BS are, the larger the required TS size to reach high PAs [111]. Using the CIMMYT SB
and SP-resistant lines as a TS would most likely lead to lower PAs since such a TS would be
additionally disadvantaged by its small size (47 lines). The DH lines in the current study
are involved as a TS in most of the best performing GP datasets evaluated in the current
study (both in the RBTS and PBTS approaches) and as unique lines in the BS of the best
performing pedigree-based BS (FAW.Ped2). This DH population could be of interest in
future breeding activities targeted at improving insect resistance in maize [23,115–117] and
potentially useful for GS of complex traits with low to moderate heritability [118].

5. Conclusions

This study assessed prediction accuracies of genomic-estimated breeding values
for fall armyworm (FAW) and maize weevil (MW)-resistance traits in a diverse Africa-
adapted maize panel using several parametric, semi-parametric, and non-parametric
genomic prediction models. Prediction accuracies for maize resistance to FAW and MW
traits were relatively high, even with a moderate training set size. For FAW resistance,
although the prediction accuracies were positively correlated with the size of the training
set, the composition and the relationship of the training set with the breeding set were
more influential in predicting line performance. Additionally, TS determination-related
parameters were more important than the type of genomic prediction models in predicting
FAW and MW-resistance traits. However, Bayesian models on MW-resistance traits and
machine learning models on FAW damage resistance outperformed mixed linear models
in almost all the datasets used in this study. Therefore, future genomic selection programs
for maize resistance to insect pests such as FAW and MW in Africa should put more effort
into designing effective training sets and use selected Bayesian and machine learning GP
algorithms to improve genetic gains, shorten breeding cycles, and accelerate variety release.
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Such programs could greatly benefit from using the genetically diverse maize panel used
in this study as a base population, since it consists of lines adapted to several African
agro-ecologies.
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Abstract: Drought is the most challenging abiotic stress for rice production in the world. Thus,
developing new rice genotype tolerance to water scarcity is one of the best strategies to achieve and
maximize high yield potential with water savings. The study aims to characterize 16 rice genotypes
for grain and agronomic parameters under normal and drought stress conditions, and genetic
differentiation, by determining specific DNA markers related to drought tolerance using Simple
Sequence Repeats (SSR) markers and grouping cultivars, establishing their genetic relationship for
different traits. The experiment was conducted under irrigated (normal) and water stress conditions.
Mean squares due to genotype × environment interactions were highly significant for major traits.
For the number of panicles/plants, the genotypes Giza179, IET1444, Hybrid1, and Hybrid2 showed
the maximum mean values. The required sterility percentage values were produced by genotypes
IET1444, Giza178, Hybrid2, and Giza179, while, Sakha101, Giza179, Hybrid1, and Hybrid2 achieved
the highest values of grain yield/plant. The genotypes Giza178, Giza179, Hybrid1, and Hybrid2,
produced maximum values for water use efficiency. The effective number of alleles per locus ranged
from 1.20 alleles to 3.0 alleles with an average of 1.28 alleles, and the He values for all SSR markers
used varied from 0.94 to 1.00 with an average of 0.98. The polymorphic information content (PIC)
values for the SSR were varied from 0.83 to 0.99, with an average of 0.95 along with a highly
significant correlation between PIC values and the number of amplified alleles detected per locus.
The highest similarity coefficient between Giza181 and Giza182 (Indica type) was observed and are
susceptible to drought stress. High similarity percentage between the genotypes (japonica type;
Sakha104 with Sakha102 and Sakha106 (0.45), Sakha101 with Sakha102 and Sakha106 (0.40), Sakha105
with Hybrid1 (0.40), Hybrid1 with Giza178 (0.40) and GZ1368-S-5-4 with Giza181 (0.40)) was also
observed, which are also susceptible to drought stress. All genotypes are grouped into two major
clusters in the dendrogram at 66% similarity based on Jaccard’s similarity index. The first cluster
(A) was divided into two minor groups A1 and A2, in which A1 had two groups A1-1 and A1-2,
containing drought-tolerant genotypes like IET1444, GZ1386-S-5-4 and Hybrid1. On the other hand,
the A1-2 cluster divided into A1-2-1 containing Hybrid2 genotype and A1-2-2 containing Giza179
and Giza178 at coefficient 0.91, showing moderate tolerance to drought stress. The genotypes GZ1368-
S-5-4, IET1444, Giza 178, and Giza179, could be included as appropriate materials for developing a
drought-tolerant variety breeding program. Genetic diversity to grow new rice cultivars that combine
drought tolerance with high grain yields is essential to maintaining food security.

Keywords: rice; drought stress; genetic diversity; SSR markers; dendrogram

Plants 2021, 10, 27. https://dx.doi.org/10.3390/plants10010027 https://www.mdpi.com/journal/plants

103



Plants 2021, 10, 27

1. Introduction

Rice is the most diversified crop, which is grown under diverse ecological conditions.
It is the staple food for more than 50% of the world’s population and is the world’s most
important food in terms of a natural calorie source [1]. It occupies almost one-fifth of
the total land area covered under cereals [2]. Due to the changing climate, the frequent
occurrence of many extreme events contributes to different abiotic stresses, limiting the
productivity of rice globally. Among them, drought is one of the most critical abiotic
stresses that continually threatens the world’s food security [3]. The severity of the drought
depends on many factors, such as the occurrence and distribution of rainfall, evaporative
demands, and moisture-retaining capacity of the soils [4]. Therefore, it is imperative
to find out the genotypes that can grow under water-scarce conditions to expand rice-
growing areas in water-limited lands. It can be helpful to meet the challenge of ever-
increasing global food demand [5]. Different rice varieties of a distinct genetic structure
promise a future improvement of rice cultivars against drought stress [6]. Hence, the
assessment of genetic diversity becomes important in establishing relationships among
different cultivars [7]. The first step towards determining the magnitude of these risks
is to evaluate the genetic diversity in improved rice genotypes as the success of a crop
improvement program depends on the importance of genetic variability and how the
desirable characters are heritable [8]. This identification of genotypes and their inter-
relationships is important. The development of new biotechnological techniques provides
increased support to evaluate genetic variation in both phenotypic and genotypic levels.
The results derived from analyses of genetic diversity at the DNA level could be used for
designing effective breeding programs aiming to broaden the genetic basis of commercially
grown varieties.

Molecular marker technology is a powerful tool for determining genetic variation in
rice varieties. In contrast to morphological traits, molecular markers can reveal large differ-
ences among genotypes at the DNA level, providing a more direct, reliable, and efficient
tool for germplasm characterization, conservation, and management and untouched by
environmental influence [9]. SSR markers can detect a high level of allelic diversity, and
they have been extensively used to identify genetic variation among rice subspecies [10].
Simple sequence repeats (SSR) markers are efficient in detecting genetic polymorphisms
and discriminating among genotypes from germplasms of various sources; even they can
notice the finer level of variation among closely related breeding materials within the same
variety [11]. Several quantitative trait loci (QTLs) in rice with consistent effects on grain
yield under water-limited conditions were reported [12]. Among them, DTY1.1, located in
chromosome 1 of the rice genome, was identified from rice variety N22 and successfully
transferred to susceptible genotypes line IR64 and MTU1010 [13]. Besides this, two other
major-effect QTLs viz. DTY3.1 and DTY2.1 were also identified, which explains about
30% and 15% of the phenotypic variance, respectively [14]. Later, Shamshudin et al. [15]
reported another two QTLs, DTY2.2 ad DTY12.1, for reproductive stage drought toler-
ance in rice. However, as mentioned earlier, all of these QTLs are derived from stable
grain yield under drought conditions. Because of the low heritability of grain yield under
drought stress, selection for secondary traits was more effective than grain yield traits.
Due to the lack of a useful trait selection index related to drought tolerance, it is essential
to find a molecular marker associated with drought tolerance in rice [16]. Many SSR
markers have been reported to be linked to drought tolerance traits in rice, such as yield
under drought [13,17,18]. Although several investigations have researched rice germplasm
characterization and diversity analysis, variability studies of the common landraces and
cultivars grown are limited. Therefore, the study was conducted based on three main goals;
(i) morphological characterization of the genotypes for grain and agronomic parameters
under normal and drought stress conditions; (ii) genetic differentiation of 16 rice cultivars
by determination of specific DNA markers related to drought tolerance using SSR markers
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and; (iii) grouping of cultivars according to their genotypes and subsequent decision their
genetic relationship for different traits.

2. Materials and Methods

2.1. Experiment Site

The field experiment was conducted in Rice Research and Training Center Farm, Sakha
Research Station, Agricultural Research Center, Egypt, in consecutive two rice growing
seasons during 2018 and 2019 to investigate morphological traits and genetic diversity
of 16 rice genotypes. The soil’s physical and chemical properties in the Sakha Research
Station in 2018 and 2019 years are illustrated in Table 1.

Table 1. Physical and chemical properties of soil at Sakha Research Station in 2018 and 2019 years
(the soil was collected before starting the field preparation in each season).

Soil Physical and Chemical Properties
Sakha, Kafr El-Sheikh

2018 2019

Clay % 55 55
Silt % 32.4 32.4
Sand % 12.6 12.6
Texture Clayey Clayey
Organic Matter 1.39 1.39
pH 8.1 8.2
Ec (Ds/m) 3.30 3.33
Total N (ppm) 512 518
Available P (ppm) 15.09 16.03
Co3

− - -
Hco3

− 5.55 5.56
Mg++ 4.3 5
Na+ 1.88 1.69
K+ 16 16
Fe++ 4.55 4.55
Mn++ 3.1 3.5

2.2. Treatments and Design

The sixteen rice genotypes origin, pedigree, salience, and feature are shown in Table 2.
All selected rice materials were grown under full irrigated (normal) and water stress condi-
tions (flush irrigation every twelve days and exposed after fifteen days from transplanting)
in a randomized complete block design with three replications.

2.3. Experimental Procedures

Seeds of all cultivars were sown in a nursery on 5 May and transplanted into the
main field after 30 days in both years (2018 and 2019). A single seedling of each genotype
was transplanted in 5 rows having 20 by 20 cm space (between rows and within row
distance). Data were recorded from 10 randomly selected plants from each genotype. For
characterization of root structure, large iron cylinders of 20 cm diameters and 60 cm height
were used. They were buried inside the soil with a hammer, dug out with a spade, and
pulled out using hooks. The roots were separated from the soil by thorough washing in a
special washing facility. After taking the quantitative data, the shoot was separated from
the root using a sharp knife and dried in an oven at 70 ◦C for five days. Root length (cm)
was measured by the length of the root from the base of the plant to the tip of the longest
root, root volume was determined by measuring the volume of water displaced by the plant
root system (mm3), root thickness, the average diameter (mM) of the tip portion (about
1 cm from the tip) of three random secondary roots at the middle position of the root/plant,
the number of roots/plant were estimated by the account roots at the maximum tillering
stage and root: shoot ratio the ratio of the root dry weight (g) to the shoot dry weight (g) at
maximum tillering stage was measured. Days to heading was recorded after flowering by
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the daily count of panicle exertion. The physiological maturity dates were recorded when
80% grains turn into golden yellow color. The leaf rolling scores were estimated by visual
estimation, and the susceptible varieties and lines first started the rolling symptoms in the
morning. Highly sensitive lines did not unroll at early morning hours and were recorded
based on methods proposed by (De Data et al. 1988). The flag leaf area (cm2) was measured
using a leaf area meter (LI-3100 (LI-COR Inc., Lincoln, NE, USA), plant height (cm) was
measured in (cm), from the soil surface to the tip of the tallest panicle of each plant, relative
water content (%) was measured using the formula (Fw − Dw) × 100/(Tw − Dw) where,
Fw is fresh leaf weight, Dw is leaf dry weight, and Tw is turgid leaf weight. A number
of panicles/plant were recorded at harvest by counting the number of panicles/plant,
100-grain weight (g) was recorded as the weight of 100 random chosen filled grains/plant,
sterility percentage (%) was calculated by the divided number of unfilled spikelets/panicle
on a number of total spikelets/panicle, grain yield/plant (g) was recorded by collecting
the filled grains from all the tillers in a single plant and their weight recorded, water use
efficiency was calculated as economic yield/total water consumed during the crop growth
period.

All cultural practices were applied as recommended. Nitrogenous fertilizer was used
in three splits as top dressing; phosphorus and potash were applied in full dose at sowing.
Insect and weed control was used as and when required.

2.4. Statistical Analysis

A combined analysis of variance for the two years was carried out for the yield and
yield components. Phenotypic correlation between yield and yield-related traits was done
following Steel et al. [19], and the data were analyzed using the Co-State software program.

2.5. Genomic DNA Extraction

Ten seeds of each advanced genotype were placed into a Petri dish with filter paper
soaked in distilled water for germination under aseptic conditions. Then, germinated
seeds were grown into labeled pots. Genomic DNA was extracted from the healthy portion
of young leaves harvested from 21 days old seedlings. DNA isolation was carried out
using a mini preparation modified CTAB (cetyltrimethylammonium bromide) method,
which did not require liquid nitrogen, and only a minimal amount of tissue samples were
needed [20]. Leaf tissues were cut into small pieces, homogenized, and digested with
extraction buffer (1 M Tris, 0.5 M Na 2EDTA, 5 M NaCl, and distilled Hybrid 2O, pH 8.0)
and 20% SDS. Following incubation of leaf extracts for 10 min at 65 ◦C in a water-bath, 100
μL of 5M NaCl was added and mixed well by gentle inversion. Then 100 μL 10 × CTAB
was added and again incubated for 10 min at 65 ◦C in a water-bath. After that, 900 μL of a
mixture of chloroform and isoamyl alcohol (24:1) was added and centrifuged for 8 min at
11,000 rpm in a microcentrifuge. Then, 500 μL of the upper aqueous layer was separated,
and 600 μL of ice-cold isopropanol was added to it, mixed, and centrifuged for 12 min
at 13,200 rpm. A small pellet was visible, and the supernatant was decanted. The pellet
was then washed with 200 μL cold 70% ethanol and centrifuged at 13,200 rpm for 12 min.
After removing ethanol followed by air drying, the DNA pellets were re-suspended into
100 μL of 1× TE buffer and dissolved the pellet by warming in a 65 ◦C water bath for up
to 1 h (with frequent mixing or flicking the tube with finger). Then the pellet was stored
at −20 ◦C in an ultra-freezer. The quality of DNA was estimated by agarose gel (0.8%)
electrophoresis and visualized with UV light.

106



Plants 2021, 10, 27

Table 2. Origin, pedigree, salience, and feature of sixteen rice genotypes.

Genotype Pedigree Salience and Feature

Giza 177 Giza 171/Yomjo No. 1//PiNo.4 Japonica type—sensitive to drought—short stature—early
duration—resistance to blast

Giza 178 Giza175/Milyang 49 Indica/Japonica type, medium maturing, semi-dwarf, resistant to blast,
medium grain, tolerant to drought, and high yield

Giza179 GZ6296/GZ1368 Indica/Japonica type—moderate to drought—short stature—early
duration—resistant to blast

Giza181 (lR1626-203) Indica type—sensitive to drought—short stature—late
duration—resistance to blast

Giza182 Giza181/IR39422-161-1-3-1/Giza181 Indica type—sensitive to drought—short stature—early
duration—resistant to blast

Sakha101 Giza 176/Milyang Japonica type—sensitive to drought—short stature—long
duration—sensitive to blast

Sakha 102 GZ4096-7-1/GZ4120-2-5-2 (Giza 177) Japonica type—sensitive to drought—short stature, early
duration—resistance to blast

Sakha 103 Giza177/Suweon349 Japonica type—sensitive to drought—short stature—early
duration—resistance to blast

Sakha 104 GZ4096-8-1/GZ4100-9-1 Japonica type—sensitive to drought—long stature, moderate
duration—sensitive to blast

Sakha 105 GZ5581-46-3/GZ4316-7-1-1 Japonica type—sensitive to drought—short stature—early
duration—resistant to blast

Sakha 106 Giza176/Milyang79 Japonica type—sensitive to drought—long stature—early
duration—resistant to blast

Hybrid 1 IR6962SA/Giza178 Indica type—moderate to drought—short stature—moderate

Hybrid 2 IR6962SA/Giza179 Indica type—moderate to drought—short stature—moderate
duration—resistant to blast

E. Yasmine Introduction Indica type—moderate to drought—short stature late
duration—resistant to blast

GZ 1368-S-5-4 IR 1615-31/BG 94-2349 Indica type—moderate to drought—short stature moderate
duration—resistant to blast

IET1444 TN 1/CO 29 Indica type—tolerant to drought—short stature moderate
duration—resistant to blast

2.6. SSR Markers and PCR Amplification

Ten SSR markers related to drought tolerance traits/QTLs were used. The sequences
of primer pairs are found on the Web database (http://www.gramene.org). Primers’
names, repeat motifs, chromosome number, and related trait/QTL are shown in Table 3.
PCR amplification reactions were done in 10 μL reaction mixtures, containing 50 ng/μL
of template DNA, 0.5 μL of each forward and reverse primer, 5 μL of PCR master mix
(Ferments), and 3 μL dd H2O. Thermal cycler was used with the following PCR profile: an
initial denaturation step at 94 ◦C for 5 min, followed by 35 cycles of denaturation at 94 ◦C
for 1 min, annealing at 55 ◦C for 30 s, and primer elongation at 72 ◦C for 1 min and then a
final extension at 72 ◦C for 5 min. Amplified products were stored at −20 ◦C until further
use.
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2.7. Electrophoretic Separation and Visualization of Amplified Products

Five μL of PCR amplified product was loaded into each well of 3% agarose gel
supplemented with ethidium bromide. The TAE 1× was used as a running buffer, and
a 50 bp DNA ladder (0.5 μg/μL, ferments) was used to estimate the molecular size of
the amplified fragments. Electrophoresis was conducted at 60 Volts for 2 h. Gels were
then visualized and photographed using a Biometra gel documentation unit (Bio-Doc,
Biometra, Germany).

2.8. SSR Data Analysis

The amplified SSR DNA bands representing different alleles were scored as different
genotypes. For each marker, allelic bands were compared against a 100 bp DNA ladder.
Then, fragment data was converted into the binary encoded allelic data to apply the
multivariate analyses. Genetic distance, the ratios of shared DNA bands, and genetic
similarities were estimated from the allele binary formatted data set using Nei and Li’s
coefficient [26]. Genetic distance was calculated as follows:

GDn = 1 − [2N11/(2N11 + N10 + N01)]

where N (1,1) is the number of loci having bands present in both accession, N (1,-) is the
number of loci having a band present in the first accession, N (-, 1) is the number of loci
having a band present in the second accession.

The accessions were clustered based on the matrix of genetic similarities using the
unweighted pair group method with arithmetic averages (UPGMA). Polymorphic infor-
mation content (PIC) values were calculated for each microsatellite based on the allelic
frequency detected in the accessions studied using this formula.

Where, Pij is the frequency of the j-th allele for the i-th marker, and summation extends
over n alleles. Polymorphic loci were defined as those whose most frequent allele had a
frequency of less than 0.95.

Genetic diversity of the entries/populations (based on a set of measured molecular
data) was estimated using diversity parameters other than PIC [27]. These are calculated
as follows: percentage of polymorphic loci (PPL):

P = (k/n) × 100%

where k is the number of polymorphic loci, n is the total number of loci investigated. The
average number of alleles per locus (A):

A = Σ Ai/n

where Ai is the number of alleles at the i-th locus and n is the total number of loci investi-
gated. The average number of alleles per polymorphic locus (Ap):

Ap =ΣApi/np

where, Api is the number of alleles at a certain polymorphic locus, np is the total number
of polymorphic loci investigated.

Percentage of polymorphic alleles (PPA)

PPA = (Σ Api/Σ Ai) × 100%

The similarity matrix using [26] genetic distance for SSR characterization was also
used for principal coordinate analysis (PCoA) with the Dcenter, Eigen, Output, and Mxplot
subprograms in NTSYS-PC.
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3. Results and Discussion

The analyses of variance in Table 4; Table 5 showed that the mean squares due to
years were significant for major studied traits, except for days to heading, which would
indicate overall vast differences among the genotypes studied annually. Abdallah et al. [28]
observed the ordinary analysis of variance showed highly significant differences among
environments, genotypes, and environments × genotype interaction for root and shoot
traits in both treatments (normal and drought). The variation due to interaction between
year and variety was not significant for all measures [29]. Mean squares due to environ-
ments were highly significant for all traits studied, indicating that all environments showed
significant differences. Mean squares due to genotype × environment interactions were
highly significant for all traits except, root thickness, flag leaf area, plant height, relative
water content, number of panicles/plant, 100-grain weight, sterility percentage, and grain
yield/plant, which indicated that the tested genotypes varied from the environment to
environment and ranked differently from the normal condition. Raman et al. [30] recorded
that the variance analysis for grain yield indicated a highly significant genotype x degree
of stress severity interaction. Mean squares due to genotype × year interactions were
significant for all traits studied, except root length, root volume, root thickness, number of
roots/plants, root: shoot ratio, and leaf rolling.

Some genotypes surpassed the others once the mean squares of genotypes were highly
significant than the interaction G × Y mean squares and identified the most superior
genotypes. Genotype × environment × year mean squares were not significant for all the
studied traits, except, days to heading and leaf rolling, indicating that each genotype’s
performance in one environment will be changed from one year to another. The significant
differences among rice genotypes in this investigation revealed genetic variability in the
studied material and provided an excellent yield improvement opportunity. Grain yield
and other characteristics exhibited stability across the seasons as significant genotype ×
environment interaction, which indicated the differences among genotypes were apparent
(Table 4; Table 5). This research shows that further improvement through the selection
of all studied characteristics could be effective. Genotype characteristics that confer an
advantage in some water stress environments may prove useless or may even be a liability
in other environments. This is reflected in the large G × E interactions in drought trials
and the difficulty of identifying drought-tolerant check cultivars Zhang et al. [31].

3.1. Performance Across Environments

The ordinary analysis of variance indicated highly significant differences among
genotypes for all traits studied in Table 4; Table 5 in the combined data. The studied
genotypes’ mean performances at the combined data over environments are presented in
Tables 6–8. For root length, the genotypes showing high values were IET1444, Sakha101,
Sakha106, and Hybrid 2 (26.39, 25.88, 25.73, and 25.01cm, respectively), while the lowest
values were obtained from Sakha102, Giza178, Sakha104, and Sakha103 (21.94, 21.42, 19.83
and 18.71cm, respectively). The genotypes Giza178, Hybrid 1, IET1444, and Sakha101
gave the superior values for root volume, 64.06, 57.66, 54.84, and 52.28 mm3, respectively;
otherwise, the genotypes Giza177, Giza182, Sakha105, and Sakha103 gave the lowest one
103, 35.00, 29.88, 27.27, and 16.50 mm3, respectively. Concerning the root thickness, the
genotypes E. Yasmine, Hybrid 1, IET1444, and Hybrid 2 had increased values of 1.08, 1.08,
1.07, and 0.97 mM. On the other hand, Giza178, Sakha102, Sakha104, and Giza182 resulted
in the decreased values of 0.58, 0.56, 0.46, and 0.41 mM, respectively (Table 6).
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Table 4. Analysis of variance for growth characteristics under normal and drought conditions.

Source of
Variance

df
Root Length

(cm)
Root Volume

(mm3)
Root

Thickness (mm)
Number of
Roots/Plant

Root:Shoot
Ratio

Days to
Heading (Day)

Leaf
Rolling

Blocks 2 53.5051 ** 2.584 0.0051 23.507 0.0157 1.02 1.51 **
Year (Y) 1 63.19 ** 178.33 ** 0.055 * 4555.10 ** 0.0845 ** 11.02 ** 0.09
Env. (E) 1 842.23 ** 15528.61 ** 4.931 ** 677517.6** 16.96 ** 927.52 ** 487.82 **
Gen. (G) 15 56.27 ** 1801.26 ** 0.465 ** 22490.53 ** 0.702 ** 859.53 ** 6.78 **

Y × E 1 1.256 15.019 * 0.0016 407.19 ** 0.030 0.001 0.34
Y × G 15 0.033 1.2263 0.0008 14.055 0.007 4.75 ** 0.34
E × G 15 15.06 ** 178.02 ** 0.0131 13297.93 ** 0.384 ** 4.30 ** 4.68 **

Y × E × G 15 0.23 0.508 0.0002 7.30 0.004 1.91 ** 0.46 *
Error 126 0.577 2.9094 0.00138 19.2036 0.0001 0.70 ** 0.26
Total 191

*, ** significant and high significant at probability 0.05 and 0.01, respectively. Env. (Environment), Gen. (Genotypes).

Table 5. Analysis of variance for grain yield and related traits under normal and drought in 2018 and 2019 rice growing seasons.

Source of
Variance

df
Flag Leaf

Area
(cm2)

Plant
Height

(cm)

Relative
Water

Content
(%)

Number of
Pani-

cles/Plants

100-Grain
Weight (g)

Sterility
Percent-

age
%

Grain
Yield/Plant

(g)

Water
Use

Efficiency

Blocks 2 1.04 4.48 1.138 9.48 ** 0.19 ** 2.83 0.07 0.00116
Year (Y) 1 1.51 6.27 314.75 ** 5.27 * 0.31 ** 5.60 * 3.69 0.0013
Env. (E) 1 1113.6 ** 34978.5 ** 18680.1 ** 1566.37 ** 2.34 ** 6394.08 ** 14,121 ** 0.004 **
Variety

(V) 15 84.41 ** 369.10 ** 2834.5 ** 75.30 ** 1.25 ** 57.32 ** 185.97 ** 0.091 **

Y × E 1 3.52 ** 0.01 ** 11.746 * 2.80 0.00 ** 1.84 0.04 0.00004
Y × V 15 5.24 ** 4.42* 2.533 2.65 ** 0.001 2.97 ** 4.48 ** 0.003 **
E × V 15 6.49 ** 185.62 ** 248.41 ** 13.45 ** 0.10 ** 90.42 ** 61.88 ** 0.024 **

Y × E ×
V 15 1.57 1.99 0.6180 0.97 0.001 1.33 1.71 0.001 *

Error 126 0.94 2.50 2.0424 0.77 0.00 1.12 1.13 0.0006
Total 191

*, ** significant and high significant at probability 0.05 and 0.01, respectively.

Table 6. Performance of Growth characteristics under normal and drought conditions and their combined data.

Variety
Root Length (cm) Root Volume (mm3)

Root Thickness
(mm)

Number of
Roots/Plant

Root:Shoot
Ratio

d n C d n C d n C d n C d n C

Giza177 20.50 24.60 22.55 29.01 41.00 35.00 0.51 0.92 0.72 95.84 290.38 193.11 0.41 1.08 0.74
Giza178 19.27 23.58 21.42 51.25 76.88 64.06 0.44 0.72 0.58 197.83 281.57 239.70 0.62 1.56 1.09
Giza179 22.35 25.63 23.99 26.65 47.50 37.08 0.62 0.92 0.77 160.41 265.48 212.94 0.78 1.48 1.13
Giza181 20.30 26.65 23.47 26.96 46.13 36.54 0.41 0.82 0.62 117.88 153.75 135.81 0.60 1.85 1.22
Giza182 20.71 24.09 22.40 23.88 35.88 29.88 0.21 0.62 0.41 138.38 180.40 159.39 0.26 1.33 0.79

Sakha101 23.06 28.70 25.88 37.93 66.63 52.28 0.51 0.92 0.72 185.53 359.78 272.65 0.54 0.59 0.57
Sakha102 19.27 24.60 21.94 27.37 43.56 35.47 0.41 0.72 0.56 133.76 299.61 216.69 0.49 0.99 0.74
Sakha103 16.91 20.50 18.71 9.94 23.06 16.50 0.51 0.80 0.66 133.25 205.00 169.13 0.31 0.53 0.42
Sakha104 19.68 19.99 19.83 34.13 51.25 42.69 0.31 0.62 0.46 174.25 359.47 266.86 0.47 0.94 0.71
Sakha105 18.35 27.16 22.76 21.22 33.31 27.27 0.51 0.92 0.72 78.41 302.38 190.39 0.45 0.66 0.55
Sakha106 23.78 27.68 25.73 41.00 51.25 46.13 0.51 0.92 0.72 184.50 311.91 248.20 0.38 0.93 0.66

E. Yasmine 23.58 26.14 24.86 40.69 61.50 51.10 0.92 1.23 1.08 115.00 164.37 157.18 0.45 0.51 0.48
Hybrid 1 20.19 26.65 23.42 51.25 64.06 57.66 0.92 1.23 1.08 127.50 231.96 179.73 0.38 1.40 0.89
Hybrid 2 21.83 28.19 25.01 23.88 61.50 42.69 0.82 1.13 0.97 126.59 241.59 184.09 0.48 0.98 0.73

GZ1368-S-5-4 21.53 22.55 22.04 37.62 48.69 43.15 0.51 0.92 0.72 183.99 276.03 230.01 0.50 0.99 0.75
IET1444 26.14 26.65 26.39 46.13 63.55 54.84 0.91 1.23 1.07 175.28 365.00 270.14 0.72 1.51 1.11
LSD0.05 1.18 1.23 0.61 2.61 3.37 1.38 0.16 0.21 0.1 7.7 7.71 3.54 0.025 0.25 0.09
LSD0.01 1.71 1.78 0.86 3.78 4.88 1.95 0.23 0.30 0.14 11.15 11.16 5.01 0.04 0.36 0.13

d, n, and c are drought, normal, and combined data, respectively.111
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Regarding the number of roots/plant, Sakha101, IET1444, Sakha104, Sakha106 pro-
duced the greatest number 272.65, 270.14, 266.86, and 248.20, respectively; meanwhile, the
lowest number was found to be with Sakha103, Giza182, E. Yasmine, Giza181, recorded
169.13, 159.39, 157.18, and 135.81, respectively. The genotypes Giza181, Giza179, IET1444,
and Giza178 recorded the major values 1.22, 1.13, 1.11, and 1.09 for Sakha103, 0.57, 0.55,
0.48, and 0.42, respectively. The genotype Giza178 produced the highest values for root
volume and number of roots/plant. Hybrid 1 has superior values for the root volume.
Root thickness and IET1444 have major root volume and root: shoot ratio under drought
stress compared to other genotypes, indicating these genotypes can avoid water stress and
increase the ability to absorb water from the soil. Moreover, efforts to increase yield under
drought conditions also focused on improving secondary traits such as root architecture
(root length, root volume, root thickness, number of roots, and root: shoot ratio). Rice
genotypes that can maintain water status through adapted root systems come under the
drought avoidance mechanism category. These genotypes can minimize the yield losses
caused by drought [32]. Rice genotypes that avoid drought usually have deep, coarse
roots with a high ability for branching and soil penetration and a higher root to shoot
ratio [33]. Gaballah [34] reported the rice genotypes Moroberekan, Giza 178, and Sakha104
had the highest values for root characters under water shortage. Abdallah et al. [16] found
the genotypes GZ5121-5-2 and GZ1368-S-5-4 had thicker roots, higher root diameter, and
higher root length density than those grown under normal conditions.

Table 7. Growth characteristics of genotype under normal, drought conditions, and their combined data.

Variety

Days to Heading
(Days)

Leaf Rolling
Flag Leaf Area

(cm2)
Plant Height (cm)

Relative Water
Content (%)

d n c d n c d n c d n c d n C

Giza 177 92.33 96.00 94.17 5.25 1.17 3.21 17.10 21.25 19.18 74.85 99.42 87.13 41.97 80.50 61.24

Giza 178 104.17 108.00 106.08 3.33 1.33 2.33 15.00 19.42 17.21 79.37 106.92 93.14 78.47 85.10 81.79
Giza 179 92.67 96.33 94.50 3.33 1.00 2.17 15.00 23.23 19.12 74.20 97.23 85.72 82.41 85.10 83.76
Giza 181 111.17 117.00 114.08 5.83 1.50 3.67 19.67 23.33 21.50 82.83 98.75 90.79 59.20 74.53 66.87
Giza 182 92.67 96.33 94.50 5.83 1.50 3.67 15.00 21.00 18.00 78.53 99.15 88.84 77.68 83.20 80.44

Sakha 101 101.50 107.00 104.25 5.50 1.50 3.50 18.33 22.80 20.57 70.93 99.92 85.43 82.00 87.10 84.55
Sakha 102 92.67 96.17 94.42 5.33 1.17 3.25 11.97 16.57 14.27 82.13 118.77 100.45 76.88 88.40 82.64
Sakha 103 92.67 96.00 94.33 5.33 1.33 3.33 14.30 18.68 16.49 77.75 109.07 93.41 51.25 66.30 58.78
Sakha 104 98.67 104.50 101.58 5.09 1.67 3.38 16.53 18.33 17.43 85.40 108.32 96.86 82.10 84.50 83.30
Sakha 105 92.67 95.17 93.92 5.42 1.33 3.38 14.00 17.83 15.92 75.53 97.67 86.60 29.21 78.00 53.61
Sakha 106 92.83 96.17 94.50 5.42 1.17 3.29 13.35 17.83 15.59 81.98 110.28 96.13 71.80 86.53 79.16
E. Yasmine 115.33 121.17 118.25 5.33 1.33 3.33 17.75 23.48 20.62 78.07 110.15 94.11 71.69 80.50 76.09
Hybrid 1 102.67 106.67 104.67 3.17 1.00 2.08 15.93 19.80 17.87 76.67 101.23 88.95 69.86 88.40 79.13
Hybrid 2 100.83 105.67 103.25 3.17 1.17 2.17 15.67 20.33 18.00 74.42 100.20 87.31 62.36 80.50 71.43

GZ1368-S-5-4 110.50 114.83 112.67 2.17 1.00 1.58 16.87 23.58 20.23 79.33 97.92 88.63 65.56 82.80 74.18
IET1444 109.17 115.83 112.50 1.83 1.17 1.50 22.05 28.10 25.08 79.90 128.83 104.37 81.18 86.25 83.72
LSD0.05 1.40 1.21 0.68 0.87 0.75 0.41 1.31 1.95 0.78 3.46 2.14 1.28 1.22 1.54 1.16
LSD0.01 2.03 1.75 0.96 1.26 1.09 0.58 1.90 2.82 1.10 5.01 3.10 1.81 1.77 2.23 1.64

d, n, and c are drought, normal, and combined data, respectively.
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Table 8. Grain yield performance and related traits under normal, drought conditions and their combined data.

Variety

Number of
Panicles/Plants

100-Grain Weight
(g)

Sterility
Percentage%

Grain Yield/Plant (g)
Water Use
Efficiency

d n c d n c d n c d n c d n c

Giza 177 12.03 18.67 15.35 2.74 2.96 2.85 25.33 6.83 16.08 22.03 42.40 32.22 0.68 0.75 0.71
Giza 178 17.50 21.33 19.42 2.14 2.36 2.25 14.78 4.83 9.81 26.50 43.70 35.10 0.80 0.77 0.78
Giza 179 16.07 24.25 20.16 2.71 2.74 2.73 14.83 5.73 10.28 28.78 46.23 37.51 0.86 0.83 0.84
Giza 181 14.30 17.17 15.73 1.98 2.81 2.40 22.83 9.67 16.25 20.33 35.83 28.08 0.62 0.62 0.62
Giza 182 16.33 19.82 18.08 3.03 3.24 3.14 18.58 7.48 13.03 22.75 37.17 29.96 0.71 0.66 0.68

Sakha 101 13.07 20.23 16.65 2.73 3.05 2.89 19.92 6.78 13.35 25.17 45.95 35.56 0.77 0.80 0.78
Sakha 102 12.95 16.67 14.81 2.94 3.06 3.00 20.17 7.33 13.75 22.33 42.50 32.42 0.68 0.74 0.71
Sakha 103 14.40 19.00 16.70 2.52 2.58 2.55 20.17 7.10 13.63 20.62 41.43 31.03 0.62 0.73 0.67
Sakha 104 12.50 20.08 16.29 2.53 2.72 2.63 25.50 6.00 15.75 25.17 44.13 34.65 0.77 0.77 0.77
Sakha 105 13.33 18.33 15.83 2.69 2.84 2.77 20.97 6.03 13.50 20.58 42.33 31.46 0.59 0.74 0.66
Sakha 106 10.73 19.17 14.95 2.93 3.12 3.03 22.00 7.05 14.53 25.00 42.80 33.90 0.77 0.76 0.76
E. Yasmine 17.33 22.00 19.67 3.03 3.34 3.19 14.72 10.92 12.82 26.77 35.28 31.03 0.80 0.60 0.70
Hybrid 1 16.73 24.67 20.70 2.48 2.64 2.56 22.97 6.00 14.48 30.17 49.83 40.00 0.89 0.87 0.88
Hybrid 2 19.33 24.83 22.08 2.75 2.88 2.82 14.40 5.70 10.05 30.50 52.50 41.50 0.92 0.92 0.92

GZ1368-S-5-4 12.50 15.33 13.92 1.94 2.25 2.10 12.87 14.73 13.80 27.10 38.52 32.81 0.80 0.67 0.74
IET1444 15.70 24.67 20.18 2.26 2.34 2.30 13.00 6.17 9.58 23.33 30.95 27.14 0.71 0.53 0.62
LSD0.05 1.00 1.43 0.71 0.37 0.33 0.001 2.15 1.54 0.85 1.48 1.18 0.86 0.04 0.02 0.02
LSD0.01 1.45 2.07 1.00 0.54 0.48 0.00 3.11 2.23 1.20 2.14 1.71 1.22 0.06 0.03 0.03

d, n, and c are drought, normal, and combined data, respectively.

The genotypes such as Sakha 102, Sakha 103, Giza177, and Sakha 105 took the least
number of days to head and have earliness values of 94.42, 94.33, 94.17, and 93.92 days,
respectively; in contrast, it took significantly longer time for E. Yasmine, Giza 181, GZ1368-
S-5-4 and IET1444 having the earliness values of 118.25, 114.08, 112.67 and 112.50 days,
respectively. These differences among rice genotypes might be attributed to their genetic
background. The opposite strategy was observed in other cultivars, which had a significant
delay in maturity with drought. Heading delay is a typical drought response observed
in rice (Gaballah and Abd Allah) [35], which is expected to confer a benefit in those
environments where stress is temporary, if development and flowering resume after the
stress are relieved. Gaballah [34] mentioned that Moroberakan, Giza178, and Sakha104
gave the highest values under normal and drought conditions and for days to heading.

The desirable mean values for leaf rolling were found to be with Hybrid 1, Hybrid
2, GZ1368-S-5-4, and IET1444 were 2.08, 2.17, 1.58, and 1.50, respectively, while, the
undesirable mean values observed with ‘Giza177′, Giza178, Giza179 and ‘Giza181′were
3.21, 2.33, 2.17 and 3.67, respectively (Table 7). In this investigation, drought tolerance can
be assessed by visual scoring based on leaf rolling. A smaller degree of leaf rolling indicates
a greater degree of dehydration avoidance by the development of deep roots. Gaballah [34]
mentioned that the drought after 12 days increased leaf rolling in rice genotypes.

Concerning the flag leaf area, which is an important functional factor for photosynthe-
sis, assimilation, and transpiration along the experimental plant life recorded the highest
values with significant differences by the genotypes, IET1444, Giza181, E. Yasmine and
Sakha101 were 25.08, 21.50, 20.62, and 20.57 cm2, respectively. Otherwise, the lowest
value was recorded with Sakha102 (14.27 cm2). Reduced soil moisture levels produced a
lower leaf area, which might inhibit cell division under water-starved conditions. Zubaer
et al. [36] mentioned that the highest leaf area was found at 100% field capacity (FC) of the
soil in all the rice genotypes. The leaf area was reduced by reducing moisture levels, but the
degree reduction was higher in Basmati (14.7 for 70% FC and 53.2% for 40% FC) cm. There
were significant differences in the plant height among the studied rice genotypes, suggest-
ing that the growth rates were different in these genotypes. With respect to plant height in
Table 7, the most desirable mean values towards dwarfism were obtained in the genotypes
Sakha101, Giza 179, Sakha105, and Giza 177, which were 85.43, 85.72, 86.60, and 87.13cm,
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respectively. Similarly, the tallest values were obtained in Sakha106, Sakha104, Sakha102,
and IET1444, 96.13, 96.86, 100.45, and 104.37 cm, respectively. Rice cultivars have tolerance
by assessing plant height reduction under drought stress conditions. Lafitte et al. [37]
indicated that the low land stress reduced height by only 4 cm (3%), ranging from a 43 cm
reduction to a 22 cm increase in height. Regarding relative water content, the genotypes
Sakha104, IET1444, Giza179, and Sakha101 resulted in the maximum values 83.30, 83.72,
83.76, and 84.55%, respectively, while the minimum values were recorded in Sakha105,
Sakha103, ‘Giza177′ and Giza181 were 53.61, 58.78, 61.24, and 66.87%, respectively (Table 7).
Plant responses to tissue water potential determine their level of drought tolerance. The
traits, such as leaf turgor (RWC) maintenance and leaf rolling, have been used as selection
criteria in rice [38], due to rice cultivar’s ability to save water in the leaf tissue to overcome
water shortage. In the present study, we could also find a similar mechanism of drought
tolerance is operating in genotypes, such as Giza 179, Sakha 101, Sakha 104, and IET1444,
which were able to maintain significantly higher RWC under drought condition. We found
that these genotypes can be considered as tolerant to moderately tolerant rice genotypes
for drought stress.

For a number of panicles/plant, the genotypes Giza179, IET1444, Hybrid 1, and
Hybrid 2 recorded the highest mean values of 20.16, 20.18, 20.70, and 22.08, respectively.
Otherwise, the lowest values 13.92, 14.81, 14.95, and 15.35 with the genotypes GZ1368-
S-5-4, Sakha102, Sakha106, and Giza177, respectively (Table 8). The heaviest 100-grain
weight were 3.00, 3.03, 3.14, and 3.19 g, achieved with Sakha102, Sakha106, Giza182, and E.
Yasmine. Therefore, the genotypes GZ1368-S-5-4, Giza178, IET1444, and Giza181 gave the
lightest values, 2.10, 2.25, 2.30, and 2.40 g, respectively. The desirable values for sterility
percentage were confirmed with genotypes IET1444, Giza178, Hybrid 2 and Giza179, which
were 9.58, 9.81, 10.05 and 10.28%, respectively, otherwise the genotypes Sakha106, Sakha104,
Giza177, and Giza181 gave undesirable values 14.53, 15.75, 16.08, and 16.25%, respectively.
Concerning grain yield/plant, the genotypes Sakha101, Giza179, Hybrid 1, and Hybrid 2
resulted in the greatest values 35.56, 37.51, 40.00, and 41.50 g/plant. On the other hand,
the lowest values obtained with the genotypes IET1444, Giza181, Giza182, and E. Yasmine
were 27.14, 28.08, 29.96, and 31.03 g/plant, respectively. Mukamuhirwa et al. [39] reported
that the cultivar Intsindagirabigega was most tolerant to drought, while Zong geng was the
most sensitive. The genotypes Giza178, Giza179, Hybrid 1, and Hybrid 2 gave maximum
values 0.78, 0.84, 0.88, and 0.92 respectively, for water use efficiency, while the genotypes
Giza181, IET1444, Sakha105, and Sakha103 recorded the minimum values were 0.62, 0.62,
0.66, and 0.67, respectively. The rice genotypes Giza 179, Hybrid 1and Hybrid 2 had
higher values for a number of panicles/plants, 100-grain weight, grain yield/plant and
water use efficiency under normal, drought stress, and their combined data. Gaballah and
AbdAllah [35] mentioned that the water stress reduced plant height, induced leaf rolling in
the susceptible rice genotypes. The reduction of grain yield, number of panicles/plants,
100-grain weight, and high sterility percentage resulted from water stress at flowering and
ripening stages. Water stress during vegetative, panicle initiation, flowering has reduced
grain yield/plant by 28%, 34%, and 40%, respectively. Drought mitigation, through the
development of drought-tolerant varieties with higher yields suitable for water-limiting
environments, will be the critical factor in improving stable rice production.

3.2. Number of Alleles and Allelic Diversity

The sixteen rice genotypes were used in the present study were subjected to DNA
polymorphism screening and assessment using SSR markers, which offer excellent potential
for generating large numbers of markers evenly distributed throughout the genome and
have efficiently been used to give reliable and reproducible genetic markers. Ten SSR
primer pairs related to drought tolerance with known map positions distributed in the rice
genome were used to screen a set of sixteen selected indica, japonica, and tropical-japonica
rice genotypes with different levels with mechanisms of drought.
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Among 10 SSR markers, spread on seven chromosomes (1, 2, 4, 5, 6, 8, and 9) generated
polymorphic alleles. Table 9 showed that a total number of 85 alleles were detected at
the nine markers’ loci across the sixteen rice genotypes. The number of alleles per locus
generated by each marker varied from 2 to 15 alleles, with an average of 8.5 alleles per
locus. The effective number of alleles per locus ranged from 1.20 alleles to 3.0 alleles, with
an average of 2.28 alleles. The highest number and the effective number of alleles per locus
were observed for RM263 (3.0), RM289 (2.81), and RM242 (2.63). Similar results for a low
number of alleles per locus were also obtained by [40] (3.33) and [41] (2.5). On the contrary,
a high number of alleles per locus was obtained by [42] (8.57). There was a significant
positive correlation between the number of alleles detected at a locus and the number of
repeats within the targeted microsatellite DNA (r = 0.57 **). Thus, the larger the repeat
number in the microsatellite DNA, the larger the number of alleles detected. Moreover, it
was reported that the dinucleotide repeat motif (GA) displayed a high level of variation
among the rice genotypes [24]. On the other hand, [40] reported no correlations between
the number of alleles detected and the number of SSR repeats.

Table 9. The correlation coefficient for polymorphic SSR markers.

No of Amplified Alleles Effective Number of Alleles Common Alleles Gene Diversity

Effective number of
alleles 1

Common alleles 0.57 ** 1
Gene diversity −0.48 ** −0.96 ** 1
Polymorphic
information content 0.75 ** 0.92 ** -0.92 ** 1

** is highly significant at probability 0.001.

3.3. Gene Diversity

The gene diversity or heterozygosity (He) of a locus is defined as the probability that
an individual is heterozygous for the locus in the population [43]. Higher values of this
measure tend to be more informative because there is more allelic variation. As shown in
Table 9, the He values for all SSR markers used in this study varied from 0.94 to 1.00, with
an average of 0.98. The findings were in agreement with the observation of [44–46]. The
highest He value (1.00) was recorded for RM23 and 518. Meanwhile, the lowest He values
(0.98) were achieved by RM518.

3.4. PIC Value

PIC value refers to the value of a marker for detecting polymorphism within a popula-
tion, depending on the number of detectable alleles and the distribution of their frequency;
thus, it provides an estimate of the discriminating power of the marker [47]. As shown
in Table 3, the PIC values for the SSR used in this study varied from 0.83 to 0.99, with an
average of 0.95. This result is consistent with Sajib et al. [40] who reported high variation
in PIC values for all tested SSR loci (from 0.14 to 0.71 with an average of 0.48). Higher
averages of PIC values were reported by Zeng et al. [48] (0.57) and Ram et al. [49] (0.707).
The highest PIC values were observed for RM23 (0.99), RM518 (0.99), RM223 (0.98) and
RM276 (0.98). A highly significant correlation coefficient was found between PIC values
and the number of amplified alleles detected per locus (r = −0.75 **), as shown in Table 9.
A significant correlation between PIC value and the effective number of alleles (r = 0.92 **)
and a highly significant correlation was found between PIC and gene diversity (r = −0.92
**). Similar results were obtained by Kumar et al. [50].

Figure 1 shows the PCR amplified fragments produced by the highest polymorphic
markers in the current study, RM23, RM518, RM223, and RM276. These markers revealed
the highest PIC values and gave the same values 1.00 and the highest number of alleles
ranging from 8 to 9 alleles per locus, suggesting that these markers could be used for
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molecular characterization of a large number of rice genotypes rather than mapping
populations for drought tolerance. The results were similar to those obtained by [10,51,52].

3.5. Identified MAS Marker

Among ten polymorphic SSR markers, RM518 was able to divide the studied geno-
types into seven groups depending on their drought tolerance potential. The first group
showed the first allele with a molecular weight of 125.89 bp included the drought sus-
ceptible genotypes japonica type1 and 2. The second allele with a molecular weight of
172.37 bp appeared in the second group included the drought moderate indica–japonica
genotype Sakha105, Hybrid 1, Giza178, Giza181, and Giza182. The third the allele molecu-
lar weight 163.038 has six genotypes IET1444, Sakha101, Sakha102, Sakha106, Sakha104,
and Giza177. The fourth allele molecular weight 375.85 bp with on genotype GZ1368-S-5-4
indica japonica type and tolerant to drought stress. The fifth allele molecular weight was
169.65 with one genotype Hybrid 2 moderate tolerant to drought and the six-allele molecu-
lar weight 158.56 bp with on cultivar Sakha103 susceptible to drought stress. This result
agreed with [53] who reported that RM472 was linked to maximum root length and root
dry weight characters. This marker could be useful in MAS for these characters in rice. The
results were similar to those obtained by [46,54].

 
Lane 1 Giza 177 Lane 5 Giza 182 Lane 9 Sakha 104 Lane 13 Hybrid 1 
Lane 2 Giza 178 Lane 6 Sakha 101 Lane 10 Sakha 105 Lane 14 Hybrid 2 
Lane 3 Giza 179 Lane 7 Sakha 102 Lane 11 Sakha 106 Lane 15 GZ1368-S-5-4 
Lane 4 Giza 181 Lane 8 Sakha 103 Lane 12 E.Yasmine Lane 16 IET 1444 

Figure 1. Agarose gel electrophoresis of PCR amplified fragments for the polymorphic SSR markers RM23, RM518, RM223,
and RM276. M is a 100 bp DNA ladder.

3.6. Similarity

The maximum similarity coefficient (0.5) was recorded between Giza181 and Giza182,
which are indica type and drought susceptible genotypes at the same time (Table 10).
Moreover, a high similarity percentage was observed between the japonica type and
susceptible to drought stress Sakha104 with Sakha102 and Sakha106 (0.45), Sakha101 with
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Sakha102 and Sakha106 (0.40), Sakha105 with Hybrid 1 (0.40), Hybrid 1 with Giza178 (0.40)
and GZ1368-S-5-4with Giza181 (0.40). On the other hand, no similarity percentage values
were observed between the genotypes such as Sakha103, Giza179, IET1444, Sakha102,
and Sakha104 with Giza178, GZ1368-S-5-4, Giza181, Giza182, E. Yasmine and Hybrid
2. These results were in harmony with [2], who reported a low similarity coefficient
between japonica type and indica type genotypes, and [55] reported a relatively high level
of similarity between closely related genotypes. Moreover, the findings are similar to those
observed by [17,18].

3.7. Cluster Analysis

The genetic relationships among rice genotypes are presented in a dendrogram based
on informative microsatellite alleles (Figure 2). All genotypes are grouped into two major
clusters in the dendrogram at 66% similarity based on Jaccard’s similarity index. Whereas
Jaccard’s similarity measure similarity for the two sets of data, it ranges from 0% to 100%.
The higher the percentage, the more similar the two populations. Although it’s easy to
interpret, it is extremely sensitive to small sample sizes and may give erroneous results,
especially with very small samples or data sets with missing observations. The first cluster
(A) is divided into two minor groups A1 and A2. The A1 sub-cluster included two groups
A1-1 and A1-2, of which A1-1 contains genotypes IET1444, GZ1386-S-5-4, and Hybrid1,
which are drought stress-tolerant. On the other hand, the A1-2 cluster was further divided
into A1-2-1 (having Hybrid2 genotype) and A1-2-2 (containing Giza179 and Giza178) at
coefficient 0.91, represented moderate or drought stress.

Figure 2. Dendrogram derived from unweighted pair group method with arithmetic averages
(UPGMA) cluster analysis of sixteen rice genotypes based on Jaccard’s similarity coefficient using
10 SSR markers.

The A2 cluster, also subdivided into A2-1, included Giza181 and Giza182 at coefficient
0.94, while the A2-2 cluster had Egyptian Yasmine genotype, which has coefficient 0.76
with cluster A2-1. The A2 cluster comprised of the sensitive genotypes and indica type.
Similarly, the cluster B was divided into two minor groups B1 and B2. The cluster B1
included B1-1 and B1-2 at coefficient 0.65. The B1-1 divided into B1-1-1 and B1-1-2 at
coefficient 0.72. In general, the B cluster japonica type, and all were sensitive to drought
stress. El-Malky et al. [42] reported the ability of SSR markers to divide the varieties into
two distinct groups, one included the indica varieties, and the other had the japonica
varieties. Moreover, Zeng et al. [48] found that all genotypes grouped into two major
branches in the dendrogram with less than 10% similarity based on Jaccard’s similarity
index, one unit represents the subspecies, japonica rice, and another unit represents the
subspecies, indica, or the hybrids between japonica rice and indica rice.
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4. Conclusions

Genetic improvement for drought tolerance in rice can be achieved in this present
study based on results obtained at phenotypic characterization. Extensive genetic diversity
analyses were presented as valuable in selecting the truly promising drought-tolerant geno-
types, which can be used to cross to development genotypes with increased water stress
tolerance levels. The rice genotypes Giza179, IET1444, Hybrid1, and Hybrid2, achieved
the greatest values for grain yield/plant and produced maximum values regarding water
use efficiency. It could be summarized the genotypes GZ1368-S-5-4, IET1444, Giza 178,
and Giza179 were suitable materials for developing drought breeding. Thus, this study’s
results indicate that incorporating genetic analyses with phenotypic data is very important
to accelerate breeding programs by selecting suitable genotypes to improve target traits
and could help exclude genotypes with bad performance.
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Abstract: Genetic improvement of root systems is an efficient approach to improve yield potential
and nitrogen use efficiency (NUE) of crops. QMrl-7B was a major stable quantitative trait locus (QTL)
controlling the maximum root length in wheat (Triticum aestivum L). Two types of near isogenic
lines (A-NILs with superior and B-NILs with inferior alleles) were used to specify the effects of
QMrl-7B on root, grain output and nitrogen-related traits under both low nitrogen (LN) and high
nitrogen (HN) environments. Trials in two consecutive growing seasons showed that the root traits,
including root length (RL), root area (RA) and root dry weight (RDW), of the A-NILs were higher
than those of the B-NILs at seedling stage (SS) before winter, jointing stage (JS), 10 days post anthesis
(PA10) and maturity (MS), respectively. Under the LN environment, in particular, all the root traits
showed significant differences between the two types of NILs (p < 0.05). In contrast, there were no
critical differences in aerial biomass and aerial N accumulation (ANA) between the two types of
NILs at SS and JS stages. At PA10 stage, the aerial biomass and ANA of the A-NILs were significantly
higher than those of the B-NILs under both LN and HN environments (p < 0.05). At MS stage, the
A-NILs also exhibited significantly higher thousand-grain weight (TGW), plot grain yield, harvest
index (HI), grain N accumulation (GNA), nitrogen harvest index (NHI) and nitrogen partial factor
productivity (NPFP) than the B-NILs under the corresponding environments (p < 0.05). In summary,
the QMrl-7B A-NILs manifested larger root systems compared to the B-NILs which is favorable to
N uptake and accumulation, and eventually enhanced grain production. This research provides
valuable information for genetic improvement of root traits and breeding elite wheat varieties with
high yield potential and NPFP.

Keywords: Triticum aestivum L.; QMrl-7B; root traits; grain yield; nitrogen use efficiency

1. Introduction

Bread wheat (Triticum aestivum L.) is one of the major crops worldwide; its production
greatly affects food security and the global economy [1]. In general, high grain productivity
largely depends on water and fertilizer input. However, over-application of fertilizers has

Plants 2021, 10, 764. https://doi.org/10.3390/plants10040764 https://www.mdpi.com/journal/plants
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led to not only natural resources exhaustion, but also soil, air and water quality degrada-
tion [2,3]. To resolve these environmental issues and ensure food security, breeding crops
with efficient use of water and nutrients is urgently required for sustainable agriculture [4].
Roots are the primary organs that determine the acquisition efficiency of soil resources
and have a direct impact on grain yield [5]; more and deeper roots may improve the
water and mineral uptake from deeper soil layers and reduce nitrate leaching losses to
the environment [6]. Although root traits are difficult to characterize and their breeding
values are seldom assessed under field conditions, manipulating root system architecture
to enhance nutrient uptake has been proposed to enable a very much needed new green
revolution and further increase in yield potential [7].

Root traits can be dissected into root number, root length (RL), root weight, root
surface area (RA), root volume, root thickness, and density of primary roots, lateral roots
and adventitious roots as well as root/shoot dry weight ratio, etc. [8,9]. Since the 1990s,
a large number of quantitative trait loci (QTLs) controlling root system architecture have
been reported in rice and some of them have been successfully cloned [10]. In maize,
several major QTLs involving root morphology have been detected, but no causal genes
have been reported yet [11]. In recent years, a good many QTLs for root traits in wheat
have been also documented [9,12–16]. However, most of these QTLs were identified at
seedling stage in hydroponic culture. It was not clear whether these root-related QTLs were
associated with yield-related traits in most cases. Considering that root is mainly grown in
soil and root traits are plastic in adapting to environmental factors such as limitation of
water [17] and nutrients [18], field experiments under diverse environments are necessary
to elucidate the genetic effects of QTLs identified in hydroponic culture. With precise
evaluation and verification at the population level, QTLs associated with root traits may be
used in molecular wheat breeding practice.

Nitrogen (N), as the key element of proteins and other biomacromolecules, is quantita-
tively the most important mineral nutrient for plant growth and development. Application
of enough synthetic N fertilizers at the appropriate time can overwhelmingly improve crop
yield [19]. However, only 30%~40% of the applied N fertilizer is taken up from soil by
crops. Therefore, improving nitrogen use efficiency (NUE) in crops can help minimize the
detrimental impact of N fertilizers on the environment and be favorable for sustainable agri-
culture [20,21]. As a result, a number of NUE-improved cultivars of main cereal crops have
been released. Numerous research studies on rice [22,23], maize [24,25] and barley [26]
indicated that root traits are closely related with N uptake and genetically controlled by
major QTLs [27,28]. In wheat, several studies also discovered the co-localization of QTLs
for root traits, nitrogen uptake and grain productivity [8,9]. These results presented the
common genetic basis of root traits and N utilization, suggesting the tremendous potential
of root traits in improving grain yield and NUE. Nevertheless, more sufficient understand-
ing of the role of the key loci conferring high NUE will facilitate its future application in
molecular breeding.

Near-isogenic lines (NILs) are powerful tools to characterize the gene/QTL function
for certain plant traits [29]. We [9] detected a major stable QTL, named QMrl-7B, controlling
the maximum root length of wheat at seedling stage in hydroponic culture and developed
a pair of QMrl-7B NILs with superior and inferior alleles, respectively. The objective of this
study was to specify QMrl-7B’s genetic effects on root, above-ground biomass, grain yield
and nitrogen accumulation, using the pair of QMrl-7B NILs as materials at the population
level under different nitrogen environments, which would provide a valuable resource for
molecular improvement of root traits.

2. Results

2.1. Root Morphology of QMrl-7B NILs

Field trials showed that the root traits of KN9204 and the QMrl-7B NILs displayed the
tendency of rapid increase in the initial seedling stage and then gradual decrease with the
advancement of the growth period of wheat, and the highest values of root length, root
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area and root dry weight of the three genotypes were recorded at the stage of 10 days post
anthesis (Figure 1, Table 1). Identical changing trends in root traits were observed in both
2017~2018 and 2018~2019 growing seasons.

Figure 1. Root length (RL) (A–D), root surface area (RA) (E–H) and root dry weight (RDW) (I–L) of KN9204 and the
QMrl-7B near isogenic lines (NILs) at different stages. Note: 2017~2018 and 2018~2019 indicate growing seasons; LN and
HN indicate low nitrogen and high nitrogen environments, respectively; AA indicates QMrl-7B NILs with the superior
alleles; BB indicates QMrl-7B NILs with the inferior alleles. SS, JS, PA10 and MS indicate seedling stage, jointing stage,
10 days post anthesis and maturity, respectively. Different lowercases indicate significant differences (p < 0.05) among
the materials.

2.1.1. Root Length (RL)

In the 2017~2018 growing season, the mean RLs of A-NILs vs. B-NILs at SS, JS, PA10
and MS were 33.6 vs. 25.1, 90.2 vs. 72.1, 146.3 vs. 105.1 and 92.2 vs. 69.0 cm/cm2 under
the LN environment (Table 1, Figure 1A), and 42.8 vs. 32.5, 128.2 vs. 113.3, 218.4 vs. 185.6
and 173.4 vs. 137.2 cm/cm2 under the HN environment (Table 1, Figure 1B), respectively;
indicating that RLs of the A-NILs increased 33.9%, 25.1%, 39.2% and 33.6% under LN
environment, and 31.7%, 13.2%, 17.7% and 26.4% under HN environment in comparison to
those of the B-NILs at the comparable stages (p < 0.05). In the 2018~2019 growing season,
the mean RLs of the A-NILs at the comparable stages were also significantly longer than
those of the B-NILs under the corresponding nitrogen environments, except the RLs at JS
stage under the HN environment (Table 1; Figure 1C,D).
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2.1.2. Root Surface Area (RA)

In the 2017~2018 growing season, likewise, the mean RAs of A-NILs vs. B-NILs at SS,
JS, PA10 and MS were 1.7 vs. 1.2, 9.1 vs. 7.3, 13.6 vs. 10.1 and 7.6 vs. 5.8 cm2/cm2 under
the LN environment (Table 1, Figure 1E), and 2.3 vs. 2.0, 11.8 vs. 10.7, 18.3 vs. 14.0 and 12.3
vs. 10.0 cm2/cm2 under the HN environment (Table 1, Figure 1F), respectively; indicating
that the mean RAs of the A-NILs increased by 41.7%, 24.7%, 34.7% and 31.0% under the
LN environment, and 15%, 10.3%, 30.7% and 23% under the HN environment higher than
those of the B-NILs at the comparable stages (p < 0.05). In the 2018~2019 growing season,
the unvarying trends in RA difference between the two types of NILs were observed at
the comparable growth stages under the corresponding nitrogen environments, except the
RAs at SS stage under the HN environment (Table 1; Figure 1G,H).

2.1.3. Root Dry Weight (RDW)

In the 2017~2018 growing season, similarly, the mean RDWs of A-NILs vs. B-NILs
at SS, JS, PA10 and MS were 2.2 vs. 1.8, 8.5 vs. 6.7, 11.5 vs. 9.1 and 6.1 vs. 4.7 mg/cm2,
respectively, under the LN environment (Table 1, Figure 1I), indicating that the A-NILs were
heavier than the B-NILs by 22.2%, 26.9%, 26.4% and 29.8% in RDW at the four growth stages
(p < 0.05). Under the HN environment, the mean RDWs of A-NILs vs. B-NILs at SS, JS,
PA10 and MS were 2.8 vs. 2.5, 10.0 vs. 9.0, 13.2 vs. 11.7 and 8.8 vs. 6.6 mg/cm2, respectively
(Table 1, Figure 1J), indicating that the A-NILs were 12.0%, 11.1%, 12.8% and 33.3% heavier
than the B-NILs in RDW at the four growth stages (p < 0.05). In the 2018~2019 growing
season, the mean RDWs of the A-NILs at the comparable stages were also significantly
heavier than those of the B-NILs under the corresponding nitrogen environments, except
the RDW at SS under the HN environment (Table 1; Figure 1K,L).

2.1.4. Root Vertical Distribution

To investigate the root distribution in soil, the RLD, RAD and RWD were measured
every 10 cm of soil layer at MS, JS, PA10 and MS stages. The biggest values of RLDs,
RADs and RWDs at each growth stage were recorded in the upper soil layer (0~10 cm and
10~20 cm), then gradual decrease of the root indices accompanied with the raised soil depth
(Figure 2, Figures S1–S3). Noticeably, the root distribution in the 30~40 cm soil layer was
much less than those in the neighboring soil layers (20~30 and 40~50 cm), which may result
from the restriction effect of compact soil on root growth in this ploughed bottom layer. The
A-NILs exhibited superior RLDs, RADs and RWDs over the B-NILs in each soil layer (except
for 30~40 cm) at the most comparable stages (p < 0.05). Taking the 10~20 cm soil layer at
PA10 stage as an example, the mean RLDs of the A-NILs were 3.6 cm/cm3 in 2017~2018 and
4.0 cm/cm3 in 2018~2019 growing seasons under the LN environment, respectively, which
were 33.3% and 14.3% higher than those of the B-NILs (2.7 and 3.5 cm/cm3), respectively
(Figure 2A,C). Under the HN environment, the corresponding RLDs of the A-NILs were
5.2 and 4.9 cm/cm3, respectively, which were 36.8% and 40.0% higher than those of the
B-NILs (3.8 and 3.5 cm/cm3) (Figure 2B,D). As expected, the RAD (Figure 2E–H) and RWD
(Figure 2I–L) exhibited the consistent distribution pattern in different soil layers like RLD.

Besides, the root distribution in 0~30, 30~60, 60~100 and 100~150 cm groups of soil
layers at PA10 stage was further analyzed (Table 2). The mean RL, RA and RDW of the
A-NILs were significantly different from those of the B-NILs in most soil layers under the
LN environment (p < 0.05), except for RL in the 0~30 cm soil layer and RA in the 60~100 cm
soil layer in 2018~2019. Under the HN environment, significant differences in RL, RA and
RDW between the two genotypes mainly took place in the 0~30 and 100~150 cm soil layers
(p < 0.05). The ample roots of the A-NILs over the B-NILs in both upper soil and deeper soil
would definitely improve water and mineral uptake, especially in water-deficient north
China plain.
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Figure 2. Root length density (RLD) (A–D), root area density (RAD) (E–H) and root weight density (RWD) (I–L) of KN9204
and the QMrl-7B near isogenic lines (NILs) in different soil layers at 10 days post anthesis. 2017~2018 and 2018~2019
indicate growing seasons; LN and HN indicate low nitrogen and high nitrogen environments, respectively; L indicates
soil layer.
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2.2. Aerial Biomass and Grain Yield of QMrl-7B NILs
2.2.1. Aerial Dry Weight (ADW)

Field trials showed that the ADWs of KN9204 and the QMrl-7B NILs increased gradu-
ally with the advancement of wheat development (Figure 3). In the 2017~2018 growing
season, the mean ADWs of A-NILs vs. B-NILs at SS, JS, PA10 and MS were 48.1 vs. 41.0,
216.0 vs. 204.1, 573.8 vs. 525.2 and 882.2 vs. 832.7 g/m2 under the LN environment
(Figure 3A), and 100.8 vs. 89.4, 462.0 vs. 456.2, 1186.0 vs. 974.4 and 1475.2 vs. 1447.6 g/m2

under the HN environment, respectively (Figure 3B). In the 2018~2019 growing season,
the consistent trends in ADW difference between the two types of NILs were observed re-
peatedly at the comparable growth stages under the corresponding nitrogen environments
(Figure 3C,D).

Figure 3. Aerial dry weight (ADW) of KN9204 and the QMrl-7B near isogenic lines (NILs) at different stages. 2017~2018
(A,B) and 2018~2019 (C,D) indicate growing seasons; LN (A,C) and HN (B,D) indicate low nitrogen and high nitrogen
environments, respectively; AA indicates QMrl-7B NILs with the superior alleles; BB indicates QMrl-7B NILs with the
inferior alleles; SS, JS, PA10 and MS indicate seedling stage, jointing stage, 10 days post anthesis and maturity, respectively;
Different lowercases indicate significant differences (p < 0.05) among the genotypes at the same growth stage.

Unlike the findings in root traits, interestingly, no significant differences in ADW
were found between the two types of NILs at SS and JS stages under both LN and HN
environments. The biggest difference of ADW between the two types of NILs was recorded
at the stage PA10 (Figure 3). The mean ADWs of A-NILs vs. B-NILs at this stage in
2018~2019 were 762.7 vs. 658.5 g/m2 under the LN environment and 1349.1 vs. 1049.1 g/m2

under the HN environment, respectively. This finding indicated that the A-NILs were
heavier than the B-NILs in ADW by 9.3% and 15.8% under the LN environment, and 21.7%
and 28.6% under the HN environment in the two trial years, respectively. Prior to harvest,
no significant difference between the two types of NILs in ADW was observed under
the HN environment in the two growing seasons. Under the LN environment; however,
the mean ADWs of A-NILs vs. B-NILs at MS were 1231.0 vs. 1135.9 g/m2 in 2018~2019,
indicating that there were 6.76% and 8.37% phenotypic differences between the two types
of NILs in the two years, respectively.

2.2.2. Grain Yield

The trends of annual variation in agronomic traits of KN9204 and the QMrl-7B NILs
were basically the same between the two growing seasons. Under both LN and HN
environments, there were no significant differences in plant height (PH), spike length
(SL), total spikelets per spike (TSPS) and kernel number per spike (KNPS) between the
two types of NILs, but the A-NILs manifested superior TGW and plot grain yield over
the B-NILs (Table 3). Under the LN environment, the mean TGWs of the A-NILs were
38.8 g in 2017~2018 and 40.7 g in 2018~2019, respectively, which were 1.9 g (5.15%) and
3.3 g (8.82%) heavier than those of the B-NILs (p < 0.05). Under the HN environment, the
mean TGWs of the A-NILs were 32.6 g in 2017~2018 and 37.9 g in 2018~2019, respectively,
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which were 5.50% and 6.76% higher than those of the B-NILs in the comparable growing
seasons (p < 0.05). Consequently, the A-NILs yielded more than the B-NILs. Under the LN
environment, GYs of the A-NILs were 4030.9 and 5735.4 kg/ha in 2017~2018 and 2018~2019,
respectively; which were 454.8 kg/ha (12.72%) and 550.2 kg/ha (10.61%) heavier than
those of the B-NILs (p < 0.05), respectively. Under the HN environment, GYs of the A-NILs
were 6388.9 and 8426.8 kg/ha in 2017~2018 and 2018~2019, respectively; which were
6.40% (6004.1 kg/ha) and 9.99% (7661.4 kg/ha) higher than those of the B-NILs (p < 0.05),
respectively. What is more, the mean HI of the A-NILs was also significantly higher than
that of the B-NILs under the corresponding nitrogen environments.

2.3. Nitrogen Accumulation of QMrl-7B NILs
2.3.1. The Aerial N Content (ANC) and Accumulation (ANA)

Field trials revealed that the ANCs of KN9204 and the QMrl-7B NILs tended to
decrease with the advancement of wheat development (Table S1, Figure 4A–D). The ANCs
of A-NILs vs. B-NILs at SS, JS, PA10 and MS stages were 2.47% vs. 2.45%, 1.70% vs 1.71%,
1.33% vs. 1.22% and 1.25% vs. 1.13% in 2017~2018, and 3.53% vs 3.35%, 2.00% vs 2.01%,
1.64% vs. 1.57% and 1.80% vs. 1.62% in 2018~2019 under the LN environment, respectively.
Under the HN environments, the ANCs of A-NILs vs. B-NILs at the comparable stages
were 2.79% vs. 2.75%, 2.42% vs 2.40%, 1.79% vs. 1.76% and 1.65% vs. 1.50% in 2017~2018,
and 3.69% vs 3.69%, 2.32% vs 2.30%, 2.05% vs. 1.95% and 1.98% vs. 1.91% in 2018~2019,
respectively. The result showed that the A-NILs exhibited higher ANC than the B-NILs,
but the differences were not significant in most cases. The significant differences were
presented at SS and MS stages under the LN environment in 2018~2019 (p < 0.05).

The ANA tended to increase with the advancement of the growth period (Table S1,
Figure 4E–H), but no significant differences were found between the two types of NILs
at SS and JS. At PA10 and MS, on the other hand, the A-NILs exhibited significant higher
ANA than the B-NILs under both LN and HN environments (p < 0.05). At PA10 stage, the
mean ANAs of the A-NILs vs. B-NILs were 7.62 vs. 6.35 and 12.51 vs. 10.37 g/m2 under
the LN environment, and 21.19 vs. 17.12 g/m2 and 27.69 vs. 20.36 g/m2 under the HN
environment in the two growing seasons, respectively, indicating that the A-NILs were
heavier than the B-NILs in ANA by 20.0%, 20.6%, 23.8% and 36.0% under the corresponding
environments, respectively. At MS stage, the A-NILs also accumulated more N than the
B-NILs, the mean ANAs of the A-NILs vs. B-NILs were 10.99 vs. 9.42 g/cm2 and 22.12 vs.
18.43 g/m2 under the LN environment, and 24.34 vs. 21.71 g/m2 and 40.05 vs. 36.71 g/m2

under the HN environment in the two growing seasons, respectively, indicating that ANAs
of the A-NILs were higher than those of the B-NILs by 16.7% and 20.0% under the LN
environment as well as 12.1% and 9.1% under the HN environment.

2.3.2. The Grain N Content (GNC) and Accumulation (GNA)

Compared to the B-NILs, the A-NILs had higher mean GNCs, but the differences were
not significant (Table 4). The GNCs of A-NILs vs. B-NILs were 2.15% vs. 2.01%, 2.64%
vs. 2.44% under the LN environment, and 2.51% vs. 2.23%, and 2.98% vs. 2.87% under
the HN environment in the two trial years, respectively. In contrast, there were significant
differences in GNAs between the two genotypes (p < 0.05). The GNAs of the A-NILs vs.
B-NILs were 8.9 vs. 7.2 g/m2 and 15.6 vs. 12.8 g/m2 under the LN environment, and
16.4 vs. 13.5 g/m2 and 25.3 vs. 22.1 g/m2 under the HN environment in the two years,
which were 23.6%, 21.9%, 21.5%, and 14.5% higher than those of the B-NILs under the
corresponding environments, respectively (Table 4).
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Figure 4. Aerial N content (ANC) (A–D) and accumulation (ANA) (E–H) of KN9204 and the QMrl-7B near isogenic lines
(NILs) at different stages. 2017~2018 and 2018~2019 indicate growing seasons; LN and HN indicate low nitrogen and high
nitrogen environments, respectively; AA indicates QMrl-7B NILs with the superior alleles; BB indicates QMrl-7B NILs
with the inferior alleles. SS, JS, PA10 and MS indicate seedling stage, jointing stage, 10 days post anthesis and maturity,
respectively; different lowercases indicate significant differences (p < 0.05) among the genotypes at the same growth stage.

Table 4. GNA, NHI and NPFP of KN9204 and the QMrl-7B NILs.

Growing Season Environment Material GNC% GNA (g/m2) NHI NPFP (kg kg−1)

2017~2018

LN
KN9204 2.14 ± 0.17 8.5 ± 0.3 a 0.79 ± 0.02 b –

AA 2.15 ± 0.05 8.9 ± 0.3 a 0.81 ± 0.01 a –
BB 2.01 ± 0.08 7.2 ± 0.2 b 0.77 ± 0.01 b –

HN
KN9204 2.33 ± 0.05 16.1 ± 0.7 a 0.64 ± 0.04 ab 30.07 ± 0.8 a

AA 2.51 ± 0.15 16.4 ± 0.5 a 0.68 ± 0.02 a 28.02 ± 0.6 a
BB 2.23 ± 0.05 13.5 ± 0.5 b 0.62 ± 0.03 b 26.33 ± 0.4 b

2018~2019

LN
KN9204 2.43 ± 0.06 13.3 ± 0.7 b 0.68 ± 0.00 b –

AA 2.64 ± 0.10 15.6 ± 0.5 a 0.71 ± 0.01 a –
BB 2.44 ± 0.12 12.8 ± 0.2 b 0.69 ± 0.01 b –

HN
KN9204 2.95 ± 0.05 24.7 ± 0.9 a 0.57 ± 0.04 b 35.30 ± 0.5 a

AA 2.98 ± 0.04 25.3 ± 0.2 a 0.63 ± 0.02 a 36.96 ± 0.9 a
BB 2.87 ± 0.13 22.1 ± 0.6 b 0.60 ± 0.01 b 33.60 ± 0.9 b

2017~2018 and 2018~2019 indicate growing seasons; LN and HN indicate low nitrogen and high nitrogen environments, respectively; AA
indicates QMrl-7B NILs with the superior alleles; BB indicates QMrl-7B NILs with the inferior alleles; GNC indicates grain N content;
GNA indicates grain N accumulation; NHI indicates N harvest index; NPFP indicates partial factor productivity of applied N; different
lowercases indicate significant differences (p < 0.05) among the genotypes at the same environment by ANOVA.

As expected, the A-NILs manifested significant higher mean NHIs in comparison
to the B-NILs under both LN and HN environments (p < 0.05) (Table 4). The NHIs of
A-NILs vs. B-NILs were 0.81 vs. 0.77 and 0.71 vs. 0.69 under the LN environment, and
0.68 vs. 0.62 and 0.63 vs. 0.60 under the HN environment in the two consecutive growing
seasons, respectively, indicating that the NHIs of the A-NILs were higher than those
of the B-NILs by 2.9 to 5.2% under the LN environment and 5.0 to 9.7 under the HN
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environment, respectively. Meanwhile, the NPFPs of the A-NILs vs. the B-NILs were 28.02
vs. 26.33 kg kg−1 in 2017~2018, and 36.96 vs. 33.60 kg kg−1 in 2018~2019, respectively,
indicating that the NPFPs of the A-NILs were 6.4% to 10.0% higher than those of the B-NILs
at the normal nitrogen management (p < 0.05) (Table 4).

3. Discussion

3.1. The Plasticity of Wheat Root Traits Is Affected by Both Genetic and Environmental Factors

A characteristic feature of plant development plasticity is that it does not follow a
rigidly predefined plan but, instead, is continuously susceptible to modification by in-
teractions with the environment [30,31]. Root architecture is a complicated trait not only
controlled by endogenous genes/QTLs but also affected by soil environment. In Arabidop-
sis, for example, genes such as MONOPTEROS (MP) and BODENLOSBDL regulate root
architecture through repressing primary root development [32,33]. In rice, Yao et al. [34]
found that the short-root mutant, srt5, showed extreme inhibition of seminal root, crown
root and lateral root elongation, as well as altered root hair formation at the seedling
stage. The PIN1 family gene, OsPIN1 and ZmPIN1, plays important roles in root growth in
rice [35] and maize [36], respectively. In wheat, suppression of LATERAL ROOT DENSITY
(LRD) expression in RNAi plants confers the ability to maintain root growth under water
limitation and has a positive pleiotropic effect on grain size and number under optimal
growth conditions [37]. Overexpression of TaTRIP1 [38]) affects the growth of root in
Arabidopsis. While knockdown of the transcription factor TabZIP60 can increase the lateral
root branching in wheat [39]. Uga et al. [22] reported that the DRO1, a rice quantitative
trait locus controlling root growth angle, is involved in cell elongation in the root tip that
causes asymmetric root growth and downward bending of the root in response to gravity.
Maccaferri et al. [14] revealed 20 clusters of QTLs controlling root architecture such as root
length, root number and root angle of wheat. QMrl-7B, a major stable QTL controlling
maximum root length, was reported to regulate root development of wheat in hydroponic
culture of different nitrogen conditions [9]. All the above findings indicated that root
architecture is mainly controlled by both major genes as well as QTLs with moderate or
minor effects.

Root plastic development is enormously influenced by environmental factors includ-
ing soil water deficiency [40] and insufficient nutrient availability [18]. Developmental
response to drought stress in crops is manifested through enhanced root growth and
suppressed shoot growth resulting in increased root/shoot ratio [41]. According to the
description of Zhang et al. [17], the root growth of bread wheat in the north China plain
was even before winter, remained almost static in the winter, increased rapidly between
jointing and grain filling stage, and then decreased at maturity. In the present study, a pair
of QMrl-7B near isogenic lines experienced similar root growth patterns, the root traits
including root length, root surface area and root dry weight expressed plasticity to varied
soil nitrogen supplies. Interestingly, there were significant differences in root traits between
the two types of QMrl-7B NILs from seedling till mature under both low and high nitrogen
environments, indicating that the QMrl-7B played a vital role in the maintenance of root
traits (Tables 1 and 2). QMrl-7B allele from KN9204 had significant positive effect on wheat
root growth and development. For root vertical distribution, it was noticed that there was
always significant difference between the two types of NILs, especially in deep soil, no
matter what nitrogen environment there was (Tables 1 and 2). This result further supported
the permanent effect of QMrl-7B on root development.

3.2. The Association of Root System with Nitrogen Accumulation

As an integral part of plants, roots are involved in the acquisition of water and nu-
trients, affecting efficiency of nitrogen uptake and utilization. Several studies in maize
revealed that a larger root system contributed to effective N accumulation in N-efficient
cultivars in comparison with N-inefficient cultivars [42,43]. Different wheat varieties re-
sponded to low N supply by expanding their root traits, such as root length, but manifested

134



Plants 2021, 10, 764

varied N accumulation [44]. Ehdaie et al. [45] suggested that positive and significant
correlation coefficients existed between root biomass and plant N content, between root
biomass and grain yield in wheat. KN9204, the donor of QMrl-7B superior alleles, is an
efficient nitrogen use wheat cultivar [46] with long roots and large root system [47]. In the
current study, the two types of NILs of QMrl-7B did not show a significant difference in
aerial nitrogen accumulation before jointing stage, but the A-NILs, with huge root systems,
exhibited enhanced N accumulation in both aerial vegetative organ at anthesis and grain
over the B-NILs with small root systems, particularly under LN environment (Figure 4,
Table 4). These results demonstrated that QMrl-7B has a prolonged positive effect on N
accumulation during later vegetative growth and reproductive development of wheat.

Saengwilai et al. [48] found that maize genotypes with few crown roots in six RILs had
45% greater rooting depth in low-N soils, which further enhanced N acquisition, biomass
and grain yield. Li et al. [28] detected 331 QTLs for root and NUE-related traits in maize
and found about 70% of QTLs for NUE-related traits co-located in a cluster with those for
root traits, suggesting genetic associations between root and NUE-related traits in most
cases. Some reports in wheat revealed the linkage or co-localization of root trait QTLs with
N uptake QTLs [8,12]. Using the KN9204-derived RIL population, Fan et al. [9] detected
a list of QTLs for root architecture and NUE-related traits, and found most of them were
mapped in nine clusters. In the present study, the pleiotropic effects of QMrl-7B were
shown by the prolonged larger root system (Figures 1 and 2), higher N accumulation in
the above-ground part and grain in the A-NILs (Table 3). In rice, Obara et al. [49] detected
five QTLs for root system architecture and found that the most effective QTL increased the
maximum root length and total root length 15.2–24.6%, in a near-isogenic line (NIL) over a
wide range of nitrogen concentrations. Other studies showed that root and NUE-related
traits might be regulated by the same gene. For example, overexpression of TaNAC2-5A
enhanced root growth and nitrate influx rate in wheat, increased the root’s ability to acquire
nitrogen and nitrogen accumulation in aerial parts, and eventually allocated more nitrogen
in grains [50].

3.3. The Ideal Root System Enhances Biomass, Grain Yield and NUE

Up to now, studies principally supported the theory that larger root system is pos-
itively correlated with the enhanced nutrient uptake, biomass accumulation and yield
formation [51]. In the present study, the A-NILs with superior alleles at QMrl-7B exhibited
extremely huge root systems over the B-NILs with inferior alleles from seedling till harvest.
The seedling aerial biomass of the A-NILs, interestingly, were not significantly different
from those of the B-NILs (Figure 1); this insignificant difference between the two types
of NILs maintained till jointing stage. At PA10 stage, the aerial biomass of the A-NILs
increased dramatically and surpassed that of the B-NILs remarkably (p < 0.05) (Figure 1).
Till mature, the root dry weight of the two types of NILs paralleled the aerial biomass
and grain yield linearly. These results illustrated that there is no correlation between
root biomass and the aboveground biomass in early vegetative growth of the very wheat
genotype, but the huge root system formed during seedling stage potentially associates
with the final biomass and grain yield. The QMrl-7B donor parent KN9204, as a nitrogen
efficient cultivar [46], bears a larger root system, but moderate tiller number and vegetative
biomass in early seedling stage compared to the well-known 1RS-1BL cultivar ‘Lovrin
10’ [47]. Comprehensively, we proposed that the luxuriant root system, rather than abun-
dant above-ground biomass before jointing, may be essential characteristics of modern
wheat cultivars with high yield and NUE.

In wheat, deep root systems contribute to greater yield potential under drought
conditions [52]. The drought-adapted genotype SeriM82 showed longer root systems
in deep soil layers and higher potential grain yield [41], KN9204 with its robust root
system showed high grain yield and high NUE [46]. Similarly, the A-NILs with large root
systems also showed a higher aerial biomass prior to harvest than the B-NILs (Figure 3),
demonstrating higher potential grain yield. Some researches pointed out that abundant

135



Plants 2021, 10, 764

roots in deep soil are essential for wheat growth and final yield, especially in deficient water
and nutrient stresses [53,54]. The A-NILs manifested large root systems in the 100~150 cm
soil layers under both LN and HN environments, and also showed significant higher grain
yield than the B-NILs. These results demonstrated that QMrl-7B has a positive effect on
enhanced aboveground biomass and grain yield.

Among the root system architecture traits, the maximum root length decides the root
depth in soil and is considered as the most important root traits to impact crop yield [55].
Cane et al. [56] detected a QTL controlling root length on chromosome 7B co-located with
grain weight in durum wheat. Fan et al. [9] found the cluster C7B had striking effect
on TGW and the loci QMrl-7B with KN9204 allele could improve TGW by 4 g (10.64%).
In the present study, the mean TGW of the A-NILs was significantly higher than that of
the B-NILs by 5.15% to 8.82% under the LN environment and 5.50% to 6.76% under the
HN environment, respectively (Table 3), when they were planted at the population level.
But the significance was much less than the effect obtained at the individual level when
the RILs (10.64%) and QMrl-7B NILs (9.19%) were planted in a large row [9]. It seems
that planting density has vital influence on the precise evaluation of the genetic effect of
QMrl-7B. What is more, the increased TGW devoted by QMrl-7B greatly contributed to plot
grain yield of the A-NILs, over the B-NILs by 10.61% to 12.72% under LN environment
and 6.40% to 9.99% under HN environment, respectively (Table 3). These results at the
population level further showed that QMrl-7B is of great value in elevated grain weight
and grain yield.

In conclusion, NILs with superior alleles of QMrl-7B not only manifested a luxuri-
ant root system, but also had positive effects on aboveground biomass, grain yield and
NPFP, indicating that QMrl-7B could facilitate genetic improvement of wheat root system.
Therefore, this study provides a valuable case that improving root system via genetic
manipulation can contributes directly to increased yield and NPFP.

4. Materials and Methods

4.1. Plant Materials and Experimental Design

A major stable QTL QMrl-7B (controlling the maximum root length) was identi-
fied by hydroponic culture using the recombinant inbred line population derived from
the cross between KN9204 and J411 (KJ-RIL) [9]. This QTL was located in the interval
89.50–92.50 cM and the candidate physical region preliminarily ranged from 580.13 to
590.13 Mb (IWGSC1.0) [9]. A residual heterozygous line KJ-RIL239, which was heterozy-
gous within the confidence interval of QMrl-7B detected by twelve PCR markers across
this interval [9], was selected from F6 progeny and self-pollinated for four generations till
F10 progeny. Of which, two types of QMrl-7B NILs respectively, with superior alleles from
KN9204 (A-NILs) and inferior alleles from J411 (B-NILs), were developed. In this study, the
superior parent KN9204, three A-NILs (namely A1, A2 and A3) and three B-NILs (namely
B1, B2 and B3) were used as materials.

The seven materials were evaluated under two different nitrogen environments in a
split-plot design with three replicates at Luancheng (37◦53′ N, 114◦41′ E, 54 m altitude),
Hebei province, China for 2017~2018 and 2018~2019 growing seasons, respectively (two
years × two controlled-environments × three replicates). The low nitrogen (LN) environ-
ment was located on a long-term positioned experimental site where no nitrogen fertilizer
but 600 kg ha−1 of superphosphate (around 16% P2O5) were applied throughout the grow-
ing period. In the high nitrogen (HN) environment, 300 kg ha−1 of diamine phosphate and
225 kg ha−1 of urea were applied before sowing, and 150 kg ha−1 of urea was applied at
the elongation stage with irrigation every year. The field was irrigated twice at elongation
and anthesis respectively to keep convenient soil hydraulic status for wheat growth. The
soil fertility within the top tillage soil layer (0~20 cm) in each environment were measured
after harvest (Table S2).
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The plot was 6.3 m2 (7.0 m × 0.9 m) containing 6 rows 0.18 m apart, and 280 seeds were
evenly planted in each row. All of the recommended agronomic practices were followed in
each of the trials except for the nitrogen fertilization treatment as described above.

4.2. Root Sampling and Measurement

Roots were sampled at seedling stage before winter (SS), jointing stage (JS), 10 days
post anthesis (PA10) and maturity (MS) under both LN and HN environments during
the 2017~2018 and 2018~2019 growing seasons. After removing the above-ground part
of the plants, the corer of 10 cm diameter was used to take the soil cores from the rows
in each plot. The depth of sampling was 60, 100, 150 and 160 cm at the SS, JS, PA10
and MS at intervals of 10 cm, respectively. The soil cores were taken to the laboratory
and the root samples were obtained as described by Zhang et al. [18]. The root samples
were stored at –20 ◦C to prevent decay. On quantifying the root length (RL, cm) and root
surface area (RA, cm2), the root samples were tiled in a transparent dish to be scanned
using ScanMaker i800 Plus Scanner (600 DPI) and analyzed by LA-S software (Hangzhou
Wanshen Detection Technology Co., Ltd., Hangzhou, China, www.wseen.com). After
being scanned, the roots were collected, oven-dried at 105 ◦C for an hour and then kept
at 80 ◦C until constant weight to determine root dry weight (RDW, mg). The root length
density (RLD, cm/cm3), root area density (RAD, cm2/cm3) and root weight density (RWD,
mg/cm3) were calculated using RL, RA and RDW divided by the soil core volume.

4.3. Yield-Related Trait Evaluation

Ten representative plants in the center of the plot were randomly sampled at phys-
iological maturity to evaluate the yield-related traits. The plant height (PH, cm), spike
number per plant (SN), spike length (SL, cm), total spikelets per spike (TSPS), sterile
spikelet number per spike (SSPS), kernel number per spike (KNPS) were determined.
Thousand-grain weight (TGW, g) was evaluated after harvest using the Seed Counting and
Analysis System of WSeen SC-G Instrument (Hangzhou Wanshen Detection Technology
Co., Ltd., Hangzhou, China, www.wseen.com). The grain yield per plot (GY, kg/ha) was
measured after harvest.

4.4. Measurement of Nitrogen-Related Traits

Ten representative plants in each plot were randomly sampled at the stages of SS, JS,
PA10 and MS, respectively, and the aerial part was oven-dried at 105 ◦C for an hour and
then kept at 80 ◦C until constant weight to determine dry matter accumulation (DW, g).
The aerial part at the MS was further divided into shoot and grain parts. The dry matter
accumulation was corrected to the aerial dry weight per unit area (aerial dry weight, ADW,
g/m2) and grain dry weight per unit area (grain dry weight, GDW, g/m2), according to
the number of plants per unit area. The dried samples were ground and sifted through a
0.5 mm sieves to determine the total aerial N content (ANC, %) and total grain N content
(GNC, %) using a standard Kjeldahl procedure. Based on grain yield, dry weight and total
N content, a suite of traits were calculated as follows:

Harvest index (HI) = GDW/ADW
Aerial N accumulation (ANA, g/m2) = ANC × ADW
Grain N accumulation (GNA, g/m2) = GNC × GDW
N harvest index (NHI) = GNA/ANA
Partial factor productivity of applied N (NPFP, kg kg−1) = GY/N applied amount
Statistical analyses were conducted using the SPSS 20.0 (SPSS, Chicago, IL, United

States) and the ANOVA was used to test the difference of the above traits among the
genotypes at p < 0.05.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/plants10040764/s1, Table S1: Aerial N content (ANC) and accumulation (ANA) of KN9204
and the QMrl-7B NILs at different stages; Table S2: Summary of the major macronutrients in top
tillage soil layer (0~20 cm) during the two growing seasons; Figure S1: Root length density (RLD),
root surface area density (RAD) and root weight density (RWD) of KN9204 and the QMrl-7B NILs
at seedling stage before winter (SS); Figure S2: Root length density (RLD), root surface area density
(RAD) and root weight density (RWD) of KN9204 and the QMrl-7B NILs at jointing stage (JS); Figure
S3: Root length density (RLD), root surface area density (RAD) and root weight density (RWD) of
KN9204 and the QMrl-7B NILs at maturity (MS).
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Abstract: Rice tolerance to salinity stress involves diverse and complementary mechanisms, such
as the regulation of genome expression, activation of specific ion-transport systems to manage
excess sodium at the cell or plant level, and anatomical changes that avoid sodium penetration
into the inner tissues of the plant. These complementary mechanisms can act synergistically to
improve salinity tolerance in the plant, which is then interesting in breeding programs to pyramidize
complementary QTLs (quantitative trait loci), to improve salinity stress tolerance of the plant at
different developmental stages and in different environments. This approach presupposes the
identification of salinity tolerance QTLs associated with different mechanisms involved in salinity
tolerance, which requires the greatest possible genetic diversity to be explored. To contribute to this
goal, we screened an original panel of 179 Vietnamese rice landraces genotyped with 21,623 SNP
markers for salinity stress tolerance under 100 mM NaCl treatment, at the seedling stage, with the aim
of identifying new QTLs involved in the salinity stress tolerance via a genome-wide association study
(GWAS). Nine salinity tolerance-related traits, including the salt injury score, chlorophyll and water
content, and K+ and Na+ contents were measured in leaves. GWAS analysis allowed the identification
of 26 QTLs. Interestingly, ten of them were associated with several different traits, which indicates
that these QTLs act pleiotropically to control the different levels of plant responses to salinity stress.
Twenty-one identified QTLs colocalized with known QTLs. Several genes within these QTLs have
functions related to salinity stress tolerance and are mainly involved in gene regulation, signal
transduction or hormone signaling. Our study provides promising QTLs for breeding programs to
enhance salinity tolerance and identifies candidate genes that should be further functionally studied
to better understand salinity tolerance mechanisms in rice.

Keywords: rice; GWAS; salinity tolerance; Vietnamese landraces; QTL
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1. Introduction

More than one third of cultivated lands are polluted by excess of salt (NaCl) [1].
Sodium is a toxic element for plants and this is particularly true for rice, which is often culti-
vated in river delta areas where irrigation water is increasingly frequently contaminated by
sea water [2]. Rice is the most important food crop, feeding more than three billion people
in the world [3]. In Vietnam, rice occupies 85% of the total agricultural area [4]. However,
with 3620 km of coastline spreading from north to south, Vietnam has been ranked among
the top five countries likely to be most affected by climate change [5]. Vietnam is one of the
first rice exporters in the world and consequently plays an important role in food supply
security, particularly in Asian countries [6,7]. The Mekong River Delta and Red River Delta
are the main areas of rice production in Vietnam; the Mekong River Delta represents 50%
of the total rice production area and supplies 90% of the rice exported by the country [7].
The Mekong River Delta is increasingly menaced by an elevation in salinity due to sea
water intrusion that results from different climatic and anthropic factors [8]. According
to data from the Ministry of Science and Technology of Vietnam, at the end of 2015 and
the first months of 2016, saline intrusion in the Mekong River Delta reached the highest
level measured during the past 100 years. In addition to global management of the causes
leading to increases in salinity, it is important to breed new varieties of rice tolerant to
salinity, which necessitates the identification of genetic determinants conferring salinity
tolerance [9]. Several salinity tolerance QTLs (quantitative trait loci) have been identified
in rice using association genetics approaches, and the mechanisms undelaying rice salinity
tolerance start to be well known (for reviews see [10,11]). The mechanisms involved in rice
salinity tolerance act at different levels and combine transcriptional and posttranscriptional
or posttranslational regulation events that lead to sodium exclusion or compartmentation
in specific cell infrastructures, osmolyte production or anatomical changes that avoid
sodium penetration into the internal tissues of the plant [10]. These mechanisms act in
different complementary ways that synergistically allow salinity tolerance [10]. For these
reasons, it is interesting to combine genetic sources with different and complementary
salinity tolerance to increase resistance to salinity, which can also buffer the susceptibility of
QTL effects to environmental conditions [12,13]. To identify such complementary sources
of salinity tolerance, it is necessary to look for them in the widest and most diverse panels
of varieties possible.

To contribute to this goal, in this study, we screened a genotyped panel of 179 Viet-
namese landrace varieties of indica and japonica rice collected in different agrosystems
from North to South Vietnam for salinity tolerance [14]. Vietnamese landrace varieties are
often underrepresented in the studied international panels such as the 3K panel developed
by the International Rice Research Institute (IRRI), even though, they potentially constitute
an original source of valuable alleles [15,16]. We already used this panel to identify valuable
QTLs associated with root, leaf or panicle traits and water deficit tolerance by genome
wide association study (GWAS) [17–20]. The plants were screened for salinity stress toler-
ance at an early developmental stage using a hydroponic culture system in the presence
of 100 mM NaCl. The phenotypic standard evaluation score (SES) [21], chlorophyll and
relative water content and the concentrations of K+ and Na+ ions were measured in leaves.
GWAS revealed 26 QTLs including 10 QTLs associated with several traits. Most of these
QTLs contain candidate genes that may explain their effect on salinity tolerance, and the
function of the genes are further discussed.

2. Results

2.1. Phenotypic Variation and Heritability of Salinity Tolerance-Related Traits

The phenotyping experiment was conducted for three consecutive years, from 2017
to 2019. The observed salt tolerance diversity in different accessions was reproducible.
The data from the last trial were chosen for performing GWAS, for which the screening
protocol was improved and standardized for the Vietnamese rice landrace panel and for
the parameter measurement as described in the Materials and Methods section. In this trial,
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on the tenth day after the start of salinization, 25 plots of 19 accessions were monitored
to have simultaneously reached a score of 7, which included the susceptible check IR29.
A total of 9 salinity tolerance-related traits were evaluated, three of which (leaf water
content (WC), chlorophyll a to chlorophyll b ratio in leaves (Chla_b), and ratio of Na+/K+

in leaves (Na_K)) were computed from the directly measured traits. Statistical analysis
was conducted for the full panel and the indica and japonica subpanels (Table 1). Within
the full panel and the indica subpanel, significant replication and genotypic effects were
observed for most of the traits, with the exception of Chla_b. Meanwhile, the genotypic
effect for the chlorophyll traits of the japonica subpanel was insignificant (Table 1). The
broad-sense heritability (H2) calculated for each trait with a significant genotypic effect
was moderate to high, varying from 0.40 to 0.76, while high values were recorded for WC,
Score and three ion content traits.

Table 1. Phenotypic variation and broad-sense trait heritability for the three panels.

Traits n Mean SD CV
Replication Effect Genotype Effect

p-Value p-Value F-Value H2

Full panel
WC 182 59.98 10.49 17.49 <0.001 <0.001 3.500 0.71

Score 182 4.41 1.16 26.30 <0.001 <0.001 2.576 0.61
Chl_total 182 1.4 0.65 46.43 <0.001 <0.001 1.924 0.48

Chla 182 0.82 0.35 42.68 <0.001 <0.001 1.902 0.47
Chlb 182 0.52 0.28 53.85 <0.001 <0.001 1.675 0.40

Chla_b 182 1.75 0.99 56.57 0.0560 0.3127 1.063 0.06
ConcK 182 43.39 7.61 17.54 <0.001 <0.001 4.226 0.76

ConcNa 182 18.63 11.97 64.25 <0.001 <0.001 3.470 0.71
Na_K 182 0.42 0.27 64.29 <0.001 <0.001 3.342 0.70

Indica subpanel
WC 112 58.99 10.74 18.21 <0.001 <0.001 3.570 0.72

Score 112 4.51 1.1 24.39 <0.001 <0.001 2.644 0.62
Chl_total 112 1.39 0.72 51.80 <0.001 <0.001 1.849 0.46

Chla 112 0.82 0.39 47.56 <0.001 <0.001 2.105 0.53
Chlb 112 0.51 0.3 58.82 <0.001 <0.001 1.859 0.46

Chla_b 112 1.82 1.22 67.03 0.0413 0.3759 1.051 0.05
ConcK 112 45.86 7.04 15.35 <0.001 <0.001 2.855 0.65

ConcNa 112 19.48 11.63 59.70 <0.001 <0.001 3.414 0.71
Na_K 112 0.42 0.25 59.52 <0.001 <0.001 2.992 0.67

Japonica subpanel
WC 64 61.7 9.75 15.80 <0.001 <0.001 2.858 0.65

Score 64 4.26 1.23 28.87 0.9317 <0.001 2.525 0.60
Chl_total 64 1.38 0.52 37.68 <0.001 <0.001 2.292 0.56

Chla 64 0.81 0.29 35.80 0.0026 0.0171 1.580 0.37
Chlb 64 0.52 0.24 46.15 <0.001 0.0414 1.455 0.31

Chla_b 64 1.65 0.43 26.06 0.0072 0.4666 1.014 0.01
ConcK 64 39.38 6.8 17.27 <0.001 <0.001 2.698 0.63

ConcNa 64 17.61 12.41 70.47 <0.001 <0.001 3.056 0.67
Na_K 64 0.44 0.3 68.18 <0.001 <0.001 2.879 0.65

n: number of accessions; Rep: replication; CV: coefficient of variations; H2: broad-sense heritability; WC: leaf water content; Score: score of
visual salt injury; Chl_total: total chlorophyll content in leaves; Chla: chlorophyll a content in leaves; Chlb: chlorophyll b content in leaves;
Chla_b: chlorophyll a to chlorophyll b ratio in leaves; ConcK: K+ concentration in leaves; ConcNa: Na+ concentration in leaves; Na_K: ratio
of Na+/K+ in leaves.

Significant phenotypic variation was observed for all of the traits, with “full name”
(CVs) ranging from 15.35% to 70.47% (Table 1). Figure 1 shows statistically significant
differences in the mean values of WC, Score and ConcK between the indica and japonica
subpanels. Specifically, the indica subpanel displayed a lower WC and higher Score and
ConcK than the japonica subpanel (Table 1, Figure 1). Consequently, for the Vietnamese
rice landrace panel used in this study, indica accessions were considered less salt-tolerant
than japonica accessions.
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Figure 1. Boxplots of the distribution of salinity tolerance-related traits. Indica subpanel in red;
japonica subpanel in blue; statistical significance (ANOVA p-values) between the two subpanels is
indicated; (a) leaf water content (WC); (b) score of visual salt injury (Score); (c) total chlorophyll
content in leaves (Chl_total); (d) chlorophyll a content in leaves (Chla); (e) chlorophyll b content
in leaves (Chlb); (f) chlorophyll a to chlorophyll b ratio in leaves (Chla_b); (g) K+ concentration in
leaves (ConcK); (h) Na+ concentration in leaves (ConcNa); (i) ratio of Na+/K+ in leaves (Na_K).

The correlations among the traits determined the same tendency within the full panel
and the two subpanels (Figure S1). However, the correlation coefficients were largely
variable between the traits (Table 2). For instance, Score, ConcNa and Na_K were strongly
negatively correlated with WC. ConcNa and Na_K were also highly correlated with Score.
In contrast, ConcK constituted weak correlations with the other traits, except for a moderate
correlation with WC. Overall, higher correlations were observed among WC, Score, ConcNa
and Na_K.
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Table 2. Correlation coefficients between traits in the three panels (below the diagonal). Probabilities above the diagonal.

Traits Panels WC Score Chl_Total Chla Chlb Chla_b ConcK ConcNa Na_K

WC F 1 <0.001 <0.001 <0.001 <0.001 0.608 <0.001 <0.001 <0.001
WC I 1 <0.001 <0.001 <0.001 <0.001 0.709 <0.001 <0.001 <0.001
WC J 1 <0.001 <0.001 0.004 0.012 0.469 <0.001 <0.001 <0.001

Score F −0.70 1 <0.001 <0.001 0.004 0.896 <0.001 <0.001 <0.001
Score I −0.71 1 <0.001 <0.001 0.004 0.803 <0.001 <0.001 <0.001
Score J −0.66 1 0.062 0.093 0.102 0.611 0.033 <0.001 <0.001

Chl_total F −0.34 0.17 1 <0.001 <0.001 <0.001 0.065 <0.001 <0.001
Chl_total I −0.44 0.24 1 <0.001 <0.001 <0.001 0.027 <0.001 <0.001
Chl_total J −0.26 0.13 1 <0.001 <0.001 <0.001 0.507 0.165 0.315

Chla F −0.31 0.18 0.82 1 <0.001 0.278 0.231 0.001 0.002
Chla I −0.39 0.24 0.85 1 <0.001 0.704 0.042 <0.001 <0.001
Chla J −0.21 0.12 0.78 1 <0.001 0.180 0.941 0.664 0.793

Chlb F −0.24 0.12 0.75 0.76 1 <0.001 0.845 0.007 0.008
Chlb I −0.29 0.16 0.73 0.72 1 <0.001 0.192 <0.001 <0.001
Chlb J −0.18 0.12 0.78 0.81 1 <0.001 0.865 0.556 0.739

Chla_b F 0.02 0.01 −0.27 −0.05 −0.61 1 0.763 0.525 0.591
Chla_b I 0.02 0.01 −0.24 −0.02 −0.62 1 0.835 0.586 0.638
Chla_b J 0.05 -0.04 −0.32 −0.10 −0.62 1 0.438 0.611 0.817

ConcK F −0.41 0.32 0.08 0.05 0.01 0.01 1 <0.001 <0.001
ConcK I −0.43 0.39 0.12 0.11 0.07 0.01 1 <0.001 <0.001
ConcK J −0.33 0.15 0.05 0.01 0.01 −0.06 1 <0.001 0.005

ConcNa F −0.84 0.63 0.16 0.14 0.11 −0.03 0.42 1 <0.001
ConcNa I −0.83 0.63 0.25 0.24 0.19 −0.03 0.41 1 <0.001
ConcNa J −0.84 0.59 0.10 0.03 0.04 −0.04 0.41 1 <0.001

Na_K F −0.79 0.59 0.15 0.13 0.11 −0.02 0.20 0.96 1
Na_K I −0.79 0.61 0.23 0.22 0.18 −0.03 0.23 0.97 1
Na_K J −0.81 0.59 0.07 0.02 0.02 −0.02 0.20 0.97 1

F: full panel; I: indica subpanel; J: japonica subpanel; WC: leaf water content; Score: score of visual salt injury; Chl_total: total chlorophyll
content in leaves; Chla: chlorophyll a content in leaves; Chlb: chlorophyll b content in leaves; Chla_b: chlorophyll a to chlorophyll b ratio in
leaves; ConcK: K+ concentration in leaves; ConcNa: Na+ concentration in leaves; Na_K: ratio of Na+/K+ in leaves.

2.2. SNP-Trait Associations

GWAS analyses were conducted for the full panel and for the indica and japonica
subpanels separately. The GWAS results are presented in the Q-Q and Manhattan plots
in Figure 2 and Figure S2. Using the p-value threshold of 1 × 10−4, we identified 64 as-
sociations between 58 SNPs and the studied traits, but no associations were detected in
the japonica subpanel. These 58 significant SNPs were distributed in 26 QTL regions.
Within the detected QTL regions, the number of significant SNPs increased to 119 when
the threshold value was set at 1 × 10−3 (Table S1). Among these values, 110 SNPs were
found in the full panel, 44 were identified in the indica subpanel, and 35 were common
between the full panel and the indica subpanel.

A total of 16 QTLs were associated with Chla_b, 6 with WC, 6 with Score, 4 with
ConcNa, 3 with Chl_total, 3 with Chlb, 2 with Chla, 3 with Na_K, and 1 with ConcK
(Table 3). Ten of the 26 identified QTLs were associated with multiple traits, including
QTL_25 on chromosome 11 associated with five traits (i.e., WC, Score, ConcK, ConcNa,
and Na_K); QTL_21 on chromosome 9 associated with 4 traits (i.e., WC, Chla_b, ConcNa,
and Na_K); three QTLs (QTL_9, QTL_20, and QTL_23) associated with three traits; and
five other QTLs (i.e., QTL_13, QTL_16, QTL_17, QTL_19, and QTL_24) associated with two
traits. Most of the individual trait-associated QTLs were detected for chlorophyll traits,
except for QTL_1, which was related to Score. The number of significant SNPs within each
QTL varied from 1 to 33, whereas QTL_25 was defined by 33 SNPs, QTL_21 by 14 SNPs,
QTL_1 and QTL_4 by 8 SNPs, and QTL_16 and QTL_19 by 7 SNPs (Table 3).
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Figure 2. Manhattan plots and Q-Q plots for GWAS of salinity tolerance-related traits in the full panel. (a) Leaf water
content (WC); (b) score of visual salt injury (Score); (c) total chlorophyll content in leaves (Chl_total); (d) chlorophyll a
content in leaves (Chla); (e) chlorophyll b content in leaves (Chlb); (f) chlorophyll a to chlorophyll b ratio in leaves (Chla_b);
(g) K+ concentration in leaves (ConcK); (h) Na+ concentration in leaves (ConcNa); (i) ratio of Na+/K+ in leaves (Na_K). In
the Manhattan plots, significant SNPs are highlighted in red.

Therefore, among the 26 detected QTLs, QTL_25 was supposed to be the major QTL
due to being mapped by the highest number (33) of significant SNPs and associated with
the greatest number (5) of traits in both the full panel and the indica subpanel (Figure 3).
The next was QTL_21, which was common to 4 traits and supported by 14 significant SNPs.
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Figure 3. QTL_25. (a) Manhattan plot for K+, Na+ and water content in leaves in the full panel; (b) linkage disequilibrium
(LD) heatmap. In the Manhattan plots, significant SNPs are highlighted in red, and genes of interest are mentioned. The
genomic region of QTL_25 is specified in the boundary area in the LD heatmap.

2.3. Colocalizing QTLs and Candidate Genes Underlying the Detected QTLs Involved in
Salinity Tolerance

The sites of the QTLs identified in this study were compared with QTLs detected
in mapping populations and derived by other GWASs related to salinity tolerance. Con-
sequently, most of our QTLs colocalized with already known QTLs, except for QTL_6,
QTL_17 and QTL_22 (Table S2). We found a total of 100 colocalizations, of which 17 were
detected by GWAS [22–26], and 83 other colocalizations were mapped in biparental pop-
ulations [13,27–45]. In particular, 8 colocalizations shared similar traits (leaf chlorophyll
content, K+ concentration, Na+ concentration, leaf water content). In addition, colocaliza-
tions with QTLs identified in previous studies for other traits using the same Vietnamese
rice panel and genotyping data were observed (Table S3). For the latter, forty-nine overlap-
ping associations were found that underlie QTL_3, QTL_6, QTL_8, QTL_17, QTL_20, and
QTL_26.

In the region of almost all QTLs identified, a number of candidate genes related to
the response of plants to salt or abiotic stress were found, with the exception of QTL_7,
QTL_11, QTL_14, QTL_15, QTL-17, QTL_18 and QTL_22 (Table 3). These candidate genes
encode different kinds of proteins including transcription factors, receptor-like kinases
(RLKs), mitogen-activated kinase (MAPK), enzymes and transporters.
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3. Discussion

Rice is considered to be very sensitive to salinity [98,99]. Here, to determine the re-
sponse of the Vietnamese rice landrace panel to salinity, a moderate salinity stress (100 mM
NaCl) was applied at the seedling stage. We assessed a total of 9 phenotypic traits, all of
which showed high variability within the panel in response to salinity stress. Of these
9 traits, WC, Score and three ion content traits (ConcNa, ConcK and Na_K) exhibited high
heritability (0.60–0.76). Additionally, strong correlations (0.59–0.97) were observed among
these traits with the exception of ConcK, indicating that WC, Score, ConcNa and Na_K were
strongly associated with the response of rice plants to salinity stress, which is consistent
with previous studies on rice salinity tolerance evaluation [100–102]. WC is a physiolog-
ical parameter of the plant water status that expresses the response of plants to osmotic
stress [103,104], ionic content traits reflect the level of ionic stress (ion homeostasis) [105],
and the salt injury score is an indicator of plant damage/survival (growth performance)
under salinity stress [100]. Previous studies reported that rice accessions tolerant to salinity
stress have the ability to reduce the osmotic stress, prevent the excess accumulation of Na+

and absorb greater K+ to maintain a low shoot Na+/K+ ratio [106–109].
Correlations among the traits varied in the same direction in the full panel and the two

subpanels. However, the japonica subpanel had, on average, greater WC and lower Score
than the indica subpanel, indicating that japonica accessions are more salt-tolerant than
indica accessions. This finding contradicts the results reported in a previous study [101]
that used 4 japonica varieties and 6 indica varieties. This contradiction can be explained
by the difference in the number of rice accessions included in the screening. In our study,
112 indica and 64 japonica accessions were evaluated.

In this study, GWAS analyses were applied for the full panel and for the two subpanels.
Thus far, we succeeded in identifying 119 significant SNPs assigned to 26 QTLs. Twenty-
two QTLs were detected in the full panel and 15 QTLs were detected only in the indica
subpanel, but no japonica-specific QTLs were found, although japonica seems to have
an average higher salinity tolerance than indica accessions. Similarly, in other studies
using the same rice panel and genotyping data screened for water deficit tolerance and leaf
traits, no japonica-specific QTLs were detected [17,18], likely because japonica accessions
represent only one-third of the total accessions of the panel. In this study, of the 26 identified
QTLs, 11 QTLs were detected in both the full panel and the indica subpanel, and 10 QTLs
were associated with two or more traits (Table 3). Interestingly, all the QTLs that were
detected for WC colocalized with QTLs associated with Score and/or ion content traits,
except for QTL_13, which was found for WC and Chla_b. These results suggest that WC,
Score and ion content traits have a shared genetic basis related to salinity stress responses.
However, there was no overlap between QTLs detected for chlorophyll-related traits and
ion content traits.

The QTLs discovered in this study were located on most chromosomes, apart from
chromosome 6, and we found 3 QTLs (QTL_1, QTL_2 and QTL3) on chromosome 1, but
none of these QTLs colocalized with Saltol, a well-known major QTL for rice salinity
tolerance at the seedling stage [110,111]. A large number of QTLs for salinity tolerance
detected in this study colocalized with QTLs detected in other studies and populations
under conditions of salt stress at vegetative or reproductive stages, which validates our
approach (Tables S2 and S3). Interestingly, of 26 QTLs identified in the present study,
3 QTLs (QTL_6, QTL_17 and QTL_22) did not colocalize with previously reported QTLs
and thus constituted novel QTLs. They can be of high interest to bring new salinity
tolerance sinks into breeding programs.

The major QTL identified in our study, QTL_25 at 18,273.1–18,684.5 kb on chromosome
11 was associated with WC, Score, ConcK, ConcNa and Na_K (Table 3, Figure 3). In
particular, QTL_25 was mapped by 33 significant SNPs, and each of them contributed
5.75–14.09% to the phenotypic variation (Table S1). QTL_25 colocalized with previously
identified QTLs under conditions of salinity stress using different mapping populations
(Table S2), i.e., with 2 QTLs associated with leaf water content [42], with QTL qSHL11.1
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for shoot length and QTL qRTL11.1 for root length [39], and with 4 GWAS-derived QTLs
for the number of unfilled grains per plant [25] (Table S2), suggesting that this QTL has a
pleiotropic effect on plant growth and reproduction under salinity stress and likely acts
synergistically with other major salinity tolerance QTLs such as Saltol, in enhancing the
salinity tolerance in rice.

Compared to the previous GWAS [14,17,18,20,112], using the same rice panel and
genotyping data, we found 28 associations of 6 QTLs identified in this study colocalized
with 23 associations of [14,17,20,112], but there was no colocalization between QTLs for
salinity tolerance-related traits and for leaf mass traits [18] (Table S3). Remarkably, 9 associ-
ations for various drought tolerance-related traits, including relative water content after
2 and 3 weeks of drought stress, slope of relative water content after 2 weeks of drought
stress, drought sensitivity score after 2, 3 and 4 weeks of drought stress, and recovery ability,
belonging to QTL q9 of [17], were colocalized with all associations in QTL_17 for Chla_b
and Score, suggesting that this genomic region contains important genetic determinants
for rice adaptation to osmotic stresses.

Underlying 19 out of the 26 QTLs detected in this study, a high number of genes were
annotated or functionally associated with salinity tolerance (Table 3).

Most candidate genes encode transcription factors reported to be involved in the
rice response to salinity or abiotic stresses. Found in QTL_1 for Score, the OsERF922
gene (ETHYLENE RESPONSE FACTOR 922, Os01g54890) negatively regulates tolerance
to salinity stress through an ABA signaling pathway, since rice transgenic plants over-
expressing OsERF922 exhibited reduced salinity tolerance with increased shoot Na+/K+

ratio and ABA level, and knockdown of OsERF922 expression reduced the ABA accumula-
tion [46]. Additionally, as a member of the ERF gene family, OsERF922, the expression of
OsERF#103 (ETHYLENE RESPONSE FACTOR 103, Os02g52670) (in QTL_5), was reported
to be upregulated under drought and salinity stress conditions at the seedling stage [65].

Furthermore, we found two potential genes encoding bZIP transcription factors. In
plants, bZIP genes are involved in the response to abiotic stress [66,113]. One of these
two genes is OsbZIP23 (b-ZIP TRANSCRIPTION FACTOR 23, Os02g52780) (in QTL_5),
which was functionally characterized as being an ABA-dependent enhancer of drought
and salinity tolerance [66,67]. On the one hand, OsbZIP23 overexpression significantly
enhances tolerance to drought stress, especially to high salinity stress, compared with the
wild type [66,67]. On the other hand, the OsbZIP23 mutant displays significantly reduced
tolerance to drought and salinity stress [67]. In addition, the SUMO protease OsOSTS1
(OVERLY TOLERANT TO SALT 1), a gene involved in tolerance to high salinity [114],
was reported to directly target OsbZIP23, which results in activation of OsbZIP23 and
stimulation of OsbZIP23-dependent gene expression, which helps promote tolerance to
drought stress [115]. Similar to OsbZIP23, OsbZIP33 (b-ZIP TRANSCRIPTION FACTOR
33, Os03g58250), located in QTL_10, also plays a role as an ABA-dependent enhancer of
drought and salinity tolerance. OsbZIP33 is highly upregulated under drought and high
salinity stress conditions. OsbZIP33-overexpressing transgenic plants exhibited signifi-
cantly increased drought tolerance [78].

Three candidate genes belonging to the zinc-finger transcription factors were identi-
fied: OsSAP3 (STRESS-ASSOCIATED PROTEIN 3, Os01g56040) in QTL_2, OsPHD7 (PHD
FINGER PROTEIN 7, Os01g66420) in QTL_3, and OsCga1 (CYTOKININ GATA TRANSCRIP-
TION FACTOR 1, Os02g12790) in QTL_4. OsSAP3 and OsPHD7 are related to abiotic stress
responses. In particular, the expression of OsSAP3 is induced in response to drought
and salinity stress [50], and OsPHD7 is upregulated under drought stress [57]; moreover,
OsCga1 is associated with the development of chloroplasts [59] and stay-green [60]. Stay-
green refers to the ability to maintain green leaves and photosynthetic capacity and is thus
related to plant adaptation to osmotic stress [116]. Overexpression of OsCga1 delays leaf
senescence [59].

Underlying QTL_2, OsRDCP3 (RING DOMAIN-CONTAINING PROTEIN 3, Os01g56070)
was predicted to be involved in drought stress tolerance [51], and OsABCI6 (ABC TRANS-
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PORTER I FAMILY MEMBER 6, Os01g56400) was supposed to be involved in the response
to abiotic stress [52,53]. Similarly, the expression of OsTET2 (TETRASPANIN 2, Os02g12750),
an integral membrane protein found in QTL_4, was increased in drought-stress seedlings;
in addition, this gene was highly upregulated under heat and salinity stress [58].

Two other candidate transcription factor genes were found in QTL_26 on chromo-
some 11, including OsHox33 (HOMEOBOX GENE 33, Os12g41860) and OsARF25 (AUXIN
RESPONSE FACTOR 25, Os12g41950). OsHox33, encoding an HDZIP transcription fac-
tor, is involved in leaf senescence because its knockdown accelerates leaf senescence [92]
and is a target of a salinity stress-responsive miRNA [75]. OsARF25 is also a salinity
tolerance-related candidate gene discovered by GWAS, as reported by [93].

Another transcription factor gene identified, OsAS2 (ASYMMETRIC LEAVES 2,
Os01g66590) in QTL_3 [55], was associated with the development of plants. LhCa5 (PHOTO-
SYSTEM I LIGHT HARVESTING COMPLEX GENE 5, Os02g52650) in QTL_5 was predicted
to function in the photosystem [64].

Within the region of QTL_25, the strongest QTL found in this study, we detected a con-
secutive set of four BRASSINOSTEROID INSENSITIVE 1-associated receptor kinase 1 (BAK1),
including Os11g31530 (OsBDG1), Os11g31540 (OsLRR2), Os11g31550, and Os11g31560
(Figure 3b). BAK1, encoding a leucine-rich repeat type II receptor-like kinase, functions
as a coreceptor of BRI1 in brassinosteroid plant signaling [117]. Perception of brassinos-
teroids through the BRI1-BAK1 complex can influence the growth and development of rice
plants [118], e.g., regulating the leaf angle and grain size [119] and regulating ABA-induced
stomatal closure, which is critical for the survival of plants under water stress [120]. Among
these four BAK1 genes, OsBDG1 and OsLRR2 are considered to be involved in salt and/or
abiotic stress responses [90,91]. Under salinity stress conditions, OsBDG1 is significantly
upregulated in roots of the rice-sensitive cultivar IR29, whereas OsLRR2 is upregulated
in roots of the rice-tolerant cultivar FL478 [90]. Additionally, the expression of OsLRR2 is
highly induced in leaves after cold and drought treatment; thus, OsLRR2 is a supposed
candidate gene involved in tolerance to abiotic stress [91]. Interestingly, two significant
SNPs identified in this study, Sj11_18426630R and Dj11_18426457R, were located in the
sequence of OsBDG1 (Figure 3). Dj11_18426457R is intronic, while Sj11_18426630R is posi-
tioned within a coding sequence (i.e., exon 5) that changes the amino acid sequence in the
LRR domain of the OsBDG1 protein. Thus, the perspective of a functional characterization
of these BAK1 candidate genes is opened.

Three other genes encoding receptor-like kinase (RLK) with enhanced abiotic stress
tolerance are Os08g28710 (OsRLCK253) in QTL_19 and Os12g42060 (OsWAK128) and
Os12g42070 (OsRLCK375, OsWAK129) in QTL_26. Functionally, OsRLCK253 confers tol-
erance to salt and water deficits in transgenic Arabidopsis thaliana plants during different
growth stages, resulting in yield protection against stress [86]. OsWAK128 and Os12g42070
were candidate genes near a GWAS-derived QTL related to salinity tolerance at the seedling
stage [93]. In addition, a mitogen-activated protein kinase (MAPK) encoded by the Os-
RLCK84 gene (Os02g53030) in QTL_5 was activated in response to salinity stress [68].

4. Materials and Methods

4.1. Plant Materials and Genotyping

This study included 179 Vietnamese rice landraces and 3 control genotypes (Nip-
ponbare, Azucena and IR64). The Vietnamese rice accessions came from diverse loca-
tions throughout Vietnam and were originally provided by the Plant Resource Center
(21◦00′05′ ′N and 105◦43′33′ ′E). All 182 accessions were genotyped by 21,623 single nu-
cleotide polymorphism (SNP) markers using genotyping-by-sequencing with a minor
allele frequency above 5% [14]. IR29 was used as a susceptibility check for phenotyping
experiments. The names of the accessions, provinces of origin and ecosystem are described
in Table S4. More detailed information on this panel can be found in [14].
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4.2. Phenotyping Experiment
4.2.1. Salt Treatment

The experiment was conducted from August 26, 2019, to September 24, 2019, at
the Agriculture Genetics Institute, Hanoi, Vietnam (21◦02′55′ ′ N and 105◦46′58′ ′ E). The
accessions were grown in hydroponics following the IRRI standard protocol with three
replicates [100]. Within each replicate, the accessions were randomly distributed in 5.2 indi-
vidual plastic trays (36 × 31 × 15 cm) fitted with styrofoam float of 35 slots (2 mm diameter)
filled with Peters solution composed of 1 g/L Peters water-soluble fertilizer (20-20-20 NPK)
and 200 mg/L ferrous sulfate [21]. A total of 16 plastic trays were used.

The experiment was set under greenhouse conditions. After breaking dormancy at
50 ◦C for five days, seeds were soaked in water for 2–3 days. When germination began,
seeds were incubated in a culture room (28 ◦C, photoperiod 12 h light/12 h dark) for
2 days. Once the primary root emerged well at a length of 2–3 cm, seedlings were cultured
in styrofoam floats with a nylon net bottom according to the experimental design. Four
seedlings were cultured per slot. Three days after seeding, seedlings were thinned to keep
3 well-developed plants per slot. The pH (5.2) and the level of nutrient solution were
adjusted daily. The Peters solution was replaced weekly until the end of the experiment.
Salinity stress was applied when plants reached the fourth leaf stage. Salt NaCl was
gradually supplemented to the hydroponic medium to avoid osmotic shocks. Each time,
50 mM NaCl was separated by two days to obtain a final concentration of 100 mM NaCl.
The experiment was stopped once all the plants exhibited drying in most leaves (average
evaluation score of 7).

4.2.2. Scoring and Sampling

For each plant, salinity tolerance score was evaluated based on leaf injury symptoms
using the modified standard evaluation score (SES) for rice [21], as follows: score 1—normal
growth, no leaf symptoms; score 3—near normal growth, but leaf tips or few leaves whitish
and rolled; score 5—growth severely retarded, most leaves rolled, only a few elongating;
score 7—complete cessation of growth, most leaves dry, some plants dying; score 9—almost
all plants dead or dying.

After scoring, the second fully expanded leaves of three plants in each hole were
harvested. Quickly cut a 1.5 cm fragment from the leaf base, separately pack the material
of each hole in aluminum foil, avoiding folding the leaves, and place on ice for chlorophyll
determination. The rest of the cut leaves were immediately put into a small zip plastic bag
of known weight for measuring the water content.

4.2.3. Chlorophyll Determination

The chlorophyll content was estimated as described in the protocol of [121] with some
modifications. The harvested samples were weighed, put into 2-mL Eppendorf tubes, and
ground in liquid nitrogen. The pellet was resuspended in 1.5 mL of 85% acetone solution
and centrifuged at 12,000× g at 4 ◦C for 15 min. One milliliter of the supernatant was
collected, and the absorbance was measured at wavelengths of 645 and 663 nm using a
7305 UV/visible spectrophotometer (Jenway, Staffordshire, UK). The chlorophyll content
was calculated as follows: total chlorophyll (Chl_total, μg/mL) = 20.2 (A645) + 8.02 (A663),
chlorophyll a (Chla, μg/mL) = 12.7 (A663) − 2.69 (A645), chlorophyll b (Chlb, μg/mL) =
22.9 (A645) − 4.68 (A663). The values were then converted to the amount of chlorophyll per
milligram of fresh tissue (μg/mg). The ratio of chlorophyll a to chlorophyll b (Chla_b) was
also determined.

4.2.4. Water Content Measurement

The bags containing samples were weighed to determine the sample fresh weight
(FW). After being dried for 3 days at 70 ◦C in an oven, the sample dry weight (DW) was
measured. The leaf water content of each sampling was calculated using the formula:
WC (%) = (FW − DW) × 100/FW.
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4.2.5. Ion Content Measurement

The above dried samples with known weight (DW, mg) were used for measurement of
Na+ and K+ ion content. The samples were put into 15-mL Falcon tubes, and 10 mL of 0.1 N
hydrochloric acid solution was added. After sample ion solubilization at room temperature
overnight, 2 mL of sample solution at 200-fold dilution (10 μL of first sample solution +
2 mL 0,1 N hydrochloric acid solution) was used to measure Na+ and K+ concentrations
(mg/L) by a SpectrAA 220FS atomic absorption spectrometer (Varian, US). The Na+ and
K+ contents (ConcNa and ConcK) were then converted back to the quantity of Na+ and
K+ ions per gram of dry weight (mg/gDW) by the following equations: ConcNa = [Na+

measurement (mg/L) × dilution rate (200) × volume of first sample solution (10 mL)]/DW
(mg); ConcK = [K+ measurement (mg/L) × dilution rate (200) × volume of first sample
solution (10 mL)]/DW (mg). The Na+/K+ ratio (Na_K) was calculated as the proportion of
Na+ content to K+ content.

4.3. Statistical Analysis of Phenotypic Data

Statistical analysis of phenotypic data (means, standard deviations, coefficients of
variation (CVs), graphs) was carried out in the R software v3.6.2. Analysis of variance
(ANOVA) was performed to test the effect of genotype and replication using a linear model
of the R function lm(). Broad-sense heritability (H2) was used to estimate the genetic
variance based on the variance among phenotypic measurements between three replicates
of the panel. H2 was computed using the following formula: H2 = (F-value − 1)/F-value,
where the F-value was derived from analysis of ANOVA for the genotype effect [18].
Phenotypic correlations between traits were evaluated by the Pearson method using the
corrplot R package. The R function cor.test() was used to test the significance of the
correlation coefficients.

4.4. Genome-Wide Association Study

The phenotypic data from the salt test and SNP genotypic data on the full panel and the
indica and japonica subpanels were separately used to study the marker-trait associations
by incorporating a kinship matrix along with population structure. In the Tassel software
v.5.0, the structure matrix was determined with 6 axes on the SNP data of the population
by running a principal component analysis (PCA). The kinship matrix was built by the
pairwise identity-by-state method, to account for relatedness of individuals among 182
accessions. Q-Q and Manhattan plots of the negative log10-transformed observed p-values
for each SNP-trait association were created to visualize the GWAS results. Markers with a
p-value ≥ 5 × 10−4 were declared significant.

The number of QTLs from the detected associations was determined based on linkage
disequilibrium (LD) between SNPs surrounding the significant markers. The LD heatmaps
were plotted by using the LDheatmap R package, and the genomic regions of QTLs
were limited by LD blocks with r2 values (squared allele frequency correlation) between
SNPs > 0.4. For a low LD block (<50 kb), the interval of QTLs was enlarged by a distance
of +/− 50 kb. The qqman package in R software was utilized to highlight the significant
markers of strong QTLs in Manhattan plots. The genes in the genomic regions of strong
QTLs were scanned in the MSU rice database.

5. Conclusions and Future Prospects

Our approach identified different QTLs characterized by the presence of a high number
of genes associated with the response to salinity or abiotic stress. Interestingly, these
genes are related to hormone transduction pathways or transcriptional modulation of
gene expression in response to stress, suggesting that these QTLs act in complementary
ways to control the salinity tolerance, which is of major interest for breeding programs.
Pyramiding several favorable QTLs in a variety will ensure a better resilience of the plant
to salinity stress under different environmental conditions and then a better sustainability
of the variety. Therefore, it will be interesting to conduct introgression of the major QTLs
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identified in this study such as QTL25 in modern varieties cultivated in the Mekong or Red
River Delta areas such as Bac Thom 7 and Khang Dan 18. The function of the four BAK1
genes in QTL25 should be specified by generating single and multiple gene mutations
using the CRISPR Cas9 system.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/plants10061088/s1, Figure S1: Correlation plots in the full panel and the indica and japonica
subpanels, Figure S2: Manhattan plots and Q-Q plots for GWAS of salinity tolerance-related traits in
the indica panel. In the Manhattan plots, significant SNPs are highlighted in red, Table S1: GWAS
associations and significant SNPs at p ≤ 1 × 10−3 in the full panel and the indica subpanel, Table S2:
Colocalizations of the QTLs identified in this study with previous reports, Table S3: Colocalizations
of the QTLs detected in this and previous studies using the same rice panel and genotyping data,
Table S4: List of the 183 rice accessions used in the experiment.
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Abstract: Plants remodel their root architecture in response to a salinity stress stimulus. This process
is regulated by an array of factors including phytohormones, particularly auxin. In the present
study, in order to better understand the mechanisms involved in salinity stress adaptation in rice, we
compared two contrasting rice cultivars—Luna Suvarna, a salt tolerant, and IR64, a salt sensitive
cultivar. Phenotypic investigations suggested that Luna Suvarna in comparison with IR64 presented
stress adaptive root traits which correlated with a higher accumulation of auxin in its roots. The
expression level investigation of auxin signaling pathway genes revealed an increase in several
auxin homeostasis genes transcript levels in Luna Suvarna compared with IR64 under salinity stress.
Furthermore, protein profiling showed 18 proteins that were differentially regulated between the
roots of two cultivars, and some of them were salinity stress responsive proteins found exclusively in
the proteome of Luna Suvarna roots, revealing the critical role of these proteins in imparting salinity
stress tolerance. This included proteins related to the salt overly sensitive pathway, root growth, the
reactive oxygen species scavenging system, and abscisic acid activation. Taken together, our results
highlight that Luna Suvarna involves a combination of morphological and molecular traits of the
root system that could prime the plant to better tolerate salinity stress.

Keywords: rice; abiotic stress; salinity; root; auxin; YUCCA; PIN; proteomics; mass spectrometry

1. Introduction

The plant root is the vital organ that serves a wide range of functions and regulates
crop productivity. As roots are in direct interface with the soil, they act as the primary
site for perceiving environmental stress-related signals for plants [1,2]. Among various
environmental stresses, salinity has emerged as one of the most serious threats limiting
global crop production and yield [3]. Currently, almost 20% of the world’s total irrigated
land is estimated to be affected by salinity stress and it is expected that by the end of the
year 2050, more than 50% of the world’s arable land will become saline [4–7]. High soil
salinity induces undesirable changes at phenotypic, biochemical, physiological, cellular,
genetic and molecular levels, which are detrimental to plant growth and survival [8]. The
root system responds to abiotic stresses by triggering stress adaptive mechanisms, which
are supposed to be regulated by a number of factors [2,9,10].

The potential of several phytohormones to ameliorate the damaging effects of salinity
stress has attracted the attention of researchers in the recent past [11,12]. Among different
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phytohormones, auxin is an important plant hormone well-known for controlling the dif-
ferent aspects of plant growth and development including tropistic growth, vascular tissue
differentiation, auxiliary bud formation, cell elongation, flower organ development and
abiotic stress tolerance [13–16]. It has also been regarded as a master player in triggering
salinity stress-induced changes in root system architecture [12]. Auxin regulates the root
growth rates by promoting lateral root formation and mediating the size of root meristem
by controlling the transition from cell division to cell differentiation processes [17,18].
The processes that determine the spatiotemporal distribution of auxin and the mainte-
nance of auxin homeostasis required for root growth and development include local auxin
biosynthesis, transport, perception, signaling, conjugation and degradation [19,20].

Although roots are the critical site for the perception of salinity stress signals and
are responsible for triggering stress-related mechanisms in plants, very little attention has
been paid to analyzing this underground part of the plant in the context of understanding
salinity tolerance. Physiological, biochemical and genetic studies have provided ample
evidence in support of the key role of auxin in triggering abiotic stress-mediated differential
modifications in the root system architecture of plants [21]. The key role of the maintenance
of auxin homeostasis in regulating salinity stress tolerance is emerging in plant biology [22].
In the present study, in order to better understand the mechanisms conferring rice adapta-
tion to salinity stress, we conducted a comparative analysis of various auxin-related genes
(which regulate auxin homeostasis) in the roots of salt sensitive IR64 and salt tolerant Luna
Suvarna (LS) cultivars of rice under optimal as well as salinity stress conditions. Further,
the endogenous content of indole-3-acetic acid (IAA) has also been estimated in the roots
of two contrasting salinity stress cultivars of rice, and an analysis of their root morphology
has been performed.

For finding significant clues on the adaptive behavior of plants to salinity stresses,
studies at the protein level might be a better option compared to at the transcript level
since many post-transcriptional and post-translational changes often take place in plants
and hence, the rate of transcription and the translation will not necessarily always corre-
late. Hence, proteome-based approaches involving two-dimensional gel electrophoresis
(2-DE) and mass spectrometry (MS) are often utilized for unraveling proteins associated
with induced changes in plants as they are very reliable, sensitive and powerful tech-
nologies [9,23]. For example, a comparative study of the leaf proteome profiles of the
wild salt tolerant Poaceae species Porteresia coarctata with two rice cultivars variable in
salt sensitivity—IR64 (salt-sensitive) and Pokkali (salt-tolerant)—suggested that, in the
leaves of Porteresia coarctata, several proteins exhibited up-regulation that could provide it
a physiological advantage under salinity stress [24]. However, there are limited reports
on a comparative proteome analysis of the root of contrasting salt-responsive cultivars of
rice. Therefore, herein a comparison of the root proteome of two rice cultivars differing
in salt tolerance has been conducted using 2-DE and MS. Our results showed that salt
tolerant rice cultivar LS has better stress adaptive root traits, elevated expression of auxin
homeostasis genes and more endogenous IAA content than IR64 cultivar, which could be
linked to the acquisition of natural salinity stress tolerance in LS. Further, several salinity
stress responsive proteins were detected exclusively in the roots of LS, which might be
providing a peculiar property for attaining salinity stress adaptation and tolerance in rice.

2. Results

2.1. Analysis of Morphological Parameters and IAA Quantification in IR64 and LS

The differences in the morphological parameters of the two cultivars were clearly
observable when cultivated in normal conditions (Figure 1A,B). An approximately 40%
increase in the length of shoot and a 70% longer roots were observed in the salt-tolerant
cultivar, LS, as compared to the sensitive cultivar IR64 (Figure 1A–C,F). The number of
roots (primary root and crown roots) was also found to be 169% more in LS (Figure 1G).
Moreover, an increase in the fresh weight of shoots and roots by 101% and 137% respectively,
was noticed in LS (Figure 1D,H). Similarly, an approximately 122% and 170% enhancement
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in the dry weight of shoots and roots in the tolerant cultivar, respectively, was observed in
LS with respect to IR64 (Figure 1E,I). The amount of endogenous IAA was also quantified in
the roots of IR64 and LS. It was observed that in LS roots, the endogenous IAA concentration
was significantly higher (1.086 μg/gFW) as compared to IR64 roots (0.6608 μg/gFW)
(Figure 1J).

2.2. Expression Analysis of Genes Involved in Auxin Homeostasis in IR64 and LS Roots

To better understand the cause of the differences observed in the IAA content in the
roots of both cultivars, the transcript levels of various genes involved in auxin homeostasis
were measured by qRT-PCR under optimal and salinity stress conditions. Among various
auxin biosynthesis genes, the transcript levels of OsYUCCA5, OsYUCCA7, and OsYUCCA8
exhibited significant up-regulation of 2.79, 3.53, and 2.58 fold, respectively, in the roots of
the salt-tolerant cultivar LS as compared to the salt-sensitive cultivar IR64 of rice under
normal conditions (Figure 2A). In response to salinity stress, significant down-regulation
of OsYUCCA3, OsYUCCA4, OsYUCCA6, OsYUCCA7, and OsYUCCA9 by 0.43, 0.15, 0.18,
0.27, and 0.39 fold was observed in IR64 with respect to the control (Figure 2A). In the
LS cultivar, auxin biosynthesis genes OsYUCCA3, OsYUCCA4, OsYUCCA5, OsYUCCA6,
OsYUCCA7, and OsYUCCA9 exhibited significant up-regulation by 2.83, 2.79, 7.88, 6.75,
4.53 and 3.07 fold, respectively, in the roots upon salinity stress with respect to the IR64
(control) (Figure 2A). On the contrary, the expression level of OsYUCCA1 and OsYUCCA8
exhibited significant down-regulation by 0.41 and 0.75 fold, respectively, in the LS root
compared to the control (Figure 2A). The transcript levels of OsYUCCA2 did not show any
significant difference in two contrasting salinity stress responsive cultivars of rice under
normal and salinity stress conditions.

Among different auxin efflux transporter OsPIN genes, OsPIN2, OsPIN5a, and Os-
PIN5b exhibited higher transcript level accumulation of 1.95, 2.36, and 2.46 fold, respectively,
in the roots of untreated LS as compared to the IR64 (Figure 2B). On the contrary, significant
down-regulation in the expression of OsPIN1b, that is, 0.48, was found in the roots of LS
as compared to the salt-sensitive cultivar IR64 of rice (Figure 2B). In response to salinity
stress in the IR64 cultivar, significant down-regulation of OsPIN1a and OsPIN2 by 0.28 and
0.23 fold, respectively, was observed as compared to the control. The expression of auxin
efflux transporters OsPIN1a, OsPIN1b, OsPIN2, OsPIN3a, and OsPIN5b was up-regulated by
4.51, 1.62, 5.46, 1.42, and 1.54 fold, respectively, in the roots of the LS cultivar under salinity
stress as compared to the untreated IR64 control (Figure 2B). However, the transcript levels
of OsPIN1c and OsPIN1d did not show any significant differences between the two cultivars
in response to control or salinity stress conditions (Figure 2B). Under the effect of salinity
stress, OsPIN5a and OsPIN9 exhibited down-regulation by 0.85 and 0.33 fold, respectively,
in LS than the roots of the control (Figure 2B).
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Figure 1. (A) Growth response of IR64 and Luna Suvarna (LS) shoot under control conditions; (B) Growth response of IR64
and Luna Suvarna (LS) roots under control conditions; (C) Comparative analysis of shoot length in IR64 and Luna Suvarna;
(D) Comparative analysis of the fresh weight of shoot in IR64 and Luna Suvarna; (E) Comparative analysis of the dry weight
of shoot in IR64 and Luna Suvarna; (F) Comparative analysis of root length in IR64 and Luna Suvarna; (G) Comparative
analysis of the number of roots in IR64 and Luna Suvarna; (H) Comparative analysis of the fresh weight of roots in IR64 and
Luna Suvarna; (I) Comparative analysis of the dry weight of roots in IR64 and Luna Suvarna; (J) IAA estimation in the roots
of IR64 and LS. Data represent mean ± SE (n = 15) for the analysis of growth parameters while for IAA quantification mean
± SE (n = 3). Asterisks signs (*) represent values which were significantly different among different samples (Fisher LSD,
p ≤ 0.05). Blue color represents IR64 while red color represents LS cultivar.
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Figure 2. Real-time gene expression analysis of auxin homeostasis genes under control and salinity stress conditions in IR64
and LS roots. (A) Real-time gene expression of auxin biosynthesis genes; (B) Real-time gene expression of auxin transport
genes; (C) Real-time gene expression of auxin conjugation and degradation genes; (D) Real-time gene expression of auxin
receptor genes; (E) Real-time gene expression of auxin signaling genes. Three biological replicates were taken and bars
represent mean ± SE. Asterisks signs (*, **, ***) represent values which were significantly different among different samples
(Fisher LSD, p ≤ 0.05). The transcript levels of LS under normal condition and, LS and IR64 upon salinity stress treatment
were compared with IR64 (control), whose expression was assumed as 1. (-NaCl) refers to untreated samples, (+NaCl) refers
to salinity treated samples. Blue color refers IR64 root (-NaCl), red color refers to LS root (-NaCl), green color refers to IR64
root (+NaCl), and purple color refers to LS root (+NaCl). 169
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The transcript levels of auxin conjugation and degradation gene OsGH3.13 were found
to be higher by 2.04 fold in the LS root under normal conditions (Figure 2C). In response to
the salinity stress, no significant change was observed in the gene expression of OsGH3.13
in IR64, whereas OsGH3.13 displayed significant down-regulation by 0.63 fold in the LS
root with respect to the control (Figure 2C). The gene expression of OsGH3.8 did not
exhibit a significant change in the roots of LS under the normal conditions with respect to
IR64. OsGH3.8 displayed 1.21 fold higher accumulations in the tolerant cultivar LS, and
its expression remained unaltered in IR64 in response to salinity stress (Figure 2C). The
expression of auxin receptor genes, particularly OsTIR1, OsAFB2 and OsABP1, was studied
in the roots of salt-sensitive cultivar IR64 and salt-tolerant cultivar LS of rice under normal
and salinity stress (Figure 2D). It was observed that the expression of OsTIR1 and OsAFB2
displayed up-regulation by 1.96 and 1.86 fold in the roots of the LS under the normal
conditions as compared to IR64. Similarly, the transcript level accumulation of OsABP1,
the auxin receptor of the proteasome independent pathway was also found to be higher by
1.46 fold in the roots of LS than IR64 (Figure 2D). Under the effect of salinity stress, OsTIR1
exhibited 1.46 fold up-regulation, while OsAFB2 displayed 0.73 fold down-regulation
in IR64 than in the control (Figure 2D). In LS roots, it was observed that the expression
of OsAFB2 and OsABP1 displayed up-regulation by 1.36 and 1.22 fold, respectively, in
response to salinity stress. On the contrary, OsTIR1 showed 0.68 fold down-regulation in
the roots of LS (Figure 2D). Interestingly, various auxin signaling genes, such as OsARF1,
OsARF2, OsARF16, OsAUX/IAA1 and OsAUX/IAA4, also exhibited higher gene expression
of 2.49, 3.26, 1.72, 1.66, and 1.54 fold, respectively, in the LS root as compared to the IR64
under control conditions (Figure 2E). In response to salinity stress, the transcript levels of
OsARF1, OsARF2, OsARF16, OsAUX/IAA1, and OsAUX/IAA4 displayed down-regulation
by 0.91, 0.62, 0.09, 0.6, and 0.67 fold, respectively, in IR64 with respect to the control. On
the contrary, OsARF2, OsARF16, OsAUX/IAA1 and OsAUX/IAA4 exhibited up-regulation
by 1.59, 1.96, 1.52, and 1.48 fold, respectively, in the LS root under salinity stress stimuli
(Figure 2E). The expression level of OsARF1 did not show any significant differences in the
two contrasting salt tolerant cultivars of rice under salinity stress (Figure 2E).

2.3. 2-DE Analysis of Root Proteins in IR64 and LS

In complement to auxin-related gene expression analysis, the proteins isolated from
roots of 14-days old seedlings of salt-sensitive IR64 and salt-tolerant LS cultivars of rice
were subjected to 2-DE analysis. A total of 146 spots were detected in IR64 while 166 spots
were observed in LS (Figure 3), using PDQuest 8.0.2 software. Among these protein spots,
27 were observed to be either present/absent and few were of altered intensity in the roots
of IR64 and LS. These spots were excised and sent for MALDI TOF/TOF MS/MS analysis.
Out of 27 spots, only 18 proteins were successfully identified (Tables 1 and 2). The plant
intracellular Ras group related LRR protein 2, B3 domain-containing protein, and Ubiquitin
fold modifier protein 1 displayed higher protein expression by 1.76, 1.1, and 3.75 fold in
the roots of LS in comparison to IR64, respectively (Table 2). Among the 18 identified
proteins, 13 proteins were implicated in abiotic stress responses and two of them exhibited
enzymatic activity. One protein constituted the core nucleosome component, however,
another protein was involved in autophagy and protein transport and the remaining one
protein function in the DNA methylation process.
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Figure 3. Two-dimensional gel electrophoretic analysis of the protein profiles of rice root proteome under control condition
(A) IR64 root (B) Luna Suvarna (LS) root.

Table 1. Specifically expressed proteins in Luna Suvarna (LS) versus IR64 roots identified using MALDI-ToF/ToF
mass spectrometry.

Spot Protein Name
Accession
Number

MSU Number
Reference
Organism

Mrpi
(Theoretical)

Score Coverage Function

1 Histone H2B.10 H2B10_ORYSI LOC_Os01g05610.1 Oryza sativa
subsp. Indica 16522 (10.02) 41 36% Core nucleosome

component

2
DEAD-box

ATP-dependent
RNA helicase 53

RH53_ORYSJ LOC_Os07g05050.1 Oryza sativa
subsp. Japonica 65429 (9.44) 47 15% Abiotic stress

responses

3

Glyceraldehyde-3-
phosphate

dehydrogenase
3 cytosolic

G3PC3_ORYSJ LOC_Os02g38920 Oryza sativa
subsp. Japonica 36716 (7.68) 37 38% Glycolysis

enzyme

4
Calcineurin B-like
interacting protein

kinase 21
CIPKL_ORYSJ LOC_Os07g44290 Oryza sativa

subsp. Japonica 59592 (9.26) 39 15% Abiotic stress
tolerance

5 4-Coumarate-CoA
ligase-like 9 4CLL9_ORYSJ LOC_Os04g24530 Oryza sativa

subsp. Japonica 59782 (5.69) 46 22% Abiotic stress
tolerance
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Table 1. Cont.

Spot Protein Name
Accession
Number

MSU Number
Reference
Organism

Mrpi
(Theoretical)

Score Coverage Function

6 β-glucosidases 12 BGL12_ORYSJ LOC_Os04g39880 Oryza sativa
subsp. Japonica 57713 (8.75) 47 11% Abiotic stress

tolerance

7
Ubiquitin-like

protein
autophagy-related

ATG12_ORYSI LOC_Os06g10340 Oryza sativa
subsp. Indica 10454/9.05 34 32% Autophagy and

protein transport

8 Phytosulfokines 3 PSK3_ORYSJ LOC_Os03g47230 Oryza sativa
subsp. Japonica 8341/5.83 34 29% Abiotic stress

tolerance

9 Cyanate hydratase CYNS_ORYSI LOC_Os10g33270 Oryza sativa
subsp. Indica 18653/5.61 33 44% Abiotic stress

tolerance

10
Probable protein

arginine N-
methyltransferase

ANM3_ORYSI LOC_Os07g44640 Oryza sativa
subsp. Indica 69127/4.49 29 13%

Mediates
methylation

process

11
Heat stress

transcription factor
B 1

HSFB1_ORYSJ LOC_Os09g28354 Oryza sativa
subsp. Japonica 33121/9.35 33 43% Abiotic stress

responses

12
Delta 1-pyrroline-5-

carboxylate
synthase

P5CS_ORYSJ LOC_Os05g38150 Oryza sativa
subsp. Japonica 78153/6.37 53 14% Abiotic stress

tolerance

13
Calcineurin

B-like-interacting
protein kinase 29

CIPKT_ORYSJ LOC_Os07g48090 Oryza sativa
subsp. Japonica 48581/8.69 38 44% Abiotic stress

tolerance

14 Minichromosome
maintenance 6 MCM6_ORYSI LOC_Os05g14590 Oryza sativa

subsp. Indica 93168/5.55 43 17% Abiotic stress
tolerance

15 UDP-glucose
6-dehydrogenase 1 UGDH1_ORYSJ LOC_Os03g31210 Oryza sativa

subsp. Japonica 52834 (5.75) 39 13% Enzymatic
function

Spots 1–14 were exclusively observed in the case of Luna Suvarna root, whereas spot 15 was differentially less expressed in the IR64 root.

Table 2. Highly expressed proteins in Luna Suvarna (LS) roots as compared to IR64 identified using MALDI-ToF/ToF mass
spectrometry.

Spot Protein Name
Accession
Number

MSU Number
Reference
Organism

Mrpi
(Theo-
retical)

Mrpi
(Experimental)

ScoreCoverage Function

a Plant intracellular Ras group
related LRR protein 2 PIRL2_ORYSJ LOC_Os02g38040 Oryza sativa

subsp. Japonica 55345/5.51 114.7/5.6 30 27% Abiotic stress
tolerant

b Ubiquitin-fold modifier 1 UFM1_ORYSJ LOC_Os01g73140 Oryza sativa
subsp. Japonica 10356/9.60 81.67/5.98 30 44% Abiotic stress

tolerant

c B3 domain-containing
protein Y1237_ORYSJ LOC_Os01g52540 Oryza sativa

subsp. Japonica 83749/5.81 118.37/5.71 38 34% Abiotic stress
tolerant

Comparative expression analysis of identified stress marker genes (which are known
for exhibiting tolerance against salinity stress) (Table 3) was performed in the roots of
IR64 and LS under the native condition to complete the results obtained with MS at the
transcript level. The transcript levels of 4-coumarate CoA ligase 9 (CCoA), β-glucosidases 12
(β-gluc), phytosulfokines 3 (PSK), and B3 domain-containing protein (B3D) were observed to
be 1.09, 1.02, 3.64, and 1.78 fold higher, respectively, in LS roots compared to IR64 under
normal conditions (Figure 4). However, the gene expression of calcineurin B-like interacting
protein kinase 21 (CIPK), delta-pyrroline-5-carboxylate synthase (P5CS), cyanate hydratase (CHS),
DEAD-box ATP-dependent RNA helicases 53 (DEAD), plant intracellular Ras group related
LRR protein 2 (RAS-LRR), and minichromosome maintenance 6 (MCM6) was 0.69, 0.38, 0.30,
0.21, 0.64, and 0.22 fold lower, respectively, in the roots of tolerant cultivar LS (Figure 4)
with respect to the salt-sensitive IR64. Under salinity stress, β-gluc and B3D displayed
up-regulation of 1.22 and 2.44 fold, respectively, in IR64 roots compared to the control
(Figure 4). On the contrary, CIPK, CCoA, PSK, P5CS, CHS, and MCM6 showed lower
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transcript levels by 0.54, 0.53, 0.066, 0.15, 0.75, and 0.72 fold, respectively, in IR64, while
DEAD exhibited no significant change in its expression. In response to salinity stress, the
expression of CIPK, CCoA, PSK, CHS, DEAD and MCM6 was 1.85, 1.86, 15.26, 1.32, 1.5, and
1.37 fold higher respectively, in LS roots compared to control IR64 (Figure 4). However, the
transcript level of β-gluc, P5CS, B3D and RAS-LRR exhibited 0.83, 0.78, 0.41, and 0.65 fold
(Figure 4) lower transcript level accumulation, respectively, in the roots of the tolerant
cultivar (LS) under salinity stress stimuli.

 

Figure 4. The relative expression levels of genes encoding for proteins differentially accumulated in IR64 and Luna Suvarna
(LS) roots under control and salinity stress conditions. Three biological replicates were taken and bars represent mean ± SE.
Asterisks signs (*, **, ***) represent values which were significantly different among different samples (Fisher LSD, p ≤ 0.05).
The transcript levels of LS under normal condition and, LS and IR64 upon salinity stress treatment were compared with
IR64 (control), whose expression was assumed as 1. (-NaCl) refers to untreated samples, (+NaCl) refers to salinity treated
samples. Blue color refers to IR64 root (-NaCl), red color refers to LS root (-NaCl), green color refers to IR64 root (+NaCl)
and purple color refers to LS root (+NaCl). CIPK: Calcineurin B-like interacting protein kinase 21; CCoA: 4-coumarate
CoA ligase like 9; β-gluc: Beta-glucosidase 12; PSK: Phytosulfokines 3; P5CS: Delta-1-pyrroline-5-carboxylate synthase;
CHS: Cyanate hydratase; DEAD: DEAD-box ATP-dependent RNA helicase 53; RAS-LRR: Plant intracellular Ras group
related LRR protein 2; B3D: B3 domain-containing protein; MCM6: minichromosome maintenance 6.
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3. Discussion

Plant roots perceive the salinity stress signals and promptly pass them to the shoot to
activate various stress-responsive pathways [1,2,9,10]. Although roots are the important
site for the perception of salinity stress-related signals, not much attention has been paid
to exploring this underground part of the plant in the context of understanding salinity
tolerance attributes. In the present study, a positive correlation has been observed between
the root system architecture, auxin content, stress marker proteins, and salinity stress
adaptation. It was observed that the salinity stress tolerant LS cultivar of rice has a longer
primary root, a larger number of roots and a higher fresh weight and dry weight in
comparison to IR64. It is realized that plants acquire deeper roots, more lateral roots, more
root hair length, and a larger number of roots and its biomass for achieving natural defense
against stress conditions including salinity [25–27]. Moreover, it has been demonstrated
that the presence of a larger root/shoot length ratio and a higher root biomass promoted the
adaptation of plants towards environmental stresses [24,28]. Thus, the present observation
of distinct differences in the root phenotype of LS compared to IR64 could be extrapolated
to the acquisition of adaptive morphological traits that enable LS plants to mitigate salinity
stress when exposed.

It is believed that phytohormones are critical signaling molecules that function down-
stream of environmental stimuli and regulate various stress adaptive pathways [29]. In
previous studies, it has been demonstrated that high salinity stress greatly affects root ar-
chitecture by inhibiting primary and lateral root growth through altering the accumulation
and distribution of the critical phytohormone, auxin [30–33]. Among different auxins, the
role of primary auxin IAA is thought to be fundamental as it is the key player in regulating
root development [34,35]. Thus, in the present work, the endogenous levels of IAA have
been estimated. Upon analysis, it was observed that LS exhibited significantly higher
IAA content compared to IR64 roots. Earlier, it was reported that iaam-OX transgenic
lines (with higher endogenous IAA level) and wild-type plants of Arabidopsis pretreated
with IAA exhibited resistance towards drought stress [15]. However, the triple mutants,
yuc1yuc2yuc6, which were deficient in endogenous IAA content, showed decreased resis-
tance towards drought stress [15]. Moreover, augmented levels of indole-3-butyric acid
(IBA) in growing leaves and higher IAA content in the roots of the highly salt-resistant
maize variety, SR03, were observed in response to salinity stress [32]. It was revealed
that the increased IAA concentration enhanced the accumulation of cell growth-related
agents, such as β-expansins (involved in cell wall extension), under salinity stress [32,36].
In Arabidopsis iar4 mutants, reduced root meristem activity and root growth were reported
due to diminished auxin distribution in root tips, indicating the key role of auxin in root
growth and development [30]. The exogenous application of auxin is also well known
to positively modulate root architecture, especially the lateral root number [15,33,37,38].
Thus, the higher endogenous levels of IAA observed in salt tolerant rice cultivar (LS) could
be considered as one of the prominent reasons for the acquisition of salinity stress adaptive
root traits observed in the LS cultivar.

It is well realized that the process of auxin-mediated root development is regulated by
a complex interplay between auxin metabolism, its signaling and transport leading to the
spatio-temporal distribution of auxin [12,39,40]. Thus, to get insights into the molecular
dynamics of auxin homeostasis, the transcript-level expression of different genes involved
in the auxin pathway has been analyzed in roots in the present work. Recent studies suggest
that the local biosynthesis of auxin by YUCCA flavin monooxygenases in the roots is the
primary source for normal root development and root gravitropic responses [35]. Moreover,
it has been demonstrated that five YUCCA genes—YUCCA3, YUCCA5, YUCCA7, YUCCA8,
and YUCCA9—express highly in Arabidopsis roots, playing an essential role in the root
development [35]. However, the link of YUCCA genes and salinity stress adaptation has
never been evaluated in rice. Interestingly, in the present study, it was observed that the
transcript level accumulation of different OsYUCCA genes was higher in the roots of LS. It
might be the primary reason for more auxin biosynthesis and its accumulation in LS roots.
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Further, in response to salinity stress, the transcript level accumulation of OsYUCCA3,
OsYUCCA4, OsYUCCA5, OsYUCCA6, OsYUCCA7, and OsYUCCA9 was enhanced in LS
roots. In Arabidopsis, YUCCA8 and YUCCA9 have been linked with the development of
lateral roots, while their mutants develop shorter primary roots suggesting their key role in
the development of root system architecture [41]. Hence, the present study hints towards a
link between OsYUCCA genes mediated enhanced auxin accumulation and subsequently
better developed root system architecture for the acquisition of salinity stress tolerance
in rice.

Once IAA is biosynthesized, it is transported to the area of its requirement with the
help of cell-to-cell auxin transport mediated by OsPINs in rice [42]. Earlier, it was found
that polar auxin transport is affected by osmotic stress caused by increased salinity or
drought [31]. Moreover, flavonoids and phenolic compounds that are accumulated in
response to stress exposure also inhibit polar auxin transport [43,44]. Interestingly, in
the present study, the transcript levels of auxin efflux carrier genes, such as OsPIN1a,
OsPIN2, OsPIN3a, OsPIN5a, and OsPIN5b, were found to be higher in the LS root. More-
over, under salinity stress, the expression of auxin transport genes, particularly OsPIN1a,
OsPIN1b, OsPIN2, OsPIN3a, and OsPIN5b, was up-regulated in the roots of LS. OsPIN1b
and OsPIN9 have been suggested to participate in root development in rice, by regulating
auxin-cytokinin interaction [45]. Further, OsPIN2 expresses highly in roots and enhances
shoot to root auxin transport [46]. Thus, the increased expression of such transporter
genes in LS roots suggests that salt-tolerant rice cultivar has better capability to maintain
auxin homeostasis under salinity stress; however, further investigations are necessary to
consolidate these findings.

The optimum concentration of IAA is maintained in a cell through their conjuga-
tion and degradation by OsGH3 genes [47]. Hence, the expression of auxin conjugation
and degradation gene OsGH3.13 was analyzed in the roots of salt-sensitive (IR64) and
salt-tolerant cultivar (LS) of rice. It was observed that the expression of OsGH3.13 was
significantly higher in the roots of LS, which is contradictory to the observed higher IAA
content in LS. Thus, it can be inferred that the role of the OsYUCCA genes is probably more
critical in regulating auxin content in rice as compared to OsGH3. Further, the analysis of
OsGH3.8 at transcript level suggests no difference in expression level between IR64 and LS
roots. However, under salinity stress, the transcript level accumulation of OsGH3.13 was
down-regulated in the roots of LS compared to IR64. On the contrary, OsGH3.8 exhibited
up-regulation in the root but not to a significant level. It indicates that the lower expres-
sion of OsGH3.13 under NaCl application in LS root might be responsible for providing
tolerance against salinity stress, probably by enhancing IAA levels.

Various findings have suggested that OsAFB2 and OsTIR1 are the auxin signaling
receptors affected by salinity stress [31,48]. However, their probable role in providing
a natural defense against salinity stress has never been evaluated. In the present study,
the transcript level accumulation of auxin receptor genes OsTIR1, OsAFB2, and OsABP1
were found to be elevated in the roots of LS with respect to IR64 under normal conditions.
This identification of the enhanced expression of auxin receptors can be linked to higher
auxin content in the roots of LS compared to IR64. Under salinity stress, the expression of
OsTIR1 showed down-regulation in LS roots with respect to control IR64. On the contrary,
the transcript levels of OsAFB2 and OsABP1 exhibited up-regulation in the roots of LS
compared to IR64 under the salt application. The expression of various auxin signaling
genes, OsARF1, OsARF2, OsARF16, OsAUX/IAA1, and OsAUX/IAA4, was also found
to be higher in the roots of LS compared to IR64 under both control as well as salinity
stress conditions, demonstrating elevated endogenous IAA level in LS root compared
to IR64. Previous studies have also linked elevated auxin concentration with increased
auxin transport and downstream signaling genes [49], thus promoting auxin-mediated root
development. In rice, 31 auxin repressor (OsAUX/IAAs) and 25 auxin activator (OsARFs)
genes that participate in auxin signaling were observed to be suppressed by cold, heat and
drought stress [31]. On the contrary, some OsAUX/IAA, such as OsAUX/IAA 6,9,18,19,20

175



Plants 2021, 10, 1544

and 28 and OsARF 4,11,13,14,16,18 and 19, were induced by at least one among cold, heat,
and drought stress [31]. Hence, various auxin signaling genes respond differentially to
abiotic stresses such as cold, heat and drought [31]. However, to the best of our knowledge,
there is no report on the effect of salinity stress on the auxin signaling genes. It has been
suggested that, in Arabidopsis Aux/IAA protein, IAA14 participates in the early stages of
lateral root development [50,51]. Hence, the observed elevated expression of AUX/IAA in
LS root compared to IR64 might be extrapolated to the salt tolerance and a higher number
of roots detected in the tolerant cultivar.

The comparative proteomics study revealed that some proteins were specifically
present in the roots of LS compared to IR64. Among these, CIPK21 and CIPK29, the Ca2+

sensing proteins of the CIPK gene family, have been previously linked with the enhanced
tolerance against salinity stress conditions in Arabidopsis [52,53]. It was suggested that
salt overly sensitive 3 (SOS3) encodes for CBL, which functions in sensing the cytosolic
Ca2+ concentration by directly binding to it [52,54]. The Ca2+ bound CBL proteins directly
activate their interacting partners, such as CIPK6, which are involved in auxin transport,
regulation of root length and lateral root development [52,54]. CIPK6 also enhances the
transcript levels of NAC, PIN2, and P5CS genes, which promote salinity stress resistance
in plants [52]. P5CS protein, which is involved in proline biosynthesis, was also observed
to show increased levels in LS roots in the current study. Proline is involved in the
maintenance of cell turgor or osmotic balance, stabilizing membranes to prevent the
leakage of electrolytes, and regulates reactive oxygen species (ROS) homeostasis [55,56].
Thus, it can be supposed that the increased levels of an enzyme involved in proline
biosynthesis could be responsible for enhancing the proline content in the LS roots that
has been previously linked to salinity tolerance [2]. In LS roots, a higher abundance of
lignin biosynthesis protein, CCoA, was also observed. There is evidence that salinity
stress causes increased lignification of the cell wall through maintaining the structural
rigidity and durability of desert poplar plants [57]. Thus, the current finding indicates
the possible role of lignin deposition in enhancing salinity stress tolerance in rice [57–59].
Further, higher protein accumulation of detoxification enzyme, CHS (which detoxifies
cytotoxic compounds such as cyanate), was observed exclusively in LS roots. CHS also
supplies salinity-stressed plants with alternative sources of nitrogen and carbon for better
adaptation [60,61]. PSK, which was found exclusively in LS roots, is linked to plant
immunity and the maintenance of cellular homeostasis, and is also involved in normal
root growth and development [62]. PSK also decreases ethylene production which hinders
the primary root growth by inhibiting cell proliferation in the meristematic zone and cell
elongation in the elongation zone [62–64]. Hence, the augmented root growth and salinity
stress tolerance observed in LS compared to IR64 could also be linked to the higher PSK
content. Another stress marker protein, DEAD, was observed exclusively in the roots
of LS. In earlier reports, DEAD has been shown to provide salinity stress tolerance in
transgenic tobacco by reducing oxidative stress through activating the ROS scavenging
system [65,66]. It also improves a plant’s photosynthesis machinery, enhances plant growth
and development, and mitigates salinity stress [65]. Hence, the higher accumulation of
DEAD in LS roots might be involved in scavenging excess ROS, leading to the promotion
of salinity stress tolerance. Moreover, β-gluc, which enhances the ABA pool, was also
found exclusively in LS roots. The key role of β-gluc in releasing active and free forms of
abscisic acid (ABA) from physiologically inactive ABA-glucose conjugate pool, resulting in
the alleviation of salinity stress, has already been reported [67,68]. Therefore, the higher
accumulation of β-gluc in LS roots might promote ABA accumulation, thus enhancing
salinity stress tolerance. The content of MCM6 protein was found exclusively in the roots of
the salt tolerant cultivar (LS), which plays an important role in the initiation and elongation
steps of eukaryotic DNA replication [69]. In one of the previous studies, the role of MCM6
in providing resistance against high salinity and cold stress has already been elucidated [69].
It was also suggested that the ectopic over-expression of Pisum sativum PsMCM6 in tobacco
confers salinity stress tolerance without affecting yield [65,69]. Further, there were some
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proteins, such as RAS-LRR, B3D and ubiquitin fold modifier 1, that expressed relatively
higher in LS as compared to IR64 roots. The enhanced protein accumulation of RAS-
LRR (which encodes polygalacturonase inhibitor proteins, PGIPs) plays a critical role in
mitigating salinity stress [68,70]. Further, the roots of LS also exhibited higher protein
accumulation of B3D (which triggers various stress-responsive genes) with respect to IR64
roots. RAV (related to ABI3/VP1) protein contains AP2 domain at N-terminal region
and B3D in its C-terminal region, which also confer salinity stress resistance through
regulating various stress-related genes (RD29A, RD29B, RAB18, ABI1, ERD15, KIN, ERD10,
and COR15a) [71]. The protein content of ubiquitin fold modifier 1 (UFM1) was found to be
several-fold higher in the roots of the tolerant cultivar (LS), which could prevent oxidative
damage caused by free radicals. It has been suggested that, in addition to ubiquitin, plants
utilize a number of ubiquitin-like proteins, such as those related to ubiquitin 1 (RUB1),
small ubiquitin-like modifier (SUMO), UFM1, and homology to ubiquitin (HUB), which
participates in providing abiotic stress tolerance [72,73]. These proteins confer resistance
against salinity stress by prohibiting the damage caused by free radicals and also prevent
endoplasmic reticulum-induced apoptosis in protein secretory cells [73,74]. In IR64, upon
the application of salinity stress, the expression of CIPK, CCoA, P5CS, PSK, CHS, and MCM6
genes exhibited down-regulations with respect to the control IR64, which might lead to
salinity stress susceptibility in the sensitive cultivar. The present finding also indicates
that, in IR64, the protein turnover rate might be high, probably leading to targeting of the
salinity stress responsive proteins towards degradation, leading to salinity stress sensitivity.
On the contrary, in LS upon salinity stress application, higher transcript accumulation of
CIPK, CCoA, PSK, CHS, DEAD and MCM6 was observed, which could be linked to its
acquisition of the salinity stress resistance property.

Table 3. Role of identified stress marker proteins in salinity stress tolerance.

Protein Functions Reference

Calcineurin B-like interacting protein kinases
(1) Enhances shoot to root auxin transport.

(2) Mediates root development and lateral root formation.(3)
Promotes salt stress tolerance.

[52–54]

4-Coumarate CoA ligase (1) Enhances salt stress tolerance.
(2) Increases lignification of salt stress-tolerant varieties. [57,58]

β-glucosidases
(1) In vacuoles, it converts ABA glucopyranosides into

free ABA.
(2) It leads to the adaptation of plants to salt stress conditions.

[67,68]

Phytosulfokines

(1) Emerged as a novel kind of plant hormone recently and
involved in immunity and homeostasis.

(2) Involved in root growth and development; and inhibits
ethylene production.

[62–64]

Plant intracellular Ras-group-related LRR protein 2 (1) Promotes root development.
(2) Promotes salt stress tolerance by encoding PGIPs. [68,70]

Minichromosome maintenance 6 (MCM6) (1) It confers salinity stress tolerance in pea by additional
uptake of Na+ [65,69]

B3 Domain containing protein (1) RAV (Related to ABI3 and VP1) has AP2 and B3 domain.
(2) Promotes salinity tolerance, enhances stress marker genes. [71]

Cyanate hydratase
(1) Involved in detoxification of cyanate.

(2) Provide alternative sources of nitrogen and carbon for
enhancing salt stress tolerance.

[60,61]

Delta pyrroline-5-carboxylate synthase
(1) Maintenance of cell turgor, osmotic balance and

lipid synthesis.
(2) Salt stress resistance.

[55,56]

DEAD-box ATP-dependent RNA helicase 53 (DEAD)

(1) ReduceS oxidative stress through activation of ROS
scavenging system.

(2) Improves plant’s photosynthesis machinery, enhancing
plant growth and development and mitigates salt stress.

[65,66]
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4. Materials and Methods

4.1. Plant Material

The certified and disease-free seeds of salinity stress-sensitive IR64 and salinity stress-
tolerant LS rice (Oryza sativa L.) cultivars were procured from Punjab Agricultural Uni-
versity, Ludhiana, India, and the Central Rice Research Institute (CRRI), Cuttack, India,
respectively. LS can tolerate the salt stress up to 8 dSm−1. The seeds were surface sterilized
with 70% ethanol (v/v) for 1 min and treated with 0.4% sodium hypochlorite solution
containing a drop of tween-20 for 30 min. The seeds were washed thrice with autoclaved
distilled water and were then dried on autoclaved Whatman paper (3 mm) for 5 min. After
surface sterilization, the seeds were inoculated in the plastic tray containing autoclaved
sand moistened with sterile distilled water and were incubated in the culture room at 25 ◦C
(day/night), 70–80% relative humidity (day/night), and 14 h photoperiod for 14 days.
After 14 days, IR64 and LS seedlings were treated with 100 mM NaCl for 8 h for imposing
salinity stress. The roots were later separated for protein and RNA extraction to conduct
2-dimensional gel electrophoresis and gene expression studies, respectively.

4.2. Study of Morphological Parameters

The seedlings of IR64 and LS were harvested after 2 months and were dipped in water
to remove the adhering sand particles. A representative sample of 15 seedlings of both
IR64 and LS were selected to study the morphological parameters. Root and shoot length
were measured using a meter scale and observations for fresh weight were taken in grams.
The root and shoot of each sample were then dried in an oven at 70 ◦C until a constant
weight was achieved, and then the observations for dry weight were recorded. The number
of roots for each seedling of IR64 and LS was also counted.

4.3. IAA Estimation

To estimate the content of IAA, 5 g fresh roots of IR64 and LS were crushed finely
in liquid nitrogen and extracted in chilled 80% ethanol (15 mL/g) containing butylated
hydroxytoluene (BHT) (100 mg/L) [75]. The homogenized material was kept in the dark
at 4 ◦C for 24 h and was filtered. The solid residues were re-extracted thrice with 80%
ethanol for 4 h without adding BHT. The BHT containing filtrate and the filtrate without
BHT were combined and were centrifuged at 8000 rpm for 20 min. The supernatant was
concentrated by drying at 30 ◦C in a rotavapor in the dark and was used for further
processing while the pellet was discarded. The concentrate was resuspended in 2.5 mL of
0.1 M potassium phosphate buffer (pH 8) and was applied to the PVP column after adding
3-bed volumes of potassium phosphate buffer into the PVP column. After elution, a 3-bed
volume of potassium phosphate buffer in the PVP column was added again. The elute was
concentrated by drying in the rotavapor at 30 ◦C to obtain 10 mL of elute and its pH was
adjusted to 2.5 with 1N HCl. The concentrated 10 mL elute was dissolved in diethyl ether
(30 mL) containing BHT (100 mg/L). It was vortexed and kept for 10 min and then the
supernatant was taken in a fresh flask (approx. 30 mL). This step was repeated four times.
The obtained elute was mixed with 1.5 g of Na2SO4 and kept for 30 min. After 30 min, it
was evaporated and dried completely at 30 ◦C using the rotavapor. Then 5 mL of distilled
water was added and evaporated on rotavapor at 30 ◦C. The step was repeated twice and
a dried pellet was obtained. The pellet was then dissolved in 1.5 mL of methanol (HPLC
grade) for IAA estimation. Further, the elution was carried out with 100 % methanol (HPLC
grade): Water (Formic acid 0.05% v/v), 35:65, at a flow rate of 1 mL·min−1. The column
elutes were passed through a UV detector at 254 nm, and IAA was estimated with reference
to an authentic standard of IAA (1 mM) (Sigma Chemical Co., St. Louis, MO, USA). The
readings were taken in the replicates of three and the average of peaks was obtained.

4.4. RNA Extraction and cDNA Synthesis

A total of 150 mg of root sample of IR64 and LS was homogenized in liquid nitro-
gen using pestle and mortar. Total RNA was isolated using Trizol reagent (Invitrogen,
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http://www.invitrogen.com, last accessed on 20 July 2021), as per the manufacturer’s
instructions. RNase-free DNase (Sigma-Aldrich, USA) was used to remove the genomic
DNA and 2 μg of RNA was used to synthesize cDNA in a total volume of 10 μL reaction
using the iScript cDNA synthesis kit (Bio-Rad, Hercules, CA, USA) as per the manufac-
turer’s recommendations.

4.5. Quantitative Real-Time (qRT) PCR Analysis

qRT-PCR was performed to study the differential expression of auxin homeostasis
genes in the roots of IR64 and LS. The nucleotide sequences of different genes involved
in auxin homeostasis were retrieved from the rice annotation project database (RAP-
DB) and the gene-specific primers were designed using Integrated DNA Technologies,
USA (http://www.idtdna.com/primerquest/Home/Index, last accessed on 20 July 2021)
(Supporting Information-Table S1). The qRT-PCR reaction was performed in 96 well
plates using SYBR Green detection chemistry in the StepOne Plus Realtime PCR machine
(Applied Biosystems, Waltham, MA, USA). A 10 μL reaction was prepared using 5 μL of
2X Fast SYBR Green (Applied Biosystem), 7.5 ng of each cDNA, 5 μmol each of forward
and reverse gene-specific primers and the final volume was raised to 10 μL using sterile
nuclease-free water. No template control (NTC) was also set for each primer pair. The
thermal cycling was carried out using the following parameters: initial denaturation step
at 95 ◦C for the 20 s to activate the Taq DNA polymerase, followed by the 40 cycles of
denaturation at 95 ◦C for 3 s and finally annealing at 60 ◦C for 30 s. The melting curve
was generated by heating the amplicon from 60 to 90 ◦C. Baseline and threshold cycles
(Ct) were automatically determined using the StepOne Plus Software version 2.3 (Applied
Biosystems, USA). Fold changes were calculated using CT (ΔΔCT) and normalized against
OsUBQ5 (LOC_Os1g328400) used as an endogenous control.

4.6. Protein Extraction

A phenol-based method was used for extracting proteins from 1 g roots of IR64 and LS
as reported previously [76]. The samples were homogenized with 6 mL of extraction buffer
containing 100 mM KCl, 700 mM sucrose, 50 mM EDTA, and 500 mM Tris-HCl pH 8.0.
Further, 2% β-mercaptoethanol, 1 mM PMSF, and a 10 mM protease inhibitor cocktail were
added to the extraction buffer just before use. The mixture was vortexed and incubated
by agitating on ice for 10 min. After incubation, 6 mL of tris-buffered phenol was added
to it and the mixture was again vortexed and incubated on a shaker on ice for 10 min.
The homogeneous mixture was centrifuged at 12,000 rpm at 4 ◦C for 20 min. The upper
phenolic phase was collected carefully in a fresh tube. Again, 3 mL of the extraction buffer
was added to the tris-buffered phenol and the extraction process was repeated and the
upper phenolic phase was collected. Further, 5 volumes of 0.1 M ammonium acetate in
100% cold methanol were added to the phenolic phase and the tube was shaken gently.
The mixture was incubated at −20 ◦C for protein precipitation overnight. The protein
pellet was recovered after 24 h by centrifugation at 12,000 rpm at 4 ◦C for 10 min and
the supernatant was discarded. The pellet so obtained was washed thrice with 0.1 M
ammonium acetate in cold methanol and then with a mixture containing 80% methanol
and 20% acetone, followed by washing with 100% cold methanol. The final washing was
given with 100% chilled acetone and the washed pellet was air-dried and stored at −80 ◦C
for 2-DE.

4.7. Protein Solubilization and Quantification

The protein pellets were suspended thoroughly in rehydration buffer (ReadyPrep™
2-D Starter Kit Rehydration/Sample Buffer #1632106, Bio-Rad, USA). Protein concentration
was quantified with a Bradford protein estimation assay [77] using bovine serum albumin
(BSA) taken as standard.
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4.8. Two-Dimensional Gel Electrophoretic (2-DE) Analysis

For isoelectric focusing (IEF), 150 μg of protein was dissolved in a total of 130 μL of
rehydration buffer containing 8 M urea, 2% CHAPS, 50 mM DTT, 0.2% Bio-Lyte® 3/10
ampholyte, 0.001% bromophenol blue (Bio-Rad, USA) and passively rehydrated over IPG
strips (7 cm, pH 3–10, Readystrips, Cat. No. 163-200, Bio-Rad, USA) overnight at 20 ◦C.
After rehydration, the strips were focused at 250V for 40 min, 4000 V for 2 h with linear
voltage amplification, and finally to 10,000 V h with rapid amplification. After IEF, the strips
were incubated with equilibration buffer I, containing 6 M urea, 375 mM Tris-HCL pH 8.8,
2% SDS and 2% DTT for 15 min for reduction (ReadyPrep 2-D Starter Kit Equilibration
Buffer I #1632107, Bio-Rad USA). For alkylation of the proteins, the strip was further
incubated with 2.5% iodoacetamide dissolved in equilibration buffer II containing 6 M
urea, 375 mM Tris-HCL pH 8.8 and 2% SDS (ReadyPrep 2-D Starter Kit Equilibration Buffer
I #1632108) for 15 min. The second-dimensional electrophoresis was performed using 12%
polyacrylamide gel. After mounting the strip on the gel, it was sealed with 0.5% agarose
containing 0.1% bromophenol blue, and the protein molecular marker was also loaded.
Electrophoresis was performed at a constant voltage of 100 V for 2 h in tris-glycine-SDS
containing running buffer.

4.9. Gel Staining, Imaging, and Analysis

After 2-DE, gels were stained with Coomassie brilliant blue and were stored in 5%
acetic acid until further analysis. Gel imaging was conducted using the Molecular Im-
ager Gel Doc XR system (Bio-Rad, USA) and the images were analyzed using PDQuest
8.0.2 software.

4.10. Protein in-Gel Digestion and Mass Spectrometry (MS) Analysis

Proteins spots showing variations in their intensities, presence and absence were
manually excised from Coomassie brilliant blue-stained gels and were subjected to mass
spectrometric analysis [78]. The excised gel pieces were destained properly using 100 mM
NH4HCO3/50% ACN solution and washed twice with 200 μL of Milli-Q water for 5 min
each and were dehydrated using 100 μL of acetonitrile. The samples were subjected to
trypsinolysis in 25 μL of trypsin solution (Sigma, USA) with a concentration of 20 μg/mL in
25 mmol/L NH4HCO3, and were incubated overnight at 37 ◦C. Each digested peptide was
further extracted from the gels using 50% trifluoroacetic acid/ 50% acetonitrile, twice at
room temperature. The extracted peptides were mixed with 0.5 μL of α-cyano-4-hydroxy-
cinnamic acid (Bruker) of a concentration of 20 mg/mL prepared in 0.1% trifluoroacetic
acid, 30% (v/v) acetonitrile and dried at room temperature. The trypsin digested protein
samples were subjected to mass spectrometric analysis using an UltrafleXtreme™ mass
spectrometer (Bruker Daltonics Inc. Germany). The instrument was calibrated and fine-
tuned with a mass standard starter kit (Bruker) and standard tryptic digested BSA (Bruker,
Germany). TOF spectra were recorded in positive ion reflector mode between mass ranges
of 700–3500 Da. For protein characterization, the obtained MS spectra were searched
against a non-redundant database (SwissProt database) using a MASCOT search engine
with these parameters: taxonomy: Oryza sativa (rice); parent ion mass tolerance was set at
± 1.2 Da and MS/MS tolerance at 100ppm; variable modifications, oxidation of methionine
(M) and carbadomethylation of cysteine (C) and trypsin enzyme.

4.11. Statistical Analysis

All the data obtained from different experiments were evaluated using statistical
analysis. An unpaired t-test and a one-way analysis of variance (ANOVA) (the Fischer LSD,
Waltham, MA, USA) test were conducted to compare the mean differences using Sigma
Stat version 3.5. Comparisons with p < 0.05 were considered significantly different.
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5. Conclusions

The present study shows that salt tolerant rice cultivars present salinity stress adaptive
root traits, likely due to an elevated endogenous auxin content and augmented levels of
key salinity stress providing proteins in its roots. Salt tolerant rice LS cultivars exhibited
higher transcript-level expression of different genes involved in auxin homeostasis both
under control and salinity stress conditions. Thus, our study suggests that an elevated
level of auxin and a higher buffering capacity of the auxin homeostasis process may be
critical for the acquisition of salinity stress adaptation in rice. Upon 2-DE and MS analysis,
several salinity stress tolerance providing proteins were detected that exhibited higher
constitutive expression in the roots of LS with respect to IR64. In LS roots, the transcript
level of some identified stress marker proteins exhibited lower expression; on the contrary,
their protein accumulation was higher in the tolerant cultivar, LS. It indicates that their
protein turnover rate might be low. Taken together; these results highlight morphological
and molecular features that are critical for rice adaptation towards salinity stress and reveal
that this process is multifactorial. Moreover, our results pinpoint several candidate genes
that could be artificially overexpressed to increase salinity stress tolerance in rice.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/plants10081544/s1, Table S1: List of primers used for the quantitative real-time polymerase
chain reaction.
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