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The study of fractional integrals and fractional derivatives has a long history, and they
have many real-world applications due to their properties of interpolation between op-
erators of integer order. This field has covered classical fractional operators such as
Riemann–Liouville, Weyl, Caputo, Grünwald–Letnikov, etc. Also, especially in the last two
decades, many new operators have appeared, often defined using integrals with special
functions in the kernel, such as Atangana–Baleanu, Prabhakar, Marichev–Saigo–Maeda,
and tempered, as well as their extended or multivariable forms. These have been inten-
sively studied because they can also be useful in modelling and analysing real-world
processes because of their different properties and behaviours, which are comparable to
those of the classical operators.

Special functions, such as the Mittag-Leffler functions, hypergeometric functions,
Fox’s H-functions, Wright functions, Bessel and hyper-Bessel functions, etc., also have
some more classical and fundamental connections with fractional calculus. Some of them,
such as the Mittag-Leffler function and its generalisations, appear naturally as solutions
of fractional differential equations or fractional difference equations. Furthermore, many
interesting relationships between different special functions may be discovered using
the operators of fractional calculus. Certain special functions have also been applied to
analyse the qualitative properties of fractional differential equations, such as the concept of
Mittag-Leffler stability.

In early 2020, we opened a Special Issue in the journal Fractal and Fractional, with the
aim of exploring and celebrating the diverse connections between fractional calculus and
special functions, as well as their associated applications. The deadline was initially set
as 31 December 2020, and was later extended to 31 March 2021 after the havoc caused by
the COVID-19 pandemic. We received a total of 15 submissions for this Special Issue and,
after a thorough peer-review process, nine of these were ultimately published, including
several from experts in the field whom we had personally invited to contribute.

The published papers in our Special Issue are briefly summarised as follows.
In [1], Aljoudi et al. considered a nonlinear coupled system of Caputo–Hadamard

fractional ordinary differential equations on a finite interval, with Hadamard integral
boundary conditions and incommensurate fractional orders between 1 and 2. Under certain
boundedness and Lipschitz-type assumptions, they proved the existence of solutions for
this system, and the uniqueness of solutions under some extra boundedness assumptions.

In [2], Salem and Alghamdi considered a nonlinear sequential-type Caputo fractional
ordinary differential equation on a finite interval, with nonlocal multi-point boundary
conditions and an overall fractional order between 1 and 3. They proved the existence
and/or uniqueness of solutions for this Langevin-type equation in three main results,
under an array of possible conditions.

In [3], Zine and Torres introduced a new type of stochastic fractional operator, a way
of applying fractional integrals and derivatives to stochastic processes. They proved

Fractal Fract. 2021, 5, 224. https://doi.org/10.3390/fractalfract5040224 https://www.mdpi.com/journal/fractalfract
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many fundamental properties of these operators, including boundedness, semigroup and
inversion properties, and an integration by parts rule, before posing stochastic fractional
Euler–Lagrange equations to investigate the variational principles of the new operators.

In [4], Fernandez and Husain defined and investigated modified versions of the
classical Mittag-Leffler functions of one, two, and three parameters. They found appropriate
convergence conditions for the new series in each case, established complex integral
representations of the new functions, and then used them to extend the definition of
Atangana–Baleanu and Prabhakar fractional calculus, providing analytic continuations of
the original definitions to wider domains for the parameter α.

In [5], Yılmaz et al. studied k-generalised Appell functions, based on the existing
theory of k-fractional calculus and k-variants of special functions such as the gamma, beta,
and hypergeometric functions (the k-variants being identical to the original versions up
to some substitutions and constant multiples). They proved various functional equation
relations and generating relations for the k-generalised Appell functions using k-fractional
derivatives. Please kindly note that a corrigendum to this paper was also published [5].

In [6], Acay and Inç studied several variants of a differential equation used to model
RC, LC, and RLC electric circuits under Kirchhoff’s law. The function representing the
source voltage was taken to be either constant, exponential, or a power function, and the
differential operator was taken to be a so-called non-local fractional M-derivative, which
is a constant times the usual Caputo derivative taken with respect to a power function.
A comparative analysis was performed to compare the results achieved by using the
M-derivative and by using the usual Caputo derivative with respect to t.

In [7], Uçar et al. considered a system of first-order ordinary differential equations,
which is used to model the effect of computer worms, and replaced the first-order deriva-
tives with fractional derivatives of Atangana–Baleanu type to obtain a different system,
which they studied using fixed-point and Laplace transform techniques to prove existence,
uniqueness, and stability properties.

In [8], Özarslan and Fernandez introduced a new five-parameter Mittag-Leffler func-
tion, defined by a single series but used to construct bivariate (double integral) fractional
operators. They proved fundamental properties such as boundedness, Laplace transforms,
semigroup and inversion properties, and series formulae. In the non-singular case, they de-
rived a special case which is a mixed bivariate version of the Atangana–Baleanu operators.

In [9], Bargamadi et al. considered a coupled system of integro-differential equations
involving Caputo fractional derivatives, with simple initial conditions and incommensu-
rate fractional orders between 0 and 1. They used the Chebyshev wavelets method to
estimate the Caputo derivatives and find approximate numerical solutions to the system,
and performed error analysis on their approximations both analytically and numerically.

As the handling Guest Editors, we would like to express our gratitude to all authors
for their contributions, as well as to all the peer reviewers who helped to improve the
quality of the submissions. We would also like to thank Ms. Jingjing Yang from the journal
office for her prompt assistance throughout the process of managing this Special Issue.
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Abstract: In this paper, we study a coupled system of Caputo-Hadamard type sequential fractional
differential equations supplemented with nonlocal boundary conditions involving Hadamard fractional
integrals. The sufficient criteria ensuring the existence and uniqueness of solutions for the given problem
are obtained. We make use of the Leray-Schauder alternative and contraction mapping principle to
derive the desired results. Illustrative examples for the main results are also presented.

Keywords: Caputo-Hadamard fractional derivative; coupled system; Hadamard fractional integral;
boundary conditions; existence

MSC: 34A08, 34B10, 34B15

1. Introduction

Fractional calculus has emerged as an important area of investigation in view of its extensive
applications in mathematical modeling of many complex and nonlocal nonlinear systems. An important
characteristic of fractional-order operators is their nonlocal nature that accounts for the hereditary
properties of the underlying phenomena. The interactions among macromolecules in the damping
phenomenon give rise to a macroscopic stress-strain relation in terms of fractional differential operators.
For the fractional law dealing with the viscoelastic materials, see [1] and the references cited therein.
In [2], transport processes influenced by the past and present histories are described by the Caputo
power law. For the details on dynamic memory involved in the economic processes, see [3,4].

In 1892, Hadamard [5] suggested a concept of fractional integro-differentiation in terms of the
fractional power of the type (t d

dt )
q in contrast to its Riemann-Liouville counterpart of the form ( d

dt )
q.

The Hadamard fractional derivative contains a logarithmic function of an arbitrary exponent in the
kernel of the integral appearing in its definition. For the details of Hadamard fractional calculus,
we refer the reader to the works [6–9]. Fractional differential equations involving Hadamard derivative
attracted significant attention in recent years, for instance, see [10–20] and the references cited therein.

More recently, Jarad et al. [21] introduced Caputo modification of Hadamard fractional derivative
which is more suitable for physically interpretable initial conditions as in case of Caputo fractional
differential equations. One can find some recent results on Caputo-Hadamard type fractional differential
equations in [22–28] and the references cited therein.

Fractal Fract. 2020, 4, 13; doi:10.3390/fractalfract4020013 www.mdpi.com/journal/fractalfract5
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In this paper, we introduce a new class of boundary value problems consisting of Caputo-Hadamard
type fractional differential equations and Hadamard type fractional integral boundary conditions.
In precise terms, we investigate the following boundary value problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(CDα + λCDα−1)u(t) = f (t, u(t), v(t), CDξv(t)), 1 < α ≤ 2, 0 < ξ < 1, λ > 0,

(CDβ + λCDβ−1)v(t) = g(t, u(t), CDξ̄ u(t), v(t)), 1 < β ≤ 2, 0 < ξ̄ < 1,

u(1) = 0, a1Iγ1 v(η1) + b1u(T) = K1, γ1 > 0, 1 < η1 < T,

v(1) = 0, a2Iγ2 u(η2) + b2v(T) = K2, γ2 > 0, 1 < η2 < T,

(1)

where CD(.) and I (.) respectively denote the Caputo-Hadamard fractional derivative and Hadamard
fractional integral (to be defined later), f , g : [1, T]×R3 → R are given appropriate functions and
ai, bi, Ki, (i = 1, 2) are real constants.

The rest of the paper is organized as follows. In Section 2, we recall the background material
related to the topic under investigation and prove an auxiliary lemma which plays a key role in deriving
the desired results. Section 3 contains the main results.

2. Preliminaries

In this section, we recall some preliminary concepts of Hadamard and Caputo-Hadamard
fractional calculus related to our work. We also prove an auxiliary lemma, which plays a key role in
converting the given problem into a fixed point problem.

Definition 1 ([6,7]). The Hadamard fractional integral of order q ∈ C, R(q) > 0, for a function g ∈ Lp[a, b],
0 ≤ a ≤ t ≤ b ≤ ∞, is defined as

Iq
a+ g(t) =

1
Γ(q)

∫ t

a

(
log

t
s

)q−1 g(s)
s

ds,

Iq
b− g(t) =

1
Γ(q)

∫ b

t

(
log

s
t

)q−1 g(s)
s

ds.

Definition 2 ([6,7]). Let [a, b] ⊂ R, δ = t d
dt and ACn

δ [a, b] = {g : [a, b] → R : δn−1(g(t)) ∈ AC[a, b]}.
The Hadamard derivative of fractional order q for a function g ∈ ACn

δ [a, b] is defined as

Dq
a+ g(t) = δn(In−q

a+ )(t) =
1

Γ(n − q)

(
t

d
dt

)n ∫ t

a

(
log

t
s

)n−q−1 g(s)
s

ds,

Dq
b− g(t) = (−δ)n(In−q

b− )(t) =
1

Γ(n − q)

(
−t

d
dt

)n ∫ b

t

(
log

s
t

)n−q−1 g(s)
s

ds,

where n − 1 < q < n, n = [q] + 1 and [q] denotes the integer part of the real number q and log(·) = loge(·).

Definition 3 ([21]). For R(q) > 0, n = [R(q)] + 1, and g ∈ ACn
δ [a, b] 0 ≤ a ≤ t ≤ b ≤ ∞, the

Caputo-type modification of the Hadamard fractional derivative is defined by

CDq
a+ g(t) = Dq

a+

[
g(s)−

n−1

∑
k=0

δkg(a)
k!

(
log

s
a

)k
]
(t),

CDq
b− g(t) = Dq

b−

[
g(s)−

n−1

∑
k=0

(−1)kδkg(b)
k!

(
log

b
s

)k
]
(t).

6
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Theorem 1 ([21]). Let R(q) ≥ 0, n = [R(q)] + 1 and g ∈ ACn
δ [a, b], 0 ≤ a ≤ t ≤ b ≤ ∞. Then CDq

a+ g(t)
and CDq

b− g(t) exist everywhere on [a, b] and

(a) if q �∈ N0,

CDq
a+ g(t) =

1
Γ(n − q)

∫ t

a

(
log

t
s

)n−q−1
δng(s)

ds
s

= (In−q
a+ )δng(t),

CDq
b− g(t) =

(−1)n

Γ(n − q)

∫ b

t

(
log

s
t

)n−q−1
δng(s)

ds
s

= (−1)n(In−q
b− )δng(t);

(b) if q = n ∈ N0,
CDq

a+ g(t) = δng(t), CDq
b− g(t) = (−1)nδng(t).

In particular,
CD0

a+ g(t) = CD0
b− g(t) = g(t).

Remark 1 ([29]). For q ∈ C such that 0 < q < 1, the Caputo-Hadamard fractional derivative is defined as

CDq
a+ g(t) =

1
Γ(1 − q)

∫ t

a

(
log

t
s

)−q
g′(s)ds,

CDq
b− g(t) =

−1
Γ(1 − q)

∫ b

t

(
log

s
t

)−q
g′(s)ds.

Lemma 1 ([21]). Let R(q) ≥ 0, n = [R(q)] + 1 and g ∈ C[a, b]. If R(q) �= 0 or q ∈ N, then

CDq
a+(Iq

a+ g)(t) = g(t), CDq
b−(Iq

b− g)(t) = g(t).

Lemma 2 ([21]). Let g ∈ ACn
δ [a, b] or Cn

δ [a, b] and q ∈ C, then

Iq
a+(

CDq
a+ g)(t) = g(t)−

n−1

∑
k=0

δkg(a)
k!

(
log

t
a

)k
,

Iq
b−(

CDq
b− g)(t) = g(t)−

n−1

∑
k=0

δkg(b)
k!

(
log

b
t

)k
.

Now we present an auxiliary lemma dealing with the linear variant of the problem (1).

Lemma 3. Let h1, h2 ∈ ACn
δ [1, T]. Then the solution of the linear system of fractional differential equations:

(CDα + λCDα−1)u(t) = h1(t),

(CDβ + λCDβ−1)v(t) = h2(t), (2)

supplemented with the boundary conditions:

u(1) = 0 , a1Iγ1 v(η1) + b1u(T) = K1, γ1 > 0, 1 < η1 < T,

v(1) = 0 , a2Iγ2 u(η2) + b2v(T) = K2, γ2 > 0, 1 < η2 < T, (3)

is given by

u(t) =
(1 − t−λ)

λΔ

{
(K2 A2 − K1B2) + T−λ

[
b1B2

∫ T

1
sλ−1Iα−1h1(s)ds − b2 A2

∫ T

1
sλ−1Iβ−1h2(s)ds

]

+
a1B2

Γ(γ1)

∫ η1

1

(
log

η1

s

)γ1−1
s−(λ+1)

( ∫ s

1
mλ−1Iβ−1h2(m)dm

)
ds

7
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− a2 A2

Γ(γ2)

∫ η2

1

(
log

η2

s

)γ2−1
s−(λ+1)

( ∫ s

1
mλ−1Iα−1h1(m)dm

)
ds

}

+ t−λ
∫ t

1
sλ−1Iα−1h1(s)ds, (4)

and

v(t) =
(1 − t−λ)

λΔ

{
(K1B1 − K2 A1) + T−λ

[
b2 A1

∫ T

1
sλ−1Iβ−1h2(s)ds − b1B1

∫ T

1
sλ−1Iα−1h1(s)ds

]

+
a2 A1

Γ(γ2)

∫ η2

1

(
log

η2

s

)γ2−1
s−(λ+1)

( ∫ s

1
mλ−1Iα−1h1(m)dm

)
ds

− a1B1

Γ(γ1)

∫ η1

1

(
log

η1

s

)γ1−1
s−(λ+1)

( ∫ s

1
mλ−1Iβ−1h2(m)dm

)
ds

}

+ t−λ
∫ t

1
sλ−1Iβ−1h2(s)ds. (5)

where

Δ = B1 A2 − A1B2 �= 0, (6)

A1 =
b1

λ
(1 − T−λ), A2 =

a1

Γ(γ1 + 1)

∫ η1

1

(
log

η1

s

)γ1
s−(λ+1)ds, (7)

B1 =
a2

Γ(γ2 + 1)

∫ η2

1

(
log

η2

s

)γ2
s−(λ+1)ds, B2 =

b2

λ
(1 − T−λ). (8)

Proof. In view of Theorem 1 and lemma 2, the general solution of the system (2) can be written as

u(t) = c0t−λ +
c1

λ
(1 − t−λ) + t−λ

∫ t

1
sλ−1Iα−1h1(s)ds, (9)

v(t) = d0t−λ +
d1

λ
(1 − t−λ) + t−λ

∫ t

1
sλ−1Iβ−1h2(s)ds, (10)

where ci, di(i = 0, 1) are unknown arbitrary constants. Using the data u(1) = 0, v(1) = 0 given by (3)
in (9) and (10), we find that c0 = 0 and d0 = 0. Thus (9) and (10) take the form:

u(t) =
c1

λ
(1 − t−λ) + t−λ

∫ t

1
sλ−1Iα−1h1(s)ds, (11)

v(t) =
d1

λ
(1 − t−λ) + t−λ

∫ t

1
sλ−1Iβ−1h2(s)ds. (12)

Using the nonlocal integral boundary conditions: a1Iγ1 v(η1) + b1u(T) = K1 and a2Iγ2 u(η2) + b2v(T) =
K2 in (11) and (12), we obtain

A1c1 + A2d1 = J1, B1c1 + B2d1 = J2, (13)

where Ai and Bi (i = 1, 2) are respectively given by (7) and (8), and

J1 = K1 − a1

Γ(γ1)

∫ η1

1

(
log

η1

s

)γ1−1
s−(λ+1)

(∫ s

1
mλ−1Iβ−1h2(m)dm

)
ds

−b1T−λ
∫ T

1
sλ−1Iα−1h1(s)ds, (14)

J2 = K2 − a2

Γ(γ2)

∫ η2

1

(
log

η2

s

)γ2−1
s−(λ+1)

(∫ s

1
mλ−1Iα−1h1(m)dm

)
ds

−b2T−λ
∫ T

1
sλ−1Iβ−1h2(s)ds. (15)

8
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Solving the system (13) for c1 and d1, we find that

c1 =
(K2 A2 − K1B2)

Δ
+

T−λ

Δ

[
b1B2

∫ T

1
sλ−1Iα−1h1(s)ds − b2 A2

∫ T

1
sλ−1Iβ−1h2(s)ds

]
+

a1B2

ΔΓ(γ1)

∫ η1

1

(
log

η1

s

)γ1−1
s−(λ+1)

( ∫ s

1
mλ−1Iβ−1h2(m)dm

)
ds (16)

− a2 A2

ΔΓ(γ2)

∫ η2

1

(
log

η2

s

)γ2−1
s−(λ+1)

( ∫ s

1
mλ−1Iα−1h1(m)dm

)
ds,

d1 =
(K1B1 − K2 A1)

Δ
+

T−λ

Δ

[
b2 A1

∫ T

1
sλ−1Iβ−1h2(s)ds − b1B1

∫ T

1
sλ−1Iα−1h1(s)ds

]
+

a2 A1

ΔΓ(γ2)

∫ η2

1

(
log

η2

s

)γ2−1
s−(λ+1)

( ∫ s

1
mλ−1Iα−1h1(m)dm

)
ds (17)

− a1B1

ΔΓ(γ1)

∫ η1

1

(
log

η1

s

)γ1−1
s−(λ+1)

( ∫ s

1
mλ−1Iβ−1h2(m)dm

)
ds,

where Δ is given by (6). Substituting the values of c1 and d1 in (11) and (12), we obtain the solution (4)
and (5). This completes the proof.

3. Existence and Uniqueness Results

This section is concerned with the main results of the paper. First of all, we fix our terminology.
Let X = {x : x ∈ C([1, T],R) and CDξ̄ x ∈ C([1, T],R)} and Y = {y : y ∈ C([1, T],R)
and CDξ y ∈ C([1, T],R)} be the spaces respectively equipped with the norms ‖x‖X = ‖x‖ +

‖CDξ̄ x‖ = supt∈[1,T] |x(t)| + supt∈[1,T] |CDξ̄ x(t)| and ‖y‖Y = ‖y‖ + ‖CDξ y‖ = supt∈[1,T] |y(t)| +
supt∈[1,T] |CDξ y(t)|. Observe that (X, ‖.‖X) and (Y, ‖.‖Y) are Banach spaces. In consequence,
the product space (X × Y, ‖.‖X×Y) is a Banach space endowed with the norm ‖(x, y)‖X×Y =

‖x‖X + ‖y‖Y for (x, y) ∈ X × Y.
Using Lemma 3, we introduce an operator T : X × Y → X × Y as follows:

T(u, v)(t) := (T1(u, v)(t), T2(u, v)(t)), (18)

where

T1(u, v)(t) =
(1 − t−λ)

λΔ

{
(K2 A2 − K1B2) + T−λ

[
b1B2

∫ T

1
sλ−1Iα−1 f (s, u(s), v(s), CDξ v(s))ds

− b2 A2

∫ T

1
sλ−1Iβ−1g(s, u(s), CDξ̄ u(s), v(s))ds

]

+
a1B2

Γ(γ1)

∫ η1

1

(
log

η1
s

)γ1−1
s−(λ+1)

( ∫ s

1
mλ−1Iβ−1g(m, u(m), CDξ̄ u(m), v(m))dm

)
ds

− a2 A2
Γ(γ2)

∫ η2

1

(
log

η2
s

)γ2−1
s−(λ+1)

( ∫ s

1
mλ−1Iα−1 f (m, u(m), v(m), CDξ v(m))dm

)
ds

}

+ t−λ
∫ t

1
sλ−1Iα−1 f (s, u(s), v(s), CDξ v(s))ds, (19)

T2(u, v)(t) =
(1 − t−λ)

λΔ

{
(K1B1 − K2 A1) + T−λ

[
b2 A1

∫ T

1
sλ−1Iβ−1g(s, u(s), CDξ̄ u(s), v(s))ds

− b1B1

∫ T

1
sλ−1Iα−1 f (s, u(s), v(s), CDξ v(s))ds

]

+
a2 A1
Γ(γ2)

∫ η2

1

(
log

η2
s

)γ2−1
s−(λ+1)

( ∫ s

1
mλ−1Iα−1 f (m, u(m), v(m), CDξ v(m))dm

)
ds (20)

− a1B1
Γ(γ1)

∫ η1

1

(
log

η1
s

)γ1−1
s−(λ+1)

( ∫ s

1
mλ−1Iβ−1g(m, u(m), CDξ̄ u(m), v(m))dm

)
ds

}

9
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+ t−λ
∫ t

1
sλ−1Iβ−1g(s, u(s), CDξ̄ u(s), v(s))ds.

Next we enlist the assumptions that we need in the sequel.

(H1) Let f , g : [1, T]×R3 → R be continuous functions and there exist real constants μj, τj ≥ 0 (j =
1, 2, 3) and μ0 > 0, τ0 > 0 such that

| f (t, x1, x2, x3)| ≤ μ0 + μ1|x1|+ μ2|x2|+ μ3|x3|,
|g(t, x1, x2, x3)| ≤ τ0 + τ1|x1|+ τ2|x2|+ τ3|x3|, ∀xj ∈ R, j = 1, 2, 3.

(H2) There exist positive constants l, l1 such that

| f (t, x1, x2, x3)− f (t, y1, y2, y3)| ≤ l (|x1 − y1|+ |x2 − y2|+ |x3 − y3|) ,

|g(t, x1, x2, x3)− g(t, y1, y2, y3)| ≤ l1 (|x1 − y1|+ |x2 − y2|+ |x3 − y3|) , ∀t ∈ [1, T], xj, yj ∈ R.

For computational convenience, we set

ρ = sup
t∈[1,T]

∣∣∣1 − t−λ
∣∣∣ = ∣∣∣1 − T−λ

∣∣∣, (21)

Θ1 =
ρ|K2 A2 − K1B2|

λ|Δ| , Θ1 =
|K2 A2 − K1B2|

|Δ|
(

log T
)1−ξ̄

, (22)

Θ2 =
ρ|K1B1 − K2 A1|

λ|Δ| , Θ2 =
|K1B1 − K2 A1|

|Δ|
(

log T
)1−ξ

, (23)

M1 =
ρ

λ|Δ|Γ(α + 1)

[
|b1||B2|(log T)α +

|a2||A2|
Γ(γ2 + 1)

(
log η2

)α+γ2]
+

(
log T

)α

Γ(α + 1)
, (24)

M1 =

(
log T

)1−ξ̄

|Δ|Γ(α + 1)

[
|b1||B2|(log T)α +

|a2||A2|
Γ(γ2 + 1)

(
log η2

)α+γ2
+ λ|Δ|

(
log T

)α
+ α|Δ|

(
log T

)α−1]
, (25)

M2 =
ρ

λ|Δ|Γ(β + 1)

[ |a1||B2|
Γ(γ1 + 1)

(
log η1

)β+γ1
+ |b2||A2|

(
log T

)β]
, (26)

M2 =

(
log T

)1−ξ̄

|Δ|Γ(β + 1)

[
|b2||A2|

(
log T

)β
+

|a1||B2|
Γ(γ1 + 1)

(
log η1

)β+γ1
]
, (27)

N1 =
ρ

λ|Δ|Γ(α + 1)

[
|b1||B1|(log T)α +

|a2||A1|
Γ(γ2 + 1)

(
log η2

)α+γ2]
, (28)

N1 =

(
log T

)1−ξ

|Δ|Γ(α + 1)

[
|b1||B1|(log T)α +

|a2||A1|
Γ(γ2 + 1)

(
log η2

)α+γ2]
, (29)

N2 =
ρ

λ|Δ|Γ(β + 1)

[ |a1||B1|
Γ(γ1 + 1)

(
log η1

)β+γ1
+ |b2||A1|

(
log T

)β]
+

(
log T

)β

Γ(β + 1)
, (30)

N2 =

(
log T

)1−ξ

|Δ|Γ(β + 1)

[
|b2||A1|

(
log T

)β
+

|a1||B1|
Γ(γ1 + 1)

(
log η1

)β+γ1
+ λ|Δ|

(
log T

)β
+ β|Δ|

(
log T

)β−1]
, (31)

�1 = Θ1 + Θ2 +
Θ1

Γ(2 − ξ̄)
+

Θ2

Γ(2 − ξ)
+ μ0

(
M1 + N1 +

M1

Γ(2 − ξ̄)
+

N1

Γ(2 − ξ)

)

+ τ0

(
M2 + N2 +

M2

Γ(2 − ξ̄)
+

N2

Γ(2 − ξ)

)
, (32)

�2 = μ1

(
M1 + N1 +

M1

Γ(2 − ξ̄)
+

N1

Γ(2 − ξ)

)
+ max{τ1, τ2}

(
M2 + N2 +

M2

Γ(2 − ξ̄)
+

N2

Γ(2 − ξ)

)
, (33)

�3 = max{μ2, μ3}
(

M1 + N1 +
M1

Γ(2 − ξ̄)
+

N1

Γ(2 − ξ)

)
+ τ3

(
M2 + N2 +

M2

Γ(2 − ξ̄)
+

N2

Γ(2 − ξ)

)
. (34)

10
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Now, we are in a position to present our first existence result for the boundary value problem (1),
which is based on Leray-Schauder alternative.

Lemma 4 (Leray-Schauder alternative [30]). Let F : E → E be a completely continuous operator. Let ε(F) =
{x ∈ E : x = κF(x) for some 0 < κ < 1}. Then either the set ε(F) is unbounded or F has at least one
fixed point.

Theorem 2. Assume that (H1) holds and that max{�2, �3} < 1, where �2 and �3 are given by (33) and
(34) respectively. Then the boundary value problem (1) has at least one solution on [1, T].

Proof. In the first step, we establish that the operator T : X × Y → X × Y is completely continuous.
By continuity of the functions f and g, it follows that the operators T1 and T2 are continuous.
In consequence, the operator T is continuous. In order to show that the operator T is uniformly
bounded, let Ω ⊂ X × Y be a bounded set. Then there exist positive constants L1 and L2 such that
| f (t, u(t), v(t), CDξv(t))| ≤ L1, |g(t, u(t), CDξ̄u(t), v(t))| ≤ L2, ∀(u, v) ∈ Ω. Then, for any (u, v) ∈ Ω,
we have

|T1(u, v)(t)| ≤ |K2 A2 − K1B2|ρ
λ|Δ| +

ρL1

λ|Δ|

{
|b1||B2|T−λ

Γ(α − 1)

∫ T

1
sλ−1

( ∫ s

1

(
log

s
m

)α−2 dm
m

)
ds

+
|a2||A2|

Γ(γ2)Γ(α − 1)

∫ η2

1

(
log

η2

s

)γ2−1
s−(λ+1)

( ∫ s

1
mλ−1

(
log

m
r

)α−2 dr
r

)
dm

)
ds

}

+
L1|t−λ|

Γ(α − 1)

∫ t

1
sλ−1

( ∫ s

1

(
log

s
m

)α−2 dm
m

)
ds

+
ρL2

λ|Δ|

{
|b2||A2|T−λ

Γ(β − 1)

∫ T

1
sλ−1

( ∫ s

1

(
log

s
m

)β−2 dm
m

)
ds

+
|a1||B2|

Γ(γ1)Γ(β − 1)

∫ η1

1

(
log

η1

s

)γ1−1
s−(λ+1)

( ∫ s

1
mλ−1

(
log

m
r

)β−2 dr
r

)
dm

)
ds

}
,

≤ |K2 A2 − K1B2|ρ
λ|Δ| +

ρL1

λ|Δ|Γ(α + 1)

[
|b1||B2|(log T)α +

|a2||A2|
Γ(γ2 + 1)

(
log η2

)α+γ2]

+
L1

Γ(α + 1)

(
log T

)α
+

ρL2

λ|Δ|Γ(β + 1)

[ |a1||B2|
Γ(γ1 + 1)

(
log η1

)β+γ1
+ |b2 A2|

(
log T

)β]
,

which, on taking the norm for t ∈ [1, T] and using (22), (24) and (26) yields

‖T1(u, v)‖ ≤ Θ1 + L1M1 + L2M2.

Since 0 < ξ̄ < 1, we use Remark 1 to get

|CDξ̄ T1(u, v)(t)| ≤ 1
Γ(1 − ξ̄)

∫ t

1

(
log

t
s

)−ξ̄ ∣∣∣T′
1(u, v)(s)

∣∣∣ds
s

≤ 1
Γ(2 − ξ̄)

(
Θ1 + L1M1 + L2M2

)
,

where Θ1, M1 and M2 are respectively given by (22), (25) and (27). Hence

‖T1(u, v)‖X = ‖T1(u, v)‖+ ‖CDξ̄ T1(u, v)‖ ≤ Θ1 + L1 M1 + L2 M2 +
1

Γ(2 − ξ̄)

(
Θ1 + L1 M1 + L2 M2

)
. (35)

Similarly, using (23), (28) and (30), we obtain

|T2(u, v)(t)| ≤ ρ|K1B1 − K2 A1|
λ|Δ| +

ρL1

λ|Δ|Γ(α + 1)

[
|b1||B1|(log T)α +

|a2||A1|
Γ(γ2 + 1)

(
log η2

)α+γ2]

11
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+
ρL2

λ|Δ|Γ(β + 1)

[ |b2||A1|
Γ(γ1 + 1)

(
log η1

)β+γ1
+ |b2||A1|

(
log T

)β]
+

L2

Γ(β + 1)

(
log T

)β

≤ Θ2 + L1N1 + L2N2.

As before, one can find that

|CDξ T2(u, v)(t)| ≤ 1
Γ(2 − ξ)

(
Θ2 + L1N1 + L2N2

)
,

where Θ2, N1 and N2 are respectively given by (23), (29) and (31).
In consequence, we get

‖T2(u, v)‖Y = ‖T2(u, v)‖+ ‖CDξ T2(u, v)‖ ≤ Θ2 + L1N1 + L2N2 +
1

Γ(2 − ξ)

(
Θ2 + L1N1 + L2N2

)
. (36)

From the inequalities (35) and (36), we deduce that T1 and T2 are uniformly bounded, which implies
that the operator T is uniformly bounded.

Next, we show that T is equicontinuous. Let t1, t2 ∈ [1, T] with t1 < t2. Then we have

|T1(u, v)(t2)− T1(u, v)(t1)|

≤
∣∣∣t−λ

1 − t−λ
2

∣∣∣
λ|Δ|

{
|K2 A2 − K1B2|+ T−λ

[
|b1||B2|

∫ T

1
sλ−1Iα−1| f (s, u(s), v(s), CDξv(s))|ds

+ |b2||A2|
∫ T

1
sλ−1Iβ−1|g(s, u(s), CDξ̄u(s), v(s))|ds

]

+
|a1||B2|
Γ(γ1)

∫ η1

1

(
log

η1

s

)γ1−1
s−(λ+1)

( ∫ s

1
mλ−1Iβ−1|g(m, u(m), CDξ̄u(m), v(m))|dm

)
ds

+
|a2||A2|
Γ(γ2)

∫ η2

1

(
log

η2

s

)γ2−1
s−(λ+1)

( ∫ s

1
mλ−1Iα−1| f (m, u(m), v(m), CDξ v(m))|dm

)
ds

}

+
∣∣∣t−λ

2 − t−λ
1

∣∣∣ ∫ t1

1
sλ−1Iα−1| f (s, u(s), v(s), CDξ v(s))|ds

+ t−λ
2

∫ t2

t1

sλ−1Iα−1| f (s, u(s), v(s), CDξ v(s))|ds

→ 0 as t2 → t1,

independent of (u, v) on account of | f (t, u(t), v(t), CDξ v(t))| ≤ L1 and |g(t, u(t), CDξ̄ u(t), v(t))| ≤ L2.
Also we have

|CDξ̄ T1(u, v)(t2)− CDξ̄ T1(u, v)(t1)|

≤ 1
Γ(2 − ξ̄)

∣∣∣∣∣
∫ t2

1

(
log

t2

s

)−ξ̄
T′

1(u, v)(s)ds −
∫ t1

1

(
log

t1

s

)−ξ̄
T′

1(u, v)(s)ds
∣∣∣

≤ 1
Γ(1 − ξ̄)

{∫ t1

1

∣∣∣( log
t2

s

)−ξ̄ −
(

log
t1

s

)−ξ̄ ∣∣∣s−λ−1ds +
∫ t2

t1

(
log

t2

s

)−ξ̄
s−(λ+1)ds

}
×

×
{
|K2 A2 − K1B2|+ T−λ

[
|b1||B2|

∫ T

1
sλ−1Iα−1| f (s, u(s), v(s), CDξv(s))|ds

+ |b2||A2|
∫ T

1
sλ−1Iβ−1|g(s, u(s), CDξ̄ u(s), v(s))|ds

]

+
|a1||B2|
Γ(γ1)

∫ η1

1

(
log

η1

s

)γ1−1
s−(λ+1)

( ∫ s

1
mλ−1Iβ−1|g(m, u(m), CDξ̄ u(m), v(m))|dm

)
ds

12
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+
|a2||A2|
Γ(γ2)

∫ η2

1

(
log

η2

s

)γ2−1
s−(λ+1)

( ∫ s

1
mλ−1Iα−1| f (m, u(m), v(m), CDξ v(m))|dm

)
ds

}

+
λ

Γ(1 − ξ̄)

∫ t1

1

∣∣∣( log
t2

s

)−ξ̄

−
(

log
t1

s

)−ξ̄ ∣∣∣s−(λ+1)
( ∫ s

1
mλ−1Iα−1| f (m, u(m), v(m), CDξv(m))|dm

)
ds

+
λ

Γ(1 − ξ̄)

∫ t2

t1

(
log

t2

s

)−ξ̄
s−(λ+1)

( ∫ s

1
mλ−1Iα−1| f (m, u(m), v(m), CDξ v(m))|dm

)
ds

+
1

Γ(1 − ξ̄)

∫ t1

1

∣∣∣( log
t2

s

)−ξ̄ −
(

log
t1

s

)−ξ̄ ∣∣∣s−1Iα−1| f (s, u(s), v(s), CDξ v(s)|ds

+
1

Γ(1 − ξ̄)

∫ t2

t1

(
log

t2

s

)−ξ̄
s−1Iα−1| f (s, u(s), v(s), CDξ v(s))|ds → 0 as t2 → t1,

independent of (u, v). In a similar manner, one can obtain that

|T2(u, v)(t2)− T2(u, v)(t1)| → 0 and |CDξ T2(u, v)(t2)− CDξ T2(u, v)(t1)| → 0

as t2 → t1 independent of (u, v) on account of the boundedness of f and g. Thus the operator T
is equicontinuous in view of equicontinuity of T1 and T2. Therefore, by Arzela-Ascoli’s theorem,
it follows that the operator T is compact (completely continuous).

Finally, it will be shown that the set ε(T) = {(u, v) ∈ X × Y : (u, v) = κT(u, v) ; 0 ≤ κ ≤ 1}
is bounded. Let (u, v) ∈ ε(T). Then (u, v) = κT(u, v). For any t ∈ [1, T], we have u(t) =

κT1(u, v)(t), v(t) = κT2(u, v)(t). Using (H1) in (19), we get

|u(t)|

≤ ρ

λ|Δ|

{
|K2 A2 − K1B2|+ T−λ

[ |b1||B2|
Γ(α − 1)

∫ T

1
sλ−1

( ∫ s

1

(
log

s
m

)α−2 ×

×
(

μ0 + μ1|u(m)|+ μ2|v(m)|+ μ3|CDξv(m)|
)dm

m

)
ds

+
|b2||A2|
Γ(β − 1)

∫ T

1
sλ−1

( ∫ s

1

(
log

s
m

)β−2(
τ0 + τ1|u(m)|+ τ2|CDξ̄u(m)|+ τ3|v(m)|

)dm
m

)
ds
]

+
|a1||B2|

Γ(γ1)Γ(β − 1)

∫ η1

1

(
log

η1

s

)γ1−1
s−(λ+1) ×

×
( ∫ s

1
mλ−1

( ∫ m

1

(
log

m
r

)β−2[
τ0 + τ1|u(r)|+ τ2|CDξ̄u(r)|+ τ3|v(r)|

]dr
r

)
dm

)
ds

+
|a2||A2|

Γ(γ2)Γ(α − 1)

∫ η2

1

(
log

η2

s

)γ2−1
s−(λ+1)

( ∫ s

1
mλ−1

( ∫ m

1

(
log

m
r

)α−2 ×

×
(

μ0 + μ1|u(r)|+ μ2|v(r)|+ μ3|CDξ v(r)|
)dr

r

)
dm

)
ds

}

+
|t−λ|

Γ(α − 1)

∫ t

1
sλ−1

( ∫ s

1

(
log

s
m

)α−2[
μ0 + μ1|u(m)|+ μ2|v(m)|+ μ3|CDξv(m)|

]dm
m

)
ds,

which, on taking the norm for t ∈ [1, T], yields

‖u‖ ≤ Θ1 +
(

μ0 + μ1‖u‖X + max{μ2, μ3}‖v‖Y

)
M1

+
(

τ0 + max{τ1, τ2}‖u‖X + τ3‖v‖Y

)
M2.

13
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Similarly one can find that

‖CDξ̄ u‖ ≤ 1
Γ(2 − ξ̄)

{
Θ1 +

(
μ0 + μ1‖u‖X + max{μ2, μ3}‖v‖Y

)
M1

+
(

τ0 + max{τ1, τ2}‖u‖X + τ3‖v‖Y

)
M2

}
.

Consequently, we have

‖u‖X = ‖u‖+ ‖CDξ̄ u‖
≤ Θ1 +

Θ1

Γ(2 − ξ̄)
+
(

M1 +
M1

Γ(2 − ξ̄)

)(
μ0 + μ1‖u‖X + max{μ2, μ3}‖v‖Y

)

+
(

M2 +
M2

Γ(2 − ξ̄)

)(
τ0 + max{τ1, τ2}‖u‖X + τ3‖v‖Y

)
. (37)

Likewise, we can derive that

‖v‖Y ≤ Θ2 +
Θ2

Γ(2 − ξ)
+
(

N1 +
N1

Γ(1 − ξ)

)(
μ0 + μ1‖u‖X + max{μ2, μ3}‖v‖Y

)

+
(

N2 +
N2

Γ(2 − ξ)

)(
τ0 + max{τ1, τ2}‖u‖X + τ3‖v‖Y

)
. (38)

From (37) and (38), we get

‖u‖X + ‖v‖Y = Θ1 + Θ2 +
Θ1

Γ(2 − ξ̄)
+

Θ2

Γ(2 − ξ)

+ μ0

(
M1 + N1 +

M1

Γ(2 − ξ̄)
+

N1

Γ(2 − ξ)

)
+ τ0

(
M2 + N2 +

M2

Γ(2 − ξ̄)
+

N2

Γ(1 − ξ)

)

+ ‖u‖X

[
μ1

(
M1 + N1 +

M1

Γ(2 − ξ̄)
+

N1

Γ(2 − ξ)

)
+ max{τ1, τ2}

(
M2 + N2 +

M2

Γ(2 − ξ̄)
+

N2

Γ(2 − ξ)

)]
(39)

+ ‖v‖X

[
max{μ2, μ3}

(
M1 + N1 +

M1

Γ(2 − ξ̄)
+

N1

Γ(2 − ξ)

)
+ τ3

(
M2 + N2 +

M2

Γ(2 − ξ̄)
+

N2

Γ(2 − ξ)

)]
≤ �1 + max{�2, �3}‖(u, v)‖X×Y ,

which, together with ‖(u, v)‖X×Y = ‖u‖X + ‖v‖Y, yields

‖(u, v)‖X×Y ≤ �1

1 − max{�2, �3} .

This shows that ε(T) is bounded. Thus, Lemma 4 applies and that T has at least one fixed point.
This implies that the boundary value problem (1) has at least one solution on [1, T]. The proof is
completed.

Example 1. Consider the following coupled system of Caputo-Hadamard type sequential fractional differential equations

(CD 3
2 +

1
2

CD 1
2 )x(t) = f (t, x(t), y(t), CD 1

3 y(t)), t ∈ [1, 10],

(CD 5
4 +

1
2

CD 1
4 )y(t) = g(t, x(t), CD 1

4 x(t), y(t)), t ∈ [1, 10], (40)

equipped with nonlocal coupled non-conserved boundary conditions:

u(1) = 0, − 2I 3
2 v(2) + u(10) = 3,

v(1) = 0, − I 1
4 u(3) + 2v(10) = 7. (41)

14
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Here, λ = 1/2, α = 3/2, β = 5/4, T = 10, a1 = −2, a2 = −1, b1 = 1, b2 = 2, K1 = 3, K2 = 7, η1 =

2, η2 = 3, γ1 = 3/2, γ2 = 1/4, ξ = 1/3, ξ̄ = 1/4,

f (t, x(t), y(t), CD 1
3 y(t)) =

1
2(24 + t2)

(
3(t − 1) +

1
2

sin(x(t)) + |y(t)|+ |CD 1
3 y(t))|

)

and

g(t, x(t), CD 1
4 x(t), y(t)) =

1
49t

(
1 − t

2
+ |x(t)|+ |CD 1

4 x(t)|
1 + |CD 1

4 x(t)|
+ sin(y(t))

)
.

Clearly, the functions f and g satisfy the condition (H1) with μ0 = 27
50 , μ1 = 1

100 , μ2 = μ3 = 1
50 , τ0 =

9
98 , τ1 = τ2 = τ3 = 1

49 . Using the given data, we find that A1 ≈ 1.3675, |A2| ≈ 0.2186, |B1| ≈ 0.7865, B2 ≈
2.7351, |Δ| ≈ 3.5684, ρ ≈ 0.6838, Θ1 ≈ 2.5581, Θ1 ≈ 3.49653, Θ2 ≈ 2.76436, Θ2 ≈ 3.52477, M1 ≈
5.4654, M2 ≈ 0.9275, M1 ≈ 9.5348, M2 ≈ 1.2677, N1 ≈ 1.8178, N2 ≈ 5.2756, N1 ≈ 1.6640, N2 ≈
7.9915, �1 ≈ 25.0711, �2 ≈ 0.530375, �3 ≈ 0.725385. With max{�2, �3} < 1, all the conditions of
Theorem 2 are satisfied. Therefore, the problem (40) and (41) has a solution on on [1, 10].

The next result deals with the uniqueness of solutions for the problem (1) and relies on Banach
contraction mapping principle. For computational convenience, we introduce the notations:

Φ1 = Θ1 + r1M1 + r2M2, Ψ1 = �M1 + �1M2, Φ2 = Θ2 + r1N1 + r2N2, Ψ2 = �N1 + �1N2,

Φ1 = Θ1 + r1M1 + r2M2, Ψ1 = �M1 + �1M2, Φ2 = Θ2 + r1N1 + r2N2, Ψ2 = �N1 + �1N2,

r1 = sup
t∈[1,T]

f (t, 0, 0, 0) < ∞, r2 = sup
t∈[1,T]

g(t, 0, 0, 0) < ∞. (42)

Theorem 3. Assume that (H2) holds. Then the boundary value problem (1) has a unique solution on [1, T],
provided that

Ψ1 +
Ψ1

Γ(2 − ξ̄)
<

1
2

and Ψ2 +
Ψ2

Γ(2 − ξ)
<

1
2

, (43)

where Ψi and Ψi (i = 1, 2) are given by (42).

Proof. Let us fix

r ≥ max

⎧⎨
⎩

Φ1 +
Φ1

Γ(2−ξ)

1
2 − (Ψ1 +

Ψ1
Γ(2−ξ)

)
,

Φ2 +
Φ2

Γ(2−ξ)

1
2 − (Ψ2 +

Ψ2
Γ(2−ξ)

)

⎫⎬
⎭ ,

where Φi, Φi, and Ψi, Ψi (i = 1, 2) are given by (42). Then we show that TBr ⊂ Br, where

Br = {(u, v) ∈ X × X : ‖(u, v)‖X×Y ≤ r} .

For (u, v) ∈ Br, we have

| f (t, u(t), v(t), CDξ v(t))| ≤ | f (t, u(t), v(t), CDξ v(t))− f (t, 0, 0, 0)|+ | f (t, 0, 0, 0)|
≤ �[|u(t)|+ |v(t)|+ |CDξv(t)|] + r1

≤ �[‖u‖X + ‖v‖Y] + r1 ≤ �‖(u, v)‖X×Y + r1 ≤ �r + r1.

Similarly, we can find that
|g(t, u(t), CDξ̄ u(t), v(t))| ≤ �1r + r2.

Then

|T1(u, v)(t)| ≤ Θ1 + r1M1 + r2M2 + (�M1 + �1M2)r ≤ Φ1 + Ψ1r,

15



Fractal Fract. 2020, 4, 13

and

|CDξ̄ T1(u, v)(t)| ≤ 1
Γ(2 − ξ̄)

[
Θ1 + r1M1 + r2M2 + (�M1 + �1M2)r

]
≤ 1

Γ(2 − ξ)

[
Φ1 + Ψ1r

]
.

Therefore,

‖T1(u, v)‖X = ‖T1(u, v)‖+ ‖CDξ̄ T1(u, v)‖ ≤ Φ1 +
Φ1

Γ(2 − ξ̄)
+
[
Ψ1 +

Ψ1

Γ(2 − ξ̄)

]
r ≤ r

2
. (44)

In similar manner, we obtain

|T2(u, v)(t)| ≤ Φ2 + Ψ2r, |CDξ T2(u, v)(t)| ≤ 1
Γ(2 − ξ)

[
Φ2 + Ψ2r

]
.

In consequence, we get

‖T2(u, v)‖Y = ‖T2(u, v)‖+ ‖CDξ T2(u, v)‖ ≤ Φ2 +
Φ2

Γ(2 − ξ)
+
[
Ψ2 +

Ψ2

Γ(2 − ξ)

]
r ≤ r

2
. (45)

Thus, it follows from (44) and (45) that

‖T(u, v)‖X×Y = ‖T1(u, v)‖X + ‖T2(u, v)‖X ≤ r,

which implies that TBr ⊂ Br.
Next we show that the operator T is a contraction. For that, let ui, vi ∈ Br (i = 1, 2). Then,

for each t ∈ [1, T], we have

|T1(u1, v1)(t)− T1(u2, v2)(t)|

≤ |1 − t−λ|
λ|Δ|

{
T−λ

[ |b1|B2|
Γ(α − 1)

∫ T

1
sλ−1

( ∫ s

1

(
log

s
m

)α−2 ×

×
∣∣∣ f (m, u1(m), v1(m),C Dξ v1(m)− f (m, u2(m), v2(m),C Dξv2(m)

∣∣∣dm
m

)
ds

+
|b2 A2|

Γ(β − 1)

∫ T

1
sλ−1

( ∫ s

1

(
log

s
m

)β−2 ×

× |g(m, u1(m),C Dξ̄ u1(m), v1(m))− g(m, u2(m),C Dξ̄u2(m), v2(m))|dm
m

)
ds
]

+
|a1B2|

Γ(γ1)Γ(β − 1)

∫ η1

1

(
log

η1

s

)γ1−1
s−(λ+1)

( ∫ s

1
mλ−1

( ∫ m

1

(
log

m
r

)β−2 ×

× |g(r, u1(r), CDξ̄ u1(r), v1(r))− g(r, u2(r), CDξ̄u2(r), v2(r))|dr
r

)
dm

)
ds

+
|a2 A2|

Γ(γ2)Γ(α − 1)

∫ η2

1

(
log

η2

s

)γ2−1
s−(λ+1)

( ∫ s

1
mλ−1

( ∫ m

1

(
log

m
r

)α−2 ×

×
∣∣∣ f (r, u1(r), v1(r), CDξv1(r)− f (r, u2(r), v2(r), CDξ v2(r)

∣∣∣dr
r

)
dm

)
ds

}

+
t−λ

Γ(α − 1)

∫ t

1
sλ−1

( ∫ s

1

(
log

s
m

)α−2 ×

×
∣∣∣ f (m, u1(m), v1(m), CDξ v1(m)− f (m, u2(m), v2(m), CDξv2(m)

∣∣∣dm
m

)
ds

≤ M1�
[
‖u1 − u2‖+ ‖v1 − v2‖+ ‖CDξ v1 − CDξ v2‖

]
+M2�1

[
‖u1 − u2‖+ ‖CDξ̄ u1 − CDξ̄ u2‖+ ‖v1 − v2‖

]
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≤ Ψ1 [‖u1 − u2‖X + ‖v1 − v2‖Y] .

Also we have

|CDξ̄ T1(u1, v1)(t)−C Dξ̄ T1(u2, v2)(t)| ≤ 1
Γ(1 − ξ̄)

∫ t

1

(
log

t
s

)−ξ̄ ∣∣∣T′
1(u1, v1)(s)− T′

1(u2, v2)(s)
∣∣∣ds

≤ Ψ1

Γ(2 − ξ̄)
[‖u1 − u2‖X + ‖v1 − v2‖Y ].

From the foregoing inequalities, we get

‖T1(u1, v1)− T1(u2, v2)‖X = ‖T1(u1, v1)− T1(u2, v2)‖+ ‖CDξ̄ T1(u1, v1)− CDξ̄ T1(u2, v2)‖
≤

[
Ψ1 +

Ψ1

Γ(1 − ξ̄)

]
[‖u1 − u2‖X + ‖v1 − v2‖Y ] . (46)

Similarly, we can find that

‖T2(u1, v1)− T2(u2, v2)‖Y ≤
[

Ψ2 +
Ψ2

Γ(2 − ξ)

]
[‖u1 − u2‖X + ‖v1 − v2‖Y] (47)

Consequently, it follows from (46) and (47) that

‖T(u1, v1)− T(u2, v2)‖X×Y = ‖T1(u1, v1)− T1(u2, v2)‖X + ‖T2(u1, v1)− T2(u2, v2)‖X

≤
[

Ψ1 + Ψ2 +
Ψ1

Γ(2 − ξ̄)
+

Ψ2

Γ(2 − ξ)

]
[‖u1 − u2‖X + ‖v1 − v2‖Y] .

This shows that T is a contraction by (43). Hence, by Banach fixed point theorem, the operator T has a
unique fixed point which corresponds to a unique solution of problem (1). This completes the proof.

Example 2. Consider the following coupled system of fractional differential equations

(CD 3
2 +

1
2

CD 1
2 )x(t) =

1
2(24 + t2)

(
3 + sin(x(t)) + |y(t)|+ tan−1(CD 1

3 y(t))
)

, t ∈ [1, 10]

(CD 5
4 +

1
2

CD 1
4 )y(t) =

1
49t

(
t
2
+ |x(t)|+ |CD 1

4 x(t)|
1 + |CD 1

4 x(t)|
+ sin(y(t))

)
, (48)

supplemented with nonlocal coupled non-conserved boundary conditions:

u(1) = 0, − 2I 3
2 v(2) + u(10) = 3,

v(1) = 0, − I 1
4 u(3) + 2v(10) = 7. (49)

Here, λ = 1/2, α = 3/2, β = 5/4, T = 10, a1 = −2, a2 = −1, b1 = 1, b2 = 2, K1 = 3, K2 = 7, η1 =

2, η2 = 3, γ1 = 3/2, γ2 = 1/4, ξ = 1/3, ξ̄ = 1/4,

f (t, x(t), y(t), CDξ y(t)) =
1

2(24 + t2)
(3 + sin(x(t)) + |y(t)|+ tan−1(CD 1

3 y(t)))

and

g(t, x(t), CDξ̄ x(t), y(t)) =
1

49t

(
t
2
+ |x(t)|+ |CD 1

4 x(t)|
1 + |CD 1

4 x(t)|
+ sin(y(t))

)
.

From the inequalities:

| f (t, x1(t), y1(t), CD 1
3 y1(t))− f (t, x2(t), y2(t), CD 1

3 y2(t))|

17
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≤ 1
50

(
|x1(t)− x2(t)|+ |y1(t)− y2(t)|+ |CD 1

3 y1(t)− CD 1
3 y2(t)|

)
,

|g(t, x1(t), CD 1
4 x1(t), y1(t))− g(t, x2(t), CD 1

4 x2(t), y2(t))

≤ 1
49

(
|x1(t)− x2(t)|+ |CD 1

4 x1(t)− CD 1
4 x2(t)|+ |y1(t)− y2(t)|

)
,

we have l = 1
50 and l1 = 1

49 . Using the given data, we find that A1 ≈ 1.3675, |A2| ≈ 0.2186, |B1| ≈
0.7865, B2 ≈ 2.7351, |Δ| ≈ 3.5684, ρ ≈ 0.6838, M1 ≈ 5.4654, M2 ≈ 0.9275, Ψ1 ≈ 0.1282, M1 ≈
9.5348, M2 ≈ 1.2677, Ψ1 ≈ 0.2166, N1 ≈ 1.8178, N2 ≈ 5.2756, Ψ2 ≈ 0.1439, N1 ≈ 1.6640, N2 ≈
7.9915, Ψ2 ≈ 0.1964. Further

Ψ1 +
Ψ1

Γ(7/4)
≈ 0.3639 < 0.5, Ψ2 +

Ψ2

Γ(5/3)
≈ 0.3615 < 0.5.

Thus all the conditions of Theorem 3 are satisfied. In consequence, by Theorem 3, there exists a unique solution
for the problem (48) and (49) on [1, 10].

4. Conclusions

We have developed the existence theory for a nonlocal integral boundary value problem of
coupled sequential fractional differential equations involving Caputo-Hadamard fractional derivatives
and Hadamard fractional integrals. Several results follow as special cases by fixing the values of the
parameters involved in the problem. For example, by taking ai = −1, bi = 1, K1 = 0 = K2 and T = e,
our results correspond to the ones associated with coupled strip boundary conditions of the form:

u(1) = 0, u(T) = Iγ1 v(η1), γ1 > 0, 1 < η1 < e,

v(1) = 0, v(T) = Iγ2 u(η2), γ2 > 0, 1 < η2 < e.

If we take a1 = 0 = a2 in the results of this paper, we obtain the ones for a coupled system of
Caputo-Hadamard fractional differential equations and uncoupled Dirichlet boundary conditions.
We emphasize that the main results as well as the special cases presented in this paper are new and
enrich the existing literature on the topic.
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1. Introduction

The Langevin equation was discovered by Langevin a century ago to render an accurate
description of the evolution of physical phenomena in fluctuating environments. This equation
can be considered as a special form of the generalized Langevin equation [1], which has turned into a
modern research project theme.

Fractional calculus has attracted many authors and researchers in many different scientific
disciplines. Many of the recent advances in fractional calculus were motivated by the modern
applications of fractional integro-differential equations in various fields, in particular physics. One of
the main reasons for its popularity in modeling various transport properties in complex heterogeneous
and disordered media is that it provides a natural setting for describing processes with memory
and is fractal or multi-fractal in nature [2]. For systems in complex media, the ordinary Langevin
equation does not provide the correct description of the dynamics. Various generalizations of Langevin
equations have been proposed to describe dynamical processes in a fractal medium. One such
generalization is the Langevin equation with two fractional orders, which incorporates the fractal
and memory properties with a dissipative memory kernel into the Langevin equation. This possible
extension requires the replacement of the ordinary derivative by a fractional derivative in the Langevin
equation to give the fractional Langevin equation [3–5]. Various versions of fractional Langevin-type
equations have been proposed to model anomalous diffusion [6,7], and both deterministic and
stochastic fractional equations are used to describe non-Debye dielectric relaxation phenomena.

Anomalous diffusion has been found in various physical and biological systems. The mean
squared displacement of the particle shows a power law dependence on time 〈x2(t)〉 ∼ tα, becoming
subdiffusion in the case 0 < α < 1, superdiffusion for α > 1, and normal classical diffusion for
α = 1 [8–10]. Several stochastic approaches to anomalous diffusion exist. In most cases, such behavior is
considered to be connected with the self-similar properties of the diffusion medium. As this took place,
the generalized Langevin equation came to fame following Kubos’ work and the related fractional
Brownian motion, originally introduced by Kolmogorov [11] and popularized by Mandelbrot [12].
It is remarkable to note that Mainardi and Pironi [13] introduced a fractional Langevin equation as
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a particular case of a generalized Langevin equation and for the first time represented the velocity and
displacement correlation functions in terms of the Mittag–Leffler functions.

Due to the extremely useful role of the fractional Langevin equation in applied mathematics,
physics, engineering, and several branches of science, it has acquired many scientific contributions
in the field of finding exact solutions [3,14,15], approximate solutions through numerical analysis
methods [16–18], and studying the existence and uniqueness of the solution (see [19–25] and the
references given therein). Studying differential equations with integral boundary conditions designates
an extremely useful and interesting class of boundary value problems. Several of the problems are in
chemical engineering, population dynamics, heat conduction, thermoelasticity, underground water
flow, and plasma physics [26]. Furthermore, there are many published contributions concerned with
the fractional boundary value problem with the integral boundary conditions (see [27–29] and the
references given therein). Multi-point boundary value problems for differential equations become
apparent naturally in scientific applications. For an illustration, given a dynamical system with m
degrees of freedom, there may be available exactly m cases spotted at m distinct times. A mathematical
depiction of such problems is in an m-point boundary value problem. Multi-point problems for
differential equations are a special class of interface problems, and hence solvable with various
techniques. Studying fractional differential equations with multi-pint boundary condition has been
drawn the attention of many contributors (see [30–33] and the references given therein).

Motivated by the significance of the integral boundary conditions and fractional Langevin
equations in different branches of science and engineering, this paper is interested in studying the
nonlinear fractional Langevin equation:

cDp(cDq + μ)x(t) = f (t, x(t), cDrx(t)), t ∈ [0, 1] (1)

with the new auxiliary multi-integral and multi-point boundary conditions:

x(0) = 0, Dqx(0) = 0, x(1) =
n

∑
i=1

αix(ηi) +
n

∑
i=1

βi

∫ ηi

0
x(s)ds (2)

where cDp, cDq, and cDr are the Liouville–Caputo fractional derivative of orders p ∈ (1, 2], q ∈ (0, 1],
and 0 < r ≤ q, μ ∈ R is the dissipative parameter, μ, αi, βi ∈ R, ηi ∈ (0, 1), i = 1, 2, · · · , n such that
n ∈ N with ω = ∑n

i=1 αiηi
q+1 �= 1, and the function f : [0, 1]×R×R → R is continuous.

It is worth mentioning that x(t) in Equation (1) is the displacement of the particle in the general
interval t ∈ [0, a], a > 0 (for simplicity, we apply the transformation t = t/a to make t in the unit
interval [0, 1]). Instead of the ordinary definition of the velocity and acceleration as the first and second
derivatives of the displacement, respectively, we render fractional forms cDαx(t), 0 < α ≤ 1 for the
velocity and cDβx(t), 1 < β ≤ 2 for the the acceleration. The product of two fractional derivatives
gives the term cDα+β, which represents the acceleration if 1 < α + β ≤ 2 and the aberrancy of the
curve or the Jerk term [34–36] if 2 < α + β ≤ 3 instead of defining it as a third time derivative of the
displacement. We take here the function f in the general form, which is constituted by the position
x(t) and velocity cDrx(t) of the particle at time t. This function may contain an external force field,
a position-dependent phenomenological fluid friction coefficient, the intensity of the stochastic force,
or the zero-mean Gaussian white noise term.

The first and second boundary conditions in Equation (2) indicate that the particle begins
its motion from stillness at the origin. The last condition in Equation (2), which seems to be a
linear combination of the values of the unknown function at the multi-point and multi-strip, can be
interpreted as “the value of of the unknown function at the terminal point proportionate to the
summation of values of it at midst nonlocal m-points and the areas under its curve from the initial
point to the midst points”.

In mathematical analysis, the existence and uniqueness of the solution for differential and integral
equations have become major topics. There are many fixed point theorems used to discuss the
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existence results [37]. One of these theorems due to Krasnoselskii–Zabreiko lacks usage, although
it gives more precise sufficient conditions of the existence results. This inspired us to discuss the
existence of the solution for our problem by implementing the Krasnoselskii–Zabreiko fixed point
theorem. Furthermore, we apply the Schauder fixed point under different assumptions and show its
applicability by means of studying a numerical example. In addition, the uniqueness of the solution is
investigated by applying the Banach fixed point theorem.

The strategy of the paper is as follows: In the section below, we render some definitions and
results that are needed in this paper. The existence and uniqueness are discussed in Section 3. In the
last section, we establish some examples to show these results.

Introducing the fractional element provides many possibilities for the generalizations of models
described in the previous subsection.

2. Preliminaries

Throughout this section, the definitions needed and the notations are given. Let C[0, 1] be
the class continuous functions on [a, b]. Furthermore, let AC[a, b] be the space of functions f that
are absolutely continuous on [a, b]. For n ∈ N, we denote by ACn[a, b] the space of real functions
f (t), which have continuous derivatives up to order n − 1 on [a, b] such that f (n−1)(t) ∈ AC[a, b].
In particular, AC1[a, b] = AC[a, b] [38].

Definition 1 ([38]). If x(t) ∈ C[a, b], then, the R-Lfractional integral with order p > 0 exists almost
everywhere on [a, b] and can be represented in the form:

Ipx(t) =
1

Γ(p)

∫ t

a
(t − s)p−1x(s)ds.

Definition 2 ([38]). If x(t) ∈ ACn[a, b] and n ∈ N, the Liouville–Caputo fractional derivative of order
n − 1 < p ≤ n exists almost everywhere on [a, b] and can be represented in the form:

cDpx(t) =
1

Γ(n − p)

∫ t

a
(t − s)n−p−1x(n)(s)ds.

Lemma 1 ([38,39]). Let n ∈ N, n − 1 < q ≤ n, and x(t) ∈ Cn[0, 1], then we have:

Iq cDqx(t) = x(t) + a0 + a1t + · · ·+ an−1tn−1

Lemma 2 ([38,39]). Let p > 0, n ∈ N such that n − 1 < q ≤ n, then:

1 cDq Ipx(t) = Dq−px(t) if q > p,
2 cDq Ipx(t) = Ip−qx(t) if p > q.

Lemma 3. Suppose the function g : C[0, 1] → R; hence, the unique solution of the linear equation:

cDp(cDq + μ)x(t) = g(t), t ∈ [0, 1] (3)
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with the conditions mentioned in Equation (2), can be taken the form:

x(t) =
1

Γ(q + p)

∫ t

0
(t − s)q+p−1g(s)ds − μ

Γ(q)

∫ t

0
(t − s)q−1x(s)ds

+
tq+1

(1 − ω)

[
μ

Γ(q)

∫ 1

0
(1 − s)q−1x(s)ds − 1

Γ(p + q)

∫ 1

0
(1 − s)q+p−1g(s)ds

+
n

∑
i=1

αi
Γ(p + q)

∫ ηi

0
(ηi − s)q+p−1g(s)ds − μ

n

∑
i=1

αi
Γ(q)

∫ ηi

0
(ηi − s)q−1x(s)ds

+
n

∑
i=1

βi

∫ ηi

0
x(s)ds

]
(4)

Proof. Applying Lemma 1, we get:

cDqx(t) = Ipg(t)− μx(t) + a0 + a1t (5)

Furthermore, we apply Lemma 1 and use the relation Iqtp = Γ(p+1)
Γ(p+q+1) tp+q, and Equation (5) becomes:

x(t) =
1

Γ(q + p)

∫ t

0
(t − s)q+p−1g(s)ds − μ

Γ(q)

∫ t

0
(t − s)q−1x(s)ds

+
tq

Γ(q + 1)
a0 +

tq+1

Γ(q + 2)
a1 + a2 (6)

By using the boundary conditions x(0) = 0 and Dqx(0) = 0 in Equations (5) and (6), respectively,
we find that a0 = 0 and a2 = 0. The boundary equation x(1) = ∑n

i=1 αix(ηi) + ∑n
i=1 βi

∫ ηi
0 x(s)ds in

Equation (6) gives the value of the constant a1 as:

a1 =
Γ(q + 2)
(1 − ω)

[
μIqx(1)− Ip+qg(1) +

n

∑
i=1

αi I p+qg(ηi)− μ
n

∑
i=1

αi Iqx(ηi)

+
n

∑
i=1

βi

∫ ηi

0
x(s)ds

]

Substitute the values a0, a1 and a2 in Equation (6) to obtain Equation (4). Conversely, inserting
Equation (4) in the left side of Equation (3) using Lemma 2 implies the right side. Furthermore, it
is not difficult to see that Equation (4) verifies the boundary condition Equation (2). This completes
the proof.

3. Main Results

Define the space:
X = {x : x ∈ C[0, 1], cDrx ∈ C[0, 1], 0 < r ≤ 1}

equipped with the norm:

‖x‖X = ‖x‖+ ‖ cDrx(t)‖ = max
t∈[0,1]

|x(t)|+ max
t∈[0,1]

| cDrx(t)|.

It is worth pointing out that Su [40] proved that X is a Banach space equipped with the
former norm.

Assume the following hypotheses that we need to prove the existence and uniqueness results of
the problem Equations (1) and (2).

(G1) f : [0, 1]×R×R → R is a continuous function;
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(G2) There exists a positive function ψ ∈ X such that
| f (t, x, y)| ≤ ψ(t) + a1|x|r1 + a2|y|r2 where a1, a2 ∈ R+ and 0 < r1, r2 ≤ 1;

(G3) The continuous function f (t, 0, 0) does not vanish identically in [0, 1];
(G4) limr→∞

f (t,x(t),y(t))
x(t)+y(t) = κ(t) uniformly in [0, 1] where x, y ∈ X, r = ‖x‖+ ‖y‖ and κ : [0, 1] → R

is continuous;
(G5) There exists a constant L > 0 such that:

| f (t, x, y)− f (t, x̂, ŷ)| ≤ L(|x − x̂|+ |y − ŷ|), t ∈ [0, 1], x, x̂, y, ŷ ∈ R.

For convenience, let:

Θ = Θp,r + Θp,0, (7)

Υ = Υr + Υ0 (8)

where:

Θp,r =
1

Γ(p + q − r + 1)
+

Γ(q + 2)
|1 − ω|Γ(q − r + 2)Γ(p + q + 1)

(
1 +

n

∑
i=1

αiη
p+q
i

)

Υr = |μ|Θ0,r +
Γ(q + 2)

|1 − ω|Γ(q − r + 2)

n

∑
i=1

βiηi

We express the operator T : X → X as:

(Tx)(t) =
1

Γ(q + p)

∫ t

0
(t − s)q+p−1 f (s, x(s), cDrx(s))ds − μ

Γ(q)

∫ t

0
(t − s)q−1x(s)ds

+
tq+1

1 − ω
[T1(x) + T2( f )] (9)

and its rth Caputo fractional derivative:

cDr(Tx)(t) =
1

Γ(q + p − r − 1)

∫ t

0
(t − s)q+p−1 f (s, x(s), cDrx(s))ds

− μ

Γ(q − r)

∫ t

0
(t − s)q−r−1x(s)ds +

Γ(q + 2)tq+1−r

(1 − ω)Γ(q − r + 2)
[T1(x) + T2( f )] (10)

where:

T1(x) =
μ

Γ(q)

∫ 1

0
(1 − s)q−1x(s)ds − μ

n

∑
i=1

αi
Γ(q)

∫ ηi

0
(ηi − s)q−1x(s)ds +

n

∑
i=1

βi

∫ ηi

0
x(s)ds

T2( f ) =
n

∑
i=1

αi
Γ(p + q)

∫ ηi

0
(ηi − s)q+p−1 f (s, x(s), cDrx(s))ds

− 1
Γ(p + q)

∫ 1

0
(1 − s)q+p−1 f (s, x(s), cDrx(s))ds.

It is easy to see that:

‖T1(x)‖ ≤ ‖x‖
Γ(q + 1)

(
|μ|+ |μ|

n

∑
i=1

|αi|ηq
i + Γ(q + 1)

n

∑
i=1

|βi|ηi

)
(11)

‖T2( f )‖ ≤ ‖ f ‖
Γ(p + q + 1)

(
1 +

n

∑
i=1

|αi|ηq+p
i

)
. (12)
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Our first result is discussing the existence of the solution for the problem by the Schauder fixed
point theorem.

Theorem 1. Assume that G1 and G2 hold. Then, the boundary value problem Equations (1) and (2) have a
solution.

Proof. We express the operator T : X → X and let a closed ball Bξ = {x ∈ X : ‖x‖X ≤ ξ} taking:

ξ > max{4‖ψ‖XΘ, (4a1Θ)
1

1−r1 , (4a2Θ)
1

1−r2 , 4ξΥ}

Then, we claim that TBξ ⊂ Bξ . For x ∈ Bξ and by the condition G1, we give:

|(Tx)(t)| ≤ 1
Γ(q + p)

∫ t

0
(t − s)q+p−1| f (s, x(s), cDrx(s))|ds +

|μ|
Γ(q)

∫ t

0
(t − s)q−1|x(s)|ds

+
1

|1 − ω| [|T1(x)|+ |T2( f )|]

≤ (‖ψ‖X + a1ξr1 + a2ξr2)

{
tp+q

Γ(p + q + 1)
+

1
(1 − ω)Γ(p + q + 1)

+
∑n

i=1 |αi|ηp+q
i

(1 − ω)Γ(p + q + 1)

}

+ ‖x‖X

{
|μ|tq

Γ(q + 1)
+

tq+1|μ|
(1 − ω)Γ(q + 1)

+
tq+1|μ|

(1 − ω)Γ(q + 1)

n

∑
i=1

αiη
q
i +

tq+1

(1 − ω)

n

∑
i=1

|βi||ηi|
}

≤ (‖ψ‖X + a1ξr1 + a2ξr2)

{
1

Γ(p + q + 1)
+

1 + ∑n
i=1 |αi|ηp+q

i
(1 − ω)Γ(p + q + 1)

}

+ ξ

{
|μ|

Γ(q + 1)
+

|μ|(1 + ∑n
i=1 |αi|ηq

i )

(1 − ω)Γ(q + 1)
+

∑n
i=1 |βi||ηi|

1 − ω

}

≤ (‖ψ‖X + a1ξr1 + a2ξr2)Θp,0 + ξΥ0

Similarly, we have:

| cDr(Tx)(t)| ≤ (‖ψ‖X + a1ξr1 + a2ξr2)Θp,r + ξΥr

Consequently,

‖Tx‖X = max |(Tx)(t)|+ max |( cDr(Tx)(t))|
≤ (‖ψ‖X + a1ξr1 + a2ξr2)(Θp,0 + Θp,r) + ξ(Υ0 + Υr)

≤ (‖ψ‖X + a1ξr1 + a2ξr2)Θ + ξΥ

≤ ξ

4
+

ξ

4
+

ξ

4
+

ξ

4
= ξ

Then, the operator T : X → X is uniformly bounded. Next, we show that T is equicontinuous.
We set:

N = max
t∈[0,1]

| f (t, x(t), cDrx(t))|+ 1
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and for x ∈ Bξ , let t1, t2 ∈ [0, 1], whereas for t1 < t2, we get:

|(Tx)(t2)− (Tx)(t1)| ≤
∣∣∣∣ 1
Γ(p + q)

∫ t2

0
(t2 − s)q+p−1 f (s, x(s), cDrx(s))ds

− μ

Γ(q)

∫ t2

0
(t2 − s)q−1x(s)ds − 1

Γ(p + q)

∫ t1

0
(t1 − s)q+p−1 f (s, x(s), Drx(s))ds

+
μ

Γ(q)

∫ t1

0
(t1 − s)q−1x(s)ds

∣∣∣∣+
∣∣∣∣ (t2

q+1 − t1
q+1)

1 − ω
(T1(x) + T2( f ))

∣∣∣∣
≤
∣∣∣∣ 1
Γ(p + q)

∫ t1

0
[(t2 − s)q+p−1 − (t1 − s)p+q−1] f (s, x(s), cDrx(s))ds

+
1

Γ(p + q)

∫ t2

t1

(t2 − s)q+p−1 f (s, x(s), cDrx(s))ds
∣∣∣∣

+

∣∣∣∣ μ

Γ(q)

∫ t1

0
[(t1 − s)q−1 − (t2 − s)q−1]x(s)ds +

μ

Γ(q)

∫ t2

t1

(t2 − s)q−1x(s)ds
∣∣∣∣

+
t2

q+1 − t1
q+1

|1 − ω| (|T1(x)|+ |T2( f )|)

≤ N
Γ(p + q + 1)

(tp+q
2 − tp+q

1 ) +
2|μ|ξ

Γ(q + 1)
(t2 − t1)

q +
(t2

q+1 − t1
q+1)

(1 − ω)

{
ξ

|μ|
Γ(q + 1)

+
N

Γ(p + q + 1)
+ N

∑n
i=1 |αi|ηi

p+q

Γ(p + q + 1)
+ ξ

|μ|∑n
i=1 |αi|ηi

q

Γ(q + 1)
+ ξ

n

∑
i=1

|βi||ηi|
}

Similarly,

|( cDrTx)(t2)− cDr(Tx)(t1)| ≤ N
Γ(p + q − r + 1)

(tp+q−r
2 − tp+q−r

1 ) +
2|μ|ξ

Γ(q − r + 1)
(t2 − t1)

q−r

+
Γ(q + 2)(t2

q−r+1 − t1
q−r+1)

Γ(q − r + 2)(1 − ω)

{
ξ

|μ|
Γ(q + 1)

+
N

Γ(p + q + 1)
+ N

∑n
i=1 |αi|ηi

p+q

Γ(p + q + 1)

+ξ
|μ|∑n

i=1 |αi|ηi
q

Γ(q + 1)
+ ξ

n

∑
i=1

|βi||ηi|
}

Observe that (tp+q
2 − tp+q

1 ), (tq+1
2 − tq+1

1 ), (t2 − t1)
q, (tp+q−r

2 − tp+q−r
1 ), (tq−r+1

2 − tq−r+1
1 ), and

(t2 − t1)
q−r approach uniformly zero as t1 approaches t2. Then, the operator T is equicontinuous,

and we get that the operator T is uniformly bounded since TBξ ⊂ Bξ . Therefore, the Arzela–Ascoli
theorem leads to that the operator being completely continuous. Hence, the Schauder fixed point
theorem ensures the existence of the solution for problem Equations (1) and (2).

The second result is discussing the existence of the solution by using Krasnoselskii–Zabreiko’s
fixed point theorem:

Lemma 4 ([41]). Let W be a Banach space. Suppose that F : W → W is a completely continuous mapping
and G : W → W is a bounded linear mapping such that 1 is not an eigenvalue of G and:

lim
‖x‖→∞

‖Fx −Gx‖
‖x‖ = 0.

Then, F has a fixed point in W .

Theorem 2. Assume that G1, G3, and G4 hold. Then, the boundary value problem Equations (1) and (2) have a
solution if ‖κ‖Θ + Υ < 1 where Θ and Υ are defined as in Equations (7) and (8), respectively.
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Proof. Let f (t, x(t), cDrx(t)) = κ(t)(x(t) + cDrx(t)), and consider the linear operator:

(Fx)(t) =
1

Γ(q + p)

∫ t

0
(t − s)q+p−1κ(s)(x(s) + cDrx(s))ds − μ

Γ(q)

∫ t

0
(t − s)q−1x(s)ds

+
tq+1

1 − ω
[T1(x) + T2(κ(x + cDrx))]

and its fractional derivative:

cDr(Fx)(t) =
1

Γ(q + p − r − 1)

∫ t

0
(t − s)q+p−1κ(s)(x(s) + cDrx(s))ds

− μ

Γ(q − r)

∫ t

0
(t − s)q−r−1x(s)ds

+
Γ(q + 2)tq+1−r

(1 − ω)Γ(q − r + 2)
[T1(x) + T2(κ(x + cDrx))] .

Now, we show that one is not an eigenvalue of Fx(t) and cDrFx(t). Use the proof by contradiction.
Suppose that one is an eigenvalue of Fx(t), and cDrFx(t) using Equations (11) and (12), we can
deduce that:

‖Fx‖ ≤ ‖x‖X

{ ‖κ‖
Γ(p + q + 1)

+
|μ|

Γ(q + 1)
+

|μ|
Γ(q + 1)(1 − ω)

+
‖κ‖

Γ(p + q + 1)(1 − ω)

+
‖κ‖∑n

i=1 |αi|ηi
p+q

Γ(p + q + 1)
+

|μ|∑n
i=1 ηi

q

Γ(q + 1)(1 − ω)
+

n

∑
i=1

|βi||ηi|
}

and:

‖ cDrFx‖ ≤ ‖x‖X

{ ‖κ‖
Γ(p + q − r + 1)

+
|μ|

Γ(q − r + 1)
+

|μ|Γ(q + 2)
Γ(q − r + 1)Γ(q + 1)(1 − ω)

+
‖κ‖Γ(q + 2)

Γ(q − r + 1)Γ(p + q + 1)(1 − ω)
+

‖κ‖Γ(q + 2)∑n
i=1 |αi|ηi

p+q

Γ(q − r + 2)Γ(p + q + 1)

+
|μ|Γ(q + 2)|∑n

i=1 ηi
q

Γ(q − r + 2)Γ(q + 1)(1 − ω)
+

Γ(q + 2)∑n
i=1 |βi||ηi|

Γ(q − r + 2)(1 − ω)

}
.

This implies:

‖Fx‖X = max |(Fx)(t)|+ max |( cDr(Fx)(t))|
≤ ‖x‖X {‖κ‖Θ + Υ} < ‖x‖X .

This is a contradiction, because our supposition that one is an eigenvalue of the operator ‖Fx‖X
is the wrong assumption. Hence, one is not an eigenvalue of ‖Fx‖X . The operator ‖Tx‖X is uniformly
bounded and equicontinuous as in Theorem 1.
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Now, we prove ‖Tx−Fx‖X
‖x‖X

→ 0 as ‖x‖X → ∞, then:

‖Tx − Fx‖ ≤ 1
Γ(q + p)

∫ t

0
(t − s)q+p−1| f (s, x(s) cDrx(s))− κ(s)(x(s) +c Drx(s))|ds

+
1

|1 − ω| |T2( f )− T2(κ(x +c Drx))|

≤ 1
Γ(q + p)

∫ t

0
(t − s)q+p−1

∣∣∣∣ f (s, x(s) cDrx(s))
x(s) +c Drx(s)

− κ(s)
∣∣∣∣ (|x(s)|+ |cDrx(s)|ds

+
1

|1 − ω|
[

1
Γ(p + q)

∫ 1

0
(1 − s)q+p−1

∣∣∣∣ f (s, x(s) cDrx(s))
x(s) +c Drx(s)

− κ(s)
∣∣∣∣ (|x(s)|+ |cDrx(s)|)ds

+
n

∑
i=1

|αi|
Γ(p + q)

∫ ηi

0
(ηi − s)q+p−1

∣∣∣∣ f (s, x(s) cDrx(s))
x(s) +c Drx(s)

− κ(s)
∣∣∣∣ (|x(s)|+ |cDrx(s)|)ds

]

≤
{

1
Γ(p + q + 1)

+
1

Γ(p + q + 1)(1 − ω)
+

∑n
i=1 |αi|ηi

p+q

Γ(p + q + 1)|1 − ω|
} ∣∣∣∣ f (t, x(t) cDrx(t))

x(t) +c Drx(t)
− κ(t)

∣∣∣∣ ‖x‖X

and similarly,

‖ cDrTx − cDrFx‖ ≤
{

1
Γ(p + q − r + 1)

+
Γ(q + 2)

Γ(q − r + 2)Γ(p + q + 1)|1 − ω|
+

Γ(q + 2)∑n
i=1 |αi|ηi

p+q

Γ(q − r + 2)Γ(p + q + 1)|1 − ω|
} ∣∣∣∣ f (t, x(t)Drx(t))

x(t) +c Drx(t)
− κ(t)

∣∣∣∣ ‖x‖X

Therefore,

‖Tx − Fx‖X
‖x‖X

=
‖(Tx)(t)− (Fx)(t)‖

‖x‖X
+

‖ cDr(Tx)(t)− cDr(Fx)(t)‖
‖x‖X

≤
{

1
Γ(p + q + 1)

+
1 + ∑n

i=1 |αi|ηp+q
i

(1 − ω)Γ(p + q + 1)
+

1
Γ(p + q − r + 1)

+
Γ(q + 2)(1 + ∑n

i=1 |αi|ηp+q
i )

(1 − ω)Γ(q − r + 2)Γ(p + q + 1)

}

×
∣∣∣∣ f (t, x(t) cDrx(t))

x(t) + cDrx(t)
− κ(t)

∣∣∣∣
By assumption G4,

lim
‖x‖→∞

‖Tx − Fx‖X
‖x‖X

= 0

Then, Krasnoselskii–Zabreiko’s fixed point theorem leads to the existence of a solution for the
boundary value problem Equations (1) and (2).

We present now the Banach contraction principle to prove the uniqueness of the solution for
problem Equations (1) and (2).

Theorem 3. Assume that G1 and G5 hold. The boundary value problem Equations (1) and (2) have a unique
solution if σ < 1 where:

σ = LΘ + Υ

and Θ and Υ are defined as in Equations (7) and (8), respectively.
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Proof. Using the assumption G5, we have:

|(Tx)(t)− (Tx̂)(t)| ≤ 1
Γ(q + p)

∫ t

0
(t − s)q+p−1| f (s, x(s), cDrx(s))− f (s, x̂(s), cDrx̂(s))|ds

+
|μ|

Γ(q)

∫ t

0
(t − s)q−1|x(s)− x̂(s)|ds

+
1

|1 − ω| (|T1(x)− T1(x̂)|+ |T2( f (s, x(s), cDrx(s)))− T2( f (s, x̂(s), cDrx̂(s)))|)

≤ L‖x − x̂|‖X

{
tp+q

Γ(p + q + 1)
+

1
|1 − ω|Γ(p + q + 1)

+
∑n

i=1 |αi|ηp+q
i

|1 − ω|Γ(p + q + 1)

}

+ ‖x − x̂‖X

{
|μ|tq

Γ(q + 1)
+

tq+1|μ|
|1 − ω|Γ(q + 1)

+
tq+1|μ|

|1 − ω|Γ(q + 1)

n

∑
i=1

|αi|ηq
i +

1
|1 − ω|

n

∑
i=1

|βi||ηi|
}

≤ (LΘp,0 + Υ0)‖x − x̂‖X

likewise,

| cDr(Tx)(t)− cDr(Tx̂)(t)| ≤ (LΘp,r + Υr)‖x − x̂‖X

Hence,

‖Tx − Tx̂‖X = max
t∈[0,1]

|(Tx)(t)− (Tx̂)(t)|+ max
t∈[0,1]

|( cDr(Tx)(t))− ( cDr(Tx̂)(t))|

≤ (LΘp,0 + Υ0)‖x − x̂‖X + (LΘp,r + Υr)‖x − x̂‖X

≤ (LΘ + Υ)‖x − x̂‖X ≤ σ‖x − x̂‖X

Since σ < 1, then the operator Tx is a contraction. Therefore, from the contraction mapping
principle, the boundary value problem Equations (1) and (2) have a unique solution on [0, 1].

4. Example

Example 1. Consider the following boundary value problem:

⎧⎪⎪⎨
⎪⎪⎩

cD
9
8

(
cD

5
8 + 1

10

)
x(t) = f (t, x(t), D

3
8 x(t)), 0 < t < 1

x(0) = 0, cD
5
8 x(0) = 0,

x(1) = 1
4 x( 1

3 ) +
1
2 x( 1

9 ) +
1
5

∫ 1/3
0 x(s)ds + 2

5

∫ 1/9
0 x(s)ds.

(13)

We choose p = 9/8, q = 5/8, r = 3/8, αi =
i
4 , βi =

i
7 , ηi =

1
3i , (i = 1, 2), and μ = 1/4. Define the

continuous function by:

f (t, x, y) =
et sin(πt)
(2 + t)3 +

t cos2 πt
(3 − t)4 (x + y)

Observe that the function f is continuous and f (t, 0, 0) = et sin(πt)
(2+t)3 �= 0 on (0, 1), which means that the

assumptions G1 and G3 hold. Now, we have:

f (t, x, y)
x + y

=
et sin(πt)

(2 + t)3(x + y)
+

t cos2 πt
(3 − t)4

which implies that:

lim
‖x‖X→∞

f (t, x, y)
x + y

=
t cos2 πt
(3 − t)4 = κ(t) and ‖κ‖ =

1
16

.
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Thus, we can calculate ‖κ‖Θ + Υ ∼ 1
16 (3.01664) + 0.75232 = 0.94086 < 1. Therefore, by Theorem 2,

the boundary value problem Equations (1) and (2) have a solution in [0, 1].
Furthermore, it is clear that the function f satisfies the assumption G5 with L = 1/16 and σ = LΘ + Υ ∼

0.94086 < 1. Then, by Theorem 3, the boundary value problem Equations (1) and (2) have a unique solution
in [0, 1].

5. Conclusions

The existence and uniqueness of the solution for the fractional nonlinear Langevin equation of
two different fractional orders under the boundary conditions containing multi-point and multi-strip
were studied. We found an equivalence of the problem by using the tools of fractional calculus and
fixed point theorems. To examine our problem, we employed Krasnoselskii–Zabreiko, Schauder,
and Banach contraction fixed point theorems. Our method was simple and appropriate for a
diversity of real-world problems by choosing different forms of the function f in the Langevin
equation. For instance, if f = −γ(x(t))cDrx(t)) + η(x(t))ξ(t) + F(t, x(t)) where γ(x(t)) is the
position-dependent phenomenological fluid friction coefficient, F(z, t) is the external force field,
η(x(t)) is the intensity of the stochastic force, and ξ(t) is a zero-mean Gaussian white noise term, then
the model describes the fractional Markovian set of stochastic differential equations [42].
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Abstract: We introduce a stochastic fractional calculus. As an application, we present a stochastic
fractional calculus of variations, which generalizes the fractional calculus of variations to stochastic
processes. A stochastic fractional Euler–Lagrange equation is obtained, extending those available
in the literature for the classical, fractional, and stochastic calculus of variations. To illustrate our
main theoretical result, we discuss two examples: one derived from quantum mechanics, the second
validated by an adequate numerical simulation.
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1. Introduction

A stochastic calculus of variations, which generalizes the ordinary calculus of variations to
stochastic processes, was introduced in 1981 by Yasue, generalizing the Euler–Lagrange equation and
giving interesting applications to quantum mechanics [1]. Recently, stochastic variational differential
equations have been analyzed for modeling infectious diseases [2,3], and stochastic processes have
shown to be increasingly important in optimization [4].

In 1996, fifteen years after Yasue’s pioneer work [1], the theory of the calculus of variations
evolved in order to include fractional operators and better describe non-conservative systems in
mechanics [5]. The subject is currently under strong development [6]. We refer the interested reader
to the introductory book [5] and to [7–9] for numerical aspects on solving fractional Euler–Lagrange
equations. For applications of fractional-order models and variational principles in epidemics, biology,
and medicine, see [10–14] and references therein.

Given the importance of both stochastic and fractional calculi of variations, it seems natural to
join the two subjects. That is the main goal of our current work, i.e., to introduce a stochastic-fractional
calculus of variations. For that, we start our work by introducing new definitions: left and right
stochastic fractional derivatives and integrals of Riemann–Liouville and Caputo types for stochastic
processes of second order, as a deterministic function resulting from the intuitive action of the
expectation, on which we can compute its fractional derivative several times to obtain additional
results that generalize analogous classical relations. Our definitions differ from those already available
in the literature by the fact that they are applied on second order stochastic processes, whereas known
definitions, for example, those in [15–18], are defined only for mean square continuous second order
stochastic process, which is a short family of operators. Moreover, available results in the literature
have not used the expectation, which we claim to be more natural, easier to handle and estimate, when
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applied to fractional derivatives by different methods of approximation, like those developed and cited
in [7]. More than different, our definitions are well posed and lead to numerous results generalizing
those in the literature, like integration by parts and Euler–Lagrange variational equations.

The paper is organized as follows. In Section 2, we introduce the new stochastic fractional
operators. Their fundamental properties are then given in Section 3. In particular, we prove stochastic
fractional formulas of integration by parts (see Lemma 1). Then, in Section 4, we consider the basic
problem of the stochastic fractional calculus of variations and obtain the stochastic Riemann–Liouville
and Caputo fractional Euler–Lagrange equations (Theorems 1 and 2, respectively). Section 5 gives two
illustrative examples. We end with Section 6 on conclusions and future perspectives.

2. The Stochastic Fractional Operators

Let (Ω, F, P) be a probabilistic space, where Ω is a nonempty set, F is a σ-algebra of subsets of
Ω, and P is a probability measure defined on Ω. A mapping X from an open time interval I into the
Hilbert space H = L2(Ω, P) is a stochastic process of second order in R. We introduce the stochastic
fractional operators by composing the classical fractional operators with the expectation E.

In what follows, the classical fractional operators are denoted using standard notations [19]:
aDα

t and tDα
b denote the left and right Riemann–Liouville fractional derivatives of order α; a Iα

t and t Iα
b

the left and right Riemann–Liouville fractional integrals of order α; while the left and right Caputo
fractional derivatives of order α are denoted by C

a Dα
t and C

t Dα
b , respectively. The new stochastic

operators add to the standard notations an ‘s’ for “stochastic”.

Definition 1 (Stochastic fractional operators). Let X be a stochastic process on [a, b] ⊂ I, α > 0, n = [α] + 1,
such that E(X(t)) ∈ ACn([a, b] → R) with AC the class of absolutely continuous functions. Then,

(D1) the left stochastic Riemann–Liouville fractional derivative of order α is given by

s
aDα

t X(t) = aDα
t [E(Xt)]

=
1

Γ(n − α)

(
d
dt

)n ∫ t

a
(t − τ)n−1−αE(Xτ)dτ, t > a;

(D2) the right stochastic Riemann–Liouville fractional derivative of order α by

s
t Dα

b X(t) = tDα
b [E(Xt)]

=
1

Γ(n − α)

(−d
dt

)n ∫ b

t
(τ − t)n−1−αE(Xτ)dτ, t < b;

(D3) the left stochastic Riemann–Liouville fractional integral of order α by

s
a Iα

t X(t) = a Iα
t [E(Xt)]

=
1

Γ(α)

∫ t

a
(t − τ)α−1E(Xτ)dτ, t > a;

(D4) the right stochastic Riemann–Liouville fractional integral of order α by

s
t Iα

b X(t) = t Iα
b [E(Xt)]

=
1

Γ(α)

∫ b

t
(τ − t)α−1E(Xτ)dτ, t < b;

(D5) the left stochastic Caputo fractional derivative of order α by

sC
a Dα

t X(t) = C
a Dα

t [E(Xt)]

=
1

Γ(n − α)

∫ t

a
(t − τ)n−1−αE(X(τ))(n)dτ; t > a.
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(D6) and the right stochastic Caputo fractional derivative of order α by

sC
t Dα

b X(t) = C
t Dα

b [E(Xt)]

=
(−1)n

Γ(n − α)

∫ b

t
(τ − t)n−1−αE(X(τ))(n)dτ, t < b.

Remark 1. The stochastic processes X(t) used along the manuscript can be of any type satisfying the announced
conditions of existence of the novel stochastic fractional operators. For example, we can consider Levy processes
as a particular case, provided one considers some intervals where E(X(t)) is sufficiently smooth [20].

As we shall prove in the following sections, the new stochastic fractional operators just introduced
provide a rich calculus with interesting applications.

3. Fundamental Properties

Several properties of the classical fractional operators, like boundedness or linearity, also hold
true for their stochastic counterparts.

Proposition 1. If t → E(Xt) ∈ L1([a, b]), then s
a Iα

t (Xt) is bounded.

Proof. The property follows easily from definition (D3):

|sa Iα
t (Xt)| =

∣∣∣∣ 1
Γ(α)

∫ t

a
(t − τ)α−1E(Xτ)dτ

∣∣∣∣ ≤ k ‖E(Xt)‖1 ,

which shows the intended conclusion.

Proposition 2. The left and right stochastic Riemann–Liouville and Caputo fractional operators given in
Definition 1 are linear operators.

Proof. Let c and d be real numbers and assume that s
aDα

t Xt and s
aDα

t Yt exist. It is easy to see that
s
aDα

t (c · Xt + d · Yt) also exists. From Definition 1 and by linearity of the expectation and the linearity
of the classical/deterministic fractional derivative operator, we have

s
aDα

t (c · Xt + d · Yt) = aDα
t E(c · Xt + d · Yt)

= c · aDα
t E(Xt) + d · aDα

t E(Yt)

= c · s
aDα

t (Xt) + d · s
aDα

t (Yt).

The linearity of the other stochastic fractional operators is obtained in a similar manner.

Our next proposition involves both stochastic and deterministic operators. Let O ∈ {
D, I, CD

}
.

Recall that if s
aOβ

t is a left stochastic fractional operator of order β, then aOβ
t is the corresponding left

classical/deterministic fractional operator of order β; similarly for right operators.
Note that the proofs of Propositions 3 and 4 and Lemma 1 are not hard to prove in the sense that

they are based on well-known results available for deterministic fractional derivatives (observe that
E(X(t)) is deterministic).
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Proposition 3. Assume that s
a Iβ

t Xt, s
t Iβ

b Xt, s
a Iα

t Xt, aDα
t [

s
a Iα

t Xt], a Iα
t

[
s
a Iβ

t Xt

]
and t Iα

b

[
s
t Iβ

b Xt

]
exist.

The following relations hold:

a Iα
t

[
s
a Iβ

t Xt

]
= s

a Iα+β
t Xt,

t Iα
b

[
s
t Iβ

b Xt

]
= s

t Iα+β
b Xt,

aDα
t [

s
a Iα

t Xt] = E(Xt).

Proof. Using Definition 1 and well-known properties of the deterministic Riemann–Liouville fractional
operators [21], one has

a Iα
t

[
s
a Iβ

t Xt

]
= a Iα

t

[
a Iβ

t E(Xt)
]

= a Iα+β
t E(Xt)

= s
a Iα+β

t Xt.

The second and third equalities are easily proved in a similar manner.

Proposition 4. Let α > 0. If E(Xt) ∈ L∞(a, b), then

C
a Dα

t [
s
a Iα

t Xt] = E(Xt)

and
C
t Dα

b [
s
t Iα

b Xt] = E(Xt).

Proof. Using Definition 1 and well-known properties of the deterministic Caputo fractional
operators [21], we have

C
a Dα

t [
s
a Iα

t Xt] =
C
a Dα

t [a Iα
t E(Xt)]

= E(Xt).

The second formula is shown with the same argument.

Formulas of integration by parts play a fundamental role in the calculus of variations and
optimal control [22,23]. Here we make use of Lemma 1 to prove in Section 4 a stochastic fractional
Euler–Lagrange necessary optimality condition.

Lemma 1 (Stochastic fractional formulas of integration by parts). Let α > 0, p, q ≥ 1, and 1
p +

1
q ≤ 1+ α

(p �= 1 and q �= 1 in the case where 1
p + 1

q = 1 + α).

(i) If E(Xt) ∈ Lp(a, b) and E(Yt) ∈ Lq(a, b) for every t ∈ [a, b], then

E
(∫ b

a
(Xt)

s
a Iα

t Ytdt
)
= E

(∫ b

a
(Yt)

s
t Iα

b Xtdt
)

.

(ii) If E(Yt) ∈ t Iα
b (Lp) and E(Xt) ∈ a Iα

t (Lq) for every t ∈ [a, b], then

E
(∫ b

a
(Xt)(

s
aDα

t Yt)dt
)
= E

(∫ b

a
(Yt)(

s
t Dα

b Xt)dt
)

.

(iii) For the stochastic Caputo fractional derivatives, one has

E
[∫ b

a
(Xt)(

sC
a Dα

t Yt)dt
]
= E

[∫ b

a
(Yt)(

s
t Dα

b Xt)dt
]
+ E

[
(s

t I1−α
b Xt) · Yt

]b

a
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and

E
[∫ b

a
(Xt)(

sC
t Dα

bYt)dt
]
= E

[∫ b

a
(Yt)(

s
aDα

t Xt)dt
]
− E

[
(s

a I1−α
t Xt) · Yt

]b

a

for α ∈ (0, 1).

Proof. (i) We have

E
(∫ b

a
(Xt)

s
a Iα

t Ytdt
)
=

∫ b

a
E ((Xt)

s
a Iα

t Yt) dt (by Fubini–Tonelli’s theorem)

=
∫ b

a
E ((Xt)a Iα

t E(Yt)) dt (by (D3))

=
∫ b

a
E((Xt))a Iα

t E(Yt)dt (the expectation is deterministic)

=
∫ b

a
t Iα

b E(Xt) · E(Yt)dt (by fractional integration by parts)

= E
(∫ b

a

s
t Iα

b (Xt)(Yt)dt
)

(by Fubini–Tonelli’s theorem).

(ii) With similar arguments as in item (i), we have

E
(∫ b

a
(Xt)

s
aDα

t Ytdt
)
=

∫ b

a
E ((Xt)

s
aDα

t Yt) dt

=
∫ b

a
E ((Xt)aDα

t E(Yt)) dt (by (D1))

=
∫ b

a
E((Xt))aDα

t E(Yt)dt

=
∫ b

a
tDα

b E(Xt) · E(Yt)dt

= E
(∫ b

a

s
t Dα

b (Xt)(Yt)dt
)

.

(iii) By using Caputo’s fractional integration by parts formula we obtain that

E
[∫ b

a
(Xt)(

sC
a Dα

t Yt)dt
]
=

∫ b

a
E [(Xt)] (

C
a Dα

t E [(Yt)])dt

=
∫ b

a
(tDα

b E [(Xt)] · E [(Yt)])dt +
[
(t I1−α

b E(Xt) · E(Yt)
]b

a

=
∫ b

a
(s

t Dα
b (Xt) · E [(Yt)])dt +

[
(t I1−α

b E(Xt) · E(Yt)
]b

a

= E
[∫ b

a
(s

t Dα
b (Xt) · (Yt))dt

]
+ E

[
(t I1−α

b E(Xt) · (Yt)
]b

a
.

The first equality of (iii) is proved. By using a similar argument and applying the integration
by parts formula associated with the right Caputo fractional derivative [21], we easily get the second
equality of (iii).

4. Stochastic Fractional Euler–Lagrange Equations

Let us denote by C1(I → H) the set of second order stochastic processes X such that the left and
right stochastic Riemann–Liouville fractional derivatives of X exist, endowed with the norm

‖X‖ = sup
t∈I

(‖X(t)‖H+ | s
aDα

t X(t) | + | s
t Dα

b X(t) |) ,
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where ‖ · ‖H is the norm of H. Let L ∈ C1(I × H × R × R → R) and consider the following
minimization problem:

J[X] = E
(∫ b

a
L (t, X(t), s

aDα
t X(t), s

t Dα
b X(t)) dt

)
−→ min (1)

subject to the boundary conditions

E(X(a)) = Xa, E(X(b)) = Xb, (2)

where X verifies the above conditions and L is a smooth function. Taking into account the method used
in [7] for the fractional setting, and according to stochastic fractional integration by parts given by our
Lemma 1, we obtain the following necessary optimality condition for the fundamental problem (1)–(2)
of the stochastic fractional calculus of variations.

Theorem 1 (The stochastic Riemann–Liouville fractional Euler–Lagrange equation). If J ∈ C1(H ×
R×R → R) and X ∈ C1(I → H) is an F-adapted stochastic process on [a, b] with E(X(t)) ∈ AC([a, b])
that is a minimizer of (1) subject to the fixed end points (2), then X satisfies the following stochastic fractional
Euler–Lagrange equation:

∂L
∂X

+ s
t Dα

b

[
∂L

∂s
aDα

t

]
+ s

aDα
t

[
∂L

∂s
t Dα

b

]
= 0.

Proof. We have

J[X] = E
(∫ b

a
L(t, X(t), s

aDα
t X(t), s

t Dα
b X(t)dt

)
.

Assume that X∗ is the optimal solution of problem (1)–(2). Set

X = X∗ + εη,

where η is an F-adapted stochastic process on [a, b] in C1(I → H). By linearity of the stochastic
fractional derivatives (Proposition 2), we get

s
aDα

t X = s
aDα

t X∗ + ε (s
aDα

t η)

and
s
t Dα

b X = s
t Dα

b X∗ + ε (s
t Dα

b η) .

Consider now the following function:

j(ε) = E
(∫ b

a
L (t, X∗ + εη, s

aDα
t X∗ + ε (s

aDα
t η) , s

t Dα
b X∗ + ε (s

t Dα
b η)) dt

)
.

We deduce, by the chain rule, that

d
dt

j(ε) |ε=0= E
(∫ b

a
(∂2L · η + ∂3L · s

aDα
t η + ∂4L · s

t Dα
b η)dt

)
= 0,

where ∂iL denotes the partial derivative of the Lagrangian L with respect to its ith argument. Using
Lemma 1 of stochastic fractional integration by parts, we obtain

E
(∫ b

a
(∂2L · η + s

t Dα
b (∂3L) · η + s

aDα
t (∂4L) · η) dt

)
= 0.

40



Fractal Fract. 2020, 4, 38

We claim that if Y is a stochastic process with continuous paths of second order such that

E
[∫ b

a
Y(t) · η(t)dt

]
= 0

for any stochastic process with continuous paths η, then

Y = 0 almost surely (a.s., for short).

Indeed, suppose that Y(s) > 0 a.s. for a certain s ∈ (a, b). By continuity, Y(t) > c > 0 a.s. in a
neighborhood of s, a < s − r < s < s + r < b, r > 0. Consider the process η such that η(t) = 0 a.s.

on [a, s − r] ∪ [s + r, b] and η(t) > 0 a.s. on (s − r, s + r), and η(t) = 1 a.s. on
(

s − r
2

, s +
r
2

)
. Then,∫ b

a Y(t) · η(t)dt ≥ rc > 0 a.s. Consequently, E
[∫ b

a Y(t) · η(t)dt
]
> 0, which completes the proof of

our claim. Taking into account this result, and the fact that η is an arbitrary process, we deduce the
desired stochastic fractional Euler–Lagrange equation: ∂2L + s

t Dα
b [∂3L] + s

aDα
t [∂4L] = 0. The proof

is complete.

By adopting the same method as in the proof of Theorem 1 and using our result of integration by
parts for stochastic Caputo fractional derivatives, i.e., item (iii) of Lemma 1, we obtain the appropriate
stochastic Caputo fractional Euler–Lagrange necessary optimality condition.

Theorem 2 (The stochastic Caputo fractional Euler–Lagrange equation). If J ∈ C1(H ×R×R → R)

and X ∈ C1(I → H) is an F-adapted stochastic process on [a, b] with E(X(t)) ∈ AC([a, b]) that is a
minimizer of

J[X] = E
(∫ b

a
L
(

t, X(t), sC
a Dα

t X(t), sC
t Dα

b X(t)
)

dt
)

subject to the fixed end points E(X(a)) = Xa and E(X(b)) = Xb, then X satisfies the following stochastic
fractional Euler–Lagrange equation:

∂L
∂X

+ sC
t Dα

b

[
∂L

∂sC
a Dα

t

]
+ sC

a Dα
t

[
∂L

∂sC
t Dα

b

]
= 0.

Remark 2. Note that the conclusions of Theorems 1 and 2 are not contradictory: one conclusion is valid for
Riemann–Liouville derivative problems, while the other holds true for Caputo-type problems. The conclusions
are proved in a similar manner by remarking that the additional quantity with parentheses, in the integration by
parts theorem linked to the Caputo approach, vanishes under the condition that X and X∗ verify the same initial
and final conditions. Note also that the assumptions of Theorems 1 and 2 are necessary for the existence of left
and right stochastic Riemann–Liouville/Caputo fractional derivative operators.

Our Theorems 1 and 2 give an extension of the Euler–Lagrange equations of the classical calculus
of variations [24], stochastic calculus of variations [1], and fractional calculus of variations [5].

5. Examples

The best way to illustrate a new theory is by choosing simple examples. We give two illustrative
examples of the stochastic Riemann–Liouville fractional Euler–Lagrange equation proved in Section 4:
the first one inspired from quantum mechanics; the second chosen to allow a simple numerical solution
to the obtained stochastic Riemann–Liouville fractional Euler–Lagrange equation.

Example 1. Let us consider the stochastic fractional variational problem (1)–(2) with

L (t, X(t), s
aDα

t X(t), s
t Dα

b X(t)) =
1
2

(
1
2

m | s
aDα

t X(t) |2 +
1
2

m | s
t Dα

b X(t) |2
)
− V(X(t)),
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where X is a stochastic process of second order with E(X(t)) ∈ AC([a, b]) and V maps C′(I → H) to R.
Note that

1
2

(
1
2

m | s
aDα

t X(t) |2 +
1
2

m | s
t Dα

b X(t) |2
)

can be viewed as a generalized kinetic energy in the quantum mechanics framework. By applying our Theorem 1
to the current variational problem, we get

1
2

m [saDα
t (

s
t Dα

b X(t)) + s
t Dα

b (
s
aDα

t X(t))] = gradV(X(t)), (3)

where gradV is the gradient of V, which in this case means the derivative of the potential energy of the system.
We observe that if α tends to zero and X is a deterministic function, then relation (3) becomes what is known in
the physics literature as Newton’s dynamical law: mẌ(t) = gradV(X(t)).

The calculus of variations can assist us both analytically and numerically. Now we give a
numerical example, carried out with the help of the MATLAB computing environment [25].

Example 2. Let α := 0.25, a := 0.01, b := 0.99, Xa := 1.00, and Xb := 1.00. Consider the following
variational problem (1)–(2):

J[X] =
∫ b

a

s
aDα

t X(t)× s
t Dα

b X(t) dt −→ min,

E(X(a)) = Xa, E(X(b)) = Xb,

where X ∈ C1(I → H) with E(X(t)) ∈ AC and s
aDα· X and s· Dα

b X denote, respectively, the left and the right
stochastic fractional Riemann–Liouville derivatives of order α. Resorting again to Theorem 1, we obtain the
following stochastic fractional Euler–Lagrange differential equation:

s
aD2α

t X(t) + s
t D2α

b X(t) = 0.

Following [7], we observe that s
aDα

t X(t) and s
t Dα

b X(t) can be approximated as follows:

s
aDα

t X(t) = aDα
t E(X(t)) �

N

∑
k=0

(−1)(k−1)α(E(X(t)))(k)

k!(k − α)γ(1 − α)
(t − a)(k−α)

and
s
t Dα

b X(t) = tDα
b E(X(t)) �

N

∑
k=0

−α(E(X(t)))(k)

k!(k − α)γ(1 − α)
(b − t)(k−α).

Choosing N = 1, we get the curve for E(X(t)) as shown in Figure 1.
One can increase the value of N under the condition one adds a sufficient number of initial values related

to some degrees of derivatives of E(X(t)). This particular question is similar to the standard fractional calculus
and we refer the interested reader to the book [7].
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Figure 1. Expectation of the extremal to the stochastic fractional problem of the calculus of variations
of Example 2.

6. Conclusions

Numerous works related to the calculus of variations, addressing different optimization
problems by means of classical, stochastic, and fractional derivatives through appropriate
Euler-Lagrange equations, exist in the literature. To extend available results to a stochastic-fractional
framework, we have established in this work new definitions associated to left and right stochastic
Riemann–Liouville/Caputo fractional integrals and derivatives, together with some properties of
boundedness, linearity, additivity and interaction between involved operators. Furthermore, we have
proven new integration by parts theorems, according to the novel definitions, which have a central
role for the establishment of the stochastic Riemann–Liouville/Caputo fractional Euler–Lagrange
equations. The obtained stochastic Riemann–Liouville/Caputo fractional Euler–Lagrange equations
generalize those available on the literature of fractional calculus. Moreover, the results of the paper
motivate readers and researchers to go on and further develop the theory now initiated.

It is important to note that the mathematical background used in the original fractional calculus
differs from what we have established here for the stochastic fractional case. Additionally, the six
constructed definitions for the left and right stochastic Riemann–Liouville/Caputo integral/derivative
operators, as well as proved integration by parts formulas, differ totally to those available in
the fractional calculus theory: the first are applied to second order stochastic processes, and the
second act on deterministic absolute continuous functions. Furthermore, our stochastic fractional
Euler–Lagrange equations serve as necessary optimality conditions to optimization problems subject
to unknown stochastic processes that can be effectively approximated by numerical methods:
such equations might be transformed to ones subject to unknown deterministic functions that are the
expectation E(X(t)), for instance, when the random variables X(t) follow the assumption of normality,
which is instructive to approximate its expectation via stochastic fractional Euler–Lagrange equations
determined statistically by the hypothesis test in inferential statistics.

We claim that the new mathematical concepts we have introduced here are more natural than
those already available in the literature, since it is intuitive and convenient to proceed via application
of the expectation.
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Abstract: Mittag-Leffler functions and their variations are a popular topic of study at the present
time, mostly due to their applications in fractional calculus and fractional differential equations.
Here we propose a modification of the usual Mittag-Leffler functions of one, two, or three parameters,
which is ideally suited for extending certain fractional-calculus operators into the complex plane.
Complex analysis has been underused in combination with fractional calculus, especially with newly
developed operators like those with Mittag-Leffler kernels. Here we show the natural analytic
continuations of these operators using the modified Mittag-Leffler functions defined in this paper.

Keywords: Mittag-Leffler functions; Prabhakar fractional calculus; Atangana–Baleanu fractional
calculus; complex integrals; analytic continuation

MSC: 33E12; 26A33; 30B40

1. Introduction

The study of special functions has been a significant subfield of mathematical analysis for decades,
connecting with other areas such as differential equations, fractional calculus, and mathematical
physics [1–3]. One important class of special functions consists of the so-called Mittag-Leffler function
and its extensions. These have been intensively studied, with at least one whole textbook dedicated to
them [4], along with many book chapters and important research papers [5–8]. They are particularly
useful due to their connections with fractional calculus, having been called "fractional exponential
functions" and arising naturally in solutions to various fractional differential equations [7,9,10],
including some which are useful in applications such as viscoelasticity and evolution processes [11,12].

The original Mittag-Leffler function Eα(z) depends on one variable z and one parameter α, and it
is defined by [13]

Eα(z) =
∞

∑
n=0

zn

Γ(nα + 1)
, (1)

where the series is locally uniformly convergent for any z ∈ C and any α ∈ C with Re(α) > 0.
This definition has been extended in various ways. The best-known extensions are the functions

Eα,β(z) and Eγ
α,β(z), depending on one variable z and two or three parameters α, β, and γ. These are

defined as follows [4,14]:

Eα,β(z) =
∞

∑
n=0

zn

Γ(nα + β)
, (2)

Eγ
α,β(z) =

∞

∑
n=0

(−γ

n

)
· (−z)n

Γ(nα + β)
=

∞

∑
n=0

Γ(γ + n)
Γ(γ)Γ(nα + β)

· zn

n!
, (3)
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where again both series are locally uniformly convergent for any z ∈ C and any α, β, γ ∈ C with
Re(α) > 0. Other extensions involve even more than three parameters, or replacing the single variable
z by multiple variables [10,15–17].

In fractional calculus—the study of the integral and derivative operators of calculus taken
to non-integer orders [18–20]—most studies take place only in the real line. The standard
Riemann–Liouville definition of a fractional integral to order α is

RL
a Iα

x f (x) =
1

Γ(α)

∫ x

a
(x − ξ)α−1 f (ξ)dξ,

where f (x) is a function defined on a real interval x ∈ [a, b] but α is permitted to be complex
(with positive real part). The fractional derivative is then defined as an extension of this, by means of
the following formula for Re(α) ≥ 0:

RL
aDα

x f (x) =
dm

dxm
RL

a Im−α
x f (x), m := �Re(α)�+ 1.

By treating the parameter α as an independent complex variable, it can be shown that RL
aD−α

x f (x) =
RL

a Iα
x f (x) is an analytic extension of RL

a Iα
x f (x) from the right half-plane to the left one.

For analytic complex-valued functions f , there is another formula equivalent to
Riemann–Liouville which is more useful in the context of complex analysis [19,21]. Namely,
the fractional differintegral (valid for all α ∈ C\Z−) of f (z) is

C
aDα

z f (z) =
Γ(α + 1)

2iπ

∫
Hz

a

(ζ − z)−α−1 f (ζ)dζ, (4)

where the complex contour of integration Hz
a is the Hankel-type contour which starts above a on the

branch cut from z, wraps around z in a counterclockwise sense, and returns to a.
There are many other ways to define fractional integrals and fractional derivatives, often inspired

by or related to the Riemann–Liouville definition. Some of these are discussed in [22–24], with reference
to some general classes into which such operators can be classified. In pure mathematics, ideally we
consider the most general possible setting in which a particular result or behaviour can be proved.
In applications, of course it is necessary to consider specific types of fractional calculus for the modelling
of a given real-world problem.

We have already mentioned how Mittag-Leffler functions emerge naturally from the study of
fractional calculus and fractional differential equations. They also appear frequently as the kernels of
fractional integral and derivative operators. Many such operators are special cases of the Prabhakar
fractional calculus [14,25], which is based on the 3-parameter Mittag-Leffler function (3), and which
itself can be seen as a special case of some even more general operators [17,26].

Some of these special cases were defined without realising them as special cases, and hence they
were given their own names independently. Among the most intensively used types of fractional
calculus in the last few years are the so-called Atangana–Baleanu operators, defined in [27] using the
1-parameter Mittag-Leffler function (1). Although integral operators using 1-parameter Mittag-Leffler
kernels were already considered years earlier [28–33], the so-called AB operators have become very
popular with over 350 papers published on them between 2016 and April 2020 [34]. One mathematical
development in this setting has been, in [35], the extension of complex contour integral formulae
like (4) to other types of fractional calculus. Doing this for AB derivatives involved the introduction of
a modified Mittag-Leffler function, related but different to the original function defined by (1).

In the current work, we seek to extend the notion of this modified 1-parameter Mittag-Leffler
function to define similarly modified Mittag-Leffler functions with two and three parameters. We shall
perform a rigorous analysis of these modified Mittag-Leffler functions, their domains and convergence
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properties, and use them to extend the Atangana–Baleanu and Prabhakar fractional-calculus operators
into the setting of complex variables.

Specifically, the organisation of this paper is as follows. Section 2 introduces the modified
Mittag-Leffler functions, firstly re-checking the 1-parameter function in Section 2.1 and then defining
the 2-parameter and 3-parameter extensions in Section 2.2. Section 3 examines how they may be used in
fractional calculus, firstly for the Prabhakar operators in Section 3.1 and then for the Atangana–Baleanu
operators in Section 3.2, with some further related remarks about extensions of fractional-calculus
operators in Section 3.3. Finally, Section 4 concludes the paper.

2. Modified Mittag-Leffler Functions

2.1. A Rigorous Recap of the 1-Parameter Case

In this section, we re-analyse the 1-parameter modified Mittag-Leffler function defined in [35]. It is
necessary to do this because there were some omissions in the work of [35]: specifically, the problems
arising from the n = 0 term. In fact, the function cannot actually be defined in exactly the way it was
in [35], because Γ(−nα) is not defined at n = 0. Therefore, we consider here a slightly different version
which starts from n = 1.

Definition 1 ([35]). The modified Mittag-Leffler function Eα(z) is defined by the following series for all z ∈ C

and α ∈ C\R with Re(α) > 0:

Eα(z) =
∞

∑
n=1

Γ(−nα)zn, (5)

and by analytic continuation for all α ∈ C\R.

The reason for defining and studying this function is only to demonstrate the convergence
principles and methods which will then be used for the 2-parameter and 3-parameter modified
Mittag-Leffler functions in Section 2.2 below. In itself, this function may not be important, because
of the missing n = 0 term, but we can see it as a practice “toy” case for establishing the ideas to be
used later.

Of course, changing the definition of the modified 1-parameter Mittag-Leffler function will affect
the results of [35] on the Atangana–Baleanu fractional derivatives. We resolve this issue in Section 3
below by finding new complex contour formulae for the Atangana–Baleanu fractional derivatives.

The following result was already proved in [35]. We reproduce the proof here, with a little more
detail, and also give an alternative method of proof which will be useful later in this paper.

Proposition 1 ([35]). The infinite power series (5) is locally uniformly convergent for all z ∈ C, for any fixed
α ∈ C\R with Re(α) > 0.

Proof using reflection formula [35]. We rewrite the power series (5) using the reflection formula for
the gamma function:

Eα(z) =
∞

∑
n=1

π

sin(−πnα)
· 1

Γ(nα + 1)
zn

= 2πi
∞

∑
n=1

1
exp(−iπnα)− exp(iπnα)

· zn

Γ(nα + 1)
.

The latter series is identical to the original Mittag-Leffler function (1) except for the extra factor
1

exp(−iπnα)−exp(iπnα)
. We split into two cases to consider the behaviour of this factor:

• If Im(α) > 0, then exp(−iπnα) − exp(iπnα) ∼ exp(−iπnα) and so 1
exp(−iπnα)−exp(iπnα)

∼
exp(iπnα) has exponential decay.
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• If Im(α) < 0, then exp(−iπnα) − exp(iπnα) ∼ exp(iπnα) and so 1
exp(−iπnα)−exp(iπnα)

∼
exp(−iπnα) has exponential decay.

Either way, for Re(α) > 0 and α �∈ R, the series converges absolutely and locally uniformly, just like
the original series (1).

Proof using ratio test and Stirling’s formula. This is a more elementary way to prove convergence
of a power series, going back to basics with the ratio test instead of relying on knowledge of the series
for the original Mittag-Leffler function. We use Stirling’s formula for the asymptotics of the gamma
functions for large n; the ratio between consecutive terms is

an+1

an
=

Γ(−nα − α)

Γ(−nα)
z

∼
√

2π
−nα−α

(−nα−α
e

)−nα−α

√
2π
−nα

(−nα
e
)−nα

z

∼
(

n + 1
n

)−nα (−α

e

)−α

(n + 1)−αz ∼
(
− α(n + 1)

)−α
z

as n → ∞. The limit is zero if Re(α) > 0, so in this case the series converges absolutely and locally
uniformly as required. We still require the assumption α �∈ R to avoid having any zero terms.

The following result was stated in [35], but the proof was only outlined. We present here the
complete proof.

Proposition 2 ([35]). The modified Mittag-Leffler function Eα(z), defined for Re(α) > 0 by Definition 1,
has an analytic continuation to all α ∈ C\R given by the following complex integral:

Eα(z) =
1

−2i

∫
H

ett−1Sα

(
zt−α

)
dt,

where H is the standard Hankel contour (starting and ending at negative real infinity and wrapping
counterclockwise around the origin) and Sα is the function defined by

Sα(x) =
∞

∑
n=1

xn

sin(πnα)
, x ∈ R, α ∈ C\R.

Proof. We follow the method of [36], and proceed as follows using the standard contour integral
representation of the inverse gamma function:

Eα(z) =
∞

∑
n=1

π

sin(−πnα)
· zn

Γ(nα + 1)

=
∞

∑
n=1

πzn

sin(−πnα)
· 1

2πi

∫
H

ett−nα−1 dt

=
1

−2i

∞

∑
n=1

∫
H

ett−nα−1 zn

sin(πnα)
dt

=
1

−2i

∫
H

ett−1
∞

∑
n=1

(
zt−α

)n

sin(πnα)
dt,

where the interchange of summation and integration is permitted by locally uniform convergence of
the series. Note that locally uniform convergence of the series for Sα is guaranteed by the ratio test
combined with an exponential-decay argument for dividing by a sine function similar to that in the
first proof of Proposition 1 above.
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2.2. Extension to the 2-Parameter and 3-Parameter Cases

The original Mittag-Leffler function (1) has been modified, using the functional equation for
the gamma function, as described in Definition 1 and the subsequent discussion. This modified
Mittag-Leffler function Eα(z) depends on one variable z and one parameter α, just like the original
Mittag-Leffler function Eα(z).

In a similar way, it is also possible to modify the 2-parameter Mittag-Leffler function (2) and the
3-parameter Mittag-Leffler function (3), thereby obtaining modified Mittag-Leffler functions with two
and three parameters. We start with the 2-parameter version.

Definition 2. The modified 2-parameter Mittag-Leffler function Eα,β(z) is defined by the following series for
all z ∈ C and α, β ∈ C satisfying Re(α) > 0 and α, β not both real and nα + β �∈ N for any n ∈ N:

Eα,β(z) =
∞

∑
n=0

Γ(1 − nα − β)zn (6)

and by analytic continuation for all α, β ∈ C satisfying α, β not both real and nα + β �∈ N for any n ∈ N.

Theorem 1. The infinite power series (6) is locally uniformly convergent for all z ∈ C, for any fixed α, β ∈ C

satisfying Re(α) > 0 and α, β not both real and nα + β �∈ N for any n ∈ N.

Proof using reflection formula. This follows similar lines as the first proof of Proposition 1:

Eα,β(z) =
∞

∑
n=0

π

sin(π(nα + β))
· zn

Γ(nα + β)

= 2πi
∞

∑
n=0

1
exp(iπ(nα + β))− exp(−iπ(nα + β))

· zn

Γ(nα + β)
,

where this series is identical to the original Mittag-Leffler function (2) except for the extra factor
involving two exponential functions in the denominator. We split into three cases to consider the
behaviour of this factor:

• If Im(α) > 0, then exp(iπ(nα + β)) − exp(−iπ(nα + β)) ∼ exp(−iπ(nα + β)) for sufficiently
large n, and so

1
exp(iπ(nα + β))− exp(−iπ(nα + β))

∼ exp(iπ(nα + β))

has exponential decay as n → ∞.
• If Im(α) < 0, then exp(iπ(nα + β))− exp(−iπ(nα + β)) ∼ exp(iπ(nα + β)) for sufficiently large

n, and so
1

exp(iπ(nα + β))− exp(−iπ(nα + β))
∼ exp(−iπ(nα + β))

has exponential decay as n → ∞.
• If Im(α) = 0, then Im(β) �= 0 by assumption. The extra term is bounded by a constant as n → ∞,

namely, either

1
exp(πImβ)− exp(−πImβ)

or
1

exp(−πImβ)− exp(πImβ)

according to the sign of Im(β).
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In any case, provided Re(α) > 0 so that the original series (2) converges, the new series (6) also
converges absolutely and locally uniformly. We assume throughout that the bottom never cancels out
exactly to zero; i.e., that nα + β is never an integer for any n.

Proof using ratio test and Stirling’s formula. Again the calculations here are similar to those in the
second proof of Proposition 1:

an+1

an
=

Γ(1 − (n + 1)α − β)

Γ(1 − nα − β)

∼

(
−(n+1)α−β

e

)−(n+1)α−β√
2π(−(n + 1)α − β)

(
−nα−β

e

)−nα−β√
2π(−nα − β)

∼
(−(n + 1)α − β

e

)−α(
(n + 1)α + β

nα + β

)−β(
(n + 1)α + β

nα + β

)−nα

∼ eα

(−(n + 1)α − β)α

(
nα + β

(n + 1)α + β

)nα

∼ 1(− (n + 1)α − β
)α

as n → ∞. The limit is zero if Re(α) > 0, so in this case the series converges absolutely and locally
uniformly as required. We still require the assumption nα + β �∈ N to avoid having any zero terms.

Theorem 2 (Complex integral representation of modified 2-parameter Mittag-Leffler function).
The modified 2-parameter Mittag-Leffler function, defined above under the assumption Re(α) > 0, has an
analytic continuation to α, β ∈ C satisfying α, β not both real and nα + β �∈ N for any n ∈ N, given by the
following complex integral:

Eα,β(z) =
1
2i

∫
H

ett−βSα,β
(
zt−α

)
dt,

where H is the standard Hankel contour (starting and ending at negative real infinity and wrapping
counterclockwise around the origin) and Sα,β is the function defined by

Sα,β(x) =
∞

∑
n=0

xn

sin
(
π(nα + β)

) , α, β not both real, nα + β �∈ N ∀n.

Proof. Similarly to Proposition 2, we use the contour integral representation of the inverse
gamma function:

Eα,β(z) =
∞

∑
n=0

Γ(1 − nα − β)zn

=
∞

∑
n=0

π

sin(π(nα + β))

zn

Γ(nα + β)

=
∞

∑
n=0

πzn

sin(π(nα + β))
· 1

2πi

∫
H

ett−nα−β dt

=
1
2i

∫
H

ett−β

[ ∞

∑
n=0

(zt−α)n

sin(π(nα + β))

]
dt

=
1
2i

∫
H

ett−βSα,β
(
zt−α

)
dt,
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as required, where the interchange of summation and integration is permitted by locally uniform
convergence of the series. Note that, as before, locally uniform convergence of the series for Sα,β is
guaranteed by the ratio test combined with an exponential-decay argument for dividing by a sine
function similar to that in the first proof of Theorem 1 above.

Definition 3. The modified 3-parameter Mittag-Leffler function Eα,β
γ (z) is defined by the following series for

all z ∈ C and α, β, γ ∈ C satisfying Re(α) > 0 and α, β not both real and nα + β �∈ N for any n ∈ N:

Eα,β
γ (z) =

∞

∑
n=0

(γ)n

n!
Γ(1 − nα − β)zn =

∞

∑
n=0

Γ(γ + n)
Γ(γ)n!

Γ(1 − nα − β)zn (7)

and by analytic continuation for all α, β, γ ∈ C satisfying α, β not both real and nα + β �∈ N for any n ∈ N.

Theorem 3. The infinite power series (7) is locally uniformly convergent for all z ∈ C, for any fixed α, β, γ ∈ C

satisfying Re(α) > 0 and α, β not both real and nα + β �∈ N for any n ∈ N.

Proof. This follows almost directly from the result of Theorem 1, either by the first method (reflection
formula) or by the second method (ratio test).

Using the reflection formula, we find

Eα,β
γ (z) = 2πi

∞

∑
n=0

1
exp(iπ(nα + β))− exp(−iπ(nα + β))

· Γ(γ + n)zn

Γ(γ)Γ(nα + β)n!

which is identical to the original 3-parameter Mittag-Leffler series (3) except for the extra factor which
is exactly the same as in Theorem 1 and therefore gives the same convergence properties under the
same conditions.

Using the ratio test, we find

an+1

an
=

(γ + n)Γ(1 − (n + 1)α − β)

(n + 1)Γ(1 − nα − β)
∼ Γ(1 − (n + 1)α − β)

Γ(1 − nα − β)
,

which is exactly the same as in Theorem 1 and therefore gives the same convergence properties under
the same conditions.

Theorem 4 (Complex integral representation of modified 3-parameter Mittag-Leffler function).
The modified 3-parameter Mittag-Leffler function, defined above under the assumption Re(α) > 0, has an
analytic continuation to α, β, γ ∈ C satisfying α, β not both real and nα + β �∈ N for any n ∈ N, given by the
following complex integral:

Eα,β
γ (z) =

1
2i

∫
H

ett−βS
γ
α,β

(
zt−α

)
dt,

where H is the standard Hankel contour (starting and ending at negative real infinity and wrapping
counterclockwise around the origin) and S

γ
α,β is the function defined by

S
γ
α,β(x) =

∞

∑
n=0

Γ(γ + n)xn

Γ(γ)n! sin
(
π(nα + β)

) , α, β not both real, nα + β �∈ N ∀n.
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Proof. Similarly to Proposition 2 and Theorem 2, we use the contour integral representation of the
inverse gamma function:

Eα,β
γ (z) =

∞

∑
n=0

Γ(γ + n)
Γ(γ)n!

Γ(1 − nα − β)zn

=
∞

∑
n=0

π

sin(π(nα + β))

Γ(γ + n)zn

Γ(γ)Γ(nα + β)n!

=
∞

∑
n=0

πΓ(γ + n)zn

Γ(γ)n! sin(π(nα + β))

1
2πi

∫
H

ett−nα−β dt

=
1
2i

∫
H

ett−β

[ ∞

∑
n=0

Γ(γ + n)(zt−α)n

Γ(γ)n! sin(π(nα + β))

]
dt

=
1
2i

∫
H

ett−βS
γ
α,β

(
zt−α

)
dt,

where the interchange of summation and integration is permitted by locally uniform convergence
of the series. Note that locally uniform convergence of the series for Sγ

α,β is guaranteed by the same
property of Sα,β, since the ratio test gives almost exactly the same expression for both.

Remark 1. The condition required in the above definitions and theorems, that nα + β �∈ N for any n ∈ N,
may at first seem to be very restrictive. However, this is simply the requirement that all the terms of the series
itself are well-defined. If we ever have nα + β ∈ N for some n, then Γ(1 − nα − β) is not defined for this value
of n, and so the series itself makes no sense. This condition is added simply to ensure that our definitions can
actually make sense, even before convergence considerations.

3. Extensions of Fractional Operators

3.1. Contour Integral Formulae for Prabhakar Fractional Operators

Definition 4 ([14,25,37]). The Prabhakar fractional integral of a function f ∈ L1[a, b], with parameters
α, β, γ, δ ∈ C satisfying Re(α) > 0 and Re(β) > 0, is defined as

P
a Iα,β,γ,δ

x f (x) =
∫ x

a
(x − ξ)β−1Eγ

α,β

(
δ(x − ξ)α

)
f (ξ)dξ, (8)

using the 3-parameter Mittag-Leffler function (3) as a kernel function. This operator can also be written as an
infinite series of Riemann–Liouville fractional integrals, as follows:

P
a Iα,β,γ,δ

x f (x) =
∞

∑
n=0

(γ)nδn

n!
RL

a Inα+β
x f (x). (9)

The Prabhakar fractional derivative of a smooth function f (x), with parameters α, β, γ, δ ∈ C satisfying
Re(α) > 0 and Re(β) ≥ 0, is defined as

P
aDα,β,γ,δ

x f (x) =
dm

dxm
P
a Iα,m−β,−γ,δ

x f (x), m := �Re(β)�+ 1. (10)

Using composition properties of Riemann–Liouville derivatives and integrals, this operator can be written as an
infinite series similar to (9):

P
aDα,β,γ,δ

x f (x) =
∞

∑
n=0

(−γ)nδn

n!
RL

a Inα−β
x f (x), (11)
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where the operator denoted by RL
a Inα−β

x is either a Riemann–Liouville integral or a Riemann–Liouville derivative
depending on the sign of Re(nα − β).

Note that the variable x in the above definition is assumed to be real, in the fixed interval [a, b].
In the previous paper [35], the Atangana–Baleanu fractional operators were extended from the real
line to the complex plane, using a complex contour integral approach and the modified 1-parameter
Mittag-Leffler function (5). Now we seek to do the same for the Prabhakar fractional operators,
using the modified 3-parameter Mittag-Leffler function which we have defined in this paper.

Theorem 5. The analytic continuation of the Prabhakar fractional integral is given by

P
a Iα,β,γ,δ

z f (z) =
1

2πi

∫
Hz

a

(ζ − z)β−1Eα,β
γ

(
δ(ζ − z)α

)
f (ζ)dζ, (12)

where Eα,β
γ (x) is the modified 3-parameter Mittag-Leffler function defined by (7) above, and the complex contour

of integration Hz
a is the Hankel-type contour which starts above a on the branch cut from z, wraps around z in a

counterclockwise sense, and returns to a.
This formula (12) also covers Prabhakar fractional differentiation, under the convention (following from the

semigroup property and series formula) that P
aDα,β,γ,δ

x f (x) = P
a Iα,−β,−γ,δ

x f (x). In other words, we have

P
aDα,β,γ,δ

z f (z) =
1

2πi

∫
Hz

a

(ζ − z)β−1Eα,−β
−γ

(
δ(ζ − z)α

)
f (ζ)dζ.

The assumption on the parameters α, β, γ, δ for this Theorem is that α, β not both real and nα + β �∈ N for any
n ∈ N.

Proof. We use the series formula for Prabhakar fractional calculus, noting that both (9) for
integrals and (11) for derivatives become the same formula under the convention P

aDα,β,γ,δ
x f (x) =

P
a Iα,−β,−γ,δ

x f (x). We have

P
a Iα,β,γ,δ

x f (x) =
∞

∑
n=0

(γ)nδn

n!
RL

a Inα+β
x f (x)

=
∞

∑
n=0

(γ)nδn

n!
C
a Inα+β

x f (x)

=
∞

∑
n=0

(γ)nδn

n!
Γ(1 − nα − β)

2πi

∫
Hz

a

(ζ − z)nα+β−1 f (ζ)dζ

=
1

2πi

∫
Hz

a

(ζ − z)β−1
[ ∞

∑
n=0

(γ)n

n!
Γ(1 − nα − β)

(
δ(ζ − z)α

)n
]

f (ζ)dζ

=
1

2πi

∫
Hz

a

(ζ − z)β−1Eα,β
γ

(
δ(ζ − z)α

)
f (ζ)dζ.

The above manipulation is valid provided that Re(α) > 0. Note that we do not need any assumption on
Re(β) since the case Re(β) > 0 is covered by the Prabhakar fractional integral and the case Re(β) ≤ 0
by the Prabhakar fractional derivative.

The final formula, however—the right-hand side of Equation (12)—is well-defined and analytic for
any α, β, γ, δ satisfying α, β not both real and nα + β �∈ N for any n ∈ N, by the analytic continuation of
Eα,β

γ given in Theorem 4. Therefore, (12) provides the analytic continuation of the Prabhakar fractional
integral and derivative, even to the cases where Re(α) > 0 no longer applies.
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3.2. Contour Integral Formulae for Atangana–Baleanu Fractional Operators

Definition 5 ([27,38]). The Atangana–Baleanu fractional integral of a function f ∈ L1[a, b], with parameter
α ∈ (0, 1), is defined as

AB
a Iα

x f (x) =
1 − α

B(α)
f (x) +

α

B(α)
RL

a Iα
x f (x), (13)

The Atangana–Baleanu fractional derivatives of a function f ∈ C1[a, b], with parameter α ∈ (0, 1),
of Riemann–Liouville and Caputo types respectively, are defined as:

ABR
aDα

x f (x) =
B(α)
1 − α

· d
dx

∫ x

a
Eα

( −α

1 − α
(x − ξ)α

)
f (ξ)dξ, (14)

ABC
aDα

x f (x) =
B(α)
1 − α

∫ x

a
Eα

( −α

1 − α
(x − ξ)α

)
f ′(ξ)dξ, (15)

using the 1-parameter Mittag-Leffler function (1) as a kernel function. These operators can also be written as
infinite series of Riemann–Liouville fractional integrals, as follows:

ABR
aDα

x f (x) =
B(α)
1 − α

· d
dx

∞

∑
n=0

( −α

1 − α

)n
RL

a Inα+1
x f (x) (16)

=
B(α)
1 − α

∞

∑
n=0

( −α

1 − α

)n
RL

a Inα
x f (x), (17)

ABC
aDα

x f (x) =
B(α)
1 − α

∞

∑
n=0

( −α

1 − α

)n
RL

a Inα+1
x f ′(x). (18)

In the paper [35], these definitions were extended beyond α ∈ (0, 1) to complex values of α.
The Atangana–Baleanu (AB) integral is easy to extend to complex α and complex x, just using the
well-known extension of the Riemann–Liouville integral:

AB
a Iα

z f (z) =
1

2πiB(α)

∫
Hz

a

(
1 − α

ζ − z
+

αΓ(1 − α)

(ζ − z)1−α

)
f (ζ)dζ.

For the AB derivatives (of both types), the complex contour formulae written in [35] were as follows:

ABR
aDα

z f (z) =
B(α)

2πi(1 − α)
· d

dz

∫
Hz

a

Eα

( −α

1 − α
ζ − z)α

)
f (ζ)dζ,

ABC
aDα

z f (z) =
B(α)

2πi(1 − α)

∫
Hz

a

Eα

( −α

1 − α
ζ − z)α

)
f ′(ζ)dζ,

where here the notation Eα refers to the incorrectly defined function from [35],

Eα(z) =
∞

∑
n=0

Γ(−nα)zn,

this being incorrect because of the n = 0 term.
The correct version of these formulae is given by slightly modifying them as follows:

ABR
aDα

z f (z) =
B(α)

2πi(1 − α)
· d

dz

∫
Hz

a

[
1

ζ − z
+ Eα

( −α

1 − α
ζ − z)α

)]
f (ζ)dζ,

ABC
aDα

z f (z) =
B(α)

2πi(1 − α)

∫
Hz

a

[
1

ζ − z
+ Eα

( −α

1 − α
ζ − z)α

)]
f ′(ζ)dζ − f (a),

where this time the notation Eα refers to the well-defined function from (5) above. These formulae
are obtained by treating the n = 0 term separately, starting from the series formulae (16) and (18),
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and in the Caputo case using the fact that RL
a I1

x f ′(x) = f (x)− f (a). However, we can obtain more
elegant formulae by considering instead the series formula (17) and using the 2-parameter modified
Mittag-Leffler function defined in Section 2.2 above.

Theorem 6. The analytic continuation of the AB fractional derivative of Riemann–Liouville type is given by

ABR
aDα

z f (z) =
B(α)

2πi(1 − α)

∫
Hz

a

Eα,0
( −α

1 − α
(ζ − z)α

)
f (ζ)

ζ − z
dζ, (19)

where Eα,β(x) is the modified 2-parameter Mittag-Leffler function defined by (6) above, and the complex contour
of integration Hz

a is the Hankel-type contour which starts above a on the branch cut from z, wraps around z in a
counterclockwise sense, and returns to a.

The analytic continuation of the AB fractional derivative of Caputo type can then be deduced using the
relationship between ABR and ABC derivatives given by the fundamental theorem of calculus:

ABC
aDα

z f (z) =
B(α)

2πi(1 − α)

∫
Hz

a

Eα,0
( −α

1 − α
(ζ − z)α

)
f (ζ)

ζ − z
dζ − B(α)

1 − α
Eα

( −α

1 − α
zα

)
f (a).

The assumption on the parameter α for this Theorem is simply α ∈ C\R.

Proof. We start from the series formula (17) for the ABR fractional derivative, and use the complex
integral representation for the Riemann–Liouville fractional integral:

ABR
aDα

x f (x) =
B(α)
1 − α

∞

∑
n=0

( −α

1 − α

)n
RL

a Inα
x f (x)

=
B(α)
1 − α

∞

∑
n=0

( −α

1 − α

)n Γ(−nα + 1)
2iπ

∫
Hz

a

(ζ − z)nα−1 f (ζ)dζ.

Note that this substitution is valid for all values of n, since the complex contour formula (4) is valid for
any order of differentiation not in Z−. Here the orders of differentiation are −nα for n ≥ 0, which is
either zero or nonreal. (This is why, when using (16) instead of (17), we needed to treat n = 0 separately:
because in the case of (16), the n = 0 term gives order of differentation −1 which is in Z−).

Continuing, and using the fact that the series formulae for AB derivatives are locally uniformly
convergent [38]:

ABR
aDα

x f (x) =
B(α)
1 − α

1
2iπ

∫
Hz

a

f (ζ)
∞

∑
n=0

Γ(−nα + 1)
( −α

1 − α

)n
(ζ − z)nα−1 dζ

=
B(α)
1 − α

1
2iπ

∫
Hz

a

f (ζ)
ζ − z

Eα,0
( −α

1 − α
(ζ − z)α

)
dζ,

which is the desired result for ABR derivatives.
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For the case of ABC derivatives, we simply use the following relationship between ABR and ABC
following from the series formulae (16)–(18):

ABC
aDα

x f (x) =
B(α)
1 − α

∞

∑
n=0

( −α

1 − α

)n
RL

a Inα
x

(
RL

a I1
x f ′(x)

)

=
B(α)
1 − α

∞

∑
n=0

( −α

1 − α

)n
RL

a Inα
x

(
f (x)− f (a)

)

= ABR
aDα

x f (x)− B(α)
1 − α

∞

∑
n=0

( −α

1 − α

)n
RL

a Inα
x
(
1
)

f (a)

= ABR
aDα

x f (x)− B(α)
1 − α

∞

∑
n=0

( −α

1 − α

)n xnα

Γ(nα + 1)
f (a)

= ABR
aDα

x f (x)− B(α)
1 − α

Eα

( −α

1 − α
xα

)
f (a).

The last term here is the initial value term which gives the desired result for ABC derivatives.

Remark 2. Note that using β = 0 in the usual 2-parameter or 3-parameter Mittag-Leffler functions would not
be possible when using them as kernel functions, because it would lead to a non-integrable singularity. However,
in the complex setting, this is fine since 1

ζ−z can be integrated using Cauchy’s integral formula.

Remark 3. It is known that the Atangana–Baleanu fractional operators are special cases of the Prabhakar
fractional calculus. Indeed, this is an obvious fact for the AB derivative, since it (like the Prabhakar operators) is
defined using an integral transform with Mittag-Leffler kernel. The AB integral, on the other hand, is simply the
linear combination of a function with its Riemann–Liouville integral, with no Mittag-Leffler functions involved
in the definition; it was only noticed recently in [39] that it too is a special case of Prabhakar. The relationships
are given by

AB
a Iα

x f (x) =
1 − α

B(α)
P
a I

α,0,−1, −α
1−α

x f (x),

ABR
aDα

x f (x) =
1 − α

B(α)
P
aD

α,0,−1, −α
1−α

x f (x).

Using this, it is possible to deduce the result of Theorem 6 directly from that of Theorem 5. Note that the
multiplier (ζ − z)β−1 appearing in (12), which is a typical power function multiplier found when dealing with
Mittag-Leffler function kernels, in the AB case becomes simply 1

ζ−z , which is a typical multiplier found in
complex analysis according to Cauchy’s integral formula.

3.3. Series for Negative α

In the paper [36], a series formula is given for the Mittag-Leffler function Eα(z) which is valid
for negative real numbers α, by using a functional equation that emerges from the complex integral
representation. The same functional equation approach works to prove similar series formulae for the
two-parameter Mittag-Leffler function Eα,β(z) and for complex α with Re(α) < 0. We state the general
result as follows.

Proposition 3 ([36]). The analytic continuation of the two-parameter Mittag-Leffler function Eα,β(z),
originally defined by (2), to the domain α, β ∈ C, Re(α) < 0 is given by the following locally uniformly
convergent series:

Eα,β(z) =
∞

∑
n=1

−z−n

Γ(−nα + β)
. (20)

58



Fractal Fract. 2020, 4, 45

Proof. From the complex integral representation of the two-parameter Mittag-Leffler function,

Eα,β(z) =
1

2πi

∫
H

tα−βet

tα − z
dt =

1
2πi

∫
H

et

tβ − ztβ−α
dt,

valid for all α, β ∈ C, we use the algebraic identity

1
tβ − ztβ−α

=
1
tβ

− 1
tβ − z−1tα+β

(21)

to obtain

Eα,β(z) =
1

2πi

∫
H

et

tβ
dt − 1

2πi

∫
H

et

tβ − z−1tα+β
dt =

1
Γ(β)

− E−α,β(z−1),

valid for all α, β ∈ C. Then, if Re(α) < 0, we have Re(−α) > 0 and therefore we can use the original
series formula (2) for E−α,β(z−1). Cancelling the n = 0 term, this gives the desired series for Eα,β(z) in
the case of Re(α) < 0.

Remark 4. The same technique cannot be used to give an elegant series representation of the 3-parameter
Mittag-Leffler function Eγ

α,β(z) for negative values of α. This is because the complex integral representation of
this function involves a γth power:

Eγ
α,β(z) =

1
2πi

∫
H

t−βet

(1 − zt−α)γ
dt,

and there is no analogue of the identity (21) for reciprocals of γth powers.

Remark 5. Furthermore, the technique of Proposition 3 cannot be applied to our modified Mittag-Leffler
functions either, even in the 1-parameter and 2-parameter cases. The complex integral representations of
Proposition 2 and Theorem 2 have integrands involving the functions Sα and Sα,β which do not have simple
identities like (21) between them.

4. Conclusions and Further Work

This paper serves as a continuation of the work of [35], in which the first modified Mittag-Leffler
function was defined and used to extend Atangana–Baleanu fractional operators into the complex
context. Here we have corrected an omission in [35], in which the issues surrounding the n = 0 term of
the Mittag-Leffler series were overlooked. We have defined modified Mittag-Leffler functions of one,
two, and three parameters, and rigorously checked the convergence issues for the series in each case.

The power of Mittag-Leffler functions and their series in fractional calculus cannot be understated.
Several important operators of fractional calculus are defined using Mittag-Leffler functions, and the
series formulae for these operators have been useful in proving a number of useful properties.
Our modified Mittag-Leffler functions and their series can be used to provide new formulae for
the same operators, which are valid in larger domains than the original ones. We showed how both
the Prabhakar and the Atangana–Baleanu operators can be applied to find fractional derivatives and
integrals of functions of a complex variable as well as real functions.

The work contained in this paper will be useful for ongoing research into these fractional-calculus
operators and their applications. It was already seen, for example, in [12,40,41], that complex integral
representations of Mittag-Leffler functions are useful in finding asymptotic expansions, and therefore
in bounding and approximating the functions. In some cases, complex orders of fractional derivatives
can be vital for modelling [42–44]. The analysis of fractional evolution processes in [12] even used
Mittag-Leffler-type infinite series involving the gamma function at negative parameters, such as
Γ(1 − nα), similarly to the functions we have introduced in this paper. Therefore, we expect our
formulae to find applications in the future.
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Furthermore, we investigated another way of extending Mittag-Leffler functions by analytic
continuation, namely the series for negative α. Although this approach does not work directly
on the modified Mittag-Leffler functions defined here, we believe it will be useful in the analysis
of Atangana–Baleanu and Prabhakar fractional operators. Further research in this direction is
currently ongoing.
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Abstract: Our present investigation is mainly based on the k-hypergeometric functions which are
constructed by making use of the Pochhammer k-symbol in Diaz et al. 2007, which are one of the
vital generalizations of hypergeometric functions. In this study, we focus on the k-analogue of F1

Appell function introduced by Mubeen et al. 2015 and the k-generalizations of F2 and F3 Appell
functions indicated in Kıymaz et al. 2017. We present some important transformation formulas and
some reduction formulas which show close relation not only with k-Appell functions but also with
k-hypergeometric functions. Employing the theory of Riemann–Liouville k-fractional derivative from
Rahman et al. 2020, and using the relations which we consider in this paper, we acquire linear and
bilinear generating relations for k-analogue of hypergeometric functions and Appell functions.

Keywords: k-gamma function; k-beta function; Pochhammer symbol; hypergeometric function;
Appell functions; integral representation; reduction and transformation formula; fractional derivative;
generating function

1. Introduction

Special functions, with their diverse sub-branches, provide a very wide field of study that appears
not only in various fields of mathematics, but also in the solutions of important problems in many
disciplines of science such as physics, chemistry, and biology. This subject is powerful enough to make
sense of uncertain questions especially in physical problems, so it encourages many people for notable
improvements on this matter. As in other sciences, remarkable problems are still discussed in many
disciplines, and more general results are attempted to be obtained.

Generalized hypergeometric functions, which are some of these studies in special functions [1,2],
are defined by

pFq

[
α1, α2, ..., αp

β1, β2, ..., βq
; x

]
=

∞

∑
n=0

(α1)n (α2)n ...
(
αp
)

n
(β1)n (β2)n ...

(
βq
)

n

xn

n!
, (1)

where α1, α2, ...., αp, β1, β2, ..., βq, x ∈ C and β1, β2, ..., βq are neither zero nor negative integers.
Here, (λ)n is the Pochhammer symbol defined by

(λ)n =

{
λ (λ + 1) ... (λ + n − 1) ; n ≥ 1,

1 ; n = 0, λ �= 0.
(2)
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For the special case that corresponds to p = 2 and q = 1 in (1), we can obtain 2F1 Gauss
hypergeometric function [1,2],

2F1

[
α , β

γ
; x

]
=

∞

∑
n=0

(α)n (β)n
(γ)n

xn

n!
, |x| < 1, (3)

where α, β, γ, x ∈ C and γ is neither zero nor a negative integer.
Many elementary functions can be expressed in terms of hypergeometric functions.

Moreover, non-elementary functions that occur in physics and mathematics have a representation with
hypergeometric series. Therefore, generalizing hypergeometric functions have many applications in
mathematics and the other disciplines. For instance, in quantum field theory, hypergeometric functions
appear in the calculation of the Feynmann integrals, and the analytic results can be expressed in terms
of these functions [3,4]. In engineering, analytic forms of the fractional order derivatives of sinusoidal
functions are represented with hypergeometric functions [5]. In biochemistry, for the analysis of a
simple gene expression model, a hypergeometric probability distribution is considered [6], and they
also appear in the connection and linearization problems in mathematics [7–9]. Generalization of
hypergeometric function can be made by increasing the number of parameters in the hypergeometric
function or by increasing the number of variables. Appell, based on the idea that the number of
variables can be increased, has defined Appell hypergeometric functions obtained by multiplying two
hypergeometric functions. These are the four elemanter functions defined in [1,2]

F1
(
α, β, β′; γ; x, y

)
=

∞

∑
m,n=0

(α)m+n (β)m (β′)n
(γ)m+n

xm

m!
yn

n!
, (4)

F2
(
α, β, β′; γ, γ′; x, y

)
=

∞

∑
m,n=0

(α)m+n (β)m (β′)n
(γ)m (γ′)n

xm

m!
yn

n!
, (5)

F3
(
α, α′, β, β′; γ; x, y

)
=

∞

∑
m,n=0

(α)m (α′)n (β)m (β′)n
(γ)m+n

xm

m!
yn

n!
, (6)

F4
(
α, β; γ, γ′; x, y

)
=

∞

∑
m,n=0

(α)m+n (β)m+n
(γ)m (γ′)n

xm

m!
yn

n!
, (7)

where |x| < 1, |y| < 1; |x|+ |y| < 1; |x| < 1, |y| < 1;
√|x|+√|y| < 1, respectively. Appell functions

can be found in the study of autoionization of atoms [10], separability of Hamilton–Jacobi equations
in classical mechanics [11], representation of Feynmann integral in quantum field theory [3,4], and
expression of Nordsieck integral in atomic collisions physics [12].

Another generalization of hypergeometric functions is the hypergeometric k -function, defined
by the Pochhammer k-symbol studied by Diaz et al. [13]. This paper includes the k-analogue of the
Pochhammer symbol and hypergeometric function, as well as the k-generalization of gamma, beta,
and zeta functions with their integral representations and some identities provided by classical ones.
It should be noted that, taking k = 1 in these generalizations, the k-extensions of the functions reduce
to the classical ones.

Let k ∈ R+ and n ∈ N+. Hypergeometric k-function is defined in [13] as

2F1,k

[
α , β

γ
; x

]
:= 2F1,k

[
(α, k) , (β, k)

(γ, k)
; x

]
=

∞

∑
n=0

(α)n,k (β)n,k

(γ)n,k

xn

n!
, (8)

where α, β, γ, x ∈ C and γ neither zero nor a negative integer and (λ)n,k is the Pochhammer k-symbol
defined in [13] as

(λ)n,k =

{
λ (λ + k) (λ + 2k) ... (λ + (n − 1) k) ; n ≥ 1,

1 ; n = 0, λ �= 0.
. (9)
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Based on this generalization, Kokologiannaki [14] obtained different inequalities and properties
for the generalizations of Gamma, Beta, and Zeta functions. Some limits with the help
of asymptotic properties of k-gamma and k-beta functions were discussed by Krasniqi [15].
Mubeen et al. [16] established integral representations of the k-confluent hypergeometric function and
k-hypergeometric function and, in another paper [17], proved the k-analogue of the Kummer’s first
formulation using these integral representations. In [18], some families of multilinear and multilateral
generating functions for the k-analogue of the hypergeometric functions were obtained. Studies on
this subject are not limited to these papers; for details, see [19–22].

In [23], Mubeen adapted the k-generalization to the Riemann–Liouville fractional integral by using
k-gamma function. In [24], k-Riemann–Liouville fractional derivative was studied and new properties
were obtained with the help of Fourier and Laplace transforms. In [25], Rahman et al. applied the
newly k-fractional derivative operator to k-analogue of hypergeometric and Appell functions and
obtained new relations satisfied between them. Furthermore, k-fractional derivative operator was
applied to the k-Mittag–Leffler function and the Wright function.

Our present investigation is motivated by the fact that generalizations of hypergeometric functions
have considerable importance due to their applications in many disciplines from different perspectives.
Therefore, our study is generally based on the k-extension of hypergeometric functions. The structure
of the paper is organized as follows: In Section 2, we briefly give some definitions and preliminary
results which are essential in the following sections as noted in [13,23,26,27]. In Section 3, we prove
some main properties such as transformation formulas, and some reduction formulas which enable us
to have relations for k-hypergeometric functions and k-Appell functions. In the last part of the paper,
applying the theory of Riemann–Liouville k-fractional derivative [25] and using the relations which
we consider in the previous sections, we gain linear and bilinear generating relations for k-analogue of
hypergeometric functions and k-Appell functions.

2. Some Definitions and Preliminary Results

For the sake of completeness, it will be better to examine the preliminary section in three
subsections by the reason of the number of theorems and definitions. In these subsections, we
will present some definitions, properties, and results which we need in our investigation in further
sections. We begin by introducing k-gamma, k-beta, and k-analogue of hypergeometric function and
we continue definitions of k-generalized F1, F2 and F3 which are the classical Appell functions. We
conclude this section with recalling Riemann–Liouville fractional derivative, k-generalization of this
fractional derivative, and some important theorems which will be required in our studies.

Through this paper, we denote by C, R, R+, N and N+ the sets of complex numbers, real numbers,
real and positive numbers, and positive integers with zero and positive integers, respectively.

2.1. k-Generalizations of Gamma, Beta, and Hypergeometric Functions

In this subsection, the definitions of k-gamma and k-beta functions are presented and some
elemental relations provided by these functions are introduced by Diaz et al. [13] and Mubeen et al. [22].
Furthermore, we continue the definition of k-hypergeometric function and we present integral
representation and some formulas satisfied from this generalization [16,17].

Definition 1. For x ∈ C and k ∈ R+, the integral representation of k-gamma function Γk is defined by

Γk (x) =
∞∫

0

tx−1e−
tk
k dt, (10)

where � (x) > 0 [13,22].
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Definition 2. For x, y ∈ C and k ∈ R+, the k-beta function Bk is defined by

Bk (x, y) =
1
k

1∫
0

t
x
k −1 (1 − t)

y
k −1 dt, (11)

where � (x) > 0 and � (y) > 0 [13].

Proposition 1. Let k ∈ R+, a ∈ R, n ∈ N+. The k-gamma function Γk and the k-beta function Bk satisfy the
following properties [13,22],

Γk (x + k) = xΓk (x) , (12)

Γk (x) = k
x
k −1Γ

( x
k

)
, (13)

Bk (x, y) =
Γk (x) Γk (y)
Γk (x + y)

, (14)

Bk (x, y) =
1
k

B
( x

k
,

y
k

)
. (15)

Definition 3. Let x ∈ C, k ∈ R+ and n ∈ N+. Then, the Pochhammer k-symbol is defined in [13,22] by

(x)n,k = x (x + k) (x + 2k) ... (x + (n − 1) k) . (16)

In particular, we denote (x)0,k := 1.

Proposition 2. If α ∈ C and m, n ∈ N+ then for k ∈ R+, we have

(α)n,k =
Γk (α + nk)

Γk (α)
, (17)

(α)n,k = kn
(α

k

)
n

, (18)

(α)m+n,k = (α)m,k (α + mk)n,k , (19)

where (α)n and (α)n,k denote the Pochhammer symbol and Pochhammer k-symbol, respectively [13,22].

Proposition 3. For any α ∈ C and k ∈ R+, the following identity holds

∞

∑
n=0

(α)n,k
xn

n!
= (1 − kx)−

α
k , (20)

where |x| < 1
k [13,22].

Theorem 1. Assume that x ∈ C, k ∈ R+ and � (γ) > � (β) > 0, then the integral representation of the
k-hypergeometric function is defined in [16] as

2F1,k

[
α , β

γ
; x

]
=

Γk (γ)

kΓk (β) Γk (γ − β)

1∫
0

t
β
k −1 (1 − t)

γ−β
k −1 (1 − kxt)−

α
k dt. (21)

For the following theorem, 2F1,k

[
(α, 1) , (β, k)

(γ, k)
; x

]
is the expression of the following form [17],

2F∗
1,k

[
α , β

γ
; x

]
:= 2F1,k

[
(α, 1) , (β, k)

(γ, k)
; x

]
=

∞

∑
n=0

(α)n (β)n,k

(γ)n,k

xn

n!
. (22)
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Theorem 2. In [17], assume that x ∈ C, k ∈ R+ and Re (γ − β) > 0, then

2F1,k

[
(α, 1) , (β, k)

(γ, k)
; x

]
: =

Γk (γ) Γk (γ − β − kα)

Γk (γ − β) Γk (γ − kα)
. (23)

For the special case α = −n,

2F1,k

[
(−n, 1) , (β, k)

(γ, k)
; x

]
=

(γ − β)n,k

(γ)n,k
. (24)

2.2. k-Generalizations of the Appell Functions F1, F2 and F3

In 2015, k-generalization of F1 Appell function was introduced and contiguous function relations
and integral representation of this function were shown by using the fundamental relations of the
Pochhammer k-symbol [26]. In 2017, k-analogues of the F2, F3, and F4 were explored by Kıymaz et al.
in [27] and also in that study, they provided the relations between k-analogues of Appell functions and
the classical ones. Here, we remind the definitions of k-analogue of F1, F2 and F3 which are the Appell
functions, and integral representations which are satisfied by them [26,27].

Definition 4. In [26], let k ∈ R+, x, y ∈ C, α, β, β′, γ ∈ C and n ∈ N+. Then, the F1,k function with the
parameters α, β, β′, γ is given by

F1,k
(
α, β, β′; γ; x, y

)
=

∞

∑
m,n=0

(α)m+n,k (β)m,k (β′)n,k

(γ)m+n,k

xm

m!
yn

n!
, (25)

where γ �= 0,−1,−2, ... and |x| < 1
k , |y| < 1

k .

Definition 5. In [27], let k ∈ R+, x, y ∈ C, α, β, β′, γ, γ′ ∈ C and m, n ∈ N+. Then, the Appell k-functions
are defined by

F2,k
(
α, β, β′; γ, γ′; x, y

)
=

∞

∑
m,n=0

(α)m+n,k (β)m,k (β′)n,k

(γ)m,k (γ
′)n,k

xm

m!
yn

n!
, (26)

F3,k
(
α, α′, β, β′; γ; x, y

)
=

∞

∑
m,n=0

(α)m,k (α
′)n,k (β)m,k (β′)n,k

(γ)m+n,k

xm

m!
yn

n!
, (27)

F4,k
(
α, β; γ, γ′; x, y

)
=

∞

∑
m,n=0

(α)m+n,k (β)m+n,k

(γ)m,k (γ
′)n,k

xm

m!
yn

n!
, (28)

where |x|+ |y| < 1
k ; |x| < 1

k , |y| < 1
k ;
√|x|+√|y| < 1√

k
, respectively, and denominators are neither zero

nor negative integers.

Theorem 3. In [26], assume that k ∈ R+, x, y ∈ C, � (γ) > � (α) > 0, then the integral representation of
the k-hypergeometric function is as follows:

F1,k
(
α, β, β′; γ; x, y

)
= Γk(γ)

kΓk(α)Γk(γ−α)

1∫
0

t
α
k −1 (1 − t)

γ−α
k −1 (1 − kxt)−

β
k (1 − kyt)−

β′
k dt. (29)
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Theorem 4. In [27], let k ∈ R+. Integral representations of F2,k and F3,k have the forms of

F2,k
(
α, β, β′; γ, γ′; x, y

)
=

1
k2Bk (β, γ − β) Bk (β′, γ′ − β′)

×
1∫

0

1∫
0

t
β
k −1s

β′
k −1 (1 − t)

γ−β
k −1 (1 − s)

γ′−β′
k −1

(1 − kxt − kys)
α
k

dtds, (30)

F3,k
(
α, α′, β, β′; γ; x, y

)
=

Γk (γ)

k2Γk (β) Γk (β′) Γk (γ − β − β′)

×
∫∫
D

t
β
k −1s

β′
k −1 (1 − kxt)−

α
k (1 − kys)−

α′
k

(1 − t − s)1− γ−β−β′
k

dtds, (31)

where � (γ) > � (β) > 0, � (γ′) > � (β′) > 0 and D = {t ≥ 0, s ≥ 0, t + s ≤ 1} .

2.3. The Riemann–Liouville k-Fractional Derivative Operator

Fractional calculus and its applications have been intensively investigated for a long time by many
researchers in numerous disciplines and attention to this subject has grown tremendously. By making
use of the concept of the fractional derivatives and integrals, various extensions of them have been
introduced [28–31], and authors have gained different perspectives in many areas such as engineering,
physics, economics, biology, statistics [32,33]. One of the generalizations of fractional derivatives
is Riemann–Liouville k-fractional derivative operator studied in [24,25,34]. Here, we remind the
definition of Riemann–Liouville fractional derivative and its k-generalization and also some theorems
which will be used in the further section, are displayed.

Definition 6. In [2], the well-known Riemann–Liouville fractional derivative of order μ is described,
for a function f , as follows:

Dμ
z { f (z)} =

1
Γ (−μ)

z∫
0

f (t) (z − t)−μ−1 dt, (32)

where � (μ) < 0.
In particular, for the case m − 1 < � (μ) < m, where m = 1, 2, ... (32) is written by

Dμ
z { f (z)} =

dm

dzm Dμ−m
z { f (z)} (33)

=
dm

dzm

⎧⎨
⎩ 1

Γ (−μ + m)

x∫
0

f (t) (z − t)−μ+m−1 dt

⎫⎬
⎭ .

Definition 7. In [25], the k-analogue of Riemann–Liouville fractional derivative of order μ is defined by

kDμ
z { f (z)} =

1
kΓk (−μ)

z∫
0

f (t) (z − t)−
μ
k −1 dt, (34)

where � (μ) < 0 and k ∈ R+.
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In particular, for the case m − 1 < � (μ) < m, where m = 1, 2, ..., (34) is written by

kDμ
z { f (z)} =

dm

dzm kDμ−mk
z { f (z)} (35)

=
dm

dzm

⎧⎨
⎩ 1

kΓk (−μ + mk)

z∫
0

f (t) (z − t)−
μ
k +m−1 dt

⎫⎬
⎭ .

Theorem 5. In [25], let k ∈ R+, � (μ) < 0. Then, we have

kDμ
z

{
z

η
k

}
=

z
η−μ

k

Γk (−μ)
Bk (η + k,−μ) . (36)

Theorem 6. In [25], let Re (μ) > 0 and suppose that the function f (z) is analytic at the origin with its
Maclaurin expansion has the power series expansion

f (z) =
∞

∑
n=0

anzn, (37)

where |z| < ρ, ρ ∈ R+. Then,

kDμ
z { f (z)} =

∞

∑
n=0

an kDμ
z {zn} . (38)

Theorem 7. In [25], let k ∈ R+, � (μ) > � (η) > 0 . Then, the following result holds true:

kDη−μ
z

{
z

η
k −1 (1 − kz)−

β
k

}
=

Γk (η)

Γk (μ)
z

μ
k −1

2F1,k

[
β , η

μ
; z

]
, (39)

where |z| < 1
k .

Theorem 8. In [25], let k ∈ R+. We have the following result:

kDη−μ
z

{
z

η
k −1 (1 − kaz)−

α
k (1 − kbz)−

β
k

}
=

Γk (η)

Γk (μ)
z

μ
k −1F1,k (η, α, β; μ; az, bz) , (40)

where � (μ) > � (η) > 0, � (α) > 0,� (β) > 0 and max {|az| , |bz|} < 1
k .

3. Transformation Formulas of k-Generalized Appell Functions

In this section, we derive some linear transformations of k-generalized Appell functions and
give some reduction formulas involving the 2F1,k hypergeometric function which provide us with an
opportunity to generalize widely used identities for Appell hypergeometric functions.

Theorem 9. For k ∈ R+, F1,k has the following relation:

F1,k
(
α, β, β′; γ; x, y

)
= (1 − kx)−

β
k (1 − ky)−

β′
k F1,k

(
γ − α, β, β′; γ;− x

1 − kx
,− y

1 − ky

)
, (41)

where � (γ) > � (α) > 0 and
∣∣∣ x

1−kx

∣∣∣ < 1
k ,
∣∣∣ y

1−ky

∣∣∣ < 1
k , |x| < 1

k , |y| < 1
k .
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Proof. In [26], the integral representation of F1,k is given by

F1,k
(
α, β, β′; γ; x, y

)
=

1
kBk (α, γ − a)

1∫
0

t
α
k −1 (1 − t)

γ−α
k −1 (1 − kxt)−

β
k (1 − kyt)−

β′
k dt.

If we make use of the substitution t = 1 − t1 in the above integral, then we can write

F1,k
(
α, β, β′; γ; x, y

)
=

1
kBk (α, γ − a)

×
1∫

0

t
γ−α

k −1
1 (1 − t1)

α
k −1 (1 − kx (1 − t1))

− β
k (1 − ky (1 − t1))

− β′
k dt1

=
1

kBk (α, γ − a)
(1 − kx)−

β
k (1 − ky)−

β′
k

×
1∫

0

t
γ−α

k −1
1 (1 − t1)

α
k −1

(
1 +

kxt1

1 − kx

)− β
k
(

1 +
kyt1

1 − ky

)− β′
k

dt1

= (1 − kx)−
β
k (1 − ky)−

β′
k F1,k

(
γ − α, β, β′; γ;− x

1 − kx
,− y

1 − ky

)
.

Thus, we get the desired result.

Theorem 10. For k ∈ R+, we have

F1,k
(
α, β, β′; γ; x, y

)
= (1 − kx)−

α
k F1,k

(
α, γ − β − β′, β′; γ;− x

1−kx ,− x−y
1−kx

)
, (42)

and

F1,k
(
α, β, β′; γ; x, y

)
= (1 − ky)−

α
k F1,k

(
α, β, γ − β − β′; γ;− y−x

1−ky ,− y
1−ky

)
. (43)

Proof. By a change of variables t = t1
1−kx+kt1x in the integral representation of F1,k, we have that

F1,k
(
α, β, β′; γ; x, y

)
=

1
kBk (α, γ − α)

×
1∫

0

t
α
k −1 (1 − t)

γ−α
k −1 (1 − kxt)−

β
k (1 − kyt)−

β′
k dt

=
1

kBk (α, γ − α)
(1 − kx)

γ−α−β
k

×
1∫

0

t
α
k −1
1 (1 − t1)

γ−α
k −1 (1 − kx + kxt1)

β+β′−γ
k (1 − kx + kxt1 − kyt1)

− β′
k dt1

=
1

kBk (α, γ − α)
(1 − kx)−

α
k

×
1∫

0

t
α
k −1
1 (1 − t1)

γ−α
k −1

(
1 +

kxt1

1 − kx

) β+β′−γ
k

(
1 +

kxt1 − kyt1

1 − kx

)− β′
k

dt1

= (1 − kx)−
α
k F1,k

(
α, γ − β − β′, β′; γ;− x

1 − kx
,− x − y

1 − kx

)
.

70



Fractal Fract. 2020, 4, 48

In the above integral, we note that using a similar argument with t = t1
1−ky−kt1y , one can

easily obtain

F1,k
(
α, β, β′; γ; x, y

)
= (1 − ky)−

α
k F1,k

(
α, β, γ − β − β′; γ;− y − x

1 − ky
,− y

1 − ky

)
.

Theorem 11. Letting k ∈ R+, then F1,k has the following relations:

F1,k
(
α, β, β′; γ; x, y

)
= (1 − kx)

γ−α−β
k (1 − ky)−

β′
k F1,k

(
γ − α, γ − β − β′, β′; γ; x,− y−x

1−ky

)
, (44)

and

F1,k
(
α, β, β′; γ; x, y

)
= (1 − kx)−

β
k (1 − ky)

γ−α−β′
k F1,k

(
γ − α, β, γ − β − β′; γ;− y−x

1−kx , y
)

. (45)

Proof. Using t = t1
1−kx+kxt1

and t1 = 1 − t2 in integral representation of F1,k, we obtain

F1,k
(
α, β, β′; γ; x, y

)
=

1
kBk (α, γ − α)

×
1∫

0

t
α
k −1 (1 − t)

γ−α
k −1 (1 − kxt)−

β
k (1 − kyt)−

β′
k dt

=
1

kBk (α, γ − α)

×
1∫

0

t
γ−α

k −1
2 (1 − t2)

α
k −1 (1 − kx)

γ−α−β
k (1 − kxt2)

β+β′−γ
k (1 − ky + kyt2 − kxt2)

− β′
k dt2

= (1 − kx)
γ−α−β

k (1 − ky)−
β′
k

1
kBk (α, γ − α)

×
1∫

0

t
γ−α

k −1
2 (1 − t2)

α
k −1 (1 − kxt2)

β+β′−γ
k

(
1 +

kyt2 − kxt2

1 − ky

)− β′
k

dt2

= (1 − kx)
γ−α−β

k (1 − ky)−
β′
k F1,k

(
γ − α, γ − β − β′, β′; γ; x,− y−x

1−ky

)
.

Using the same method as above, we can reach (45) easily.
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Theorem 12. Letting k ∈ R+, then the following relations hold:

F2,k
(
α, β, β′; γ, γ′; x, y

)
= (1 − kx)−

α
k F2,k

(
α, γ − β, β′; γ, γ′;− x

1 − kx
,

y
1 − kx

)
, (46)

F2,k
(
α, β, β′; γ, γ′; x, y

)
= (1 − ky)−

α
k F2,k

(
α, β, γ′ − β′; γ, γ′; x

1 − ky
,− y

1 − ky

)
, (47)

and

F2,k
(
α, β, β′; γ, γ′; x, y

)
= (1 − kx − ky)−

α
k F2,k

(
α, γ − β, γ′ − β′; γ, γ′;− x

1−kx−ky ,− y
1−kx−ky

)
. (48)

Proof. By taking for the first relation t = 1 − t1, for the second s = 1 − s1 and, finally, for the third
t = 1 − t1, s = 1 − s1 together in the double integral (30), we find (46), (47) and (48), respectively.
These complete the proof.

We continue with some reduction formulas for Appell functions F1,k and F2,k in terms of the 2F1,k
generalized hypergeometric function.

Theorem 13. Let k ∈ R+. Then, the special cases of F1,k and F2,k are as follows:

F1,k
(
α, β, β′; γ; x, y

)
= (1 − kx)−

α
k 2F1,k

[
α , β′

β + β′ ;− x − y
1 − kx

]
, (49)

F1,k
(
α, β, β′; γ; x, y

)
= (1 − ky)−

α
k 2F1,k

[
α , β

β + β′ ;− y − x
1 − ky

]
, (50)

F2,k
(
α, β, β′; γ, γ′; x, y

)
= (1 − kx)−

α
k 2F1,k

[
α , β′

γ′ ;
y

1 − kx

]
, (51)

F2,k
(
α, β, β′; γ, γ′; x, y

)
= (1 − ky)−

α
k 2F1,k

[
α , β

γ
;

x
1 − ky

]
. (52)

Proof. Specializing (42) and (43) for γ = β + β′ and also if we set γ = β and γ = β′ in (46) and (47),
we obtain desired results, respectively.

In the next lemma, we will prove Euler transformation for 2F1,k hypergeometric function, which
will be used in the next theorem.

Lemma 1. Let x ∈ C, k ∈ R+. Then, we have

2F1,k

[
α , β

γ
; x

]
= (1 − kx)−

β
k 2F1,k

[
γ − α , β

γ
;− x

1 − kx

]
. (53)
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Proof. From the definition of 2F1,k, one gets

(1 − kx)−
β
k 2F1,k

[
γ − α , β

γ
;− x

1 − kx

]

= (1 − kx)−
β
k

∞

∑
n=0

(γ − α)n,k (β)n,k

(γ)n,k

(−1)n xn

n! (1 − kx)n

=
∞

∑
m,n=0

(γ − α)n,k (β)n,k (β + nk)m,k

(γ)n,k

(−1)n xm+n

n!m!

=
∞

∑
m=0

m

∑
n=0

(γ − α)n,k (β)m,k

(γ)n,k

(−1)n xm

n! (m − n)!
. (54)

Using the identity (m − n)! = (−1)nm!
(−m)n

in (54), we thus find that

(1 − kx)−
β
k 2F1,k

[
γ − α , β

γ
;− x

1 − kx

]

=
∞

∑
m=0

m

∑
n=0

(γ − α)n,k (−m)n

(γ)n,k n!
(β)m,k xm

m!

=
∞

∑
m=0

2F1,k

[
(−m, 1) , (γ − α, k)

(γ, k)
; 1

]
(β)m,k

xm

m!
. (55)

Making use of (24) in (55), we get the desired result.

Theorem 14. Let k ∈ R+. Then, we have

F1,k
(
α, β, β′; γ; x, y

)
= (1 − ky)−

β′
k F3,k

(
α, γ − α, β, β′; γ; x,− y

1 − ky

)
. (56)

Proof. Using the definition of F1,k defined by (25) and making use of (53), we can write

F1,k
(
α, β, β′; γ; x, y

)
=

∞

∑
m=0

(α)m,k (β)m,k

(γ)m,k
2F1,k

[
α + mk , β′

γ + mk
; y

]
xm

m!

=
∞

∑
m=0

(α)m,k (β)m,k

(γ)m,k
(1 − ky)−

β′
k 2F1,k

[
β′, γ − α

γ + mk
;− y

1 − ky

]
xm

m!

= (1 − ky)−
β′
k

∞

∑
m,n=0

(α)m,k(β)m,k(β′)n,k(γ−α)n,k
(γ)m,k(γ+mk)n,k

xm

m!

(
− y

1−ky

)n

n!

= (1 − ky)−
β′
k F3,k

(
α, γ − α, β, β′; γ; x,− y

1 − ky

)
.

Thus, we finish the proof.

4. Generating Relations Involving the Generalized Appell Functions

In this section, employing the theory of Riemann–Liouville k-fractional derivative [25] and making
use of the relations which we have considered in the previous sections, we establish linear and bilinear
generating relations for k-analogue of hypergeometric functions and k-Appell functions.
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Theorem 15. We have the generating relation

∞

∑
n=0

(λ)n,k

n! 2F1,k

[
λ + nk, α

β
; x

]
tn = (1 − kt)−

λ
k 2F1,k

[
λ, α

β
;

x
1 − kt

]
, (57)

where |x| < 1
k min {1, 1 − kt} .

Proof. To prove the result, consider the elementary identities given by

(1 − kx − kt)−
λ
k = (1 − kt)−

λ
k

(
1 − kx

1 − kt

)− λ
k

, (58)

(1 − kx − kt)−
λ
k = (1 − kx)−

λ
k

(
1 − kt

1 − kx

)− λ
k

.

From the series expansion using the definition of the Pochhammer k-symbol [13]

∞

∑
n=0

(α)n,k
zn

n!
= (1 − kz)−

α
k ,

We can write

(1 − kx − kt)−
λ
k = (1 − kx)−

λ
k

∞

∑
n=0

(λ)n,k

n!

(
t

1 − kx

)n

= (1 − kx)−
λ
k

∞

∑
n=0

(λ)n,k

n!
(1 − kx)−n tn

=
∞

∑
n=0

(λ)n,k

n!
(1 − kx)−

λ
k −n tn. (59)

From (58) and (59), we have the equality

∞

∑
n=0

(λ)n,k

n!
(1 − kx)−

λ
k −n tn = (1 − kt)−

λ
k

(
1 − kx

1 − kt

)− λ
k

, (60)

where |t| < |1 − kx| . Multiplying both sides of (60) by x
α
k −1and then applying kDα−β

x to both sides
of (60), we can reach

kDα−β
x

{
∞

∑
n=0

(λ)n,k

n!
x

α
k −1 (1 − kx)−

λ
k −n tn

}
=k Dα−β

x

{
(1 − kt)−

λ
k x

α
k −1

(
1 − kx

1 − kt

)− λ
k
}

.

Since �(α) > 0 where |t| < |1 − kx|, it is possible to change the order of the summation and
differentiation, we get

∞

∑
n=0

(λ)n,k

n! kDα−β
x

{
x

α
k −1 (1 − kx)−

λ
k −n

}
tn (61)

= (1 − kt)−
λ
k kDα−β

x

{
x

α
k −1

(
1 − kx

1 − kt

)− λ
k
}

.
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Finally, using relation (39) in (61), it follows that

∞

∑
n=0

(λ)n,k

n! 2F1,k

[
λ + nk, α

β
; x

]
tn = (1 − kt)−

λ
k 2F1,k

[
λ, α

β
;

x
1 − kt

]
,

where |x| < 1
k min {1, 1 − kt} . Hence, we get the desired result.

Theorem 16. We have the generating relation

∞

∑
n=0

(λ)n,k

n! 2F1,k

[
ρ − nk, α

β
; x

]
tn

= (1 − kt)−
λ
k F1,k

[
α, ρ, λ; β; x,− kxt

1 − kt

]
, (62)

where |x| < 1
k ,
∣∣∣ kxt

1−kt

∣∣∣ < 1
k .

Proof. Consider the identity

(1 − k (1 − kx) t)−
λ
k = (1 − kt)−

λ
k

(
1 +

k2xt
1 − kt

)− λ
k

. (63)

Under the assumption |kt| < |1 − kx|−1 ,we can rewrite (63)

∞

∑
n=0

(λ)n,k

n!
(1 − kx)n tn = (1 − kt)−

λ
k

(
1 +

k2xt
1 − kt

)− λ
k

. (64)

Multiplying x
α
k −1 (1 − kx)−

ρ
k and taking the kDα−β

x on both sides of (64), we obtain

kDα−β
x

{
∞

∑
n=0

(λ)n,k

n!
x

α
k −1 (1 − kx)n− ρ

k tn

}

= kDα−β
x

{
x

α
k −1 (1 − kt)−

λ
k (1 − kx)−

ρ
k

(
1 + k

kxt
1 − kt

)− λ
k
}

.

For �(α) > 0, interchanging the order of the summation and the operator kDα−β
x , we have

∞

∑
n=0

(λ)n,k

n! kDα−β
x

{
x

α
k −1 (1 − kx)n− ρ

k
}

tn

= (1 − kt)−
λ
k kDα−β

x

{
x

α
k −1 (1 − kx)−

ρ
k

(
1 + k

kxt
1 − kt

)− λ
k
}

.

Assuming |x| < 1
k and

∣∣∣ kxt
1−kt

∣∣∣ < 1
k and using (39) and (40),

∞

∑
n=0

(λ)n,k

n! 2F1,k

[
ρ − nk, α

β
; x

]
tn = (1 − kt)−

λ
k F1,k

[
α, ρ, λ; β; x,− kxt

1 − kt

]
,

the theorem is immediate.
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Theorem 17. We have the generating relations

∞

∑
n=0

(β − ρ)n,k

n! 2F1,k

[
ρ − nk, α

β
; x

]
tn

= (1 − kt)
α+ρ−β

k
(

1 − kt + k2xt
)− α

k
2F1,k

[
α, ρ

β
;

x
1 − kt + k2xt

]
, (65)

and
∞

∑
n=0

(β)n,k (γ)n,k

(δ)n,k n! 2F1,k

[
−nk, α

β
; x

]
tn

= F1,k (γ, β − α, α; δ; t, (1 − kx) t) . (66)

Proof. We use the result of the previous theorem. Setting λ = β − ρ in (62), we find that

∞

∑
n=0

(β − ρ)n,k

n! 2F1,k

[
ρ − nk, α

β
; x

]
tn = (1 − kt)

ρ−β
k F1,k

[
α, ρ, β − ρ; β; x,− kxt

1 − kt

]
.

If we use the reduction formula for F1,k given by (50), we can easily obtain the desired result
as follows:

∞

∑
n=0

(β − ρ)n,k

n! 2F1,k

[
ρ − nk, α

β
; x

]
tn

= (1 − kt)
α+ρ−β

k
(

1 − kt + k2xt
)− α

k
2F1,k

[
α, ρ

β
;

x
1 − kt + k2xt

]
. (67)

For ρ = 0, (67) gives

∞

∑
n=0

(β)n,k

n! 2F1,k

[
−nk, α

β
; x

]
tn = (1 − kt)

α−β
k

(
1 − kt + k2xt

)− α
k . (68)

Multiplying both sides of (68) with t
γ
k −1 and operation of the kDγ−δ

t on (68), one can easily obtain

∞

∑
n=0

(β)n,k

n! 2F1,k

[
−nk, α

β
; x

]
kDγ−δ

t

{
tn+ γ

k −1
}

= kDγ−δ
t

{
t

γ
k −1 (1 − kt)

α−β
k

(
1 − kt + k2xt

)− α
k
}

. (69)

In view of (36) and (40) on the right and left sides of (69), respectively, we can reach

∞

∑
n=0

(β)n,k (γ)n,k

(δ)n,k n! 2F1,k

[
−nk, α

β
; x

]
tn = F1,k (γ, β − α, α; δ; t, (1 − kx) t) .

Theorem 18. We have the generating relation

∞

∑
n=0

(λ)n,k

n! 2F1,k

[
λ + nk, α

β
; x

]
2F1,k

[
−nk, γ

δ
; y

]
tn

= (1 − kt)−
λ
k F2,k

(
λ, α, γ; β, δ;

x
1 − kt

,− kyt
1 − kt

)
. (70)
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Proof. Putting (1 − ky) t instead of t in (57), we can obtain

∞

∑
n=0

(λ)n,k

n! 2F1,k

[
λ + nk, α

β
; x

]
(1 − ky)n tn

= (1 − k (1 − ky) t)−
λ
k 2F1,k

[
λ, α

β
;

x
1 − k (1 − ky) t

]
. (71)

Multiplying with y
γ
k −1, employing kDγ−δ

y both sides of (71) and the under the assumption
� (γ) > 0 interchanging differentiation and summation, we can write

∞

∑
n=0

(λ)n,k

n! 2F1,k

[
λ + nk, α

β
; x

]
kDγ−δ

y

{
y

γ
k −1 (1 − ky)n

}
tn (72)

= kDγ−δ
y

{
y

γ
k −1 (1 − k (1 − ky) t)−

λ
k 2F1,k

[
λ, α

β
; x

1−k(1−ky)t

]}
.

Make use of the formula (39), we can easily simplify left side of the (72) as follows:

∞

∑
n=0

(λ)n,k

n! 2F1,k

[
λ + nk, α

β
; x

]
kDγ−δ

y

{
y

γ
k −1 (1 − ky)n

}
tn (73)

= Γk(γ)
Γk(δ)

y
δ
k −1

∞

∑
n=0

(λ)n,k
n! 2F1,k

[
λ + nk, α

β
; x

]
2F1,k

[
−nk, γ

δ
; y

]
tn.

For the right side of the (72), using the definition of 2F1,k and the formula (36), one can obtain

kDγ−δ
y

{
y

γ
k −1 (1 − k (1 − ky) t)−

λ
k 2F1,k

[
λ, α

β
;

x
1 − k (1 − ky) t

]}

=
Γk (γ)

Γk (δ)
(1 − kt)−

λ
k y

δ
k −1F2,k

(
λ, α, γ; β, δ;

x
1 − kt

,− kyt
1 − kt

)
, (74)

where |x| < 1
k , |y| < 1

k ,
∣∣∣ x

1−kt

∣∣∣ + ∣∣∣ kyt
1−kt

∣∣∣ < 1
k ,

∣∣∣ 1−ky
1−x t

∣∣∣ < 1
k . Combining the relations (73) and (74),

we get desired result.

As a special case of (70), we give the following theorem.

Theorem 19. We have the generating relation

∞

∑
n=0

(β−ρ)n,k
n! 2F1,k

[
ρ − nk, α

β
; x

]
2F1,k

[
−nk, γ

δ
; y

]
tn (75)

= (1 − kx)−
α
k (1 − kt)

ρ−β
k F2,k

(
β − ρ, α, γ; β, δ;− x

(1−kx)(1−kt) ,− kyt
1−kt

)
.

Proof. For λ = β − ρ in (70), we get

∞

∑
n=0

(β − ρ)n,k

n! 2F1,k

[
β − ρ + nk, α

β
; x

]
2F1,k

[
−nk, γ

δ
; y

]
tn

= (1 − kt)
ρ−β

k F2,k

(
β − ρ, α, γ; β, δ;

x
1 − kt

,− kyt
1 − kt

)
.
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Using Euler transformation given by (53) for 2F1,k

∞

∑
n=0

(β − ρ)n,k

n!
(1 − kx)−

α
k 2F1,k

[
ρ − nk, α

β
;− x

1 − kx

]
2F1,k

[
−nk, γ

δ
; y

]
tn

= (1 − kt)
ρ−β

k F2,k

(
β − ρ, α, γ; β, δ;

x
1 − kt

,− kyt
1 − kt

)
,

and putting − x
1−kx instead of x, we reach the desired result.

Theorem 20. We have the generating relation

∞

∑
n=0

(λ)n,k

n! 2F1,k

[
λ + nk, α

β
; x

]
2F1,k

[
λ + nk, γ

δ
; y

]
tn

= (1 − kt)−
λ
k

∞

∑
n=0

(λ)n,k (α)n,k

(β)n,k n!

(
− kxy

1 − kt

)n
(76)

×F2,k

(
λ + nk, α + nk, γ + nk; β + nk, δ + nk;

x
1 − kt

,− ky
1 − kt

)
.

Proof. Replacing t by t
1−ky and after some simplification in (57), we find that

∞

∑
n=0

(λ)n,k

n! 2F1,k

[
λ + nk, α

β
; x

]
tn

(1 − ky)n+ λ
k

= (1 − kt)−
λ
k

∞

∑
n=0

(λ)n,k (α)n,k

(β)n,k n!

(
x (1 − ky)

1 − kt

)n (
1 − ky

1 − kt

)−n− λ
k

.

Using the binomial expansion (x + y)n =
n
∑

k=0

(
n
k

)
xkyn−k,

∞

∑
n=0

(λ)n,k

n! 2F1,k

[
λ + nk, α

β
; x

]
tn

(1 − ky)n+ λ
k

= (1 − kt)−
λ
k

×
∞

∑
n=0

n

∑
k1=0

(λ)n,k (α)n,k

(β)n,k n!

(
n
k1

)
(−1)n−k1

(
x

1 − kt

)k1
(

xky
1 − kt

)n−k1
(

1 − ky
1 − kt

)−n− λ
k

= (1 − kt)−
λ
k

×
∞

∑
n,k1=0

(λ)n+k1,k (α)n+k1,k

(β)n+k1,k (n + k1)!

(
n + k1

k1

)
(−1)n

(
x

1 − kt

)k1
(

xky
1 − kt

)n (
1 − ky

1 − kt

)−n−k1− λ
k

= (1 − kt)−
λ
k

×
∞

∑
n=0

(λ)n,k (α)n,k

(β)n,k n!

(
− xky

1 − kt

)n (
1 − ky

1 − kt

)−n− λ
k

2F1,k

[
λ + nk, α + nk

β + nk
;

x
1−kt

1 − ky
1−kt

]
.(77)

Multiplying y
γ
k −1, operating kDγ−δ

y and applying (36), (39), and (40) together both sides of

the (77) (in a similar way of proof of the (70)) for |x| < 1
k , |y| < 1

k ,
∣∣∣ x

1−kt

∣∣∣+ ∣∣∣ ky
1−kt

∣∣∣ < 1
k , we complete

the proof.
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Theorem 21. We have the generating relation

∞

∑
n=0

(λ)n,k

n! 2F1,k

[
λ + nk, α

β
; x

]
2F1,k

[
λ + nk, γ

δ
; y

]
tn

= (1 − kt)−
λ
k

∞

∑
n=0

(λ)n,k (α)n,k (γ)n,k

(β)n,k (δ)n,k n!

(
k3xyt

(1 − kt)2

)n

(78)

× 2F1,k

[
λ + nk, α + nk

β + nk
;

x
1 − kt

]
2F1,k

[
λ + nk, γ + nk

δ + nk
;

y
1 − kt

]
.

For the special case β = δ = λ , we have

∞

∑
n=0

(λ)n,k

n! 2F1,k

[
λ + nk, α

λ
; x

]
2F1,k

[
λ + nk, γ

λ
; y

]
tn

= (1 − kt)
γ+α−λ

k (1 − kt − kx)−
α
k (1 − kt − ky)−

γ
k

×2F1,k

[
α, γ

λ
;

k3xyt
(1 − kt − kx) (1 − kt − ky)

]
. (79)

Proof. From the elementary identity, we find that

((1 − kx) (1 − ky)− kt)−
λ
k = (1 − kt)−

λ
k

((
1 − kx

1 − kt

)(
1 − ky

1 − kt

)
− k3xyt

(1 − kt)2

)− λ
k

, (80)

for
∣∣∣ kt
(1−kx)(1−ky)

∣∣∣ < 1
k and

∣∣∣ k3xyt
(1−kt−kx)(1−kt−ky)

∣∣∣ < 1
k . Applying (20) to (80), multiplying x

α
k −1y

γ
k −1 and

taking kDα−β
x kDγ−δ

y together both sides of (80), we have

kDα−β
x kDγ−δ

y

{
∞

∑
n=0

(λ)n,k

n!
x

α
k −1 (1 − kx)−

λ
k −n y

γ
k −1 (1 − ky)−

λ
k −n tn

}

= (1 − kt)−
λ
k

×kDα−β
x kDγ−δ

y

{
∞

∑
n=0

(λ)n,k
(
k3t

)n

n! (1 − kt)2n x
α
k +n−1

(
1 − kx

1 − kt

)− λ
k −n

y
γ
k +n−1

(
1 − ky

1 − kt

)− λ
k −n

}
.

Under the conditions � (α) > 0, � (γ) > 0, |x| < 1
k , |y| < 1

k ,
∣∣∣ x

1−kt

∣∣∣ < 1
k and

∣∣∣ y
1−kt

∣∣∣ < 1
k ,

directly from the properties (36), (39), and (40), we can obtain

∞

∑
n=0

(λ)n,k

n! 2F1,k

[
λ + nk, α

β
; x

]
2F1,k

[
λ + nk, γ

δ
; y

]
tn

= (1 − kt)−
λ
k

∞

∑
n=0

(λ)n,k (α)n,k (γ)n,k

(β)n,k (δ)n,k n!

(
k3xyt

(1 − kt)2

)n

×2F1,k

[
λ + nk, α + nk

β + nk
;

x
1 − kt

]
2F1,k

[
λ + nk, γ + nk

δ + nk
;

y
1 − kt

]
.
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For the special case β = δ = λ in (78), we have

∞

∑
n=0

(λ)n,k

n! 2F1,k

[
λ + nk, α

λ
; x

]
2F1,k

[
λ + nk, γ

λ
; y

]
tn

= (1 − kt)−
λ
k

×
∞

∑
n=0

(α)n,k (γ)n,k

(λ)n,k n!

(
k3xyt

(1 − kt)2

)n (
1 − kx

1 − kt

)− α+nk
k

(
1 − ky

1 − kt

)− γ+nk
k

= (1 − kt)
γ+α−λ

k (1 − kt − kx)−
α
k (1 − kt − ky)−

γ
k

×2F1,k

[
α, γ

λ
;

k3xyt
(1 − kt − kx) (1 − kt − ky)

]
.

5. Conclusions

Hypergeometric functions play an important role in many disciplines from different perspectives.
Therefore, generalizations of hypergeometric functions have considerable popularity in many fields
of science. This work is generally based on the k-extension of hypergeometric functions. By making
use of the concept of the [26,27], we focus on the generalization of the Appell functions and present
some transformation and reduction formulas. Using the theory of Riemann–Liouville k-fractional
derivative and combining this theory with the Appell functions, we derive some linear and bilinear
generating functions.
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Abstract: The current study is of interest when performing a useful extension of a crucial physical
problem through a non-local singular fractional operator. We provide solutions that include three
arbitrary parameters α, ρ, and γ for the Resistance-Capacitance (RC), Inductance-Capacitance (LC),
and Resistance-Inductance-Capacitance (RLC) electric circuits utilizing a generalized type fractional
operator in the sense of Caputo, called non-local M-derivative. Additionally, to keep the dimension-
ality of the physical parameter in the proposed model, we use an auxiliary parameter. Owing to
the fact that all solutions depend on three parameters unlike the other solutions containing one or
two parameters in the literature, the solutions obtained in this study have more general results. On
the other hand, in order to observe the advantages of the non-local M-derivative, a comprehensive
comparison is carried out in the light of experimental data. We make this comparison for the RC
circuit between the non-local M-derivative and Caputo derivative. It is clearly shown on graphs that
the fractional M-derivative behaves closer to the experimental data thanks to the added parameters
α, ρ, and γ.

Keywords: physical problems; fractional derivatives; fractional modeling; real-world problems;
electrical circuits

1. Introduction

Fractional derivatives and integrals including non-integer order are the natural gen-
eralizations of the traditional counterparts. Studies of fractional calculus in recent years
have attracted considerable attention due to its advantages for modeling in various areas
of science and engineering. As a result of defining non-integer order derivatives by means
of integral, the non-locality property is one of its major advantages. Hence, the fractional
derivatives involve data about the state variable at earlier points, and so they have a
memory effect, which is useful to describe and comprehend the behavior of the complex
and dynamic system. Moreover, there exist various fractional derivative and integral
definitions in the literature. Accordingly, one of the main difficulties encountered in the
fractional calculus is choosing an appropriate definition of the fractional operator for the
problem under investigation. The Riemann–Liouville (RL) and Caputo fractional operators
possess an important place in understanding the essence of fractional calculus. In particu-
lar, the Caputo fractional derivative is preferred as it is a powerful mathematical tool in
application. The capabilities of the non-integer order derivatives and integrals have been
shown in several rigorous studies such as the tautochrone problem, diffusion equation,
control theory, models in physics, economy, biology, etc. On the other hand, some authors
have proposed modified or generalized type RL and Caputo operators. It should also be
mentioned that many fractional operator definitions are derived from the approach in [1]:
Fractional derivative of a function with respect to (wrt) another function. Katugampola
in [2] introduced a generalized-type fractional operator based on the fractional derivative
of a function wrt another function. Furthermore, the authors in [3] introduced a non-local

Fractal Fract. 2021, 5, 9. https://doi.org/10.3390/fractalfract5010009 https://www.mdpi.com/journal/fractalfract
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singular fractional derivative and integral by utilizing the same approach. This generalized-
type fractional derivative called non-local M-derivative in the sense of Caputo is defined
by:

MDα,ρ,γ ϕ(t) =
Γ(γ + 1)n−α

Γ(n − α)ρn−α−1

∫ t

a
((t − a)ρ − (ξ − a)ρ)n−α−1

MDn,ρ,γ ϕ(ξ)
dξ

(ξ − a)1−ρ
, (1)

where α ∈ C, n = [Re(α)] + 1, γ > 0, and MDn,ρ,γ(.) is the local derivative as can be seen
in [4]. In [3], the Laplace transform of the Caputo type fractional M-derivative we utilize to
solve the proposed model is as follows:

Lρ,γ{MDnα,ρ,γ ϕ(t)}(s) = sαLρ,γ{ϕ(t)} − sα−1 ϕ(a)− sα−2
MDρ,γ ϕ(a) (2)

− . . . − sα−n+1
MD(n−2)ρ,γ ϕ(a)− sα−n

MD(n−1)ρ,γ ϕ(a).

In a similar way, in [5], the authors presented a proportional-type non-local singular
fractional operator under the local proportional derivative, which is formed by using
control theory. With the help of this local derivative, novel fractional operators called
proportional Caputo and constant proportional Caputo was defined in [6].

The existence of several fractional derivative and integral definitions allow us to
employ the most appropriate definition for the problem addressed in order to obtain more
precise results. Although many of these various definitions are quite similar, their physical
interpretations may differ. It is widely known that some crucial physical properties may not
be observed in classical models. In other words, such dissipative impacts on the electrical
components like resistance, capacitance, and inductance as ohmic friction, non-linearity,
thermal memory, etc. are not taken into account by means of the traditional approach.
Consequently, there exist various physical problems handled by non-local fractional op-
erators to capture the advantages of new generation non-integer order operators. One
of the most important of the above-mentioned problems is the electrical circuits model.
In [7], Gomez et al. implemented the electrical circuits with respect to the non-integer
order operators to reach the analytical and numerical solutions of the proposed model,
including the arbitrary parameters. In addition, the fractional Resistance-Capacitance (RC)
and Resistance-Inductance-Capacitance (RLC) circuits were studied by employing some
kinds of fractional operators with singular or non-singular kernels in [8]. In [9], the authors
introduced the circuit elements like RC, RL, and LC via a new type non-local non-singular
fractional operator under experimental data obtained from an electronic laboratory at
CENIDET. The same model is investigated in [10] with a detailed comparative analysis
between RL and RC circuits by means of non-singular fractional derivatives. The authors
in [11] analyzed the model mentioned with the help of the generalized fractional derivative
introduced by Katugampola. Moreover, the authors in [12] presented the RC, LC, and RLC
circuits by employing a local-based derivative, and they obtained the analytical and nu-
merical results. Hence, motivated by all these studies, we introduce more general solutions
with the help of a generalized-type non-local singular fractional operator involving three
arbitrary parameters introduced by Acay et al. in [3]. For some applications and beneficial
information on fractional calculus, we refer the reader to [13–25].

The structure of the present paper is constituted as follows: In Section 2, the solutions
of fractional RC, LC, and RLC electrical circuits are presented with various visual results
and comprehensive interpretation. Then, in Section 3, we show a comparison between two
efficient operators under an experimental data with some graphs and mention the crucial
conclusions of our study.

2. Fractional Electrical Circuits

In this section, we present the RC and RLC electrical circuit including constant, ex-
ponential, and periodic sources. The fractional solutions are obtained by means of the
non-local singular M-derivative containing three parameters α, ρ, and γ. Hence, we get
the generalized version of the solutions obtained in the literature. The main purpose is to
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perform an extension of the ordinary differential equations to the fractional version via
a non-local singular generalized derivative. On the other hand, preserving the physical
dimensionality of the non-integer order operator is crucial in the application. In pure
mathematics, generally, the integer-order derivative is replaced with non-integer order
ones but this is not enough for physical problems and some applications in engineering.
Therefore, dimensional modification is required for the fractional case. For this purpose,
we employ the auxiliary parameter σ for the non-local fractional M-derivative in the sense
of Caputo as follows:

d
dt

→ σαρ−1
MDα,ρ,γ, (3)

and
d2

dt2 → σ2(αρ−1)
MDα,ρ,γ, (4)

where α, ρ, and γ are arbitrary parameters, and the dimensionality of σ is the second (s).
Hence, we employ this approach in order to get the solutions of the fractional electrical
circuits with the help of the Caputo-type M-derivative [9,19,26].

2.1. Fractional RC Electrical Circuits under Non-Local M-Derivative in the Sense of Caputo

The RC series circuit differential equation under Kirchhoff’s law can be expressed by the
non-local M-derivative in the sense of Caputo considering the relations Equations (3) and (4)
as below:

σαρ−1
MDα,ρ,γVc(t) +

1
ω

Vc(t) =
1
ω

e(t), (5)

where ω = RC is the time constant, R represents the resistance, C symbolizes the capac-
itance, the voltage on the capacitor is expressed by the function Vc(t), and e(t) is the
source voltage. On the other hand, while σ1−αρ/RC is fractional time constant, 1/RC is
a traditional time constant. It should be noted that normally the dimension of the non-
local M-derivative operator is (time)−αρ (the parameter γ does not affect the dimension),
but under favor of the term σαρ−1, we eliminate the dimension mismatch physically.

Now, let us solve the Equation (5) with the help of the Laplace transform of the
non-local fractional M-derivative under three main case with different types of sources
as follows:

Case 1. (Constant source). If we consider e(t) = e0, Vc(0) = V0 (V0 > 0), we can
rearrange Equation (5) as:

MDα,ρ,γVc(t) +
σ1−αρ

ω
Vc(t) =

σ1−αρ

ω
e0. (6)

Applying LT of the non-local M-derivative in the Caputo sense, we have:

Lρ,γ{MDα,ρ,γVc(t)}+ σ1−αρ

ω
Lρ,γ{Vc(t)} = Lρ,γ

{
σ1−αρ

ω
e0

}
, (7)

sαLρ,γ{Vc(t)} − sα−1Vc(0) +
σ1−αρ

ω
Lρ,γ{Vc(t)} =

e0σ1−αρ

sω
, (8)

after some arrangements, one can get:

Lρ,γ{Vc(t)} = V0
sα−1

sα + σ1−αρ

ω

+
e0σ1−αρ

ω

1

s
(

sα + σ1−αρ

ω

) , (9)

hence if we take the inverse LT of Equation (9), we reach the following solution:

Vc(t) = V0Eα

(
−σ1−αρ

ω

(
Γ(γ + 1)

tρ

ρ

)α)
+ e0

[
1 − Eα

(
−σ1−αρ

ω

(
Γ(γ + 1)

tρ

ρ

)α)]
, (10)
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where Eα(.) is the Mittag–Leffler function.
It can be seen that the fractional solution follows exponential dynamics if α, ρ, and γ

are closer to 1. In Figures 1 and 2 we show the plot for Case 1 (constant source) when R = 1
Ω, C = 10 F, e0 = 5 V, and Vc(0) = 10 V, and in Figures 3 and 4, we use the values R = 1
Ω, C = 10 F, e0 = 5 V, and Vc(0) = 0 V. We observe the behavior of voltage across the
capacitor in the RC circuit for e(t) = e0 in Figures 1–4 when α changes; α = 1, 0.9, 0.8, 0.7,
ρ = 0.9, and γ = 0.9, when ρ changes; ρ = 1, 0.9, 0.8, 0.7, α = 0.9, and γ = 1.5, and when γ
changes; γ = 1, 1, 6, 1.8, 2, α = 0.9, and ρ = 0.9. In this way, the impact of the parameters
α, ρ, and γ can clearly by observed on the solutions curves separately. On the other hand,
in Figure 1, we observe that for the small values of α, the solution curve tends to stabilize
in less time with exponential behavior. However for a classical case (when α = 1, ρ = 1,
and γ = 1) it stabilizes in longer time. In Figure 2a, we see similar behavior in the solutions
curves when ρ changes. However, the effect of the parameter γ is different from the effect
of the parameters α and ρ as can be seen in Figures 2b and 4b. It can be observed that for
smaller values of γ, the solution curve approaches to stabilize in a longer time. Moreover,
in Figures 1 and 2, one can see that the solution curves are exponentially decreasing, and in
Figures 3 and 4, the exponentially increasing overdamped system.

Case 2. (Exponential source). Let e(t) = e0e−λΓ(γ+1) tρ
ρ , Vc(0) = V0 (V0 > 0). Then

we can rewrite the Equation (5) as follows:

MDα,ρ,γVc(t) +
σ1−αρ

ω
Vc(t) =

σ1−αρ

ω
e0e−λΓ(γ+1) tρ

ρ . (11)

If we take the LT of the Equation (11), we have:

Lρ,γ{MDα,ρ,γVc(t)}+ σ1−αρ

ω
Lρ,γ{Vc(t)} =

e0σ1−αρ

ω
Lρ,γ

{
e−λΓ(γ+1) tρ

ρ

}
, (12)

sαLρ,γ{Vc(t)} − sα−1Vc(0) +
σ1−αρ

ω
Lρ,γ{Vc(t)} =

e0σ1−αρ

ω(s + λ)
, (13)

Lρ,γ{Vc(t)} =
e0σ1−αρ

ω

1

(s + λ)
(

sα + σ1−αρ

ω

) + V0
sα

s
(

sα + σ1−αρ

ω

) , (14)

applying the inverse LT and the convolution theorem, we can obtain the solution as:

Vc(t) = V0Eα

(
−σ1−αρ

ω

(
Γ(γ + 1)

tρ

ρ

)α)

+
e0σ1−αρ

ω
Γ(γ + 1)

∫ t

0

(
Γ(γ + 1)

tρ

ρ
− Γ(γ + 1)

τρ

ρ

)α−1
(15)

× Eα,α

(
−σ1−αρ

ω

(
Γ(γ + 1)

tρ

ρ
− Γ(γ + 1)

τρ

ρ

)α)

× exp
(
−λΓ(γ + 1)

τρ

ρ

)
τρ−1dτ.

Case 3. (Oscillatory source). If we suppose that e(t) = e0 cos
(

θΓ(γ + 1) tρ

ρ

)
, Vc(0) = V0

(V0 > 0), then we can write:

MDα,ρ,γVc(t) +
σ1−αρ

ω
Vc(t) =

σ1−αρ

ω
e0 cos

(
θΓ(γ + 1)

tρ

ρ

)
. (16)

Taking LT of the Equation (16), we readily have:

Lρ,γ{MDα,ρ,γVc(t)}+ σ1−αρ

ω
Lρ,γ{Vc(t)} =

e0σ1−αρ

ω
Lρ,γ

{
cos

(
θΓ(γ + 1)

tρ

ρ

)}
, (17)
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sαLρ,γ{Vc(t)} − sα−1Vc(0) +
σ1−αρ

ω
Lρ,γ{Vc(t)} =

e0σ1−αρs
ω(θ2 + s2)

, (18)

Lρ,γ{Vc(t)} =
e0σ1−αρ

ω

s

(θ2 + s2)
(

sα + σ1−αρ

ω

) + V0
sα

s
(

sα + σ1−αρ

ω

) , (19)

after applying inverse LT transform and convolution theorem, one can reach the solution below:

Vc(t) = V0Eα

(
−σ1−αρ

ω

(
Γ(γ + 1)

tρ

ρ

)α)

+
e0σ1−αρ

ω
Γ(γ + 1)

∫ t

0

(
Γ(γ + 1)

tρ

ρ
− Γ(γ + 1)

τρ

ρ

)α−1
(20)

× Eα,α

(
−σ1−αρ

ω

(
Γ(γ + 1)

tρ

ρ
− Γ(γ + 1)

τρ

ρ

)α)

× cos
(

θΓ(γ + 1)
tρ

ρ

)
τρ−1dτ.

For oscillatory source case involving the angular frequency θ (e(t) = e0 cos(θt)), we
present Figures 5–8 for various values of the α, γ, and ρ when R = 1 Ω, C = 10 F, e0 = 10 V,
θ = 60 Hz, and Vc(0) = 10 V. We should note that in the case of standard approach α = 1,
ρ = 1, and γ = 1, some losses which are based on the ohmic friction, temperature, and so
on are not considered. However, the non-integer order approach enables us to examine the
proposed physical problem more precisely. It is also seen that the solutions curves with
different values of α, ρ, and γ are below or under the traditional solution curve for a time.
This situation varies for different arbitrary parameter values. On the other hand, we can see
the behavior of voltage across the capacitor in the RC circuit for e(t) = e0 cos

(
Γ(γ + 1) tρ

ρ

)
in Figures 5–8 when α changes; α = 1, 0.995, 0.99, 0.985, ρ = 0.9, and γ = 1.5, when ρ
changes; ρ = 1, 0.9, 0.8, 0.7, α = 0.9, and γ = 0.9, and when γ changes; γ = 1, 1, 15, 1.2, 1.25,
α = 0.9, and ρ = 0.9. Furthermore, in Figures 5 and 6, we can also observe that the
period may change under the fractional-order derivative, the apparent motion of the
solution curves obtained by employing the arbitrary order may appear more complicated,
and the extremes of the solution function can change for different values of fractional
order. In addition, for different values R and C, the wave height and length change in
Figures 7 and 8, respectively.
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Figure 1. This figure corresponds to the function Vc(t) with constant source for different values of α,
ρ, and γ in order to show the effect of α on solution curves when R = 1 Ω, C = 10 F, e0 = 5 V, and
Vc(0) = 10.
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Figure 2. The figure (a) corresponds to the function Vc(t) with constant source for different values of α, ρ, and γ in order to
show the effect of α and γ, and also the figure (b) is plotted to show the effect of α and ρ when R = 1 Ω, C = 10 F, e0 = 5 V,
and Vc(0) = 10.
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Figure 3. This figure corresponds to the function Vc(t) with a constant source for different values of
α, ρ, and γ in order to show the effect of α on solution curves when R = 1 Ω, C = 10 F, e0 = 5 V, and
Vc(0) = 0.
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Figure 4. The figure (a) corresponds to the function Vc(t) with constant source for different values of α, ρ, and γ in order to
show the effect of α and γ, and also the figure (b) is plotted to show the effect of α and ρ when R = 1 Ω, C = 10 F, e0 = 5 V,
and Vc(0) = 0.
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Figure 5. This figure corresponds to the function Vc(t) with an oscillatory source for different values
of α, ρ, and γ in order to show the effect of α on solution curves when R = 1 Ω, C = 10 F, e0 = 10 V,
and θ = 60 Hz, Vc(0) = 10.
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Figure 6. The figure (a) corresponds to the function Vc(t) with an oscillatory source for different values of α, ρ, and γ in order to show
the effect of α and γ, and also the figure (b) is plotted to show the effect of α and ρ on solution curves when R = 1 Ω, C = 10 F, e0 = 10
V, and θ = 60 Hz, Vc(0) = 10.
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Figure 7. This figure corresponds to the function Vc(t) with an oscillatory source for some values
of α, ρ, and γ in order to show the effect of resistance on solution curves when α = 1, ρ = 1, γ = 1,
C = 10 F, e0 = 10 V, and θ = 60 Hz, Vc(0) = 10.
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Figure 8. This figure corresponds to the function Vc(t) with an oscillatory source for some values
of α, ρ, and γ in order to show the effect of capacitance on solution curves when α = 0.95, ρ = 0.95,
γ = 1.5, C = 10 F, e0 = 10 V, and θ = 60 Hz, Vc(0) = 10.

2.2. Fractional Inductance-Capacitance (LC) Electrical Circuits under Non-Local M-Derivative in
the Sense of Caputo

If the law of Kirchhoff is applied, then the LC series circuit differential equation under
the relations Equations (3) and (4) can be presented by:

σ2(αρ−1)
MD2α,ρ,γI(t) +

1
η

I(t) =
C
η

e(t), (21)

where η = LC, L represents the inductance, the capacitance is denoted by C, and e(t)
stands for source voltage. Now, we solve the above-stated equation by employing LT of
the non-local fractional M-derivative with three case including different sources as below:

Case 1. (Constant source). Supposing e(t) = e0, I(0) = I0 (I0 > 0), MDæ,flI(0) = 0,
we can express the Equation (21) as:

MD2α,ρ,γI(t) +
σ2(1−αρ)

η
I(t) =

Cσ2(1−αρ)

η
e0, (22)

where η = LC and C is the capacitance. If we apply the LT to Equation (22), we have:

Lρ,γ{MD2α,ρ,γI(t)}+ σ2(1−αρ)

η
Lρ,γ{I(t)} = Lρ,γ

{
Cσ2(1−αρ)e0

η

}
, (23)

sαLρ,γ{I(t)} − sα−1I(0)− sα−2
MDæ,flI(0) +

σ2(1−αρ)

η
Lρ,γ{I(t)} =

Cσ2(1−αρ)e0

sη
, (24)

Lρ,γ{I(t)} = I0
sα−1

sα + σ2(1−αρ)

η

+
Cσ2(1−αρ)e0

η

1

s
(

sα + σ2(1−αρ)

η

) , (25)
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and if we apply the inverse LT to the Equation (25), we reach the following solution:

I(t) = I0Eα

(
−σ2(1−αρ)

η

(
Γ(γ + 1)

tρ

ρ

)α
)
+ Ce0

[
1 − Eα

(
−σ2(1−αρ)

η

(
Γ(γ + 1)

tρ

ρ

)α
)]

. (26)

1
η = 1

LC in Equation (21) represents the natural angular frequency, and the initial charge
of the capacitor is denoted by I0. In Figure 9, A and B correspond to Equation (26) with
constant source when I(0) = 0 and I(0) = 10, respectively. These plots are obtained when
α = 1, 0.9, 0.8, 0.7, ρ = 1, 0.9, 0.8, 0.7, and γ = 0.7. The system is exponentially increasing
in A and exponentially decreasing in B. We see that the solution curve tends faster to the
steady state for small values of α and ρ.

Case 2. (Exponential source). Let e(t) = e0e−λΓ(γ+1) tρ
ρ , I(0) = I0 (I0 > 0),

MDρ,γI(0) = 0, then Equation (21) can be written as follows:

MD2α,ρ,γI(t) +
σ2(1−αρ)

η
I(t) =

Cσ2(1−αρ)

η
e0e−λΓ(γ+1) tρ

ρ , (27)

applying the LT to Equation (27), we have:

Lρ,γ{MD2α,ρ,γI(t)}+ σ2(1−αρ)

η
Lρ,γ{I(t)} =

Cσ2(1−αρ)e0

η
Lρ,γ{e−λΓ(γ+1) tρ

ρ }, (28)

sαLρ,γ{I(t)} − sα−1I(0)− sα−2
MDæ,flI(0) +

σ2(1−αρ)

η
Lρ,γ{I(t)} =

Cσ2(1−αρ)e0

η(s + λ)
, (29)

Lρ,γ{I(t)} = I0
sα−1

sα + σ2(1−αρ)

η

+
Cσ2(1−αρ)e0

η

1

(s + λ)
(

sα + σ2(1−αρ)

η

) , (30)

after taking inverse LT, one can attain the following solution:

I(t) = I0Eα

(
−σ2(1−αρ)

η

(
Γ(γ + 1)

tρ

ρ

)α
)

(31)

+
Cσ2(1−αρ)e0

η
Γ(γ + 1)

∫ t

0

(
Γ(γ + 1)

tρ

ρ
− Γ(γ + 1)

τρ

ρ

)α−1

× Eα,α

(
−σ2(1−αρ)

η

(
Γ(γ + 1)

tρ

ρ
− Γ(γ + 1)

τρ

ρ

)α
)

× exp
(
−λΓ(γ + 1)

τρ

ρ

)
τρ−1dτ.

Figure 10 corresponds to solution Equation (31) including exponential source when
α = 1, 0.9, 0.8, 0.7, ρ = 1, 0.9, 0.8, 0.7, γ = 0.9, C = 0.5 F, L = 2.4 H, λ = 0.05, e0 = 5 V, and
I(0) = 0. From Figures 10 and 11, we observe an oscillatory behavior and the effect of the
parameters α, ρ, and γ on the function I(t). Furthermore, in Figure 11 corresponding to I(t)
with exponential source, the impact of arbitrary parameters when α = 0.9, ρ = 0.9, γ = 0.9
in A, and α = 0.5, ρ = 0.5, γ = 0.5 in B for L = 2.4, 3.4, 4.4, 5.4 can clearly be seen. It is
worth mentioning that in Figures 9 and 10, having exponential behavior, while the classical
solution function tends to stabilize slower, the fractional solution function with smaller
values of α and ρ approach to stabilize in less time. On the other hand, one can see the
oscillatory behavior underdamped system in Figures 10 and 11. In Figure 12, the different
values of the parameter L change the wave height critically.
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Case 3. (Oscillatory source). Assuming that e(t) = e0 cos
(

θΓ(γ + 1) tρ

ρ

)
, I(0) = I0

(I0 > 0), and MDæ,flI(0) = 0, we present the Equation (21) in the following form:

MD2α,ρ,γI(t) +
σ2(1−αρ)

η
I(t) =

Cσ2(1−αρ)

η
e0 cos

(
θΓ(γ + 1)

tρ

ρ

)
, (32)

by applying the LT, we get:

Lρ,γ{MD2α,ρ,γI(t)}+ σ2(1−αρ)

η
Lρ,γ{I(t)} =

Cσ2(1−αρ)e0

η
Lρ,γ

{
cos

(
θΓ(γ + 1)

tρ

ρ

)}
, (33)

sαLρ,γ{I(t)} − sα−1I(0)− sα−2
MDæ,flI(0) +

σ2(1−αρ)

η
Lρ,γ{I(t)} =

Csσ2(1−αρ)e0

η(θ2 + s2)
, (34)

Lρ,γ{I(t)} = I0
sα−1

sα + σ2(1−αρ)

η

+
Cσ2(1−αρ)e0

η

s

(θ2 + s2)(sα + σ2(1−αρ)

η )
, (35)

and if we apply the inverse LT, then we get the solution below:

I(t) = I0Eα

(
−σ2(1−αρ)

η

(
Γ(γ + 1)

tρ

ρ

)α
)

(36)

+
Cσ2(1−αρ)e0

η
Γ(γ + 1)

∫ t

0

(
Γ(γ + 1)

tρ

ρ
− Γ(γ + 1)

τρ

ρ

)α−1

× Eα,α

(
−σ2(1−αρ)

η

(
Γ(γ + 1)

tρ

ρ
− Γ(γ + 1)

τρ

ρ

)α
)

× cos
(

θΓ(γ + 1)
tρ

ρ

)
τρ−1dτ.

Figure 12 is plotted for the solution Equation (36) when L = 2, 3, 4, 5 and γ = 0.95.
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Figure 9. The figure (a) corresponds to the function I(t) with constant source for various values of α, ρ, and γ in order to show the
effect of arbitrary parameter γ when γ = 0.7, C = 0.5 F, L = 2.4, e0 = 5 V, I(0) = 0, and similarly the figure (b) is plotted to show the
effect of γ on solution curves when γ = 0.7, C = 0.5 F, L = 2.4, e0 = 5 V, and I(0) = 10.
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Figure 10. This graph corresponds to the solution Equation (31) containing exponential source for
various values of α and ρ when γ = 0.9, C = 0.5 F, L = 2.4 H, λ = 0.05, e0 = 5 V, and I(0) = 0.
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Figure 11. The figure (a) corresponds to the solution Equation (31) containing exponential source for various values of α, ρ,
and γ in order to see the effect of parameter L when C = 0.5 F, λ = 0.05, e0 = 5 V, and I(0) = 0, and similarly the figure (b)
is plotted to show the effect of L on solution curves when C = 0.5 F, λ = 0.05, e0 = 5 V, and I(0) = 0.
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Figure 12. This graph corresponds to solution Equation (36) including oscillatory source for various
values of α and ρ and γ in order to see the effect of L when C = 47 F, e0 = 50 V, θ = 60 Hz, and
I(0) = 0.
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2.3. Fractional RLC Electrical Circuits under Non-Local M-Derivative in the Sense of Caputo

The fractional RLC series circuit differential equation can be presented according to
the non-local M-derivative as below:

σ2(αρ−1)
MD2α,ρ,γq(t) +

CR
δ

σαρ−1
MDα,ρ,γq(t) +

1
δ

q(t) =
C
δ

e(t), (37)

where δ = LC, L denotes the inductance, the capacitance is represented by C, R stands for
the resistance, and e(t)is the source voltage. Let us solve Equation (37) under the fractional
non-local M-derivative with the help of the LT. We present three cases including different
types of sources as follows:

Case 1. (Constant source). Assuming that e(t) = e0, q(0) = q0, and MDρ,γq(0) = 0,
we give Equation (37) the following form:

MD2α,ρ,γq(t) +
CR
δ

σ1−αρ
MDα,ρ,γq(t) +

σ2(1−αρ)

δ
q(t) =

Cσ2(1−αρ)e0

δ
, (38)

by applying the LT of the Equation (38), then we attain:

Lρ,γ{MD2α,ρ,γq(t)}+ CRσ1−αρ

δ
Lρ,γ{MDα,ρ,γq(t)}+ σ2(1−αρ)

δ
Lρ,γ{q(t)} = Lρ,γ

{
Cσ2(1−αρ)e0

δ

}
, (39)

sα Lρ,γ{q(t)} − sα−1q(0)− sα−2
MDρ,γq(0)

+
CRσ1−αρ

δ

[
sαLρ,γ{q(t)} − sα−1q0

]
+

σ2(1−αρ)

δ
Lρ,γ{q(t)} (40)

=
Cσ2(1−αρ)e0

sδ
,

Lρ,γ{q(t)} = q0
sα−1

sα
(

1 + CRσ1−αρ

δ

)
+ σ2(1−αρ)

δ

+ q0
CRσ1−αρ

δ

sα−1

sα
(

1 + CRσ1−αρ

δ

)
+ σ2(1−αρ)

δ

(41)

+
Cσ2(1−αρ)e0

δ

1

s
[
sα
(

1 + CRσ1−αρ

δ

)
+ σ2(1−αρ)

δ

] ,

Lρ,γ{q(t)} = q0
δ

δ + CRσ1−αρ

sα−1

sα + σ2(1−αρ)

δ+CRσ1−αρ

+ q0
CRσ1−αρ

δ + CRσ1−αρ

sα−1

sα + σ2(1−αρ)

δ+CRσ1−αρ

(42)

+
Cσ2(1−αρ)e0

δ + CRσ1−αρ

1

s
(

sα + σ2(1−αρ)

δ+CRσ1−αρ

) ,

and by taking the inverse LT, we reach the solution as follows:

q(t) = q0
δ

δ + CRσ1−αρ
Eα

(
− σ2(1−αρ)

δ + CRσ1−αρ

(
Γ(γ + 1)

tρ

ρ

)α
)

+ q0
CRσ1−αρ

δ + CRσ1−αρ
Eα

(
− σ2(1−αρ)

δ + CRσ1−αρ

(
Γ(γ + 1)

tρ

ρ

)α
)

(43)

+
Cσ2(1−αρ)e0

δ + CRσ1−αρ

[
1 − Eα

(
− σ2(1−αρ)

δ + CRσ1−αρ

(
Γ(γ + 1)

tρ

ρ

)α
)]

.

The plots for the solution Equation (43) is presented in Figures 13 and 14. We show the
behavior of the function q(t) with constant source when α = 1, 0.9, 0.8, 0.7, ρ = 1, 0.9, 0.8, 0.7,
γ = 1.2 according to R = 2 Ω, L = 10 H, C = 0.1 F, e0 = 5 V, q(0) = 10, and
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MDα,ρ,γq(0) = 0. On the other hand, in Figure 14, one can see the solutions curves
for some values of R and L when α = 0.7, ρ = 0.8, and γ = 0.9. Moreover, Figures 13 and 14
show exponential behavior when R and L change for different values of fractional-orders. It is clear
that fractional-orders have the power to increase or decrease wavelength and height as can be seen
in Figures 15 and 16 showing oscillatory behavior under the damping system.

Case 2. (Exponential source). Let us assume that e(t) = e0e−λΓ(γ+1) tρ
ρ , q(0) = q0,

and MDρ,γq(0) = 0, we present Equation (37) as:

MD2α,ρ,γq(t) +
CR
δ

σ1−αρ
MDα,ρ,γq(t) +

σ2(1−αρ)

δ
q(t) =

Cσ2(1−αρ)

δ
e0e−λΓ(γ+1) tρ

ρ , (44)

and taking the LT of the Equation (44), we can get:

Lρ,γ{MD2α,ρ,γq(t)}+ CRσ1−αρ

δ
Lρ,γ{MDα,ρ,γq(t)}+ σ2(1−αρ)

δ
Lρ,γ{q(t)} =

Cσ2(1−αρ)e0

δ
Lρ,γ{e−λΓ(γ+1) tρ

ρ }, (45)

sαLρ,γ{q(t)} − sα−1q(0)− sα−2
MDρ,γq(0) (46)

+
CRσ1−αρ

δ

[
sαLρ,γ{q(t)} − sα−1q0

]
+

σ2(1−αρ)

δ
Lρ,γ{q(t)}

=
Cσ2(1−αρ)e0

δ(s + λ)
,

Lρ,γ{q(t)} = q0
δ

δ + CRσ1−αρ

sα−1

sα + σ2(1−αρ)

δ+CRσ1−αρ

+ q0
CRσ1−αρ

δ + CRσ1−αρ

sα−1

sα + σ2(1−αρ)

δ+CRσ1−αρ

(47)

+
Cσ2(1−αρ)e0

δ + CRσ1−αρ

1
s + λ

1

sα + σ2(1−αρ)

δ+CRσ1−αρ

,

q(t) = q0
δ

δ + CRσ1−αρ
Eα

(
− σ2(1−αρ)

δ + CRσ1−αρ

(
Γ(γ + 1)

tρ

ρ

)α
)

+ q0
CRσ1−αρ

δ + CRσ1−αρ
Eα

(
− σ2(1−αρ)

δ + CRσ1−αρ

(
Γ(γ + 1)

tρ

ρ

)α
)

+
Cσ2(1−αρ)e0

δ + CRσ1−αρ
Γ(γ + 1)

∫ t

0

(
Γ(γ + 1)

tρ

ρ
− Γ(γ + 1)

τρ

ρ

)α−1
(48)

× Eα,α

(
− σ2(1−αρ)

δ + CRσ1−αρ

(
Γ(γ + 1)

tρ

ρ
− Γ(γ + 1)

τρ

ρ

)α
)

× exp
(
−λΓ(γ + 1)

τρ

ρ

)
τρ−1dτ.

Figures 15 and 16 show the behavior of the solution Equation (48) under the ex-
ponential source for some values of α and ρ when γ = 0.8 and γ = 1.5, respectively.
By deliberately choosing the α and ρ values the same on these two figures, we change the
value of γ and clearly observe its effect on the system.

Case 3. (Oscillatory source). Supposing that e(t) = e0 cos
(

θΓ(γ + 1) tρ

ρ

)
, q(0) = q0,

and MDρ,γq(0) = 0, we present Equation (37) as:

MD2α,ρ,γq(t) +
CR
δ

σ1−αρ
MDα,ρ,γq(t) +

σ2(1−αρ)

δ
q(t) =

Cσ2(1−αρ)

δ
e0 cos

(
θΓ(γ + 1)

tρ

ρ

)
, (49)
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by taking the LT of Equation (49), we attain the following relation:

Lρ,γ{MD2α,ρ,γq(t)}+ CRσ1−αρ

δ
Lρ,γ{MDα,ρ,γq(t)}+ σ2(1−αρ)

δ
Lρ,γ{q(t)} (50)

=
Cσ2(1−αρ)e0

δ
Lρ,γ

{
cos

(
θΓ(γ + 1)

tρ

ρ

)}
,

sαLρ,γ{q(t)} − sα−1q(0)− sα−2
MDρ,γq(0)

+
CRσ1−αρ

δ

[
sαLρ,γ{q(t)} − sα−1q0

]
+

σ2(1−αρ)

δ
Lρ,γ{q(t)} (51)

=
Cσ2(1−αρ)e0

δ

s
θ2 + s2 ,

Lρ,γ{q(t)} = q0
δ

δ + CRσ1−αρ

sα−1

sα + σ2(1−αρ)

δ+CRσ1−αρ

+ q0
CRσ1−αρ

δ + CRσ1−αρ

sα−1

sα + σ2(1−αρ)

δ+CRσ1−αρ

(52)

+
Cσ2(1−αρ)e0

δ + CRσ1−αρ

s
θ2 + s2

1

sα + σ2(1−αρ)

δ+CRσ1−αρ

,

q(t) = q0
δ

δ + CRσ1−αρ
Eα

(
− σ2(1−αρ)

δ + CRσ1−αρ

(
Γ(γ + 1)

tρ

ρ

)α
)

+ q0
CRσ1−αρ

δ + CRσ1−αρ
Eα

(
− σ2(1−αρ)

δ + CRσ1−αρ

(
Γ(γ + 1)

tρ

ρ

)α
)

+
Cσ2(1−αρ)e0

δ + CRσ1−αρ
Γ(γ + 1)

∫ t

0

(
Γ(γ + 1)

tρ

ρ
− Γ(γ + 1)

τρ

ρ

)α−1
(53)

× Eα,α

(
− σ2(1−αρ)

δ + CRσ1−αρ

(
Γ(γ + 1)

tρ

ρ
− Γ(γ + 1)

τρ

ρ

)α
)

× cos
(

θΓ(γ + 1)
tρ

ρ

)
τρ−1dτ.
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Figure 13. This plot is for the function q(t) with respect to the constant source for some values of α

and ρ when γ = 1.2, R = 2 Ω, L = 10 H, C = 0.1 F, e0 = 5 V, q(0) = 10, and MDα,ρ,γq(0) = 0.
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Figure 14. The figure (a) is for the function q(t) with respect to the constant source for some values of α, ρ, and γ in order
to see the impact of R, and the figure (b) is plotted to see the effect of L when R = 2 Ω, L = 10 H, C = 0.1 F, e0 = 5 V,
q(0) = 10, and MDα,ρ,γq(0) = 0.

0 10 20 30 40 50 60 70 80 90 100

time

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

q(
t)

Classical , =0.9 , =0.8 , =0.7

=0.8

Figure 15. This plot is for the function q(t) with respect to the exponential source for some values of
α and ρ when γ = 0.8, e0 = 5 V, L = 10 H, C = 0.1 F, R = 2 Ω, q(0) = 10, and MDα,ρ,γq(0) = 0.
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Figure 16. This plot is for the function q(t) with respect to the exponential source for some values of
α and ρ when γ = 1.5, e0 = 5 V, L = 10 H, C = 0.1 F, R = 2 Ω, q(0) = 10, and MDα,ρ,γq(0) = 0.
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3. Comparative Analysis and Concluding Remarks

Here, we have performed a comparative analysis to observe the impact of the ad-
ditional parameters inside the non-local fractional M-derivative. For this purpose, we
have compared our results with the solution obtained via the Caputo operator in [8]. This
comparison has been carried out for the RC circuit with constant source by employing
the experimental data obtained from the electronic laboratory in CENIDET. The used
experimental data is R = 10 Ω, C = 1000 F, e0 = 7.58, and Vc(0) = 0 and for the second
case, R = 10 Ω, C = 1000 F, e0 = 0, and Vc(0) = 7.58 as seen in [8]. The values for
Figures 17 and 18 are as follows: R = 10 Ω, C = 1000 F, e0 = 7.58, Vc(0) = 0, and R = 10
Ω, C = 1000 F, e0 = 0, and Vc(0) = 7.58 for Figures 19 and 20. We observe that the
non-local fractional M-derivative behaves closer to the experimental data than the Caputo
derivative thanks to the convenient values of ρ and γ. Figures 17 and 19 have been plotted
for α = 0.9, ρ = 1.8, and γ = 1.8 while Figures 18 and 20 have shown when α = 0.7, ρ = 1.5,
and γ = 2. It should be noted that the non-local M-derivative perform the same behavior
with the Caputo fractional derivative when α = 1, ρ = 1, and γ = 1. On the other hand,
the Caputo derivative tends faster to the steady-state than the non-local M-derivative and
traditional counterpart in Figures 17–20 having exponentially dynamics.

Moreover, some general conclusions on our main results can be listed as below:

• We have carried out an efficient extension of a physical problem through a non-
local singular fractional operator by providing the solutions including three arbitrary
parameters α, ρ, and γ;

• A detailed analysis has been introduced for the Resistance-Capacitance (RC),
Inductance-Capacitance (LC), and Resistance-Inductance-Capacitance (RLC) electric
circuits utilizing a generalized type fractional operator in the sense of Caputo called
non-local M-derivative;

• Due to the fact that all solutions obtained in this study depend on three parameters
unlike the other studies in the literature, the solutions we have obtained are more
general results;

• In order to show the benefits of the non-local M-derivative for the proposed physical
problem, a comprehensive comparison has been addressed for the RC circuit with
constant source in the light of experimental data;

• As a result of our observations on Figures 1–16, we see that the amplitudes get smaller
or grow for some increasing or decreasing values of α, ρ, and γ. The waves also
displace as α, ρ, and γ change;

• Importantly, the arbitrary parameters α, ρ, and γ allow us to get some crucial informa-
tion about the intrinsic properties of the problem under investigation.
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Figure 17. Comparison of the non-local M-derivative and Caputo derivative with experimental data
for different values of α, ρ, and γ under the Resistance-Capacitance (RC) circuit including constant
source when α = 0.9, ρ = 1.8, γ = 1.8, R = 10 Ω, C = 1000 F, e0 = 7.58, and Vc(0) = 0.
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Figure 18. Comparison of the non-local M-derivative and Caputo derivative with experimental data
for different values of α, ρ, and γ under the RC circuit including constant source when α = 0.7,
ρ = 1.5, γ = 2, R = 10 Ω, C = 1000 F, e0 = 7.58, and Vc(0) = 0.
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Figure 19. Comparison of the non-local M-derivative and Caputo derivative with experimental data
for different values of α, ρ, and γ under the RC circuit including constant source when α = 0.9,
ρ = 1.8, γ = 1.8, R = 10 Ω, C = 1000 F, e0 = 0, and Vc(0) = 7.58.
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Figure 20. Comparison of the non-local M-derivative and Caputo derivative with experimental data
for different values of α, ρ, and γ under the RC circuit including constant source when α = 0.7,
ρ = 1.5, γ = 2, R = 10 Ω, C = 1000 F, e0 = 0, and Vc(0) = 7.58.
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Abstract: It is possible to produce mobile phone worms, which are computer viruses with the ability
to command the running of cell phones by taking advantage of their flaws, to be transmitted from
one device to the other with increasing numbers. In our day, one of the services to gain currency for
circulating these malignant worms is SMS. The distinctions of computers from mobile devices render
the existing propagation models of computer worms unable to start operating instantaneously in
the mobile network, and this is particularly valid for the SMS framework. The susceptible–affected–
infectious–suspended–recovered model with a classical derivative (abbreviated as SAIDR) was
coined by Xiao et al., (2017) in order to correctly estimate the spread of worms by means of SMS.
This study is the first to implement an Atangana–Baleanu (AB) derivative in association with the
fractional SAIDR model, depending upon the SAIDR model. The existence and uniqueness of the
drinking model solutions together with the stability analysis are shown through the Banach fixed
point theorem. The special solution of the model is investigated using the Laplace transformation
and then we present a set of numeric graphics by varying the fractional-order θ with the intention of
showing the effectiveness of the fractional derivative.

Keywords: fractional differential equations; fixed point theory; Atangana–Baleanu derivative; mobile
phone worms

MSC: 34A08; 47H10; 34A34

1. Introduction

Although computer worms are collected under the category of computer viruses,
they can be treated as a separate group owing to their distinct characteristics. First and
foremost, our intervention is not needed for computer worms to transmit whereas it is a
must for viruses, as they need a user to have access to an electronic document, directive, or
software, etc. In addition, computer worms are able to autonomously transmit themselves
and are also capable of producing replicas of themselves; this grants worms the capacity to
generate numerous duplicates for being transmitted to and infecting other computers.

Mobile worms have become increasingly contagious in parallel with the immense
expansion of the cellular network system and the growing demand on mobile phones.
The majority of these worms carry the potential to cause irrepairable damages to the
mobile domain; for example, it is quite likely that private information can be seized,
collected, or leaked from an infected device by computer worms. Furthermore, the fact
that the smart phones available in the market today are open to plenty of security breaches
entails probable widespread infections by the mobile malware in question, which carries a
significant risk. In the meantime, people employ many diverse means to circulate various
electronic documents, participate in a variety of pursuits, or attend gatherings on the
Internet with the smart phones at their disposal, and these practices call forth the invasion
of mobile devices by worms. Therefore, SMS has also become one of the typical system
components via which worms are transmitted. A term called an “SMS-based worm”, which
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is a variety of mobile worms, has been coined in the literature following the example of
Sea [1], Cckun [2], Selfmite [3], and xxShenQi [4], which are the most prominent examples
of relevance amongst others.

In order to assess the impact of memory on computer models, fractional calculus
rises to prominence, which also yields more accurate outcomes. That is to say, fractional
calculus is more versatile compared to classical calculus owing to hereditary features
and the definition of memory. Caputo [5], Liouville-Caputo [6] , as well as Caputo and
Fabrizio [7] set forth a great deal of conceptions concerning fractional order operators and
these conceptions have been proven quite efficacious when devising representations of
many real-world problems [8–19]. In addition, the said derivatives have been proven quite
efficient when one adopts numerical methods and examines the relation between distinct
problems by means of comparison. It can be seen in a number of studies that employing
fractional order derivatives yields more successful outcomes in terms of acquiring real data
for distinct worm models [20,21]. Performed according to the principal of a generalised
Mittag–Leffler function in the role of a non-singular and non-local kernel, an innovative
fractional order derivative was brought into operation for the first time by Atangana and
Baleanu [22] in 2016. This newly defined Atangana–Baleanu (AB) derivative obtains better
results in many actual problems [22–28].

The purpose of this work was to delve into a susceptible–affected–infectious–suspended–
recovered (SAIDR) model, a type of fractional order model which, for the first time, was put
forward in [29] employing a classical derivative aimed at SMS-based worm propagation in
mobile networks, on the basis of more favourable fractional calculus theories. As long as
susceptible users of mobile devices refrain from opening the links that are harmful, it is not
possible for them to instantly enter into the infected state even if the malicious message is
delivered to the said devices. This is the reason behind the addition of the affected state
into [29] by its authors; abbreviated as state A(t), it delineates the circumstance when
a harmful link is delivered to a user but not yet opened. What is more, particularly if
the phone is damaged, the harmful message is not invariably circulated by an infected
node. Thus, another new state is also instituted, which is the suspended state, going by the
abbreviation of state D(t). This is of a unique quality since a harmful message cannot be
circulated by an infected smart phone in spite of its existence in the given device. Lastly, the
overall quantity of worm nodes are separated as follows: N = S(t) + A(t) + I(t) + D(t) +
R(t), i.e., S(t) susceptible state, A(t) affected state, I(t) infected state, D(t) suspended
state, R(t) recovered state. The integer order differential equation system which puts forth
the SAIDR model in [29] can be seen below:

dS(t)
dt

= μN − γS − βSI − μS,

dA(t)
dt

= βSI − δA − ηA − μA,

dI(t)
dt

= ηA − σI − τ I − μI,

dD(t)
dt

= τ I − ϕD − μD,

dR(t)
dt

= γS + δA + σI + ϕD − μR.

(1)

The variable factors concerning the model alter at time t as follows: the susceptible
node is converted into the affected state by β, the ratio of infection, when a harmful
electronic message is delivered to it from another point of intersection. The worm is
transmitted to the node which is in the affected state by a ratio of η in the event that it is
rendered active by the affected node opening the malignant link enclosed in the message.
The node shifts into the suspended state from the infected state by a transition ratio of τ.
Meanwhile, certain software against malware might be set up in mobile devices in order
to block or erase harmful messages. Once the said software are set up, the phone cannot
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permanently remain in the infected state. These safety software can also be set up in the
wake of a maintenance process, provided that the phone stays in the special suspended
state. Hence, the node is able to shift into the ultimate recovered state regardless of its
current state. The ratios by which the node recovers from states S(t), A(t), I(t), and D(t)
to state R(t) are denominated as γ, δ, σ, ϕ in the order given.

The article is further structured with the subdivisions specified below: in order to
clarify the remaining body of this work, several fundamental notions are introduced in
Section 2. Section 3 substantiates the existence and uniqueness of the solution for the
proposed model, while we scrutinize the specific solution for the model along with the
Laplace transformation and approach the stability analysis concerning the technique by
means of the fixed point principle in Section 4. In Section 5, this fractional order model is
numerically depicted so as to review the total effect. Finally, we bring our study to an end
by debating the acquired outcomes.

2. Some Preliminaries

Here, we recall some fundamental notions.

Definition 1. The ABR fractional derivative (R denotes Riemann–Liouville type) is defined by [30]

ABRDθ
a+ [ f (t)] =

F(θ)
1 − θ

d
dt

t∫
a

f ′(x)Eθ

[ −θ

1 − θ
(t − x)θ

]
dx (2)

for 0 < θ < 1, a < t < b and f ∈ L1(a, b).

Definition 2. The ABC fractional derivative (C denotes Caputo type) is defined by [30]

ABCDθ
a+ [ f (t)] =

F(θ)
1 − θ

t∫
a

f ′(x)Eθ

[ −θ

1 − θ
(t − x)θ

]
dx (3)

for 0 < θ < 1, a < t < b and f a differentiable function on [a, b] such that f ′ ∈ L1(a, b).

Definition 3. The AB fractional integral operator AB Iθ
a+ defined by [30]

AB Iθ
a+ f (t) =

1 − θ

F(θ)
f (t) +

θ

F(θ)

RL
Iθ
a+ f (t). (4)

In the above definitions, the function Eθ is the Mittag–Leffler function given by

Eθ =
∞

∑
n=0

xn

Γ(θn + 1)
. (5)

3. Existence of a Unique Solution

In the present work, we enlarged the model (1) by substituting the time derivative
by the Atangana–Baleanu derivative. With this change, the right- and left-hand sides will
not have the same dimensions. To overcome this matter, we used an auxiliary parameter κ
with the dimension of s, to change the fractional operator so that the sides have the same
dimension [31]. Thereby, we give the following fractional system:
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1
κ1−θ

ABC

0
Dθ

t S(t) = μN − γS − βSI − μS,

1
κ1−θ

ABC

0
Dθ

t A(t) = βSI − δA − ηA − μA,

1
κ1−θ

ABC

0
Dθ

t I(t) = ηA − σI − τ I − μI,

1
κ1−θ

ABC

0
Dθ

t D(t) = τ I − ϕD − μD,

1
κ1−θ

ABC

0
Dθ

t R(t) = γS + δA + σI + ϕD − μR.

(6)

with the initial numbers S(0) = S0, A(0) = A0, I(0) = I0, D(0) = D0, R(0) = R0 where
ABC
a Dθ

t is the AB derivative in Caputo type and θ ∈ [0, 1].
In this part, we prove that the system (6) has a unique solution. Implementing the

fractional integral into the system (6) by handling the Corollary 2.3 in [30], we have:

S(t)− S(0) =
(1 − θ)κ1−ϑ

F(θ)
[μN − γS(t)− βS(t)I(t)− μS(t)]

+
θκ1−ϑ

F(θ)Γ(θ)

t∫
0

(t − λ)θ−1[μN − γS(λ)− βS(λ)I(λ)− μS(λ)]dλ,

A(t)− A(0) =
(1 − θ)κ1−ϑ

F(θ)
[βS(t)I(t)− δA(t)− ηA(t)− μA(t)]

+
θκ1−ϑ

F(θ)Γ(θ)

t∫
0

(t − λ)θ−1[βS(λ)I(λ)− δA(λ)− ηA(λ)− μA(λ)]dλ,

I(t)− I(0) =
(1 − θ)κ1−ϑ

F(θ)
[ηA(t)− σI(t)− τI(t)− μI(t)]

+
θκ1−ϑ

F(θ)Γ(θ)

t∫
0

(t − λ)θ−1[ηA(λ)− σI(λ)− τ I(λ)− μI(λ)]dλ,

D(t)− D(0) =
(1 − θ)κ1−ϑ

F(θ)
[τ I(t)− ϕD(t)− μD(t)]

+
θκ1−ϑ

F(θ)Γ(θ)

t∫
0

(t − λ)θ−1[τ I(λ)− ϕD(λ)− μD(λ)]dλ,

R(t)− R(0) =
(1 − θ)κ1−ϑ

F(θ)
[γS(t) + δA(t) + σI(t) + ϕD(t)− μR(t)]

+
θκ1−ϑ

F(θ)Γ(θ)

t∫
0

(t − λ)θ−1[γS(λ) + δA(λ) + σI(λ) + ϕD(λ)− μR(λ)]dλ.

(7)

Let:
P1(t, S) = μN − γS(t)− βS(t)I(t)− μS(t),

P2(t, A) = βS(t)I(t)− δA(t)− ηA(t)− μA(t),

P3(t, I) = ηA(t)− σI(t)− τ I(t)− μI(t),

P4(t, D) = τ I(t)− ϕD(t)− μD(t),

P5(t, R) = γS(t) + δA(t) + σI(t) + ϕD(t)− μR(t).

(8)
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Theorem 1. The kernel P1 satisfies the Lipschitz condition and contraction if the following inequal-
ity holds:

0 < γ + μ + βc ≤ 1.

Proof of Theorem 1. Let S and S1 be two functions, we have:

‖P1(t, S)− P1(t, S1)‖ = ‖γ(S(t)− S1(t)) + βI(t)(S(t)− S1(t)) + μ(S(t)− S1(t))‖
≤ [γ + μ + β‖I(t)‖]‖S(t)− S1(t)‖.

Taking ε1 = γ + μ + βc where ‖S(t)‖ ≤ a, ‖A(t)‖ ≤ b, ‖I(t)‖ ≤ c, ‖D(t)‖ ≤
d, ‖R(t)‖ ≤ e are bounded functions. Then, we find:

‖P1(t, S)− P1(t, S1)‖ ≤ ε1‖S(t)− S1(t)‖. (9)

Hence, we find that the Lipschitz condition is provided by P1 and since 0 < γ + μ +
βc ≤ 1, P1 is also a contraction.

Similarly, the other kernels P2, P3, P4 and P5 satisfy the Lipschitz condition and con-
traction:

‖P2(t, A)− P2(t, A1)‖ ≤ ε2‖A(t)− A1(t)‖,

‖P3(t, I)− P3(t, I1)‖ ≤ ε3‖I(t)− I1(t)‖,

‖P4(t, D)− P4(t, D1)‖ ≤ ε4‖D(t)− D1(t)‖,

‖P5(t, R)− P5(t, R1)‖ ≤ ε5‖R(t)− R1(t)‖.

(10)

Regarding kernels P1, P2, P3, P4,P5, Equation (7) becomes:

S(t) = S(0) +
(1 − θ)κ1−θ

F(θ)
P1(t, S) +

θκ1−θ

F(θ)Γ(θ)

t∫
0

(t − λ)θ−1P1(λ, S)dλ,

A(t) = A(0) +
(1 − θ)κ1−θ

F(θ)
P2(t, A) +

θκ1−θ

F(θ)Γ(θ)

t∫
0

(t − λ)θ−1P2(λ, A)dλ,

I(t) = I(0) +
(1 − θ)κ1−θ

F(θ)
P3(t, I) +

θκ1−θ

F(θ)Γ(θ)

t∫
0

(t − λ)θ−1P3(λ, I)dλ,

D(t) = D(0) +
(1 − θ)κ1−θ

F(θ)
P4(t, D) +

θκ1−θ

F(θ)Γ(θ)

t∫
0

(t − λ)θ−1P4(λ, D)dλ,

R(t) = R(0) +
(1 − θ)κ1−θ

F(θ)
P5(t, R) +

θκ1−θ

F(θ)Γ(θ)

t∫
0

(t − λ)θ−1P5(λ, R)dλ.

(11)
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Considering Equation (11) for the following recursive formula:

Sn(t) =
(1 − θ)κ1−θ

F(θ)
P1(t, Sn−1) +

θκ1−θ

F(θ)Γ(θ)

t∫
0

(t − λ)θ−1P1(λ, Sn−1)dλ,

An(t) =
(1 − θ)κ1−θ

F(θ)
P2(t, An−1) +

θκ1−θ

F(θ)Γ(θ)

t∫
0

(t − λ)θ−1P2(λ, An−1)dλ,

In(t) =
(1 − θ)κ1−θ

F(θ)
P3(t, In−1) +

θκ1−θ

F(θ)Γ(θ)

t∫
0

(t − λ)θ−1P3(λ, In−1)dλ,

Dn(t) =
(1 − θ)κ1−θ

F(θ)
P4(t, Dn−1) +

θκ1−θ

F(θ)Γ(θ)

t∫
0

(t − λ)θ−1P4(λ, Dn−1)dλ,

Rn(t) =
(1 − θ)κ1−θ

F(θ)
P5(t, Rn−1) +

θκ1−θ

F(θ)Γ(θ)

t∫
0

(t − λ)θ−1P5(λ, Rn−1)dλ.

(12)

where S0(t) = S(0), A0(t) = A(0), I0(t) = I(0), D0(t) = D(0), R0(t) = R(0).
We deal with the difference between successive terms as below:

Φ1n(t) = Sn(t)− Sn−1(t) =
(1 − θ)κ1−θ

F(θ)
[P1(t, Sn−1)− P1(t, Sn−2)]

+
θκ1−θ

F(θ)Γ(θ)

t∫
0

(t − λ)θ−1[P1(λ, Sn−1)− P1(λ, Sn−2)]dλ,

Φ2n(t) = An(t)− An−1(t) =
(1 − θ)κ1−θ

F(θ)
[P2(t, An−1)− P2(t, An−2)]

+
θκ1−θ

F(θ)Γ(θ)

t∫
0

(t − λ)θ−1[P2(λ, An−1)− P2(λ, An−2)]dλ,

Φ3n(t) = In(t)− In−1(t) =
(1 − θ)κ1−θ

F(θ)
[P3(t, In−1)− P3(t, In−2)]

+
θκ1−θ

F(θ)Γ(θ)

t∫
0

(t − λ)θ−1[P3(λ, In−1)− P3(λ, In−2)]dλ,

Φ4n(t) = Dn(t)− Dn−1(t) =
(1 − θ)κ1−θ

F(θ)
[P4(t, Dn−1)− P4(t, Dn−2)]

+
θκ1−θ

F(θ)Γ(θ)

t∫
0

(t − λ)θ−1[P4(λ, Dn−1)− P4(λ, Dn−2)]dλ,

Φ5n(t) = Rn(t)− Rn−1(t) =
(1 − θ)κ1−θ

F(θ)
[P5(t, Rn−1)− P5(t, Rn−2)]

+
θκ1−θ

F(θ)Γ(θ)

t∫
0

(t − λ)θ−1[P5(λ, Rn−1)− P5(λ, Rn−2)]dλ.

(13)
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Notice that:

Sn(t) =
n

∑
j=0

Φ1j(t),

An(t) =
n

∑
j=0

Φ2j(t),

In(t) =
n

∑
j=0

Φ3j(t),

Dn(t) =
n

∑
j=0

Φ4j(t),

Rn(t) =
n

∑
j=0

Φ5j(t).

(14)

In the light of Φin (i = 1, 2, 3, 4, 5) definition and benefiting from triangular identity,
we obtain:

‖Φ1n(t)‖ = ‖Sn(t)− Sn−1(t)‖

=

∥∥∥∥ (1 − θ)κ1−θ

F(θ)
[P1(t, Sn−1)− P1(t, Sn−2)]

+
θκ1−θ

F(θ)Γ(θ)

t∫
0

(t − λ)θ−1[P1(λ, Sn−1)− P1(λ, Sn−2)]dλ

∥∥∥∥∥∥. (15)

Since the kernel P1 provides a Lipschitz condition, we obtain:

‖Φ1n(t)‖ = ‖Sn(t)− Sn−1(t)‖

≤ (1 − θ)κ1−θ

F(θ)
ε1‖Sn−1 − Sn−2‖+ θκ1−θ

F(θ)Γ(θ)
ε1

t∫
0

(t − λ)θ−1‖Sn−1 − Sn−2‖dλ. (16)

and:

‖Φ1n(t)‖ ≤ (1 − θ)κ1−θ

F(θ)
ε1

∥∥∥Φ1(n−1)(t)
∥∥∥+ θκ1−θ

F(θ)Γ(θ)
ε1

t∫
0

(t − λ)θ−1
∥∥∥Φ1(n−1)(λ)

∥∥∥dλ. (17)

Analogously, we obtain the following results:

‖Φ2n(t)‖ ≤ (1 − θ)κ1−θ

F(θ)
ε2

∥∥∥Φ2(n−1)(t)
∥∥∥+ θκ1−θ

F(θ)Γ(θ)
ε2

t∫
0

(t − λ)θ−1
∥∥∥Φ2(n−1)(λ)

∥∥∥dλ,

‖Φ3n(t)‖ ≤ (1 − θ)κ1−θ

F(θ)
ε3

∥∥∥Φ3(n−1)(t)
∥∥∥+ θκ1−θ

F(θ)Γ(θ)
ε3

t∫
0

(t − λ)θ−1
∥∥∥Φ3(n−1)(λ)

∥∥∥dλ,

‖Φ4n(t)‖ ≤ (1 − θ)κ1−θ

F(θ)
ε4

∥∥∥Φ4(n−1)(t)
∥∥∥+ θκ1−θ

F(θ)Γ(θ)
ε4

t∫
0

(t − λ)θ−1
∥∥∥Φ4(n−1)(λ)

∥∥∥dλ

‖Φ5n(t)‖ ≤ (1 − θ)κ1−θ

F(θ)
ε5

∥∥∥Φ5(n−1)(t)
∥∥∥+ θκ1−θ

F(θ)Γ(θ)
ε5

t∫
0

(t − λ)θ−1
∥∥∥Φ5(n−1)(λ)

∥∥∥dλ. (18)

According to the results in hand, we determine that the system (6) has a solution.
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Theorem 2. The fractional SAIDR system (6) has a solution, if there exist ti, i = 1, 2, 3, 4, 5
such that:

(1 − θ)κ1−θ

F(θ)
εi +

tθ
0κ1−θ

F(θ)Γ(θ)
εi < 1.

Proof of Theorem 2. We know that S(t), A(t), I(t), D(t), R(t) are bounded functions and
the kernels provide a Lipschitz condition. Using Equations (17) and (18), we have:

‖Φ1n(t)‖ ≤ ‖Sn(0)‖
[
(1 − θ)κ1−θ

F(θ)
ε1 +

tθκ1−θ

F(θ)Γ(θ)
ε1

]n

,

‖Φ2n(t)‖ ≤ ‖An(0)‖
[
(1 − θ)κ1−θ

F(θ)
ε2 +

tθκ1−θ

F(θ)Γ(θ)
ε2

]n

‖Φ3n(t)‖ ≤ ‖In(0)‖
[
(1 − θ)κ1−θ

F(θ)
ε3 +

tθκ1−θ

F(θ)Γ(θ)
ε3

]n

‖Φ4n(t)‖ ≤ ‖Dn(0)‖
[
(1 − θ)κ1−θ

F(θ)
ε4 +

tθκ1−θ

F(θ)Γ(θ)
ε4

]n

,

‖Φ5n(t)‖ ≤ ‖Rn(0)‖
[
(1 − θ)κ1−θ

F(θ)
ε5 +

tθκ1−θ

F(θ)Γ(θ)
ε5

]n

.

(19)

Thus, Function (14) exists and is smooth. We aim to show that these functions are the
solution of Equation (6), assuming that:

S(t)− S(0) = Sn(t)− g1n(t),

A(t)− A(0) = An(t)− g2n(t),

I(t)− I(0) = In(t)− g3n(t)
D(t)− D(0) = Dn(t)− g4n(t),

R(t)− R(0) = Rn(t)− g5n(t).

(20)

Thus, we have:

‖g1n(t)‖ =

∥∥∥∥ (1 − θ)κ1−θ

F(θ)
[P1(t, S)− P1(t, Sn−1)]

+
θκ1−θ

F(θ)Γ(θ)

t∫
0

(t − λ)θ−1[P1(λ, S)− P1(λ, Sn−1)]dλ

∥∥∥∥∥∥
≤ (1 − θ)κ1−θ

F(θ)
‖P1(t, S)− P1(t, Sn−1)‖ (21)

+
θκ1−θ

F(θ)Γ(θ)

t∫
0

(t − λ)θ−1‖P1(λ, S)− P1(λ, Sn−1)dλ‖

≤ (1 − θ)κ1−θ

F(θ)
ε1‖S − Sn−1‖+ tθκ1−θ

F(θ)Γ(θ)
ε1‖S − Sn−1‖.

Repeating this method, we obtain at t0:

‖g1n(t)‖ ≤
(
(1 − θ)κ1−θ

F(θ)
+

tθ
0κ1−θ

F(θ)Γ(θ)

)n+1

γn+1
1 M. (22)

As n approaches ∞, ‖g1n(t)‖ → 0. In the same way, it can be shown that ‖gin(t)‖ → 0
(i = 2, 3, 4, 5).
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To show the uniqueness of the solution, we suppose that the system (6) has another
solution S1(t), A1(t), I1(t), R1(t) then:

‖S(t)− S1(t)‖ =

∥∥∥∥ (1 − θ)κ1−θ

F(θ)
[P1(t, S)− P1(t, S1)]

+
θκ1−θ

F(θ)Γ(θ)

t∫
0

(t − λ)θ−1[P1(λ, S)− P1(λ, S1)]dλ

∥∥∥∥∥∥
≤ (1 − θ)κ1−θ

F(θ)
‖P1(t, S)− P1(t, S1)‖

+
θκ1−θ

F(θ)Γ(θ)

t∫
0

(t − λ)θ−1‖P1(λ, S)− P1(λ, S1)‖dλ. (23)

Regarding the Lipschitz condition of S, we gain:

‖S(t)− S1(t)‖ ≤ (1 − θ)κ1−θ

F(θ)
ε1‖S(t)− S1(t)‖+ tθκ1−θ

F(θ)Γ(θ)
ε1‖S(t)− S1(t)‖. (24)

This gives:

‖S(t)− S1(t)‖
(

1 − (1 − θ)κ1−θ

F(θ)
ε1 − tθκ1−θ

F(θ)Γ(θ)
ε1

)
≤ 0. (25)

Obviously S(t) = S1(t), if the following inequality holds:

(
1 − (1 − θ)κ1−θ

F(θ)
ε1 − tθκ1−θ

F(θ)Γ(θ)
ε1

)
> 0

then ‖S(t)− S1(t)‖ = 0. Therefore, we gain:

S(t) = S1(t).

In the same way, we find:

A(t) = A1(t), I(t) = I1(t), D(t) = D1(t), R(t) = R1(t).

4. Stability Analysis by Fixed Point Theory

In this section, we give a special solution of the fractional SAIDR model (6) with a
recursive formula by using Laplace transform. The Laplace transform for the AB fractional
derivative was introduced by Atangana and Baleanu [22] as follows:

Theorem 3. Let θ ∈ [0, 1], a < b and g ∈ H1(a, b). The Laplace transform for the AB derivative
in the Caputo type is presented by:

L
{

ABC
0 Dθ

t [g(t)]
}
(p) =

F(θ)
1 − θ

pθ L{g(t)}(p)− pθ−1g(0)
pθ + θ

1−θ

. (26)
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We apply the Laplace transform to the Equation (6), then:

L

(
1

κ1−θ

ABC

0
Dθ

t S(t)

)
(p) = L(μN − γS(t)− βS(t)I(t)− μS(t))(p),

L

(
1

κ1−θ

ABC

0
Dθ

t A(t)

)
(p) = L(βS(t)I(t)− δA(t)− ηA(t)− μA(t))(p),

L

(
1

κ1−θ

ABC

0
Dθ

t I(t)

)
(p) = L(ηA(t)− σI(t)− τ I(t)− μI(t))(p),

L

(
1

κ1−θ

ABC

0
Dθ

t D(t)

)
(p) = L(τI(t)− ϕD(t)− μD(t))(p),

L

(
1

κ1−θ

ABC

0
Dθ

t R(t)

)
(p) = L(γS(t) + δA(t) + σI(t) + ϕD(t)− μR(t))(p).

Benefiting from the Laplace transform definition of the AB derivative, we obtain:

F(θ)
1 − θ

1
pθ + θ

1−θ

(
pθ L(S(t))(p)− pθ−1S(0)

)
= κ1−θ L(μN − γS(t)− βS(t)I(t)− μS(t))(p),

F(θ)
1 − θ

1
pθ + θ

1−θ

(
pθ L(A(t))(p)− pθ−1 A(0)

)
= κ1−θ L(βS(t)I(t)− δA(t)− ηA(t)− μA(t))(p),

F(θ)
1 − θ

1
pθ + θ

1−θ

(
pθ L(I(t))(p)− pθ−1 I(0)

)
= κ1−θ L(ηA(t)− σI(t)− τ I(t)− μI(t))(p),

F(θ)
1 − θ

1
pθ + θ

1−θ

(
pθ L(D(t))(p)− pθ−1D(0)

)
= κ1−θ L(τ I(t)− ϕD(t)− μD(t))(p),

F(θ)
1 − θ

1
pθ + θ

1−θ

(
pθ L(R(t))(p)− pθ−1R(0)

)
= κ1−θ L(γS(t) + δA(t) + σI(t) + ϕD(t)− μR(t))(p). (27)
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Regulating Equation (27), we derive:

L(S(t))(p) =
1
p

S(0) + ψκ1−θ × L(μN − γS(t)− βS(t)I(t)− μS(t))(p),

L(A(t))(p) =
1
p

A(0) + ψκ1−θ × L(βS(t)I(t)− δA(t)− ηA(t)− μA(t))(p),

L(I(t))(p) =
1
p

I(0) + ψκ1−θ × L(ηA(t)− σI(t)− τ I(t)− μI(t))(p),

L(D(t))(p) =
1
p

D(0) + ψκ1−θ × L(τI(t)− ϕD(t)− μD(t))(p),

L(R(t))(p) =
1
p

R(0) + ψκ1−θ × L(γS(t) + δA(t) + σI(t) + ϕD(t)− μR(t))(p),

where:

ψ =

(
1 − θ +

θ

pθ

)
1

F(θ)
.

Thus, we have the following iterative formula by taking the inverse Laplace transform
both sides of all equations, as follows:

Sn+1(t) = Sn(0) + L−1
(

ψκ1−θST(μN − γS(t)− βS(t)I(t)− μS(t))(p)
)

,

An+1(t) = An(0) + L−1
(

ψκ1−θST(βS(t)I(t)− δA(t)− ηA(t)− μA(t))(p)
)

,

In+1(t) = In(0) + L−1
(

ψκ1−θST(ηA(t)− σI(t)− τI(t)− μI(t))(p)
)

,

Dn+1(t) = Dn(0) + L−1
(

ψκ1−θST(τ I(t)− ϕD(t)− μD(t))(p)
)

,

Rn+1(t) = Rn(0) + L−1
(

ψκ1−θST(γS(t) + δA(t) + σI(t) + ϕD(t)− μR(t))(p)
)

.

(28)

The approximate solution of the model (6) is as below:

S(t) = lim
n→∞

Sn(t), A(t) = lim
n→∞

An(t), I(t) = lim
n→∞

In(t),

D(t) = lim
n→∞

Dn(t), R(t) = lim
n→∞

Rn(t).

Stability Analysis of Iteration Method

Considering the Banach space (X, ‖.‖), a self map T on X and the recursive method
qn+1 = φ(T, qn). We assume that {tn} ⊂ γ is the fixed point set of T which γ(T) �= ∅

and limn→∞qn = q ∈ γ(t). We also suppose that {tn} ⊂ γ and rn = ‖tn+1 − φ(T, tn)‖. If
limn→∞rn = 0 implies that limn→∞tn = q, then the iteration method qn+1 = φ(T, qn) is
T-stable. We suppose that our sequence {tn} has an upper boundary. If Picard’s iteration
qn+1 = Tqn satisfies all conditions, then qn+1 = Tqn is T-stable.

Theorem 4. Let (X, ‖.‖) be Banach space and T : X → X be a map satisfying:∥∥Tx − Ty
∥∥ ≤ K‖x − Tx‖+ k‖x − y‖,

for all x, y ∈ X, where 0 ≤ K, 0 ≤ k < 1. Then, T is Picard T-stable [32].
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Theorem 5. Assume that T is a self map defined as below:

T(Sn(t)) = Sn+1(t)

= Sn(t) + L−1
(

ψκ1−θ × L(μN − γS(t)− βS(t)I(t)− μS(t))(p)
)

,

T(An(t)) = An+1(t)

= An(t) + L−1
(

ψκ1−θ × L(βS(t)I(t)− δA(t)− ηA(t)− μA(t))(p)
)

,

T(In(t)) = In+1(t)

= In(t) + L−1
(

ψκ1−θ × L(ηA(t)− σI(t)− τ I(t)− μI(t))(p)
)

,

T(Dn(t)) = Dn+1(t)

= Dn(t) + L−1
(

ψκ1−θ × L(τ I(t)− ϕD(t)− μD(t))(p)
)

,

T(Rn(t)) = Rn+1(t)

= Rn(t) + L−1
(

ψκ1−θ × L(γS(t) + δA(t) + σI(t) + ϕD(t)− μR(t))(p)
)

.

Then, the iteration is T-stable in L1(a, b) if the following statements are achieved:

1 − (μ + γ)h1(γ)− β(M3 + M1)h2(γ) < 1,

1 − β(M3 + M1)h3(γ)− (δ + η + μ)h4(γ) < 1,

1 + ηh5(γ)− (σ + τ + μ)h6(γ) < 1,

1 + τh7(γ)− (ϕ + μ)h8(γ) < 1,

1 + γh9(γ) + δh10(γ) + σh11(γ) + ϕh12(γ)− μh13(γ) < 1.

Proof. To show that T has a fixed point, we evaluated the following for (i, j) ∈ N×N:

T(Si(t))− T
(
Sj(t)

)
= Si(t)− Sj(t)

+L−1
(

ψκ1−θ × L(μN − γSi(t)− βSi(t)Ii(t)− μSi(t))(p)
)

(29)

−L−1
(

ψκ1−θ × L
(
μN − γSj(t)− βSj(t)Ij(t)− μSj(t)

)
(p)

)
.

Taking the norm, Equation (30) is converted to:∥∥T(Si(t))− T
(
Sj(t)

)∥∥ =
∥∥Si(t)− Sj(t)

+L−1
(

ψκ1−θ × L(μN − γSi(t)− βSi(t)Ii(t)− μSi(t))(p)
)

(30)

−L−1
(

ψκ1−θ × L
(
μN − γSj(t)− βSj(t)Ij(t)− μSj(t)

)
(p)

)∥∥∥.

Using norm properties, we obtain:∥∥T(Si(t))− T
(
Sj(t)

)∥∥ ≤ ∥∥Si(t)− Sj(t)
∥∥

+ L−1
(

ψκ1−θ × L
( ∥∥−(γ + μ)

(
Si(t)− Sj(t)

)
−β

(
Ii(t)

(
Si(t)− Sj(t)

)
+ Sj(t)

(
Ii(t)− Ij(t)

))∥∥
)
(p)

)
(31)

Since the solutions play the same role, we assume that:∥∥Si(t)− Sj(t)
∥∥ ∼= ∥∥Ai(t)− Aj(t)

∥∥
∼= ∥∥Ii(t)− Ij(t)

∥∥ ∼= ∥∥Di(t)− Dj(t)
∥∥ ∼= ∥∥Ri(t)− Rj(t)

∥∥ (32)
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From Equations (31) and (32), we find:∥∥T(Si(t))− T
(
Sj(t)

)∥∥ ≤ ∥∥Si(t)− Sj(t)
∥∥

+L−1
(

ψκ1−θ × L
(∥∥−(γ + μ)

(
Si(t)− Sj(t)

)∥∥)(p)
)

(33)

+L−1
(

ψκ1−θ × L
(∥∥−β

(
Ii
(
Si(t)− Sj(t)

)
+ Sj

(
Si(t)− Sj(t)

))∥∥)(p)
)

Because Si(t), Ai(t), Ii(t), Di(t) and Ri(t) are bounded, for all t there exists Mi,
i = 1, 2, 3, 4, 5 such that:

‖Si(t)‖ ≤ M1, ‖Ai(t)‖ ≤ M2,

‖Ii(t)‖ ≤ M3, ‖Di(t)‖ ≤ M4, ‖Ri(t)‖ ≤ M5. (34)

Here, considering Equations (33) and (34), we have:∥∥T(Si(t))− T
(
Sj(t)

)∥∥ ≤ ∥∥Si(t)− Sj(t)
∥∥× [1 − (γ + μ)h1(γ)− β(M3 + M1)h2(γ)] (35)

where hi are functions from L−1{ψκ1−θ L
}

. In an analogous way, we achieve:∥∥T(Ai(t))− T
(

Aj(t)
)∥∥ ≤ ∥∥Ai(t)− Aj(t)

∥∥
× [1 − β(M3 + M1)h3(γ)− (δ + η + μ)h4(γ)],

∥∥T(Ii(t))− T
(

Ij(t)
)∥∥ ≤ ∥∥Ii(t)− Ij(t)

∥∥
× [1 + ηh5(γ)− (σ + τ + μ)h6(γ)],

∥∥T(Di(t))− T
(

Dj(t)
)∥∥ ≤ ∥∥Di(t)− Dj(t)

∥∥
× [1 + τh7(γ)− (ϕ + μ)h8(γ)],

∥∥T(Ri(t))− T
(

Rj(t)
)∥∥ ≤ ∥∥Ri(t)− Rj(t)

∥∥
× [1 + γh9(γ) + δh10(γ) + σh11(γ) + ϕh12(γ)− μh13(γ)] (36)

where:

1 − (γ + μ)h1(γ)− β(M3 + M1)h2(γ) < 1,

1 − β(M3 + M1)h3(γ)− (δ + η + μ)h4(γ) < 1,

1 + ηh5(γ)− (σ + τ + μ)h6(γ) < 1,

1 + τh7(γ)− (ϕ + μ)h8(γ) < 1,

1 + γh9(γ) + δh10(γ) + σh11(γ) + ϕh12(γ)− μh13(γ) < 1.

Therefore, T has a fixed point. Considering Equations (35) and (36), we assume:

k = (0, 0, 0, 0, 0),

K =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 − (γ + μ)h1(γ)− β(M3 + M1)h2(γ),
1 − β(M3 + M1)h3(γ)− (δ + η + μ)h4(γ),

1 + ηh5(γ)− (σ + τ + μ)h6(γ),
1 + τh7(γ)− (ϕ + μ)h8(γ)

1 + γh9(γ) + δh10(γ) + σh11(γ) + ϕh12(γ)− μh13(γ)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

Thus, all the conditions of Theorem 4 are satisfied. This completes the proof.
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5. Numerical Results

With the aim of obtaining the solution, through some equations of fractional deriva-
tives with a non-local and non-singular kernel, Toufik and Atangana [33] presented a novel
numerical scheme based on the fundamental theorem of fractional calculus and a two-step
Lagrange polynomial. We give the so-called method for the fractional SMS-based worm
propagation model in mobile networks (6). At a point t = tn+1, we apply this scheme to
Equation (12):

Sn+1 = S0 +
(1 − θ)κ1−θ

F(θ)
P1(tn, S(tn))

+
θ

F(θ)

n

∑
k=0

(
hθ P1(tk, Sk)

Γ(θ + 2)

(
(n − k + 1)θ(n − k + 2 + θ)− (n − k)θ(n − k + 2 + 2θ)

)
(37)

− hθ P1(tk−1, Sk−1)

Γ(η + 2)

(
(n − k + 1)θ+1 − (n − k)θ(n − k + 1 + θ)

)
+1 Lθ

n,

An+1 = A0 +
(1 − θ)κ1−θ

F(θ)
P2(tn, A(tn))

+
θ

F(θ)

n

∑
k=0

(
hθ P2(tk, Ak)

Γ(θ + 2)

(
(n − k + 1)θ(n − k + 2 + θ)− (n − k)θ(n − k + 2 + 2θ)

)
(38)

− hθ P2(tk−1, Ak−1)

Γ(η + 2)

(
(n − k + 1)θ+1 − (n − k)θ(n − k + 1 + θ)

)
+2 Lθ

n,

In+1 = I0 +
(1 − θ)κ1−θ

F(θ)
P3(tn, I(tn))

+
θ

F(θ)

n

∑
k=0

(
hθ P3(tk, Ik)

Γ(θ + 2)

(
(n − k + 1)θ(n − k + 2 + θ)− (n − k)θ(n − k + 2 + 2θ)

)
(39)

− hθ P3(tk−1, Ik−1)

Γ(η + 2)

(
(n − k + 1)θ+1 − (n − k)θ(n − k + 1 + θ)

)
+3 Lθ

n,

Dn+1 = D0 +
(1 − θ)κ1−θ

F(θ)
P4(tn, D(tn))

+
θ

F(θ)

n

∑
k=0

(
hθ P4(tk, Dk)

Γ(θ + 2)

(
(n − k + 1)θ(n − k + 2 + θ)− (n − k)θ(n − k + 2 + 2θ)

)
(40)

− hθ P4(tk−1, Dk−1)

Γ(η + 2)

(
(n − k + 1)θ+1 − (n − k)θ(n − k + 1 + θ)

)
+4 Lθ

n,

Rn+1 = R0 +
(1 − θ)κ1−θ

F(θ)
P5(tn, R(tn))

+
θ

F(θ)

n

∑
k=0

(
hθ P5(tk, Rk)

Γ(θ + 2)

(
(n − k + 1)θ(n − k + 2 + θ)− (n − k)θ(n − k + 2 + 2θ)

)
(41)

− hθ P5(tk−1, Rk−1)

Γ(η + 2)

(
(n − k + 1)θ+1 − (n − k)θ(n − k + 1 + θ)

)
+5 Lθ

n,
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where iLθ
n, i = 1, 2, 3, 4, 5 are remainder terms given by

1Lθ
n =

θ

F(θ)Γ(θ)

n

∑
k=0

tk−1∫
tk

(λ − tk)(λ − tk−1)

2!
∂2

∂λ2 [P1(λ, S(λ))]λ=ελ
(tn+1 − λ)η−1dλ,

2Lθ
n =

θ

F(θ)Γ(θ)

n

∑
k=0

tk−1∫
tk

(λ − tk)(λ − tk−1)

2!
∂2

∂λ2 [P2(λ, A(λ))]λ=ελ
(tn+1 − λ)η−1dλ,

3Lθ
n =

θ

F(θ)Γ(θ)

n

∑
k=0

tk−1∫
tk

(λ − tk)(λ − tk−1)

2!
∂2

∂λ2 [P3(λ, I(λ))]λ=ελ
(tn+1 − λ)η−1dλ,

4Lθ
n =

θ

F(θ)Γ(θ)

n

∑
k=0

tk−1∫
tk

(λ − tk)(λ − tk−1)

2!
∂2

∂λ2 [P4(λ, D(λ))]λ=ελ
(tn+1 − λ)η−1dλ,

5Lθ
n =

θ

F(θ)Γ(θ)

n

∑
k=0

tk−1∫
tk

(λ − tk)(λ − tk−1)

2!
∂2

∂λ2 [P5(λ, R(λ))]λ=ελ
(tn+1 − λ)η−1dλ.

The numerical productions of the model (6) are hereby displayed by the foregoing
method. To this end, the initial conditions are posited as S(0) = 99, 000, A(0) = 500,
I(0) = 500, D(0) = 0, R(0) = 0 and the variable factors μ = 0.000001, η = 0.003, δ = 0.003,
σ = 0.004, τ = 0.001, ϕ = 0.007, β = 0.000003 are selected as specified in [29]. Any
elevation or decline in the susceptible nodes, affected nodes, infected nodes, suspended
nodes, or recovered nodes with respect to the distinct fractional order, and the numerical
amounts of the chosen variable quantities are displayed by the figures. Figure 1a illustrates
the preliminary elevation in the quantity of infected nodes which rises to the highest point,
nearly 20% of the overall amount present within the structure at approximately the 300th
minute; but afterwards, this number diminishes at a fast pace. It follows from here that
SMS is one of the ways that enables the worm to be quickly transmitted throughout the
mobile network. Figure 1b–d indicate that the quantity of infected nodes gradually rises
while the fractional order declines. Hence, we can assert that SMS is a means for the worm
to transmit itself gradually; however, the quantity of infected nodes that continues existing
in the system is higher.

In order to illustrate the reasonableness of the fractional SAIDR model, let us herein
investigate the ratio of infection and the ratio of transition between infected and suspended
states, which are two substantial variables. Figure 2a,b evince that a larger quantity
of nodes will be contaminated more quickly as the infection rate scales up. To put it
differently, as β for the fractional order θ = 0.95 and θ = 0.65 elevates, the worm circulates
more swiftly. For this reason, it is possible to say that reducing the infection ratio results
in an acceleration of the duration during which the harmful software is wiped out. It
follows from Figure 3a,b that the graph τ = 0.003 hits the lowest point when the graph
τ = 0.001 comes to the topmost more or less simultaneously, approximately at the 400th
min, reciprocally involving the three graphs’ highest points. A smaller amount of nodes
becomes simultaneously contaminated as a consequence of the escalation in transition
ratios to the suspended state from the infected state. The reason is that a smaller number
of nodes continue staying in the infected state since a greater amount of nodes are able to
shift to the suspended state from the infected state with the escalating ratio.
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Figure 1. Numerical simulation of Equation (6) for (a) θ = 0.95; (b) θ = 0.85; (c) θ = 0.75; and (d) θ = 0.65.
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Figure 2. Effect of β on the infected nodes for the fractional order (a) θ = 0.95 and (b) θ = 0.65, respectively.
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Figure 3. Relation between τ and infected nodes for the fractional order (a) θ = 0.95 and (b) θ = 0.65, respectively.
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6. Conclusions

A novel fractional order derivative involving a Mittag–Leffler kernel has recently
been introduced by Atangana in cooperation with Baleanu. First and foremost, the AB
derivative broadens the scope of the model grounding on [29] so that we can consider the
additional implementation of the relevant fractional derivative and monitor the propa-
gation of computer worms in mobile networks more comprehensively. We propound a
fractional model which carries the probability of not having any closed form solution since
it is nonlinear. Hence, the circumstances providing the existence and uniqueness of the
solution regarding this fractional SAIDR model become evident, and the special solution is
thus reproduced through the Laplace transform. Lastly, we apply numerical simulations of
this model so as to reach efficacy with this novel derivative provided with a fractional order.
Additionally, we express the impact that infection ratio has on infected nodes numerically,
and on the grounds of the relevant graphics, we conclude that diminishing the ratio of
infection speeds up the duration during which the malignant software are eliminated.
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Abstract: Several extensions of the classical Mittag-Leffler function, including multi-parameter and
multivariate versions, have been used to define fractional integral and derivative operators. In
this paper, we consider a function of one variable with five parameters, a special case of the Fox–
Wright function. It turns out that the most natural way to define a fractional integral based on this
function requires considering it as a function of two variables. This gives rise to a model of bivariate
fractional calculus, which is useful in understanding fractional differential equations involving mixed
partial derivatives.
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1. Introduction

The original Mittag-Leffler function Eα(z), applied to one variable according to one
parameter, was first defined and studied by Gösta Mittag-Leffler in the 1900s. In the
hundred years since then, many variants and extensions of this function have been de-
fined, including functions of more than one variable and functions with arbitrarily many
parameters [1,2].

One of the major motivations for studying Mittag-Leffler functions is their relationship
with fractional calculus [2–5], a field of mathematics which has become very popular due
to its many applications in various areas of science [6–8]. Mittag-Leffler functions emerge
naturally as the solution to some elementary fractional differential equations, and their
eigenfunction properties have led them sometimes to be called “fractional exponential
functions” [9].

Among the many extensions of the Mittag-Leffler function to more variables and pa-
rameters, we mention just a few which are of particular importance or interest in motivating
the present work.

• A Mittag-Leffler function of one variable with three parameters was defined by
Prabhakar [10] to solve a certain singular integral equation. Its use as an integral
kernel gave rise to a model of fractional calculus which has a semigroup property
and which is already broad enough to include many other named fractional-calculus
operators [11–13], although it is itself a special case of the general Fox–Wright function.

• A Mittag-Leffler function of n variables with n + 1 parameters was used by
Luchko et al. [14,15] to solve multi-term linear fractional differential equations in-
volving multiple independent fractional orders. Note that this is independent from
the Mittag-Leffler function of n variables with 2n + 1 parameters which was defined
by Saxena et al. [16] and which gives rise to a model of fractional calculus with
a semigroup property [17]: neither of these general functions is a special case of
the other.
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• A Mittag-Leffler function of two variables with four parameters and a Mittag-Leffler
function of three variables with five parameters were recently defined [18,19] and
used to solve multi-order systems of fractional differential equations [20,21]. These
are closely related to the general function considered by Luchko et al., but they are
not special cases of it. Used as kernels, they also give rise to new models of fractional
calculus with a semigroup property [18,21]. For other types of bivariate Mittag-Leffler
function that have been defined in the literature, we refer to the papers [22–24].

All of these Mittag-Leffler type functions have been connected in some way to frac-
tional calculus and fractional differential equations. Indeed, the strong connection between
special functions and fractional calculus has been known for decades and continues to be
written about today [25–27], while multi-parameter and multi-variable generalisations are
being studied both for special functions and for the operators of fractional calculus [17].

Fractional partial differential equations have been an interesting and challenging
topic of study [3], with various methods able to be extended (with modifications) from
classical partial differential equations in order to solve them, such as the unified trans-
form method [28], distribution theory [29,30], and weak solutions [31,32]. Much atten-
tion has been paid to partial differential equations involving the fractional Laplacian
operator [33,34], but less attention has gone to differential equations involving mixed par-
tial fractional derivatives. They are mentioned in the classical textbooks [3] (§6.1.1) and [6]
(§24.2), and in a few papers (e.g., [35–37]), but in general they have attracted little notice in
the research literature on fractional partial differential equations.

In the work below, we study a specific type of Mittag-Leffler function, initially a
function of one variable with five parameters, and define a double fractional integral
operator by converting this function to a bivariate version. In this way, it is possible to
involve double integrals and derivatives, with respect to two variables, while preserving
the relatively simple structure of a single power series defining the Mittag-Leffler function.
These operators are therefore useful in the study of fractional partial differential equations,
including those involving mixed partial fractional derivatives.

As an initial motivation, let us consider the following bivariate Abel equation of the
second kind:

u(t, s) +
λ

Γ(α1)Γ(α2)

∫ t

0

∫ s

0

u(ξ, η)

(t − τ)1−α1(s − η)1−α2
dτ dη = f (t, s). (1)

One can reformulate this equation in terms of the standard Riemann–Liouville frac-
tional integral operators as: (

1 + λIα1
t Iα2

s
)
u(t, s) = f (t, s).

Formally, by means of symbolic operational calculus without regard for rigour, this
can be solved as follows:

u(t, s) =
(
1 + λIα1

t Iα2
s
)−1 f (t, s) =

(
∞

∑
n=0

(−λ)n Iα1n
t Iα2n

s

)
f (t, s).

This last formal result can be written in terms of the following Mittag-Leffler type function:

Eα1,α2(x) =
∞

∑
n=0

xn

Γ(α1n + 1)Γ(α2n + 1)
, (2)

120



Fractal Fract. 2021, 5, 45

namely, in the following way, making use of the double (two-dimensional) Laplace convo-
lution operator denoted here as “∗”:

u(t, s) = Eα1,α2(−λtα1 sα2) ∗ f (t, s)

=
∫ t

0

∫ s

0

(
∞

∑
n=0

λn(t − τ)α1n(s − η)α2n

Γ(α1n + 1)Γ(α2n + 1)

)
f (τ, η)dτ dη

=

(
∞

∑
n=0

(−λ)n Iα1n
t Iα2n

s

)
f (t, s).

Therefore, it makes sense to define an integral operator Eα1,α2 acting on functions of
two variables as follows:

(Eα1,α2 f )(t, s) =
∫ t

0

∫ s

0

(
∞

∑
n=0

λn(t − τ)α1n(s − η)α2n

Γ(α1n + 1)Γ(α2n + 1)

)
f (τ, η)dτ dη. (3)

This operator emerges naturally from consideration of bivariate Abel equations, but it
has the drawback of lacking a semigroup property, or index law, in any of the parameters:
if we take a composition of this operator with itself, we do not find another operator in the
same form for different values of the parameters.

It should be noted at this point that some useful and important operators, which have
been criticised for lacking a semigroup property, can be embedded into a larger class of
fractional-calculus operators which has an index law and which therefore contains both
the original operators and their compositions. For example, Prabhakar fractional calculus
forms a class of operators which contains various useful operators that lack semigroup
properties in themselves, their compositions being different elements of the Prabhakar
class [11]. We can apply the same way of thinking here, extending the basic two-parameter
Mittag-Leffler function (2) and the associated integral operator to more general versions
where a semigroup property can be found.

In this case, it is sufficient to add three extra parameters in the definition in order to
obtain a generalised operator which has a semigroup property. We consider, throughout
this paper, the following five-parameter Mittag-Leffler function of one variable:

Eγ
α1,α2;β1,β2

(z) =
∞

∑
k=0

(γ)k
Γ(α1k + β1)Γ(α2k + β2)

· zk

k!
, (4)

where α1, α2, β1, β2, γ are complex constants (with some constraints to be determined later)
and (γ)k is the Pochhammer symbol defined by

(γ)0 = 1, (γ)k = γ(γ + 1) · · · (γ + k − 1), k = 1, 2, · · · .

This paper is devoted to a detailed study of the five-parameter Mittag-Leffler function (4),
the associated bivariate fractional integral operators, related concepts such as the corre-
sponding fractional derivative operators, and special cases of particular interest.

Specifically, the structure of the paper is as follows. We discuss the five-parameter
Mittag-Leffler function and its properties in Section 2, then pass to bivariate fractional
calculus in Section 3, firstly integral operators and then derivative operators. In Section 4,
we investigate the case where the operators are non-singular and expressible as finite sums
of Riemann–Liouville integrals. Section 5 is devoted to discussion of applications and
potential future work.
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2. The Five-Parameter Mittag-Leffler Function

Definition 1. Let α1, α2, β1, β2, γ ∈ C be five parameters satisfying Re(α1 + α2) > 0. The
five-parameter Mittag-Leffler function applied to a single variable z is defined by the following
power series:

Eγ
α1,α2;β1,β2

(z) =
∞

∑
k=0

(γ)k
Γ(α1k + β1)Γ(α2k + β2)

· zk

k!
, z ∈ C.

This can be seen as a special case of the Fox–Wright function, which is defined [3]
(§1.11) by

pΨq(z) = pΨq((ai, αi)1,p; (bi, βi)1,q; z) =
∞

∑
k=0

p
∏
i=1

Γ(ai + αik)

q
∏
j=1

Γ(bj + β jk)
· zk

k!
, z ∈ C,

where, in [3], the parameters are given as ai, bj ∈ C, αi, β j ∈ R satisfying αi �= β j for
i = 1, · · · , p; j = 1, · · · , q, and it is proved that this power series is absolutely convergent
for all z ∈ C in the case Δ := ∑

q
j=1 β j − ∑

p
i=1 αi > −1.

The five-parameter Mittag-Leffler function can be written in terms of the Fox–Wright
function as follows:

Eγ
α1,α2;β1,β2

(z) =
1

Γ(γ) 1Ψ2((γ, 1); (β1, α1), (β2, α2); z).

As an immediate consequence of the convergence result shown in [3] (Theorem 1.5)
and [38], we conclude that, if α1, α2 ∈ R and α1 + α2 > 0, then the power series defining
Eγ

α1,α2;β1,β2
(z) is locally uniformly convergent and therefore it is an entire function.

In fact, there is no need to assume that any of the parameters are real. This assumption
is imposed in [3,38] to simplify the calculations, but the same convergence result can be
proved for complex values of the parameters by using Stirling’s formula and the ratio test,
similarly to the second author’s work in [39]. The condition then to be imposed on the
parameters is Re(α1 + α2) > 0, as stated in Definition 1.

It is worth noting that a four-parameter special case of the general Fox–Wright function
was recently given particular consideration by Luchko [40], namely the following function:

W(α1,β1),(α2,β2)
(z) =

∞

∑
k=0

zk

Γ(α1k + β1)Γ(α2k + β2)
, (5)

which is the case γ = 1 of our five-parameter Mittag-Leffler function. It is also a special
case of the vector-index Mittag-Leffler function studied by Al-Bassam and Luchko [41],
which is defined as follows:

E(α1,β1),··· ,(αn ,βn)(z) =
∞

∑
k=0

zk

Γ(α1k + β1) · · · Γ(αnk + βn)
, (6)

for any n ∈ N. The case n = 1 gives the usual two-parameter Mittag-Leffler function,
while the case n = 2 gives the four-parameter Wright function (5) considered by Luchko.
The function (6) was further extended [42] to include a numerator (γ)κn in terms of two
further parameters.

Our function is also a special case of the general Fox–Wright function, but it is different
from the special cases (5) and (6) considered previously, because of the Pochhammer symbol
appearing in the numerator. This extra parameter and Pochhammer symbol is important
because, as we show below, it gives rise to a semigroup property for the resulting fractional
integral operators – a property which is lacking for functions such as (5) and (6) which were
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considered before, and even for functions such as that in [42] which contain a generalised
Pochhammer symbol. The semigroup property will arise from the idea of turning this
univariate function into a bivariate integral operator, a notion which we justify below from
consideration of the gamma functions on the denominator.

Using the Mellin–Barnes integral representation of the Fox–Wright function pΨq(z),
proved in [3], we have for α1 > 0, α2 > 0, and γ, β1, β2 ∈ C, z �= 0 that

Eγ
α1,α2;β1,β2

(z) =
1

2πiΓ(γ)

∫
L

Γ(s)Γ(γ − s)
Γ(β1 − α1s)Γ(β2 − α2s)

(−z)−s ds,

where the integration path L is a Bromwich contour starting at a point C − i∞ and ter-
minating at a point C + i∞ and separating the poles −m (m = 0, 1, 2, · · · ) of the gamma
function Γ(s) to the left and the poles γ + l (l = 0, 1, 2, · · · ) to the right with the assumption
−m �= γ + l for l, m = 0, 1, 2, · · · .

Another complex integral representation is given by the following Theorem.

Theorem 1. Let α1, α2, β1, β2 ∈ C with Re(α1) > 0, Re(α2) > 0, and let ε > 0, π
2 < φ ≤ π.

Let H(ε; φ)(ε > 0, 0 < φ ≤ π) be the contour which is the union of the following three parts
oriented according to non-decreasing arg τ:

1. the ray arg τ = −φ, |τ| ≥ ε;
2. the arc −φ ≤ arg τ ≤ φ, |τ| = ε; and
3. the ray arg τ = φ, |τ| ≥ ε,

Then, the five-parameter Mittag-Leffler function possesses the following complex integral represen-
tations:

Eγ
α1,α2;β1,β2

(z) =
1

2πi

∫
H(ε;φ)

τ−β2 eτEγ
α1,β1

(
τ−α2 z

)
dτ (7)

=
−1
4π2

∫
H(ε;φ)

∫
H(ε;φ)

ξ−β1 τ−β2 eξ+τ

(1 − zξ−α1 τ−α2)γ dξ dτ. (8)

Proof. Using the known representation [43]

1
Γ(z)

=
1

2πi

∫
H(ε;φ)

τ−zeτ dτ, z ∈ C, (9)

with z replaced by α2k + β2, and using the fact that the series represents an entire function,
which allows the interchange of the series and the integral, gives

Eγ
α1,α2;β1,β2

(z) =
∞

∑
k=0

(γ)k
Γ(α1k + β1)

(
1

2πi

∫
H(ε;φ)

τ−α2k−β2 eτ dτ

)
zk

k!

=
1

2πi

∫
H(ε;φ)

τ−β2 eτ
∞

∑
k=0

(γ)k
Γ(α1k + β1)

(τ−α2 z)k

k!
dτ,

which directly yields (7), the first of the desired formulae, in terms of the three-parameter
Mittag-Leffler function of Prabhakar.

On the other hand, using (9) for both of the terms 1
Γ(α1k+β1)

and 1
Γ(α2k+β2)

, we have

Eγ
α1,α2;β1,β2

(z) =
−1
4π2

∞

∑
k=0

(γ)k

(∫
H(ε;φ)

ξ−α1k−β1 eξ dξ ·
∫

H(ε;φ)
τ−α2k−β2 eτ dτ

)
zk

k!

=
−1
4π2

∫
H(ε;φ)

∫
H(ε;φ)

ξ−β1 τ−β2 eξ+τ
∞

∑
k=0

(γ)k
(zξ−α1 τ−α2)

k

k!
dξ dτ,

which directly yields (8), the second of the desired formulae. This derivation assumes that
|zξ−α1 τ−α2 | < 1, which is uniformly true on the given contours provided that Re(α1) > 0,
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Re(α2) > 0, and |z| is sufficiently small. The bound on |z| can be removed, by analytic
continuation in z, to yield the same result valid for all z.

Thus far, we have considered the function (4) as a five-parameter function of a single
variable z. As a function of z, this function has several properties, such as complex integral
representations, which we prove above. However, when we start to construct connections
with the topic of fractional calculus, it is more natural to consider a related bivariate
function instead.

To see why, consider that fractional differintegral relations for special functions, such
as many found in [44,45], usually make use of gamma functions appearing in power series,
in the following way:

a Iλ
x

(
(x − a)ν

Γ(ν + 1)

)
=

(x − a)ν+λ

Γ(ν + λ + 1)
, aDλ

x

(
(x − a)ν

Γ(ν + 1)

)
=

(x − a)ν−λ

Γ(ν − λ + 1)
,

with appropriate choices of ν in order to use such identities for every term of a power series
expansion. For many univariate functions defined by power series, the above relations give
rise to interesting identities between special functions. In our case, however, the power
series (4) has two different gamma functions in the denominator, each of them involving
k times a different parameter, α1 or α2. Therefore, to take full advantage of the function’s
symmetry in α1 and α2, we should use two different variables: one raised to the power of
α1, the other raised to the power of α2, and then both of them further raised to the power
of k.

Motivated by this discussion, we now begin to study, instead of the univariate function
Eγ

α1,α2;β1,β2
(z), the closely related bivariate function Eγ

α1,α2;β1,β2
(xα1 yα2). A similar idea,

substituting products of fractional powers of new variables instead of old variables, was
used in a 2017 paper of the first author [23], but in that case it was used to convert a
bivariate function to another bivariate function of different variables. Here, we use it
to convert a univariate function to a bivariate function. This seems at first sight as an
unnecessary complication, but we see that it makes many things more natural and smooth
in the studies related to the five-parameter Mittag-Leffler function.

Definition 2 ([3]). The double fractional integrals of a bivariate function f (x, t) are defined in
the natural way by combining fractional integrals with respect to x and t, namely as follows for
λ, μ ∈ C with Re(λ) > 0, Re(μ) > 0 and for x > a, t > b.

b Iλ
t a Iμ

x f (x, t) =
1

Γ(μ)Γ(λ)

∫ t

b

∫ x

a
(t − τ)λ−1(x − ξ)μ−1 f (ξ, τ)dξ dτ.

Similarly, the partial fractional derivatives of a bivariate function f (x, t) are defined as follows,
for λ, μ ∈ C with Re(λ) > 0, Re(μ) > 0 and for n = �Re(μ)� + 1, m = �Re(λ)� + 1 and
x > a, t > b:

bDβ
t aDα

x f (x, t) =
∂m+n

∂tm∂xn b In−β
t a Im−α

x f (x, t).

Lemma 1. Let α1, α2, β1, β2, γ, ω ∈ C with Re(α1), Re(α2), Re(β1), Re(β2) > 0. Then, for any
λ, μ ∈ C with Re(λ) > 0, Re(μ) > 0, we have

a Iλ
x c Iμ

y

[
(x − a)β1−1(y − c)β2−1Eγ

α1,α2;β1,β2
(ω(x − a)α1(y − c)α2)

]
= (x − a)λ+β1−1(y − c)μ+β2−1Eγ

α1,α2;λ+β1,μ+β2
(ω(x − a)α1(y − c)α2).

Proof. We know from above that the infinite series defining the five-parameter Mittag-
Leffler function is locally uniformly convergent, so we have the right to interchange the
order of this series with fractional integral operators. Since all the exponents of (x − a) and
(y − c) are greater than −1, we have:
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a Iλ
x c Iμ

y

[
(x − a)β1−1(y − c)β2−1Eγ

α1,α2;β1,β2
(ω(x − a)α1(y − c)α2)

]
=

=
∞

∑
k=0

(γ)k
Γ(α1k + β1)Γ(α2k + β2)

· ωk

k!

[
a Iλ

x (x − a)β1+α1k−1
][

c Iμ
y (y − c)β2+α2k−1

]

=
∞

∑
k=0

(γ)k
Γ(α1k + β1)Γ(α2k + β2)

· ωk

k!

×
[

Γ(β1 + α1k)
Γ(λ + β1 + α1k)

(x − a)λ+β1+α1k−1
][

Γ(β2 + α2k)
Γ(μ + β2 + α2k)

(y − c)μ+β2+α2k−1
]

= (x − a)λ+β1−1(y − c)μ+β2−1Eγ
α1,α2;λ+β1,μ+β2

(ω(x − a)α1(y − c)α2).

Note how the two gamma functions in the denominator of the series mesh together
precisely with the gamma-function quotients arising from the two fractional integrals, in
order to achieve the desired result.

Lemma 2. Let α1, α2, β1, β2, γ, ω ∈ C with Re(α1), Re(α2), Re(β1), Re(β2) > 0. Then, for any
λ, μ ∈ C with Re(λ) ≥ 0, Re(μ) ≥ 0, we have

aDλ
x cDμ

y

[
(x − a)β1−1(y − c)β2−1Eγ

α1,α2;β1,β2
(ω(x − a)α1(y − c)α2)

]
= (x − a)β1−λ−1(y − c)β2−μ−1Eγ

α1,α2;β1−λ,β2−μ(ω(x − a)α1(y − c)α2).

Proof. This can be deduced from Lemma 1 by analytic continuation in the variables λ
and μ, using the analyticity properties of fractional differintegrals. Alternatively, it can be
proved from the series expansion of the function, following similar lines as the proof of
Lemma 1.

Lemma 3. Setting all parameters to 1 in the bivariate form of the five-parameter Mittag-Leffler
function, we can recover a case of the modified Bessel function with parameter 0:

E1
1,1;1,1(xy) = I0

(
2
√

xy
)
=

∞

∑
k=0

(xy)k

(k!)2 .

Proof. This follows immediately from the series definition of the function.

3. Bivariate Operators with Five-Parameter Mittag-Leffler Kernels

In this section, we move on from functions to operators. Having established the
five-parameter Mittag-Leffler function and some of its properties, we now wish to define a
fractional integral operator using this function as a kernel, following in the footsteps of
other papers [10,18,46] which defined new models of fractional calculus by using various
types of Mittag-Leffler functions as kernels.

The five-parameter Mittag-Leffler function (4) is defined by a single power series in
terms of a single variable z. When we use it to define a fractional integral operator, however,
we must transform it to a bivariate function, again using a single summation, but this time
in terms of two independent variables x, y. Correspondingly, we use a double integral and
create an operator to be applied to bivariate functions. This is the only natural way to define
a model of fractional calculus using the five-parameter Mittag-Leffler function, because
the two gamma functions in its denominator will give rise to a double fractional integral
in each summand when we wish to write a series representation for the new operator:
we need two separate powers in the integrand, one corresponding to each of the gamma
functions from the denominator.
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Definition 3. The fractional integral operator based on the five-parameter Mittag-Leffler function
as a kernel is given by

a,bIγ;λ
α1,α2;β1,β2

( f )(x, y) :=
∫ x

a

∫ y

b
f (t, s)(x − t)β1−1(y − s)β2−1Eγ

α1,α2;β1,β2
(λ(x − t)α1(y − s)α2)ds dt,

where a, b ∈ R are fixed with x > a, y > b and α1, α2, β1, β2, γ, λ ∈ C are parameters such that
Re(α1), Re(α2), Re(β1), Re(β2) > 0. Note that these restrictions on the parameters are necessary
in order to have a properly convergent singular integral for all reasonably well-behaved functions f
(more details later on the function space for f ).

It is clear that the two-parameter bivariate integral operator defined in (3) above is a special
case of this new fractional integral operator: (Eα1,α2 f )(x, y) = 0,0I1;λ

α1,α2;1,1( f )(x, y).

Theorem 2. Let α1, α2, β1, β2, γ, λ ∈ C with Re(α1), Re(α2), Re(β1), Re(β2) > 0. Then,

a,bIγ;λ
α1,α2;β1,β2

is a bounded operator from the space L1([a, c]× [b, d]) to itself.

Proof. Using Fubini’s theorem, we have

∫ c

a

∫ d

b

∣∣∣a,bIγ;λ
α1,α2;β1,β2

( f )(x, y)
∣∣∣dy dx

≤
∫ c

a

∫ x

a

∫ d

b

∫ y

b

∣∣∣ f (t, s)(x − t)β1−1(y − s)β2−1Eγ
α1,α2;β1,β2

(λ(x − t)α1(y − s)α2)
∣∣∣ds dy dt dx

=
∫ c

a

∫ d

b
| f (t, s)|

[∫ c−t

0

∫ d−s

0

∣∣∣uβ1−1wβ2−1Eγ
α1,α2;β1,β2

(λuα1 wα2)
∣∣∣dw du

]
ds dt.

Since the five-parameter Mittag-Leffler function is an entire function when Re(α1 +
α2) > 0, we have a bound of the form Eγ

α1,α2;β1,β2
(λuα1 wβ2−1) ≤ C on the finite domain

[a, c]× [b, d]. Therefore,

∥∥∥a,bIγ;λ
α1,α2;β1,β2

( f )
∥∥∥

1
:=

∫ c

a

∫ d

b

∣∣∣a,bIγ;λ
α1,α2;β1,β2

( f )(x, y)
∣∣∣dy dx

≤ C(c − a)β1−1(d − b)β2−1‖ f ‖1.

Since a, b, c, d, β1, β2 are fixed, the result is proved.

Theorem 3. Let α1, α2, β1, β2, γ, λ ∈ C with Re(α1), Re(α2), Re(β1), Re(β2) > 0, and let
f ∈ L1([a, c]× [b, d]). Then, the operator a,bIγ;λ

α1,α2;β1,β2
can be represented as an infinite series of

double fractional integrals of Riemann–Liouville type:

a,bIγ;λ
α1,α2;β1,β2

( f )(x, y) =
∞

∑
k=0

(γ)kλk

k! b Iβ2+α2k
y a Iβ1+α1k

x ( f )(x, y), (10)

where the right-hand side is locally uniformly convergent for x, y ∈ [a, c]× [b, d].

Proof. Since Eγ
α1,α2;β1,β2

(u) is an entire function defined by a locally uniformly convergent
power series, and f ∈ L1([a, c] × [b, d]), we have the right to interchange the order of
summation and integration, to yield
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a,bIγ;λ
α1,α2;β1,β2

( f )(x, y) =
∫ x

a

∫ y

b
f (t, s)(x − t)β1−1(y − s)β2−1Eγ

α1,α2;β1,β2
(λ(x − t)α1(y − s)α2)dt ds

=
∫ x

a

∫ y

b
(x − t)β1−1(y − s)β2−1

∞

∑
k=0

(γ)kλk(x − t)α1k(y − s)α2k

Γ(α1k + β1)Γ(α2k + β2)k!
f (t, s)dt ds

=
∞

∑
k=0

(γ)kλk

k!
· 1

Γ(α1k + β1)Γ(α2k + β2)

∫ x

a

∫ y

b
(x − t)β1+α1k−1(y − s)β2+α2k−1 f (t, s)dt ds

=
∞

∑
k=0

(γ)kλk

k! b Iβ2+α2k
y a Iβ1+α1k

x ( f )(x, y).

Whence the result.

Before the next results, we need to recall the bivariate Laplace transform, or double
Laplace transform, which is applied to bivariate functions f (x, y) in the following way:

L2[ f ](p, q) =
∫ ∞

0

∫ ∞

0
e−(px+qy) f (x, y)dx dy = LxLy[ f ](p, q), Re(p) > 0, Re(q) > 0,

provided that this integral is convergent (for example, if f (x, y) is exponentially bounded
in both variables).

Theorem 4. Let α1, α2, β1, β2, γ, λ ∈ C with Re(α1), Re(α2), Re(β1), Re(β2) > 0. If f is a
bivariate function of exponential order and integrable over [0, ∞)× [0, ∞), then we have

L2

[
a,bIγ;λ

α1,α2;β1,β2
( f )

]
(p, q) =

1
pβ1 qβ2

(
1 − λp−α1 q−α2

)−γL2[ f ](p, q)

for p, q ∈ C such that these Laplace transforms exist.

Proof. This follows from the series representation of the operator, using the fact that the se-
ries is locally uniformly convergent to interchange the Laplace integration and summation:

L2

[
a,bIγ;λ

α1,α2;β1,β2
( f )

]
(p, q) =

∞

∑
k=0

(γ)kλk

k!
L2

[
b Iβ2+α2k

y a Iβ1+α1k
x ( f )

]
(p, q)

= L2[ f ](p, q)
∞

∑
k=0

(γ)kλk

k!
q−β2−α2k p−β1−α1k

=
1

pβ1 qβ2
L2[ f ](p, q)

∞

∑
k=0

(γ)k(λp−α1 q−α2)
k

k!

=
1

pβ1 qβ2

(
1 − λp−α1 q−α2

)−γL2[ f ](p, q),

where we have assumed |λp−α1 q−α2 | < 1 for convergence of the binomial series, although
this condition can be removed by analytic continuation in the variables p and q.

As an application of the above result, we can use Laplace transforms to quickly learn
the result of applying the new fractional operator to the five-parameter Mittag-Leffler
function itself, as follows.

Example 1. Let α1, α2, β1, β2, ε1, ε2, γ, λ, σ ∈ C with Re(αi), Re(βi), Re(εi) > 0 for i = 1, 2.
Then, we have
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L2

[
a,bIγ;λ

α1,α2;β1,β2

(
xε1−1yε2−1Eσ

α1,α2;ε1,ε2
(λxα1 yα2)

)]
(p, q)=

=
1

pβ1 qβ2

(
1 − λp−α1 q−α2

)−γL2

[
xε1−1yε2−1Eσ

α1,α2;ε1,ε2
(λxα1 yα2)

]
(p, q)

=
1

pβ1 qβ2

(
1 − λp−α1 q−α2

)−γ 1
pε1 qε2

(
1 − λp−α1 q−α2

)−σ

=
1

pβ1+ε1 qβ2+ε2

(
1 − λp−α1 q−α2

)−γ−σ.

Taking inverse Laplace transforms on both sides of this equation, we get the following formula
showing how the bivariate fractional integral operator with five-parameter Mittag-Leffler function
kernel can be applied to this particular type of function:

a,bIγ;λ
α1,α2;β1,β2

(
xε1−1yε2−1Eσ

α1,α2;ε1,ε2
(λxα1 yα2)

)
= xβ1+ε1−1yβ2+ε2−1Eγ+σ

α1,α2;β1+ε1,β2+ε2
(λxα1 yα2).

A very important property of the bivariate fractional calculus defined in this paper is
that it has a semigroup property in the variables β1, β2, γ, as expressed by the following
theorem. There are several different ways to prove this result, as in [18], and we mention
here two of them.

Theorem 5. Let α1, α2, β1, β2, ε1, ε2, γ, σ, λ ∈ C with Re(αi), Re(βi), Re(εi) > 0 for i = 1, 2.
Then, for any f ∈ L1([a, c]× [b, d]), we have

a,bIγ;λ
α1,α2;β1,β2 a,bIσ;λ

α1,α2;ε1,ε2
( f ) = a,bIγ+σ;λ

α1,α2;β1+ε1,β2+ε2
( f ).

Proof. In the case that a = b = 0 and f is a function whose Laplace transform exists, we
know from Theorem 4 that applying the operator a,bIγ;λ

α1,α2;β1,β2
corresponds, in the Laplace

domain, to multiplication by p−β1 q−β2(1 − λp−α1 q−α2)
−γ. The latter operation clearly has

a semigroup property in the parameters β1, β2, γ, since these appear only as exponents.
Thus, the desired result is clear in this case.

For the general case, we must proceed by manipulation of infinite series and gamma
functions, using Theorem 3:

a,bIγ;λ
α1,α2;β1,β2 a,bIσ;λ

α1,α2;ε1,ε2
( f ) =

∞

∑
k=0

(γ)kλk

k! b Iβ2+α2k
y a Iβ1+α1k

x

∞

∑
m=0

(σ)mλm

m! b Iε2+α2m
y a Iε1+α1m

x ( f )

=
∞

∑
k=0

∞

∑
m=0

(γ)k(σ)mλk+m

k!m! b Iβ2+ε2+α2(k+m)
y a Iβ1+ε1+α1(k+m)

x ( f )

=
∞

∑
n=0

[
∑

k+m=n

(γ)k(σ)m

k!m!

]
λn

b Iβ2+ε2+α2n
y a Iβ1+ε1+α1n

x ( f )

=
∞

∑
n=0

[
(γ + σ)n

n!

]
λn

b Iβ2+ε2+α2n
y a Iβ1+ε1+α1n

x ( f )

= a,bIγ+σ;λ
α1,α2;β1+ε1,β2+ε2

( f ),

where for the part in square brackets we use a finite-sum identity on gamma functions
(see [12], Theorem 2.9)).

The semigroup property helps us to obtain the left inverse of the bivariate integral
operator constructed above, which will motivate the definition of a fractional derivative
operator based on the five-parameter Mittag-Leffler function.
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Theorem 6. Let α1, α2, β1, β2, γ, λ ∈ C with Re(α1), Re(α2), Re(β1), Re(β2) > 0. For any
ε1, ε2 ∈ C with Re(ε1), Re(ε2) > 0, the following operator is a left inverse to the bivariate
fractional integral operator a,bIγ;λ

α1,α2;β1,β2
considered above:

aDβ1+ε1
x bDβ2+ε2

y ◦ a,bI−γ;λ
α1,α2;ε1,ε2 .

Proof. Using the semigroup property, we have

a,bI−γ;λ
α1,α2;ε1,ε2 ◦ a,bIγ;λ

α1,α2;β1,β2
= a,bI0;λ

α1,α2;β1+ε1,β2+ε2
= b Iβ2+ε2

y a Iβ1+ε1
x ,

using the fact that the Pochhammer symbol (0)k equals 1 if k = 0 and equals 0 for all
integer k ≥ 1. Therefore, applying the double Riemann–Liouville fractional differential
operator aDβ1+ε1

x bDβ2+ε2
y from the left on both sides of the equation, the right-hand side

gives the identity operator:

aDβ1+ε1
x bDβ2+ε2

y ◦ a,bI−γ;λ
α1,α2;ε1,ε2 ◦ a,bIγ;λ

α1,α2;β1,β2
= aDβ1+ε1

x bDβ2+ε2
y ◦ b Iβ2+ε2

y a Iβ1+ε1
x = I .

Thus, we have found the left inverse operator of a,bIγ;λ
α1,α2;β1,β2

as required.

Remark 1. It should be remarked that the left inverse operator is independent of the parameters ε1
and ε2. The easiest way to see this is by using the series formula:

aDβ1+ε1
x bDβ2+ε2

y ◦ a,bI−γ;λ
α1,α2;ε1,ε2( f )(x, y) = aDβ1+ε1

x bDβ2+ε2
y

∞

∑
k=0

(−γ)kλk

k! b Iε2+α2k
y a Iε1+α1k

x ( f )(x, y)

=
∞

∑
k=0

(−γ)kλk

k! aDβ1+ε1
x bDβ2+ε2

y b Iε2+α2k
y a Iε1+α1k

x ( f )(x, y)

=
∞

∑
k=0

(−γ)kλk

k! b I−β2+α2k
y a I−β1+α1k

x ( f )(x, y), (11)

which is independent of ε1 and ε2. Here, we make use of the semigroup property for Riemann–
Liouville fractional calculus, in the case where the inner operator is a fractional integral, and we
also use the convention (valid by analytic continuation in the order of integration) that a Riemann–
Liouville fractional integral to negative order means a Riemann–Liouville fractional derivative,
c I−ν

t = cDν
t .

Since we can choose any values of ε1 and ε2 with positive real part and get the same
left inverse operator, we opt for the values which give ordinary (non-fractional) derivatives
of order β1 + ε1 and β2 + ε2. This means choosing, just like in Riemann–Liouville fractional
calculus, ε1 = N1 − β1 and ε2 = N2 − β2, to obtain the following definition.

Definition 4. Let α1, α2, β1, β2, γ, λ ∈ C with Re(α1) > 0, Re(α2) > 0, Re(β1) ≥ 0, Re(β2) ≥
0. Define N1, N2 ∈ N to be the numbers such that N1 − 1 ≤ Re(β1) < N1 and N2 − 1 ≤
Re(β2) < N2. Then, the double Riemann–Liouville-type fractional derivative with five-parameter
Mittag-Leffler kernel is defined by

a,bDγ;λ
α1,α2;β1,β2

( f )(x, y) =
∂N1+N2

∂xN1 ∂yN2 a,bI−γ;λ
α1,α2;N1−β1,N2−β2

( f )(x, y),

while the double Caputo-type fractional derivative with five-parameter Mittag-Leffler kernel is
defined by

C
a,bDγ;λ

α1,α2;β1,β2
( f )(x, y) = a,bI−γ;λ

α1,α2;N1−β1,N2−β2

(
∂N1+N2

∂xN1 ∂yN2
f
)
(x, y).
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Theorem 7. Let α1, α2, β1, β2, γ, λ ∈ C with Re(α1) > 0, Re(α2) > 0, Re(β1) > 0, Re(β2) >
0. The fractional integrals and derivatives with five-parameter Mittag-Leffler kernel have the
following inversion properties:

a,bDγ;λ
α1,α2;β1,β2 a,bIγ;λ

α1,α2;β1,β2
( f )(x, y) = f (x, y),

a,bIγ;λ
α1,α2;β1,β2

C
a,bDγ;λ

α1,α2;β1,β2
( f )(x, y) = f (x, y)−

N1−1

∑
n=0

(x − a)n

n!
· ∂n

∂xn f (a, y)−
N2−1

∑
m=0

(y − b)m

m!
· ∂m

∂ym f (x, b)

+
N1−1

∑
n=0

N2−1

∑
m=0

(x − a)n(y − b)m

n!m!
· ∂n+m

∂xn∂ym f (a, b).

Proof. The first identity is proved during the construction of the left inverse. For the
second one, we again use the semigroup property given by Theorem 5:

a,bIγ;λ
α1,α2;β1,β2

C
a,bDγ;λ

α1,α2;β1,β2
( f )(x, y) = a,bIγ;λ

α1,α2;β1,β2 a,bI−γ;λ
α1,α2;N1−β1,N2−β2

(
∂N1+N2

∂xN1 ∂yN2
f
)
(x, y)

= a,bI0;λ
α1,α2;N1,N2

(
∂N1+N2

∂xN1 ∂yN2
f
)
(x, y)

= a IN1
x b IN2

y

(
∂N1

∂xN1

∂N2

∂yN2
f
)
(x, y)

= f (x, y)−
N1−1

∑
n=0

(x − a)n

n!
· ∂n

∂xn f (a, y)−
N2−1

∑
m=0

(y − b)m

m!
· ∂m

∂ym f (x, b) (12)

+
N1−1

∑
n=0

N2−1

∑
m=0

(x − a)n(y − b)m

n!m!
· ∂n+m

∂xn∂ym f (a, b),

by using twice the formula for the nth integral of the nth derivative.

Proposition 1. Let α1, α2, β1, β2, γ, λ ∈ Cwith Re(α1) > 0, Re(α2) > 0, Re(β1) ≥ 0, Re(β2) ≥
0. Then, the fractional derivatives with five-parameter Mittag-Leffler kernel, of both Riemann–
Liouville type and Caputo type, can be expressed by series formulae as follows:

a,bDγ;λ
α1,α2;β1,β2

( f )(x, y) =
∞

∑
k=0

(−γ)kλk

k! b I−β2+α2k
y a I−β1+α1k

x ( f )(x, y); (13)

C
a,bDγ;λ

α1,α2;β1,β2
( f )(x, y) =

∞

∑
k=0

(−γ)kλk

k! b IN2−β2+α2k
y a IN1−β1+α1k

x

(
∂N1+N2

∂xN1 ∂yN2
f
)
(x, y). (14)

Proof. This follows immediately from Theorem 3 and the series formula (11).

Remark 2. From comparing the series formula (10) for fractional integrals with the series formula (13)
for Riemann–Liouville-type fractional derivatives, it is now clear that the latter is an analytic
continuation of the former, with β1, β2, γ replaced by −β1,−β2,−γ. To see this, we make use of the
fact, alluded to in Remark 1 above, that the Riemann–Liouville fractional derivative cD−ν

t f (t) =
c Iν

t f (t), Re(ν) ≤ 0, is the analytic continuation in ν of the fractional integral c Iν
t f (t), Re(ν) > 0.

Therefore, each term b I−β2+α2k
y a I−β1+α1k

x ( f )(x, y) appearing in (13) is exactly the same, under the

analytic continuation of Riemann–Liouville differintegrals, as the term b Iβ2+α2k
y a Iβ1+α1k

x ( f )(x, y)
appearing in (10), after replacing β1, β2, γ by −β1,−β2,−γ as stated.

Thus, we can adopt the notational convention that

a,bI−γ;λ
α1,α2;−β1,−β2

( f )(x, y) = a,bDγ;λ
α1,α2;β1,β2

( f )(x, y), (15)

130



Fractal Fract. 2021, 5, 45

and use this to extend the meaning of both a,bIγ;λ
α1,α2;β1,β2

( f )(x, y) and a,bDγ;λ
α1,α2;β1,β2

( f )(x, y) to
the entire complex plane for the parameters β1, β2, without any need to impose conditions on the
signs of their real parts. This identity is achieved by analytic continuation in the complex variables
β1, β2 from one half-plane to the other.

Proposition 2. Let α1, α2, β1, β2, γ, λ ∈ Cwith Re(α1) > 0, Re(α2) > 0, Re(β1) ≥ 0, Re(β2) ≥
0. Then, the fractional derivatives of Riemann–Liouville type and Caputo type, with five-parameter
Mittag-Leffler kernel, are related to each other as follows:

C
a,bDγ;λ

α1,α2;β1,β2
( f )(x, y) = a,bDγ;λ

α1,α2;β1,β2
( f )(x, y)

−
∞

∑
k=0

(−γ)kλk

k!

N1−1

∑
n=0

(x − a)n−β1+α1k

Γ(n − β1 + α1k + 1)
· b I−β2+α2k

y
∂n

∂xn f (a, y)

−
∞

∑
k=0

(−γ)kλk

k!

N2−1

∑
m=0

(y − b)m−β2+α2k

Γ(m − β2 + α2k + 1)
· a I−β1+α1k

x
∂m

∂ym f (x, b)

+
∞

∑
k=0

(−γ)kλk

k!

N1−1

∑
n=0

N2−1

∑
m=0

(x − a)n−β1+α1k(y − b)m−β2+α2k

Γ(n − β1 + α1k + 1)Γ(m − β2 + α2k + 1)
· ∂n+m

∂xn∂ym f (a, b).

Proof. Starting from the series formulae (13) and (14), we have:

C
a,bDγ;λ

α1,α2;β1,β2
( f )(x, y) =

∞

∑
k=0

(−γ)kλk

k! b I−β2+α2k
y a I−β1+α1k

x

(
b IN2

y a IN1
x

∂N1+N2

∂xN1 ∂yN2
f
)
(x, y)

=
∞

∑
k=0

(−γ)kλk

k! b I−β2+α2k
y a I−β1+α1k

x

(
f (x, y)−

N1−1

∑
n=0

(x − a)n

n!
· ∂n

∂xn f (a, y)

−
N2−1

∑
m=0

(y − b)m

m!
· ∂m

∂ym f (x, b) +
N1−1

∑
n=0

N2−1

∑
m=0

(x − a)n(y − b)m

n!m!
· ∂n+m

∂xn∂ym f (a, b)

)

= a,bDγ;λ
α1,α2;β1,β2

( f )(x, y)−
∞

∑
k=0

(−γ)kλk

k!

N1−1

∑
n=0

(x − a)n−β1+α1k

Γ(n − β1 + α1k + 1)
· b I−β2+α2k

y
∂n

∂xn f (a, y)

−
∞

∑
k=0

(−γ)kλk

k!

N2−1

∑
m=0

(y − b)m−β2+α2k

Γ(m − β2 + α2k + 1)
· a I−β1+α1k

x
∂m

∂ym f (x, b)

+
∞

∑
k=0

(−γ)kλk

k!

N1−1

∑
n=0

N2−1

∑
m=0

(x − a)n−β1+α1k(y − b)m−β2+α2k

Γ(n − β1 + α1k + 1)Γ(m − β2 + α2k + 1)
· ∂n+m

∂xn∂ym f (a, b),

where we use both the formula (12) for the double nth integral of the double nth derivative
and also the well-known formulae for Riemann–Liouville fractional differintegrals of
power functions.

4. The Non-Singular Cases of the Operators

Recently, the second author [11] made a detailed study of Prabhakar fractional calculus,
separating this class of operators into several subclasses according to their properties. Of
particular importance is the consideration of whether an operator is singular or non-
singular, and whether the series formula expressing it in terms of Riemann–Liouville
integrals is a finite or infinite sum. The same considerations can be applied to other types
of fractional calculus, such as the one we are studying here.

In the case of Prabhakar, it was proved [11] (Theorem 4.5) that the most special
case is when the operators are non-singular and the sum is finite, and this subclass of
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Prabhakar fractional calculus consists precisely of the integer powers of the following
(inverse) operators:

M f (t) = f (t)− ω a Iα
t f (t),

N f (t) =
d
dt

∫ t

a
Eα

(
ω(t − τ)α

)
f (τ)dτ.

These operators are obtained [47] by setting β = 0 (for non-singular operators) and ρ = ±1
(for finite sums) in the operator P

a Iα,β,ρ,ω
t of Prabhakar integration. We may try to do

something similar for the bivariate operator of integration with five-parameter Mittag-
Leffler kernel.

Let us firstly compare the Prabhakar fractional integral with the bivariate fractional
integral considered in this paper. We have

P
a Iα,β,ρ,ω

t f (t) =
∫ t

a
f (τ)(t − τ)β−1Eρ

α,β

(
ω(t − τ)α

)
dτ

=
∞

∑
k=0

(ρ)kωk

k! a Iβ+αk
t f (t),

versus

a,bIγ;λ
α1,α2;β1,β2

( f )(x, y) =
∫ x

a

∫ y

b
f (t, s)(x − t)β1−1(y − s)β2−1Eγ

α1,α2;β1,β2
(λ(x − t)α1(y − s)α2)ds dt

=
∞

∑
k=0

(γ)kλk

k! b Iβ2+α2k
y a Iβ1+α1k

x ( f )(x, y).

It is clear that our parameters α1, α2 correspond to the α of Prabhakar, our β1, β2
correspond to the β of Prabhakar, our γ corresponds to the ρ of Prabhakar, and our λ
corresponds to the ω of Prabhakar, using all notation as above.

Therefore, for our operator, the process of obtaining a non-singular finite-sum version
should involve setting β1 = β2 = 0 and γ = ±1. Note that, since Definition 3 for the
fractional integral operator requires Re(β1) > 0 and Re(β2) > 0, we must use Definition 4
for the case when β1 = β + 2 = 0. We find:

a,bI−1;λ
α1,α2;0,0( f )(x, y) = a,bD1;λ

α1,α2;0,0( f )(x, y) =
∂2

∂x∂y a,bI−1;λ
α1,α2;1,1( f )(x, y)

=
∂2

∂x∂y

∫ x

a

∫ y

b
f (t, s)E−1

α1,α2;1,1(λ(x − t)α1(y − s)α2)ds dt

=
∂2

∂x∂y

∫ x

a

∫ y

b
f (t, s)

[
1 − λ(x − t)α1(y − s)α2

Γ(α1 + 1)Γ(α2 + 1)

]
ds dt

= f (x, y)− λ
∂2

∂x∂y b Iα2+1
y a Iα1+1

x ( f )(x, y)

= f (x, y)− λ b Iα2
y a Iα1

x ( f )(x, y). (16)

The same formula can also be obtained more directly from the series formula (13):

a,bI−1;λ
α1,α2;0,0( f )(x, y) =

∞

∑
k=0

(−1)kλk

k! b Iα2k
y a Iα1k

x ( f )(x, y)

= f (x, y)− λ b Iα2
y a Iα1

x ( f )(x, y),

where again we use the fact that (−1)k equals 1 if k = 0, −1 if k = 1, and 0 for all k ≥ 2.
The inverse operator is given by setting γ = 1 instead of γ = −1, but this one cannot

be written in such an elementary way:
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a,bI1;λ
α1,α2;0,0( f )(x, y) = a,bD−1;λ

α1,α2;0,0( f )(x, y) =
∂2

∂x∂y a,bI1;λ
α1,α2;1,1( f )(x, y)

=
∂2

∂x∂y

∫ x

a

∫ y

b
f (t, s)E1

α1,α2;1,1(λ(x − t)α1(y − s)α2)ds dt

=
∂2

∂x∂y

∫ x

a

∫ y

b
f (t, s)

[
∞

∑
k=0

λk(x − t)α1k(y − s)α2k

Γ(α1k + 1)Γ(α2k + 1)

]
ds dt, (17)

or equivalently, using the series formula (13),

a,bI1;λ
α1,α2;0,0( f )(x, y) =

∞

∑
k=0

λk
b Iα2k

y a Iα1k
x ( f )(x, y). (18)

The pair of integro-differential operators given by (16) and (17) is of course reminiscent
of the so-called Atangana–Baleanu (AB) integral and derivative [48,49]. The latter are
defined similarly: the integral by a linear combination of a function with its Riemann–
Liouville fractional integral and the derivative by a derivative of an integral transform
involving a Mittag-Leffler function kernel. The new development here is that the operators
are now bivariate: we can think of the operators (16) and (17) as forming a two-dimensional
Atangana–Baleanu calculus.

We also note that there is now a direct connection with the bivariate Abel equation (1)
which we considered at first to motivate this paper. The aforementioned Abel equation
was rewritten in a form involving the operator (16), and its solution was constructed in a
form involving the inverse operator (17).

It is also important to realise that both operators (16) and (17) involve mixed partial
integro-differential operators: the AB-type integral operator (16) is defined using fractional
integrals with respect to x and y together, and the AB-type derivative operator (17) is
defined using mixed partial derivatives with respect to x and y. Thus, these operators
may be useful in the study and understanding of fractional PDEs involving mixed partial
derivatives, which we note above are under-appreciated in fractional calculus.

To fully recover a bivariate analogue of the AB operators, we need to choose a value for
the parameter λ so that appropriate boundary conditions are realised when the parameters
α1, α2 go to 0 or 1. This is the reason for the choice of multipliers in the definition of the AB
integral and derivative to order α: so that the ordinary first-order integral and derivative
are recovered when α → 1 and the original function itself when α → 0. Thus, the following
definition is motivated.

Definition 5. The mixed bivariate AB integral is defined to be

AB
a,b Iα1,α2

x,y f (x, y) =
(1 − α1)(1 − α2)

B(α1, α2)
f (x, y) +

α1α2

B(α1, α2)
b Iα2

y a Iα1
x ( f )(x, y),

where B(α1, α2) is a normalisation function which is assumed to satisfy B(0, 0) = 1 and B(1, 1) = 1.
The mixed bivariate AB derivatives, of Riemann–Liouville and Caputo type, respectively, are

defined to be

ABR
a,bDα1,α2

x,y f (x, y)

=
B(α1, α2)

(1 − α1)(1 − α2)
· ∂2

∂x∂y

∫ x

a

∫ y

b
f (t, s)E1

α1,α2;1,1

( −α1α2

(1 − α1)(1 − α2)
(x − t)α1(y − s)α2

)
ds dt
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and

ABC
a,bDα1,α2

x,y f (x, y)

=
B(α1, α2)

(1 − α1)(1 − α2)

∫ x

a

∫ y

b

∂2 f (t, s)
∂t∂s

·E1
α1,α2;1,1

( −α1α2

(1 − α1)(1 − α2)
(x − t)α1(y − s)α2

)
ds dt,

where B(α1, α2) is the same normalisation function as above.
These definitions are valid for any α1, α2 ∈ C with positive real parts, although the main case

of interest is when α1, α2 ∈ (0, 1).

Remark 3. The multiplier function B(α1, α2) is introduced by analogy with the original definition
of the AB derivative and AB integral [48], and the restrictions on this function are imposed in order
to ensure the following limiting behaviour as the fractional orders α1, α2 approach 0 or 1:

lim
α1,α2→0

(
AB
a,b Iα1,α2

x,y f (x, y)
)
= f (x, y),

lim
α1,α2→1

(
AB
a,b Iα1,α2

x,y f (x, y)
)
= b I1

y a I1
x( f )(x, y),

lim
α1,α2→0

(
ABR

a,bDα1,α2
x,y f (x, y)

)
= f (x, y),

lim
α1,α2→0

(
ABC

a,bDα1,α2
x,y f (x, y)

)
= f (x, y)− f (a, y)− f (b, x) + f (a, b).

Note that if the pair (α1, α2) takes the values (0, 1) or (1, 0), then the mixed bivariate AB
integral becomes zero. This is why we call it specifically a mixed bivariate operator: in the square
set [0, 1]× [0, 1] for values of the pair (α1, α2), the values of the mixed bivariate AB integral are
weighted towards the diagonal (where both the fractional orders α1 and α2 have more similar values)
rather than towards the asymmetric corners.

The following result is the bivariate analogue of [47] (Theorem 3.1) or [11] (Proposition 2.4).
It follows directly from our consideration above of the non-singular finite-sum special case of
the five-parameter Mittag-Leffler kernel operators which culminated in Equations (16) and (17).

Proposition 3. The mixed bivariate AB integral and derivatives can be written in terms of the
five-parameter Mittag-Leffler kernel operators as follows:

AB
a,b Iα1,α2

x,y f (x, y) =
(1 − α1)(1 − α2)

B(α1, α2)
· a,bI

−1; −α1α2
(1−α1)(1−α2)

α1,α2;0,0 ( f )(x, y)

=
(1 − α1)(1 − α2)

B(α1, α2)
· a,bD

1; −α1α2
(1−α1)(1−α2)

α1,α2;0,0 ( f )(x, y);

ABR
a,bDα1,α2

x,y f (x, y) =
B(α1, α2)

(1 − α1)(1 − α2)
· a,bD

−1; −α1α2
(1−α1)(1−α2)

α1,α2;0,0 ( f )(x, y)

=
B(α1, α2)

(1 − α1)(1 − α2)
· a,bI

1; −α1α2
(1−α1)(1−α2)

α1,α2;0,0 ( f )(x, y);

ABC
a,bDα1,α2

x,y f (x, y) =
B(α1, α2)

(1 − α1)(1 − α2)
· C

a,bD
−1; −α1α2

(1−α1)(1−α2)
α1,α2;0,0 ( f )(x, y).

However, due to the non-singularity properties of the AB-type operators, they can
be defined on a larger function space than the general fractional derivatives with five-
parameter Mittag-Leffler kernel: no differentiability assumptions are required. The fol-
lowing result is the bivariate analogue in [49] (Lemma 2.1) which was the first result to
establish appropriate function spaces for the AB derivatives.
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Theorem 8. The mixed bivariate AB integral AB
a,b Iα1,α2

x,y f (x, y) is defined for any function f ∈
L1([a, c]× [b, d]). The mixed bivariate ABR derivative ABR

a,bDα1,α2
x,y f (x, y) can also be defined for

any function f ∈ L1([a, c]× [b, d]), while its ABC counterpart ABC
a,bDα1,α2

x,y f (x, y) is defined for

any twice differentiable function f on [a, c]× [b, d] such that ∂2

∂x∂y f ∈ L1([a, c]× [b, d]).

Proof. For the mixed bivariate AB integral, the result is clear, since this is just a linear
combination of f (x, y) with its double Riemann–Liouville integral.

For the mixed bivariate ABC derivative, the result follows from Theorem 2, since this
operator is defined by applying a special case of the five-parameter Mittag-Leffler kernel
operator to the function ∂2

∂x∂y f (x, y).
It remains to consider the mixed bivariate ABR derivative, which we can simplify in

the following way since the kernel is non-singular, as a bivariate version of the arguments
used in [11,49]:

(1 − α1)(1 − α2)

B(α1, α2)
· ABR

a,bDα1,α2
x,y f (x, y)

=
∂2

∂x∂y

∫ x

a

∫ y

b
f (t, s)E1

α1,α2;1,1

( −α1α2

(1 − α1)(1 − α2)
(x − t)α1(y − s)α2

)
ds dt

= f (x, y) +
∫ x

a
f (t, s)

∂

∂x

[
E1

α1,α2;1,1

( −α1α2

(1 − α1)(1 − α2)
(x − t)α1(y − s)α2

)]
s=y

dt

+
∫ y

b
f (t, s)

∂

∂y

[
E1

α1,α2;1,1

( −α1α2

(1 − α1)(1 − α2)
(x − t)α1(y − s)α2

)]
t=x

ds

+
∫ x

a

∫ y

b
f (t, s)

∂2

∂x∂y
E1

α1,α2;1,1

( −α1α2

(1 − α1)(1 − α2)
(x − t)α1(y − s)α2

)
ds dt

= f (x, y) +
∫ x

a

∫ y

b
f (t, s)

∂2

∂x∂y
E1

α1,α2;1,1

( −α1α2

(1 − α1)(1 − α2)
(x − t)α1(y − s)α2

)
ds dt,

where the new kernel function is

∂2

∂x∂y
E1

α1,α2;1,1

( −α1α2

(1 − α1)(1 − α2)
(x − t)α1(y − s)α2

)
=

∞

∑
k=1

(x − t)α1k−1(y − s)α2k−1

Γ(α1k)Γ(α2k)

∼ (x − t)α1−1(y − s)α2−1

Γ(α1)Γ(α2)
,

and therefore integrable, as x − t → 0 and y − s → 0. Thus, the ABR derivative of f (x, y)
equals the function f (x, y) plus an integral term which behaves as a double Riemann–
Liouville integral of f (x, y) in the singular limit x − t → 0, y − s → 0. This means the
operator is well-defined for any f ∈ L1([a, c]× [b, d]), as required.

The following result is the bivariate analogue of the original series formulae for AB
derivatives, [49] (Theorems 2.1 and 2.2). It follows directly from the work we did above to
obtain Equation (18).

Proposition 4. The mixed bivariate AB derivatives can be given by the following infinite series of
double Riemann–Liouville fractional integrals:

ABR
a,bDα1,α2

x,y f (x, y) =
B(α1, α2)

(1 − α1)(1 − α2)

∞

∑
k=0

( −α1α2

(1 − α1)(1 − α2)

)k

b Iα2k
y a Iα1k

x ( f )(x, y),

ABC
a,bDα1,α2

x,y f (x, y) =
B(α1, α2)

(1 − α1)(1 − α2)

∞

∑
k=0

( −α1α2

(1 − α1)(1 − α2)

)k

b Iα2k+1
y a Iα1k+1

x

(
∂2 f

∂x∂y

)
(x, y).

where this series is locally uniformly convergent for any f ∈ L1([a, c]× [b, d]).
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Corollary 1. From the series formulae above, it is clear that the mixed bivariate ABC derivative
can be written in terms of its ABR counterpart as follows:

ABC
a,bDα1,α2

x,y f (x, y) = ABR
a,bDα1,α2

x,y

[
f (x, y)− f (a, y)− f (b, x) + f (a, b)

]
.

Therefore, the domain of this operator can be extended from the one mentioned in Theorem 8,
and the mixed bivariate ABC derivative can also be defined on the whole space L1([a, c]× [b, d]),
without any differentiability conditions.

Theorem 9. The mixed bivariate AB integral is both a left and right inverse of the mixed bivariate
ABR derivative on the space L1([a, c]× [b, d]), and it shares the following relationship with the
mixed bivariate ABC derivative:

AB
a,b Iα1,α2

x,y
ABC

a,bDα1,α2
x,y f (x, y) = f (x, y)− f (a, y)− f (b, x) + f (a, b).

Proof. This is immediate from Proposition 4 and Corollary 1. Note that the series for
the ABR derivative consists only of Riemann–Liouville fractional integrals, which have a
semigroup property unlike their fractional derivative counterparts.

The following result is the bivariate analogue of the Laplace transform for AB deriva-
tives [48,49].

Proposition 5. The double Laplace transforms of the mixed bivariate AB integral and derivatives,
in the case a = b = 0, can be expressed as follows:

L2

[
AB
0,0 Iα1,α2

x,y f (x, y)
]
(p, q) =

(1 − α1)(1 − α2)

B(α1, α2)

(
1 +

α1α2

(1 − α1)(1 − α2)
p−α1 q−α2

)
L2[ f ](p, q);

L2

[
ABR

0,0Dα1,α2
x,y f (x, y)

]
(p, q) =

B(α1, α2)

(1 − α1)(1 − α2)

(
1 +

α1α2

(1 − α1)(1 − α2)
p−α1 q−α2

)−1
L2[ f ](p, q);

L2

[
ABC

0,0Dα1,α2
x,y f (x, y)

]
(p, q) =

B(α1, α2)

(1 − α1)(1 − α2)

(
1 +

α1α2

(1 − α1)(1 − α2)
p−α1 q−α2

)−1

×
(
L2[ f ](p, q)− 1

p
Ly→q[ f ](0, q)− 1

q
Lx→p[ f ](p, 0) +

1
pq

f (0, 0)
)

.

Proof. For the mixed bivariate AB integral, the result follows directly from the definition
and the known facts on Laplace transforms of Riemann–Liouville fractional integrals.

For the mixed bivariate AB derivative of Riemann–Liouville type, the result follows
from the series formula of Proposition 4 and a simple application of the binomial theorem.
An important fact to notice here is that, via the series formula, this Riemann–Liouville type
operator can be written solely in terms of Riemann–Liouville integrals, so there is no need
to involve initial conditions here.

For the mixed bivariate AB derivative of Caputo type, derivatives and therefore initial
conditions become involved. We use the correct form for the double Laplace transform of a
mixed partial derivative, given in [46,50], to achieve the result:

L2

[
ABC

a,bDα1,α2
x,y f (x, y)

]
(p, q)=

=
B(α1, α2)

(1 − α1)(1 − α2)

∞

∑
k=0

( −α1α2

(1 − α1)(1 − α2)

)k
q−α2k−1 p−α1k−1L2

[
∂2 f

∂x∂y
(x, y)

]
(p, q)

=
B(α1, α2)

(1 − α1)(1 − α2)

(
1 +

α1α2

(1 − α1)(1 − α2)
p−α1 q−α2

)−1
p−1q−1

(
pqL2[ f ](p, q)

− qLy→q[ f ](0, q)− pLx→p[ f ](p, 0) + f (0, 0)
)

,

which trivially rearranges to the stated result.
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5. Discussion and Conclusions

In this paper, we construct a type of bivariate fractional calculus based originally on
a function of a single variable defined by a single power series. We prove some of the
fundamental properties of this type of fractional calculus: boundedness of operators, series
formulae, Laplace transforms, semigroup and inversion properties, etc. As a special case,
we also consider the non-singular versions of our bivariate operators, in order to construct
a two-dimensional version of the well-known Atangana–Baleanu calculus.

Some of the ideas used in the above work are similar to those for previously existing
models of fractional calculus with various Mittag-Leffler type kernels; however, this is
the first time that a univariate function has been used in this way to construct bivariate
fractional-calculus operators. Previous contributions in this direction have included using
univariate single series to construct univariate operators [10], using bivariate double
series to construct univariate operators [18], and using bivariate double series to construct
bivariate operators [23,24].

At first glance, it may seem that our construction is unnatural: Given a function of one
variable defined by a single series, why would one make a simple thing more complicated
by replacing z with xα1 yα2 and introducing a bivariate integral operator? The answer is
that the underlying mathematical structure is still simple, because everything is defined by
a single series whose convergence is easy to describe, but the range of problems that can be
tackled is now richer and more diverse, because more variables and parameters allow for
more flexibility in adapting the operators to particular scenarios. Our “trick” of turning a
univariate function into a bivariate operator gives a shortcut, a possibility of modelling
complicated problems using simpler tools.

The bivariate operators that we define lend themselves more to partial differential
equations than to ordinary differential equations. Even our initial motivation for proposing
them, in the first section of this paper, arose from a bivariate Abel-type equation for a
function of two variables. In the literature thus far, Mittag-Leffler kernel operators have
mostly been applied to modelling problems with ordinary differential equations. While the
existing operators could of course be combined to trivially create bivariate derivatives and
integrals with Mittag-Leffler behaviour, we believe that a richer structure will emerge from
considering operators such as those here, where the behaviours with respect to x and y are
intertwined so that the operator cannot simply be broken down into one with respect to x
and another with respect to y. We believe that our work here may have useful ramifications
in the study of fractional partial differential equations in 2 or 2 + 1 dimensions.

For higher dimensions, it will be possible to construct similarly a model of trivariate
or multivariate fractional calculus based on a univariate function defined by a single
series with 3 or n different gamma functions on the denominator. We give here, without
justification, the trivariate version.

Starting from the following function, defined by a series convergent for parameters
αi, βi, γ ∈ C (i = 1, 2, 3) with Re(α1 + α2 + α3) > 0:

Eγ
α1,α2,α3;β1,β2,β3

(z) =
∞

∑
k=0

(γ)k
Γ(α1k + β1)Γ(α2k + β2)Γ(α3k + βk)

· zk

k!
,

it is possible to define the following trivariate fractional integral operator, convergent
for any function f ∈ L1([a1, b1]× [a2, b2]× [a3, b3]) and parameters αi, βi, γ, λ ∈ C with
Re(αi) > 0 and Re(βi) > 0 for i = 1, 2, 3:

a1,a2,a3
Iγ;λ

α1,α2,α3;β1,β2,β3
( f )(x, y)

:=
∫ x

a1

∫ y

a2

∫ z

a3

f (s, t, u)(x − s)β1−1(y − t)β2−1(z − u)β3−1

× Eγ
α1,α2,α3;β1,β2,β3

(
λ(x − s)α1(y − t)α2(z − u)α3

)
du dt ds,
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and then the corresponding trivariate fractional derivative operator are defined as follows
for parameters αi, βi, γ, λ ∈ C with Re(αi) > 0 and Re(βi) ≥ 0 for i = 1, 2, 3:

a1,a2,a3
Dγ;λ

α1,α2,α3;β1,β2,β3
( f )(x, y) =

∂N1+N2+N3

∂xN1 ∂yN2 ∂zN3

(
a1,a2,a3

D−γ;λ
α1,α2,α3;N1−β1,N2−β2,N3−β3

f
)
(x, y).

The detailed analysis and investigation of these functions and operators, including
verification of their essential properties and discussion of special cases and applications, is
left for a future research project.

Other related directions of research may include a deeper study of the function spaces
on which the integral and derivative operators considered here can be defined. For example,
Theorem 2 can be extended easily to show that the bivariate fractional integral operator is
bounded on an Lp space. Then, a measure-theoretical approach may yield extensions to
Morrey spaces [51], or a distributional approach may yield extensions to still larger spaces
related to generalised integral operators [52]. Describing more deeply the various relevant
function spaces may be useful in the qualitative theory of partial differential equations
related to these operators, for example regularity theory [29].
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Abstract: In this paper, by means of the second Chebyshev wavelet and its operational matrix,
we solve a system of fractional-order Volterra–Fredholm integro-differential equations with weakly
singular kernels. We estimate the functions by using the wavelet basis and then obtain the approxi-
mate solutions from the algebraic system corresponding to the main system. Moreover, the imple-
mentation of our scheme is presented, and the error bounds of approximations are analyzed. Finally,
we evaluate the efficiency of the method through a numerical example.
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fractional-order Caputo derivative operator; fractional-order Riemann–Liouville integral operator;
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1. Introduction

Fractional calculus has been the interest of many scientists and engineers [1–3].
Many engineering and science phenomena, such as the heat conduction problem, radiative
equilibrium, elasticity and fracture mechanics [4], viscoelastic deformation, viscoelasticity,
viscous fluid [5], continuous population [6] and so forth, are modeled using the fractional
integro-differential equations with a weakly singular kernel, fractional differential equa-
tions, fractional integral equations and system of nonlinear Volterra integro-differential
equations. Many applied problems are transformed into the system of fractional dif-
ferential and integral equations by mathematical modeling [7–10]. Consequently, it is
essential to obtain the approximate solution of a system of integro-differential equations by
numerical methods.

In this paper, we solve a system of fractional-order Volterra–Fredholm integro-differential
equations with weakly singular kernels in the following form:

⎧⎨
⎩

Dα1 y1(t) = λ1
∫ t

0
y1(s)

(t−s)β1
ds+λ2

∫ 1
0 k1(t, s)y2(s)ds+ f1(t),

Dα2 y2(t) = λ3
∫ t

0
y1(s)

(t−s)β2
ds+λ4

∫ 1
0 k2(t, s)y2(s)ds+ f2(t),

y1(0) = a1, y2(0) = a2, (1)

where y1(t), y2(t) are unknown functions, the functions f1(t), f2(t), k1(t, s), and k2(t, s)
are known, and λ1, λ2, λ3, λ4, a1, a2 are real constants, where 0 < α1, α2, β1, β2 < 1 and
Dα1 , Dα2 denote the Caputo fractional-order derivatives. Furthermore, 1

(t−s)β1
and 1

(t−s)β2

are the weakly singular kernels of the system of fractional-order Volterra–Fredholm integro-
differential equations.
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In recent years, researchers have proposed different methods for solving the system of
differential equations. In 2015, Sahu and Ray [11] developed a numerical method based
on the Legendre hybrid block pulse function to approximate the solution of nonlinear
systems of Fredholm-Manhattan integral equations. In the same year, they presented
another scheme to solve a system of nonlinear Volterra integro-differential equations us-
ing Legendre wavelets [6]. Yüzbasi [12] solved the system of linear Fredholm–Volterra
integro-differential equations, which includes the derivatives of unknown functions in
integral parts using the Bessel collocation method. In 2016, Deif and Grace [13] devel-
oped a new iterative method to approximate the solution of a system of linear fractional
differential integral equations. In 2019, Xie and Yi [14] developed a numerical method
for solving a nonlinear system of fractional-order Volterra–Fredholm integro-differential
equations based on block-pulse functions. In 2020, Saemi et al. [15] developed a solution
for the system of fractional-order Volterra–Fredholm integro-differential equations based
on Müntz–Legendre wavelets.

Wavelets are one of the most important tools used in various fields such as quan-
tum mechanics, signal processing, image processing, time-frequency analysis and data
compression [16]. One of the methods that have been considered in recent years to solve
various ordinary and fractional-order equations is the use of wavelets [17–19]. Wavelets
provide a detailed accurate representation of different types of functions and operators,
and their relationship with numerical algorithms [20,21]. The second Chebyshev wavelet
is one of the wavelets, which has gained attention in solving many problems and is
applicable for solving various types of Volterra integral equations with a weakly singu-
lar kernel [17], fractional-order nonlinear Fredholm integro-differential equations [20],
fractional-order differential equations [22], a system of linear differential equations [23],
fractional-order integro-differential equations with a weakly singular kernel [5], and Abel’s
integral equations [16]. Approximation of equations using the second Chebyshev wavelets
has been considered by many researchers, such as Zhu and Wang [17,24], Zhou and Xu [21],
Wang and Fan [22], Tavassoli Kajani et al. [25], Zhou et al. [26], Yi et al. [27], Lal and
Sharma [16], and Manchanda and Rani [23].

In this paper, we apply the second Chebyshev wavelets method to solve the system of
fractional-order Volterra–Fredholm integro-differential equations with a weakly singular
kernel. In fact, the main purpose of this study is solving the system of equations with
singularity. The second Chebyshev wavelets method converts the system of fractional-
order Volterra–Fredholm integro-differential equations with a weakly singular kernel to a
system of algebraic equations, which can be solved using the conventional linear methods.

2. Preliminaries

In this section, we introduce fractional-order operators, block-pulse functions and
explain their features.

Definition 1. The Riemann–Liouville fractional-order integral operator of order α is given by [17,27]:

Iα f (t) =
1

Γ(α)

∫ t

a
(t − τ)α−1 f (τ)dτ, α > 0,

where α ∈ (m − 1, m], m ∈ N.

The properties of this operator are as follows:

1. Iα
a Iβ

a f = Iα+β
a f ,

2. Iα
a Iβ

a f = Iβ
a Iα

a f ,

3. Iα
a tc = Γ(c+1)

Γ(c+α+1) tc+α.
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Definition 2. The Caputo fractional derivative operator of order α for a function f is given
by [17,18,27]:

Dα f (t) =
1

Γ(n − α)

∫ t

a

f (n)(τ)

(t − τ)α−n+1 dτ, α ∈ (n − 1, n],

where n ∈ N, and Γ(.) is the Gamma function.

The properties between the Caputo fractional-order derivative operator and the
Riemann–Liouville fractional-order integral operator is given by the following
expressions [17,18,24]:

1.
Dα Iα f (t) = f (t),

2.

IαDα f (t) = f (t)−
m−1

∑
k=0

f (k)(0)
k!

tk. (2)

Definition 3. The set of block pulse function on [0, 1) is defined as:

bi(t) =

{
1, i−1

m ≤ t < i
m

0, otherwise

where i = 1, 2, . . . , m. Furthermore, the vector of block pulse functions is obtained as follows:

Bm(t) = [b1(t), b2(t), ..., bm(t)]T ,

and the important properties of these functions are as follows:

1. bi(t)bj(t) =

{
bi(t), i = j,
0, i �= j,

2.
∫ 1

0 bi(t)bj(t)dt =

{
1
m , i = j,
0, i �= j.

Lemma 1. The block pulse function operational matrix of fractional-order integration Fα is
obtained by:

Iα(Bm(t)) ≈ FαBm(t),

where

Fα =
1

mα

1
Γ(α + 2)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 ξ1 ξ2 ξ3 . . . ξm−1
0 1 ξ1 ξ2 . . . ξm−2
0 0 1 ξ1 . . . ξm−3
...

...
. . . . . . . . .

...
0 0 . . . 0 1 ξ1
0 0 0 . . . 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

and ξk = (k + 1)α+1 − 2kα+1 + (k − 1)α+1, k = 1, 2, . . . , m − 1.

For example with α = 0.5 and m = 6:
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F0.5 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.3071 0.2544 0.1656 0.1339 0.1156 0.1033
0 0.3071 0.2544 0.1656 0.1339 0.1156
0 0 0.3071 0.2544 0.1656 0.1339
0 0 0 0.3071 0.2544 0.1656
0 0 0 0 0.3071 0.2544
0 0 0 0 0 0.3071

⎤
⎥⎥⎥⎥⎥⎥⎦

.

3. The Second Chebyshev Wavelets and Function Approximation

In this section, we introduce the second Chebyshev wavelet and then use this basis to
provide an approximation of functions.

3.1. The Second Chebyshev Wavelets and Their Properties

In this part, we introduce the second Chebyshev wavelet and its features.

Definition 4. The second Chebyshev wavelet on the interval [0, 1) is defined as [16,23,27]:

ψnm(t) =

⎧⎨
⎩2

k
2

√
2
π Um(2kt − 2n + 1), n−1

2k−1 ≤ t < n
2k−1 ,

0, otherwise,

where n = 1, 2, . . . , 2k−1, m = 0, 1, . . . , M − 1, and k, M ∈ N. The coefficient
√

2
π is for

orthonormality, and Um(t) is the Chebyshev polynomial of the second kind with degree m, which is
as follows:

U0(t) = 1, U1(t) = 2t, Um+1(t) = 2tUm(t)− Um−1(t).

Furthermore, the weight function of the second kind Chebyshev polynomials is
ω(t) =

√
1 − t2, and with transmission and dilation, first we obtain ω̂(t) = ω(2t − 1),

and then we get ωn(t) = ω(2kt − 2n + 1) as the weight function of the second Chebyshev
wavelets basis.

For example, with k = 2 and M = 3, we have n = 1, 2, m = 0, 1, 2, and for 0 ≤ t < 0.5,

ψ10(t) = 2

√
2
π

U0(4t − 1) = 2

√
2
π

,

ψ11(t) = 2

√
2
π

U1(4t − 1) = 2

√
2
π
(8t − 2),

ψ12(t) = 2

√
2
π

U2(4t − 1) = 2

√
2
π
(64t2 − 32t + 3),

and also for 0.5 ≤ t < 1,

ψ20(t) = 2

√
2
π

U0(4t − 3) = 2

√
2
π

,

ψ21(t) = 2

√
2
π

U1(4t − 3) = 2

√
2
π
(8t − 6, )

ψ22(t) = 2

√
2
π

U2(4t − 3) = 2

√
2
π
(64t2 − 96t + 35).

The second Chebyshev wavelets have an orthonormal basis of L2[0, 1), i.e.,

< ψnm(t), ψn′m′(t) >ωn=
∫ 1

0
ψnm(t)ψn′m′(t)ωn(t)dt =

{
1, m = m′, n = n′,
0, o.w.,
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where < ., . >ωn denotes the inner product. The second Chebyshev wavelet has compact
support [ n−1

2k−1 , n
2k−1 ], n = 1, . . . , 2k−1. The Chebyshev wavelet charts for k = 3 and M = 4

are shown in Figure 1.

Figure 1. The second Chebyshev wavelet charts for k = 3 and M = 4.

According to the second Chebyshev wavelet, the vector of this wavelet is given by [16,27]:

Ψ(t) = [ψ10(t), ψ11(t), . . . , ψ1(M−1)(t),
ψ20(t), ψ21(t), . . . , ψ2(M−1)(t), . . . ,
ψ2k−10(t), ψ2k−11(t), . . . , ψ2k−1(M−1)(t)]

T .
(3)

In other words, for 0 ≤ t < 0.5:

Ψ(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
√

2
π

2
√

2
π (8t − 2)

2
√

2
π (64t2 − 32t + 3)

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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and for 0.5 ≤ t < 1:

Ψ(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

2
√

2
π

2
√

2
π (8t − 6)

2
√

2
π (64t2 − 96t + 35)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Moreover, for the collocation points [24]

ti =
2i − 1
2m′ , i = 1, 2, . . . , m′,

with m′ = 2k−1M, the second Chebyshev wavelets matrix is obtained as follows [24,25]:

Φm′×m′ = [Ψ(
1

2m′ ), Ψ(
3

2m′ ), . . . , Ψ(
2m′ − 1

2m′ )].

For k = 2 and M = 3, i.e.,

Φ =

⎡
⎢⎢⎢⎢⎢⎢⎣

1.59576 1.59576 1.59576 0 0 0
−2.12769 0 2.12769 0 0 0
1.24115 −1.59576 1.24115 0 0 0

0 0 0 1.59576 1.59576 1.59576
0 0 0 −2.12769 0 2.12769
0 0 0 1.24115 −1.59576 1.24115

⎤
⎥⎥⎥⎥⎥⎥⎦

.

There is a relationship between the second Chebyshev wavelet and the block
pulse function:

Ψ(t) = ΦBm′(t). (4)

If Iα is the fractional-order integration operator of the second Chebyshev wavelets,
one can achieve [17,24]:

IαΨ(t) ≈ PαΨ(t), with Pα = ΦFαΦ−1, (5)

where Pα is named as the operational matrix of fractional-order integration of the second
Chebyshev wavelet. For example,

P0.5 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.5365 0.1575 −0.0249 0.4366 −0.0754 0.0214
0.0191 −0.0449 0.0858 0.1287 0.2242 −0.2105
0.0512 −0.0470 0.1604 0.0948 −0.0253 0.0100

0 0 0 0.5365 0.1575 −0.0249
0 0 0 −0.2105 0.2242 0.1287
0 0 0 0.0512 −0.0470 0.1604

⎤
⎥⎥⎥⎥⎥⎥⎦

.

3.2. Function Approximation

Using the second Chebyshev wavelet, each function in L2 can be approximated using
the following lemma.

Lemma 2. Any function f ∈ L2([0, 1]) can be expanded into the second Chebyshev
wavelet as [16,27,28]:

f (t) =
∞

∑
n=1

∑
m∈Z

cnmψnm(t), (6)
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where

cnm = 〈 f (t), ψnm(t)〉ωn =
∫ 1

0
ψnm(t) f (t)ωn(t)dt.

If Equation (6) is truncated, then with Equation (3)

f (t) ≈
2k−1

∑
n=1

M−1

∑
m=0

cnmψnm(t) = CTΨ(t).

Remark 1. Let X ∈ L2([0, 1]), so

IαX(t) ≈ IαCTΨ(t) = CT IαΨ(t) = CT PαΨ(t). (7)

4. Method Analysis

For solving the system (1), without reducing the generality of the equations under
consideration, we assume that the initial conditions are zero, and we approximate Dαyi(t),
fi(t), and ki(t, s) for i = 1, 2 in terms of the second Chebyshev wavelet as follows:

Dαi yi(t) � CT
i Ψ(t), fi(t) � FT

i Ψ(t), ki(t, s) � ΨT(t)KiΨ(s). (8)

From Equations (2), (7) and (8), we obtain

yi(t) = Iαi Dαi yi(t) � CT
i Pαi Ψ(t). (9)

Thus,
∫ t

0

yi(s)

(t − s)βi
ds = CT

i Pαi

∫ t

0

Ψ(s)

(t − s)βi
ds

= CT
i Pαi Γ(1 − βi)I1−βi Ψ(t) (10)

= Γ(1 − βi)CT
i Pαi P1−βi Ψ(t),

and from Equation (8) and
∫ 1

0 Ψ(s)Ψ(s)Tds = D, we have

∫ 1

0
ki(t, s)yi(s)ds =

∫ 1

0
ΨT(t)KiΨ(s)Ψ(s)T Pαi TCids

= ΨT(t)Ki

∫ 1

0
Ψ(s)Ψ(s)TdsPαi TCi (11)

= ΨT(t)KiDPαi TCi = CT
i Pαi DTKT

i Ψ(t).

By substituting Equations (8)–(11) into (1), we get{
CT

1 Ψ(t) = λ1Γ(1 − β1)CT
1 Pα1 P1−β1 Ψ(t) + λ2CT

2 Pα2 DTKT
1 Ψ(t) + FT

1 Ψ(t),
CT

2 Ψ(t) = λ3Γ(1 − β2)CT
1 Pα1 P1−β2 Ψ(t) + λ4CT

2 Pα2 DTKT
2 Ψ(t) + FT

2 Ψ(t),
(12)

and we obtain {
CT

1 = λ1Γ(1 − β1)CT
1 Pα1 P1−β1 + λ2CT

2 Pα2 DTKT
1 + FT

1 ,
CT

2 = λ3Γ(1 − β2)CT
1 Pα1 P1−β2 + λ4CT

2 Pα2 DTKT
2 + FT

2 .
(13)

By solving system (13), one can get C1 and C2. Then substituting them into (9),
the unknown solutions can be obtained.

5. Error Analysis

In this section, we present an error estimation for the system of Equation (1).
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Theorem 1. Let ŷ1(t) and ŷ2(t) be the approximations of y1(t) and y2(t), obtained by the second
Chebyshev wavelets basis (6), as the solutions of system (1) with 0 < β1, β2 < 1/2. Assume also
that there is a pair of constants k1 and k2 such that

‖ki(t, s)‖2 =< ki(t, s), ki(t, s) >
1
2 =

(∫ 1

0

∫ 1

0
|ki(t, s)|2dtds

) 1
2

≤ ki, i = 1, 2.

If
|λ1| < Γ(2 + α1)

√
1 − 2β1,

k2|λ4| < Γ(1 + α2),

|λ1|
(1 + α1)

√
1 − 2β1

+
k1|λ2λ3|

(1 + α2)
√

1 − 2β2(Γ(1 + α2)− k2|λ4|)
< Γ(1 + α1),

and
k1|λ2λ3|(1 + α1)

√
1 − 2β1

(1 + α2)
√

1 − 2β2
(
Γ(2 + α1)

√
1 − 2β1 − |λ1|

) + k2|λ4| < Γ(1 + α2),

then the approximate solutions of system (1) converge to the exact solutions with respect to L2 norm.

Proof. Compute, by the assumptions,

‖y1 − ŷ1‖2 =

∥∥∥∥Iα1

[
λ1

∫ t

0

y1(s)− ŷ1(s)
(t − s)β1

ds + λ2

∫ 1

0
k1(t, s)(y2(s)− ŷ2(s))ds

]∥∥∥∥
2
,

and

‖y2 − ŷ2‖2 =

∥∥∥∥Iα2

[
λ3

∫ t

0

y1(s)− ŷ1(s)
(t − s)β2

ds + λ4

∫ 1

0
k2(t, s)(y2(s)− ŷ2(s))ds

]∥∥∥∥
2
.

Using the triangular inequality, we get

‖y1 − ŷ1‖2 ≤ Iα1

[
|λ1|

∫ t

0
‖(t − s)−β1‖2‖y1 − ŷ1‖2ds + |λ2|

∫ 1

0
‖k1(t, s)‖2‖y2 − ŷ2‖2ds

]
,

and

‖y2 − ŷ2‖2 ≤ Iα2

[
|λ3|

∫ t

0
‖(t − s)−β2‖2‖y1 − ŷ1‖2ds + |λ4|

∫ 1

0
‖k2(t, s)‖2‖y2 − ŷ2‖2ds

]
.

Furthermore, for 0 < β1, β2 < 1/2 and 0 ≤ t ≤ 1, we have

‖(t − s)−β1‖2 =

(∫ 1

0

1
(t − s)2β1

ds
)1

2 ≤ 1√
1 − 2β1

,

‖(t − s)−β2‖2 =

(∫ 1

0

1
(t − s)2β2

ds
)1

2 ≤ 1√
1 − 2β2

,

and as a result, we obtain

‖y1 − ŷ1‖2 ≤ |λ1|
Γ(2 + α1)

√
1 − 2β1

‖y1 − ŷ1‖2 +
k1|λ2|

Γ(1 + α1)
‖y2 − ŷ2‖2,
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and

‖y2 − ŷ2‖2 ≤ |λ3|
Γ(2 + α2)

√
1 − 2β2

‖y1 − ŷ1‖2 +
k2|λ4|

Γ(1 + α2)
‖y2 − ŷ2‖2.

Now, we denote

ei(t) = ‖yi(t)− ŷi(t)‖2, i = 1, 2,

so,

e1(t) ≤ |λ1|
Γ(2 + α1)

√
1 − 2β1

e1(t) +
k1|λ2|

Γ(1 + α1)
e2(t), (14)

and consequently by the assumption |λ1| < Γ(2 + α1)
√

1 − 2β1, one can conclude

e1(t) ≤
k1|λ2|

Γ(1+α1)

1 − |λ1|
Γ(2+α1)

√
1−2β1

e2(t). (15)

We have similar relations for the second approximation, i.e.,

e2(t) ≤ |λ3|
Γ(2 + α2)

√
1 − 2β2

e1(t) +
k2|λ4|

Γ(1 + α2)
e2(t), (16)

and attention to assumption k2|λ4| < Γ(1 + α2) leads to

e2(t) ≤
|λ3|

Γ(2+α2)
√

1−2β2

1 − k2|λ4|
Γ(1+α2)

e1(t). (17)

Substituting (17) into (14), and (15) into (16), we have

(1 − ε1)e1(t) ≤ 0, (1 − ε2)e2(t) ≤ 0, (18)

where

ε1 =
|λ1|

Γ(2 + α1)
√

1 − 2β1
+

k1|λ2|
Γ(1 + α1)

⎛
⎜⎝

|λ3|
Γ(2+α2)

√
1−2β2

1 − k2|λ4|
Γ(1+α2)

⎞
⎟⎠,

and

ε2 =
|λ3|

Γ(2 + α2)
√

1 − 2β2

⎡
⎢⎣

k1|λ2|
Γ(1+α1)

(1 − |λ1|
Γ(2+α1)

√
1−2β1

)

⎤
⎥⎦+

k2|λ4|
Γ(1 + α2)

.

On the other hand, according to the assumptions of this theorem, we get 1 − ε1 > 0
and 1 − ε2 > 0; also, we know that e1(t) ≥ 0 and e2(t) ≥ 0. Therefore, the relations
in (18) are satisfied only for e1(t), e2(t) = 0. The conditions of this theorem are sufficient
to find the appropriate approximate solution of system (1), but they can be met in certain
cases rarely. Furthermore, according to the relation (6) and the expressed discretization,
the approximation of the solution is done in some node points on [0, 1]. In other words,
according to Lemma 2, it is possible to get a suitable approximation so that e1(t) → 0 and
e2(t) → 0 by the constant consideration of m and when k → ∞, even if the conditions of
Theorem 1 do not hold.

6. Numerical Example

To demonstrate the efficiency of our proposed method, we consider the following example.
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Example 1. Consider the system of fractional-order Volterra–Fredholm integro-differential equa-
tions with a weakly singular kernel:

⎧⎨
⎩

D0.4y1(t) =
∫ t

0
y1(s)

(t−s)0.5 ds+2
∫ 1

0 sty2(s)ds+ f1(t),

D0.5y2(t) = −0.5
∫ t

0
y1(s)

(t−s)0.4 ds+
∫ 1

0 (t + s)y2(s)ds+ f2(t),
y1(0) = 0, y2(0) = 0,

where

f1(t) =
1

Γ(1.6)
t

6
10 − 2

3
t − 4

3
t

3
4 , f2(t) = − 1

Γ(1.5)
t

1
2 +

1
2

t +
25
48

t
8
5 +

1
3

.

The exact solutions of this system are y1(t) = t and y2(t) = −t. The absolute errors of y1(t)
and y2(t) for different values of t are listed in Tables 1 and 2.

Figures 2–5 display the results of comparing the errors of different approximations
by the second Chebyshev wavelets method for various values of k and M. Furthermore,
Table 3 shows the execution time.

Table 1. Absolute error of y1(t) for M = 3 and k = 4, 5, 6 (Example 1).

t M = 3, k = 4 M = 3, k = 5 M = 3, k = 6

0.1 1.5733 × 10−3 5.3788 × 10−4 1.7841 × 10−4

0.2 8.1154 × 10−4 2.6760 × 10−4 8.9690 × 10−5

0.3 1.7912 × 10−4 5.1094 × 10−5 1.4128 × 10−5

0.4 1.4759 × 10−3 4.6674 × 10−4 1.4909 × 10−4

0.5 3.1524 × 10−3 1.0029 × 10−3 3.2290 × 10−4

0.6 5.2736 × 10−3 1.6820 × 10−3 5.4294× 10−4

0.7 7.9262 × 10−3 2.5301× 10−3 8.1767 × 10−4

0.8 1.1204 × 10−2 3.5784 × 10−3 1.1571 × 10−3

0.9 1.5225 × 10−2 4.8636 × 10−3 1.5733 × 10−3

Table 2. Absolute error of y2(t) for M = 3 and k = 4, 5, 6 (Example 1).

t M = 3, k = 4 M = 3, k = 5 M = 3, k = 6

0.1 9.1898 × 10−3 2.9619 × 10−3 9.6013 × 10−4

0.2 1.2525 × 10−2 4.0140 × 10−3 1.3022 × 10−3

0.3 1.5780 × 10−2 5.0567 × 10−3 1.6400 × 10−3

0.4 1.9240 × 10−2 6.1633 × 10−3 1.9983 × 10−3

0.5 2.3036 × 10−2 7.3765 × 10−3 2.3910 × 10−3

0.6 2.7270 × 10−2 8.7311 × 10−3 2.8296 × 10−3

0.7 3.2061 × 10−2 1.0263 × 10−2 3.3254 × 10−3

0.8 3.7524 × 10−2 1.2009 × 10−2 3.8909 × 10−3

0.9 4.3800 × 10−2 1.4015 × 10−2 4.5404 × 10−3

Table 3. Run times of Example 1.

Values of M , k Run Time (s)

M = 3, k = 4 0.78
M = 3, k = 5 1.70
M = 3, k = 6 6.55
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Figure 2. Absolute error of y1(t) for M = 3 and k = 3, 4, 5 (Example 1).

Figure 3. Absolute error of y2(t) for M = 3 and k = 3, 4, 5 (Example 1).
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Figure 4. Exact and approximate solutions of y1(t) for M = 3 and k = 3, 4, 5 (Example 1).

Figure 5. Comparison between the exact and numerical solutions of y2(t) for M = 3 and k = 3, 4, 5
(Example 1).

7. Conclusions

In this paper, a numerical algorithm using the second Chebyshev wavelet was pro-
posed for a system of fractional-order Volterra–Fredholm integro-differential equations
with weakly singular kernels in the Volterra part. Applying the properties of the second
Chebyshev wavelet, we transformed the main system into an algebraic system of equations
with a sparse coefficient matrix. By solving this system, an approximate solution was
obtained for the system of fractional integral equations. Furthermore, the error analysis of
the proposed approach was presented.
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