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Gabriel de Lima e Silva, Thalis José Girardi and Sebastião Alves Dias

On Gauge Invariance of the Bosonic Measure in Chiral Gauge Theories
Reprinted from: Universe 2021, 7, 283, doi:10.3390/universe7080283 . . . . . . . . . . . . . . . . . 15

Thomas Berry and Matt Visser

Relativistic Combination of Non-Collinear 3-Velocities Using Quaternions
Reprinted from: Universe 2020, 6, 237, doi:10.3390/universe6120237 . . . . . . . . . . . . . . . . . 25

Houri Ziaeepour

Making a Quantum Universe: Symmetry and Gravity
Reprinted from: Universe 2020, 6, 194, doi:10.3390/universe6110194 . . . . . . . . . . . . . . . . . 39

Julio Marny Hoff da Silva and Gabriel Marcondes Caires da Rocha

Strongly Continuous Representations in the Hilbert Space: A Far-Reaching Concept
Reprinted from: Universe 2021, 7, 285, doi:10.3390/universe7080285 . . . . . . . . . . . . . . . . . 67

Francisco Cabral, Francisco S. N. Lobo and Diego Rubiera-Garcia

Fundamental Symmetries and Spacetime Geometries in Gauge Theories of Gravity—Prospects
for Unified Field Theories
Reprinted from: Universe 2020, 6, 238, doi:10.3390/universe6120238 . . . . . . . . . . . . . . . . . 87

Loriano Bonora, Roberto Soldati and Stav Zalel

Dirac, Majorana, Weyl in 4D
Reprinted from: Universe 2020, 6, 111, doi:10.3390/universe6080111 . . . . . . . . . . . . . . . . . 119

v





universe

Editorial

Editorial to the Special Issue “80 Years of Professor Wigner’s
Seminal Work: On Unitary Representations of the
Inhomogeneous Lorentz Group”

Julio Marny Hoff da Silva

��������	�
�������

Citation: Hoff da Silva, J.M. Editorial

to the Special Issue “80 Years of

Professor Wigner’s Seminal Work: On

Unitary Representations of the

Inhomogeneous Lorentz Group”.

Universe 2021, 7, 310. https://

doi.org/10.3390/universe7080310

Received: 11 August 2021

Accepted: 13 August 2021

Published: 21 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Departamento de Física, Universidade Estadual Paulista, UNESP, Av. Dr. Ariberto Pereira da Cunha, 333,
Guaratinguetá 12516-410, Brazil; julio.hoff@unesp.br

The present Special Issue is dedicated to celebrate 80 years of the Professor Eugene
Paul Wigner paper “On Unitary Representations of the Inhomogeneous Lorentz Group”,
published in 1939 [1]. It is almost impossible to have a fair measure of the impact of such a
work. To name one of the most important achievements present in [1], the very concept of
a particle is there constructed: a particle is an irreducible representation of the Poincarè
group. For the contemporary reader, this assertion may sound as a kind of truism, but it
certainly deserves some additional attention.

Poincarè transformations leave the Minkowski metric invariant. They may quite well
be understood as symmetries of spacetime in the absence of gravity. The fulcrum in the
Wigner analysis is, then, to represent the group of spacetime symmetries in the Hilbert
space—the space of quantum physical states—in such a way that this representation acts
also in a symmetric way, where in this last case a symmetry means a set of transformations
preserving probabilities. There are many intricate problems in such an endeavor.

To begin with, it is important to recall that, although very well known, the Lorentz
group is not simple. It indeed has a nontrivial topology and the task of genuine or projective
representation is a problem to be addressed. Besides, continuity is also a concept generally
accepted as valid, but rarely proved. These formal, but definitely important, aspects were
worked out and developed in a precise manner by Wigner. Moreover, as the Lorentz group
is non-compact, there is no unitary representation of finite dimension for that. Unitarity,
however, is indeed a property of representations preserving norms for a connected group
(as Wigner himself demonstrated in 1931 [2]).

The crucial problem related above was solved by Wigner with the help of the induced
representation method, by means of which the Little Group is reached. As a typical achieve-
ment resulting from such an approach, by selecting one particle state four-momentum
representative for a massive particle as (m,�0), the Little Group condition engenders a
constraint, leading to the recognizing of SO(3) as the Little Group, endowed, thus, with
momentum angular algebra (even for a rest momentum as the chosen one). That is to say:
the spin of a massive particle (an intrinsic angular momentum indeed) is a quantum label
without which it would not be possible to represent all the spacetime symmetries in Quan-
tum Mechanics. The particle properties are then bound to the spacetime symmetries. After
56 pages of a rigorous analysis, this is the kind of beauty arising from the Wigner analysis.

The contributions to this Special Issue may be separated out into Reviews and Research
papers. In a broad-brush picture it may be reported as follows: in the paper [3] the effects
of chirality in the spin entanglement between a lepton and a neutrino are investigated.
The results point to an interesting framework for measuring chiral oscillations and, as a
consequence, the intrinsic (bi)spinorial fermionic structure. The paper [4] deals in detail
and carefully with the gauge invariance of the bosonic measure in the generating functional
of chiral gauge theories, a point usually commented on, but not addressed. Going further
in the Special Issue contributions, in the paper [5], the algebra of quaternions is used to
achieve interesting results for the relativistic combination of non-collinear tri-velocities. As
a result, the nontrivial angular dependence for such combinations is naturally absorbed
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in the quaternion multiplication, the same happening with other relevant results. In the
paper [6], the outlines of a framework to discuss quantum gravity is presented. The ideas,
comments and thoughts are clearly exposed, entailing a rich discussion. The resulting
model argues that what we perceive as classical spacetime is actually the configuration
space of its content.

Moving to the reviews part of the Special Issue, the review [7] brings a discussion
about the special care devoted to the strongly continuous representation concept in the
Wigner analysis. The relevant theorems and propositions related to the continuity concept
in representation theory are reviewed in detail. The review [8] approaches the structure
of gauge theories of gravity and post-Riemann geometries, discussing their recent de-
velopments and framing the analysis in the scope of understanding the very nature of
spacetime and gravity in regimes where the General Relativity framework may come
to debacle. The review [9] investigates the concept and properties of Dirac, Weyl and
Majorana fermions in the four-dimensional Minkowski spacetime. Special attention is
devoted to the quantum aspects of Weyl and Majorana fermions, discussing and clearing
some misconceptions presented in the literature. The effective actions for these fermions
coupled to gauge fields are reviewed in detail, and the relation between chiral and trace
anomalies is extensively approached.

This Special Issue provides a well balanced mix of reviews and new results, culmi-
nating in an interesting volume celebrating and appreciating the Wigner work, but also
studying physically relevant problems and methods in contemporary physics. There is
rich material covering a wide range of areas, such as Quantum Mechanics and Quantum
Field Theory, Mathematical Physics, and Gravitation. In some sense, the variety of subjects
approached here is also a tribute to the robust foundational work of Professor Wigner:
deep roots provide leafy and branched trees.
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Abstract: Dirac bispinors belong to an irreducible representation of the complete Lorentz group,
which includes parity as a symmetry yielding two intrinsic discrete degrees of freedom: chirality and
spin. For massive particles, chirality is not dynamically conserved, which leads to chiral oscillations.
In this contribution, we describe the effects of this intrinsic structure of Dirac bispinors on the
quantum entanglement encoded in a lepton-antineutrino pair. We consider that the pair is generated
through weak interactions, which are intrinsically chiral, such that in the initial state the lepton
and the antineutrino have definite chirality but their spins are entangled. We show that chiral
oscillations induce spin entanglement oscillations and redistribute the spin entanglement to chirality-
spin correlations. Such a phenomenon is prominent if the momentum of the lepton is comparable
with or smaller than its mass. We further show that a Bell-like spin observable exhibits the same
behavior of the spin entanglement. Such correlations do not require the knowledge of the full density
matrix. Our results show novel effects of the intrinsic bispinor structure and can be used as a basis
for designing experiments to probe chiral oscillations via spin correlation measurements.

Keywords: entanglement; bispinors; chirality

1. Introduction

To ensure that transformations between inertial frames preserve probabilities, Wigner
proposed in his seminal work [1] that states describing particles should belong to unitary
irreducible representations (irreps) of the Poincaré group. In such a framework, the degrees
of freedom that a particle carries are defined by the particular irrep in question. Specifically,
the irreps of the Poincaré group are classified by its Casimir invariants: momentum (mass)
and the eigenvalues of the Pauli–Lubanski vector, related to the spin [2]. This description
of particle states in terms of irreps of the Poincaré group has been used not only in particle
and high energy physics [3] but also in connection with information theory for studying
transformation properties of quantum correlations [4–7] and for quantum protocols in
relativistic setups, such as clock synchronization [8,9] and teleportation [10].

Another prominent example in the context of relativistic quantum mechanics is the
Dirac bispinor, which belongs to an irrep of the complete Lorentz group. This group includes
parity as a symmetry [2], which connects the two irreps of the (proper) Lorentz group, given
in terms of the two-component Weyl spinors. The irreps of the complete Lorentz group are
given in terms of a SU(2)⊗ SU(2) group structure, associated with two discrete degrees
of freedom [2,11–13]: spin and chirality (or intrinsic parity). Since a state described by a
Dirac bispinor has two dichotomic degrees of freedom, it can be understood as a two-qubit
state [11,12]. In general, chirality and spin of a single particle can become entangled under
external potentials [14], as noticed for Dirac-like systems, such as bilayer graphene [15].

The intrinsic structure of the Dirac bispinor has also implications for the dynamics
of free particles. Helicity (the projection of spin in the direction of the momentum) is a
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conserved quantity, but chirality is not [16]. In fact, the different chiral components of a
bispinor are coupled via the mass term of the Dirac Hamiltonian. This generates chiral
oscillations [17], which can be related to the Zitterbewegung effect [18]. The dynamical
features of chiral oscillations are particularly relevant for dynamics of neutrinos [19–21].
Neutrinos and antineutrinos only interact via weak processes, which are inherently chi-
ral [22] and create such particles in states with definite chirality. Under free dynamics, such
massive (anti)neutrino states exhibit a finite probability of being in the opposite chirality.
The amplitude of these oscillations depends on the ratio between mass and energy and is
prominent in the non-relativistic dynamical regime [23]. Since only one chiral component
is measurable through weak processes, chiral oscillations can yield a depletion of the
measured flux of the cosmic neutrino background [24–26].

In this contribution, we show that chiral oscillations affect quantum correlations
shared between spins of a lepton-antineutrino pair. We consider a singlet state of a lepton
and a massive antineutrino propagating along opposite directions. Assuming that such
state is created by weak interactions (e.g., by the decay of a pion, as seen in the pion’s
rest frame), the massive antineutrino and the lepton have, at t = 0, definite chiralities,
modeled here by a chiral projection of the Dirac bispinors associated with the antineutrino
and with the lepton. The spins are in a perfect anticorrelated spin state, as depicted in
Figure 1. Under free evolution, chiral oscillations change the superposition form of the
initial state, inducing oscillations on the correlations shared by the spins. We compute such
oscillations both for the quantum entanglement encoded in the spins [27] and for Bell-type
spin correlations [28].

+

ν̄l

pν̄ = pezpl = − pez

| ⟩A B
ν̄l

| ⟩

| ⟩

| ⟩

| ⟩

| ⟩

A(t) B(t)

C(t) D(t)

+

+ +

Chiral Oscillation Components:

Change on spin correlations

l ν̄

ez

| 〉
| (t = )〉

| (t > )〉

(a) (b)

(c)

Chiralities :⟨ ̂γ5⟩

-1 (left handed)

+1 (right handed)

Figure 1. Framework: (a) a lepton and an antineutrino propagate in opposite directions with
same momentum. Each is described by a Dirac bispinor, carrying spin and chirality degrees of
freedom. (b) At t = 0, the state is a superposition in which the lepton and the antineutrino have
definite chiralities. The coefficients A and B depend on the masses of the particles and on the
momentum. (c) Under free evolution, the chiralities oscillate, changing the initial superposition and
the correlations shared between the spins.

We show that chiral oscillations induce a redistribution of entanglement from spin-
spin to spin-chirality. As a consequence, the amount of entanglement encoded only on the
spins of the pair oscillates in time with a frequency that depends on the dynamical regime
of propagation of both particles. In fact, even in the configuration where the lepton mass
is much larger than the antineutrino mass, oscillations of the spin-spin entanglement are
still relevant provided that the lepton is in the non-relativistic dynamical regime. Such
entanglement oscillations exhibit a maximum amplitude for momenta of the order of the
antineutrino mass, a resonance-like behavior. The spin-spin Bell-type correlation exhibits
the same behavior of the spin-spin entanglement, but since its measurement requires only
specific spin-spin correlations (and not a full reconstruction of the density matrix), it is
more convenient for experiments.
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2. Chiral Oscillations and Spin-Spin Entanglement

We consider the dynamics of a state describing a lepton-antineutrino pair propagating
in opposite directions with the same momentum. We assume that the lepton (hereafter
indicated by the subscript l) with mass ml has momentum −pez, while the antineutrino
(indicated by the subscript ν̄) with mass mν̄ has momentum pez, as depicted in Figure 1.
As a toy model for the creation process, we assume the following superposition

|Φ〉 = |v↑(p, mν̄)〉 ⊗ |u↓(−p, ml)〉 − |v↓(p, mν̄)〉 ⊗ |u↑(−p, ml)〉√
2

(1)

where |u↑(↓)(p, m)〉 and |v↑(↓)(p, m)〉 denote the Dirac bispinors with parallel (↑) and
antiparallel (↓) spins polarized along ez. Those bispinors are the eigenstates of the free
Dirac Hamiltonian

Ĥ = p̂ · α̂ + mβ̂, (2)

with energies ±Ep,m = ±
√

p2 + m2, where neutral units c = h̄ = 1 have been considered,
boldface letters indicate vectors, and hats “ˆ” denote operators. The 4× 4 Dirac matrices
α̂ and β̂ satisfy the anti-commutation relations α̂iα̂j + α̂jα̂i = 2δij Î4, α̂i β̂ + β̂α̂i = 0, and
β̂2 = Î4, where ÎN denotes the N × N identity matrix. We adopt the chiral representation
of the Dirac matrices [29]

α̂i =

[
σ̂i 0
0 −σ̂i

]
, β̂ =

[
0 Î2
Î2 0

]
, (3)

with σ̂i denoting the Pauli matrices, which returns for the bispinors

|u↑(p, m)〉 = Np,m

[
f+(p, m)| ↑〉
f−(p, m)| ↑〉

]
, |u↓(p, m)〉 = Np,m

[
f−(p, m)| ↓〉
f+(p, m)| ↓〉

]
,

|v↑(p, m)〉 = Np,m

[
f+(p, m)| ↑〉
− f−(p, m)| ↑〉

]
, |v↓(p, m)〉 = Np,m

[
f−(p, m)| ↓〉
− f+(p, m)| ↓〉

]
,

(4)

where | ↑〉 and | ↓〉 are the eigenstates of σ̂z, and the short hand notation sets

Np,m =

√
Ep,m + m

4Ep,m

f±(p, m) = 1± p
Ep,m + m

.
(5)

Finally, the normalization of the bispinors is 〈us(p, m)|ul(p, m)〉 = 〈vs(p, m)|vl(p, m)〉 = δsl ,
and the orthogonality relations are 〈us(p, m)|vl(−p, m)〉 = 0.

The choice of the singlet state (1) is motivated by the decay of a pion into a lepton-
antineutrino pair in the center of mass of the pion [30–32], a process generated by weak
interactions. Since weak interactions are inherently chiral and select definite chiral com-
ponents of the bispinors, we model such an effect by projecting the state (1) into definite
chiralities: the antineutrino into right (positive) chirality and the lepton into left (negative)
chirality, such that, at t = 0, the state is given by

|Ψ(0)〉 = Π̂(ν̄)
R ⊗ Π̂(l)

L |Φ〉
〈Φ|Π̂(ν̄)

R ⊗ Π̂(l)
L |Φ〉

. (6)

The chirality projectors are given in terms of the chiral matrix γ̂5 = diag
[
Î2,− Î2

]
by

Π̂(A)
R(L) =

Î(A) + (−)γ̂(A)
5

2
, (A = ν̄, l) (7)

5
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such that

|Ψ(0)〉 = A(p, ml , mν̄)|ν̄↑(0)〉 ⊗ |l↓(0)〉 − B(p, ml , mν̄)|ν̄↓(0)〉 ⊗ |l↑(0)〉. (8)

The chirality projected states at t = 0 are

|ν̄↑(↓)(0)〉 =
[| ↑ (↓)〉

0

]
, |l↑(↓)(0)〉 =

[
0

| ↑ (↓)〉

]
, (9)

and the coefficients of the superposition are given by

A(p, ml , mν̄) = Np,ml Np,mν̄ f+(p, mν̄) f−(p, ml)

[
1
2
− p2

2Ep,ml Ep,mν̄

]− 1
2

,

B(p, ml , mν̄) = Np,ml Np,mν̄ f−(p, mν̄) f+(p, ml)

[
1
2
− p2

2Ep,ml Ep,mν̄

]− 1
2

.

(10)

If p � mν̄, then A � B, and the largest contribution to the superposition (8) is the
first term.

Dirac bispinors belong to an irreducible representation of the complete Lorentz group,
and as such they carry two intrinsic dichotomic degrees of freedom [2]: chirality (or
intrinsic parity) and spin. The former degree of freedom is related to the inclusion of
spatial parity as a symmetry. In this framework, we can understand each single particle
state as a two qubit state [11], and a bispinor state belongs to a composite Hilbert space
HS ⊗HC with dim[HC] = dim[HS] = 2. Here,HS(C) is associated with the spin (chirality)
degree of freedom. Therefore, a two particle state, such as (1), can be interpreted as a
four qubit state [13]. The quantum bits are chirality and spin of the antineutrino (Cν̄

and Sν̄, respectively) and chirality and spin of the lepton (Cl and Sl , respectively). The
state of the lepton-antineutrino pair is then described in the composite Hilbert space
HCν̄

⊗HSν̄
⊗HCl ⊗HSl .

The superposition (1) is an entangled state: it can not be written as the tensor product
of pure states |ψCν̄

〉 ⊗ |ψSν̄
〉 ⊗ |ψCl 〉 ⊗ |ψSl 〉, where |ψA〉 ∈ HA with A denoting the degrees

of freedom. The entanglement encoded in (1) involves all four degrees of freedom of
the state. On the other hand, the chiral projected state (8), describing the intrinsic chiral
character of weak interactions, encodes entanglement only between the spins. In fact,
we can readily write |Ψ(0)〉 = |+Cν̄

〉 ⊗ |−Cl 〉 ⊗ |ΨSν̄ ,Sl 〉, with |±A〉 denoting the positive
(negative) chirality of A = Cν̄,l , and

|ΨSν̄ ,Sl 〉 = A(p, ml , mν̄)| ↑Sν̄
〉 ⊗ | ↓Sl 〉 − B(p, ml , mν̄)| ↓Sν̄

〉 ⊗ | ↑Sl 〉 (11)

is the joint spin state at t = 0.
To compute the amount of entanglement shared between the spins, we adopt the

entanglement quantifier called negativity [33,34]. The Peres separability criterion [33] states
that the partial transposed density matrix of a separable state has only positive eigenvalues.
For a two-qubit state, partial transposition corresponds to the transformation |ij〉〈kl| →
|il〉〈kj|, i.e., it is a transposition on the subspace of only one of the subsystems. The criterion
allows the definition of the negativity as an entanglement quantifier for two-qubit states:
given a density matrix 	 representing the state, it is defined asNSν̄ ,Sl [	] = ||	T || − 1, where
||	T || is the trace norm of the partial transposed matrix 	T , given in terms of its eigenvalues
λi by ||	T || = ∑i |λi|. This entanglement quantifier is valid for both pure and mixed
states [27].

6
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We can now calculate the entanglement shared between the spins by first evaluating
the spin-reduced density matrix:

ρSν̄ ,Sl (0) = TrCl ,Cν̄ [|Ψ(0)〉〈Ψ(0)|] = |ΨSν̄ ,Sl 〉〈ΨSν̄ ,Sl |
= A2(p, ml , mν̄)| ↑ν̄↓l〉〈↑ν̄↓l |+ B2(p, ml , mν̄)| ↓ν̄↑l〉〈↓ν̄↑l |
− A(p, ml , mν̄)B(p, ml , mν̄)

[
| ↑ν̄↓l〉〈↓ν̄↑l |+ | ↓ν̄↑l〉〈↑ν̄↓l |

]
.

(12)

Partial transposition yields ρT
Sν̄ ,Sl

from which we obtain the spin-spin negativity for
the state at t = 0

NSν̄ ,Sl (0) ≡ N [ρSν̄ ,Sl (0)] = 2|A(p, ml , mν̄)B(p, ml , mν̄)|. (13)

Figure 2 depicts NSl ,Sν̄
(0) as a function of the momentum p and the lepton mass

ml in units of the antineutrino mass mν̄. The amount of entanglement depends both
on the dynamical regime and on the lepton-antineutrino mass ratio. For ml � mν̄ and
p � ml,ν̄, the spin-spin entanglement vanishes. In this limit, the antineutrino is ultra-
relativistic, and thus its chirality equals its helicity. In terms of (8), A � B in this limit,
and the state becomes separable. In a pion decay process, this is expected due to the
small mass of antineutrinos. One can also understand the separability of the state in terms
of conservation of angular momentum: the initial pion has zero spin; therefore, since
ultra-relativistic neutrinos have a definite helicity, the spin-polarization of the lepton is
fixed [30]. Furthermore, the entanglement between spins is more prominent for mν > p,
even if mν̄ � ml .

Spin-Spin Entanglement
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Figure 2. (a) Entanglement between the lepton and the antineutrino spins in the initial state (8) as a
function of the momentum and of the lepton mass (in units of the antineutrino mass). (b) Same as
(a) but for specific lepton-antineutrino mass ratios as a function of the momentum (in log-log scale).

Since chirality is not a conserved quantity under the free Dirac equation, temporal
evolution can induce chiral oscillations [17,18]. For a two-particle state such as (8), this
yields a change in the form of the superposition that dynamically redistributes the quantum
correlations, encoded initially only between the spins, to other partitions of the system.
Thus, because both particles are massive and described by Dirac bispinors, time evolution
induces entanglement oscillations whose characteristics are intrinsically linked to those of
the chiral oscillations.

For any given bispinor |w(0)〉, its temporal evolution can be obtained by a decomposi-
tion into the Dirac bispinors as [29,35]

|w(t)〉 = ∑
s=↑,↓

Uw,se−iEp,mt|us(p, m)〉+ Vw,seiEp,mt|vs(−p, m)〉, (14)
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where Uw,s = 〈us(p, m)|w(0)〉 and Vw,s = 〈vs(−p, m)|w(0)〉. For the joint lepton-antineutrino
state, we obtain

|Ψ(t)〉 = A(p, ml , mν̄)|ν̄↑(t)〉 ⊗ |l↓(t)〉 − B(p, ml , mν̄)|ν̄↓(t)〉 ⊗ |l↑(t)〉, (15)

where the antineutrino components are given by

|ν̄↑(t)〉 = Np,mν̄

[
e−iEp,mν̄ t f+(p, mν̄)|u↑(p, mν̄)〉+ eiEp,mν̄ t f−(p, mν̄)|v↑(−p, mν̄)〉

]
,

|ν̄↓(t)〉 = Np,mν̄

[
e−iEp,mν̄ t f−(p, mν̄)|u↓(p, mν̄)〉+ eiEp,mν̄ t f+(p, mν̄)|v↓(−p, mν̄)〉

]
,

(16)

and the lepton components are

|l↑(t)〉 = Np,ml

[
e−iEp,ml t f+(p, ml)|u↑(−p, ml)〉 − eiEp,ml t f−(p, ml)|v↑(p, ml)〉

]
,

|l↓(t)〉 = Np,ml

[
e−iEp,ml t f−(p, ml)|u↓(−p, ml)〉 − eiEp,ml t f+(p, ml)|v↓(p, ml)〉

]
.

(17)

With the time-evolved state (15), we can now compute the quantities of interest: the
spin-spin entanglement and the average chiralities of the lepton and of the antineutrino.
Since 〈ν̄i(t)|ν̄j(t)〉 = 〈li(t)|lj(t)〉 = δij ({i, j} =↑, ↓), we obtain the reduced density matrices
for the antineutrino and the lepton by

ρν̄(t) = Trl [|Ψ(t)〉〈Ψ(t)|]
= A2(p, ml , mν̄)|ν̄↑(t)〉〈ν̄↑(t)|+ B2(p, ml , mν̄)|ν̄↓(t)〉〈ν̄↓(t)|,

ρl(t) = Trν̄[|Ψ(t)〉〈Ψ(t)|]
= A2(p, ml , mν̄)|l↓(t)〉〈l↓(t)|+ B2(p, ml , mν̄)|l↑(t)〉〈l↑(t)|.

(18)

We first notice that ρν̄,l(t) are mixed states:

Tr[ρ2
ν̄(t)] = Tr[ρ2

l (t)] = A4(p, ml , mν̄) + B4(p, ml , mν̄)

= 1−
N 2

Sν̄ ,Sl
(0)

2
< 1.

(19)

Since the evolution is unitary, the degree of mixedness Tr[ρ2
ν̄,l(t)] is time-independent. The

joint state (15) is pure at all times; therefore, (19) computes the total amount of entanglement
encoded in the bipartition (Cν̄, Sν̄); (Cl , Sl) [36], that is, the entanglement between all the
degrees of freedom of the antineutrino as a whole and all the degrees of freedom of the
lepton as a whole. Such entanglement is constant in time and given in terms of the initial
spin-spin entanglement via the term ∝ NSν̄ ,Sl (0) (see also Equation (13)). The average

chiralities of the antineutrino and lepton are given by 〈γ̂5〉A(t) = TrA[γ̂
(A)
5 ρA(t)] with

A = ν̄, l and read

〈γ̂5〉ν̄(t) = 1− m2
ν̄

E2
p,mν̄

[
1− cos

(
2Ep,mν̄ t

)]
,

〈γ̂5〉l(t) = −1 +
m2

l
E2

p,ml

[
1− cos

(
2Ep,ml t

)]
.

(20)

Different from (8), it is not possible to write |Ψ(t)〉 = |ψCν̄
(t)〉 ⊗ |ψCl (t)〉 ⊗ |ψSν̄ ,Sl (t)〉,

that is, the chiralities and the spins become entangled. The free evolution under the Dirac
equation induces oscillations between left- and right-handed chiralities for both antineu-
trino and lepton, which changes the initial superposition and redistributes the correlation
content carried by the state. The density matrix of the spins ρSν̄ ,Sl (t) = TrChirality[|Ψ(t)〉〈Ψ(t)|]

8
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is a mixed state with entanglement dynamics directly affected by chiral oscillations. The
entanglement between the spins is again evaluated in terms of the negativity:

NSν̄ ,Sl (t) ≡ N [ρSν̄ ,Sl (t)] = ||ρT
Sν̄ ,Sl

(t)|| − 1 = NSν̄ ,Sl (0)Γ(t) (21)

with the time-dependent factor given in terms of the chiralities (20) as

Γ(t) = ∑
j=ν̄,l

[
1− p2

m2
j

(
〈γ̂5〉j(t)− 1

)2
] 1

2

. (22)

The degree of mixedness of the spin density matrix reads

Tr[ρ2
Sν̄ ,Sl

(t)] = 1−
N 2

Sν̄ ,Sl
(0)(1− |Γ(t)|2)

2
, (23)

which quantifies the entanglement in the bipartition (Sν̄, Sl); (Cν̄, Cl), that is, the entan-
glement between spins and chiralities. The fact that Tr[ρ2

Sν̄ ,Sl
(t)] < 1 indicates that the

entanglement initially encoded only between the spins redistributes into spin-chirality
entanglement.

Figure 3 depicts the average chirality of the lepton (a), of the antineutrino (b), and the
spin-spin entanglement (c) as a function of the momentum p and of the time. The spin-
spin entanglement oscillations depend on the chiral oscillations of both antineutrino and
lepton. In the limit mν̄ � p, the spin-spin entanglement vanishes, since the antineutrino
has definite helicity and chirality. Furthermore, at intermediate dynamical regimes, the
entanglement exhibits two oscillation frequencies: one related to the chiral oscillations of the
antineutrino, and the other to the chiral oscillations of the lepton. For p < mν̄, the amplitude
of the entanglement oscillations is suppressed, and the spin-spin entanglement is robust
to the chiral oscillations. We therefore notice that the entanglement oscillations exhibit a
resonance-like behavior as a function of the momentum: the amplitude of entanglement
oscillations are enhanced in the dynamical regime p ∼ mν̄.
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Figure 3. (a) Average lepton chirality, (b) average antineutrino chirality, and (c) spin-spin entangle-
ment as a function of the momentum (in units of the antineutrino mass and in log scale) and of time.
In (a,b) for ml,ν̄ < p, chiral oscillations are suppressed. Correspondingly, the spin-spin entanglement
exhibits a behavior similar to the antineutrino chirality: for mν̄ � p, entanglement is suppressed.
Results for ml/mν̄ = 102.
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3. Chiral Oscillations on Spin Correlations

Chiral oscillations impact the spin-spin entanglement shared between the antineutrino
and the lepton. Nevertheless, the measurement of such correlations requires the full
knowledge of the density matrix of the state, a task only accomplished by a tomographic
reconstruction of the state.

A different approach to the problem consists of the measurement of Bell spin cor-
relations. Since the spin-spin entanglement is modified by chiral oscillations, we expect
that joint spin observables are also influenced by the chirality dynamics. In particular, we
consider the following quantity:

B[ρ(t)] = |〈Ŝν̄,1 ⊗ Ŝl,1〉+ 〈Ŝν̄,1 ⊗ Ŝl,2〉+ 〈Ŝν̄,2 ⊗ Ŝl,1〉 − 〈Ŝν̄,2 ⊗ Ŝl,2〉|, (24)

which is the Bell observable that was first proposed to investigate non-local correlations [28].
Considering

Ŝν̄,1 = Ŝν̄,x, Ŝl,1 = −
Ŝl,x + Sl,y√

2

Ŝν̄,2 = Ŝν̄,y, Ŝl,2 =
−Ŝl,x + Sl,y√

2
,

(25)

for pure states, B[ρ] > 2 indicates that the correlations shared between the spins are non-
local and that the state is entangled. We notice, however, that even though for t > 0, the
spin-spin reduced density matrix is not a pure state, B[ρ] still quantifies spin correlations
that are affected by chiral oscillations. To quantify the total amount of non-local correlations,
which does not coincide with entanglement for mixed states, one has to maximize the
quantity B over all possible sets of spin operators {Ŝν̄,i, Ŝl,i} [28]. We instead consider the
simpler framework of correlations measured with the set (25). Such a type of correlations
can be measured via, e.g., Stern–Gerlach apparatuses.

Figure 4 shows B[ρ(t)] for the time-evolved state (15) as a function of the momentum
and of time. The observable exhibits an oscillatory behavior similar to the spin-spin
entanglement (c.f. Figure 3). Nevertheless, we notice that at intermediate dynamical scales
(where the antineutrino is ultra-relativistic but the lepton is not), there are no clear beatings
as was observed for the entanglement. Nevertheless, the imprints of chiral oscillations in
B are still prominent. Additionally, the Bell observable exhibits the same enhancement
of oscillation amplitudes obtained for the spin-spin entanglement when the mass of the
antineutrino is comparable with the momentum.
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Figure 4. Bell observable (24) as a function of the momentum (in units of the antineutrino mass and
in log scale) and of time for ml/mν̄ = 102.

4. Conclusions

In summary, we have discussed the effects of chirality, a degree of freedom intrinsic
to massive fermions described by the Dirac equation, in the spin entanglement between a

10
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lepton and an antineutrino. We have considered a prototypical state modeling, for example,
the generation of the pair by a charged meson decay (for example, a pion). To take into
account the intrinsic chiral character of weak interactions, we have further considered a
chirality projection into the initial superposition.

While helicity is conserved under the Dirac equation dynamics, chirality is not. We
have shown that chiral oscillations change the form of the superposition of the pair and have
an imprint on the entanglement shared between the spin of the lepton and the spin of the
antineutrino. The entanglement dynamics is more prominent in the case where both particles
are non-relativistic, even though at intermediate dynamical regimes, the spin-spin entanglement
exhibits oscillations related to both antineutrino and lepton chiral oscillations. In fact, the
entanglement oscillations exhibit a resonance-like behavior with the mass of the antineutrino.
Finally, we have also described how chiral oscillations are present in spin-spin correlations
as measured by a Bell-like observable, where features due to chiral oscillations are present.
Although we considered here a simpler scenario in which only one generation of lepton is taken
into account, flavor mixing intrinsic to the dynamics of massive neutrinos can be included at the
level of Dirac bispinors by following [19,20]. In this case, we expect a further oscillation scale
related to the flavor oscillations [23] and the generation of correlations with the flavor degree of
freedom [37,38]. A further step is the inclusion of wave-packets, which also influence flavor
oscillations. Finally, the formalism adopted in this paper is that of single-particle relativistic
quantum mechanics. A correct description of neutrino dynamics and, in particular, the inclusion
of flavor oscillations requires quantum field theory [39,40].

Our results indicate a novel framework for measuring chiral oscillations, and thus the
intrinsic bispinor structure of fermions, through the dynamics of either quantum entanglement,
which requires a full tomography of the spin density matrix, or by spin correlations. It should
be noticed that in typical pion decay experiments (for example into a muon and a muon
antineutrino), the antineutrino is typically ultra-relativistic [30], and the effects reported here
should be very small. Another possibility is the generation of the entangled state via scattering
processes, allowing the observation of the pair in the intermediate dynamical regime, which
have more prominent imprints of chirality. Finally, even though here we considered the case of
an antineutrino entangled with a fermion, the framework can be readily adapted to describe
chiral oscillation effects on the dynamics of two-fermion states, including fermion-antifermion
pairs. This can be particularly relevant for the study of quantum correlations and entanglement
in particle physics, a growing research field [41–46].

This work is a testimony of the legacy of Wigner’s seminal work, which comprises
several topics of physics and mathematics: from group structures and their representations
to the consequences of describing quantum states with irreps of specific groups and their
possible effects in physical systems.
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Abstract: Gauge invariance of the measure associated with the gauge field is usually taken for
granted, in a general gauge theory. We furnish a proof of this invariance, within Fujikawa’s approach.
To stress the importance of this fact, we briefly review gauge anomaly cancellation as a consequence
of gauge invariance of the bosonic measure and compare this cancellation to usual results from
algebraic renormalization, showing that there are no potential inconsistencies. Then, using a path
integral argument, we show that a possible Jacobian for the gauge transformation has to be the
identity operator, in the physical Hilbert space. We extend the argument to the complete Hilbert
space by a direct calculation.

Keywords: gauge field theories; gauge anomalies; nonperturbative techniques

PACS: 11.15.-q; 11.15.Tk ; 11.30.-j

1. Introduction

As we celebrate the 80th anniversary of Wigner’s fundamental paper [1], on how to
build Poincaré symmetry in the quantum domain, it seemed relevant to us to consider some
aspects of the phenomenon of quantum obstruction to implementation of a given symmetry,
which is called an anomaly. An anomaly usually manifests as an operator that prevents the
expectation value of a Noether current from vanishing. Anomalies become specially critical
when they refer to gauge symmetry, usually required to prove renormalization of the
corresponding gauge theories. A common statement is that gauge anomalies break Ward-
Takahashi (or Slavnov-Taylor) identities, necessary to reduce the number of renormalization
constants to be computed, spoiling perturbative renormalization of these theories. In this
way, the unavoidable presence of a gauge anomaly is usually taken as an indication that
the gauge theory under analysis is not adequate.

Chiral gauge theories are examples of this kind of theory. They are defined through
minimal couplings between chiral fermions and gauge fields. As they are the basis over
which the standard model is built, the solution was to choose fermion representations in
such a way that gauge anomalies are canceled [2]. However, when chiral gauge theories
are considered as effective theories, their gauge anomalies are not always problematic.
In several contexts [3–5], with the gauge field taken as external (not quantum), gauge
anomalies have been used successfully to cancel unwanted boundary contributions.

The scene described above should be enough to raise a question mark on the alleged
inconsistency of chiral gauge theories. There has been a lot of work [6–9] during the 80’s
that showed that anomalous gauge theories are not necessarily inconsistent. A more recent
work [10] indicated that, in the full quantum context (i.e., integrating also over the gauge
fields), the gauge anomaly had null vacuum expectation value, in an arbitrary number

Universe 2021, 7, 283. https://doi.org/10.3390/universe7080283 https://www.mdpi.com/journal/universe
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of dimensions, for abelian and non-abelian theories. Its insertion in correlators of gauge
invariant operators also gives a null result. These results point towards gauge symmetry
restoration when the complete quantum theory is considered non-perturbatively. There
are also modifications in the Ward-Takahashi identities [11], in the abelian case, which,
however, do not prevent potential relations between renormalization constants, thus
opening the path to prove renormalizability also in this extended context. Although this
renormalizability has not yet been proved, it is clear that there is a lot of open questions
concerning gauge anomalies.

This paper intends to discuss a point frequently overlooked in the literature, which
concerns the gauge invariance of the bosonic measure in the generating functional of chiral
gauge theories. In general, this is taken for granted, but no systematic analysis is found
in the literature. We consider this question by using path integral arguments to show
that it is indeed gauge invariant. We check our findings with known results from the
renormalization of Yang-Mills theories. Given the central role played by this argument
in several fundamental instances (e.g., Faddeev-Popov’s method), we believe that this
study may fill an important gap in the area. We organize our discussion as follows: in
Section 2, we briefly review the gauge anomaly vanishing mechanism, for the general
(non-abelian) case. We also consider arguments against this vanishing, from an algebraic
renormalization approach, and show that they do not apply to this context. The role of
gauge invariance of the bosonic measure is stressed. In Section 3, we derive, by a path
integral argument, the gauge invariance of the bosonic measure, when we restrict ourselves
to the physical Hilbert space. We extend our argument to the whole Hilbert space by
performing a calculation based on Fujikawa’s approach to Jacobians. In Section 4, we
present our conclusions and some future perspectives.

2. Is There a Gauge Anomaly in Chiral Gauge Theories?

In order to fix our conventions and define precisely the problem under investigation,
we briefly review some of the main results of reference [10], pointing the role played by
the invariance of the bosonic measure when appropriate. What we call chiral gauge theories
are described by an action S

[
ψ, ψ̄, Aμ

]
, given by

S
[
ψ, ψ̄, Aμ

]
= SG

[
Aμ

]
+ SF

[
ψ, ψ̄, Aμ

]
=
∫

dx
1
2

tr FμνFμν +
∫

dx ψ̄Dψ, (1)

where dx indicates integration over a d-dimensional Minkowski space. The operator D is
called the Dirac operator of the theory and is given by

D = iγμ
(
∂μ1− ieAμ

)
≡ iγμDμ. (2)

The fields ψ are left handed Weyl fermions (γ5ψ = ψ) carrying the fundamental repre-
sentation of SU(N). As usual, Aμ takes values in the Lie algebra of SU(N) such that

Aμ = Aa
μTa,

Fμν = ∂μ Aν − ∂ν Aμ − ie
[
Aμ, Aν

]
, (3)

and the generators Ta satisfy

[Ta, Tb] = i fabcTc, tr (TaTb) = −
1
2

δab. (4)

Considering
g = exp(iθa(x)Ta), (5)
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and simultaneous changes of the fields ψ and Aμ as

Ag
μ = gAμg−1 +

i
e
(
∂μg
)

g−1,

ψg = gψ,

ψ̄g = ψ̄g−1, (6)

the action S is classically gauge invariant

S[ψg, ψ̄g, Ag
μ] = S[ψ, ψ̄, Aμ]. (7)

2.1. The Gauge Anomaly and Its Vanishing

The quantum theory is defined by the generating functional, which is

Z[η, η̄, jμa ] =
∫

dψdψ̄dAμ exp
(

iS[ψ, ψ̄, Aμ] + i
∫

dx[η̄ψ + ψ̄η + jμa Aa
μ]

)
. (8)

We set the external sources to zero and perform a change of variables Aμ −→ Ag
μ:

Z[0, 0, 0] =
∫

dψdψ̄dAμ exp
(
iS[ψ, ψ̄, Aμ]

)
=
∫

dψdψ̄dAg
μ exp

(
iS[ψ, ψ̄, Ag

μ]
)

. (9)

It is well known [12] that the fermion measure is not invariant under ψ −→ ψg,
ψ̄ −→ ψ̄g. In what concerns the bosonic measure, its gauge invariance is universally aceppted

dAg
μ = dAμ. (10)

We show, below, that once Equation (10) is considered, we can promptly show that
the Noether current associated to the gauge symmetry (6) is covariantly conserved. To see
this, suppose g = 1 + iθa(x)Ta, with θa infinitesimal, and remember that

Ag
μ = Aμ −

1
e
Dμθ, (11)

with
Dμθ = Ta

(
∂μδa

b + e fabc Ac
μ

)
θb ≡ Ta

(
Dμ

)a
bθb. (12)

Using this expression for Ag
μ (10) we obtain:

Z[0, 0, 0] =
∫

dψdψ̄dAg
μ exp

(
iS[ψ, ψ̄, Ag

μ]
)

=
∫

dψdψ̄dAμ exp
(

iS[ψ, ψ̄, Aμ] +
∫

dx θa(x)
(
Dμ

)a
b(ψ̄γμTbψ)

)
= Z[0, 0, 0]

+
∫

dx θa(x)
∫

dψdψ̄dAμ

[(
Dμ

)a
b(ψ̄γμTbψ)

]
exp
(
iS[ψ, ψ̄, Aμ]

)
. (13)

This means ∫
dψdψ̄dAμ

[(
Dμ

)a
b(ψ̄γμTbψ)

]
exp
(
iS[ψ, ψ̄, Aμ]

)
= 〈0|

(
Dμ

)a
b(ψ̄γμTbψ)|0〉

= 0. (14)
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We could follow a different path when considering the original dependence of Z on
Ag

μ, by absorbing the gauge dependence in the fermions and using again the bosonic measure
gauge invariance:

Z[0, 0, 0] =
∫

dψdψ̄dAg
μ exp

(
iS[ψ, ψ̄, Ag

μ]
)

=
∫

dψdψ̄dAμ exp
(

iS[ψg−1
, ψ̄g−1

, Aμ]
)

=
∫

dψdψ̄dAμ exp
(

iS[ψ, ψ̄, Aμ]− iα1

[
Aμ, g−1

])
, (15)

where α1
[
Aμ, g−1] is related to the Jacobian for the gauge transformation of the fermionic

measure as,
dψdψ̄ = exp(−iα1

[
Aμ, g−1

]
)dψg−1

dψ̄g−1
. (16)

Under an infinitesimal gauge transformation,

α1
(

Aμ,−θ
)
= i
∫

dx θaAa(Aμ) + . . . , (17)

with Aa(Aμ) being the gauge anomaly operator, as is well known [12]. Following this path
we arrive at

Z[0, 0, 0] = Z[0, 0, 0]

− i
∫

dx θa
∫

dψdψ̄dAμAa(Aμ) exp
(
iS[ψ, ψ̄, Aμ]

)
⇒
∫

dψdψ̄dAμAa(Aμ) exp
(
iS[ψ, ψ̄, Aμ]

)
= 〈0|Aa(Aμ)|0〉 = 0. (18)

If the integration over the gauge fields were not performed, it is easy to see that the
result would be

〈0|
(
Dμ

)a
b(ψ̄γμTbψ)|0〉Aμ

= Aa(Aμ), (19)

where

〈0|
(
Dμ

)a
b(ψ̄γμTbψ)|0〉Aμ

=
∫

dψdψ̄
[(
Dμ

)a
b(ψ̄γμTbψ)

]
exp
(
iS[ψ, ψ̄, Aμ]

)
, (20)

corresponds to the situation of the chiral fermions being considered under the influence of
a fixed external field Aμ.

This means that, with all the fields being quantized, there is no gauge anomaly preventing
the conservation of the gauge current Jμ

a = ψ̄γμTbψ. We have to stress that this result is not
in contradiction with the well-known existence and topological interpretation of the gauge
anomaly (see, for example, [13,14]), since it is always present when the integration over the
fields Aa

μ is not performed (i.e., they are taken as external fields). However, when quantum
corrections are taken into account, the simple argument above shows that it must vanish.

If the bosonic measure dAμ were not gauge invariant, we should have to add the
contribution of the Jacobian of the gauge transformation of that measure, which would spoil
the covariant conservation just obtained. We will further investigate this gauge invariance
in the next section. Note also that the absence of gauge invariance of the fermionic measure
plays no role in the covariant conservation of the fully quantized gauge current, as opposed
to usual statements. The vanishing of the vacuum expectation value of the anomaly is to
be seen as a consistency requirement, in the situation of a fully quantized gauge field.
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2.2. An Algebraic Renormalization Objection

An argument, based on the technique of algebraic renormalization [15], could in
principle question the findings reported above. One starts with a gauge fixed version of
(1), namely

SFP
[
ψ, ψ̄, Aμ, B, c, c̄

]
= S
[
ψ, ψ̄, Aμ

]
+ Sgf

[
Aμ, B, c, c̄

]
, (21)

where

Sgf
[
Aμ, B, c, c̄

]
=
∫

dx tr
(

B∂μ Aμ +
1
2

αB2 − c̄∂μ
(
i∂μ + ie

[
c, Aμ

]))
, (22)

with B being an auxiliary field (the Lautrup-Nakanishi field) and c, c̄ being ghost fields,
all of them taking values on the Lie algebra of SU(N). The action (21) would be obtained
from (1) by the use of the Faddeev-Popov procedure to fix the gauge. Then, one defines the
linearized Slavnov-Taylor operator [16], which will test gauge invariance of the (quantum)
effective action at each order of perturbation theory. When one solves the cohomology
problem associated with this nilpotent operator, one finds a non-trivial solution. This
means that the effective action is found to be not gauge invariant, as gauge symmetry
violating terms dynamically generated at any given order can not be absorbed by suitably
chosen gauge invariant counterterms. So, gauge invariance would be hopelessly lost and a
gauge anomaly would be present, contradicting frontally what we found previously and
putting renormalizability at risk.

There is nothing wrong with this line of reasoning, except its starting point. Gauge
fixing is essential for the perturbative definition of a gauge theory, but one can not do it in a
gauge anomalous theory in the same way as one does in the case of a non gauge anomalous
one. If one starts with the non gauge fixed action (1) and insists in the insertion of the
identity through the Faddeev-Popov’s method, one ends up with a generating functional
given by [8]

Z[0, 0, 0] =
∫

dθdψdψ̄dAμdBdcdc̄

× exp
(
iSFP

[
ψ, ψ̄, Aμ, B, c, c̄

]
+ iα1

(
Aμ, θ

))
=
∫

dθdψdψ̄dAμdBdcdc̄ exp
(
iSfull

[
ψ, ψ̄, Aμ, B, c, c̄, θ

])
, (23)

where α1 was defined in (16) and is called Wess-Zumino action. The fields θ = θaTa are called
Wess-Zumino fields and represent new quantum degrees of freedom. The action Sfull is the
true starting point from where one should restart the analysis of the cohomology of the
linearized Slavnov-Taylor operator. It is gauge invariant and, thanks to Faddeev-Popov’s
technique, it has a well-defined gauge boson propagator. Unfortunately, as the fields θa

have null mass dimension, it is not known how to perform this analysis up to now. In order
to avoid the appearance of the Wess-Zumino fields, one is not allowed to fix the gauge.
However, in doing this, there is no BRS symmetry to help one with the analysis of gauge
invariance at an arbitrary perturbative order.

Thus, within the present knowledge, algebraic renormalization methods do not seem
to be useful to decide if chiral gauge theories are truly gauge anomalous (and poten-
tially inconsistent). As we pointed in the previous section, there are strong indications of
the opposite.

3. On the Gauge Invariance of the Bosonic Measure

Let us now focus on the behavior of the bosonic measure under gauge transformations.
To this end, let us first display a preparatory argument: consider the generating functional
for correlators of gauge invariant operators in pure Yang-Mills theory (without chiral
fermions). These gauge invariant operators satisfy

Oi

(
Ag

μ

)
= Oi

(
Aμ

)
(24)
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and the correlators are obtained as

δn

δλ1(x1) . . . δλn(xn)
Z
[
λi
]∣∣∣∣

λi=0
= 〈0|T

(
O1
(

Aμ

)
(x1) . . . On

(
Aμ

)
(xn)

)
|0〉, (25)

with

Z
[
λi
]
=
∫

dAμ exp i
∫

tr
(

1
2

FμνFμν + λiOi
[
Aμ

])
. (26)

Considering the integration not over Aμ but over its gauge transformed version Ag
μ:

Z
[
λi
]
=
∫

dAμ exp i
∫

tr
(

1
2

FμνFμν + λiOi
(

Aμ

))
=
∫

dAg
μ exp i

∫
tr
(

1
2
(

FμνFμν
)g

+ λiOi

(
Ag

μ

))
=
∫

dAμ J
[
Aμ, g

]
exp
(

i
∫

tr
(

FμνFμν + λiOi
(

Aμ

)))
, (27)

where we allowed the potential presence of a Jacobian for the gauge transformation of the
measure. What was obtained above corresponds to,

〈0|T
(

J
[
Aμ, g

]
O1
(

Aμ

)
(x1) . . . On

(
Aμ

)
(xn)

)
|0〉

= 〈0|T
(
O1
(

Aμ

)
(x1) . . . On

(
Aμ

)
(xn)

)
|0〉, (28)

which, translated into words, means that all correlators involving J
[
Aμ, g

]
with gauge

invariant operators are the same as those involving the identity. Thus, in the physical
Hilbert space of the theory, the two operators are the same.

This argument does not generalize to arbitrary, non-gauge invariant operators. How-
ever, an explicit calculation can resolve the problem. Let us use the usual prescription of
defining the bosonic measure by means of a complete set of orthonormal eigenfunctions
{φn} of an hermitian operator D̄:

D̄φn = λnφn,∫
dxφ†

nφm = δnm, ∑
n

φn(x)φ†
n(y) = δ(x− y),

Aa
μ(x) = ∑

n
aa

μ,nφn(x)→ dAμ = ∏
a,μ,n

daa
μ,n. (29)

Under a infinitesimal gauge transformation (11) we have

Ag
μ = ∑

n
āa

μ,nTaφn(x) = ∑
n

aa
μ,nTaφn(x)− i

e
Dμθ

=

(
∑
n

(
aa

μ,n + iab
μ,n fabcθc

)
φn(x)− i

e
∂μθa

)
Ta. (30)

Decomposing θa in terms of the same eigenfunctions of D̄,

− i
e

∂μθa(x) = ∑
n

ãa
μ,nφn(x), (31)

We obtain,

āa
μ,n = ∑

m

(
δabδnm +

∫
dxφ†

n(x)i fabcθc(x)φm(x)
)

ab
μ,m + ãa

μ,n, (32)
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so that

∏
a,μ,n

dāa
μ,n = det

[
δabδnm +

∫
dxφ†

n(x)i fabcθc(x)φm(x)
]

∏
a,μ,n

daa
μ,n. (33)

The term ãa
μ,n does not contribute because of translational invariance of each measure

daa
μ,n. Following the steps of Fujikawa [12] we get the expression for the Jacobian:

J
[
Aμ, θ

]
= exp

(
∑
n

(
tr
∫

dxφ†
n(x)i fabcθc(x)φn(x)

))
(34)

where “tr” is to be computed over Lie algebra indices. It is easy to see that the expression
for J

[
Aμ, θ

]
is indefinite:

∑
n

(
tr
∫

dxφ†
n(x)i fabcθc(x)φn(x)

)
= tr

∫
dxi fabcθc(x)∑

n
φn(x)φ†

n(x)

=
∫

dxi faacθc(x)δ(0) = 0×∞. (35)

So, it must be regularized in order to make sense. It is natural to choose the eigenvalues
of the operator D̄ to regularize the Jacobian as

J
[
Aμ, θ

]
≡ exp

(
lim

M2→∞
∑
n

(
tr
∫

dxφ†
n(x)i fabcθc(x) exp

(
− λ2

n
Mα

)
φn(x)

))

= exp

(
lim

M2→∞
∑
n

(
tr
∫

dxφ†
n(x)i fabcθc(x) exp

(
− D̄2

Mα

)
φn(x)

))
, (36)

where α is chosen so that the argument of the exponential is dimensionless. The choice
of the operator D̄ is usually guided by the requisites that (a) it naturally appears in the
theory; (b) it is gauge invariant; and (c) its eigenvalues are real. Besides, our choice of
the coefficients aa

μ,n carrying all the dependence on μ and a implies that the φn must be
eigenfunctions of an scalar colorless operator. A good choice is

D̄ = tr
(
DμDμ

)
, (37)

where the trace is taken only over the color indices. Under these conditions, we see that
the sum is regularized and, as there is no additional dependence on color indices coming
from exp

(
−D̄2/M4), the trace can be immediately taken and the result is

J
[
Aμ, θ

]
= exp

(
lim

M2→∞
∑
n

(
i faac

∫
dxφ†

n(x)θc(x) exp
(
− D̄2

M4

)
φn(x)

))
= exp(0) = 1. (38)

Of course, one could choose other strategies and a result different from 1 could arise.
However, the “gauge anomaly” coming from this “non-trivial” Jacobian could be removed
by a adequate choice of counterterms. To say this more precisely, we can use what we know
from the fact that Yang-Mills theories are renormalizable. In fact, ’t Hooft’s proof [17,18]
shows that it is possible to preserve gauge invariance at every order in perturbation theory
and this is crucial for the demonstration that the theory is renormalizable. Algebraic
renormalization results confirm this, by noticing that the cohomology of the Slavnov-Taylor
operator is trivial for a Yang-Mills theory [19]. Then, even if we would regularize the theory
with non-gauge invariant regulators (then obtaining a non-trivial Jacobian), a change in
renormalization scheme could restore gauge invariance and set the Jacobian as 1.
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4. Conclusions

Gauge invariance of the bosonic measure is essential to cancel the gauge anomaly
at full quantum level in a chiral gauge theory (abelian or non-abelian). Besides this, it is
crucial for the implementation of Fadeev-Popov’s technique. Although it is a commonly
used feature, this gauge invariance has not deserved a careful consideration in the literature
(up to our knowledge). This paper intends to furnish a detailed analysis of this useful
property and, in so doing, to fill an important omission. It inserts itself into a program
of investigation of the renormalization of chiral gauge theories, to see if it can really be
implemented at perturbative level. Although the vacuum expectation value of the gauge
anomaly vanishes, there are indications that it has non-null insertions in correlators of
non-gauge invariant operators. The dynamical picture remains unclear.

An important point would be to ask what could happen to the axial anomaly, de-
fined as

〈0|∂μ Jμ
5 |0〉Aμ

= 〈0|∂μ(ψ̄γμγ5ψ)|0〉Aμ
= A5

(
Aμ

)
.

It is related to the quantum violation of axial symmetry

ψ′ = eαγ5 ψ ≡ g5ψ,

which is classically exact in the massless case. The gauge anomaly appears as the non-
covariant conservation of the gauge current

〈0|
(

Dμ

)a
b Jμ

b |0〉Aμ
= 〈0|

(
Dμ

)a
b(ψ̄γμTbψ)|0〉Aμ

= Aa(Aμ

)
,

Whose classical conservation would be a consequence of gauge symmetry

ψ′ = eiθaTa ψ ≡ gψ. (39)

While the gauge transformation (39) can be transferred from the fermions to the gauge
fields (with all of them being considered as quantum)

S
[
ψg, ψ̄g, Aμ

]
= S
[

ψ, ψ̄, Ag−1

μ

]
,

the same can not be done with the axial transformation under the same circumstances:

S
[
ψg5 , ψ̄g5 , Aμ

]
= S
[
ψ, ψ̄, Aμ

]
,

which means that the gauge fields do not play any role in axial symmetry. As a consequence,
we are not allowed to make the same manipulations in the functional integral and so, we
can not say that the axial anomaly is canceled as well. The axial anomaly is a welcome one,
as it is responsible for the explanation of the observed π0 decay into two photons. On the
other hand, the gauge anomaly is a generally undesired feature and has to be canceled (in
the construction of the standard model) in order not to ruin explicit renormalizability of
the theory. So, we could answer that the dynamical role of the axial anomaly is unaltered
in our approach. It keeps appearing and influencing low energy effective actions of
QCD, for example. However, we offer some hope that the gauge anomaly is not such a
catastrophic issue.

We must also remind the reader that there must be several ways to prove gauge
invariance of the bosonic measure. One of them is surely to consider the theory on the
lattice, where one can define the bosonic measure as a Haar measure, which is naturally
gauge invariant (see, for example, Formula (7.12) of [20]). Then, we could consider the
limit of zero lattice spacing with due caution to establish this invariance in the continuum
theory. However, this discussion (and other ones, using different arguments) is not usually
seen in the literature and we found it could be useful to present it explicitly, by means of a
Fujikawa approach.
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Some big issues have to be considered in this path. Perhaps one of the most urgent
would be how to define the tree level of chiral gauge theories. Since one is not allowed to
fix the gauge (due to the appearance of a Jacobian for the fermion measure), we have no
definition of a free gauge boson propagator, which invalidates a perturbative analysis of
the theory. We also have no natural choice to choose a method of regularization to deal
with loops, as gauge invariance can not be used as a guiding principle. We will continue to
investigate these and other issues and our findings will be reported as they appear.
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Abstract: Quaternions have an (over a century-old) extensive and quite complicated interaction with
special relativity. Since quaternions are intrinsically 4-dimensional, and do such a good job of handling
3-dimensional rotations, the hope has always been that the use of quaternions would simplify some
of the algebra of the Lorentz transformations. Herein we report a new and relatively nice result for
the relativistic combination of non-collinear 3-velocities. We work with the relativistic half-velocities
w defined by v = 2w

1+w2 , so that w = v
1+
√

1−v2 = v
2 +O(v3), and promote them to quaternions using

w = w n̂, where n̂ is a unit quaternion. We shall first show that the composition of relativistic
half-velocities is given by w1⊕2 ≡ w1 ⊕w2 ≡ (1−w1w2)

−1(w1 + w2), and then show that this is
also equivalent to w1⊕2 = (w1 + w2)(1−w2w1)

−1. Here as usual we adopt units where the speed of
light is set to unity. Note that all of the complicated angular dependence for relativistic combination of
non-collinear 3-velocities is now encoded in the quaternion multiplication of w1 with w2. This result
can furthermore be extended to obtain novel elegant and compact formulae for both the associated
Wigner angle Ω and the direction of the combined velocities: eΩ = eΩ Ω̂ = (1−w1w2)

−1(1−w2w1),
and ŵ1⊕2 = eΩ/2 w1+w2

|w1+w2| . Finally, we use this formalism to investigate the conditions under which
the relativistic composition of 3-velocities is associative. Thus, we would argue, many key results
that are ultimately due to the non-commutativity of non-collinear boosts can be easily rephrased in
terms of the non-commutative algebra of quaternions.

Keywords: special relativity; combination of velocities; wigner angle; quaternions

1. Introduction

Hamilton first described the quaternions in the mid-1800s, primarily with a view to finding
algebraically simple ways to handle 3-dimensional rotations. With the advent of special relativity
in 1905, and noting the manifestly 4-dimensional nature of quaternions once one adds a real part,
multiple authors have tried to interpret special relativity in an intrinsically quaternionic fashion [1–9].

Despite technical success in applying quaternions to special relativity, the use of quaternions in
this subject has never really gained all that much traction in the physics community. Perhaps one
of the reasons for this is that there are a number of sub-optimal notational choices in Silberstein’s
original work [1–3], and the fact that there is no generally accepted way of using quaternions to
represent Lorentz transformations, with many different authors employing their own quite distinct
methods [1–9]. Even in more recent, post-millennial, articles on “quaternionic special relativity” there
is considerable disagreement on notational choices [10–13].

Below we shall introduce what we feel is a particularly simple and straightforward method
for combining relativistic 3-velocities using quaternions. In particular, we shall present some new
and compact formulae for computing the Wigner angle [14]. All of the interesting features due to
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non-commutativity properties of non-collinear boosts are implicitly and rather efficiently dealt with
by the non-commutative algebra of quaternions. The method is based on an extension of an analysis
by Giust, Vigoureux, and Lages [15,16], who (because they were working with the usual complex
numbers) were essentially limited to motion in 2-space; their formalism is not really well-adapted to
general motions in 3-space. Related constructions can also be found in [10,11].

Observe that there is a representation of pure quaternions in terms of a subset of 2× 2 matrices,
specifically the anti-hermitian 2× 2 matrices, essentially

√
−1× (Pauli matrices). (The factor of

√
−1

is important.) However this does not mean that replacing quaternions by Pauli matrices in any way
simplifies our results below; it just complicates the formalism. Neither does this mean that any of our
results below are at all “well-known” in this alternate notation. We have carefully checked the relevant
literature, (roughly speaking, 2-spinor representations of the Lorentz group). There is much more than
pedagogy going on—the results reported in our article are (apart from a consistency check or two)
both novel and interesting (see also [13].)

2. Preliminaries

2.1. Lorentz Transformations

The set of all Lorentz transformations of space-time form a group called the Lorentz group.
Mathematically, the Lorentz group is isomorphic to O(1, 3), the orthogonal group of one time and
three space dimensions that preserves the space-time interval

s2 = −t2 + x2 + y2 + z2. (1)

Here and hereafter, as usual we adopt units where the speed of light is set to unity. It is clear from
this description that rotations of space-time are included in the Lorentz group, as well as the more
familiar pure Lorentz transformations (boosts). In fact, the pure Lorentz transformations do not even
form a subgroup of the Lorentz group as, in general, the composition of two boosts B1 and B2 is not
another boost but in fact a boost and a rotation B12R12 = B1B2; while B21R21 = B2B1. This rotation,
known as the Wigner rotation, was first discovered by Llewellyn Thomas in 1926 whilst trying to
describe the Zeeman effect from a relativistic view-point [17], and was more fully analyzed by Eugene
Wigner in 1939 [14]. (For more recent discussions see [18–22]).

It is well–known that the composition of Lorentz transformations is non-commutative. That is,
applying two successive boosts B1 and B2 in different orders results in the same final boost, B12 = B21,
but different rotations, R12 �= R21. In the context of the combination of two velocities �v1 and �v2, this
means that the final speed is the same no matter the order we combine the velocities, ||�v1 ⊕�v2|| =
||�v2 ⊕�v1||, but the final directions they point in are different v̂1⊕2 �= v̂2⊕1. Although not immediately
obvious, the angle between �v1⊕2 = �v1 ⊕ �v2 and �v2⊕1 = �v2 ⊕ �v1 is in fact the Wigner angle Ω,
see Reference [22]. The Lorentz group has very many different representations, one of which is
formulated by using the quaternions [1,2,4].

One could instead try to deal with the non-commutativity of the Lorentz transformations by
adapting the general formalism of the Baker–Campbell–Hausdorff theorem [23–27]. Unfortunately the
general BCH formalism applied to this problem very quickly becomes intractable, and we have found
that the specifics of the quaternion formalism yield much more useful and tractable results.

Since the full symmetry group of the Maxwell equations is the conformal extension of the
Poincare group, it is sometimes useful, (when looking at pure electromagnetic effects), to work with
this conformal extension. However physical observers, (physical clocks and physical rulers), break the
conformal invariance, and to even meaningfully define 3-velocities one needs to restrict attention to
the Poincare group. We shall go even further and take translation invariance (spatial and temporal
homogeneity) for granted, and focus more specifically on the Lorentz group.

26



Universe 2020, 6, 237

2.2. Quaternions

The quaternions are numbers that can be written in the form a + b i + c j + d k, where a, b, c, and d
are real numbers, and i, j, and k are the quaternion units which satisfy the famous relation

i2 = j2 = k2 = ijk = −1. (2)

They form a four–dimensional number system that is generally treated as an extension of the
complex numbers. We shall define the quaternion conjugate of the quaternion q = a + b i + c j + d k

to be q� = a− b i− c j− d k, and define the norm of q to be qq� = |q|2 = a2 + b2 + c2 + d2 ∈ R+.
This allows us to evaluate the quaternion inverse as q−1 = q�/|q|2.

Trying to define a “norm” as q2 = a2 − b2 − c2 − d2, while superficially more “relativistic”,
violates the usual mathematical definition of “norm”, and furthermore is not useful when it comes to
evaluating the quaternion inverse q−1.

For current purposes we focus our attention on pure quaternions. That is, we consider quaternions
of the form a i + b j + c k. Many quaternion operations become much simpler when we are dealing
with pure quaternions. For example, the product of two pure quaternions p and q is given by
pq = −�p ·�q + (�p×�q) · (i, j, k), where, in general, we shall set v = �v · (i, j, k). From this, we obtain the
useful relations

[p, q] = 2(�p×�q) · (i, j, k), and {p, q} = −2�p ·�q. (3)

A notable consequence of (3) is q2 = −�q ·�q = −q2 = −|q|2. There is a natural isomorphism
between the space of pure quaternions and R3 given by

i �→ x̂, j �→ ŷ, k �→ ẑ; (4)

where x̂, ŷ, and ẑ are the standard unit vectors in R3.
One of the most common uses for quaternions today (2020) is in the computer graphics

community, where they are used to compactly and efficiently generate rotations in 3-space. Indeed,
if q = cos(θ/2) + û sin(θ/2) is an arbitrary unit quaternion and v is the image of a vector in R3 under
the isomorphism (4), then the mapping v �→ qvq−1 rotates v through an angle θ about the axis defined
by û. The mapping v �→ qvq−1 is called quaternion conjugation by q.

3. Combining Two 3-Velocities

In the paper by Giust, Vigoureux, and Lages [15], see also Reference [16], (and the somewhat
related discussion in Reference [10]), a method is developed to compactly combine relativistic velocities
in two space dimensions, and by extension, coplanar relativistic velocities in 3 space dimensions. In the
following subsection, we first provide a short summary of their approach, and then in the next
subsection extend their method to general non-coplanar 3-velocities.

3.1. Velocities in the (x,y)-Plane

The success of this Giust, Vigoureux, and Lages approach relies on the angle addition formula for
the hyperbolic tangent function,

tanh(ξ1 + ξ2) =
tanh ξ1 + tanh ξ2

1 + tanh ξ1 tanh ξ2
. (5)

The tanh function is a natural choice for combining relativistic velocities since it is limited to
the interval [−1, 1]. Indeed, using the rapidity ξ defined by v = tanh(ξ), we can easily combine
collinear relativistic speeds using Equation (5). In order to use this for the combination of non-collinear
relativistic 2-velocities, we replace each 2-velocity �v by the complex number

V = tanh(ξ/2) eiϕ. (6)
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Here ξ is the rapidity of the velocity�v, and ϕ gives the orientation of�v according to some observer
in the plane defined by �v1 and �v2. Giust, Vigoureux, and Lages then define the composition law ⊕ for
coplanar velocities �v1 and �v2 by

W = tanh
ξ

2
eiϕ1⊕2 = V1 ⊕V2 =

V1 + V2

1 + V2 V1
=

tanh ξ1
2 eiϕ1 + tanh ξ2

2 eiϕ2

1 + tanh ξ2
2 e−iϕ2 tanh ξ1

2 eiϕ1
, (7)

where V is the standard complex conjugate of V. By using ξ/2 instead of ξ in Equations (6) and (7),
we are actually dealing with the “relativistic half–velocities”, tanh(ξ/2), (sometimes called the
“symmetric velocities”), where

w = tanh(ξ/2); v = tanh(ξ) =
2w

1 + w2 . (8)

That is:

w = tanh
(

1
2

tanh−1(v)
)
=

v
1 +

√
1− v2

. (9)

Using Equations (5) and (7) we can easily retrieve the real velocity from the half-velocity by using
the ⊕ operator: v = tanh ξ = tanh ξ/2⊕ tanh ξ/2 = w⊕ w. In terms of the half velocities

w1⊕2 eiϕ1⊕2 =
w1 eiϕ1 + w2 eiϕ2

1 + w1w2 ei(ϕ1−ϕ2)
. (10)

The ⊕ addition law is non-commutative, which is most easily seen by first setting θ = ϕ2 − ϕ1,
then Ω = ϕ1⊕2 − ϕ2⊕1, and finally observing that the ratio

eiΩ/2 =
1 + tanh ξ1

2 tanh ξ2
2 eiθ

1 + tanh ξ1
2 tanh ξ2

2 e−iθ
=

1 + w1w2eiθ

1 + w1w2e−iθ (11)

is not equal to unity for non–zero θ, meaning that Ω = ϕ1⊕2 − ϕ2⊕1 is non-zero.
The angle Ω = ϕ1⊕2 − ϕ2⊕1 is in fact the Wigner angle Ω, so an expression for this angle can be

obtained by taking the real and imaginary parts of Equation (11):

tan
Ω
2

=
tanh ξ1

2 tanh ξ2
2 sin θ

1 + tanh ξ1
2 tanh ξ2

2 cos θ
=

w1w2 sin θ

1 + w1w2 cos θ
. (12)

This expression does not explicitly appear in Reference [15] though something functionally
equivalent, in the form Ω = 2 arg(1 + w1w2eiθ), appears in Reference [16].

The ⊕ law can be applied to any number of coplanar velocities by iteration:

W = (((V1 ⊕V2)⊕ · · · ⊕Vn−1)⊕Vn). (13)

Thus it would be desirable to cleanly extend this formalism to general three-dimensional velocities.
Note that the order of composition is important, as we shall see in more detail below, the ⊕ operation
is in general not associative.

3.2. General 3-Velocities

We now extend the result of Giust, Vigoureux, and Lages to arbitrary 3-velocities in
three dimensions.
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3.2.1. Algorithm

Suppose we have a velocity �vi in the (x, y)-plane, represented by the pure quaternion
wi = tanh(ξi/2)n̂i = tanh(ξi/2) (i cos θi + j sin θi). Using the rules for quaternion multiplication,
we can write this as wi = tanh(ξi/2) (cos θi + k sin θi)i. The term inside the brackets now looks
very similar to what would be a natural extension of the exponential function to the quaternions,
ekθ = cos θ + k sin θ. To formalise this, we define the exponential of a quaternion q by the power series

eq =
∞

∑
k=0

qk

k!
. (14)

To calculate an explicit formula for Equation (14), we first consider the case of a pure quaternion u.
We know from Section 2.2 that for a pure quaternion we have u2 = −|u|2, and so we find
u3 = −|u|2u, u4 = |u|4, and so on. Thus, we can compute

eu ≡
∞

∑
k=0

uk

k!
=

(
1− 1

2!
|u|2 + 1

4!
|u|4 − . . .

)
+

u

|u|

(
|u| − 1

3!
|u|3 + 1

5!
|u|5 − . . .

)
= cos |u|+ û sin |u|. (15)

Following the same procedure above, we find the exponential of a pure unit quaternion û and
real number φ to be

eûφ = cos φ + û sin φ. (16)

This nice result reflects the expression for the exponential of a complex number.
We can now extend this result to any arbitrary quaternion q = a + u by noting that the real

number a commutes with all the terms in u, thereby allowing us to write eq = eaeu, where eu has the
same form as Equation (15). Explicitly,

eq = ea(cos |u|+ û sin |u|). (17)

The exponential of a quaternion possesses many of the same properties as the exponential of a
complex number. Two particularly useful ones we use below are(

eûφ
)�

= e−ûφ = cos φ− û sin φ, and |eûφ| = 1. (18)

Using these results, we are now justified in writing

wi = tanh(ξi/2) ekθi i = wi ekθi i (19)

for our velocity in the (x, y)-plane.
Building on this result, we now find it appropriate to define the⊕ operator for general 3-velocities,

w1 = w1n̂1 and w2 = w2n̂2, by the novel formula:

w1⊕2 = w1 ⊕w2 = (1−w1w2)
−1(w1 + w2). (20)

The usefulness of this novel definition is best understood by looking at a few examples.

3.2.2. Example: Parallel Velocities

We consider two parallel velocities �v1 and �v2 represented by the quaternions

w1 = tanh
ξ1

2
n̂ and w2 = tanh

ξ2

2
n̂, (21)
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respectively. Our composition law (20) then gives

w1⊕2 =
(

1 + tanh ξ1
2 tanh ξ2

2

)−1 (
tanh ξ1

2 n̂+ tanh ξ2
2 n̂
)

=
tanh ξ1

2 +tanh ξ2
2

1+tanh ξ1
2 tanh ξ2

2

n̂

= tanh
(

ξ1+ξ2
2

)
n̂,

(22)

which is equivalent to

w1⊕2 =
w1 + w2

1 + w1w2
n̂, (23)

and hence, also equivalent to the well–known result for the relativistic composition of two
parallel velocities,

�v1 ⊕�v2 =
v1 + v2

1 + v1v2
n̂. (24)

3.2.3. Example: Perpendicular Velocities in the x–y Plane

We now consider two perpendicular velocities in the x–y plane. By rotating around the z axis,
without loss of generality they can be taken to be given by

w1 = w1i, w2 = w2 j, (25)

where we have written tanh(ξ1/2) = w1 and tanh(ξ2/2) = w2 for brevity.
Our composition law then gives a combined velocity of

w1⊕2 = (1− w1w2ij)−1(w1i + w2j) =
w1(1− w2

2)i + w2(1 + w2
1)j

1 + w2
1w2

2
, (26)

which is definitely not commutative. In contrast the norm is symmetric:

|w1⊕2|2 =
w2

1(1− w2
2)

2 + w2
2(1 + w2

1)
2

(1 + w2
1w2

2)
2

=
w2

1 + w2
2 + w2

1w4
2 + w2

2w4
1

(1 + w2
1w2

2)
2

=
w2

1 + w2
2

1 + w2
1w2

2
. (27)

Here the wi are the “relativistic half–velocities” wi = tanh(ξi/2), so the full velocities are

|vi|2 = |wi ⊕wi|2 =
4w2

i
(1 + w2

i )
2

, (28)

and so give a final speed of

|v1⊕2|2 =
4
(
w2

1 + w2
2
)

(
1 + w2

1w2
2
) [

1 + w2
1+w2

2
1+w2

1w2
2

]2 =
4
(
w2

1 + w2
2
)(

1 + w2
1w2

2
)[(

1 + w2
1
)(

1 + w2
2
)]2 . (29)

The non-quaternionic result for the composition of two perpendicular velocities is [22]

||�v1⊕2||2 = v2
1 + v2

2 − v2
1v2

2. (30)

Thus, we find

||�v1⊕2||2 =
4w2

1
(1 + w2

1)
2
+

4w2
2

(1 + w2
2)

2
− 16w2

1w2
2

(1 + w2
1)

2(1 + w2
2)

2
=

4(w2
1 + w2

2)(1 + w2
1w2

2)[
(1 + w2

1)(1 + w2
2)
]2 . (31)
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And so our composition law ⊕ gives the standard result for the composition of two perpendicular
velocities in the x–y plane.

3.2.4. Example: Perpendicular Velocities in General

For general perpendicular velocities �v1 and �v2 the easiest way of proceeding is to simply rotate to
point �v1 along the x-axis and �v2 along the y-axis, and just copy the argument above. If one wishes to
be more direct then simply define

w1 = w1 ŵ1, w2 = w2 ŵ2; ŵ3 = ŵ1 ŵ2. (32)

In view of the mutual orthogonality of the vectors ŵ1, ŵ2, and ŵ3, the unit quaternions
(ŵ1, ŵ2, ŵ3) obey exactly the same commutation relations as (i, j, k). Thence

w1⊕2 = (1− w1w2ŵ1ŵ2)
−1(w1ŵ1 + w2ŵ2) =

w1(1− w2
2)ŵ1 + w2(1 + w2

1)ŵ2

1 + w2
1w2

2
. (33)

This now leads to exactly the same results as above; there was no loss of generality inherent in
working in the x–y plane.

3.2.5. Example: Reduction to Giust–Vigoureux–Lages Result in the x–y Plane

It is important to note that our composition law ⊕ reduces to the composition law of Giust,
Vigoureux, and Lages [15] when dealing with planar velocities in the x–y plane. As above, we define
general velocities in the (i, j)-plane by w1 = tanh(ξ1/2)ekφ1 i, and w2 = tanh(ξ2/2)ekφ2 i, then,
using our composition law (20), we find

w1⊕2 =

(
1− tanh

ξ1

2
ekφ1 i tanh

ξ2

2
ekφ2 i

)−1 (
tanh

ξ1

2
ekφ1 i + tanh

ξ2

2
ekφ2 i

)
. (34)

But, noting that tanh(ξ2/2)ekφ2 i = tanh(ξ2/2)i e−kφ2 and i2 = −1, we can re-write this as

w1⊕2 =

(
1 + tanh

ξ1

2
ekφ1 tanh

ξ2

2
e−kφ2

)−1 (
tanh

ξ1

2
ekφ1 + tanh

ξ2

2
ekφ2

)
i. (35)

Now writing
w1⊕2 = tanh(ξ1⊕2/2) ekφ1⊕2 i (36)

we can cancel out the trailing i, to obtain

tanh
ξ1⊕2

2
ekφ1⊕2 =

(
1 + tanh

ξ1

2
ekφ1 tanh

ξ2

2
e−kφ2

)−1 (
tanh

ξ1

2
ekφ1 + tanh

ξ2

2
ekφ2

)
. (37)

This expression now only contains k, so everything commutes, and we can write

w1⊕2 ekφ1⊕2 =
w1 ekφ1 + w2 ekφ2

1 + w1 ekφ1 w2 e−kφ2
(38)

which is equivalent to the result of Giust, Vigoureux, and Lages [15].
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3.2.6. Example: Composition in General Directions

For general velocities �v1 and �v2 the easiest way of proceeding is to simply rotate to put �v1 and �v2

in the the x–y plane, and just copy the Giust–Vigoureux–Lages argument [15] above. If one wishes to
be more direct then simply define

w1 = w1 ŵ1, w2 = w2 ŵ2; ŵ3 =
[ŵ1, ŵ2]

| [ŵ1, ŵ2] |
. (39)

As long as ŵ1 is not parallel to ŵ2, then ŵ3 is well defined and perpendicular to both ŵ1 and ŵ2.
With these definitions one can now write

ŵ2 = exp(φ ŵ3) ŵ1. (40)

Then, following the discussion above, we see

w1⊕2 = (1 + w1 w2 e−ŵ3φ)−1(w1 ŵ1 + w2 ŵ2) = (1 + w1 w2 e−ŵ3φ)−1(w1 + w2 eŵ3φ)ŵ1. (41)

From this we can extract

w1⊕2 eŵ3φ1⊕2 = (1 + w1 w2 e−ŵ3φ)−1(w1 + w2 eŵ3φ) =
(w1 + w2 eŵ3φ)

(1 + w1 w2 e−ŵ3φ)
. (42)

Thence

w1⊕2 eŵ3φ1⊕2 =
(w1 + w2 eŵ3φ)

(1 + w1 w2 e−ŵ3φ)
. (43)

This finally is a fully explicit result for general velocities �v1 and �v2, which is manifestly in
agreement with the Giust–Vigoureux–Lages results [15].

3.2.7. Uniqueness of the Composition Law

Finally, we might note that the expression for the composition law (20) is not unique. For example,
by considering the power-series of (1−w1w2)

−1, we can re-write Equation (20) as

w1⊕2 = (1−w1w2)
−1(w1 + w2) =

∞

∑
n=0

(w1w2)
n(w1 + w2). (44)

But, as w1 and w2 are pure quaternions, both w2
1 and w2

2 are real numbers, and so commute with
w1 and w2. Thus,

w1⊕2 =
∞

∑
n=0

(w1w2)
nw1 +

∞

∑
n=0

(w1w2)
nw2 = w1

∞

∑
n=0

(w2w1)
n + w2

∞

∑
n=0

(w2w1)
n. (45)

Consequently we find that our composition law can also be written as

w1⊕2 = (w1 + w2)
∞

∑
n=0

(w2w1)
n = (w1 + w2)(1−w2w1)

−1. (46)

Indeed, one could use either Equation (20) or Equation (46) as the definition of the composition
law ⊕. Nonetheless, we will stick with the convention given in (20).
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3.3. Calculating the Wigner Angle

In this section we obtain an expression for the Wigner angle for general 3-velocities using our
composition law (20). Our calculations are obtained using the result that the Wigner angle is the angle
between the velocities w1⊕2 and w2⊕1. We first note

|w1⊕2| = |w2⊕1| = |1−w1w2|−1|w1 + w2| =
|w1n̂1 + w2n̂2|
|1− w1w2 n̂1n̂2|

. (47)

Thence, setting cos θ = �n1 ·�n2 we explicitly verify

|w1⊕2| = |w2⊕1| =
√

w2
1 + w2

2 + 2w1w2 cos θ

1 + w2
1w2

2 + 2w1w2 cos θ
. (48)

Now note that because |w1⊕2| = |w2⊕1| it follows that (w1⊕2) (w2⊕1)
−1 is a unit norm quaternion.

In fact it is related to the Wigner angle by

eΩ = (w1⊕2) (w2⊕1)
−1 . (49)

Then
eΩ =

(
(1−w1w2)

−1(w1 + w2)
) (

(1−w2w1)
−1(w2 + w1)

)−1
(50)

But since for a product of quaternions (q1q2)
−1 = q−1

2 q−1
1 this reduces to

eΩ = (1−w1w2)
−1(1−w2w1). (51)

Now
w1w2 = −w1w2 cos θ + (�w1 × �w2) · (i, j, k). (52)

Let us define

Ω̂ =
(�w1 × �w2)

|�w1 × �w2|
; so ŵ1 × ŵ2 = sin θ Ω̂. (53)

Then setting Ω̂ = Ω̂ · (i, j, k) so that Ω = Ω Ω̂ we have:

w1w2 = −w1w2(cos θ − sin θ Ω̂) = −w1w2 e−θΩ̂. (54)

Consequently the Wigner angle satisfies

eΩ = eΩ Ω̂ =
(

1 + w1w2 e−θΩ̂
)−1 (

1 + w1w2 eθΩ̂
)
=

1 + w1w2 eθΩ̂

1 + w1w2 e−θΩ̂
. (55)

Equivalently,

eΩΩ̂/2 =
1 + w1w2 eθΩ̂

|1 + w1w2 eθΩ̂|
. (56)

Taking the scalar and vectorial parts of Equation (56), we finally obtain

tan
Ω
2

=
w1w2 sin θ

1 + w1w2 cos θ
=
|�w1×�w2|

1 + �w1 · �w2
, (57)

as an explicit expression for the Wigner angle Ω.
The simplicity of Equation (57) compared to existing formulae for Ω in the literature, shows how

the composition law (20) can lead to much tidier and simpler formulae than other methods allowed
for. This can be seen as the extension of the result (12) to more general velocities.
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We can write Equation (57) in a perhaps more familiar (though possibly more tedious) form by
first noting that from Equation (28) we have

wi =
1−
√

1− v2
i

vi
=

γi − 1√
γ2

i − 1
=

√
γi − 1
γi + 1

=

√
γ2

i − 1

γi + 1
=

viγi
γi + 1

, (58)

and so
tan

Ω
2

=
v1v2γ1γ2 sin θ

(1 + γ1)(1 + γ2) + v1v2γ1γ2 cos θ
. (59)

We can check two interesting cases of Equation (57) for when θ = 0 (parallel velocities) and when
θ = π/2 (perpendicular velocities). We can see directly that, for parallel velocities, the associated
Wigner angle is given by tan(Ω/2) = 0, so that Ω = nπ for n ∈ Z; whilst for perpendicular velocities,
the associated Wigner angle is simply given by tan(Ω/2) = w1w2.

It is easiest to check our results against the literature using the somewhat messier Equation (59),
in which case parallel velocities again give tan(Ω/2) = 0, whilst perpendicular velocities give

tan(Ω/2) =
v1v2γ1γ2

(1 + γ1)(1 + γ2)
, (60)

which agrees with the results given in Reference [22].

4. Combining Three 3-Velocities

Let us now see what happens when we relativistically combine 3 half-velocities.
We shall calculate, compare, and contrast w(1⊕2)⊕3 with w1⊕(2⊕3).

4.1. Combining 3 Half-Velocities: w(1⊕2)⊕3

Start from our key result

w1⊕2 = w1 ⊕w2 = (1−w1w2)
−1(w1 + w2), (61)

and iterate it to yield

w(1⊕2)⊕3 = {1− (1−w1w2)
−1(w1 + w2)w3}−1{(1−w1w2)

−1(w1 + w2) + w3}. (62)

It is now a matter of straightforward quaternionic algebra to check that

w(1⊕2)⊕3 = {(1−w1w2)
−1(1−w1w2 − (w1 + w2)w3)}−1

×{(1−w1w2)
−1(w1 + w2) + w3}

= (1−w1w2 − (w1 + w2)w3)
−1(1−w1w2){(1−w1w2)

−1(w1 + w2) + w3}
= (1−w1w2 − (w1 + w2)w3)

−1{(w1 + w2) + (1−w1w2)w3}.

(63)

Ultimately we have the novel result

w(1⊕2)⊕3 = {1−w1w2 −w1w3 −w2w3}−1{w1 + w2 + w3 −w1w2w3}. (64)

An alternative formulation starts from

w1⊕2 = w1 ⊕w2 = (w1 + w2)(1−w2w1)
−1, (65)

which when iterated yields

w(1⊕2)⊕3 = {(w1 + w2)(1−w2w1)
−1 + w3}{1−w3(w1 + w2)(1−w2w1)

−1}−1. (66)
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Thence a little straightforward quaternionic algebra verifies that

w(1⊕2)⊕3 = {(w1 + w2) + w3(1−w2w1)}(1−w2w1)
−1

×{1−w3(w1 + w2)(1−w2w1)
−1}−1

= {(w1 + w2) + w3(1−w2w1)}{(1−w2w1)−w3(w1 + w2)}−1
(67)

Ultimately we have the novel result

w(1⊕2)⊕3 = {w1 + w2 + w3 −w3w2w1}{1−w2w1 −w3w1 −w3w2}−1. (68)

So we have found two equivalent and novel formulae for w(1⊕2)⊕3, Equations (64) and (68).

4.2. Combining 3 Half-Velocities: w1⊕(2⊕3)

In contrast, the situation for w1⊕(2⊕3) is considerably more subtle. Start from the key result that

w2⊕3 = w2 ⊕w3 = (1−w2w3)
−1(w2 + w3), (69)

and iterate it to yield

w1⊕(2⊕3) = {1−w1(1−w2w3)
−1(w2 + w3)}−1{w1 + (1−w2w3)

−1(w2 + w3)}. (70)

The relevant quaternionic algebra is now a little trickier

w1⊕(2⊕3) = {1−w1(1−w2w3)
−1(w2 + w3)}−1(1−w2w3)

−1

×{(1−w2w3)w1 + (w2 + w3)}
= {(1−w2w3)(1−w1(1−w2w3)

−1(w2 + w3)}−1

×{(1−w2w3)w1 + (w2 + w3)}
= {1−w2w3 − (1−w2w3)w1(1−w2w3)

−1(w2 + w3)}−1

×{w1 + w2 + w3 −w2w3w1}.

(71)

To proceed we note that

(1−w2w3)w1(1−w2w3)
−1 =

(
1−w2w3
|1−w2w3|

)
w1

(
1−w2w3
|1−w2w3|

)−1

= e−Ω2⊕3/2 w1 e+Ω2⊕3/2.
(72)

Thence we have the novel result

w1⊕(2⊕3) = {1−w2w3 − (e−Ω2⊕3/2w1e+Ω2⊕3/2)(w2 + w3)}−1{w1 + w2 + w3 −w2w3w1}. (73)

While structurally similar to the formulae (64) and (68) for w(1⊕2)⊕3 the present result (73) for
w1⊕(2⊕3) is certainly different—the Wigner angle Ω2⊕3 now makes an explicit appearance, also the
form of the triple-product w2w3w1 is different.

4.3. Combining 3 Half-Velocities: (Non)-Associativity

From (64) and (68) for w(1⊕2)⊕3, and (73) for w1⊕(2⊕3), it is clear that relativistic composition
of velocities is in general not associative. (See for instance the discussion in References [28,29],
commenting on Reference [29].) A sufficient condition for associativity, w(1⊕2)⊕3 = w1⊕(2⊕3),
is to enforce

e−Ω2⊕3/2w1e+Ω2⊕3/2 = w1; and w1w2w3 = w2w3w1. (74)

35



Universe 2020, 6, 237

That is, a sufficient condition for associativity is

[Ω2⊕3, w1] = 0; and [w1, w2w3] = 0. (75)

But note Ω2⊕3 ∝ [w2, w3] and w2w3 = 1
2{w2, w3}+ 1

2 [w2, w3]. Since {w2, w3} ∈ R, we then
have [w1, w2w3] =

1
2 [w1, [w2, w3]]. This now implies that these two sufficiency conditions are in fact

identical; so a sufficient condition for associativity is

[w1, [w2, w3]] = 0. (76)

This sufficient condition for associativity can also be written as the vanishing of the vector
triple product

�w1 × (�w2 × �w3) = 0. (77)

Equivalently
�v1 × (�v2 ×�v3) = 0. (78)

4.4. Specific Non-Coplanar Example

As a final example of the power of the quaternion formalism, let us consider a specific
intrinsically non-coplanar example. Let w1 = w1i, w2 = w2 j, and w3 = w3k be three mutually
perpendicular half-velocities. (So this configuration does automatically satisfy the associativity
condition discussed above.) Then we have already seen that:

w1 ⊕w2 =
w1(1− w2

2)i + w2(1 + w2
1)j

1 + w2
1w2

2
; w2

1⊕2 =
w2

1 + w2
2

1 + w2
1w2

2
. (79)

Furthermore, since w1 ⊕w2 is perpendicular to w3, we have

(w1 ⊕w2)⊕w3 =
w1⊕2(1− w2

3)n̂1⊕2 + w3(1 + w2
1⊕2)k

1 + w2
1⊕2w2

3
, (80)

and

w2
(1⊕2)⊕3 =

w2
(1⊕2) + w2

3

1 + w2
(1⊕2)w

2
3
=

w2
1 + w2

2 + w2
3 + w2

1w2
2w2

3
1 + w2

1w2
2 + w2

2w2
3 + w2

3w2
1

. (81)

A little algebra now yields the manifestly non-commutative result

(w1 ⊕w2)⊕w3 =
(1− w2

2)(1− w2
3)w1 + (1 + w2

1)(1− w2
3)w2 + (1 + w2

1)(1 + w2
2)w3

1 + w2
1w2

2 + w2
2w2

3 + w2
3w2

1
. (82)

In this particular case we can also explicitly show that

(w1 ⊕w2)⊕w3 = w1 ⊕ (w2 ⊕w3), (83)

though (as discussed above) associativity fails in general.

5. Conclusions

Herein we have provided a simple, elegant, and novel algebraic method for combining special
relativistic 3-velocities using quaternions:

w1⊕2 = w1 ⊕w2 = (1−w1w2)
−1(w1 + w2) = (w1 + w2)(1−w2w1)

−1. (84)
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The construction also leads to a simple, elegant, and novel formula for the Wigner angle:

eΩ = eΩ Ω̂ = (1−w1w2)
−1(1−w2w1), (85)

in terms of which

ŵ1⊕2 = eΩ/2 w1 + w2

|w1 + w2|
; ŵ2⊕1 = e−Ω/2 w1 + w2

|w1 + w2|
. (86)

All of the non-commutativity associated with non-collinearity of 3-velocities is automatically and
rather efficiently dealt with by the quaternion algebra.
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Abstract: So far, none of attempts to quantize gravity has led to a satisfactory model that not only
describe gravity in the realm of a quantum world, but also its relation to elementary particles
and other fundamental forces. Here, we outline the preliminary results for a model of quantum
universe, in which gravity is fundamentally and by construction quantic. The model is based on
three well motivated assumptions with compelling observational and theoretical evidence: quantum
mechanics is valid at all scales; quantum systems are described by their symmetries; universe has
infinite independent degrees of freedom. The last assumption means that the Hilbert space of
the Universe has SUpN Ñ 8q – area preserving Diff.pS2q symmetry, which is parameterized by
two angular variables. We show that, in the absence of a background spacetime, this Universe is
trivial and static. Nonetheless, quantum fluctuations break the symmetry and divide the Universe
to subsystems. When a subsystem is singled out as reference—observer—and another as clock,
two more continuous parameters arise, which can be interpreted as distance and time. We identify
the classical spacetime with parameter space of the Hilbert space of the Universe. Therefore,
its quantization is meaningless. In this view, the Einstein equation presents the projection of
quantum dynamics in the Hilbert space into its parameter space. Finite dimensional symmetries of
elementary particles emerge as a consequence of symmetry breaking when the Universe is divided to
subsystems/particles, without having any implication for the infinite dimensional symmetry and its
associated interaction-percived as gravity. This explains why gravity is a universal force.

Keywords: quantum gravity; quantum mechanics; symmetry; quantum cosmology

1. Introduction and Summary of Results

More than a century after the discovery of general relativity and description of gravitational force
as the modification of spacetime geometry by matter and energy, we still lack a convincing model for
explaining these processes in the framework of quantum mechanics. Appendix A briefly reviews the
history of efforts for finding a consistent Quantum Gravity (QGR) model. Despite tremendous effort
of generations of scientists, none of proposed models presently seem fully satisfactory.

Quantization of gravity is inevitable. Examples of inconsistencies in a universe where matter
is ruled by quantum mechanics but gravity is classical are well known [1,2]. In addition, in [2], it is
argued that there must be an inherent relation between gravity and quantum mechanics. Otherwise,
the universality of Planck constant h̄ as quantization scale cannot be explained.1 Aside from these
arguments, the fact that there is no fundamental mass/energy scale in quantum mechanics means that
it has to have a close relation with gravity that provides a dimensionful fundamental constant, namely
the Newton gravitational constant GN or equivalently the Planck mass MP ” a

h̄c{GN , where c is the

1 Nonetheless, Ref. [3] advocates a context dependent Planck constant.
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speed of light in vacuum (or equivalently Planck length scale LP ” h̄{cMP). We should remind that
a dimensionful scale does not arise in conformal or scale independent models. Indeed, conformal
symmetry is broken by gravity, which provides the only fundamental dimensionful constant to play
the role of a ruler and make distance and mass measurements meaningful.2

In what concerns the subject of this volume, namely representations of inhomogeneous Lorentz
symmetry (called also Poincaré group), they were under special interest since decades ago, hoping that
they help formulate gravity as a renormalizable quantum field. The similarity of the compact group of
local Lorentz transformations to Yang–Mills gauge symmetry has encouraged quantum gravity models
that are based on the first order formulation of general relativity. These models use vierbein formalism
and extension of gauge group of elementary particles to accommodate Poincaré group [5,6]. However,
Coleman–Madula theorem [7] on S-matrix symmetries—local transformations of interacting fields that
asymptotically approach Poincaré symmetry at infinity—invalidates any model in which Poincaré
and internal symmetries are not factorized. According to this theorem total symmetry of a grand
unification model, including gravity, must be a tensor product of spacetime and internal symmetries.
Otherwise, the model must be supersymmetric [8] or VEV of the gauge field should not be flat [9].
However, we know that even if supersymmetry is present at MP scale, it is broken at low energies.
Moreover, any violation of Coleman–Madula theorem and Lorentz symmetry at high energies can
be convoyed to low energies [10] and violate e.g., equivalence principle and other tested predictions
of general relativity [11,12]. For these reasons, modern approaches to the unification of gravity as a
gauge field with other interactions consider the two sectors as separate gauge field models. In addition,
in these models gravity sector usually has topological action to make the formulation independent
of the geometry of underlying spacetime, see e.g., [13–15]. However, like other quantum gravity
candidates these models suffer from various issues. The separation of internal and gravitational gauge
sectors means that these models are not properly speaking a grand unification. Moreover, similar
to other approaches to QGR, these models do not clarify the nature of spacetime, its dimensionality,
and relation between gravity and internal symmetries.

In addition to consistency with general relativity, cosmology, and particle physics, a quantum
model unifying gravity with other forces is expected to solve well known problems that are related
to gravity and spacetime, such as: physical origin of the arrow of time; apparent information loss
in black holes; and, UV and IR singularities in Quantum Field Theory (QFT) and general gravity.3

There are also other issues that a priori should be addressed by a QGR model, but are less discussed in
the literature:

1. Should spacetime be considered as a physical entity similar to quantum fields associated to

particles, or rather it presents a configuration space ?

General relativity changed spacetime from a rigid entity to a deformable media. However,
it does not specify whether spacetime is a physical reality or a property of matter,
which ultimately determines its geometry and topology. We remind that in the framework
of QFT vacuum is not the empty space of classical physics, see e.g., [16,17]. In particular,
in the presence of gravity the naive definition of quantum vacuum is frame dependent.
A frame-independent definition exists [18] and it is very far from classical concept of an

2 In addition to MP, we need two other fundamental constants to describe physics and cosmology: the Planck constant h̄ and
maximum speed of information transfer that experiments show to be the speed of light in classical vacuum. We remind that
triplet constants ph̄, c, MPq are arbitrary and can take any nonzero positive value. The selection of their values amounts to
the definition of a system of units for measuring other physical quantities. In QFT literature usually h̄ “ 1 and c “ 1 are
used. In this system of units—called high energy physics units [4]—h̄ and c are dimensionless.

3 Some quantum gravity models such as loop quantum gravity emphasize the quantization of gravity alone. However, giving
the fact that gravity is a universal force and interacts with matter and other forces, its quantization necessarily has impact on
them. Therefore, any quantum gravity only model would be, at best, incomplete.
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empty space. Explicitly or implicitly, some of models reviewed in Appendix A address
this question.

2. Is there any relation between matter and spacetime ?

In general relativity matter modifies the geometry of spacetime, but the two entities
are considered as separate and stand alone. In string theory spacetime and matter
fields—compactified internal space—are considered and treated together, and spacetime
has a physical reality that is similar to matter. By contrast, many other QGR candidates
only concentrate their effort on the quantization of spacetime and gravitational interaction.
Matter is usually added as an external ingredient and it does not intertwine in the
construction of quantum gravity and spacetime.

3. Why do we perceive the Universe as a three-dimensional (3D) space (plus time) ?

None of extensively studied quantum gravity models discussed in Appendix A answer
this question, despite the fact that it is the origin of many troubles for them. For instance,
the enormous number of possible models in string theory is due to the inevitable
compactification of extra-dimensions to reduce the dimension of space to the observed
3 + 1. In background independent models, the dimension of space is a fundamental
assumption and essential for many technical aspects of their construction. In particular,
the definition of Ashtekar variables [19] for SUp2q – SOp3q symmetry and its relation with
spin foam description of loop quantum gravity [20] are based on the assumption of a 3D
real space. On the other hand, according to holography principle, the maximum amount
of information that is containable in a quantum system is proportional to its area rather
than volume. If the information is projected and available on the boundary, it is puzzling
why we should perceive the volume.

In a previous work [21], we advocated the foundational role of symmetries in quantum mechanics
and reformulated its axioms accordingly, see Appendix B for a summary. Of course, the crucial
role of symmetries in quantum systems is well known. However, axioms of quantum mechanics à
la Dirac and von Neumann consider an abstract Hilbert space and do not specify its relation with
symmetries of quantum systems. In addition to symmetries of their classical Lagrangian, Hilbert space
of quantum systems represents SUpNq group, called state symmetry, see Appendix C for more details.
Transformation of states by this group modifies their coherence, and recently quantification of this
property and its usefulness as a resource has become a subject of interest in quantum information
theory literature [22,23].

Inspired by these developments, in this work we study a standalone quantum system, which is
considered to be the Universe.

1.1. Summary of the Model and Results

The model assumes infinite number of independent and simultaneously commuting observables
in the Universe, but no background spacetime. Hilbert space HU of such system represents
SUpN Ñ 8q symmetry. However, in absence of a background spacetime, its dynamics is trivial
and its Lagrangian is defined on the group manifold of SUp8q symmetry. Therefore, states are pure
gauge. The vector space of gauge transformations, corresponding to linear transformations of the
Hilbert space, is BrHUs – SUp8q. On the other hand, quantum fluctuations break the state symmetry
and factorize the Hilbert space to blocks of tensor product of subspaces according to criteria studied
in [24,25]. For each subsystem, the rest of the Universe plays the role of a background parameterized
by three continuous quantities that can be identified with the classical space. Moreover, division of
the Universe to subsystems leads to emergence of time and its arrow à la Page & Wootters [26] or
similar methods [27]. We show that the 3 + 1 dimensional parameter space is, in general, curved and
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invariant under inhomogeneous Lorentz transformations and its curvature is determined by quantum
states of the subsystems. We also comment on the signature of parameter space metric. Based on these
observations, we interpret SUp8q sector of the model as Quantum Gravity. The finite rank factorized
symmetries become local gauge fields acting on a Hilbert space that presents matter fields.

These results demonstrate the importance of the division of Universe to subsystems and
the distinction of observer and clock from the rest. Nonetheless, in contrast to the Copenhagen
interpretation of quantum mechanics, the absence of observer does not make the model meaningless,
but trivial and static. This model answers some of issues raised in questions 1–3 raised earlier.
In particular, it clarifies the nature of spacetime and its dimensionality, and provides an explanation
for the universality of gravitational force.

A crucial proposal of the model is that what we perceive as classical spacetime is the configuration
(parameter) space of its content. In other words, rather than saying particles/objects (such as strings)
live in a 3 + 1 dimensional space, according to this model we can say that an ensemble of abstract
objects with SUp8q ˆ G symmetry look like a 3 + 1 dimensional infinite curved spacetime with
gravity, where subsystems are fields that represent group G as a local gauge symmetry. Thus, we can
completely neglect the geometric interpretation and just consider the Universe as an infinite tensor
product. This aspect of the model is similar to the approach of [28]. However, their model is somehow
inverse of that studied here. They use tensor product and quantum entanglement to make a symplectic
geometry that becomes a continuous curved spacetime when the number of tensor product factors
approaches to infinity. The drawback is that symplectic geometries defined by graphs can be embedded
in any space of dimension D ě 2. Consequently, they cannot explain the dimension of the spacetime.

Axioms and structure of the model is discussed in Section 2. Lagrangian of the system before
its division is described in Section 3. Properties of the model after symmetry breaking and division
of the Universe are studied in Section 4. Section 5 presents a brief comparison of this model with
string and loop quantum gravity. Section 6 presents outlines and prospective for future investigations.
Accompanying appendices contain technical details and review of previous results. Appendix A
gives a short recount of the history of quantum gravity models. Appendix B summaries the axioms
of quantum mechanics in symmetry language. State space and its associated symmetry is reviewed
in Appendix C. Properties of SUp8q and its representations are summarized in Appendix D and its
Cartan decomposition in Appendix E.

2. An Infinite Quantum Universe

Our departure point for constructing a quantum universe consists of three well motivated
assumptions with compelling observational and theoretical evidence:

I. Quantum mechanics is valid at all scales and applies to every entity, including the Universe as
a whole;

II. Any quantum system is described by its symmetries and its Hilbert space represents them;
III. The Universe has an infinite number of independent degrees of freedom.

The last assumption means that the Hilbert space of the UniverseHU is infinite dimensional and
represents the group SUp8q. There is sufficient evidence in favour of such an assumption. For instance,
the thermal distribution of photons at IR limit contains an infinite number of quanta with energies
approaching zero and there is no minimum energy limit. For this reason, vacuum can be considered
to be a superposition of multi-particle states of any type—not just photons—without any limit on
their number [18]. In general relativity, there is no upper limit for gravitons wavelength and thereby
their number. Of course, one may argue that a lower limit on energy or spacetime volume may exist.
Nonetheless, for any practical application the number of subsystems/quanta in the Universe can be
considered to approach infinity. Indeed, even in quantum gravity models that assume a symplectic
structure for spacetime, such as spin foam/loop quantum gravity and causal sets, there is not a fixed
lattice of spacetime and the number of spacetime states is effectively infinite.
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The algebra that is associated to the SUp8q coherence (state) symmetry of the above model is
defined as4:

rL̂a, L̂bs “ h̄
cMP

f c
ab L̂c “ LP f c

ab L̂c (1)

where operators L̂α P BrHUs are generators of algebra sup8q and f c
ab are its structure coefficients.

They are normalized such that the r.h.s. of (1) explicitly depends on the Planck constant h̄. If h̄ Ñ
0, the r.h.s. becomes null, and the algebra becomes abelian and homomorphic to

ÂNÑ8 Up1q —
in agreement with the symmetry of configuration space of classical systems, explained in Appendix C.
The same happens if MP Ñ 8, that is when Planck mass scale is much larger than scale of interest. In
both cases LP Ñ 0. Assuming that SUp8q symmetry of the Universe can be associated to gravitational
interaction—we will provide more evidence in favour of this claim later—the above limits mean that,
in both cases, gravity becomes negligible.5

It is well known that BrHUs – SUp8q – area preserving DiffpS2q [29,30], where S2 is 2D
sphere. In fact, SUp8q is homomorphic to area preserving diffeomorphism of any two-dimensional
(2D) Riemann surface [31–33]. Therefore, here S2 can be any 2D surface, rather than just sphere.
This theorem can be heuristically understood as the following: any compact 2D Riemann surface can
be obtained from sphere by removing a measure zero set of pairs of points and sticking the rest of
the surface pair-by-pair together. Although surfaces with different genus are topologically different,
they are homomorphic. This property may be important in the presence of subsystems with singularity,
such as black holes, in which part of the parameter space is inaccessible. From now on, we call a 2D
surface that its diffeomorphism represents SUp8q a diffeo-surface.

Homomorphism between SUp8q and DiffpS2q makes it possible to expand L̂a’s with respect
to spherical harmonic functions, depending on angular coordinates pθ, φq on a sphere. Moreover,
owing to the Cartan decomposition, SUp8q generators can be described as a tensor product of Pauli
matrices [29,34]. In this case, indices in (1) consist of a pair pl, mq | l “ 0, ¨ ¨ ¨ , 8; ´l ď m ď `l.
Appendix E reviews decomposition and indexing of SUp8q generators. We continue to use single
letters for the indices of generators when there is no need for their explicit description.

The algebra (1) is not enough to make the system quantic and as usual L̂a’s must respect
Heisenberg commutation relations:

rL̂a, Ĵbs “ ´iδabh̄. (2)

where Ĵa P BrHŮs is the dual of L̂a and HŮ is the dual Hilbert space of the Universe. As there
is a one-to-one correspondence between L̂’s and Ĵ’s, they satisfy the same algebra, represent the
same symmetry group, namely SUp8q, and they have their own expansion to spherical harmonics.
Owing to SUp8q – DiffpS2q, vectors of the Hilbert space are differentiable complex functions of
angular coordinates pθ, φq. Thus, spherical harmonic functions constitute an orthogonal basis forHU .
The Cartan subalgebra of BrHUs – SUp8q is also infinite dimensional.

The quantum Universe defined here is static, because there is no background space or time in
the model. Nonetheless, in Section 4, we show that continuous degrees of freedom similar to space
and time naturally arise when the Universe is divided to subsystems. The short argument goes as
the following:

We assume that eigen states of the Hilbert space of the Universe are not abstract objects and
physically exist. This assumption is supported by the fact that in Standard Model (SM) of particle
physics states that constitute a basis for its Hilbert space and for its space of linear transformations are
indeed observed particles (fields). Consequently, taking into account the assumption thatHU is infinite

4 In this work, all vector spaces and algebras are defined on complex number field C, unless explicitly mentioned otherwise.
5 Although in (1) we show the dimensional scale h̄{MP in the definition of operators and their algebra, for the sake of

convenience in the rest of this work, we include it in the operators, except when its explicit presentation is necessary for
the discussion.
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dimensional, we conclude that the Universe must consist of infinite number of particles/subsystems.
Although subsystems may have some common properties, which make them indistinguishable from
each others, there are many other distinguishable aspects, which discriminate them from each others.
This statement is in agreement with the corollary presented in Appendix B regarding the divisibility of a
quantum Universe, derived from axioms of quantum mechanics. Thus, this conclusion is independent
of details of the model.

Notice that, without the assumption about physical existence of eigen states, an infinite
dimensional Hilbert space does not necessarily mean Universe must be infinitely divisible.
Hilbert space of many quantum systems have an infinite number of states. However, they do not
necessarily occur in each instance (copy) of the system. The case of a Universe is different, because,
by definition, there is only one copy of it. Therefore, every eigen state of a complete basis of its Hilbert
space must physically exist. Otherwise, it can be completely discarded.

In the next sections, we make this argument more rigorous and explain how it can lead to a
3 + 1 dimensional spacetime and internal gauge symmetry of elementary particles. We begin with
constructing a Lagrangian for this static model and show that it is trivial.

3. Lagrangian of the Universe

Although the infinite dimensional Universe described in the previous section is static, it has to
satisfy constraints imposed by symmetries associated to it. They are analogous to constraints imposed
on systems in thermodynamic equilibrium. Although there is no time variation in such systems,
a priori small perturbations occur, for instance, by absorption and emission of energy. They must be in
balance with each others, otherwise the system would lose its equilibrium. Therefore, it is useful to
define a Lagrangian that quantifies these constraints. In the case of present model, the Lagrangian
should quantify SUp8q symmetry and its representation byHU .

Lagrangian of a system must be invariant under transformations of fields by application of
members of its symmetry group. As there is no background spacetime in this model, the most
appealing candidate is a Lagrangian similar to Yang–Mills, but without a kinetic term. In such a
situation, the only available quantities are invariants of the symmetry group:

LU “
ż

d2Ω
b

|gp2q|
„

1
2

ÿ
a, b

Lå pθ, φqLbpθ, φqtrpL̂a L̂bq ` 1
2

ÿ
a

LatrpL̂aρpθ, φqq
j

, d2Ω ” dpcos θqdφ (3)

where g is the determinant of 2D metric of the diffeo-surface. If we use description (A5) for L̂ operators,
a “ b “ 1. If we use (A12) expression, a, b “ pl, mq, l “ 0, ¨ ¨ ¨ , 8; ´m ď l ď `m. The latter
case explicitly demonstrates the Cartan decomposition of SUp8q to SUp2q factors, as described in
Appendix E. Notice that pθ, φq are internal variables [30], reflecting the fact that vectors of the Hilbert
space representing SUp8q are functions on a 2D Riemann surface. For the same reason, in contrast to
usual Lagrangians in QFT, there is no term containing derivatives with respect to these parameters in
LU . If we use differential representation of L̂lm defined in (A5) and apply it to amplitudes Llmpθ, φq,
the first term in the Lagrangian will depend on the partial derivatives of amplitudes, just like in the QFT.
However, it is straightforward to see that derivatives with respect to cos θ and φ will have different
amplitudes and, thereby, the kinetic term will be unconventional and non-covariant, unless we
consider amplitudes Llmpθ, φq as functions of the metric of a deformed sphere. This is the explicit
demonstration of SUp8q – DiffpS2q invariance of this Lagrangian.

Generators T̂a, T̂b P SUpNq, @N can be normalized, such that trpTaTbq 9 δab, see e.g., [29].
In analogy with field strength in Yang–Mills theories, the function Lapθ, φq can be interpreted as
the amplitude of the contribution of operator L̂a in the dynamics of the Universe. Due to global Up1q
symmetry of operators applied to a quantum state, La’s are, in general, complex. On the other hand,
when considering the Cartan decomposition of SUp8q to tensor product of SUp2q factors and the
fact that σ: “ pσ˚qt “ σ, we conclude that L̂:

a “ L̂a, Similar to QFT, one can use LU to define a path
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integral. In the absence of time, the path integral presents the excursion of states in the Hilbert space
by successive application of L̂a operators. Nonetheless, owing to SUp8q symmetry, variation of states
is equivalent to gauge transformation and non-measurable.

The analogy of LU with Yang–Mills theory has interesting consequences. For instance, differential

representation of L̂lm defined in (A5) can be written as L̂lm “
b

|gp2q|εμνpBμYlmqBν. In classical limit, one

can consider that L̂lm acts on the field amplitude Llm and the first term in the integrand of Lagrangian
LU can be arranged, such that it becomes proportional to Ricci scalar Rp2q. As the geometry of 2D
diffeo-surface is arbitrary, for each set of Llm the metric gμν can be chosen, such that Llm dependent part
of the integrand becomes proportional to Ricci scalar for that metric. Thus, in classical limit the first
term is topological.6 We could arrive to this conclusion inversely. Because SUp8q – DiffpS2q, in the
classical limit the Lagrangian should be the same as Einstein gravity in a static 2D curve space. Thus,

the first term in (3) can be replaced by
ş

d2Ω
b

|gp2q|Rp2q. Then, the definition of L̂lm operators in (A5)

and amplitudes Llm can be used to write Rp2q with respect to L̂lm and relate metric and connection
of the 2D surface to amplitudes Łlm. We leave a detailed demonstration of these relations to a future
work. The relation between gauge field term in LU and Riemann curvature in classical limit is crucial
for interpretation of this term as gravity when the Universe is divided to subsystems.

Notice that, in both representations of SUp8q, namely Cartan decomposition to tensor product
of SUp2q factors and diffeomorphism of 2D surfaces, angular coordinates θ and φ play the role of
parameters that identify/index the members of the symmetry group. Consequently, their quantization
is meaningless. This is consistent with interpretation of Einstein equation as an equation of state [35].
Presuming the physical reality of Hilbert space and operators applied to it, as discussed in the previous
section and in Appendix C, we can interpret Llm as intensity of force mediator particles related to the
symmetry represented by operators L̂lm, and ρ in the second term of the Lagrangian LU as density
matrix of matter.

Although LU is static, we can apply a variational principle with respect to amplitudes to obtain
field equations and find equilibrium values of Llm and ρ. However, it is easily seen that solutions of
these equations are trivial. At equilibrium Llm Ñ 0 and ρlm Ñ 0, see Appendix E.2 for the details.
Because SUp8qn – SUp8q @ n, this solution has properties of a frame independent vacuum of a
many-particle Universe defined by using coherent states [18]. Their similarity implicitly implies that
the Universe is divisible and consists of infinite number of particles/subsystems interacting through
mediator particles of SUp8q force, which is the action of L̂lm. We investigate this conclusion in more
details in the next section.

4. Division to Subsystems

There are many ways to see that the quantum vacuum (equilibrium) solution of a Universe with
LU Lagrangian (3) is not stable. Of course there are quantum fluctuations. They are nothing else than
random application of L̂lm operators, in other words random scattering of force mediator quanta by
matter. They project the Hilbert space to itself. However, owing to SUp8q symmetry of Lagrangian,
states are globally equivalent and the Universe maintain its equilibrium. Nonetheless, locally states
are different and they do not respond to L̂lm in the same manner. Here, locality means restriction of
Lagrangian and projections to a subspace of the Hilbert space [25]. As state space is homomorphic to
the space of smooth functions on the sphere f pθ, φq, the restriction of transformations to a subspace is
equivalent to a local deformation of the diffeo-surface. Moreover, the difference between structure
coefficients of SUp8q can be used to define a locality or closeness among operators that belong to

6 We remind that
ş
M d2Ω

b
|gp2q|Rp2q “ 4πχpMq, where χ is the Euler characteristic of the compact Riemann 2D surfaceM.

Moreover, Ricci scalar alone does not determine Riemann curvature tensor Rμν and only provides one constraint for three
independent components of the metric tensor.
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BrHUs. These observations are additional evidence to the argument given at the end of Section 3 in
favour of the divisibility of the quantum Universe introduced in Section 2 to multi-particle/subsystems.

A quantum system that is divisible to separate and distinguishable subsystems 7 must fulfill 3
conditions [24]:

- There must exist sets of operators tAiu Ă BrHs such that @ā P tAiu and @b̄ P tAju, and i ‰
j, rā, b̄s “ 0;

- Operators in each set tAiu must be local8;
- tAiu’s must be complementarity, which is bitAiu – EndpBrHsq.

The most trivial way of fulfilling these conditions is a reducible representation of symmetries by
BrHs. In the case of BrHUs – SUp8q, as:

SUp8qn – SUp8q @ n (4)

the above condition can be easily realized. Moreover, instabilities, quantum correlations,
and entanglement may create local symmetries among groups of states and/or operators. There are
many examples of such grouping and induced symmetries in many-body systems, see e.g., [36]
for a review. A hallmark of induced symmetry by quantum correlations is the formation of anyon
quasi-particles having non-abelian symmetry in the fractional quantum Hall effect [37]. On the other
hand, there is only one state in the infinite dimensional Hilbert space, in which all pointer states have
the same probability, namely the maximally coherent state defined in (A2). Even if a many-body
system begins in such a maximally symmetric state, quantum fluctuations rapidly change it to a less
coherent and more asymmetric one. In addition, due to (4), irreducible representations of SUp8q
are partially entangled [25] and there is high probability of clustering of subspaces in a randomly
selected state.

Lets assume that such groupings indeed have occurred in the early Universe and they continue
to occur at Planck scale. They provide the necessary conditions for division of the Universe to parts
or particles with SUp8q ˆ G – SUp8q as their symmetry. The local symmetry G is assumed to be a
compact Lie group of finite rank and respected by all subsystems. Although different subsystems
may have different internal symmetries, without a lack of generality, we can assume that G is their
tensor product, but some species of particles/subsystems are in singlet representation of some of the
component groups.

As the rank of G is assumed to be finite, complementarity condition dictates that the number of
subsystems must be infinite to account for the infinite rank ofHU . If states are in a finite dimensional
representations of G, at least one of the representations must have infinite multiplicity and their Hilbert
space would be infinite dimensional. Thus, despite the division of BrHUs, SUp8q remains a symmetry
of subsystems and tAiu Ă BrHis – SUp8q, whereHi is the Hilbert space of subsystem i. Clustering
of states and subsystems are usually the hallmark of strong interaction and quantum correlation [36].
Therefore, the interaction of subsystems through internal G symmetry is expected to be stronger than
through SUp8q, thereby the weak gravitation conjecture [38] is satisfied.

We could also formulate the above Universe in a bottom-up manner. Consider the ensemble
of infinite number of quantum systems—particles—each having finite symmetry G and coherently
mixed with each others. Their ensemble generates a Universe with SUp8q ˆ G – SUp8q as symmetry
represented by its Hilbert space. Therefore, top-down or bottom-up approaches to an infinitely

7 In statistical quantum or classical mechanics distinguishability of particles usually means being able to say, for instance,
whether it was particle 1 or particle 2 which was observed. Here by distinguishability we mean whether a particle/subsystem
can be experimentally detected, i.e., through application of L̂lm to a subspace of parameter space and identified in isolation
from other subsystems or the rest of the Universe.

8 This condition is defined for quantum systems in a background spacetime. In the present model there is not such a
background. Nonetheless, as explained earlier, locality on the diffeo-surface can be projected to BrHUs.
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divisible Universe give the same result. The bottom-up view helps to better understand the origin
of SUp8q symmetry. It shows that, for each subsystem, it is the presence of other infinite number of
subsystems and its own interaction with them that is seen as a SUp8q symmetry.

4.1. Properties of an Infinitely Divided Quantum Universe

The division of the Universe to subsystems has several consequences. First of all, the global
Up1q symmetry of HU becomes local, because Hilbert spaces of subsystems Hi, @i, where index i
runs over all subsystems, acquire their own phase symmetry. Therefore, we expect that there is at
least one unbroken Up1q local—gauge—symmetry in nature. It may be identified as Up1q symmetry
of the Standard Model. From now on, we include this Up1q to the internal symmetry of subsystems
G. Additionally, the infinite number of subsystems in the Universe means that each of them has its
own representation of SUp8q symmetry. However, these representations are not isolated and are part
of the SUp8q symmetry of the whole Universe. This property is similar to finite intervals on a line,
which are homomorphic to Rp1q and, at the same time, part of it and have the same algebra. Therefore,
the memory of being part of the whole Universe is not washed out with the division to subsystems.
Otherwise, according to the corollary discussed in Appendix B subsystems could be considered as
separate and isolated universes.

The area of diffeo-surface is irrelevant when only one SUp8q is considered. However, it becomes
relevant and observable when it is compared with its counterparts for other subsystems. More precisely,
homomorphism between Hilbert spaces of two subsystems s and s1 defined as:

Rss1 : Hs Ñ Hs1 (5)

can be considered as an additional parameter that is necessary for their identification and indexing.
A more qualitative description of how a third continuous parameter emerges from division of Universe
to subsystem is given in the next subsection.

4.2. Parameterization of Subsystems

There are various ways to see that the division of the Universe to subsystems defined
in Section 2 induces a new continuous parameter. As discussed in the previous subsection,
each subsystem represents SUp8q ˆ G. When SUp8q representation of different subsystems are
compared, e.g., through a morphism, the radius of diffeo-surface becomes relevant, because different
radius means different area. This dependence allows for classifying subsystems according to a size
scale. More precisely, in the definition of L̂lm in (A5), Ylm9rl , where r is the distance to centre in
spherical coordinates when the 2D surface is embedded in Rp3q. If we factorize r-dependence part of
Ylm, the algebra of L̂lm defined in (A4) becomes:

rL̂lm, L̂l1m1 s
ˇ̌̌
ˇ
r“1

“ rl2´l1´l f l”m”
lm,l1m1 L̂l”m”

ˇ̌̌
ˇ
r“1

(6)

where all L̂lm operators are defined for r “ 1 (in an arbitrary unit). Equation (6) shows that r can be
interpreted as a coupling that quantifies the strength of correlation between L̂lm operators. Moreover,
due to homomorphism (4), L̂lm’s of subsystems are part of L̂lm’s of the full system. Consequently,
subsystems are never completely isolated and they interact through an algebra similar to (6), but their
r factors can be different:

rL̂prq
lm , L̂pr1q

l1m1 s
ˇ̌̌
ˇ
r“1

“ r“l2
r1´l1

r´l f l”m”
lm,l1m1 L̂r2

l”m”

ˇ̌̌
ˇ
r“1

(7)

where r indices on L̂lm operators are added to indicate that they may belong to different subsystems.
Nonetheless, the algebra remains the same, because operators L̂lm belong, at the same time, to the global
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SUp8q. On the other hand, the nonlocality of this algebra in the point of view of subsystems should
induce a dependence on derivative with respect to parameters when infinitesimal transformations are
considered, e.g., in the Lagrangian. Specifically, we expect a relation between r2 and pr, r1q, determined
by homomorphism (5). In the infinitesimal limit, the r.h.s. of (7) becomes Lie derivative of L̂lm in the
direction of L̂l1m1 in the manifold that is defined by parameters pr, θ, φ, tq, where the last parameter is
time with respect to an observer, as described in the next subsection.

In summary, after the division of the Universe to subsystems, their SUp8q symmetries are indexed
by angular parameters pθ, φq and an additional continuous parameter r “ p0, 8q. They share the algebra
of global SUp8q, but acquire a new index and, in this sense, their algebra becomes nonlocal. Notably,
in the infinitesimal limit the algebra can be considered as the Lie derivative of L̂a P BrHs operators
on the manifold of parameter space pr, theta, φ, tq. Differential properties of the model need more
investigation and will be reported elsewhere.

Finally, we can define a conjugate set of parameters for the dual Hilbert space HŮ and dual
operators Ĵa defined in (2). Therefore, in contrast to some quantum gravity candidates, this model does
not have a preference for position or momentum spaces.

4.3. Clocks and Dynamics

The last step for construction of a dynamical quantum Universe is the introduction of a clock by
using comparison between variation of states of two subsystems, tagged as system and clock, under the
application of operators L̂α P SUp8q ˆ G by a third subsystem, tagged as observer, who plays the role
of a reference. The necessity of an observer/reference is consistent with the foundation of quantum
mechanics, as described in [21]. In the context of the present model, this discrimination can be
understood as the following: although the global SUp8q symmetry means that any variation of full
state by application of L̂α is a gauge transformation, a variation of subsystems with respect to each
others is meaningful and can be quantified.

The technical details of introducing a clock and relative time in quantum mechanics are intensively
studied in the literature, see e.g., [27] for a review and proof of the equivalence of different approaches.
Here, we describe this procedure through an example. Consider the application of operators
L̂c P BrHCs and L̂s P BrHss to two subsystems, called clock and system, respectively, such that:

L̂cρc L̂:
c “ ρc ` dρc “ dρ1

c, L̂sρs L̂:
s “ ρs ` dρs “ dρ1

s (8)

Because these operations are local and restricted to subsystems, they are not gauged out. One way
of associating a c-number quantity to these variations is to define parameter t, such that, for instance,
dt ” |tr pρ1

cÔcq ´ tr pρcÔcq|, where Ôc is an observable of the clock subsystem. This quantity is positive
and, by definition, incremental. The Hamiltonian operator of the system Hs P BrHss according to this
clock would be an operator for which dρs{dt “ ´i{h̄rHs, ρss.

More generally, defining a clock is equivalent to comparing excursion path of two subsystems
in their respective Hilbert space under successive application of L̂c and L̂s to them, respectively.
The arrow of time arises because through the common SUp8q symmetry any operation—even a local
one—is communicated to the whole Universe. Thus, inverting the arrow of time amounts to performing
an inverse operation on all subsystems, which is extremely difficult. Therefore, although the dynamical
equation of one system may be locally symmetric with respect to time reversal, due to global effect of
every operation, its effect cannot be easily reversed.

4.4. Geometry of Parameter Space

The final stride of time definition brings the dimension of continuous parameter space necessary
for describing states and dynamics of an infinite dimensional divisible Universe to 3 + 1, namely
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pr, θ, φ, tq.9 Although these parameters arise from different properties of the Universe, namely pθ, φq
from SUp8q symmetry, r from division to infinite number of subsystems, and t from their relative
variation, they are mixed through the global SUp8q symmetry, arbitrariness of the choice of reference
frame and clock, and quantum superposition of states. Therefore, geometry of the parameter space is
Rp3`1q.

The 2D parameter space of the whole Universe is, by definition, diffeomorphism invariant, as it is
the representation of SUp8q. However, at this stage it is not clear whether the subdivided Universe is
rigid, that is only invariant only under global frame transformations of the (3 + 1)D parameter space,
or deformable and invariant under its diffeomorphism. Here we show that it is indeed diffeomorphism
invariant. Moreover, its geometry is determined by states of subsystems.10

Consider a set of 2D diffeo-surfaces representing SUp8q symmetries of subsystem.
These diffeomorphism can be obtained from application of L̂lm P SUp8q operators to vacuum
state of each subsystem, considered to be a sphere. They are smooth functions of parameters
pr, θ, φq and can be identified with states of the subsystems, which are also smooth functions of
the same parameters. After ordering these surfaces—for instance, according to their average distances
11—and defining a projection between neighbours 12, such that if on ith surface the point pθi, φi, riq is
projected to pθi`1, φi`1, ri`1q on pi ` 1qth surface, the distance in Rp3q between points in an infinitesimal
surface ΔΩi ă ε2 containg pθi, φi, riq and infinitesimal surface ΔΩi`1 ă ε12 containg pθi`1, φi`1, ri`1q
approaches zero if ε, ε1 Ñ 0. The path connecting closest points on ΔΩi and ΔΩi`1 defines an
orthogonal direction in a deformed S2 ˆ Rp1q–Rp3q and the Riemann curvature of this space can be
determined from sectional curvature. Therefore, parameter space (or equivalently Hilbert space) is
curved. Moreover, as the projection between ΔΩi and ΔΩi`1 used for this demonstration is arbitrary,
we conclude that the parameter space is not rigid and its diffeomorphism does not change the physics.
The same procedure can be applied when a clock is chosen. Therefore, the above conclusions apply to
the full (3 + 1)D parameter space of the subdivided Universe.

Finally, from homomorphism between diffeo-surfaces and states of subsystems, we conclude that
(3 + 1)D classical spacetime can be interpreted as parameter space of the Hilbert space of subsystems
of the Universe, and gravity as the interaction that is associated to SUp8q symmetry.

4.5. Metric Signature

Up to now we indicated the dimension of spacetime—parameter space of SUp8q symmetry—after
subdivision of the Universe as 3 + 1. This implicitly means that we have considered a Lorentzian
metric with negative signature. In special and general relativity, the signature of metric is dictated by
observation of the constant speed of light in classical vacuum. Indeed, diffeomorphism invariance,
Einstein equation, and interpretation of gravity as curvature of spacetime are independent of signature
of the spacetime metric.

9 Evidently, in addition to 3 + 1 external parameters each subsystem represents the internal symmetry G, where its
representations have their own parameters.

10 Notice that even in classical general relativity diffeomorphism and relation between geometry and state of matter are
independent concepts. In particular, Einstein equation is not the only possible relation and a priori other diffeomorphism
invariant relations between geometry and matter are allowed—but constrained by experiments.

11 More generally, any measure of difference between states, such as Fubini–Study metric or fidelity can be used to order states.
As Hilbert spaces of quantum systems with SUp8q symmetry consist of continuous functions, we can use usual analytical
tools for defining a distance. However, we should not forget that functions are vectors of a Hilbert space. Moreover,
Hilbert space vectors are, in general, complex functions and each projection between diffeo-surfaces corresponds to two
projection in the Hilbert space, one for real part and one for imaginary part of vectors.

12 This projection is isomorphic to a homomorphism between BrHss of subsystems.
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In quantum mechanics, Heisenberg uncertainty relation imposes Mandelstam–Tamm
constraint [39] on the minimum time necessary for the transition of a quantum state ρ1 to another
perfectly distinguishable state ρ2 [23]:

Δt ě h̄?
2

cos´1 Apρ1, ρ2qb
Qpρ1, Ĥq

,

Apρ1, ρ2q ” trp?
ρ1

?
ρ2q, Qpρ, Ĥq ” 1

2
|trpr?ρ, Ĥs2q| (9)

where Ĥ is the system’s Hamiltonian. Consider ρ1 as the state of Universe after selecting and separating
an observer and a clock and ρ2 as an infinitesimal variation of ρ1, that is ρ2 “ ρ1 ` dρ1. We assume
that the clock is chosen, such that, in (9), minimum time is achieved. Subsequently, (9) becomes:

QpĤ, ρ1qdt2 “ trpa
dρ1

a
dρ1

: ” ds2 (10)

This equation is similar to a Riemann metric for a system at rest with respect to the chosen coordinates
frame for the parameter space pr, θ, φ, tq. On the other hand, the r.h.s. of (10) only depends on the
variation of state and is independent of the chosen frame for parameters. Therefore, ds is similar to an
infinitesimal separation. A coordinate transformation, i.e., pr, θ, φ, tq Ñ pr1, θ1, φ1, t1q does not change
state of the Universe and is equivalent to a basis transformation in the Hilbert space. On the other
hand, the l.h.s. of (10) changes. Considering the similarity of (10) to metric equation, we can write
ds2 as:

g00dt12 ˘ giidx1idx1i “ ds2 (11)

where we have used Cartesian coordinates in place of spherical. We have chosen parameter
transformation such that g0i “ gi0 “ 0. We have also assumed gij ą 0 and factorized the sign
of spatial part of the metric. In these new coordinates, the Hamiltonian associated to the new clock t1 is
Ĥ1 and Mandelstam–Tamm relation imposes:

Q1pĤ1, ρ1qdt12 ” g00dt12 ě trpa
dρ1

a
dρ1

:q “ ds2 (12)

For ds2 ě 0, constraint (12) is only satisfied if the sign of spatial part in (11) and thereby the
signature of the metric is negative. We remind that Mandelstam–Tamm constraint does not apply to
states that do not fulfill distinguishability condition. In these cases, ds2 ă 0 is allowed. In classical
view of spacetime, they correspond to spacelike events, where two events/states are not causally
related. In quantum mechanics, this can be related to nonlocality [40] and the absence of strict causality.
Additionally, the explicit dependence of separation on the density matrix in (10) and (12) and its
independence of the coordinate frame of the parameters/spacetime confirms and completes the
discussion of Section 4.4 regarding the curved geometry of parameter space and diffeomorphism
invariance of subdivided Universe.
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4.6. Lagrangian of Subsystems

Finally, the Lagrangian of the Universe after the division to subsystems and selection of reference
observer and clock takes the following form:

LUs “
ż

d4x
a´g

„
1

16πGNh̄

ÿ
l,m,l1,m1

trpLl̊mpxqLl1m1 pxqL̂lmL̂l1m1 q `

1
8pπGNh̄q1{2

ˆ ÿ
l,m,a

trpLlmpxqTapxqL̂lm b T̂aq `
ÿ
lm

LlmtrpL̂lm b �Gρpxqq
˙

`

1
4

ÿ
a,b

trpTå pxqTbpxqT̂aT̂bq ` 1
2

ÿ
a

Tatrp�SUp8q b T̂aρpxqq
j

. (13)

The terms of this Lagrangian can be interpreted as the following. The first term is the Lagrangian
for an ensemble of SUp8q symmetries of all subsystems, except observer and clock. Amplitudes
Ll1m1 pxq depend on full SUp8q parameter space, which is pr, θ, φ, tq. Due to the nonlocal algebra (7),
we expect that Ll1m1 pxq’s include derivative terms. Additionally, Llm’s are normalized such that the
usual gravitational coupling be explicit. We notice that, if h̄GN 9 h̄2{M2

P Ñ 0, the first and the third
terms will be canceled. Therefore, the naive classical limit of the model does not include these gravity
related terms.

The second term presents gravitational interaction of internal gauge fields and matter, respectively.
The third and forth terms together correspond to the Lagrangian of pure gauge fields for local G
symmetry and its interaction with matter field. They take the standard form of Yang–Mills models if
Tapxq fields are two-forms in the (3 + 1)D parameter space.

We leave explicit description of Ll1m1 pxq’s and Ta’s as functionals of spacetime, and determination
of semi-classical limit of the Lagrangian for future works. Nonetheless, the Lagrangian (13) is not
completely abstract. Llm operators can be expressed as a tensor product of Pauli matrices and regrouped
by r and t indices, which have no other role than associating a group of matrices to subsystems. This
is because the tensor product of SUp8q is homomorphic to itself. However, such expansion is not
very useful and practical for analytical calculations, in particular for finding semi-classical limit of
the model.

5. Comparison with Other Quantum Gravity Models

It is useful to compare this model with string theory and Loop Quantum Gravity (LQG)—the two
most popular quantum gravity candidates.

A common aspect of string/superstring theories with the present model is the presence of a 2D
manifold in their foundation. However, in contrast to string theories, in which a 2D world sheet is
introduced as an axiom without any observational support, the presence of a 2D manifold here is a
consequence of the infinite symmetry of the Universe, which has compelling observational support.
Moreover, the 2D nature of the underlying Universe manifests itself only when the Universe is
considered as a whole. Otherwise, it is always perceived as a (3 + 1)D continuum (plus parameters of
internal symmetry of subsystems).

In string theory, matter and spacetime are fields living on the 2D world sheet, or equivalently the
world sheet can be viewed as being embedded in a multi-dimensional, partially compactified space
without any explanation for the origin of such non-trivial structures. On the other hand, in the present
model the approach to matter is rather bottom-up. The Cartan decomposition of SUp8q to smaller
groups, in particular SUp2q means that they can be easily break and separate from the pool of the SUp8q
symmetry—for instance by quantum correlation between pairs of subsystems—without affecting the
infinite symmetry. And indeed it seems to be the case because SUp2q and SUp3q Ă SUp2q ˆ SUp2q –
SUp4q are Standard Model symmetries. Additionally, string theory is fundamentally first quantized
and string based field theories are considered to be low energy effective descriptions. However,
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as explained in the previous sections, in the present model owing to its infinite dimensional symmetry,
Hilbert and Fock spaces are homomorphic and the model can be straightforwardly considered as first
or second quantized.

The importance of SUp2q symmetry in the construction of LQG and its presentation as spin
foam [20] is shared with the present model. However, SUp2q – SOp3q manifold on which Ashtekar
variables are defined has its origin in the ADM (3 + 1)D formalism, based on the presumption that
spacetime and thereby quantum gravity should be formulated in the physical spacetime. Moreover,
LQG does not address the origin of matter as the source of gravity or the origin of the Standard
Model symmetries. The present model explains both the dimension of spacetime and relation between
quantum gravity, matter, and SM symmetries.

A concept that string theory and LQG does not consider—at least not in their foundation—is
the fact that in quantum mechanics discrimination between observer and observered is essential,
and models which do not consider this concept in their construction—especially when the models is
intended to be applied to the whole Universe—are somehow metaphysical, because they implicitly
consider that the observer is out of this Universe.

6. Outline and Future Perspectives

In this work, we proposed a new approach to quantum gravity by constructing a Universe in
which gravity is fundamentally quantic and demonstrated how it may answer some of questions
that we raised in the Introduction section regarding gravity and the nature of spacetime. As we have
already summarized the model and its results in Section 1.1, here we concentrate on perspectives for
further studies.

Understanding nonlocality and differential form of the algebra of subsystem defined by
Equation (7) is crucial for finding an algebraic expression for the Lagrangian (13), which, at present,
is too abstract. This task is especially important for investigating the semi-classical limit of the model.
On the other hand, this Lagrangian describes an open system, because the state of the observer and
probably some of degrees of freedom of the clock are traced out. Formulation of the subdivided
Universe as an open system should help application of the model to black hole physics and cosmology.

We discussed a bottom-up procedure for the emergence of internal symmetries in
Section 4. In particular, we concluded that they should generate stronger couplings between
particles/subsystems than gravity. However, this argument does not explain how the hierarchy
of couplings arises. We conjecture that clustering of subsystems, which leads to the emergence of
internal symmetries, also determines their couplings, probably through processes that are analogous to
the formation of moiré super-lattice and strong correlation between electrons in 2D materials. The fact
that, in this model, both the Universe as a whole and its subsystems have SUp8q symmetry, which is
represented by diffeomorphism of 2D surfaces, means that the necessary ingredients for formation of
moiré-like structures are readily available.

In the absence of experimental quantum gravity tests, the ability of models to solve theoretical
issues has prominent importance. Among topics that must be addressed black holes and puzzles
of information loss in semi-classical approaches have high priority. Because the model studied here
is inherently quantic, the first task is finding a purely quantic definition for black holes. Naively,
a quantum black hole may be defined as a many particle system in a quantum well in real space.
However, we know that quantum field theory in curved spacetime background of black holes leads to
Hawking radiation and extraction of energy from black hole. Consequently, in the realm of quantum
mechanics, black holes are not really contained in a limited region of space. Their potential well is not
perfect and their matter content extends to infinity. Thus, this definition should be considered as an
initial condition.

Inflation and dark energy are other issues that should be investigated in the context of this model.
Notably, it would be interesting to see whether the topological nature of 2D Lagrangian of the whole
Universe can have observable consequences, for instance, as a small but nonzero vacuum energy.
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As for inflation, an exponential decoupling and decoherence of particles/subsystems in the early
universe may be interpreted as inflation and an extension of spacetime. These possibilities need
detailed investigation.

In conclusion, the inhomogeneous Lorentz transformation may be the classical interface of a much
deeper and global realm of a quantum Universe.
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Appendix A. A Very Brief Summary of the Best Studied Quantum Gravity Models

Introduction of quantum mechanical concepts to general relativity was first mentioned by Einstein
himself in his famous 1916 paper. The first detailed work on the topic was by Léon Rosenfeld in
1930 [41], in which the action of Einstein-Hilbert model with matter is quantized by replacing classical
variables with hermitian operators, see e.g., [42] for the history of early approaches to quantum gravity.
This canonical approach and its modern variants based on the quantization of 3 + 1 dimensional
Hamiltonian description of dynamics, notably Wheeler-DeWitt (WD) formalism [43,44] and quantum
geometrodynamics [45] lead to nonrenormalizable models.13 See e.g., [46] for review of other issues of
these approaches and their current status.

Another model, inspired by the ADM Hamiltonian formulation of general relativity [47], the Dirac
Hamiltonian description of quantum mechanics [48], and the WD approach to QGR is Loop Quantum
Gravity (LQG), see e.g., [49,50] and references therein. In this approach, triads defined on a patch of
the 3D space—what is called Ashtekar variables [19]—replace spatial coordinates and are considered
as Hermitian operators acting on the Hilbert space of the Universe. Their conjugate operators form
a SUp2q Yang-Mills theory and provide a connection—up to an undefined constant called Immirzi
parameter—for the quantized 3D space. However, to implement diffeomorphism of general relativity
without referring to a fixed background, the physical quantized entities are holonomies—gauge
invariant nonlocal fluxes and Wilson loops defined on 2D surfaces and their boundaries, respectively.
Similar to the WD formalism, the LQG Hamiltonian is a constraint, and thereby there is no explicit
time in the model [49]. Recently, it is shown that a conformal version of the LQG has an explicit time
parameter [51]. But, conformal symmetry must be ultimately broken to induce a mass or distance
scale in the model. Other issues in the LQG are lack of explicit global Lorentz invariance, absence of
any direct connection to matter, and most importantly quantization of space, that violates Lorentz
invariance even when the absence of time parameter in the model is neglected.

Regrading the violation of Lorentz invariance, even if discretization is restricted to distances
close to the Planck scale, matter interaction propagates it to larger distances [10]. This issue is also
present in other background independent approaches to quantum gravity, in which in one way or
another the spacetime is discretized. Examples of such models are symplectic quantum geometry [52]
and dynamical triangulations, in which space is assumed to consist of a dynamical lattice [53,54].
See also [55] for a recent review of these approaches and [56] for some of their issues, in particular a
likely absence of a UV fixed point, which is necessary for renormalizabilty of these models. Therefore,
the claimed quantization of space volume or in other words emergence of a fundamental length scale
in UV limit of these models is still uncertain. Another example is causal sets—a discretization approach
with causally ordered structures [57], see e.g., [58] for a review. They probably suffer from the same
issue as other discretization models, notably breaking of Lorentz symmetry, see e.g., [59], but also [60]

13 We should emphasize that references given in this appendix are only examples of works on the subjects on which tens or
even hundreds of articles can be found in the literature.
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for counter-arguments. We should remind that all quantum gravity models depend on a length
(or equivalently mass) scale, namely the Planck length LP (or mass MP). Dimensionful quantities need
a unit, which does not arise from dimensionless or scale invariant quantities. Therefore, discretization
is not a replacement for a dimensionful fundamental constant in quantum gravity models.

Another way of quantizing spacetime without discretization is consideration of a noncommutative
spacetime [61,62]. This formalism is in fact one of the earliest proposals for a quantum gravity.
More recently this approach is studied in conjunction with other QGR models such as string theory [63]
and matrix models [64]. An essential issue of this class of models is their inherent nonlocality that
leads to mixing of low and high energy scales [65]. On the other hand, this characteristic might be
useful for constraining them, and thereby related QGR models [66].

In early 1980’s the discovery of both spin-1 and spin-2 fields in 2D conformal quantum field
theories embedded in a D-dimensional spacetime—called string models—opened a new era and
discipline for seeking a reliable quantum model for gravity, and ultimately unifying all fundamental
forces in a Great Unified Theory (GUT). Nambu-Goto and Polyakov string theories were studied in
1970’s as candidates for describing strong interaction of hadrons. Although with the establishment
of Quantum Chromo-Dynamics (QCD) as the true description of strong nuclear force string theories
seemed irrelevant, their potential for quantizing spacetime [67,68] gave them a new role in fundamental
particle physics. String and superstring theories became and continue to be by far the most extensively
studied candidates of quantum gravity and GUT.14

Quantized strings/superstring models are finite and meaningful only for special values of
spacetime dimension D. For these cases, the central charge of Virasoro algebra or its generalization
to affine Lie algebra vanishes when the contribution of all fields, including ghosts of the conformal
theory on the 2D world-sheet are taken into account. Without this restriction the theory is infested
by anomalies, singularities, and misbehaviour. The allowed dimension is D “ 26 for bosonic string
theories and D “ 10 for superstrings. The group manifold on which a viable string model can live
is restricted as well. For instance, the allowed symmetry in heterotic Polyakov model is SOp32q or
E8 ˆ E8. Wess-Zumino-Novikov-Witten (WZNW) models with 2D affine Lie algebras provide more
variety of symmetries, including coset groups. However, restriction on dimension/rank of symmetry
groups remains the same. Therefore, to make contact with real world, which has 3 + 1 dimensions,
the remaining dimensions must be compactified.

Initially the inevitable compactification of fields in string models was welcomed because it might
explain internal global and local (gauge) symmetries of elementary particles, in a similar manner as in
Kaluza-Klein unification of gravity and electromagnetism [71,72]. However, intensive investigations
of the topic showed that compactification generates a plethora of possible models. Some of these
models may be considered more realistic than others based on the criteria of having a low energy limit
containing the Standard Model symmetries. But, unobserved massless moduli, which may make the
Universe overdense if they acquire a mass at string or even lower scales, strongly constrain many
of string models. Therefore, moduli must be stabilized [73,74]. For instance, they should acquire
just enough effective mass to make them a good candidate for dark matter [75]. Moreover, in string
theories there is no natural inflation candidate satisfying cosmological observations without fine-tuning.
Although moduli are considered as potential candidates for inflation [76], small non-Gaussianity of
Cosmic Microwave Background (CMB) anisotropies [77] seems to prefer single field inflation [78].
In addition, single field slow roll inflation may be inconsistent [79] with constraints to be imposed on
a scalar field interacting with quantum gravity in the framework of swampland extension of string
models landscape [80]. Some researchers still believe that a genuinely non-perturbative formulation
of superstring theories may solve many of these issues 15. However, the absence of any evidence of

14 A textbook description and references to original works can be found in textbooks such as [69,70].
15 Non-supersymmetric string models may have no non-perturbative formulation and should be considered as part of a

supersymmetric model, see e.g., Chapter 8 of [70].
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supersymmetry up to „TeV energies at LHC—where it was expected, such that it could solve Higgs
hierarchy problem [81]—is another disappointing result for string models.

Observation of accelerating expansion of the Universe due to a mysterious dark energy with
properties very similar to a cosmological constant—presumably a nonzero but very small vacuum
energy—seems to be another big obstacle for string theory [82] as the only quantum gravity
candidate including both matter and gravity in its construction. The landscape of string vacua
has Á10200´500 minima—depending on how models are counted [83]. But there is no rule to
determine which one is more likely and why the observed density of dark energy—if it is the
vacuum energy—is „10123 fold less than its expected value, namely MP

4. To tackle and solve some
of these issues, extensions and/or reformulations of string theories have led to their variants such
as matrix models [84,85], M-theory, F-theory, and more recently swampland [80] and weak gravity
conjecture [38,86], and models constructed based on them.

In early 1999 Randall-Sundrum brane models [87,88] and their variants—inspired by D-branes in
toroidal compactification of open strings and propagation of graviton closed strings in the bulk of one
or two non-compactified warped extra dimensions—generated a great amount of excitement and were
subject of intensive investigations. By confining all fields except gravitons on 4D branes these models
are able to lower the fundamental scale of quantum gravity to TeV energies—presumably the scale
of weak interaction—and explain the apparent weakness of gravitational coupling and high value of
Planck mass. Thus, a priori brane models solve the problem of coupling hierarchy in Standard Model
of particle physics. In addition, an effective small cosmological constant on the visible brane may be
achievable [89,90]. However, brane models, in general, have a modified Friedmann equation, which is
strongly constrained by observations [91–93]. Moreover, it is shown that the confinement of gauge
bosons on the brane(s) violates gauge symmetries, and if gauge fields propagate to the bulk, so do the
matter [94,95]. Nonetheless, some methods for their localization on the brane are suggested [96,97].
On the other hand, observation of ultra high energy cosmic rays constrains the scale of quantum
gravity and characteristic scale of warped extra-dimension to ą100 TeV [98,99]. This constraint is
consistent with other theoretical and experimental issues of brane models, specially in the context of
black hole physics, that is instability of macroscopic black holes, nonexistence of an asymptotically
Minkowski solution [100,101], and observational constraint [102] on the formation of microscopic
black holes in colliders at TeV energies [103].

In the view of these difficulties more drastic ideas have emerged. Some authors suggests UV/IR
correspondence of gravity. They propose that at UV scales graviton quantum condensate behaves
asymptotically similar to classical gravity [104,105]. Other proposals attracting some interest include
the emergence of classical gravity and spacetime from thermodynamics and entropy [106,107] or
condensation of more fundamental fields [108,109].

More recently, the development of quantum information theory and its close relation with
entanglement of quantum systems, their entropy and the puzzle of information loss in Hawking
radiation of black holes have promoted models that interpret gravity and spacetime as an emergent
effect of entanglement [110–112] and tensor networks [113,114]. These ideas are in one way or another
related to holography principle and Ads/CFT equivalence conjecture [115]. In these models spacetime
metric and geometry emerge from tensor decomposition of the Hilbert space of the Universe to
entangled subspaces. The resulted structures are interpreted as graphs and a symplectic geometry
is associated to them. In the continuum limit the space of graphs can be considered as a quantum
spacetime. In a somehow different approach in the same category of models the concept of locality
specified by subalgebras is used to decompose the Universe. Local observables belong to spacelike
subspaces in a given reference frame/basis [116,117]. This means that in these models a background
spacetime is implicitly postulated without being precise about its origin and nature. In addition to
spacetime, subsystems/subalgebras should somehow present matter. But, it is not clear how they are
related. Moreover, the problem of the spacetime dimensionality and how it acquires its observed value
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is not discussed. In any case, investigation of these approaches to quantum gravity is still in its infancy
and their theoretical and observational consistency are not fully worked out.

Appendix B. Quantum Mechanics Postulates in Symmetry Language

In this appendix we reformulate axioms of quantum mechanics à la Dirac [118] and von
Neumann [119] with symmetry as a foundational concept:

i. A quantum system is defined by its symmetries. Its state is a vector belonging to a projective
vector space called state space representing its symmetry group. Observables are associated
to self-adjoint operators. The set of independent observables is isomorphic to subspace of
commuting elements of the space of self-adjoint (Hermitian) operators acting on the state space
and generates the maximal abelian subalgebra of the algebra associated to symmetry group.

ii. The state space of a composite system is homomorphic to the direct product of state spaces
of its components.16 In the special case of separable components, this homomorphism
becomes an isomorphism. Components may be separable-untangled—in some symmetries and
inseparable—entangled—in others. The symmetry group of the states of a composite system is
a subgroup of direct product of its components.

iii. Evolution of a system is unitary and is ruled by conservation laws imposed by its symmetries
and their representation by the state space.

iv. Decomposition coefficients of a state to eigen vectors 17 of an observable presents the
coherence/degeneracy of the system with respect to its environment according to that
observable. Projective measurements by definition correspond to complete breaking of
coherence/degeneracy. The outcome of such measurements is the eigen value of the eigen
state to which the symmetry is broken. This spontaneous decoherence (symmetry breaking) 18

reduces the state space to the subspace generated by other independent observables, which
represent remaining symmetries/degeneracies.

v. A probability independent of measurement details is associated to eigen values of an observable
as the outcome of a measurement. It presents the amount of coherence/degeneracy of the
state before its breaking by a projective measurement. Physical processes that determine the
probability of each outcome are collectively called preparation.19

These axioms are very similar to their analogues in the standard quantum mechanics, except that
we do not assume an abstract Hilbert space. The Born rule and classification of the state space
as a Hilbert space can be demonstrated using axioms (i) and (v), and properties of statistical
distributions [21]. We remind that the symmetry represented by the Hilbert space of a quantum
system is in addition to the global Up1q symmetry of states, which leaves probability of outcomes in a
projective measurement unchanged. When system is divided to subsystems that can be approximately
considered as non-interacting, each subsystem acquire its own local Up1q symmetry. Even in presence
of interaction between subsystems, a local Up1q symmetry can be considered, as long as the interaction
does not change the Hilbert space of subsystems. We notice that axiom (ii) slightly diverges from its
analogue in the standard quantum mechanics. It emphasizes on the fact that the symmetry group
represented by a composite system can be smaller than the tensor product of those of its components.

16 Notice that this axiom differentiates between possible states of a composite system, which is the direct product of those of
subsystems, and what is actually realized, which can be limited to a subspace of the direct product of individual components
and have reduced symmetry.

17 More precisely rays because state vectors differing by a constant are equivalent.
18 Ref. [21] explains why decoherence should be considered as a spontaneous symmetry breaking similar to a phase transition.
19 Literature on the foundation of quantum mechanics consider an intermediate step called transition between preparation and

measurement. Here we include this step to preparation or measurement operations and do not consider it as a separate
physical operation.

56



Universe 2020, 6, 194

In particular, entanglement may reduce the dimension of Hilbert space and thereby the rank of
symmetry group that it represents.

A corollary of these axioms is that without division of the Universe to system(s) and observer(s)
the process of measurement is meaningless. In another word, an indivisible universe is trivial and
homomorphic to an empty set. In standard quantum mechanics the necessity of the division of the
Universe to subsystems arises in the Copenhagen interpretation, which has many issues, see e.g., [120]
for a review. In covariant quantum models and ADM canonical quantization of gravity, in which
Hamiltonian is always null and naively the Universe seems to be static, relational definitions of time is
based on the division of the Universe to subsystems, see e.g., [27]. Therefore, we conclude that division
to subsystems is fundamental concept and must be explicitly included in the construction of quantum
cosmology models.

Appendix C. State Space Symmetry and Coherence

The choice of a Hilbert space H to present possible states of a system is usually based on the
symmetries of its classical Lagrangian. Although these symmetries have usually a finite rank—the
number of simultaneously measurable observables—the Hilbert space presenting them may be infinite
dimensional. For example, translation symmetry in a 3D space is homomorphic to Up1q ˆ Up1q ˆ Up1q
and has a global SUp2q – SOp3q symmetry under rotation of coordinates. They can be presented
by 6 parameters/observables. Thus, the rank of the symmetry is finite. Nonetheless, due to the
abelian nature of Up1q group, the Hilbert space of position operator HX is infinite dimensional.
More generally, the dimension of the Hilbert space depends on the dimension of the representation of
the symmetry group of Lagrangian and its reducibility. The Hilbert space of a multi-particle system
can be considered as a reducible representation of the symmetry, even if single particles are in an
irreducible representation. In particular, Fock space of a many-particle system can be presented as an
infinite dimensional Hilbert space representing symmetries of the Lagrangian in a reducible manner.
This property is important for the construction of the quantum Universe model studied here, because it
demonstrates that the infinite size of the physical space can be equally interpreted as manifestation of
infinite number of particles/subsystems in a composite Universe.

Ensemble of linear operators acting on a Hilbert space BrHs represents SUpNq group where N is
the dimension of the Hilbert spaceH and can be infinite. As discussed in details in [21] configuration
space of classical (statistical) systems have

ÂN Up1q symmetry where each Up1q is isomorphic to the
continuous range of values that an observable may have. Thus, quantization extends the symmetry of
classical configuration space to BrHs “ SUpNqxUp1q – UpNq Ą ÂN Up1q, where here we have also
considered the global Up1q symmetry of the Hilbert space.

Application of linear operators can be interpreted as interaction with another system or more
generally with the rest of the Universe. The change of state can be also considered as Positive Operator
Valued Measurement (POVM). In particular, a projective measurement and decoherence makes the
state completely incoherent ρ̂inc:

B̂ρ̂cB̂: Ñ ρ̂inc “
ÿ

i

ρi ρ̂i, ρ̂i ” |iyxi| (A1)

where B̂ P BrHs, |iy is an eigen basis for the measured observable, and subscript inc means incoherent.
We remind that the space of simultaneously observable operators corresponds to the Cartan subalgebra
of BrHs. Coefficients ρi are probability of occurrence of eigen value of |iy as outcome of the
measurement. Because ρ̂inc is diagonal, completely incoherent states ρ̂inc represent the Cartan subgroup
of BrHs. A maximally coherent state in the above basis is defined as:

ρ̂maxc9
ÿ
i,j

|iyxj| (A2)
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This is a pure state, in which all eigen states have the same occurrence probability in a projective
measurement. Notice that due to the projectivity of Hilbert space ρ̂maxc is unique and application of
any other member of BrHs reduces its coherence, quantified for instance by fidelity or Fubini-Study
metric [22]. More generally, action of BrHs members changes coherence of any state which is not
completely incoherent. For this reason, we call SUpNq symmetry of BrHs the coherence symmetry.20

It is useful to remind that in particle physics generators of BrHs space physically exist and are
not abstract operation of an apparatus controlled by an experimenter. In the Standard Model BrHs
is generated by vector boson gauge fields in fundamental representation of SM symmetry group.
They act on the Hilbert space generated by matter fields. If gravity, which is the only known universal
interaction follows the same rule, we should be able to define a Hilbert space for matter on which
linear operators representing gravity act. In the model studied here we identify these operators with
L̂’s defined in Section 2.

Regarding the example of translational and rotational symmetries of the physical space mentioned
earlier, despite the fact that the dimension of the Cartan subalgebra of BrHXs – SUpN Ñ 8q is infinite,
and a priori there must be infinite simultaneously observable quantities in the physical space, in
quantum mechanics only one vector observable is associated to BrHXs, namely the position of a
particle/system. QFTs define field operators at every point of the space and assume that at equal time
operators at different positions commute (or in the case of fermions anti-commute). However, in the
formulation of QFT models position is a parameter not an operator. These different interpretations of
spacetime highlight the ambiguity of its nature in quantum contexts—as described in question 2 in the
Introduction section.

Appendix D. SUp8q and Its Polynomial Representation

Special unitary group SUpNq can be considered as N-dimensional representation of SUp2q.
For this reason generators TpNq

lm of the associated Lie algebra supNq can be expanded as a matrix
polynomial of N-dimensional generators of SUp2q. Indices pl, mq in these generators are the same as in
SUp2q representations: l “ 0, ¨ ¨ ¨ , N ´ 1, m “ ´l . . . , `l. Lie bracket of generators TpNq

lm is defined as:

rT̂pNq
lm , T̂pNq

l1m1 s “ f pNq l”m”
lm,l1m1 T̂pNq

l”m” (A3)

Structure coefficients f pNq l”m”
lm,l1m1 of supNq can be written with respect to 3j and 6j symbols, see e.g., [29] for

their explicit expression. For N Ñ 8, after rescaling these generators T̂pNq
lm Ñ pN{iq1{2T̂pNq

lm , they satisfy
the following Lie brackets:

rL̂lm, L̂l1m1 s “ f l”m”
lm,l1m1 L̂l”m” (A4)

where L̂lm ” T̂pNÑ8q
lm and coefficients f l”m”

lm,l1m1 are N Ñ 8 limit of f pNq l”m”
lm,l1m1 . In addition, it is shown [29]

that L̂lm can be expanded with respect to spherical harmonic functions Ylmpθ, φq defined on a sphere,
i.e., the manifold associated to SUp2q:

L̂lm “ BYlm
B cos θ

B
Bφ

´ BYlm
Bφ

B
B cos θ

(A5)

L̂lmYl1m1 “ ´tYlm, Yl1m1 u “ ´ f l”m”
lm,l1m1Yl”m” (A6)

tf, gu ” Bf
B cos θ

Bg
Bφ

´ Bf
Bφ

Bg
B cos θ

, @ f, g defined on the sphere (A7)

20 In some quantum information literature coherence symmetry is called asymmetry [23]. In this work we call it coherence
symmetry or simply coherence to remind that its origin is quantum degeneracy and indistinguishability/symmetry of states
before a projective observation.
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where θ “ r0, πs and φ “ r0, 2πs are angular coordinates and tf, gu is the Poisson bracket of continuous
functions f and g on the sphere. We notice that although generators L̂lm are linear combination of
B{Bpcos θq and B{Bφ, the latter operators cannot be considered as generators of SUpN Ñ 8q, because
they commute with each other and generate only the abelian subspace of SUp8q group.

Using (A5)–(A7), coefficients f l”m”
lm,l1m1 can be determined:

f l”m”
lm,l1m1 “ p2l” ` 1q

4π

ż
d2Ω Yl̊”m”tYlm, Yl1m1 u, Yl̊m “ Yl,´m d2Ω ” dpcos θq dφ (A8)

Here we normalize Ylm such that:
ż

d2Ω Yl̊1m1 Ylm “ 4π

p2l ` 1q δll1 δmm1 (A9)

Although L̂lm is defined in discrete pl, mq space—analogous to a discrete Fourier mode—we can
use inverse expansion to define operators which depend only on continuous angular coordinates:

L̂pθ, φq ”
ÿ
l,m

Yl̊mL̂lm (A10)

As tL̂pθ, φqu are linear in L̂lm and contain all these generators, they are also generators of SUpN Ñ
8q – DiffpS2q and coefficients in their Lie bracket is expressed with respect to θ and φ as:

fppθ, φq, pθ1, φ1q; pθ”, φ”qq “
ÿ

lm,l1m1,l”m”

Yl̊mpθ, φqYl̊1m1 pθ1, φ1qYl”m”pθ”, φ2q f l”m”
lm,l1m1 (A11)

Coefficients f are anti-symmetric with respect to the first two sets of parameters and can be
considered as a 2-form on the sphere, and Lie algebra of L̂pθ, φq operators as:

rL̂pθ1, φ1q, L̂pθ2, φ2qs “
ż

dΩ3 fppθ1, φ1q, pθ2, φ2q; pθ3, φ3qq L̂pθ3, φ3q (A12)

Operators L̂pθ, φq are continuous limits of L̂lm’s and both set of generators are vectors and live on
the tangent space of the sphere.

Appendix E. Cartan Decomposition of SUp8q
Representations of supNq algebra can be decomposed to direct sum of smaller su algebras,

see e.g., [34] and references therein. In the case of SUp8q the fact that its algebra is homomorphic
to Poisson brackets of spherical harmonic functions, which in turn correspond to representations of
SUp2q – SOp3q, means that sup8q algebra should be expandable as direct sum of representations of
SUp2q, see e.g., [29,30] for the proof. Thus, up to a normalization factor depending only on l, generators
of sup8q algebra L̂lm can be expanded as:

L̂lm “ R
ÿ

iα“1, 2, 3,α“1,¨¨¨ ,l

apmq
i1,¨¨¨il σi1 ¨ ¨ ¨ σil (A13)

where σiα ’s are N Ñ 8 representation of Pauli matrices [29]. Coefficients apmq are determined
from expansion of spherical harmonic functions with respect to spherical description of Cartesian
coordinates, see [29] for details. This explicit description shows that up to a constant factor L̂lm
operators can be considered as tensor product of 2 ˆ 2 Pauli matrices, and SUp8q – SUp2q b Sp2q b . . ..
This relation can be understood from properties of SUpNq group. Specifically, SUpNq Ě SUpN ´ Kq b
SUpKq. For N Ñ 8 and finite K, SUpN ´ K Ñ 8q – SUp8q. Therefore SUp8q is homomorphic to
infinite tensor product of SU groups of finite rank, in particular SUp2q—the smallest non-abelian
SU group. This shows that SUp2q group, which has a key role in some quantum gravity models,

59



Universe 2020, 6, 194

notably in LQG, simply presents a mathematical description rather than a fundamental physical
entity. The description of SUp8q as tensor product of SUp2q is comparable with Fourier transform,
which presents the simplest decomposition to orthogonal functions, but can be replaced by another
orthogonal function. It is only the application that determines which one is more suitable.

Appendix E.1. Eigen Functions of L̂pθ, φq and L̂lm

We define eigen functions of L̂pθ, φq and L̂lm operators as the followings:

L̂pθ, φqηpθ, φq “ Nηpθ, φq (A14)

L̂lmζlm “ N1ζlm (A15)

where N and N1 are constants21, but N1 may depend on pl, mq. Using definition of L̂pθ, φq and L̂lm and
properties of spherical harmonic functions, solutions of Equations (A14) and (A15) are obtained as:

$&
%

ηpθ, φq “ iN
ř
lm

pl`mq!
mAlpl´mq! rFlmpcos θq ´Flmpcos θ0ptqqs ` ηpθ0ptqq

φ ` Hpcos θq “ ´rHpcos θ0ptqq ´ φ0ptqs
(A16)

Al ”
c

4π

2l ` 1
Flm ”

ż
dpcos θq|Plmpcos θq|´2, (A17)

Hpcos θq ”
ż

dpcos θq
ř
lm

Alpl´mq!
pl`mq!

B|Plm cos θ|2
2B cos θ

ř
l1m1

im1 Al1 pl1´m1q!
pl1`m1q! |Pl1m1 pcos θq|2

(A18)

where t parameterizes tangent surface at initial point pθ0, φ0q. Elimination of this parameter from two
equations in (A16) determines ηpθ, φq for a set of initial conditions. Because the second equation does
not depend on N, without loss of generality we can scale initial value ηpθ0q Ñ iNηpθ0q. With this
choice the eigen value N can be factorized, and because Hilbert space is projective, N can be considered
as an overall normalization factor and irrelevant for physics. Therefore, each set of parameters pθ, φq
present a unique pointer state for the Hilbert space.

In the same way we can calculate eigen functions of L̂lm as a parametric function:
$’&
’%

ζlmpθq “ ´N1em2Wlmpθ0q
c

pl`mq!
pl´mq! rZlmpθq ´ Zlmpθ0ptqqs ` ζlmpθ0ptqq

φ ´ imWlmpθq “ φ0ptq ´ imWlmpθ0ptqq
(A19)

Wlm ”
ż

dpcos θq p1 ´ cos θ2q Plmpcos θq
pl ´ m ` 1q Ppl`1qmpcos θq ´ pl ` 1qPlmpcos θq (A20)

Zlm ”
ż

dpcos θq e´m2 Wlmpcos θq
pl ´ m ` 1q Ppl`1qmpcos θq ´ pl ` 1qPlmpcos θq (A21)

Similar to ηpθ, φq, redefinition of initial value Zlmpθ0ptqq Ñ Zlmpθ0ptqqN1em2Wlmpθ0q leads to a
unique eigen function for L̂lm.

21 A priori N and N1 can depend on pθ, φq. However, their dependence on angular parameters can be included in η. Therefore,
only constant eigen values matter.
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Considering diffeomorphism invariance of the model, it is always possible to redefine coordinates
such that θ “ const. and φ “ const. constitute a basis and any state can be written as:

|ψy “
ż

d2Ω ψpθ, φq|θ, φy (A22)

Thus, as explained in the main text, vectors of the Hilbert space representing SUp8q are complex
functions on 2D surfaces. As SUp8q – DiffpS2q, the range of pθ, φq is θ “ r0., πs and φ “ r0., 2πq.
However, SUp8q may be represented by diffeo-surfaces of higher genus. In this case |θ ` nπ, φ ` 2n1πy
for any integer n and n1 may present different states. States can be also expanded with respect to
|l, my [29].

Appendix E.2. Dynamics Equations of the Universe before its Division to Subsystems

The equilibrium solution for Lagrangian LU in (3) can be determined by variation with respect to
Llm and components of the state ρ in an orthogonal basis of the Hilbert space. In absence of environment
for the whole Universe, ρ is pure and can be written as ρ “ |ψyxψ|, where ψy is an arbitrary vector in
the Hilbert space HU . As discussed in Section 2 and explicitly shown in Appendix E.1, vectors of
HU correspond to complex functions of angular coordinates pθ, φq of the diffeo-surface, and can be
expanded with respect to spherical harmonic functions. Nonetheless, here we follow the usual bracket
notation of quantum mechanics and call states of this orthogonal basis |l, my, where l P Z{2, ´ l ď m ď
`l. In this basis |ψy “ ř

l,m ψlm |l, my and ρ “ ř
l,m,l1,m1 ψl,mψl̊1,m1 |l, myxl1, m1|. After this decomposition

dynamics equations are expressed as:

BLU
Bψlm

“
ÿ

l1,m1,l”,m”

Ll”m”ψl̊1m1 xl1m1|L̂l”m”|l, my (A23)

BLU
BLlm

“
ÿ

l1,m1,l”,m”

ψl̊”m”ψl”m”xl1, m1|L̂lm|l”m”y ` 2LlmtrpL̂lmL̂lmq (A24)

Because L̂lm is a generator of SUp8q, the last term in (A24) is a constant depending only on l
and normalization of generators. Thus, we define Cl ” trpL̂lmL̂lmq. Using description of L̂lm in (A13)
to tensor product of Pauli matrices, we conclude that L̂lm|l1, m1y ‰ 0 only for l ě l1 and consists of
linear combination of |l2, m2y states. On the other hand, xl1, m1|l, my “ δll1 δmm1 . Thus, xl1, m1|L̂lm|l”m”y
is nonzero only for terms with equal l indices and we can solve (A24) for Llm as the following:

Llm “ ´ 1
2Cl

ÿ
|m1|,|m2|ďl,m`m1`m2“0

ψl̊m1 ψlm2xl, m1|L̂lm|lm”y (A25)

By applying this solution to (A23) and using properties of L̂lm and |l, my we find:

ÿ
m2,m2

ψ˚
l,´pm`m1qψ˚

l,´pm`m2qψlm1 xl, ´pm ` m2q|L̂lm2 |l, myxl, ´pm1 ` m2q|L̂lm2 |l, m1y “ 0.

|m1|, |m1|, |m ` m2|, |m1 ` m2|, ď l, @l P Z{2 (A26)

Considering independence and orthogonality of |l, my states, this equation is satisfied only if
ψlm “ 0, |m| ď l, @l. Thus, equilibrium solution of the Lagrangian LU is a trivial vacuum.
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Abstract: We revisit the fundamental notion of continuity in representation theory, with special
attention to the study of quantum physics. After studying the main theorem in the context of repre-
sentation theory, we draw attention to the significant aspect of continuity in the analytic foundations
of Wigner’s work. We conclude the paper by reviewing the connection between continuity, the
possibility of defining certain local groups, and their relation to projective representations.

Keywords: ray representation; strongly continuous; continuity; Hilbert space

1. Introduction

Since the bygone days of the 1930s, Wigner has collected strong mathematical results
on mappings of continuous groups on a given Hilbert space [1]. From this time comes
the famous theorem that ensures that any symmetry operation (any operation preserving
probabilities) can be represented by either a linear and unitary or anti-linear and anti-
unitary operator (see Appendix A). The pursuit of Poincarè group representations on
Hilbert spaces, a program supported by Weyl [2], culminates in the profound and robust
work celebrated here [3].

It is a complicated, if not impossible, task to pick out the most effective results from
the wealth of excellent ones shown in [3]. Wigner introduced in this work the very
precise notion of particle, to mention only one of the main achievements. However,
the mathematical partial results collected on the way to such relevant insights are also
important. We would like to revisit one of these cornerstone results in the existence of
so-called admissible representatives, presenting its meaning based on continuous projective
representations. Let us introduce some standard notions.

The first idea to remember is the quantum mechanical ray representation of states,
which arises from the freedom that a complex field gives to states in the Hilbert space
inner product. The transition probability for a quantum state ψ to turn into φ is expressed
by P = |(φ, ψ)|2. This probability remains the same if we replace the states by rays, Ψ.
Each ray comprises an equivalence class of states containing all elements {αψ} (where α
is a unimodular complex phase), of which a given element αψ ∈ Ψ, where ψ is fixed, is a
representative. The inner product between two rays is defined as Φ ·Ψ = |(φ, ψ)|, where
φ ∈ Φ and ψ ∈ Ψ. In a manner akin to vector rays, Bargmann introduced the concept of
operator rays [4] U as the set comprising all elements αU with fixed U and a unimodular
complex α.

In the case where the symmetries of a physical system are described by a given
continuous group H, there exists an isomorphism between each element h ∈ H and an
operator ray Uh such that for h1, h2 ∈ H, the usual representation relation (although related
to operator rays) holds, i.e., Uh1Uh2 = Uh12 . These are the projective representations whose
continuity will be studied here. In physics, of course, continuous representations are of
great importance. In a prosaic context, for example, the regular textbooks of Quantum
Mechanics and Quantum Field Theory introduce the possibility of acting on quantum
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states (e.g., with differential operators) without regard to possible mathematical subtleties.
This and many others aspects are automatically taken as well-posed mathematically in a
standard exposition of quantum physics. Thanks to the work of Wigner, in particular the
aforementioned theorem, the approach presented in these textbooks is not wrong.

To justify our choice from a different framework, as as Wigner himself recognized [3],
part of the generality and novelty of his approach came from mathematical rigor, in
particular concerning continuity. Majorana [5] and Dirac [6] adopted continuity in several
aspects of their analysis (an approach which is certainly justifiable and entirely correct,
after all) but whose dubiety was completely removed by Wigner.

Now, back to the (projective) representations frame: from a mathematical point of view,
phases in representations of continuous groups have become quite a sophisticated tool
with the aid of algebraic topology [7,8] since the early presentation due to Bargmann. More
or less recently, the original line of research gained additional interest by generalizations of
the phase exponents (which enter the projective representations) involving the time (or the
spacetime) parameter(s) [9,10]. In this generalization of Bargmann’s theory, the selection of
admissible representatives is also an important issue.

This review is devoted to an appreciation of conditions related to the existing argument
of regular representatives, whose steps are also revisited. We begin in Section 2 with a
recapitulation of the theorem that ensures the selection of a strongly continuous set of
ray operators representatives in the Hilbert space, and discuss its standard proof (Wigner–
Bargmann) step by step. Important enough, the existence of such representatives is at
the very heart of our understanding of the quantum process, from spacetime evolution to
probability transitions. In Section 3, we call special attention to some relevant consequences
of continuity. Of course, we would not be so far saying, somewhat frivolously, that
everything comes from continuity. There are, nevertheless, profound concepts linked to
continuity that can be brought up in the analysis and whose full appreciation is usually
bypassed. In Section 3.1, we define and investigate the continuity of local factors and study
its implications to representation theory. Besides, in this section, we also place a theorem
related to one-parametric group representation quite relevant in the Wigner approach. In
Section 3.2, we explore how continuity also helps in the understanding of whether a given
representation is projective or genuine. In the final section, we conclude. To guarantee a
sequential reading of the paper we leave for the Appendix a step by step proof of Wigner’s
famous theorem about symmetric representations in the Hilbert space, as well as another
result, relevant for the action upon connected (sub)groups.

This work is a modest contribution to the subject. We do not present new results,
but give a technical appreciation to the foundations of representation theory, explicitly
presenting all the proof steps and highlighting the physical interest of the results when the
situation appears. Whenever possible, we follow Bargmann’s exposition [4] by its didactic
and far-reaching results connecting continuity to physical aspects. Throughout the paper,
operators will be taken as unitary (see Proposition A1 in the Appendix A) and vector states
are normalized to unity.

2. Selection of Continuous Representatives

We begin by defining standard tools for representations of continuous groups. Let
H be a complex Hilbert space. Let the distance, d(Ψ, Ψ′′), between two rays Ψ and
Ψ′′ belonging to H be given by the minimum value of ||ψ − ψ′′||, where double bar
stands for the usual vector norm ||ψ|| = (ψ, ψ)1/2, and ψ and ψ′′ are representatives of
Ψ and Ψ′′, respectively. This qualitative definition can be fully specified by noting that
||ψ− ψ′′||2 = 2(1− Re(ψ, ψ′′)), from which it may be proved that

d(Ψ, Ψ′′) = [2(1−Ψ ·Ψ′′)] 1
2 , (1)

where the definition of the inner product between two rays has already been defined
in the introduction. To see that Equation (1) holds, take Ψ = σψ and Ψ′′ = τψ′′, with
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|σ| = 1 = |τ|. It is always possible to find a unimodular complex number, say λ, such that
(ψ, ψ′′) = λ|(ψ, ψ′′)|. Therefore, it is clear that

||ψ− ψ′′||2 = 2(1− Re[σ∗τ(ψ, ψ′′)]), (2)

where σ∗ stands for the complex conjugation of σ. Note that

|(ψ, ψ′′)| = |σ||τ||(ψ, ψ′′)| = |σ∗||τ||(ψ, ψ′′)| = |σ∗τ(ψ, ψ′′)| = |(σψ, τψ′′)| = Ψ ·Ψ′′ (3)

and therefore we can set (ψ, ψ′′) = λΨ ·Ψ′′. Returning to (2), we are left with (Ψ ·Ψ′′ ∈ R)

||ψ− ψ′′||2 = 2(1− Re[σ∗τλ]Ψ ·Ψ′′). (4)

It is clear that ||ψ − ψ′′||2 reaches its minimum for Re[σ∗τλ]max = 1, from which
Equation (1) follows. As we will see in a moment, the definition of distance is crucial for
the very conception of (strong) continuity for ray representations.

Definition 1. A given ray representation of a (Lie) group H is said to be continuous if for any
element h ∈ H, any Ψ ∈ H, and any ε > 0, there exists a neighborhood N ⊂ H of h such that
d(UsΨ, UhΨ) < ε, if s ∈ N.

As an aside remark, we note that it suffices to consider the above definition for the
identity element. Moreover, in a complete (metric) space, A is said to be continuous with
respect to B if the set of nonzero values of A is bounded by B. In this sense, we can say that
the inner product in both terms is continuous with respect to the distance d(Ψ, Ψ′′). Here
is the proof: suppose four rays Ψ1, Ψ2, Φ1, and Φ2 belong toH. Then,

|Ψ1 ·Φ1 −Ψ2 ·Φ2| = |Ψ1 ·Φ1 −Ψ1 ·Φ2 + Ψ1 ·Φ2 −Ψ2 ·Φ2|
≤ |(ψ1, φ1)− (ψ1, φ2)|+ |(ψ1, φ2)− (ψ2, φ2)| (5)

= ||φ1 − φ2||+ ||ψ1 − ψ2||, (6)

and therefore (as the inequality always holds) we have

|Ψ1 ·Φ1 −Ψ2 ·Φ2| ≤ d(Φ1, Φ2) + d(Ψ1, Ψ2). (7)

Now, we will state and discuss in detail the theorem asserting the selection possibility
of admissible representatives.

Theorem 1. Let Ur be a continuous ray representation of a group G. For all r in a suitably
chosen neighborhood N0 of the unit element e of G, one can select a strongly continuous set of
representatives Ur ∈ Ur (i.e., for any vector ψ, any r ∈ N0 and any positive ε, there exists a
neighborhood N of r such that ||Usψ−Urψ|| < ε if s ∈ N).

The set of representatives {Ur} satisfying these conditions is called an admissible
set of representatives. From the concept of an admissible set of representatives derives a
wealth of important results in representation theory in physics (ultimately including the
particle concept itself). This set is indeed strongly continuous and probability transitions
taken from its representatives vary continuously with the group element s, in complete
agreement with the previous definition. We will discuss in detail the proof of Bargmann,
who in turn followed the Wigner steps.

Proof. Let Ψ be a fixed ray in H and ψ a given representative. Define gr = Ψ ·UrΨ for
r ∈ H, and as the inner product is continuous, gr is a continuous function of r. Therefore, it
is possible to choose a suitable neighborhood N ⊃ r such that α < gr ≤ 1 with α ∈ (0, 1).
Moreover, as a strategy for the proof, a certain representative Ur ∈ Ur is chosen such that
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gr = Ψ ·UrΨ = (ψ, Urψ). (8)

Note the absence of modulus1 in (8), which is contrary to the definition of the inner
product of vector rays. We will address this point after completing the standard proof.
Until then, we will only emphasize that e ∈ N, just as it is contained in the statement.

Let ψ ∈ Ψ, r, s ∈ N and define the quantities (partially preserving the Bargmann notation)

dr,s(ψ) = d(UrΨ, UsΨ), (9)

σr,s(ψ) = (Urψ, Usψ), (10)

Zr,s(ψ) = Usψ− σr,s(ψ)Urψ. (11)

These quantities will help the proof process. Note that Zr,s(ψ) is orthogonal to Urψ,
as can be easily seen from

(Urψ, Zr,s(ψ)) = (Urψ, Usψ)− σr,s(ψ), (12)

which vanishes by means of (10). From this, one can see that

||Zr,s(ψ)||2 = (Usψ− σr,s(ψ)Urψ, Usψ− σr,s(ψ)Urψ) = 1− σr,s(ψ)(Usψ, Urψ) (13)

and therefore (again using (10))

||Zr,s(ψ)||2 = 1− |σr,s(ψ)|2. (14)

It follows straightforwardly from Equation (1) that 1− |(ψ, φ)|2 ≤ d2, leading to

||Zr,s(ψ)||2 ≤ d2
r,s(ψ). (15)

Now, taking ψ = φ and calculating (φ, Zr,s(φ)), we have

σr,s(φ) =
1
gr
[gs − (φ, Zr,s(φ))]. (16)

Recalling that ||ψ− ψ′′||2 = 2(1− Re(ψ, ψ′′)) we have2 ||ψ− ψ′′||2 ≤ 2|1− (ψ, ψ′′)|.
Therefore,

||Usφ−Urφ||2 ≤ 2|1− (Urφ, Usφ)| = 2|1− σr,s(φ)| (17)

and by (16) we find

||Usφ−Urφ||2 ≤ 2
∣∣∣ 1

gr
[gr − gs + (φ, Zr,s(φ))]

∣∣∣. (18)

As gr > α, it is possible to rewrite the above equation as

||Usφ−Urφ||2 ≤ 2
α
|gr − gs + (φ, Zr,s(φ))| ≤

2
α
[|gr − gs|+ |(φ, Zr,s(φ))|]. (19)

As defined before, the functions gr give |gr − gs| = |(φ, Urφ)− (φ, Usφ)| = |(φ, Urφ−
Usφ)| ≤ ||Urφ−Usφ||. Therefore, |gr − gs| is less than (or equal to) any value of ||Urφ−
Usφ||; in particular the inequality holds for the minimum value of ||Urφ−Usφ||min = dr,s(φ).
Therefore |gr − gs| ≤ dr,s(φ). Moreover, |(φ, Zr,s(φ))| ≤ ||Zr,s(φ)|| and using (15) we have
|(φ, Zr,s(φ))| ≤ dr,s(φ). Collecting all these results, we finally get

||Usφ−Urφ||2 ≤ 4
α

dr,s(φ), (20)
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which ensures continuity for Urφ in the sense of the highlighted definition before the
theorem. The next step is to ensure continuity for a vector χ given by χ = (φ + ϕ)/

√
2,

where the normalized vector ϕ is assumed to be orthogonal3 to φ. Note that

(Urφ, Zr,s(χ)) = (Urφ, Usχ)− σr,s(χ)(Urφ, Urχ) (21)

now adding and subtracting (Ush, Usk) to (21), the result may be recast as

(Urφ, Zr,s(χ)) = (Urφ−Usφ, Usχ) + (Usφ, Usχ)− σr,s(χ)(Urφ, Urχ). (22)

In turn, (Umφ, Umχ) = (φ, U†
mUmχ) = (φ, 1√

2
[φ + ϕ]) = 1/

√
2 for every m ∈ H, in

particular for m ∈ N ⊂ H. Returning to (21), then we have

(Urφ, Zr,s(χ)) + (Usφ−Urφ, Usχ) =
1√
2
(1− σr,s(χ)). (23)

Now we can apply Equations (23) to (17) (suitable adequate to χ) and arrive at

||Usχ−Urχ||2 ≤ 22/3
{
|(Urφ, Zr,s(χ))|+ |(Usφ−Urφ, Usχ)|

}
. (24)

Both terms of the right-hand side of Equation (24) are bounded from above by Schwarz
inequality. Then, using Equation (15) in the first term, we have

||Usχ−Urχ||2 ≤ 22/3
{

dr,s(χ) + ||Usφ−Urφ||
}

(25)

and the continuity of Urφ implies the continuity of Urχ (and of course of Ur ϕ). Finally, if ψ
is a linear combination written in terms of φ and ϕ, as defined earlier, then Urψ is clearly
continuous.

As a final remark before going further, note that the first steps of the proof could
be repeated around any group element k ∈ H by simply adapting the neighborhood to
include k and starting with the definition of gr functions as gr = UkΨ ·Ur(UkΨ).

Additional Discussion

Apart from the comments on the proof inserted here and there, let us concentrate on
the determination of the gr functions. First, a fact: there is no loss of generality in choosing
a neighborhood of e ∈ H such that gr > α for α ∈ (0, 1) or even in setting the operator such
that gr = (ψ, Urψ) instead of |(ψ, Urψ)|. The continuity of the inner product with respect
to the distance ensures this last procedure. However, it is instructive, to see the effect of
such a device within the proof scheme when the necessity emerges, as it were, rather than
a priori.

Let us begin with functions g̃r = Ψ ·UrΨ = |(ψ, Urψ)| for which the group separability
condition g̃r > α for r ∈ N ⊂ H holds. Given this definition, part of the procedure used in
the previous proof is unhelpful. We first note that with Zr,s(φ), as defined in (11),

|(φ, Zr,s(φ))| = |(φ, Usφ)− σr,s(φ)(φ, Urφ)| ≥ |(φ, Usφ)| − |σr,s(φ)||(φ, Urφ)|, (26)

using the standard triangle inequality for complex numbers. In a more compact form

|(φ, Zr,s(φ))| ≥ g̃s − |σr,s(φ)|g̃r. (27)

From (27), we read

|1− |σr,s(φ)|| ≤
1
α

{
|g̃r − g̃s|+ |(φ, Zr,s(φ))|

}
. (28)
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Again, both terms in the right-hand side of (28) are bounded from above by the
distance in the Hilbert space. In the second term, Equation (15) will be used again, while
for the first term we have

|g̃r − g̃s| = ||(φ, Urφ)| − |(φ, Usφ)|| ≤ |gr − gs| (29)

and the discussion around (19) holds. Therefore,

|1− |σr,s(φ)|| ≤
2
α

dr,s(φ). (30)

Now recall that a direct computation leads to Equation (17), i.e.,

||Usφ−Urφ||2 ≤ 2|1− σr,s(φ)| (31)

and thus the procedure to ensure continuity of Urφ requires additional attention, since
|1− σr,s(φ)| ≥ |1− |σr,s(φ)||. Let us examine both cases.

In the case that |1− σr,s(φ)| > |1− |σr,s(φ)|| one is not able to compare ||Usφ−Urφ||2
and dr,s(φ) accurately. This situation then leads to an empty tautology: the selection
of continuous representatives is the one that choose Urφ respecting ||Usφ − Urφ||2 ≤
(4/α)dr,s(φ), i.e., the continuous one.

However, when |1− σr,s(φ)| = |1− |σr,s(φ)||, one can indeed claim continuity for Urφ
as can be easily seen. This condition (leading to the proof) is mathematically satisfied when-
ever Re(σr,s(φ)) ≥ 0 and Im(σr,s(φ)) vanishes. However, these conditions are precisely the
conditions studied when setting gr functions (without tilde). Indeed,

σr,s(φ) = (Urφ, Usφ) = (φ, U†
r Usφ) = (φ, Ur−1sφ), (32)

is nothing but a gm function for m = r−1s ∈ N. Therefore, given the conditions Re(gm(φ)) ≥ 0
and Im(gm(φ)) = 0 we have gm = g̃m leading to4 ||Usφ−Urφ||2 ≤ (4/α)dr,s(φ). Going
further, by calling Um = τU0

m, φ = δφ0 for fixed U0
m and φ0 and denoting (φ0, U0

mφ0) =
X + iY and τ = τ1 + iτ2 (X, Y, τ1, τ2 ∈ R), the conditions give.

Xτ1 −Yτ2 ≥ 0,

Xτ2 + Yτ1 = 0. (33)

It is not difficult to satisfy Equation (33) without any operator particularization. The
last additional remark is that in the absence of a phase in the representation, i.e., for genuine
(not projective) representations, continuity for the representatives is ultimately attainable
by continuity of the inner product.

3. Consequences of Continuity

We will here point out some direct consequences of continuity, relevant to the math-
ematical structure underlining the understanding of quantum physics, first examining
local factors and then investigating some consequences of the selection of continuous
representatives together with freedom in the selection procedure.

3.1. Continuous Local Factors

Let us assume implicitly in what follows that all group elements to be worked out in
this section belong to the same neighborhood N (or to suitable intersections of neighbor-
hoods), so that the group operations are locally well-defined. This requires e ∈ H to be an
element of the neighborhood. An admissible set of representatives engenders a continuous
ray representation in N and since UrUs and Urs belongs to the same ray, we have

UrUs = ω(r, s)Urs, (34)
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where |ω(r, s)| = 1 and clearly ω(r, e) = ω(e, s) = ω(e, e) = 1, as Ue = 1. Note that the
associative law of the group representation implies

ω(r, s)ω(rs, m) = ω(s, m)ω(r, sm). (35)

The functions ω(r, s) are the so-called local factors of a given ray representation
and the continuity of admissible representatives leads to the continuity of them. Let us
demonstrate this fact.

Lemma 1. For an admissible set of representatives, the local factors are continuous.

Proof. We start with a simple truism. Let ψ ∈ H, then obviously

[ω(r′, s′)−ω(r, s)]Ur′s′ψ = ω(r′, s′)Ur′s′ψ−ω(r, s)Ur′s′ψ. (36)

Now, adding and subtracting the terms Ur′Usψ and UrUsψ we obtain, using (34),

[ω(r′, s′)−ω(r, s)]Ur′s′ψ = ω(r, s)(Urs −Ur′s′)ψ + Ur′(Us′ −Us)ψ + (Ur′ −Ur)Usψ. (37)

Thus, we arrive at

||[ω(r′, s′)−ω(r, s)]Ur′s′ψ|| ≤ ||ω(r, s)(Urs −Ur′s′)ψ||+
+ ||Ur′(Us′ −Us)ψ||+ ||(Ur′ −Ur)Usψ||. (38)

The left-hand side of (38) simplifies5 to |ω(r′, s′)−ω(r, s)|. Moreover, since |ω(r, s)| =
1 and Ur is unitary, the terms of the right-hand side are easy to handle. Thus, calling
Us′ψ = ψ′, we have

|ω(r′, s′)−ω(r, s)| ≤ ||(Urs −Ur′s′)ψ||+ ||(Us −Us′)ψ||+ ||(Ur′ −Ur)ψ
′||, (39)

from which the local factors for admissible representatives are indeed continuous.

Continuity of phase factors can also be used to treat differentiability precisely [4]. We
will just note here that a multidimensional Lie group H has elements in bijective correspon-
dence with open balls containing N in an Euclidean space of same dimensionality [11].
To fix ideas, let us consider a fixed element s and think of r = r(r1, r2, . . . , rn), where
n = dim(H) and ri (i = 1, . . . , n), as the coordinates of r. The unity for the local factor may
be written as 1 = ω(e, s) and the unity element e ∈ H has coordinates given by (0, 0, . . . , 0).
It follows that

|ω(r, s)− 1| = |ω(0 + r1, 0 + r2, . . . , 0 + rn, s)−ω(0, 0, . . . , 0, s)| : N ⊂ R
n → R

+. (40)

For the argument, if we take s′ = e = r′ in (39) and denote ||(1−Um)ψ|| ≤ κd1/2
e,m where κ

stands for a constant (a form certainly valid for admissible representatives), then (39) reads

|ω(0 + r1, 0 + r2, . . . , 0 + rn, s)−ω(0, 0, . . . , 0, s)| ≤ κ ∑
i=r,s,rs

d1/2
e,i (41)

and the continuity of admissible representatives naturally bounds the local factor from
above, in the sense just described.

So far we have said that the local factors are group elements dependent. It is easy to
see that there is no dependence of local factors with respect to the state on which the group
elements are represented [12]. Let ψi (i = 1, 2) be two linearly independent vectors inH
and assume a dependence of the local phases on the states; also assume ψ3 = ψ1 + ψ2. It
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follows that UrUsψ3 = ω3(r, s)Ursψ3. However (recall that the operators acting in H are
unitary and linear),

ω3(r, s)Urs(ψ1 + ψ2) = ω1(r, s)Ursψ1 + ω2(r, s)Ursψ2 (42)

and acting from the left in (42) with Us−1r−1 we have ω3(r, s) = ω1(r, s) = ω2(r, s), so no
state dependence at all.

Before further studying the local factors and their continuity, we make a parenthetical
but important remark about continuity in irreductible representations and one-parametric
Lie subgroups. A local one-parameter Lie subgroup is a continuous curve g = g(λ) in N

(λ takes values in an open real interval) with g(λ1)g(λ2) = g(λ1 + λ2) for λ1, λ2, λ1 + λ2
defined in the same open interval in R. In view of this remark, we can state the following
theorem [3].

Theorem 2. Let Ug(λ) be an infinitesimal operator of a continuous one-parametric subgroup. If
there exists a physical state, say Ψ, on which the application of Ug(λ) is well defined, then there
exists an everywhere dense set of such states for irreducible representations.

Proof. If there exists such a Ψ state, then the limit limλ→0 λ−1(Ug(λ) − 1)Ψ is clearly well
defined. Now, let S be a given operator of the representation. The one-parametric property
Ug(λ1)

Ug(λ2)
= Ug(λ1+λ2)

also holds for S−1Ug(λ)S and therefore the limit

lim
λ→0

1
λ
(S−1Ug(λ)S− 1)Ψ (43)

is also well defined. Taking 1 = S−1S in the above expression, we see that the following
limit is also well defined

lim
λ→0

1
λ
(Ug(λ) − 1)SΨ. (44)

This means that as far as the infinitesimal operator can be applied to Ψ, it can also
be applied to SΨ. Thus, for irreductible representations, the existence of Ψ ∈ H, which
implies (44), means that for every state on which infinitesimal Ug(λ) can act, every V ⊂ H
contains at least one SΨ that has exactly this property, giving rise to an everywhere dense
set of such states inH.

Just as an additional remark about the theorem just proved, if ψ does not belong to
an irreducible representation, then one cannot claim the existence of such an everywhere
dense set (see in [3] for further discussion). Finally, this theorem states that infinitesimal
operators in the Hilbert space can be treated in a somewhat ordinary way.

3.2. Exploring the Continuity of Representatives

The continuity of representatives and local factors proved so far can be summarized
in the expressions (25) and (39). It is now important to consider this strong continuity
property together with the dependence of local factors on the choice of representatives.
To begin with, consider |φ(r)| = 1 and select representatives in the same ray such that
U′(r) = φ(r)Ur, ∀r ∈ N ⊂ H. Of course, U′(r)U′(s) = ω′(r, s)U′(rs), which shows that
the ω(r, s) function depends on the selection of representatives, given that

ω′(r, s) = ω(r, s)
φ(r)φ(s)

φ(rs)
. (45)

This freedom in the representative selection is obviously inherited from the ray repre-
sentation and its systematic study is very informative as it reveals the deep relationship
between the representation itself and the group being represented. Before we begin to
explore this freedom however, let us specify the analysis to the case of interest. Let
{U′r = φ(r)Ur} be an admissible set of representatives defined in a suitable neighborhood
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of e. The strong continuity of U′r and Ur naturally implies that φ(r) is a continuous complex
unimodular function. On the other hand, starting from φ(r) continuous and Ur strongly
continuous, one arrives at U′r strongly continuous.6

Proposition 1. Let ω be a local factor defined in a given neighborhood N of e and let φ(r) be a
continuous unimodular complex function such that φ(e) = 1 and the function ω′ is given as in
(45). Then, the function ω′ is also a local factor.

Proof. As noted earlier, (1) the strong continuity of admissible representatives implies that
φ(r) is a continuous function. Therefore, ω′ also satisfies (39) for admissible U′r. Moreover,
(2) ω′(r, e) = ω′(e, s) = 1 = ω′(e, e) as can be easily seen. Finally, (3) using (45), it is
possible to write

ω′(r, s)ω′(rs, m) = ω(r, s)ω(rs, m)
φ(r)φ(s)φ(m)

φ(rsm)
(46)

and using (35) we have

ω′(r, s)ω′(rs, m) = ω(s, m)ω(r, sm)
φ(r)φ(s)φ(m)

φ(rsm)
. (47)

Multiplying the right-hand side of (47) by 1 = φ(sm)/φ(sm) and rearranging the
terms, we obtain

ω′(r, s)ω′(rs, m) = ω(s, m)
φ(s)φ(m)

φ(sm)
ω(r, sm)

φ(r)φ(sm)

φ(rsm)
, (48)

showing that (35) then holds also for ω′, leading to a local factor.

We will henceforth study the freedom in selecting admissible representatives on a
more comprehensive basis. To do so, it may be a good time to introduce a notation with
which the reader is probably more familiar. Let δ(r, s) be a strongly continuous real function
defined for every group element in a suitable chosen neighborhood, satisfying the condition
δ(e, e) = 0 and

δ(r, s) + δ(rs, m) = δ(s, m) + δ(r, sm). (49)

Then, it is possible to replace the local factors by the so-called local exponents by
ω(r, s) = eiδ(r,s) (note that (49) is the counterpart of the group associative law to the local
exponents).

Proposition 2. For every local exponent, the relations (1) δ(r, e) = 0 = δ(e, s) and (2) δ(r, r−1) =
δ(r−1, r) hold.

Proof. For (1) just take s = m = e (r = s = e) in (49) and recall that δ(e, e) = 0 to get
δ(r, e) = 0 (δ(e, s) = 0). For (2) take s = r−1 in (49) and obtain

δ(r, r−1) + δ(rr−1, m) = δ(r−1, m) + δ(r, r−1m) (50)

and then take m = r to obtain δ(r, r−1) = δ(r−1, r).

When studying of physical representations, it is relevant to understand when (and
how) projective representations may be discarded and one can work directly with genuine
representations. This is a subtle aspect, whose answer may go beyond non-trivial points of
mathematical theory. We will here appreciate only some of the aspects that are somehow
directly related to continuity. In any case, the following definition is crucial for a proper
exposition of this topic.

75



Universe 2021, 7, 285

Definition 2. Let x(r) be a continuous real function defined in a neighborhood K that includes
products of group elements, and let δ and δ′ be local exponents defined in N and N′, respectively.
Let it be assumed that K ⊂ (N ∩N′). The local exponents δ and δ′ will be called equivalent if
the relation

δ′(r, s) = δ(r, s) + Δr,s[x], (51)

with

Δr,s[x] = x(r) + x(s)− x(rs) (52)

holds in K.

From Definition 2 above, it is easy to see that x(e) = 0 insofar as δ′(e, e) = δ(e, e).
The functional form of Δr,s[x] may be, perhaps, better justified by noting from (45) that two
equivalent local exponents uniquely define two equivalent local factors with φ(r) = eix(r). By
slightly changing the order of exposition, it is possible to enunciate the following proposition.

Proposition 3. If δ is a local exponent defined in a given neighborhood, and x(r) a continuous real
function such that x(e) = 0 defined in a suitable neighborhood (see Definition 2), then δ′(r, s) as
defined by (51) and (52) is a local exponent.

Proof. First, note that the continuity of δ and x guarantees continuity for δ′. Moreover, as
x(e) = 0, then δ′(e) = 0 directly. Besides

δ′(r, s) + δ′(r, sm) = δ(r, s) + δ(rs, m) + Δr,s[x] + Δrs,m[x] (53)

and by means of (49)

δ′(r, s) + δ′(r, sm) = δ(s, m) + δ(r, sm) + Δr,s[x] + Δrs,m[x]. (54)

Using (51) we now arrive at

δ′(r, s) + δ′(r, sm) = δ′(s, m) + δ′(r, sm) + Δr,s[x] + Δrs,m[x]− Δs,m[x]− Δr,sm[x]. (55)

Finally, note that the sum of Δ’s vanishes identically.

Before proceeding to study the consequences of continuity, we will make some com-
plementary observations. Let us denote the equivalence between two local exponents by
δ′ ∼ δ. This equivalence relation is

(i) Symmetric: δ′ ∼ δ means δ′(r, s) = δ(r, s) + Δr,s[x]. Therefore δ ∼ δ′ as x → −x;
(ii) Reflexive: obviously δ′ ∼ δ′;
(iii) Transitive: suppose δ1(r, s) = δ(r, s) + Δr,s[x1] in N1 and δ2(r, s) = δ1(r, s) + Δr,s[x2]

in N2. Then, δ2(r, s) = δ(r, s) + Δr,s[x1 + x2] in some N ⊂ (N1 ∩N2), and thus δ2 ∼ δ.
Therefore, (51) and (52) set a formal equivalence class, a truly equivalence class indeed.

The observation of the last paragraph can be complemented by the following remark:
if δ1 and δ2 are local exponents in N1 and N2, respectively, then every linear combination
κ1δ1(r, s) + κ2δ2(r, s) with κi ∈ R (i = 1, 2) is also a local exponent in N ⊂ (N1 ∩N2).
Summarizing these observations, we can claim that the equivalence class of a linear combi-
nation depends only on the equivalence classes of local exponents entering in the linear
combination.

This is a good point to appreciate an important theorem due to Weyl [2].

Theorem 3. For a finite dimensional continuous ray representation Ur of a group H, every local
factor is equivalent to 1.
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Proof. Starting from UrUs = ω(r, s)Urs = eiδ(r,s)Urs, assuming that n is the dimension
of the representation space, and taking the determinant of the above expression, we are
left with

det Ur det Us = einδ(r,s) det Urs. (56)

Now, as Ur is strongly continuous, it follows that det Ur is a continuous function of
r. Furthermore, |det Ur| = 1 = det Ue. Thus in a suitable neighborhood, it is possible to
write det Ur ≡ eiΣ(r) with continuous real functions such that Σ(e) = 0. In this vein, we
have from (56) that

δ(r, s)− Σ(r)
n
− Σ(s)

n
+

Σ(rs)
n

= 0 (57)

and as we recognize x(r) = −Σ(r)/n we have δ(r, s) + Δr,s[x = −Δ/n] = 0 ∼ δ′(r, s),
from which ω(r, s) ∼ 1 follows.

This is a remarkable result, which makes it clear that continuity of representatives
acting in Hilbert spaces is not only a pleasant and desirable property but can also constrain
important aspects of the representation that would otherwise be unspecified. However,
two crucial limitations of the previous result should be noted: first, it is a local achievement,
which for this reason is valid in a given neighborhood N of e. To extend such claim to
all group manifold, we should be able to demonstrate it for N = H. Notably, this is
only possible if the zeroth and first homotopy groups of the manifold associated to H,
π0(H), and π1(H), are both trivial7 [14]. When these requirements are not satisfied, some
additional subtitles may appear, such as in the case of representations up to a sign for
SO(3) = SU(2)/Z2 rotations, which are of great impact in spinorial representations. The
second point to emphasize is that the last theorem deals with finite-dimensional represen-
tations. We will continue the analysis by lifting this restriction and further investigating
continuous representations on general basis.

As a typical representation, the operators of continuous operator rays form a group
under multiplication. This concept can be systematized by introducing of the so-called
local group L, which entails the freedom in selecting a given operator within a ray and
formalizes, so to speak, the observation with which we started this section. To introduce
this group, note that an operator belonging to an admissible set of representatives defined
in a suitable neighborhood is given by eiσUr, where the representation continuity fixes the
range of σ as the real numbers. Therefore,

(eiσ1Ur)(eiσ2Us) = ei(σ1+σ2)UrUs = ei(σ1+σ2)ω(r, s)Urs, (58)

or, in terms of local exponents,

(eiσ1Ur)(eiσ2Us) = ei(σ1+σ2+δ(r,s))Urs. (59)

We call N2 the neighborhood comprising the products of any two group elements
belonging to N, and require that N2 is a neighborhood of e, and define L to be the set of
elements of the form [σ, r] with σ ∈ R and r ∈ N.

Now define a product � : L× L → L such that

[σ1, r] � [σ2, s] = [σ1 + σ2 + δ(r, s), rs], (60)

where δ(r, s) is a local exponent, in full agreement with (59) but bypassing any allusion to
a given representative (provided it is admissible).

Proposition 4. L is a group under �.

Proof. (1) As it can be readily seen, the unity element is simply given by [0, e]. (2) Note that

[σ1, r1] �
(
[σ2, r2] � [σ3, r3]

)
= [θ1 + θ2 + θ3 + δ(r2, r3) + δ(r1, r2r3), r1r2r3], (61)
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while (
[σ1, r1] � [σ2, r2]

)
� [σ3, r3] = [θ1 + θ2 + θ3 + δ(r1, r2) + δ(r1r2, r3), r1r2r3]. (62)

Thus, the associative aspect of the representation inherited by local factors (49) yields
an associative product. (3) For every element of L, the unity element is reachable by a
composition with [σ, r]−1 ≡ [−(σ + δ(r, r−1)), r−1], where r−1 ∈ N, for

[σ, r] � [σ, r]−1 = [σ, r] � [−(σ + δ(r, r−1)), r−1] (63)

= [σ− σ− δ(r, r−1) + δ(r, r−1), rr−1]

= [0, e] = [σ, r]−1 � [σ, r]. (64)

This concludes the proof.

Then, the group L has R×N2 as associated manifold and it is often said that L is
the local group constructed for the local exponent δ. Despite the apparent simplicity of
the local group, its structure is relevant enough to be analyzed further. Take elements of
the form [σ, e] of L. Of course, these elements form an one-parameter subgroup, say C, of
L. Let us present some properties of C that can be easily checked. First, C belongs to the
center of L. In fact [σ, e] � [α, r] = [σ + α + δ(e, r), er], but δ(e, r) = 0 = δ(r, e) as it is a local
exponent and of course er = re = r. Thus, [σ, e] � [α, r] = [α, r] � [σ, e], ∀ [α, r] ∈ L. Now, it
is not hard to prove that [σ, r] = [σ, e] � [0, r], and then every element of L can be written in
terms of an element belonging to C (something relevant in what follows) together with an
element of H.

The central group investigation is important to understand a relevant aspect between
the center of algebras and the local existence of projective representations. In fact, by
inspecting elements of C one sees that it comprises all the information about the freedom
in a ray selection. To see that the inspection of L (and therefore C) is indeed informative
about representations of H, let us show some relevant isomorphisms.

Lemma 2. The quotient group L/C is locally isomorphic to H.

Proof. As known, the group L/C has elements belonging to the set {κC|κ ∈ L}, while
H comprises elements r1, r2, . . .. Let ϕ be an application from L/C → H. Before setting
ϕ completely, we note that ϕ(κC) typically has ϕ([σ1, r] � [σ2, e]) as arguments. It turns
out that

[σ1, r] � [σ2, e] = [0, r] � [σ1, e] � [σ2, e] = [0, r] � [σ1 + σ2, e]. (65)

Then, calling σ1 + σ2 ≡ σ we have [σ1, r] � [σ2, e] = [0, r] � [σ, e]. The definition of ϕ is
thus completed by selecting the pure H element of its domain, that is ϕ([0, r] � [σ, e]) .

= r. In
view of this we see that (1) ϕ(e) = ϕ([0, e] � [0, e]) = ϕ([0, e]) and hence ϕ([0, e]) .

= e = ϕ(e).
Now, note that

ϕ
(
[0, r]−1 � [σ, e]−1

)
= ϕ

(
[−δ(r, r−1), r−1] � [−(σ + δ(e, e)), e]

)
, (66)

where we have used e−1 = e. As δ(e, r) = 0, ∀r locally, we have

ϕ
(
[0, r]−1 � [σ, e]−1

)
= ϕ

(
[−δ(r, r−1), r−1] � [−σ, e]

)
= ϕ

(
[−σ− δ(r, r−1), r−1]

) .
= r−1. (67)

Finally, since ϕ([0, r] � [σ, e]) = r, we arrive at ϕ(g−1) = ϕ−1(g) ∀g ∈ L/C.

78



Universe 2021, 7, 285

Incidentally, we might note that ϕ([σ1, e] � [0, r1] � [σ2, e] � [0, r2]) = ϕ([σ1 + σ2 +
δ(r1, r2), r1r2])

.
= r1r2. However, obviously, ϕ([σi, e] � [0, ri])

.
= ri (i = 1, 2) and then

ϕ(g1g2) = ϕ(g1)ϕ(g2), ∀g1, g2, g1g2 ∈ L/C.
Besides the important result just described in Lemma 2, it is also possible to locally

connect local groups with equivalent exponents. This is the content of the next lemma.

Lemma 3. Let δ and δ̃ be two equivalent local exponents in a given neighborhood, that is
δ̃(r, s) = δ(r, s) + Δrs[x]. Then, the corresponding local groups L and L̃ are locally isomorphic.

Proof. Consider the mapping ϕ : L → L̃ such that ϕ([σ, r]) = [σ − x(r), r̃ = r]. It is
clear that

ϕ([σ1, r1]) � ϕ([σ2, r2]) = [σ1 − x(r1), r1] � [σ2 − x(r2), r2] (68)

= [σ1 + σ2 − x(r1)− x(r2) + δ̃(r1, r2), r1r2]. (69)

On the other hand, it can be readily verified that

ϕ([σ1, r1 � [σ2, r2]) = ϕ([σ1 + σ2 + δ(r1, r2), r1r2])

= [σ1 + σ2 + δ(r1, r2)− x(r1r2), r1r2]. (70)

Thus, the equality of (69) and (70) follows directly from the equivalence of the local
exponents.

For completeness, we mention another general result concerning local isomorphisms.
If z is a real nonzero constant and the local groups L and L′ are constructed for δ and δ′ = zδ,
respectively, then the mapping f : L → L′ such that f ([σ, r]) = [σ′ = zσ, r′ = r] defines
an isomorphism between L and L′. In fact, f ([σ1, r1]) � f ([σ2, r2]) = [zσ1, r1] � [zσ2, r2] =
[zσ1 + zσ2 + δ′(r1, r2), r1r2]. By its turn f ([σ1, r1] � [σ2, r2]) = f ([σ1 + σ2 + δ(r1, r2), r1r2]) =
[z(σ1 + σ2 + δ(r1, r2)), r1r2] and, as δ′ = zδ, L � L′ locally.

Now, we can resume the discussion around Equation (64). As Lemma 3 asserts,
studying isomorphism between local groups is a way to study local exponents. Moreover,
Lemma 2 ensures that locally L/C � H, that is L is the extension of H by C. Taken together,
these two results point to the center of L, the C group, as the really relevant group to
consider for the study of local exponents per se. The Lie algebra of the group L is at the
heart of the question of whether a given representation is projective or genuine [15]. With
effect, local exponents are (locally) equivalent to zero provided that a rearrangement of
algebra generators removes their central counterpart. The study of continuity allows us
to consider this result here from the group perspective: it is clear from the formulation
that removing local exponents is possible if the group C whose elements are given by
[σ, e] can be ruled out from the analysis. This observation ultimately leads to the famous
Bargmann’s theorem, which states that central charges of semi-simple Lie algebras can
always be excluded by redefining the algebra generators [4].

4. Final Remarks

We have discussed some aspects of Wigner’s approach to dealing with (irreducible)
representations of the Poincaré group. All the perspectives presented here focused on the
rigor that Wigner devoted to the concept of representation’s continuity itself. Indeed, this
formal aspect has of course profound implications for the foundations of representation
theory and, as we tried to make clear in the manuscript, its consequences are also relevant
to physics.

In revisiting the underlying concepts for constructing the representation, we made a
special effort to evoke all the relevant steps along with the proofs, and to provide a path
through the concepts whose fulcrum rested on the matter of continuity. In this way, we
were able to connect in advance (algebraic and topological) aspects of representation theory
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in physics, as well as some discussion about the projective or genuine representations issue,
to the primitive idea of selecting admissible representatives.

At the risk of exaggerating somewhat, we would say that the formal consideration
of some aspects of continuous representation in Hilbert spaces is perhaps one of the main
ingredients of Wigner’s success in finding a formal characterization of particles, along
with other equally relevant aspects in the formulation, such as the exploration of induced
representations [16,17] and finding of new representations.

The rigorous effort of Wigner’s approach to formalize aspects previously bypassed by
others is better explained by a well-known comment due to Wigner himself [18]:

The mathematical formulation of the physicist’s often crude experience leads in an un-
canny number of cases to an amazingly accurate description of a large class of phenomena.
This shows that the mathematical language has more to commend it than being the only
language which we can speak; it shows that it is, in a very real sense, the correct language.

Just over 80 years have passed since the work celebrated here and, as befits a well-
made work that survives the scrutiny of time, its fundamental concepts and approaches
are still precise, elegant, and capable of revealing insightful perspectives.
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Appendix A. Symmetry Representations

For completeness, we present here a step-by-step proof of the famous Wigner theorem
of 1931 on symmetry operations in Hilbert space [1]. More often than never, the proof
of this theorem is revisited in several contexts and with different levels of sophistication
(see in [19] for a complete list of references and two quite interesting different proofs).
Bargmann presented an elegant version of the proof [20], while a deep understanding
of the Wigner viewpoints, together with some discussion about other proofs, is given
in [21]. The presentation given here follows the steps performed by Weinberg [12] due to
its completeness. After that, we also prove that for an identity component subgroup, every
action is unitary. Let us start by contextualizing this rather important result.

We say that two descriptions of a given quantum mechanical system are isomorphic if
there is a one-to-one correspondence, Ψ ↔ Ψ′, between the rays describing the physical
system preserving probabilities, i.e., Φ · Ψ = Φ′ · Ψ′. This is the desired situation for
the description of the quantum system in two inertial reference frames connected by
Lorentz transformations, for instance. Moreover, transformations that preserve the ray
internal product (and hence the probabilities) are called symmetry transformations. As
is well known, the Wigner theorem to be invoked here shows that every isomorphic ray
correspondence engenders a (also one-to-one) vector correspondence in Hilbert space as
ψ′ = Uψ and the general properties of U are listed in the theorem statement.
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Theorem A1. Every symmetry transformation in the Hilbert space of physical states can be
represented by an operator that is either linear and unitary or anti-linear and anti-unitary.

Proof. Let R1 ⊃ ψ1 and R2 ⊃ ψ2 be two rays in the Hilbert spaceH and, analogously, let
R′1 ⊃ ψ′1 and R′2 ⊃ ψ′2 for transformed rays (and corresponding elements). Let ϕ ∈ End(H)
transforming R into R′ be a symmetry transformation such that |(ψ1, ψ2)|2 = |(ψ′1, ψ′2)|2. In
addition, we will also require the existence of ϕ−1 as a symmetry transformation. Denoting
by {ψk} ∈ R a complete orthonormal set of states, it is easy to see that orthonormality is
inherited for {ψ′k} ∈ R′, obtained by means of ϕ. Indeed, since |(ψm, ψn)|2 = δmn, we have
|(ψ′m, ψ′n)|2 = δmn, from which

(ψ′m, ψ′n)(ψ
′
m, ψ′n)

∗ = δmn. (A1)

In this context, we note that although a notation tailored to the results for finite
dimensional spaces has been used, the adaptation to general cases is straightforward.
In accordance with more precise aspects (as completeness), the validation steps will be
performed with no concern to a particularization for finite dimensions.

Let us consider Equation (A1) for the m = n case. Let k be such that (ψ′m, ψ′m) = k. As
it is well known (a quantum mechanical postulate) 0 ≤ (ψ′m, ψ′m) ∈ R (the equality holding
for the null state). Therefore, Equation (A1) implies k2 = 1, from which (ψ′m, ψ′m) = 1
necessarily. Consider now the case m �= n and take (ψ′m, ψ′n) = a + ib, where a, b ∈ R.
In this case Equation (A1) translates to a2 + b2 = 0, leading to a = 0 = b and thus
(ψ′m, ψ′n) = 0 for n �= m. Therefore, (ψ′m, ψ′n) = δmn and the transformation ϕ does preserve
orthonormality.

In accounting for completeness, suppose {ψ′k} is not a complete set. Then, there must
exist a given state, say ψ̃′ which has not projection in the set (or a subset of) {ψ′k}, that
is (ψ̃′, ψ′k) = 0, ∀k. This fact would imply |(ψ̃′, ψ′k)|2 = 0 and, via ϕ−1, this would lead
to |(ψ̃′, ψ′k)|2 = |(ψ̃, ψk)| = 0, a clear contradiction as {ψk} is complete. Therefore, the set
{ψ′k} is also complete (and orthonormal) and a given basis of the original set is transformed
into a basis in the arriving set.

Take now an element of the set {ψk}, say ψk̄, and define φk =
1√
2
(ψk̄ + ψk) for k �= k̄.

The element φk belongs to R. Notice, from the previous definition, that

|(ψk̄, φk)|2 =
1
2

∣∣(ψk̄, ψk̄) + (ψk̄, ψk)
∣∣2 =

1
2

. (A2)

Besides, as we showed the transformation to preserve completeness, any vector
belonging to R′ may be written as

φ′k = ∑
n

αknψ′n, (A3)

from which we have

|(ψ′k̄, φ′k)|2 =
∣∣∣∑

n
αkn(ψ

′
k̄, ψ′n)

∣∣∣2 = |αkk̄|2. (A4)

For a symmetry transformation, Equations (A2) and (A4) should be equal, leading
to |αkk̄| = 1√

2
. This reasoning may be repeated for |(ψk, φk)|2 and |(ψ′k, φ′k)|2 resulting in

|αkk| = 1√
2
. Furthermore, again repeating the same procedure, a bit of simple algebra

shows that the coefficients αkm all vanish for k �= k̄ and k �= m (with m �= k̄). The first
part of the demonstration is completed by choosing8 αkk̄ = 1/

√
2 = αkk and calling the

transformation engendering it by U, in such a way that

φ′k = Uφk =
1√
2
(Uψk̄ + Uψk). (A5)
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The task now is to extend the founded symmetry transformation to all Hilbert space.
Let us now take ψ = ∑m βmψm from which we have

|(ψk, ψ)|2 =
∣∣∣∑

m
βm(ψk, ψm)

∣∣∣2 = |βk|2. (A6)

For a U transformed vector ψ′ = ∑m β′mUψm it can be readily verified that
|(ψ′k, ψ′)|2 = |β′k|2 and, therefore, |βk|2 = |β′k|2 ∀ k. In particular, |βk̄|2 = |β′k̄|

2 and

thus |βk|2/|βk̄|2 = |β′k|2/|β′k̄|
2 or simply9

∣∣∣∣∣ βk
βk̄

∣∣∣∣∣
2

=

∣∣∣∣∣ β′kβ′k̄

∣∣∣∣∣
2

. (A7)

Taking into account φk and ψ we have

|(φk, ψ)|2 =

∣∣∣∣∣
(

1√
2
[ψk̄ + ψk], ∑

m
βmψm

)∣∣∣∣∣
2

=
1
2
|βk̄ + βk|2. (A8)

Analogously

|(φ′k, ψ′)|2 =

∣∣∣∣∣
(

1√
2
[Uψk̄ + Uψk], ∑

m
β′mUψm

)∣∣∣∣∣
2

=
1
2
|β′k̄ + β′k|2, (A9)

allowing one to write |βk̄ + βk|2 = |β′k̄ + β′k|2. This last relation implies |β′k̄ + β′k|2/|β′k̄|
2 =

|βk̄ + βk|2/|β′k̄|
2 and as |β1|2 = |β′1|2 we have |β′k̄ + β′k|2/|β′k̄|

2 = |βk̄ + βk|2/|βk̄|2,
or equivalently ∣∣∣∣∣1 + β′k

β′k̄

∣∣∣∣∣
2

=

∣∣∣∣∣1 + βk
βk̄

∣∣∣∣∣
2

. (A10)

Calling for a moment βk/βk̄ = x + iy (and similarly β′k/β′k̄ = x′ + iy′), Equations (A7)
and (A10) provide, respectively,

x2 + y2 = x′2 + y′2 (A11)

and
(1 + x)2 + y2 = (1 + x′)2 + y′2 (A12)

whose combination demands x = x′ and y = ±y′, that is,

Re

(
β′k
β′k̄

)
= Re

(
βk
βk̄

)
,

Im

(
β′k
β′k̄

)
= ±Im

(
βk
βk̄

)
. (A13)

These are the constraints to be taken in extending the U operation to all Hilbert space.
By choosing the upper sign in Equation (A13) we have β′k/β′k̄ = βk/βk̄, while the down
sign implies β′k/β′k̄ = β∗k /β∗k̄ .

An important complement, due to Weinberg, to the original proof is the demonstration
that the choice β′k/β′k̄ = βk/βk̄ or β′k/β′k̄ = β∗k /β∗k̄ must be made for all cases. To see this
is indeed the case, suppose that for some k we have β′k/β′k̄ = βk/βk̄, while for m �= k we
have instead β′∗m/β′∗k̄ = βm/βk̄. Define now a normalized χ such that

χ =
1√
3
(ψk̄ + ψk + ψm), (A14)
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for which, of course, χ′ = Uχ. Repeating again the previous procedure being used so far, it
is not difficult to see that

|(χ, ψ)|2 =

∣∣∣∣∣
(

1√
3
(ψk̄ + ψk + ψm), ∑

n
βnψn

)∣∣∣∣∣
2

=
1
3
|βk̄ + βk + βm|2, (A15)

while |(χ′, ψ′)|2 = |β′k̄ + β′k + β′m|2/3, leading to |βk̄ + βk + βm|2 = |β′k̄ + β′k + β′m|2. Re-
calling that |βk|2 = |β′k|2, ∀ k, we have

|βk̄ + βk + βm|2
|βk̄|2

=
|β′k̄ + β′k + β′m|2

|β′k̄|2
. (A16)

Taking into account the supposition assumed within this paragraph, Equation (A16)
may be recast in the form ∣∣∣∣∣1 + βk

βk̄
+

β∗m
β∗k̄

∣∣∣∣∣
2

=

∣∣∣∣∣1 + βk
βk̄

+
βm

βk̄

∣∣∣∣∣
2

. (A17)

A bit of algebra shows that the constraint presented in Equation (A17) translates to

βmβk
βk̄βk̄

+
β∗mβ∗k
β∗k̄ β∗k̄

=
β∗mβk
β∗k̄ βk̄

+
βmβ∗k
βk̄β∗k̄

, (A18)

or simply

Re

(
βkβ∗m
βk̄β∗k̄

)
= Re

(
βkβm

βk̄βk̄

)
. (A19)

Finally, calling βk/βk̄ ≡ u = u1 + iu2 and βm/βk̄ ≡ v = v1 + iv2, the above equation
(Re(uv∗) = Re(uv)) can only be satisfied if u2v2 = 0, that is

Im

(
βk
βk̄

)
Im

(
βm

βk̄

)
= 0, (A20)

a clear contradiction regarding a complex space of states. Therefore, one is left with either
β′k/β′k̄ = βk/βk̄ or β′k/β′k̄ = β∗k /β∗k̄ . In the case β′k = βk, ∀ k, then

U
(

∑
k

βkψk

)
= ∑

k
βkUψk, (A21)

or else (β′k = β∗k , ∀ k)

U
(

∑
k

βkψk

)
= ∑

k
β∗kUψk. (A22)

It is important to have a clear-cut of what was demonstrated. Equations (A21)
and (A22) show that a same choice must necessarily be made for element inside a given
vector state. The theorem demonstration is finalized by showing that it is impossible for
a given same transformation that a given vector state transform like (A21) and others
as (A22) dictates. Taking advantage of the finite dimension spaces notation, let V ⊂ H be
a Hilbert subspace spanned by {ψk} and k = 1, . . . , l, . . . , dimV. Suppose the existence
of ϕ for which ϕ′ = ∑k akUψk and η such that η′ = ∑k b∗k Uψk for the same operator U.
Within this context, a vector ρ = ∑l−1

k=1 akψk + ∑dimV

k=l bkψk would transform under U so as
to violate the result encoded in (A21) and (A22). The finalization of the proof now follows
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straightforwardly. Let ψ1 = ∑k αkψk and ψ2 = ∑k βkψk. Assuming U acting according
to (A21), i.e., linearly, we have

(Uψ1, Uψ2) = ∑
m,n

α∗mβn(Uψm, Uψn) = ∑
m,n

α∗mβnδmn = (ψ1, ψ2), (A23)

asserting U as unitary. By instead demanding (A22), its anti-linearity implies

(Uψ1, Uψ2) = ∑
m,n

αmβ∗n(Uψm, Uψn) = ∑
m,n

αmβ∗nδmn = (ψ2, ψ1) = (ψ1, ψ2)
∗, (A24)

from which an anti-unitary action may be read.

We finalize this appendix by recalling that for the largest connected subgroup (the iden-
tity subgroup), the orthochronous proper Lorentz subgroup, for example, every operator
ray is unitary.

Proposition A1. Let H be a connected group (or equivalently an identity10 (sub)group). Then,
Ur is unitary for all r ∈ H.

Proof. In a suitable neighborhood N ∈ H containing e, every group element r can be
written as r = s2 (s being, of course, another group element). By the theorem just exposed,
operators acting upon the Hilbert spaceH are either linear and unitary or anti-linear and
anti-unitary, and thus an isomorphic ray correspondence defines ray operators endowed
with the same properties. It turns out, however, that the square of a unitary or anti-unitary
operator is unitary. To see that, recall that if Us is anti-linear, then Ur = U2

s and for any
φ, ψ ∈ H it follows

(Urφ, Urψ) = (Us[Usφ], Us[Usψ]) = (Usψ, Usφ) = (φ, ψ). (A25)

In the case of Us the proof follows straightforwardly.11

As H is connected, every element r ∈ H equals a given finite product, say r = ∏n
i=1 ri,

of elements in N. Hence Ur = ∏n
i=1 Uri . Now, for every Uri take a partition, as before, in

such a way that

Ur =
n

∏
i=1

U2
si

. (A26)

Then, the ray operator Ur is given by the a finite product of unitary (ray) operators,
from which it is seen that Ur is itself unitary.

Notes

1 This choice was made by Wigner [3], p. 169.
2 In fact, calling (ψ, φ) = x + iy with x, y ∈ R, we see that [1− Re(ψ, φ)]max = (1− x)max ≤ [(1− x)2

max + y2]1/2 from which the
inequality follows.

3 The reader may here appreciate the inventiveness of Wigner’s approach: in general considerations about Quantum Mechanics
the dimension of the underling Hilbert space is not a priori specified. It is indeed so, as it is the quantum mechanical problem that
dictates the dimension. This simple observation reveals the finesse of Wigner’s procedure in proving the continuity for φ and χ.

4 The rest of the proof follows strictly the remaining steps of the proof performed in the preceding section.
5 In fact, for a complex A, (AUmψ, AUmψ)1/2 = |A|(Umψ, Umψ)1/2 = |A|(ψ, Um−1 Umψ)1/2 = |A| for normalized vectors.
6 Technically additional care should be take in the neighborhood’s definition. In fact, with N and N′ being the neighborhoods

of e where U′r and Ur are, respectively, defined, then the relation U′r = φ(r)Ur takes place in a neighborhood K of e such that
K ⊂ (N∩N′). Besides, for admissible representative sets, Equation (45) is valid for φ(r) defined in K also encompassing products
as rs.

7 It should be mentioned that in order to extrapolate local results for the whole group it is also necessary the group to be compact.
This characteristic is, however, fulfilled by every Lie group [13].

8 This choice, as it should be clear in the course of the proof, does not change the conclusions.
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9 In the case that β1 is null, one should particularize another k and perform the same analysis. Since the ψ state is assumed to
exists, eventually a given k would lead to a non vanishing coefficient.

10 A technicality should be mentioned here: in general, an identity component refers to the largest connected set in the manifold
associated to the group containing the identity element e of the group.

11 Note, in addition, that from the isometry condition U†
r Ur = 1 (and the coisometry condition UrU†

r = 1 as well) this property is
readily obtained.
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Abstract: Gravity can be formulated as a gauge theory by combining symmetry principles
and geometrical methods in a consistent mathematical framework. The gauge approach to
gravity leads directly to non-Euclidean, post-Riemannian spacetime geometries, providing the
adequate formalism for metric-affine theories of gravity with curvature, torsion and non-metricity.
In this paper, we analyze the structure of gauge theories of gravity and consider the relation
between fundamental geometrical objects and symmetry principles as well as different spacetime
paradigms. Special attention is given to Poincaré gauge theories of gravity, their field equations
and Noether conserved currents, which are the sources of gravity. We then discuss several
topics of the gauge approach to gravitational phenomena, namely, quadratic Poincaré gauge
models, the Einstein-Cartan-Sciama-Kibble theory, the teleparallel equivalent of general relativity,
quadratic metric-affine Lagrangians, non-Lorentzian connections, and the breaking of Lorentz
invariance in the presence of non-metricity. We also highlight the probing of post-Riemannian
geometries with test matter. Finally, we briefly discuss some perspectives regarding the role of both
geometrical methods and symmetry principles towards unified field theories and a new spacetime
paradigm, motivated from the gauge approach to gravity.

Keywords: gauge field theory; Yang-Mills fields; modified gravity; non-Riemannian geometry;
spacetime symmetries

1. Introduction

The success of Einstein’s General Theory of Relativity (GR) to describe the behaviour of
the gravitational interaction continues to amaze us. It has passed all tests performed so far:
Solar System observations and binary pulsars [1], stellar orbits around the central galactic black
hole [2], gravitational waves (GWs) from coalescing compact objects (black holes and neutron
stars) [3–6], or the indirect observation of the black hole horizon with the Event Horizon Telescope [7],
among others. At the same time, it provides us with the observationally valid framework for the
standard cosmological paradigm when supplemented with the (cold) dark matter and dark energy
hypothesis [8].

Soon after Einstein formulated GR in its final form, Weyl introduced the notion of gauge
transformations in an attempt to unify gravity and electromagnetism [9]. By extending the local Lorentz
group to include scale transformations (dilatations), he was led to assume what we call nowadays
a Riemann-Weyl spacetime geometry, namely, a post-Riemann geometry with (the trace-vector part
of) non-metricity in addition to the familiar curvature of GR. Later on, it was discovered that the
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electromagnetic field itself is intimately related to local internal symmetries, under the U(1) group
that acts on the four-spinor fields of charged matter [10]. In the 1950s, Yang and Mills [11] further
explored the notion of gauge symmetries in field theories going beyond the U(1) group to include
non-abelian Lie groups (SU(2)), in order to address nuclear physics, while Utiyama [12] extended the
gauge principle to all semi-simple Lie groups including the Lorentz group.

The gauge principle is based on the localization of the rigid global symmetry group of a field
theory, introducing a new interaction described by the gauge potential. The latter is a compensating
field that makes it possible for the matter Lagrangian to be locally invariant under the symmetry group
and is included in the covariant derivative of the theory. There is a clear geometrical interpretation
of the gauge potential as the connection of the fiber bundle, which is the manifold obtained from
the base spacetime manifold and the set of all fibers. These are attached at each spacetime point and
are the (vector, tensor or spinor) spaces of representation of the local symmetries. In the geometrical
interpretation, the imposition of local symmetries implies that the geometry of the fiber bundle is
non-Euclidean, and the gauge field strengths are the curvatures of such a manifold.

The gauge formulation of gravity was resumed through the works of Sciama [13] and
Kibble [14], who gauged the (rigid) Poincaré group of Minkowski spacetime symmetries.
They arrived at what is now known as a Riemann-Cartan (RC) geometry, and to the corresponding
Einstein-Cartan-Sciama-Kibble (ECSK) gravity, with non-vanishing torsion and curvature. This is a
natural extension of GR, which is able to successfully incorporate the intrinsic spin of fermions as a
source of gravity, while passing all weak-field limit tests. Moreover, the theory has no free parameters
but rather a single new scale given by Cartan’s density, which yields many relevant applications
in cosmology and astrophysics [15–23]. It is worth noting that ECSK is the simplest of all Poincaré
gauge theories of gravity (PGTG). Beyond the Poincaré group we have, for instance, the Weyl and
the conformal groups, which live on a subset of a general metric-affine geometry, with non-vanishing
curvature, torsion and non-metricity (for a detailed analysis and reviews on several topics of the
gauge approach to gravity see the remarkable works in References [24–26]). By extending the gauge
symmetry group of gravity, one is naturally led to extend the spacetime geometry paradigm as
well. The geometrical methods and symmetry principles, motivated by gauge theories of gravity,
together with post-Riemannian geometries and Yang-Mills gauge fields, are expected to play a key role
towards a unified field theory. The corresponding physical description might lead to a new spacetime
paradigm extending the notion of the classical spacetime manifold where physical fields propagate
on it and affect its geometry. Instead, it is plausible to expect a consistent unified physical manifold,
where the properties of spacetime, matter fields and vacuum are manifestations of the same (unified)
fundamental physical reality.

The main aim of this work is to review and discuss the basics and recent developments within
gauge theories of gravity and post-Riemann geometries in connection to their perspectives for achieving
an unified field theory. This is a vital part of the effort to understand the nature of spacetime and gravity
in those regimes where the standard picture provided by GR may break down, challenging our current
ideas on the spacetime paradigm. This article complements our previous works: an extension of the
Einstein-Cartan-Dirac theory where an electromagnetic (Maxwell) contribution minimally coupled to
torsion is introduced (which breaks the U(1) gauge symmetry [27]), and its extension to analyze in
detail the physics of this model with Dirac and Maxwell fields minimally coupled to the spacetime
torsion [28,29].

This work is organized as follows: in Section 2 we introduce the fundamental geometrical
objects of the spacetime manifold in the formalism of exterior forms and its relation to spacetime
symmetries. In Section 3 we briefly summarize the metric-affine approach to gravity using these
geometrical methods and symmetry principles, and discuss several paradigms for the spacetime
geometry, including the general metric-affine geometry. In Section 4, we outline the general structure
of the gauge approach to gravity. We illustrate it with the case of PGTG, consider the field equations,
the Noether conserved currents (sources of gravity), and include discussions on several topics in
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gauge theories of gravity, such as quadratic Poincaré gauge models, the ECSK theory, the teleparallel
equivalent of GR (an example of a translational gauge model), quadratic metric-affine Lagrangians,
the breaking of Lorentz invariance in the presence of non-metricity, the nature of the hypermomentum
currents and the probing of post-Riemann geometries with test matter. Finally, in Section 5 we discuss
some perspectives for unified field theories and a new spacetime paradigm motivated from the
geometrical methods and symmetry principles of the gauge approach to gravity.

2. Spacetime Symmetries and Post-Riemann Geometries

2.1. Fundamental Geometrical Structures of Spacetime

Let us begin by considering a four-dimensional differential manifold M as an approximate
representation of the physical spacetime, and introduce the fundamental geometrical objects and its
relation to the group theory of spacetime symmetries. At each point P of the spacetime manifold we
introduce the set of four linearly independent vectors {ē0, ē1, ē2, ē3}, with ē0 ≡ ∂0, ē1 ≡ ∂1, ē2 ≡ ∂2,
ē3 ≡ ∂3, which constitute the vector coordinate (holonomic) basis, where each vector is tangent to a
coordinate line. This is called a linear frame basis. Similarly, at the same point we introduce the dual
co-frame basis {θ̄0, θ̄1, θ̄2, θ̄3}, with θ̄0 ≡ dx0, θ̄1 ≡ dx1, θ̄2 ≡ dx2, θ̄3 ≡ dx3, which satisfies ēb � θ̄a = δa

b
1.

Any of these basis can be called the natural (coordinate/holonomic) frame/co-frame. This geometrical
structure comes naturally with the notion of coordinates on the spacetime manifold, as it is intrinsic to
the coordinates structure.

Note that one can choose any set of linearly independent vectors/co-vectors to form arbitrary
linear frames and co-frames. To this effect, we consider the independent combinations eb = e ν

b ∂ν

and θa = θa
μdxμ. The indices a, b = 0, 1, 2, 3 are called anholonomic indices, sometimes known as

symmetry or group indices, and play a fundamental role in the gauge approach to gravity due to its
connection to spacetime symmetries. It is clear that for the natural frame/co-frame we have ēb = δ ν

b ∂ν

and θ̄a = δa
μdxμ. For arbitrary (non-coordinate) anholonomic vector basis, the Lie brackets is

non-vanishing, [U, V] ≡ £UV �= 0, for any two vectors U, V in the basis. In relation to this one can show,
using the definitions and duality relations already introduced, the following algebra [ea, eb] = fab

cec,
where the objects fab

c are typically known as the (group) structure constants. This algebra can be used
to characterize the local spacetime symmetries of the tangent/cotangent spaces.

In four dimensions, the set of vector valued 1-forms θa constitute 16 independent components θa
μ

(the tetrads) and are the potentials for the group of (local) spacetime translations T(4)2. This group has
four generators, which therefore entails four potentials and four field strengths Ta = 1

2 Ta
μνdxμ ∧ dxν,

the latter being a vector valued 2-form field, and corresponds to the torsion of the spacetime manifold.
It is given by

Ta = Dθa = dθa + Γa
b ∧ θb , (1)

where D is the (gauge) covariant exterior derivative, d is the exterior derivative, a kind of curl operator
that raises the degree of any p-form, ∧ is the wedge product3 and in the second term on the right-hand

1 The symbol � stands for the interior product defined in differential topology and linear algebra, also called contraction
operator, which gives a contraction between a p-form and a vector, resulting in a (p− 1)-form.

2 This group is actually related to diffeomorphisms (and to our freedom to choose any system of coordinates without altering
the physical description, no matter the theory of the gravitational field we are working with), playing the role of gauge
transformations of gravity [30].

3 Accordingly, dθa is a 2-form given by dθa = ∂[μθa
ν]dxμ ∧ dxν. Similarly, if v is a p form and w is a k-form, then v ∧ w is

a (p + k)-form with v ∧ w = (−1)p×kw ∧ v. The (gauge) covariant exterior derivative of a generic tensor valued p-form,
denoted by Va

b, used in this paper is given by DVa
b = dVa

b + Γa
c ∧Vc

b + (−1)pΓc
b ∧Va

c.
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side, sometimes called the non-trivial part, is the linear connection 1-form Γa
b. The torsion 2-form has

4× 6 = 24 independent components given explicitly by

Ta
μν = 2∂[μθa

ν] + 2Γa
c[μθc

ν] (2)

where brackets denote antisymmetrization.
Let us now turn our attention to the linear (affine) connection Γa

b, which is a tensor valued
1-form that connects neighbouring points of the manifold. Accordingly, if v = vaea is a vector
parallel-transported by an infinitesimal displacement δx, the difference between the parallely-displaced
vector and the original vector is given by

va
‖(x + δx)− va(x) = δ‖v

a = −Γa
bvb, (3)

with Γa
b = Γa

bμdxμ. Therefore, upon an arbitrary infinitesimal displacement from a given point in
the spacetime manifold, the linear frame is transformed (e.g., under a Lorentz rotation or some more
generic linear transformation) and the connection gives a measure of such a change in the linear
frame. It is worth emphasizing that the introduction of the affine structure of the spacetime manifold
M is mandatory in order to be able to compare between tensor quantities on different spacetime
points. Indeed, the affine connection allows for the definition of a covariant derivative, and in this
way it establishes a rule for the parallel transport of tensors along curves ofM. Moreover, it allows
to determine the affine geodesics (straightest lines) on M, which do not necessarily coincide with
extremal geodesics (“shortest” paths).

The affine connection is mathematically a very rich object. Among its many properties we
underline the following two: (i) the difference of two connections is a tensor; (ii) under a transformation
Γ → Γ + ø, where ø is a tensor, the covariant derivative of tensors retains its covariance. This means
that the components of the covariant derivative of a tensor still transform as a tensor, which implies that
one can incorporate new degrees of freedom in the geometrical (affine) structure of spacetime while
preserving the covariance of the equations. Such extensions of the connection involve an extended
spacetime geometry, while the inclusion of extra (gauge) degrees of freedom in a field theory requires
extending the local symmetry group. These two facts are inevitably interconnected in gauge theories
of gravity.

In four dimensions, the set of tensor valued 1-forms Γa
b constitute 64 independent components

Γa
bμ and are the potentials for the four-dimensional group of general linear transformations GL(4,�).

With the definition of the linear frame/coframe the arbitrary (general) non-degenerate linear
transformations of spacetime coordinates can be defined and Γa

b turn out to be the generators of
such a group of transformations. It has 16 generators, therefore we have 16 potentials which are
analogous to the Yang-Mills potentials of the SU(3) group. The associated field strength Ra

b is a tensor
valued 2-form field Ra

b = 1
2 Ra

bμνdxμ ∧ dxν, corresponding to the curvature of the spacetime manifold,
which can be written explicitly as

Ra
b = dΓa

b + Γa
c ∧ Γc

b . (4)

The curvature 2-form has 16× 6 = 96 independent components, given by

Ra
bμν = 2∂[μΓa

b|ν] + 2Γa
c[μΓc

b|ν] . (5)

The linear connection 1-form can be decomposed according to

Γab = Γ̃ab + Nab = Γ̃ab +
1
2

Qab + N[ab] , (6)

where the Levi-Civita part of the connection, Γ̃ab, obeys the Cartan structure equation dθa + Γ̃a
b ∧ θb = 0,

and Na
b is the so-called distortion 1-form characterizing the post-Riemannian geometries. In particular,
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one finds that Qab = 2N(ab) and Ta = Na
b ∧ θb. If the linear connection obeys the condition Γab = −Γba,

then it is called a Lorentzian connection (or spin connection) and corresponds to 24 independent
components. This is the case when the linear connection is the potential for the Lorentz group SO(1, 3)
(not the full linear group GL(4, �)). Accordingly, as we shall see later, the Lorentzian connection is the
linear connection of PGTG.

Though one can argue that the spacetime metric is not as fundamental as the affine connection
(and indeed a purely affine formulation of gravity is possible, see for example, Reference [31]), one can
introduce it in order to measure time and space intervals as well as angles. Thus, let us define
the Lorentzian metric as the (0, 2) tensor g = gabθa ⊗ θb, where a, b = 0, 1, 2, 3 are anholonomic
indices, and the spacetime metric components in the coordinate frame are given by gμν = θa

μθa
νgab.

The Lorentzian metric gab is the metric of the tangent space required to compute the inner product
between anholonomic vectors and make a map between these vectors and the corresponding
dual co-vectors vb = gabva. As for the spacetime metric gμν, it establishes maps between the
contravariant components of vectors and the covariant components of the corresponding dual covectors
in the coordinate (holonomic basis), and defines the inner products g(u, v) = gαβuαvβ = uαvβ.
Therefore, the spacetime metric can be seen as the deformation of the Lorentzian (tangent space)
metric according to gμν = Ωab

μνgab, with Ωab
μν ≡ θa

μθa
ν being a deformation tensor. Since the

tangent space has a pseudo-Euclidean geometry, then if the spacetime manifold has non-Euclidean
geometry the deformation tensor has to vary from point to point. From now on we consider
geometries where the spacetime metric is symmetric gαβ = gβα, non-degenerate, g = det(gμν) �= 0,
and determines the local line element ds2 = gαβdxαdxβ with a Lorentzian signature (±2). As for
the metric gab, it is possible to see it as a kind of potential whose corresponding field strength,
Qab = Dgab = dgab + Γc

a ∧ gcb + Γc
b ∧ gac = 2Γ(ab), is a tensor valued 1-form Qab = Qabμdxμ with

10× 4 = 40 independent components Qabμ. This field strength corresponds to the non-metricity
tensor valued 1-form and one concludes that, if the connection is non-Lorentzian (Γab �= −Γba),
then non-metricity is non-vanishing.

In (pseudo) Euclidean geometries such as that of Minkowski spacetime, there is always a
coordinate system where the components of the connection (the Christoffel symbols) and their
derivatives vanish, whereas in a (pseudo) Riemann geometry with non-vanishing curvature, one can
find a local geodesic system of coordinates where the connection vanishes and the metric is given by
the Minkowski metric (a freely falling frame), but the derivatives of the connection cannot be set to
zero. In such geometries the so-called Levi-Civita connection and the metric are fundamentally related
and thus not independent from each other. Indeed, in such a case the metricity condition (vanishing of
the covariant derivatives of the metric) holds, implying that the connection is proportional to the first
derivatives of the metric (recall that the Levi-Civita connection is the only symmetric connection that
obeys the metricity condition) and as such, in GR, the presence of a physical gravitational field is traced
to the non-vanishing of the second derivatives of the metric. The Weyl part of the Riemannian curvature
is not absent in a freely falling frame, which translates into tidal effects. But both the symmetry of a
connection and the metricity condition can be relaxed leading to more general geometries with torsion
and non-metricity respectively, as we shall see next.

2.2. The Decomposition of the Affine Connection

We are now ready to bring here the well known result that any affine connection can be
decomposed into three independent components. In holonomic (coordinate) components they are
expressed as

Γλ
μν = Γ̃λ

μν + Kλ
μν + Lλ

μν , (7)

where Γ̃λ
μν is the Levi-Civita connection associated to the Riemannian curvature

R̃α
βμν = 2∂[μΓ̃α

ν]β + 2Γ̃α
[μ|λ|Γ̃

λ
ν]β , (8)
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the term Kλ
μν is associated to torsion, Tλ

αβ ≡ Γλ
[αβ]

, and is denoted contortion:

Kλ
μν ≡ Tλ

μν − 2T(μ
λ

ν), (9)

while the term Lλ
μν is associated to non-metricity Qρμν ≡ ∇ρgμν, and is called disformation:

Lλ
μν ≡

1
2

gλβ
(
−Qμβν −Qνβμ + Qβμν

)
. (10)

This decomposition naturally highlights the metric-affine character of the most general
spacetime geometry, made up of curvature, torsion and non-metricity. Let us briefly analyze each
component separately.

2.2.1. Curvature

In an holonomic basis the curvature of a connection has the 96 independent components

Rα
βμν = ∂μΓα

βν − ∂νΓα
βμ + Γα

λμΓλ
βν − Γα

λνΓλ
βμ . (11)

Consider at some point P of the manifold the vectors U = d/dλ and V = d/dσ, tangent to two
curves intersecting at P, where λ and σ are some respective affine parameters labelling each curve.
Since the curvature tensor is of (1, 3) type, it can be applied (contracted) to U and V and then to some
other vector field Z, which yields the resulting vector field

R(U, V)Z = ∇U∇V Z−∇V∇UZ−∇[U,V]Z , (12)

where [U, V] = £UV represents the Lie derivative (of V with respect to U). To clarify its geometrical
meaning, let us consider an infinitesimal closed loop, with dsμν being the surface element spanned by
such a loop. After a parallel transport of some vector v along the loop, it is found that the initial and
final vectors do not coincide: there is a rotation with a difference vector

δvα ≈ Rα
βμνvβdsμν . (13)

Therefore, the parallel transport of a vector induces a rotation driven by curvature. For further
reference let us also introduce here the homothetic curvature tensor, defined as

gαβRαβμν = Rα
αμν ≡ Ωμν , (14)

which shall be useful later. The curvature can be decomposed into eleven irreducible components.
In the language of forms, six of these belong to the antisymmetric part of the curvature 2-form
R[ab] (36 components) while the other five constitute the symmetric part R(ab) (60 components),
which vanishes in the absence of non-metricity.

2.2.2. Torsion

The torsion tensor can be introduced in holonomic coordinates as the antisymmetric part of the
affine connection Γα

[βγ]
. It has 24 independent components given by

Tα
βγ ≡ Γα

[βγ] . (15)

If we apply it to the vectors U and V we obtain the new vector field

T(U, V) = ∇UV −∇VU − [U, V] . (16)
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This expression allows to visualize the geometrical effect of torsion. Indeed, starting from a
given point on the manifold and parallel-transporting V along the (integral curve of) U, through an
infinitesimal distance, and doing the complementary trip with U, that is, parallel-transporting it
along V, the expected parallelogram does not close if the manifold has a non-vanishing torsion.
The two end points are separated from each other by a (spacetime) translation, given by

ξα ≈ 2Tα
μνdsμν . (17)

The torsion field has three irreducible pieces completing the 24 independent components,
Tλ

μν = T̄λ
μν +

2
3 δλ

[ν
Tμ] + gλσεμνσρT̆ρ, where the traceless tensor (16 components) obeys T̄λ

μλ = 0 and

ελμνρT̄μνρ = 0, while Tμ is the trace vector and T̆λ ≡ 1
6 ελαβγTαβγ the pseudo-trace (axial) vector.

2.2.3. Non-Metricity

In holonomic coordinates the non-metricity tensor can be defined as the covariant derivative of
the spacetime metric gβγ. It has 40 independent components

Qαβγ = ∇αgβγ . (18)

The trace-vector part Qμ ≡ Q α
μα is the only non-vanishing part of non-metricity in a Weyl

geometry (e.g., Riemann-Weyl or Cartan-Weyl, to be discussed later), known as the Weyl co-vector.
It is actually related to the homothetic curvature (14) via the equation

Ωμν = −1
2
(
∂μQν − ∂νQμ

)
. (19)

After the parallel transport of a vector along an infinitesimal closed loop, there is a change in
length given by

δl ≈ l(v)Ωμνdsμν . (20)

Indeed, if Qμ is the only non-vanishing part of Qαβγ, then ∇αgβγ ∼ Qαgβγ and the norm of
vectors change due to this Weyl co-vector as

∇ν(V2) ∼ QνV2, V2 = gβγVβVγ . (21)

Therefore, under the presence of non-metricity the parallel transport of a vector involves a change
on its length.

From the definition of the non-metricity tensor, one can derive the following Bianchi
identity-type relation:

∇[μQν]αβ = −R(αβ)μν + QλαβTλ
μν . (22)

Therefore, if Qαβγ �= 0 then R(αβ)μν �= 0. The quantity R(αβ)μν can be identified as the
non-Riemannian part of the curvature, and its related to a non-Lorentzian linear connection and
the breaking of Lorentz invariance. Finally, non-metricity can be decomposed into its trace-vector part
and the traceless tensor part Q̄αβγ, according to Qαβγ = Q̄αβγ + 1

4 gβγQα. In the language of forms,
the latter can be further decomposed into a shear co-vector and a shear 2-form part in such a way that
at the end of the day the tensor valued non-metricity 1-form has four irreducible pieces with respect to
the Lorentz group.

To summarize the geometrical interpretation of the three pieces of the connection, one can say
that they are associated to changes in the properties of a vector when parallel-transported: curvature
yields a rotation, torsion a non-closure of its parallelograms, and non-metricity a change on its length.
In turn, these geometrical interpretations have a deep impact in the physical models built upon any
such pieces, as we learned decades ago from the physics of solid state systems with defects [32].
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2.3. A Brief Note on the Conformal and Metric Structures of Spacetime Geometry

Important developments in geometrical methods in field theories suggest that the spacetime
metric might not be considered as a fundamental field. In fact, the conformally invariant part of the
metric can be derived from local and linear electrodynamics [33–37]. The pre-metric approach to
electrodynamics give fully general, coordinate-free, covariant inhomogeneous equations

dH = J , (23)

and homogeneous field equations
dF = 0 , (24)

from charge conservation and magnetic flux conservation, respectively. Since there is no metric
involved, electrodynamics is not linked to a Minkowski spacetime at a fundamental level. In order to
close the system the postulate on the constitutive relations H = H(F) is required which, in vacuum,
can be interpreted as constitutive relations for the spacetime itself [38]. On the other hand, linear,
local and homogeneous constitutive relations H = λ � F introduce the spacetime metric4, which is
also involved in the more general linear-type relations Hαβ = κ

μν
αβFμν. Since the excitation H and

the field strength F are 2-forms, the tensor κ
μν
αβ has 36 independent components characterizing the

electromagnetic (propagation) properties of spacetime.
From pre-metric electrodynamics plus linear, local, homogeneous constitutive relations, one can

derive the conformally invariant part of the spacetime metric. Once the propagation of electromagnetic
fields is considered and the geometrical optics limit is taken, one finds a quartic Fresnell surface which
becomes a quadratic surface under the imposition of zero birefringence (double refraction) in vacuum.
This quadratic surface defines the light-cone. Therefore, pre-metric electrodynamics, together with
linear, local, homogeneous constitutive spacetime-electromagnetic relations and zero birefringence,
gives the spacetime metric up to a conformal factor. The conformally invariant part of the metric
(the causal structure) is derived from linear electrodynamics.

We can conclude this part by stating that the resulting light cone or causal-electromagnetic
structure is a conformal geometry with local conformal symmetries associated to the light cone at each
spacetime point. In such a geometry, if one parallel-transports one light cone from a given point to a
neighbouring point, it will be deformed according to the non-metricity tensor, which is linked to the
existence of a non-Lorentzian linear connection (Γab �= −Γba). This alone is sufficient to break Lorentz
symmetry. One sees very clearly that, in addition to the metric not being fundamental, there is a
primacy of the conformal (over the metric) structure, which itself is an electromagnetic derived quantity.
Moreover, electrodynamics is fundamentally connected to the conformal geometrical structure (and to
the conformal group), but neither to the Poincaré/Lorentz group nor to Minkowski spacetime.

3. Metric-Affine Formalism and Classical Spacetime

3.1. A Brief Outlook on Metric-Affine Gravity

Let us now summarize the fundamental structures of spacetime and their relation to symmetry
groups. We have the fundamental 1-forms, the linear co-frame θa and the linear connection Γa

b,
which are the potentials for the 4-dimensional translations T(4) and the general linear GL(4,�) groups,
respectively. The corresponding field strengths correspond to well known objects from differential
geometry, namely, the torsion Ta = Dθa = dθa + Γa

b ∧ θb and curvature Ra
b = dΓa

b + Γa
c ∧ Γc

b
2-forms, respectively. The metric is introduced as the 0-form potential with the corresponding field

4 In d dimensions the Hodge star operator maps p-forms to (d − p)-forms. In components we get Hμν =
λ
2
√−ggαλgβγεμναβ Fλγ.
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strength being the non-metricity 1-form Qab = Dgab. The linear frame establishes a link between the
(symmetries on the) local tangent fibers and the spacetime manifold while the linear connection can
be viewed as a guidance field reflecting the inertial character for matter fields propagating on the
spacetime manifold. Finally, the metric allows the determination of spatial and temporal distances
and angles. The spacetime geometry with all these structures is called a metric-affine geometry (MAG),
with non-vanishing torsion, curvature and non-metricity, and its fundamental local group of spacetime
symmetries is the affine group A(4,�) = T(4)� GL(4,�), which is the semi-direct product of the
group of translations and the general linear group.

A truly independent linear connection is given by the decomposition in (6) that is useful to analyse
the relation between non-Lorentzian metrics, the breaking of Lorentz invariance and the presence of
non-metricity. Since Qab = 2N(ab), if non-metricity is zero, then the connection is Lorentzian and the
spacetime geometry is the RC one with curvature and torsion. Such a spacetime is fundamentally
linked to the local symmetry group of Poincaré transformations P(1, 3) = T(4)� SO(1, 3), which is
the semi-direct product between the translations T(4) and the Lorentz group SO(1, 3). As one can see
from the expressions for the field strengths (torsion and curvature), the connection also enters in the
expression for the field strength of the co-frame. This term is unavoidably present and is due to the
semi-direct product5 structure of the Poincaré group (or the affine group) and, therefore, curvature and
torsion are somehow intertwined.

In the self-consistent metric-affine formalism, the gravitational interaction is described as a gauge
theory of the affine group A(4,�), together with the assumption of a metric, with the potentials (θa, Γab)
coupled to the corresponding Noether currents (τa, Δa

b). The latter are the vector-valued canonical
energy-momentum τa = δLmat/δθa and the tensor-valued hypermomentum Δa

b = δLmat/δΓ b
a 3-form

currents6, respectively, while the metric gab couples to the symmetric (Hilbert) energy momentum
Tab = 2δLmat/δgab. The hypermomentum can be decomposed according to the expression

Δab = sab +
1
4

gabΔc
c + Δ̄ab , (25)

including the spin sab = −sba, the dilatation Δc
c, and the shear Δ̄ab currents. The Noether currents are

the fundamental sources of MAG. A truly independent connection in MAG can be written as

Γab = Γ[ab] +
1
4

gabΓc
c +

(
Γab − 1

4
gabΓc

c

)
, (26)

including the Lorentzian piece Γ[ab], the trace part
1
4

gabΓc
c and the shear part Γab − 1

4
gabΓc

c.
The Lorentzian connection couples to the spin current and the trace and shear parts couple
to the dilatation and shear currents, respectively. As previously said it is the non-Lorentzian
part of the connection that imply the non-vanishing of non-metricity, therefore, the dilatation
and shear hypermomentum currents are intimately related to the non-metricity of metric affine
spacetime geometry.

The variational principle is applied to the action of this theory (including the gravitational part
and the matter Lagrangian) by varying it with respect to the gauge potentials of the affine group,
(θa, Γab). This leads to two sets of dynamical equations, while a third set of equations is obtained by
varying the action with respect to the metric potential gab. At the end, the dynamics is described
only via two sets of equations, since the gravitational equation obtained by varying with respect to

5 The semi direct product implies that the generators of T(4) and GL(4,�) (or SO(1, 3)) do not commute.
6 These currents can be represented as 1-forms or as 3-forms. In fact, in the gauge approach to gravity they emerge naturally

from Noether equations as 3-forms, being natural objects for integration over volumes. As 1-forms one can write τa = τa
μdxμ

and Δa
b = Δa

bμdxμ. This map between 3-form or 1-form representation is related to the fact that in d-dimension a k-form

has d!
k!(d−k)! independent components. In four dimensions both 3-forms and 1-forms have four independent components.
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the metric potential or the one obtained by variation with respect to the translational potential can
be dropped out, as long as the other gravitational equation (derived from variation with respect to
the linear connection) is fulfilled. This procedure and the fundamental quantities and relations here
exposed summarizes the basics of the MAG formalism.

3.2. Classical Spacetime Paradigms

We now revise some important classical spacetime paradigms, which play a fundamental role in
the formulation of gravitational theories.

3.2.1. Minkowski Spacetime—M4

This is a pseudo-Euclidean geometry with vanishing curvature, torsion and non-metricity. It has
global/rigid Poincaré symmetries and a globally absolute causal structure. For inertial reference
systems the connection vanishes. The inertial frame and the inertial properties of matter are defined
with respect to this absolute spacetime. In particular, the mass and spin of particles can be considered
to be intrinsic to particles and are classified with the help of the Casimir operators using the irreducible
representations of the Poincaré group.

3.2.2. (Pseudo)Riemann Geometry of GR—V4

A post-Euclidean geometry with curvature and vanishing torsion and non-metricity. It obeys local
Lorentz symmetries and in local geodesic frames the (Levi-Civita) connection vanishes but (the Weyl
part of) curvature is non-zero. The causal structure ds2 = 0 is locally invariant under local Lorentz
symmetries. The inertial properties of matter are locally defined with respect to absolute spacetime.

3.2.3. Riemann-Cartan Geometry—U4

This geometry has curvature and torsion but zero non-metricity, therefore the connection is
Lorentzian (spin connection). It obeys local Poincaré P(1, 3) symmetries and the causal structure is
locally invariant under such a group. The inertial properties of matter are locally defined with respect
to absolute spacetime. The corresponding curvature and its contractions (Ricci tensor and Ricci scalar
in the RC geometry) are given by the expressions

Rα
βμν = R̃α

βμν + ∇̃μKα
βν − ∇̃νKα

βμ + Kα
λμKλ

βν − Kα
λνKλ

βμ

Rβν = R̃βν + ∇̃αKα
βν − ∇̃νKα

βα + Kα
λαKλ

βν − Kα
λνKλ

βα, (27)

R = R̃− 2∇̃λKα
λα + gβν(Kα

λαKλ
βν − Kα

λνKλ
βα) ,

respectively. The curvature tensor obeys the following first and second Bianchi identities

∇[γRα
β|μν] = 2Rα

βλ[μTλ
νγ] , (28)

Rα
[βμν] = −2∇[νTα

βμ] + 4Tα
λ[βTλ

μν] . (29)

These relations can be deduced from the corresponding expressions in terms of the curvature and
torsion 2-forms, namely7

DRa
b = 0, DTc = Rc

d ∧ θd. (30)

The anholonomic or frame indices are also called symmetry indices since they are related to the
tangent fibers where the local spacetime symmetries are characterized. In this case these are known
also as Lorentz indices. Spin connections are related to rotations (two Lorentz indices) and the tetrads

7 Here DRa
b = dRa

b + Γa
c ∧ Rc

b + Γc
b ∧ Ra

c and DTc = dTc + Γc
d ∧ Td.
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or co-frames are related to translations (one Lorentz index). The same is valid for the corresponding
field strengths. The symmetry indices have a direct link to geometrical interpretations via the strong
relation between group theory and geometry. Two symmetry indices for curvature means that it
is related to rotations, and one symmetry index for torsion means that it is related to translations.
On the other hand, since both curvature and torsion are represented by 2-forms, as geometrical objects
these are therefore connected to 2-surfaces. One can thus say that Cartan pictured a RC geometry by
associating to each infinitesimal surface element a rotation and a translation.

The components of the curvature and torsion 2-forms in terms of the tetrads and spin
connection are

Ra
bμν = ∂μΓa

bν − ∂νΓa
bμ + Γa

cμΓc
bν − Γa

dνΓd
bμ , (31)

Ta
μν = ∂μθa

ν − ∂μθa
ν + Γa

bμθb
ν − Γa

bνθb
μ , (32)

respectively. On the other hand, the components of the 1-form spin connection

Γa
bν = Γ̃a

bν + Ka
bν , (33)

where Ka
bμ are the components of the contortion 1-form, are related to the holonomic (spacetime)

components of the affine connection through the relations

Γa
bν = θa

μ∂νe μ
b + θa

μΓμ
βνe β

b (34)

Γλ
νμ = e λ

a ∂μθa
ν + e λ

a Γa
bμθb

ν . (35)

Since the connection characterizes the way the linear frame/co-frame changes from point to point,
these relations can be deduced from the equation

∂νe μ
b + Γμ

βνe β
b ≡ Γc

bνe μ
c , (36)

which expresses the fact that the total covariant derivative of the tetrads with respect to both
holonomic and anholonomic (Lorentz) indices is vanishing, that is, ∂νe μ

b + Γμ
βνe β

b − Γc
bνe μ

c = 0 and

∂μθa
ν − Γβ

νμθa
β + Γa

bμθb
ν = 0. By changing from one spacetime point to another in the frame/coframe,

the tetrads also change. The new tetrads ē μ
b can be expressed in terms of the original ones as ē μ

b = Λa
be μ

a ,
and by using the relations

ηab = e μ
a e ν

b gμν, gμν = θa
μθb

νηab,
√
−g = det(θa

μ), (37)

one can show that Λa
b are Lorentz matrices, that is, the tetrads undergoes a Lorentz rotation under the

motion from one spacetime point to another. For that reason, the linear connection, which characterizes
the change in the frame/co-frame, is called Lorentzian or spin connection. As previously said, the six
Lorentzian connections are the potentials associated to the generators of the Lorentz group.

The matrices e μ
a and their inverses, which establish a correspondence between the local spacetime

metric and the Minkowski metric on the tangent/cotangent planes, constitute a map between
holonomic and anholonomic bases. For example, for vectors

vμ = vae μ
a , vb = vνθb

ν, hμ = haθa
μ, hb = hνe ν

b . (38)

Since the tangent and co-tangent spaces, Tp(M) and T∗p (M), change while moving from one
point on the manifold to another, the notion of covariant derivative is extended for quantities with
Lorentz indices. This is done with the spin connection. For (Lorentz) vectors and co-vectors we have

s∇μva = ∂μva + Γa
bμvb, s∇νhc = ∂νhc − Γd

cνhd. (39)
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The anholonomic basis ea and θb also characterize the local spacetime symmetries in the tangent
fibers, since the local symmetry group algebra is implicit in the relations

[ea, eb] = f c
abec, f c

ab = e μ
a e ν

b (∂νθc
μ − ∂μθc

ν), (40)

where the (group) structure constants f a
bc are known as Ricci rotation coefficients.

In RC geometry the affine (self-parallel) geodesics differ, in general, from the extremal geodesics
and are given by

duα

ds
+ Γα

βγuβuγ = 0 ⇔ duα

ds
+ Γ̃α

βγuβuγ = −Kα
(βγ)u

βuγ, (41)

respectively, where uα are the components of the (4-velocity) tangent vector to the curve. However,
in the RC spacetime matter particles with vanishing intrinsic spin are insensitive to the non-Riemannian
part of the geometry and, therefore, to torsion. Such particles follow the extremal paths computed
from the Levi-Civita connection. Moreover if torsion is completely antisymmetric, as in the case
of ECSK theory, then Kα

(βγ)
= 0 and the extremal and self-parallel geodesics coincide. In any case,

the appropriate evaluation of the motion of particles with intrinsic spin (fermions) in a RC spacetime
should be performed from an analysis of the corresponding Dirac equation and then proceeding with
a classical approximation, for instance, using a WKB method.

As we mentioned before, since curvature and torsion are 2-forms, one can imagine the RC
geometry as having at each point an associated infinitesimal surface element with a rotational
(curvature) and translational (torsion) transformation. The picture of a RC manifold with a discrete
structure can naturally emerge from imposing a finite minimum surface element (rater than
infinitesimal elements), which would imply, to some extent, that torsion and curvature would become
quantized. Indeed, as we shall see, the mathematical methods of Cartan’s exterior calculus (differential
forms) within gauge theories of gravity contribute to clarify the appropriate physical degrees of
freedom and mathematical objects that should be quantized in a quantum (Yang-Mills) gauge theory
of gravity. This procedure, in this formalism of forms, can be done in a metric-free (pre-metric) way,
avoiding the difficulties often found in perturbative approaches that require some (well behaved)
background (spacetime-vacuum), with respect to which the perturbations can be defined. Since any
such gravity theory should be (metric) background independent, this is usually a huge problem,
since the background is also the very thing one would like to quantize and should come as a solution
of the dynamical equations. Gravity in exterior forms can shed some light on this challenge, at least
by establishing a metric-independent framework and a well identified set of canonically conjugate
variables to be quantized. As we shall see later, in Yang-Mills type of gauge theories of gravity this
will not require the full metric structure, but only the conformally invariant part of the metric, that is
the conformal-causal structure. The latter is introduced via the Hodge star operator in the constitutive
relations between the field strengths and the conjugate momenta.

3.2.4. Riemann-Weyl Geometry—W4

This is the spacetime geometry implicit in Weyl’s gauge theory for unifying gravity and
electromagnetism by extending the local Lorentz symmetries to include dilatations. It has curvature
and (the trace-vector part of) non-metricity but vanishing torsion, and it obeys local symmetries under
the Weyl group W(1, 3), which includes the P(1, 3) group and dilatations. The causal structure is
locally invariant under the W(1, 3) group, but the spacetime (metric) is not absolute, changing under
dilatation-type of coordinate transformations. Accordingly, the inertial properties of matter cannot be
defined with respect to an absolute metric structure. One may postulate that matter is endowed with
conformally-invariant physical properties.
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The Weyl connection is given by Γα
βν = Γ̃α

βν + qα
βν, where the distortion tensor in this case is

related to the Weyl co-vector Qμ ≡ Q λ
μλ as

qα
βν ≡

1
2
(δα

βQγ + δα
γQβ −Qαgβγ) , (42)

while the curvature of the Weyl connection is given by

Rα
βμν = R̃α

βμν + ∇̃μqα
βν − ∇̃νqα

βμ + qα
λμqλ

βν − qα
λνqλ

βμ. (43)

The Weyl co-vector is the trace vector part of the non-metricity and, therefore, there are
scale (dilatations) type of distortions in the geometry, implicit in the relation ∇αgβγ ∼ Qαgβγ

and, as previously mentioned, the length of vectors change in this geometry as ∇ν(V2) ∼ QνV2.
Weyl identified the Weyl co-vector as the electromagnetic 4-potential, and the previously defined
homothetic curvature (14) as the electromagnetic Faraday tensor. We stress that the pre-metric
foundations of electrodynamics indeed show the deep connection between electromagnetism and
conformal geometry and conformal symmetries, which presuppose a natural framework for the
breaking of Lorentz symmetry.

3.2.5. Riemann-Cartan-Weyl Geometry—Y4

This is a generalization of the Weyl geometry by including torsion, which is therefore the
appropriate manifold for the Weyl gauge theories of gravity. Only matter with hypermomentum (25),
that includes the spin current and the dilatations current, can be sensitive to torsion and to the
(Weyl-covector part of) non-metricity.

3.2.6. Metric-Affine Geometry (L4, g)

This is the richest kind of geometry considered here, having non-vanishing curvature, torsion and
non-metricity. The natural symmetry group is the affine group A(4,�). The affine connection can be
written as Γα

βν = Γ̃α
βν + Nα

βν, where the distortion tensor Nα
βν = Kα

βν + Lα
βν includes both contortion

and disformation, as described in Section 2.2. The curvature can be written as

Rα
βμν = R̃α

βμν + ∇̃μNα
βν − ∇̃νNα

βμ + Nα
λμNλ

βν − Nα
λνNλ

βμ, (44)

or, alternatively, as

Rα
βμν = R̄α

βμν + ∇̄μLα
βν − ∇̄νLα

βμ + Lα
λμLλ

βν − Lα
λνLλ

βμ, (45)

where R̄α
βμν and ∇̄μ are the curvature and covariant derivative of a Riemann-Cartan connection.

The above discussion represents just a quick excursion in the affinesia world8, where different
geometries emerge depending on the pieces of the connection one decides to keep/remove. In the next
section, we shall draw our attention to the gauge formulation of gravity and its relation to all these
spacetime geometries.

4. Gauge Theories of Gravity

The gauge approach to gravity broadens our study of the deep relation between symmetry
principles (group theory) and geometrical methods. Of special relevance for our analysis is the
PGTG class, which constitutes a promising candidate for an appropriate description of classical gravity

8 This anecdotal notion was first coined by José Beltrán-Jiménez in one of his talks about the trinity of gravity [39].
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including post-Einstein strong-field predictions. In order to present the structure of the gauge approach
to gravity, it is useful first to revisit the Weyl-Yang-Mills formalism for gauge fields.

4.1. The Weyl-Yang-Mills Formalism

The gauge approach to Yang-Mills fields follows from two major steps, the rigid (global)
symmetries of a physical system described by a matter Lagrangian, and the localization (gauging) of
those symmetries.

In the first step one considers rigid (global) symmetries as follows:

• Start with a field theory: Lm = Lm(Ψ, dΨ) of some matter fields Ψ.
• The matter Lagrangian is invariant under some internal symmetry group, described by a

(semi-simple) Lie group with generators Ta.
• Noether’s first theorem implies a conserved current: dJ = 0.

In the second step the localization (gauging) of the symmetries is performed according to the
following procedure:

• The symmetries are described on each spacetime point introducing the compensating (gauge)
field A = Aa

μTadxμ.
• This is a new field that couples minimally to matter and represents a new interaction.
• To preserve the symmetries this gauge potential A transforms in a suitable way allowing to

construct a (gauge) covariant derivation dΨ −→ DΨ = (d + A)Ψ.
• The Lagrangian includes this minimal coupling between the matter fields and the gauge potential

L(Ψ, dΨ) −→ L(Ψ, DΨ).
• The gauge potential acts on the components of the matter fields defined with respect to some

reference frame. Geometrically, it is the connection of the frame bundle (fiber bundle) related to
the symmetry group.

• The conservation equation is generalized as dJ = 0 → DJ = 0.

In order for A to represent a true dynamical variable with its own degrees of freedom,
the Lagrangian of the theory has to include a kinetic term, representing the new interaction
L = Lm + LA. The invariance of LA is secured by constructing it with the gauge invariant field
strength F = DA = dA + A ∧ A which, geometrically, can be interpreted as the curvature 2-form of
the fiber bundle. Note that to have second order (on A) inhomogeneous Yang-Mills field equations,
one must choose LA = LA(F).

Written in terms of exterior forms, the inhomogeneous Yang-Mills equations for the gauge
potential are

DH = J , (46)

where H = ∂L/∂F is the excitation 2-form, and J = ∂Lm/∂A is the conserved Noether current,
which acts as a source for the potential. Here, DH ≡ dH + A ∧ H. The homogeneous field equation
corresponds to a Bianchi identity, obtained from the derivation of the potential twice, namely

DF = 0 ⇔ dF = −A ∧ F . (47)

Note also that the equation for the conservation of the Noether current is generalized via the
gauge covariant exterior derivative

DJ = 0 ⇔ dJ = −A ∧ J . (48)

For non-abelian groups the gauge field contributes with an associated (“isospin”) current,−A∧H.
In such a case dJ �= 0, and the (gauge) interaction field is charged, unlike the case of abelian groups,
such as the U(1) group of electromagnetism.
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In order to have a wave-like inhomogeneous Yang-Mills (quasi-linear) equation, and paralleling
the case of electromagnetism, L can depend quadratically with F at most and, therefore, H must
depend linearly, for instance as H = H(F) = α � F. The Yang-Mills inhomogeneous equations then
turn into

D � F = d � F + A ∧ �F = α−1 J ⇔ d � F = α−1(J + JA), (49)

where JA ≡ −αA ∧ �F. In this formalism one can see the clear analogies between classical mechanics
and Yang-Mills field theory, which we summarize in Table 1. In particular, it is clear that the
field strength F is the generalized velocity while the excitation H is the conjugate momentum.
The constitutive relation H(F) is implicit in the Lagrangian formulation and corresponds in perfect
analogy to the functional relation between generalized velocities and conjugate momenta of classical
mechanics. As an extension of these analogies, one is naturally led to identify the appropriate pairs of
canonically conjugate variables that should be quantized in the corresponding (canonical) quantum
field theory (see Table 2).

Table 1. The analogies between classical mechanics, Yang-Mills field and gravity-Yang-Mills theory in
the language of exterior forms.

Gravity Yang-Mills Yang-Mills Classical Mechanics
L = L(A, DA) L = L(q, q̇)

Configuration (Γa
b, ϑa) A q

variables

Generalized velocities Ra
b = DΓa

b F ≡ DA q̇
Ta = Dϑa

Lagrange equations
D
(

∂L
∂Rab

)
− ςab = sab D

(
∂L
∂F

)
= J d

dt

(
∂L
∂q̇

)
= ∂L

∂q

D
(

∂L
∂Ta

)
− πa = τa J = ∂Lm

∂A

Conjugate momenta
Hab =

(
∂L

∂Rab

)
H = ∂L

∂DA = ∂L
∂F p = ∂L

∂q̇

Ha =
(

∂L
∂Ta

)
Constitutive relations Hab = Hab(Rab, Ta) Ha = Ha(Rab, Ta) H = H(F) p = p(q̇)

Hab ∼ �Rab Ha ∼ �Ta (linear) H ∼ �F (linear)

Canonical variables (Γa
b, Ha

b ) (ϑa, Ha) (A, H) (q, p)

Hamiltonian H ≡ Rab ∧ Hab + Ta ∧ Ha −L(Γ, ϑ, R, T) H ≡ F ∧ H −L H ≡ q̇p−L(q, q̇)
Rab = Rab(Hab, Ha) Ta = Ta(Hab, Ha) F = F(H) q̇ = q̇(p)

Hamilton equations DΓab = ∂H
∂Hab

DHab = − ∂He f f

∂Γab DA = F = ∂H
∂H

d
dt q = ∂H

∂p
d
dt p = − ∂H

∂q

Dϑa = ∂H
∂Ha

DHa = − ∂He f f

∂ϑa DH = − ∂Hm

∂A = J

Table 2. The analogies between canonical quantization in quantum mechanics and in the exterior
calculus approach to Yang-Mills theories and gauge theories of gravity (à la Yang-Mills).

Gravity Yang-Mills Yang-Mills Quantum Mechanics

Ĥ = Ĥ(Γ̂ab, ϑ̂a, Ĥab, Ĥa) Ĥ = Ĥ(Â, Ĥ) Ĥ = Ĥ(q̂, p̂)

Quantum operators Γab → Γ̂ab ϑa → ϑ̂a A → Â q → q̂
Hab → Ĥab Ha → Ĥa H → Ĥ ∼ −i ∂

∂A p → p̂ = −i� d
dq

Commutation relations [Γ̂ab, Ĥab] �= 0 [ϑ̂a, Ĥa] �= 0 [Â, Ĥ] �= 0 [q̂, p̂] = −i�

4.2. The Gauge Approach to Gravity

The question that arises now is whether we can apply the same procedure to gravity. The approach
of Yang, Mills and Utiyama went beyond the first ideas on gauge invariance introduced by Weyl.
In fact, while Yang and Mills [11] extended Weyl’s gauge principle to the SU(2) isospin rotations in an
attempt to describe nuclear interactions, Utiyama [12] extended the gauge principle to all semi-simple
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Lie groups including the Lorentz group and tried to derive GR from the gauging of the Lorentz group.
Although there is some validity in his approach and an undoubtedly importance of the Lorentz group
in GR, his derivation is not fully self-consistent to the formal structure of a gauge field theory. This is
mainly because the Noether conserved current of the Lorentz group is not the energy-momentum,
which Utiyama forced to be the source of gravity in order to obtain GR.9 Although these efforts did
not include gravity consistently, it revealed that, on a fundamental level, gauge symmetries lie at the
heart of modern field theories of physical interactions. Nevertheless, this gauge formalism eventually
returned to gravity when in the 60’s Sciama and Kibble localized the Poincaré group of spacetime
symmetries and in this way managed to show that gravity can also be consistently described as a gauge
theory. Indeed, the analogies with gauge Yang-Mills theories can be easily established, as summarized
in Table 3.

Table 3. The analogies between Yang-Mills fields and gravity-Yang-Mills theory in the language of
exterior forms.

Gravity Yang-Mills Yang-Mills
L = Lg +Lm L = LA +Lm

Lg = Lg(gab, ϑa, DΓa
b , Dϑa) L = L(A, DA)

gauge (Γa
b, ϑa) A

potentials 1-forms 1-form

Field Ra
b = DΓa

b F ≡ DA
strengths Ta = Dϑa

PGTG : SO(1, 3)�
Symmetry T(4) SU(N)

group MAG : GL(4,�)�
T(4)

PGTG :
sab

μ canonical spin density, sab ≡ δLm/δΓab J = ∂Lm
∂A

Noether currents τa
μ canonical energy-momentum density, τa ≡ δLm/δϑa

MAG : (elec. charge, isospin,...)
(sources) Δab

μ Hypermomentum, Δab ≡ δLm/δΓab

τa
μ canonical energy-momentum density, τa ≡ δLm/δϑa

PGTG :
Excitations Hab = −δLA/δRab H = −δLA/δF

Ha = δLA/δTa

PGTG :
Field equations DHab − ςab = sab DH = J

DHa − πa = τa

PGTG : dF = −F ∧ A
Bianchi identities dRa

b + Γa
c ∧ Rc

b = −Ra
c ∧ Γc

b (DRa
b = 0) (DF = 0)

DTa = Ra
c ∧ ϑc

One of the most remarkable features of the gauge approach to gravity is the intimate link between
group considerations and spacetime geometry. Non-rigid (local) spacetime symmetries require
non-rigid (non-Euclidian) geometries. Moreover, as previously mentioned, by extending the symmetry

9 From a gauge theoretical perspective, the Lorentz group is not the symmetry group of Einstein’s gravity. It became clear
some years later that the apropriate way to derive GR from a gauge principle is to consider it as a translational gauge theory
of gravity. This class of theories lives on a Weitzenböck spacetime geometry with torsion and vanishing curvature and
non-metricity. These geometries and its use in attempts for a unified classical field theory were worked out by Weitzenböck,
Cartan and Einstein, for example, during the first period of the so-called teleparallel formulation gravity (up to 1938).
A second period in the 60’s by Moller and others rekindled the interest in such theories which have more recently re-gained
much attention, particularly via its f (T) extensions (see e.g., Reference [40]).
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group one is led to extend the spacetime geometry as well and, in this way, post-Riemann geometries
have a natural place within gauge theories of gravity. For instance, while the translational gauge
theories (TGTG) include non-vanishing torsion but zero curvature and non-metricity, Poincaré gauge
gravity requires a RC geometry, and both Weyl(-Cartan) gauge gravity (WGTG) and conformal gauge
gravity (CGTG) live on subsets of the more general metric-affine geometry with curvature, torsion and
non-metricity. In particular, in WGTG the traceless part of the non-metricity vanishes. Both the
10-parametric Poincaré group and the 11-parametric Weyl group are non-simple, meaning that they
can be divided into two smaller groups (a non-trivial normal sub-group and the corresponding quotient
group) and the natural extension from the corresponding theories of gravity into one with a simple
group leads to CGTG. The 15-parametric conformal group C(1, 3) is simple (its only normal sub-groups
are the trivial group and the group itself), but this extension requires a generalization of Kibble’s gauge
procedure, due to the fact that although locally C(1, 3) is isomorphic to SO(2, 4) its realization in M4

(Minkowski spacetime) is non-linear [41].
The PGTG can further be extended into the de Sitter or anti-de Sitter (A)dS gauge theories of

gravity by localizing the SO(1, 4) or SO(2, 3) groups, respectively. Due to the fact that the (A)dS
space is a maximally symmetric space which can be embedded into 5-dimensional Minkowski space
(with two or one time coordinates for AdS or dS, respectively), its isometries obey Lorentz type of
algebra. Under a specific limit (by setting l → ∞, where l is a parameter of the group algebra),
the group goes into the Poincaré algebra. Depending on the choices of the Lagrangian, one can then
have explicit [42] or spontaneous [43] symmetry breaking from SO(2, 3) to SO(1, 3), for instance.

Another important class of extensions requires going beyond the Lie algebra by considering
the algebra with anticommutators, in order to arrive at the super-Poincaré group [44] containing
the usual Poincaré generators and proper supersymmetry (SUSY) transformations. These are
generated by a Majorana spinor which acts as the (anticommuting) generator of the transformations
between fermions and bosons. The simple (with one supersymmetry generator) AdS supersymmetry
generalizes the simple super-Poincaré algebra although it has the same generators, and it goes
back to the super-Poincaré algebra under the same limit as the AdS group goes back into the
PGTG. Further extensions include the consideration of a number 1 < N < 8 of supersymmetry
generators. The gauging of these super-algebras lead directly to the bosonic gravity sector and
therefore, supergravity (SUGRA) is an important class of supersymmetric gauge theories of gravity,
extremely relevant for unification methods of bosons and fermion by the link it establishes between
external (spacetime) symmetries and internal symmetries. In the self-consistent gauge approach,
this class of theories needs to take into account post-Riemannian spacetime geometries, although many
of the approaches have been done within the Riemannian geometry [24].

To illustrate the structure of the gauge approach to gravity we next consider the PGTG in
more detail.

4.3. The Gravity Yang-Mills Equations of Poincaré Gauge Theories of Gravity

By applying to gravity a similar procedure as that of the Yang-Mills approach to gauge fields,
one arrives at the mathematical structure of gauge theories of gravity. One starts with the (rigid)
global symmetries of a matter Lagrangian with respect to a specific group of spacetime coordinate
transformations, and the conserved Noether currents are identified. Then, by localizing (gauging) the
symmetry group, the gauge gravitational potentials are introduced as well as the gauge covariant
derivative and the respective field strengths, which are well known objects from differential geometry.
Indeed, the gauge potentials represent the generators of the local symmetry group and couple
to the respective conserved Noether currents, which act as sources of gravity. In practical terms,
the identification of the appropriate gauge field potentials comes from the requirement of covariance
of DΨ.

In PGTG the tetrads and the spin connection 1-forms are the gauge potentials, associated with
translations, T(4), and Lorentz rotations, SO(1, 3), respectively. Torsion and the curvature 2-forms are
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the respective field strengths. Torsion can be decomposed into 3 irreducible parts Ta = Ta
(1) + Ta

(2) + Ta
(3),

made of a tensor part with 16 independent components, a vector part and an axial (pseudo) vector,
both with 4 independent components10. As for the curvature, it has 36 independent components
which can be decomposed into 6 irreducible parts: Weyl (10), Paircom (9), Ricsymf (9), Ricanti (6),
scalar (1), and pseudoscalar (1). In addition, there are 6 generators in the Lorentz group with 6 potentials
(Γab = −Γba) and 6 spin (Noether) currents (sab = −sba). Analogously, there are 4 generators in the
group of spacetime translations, which entail 4 gauge potentials θa and 4 conserved Noether currents τa.
By constructing the gravitational Lagrangian with the curvature and torsion invariants, the potentials
are coupled to the Noether currents via 24 + 16 = 40 second order field equations.

Let us now build the different contributions of the matter and gravity fields to the PGTG. For the
former, we consider a matter Lagrangian Lm = Lm(gab, θc, DΨ) such that the covariant derivative
with respect to the RC connection, DΨ, allows it to be invariant under local Poincaré spacetime
transformations. There are two classes of Noether conserved currents: the canonical energy-momentum
tensor density, which is equivalent to the dynamical tetrad energy-momentum density, τa ≡ δLm/δθa;
and the canonical spin density, which is equivalent to the dynamical spin density, sab ≡ δLm/δΓab.
These currents couple to the gravitational potentials, acting as sources of gravity, and obey generalized
conservation equations. As for the gravity sector in the action, it is constructed with the gauge-invariant
gravitational field strengths in the kinetic part associated with the dynamics of the gravitational degrees
of freedom.

The total Lagrangian density thus reads

L = LG(gab, θa, Ta, Rab) + Lm(gab, θa, DΨ) . (50)

By varying this action with respect to the gauge fields of gravity (θa, Γab) and the matter fields
Ψ, we get the corresponding field equations. For the fermionic matter fields, the variational principle
δLm/δΨ = 0 leads to a generalization of the Dirac equation. As for the bosonic sector (gravity),
the inhomogeneous Yang-Mills equations in PGTG are

DHa − πa = τa, DHab − ςab = sab, (51)

where Ha = −∂LG/∂Ta and Hab = −∂LG/∂Rab are the 2-form excitations (field momenta)
associated to torsion and curvature, and τa ≡ δLm/δθa and sab ≡ δLm/δΓab are the 3-form
canonical energy-momentum and spin currents. The 3-forms πa and ςab can be interpreted as the
energy-momentum and spin of the gravitational gauge fields, respectively, defined as

πa ≡ ea � LG + (ea � Tb) ∧ Hb + (ea � Rcd) ∧ Hcd, (52)

ςab ≡ −θ[a ∧ Hb] . (53)

For a given theory, one only needs to compute the excitations, the source currents and the
gravitational currents from the Lagrangian density (50) and substitute directly in the inhomogeneous
Equation (51). Note that in this formalism of exterior forms these field equations are completely
metric-free, fully general and coordinate-free, with well defined gravitational energy-momentum
and spin currents. The PGTG have two sets of Bianchi identities, previously introduced as DRa

b = 0
and DTc = Rc

d ∧ θd, which are intrinsic to the geometrical structure of RC spacetime. Via the field
equations, these can be related to the generalized conservation equations for the energy-momentum
and the spin currents.

10 In the minimal coupling to fermions, only the axial vector torsion is involved.
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Regarding the constitutive relations in these theories, the 2-form excitations expressed in terms of
the field strengths (torsion and curvature), Ha = Ha(Tc, Rbd) and Hab = Hab(Tc, Rbd), represent two
sets of constitutive relations and are implicit in the Lagrangian formulation. These excitations are
in exact analogy to the canonically conjugate momenta of classical mechanics, while torsion and
curvature are the generalized velocities for the gravitational degrees of freedom represented by
the gauge potentials. These constitutive relations in vacuum can be interpreted as describing the
gravitational propagation properties of the spacetime physical manifold. It is via these relations
that the conformally invariant part of the metric is introduced, via the Hodge star operator for
instance. Moreover, in these relations the coupling constants of the theory are required in order
to adequately convert the dimensions of the field strengths (field velocities) to the excitations
(field momenta). As constitutive relations for the spacetime vacuum itself, one can postulate that
such coupling constants characterize physical properties of the spacetime manifold endowed with
gravitational geometrodynamics. This hypothesis is in clear analogy to the similar interpretation for
the electromagnetic properties entering in the corresponding constitutive relations (see Reference [38]
for further details).

4.3.1. Quadratic Poincaré Gauge Gravity

PGTG with Lagrangians quadratic in the curvature and torsion invariants have been investigated
within cosmology, gravitational waves, and spherical solutions, see for example, References [45–49].
The PGTG class is fundamental given the importance of the Poincaré symmetries in relativistic field
theories, and the most general quadratic Lagrangian (à la Yang-Mills) contains parity breaking terms
induced by the richer RC geometry with curvature and torsion [45]. It can be written as

L =
1

2κ2

[
(a0ηab + ā0θa ∧ θb) ∧ Rab − 2Λη − Ta ∧

3

∑
I=1

(
aI(�T(I)

a ) + āI T(I)
a

) ]
− 1

2ρ
Rab ∧

6

∑
I=1

(
bI(�R(I)

ab ) + b̄I R(I)
ab

)
. (54)

The first term in the first line corresponds to the ECSK theory plus the Holst term∼ (θa ∧ θb) ∧ Rab,
where ηab ≡ eb � ηa = �(θa ∧ θb)

11. The second term corresponds to a cosmological constant. The second
line contains the terms quadratic in the torsion field strength and the index I = 1, 2, 3 runs over the
three irreducible pieces of torsion. In the third line we have the curvature quadratic terms and the
index I = 1, ..., 6 runs over the six irreducible pieces of curvature. The free parameters include the
2 + 6 + 12 = 20 (a, b) coefficients, plus the cosmological constant and the sometimes called “strong
gravity” parameter ρ. In this Lagrangian all terms with the coefficients with a bar ā0, āI , b̄I break the
symmetry under parity transformations. For specific choices and assumptions this Lagrangian includes,
for instance, GR itself, the teleparallel equivalent to GR, or the ECSK theory. In the latter, Dirac fermions
have axial-axial contact interactions (the Hehl-Data term) with a repulsive character, while in general
quadratic PGTG this contact spin-spin interaction is generalized by predicting a propagating interaction.
In particular, intermediating gauge bosons with spins s = 0, 1, 2 are predicted, which correspond to
massive or massless scalar, vector12 and tensor propagating modes, respectively. In these GW fields
there are odd parity (parity breaking) modes which could manifest themselves as signatures of chirality
in the GW cosmological backgrounds from the early Universe13. Let us also note that in PGTG it is
possible to identify ghost-free Lagrangians which can also be quantized [50,51].

11 Here ηa = ea � η = �θa is a 3-form and η = �1 is the natural volume 4-form.
12 This is actually a torsion axial vector which couples to elementary particles.
13 For that, one needs non-planar detectors, 3-point correlation functions analysis and sufficient signal/noise ratio, besides a

clear distinction from other possible GW sources with a similar power spectrum signature.
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4.3.2. The Teleparallel Equivalent of GR

Choosing the Weitzenböck spacetime geometry for PGTG, which implies keeping only torsion
while setting both curvature and non-metricity to zero, it is possible to formulate a Lagrangian
quadratic in torsion subject to some specific restrictions (such as an appropriate choice for the
Weitzenböck connection). This theory can be formulated from a translational gauge theory of gravity
perspective. Heuristically, one gets in this case

DαT αγ
c + (...) ∼ κ2τ

γ
c , (55)

or, in terms of the tetrads
�θa

μ + (...) ∼ κ2τa
μ , (56)

where the missing terms on the left-hand side are non-linear terms, and � is a d’Alembertian operator.
The last equation resembles its GR counterpart, �gμν + ... ∼ κ2Tμν, and it turns out that both equations
yield the same gravitational phenomenology for matter described by fundamental scalar or Maxwell
fields, where the canonical τμν and the dynamical (Einstein-Hilbert) Tμν energy-momentum tensors
coincide. For fermions the theories are not fully equivalent. It is interesting to point out that the
quadratic (in torsion) Lagrangian of this teleparallel equivalent of GR (TEGR) is locally Lorentz
invariant and equivalent to the Hilbert-Einstein Lagrangian [39], but if one wants to formulate GR as a
gauge theory then one must gauge the translational group instead of the Lorentz group. This provides
yet another motivation to go beyond GR using in this case the teleparallel formulation of gravity to
explore exact solutions, post-Newtonian limit, gravitational waves, and so forth, References [52–56],
since it is plausible to consider the whole Poincaré symmetries in Nature to be valid, not only the
translational group.

4.3.3. Einstein-Cartan-Sciama-Kibble Gravity

In the formalism of exterior forms, the ECSK Lagrangian can be written as

L =
1

2κ2 ηab ∧ Rab . (57)

The field equations are then obtained by varying this action with respect to the tetrads and the
(Lorentzian) spin connection. In the more common tensor formalism this Lagrangian corresponds to
the linear Lagrangian in the curvature scalar, yielding the action

SEC =
1

2κ2

∫
d4x
√
−gR(Γ) +

∫
d4x
√
−gLm . (58)

In this expression κ2 = 8πG with G Newton’s coupling constant, and g is the determinant of the
spacetime metric gμν. In the RC spacetime the curvature scalar R(Γ) defined via (28) includes terms
quadratic in torsion, while the matter Lagrangian, Lm = Lm(gμν, Γ, Ψm) depends on the metric and
the matter fields, Ψm, and also on the contortion (i.e., on torsion) via the covariant derivatives.

The Cartan equations can be obtained by varying the action (58) with respect to the contortion
tensor Kα

βγ (or, alternatively, with respect to the spin connection), and the corresponding result can be
written as

Tα
βγ + Tγδα

β − Tβδα
γ = κ2sα

βγ , (59)

where
sγαβ ≡ δLm

δKαβγ
, (60)

is the spin density tensor, while Tβ ≡ Tγ
βγ is the torsion (trace) vector. Cartan’s Equation (59) imply that

torsion is related to the spin density of matter fields via linear and algebraic relations and, therefore,
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in the absence of spin (as in vacuum) torsion vanishes. On the other hand, the variation of the
action (58) with respect to the spacetime metric gμν (or, alternatively, with respect to the tetrads) yields
the generalized Einstein equations, which, can be written as Gμν = κ2τμν, where Gμν is the Einstein
tensor of the RC geometry and τμν is the canonical energy-momentum. These equations can also be
conveniently written as

G̃μν = κ2Teff
μν , (61)

where G̃μν is the Einstein tensor computed with the Levi-Civita connection, while the effective
stress-energy tensor

Teff
μν = Tμν + Uμν = − 2√−g

δ(
√−gLeff

m )

δgμν , (62)

includes the (dynamical) metric energy-momentum tensor of the matter fields, Tμν = − 2√−g
δ(
√−gLm)

δgμν ,

and the additional piece Uμν = − 2√−g
δ(
√−gC)
δgμν , with C ≡ − 1

2κ2

(
Kγ

βγKαβ
α + KαλβKλβα

)
, which contains

corrections which are quadratic in torsion U ∼ κ−2T2. This piece can also be expressed in terms of
the spin tensor using Cartan’s Equation (59), i.e., U ∼ κ2s2. Note also that, in general, torsion also
contributes to the energy-momentum tensor τμν, since the covariant derivatives present in the kinetic
part of Lm introduce new terms depending on torsion via either minimal or non-minimal couplings.
Since U ∼ κ2s2, Equation (61) defines a typical density, known as Cartan’s density, and given by
ρC ∼ 1054 g/cm3 (if one considers nuclear matter14). Therefore, in principle, ECSK theory can only
introduce significant physical effects in environments of very large spin densities, which might arise in
the early universe or in the innermost regions of black holes.

To conclude this part, let us mention that, once the coupling to fermions is considered,
the generalized Dirac (Hehl-Data) equation for spinors in RC spacetime, coupled to the ECSK gravity, is
cubic in the spinors and includes a torsion induced spin-spin (axial-axial) contact interaction. This type
of interactions have been searched for in particle physics including studies at HERA, LEP and Tevatron
in electron-proton scattering [57,58].

4.4. Quadratic Gauge Gravity Models in Metric-Affine Gravity

One can generalize the PGTG by considering the affine group as the gauge symmetry group
for gravity. If this is performed à la la Yang-Mills, then one gets quadratic models as in quadratic
PGTG, where the quadratic terms are sometimes referred to as (hypothetical) “strong gravity” terms.
This idea has been recovered from time to time, as in Yang [59], in the tensor dominance model [60]
or in chromogravity [61]. Depending on the choice of the Lagrangian, the strong gravity (bosonic
sector) can be very massive or massless. In some respect these gauge bosonic gravity fields are similar
to the Yang-Mills bosons, and if they are massive it is typically assumed that the masses are of the
order of the Planck mass or even above. As in quadratic PGTG, in quadratic metric-affine models
there are intermediate gauge bosons with spins (s = 0, 1, 2) corresponding to scalar, vector or tensor
modes (massive or massless). In this respect, the quadratic model in Equation (54) for the PGTG can
be extended to metric-affine gravity by including terms with Qab and R(ab) which are both zero in
PGTG, in accordance with the choice of a Lorentzian connection and, therefore, of zero non-metricity
(see References [62–64]).

14 In cosmological applications the critical density can be written as ρcrit ∼ m/λCompl2
Pl, where lPl and λComp are Planck’s

length and Compton wavelength, respectively. For electrons we get ρcrit ∼ 1052 g/cm3, corresponding to Tcrit ∼ 1024K and
around t ∼ 10−34 s after the Big Bang.
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As an example of a quadratic metric-affine model, one can consider a Lagrangian density (for the
bosonic-gravity sector) of the form (schematically)

LMAG ∼
1
κ2

(
R + T2 + TQ + Q2

)
+

1
ρ

(
W2 + Z2

)
, (63)

where Wab ≡ R[ab], and Zab ≡ R(ab) are known as the “rotational curvature” and the “strain curvature”,
respectively. The terms proportional to the coupling constant ρ are referred to as strong gravity
terms, in contrast to the terms that are proportional to the “weak” gravity coupling constant κ2.
Note that in this model the connection is non-Lorentzian and the non-metricity 1-form (represented
by Q) is non-vanishing. The bosonic sector of metric-affine gravity was analyzed, for instance,
in References [62–65], while the fermionic part is more delicate (see for instance References [66–69]).
In this respect, there is no finite dimensional spinor representation of the GL(4,�) group, which leads
to the introduction of the “world spinors” (with infinite components) of Ne’eman, and to the
corresponding generalization of Dirac equation. The world spinor formalism is related to Regge
trajectories, which are themselves related to spin-2 excitations of hadrons (see Reference [70]).

For an interesting review on exact solutions in MAG see Reference [71]. Further research in this
context involves cosmological scenarios [72], and one should also mention exact spherically symmetric
solutions with Q ∼ 1/rd [73], which suggests the existence of massless modes.

4.5. Probing Non-Riemannian Geometry with Test Matter

It is known that torsion can give rise to precession effects in systems with intrinsic spin,
for example, elementary particles such as the electron, or baryons such as the neutron [74,75]. This is a
model-independent result which can be obtained from a (WKB) semi-classical approximation of the
Dirac fermionic dynamics in a RC spacetime. In principle this prediction can be used to distinguish
between the spacetime paradigms of GR and TEGR. If v is the polarization vector of the (intrinsic) spin
then one can deduce the simple expression

v̇ = 3t̆v , (64)

where the axial vector t̆ is given by t̆α ≡ −εαβγδTβγδ. In this sense it is plausible that experiments
similar to the Gravity Probe-B but using gyroscopes with intrinsic (macroscopic) spin can be used to
constrain or detect the effects of the (hypothetical) torsion around the Earth [76]. There have been quite
a number of studies on spin precession effects induced by torsion (see also Reference [77]). On the
other hand, Lammerzahl have set experimental limits for detecting torsion (|T| ∼ 10−15m−1) using
Hughes-Drever (spectroscopic) type of experiments [78].

Moreover, one can predict torsion effects on the energy levels of quantum systems. From the
Dirac Lagrangian of a fermion minimally coupled to the background RC geometry

LDirac =
ih̄
2
(
ψ̄γμDμψ− (Dμψ̄)γμψ

)
−mψ̄ψ , (65)

(for spinors ψ and their adjoints ψ̄) one deduces the Dirac equation

ih̄γμD̃μψ−mψ = −3h̄
2

T̆λγλγ5ψ , (66)

which can be analyzed in the flatness limit. If we assume a static axial torsion vector T̆λ along the
x3-direction, then we get the time-independent wave equation

− ih̄γk∂kψ +
(

m− 3h̄
2

T̆3γ3γ5
)

ψ(�r) = γ0Eψ(�r) . (67)
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From this equation one obtains two possible values for the energy levels, depending on whether
the fermionic spin is aligned or anti-aligned with respect to the background (axial) torsion, that is [79],

E2 = p2 +

(
m± 3h̄

2
T̆3
)2

. (68)

Similarly, if non-minimal couplings between the torsion trace vector and Dirac axial vector and/or
between torsion axial vector and Dirac vector ψ̄γμψ, are present, then the parity symmetry is broken
and the corresponding energy level corrections due to torsion will contain the signatures of those
parity breaking interactions. Therefore, tests with advanced spectrographs might be able to probe
torsion effects on quantum systems. Also, the previously mentioned spin-spin contact interactions of
the ECSK theory, or the propagating spin-spin interactions mediated by gravitational gauge (s = 0, 1, 2)
bosons might be tested/constrained in laboratory experiments and cosmological GW probes.

Regarding non-metricity, the gauge approach to gravity clearly shows that the hypermomentum
currents, such as the dilatations or the shear currents, couple to the trace vector part and the
shear part of the non-metricity, respectively. This coupling is evident since, as we have seen,
the connection couples to hypermomentum and a non-Lorentzian connection implies non-metricity.
Further developments have shown that, if torsion can be measured by the spin precession of test
matter with intrinsic spin, then the non-metricity of spacetime can be measured by pulsations
(mass quadrupole excitations) of test matter with (non-trivial) hypermomentum currents. In order to
be “sensitive” to non-Riemann geometries, test matter should carry dilatation, shear, or spin currents,
whether macroscopic or at the level of fundamental fields/particles. In the latter case, the Regge
trajectories provide an adequate mathematical illustration of test matter as Ne’eman’s world spinors
with shear.

Let us also point out that Obukhov and Puetzfeld [80] have derived the equation of motion for
matter fields in metric-affine gravity. By making use of the Bianchi identities one can arrive at the
following expression for the translational Noether current:

D̃
[
τa + Δbc (ea � Nbc)

]
+ Δbc ∧ (£ea Nbc) = sbc ∧ (ea � R̃cb), (69)

where, as usual, the tilde refers to quantities defined in the Riemann geometry, while τa, Δbc,
sbc are the canonical energy-momentum, hypermomentum current, and spin current, respectively,
and Nbc = Γbc − Γ̃bc gives the non-Riemannian piece of the connection 1-form, that is, the distortion
1-form. Note that in the right-hand side of this equation we can identify the Mathisson-Papapetrou
force density for matter with spin. In standard GR, one obtains D̃τa = 0, which gives the geodesic
equation for spinless matter with energy-momentum, while for Nbc = 0 we get D̃τa = sbc ∧ (ea � R̃cb),
which is the Mathisson-Papapetrou equation in GR for matter with spin. In this equation,
if matter has neither (intrinsic) spin, nor dilatation/shear currents, then it follows the Riemannian
(extremal length) geodesics, regardless of the geometry of spacetime or of the form of the Lagrangian
in metric-affine geometry.

4.6. Metric-Affine Geometry and Lorentz Symmetry Breaking

Regarding the analogous law for the GL(4,�) Noether current we have

DΔa
b + θa ∧ τb = τa

b . (70)

In PGTG the connection is Lorentzian Γab = −Γba, while in the WGTG the trace part of the
connection 1

4 gabΓc
c is also non-vanishing. A fully independent connection in metric-affine theory is

given by the expression in (6). It is this linear connection that couples to the (intrinsic) hypermomentum
current (see Equation (25)). In particular, the Lorentzian connection couples to spin sab carrying SO(1, 3)
charges, while the trace part couples to the dilatation current Δc

c, and the shear part of the connection
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(see Equation (26)) couples to the shear current Δ̄ab that carries SL(4,�)/SO(1, 3) (intrinsic) shear
charges. The shear current seems to be related to the Regge trajectories [69] and these represent
spin-2 excitations of hadrons with the same internal quantum numbers. The relation between the
Regge trajectories (which can be described by the group SL(3,�) and this can be embedded in the
SL(4,�) one) and the hypermomentum shear charges, remains an open question under study and its
validity seems to point to a quite remarkable and promising connection between the strong interaction
of hadrons and spacetime post-Riemann geometry. The shear charge is actually a measure of the
breaking of Lorentz invariance. The bottom line is that, in order to get Lorentz symmetry breaking,
one does not require the introduction of extra particle degrees of freedom, but this can be obtained
solely via the geometrical structures of spacetime, namely a non-Lorentzian connection. The presence
of a non-Lorentzian connection implies the non-vanishing non-metricity and the non-vanishing strain
curvature R(ab).

4.7. A Word on the Formulations of GR

The (canonical) metric formulation of GR requires a pseudo-Riemannian manifold with a
symmetric, Γα

μν = Γα
νμ, and metric-compatible, ∇Γ

α gμν = 0, affine connection (the Levi-Civita one).
However, it is well known nowadays that the teleparallel equivalent of GR, formulated in the
Weitzenböck spacetime, yields a dynamically equivalent theory to metric GR, with exactly the same
predictions [39,81–83]. Besides this approach from a translational gauge principle under specific
assumptions, there is yet another formulation equivalent to GR based on zero curvature and torsion
but non-zero non-metricity, called symmetric teleparallel gravity, whose properties have begun to be
unravelled very recently [84–88].

Since these are, to some extent, equivalent gravitational models under different spacetime
paradigms, one may ask if there is any guiding principle which could determine what spacetime
geometry and degrees of freedom can represent gravity at its most fundamental level. The application
of the gauge approach to gravity shows clearly that GR can be formulated as a translational gauge
theory and, therefore, lives on a subset of the RC spacetime. On the other hand the generalization
of the translational symmetry to the Poincaré symmetries points towards the direction of the PGTG
formulated in the RC spacetime geometry. It is relevant to underline (once again) that the three
mentioned approaches to GR have different assumptions regarding the spacetime geometrical
paradigm, but their equivalence breaks as soon as one considers matter with spin (spinors). Indeed,
if one could measure the different effects of non-Riemannian geometries upon matter, one might be
able to distinguish between these spacetime paradigms.

5. Discussion and Future Outlook

5.1. Spacetime Paradigms

In this work we explored geometrical methods (post-Riemann spacetime geometries and Cartan’s
exterior calculus of forms) and symmetry principles in the gauge approach to gravity, and how these
topics might point towards a new perspective over the spacetime paradigm. We also briefly considered
the pre-metric formulation of classical electrodynamics. In this broad perspective, the conformal-causal
structure is argued to be more fundamental than the metric structure (the primacy of the conformal
geometry) and the absoluteness of the spacetime metric is then abandoned at the fundamental
level. We also established the analogies between the pre-metric canonical formulation of gauge
theories of gravity and the pre-metric equations and mathematical objects of general Yang-Mills
fields. The theoretical formulation of the Lagrangians in these theories (gravity and Yang-Mills)
implicitly presuppose the assumption of the specific form for the so-called constitutive relations
between the field strengths (the generalized field velocities) and the excitations (conjugate field
momenta). These relations can be interpreted as constitutive relations for the spacetime itself. Moreover,
in this discussion we highlighted the hypothesis that the physical constants or coupling parameters
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that enter in such relations reflect physical properties of the spacetime manifold, itself regarded as a
mathematical object that represents a truly physical system.

By endowing the classical spacetime with physical properties, the concept of classical vacuum
with properties such as electric permitivity, magnetic permeability, and so forth, becomes somehow
disposable or simply dual to the very notion of a physical spacetime. Moreover, the properties of this
physical spacetime might change from point to point and this scenario fits well within the scalar-tensor
(Brans-Dicke, etc.), vector-tensor or tensor-tensor extensions to GR. The idea that these properties of
spacetime can be described by fields can have implications to spacetime symmetry considerations,
i.e., the invariance of the physics under groups of spacetime coordinate transformations, and also a
link to the Mach’s ideas and the breaking of spacetime (metric) absoluteness. Therefore, this scenario
of a physical spacetime with non-Riemann geometry and physical properties described by fields fits
naturally very well in the assumption of the primacy of the conformal-causal structure. This means
that the so-called constants can change from place to place in space (non-homogeneity) and with
spatial direction (anisotropy) and still preserve the local conformal-causal symmetry and, therefore,
by extension the causal structure. Consequently, what is assumed to be physically relevant are the
conformally-invariant properties. In other words, one must seek for an extended spacetime manifold
with post-Riemann geometries, physical properties, and a fundamental conformal symmetry.

Keeping this trail of thought, one arrives at the conclusion that the intrinsic physical properties
of spacetime include energy-momentum, hypermomentum (including spin), electromagnetic and
thermodynamical properties associated to gravity and to the spacetime. The latter actually suggests
the existence of microscopic degrees of freedom, and if these are assumed to constitute a numerable
set, then a consistent picture should go beyond the classical manifold and incorporate some degree of
discreteness or gravity quantization. Therefore, a physical spacetime manifold with locally invariant
conformal-casual structure, with intrinsic physical properties (electromagnetic, thermodynamical, etc.)
and possibly a quantum nature seems the natural hypothesis to address the unification of spacetime,
matter fields and the quantum and classical vacuum.

5.2. Perspectives on Unification Methods in Fundamental Field Theories

Let us now explore in more detail the hypothesis stated above, as well as its relation to
various aspects of unification in physics. We shall put here our emphasis upon the conceptual
background motivated by mathematical considerations and, in particular, from geometrical methods
and symmetry principles.

Firstly, the geometrical methods in the pre-metric formalism of electromagnetism, Yang-Mills
and gravity field equations, using the calculus of exterior forms, together with the corresponding
constitutive relations (that can be interpreted as (spacetime) constitutive relations, suggest the
following: (i) the primacy of the conformal-causal structure (the conformally-invariant part of
the metric) over the full metric structure, and therefore, (ii) the assumption of absoluteness of the
spacetime metric (“absolute spacetime”) is abandoned at the fundamental level. Also one postulates
that the fundamental coupling constants entering in the (vacuum) constitutive relations represent
physical properties of spacetime, not necessarily spatially homogeneous and isotropic (constants),
while respecting the local conformal symmetries. As a consequence we emphasize again here the first
unification: the identification of the physical classical vacuum with physical classical spacetime.

Secondly, from gauge symmetries in gravitation and post-Riemann geometries we find the need
to consider a classical spacetime with general metric-affine geometry, namely, having non-vanishing
curvature, torsion and non-metricity. Indeed, the gauge approach to gravity requires the existence
of post-Riemann geometries associated to gravitational phenomena. This motivates the search for
its signatures via astrophysical and cosmological effects, including GW probes and effects in particle
physics. On the other hand, the idea that the spacetime metric might not be fundamental is rooted on
the mathematical consistency of gauge theories of gravity which links the symmetries of physics under
coordinate transformations to the geometrical paradigm of spacetime. The theory identifies clearly,
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for each specific gauge group, the underlying spacetime geometry, the Noether currents (which are the
sources of the gravitational field) and the gauge potentials (geometrical degrees of freedom) and their
field strengths. In this formalism the spacetime metric is not a fundamental field. This is clearly seen
in the language of forms, where an explicit pre-metric approach to the field equations is completely
general, coordinate-free and covariant.

The metric structure can be assumed a posteriori, in particular, via the constitutive relations
(which relate the field strengths or field velocities, that is, curvature and torsion, to the canonically
conjugate field momenta). More specifically, using these relations, via the Hodge star operation,
only the conformally invariant part of the metric structure is involved in the coupling between the field
strengths and the Noether sources, rather than the full metric structure. Therefore, symmetry principles
and geometrical methods in gauge theories of gravity suggest again that the (full) metric structure
is not fundamental, and in models with larger symmetry groups beyond the Poincaré group the
paradigm of spacetime (metric) absoluteness is not valid, that is, the metric changes under specific
coordinate transformations between local observers. If non-metricity is present, the connection is
non-Lorentzian and, as a consequence, one gets the breaking of Lorentz symmetry. It is this type of
geometry that is associated to the conformal structure that emerges from linear electrodynamics [89].

Regarding unified symmetry groups and symmetry breaking, it is known that general symmetry
groups can be broken into smaller groups within phase transitions. In principle, these are expected
to have occurred in the early Universe in clear analogy to the standard model (and beyond the
standard model) of interactions, leading to first order phase transitions and the generation of GW
emission in the form of a stochastic GW background. This GW signature of cosmological origin
(which might include polarization features due to parity breaking gravitational physics of general
quadratic Yang-Mills gauge theories of gravity) might be detectable by future missions such as
LISA [90]. Of particular interest is the conformal group of CGTG, that may be broken into the Poincaré
group. This necessarily includes the breaking of scale invariance and the emergence of natural
physical scales and the corresponding (Lorentz invariant) fundamental constants. This presupposes
the existence of a scale-invariant cosmological epoch where the properties of the physical spacetime
obey perfect conformal symmetry and its geometry, and also a transition into a broken symmetry phase
where the spacetime metric appears to have a (local) absolute nature. Whether there might be other
extreme physical regimes (such as the innermost regions of ultra-compact objects and black holes)
where scale invariance, or even the full conformal symmetry, is recovered, remains an open question.

Another suggestion is that curvature, torsion and non-metricity might be inter-convertible.
This seems appropriate from the point of view of the generalized Bianchi identities, (29) and (22),
of metric-affine geometries relating the field strengths of gauge theories of gravity (curvature,
torsion and non-metricity). This is somewhat analogous to the magnetic-electric inter-conversion
of electromagnetism. Recall that the dF = 0 is a Bianchi identity giving magnetic flux conservation
and Faraday law. These post-Riemann Bianchi identities are implicit to the spacetime geometrical
structures and express some sort of gravitational flux conservation, and are compatible with the
Noether currents conservations of the gauge approach to gravity. These relations point towards this
notion of inter-conversion, which could open new avenues for the study of gravitational phenomena
in extreme regimes.

Moreover, this hypothesis resembles the Weyl-Ricci conversion (the Weyl conjecture) in cosmology,
within GR. According to it, the Ricci curvature dominates completely the very early Universe and the
Weyl curvature dominates the late-Universe, in such a way that the Ricci part of the Riemann tensor
is converted (transformed) into the Weyl part as the Universe expands, and forms gravitationally
bound structures, asymptotically dominated by black holes. Similarly, the dynamical transformations
(conversions) between the three parts inside the full curvature of MAG can be compatible to the
(generalized) Bianchi identities involving the full curvature. This interpretation is further reinforced
by the existence of formal maps between “equivalent” descriptions of GR in the spacetimes with
torsion, curvature or non-metricity alone (and also between the generalizations of GR in the respective
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spacetime paradigms). Although under specific formal conditions the phenomenology of these theories
might be equivalent, the spacetime paradigms are obviously different and the minimal/non-minimal
couplings of fermionic fields to these geometries can break the equivalences. The idea that the Poincaré
or the GL(4,�) groups should be fundamental points towards generalizations of GR in any of these
quasi-equivalent descriptions, via PGTG or MAG, and in this context the mathematical structure
of the gauge approach seems to be compatible with the interpretation that curvature, torsion and
non-metricity can indeed be inter-convertible.

In addition to the topics discussed above it is worth mentioning that the gauge approach is
transversal to both gravity and Yang-Mills fields of the standard model of particles and interactions.
Although in the first case one speaks of external or spacetime symmetries, while in the second case
the spinorial character of elementary particles/fields requires internal symmetries, in both cases
there is a deep relation between group theory (symmetries) and the dynamics of fundamental fields
via geometrical methods. The gauge formalism thus highlights its potential for bridging spacetime
geometry and gravity with the other fundamental interactions. The challenges are precisely those of
how to relate internal spaces and its symmetries with the spacetime geometry and its symmetries in
a unified way. In this context, we mentioned briefly the supersymmetric gauge theories of gravity,
which somehow aim to achieve that goal by enlarging the gauge formalism and unifying bosons and
fermions under the same mathematical structure.

5.3. Final Remarks

The potential of the geometrical methods and symmetry principles described in this work
to establish analogies and connections between different interactions clearly supports their vital
contribution for unified field theories. It is quite consensual in the community that the road to
unification and quantum gravity will inevitably lead to a new spacetime paradigm. Whether this
unification will imply some convergence between spacetime and physical fields into a single “physical
spacetime-matter’ entity’ is yet to be seen. It is worth mentioning at such a level the possibility
of the discretization of the underlying geometry of the spacetime, which is suggested on several
grounds, in particular, on the connection of metric-affine geometries and solid state physics systems
with defects in their microstructure [91], or on the thermodynamics of gravitational fields and the
entropy of spacetime regions (horizons) in terms of internal microstates. This is linked with the
challenge of making compatible the causal/conformal and metric structures of spacetime [92] and
the indeterminacy principle of physical fields. Should the latter be merged with spacetime in a
single unified entity, then such a manifold would have to be quantized since it needs to include the
indeterminacy principle in its intrinsic geometrical nature.

The unified spacetime-matter manifold conjectured above might have the following ingredients:
a conformal symmetry at a fundamental level (possibly inside some unified symmetry group as
in SUSY-SUGRA); have more than four spacetime dimensions; include complex numbers (so that
the internal symmetries of spinors are embedded and intrinsic to the physical unified manifold);
have internal and external physical properties such as energy-momentum, hypermomentum,
U(1) and SU(N) charges; have electromagnetic (electric permitivity and magnetic permeability) and
thermodynamical properties, and include internal degrees of freedom linked by internal SU(N)

symmetries as physical degrees of freedom (in analogy to the microscopic sates of macroscopic systems
in statistical physics).

To conclude, we add some remarks. First, it seems clear that the fundamental symmetry principles
and geometrical methods in the gauge approach to gravity lead to quite remarkable predictions about
the nature of spacetime and gravity, which might be tested with astrophysical (compact objects [93])
and cosmological (inflation, late-time evolution [94]) observations. Second, these methods provide
insights on the nature of the gravitational currents which stimulate the research on the fundamental
nature of matter and its physical conserved properties. Indeed, understanding the hypermomentum
currents from a fundamental point of view might lead to remarkable connections between gravity
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and hadronic physics. Similar comments apply to the appropriate test-matter properties required
to probe post-Riemann geometries, which is needed in order to distinguish experimentally between
different classical spacetime paradigms. And finally, these methods can provide robust mathematical
frameworks for the search of unified field theories, where spacetime, fermions and bosons might be
inextricably linked within a common unified physical framework.
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53. Hohmann, M.; Krššák, M.; Pfeifer, C.; Ualikhanova, U. Propagation of gravitational waves in teleparallel

gravity theories. Phys. Rev. D 2018, 98, 124004. [CrossRef]
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Abstract: This is a review of some elementary properties of Dirac, Weyl and Majorana spinors in 4D.
We focus in particular on the differences between massless Dirac and Majorana fermions, on one
side, and Weyl fermions, on the other. We review in detail the definition of their effective actions,
when coupled to (vector and axial) gauge fields, and revisit the corresponding anomalies using the
Feynman diagram method with different regularisations. Among various well known results we
stress in particular the regularisation independence in perturbative approaches, while not all the
regularisations fit the non-perturbative ones. As for anomalies, we highlight in particular one perhaps
not so well known feature: the rigid relation between chiral and trace anomalies.

Keywords: spinors in 4d; regularization; anomalies

1. Introduction

This paper is a review concerning the properties of Dirac, Weyl and Majorana fermions in a
4 dimensional Minkowski space-time. Fermions are unintuitive objects, thus the more fascinating.
The relevant literature is enormous. Still problems that seem to be well understood, when carefully put
under scrutiny, reveal sometimes unexpected aspects. The motivation for this paper is the observation
that while Dirac fermions are very well known, both from the classical and the quantum points of view,
Weyl and Majorana fermions are often treated as poor relatives 1 of the former, and, consequently,
not sufficiently studied, especially for what concerns their quantum aspects. The truth is that these three
types of fermions, while similar in certain respects, behave radically differently in others. Dirac spinors
belong to a reducible representation of the Lorentz group, which can be irreducibly decomposed in
two different ways: the first in eigenstates of the charge conjugation operator (Majorana), the second
in eigenstates of the chirality operator (Weyl). Weyl spinors are bound to preserve chirality, therefore
do not admit a mass term in the action and are strictly massless. Dirac and Majorana fermions can be
massive. In this review we will focus mostly on massless fermions, and one of the issues we wish to
elaborate on is the difference between massless Dirac, Majorana and Weyl fermions.

The key problem one immediately encounters is the construction of the effective action of these
fermions coupled to gauge or gravity potentials. Formally, the effective action is the product of the
eigenvalues of the relevant kinetic operator. The actual calculus can be carried out either perturbatively
or non-perturbatively. In the first case the main approach is by Feynman diagrams, in the other case
by analytical methods, variously called Seeley–Schwinger–DeWitt or heat kernel methods. While
the procedure is rather straightforward in the Dirac (and Majorana) case, the same approach in the

1 Actually, the Weyl spinors are the main bricks of the original Standard Model, while the neutral Majorana spinors could
probably be the basic particle bricks of Dark Matter, if any.
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Weyl case is strictly speaking inaccessible. In this case, one has to resort to a roundabout method,
the discussion of which is one of the relevant topics of this review. In order to clarify some basic
concepts we carry out a few elementary Feynman diagram calculations with different regularisations
(mostly Pauli–Villars and dimensional regularisation). The purpose is to justify the methods used
to compute the Weyl effective action. A side bonus of this discussion is a clarification concerning
the nonperturbative methods and the Pauli–Villars (PV) regularisation: contrary to the dimensional
regularisation, the PV regularisation is unfit to be extended to the heat kernel-like methods, unless one
is unwisely willing to violate locality.

A second major ground on which Weyl fermions split from Dirac and Majorana fermions is the
issue of anomalies. To illustrate it in a complete and exhaustive way we limit ourselves here to fermion
theories coupled to external gauge potentials and, using the Feynman diagrams, we compute all the
anomalies (trace and gauge) in such a background. These anomalies have been calculated elsewhere in
the literature in manifold ways and since a long time, so that there is nothing new in our procedure.
Our goal here is to give a panoptic view of these computations and their interrelations. The result is
interesting. Not only does one get a clear vantage point on the difference between Dirac and Weyl
anomalies, but, for instance, it transpires that the rigid link between chiral and trace anomalies is not a
characteristic of supersymmetric theories alone, but holds in general.

The paper is organized as follows. Section 2 is devoted to basic definitions and properties of Dirac,
Weyl and Majorana fermions, in particular to the differences between massless Majorana and Weyl
fermions. In Section 3, we discuss the problem related to the definition of a functional integral for Weyl
fermions. In Section 4, we introduce perturbative regularisations for Weyl fermions coupled to vector
potentials and verify that the addition of a free Weyl fermions of opposite handedness allows us to
define a functional integral for the system, while preserving the Weyl fermion’s chirality. Section 5 is
devoted to an introduction to quantum Majorana fermions. In Section 6, we recalculate consistent and
covariant gauge anomalies for Weyl and Dirac fermions, by means of the Feynman diagram technique.
In particular, in Section 7, we do the same calculation in a vector-axial background, and in Section 8 we
apply these results to the case of Majorana fermions. In Section 9, we compute also the trace anomalies
of Weyl fermions due to the presence of background gauge potentials and show that they are rigidly
related to the previously calculated gauge anomalies. Section 10 is devoted to a summary of the results.
Three Appendices contain auxiliary material.

Historical references for this review are [1–16].

Notation

We use a metric gμν with mostly (−) signature. The gamma matrices satisfy {γμ, γν} = 2gμν and

γ†
μ = γ0γμγ0.

At times we use also the α matrices, defined by αμ = γ0γμ. The generators of the Lorentz group are
Σμν = 1

4 [γμ, γν]. The charge conjugation operator C is defined to satisfy

γT
μ = −C−1γμC, CC∗ = −1, CC† = 1. (1)

For example, C = C† = C−1 = γ0γ2 = α2 does satisfy all the above requirements, but it holds only
in some γ-matrix representations, such as the Dirac and Weyl ones, not in the Majorana. The chiral
matrix γ5 = iγ0γ1γ2γ3 has the properties

γ†
5 = γ5, (γ5)

2 = 1, C−1γ5C = γT
5 .
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2. Dirac, Majorana and Weyl Fermions in 4D

Let us start from a few basic definitions and properties of spinors on a 4D Minkowski space 2.
A 4-component Dirac fermion ψ under a Lorentz transformation transforms as

ψ(x)→ ψ′(x′) = exp
[
−1

2
λμνΣμν

]
ψ(x) , (2)

for x′μ = Λμ
ν xν. Here λμν + λνμ = 0 are six real canonical coordinates for the Lorentz group, Σμν

are the generators in the 4D reducible representation of Dirac bispinors, while Λμ
ν are the Lorentz

matrices in the irreducible vector representation D( 1
2 , 1

2 ). The invariant kinetic Lagrangian for a free
Dirac field is

iψ̄γμ∂μψ. (3)

where ψ̄ = ψ†γ0.
A Dirac fermion admits a Lorentz invariant mass term mψ̄ψ.
A Dirac bispinor can be seen as the direct sum of two Weyl spinors

ψL = PLψ, ψR = PRψ, where PL =
1− γ5

2
, PR =

1 + γ5

2

with opposite chiralities

γ5ψL = −ψL, γ5ψR = ψR.

A left-handed Weyl fermion admits a Lagrangian kinetic term

i(ψL, γ·∂ψL) = iψLγμ∂μψL (4)

but not a mass term, because (ψL, ψL) = 0, since γ5γ0 + γ0γ5 = 0. A Weyl fermion is massless and
this property is protected by the chirality conservation.

For Majorana fermions we need the notion of Lorentz covariant conjugate spinor, ψ̂:

ψ̂ = γ0Cψ∗. (5)

It is not hard to show that if ψ transforms like (2), then

ψ̂(x)→ ψ̂′(x′) = exp
[
−1

2
λμνΣμν

]
ψ̂(x) . (6)

Therefore one can impose on ψ the condition

ψ = ψ̂ (7)

because both sides transform in the same way. By definition, a spinor satisfying (7) is a Majorana
spinor. It admits both kinetic and mass term.

It is a renowned fact that the group theoretical approach [1] to Atiyah Theory is one of the most
solid and firm pillars in modern Physics. To this concern, the contributions by Eugene Paul Wigner were
of invaluable importance [3]. In terms of Lorentz group representations we can say the following. γ5

commutes with Lorentz transformations exp
[
− 1

2 λμνΣμν

]
. So do PL and PR. This means that the Dirac

2 This and the following section are mostly based on [17,18].
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representation is reducible. Multiplying the spinors by PL and PR selects irreducible representations,
the Weyl ones. To state it more precisely, Weyl representations are irreducible representations of the
group SL(2, C), which is the covering group of the proper ortochronous Lorentz group. They are
usually denoted ( 1

2 , 0) and (0, 1
2 ) in the SU(2)× SU(2) notation of the SL(2, C) irreps. As we have

seen in (6), Lorentz transformations commute also with the charge conjugation operation

CψC−1 = ηCγ0Cψ∗ (8)

where ηC is a phase which, for simplicity, in the sequel we set equal to 1. This also implies that Dirac
spinors are reducible and suggests another possible reduction: by imposing (7) we single out another
irreducible representation, the Majorana one. The Majorana representation is the minimal irreducible
representation of a (one out of eight) covering of the complete Lorentz group [5,11]. It is evident,
and well-known, that Majorana and Weyl representations in 4D are incompatible.

Let us consider next the charge conjugation and parity and recall the relevant properties of a Weyl
fermion. We have

CψLC
−1 = PLCψC−1 = PLψ̂ = ψ̂L. (9)

The charge conjugate of a Majorana field is, by definition, itself. While the action of a Majorana field is
invariant under charge conjugation, for a Weyl fermion we have

C

(∫
iψLγμ∂μψL

)
C−1 =

∫
iψ̂Lγμ∂μψ̂L =

∫
iψRγμ∂μψR. (10)

i.e., a Weyl fermion is, so to say, maximally non-invariant.
The parity operation is defined by

PψL(t,
→
x )P−1 = ηPγ0ψR(t,−

→
x ) (11)

where ηP is a phase, which in the sequel we set to 1. In terms of the action we have

P

(∫
ψLγμ∂μψL

)
P−1 =

∫
ψRγμ∂μψR, (12)

For a Majorana fermion the action is invariant under parity.
This also suggests a useful representation for a Majorana fermion. Let ψR = PRψ be a generic Weyl

fermion. We have PRψR = ψR and it is easy to prove that PLψ̂R = ψ̂R, i.e., ψ̂R is left-handed. Therefore
the sum ψM = ψR + ψ̂R is a Majorana fermion because it satisfies (7). Any Majorana fermion can be
represented in this way. This representation is instrumental in the calculus of anomalies, see below.

Considering next CP, from the above it follows that the action of a Majorana fermion is obviously
invariant under it. On the other hand, for a Weyl fermion we have

CPψL(t,
→
x )(CP)−1 = γ0PRψ̂(t,− →

x ) = γ0ψ̂R(t,−
→
x ). (13)

Applying, now, CP to the action for a Weyl fermion, one gets

CP

(∫
iψLγμ∂μψL

)
(CP)−1 =

∫
iψ̂R(t,−

→
x )γμ†∂μψ̂R(t,−

→
x ) =

∫
iψ̂R(t,

→
x )γμ∂μψ̂R(t,

→
x ). (14)

One can prove as well that∫
iψ̂R(t,

→
x )γμ∂μψ̂R(t,

→
x ) =

∫
iψL(x)γμ∂μψL(x). (15)
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Therefore the action for a Weyl fermion is CP invariant. It is also, separately, T invariant, and, so, CPT
invariant. The transformation properties of the Weyl and Majorana spinor fields are summarized in
the following table:

Majorana Weyl
P : Pψ(t,

→
x )P−1 = γ0ψ(t,− →

x ) PψL(t,
→
x )P−1 = γ0ψR(t,−

→
x )

C : CψC−1 = γ0Cψ∗ = ψ CψLC
−1 = PLψ̂ = ψ̂L

CP : CPψ(t,
→
x )(CP)−1 = ψ(t,− →

x ) CPψL(t,
→
x )(CP)−1 = γ0ψ̂R(t,−

→
x )

(16)

The quantum interpretation of the field ψL starts from the plane wave expansion

ψL(x) =
∫

dp
(

a(p)u−(p)e−ipx + b†(p)v+(p)eipx
)

(17)

where u−, v+ are fixed and independent left-handed spinors (there are only two of them). Such spin
states are explicitly constructed in Appendix A. We interpret (17) as follows: b†(p) creates a left-handed
particle while a(p) destroys a left-handed particle with negative helicity (because of the opposite
momentum). However, Equations (13) and (14) force us to identify the latter with a right-handed
antiparticle: C maps particles to antiparticles, while P invert helicities, so CP maps left-handed
particles to right-handed antiparticles. One need not stress that in this game right-handed particles or
left-handed antiparticles are absent.

Remark 1. Let us comment on a few deceptive possibilities for a mass term for a Weyl fermion. A mass term
ψ̄ψ for a Dirac spinor can also be rewritten by projecting the latter into its chiral components 3

ψ̄ψ = ψLψR + ψRψL. (18)

If ψ is a Majorana spinor, ψ = ψ̂, this can be rewritten as

ψ̄ψ̂ = ψLψ̂R + ψ̂RψL, (19)

which is, by construction, well defined and Lorentz invariant. Now, by means of the Lorentz covariant conjugate,
we can rewrite (19) as

(ψL)
TC−1ψL + ψ†

LC(ψL)
∗, (20)

which is expressed only in terms of ψL, although contains both chiralities. (20) may induce the impression
that there exists a mass term also for Weyl fermions. This is not so. If we add this term to the kinetic term (4),
the ensuing equation of motion is not Lorentz covariant: the kinetic and mass term in it belong to two different
representations. To be more explicit, a massive Dirac equation of motion for a Weyl fermion should be

iγμ∂μψL −mψL = 0, (21)

but it breaks Lorentz covariance because the first piece transforms according to the (0, 1
2 ) representation, while the

second according to ( 1
2 , 0), and is not Lagrangian 4. The reason is, of course, that (20) is not expressible in

3 Here and in the sequel we use ψ̄ and ψ, ψ̂ and ψ̂ in a precise sense, which is hopefully unambiguous. For instance ψ̂ = ψ†γ0,
ψR = (ψR)

†γ0, ψ̂R = γ0C(ψR)
∗, ψ̂R = PRψ̂ and so on.

4 Instead of the second term in the LHS of (21) one could use mCψL
T , which has the right Lorentz properties, but the

corresponding Lagrangian term would not be self-adjoint and one would be forced to introduce the adjoint term and end up
again with (20). This implies, in particular, that there does not exist such a thing as a “massive Weyl propagator”, that is a
massive propagator involving only one chirality.

123



Universe 2020, 6, 111

the same canonical form as (4). This structure is clearly visible in the four component formalism used so far,
but much less recognizable in the two-component formalism.

Weyl Fermions and Massless Majorana Fermions

That a massive Majorana fermion and a Weyl fermion are different objects is uncontroversial.
The question whether a massless Majorana fermion is or is not the same as a Weyl fermion at both the
classical level and the quantum level is, instead, not always clear in the literature. Let us consider the
simplest case in which there is no quantum number appended to the fermion. To start let us recall the
obvious differences between the two. The first, and most obvious, has already been mentioned: they
belong to two different irreducible representations of the Lorentz group (in 4D there cannot exist a spinor
that is simultaneously Majorana and Weyl, like in 2D and 10D). Another important difference is that the
helicity for a Weyl fermion is well defined and corresponds to its chirality, while for a Majorana fermion
chirality is undefined, so that the relation with its helicity is also undefined. Then, a parity operation maps
the Majorana action into itself, while it maps the Weyl action (4) into the same action for the opposite
chirality. The same holds for the charge conjugation operator. Why they are sometimes considered
the same object may be due to the fact that we can establish a one-to-one correspondence between
the components of a Weyl spinor and those of a Majorana spinor in such a way that the Lagrangian,
in two-component notation, looks the same, see, for instance [16]. If, in the chiral representation,

we write ψL as

(
ω

0

)
, where ω is a two component spinor, then (4) above becomes

iω†σ̄μ∂μω (22)

which has the same form (up to an overall factor) as a massless Majorana action (see Section 5 below
and Equation (49)). The action is not everything in a theory, it must be accompanied by a set of
specifications. Even though numerically the actions coincide, the way they respond to a variation
of the Weyl and Majorana fields is different. One leads to the Weyl equation of motion, the other to
the Majorana equation of motion. The delicate issue is precisely this: when we take the variation
of an action with respect to a field in order to extract the equations of motion, we must make sure
that the variation respects the symmetries and the properties that are expected in the equations of
motion 5. Specifically in the present case, if we wish the equation of motion to preserve chirality we
must use variations that preserve chirality, i.e., variations that are eigenfunctions of γ5. If instead we
wish the equation of motion to transform in the Majorana representation we have to use variations that
transform suitably, i.e., variations that are eigenfunctions of the charge conjugation operator. If we do
so, we obtain two different results which are irreducible to each other no matter which action we use.

There is no room for confusing massless Majorana spinors with chiral Weyl spinors. A classical
Majorana spinor is a self-conjugated bispinor, that can always be chosen to be real and always contains
both chiralities in terms of four real independent component functions. It describes neutral spin
1/2 objects—not yet detected in Nature—and consequently there is no phase transformation (U(1)
continuous symmetry) involving self-conjugated Majorana spinors, independently of the presence or
not of a mass term. Hence, e.g., its particle states do not admit antiparticles of opposite charge, simply
because charge does not exist at all for charge self-conjugated spinors (actually, this was the surprising
discovery of Ettore Majorana, after the appearance of the Dirac equation and the positron detection).
The general solution of the wave field equations for a free Majorana spinor always entails the presence
of two polarization states with opposite helicity. On the contrary, it is well known that a chiral Weyl
spinor, describing massless neutrinos in the Standard Model, admits only one polarization or helicity

5 For instance, in gravity theories, the metric variation δgμν is generic while not ceasing to be a symmetric tensor.
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state, it always involves antiparticles of opposite helicity and it always carries a conserved internal
quantum number such as the lepton number, which is opposite for particles and antiparticles.

Finally, and most important, in the quantum theory a crucial role is played by the functional
measure, which is different for Weyl and Majorana fermions. We will shortly come back to this point.
Before that, it is useful to clarify an issue concerning the just mentioned U(1) continuous symmetry
of Weyl fermions. The latter is sometime confused with the axial R symmetry of Majorana fermions
and assumed to justify the identification of Weyl and massless Majorana fermions. To start with, let us
consider a free massless Dirac fermion ψ. Its free action is clearly invariant under the transformation
δψ = i(α + γ5β)ψ, where α and β are real numbers. This symmetry can be gauged by minimally
coupling ψ to a vector potential Vμ and an axial potential Aμ, in the combination Vμ + γ5 Aμ, so that α

and β become arbitrary real functions. For convenience, let us choose the Majorana representation for
gamma matrices, so that all of them, including γ5, are imaginary. If we now impose ψ to be a Majorana
fermion, its four component can be chosen to be real and only the symmetry parametrized by β makes
sense in the action (let us call it β symmetry). If instead we impose ψ to be Weyl, say ψ = ψL, then ,
since γ5ψL = ψL, the symmetry transformation will be δψL = i(α− β)ψL.

We believe this may be the origin of the confusion, because it looks like we can merge the two
parameters α and β into a single parameter identified with the β of the Majorana axial β symmetry.
However this is not correct because for a right handed Weyl fermion the symmetry transformation is
δψR = i(α + β)ψR. Forgetting β, the Majorana fermion does not transform. Forgetting α, both Weyl
and Majorana fermions transform, but the Weyl fermions transform with opposite signs for opposite
chiralities. This distinction will become crucial in the computation of anomalies (see below).

3. Functional Integral for Dirac, Weyl and Majorana Fermions

In quantum field theory there is one more reason to distinguish between massless Weyl and
Majorana fermions: their functional integration measure is formally and substantially different.
Although the action in the two-component formalism may take the same form (22) for both, the change
of integration variable from ψL to ω is not an innocent field redefinition because the functional
integration measure changes. The purpose of this section is to illustrate this issue. To start with, let
us clarify that speaking about functional integral measure is a colourful but not rigorous parlance.
The real issue here is the definition of the functional determinant for a Dirac-type matrix-valued
differential operator.

Let us start with some notations and basic facts. We denote by /D the standard Dirac operator:
namely, the massless matrix-valued differential operator applied in general to Dirac spinors on the 4D
curved space with Minkowski signature (+,−,−,−)

/D = i (/∂ + /V) (23)

where Vμ is any anti-Hermitean vector potential, including a spin connection in the presence of
a non-trivial background metric. We use here the four component formalism for fermions. The
functional integral, i.e., the effective action for a quantum Dirac spinor in the presence of a classical
background potential

Z [V] =
∫
DψDψ̄ ei

∫
d4x
√

g ψ̄ /Dψ (24)

is formally understood as the determinant of /D : det ( /D) = ∏∞
i λi . From a concrete point of view, the

latter can be operatively defined in two alternative ways: either in perturbation theory, i.e., as the sum
of an infinite number of 1-loop Feynman diagrams, some of which contain UV divergences by naïve
power counting, or by a non-perturbative approach, i.e., as the suitably regularised infinite product of
the eigenvalues of /D by means of the analytic continuation tool. It is worthwhile to remark that, on the
one hand, the perturbative approach requires some UV regulator and renormalisation prescription, in
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order to give a meaning to a finite number of UV divergent 1-loop diagrams by naïve power counting.
On the the other hand, in the non-perturbative framework the complex power construction and the
analytic continuation tool, if available, provide by themselves the whole necessary setting up to define
the infinite product of the eigenvalues of a normal operator, without need of any further regulator.

In many practical calculations one has to take variations of (24) with respect to V. In turn,
any such variation requires the existence of an inverse of the kinetic operator, as follows from the
abstract formula for the determinant of an operator A

δdetA = detA tr
(

A−1δA
)

.

It turns out that an inverse of /D does exist and, if full causality is required in forwards and
backwards time evolution on e.g., Minkowski space, it is the Feynman propagator or Schwinger
distribution /S, which is unique and characterized by the well-known Feynman prescription, in such a
manner that

/Dx/S(x− y) = δ(x− y), /D/S = 1. (25)

The latter is a shortcut operator notation, which we are often going to use in the sequel 6.
For instance, the scheme to extract the trace of the stress-energy tensor from the functional integral

is well-known. It is its response under a Weyl (or even a scale) transform δωgμν = 2ωgμν :

δω logZ =
∫

d4x ω(x) gμν(x) 〈 Tμν(x)〉 (26)

where gμν(x)〈Tμν(x)〉 is the quantum trace of the energy-momentum tensor. Analogously, the
divergence of the vector current jμ = ψ̄γμψ is the response of logZ under the Abelian gauge
transformation δλVμ = ∂μλ:

δλ logZ = −i
∫

d4x λ(x)∂μ〈jμ(x)〉 (27)

and so on. These quantities can be calculated in various ways with perturbative or non-perturbative
methods. The most frequently used ones are the Feynman diagram technique and the so-called
analytic functional method, respectively. The latter denomination actually includes a collection of
approaches, ranging from the Schwinger’s proper-time method [6] to the heat kernel method [13], the
Seeley-DeWitt [7,8] and the zeta-function regularisation [10]. The central tool in these approaches is
the (full) kinetic operator of the fermion action (or the square thereof), and its inverse, the full fermion
propagator. All these methods yield well-known results with no disagreement among them.

On the contrary, when one comes to Weyl fermions things drastically change. The classical action
on the 4D Minkowski space for a left-handed Weyl fermion reads

SL =
∫

d4x ψ̄L /DψL. (28)

The Dirac operator, acting on left-handed spinors maps them to right-handed ones. Hence, the
Sturm–Liouville or eigenvalue problem itself is not well posed, so that the Weyl determinant cannot
even be defined. This is reflected in the fact that the inverse of /DL = /DPL = PR /D does not exist, since
it is the product of an invertible operator times a projector. As a consequence the full propagator

6 For simplicity we understand factors of
√

g, which should be there, see [7], but are inessential in this discussion.
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of a Weyl fermion does not exist in this naïve form (this problem can be circumvented in a more
sophisticated approach, see below) 7.

The lack of an inverse for the chiral Dirac–Weyl kinetic term has drastic consequences even at
the free non-interacting level. For instance, the evaluation of the functional integral (i.e., formally
integrating out the spinor fields) involves the inverse of the kinetic operator: thus, it is clear that
the corresponding formulas for the chiral Weyl quantum theory cannot exist at all, so that no Weyl
effective action can be actually defined in this way even in the free non-interacting case. Let us add
that considering the square of the kinetic operator, as it is often done in the literature, does not change
this conclusion.

It may sound strange that the (naïve) full propagator for Weyl fermions does not exist, especially
if one has in mind perturbation theory in Minkowski space. In that case, in order to construct Feynman
diagrams, one uses the ordinary free Feynman propagator for Dirac fermions. The reason one can
do so is because the information about chirality is preserved by the fermion–boson–fermion vertex,
which contains the PL projector (the use of a free Dirac propagator is formally justified, because one
can add a free right-handed fermion to allow the inversion of the kinetic operator, see below). On the
contrary, the full (non-perturbative) propagator is supposed to contain the full chiral information,
including the information contained in the vertex, i.e., the potential, as it will be explicitly checked
here below. In this problem there is no simple shortcut such as pretending to replace the full Weyl
propagator with the full Dirac propagator multiplied by a chiral projector, because this would destroy
any information concerning the chirality.

The remedy for the Weyl fermion disaster is to use as kinetic operator

iγμ
(
∂μ + PLVμ

)
, (30)

which is invertible and in accord with the above mentioned Feynman diagram approach. It corresponds
to the intuition that the free right-handed fermions added to the left-handed theory in this way do not
interfere with the conservation of chirality and do not alter the left-handed nature of the theory. It is
important to explicitly check it. The next section is devoted to a close inspection of this problem and
its solution.

4. Regularisations for Weyl Spinors

The classical Lagrange density for a Weyl (left) spinor in the four component formalism

ψ(x) = χL(x) =

⎧⎪⎪⎪⎩ χ(x)
0

⎫⎪⎪⎪⎭
reads

K(x) = ψ(x) i∂/ ψ(x) = χ†
L(x) ανi∂νχL(x). (31)

It follows that the corresponding matrix valued Weyl differential operator

wL ≡ ανi∂νPL (32)

7 It is incorrect to pretend that the propagator is /SL = /SPR = PL/S. First because such an inverse does not exist, second
because, even formally,

/DL/SL = PR, and /SL
←
/DL = PL (29)

The inverse of the Weyl kinetic operator is not the inverse of the Dirac operator multiplied by a chiral projector. Therefore
the propagator for a Weyl fermion is not the Feynman propagator for a Dirac fermion multiplied by the same projector.
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is singular and does not possess any rank-four inverse. After minimal coupling with a real massless
vector field Aμ(x) we come to the classical Lagrangian

L = χ†
L ανi∂νχL + gAν χ†

L ανχL − 1
4 F μν Fμν (33)

where Fμν = ∂μ Aν − ∂ν Aμ . It turns out that the classical action

S =
∫

d4xL (34)

is invariant under the Poincaré group, as well as under the internal U(1) phase transformations
χL(x) �→ e igθχL(x) . The action integral is invariant under the so called scale or dilatation
transformations, viz.,

x ′μ = e−	x μ χ ′L(x) = e
3
2 	χL(e 	x) A′μ(x) = e 	 Aμ(e 	x)

with 	 ∈ R, as well as with respect to the local phase or gauge transformations

χ ′L(x) = e igθ(x)χL(x) A′ν(x) = Aν(x) + ∂νθ(x)

which amounts to the ordinary U(1) phase transform in the limit of constant phase. It follows
therefrom that there are twelve conserved charges in this model at the classical level and, in particular,
owing to scale and gauge invariance, no mass term is allowed for both spinor and vector fields.
The question naturally arises if those symmetries hold true after the transition to the quantum theory
and, in particular, if they are protected against loop radiative corrections within the perturbative
approach. Now, as explained above, in order to develop perturbation theory, one faces the problem
of the lack of an inverse for both the Weyl and gauge fields, owing to chirality and gauge invariance.
In order to solve it, it is expedient to add to the Lagrangian non-interacting terms, which are fully
decoupled from any physical quantity. They break chirality and gauge invariance, albeit in a harmless
way, just to allow us to define a Feynman propagator, or causal Green’s functions, for both the Weyl
and gauge quantum fields. The simplest choice, which preserves Poincaré and internal U(1) phase
change symmetries, is provided by

L ′ = ϕ†
R ανi∂ν ϕR − 1

2 (∂ · A)2

where

ψ(x) = ϕR(x) =

⎧⎪⎪⎪⎩ 0
ϕ(x)

⎫⎪⎪⎪⎭
is a left-chirality breaking right-handed Weyl spinor field. Notice en passant that the modified
Lagrangian L + L′ exhibits a further U(1) internal symmetry under the so called chiral phase
transformations

ψ′(x) = (cos θ + i sin θ γ5)ψ(x) ψ(x) =

⎧⎪⎪⎪⎩ χ(x)
ϕ(x)

⎫⎪⎪⎪⎭
so that the modified theory involves another conserved charge at the classical level. From the modified
Lagrange density we get the Feynman propagators for the massless Dirac field ψ(x), as well as for the
massless vector field in the so called Feynman gauge: namely,

S(p) =
ip/

p2 + iε
Dμν(k) =

−iημν

k2 + iε
(35)
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and the vertex igγνPL , with k + p− q = 0, which involves a vector particle of momentum k and a
Weyl pair of particle and anti-particle of momenta p and q, respectively, and of opposite helicity. 8

Our purpose hereafter is to show that, notwithstanding the use of the non-chiral propagators (35),
a mass in the Weyl kinetic term cannot arise as a consequence of quantum corrections. The lowest
order 1-loop correction to the kinetic term /k PL is provided by the Feynman rules in Minkowski space,
in the following form

Σ2(/k) = − ig 2
∫ d4�

(2π)4 γ μ Dμν( k− � ) S(�) γ νPL. (36)

A mass term in this context should be proportional to the identity matrix (in the spinor space).
By naïve power counting the above 1-loop integral turns out to be UV divergent. Hence, a

regularisation procedure is mandatory to give a meaning and evaluate the radiative correction Σ2(/k)
to the Weyl kinetic operator. Here in the sequel we shall examine in detail the dimensional, Pauli–Villars
and UV cut-off regularisations.

4.1. Dimensional, PV and Cutoff Regularisations

In a 2ω-dimensional space-time, the dimensionally regularised radiative correction to the Weyl
kinetic term takes the form

regΣ2(/k) = − ig 2μ 2ε
∫ d2ω�

(2π)2ω
Dμν(�) γ μ S(�+ k) γ νPL (37)

where ε = 2−ω > 0 is the shift with respect to the physical space-time dimensions. Since the above
expression is traceless and has the canonical engineering dimension of a mass in natural units, it is
quite apparent that the latter cannot generate any mass term, which, as anticipated above, would be
proportional to the unit matrix. Hence, mass is forbidden and it remains for us to evaluate

regΣ2(/k) ≡ f (k2) /k PL tr [/kregΣ2(/k)] = 1
2 2 ωk 2 f ( k 2) (38)

tr [/kregΣ2(/k)] = g 2μ 2ε (2π)− 2ω
∫

d2ω�
(− i ) tr

(
/kγ λ�/γλPL

)
[ (�− k)2 + iε ] ( � 2 + iε )

. (39)

For 2ω× 2ω γ-matrix traces in a 2ω−dimensional space-time with a Minkowski signature the following
formulas are necessary

tr (γμγν) = gμν tr I = 2 ω g μν (40)

2−ωtr
(

γκγλγμγν
)

= gκλ gμν − gκμ gλν + gκν gλμ. (41)

Then we get tr
(

/kγ λ�/γλ PL
)
= 2 ω(ε− 1) p · � and thereby

k2 f (k2) = ig 2μ 2ε ε− 1
(2π)2ω

∫ 2p · � d2ω�

[ (�− k)2 + iε ] ( � 2 + iε )
. (42)

Turning to the Feynman parametric representation we obtain

k2 f (k2) = ig 2μ 2ε ε− 1
(2π)2ω

∫ 1

0
dx
∫ 2p · � d2ω�

[ � 2 − 2x k·�+ xk 2 + iε ]2
. (43)

8 Customarily, the on-shell 1-particle states of a left Weyl spinor field are a left-handed particle with negative helicity − 1
2�

and a right-handed antiparticle of positive helicity 1
2�.
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Completing the square in the denominator and after shifting the momentum � ′ ≡ �− xp , dropping
the linear term in � ′ in the numerator owing to symmetric integration, we have

f (k2) = 2ig 2μ 2ε ε− 1
(2π)2ω

∫ 1

0
dx x

∫ d2ω�

[ � 2 + x(1− x)k2 + iε ]2
. (44)

One can perform the Wick rotation and readily get the result

f (k2) = − 2g 2μ2ε ε− 1
(4π)ω

∫ 1

0
dx x

∫ ∞

0
dτ τ ε−1 e−τx(1−x) k 2

E

= 2
( g

4π

)2
[ Γ(ε)− Γ(1 + ε) ]

(
− 4πμ2

k 2

)ε

B(2− ε, 1− ε). (45)

Expansion around ε = 0 yields

f (k2) =
( g

4π

)2
[

1
ε
+ 1 + 3C + ln

(
− 4πμ2

k 2

) ]
+ evanescent (46)

where C denotes the Euler–Mascheroni constant.
Similar results are obtained with the Pauli–Villars and cut-off regularisations. In the PV case the

latter is simply implemented by the following replacement of the massless Dirac propagator

regΣ2(/k) = − ig 2
∫ d4�

(2π)4 γ μ Dμν( k− � )
S

∑
s= 0

Cs S(� , Ms) γ νPL, (47)

where M0 = 0 , C0 = 1 while {Ms ≡ λs M | λs � 1 ( s = 1, 2, . . . , S ) } is a collection of very large
auxiliary masses. The constants Cs are required to satisfy:

S

∑
s= 1

Cs = −1
S

∑
s= 1

Csλs = 0

and the following identification with the divergent parameter is made

1
ε
=

S

∑
s= 1

Cs ln λs.

The result for f (k2) is

f (k2) =
( g

4π

)2
[

S

∑
s= 1

Cs ln λs +
1
4
+

1
2

ln
(
− M 2

k2

)]
+ evanescent. (48)

The same calculation can be repeated with an UV cutoff K, see [18]. To sum up, we have verified

that the 1-loop correction to the (left) Weyl spinor self-energy has the general form, which is universal,
i.e., regularisation independent: namely,

regΣ2(/k) ≡ f (k2) /k PL

f (k2) :=
( g

4π

)2
[

1
ε
+ 1 + 3C + ln

(
− 4πμ2

k2

) ]
(DR )

:=
( g

4π

)2
[

S

∑
s= 1

Cs ln λs +
1
4
+

1
2

ln
(
− M 2

k2

)]
(PV )

:=
( g

4π

)2
ln
[
− (4K)2

k2

]
(CUT−OFF )
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Remarks

1. In the present model of a left Weyl spinor minimally coupled to a gauge vector potential, no mass
term can be generated by the radiative corrections in any regularisation scheme. The left-handed
part of the classical kinetic term does renormalise, while its right-handed part does not undergo
any radiative correction and keeps on being free. The latter has to be necessarily introduced in
order to define a Feynman propagator for the massless spinor field, much like the gauge fixing
term is introduced in order to invert the kinetic term of the gauge potential. The (one loop)
renormalised Lagrangian for a Weyl fermion minimally coupled to a gauge vector potential has
the universal—i.e., regularisation independent—form

L ren = χ†
L ανi∂νχL + gAν χ†

L ανχL − 1
4 F μν Fμν

+ ϕ†
R ανi∂ν ϕR − 1

2 (∂ · A)2 − (Z3 − 1) 1
4 F μν Fμν

+ (Z2 − 1)χ†
L ανi∂νχL + (Z1 − 1)gAν χ†

L ανχL

(Z2 − 1)1−loop = −
( g

4π

)2
[

1
ε
+ F2(ε, k2/μ2)

]
= −

( g
4π

)2
[

S

∑
s= 1

Cs ln λs + F̃2(λs, k2/M2)

]

= −
( g

4π

)2
{

ln
[
− (4K)2

k2

]
+ F̂2(K2/k2)

}
where the customary notations have been employed. Notice that the arbitrary finite parts F2, F̃2, F̂2

of the countertems are analytic for ε → 0 and λs, K → ∞, respectively, and have to be univocally
fixed by the renormalisation prescription, as usual.

2. The interaction definitely preserves left chirality and scale invariance of the counterterms in the
transition from the classical to the (perturbative) quantum theory: no mass coupling between the
left-handed (interacting) Weyl spinor χL and right-handed (free) Weyl spinor ϕR can be generated
by radiative loop corrections.

3. While the cut-off and dimensional regularised theory does admit a local formulation in D = 4
or D = 2ω space-time dimensions, there is no such local formulation for the Pauli–Villars
regularisation. The reason is that the PV spinor propagator

S

∑
s= 0

Cs S(� , Ms)

where M0 = 0 , C0 = 1 while {Ms ≡ λs M | λs � 1 ( s = 1, 2, . . . , S ) }, cannot be the inverse of
any local differential operator of the Calderon–Zygmund type. Hence, there is no local action
involving a bilinear spinor term that can produce, after a suitable inversion, the Pauli–Villars
regularised spinor propagator. Although the Seeley–Schwinger–DeWitt method is not the main
concern of this paper, there are no doubts that the Pauli–Villars regularisation cannot be applied
to the construction of a regularised full kinetic operator for the Seeley–Schwinger–DeWitt method,
nor, of course, to its inverse.

5. Majorana Massless Quantum Field

One can write a relativistic invariant field equation for a massless 2-component spinor field: to
this aim, let us start from a left Weyl spinor ψL ∈ D( 1

2 , 0) that transforms according to the SL(2,C)
matrix ΛL . Call such a 2-component spinor field χa(x) (a = 1, 2). Let us consider the Weyl spinor
wave field as a classical anti-commuting field. A Majorana classical spinor field is a self-conjugated
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bispinor, that can be constructed, for example, out of the left-handed spinor χa(x) (a = 1, 2) as follows:
namely,

χM(x) =

⎧⎪⎪⎪⎩ χ(x)
−σ2χ∗(x)

⎫⎪⎪⎪⎭ = χ c
M(x)

the charge conjugation rule for any classical bispinors ψ being defined by the general relationship

ψ c(x) = e iθ γ 2 ψ ∗(x) ( 0 ≤ θ < 2π )

which is a discrete internal—i.e., space-time point independent—symmetry transformation. Here
below we shall suitably choose θ = 0 . The Majorana bispinor has a right-handed lower Weyl
spinor component −σ2χ∗ ∈ D(0, 1

2 ) , albeit functional dependent, due to the charge self-conjugation
constraint, in such a manner that χM possesses both chiralities and polarizations, at variance with its
left-handed Weyl building spinor χ(x) . There is another kind of self-conjugated Majorana bispinor,
which can be set-up out of a right-handed Weyl building spinor ϕ ∈ D(0, 1

2 ) .
From the Majorana self-conjugated bispinors, one can readily construct the most general Poincaré

invariant and power counting renormalisable Lagrangian. For instance, by starting from the bispinor
χM(x) we have

LM = 1
4 χM(x) γ μ i

↔
∂ μχ c

M(x)

where αν = γ0γν , while the employed notation reminds us that the upper and lower components
of a Majorana bispinor can never be treated as functionally independent, even formally, due to the
presence of the self-conjugation constraint. It follows that the massless Majorana action integral∫

d4x χ†
M(x) 1

4 α μγ 2 i
↔
∂ μχ ∗M(x)

is not invariant under the overall phase transformation χ ′M(x) = e iθχM(x) of the Majorana bispinor.
Hence it turns out that, as it will be further endorsed after the transition to the Majorana representation
of the Dirac matrices, there is no invariant scalar charge for a Majorana spinor, which is a genuinely
neutral spin 1

2 field. As it will be clarified in the sequel, there is a relic continuous U(1) symmetry
only for Majorana massless spinors, which drives to the existence of a conserved pseudo-scalar charge ,
the meaning of which will be better focused further on.

The massless Majorana Lagrangian in the 2-component formalism reads

L̂M = 1
2 χ†(x) σ μ i∂μχ(x) + c.c. (49)

so that the Euler-Lagrange field equation may be written in the equivalent forms

i σ μ ∂ μχ(x) = 0 iσ̄ μ σ2 ∂μχ∗(x) = 0 (50)

which are nothing but the pair of the Weyl wave equations for both a left-handed Weyl spinor χ(x)
and a right-handed Weyl spinor σ2χ∗(x) . This means, of course, that a massless Majorana spinor field
always involves a pair of Weyl spinor fields—albeit functional dependent due to the self-conjugation
constraint—with opposite chirality. As a further consequence we find that

σ̄ νσ μ ∂ν∂μχ(x) = �χ(x) = 0

which means that the left-handed spinor χ ∈ D( 1
2 , 0), the building block of the self-conjugated

Majorana bispinor, is actually solution of the d’Alembert wave equation. It is easy to check that the
pair of Equation (50) is equivalent to the single bispinor equation

ανi∂νχM(x) = 0 (51)
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where use has been made of the Dirac notation β = γ0 , while the Majorana Lagrangian can be recast
in a further 4-component form

LM = 1
4 χ†

M(x) α μ i
↔
∂ μχ c

M(x) (52)

Notice that the Majorana self-conjugated bispinor transforms under the Poincaré group as

χ ′M(x′) = Λ 1
2

χ c
M(x) Λ 1

2
=

⎧⎪⎪⎪⎩ ΛL 0
0 ΛR

⎫⎪⎪⎪⎭ (53)

with x′ = Λ(x + a) , Λ being the Lorentz matrices in the vector representation and aμ a constant
space-time translation.

It turns out that, by definition, the Majorana bispinor χM(x) = χ c
M(x) must fulfil the

self-conjugation constraint, which linearly relates the lower spinor component to the complex conjugate
of the upper spinor component. Then, a representation must exist which makes the Majorana bispinor
real, in such a manner that the previously introduced pair of complex variables χa ∈ C (a = 1, 2)
could be replaced by the four real variables ψM, α ∈ R (α = 1, 2, 3, 4) . To obtain this real representation,
we note that

χM =

⎧⎪⎪⎪⎩ χ

− σ2 χ ∗

⎫⎪⎪⎪⎭ χ∗M =

⎧⎪⎪⎪⎩ 0 − σ2

σ2 0

⎫⎪⎪⎪⎭ χM = − γ 2χM

A transformation to real bispinor fields ψM = ψ ∗M can be made by writing

χM = S ψM χ∗M = S ∗ ψM = S ∗ S−1 χM

with

S =

√
2

2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 0 0 −i
0 1 i 0
0 i 1 0
−i 0 0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
From the above relation ψM = S−1χM = ψ ∗M one can immediately obtain the correspondence rule
between the complex and real forms of the self-conjugated Majorana bispinor: namely,

ψM1 =
√

2�e χ1 ψM2 =
√

2�e χ2

ψM3 = −
√

2$m χ2 ψM4 =
√

2$m χ1

Thus we can make use of the so called Majorana representation for the Clifford algebra which is
given by the similarity transformation acting on the γ-matrices in the Weyl representation

γ
μ
M ≡ S † γ μ S

which satisfy by direct inspection

{γ
μ
M , γ ν

M} = 2η μν {γ ν
M , γ 5

M} = 0

γ 0
M = β †

M γ k
M = − γ k †

M γ 5
M = γ 5 †

M

γ ν
M = − γ ν ∗

M γ 5
M = − γ 5 ∗

M

The result is that, at the place of a complex self-conjugated bispinor, which has been constructed out of
a left-handed Weyl spinor, one can safely and more suitably employ a real Majorana bispinor: namely,

χM(x) = χ c
M(x) ↔ ψM(x) = S †χM(x) = ψ∗M(x)
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A quite analogous construction can obviously be made, had we started from a right-handed Weyl
spinor ϕ ∈ D(0, 1

2 ) . Then, the massless Majorana Lagrangian and the ensuing wave field equation
take the manifestly real forms

LM = 1
4 ψ%M(x) α ν

M i
↔
∂ ν ψM(x)

i∂/MψM(x) = 0 ψM(x) = ψ ∗M(x)

α ν
M = γ 0

M γ ν
M α 0

M = I βM ≡ γ 0
M

It turns out that, from the manifestly real form of the Majorana Lagrangian, the only relic internal
symmetries of the massless Majorana’s action integral are the discrete Z2 symmetry, i.e., ψM(x) �−→
−ψM(x) , and a further continuous symmetry under the chiral U(1) group

ψM(x) �→ ψ ′M(x) = exp
{
± iθ γ 5

M

}
ψM(x) ( 0 ≤ θ < 2π ) (54)

the imaginary unit being convenient to keep the reality of the transformed Majorana bispinor. From
Nöther theorem, we get the corresponding real current, which satisfies the continuity equation

j
μ
5 (x) = 1

2 ψ%M(x) α
μ
M iγ 5

M ψM(x) ∂ · j5(x) = 0 (55)

as well as the ensuing conserved pseudo-scalar charge

±Q5 = ± 1
2

∫
dx ψ%M(t, x) iγ 5

MψM(t, x) Q̇5 = 0

the overall± sign being conventional and irrelevant. For anti-commuting Grassmann-valued functions
we get

±Q5 = ±
∫

dx [ψM,1(t, x)ψM,4(t, x)− ψM,2(t, x)ψM,3(t, x) ]

the integrated quantity being nothing but than − iχ †(x)χ(x) as expected.
The chiral symmetry (54) has been already discussed at the end of Section 2. In Section 8, we will

see that the conservation law (55) at the quantum level is violated by an anomaly.
It is interesting to set up the spin-states of the massless Majorana real spinor field, because they

sensibly differ from the usual and well-known Dirac spin states (the spin states for Weyl spinor are
summarized in Appendix A). Let us start from the constant eigenvectors ξ± of the chiral matrix γ 5

M in
the Majorana representation which do indeed satisfy by definition

γ 5
M ξ± = ± ξ±

Then, for example, we can suitably define the Majorana massless spin-states to be

w r(p) ≡ p/M ξ r/2℘ ( r = ± , p0 = ℘ ≡ |p| )

and the corresponding plane wave functions

w p , r(x) ≡ [ (2π)32℘ ]−
1
2 w r(p) exp{− i℘t + ip · x}

The above introduced Majorana massless spin-states are complex and the related plane waves turn out
to be a pair of degenerate eigenstates positive frequency or energy solutions of the massless Majorana
wave equation i∂μγ

μ
Mw p , r(x) = 0 ( r = +,− ) . It appears that the pair of orthogonal negative energy

spin-states and plane waves functions are nothing but the complex conjugates of the former ones.
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The transition to the quantum theory is performed as usual by means of the creation annihilation
operators a p , r and a †

p , s which satisfy the canonical anti-commutation relations

{a p , r , a q , s} = 0 = {a †
p , r , a †

q , s} {a p , r , a †
q , s} = δ rs δ (p− q)

with p, q ∈ R3, r, s = ± , so that the operator valued tempered distribution for the Majorana quantum
spinor field takes the form

ψM(x) = ∑
p , r

[
a p , r w p , r(x) + a †

p , r w ∗p , r(x)
]
= ψ c

M(x)

where use has been made of the shorthand notation ∑ p , r ≡
∫

dp ∑ r=± . Moreover, we readily get the
useful expansion for the adjoint quantum fields

ψM(x) = ∑
q , s

[
a †

q , s w q , s(x) + a q , s w ∗q , s(x)
]

in which
w p , r(x) ≡ [ (2π)32℘ ]−

1
2 [w%r (p) ]∗ βM exp{ i℘t− ip · x}

From the orthogonality relations for spin-states and plane waves, we get the expressions for the
energy-momentum and helicity observables in terms of normal ordered products of operators

Pμ =
i
4

∫
dx : ψM(x) βM

↔
∂ μ ψM(x) : = ∑

p , r
p μ a †

p , r a p , r ( p0 = ℘ )

h =
∫ ∞

−∞
dy : 1

2 ψM(t, y)ΣM, 2 ψM(t, y) := 1
2

∫ ∞

−∞
dp
[

a †
p ,+ a p ,+ − a †

p ,− a p ,−
]

where a 1D motion along the Oy-axis has been referred to, e.g., to select the helicity operator.

Q5 = 1
2

∫
dx : ψM(t, x)βMγ 5

Mψ(t, x) : =
∫

dp
(

a †
p,+ a p,+ − a †

p,− a p,−
)
≡ νM

whence it follows that the above introduced pseudo-scalar charge Q5 is nothing but the quantum
counterpart of the Atiah–Singer index for a Majorana spinor field.

Hence, it appears that the 1-particle states a †
p ,± |0〉 represent neutral Majorana particles with

energy-momentum p μ = (℘, p) and positive/negative helicity.
It is worthwhile to remark and gather that, as explicitly shown above, the quanta of the

massless spin 1
2 Majorana field are on the light-cone, neutral—i.e., particle and anti-particle actually

coincide—and with two polarization states, so that they have really nothing to share with the quanta of
a Weyl field, but living on the light-cone, the latter being charged, the particle and antiparticle carrying
one single and opposite polarization. In a sense, the mechanical properties of the spin 1

2 massless
Majorana quanta are close and similar to those ones of a spin 1 photons, apart from the interactions.

Finally, from the massless Majorana Lagrangian and related wave equation, one can immediately
realize that the causal Green function for the Majorana massless neutral spinor field is the very same
as for a massless Dirac charged quantum field: namely,

〈 0 | T ψM(x)ψM(y) | 0 〉 = SM(x− y) =
i

(2π)4

∫
d4 p

p/M

p 2 + iε
exp {− ip · x}

the massless limit being smooth, which satisfies i∂/MSM(x− y) = iδ(x− y) .
The second part of this review is devoted to gauge anomalies. Spin states are indispensable for

the S matrix elements, but do not play a direct role in the calculation of anomalies. For them we need
the fermion determinant and its variations. A formal manipulation of the path integral shows that the
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determinant of the Dirac operator for a Dirac spinor is the square of the fermion determinant for a
Majorana spinor. One can take the square root of the Dirac determinant as the definition of the fermion
determinant (the functional integral) of a Majorana fermion. This formal procedure turns out to be
correct, as one can check by comparing with the perturbative approach. In Section 8, we present one of
such checks: based on the perturbative results for Weyl fermions and using the representation of a
Majorana fermion in terms a Weyl fermion and its Lorentz covariant conjugate (see comment after
Equation (12)), we show there that the anomalies for a Majorana fermion are the same as those of a
Dirac fermion, with half coefficient.)

6. Consistent Gauge Anomalies for Weyl Fermions

As explained in the introduction, anomalies are one of the main topics where Dirac and Weyl
fermions split significantly. In the present and forthcoming sections we aim to recalculate all the
anomalies (chiral and trace) of Weyl, Dirac and Majorana fermions coupled to gauge potentials,
with the basic method of Feynman diagrams. Most results are supposedly well-known. Our purpose
is to collect them all in order to highlight their reciprocal relations.

Let us consider the classical action integral for a right-handed Weyl fermion coupled to an
external gauge field Vμ = Va

μ Ta, Ta being Hermitean generators, [Ta, Tb] = i f abcTc (in the Abelian case
T = 1, f = 0) in a fundamental representation of e.g., SU(N): namely,

SR[V] =
∫

d4x i ψR (/∂ − i/V)ψR. (56)

This action is invariant under the gauge transformation δVμ = Dμλ ≡ ∂μλ− i[Vμ, λ], which implies
the conservation of the non-Abelian current Ja

Rμ = ψ̄RγμTaψR, i.e.

∇·Ja
R ≡ (∂μδac + f abcVbμ)Jc

Rμ = 0. (57)

The quantum effective action for this theory is given by the generating functional of the connected
Green functions of such currents in the presence of the source Vaμ

W[V] = W[0] (58)

+
∞

∑
n=1

in−1

n!

∫ n

∏
i=1

d4xiVaiμi (xi) 〈0|T Ja1
Rμ1

(x1) . . . Jan
Rμn

(xn)|0〉c

and the full 1-loop 1-point function of Ja
Rμ is

〈〈Ja
Rμ(x)〉〉 = δW[V]

δVaμ(x)
=

∞

∑
n=0

in

n!

∫ n

∏
i=1

d4xiVaiμi (xi)〈0|T Ja
Rμ(x)Ja1

Rμ1
(x1)...J

an
Rμn

(xn)|0〉c (59)

Our purpose here is to calculate the odd parity anomaly of the divergence∇ · 〈〈Ja
R〉〉. As is well-known,

the first nontrivial contribution to the anomaly comes from the divergence of the three-point function
in the RHS of (59). For simplicity, we will denote it 〈∂· JR JR JR〉. Below we will evaluate it in some
detail as a sample for the remaining calculations.

6.1. The Calculation

Let us start with dimensional regularisation. The fermion propagator is i
/p

and the vertex iγμPRTa.
The Fourier transform of the three currents amplitude 〈JR JR JR〉 is given by

F̃(R)abc
μλρ (k1, k2) =

∫ d4 p
(2π)4 Tr

{
1

/p
1− γ5

2
γλTb 1

/p − /k1

1− γ5

2
γρTc 1

/p − /q
1− γ5

2
γμTa

}
≡ Tr(TaTbTc)F̃(R)

μλρ(k1, k2) (60)

136



Universe 2020, 6, 111

where q = k1 + k2. The relevant Feynman diagram is shown in Figure 1.

Figure 1. The Feynman diagram corresponding to F̃(R)abc
μλρ (k1, k2).

From now on we focus on the Abelian part F̃(R)
μλρ(k1, k2). We dimensionally regularise

it by introducing δ additional dimensions and corresponding momenta �μ, μ = 0, . . . , 3 + δ,
with the properties

/�/p + /p/� = 0, [/� , γ5] = 0, /p2 = p2, /�2 = −�2

tr(γμγνγλγργ5) = −22+ δ
2 i εμνλρ,

so the relevant expression to be calculated is

qμ F̃(R)
μλρ(k1, k2) =

∫ d4 pdδ�

(2π)4+δ
tr
{

1

/p + /�
1− γ5

2
γλ

1

/p + /� − /k1

1− γ5

2
γρ

1

/p + /� − /q
1− γ5

2 /q
}

=
∫ d4 pdδ�

(2π)4+δ
tr
{

/p
p2 − �2 γλ

/p − /k1

(p− k1)2 − �2 γρ
/p − /q

(p− q)2 − �2
1− γ5

2 /q
}

≡ F̃(R)
λρ (k1, k2, δ). (61)

Now we focus on the odd part and work out the gamma traces:

F̃(R,odd)
λρ (k1, k2, δ) = −21+ δ

2 iεμνλρ

∫ d4 pdδ�

(2π)4+δ

(
p2qμ + (q2 − 2p·q)pμ

) (
pν − kν

1
)

(p2 − �2)((p− k1)2 − �2)((p− q)2 − �2)
. (62)

Let us write the numerator on the RHS as follows:

p2qμ + (q2 − 2p·q)pμ = −(p2 − �2)(p− q)μ + ((p− q)2 − �2)pμ + �2qμ. (63)

Then (62) can be rewritten as

F̃(R,odd)
λρ (k1, k2, δ) = −21+ δ

2 iεμνλρ

∫ d4 pdδ�

(2π)4+δ

{
�2 qμ

(
pν − kν

1
)

(p2 − �2)((p− k1)2 − �2)((p− q)2 − �2)

+
(q− p)μ(p− k1)

ν

((p− k1)2 − �2)((p− q)2 − �2)
+

pμ(p− k1)
ν

(p2 − �2)((p− k1)2 − �2)

}
(64)

= −21+ δ
2 iεμνλρ

∫ d4 pdδ�

(2π)4+δ

{
�2 qμ

(
pν − kν

1
)

(p2 − �2)((p− k1)2 − �2)((p− q)2 − �2)

− (p− k2)
μ pν

(p2 − �2)((p− k2)2 − �2)
+

pμ(p− k1)
ν

(p2 − �2)((p− k1)2 − �2)

}
. (65)
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The last two terms do not contribute because of the antisymmetric ε tensor, as one can easily see by
introducing a Feynman parameter. The first term can be easily evaluated by introducing two Feynman
parameters x and y, and making the shift p → p + (x + y)k1 + yk2,

F̃(R,odd)
λρ (k1, k2, δ) = −22+ δ

2 iεμνλρ

∫ 1

0
dx
∫ 1−x

0
dy
∫ d4 pdδ�

(2π)4+δ
�2 qμ(pν + (x + y− 1)k1 + yk2)

ν)

(p2 − �2 + Δ(x, y))3 (66)

where Δ = (x + y)(1− x− y)k2
1 + y(1− y)k2

2 + 2y(1− x− y)k1 ·k2. Now we make a Wick rotation on
the integration momentum, p0 → ip0, and the same on k1, k2 (although we stick to the same symbols).

Then, using

∫ d4 p
(2π)4

∫ dδ�

(2π)δ

�2

(p2 + �2 + Δ)3 = − 1
2(4π)2 (67)

and taking the limit δ → 0, we find

F̃(R,odd)
λρ (k1, k2) =

2
(4π)2 εμνλρkμ

1 kν
2

∫ 1

0
dx
∫ 1−x

0
dy (1− x) =

1
24π2 εμνλρkμ

1 kν
2. (68)

We must add the cross term (for λ ↔ ρ and k1 ↔ k2), so that the total result is

F̃(R,odd)
λρ (k1, k2) + F̃(R,odd)

ρλ (k2, k1) =
1

12π2 εμνλρkμ
1 kν

2. (69)

In order to return to configuration space we have to insert this result into (59). We consider here,
for simplicity, the Abelian case. We have

∂μ〈〈JRμ(x)〉〉 =
∫ d4q

(2π)4 e−iqx (−iqμ)〈〈 J̃Rμ(q)〉〉 =
i
2

∫ d4q
(2π)4

∫ d4k1

(2π)4

∫ d4k2

(2π)4

∫
d4yd4z

× qμ ei(k1y+k2z−qx)
(

F̃(R,odd)
λρ (k1, k2) + F̃(R,odd)

ρλ (k2, k1)
)

Vλ(y)Vρ(z). (70)

After a Wick rotation, we can replace (69) inside the integrals

∂μ〈〈JRμ(x)〉〉 = − 1
24π2

∫ d4q d4k1 d4k2

(2π)12

∫
d4yd4z ei(qx−k1y−k2z)δ(q−k1−k2)εμνλρkμ

1 kν
2 Vλ(y)Vρ(z)

= − 1
24π2

∫ d4k1

(2π)4

∫ d4k2

(2π)4

∫
d4yd4z eik1(x−y)e−ik2(x−z)εμνλρ ∂μVλ(y)∂νVρ(z)

=
1

24π2 εμνλρ ∂μVν(x)∂λVρ(x). (71)

The same result can be obtained with the Pauli–Villars regularisation, see Appendix B.

6.2. Comments

Equation (71) is the consistent gauge anomaly of a right-handed Weyl fermion coupled to an
Abelian vector field Vμ(x). It is well known that the consistent anomaly (71) destroys the consistency
of the Abelian gauge theory. As a matter of fact the Lorentz invariant quantum theory of a gauge
vector field unavoidably involves a Fock space of states with indefinite norm. Now, in order to select a
physical Hilbert subspace of the Fock space, a subsidiary condition is necessary. In the Abelian case,
when the fermion current satisfies the continuity equation the equations of motion lead to �(∂ ·V) = 0,
so that a subspace of states of non-negative norm can be selected through the auxiliary condition

∂ ·V(−)(x) |phys 〉 = 0
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V(−)(x) being the annihilation operator, the positive frequency part of a d’Alembert quantum field.
On the contrary , in the present chiral model we find

�(∂ ·V) = − 1
3

(
1

4π

)2
F μν
∗ Fμν �= 0

in such a manner that nobody knows how to select a physical subspace of states with non-negative
norm, if any, where a unitary restriction of the collision operator S could be defined.

Another way of seeing the problem created by the consistent anomaly is to remark that,
for instance, JRμ couples minimally to Vμ at the fermion-fermion-gluon vertex. Unitarity and
renormalisability rely on the Ward identity that guarantees current conservation at any such vertex.
This is impossible in the presence of a consistent anomaly.

The consistent anomaly in the non-Abelian case would require the calculation of at least the
four current correlators, but it can be obtained in a simpler way from the Abelian case using
the Wess–Zumino consistency conditions. In the non-Abelian case the three-point correlators are
multiplied by

Tr(TaTbTc) =
1
2

Tr(Ta[Tb, Tc]) +
1
2

Tr(Ta{Tb, Tc}) = f abc + dabc (72)

where the normalisation used is Tr(TaTb) = 2δab. Since the three-point function is the sum of two
equal pieces with λ ↔ ρ, k1 ↔ k2, the first term in the RHS of (72) drops out and only the second
remains. For the right-handed current Ja

Rμ we have

∇ · 〈〈Ja
R〉〉 =

1
24π2 εμνλρTr

[
Ta∂μ

(
Vν∂λVρ +

i
2

VνVλVρ

)]
. (73)

The previous results are well-known (for a short introduction to consistency and covariance
applied to anomalies, see Appendix C). However, they do not tell the whole story about gauge
anomalies in a theory of Weyl fermions. To delve into this we have to enlarge the parameter space by
coupling the fermions to an additional potential, namely to an axial vector field.

7. The V-A Anomalies

The action of a Dirac fermion coupled to a vector Vμ and an axial potential Aμ (for simplicity we
consider only the Abelian case) is

S[V, A] =
∫

d4x i ψ (/∂ − i/V − i /Aγ5)ψ. (74)

The generating functional of the connected Green functions is

W[V, A] = W[0, 0] +
∞

∑
n,m=1

in+m−1

n!m!

∫ n

∏
i=1

d4xi Vμi (xi)
m

∏
j=1

d4yj A
νj(yj)

×〈0|T Jμ1(x1) . . . Jμn(xn)J5ν1(y1) . . . J5νm(xm)|0〉c. (75)

We can extract the full one-loop one-point function for two currents: the vector current Jμ = ψ̄γμψ

〈〈Jμ(x)〉〉 =
δW[V, A]

δVμ(x)
=

∞

∑
n,m=0

in+m

n!m!

∫ n

∏
i=1

d4xi Vμi (xi)
m

∏
j=1

d4yj A
νj(yj)

×〈0|T Jμ(x)Jμ1(x1) . . . Jμn(xn)J5ν1(y1) . . . J5νm(xm)|0〉c (76)
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and the axial current Jμ = ψ̄γμγ5ψ

〈〈J5μ(x)〉〉 =
δW[V, A]

δAμ(x)
=

∞

∑
n,m=0

in+m

n!m!

∫ n

∏
i=1

d4xi Vμi (xi)
m

∏
j=1

d4yj A
νj(yj)

×〈0|T J5μ(x)Jμ1(x1) . . . Jμn(xn)J5ν1(y1) . . . J5νm(xm)|0〉c. (77)

These currents are conserved except for possible anomaly contributions. The aim of this section is to
study the continuity equations for these currents, that is to compute the 4-divergences of the correlators
on the RHS of (76) and (77). For the same reason explained above we focus on the three current
correlators: they are all we need in the Abelian case (and the starting point to compute the full anomaly
expression by means of the Wess–Zumino consistency conditions in the non-Abelian case). For ∂ · J(x),
the first relevant contributions are

∂μ〈〈Jμ(x)〉〉 = −
(1

2

∫
d4x1d4x2Vμ1(x1)Vμ2(x2)∂

μ〈0|T Jμ(x)Jμ1(x1)Jμ2(x2)|0〉

+
∫

d4x1d4y1Vμ1(x1)Aν1(y1)∂
μ〈0|T Jμ(x)Jμ1(x1)J5ν1(y1)|0〉

+
1
2

∫
d4y1d4y2 Aν1(y1)Aν2(y2)∂

μ〈0|T Jμ(x)J5ν1(y1)J5ν2(y2)|0〉
)

(78)

and for ∂μ J5μ(x)

∂μ〈〈J5μ(x)〉〉 = −
(1

2

∫
d4x1d4x2Vμ1(x1)Vμ2(x2)∂

μ〈0|T J5μ(x)Jμ1(x1)Jμ2(x2)|0〉

+
∫

d4x1d4y1Vμ1(x1)Aν1(y1)∂
μ〈0|T J5μ(x)Jμ1(x1)J5ν1(y1)|0〉

+
1
2

∫
d4y1d4y2 Aν1(y1)Aν2(y2)∂

μ〈0|T J5μ(x)J5ν1(y1)J5ν2(y2)|0〉
)

. (79)

Since we are interested in odd parity anomalies, the only possible contribution to (78) is from the
term in the second line, which we denote concisely 〈∂ · J J J5〉. As for (79), there are two possible
contributions from the first and third lines, i.e., 〈∂· J5 J J〉 and 〈∂· J5 J5 J5〉. Below we report the results
for the corresponding amplitudes, obtained with dimensional regularisation.

The amplitude for 〈∂· J5 J J〉 is

qμ F̃(5)
μλρ(k1, k2) =

∫ d4 pdδ�

(2π)4+δ
tr
{

1

/p + /�
γλ

1

/p + /� − /k1
γρ

1

/p + /� − /q
/qγ5

}
. (80)

The relevant Feynman diagram is shown in Figure 2.

Figure 2. The Feynman diagram corresponding to F̃(5)
μλρ(k1, k2).
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Adding the cross contribution one gets

qμ
(

F̃(5)
μλρ(k1, k2) + T(5)

μρλ(k2, k1)
)
=

1
2π2 εμνλρkμ

1 kν
2. (81)

The amplitude for 〈∂· J5 J5 J5〉 is given by

qμ F̃(555)
μλρ (k1, k2) =

∫ d4 pdδ�

(2π)4+δ
tr
{

1

/p + /�
γλγ5

1

/p + /� − /k1
γργ5

1

/p + /� − /q
/qγ5

}
= −22+ δ

2 iεμνλρ

∫ d4 pdδ�

(2π)4+δ
�2 qμ(3pν − kν

1)

(p2 − �2)((p− k1)2 − �2)((p− q)2 − �2)

−
∫ d4 pdδ�

(2π)4+δ

tr(/q/pγλ(/p − /k1)γρ(/p − /q)γ5)

(p2 − �2)((p− k1)2 − �2)((p− q)2 − �2)
(82)

The first line in the last expression, after introducing the Feynman parameters x and y and shifting p
as usual, yields a factor

∫ 1
0 dx

∫ 1−x
0 dy (1− 3x) = 0, so it vanishes. The last line is 2× F̃(R,odd)

λρ (k1, k2, δ),
cf. (61) and (62). Therefore, using (69), we get

qμ
(

F̃(555)
μλρ (k1, k2) + F̃(555)

μρλ (k2, k1)
)
=

1
6π2 εμνλρkμ

1 kν
2. (83)

Finally the amplitude for 〈∂· J J J5〉 is

qμ F̃(5′)
μλρ(k1, k2) =

∫ d4 pdδ�

(2π)4+δ
tr
{

1

/p + /�
γλ

1

/p + /� − /k1
γργ5

1

/p + /� − /q
/q
}

= 0. (84)

All the above results have been obtained also with PV regularisation.
Plugging in these results in (76) and (77) we find

∂μ〈〈Jμ(x)〉〉 = 0 (85)

and

∂μ〈〈J5μ(x)〉〉 = 1
4π2 εμνλρ

(
∂μVν(x)∂λVρ(x) +

1
3

∂μ Aν(x)∂λ Aρ(x)
)

(86)

which is Bardeen’s result [19], in the Abelian case. From (86) we can derive the covariant chiral
anomaly by setting Aμ = 0, then

∂μ〈〈J5μ(x)〉〉 = 1
4π2 εμνλρ ∂μVν(x)∂λVρ(x). (87)

Of course this is nothing but (81). For the J5μ(x) current is obtained by differentiating the action with
respect to Aμ(x) and its divergence leads to the covariant anomaly.

Some Conclusions

Let us recall that in the collapsing limit V → V/2, A → V/2 in the action (74) we recover the
theory of a right-handed Weyl fermion (with the addition of a free left-handed part, as explained at
length above). Now Jμ(x) = JRμ(x) + JLμ(x) and J5μ(x) = JRμ(x)− JLμ(x). In the collapsing limit
we find

∂μ〈〈J(cs)
Rμ (x)〉〉 = 1

24π2 εμνλρ ∂μVν(x)∂λVρ(x). (88)
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Similarly

∂μ〈〈J(cs)
Lμ (x)〉〉 = − 1

24π2 εμνλρ ∂μVν(x)∂λVρ(x). (89)

These are the consistent right and left gauge anomalies—the label (cs) stands for consistent, to be
distinguished from the covariant anomaly. As a matter of fact, application of the same chiral current
splitting to the covariant anomaly of Equation (87) yields instead

∂μ〈〈J(cv)
Rμ (x)〉〉 = 1

8π2 εμνλρ ∂μVν(x)∂λVρ(x) (90)

and

∂μ〈〈J(cv)
Lμ (x)〉〉 = − 1

8π2 εμνλρ ∂μVν(x)∂λVρ(x). (91)

The label (cv) stands for covariant, and it is in order to tell apart these anomalies from the previous
consistent ones. The two cases should not be confused: the consistent anomalies appears in the
divergence of a current minimally coupled in the action to the vector potential Vμ. They represent the
response of the effective action under a gauge transform of Vμ, which is supposed to propagate in the
internal lines of the corresponding gauge theory. The covariant anomalies represent the response of
the effective action under a gauge transform of the external axial current Aμ.

It goes without saying that, both for right and left currents in the collapsing limit, in the
non-Abelian case the consistent anomaly takes the form (73), while the covariant one reads

∇ · 〈〈Ja
R(x)〉〉 = 1

32π2 εμνλρ Tr
(

TaFμν(x)Fλρ(x)
)

(92)

where Fμν(x) = Fa
μν(x)Ta denotes the usual non-Abelian field strength. At first sight the above

distinction between covariant and consistent anomalies for Weyl fermion may appear to be academic.
After all, if a theory has a consistent anomaly it is ill-defined and the existence of a covariant anomaly
may sound irrelevant. However this distinction becomes interesting in some non-Abelian cases since
the non-Abelian consistent anomaly is proportional to the tensor dabc. Now for most simple gauge
groups (except SU(N) for N ≥ 3) this tensor vanishes identically. In such cases the consistent anomaly
is absent and so the covariant anomaly becomes significant.

8. The Case of Majorana Fermions

As we have seen above, Majorana fermions are defined by the condition

Ψ = Ψ̂, where Ψ̂ = γ0CΨ∗. (93)

Let ψR = PRψ be a generic Weyl fermion. We have

PRψR = ψR PLψ̂R = ψ̂R

i.e., ψ̂R is left-handed. We have already remarked that ψM = ψR + ψ̂R is a Majorana fermion and
any Majorana fermion can be represented in this way. Using this correspondence one can transfer the
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results for Weyl fermions to Majorana fermions9. The vector current is defined by Jμ
M = ψ̄MγμψM and

the axial current by Jμ
5M = ψ̄Mγμγ5ψM. We can write

Jμ
M(x) = ψR(x)γμψR(x) + ψ̂R(x)γμψ̂R(x) ≡ Jμ

R(x) + Jμ
L (x) (94)

and

Jμ
5M(x) = ψR(x)γμψR(x)− ψ̂R(x)γμψ̂R(x) ≡ Jμ

R(x)− Jμ
L (x). (95)

Using (88) and (89) one concludes that, as far as the consistent anomaly is concerned,

∂μ〈〈Jμ
M(x)〉〉 = 0 (96)

This shows the consistency of our procedure, for one can show that, in general, JL(x) = −JR(x),
and JM(x) = 0, as it should be for a Majorana fermion. On the other hand for the axial current we have

∂μ〈〈Jμ
5M(x)〉〉 = 1

8π2 εμνλρ ∂μVν(x)∂λVρ(x) (97)

where the naïve sum has been divided by 2, because the two contributions come from the same degrees
of freedom (which are half those of a Dirac fermion). From these results we see that, apart from the
coefficient difference, the anomalies of a massless Majorana fermion are the same as those of a massless
Dirac fermion. These obviously descend from the fact that both Dirac and Majorana fermions contain
two opposite chiralities, at variance with a Weyl fermion, which is characterized by one single chirality.

9. Relation between Chiral and Trace Gauge Anomalies

There exists a strict relation between chiral gauge anomalies and trace anomalies in a theory of
fermions coupled to a vector (and axial) gauge potential. This section is devoted to analysing this
relation. When the background fields are not only Vμ and Aμ, but also a non-trivial tensor-axial metric
Gμν = gμν + γ5 fμν, see [17], the generating function must include two energy-momentum tensors,
which in the flat-space limit take the Belifante–Rosenfeld symmetric form

Tμν = − i
4

(
ψγμ

↔
∂νψ + μ ↔ ν

)
, (98)

and

Tμν
5 =

i
4

(
ψγ5γμ

↔
∂νψ + μ ↔ ν

)
. (99)

The quantities we are interested in here are, in particular, the 1-loop VEVs 〈〈Tμν(x)〉〉 and
〈〈T5μν(x)〉〉 when hμν = fμν = 0 : namely,

〈〈Tμν(x)〉〉 =
∞

∑
r,s=0

ir+s

2 r!s!

∫ r

∏
l=1

d4xlVσl (xl)
s

∏
k=1

d4yk Aτk (yk) (100)

× 〈0|T Tμν(x)Jσ1(x1) . . . Jσr (xr)J5τ1(y1) . . . J5τs(ys)|0〉

9 The converse is not true. It is impossible to reconstruct Weyl fermion anomalies from those of a massless Majorana fermion.
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and

〈〈T μν
5 (x)〉〉 =

∞

∑
r,s=0

ir+s

2 r!s!

∫ r

∏
l=1

d4xlVσl (xl)
s

∏
k=1

d4yk Aτk (yk) (101)

× 〈0|T T μν
5 (x)Jσ1(x1) . . . Jσr (xr)J5τ1(y1) . . . J5τs(ys)|0〉

of which we will compute the trace, i.e., contraction, over the indices μ and ν. Since we are interested
in odd parity anomalies, the first nontrivial contributions come from the three-point correlators (i.e.,
r + s = 2). Denoting by t, t5 the traces of Tμν, T5μν, the relevant correlators are 〈t J J5〉 for (100),
and 〈t5 J J〉, 〈t5 J5 J5〉 for (101). We claim that they are simply related to 〈∂ · J J J5〉, 〈∂ · J5 J J〉 and
〈∂· J5 J5 J5〉, respectively.

We will also need

T μν
R (x) = 1

2

[
T μν(x) + T μν

5 (x)
]

T μν
L (x) = 1

2

[
T μν(x)− T μν

5 (x)
] (102)

together with the one-loop 1-point function

〈〈T μν
R,L(x)〉〉 =

∞

∑
r=0

i r

r!

∫ r

∏
l=1

d4xlVσl (xl)〈0|T T μν
R,L(x) JR,Lσl (xl)|0〉. (103)

9.1. Difference between Gauge and Trace Anomaly

Let us start from the case of the right-handed fermion. The correlator is, symbolically, 〈tR JR JR〉,
i.e., 〈0|T T μ

Rμ(x) JRλ(y) JRρ(z)|0〉, its Fourier transform being given by

F̃(R)μ
μλρ (k1, k2) =

1
4

∫ d4 p
(2π)4 tr

[
1

/p
1− γ5

2
γλ

1

/p − /k1

1− γ5

2
γρ

1

/p − /k1 − /k2

1− γ5

2
(2/p − /q)

]
. (104)

The relevant Feynman diagram is shown in Figure 3.

Figure 3. The Feynman diagram corresponding to F̃(R)μ
μλρ (k1, k2).
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The difference with respect to the Fourier transform of 〈∂·JR JR JR〉—see Equation (61)—apart from
the factor 1

4 , is the (2/p − /q) factor in the RHS, instead of /q . The relevant difference is therefore twice

ΔF̃(R)μ
μλρ (k1, k2) =

1
4

∫ d4 p
(2π)4 tr

[
1

/p
1− γ5

2
γλ

1

/p − /k1

1− γ5
2

γρ
1

/p − /k1 − /k2

1− γ5
2 /p

]
(105)

=
1
4

∫ d4 pdδ�

(2π)4+δ
tr
[

1

/p + /�
1− γ5

2
γλ

1

/p + /� − /k1

1− γ5
2

γρ
1

/p + /� − /q
1− γ5

2
(/p + /�)

]

=
1
4

∫ d4 pdδ�

(2π)4+δ

tr
[
γλ(/p − /k1)γρ(/p − /q)

1−γ5
2

]
((p− k1)2 − �2)((p− q)2 − �2)

. (106)

We can now replace p → p + k1

ΔF̃(R)μ
μλρ (k1, k2) =

i
4

∫ d4 pdδ�

(2π)4+δ

tr
[
γλ/pγρ(/p − /k2)

1−γ5
2

]
(p2 − �2)((p− k2)2 − �2)

. (107)

The odd part vanishes by symmetry.
If we consider instead the amplitude for 〈∂· J5 J J〉, (80), the result does not change. In that case,

for the odd part we get

ΔF̃(5)μ
μλρ (k1, k2) ∼

∫ d4 pdδ�

(2π)4+δ
tr
(

γλ
/p + /� − /k1

(p− k1)2 − �2 γρ
/p + /� − /q

(p− q)2 − �2 γ5

)
=

∫ d4 pdδ�

(2π)4+δ

(
−�2tr(γλγργ5) + tr

(
γλ(/p − /k1)γρ(/p − /q)γ5

))
((p− k1)2 − �2)((p− q)2 − �2)

. (108)

The first term in the numerator vanishes. The rest can be rewritten as

ΔF̃(5)μ
μλρ (k1, k2) ∼

∫ d4 pdδ�

(2π)4+δ

tr
(
γλ/pγρ(/p − /k2)γ5

)
(p2 − �2)((p− k2)2 − �2)

= 0 (109)

for the same reason as above. In the same way one can easily prove that

ΔF̃(5′)μ
μλρ (k1, k2) = ΔF̃(5′′)μ

μλρ (k1, k2) = 0. (110)

In conclusion, the amplitude for the chiral anomalies and those for the trace anomalies due to
couplings with gauge fields are rigidly related, the corresponding coefficients exhibiting a fixed ratio,
i.e., the former are minus four times the latter.

9.2. Trace Anomalies Due to a Gauge Field

Using the above results, which say that the difference between (−4)×[the divergence] and the
trace anomaly is null, we can immediately deduce the corresponding consistent gauge trace anomalies,
using (100), (101) and (103), viz.,

〈〈T(cs)μ
Rμ (x)〉〉 = − 1

48π2 εμνλρ ∂μVν(x)∂λVρ(x). (111)

As for TLμ(x), it carries the consistent anomaly

〈〈T(cs)μ
Lμ (x)〉〉 =

1
48π2 εμνλρ ∂μVν(x)∂λVρ(x). (112)

On the other hand, in the V − A framework we find

〈〈Tμ
μ (x)〉〉 = 0 (113)
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and

∂μ〈〈Jμ
5 (x)〉〉 = − 1

16π2 εμνλρ

(
∂μVν(x)∂λVρ(x) +

1
3

∂μ Aν(x)∂λ Aρ(x)
)

. (114)

From (114) we can derive the covariant chiral anomaly for a Dirac fermion by setting Aμ = 0, then

〈〈T(cv)μ
5μ (x)〉〉 = 1

16π2 εμνλρ ∂μVν(x)∂λVρ(x). (115)

From this we can derive the covariant (invariant) trace anomaly for a right-handed

〈〈T(cv)μ
Rμ (x)〉〉 = − 1

16π2 εμνλρ ∂μVν(x)∂λVρ(x) (116)

and left-handed Weyl fermion

〈〈T(cv)μ
Lμ (x)〉〉 = 1

16π2 εμνλρ ∂μVν(x)∂λVρ(x). (117)

9.3. Gauge Anomalies and Diffeomorphisms

In this review we have not considered diffeomorphisms. Nevertheless a devil’s accountant could
argue that there might be violation of diffeomorphism invariance in a fermionic system coupled to
gauge fields, due to the presence of the gauge fields themselves. In order to see this one has to consider
three point correlators involving the divergence of the energy momentum tensor and two currents.
More precisely, odd parity anomalies could appear in the following amplitudes: 〈∂·TR JR JR〉, in the
right-handed fermion case, or 〈∂·T5 J J〉, 〈∂·T J5 J〉,〈∂·T5 J5 J5〉 in the V− A case. They can be computed
with the same methods as above, and here, for brevity, we limit ourselves to record the final results:
they all vanish.

10. Conclusions

The purpose of this review was to highlight some subtle aspects of the physics of Weyl fermions,
as opposed in particular to massless Majorana spinors. To this end we have decided not to resort to
powerful non-perturbative methods, like the Seeley–Schwinger–DeWitt method, which would require
a demanding introduction. Rather, we have used the simple Feynman diagram technique. In doing
so, we have focused on two aims. The first one is to justify the method of computing the effective
action for a Weyl fermion coupled to gauge potentials, which requires the presence of free fermions of
opposite chirality, in such a way as to produce the effective kinetic operator of Equation (30). We have
shown that, notwithstanding the presence of fermions of both chiralities, no mass term can arise as a
consequence of quantum corrections. As a by-product we were led to the conclusion that, while the
Pauli–Villars regularisation is a perfectly available and useful tool for perturbative calculations, it does
not fit at all in the case of non-perturbative heat kernel-like methods.

Our second aim was to compute all the anomalies (trace and chiral) of Weyl, Dirac and Majorana
fermions coupled to gauge potentials. The calculations are actually standard, but, once juxtaposed,
they reveal a perhaps previously unremarked property: the chiral and trace anomalies due to a gauge
background are rigidly linked.
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Appendix A. Spin-States for Weyl Spinor Fields

In this appendix we aim to summarize the explicit form of the spin-states and plane wave
functions for Weyl spinor fields in the more general and useful four component formalism. In order to
realise a basis of spin states for a Weyl spinor field, we have to search among states of opposite chirality
and frequency. Then, in so doing, we will be able to have at hand a complete and orthogonal quartet
of spin-states for the 4D massless bispinor space. After setting p μ = (|p|, p) = (℘, px, py, pz), we have

u−(p) =
1√

℘− pz

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
℘− pz

− px − ipy

0
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
The above spin-state is a positive frequency solution of the Weyl field equation and exhibits negative
chirality: namely,

p/u−(p) = 0 (γ5 + 1) u−(p) = 0

Next we set

u+(p) =
− 1√
℘+ pz

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
0
0

℘+ pz

px + ipy

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
which satisfies by construction

p/u+(p) = 0 (γ5 − 1) u+(p) = 0

Quite analogously, we can build up as well a pair of negative frequency spin-states of momentum p

and both opposite chiralities: namely,

p̃/ v∓(p) = 0 (γ5 ± 1) v∓(p) = 0

where p̃ μ = pμ . We find

v−(p) =
1√

℘− pz

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
px − ipy

℘− pz

0
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
together with

v+(p) =
1√

℘+ pz

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
0
0

− px + ipy

℘+ pz

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
It turns out that the above defined quartet of massless and chiral bispinor spin-states does fulfil
orthogonality and closure relations. As a matter of fact, spin-states of opposite chirality and/or
opposite frequency are orthogonal, as it does, and furthermore we get

(2℘)−1[ u±(p)⊗ u †
±(p) + v±(p)⊗ v †

±(p) ] = P±
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with of course P± = 1
2 ( I± γ5) which represent the closure or completeness relations for the massless

and chiral bispinor spin-states basis quartet. The corresponding plane-wave functions, which are
normal-mode solutions of the massless Dirac equation, read⎧⎪⎨⎪⎩

u±, p(x) = [ (2π)32℘ ]−
1
2 u±(p) e− i℘t+ip·x

v±, p(x) = [ (2π)32℘ ]−
1
2 v±(− p) e i℘t−ip·x

and fulfil in turn orthonormality and closure relation with respect to the usual Poincaré invariant inner
product. It is crucial to gather, for a better understanding of the matter, that for any given frequency
and chirality the spin-states and wave-functions of particle and anti-particle enjoy opposite wave
vectors, i.e., opposite helicity.

Appendix B. Consistent Gauge Anomaly with PV Regularisation

To implement a PV regularisation, we replace F̃(R)
μνλ(k1, k2) with

F̃(R)
μνλ(k1, k2) =

∫ d4 p
(2π)4 tr

{
1

/p + m
1− γ5

2
γν

1

/p − /k1 + m
1− γ5

2
γλ

1

/p − /q + m
1− γ5

2
γμ

− 1

/p + M
1− γ5

2
γν

1

/p − /k1 + M
1− γ5

2
γλ

1

/p − /q + M
1− γ5

2
γμ

}
(A1)

m and M are IR and UV regulators, respectively, and tr is the trace of gamma matrices.
Contracting with qμ and working out the traces one gets

qμ F̃(R)
μνλ(k1, k2) = −2iεμνρλ

∫ d4 p
(2π)4

(
2p·q pμ − p2 qμ − q2 pμ

)
(p− k1)

ρ

(
1

Δm2
− 1

ΔM2

)
(A2)

where

Δm2 = (p2 −m2)((p− k1)
2 −m2)((p− q)2 −m2),

ΔM2 = (p2 −M2)((p− k1)
2 −M2)((p− q)2 −M2)

For later use we introduce also

Ωm2 = ((p− k1)
2 −m2)((p− q)2 −m2), Λm2 = (p2 −m2)((p− k1)

2 −m2), (A3)

ΩM2 = ((p− k1)
2 −M2)((p− q)2 −M2), ΛM2 = (p2 −M2)((p− k1)

2 −M2). (A4)

Now all the integrals are convergent because the divergent terms have been subtracted away. Let
us proceed

qμ F̃(R)
μνλ(k1, k2) = −2iεμνρλ

∫ d4 p
(2π)4

{[−kμ
2 (p− k1)

ρ

Ωm2 ΔM2
+

pμkρ
1

Λm2 ΔM2

]
(A5)(

m6 −M6 +
(

M4 −m4
) (

p2 + (p− k1)
2 + (p− q)2

)
+
(

m2 −M2
) (

(p− k1)
2(p− q)2 + (p− k1)

2 p2 + p2(p− q)2
) )

+m2
(

pμkρ
1 − qμ(p− k1)

ρ
)( 1

Δm2
− 1

ΔM2

)}
The last line does not contribute, for the integrals converge (separately) and give a finite result, but
since they are multiplied by m2 they vanish in the limit m → 0. Therefore, the last line can be dropped.
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Now the strategy consists in simplifying separately each monomials in the numerator with a
corresponding term in the denominator. For instance, if in a term of order M∗ there is the ratio
p2/(p2 − m2), write p2 as p2 − m2 + m2. The p2 − m2 can be simplified with a corresponding term
in the denominator. If p2 − m2 in the denominator is missing, there will be p2 − M2. We write p2

as p2 − M2 + M2, and p2 + M2 can be simplified, while the term proportional to M2 remains and
contributes to the term of order M∗+2. Proceed in the same way also with (p − q)2 and (p − k1)

2.
Many terms (such as those of order M6) cancel out. What remains is

qμ F̃(R)
μνλ(k1, k2) = −2iεμνρλ

∫ d4 p
(2π)4

{
(A6)

pμkρ
1

[ (
M2 −m2)2

Λm2 ΛM2
−
(

M2 −m2)
ΛM2

(
1

p2 −m2 +
1

(p− k1)2 −m2

)
− M2 −m2

ΔM2

]

−kμ
2 (p− k1)

ρ

[ (
M2 −m2)2

Ωm2 ΩM2
−
(

M2 −m2)
ΩM2

(
1

(p− k1)2 −m2 +
1

(p− q)2 −m2

)
− M2 −m2

ΔM2

]}

It is easy too verify that, after introducing the relevant Feynman parameters, most of the terms vanish
either because there is only one p in the numerator or because of the anti-symmetry of the ε tensor.
Only the last term in each line remains, so that:

qμ F̃(R)
μνλ(k1, k2) = 2i M2εμνρλ

∫ d4 p
(2π)4

pμkρ
1 − kμ

2 (p− k1)
ρ

ΔM2
(A7)

Next we introduce two Feynman parameters x and y, shift p like in Section 6.1 and make a Wick
rotation on the momenta. Then, (A6) becomes

qμ F̃(R)
μνλ(k1, k2) = −4 M2εμνρλ

∫ 1

0
dx
∫ 1−x

0
dy
∫ d4 p

(2π)4
(1− x)kμ

1 kρ
2

(p2 + M2 + A(x, y))3 (A8)

= − 1
8π2 M2εμνρλ

∫ 1

0
dx
∫ 1−x

0
dy

(1− x)kμ
1 kρ

2
M2 + A(x, y)

= − 1
24π2 εμνρλkμ

1 kρ
2

Adding the cross term we get

qμT̃(R)
μνλ(k1, k2) = −

1
12π2 εμνρλkμ

1 kρ
2 (A9)

which is the same result as in Section 6.1.

Appendix C. Consistent and Covariant Gauge Anomalies

In this Appendix we briefly recall the difference between covariant and consistent anomalies.
The reason why (87) is called covariant is self-evident, whereas why (73) is called consistent is not so
straightforward.

Let us consider a generic gauge theory, with connection Va
μ Ta , valued in a Lie algebra g with

anti-Hermitean generators Ta , such that [Ta, Tb] = f abcTc. In the following it is convenient to use the
more compact form notation and represent the connection as a one-form V = Aa

μTadxμ, so that the
gauge transformation becomes

δλV = dλ + [V, λ] (A10)
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with λ(x) = λa(x)Ta and d = dxμ ∂
∂xμ . The mathematical problem is better formulated if we promote

the gauge parameter λ to an anticommuting field c = caT, the Faddeev–Popov ghost, and define the
BRST transformation as

sV = dc + [V, c], sc = −1
2
[c, c] (A11)

The operation s is nilpotent, s2 = 0. We represent with the same symbol s the corresponding functional
operator, i.e.,

s =
∫

ddx
(

sVa(x)
∂

∂Va(x)
+ sca(x)

∂

∂ca(x)

)
(A12)

The Ward identity for the gauge (BRST) transformation is classically given by s W[V] = 0, but at the
first quantum level one may find an anomaly

s W[V] = /hA[V, c] (A13)

the RHS is an integrated expression linear in c, and once the latter is removed, in 4D it becomes
precisely the RHS of (73).

Due to the nilpotency of s the anomaly must satisfy

sA[V, c] = 0 (A14)

These are the famous Wess–Zumino consistency conditions (it is enough to functionally differentiate
(A14) by ca to cast them in the original form). A[V, c] is a cocycle of the cohomology defined by s.
If there exists a local expression C[V] such that A[V, c] = sC[V], the cocycle is a coboundary (trivial
anomaly). If such C[V] does not exist, we have a true anomaly.

An easy way to verify the consistency conditions is via the descent equations. To construct the
descent equations we start from a symmetric polynomial in the Lie algebra of order 3, P3(Ta, Tb, Tc),
invariant under the adjoint transformation:

P3([X, Ta], Tb, Tc) + . . . + P3(Ta, Tb, [X, Tc]) = 0 (A15)

for any element X of the Lie algebra. In many cases these polynomials are symmetric traces of the
generators in the corresponding representation

P3(Ta, Tb, Tc) = Str(TaTbTc) = dabc (A16)

(Str denotes the symmetric trace). With this one can construct the 6-form

Δ6(V) = Pn(F, F, . . . F) (A17)

where F = dV + 1
2 [V, V]. It is easy to prove that

P3(F, F, . . . F) = d

(
n
∫ 1

0
dt Pn(V, Ft, . . . , Ft)

)
= dΔ(0)

2n−1(V) (A18)

where we have introduced the symbols Vt = tV and its curvature Ft = dVt +
1
2 [Vt, Vt], where 0 ≤

t ≤ 1. In the above expressions the product of forms is understood to be the exterior product. To prove
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Equation (A18) one uses in an essential way the symmetry of P3 and the graded communtativity of the
exterior product of forms. Equation (A18) is the first of a sequence of equations that can be proven

Δ6(V)− dΔ(0)
5 (V) = 0 (A19)

sΔ(0)
5 (V)− dΔ(1)

4 (V, c) = 0 (A20)

sΔ(1)
4 (V, c)− dΔ(2)

3 (V, c) = 0 (A21)

. . . . . .

sΔ(5)
0 (c) = 0 (A22)

All the expressions Δ(p)
k (V, c) are polynomials of d, c and V. The lower index k is the form order and

the upper one p is the ghost number, i.e., the number of c factors. The last polynomial Δ(5)
0 (c) is a

0-form and clearly a function only of c. All these polynomials have explicit compact form. They were
originally introduced by S.S. Chern [20], in the geometric context of a principal fibre bundle, which
gives them full meaning. Here we limit ourselves to a formal application, which however can be
proven to lead to correct results.

The RHS contains the general expression of the consistent gauge anomaly in 4 dimensions, for,
integrating (3.53) over space-time, one gets

sA[c, V] = 0 (A23)

A[c, V] =
∫

ddx Δ1
4(c, V), where

Δ1
4(c, V) = 6

∫ 1

0
dt(1− t)P3(dc, V, Ft)

One can verify that A[c, V] is the anomaly (73), saturated with ca and integrated over space-time, up
to an overall numerical coefficient.

To verify that the anomaly (73) is non-trivial one can use a reductio ad absurdum argument. Let us
suppose that (A23) is trivial. Then using repeatedly the local Poincaré lemma one can prove that there
must exist a 0-form C(2n−2)

0 (c) such that

Δ(5)
0 (c) = s C(4)

0 (c) (A24)

However this is impossible, for the expression for Δ(5)
0 (c) is

Δ(5)
0 (c) ∼ Pn(c, [c, c]+, . . . , [c, c]+) (A25)

and the only possibility for C(4)
0 (c) to satisfy (A24) is to have the form

C(4)
0 (c) ∼ Pn(c, c, [c, c]+) (A26)

which, however, vanishes due to the symmetry of P3 and the anticommutativity of c.
It is evident that in the Abelian case the above construction becomes trivial, and consistent and

covariant gauge anomalies collapse to the same expressions. The only difference is the numerical
factor in front of them.
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