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After having been initially boosted by the general aim to exploit biodiversity in natural
environments, research on endophytic microorganisms has recently started considering
their occurrence in crop species. Many studies have shown that these microbial associates
may improve plant fitness through various biological mechanisms of interaction, and have
a major impact on plant growth and productive parameters. Besides the relevance of
interesting case studies disclosing the effects/properties of single strains/species, a more
comprehensive ecological approach should consider that endophytes more effectively play
these functional roles in the form of interacting consortia. For this reason, it is important
to organize, analyse, and implement the available information on the occurrence and
functions of microbes that are part of the crop biocoenosis as a fundamental condition to
define possible translational applications in view of enhancing crop performances.

A series of reviews have been recently delivered in literature dealing with the occur-
rence of endophytic fungi in cultivated plants, considering general aspects [1–4], specific
crops [5–7], or implications in crop management [8–12]. This Special Issue is aimed at
providing a contribution through making available a collection of papers reviewing the
state of the art concerning the occurrence and properties of endophytic fungi associated
with crop species or other plants of economic importance. It includes reviews concerning
citrus [13], tomato [14], the Amaryllidaceae family [15], and medicinal plants, such as
sages [16] and species in the Asteraceae family [17]. Another paper considers aspects
pertaining to the trade of ornamentals, following concerns advanced by the European Food
Safety Authority for the circulation of pathogens in asymptomatic plant materials [18].
This topic is also the thread of a review dedicated to one of such pathogens, Lasiodiplodia
theobromae, which, besides concerns of its potential spread via the plant trade, has recently
been spreading to temperate areas as a consequence of global warming [19]. More directly
considering fungi whose ecological role is exploited in the integrated pest management
of crops, the endophytic occurrence of species in the closely related genera Lecanicillium
and Akanthomyces is examined in [20]. Finally, two case studies are proposed touching
aspects related to the possible relevance of endophytic fungi in crops, such as mycotoxin
production [21] and nutritional interactions concerning fertilizers [22].
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Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
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Abstract: Fusarium species are known to establish manifold interactions with wild and crop plants
ranging from pathogenicity to endophytism. One of the key factors involved in the regulation
of such relationships is represented by the production of secondary metabolites. These include
several mycotoxins, which can accumulate in foodstuffs causing severe health problems to humans
and animals. In the present study, an endophytic isolate (A1021B), preliminarily ascribed to
the Fusarium incarnatum-equiseti species complex (FIESC), was subjected to biochemical and
molecular characterization. The metabolomic analysis of axenic cultures of A1021B detected up to
206 compounds, whose production was significantly affected by the medium composition. Among
the most representative products, fusaric acid (FA), its derivatives fusarinol and 9,10-dehydro-FA,
culmorin and bikaverin were detected. These results were in contrast with previous assessments
reporting FIESC members as trichothecene rather than FA producers. However, molecular analysis
provided a conclusive indication that A1021B actually belongs to the species Fusarium babinda.
These findings highlight the importance of phylogenetic analyses of Fusarium species to avoid
misleading identifications, and the opportunity to extend databases with the outcome of metabolomic
investigations of strains from natural contexts. The possible contribution of endophytic strains in the
differentiation of lineages with an uneven mycotoxin assortment is discussed in view of its ensuing
impact on crop productions.

Keywords: endophytic fungi; Fusarium; species complexes; mycotoxins; fusaric acid; trichothecenes;
biosynthetic gene clusters

1. Introduction

Fusarium species have been commonly reported in the majority of bioclimatic regions and
ecosystems, where they occur as endophytes, latent plant pathogens, or soil saprobes, thus showing
a considerable ecological plasticity [1–3]. Some Fusarium species may cause severe plant diseases,
and contaminate crop productions with mycotoxins, which are secondary metabolites (SMs) of major
concern to food and feed safety worldwide [4–7]. This aptitude may not only involve pre- and
post-harvest plant pathogens, but also strains which develop endophytically without causing disease
symptoms [8,9]. On the other hand, the release of bioactive SMs in plant tissues by endophytic strains
may induce defensive responses against pests and pathogens [10], with positive implications on plant
growth [11].

The genus Fusarium is also well known for a controversial taxonomic history, where species
descriptions were basically founded on key morphological characters [3]. In the last decades several
studies considered data on SM production as a possible support in Fusarium taxonomy [12–14]. However,

Agriculture 2019, 9, 143; doi:10.3390/agriculture9070143 www.mdpi.com/journal/agriculture3
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such a sound approach has been impaired by the finding that synapomorphy, i.e., the occurrence
of certain common characters in distantly related organisms, has notably affected the classification
of Fusarium strains in the past [15]. More recently, the advances in the DNA-sequencing technology
allowed the identification of Fusarium spp. based on multi-gene genealogies [16–19], thus improving
the phylogenetic accuracy and the taxonomic resolution [20–22]. Nevertheless, the ongoing deposition
of DNA sequences in database resulting from the manifold surveys of natural populations of Fusarium,
together with the characterization of novel species, may result in incorrect matches and, subsequently,
in misleading identifications [23].

In this work, we report a case study describing a Fusarium strain (A1021B) that was recovered as
an endophyte of common spindle (Euonymus europaeus) at the Astroni Natural Reserve near Naples,
Italy. The fungus was provisionally defined to belong to the Fusarium incarnatum-equiseti species
complex (FIESC) [24]. Fusarinol, a derivative of fusaric acid (FA), was the main extrolite purified
from cultures grown in Czapek-Dox broth (CDB) [25]. Afterwards, we found FA to be the major SM
produced by A1021B in potato dextrose broth (PDB), thus confirming that FA production in vitro is
influenced by the culture medium composition [26–28]. Previous studies reported that FA production
is strain-dependent even in species known as common producers, and it can be stimulated in some
reluctant Fusarium strains by co-cultivation with other fungi [29]. Factors regulating gene expression
are fundamental in explaining variation in SM production. Gene clusters for FA synthesis have been
detected in many Fusarium spp. [15,30], and the deletion of specific genes has been reported to affect
the production of FA and related compounds [31,32].

Our results appeared in contrast with the mycotoxin profile commonly associated with FIESC
members. In fact, previous investigations failed to detect the production of FA in species/strains
ascribed to this species complex [26,33–35], which are mainly known as trichothecene producers [35,36].
FA was listed among the mycotoxins of F. equiseti in a couple of recent papers [15,28], but no
specific references were provided supporting this inference. Therefore, further investigations were
undertaken concerning both the authentic taxonomic identity of strain A1021B and its biochemical and
molecular characterization.

2. Materials and Methods

2.1. Fungal Strain and Culture Conditions

The Fusarium strain A1021B was maintained on potato dextrose agar (PDA, HI-Media, Mumbai,
India) at 4 ◦C, and subcultured bimonthly. For metabolomic investigation CDB and PDB (both from
HI-Media) cultures were prepared in 250-mL flasks containing 100 mL of broth. Twelve flasks were
prepared for each medium and inoculated with 10 plugs (5 mm diameter) from 6-day old PDA
cultures. Six flasks were incubated at 25 ◦C in a growth chamber with 16:8 h photoperiod, while the
remaining 6 were incubated at 25 ◦C in darkness. These batches were further divided into two groups
(each including three replicates) which were grown for one or two weeks, respectively. Then fungal
debris were filtered through three layers of cheesecloth, and the filtrates were stored at −20 ◦C.

Solid fermentation of strain A1021B was carried out on maize kernels (MK). After rinsing three
times in sterile water, 30 g of kernels were placed in each of twelve 250-mL flasks and sterilized (121 ◦C,
20 min). Five milliliters of sterile water were added to each flask, that were subsequently inoculated
as described for liquid cultures. Similarly, the flasks were grouped in 4 batches, each consisting of
three replicates, and incubated at 25 ◦C as described above. After one or two weeks, a 10 g sample was
taken from each MK flask and separately ground to be further processed.

2.2. Culture Extraction and LC-MS Analysis

MK samples were extracted in 8 mL of 50% methanol in water. Samples were centrifuged (10 min
at 16,100 g, 4 ◦C), and the supernatants were collected. These, as well as samples from liquid cultures,
were filtered through 0.2 μm polyvinylidene fluoride filters (Chromacol, Welwyn Garden City, UK).
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SM profiling was carried out through a 6540 Ultra High Definition (UHD) Accurate Quadrupole
Time-of-Flight (Q-TOF) Liquid Chromatography tandem Mass-Spectrometry (LC-MS/MS) mass
spectrometer (Agilent Technologies, Santa Clara, CA, USA) with a Dual Electrospray Ionization
(ESI) source, coupled to a 1200 series Rapid Resolution High Performance Liquid Chromatography
(HPLC) with a Diode Array Detector (DAD) system (all from Agilent Technologies). Samples (7 μL)
were injected onto a Poroshell 120EC-C18 1.8 pm, 2.1 × 5 mm reverse phase analytical column
(Agilent Technologies) at a constant temperature (35 ◦C). Mobile phases consisted of (A) water
(Cromasolv® Plus, LC-MS-Sigma) and (B) acetonitrile (Cromasolv® Plus, LC-MS-Sigma) both acidified
with 0.1% LC-MS grade formic acid. The analyses were carried out at a flow rate of 0.6 mL min−1

with the following gradient: 0 min—5% B; 12 min—100% B; 15 min—100% B; 17 min—95% B;
20 min—95% B; 2 min post-time. The UV spectra were collected by DAD every 0.4 s from 190
to 750 nm with a resolution of 2 nm. The source conditions for electrospray ionization were the
following: nitrogen gas temperature was 350 ◦C with a drying gas flow rate of 11 L min−1 and a
nebulizer pressure of 45 psig. The fragmentor voltage was 180 V and skimmer voltage 45 V. The range
acquisition of TOF spectra was from 50 to 1600 m/z with an acquisition rate value of 3 spectra s−1.
Data were collected in positive ion mode. The real-time lock mass correction was performed by
using two reference mass solutions including purine (C5H4N4 at m/z 121.050873, 10 μmol L−1) and
hexakis (1H,1H,3H-tetrafluoropentoxy)-phosphazene (C18H18O6N3P3F24 at m/z 922.009798, 2 μmol
L−1). These solutions were purchased from Agilent Technologies and injected into MS by an isocratic
pump at a constant flow rate (0.06 mL min−1). Solvents were LC–MS grade, and all other chemicals
were analytical grade. All were from Sigma-Aldrich (Steinheim, Germany) unless otherwise stated.

Mass spectra were analyzed through the MassHunter Qualitative Analysis Software B.06.00
(Agilent Technologies), and then through the MassProfile Professional Software (Agilent Technologies)
to compute the annotation and statistical analyses. LC-MS data were compared to known compounds
included in an in-house database, as previously described [37,38].

Graphical representations were performed using ClustVis, a web-based multivariate data analysis
tool. The principal component analysis (PCA) was performed using the Singular Value Decomposition
(SVD) with imputation algorithm in ClustVis online tool. Data on SMs were summarized using the
heatmap function in ClustVis tool with row centered and unit variance scaling applied. The hierarchical
clustering was obtained using correlation method. Compounds with normalized intensity values >2
were used to analyze common and unique entities in the different treatments by Venn diagrams with
the online tool jvenn (http://jvenn.toulouse.inra.fr/app/index.html).

2.3. DNA Extraction and PCR Conditions

Isolate A1021B was grown in PDB on a rotary shaker at 120 rpm for 96 h at 25 ◦C. Fresh mycelium
was collected after vacuum filtration through No. 4 Whatman filter paper (Whatman Biosystems
Ltd., Maidstone, UK), then frozen in liquid nitrogen, ground to a fine powder and stored at −80 ◦C
until further processing. Total genomic DNA was extracted from 10 mg of ground mycelium by
using the NucleoSpin® Soil kit (Macherey-Nagel, Düren, Germany) according to the manufacturer’s
protocol. Sequences of the housekeeping genes calmodulin (CAL1), translation elongation factor
(TEF1), β-tubulin (TUB2) and internal transcribed spacer 1–4 (ITS) were amplified using the following
PCR program: denaturation at 96 ◦C for 2 min; 35 cycles of denaturation at 94 ◦C for 30 s, annealing at
55 ◦C for 30 s; extension at 68 ◦C for 75 s; and final extension at 68 ◦C for 10 min. Before sequencing,
PCR products were purified using PureLink PCR purification kit (Invitrogen, Paisley, UK) following
the manufacturer’s instructions. Furthermore, the presence of amplicons related to the trichothecene
biosynthetic genes TRI1, TRI4, TRI5, TRI8, TRI11 was investigated. All primers used in this work are
reported in Table 1.
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Table 1. Primers used in this study for DNA sequence amplifications.

Target Gene 5′–3′ Sequence References

TRI1 GCGTCTCAGCTTCATCAAGGCAKCKAMTGAWTCG [39]
CTTGACTTSMTTGGCKGCAAAGAARCGACCA

TRI4 CCAATCAGYCAYGCTRTTGGGATACTG [39]
ACCCGGATTTCRCCAACATGCT

TRI5 GGCATGGTCGTGTACTCTTGGGTCAAGGT [39]
GCCTGMYCAWAGAAYTTGCRGAACTT

TRI8 GACCAGNAYCACSGYCAACAGTTCAG [35]
GAACAGCCRCTCCRWAACTATTGTC

TRI11 TWCCCCACAAGRAACAYCTYGARCT [35]
TCCCASACTGTYCTSGCMAGCATCAT

CAL GARTWCAAGGAGGCCTTCTC [17]
TTTTGCATCATGAGTTGGAC

TEF1 ATGGGTAAGGARGACAAGAC [16]
GGARGTACCAGTSATCATGTT

TUB2 GGTAACCAAATCGGTGCT [40]
ACCCTCAGTGTAGTGACCCTYTGGC

ITS 1–4 CTTGGTCATTTAGAGGAAGTAA
TCCTCCGCTTATTGATATGC

2.4. Species Identification and Phylogenetic Analysis

Phylogenetic relationships of strain A1021B were investigated on account of CAL1, TEF1 and TUB2
sequences as reported in [15]. DNA sequences were blasted against the NCBI GenBank database using
default parameters and then aligned with isolates belonging to the FIESC [15,41] and Fusarium babinda
by the Clustal W algorithm [42] with MEGA7 software [43]. Phylogenetic trees were inferred using the
maximum likelihood method based on Tamura-Nei model applied to the whole set of manually edited
aligned sequences. The confidence of the branching was estimated by bootstrap (BP) analysis (1000 BP).
A strain of Fusarium concolor was used as outgroup for rooting the phylogenetic tree. DNA sequences
of the three loci were submitted to GenBank, with the following accession numbers: MK968883 (ITS),
MK984207 (CAL1), MK984206 (TEF1), and MK984208 (TUB2).

3. Results

3.1. Metabolome Analysis

The investigation on SM production in liquid (CDB, PDB) or solid (MK) media, the latter
representing a commonly used substrate to evaluate mycotoxin production in Fusarium spp. [28],
revealed that up to 206 compounds are synthesized by strain A1021B in axenic cultures. The PCA score
plot demonstrated a differential and significant effect of the medium composition on SM production
(Figure 1A). Moreover, the assortment of SMs produced in CDB or PDB was less affected by light
exposure than by the culturing time (1 vs. 2 weeks). On the other hand, on MK the SM profile was
particularly influenced by the former factor, i.e., multiple compounds after one week of growth in
darkness were produced. To obtain a simplified representation of the different assortments, a heatmap
clustering compounds was generated (Figure 1B) by selecting 29 entities which made it possible to
discriminate among the different treatments, selected on PCA. Among them, FA (179.0974 Da) and its
derivatives fusarinol (165.1181 Da) and 9,10-dehydro-FA (177.0799 Da) were detected. Other putatively
identified SMs were bikaverin (382.1126 Da), a tetracyclic benzoxanthone whose genetic base is reported
to be clustered to FA [44,45], and culmorin (238.1446 Da), a sesquiterpenoid which is often associated
with trichothecene production [46,47].
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Mass (Da) 

Figure 1. (A) Principal component analysis (PCA) score plot of secondary metabolites (SMs) produced
by A1021B under different growth conditions. (B) Heat map illustrating the abundance of the main
SMs in A1021B cultures, visualized through the color scale reported on the right. Each row represents
differentially abundant products ordered by their mass (Da), while columns correspond to the different
culturing conditions. MK =maize kernels; CDB = Czapek-Dox broth; PDB = potato dextrose broth;
d = darkness; l = light; 1 w = 1 week; 2 w = 2 weeks.
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Among the identified compounds, the LC-MS Q-TOF analysis revealed that fusarinol was
predominantly produced in CDB, in dark as well as in light conditions, while 9,10-dehydro-FA
accumulated in PDB and MK. However, both compounds were found only after two weeks of growth.
The production of FA was mostly observed in CDB maintained in darkness, or in light exposure
after two weeks only. A similar biosynthetic course is displayed by culmorin in PDB, while the
production of bikaverin was mainly detected in CDB cultures regardless to the presence/absence of
light. Furthermore, among the unidentified molecules, compound A and compound B (Figure 1B)
were particularly affected by medium composition. In fact, compound A was detected exclusively in
MK while compound B was produced only in PDB, and their production was not related to specific
growth condition (1–2 w; light/darkness).

Our analysis did not show the production by A1021B of 8-O-methylbostrycoidin, a polyketide
pigment which has been reported in association with FA [48]. Furthermore, no trichothecenes were
detected in any cultivation condition.

Venn diagrams showed that A1021B was able to synthesize specific compounds in the different
media, and that only a small part of them was in common among the three conditions (Figure 2).
In darkness, the growth on MK enhanced the production of specific SMs at both time points considered
(81 and 75 compounds, respectively, after 1 or 2 weeks of growth), while CDB was the least inductive
medium (6 and 11 compounds, respectively). Moreover, very few compounds (3 and 4, respectively,
after 1 or 2 weeks of growth) accumulated constitutively in darkness regardless to the medium.
A similar distribution was observed when A1021B was cultivated under light exposure. In fact, MK
represented the most inductive substrate, while in CDB few compounds accumulated. No specific SMs
were detected in CDB at the first time point. Overall, SM production was higher in darkness (Figure 2),
and MK was more effective in enhancing the production of certain compounds.

Figure 2. Venn diagrams showing the number of unique and overlapping products in A1021B cultures
under the different growth conditions. (A) Secondary metabolites (SMs) produced in darkness (d) after
one (1 w) or two weeks (2 w). (B) SMs produced under light exposure (l) after one (1 w) or two weeks
(2 w). MK =maize kernels; CDB = Czapek-Dox broth; PDB = potato dextrose broth.
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3.2. Genetic and Phylogenetic Analysis, and Species Identification

As trichothecenes may well characterize the mycotoxin profile of FIESC members, the presence in
A1021B of genes involved in biosynthesis of these compounds was investigated by PCR as previously
described [15]. Amplicons of all the selected regions (TRI-1, TRI-4, TRI-5, TRI-8, TRI-11) were detected
(data not shown), indicating that strain A1021B actually holds the genetic features to produce these
mycotoxins. Nevertheless, the related SMs were not detected in any of the culture conditions used in
this study.

Even if the genetic data matched with the hypothesis that A1021B might belong to the FIESC,
a different indication resulted from the phylogenetic analysis, conducted using concatamers of ITS,
TEF1 and CAL1 sequences previously employed in the characterization of this species complex. In this
experiment, a strain of F. concolor was used as the outgroup [41]. Interestingly, A1021B clustered
with the latter instead of any of the several identified or unidentified FIESC members (Figure 3).
Nevertheless, a new BLAST search in the NCBI database based on TEF1 sequences did not yield a
consistent homology with the available strains of F. concolor.

 

Figure 3. Maximum likelihood tree inferred from ITS-TEF1-CAL1 concatamers. Phylogenetic analysis
including A1021B, FIESC members and F. concolor as outgroup inferred using the maximum likelihood
method (MEGA7). The bootstrap consensus tree inferred from 1000 replicates is taken to represent the
evolutionary history of the taxa analyzed.

The hypothesis that strain A1021B represented a novel taxon could explain such discrepancy.
However, a subsequent BLAST search carried out in December 2018 revealed an unexpected 100%
homology with a series of TEF1 sequences from the species F. babinda [49], which were made available
in October 2018 after another notable taxonomic revision [45]. Following this finding, another
phylogenetic tree including isolates of F. concolor, F. babinda and FIESC was generated where A1021B
clearly clustered with the strains of F. babinda (Figure 4).
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Figure 4. Maximum likelihood tree inferred from TEF1. Phylogenetic analysis including A1021B,
strains of FIESC, F. babinda and F. concolor inferred using the maximum likelihood method (MEGA7).
The bootstrap consensus tree inferred from 1000 replicates is taken to represent the evolutionary history
of the taxa analyzed.

4. Discussion

A recent study [45] demonstrated that F. babinda represents the correct identification for many
strains previously ascribed to F. polyphialidicum. This species, on the other hand, has now been reported
as a synonym of F. concolor, deserving priority in taxonomy as an older accepted species name [50].
While F. concolor/polyphialidicum is known as a typical trichothecene producer [28,45], the mycotoxin
profile of F. babinda seems to be centered on FA, and no clues of trichothecene biosynthetic abilities
were detected in the limited assessments carried out so far. An analysis concerning the genetic basis
for trichothecene synthesis in a single strain of this species (NRRL 25539) also provided negative
results [45]. The same study reported that strain NRRL 25539 has the gene clusters for the production
of some compounds (enniatins, fusarin, fusarubin), which, however, were absent in our cultures.

In this work, metabolomic analysis confirmed that in axenic cultures strain A1021B basically
produced FA and some known compounds. Interestingly, bikaverin was found to accumulate mainly
in CDB cultures, where the carbon source is represented by sucrose, in consistency with a previous
report that the availability of this sugar stimulates bikaverin production in vitro [51]. Molecular
data indicated the presence of trichothecene biosynthetic gene clusters, but they were not expressed
under the culture conditions we tested, thus making A1021B divergent from strain NRRL 25539 [45].
Considering that F. babinda, which formerly had been reported only from Australia, turned out to
have a worldwide diffusion [45], and that F. polyphialidicum was described as a typical producer of
type-A trichothecenes [28], our finding highlights the need for more exhaustive investigations on the
mycotoxin profile of this emerging species. In this respect, an assessment concerning occurrence of
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TRI-5 in F. equiseti detected this gene sequence in 50% of the examined strains only [36], confirming
previous evidence of uneven production of trichothecenes in this species [52].

Recent evaluations of the mycotoxin-producing ability indicate that Fusarium phylogenetic
relationship may vary, and non-conforming strains, new species or lineages often result after the
exploration of new ecological contexts, particularly those involving endophytic fungi [53–55]. In fact,
an intriguing ability to synthesize unexpected SMs can be ascribed to endophytes, which are able to
establish physical contacts and eventually interact through horizontal gene transfer (HGT) with both
plants and other microorganisms living in this particular ecological niche [56,57]. Indeed, ecological
proximity has been considered to favor HGT [57].

In fungi, genes coding for the synthesis of SMs are typically adjacent to one another in clusters of
co-expressed genes, including a core gene responsible for the synthesis of a basic structure, and side
genes which control chemical modifications, transport, and regulation [58]. Biosynthesis of FA,
bikaverin, culmorin and trichothecenes is governed by polyketide synthases, large multi-domain
enzymes that catalyze sequential condensation of simple carboxylic acids. A few hundreds of gene
sequences involved in the biosynthesis of polyketides have been detected in Fusarium spp., which
corresponded to 67 clades in a phylogenetic analysis, where each clade refers to distinct products.
This analysis also pointed out a genetic potential to synthesize compounds which are the same or
similar to those known to be produced from other fungi, but not reported in Fusarium so far [59].

From an evolutionary viewpoint, HGT of gene clusters regulating mycotoxin biosynthesis is
theoretically supported by the reasonable inference that clustering confers a selective advantage to
the cluster itself [56,60]. In addition, the hypothesis that the TRI-5 gene cluster may have spread
among unrelated fungal species through HGT has already been advanced in the past [61]. HGT
was also indicated as the means of transmission of a 5-gene cluster presiding over the synthesis of
bikaverin from Fusarium to Botrytis cinerea [51], and as a more general evolutionary mechanism in
Fusarium [62]. Moreover, it has been demonstrated that transfer of lineage-specific genomic regions
occurred in Fusarium, including even entire chromosomes up to more than one-quarter of the genome,
and involving genes related to pathogenicity. These were effective in converting pathogenic strains into
non-pathogenic ones, and were possibly responsible for the emergence of new pathogenic lineages [63].
Therefore, natural ecosystems are recognized to play a role as reservoirs of novel crop pathogens with
a meaningful impact on disease management and biosecurity [64].

5. Conclusions

In this work, we reported a case-study investigating the taxonomy and SM production in the
endophytic Fusarium strain A1021B. As a consequence of the ongoing updates in the phylogenetic
relationships of Fusarium species, the analyses of mycotoxin profile and selected gene sequences lead us
to identify this isolate as F. babinda. Our findings support previous observations that SM production in
axenic cultures by Fusarium strains does not necessarily conform to genetically based analyses, and that
this limitation could be overcome in vivo where interaction with the host plant or other endophytic
microorganisms may result in the activation of silent genes.

Besides sequences deposited in GenBank, strain A1021B is available on request for inclusion in
phylogenetic and metabolomic studies.
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Abstract: Besides a diffuse research activity on drug discovery and biodiversity carried out in natural
contexts, more recently, investigations concerning endophytic fungi have started considering their
occurrence in crops based on the major role that these microorganisms have been recognized to
play in plant protection and growth promotion. Fruit growing is particularly involved in this new
wave, by reason that the pluriannual crop cycle likely implies a higher impact of these symbiotic
interactions. Aspects concerning occurrence and effects of endophytic fungi associated with citrus
species are revised in the present paper.
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1. Introduction

Despite the early pioneering observations dating back to the nineteenth century [1], a settled
prejudice that pathogens basically were the only microorganisms able to colonize living plant tissues has
long delayed the awareness that endophytic fungi are constantly associated to plants, and remarkably
influence their ecological fitness. Overcoming an apparent vagueness of the concept of ‘endophyte’,
scientists working in the field have agreed on the opportunity of delimiting what belongs to this
functional category. Thus, a series of definitions have been enunciated which are all based on the
condition of not causing any immediate overt negative effect to the host [2].

Besides being prompted by the general theoretical intent that all components of biodiversity from
natural contexts ought to be exploited for the benefit of humanity, investigations on the endophytic
microbiota, or endosphere [3], have also been undertaken with reference to crops. In this respect, it
can be said that endophytes are even more relevant in orchards, where the time factor confers higher
impact to the establishment of an equilibrium among the species which are part of the tree biocoenosis,
and to its possible disruption. Hence, all sorts of contributions have recently been proliferating in the
literature, to such an extent that an organization of the available information is now appropriate in
order to support the scientific community in achieving further progress. In view of this perspective,
the present paper offers a review of the state-of-the-art of research concerning occurrence and effects of
endophytic fungi associated with citrus species.

2. Endophytic Occurrence of Citrus Pathogens

The agent of citrus black spot (CBS) Phyllosticta citricarpa, also known under the teleomorph
name Guignardia citricarpa (Dothideomycetes, Botryosphaeriaceae), is one of the most noxious pests
of these crops in subtropical regions, and it is subject to phytosanitary restrictions by the European
Union and the United States. The employment of biomolecular methods has provided substantial
support to the distinction between pathogenic isolates, typically slow-growing in axenic cultures and
producing a yellow halo on oatmeal agar, and non-pathogenic isolates, which are morphologically
similar but fast-growing, and producing conidia embedded within a thicker mucoid sheath [4–8].
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The latter, characterized as a different species (Phyllosticta capitalensis), are known to be ubiquitous
as endophytes in woody plants, having been reported from at least 70 botanical families [6,9,10].
Guignardia endophyllicola, treated as a separate species in a work also emphasizing its widespread
endophytic occurrence [11], is at present recognized as a synonym. Differences between the two
sister species also concern their metagenetic cycle. In fact, it has been ascertained that P. citricarpa is
heterothallic, while P. capitalensis is homothallic [8]. This consolidated taxonomic distinction supports
the exclusion from quarantine measures of plant material harbouring P. capitalensis. To this purpose,
several rapid PCR assays have been developed [12–20]. The applicative use of these assays has enabled
to exclude the presence of the pathogen in New Zealand, unlike what was previously assumed [21],
and has supported the hypothesis of the possible endophytic occurrence of P. citricarpa in asymptomatic
Citrus spp., as pointed out by several investigations (Table 1). Moreover, the two species have been
clearly differentiated on account of their enzymatic profiles, with a higher expression of amylases,
endoglucanases, and pectinases in P. citricarpa, suggesting a likely involvement of these enzymes in the
pathogenic aptitude of the CBS agent [22]. Differences in terms of pathogenesis-related proteins have
been confirmed after the genome sequencing of the two species, disclosing a higher number of coding
sequences in P. citricarpa (15,206 versus 14,797). Such a difference has been interpreted considering the
presence of growth and developmental genes involved in the expression of pathogenicity [23].

The issue of detection of contaminated material imported from areas where the pathogen is
endemic has also prompted investigations concerning the assortment of Phyllosticta spp. able to colonize
citrus plants in either symptomatic or latent courses. Several revisions have been published [17,24], and
novel species characterized, which consistently enlarge the citrus-associated consortium within this
widespread genus. Particularly, the pathogenic P. citriasiana from south-east Asia [25], P. citrichinaensis
from China [26], P. citrimaxima from Thailand [24], and P. paracitricarpa from Greece [27], and the
non-pathogenic endophytic P. citribraziliensis from Brazil [28] and P. paracapitalensis from New Zealand,
Italy, and Spain [27]. The isolation by the latter research group of P. citricarpa from specimen collected
in citrus groves in Italy, Malta, and Portugal, following analogue findings in Florida [19,29], is expected
to provide impulse for a more thorough assessment of distribution and pathogenicity of this species [30].
A very recent investigation carried out in Australia on several Citrus spp. and growing conditions, has
disclosed P. paracapitalensis to be even more widespread than P. capitalensis. Strains of both species were
confirmed to be non-pathogenic on fruits under field conditions, and displayed antagonistic effects
against the CBS agent, introducing their possible exploitation in the integrated management of this
disease [31]. In this respect, it has been speculated that, rather than depending on intrinsic genetic
factors, resistance to CBS by C. latifolia could be due to its systematic colonization by P. capitalensis, as
disclosed by a dedicated investigation carried out in Brazil [32].

Colletotrichum (Sordariomycetes, Glomerellaceae) is another important ascomycete genus in course
of coherent taxonomic revision. Besides Colletotrichum gloeosporioides, the agent of citrus anthracnose,
it includes many species known for their endophytic aptitude. A recent investigation carried out
in China on several Citrus spp. has shown a high proportion of endophytic strains to belong to C.
gloeosporioides sensu stricto, calling for further investigations concerning the asymptomatic occurrence of
this pathogen in citrus orchards. Additional identified species are Colletotrichum fructicola from Citrus
reticulata cv. Nanfengmiju and Citrus japonica (=Fortunella margarita), and Colletotrichum karstii [33].
A similar widespread occurrence of C. gloeosporioides has been more recently confirmed in Brazil,
where just one out of 188 isolates was found to be able to induce post-bloom fruit drop. This syndrome
is more frequently associated to the species Colletotrichum abscissum, which, however, does not display
an endophytic habit [34]. Endophytic C. gloeosporioides were also previously reported from Citrus
limon in Argentina [35] and Cameroon [36].

One more meaningful example of endophytic fungus converting to pathogenic when plants are
exposed to stress factors is represented by another member of the Botryosphaeriaceae, Lasiodiplodia
theobromae. Characterized by a widespread endophytic occurrence [37,38], this species has been
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reported to exacerbate pre-harvest fruit drop and post-harvest fruit decay in plants of Citrus sinensis
hit by the huanglongbing syndrome [39].

A quite intricate case deserving further investigations with reference to the epidemiological
impact by endophytic strains is represented by members of the genus Diaporthe (Sordariomycetes,
Diaporthaceae), also known under the anamorph name Phomopsis [40,41], which are widespread in
different ecological contexts [41,42]. Besides the longtime known D. citri, more species in this genus
have been recently identified as the causal agents of melanose, stem-end rot, and gummosis on Citrus
spp., particularly, D. citriasiana and D. citrichinensis in China [43], and D. limonicola, D. melitensis, D.
baccae, D. foeniculina, and D. novem in Europe [44]. Even more species have been reported for their
endophytic occurrence as a result of a phylogenetic reassessment carried out in China, with eight
known (D. arecae species complex, D. citri, D. citriasiana, D. citrichinensis, D. endophytica, D. eres, D.
hongkongensis, and D. sojae) and seven new species (D. biconispora, D. biguttulata, D. discoidispora, D.
multiguttulata, D. ovalispora, D. subclavata, and D. unshiuensis) [45].

Table 1. Endophytic fungi reported from Citrus species.

Endophyte 1 Plant Species Country Reference

Alternaria alternata

C. limon, C. tangelo Florida [46]
Citrus spp. Japan [47]

C. limon Argentina [35]
C. reticulata Iran [48]

Alternaria brassicicola C. reticulata Iran [48]
Alternaria carthami C. reticulata Iran [48]

Alternaria citri C. sinensis Iran [49]
Alternaria infectoria C. sinensis Iran [49]

Alternaria rosae C. sinensis Iran [49]

Alternaria sp. C. kotokan Taiwan [52]
C. sinensis Iran [49]

Annulohypoxylon stygium C. sinensis Iran [49]
Arthrinium sp. C. japonica Taiwan [52]

Ascochyta medicaginicola C. reticulata Iran [48]
Aspergillus nidulans C. sinensis Iran [49]

Aspergillus niger C. reticulata Iran [48]
Aspergillus pallidofulvus C. reticulata Iran [48]

Aspergillus terreus C. sinensis Iran [49]
Aureobasidium iranianum C. reticulata Iran [48]

Aureobasidium melanogenum C. reticulata Iran [48]

Aureobasidium pullulans
C. sinensis Brazil [53]
C. japonica Uruguay [54]
C. reticulata Iran [48]

Beauveria bassiana C. limon China [55]
Biscogniauxia mediterranea C. sinensis Iran [49]
Biscogniauxia nummularia C. sinensis Iran [49]

Bjerkandera adusta C. sinensis Iran [49]
Botryosphaeria sp. C. aurantium Taiwan [52]
Camarosporium sp. C. aurantium, C. medica var. sarcodactylis Taiwan [52]
Candida parapsilosis C. sinensis Brazil [53]

Cercospora sp. C. limon Cameroon [36]
C. sinensis Iran [49]

Chaetomium globosum C. sinensis Iran [49]
Chaetomium sp. C. sinensis Taiwan [52]

Cladosporium cladosporioides C. reticulata Iran [48]

Cladosporium sp. C. limon, C. reshni, C. sinensis, C. sunki,
C. trifoliata, C. volkameriana Brazil [56]

Cladosporium xanthochromaticum C. reticulata Iran [48]

Colletotrichum boninense
C. limon Cameroon [36]

C. sinensis Iran [49]
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Table 1. Cont.

Endophyte 1 Plant Species Country Reference

Colletotrichum fructicola C. japonica, C. reticulata China [43]

Colletotrichum gloeosporioides

C. limon, C. reshni, C. sinensis, C. sunki,
C. trifoliata, C. volkameriana Brazil [56]

C. limon
Argentina [35]
Cameroon [36]

C. grandis, C. reticulata, C. sinensis, C. unshiu China [43]
C. sinensis Iran [49]

Colletotrichum karstii C. grandis, C. limon China [43]

Colletotrichum sp.

C. aurantium, C. medica var. sarcodactylis,
C. sinensis Taiwan [52]

C. deliciosa, C. reticulata Brazil [57]
C, aurantifolia India [58]

Coprinellus radians C. sinensis Iran [49]
Coprinopsis sp. C. medica Taiwan [52]

Cryptococcus flavescens C. sinensis Brazil [53]
Cryptococcus laurentii C. sinensis Brazil [53]

Cyanodermella sp. C. medica var. sarcodactylis, Citrus sp. Taiwan [52]

Diaporthe arecae s.c. 2 C. grandis, C. limon, C. reticulata, C. sinensis,
Citrus sp., C. unshiu China [45]

Diaporthe biconispora 2,* C. grandis, C. japonica, C. sinensis China [45]
Diaporthe biguttulata 2,* C. limon China [45]

Diaporthe citri 2 C. reticulata, C. unshiu China [43,45]
Diaporthe citriasiana 2 C. unshiu China [43]

Diaporthe citrichinensis 2 C. grandis, C. japonica China [45]
Diaporthe discoidispora 2,* C. sinensis, C. unshiu China [45]
Diaporthe endophytica 2 C. limon China [45]

Diaporthe eres 2 C. japonica, Citrus sp., C. unshiu China [45]
Diaporthe eucalyptorum 2 C. limon Cameroon [36]

Diaporthe foeniculina 2 C. sinensis Iran [49]
Diaporthe hongkongensis 2 C. grandis, C. reticulata, C. sinensis, C. unshiu China [45]

Diaporthe multiguttulata 2,* C. grandis China [45]
Diaporthe ovalispora 2,* C. limon China [45]
Diaporthe phaseolorum 2 C. limon Cameroon [36]

Diaporthe sojae 2 C. limon, C. reticulata, C. unshiu China [45]

Diaporthe sp. 2

C. limon Cameroon [36]
C. aurantium, C. medica, C. sinensis Taiwan [52]

C. japonica China [45]
C. reticulata Iran [48]

Diaporthe unshiuensis 2,* C. japonica China [45]
Didymella microchlamydospora C. reticulata Iran [48]

Discostroma sp. C. medica Taiwan [52]
Epicoccum nigrum C. sinensis Iran [49]

Eutypella sp. C. medica var. sarcodactylis Taiwan [52]
Fusarium culmorum C. sinensis Iran [49]

Fusarium incarnatum C. sinensis Iran [49]
Fusarium oxysporum C. reticulata Iran [48]

Fusarium proliferatum C. sinensis Iran [49]
Fusarium sarcochroum C. limon, C. reticulata Italy, Spain [50]

Fusarium sp. C. sinensis Taiwan [52]
C. reticulata Iran [48]

Hanseniaspora opuntiae C. reticulata China [59]
Hypholoma fasciculare C. sinensis Iran [49]
Hypoxylon investiens C. sinensis Iran [49]

Lasiodiplodia theobromae C. sinensis China [39]
Lasmenia sp. C. medica var. sarcodactylis Taiwan [52]

Meira geulakonigae C. paradisi Israel [60]
Meyerozyma caribbica C. reticulata Iran [48]

Meyerozyma guilliermondii C. sinensis Brazil [53]
C. reticulata China [58]

Muscodor sp. C. sinensis Brazil [61]
Mycoleptodiscus sp. C. aurantium Taiwan [52]
Mycosphaerella sp. C. limon Cameroon [36]
Myrothecium sp. C. reticulata Iran [48]

Neocosmospora solani C. reticulata Iran [48]
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Table 1. Cont.

Endophyte 1 Plant Species Country Reference

Neosetophoma sp. C. reticulata Iran [48]
Nigrospora oryzae C. sinensis Iran [49]

Nigrospora sphaerica C. limon Argentina [35]
Nodulisporium sp. C. limon Argentina [35]
Passalora loranthi C. limon Cameroon [36]

Penicillium citrinum C. reticulata Iran [48]
Pestalotiopsis mangiferae C. limon Cameroon [36]
Pestalotiopsis microspora C. limon Cameroon [36]

Pestalotiopsis sp. C. limon Cameroon [36]
Phaeoacremonium parasiticum C. reticulata Iran [48]

Phialophora sp. C. sinensis Brazil [53]
Phoma sp. C. limon Cameroon [36]

Phyllosticta capitalensis 2

Citrus spp. South Africa [4]
C. deliciosa, C. reticulata Brazil [57]

C. aurantium, C. natsudaidai, C. trifoliata Japan [11]
C. aurantium Brazil [62]

C. latifolia Brazil [17]
C. limonia, C. sinensis, Citrus sp. Brazil [28]

C. aurantium, C. australasica Australia [63]

C. limon
Cameroon [36]
Italy, Malta,

Spain Greece,
Portugal

[27]

C. aurantifolia Italy
C. sinensis Iran [49]

Phyllosticta citribraziliensis 2,* Citrus sp. Brazil [28]

Phyllosticta citricarpa 2

Citrus sp. South Africa [64]
C. reshni, C. sinensis, C. sunki, C. trifoliata,

C. volkameriana Brazil [56]

C. deliciosa, C. reticulata Brazil [65]
C. limon Argentina [35]

C. latifolia Brazil [17]
C. sinensis Florida [29]

Phyllosticta paracapitalensis 2,*

C. aurantifolia
C. floridana

C. limon

New Zealand
Italy

Spain
[27]

C. aurantium, C. australasica, C. hystrix, C.
japonica, C. maxima, C. reticulata, C. wintersii Australia [31]

Phyllosticta sp. 2 C. medica var. sarcodactylis Taiwan [52]
Physoderma citri Citrus spp. Florida [51]
Pichia kluyveri C. reticulata China [59]

Pseudocercospora sp. C. japonica Taiwan [52]
Pseudopestalotiopsis theae C. limon Cameroon [36]

Pseudozyma flocculosa C. reticulata Iran [48]
Rhodotorula dairenensis C. sinensis Brazil [53]

Rhodotorula mucilaginosa C. sinensis Brazil [53]
Rosellinia sp. C. sinensis Iran [49]

Sarocladium subulatum C. sinensis Iran [49]
Scedosporium apiospermum C. reticulata Iran [48]

Sordaria fimicola C. sinensis Iran [49]
Sporobolomyces sp. C. sinensis Brazil [53]

Sporormiella minima C. limon Argentina [35]
C. sinensis Iran [49]

Stemphylium sp. C. aurantium, C. japonica Taiwan [52]
Stenella sp. C. limon Cameroon [36]

Talaromyces purpurogenus C. reticulata Iran [48]
Talaromyces trachyspermus C. reticulata Iran [48]

Xylaria cubensis C. sinensis Iran [49]

Xylaria sp. C. limon Cameroon [36]
C. japonica Taiwan [52]

Zasmidium sp. C. limon Cameroon [36]
1 Species are reported according to the latest accepted name, which might not correspond to the one used in the
corresponding reference. 2 Conforming to the principle ‘one fungus—one name’ [66], the older genus names
Diaporthe and Phyllosticta have been considered to deserve priority over Phomopsis and Guignardia, respectively.
* Novel species described for the first time from this plant source.
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Endophytic occurrence has also been reported for other citrus pathogens, such as the leaf-spot
agents Alternaria alternata [35,46–48] and Alternaria citri [49], Fusarium oxysporum [48], and Fusarium
sarcochroum, known as a possible agent of dieback of twigs on mandarin and lemon [50]. The latter
study also introduces new Fusarium spp. (F. citricola, F. salinense, F. siculi), causing cankers on several
citrus species. Considering that pathogenic Fusaria often present an early latent stage, this finding
claims for further assessments concerning their possible endophytic occurrence. Finally, it is worth
mentioning Physoderma citri, a species ascribed to the phylum Blastocladiomycota reported to cause
vessel occlusion, but also found in asymptomatic plants of several Citrus spp. [51].

3. Other Endophytic Fungi and Their Interactions with Pests and Pathogens of Citrus

Besides the above reports, essentially dedicated to pathogenic species/genera upon the aim to
assess the epidemiological impact of latent endophytic stages, additional data have been recorded
on the overall species assemblage in a few contexts (Table 1). A study carried out on C. limon in
Cameroon [36] pointed out that yellowing of leaves affects foliar endophytic communities, and that
interactions among endophytes may be a factor driving the yellowing process. In fact, yellow leaves
presented a less varied species assortment dominated by C. gloeosporioides in the absence of species
belonging to the Mycosphaerellaceae, otherwise common in healthy leaves. In vitro observations in
dual cultures showed that the latter were inhibited and overgrown by C. gloeosporioides, even if capable
to revert this inhibitory effect when pre-inoculated, which was interpreted as deriving from production
of fungitoxic metabolites. This study also demonstrated a low occurrence of species in the Xylariaceae,
which are usually quite widespread as tree endophytes [67,68].

The endophytic occurrence of a few yeast species was documented in an investigation carried
out on C. sinensis in Brazil [53]. By means of scanning electron microscopy, it was observed that these
microorganisms are mostly localized around stomata and in xylem vessels. Isolates of the species
Rhodotorula mucilaginosa, Meyerozyma (Pichia) guilliermondii, and Cryptococcus flavescens were inoculated
in healthy plants, and re-isolated, without causing any kind of disease symptoms. Quite interestingly,
the authors noted that M. guilliermondii primarily occurred in plants colonized by Xylella fastidiosa, the
causal agent of citrus variegated chlorosis (CVC), and that the bacterium could thrive on a supernatant
separated from cultures of a strain of this species. This finding represents an indication that the
presence of the yeast could stimulate the pathogen and could be responsible for more severe disease
symptoms. More recently, strains of M. guilliermondii have been recovered, along with strains of
Hanseniaspora opuntiae and Pichia kluyveri, from tangerine peel in China. However, it is questionable if
this record can actually concern endophytic occurrence considering that authors refer that fruits were
purchased on the market rather than being directly collected in the field [59].

Indeed, interactions between endophytic bacteria and fungi are complex, and the assortment of
strains which can be recovered is largely influenced by the antagonistic interactions as mediated by the
production of antibiotics. In this respect, strains of P. citricarpa isolated from Citrus spp. in Brazil were
found to possess inhibitory properties toward several endophytic Bacillus spp. from the same source,
while a stimulatory effect was assessed towards the gram-negative Pantoea agglomerans, which can be
taken as an indication of the opportunity to investigate possible interference with the development of
X. fastidiosa [56].

Antagonistic properties by an isolate of Muscodor sp. from C. sinensis were reported against
P. citrocarpa as deriving from the production of volatile organic compounds (VOCs) [61]. Actually, such
properties are known for endophytic isolates of Muscodor and other genera of xylariaceous fungi, such
as Hypoxylon (=Nodulisporium) and Xylaria, reported from many plant species [69] and also occurring
in citrus plants [35,36,49,52].

Endophytic strains belonging to two species of Diaporthe, D. terebinthifolii and the already-mentioned D.
endophytica, displayed inhibitory properties against P. citrocarpa in vitro and on detached fruits. Moreover,
their transformants expressing the fluorescent protein DsRed proved to be able to actively colonize citrus
seedlings, and to remain viable in the plant tissues for one year at least. These evidences support their
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possible use in the biocontrol of this pathogen [70]. Antifungal properties have also been reported for a
strain of another fungus belonging to the Diaporthales (Lasmenia sp.), which was recovered from C. medica
var. sarcodactylis [52].

Rather than just concerning agents of cryptogamic diseases, protective effects by endophytic
fungi may pertain several kinds of pests [71,72]. Actually, data available in the literature concerning
citrus plants are limited but encourage further assessments. For instance, a ustilaginomycetous yeast
endophytic in grapefruit (Citrus paradisi), Meira geulakonigae, was found to be able to reduce populations
of the citrus rust mite (Phyllocoptruta oleivora) [60]. More recently, two strains of Beauveria bassiana were
inoculated in seedlings of C. limon through foliar sprays and proved to be able to colonize the plants
endophytically. Besides increasing plant growth, they caused 10%–15% mortality on adults of the
Asian citrus psyllid (Diaphorina citri), and the females feeding on the treated plants laid significantly
fewer eggs [55]. It is not unlikely that more evidence in this respect can be gathered from targeted
investigations concerning naturally occurring endophytes, considering that protective effects have
been documented for endophytic strains of F. oxysporum against aphids [73] and nematodes [74].

As a general ecological trait, endophytic fungi seem to be absent in seeds of citrus species [65].
This is to be taken as an indication that these microorganisms are not adapted to a vertical spread, and
most likely colonize citrus plants coming from the surrounding environment.

4. Biotechnological Implications

The involvement of endophytic fungi in a tripartite relationship with the host plant and its pests
and pathogens highlights their basic role in establishing an equilibrium in such a fragile biocoenosis.
Indeed, a major biotechnological application of endophytic strains consists in the exploitation of their
aptitude to defensive mutualism.

The endophytic habit is conducive for interactions with other microorganisms sharing the same
micro-environment. There is strong evidence that these interactions entangle the genetic level, and
that interspecific transfer of gene pools regularly occurs. Probably, the best example in this respect
is represented by genes encoding for the synthesis of polyketide secondary metabolites, which are
usually grouped in clusters and are influenced in their expression by several external factors [75,76].
Horizontal gene transfer from other endophytic microorganisms may eventually explain the ability by
a strain of P. citricarpa [77] to produce the blockbuster drug taxol, first extracted from Taxus spp. and
afterwards as a secondary metabolite of a high number of endophytic fungi [69,78].

P. citricarpa has been further characterized with reference to production of secondary metabolites.
Particularly, it has been reported to produce the new dioxolanone phenguignardic acid butyl ester,
along with four previously reported compounds: phenguignardic acid methyl ester, peniisocoumarin
G, protocatechuic acid, and tyrosol [79]. Phyllosticta spp. have been reported to have a similar
metabolomic profile, including the dioxolanone phytotoxins which are regarded as potential virulence
factors. However, one of these products, guignardic acid, has also been reported from P. capitalensis [80].
Biosynthetic abilities by endophytic strains of the latter species also refer to meroterpenes, such as
compounds in the guignardone series [81–84] and the manginoids [85]. Besides a likely implication
in the relationships with other citrus-associated microbial species, the bioactive properties of the
dioxolanones and the related meroterpene compounds deserve to be further investigated in view of
possible pharmaceutical exploitation [79,86].

Protocatechuic acid was again reported from an unidentified fungal strain recovered from leaves
of Citrus jambhiri, along with indole-3-acetic acid (IAA) and acropyrone [87]. The latter compound
was shown to possess antibiotic properties against Staphylococcus aureus, while the finding of IAA is in
line with the many reports of plant hormones produced by endophytic fungi [69], which at least in
part unfold the growth-promoting effects exerted on their hosts [88,89]. Production of IAA was also
reported from strains of the yeasts Hanseniaspora opuntiae and Meyerozyma guilliermondii from Citrus
reticulata, which were able to induce growth-promoting effects on seedlings of Triticum aestivum [59].
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The above-mentioned VOCs reported from an endophytic strain of Muscodor sp. from C. sinensis
include several sesquiterpenes, namely azulene, cis/trans-α-bergamotene, cedrene, (Z)-β-farnesene,
farnesene epoxide, α-himachalene, α-longipinene, thujopsene, 2,4,6-trimethyl-1,3,6-heptatriene,
2-methyl-5,7-dimethylene-1-8-nonadiene, and cis-Z-bisabolene epoxide [61]. Mixtures of these
compounds have a possible biotechnological application for the mycofumigation of fruits, proposed
for the control of CBS and various post-harvest pathogens [90–92]. Concerning VOCs, another possible
investigational subject consists in assessing if any endophyte of citrus plants is able to produce
compounds occurring in the typical aroma spread by flowers and fruits of these plants, which are
exploited by the pharmaceutical and the perfume industries. In this respect, the production of
bergapten, a psoralen compound known from bergamot (Citrus bergamia), has already been pointed out
by endophytic strains of Penicillium sp. [93] and L. theobromae [94]. Although these findings concern
plants other than citrus, it is worth considering that these fungi are also reported as citrus endophytes
(Table 1).

Antimicrobial properties of fungi do not just depend on the production of bioactive compounds.
In fact, a strain of P. capitalensis (Bios PTK 4) recovered from an unidentified citrus plant was found to
be able to synthesize silver nanoparticles extracellularly. These nanoparticles, which were spherical,
5–30 nm in size, well-dispersed, and extremely stable, have been characterized for their antibacterial
and antifungal properties [95].

5. Conclusions

Revision of literature in the field shows that a major part of the research activity carried out
on endophytic fungi of citrus plants consists in investigations on the occurrence of pathogens, and
their discrimination from other ecologically associated taxa. Such a limited approach has, anyway,
turned to be useful to disclose an epidemiological relevance of these microorganisms, as related to a
modulatory role in the spread of citrus diseases. On that account, possible interactions in conducive
contexts with other important pathogens, such as the agent of mal secco Phoma tracheiphila and species
of Phytophthora causing foot and root rot, should be attentively considered. Even when there is no
apparent direct interaction with disease agents, such as in the cases of CVC incited by X. fastidiosa,
tristeza, and other viroses, the possible effect by endophytic fungi in stimulating plant defense reaction,
or, more in general, to act as plant disease modifiers [96], should not be disregarded. In this respect,
data concerning occasional isolations might well disclose some relevance. Unfortunately, description
of the endophytic assemblages in several papers is often approximate or incomplete, such as in a
mentioned survey concerning sweet orange (C. sinensis), where just a single strain was characterized
out of a sample of over 400 endophytes [61]. It is to be recommended that future investigations in the
field be more circumstantial in their approach to describe this component of biodiversity, in the aim of
increasing opportunities for its biotechnological exploitation.

Encouraging examples in this direction are represented by two very recent publications from
Iran [48,49]. Indeed, the focus on endophytic fungi is gradually evolving from a basically descriptive
phase to the analysis of factors influencing the structure and composition of microbiomes, in view of
their manipulation for increasing plant protection and productivity. A better comprehension of the
already introduced genetic interactions among members of the associated biota and the host tree is
crucial for the success of any practical application of endophytic fungi in sustainable agriculture [97].
Moreover, the observed effects of the host genotype [98,99] could be adequately considered in breeding
programs, in the aim to select suitable recipient genotypes for fungal inoculants.
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Abstract: The rise of the holobiont concept confers a prominent importance to the endophytic
associates of plants, particularly to species known to be able to exert a mutualistic role as defensive
or growth-promoting agents. The finding that many entomopathogenic fungi are harbored within
plant tissues and possess bioactive properties going beyond a merely anti-insectan effect has recently
prompted a widespread investigational activity concerning their occurrence and functions in crops,
in the aim of an applicative exploitation conforming to the paradigm of sustainable agriculture.
The related aspects particularly referring to species of Lecanicillium and Akanthomyces (Sordariomycetes,
Cordycipitaceae) are revised in this paper, also in light of recent and ongoing taxonomic reassessments.
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1. Introduction

The great microbial diversity harbored in plants has just started being explored in light of
a consolidated awareness that what we manage in the agricultural practice is actually the outcome
of the combined expression of plant and microbial genes [1,2]. The symbiotic relationships between
endophytic fungi and their host plants exteriorize in many ways, ranging from opportunistic
saprophytism in senescent tissues, to latent pathogenicity disclosing after the impact of various
stress factors, to genuine mutualistic interactions deriving from nutritional support and/or increased
protection against pests and pathogens. The latter are particularly relevant for the holistic approach
making its way in integrated pest management (IPM), considering the crop production system as
a whole in the aim to contain rather than eradicate pests.

Within this conceptual rearrangement, the improvement of our knowledge on occurrence and
functions of endophytic associates of plants is fundamental in view of their possible exploitation
in sustainable agriculture. Endophytic entomopathogens are an important category of the plant
microbiome, which is increasingly considered for applicative purposes. So far, the majority of
investigations and reports concerning these organisms deal with Beauveria bassiana and Metarhizium
anisopliae, with several fine reviews available in the literature [3,4]. This paper offers an overview
on the current knowledge concerning endophytism in species of Lecanicillium and Akanthomyces
(Sordariomycetes, Hypocreales, Cordycipitaceae).

2. Taxonomic Background

Until the early 2000s, these fungi were classified in the section Prostrata of the genus Verticillium,
basically with reference to their imperfect stage producing verticillate conidiophores [5]. A few
species best known for their parasitic behavior against arthropods, nematodes and/or fungi were
ascribed to this section, such as V. chlamydosporium, V. lecanii and V. psalliotae. Afterwards, the
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application of biomolecular techniques enabled to shed light on the phylogenetic relationships within
this heterogeneous genus. Particularly, species within the section Prostrata were separated in a few
unrelated genera, such as Pochonia, Haptocillium, Simplicillium and Lecanicillium, and their teleomorphs
identified within the genera Cordyceps and Torrubiella [6]. The species V. fungicola, previously ascribed
to the section Albo-erecta in the genus Verticillium, was later aggregated to Lecanicillium [7]. As a result
of this fundamental revision, about fifteen Lecanicillium species were recognized, a few of which
(L. attenuatum, L. longisporum, L. muscarium, L. nodulosum and L. lecanii s.str.) enucleated from the
previously collective V. lecanii.

However, as it often happens in fungal taxonomy, such a sound rearrangement was not destined
to persist. In fact the genus Lecanicillium was shown to be paraphyletic [8], and some species were
moved to Akanthomyces, a pre-existing but overlooked genus including entomogenous species [9]
(Table 1). At the same time, investigations in more or less peculiar ecological contexts brought to the
description of novel taxa of both Akanthomyces and Lecanicillium [10,11], while some species ascribed to
the latter genus, such as L. uredinophilum and L. pissodis, were shown to actually fit in the A. lecanii
clade [12]. Following the dismissal of the dual nomenclature system for pleomorphic fungi, a more
comprehensive revision of the whole family of the Cordycipitaceae is in progress. Particularly, rejection
has been proposed for the genus name Lecanicillium, while some Akanthomyces species have in turn
been moved to another genus (Hevansia) [13]. Hence, further adjustments concerning species still
classified in Lecanicillium are to be expected.

Table 1. Nomenclatural correspondence of accepted Lecanicillium/Akanthomyces species with sequences
of internal transcribed spacers of ribosomal DNA (rDNA-ITS) available in GenBank.

Species Names * ITS Sequence Used in

Lecanicillium Akanthomyces Cordyceps/Torrubiella Phylogenetic Analysis

L. acerosum NR11268
L. antillanum AJ292392

L. aphanocladii LT220701
L. aranearum A. aranearum T. alba AJ292464
L. araneicola AB378506

L. araneogenum A. neoaraneogenus NR161115
L. attenuatum A. attenuatus AJ292434

L. cauligalbarum MH730663
L. coprophilum MH177615
L. dimorphum AJ292429

L. flavidum EF641877
L. fungicola var.aleophilum NR111064
L. fungicola var.fungicola NR119653

L. fusisporum AJ292428
L. kalimantanense AB360356

L. lecanii A. lecanii C. confragosa AJ292383
L. longisporum A. dipterigenus AJ292385
L. muscarium A. muscarius NR111096
L. nodulosum Akanthomyces sp. EF513012
L. primulinum NR119418
L. psalliotae AJ292389
L. restrictum LT548279
L. sabanense A. sabanensis KC633232

L. subprimulinum MG585314
L. tenuipes AJ292391

L. testudineum LT548278
L. uredinophilum Akanthomyces sp. MG948305

L. wallacei T. wallacei NR111267
Lecanicillium sp. C. militaris AF153264
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Table 1. Cont.

Species Names * ITS Sequence Used in

Lecanicillium Akanthomyces Cordyceps/Torrubiella Phylogenetic Analysis

A. aculeatus KC519371
A. coccidioperitheciatus C. coccidioperitheciata JN049865

A. kanyawimiae MF140751
A. sphingum C. sphingum AY245641

A. sulphureus Torrubiella sp. MF140756
A. thailandicus Torrubiella sp. MF140755
A. tuberculatus C. tuberculata JN049830
A. waltergamsii MF140747

* The currently used species names as inferred from the Mycobank database [14] are reported in bold.

3. Occurrence

The number of reports concerning endophytic isolates of Lecanicillium and Akanthomyces has
increased in recent years. This is due not only to the several taxonomic reassessments introducing new
species, but also to the easier access to techniques and databases for DNA sequencing, which in most
instances enable one to overcome the intrinsic difficulties of morphological identification. However,
more prompts have probably resulted by the awareness of the basic role that endophytic fungi play
on plant fitness, introducing applicative perspectives for investigations in the field. For the above
genera, literature shows a prevalence of findings concerning natural phytocoenoses (Table 2) over
those inherent crops (Table 3); even more so considering that the latter series includes a few cases of
endophytic colonization resulting after artificial inoculation in experimental work. Basically connected
with the issue of ecosystem simplification characterizing the agricultural contexts, such a difference
emphasizes the opportunity to recover the functional role of this component of the plant holobiont in
view of improving crop performances.

Table 2. Endophytic occurrence of Lecanicillium/Akanthomyces in wild contexts.

Species Host Plant Country ITS Sequence
√

Reference

A. attenuatus Astrocaryum sciophilum French Guyana MK279520 [15]
Conifer plant China MN908945 GenBank

Symplocarpus foetidus Canada KC916681 [16]
A. lecanii Ammophila arenaria Spain - [17]

Dactylis glomerata Spain AM262369 [18]
Deschampsia flexuosa Finland KJ529005 [19]

Elymus farctus Spain AM924163 [17]
Laretia acaulis Chile - [20]

Pinus sylvestris Italy KJ093501 [21]
Pinus sylvestris Poland - [22]

Shorea thumbuggaia India KJ542654 GenBank
Taxus baccata Iran KF573987 [23]

A. muscarius Acer campestre Italy MT230457 This paper
Laurus nobilis Italy - [24]

Myrtus communis Italy MT230435 This paper
Nypa fruticans Thailand MH497223 [25]
Quercus robur Italy MT230463 This paper

Akanthomyces sp. * Arctostaphylos uva-ursi Switzerland - [26]
Carpinus caroliniana USA - [27]

L. aphanocladii Ageratina adenophora China
MK304090
MK304173
MK304418

[28]

Hemidesmus indicus India MH594215 [29]

Huperzia serrata China KP689216
KP689173 [30]

Picea mariana Canada - [31]
L. fungicola Phragmites australis Korea KP017880 [32]

L. kalimantanense Zingiber officinale Indonesia - [33]
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Table 2. Cont.

Species Host Plant Country ITS Sequence
√

Reference

L. psalliotae Cerastium fischerianum Korea JX238776 [34]
Coix lachryma-jobi China KJ572167 GenBank
Magnolia officinalis China GenBank

Phoradendron perrottettii Brazil - [35]
Pinus radiata New Zealand - [36]

Sedum oryzifolium Korea KU556134 [37]
Tapirira guianensis Brazil - [35]
Triticum dicoccoides Israel - [38]

Lecanicillium sp. Artocarpus lacucha India MH700423
MH700428 GenBank

Bupleurum chinense China MG561939 GenBank
Huperzia serrata China KM513600 [30]

Liparis japonica China

KT719186
KT719187
KT719188
KT719189
KT719192

GenBank

Micrandra spruceana Peru MH267985 [39]
Microthlaspi perfoliatum Greece KT269776 [40]

Quassia indica India MH910098 GenBank
Sandwithia guyanensis French Guyana MN514023 [41]

Theobroma gileri Ecuador - [42]
√

Missing ITS accession number implies identification based on morphological characters only, or without depositing
the ITS sequence. * These strains were originally identified as Verticillium lecanii.

Table 3. Endophytic occurrence of Lecanicillium/Akanthomyces in crops.

Species Host Plant Country ITS Sequence
√

Reference

A. attenuatus Brachiaria sp. Kenya KU574698 [43]
Salvia miltiorrhiza China JX406555 GenBank

A. lecanii Cucurbita maxima Australia - [44]
Gossypium hirsutum Australia - [45]
Gossypium hirsutum Brazil - [46]
Gossypium hirsutum Texas, USA KP407570 [47]

Solanum
lycopersicum Australia - [44]

Phaseolus vulgaris Australia - [44]
Phaseolus vulgaris China - [48]

Pistacia vera Iran MF000354 [49]
Triticum aestivum Australia - [44]

Vitis vinifera Spain - [50]
Zea mays Australia - [44]

A. muscarius Brassica oleracea New Zealand - [51]
Cucumis sativus Canada - [52]
Cucumis sativus Japan - [53]
Prunus cerasus Iran KY472303 [54]

L. aphanocladii Zea mays Slovenia - [55]
L. dimorphum Phoenix dactylifera Spain - [56]
L. psalliotae Phoenix dactylifera Spain - [56]

Lecanicillium sp. Citrus limon Iran MN448344 GenBank
Vitis vinifera China MT123107 GenBank

Zea mays India - [57]
√

Missing ITS accession number implies identification based on morphological characters only, or without depositing
the ITS sequence.

Overall, Tables 2 and 3 include 65 citations of endophytic strains belonging to these two genera as
a result of a search considering literature in the field and the GenBank database. A widespread capacity
to colonize plants from heterogeneous ecological contexts is evident considering that these citations
refer to 54 species belonging to 35 botanical families. With 10 species Poaceae is the most represented
family, followed by Arecaceae and Pinaceae with three species each, and Anacardiaceae, Apiaceae,
Brassicaceae, Cucurbitaceae, Euphorbiaceae and Malvaceae with two species. The rest of the families
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(Apocynaceae, Araceae, Asteraceae, Betulaceae, Caryophyllaceae, Crassulaceae, Dipterocarpaceae,
Ericaceae, Fabaceae, Fagaceae, Lamiaceae, Lauraceae, Lycopodiaceae, Magnoliaceae, Moraceae,
Myrtaceae, Orchidaceae, Rosaceae, Rutaceae, Santalaceae, Sapindaceae, Simaroubaceae, Solanaceae,
Taxaceae, Vitaceae and Zingiberaceae) are represented by a single species.

Such a variety of hosts seems to contrast any hypothesis of host specialization, and is rather
indicative of a possible tendency to spread horizontally within the phytocoenoses. In this respect, the
recovery of A. muscarius from four woody species (Acer campestre, Laurus nobilis, Quercus robur and
Myrtus communis in two separate stands) at the Astroni Nature Reserve near Napoli, Italy ([24] and in
this paper), appears to support this ability, which may as well imply a permanent functional role in
natural ecosystems. On the other hand, indications of a constant association with crop species could be
favorable for possible applications in IPM. The limited available data only support preliminary clues
in the case of cotton (Gossypium hirsutum) where, considering the economic impact of insect pests, the
endophytic occurrence of strains of A. lecanii reported from distant countries such as Australia, Brazil
and the United States might deserve further attention.

Phylogenetic Relationships of Endophytic Strains

In the evolving taxonomic scheme outlined above, the endophytic isolates provisionally classified
as Lecanicillium sp. are to be further considered for a more definite taxonomic assignment. In this
perspective, we propose a phylogenetic analysis (Figure 1) considering strains whose sequences of
internal transcribed spacers of ribosomal DNA (rDNA-ITS) are deposited in GenBank (Tables 2 and 3),
along with official reference strains for the currently accepted species of Lecanicillium and Akanthomyces
(Table 1).

Although more DNA sequences, such as the translation elongation factor 1 alpha (TEF) and
RNA polymerase II largest subunits 1 (RPB1) and 2 (RPB2), are considered in taxonomic assessments
concerning genera in the Cordycipitaceae [12,13,25,59], provisional identification of isolates recovered
in the course of biodiversity studies is routinely done on account of ITS. Therefore only these kinds of
sequences are usually deposited in GenBank for such strains, representing the only possible marker
available for phylogenetic reconstructions.

In the absence of opportunities for a direct examination of these isolates, the phylogenetic tree
proposed in Figure 1 provides an indication for their provisional assimilation to any of the accepted
taxa in the genera Lecanicillium and Akanthomyces. A major cluster in the upper part of the tree includes
the type strains of the species of Cordyceps, Akanthomyces (except A. aranearum), and of L. nodulosum and
L. uredinophilum, which are also credited for ascription to Akanthomyces, along with all the endophytic
strains ascribed to the species A. lecanii, A. muscarius and A. attenuatus (clades A, B and C, respectively).
However, just two out of seven endophytic isolates ascribed to A. lecanii are next to the type strain
of this species, while five more isolates rather group with A. muscarius. Confirming evidence from
previous phylogenetic analyses [25,59], A. attenuatus is very close to A. muscarius, but an isolate from
the palm Astrocaryum sciophilum is displaced in clade B. Another isolate from Brachiaria sp. reported as
A. attenuatus is more distant, having L. uredinophilum as the closest relative. While these remarks cannot
be taken as an evidence of a more common endophytic occurrence of A. muscarius, they represent an
indication that at least some isolates of this species might have been misidentified as A. lecanii. This
is not surprising, considering that a previous study pointed out the difficulty of resolving species
ascription of strains previously ascribed to V. lecanii by using ITS sequences only [60].
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Figure 1. Phylogenetic tree based on maximum likelihood (ML) analysis of the rDNA-ITS sequences
deposited in GenBank for the known species (Table 1) and the endophytic strains of Lecanicillium and
Akanthomyces (in bold, Tables 2 and 3). Multiple sequence alignment comprised 592 nucleotide positions,
including gaps. The analysis was carried out using RAxML software (version 8.2.12; https://cme.h-its.
org/exelixis/web/software/raxml) for ML, PAUP (version 4.0a166; https://paup.phylosolutions.com)
for maximum parsimony (MP), and MrBayes (version 3.2.7a; https://nbisweden.github.io/MrBayes/
download.html) for Bayesian analysis. Phylogenetic tree was drawn using FigTree software (version
1.4.4; http://tree.bio.ed.ac.uk/software/figtree). Details and complete references are specified in a recent
paper [58]. Bootstrap support values ≥60% for ML and MP are presented above branches as follows:
ML/MP, bootstrap support values<50% are marked with ‘-’. Branches in bold are supported by Bayesian
analysis (posterior probability ≥95%). Simplicillium lanosoniveum CBS 704.86 (GenBank: AJ292396) was
used as outgroup reference. Main clades are indicated by colored boxes A, B, C, D, E and F.
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Interestingly, no endophytic isolates provisionally identified as Lecanicillium sp. belong to the
above major Akanthomyces cluster. Three of them are part of clade D, corresponding to the species
L. aphanocladii, which also includes two strains identified as L. psalliotae. This is acceptable since
these species and L. dimorphum have been reported in a close phylogenetic relationship in previous
analyses [6,59]. However, L. psalliotae seems somehow problematic with reference to the resolution
power of ITS, considering that it was reported as the closest relative (99.65% sequence identity at 100%
query cover) of another isolate from Microthlaspi perfoliatum [40], which is in a quite distant position in
our phylogenetic tree.

As many as seven unidentified strains cluster with L. fungicola, prevalently with the type strain of
var. aleophilum (clade E), indicating a relevant endophytic occurrence of this species, which was not
recognized so far. Another isolate reported as L. fungicola [32], deserves a more careful consideration
with reference to its basal placement. In fact, BLAST search in GenBank indicated a 100% identity with
ten strains of this species and several strains of the unrelated Simplicillium aogashimaense. The latter was
characterized in 2013 with the support of a phylogenetic analysis based on ITS only, which anyway
showed a consistent distance from L. fungicola [61]. Quite meaningfully, in our analysis the isolate in
question was placed in proximity to the outgroup (Simplicillium lanosoniveum) on which our tree was
rooted. Considering that sequences of six out of this group of ten L. fungicola strains were deposited in
GenBank before 2013, it is quite possible that original misidentification of those that might rather have
been Simplicillium strains could have determined the incorrect assignment of the more recent isolates.

Finally, three isolates (two Indian from Artocarpus lacucha and one Chinese from Vitis vinifera)
are grouped in clade F together with the type strains of the recently described L. coprophilum [11], L.
restrictum and L. testudineum [62]. A BLAST search in the GenBank database shows the first species
as the closest relative, with 100% and 99.81% ITS sequence identity for the Chinese and the Indian
isolates, respectively.

4. Implications in Crop Protection

As introduced above, so far there are few observations concerning the effects of endophytic strains
of Lecanicillium and Akanthomyces in crops. Within the limited data available so far, cotton stands out
for remarks on the endophytic occurrence of A. lecanii from independent cropping areas. In Australia
an endophytic isolate was shown to be able to colonize cotton plants ensuring protection against the
cotton aphid (Aphis gossypii) after artificial inoculation. Besides evidence from direct microscopic
examination, the ability to colonize plant tissues was confirmed by re-isolation from leaves of the
treated plants, which was successful up to 35 days after inoculation. This persistence can be taken as an
indication of an endophytic life strategy, considering that endophytic colonization enables the fungus
to become resident in a stable and nutritious insect-attracting environment. High humidity enhanced
colonization of both plants and aphids; this expected effect is relevant for the management of the cotton
aphid, which is most commonly found in the lower canopy, where humidity is high and the fungus
is more protected against the adverse effects of UV radiation from sun [63]. Moreover, contact with
conidia of A. lecanii significantly reduced the rate and period of reproduction of A. gossypii. The culture
filtrate of the fungus significantly increased mortality and reduced reproduction, while feeding-choice
experiments indicated that the aphids might be able to detect the fungal metabolites. The ethyl
acetate and methanolic fractions of culture filtrate and mycelia also caused significant mortality and
reduced fecundity [64]. Besides cotton, the same strain displayed the ability to colonize plants of
wheat, corn, tomato, bean and pumpkin after artificial inoculation of leaves, while soil inoculation was
ineffective [44].

Additional reports from cotton come from Texas [47] and Brazil, where the endophytic occurrence
of A. lecanii was detected in leaves and roots of both normal and Bt-transgenic plants [46]. Although
no aspects concerning interactions with pests were evaluated in these cases, it is meaningful that
several strains of A. lecanii were recovered in each of these three contexts, indicating a possible common
association of this species with cotton, which deserves to be more thoroughly verified.
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The adaptation of A. lecanii to exert entomopathogenicity in association with plants is well attested
by the finding that the fungus responds to volatile compounds produced by the plant during insect
feeding. Particularly, in a model based on thale cress (Arabidopsis thaliana) and the mustard aphid
(Lipaphis erysimi), compounds such as methyl salicylate and menthol were found to promote spore
germination and pathogenicity of the fungus [65,66].

Besides aphids, protective effects after systemic colonization have been demonstrated against the
red spider mite (Tetranychus urticae) in bean plants. In this case a strain of A. lecanii was reported to
spread within the plant tissues after artificial inoculation of seeds, promoting growth and impairing
survival and fecundity of the mites. These effects were even carried over the following generation of
mites fed on fresh plants [48].

Pathogenicity of A. lecanii against a wide array of noxious arthropods is integrated by antagonism
towards plant pathogenic fungi. In addition to a general antifungal activity demonstrated in vitro
against polyphagous species such as Sclerotinia sclerotiorum, Rhizoctonia solani and Aspergillus flavus [49],
possible exploitation of this double functionality has been conceived on several crops, such as coffee
where A. lecanii behaves as both a parasite of the leaf rust (Hemileia vastatrix) and a pathogen of the
green scale (Coccus viridis) [67]. The same role can be considered in crops where powdery mildews can
represent a major phytosanitary problem, such as cucurbits [68,69].

Moreover, antifungal effects could derive from stimulation of the plant defense response, as
reported for an endophytic strain able to promote such reaction against Pythium ultimum in transformed
cucumber plants [52]. Additional experimental evidence in this regard is provided by observations
carried out on the date palm (Phoenix dactylifera) where the inoculation of endophytic strains of L.
dimorphum and L. cf. psalliotae, previously reported for entomopathogenicity against the red palm scale
(Phoenicococcus marlatti) [56], induced proteins involved in plant defense or stress response. Proteins
related with photosynthesis and energy metabolism were also upregulated, along with accumulation
of a heavy chain myosin-like protein [70].

The concurrent role against plant pests and pathogens is known to operate for other Lecanicillium
and Akanthomyces species, and for non-endophytic strains of various origin, as more in detail discussed
in dedicated papers [71,72]. The need to combat multiple adversities has also prompted the evaluation
of a possible combined use of these fungi with chemical pesticides. In this respect, it has been observed
that the spread of A. lecanii in plant tissues is not affected by treatments with insecticides belonging to
several classes [73]. Moreover, substantial safety of insecticides has been reported in in vitro assays
carried out on A. muscarius, while several herbicides and fungicides were responsible for negative
effects or even suppression of mycelial growth [74]. For the latter species, in vivo observations on the
sweet potato whitefly (Bemisia tabaci) demonstrated the positive effects of association with chemical
insecticides in view of reducing their use, particularly in the greenhouse [75]. Again with reference to
application of A. muscarius for the control of B. tabaci, it is worth mentioning the synergistic effects
resulting in combined treatments with matrine, a plant-derived quinolizidine alkaloid [76].

In addition to the indirect side effects deriving from protection against biotic and abiotic adversities,
many endophytes have been reported to promote plant growth through essentially two mechanisms;
that is the release of plant hormones, or the improvement of nutritional conditions. Of course,
strains possessing both properties are likely to contribute in an additive manner, as observed for an
isolate of L. psalliotae from cardamom (Elettaria cardamomum). Besides producing indole-3-acetic acid,
this strain enhanced chlorophyll content of leaves as a likely result of release of siderophores, and
increased availability of zinc and inorganic phosphate by promoting their solubilization [77]. Release
of siderophore has also been reported for an endophytic isolate of A. lecanii from Pistacia vera [49].

5. Biochemical Factors Involved in the Tritrophic Interaction with Plants and Pests

It has been previously introduced that, at least in part, the antagonistic/pathogenic ability by
Lecanicillium and Akanthomyces strains is mediated by biochemical factors, such as enzymes and
secondary metabolites. Endophytic fungi are regarded as a goldmine of undescribed chemodiversity,
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and even diffusely reported as capable to synthesize bioactive products originally characterized from
their host plants [78]. Although it is quite reasonable that they exploit this biosynthetic potential in the
natural environment, more rigid opinions occasionally question a real role by these compounds until
their production is demonstrated in plants. Pending a solution of this diatribe through the development
of methods for ascertaining their effective release and bioactivity in plant tissues, so far research in the
field has disclosed interesting properties by species of Lecanicillium and Akanthomyces, too.

The first metabolomic studies concerning these fungi were carried out with strains of V. lecanii
before the taxonomic revision. Two isolates were found to produce 2,6-dimethoxy-p-benzoquinone,
phenylalanine anhydride, aphidicolin and dipicolinic acid, with the latter showing insecticidal effects
in bioassays on the blowfly Calliphora erythrocephala [79]. Afterwards, two more triterpenoid carboxylic
acids with alleged insecticidal properties were reported from the same source [80]. Incompletely
identified toxic products, possibly phospholipids, were extracted from another strain showing activity
against B. tabaci, the western flower thrips (Frankliniella occidentalis) and a few aphid species [81].
Anti-insectan effects against the corn earworm (Helicoverpa zea) were later reported for vertilecanin A,
the most abundant component in a group of five new phenopicolinic acid analogues [82]. Moreover,
two structurally unidentified products were extracted from two Chinese strains, displaying toxic,
ovicidal and antifeedant properties against B. tabaci [83]. Finally, the novel indolosesquiterpenes
lecanindoles A-D, with quite peculiar structures and bioactivities, were characterized from another
aphidiculous strain [84].

Later on more strains were found to produce novel compounds without a direct connection with
their entomopathogenicity. Two inactive aromadendrane sesquiterpenes, inonotins M and N, were
extracted from a strain of L. psalliotae [85]. An unidentified Lecanicillium sp. was reported to produce
lecanicillolide [86], and lecanicillones A-C, three unusual dimeric spiciferones with an acyclobutane
ring displaying moderate cytotoxic effects [87]. More interesting inhibitory effects on tube formation
by endothelial cells, implying antiangiogenic properties, were reported for the decalin polyketide
11-norbetaenone, from a strain of L. antillanum [88].

Besides novel compounds, investigations on these fungi have also disclosed the production of
well-known bioactive metabolites. A strain of L. psalliotae was found to produce oosporein, a common
product of Beauveria spp., which displayed strong inhibitory activity against the potato late blight
fungus (Phytophthora infestans) [89]. Likewise, several cyclic depsipeptides have been reported from
miscellaneous isolates. The list includes eight destruxin analogues, well-known secondary metabolites
of M. anisopliae, by strain KV71 of L. longisporum (the active principle of the mycoinsecticide Vertalec) [90];
bassianolide, previously reported from B. bassiana, from A. lecanii [91], and the antifungal verlamelins
A-B, previously known from Simplicillium lamellicola, from an unidentified Lecanicillium strain [92].
Finally, stephensiolides C, D, F, G and I, originally characterized from a gram-negative bacterium
(Serratia sp.) symbiotic with a mosquito (Anopheles stephensi), have been recently detected in the culture
extract of an endophytic Lecanicillium sp. as the bioactive principles responsible for antibacterial
activity against methicillin-resistant S. aureus [41]. Inhibitory properties against the same bacteria,
along with cytotoxicity on human lung fibroblast cells, were ascribed to cyclic depsipeptides contained
in the culture extracts of a strain of A. attenuatus [15].

Antibiotic effects against S. aureus were also reported for akanthomycin, extracted from cultures
of Akanthomyces gracilis together with the closely related pyridine alkaloids 8-methylpyridoxatin
and cordypyridone C [93]. Additional findings from Akanthomyces novoguineensis concerning the
akanthopyrones [94], akanthol, akanthozine, butanamide and oxodiazanone derivatives [95] are not
to be further considered in this review by reason that this species is now classified in the genus
Hevansia [14].

This concise analysis of the pertinent literature, mostly made of independent or occasional
findings, highlights the importance of carrying out more systematic work on the metabolomics of
members of Lecanicillium and Akanthomyces. In fact, a thorough revision could ascertain whether some
compounds eventually represent biochemical markers for selected species, and which products are
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effectively associated with the expression of pathogenicity towards insects, nematodes and spiders,
as well as with antagonism/mycoparasitism against plant pathogens. In this respect, an interesting
hypothesis has been advanced concerning the above-mentioned dipicolinic acid, which is known to
act as a prophenoloxidase inhibitor and an immunosuppressive agent in insects. After its concomitant
detection as a product of several entomopathogenic species belonging to the Hypocreales, including
A. muscarius, it has been advanced that the acquired ability to synthesize this compound might have
shaped evolution of these fungi from mere plant associates to the more specialized lifestyle as arthropod
pathogens [96].

Literature on enzyme production by endophytic strains of Lecanicillium and Akanthomyces is more
limited. Chitinolytic enzymes are not only necessary to these fungi to penetrate cuticle of insects,
nematodes or spiders, but they are also involved in the activation of the disease response by the plant
and induction of systemic resistance [97–99]. The same function may also be played by other enzyme
complexes, such as proteases and β-glucanases, which are known to integrate the enzymatic profile
of many endophytes [100–102]. Besides directly affecting survival and fecundity of the green peach
aphid (Myzus persicae) in a concentration-dependent manner, a protein characterized from a strain of A.
lecanii was found to concomitantly induce upregulation in tomato plants of genes associated to the
salycilate and jasmonate pathways, which are involved in the systemic response to biotic stress [103].

6. Future Perspectives

As a likely heritage of old investigational schemes, there is a cultural propensity in research
projects and reports to refer to plant-associated microorganisms within the boundaries of functional
categories. However, it is increasingly evident that many endophytic fungi are eclectic and possess
a multifaceted connotation enabling them to perform several more or less interconnected beneficial
roles in the symbiotic relationship with their host plants. Such a revised concept particularly applies to
species of Lecanicillium and Akanthomyces, which should not be merely regarded as entomopathogenic
fungi anymore.

Strains of the species A. lecanii, A. muscarius, A. attenuatus and A. longisporus are already used as
the active ingredients of several mycoinsecticides [72]. Although their inclusion in IPM appears to be
an obvious approach, a more efficient employment should be pursued in light of the body of evidence
disclosed by recent experimental work that, besides killing pests as a result of inundative treatments,
the endophytic establishment of these fungi may have further relevance on plant fitness. That is a clear
antagonistic role against plant pathogens, the capacity to stimulate plant defense reactions and various
plant growth promoting effects.

These valuable properties, shared with other species of Lecanicillium and Akanthomyces, make it
advisable to carry out extensive investigations in crops to verify the natural endophytic occurrence,
and to increase our knowledge on ecology of these fungi. Particularly relevant is gathering additional
information on the production in plants of the biochemical factors, which possibly play a role in
regulating the tritrophic relationship with the host and its pests/pathogens.

At the same time it is fundamental to assess whether their endophytic establishment is possible
following artificial introduction. In this respect, inoculation methods (foliar spraying, soil drenching,
seed soaking, and injections) are crucial for an enduring survival within plant tissues, and their
compliance should be more accurately evaluated [104]. Particularly in crops where these fungi can
exert a positive impact, additional observations are appropriate to verify whether their distribution
pattern is localized or systemic. Actually, a great challenge for considering endophytic fungi as
a strategy in plant protection is to manage their reproducible introduction into crops, and to predict
the outcome. As well, the effectiveness of this attractive phytosanitary tool needs to be proven in the
field to stimulate growers to adopt it in view of gaining clear economic benefits.
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Abstract: Waste-based fertilizers provide an alternative to fertilizers made from non-renewable
phosphate rock. Fungal communities colonizing the grain of spring wheat fertilized with preparation
from sewage sludge ash and dried animal blood (Rec) and the same fertilizer activated by Bacillus
megaterium (Bio) were evaluated against those resulting from superphosphate (SP) and no phosphorus
(control, C0) treatments. The Illumina MiSeq sequencing system helped to group fungal communities
into three clades. Clade 1 (communities from C0, Bio 60 and 80, Rec 80 and SP 40 kg P2O5 ha−1

treatments) was characterized by a high prevalence of Alternaria infectoria, Monographella nivalis and
Gibberella tricincta pathogens. Clade 2 (Bio 40 kg, Rec 40 and 60 kg, and SP 60 kg P2O5 ha−1) was
characterized by the lowest amount of the identified pathogens. Commercial SP applied at 80 kg
P2O5 ha−1 (clade 3) induced the most pronounced changes in the fungal taxa colonizing wheat grain
relative to non-fertilized plants. The above was attributed mainly to the lower amount of A. infectoria
and higher counts of species of the family Nectriaceae, mostly epiphytic pathogens Fusarium culmorum
and Fusarium poae.

Keywords: Alternaria; Fusarium; Illumina MiSeq; secondary raw materials

1. Introduction

Spring wheat (Triticum aestivum L.) is infected by several dozens of pathogenic fungi. Species
such as Mycosphaerella graminicola, Pyrenophora tritici-repentis, Tilletia caries, and Ustilago tritici, as well
as numerous species of the genus Fusarium are the most dangerous pathogens of wheat that are
transmitted with grain [1]. Fungal species of the genera Alternaria, Cladosporium, and Epiccocum
are regarded as weak pathogens or saprotrophs [2]. Research has demonstrated close interactions
between plants and microbes [2]. Wheat grain is infected by fungal pathogens, but it is also colonized
by non-pathogenic fungi which inhibit the proliferation of pathogens and promote the growth and
development of wheat plants [3,4]. The interactions between these fungal groups determine grain
health and improve the consumer value of grain by reducing its mycotoxin content [3,5,6]. Growing
conditions and nutrient availability can exert both positive and negative effects on the occurrence of
pathogenic and non-pathogenic fungi [5–7].

Phosphorus is essential for root growth, healthy development of stems and ears, a desirable
growth rate, high yield and quality, and resistance to abiotic and biotic stress factors [8]. Among
the latter, fungal pathogens deserve special attention. A high supply of plant-available phosphorus
has been linked with increased levels of fungistatic components, such as phenolic compounds and
flavonoids, in different plant parts [9]. The indirect effect of phosphorus on increased plant growth
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seems to outweigh the direct effect of fungi by increasing the synthesis of phenolic compounds
which contribute to resistance against fungal pathogens [10]. Since the natural amount of available
phosphorus in arable soils does not fully cater to the nutritional needs of plants [11], crops have to be
fertilized [12]. Phosphate rock is the raw material for the production of phosphorus fertilizers [13]
which are indispensable in modern agriculture [14].

Rational phosphorus management poses a contemporary global challenge [15–17]. Primary
sources of phosphorus are being massively wasted in the production process and it is estimated
that only 20–25% of mined phosphorus reaches the produced food [17]. The above raises significant
concerns about the availability of phosphorus for agriculture in the future [16]. Global phosphorus
resources have not yet reached critical levels [18], but they are undeniably limited and non-renewable.
Phosphate rock is distributed unevenly around the world [18] and many countries are dependent on
phosphorus imports [19]. This problem applies to the European Union, which has recently added
phosphate rock to the list of 20 critical raw materials [20].

Recycled phosphorus provides an alternative to non-renewable phosphate rock deposits [14].
The most abundant secondary sources of phosphorus include sewage and sludge from municipal
and industrial wastewater treatment plants [21,22] and waste products from the meat processing
industry [23].

Unprocessed phosphorus compounds from both primary and secondary sources are characterized
by low solubility [24]. Fertilizer efficiency can be improved through the use of phosphorus solubilizing
microbes (PSMs) which transform insoluble phosphorus compounds (PO4

3−) into highly bioavailable
forms (HPO4

2− and H2PO4
−) [4,25,26]. PSMs are a natural component of the soil edaphon [11].

Bacillus megaterium is one of the most effective PSMs [27]. These bacteria solubilize phosphorus
by producing weak organic acids (gluconic, lactic, acetic, and succinic) [28]. Through solubilization
and other biological mechanisms, PSMs can also act as plant growth-promoting microorganisms
(PGPMs) [25,29]. It could be expected that by solubilizing phosphorus from soil and fertilizers, PSMs
could contribute to a reduction in the fertilizer rate. The production of phosphorus biofertilizers
from cheap renewables resources by PSMs promotes sustainable phosphorus management [16] and
contributes to a circular economy [30].

Research into the production of phosphorus biofertilizers has been conducted by a Polish scientific
consortium established by the Wrocław University of Science and Technology, the New Chemical
Syntheses Institute in Puławy, and the University of Warmia and Mazury in Olsztyn [31]. Innovative
biofertilizers are expected to deliver similar yield-forming effects to chemical fertilizers and to guarantee
the safety of the produced crops. One of the most recent research concepts postulates the use of sewage
sludge ash, dried animal blood, and B. megaterium in the production of biofertilizers.

This research aimed to determine the effect of the fertilizers produced from sewage sludge ash
and dried animal blood on the species composition and structure of fungal communities colonizing
wheat grain. The recycled fertilizer (Rec) and biofertilizer (Bio), i.e., Rec activated by B. megaterium,
were assessed against commercial superphosphate. Mycological analyses were conducted using
culture-dependent methods based on fungal sporulation as well as next-generation sequencing in the
Illumina MiSeq system.

2. Materials and Methods

2.1. Field Experiment

A field experiment was carried out in 2016 in Bałcyny (Poland, 53◦60′N, 19◦85′ E). The experimental
plant was spring wheat (Triticum aestivum ssp. vulgare) cv. Monsun sown on 21 April at 450 plants m−2,
at a depth of 3–4 cm, at a row spacing of 15 cm.

The experimental factor was phosphorus fertilization (Table 1). Granular recycled phosphorus
fertilizer (Rec) and biofertilizer (Bio) were compared with commercial superphosphate (SP; Gdańskie
Zakłady Nawozów Fosforowych Fosfory Sp. z o.o., Gdańsk, Poland). Phosphorus fertilizers were
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applied before sowing at 40, 60, and 80 kg P2O5 per ha. The fertilizers from recyclables (Rec and Bio)
were produced by the New Chemical Syntheses Institute in Puławy based on the formula developed
by the Department of Advanced Material Technologies of the Wrocław University of Science and
Technology. Sewage sludge ash was obtained from the Łyna Municipal Wastewater Treatment Plant
in Olsztyn, and dried animal blood was obtained from the meat industry. The bacterial strain of
B. megaterium was obtained from the Polish Collection of Microorganisms of the Institute of Immunology
and Experimental Therapy of the Polish Academy of Sciences in Wrocław (Poland). The procedure of
obtaining fertilizer formulations was described by Rolewicz et al. [32].

Table 1. Elemental composition of phosphorus fertilizers.

P-Fertilizer
P2O5 Rate,

kg ha−1
Treatment

Symbol
Fertilizer Characteristics

(Elemental Composition of Fertilizers)

Control 0 C0 No P fertilization

Superphosphate
40 SP40 FosdarTM40 commercial superphosphate fertilizer

(P2O5 40%; CaO 10%; SO3 5%; trace presence: Fe, Zn,
Cu, B, Co, Mn, Mo) 1

60 SP60
80 SP80

Recycled fertilizer

40 Rec40
Granular fertilizer made from ash from the
incineration of biological sewage sludge (third level
of treatment), and dried animal blood (P2O5 19.9%;
N 2.89%; K2O 1.31%; CaO 18.71%; MgO 2.56%; SO3
1.40%; C 13.92%, Fe 27 g kg−1; Al 23.8 g kg−1;
Zn 3.14 g kg−1; As 31.39 mg kg−1; Cd < LD; Cu
777.7 mg kg−1; Ni 54.78 mg kg−1, Pb 19.91 mg kg−1;
B 71.27 mg kg−1; Ba 349.6 mg kg−1; Co 14.02 mg kg−1;
Mn 561.7 mg kg−1; Mo 35.31 mg kg−1) 2

60 Rec60

80 Rec80

Recycled biofertilizer

40 Bio40

Granular biofertilizer made from sewage sludge ash
(as above), dried animal blood, and cultured Baccilus
megaterium (P2O5 21.9%C; N 2.87%; K2O 1.40%; CaO
20.51%; MgO 2.82%; SO3 1.40%; C 13.92%; Fe
29.0 g kg−1; Al 25.5 g kg−1; Zn 3.29 g kg−1;
As 19.99 mg kg−1; Cd 0.345 mg kg−1;
Cu 850.1 mg kg−1; Ni 62.65 mg kg−1.
Pb 21.76 mg kg−1; B 74.12 mg kg−1; Ba 381.5 mg kg−1.
Co 16.19 mg kg−1; Mn 609.4 mg kg−1;
Mo 23.75 mg kg−1)2

60 Bio60

80 Bio80

1 according to the information provided on the label, 2 according to the Department of Advanced Material
Technologies of the Wrocław University of Science and Technology, LD—level of detection.

The field experiment had a randomized block design with four replications. The experimental
plots had an area of 20 m2 each. Winter oilseed rape was the preceding crop. In addition to phosphorus
fertilization, wheat in all plots was fertilized with nitrogen at 130 kg N ha−1 (34% ammonium nitrate,
Grupa Azoty Puławy, Poland) and potassium at 100 kg K2O ha−1 (60% potash salt, Luvena, Luboń,
Poland). Potassium was applied at a single rate before sowing, and nitrogen was split into three
applications: 60 kg before sowing, 50 kg in the stem elongation stage (BBCH 30) [33], and 20 kg in the
heading stage (BBCH 55).

Wheat was protected against diseases, weeds, and pests (Table 2) and was harvested with a plot
harvester on August 12.
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Table 2. Plant protection treatments applied in the field experiment.

Pesticide Type
Trade Name

(Manufacturer)
Active Ingredient (g dm−3) Rate (dm3 ha−3) Application Time

Herbicides Mustang 309 SE
(Dow AgroSciences 1)

Florasulam (6.25) + 2,4-D
(300)

0.5 Flag leaf stage
(BBCH 39; 29 May)

Fungicides Yamato 303 SE
(Sumi Agro 1)

Thiophanate-methyl (233) +
Tetraconazole (70)

1.5 Early boot stage
(BBCH 41; 9 June)

Amistar 250 SC
(Syngenta 1)

Azoxystrobin (250) 0.8 End of flowering
(BBCH 69; 8 July)

Insecticides Karate Zeon 050 CS
(Syngenta 1)

Lambda-cyhalothrin (50) 0.1 Early boot stage
(BBCH 41; 6 June)

1 Warsaw, Poland.

2.2. Soil and Meteorological Conditions

Wheat was grown on luvisol [34] formed from sandy clay loam. The arable layer was slightly
acidic (average pH of 6.28 in 1 M KCl). At the beginning of the experiment in 2016, soil contained
8.53 g kg−1 C, 1.42 g kg−1 N, 2975 mg kg−1 K, and 607 mg kg−1 P (total content). Soil phosphorus
content after spring wheat harvest is presented in Table 3.

Table 3. Total P content of soil after spring wheat harvest (mean ± standard error).

P-Treatment Total P, mg kg−1

C0 540.3 ± 5.9

SP40 590.7 ± 18.1
SP60 603.1 ± 9.7
SP80 612.9 ± 23.9

Rec40 604.3 ± 4.7
Rec60 613.2 ± 11.9
Rec80 626.3 ± 36.6

Bio40 597.4 ± 17.7
Bio60 611.2 ± 16.4
Bio80 621.5 ± 13.7

Abbreviations are explained in Table 1.

Mean annual precipitation was 62.5 mm, with 66.3 mm in June, 138.6 mm in July, 71.9 mm in
August, and 17.1 mm in September. Mean annual temperature was 8.8 ◦C, and the mean monthly
temperature ranged from −3.8 ◦C in January to 18.5 ◦C in July.

2.3. Isolation of Fungi from Grain

Grain was harvested in the over-ripe stage (BBCH 92) with a plot harvester on 12 August 2016.
Fungal colonization of grain was analyzed, and fungal DNA was isolated immediately after harvest.
Grain samples of 10 g each were placed in 250 cm3 flasks containing 90 cm3 of sterile water and
0.01 cm3 of Tween®40 (Merck, Darmstadt, Germany). The flasks were shaken for 60 min on an Elpin
Plus 358 S table shaker (180 rpm, Elpin Plus, Lubawa, Poland) to remove microorganisms from grain.
Using a pipette, 0.1 cm3 of the propagule suspension was transferred to Petri plates with a diameter of
9 cm and flooded with selective Martin medium [35] cooled to 42 ◦C. The experiment was conducted
in four replications. Yeasts and filamentous fungi cultured on the Martin medium were incubated at
24 ◦C in darkness for 7 days (En 120 Incubator, Nuve, Ancara, Turkey). Yeast and fungal colonies were
counted on plates, and different colonies of filamentous fungi were transferred to Petri plates filled
with potato dextrose agar (PDA, Merck, Warsaw, Poland) for species identification under a microscope.
The number of colony forming units (CFUs) was log-transformed (CFU+1). One hundred disinfected
and non-disinfected kernels from each treatment were placed on PDA. Kernels were disinfected by
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immersion in 1% sodium hypochlorite (NaOCl, ABO, Gdańsk, Poland) solution for 5 min and they
were then rinsed three times in sterile water and dried on blotting paper. Colonies of filamentous
fungi were identified at the species level based on the sporulation characteristics described in the
literature [36,37].

2.4. Isolation of Fungal DNA and PCR Amplification

Fungal DNA was isolated directly from grain with the Bead-Beat Micro AX Gravity Kit
(A&A Biotechnology, Gdynia, Poland) according to the manufacturer’s protocol. The quantity and
quality of the isolated DNA were tested by measuring absorbance at 260 and 280 nm (NanoDrop
2000, Thermo Scientific, Wilmington, DE, USA). A metagenomic analysis of the fungal community
was carried out in the ITS2 hypervariable region. The selected region was amplified and the library
was prepared with the use of three specific primer sequences: fITS7 (GTGARTCATCGAATCTTTG),
ITS4 (TCCTCCGCTTATTGATATGC) and an additional adapter sequence at the 5’ end. PCR was
conducted with the Q5 Hot Start High-Fidelity 2X Master Mix under the conditions recommended by
the manufacturer. The Nextera Index Kit was used to add specific index adapter sequences to both
ends of the analyzed DNA fragment.

2.5. Illumina MiSeq Sequencing

The samples were sequenced in the Illumina MiSeq system (Poland) in paired-end (PE) mode,
2 × 250 nt, with the Illumina v2 kit (Genomed S.A., Warsaw, Poland). A preliminary analysis of the
results was performed automatically in the MiSeq system with MiSeq Reporter (MSR) v2.6 software
(Illumina, USA). The analysis was conducted in two steps: (1) automatic demultiplexing of samples,
and (2) generation of fastq files with raw read data. A bioinformatics analysis with operational taxonomic
unit (OTU) picking was conducted in the QIIME (Quantitative Insights Into Microbial Ecology) program
based on the reference sequences in UNITE v7 [38]. The bioinformatics analysis was conducted in
the following steps: (1) analysis of read quality and removal of low-quality sequences (quality < 20,
minimal length—30)—cutadapt, (2) joining pair-ended sequences—fastq-join, (3) clustering based on a
selected database of reference sequences—uclust, (4) removal of chimeric sequences with the usearch61
algorithm [39], and (5) taxonomic identification based on the UNITE-BLAST [40].

2.6. Statistical Analysis

The analysis of variance (ANOVA) was performed in the Statistica 13 program [41]. The significance
of differences between mean values was determined by the Newman–Keuls test or Tukey’s test (p< 0.01).
The taxonomic status of fungi obtained by sequencing in the Illumina MiSeq system was presented
in heat maps for each product [42]. Hierarchical cluster analysis was carried out on ln-transformed
DNA data for OTU 1–10. The Ward clustering method [43] was used based on a dissimilarity matrix
representing Euclidean distances between OTUs relative to their prevalence in seed samples of different
origin. To examine the correlations between OTUs more closely, the DNA data for OTU 1–10 were
subjected to principal component analysis (PCA), and the results were visualized in a biplot.

3. Results

3.1. Fungal Colony Counts on Wheat Grain

Five pathogenic species of the genus Fusarium (F. culmorum, F. poae, F. graminearum, F. avenaceum
and F. solani), species of the genus Alternaria (Alternaria sect. alternata and Alternaria sect. infectoriae)
and, sporadically, Pyrenophora- tritici-repentis and Rhizoctonia cerealis were isolated from wheat grain
(Table 4). The CFUs of epiphytic Alternaria spp. were significantly higher in nearly all grain samples
(excluding grain from treatments fertilized with SP60, Rec60, and Rec80) relative to control grain
(C0) where the above pathogen was not detected. The colony counts of Alternaria spp. were highest
in wheat kernels from treatments supplied with the biofertilizer (Bio40). Fusarium culmorum and
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F. graminearum were detected in eight out of the 10 analyzed grain samples. Fusarium culmorum was
the predominant species in treatments with the highest rate of the commercial fertilizer. The colony
counts of F. graminearum were significantly higher in treatments supplied with the biofertilizer (Bio40,
60, and 80), Rec80, and SP60 than in the control treatment. The pathogenic species P. tritici-repentis and
R. cerealis were identified only in the Bio80 treatment.

Table 4. Pathogens contaminating wheat grain.

P-Treatment

Alternaria
spp.

Fusarium
culmorum

Fusarium
poae

Fusarium
graminearum

Fusarium
avenaceum

Fusarium solani
Species Complex

Other 1

Log (CFU + 1) per 1 g of grain

C0 0 d 0 c 1.28 a 0.35 bc 0 c 0 0 b

SP40 1.23 abc 0.84 abc 0 b 0.94 ab 0.35 bc 0 0 b

SP60 0.44 cd 0 c 1.42 a 1.19 a 0 c 0 0 b

SP80 1.38 abc 1.57 a 0 b 0.35 bc 0 c 0 0 b

Rec40 1.23 abc 1.04 ab 0 b 0 c 0 c 0 0 b

Rec60 0.35 d 0.69 abc 0 b 0 c 0 c 0 0 b

Rec80 0.44 cd 0.35 bc 0 b 1.43 a 0 c 0.44 0 b

Bio40 1.64 a 0.88 abc 0 b 1.49 a 0.69 ab 0 0 b

Bio60 1.03 abc 1.19 ab 0 b 1.33 a 0 c 0 0 b

Bio80 1.48 a 0.35 bc 0 b 1.40 a 1.04 a 0 1.14 a

1 Pyrenophora tritici-repentis, Rhizoctonia cerealis. Values in columns that did not differ significantly in the
Newman–Keuls test (p < 0.01) are marked with identical letters; values not marked with letters do not differ
significantly (abbreviations are explained in Table 1).

The most prevalent non-pathogenic fungi were yeasts (2.34–2.87 Log(CFU + 1)) and Mycosphaerella
tassiana (2.05–2.71 Log(CFU + 1)) (Table 5). Yeast counts were significantly higher on grain harvested
from treatments fertilized with Bio40 and Bio80 in comparison with the SP80 treatment. Species of the
genus Acremonium were also relatively abundant in all analyzed grain samples. The colony counts
of Penicillium spp. were significantly higher in treatment SP80 than in the control treatment (C0).
The method of isolation from non-disinfected grains allowed to detect huge yeast communities and six
species of pathogenic fungi.

Table 5. Non-pathogenic fungi colonizing wheat grain.

P-Treatment
Yeasts

Mycosphaerella
tassiana

Acremonium
spp.

Mucor spp.
Aspergillus

spp.
Penicillium

spp.

Log (CFU + 1) per 1 g of grain

C0 2.58 ab 2.41 abc 1.55 abc 0 0.44 ab 0 b

SP40 2.55 ab 2.56 abc 1.76 abc 0.34 1.04 a 0 b

SP60 2.64 ab 2.33 c 1.84 abc 0 0.35 b 0 b

SP80 2.34 b 2.05 c 0.94 c 0 0 b 2.21 a

Rec40 2.75 ab 2.20 c 1.97 ab 0 0 b 0 b

Rec60 2.62 ab 2.71 a 1.38 abc 0 0 b 0 b

Rec80 2.79 ab 2.35 c 2.33 a 0 0 b 0 b

Bio40 2.84 a 2.56 abc 1.18 bc 0 0 b 0 b

Bio60 2.79 ab 2.64 ab 2.34 a 0 0 b 0 b

Bio80 2.87 a 2.54 abc 1.92 ab 0 0.35 b 0 b

Values in columns that did not differ significantly in the Newman–Keuls test (p < 0.01) are marked with identical
letters; values not marked with letters do not differ significantly (abbreviations are explained in Table 1).

3.2. Percentage of Pathogenic and Saprotrophic Fungi Colonizing Grain on PDA

Dark fungal colonies of the genus Alternaria were prevalent on non-disinfected kernels cultured
on PDA, and they were identified in 14.81% of grain samples from treatments SP80 and Rec40 to 27.78%
of grain samples from treatment Rec80 (Table 6). Fusarium fungi were encountered most frequently
on kernels from plots fertilized with superphosphate (SP) and control plots (C0). Four Fusarium
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species—F. avenaceum, F. graminearum, F. poae, and F. sporotrichioides—were identified on 14.82% of
control kernels. Three Fusarium species were also abundant on grain samples from treatments supplied
with the commercial phosphorus fertilizer (14.82% in treatment SP40, 12.96% in treatments SP60 and
SP80). The second method of isolation from disinfected grain appeared to yield more Fusarias.

Table 6. Percentage of non-disinfected wheat grain colonized by epiphytic fungi.

P-Treatment
Alternaria

spp.
Fusarium

avenaceum
Fusarium

graminearum
Fusarium

poae
Fusarium

sporotrichioides
Epicoccum

nigrum
Botrytis
cinerea

C0 20.37 5.56 1.85 5.56 1.85 1.85 0
SP40 16.67 5.56 0 1.85 7.41 0 1.85
SP60 24.07 1.85 0 3.70 7.41 0 0
SP80 14.81 3.70 3.70 5.56 0 1.85 1.85
Rec40 14.81 1.85 0 5.57 1.85 3.70 0
Rec60 25.93 3.70 0 0 3.70 0 0
Rec80 27.78 0 1.85 3.70 1.85 0 0
Bio40 25.93 0 0 1.85 3.70 0 0
Bio60 22.22 0 0 1.85 0 5.56 0
Bio80 20.37 0 0 3.70 0 0 0

No significant differences between treatments (abbreviations are explained in Table 1).

The percentage of disinfected kernels contaminated with fungi of the genus Alternaria ranged from
18.52% (SP60, Bio40) to 31.48% (Rec40) (Table 7). Fusarium fungi colonized less than 4% of disinfected
kernels. The only exception was disinfected grain from treatment Bio40 which was colonized by
F. sporotrichioides at 5.56%.

Table 7. Percentage of disinfected wheat kernels colonized by endophytic fungi.

P-Treatment
Alternaria

spp.
Fusarium

avenaceum
Fusarium

graminearum
Fusarium
oxysporum

Fusarium
poae

Fusarium solani
Species Complex

Fusarium
sporotrichioides

Epicoccum
nigrum

Botrytis
cinerea

C0 27.78 0 3.70 0 1.85 0 0 b 1.85 0
SP40 24.07 1.85 1.85 0 0 0 1.85 ab 1.85 1.85
SP60 18.52 0 0 1.85 0 1.85 0 b 0 1.85
SP80 22.22 3.70 0 1.85 0 0 0 b 0 0
Rec40 31.48 3.70 0 0 0 1.85 0 b 0 0
Rec60 29.63 0 0 0 3.70 0 0 b 0 0
Rec80 29.63 1.85 0 0 0 0 1.85 ab 0 0
Bio40 18.52 0 0 0 0 0 5.56 a 1.85 0
Bio60 25.93 0 0 0 1.85 0 0 b 0 0
Bio80 24.07 1.85 1.85 0 1.85 0 1.85 ab 0 0

Values in columns that did not differ significantly in Tukey’s test (p < 0.01) are marked with identical letters; values
not marked with letters do not differ significantly (abbreviations are explained in Table 1).

3.3. Structure and Composition of Fungal Communities

The biodiversity of fungal communities was analyzed by next-generation sequencing in the
Illumina MiSeq system. The sequence of the ITS region was compared with the sequences from
the UNITE-BLAST database to reveal that fungi of the phylum Ascomycota predominated in all
grain samples and accounted for 91.99% (Bio40) to 98.92% of OTUs (Rec40). Fungi of the phylum
Basidiomycota accounted for 0.38% (Rec60) to 1.7% (SP60) of sequence reads. Species of the genus
Alternaria, family Pleosporaceae, order Pleosporares, class Dothideomycetes accounted for 58.06%
(SP80) to 95.35% (Rec60) of reading frames in the ITS2 region. A very high percentage of Alternaria
fungi were classified as A. infectoria (43.41–92.79%), whereas only 2.43–16.3% were identified as
A. betae-kenyensis (Figure 1).

Fungi of the genus Gibberella, family Nectriaceae, order Hypocreales were identified in all grain
samples (Table 8, Figure 1). They were represented mainly by the pathogenic species Gibberella tricincta
which was most abundant in grain samples from treatments SP80 (4.5% OTUs), Bio60 (4.5%), and Bio80
(5.48%). Grain samples from treatments C0, SP60, and Bio40 were also colonized by unidentified
Gibberella species. Unidentified pathogenic species of the genus Fusarium (family Nectriaceae) were
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identified in grain samples from treatments SP40 and Bio40. The pathogenic species Monographella nivalis
of the order Xylariales, class Sordariomycetes was detected in seven grain samples, excluding samples
from treatments SP40, Rec40, Rec60. Monographella nivalis accounted for 11% reading frames in control
grain (C0). The pathogenic species P. tritici-repentis of the family Pleosporaceae, order Pleosporales,
class Dothideomycetes was detected in grain from treatments Rec40 (1.73% OTUs), Rec80 (3.33%
OTUs), Bio40 (2.41% OTUs), Bio60 (5.89% OTUs), and Bio80 (2.46% OTUs). A metagenomic analysis
also demonstrated the presence of biotrophic species of the genus Ustilago, family Ustilaginaceae,
order Ustilaginales, class Ustilaginomycetes, phylum Basidiomycota (Table 8, Figure 1). These fungi
were identified only on grain from treatment Rec80 (0.41% OTUs). Fungi of the genus Ustilago cannot
be isolated on synthetic media in a laboratory. The saprotrophic species M. tassiana of the family
Mycosphaerellaceae, order Capnodiales, class Dothideomycetes colonized seven out of the 10 analyzed
grain samples, and it accounted for 0.6% (Rec60) to 8% (Bio80) of reading frames. Unidentified species
of the genus Mycosphaerella represented 1.6% (SP80), 0.6% (Bio40), and 1% (Bio60) of reading frames.

(a) 

Figure 1. Cont.
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Figure 1. Heat map of operational taxonomic units (OTUs) in each experimental unit, classified
at the class, order, family, genus, and species level (abbreviations are explained in Table 1).
Red corresponds to high amount and green to low amount. Scale: −0.4—>5.6% OTUs, 0.1—5.7–12.6%
OTUs, 0.6—12.7–27.6% OTUs, 1.1—27.7–49.8% OTUs, 1.6—49.9–58.0% OTUs, 2.1—58.1–68.2% OTUs,
2.6—68.3–93.6% OTUs, and 3.1—<93.7% OTUs. Dendrogram from hierarchical cluster analysis (Ward
method using a dissimilarity matrix of Euclidean distances) on ln-transformed DNA-data of OTU 1 to
OTU 10 combined for (a) fungi and (b) type of phosphorus fertilizers.

Table 8. Structure of fungal genera in wheat grain (percentage of OTUs).

Phylum Class Order Family Genus C0 * SP40 SP60 SP80 Rec40 Rec60 Rec80 Bio40 Bio60 Bio80

Ascomycota

Dothideomycetes Pleosporales Pleosporaceae

Alternaria 67.58 78.49 83.75 49.99 89.68 95.35 66.21 81.5 70.61 71.05
Pyrenophora 0.33 0 0.54 2.59 1.73 0 3.33 2.41 5.89 2.46

Bipolaris 0 1,7 0 0 0 0 0 0 0 0
Stemphylium 0 0 0 5.12 0 0 0 0 0 0

Capnodiales Mycosphaerellaceae Mycosphaerella 2.15 1.22 1.49 1.64 1.11 0.61 5.58 0.66 1.01 8.23

Sordariomycetes

Xylariales Amphisphaeriaceae Monographella 11.97 0 1.82 4.17 0.88 0.27 7.14 2.57 2.85 0

Hypocreales Nectriaceae
Gibberella 1.6 1.22 0.94 4.5 3.06 0.62 2.9 0.62 4.45 5.49
Fusarium 0 0.56 0 0 0 0 0 0.76 0 0

Cordycipitaceae Lecanicillium 0 0.5 0 0 0 0 0 0 0 0.23

Leotiomycetes Helotiales Sclerotiniaceae Botrytis 0 0 0 0 0 0.08 0 0 0 0

Basidiomycota
Tremellomycetes Filobasidiales Filobasidiaceae Filobasidium 0 0 0 0 0 0 0 0 0 0.19

Ustilaginomycetes Ustilaginales Ustilaginaceae Ustilago 0 0 0 0 0 0 0.41 0 0 0
Anthracocystis 0.76 0 0.72 0 0.34 0.11 0 0 0 0

*—abbreviations are explained in Table 1.

The fungal community colonizing wheat grain from the treatment fertilized with superphosphate
(clade 3, SP80) differed from the fungal communities identified in the remaining treatments (Figure 1).
This difference was attributed to the lower amount of A. infectoria, sporadic appearance of Stemphylium
herbarum, and higher amount of species of the family Nectriaceae. Fungal communities from the
remaining treatments were grouped in two clades. Clade 1 was composed of fungal communities
from treatments C0, Rec80, SP40, Bio60, and Bio 80, and clade 2 comprised fungal communities from
treatments SP60, Rec40, Rec60, and Bio40. Clade 1 was characterized by a high frequency of A. infectoria
and M. nivalis (C0, Rec80), and G. tricincta (Bio60, Bio80). The identified pathogens were less abundant
in the communities forming clade 2. The method of next-generation sequencing in the Illumina MiSeq
system allowed to identify of rare species and biotrophic fungi unable to grow on agar media.

The applied phosphorus fertilization modified the amount of fungal genera, as demonstrated
by the PCA biplot (Figure 2). Treatments Rec40, Bio40, and Bio60 were grouped closest to the Tukey
median (in the bagplot), and treatments SP60, SP80, Rec60, and Rec80 were located further away (in the
bagplot cover region). An analysis of the PCA biplot revealed that the control treatment was separated
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by a significant distance from the Tukey median, and it was located in the opposite direction from
treatments SP40 and Bio80.

 

Figure 2. Principal component analysis (PCA) biplot of the microbiome in wheat grain based on fungal
genera. The dark blue square denotes the Tukey median, the blue square is the bagplot, the light
blue square is the bagplot cover. Alt—Alternaria spp., Pyr—Pyrenophora spp., Myc—Mycosphaerella
spp., Ant—Anthracocystis spp., Lec—Lecanicillium spp., Bip—Bipolaris spp., Mon—Monographella spp.,
Fus—Fusarium spp.; C0, SP40, SP60, SP80, Rec40, Rec60, Rec80, Bio40, Bio60, Bio80—abbreviations are
explained in Table 1.

4. Discussion

Although only a small percentage (0.1–10%) of microorganisms can be grown on synthetic media
in a laboratory, they can be predominant in the analyzed microbial communities [44,45]. The results of
the culture-dependent method, as well as the modern high-throughput sequencing approach, indicate
that wheat grain is an ecological niche which is colonized by relatively few fungal species with low
amount [1]. The genera of filamentous fungi, Alternaria, Cladosporium, Epicoccum, Botrytis, and Fusarium,
as well as yeast genera Cryptococcus and Sporobolomyces are characteristic of this environment [1,46,47].
In the present study, the co-existence patterns could be condensed into three distinct clusters of OTUs.
Clade 1 was composed of fungal communities colonizing grain from non-fertilized plants and grain
from plants supplied with the recycled biofertilizer with the addition of B. megaterium (Bio) bacteria at
60 and 80 P2O5 ha−1, recycled biofertilizer at 80 kg ha−1 (Rec), and superphosphate (SP) at 40 kg ha−1,
and was characterized by higher counts of pathogenic species Monographella nivalis and G. tricincta,
as well as species of the genera Pyrenophora and Mycosphaerella. Clade 3 comprised a fungal community
colonizing grain from plants fertilized with the highest superphosphate rate (80 kg ha−1), characterized
by above-average proportions of pathogenic species of the genus Fusarium, unidentified species of
the class Sordariomycetes, with the possible presence of the pathogenic genus Claviceps, and the
saprotrophic species Stemphylium herbarum. Clade 2 grouped fungal communities colonizing grain
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from treatments with low and moderate fertilizer rates (Bio 40 kg, Rec 40 and 60 kg, and SP 60 kg P2O5

ha−1). The fungal communities in clade 2 were characterized by a very high prevalence of A. infectoria,
while the proportions of the remaining pathogens were low. In a study by Supronienė et al. [48], fungi
of the genus Fusarium were more prevalent in wheat grain grown in non-fertilized treatments and
treatments fertilized with a moderate rate of NPK than in grain from treatments fertilized with a high
rate of NPK. According to the literature, nitrogen fertilization exerts a negative effect on the health
status of wheat plants and contributes to grain colonization by pathogens. The above can be attributed
mainly to changes in stand structure: fertilized stands are dense, and they retain more moisture, which
promotes the growth and sporulation of pathogenic fungi [49]. Higher rates of nitrogen fertilizers
also prolong flowering and plant maturation, and wheat is most susceptible to infections during
flowering [49].

The influence of phosphorus fertilizers on plant health is significantly more complex. In a study
by Karimzadeh et al. [50], wheat plants fertilized with phosphorus were characterized by higher root
and above-ground biomass, higher chlorophyll and proline concentrations in tissues, as well as higher
yields than plants not fertilized with this nutrient. Proline is an amino acid with a secondary amine that
functions as an osmolyte during stress and plays a significant role in protecting plants against stress
related to the infection process [51]. Phosphorus uptake by plants from soil is also modified by bacteria
and soil moisture content [51]. In the work of Arif et al. [52], phosphorus uptake was significantly
higher in soybean plants inoculated with Bacillus cereus GS6 than in control plants. In the present
experiment, recycled phosphorus fertilizers were as effective sources of plant-available phosphorus in
soil as superphosphate.

Phosphorus fertilizers probably enhanced plant growth and increased stand density, but they also
promoted the production of compounds which increased wheat resistance against pathogens. However,
the influence of the tested types of phosphorus fertilizers, including those containing B. megaterium
that can act as PGPM [26], on the prevalence of pathogens in the field was sometimes ambiguous
and modified by other factors. Similar results have never been reported in the literature, and further
research is needed to explore these ambiguities.

In this study, wheat grain was mainly colonized by fungi of the genus Alternaria. High-throughput
sequencing in the Illumina MiSeq system revealed that Alternaria fungi accounted for 45–95% of
OTUs (subject to treatment). The colony counts of Alternaria grown on PDA ranged from 0.35 to
1.48 Log(CFU + 1) per 1 g of grain. Alternaria fungi were also isolated from 14.81–31.48% of wheat
kernels plated on PDA. Dark colonies growing on PDA and the Martin medium were identified as
A. alternata, and similar observations were made by other authors [46,47]. Alternaria alternata is a
ubiquitous saprotroph which infects cereal spikes and causes black scab and black point disease in
cereals [53]. The species produces more than 10 allergizing proteins (www.allergen.org). The most
frequently described protein Alt a 1 (AAM90320.1. NCBI. Protein Database [54] has been linked with
asthma. Alt a 1 is a glycoprotein with a molecular mass of 29 kDa. Alternaria alternata also produces
around 70 secondary metabolites, including mycotoxins that are potentially dangerous for humans
and animals [55].

In traditional analyses of the plant microbiome, microorganisms are isolated and cultured on
various media with the use of different methods. However, microbial communities isolated from wheat
by culture-dependent methods are characterized by lower diversity than those detected with the use
of culture-independent molecular techniques [53]. In the present study, a higher number of pathogenic
fungi, in particular pathogens of the genus Ustilago, were obtained by next-generation sequencing in
the Illumina MiSeq system. Ustilago tritici causes loose smut which is widely distributed with grain
and can decrease wheat yields by up to 40%. The disease is particularly dangerous for seed farms and
undressed grain [56].

In the current study, several pathogenic species that are sporadically carried by wheat grain or
are less frequently isolated from grain were obtained with the use of culture-dependent methods.
Rhizoctonia cerealis, a fungus which causes sharp eyespot, was first identified in Poland in the late
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1990s [57]. Pyrenophora tritici-repentis, the causal agent of tan spot, was isolated from 21.31% of kernels by
Bankina et al. [46]. Next-generation sequencing also supported the identification of the slow-growing
pathogen M. nivalis which is not detected with the use of culture-dependent methods. Kernels infected
with M. nivalis and Fusarium species are characterized by lower plumpness and pink discoloration.
Fusarium fungi can cause head blight and stalk rot when distributed with infected grain. Fusarium
fungi obtained by the culture-dependent method in this study are characteristic of the cooler regions
of north-eastern Europe and Canada, and F. culmorum was the predominant species [3]. Fusarium
graminearum is most prevalent in warmer, humid areas of the world such as North America, Europe,
and South America [58], and it was also relatively frequently isolated in this study. The growing
season of 2016 was characterized by favorable weather conditions for the growth of spring wheat,
but high precipitation during grain setting and filling (total precipitation in July was 71% higher than
the long-term average) delayed ripening. The above contributed to the spread of infections caused by
Fusarium fungi.

Fungi colonizing crops can exert both positive and negative effects on the growth of host plants.
The former include secreting plant growth hormones and producing compounds that inhibit the
development of pathogens and increase plant resistance to infections [59,60]. In the current study, the
cultured yeast communities were not significantly influenced by the tested fertilizers. The authors’
previous research demonstrated that yeasts inhibit the development of Fusarium pathogens [3].

High-throughput sequencing in the Illumina MiSeq system supports more detailed analyses of
the structure and diversity of microbial communities than conventional isolation techniques. Fungi
respond more rapidly to environmental changes than other living organisms [61,62], and changes in
the structure and diversity of microbial communities influence plant health. In this study, the structure
and diversity of fungal communities colonizing spring wheat grain were influenced by changes in soil
P content caused by the tested fertilizers. However, the observed changes were determined mainly by
the P-rate rather than fertilizer type. The highest rate of commercial fertilizer induced the most adverse
changes in the balance between pathogenic and non-pathogenic fungi. In a study by Eschen et al. [61],
the composition of endophytic fungal communities colonizing the leaves and stems of Cirsium arvense
varied subject to soil P content. The above authors attributed these changes to differences in fungal
species’ demand for leaf nutrients which can be affected by the availability of soil nutrients. Pellissier
et al. [62] analyzed the composition of fungal communities in grain dust and aerosols released during
wheat harvest and did not report significant correlations between total soil P and the taxonomic and
phylogenetic beta diversity of fungi.

5. Conclusions

Recycled phosphorus fertilizers can at least partly replace commercial fertilizers in wheat
production. They are less abundant in phosphorus than commercial mineral fertilizers, but they
contain numerous macronutrients and micronutrients. Lower rates of recycled phosphorus fertilizers
are adequate sources of plant-available phosphorus in soil, and they exert a beneficial impact on the
structure of fungal communities colonizing the grain. Wheat grain from the treatments supplied with
recycled fertilizer at 40 and 60 kg P2O5 ha−1 and the B. megaterium biofertilizer at 40 kg P2O5 ha−1,
was colonized by fungal communities with the most desirable composition and the lowest proportion
of plant pathogens. However, the influence of recycled fertilizers on the physiology of field-grown
plants and possible interactions with other environmental factors have not been fully elucidated and
require further research.
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mięsnego. Czas. Tech. Chem. 2010, 107, 323–332.

24. Saeid, A.; Labuda, M.; Chojnacka, K.; Górecki, H. Use of microorganisms in the production of phosphorus
fertilizers. Przem. Chem. 2012, 91, 956–958.

25. Karpagam, T.; Nagalakshmi, P.K. Isolation and characterization of phosphate solubilizing microbes from
agricultural soil. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 601–614.

26. Awasthi, R.; Tewari, R.; Nayyar, H. Synergy between plants and P-solubilizing microbes in soils: Effects on
growth and physiology of crops. Int. Res. J. Microbiol. 2011, 2, 484–503.

27. El-Komy, H.M.A. Coimmobilization of Azospirillum lipoferum and Bacillus megaterium for successful
phosphorus and nitrogen nutrition of wheat plants. Food Technol. Biotechnol. 2005, 43, 19–27.

28. Saeid, A.; Prochownik, E.; Dobrowolska-Iwanek, J. Phosphorus solubilization by Bacillus species. Molecules
2018, 23. [CrossRef] [PubMed]

29. Etesami, H.; Beattie, G.A. Mining halophytes for plant growth-promoting halotolerant bacteria to enhance
the salinity tolerance of non-halophytic crops. Front. Microbiol. 2018, 9. [CrossRef] [PubMed]

30. Nesme, T.; Withers, P.J.A. Sustainable strategies towards a phosphorus circular economy. Nutr. Cycl.
Agroecosys. 2016, 104, 259–264. [CrossRef]

31. Saeid, A.; Wyciszkiewicz, M.; Jastrzebska, M.; Chojnacka, K.; Gorecki, H. A concept of production of new
generation of phosphorus-containing biofertilizers. BioFertP project. Przem. Chem. 2015, 94, 361–365.
[CrossRef]

32. Rolewicz, M.; Rusek, P.; Borowik, K. Obtaining of granular fertilizers based on ashes from combustion
of waste residues and ground bones using phosphorous solubilization by bacteria Bacillus megaterium.
J. Environ. Manag. 2018, 216, 128–132. [CrossRef]

33. Meier, U. Growth Stages of Mono- and Dicotyledonous Plants: BBCH-Monograph; Blackwell Wissenschafts-Verlag:
Berlin, Germany; Boston, MA, USA, 1997; p. 622.

34. World Reference Base (WRB); IUSS Working Group. World reference base for soil resources 2014.
In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; Food and
Agriculture Organization of the United Nations: Rome, Italy, 2014; update 2015.

35. Martin, J.P. Use of acid, rose bengal, and streptomycin in the plate method for estimating soil fungi. Soil Sci.
1950, 69, 215–232. [CrossRef]

36. Ellis, M.B. Dematiaceous Hyphomycetes; CMI: Kew, UK, 1971; p. 608.
37. Leslie, J.F.; Summerell, B.A. The Fusarium Laboratory Manual; Blackwell Publishing: Hoboken, NJ, USA, 2007;

pp. 1–388.
38. Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Pẽa, A.G.;

Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data.
Nat. Methods 2010, 7, 335–336. [CrossRef]

39. Edgar, R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010, 26, 2460–2461.
[CrossRef]

40. Nilsson, R.H.; Larsson, K.H.; Taylor, A.F.S.; Bengtsson-Palme, J.; Jeppesen, T.S.; Schigel, D.; Kennedy, P.;
Picard, K.; Glöckner, F.O.; Tedersoo, L.; et al. The UNITE database for molecular identification of fungi:
Handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 2019, 47, D259–D264. [CrossRef]

41. StatSoft, I. Statistica (Data Analysis Software System), Version 13; Statsoft Inc.: Tulsa, OK, USA, 2016.
42. Wilkinson, L.; Friendly, M. History corner the history of the cluster heat map. Am. Stat. 2009, 63, 179–184.

[CrossRef]
43. Ward, J.H., Jr. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 1963, 58, 236–244.

[CrossRef]
44. Ellis, R.J.; Morgan, P.; Weightman, A.J.; Fry, J.C. Cultivation-dependent and -independent approaches for

determining bacterial diversity in heavy-metal-contaminated soil. Appl. Environ. Microbiol. 2003, 69,
3223–3230. [CrossRef] [PubMed]

45. Littlefield-Wyer, J.G.; Brooks, P.; Katouli, M. Application of biochemical fingerprinting and fatty acid methyl
ester profiling to assess the effect of the pesticide Atradex on aquatic microbial communities. Environ. Pollut.
2008, 153, 393–400. [CrossRef] [PubMed]

60



Agriculture 2020, 10, 239

46. Bankina, B.; Bimšteine, G.; Neusa-Luca, I.; Roga, A.; Fridmanis, D. What influences the composition of fungi
in wheat grains? Acta Agrobot. 2017, 70. [CrossRef]

47. Xu, K.G.; Jiang, Y.M.; Li, Y.K.; Xu, Q.Q.; Niu, J.S.; Zhu, X.X.; Li, Q.Y. Identification and pathogenicity of fungal
pathogens causing black point in wheat on the North China Plain. Indian J. Microbiol. 2018, 58, 159–164.
[CrossRef] [PubMed]
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Abstract: Endophytes are isolated from every plant species investigated to date, so the metabolome
coevolution has been affecting the plants’ (microbiota) ethnobotanic, especially therapeutic, usage.
Asteraceae fulfill the rationale for plant selection to isolate endophytes since most of the species
of this family have a long tradition of healing usage, confirmed by modern pharmacognosy.
The present review compiles recent references on the endophyte−Asteraceae spp. interactions,
targeting the secondary metabolites profile as created by both members of this biological system.
Endophyte fungi associated with Asteraceae have been collected globally, however, dominant taxa
that produce bioactive compounds were specific for the plant populations of different geographic
origins. Endophytic fungi richness within the host plant and the biological activity were positively
associated. Moreover, the pharmacological action was linked to the plant part, so differential forms
of biological interactions in roots, stem, leaves, inflorescences were developed between endophytic
fungi and host plants. The comparative analysis of the Asteraceae host and/or fungal endophyte
therapeutic activity showed similarities that need a future explanation on the metabolome level.

Keywords: compositae; fungi; herbs; secondary metabolites; symbiosis

1. Introduction

Each plant coexists with microorganisms residing within tissues and producing their metabolites,
which are defined as endophytes if their occurrence does not cause apparent injuries [1,2]. Wilson [3]
defined “endophytes” (from Greek endon—within; and phyton—plant) as microorganisms, commonly
fungi and bacteria, spending their life cycle inter- and/or intra-cell space of the tissues of host plants,
which do not show any symptoms of disease. Endophytes were isolated from plants belonging to
all taxa investigated to date, occurring in all the world’s ecosystems. In recent years, there has been
an increased interest in explaining the endophytes/host plant cross-talk because the effects of these
relationships could be beneficial to humans [1,4–6]. Host plants abide endophytes due to symbiotic
relationships, profitable for microbes due to the availability of habitat and nutrients in the plant,
while plants acquire a wide spectrum of microbial metabolites, including vitamins, hormones, and
antibiotics [7,8]. Endophyte−host relationships can be so close, that microbes can even biosynthesize
the same chemical compounds as the host, as myrtucommulones from Myrtus communis, camptothecin
from Camptotheca acuminata, paclitaxel from Taxus brevifolia, or deoxypodophyllotoxin from Juniperus
communis for better adaptation to the microenvironment of plant tissues [7,9–13]. It is an unresolved
hypothesis that the production of secondary metabolites in plants is not achieved only by endophytes
but arises from concomitant plant and fungal biosynthesis [13]. Endophytes occupy a unique ecological
niche, their relationship with a host plant a balance between mutualistic, parasitic, or commensal
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symbiosis, which is largely controlled via chemicals. That is the reason why endophytes produce
highly specific metabolites [14]. Indeed, these microorganisms are being increasingly investigated as
they play an important role in natural product discovery, especially when the source plant is used
for medicinal purposes. In the latter respect, the healing action can be the result not only of the host
plant metabolome but also the microorganism-derived active compounds and their interactions [4].
Moreover, organic extracts obtained from isolated endophytes show a wide spectrum of biological
action and may be applied as antidiabetic, antimicrobial, antiviral, larvicidal, antimalarial, cytotoxic,
and plant growth promoters [15,16]. The problem is that some endophyte genes responsible for
secondary metabolite biosynthesis were found to be significantly expressed in planta but silent in vitro
cultures. Plant and coexisting microbial signal molecules are required to induce particular pathways of
endophyte metabolism leading to a balance of sexual to asexual reproduction and biochemical profile
modification as well [17–20]. Moreover, the secondary metabolites are energy-consuming compounds,
so endophytes can increase/decrease their production depending on specific needs, like competition
with the other microorganisms or host plant communication and protection [9,21–23]. However, some
fungal endophytes were shown to produce the desired compounds without a host plant association.
Sustainable synthesis of tanshinone IIA and taxol by the axenic culture of endophytic fungi have been
reported by Ma et al. [24] and Zhao et al. [25]. Karuppusamy [26] presented the possible origin of
secondary metabolites in plant-endophyte systems, namely (i) parallel coevolution of plants and their
microbiota possessing pathways to produce bioactive compounds; (ii) horizontal gene transfer between
plants and microbes during their coevolution; (iii) plants or endophytic fungi synthesize and transfer
metabolites to each other. Recent studies provided strong indications that endophytic fungi dispose
host-independent machinery for secondary metabolite production [27–29]. Metabolites of fungal
endophytes which were isolated from medicinal plants possess diverse and unique structural groups.
That is the reason why they are good sources of novel secondary metabolic products contributing to
the therapeutic activity [30–32]. Among medicinal plants, the members of Asteraceae family have been
reported to be a source of natural remedies in all traditional medicine systems since their secondary
metabolites exhibit strong antioxidant, antibacterial or anti-inflammatory activities [33].

The production of bioactive secondary metabolites by endophytic fungi colonizing medicinal
plants has been largely ignored. The main idea of this review is that the Asteraceae evolutionary
success is the effect of interaction between the host plant and fungal endophytic microbiota. We focused
on determining the possible contribution of fungal biosynthesis to the secondary metabolome of
Asteraceae, as a leading family of medicinal plants, to present the additional explanation for the
distribution of bioactive compounds, including alkaloids, cardiac glycosides, and anthraquinones in
the plant kingdom. We reviewed the available literature to assess therapeutic activity that had been
reported previously from medicinal plants of the Asteraceae family that may likewise originate from
endophytic fungi that coexist with these plants. We tried to estimate if the plants’ taxonomic affinity
affects the endophytic microbiome biodiversity and metabolic pathways.

2. Asteraceae Ecology and Biochemistry

The family Asteraceae (Compositae) is the largest and most cosmopolitan group of angiosperms
covering 32,913 accepted species, grouped in 1911 genera and 13 subfamilies [34]. Asteraceae comprise
more than 40 economically important crops, including food crops (Lactuca sativa, Cichorium spp., Cynara
scolymus, Smallanthus sonchifolius, and Helianthus tuberosus), oil crops (Helianthus annuus, Carthamus
tinctorius), medicinal and aromatic plants (Matricaria chamomilla, Chamaemelum nobile, Calendula spp.,
Echinacea spp., and Artemisia spp.), ornamentals (Chrysanthemum spp., Gerbera spp., Dendranthema spp.,
Argyranthemum spp., Dahlia spp., Tagetes spp., and Zinnia spp.), and nectar producers (Centaurea spp.,
H. annuus, and Solidago spp.) [35]. Species of this family represent a great variation regarding the habit:
annual, perennial, herbs, shrubs, vines, trees, epiphytes; with the inflorescence composed of one to more
than a thousand florets; and chromosome numbers range from n = 2 to n = 114 [36]. The Asteraceae
store energy in the form of inulin [37], they can produce acetylenes, alcohols, alkaloids, organic acids,
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pentacyclic triterpenes, sesquiterpene lactones, and tannins [38–40]. They are globally distributed
although most are native to temperate climatic zones, the Mediterranean zone, or higher-elevation,
cooler regions of the tropics [41]. The unique success of Asteraceae in worldwide distribution has
been attributed to many factors, including diversity of secondary metabolites that improve overall
fitness, a highly specialized inflorescence that maximizes fertilization, and a morphology promoting
outcrossing [42]. Many species of the Asteraceae family have been used as medicinal plants, although
the secondary metabolites responsible for the pharmacological efficiency were not always defined.
The chemical diversity of bioactive compounds and pathways of their biosynthesis is dependent
on a broad spectrum of biotic and abiotic factors and their interactions. Sometimes the benefits of
plant-derived pharmacological products are controversial despite standard chemical composition with
the use of commonly accepted pharmacopeia’s methods [43]. Numerous papers have described the
pharmacological activity and chemical constituents isolated from plants of the Asteraceae, covering
polyphenols, sesquiterpenes, organic and fatty acids which have been associated with the successful
treatment of cardiovascular diseases, cancer, microbial and viral infections, inflammation, and other
diseases [43]. Most of the Asteraceae taxa, like Artemisia, are well known for their resistance to
herbivores, bacterial and fungal pathogens [44]. Secondary metabolites are chemicals of a very
diversified structure, not fundamental in the plant metabolism, but crucial for protection against
pathogens and herbivores [45]. With the use of principal component analysis, Alvarenga et al. [46]
showed the relationships between chemical composition and botanical classification of Asteraceae
family, based on a huge group of 4000 species and 11 main chemical classes of secondary metabolites.
Barnadesieae tribe revealed an anomalous position owing to the poor diversity of its secondary
metabolites, particularly flavonoids. Liabeae and Vernonieae tribes were localized closely because of
similar lactone composition, while Asteridae was separated because of monoterpenes, diterpenes,
sesquiterpenes content. Moreover, the correlation matrix of Asteraceae secondary metabolites showed
that benzofuranes and acetophenones, as well as diterpenes and phenylpropanoids, were highly
correlated with each other [46]. The role of fungal endophytes in Asteraceae’s evolutionary success
has been recently recognized by the scientific community, although there is still a need for complex
investigations in this area. The multifarious metabolome of Asteraceae is a dynamic patchwork of
chemicals synthesized solely by the plant, by the microbial inhibiting the host species, or by both
elements of this ecological system.

3. Fungal Endophytes Associated with Asteraceae—Biodiversity, and Ecology

The high diversity of endophytes indicates their multiple and variable relations with the host plants
and ecological functions. The widest research program to find endophytes in medicinal Asteraceae
has been performed in countries which are localized in the most important biodiversity hotspots, like
Brazil, China, the Mediterranean region, Iran, or Thailand [47]. In Brazil, like the other South American
countries, medicinal plants have been used as a traditional, cheap, and easily available alternative to
drugs. Only a few tropical herbs were investigated with respect to endophytic fungal communities
with bioactivity [48–50]. Another region of Asteraceae collection as host plants for fungal endophytes
is the Panxi plateau in China [51] with xerothermic climate, diversified soil, and landscape conditions
contributing to the high biodiversity in the area, concerning also medicinal plants having a long history
of application by local communities [52]. The global screening reflected in the present review showed
minimal knowledge on Asteraceae in this respect (Figure 1).

65



Agriculture 2020, 10, 286

Figure 1. The Asteraceae hosts and endophyte fungi isolated from them in chosen countries (based on
the references cited in this review).

Despite the high diversity and abundance of the Asteraceae worldwide, fungal endophytes
associated with the plants of this family represented common or cosmopolitan species [53]. In light of
the present review, about 23% of fungi taxa isolated from Asteraceae were associated with one host
(Figure 2). They were mentioned in the footnote of Figure 2 as “The others”. The most abundant
fungi genera, Colletotrichum, Alternaria, Penicillium, etc., were ubiquitous and isolated from most plant
species and environments [10].

Colletotrichum

Alternaria

Penicillium

Diaporthe

Fusarium

Aspergillus

Nigrospora

Phoma

Papulaspora

Pestalotiopsis

Preussia

Chaetomium

Curvularia

Phyllosticta

others

Figure 2. The frequency of isolation of endophytes (%) from Asteraceae host plants. The others:
Acremonium, Ampelomyces, Bipolaris, Botryosphaeria, Botrytis, Calonectria, Cercospora, Coniochaeta,
Cylindrocarpon, Epicoccum, Exserohilum, Memnoniella, Paecilomyces, Periconia, Podospora, Pezicula,
Pyrenophora, Scopulariopsis, Seiridium, Trichoderma, Xylaria (based on references cited in this review).

To date, most of the research was focused on the overall spectrum of endophytes of the particular
host plant or the particular endophyte taxon isolated from a wide range of host plants. To validate,
Rodríguez−Rodríguez et al. [49] compared microorganism diversity and abundance in Aster grisebachii
(synonym of Neja marginata), Erigeron bellidiastroides, Erigeron cuneifolius, Pectis juniperina, and Sachsia
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polycephala (Asteraceae), native to Cuba, collected in an area with a low-in-nutrients, acid, sandy
soil with alternating dry, and rainy seasons. The colonization rate was higher than 50% in both the
dry and rainy period for all species which is typical for changing and stressful ecosystems, with
strong competition for soil resources. Pestalotiopsis spp. were isolated as dominant from the different
medicinal plants originated to tropical and subtropical climatic zones [54]. Preussia spp. isolated from
leaves of medicinal plants Baccharis trimera (Asteraceae) and Stryphnodendron adstringens (Fabaceae) are
native to Brazilian savannah [55]. A study performed by Hatamzadeh et al. [56], on native Asteraceae
medicinal plants of Iran, allowed to isolate 241 endophyte species from Cota segetalis (syn. Anthemis
altissima), 163 from Achillea millefolium, 121 from Anthemis triumfettii (synonym of Cota triumfettii subsp.
triumfettii), 132 from Cichorium intybus, 90 from Achillea filipendulina, and 59 from M. chamomilla. A few
endophytic fungi such as Acremonium sclerotigenum, Alternaria burnsii, Bjerkandera adusta, Colletotrichum
tanaceti, Epicoccum nigrum, Fusarium acuminatum, Paraphoma chrysanthemicola, Plectosphaerella cucumerina,
and Stemphylium amaranthi were isolated from all host species [56], most of them colonizing the stem
of the plant. Although Cheng et al. [57] concluded that the structure of the endophytic communities
differed within plant tissues and habitats, similarities in the taxa of the endophytic fungi were rarely
observed at the phylum order or even the host plant family level. Endophyte communities were
characterized by ecological variation, different host preference, tissue specificity, spatial heterogeneity,
and seasonal changes in terms of composition and quantity of fungal endophytic strains which can affect
medicinal plant biochemical composition [58]. Investigations of endophytes coexisting with Ageratina
altissima showed that the fungal microbiome was driven by host individual and geographic location.
Moreover, the endophyte community of a single host collected in the urban zone was less abundant
compared to the forest probably due to human disturbance and spatial isolation [59]. The expansion of
the invasive species Ageratina adenophora was studied concerning the distribution of endophytes in
tissues in surrounding environments [60–62]. The enrichment of A. adenophora endophytes was root
tissue-specific, moreover, fungi rarely grew systemically within the plant. The roots were the habitat of
Fusarium, the stems of Allophoma, the mature leaves of Colletotrichum, and Diaporthe. Additionally, some
fungi might migrate tissue-to-tissue via the vascular system of the shoot, and this was the way airborne
fungi infected roots, and soilborne fungi, shoots, and leaves. Leaf endophytes showed more fluctuations
in the number of taxa than those in roots and stems, because of the stronger pressure of environmental
factors [62]. Presented studies indicated that fungal endophyte communities varied based on host
genotype or even specimen, plant tissue, growth stage, and growth conditions. The research referenced
in this review were focused on the taxonomical analysis of endophytes collected in a particular area
from different Asteraceae taxa, or one species, or from different tissues of that species. Another main
field of investigation were secondary metabolites produced by endophytes in situ or in vitro. Table 1
summarizes the biological action of Asteraceae plant extracts and endophytes isolated from them.
The evident similarities indicate that the therapeutic activity of Asteraceae plants used traditionally as
herbal remedies can also be referred to associated fungal endophytes. Almost all internal symbiotic
fungi showed in vitro similar activity to those of their host plant extract. However, the present review
of the literature published during the last twenty years showed insufficient experimental evidence to
describe the endophyte/host plant interactions on the metabolome level, so the biosynthetic pathway
might be differently regulated in the fungus and the host plant.
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4. Fungal Endophytes Associated with Asteraceae—Biochemistry

4.1. Plant Growth Promoting Secondary and Anti-Stress Metabolites

Asteraceae are leading examples of the synergistic effect of fungal endophytes in improving biotic
and abiotic stress resistance and promoting plant growth because numerous species of this family
possess extraordinary tolerance and competition skills. For example, Khan et al. [115] determined the
growth-promoting ability of endophytic Penicillium citrinum in helping its plant host Ixeris repens in
rapid colonization of the sand dunes. P. citrinum stimulated competition skills of the host plant through
the production of secondary metabolites promoting plant growth, like gibberellins, and protective
compounds, like mycotoxins, citrinin, and cellulose digesting enzymes [115]. P. citrinum and Aspergillus
terreus were found to stimulate H. annuus growth and improve disease resistance due to the higher
content of plant-defense hormones, salicylic, and jasmonic acids. The mentioned endophytes regulated
oxidative stress of the host plant through activation of glutathione and polyphenol oxidases, alteration
of catalase and peroxidase, as well as secretion of organic acids [88]. The individual or co-inoculation
of endophytes increased amino acid content in sunflower (H. annuus) diseased leaves, delaying cell
death, and consequently disturbing pathogen progression in plant tissues [88]. Ren et al. [75] showed
that endophyte Gilmaniella sp. induced jasmonic acid production, which was recognized to be a signal
compound promoting the accumulation of volatile oils in the Chinese medicinal plant Atractylodes
lancea. The jasmonic acid acted as a downstream signal of nitric oxide and hydrogen peroxide-mediated
production of volatile oil in the host. Various strains of Penicillium and Aspergillus species associated
with Asteraceae were reported for gibberellins production [116]. Penicillium strains, especially MH7,
produced nine gibberellins which significantly increased the growth and development of the host plant
crown daisy (Chrysanthemum coronarium, synonym of Glebionis coronaria) [117]. The reactive oxygen
species (ROS) production together with increased siderophore excretion by endophytes contributed
towards improved growth and resistance against sunflower pathogens. Endophyte-origin ROS in plant
roots are tackled by internal physiological plant apparatus resulting in an acute resistance against present
and future stresses [89]. Huang et al. [58] compared the antioxidant capacity of plants used in Chinese
traditional medicine, including mugworts: Artemisia capillaris, A. indica, and A. lactiflora (Asteraceae)
and their endophytes. A fungal endophyte strain isolated from the flower of A. capillaris showed the
strongest total antioxidant capacity. The antioxidant compounds detected in the highest amounts in both
endophytic fungus and its host A. indica were chlorogenic and di-O-caffeoylquinic acids, and the volatile
compound artemisinin. Both chlorogenic acid and artemisinin acted as antioxidant, antimutagenic,
immunomodulatory, and antiviral. The production of the same bioactive natural compounds, as well
as some of those found in A. indica and its fungal endophytes, was suggested. In general, phenolic
compounds, including phenolic acids, flavonoids, tannin constituents, hydroxyanthraquinones, and
phenolic terpenoids as well as volatile or aliphatic constituents were major substances in the fungal
endophyte cultures and host plant extracts responsible for high antioxidant activity of all investigated
Chinese medicinal plants [58]. In terms of abiotic and biotic stress, fungal endophytes conferred
resistance against drought, salinity, heat stress, and enhanced resistance against pathogens and insects.
The different mechanisms can stay behind the competitive success of invasive Asteraceae species like
crofton weed (A. adenophora). The most abundant endophytic fungus isolated from this species was
Colletotrichum sp. which has pathogenic effects on other plants. Spreading Colletotrichum spores could
be a competitive advantage for A. adenophora as it was hypothesized by Fang et al. [62]. The recognition
of endophyte roles in host plant expansion and competition mechanisms enables the application or
modification of cultivation techniques dedicated to particular medicinal Asteraceae species, especially
those with promising therapeutic and economical potential.

4.2. Antibacterial Secondary Metabolites

The best criterion for host plant selection in order to investigate the endophytes with potential
antimicrobial activity is the plant traditionally used for the treatment of infections [118]. Plant-associated
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fungi may interact using, inter alia, antibiotic molecules, so the production of antibiotics and the
parallel development of antibiotic-resistance mechanisms can spread in dynamic microbiota/plant
systems by bacterial mobilization and horizontal gene transfer [119,120]. In recent years, the number
of multidrug-resistant microorganisms have been a growing concern for public health worldwide.
The key determinants of bacteria drug resistance are inactivation of the antibiotics, changes in bacterial
targets, and restricted entry of antibiotics by less permeable drug transporters [121]. Asteraceae/fungal
endophytes consortia could be a source of active compounds targeted against many drug-resistant
microorganisms [122,123]. A fungus Colletotrichum sp. was isolated from the stems of Artemisia
annua and characterized as a source of ergosterol derivatives (Figure 3), with inhibitory potential
against both Gram-negative and -positive bacteria, such as Pseudomonas sp. and Bacillus subtilis
with minimal inhibitory concentrations (MICs) ranging from 25 to 75 g mL−1 [70]. Colletotrichum
sp. can also produce plant hormones such as indole-3-acetic acid (IAA), up-regulating host growth.
Both mechanisms of action, namely antibiosis and growth promotion, can enhance adaptability and
pathogen resistance of a host plant. At the same time, Zou et al. [44] isolated from the stem of
Artemisia mongolica an endophytic fungus Colletotrichum gloeosporioides, synthesizing colletotric acid
with antibacterial activity against B. subtilis, Staphylococcus aureus, Sarcina lutea, and Pseudomonas sp.
with MICs of 25, 50, and 50 μg mL−1, respectively, and inhibited a pathogenic fungus Helminthosporium
sativum (current name Bipolaris sorokiniana) with a MIC of 50 μg mL−1. This was the first report of
C. gloeosporioides as a fungal endophyte in the Asteraceae, although it was previously mentioned as an
endophyte of plants belonging to the other families. The isocoumarins and naphthalene derivatives
produced by Papulaspora immersa, a fungal endophyte isolated from the Andean tuber crop, the yacon
(S. sonchifolius), presented antimicrobial activities and could act synergistically [99]. Interestingly, some
fungal metabolites were identified as constituents of an extract derived from a healthy Asteraceae,
prickly goldenfleece (Urospermum picroides), indicating that the production of bactericides by the fungal
endophyte Ampelomyces sp., proceeds also in situ within the host plant [110]. Among seven phomosine
derivatives isolated from Phomopsis sp., an endophyte of the Syrian thistle (Notobasis syriaca), phomosine
K had strong antibacterial activity against Legionella pneumophila Corby, Escherichia coli K12 with MIC
25 and 100 μg mL−1, respectively [96]. Endophyte colonization offers protection from various stressors,
such as toxins which affect plant pathogens by disrupting the cellular membrane and inducing cell
death. Such ecological relationships were recorded for the mentioned Asteraceae/endophyte systems.
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Figure 3. The molecular structure of chosen specific compounds with antibacterial activity synthesized
by fungal endophytes associated with Asteraceae species [44,70,96,99,110]; +AF—antifungal activity;
+CA—cytotoxic activity.
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4.3. Antifungal Secondary Metabolites

Colonization of the host plant by endophytes and pathogens depends on their adaptations
to the host environment but also the innate host defense mechanism and variation in virulence.
A few reports on endophytic fungi, protecting against other fungal infection, found in association
with Asteraceae species, especially Viguiera spp. (syn. Aldama spp.) were published, and several
new compounds were described but their biological action needs future research [17,22,68,75,78,101].
Ampelomyces spp. were widely studied as the first fungi used as biocontrol agents of powdery
mildews [122]. Chagas et al. [100] investigated the interactions between the fungal endophytes
that cohabit S. sonchifolius. They found that Alternaria tenuissima synthesized some polyketides,
including antifungal stemphyperylenol in the presence of endophytic Nigrospora sphaerica (Figure 4).
A. tenuissima is characterized by a slower growth rate than N. sphaerica, so specific antifungal
compounds might control the growth rate of N. sphaerica during host plant colonization, without
any damage to the host plant tissues. The competition of fungal endophytes colonizing the same
host plant stimulates the production of metabolites that could decrease the growth of particular
fungi species without damaging the host plant and maintaining the symbiosis [100]. A closer
metabolome relationship was found for S. sonchifolius and endophytic fungus Coniochaeta ligniaria.
Both symbionts produced the same antifungal fatty acids: caproic, caprylic, and palmitic acids at
high concentrations which might raise the resistance of S. sonchifolius to fungal pathogenic attacks
and C. ligniaria to fungi competing within the host tissues [101]. B. trimera is a native medicinal plant
of the Brazilian savannah. Vieira et al. [53] isolated from the leaves of this species 23 fungal taxa,
inter alia, Epicoccum sp., Pestalotiopsis sp., Cochliobolus lunatus, and Nigrospora sp., which showed
antifungal activity against Paracoccidioides brasiliensis. Additionally, the fungi isolated from different
host plants displayed distinct antimicrobial activities, so the endophytic richness and the antimicrobial
activity were closely correlated. The endophyte fungus Preussia sp. revealed strong antifungal activity,
related to the synthesis of anthraquinones, auranticins, culpin, cycloartane triterpenes diphenyl ether,
spirobisnaphthalenes, and thiopyranchromenones [53,124]. However, metabolome analysis of Preussia
sp. isolated from Asteraceae herb carqueja (B. trimera) confirmed antioxidant but not antifungal activity
of isolated compounds, namely preussidone, 1′,5-dimethoxy-3,5′-dimethyl-2,3′-oxybiphenyl-1,2′-diol,
5-methoxy-3,5′-dimethyl-2,3′-oxybiphenyl-1,1′,2′-triol, and cyperin [124]. Waqas et al. [88,89]
determined the inhibitory effect of two fungal endophytes, P. citrinum and A. terreus, against Sclerotium
rolfsii, a soilborne plant pathogen which causes root rot, stem rot, collar rot, wilt, and foot rot diseases
in H. annuus. The antifungal activity of Penicillium and Aspergillus strains was linked with synthesis
of gibberelins, organic acids, and siderophores. Two new fatty acid amides, bipolamides A and
B, were isolated from endophytic fungus Bipolaris sp., but only bipoliamide B revealed bioactivity
against Cladosporium cladosporioides, C. cucumerinum, Saccharomyces cerevisiae, Aspergillus niger, and
Rhisopus oryzae [85]. Fungal endophytes possess multiple balanced antagonisms, namely with the
other microbial inhabitants of the host plant and with the host plant itself, to support the growth
conditions enabling reproduction. Most genes involved in secondary metabolite synthesis in fungi are
activated while being co-cultured in plant and/or with other microbes, but they are generally silent in
cultures, confirming that multiple antagonisms are involved in endophytism [22]. Three strains of
endophytic fungus Diaporthe citri isolated from Brazilian medicinal vine, guaco (Mikania glomerata)
presented 60% inhibition index of mycelia growth against Fusarium solani and 66% against Didymella
bryoniae [94]. The mechanisms of inhibition were not tested in the cited reference, but the authors
stated that endophytic microorganisms with the highest inhibition indices were considered candidates
for tests involving the production of secondary metabolites with potential antimicrobial activity.
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Figure 4. The molecular structure of chosen specific compounds with antifungal activity synthesized
by fungal endophytes associated with Asteraceae species [85,100].

4.4. Antiparasitic Secondary Metabolites

Cota et al. [108] isolated altenusin from an Alternaria sp. endophytic in Trixis vauthieri collected
in Brazil (Figure 5). This medicinal plant was reported as containing trypanocidal compounds of
trypanothione reductase inhibitory activity. Meanwhile, the organic extract of the culture of Alternaria sp.
inhibited trypanothione reductase by 99%, when tested at 20 mg mL−1. The mentioned report was the
first one concerning fungal metabolites with trypanothione reductase inhibitory activity, which can be
used for the development of new chemotherapeutic agents to treat trypanosomiasis and leishmaniasis.
Trypanosoma cruzi is a parasitic euglenoid causing Chagas disease in humans, and Leishmania tarentolae is
a protozoan parasite of geckos, which might also be capable of infecting mammals [125]. Verza et al. [112]
determined that endophytic fungus Phomopsis sp., obtained from Viguiera arenaria (synonym of Aldama
arenaria), led to the formation of a new compound able to transform the tetrahydrofuran lignan,
(−)-grandisin to 3,4-dimethyl-2-(4′-hydroxy-3′,5′-dimethoxy phenyl)-5-methoxy-tetrahydrofuran,
which also showed trypanocidal activity against T. cruzi. Guimarães et al. [105] isolated 30 endophytic
fungi from the leaves and four from the roots of V. arenaria and five endophytes were isolated from the
leaves of Tithonia diversifolia, collected in Brazil. The ethyl acetate extract of the Diaporthe phaseolorum
isolate’s fermentation broth showed strong inhibition of glyceraldehyde 3-phosphate dehydrogenase
of T. cruzi and adenine phosphoribosyltransferase of L. tarentolae. The mosquito Culex quinquefasciatus
acts as a vector of Wuchereria bancrofti which causes the disease lymphatic filariasis, commonly known
as elephantiasis. Belonging to the Asteraceae family, Ageratum conyzoides, native to Pakistan, has
antilarvicidal effects against the mosquito larvae of C. quinquefasciatus, Aedes aegypti, and Anopheles
stephensi. Endophytic actinomycetes, Streptomyces spp., isolated from mentioned Asteraceae species
showed strong larvicidal activity at the fourth instar stage [126]. Xanthones, sterigmatocystin, and
anthraquinone derivative, 13-hydroxyversicolorin B from the culture broth of the endophytic fungus
Podospora sp., isolated from the Kenyan medicinal plant Laggera alata, might be used as natural mosquito
larvicides [91]. The easily biodegradable endophyte metabolites could be a base for the development
of modern techniques providing efficient insect control, without negative effects on the non-target
population and environment.
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Figure 5. The molecular structure of chosen specific compounds with antiparasitic activity synthesized
by fungal endophytes associated with Asteraceae species [91,108,112].

4.5. Cytotoxic Secondary Metabolites

The major difficulty in the treatment of cancer is the increase in drug resistance of commonly used
chemotherapeutic agents, so the crucial task is to find out the novel compounds with high efficacy and
low toxicity. The research and registration of new antitumor drugs are mostly based on the compounds
extracted from medicinal plants including those of endophyte origin [127]. Martinez−Klimova et al. [5]
found the endophytes that produce antibiotic metabolites belonging to phylum Ascomycota, which
were isolated from the Asteraceae, Fabaceae, Lamiaceae, and Araceae families. The therapeutic activity
of fungal endophytes was related to the production of compounds inhibiting the drug transporters of
tumor cells. Moreover, the use of secondary metabolites produced by endophytes could mediate drug
resistance reversal in cancer cells. A few reports are pointing out the use of endophytes isolated from
Asteraceae species as a source of antitumor compounds targeted in the most common lines of cancer cells
(Figure 6). Nectriapyrone, produced by the endophytic fungus Glomerella cingulata, a teleomorph stage
of C. gloeosporioides, isolated from V. arenaria and T. diversifolia showed relevant cytotoxic activity towards
tumor cells [105]. In the case of Chaetomium globosum, a fungal endophyte associated with Viguiera
robusta, chaetoglobosins showed inhibition of Jurkat (leukemia) and B16F10 (melanoma) tumor cells
with 89.55% and 57.1% inhibition at 0.1 mg mL−1, respectively [114]. Gallo et al. [99] isolated a fungus
P. immersa from roots and leaves of S. sonchifolius. P. immersa extracts displayed strong cytotoxicity due
to newly described secondary metabolites, i.e., 2,3-epoxy-1,2,3,4-tetrahydronaphthalene-c-1,c-4,8-triol,
which showed highest activity against the human tumor cell lines MDA-MB435 (melanoma), HCT-8
(colon), SF295 (glioblastoma), and HL-60 (promyelocytic leukemia), with he half maximal inhibitory
concentration (IC50) values of 3.3, 14.7, 5, and 1.6 mm, respectively. Moreover, sitostenone and tyrosol,
other P. immersa secondary metabolites, showed anticancer effects when applied with isocoumarin [99].
The fungal endophytes of Asteraceae, especially the members of genera Fusarium, Plectosphaerella,
Stemphylium, Septoria, Alternaria, Didymella, Phoma, Chaetosphaeronema, Sarocladium, Nemania, Epicoccum,
and Cladosporium can produce the anticancer enzyme L-asparaginase used in the treatment of acute
lymphoblastic leukemia. The isolates of fungi Fusarium proliferatum and Plectosphaerella tracheiphilus,
obtained from an Asteraceae host C. segetalis, exhibited a maximum enzyme activity with 0.492 and
0.481 unit mL−1, respectively [56]. The milk thistle (Silybum marianum) is known as a source of silymarin,
a mixture of flavonolignans used in cancer chemoprevention and hepatoprotection. El-Elimat et al. [103]
showed that a fungal endophyte, Aspergillus iizukae (current name Fennellia flavipes), isolated from
leaves of S. marianum can synthesize similar compounds as a host plant, namely silybin A, silybin
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B, and isosilybin, the constituent compounds of silymarin. Endophytic fungi that can produce the
same compounds of their associated host plants could be a sustainable and alternative source for
secondary metabolites.
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Figure 6. The molecular structure of chosen specific compounds with cytotoxic activity synthesized by
fungal endophytes associated with Asteraceae species [99,103,105,110,114].

5. Review Methodology

The leading scientific databases dedicated to multidisciplinary as well as agricultural, biological,
biomedical, and pharmacological sciences were screened. Relevant literature dated to the period
2000–2020 was collected, analyzed, and selected considering (i) the reports on endophyte isolation
from the species of Asteraceae family, (ii) the reports on therapeutic utilization of the host plant or/and
an endophyte, (iii) the reports on in vitro and in vivo bioactivity of chemical compounds produced
by a host plant or/and an endophyte. Plant names were verified according to the Global Biodiversity
Information Facility [128] and The Plant List [34], endophyte taxa were verified according to MycoBank
database [129]. For clarity, the validated endophyte names used in the referenced literature were
implemented in the text. In the tables and figures, the current taxa classification and nomenclature
were used. Chemical structures were elaborated on the basis of referred publications, for new isolated
compounds the number of C atoms was presented.

6. Conclusions

A growing spectrum of literature indicates that endophyte fungi colonizing different species of
Asteraceae are responsible to some degree for their therapeutic potential reported in ethnobotanical
and modern literature. Endophyte fungi are elements of a complex web of interactions of the plant
host/endophyte/phytopathogen, and hence all elements of this system are expected to produce bioactive
compounds that can improve their ability to survive in such a dynamic environment. Endophytes
were involved in the superior adaptability and competitiveness reported for Asteraceae hosts and their
evolutionary success. Plant/endophyte interactions regulated the energy costly process of production
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of secondary metabolites possessing therapeutic properties. In the case of the Asteraceae species
analyzed, the host tissue’s environment was more crucial than plant taxonomy for shaping the diversity
and metabolite profile of fungal endophytes. Most endophyte fungi isolated from Asteraceae plants
were wide-spreading. Despite that, they produced very specific secondary metabolites in planta
and in vitro. The interactions between the endophyte and its host controlled by specific chemical
compounds are dynamic and difficult to analyze but crucial for the composition of the medicinal plant
extracts and their standardization.
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Abstract: Many fungi reported for endophytic occurrence are better known as plant pathogens on
different crops, raising questions about their actual relationships with the hosts and other plants in the
biocoenosis and about the factors underlying the lifestyle shift. This paper offers an overview of the
endophytic occurrence of Lasiodiplodia theobromae (Dothideomycetes, Botryosphaeriaceae), a species
known to be able to colonize many plants as both an endophyte and a pathogen. Prevalently spread
in tropical and subtropical areas, there are concerns that it may propagate to the temperate region
following global warming and the increasing trade of plant materials. The state of the art concerning
the biochemical properties of endophytic strains of this species is also examined with reference to a
range of biotechnological applications.

Keywords: endophytic fungi; mutualism; plant fitness; latent pathogens; Botryosphaeria rhodina;
Botryodiplodia theobromae

1. Introduction

Endophytic fungi are plant-associated microorganisms that colonize the internal tissues of the
host without inducing disease symptoms [1]. They represent a poorly understood endosymbiotic
group of microbes that ought to be attentively considered by the scientific community, so as to provide
comprehensive knowledge regarding their beneficial role and the actual extent of their interactions
with plants.

A basic issue hindering studies on the ecological role of these microorganisms is represented by
the reported endophytic occurrence of fungal pathogens. In fact, besides the cases where latency is a
conspicuous phase of the disease cycle, there are more and more records of renowned pathogens found
within asymptomatic hosts, for which an explanation is not immediately available [2–4]. Increasing and
organizing the current knowledge on conditions associated with the occurrence of these ambiguous
species is useful for a more conclusive assessment of their functions and impact on crops. This present
paper offers an overview of a fungus which is mainly studied as a pathogen of tropical crops [4–6] but
that is potentially able to spread as an endophytic associate of plants in the temperate zone.

2. Taxonomic and Phylogenetic Aspects

Lasiodiplodia theobromae (Pat.) Griffon & Maubl. (Dothideomycetes, Botryosphaeriaceae) is the accepted
name of the species treated in this paper, prevailing over both the basionym Botryodiplodia theobromae
Pat. and the teleomorphic name Botryosphaeria rhodina (Berk & M.A. Curtis) Arx, after the introduction in
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mycology of the principle “one species—one name” [7]. Isolated and morphologically identified from a wide
range of plant hosts [5,8], it represents the type species of Lasiodiplodia which, for many years, was treated
as a monotypic genus within the Botryosphaeriaceae [9,10]. However, such a simplified taxonomy was
destined to dramatically change with the advent of DNA sequencing. In fact, starting from the year 2004,
phylogenetic analyses carried out in the course of studies on L. theobromae in novel pathosystems showed
the existence of several clades, even within the pool of strains stored in mycological collections [11–14].
Evidence of a higher complexity emerged gradually, to such an extent that more than 30 additional species
have been described to date, with some of them, such as L. endophytica, L. gonubiensis, L. pseudotheobromae,
L. thailandica and L. venezuelensis, reported as endophytes [15–23]. Hence, it is likely that several previous
findings might be incorrectly classified and that some more recent records are going to be re-examined.
The application of high-throughput DNA metabarcoding as a biomonitoring tool is expected to provide a
notable contribution in investigations concerning the endophytic occurrence of Lasiodiplodia [24].

To further complicate the issue, the existence of hybrid strains has been ascertained [15,25], which is
also considered to have affected species identification. As an example, the taxon L. viticola Úrbez-Torres,
Peduto & Gubler [26] has been shown to be a hybrid between L. theobromae and L. mediterranea;
both these taxa are known on grapevine (Vitis vinifera), which most likely represented the venue of
the hybridization process [15]. An assumption in biology considers as a species an organism whose
population is reproductively isolated from other phylogenetically related populations [27]; hence,
the existence of hybrids between several Lasiodiplodia spp. may imply that the taxa described so
far are not stable. Indeed, further reassessments are to be expected, particularly in consequence
of new combinations possibly stimulated by the circulation of plant material hosting genotypes
which are potentially capable of hybridizing with autochthonous strains. In order to avoid further
misidentifications, the use of multiple genes is recommended when considering the phylogenetic
relationships of novel strains, along with direct referencing to the type strains [15,20].

Apart from the variation characterizing the genus Lasiodiplodia, phylogenetic relationships have
also been evaluated in the species under discussion. Low genotypic diversity was observed in a
study considering three populations from different tree species in Venezuela, South Africa and Mexico.
A few predominant genotypes were encountered in the first two countries, without evidence of host
specificity and in the presence of a very high gene flow between populations from different hosts.
The geographic isolation was substantiated by the finding of unique alleles fixed in the different
populations. Moreover, the existence of some genotypes that were widely distributed throughout
the three countries, coupled with the evidence that pseudothecia are rarely produced in nature,
suggests that reproduction is predominantly clonal [8]. A similar conclusion was reached in another
phylogeographic study carried out on coconut palm (Cocos nucifera) in Brazil, where higher genotypic
variation was observed in the northeast in connection with the local higher host diversity and a
conjectured repeated introduction from Central Africa, regarded as the possible center of radiation of
the species. Differences between genotypes were mainly ascribed to mutations [28].

In Cameroon, cocoa (Theobroma cacao) and Terminalia spp. are frequently grown together in a
peculiar agri-sylvicultural system. A comparison between strains from these two known hosts of
L. theobromae showed high levels of gene diversity and low genotypic differentiation, in the presence of
high gene flow between isolates. The absence of a geographic substructure in these populations across
the region where the study was carried out is indicative of the symmetrical movement of the fungus
between these hosts. Unlike the case documented on grapevine, no evidence of hybridization was
found with the closely related L. pseudotheobromae, which also occurs on these plants [29].

Finally, quite a simple genetic structure was once more pointed out in a broader study including
strains of more varied origin. In fact, one or two main haplotypes across all genes were identified,
and these genotypes were unrelated to both the hosts and the geographic area. Such overall uniformity
clearly indicates that large-scale dispersal of L. theobromae is essentially derived from commerce and
human activities [4].
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3. Endophytic Occurrence of Lasiodiplodia theobromae

After having basically been studied as a plant pathogen responsible for serious damages of crops,
particularly in tropical and subtropical regions [5,6], in the last three decades, the literature regarding
L. theobromae has been substantially enriched by many reports concerning its endophytic occurrence on
plant species which are quite heterogeneous in botanical terms (Table 1).

Table 1. Plant hosts of endophytic Lasiodiplodia theobromae. Species where the fungus has been also
reported as a pathogen are underlined.

Source Origin Ref.

Pinophyta

Pinales, Pinaceae

Pinus elliottii South Africa [8]

Pinus caribaea var. hondurensis Venezuela [8]

Pinus pseudostrobus Mexico [8]

Pinus tabulaeformis China [30]

Pinales, Taxaceae
Cephalotaxus hainanensis China [31]

Taxus baccata India [32]

Taxus chinensis China GenBank

Magnoliids

Magnoliales,
Annonaceae Annona muricata Malaysia GenBank

Piperales, Piperaceae Piper hispidum Brazil [33,34]

Piper nigrum India [35]

Monocots

Asparagales,
Asparagaceae Dracaena draco Egypt [36]

Asparagales,
Orchidaceae

Campylocentrum micranthum Costa Rica [37]

Cattleya sp. Brazil [38]

Cymbidium aloifolium India [39]

Dendrobium moschatum India [39]

Encyclia fragrans Costa Rica [37]

Epidendrum difforme Costa Rica [37]

Epidendrum octomerioides Costa Rica [37]

Epidendrum radicans India GenBank

Eria flava India [39]

Nidema boothii Costa Rica [37]

Oncidium sp. Brazil [38]

Paphiopedilum fairrieanum India [39]

Phalaenopsis sp. Brazil [38]

Pholidota imbricata India [39]

Pholidota pallida India [40]

Pleurothallis guanacastensis Costa Rica [37]

Pleurothallis phyllocardioides Costa Rica [37]

Sobralia mucronata Costa Rica [37]
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Table 1. Cont.

Source Origin Ref.

Asparagales,
Orchidaceae

Sobralia sp. Costa Rica [37]

Trichosalpinx blasdellii Costa Rica [37]

Vanilla planifolia India [39]

Pandanales,
Pandanaceae Pandanus sp. Thailand [41]

Arecales, Arecaceae

Calamus thwaitesii Sri Lanka [42]

Cocos nucifera
Brazil [28]

India [43]

Philippines [44]

Euterpe oleracea Brazil [45]

Nypa fruticans Malaysia [46]

Poales, Cyperaceae Mapania kurzii Malaysia [47]

Poales, Poaceae Cynodon dactylon India GenBank

Zingiberales, Costaceae Costus igneus India [48]

Zingiberales, Musaceae Musa spp. Malaysia [49]

Eudicots

Proteales, Proteaceae Grevillea agrifolia Australia [50]

Ranunculales,
Menispermaceae Tinospora cordifolia India [51]

Santalales, Santalaceae Viscum coloratum China [52]

Saxifragales,
Hamamelidaceae Distilium chinense China [53]

Vitales, Vitaceae Vitis vinifera China [54]

Italy [55]

Celastrales, Celastraceae Elaeodendrum glaucum India [56]

Salacia oblonga India [57]

Fabales, Fabaceae

Acacia karroo South Africa [58]

Acacia mangium Venezuela [8]

Acacia synchronicia Australia [50]

Albizzia lebbeck India Genbank

Arachis hypogaea India [56]

Bauhinia racemosa India [56]

Butea monosperma India [59,60]

Cassia fistula India [56]

Crotalaria medicaginea Australia [50]

Dalbergia lanceolaria India [60]

Dalbergia latifolia India [56]

Glycyrrhiza glabra India [61]

Humboldtia brunonis India [62]

Indigofera suffruticosa Brazil [63]
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Table 1. Cont.

Source Origin Ref.

Fabales, Fabaceae

Libidibia (Caesalpinia) ferrea Brazil [64]

Lysiphyllum cunninghamii Australia [50]

Mimosa caesalpinifolia Brazil [64]

Ougeinia oojeinensis India [60]

Phaseolus lunatus Mexico [65]

Pongamia pinnata India [43]

Saraca asoca India [66,67]

Sophora tonkinensis China [68]

Malpighiales,
Chrysobalanaceae Licania rigida Brazil [64]

Malpighiales, Clusiaceae Garcinia mangostana Thailand [69]

Malpighiales,
Euphorbiaceae

Croton campestris Brazil [64]

Croton sonderianus Brazil [64]

Givotia rottleriformis India [60]

Hevea brasiliensis Malaysia GenBank

Peru [70]

Malpighiales,
Hypericaceae Hypericum mysorense India [71]

Malpighiales,
Rhizophoraceae

Bruguiera cylindrica Philippines [72]

Ceriops tagal China GenBank

Rhizophora mucronata China [73]

Malpighiales, Salicaceae Populus sp. China [74]

Oxalidales,
Elaeocarpaceae

Elaeocarpus ganitrus India GenBank

Elaeocarpus tuberculatus India [56]

Rosales, Moraceae

Artocarpus altilis Ecuador Genbank

Ficus opposita Australia [50]

Ficus racemosa India GenBank

Ficus trigona Ecuador GenBank

Rosales, Rhamnaceae Ziziphus xylopyrus India [60]

Rosales, Ulmaceae Zelkova carpinifolia Iran GenBank

Cucurbitales,
Cucurbitaceae Momordica charantia China [75]

Fagales, Fagaceae Quercus castaneifolia Iran GenBank

Fagales, Juglandaceae Pterocarya fraxinifolia Iran GenBank

Brassicales, Moringaceae Moringa oleifera Brazil [64]

Malvales, Malvaceae

Adansonia digitata Australia [50]

Cameroon [15]

Adansonia gregorii Australia [50]

Adansonia za Australia [50]

Gossypium hirsutum India [76]
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Table 1. Cont.

Source Origin Ref.

Malvales, Malvaceae

Grewia tiliaefolia India [56]

Helicteres isora India [60]

Kydia calycina India [60]

Theobroma cacao Brazil [77]

India [78]

Theobroma gileri Ecuador [79]

Malvales,
Thymelaeaceae

Aquilaria malaccensis India [80]

Aquilaria sinensis China [81,82]

Taiwan GenBank

Myrtales, Combretaceae

Anogeissus latifolia India [60]

Combretum leprosum Brazil [64]

Lumnitzera littorea Philippines [72]

Terminalia arjuna India [83,84]

Terminalia bellerica India [56]

Terminalia catappa Cameroon [85,86]

Terminalia crenulata India [60]

Terminalia ivorensis Cameroon [87]

Terminalia mantaly Cameroon [86,87]

Terminalia pterocarya Australia [50]

Terminalia superba Cameroon [87]

Terminalia tomentosa India [56]

Myrtales, Lythraceae
Lagerstroemia microcarpa India [60]

Lagerstroemia parviflora India [60]

Myrtales,
Melastomataceae Memecylon umbellatum India [88]

Myrtales, Myrtaceae

Calytrix sp. Australia [50]

Corymbia sp. Australia [50]

Eucalyptus sp. Australia [50]

Eucalyptus urophylla Venezuela [8]

Eugenia uniflora Brazil [64]

Psidium guajava

Venezuela [89]

Brazil [64]

India [90]

Nigeria GenBank

Psidium rufum Brazil [64]

Syzygium cordatum South Africa [11]

Syzygium cumini India [60]
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Table 1. Cont.

Source Origin Ref.

Sapindales,
Anacardiaceae

Anacardium occidentale Brazil [91,92]

Astronium fraxinifolium Brazil [64]

Mangifera indica

Australia [93]

Brazil [91]

Venezuela [94]

Costa Rica [95]

Myracrodruon urundeuva Brazil [64]

Spondias mombin Brazil [64]

Spondias sp. Brazil [64]

Sapindales, Burseraceae

Boswellia ovalifoliata India [96]

Boswellia sacra Oman [97]

Protium heptaphyllum Brazil [64]

Sapindales, Meliaceae Azadirachta indica India [43]

Khaya anthotheca Ghana [98]

Sapindales, Rutaceae Citrus sinensis USA [99]

Sapindales, Sapindaceae
Nephelium lappaceum Malaysia GenBank

Paullinia cupana Brazil GenBank

Sapindales,
Simaroubaceae

Ailanthus excelsa India [100]

Simarouba amara Brazil [64]

Ericales, Ebenaceae Diospyros montana India [60]

Ericales, Lecythidaceae
Barringtonia racemosa South Africa [101]

Careya arborea India [60]

Ericales, Sapotaceae Madhuca indica India [102]

Icacinales, Icacinaceae Nothapodytes nimmoniana India [103]

Pyrenacantha sp. India GenBank

Boraginales,
Boraginaceae

Auxemma oncocalyx Brazil [64]

Cordia obliqua India [60]

Cordia trichotoma Brazil [64]

Cordia wallichi India [60]

Gentianales,
Apocynaceae

Alstonia scholaris India [56]

Catharanthus roseus India [90,104,
105]

Hancornia speciosa Brazil [106]

Holarrhena antidysenterica India [59]

Plumeria rubra India [107]

Rauwolfia serpentina India [108]

Gentianales, Loganiaceae Strychnos potatorum India [60]

Gentianales, Rubiaceae Coffea arabica Puerto Rico [109]

Ixora nigricans India [60]
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Source Origin Ref.

Gentianales, Rubiaceae

Morinda citrifolia India [110]

Psychotria flavida India [62,111]

Psychotria sp. Brazil [64]

Lamiales, Acanthaceae

Acanthus ilicifolius China [112,113]

Avicennia lanata
Philippines [114]

Malaysia [115]

Lamiales, Bignoniaceae

Jacaranda sp. Guyana [116]

Kigelia pinnata India [117]

Radermachera xylocarpa India [56]

Stereospermum angustifolium India [60]

Lamiales, Lamiaceae

Gmelina arborea India [60]

Plectranthus amboinicus India [118]

Pogostemon cablin China GenBank

Premna tomentosa India [60]

Tectona grandis India [60,119]

Teucrium polium Egypt [120]

Vitex negundo India [121]

Vitex pinnata Malaysia [122]

Lamiales, Oleaceae
Ligustrum lucidum Argentina [123]

Olea dioica India [56]

Solanales, Solanaceae

Solanum melongena Brazil GenBank

Solanum nigrum Egypt [124]

Solanum surratense India [125]

Solanum torvum India [125]

Withania somnifera India [125]

Apiales, Araliaceae Dendropanax laurifolius Malaysia GenBank

Asterales, Asteraceae Bidens pilosa Egypt [126]

The total number of 203 findings summarized in Table 1 is indicative of the widespread adaptation
of L. theobromae to an endophytic lifestyle. They refer to as many as 189 plant species from 60 families,
including representatives of the Pinophyta (seven species) along with the more numerous angiosperms.
Among the latter, there are just Annona muricata and two Piper species in the Magnoliids, while Monocots
and Eudicots are more common—particularly the families Orchidaceae (21 species) within the former,
and Fabaceae (22 species), Combretaceae (12 species), Myrtaceae and Malvaceae (9 species each) within
the latter grouping. Most of these plants are trees, which likely depends on both a preference of the
fungus for lignified tissues and on the higher number of investigations on endophytes which have
been carried out in forests and on woody hosts.

In geographical terms, a greater diffusion of L. theobromae is evident in tropical and subtropical
countries (Figure 1), which is related to both the known prevalence of the fungus in this climatic zone
and to the more consistent investigational activity in these countries, particularly India and Brazil,
with, respectively, 81 and 32 records (ca. 40 and 16% of the total). Some reports are inaccurate and do
not allow us to match the endophytic finding of L. theobromae with a definite host [127,128].
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Figure 1. Geographical distribution of endophytic Lasiodiplodia theobromae as resulting from entries
of Table 1. The color scale ranging from yellow to red is representative of the number of findings for
each country.

4. Biological and Ecological Traits

As introduced above, endophytes are basically defined by their ability to spread in host tissues
without inducing disease symptoms. However, the contraposition with pathogens is not so obvious,
considering that many pathogens have a latent stage in their life cycle during which they are
characteristically asymptomatic. The duration of this stage is very variable, and the pathogenic shift
often depends on changes in the host susceptibility induced by several kinds of stress, which may
reduce their tolerance or trigger a more aggressive behavior by the latent pathogen. For instance,
plant stress is presented as a fundamental factor stimulating the pathogenic behavior of L. theobromae
on dogwoods (Cornus florida), also considering the occasional failure of artificial inoculations during
pathogenicity trials [129]. Genetic factors also actively influence the lifestyle shift of plant-associated
fungi, as documented in a dedicated study disclosing repeated conversions during the evolutionary
history of several species [130].

Members of the Botryosphaeriaceae are renowned as latent pathogens with a wide host range
and geographical distribution [50,131]. Confirming this general feature, L. theobromae exerts such an
ecological adaptability, particularly in tropical and subtropical regions [4,5]. However, the recent
increasing trend in temperature may result in a major range expansion, placing more known and
unknown hosts at risk.

Until recently, the incidence of latent pathogens has been underestimated, particularly in the
trade of forest and horticulture plants and products; indeed, endophytes have been long disregarded
in quarantine measures [131], which has enabled fungi to spread in plant germplasm circulating
around the world [2,132]. With specific reference to L. theobromae, it has been conjectured that this
fungus might have spread from Mexico to other subtropical countries through the trade of pine
seeds [8]. Another hypothesis based on a phylogeographic approach considers the possible spread
to South America from Africa to have repeatedly occurred as a consequence of human activities [28].
The availability of molecular techniques for the routine screening of plant material has increased the
awareness that this risk has to be monitored [133]. In fact, besides considering pathogenic fungi of crops
with an undefined latent stage [134,135], the European Food Safety Agency (EFSA) has recently started
to consider the potential presence of disease agents occurring as endophytes in traded ornamental
plants [136]. This concern is further supported by data gathered in this review, also considering that
several hosts belong to widespread tree genera in boreal forests (e.g., Pinus, Populus, Quercus, Taxus and
Zelkova). On the other hand, the accumulation of data on the occurrence of endophytes also provides
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an indication that some plants could be exempt. As an example, a recent review on the endophytic
fungi of olive tree (Olea europaea), gathering all the available data concerning this important crop,
has disclosed that, to date, there are no citations concerning L. theobromae, not only in the Mediterranean
area but also in several tropical and subtropical countries where the plant has been introduced [3].

Many fungi reported for their endophytic occurrence are better known as plant pathogens. This is
to be interpreted not only considering a more or less enduring latent stage within the disease cycle,
as introduced above, but also with reference to a variable capacity by plant species to host certain
fungal pathogens without showing symptoms of infection. Besides the more established concepts
considering an improvement of host fitness in terms of growth promotion and protection against pests
and pathogens, in the case of renowned disease agents, it has been conjectured that the capacity of a
plant to host and promote their horizontal spread in the biocoenosis reflects a competitive advantage
against other susceptible species [137]. This concept is quite appropriate for L. theobromae, which has
such a high number of hosts as both a pathogen and an endophyte.

The problematic discernment of the real relationships with the host plant particularly emerged
in our overview of the endophytic occurrence of L. theobromae. Indeed, defining this fungus as an
endophyte in crops where it is known to cause disease (at least 46 plant species listed in Table 1,
underlined) arouses a certain perplexity and raises the question of how to consider observations in
the wild. The subject of plant pathology basically consists of diseases affecting crops or forest plants,
and thorough assessments concerning fungal diseases of non-crop species are infrequent. In the
absence of previous records and symptom descriptions, how can we be sure that a fungus isolated from
“asymptomatic” tissues of a plant growing in whatever natural context is not exerting pathogenicity?
It is worth observing that most of the plant species listed in Table 1 are not crops, and that for the
majority of them, there is just a single finding, which is not at all sufficient for making a decision in this
respect. Moreover, rather than being focused on the moment and circumstances of isolation, the issue
should be considered with reference to the entire life cycle of the host plant: in this respect, how to
consider reports of endophytic occurrence in centuries-old trees such as baobabs? [15,50].

Besides baobabs, there are more plants where it has been clearly demonstrated that the presumed
endophytic occurrence is rather considered to refer to isolations carried out during the latent stage
of the disease cycle. This is the case of cashew (Anacardium occidentale), where L. theobromae was
recovered from healthy tissues at a distance of up to 80 cm from cankers caused by the same, and it
was found to transmit through apparently healthy propagation material [92]. In other cases, the issue
may be considered to have a “topographical” connotation, basically when the fungus exerts its
pathogenic aptitude in some plant parts only. In fact, endophytic asymptomatic colonization of
mango (Mangifera indica) shoots and branches has been shown to be prodromal to postharvest fruit
rot [93,138]. In the case of Aquilaria spp. used for the production of agarwood, designating L. theobromae
as an endophyte seems inappropriate too; in fact, resin formation is promoted as a reaction to an
infection process which rather qualifies the fungus as a pathogen [139]. Likewise, internal infections
by L. theobromae are reported to cause blue stain of wood after felling in Pinus elliottii [8], as well as in
Terminalia spp. [87] and rubberwood (Hevea brasiliensis) [140]. It is worth considering that in similar
cases observed on neem (Azadirachta indica) [141] and Ficus insipida [142], the occurrence of the fungus
is merely referred to as a pathogenic association.

5. Bioactivities of Endophytic Isolates of Lasiodiplodia theobromae

Endophytes present potential for the exploitation of metabolites and enzymes. The biosynthesis
of many secondary metabolites is often a response to environmental factors and fulfils different
functions, such as defense, signaling and nutrient acquisition. Moreover, endophytes can influence
the metabolism of the host and modify secondary metabolites by enzymatic steps of biochemical
transformation [143].

Many studies have shown that endophytic fungi can synthesize bioactive products identical
or similar to those produced by plants, representing an alternative source of some drugs and new
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useful medicinal compounds [144,145]. For this reason, many researchers have focused their attention
on endophytes of medicinal plants, and many strains have been isolated which could be used for
producing plant-derived drugs through fermentation. Among these fungi, L. theobromae particularly
stands out for its ability to synthesize a high number of bioactive compounds [146]. The current panel
of products is expected to further increase with reference to the many studies disclosing bioactive
properties by endophytic strains of this species. Table 2 refers to investigations concerning endophytic
strains of L. theobromae as a possible source of bioactive products, which sometimes are limited to
assays carried out with culture filtrates.

Table 2. Bioactivities of endophytic isolates of Lasiodiplodia theobromae.

Bioactivity Source Sample tested Ref.

Antibacterial

Acanthus ilicifolius Secondary metabolites [112]

Aquilaria sinensis Culture filtrate extract [81]

Calamus thwaitesii Culture filtrate extract [42]

Dracaena draco Culture filtrate extract [36]

Garcinia mangostana Secondary metabolites [69]

Hancornia speciosa Culture filtrate extract [106]

Humboldtia brunonis Culture filtrate extract [62]

Madhuca indica Culture filtrate extract [102]

Piper hispidum Culture filtrate extract [33]

Terminalia arjuna Culture filtrate extract [84]

Antifungal

A. sinensis Culture filtrate extract [81]

Avicennia lanata Culture filtrate extract [114]

Bidens pilosa Culture filtrate extract and secondary metabolites [126]

H. speciosa Culture filtrate extract [106]

H. brunonis Culture filtrate extract [62]

T. arjuna Culture filtrate extract [84]

Anti-inflammatory Acanthus ilicifolius Secondary metabolites [113]

Antioxidant

Catharanthus roseus Culture filtrate and mycelial extracts [104]

C. roseus Silver nanoparticles [105]

T. arjuna Culture filtrate extract [84]

Antiprotozoal A. lanata Culture filtrate extract and chromatographic fraction [115]

Vitex pinnata Secondary metabolites [122]

Cytotoxic

Acanthus ilicifolius Secondary metabolites [112]

A. sinensis Culture filtrate extract [81]

B. pilosa Culture filtrate extract and secondary metabolites [126]

C. roseus Silver nanoparticles [90]

C. roseus Culture filtrate and mycelial extracts [104]

Morinda citrifolia Secondary metabolite [110]

Plectranthus amboinicus Secondary metabolite [118]

Enzymatic

Azadirachta indica Isolate [43]

Cocos nucifera Isolate [43]

Pongamia pinnata Isolate [43]

Psychotria flavida Isolate [111]

Terminalia catappa Isolate [86]

Terminalia mantaly Isolate [86]

Heavy metal tolerance Boswellia ovalifoliata Isolate [96]
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Concerning the antibacterial activity, extracts produced by endophytic strains from the medicinal
plant Piper hispidum were effective against four human pathogenic bacteria (i.e., Enterococcus hirae,
Escherichia coli, Micrococcus luteus and Staphylococcus aureus) and showed good activity against Salmonella
tiphy [33]. Antimicrobial activity was again displayed by endophytic strains from Hancornia speciosa,
a plant native to Brazil, used to treat various pathologies [106].

Strains isolated from leaves, twigs and bark of Terminalia arjuna showed antimicrobial activity
against Bacillus subtilis and Aspergillus niger, along with significant antioxidant properties [84].
The culture extract from an endophytic strain isolated from the mangrove Avicennia lanata in the
Philippines was very active against the yeast Saccharomyces cereviseae but inactive against several
Gram-negative and Gram-positive bacteria [114].

The culture extracts of endophytic strains from leaf and stem segments of Humboldtia brunonis were
inhibitory against Bacillus subtilis, S. aureus, Klebsiella pneumoniae, Proteus volgaris and Candida albicans [62].
The crude extract from another endophytic strain isolated from Madhuca indica in India was found
to be active against several common bacteria [102]. A strain isolated from A. sinensis showed low
antimicrobial activity against microbial pathogens, particularly Aspergillus famigatus. This strain also
displayed cytotoxic activity against some cancer cell lines [81]. Likewise, the culture extract of a strain
from Catharanthus roseus exhibited cytotoxicity against the human cervical adenocarcinoma (HeLa) cell
line [104].

The anticancer activity was particularly prominent when metal nanoparticles were prepared
by exposing the endophytic fungus to metal salt solution. In fact, L. theobromae from leaves of
Psidium guajava was used for the biological synthesis of silver nanoparticles, which provided powerful
antitumor activity against human breast and lung cancer cells [90]. Silver nanoparticles were also
prepared using an endophytic strain of L. theobromae isolated from C. roseus, inducing apoptosis in
various types of cancer cells and promoting free radical scavenging [105]. These findings suggest that
natural compounds produced by these isolates and incorporated into the nanoparticles have potential
as a novel chemotherapeutic agent.

Finally, an endophytic strain of Boswellia ovalifoliolata is capable of growing in the presence of
heavy metals (i.e., Co, Cd, Cu and Zn) in concentrations up to 600 ppm, showing that it may be used to
remove heavy metals from solid substrates [96].

6. Secondary Metabolites and Enzymes of Endophytic Lasiodiplodia theobromae

As introduced above, the biological properties of culture extracts of endophytic L. theobromae might
be linked to the capacity of the fungus to produce bioactive compounds (Figure 2). In fact, L. theobromae
is a proficient producer of compounds belonging to different classes of secondary metabolites, such as
diketopiperazines, indoles, jasmonates, melleins, lactones and phenols [146].

Biotic and abiotic stimuli influence the capacity of L. theobromae to grow and produce secondary
metabolites, with implications for its physiology, lifestyle and pathogenic aptitude [146–148]. Studies on
fungal genomes have shown that the capability of fungi to produce secondary metabolites has been
underestimated, because many secondary metabolite biosynthetic gene clusters are silent under
standard cultivation conditions [149,150]. In fact, different metabolomic profiles have been reported for
L. theobromae strains according to variation in growth conditions, with reference to temperature [147,148],
nutrient availability [151,152], presence of signal molecules [153] and incubation period [122].

Metabolomic investigations of L. theobromae have pointed out that some compounds are
produced by endophytic strains only. This is the case of preussomerins and cloropreussomerins,
compounds with an unusual structure isolated from the culture extract of a strain from leaves of
the mangrove Acanthus ilicifolius and characterized for their cytotoxicity against five human cancer
cell lines [112]. Moreover, endophytic strains from Aquilaria sinensis have been reported to produce
2-(2-phenylethyl)chromones, which are among the most abundant constituents of agarwood [154].
The coumarins meranzine and monocerin could be responsible for the antimicrobial activity of the
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culture extract of an endophytic strain from Dracaena draco, displaying characteristic inhibition zones
against Gram-positive and Gram-negative bacteria [36].

 
Figure 2. Representative secondary metabolites produced by endophytic Lasiodiplodia theobromae.

Lasiodiplodins were frequently, although not exclusively, reported as products of endophytic strains
of L. theobromae [47,69,113]. These macrolides are relevant for a variety of biological properties including
cytotoxic, antimicrobial and anti-inflammatory activities [69,155]. Within this class, lasiodiplactone A was
obtained from a mangrove endophytic strain showing anti-inflammatory activity [113]. Furthermore,
desmethyl-lasiodiplodin was isolated, together with cladospirone B and (-)-mellein, from the crude extract
of a strain from leaves of Vitex pinnata. Interestingly, cladospirone B and desmethyl-lasiodiplodin showed
good activity against Trypanosoma brucei [122].

An endophytic strain from the medicinal plant Bidens pilosa yielded four depsidones,
botryorhodines A-D, and the auxin 3-indolecarboxylic acid, which are not exclusively produced
by endophytic strains. Botryorhodines A and B show moderate cytotoxic activity against cervical
cancer cells (i.e., HeLa) and antifungal activity against pathogenic fungi, such as Aspergillus terreus and
Fusarium oxysporum [126].

The fact that two of the leading natural products, namely camptothecin and taxol,
in cancer chemotherapy were originally extracted from plants is quite interesting from an applicative
perspective [144]. The first compound has been detected as a secondary metabolite of strains isolated from
the leaves and stem of Nothapodytes nimmoniana in the Western Ghats, India [103]. One of these strains
(L-6) was investigated in depth with reference to the common phenomenon of attenuation of bioactive
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metabolite production in axenic cultures. It was found that its re-inoculation in the host promoted higher
production of camptothecin, indicating that the fungus receives eliciting signals from the host tissues,
or some factors which prevent silencing of the genes responsible for biosynthesis [156].

Taxol, the first billion-dollar natural antitumor product [157], has been reported as a secondary
metabolite of several endophytic strains of L. theobromae, from Taxus baccata, Morinda citrifolia,
Salacia oblonga and Piper nigrum [32,35,57,110]. Investigational activity carried out on the product
extracted from these strains pointed out its ability to counteract the carcinogenic effects of
dimethylbenzanthracene [158]. Moreover, valuable studies have disclosed the capacity by non-Taxus
endophytic strains to produce the compound through a similar biosynthetic pathway as the one reported
from the plant. In fact, the gene encoding 10-deacetylbaccatin-III-O-acetyltransferase, as well as the
open reading frame of WRKY1 transcription factor, were cloned and sequenced and found to share
high similarity with deposited sequences from Taxus chinensis, T. cuspidata and T. celebica [35].

Of great interest in endophytic L. theobromae is the production of phytohormones, such as
indole derivatives and jasmonic acid analogues [146]. It is known that 3-indoleacetic acid and
3-indolecarboxylic acid are the most studied auxins regulating plant growth and development.
These compounds have been frequently reported as fungal metabolites [144] and have also been
documented as being produced by L. theobromae strains. The biological role of 3-indolecarboxylic acid
has not been fully investigated, but some studies address its biosynthesis [159–161] and toxicity [147].
Several L. theobromae strains with different lifestyles are in vitro producers of jasmonic acid and
analogues. Jasmonic acid is one of the most important signal molecules involved in several plant
processes including seed germination, senescence and blooming. Hence, investigations of the bioactive
properties of jasmonic acid and related compounds are essentially focused on their role in the interaction
between host and pathogen.

The great ability of adaptation to different environments, the capacity to colonize a high number
of hosts and the expression of high amounts of extracellular enzymes make L. theobromae a producer
of relevant enzymes (Table 2) to be considered for biotechnological applications [162]. The most
recognized extracellular enzymes used to penetrate the plant host include cellulases, proteases and
lipases. Endophytic strains colonizing C. nucifera, Pongamia pinnata and A. indica exhibited great lipase
activity [43]. Moreover, endophytic strains from Terminalia catappa and T. mantaly were found to
produce amylases and cellulases [86]. Finally, L. theobromae isolated from Psychotria flavida turned out
to be able to degrade irradiated polypropylene thanks to the production of laccases [62].

7. Conclusions

This overview of the endophytism of L. theobromae based on the literature published in the last
three decades has pointed out its widespread occurrence in tropical and subtropical areas and the
likeliness of further spread to regions with a temperate climate following the increasing trade of plant
material. Hints concerning the biochemical properties are indicative of a certain degree of adaptation
to the endophytic lifestyle, particularly deriving from the ability to synthesize bioactive products
which may contribute to protection against biological adversities and improve plant fitness. However,
the analysis of the available information also raises questions on whether the ability of L. theobromae to
colonize such a high number of hosts is rather to be referred to as a fundamental pathogenic aptitude
and whether a number of reports are actually referable to its interception during the latency phase of
the disease cycle. Finding reasonable answers is clearly dependent on the analysis of additional data
resulting from dedicated investigations in both natural and agricultural contexts.
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Abstract: Amaryllidaceae family comprises many crops of high market potential for the food and
pharmaceutical industries. Nowadays, the utilization of plants as a source of bioactive compounds
requires the plant/endophytic microbiome interactions, which affect all aspects of crop’s quantity
and quality. This review highlights the taxonomy, ecology, and bioactive chemicals synthesized by
endophytic fungi isolated from plants of the Amaryllidaceae family with a focus on the detection of
pharmaceutically valuable plant and fungi constituents. The fungal microbiome of Amaryllidaceae
is species- and tissue-dependent, although dominating endophytes are ubiquitous and isolated
worldwide from taxonomically different hosts. Root sections showed higher colonization as compared
to bulbs and leaves through the adaptation of endophytic fungi to particular morphological and
physiological conditions of the plant tissues. Fungal endophytes associated with Amaryllidaceae
plants are a natural source of ecofriendly bioagents of unique activities, with special regard to
those associated with Amarylloidae subfamily. The latter may be exploited as stimuli of alkaloids
production in host tissues or can be used as a source of these compounds through in vitro synthesis.
Endophytes also showed antagonistic potential against fungal, bacterial, and viral plant diseases
and may find an application as alternatives to synthetic pesticides. Although Amaryllidaceae crops
are cultivated worldwide and have great economic importance, the knowledge on their endophytic
fungal communities and their biochemical potential has been neglected so far.

Keywords: onions; amaryllis; endosphere; endobiome; metabolome; symbiosis

1. Introduction

Amaryllidaceae species have been utilized as vegetables, herbs, spices, and ornamentals in
all continents since ancient times. Many of them have shown widespread benefits in cuisine and
healing of common diseases like atherosclerosis, diabetes, inflammation, hypertension, and cancer.
These protective effects appear to be related to the presence of organosulfur compounds, predominantly
allyl derivatives in Allioidae and alkaloids in the Amaryllidoidae subfamily [1]. The economic
significance of Amaryllidaceae crops is substantiated by the all-year-round supply and a wide range of
cultivars and landraces characterized by plant parts with different shapes and specific taste and flavor.
The biochemical profile of plants determines a broad or specialized usage by food and pharmacological
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industry [2–4]. Considering the wide distribution, unique chemical composition, and economic
importance, we selected Amaryllidaceae crops to analyze their relationship with the microbiome
colonizing the root and shoot tissues.

With regard to root fungal microbiome, Amaryllidaceae symbiosis with arbuscular mycorrhizal
fungi has been widely investigated at the physiological, biochemical, and genetic level, and it has
been comprehensively reviewed [5–8]. However, there is selective and narrow knowledge of fungal
endophytes colonizing these plants. Hardoim et al. [9] defined “endophytes” as microorganisms
living in plant tissues in some periods of their life cycle or all through, so the word is referred to
the habitat rather than function. Nevertheless, endophytic fungi live inside the tissues of apparently
healthy and asymptomatic hosts. The case of Amaryllidaceae crops can help in understanding how
fungal endophytes modulate the physiological processes in the above- and below-ground plant tissues
as well as interact with a host plant and with other microbes. The effect of plant morphology on
colonization and biodiversity of endophyte communities has been rarely studied. The root-associated
fungi play an important role in plant nutrition by: mobilizing soil nutrients; recycling organic matter;
increasing the water holding capacity and absorption; protecting against pathogens and abiotic stresses;
biosynthesizing lignan, auxins, and ethylene, in order to improve the root system expansion and
encourage plant fitness through thermotolerance improvement; and coping with salinity, drought,
and heavy metal stress [10,11]. The underground bulb has been an additional component of plant
tissue/endophyte puzzles as a perennial storage part rich in nutrient compounds, and—in some
taxons containing unique bioagents—Amaryllidaceae alkaloids. Taking into account their life cycle,
Amaryllidaceae have to efficiently allocate resources from bulbs to vegetative and generative tissues and
vice versa during a short vegetation period. It is possible that the assimilates’ flow provides a natural
path for plants to partitioning the symbiotic endophytes as it was proposed for mycorrhizal fungi by
Crişan et al. [12]. Foliar endophytes can stimulate host plant biomass, yield, mineral status, nutritive
value, stomatal movement, and defensive mutualism against herbivores and pathogens [13,14].

The strict selection and recruitment of the endophytes by a host species was postulated and
analyzed for plant-associated bacteria [15] but the mentioned mechanisms also shape fungal diversity
and abundance [16]. The rhizoplane and phylloplane are considered to be a selective gate for
endophytes, mediating dynamic changes in the fungal community in plant internal tissues. This is the
reason for differences in microbial compositions among host species and even among their tissues [8].
Plant secondary metabolites are postulated as main regulators in colonization and development of
fungal endophytes in different tissues and, vice versa, fungal metabolites can play a similar role with
respect to the host and the microbiota [17,18]. Plant secondary metabolites are postulated as main
regulators in colonization and development of fungal endophytes in different tissues and, vice versa,
fungal metabolites can play a similar role with respect to the host and the microbiota [19]. Bioactive
metabolites synthesized by fungal endophytes show multidirectional actions in plants and can be
explored for the cultivation of targeted functional and medicinal crops [20]. Nowadays, endophytes
are also recognized as an alternative to synthetic chemicals in crop production and protection [21].
However, to be successfully applied, endophytes need specific conditions for efficient host tissue
colonization. This can be achieved by a thorough understanding of the endophyte-host relationship
starting from the colonization up to well-established symbiosis, on the basis of the fungi and plant
biology, covering genetic and biochemical factors as well [22–24].

This review aimed to analyze fungal endophyte communities associated with Amaryllidaceae
crops, by: presenting the evidence of ubiquitous and/or species- and tissue-dependent fungal
microbiome, reviewing the known chemical compounds synthesized by fungal endophytes,
and emphasizing their possible vital effects on human proecological and prohealth activities.

2. Amaryllidaceae Crops—Botanical Characteristics and Biochemical Composition

According to the current taxonomy, the family Amaryllidaceae consists of three subfamilies,
Agapanthoideae, Allioideae, and Amaryllidoideae, comprised of about 80 genera and approximately
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2200 accepted species [25]. Amaryllidaceae are perennial or biennial geophytes or hemicryptophytes,
with very diversified morphology of their underground shoots, which let distinguish three
biomorphological groups: rhizomatous, bulbous, and domesticated onions [26]. In the case of
a rhizomatous group (Cryptostephanus spp., Clivia spp., and some Scadoxus spp.), fleshy rhizomes
act as storage organs, growing for several years through the successive development of the basal
plate. Bulbs, composed of leaf sheaths of varying thicknesses, are formed by rhizomes. The leaves
are evergreen. In the bulb group, the true bulb consists of a longitudinally compressed basal stem
and fleshy, succulent, storage leaf bases. This group is well-adapted to arid and semiarid climate.
Domesticated onions form storage bulbs and were grouped separately because of the diversified
morphology, shaped through many centuries of breeding [26]. Most of the Amaryllidaceae plants
prefer xerophytic ecosystems, with warm, dry summers and cool, wet winters, being distributed across
regions, which are well-recognized biodiversity hotspots. The major center of genetic diversity is
localized in Central Asia and Mediterranean basin, and the secondary one, in South Africa, western
North America, and the Andes [27]. The gene pool of wild Amaryllidaceae is very rich in the centers
of origin and has been explored as a source of new genes introduced into cultivated species and for the
domestication of new crops useful as vegetables, herbs, medicinal plants, and ornamentals [28].

Cultivation practices were developed independently in particular regions of the Northern
Hemisphere and applied to at least 20 native or introduced vegetables of Allioideae subfamily, especially
of genus Allium. Onion (Allium cepa L.) and garlic are cultivated worldwide, leek (A. ampeloprasum
L.), shallot (A. cepa L. Aggregatum group), and chive (A. schoenoprasum L.) dominate in Western and
Northern Europe, kurrat (A. ampeloprasum L.) in Egypt and the Eastern Mediterranean, Japanese
bunching onion (A. fistulosum L.) in Japan, rakkyo (A. chinense G. Don), and Chinese leek (A. tuberosum
Rottl. ex Spr.) in China. The cultivated onion group is the result of intensive breeding and
represents morphological and physiological characteristics appreciated both for cultivation and
marketing. The latter include diversified shape, color, pungency, and chemical composition of bulbs,
reduced bolting, long shafts in leek, fast leaf growth in chives, single heart in onion but separated
in shallot [29–32]. Onions are known as a major food for preventing chronic disease [33], as a
source of sulfur compounds, steroidal saponins, and flavonoids. Moreover, showing a functional
food activity, they significantly contribute to the prevention of inflammatory and common lifestyle
diseases [34]. Organic sulfur compounds, determining onions’ pungent flavor, are the key components
responsible for the therapeutic effects [35]: allicin, and ajoene, as well as volatile compounds have the
ability to act as antimicrobials and antioxidants [36,37]; sulfur and phenolic compounds also show
antioxidant, anticancer, anti-inflammatory activities, and can prevent chronic diseases [38]; quercetin,
a bioflavonoid of onions, reveals antiproliferative and proapoptotic effects in many cancer cells, acts as
a neuroprotector, and stimulates cellular defense against oxidative stress [39].

Agapanthus is the only genus in the subfamily Agapanthoideae, endemic in South Africa but
naturalized around the world as ornamental. The Amaryllidoideae have a pronounced floricultural
importance because this subfamily comprises popular ornamentals, including many spring-flowering
bulbs (Narcisuss spp., Galanthus spp., and Leucojum spp.). They have been grown in European gardens
since the ancient times, supplemented since 17–18 century with species of New World origin like
Hippeastrum spp., or South African, like Amaryllis spp. or Clivia spp., widely cultivated as indoor
plants. The Amaryllidoideae have been traditionally used as medicines to treat mental problems,
primarily in Southern Africa [40]. Amaryllidoideae are the source of the isoquinoline alkaloids
of unique structure, which were isolated from about 350 species, amongst more than 800 species
belonging to this subfamily. Approximately 600 structurally diverse alkaloids were isolated to the
date, chemically defined, and pharmacologically investigated, as possessing antibacterial, antifungal,
antimalarial, antiviral, antitumor, analgesic, and acetylcholinesterase inhibitory activities [41–43].
The galanthamine was approved to date as the main treatment for mild to moderate Alzheimer’s
disease, acting as a selective, reversible competitive acetylcholinesterase inhibitor [44]. The lycorine,
haemanthamine, and narciclasine series are leading anticancer bioagents in clinical research [45]. The
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enormous structural diversity of Amaryllidoideae alkaloids has no equivalent in the Plant Kingdom
and can be explained by the chemoecological activity [46].

3. Biodiversity and Ecology of Endophytes Associated with Crops Belonging to the
Amaryllidaceae Family

The endophytic symbiosis could be an implementation of the microorganisms’ strategy aimed at
reducing the effects of the external changeable environment through the long-term coevolution with
plants providing a stable niche in their tissues [47]. The leaf surface is an attractive habitat for endophytic
fungi, which are influenced by the possibility of colonization through the epidermal structures, by leaf
health and nutritional status, and by competition with the other microorganisms. Several studies have
been carried out to characterize the mycobiota of A. cepa rhizosphere and phyllosphere, but much
less research has been focused on fungi colonizing internal tissues. Abdel-Gawad et al. [48] isolated
and identified, based on macro- and microscopic characters, 24 genera and 38 species of fungi from
the rhizoplane of onion, with dominating Aspergillus spp., Cladosporium spp. and Penicillium spp.,
and 17 genera and 35 species from the phylloplane, with dominating Aspergillus and Penicillium spp.
The root and leaf surface of onion hosted a broader spectrum of species than internal tissues, confirming
that plants selectively recruit endophytic microorganisms. Moreover, aboveground plant tissues
are exposed to rapid fluctuations in temperature, humidity, and solar radiation, so microorganisms
colonizing leaves are also affected by abiotic stress, exceeding sometimes their tolerance thresholds.
Abdel-Gawad et al. [48] evidenced that the onion’s fungal microbiota dependent on temperature,
namely the species Humicola grisea (current name Trichocladium griseum), Penicillium mirabile (current
name Talaromyces verruculosus), and Rhizoctonia solani, were isolated from leaves at 19 ◦C, whereas other
species, such as Chaetomium brasiliense (current name Ovatospora brasiliensis) and Zopfiella latipes, at 28 ◦C.
Moreover, the mentioned species were not specific for onion but isolated from roots of the other crops in
the investigated region, namely Assiut Governorate in Egypt. Only one species, Z. latipes, was isolated
from onion leaves for the first time in Egypt [49]. A red spider lily (Lycoris radiata) and golden spider
lily (L. aurea) are ornamentals of Asian origin, introduced into many countries all over the world
because of decorative flowers, but their bulbs are known as poisonous in traditional medicine systems.
Zhou et al. [50] identified, using molecular (polymerase chain reaction—PCR) and morphological
characteristics, 27 species of fungal endophytes belonging to 14 genera from L. radiata. Only Fusarium
developed hyphae in all organs; Stagonosporopsis and Glomerella (current name Colletotrichum) were
isolated from leaf tissues; Phoma from the bulb; Galactomyces, Metacordyceps (current name Metarhizium)
and Diaporthe from root tissues. Aspergillus, Colletotrichum, Diaporthe, Fusarium, Penicillium, Phoma,
and Phyllosticta were commonly isolated from a wide range of hosts but Cylindrocarpon, Galactomyces,
Sarocladium, and Stagonosporopsis were described as endophytes of specific plants. In earlier studies,
despite the mentioned species, Trichoderma sp. was isolated from a bulb of L. radiata [51] and Mucor
sp. from the bulb of L. aurea [52]. Notably, Metarhizium sp., which was reported as a soil fungus [53],
was isolated from L. radiata tissues, so this fungus seems to colonize plants occasionally [50].

The relationships between the endophyte fungi and host plant are very diversified and dynamically
change from mutualism, symbiosis, and commensalism to pathogenic during plant ontogeny [54,55].
For example, Colletotrichum, Diaporthe, Fusarium, Phyllosticta, and Phoma, isolated from healthy tissues
of L. radiata are commonly recognized as pathogenic, so the antifungal alkaloids can enforce symbiotic
lifestyle in plants, maintaining a balance between host and its endophytes/parasites. Regarding
endophytes colonization during onion’s ontogeny, Mueva et al. [56] stated that the seed inoculation
was more effective than seedling inoculation in terms of endophytes recovery in subsequent stages
of plant development. Indeed, endophytes inoculated at the seed surface colonized seed radicle and
plumule and developed internal mycelia in growing tissues. The fungal colonization and distribution
in onion tissues firstly depended on inoculation technique and secondly on the endophyte selection
by the host. Independently on the inoculation technique, most of the investigated endophytes,
for example Clonostachys rosea, Hypocrea lixii (current name Trichoderma lixii), Trichoderma asperellum,
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T. atroviride, T. harzianum, and Fusarium spp., were isolated from onion roots, followed by stems and
leaves. These differences could be due to tissue morphology and physiology, microbiome interactions,
and the influence of external conditions [56,57]. Onions have shallow, weakly branched root systems
with sparse root hairs, inefficient in the use of soil nutrient resources. The root endophytic and
mycorrhizal fungi play a significant role in supporting onions with mineral salts, that is why this
species is among the most symbiosis-dependent crops [7]. Focusing on endophytic fungi colonizing
shallot roots, Priyadharsini et al. [58] found that the percent of root length with fungal microsclerotia
was significantly and negatively correlated with soil phosphorus level. Similarly, percents of root length
with dark septate hyphae and dark septate endophyte total colonization were negatively correlated
with soil zinc and copper contents. It can be concluded that colonization of shallot roots by fungal
endophytes was reduced in soils rich in mineral salts. Wu et al. [59] hypothesized that the endophytic
fungal community may be helpful to symbiotic plants (i.a. Allium mongolicum) for surviving in the
extreme environments of Asian deserts. The mycobiota associated with photosynthesizing or storage
leaves, for example T. harzianum and T. koningii, could act antagonistically to phytopathogens. On the
other side, leaves with disease symptoms, with damaged epidermal cells and the lamellar seta shed
releasing nutrients, could be secondarily colonized by opportunistic fungi such as Botrytis cinerea,
Penicillium aurantiogriseum, Alternaria alternata, and Cladosporium spp. [20].

Plant storage tissues, including sugar-rich onions’ bulbs, can contain specific endophytes, actively
reproducing in these tissues without visible damage [60]. One of the main chemoecological roles of
Amaryllidaceae alkaloids is the protection of nutrient-rich bulbs against phytopathogens and herbivores.
Xiang et al. [61] isolated and sequenced six fungal endophytes from Narcissus pseudonarcissus bulb and
only two from leaf tissues. Zhou et al. [19] found that bulbs of L. radiata were exclusively colonized at a
higher degree than other tissues, probably because of the perennial life cycle of bulbs and annual cycle
of other plant parts [62] and because of the space and carbohydrates provided by bulbs as storage
sinks [63].

3.1. Biochemistry and Functions of Fungal Endophytes Associated with Allioidae Crops

Abdel-Hafez et al. [20] investigated endophytes colonizing A. cepa leaves, both healthy and
infected by purple blotch (Alternaria porri). Fungi were isolated and identified according to their
macroscopic and microscopic characteristics. Despite the strains detected from healthy and diseased
leaves, belonging to genera Cladosporium, Alternaria, Penicillium, and Stemphylium, five species,
namely Absidia corymbifera (current name Lichtheimia corymbifera), B. cinerea, P. aurantiogriseum, P. glabrum,
and Syncephalastrum racemosum, were isolated only from infected leaves, while three species (Fusarium
oxysporum, Trichoderma harzianum, and T. koningii) were isolated only from healthy ones (Table 1).
Trichoderma spp. showed antagonistic potential against A. porri, through competition, lysis, antibiosis,
and parasitism [64,65]. The antagonistic effect of Epicoccum nigrum, Penicillium oxalicum, and Stachybotrys
chartarum against A. porri was antibiosis caused by effective lytic, as well as antimicrobial secondary
metabolites produced by endophytic fungi [20]. Previously, Flori and Roberti [66] noticed the antifungal
activity of the endophyte Beauveria bassiana, inoculated to onion roots, against F. oxysporum f. sp. cepae,
causing basal rot of onion. The antifungal potential of the endophyte Talaromyces pinophilus (current
name Penicillium pinophilum) against B. cinerea was described by Abdel-Rahim and Abo-Elyousr [67].
T. pinophilus was isolated from onion’s inflorescences and identified with PCR amplification of
the ribosomal internal transcribed spacer (ITS) region. The mycelium of T. pinophilus penetrated
intercellularly the hyphae of B. cinerea, involving cell wall degrading enzymes (chitinase, lipase,
and protease) in the mycoparasitic process.
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Muvea et al. [56,68] showed the effect of onion inoculation with some strains of endophytic fungi
on the proportion of thrips due to reduced feeding and oviposition, caused by antixenotic repellence
or higher death rate of thrips. Moreover, the reduced feeding of thrips on endophyte-colonized onions
could reduce the transmission of virus diseases, spread by insects.

Among endophytes of garlic that can produce bioactive compounds, Shentu et al. [71] isolated
and identified, based on morphological and molecular procedures, Trichoderma brevicompactum with
strong antifungal activities. Trichodermin, an antifungal compound of T. brevicompactum inhibited
mycelial growth of R. solani, with an EC50 of 0.25 μg mL−1, and B. cinerea, with an EC50 of 2.02 μg mL−1

(Table 2). A weak inhibition was noted against Colletotrichum lindemuthianum (EC50 = 25.60 μg mL−1).
The authors underlined that the relationship between T. brevicompactum and the garlic plant remained
unclear. Espinoza et al. [72] investigated the chive’s growth parameters and secondary metabolites
as affected by inoculation with the endophyte fungus B. bassiana. The fungus applied to the
rhizosphere, colonized plant tissues, and finally was isolated from roots and leaves, affecting total
alkaloids content but not leaves yield. Koul et al. [73] isolated and morphologically and molecularly
identified the fungus Penicillium pinophilum, from bulbs of chive’s population native to snow mountain
regions of India. P. pinophilum was a source of anticancer anthraquinones, dicatenarin, and skyrin.
Both compounds inhibited human pancreatic cancer (MIA PaCa-2) cells with least IC50 values of 12 μg
mL−1 and 27 μg mL−1 respectively, through mitochondrial-mediated apoptotic pathway. Dicatenarin
cytotoxic/proapoptotic activity was more pronounced than skyrin due to the presence of an additional
phenolic hydroxyl group at C-4, which increased reactive oxygen species generation [73].

Wild and endemic Allium species were also the object of investigation. In the latter respect,
Abdulmyanova et al. [74] screened Allium filidens Regel and leaves of A. longicuspis Regel regarding
endophytic fungi biodiversity and bioactivity. Among 16 isolates of endophytic fungi obtained from
these plants and identified morphologically, the highest biodiversity was determined for bulbs of
A. filidens and leaves of A. longicuspis. The Penicillium spp. were the most dominant symbionts of
A. filidens, while Aspergillus spp. were commonly isolated from A. longicuspis. Beside cosmopolitan
species, the rare endophytes Alternaria tenuissima, Aspergillus spectabilis, and Cladosporium tenussimum
were also isolated. The endophytic fungi detected in the same host varied regarding bioactivity.
For example, three strains of Penicillium sp. isolated from bulbs of A. filidens were different in cytotoxic,
antibacterial, and antiamylase activity, two strains of Alternaria sp. from leaves of A. longicuspis
exhibited only antibacterial activity [74,75]. Bulbs of both described Allium species, endemic in
Afganistan, have been used in traditional Asian medicine [76].

3.2. Biochemistry and Functions of Fungal Endophytes Associated with Amaryllidoideae Crops

Amarylidoideae alkaloids can be involved in chemical crosstalk between host plant and endophytes
as communication molecules that are responsible for the shaping of plant-microbe interactions.
This phenomenon was more widely investigated for endophytic bacteria, which can promote the
synthesis of Amaryllidaceae alkaloids [77,78], but endophytic fungi are also involved in plant-endophyte
and endophyte–endophyte interspecies communication. For example, Wang et al. [79] investigated
endophytic fungi and bacteria in the bulbs of the Chinese sacred lily (Narcissus tazetta), widely used as
an ornamental and medicinal plant in Asia [79]. The authors defined nine hexacyclopeptides produced
by fungus and selectively accumulated by an endophytic bacterium Achromobacter xylosoxidans isolated
from the same tissue (Table 2). The production of targeted hexacyclopeptides by F. solani was possible
only in planta and decreased in vitro conditions. However, the ecological basis of this chemical
cross-talk needs future investigations. Yang et al. [80] isolated and identified, using morphological
and molecular methods, 18 strains of endophytic fungi from Narcissus sp. Three species, particularly
Rhinocladiella sp., demonstrated significant inhibitory activity against acetylcholinesterase.

Onofri et al. [81] identified, using conventional taxonomic techniques, four strains of Cryptococcus
laurentii (current name Papiliotrema laurentii), C1–C3 from root tips, C4 from outer bracts of bulb
of daffodil (N. pseudonarcissus). The authors observed that lycorine, an alkaloid of Narcissus bulbs,
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inhibited the growth of C1–C3 but not C4 strains of fungi. The inhibition was due to destroying the
cellular membranes and interfering with the substrate absorption and cell metabolism, namely blocking
L-galactonic acid γ-lactone conversion into ascorbate by lycorine. In contrast, C. laurentii, isolated from
the lycorine-containing bracts of the bulb, was able to degrade lycorine and to use decomposition
products as growth stimulators.

L. radiata is the main source of Amaryllidaceae alkaloids but the low yield and high costs,
resulting from its complex procedures and mixed stereoisomers, limit pharmaceutical development
of plant-delivered drugs [50]. Lycoris spp. were objects of some investigations regarding endophyte
microbiota and assessment of the biological activity of their metabolites. Penicillium sp. isolated
from L. aurea was able to produce galanthamine in vitro [82], and the other nonidentified fungus
strain L-10 possessed antibacterial and antifungal activity against Staphylococcus aureus and Candida
albicans, respectively [52]. This phenomenon confirmed the antagonism between fungal and bacterial
symbionts of this plant. Both novel and known compounds, especially alkaloids, could be produced
by in vitro grown endophytic fungi isolated from Lycorsis spp. bulbs. Moreover, the inoculation with
fungal endophytes enhanced the level of various alkaloids in L. radiata. So, inoculation with particular
fungus or consortium of fungi can be used for increasing the content of targeted alkaloids during plant
cultivation [50].

Li et al. [83] investigated drimane-type sesquiterpenoids of Aspergillus versicolor. Among the latter
compounds, Versicalin A showed moderate cytotoxic activity against HL-60 tumor cells with an IC50

value of 5.6 μM, while proversilin C and E showed moderate cytotoxicity against human tumor HL-60,
SMMC-7721, A-549, MCF-7, and SW-480 cell lines and the normal colonic epithelial cells NCM460 with
IC50 values ranging from 7.3 to 28.4 μM [83,84]. The synthesis of the same chemical compounds by the
plant host and endophytic fungus is the phenomenon described for some other species as an example
of highly specified coevolution. Moreover, this phenomenon has a great significance in the detection
and production of pharmaceutically valuable plant/endophyte derived drugs [85–87].
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4. Conclusions

The increasing demand for Amaryllidaceae crops is triggered not only by traditional culinary usage
but also by cultural attitudes, social beliefs, modern interest in exotic and ethnic foods, and medicinal
applications. However, secondary metabolites responsible for wide applications of crops in every area
of human activity are synthesized by both plant and its endopytic microbiota. Indeed, endophytic fungi
associated with this group of plants provide host plants with nutrients and water, alleviate biotic and
abiotic stresses, increase stress tolerance, and affect metabolome profile. They are a source of metabolites
of antifungal and antiparasitic activity and have a promising perspective in the application as effective
biocontrol agents, replacing chemical fungicides and pesticides. Moreover, as the chemosynthesis of
Amaryllidaceae alkaloids needs complicated and costly procedures, plants remain an exclusive source
of these alkaloids for the pharmaceutical industry. Symbiotic endophytic fungi can be used to increase
alkaloids yield in plants or as an alternative source of alkaloids and other bioactive compounds in vitro
cultures. Taking into account the scant research on endophytic fungi associated with Amaryllidaceae
as a prolific source of phytochemicals, the need has raised for screening investigations aimed to
identify the endophytic species, as well as the molecular and genetic basis of their relationship with
the host plants.

5. Review Methodology

The present review was based on the literature collected from the leading life science databases,
including AGRICOLA, AGRIS, BioOne, CAB Abstracts, PubMed, SciELO, Scopus, and Web of Science.
Bibliometric analysis was used for the review, evaluation, and objective representation of the structure
within a presented research area, namely Amarylidaceae–fungal endophytes relationship. The most
relevant aspects of the evolution, advances, and trends in the reviewed field were presented [88].
References were collected, studied, and selected considering (i) the reports of endophytes isolated from
the species of Amaryllidaceae family, (ii) the reports of therapeutic utilization of the host plant or/and
an endophyte, (iii) the effects of host plant phylogeny on root microbiome assembly. Plant names
were verified according to the Global Biodiversity Information Facility [89] and The Plant List [90];
endophyte taxa were verified according to MycoBank database [91].

Author Contributions: Conceptualization, A.S., and G.C.; writing—original draft preparation, A.S., and G.C.;
writing—review and editing, N.G., M.T.A., A.T.; visualization, A.S. and A.T.; supervision, A.S., and G.C. All authors
have read and agreed to the published version of the manuscript.

Funding: This study was partially supported by the Ministry of Science and Higher Education of the Republic
of Poland.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Petkova, N.T.; Ivanov, I.G.; Raeva, M.; Topuzova, M.G.; Todorova, M.M.; Denev, P.P. Fructans and antioxidants
in leaves of culinary herbs from Asteraceae and Amaryllidaceae families. Food Res. 2019, 3, 407–415.
[CrossRef]

2. Amalfitano, C.; Golubkina, N.A.; Del Vacchio, L.; Russo, G.; Cannoniero, M.; Somma, S.; Morano, G.;
Cuciniello, A.; Caruso, G. Yield, Antioxidant Components, Oil Content, and Composition of Onion Seeds
Are Influenced by Planting Time and Density. Plants 2019, 8, 293. [CrossRef]

3. Nemtinov, V.; Golubkina, N.; Koshevarov, A.; Konstanchuk, Y.; Molchanova, A.; Nadezhkin, S.; Sellitto, V.M.;
Caruso, G. Health-beneficial compounds from edible and waste bulb components of sweet onion genotypes
organically grown in northern Europe. Banats J. Biotechnol. 2019, 10. [CrossRef]

4. Petrovic, B.; Kopta, T.; Pokluda, R. Effect of biofertilizers on yield and morphological parameters of onion
cultivars. Folia Hortic. 2019, 31, 51–59. [CrossRef]
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31. Kučová, L.; Kopta, T.; Sękara, A.; Pokluda, R. Controlling nitrate and heavy metals content in leeks
(Allium porrum L.) using arbuscular mycorrhizal fungi inoculation. Pol. J. Environ. Stud. 2018, 27, 137–143.
[CrossRef]

32. Golubkina, N.A.; Seredin, T.M.; Antoshkina, M.S.; Kosheleva, O.V.; Teliban, G.C.; Caruso, G. Yield, quality,
antioxidants and elemental composition of new leek cultivars under organic or conventional systems in a
greenhouse. Horticulturae 2018, 4, 39. [CrossRef]

33. Galeone, C.; Turati, F.; Zhang, Z.F.; Guercio, V.; Tavani, A.; Serraino, D.; Brennan, P.; Fabianova, E.;
Lissowska, J.; Mates, D.; et al. Relation of Allium vegetables intake with head and neck cancers: Evidence
from the inhance consortium. Mol. Nutr. Food Res. 2015, 59, 1641–1650. [CrossRef]

34. Zeng, Y.; Li, Y.; Yang, J.; Pu, X.; Du, J.; Yang, X.; Yang, T.; Yang, S. Therapeutic role of functional components in
Alliums for preventive chronic disease in human being. Evid. Based Complement Altern. Med. 2017, 3, 9402849.
[CrossRef]

35. Munday, R. Harmful and beneficial effects of organic monosulfides, disulfides, and polysulfides in animals
and humans. Chem. Res. Toxicol. 2012, 25, 47–60. [CrossRef]

36. Mnayer, D.; Fabiano-Tixier, A.S.; Petitcolas, E.; Hamieh, T.; Nehme, N.; Ferrant, C.; Fernandez, X.; Chemat, F.
Chemical composition, antibacterial and antioxidant activities of six essentials oils from the Alliaceae family.
Molecules 2014, 19, 20034–20053. [CrossRef] [PubMed]

37. Wallock-Richards, D.; Doherty, C.J.; Doherty, L.; Clarke, D.J.; Place, M.; Govan, J.R.W.; Campopiano, D.J.
Garlic revisited: Antimicrobial activity of allicin-containing garlic extracts against Burkholderia cepacia
complex. PLoS ONE 2014, 9, e112726. [CrossRef]

38. Vlase, L.; Parvu, M.; Parvu, E.A.; Toiu, A. Chemical constituents of three Allium species from Romania.
Molecules 2013, 18, 114–127. [CrossRef]

39. Costa, L.G.; Garrick, J.M.; Roquè, P.J.; Pellacani, C. Mechanisms of neuroprotection by quercetin:
Counteracting oxidative stress and more. Oxid. Med. Cell. Longev. 2016, 2016, 2986796. [CrossRef]

40. Stafford, G.I.; Pedersen, M.E.; van Staden, J.; Jäger, A.K. Review on plants with CNS-effects used in traditional
South African medicine against mental diseases. J. Ethnopharmacol. 2008, 119, 513–537. [CrossRef]

41. Nair, J.J.; Wilhelm, A.; Bonnet, S.L.; van Staden, J. Antibacterial constituents of the plant family Amaryllidaceae.
Bioorg. Med. Chem. Let. 2017, 27, 4943–4951. [CrossRef] [PubMed]

42. Berkov, S.; Osorio, E.; Viladomat, F.; Bastida, J. Chemodiversity, chemotaxonomy and chemoecology of
Amaryllidaceae alkaloids. Alkaloids Chem. Biol. 2020, 83, 113–185.

43. Desgagné-Penix, I. Biosynthesis of alkaloids in Amaryllidaceae plants: A review. Phytochem. Rev. 2020.
[CrossRef]

44. Lin, Y.T.; Chou, M.C.; Wu, S.J.; Yang, Y.H. Galantamine plasma concentration and cognitive response in
Alzheimer’s disease. PeerJ 2019, 7, e6887. [CrossRef]

45. Nair, J.J.; Bastida, J.; Viladomat, F.; van Staden, J. Cytotoxic agents of the crinane series of Amaryllidaceae
alkaloids. Nat. Prod. Commun. 2012, 7, 12. [CrossRef]

46. Rønsted, N.; Symonds, M.R.; Birkholm, T.; Christensen, S.B.; Meerow, A.W.; Molander, M.; Stafford, G.I.
Can phylogeny predict chemical diversity and potential medicinal activity of plants? A case study of
Amaryllidaceae. BMC Evol. Biol. 2012, 12, 182. [CrossRef]

47. Hirano, S.S.; Upper, C.D. Bacteria in the Leaf Ecosystem with Emphasis on Pseudomonas syringae a Pathogen,
Ice Nucleus, and Epiphyte. Microbiol. Mol. Biol. Rev. 2000, 64, 624–653. [CrossRef]

48. Abdel-Gawad, K.M.; Abdel-Mallek, A.Y.; Hussein, N.A.; Abdel-Rahim, I.R. Diversity of mycobiota associated
with onion (Allium cepa L.) cultivated in Assiut, with a newly recorded fungal species to Egypt. J. Microbiol.
Biotechnol. Food Sci. 2017, 9, 1145–1151. [CrossRef]

49. Abdel-Hafez, S.I.I.; Moharram, A.M.; Abdel-Sater, M.A. Monthly variations in the mycobiota of wheat fields
in El-Kharga Oasis, Western desort, Egypt. Bull. Fac. Sci. Assiut Univ. 2000, 29, 195–211.

122



Agriculture 2020, 10, 533

50. Zhou, J.; Li, P.; Meng, D.; Gu, Y.; Zheng, Z.; Yin, H.; Yin, H.; Li, J. Isolation, characterization and inoculation of
Cd tolerant rice endophytes and their impacts on rice under Cd contaminated environment. Environ. Pollut.
2020, 260, 113990. [CrossRef]

51. Zhou, P.; Wu, Z.; Tan, D.; Yang, J.; Zhou, Q.; Zeng, F.; Zhang, M.; Bie, Q.; Chen, C.; Xue, Y.; et al.
Atrichodermones A–C, three new secondary metabolites from the solid culture of an endophytic fungal
strain, Trichoderma atroviride. Fitoterapia 2017, 123, 18–22. [CrossRef]

52. Yang, S.; Nan, X.H.; Lu, Y.B.; Peng, F. Study on isolation and anti-microbial activitiy of endophyte in
Lycoris aurea Herb. J. Tradit. Chin. Med. 2010, 30, 78–80.

53. Rocha, L.F.; Inglis, P.W.; Humber, R.A.; Kipnis, A.; Luz, C. Occurrence of Metarhizium spp. in Central Brazilian
soils. J. Basic Microbiol. 2013, 53, 251–259. [CrossRef] [PubMed]

54. Nouh, F.A.A.; Abdel-Azeem, A.M. Role of Fungi in Adaptation of Agricultural Crops to Abiotic Stresses.
In Agriculturally Important Fungi for Sustainable Agriculture; Springer: Cham, Switzerland, 2020; pp. 55–80.

55. Pusztahelyi, T.; Holb, I.J.; Pócsi, I. Secondary metabolites in fungus-plant interactions. Front. Plant. Sci. 2015,
6, 573. [CrossRef]

56. Muvea, A.M.; Meyhöfer, R.; Subramanian, S.; Poehling, H.-M.; Ekesi, S.; Maniana, N.K. Colonization of
Onions by Endophytic Fungi and Their Impacts on the Biology of Thrips tabaci. PLoS ONE 2014, 9, e108242.
[CrossRef] [PubMed]

57. Muvea, A.M.; Meyhöfer, R.; Maniania, N.K.; Poehling, H.M.; Ekesi, S.; Subramanian, S. Behavioral responses
of Thrips tabaci Lindeman to endophyte-inoculated onion plants. J. Pest Sci. 2015, 88, 555–562. [CrossRef]

58. Priyadharsini, P.; Pandey, R.; Muthukumar, T. Arbuscular mycorrhizal and dark septate fungal associations
in shallot (Allium cepa L. var. aggregatum) under conventional agriculture. Acta Bot. Croat. 2012, 71, 159–175.
[CrossRef]

59. Wu, Y.; Liu, T.; He, X. Mycorrhizal and dark septate endophytic fungi under the canopies of desert plants in
Mu Us Sandy Land of China. Front. Agric. China 2009, 3, 164–170. [CrossRef]

60. Isaeva, O.V.; Glushakova, A.M.; Garbuz, S.A.; Kachalkin, A.V.; Chernov, I.Y. Endophytic yeast fungi in plant
storage tissues. Biol. Bull. 2010, 37, 26–34. [CrossRef]

61. Xiang, L.; Gong, S.; Yang, L.; Hao, J.; Xue, M.; Zeng, F.; Zhang, X.; Shi, W.; Wang, H.; Yu, D. Biocontrol
potential of endophytic fungi in medicinal plants from Wuhan Botanical Garden in China. Biol. Contr. 2015,
94, 47–55. [CrossRef]

62. Zheng, Y.K.; Qiao, X.G.; Miao, C.P.; Liu, K.; Chen, Y.W.; Xu, L.H.; Zhao, L.X. Diversity, distribution and
biotechnological potential of endophytic fungi. Ann. Microbiol. 2016, 66, 529–542. [CrossRef]

63. Iqbal, Z.; Nasir, H.; Hiradate, S.; Fujii, Y. Plant growth inhibitory activity of Lycoris radiata herb. And the
possible involvement of lycorine as an allelochemical. Weed Biol. Manag. 2006, 6, 221–227. [CrossRef]

64. Abo-Elyousr, K.A.M.; Abdel-Hafez, S.I.I.; Abdel-Rahim, I.R. Isolation of Trichoderma and evaluation of their
antagonistic potential against Alternaria porri. J. Phytopatol. 2014, 162, 567–574. [CrossRef]

65. Siameto, E.; Okoth, S.; Amugune, N.; Chege, N. Antagonism of Trichoderma harzianum isolates on soil borne
plant pathogenic fungi from Embu District, Kenya. J. Yeast Fungal Res. 2010, 1, 47–54.

66. Flori, P.; Roberti, R. Treatment of onion bulbs with antagonistic fungi for the control of Fusarium oxysporum f.
sp. cepae. Difesa Piante 1993, 16, 5–12.

67. Abdel-Rahim, I.R.; Abo-Elyousr, K.A. Talaromyces pinophilus strain AUN-1 as a novel mycoparasite of
Botrytis cinerea, the pathogen of onion scape and umbel blights. Microbiol. Res. 2018, 212, 1–9. [CrossRef]

68. Muvea, A.M.; Subramanian, S.; Maniania, N.K.; Poehling, H.M.; Ekesi, S.; Meyhöfer, R. Endophytic
colonization of onions induces resistance against viruliferous thrips and virus replication. Front. Plant Sci.
2018, 9, 1785. [CrossRef]

69. Madrigal, C.; Tadeo, J.; Melgarejo, P. Relationship between flavipin production by Epicoccum nigrum and
antagonism against Monilinia laxa. Mycol. Res. 1991, 95, 1375–1381. [CrossRef]

70. Haggag, W.M.; El Soud, M.A. Pilot-scale production and optimizing of cellulolytic Penicillium oxalicum for
controlling of mango malformation. Agric. Sci. 2013, 4, 165–174.

71. Shentu, X.; Zhan, X.; Ma, Z.; Yu, X.; Zhang, C. Antifungal activity of metabolites of the endophytic fungus
Trichoderma brevicompactum from garlic. Braz. J. Microbiol. 2014, 45, 248–254. [CrossRef] [PubMed]

72. Espinoza, F.; Vidal, S.; Rautenbach, F.; Lewu, F.; Nchu, F. Effects of Beauveria bassiana (Hypocreales) on plant
growth and secondary metabolites of extracts of hydroponically cultivated chive (Allium schoenoprasum L.
[Amaryllidaceae]). Heliyon 2019, 5, 12. [CrossRef]

123



Agriculture 2020, 10, 533

73. Koul, M.; Meena, S.; Kumar, A.; Sharma, P.R.; Singamaneni, V.; Riyaz-Ul-Hassan, S.; Abid, H.; Asha, C.;
Anil, P.; Prasoon, G.; et al. Secondary metabolites from endophytic fungus Penicillium pinophilum induce
ROS-mediated apoptosis through mitochondrial pathway in pancreatic cancer cells. Planta Med. 2016,
82, 344–355. [CrossRef]

74. Abdulmyanova, L.I.; Fayzieva, F.K.; Ruzieva, D.M.; Rasulova, G.A.; Sattarova, R.S.; Gulyamova, T.G.
Bioactivity of fungal endophytes associating with Allium plants growing in Uzbekistan. Int. J. Curr. Microbiol.
Appl. Sci. 2016, 5, 769–778. [CrossRef]

75. Ruzieva, D.M.; Abdulmyanova, L.I.; Rasulova, G.A.; Sattarova, R.S.; Gulyamova, T.G. Screening of inhibitory
activity against α-amylase of fungal endophytes isolated from medicinal plants in Uzbekistan. Int. J. Curr.
Microbiol. App. Sci. 2017, 6, 2744–2752.

76. Keusgen, M.; Fritsch, R.M.; Hisoriev, H.; Kurbonova, P.A.; Khassanov, F.O. Wild Allium species (Alliaceae)
used in folk medicine of Tajikistan and Uzbekistan. J. Ethnobiol. Ethnomed. 2006, 2, 18. [CrossRef]
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Abstract: In the aim of implementing new technologies, sustainable solutions and disruptive
innovation to sustain biodiversity and reduce environmental pollution, there is a growing interest by
researchers all over the world in bioprospecting endophytic microbial communities as an alternative
source of bioactive compounds to be used for industrial applications. Medicinal plants represent a
considerable source of endophytic fungi of outstanding importance, which highlights the opportunity
of identifying and screening endophytes associated with this unique group of plants, widespread
in diverse locations and biotopes, in view of assessing their biotechnological potential. As the first
contribution of a series of papers dedicated to the Lamiaceae, this article reviews the occurrence and
properties of endophytic fungi associated with sages (Salvia spp.).

Keywords: sage; endophytes; bioprospecting; bioactive compounds; medicinal plants; Lamiaceae

1. Introduction

Endophytic fungi are defined as fungi inhabiting tissues and organs of healthy plants during
certain stages of their life cycle without causing apparent symptoms. The concept of endophytism,
introduced by De Bary in 1866 and almost completely neglected for over a century, has recently
become of common usage concomitantly to advances in knowledge on occurrence and functions of
this component of biodiversity. Increasing attention by the scientific community is boosted by the
opportunity to exploit the unique aptitudes and properties of these microbial associates of plants [1].

As a consequence of the long-term association of endophytes with medicinal plants, based on
mutually beneficial relationships, the former may also participate in metabolic paths and boost their
own natural biosynthetic activity, or may gain some genetic information to synthesize biologically
active compounds closely related to those directly produced by the host plant [2,3]. Endophytic fungi
derived from medicinal plants are becoming more and more popular, due to specific modes of action
and the ability to provide multiple benefits, which make them relevant for both agricultural and
pharmaceutical applications [3]. This review is devoted to an analysis of the biochemical potential of
endophytic fungi reported from species of sage (Salvia spp.), examining the advances in this particular
field made by the scientific community in recent years.
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2. Salvia: The Largest Genus of Lamiaceae

Lamiaceae is one of the most important herbal families, including a wide variety of plants with
multiple medical, culinary and industrial applications. Within the subfamily Nepetoideae, sage species
are ascribed to the genus Salvia, a name deriving from the Latin word “salvere”, which refers to the
curative properties of these plants. It represents the largest genus of the family counting between 700
and 1000 species [4]. Uncertainty of this number is basically due to the broad geographical range of
distribution, covering all continents and climatic areas, which makes taxonomic verification problematic.

As for many plants and other organisms, the application of biomolecular techniques in taxonomy
has determined several basic reassessments in classification. Until a few years ago, the genus name
Salvia was only used for species displaying the typical morphological features of sage. Nevertheless,
recent systematic work has emphasized close relationships with the genera Dorystaechas, Meriandra,
Perovskia, Rosmarinus and Zhumeria, which resulted to be clearly embedded in Salvia in dedicated
phylogenetic analyses, so that their separation is no more justified [4,5]. Although not consolidated in
the common use yet, this new taxonomic sorting is basically followed in this paper. However, by reason
of several peculiar aspects concerning geographical distribution and biotechnological applications,
the species Salvia rosmarinus (=Rosmarinus officinalis) will be the subject of a dedicated analysis in a
forthcoming paper.

Medicinal properties of sages derive from their ability to produce a multitude of bioactive
secondary metabolites, many of which have been reported for antibiotic, antitumor, antiviral,
antiprotozoal, insecticidal and antioxidant effects, or even to be responsible for allelopathic
interactions with other plants [6]. These varied bioactivities are reflected by quite diverse chemical
structures. In fact, besides flavonoids and simple phenolic compounds like caffeic, rosmarinic and
salvianolic acids, which are mainly known for their radical scavenging effects, these products
include monoterpenoids, sesquiterpenoids, triterpenoids and diterpenoids. Structural diversity is
particularly evident within this latter grouping, including labdanes, ent-kauranes, abietanes, icetexanes,
clerodanes, and pimaranes, as well as phenolic diterpenoids, such as carnosol and carnosic acid [6].
Moreover, some abietanes are rearranged, to form the important scaffold of tanshinones [7]. These latter
products are particularly considered for pharmaceutical application based on their antioxidant [8],
antibacterial [9], antidiabetic [10], anti-inflammatory [11], and antiproliferative [12] properties, and are
currently the subject of a specific project at our laboratories, in which the species Salvia abrotanoides
(formerly Perovskia abrotanoides) and Salvia yangii (formerly Perovskia atriplicifolia), regarded as an
alternative source of tanshinones, are analyzed through combined metabolomics and transcriptomics
approaches, also with reference to the associated endophytic fungi.

3. Ecology and Occurrence

As introduced above, endophytic fungi are polyphyletic groups of microorganisms,
which asymptomatically colonize healthy tissues of different parts of living plants such as stems,
leaves or roots. Their diversity is huge, and it has been estimated that every plant hosts several
endophytic species, among which at least one shows host specificity [13,14]. Through the evolutionary
processes, endophytic fungi have developed different symbiotic relationships with their host plants [3].
Furthermore, many species are reported to exhibit multiple ecological roles as both endophytes and
pathogens. However, it is not clear whether the same genotypes can play both these roles with equal
success. Understanding the mechanisms responsible for the conversion between so different outcomes
of the ecological interaction represents one among many frontiers in endophyte biology [15,16]. One of
the mechanisms developed by plants during the long-term co-evolution with microbial associates is
the ability to produce antibiotic compounds. Simultaneously, many endophytes have developed an
important transformative capacity and/or tolerance to these products which in a large part determines
the colonization range of their hosts [17]. In turn, endophytes can influence growth and development
of host plants, and enhance their resistance to biotic and abiotic stresses by releasing bioactive
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metabolites [18], to such an extent that in natural habitats some plant species require to be supported
by endophytic fungi for stress tolerance and survival [19].

The diversity of endophytic fungi associated with medicinal plants is largely affected by ecological
or environmental factors. Particularly, temperature, humidity and soil nutritional conditions influence
the quality and quantity of secondary metabolites synthesized by the hosts, which in turn affect
the population structure of endophytic fungi. The species composition of endophyte communities
also differs in organ and tissue specificities, as a result of their adaptation to different physiological
conditions in hosts [3,20].

The analysis of the recent literature shows that species of sage (Salvia spp.) host diverse
communities of fungal endophytes. As many as 64 different taxa belonging to 38 genera, with a
clear prevalence of Ascomycetes, have been reported so far (Table 1). Most observations concern the
species Salvia miltiorrhiza and S. abrotanoides, respectively, with 28 and 24 records. There is an evident
correspondence between the Salvia species and the geographical area. In fact, all isolations concerning
S. miltiorrhiza come from several provinces of China, while the available findings from S. aegyptiaca
come from Egypt, and those referring to S. abrotanoides derive from an Iranian study and from the
activity currently in progress at our laboratories. Despite the fact that isolations have been carried out
from any plant organ (Figures 1 and 2), no indications concerning a specific association with roots or
the aerial parts can be inferred. The access to biomolecular methods as a taxonomic tool has generally
enabled to perform reliable identification at the species level, with the exception of a Chinese study
concerning seeds of S. miltiorrhiza, where sorting was basically limited to the class level despite the
wide variation observed [21]. The repeated findings in several species/locations mostly refer to strains
provisionally identified at the genus level, particularly Alternaria, which seems to be of quite common
occurrence on sages regardless to the plant part used for isolations. At the species level, there are
only two cases with more than just one record—that is, Chaetomium globosum and Didymella (=Phoma)
glomerata, both from S. miltiorrhiza at two different locations in China. However, the recovery of these
species from both roots and leaves may represent a possible indication of a more regular association
with this plant, which should be taken into consideration in further studies.

Table 1. Endophytic fungi reported from Salvia spp.

Endophyte 1 Plant Species/Organ Location, Country Reference

Acremonium sclerotigenum S. abrotanoides/root Zoshk, Iran [22]

Alternaria alternata
S. miltiorrhiza/flower Shandong, China [23]

S. aegyptiaca/ leaf Gebel Elba, Egypt [24]

Alternaria chlamydosporigena S. abrotanoides/root Zoshk, Iran [22]

Alternaria sp.

S. miltiorrhiza/root Beijing, China [25]

S. miltiorrhiza/seed Northwest China [21]

S. miltiorrhiza/root, shoot, leaf Henan, China [26]

S. abrotanoides/ leaf, stem Wroclaw, Poland this paper

S. yangii/ leaf, stem Wroclaw, Poland this paper

Alternaria tenuissima S. przewalskii/root Longxi, China [27]

Aspergillus brasiliensis S. aegyptiaca/ leaf Gebel Elba, Egypt [24]

Aspergillus foeniculicola S. miltiorrhiza/root Shaanxi, China [28]

Aspergillus nidulans S. aegyptiaca/ leaf Gebel Elba, Egypt [24]

Aspergillus niger S. aegyptiaca/ leaf Gebel Elba, Egypt [24]

Aspergillus sp. S. miltiorrhiza/root Beijing, China [25]
S. abrotanoides/leaf Zoshk, Iran [22]

Aspergillus terreus S. aegyptiaca/ leaf Gebel Elba, Egypt [24]

Aureobasidium sp. S. miltiorrhiza/seed Northwest China [21]

Cadophora sp. S. miltiorrhiza/root Beijing, China [25]

Canariomyces microsporus S. abrotanoides/leaf Zoshk, Iran [22]

Cephalosporium acremonium S. aegyptiaca/ leaf Gebel Elba, Egypt [24]

Chaetomium globosum S. miltiorrhiza/root Shanluo, China [29]
S. miltiorrhiza/ ‘aerial part’ Shenyang, China [30]
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Table 1. Cont.

Endophyte 1 Plant Species/Organ Location, Country Reference

Chaetomium sp. S. officinalis/stem
Beni-Mellal, Morocco [31]

Giza, Egypt [32]

Cladosporium cladosporioides S. aegyptiaca/ leaf Gebel Elba, Egypt [24]

Clonostachys rosea S. miltiorrhiza/root Beijing, China [25]

Colletotrichum gloeosporioides S. miltiorrhiza/ ‘aerial part’ Shenyang, China [33]

Colletotrichum sp.
S. aegyptiaca/ leaf Gebel Elba, Egypt [24]

S. yangii/ leaf Wroclaw, Poland this paper

Coniolariella hispanica S. abrotanoides/root Kalat, Iran [22]

Curvularia papendorfii S. aegyptiaca/ leaf Gebel Elba, Egypt [24]

Diaporthe sp.
S. miltiorrhiza/stem Sichuan, China [34]

S. abrotanoides/stem Wroclaw, Poland this paper

S. yangii/stem Wroclaw, Poland this paper

Didymella glomerata
S. miltiorrhiza/root Beijing, China [25]

S. miltiorrhiza/ leaf Shangluo, China [35]

Didymella pedeiae S. miltiorrhiza/root Beijing, China [25]

Filobasidium sp. S. miltiorrhiza/seed Northwest China [21]

Fusarium dlaminii S. abrotanoides/root Darrud, Iran [22]

Fusarium oxysporum S. aegyptiaca/ leaf Gebel Elba, Egypt [24]

Fusarium proliferatum S. miltiorrhiza/root Shandong, China [23]

Fusarium redolens S. miltiorrhiza/root Beijing, China [25]

Fusarium sp.

S. miltiorrhiza/root Beijing, China [25]

S. abrotanoides/root, stem Wroclaw, Poland this paper

S. yangii/root, stem Wroclaw, Poland this paper

Juxtiphoma eupyrena S. miltiorrhiza/root Beijing, China [25]

Leptosphaeria sp. S. miltiorrhiza/root Beijing, China [25]

Neocosmospora solani S. abrotanoides/root Kalat, Iran [22]

Niesslia ligustica S. abrotanoides/root Darrud, Iran [22]

Paecilomyces sp. S. miltiorrhiza/root Beijing, China [36]

Paraphoma radicina S. abrotanoides/root Zoshk, Iran [22]

Penicillium canescens S. abrotanoides/root Zoshk and Kalat, Iran [22]

Penicillium charlesii S. abrotanoides/root Zoshk and Kalat, Iran [22]

Penicillium chrysogenum S. abrotanoides/root Zoshk, Iran [22]

Penicillium citrinum S. aegyptiaca/ leaf Gebel Elba, Egypt [24]

Penicillium commune S. aegyptiaca/ leaf Gebel Elba, Egypt [24]

Penicillium murcianum S. abrotanoides/root Kalat, Iran [22]

Penicillium sp. S. abrotanoides/root Zoshk and Kalat, Iran [22]

Pestalotiopsis mangiferae S. aegyptiaca/ leaf Gebel Elba, Egypt [24]

Petriella setifera S. miltiorrhiza/root Beijing, China [25]

Phaeoacremonium rubrigenum S. abrotanoides/root Zoshk, Iran [22]

Phoma herbarum S. miltiorrhiza/seed China [37]

Psathyrella candolleana S. abrotanoides/root Zoshk, Iran [22]

Purpureocillium lilacinum S. abrotanoides/root Darrud, Iran [22]

Sarocladium kiliense S. miltiorrhiza/root Beijing, China [25]

Schizophyllum commune S. miltiorrhiza/root Shandong, China [23]

Simplicillium cylindrosporum S. abrotanoides/root Darrud, Iran [22]

Talaromyces pinophilus S. miltiorrhiza/ ‘aerial part’ Shenyang, China [38]

Talaromyces sp. S. abrotanoides/root Zoshk and Kalat, Iran [22]

Talaromyces verruculosus S. abrotanoides/root Zoshk and Kalat, Iran [22]

Trametes hirsuta S. miltiorrhiza/root Shandong, China [23]

Trichocladium griseum S. aegyptiaca/ leaf Gebel Elba, Egypt [24]

Trichoderma asperellum S. abrotanoides/root Zoshk, Iran [22]

Trichoderma atroviride S. miltiorrhiza/root Shangluo, China [39]

Trichoderma hamatum S. officinalis/root Bonn, Germany [40]

Trichoderma viride S. aegyptiaca/ leaf Gebel Elba, Egypt [24]

Xylomelasma sp. S. miltiorrhiza/root Beijing, China [25]

1 Species are reported according to the latest accepted name, which might not be the same as the one used in the
corresponding reference.
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Figure 1. Isolation of endophytic fungi from leaf of Salvia yangii (original from work currently in
progress at our laboratories).

Figure 2. Graphic representation of findings concerning endophytic fungi of Salvia spp. based on data
reported in Table 1.

4. Biochemical Properties

A large part of literature on the occurrence of endophytic fungi of Salvia spp. deals with their
ability to produce bioactive compounds (Figure 3), focusing on structure elucidation and possible
applications. Some studies have been limited to a partial characterization of culture filtrates or their
extracts, highlighting general antibacterial, antioxidant or antifungal properties [23–25,41], while in
other cases the basic constituents have been identified and extracted for assessments concerning their
bioactivity. An annotated list of these products is reported in Table 2.
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Table 2. Bioactive secondary metabolites produced by endophytic fungi from Salvia spp.

Secondary Metabolite Producing Species/Strain Bioactivity Reference

N-Acetylanthranilic acid Penicillium sp.
Talaromyces sp. [22]

Altenuene Alternaria sp./Samif01
Alternaria tenuissima/SP-07

[42]
[27]

2-epi-Altenuene Alternaria sp./Samif01 [42]

2-Acetoxy-2-epi-altenuene Alternaria sp./Samif01 [42]

3-epi-Dihydroaltenuene A Alternaria sp./Samif01 Radical scavenging [42]

Altenuisol Alternaria sp./Samif01 Antibacterial, radical scavenging [42]

Alternariol Alternaria sp./Samif01
Alternaria tenuissima/SP-07 Antibacterial [42]

[27]

Alternariol-9-methyl ether Alternaria sp./Samif01
Alternaria tenuissima/SP-07 Antibacterial, antifungal, antinematodal [43]

[27]

4-Hydroxyalternariol-9-methyl ether Alternaria sp./Samif01 Antibacterial, radical scavenging [42]

Aureonitols A–B Chaetomium globosum/XL-1198 [30]

Azelaic acid

Penicillium canescens
Penicillium charlesii
Penicillium sp.
Talaromyces sp.
Talaromyces verruculosus

[22]

Caffeic acid
Paraphoma radicina
Talaromyces sp.
Talaromyces verruculosus

[22]

Chaetoglobosins E–F Chaetomium globosum/XL-1198 [30]

Chaetomin Chaetomium sp. Cytotoxic (L5178Y mouse lymphoma) [32]

Chaetomugilin I Chaetomium globosum/XL-1198 [30]

Chaetoquadrin D Xylomelasma sp./Samif07 [44]

Chaetoviridin Chaetomium globosum/XL-1198 [30]

Cochliodinol, isocochliodinol,
hydroperoxycochliodinol Chaetomium sp. Cytotoxic (L5178Y mouse lymphoma) [31,32]

Colletotricholides A–B Colletotrichum
gloeosporioides/XL1200 [33]

Cryptotanshinone

Coniolariella hispanica
Paraphoma radicina
Penicillium canescens
Penicillium murcianum

[22]

Daidzein

Fusarium dlaminii
Neocosmospora solani
Paraphoma radicina
Penicillium canescens

[22]

Diaporthin Xylomelasma sp./Samif07 Antibacterial, radical scavenging [44]

2,6-Dimethyl-5-methoxyl-7-hydroxylchromone Xylomelasma sp./Samif07 Antibacterial [44]

Equisetin Chaetomium globosum/XL-1198 Antibacterial, antifungal [30]

Ferruginol Trichoderma atroviride D16 [39]

Glycitein Talaromyces sp. [22]

Griseofulvin Talaromyces sp. [22]

8-Hydroxy-6-methoxy-3-methylisocoumarin Xylomelasma sp./Samif07 Antibacterial [44]

6-Hydroxymethyleugenin, 6-methoxymethyleugenin Xylomelasma sp./Samif07 Antibacterial [44]

Indole-3-acetic acid
Penicillium canescens
Phoma herbarum D603
Talaromyces sp.

[22]
[37]
[22]

Indole-3-carboxylic acid, 3-formylindole Chaetomium sp. [32]

Isoeugenitol Xylomelasma sp./Samif07 Antibacterial, antimycobacterial [44]

Mandelic acid Paraphoma radicina
Talaromyces sp. [22]

6-Methoxymellein Xylomelasma sp./Samif07 [44]

Nipecotic acid Penicillium canescens [22]

Paracetamol (acetaminophen) Penicillium chrysogenum
Penicillium sp. [22]

Pinophicin A Talaromyces pinophilus Antibacterial [38]

Pinophol A Talaromyces pinophilus Antibacterial [38]

Salvianolic acid C Didymella glomerata/D-14 [35]

Solanapyrones A-C Alternaria tenuissima/SP-07 Antibacterial [27]

Solanapyrones P-R Alternaria tenuissima/SP-07 Antibacterial [27]

Solanidine Talaromyces sp. [22]

Stachydrine Fusarium dlaminii [22]

Tanshinone I Trichoderma atroviride D16 [39]

Tanshinone IIA Aspergillus foeniculicola/TR21
Trichoderma atroviride D16

[28]
[39]

Trigonelline Talaromyces sp. [22]

Underlined compounds were first characterized from these sources.
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Figure 3. Chemical structure of some bioactive products from endophytic fungi of Salvia spp.

Confirming the assumption that endophytic fungi represent a goldmine of chemodiversity [2,45],
12 novel products were obtained from strains associated with Salvia. The list includes a fusicoccane
diterpene pinophicin A and a polyene pinophol A from Talaromyces pinophilus [38]; colletotricholides
A-B, two unusual eremophilane acetophenone conjugates from Colletotrichum gloeosporioides which
are synthesized through a hybrid pathway involving polyketide and sesquiterpene synthase [33].
The novel 2,6-dimethyl-5-methoxyl-7-hydroxylchromone from Xylomelasma sp. displayed antibacterial
activity, along with a few related eugenin derivatives and isocoumarins [44]. Moreover, there are
several novel analogues of products known from Alternaria, such as 2-acetoxy-2-epi-altenuene and
solanapyrones P-R [27,42], and Chaetomium, such as hydroperoxycochliodinol [32] and aureonitols
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A-B [30]. The latter are structurally related to aureonitol, a known antiviral tetrahydrofuran [46].
As for cochliodinol derivatives, their bioactivity was found to be affected by the position of prenyl
substituents in the indole ring systems, while the increased cytotoxicity of hydroperoxycochliodinol is
related to the hydroperoxyl function [32].

Strains of Alternaria and Chaetomium also yielded products, such as alternariols, altenuisol,
chaetoviridin and chaetoglobosins, whose antibiotic, antifungal, antiproliferative and radical
scavenging properties have been previously described, and reviewed in recent papers [47,48].
More known products previously reported from other fungi are the tetramic acid derivative equisetin
and the isocoumarin diaporthin, originally described as phytotoxins [49,50], and griseofulvin,
a compound which has found application in dermatology and displayed interesting antitumor
properties [51]. Other secondary metabolites which are used as pharmaceuticals are paracetamol,
nipecotic acid, mandelic acid and azelaic acid. The latter has displayed antibiotic properties and
antiproliferative effect on malignant melanocytes, and is commonly used in dermatology as an
antiacne [52]. Moreover, in plants it is reported to be involved in the defense response against disease
agents [53]. Other products to be mentioned are the plant hormone indole-3-acetic acid (IAA) and
a couple of analogue auxins, which are considered key intermediates in the mutualistic relationship
between endophytes and their host plants [2,16].

However, probably the most interesting products of endophytic fungi of Salvia species are a series
of compounds previously identified as plant metabolites, which are treated in further detail in the
next chapter.

5. Biotechnological Implications

Long-lasting evolutionary processes taking place together with their host plants have allowed
endophytic fungi to work out various strategies enabling them to keep an equilibrium between
virulence and plant defense in order to share common habitat. Endophytic fungi not only are able to
influence plants’ metabolism and physiology by producing unique and specific secondary metabolites,
they were also found to produce bioactive natural products originally known exclusively from their
host plants, and have elaborated strategies for detoxification by exploiting their biotransformation
abilities. These properties make endophytes a perfect target for various biotechnological approaches
and further commercial exploitation.

5.1. Endophytic Fungi as In Vitro Production Platforms for Plant Secondary Metabolites

The ever-increasing demand for bioactive natural compounds cannot be met at the desired
levels by just relying on their extraction from plants, considering that in most instances they are
produced at a specific developmental stage or under specific environmental condition, stress, or nutrient
availability [54]. Medicinal plants from the Salvia genus are often shrubs, thus they may need several
years to attain a suitable growth phase for bioactive product accumulation and extraction. Moreover,
harvesting medicinally important plants from the wild makes them critically endangered and affects
the environmental biodiversity [39]. As for crop plants, although cultivated in a large scale, they often
produce the desired metabolites in a low yield, making the production unprofitable. Considering the
limitations associated with productivity and vulnerability of plants, fungal endophytes may serve as a
renewable and inexhaustible source of bioactive compounds. Many endophytes have experienced
long-term symbiotic relationships with their host plants, and through long-term coexistence and direct
contact, they have exchanged genetic material [17]. Horizontal gene transfer (HGT), an important
evolutionary mechanism observed in prokaryotes, is also thought to be the phenomenon responsible
for transmission of genetic material across phylogenetically distant species [55]. As an increasing
number of reports indicate a physical clustering of genes for specialized metabolic pathways in plant
genomes [56], the HGT phenomenon is believed to be responsible for rapid transfer of whole gene
clusters from host plants, conferring “novel traits” to the associated fungi. As a consequence, many
endophytic fungi have developed the ability to produce bioactive substances originally known from
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their hosts, thus raising the prospect of using such organisms as alternative and sustainable sources.
HGT has been proposed to explain the production of tanshinone I, tanshinone IIA and their precursor
ferruginol by Trichoderma atroviride D16, an endophytic fungus in S. miltiorrhiza [39].

Daidzein and glycitein are naturally occurring compounds found in soybeans and other legumes
which are produced in plants through the phenylpropanoid pathway and structurally belonging to a
class of compounds known as isoflavones. Daidzein is a phytoestrogen with possible pharmaceutical
application as menopausal relief, osteoporosis, blood cholesterol lowering, and it is thought to reduce
the risk of some hormone-related cancers and heart disease [57], while glycitein has a weaker estrogenic
activity [58]. They both were found to be produced by endophytic fungi of S. abrotanoides, that is
Penicillum canescens for daidzein and Talaromyces sp. for glycitein [22]. The latter is also able to
synthesize trigonelline, an alkaloid originally extracted from Trigonella foenum-graecum, known for
its antidiabetic properties [59] as well as solanidine, a potato alkaloid. Stachydrine, another alkaloid
known from Medicago sativa, was found to be synthetized by a strain of Fusarium dlaminii inhabiting
S. abrotanoides [22].

Danshen, dried roots and rhizomes of S. miltiorrhiza, is a well-known traditional Chinese herbal
medicine [60]. It contains two kinds of bioactive compounds: tanshinones and hydrophilic phenolic
acids, the latter being represented by rosmarinic acid, salvianolic acids B-C, and others. Salvianolic
acids are mainly responsible for the favorable activities on cardiovascular and cerebrovascular diseases
of danshen [61]. Salvianolic acid C was found in both mycelium and fermentation broth of strain D14 of
D. glomerata in very low yields [35]. This indicates the opportunity to optimize fermentation conditions
for achieving its efficient production, or alternatively to enhance its production via regulating the key
enzymes involved in the biosynthetic pathway.

Caffeic acid was found in the metabolome profiles of isolates of Talaromyces and Paraphoma
endophytic in S. abrotanoides [22]. Besides rosmarinic acid and salvianolic acid B, it is regarded as the
major phenolic acid in S. miltiorrhiza [62]. A series of caffeic acid derivatives, obtained from Salvia
officinalis [63,64], showed pronounced leishmanicidal activity, as well as immunomodulatory effects on
macrophage functions [65]. Moreover, antibacterial, antifungal and modulatory effects of caffeic acid
have been shown in recent studies [66].

Tanshinones are a group of abietane-type norditerpenoid quinones, originally found in
danshen [62]. More than 40 structurally diverse tanshinones have been isolated and identified [67],
among which cryptotanshinone, tanshinone IIA, and tanshinone I are the main active ingredients [68].
Although many biotechnological improvements have been implemented to increase tanshinone
production from plants, at present no mature hairy root, suspension cell line, or culture system of
S. miltiorrhiza have been developed. Thus, the extraction from roots and rhizomes of S. miltiorrhiza still
represents the main source of tanshinones [62]. Salvia yangii has also been found to produce a range of
tanshinones [69–72], as well as S. abrotanoides, although the compound assortment was found to be
considerably different according to the preliminary data obtained by our working group.

Tanshinone I and tanshinone IIA display a variety of biological activities [39]. Tanshinone I
is reported to induce apoptosis in leukemia cells [73], human colon cancer cells [74] and activated
hepatic stellate cells [75], and displays anticancer effects in human non-small cell lung cancer [76]
and human breast cancer [77]. Tanshinone IIA exerts a cardiovascular action [78], including effects
against cardiomyocyte hypertrophy [79], atherosclerosis [80], hypertension [81] and ischaemic heart
diseases [82]. In addition, tanshinone IIA is a potent anticarcinogenic, with possible application for the
management of systemic malignancies [83].

As introduced above, tanshinone IIA is currently in short supply because of overcollection of the
wild plants and environmental change [28], so that endophytic fungal strains represent an alternative
source. In this respect, tanshinone I and tanshinone IIA production has been confirmed by T. atroviride
D16 from S. miltiorrhiza [39]. Moreover, strain TR21 of Aspergillus foeniculicola was shown to produce
low amount of tanshinone IIA [84]. Production of this compound by TR21 was increased in the
NU152 mutant, obtained by traditional mutagenesis using ultraviolet radiation and sodium nitrate
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treatment [28], and in strain F-3.4 through genome shuffling [85], providing a yield of tanshinone
IIA which is over 11 times higher than the original strain TR21. This study showed that the genetic
basis of high-yield strains can be achieved through genome shuffling, which can shorten the breeding
cycle and improve the mutagenesis efficiency in obtaining strains with good traits, to be used for
industrial production.

Cryptotanshinone, another nor-abietanoid diterpenoid, which is a main bioactive compound of
S. abrotanoides known for leishmanicidal, antiplasmodial and cytotoxic activity [86] has been found
to be produced also in roots of S. yangii [69]. Very recently, this compound has been reported
as a secondary metabolite of endophytic strains of P. canescens, Penicillium murcianum, Paraphoma
radicina, and Coniolariella hispanica, independently of the host plant. Moreover, the effect of exogenous
gibberellin (GA3) on S. abrotanoides and endophytic fungi was shown to have a positive effect on
increasing the cryptotanshinone production in the plant as well as in endophytic fungi cultivated under
axenic conditions [22]. Exogenous gibberellin treatment was also previously observed to promote the
production of cryptotanshinone, tanshinone I and tanshinone II in S. miltiorrhiza [87].

The typical abietane diterpenoid, ferruginol, is mainly known from Sequoia sempervirens for its
antibacterial and antineoplastic properties [88,89]. It has also been isolated from the roots of plants in the
genus Salvia, for instance Salvia viridis [90], S. miltiorrhiza [91], Salvia cilicica [92], Salvia deserta [93]. As a
precursor in the tanshinone pathway, ferruginol synthesis has been confirmed by the above-mentioned
strain D16 of T. atroviride [39].

5.2. Endophytic Fungi as Biotic Elicitors

Indiscriminate collection and cutting down of medicinal plants from the wild for extraction of
medicinal products have almost led to the extinction of certain plant species, making them either
vulnerable or critically endangered. The biotechnological approaches involving plant cell, organ and
hairy root cultures appeared to fulfill the ever-increasing demand up to a certain level [54]. Endophytes
could possibly be used as alternative or more efficient elicitors, compared to other biotic and abiotic
elicitation methods.

A tanshinone IIA-producing endophytic strain of A. foeniculicola (U104) was demonstrated to
elicit production of this compound in sterile seedlings of S. miltiorrhiza through upregulation of
several enzymes involved in its biosynthesis [94]. Likewise, mycelium extract and its polysaccharide
fraction (PF) produced by T. atroviride D16 promoted root growth and stimulated the biosynthesis of
tanshinones in hairy roots. Moreover, the transcriptional activity of genes involved in the tanshinone
biosynthetic pathway increased significantly after treatment with PF, which could be effectively
utilized for large-scale production of tanshinones in the S. miltiorrhiza hairy root culture system [95].
Later on, PF was found to more deeply regulate the metabolic profiling of roots of this plant [96].
The main component of PF resulted to be an heteropolysaccharide (PSF-W-1), whose structure has
been elucidated [97]. Moreover, an enhancing role by jasmonic acid on production of tanshinone I by
this fungal strain was demonstrated [26], along with Ca2+ triggering, peroxide reaction and protein
phosphorylation, leading to an increase in leucine-rich repeat (LRR) protein synthesis [98].

Another endophytic strain from S. miltiorrhiza (Phoma herbarum D603) was found to stimulate
growth and root development by producing IAA and siderophores and improving nutrition through
phosphorus solubilization; moreover, it promoted the synthesis and accumulation of tanshinones by
regulating the expression level of key genes in the synthetic pathway [37].

Eliciting effects on the synthesis of salvianolic acids and tanshinones, particularly dihydrotanshinone I
and cryptotanshinone, have been also reported by a strain of Chaetomium globosum and its mycelial
extract [29]. The effect of the mycelial extract was much stronger than that of the live fungus on
tanshinones synthesis, which significantly increased the transcriptional activity of key genes in
tanshinone biosynthetic pathway. Thus, C. globosum D38 was proposed to be supplemented as a biotic
fertilizer in S. miltiorrhiza seedling culture, as it not only significantly promoted growth of the host
plant, but also notably enhanced the accumulation of tanshinones and salvianolic acids.
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Alternaria sp. A13 has been shown to simultaneously enhance the dry root biomass and secondary
metabolite accumulation of S. miltiorrhiza, thus demonstrating its application potential as a bio-fertilizer
in the cultivation of this plant [26]. Compared to uninoculated seedlings, S. miltiorrhiza seedlings
colonized by Alternaria sp. A13 showed significant increment in the contents of total phenolic acids and
lithospermic acids A and B. Examination of the related enzyme activities showed that the elicitation
effect of A13 on lithospermic acid B accumulation correlated with cinnamic acid 4-hydroxylase (C4H)
activity in the phenylpropanoid pathway under field conditions. A similar effect was demonstrated for
a strain of Paecilomyces sp. which increased content of salvianolic acid B in S. miltiorrhiza and promoted
plant growth [36].

5.3. Biotransformation/Detoxication Abilities of Endophytic Fungi

To be able to colonize host tissues, endophytes developed a strong tolerance toward host’s
defensive metabolites. The detoxification of plant bioactive compounds is an important transformation
ability of many endophytes which, to a certain extent, decides the colonization range of their hosts [17].
Biotransformation abilities of endophytes help in detoxification of antifungal metabolites produced by
the host plant, and may intervene in the production of some novel bioactive compounds [54,99,100].

Trichoderma hamatum, an endophytic fungus inhabiting roots of Salvia officinalis alongside other
microorganisms, was found to be able to degrade caffeine [40]. Aromatic plants such as sage have
been used as intercrops in coffee plantations. Salvia officinalis was proved to absorb caffeine from the
incubation media and store it mainly in roots. The cited study demonstrated that the degradation
of caffeine was initiated by the ability of the microorganisms to perform demethylations, whereas
xanthine degradation may be attributed to either the plant or the microorganisms. The existence
of a beneficial biochemical interaction in caffeine degradation between endophytic T. hamatum and
sage root was proposed. Using sage with its endophyte T. hamatum as an intercrop may become an
ecologically friendly strategy to reduce caffeine accumulation in soil.

6. Conclusions

Endophytic fungi are prospective producers of both known and novel bioactive compounds.
However, to ensure feasibility of industrial application, yield and productivity enhancement strategies
at several levels are required [101]. A combination of genetic, metabolic and bioprocess engineering may
be used to sustain and enhance production of high value secondary metabolites from selected strains,
whose biosynthetic abilities can be improved through physical and chemical mutagenesis, or various
methods for genetic transformation. Improved strains can be in turn subjected to various bioprocess
optimization strategies for further enhancement in yield and productivity of selected compounds.

This review of the available literature specifically concerning endophytic fungi of sages highlighted
that research in the field is quickly progressing, with the aim of both refining biotechnological
applications concerning tanshinone production and prospecting novel strains for further applications.
The spread of reliable methods for detection and characterization of both the endophytic strains and
their bioactive secondary metabolites is expected to further improve the translational perspectives.

Author Contributions: Conceptualization, B.Z.; investigation, B.Z.; resources, M.B., B.Z.; writing—original draft
preparation, B.Z., M.B., B.A., R.N.; writing—review and editing, M.B., R.N.; funding acquisition, B.Z., M.B.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Gouda, S.; Das, G.; Sen, S.K.; Shin, H.S.; Patra, J.K. Endophytes: A treasure house of bioactive compounds of
medicinal importance. Front. Microbiol. 2016, 7, 1538. [CrossRef] [PubMed]

135



Agriculture 2020, 10, 543

2. Nicoletti, R.; Fiorentino, A. Plant bioactive metabolites and drugs produced by endophytic fungi of
Spermatophyta. Agriculture 2015, 5, 918–970. [CrossRef]

3. Jia, M.; Chen, L.; Xin, H.L.; Zheng, C.J.; Rahman, K.; Han, T.; Qin, L.P. A friendly relationship between
endophytic fungi and medicinal plants: A systematic review. Front. Microbiol. 2016, 7, 906. [CrossRef]
[PubMed]

4. Drew, B.T.; González-Gallegos, J.G.; Xiang, C.L.; Kriebel, R.; Drummond, C.P.; Walker, J.B.; Sytsma, K.J.
Salvia united: The greatest good for the greatest number. Taxon 2017, 66, 133–145. [CrossRef]

5. Will, M.; Claßen-Bockhoff, R. Time to split Salvia s.l. (Lamiaceae)—New insights from Old World Salvia
phylogeny. Mol. Phylogenet. Evol. 2017, 109, 33–58. [CrossRef]

6. Jassbi, A.R.; Zare, S.; Firuzi, O.; Xiao, J. Bioactive phytochemicals from shoots and roots of Salvia species.
Phytochem. Rev. 2016, 15, 829–867. [CrossRef]

7. Jiang, Z.; Gao, W.; Huang, L. Tanshinones, critical pharmacological components in Salvia miltiorrhiza.
Front. Pharmacol. 2019, 10, 202. [CrossRef]

8. Cao, E.H.; Liu, X.Q.; Wang, J.J.; Xu, N.F. Effect of natural antioxidant tanshinone II-A on DNA damage by
lipid peroxidation in liver cells. Free Radic. Biol. Med. 1996, 20, 801–806. [CrossRef]

9. Lee, D.S.; Lee, S.H.; Noh, J.G.; Hong, S.D. Antibacterial activities of cryptotanshinone and dihydrotanshinone
i from a medicinal herb, Salvia miltiorrhiza Bunge. Biosci. Biotechnol. Biochem. 1999, 63, 2236–2239. [CrossRef]

10. Kim, E.J.; Jung, S.N.; Son, K.H.; Kim, S.R.; Ha, T.Y.; Park, M.G.; Jo, I.G.; Park, J.G.; Wonchae, C.; Kim, S.S.;
et al. Antidiabetes and antiobesity effect of cryptotanshinone via activation of AMP-activated protein kinase.
Mol. Pharmacol. 2007, 72, 62–72. [CrossRef]

11. Jang, S.I.; Jeong, S.I.; Kim, K.J.; Kim, H.J.; Yu, H.H.; Park, R.; Kim, H.M.; You, Y.O. Tanshinone IIA from Salvia
miltiorrhiza inhibits inducible nitric oxide synthase expression and production of TNF-α, IL-1β and IL-6 in
activated RAW 264.7 cells. Planta Med. 2003, 69, 1057–1059. [CrossRef] [PubMed]

12. Wang, X.; Wei, Y.; Yuan, S.; Liu, G.; Lu, Y.; Zhang, J.; Wang, W. Potential anticancer activity of tanshinone IIA
against human breast cancer. Int. J. Cancer 2005, 116, 799–807. [CrossRef] [PubMed]

13. Tan, R.X.; Zou, W.X. Endophytes: A rich source of functional metabolites. Nat. Prod. Rep. 2001, 18, 448–459.
[CrossRef] [PubMed]

14. Faeth, S.H.; Fagan, W.F. Fungal endophytes: Common host plant symbionts but uncommon mutualists.
Integr. Comp. Biol. 2002, 42, 360–368. [CrossRef]

15. Arnold, A.E. Understanding the diversity of foliar endophytic fungi: Progress, challenges, and frontiers.
Fungal Biol. Rev. 2007, 21, 51–66. [CrossRef]

16. Salvatore, M.M.; Andolfi, A.; Nicoletti, R. The thin line between pathogenicity and endophytism: The case of
Lasiodiplodia theobromae. Agriculture 2020, 10, 488. [CrossRef]

17. Wang, Y.; Dai, C.C. Endophytes: A potential resource for biosynthesis, biotransformation, and biodegradation.
Ann. Microbiol. 2011, 61, 207–215. [CrossRef]

18. Rodriguez, R.J.; White, J.F.; Arnold, A.E.; Redman, R.S. Fungal endophytes: Diversity and functional roles.
New Phytologist. 2009, 182, 314–330. [CrossRef]

19. Rodriguez, R.; Redman, R. More than 400 million years of evolution and some plants still can’t make it on
their own: Plant stress tolerance via fungal symbiosis. J. Exp. Bot. 2008, 59, 1109–1114. [CrossRef]

20. Sun, J.; Xia, F.; Cui, L.; Liang, J.; Wang, Z.; Wei, Y. Characteristics of foliar fungal endophyte assemblages
and host effective components in Salvia miltiorrhiza Bunge. Appl. Microbiol. Biotechnol. 2014, 98, 3143–3155.
[CrossRef]

21. Chen, H.; Wu, H.; Yan, B.; Zhao, H.; Liu, F.; Zhang, H.; Sheng, Q.; Miao, F.; Liang, Z. Core microbiome of
medicinal plant Salvia miltiorrhiza seed: A rich reservoir of beneficial microbes for secondary metabolism?
Int. J. Mol. Sci. 2018, 19, 672. [CrossRef] [PubMed]

22. Teimoori-Boghsani, Y.; Ganjeali, A.; Cernava, T.; Müller, H.; Asili, J.; Berg, G. Endophytic fungi of native
Salvia abrotanoides plants reveal high taxonomic diversity and unique profiles of secondary metabolites.
Front. Microbiol. 2020, 10. [CrossRef] [PubMed]

23. Li, Y.L.; Xin, X.M.; Chang, Z.Y.; Shi, R.J.; Miao, Z.M.; Ding, J.; Hao, G.P. The endophytic fungi of Salvia
miltiorrhiza Bunge.f. alba are a potential source of natural antioxidants. Bot. Stud. 2015, 56, 5. [CrossRef]
[PubMed]

136



Agriculture 2020, 10, 543

24. Mohamed El-Bondkly, A.A.; El-Gendy, M.M.A.A.; El-Bondkly, E.A.M.; Ahmed, A.M. Biodiversity and
biological activity of the fungal microbiota derived from the medicinal plants Salvia aegyptiaca L. and Balanties
aegyptiaca L. Biocatal. Agric. Biotechnol. 2020, 28, 101720. [CrossRef]

25. Jingfeng, L.; Linyun, F.; Ruiya, L.; Xiaohan, W.; Haiyu, L.; Ligang, Z. Endophytic fungi from medicinal herb
Salvia miltiorrhiza Bunge and their antimicrobial activity. Afr. J. Microbiol. Res. 2013, 7, 5343–5349. [CrossRef]

26. Zhou, L.S.; Tang, K.; Guo, S.X. The plant growth-promoting fungus (PGPF) Alternaria sp. A13 markedly
enhances Salvia miltiorrhiza root growth and active ingredient accumulation under greenhouse and field
conditions. Int. J. Mol. Sci. 2018, 19, 270. [CrossRef]

27. Wang, X.Z.; Luo, X.H.; Xiao, J.; Zhai, M.M.; Yuan, Y.; Zhu, Y.; Crews, P.; Yuan, C.S.; Wu, Q.X. Pyrone
derivatives from the endophytic fungus Alternaria tenuissima SP-07 of Chinese herbal medicine Salvia
przewalskii. Fitoterapia 2014, 99, 184–190. [CrossRef]

28. Ma, C.; Jiang, D.; Wei, X. Mutation breeding of Emericella foeniculicola TR21 for improved production of
tanshinone IIA. Process Biochem. 2011, 46, 2059–2063. [CrossRef]

29. Zhai, X.; Luo, D.; Li, X.; Han, T.; Jia, M.; Kong, Z.; Ji, J.; Rahman, K.; Qin, L.; Zheng, C. Endophyte Chaetomium
globosum D38 promotes bioactive constituents accumulation and root production in Salvia miltiorrhiza.
Front. Microbiol. 2018, 8, 2694. [CrossRef]

30. Yang, S.X.; Zhao, W.T.; Chen, H.Y.; Zhang, L.; Liu, T.K.; Chen, H.P.; Yang, J.; Yang, X.L. Aureonitols A
and B, Two New C13-Polyketides from Chaetomium globosum, an endophytic fungus in Salvia miltiorrhiza.
Chem. Biodivers. 2019, 16, e1900364. [CrossRef]

31. Debbab, A.; Aly, A.H.; Edrada-Ebel, R.A.; Müller, W.E.G.; Mosaddak, M.; Hakiki, A.; Ebel, R.; Proksch, P.
Bioactive secondary metabolites from the endophytic fungus Chaetomium sp. isolated from Salvia officinalis
growing in Morocco. Biotechnol. Agron. Soc. Environ. 2009, 13, 229–234.

32. Mallouk, S.; Mohamed, N.S.E.D.; Debbab, A. Cytotoxic hydroperoxycochliodinol derivative from endophytic
Chaetomium sp. isolated from Salvia officinalis. Chem. Nat. Compd. 2020, 56, 701–705. [CrossRef]

33. Zhao, W.T.; Liu, Q.P.; Chen, H.Y.; Zhao, W.; Gao, Y.; Yang, X.L. Two novel eremophylane acetophenone conjugates
from Colletotrichum gloeosporioides, an endophytic fungus in Salvia miltiorrhiza. Fitoterapia 2020, 141, 104474.
[CrossRef]

34. Sang, X.; Guo, J.; Bai, L. Isolation, identification and analysis of secondary metabolites of multidrug-resistance
inhibiting endophytic fungi of Salvia miltiorrhiza Bunge. Chin. J. Appl. Environ. Biol. 2014, 20, 621–628.
[CrossRef]

35. Li, X.; Zhai, X.; Shu, Z.; Dong, R.; Ming, Q.; Qin, L.; Zheng, C. Phoma glomerata D14: An endophytic fungus
from Salvia miltiorrhiza that produces salvianolic acid C. Curr. Microbiol. 2016, 73, 31–37. [CrossRef]

36. Tang, K.; Li, B.; Guo, S. An active endophytic fungus promoting growth and increasing salvianolic acid
content of Salvia miltiorrhiza. Mycosystema 2014, 33, 594–600.

37. Chen, H.-M.; Wu, H.-X.; He, X.-Y.; Zhang, H.-H.; Miao, F.; Liang, Z.-S. Promoting tanshinone synthesis of
Salvia miltiorrhiza root by a seed endophytic fungus, Phoma herbarum D603. China J. Chin. Mater. Medica
2020, 45, 65–71. [CrossRef]

38. Zhao, W.-T.; Shi, X.; Xian, P.-J.; Feng, Z.; Yang, J.; Yang, X.-L. A new fusicoccane diterpene and a new polyene
from the plant endophytic fungus Talaromyces pinophilus and their antimicrobial activities. Nat. Prod. Res.
2019, 1–7. [CrossRef]

39. Ming, Q.; Han, T.; Li, W.; Zhang, Q.; Zhang, H.; Zheng, C.; Huang, F.; Rahman, K.; Qin, L. Tanshinone
IIA and tanshinone i production by Trichoderma atroviride D16, an endophytic fungus in Salvia miltiorrhiza.
Phytomedicine 2012, 19, 330–333. [CrossRef]

40. Schulz, M.; Knop, M.; Muellenborn, C.; Steiner, U. Root-associated microorganisms prevent caffeine
accumulation in shoots of Salvia officinalis L. Int. J. Agric. For. 2013, 3, 152–158. [CrossRef]

41. Huang, L.; Li, F.; Liu, R.; Guo, J.; Yang, Z.; Bai, L. Antifungal activity of an endophytic strain of Phomopsis
sp. on Sclerotinia sclerotiorum, the causal agent of Sclerotinia disease. J. Plant Pathol. 2019, 101, 521–528.
[CrossRef]

42. Tian, J.; Fu, L.; Zhang, Z.; Dong, X.; Xu, D.; Mao, Z.; Liu, Y.; Lai, D.; Zhou, L. Dibenzo-α-pyrones from
the endophytic fungus Alternaria sp. Samif01: Isolation, structure elucidation, and their antibacterial and
antioxidant activities. Nat. Prod. Res. 2017, 31, 387–396. [CrossRef]

137



Agriculture 2020, 10, 543

43. Lou, J.; Yu, R.; Wang, X.; Mao, Z.; Fu, L.; Liu, Y.; Zhou, L. Alternariol 9-methyl ether from the endophytic
fungus Alternaria sp. Samif01 and its bioactivities. Brazilian J. Microbiol. 2016, 47, 96–101. [CrossRef]
[PubMed]

44. Lai, D.; Li, J.; Zhao, S.; Gu, G.; Gong, X.; Proksch, P.; Zhou, L. Chromone and isocoumarin derivatives from the
endophytic fungus Xylomelasma sp. Samif07, and their antibacterial and antioxidant activities. Nat. Prod. Res.
2019. [CrossRef] [PubMed]

45. Gupta, S.; Chaturvedi, P.; Kulkarni, M.G.; Van Staden, J. A critical review on exploiting the pharmaceutical
potential of plant endophytic fungi. Biotechnol. Adv. 2020, 39, 107462. [CrossRef] [PubMed]

46. Sacramento, C.Q.; Marttorelli, A.; Fintelman-Rodrigues, N.; De Freitas, C.S.; De Melo, G.R.; Rocha, M.E.N.;
Kaiser, C.R.; Rodrigues, K.F.; Da Costa, G.L.; Alves, C.M.; et al. Aureonitol, a fungi-derived tetrahydrofuran,
inhibits influenza replication by targeting its surface glycoprotein hemagglutinin. PLoS ONE 2015, 10, e0142246.
[CrossRef]

47. Fatima, N.; Muhammad, S.A.; Khan, I.; Qazi, M.A.; Shahzadi, I.; Mumtaz, A.; Hashmi, M.A.; Khan, A.K.;
Ismail, T. Chaetomium endophytes: A repository of pharmacologically active metabolites. Acta Physiol. Plant.
2016, 38, 136. [CrossRef]

48. Eram, D.; Arthikala, M.K.; Melappa, G.; Santoyo, G. Alternaria species: Endophytic fungi as alternative
sources of bioactive compounds. Ital. J. Mycol. 2018, 47, 40–54. [CrossRef]

49. Wheeler, M.H.; Stipanovic, R.D.; Puckhaber, L.S. Phytotoxicity of equisetin and epi-equisetin isolated from
Fusarium equiseti and F. pallidoroseum. Mycol. Res. 1999, 103, 967–973. [CrossRef]

50. Arnone, A.; Assante, G.; Nasini, G.; Strada, S.; Vercesi, A. Cryphonectric acid and other minor metabolites
from a hypovirulent strain of Cryphonectria parasitica. J. Nat. Prod. 2002, 65, 48–50. [CrossRef]

51. Nicoletti, R. Antitumor and Immunomodulatory Compounds from Fungi. In Reference Module in Life Sciences
(Planned for Publication in Encyclopaedia of Mycology); Zaragoza, O., Ed.; Elsevier: Amsterdam, The Netherlands, 2020.

52. Fitton, A.; Goa, K.L. Azelaic acid: A review of its pharmacological properties and therapeutic efficacy in
acne and hyperpigmentary skin disorders. Drugs 1991, 41, 780–798. [CrossRef] [PubMed]

53. Kachroo, A.; Robin, G.P. Systemic signaling during plant defense. Curr. Opin. Plant Biol. 2013, 16, 527–533.
[CrossRef] [PubMed]

54. Chandra, S. Endophytic fungi: Novel sources of anticancer lead molecules. Appl. Microbiol. Biotechnol.
2012, 95, 47–59. [CrossRef] [PubMed]

55. Tiwari, P.; Bae, H. Horizontal gene transfer and endophytes: An implication for the acquisition of novel
traits. Plants 2020, 9, 305. [CrossRef]

56. Nützmann, H.W.; Osbourn, A. Gene clustering in plant specialized metabolism. Curr. Opin. Biotechnol.
2014, 26, 91–99. [CrossRef]

57. Holder, C.L.; Churchwell, M.I.; Doerge, D.R. Quantification of soy isoflavones, genistein and daidzein, and
conjugates in rat blood using LC/ES-MS. J. Agric. Food Chem. 1999, 47, 3764–3770. [CrossRef]

58. Song, T.T.; Hendrich, S.; Murphy, P.A. Estrogenic activity of glycitein, a soy isoflavone. J. Agric. Food Chem.
1999, 47, 1607–1610. [CrossRef]

59. Zhou, J.Y.; Zhou, S.W. Trigonelline: A plant alkaloid with therapeutic potential for diabetes and central
nervous system disease. Curr. Med. Chem. 2012, 19, 3523–3531. [CrossRef]

60. Tang, W.; Eisenbrand, G. Salvia miltiorrhiza Bge. In Chinese Drugs of Plant Origin; Springer: Berlin/Heidelberg,
Germany, 1992.

61. Su, C.-Y.; Ming, Q.-L.; Rahman, K.; Han, T.; Qin, L.-P. Salvia miltiorrhiza: Traditional medicinal uses, chemistry,
and pharmacology. Chin. J. Nat. Med. 2015, 13, 163–182. [CrossRef]

62. Lu, S. Compendium of Plant Genomes; Springer Nature: Cham, Switzerland, 2019; ISBN 978-3-030-24715-7.
63. Lu, Y.; Foo, L.Y. Rosmarinic acid derivatives from Salvia officinalis. Phytochemistry 1999, 51, 91–94. [CrossRef]
64. Lu, Y.; Foo, L.Y.; Wong, H. Sagecoumarin, a novel caffeic acid trimer from Salvia officinalis. Phytochemistry

1999, 52, 1149–1152. [CrossRef]
65. Radtke, O.A.; Yeap Foo, L.; Lu, Y.; Kiderlen, A.F.; Kolodziej, H. Evaluation of sage phenolics for

their antileishmanial activity and modulatory effects on interleukin-6, interferon and tumour necrosis
factor-α-release in RAW 264.7 Cells. Zeitschrift Naturforsch. Sect. C J. Biosci. 2003, 58, 395–400. [CrossRef]
[PubMed]

138



Agriculture 2020, 10, 543

66. Lima, V.N.; Oliveira-Tintino, C.D.M.; Santos, E.S.; Morais, L.P.; Tintino, S.R.; Freitas, T.S.; Geraldo, Y.S.;
Pereira, R.L.S.; Cruz, R.P.; Menezes, I.R.A.; et al. Antimicrobial and enhancement of the antibiotic activity by
phenolic compounds: Gallic acid, caffeic acid and pyrogallol. Microb. Pathog. 2016, 99, 56–61. [CrossRef]
[PubMed]

67. Zhang, Y.; Jiang, P.; Ye, M.; Kim, S.H.; Jiang, C.; Lü, J. Tanshinones: Sources, pharmacokinetics and anti-cancer
activities. Int. J. Mol. Sci. 2012, 13, 13621–13666. [CrossRef] [PubMed]

68. Zhong, G.-X.; Li, P.; Zeng, L.-J.; Guan, J.; Li, D.-Q.; Li, S.-P. Chemical characteristics of Salvia miltiorrhiza
(Danshen) collected from different locations in China. J. Agric. Food Chem. 2009, 57, 6879–6887. [CrossRef]

69. Ślusarczyk, S.; Topolski, J.; Domaradzki, K.; Adams, M.; Hamburger, M.; Matkowski, A. Isolation and fast
selective determination of nor-abietanoid diterpenoids from Perovskia atriplicifolia roots using LC-ESI-MS/MS
with multiple reaction monitoring. Nat. Prod. Commun. 2015, 10, 1149–1152. [CrossRef]

70. Senol, F.S.; Ślusarczyk, S.; Matkowski, A.; Pérez-Garrido, A.; Girón-Rodríguez, F.; Cerón-Carrasco, J.P.;
den-Haan, H.; Peña-García, J.; Pérez-Sánchez, H.; Domaradzki, K.; et al. Selective in vitro and in silico
butyrylcholinesterase inhibitory activity of diterpenes and rosmarinic acid isolated from Perovskia atriplicifolia
Benth. and Salvia glutinosa L. Phytochemistry 2017, 133, 33–44. [CrossRef]
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Abstract: Endophytic fungi (EF) are increasingly gaining attention due to the numerous benefits
many species can offer to the plant host, while reducing the application of chemicals in agriculture,
thus providing advantages to human health and the environment. The growing demand for safer
agrifood products and the challenge of increasing food production with a lower use of pesticides and
fertilizers stimulates investigations on the use and understanding of EF. Other than direct consequences
on the plant damaging agents, these microorganisms can also deliver bioactive metabolites with
antimicrobial, insecticidal, or plant biostimulant activities. In tomato, EF are artificially introduced
as biological control agents or naturally acquired from the surrounding environment. To date,
the applications of EF to tomato has been generally limited to a restricted group of beneficial fungi.
In this work, considerations are made to the effects and methods of introduction and detection of
EF on tomato plants, consolidating in a review the main findings that regard pest and pathogen
control, and improvement of plant performance. Moreover, a survey was undertaken of the naturally
occurring constitutive endophytes present in this horticultural crop, with the aim to evaluate the
potential role in the selection of new beneficial EF useful for tomato crop improvement.

Keywords: endophytes; biocontrol; biostimulants; induced systemic resistance; ISR; plant pathogens;
fungal entomopathogens

1. Introduction

Different approaches can be used to discover alternatives to chemical pesticides, to prevent or
control harmful plant biotic agents. In recent years, the interest in the biological control of plant
pests and pathogens has surged to meet the requirements for more environmentally friendly options
to synthetic chemicals. Consequently, the method for the use of microbial biological control agents
(mBCAs), as natural antagonists to suppress herbivores and organisms that cause disease, has increased
and improved. Fungi are among the most important mBCAs selected for this application due to
their ease of isolation, selection from a vast number of known non-pathogenic strains, morphological
structures for conservation and delivery, adaptation to numerous engineering fermentation technologies
in industry, manageability in formulations, as well as their capability to secrete and over-express
endogenous proteins or nontoxic exogenous compounds [1]. Furthermore, many beneficial fungi are
known to promote plant growth and act as plant biostimulants or biofertilizers, thus their application
in agriculture may also reduce the use of chemical fertilizers [2].
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Among the plant favorable fungi, fungal endophytes, in particular, have been gaining increased
attention because of the numerous benefits they can offer directly to the plant host with the intimate
interaction established during the colonization of the plant tissues [3–7]. Since their discovery,
endophytes have been isolated from different vegetative structures, many diverse plant species, both in
natural uncultivated, as well as in agricultural environments [8]. These endophytic fungi (EF) represent
a microbial community with an enormous reserve of biodiversity, originating from diverse ecological
niches and host tissues ranging from the algae living in marine environments [9] to trees in the forest
ecosystems [10].

These microorganisms have the ability to colonize plants without causing any symptoms [11],
establishing a plant-fungi association inside the living plant tissue, that may occur within roots, stems,
and/or leaves, and they emerge from the plant tissue only at the time of sporulation or upon senescence
of the host [12–14]. The fossil record indicates that plants have had associations with endophytic [15]
and mycorrhizal [16] fungi for more than 400 million years, a relationship that has likely existed
since the time when plants first colonized land, thus playing a long and important role in the driving
force of evolution, and life on land. In recent decades, scientific evidence has demonstrated that
non-pathogenic microbes, endo- or exo-inhabitants of plants, may be associated with latent pathogens
or early colonizing saprophytes that could actively grow in the living vegetative tissues only at
the moment that plant defense responses waned or the plant initiated the phase of senescence [17].
The specific interaction between the host plant and its microbial partners ranges on a continuum from
neutralism towards mutualism and antagonism, in which the nature of the relationship may change
during the lifecycle of the plant depending upon environmental as well as intrinsic factors [18–20].

Currently, the concept of the plant microbiome considers a viewpoint on plant-microbe evolution,
in which the plant and the microbiota have evolved together, with the microorganisms providing
advantages and versatility to the plant in its ecosystem: an exchange of the plant as a habitat and
source of nutrition, with some endophytic microorganisms producing benefits to the host plant that
include the stimulation of growth and development, adaptation to the environment and abiotic stress
tolerance [21,22]. More recently, it has been reported that EF can also have a protective role against
attack by insects [23], pathogens [24], and nematodes [25], thus acting as multiple plant defenders or
biocontrol agents.

Like most of the beneficial fungi, EF are known to secrete a vast number of bioactive secondary
metabolites that are primarily responsible for the observed useful effects since they can stimulate the
plant defense response and growth, as well as exert a direct antimicrobial or insecticidal effect [2,26–28].
Indeed, the remarkable advantage of these microorganisms is due to the in-depth relationship within
the plant host that allows the immediate availability of the secreted active molecules within plant
tissues [28,29]. In a broad sense, EF are producers of bioactive metabolites for which the plant
constitutes a delivery system; in the case of insecticidal or antimicrobial molecules, the plant serves as
a pipeline for the translocation of these compounds to the target pathogen or pest, thus EF act as a
biopesticide [29,30].

Tomato belongs to the Solanaceae family, and it is one of the most commonly cultivated vegetable
crops worldwide. Solanum section Lycopersicon includes the cultivated tomato (Solanum lycopersicum L.)
and 12 additional wild relatives, but S. lycopersicum is the only domesticated species [31]. The tomato
originated from South America, then spread globally through different levels of domestication, starting
prior to the 15th century and continuing into Europe, arriving to its present status as one of the
most highly consumed food crops of international acclaim. In 2018, the global tomato production
reached more than 180 million tons, in which the cultivated area worldwide of harvested tomatoes
accounted for almost 5 million ha (FAOSTAT 2018). Due to its extensive global distribution and
consumption, tomato is one of the most important horticultural crops farmed, and during its cultivation,
it is constantly threatened by pests and pathogens. In recent times, the use of chemical pesticides is
becoming largely restricted in agriculture both due to the negative impact on human health and the
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environment (EU Directive 2009/128/CE), plus the risks of resistance development in pathogen/pest
populations by their use.

The growing demand by consumers for safer food products plus the urgent challenge of increasing
food production with lower inputs of pesticides and fertilizers stimulates both the utilization of EF
as non-chemical plant beneficials, as well as the investigations that provide further insights into the
interactions of these microorganisms with the crop host and the organisms that damage it. Recent
studies have focused on the use of EF in protecting and improving tomato crop as an alternative to the
chemical approach for crop protection (references in this review). The presence of EF in tomato can be
prevalent in the plant if the fungi were introduced as mBCAs, or if the EF were naturally acquired
from the surrounding environment and horizontally and/or vertically transmitted into the plant [32].
According to the increasing interest in this argument, the present paper offers a review of the principle
EF that have been introduced to tomato for the biological control of various pests and pathogens, plus
those applied to improve the plant performance, growth/yield, and quality. Furthermore, a section of
this review is dedicated to constitutive EF isolated and identified from tomato, which can serve as a
valuable source of new microbial beneficial applications with unexplored potential to improve the
production of tomato and other crops.

2. Beneficial Effects of EF Introduction on Crops

The beneficial effects executed by EF include pest and pathogen control, plant growth promotion
(PGP), improvement of the plant nutrient availability and uptake, and the increased tolerance to
abiotic stress, hereby referred to as plant physiology improvement (PPI). EF have been confirmed
to affect insect pests feeding on the plants that they colonize [23,33–35], and results in the literature
indicated that these microorganisms provided protection from significant herbivory damage they cause
to crops. Insect pests have been noted to be affected by EF in numerous ways such as reduction of
developmental rate [36,37], deterrence of feeding on the colonized plant [38,39], retarded insect growth,
higher mortality, and lower oviposition [40,41]. One of the hypothesized mechanisms underlying
these effects is the bioaccumulation of secondary metabolites and mycotoxins produced by the EF
within the plant tissues [34]. Moreover, these microorganisms are known to defend their plant host
from pathogens attack [3–7]. This biocontrol action could be exerted through direct mechanisms
including food and space competition, parasitism, and antibiosis [39,42–44]. While colonizing host
plants, EF stimulate the attacked plant to create a barrier (biochemical or mechanical) that inhibits
pathogenic organisms from penetrating the same tissue hence preventing the occurrence of diseases [45].
An important indirect mechanism involved in plant protection is the induction of plant resistance which
is implemented by the alteration of the biochemical signaling pathways of the plant that modulate the
resistance-related genes which are triggered by the endophytic colonization [46–51]. PGP implemented
by EF is characterized by the improvement of the above- and/or below-ground biomass [52–54] while
PPI effects include the increase of nutrients uptake, particularly nitrogen and phosphorus [55,56],
and enhanced tolerance to abiotic stress including drought, salt, and heat [1]. EF can be, thus, utilized as
biofertilizers as they improve the nutrient uptake firstly enhancing the plant root system and secondly,
in the case of entomopathogenic endophytes, reallocating the insect-derived nitrogen to the host plant.
In fact, EF, after feeding on insects in the rhizosphere, may translocate the adsorbed nitrogen to the
host plant towards the association with the root system [55].

3. Introduced Endophytes of Tomato

The utilization of EF as biological control agents (BCA) represents a potential alternative that meets
the growing need for more eco-sustainable agriculture. According to this new perspective, in recent years
many studies have been performed, introducing EF on tomato to test their effects on plant performance.
Among these introduced EF, a consistent number of species belongs to a group of fungi classified
as entomopathogens, fungi that are pathogens to insects, many isolated from asymptomatic plants,
including Akanthomyces spp., Beauveria bassiana, Clonostachys rosea, Cordyceps farinosa (formerly Isaria
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farinosa), Lecanicillium spp., and Sarocladium spp. (formerly Acremonium spp.) [39,57–61]. The natural
occurrence of these fungi within the plant tissues suggests their ability to endophytically colonize a
wide range of plants.

To date, in tomato as for many other horticultural crops, the artificial introduction of EF has
been limited to a restricted group of beneficial microbes which include species belonging to the
genus Sarocladium, Beauveria, Metarhizium, Fusarium, Penicillium, Serendipita (formerly Piriformospora),
Pochonia, Pythium, and Trichoderma [36,37,62–68]. Furthermore, some introduced species belong to the
Dark Septate Endophytes (DSE) such as Neocosmospora haematococca (formerly Nectria haematococca)
and Periconia spp. DSE represent a large group of root-inhabiting endophytes not yet well defined
taxonomically and/or ecologically that are distinguished as a functional group based on the presence
of darkly melanized septa. DSE are ubiquitous and abundant in various ecosystems and playing an
interesting role in contrasting pathogens as they can improve plant tolerance to abiotic stress [69],
growth [70], and nutrient uptake [71]. In short, DSE may play an important role in the ecophysiology
of plants. However, almost a century after their discovery, little is still known about the role of these
mysterious and rather elusive fungal symbionts.

3.1. Biocontrol

The biocontrol of pests and pathogens has been the most documented beneficial effect explicated
by the artificial introduction of endophytic fungi to tomato. In this context, 41 scientific papers report
the use of mBCAs that focuses on crop protection and the consequences on the organisms that are
deleterious to tomato (Table 1).

In particular, concerning the insect pests, biocontrol potential of EF was evidenced for the negative
effects on Aphis gossypii [72], Bemisia tabaci [73,74], Chortoicetes terminifera [72], Helicoperva armigera [75,76],
Nesidiocoris tenuis [77], Spodoptera exigua [78], S. littoralis [23], Tuta absoluta [79,80], and Trialeurodes
vaporariorum [43]. Furthermore, Neocosmospora solani (formerly Fusarium solani) increased tomato defense
against infestations of the red spider mite, Tertranychus urticae [46], while several endophytic species
were able to induce resistance to the root-knot nematode Meloidogyne incognita [25,81–83]. The overall
effects observed on tomato pests included: increased mortality, feeding deterrence, reduced growth rate
and reproduction, reduced infestation, egg masses colonization, and increased plant defense.

Regarding disease control, EF were reported to counteract the infection of the bacterial pathogen
Clavibacter michiganensis subsp. michiganensis [84], fungal pathogens Fusarium oxysporum f. sp.
lycopersici [84–92], Rhizoctonia solani [93] and Botrytis cinerea [42,94]. In the above-mentioned papers,
the reported effects of endophytic colonization on pathogen control were noted with reduced disease
symptoms and a disease-suppressive effect.

In most papers, the authors suggested that the reduced impact of pests and diseases was due to
plant resistance induced by its microbial partner. The mechanism underlying this induced resistance
are subdivided into two main categories: Systemic Acquired Resistance (SAR) and Induced Systemic
Resistance (ISR). SAR is induced by the plant local infection by latent pathogens and is effective against
a broad range of harmful plant biotic agents, it is mediated by salicylic acid (SA) and associated with
pathogenesis-related proteins [95]. This is the case of N. solani strain Fs-K which was reported to induce
plant resistance against Septoria lycopersici through a SAR mechanism [87]. On the other hand, ISR is
triggered by the endophytic colonization of beneficial microorganism such as plant growth-promoting
rhizobacteria and EF that involves a priming process of the plant which results in more efficient
activation of its defense responses against pests and pathogens [96]. It is mediated by jasmonic acid (JA)
and ethylene (ET) [97]. This is the case of Trichoderma hamatum which is reported to induce resistance
against the tomato bacterial spot caused by Xanthomonas euvesicatoria [98]. Nonetheless, SAR and
ISR may be two distinct but overlapping mechanisms as a result of crosstalk of the two hormonal
pathways [97], as noted for Trichoderma harzianum which induced plant resistance against M. incognita
through priming plant defense with both SA and JA stimulation [99].
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3.2. Plant Growth Promotion and Plant Physiology Improvement

Plant growth promotion of tomato attributed to endophytic colonization has been well-documented
(Table 1). Thirteen studies have indicated that there was evident PGP as demonstrated by the
improvement of the root system with greater root length, biomass, and dry weight [69,83,88,94,100–102],
increased plant height, shoot biomass, and fresh or dry weight [69,70,83,88,89,100,101], plus enhanced
plant production with anticipated flowering and fruiting times, and increased fruit weight [102].

Moreover, a few articles reported improvement of the plant nutrient uptake and the increased
tolerance to abiotic stress (PPI) (Table 1). Improved plant uptake of iron (Fe) [103], organic nitrogen
(N) [70,71], and inorganic potassium (K) [70], have been demonstrated to be a consequence of the plant
endophytic colonization with some fungal species namely B. bassiana, Periconia macrospinosa (DSE) plus
an unidentified species also belonging to DSE. Additionally, some studies have highlighted that the
presence of the endophyte confers tolerance to diverse abiotic stress such as drought [69], salinity [104],
and metals [101].

Table 1. Effects of introduced fungal endophytes on tomato plants in terms of Plant Growth Promotion
(PGP) and Plant Physiology Improvement (PPI), and Biocontrol (BC) of pest and pathogens.

Fungal Species
Effects

PGP and PPI BC

Sarocladium strictum * Increased mortality of larvae of Trialeurodes vaporariorum [105]

Sarocladium kiliense * Increased number of xylem vessels within the
shoots [84]

Reduced symptoms caused by Fusarium oxysporum f. sp. lycopersici and
Clavibacter michiganensis subsp. michiganensis [84]

Beauveria bassiana Enhanced terpene production [78]
Improved iron (Fe) nutrition [103]

ISR vs. Rhizoctonia solani [93]
ISR vs. Botrytis cinerea [42]

ISR vs. F. oxysporum f. sp. lycopersici [85]
Increased mortality of Tuta absoluta [79,80]

Reduced incidence of Fusarium oxysporum f. sp. lycopersici and Helicoverpa
armigera [106]

Increased mortality of Helicoperva armigera [75,106]
Increased mortality of Bemisia tabaci [73]
Feeding deterrent for Bemisia tabaci [74]

Increased mortality of Spodoptera littoralis [23]
Reduced growth rate of Spodoptera exigua [78]

Reduced reproduction of Aphis gossypii and reduced growth rate of
Chortoicetes terminifera [72]

Metarhizium anisopliae Increased plant height, root length, shoot and root
dry weight [100] Increased mortality of Spodoptera littoralis [23]

Fusarium oxysporum

ISR vs. F. oxysporum f. sp. lycopersici [86]
ISR vs. Meloidogyne incognita [81,82]

Fermentation broth with anti-oomycete activity vs. Pythium ultimum,
Phytophthora infestans and Phytophthora capsici [24]

Reduced infestation of Trialeurodes vaporariorum [42]

Neocosmospora solani *

ISR vs. Nesidiocoris tenuis [77]
ISR vs. F. oxysporum f.sp. radicis-lycopersici [87]

SAR vs. Septoria lycopersici [87]
Increased tomato defenses against Tertranychus urticae [107]

Fusarium spp. Increased roots length, shoots height and plant fresh
weight [88] ISR vs. Fusarium oxysporum f. sp. radicis-lycopersici [88]

Neocosmospora haematococca *
(DSE)

Drought stress tolerance, improved plant growth,
and proline accumulation [69]

Unidentified (DSE) Increased aboveground plant dry biomass and
increased uptake of organic N and inorganic K [70]

Penicillium simplicissimum *

Salinity stress tolerance [104]
Metal stress tolerance [101]

Increased shoot length and biomass under normal
and Al stress conditions [101]

Periconia macrospinosa (DSE) Improved organic N uptake and plant biomass
when organic nutrients are present [71]

Serendipita indica *
Increased fresh weight [89]

Accelerated vegetative and generative
development [108]

ISR vs. Tomato yellow leaf curl virus [109]
Disease-suppressive effect vs. Verticillium dahliae and F. oxysporum [89–91]

Reduced infestation of Meloidogyne incognita [25]

Pochonia chlamydosporia
Increased root and shoot growth [83]

Anticipated flowering and fruiting times, increased
fruit weight and root growth [102]

Colonizes egg masses of Meloidogyne incognita [83]

Pythium oligandrum
ISR vs. Ralstonia solanacearum [110]

ISR vs. Fusarium oxysporum f. sp. lycopersici [92]
ISR vs. B. cinerea [111]

Trichoderma atroviride Increased root and shoot growth depending on the
tomato cv [94]

Reduced infestation of Trialeurodes vaporariorum [43]
ISR vs. Botrytis cinerea [94]

Trichoderma hamatum ISR vs. Xanthomonas euvesicatoria (tomato bacterial spot) [98]

Trichoderma harzianum Increased root and shoot growth depending on the
tomato cv [94]

ISR and SAR vs. Meloidogyne incognita [99]
ISR vs. Botrytis cinerea [94]

Reduced desease symptoms caused by Alternaria solani and Phytophtora
infestans [112]

* scientific names are different from those present in the articles cited due to taxonomic updates to the name
presently use.
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3.3. Methods of Introduction and Detection

In the last decades, it has been demonstrated that several beneficial EF can be artificially
introduced on tomato using different inoculation methods and numerous protocols have been
developed to successfully achieve this colonization, as well as to detect the fungi within the plant
tissues. The methods used for the introduction and detection of EF in tomato plants are summarized
in Table 2. The inoculation of EF to tomato plants is mainly achieved with conidial suspension applied
by seed treatments, root dipping, soil watering, stem injection, and leaf spraying. Alternatively,
the application can be performed by mixing fungal biomass with the transplanting soil. Among the
different inoculation techniques, the soil applications, mainly by watering with a conidia suspension,
was the most commonly and successfully used technique applied in 18 studies. This was followed by
the treatment of seed, as adopted in 15 studies, which was performed by various methods including
seed soaking, seed coating, and seed dressing. Seed soaking consisted of placing the tomato seeds in a
liquid conidial suspension for 2 to 24 h, before planting. Seed coating involved immerging the seeds in
a conidial suspension, stirring them every 30 min for 2–3 h, to cover and adhere the spores to the seed
surface, then successively air-drying under sterile conditions [93,94,113]. Seed dressing, was the less
common technique, preparing and mixing the seeds in a conidia suspension with continuous shaking
for several hours [74,103]. The conidia suspension usually contained a “sticker” such as Tween 80
(0.1–0.01% v/v) or methylcellulose (5–10% v/v), to ensure a more efficient adhesion of the conidia to
the seed surface. Root dipping was another technique commonly used that consisted of dipping the
seedling roots in a conidial or propagule suspension for 6 to 24 h prior to transplant [71,76,79,89,106,110].

It is evident that the methods of application were numerous, and the selection of the most
efficient method is highly dependent on the specific EF that is employed. The majority of the studies,
involving the artificial introduction of EF to tomato, were conducted in a controlled environment,
usually with sterilized soil or transplanting substrate, and not in the open field, in order to facilitate the
monitoring of the plant colonization. The field application of EF is a challenge that needs to take into
account the enormous variability of the environment that could negatively affect the efficacy of the
above-mentioned protocols for the introduction. Another critical issue is represented by the transient
nature of some endophytes in plant colonization, which explains why, in most cases, the studies do not
report details on the time duration of the endophytic colonization. A study by Resquin-Romero [23]
indicated that the endophytic colonization of the plant was transient and that the EF–plant interaction
was lost after a certain period of time after inoculation. Due to the transient nature of the endophytic
colonization, as has been documented in other crops, it is recommended that parallel time-course
studies should be performed to monitor the extent of endophytic development, for example, with
molecular, microscopy, and/or in vivo re-isolation techniques [68,114–119]. This attests to the difficulty
of establishing stable and lasting interactions between the chosen endophyte and its plant host, in the
attempt to obtain the potential desired effect.

To ensure that the inoculation of the fungal species is followed by actual endophytic colonization
of the plant, it is mandatory to include an experimental stage to detect the EF within the plant. Out of
the 52 papers reviewed, 16 studies did not include an endophyte detection assay in their experimental
workflow. It is recommended that an analysis of the EF presence should always be included in the
study in order to assess the success of the endophytic colonization of the plant, plus monitor the rate of
colonization. Moreover, this detection stage should follow an accurate surface-sterilization of the plant
tissues to avoid the inadvertent isolation of epiphytic rather than endophytic fungi.

The methods to determine the presence of EF can be divided into three main types: the
re-isolation of the EF from the plant tissue, the molecular detection by polymerase chain reaction (PCR),
and morphological observation using microscopy techniques. Each method requires the sterilization
of the plant material to eliminate the epiphytic microbial community, usually obtained by dipping the
tissue in a diluted bleach solution for 1–3 min, that can be followed or proceeded with a brief 70%
ethanol bath, completed with rinsing it at least three-times with sterile water. As a check of the efficacy
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of the sterilization procedure, aliquots of the rinsed water are also plated, and if bacterial or fungal
growth occurs the sample is discarded.

The re-isolation of the fungal colony from the host plant tissue is the most used method to assess
the endophytic colonization and is reported in 17 studies. Usually, it follows this protocol: collect,
wash, and sterilize the plant material, dissect the vegetal tissues in 1 cm pieces under sterile conditions,
and place the pieces on Petri dishes containing solid culture substrate. Most of the authors utilized
potato dextrose agar (PDA), supplemented with antibiotics to avoid bacterial contaminations, while
others used selective media for the specific EF they were interested in re-isolating [23,80,100,120].
Molecular analysis was also widely used for the identification of the EF and is reported in 12 studies.
It was based on the extraction of the DNA from the pre-sterilized plant tissue, and the subsequent
amplification by PCR and sequencing of amplicons for specific fungal molecular markers such as
the Internal Transcribed Spacer (ITS1 and ITS2) region and the translation elongation factor (TEF).
Five manuscripts included the quantitative detection of the EF within the plant tissue using a real-time
PCR [77,86,87,107,121].

Eleven studies used microscopy techniques to visually examine the fungal presence within the
plant tissues. These techniques included light optical microscopy using stained plant tissues, usually
with trypan blue or methyl blue, scanning electron microscope (SEM), and transmission electron
microscope (TEM). The microscope analysis was particularly valuable for observing and understanding
the EF growth distribution patterns and translocation within the plant tissues, thus providing important
information and a deeper insight of the EF colonization that was not possible in comparison to the
other methods with the re-isolation or molecular detection.

Table 2. Methods of introduction and detection of fungal endophytes in tomato plant with
relative cultivar.

Fungal Species Tomato Cultivar
Method of EF
Inoculation

Detection Method
Location of EF in

Plant Tissues
Ref.

Sarocladium kiliense * Haubner’s
Vollendung

Fungal biomass
mixed with

transplanting soil
Roots [84]

S. strictum * Haubner’s
Vollendung Soil watering Re-isolation from the

plant tissue on PDA Roots [105]

S. strictum * Suso RZÒ F1 hybrid Soil watering Re-isolation from the
plant tissue on MEA Roots [122]

Beauveria bassiana Platense
Seed soaking
Leaf spraying
Root dipping

Re-isolation from the
plant tissue on PDA Leaves [79]

B. bassiana Mobil Seed coating Re-isolation from the
plant tissue on PDA [93]

B. bassiana Limachino—INIA

Fungal biomass
mixed with

transplanting
substrate

Re-isolation from the
plant tissue on Noble

agar

Roots
Stem

Leaves
[42]

B. bassiana Rio Fuego
Soil watering
Leaf spraying
Stem injection

[85]

B. bassiana

Ace, Early Pack,
Money Maker, Peto
86, Prichard, Pusa
Ruby, Strain B and

LA1478

Leaf spraying
Stem injection PCR Stem [73]

B. bassiana Grosse lisse Leaf spraying Re-isolation from the
plant tissue on PDA Leaves [34]

B. bassiana Harzfeuer F1 Leaf spraying
Re-isolation from the

plant tissue on
selective media

Leaves [80]

B. bassiana Regina Conidial suspension
on wounded rachis

Re-isolation from the
plant tissue on
selective media

Roots [120]
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Table 2. Cont.

Fungal Species Tomato Cultivar
Method of EF
Inoculation

Detection Method
Location of EF in

Plant Tissues
Ref.

B. bassiana Cal-J, Kilele F1,
Anna F1 Seed soaking Re-isolation from the

plant tissue on SDA

Roots
Stem

Leaves
[123]

B. bassiana Cal-J, Kilele, Anna Seed soaking Re-isolation from the
plant tissue on SDA

Roots
Stem

Leaves
[124]

B. bassiana Mountain Spring Seed coating [113]

B. bassiana PKM1
Seed soaking
Root dipping
Soil watering

[76]

B. bassiana PKM1 Seed soaking
Root dipping [106]

B. bassiana surahi

Root dipping
Stem injection
Soil inoculum

Leaf spray

Re-isolation from the
plant tissue on PDA Leaves [75]

B. bassiana Tres Cantos Leaf spray
Re-isolation from the

plant tissue on
selective media

Stem
Leaves [23]

B. bassiana Marmande-
Cuarenteno Seed soaking Re-isolation from the

plant tissue on SDCA

Stem
Leaves
Roots

[35]

B. bassiana Castlemart Seed coating PCR Shoot [78]

B. bassiana Hezuo 903
Leaf spray

Root irrigation
Reed dressing

PCR Shoot [74]

Fusarium spp. Rio Grande Soil watering PCR Root
Stem [88]

F. oxysporum Montfavet 63-5 Root application Real-Time qPCR Roots
Cotyledons [86]

F. oxysporum Furore Soil application Roots [81]
F. oxysporum Moneymaker Soil watering Roots [82]

F. oxysporum Hellfrucht/JW
Frühstamm Soil watering Roots [43]

Neocosmospora solani * Pearson Soil watering Real-Time qPCR Roots [77]
N. solani * Ace 55 Soil watering Real-Time qPCR Roots [107]

N. solani * Ace 55 Soil watering Microscopy
Real-Time qPCR Roots [87]

Metarhizium anisopliae Hybrid var. 8625 Soil watering
Re-isolation from the

plant tissue on
selective media

Roots
Shoots
Leaves

[100]

M. anisopliae Tres Cantos Leaf spray
Re-isolation from the

plant tissue on
selective media

Stem
Leaves [23]

M. brunneum Ruthje Encapsulated
mycelial biomass

Light microscopy
Real-Time qPCR Stem [121]

Neocosmospora
haematococca * (DSE) CO-2

Soil application of
mycelial biomass

formulation
Light microscopy Roots [69]

Unidentified (DSE) Santa Clara I-5300 Soil application of
mycelial biomass Light microscopy Roots [70]

Penicillium
semplicissimum * LA2710

Soil application of
mycelia and culture

filtrate
Roots [101]

Periconia macrospinosa
(DSE) Hildares F1 Root dipping in

propagule suspension Light microscopy Roots [71]

Serendipita indica * Hildares Root dipping Re-isolation from the
plant tissue on PDA Roots [89]

S. indica * T07-4, T07-1
Transplanting

substrate application
of mycelia

Light microscopy Roots [109]

S. indica * Nutech Seed coating
(bioformulation) Roots [90]

S. indica * Vellayani Vijay
Transplanting

substrate application
of mycelia

Light microscopy Roots [25]

148



Agriculture 2020, 10, 587

Table 2. Cont.

Fungal Species Tomato Cultivar
Method of EF
Inoculation

Detection Method
Location of EF in

Plant Tissues
Ref.

Pochonia
chlamydosporia Durinta

Plating of seedlings
on fungal plate

cultures

laser-scanning
confocal microscopy

PCR
Roots [83]

P. chlamydosporia Marglobe Seed germination on
fungal plate cultures

Re-isolation from the
plant tissue on CMA

PCR
Roots [102]

Pythium oligandrum Micro-Tom Root dipping laser scanning
microscopy Roots [110]

P. oligandrum Prisca
Mycelial plugs in

proximity of the top
root

SEM
TEM Roots [92]

P. oligandrum Prisca Soil watering TEM Roots [111]

Tricoderma atroviride Hellfrucht/JW
Frühstamm Soil application Roots [43]

T. atroviride Corbarino, M82,
SM36, TA209 Seed coating Roots [94]

T. hamatum Ohio 8245 Soil application Roots [98]

T. harzianum Corbarino, M82,
SM36, TA209 Seed coating Roots [94]

T. harzianum Moneymaker Soil application Roots [99]
T. harzianum Arka vikas Soil watering Roots [112]

* scientific names are different from those present in the articles cited due to taxonomic updates to the name
presently use.

4. Constitutive Endophytes of Tomato

EF have been reported to have a crucial role in inducing plant host tolerance to stressful
conditions [59], plant defense [32], and plant growth and development [125]. In all-natural or
agricultural ecosystems, every plant is colonized by a diversity of soil-borne microorganisms as root
endophytes, mycorrhizal fungi, and plant growth-promoting rhizobacteria. Moreover, the analysis
of plant–endophyte associations in high-abiotic stress habitats revealed that at least some fungal
endophytes confer habitat-specific stress tolerance to the host plants. Without the presence of the
habitat-adapted fungal endophytes, these plants were unable to survive in their native habitats [126].
Thus, the naturally occurring EF constitute a poorly exploited resource, rich in terms of biodiversity,
representing a pool of potentially beneficial fungi from which the selection of new strains may be
obtained for useful applications in agriculture.

Seven studies focused on the naturally occurring EF of tomato and the data are summarized in
Table 3. The constitutive EF were comprised of 24 different genera, among which the most represented
are Trichoderma and Fusarium, which included 35 different fungal species. It is interesting to note that
some of the fungi reported in Table 3 are commonly recognized as plant beneficial fungi, such as
Trichoderma spp., N. solani, and Sarocladium implicatum (formerly Acremonium implicatum), while other
species are known as plant pathogens, for example, Alternaria solani, Stemphilyum lycopersici and
Albifimbria verrucaria. A. solani causes early blight of tomato, one of the common foliar diseases of
tomato [127], S. lycopersici is the causal agent of leaf spot disease on pepino (Solanum muricatum) [128],
and A. verrucaria produces small brown to black spots symptoms on the colonized leaves and stems [129].
Moreover, A. verrucaria is also known to be the responsible agent of mycotic keratitis, one of the major
causes of ophthalmic morbidity and visual loss globally [130]. This highlights the importance of
identifying EF to study their prospective utilization in agriculture, but also to understand the possible
implications on human health.

An example of EF use for tomato improvement is provided by the work of Bogner and
colleagues [32] that was conducted in five different counties of Kenya with the aim of identifying and
characterizing the culturable endophytic mycobiota in the roots of tomato and screening different
fungal endophytes for their biocontrol potential towards the root-knot nematode Meloidogyne incognita.
A total of 76 fungal isolates were obtained, among which the most prevalent species associated
with tomato roots were members of the F. oxysporum and N. solani species complexes. Bioassays
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demonstrated the ability of selected non-pathogenic fungal isolates to successfully reduce nematode
penetration and subsequent galling, as well as decrease the reproduction capacity of the root-knot
nematode M. incognita. Most isolates in the Trichoderma asperellum and F. oxysporum complex were able
to reduce the root-knot nematode egg densities by 35–46% in comparison to the treatments with the
nonfungal control and the other fungal isolates. Moreover, Tian and colleagues isolated an endophytic
fungus from tomato root galls infected with M. incognita that was identified as S. implicatum based on
morphological and molecular identification [131]. The biocontrol potential of S. implicatum culture
filtrates was tested with the plant and nematodes in vitro, in pot and field experiments. Results from
the in vitro test indicated that 96% of second-stage juveniles of M. incognita were killed after 48 h.
The fungal compounds were also able to suppress egg hatching, the formation of root galls, and reduce
the nematode population in the soil.

These findings suggest that naturally occurring EF populations in the soil represent an
underestimated and valuable source of microbial diversity with positive impacts on sustainable
agricultural production, due to the possibility to reduce the use of chemical products, thus benefiting
the environment and human health. Moreover, this highlights the importance of promoting the
constitutive endophytic populations in the soil in order to obtain the effective threshold level for
biological control of organisms that compromise plant health. Many studies have demonstrated
that soil type and plant genotype are the two main variables that affect the establishment of fungal
species in the soil community [132–134]. The cultivation system can also influence the microbial
species in the soil, whereby fungal abundance was significantly higher in organically farmed fields
than the populations found in conventionally farmed that used chemicals [32,132]. In order to
successfully develop applications of plant-associated EF in sustainable agricultural production, further
investigations are necessary to understand the mechanisms of action and the processes employed by
the fungi to produce the beneficial effects, as well as to determine how they can be efficiently utilized
in actual practices.

Table 3. Naturally occurring constitutive endophytes of tomato.

Fungal Species Tomato Cultivar Main Results
Location of EF in

Plant Tissues
Country Ref.

Alternaria solani
Aspergillus sclerotiorum
Cochliobolus geniculatus

Curvularia lunata *
Fusarium nygamai

Fusarium sp.
Fusarium verticillioides
Stemphylium lycopersici
Trichoderma asperellum

Trichoderma lixii *

Moneymaker
Biological control to the

rootknot nematode
Meloidogyne incognita

Root Kenya [32]

Fusarium spp.

Heinz 9907
Gem 611

Heinz 3402
FL 47

Mountain Fresh

No effects
Roots

Crown
Stem

USA [134]

Fusarium oxysporum
Fusarium fujikuroi

Neocosmospora solani *
Momotaro No effects Stem Japan [135]

Ochroconis humicola * Gohobi
Improved plant growth
with organic nitrogen

sources
Root Japan [125]

Albifimbria verrucaria *
Fusarium spp.

Setophoma terrestris
Trichoderma spp.

Heinz 1706
Moneymaker No effects Root Northern Italy [133]
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Table 3. Cont.

Fungal Species Tomato Cultivar Main Results
Location of EF in

Plant Tissues
Country Ref.

Sarocladium implicatum * Lichun

Biological control
suppressed M. incognita

egg hatching and
population, when
inoculated to soil

Root China [131]

Alternaria spp.
Aspergillus fumigatus
Aspergillus nidulans

Chaetomium globosum
Coniothyrium aleuritis

Fusarium chlamydosporum
Fusarium oxysporum

Fusarium proliferatum
Fusarium sp.

Hypoxylon sp.
Leptosphaerulina chartarum
Meyerozyma guilliermondii *

Neocosmospora solani *
Nigrospora sp.

Penicillium helicum *
Penicillium ochrochloron

Penicillium simplicissimum *
Periconia macrospinosa

Pleosporales sp.
Rhinocladiella sp.

Trichoderma atroviride
Trichoderma spirale

Big Beef
Plant growth

promotion and
enhanced fruit weight

Root
Shoot
Seed

USA [132]

* scientific names are different from those present in the articles cited due to taxonomic updates to the name
presently use.

5. Perspectives on EF Applications to Tomato

EF are ubiquitous microorganisms in the natural and agricultural environment able to colonize
plants internally.

In 1994, Dreyfuss and Chapela estimated that the global fungal diversity amounts to 1.5 million
species, and based on their estimates, endophytic fungi alone could account for up to 1.3 million
species [136]. This perspective on EF diversity was substantiated by subsequent studies of novel plant
species, in particular, a study of the fungus:plant ratio in the tropical regions, confirmed that the number
of 1.3 million endophytic fungi on the planet was a good assessment [137]. Recently, Hawksworth and
Lücking revised the appraisal on global fungal diversity, concluding that the above-mentioned value
was too conservative, and the actual range of fungal species should be considered at 2.2–3.8 million
species [138].

Although the category of EF is gaining interest in the scientific community, due to their potentially
beneficial applications, the studies conducted to date on this topic are still relatively limited and require
further investigations.EF can be an extraordinary source of BCAs, PGP, and bioactive molecules, that can
provide multiple positive effects to crops, which make them suitable components of biostimulants and
biopesticides for use in agriculture [19,26,28]. Most endophytes are considered non-pathogenic, but not
all are capable of producing plant beneficial effects [139]. Moreover, even when colonization occurs
and positive effects are evident, the costs to the plant in hosting the endophyte/s have to be taken into
account, an aspect that has not been studied extensively and is generally underestimated [136,140–143].
It should be considered that EF constitute a rich biodiversity source requiring a greater understanding
of: (1) the mechanisms of action involved, those used by the fungal colonizer and the host plant,
for crosstalk and recognition that permit the establishment of the interaction; (2) the ecological,
biological, and physiological functions of the EF–plant relationship over time; plus (3) the factors and
conditions that determine successful colonization [26,144,145].

Understanding the mechanisms underlying the plant-endophyte association and the subsequent
outcomes, or the cause and effect, is fundamental for the advancement of EF know-how for the
improvement of crop production. Currently, it is well recognized that the interaction between plant and
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endophyte is highly influenced by three factors: the genotype of the plant and its microbiome, the fungal
genome, and the environmental conditions in which the association occurs [29]. Two major challenges
became apparent during the preparation of this review, that in order to develop a wider use of EF in
agriculture it will be necessary: (i) to determine how to select the best endophyte–plant combination
and establish a stable long-lasting interaction between this beneficial microbe and the plant host
targeted for improvement; and (ii) to prove the effectiveness of this technology outside of the controlled
test conditions used to date, moving from the greenhouse to the actual open field environment.

Tomato plays host to a microbial community that is vast and highly variable, depending upon
the prevailing environmental conditions and the plant genotype [132,144]. It could be interesting to
concentrate investigations on the constitutive fungal endophytes that are native to the tomato plant,
as they, by their inherent nature, represent a massive pool of highly “tomato-adapted” fungi. This vast
fungal community represents a pool of biodiversity that up to now, has been poorly exploited in the
strategies to discover highly adapted beneficial microbes of specific crops of interest. In general, a greater
comprehension of the mechanisms that favor, along with those that hinder, the endophytic colonization
of plants, is required for wider application of EF in agriculture [144]. For example, determine the
environmental conditions known to be key factors for a successful EF–plant interaction [26,132].

The artificial introduction of EF in agri-food crops also needs to be analyzed, to ascertain the
possible risks that endophytic fungal colonization may present to the plant and the consumer, such as
the introduction of potentially toxic metabolites (i.e., mycotoxins) to the food chain [144]. In this respect,
studies should assess both the food safety of the fruits produced by EF-colonized plants, as well as
evaluate the environmental effects in terms of the release or bioaccumulation of toxins in the soil or
crop residues that may be a risk for the agroecosystem. Furthermore, an analysis of the outcome of the
endophytic colonization on the organoleptic qualities of the agrifood products should also be taken
into account.

In recent years, a growing number of studies have focused on the introduction of beneficial EF to
tomato in order to exploit their biocontrol potential against pests and pathogens, as well as their growth
promotion effect (references in this review). It is evident from the findings to date, that the introduction
of EF represents a promising field of research and development, to which the consequences could
determine a remarkable reduction of chemical use in agriculture. This outcome could be clearly
observed in the field of crop protection, where it has already been well documented that the biocontrol
activity of EF is able to limit the negative effects of several key tomato insect pests and pathogens, as
well as nematodes. Moreover, the tomato plants harboring some EF have demonstrated enhanced
tolerance to abiotic stress in the field, plus improvement in nutrient uptake, yield, and nutritional
quality of the fruits.

This review reports that several EF species are good versatile BCA, controlling both pests and
pathogens as demonstrated in the case of B. bassiana, F. oxysporum, N. solani, and T. harzianum, which are
amenable candidates as plant beneficial microbes, also considering their additional properties as plant
biostimulants. Nonetheless, a few surveyed papers considered the possibility to use EF species as a
multi-use biocontrol agent, evaluating the simultaneous biocontrol of both pests and pathogens in
tomato. Only recently, Jaber and Ownley underlined that some endophytic and entomopathogenic
fungi conferred protection to their host plant not only against insect pests but also plant pathogens,
and they proposed their use as dual biocontrol agents in agriculture [29]. Another interesting, potential
application that has been poorly explored, is the possibility to use different EF species in a consortium
and/or with other beneficial microbes. An example is given by the recent work of Varkey and colleagues
which has proved that a consortium of rhizobacteria and fungal endophytes suppress the root-knot
nematode in tomato [25]. Thus, the possibility to use EF as multiple biocontrol agents and the
development of microbial consortia with synergistic beneficial effects on plant performance appears to
be an interesting frontier that opens promising fields of research that deserve deeper investigations to
better exploit the entire range of EF potential.
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6. Conclusions

In this review, we summarized the results obtained so far with the artificial introduction of EF
in tomato and the subsequent beneficial effects that were observed. The main benefits to tomato
plants are attributable to the biocontrol of several insect pests and plant pathogens, as well as their
ability to improve plant performance. A focus on naturally occurring, constitutive EF of tomato was
also undertaken, aimed at emphasizing their possible role in the selection of new beneficial strains
for future use in tomato crop improvement. Moreover, an overview was conducted on the methods
of introduction and detection of EF in tomato, providing a clear synthesis of the techniques used,
that could be a practical guide to other researchers approaching this interesting field of research.
The potential applications of endophytic fungi in horticultural production provide many advantages
to the agroecosystem in terms of reducing chemical use and establishing a biological equilibrium
necessary for the establishment of sustainable agriculture.
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Abstract: An extensive literature search was performed to review current knowledge about endophytic
fungi isolated from plants included in the European Food Safety Authority (EFSA) dossier. The selected
genera of plants were Acacia, Albizia, Bauhinia, Berberis, Caesalpinia, Cassia, Cornus, Hamamelis, Jasminus,
Ligustrum, Lonicera, Nerium, and Robinia. A total of 120 fungal genera have been found in plant tissues
originating from several countries. Bauhinia and Cornus showed the highest diversity of endophytes,
whereas Hamamelis, Jasminus, Lonicera, and Robinia exhibited the lowest. The most frequently detected
fungi were Aspergillus, Colletotrichum, Fusarium, Penicillium, Phyllosticta, and Alternaria. Plants and
plant products represent an inoculum source of several mutualistic or pathogenic fungi, including
quarantine pathogens. Thus, the movement of living organisms across continents during international
trade represents a serious threat to ecosystems and biosecurity measures should be taken at a
global level.

Keywords: endophytic fungi; crop protection; Acacia; Albizia; Bauhinia; Berberis; Caesalpinia; Cassia;
Cornus; Hamamelis; Jasminus; Ligustrum; Lonicera; Nerium; Robinia; EFSA; high-risk plants

1. Introduction

Endophytic fungi are ubiquitous to plants, and are mainly members of Ascomycota or their
mitosporic stage, but they also include some taxa of Basidiomycota, Zygomycota, and Oomycota.
Endophytes are organisms living within the tissues of plants [1] establishing stable relationships
with their host, ranging from non-pathogenic to beneficial [2,3]. The endophytic fungi communities
represent an enormous reserve of biodiversity and constitute a rich source of bioactive compounds
used in agriculture [4,5]. For these reasons, they have attracted the attention of the scientific
community worldwide. By definition, all or at least a significant part of the endophytic fungi
life cycle occurs within the plant tissues without causing symptoms to their host [6–8]. A wide
range of fungi, including pathogens and saprophytes, may be endophytes. Several pathogens live
asymptomatically within plant tissues during their latency or quiescent stage, while some saprobes
can also be facultative parasites [1,8,9]. Fungal endophytes are influenced by abiotic and biotic factors,
occupying different habitats and locations during their life cycle phases. Even if host plants do not
show any symptoms, they may represent a source of inoculum for other species [10–13]. Furthermore,
changes in environmental conditions or species hosts may modify the fungal behavior, thus producing
disease symptoms [8,11,14]. Large quantities of plants and plant material that are globally traded
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might contain asymptomatic infections of these fungi. It is generally accepted that the movement of
plants and plant products by global trade and human activities is the most common way to introduce
exotic pathogens and pests in non-endemic countries. Plant health is increasingly threatened by the
introduction of emerging pests and/or pathogens [15,16]. Noticeable examples are represented by the
invasion of alien plant pathogens into new areas [17–19]. Generally, biological invasions are the main
threat to biodiversity [20], causing a decrease in species richness and diversity [20,21] or affecting local
biological communities [22], as well as changing ecosystem processes [23–25].

In this scenario, the European Food Safety Authority (EFSA) Panel on Plant Health is responsible
for the risk assessment, evaluations of risk reduction options, as well as guidance documents [26] in the
domain of plant health for the European Union (EU) [26,27]. Commission Implementing Regulation
(EU) [28] prohibits the importation of 35 so-called ‘High-Risk Plants, plant products and other objects’
from all third (non-EU) countries as long as no full risk assessment has been carried out. The EFSA Panel
on Plant Health was requested to prepare and deliver risk assessments for these commodities [27,28],
to evaluate whether the plant material will remain prohibited or removed from the list, with or without
the application of additional measures [27,29]. The Commodity Risk Assessment has to be performed
on the basis of technical dossiers provided by National Plant Protection Organizations of third countries.
Information required for the preparation and submission of technical dossiers includes data on the
pests potentially associated with the plant species or genera and on phytosanitary mitigation measures
and inspections [30,31].

These plants have been identified as ‘High-Risk Plants’ by the EU since they ‘host commonly
hosted pests known to have a major impact on plant species which are of major economic, social or
environmental importance to the Union’ [28]. However, among these 35 plant genera, within the
meaning of Art. 42 of Regulation (EU) 2016/2031, a list of only 13 taxa have been selected by the
EFSA as plants mostly traded for ornamental purposes. According to this list, we have reviewed the
following genera: Acacia Mill., Albizia Durazz., Bauhinia L., Berberis L., Caesalpinia L., Cassia L., Cornus L.,
Hamamelis L., Jasminus L., Ligustrum L., Lonicera L., Nerium L., and Robinia L. In this article, as much as
possible, we highlight the potential risks associated with the movement of plants or materials among
nations. Although other plant species may also have a significant impact, this review is limited to plants
included in EU regulation [28] that do not originate within Europe. Thus, given these perspectives
for future assessments, the present investigation offers an up-to-date snapshot of endophytic fungi
associated with the so-called ‘High-Risk Plants for ornamental purpose’. The aim is to facilitate the
information required for technical dossiers, needed by the EFSA to perform the Commodity Risk
Assessment of 13 plants mandated on an EU import list.

2. Endophytic Fungi Occurring in Selected Plants

Table 1 summarizes the abundance of endophytic fungi reported in association with High-Risk
Plants for ornamental purposes. Herein, the number of endophytic species found in association with
the examined plant genera has been taxonomically grouped by fungal genus. There are important
differences in terms of fungi recovered per specific plant genus (SP) as well as in the frequency of
a specific fungal genus (SF). These discrepancies could be explained by the different availability of
literature data on these specific plants.
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Table 1. Endophytic fungi isolated from Acacia (AC), Albizia (AL)., Bauhinia (BA), Berberis (BE),
Caesalpinia (CP), Cassia (CS), Cornus (CO), Hamamelis (HA), Jasminus (JA), Ligustrum (LI), Lonicera (LO),
Nerium (NE), Robinia (RO). Columns report the number of isolated fungal species. The total number
of records calculated per fungal genus is indicated as Tot. SF. The total number of records per plant
genera is indicated as Tot. SP. Fungal genera are sorted by alphabetic order.

Fungi Genera Plant Genera

AC AL BA BE CP CS CO HA JA LI LO NE RO Tot
SF

Acremonium 1 3 4
Albifimbria 1 1
Alternaria 1 1 4 1 3 2 2 14

Anguillospora 1 1
Ascochyta 1 1
Ascotricha 2 2
Aspergillus 3 8 11 1 9 2 3 3 40

Aureobasidium 2 4 6
Bacillispora 1 1
Beauveria 1 1
Bipolaris 1 2 1 4

Botryosphaeria 1 2 3
Botrytis 1 1 2

Campylospora 1 1
Cercospora 1 1

Chaetomium 2 1 3 6
Chrysosporium 1 1
Cladosporium 4 1 5 1 3 14
Clonostachys 1 1 1 3
Cochliobolus 1 3 1 5

Colletotrichum 2 1 3 4 1 2 1 7 3 3 27
Coprinus 1 1
Cordyceps 1 1

Corynespora 1 1
Cryptodiaporthe 1 1
Cryptodiaporthe 1 1

Curvularia 1 5 2 2 10
Cylindrocarpon 1 1
Cyrptosporiopsis 1 1

Daldinia 1 1
Diaporthe 1 1 2 2 1 7
Didymella 2 2

Diplococcium 2 2
Diplodia 1 1 2
Discula 1 1

Dothiorella 6 2 8
Drechslera 1 1

Drepanopeziza 1 1
Elsinoe 1 1

Epicoccum 1 1 2
Eupenicillium 1 1
Eutiarosporella 1 1

Exserohilum 1 2
Fusarium 1 4 4 4 4 4 2 1 4 1 29
Fusidium 1 1
Geomyces 1 1

Geotrichum 1 1 1 3
Gibberella 2 2
Glomerella 1 1
Gloniopsis 1 1
Guignardia 1 1 1 3
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Table 1. Cont.

Fungi Genera Plant Genera

AC AL BA BE CP CS CO HA JA LI LO NE RO Tot
SF

Heliscus 1 1
Helminthosporium 1 1 2

Hypoxylon 1 1
Khuskia 1 1

Kiflimonium 1 1
Lasiodiplodia 6 1 1 1 2 1 12

Lasmenia 2 2
Lecanicillium 1 1

Leptosphaerulina 1 1
Libertella 1 1

Lophiostoma 1 1
Microsphaeropsis 1 1

Moesziomyces 1 1 2
Myrmecridium 2 2
Myrothecium 1 3

Nectria 2 2
Nemania 1 1

Neocosmospora 1 1 1 3
Neofabraea 1 1

Neofusicoccum 6 6
Neonectria 2 2
Nigrospora 4 1 1 1 1 8

Nodulisporium 2 2 4
Oblongocollomyces 1 1

Paecilomyces 2 2
Papulospora 1 1
Paraboeremia 1 1

Paraphaeosphaeria 1 1 2
Penicillium 2 3 7 3 2 8 1 4 30
Periconia 1 1

Peroneutypa 1 1
Pestalotia 1 1 2

Pestalotiopsis 2 4 1 7
Peyronellaea 1 1

Pezicula 1 1
Phaeobotryosphaeria 1 1

Phoma 2 3 1 1 7
Phomopsis 3 1 2 3 3 12
Phyllosticta 1 1 1 1 1 1 1 1 1 9

Phytophthora 1 1
Pithomyces 1 1
Pleuroceras 1 1

Prathoda 1 1
Preussia 1 1

Psathyrella 1 1
Pseudopithomyces 1 1

Pseudothielavia 1 1
Puccinia 1 1

Pycnidiella 1 1
Rhizopus 1 1 2
Rosellinia 1 1

Sarocladium 1 1
Scedosporium 1 1

Sclerotinia 1 1
Scopulariopsis 1 1

Septoria 1 1
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Table 1. Cont.

Fungi Genera Plant Genera

AC AL BA BE CP CS CO HA JA LI LO NE RO Tot
SF

Simplicillium 1 1
Spegazzinia 2 2

Spencermartinsia 1 1
Sphaeria 1 1

Sporormiella 1 1
Stenella 1 1

Talaromyces 3 2 3 8
Thelioviopsis 1 1
Thelonectria 1 1

Torula 1 3
Trichoderma 1 1 2 6 1 2 1 14

Tubakia 2 2
Verticillium 1 1 2

Xylaria 1 2 1 1 2 1 8
Wickerhamomyces 1 1

Tot. SP 51 27 94 29 42 19 78 4 7 29 3 37 6

2.1. Acacia

The Acacia, commonly known as wattle, belongs to the family Mimosaceae. The genus comprises
more than 1350 species found throughout the world: almost 1000 are native of Australia, up to
140 species occur in Africa, 89 from Asia, and about 185 species are found in North and South America.
Some Australian wattles are naturalized beyond their native range and have become invasive in
many parts of Europe, South Africa, and Florida, especially in conservation areas [32]. Aboriginal
communities use some Acacia species as sources of food and medicine. Australian acacias are widely
used as wood products, ornamental plants, commercial cut flowers, and perfume crops [33].

Endophytic occurrence (Table 2) has been reported for 61 fungal isolates belonging to genera
Lasiodiplodia (7 isolates), Dothiorella (8 isolates), Neofusicoccum (9 isolates), Aspergillus (3 isolates),
Chaetomium (3 isolates), Botryosphaeria (1 isolate), Colletotrichum (2 isolates), Aureobasidium (2 isolates),
Spencermartinsia (2 isolates), Alternaria (1 isolate), Cochliobolus (1 isolate), Diplodia (2 isolates),
Eupenicillium (1 isolate), Fusarium (1 isolate), Moesziomyces (1 isolate), Paraphaeosphaeria (1 isolate),
Penicillium (2 isolates), Eutiarosporella (2 isolates), Pestalotia (1 isolate), Peyronellaea (1 isolate),
Phaeobotryosphaeria (1 isolate), Phoma (2 isolates), Phyllosticta (1 isolate), Wickerhamomyces (1 isolate),
Preussia (1 isolate), Rhizopus (1 isolate), Oblongocollomyces (1 isolate), Trichoderma (1 isolate), and Xylaria
(1 isolate). Plant host tissues were collected in Egypt, China, India, Australia, South Africa, La Réunion
(France), France, USA, and Hawaii.

Table 2. Endophytic fungi isolated from Acacia species.

Species Host Plant Plant Part Country Reference

Phyllosticta sp. A. amara leaf Masinagudi, India [34]
Xylaria sp. A. amara leaf Masinagudi, India [34]

Aspergillus niger A. arabica leaf Punjab, India [35]
Aspergillus sp. A. auriculaeformis root Guangdong, China [36]
Trichoderma sp. A. auriculaeformis root Guangdong, China [36]

Aureobasidium pullulans A. baileyana phyllode Melbourne, Australia [37]
Alternaria sp. A. decurrens leaf, stem Yunnan, China [38]
Penicillium sp. A. decurrens leaf, stem Yunnan, China [38]
Peyronellaea sp. A. decurrens leaf, stem Yunnan, China [38]
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Table 2. Cont.

Species Host Plant Plant Part Country Reference

Phoma sp. A. decurrens leaf, stem Yunnan, China [38]
Rhizopus sp. A. decurrens leaf, stem Yunnan, China [38]

Aureobasidium pullulans A. floribunda phyllode Melbourne, Australia [37]
Chaetomium globosum A. floribunda phyllode Melbourne, Australia [37]

Dothiorella heterophyllae A. heterophylla branch La Réunion, France [39]
Dothiorella reunionis A. heterophylla branch La Réunion, France [39]

Lasiodiplodia iranensis A. heterophylla branch La Réunion, France [39]
Lasiodiplodia rubropurpurea A. heterophylla branch La Réunion, France [39]

Neofusicoccum parvum A. heterophylla branch La Réunion, France [39]
Cochliobolus geniculatus A. hindsii leaf Mexico [40]

Colletotrichum gloeosporioides A. hindsii leaf Mexico [40]
Colletotrichum truncatum A. hindsii leaf Mexico [40]
Eupenicillium javanicum A. hindsii leaf Mexico [40]

Fusarium oxysporum A. hindsii leaf Mexico [40]
Moesziomyces bullatus A. hindsii leaf Mexico [40]
Paraphaeosphaeria sp. A. hindsii leaf Mexico [40]

Phoma sp. A. hindsii leaf Mexico [40]
Wickerhamomyces anomalus A. hindsii leaf Mexico [40]

Botryosphaeria dothidea A. karroo branch South Africa [41]
Diplodia allocellula A. karroo branch South Africa [41,42]

Dothiorella brevicollis A. karroo branch South Africa [41,42]
Dothiorella dulcispinae A. karroo branch South Africa [42]
Dothiorella pretoriensis A. karroo branch South Africa [41,42]

Eutiarosporella urbis-rosarum A. karroo branch South Africa [41,42]
Lasiodiplodia pseudotheobromae A. karroo branch South Africa [41]

Lasiodiplodia theobromae A. karroo branch South Africa [41]
Lasiodiplodia gonubiensis A. karroo branch South Africa [41]

Neofusicoccum kwambonambiense A. karroo branch South Africa [41]
Neofusicoccum protearum A. karroo branch South Africa [41]

Neofusicoccum vitifusiforme A. karroo branch South Africa [41,42]
Neofusicoccum australe A. karroo branch South Africa [41]
Neofusicoccum parvum A. karroo branch South Africa [41]

Oblongocollomyces variabilis A. karroo branch South Africa [41]
Phaeobotryosphaeria variabilis A. karroo branch South Africa [42]

Spencermartinsia viticola A. karroo branch South Africa [41,42]
Dothiorella koae A. koa branch Hawaii, USA [39]

Lasiodiplodia theobromae A. koa branch Hawaii, USA [39]
Lasiodiplodia exigua A. koa branch Hawaii, USA [39]

Neofusicoccum occulatum A. koa branch Hawaii, USA [39]
Neofusicoccum parvum A. koa branch Hawaii, USA [39]
Aspergillus ochraceus A. nilotica stem Al-Sharqia, Egypt [43]

Penicillium sp. A. nilotica stem Al-Sharqia, Egypt [43]
Pestalotia sp. A. nilotica stem Al-Sharqia, Egypt [43]

Chaetomium globosum A. podalyriifolia phyllode Melbourne, Australia [37]
Chaetomium sp. A. podalyriifolia phyllode Melbourne, Australia [37]

Preussia sp. A. victoriae leaf Arizona, USA [44]

2.2. Albizia

The genus Albizia (Mimosaceae) comprises almost 150 species, mostly trees and shrubs native
to tropical and subtropical regions of Asia and Africa. They are common components of timber
plantations, cropping, and livestock production systems [45]. Albizia synthesizes numerous bioactive
compounds with pharmacological properties such as saponins, alkaloids, flavonoids, and phenolics [45].
The species A. lebbeck has been extensively introduced in seasonally dry tropical regions of Africa, Asia,
the Caribbean, and South America, mainly as an ornamental plant, and has become naturalized in
many areas [46].
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Table 3 reports endophytes isolated from Albizia genera. These fungi belong to 14 different
genera, most of them found in leaves and twigs of A. lebbeck originating from Iraq, India, Indonesia,
and Egypt. Isolated fungi included different species of Aspergillus (9 isolates), which are dominant in
comparison to other genera, followed by Fusarium (4 isolates), Penicillium (3 isolates), and Paecilomyces
(2 isolates). One isolate for each of the following genera Neocosmospora, Bipolaris, Colletotrichum,
Diaporthe, Lasiodiplodia, Rosellinia, Acremonium, Trichoderma, Verticillium, Curvularia, and Nigrospora has
been detected.

Table 3. Endophytic fungi isolated from Albizia species.

Species Host Plant Plant Part Country Reference

Acremonium sp. A. lebbeck - Indonesia [47]
Aspergillus fumigatus A. lebbeck leaf and twig Baghdad, Iraq [48]
Aspergillus fumigatus A. lebbeck leaf Al-Sharqia, Egypt [43]
Aspergillus glaucus A. lebbeck leaf and twig Baghdad, Iraq [48]

Aspergillus niger A. lebbeck leaf and twig Baghdad, Iraq [48]
Aspergillus raperi A. lebbeck leaf and twig Baghdad, Iraq [48]

Aspergillus sclerotioniger A. lebbeck leaf and twig Baghdad, Iraq [48]
Aspergillus flavus A. lebbeck leaf and twig Baghdad, Iraq [48]

Aspergillus sp. A. lebbeck - Indonesia [47]
A. lebbeck leaf and twig Baghdad, Iraq [48]

Bipolaris australiensis A. lebbeck leaf and twig Baghdad, Iraq [48]
Colletotrichum sp. A. amara leaf Masinagudi, India [34]

Curvularia cymbopogonis A. lebbeck leaf and twig Baghdad, Iraq [48]
Diaporthe sp. A. amara leaf Masinagudi, India [34]

Fusarium verticilloides A. lebbeck leaf and twig Baghdad, Iraq [48]

Fusarium sp. A. amara leaf Masinagudi, India [34]
A. lebbeck - Indonesia [47]

Fusarium oxysporum A. julibrissin - - [49]
Lasiodiplodia sp. A. amara leaf Masinagudi, India [34]

Neocosmospora solani A. lebbeck leaf and twig Baghdad, Iraq [48]
Paecilomyces variotii A. lebbeck leaf and twig Baghdad, Iraq [48]

Paecilomyces sp. A. lebbeck leaf and twig Baghdad, Iraq [48]

Penicillium sp.
A. lebbeck - Indonesia [47]
A. lebbeck leaf Al-Sharqia, Egypt [43]
A. lebbeck leaf and twig Baghdad, Iraq [48]

Rosellinia sanctae-cruciana A. lebbeck leaf Jammu, India [50]
Trichoderma sp. A. lebbeck - Indonesia [47]
Verticillium sp. A. lebbeck - Indonesia [47]

2.3. Bauhinia

The genus Bauhinia, commonly known as the orchid tree, belongs to the family Fabaceae.
It comprises more than 500 species of shrubs, and small trees mostly native to tropical countries (Africa,
Asia, and South America). Many species are widely used as ornamental plants, forage, human food,
and in folk medicine [51,52].

A total of 107 fungal endophytes have been found in Bauhinia plant tissues (Table 4). The most
common fungi reported were: Aspergillus (13 isolates), Curvularia (8 isolates), Penicillium (7 isolates),
Nigrospora (7 isolates), Fusarium (5 isolates), Phoma (3 isolates), Cladosporium (4 isolates), Acremonium
(3 isolates), Colletotrichum (3 isolates), Phomopsis (3 isolates), Cochliobolus (3 isolates), and Exserohilum
(3 isolates). Furthermore, other genera were found less frequently: Myrothecium (2 isolates), Gibberella
(2 isolates), Lasiodiplodia (2 isolates), Khuskia (1 isolate), Nodulisporium (2 isolates), Pestalotiopsis (2 isolates),
Alternaria (2 isolates), Gibberella (2 isolates), Pithomyces (1 isolate), Diplococcium (2 isolates), Dothiorella
(2 isolates), Ascotricha (2 isolates), Talaromyces (2 isolates), Trichoderma (2 isolates), Spegazzinia (2 isolates),
Kiflimonium (1 isolate), Geotrichum (1 isolate), Corynespora (1 isolate), Diaporthe (1 isolate), Glomerella
(1 isolate), Pestalotia (1 isolate), Scedosporium (1 isolate), Botrytis (1 isolate), Sporormiella (1 isolate),
Phyllosticta (1 isolate), Lasmenia (2 isolates), Albifimbria (1 isolate), Myrmecridium (2 isolates), Sphaeria
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(1 isolate), Paraboeremia (1 isolate), Pseudopithomyces (1 isolate), Chaetomium (1 isolate), and Torulomyces
(1 isolate). All host plants, namely B. fortificata, B. brevipes, B. racemosa, B. guianensis, B. monandra,
B. malabarica, B. phoenicea, and B. vahlii, were from Brazil and India.

Table 4. Endophytic fungi isolated with Bauhinia species.

Species Host Plant Plant Part Country Reference

Acremonium sp.
B. brevipes - Brazil [53]
B. forficata - Brazil [53]
B. brevipes leaf Pirapitinga, Brazil [54]

Albifimbriaverrucaria B. fortificata stem Recife, Brazil [55]

Alternaria alternata
B. malabarica stem Chennai, India [56]
B. racemosa leaf Mudumalai, India [57]

Ascotricha sp. B. forficata - Brazil [53]
Ascotricha chartarum B. fortificata seed Recife, Brazil [55]

Aspergillus sp.
B. forficata - Brazil [53]

B. monandra leaf Recife, Brazil [58]
B. guianensis - Brazil [53,59,60]

Aspergillus flavus B. malabarica leaf, root Chennai, India [56]

Aspergillus niger
B. fortificata stem Recife, Brazil [55]
B. malabarica leaf, root, stem Chennai, India [56]
B. racemosa leaf Mudumalai, India [57]

Aspergillus ochraceus B. fortificata stem, seed Recife, Brazil [55]
Aspergillus tamarii B. malabarica leaf, stem Chennai, India [56]
Aspergillus terreus B. malabarica leaf, root Chennai, India [56]

Aspergillus versicolor B. vahlii leaf Chilkigarh, India [61]
Botrytis cinerea B. racemosa leaf Mudumalai, India [57]

Chaetomium globosum B. malabarica leaf Chennai, India [56]
Cladosporium sphaerospermum B. fortificata leaf Recife, Brazil [55]

Cladosporium sp. B. forficata - Brazil [53]
Cladosporium cladosporioides B. racemosa leaf Mudumalai, India [57]

Cladosporium oxysporum B. fortificata sepal Recife, Brazil [55]
Cochliobolus sp. B. forficata - Brazil [53]

Cochliobolus australiensis B. fortificata leaf Recife, Brazil [55]
Cochliobolus lunatus B. fortificata leaf, stem Recife, Brazil [55]
Colletotrichum sp. B. forficata - Brazil [53]

Colletotrichum coccodes B. guianensis stem Belem, Brazil [62]
Colletotrichum gloeosporioides B. racemosa leaf Mudumalai, India [57]

Corynespora cassiicola B. racemosa leaf Mudumalai, India [63]
Curvularia sp. B. monandra leaf Recife, Brazil [58]

Curvularia brachyspora B. malabarica leaf Chennai, India [56]

Curvularia clavata
B. guianensis stem Belem, Brazil [62]
B. phoenicea leaf Kudremukh range, India [64]

Curvularia lunata
B. malabarica leaf Chennai, India [56]
B. racemosa leaf Mudumalai, India [57]
B. phoenicea bark, leaf Kudremukh range, India [64]

Curvularia pallescens B. phoenicea leaf Kudremukh range, India [64]
Diaporthe sp. B. brevipes leaf Pirapitinga, Brazil [54]

Diplococcium sp. B. forficata - Brazil [53]
Diplococcium spicatum B. fortificata leaf Recife, Brazil [55]

Dothiorella sp. B. brevipes - Brazil [53]
leaf Pirapitinga, Brazil [54]

Exserohilum rostratum
B. racemosa leaf, stem Sathyamangalam, India [65]

B. guianensis stem Belem, Brazil [62,66]
Fusarium culmorum B. malabarica leaf, stem Chennai, India [56]
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Table 4. Cont.

Species Host Plant Plant Part Country Reference

Fusarium verticillioides B. malabarica root Chennai, India [56]

Fusarium oxysporum B. malabarica leaf, root, stem Chennai, India [56]
B. phoenicea leaf Kudremukh range, India [64]

Fusarium sp. B. forficata - Brazil [53]
Fusidium viride B. vahlii petiole Chilkigarh, India [61]

Geotrichum candidum B. vahlii leaf, petiole Chilkigarh, India [61]
Gibberella fujikuroi B. fortificata leaf, stem Recife, Brazil [55]

Gibberella sp. B. forficata - Brazil [53]
Glomerella sp. B. forficata - Brazil [53]

Kiflimonium curvulum B. fortificata sepal, stem Recife, Brazil [55]
Khuskia sp. B. forficata - Brazil [53]

Lasiodiplodia theobromae B. racemosa leaf Mudumalai, India [57,63]
Lasmenia sp. B. forficata - Brazil [53]

Lasmeniabalansae B. fortificata stem Recife, Brazil [55]
Myrmecridium sp. B. forficata - Brazil [53]

Myrmecridium schulzeri B. fortificata sepal Recife, Brazil [55]

Nigrospora oryzae
B. racemosa leaf Mudumalai, India [57]
B. phoenicea stem, leaf Kudremukh range, India [64]
B. fortificata sepal Recife, Brazil [55]

Nigrospora sacchari B. phoenicea leaf Kudremukh range, India [64]
Nigrospora sp. B. forficata - Brazil [53]

Nigrospora sphaerica B. vahlii stem Chilkigarh, India [61]
B. racemosa leaf, stem Sathyamangalam, India [65]

Nodulisporium sp. B. forficata - Brazil [53]
B. fortificata stem Recife, Brazil [55]

Paraboeremia putaminum B. fortificata sepal Recife, Brazil [55]
Penicillium commune B. fortificata sepal Recife, Brazil [55]

Penicillium corylophilum B. fortificata seed Recife, Brazil [55]
Penicillium glabrum B. fortificata stem, seed Recife, Brazil [55]

Penicillium implicatum B. fortificata stem Recife, Brazil [55]

Penicillium sp. B. forficata - Brazil [53]
B. monandra leaf Recife, Brazil [58]

Penicillium aurantiogriseum B. fortificata seed Recife, Brazil [55]
Pestalotia sp. B. forficata - Brazil [53]

Pestalotiopsis sp. B. brevipes leaf Pirapitinga, Brazil [54]
B. brevipes - Brazil [53]

Phoma sp.
B. forficata - Brazil [53]

B. brevipes - Brazil [53]
leaf Pirapitinga, Brazil [54]

Phomopsis sp. B. brevipes - Brazil [53]
B. forficata - Brazil [53]

Phomopsis diachenii B. fortificata leaf Recife, Brazil [55]
Phyllosticta capitalensis B. racemosa leaf Mudumalai, India [57]

Pithomyces sp. B. forficata - Brazil [53]
Pseudopithomycesatro-olivaceus B. fortificata seed Recife, Brazil [55]

Scedosporium apiospermum B. guianensis stem Belem, Brazil [62]
Spegazzinia sp. B. forficata - Brazil [53]

Spegazzinia tessarthra B. fortificata leaf Recife, Brazil [55]
Sphaeria baccata B. fortificata sepal Recife, Brazil [55]

Sporormiella minima B. racemosa leaf Mudumalai, India [57]
Talaromyces sp. B. forficata - Brazil [53]

Talaromyces funiculosus B. fortificata leaf Recife, Brazil [55]
Torulomyces lagena B. racemosa leaf Mudumalai, India [57]

Trichoderma piluliferum B. fortificata stem Recife, Brazil [55]
Trichoderma sp. B. forficata - Brazil [53]
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2.4. Berberis

The genus Berberis (Berberidaceae) comprises almost 500 species of deciduous or evergreen shrubs,
which occur in the temperate and subtropical regions of Europe, Asia, Africa, and America [67].
This genus has remarkable pharmacological properties [68]. Berberine and Berbamine are the main
compounds produced by these plants, together with alkaloids, tannins, phenolic compounds, sterols,
and triterpenes [69].

Numerous endophytic fungi belonging to 19 genera have been isolated from tissues of Berberis
from India, China, Kenya, and the USA (Table 5). Isolated fungi included different species of Fusarium
(4 isolates) and Colletotrichum (4 isolates), followed by Alternaria (4 isolates), Anguillospora (1 isolate),
Phomopsis (1 isolate), Campylospora (1 isolate), Cercospora (1 isolate), Clonostachys (1 isolate), Heliscus
(1 isolate), Diaporthe (2 isolates), Microsphaeropsis (1 isolate), Phyllosticta (1 isolate), Paraphalosphaera
(1 isolate), Prathoda (1 isolate), Bacillispora (1 isolate), Neocosmospora (1 isolate), Aspergillus (1 isolate),
Myrothecium (1 isolate), and Puccinia (1 isolate).

Table 5. Endophytic fungi isolated from Berberis species.

Species Host Plant Plant Part Country Reference

Alternaria alternata
B. poiretii leaf, twig Beijing, China [70]
B. aristata leaf Sial Sui, District Rajouri, J&K, India [68]

Alternaria macrospora B. aristata leaf Sial Sui, District Rajouri, J&K, India [68]
Alternaria solani B. aristata leaf Sial Sui, District Rajouri, J&K, India [68]

Anguillospora crassa Berberis sp. root Western Himalaya [71]
Aspergillus flavus B. aristata leaf Sial Sui, District Rajouri, J&K, India [68]

Campylospora parvula Berberis sp. root Western Himalaya [71]
Cercospora citrullina B. aristata stem Sial Sui, District Rajouri, J&K, India [68]
Clonostachys rosea B. aristata root Sial Sui, District Rajouri, J&K, India [68]

Colletotrichum coccodes B. aristata root Sial Sui, District Rajouri, J&K, India [68]
Colletotrichum coffeanum B. aristata leaf Sial Sui, District Rajouri, J&K, India [68]

Colletotrichum gloeosporioides B. aristata leaf Sial Sui, District Rajouri, J&K, India [68]
Colletotrichum kahawae B. aristata leaf Sial Sui, District Rajouri, J&K, India [68]

Bacillispora aquatica Berberis sp. root Western Himalaya [71]
Diaporthe sp. B. vulgaris leaf, stem Kenya [72]

Neocosmospora falciformis B. aristata root Sial Sui, District Rajouri, J&K, India [68]
Fusarium lateritium B. aristata stem Sial Sui, District Rajouri, J&K, India [68]

Fusarium nematophilum B. aristata root Sial Sui, District Rajouri, J&K, India [68]
Fusarium oxysporum B. aristata stem Sial Sui, District Rajouri, J&K, India [68]

Fusarium solani B. aristata root Sial Sui, District Rajouri, J&K, India [68]
Heliscus lugdunensis Berberis sp. root Western Himalaya [71]

Microsphaeropsis conielloides B. poiretii twig Beijing, China [70]
Myrothecium inundatum B. aristata leaf Sial Sui, District Rajouri, J&K, India [68]

Paraphaeosphaeria sp. B. thunbergii stem China [73]
Phomopsis sp. B. poiretii twig Beijing, China [70]
Diaporthe tersa B. aristata leaf Sial Sui, District Rajouri, J&K, India [68]

Phyllosticta capitalensis B. aristata leaf Sial Sui, District Rajouri, J&K, India [68]
Prathoda longissima Berberis sp. root Western Himalaya [71]

Puccinia graminis f. sp. tritici B. vulgaris - Pacific Northwest USA [74]

2.5. Caesalpinia

The genus Caesalpinia (Fabaceae) includes approximately 200 species, mainly arboreal and shrubby
species, distributed in seasonally dry tropical forests, as well as in tropical and warm temperate
savannas, tropical wet forests, and tropical coastal habitats [75]. Several classes of compounds,
mainly flavonoids, diterpenes, and steroids, have been isolated from Caesalpinia species, which have
shown various medicinal properties [75]. The most common species cultivated as ornamental plants
are C. pulcherrima and C. echinata.
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A total of 44 fungal endophytes were isolated from leaves, stems, and bark of plants collected
from India, Brazil, and Indonesia (Table 6). Fungal genera associated with different species of
Caesalpinia were: Aspergillus (10 isolates), followed by Trichoderma (6 isolates) and Fusarium (4 isolates).
Other isolated endophytes have been identified as Penicillum (3 isolates), Curvularia (2 isolates),
Nectria (2 isolates), Bipolaris (2 isolates), Xylaria (2 isolates), and one isolate for the genera Alternaria,
Chrysosporium, Cladosporium, Colletotrichum, Epicoccum, Geotrichum, Helminthosporium, Lasiodiplodia,
Talaromyces, Scopulariopsis, and Phyllosticta, respectively.

Table 6. Endophytic fungi isolated from Caesalpinia species.

Species Host Plant Plant Part Country Reference

Alternaria alternata C. pulcherrima leaf India [76]
Aspergillus flavus C. pulcherrima leaf India [76]

Aspergillus fumigatus C. pulcherrima leaf India [76]
Aspergillus niger C. pulcherrima leaf India [76]

Aspergillus flavus var. oryzae C. pulcherrima leaf India [76]
Aspergillus rugulosus C. pulcherrima leaf India [76]

Aspergillus terreus C. pulcherrima leaf India [76]

Aspergillus sp.
C. pyramidalis leaf Brazil [53]

C. echinata leaf Brazil [53]
C. echinata stem, bark Brazil [77]

Aspergillus nidulans C. pulcherrima leaf India [76]
Bipolaris oryzae C. pulcherrima leaf India [76]

Bipolaris sp. C. pulcherrima leaf India [76]
Chrysosporium sp. C. sappan stem Indonesia [78]

Cladosporium cladosporioides C. echinata leaf Brazil [79]
Colletotrichum gloeosporioides C. echinata leaf Brazil [79]

Curvularia lunata C. sappan stem Indonesia [78]
Curvularia pallescens C. echinata leaf Brazil [79]

Epicoccum sp. C. echinata Brazil [53]

Fusarium sp. C. echinata
leaf Brazil [53]

stem Brazil [77]
stem, bark Brazil [77]

C. pulcherrima leaf India [76]
Geotrichum candidum C. sappan stem Indonesia [78]
Helminthosporium sp. C. pulcherrima leaf India [76]

Lasiodiplodia theobromae C. echinata leaf Brazil [79]
Nectria sp. C. echinata - Brazil [53]

Nectria pseudotrichia C. echinata
stem, bark Brazil [77]

stem [80]
Penicillium citrinum C. pulcherrima leaf India [76]

Penicillium chrysogenum C. pulcherrima leaf India [76]
Penicillium sp. C. sappan stem Indonesia [78]

Phyllosticta sorghina C. echinata stem, bark Brazil [77]
Scopulariopsis coprophila C. echinata leaf Brazil [79]

Talaromyces sp. C. echinata
stem, bark Brazil [77]

leaf Brazil [53]
Trichoderma atroviride C. pyramidalis stem, bark Brazil [81]
Trichoderma harzianum C. pyramidalis stem, bark Brazil [81]

Trichoderma koningiopsis C. pyramidalis stem, bark Brazil [81]
Trichoderma longibrachiatum C. pyramidalis stem, bark Brazil [81]

Trichoderma virens C. pyramidalis stem, bark Brazil [81]
Trichoderma sp. C. sappan stem Indonesia [78]

Xylaria sp. C. echinata leaf Brazil [53]
Xylaria berteri C. echinata stem, bark Brazil [77]
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2.6. Cassia

The genus Cassia (Fabaceae) comprises about 600 species native to tropical and subtropical regions
of Southeast Asia, Africa, Northern Australia, and Latin America [82,83]. In particular, C. fistula and
C. alata are distributed worldwide and used as ornamental and medicinal plants for their biological and
pharmacological properties [82–84]. Some investigations on phytochemicals of Cassia revealed that
it comprises compounds like anthraquinones, alkaloids, catechols, flavonoids, phenolic compounds,
saponins, steroids, tannins, and triterpenoids [83–86].

Nineteen endophytic fungi have been isolated from different tissues of Cassia species from
Thailand, India, Malaysia, and Brazil (Table 7): Aspergillus (2 isolates), Nodulisporium (2 isolates),
Penicillium (2 isolates), Phomopsis (2 isolates), Daldinia (1 isolate), Coprinus (1 isolate), Guignardia
(1 isolate), Hypoxylon (1 isolate), Nemania (1 isolate), Nigrospora (1 isolate), Papulospora (1 isolate),
Periconia (1 isolate), Xylaria (1 isolate), Psathyrella (1 isolate), and Thielaoviopsis (1 isolate).

Table 7. Endophytic fungi isolated from Cassia species.

Species Host Plant Plant Part Country Reference

Aspergillus flavus C. siamea leaf Malaysia [87]
Aspergillus sp. C. fistula leaf, stem, fruit India [88]
Coprinus sp. C. fistula leaf Bangkok, Thailand [89]
Daldinia sp. C. fistula leaf Bangkok, Thailand [89]

Guignardia sp. C. occidentalis leaf Brazil [53]
Hypoxylon sp. C. fistula leaf Bangkok, Thailand [89]
Nemania sp. C. fistula leaf Bangkok, Thailand [89]

Nigrospora sp. C. fistula leaf Bangkok, Thailand [89]

Nodulisporium sp. C. fistula leaf Bangkok, Thailand [89]
- - [90]

Papulospora sp. C. fistula bark India [91]
Penicillium
sclerotiorum C. fistula - India [92]

Penicillium sp. C. fistula leaf Bangkok, Thailand [89]
Periconia sp. C. fistula bark India [91]

Phomopsis cassiae C. spectabilis - Brazil [52]
Phomopsis sp. C. fistula leaf Bangkok, Thailand [89]
Psathyrella sp. C. fistula leaf Bangkok, Thailand [89]

Thelioviopsis sp. C. fistula leaf India [91]
Xylaria sp. C. fistula leaf Bangkok, Thailand [89]

2.7. Cornus

The genus Cornus (Cornaceae) consists of over 50 species of woody plants, many of which are
cultivated as ornamental and medicinal trees [93]. The most widespread ornamental plants of the
genus are C. florida and C. stolonifera, called the flowering dogwood, native to northern and central
America [93]. The species C. officinalis is widely distributed in China, Korea, and Japan, and used for
its several pharmacological activities. Among bioactive compounds, iridoids, tannins, and flavonoids
are the major components [94].

About 90 fungal endophytes have been isolated and identified from C. alba, C. alternifolia,
C. stolonifera, C. controversa, and C. officinalis collected in Canada, USA, Japan, China, and Korea
(Table 8): Penicillium (8 isolates), Fusarium (4 isolates), Cladosporium (5 isolates), Colletotrichum
(5 isolates), Alternaria (6 isolates), Pestalotiopsis (5 isolates), Aureobasidium (4 isolates), Botryosphaeria
(3 isolates), Cryptodiaporthe (2 isolates), Phomopsis (3 isolates), Talaromyces (4 isolates), Aspergillus
(3 isolates), Discula (4 isolates), Diaporthe (3 isolates), Neonectria (2 isolates), Trichoderma (2 isolates),
Tubakia (2 isolates), and Didymella (3 isolates). Only one isolate of the following genera has been
reported: Ascochyta, Botrytis, Cyrptosporiopsis, Elsinoe, Epicoccum, Helminthosporium, Lecanicillium,
Leptosphaerulina, Lophiostoma, Drepanopeziza, Nigrospora, Sarocladium, Cordyceps, Phyllosticta, Phytophthora,
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Phoma, Pleuroceras, Thelonectria, Sclerotinia, Neofabraea, Septoria, Simplicillium, Stenella, Verticillium,
and Xylaria.

Table 8. Endophytic fungi isolated from Cornus species.

Species Host Plant Plant Part Country Reference

Alternaria alternata Cornus spp. leaf Japan, USA [95]
Alternaria sp. C. stolonifera leaf Canada [96]

Alternaria tenuissima
C. officinalis twig, leaf China [97]
Cornus spp. leaf Japan [95]

Ascochyta medicaginicola C. officinalis twig China [97]
Aspergillus flavus var. oryzae C. alba leaf - [98]

Aspergillus sp. Cornus spp. leaf Japan, USA [95]
Aureobasidium pullulans Cornus spp. leaf USA [95]

Aureobasidium sp. C. stolonifera leaf Canada [96]
Cornus spp. leaf Japan, USA [95]

Botryosphaeria dothidea C. officinalis twig, leaf China [97]
Cornus spp. leaf Japan [95]

Botryosphaeria sp. Cornus spp. leaf Japan [95]
Botrytis sp. C. stolonifera leaf Canada [96]

Cladosporium cladosporioides C. stolonifera leaf Canada [96]
Cladosporium herbarum C. stolonifera leaf Canada [96]

Cladosporium sp. C. stolonifera leaf Canada [96]
Cornus spp. leaf Japan [95]

Cladosporium sphaerospermum C. stolonifera leaf Canada [96]
Colletotrichum acutatum Cornus spp. leaf USA, Japan [95]

Colletotrichum gloeosporioides C. officinalis twig, leaf China [97]
C. stolonifera leaf Canada [96]

Colletotrichum sp. Cornus spp. leaf Japan [95]
Cordycepsfarinose C. stolonifera leaf Canada [96]

Cryptodiaporthe corni C. alternifolia stem USA [99]
bark, phloem USA [100]

Cyrptosporiopsis sp. Cornus spp. leaf USA [95]
Diaporthe amygdali Cornus spp. leaf USA, Japan [95]

Diaporthe lagerstroemiae Cornus spp. leaf Japan [95]
Didymellapinodella C. officinalis twig China [97]

Didymella glomerata Cornus spp. leaf USA, Japan [95]

Discula destructiva
Cornus spp. leaf USA [101]

leaf USA [95]

C. florida leaf Germany [102]
leaf Italy [103]

Drepanopeziza populi C. officinalis twig China [97]
Elsinoe fawcettii Cornus spp. leaf USA [95]

Epicoccum nigrum C. stolonifera leaf Canada [96]
Fusarium lateritium C. controversa stem Korea [104]
Fusarium oxysporum C. officinalis root China [97]

Fusarium sp. Cornus spp. leaf Japan [95]
C. stolonifera leaf Canada [96]

Helminthosporium velutinum C. officinalis twig China [97]
Lecanicillium psalliotae C. stolonifera leaf Canada [96]

Leptosphaerulina australis C. officinalis twig China [97]
Lophiostoma sp. Cornus spp. leaf USA [95]
Neofabraea sp. Cornus spp. leaf USA [95]
Neonectria sp. Cornus spp. leaf USA, Japan [95]

Nigrospora sphaerica C. florida stem Tennessee, USA [105]
Penicillium brevicompactum C. stolonifera leaf Canada [96]

Penicillium chrysogenum Cornus spp. leaf USA [95]
Penicillium citrinum C. stolonifera leaf Canada [96]

Penicillium miczynskii C. stolonifera leaf Canada [96]
Penicillium simplicissimum Cornus spp. leaf USA [95]

Penicillium sp. C. stolonifera leaf Canada [96]
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Table 8. Cont.

Species Host Plant Plant Part Country Reference

Penicillium spinulosum Cornus spp. leaf Japan [95]
Penicillium thomii C. stolonifera leaf Canada [96]

Phytophthora palmivora C. florida leaf, shoot USA [106]
Pestalotiopsis mangiferae Cornus spp. leaf Japan [95]
Pestalotiopsis microspora Cornus spp. leaf USA, Japan [95]
Pestalotiopsis monochaeta Cornus spp. leaf Japan [95]

Pestalotiopsis sp. Cornus spp. leaf Japan [95]
Phoma moricola C. officinalis twig China [97]

Phomopsis sp. C. stolonifera leaf Canada [96]
Cornus spp. leaf USA, Japan [95]

Phyllosticta fallopiae C. officinalis leaf China [97]
Phytophthora nicotianae C. florida leaf, shoot USA [106]

Pleuroceras tenellum Cornus spp. leaf USA [95]
Sarocladiumkiliense C. stolonifera leaf Canada [96]

Sclerotinia sclerotiorum C. stolonifera leaf Canada [96]
Septoria sp. C. stolonifera leaf Canada [96]

Simplicillium lanosoniveum C. officinalis fruit China [97]
Stenella sp. C. stolonifera leaf Canada [96]

Talaromyces assiutensis C. officinalis root China [97]
Talaromycescecidicola Cornus spp. leaf USA, Japan [95]

Talaromyces trachyspermus C. officinalis root China [97]
Thelonectriadiscophora Cornus spp. leaf Japan [95]

Trichoderma lixii Cornus spp. leaf USA, Japan [95]
Tubakia sp. Cornus spp. leaf USA, Japan [95]

Verticillium dahliae Cornus spp. leaf USA [95]
Xylaria sp. Cornus spp. leaf USA [95]

2.8. Hamamelis

Hamamelis (Hamamelidaceae), commonly known as witch hazel, comprises six species of
ornamental shrubs. This genus is distributed across North America and eastern Asia. Bark extracts
contain proanthocyanidins and polyphenolic fractions, with medicinal properties [107,108].

Fungal endophytes belonging to genera Colletotrichum, Nigrospora, Pezicula, and Phyllosticta have
been isolated from Hamamelis plant tissues in the USA, China, Netherlands, Canada, and Japan
(Table 9).

Table 9. Endophytic fungi isolated from Hamamelis species.

Species Host Plant Plant Part Country Reference

Colletotrichum acutatum
H. virginiana leaf Dutchess Co., USA [109]

Hamamelis sp. leaf Litchfield, USA [109]
Nigrospora oryzae H. mollis leaf China [110]

Pezicula sporulosa H. mollis - Netherlands [111]
H. virginiana - Canada [112]

Phyllosticta hamamelidis H. japonica leaf Japan [113,114]

2.9. Jasminum

The genus Jasminum (Oleaceae) includes more than 200 species distributed in China, Africa,
Asia, Australia, South Pacific Islands, and Europe. Jasmines are widely cultivated for ornamental,
medical, and cosmetical uses. The species J. sambac, commonly known as Arabian Jasmine, is cultivated
throughout India and tropical regions. This genus has been reported for several uses due to the following
pharmaceutical activities: antimicrobial [115], antioxidant [116], antidiabetic [117], antiviral [118],
and antitumor [119]. Seven species of endophytic fungi of the genus Colletotrichum have been reported
from J. sambac in India and Vietnam (Table 10).

174



Agriculture 2020, 10, 643

Table 10. Endophytic fungi isolated from Jasminum species.

Species Host Plant Plant Part Country Reference

Colletotrichum dematium J. sambac leaf India [120]
Colletotrichum truncatum J. sambac leaf Vietnam [121]
Colletotrichum jasminicola J. sambac leaf, shoot India [120]

Colletotrichum
jasminigenum J. sambac leaf Vietnam [121]

Colletotrichum
jasmini-sambac J. sambac leaf Vietnam [121]

Colletotrichum siamense J. sambac leaf Vietnam [121]
Colletotrichum sp. J. sambac leaf Vietnam [121]

2.10. Ligustrum

Ligustrum (Family Oleaceae) is a genus of about 50 species of shrubs and trees from warm areas of
Europe to Asia [122]. Several species of the genus have been cultivated in many areas of the world as
urban ornamental hedge and street trees. In particular, the most widespread species L. lucidum compete
with and inhibit the regeneration of native flora, becoming invasive in many areas with a subtropical
and temperate climate, such as North America, South America, Europe, Asia, Africa, and Oceania [123].
Due to its active constituents such as glycosides, flavonoids, phenylpropanoids, phenylethanoid,
and terpenoids, Ligustrum spp. have been widely used as a health remedy in European, Chinese,
and Japanese communities [124,125].

Collected data showed that 29 species of endophytes belonging to 20 genera have been found in
plant tissues of L. lucidum, L. compactum, L. quihoui, L. obsusifoilium, and L. vulgare (Table 11): Guignardia
(3 isolates), Alternaria (2 isolates), Colletotrichum (3 isolates), Fusarium (2 isolates), Xylaria (2 isolates),
Pestalotiopsis (1 isolate), Trichoderma (2 isolates), Lasiodiplodia (2 isolates), Phomopsis (3 isolates),
and one isolate of Diplodia, Geotrichum, Libertella, Neocosmospora, Cladosporium, Peroneutypa, Penicillium,
Phyllosticta, Pycnidiella, and Rhizopus, respectively.

Table 11. Endophytic fungi isolated from Ligustrum species.

Species Host Plant Plant Part Country Reference

Alternaria alternata L. lucidum leaf, petiole Buenos Aires, Argentina [126]
Alternaria cheiranthi L. lucidum leaf Buenos Aires, Argentina [126]

Cladosporium oxysporum L. lucidum leaf Buenos Aires, Argentina [126]
Colletotrichum crassipes L. lucidum leaf Buenos Aires, Argentina [126]

Colletotrichum sp. L. roxburghii leaf Bhavani, India [34]
Colletotrichum gloeosporioides L. lucidum leaf Buenos Aires, Argentina [126]

Diplodia mutila L. lucidum stem Buenos Aires, Argentina [127]
Fusarium oxysporum L. lucidum - Jiangsu, China [128]
Fusarium lateritium L. lucidum stem Buenos Aires, Argentina [127]

Geotrichum candidum L. lucidum leaf Buenos Aires, Argentina [126]

Guignardia mangiferae
L. compactum var. tschonski leaf Kyoto, Japan [129]

L. quihoui leaf Kyoto, Japan [129]
L. obsusifoilium leaf Kyoto, Japan [129]

Lasiodiplodia theobromae L. lucidum stem Buenos Aires, Argentina [127]
Lasiodiplodia sp. L. roxburghii leaf Bhavani, India [34]

Libertella sp. L. lucidum branches Argentina [130]
Neocosmospora solani L. lucidum - Jiangsu, China [128]
Peroneutypa scoparia L. lucidum branches Argentina [130]

Penicillum sp. L. lucidum leaf China [131]

Pestalotiopsis sp. L. roxburghii leaf
India [132]

Bhavani, India [34]
Phomopsis ligustri-vulgaris L. lucidum leaf Buenos Aires, Argentina [126]

Phomopsis sp. L. vulgare leaf Braunschweig, Germany [133]
L. roxburghii leaf Bhavani, India [34]

Phyllosticta sp. L. roxburghii leaf Bhavani, India [34]
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Table 11. Cont.

Species Host Plant Plant Part Country Reference

Pycnidiella resinae L. lucidum leaf Buenos Aires, Argentina [126]
Rhizopus microsporus L. lucidum stem Buenos Aires, Argentina [127]

Trichoderma harzianum L. lucidum leaf Buenos Aires, Argentina [126]
Trichoderma koningii L. lucidum stem Buenos Aires, Argentina [127]

Xylaria sp. L. roxburghii leaf Bhavani, India [34]
L. lucidum leaf Buenos Aires, Argentina [126]

2.11. Lonicera

Lonicera (Caprifoliaceae) is a genus that comprises more than 150 species of shrubs and twining
climbers, occurring in North America, South Europe, North Africa, Philippines, and Malaysia [134].
L. japonica and L. morrowii, which are native to Asia, are ornamental species distributed in many areas
of the world. In the USA, they are considered invasive plants [135]. Only 3 fungal species have
been found to grow as endophytes in Lonicera plant tissues (Table 12): Fusarium sp., Phyllosticta sp.,
and Guignarda mangiferae.

Table 12. Endophytic fungi isolated from Lonicera species.

Species Host Plant Plant Part Country Reference

Fusarium sp. L. japonica leaf Henan, China [136]
Guignardia mangiferae L. morrowii leaf Kyoto, Japan [129]

Phyllosticta sp. L. morrowii leaf Kyoto, Japan [129]

2.12. Nerium

N. oleander, commonly called oleander, is the only species currently classified in the genus
Nerium (Family Apocynaceae). This evergreen shrub is native or naturalized to a wide area, from the
Mediterranean region to the Arabian Peninsula and Asia [137]. Several biologically active compounds
have been reported in the bark (cardenolides, triterpenoidal saponins, oleanderol, rutin, dambonitol
in leaves, odorosides), roots (triterpene, steroidal cardenolide, volatile oil, stearic acid, oleic acid),
and flowers (gitoxigenin, uzarigenin, strospeside, odoroside H) [137–140].

Collected data showed that 38 fungi were isolated from leaves, stems, flowers, and roots of plants
collected in India and China (Table 13). These isolates belong to the genera, Fusarium (4 isolates),
Penicillium (4 isolates), Cladosporium (3 isolates), Chaetomium (3 isolates), Colletotrichum (3 isolates),
Aspergillus (3 isolates), Curvularia (2 isolates), Alternaria (2 isolates), Cylindrocephalum (1 isolate),
Lasiodiplodia (1 isolate), Torula (1 isolate), Phyllosticta (1 isolate), Phoma (1), Rhizopus (1 isolate), Geomyces
(1 isolate), Pseudothielavia (1 isolate), Trichoderma (1 isolate), Xylaria (1 isolate), Bipolaris (1 isolate),
Cochliobolus (1 isolate), and Drechslera (1 isolate).

Table 13. Endophytic fungi isolated from Nerium species.

Species Host Plant Plant Part Country Reference

Alternaria brassicicola N. oleander stem, flower India [141]
Alternaria sp. N. oleander leaf Southern India [142]

Aspergillus flavus N. oleander flower Chennai, India [143]
Aspergillus niger N. oleander flower Chennai, India [143]
Aspergillus sp. N. oleander stem, root China [144]

Bipolaris sp. N. oleander stem, flower India [141]

Chaetomium sp.
N. oleander stem, flower India [141]
N. oleander stem Hong Kong, China [145]
N. oleander leaf Southern India [142]

Cladosporium sp.
N. oleander stem Hong Kong, China [145]
N. oleander stem India [141]
N. oleander leaf Southern India [142]
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Table 13. Cont.

Species Host Plant Plant Part Country Reference

Cochliobolus sp. N. oleander stem, flower India [141]

Colletotrichum sp.
N. oleander stem Hong Kong, China [145]
N. oleander flower Chennai, India [143]
N. oleander leaf Southern India [142]

Curvularia brachyspora N. oleander stem, flower India [141]
Curvularia sp. N. oleander stem, flower India [141]

Cylindrocephalum sp. N. oleander stem, flower India [141]
Drechslera sp. N. oleander stem India [141]

Fusarium oxysporum N. oleander flower Chennai, India [143]
Fusarium semitectum N. oleander stem, flower India [141]

Fusarium sp. N. oleander stem, flower India [141]
N. oleander leaf Southern India [142]

Geomyces sp. N. oleander stem China [144]
Lasiodiplodia theobromae N. oleander flower Chennai, India [143]

Nigrospora sp. N. oleander root China [144]

Penicillium sp.

N. oleander stem China [144]
N. oleander stem, flower India [141]
N. oleander root China [146]
N. oleander leaf Southern India [142]

Phoma sp. N. oleander stem Hong Kong, China [145]
Phyllosticta sp. N. oleander leaf Southern India [142]

Rhizopus stolonifera N. oleander flower Chennai, India [143]
Pseudothielavia terricola N. oleander stem India [141]

Torula sp. N. oleander stem Hong Kong, China [145]
Trichoderma sp. N. oleander stem, root China [144]

Xylaria sp. N. oleander leaf Southern India [142]

2.13. Robinia

Robinia is a genus of flowering plants of the family Fabaceae. R. pseudoacacia, called black locust,
grows naturally on a wide range of sites. It is considered to be one of the 40 most invasive woody
species all over the world [147] and it is included in the invasive alien species list of the EU [148,149].
It is used for many purposes, such as ornamental plant, for shelterbelts, land reclamation, fuelwood,
and pulp production [147]. Six species of endophytic fungi were isolated from R. pseudoacacia in
Germany, Slovakia, Hungary, and China (Table 14).

Table 14. Endophytic fungi isolated from Robinia species.

Species Host Plant Plant Part Country Reference

Beauveria bassiana R. pseudoacacia - Mlyňany, Slovakia [150]
Diaporthe oncostoma R. pseudoacacia stem Hungary [151]
Monodictys fluctuata R. pseudoacacia - Germany [152]

Fusarium sp. R. pseudoacacia - Huaxi district, China [153]
Gloniopsis sp. R. pseudoacacia - Huaxi district, China [153]

Clonostachys sp. R. pseudoacacia - Huaxi district, China [153]

3. An Overview of Fungal Diversity and Frequency

Investigations on the mycobiota of plants frequently reported new taxa or new species distribution,
and several fungi are still undiscovered or undetected. Numerous higher plants have developed
a variety of resistance mechanisms to prevent fungal infections. However, the presence of weakly
pathogenic fungi in healthy plant tissues highlights the evolutionary continuum between latent
pathogens and symptomless endophytes [15]. Generally, all plants have symbiotic interactions with
fungal endophytes which can influence host performance in terms of disease resistance [154–156],
stress tolerance [157], and biomass accumulation [158]. Fungal endophytes may also change according
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to plant tissues colonized [159], phenological growth stages, host genotypes [160], and geographical
distribution areas [161].

In this review, a total of 428 endophytic species belonging to 122 fungal genera have been
found in association with 13 plant genera (Table 1). The greatest level of fungal diversity was
reported in in association with Bauhinia with 43 fungal genera and 94 fungal species, and Cornus
with 44 fungal genera and 78 fungal species. The degree of fungal recovery from Acacia (29 genera,
51 species), Albizia (14 genera, 27 species), Berberis (17 genera, 29 species), Caesalpinia (19 genera,
42 species), Cassia (15 genera, 19 species), Ligustrum (20 genera, 29 species), and Nerium (21 genera,
37 species) was nearly half in comparison to the abundance noted in the genera Bauhinia and Cornus.
Nonetheless, the lowest diversity showed for Hamamelis (4 species/genera), Jasminus (7 species, 1 genera),
Lonicera (3 species/genera), and Robinia (6 species/genera) was also due to the lack of published research
about fungal endophytes in these plant genera.

The literature evidenced that several fungal endophytes live in association with the investigated
plants. The most representative genera in terms of abundance of isolated species were Aspergillus
(40 spp.), Penicillium (30), Fusarium (29), Colletotrichum (27), Alternaria (14), and Cladosporium (14).
These genera include ubiquitous and generalist fungi as well as several plant pathogens and
saprobes [162–164].

It is worth noting the relative homogeneity in distribution of fungi such as Colletotrichum, Fusarium,
and Alternaria among these plant genera. In fact, Colletotrichum was undetected only in Lonicera
and Robinia, Fusarium in Caesalpinia, and Hamamelis, Jasminus, and Alternaria in Cassia and Lonicera.
Although scarcely abundant, the fungal genus Phyllosticta was almost reported for all selected plants
except for Albizia, Jasminus, Robinia, and Hamamelis. Other endophytic fungi were detected more
occasionally. Future surveys may reveal the presence of additional fungal species also from less
investigated plants, such as Robinia, Jasminum, and Lonicera.

The presence of pathogenic or saprotrophic fungi has already been discussed by several
authors [165,166]. Table 1 shows that several of the listed fungi were apparently restricted to a
single plant genus or at least exhibit some preference for a particular one. Some common and
ubiquitous pathogens have been recovered in more than one plant host. This is the case of F. oxysporum
(8 host plant species belonging to 7 different genera), A. alternata, A. niger, C. gloeosporioides (7 host
plant species), N. oryzae (4 host plant species), B. dothidea, C. globosum, C. acutatum (3 host plant species),
A. ochraceus, A. pullulans, and C. truncatum (3 host plant species).

4. The Most Common Plant Pathogens

The most frequent endophytes detected from the investigated plants are cosmopolitan and
ubiquitous pathogens that may cause severe yield losses. In detail, F. oxysporum is responsible for the
wilt of vascular tissues on numerous crops that may result in plant death, even if several strains have
proved to be non-pathogenic [167]. It has been isolated from 8 different plant species belonging to
7 genera, namely A. hindsii, A. julibrissin, B. malabarica, B. phoenicea, B. aristata, C. officinalis, L. lucidum,
and N. oleander. The fungus A. alternata may infect over 380 host plant species causing leaf spots, rots,
and blights. It includes opportunistic forms in developing field crops as well as saprophytic strains
that may cause harvest and post-harvest spoilage of harvested products. One of the major concerns
represented by its infection is related to the production of mycotoxins that may be introduced in the
food chain [168]. In this review, A. alternata has been found in association with 3 genera, in 7 plant
species (B. malabarica, B. racemosa, B. poiretii, B. aristata, Cornus sp., L. lucidum, and C. pulcherrima).
The saprophytic pathogen A. niger is responsible for the spoilage of a wide range of fruit, vegetable,
and food products. It is also the causal agent of the black rot of onion bulbs, the kernel rot of maize,
and the black mold rot of cherry [169,170]. It has been found within plant tissues of A. arabica,
A. lebbeck, B. fortificata, B. malabarica, B. racemosa, C. pulcherrima, and N. oleander (7 plant species or
4 genera). Furthermore, three different species of Colletotrichum have been isolated from reviewed
plants. C. gloeosporioides has been isolated from 7 plant species (3 genera), namely A. hindsii, B. racemosa,
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B. aristata, C. echinata, C. officinalis, C. stolonifera, and L. lucidum, whereas C. acutatum has been found
in Cornus spp., Hamamelis sp., and H. virginiana (3 species; 2 genera). Both Colletotrichum species
may cause severe fruit rot mainly occurring in pre- and post-harvest [171]. Moreover, C. truncatum,
the causal agent of anthracnose disease affecting several leguminous crops [171], has been collected
from 2 plant genera, namely A. hindsii and J. sambac. Furthermore, C. lunata, was isolated from the
tissues of 4 plant species (2 genera), including B. malabarica, B. racemosa, B. phoenicea, and C. sappan,
is the causal agent of seed and seedling blight in several crops, such as rice, millet, sugarcane, and rice,
and of maize leaf spot [172]. Besides, B. dothidea reported in association with A. karroo, Cornus sp.,
and C. officinalis may cause cankers, dieback, fruit rot, and blue stain in woody plants, including
Acacia, Eucalyptus, Vitis, and Pistachio [12]. Concerning the species F. lateritium, it has been extensively
investigated as the causal agent of chlorotic leaf distortion on sweet potato (Ipomoea batatas) in the
USA [173]. This fungus has been isolated from three different plant species and genera (B. aristata,
C. controversa, and L. lucidum). Moreover, the common soil-borne fungus G. candidum, found in
association with B. vahlii, C. sappan, and L. lucidum, is the causal agent of sour-rot of tomatoes and
citrus fruits, and it is also one of the most economically important post-harvest diseases of citrus [174].
Also, C. cladosporioides, detected in B. racemosa, C. echinata, and C. stolonifera, is the causal agent of
blossom blight in strawberries [175]. Other pathogenic fungi associated with these selected plants are
less widespread and some of them are subjected to containment measures in some countries. This is
the case of N. parvum, N. oryzae, L. theobromae, and D. destructiva. In particular, N. parvum, isolated as an
endophyte in three Acacia species (A. heterophylla, A. karroo, and A. koa), is one of the most aggressive
causal agent of Botryosphaeria dieback on the grapevine and it is known as an aggressive polyphagous
pathogen attacking more than 100 plant hosts [176]. Also, N. oryzae, reported from H. mollis, B. phoenicea,
B. racemosa, and B. fortificata, may reduce plant growth and seed quality of rice plants as well as
Brassica spp., maize, and cotton [177]. Moreover, L. theobromae, found in association with six different
plant species (A. karroo, A. koa, B. racemosa, C. echinata, L. lucidum, and N. oleander), is the causal agent of
dieback, root rot, and blights for a wide range of plant hosts, mainly located in tropical and subtropical
regions [178]. Finally, D. desctructiva, recovered from three different species of Cornus, is the causal
agent of the dogwood anthracnose, a devastating disease that was firstly documented in the USA and
then introduced into Europe [179].

Generally, closely related organisms, including pathogenic fungi as well as those non-pathogenic,
may share similar ecological niches and may potentially interact among themselves. Their co-occurrence
could be due to phylogenetic evolution or some unclear biological benefits gained [180,181].
The effects of this interaction may lead to a definition of spaces for development and survival.
Nevertheless, it is widely known that non-indigenous species represent one of the greatest threats
to native biodiversity [11,23–25]. In fact, a fungal invasion into a new ecosystem may change
the native endophytic community structure, leading to the extinction of host-specialized fungi [182].
This antagonistic phenomenon is regulated by the production of antifungal compounds, mycoparasitism,
or competition for space and resources [180], as well as a synergy of these interactions [181]. Biological
invasions may set in motion a long-lasting cascade of effects on the plant host and associated species in
unpredictable ways. Generally, the ecological importance of native species prior to the invasion may not
be quantified because of the lack of information on fungal communities, especially for non-pathogenic
fungal species. As a consequence of global trade and climatic or environmental changes, studies about
the impact of new organisms on the ecosystem represent innovative challenges worldwide. In view of
these considerations, even if fungal pathogens found in association with investigated plants are widely
distributed in the EU [182–190], the risk posed by the introduction of potentially noxious species may
be very high. Thus, our results suggest the importance of monitoring imported material to avoid the
introduction of such alien species.
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5. Emerging and Potential Threats Due to Commercial Trade

Several species reported in this review are Quarantine Pests (QP) or Regulated as Non-Quarantine
Pests (RNQP), as defined by containment measures within the importing country [191]. Among the
fungal pathogens found in Cornus species, Elsinoe fawcettii is listed as a QP in the EU, Tunisia, and Israel.
This fungus is the causal agent of Citrus scab and it is one of the most important pathogens in
many areas of citrus production [192]. E. fawcettii is common in South America and its presence
has been detected in other areas such as Central and South Africa, India and South-Eastern Asia,
and Australia [192].

Furthermore, the following pathogens are RNQP in the EU: F. verticilloides (isolated from
B. malabarica and A. lebbeck), C. acutatum (isolated from Cornus spp., H. virginiana, and Hamamelis sp.),
S. sclerotiorum (isolated from C. stolonifera), and V. dahliae (isolated from Cornus sp.). Outside the EU,
the following species are listed as QP: L. theobromae and P. palmivora (in Morocco), A. nidulans,
A. macrospora, C. kahawae, C. citrullina, C. herbarum, C. pallescens, A. brassicicola, F. semitectum,
F. verticillioides, N. oryzae, and P. longissima (in Mexico), P. graminis (Canada and USA), Diaporthe tersa
(in Israel), C. acutatum (in Tunisia and Israel), and C. gloeosporioides and P. capitalensis (in Egypt) [192].

Organisms that move across continents may or may not become dangerous depending on several
factors, and unexpected consequences may occur [193,194]. The current knowledge about the fungal
community associated with ornamental plants and their interaction with the environment is fragmentary.
Fungi species generally well known as pathogens, are not necessarily pathogenic when isolated as
endophytes [6–8]. Genetic mutation can occur in virulent pathogens, transforming the original pathogen
into a nonpathogenic strain [9]. Likewise, even though some endophytes are mutualistic, this does not
imply that they will not have negative impacts if introduced in a new ecosystem [6,9]. Alien pathogens
can often encounter more susceptible host plants and different microbial and abiotic environments
without their own ‘natural enemies’. The so-called ‘risk pathway’ defined by international protocols
tend to assume that the pathogen will attack a plant host taxonomically similar to that of the susceptibile
plant species in its native countries. However, an invasive pathogen may spread to new target hosts,
when introduced in a new ecosystem, and novel pathogen combinations can occur [11]. The disease
outcomes of these combinations may be extremely complex and the invasive pathogen populations
can reach explosive distribution levels that are usually difficult to eradicate once established [23–25].
Beyond the damage which may occur on the host plant species and local microbial communities,
biological invasions may affect entire ecosystems and the connected ecosystem processes and services,
such as soil fertility, fire control, hydrology, and recreation and tourism amenities [23–25]. In response
to expanding global trade, several EU regulations [27–29] and international protocols [195,196] are
aimed at regulating over-dissemination and accidental introduction of plant diseases. However, despite
existing laws and efforts to prevent the introduction of potential pathogens at ports of entry, many
of them will evade detection and establish alien populations [197,198]. Many pathogenic fungi may
be undetected, transported in the form of inocula as endophytes, propagules, mycelium, or spores
of vegetative material. In addition, large import volumes often permit the inspection of only a small
proportion of the introduced plants. According to the precautionary principle, all imported plant
species should be considered as a potential threat (vectors of fungi), therefore the presence and
establishment may not depend on the number of arrivals. As a consequence, even a reduced amount
of infected plants, which can easily escape phytosanitary inspections, may cause the introduction
and the spread of diseases with devastating outcomes [199]. The development of tools, such as new
molecular diagnosistics [200] and volatile compounds detection devices [201], that allow the rapid
and on-site identification of potentially invasive species and the screening of large volumes of plants,
clearly appears to be essential [202]. Despite increasing trade, targeted investment in biosecurity may
be effective to reduce pathogen introduction and limit the establishment of alien microorganisms. Thus,
we highlight the importance of surveillance due to the potential risk of accidental introductions in the
absence of effective biosecurity measures.
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6. Conclusions

Globalization has led to intensified movement of people, plants, and plant products, and an increase
in the unintentional introduction of non-native fungal species into new ecosystems. Many plant
pathogens are biological opportunistic invaders causing several billion dollars in losses to crops,
pastures, and forests annually, worldwide. Consideration needs to be given to building resilience in
the new environments, from the perspective of pathogen introductions. In particular, the monitoring of
plants and plant products, plus early identification-detection of pathogen risks are key steps towards
ensuring successful regulation to exclude potential disorders caused by pathogens. This review
demonstrated the broad fungal diversity recovered from a small group of ornamental plants that have
been relatively unexplored as fungal hosts. Even if the reviewed plant genera are not recognized
as sources of significant forest diseases, that have had an ecosystemic impact on a continental scale
in the past, we highlight the risk represented by plants as inoculum sources of potentially harmful
organisms. Overall, many other species not listed by the EU have represented or may cause important
impact in many ecosystemic, environmental, and ecological issues. Our literature search revealed that
fungal species may also be introduced through a few hundred plants and invade new ecosystems.
In this context, it is important to underline that the amount of imported plant material may not be
related to a specific risk, but needs to be considered and evaluated to estimate the negative impacts on
agriculture, forestry, and public health, associated with non-indigenous species in European ecosystems.
For example, little is known about the effects of invasive species on ecosystem services, although some
historic pest invasions (e.g., chestnut blight from North America to Europe) have destroyed host tree
species in their locations. The true challenge lies in preventing further damage to natural and managed
ecosystems. For this reason, preventative policies need to take into account the means through which
pathogens gain access to the EU. The accidental introduction of potentially harmful pathogens also links
to other issues of major policy concern (i.e., biotechnology, human health, climate change, etc.) that
should be addressed through improved international cooperation and a holistic approach. We should
expect that some strategies should be continued or further established to prevent or monitor future
introductions, especially at airports, seaports, and other ports of entry, to reduce risks to an acceptable
level and preserve natural and agricultural ecosystems.
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