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Preface to ”Sense and Respond: Industrial

Applications of Smart Sensors in Cyber-Physical

Systems”

Over the past century, the manufacturing industry has undergone a number of paradigm shifts:

from the Ford assembly line (1900s) and its focus on efficiency to the Toyota production system (1960s)

and its focus on effectiveness and JIDOKA; from flexible manufacturing (1980s) to reconfigurable

manufacturing (1990s) (both following the trend of mass customization); and from agent-based

manufacturing (2000s) to cloud manufacturing (2010s) (both deploying the value stream complexity

into the material and information flow, respectively).

The next natural evolutionary step is to provide value by creating industrial cyber-physical

assets with human-like intelligence. This will only be possible by further integrating strategic smart

sensor technology into the manufacturing cyber-physical value creating processes in which industrial

equipment is monitored and controlled for analyzing compression, temperature, moisture, vibrations,

and performance. For instance, in the new wave of the ‘Industrial Internet of Things’(IIoT), smart

sensors will enable the development of new applications by interconnecting software, machines,

and humans throughout the manufacturing process, thus enabling suppliers and manufacturers to

rapidly respond to changing standards. This reprint of “Sense and Respond”aims to cover recent

developments in the field of industrial applications, especially smart sensor technologies that increase

the productivity, quality, reliability, and safety of industrial cyber-physical value-creating processes.

This reprint is dedicated to Moritz Seydler, a boy with great talents. Remember that discipline is

the root of all good qualities.

Javier Villalba-Diez and Joaquin Ordieres Meré

Editors
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Industry 4.0 Cyber–Physical Complex Networks

Javier Villalba-Díez 1,2,3,* , Martin Molina 2 , Joaquín Ordieres-Meré 3 , Shengjing Sun 3,4 ,

Daniel Schmidt 3,5 and Wanja Wellbrock 1

1 Fakultaet fuer Management und Vertrieb, Campus Schwäbisch-Hall, Hochschule Heilbronn,
74523 Schwäbisch-Hall, Germany; wanja.wellbrock@hs-heilbronn.de

2 Department of Artificial Intelligence, Universidad Politécnica de Madrid, Campus de Montegancedo,
28660 Boadilla del Monte, Madrid, Spain; martin.molina@upm.es

3 Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, José Gutiérrez
Abascal 2, 28006 Madrid, Spain; j.ordieres@upm.es (J.O.-M.); shengjing.sun@alumnos.upm.es (S.S.);
daniel.schmidt@saueressig.de (D.S.)

4 Exposure, Epidemiology, and Risk Program, Department of Environmental Health, Harvard T.H. Chan
School of Public Health, Boston, MA 02115, USA

5 Lead Developer Quality Inspection, Matthews International GmbH, Gutenbergstraße 1-3,
48691 Vreden, Germany

* Correspondence: javier.villalba.diez@hs-heilbronn.de

Received: 31 December 2019; Accepted: 29 January 2020; Published: 30 January 2020

Abstract: In the near future, value streams associated with Industry 4.0 will be formed by
interconnected cyber–physical elements forming complex networks that generate huge amounts of
data in real time. The success or failure of industry leaders interested in the continuous improvement of
lean management systems in this context is determined by their ability to recognize behavioral patterns
in these big data structured within non-Euclidean domains, such as these dynamic sociotechnical
complex networks. We assume that artificial intelligence in general and deep learning in particular may
be able to help find useful patterns of behavior in 4.0 industrial environments in the lean management
of cyber–physical systems. However, although these technologies have meant a paradigm shift in the
resolution of complex problems in the past, the traditional methods of deep learning, focused on
image or video analysis, both with regular structures, are not able to help in this specific field. This is
why this work focuses on proposing geometric deep lean learning, a mathematical methodology that
describes deep-lean-learning operations such as convolution and pooling on cyber–physical Industry
4.0 graphs. Geometric deep lean learning is expected to positively support sustainable organizational
growth because customers and suppliers ought to be able to reach new levels of transparency and
traceability on the quality and efficiency of processes that generate new business for both, hence
generating new products, services, and cooperation opportunities in a cyber–physical environment.

Keywords: Industry 4.0; IIoT; geometric deep learning; lean management

1. Introduction

Today it seems almost a truism to talk about the fact that data surround us. According to
recent studies, by 2025 humanity will have created about 163 zettabytes of information [1]. However,
the alarming thing is not that we are going to be flooded with data, but that these data will be very
different from the data with which we are used to dealing in classical disciplines such as signal or
image processing, statistics, or machine learning. Beyond this, the data we will face are data that
will emerge from the trillions of objects connected to the Internet of Things (IoT). In many cases,
including the industrial IoT (IIoT), these data are produced by distributed sources, such as thousands
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of sensors in factories, i.e., data are distributed over networks. Managing large amounts of data
in these ever-expanding networks raises nontrivial concerns about the efficiency of data collection,
processing, analysis, and security [2,3]. Currently, data from processes and systems are collected and
stored without a clear strategy, and this can be a barrier to implementing paradigms such as “social
manufacturing” [4]. In addition to being distributed, these data may be unstructured, and therefore
cannot generally be encapsulated in one table. A defined strategy is therefore needed on what kind of
data to collect at the technical and the organizational level. Finally, in addition to numerical, data can
be ordinal, categorical, or other. The aim of this work is to introduce the reader to a series of concepts
that pave the way for processing these data by means of adapted deep-learning techniques [5].

The purpose of this work is to study the possibility of providing Industry 4.0 leaders with
a theoretical model that allows for the extraction of relevant patterns embedded within their
organizations by means of artificial intelligence. Specifically, the goal of this work is to provide
the reader with mathematical models that adapt convolutional and pooling deep-learning operations,
hence describing the possible use of geometric deep-learning architectures on non-Euclidean Industry
4.0 complex cyber–physical networks. The structure of this work is as follows: First, Section 2 provides
relevant background information, clarification, and definitions. Second, Section 3 provides a framework
of previous relevant concepts regarding deep learning, specifically geometric deep learning. Third,
Section 4 provides mathematical models to compute geometric-deep-learning algorithms over Industry
4.0 lean-management complex-networked cyber–physical systems. Finally, Section 5 outlines the
conclusions and managerial implications of this model, and its applications in the field.

2. Background

This brief section presents and defines fundamental preliminary concepts to the comprehensive
understanding of the presented content in the following sections of this work:

• Industry 4.0. The term Industry 4.0 has gained large traction since it was first publicized [6], stating
the need for a paradigm shift towards a less centrally controlled manufacturing structure. It is
seen as the Fourth Industrial Revolution, with the first three being mechanization through steam
power, mass production through electrically operated engineering, and the digital revolution
through the integration of electronics and IT. Industry 4.0 enables more production autonomy
as technology becomes more interconnected, and machines are able to influence each other by
creating a cyber–physical system.

• Cyber–Physical Systems. The term “cyber–physical system” in the context of Industry 4.0 refers
to the tight conjoining of and co-ordination between computational and physical resources.
The impact on the development of such systems is a new paradigm of technical systems based on
collaborative embedded software systems [7].

• Lean Management. Lean-management systems in an Industry 4.0 cyber–physical context have
been described as sociotechnical entities that aim to systematically reduce the variability of
value-creation processes [8–13]. These two fundamental dimensions, the social and the technical,
are subsequently meant to symbiotically support each other to maximize value creation through
the systematic elimination of activities that do not add value for the client. A series of models
were presented by scholars that allow the analysis and quantification of these systems as complex
networks [14,15].

• Complex-Networked Organizational Design. Under the organizational-network paradigm,
modern Industry 4.0 cyber–physical lean-management-oriented organizations can be understood
as a symbiotic sociotechnical ecosystem of social networks [16] that interacts with increasingly
complex-networked physically distributed interconnected sensors [17], whose readings are
modeled as time-dependent signals on the vertices, human or cyber–physical, respectively.
This means that, on the nodes of the network, attributes can be found that describe them as having
the form of a given time series.
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Within this framework, a complex network is defined as a graph with nontrivial topological
features that do not occur in simple graphs such as lattices and random networks [18]. For any
given time t, lean complex cyber–physical networks can be formally described by time-dependent
graphs Ω(t) = [N(t); E(t)] that can be understood as lists of N(t) nodes and E(t) ⊂ (N(t)xN(t))

edges that represent its human and cyber–physical nodes, and its standard communication
edges [19]. Given the static graph in t, Ω(t), each node and edge can be characterized by a series
of typically two-dimensional signals x = [x1, . . . , xn] ∈ (RnxRm), where n relevant parameters
of the node or axis are described as the time series of m elements. In the case of nodes, signals
typically represent demographic, sociological, or competence information. In case that the nodes
are human, and in the case of a cyber–physical node, relevant information on the state of the
cyber–physical node expressed in time series of several key performance indicators. In the case of
edges, signals typically represent information referring to the quality of measurable relationships
of the individual with other stakeholders of the organization; in the case of human–human or
cyber–physical-to-human edges, of the time series associated with relevant key performance
indicators being reported to other stakeholders. Specifically, snapshots for the time-dependent
graph can be built, that is, the time-dependent graph is considered as an ordered pair of potentially
different sets. A time-dependent graph considered as a sequence of static graphs is given by
Expression 1.

Ω = [Ω(t1), Ω(t2), . . . , Ω(tk)] (1)

This method is most commonly used for modeling discrete time-dependent graphs, and is
suitable for the time-dependent graph with a specific time structure, especially in real-time
networks such as complex-networked cyber–physical systems [20]. This modelling method is
assumed here, and the time sequence of static graphs is not explicitly mentioned when referring
to time-dependent graphs.

As a consequence of these references, it can be stated that cyber–physical complex-networked
lean-management systems in an Industry 4.0 context can be understood as management systems
that systematically try to reduce the intrinsic variability of industrial value-creation processes by
understanding them as complex networks of computational and physical elements.

3. Related Work

Within this framework, the work approaches the interpretation of strategic information contained
in Industry 4.0 cyber–physical complex-networked lean-management systems from two main vectors:
social and technical strategic organizational design complexity. As shown in the research overview
in Table 1, these two research directions have been intensively examined at three (micro-, meso-,
and macroscopic) levels of complexity. A better visualization of these organizational levels is in the
graphical abstract of Figure 1 for clarity purposes, but it should be noted that this classification is
purely synthetic; in reality, cyber–physical systems in an Industry 4.0 context present the continuous
complexification of networks arranged in nested hierarchies. This by no means suggests that one
level of aggregated complexity is more difficult to deal with than a less aggregated one. In fact,
the opposite is often true. For example, in the study of value-creating cyber–physical systems, the study
of shop-floor management has been done for decades with almost solely qualitative methods and
common sense [21–23]. Deep learning has been recently used to extract statistical patterns from
cyber–physical systems at certain microscopic local levels [24,25]; however, there is an urgent need
for algorithms to be developed that ensure a holistic understanding of cyber–physical systems at the
meso- and macroscopic level of complex-networked aggregation.
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Figure 1. Macroscopic, mesoscopic, and microscopic levels of organizational sociotechnical complexity.
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Table 1. Research overview.

Social Technical Socio Technical

Micro
Imai, 2012 [26];
Stock and Seliger, 2016 [27]

Takeda, 2009 [28];
Francis and Bian, 2019 [29];
Jabeur et al., 2015 [17];
Li et al., 2017 [30];
Aazam et al., 2018 [31];
Tao et al., 2018 [32];
Mushtaq and Haq, 2019 [33];
Shevchik et al., 2019 [34];
Al-Jaroodi and Mohamed, 2019 [35];
Sun et al., 2019 [36]

Villalba-Diez et al., 2015 [23];
Villalba-Diez et al., 2019 [24].

Meso
Rother, 2010 [37];
Villalba et al., 2018 [13];
Birkel et al., 2019 [38]

Takeda, 2011 [39];
Davis et al., 2012 [40];
Gomez et al., 2015 [41];
Culot, 2019 [42];
Jimenez et al., 2016 [43];
Wang et al., 2018 [44];
Villalba-Diez et al., 2019 [25];
Jang et al., 2019 [45];
Ordieres-Mere et al., 2019 [46]

Villalba-Diez and
Ordieres-Mere, 2015 [10];
Villalba-Diez et al., 2015 [9];
Villalba-Diez and
Ordieres-Mere, 2016 [11];
Villalba-Diez et al., 2017 [47];
Davies et al., 2017 [48];
Kumar et al., 2019 [49].

Macro

Womack and Jones, 2003 [50];
Toyota, 2014 [51];
Burton et al., 2015 [52];
Covey, 2004 [53];
Rabelo et al., 2019 [54];
Romero et al., 2017 [55];
Wang et al., 2019 [56];
Guo and Jyang, 2019 [57]

Lee et al., 2015 [58];
Wang et al., 2015 [59];
Goodfellow et al., 2016 [5];
Sisini et al., 2018 [60];
Zheng et al., 2018a [61];
Lu and Xu, 2019 [62]

Stock and Seliger, 2016 [27];
Villalba-Diez, 2017 [15];
Villalba-Diez, 2017 [14];
Kiel et al., 2017 [63];
Stock et al., 2016 [64];
Shang et al., 2019 [65].

Subsequently, a research hypothesis can be formulated. Due to the high potential shown by deep
learning in a wide range of applications, we could hypothesise that deep learning can be used to find
patterns within Industry 4.0 lean-management complex-networked cyber–physical systems, which
takes us to the concept of geometric deep lean learning. The analogy of networks proposed in this
work, as well as the global analysis of the evolving networks and, through the geometric deep lean
learning of the local relations between agents, provide an adequate context to establish which data to
collect, and how to structure their analysis in a general and systematic way.

Within this context, there are two main resource-organizing classes for integrating deep learning
in Industry 4.0 cyber–physical contexts with regard to different assumptions on data acquisition:

• Offline training, and decision-support learning and predicting from a global and integrated way,
for example, by extracting relevant information from an organization by means of deep-learning
algorithms that analyze previously labeled text in organizational categories [66]. Alternatively, by
combining deep learning with other computing methods that allow for more balanced datasets
and, hence, better deep-learning performance [67].

• Digital twin and augmented reality. Creating virtual environments that, by recording, visualization,
and interaction with cyber–physical assets, are capable of generating necessary tagged information
in real time that is fed to deep-learning algorithms [68]. The creation of digital twins in combination
with deep-learning algorithms was also proposed to enable the parallel control of cyber–physical
value-creating processes [69].

Deep-learning algorithms are built by stacking data-processing filters—layers—in deep
architectures [5]. These layers extract increasingly accurate representations of the data fed into
them through a series of algebraic operations, such as convolution (learning local patterns of feature
maps) and pooling (downsampling of feature maps). A key reason for the success of these classical
deep-learning applications on time-series, images, or video processing, is on its underlying Euclidean
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or gridlike data-structure space. The ability to leverage statistical properties of such data through
local statistics is possible because of the shift invariance, local connectivity and the multi-resolution of
the dataset. For instance, in a color image, pixels are placed together (shift invariance), present local
properties (local connectivity), and present a red–green–blue-layered color structure (multiresolution).
The use of convolution and pooling imposes conditions on the dataset while extracting local features
shared throughout images that make it suitable for the problem without sacrificing the expressive
capacity of the network. In fact, the graph’s Laplacian L = D − A that supports the information
contained in the images is constant [70], where D and A represent the degree and adjacency matrix
of the graph, respectively [19]. This allows a series of mass algebraic operations that make the
magic of deep learning possible. However, at an organizational level, networks associated with
Industry 4.0 lean-management cyber–physical systems are, by definition, dynamic and do not present
these characteristics.

The fundamental idea of deep learning is that it is assumed that data to be studied came from the
combination of different attributes at multiple hierarchical levels. An important underlining concept in
this context is that of the manifold. A manifold can be intuitively understood as locally Euclidean space.
Earth, for example, can be understood as a gigantic ellipsoid, but to a human at a point on its surface,
it appears to be a plane. In other words, the manifold is an interconnected region: a series of points
associated with its surrounding environment. From any of these points, the manifold appears to be
locally Euclidean. Formally speaking, differentiable X manifold of dimension d is a topological space in
which each point x has an environment that is homeomorphic to a Euclidean space of dimension d called
tangent space TxX [71]. If the manifold is equipped with a Riemannian metric, such as an inner product
〈 · , · 〉TxX : (TxX)x(TxX)→ R , then the manifold is called a Riemannian manifold. The set of tangent
spaces at all points is known as tangent bundle TX and is assumed to be smoothly dependent on the x

position. It is precisely this feature that is exploited by machine-learning algorithms. The condition
for this is the implicit assumption that interesting points occur only in a collection of manifolds in
directions tangent to the TX planes, and with statistically interesting variations happening only when
switching manifolds.

In other words, manifolds are topological spaces locally homeomorphic to Euclidean spaces.
Complex networks, the object of this study, can be described by complexes of nodes and edges (i.e.,
triangles) that can be treated as discrete types of manifolds [72]. As has been described before [73–75],
these can be understood as manifolds in order to explain the problems related to evolutionary
manifolds using the theory of complex evolutionary networks. Specifically, deep learning applied to
graphs usually considers these as manifolds; for this reason, we can consider deep lean learning as
a manifold learning challenge. In the following sections, the consideration of graphs as manifolds is
not geometrically rigorous, and might not be as smooth as previously defined. Classical applications
of deep learning to graphs [76] focuses on static networks, but cyber–physical systems represented by
complex networks are dynamic in nature, as nodes (both human and cyber–physical) and sociotechnical
relations between them are constantly evolving.

For this reason, in order to discover statistical patterns within lean-management cyber–physical
systems by means of deep learning, it is necessary to either transform existing data into figures that
can be interpreted by classical approaches, or to generalize the concept of deep learning to dynamic
networks. The first strategy was successfully implemented by one of the authors [13]. The second
strategy follows in the footsteps of geometric deep learning.

Geometric deep learning is an emerging technique to generalize deep-learning models to
non-Euclidean domains, such as certain graphs and manifolds [70]. The wide variety of domains in
which geometric deep learning has so far been useful can be summarized in four categories:

• Graphwise classification. For instance, in the classification of molecules [77]. In this model, atoms
represent the nodes, and chemical bonds are the edges of a graph. Research aims to extract
certain features that predict certain properties of the molecule. This is relevant, for instance, to the
pharmaceutical companies that are in the business of drug design. Some of these properties are

6
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toxicity and water solubility. Given a graph, researchers aim to classify a molecule graph. This is
analogous to classical deep-learning-based visual image classification [78].

• Vertexwise classification. For example, in a social-network domain in which nodes are people of
which we have certain demographic information, a researcher aims to predict how these people
will vote in the next election. The analogy in computer vision is semantic image segmentation [79]
in which the pixels of an image are labeled as belonging to a certain category.

• Graph dynamics. There are also domains that are described by fixed graphs, and others in which
the graph changes with time [70]. Complex-networked cyber–physical systems belong to the
second class.

• Known vs. unknown domain. In some cases, the graph can be known; in others, it is only partially
known, noisy, or not known at all and needs to be learned. In these cases, the researcher aims to
not only learn the graph features, but also the graph itself [80].

Existing approaches to implement geometric deep learning can be classified into two broad
categories: spectral and local filtering methods.

• Spectral filtering methods.

Spectral filtering methods make use of the spectral eigendecomposition of the Laplacian graph
to elegantly mathematically define convolution-like operators. The fundamental limitation of
the spectral construction is that it can only be used to single and static domains. This is because
filter coefficients are dependent on the eigenvector- and eigenvalue-decomposition basis of the
Laplacian graph, which is highly dependent on network architecture [70]. This approach is not
suitable for our needs because of the dynamic characteristics of Industry 4.0 lean-management
cyber–physical complex systems and their associated complex networks.

• Local filtering methods.

Local filtering methods, on the other hand, are not topology-dependent, fall within the frame of
signalling processing on graphs [81], and are more suitable in this setting, in particular, in order to
define an operation similar to convolution in this domain [82].

4. Geometric Deep Lean Learning Over Industry 4.0 Lean-Management Complex-Networked
Cyber–Physical Systems

According to Immanuel Kant, a science is not a science until there is a relation to mathematics.
Although this characterization is provocative, and few would discuss such absolute numbers today,
the implicit main question remains valid: can we find mathematical expressions that explain, process,
and learn from network data, especially from complex-networked cyber–physical systems? This
question is the motivator of this work, both for its practical and theoretical interest. On the one hand,
empirically speaking, the processing of signals on graphs from complex cyber–physical networks
has exponential importance due to the unstoppable emergence of technologies such as the IIoT and
blockchain. On the other hand, the theoretical field of artificial intelligence constantly needs to develop
new algorithms and computational architectures to later allow its practical application.

Applied to the analysis of complex-networked cyber–physical systems in the context of Industry 4.0,
this leads to two classes of problem formulations that geometric deep lean learning theoretically solves:

• Strategic organizational design. Performing classical inference problems [76].

Recently, it has been shown that this classification can be considerably improved by using
information about the proximity environment [83,84]. Analyzing signals on graph vertices and
edges could potentially help to learn inherent structures of the graphs, such as organizational
clusters, with better accuracy than that provided by topological information alone—this is
a strategic challenge to which organizational design tries to respond.

7
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• Trust and power structures. Learning hidden organizational properties.

Although deep learning has been employed in a wide variety of fields of knowledge, such
as modeling social influence [85] and computer vision [86–88], it is important to incorporate
knowledge about the domain to be treated in the model. For example, in order to build
a deep-learning model for the study of a network of sensors in a cyber–physical system of
industry 4.0, it might be useful, in a first approximation, to choose the edge weights of the graph
as a decreasing function of the distance between nodes, as this would lead to a smooth graph
signal model [89]; however, this would not be suitable for a lean structural network, because
adjacency does not necessarily mean similarity [14]. For this reason, the model of the graph to be
used can be superimposed on other structures, instead of being a pure unconnected abstraction.
In other words, the graph that represents the complex-networked cyber–physical system in
an Industry 4.0 context, can be studied from different perspectives, superimposing it to a specific
sociotechnical environment that helps to better understand the statistical information that it
contains. As a consequence, the integration of these priors is a fundamental challenge for the
success of geometric deep lean learning. Some examples are the structures of power or trust
between the different actors of an organization that are fundamental variables that influence the
success of an organization, but remain elusive, since they often cannot be directly measured.
Geometric deep lean learning could be applied to learn these parameters as weights between the
nodes of the complex organizational network.

These problems reduce to fitting a time-dependent tensor A(t), so that Ω(t + 1) ≈ A(t) ·Ω(t) [90].
The hypothesis underlying this objective is that x(t + 1) ≈ A(t) · x(t) where A(t) is constant in a window
of time. The reason why we can take this assumption as true is that complex networks associated with
cyber–physical systems in Industry 4.0 environments do not have very high variability [14]. As a result,
a sufficiently small time window can always be found in which the hypothesis is sufficiently true.

Generalizing deep-lean-learning models to dynamic structured data in complex graphs requires
a detailed description of the non-Euclidean equivalents to the basic elements of deep learning
(convolutional layers and downsampling “pooling”), locally applied to each of the graph elements [70]:

• Convolution on non-Euclidean complex-networked cyber–physical graph time-dependent signals.

As expressed in Expression 1, for weighted time-dependent directed graph Ω(t), a series of
signals x = [x(1), . . . , x(n)] ∈ (RnxRm) expressed on its human and cyber–physical nodes, and on
its standard communication edges, are considered, in which components of xa reside in or are
protruding from node a.

For each node, we define a proximity environment given by group Na =
{

b : (b, a) ⊂ E
}

that
represents set of nodes b connected with a. This Na set is characterized by an RNxN matrix S called
the network-translation matrix operator that defines the manifold metric. We defined S as the
graph adjacency matrix, the Laplacian of the graph, or any other normalization of it, as a linear
transformation to encode the structure of a graph. Without loss of generality, the singularity
problem of the adjacency matrix, which is nontrivial, was not considered in this work [91].
As shown in Figure 2, group Na represents the manifold upon which the convolution acts.

8



Sensors 2020, 20, 763

Figure 2. Local manifold upon which graph convolution acts.

The Fourier decomposition of graph Ω(t) is expressed by x̂ = U−1 · x, where S = U ·Λ ·U−1 and
autovalues Λ describe the frequencies of the graph [92]. Now, we can directly filter x from the
spectral domain by means of function f : C→ R that allows to compute convolution ẑ = f (Λ) · x̂

by means of point-by-point multiplication in the spectral domain between filter f (Λ) and the
Fourier transform of the graph in x. Therefore, by inverting the Fourier transform of the graph, we
obtain the extension of the convolutional operation to the non-Euclidean time-dependent graph
in Equation (2).

z = P(S)x and P(S) = U f (Λ)U−1 (2)

The filter operation can be directly described on the node, resulting in an alternative formulation
given by Equation (3), where scalar parameter φa,b is a representation of the information weights
coming from neighbour node b into or from node a.

za =
∑

b∈Na∪a
φa,b · xb (3)

Due to the local properties of S, za can be obtained in the domain of the node through
local-information exchange. This means that the initial signal on the node is recursively
transformed by S a K number of times until decomposition is obtained that determines za

as the convolution between the network filter with a polynomial transfer function and xb.

By means of the Fourier transform of the network, the screening operation of Equation (3) has the
transfer function given by Equation (4):

h(Λ) =
κ
∑

k=0
φk ·Λ

k (4)

This filter, based on local-information exchanges, captures information in K-radius proximity from
the node representing the depth of the geometric-deep-lean-learning algorithm.

Taking into account this convolutional operation given by Equation (3), we are able to compute
the f th level feature produced as output of the lth layer:

yl
f
= σl ·













l−1
∑

g=1
Pl

f ,g · y
l−1
g













(5)

where:
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- σl represents the nonlinear activation function (i.e., ReLU); and
- Pl

f ,g · y
l−1
g indicates the graph structure relating the gth input yl−1

g to the f th output yl
f
.

Now, we simply combine two cases to model the mechanism of a convolutional network applied
to a non-Euclidean graph in each time slot: the case in which edges vary, and that in which nodes
vary. This can be combined into a single expression to describe Pl

f ,g given by Equation (6):

Pl
f ,g(S) =

K
∑

k=1
Υ

l,(k:1)
f ,g +

K
∑

k=0

(

k
∏

m=0
Υ
(m)

d
+ φk · τ

k

)

(6)

where:

-
∑K

k=1 Υ
l,(k:1)
f ,g represents the edge-varying case, in which

* Υ
l,(k:1)
f ,g acts as a shift operator, and therefore represents a learning paradigm for data

embedded within complex graphs, whose weights are known to some degree of
ambiguity, are only partially known, or are unknown.

-
∑K

k=0

(

∏k
m=0 Υ

(m)

d
+ φk · τ

k
)

represents the node-varying case, in which

* d ⊂ E is a special set of nodes (i.e., nodes with a degree above a certain threshold, nodes
with a certain level of hierarchy in the organization, or any other relevant feature),

* φk ∈ [0, 1]Nxd is a binary matrix, and
* τk is a vector describing the node parameters in d.

• Pooling in non-Euclidean complex-networked cyber–physical graph time-dependent signals.

As introduced earlier, downsampling pooling layers in classical deep-learning architectures that
extract information from Euclidean domains such as speech, images, or videos typically report
the maximal output within rectangular proximity [93]. In this way, it is possible to extract local
characteristics that are shared by other areas of the images, thus considerably reducing the number
of parameters that the deep network has to learn without sacrificing its learning capacity. Pooling
can be described as a progressive coarsening of the graph. A simple way to do this is to collapse
edges and reduce the size of the graph through a standard max-pooling operation on the nodes by
just taking the maximum of each one of the feature tensors on each of the nodes being coarsened.
This can be represented as a binary-tree structure of node indices. These pooling modules on
graphs can be inserted between the convolutional modules in order to extract high-level graph
representations, and thus be able to perform effective graph classification.

Some alternatives in this field have not been to try to pool the whole network, but different
hierarchies of the complex network in order to be able to learn which node groups have similar
characteristics [94]. Once these groups are learned, clusters are made, and network pooling
is carried out as described above or with an alternative method. This process is repeated for
each of the network layers; thus, its classification is obtained. This presupposes, however, prior
knowledge of the network structure.

The extraction of shared local characteristics is not possible through this method in time-varying
non-Euclidean domains, i.e., complex-networked cyber–physical graphs, because no stationarity
or shift invariance can be found within these domains. Wu et al. [95], and Lee et al. [96] provided
state-of-the-art surveying overview of this interesting open research question.
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5. Conclusions and Management Implications

Geometric deep lean learning at a strategic level is expected to ensure sustainable organizational
growth because customers and suppliers are able to reach new levels of transparency and traceability
on the quality and efficiency of the processes, which generates new business opportunities for both,
and new products, services, and co-operation opportunities in a cyber–physical environment. In a world
of limited resources, increasing business volume can only be achieved by increasing the depth of
integrated intelligence capable of successfully handling the emerging complexity in value streams.
The future implications of geometric deep lean learning at an organizational level are yet to be fully
deployed, but it is expected that the field of analysis of complex-networked cyber–physical systems in
Industry 4.0 environments will attract intense attention from both industry and scholars who could
develop tools to interpret, classify, and better understand the behavioral patterns of such networks
through the application of this very exciting field of artificial intelligence.

Managerial implications of geometric deep lean learning on a mesoscopic level should try to
integrate geometric deep lean learning in whole-value-stream processes to substantially improve
resource optimization. Geometric deep lean learning at a value-stream level is expected to impact lead
time and on-time delivery. At a mesoscopic level, producing only what the customer needs, when they
needs it, in the required quality, the integration of deep-learning technologies is expected to not only
allow the systematic improvement of complex value chains, but also the better use and exploitation of
resources, thus reducing the environmental impact of Industry 4.0 processes. This technology could
also be implemented at the customer side to increase defect-detection accuracy on products themselves.
Such analyses provide sensitivity about operations and operational conditions, which also impacts
value-stream-related efficiency and effectiveness.

The theoretical implications of the application of these geometric-deep-lean-learning models to
data embedded within complex-networked datasets support researchers in departing from “crafted”
features in modeling machine-learning models when dealing with geometric data. In the context of
Industry 4.0 cyber–physical systems, these could be drone-positioning and decision-making algorithms,
and the proper interpretation of wearable devices (i.e., physical sensors) on human or cybernetic process
owners. Until now, models dealing with such problems required a certain amount of prior knowledge
(e.g., the isometric-shape-deformation model), and often did not capture the full complexity and wealth
of data. Geometric-deep-lean-learning methodologies could bring a breakthrough to the field and be the
first indications of a coming paradigm shift by, for instance, expanding existing social-manufacturing
knowledge into unknown territory through the contextual self-organizing of mass-individualization
processes under a social-manufacturing paradigm through a cyber–physical–social system approach.

Some of the main potential applications can be clustered four categories:

• Graphwise classification. The classification of complex cyber–physical graphs by deep lean
learning, thus creating product families and allowing automated decision making in real time in
which products are developed, produced, and channeled to the final customer.

• Vertexwise classification. The classification of certain crucial nodes in the value-creation process
by means of deep-lean-learning models that allows an improvement of organizational design to
assure an increase of overall process performance.

• Graph dynamics. Learning complex-networked cyber–physical graph dynamics is of great interest
when dealing with change management within non-Euclidean sociotechnical systems.

• Known vs. unknown domains. The learning, generation, and semisupervised design of value
streams by learning the most suitable complex cyber–physical graphs for certain types of
products, thus potentially generating high customization with high efficiency and effectiveness in
resource use.

The data needed to implement these mathematical concepts are enormous and fall within the
field of big data. The acquisition of data associated with the cyber–physical systems of Industry
4.0 is costly and of great strategic value to the involved organizations, which is why systems that
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increase the confidence of the involved actors and guarantee the security of these IIoT data, as the
distributed ledger technology, are essential for the practical application of the exposed concepts.
The quality of the obtained data essentially depends on the trust that the various value-creating actors
have in each other. Achieving the necessary high degrees of confidence and successfully managing
these parameters in an environment of interdependent supplier and customer networks is one of
the challenges in the immediate future, and ought to be met by several blockchain and distributed
ledger protocols. The Constrained Application Protocol is excellent for use with limited devices and
low-power networks, such as those preferred in IIoT. To ensure greater security, applications known
by the more important User Datagram Protocol, such as Voice over IP/Session Initiation Protocol,
Datagram Transport Layer Security, can be run on User Datagram Protocol instead of Transmission
Control Protocol. The Rivest–Shamir–Adleman hybrid algorithm can also be good, with high efficiency,
better security and privacy protection, and is suitable for the end-to-end encryption requirements of
the future IIoT. Future IIoT research within an Industry 4.0 complex-networked cyber–physical context
should focus on, among others, the following characteristics: the open security system, the way in
which individual privacy is protected, terminal-security function, and laws related to IIoT security.
It is undeniable that IIoT security requires a set of policies, laws, and regulations, and a perfect
security-management system for mutual collocation to ensure the success of this exciting and fruitful
research endeavor.
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92. Ortega, A.; Frossard, P.; Kovačević, J.; Moura, J.M.; Vandergheynst, P. Graph Signal Processing: Overview,

Challenges, and Applications. Proc. IEEE 2018, 106, 808–828. [CrossRef]
93. Zhou, Y.T.; Chellappa, R. Computation of optical flow using a neural network. In Proceedings of the

IEEE 1988 International Conference on Neural Networks, San Diego, CA, USA, 24–27 July 1988; Volume 2,
pp. 71–78. [CrossRef]

94. Ying, Z.; You, J.; Morris, C.; Ren, X.; Hamilton, W.; Leskovec, J. Hierarchical Graph Representation Learning
with Differentiable Pooling. In Advances in Neural Information Processing Systems 31; Bengio, S., Wallach, H.,
Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY,
USA, 2018; pp. 4800–4810.

95. Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; Yu, P.S. A Comprehensive Survey on Graph Neural Networks.
arXiv 2019, arXiv:1901.00596.

96. Lee, J.; Lee, I.; Kang, J. Self-Attention Graph Pooling. In Proceedings of the 36th International Conference on
Machine Learning, Long Beach, CA, USA, 9–15 June 2019; Chaudhuri, K., Salakhutdinov, R., Eds.; PMLR:
Long Beach, CA, USA, 2019; Volume 97, pp. 3734–3743.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

16



sensors

Article

Deep Learning for Industrial Computer Vision
Quality Control in the Printing Industry 4.0

Javier Villalba-Diez 1,2,†,∗ , Daniel Schmidt 3,4,† , Roman Gevers 3, Joaquín Ordieres-Meré 4 ,

Martin Buchwitz 5 and Wanja Wellbrock 1

1 Hochschule Heilbronn, Fakultät Management und Vertrieb, Campus Schwäbisch Hall,
74523 Schwäbisch Hall, Germany; Wanja.wellbrock@hs-heilbronn.de

2 Department of Artificial Intelligence, Escuela Técnica Superior de Ingenieros Informáticos,
Universidad Politécnica de Madrid, 28660 Madrid, Spain

3 Matthews International GmbH, Gutenbergstraße 1-3, 48691 Vreden, Germany;
Daniel.Schmidt@saueressig.de (D.S.); roman.gevers@saueressig.de (R.G.)

4 Departament of Business Intelligence, Escuela Técnica Superior de Ingenieros Industriales,
Universidad Politécnica de Madrid, 28006 Madrid, Spain; j.ordieres@upm.es

5 InspectOnline, Wiley-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany; mbuchwitz@wiley.com
* Correspondence: javier.villalba-diez@hs-heilbronn.de
† These authors contributed equally to this work.

Received: 9 July 2019; Accepted: 13 September 2019; Published: 15 September 2019

Abstract: Rapid and accurate industrial inspection to ensure the highest quality standards at a
competitive price is one of the biggest challenges in the manufacturing industry. This paper shows an
application of how a Deep Learning soft sensor application can be combined with a high-resolution
optical quality control camera to increase the accuracy and reduce the cost of an industrial visual
inspection process in the Printing Industry 4.0. During the process of producing gravure cylinders,
mistakes like holes in the printing cylinder are inevitable. In order to improve the defect detection
performance and reduce quality inspection costs by process automation, this paper proposes a deep
neural network (DNN) soft sensor that compares the scanned surface to the used engraving file and
performs an automatic quality control process by learning features through exposure to training
data. The DNN sensor developed achieved a fully automated classification accuracy rate of 98.4%.
Further research aims to use these results to three ends. Firstly, to predict the amount of errors a
cylinder has, to further support the human operation by showing the error probability to the operator,
and finally to decide autonomously about product quality without human involvement.

Keywords: soft sensors; industrial optical quality inspection; deep learning; artificial vision

1. Introduction

Countries aspiring to lead these technological changes and remain in industrial leadership
positions have strategically positioned themselves for the new type of cyber–physical infrastructure
that will emerge from the Industrial Internet of Things (IIoT) and data science. Germany’s Industry 4.0
framework has evolved into a pan-European collaborative effort to perform intelligent automation
at scale [1]. In a similar move, the United States launched the Manufacturing Leadership Coalition
(SMLC) [2] in 2011. Other notable examples include “China Manufacturing 2025” [3] that seeks to
elevate advanced manufacturing technology, or Japanese’s “Society 5.0” [4] with a holistic focus on
the safety and well-being of humans through cyber–physical systems. As a paradigmatic example,
the Japanese manufacturer has consistently gained a competitive edge towards its competition by
providing its value stream elements with the ability not to pass defects to the next step in the
manufacturing process [5].
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A prime example of this is the remarkable success of Toyota’s implementation of intelligent
autonomation, or JIDOKA -自働化- [6–8], alongside other strategic Lean manufacturing system
characteristics [9–14]. Thanks to the availability of sufficient data from virtually any element of the
production process (through IIoT for example), and the development of computational elements
powerful enough to perform real time calculations on the state of the value stream, the systematic
extension of JIDOKA in the industry has been made possible [15]. In fact, there is great potential for
other industries to increase the ability of machines to recognize their own state through intelligent
sensors capable of sensing the specific needs of customers and responding flexibly and accordingly.
This would improve the level of automation and increase product quality and customization while
increasing related value stream performance [16–18] .

Within this framework, Optical Quality Control (OQC) is crucial to many manufacturing processes
in an effort to meet customer requirements [19]. On the one hand, the performance of human-centered
OQC does not meet the necessary requirements: it is limited by ergonomics and cost, as humans
get tired with repetitive OQC tasks and these tasks are usually very labor-intensive. For this reason,
automatic detection of visual defects, which aims to segment possible defective areas of a product image
and subsequently classify them into defect categories, emerges as a necessary solution to the problem.
On the other hand, simple threshold techniques are often insufficient to segment background defects
when not applied to a controlled environment characterized by stable lighting conditions. Xie [20]
provides a classification of existing methods, but the common practice in industrial environments is
that each new feature has to be described manually by experts when a new type of problem occurs:
surface defects in industrially manufactured products can have all kinds of sizes, shapes or orientations.
These methods are often not valid when applied to real surfaces with rough textures, complex, or noisy
sensor data. This has the immediate consequence that classifications are almost always insufficient and
cannot be generalized to unknown problems [21]. For these reasons, more robust and reliable results
are needed in the detection of defects by more sophisticated methods.

The printing industry underwent an enormous transformation through the digital revolution
when inkjet reached a mature era. Inkjet printing is based on the formation of small liquid droplets to
transfer precise amounts of material to a substrate under digital control. Inkjet technology is becoming
relatively mature and is of great industrial interest due to its flexibility for graphic printing and its
potential use in less conventional applications such as additive manufacturing and the manufacture of
printed electronics and other functional devices. Its advantages over conventional printing processes
are numerous. For instance, it produces little or not waste, it versatile thanks to different processes,
it is non-contact, and does not require a master template which means printing patterns can be easily
changed. However, the technology needs to be developed in order to be used in new applications such
as additive manufacturing (3D printing).

Laser engraving of gravure cylinders (Figure 1) is the latest and most exciting development in
gravure printing. Laser technology makes it possible to produce cells with variable shapes, which
is not possible with electromechanical engraving. These new shapes actually provide a higher print
density and it is possible to use inks with a higher viscosity than conventional electromechanically
engraved cylinders. Laser engraved cylinders also reduce the influence of print speed on print quality
and keep the highlight tone values stable.

Figure 1. Printing Cylinder.
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Although laser engraving of rotogravure cylinders is a new variant of etching rotogravure
cylinders in the rotogravure market, today’s systems are still susceptible to errors. Possible errors
or optical detectable defects include dents, scratches, inclusions, spray, curves, offset, smearing and
excessive, pale or missing printing or color errors (i.e., incorrect colors, gradients and color deviations
from the desired pattern). The most common errors is dents, 32%, while the least common error is
smearing, 3%. Due to the different errors and noise levels typical of industrial settings, an automatic
error detection based on classical computer vision algorithms was not possible [22]. Most systems
aim to select potential faults and present them to the human expert responsible for deciding the
presence or severity of faults. Practice shows that about 30% of the possible errors that need to be
checked are not relevant. This fact increases both the costs associated with the OQC and the lead
time of the overall process. Both factors are crucial to achieving customer confidence and must be
systematically optimized.

Bearing these issues in mind, this research delves into an alternative solution to overcome
the problem of the need of manual predetermination of the specific characteristics for each new
inspection problem: deep learning-based deep neural networks (DNN). Deep learning is a paradigm of
machine learning that enables computational models consisting of multiple processing layers to learn
representations of data with multiple levels of abstraction [23,24]. DNN are constructions created by
combining a series of hierarchically superimposed and arbitrarily initialized filters that are capable of
automatically learning the best features for a given classification problem due to exposure to training
data [25,26]. Several DNN architectures have been successfully used to extract statistical information
from physical sensors in the context of Industry 4.0 in several applications such as classification
problems [27], visual object recognition [23], human activity recognition through wearables [28,29],
predictive maintenance [30,31], or computer vision [32] among others. More specifically, DNN have
recently proved useful for industrial computer OQC defect detection purposes with promising results
by automatically extracting useful features with little to no prior knowledge about the images [33,34].

The goal of this paper is to present a soft sensor DNN that performs a classification of images
from high-resolution cameras towards a fully computer vision OQC of the printing cylinder of a global
leading player in the Printing Industry 4.0. As shown in detail in Section 3, this aims to increase
the accuracy of the quality inspection process by first supporting the human expert final decision
making, thereby reducing the cost of quality inspection process through automatization of the visual
processing. This ought to be contextualized in a hostile industrial context in which the complexity of
error detection is very high due both to the extraordinary variability of possible errors, as well as the
changing environmental conditions of light, moisture, dirt, and pollution - all of which can confuse the
best algorithms developed thus far.

The rest of the paper is structured to ensure clarity in the presentation, replication of the results
obtained, and a proper framing in the ongoing global context of the fourth industrial revolution. Firstly,
Section 2 briefly shows the continuous improvement of the manufacturing value stream of an Industry
4.0 leader that made the integration of deep learning technology possible. Secondly, Section 3 outlines
the materials and methods used to design and implement a better performing OQC integrated DNN
soft sensor. Additionally, DNN computer Code is made available on an Open Access Repository.
Next, the results obtained are briefly discussed from a technical point of view in Section 4. Finally,
in Section 5 the short, medium and long term consequences of these findings for the printing industry
are discussed and highlighted in a broader manufacturing Industry 4.0 context.

2. Evolution towards Automatic Deep Learning-Based OQC

In order to frame this research in a more general context and allow its replication in other value
streams, it is important to describe the constant process of continuous improvement [35] that a leading
player in the printing industry has followed in recent years to reach the level that has allowed the
implementation of the presented Deep Learning-based OQC research.
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For the purpose of making it easier for interested readers to recognize the fundamental phases of
this OQC evolutional continuous improvement process that paved the road for a fully automatized
computer vision OQC process have been summarized in Table 1 and is depicted in Figure 2.

Table 1. State of the Art.

Stage Description of Improvement

Manual
Inspection
of Printed
Product
(Figure 2a)

In the first stage all cylinders of an order were printed together. Due to the processes
used producing gravure cylinders, mistakes like holes in the cylinder are almost
inevitable. To check the quality of the gravure cylinders, all the cylinders of one
order are generally printed together and the resulting print checked manually with the
help of a magnifying glass. To do this the approximate color of each individual cylinder
must be mixed and all cylinders are printed one after the other on one substrate. On
average this can be 5–10 cylinders or colours in one job. The big disadvantage is that
all cylinders of a job must already be present. Thus, a one-piece flow is not possible.
In addition, a lot of time is spent mixing the colours. As a direct comparison with the
expected data was very difficult, the search for errors was focused on the most common
errors that can happen during the production of an engraved printing cylinder. The
coppering of the cylinder is a galvanic process, therefore it is possible that the cylinder
has holes that also print. Another common mistake in the production of engraved
printing cylinders is that parts that should print do not print. This can have different
causes. Most of them can be traced back to problems during the engraving of the
cylinder. To find these errors without a comparison to the expected data a search for
irregularities in the carried out. As there are a lot of issues that had to be checked it was
quite an ergonomically-challenging job, where some mistakes were not caught during
the check.

Manual
Inspection of
Individual
Color Printed
Product
(Figure 2b)

In the second stage the cylinders were all printed individually in the same (green) colour.
In an attempt to further improve the quality control of each individual cylinder, the
cylinder can also be printed itself. This impression was also checked manually with a
magnifying glass by process experts. This has the advantage that there is no need to
wait for the other cylinders of a job and no need to mix colours. However, the manual
reading of the prints takes longer because there is one print for every cylinder of an order
(5–10 cylinders) and not only one print for one order. Although this increased process
reliability because process mistakes were directly tested on the product, the ergonomic
weaknesses of the OQC process based on human experts could not be eliminated with
this new improvement.

Evaluation
of Errors by
an Expert
with aid of
patented
Software
cLynx
(Figure 2c)

This was then solved by the third stage: the digital scanning of the cylinder supported
by the patented cLynx software (DE102017105704B3) [36]. To improve the quality and
automate the process, a software named cLynx was developed to automatically compare
the scanned file with the engraving file. The invention relates to a method for checking
a printing form, in particular a gravure cylinder, for errors in an engraving printing
form. A press proof of a cylinder gets printed and scanned using a high-resolution
scanner. To compare the scans with the engraving file, a sequence of registration steps
are performed. As a result the scans are matched with the engraving file. The differences
between the two files are subject to a threshold in order to present the operator with
a series of possible errors. As a result, the complexity of checking the entire print is
reduced to a few possible errors that are checked by the operator. Since most of the
work of troubleshooting was done by scanning + software, only the most conspicuous
spots found by the software had to be evaluated by an expert.

Machine
scans the
cylinder and
integrates the
software
cLynx
(Figure 2d)

In the fourth stage, the entire printing process is omitted, as the cylinder surface
is recorded directly with a camera within a cylinder scanning machine. To further
reduce the cost of quality inspection, there is a need to check the cylinder without
having to print it. To scan the surface of the cylinder a machine was built with a
high-resolution line camera that scans the rotating cylinder at an approximate current
speed of 1 meter/second. Because the scanning itself takes a minor portion of the
processing time, this speed could actually be increased with a brighter LED lamp.
After every movement a picture is taken, resulting in a flat image of the cylinder
(Figure 3a). The main principles stay the same as with the scanned prints, as two
complete recordings of the cylinder are made. These get matched to the engraving file
and possible errors are presented to the operator using fixed thresholds (Figure 3b).
This is done by automatically selecting areas around possible errors and calculating the
absolute difference between the cylinder scan and the layout engraving file as shown in
Figure 4. This significantly shortens the inspection time. However, the most prominent
areas still have to be evaluated manually by the employee. For this reason, another fifth
step towards a fully automated process is desired.
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(a) Manual Inspection of Printed Product (b) Manual Inspection of Monochrome Printed Product

(c) Expert Evaluation and software cLynx (d) Machine scans and software cLynx

Figure 2. OQC evolutional continuous improvement process.

(a) Cylinder Scan (b) Cylinder Engraving File
Figure 3. Cylinder Scan and Layout Engraving File.
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(a) Detail Cylinder Scan (b) Detail Engraving Layout (c) Absolute Difference
Figure 4. Example 1 of automatic selection of areas around possible errors.

3. Deep Learning for Industrial Computer Vision Quality Control

In order to reduce time checking possible mistakes on the cylinder, and further reduce OQC cost
and value stream-related lead time, an automatic pre-selection of the errors using artificial intelligence
is desired. Due to intensive research investment and strategic focus on quality control throughout the
value stream process, real noisy industrial data has been classified and properly labelled. This is how
the idea was born to design a DNN that would learn from the statistical information embedded within
the previously classified data to perform a fully automated computer vision quality control.

Due to intensive research investment and strategic focus on quality control throughout the value
stream process, there were previously numerous classified and properly labeled data aggregated
through fourth stage. Possible errors were selected using thresholds between the original file and the
scanned cylinder. These were then shown to the operator, who judged them as if they were real errors.
These judgements were then saved comprising the labeled data-set.

In the fifth stage the process is taken over by a fully automated DNN architecture, as shown in
Figure 5, and as proposed in this paper (see Section 3.1.3), after an intensive experimental program,
which has tested different architectures (DNN, restricted boltzmann machines, deep belief networks,
etc.) and configurations of different filter sizes, abstraction layers, etc. [37].

The DNN soft sensor presented achieves an accuracy of 98.4% in fully automatic recognition of

production errors. More details are provided in the following subsections. This contribution makes it
possible to decide immediately after scanning whether the cylinder can be delivered or whether errors
need to be corrected. It was decided not to use specific denoising treatments as specific filters before
classification [38,39]. This is because of the intrinsic capabilities found in the adopted CNN architecture.
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Figure 5. Deep Learning Architecture for Industrial Computer Vision OQC in the Printing Industry 4.0.
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3.1. Deep Neural Network Architecture for Computer Vision in Industrial Quality Control in the Printing
Industry 4.0

3.1.1. Experimental Setup

The experiments in this study were implemented with a computer equipped with an Intel(R)
Xeon(R) Gold 6154 3.00GHz CPU and an NVIDIA Quadro P4000 Graphic Process Unit (GPU) with
96 GB of random-access memory (RAM). The operating system was Red Hat Linux 16.04 64-bit version.

The deep learning model training and testing were conducted with Keras which is an interface
for TensorFlow (Version 1.8), and the model was built in Python (Version 2.7) language [40].
TensorFlow is an interface for expressing machine learning algorithms, and an application for executing
such algorithms, including training and inference algorithms for DNN models. More specifically,
the TF.Learn module of TensorFlow was adopted for creating, configuring, training, and evaluating
the DNN. TF.Learn is a high-level Python module for distributed machine learning inside TensorFlow.
It integrates a wide range of state-of-the-art machine learning algorithms built on top of TensorFlow’s
low-level APIs for small- to large-scale supervised and unsupervised problems. Additional Python
interfaces were used: OpenCV for computer vision algorithms and image processing, Numpy for
scientific computing and array calculation, and Matplotlib for displaying plots. The details of building
the DNN model for OQC with Python are provided online at Open Access Repository and were
created with Jupyter Notebook.

3.1.2. Data Pre-processing

In order to train the DNN, standardized classified input data is needed. For this reason, the
Data pre-processing is divided in three steps: (1) decision of which is the size of the image that serves
as input for the DNN and what the size of the convolutional window used by the DNN should be,
(2) brightness adjustment through a histogram stretching, and (3) automatize the selection and labelling
of the file structure to be fed to the DNN.

1. Image Size for DNN Input and Convolutional Window Size

Due to the need for standardized input data, a decision needs to be made about which dimensions
the input images should have. The first decision is the aspect ratio. The following decision should
be how many pixels wide and high the input images should be. In order to get a first impression of
the existing sizes, a short analysis of the previous manually confirmed errors is made. According
to the data, the mean value of the width is slightly higher than that of the height. In the mean
aspect ratio this gets even clearer with a mean aspect ratio of about 1.5. This is probably a result of
some errors that are elongated by the rotation of the cylinder. The median aspect ratio is exactly
at 1.0. Because the median describes a higher percentage of errors better this should also be the
aspect ratio of the neural network input. As shown in the representation of the width and height
of error in pixel against the LOG of the amount of errors Figure 6.

As the size of the error also plays a role in the judgment of the errors, scaling operations should be
reduced to a minimum. Due to the range of the sizes this is not always possible. The training time
of the neural network would increase dramatically with large input sizes and small errors would
mostly consist of OK-cylinder surface. Therefore a middle ground is needed so that most input
images can be shown without much scaling or added OK-cylinder surface. A size in the middle
would be 100 pixels. We therefore calculate the percentage of errors with the width smaller or
equal to 100. The results show that about 90% of all errors have both the height and width below
or equal to 100 and almost 74% have both the height and width below or equal to 10. One option
would be to use an input size of 100 × 100.
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(a) Width of errors vs. LOG Number of errors

(b) Height of errors vs. LOG Number of errors
Figure 6. Aspect Ratio Inspection.

2. Brightness Adjustment

To get comparable data for all cylinder images, pre-processing is needed and is performed on the
complete scan of a cylinder. From this scan multiple examples are taken. Because there can be
slight deviations due to many influences during the recording of the cylinder surface, this can only
be achieved by having a similar brightness for the cylinder surface and engraved parts. Another
important point is that no essential information gets lost from the images and, that the brightness
between the engraved and not engraved parts are comparable for all cylinder scans. Therefore a
brightness stretch is needed but only few pixels are allowed to become the darkest or brightest
pixels. Notwithstanding, the amount of pixel that become the darkest and brightest pixels ca
not be set to a very low value because noise in the image data would result in big differences.
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In conclusion a low percentage of the pixels should be set as darkest and brightest. For example,
the lowest and the highest percentage should each have a maximum of 0.5%. Figure 7 shows a
stretching example for brightness adjustment for one image so that 0.5% of all pixels will have a
value of 0 and 0.5% of all pixels will have the value of 255.

(a) Histogram before stretching

(b) Histogram after stretching
Figure 7. Pre-processing Histogram for brightness adjustment.

3. Automatic selection and Dataset Labelling

To simplify the later steps, the images need to be cut from the original file and saved into two
folders with examples that are OK-cylinder (Figure 8a) and examples that are not-OK-cylinder
(Figure 8b). The great variety of patterns presented in the spectrum can be observed in the figures.
The very nature of the process implies that each new product represents a new challenge for DNN,
as it has probably never before been confronted with these images. For this reason, the errors may
be of a very different nature. This implies a high complexity of solving the challenge of training
and testing the DNN. Likewise, the different shades of black and grey, very difficult to appreciate
with the naked eye when manually sorting the images, represent an added difficulty that must be
resolved by DNN architecture.

If errors are smaller in width or height than 100, the ROI gets increased to 100. If any size is bigger
than 100 pixels is ignored. For the purpose of checking later on, the big input data is split into
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100 × 100 parts. If any one of these is detected as an error, all are marked as an error. As shown
in the Open Access Repository, there are multiple possible ways to handle the bigger data. Every
example also has the actual and target data. There are different ways of using this data as input.
One way is just using the actual data. A different option is to use the difference between the
actual and expected data. The problem in both cases is that information gets lost. Better results
have been achieved by using the differences. These get adjusted, so that the input data is in a
range from [−1,1]. Once this is performed, and because a balanced dataset is important to train
the neural network and the OK-cylinder examples far outnumber the not-OK-cylinder examples,
an OK-cylinder example is only saved if a not-OK-cylinder example has been found previously.

3.1.3. Automatic Detection of Cylinder ErrorsUsing a DNN Soft Sensor

The DNN soft sensor architecture design is performed with two main goals in mind: classification
and performance:

• Classification The first goal of this architecture is not to identify different objects inside of part
of the images but to separate two classes (not-OK and OK images), where the main source of
noise came from the illumination factor from the scanner lectures. Therefore, neither the so deep
architectures nor the identity transference, which was the key for the ResNet [41] is needed in our
case, and just few convolutions shall help identify convenient structural features to rely on.

• Performance. The proposed architecture is even more simplistic than the AlexNet [42] one, as we
do not use five convolution layers but just three. The main reason is to look for a compromise
between the number of parameters and the available dataset of images. Our architecture was
always looking to be frugal in terms of resources, as it is expected to be a soft sensor, running in
real time and having the inherent capability of retrain for reinforced learning, close to such real
time constraint.

After data acquisition and pre-processing, the input data of the DNN are figures represented as
tensors. A type of network that performs well on the classification problem of such data is usually
divided in two main parts: feature extractors and classifiers as shown in Figure 5:

• Feature Extraction. The feature extraction is performed by a deep stack of alternatively fully
connected convolutional and sub-sampling max pooling layers, the even numbered layers are for
convolutions and the odd numbered layers are for max-pooling operations.

– Convolution and ReLu (rectified linear unit) activated convolutional layers. Convolution
operations, by means of activation functions, extract the features from the input information
which are propagated to deeper level layers. A ReLu activation function is a function meant
to zero out negative values. The ReLu activation function was first presented in AlexNet [42]
and solves the vanishing gradient problem for training DNN.

– Max pooling. Consists of extracting windows from the input feature maps and outputting the
max value of each channel. It’s conceptually similar to convolution, except that instead of
transforming local patches via a learned linear transformation (the convolution kernel), they
are transformed via a max tensor operation.

• Classification. The classification is performed by fully connected activation layers [43].
Some examples of such models are LeNet [44], AlexNet [42], Network in Network [45],
GoogLeNet [46–48], DenseNet [49].

– Fully connected activation layers output a probability distribution over the output classes [25].
Because we are facing a binary classification problem and the output of our network is
a probability, it is best to use the binary-crossentropy loss function. Crossentropy is a

27



Sensors 2019, 19, 3987

quantity from the field of Information Theory that measures the distance between probability
distributions or, in this case, between the ground-truth distribution and the predictions.
It is not the only viable choice: we could use, for instance, mean-squared-error. However,
crossentropy is usually the best choice when dealing with models that output probabilities.
Because we are attacking a binary-classification problem, we end the network with a single
unit (a Dense layer of size 1) and a sigmoid activation. This unit will encode the probability
that the network is looking at one class or the other [25].

(a) OK cylinder Images

(b) not-OK cylinder Images
Figure 8. Examples of OK cylinder and not-OK cylinder Images.
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As shown in the Open Access Repository, using Keras, Tensorflow backend for the DNN and
OpenCV/Numpy for the image manipulation, a balanced dataset of 13,335 not-OK- and 13335
OK-cylinder examples is used, giving a total of 26,670. These were collected over a period of 14 months
from almost 4000 cylinder scans. The training part is mirrored vertically and horizontally resulting
in 85,344 training samples in total. All not-OK- cylinder examples are labeled 0 and all Ok examples
are labeled 1. As a standard procedure, the data is split into training dataset (80%), testing dataset

(10%) and validation dataset (10%). The training dataset is used to train the DNN throughout an
number of epochs as shown in Figure 9. It can be observed that both accuracy and loss do not increase
or decrease significantly after epoch number 10.

(a) DNN Model Training Accuracy (b) DNN Model Training Loss
Figure 9. DNN Training and Testing Results.

The testing dataset is subsequently used to test DNN performance. The confusion matrix is a
standard procedure to summarize the results of such a training by typically combining contingency
classes (TRUE, FALSE) and (OK, not-OK), hence building four categories: (1) True Negative (TN),
which is an error and has been predicted as an error; (2) False Positive (FP), which is an error but has
not been predicted as an error, and is by far the most damaging category; False Negative (FN) which
is not an error but has been predicted as an error; and (4), True Positive (TP) which is not an error
and has not been predicted as an error. Specifically, given the balanced dataset chosen, the accuracy
(ACC) delivered by the DNN soft sensor, defined by the expression ACC = (TP + TN)/(TP + TN +

FP + FN), is 98.4%. The TN rate is 97.85%, the TP rate is 99.01%, the FN rate is 2.15% and the FP

rate is 0.99%. These levels of ACC can be considered acceptable for such a complicated industrial
classification problem. The results are summarized in Figure 10.

29



Sensors 2019, 19, 3987

Figure 10. DNN Model Testing Confusion Matrix.

In Table 2 the DNN architecture shown in Figure 5 is described layer by layer by outlining
the rationale behind the choice of a layer rather than another. Going even further, to compare the
performance of the proposed soft DNN sensor, it has been compared with three similar architectures.
The result of this comparison is shown in Open Access Repository and summarized in Figure 11
in which it is clearly shown that the proposed DNN soft sensor has superior performance to other
alternative architectures.

Figure 11. Deep Learning Architecture Comparison. Time to Train vs. Accuracy.

Two parameters, accuracy and computational time, have been measured consistently with the
same training and test set, and then compared. First, it has been tested with an identical architecture
by adding a dropout, then it has been tested with a deeper architecture and finally with a more shallow
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DNN with fewer layers. The accuracy should be as high as possible in order to generate the lowest
possible error in data characterization, and the computation time should be as low as possible in order
to ensure that the soft DNN sensor can be effectively integrated into an Industry 4.0 environment,
thus ensuring maximum effectiveness and efficiency respectively. A smooth DNN sensor must be
not only accurate but also fast to ensure, among other things, a minimum Lead Time impact on the
value creation process and low CO2 emissions derived from the energy consumption associated with
the computation.

Table 2. DNN Architecture Detailed Description.

Layer Size Layer Name Layer Description and Rationale behind the Choice

(98, 98, 32)
conv2d 1
activation 1 (relu)

This is the first convolutional layer of the network. As observed
in Figure 12 this layer mainly finds edges in the input image.
In order to keep the values in check, an activation function is
needed after each convolutional layer.

(49, 49, 32) max pooling2d 1
In order to reduce the complexity of the convoluted result a max
pooling layer is used. Only the maximum in this case of a 2 × 2
pixel window is chosen.

(47, 47, 64)
conv2d 2
activation 2 (relu)

In the second convolutional layer the results describe more
complex forms as is visible in Figure 12. In order to keep the
values in check, an activation function is needed after each
convolutional layer.

(23, 23, 64) max pooling2d 2
As with the previous max pooling layer this layer is used to reduce
the complexity of the convoluted result.

(21, 21, 64)
conv2d 3
activation 3 (relu)

In the third convolutional layer resulting features are even more
complex. In order to keep the values in check, an activation
function is needed after each convolutional layer.

(10, 10, 64) max pooling2d 3
As with the previous max pooling layer this layer is used to reduce
the complexity of the convoluted result.

(8, 8, 32)
conv2d 4
activation 4 (relu)

This is the final convolutional layer with the most complex
features. In order to keep the values in check, an activation
function is needed after each convolutional layer.

(4, 4, 32) max pooling2d 4
As with the previous max pooling layer this layer is used to reduce
the complexity of the convoluted result.

(512) flatten 1
The flatten layer is used to flatten the previous 3 dimensional
tensor to 1 dimension.

(64)
dense 1
activation 5 (relu)

To further reduce the complexity we use a fully connected layer.
Before the final connection takes place the relu function is used to
zero out the negative results.

(1)
dense 2
activation 6 (sigmoid)

As the probability of the input image being an error is wanted,
the sigmoid function is needed to transform the input value into
a probability [0–1].
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(a) 1st Layer Conv 2D-1 (b) 2nd Layer Activation-1

(c) 3rd Layer Max Pooling-1 (d) 4th Layer Conv 2D-2

(e) 5th Layer Activation-2 (f) 6th Layer Max Pooling-2

(g) 7th Layer Conv 2D-3 (h) 8th Activation-3

(i) 9th Max Pooling-3 (j) 11th Conv 2D-4

(k) 12th Max Pooling-4
Figure 12. Visualization of all DNN layers as color-coded images of a TN image.

3.1.4. Visualizing the Learned Features

Experience has shown that visualizing what each of the DNN layers learns can help deep
architecture designers improve their understanding of the learning of the DNN hidden layers and
thus support an appropriate fine tuning of their design for improvement purposes. This is because
visualizing what the DNN has learned can help in the understanding of the decision making process.
There are different ways of visualizing what has been learned by showing different parts. These can
make it easier to understand why some things do not work as expected. For example why some
pictures with errors were not categorized as errors (FP).

This visualization can be performed in different ways. For instance, given an example image of a
not-OK cylinder shown in Figure 13a, an option is to visualize what the DNN captures using class
activation heatmaps. A class activation heatmap is a 2D grid of scores associated with a specific output
class, computed for every location in any input image, indicating how important each location is with
respect to the class under consideration. An example is shown in Figure 13b.
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(a) Example Image of Error in not-OK cylinder (b) Activation Heatmap of Error in not-OK cylinder

Figure 13. Example Image not-OK-cylinder and Activation Heatmap

Another option is to calculate an input image that gets the highest response from a layer. This
is done by displaying the visual pattern that each filter is meant to respond to. This can be done
with gradient ascent in input space: applying gradient descent to the value of the input image of
a convolutional network so as to maximize the response of a specific filter, starting from a blank
input image. The resulting input image will be one that the chosen filter is maximally responsive to.
An example is shown in Figure 14.

(a) Most Responding Input (b) Most Responding Input Detail

Figure 14. Most Responding Input.

Finally, an alternative approach would be to show the outputs of all DNN layers as color-coded
images. Visualizing intermediate activations consists of displaying the feature maps that are output
by various convolution and pooling layers in a network, given a certain input (the output of a layer
is often called its activation, the output of the activation function). This gives a view into how an
input is decomposed into the different filters learned by the network. We want to visualize feature
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maps with three dimensions: width, height, and depth (channels). Each channel encodes relatively
independent features, so the proper way to visualize these feature maps is by independently plotting
the contents of every channel as a 2D image. For explanatory purposes, on the Open Access Repository,
four different examples, TP-TN-FP-FN, of such feature maps are depicted. These shall help the reader
better understand what the DNN sees and how it responds in different circumstances. One of these
examples, TN, is visualized in Figure 12.

4. Results and Discussion

Due to the automation by means of the soft DNN sensor, the costs associated with OQC could be
drastically reduced. Also, the accuracy of error detection increased considerably. The results can be
therefore considered very promising and allow for different ways of further industrial implementation.
However, these results have to be interpreted in a broad context of Industry 4.0. This section provides
some essential aspects that will help to understand and contextualize the contributed results through a
meta-discussion at various organizational levels. This will help to present in the next section a possible
future strategic development of these deep technologies in the short, medium and long term.

There are different steps that have to be taken until the full potential can be used in the production
without taking a too high risk of missing an error.

1. Using the DNN fully automate OQC classification to predict the amount of errors a cylinder has.

The DNN only provides a successful result 98.4% of the time. To be sure that the wrongly classified
images are not big mistakes, human experts will review all possible errors. DNN has already
had a positive influence on the workflow, as we know how many errors are very likely an error:
DNN helps significantly in the planning of the next workflow step because it is known with a
high probability if the cylinder needs to go to the correction department or if it is very likely that
the product is an OK-cylinder.

2. Showing the error probability to the operator that is currently deciding if it is an error or if it
is not.

This gives a hint to the operator, who can give feedback if there are relevant mistakes that were
not predicted as mistakes. This can also help the operator to reduce the likelihood of missing an
error. Once this soft sensor was integrated in production, OQC productivity, measured in hours
per unit - time an operator spends in the OQC -, dramatically increased by 210% as decision about
defects is made in an automatic way.

3. Only showing possible errors that have been predicted by the DNN.

In the last step, the DNN could completely filter out errors that are not relevant. This can also
be used in multiple steps because it is possible to increase the threshold error probability for
the possible error to be shown. At some point a threshold will have to be chosen taking into
consideration the cost of checking a possible error and the cost of missing a error. This would
completely eliminate the step of checking the errors and the confirmed errors would only be
checked by the correction department.

5. Conclusions and Future Steps of Deep Learning in a Printing Industry 4.0 Context.

Although there has been an immediate performance increase in OQC error detection accuracy
and cost effectiveness, larger scope for improvement is down to the managerial dimension of such
a sensor. This is because it can be expanded to not only detect defects but also to classify them in
categories. Although this requires additional effort, it will enable the cause-effect analysis regarding
manufacturing conditions and defect frequencies.

Some of these efforts can be specifically targeted to achieve an improvement in the accuracy of
the model. For example learning from the false predictions: to further improve the correct prediction
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rate it is important to take a look at the examples that have not been predicted correctly. This could
potentially improve the understanding why the wrong prediction was made by the DNN:

• Not-OK examples that have been predicted as OK. Looking at the actual errors in the test data that
have not been predicted as errors, as in Figure 15a, a few issues could be the cause of the wrong
predictions. Some of the examples actually do not look like they are really not-OK. The cause of
this could either be, that the input data was not labeled correctly or that the error really is not
highly visible in the image.

• OK examples that have been predicted as not-OK. After looking at the visualization of the DNN,
it gets clear that the main focus for finding mistakes is looking for extreme edges. These can
be seen in a lot of the wrongly classified examples. Especially the first two examples seen in
Figure 15b have some extreme edges that are a result of a slight misalignment of the images in the
pre-processing. Therefore the image registration in the pre-processing part between the original
and the recording of the cylinder surface needs to be improved.

(a) FP. Is an error but has been predicted as OK

(b) FN. Is not an error but has been predicted as such.

Figure 15. Examples of FP and FN Images.

This technology could also be implemented at the customer side to increase defect detection
accuracy on the printed product itself. This strategic step is currently being discussed internally. Such
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analyses will provide sensitivity about operations and operational conditions, which will also impact
in value stream-related efficiency and effectiveness.

These aspects will probably be the next steps in further research actions to be developed within
an Industry 4.0 context. For instance, deep learning applied to manufacturing Industry 4.0 technology
will have an impact at various levels of aggregation in the printing manufacturing value chains:

1. Deep Learning at a shopfloor level shall impact quality, reliability and cost.

At the shopfloor level, this paper has shown an example of how deep learning increases the
effectiveness and efficiency of process control aimed at achieving better quality (e.g., with OQC)
and lower costs, allowing self-correction of processes by means of shorter and more accurate
quality feedback loops. This intelligence integrated in the value streams will allow many humans
and machines to co-exist in a way in which artificial intelligence will complement in many aspects.
In the future, significant challenges will still be encountered in the generation and collection of
data from the shopfloor.

The main challenge towards a fully automated solution is currently getting the Python DNN
integrated into the C++ cLynx program. After this is successfully completed, a testing phase with
the cLynx users is planned. If the results are satisfactory, the complete automatic process will
be started. If the results are not satisfying, further steps have to be taken so as to improve the
DNN further.

2. Deep Learning at a supply chain level shall impact lead time and on-time delivery.

At a higher level of supply chain, producing only what the customer needs, when it needs
it, in the required quality, the integration of deep learning technology will allow not only the
systematic improvement of complex value chains, but a better use and exploitation of resources,
thus reducing the environmental impact of industrial processes 4.0.

3. Deep Learning at a strategic level shall impact sustainable growth.

At a more strategic level, customers and suppliers will be able to reach new levels of transparency
and traceability on the quality and efficiency of the processes, which will generate new business
opportunities for both, generating new products and services and cooperation opportunities in a
cyber–physical environment. In a world of limited resources, increasing business volume can only
be achieved by increasing the depth of integrated intelligence capable of successfully handling
the emerging complexity in value streams.

To summarize, despite the "black box problem" and the challenge to have enough information
and labeled data available for learning, Deep Learning will probably conquer in the field of machine
vision, one country after another, and will act in the background without the user being aware of it.
The role that Deep Learning will play in the creation of cyber–physical systems will be adopted from a
strategic point of view, in which business leaders will tend to think of deep architectures as possible
solutions to problems.
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Abstract: Industry 4.0 leaders solve problems all of the time. Successful problem-solving behavioral
pattern choice determines organizational and personal success, therefore a proper understanding of
the problem-solving-related neurological dynamics is sure to help increase business performance.
The purpose of this paper is two-fold: first, to discover relevant neurological characteristics
of problem-solving behavioral patterns, and second, to conduct a characterization of two
problem-solving behavioral patterns with the aid of deep-learning architectures. This is done by
combining electroencephalographic non-invasive sensors that capture process owners’ brain activity
signals and a deep-learning soft sensor that performs an accurate characterization of such signals
with an accuracy rate of over 99% in the presented case-study dataset. As a result, the deep-learning
characterization of lean management (LM) problem-solving behavioral patterns is expected to
help Industry 4.0 leaders in their choice of adequate manufacturing systems and their related
problem-solving methods in their future pursuit of strategic organizational goals.

Keywords: EEG sensors; manufacturing systems; problem-solving; deep learning

1. Introduction

In the search of operational excellence in an Industry 4.0 context, manufacturing leaders
constantly face a myriad of ever-changing challenges. They make thousands of choices, often under
pressure, between alternatives with different overall value outcomes, and thereby exercise their
ability to make adequate decisions. This ultimately determines their individual and organizational
success. Operational excellence is a business discipline whose original main driver is the continuous
improvement of processes [1] while encompassing other disciplines such as lean management (LM) [2],
its combination with six sigma [3], scientific management [4], and organizational design [5]. Specifically,
LM is a management discipline that supports the operational excellence effort by focusing on
maximizing the value [2] of complex networked value streams [4] by systematically reducing internal
process variability [6,7]. The LM system is based on different variations of the Shewart–Deming
problem-solving quality control loop [8]. LM thus enables organizational leaders to attain operational
excellence and cope with the socio-technical challenges that environmental complexity poses by
applying a set of problem-solving behavioral patterns to several challenges—such as just-in-time
production, total quality management [9], or service quality level increase [10], for instance. For
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these reasons, LM was chosen as a preferable framework to try to better understand problem-solving
behavioral patterns of individuals within complex manufacturing contexts.

Although many LM problem-solving behavioral patterns are reported to have been implemented
with value-stream performance increase [11–15], there is still much controversy as to which
discriminating characteristics make some of these problem-solving behavioral patterns better than
others and why [16]. The reason for this might be that scholars have not provided quantifiable evidence
yet of the process owners‘ real brain activity when performing such tasks. This could help to provide an
understanding of the similarities and differences between the different proposed behavioral patterns.
In the absence of such an analysis, the discussion remains subject at best to inference and at worst to
trends or opinion. Such awareness is of utmost importance to facilitate the decision of which behavioral
patterns should potentially be used during the implementation of different manufacturing systems.

This work aims to use modern sensor technology located on the human brain to capture signals
that help characterize the cortical activity of individuals performing problem-solving tasks in Industry
4.0 environments. The technology based on non-invasive low-cost sensors that offer neuroimaging in
real environments such as industrial ones is not sufficiently developed [17,18]. The sensors used in real
environments must guarantee the necessary comfort, low invasiveness, and high reliability. For this
reason, not all devices available on the market are suitable for these applications [19]. On the other hand,
the combination of this hardware with soft sensors based on artificial intelligence that allow increase
of the low signal-to-noise ratio (SNR), is a promising line of research when combining brain–computer
interface algorithms with biosignal acquisition technologies [20]. This represents undoubtedly a
strength of the work presented. The overarching goal of this research is to offer Industry 4.0 leaders a
better understanding of the brain processes underlying problem-solving behavioral patterns, as well
as to highlight possible management implications when choosing the most appropriate manufacturing
systems to achieve their strategic objectives.

As the graphical abstract shows in Figure 1, this is achieved by means of a case study within
an Industry 4.0 automotive Japanese manufacturing facility in which several LM process owners are
asked to solve value-stream-related problems with two specific LM behavioral patterns while being
subject to non-invasive low-cost sensors electroencephalographic (EEG) measures. Subsequently, two
methods are used to perform a characterization of the tasks. One is based on expert neurophysiological
hypotheses. Other is based on a deep-learning (DL) soft sensor that performs the classification of
pre-processed labelled EEG signals with a 99% accuracy rate.

After placing the study in a broad context, exploring the importance of the problem, outlining the
purpose and its significance, as well as highlighting the relevance of the achieved results, the structure
of the paper hereinafter is structured in order to ensure clarity in the presentation, replication of the
results obtained, and a proper framing in the ongoing global research context. First, Section 2 starts by
providing a brief framework through key publications on neurological goal-directed decision-making,
on LM methodologies and outlining the research hypotheses. Second, the Materials and Methods
Section 3 describes in detail how field research was conducted with aid of a case study. Additionally,
the dataset of the case study, and notebook code is made available on an Open Access Repository to
allow for verification and ensure replicability. Third, the Results and Discussion Section 4 summarizes
and discusses the results obtained. Finally, Section 5 outlines several managerial conclusions, and
future expected management implications from a broad operational excellence endeavor perspective.
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Figure 1. Graphical Abstract.

2. Literature Review

Industry 4.0 leaders make decisions in an ever-changing environment and in order to choose
between value outcomes of their LM oriented actions they need to be aware that optimal
decision-making requires three main characteristics [21]: self-control, active working memory, and
adaptive modulation of this value signal. In neurological terms, such functions are understood as
executive goal-directed decision-making and are neurologically managed by the prefrontal cortex
(PFC). Neuroscientists such as Miyake [22] have shown that some skills crucial for Industry 4.0
decision-making constitute the PFC function:

1. Inhibition

A capacity to resist to distraction. While solving problems in industrial shopfloors with high
levels of potential distractions [23], it is important to focus on the most important root-causes of
value-stream variability and discard less relevant information.

2. Shift

A capacity to shift smoothly from one task, routine, or context to another. When dealing with
highly interdependent complex processes, typical for instance of re-configurable manufacturing
systems [24], it is important to shift within several levels of complexity to flexibly conduct an
analysis in a multidimensional complex environment.

3. Working Memory

A capacity to hold and manipulate multiple ideas. Within a manufacturing environment with
multiple interconnected processes, it is necessary to accurately hold a significant amount of
relevant information when realizing problem-solving tasks [25].
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The PFC is a complex region of the brain that allows us to adapt to an ever-changing
environment [26]. It seems, therefore, more than plausible to hypothesize that the brains of those
industrial process owners who practice LM should present a high level of PFC activity. However,
do they? The fact of the matter is that this is not really known with any certainty. Therefore,
it is imperative to explore the unique PFC features in the LM context to better understand LM
problem-solving behavioral patterns. This is the main motivation of this paper. To date there have
been several systematical studies on the relationship of brain activity to high-level complex cognitive
tasks [27,28] and our aim is to deepen this body of knowledge.

Decades of neuropsychological research has related the PFC of the brain processes that guide
goal-directed and purposeful behavior: goal-directed spatial navigation [29,30], goal-directed food
choice in obesity [31], cognitive rehabilitation [32], reward-based learning [33,34], decision-making
impairment [35], response inhibition to stimuli [36,37], etc. PFC guided top-down modulation
underlies our capacity to attend to significant and discard other less relevant stimuli [38]. This implies
a hierarchical guidance of our thoughts, actions, and emotions. There are several organizational
principles to distinguish between functions of the lateral and medial areas of the PFC:

1. Outer/Inner World Representation

One of the first of these approaches in primates considers that the lateral PFC area represents the
outer world related cognition and that the medial and ventral PFC represent our inner emotional
world [39].

2. Abstract/Social Cognition

Another approach considers that the PFC has an anterior-posterior organization in which anterior
areas are involved in abstract information processing [40], such as metacognition, whereas more
posterior regions are involved in social cognition [41].

3. Inhibition/Generative

Aron [42] suggest that the PFC presents a hemispheric lateralization in which the right hemisphere
inhibits improper emotions or actions, whereas the left hemisphere concentrates on generative
processes. These results are in the same line of those exposed in the avoidance (BIS) vs. approach
(BAS) resting state and personality component theory [43]. They explain how high levels of
BAS explain high levels of cortical activity in the right hemisphere while in the resting state and
in experimental conditions with positive stimuli. In contrast, high BIS levels indicate cortical
activity in the right hemisphere while in the resting state and under experimental conditions with
negative stimuli.

4. Context-Dependent Goal Modulation

More recently, researchers have recognized that context-dependent, goal-directed behavioral
control and decision-making ‘involves constant reciprocal and dynamic communication between
PFC cortices and posterior brain regions’ [44]. Specifically, the ventromedial PFC supplies the
basis for goal-directed decision-making [45] and the context-dependent functionality originates
in a modulation of the ventromedial PFC by the dorsolateral PFC [46]. Correlative interaction
between such brain regions, ‘enable goal modulation of brain activity based on goal states’ [47,48].

Subsequently, malfunctioning connectivity between the ventromedial PFC and dorsolateral PFC
regions has been associated with ‘poor context-dependent, goal-directed modulation and distorted
problem-solving behavioral patterns’ when aging [49]. Two relevant examples for organizational
leaders and decision makers in the context of operational excellence of this can be found in transient
(stress) or permanent (psychopathy) neural conditions:

1. Stress

Manufacturing leaders are constantly under environmental pressure. It has been proven
by that ‘exposure to uncontrollable stress, acute, or chronic, causes temporal loss of PFC
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cognitive functions’ [50], which leads to poor decision-making. The fact that even mildly ’acute
uncontrollable stress induces a rapid and dramatic loss of PFC cognitive abilities’ is particularly
relevant for organizational leaders and decision-making when dealing with subordinates [51].

2. Psychopathy

Psychopaths present a demonstrated, reduced neural synchronization between ventromedial
PFC and dorsolateral PFC while engaged in cognitive tasks with an emotional component [52].
Such cerebral functional configuration seems to (1) suppress decentralized information that is
a-priori irrelevant to the goal at hand [53] and (2) lead to a predisposition of moral judgement
impairment [54]. This might be why there is a disturbingly high number of individuals with such
a personality trait who assume leadership roles [55].

However, shifting attention between different perspectives or behavioral flexibility, depending on
the context, is the key aspect to consider here. According to [56], behavioral flexibility is subserved
by the dorsolateral PFC, but these scholars demonstrate that the temporoparietal junction (TPJ) plays
a coordinated role with dorsolateral PFC in stimulus-driven attention shifting. A combined activity
of dorsolateral PFC and TPJ predicts flexible context-dependent cognitive shifting. As such, changes
in the reciprocal coordinated functional connectivity of these brain regions may provide a powerful
marker with which to assess brains‘ ability to perform flexible context-dependent mapping from
sensory evidence. Furthermore, the cost and limitations, depending on the task complexity of the
ventromedial PFC-dorsolateral PFC [57] of goal-directed modulation and dorsolateral PFC-TPJ [56]
context-dependent cognitive flexibility support the hypothesis that its engagement is only activated if
the behavioral task at hand requires it.

The fundamental behavioral task of LM is the systematic implementation of the Shewart–Deming
cycle or PDCA (Plan-Do-Check-Act) [2,4]. However, there are numerous interpretations of such a
core common denominator, as shown in [14]. In behavioral terms, all of them are, by definition,
goal-directed. They can be qualitatively categorized in one of two main classes, depending on their
context-dependent valuation:

1. Context-Independent

These typically present a fixed target-state condition or future-state that is to be achieved by the
subject. Some examples are [11,15,58,59].

2. Context-Dependent

This provides a direction (HOSHIN) of improvement, but does not set any specific goal. Examples
include some Japanese interpretations of PDCA [14,23,60,61].

Within this frame, the scope can be narrowed now by seeking to determine which neural processes
present a high correlation, while performing two specific LM problem-solving behavioral patterns,
KATA [11] and (CPD)nA (Check-Plan-Do-...n-times-...-Act) [14], as shown in Figure 2:
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(a)

(b)

Figure 2. LM Goal-Directed problem-solving behavioral patterns [16]. (a) KATA [11]. (b) (CPD)nA [14]
by Norbert Rosenfeld. Saueressig GmbH. Vreden. Germany. Reproduced with permission.

1. KATA [11] is a standardized behavioral pattern that can be summarized in four steps:

I Set direction. Decide in which direction there can be improvement.
II Understand the current state. Create a common understanding of the factual reality of

the value stream at hand.
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III Establish target condition. Fix a target state for the subject to achieve.
IV Perform PDCA towards the target condition. Systematically and iteratively approach the

target state.

KATA fixes the subject’s attention to a certain set of target-state conditions (Step 3) and does not
permit these to be changed until they are achieved (through Step 4). This does not permit the
subject to shift between contexts, for his/her mind is concentrated on target-state achievement.

2. (CPD)nA [14] derives from Japanese interpretations of continuous improvement [61] and its
standardized behavioral pattern can be summarized in four steps:

I Check. Decide how to measure success.
II Plan.

i. Plan-Process. Separate what is known from what is unknown in the value stream.
ii. Plan-Priority. Understand the main sources of value-stream variability.

iii. Plan-Root Cause Analysis. Analyze the main source of internal process variability
in search of its root cause.

III Do. Define an action to eliminate the source of internal process variability.
IV Act. Standardization of the best-known way to carry out the process.

(CPD)nA does not set any specific target state, and instead, encourages continuous improvement
of the given success measurement (calculated from the Check) based solely on the knowledge of
the current state of the value stream. This permits the subject to shift flexibly between contexts to
adapt his/her behavior to the current state condition.

The use of non-invasive brain EEG signals through wearable technology has been previously
proven helpful [62]. Some of the multiple applications of this technology can be found in task
recognition [17], evaluation of driver vigilance [63–65], characterization of focused attention and
working memory [66], emotional states [67] and stress [68,69] assessment, stimulus recognition [70],
cognitive workload classification [71] or user’s states assessment [72], and for the formulation of control
commands [73]. Several electroencephalographic (EEG) standards exist in the sensor characterization
on the human brain and in this paper the American Electroencephalography Society [74] standard was
chosen, as shown in Figure 3.

To increase effectiveness of EEG brain signal processing, filters have been developed to remove
noise on brain signals, as shown in [75–77]. This pre-processing is outlined in Section 3.4. In addition,
various data analysis techniques have been used to extract relevant information from EEG data such
as cross-correlation and DL:

1. Cross-Correlation Function

The most frequently used measure of interdependence between EEG signals in neuroscience is
probably the cross-correlation function [78]. The cross-correlation function represents the inner
product between two normalized signals and provides a measure of the linear synchronization or
similarity between them [79]. Cross-correlation function combined with expert knowledge has
been used, for example, in pattern recognition to correlate EEG frequency bands and other bodily
signals, such as one’s heart rate for sleep classification [80], in neurophysiology to detect the risk
level of schizophrenia [81] or to analyze the relationship of brain activity and breathing [82], and
even as a calibration method for brain–computer interfaces [83].

2. Deep Learning

Additionally, in the analysis of EEG signals, several approaches have been used that mostly
consist of extracting features from the signals in several domains [84–86] that are selected by
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experts or by dimensional reduction algorithms, such as principal and independent component
analysis [87] or more recently with differential entropy and linear discriminant analysis filters [88].
However, there is a fundamental inherent limitation in all these methods, as they require expert
knowledge and manual expert manipulation of data is biased. Therefore, an automatic feature
selection that is independent of human expertise is desirable.

DL can serve this purpose, as is an artificial intelligence method that can learn features purely from
data [89]. This method presents two main advantages: first, it learns features directly from the
raw data using several layers (deep) in a hierarchical manner [90], and second, it can be applied
to unlabeled data by unsupervised methods, this is without the need for expert supervision [91].
In general, DL architectures such as deep neural networks, contain an input layer and an output
layer of ‘neurons’. In between, there are numerous layers of hidden units [92]. More specifically,
deep neural networks use unsupervised learning to adjust the weights between hidden layers,
enabling the network to identify the best internal features of the inputs [93].

Recent research has involved DL techniques to classify EEG datasets of subjects’ executed
movements [94–96] or motor imagery movements [97]. In addition, some contributions propose
to use the EEG signals for DL biometric identification [98]. Also, there have been some results that
are related to the identification of relevant sensors in emotion recognition EEG tests [99]. Recently
scholars have used DL to perform human activity recognition from brain activity in Industry
4.0 environments [100] in which several transforms of raw data into images are depicted. Our
research aims to expand this approach on the characterization of complex LM problem-solving
behavioral patterns in an Industry 4.0 environment.

Figure 3. AES EEG electrode standardized nomenclature.

To achieve this, this study outlines the following four research hypotheses (H) and their related
LM interpretation shown in Table 1. Furthermore, as these hypotheses are based on neurophysiological
expert knowledge, management needs to be provided with tools that allow a proper discernment
of which behavior is followed, based only on the data. For this reason, a DL-based soft sensor is
developed that can perform this task.
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Table 1. Research questions and related hypotheses.

# Hypotheses LM Interpretation

1

H1. Subjects that engage in LM
problem-solving behavioral patterns
present a strong correlation in their PFC
activity. In such a case, datasets from
sensors AF3-F7-F3-AF4-F4-F8 would
present a strong correlation.

This would mean that LM problem-solving
behavioral patterns can be understood in
neurological terms as executive behavioral
pattern.

2

H2. Subjects that engage in KATA and
(CPD)nA present strong correlations of
their dorsolateral PFC-ventromedial PFC
combined activity. In such a case,
datasets from sensors F7 (ventromedial
PFC Left Hemisphere) and F3 (dorsolateral
PFC Left Hemisphere), as well as F4
(ventromedial PFC Right Hemisphere) and
F8 (dorsolateral PFC Right Hemisphere),
would present a strong correlation.

This would mean that both (CPD)nA and
KATA can be regarded in neurological terms
as goal-oriented LM behavioral pattern.

3

H3. Subjects that engage in KATA present
weakly dorsolateral PFC-TPJ correlated
combined activity. In such a case, datasets
from sensors F7 (ventromedial PFC Left
Hemisphere) and F3 (dorsolateral PFC Left
Hemisphere) would not correlate strongly
with P7 (TPJ Left Hemisphere), and sensors
F4 (ventromedial PFC Right Hemisphere)
and F8 (dorsolateral PFC Right Hemisphere)
would not correlate strongly with P8 (TPJ
Right Hemisphere).

This would mean that KATA could be
understood in neurological terms as a
goal-oriented, context-independent LM
behavioral pattern.

4

H4. Subjects that engage in (CPD)nA
present a strong dorsolateral PFC-TPJ
correlated combined activity. In such a case,
datasets from sensors F7 (ventromedial
PFC Left Hemisphere) and F3 (dorsolateral
PFC Left Hemisphere) would correlate
strongly with P7 (TPJ Left Hemisphere),
and sensors F4 (ventromedial PFC Right
Hemisphere) and F8 (dorsolateral PFC
Right Hemisphere) would correlate
strongly with AF3 (dorsolateral PFC Left
Hemisphere).

This would mean that (CPD)nA could
be understood in neurological terms as
a goal-oriented, context-dependent LM
behavioral pattern.

3. Materials and Methods

To quantitatively test these hypotheses, as a first step to evaluate brain activity while exhibiting
LM problem-solving behavioral patterns, such as KATA [11] and (CPD)nA [14], when dealing with a
complex value streams, a case study is used.

As argued by [101], a single case study can be seen as only a possible building block in the process
of developing validity and reliability of the proposed hypothesis. Following the recommendations
of [102], a clear case-study roadmap is followed. This roadmap has several phases: (1) scope
establishment (2) specification of population and sampling (3) data collection (4) standardization
procedure and (5) data analysis.

3.1. Scope Establishment

EEG signals that Lean Managers generate within an organization when performing complex
process LM optimization tasks are sought to be recorded. The organization selected for this case study is
a Japan-based automobile manufacturing facility, embedded within a multinational corporation, where
one of the authors has accompanied a systematic implementation of LM methodologies. The factory in
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which the study is carried out has 30 leaders in four hierarchical levels, and consists of 800 blue collars
and 150 white collars. The LM matrix organizational design structure becomes evident when the
continuous improvement shopfloor management HOSHIN KANRI FOREST reporting structure [4]
is visualized in Figure 4: a PDCA-based LM network with a “vertical” hierarchy responsible for the
allocation of resources (engineering, logistic, production, sales,...) that is balanced by a “horizontal”
structures that connects the process owners along the value stream. In this manner, the organization
is aligned to jointly achieve the corporate strategic objectives through continuous improvement.
This ensures the systematic weekly training of organizational leaders in LM continuous improvement
problem-solving routines.

The socio-cultural context in which the data collection is carried out is that of an experienced
LM staff, with a corporate culture oriented towards continuous improvement throughout decades.
The economic context of the automotive group in question follows a strategy of pressing cost reduction.

Figure 4. Part of the HOSHIN KANRI FOREST STRUCTURE [5].

3.2. Specifications of Population and Sampling

Data were collected from 26 healthy male adult leaders (20–60 years of age with a mean of
40 years). None of them had a history of neurological or psychiatric disorder or was on chronic
medication. All subjects were fluent in Japanese and had learned the language before they were age
seven. Significant differences in EEG activity is usually found between right-handed and left-handed
groups of subjects irrespective of the side of the brain considered [103]. Handedness was determined by
the Edinburgh Handedness Inventory [104]. The initial group included 24 left-hemisphere-dominant
persons (lateralization index of 29.5 ± 100%), one right-hemisphere-dominant person (−78.59%) and
one ambidextrous person (+6.25%). Right-hemisphere-dominant and ambidextrous participants were
excluded. The final sample included 24 male subjects with no significant differences in years of
education, LM problem-solving experience, or handedness scores.

3.3. Data Collection

As previously shown, location and nomenclature of the 14 EEG electrodes is chosen as
standardized by the American Electroencephalographic Society (AES) [74], are depicted in Figure 3
and marked in red [AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4].

The technical specifications of the EEG low-cost portable sensor shown in Figure 5c can be
summarized as follows:

• Sampling method: Sequential sampling. Single ADC.
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• Sampling rate: 128 samples per second (2048 Hz internal).
• Resolution: 14 bits 1 least significant beat = 0.51 µV (16-bit ADC, 2 bits instrumental noise floor

discarded), or 16 bits.
• Bandwidth: 0.2–43 Hz, digital notch filters at 50 Hz.
• Filtering: Built in digital 5th order Sinc filter.
• Dynamic range (input referred): 8400 µV.
• Coupling mode: AC coupled.

To ensure best data collection and reduce hardware-related noise, the hair of all subjects was cut
to <1 mm in length prior to measurement.

3.4. Data Pre-Processing

Initially, the raw data from the EEG is processed by applying a series of standard filters. Filtering
such signals to remove artifacts is common in pre-processing these data, but may introduce temporary
distortions in the signal [105]. The type of filter to choose depends essentially on the analysis of the
dataset at hand. Filters can be causal, if they only include past and present information, while if they
include past and future information, they are called non-causal. As in this case we are not interested
in the timing of initial events it was decided to avoid non-causal filters at a price of introducing
differences in the signal even before its onset at t=0, due to backward filtering. An open access
MATLAB toolbox for EEG, Fieldtrip, was used [106]. Fieldtrip performs an infinite impulse response
as default. An impulse response basically represents how the filter uses the unitary information of
the signal in time. Infinite response filters produce an irregular shift at different frequencies, but they
have a fundamental advantage in this case and that is that they are computationally very efficient.
Summarizing, there are multiple criteria and trade-offs to take into account when designing and
choosing digital filters [107]. The specific filters chosen were the following:

• First, a high-pass filter is first performed to remove the DC components from the signal (a cut-off
of 1 Hz is considered sufficient and consistently produced good results in terms of SNR). [108].
This is because large drifts in the data were observed.

• Next, as indicated in the EEG sensor specifications, a hardware embedded low pass filter was
implemented to eliminate frequencies above 50 Hz. This reduced the noise is associated with
higher frequencies.

• Finally, in order to ensure the maximum level of anonymity for the subjects and to be scrupulous
with the compliance standards of the company in which the study is carried out, a normalization
in the range [0.1] of the values is performed. This can only be done because this study will not
make comparisons between subjects.

3.5. Standardization Procedure

As exemplary shown in Figure 5c the subjects were placed individually in a room with 50 dBA
artificially recreated large office noise and sat down to perform the tasks by writing down each step on
an A3 sheet with paper and pencil. The tasks were completed without talking. The subjects sat in a
reclining chair 20 cm away from the table so that the H-point, legs, and shoulders of the subject were
fixed. This ensured that the position could be maintained in a defined replicable way and that only the
arms, hands and the computer’s mouse were movable.

Each subject performed KATA and (CPD)nA behavioral tasks in a value stream that they owned
and were therefore familiar with. The length of time allocated for the both KATA and (CPD)nA tasks
was limited to 300 s each. The subject was instructed to not return to previous parts of the task.
Specifically, within each task, there were pre-determined time intervals for each sub task. They were:
in KATA, 10 s for Step 1 (KATA-I), 40 s for Step 2 (KATA-II), and 250 s for Step 3 and Step 4 (KATA-III),
and in (CPD)nA, 10 seconds for Check, 250 s for Plan and 40 s for Do. This was established to ease the
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tagging of tasks for the subsequent analysis. The control task consists of writing the katakana syllabic
alphabet for 30 s after finishing the problem-solving task. For purpose of example, a 5-s recording
time series multi-plot of the first subject performing (CPD)nA-Plan (a) and KATA-III (b) is shown in
Figure 5c.

Since no distinction can be made between subjects in terms of sex, LM experience, handedness
score or training, and because the data collection procedure has been standardized as described,
the data can be considered balanced. The complicacy of these datasets makes the need for a
cross-correlation function and DL technique apparent if we are to analyze and inspect the dataset for
relevant features.

(a) (b)

(c)
Figure 5. Data Collection. (a) EEG Low-Cost Portable Sensor. (b) EEG Low-Cost Portable Sensor.
(c) 5 s recording time series multi-plot of first subject performing (CPD)nA-Plan (a) and KATA-III (b)
of Subject 1.
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3.6. Data Analysis

In this section, the soft sensors developed for the analysis is presented.

3.6.1. Experimental Setup

The data analysis setup in this study were implemented with a computer equipped with an
Intel(R) Xeon(R) Gold 6154 3.00 GHz CPU and an NVIDIA Quadro P4000 Graphic Process Unit
(GPU) with 96 GB of random-access memory (RAM). The operating system was Red Hat Linux 16.04
64-bit version.

The training and testing of the DL model was carried out with Keras which is an interface to
TensorFlow. (Version 1.8), and the model was built in Python (Version 2.7) language [109]. TensorFlow
is an interface for generating and executing machine learning algorithms, including training and
inference algorithms for DNN models. Specifically, the TensorFlow TF.Learn module was adopted to
create, configure, train, and evaluate the DNN. TF.Learn is a high-level Python module for distributed
machine learning within TensorFlow and integrates a wide range of state-of-the-art machine learning
algorithms. Additional Python interfaces were used: OpenCV for computer vision algorithms and
image processing, Numpy for scientific computing and array calculation, and Matplotlib for displaying
plots. The details of building the soft sensor model for problem-solving classification through
EEG signals with Python are provided online at Open Access Repository and were created with
Jupyter Notebook.

3.6.2. Deep Learning

1. Data Segmentation

The time-dependent EEG data set is separated into 1-s segments during the data segmentation
process. All subsequent operations, including feature extraction, classification, and validation, etc.,
are based on this previous segmentation. The nature of the segments depends on the application
context and the sampling frequency of the EEG sensors. Increasing the length of the segments
may improve the accuracy of the recognition, but the learning time will increase, and more time
will be needed to obtain sufficient data. This could lead to delays in the response of applications
in real time and restrict application scenarios [110].

2. Multichannel Method

As described in [100], the multichannel data pre-processing method for DL treats data from
three EEG channels as three superimposed color levels corresponding to red, green, and blue
elements in the RGB color format. The EEG signal strength is projected to a corresponding color
value in the [0.1] range. The three values of each point are represented as one pixel in the image.
The resolution of the image is the same as the length of the segment (1 s/128 pixels because
the sampling rate is 128 samples per second). The data collected from the different sensors are
grouped in rows. The advantage of this method is that it greatly reduces the size of the image and
results in a much shorter training time than that of the raw EEG time series analysis, and does not
require expert knowledge. Figure 6 shows the principle of the application of this method and an
example image. The data fragment used in this figure shows the first five seconds of the one used
in Figure 5c.

3. Deep-Learning Soft Sensor Architecture

After pre-processing and segmentation, the original data segments are transformed into images, to
which the DL methods are applied. In this study, the deep convolutional neural network algorithm
is used [111]. This model has its own parameters, such as the number of convolutional layers,
the learning rate, pooling size, etc. Figure 7 shows the DL soft sensor architecture and workflow.
The first layer to extract features from an input image is the convolution layer. It preserves
the relationship between pixels by learning image features using small squares of input data.
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The Rectified Linear Unit (ReLU) method is used for the non-linear operation to introduce
non-linearity in the DL model. Following the convolution layer is the pooling layer which can
reduce the dimensionality size. The max pooling method is used in our model, which takes the
largest element from the rectified feature map. Multiple convolution layers and pooling layer
can be added to the DL model to obtain the best performance. Finally, the feature map matrix
produced by the convolution and pooling layers is flattened and fed into the fully connected
layer to output the classes using the SoftMax activation function. Following the approach in [110],
in order to classify between the LM behavioral patterns, the shallow features are merged with the
deep-learned features on the last fully connected layer, as shown in Figure 7. More details of the
DL models are available online at Open Access Repository.

Figure 6. Multichannel Method [100].
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Figure 7. Deep-learning soft sensor for EEG classification.

4. Results and Discussion

In this section, the experimental results of the analysis are presented, their interpretation as well as
the experimental conclusions that can be drawn from them. To do so, one by one on all the hypotheses
presented in Table 1 are checked and commented by using the cross-correlation function, and the
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results of the automatic characterization of LM problem-solving behavioral patterns by means of the
DL soft sensor are presented:

4.1. Results and Discussion of Cross-Correlation Function

1. Corresponding to H1

All sensors AF3-F7-F3-AF4-F4-F8 are expected to correlate with each other, although the strength
of correlations may differ, which means that the task is executive.

Figure 8a,b shows the cross-correlation among sensors AF3-F7-F3-AF4-F4-F8 of Subject 1. These
results show that for the same subject, all sensors AF3-F7-F3-AF4-F4-F8 presented a correlation
that exceeds 0.45. This supports H1 which stated that subjects engaging in LM problem-solving
behavioral patterns present a strong correlation in their PFC activity.

2. Corresponding to H2

Sensors F7 and F3, as well as sensors F4 and F8, are expected to present stronger correlation,
which means that the task is goal driven.

Figure 8c,d shows that the correlations between sensors F7 and F3, as well as sensors F4 and
F8, are stronger than others, which exceed 0.85. This supports H2 which stated that subjects
engaging in LM problem-solving behavioral patterns present a coordinated a dorsolateral- and
ventromedial PFC activity.

3. Corresponding to H3

Sensors F7 and P7, as well as sensors F8 and P8, are expected to present no correlation or a very
weak correlation.

The results show that for KATA, the correlations between sensor P7 to sensors F7 and F3 (0.21–0.33),
and sensor P8 to sensors F4 and F8 between 0.21 and 0.34, are much weaker than (CPD)nA. This
supports H3 which stated that goal-oriented, context-independent LM problem-solving behavioral
patterns would present a low correlation between the dorsolateral PFC and the TPJ.

4. Corresponding to H4

Sensors F7 and P7, as well as sensors F8 and P8, are expected to present a strong correlation.

The result shows that for (CPD)nA, sensor P7 is correlated with sensors F7 and F3 between 0.69
and 0.73, sensor P8 is correlated with sensors F4 and F8 between 0.68 and 0.73. This supports
H4 which stated that goal-directed, context-dependent LM problem-solving behavioral patterns
would present a high correlation between the dorsolateral PFC and the TPJ.

Hypotheses H1, H2, H3 and H4 were verified by calculating the cross-correlation among sensors
for both KATA and (CPD)nA LM behavioral patterns:

For clarity, Figure 9 depicts Figure 3b results on a brain layout. This shows how while
performing both LM problem-solving behavioral patterns, the PFC shows a highly coordinated activity.
When KATA, a goal-directed context-independent behavioral pattern is performed, the coordination
between the dorso-lateral prefrontal cortex and the TPJ is non-existent. This changes when (CPD)nA,
a goal-directed context-dependent behavioral pattern is performed.
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(a) (b)

(c) (d)

Figure 8. Graphical representation of Hypotheses confirmation with Subject 1 results. (a) (CPD)nA
Results. Sensors AF3-F7-F3-AF4-F4-F8. (b) KATA Results. Sensors AF3-F7-F3-AF4-F4-F8. (c) (CPD)nA
Results. Sensors F7-F3-P7-F4-F8-P8. (d) KATA Results. Sensors F7-F3-P7-F4-F8-P8.

In summary, all hypotheses were tested and verified. Subjects under scrutiny presented a high
PFC activity and a high correlated dorsolateral PFC and vm-PFC activation. The combination of these
factors enabled us to label such LM problem-solving behavioral patterns as executive and goal-oriented.
Furthermore, KATA did not present a dl-PFC and TPJ modulation, whereas (CPD)nA did. This allows
us to label KATA as context-independent and (CPD)nA as context-dependent behavioral pattern. These
results were validated by a DL predictor algorithm at very high levels of accuracy.
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Figure 9. Brain Overlay of cross-correlation among sensors F7, F3 and P7, as well as F4, F8 and P8 of
Subject 1.

4.2. Results and Discussion of Deep-Learning Soft Sensor

After testing and verifying the hypotheses, the results of a DL soft sensor that can characterize

the LM problem-solving behavioral task with a 99% of accuracy are presented. This is important,
because it is not necessary to have an expert knowledge of neurophysiology to discern whether a
certain LM problem-solving behavioral pattern is of one nature or another. The very nature of the DL
soft sensor will determine it automatically.

As shown in the Open Access Repository, using Keras, TensorFlow backend for the DNN and
OpenCV/Numpy for the image manipulation, a dataset of 12,000 images is used. As a standard
procedure, the data is split into training dataset of 20 Subjects (80%), testing dataset of 2 Subjects
(10%) and validation dataset of 2 Subjects (10%). These subjects are chosen randomly between the
sample of 24 Subjects.

The training dataset is used to train the DNN throughout several epochs as shown in Figure 10.
It can be observed that both accuracy and loss do not increase or decrease significantly after epoch
number 4.

The testing dataset is subsequently used to test DNN performance. The confusion matrix is a
standard procedure to summarize the results of such a training by typically combining contingency
classes (TRUE, FALSE) and (OK, not-OK), hence building four categories:

1. True Negative (TN), which is an error and has been predicted as an error
2. False Positive (FP), which is an error but has not been predicted as an error, and is by far the

most damaging category
3. False Negative (FN) which is not an error but has been predicted as an error
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4. True Positive (TP) which is not an error and has not been predicted as an error.

(a) (b)
Figure 10. DL Training and Testing Results. (a) DL Model Training Accuracy. (b) DL Model
Training Loss.

The results are summarized in Figure 11. Specifically, given the balanced dataset chosen, the
accuracy (ACC) delivered by the DNN soft sensor, defined by the expression ACC = (TP+ TN)/(TP+

TN + FP + FN), is 99%. The TN rate is 99%, the TP rate is 99%, the FN rate is 1% and the FP rate
is also 1%. These levels of ACC can be considered acceptable for such a complicated industrial
classification problem.

Figure 11. DL Model Testing Confusion Matrix.

5. Management Conclusions and Future Steps

These results allow for different ways of further industrial implementation. To do so, these results
must be interpreted in a broad context of Industry 4.0. This section provides some essential aspects
that will help to understand and contextualize the contributed results through a meta-discussion at
various organizational levels.
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To attain operational excellence, leaders need to better understand their people. At the verge
of empirical psychological neuroscience, organizational behavioral theory, and artificial intelligence,
this multidisciplinary paper seeks to help organizational leaders, LM practitioners and scholars to
develop a better understanding of the brain’s dynamics that are associated with certain standard LM
problem-solving behavioral patterns that are commonly found in corporate settings.

The empirical results have provided evidence to assume that from a neurological perspective, it is
possible to provide organizational leaders with certain conclusions and take-offs for future endeavors:

• The LM tasks studied can be regarded as goal-oriented tasks due to the highly coordinated activity
of the dorsolateral and ventromedial PFC. This means that organizational leaders who exhibit
such problem-solving behavioral patterns are intending to attain certain goals and perform a
cerebral internal modulation of those goals. The immediate consequence is that strategic goals
such as operational excellence are more likely to be achieved when implementing LM.

• LM tasks can be regarded as executive tasks that are guided mainly by the PFC. This means
that organizational leaders, when dealing with such problem-solving behavioral patterns,
consistently exercise decision-making, working memory, and self-control while performing LM.
The consequence is that LM is provably a managerial conglomerate that induces and executive
cerebral state and therefore, organizational leaders that decide to implement LM within their
organizations and setting them in a systematic path of execution towards operational excellence.

• The LM problem-solving behavioral pattern, KATA, after definition of the target states apparently
induces the subjects into a mental state in which information that is not relevant to the target-state
achievement is not taken into consideration. This is shown by the lack of coordinated activity
between PFC areas and the TPJ. This has powerful implications for the operations management
community. It could mean that target-state setting would induce subjects into undesirable
inflexible problem-solving behavioral patterns in which the decision-making process is not
modulated by the complexity of ever-changing organizational value-stream settings. Individuals
could make decisions independently of their context to serve their individual targets. This
could potentially not serve a higher organizational alignment. In highly complex organizational
settings where interdependent behavior is essential for organizational alignment, this could have
dire consequences.

• In contrast, the LM problem-solving behavioral pattern (CPD)nA-Plan, which advocates only
continuous improvement without target conditions, seems to enable cerebral modulation of
the PFC activity by providing for coordination with the TPJ. In highly complex environments
where interdependent value-stream constraints are to be simultaneously considered, such an LM
behavioral trait seems to permit the flexibility that is necessary for a coordinated organizational
effort towards the demands of alignment and, from a cerebral perspective, offers a better promise
to ensure individual and organizational fitness.

In an Industry 4.0 context, EEG sensor signals placed on human process owners combined with
DL soft sensor architectures within Industry 4.0 environments could have an impact at various levels
of aggregation in value chains.

1. EEG combined with DL at a shoopfloor level shall impact quality, reliability, and cost.

In an Industry 4.0 shopfloor environment, in which man and machine interact constantly to create
value, it is essential that they communicate effectively and efficiently in real time. The creation of
intelligent algorithms capable of characterizing the complex behaviors of the human brain and
making them understandable to the machine seems of vital importance to ensure a symbiosis that
increases machine efficiency and human effectiveness.

Future lines of research should try to better understand how the human brain can integrate its
work into the Industry 4.0 shopfloor by means of brain sensors, making possible the cerebral
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interface between man and machine without the need for low-bandwidth elements such as touch
screens or verbal commands.

The DL-based algorithms based on process EEG signals presented in this paper can be a spearhead
that allows the classification and training of Industry 4.0 intelligence systems that allow this
integration. This intelligence integrated in the value streams will allow humans and machines
to co-exist in a way in which artificial and human intelligence will complement each other,
thus increasing the process capability of generating higher standards of quality, reliability,
and ultimately reducing cost.

2. EEG combined with DL at a strategic manufacturing system level.

The DL characterization of LM problem-solving behavioral patterns is expected to help Industry
4.0 leaders in their choice of adequate manufacturing systems and their related problem-solving
methods in their future pursuit of strategic organizational goals.

As demonstrated by the presented DL algorithms, no neurophysiological expert knowledge is
necessary to discriminate between two different complex LM problem-solving behavioral patterns
performed by Industry 4.0 process owners. This could help future industry leaders make better
decisions about which manufacturing systems to choose from a neurological point of view. This
bottom-up approach is novel in the field of management and represents in itself a breakthrough
in the study of manufacturing systems in Industry 4.0 environments.

DL-based applications combined with multiple simultaneous EEG measurements to different
actors during the performance of different complex tasks such as decision-making, data analysis,
leadership interactions with subordinates, or other relevant actors, could lead to new revelations
in the field of neuroeconomics among other fields. Likewise, by establishing a feedback loop to
the leadership process of each individual, this knowledge could provide specific knowledge of
each individual during their interaction with other stakeholders. This could mean a breakthrough
towards a customization of leadership and towards a transformation of business culture from the
neuroscientific knowledge of human behavior in an Industry 4.0 environment.

As a final note, a word of caution. Although the results are promising, no premature conclusions
of causality should be drawn in any way. For several reasons: first, blinking and eye movement
produce strong electrical impulses that can affect EEG measurement. Therefore, in future research,
as subjects perform tasks with their eyes open in Industry 4.0 environments, pre-processing using an
electro-oculogram as an adaptive noise canceller may be necessary. Second, subjects were asked to cut
their hair to <1 mm in length prior to measurement to facilitate signal recording and consequently
increase algorithm’s performance. This is a rather unrealistic condition for an Industry 4.0 setting.
Third, group analysis would have been desirable. However, in this study focus on inter-subject
correlations was not possible mainly for one reason: compliance rules of the organization in which
the study was carried out, did not allow the researchers to compare the results from different
subjects in order to avoid labor-related conflicts. For this reason, only one subject was exemplary
displayed in Figures 8 and 9. Fourth, the population used for the study was relatively small, quite
homogeneous, focused on one technological set of problems and drawn from only one geographical
region. Furthermore, the level of LM expertise, age, or gender could be aspects to be controlled for
and/or used as a covariate or explanatory variable in future research.
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The following abbreviations are used in this manuscript:

LM Lean Management
SNR Signal-to-Noise Ratio
PFC Prefrontal Cortex
PDCA Plan-Do-Check-Act
(CPD)nA Check-Plan-Do-...-Act
EEG Electroencephalography
DL Deep Learning
H Hypothesis
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Abstract: Indoor air pollution has been ranked among the top five environmental risks to public
health. Indoor Air Quality (IAQ) is proven to have significant impacts on people’s comfort, health,
and performance. Through a systematic literature review in the area of IAQ, two gaps have been
identified by this study: short-term monitoring bias and IAQ data-monitoring solution challenges.
The study addresses those gaps by proposing an Internet of Things (IoT) and Distributed Ledger
Technologies (DLT)-based IAQ data-monitoring system. The developed data-monitoring solution
allows for the possibility of low-cost, long-term, real-time, and summarized IAQ information
benefiting all stakeholders contributing to define a rich context for Industry 4.0. The solution
helps the penetration of Industrial Internet of Things (IIoT)-based monitoring strategies in the specific
case of Occupational Safety Health (OSH). The study discussed the corresponding benefits OSH
regulation, IAQ managerial, and transparency perspectives based on two case studies conducted
in Spain.

Keywords: long-term monitoring benefits; indoor air quality; low cost; occupational safety and health;
industry 4.0; IOTA tangle

1. Introduction

Indoor air pollution is a leading environmental risk, which affects people’s working performance,
comfort, health, and well-being [1–3]. People spend around 90% of their time indoors, and human
exposure to indoor air pollutants may occasionally be more than 100 times higher than outdoor
pollutant levels [4]. Exposure to poor indoor air is a significant cause of productivity loss, for the
U.S., as productivity decreases 0.5–5% per workplace, generating a loss of 20 to 200 billion US dollars
annually [5].

Indeed, exposure to poor indoor air also increases numerous adverse health problems, such as
nausea, headaches, skin irritation, sick building syndrome, kidney failure, and even cancer [1,3,6].
The World Health Organization (WHO) estimates that 700,000 people per year die from poor breathing
conditions [7]. Therefore, IAQ, has a significant impact on people’s comfort, health, and performance.
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IAQ have been investigated by research community and practitioners. However, two important
gaps are identified by a systematic literature review. Details of literature review method and results are
presented in Appendix A. The first gap is that long-term data-monitoring is lacking in the IAQ research
community and in practice. The second gap is that IAQ data monitoring solution is hard to operate,
expensive, and lacks transparency in terms of Occupational Safety Health (OSH) management.

Gap I. In most research work, sampling time period is relatively short term, and even sometimes
lasts for less than one hour. Measurements were made based on assumption the IAQ conditions are
the same during the year [3,8,9]. Several studies have shown that seasonal variation or non-heating
and heating time period differences [10–12], considering IAQ variation by season climate change and
human heating behavior. However, those studies only took a short time sampling each season. As IAQ
varies from time to time due to changes in working conditions, human activity, and weather conditions
etc., short-term or seasonal sampling could not cover all kinds of variations. Therefore, long-term
monitoring becomes a need in the research community.

In addition to the research dimension, the practical applications, it is increasingly becoming
important to gather indoor working conditions to evaluate and minimize adverse health problems.
To ensure OSH, environmental regulatory agencies, e.g., Occupational Safety and Health
Administrations (OSHA) and local authorities have developed monitoring strategies to assess
employee exposure to indoor pollutants. Generally, the monitoring reference period is a short-term
basis. A Short-Term Exposure Limit (STEL) is a term used in occupational health, industrial hygiene,
and toxicology, and it is regularly adopted to be 15 min.

Long-term monitoring is challenging for environmental regulatory agencies considering
instrument calibration, labor time, and costs. In regular monitoring strategies, the professional
determination method is used to measure indoor contaminant level. For measuring Volatile Organic
Components (VOCs), is to collect air samples, either based on whole air samples in SUMMA passivated
stainless steel canisters or on solid adsorbent tubes. Subsequently, the VOCs are separated by gas
chromatography and measured by mass-selective detector or multidetector techniques in a remote
laboratory basis [13,14]. Due to obstacles in sampling pump technology, professional particulate matter
meters such as personal environmental monitor (PEM) with Leland Legacy pump and sioutas personal
cascade impactor sampler, only allow maximal 24-hour sampling [15]. Therefore, although those
determination methods are accurate, in practice, it will not be possible to have a long-term monitoring
strategy with professional instruments.

There are specific measurements considering different episodes, such as an eight-hour working
period, night and day cycles, and seasonal variations. However, indoor working conditions vary
greatly over time, and on spot short-term sampling or measurement in specific episodes could fail to
provide a holistic assessment of the working environment. Long-term monitoring becomes a demand
in the workplace and real applications such as OSH management.

Gap II. IAQ data-monitoring solution challenges are presented into two aspects. One challenge is
that IAQ data sampling/collection is expensive, complex to customize and operate, and professional
expertise dependency. To measure multiple pollutants, various devices should be bought from
different manufactures [3,10,12]. For example, Aeroqual 200 to measure nitrogen dioxide (NO2) and
Total Volatile Organic Components (TVOC); Extech VPC300 to measure particulate matter (PM); htV-M
to measure formaldehyde (HCHO); Q-Trak to measure carbon monoxide (CO). In addition, diffusive
or passive samplers should be prepared and analyzed by chemical domain experts, and frequently
replaced with new ones due to limited equipment lifespan [8,11,12], which is complicated to operate
and time and labor consuming. Moreover, since different pollutants are measured with different
instruments, the various collected pollutant data is complex to manage and process. Another challenge
is that IAQ data sampling/collection lacks data sharing in terms of IAQ transparency to all stakeholders.
IAQ transparency is vital for managers to regulate working conditions, because IAQ affects employee’s
productivity, comfort, and health [2]. IAQ transparency is significant for employees to enhance
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worker empowerment. However, few data-monitoring solutions consider IAQ data- sharing from a
transparent point of view.

As the graphical abstract shows in Figure 1, the research presented in this study will address those
gaps by proposing an IoT and DLT based IAQ data-monitoring system. The system is a light, low-cost,
long-term solution enabled by blooming development of IoT and sensor technology, and it does enable
customization because of users can freely choose pollutant sensors by a simple plug-in. It supports
multiple pollutants data-monitoring, which will facilitate research community and practitioners for
long-term and integrated multiple pollutants data-monitoring solutions. The main contribution from
the paper is not only the hardware layer involved, although it provides a solution ahead of what it is
possible to find in the market these days, mainly because of the provided flexibility but also because of
the data released over a public tangle in both ways, consolidated summaries as well as stream data
flow, which overcomes the private clouds that providers used to adopt. Such approach is hard to
handle in Europe regarding the General Data Protection Regulation (GDPR).

Raw data IAQ managmentOSH  assessment Data marketplace

Summary data
/Raw data

IOTA Tangle
Sensing

MAM/Message MAM/Message

Single-board computer

Target IAQ data transparency with Distributed Ledger TechnologyAddress technical complexity with multiple sensor flexibility

Internet of Things based to manage short-term monitoring bias

Figure 1. Graphical Abstract. IAQ: Indoor Air Quality; MAM: Masked Authenticated Messaging;
OSH: Occupational Safety Health.

The paper promotes an open view of interaction from different layers of application, which enables
different kinds of relationships and actually becomes kind of referential framework. The promoted
system, which fits into the framework, applies IOTA distributed ledger techniques (concept introduced
in Section 2.1) to enable data sharing, which benefits all stakeholders. It provides flexibility
and low-cost, real-time, and summarized IAQ information to managers, aligns IAQ transparency
to worker empowerment, and enables other benefits related to improving environments in the
workplace. The relevant benefits are discussed and presented by two case studies conducted in
Spain, from perspectives of OSH assessment, regulating working conditions, OSH transparency and
data sharing with IOTA distributed ledger techniques.

A significant point highlighted by this paper is that although the paradigm of Industry 4.0 is
being widely adopted by many industries in different sectors, there is a lack of penetration of these
technologies in the specific case of the OSH [16]. Actually, the contribution from the IIoT can be
considered as very significant because it can help in changing the implemented monitoring strategies.
A contribution in this line is essentially the way adopted in in this paper.
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2. Materials and Methods

2.1. Framework

The framework of the proposed data-monitoring architecture is presented in Figure 2.
It is composed of five layers, including the sensing layer, network layer, IOTA-based data storage
& sharing layer, data analysis layer, and application layer. (i) The sensing layer is the perception
layer, which is the lowest layer of the conventional architecture of IoT. It contains different sensors for
sensing and gathering IAQ information; (ii) The network layer is responsible for connecting to other
smart things, network devices, and servers. It also facilitates transmitting and processing sensor data;
(iii) The storage & sharing layer is based on DLT, the IOTA Tangle in this case, which supports secure
and tamper-resistant data storage and sharing. The raw IAQ data can be shared through IOTA Tangle
and in return the data publisher can receive monetary or other types of benefits. Moreover, the IAQ
data analysis results, e.g., recommendation strategies, can also be shared through IOTA Tangle to
help enhance regulation assessment; (iv) The analysis layer receives data from previous layers and
use certain data processing techniques and machine learning models, to extract information and
knowledge or even further means of wisdom; (v) The application layer is responsible for delivering
specific services to corresponding users. It defines various scenarios in which the IoT and DLT can be
deployed, for example, information transparency, IAQ management and assessment, gaining economic
benefits for data providers. The proposed framework can also address low-cost sensor accuracy issue,
as it supports persistently data aligning with OSH regulatory assessment conducted by high reliable
professional instrument. The main enabling technologies involved in this framework are introduced
as follows:

• IoT. The term "Internet of things" was coined by Kevin Ashton of Procter & Gamble in 1999, when
he viewed Radio-frequency identification (RFID) as essential to the IoT, allowing computers to
manage all individual things (all existing things). Presently, the IoT concept is that the pervasive
presence of a variety of things or objects—such as RFID tags, sensors, actuators, mobile phones, etc.

• Low-cost IoT-based sensing. The low-cost IoT sensors enable the use of wireless communications
and computing for interacting with the physical world. The relevant sensors could sense
indoor environmental parameters such as IAQ, comfort, lighting, and acoustic conditions.
Several systems [17–19] have been developed for monitoring indoor environmental conditions
with low-cost sensors. The data quality generated by these sensors are often of questionable.
The performance of different low-cost air-quality sensors vary from unit to unit, spatially and
temporally, as it relies on different algorithms, the meteorological conditions and atmospheric
composition [20]. The IAQ data-monitoring platform implemented in this study is low-cost
sensor-based considering that high accuracy is not the top requirement for the targeted
applications of this study. Instead, this platform is developed for purposes such as awareness
raising and recommendation of sampling period selection for OSH legal compliance, which only
demand the pollution level on a coarse scale. In addition, as shown in Figure 2 , the accuracy of the
proposed platform can be improved through data adjustment with professional instrument at each
OSH regulatory spot-check in long periods, just by observing potential bias or sensor saturation.

• Network. The network e.g., IoT gateway, bridges sensor networks with the traditional
communication networks. It settles the heterogeneity between various sensor networks, mobile
communication networks, and the Internet (all computer networks) [21,22]. A single-board
computer (SBC), such as Raspberry Pi, could provide low-cost and efficient gateway services
based on emerging IoT standards.

• DLT. Blockchain, as the first DLT, was invented by Satoshi Nakamoto in 2008 to serve as the
public transaction ledger of the cryptocurrency Bitcoin [23]. The main component of DLT
is a distributed ledger, which is used as a distributed database maintained by a consensus
protocol run by nodes in a peer-to-peer network. This consensus protocol replaces a central
administrator, since all peers contribute to maintaining the integrity of the database [24]. With a
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decentralized and consensus-driven nature, DLT could provide reliable solutions, such as
blockchain [23], Ethereum [25] and IOTA Tangle [26], to enable secure and tamper-resistant
data storage and sharing.

• IOTA and the Tangle. IOTA is a tangle-based cryptocurrency designed specifically for the
IoT industry. The IOTA tangle naturally succeeds the blockchain as its next evolutionary step
by overcoming some of its fundamental limitations, such as scalability, high transaction fees,
and vulnerability to quantum attack [26]. The main feature of the tangle is that it uses a Directed
Acyclic Graph (DAG) for storing transactions instead of sequential blocks. In the Tangle, users
need to perform a small amount of computational work to approve two previous transactions to
issue a new transaction. This new transaction will be validated by subsequent transactions [27].

• Masked Authenticated Messaging (MAM). The main data communication protocol used for
data sharing in IOTA is MAM. It enables clients to emit and access an encrypted data streams
over the IOTA Tangle, regardless of the size or cost of a device [28]. MAM uses channels
(Public/Private/Restricted) for message spreading. IOTA users can create a channel and publish
a message of any size, at any time. A small amount of proof-of-work is required to allow the data
to propagate through the network and to prevent spamming. Other users can subscribe to this
channel through its address, and receive a message that is published by the channel owner.

IOTA Tangle (DLT and MAM)

iv Analysis

v Application

TransparencyIAQ managment OSH regulatory assessmentData marketplace

Machine Learning

iii Storage &
Sharing

 i Sensing

ii Network

Recommendation strategy

Figure 2. IAQ data-monitoring application framework supported by Internet of Things
(IoT) and Distributed Ledger Technology (DLT). IAQ: Indoor Air Quality; MAM: Masked
Authenticated Messaging; OSH: Occupational Safety Health.

The framework is also a functional guide following presented research work, for better
understanding the IoT and DLT-based IAQ data-monitoring system and its long-term monitoring
benefits.

2.2. Standards and Guidelines for OSH Assessment

The US National Institute for Occupational Safety and Health (NIOSH) defined a recommended
exposure limit (REL) for hundreds of workplace chemical contaminants [29]. For NIOSH RELs,
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a time-weighted average (TWA) concentration was measured for up to a 10 h workday during a
40 h workweek. They also define STEL as a TWA exposure that should not be exceeded at any time
during a workday. For a ceiling REL, it is the ceiling value which should not be exceeded at any time.
The STEL is as a legal limit for the exposure of an employee to a chemical substance. For chemicals,
STEL assessments last for 15 min and are expressed in parts per million (ppm), or sometimes in
milligrams per cubic meter (mg/m3). Table 1 lists a couple of indoor chemical pollutants and their
STEL, presented in NIOSH. We also list an averaging period of 24 h Threshold Limit Value (TLV) for
PM referencing from EPA [30] and European Union (EU) air-quality standards [31], because NIOSH
only provides TLV for a total particulate 10 mg/m3 8 h TWA.

Table 1. TLV for pollutant based on NIOSH, EPA and EU air-quality standards. STEL: Short-Term
Exposure Limit.

Pollutant STEL (15 min) Average over 24 h

CO2 30,000 ppm (54000 mg/m3) STEL
CO 200 pm (229 mg/m3) ceiling
Benzene 1 ppm (3.2 mg/m3) ceiling (15 min)
Formaldehyde 0.1 ppm (0.12 mg/m3) ceiling (15 min)
NO2 1 ppm (0.18 mg/m3) STEL
O3 0.1 ppm (0.2 mg/m3) ceiling
PM2.5 50 µg/m3 (EPA)
PM10 50 µg/m3 from EU air-quality standards

Considering the variations of workplace concentrations that originate from work patterns,
processes (batch production or continuous process), human activity, and meteorological variations,
several samples are required for the whole air-quality testing procedure. As shown in Table 2,
the sampling duration and its related number of samples are presented, introduced by standard
EU BS EN 689:1996.

Table 2. Minimum number of samples in relation to sampling duration:BS EN 689:1996.

Sampling Duration Time Number of Samples

10 s 30
1 min 20
5 min 12

15 min 4
30 min 3

1 h 2
2 h 1

2.3. IoT and DLT-Based Data-Monitoring System

The research, unifying the proposed framework, has designed an IoT and DLT-based IAQ
data-monitoring system (Figure 3), which is developed using kagoo devices manufactured by Circulate
(Figure 3a,b), Raspberry Pi (Figure 3c), and IOTA Tangle (Figure 3d).

The kagoo devices (Figure 3a,b were adopted as the sensing layer. Several indoor environmental
conditions are measured with those devices, including air quality, acoustic conditions, lighting,
and thermal comfort. Nine sensors, particulate matter (PM), formaldehyde (HCHO), TVOC,
benzene (C6H6), carbon dioxide (CO2), carbon monoxide (CO), ozone (O3), nitrogen dioxide (NO2),
and T.H.I.N (Temperature & Humidity & Illumination & Noise), are used to measure indoor conditions.
Those sensors can be freely selected and plugged into an island, where five maximal sensors are enabled.
The list of mushroom sensors are presented in Table 3.
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(c) Raspberry Pi

(a) PM sensor, CO2 sensor, CO sensor 
HCHO sensor, TVOC sensor 

(b) C6H6 sensor, NO2 sensor, O3 sensor 
T.H.I.N sensors

(d) IOTA Tangle

MAM

(e) Clients

Message

Figure 3. Deployment of Indoor Air-Quality (IAQ) data-monitoring system, enabling different type of
clients. MAM: Masked Authenticated Messaging.

Table 3. Sensor specification.

No. Sensor Name Model Functions Range

1 PM KG-PM2 PM2.5, PM10 Concentration Monitor 0–1000 µg/m3

2 HCHO KG-HO2 HCHO Concentration Monitor 0–7 mg/m3

3 TVOC KG-TV2 TVOC Concentration Monitor 0–3 mg/m3

4 C6H6 KG-C62 C6H6 Concentration Monitor 0–320 mg/m3

5 CO2 KG-C22 CO2 Concentration Monitor 0–0.5%
6 CO KG-C12 CO Concentration Monitor 0–500 ppm
7 NO2 KG-N22 NO2 Concentration Monitor 0–20 ppm
8 O3 KG-O32 O3 Concentration Monitor 0–20 ppm
9 T.H.I.N KG-TN2 Comfort Monitor (Temperature, humidity,

illumination and noise)
T: –40–80°; H:
0–99.0% RH; I:
0–2000 Lux; N:
0–120 dB

The SBC Raspberry Pi (Figure 3c) was used as the network layer. A python program was run
at Raspberry Pi to collect data measurements from sensors, parse data measurements, and calculate
raw data measurement and statistic summaries. The raw data is collected with a frequency of 1 min.
Usually, data measurements are stored every 1 min or 5 min in most IAQ monitoring devices [32,33].
The study took 1 min since smaller granularity data could be collected for data analysis. The relevant
source code could be found on GitLab [34].

The continuous collected raw data is transmitted to IOTA Tangle through MAM communication
protocol. The transmitted data will be broadcast in a streaming channel. Any IOTA user who knows
the address of the channel (and the private key in case the channel is restricted) can consume the
IAQ data.

The periodical statistic summary, such as 15 min (STEL basis) average indoor pollutant
concentration, is uploaded and stored to IOTA Tangle as a message. Through different clients, all
the users can review or use the real-time and long-term periodic statistic summary results, which
could be applied for OSH regular assessment, IAQ management, and employee transparency for
worker empowerment. For instance, when the organization needs to be OSH assessed, they can
share with the regulatory authorities the data access from a certain time. Afterward, the regulatory
agencies will be able to fetch data streams (e.g., statistic summary data report) for further assessment.
Considering low-cost sensor’s accuracy constrains, as the initial application, those data streams
could be taken as pre-assessment to ensure spot-checking is conducted efficiently and effectively.
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Indeed, larger populations could assess the data as scalability was considered to be a capability in
the system.

2.4. Case Studies

Two case studies were conducted in Spain. The choice of location selection was mainly based on
availability of sites; however, the location of each industrial building was carefully examined regarding
the influence of the surroundings, urban/rural area, and green zone/heave traffic. Regarding their
building structure, the selected locations were representative of the building stock of the country
in terms of typology, construction techniques, and age. Site 1 is an advertising workshop located
at a warehouse area next to a highway. Site 2 is a steel processing plant located at a rural area
near a busy road, where the office section is monitored. The office represents the most common
working environment and the advertising workshop represents a less common but with possible
higher pollution environment. The site characteristics are listed in Table 4.

The chemical and physical parameters measured were PM2.5, PM10, HCHO, TVOC, C6H6, CO2,
CO, O3, NO2, temperature, humidity, illumination, and noise. The data-monitoring system was placed
near worker activity area, with a height of 1.5 m above the ground. On Site 1, the data-monitoring
period was from 15 October 2018 to 15 November 2018. On Site 2, the office section is from 7 December
2018 to 11 January 2019. 24 h with granularity 1-minute data measurements were collected inside
two sites. All collected data are open access for researchers in OSF (https://osf.io/t6rp8/) .

Table 4. Building site characteristics overview.

Characteristic Site 1 Site 2

Section workshop section office section
Year of construction 35 46
Floor 1 1
Number of occupants 12 8
Total area (m2) 200 100
Heating No Yes
Ventilation Natural Ventilation System
Windows Single Glazing Single Glazing
Floor covering Coating Coating
Facilities One solvent printing machine, two

caving machine, computers, furniture
Computers, furniture

Cleaning schedule Once a week Everyday
Working schedule Flexible, 24 h, including weekends Two shifts: 06:00–14:00;

14:00–22:00, only business days
Smoking Yes No
Nearby potential pollutant sources No No

3. Results and Discussion

3.1. Long-term Monitoring Benefits for OHS Assessment

The Occupational Safety and Health Act of 1970 (OSHAct) was passed to prevent workers
from being harmed at work. The act created the OSHA, which enforces protective workplace safety
and health standards. To fulfill legal compliance, employers used to contact accredited inspectors
to perform air-quality testing. However, as presented in Table 2, some standards are defined to
help regular short-term sampling. For example, the sampling duration time (15 min) is in relation to
minimum 4 times samples established by statistical analysis and practical experience. However, it is still
challenging for inspectors to select a sampling period. IAQ varies as working condition change such
as different working process. As shown in Figure 4, heave printing work was done in afternoon in
Site 1 leading to formaldehyde concentration rising and reaching to peak.
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Figure 4. Time evolution of formaldehyde(HCHO) concentration in Site 1 during the day 2018-11-10.
Dashed line refers to STEL threshold.

Practical research was conducted in Site 1, which has proved that regular spot checks are not
sufficient to ensure employee health and safety. Suppose the inspector implemented a formaldehyde
measuring path of 15 min sampling with stops of 30 min in between. If the inspector starts the testing
by 09:00 a.m. considering that employee starts working at 08:00 a.m. the sampling period covers from
09:00 a.m. to 11:00 a.m. As depicted, formaldehyde evolution for the 10th of November in 2018 in Site 1,
shown in Figure 4, there would not be any exceeding found. However, if the time span is expanded
wider, exceedings appear continuously between 12:00 p.m. to 17:00 p.m. Therefore, it is proven that
the inspector criteria, in full respect of regulation, still fails to guarantee employee health and safety.
Although some surveys could be conducted, such as a review of work patterns, production processes,
and exposure times that help select better sampling periods, they are always time-consuming and
less accurate.

To address the sampling period selection bias, we designed a recommendation strategy which
could give out a reasonable sampling period based on long-term measuring data and a statistical
analysis approach. Considering all the historical data collected in the site for each indoor pollutant,
a holistic statistical method was used to select better sampling periods. The recommendation strategy
working flow is shown in Figure 5. The example of showing how the valid sampling duration for
pollutant formaldehyde in Site 1 is selected based on the recommendation strategy is given. The data
measurement from the whole data-monitoring period (15 October 2018–15 November 2018) are applied
as input data. For each day in the monitoring period, all possible 15 min time intervals daily, with a
time translation of 1 min are segmented, and the avg formaldehyde value during each segmentation
is calculated. The 15 min segmentation with the max avg value is selected out in each day and the
hour and two hours where the 15 min is located is marked and recorded, as shown in Figure 6b.
Finally, based on a voting strategy of all monitoring days, those valid sampling durations could
be recommended and selected out. Then, specific professional determination methods are used to
measure indoor contaminant levels where the time windows are better selected.
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Calculate the average value for each 15 min time interval

Each day, the time interval which has the max average value is
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Figure 5. Recommendation strategy flow diagram.

The recommendation strategy is evaluated with the case studies conducted in Site 1 and Site 2.
Taking PM2.5 in Site 2 as an example, our recommendation framework enables us to demonstrate a
distribution of PM2.5 maximal average value occurrences (sampling time: 15 min) in site. The detail is
shown in Figure 6a. Each point representing the hour where the better 15 min is located in and each line
segment representing the 15 min sampling duration covering 2 h, e.g., from 18:50 to 19:05. As shown
in Figure 6a, most high PM2.5 values appear in the morning, before 08:00 a.m. Therefore, based on
long-term measuring data analysis, for a regular PM2.5 check in Site 2, the sampling time period is
recommended for the morning, before 08:00 a.m. As shown in Figure 6b, most of high formaldehyde
values in Site 1 appear in the morning, between 08:00 a.m. to 12:00 p.m. Similarly, as shown in
Figure 6c, the recommendation sampling time for benzene in Site 1 would be in the afternoon, around
14:00 p.m. to 18:00 p.m. With the recommendation strategy, exceeding and significant variation could
be caught up to ensure employee’s health and safety.
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Figure 6. Distribution of indoor pollutant maximal average value occurrences (sampling time: 15 min)
in site. (a) Distribution of PM2.5 maximal average value during monitoring period in Site 2. Dashed line
refers to EPA TLV; (b) Distribution of HCHO maximal average value during monitoring period
in Site 1. Dashed line refers to STEL threshold; (c) Distribution of C6H6 maximal average value during
monitoring period in Site 1. Dashed line refers to STEL threshold.

3.2. Long-Term Monitoring Benefits for Regulating Working Conditions

The employer is legally responsible for ensuring the good working conditions of employees.
Long-term IAQ monitoring enables employers to understand IAQ data and IAQ patterns, so they can
take appropriate measures to regularly improve working conditions. As shown in Figure 7a, in Site 2,
CO2 concentration is constantly higher than TLV(0.1%). The TLV(0.1%) is based on a daily average,
which obtained references from Circulate App: EnvCon [35]. The Circulate company set TLVs, taking
references from China’s air-quality standards. Measures should be taken to reduce CO2 concentration
in Site 2. The corresponding measures could be opening windows, adapting heating, ventilation,
and air conditioning (HVAC) systems or with plants [36,37] to reduce CO2 concentration.

79



Sensors 2019, 19, 4157

Thermal comfort normally refers to temperature and humidity, and is the condition
of mind that expresses satisfaction with the thermal environment and subjective evaluation
(ANSI/ASHRAE Standard 55). The temperature and humidity ranges are 16–28° and 30–80%
respectively, according to WHO. It is also important not to over-design illumination, which can
induce adverse health effects such as headache frequency, stress, and increased blood pressure.
For the work requiring perception of details, such as offices, sheet metal work, and bookbinding,
the minimal illuminance is 100 lux, which is defined by EU standard. On Site 2, as shown in Figure 7b,c,
displays very low humidity and illumination levels. Therefore, measures should be taken to improve
employee comfort.
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Figure 7. Working conditions demonstration in site 2. (a) Evolution of CO2 hourly average
concentration during monitoring period in site 2. Dashed line refers to Circulate TLV;
(b) Evolution of humidity hourly average during monitoring period in site 2. Dashed line refers
to WHO comfort recommendation; (c) Evolution of illumination hourly average during monitoring
period in site 2. Dashed line refers to EU illuminance standard.
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3.3. Long-Term Monitoring Benefits for OSH Transparency

Long-term IAQ monitoring ensures that OSH dimension is given the same emphasis as
other business objectives. The economic benefits of high-quality indoor working conditions was
demonstrated by [5]. The magnitude of productivity gains may be obtained by providing better indoor
environments, a 20 to 50% reduction in sick building syndrome, saving between 10 and 100 billion
US dollars. 8 to 25% fewer asthma-related absences save 1 to 4 billion US dollars. A 23 to 76% reduction
in respiratory diseases saves 6 to 14 billion US dollars. The IAQ has a significant effect on economic
benefits in enterprise management.

In building science studies, thermal comfort has been related to productivity and health.
Office workers who are satisfied with their thermal environment are more productive [38]. For example,
it is valuable to provide the correct light intensity for each task or environment. Otherwise, energy
not only could be wasted, and over-illumination can lead to adverse health and psychological effects.
Beyond the energy factors being considered, glare or excess light can decrease worker efficiency.
The field of OSH comprises a variety of risks that need to be managed. Considering economic loss
deriving from poor air quality, it is important to report IAQ daily and take it as a Key Performance
Index (KPI) vector, along with other business objectives. Moreover, the relevance of the KPIs increases
when they are based on real-time measurements.

To quantify how a workplace affects productivity, creativity, and well-being, CBRE, a real-estate
services and investment company, designed a science-based tool to measure specific criteria [39].
The related experiments proved that information awareness also affects employee performance. That is
to say, if an employee knows they are working in a good quality environment, it is helpful to improve
their performance. The real-time long-term monitoring solution would provide IAQ transparent
employee empowerment.

3.4. Long-Term Monitoring Benefits for Data Sharing by IOTA

Recently, with the tremendous development of Industry 4.0, DLT (e.g., IOTA) has attracted
significant attention. With DLT, we will have the Internet of value. DLT has great potential to
create new foundations for our economic and social systems by efficiently establishing trust among
people and machines, reducing cost, and increasing the use of resources [40]. IOTA, as the most
prominent distributed ledger project, whose goal is to become the very fundamental layer of such
society, is challenging the looming paradigm shift.

Both continuous collected IAQ raw data and statistical summary data are transmitted to IOTA’s
Tangle through MAM or message. Different clients can register their interest to receive such data
streams. According to relevant business models, different sharing mechanisms can be packaged
to better serve all stakeholders [41]. For example, the calculated avg pollutant value during each
15 min, introduced in Section 3.1, can be uploaded and stored in the IOTA Tangle as the statistical
summary data. Relevant accredited inspectors could assess this data in advance for better sampling
period selections in OSH assessment.

The long-term IAQ monitoring solution could gain economic benefits for enterprises with the
support of IOTA, with which enterprises could receive automatic, transparent, and frictionless
payments from IAQ data consumers.

4. Conclusions

As proven by our study, long-term IAQ monitoring and data analytics have been lacking in the
research community and in practice. Under this context, this research has contributed to address
identified gaps by designing and testing a framework and a system, which is proven to be an effective
solution for all stakeholder needs. For instance, through the monitoring system, managers can take
measures to improve indoor working conditions. Some CO2 exceeding values were found in Site 2.
Managers could apply one basic green plant, an Areca palm (Chrysaidocarpus lutescens), which was
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discovered by NASA to efficiently remove CO2. In addition, this paper proves the enormous potential
of the IIoT in the context of Industry 4.0 to contribute in bringing new insight in worker’s environment,
both by consistently monitoring such environment and to easily disseminate the collected information
with minimum cost and infrastructure requirements. Besides aligning IOTA, a long-term monitoring
solution provides continuous values to OSH assessment agencies, supporting IAQ transparency to
employee empowerment, and bringing continuous economic value to enterprises through paid data
sharing services.

The limitation of this research study is that precision could issue IoT based measurements, but the
data-monitoring system could be re-adapted by the conducted professional spot-check by an accredited
inspector, as indicated in Figure 2. At each spot-check, more accurate data measurements could be
obtained with the professional instruments. The data-monitoring system would calibrate itself with
those accurate measurement, therefore, in the long-term, the precision of the data-monitoring solution
would be better improved.

The carried-out research results would be applied in CBRE in future work to assess IAQ influences
on employee productivity, health, and well-being.
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Appendix A

The literature review method is based on a guideline from [42]. The time span of the review
is from Jan 1999 to Jan 2019. Only studies in English are considered. The IAQ monitoring
and analytic are considered to be a whole, its sub-problems, such as the standalone monitoring
system, exposure risk assessment, and micro-environment are not included in the literature review.
The data sources include four digital libraries (ACM Digital Library, IEEE Xplore, Springer Link,
and Science Direct), hand searching two conferences: the International Society of Indoor Air Quality
and Climate (ISIAQ), the International Conference on Indoor Air Quality, Ventilation and Energy
Conservation (IAQVEC) in Buildings. The search terms used are indoor (environmental/air),
and quality (investigation/research/assessment/monitoring/analysis). After excluding irrelevant
studies based on exclusion criteria and an analysis of their titles and abstracts, 65 studies were included
based on full text screening, and 7 studies are selected from the reference lists. In the end, 72 studies
were used as the final primary studies. Considering the objective of the research work is mainly from
time and data-monitoring solution dimensions, the 23 most relevant studies were selected and listed
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in Table A1, from pollutant (P), time period (T), seasonal (S), data collection (D), and transparency (Tr)
aspects, respectively.

Table A1. Systematic literature review of IAQ.

Study P T S D Tr

[3] NO2, TVOC, PM0.3-10 8h working time in five working days,
September 2015

No Aeroqual 200 (NO2, TVOC), Extech VPC300
(PM0.3-10)

No

[10] PM2.5, HCHO, CO2 PM2.5 and CO2 entire year, HCHO in four
seasons (sampling time: 20 min)

Yes A: on-line monitoring system with
Ikair (CO2) and Yun (PM2.5) sensors
B: on-site measurement for HCHO by
spectrophotometry

No

[43] HCHO, CO2 4 h between 08:00 AM and 12:00 AM No A real-time occupational exposure monitoring
system with Grove-HCHO and T6613C (CO2)

No

[8] NO2, O3 and 29 VOCs One week between 20 and 27 December 2012 No Diffusive samplers No
[11] 34 VOCs, NO2,O3 Summer: 24 and 28 May 2010; Winter:

February 21 and 25, 2011
Yes Passive samplers No

[12] Temperature, humidity, HCHO,
C6H6, C2HCL3, Pinene, Limonene,
NO2, CO2, CO, PM2.5, VOCs,
Radon, O3

Monday to Friday, in both non-heating
(26/09/2011-14/10/2011) and heating
(23/01/2012-10/02/2012)

Yes Diffusive samplers (HCHO, C6H6, C2HCl3,
Pinene, Limonene, NO2, O3); Telair 7001
(CO2), aeroQUAL (CO), PM2.5 (Derenda
LVS3.1/PMS3.1-15)

No

[9] PM2.5, PM10, CO2, CO, HCHO,
and VOCs, O3

1 h No Lighthouse handheld 3016 (PM, temperature,
humidity), WolfSense (CO2, CO, VOC and
O3), htV-M (HCHO)

No

[44] PAHs One month in April No Passive sampler No
[45] VOCs, HCHO, acetone and O3 During 4 h with a 40-m frequency No PRO-EKOS AT. 401X (HCHO, O3), gas

chromatograph Voyager (VOCs and acetone)
No

[46] temperature, humidity, CO, CO2,
PM10, NO2, HCHO, C6H6 and
toluene, bacteria and fungi

3–10 December No Passive bubblers (HCHO), passive bubbler
(NO2), SKC passive sampler (VOCs)

No

[47] PM, noise, temperature, humidity May 2009 (hot season) and February 2010
(cold season)

Yes – No

[48] Bacteria, fungi, dust, ammonia,
and HCHO

2 h No Passive sampler No

[49] Eighteen PAHs 28 days (May–June 2014) No Passive sampler No
[50] PM Pre-winter (November and early December

2013) and winter season (January and early
February 2014)

Yes MOUDI No

[51] 17 VOCs May 2015 No Passive sampler No
[52] TVOC, 13 VOCs, PM2.5, NOx, O3 Two weeks (working and non-working days)

which starts from early morning (08:00 a.m.)
to late evening (20:00 p.m.)during winter
season of 2014

No Model EC 9810 series (O3), Model Ecotech
Sernious 40 (NOx), Micro IV Single Gas
Detector (CO), MiniVol™ TAS (PM2.5),
PhoCheck 5000 photo-ionization detector
(PID) (TVOC), NIOSH method (VOCs)

No

[53] benzene, toluene, ethylbenzene
m,p-xylene and o-xylene (BTEX)

Winter (from 9 December 2013 to
17 January 2014) and Spring (from 24
March to 17 April 2014

Yes Passive sampler No

[54] PM Three weeks during the summer, autumn,
and winter in 2014 and 2015

Yes OPS; TSI model 3330 No

[55] HCHO and C6H6 45 min No Passive samplers No
[56] HCHO Second semester of 2010 and first semester of

2011
No Passive samplers No

[57] VOCs 24 h No Passive sampling No
[58] Temperature, humidity, fungi,

dust, endotoxins, CHO, VOCs,
CO2, NO2

Two seasons: October–Match;
April–September

Yes Radiello passive sampler (CHO and VOCs),
Passam Ag passive sampler (NO2), Q-Trak
(Temperature, humidity, CO2)

No

[59] PM2.5, PM10 During rush hours (8:00 a.m.–12:00 p.m.)
for one week per each season from June
2015–June 2016

Yes Dust-Trak No
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Abstract: This paper presents a conceptual framework for the optimization of environmental
sustainability in engineering projects, both for products and industrial facilities or processes. The main
objective of this work is to propose a conceptual framework to help researchers to approach
optimization under the criteria of sustainability of engineering projects, making use of current
Machine Learning techniques. For the development of this conceptual framework, a bibliographic
search has been carried out on the Web of Science. From the selected documents and through a
hermeneutic procedure the texts have been analyzed and the conceptual framework has been carried
out. A graphic representation pyramid shape is shown to clearly define the variables of the proposed
conceptual framework and their relationships. The conceptual framework consists of 5 dimensions;
its acronym is ADAPTS. In the base are: (1) the Application to which it is intended, (2) the available
DAta, (3) the APproach under which it is operated, and (4) the machine learning Tool used. At the
top of the pyramid, (5) the necessary Sensing. A study case is proposed to show its applicability.
This work is part of a broader line of research, in terms of optimization under sustainability criteria.

Keywords: conceptual framework; sensors; approaches; tools; data; application; project engineering;
LCA; SDG 9; SDG 11

1. Introduction

In recent years concern for sustainability has grown, becoming one of the main problems
worldwide [1,2]. The 2030 Agenda for Sustainable Development sets out 17 Sustainable Development
Goals with 169 goals of an integrated and indivisible nature that cover the economic, social and
environmental spheres. An example of the importance that environmental sustainability has at the
moment is that several of the Sustainable Development Goals are directly related to the concepts of
sustainability [3,4].

Many of the interpretations of what sustainable development should be agree that, in order to
achieve this, the policies and actions to achieve economic growth must respect the environment and
also be socially equitable to achieve economic growth: it is the model of Triple E [5,6].

The main objective of this work is to propose a conceptual framework to help researchers to
approach optimization under the criteria of sustainability of engineering projects, making use of
current Machine Learning techniques.

Likewise, the growing development in collaborative methodologies such as BIM (a methodology
that integrates a growing number of disciplines and processes involved in the life cycle of a project), is
something to consider. The sixth dimension of BIM is not only about energy saving and sustainable
design (although they are the most recognized aspects), but also about the concept of value engineering,
which consists in the optimization of construction systems, structures and facilities, so that with a
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few key modifications in strategic items or in certain systems or equipment it could be possible to
obtain a significant reduction in costs, in the construction phase and / or in the exploitation phase,
without losing the essence of the project. In a project that incorporates the sixth dimension of the BIM,
analytical models are generated to perform analysis, calculations and simulations in order to improve
the quality of the project [7,8].

For the optimization of sustainability throughout the entire life cycle of a particular product,
process or industrial installation, it is necessary to use some methodology for quantification and
evaluation of sustainability.

There are techniques aimed primarily at controlling effects (for example, life cycle
analysis-LCA) [9,10] and techniques more focused on eliminating the causes (among which is Cradle
to Cradle-C2C) [11,12].We can also find the circular economy approach, which proposes a new model
of society that uses and optimizes stocks and flows of materials, energy and waste, with the aim of
maximizing the efficiency of resource use [13,14] (Figure 1).

Figure 1. Sustainability, Triple Bottom Line and Optimization. LCA/C2C/Circular Economy.

However, these techniques, more oriented to modify the causes of sustainability inefficiencies, do
not provide rigorous quantitative techniques for their evaluation (although they can be very useful in
the decision-making process) [15,16]. That is why it seems appropriate to deepen the study of the LCA
as a tool for evaluating potential impacts.

Life Cycle Analysis (LCA) is an objective process that allows evaluating the environmental loads
associated with a product, process or activity, identifying and quantifying both the use of matter and
energy and the emissions to the environment, to determine the impact of that use of resources and
those emissions [17,18].

On the other hand, industry is currently immersed in an evolution, consisting of its digital
transformation [19,20]. To understand the keys to this transformation it is necessary to know the
available tools and other emerging ones of new application. The term Industry 4.0. is a recent term,
which consists in the use of new technologies and the integration with some other evolved ones, to
achieve the total or partial digitalization of the current productive models, or to create new models
that allow a substantial reduction of the terms in all the phases of the affected project or services and
efficiency improvements of all kinds [21,22].

Among the solutions related to Industry 4.0 with more future are artificial intelligence and
machine learning. Artificial intelligence techniques have evolved vertiginously recently [23], becoming
a very useful tool to address complex problems in many different fields. These types of techniques
have been applied to problems in the fields of sound classification [24], image processing [25,26],
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risk prevention [27,28], air conditioning [29,30], in estimation of project parameters [31,32], and in
many other fields of research. We understand very important to deepen the study of possible fields of
application of these tools.

One of the challenges is that machine learning algorithms need to have a large volume of data in
order to be trained, validated and generalized. There are multiple technologies that are framed within
Industry 4.0. However, we can circumscribe the processes of digitization of industrial environments
around three elements (Figure 2):

• Collection of data from machines, warehouses and articles, achieved through the Internet of
Things (IoT).

• Analysis and exploitation of this huge amount of data through big data and business intelligence
(BI) techniques.

• Predictive analytics based on data through machine learning.

Figure 2. Three digitalization process.

Information is of crucial importance on these three stages. Obtaining, storing and managing
relevant data intelligently plays a decisive role in the so-called Industry 4.0. [33,34]. In this way, Big
Data becomes the axis on which the rest of actions must pivot in terms of digitalization. However, the
avalanche of data faced by organizations may pose a threat to the viability of the project.

In the first phase of industrial digitalization, companies need to capture in real time the maximum
possible information, structured and accessible, about what is happening in their business. The
development of intelligent sensors, capable of being located in multiple locations of the industrial
processes, allows to capture a large number of parameters based on various indicators.

These systems are complemented with cloud technology (Figure 3). The emergence of cloud
solutions allows companies to store and manage in real time the multiple measurements obtained from
sensors. This process is what we call the Internet of things (IoT). There are a number of advantages
inherent to IoT that could be taken advantage of immediately by the industry, such as the detection of
possible failures, the forecast of wear of parts or the reconfiguration of parameters and calibrations.
However, many professionals are still cautious about their actual application in the industry. In this
sense, there is a widespread perception that the real industrial world is not so prepared for hyper
connectivity [35,36].
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Figure 3. Sensors/Cloud/(connectivity)/ Storage (connectivity).

It is necessary to rely on agents that cover this gap from analog systems to intelligent ones where
the technology allows to connect the real world to communicate it to the cloud through the so-called
cyber-physical systems. In any case, it is an unstoppable trend since several studies estimate that by
2020 there will be 212 billion devices connected with sensors in the world [37].

The second phase consists in analyzing what is happening through tools that identify patterns
and inefficiencies. Big data solutions allow the collection and systematized treatment of relevant
data, obtained through sensorization, to make decisions that affect both the immediate future of
organizations (to solve a breakdown or replace a part) and its development in the long term (change
supplier, modify packaging or renew machinery) (Figure 4).

Figure 4. Sensors network.

It is a very complex process due to two factors: the huge volume of data and the heterogeneity of
the sources from where come the data.

In addition to this, we do not only want to know what it is that has happened or is happening
in those moments, but what is going to happen in the near future. This is achieved by providing the
manufacturing equipment of intelligent applications that make measurements along all processes by
combining the historical data and predictive models. Machine learning can be then understood as the
last phase of the evolution of Industry 4.0 [38,39].

The predictive analysis, based on artificial intelligence, requires the design and implementation of
algorithms that learn to represent data and to detect trends. The objective of the system is to develop
models of future behaviors from the data. In this sense, the quality and quantity of information it is
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essential to take the next steps towards the Fourth Industrial Revolution. As we see, this brings us
back to Big Data.

At this point we will return to the objective approach to the optimization under the criteria of
sustainability of engineering projects, making use of the current techniques of Machine Learning.
We will focus on the evaluation of the sustainability using the technique of LCA, because it uses a few
indicators that allow to quantify the environmental impacts [9,40].

Given that the techniques of artificial intelligence are a very useful tool for dealing with complex
problems in diverse fields, it seems interesting to raise the possibility of using them as an aid in this
goal. Therefore, it is essential to take account of the need to collect and make a systematic treatment of
the relevant data, obtained through smart sensing.

As far as we know, the sensorization of industrial plants and the treatment of data through
machine learning algorithms is not yet sufficiently extended in the field of sustainability optimization.
We detect a gap of opportunity (Figure 5) in the investigation of the state of the art, with the objective
of proposing a conceptual framework that can help in the approach to this type of problems.

Figure 5. ML-LCA-SENSORS.

Conceptual frameworks are a very useful tool widely used for various applications. Figure 6
shows the evolution in the number of articles contained "conceptual framework" in the title indexed
in the SCOPUS database over the last 10 years. As can be seen, there is a growing interest in the
development of this type of work by the scientific community.
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Figure 6. Number of published articles containing "conceptual framework" in the title indexed in
Scopus. Source: Scopus (2020).
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In [41] the use of portable sensors to provide an adaptation based on affection in Environmental
Intelligence systems is considered, and a proposal for a conceptual design framework for games is
presented. Zupančič et al. [42] defines a conceptual framework that considers human participation in
mobile crowd detection systems and takes into account that users provide their opinions and other
subjective data in addition to unprocessed detection data generated by your smart devices. Mordecai et
al. [43] proposes a conceptual approach based on models to capture, explain and mitigate CPG, which
improves the systems engineer’s ability to cope with CPGs, mitigate them by design and avoid decisions
and wrong actions. González et al. [44] presents a new architecture based on OPC to implement
automation systems dedicated to R&D and educational activities. The proposal is a new conceptual
framework, structured in four functional layers where the various components are classified with the
objective of promoting the systematic design and implementation of automation systems that involve
OPC communication. Yoo et al. [45] describe a conceptual framework for exchanging closed cycle life
cycle information for the service of products on the Internet of Things (IoT). The framework is based
on the product-service ontology model and a standard IoT message type, Open Messaging Interface
(O-MI) and Open Data Format (O-DF), which guarantees data communication. Varela et al. [46] states
that human interaction environments (HIE) should be understood as any place where people carry out
their daily lives, including their work, family life, leisure and social life, interacting with technology to
improve or facilitate the experience. The integration of technology in these environments has been
achieved in a disorderly and incompatible way, with devices that operate on isolated islands with
artificial borders delimited by manufacturers. A framework is presented that constitutes an integral
solution for the development of systems that require the integration and interoperation of devices and
technologies in HIE. In this work a conceptual framework for the integration of artificial intelligence
and life cycle assessment (LCA) will be proposed.

2. Methodology

The objective of this work is the development of a conceptual framework for the integration
of artificial intelligence and LCA. A conceptual framework is a tool that allows the analysis and
organization of information related to a field of knowledge. Thus, it is easier to carry out future
research [47,48].

An important part of academic texts has to do with integrating concepts, ideas, arguments or
theories of our discipline that allow us to fulfill the objectives of a writing work. Sometimes, these
concepts and ideas work to briefly explain the object or theme of our text, but in other cases a more
extensive conceptual framework must be developed to meet the requirements of the task.

A conceptual framework is a section of a text written in the academic field that details the
theoretical models, concepts, arguments and ideas that have been developed in relation to a topic.
The conceptual framework is generally oriented to define this object, describe its characteristics and
explain possible processes associated with it. In some more extensive texts, the conceptual framework
also works to recognize and describe “the state of the art”, that is, to point out the main theoretical
lines in relation to this topic, in order to propose a new theoretical view that is considered relevant in
relationship with the object.

All research needs to use concepts to be able to organize your data and perceive the relationships
between them. Borsotti [49] suggests that scientific knowledge is entirely conceptual, since; ultimately,
it is constituted by interrelated systems of concepts in different ways. Hence, to access the ideas of
science, it is necessary to manage the concepts and languages of science. These concepts cannot cease
to be subjective; they are necessarily conditioned by ideological positions and by evaluative positions
that are logical assumptions of all knowledge. Borsotti adds, that "when you think about it, it is
irremediable to resort to notions drawn from common language, generated in historical and social life,
and that are loaded with ideological connotations and full of ambiguity and vagueness. Science cannot
be managed with these concepts. It does not seek to be exact, but to be precise, in order to achieve the
elaboration, the construction of unique concepts, that is, concepts whose intention and extension are as
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precise as possible." A concept is an abstraction obtained from reality and, therefore, its purpose is to
simplify by summarizing a series of observations that can be classified under the same name.

The information that is integrated into the conceptual framework must be systematically organized
so that it can be better understood. An important principle is to start from the most general to the most
particular. A starting point can be the definition of the object or topic and then describe its characteristics,
functions and indicate the parts that compose it or the associated concepts that are relevant.

The diagram representing the research topic or problem is sometimes called the conceptual
framework, this diagram could be useful to analysis and interpret the results [47,48,50]. It is a visual
scheme that represents the concept or idea. It is the way in which the work will be carried out and
integrates the elements. It also influences the research problem as it is associated with the literature
used. A part of this framework will offer a synopsis of the main points of the study. In addition, the
diagram will show the central factors that influence the relationship of the primary variables, elements
or constructions, as well as the hypothesis. After reading the literature of the corresponding area, it
has to be shown what the theories state about it and support the relationship.

The first phases followed in the methodology for developing the conceptual framework include
investigating the main variables or elements that correspond to those contextual factors that are related
to the research work. The technique used in this initial stage for constructing the conceptual framework
is the hermeneutics. In hermeneutics, the texts are read and analyzed in order to delve into them
obtaining a better understanding of reality [51]. Although the origin of hermeneutics is associated
with the study and interpretation of religious texts, its use has been extended to other disciplines such
as pedagogy or philosophy [52]. With the expression hermeneutic circle, the relationship between the
text and the context from which the research is revealed [50,52]. In our case, it has been successfully
applied to the construction of a conceptual framework for the teaching of Sustainable Development
Goals in Higher Education [50].

For the search and selection of the texts a systematic search of the literature has been carried out
following the sequence proposed by Pawson [53]. The first step is to clarify the purpose of the review.
In the second step, it aims to search for documents. This stage was divided into three sub-stages: the
search for bibliographic references proper, the filtering of the documentation and the synthesis of
the documents.

The review was carried out on the main collection of the Web of Science, in documents written in
English and published in the last 5 years (2015-19) [48,54,55]. Keywords used in the search are shown
in Table 1.

Table 1. Keywords used during systematic literature review.

Keywords Search Criteria

“Machine Learning” and “LCA” I
“Machine Learning” and “Life Cycle Assessment” II

“Artificial Intelligence" and “Life Cycle Assessment” III
“Artificial Intelligence” and “LCA” IV

Once this step was finished, the actual hermeneutic work began with the evaluation of the results,
the synthesis of the documentation and the creation of the conceptual framework.

The methodology used to build the proposed conceptual framework consists of the following
main phases [56], as shown in Figure 7.
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Figure 7. Methodology used to build the proposed conceptual framework [56].

Phase 1: Identification of the selected data sources. The first task is to review the spectrum
of multidisciplinary literature regarding the phenomenon in question. This process includes the
identification of text types and other data sources.

Phase 2: Detailed reading and categorization of the selected data. The objective in this phase is to
categorize the data by discipline and by a scale of importance.

Phase 3: Identification and denomination of concepts. The objective in this phase is to reread the
selected data and identify the concepts that group them [57,58].

Phase 4: Build and categorize concepts. The objective of this phase is to find each concept, identify
its main attributes, characteristics, assumptions and role. Subsequently it organizes and categorizes the
concepts according to their characteristics and ontological, epistemological and methodological role.

Phase 5: Integration of concepts. The objective in this phase is to group conceptions that have
similarities in a new concept. This phase dramatically reduces the number of definitions and allows a
reasonable number of them to be manipulated.

Phase 6: Synthesis The objective in this phase is to synthesize concepts in a theoretical framework.
The researcher must be open, tolerant and flexible with the theorizing process and the emerging new
theory. This process is iterative and includes repetitive synthesis until the researcher recognizes a
general theoretical framework that makes sense.

Phase 7: Validation of the conceptual framework. The objective in this phase is to test the
conceptual framework. The question is whether the proposed framework and its concepts make sense
not only for the researcher but also for other academics and professionals.
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Phase 8: Rethink the conceptual framework. A theory or theoretical framework that represents
a multidisciplinary phenomenon will always be dynamic. It should be reviewed according to new
knowledge, comments, literature.

3. Results

In this study, it has been detected that the sensorization of industrial plants and the treatment
of data through Machine Learning algorithms has not yet been extended enough in the field of
sustainability optimization. As a result of this research on the state of the art, five fundamental
dimensions are obtained in the approach to these types of problems: applications, data, approaches,
tools and sensors. These five aspects will be integrated into a proposed conceptual framework, which
aims to be a contribution when facing sustainability engineering projects.

We propose a conceptual framework that may help to understand and situate the research in life
cycle analysis using techniques of machine learning, as well as apply the proposed framework to a
case study.

The search result according to the criteria shown in the previous section was 39 documents. Of
these documents, 15 were discarded because they were false positives: from the abstract and the title it
could be deduced that there was no relation with the topic analyzed in the work. The remaining 24
documents were read in depth. Figure 8 shows the distribution of the documents according to the year
of publication and the type of publication (journal or conference proceedings or book chapters).
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Figure 8. Evolution of the articles published in the last 5 years.

As can be seen in the figure, most of the 24 documents that have been reviewed correspond to
articles published in journals. An increase in the number of publications that address this topic could
be inferred from the data, this aspect shows the interest of the work.

From the reading of the previous documents, a total of 11 articles were eliminated because they
were outside the scope. For example, for dealing with steam turbine operating conditions [59] or
improving the energy use of a farm [60]. Thus, the articles that were finally used for the construction
of the framework are shown in Table 2.
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Table 2. Documents used to construct the conceptual framework.

ID [ref] Tittle Year
Search Criteria

I II III IV

A [61]
Machine learning for toxicity characterization of organic chemical
emissions using USEtox database: Learning the structure of the
input space

2015 1 1

B [62]
Extending life cycle assessment normalization factors and use of
machine learning - A Slovenian case study

2015 1 1

C [63]
Limitations of toxicity characterization in life cycle assessment: Can
adverse outcome pathways provide a new foundation?

2016 1 1

D [64]
Quantifying the impact of sustainable product design decisions in
the early design phase trough machine learning

2016 1 1

E [65]
A Data-Driven Approach for Improving Sustainability Assessment
in Advanced Manufacturing

2017 1 1 1

F [66] Computational design optimization of concrete mixtures: A review 2018 1

G [67]
Integration of artificial intelligence methods and life cycle
assessment to predict energy output and environmental impacts of
paddy production

2018 1 1

H [68]
Developing surrogate ANN for selecting near-optimal building
energy renovation methods considering energy consumption, LCC
and LCA

2019 1 1

I [69] Machine Learning for Sustainable Structures: A Call for Data 2019 1 1 1 1

J [70]
Model uncertainty analysis using data analytics for life-cycle
assessment (LCA) applications

2019 1 1

K [71]
Assessing environmental performance in early building design stage:
An integrated parametric design and machine learning method

2019 1

L [72]
A machine learning approach for the estimation of fuel consumption
related to road pavement rolling resistance for large fleets of trucks

2019 1

M [73]
Combined life cycle assessment and artificial intelligence for
prediction of output energy and environmental impacts of
sugarcane production

2019 1 1

As can be inferred from Table 2, only one document 17 meets the four search criteria, one document
13 covers three search criteria. Most of the documents [61–64,68,70,73] cover two search criteria, the
most common being the conjunction of criteria I and II. Only two documents [71,73] meet a single
search criterion.

3.1. ADAPTS: A Proposal of Conceptual Framework for Engineering Projects

Results have been extracted from the bibliographic study (shown in Table 1). The most relevant
characteristics detected in the works analyzed are: (1) the application to which the work refers, (2) the data
used, (3) the approach that has been given to the problem addressed, (4) the machine learning tool used and
5) the sensors used or proposed for implementation. These five aspects detected are what form the basis of
our conceptual framework. Therefore, the proposed conceptual framework starts from the bibliographic
study carried out, which has allowed us to identify the key aspects when addressing the optimization
of engineering projects from the perspective of sustainability, using LCA.As previously described in the
methodology section, after a detailed reading of the above-mentioned bibliographical references (phase 2 of
Figure 7), authors of this article constructed and categorized the concepts (phase 4), integrated the concepts
(phase 5) and proposed a pyramid-shaped structure that integrates all the results (phase 6).

The conceptual framework will be validated through a practical application exercise, a case study
demonstrating its usefulness (phase 7), shown in the following section. This paper describes a new
conceptual framework to be applied in addressing project problems in engineering, from a point of
view of sustainability optimization. The conceptual framework provides tools to approach engineering
projects in an intelligent and sustainable way. The proposed tools are based on the analysis of the state
of the art in the areas of sustainability, life cycle analysis, sensing and machine learning. Five main
dimensions have been detected: Applications, Data, APproaches, Tools and Sensors. The results of the
“state of the art” study carried out are shown on Table 3.
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Table 3. Results for State of the art.

ID Application Data Approach Tools Sensors

A [61]
Predict energy consumption of
buildings

TRNSYS simulation data. Data
collected on existing buildings.

Energy. Performance prediction ANN + SBMO (genetic algorithms) Literature review

B [62] Reduce the impact of Structures
Geometry, material, building type
and other key parameters

A more sustainable built
environment

Machine Learning + Artificial
Neural Networks

Resource efficient built
environment lab

C [63]
Predict the sources of uncertainty in
the LCA: Chicago Pavement LCA

Traffic data report
Objective uncertainty
quantification (UQ)

Various data analytics methods
were used to conduct a thorough
model uncertainty analysis

Traffic, Speed IRI Collected from
2015 Traffic data report

D [64] Sustainability in manufacture
Manufacture data using simulation
models

Data-driven modeling Data-model-decision network

Cheaper monitoring tools and
pervasive wireless technology
enables environmental data to be
collected. Manufacturing process
data is most often proprietary

E [65]
To asses biological effects using a
tool quantitative outcome pathway
(qAOP)

Toxicity data. The emission levels.
Data of inventory analysis

Toxicological LCIA models and
assumptions

Mechanistic; Probabilistic
supervised machine learning
models; and Weight of evidence

Experimental toxicity data

F [66]
Estimate LCA results from product
properties. 37 case study

LCA data. Data generated during
conceptual design.

Guidelines, Heuristics, Standards
Methods Preferences

Multi-layer perception neural
network with back propagation
training

Product attributes

G [67]
Toxicity characterization of
chemical emissions in Life Cycle
Assessment (LCA)

Properties of the chemical
compounds being assessed
(databases) buildings.

Usetox model
Dimensionality reduction
techniques.

Environmental properties

H [68] LCA normalization factors
A pesticides properties database
PPDB, ReciPe .08 and FURS.

LCA normalization
Linear regression using Java
program Package

Environmental indicators

I [69]

Estimate LC environmental
impacts and output energy of
sugarcane production (planted or
ratoon farms)

Ecoinvent 2.2 databases Cradle to grave approach
Artificial neural networks (ANNs)
and adaptive neuro fuzzy inference
system (ANFIS) model

Used resources emissions, Used
electricity

J [70]
Estimate LC and energy of paddy
production

Agricultural input parameters from
240 paddy producers.

CExD cumulative. Energy Demand
Artificial neural networks (ANNs)
and adaptive neuro fuzzy inference
system (ANFIS)

Paddy production process

K [71]
Evaluate environmental impact in
early building design stage

Generated samples Parametric design
Fuzzy C-means clustering and
extreme learning machine

Properties of the building

L [72]
Energy consumption of the trucks
to evaluate the operation phase of
the pavements.

Database of Micrilise Ltd. Road
geometry and condition of the road
surface for each vehicle in the
databases

Enveloping methods (Boruta)
Boruta algorithm and Neural
Networks

Standard sensors (SAE
International 2016) that keep track
of various parameters (including
consumption)

M [73]
Design and optimization of
concrete structures

Literature review Optimization Decision Making
ANNs, instance-based learning,
decision-trees and SVMs.

Concrete mixture parameters
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A conceptual framework is proposed that integrates these five dimensions as shown in Figure 9.
At the base of this pyramid will be the applications, data, approaches and tools. At the top of the
pyramid is the sensorization. As a complement to the proposed conceptual framework, this proposal
will be developed for a specific case (a case of a food industry), a development that can be found in the
discussion section.

Figure 9. Proposed conceptual framework.

3.1.1. Applications

The first dimension of the proposed conceptual framework is the application of artificial intelligence
and machine learning technologies. A first classification of the applications can be referred to the
sectors in which they are applied.

Among the 13 articles analyzed; six of them are focused on the construction sector and civil
engineering. Traditionally, the construction sector has been quite conservative and resistant to change.
However, the emergence of technologies such as Building Information Modelling are causing a change
in it. LCA criteria could be used for design structures. This was explored in a review article on the
design of concrete structures [66] or in a call for data for the evaluation of structures [69]. Environmental
criteria can be used for the design of buildings in the early design stage [71] or for the estimation of
total energy consumption from environmental life cycle analysis (LCA) and in cost life cycle analysis
(LCC) [68]. In the field of civil engineering, environmental assessment of roads (in its operational phase)
was explored by analyzing truck traffic [72] or vehicle speed and road roughness data in Chicago [70].

The design and production of products has been analyzed. For this purpose, LCA was
obtained from the data generated in the conceptual design [64] or by analyzing sustainability in
manufacturing [65].

Environmental assessment of agricultural activities using artificial intelligence techniques has
been analyzed jointly with the energy consumption for the cultivation of sugar cane (planted or ratoon
farm) [73] or rice [67].

Finally, some applications consist of using artificial intelligence techniques to address specific
aspects of the LCA such as sensitivity to certain factors [70], to asses biological effects using a tool
quantitative outcome pathway (qAOP) [63], toxicity characterization of chemical emissions [61] or
assess normalization factors in LCA methodology [62].
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3.1.2. Data

The data is crucial for the implementation of Machine Learning and Artificial Intelligence
methodologies. Data are required for training and making predictions with both supervised and
unsupervised techniques.

Obtaining data is not always simple in fact, some authors warn of the need to work in scenarios
with little data (austere data environments). This justifies the need for call for data. For example,
D’Amico made a request for data geometry, material, type of building and other aspects in the field of
structures [69].

In road environmental impact assessment studies, the data came from a company database
(Microlise) [72] or from mobility studies in cities such as Chicago [70].

In the field of agriculture, data such as the amount of pesticides, fertilizers, or seeds are needed
to determine the environmental impact. This can be done by randomly obtaining data, as was done
in [67] to analyze the environmental impact of rice or in [73] for sugarcane farms.

In some investigations, data come from simulations. For example, in Sharif and Hammad [68]
extensive data is collected on existing buildings related to several factors including TEC, outside
temperature, building envelope components, HVAC and lighting systems; in other occasions the data
are obtained using a data generator these data are later validated with experimental data [65].

The conceptual design of products [64] or the early design stage of building [71] are a source of
data that can be used in the environmental assessment of products [64] or buildings [65].

Finally, to perform the toxicological characterization of chemical emissions [61], the authors used
databases such as USEtox [74], for the normalization of factors [62] the authors used databases such as
PPDB, ReciPe.08 or FURs.

3.1.3. Approaches

In the study of the state of the art carried out as part of the process of construction of the proposed
conceptual framework, various work approaches have been shown. For example, several of these
works [63,66,68,69,71] use the LCA life cycle analysis technique to improve the design. There are
also works that focus on the exploitation phase [67,70,72,73], while others focus on the study of the
methodology followed in the LCA [61,62,65].

3.1.4. Tools

The use of artificial neural networks is currently a trend in the scientific literature [75,76]. In this
area, neural networks have been used to predict energy consumption [68], as a surrogate model to
replace simulation software. [69], to obtain LCA results from product characteristics [64], to obtain
toxicity with fewer parameters [61], to evaluate energy consumption and environmental impact of
agricultural activities [67,73] and to evaluate the energy consumption in order to evaluate environmental
impacts of roads [72].

Artificial Neural Networks are often used in combination with other tools such as Simulation-Based
Multi-Objective Optimization [68], Bayesian analysis and orthogonal basis polynomial basis system [70],
dimensionality reduction techniques and linear regression [61]; adaptive Neuro fuzzy inference system
(ANFIS) model and Boruta algorithm [72].

Another similar tool is the Extreme Machine Learning (feedforward neural networks), that together
with fuzzy C-means clustering was used to valuate environmental impact in early building design
stage. Bayesian Network Models were used too in several applications [63,65]. Linear regression was
used to estimate normalization LCA factors [62].

3.1.5. Sensors

Throughout this study the enormous relevance of using sensing when addressing an objective of
intelligent sustainability in engineering projects has emerged.
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This sensorization is essential to be able to train models, validate and generalize them. It is also
useful to have intelligent sensors that allow us to have control of the data in the exploitation process.

Several of the works analyzed use simulation data, data taken from databases or public data. For
example, [63] works with toxicity data, in [71] it deals with properties of the buildings or in [70] traffic
data is used. The enormous utility of having data from sensorization is evident.

3.2. Case Study

A new conceptual framework has been described that could be applied to address the problems of
engineering projects, from the point of view of sustainability optimization. The proposed conceptual
framework integrates five dimensions: applications, data, approaches, tools and sensing. This
conceptual framework is developed below for a specific case (olive oil sector), showing its applicability
and usefulness.

The case study intends to answer the five questions that constitute the validation phase of the
conceptual framework [77].

(1) Is this framework useful? [78,79].
(2) Does it provide a common language from which to describe the situation under scrutiny and to

report the findings about it [79].
(3) Does it develop a set of guiding principles against which judgments and predictions might

be made?
(4) Does it act as a series of reference points from which to locate the research questions within

contemporary theorizing? Does it provided a structure within which to organize the content of
the research and to frame conclusions within the context? [78].

(5) Below is an application of the proposed conceptual framework to a specific case study, the olive
oil sector. Each of the dimensions of the ADAPTS pyramid will be discussed in this example
(Figure 10).

Figure 10. Conceptual framework. Study case.

Olive oil production is a very important activity in the Mediterranean area. Oil processing influences the
environment by causing resource depletion, land degradation, air emissions and waste generation [80].
Figure 11 illustrates the total volume of olive oil exports within the European Union, by country.
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Figure 11. Total exports volume. Compiled by the authors based on [81].

Different phases must be considered to carry out the LCA of oil production. Firstly, in the
agricultural phase, the cultivation of the olive trees is considered, as well as the pruning and harvesting.
In the phase of production, oil extraction must be analyzed. Some studies also consider aspects such as
packaging, distribution, consumption and transport. Finally, the management of the residues must be
considered. There is a consensus in the scientific literature that the phase that has the greatest impact is
agriculture. This is due to the use of fertilizers, phytosanitary products and irrigation [82].

Thus, it is necessary to consider that the processes are compatible with both environmental
protection and efficiency, throughout the entire product life cycle. This extends to the handling,
packaging and labeling of products. It is necessary to take into account the reduction of inputs such
as fertilizers, phytosanitary products or fossil fuels. The development of technologies is sought to
optimize the use of valuable water resources in an environment with water scarcity. It is advisable to
use climate monitoring stations through olive groves, making extensive use of soil moisture sensors,
salinity sensors and reporting systems to ensure that water is used for maximum efficiency. Carbon
emissions play an important role in atmospheric conditions and climate change, so it is necessary to
reduce emissions. It is also necessary to reduce the energy use of the electricity grid, seeking to reduce
the carbon footprint.

3.2.1. Application

The olive trees produce the olive that is transported to the oil mills, where after a few mechanical
processes the virgin olive oil is extracted. This oil is packaged directly in packaging machines belonging
to oil mills or in independent packaging machines, in the case of extra virgin olive oil. If not, it is
sold to refineries where refined olive oil is obtained. From the mixture of extra virgin olive oil and
the refined olive oil is obtained which will be packaged in the refineries. Oil distribution can be done
through distribution platforms, hypermarkets, supermarkets and traditional stores [83], being able to
start in olive crops with different forms of exploitation.

There are three cultivation modalities: traditional or extensive, intensive and superintensive
cultivation. The first cultivation modality is the usual one in the areas of olive tradition; they can be
irrigated or dry. Its planting density is around 80–120 trees/ha, with one or several feet. This makes
the collection is mostly done manually through the help of machinery. In the intensive cultivation
system, always in better soils and irrigated land, we work with a planting density of 200–400 trees/ha.
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The collection systems are very similar to those of the traditional olive grove. In the superintensive (or
"in hedge") the planting density is more than 800 trees/ha. These systems constitute what has come to
be called "new olive growing" [83]. The olive harvest in this type of plantation is fully mechanized
thanks to the existence of machines designed for this type of olive grove. The impact of this first stage
is the highest according to most studies [82].

Once the olive has been collected using the methods required for each type of crop (traditional,
intensive and extensive), the industrialization process begins. To do this, the olive is cleaned well on
the farm itself where it is collected or, it is taken to the mills and there it will undergo the cleaning
process. In the oil mills, the olives caught in flight are separated, that is, from the tree, or from the
ground since, the quality of the oil varies depending on the origin and possible damage that it may
have suffered. Once separated, the oil extraction process begins by grinding, shaking, horizontal
and vertical centrifugation and decanting. Once these phases are finished, the oil is stored until the
packaging process begins, which can be done in the mills themselves, if they have the capacity to do
so, or in independent packaging machines. A third option is packing machines linked to refineries
where the lampante oil is taken to undergo a neutralization process. This oil is the result of a last
centrifugation which makes it very acidic and not suitable for human consumption. It is called that
because it was formerly used for the combustion of oil lamps.

Olive oil packaging must go through the filling and capping, labeling and packaging phases. The
distribution of olive oil can be carried out on different supports depending on what will be your final
recipient. The bulk distribution involves selling the unpacked oil, so that the buyer is responsible
for its bottling and subsequent distribution. Packaged oil, in the mills themselves or in independent
packaging machines, is usually sold directly to the final consumer or packed to small businesses.
Finally, pallet oil is sold wholesale to new forms of commercial distribution such as supermarkets
and hypermarkets.

In the last ten years, the olive oil value chain has benefited from innovations introduced with the
idea of making oil more efficient and profitable. The most significant innovations have been exposed
in the work, helping us to do so with the specific value chain mentioned above [84].

3.2.2. Data

One of the main difficulties in carrying out an adequate LCA of oil production is the need to have
public databases with information about all stages of the process [82].

In this way, information about soil salinity and climatic characteristics can be crucial to develop
an optimization of the impact of this activity. This information could be collected by sensors.

The main technological variables that influence the elaboration process are:

(1) Degree of grinding. The degree of grinding indicates the average size in which the hardest parts of
the paste remain. Grinding too thick means a weak breakage of the tissues that leads to a decrease
in exhaustion. On the other hand, too fine grinding causes a greater increase in the temperature
of the paste that has a negative impact on the quality of the oil, and can generate more emulsions
in the pasta that deplete exhaustion. Additionally, too fine grinding causes problems of bindings
in the mill and increases energy consumption [85].

(2) Temperature and beat time. These parameters are, perhaps, the most decisive in the quality of the
oil to be obtained. The increase in the temperature of the pasta in the blender reduces its viscosity,
which favors the aggregation of the drops of oil and therefore improves extraction performance.
On the other hand, the increase in shaking time also favors the change in the structure of the paste
that allows increasing the depletion of the pomace. However, both parameters have a negative
impact on the quality of the oil obtained, since the increase in temperature accelerates the speed
of the reactions that take place in the blender and favors the loss of volatile components.

(3) Composition and structure of the pasta at the exit of the blender. In the shaking of the so-called difficult
pastes, which are those pastes that present difficulties in extracting the oil, it is necessary to use
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adjuvants (natural microtalco and, where appropriate, water) to improve their behavior. A repair
of the deficient pulp entails substantial increases in the oil contained in the pomace, while the
addition of adjuvants has no influence on the quality of the oils obtained [86].

(4) Degree of moisture of the paste in decanter. This parameter has great relevance in depletion, since
it will determine the thickness of the rings inside the decanter and, therefore, the operating
conditions of the machine.

(5) Residence time in decanter. The residence time in the decanter is determined by the established
production rate, which is generally imposed by the olive oil entering the mill and the capacity of
the installation. Operating the decanter at higher rates than recommended implies a significant
loss of fat in the pomace.

(6) Parameters of the operation within the decanter. The differential screw-bowl speed and the discharge
height of the oil phase determine the width of the different rings within the decanter [87]. A correct
choice of these parameters makes it possible to improve depletion without influencing the quality
of the oil obtained.

(7) Parameters specific to the operation of the vertical centrifuge. The temperature of the addition water
must be adjusted to the temperature of the oil so as not to affect its organoleptic properties and
avoid the formation of emulsions that induce the loss of oil with the wash waters. Likewise, the
water flow must be adjusted to that of oil for the proper functioning of the machine in terms of
losses. Finally, the discharge frequency of the cumulative strips is an important parameter since it
influences the quality of the oil obtained and the oil losses in the operation.

(8) Parameters of the decantation in stainless steel tanks. The main parameter is the residence time of the
oil in the tanks and the frequency of the purges of the erasures. A short residence time means that
the oil remains with a high level of moisture and impurities, while a residence time that is too
high and a poor purge frequency can be supposed to damage its organoleptic characteristics [88].

These variables are related to the quality of the olive oil, but also to other aspects such as the
energy consumption or the waste generated in the process. In this way, with a suitable sensing, the
impact that the activity has on the environment can be optimized.

3.2.3. Approach

As a result of the growth of the food and beverage industries, a particularly demanding sector with
production management is found. Economic behavior (rigid supply, inelastic demand), administrative
intervention in primary productions, food safety requirements, diversity of products, variability of
productions, etc. to which we must add those that also affect the rest of the economy: financial
fluctuations, acceleration of applicable technologies, globalization of markets, etc. [89].

The agro-food industry is a very important strategic sector for our economy. It generates more
than half a million direct jobs, above the total manufacturing industry and the Spanish economy as a
whole [90]. For this reason, the case study has been focused on this sector, due to the great potential.
These companies show and the possibilities they provide. Thanks to the new Industry 4.0 approach,
making use of information technology, it is now easier to convert data into useful information for
decision making.

Tools such as data mining and predictive techniques organizations have information that helps
them raise more precise, effective and applicable business strategies in shorter periods of time. Before
they can interpret the process data, companies must treat them to reduce the problem to be treated and
optimize the available resources. Data mining provides the means for the treatment of productive data.

On the other hand, there are different predictive techniques, each with its benefits and deficiencies,
which provide a new way for companies to make decisions. The Spanish agri-food industry is likely to
benefit from the Industry 4.0 approach. In a globalized market, any small advantage over the competition
can make a big difference. As the food and beverage market is very demanding regarding production
management, the tools discussed above offer organizations a competitive advantage to value [91].
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3.2.4. Tools

As shown in the section dedicated to tools, the use of artificial neural networks is currently a
growing trend in recent academic literature [75,76]. In the field of sustainability applied to engineering
projects, neural networks have been used to predict energy consumption [68], as a surrogate model to
replace simulation software. [69], to obtain LCA results from product characteristics [64], to obtain
toxicity with fewer parameters [61], to evaluate energy consumption and environmental impact of
agricultural activities [67,73] and to evaluate the energy consumption in order to evaluate environmental
impacts of roads [72], among many other applications.

Artificial Neural Networks are often used in combination with other tools such as Simulation-Based
Multi-Objective Optimization [68], Bayesian analysis and orthogonal basis polynomial basis system [70],
dimensionality reduction techniques and linear regression [61]; adaptive Neuro fuzzy inference system
(ANFIS) model and Boruta algorithm [72].

In this case of application it has been decided to use ANN as a tool due to the reasons already
stated: because the use of artificial neural networks is currently a growing trend, because in the field
of sustainability applied to engineering projects ANN have been used in numerous applications and
because ANNs are often used in combination with other tools.

Artificial neural networks (ANN) are a machine learning tool that can be useful for predicting one
or more variables in complex systems. ANNs consist of an input layer, a variable number of hidden
layer(s), an output layer, weights and connection biases, an activation function and an addition node.
Each neuron constitutes a computational unit, integrated in a layer. Each layer takes as input values
those calculated in the previous layer and generates an output value for the next layer. The input layer
provides the input values of the network, which are fed to the hidden layer. Each hidden layer consists
of several neurons that calculate an output using all the inputs of the input layer and a predefined
set of weights and biases. During the learning process, each neuron calculates a single output value
based on its input data from the previous layer. This result can be fed to the next hidden layer or to the
output layer. The output layer takes as inputs all outputs of the last hidden layer and produces the
final output of the ANN [92].

3.2.5. Sensors

As we have mentioned before, in order to perform an adequate LCA of the oil manufacturing
process it is essential to have a reliable database about the variables that influence the process. In this
sense, a correct sensor network arranged throughout the process can contribute to improve the LCA
and with it, the process optimization can be carried out crucial aspect for the optimization of the LCA
of olive oil is the cultivation phase. In this respect, Previous studies have shown that sensing can help
optimize olives drip irrigation by controlling soil moisture and knowing the weather using a weather
station [93,94]. LED Scanner Sensor have been used for measuring olive oil canopies [95].

One of the problems that arise in the automatic control of oil mills is the difficulty of having the
necessary information about the process. In fact, in order to adapt the operating conditions of the plant
from a global point of view, it would be necessary to know the characteristics of the input fruit, the
characteristics of the pasta in the blender, the composition and flow of the flows of entry and exit of the
decanter, etc. To control the mill with the objective of maximizing quality, it would be necessary to
be able to measure this variable, which in general would be a combination of the values of different
chemical and organoleptic parameters.

Many of these variables are qualitative and difficult to measure online, so the use of indirect
measures or the use of sensory fusion techniques are intuited as necessary alternatives to be able to
estimate the values of the parameters. An important sensor technology for the automatic control of
oil mills are Near Infrared Spectrocopy (NIR) sensors, since this technique allows the construction
of sensors to estimate the moisture and fat content of the pulp and pomace. In addition, it allows
characterizing the oil obtained from the process in terms of quality by estimating a series of chemical
parameters, such as acidity, peroxide index, K270 and total polyphenol content [96].
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The use of this type of sensors together with neural networks it allows to improve data obtained
from this type of sensors [97,98]., which together with the possibility of using these sensors for
measurements online makes them fundamental tools for automatic control of the oil mill. Another
technology of relevance sensors is the arrays of voltmetric sensors, which allow evaluating the
polyphenol content of oil [99]. The construction of sensors in line with this technology can provide
very valuable information for the control of oil mills in order to maximize the quality of the oils
obtained, since they allow information on parameters sensitive to the elaboration process and very
related to the oil quality In this regard, they have been applied this same type of sensors to monitor
online the accumulation of volatile components in the mixer [100], which opens the doors to its use for
automatic control.

The first reference of using neural networks to building a virtual sensor is located in [101], where a
neural network is designed and implemented to infer depletion and moisture from the alpeorujo. The
use of neural networks to infer characteristics of the oil produced from characteristics of the input fruit
and the process parameters can be consulted in [102], as well as the use of artificial vision to capture
information from the input olives, in this case the index of maturity. In the same line of behavior
prediction of the installation from neural networks, build a neural network to predict the depletion
of the pomace from variables characteristic of the fruit (fat and moisture content) and technological
variables such as the beat temperature, the addition of micro-total, paste inlet flow into the decanter,
paste moisture and oil outlet height from the decanter [103]. These works present the bases for the
construction of virtual sensors that allow variables to be included in control loops that otherwise would
not be possible to measure online [88].

The Figure 12 shows the result of applying the proposed conceptual framework to the case study.

Figure 12. Conceptual framework. Study case.

The case study is a validation of the conceptual framework proposed in Section 3.1. The conceptual
framework is a useful tool to analyze the production of olive oil from an environmental perspective. It
allows to create a common language for the analysis of the LCA using machine learning tools.

The framework can be a reference point that will allow to guide future research and to organize
the content of future investigations. In this way, it can be stated that the conceptual framework answers
the questions proposed by Smith [77] (see Figure 13).
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Figure 13. Validation of the Conceptual Framework.

Rykiel [104] argues that models can be validated pragmatically, while theoretical validity is always
provisional. In this regard, he, like Matalas et al. [105], distinguishes between theoretical and conceptual
frameworks. According to Rykiel [104], validation is not a procedure to test the conceptual framework,
but rather a proof of its suitability for its intended use. The domain of applicability (of the conceptual
model) will be the conditions for which the conceptual model has been tested, that is, compared
to reality as far as possible and considered suitable for use [106].While a theoretical framework is
used to test theories, to predict and control the situations within the context of a research inquiry, a
conceptual framework is aimed at development of a theory that would be useful to practitioners in the
field [107]. In this sense, this case study remarks that the proposed conceptual framework develops a
set of guiding principles against which judgments and predictions might be made. Specifically, the
conceptual framework proposes to focus the study on five axes: the application, the data, the approach,
the machine learning tools to be used and the necessary sensing.

In the case studied, using these guiding principles proposed, it is concluded that for the application
in the case of olive oil it is useful to have data related to the quality of the olive oil, but also to other
aspects such as the energy consumption or the waste generated in the process. It is also claimed that
the agri-food industry is likely to benefit from the Industry 4.0 approach, and it is proposed that use
of ANN In this case of application it has been decided to use ANN as a tool, and address the need
for adequate sensing, because to perform an adequate LCA of the oil manufacturing process it is
essential to have a reliable database about the variables that influence the process. In this sense, a
correct sensor network arranged throughout the process can contribute to improve the LCA and with
it, the process optimization can be carried out crucial aspect for the optimization of the LCA of olive oil
is the cultivation phase.

The results obtained from the bibliographic study (shown in Table 3) provide the most relevant
characteristics detected in the analyzed works: 1) the application to which the work refers, 2) the data
used, 3) the approach that has been given to the problem addressed, 4) the machine learning tool
used and 5) the sensors used or proposed for implementation. These five aspects detected are those
that form our conceptual framework. Therefore, the proposed conceptual framework starts from the
bibliographic study carried out, which has allowed us to identify the key aspects when addressing the
optimization of engineering projects from the perspective of sustainability, using LCA. As far as we
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know, industrial plant sensing and data processing through Machine Learning algorithms has not yet
been extended sufficiently in the field of sustainability optimization for engineering projects. The way
to bridge this opportunity gap detected in the investigation of the state of the art (Figure 5) constitutes
our research question, for which the proposed conceptual framework aims to constitute a reference
point that helps to locate the research question within the contemporary theorizing.

4. Discussion

The main objective of this work is the development of a conceptual framework for the integration of
artificial intelligence and life cycle assessment (LCA). In the literature review that has been carried out, it
has been detected that the sensorization of industrial plants and the treatment of data through Machine
Learning algorithms has not yet been extended enough in the field of sustainability optimization.

This work has focused on the evaluation of sustainability using the LCA technique, because it
uses some indicators that allow quantifying environmental impacts.

As far as we know, industrial plant sensorization and data processing through machine learning
algorithms have not yet been extended enough in the field of sustainability optimization. An opportunity
gap has been detected in the investigation of the state of the art.

As shown in Figure 5, our work is part of the triple coincidence between the sectors of sustainability
(especially through life cycle analysis), sensorization and the application of machine learning techniques.
In the bibliographic study conducted, the confluence between machine learning tools and the life cycle
analysis technique has been enhanced, and the results obtained are shown in the corresponding section.
It has not deepened the binomials machine learning-sensors and sensors-LCA, because the searches
of these binomials in Web Of science give a huge number of results, some of them not very relevant,
because they are very closely related terms.

In Pérez et al. [108], sustainability is taken into account from the stage of conceptualization and
design of an engineering project. This paper presents a review of the state of knowledge and project
design methodology to obtain a first comprehensive approach and an initial structure of a generic
nature, as the first step to provide a practical way to facilitate analysis and application of sustainability
criteria in the design of an engineering project.

In García et al. [109] a model is shown, in consecutive stages, for sustainability analysis: definition,
interpretation, conception of goals and specifications, measurement and evaluation. Specifically, these
are principles that integrate a philosophy of sustainable design around innovation and creativity in
engineering in general, and in chemical engineering in specific.

Vanegas et al. [110] proposes a model to incorporate sustainability criteria and principles in
the design, construction and management of infrastructures, which he proposes applicable to any
sustainability discussion in engineering, architecture and construction. Its model encompasses three
visions of sustainability (a global vision; a sector vision and a project vision); three maps for the
implementation of sustainability (strategic, tactical and operational) and the indication of sustainability
principles from specific sources, manifesting a freedom in their adoption as long as these principles
can be made effective by expressing them in terms of specific goals; quantifiable objectives associated
with the goal; and an application plan, for specific projects.

The sustainability evaluation model of engineering projects using specific sustainability criteria
proposed by Segalas et al. [111], associates measurement and evaluation variables in the different
stages of the life cycle of a project; and a learning assessment model that engineering students acquire
in different subjects through the specific use of concept maps.

Vezzoli et al. [112] propose the use of guides and checklists for the design of a certain type of
product with an eco-efficient approach, pointing out the importance of developing specific guides and
checklist for each type of product, as tools to realize the design sustainable of an object.

In Labus et al. [113], the application of sustainability indicators in the design process of an
engineering project is proposed. Based on the analysis of current computer frameworks, it establishes
a framework of indicators that can guide the different stages of a project, a product or a system;
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to link sustainability principles throughout the project life cycle and between the different stages
that comprise it. It also brings the qualitative importance of sustainability assessment with decision
analysis techniques.

Other elements of consideration from a project management point of view are provided in
Fernandez et al. [114], to identify sustainability factors and indicators in engineering projects in general
and civil engineering projects in particular.

The results of the study conducted in Armenia et al. [115], indicate that the academic literature on
this subject is still in diapers, but that the attention of academics is growing and opens new directions
of research. Based on the results of the literature review, a new conceptual framework is proposed
that links five key dimensions of sustainable project management: corporate policies and practices,
resource management, life cycle guidance, stakeholder participation and organizational learning.

In none of the existing conceptual frameworks, as far as the authors know, a conceptual framework
is proposed that integrates the aspects of sustainability through the application of Machine Learning
techniques in engineering projects.

A conceptual framework is proposed that can help in the approach to these types of problems.
This paper has described a new conceptual framework that could be applied to address the problems
of engineering projects, from the point of view of optimization of sustainability.

In a research work not only influences the choice of the topic and the approach of the problem,
but also affects the selection made of the research procedures, the underlying theories that explain the
topic of interest, and the specific way in which results are analyzed and disseminated.

When carrying out the work, the researchers incorporate and make initial formulations of the
research problem, which should be based on the empirical evidence that best supports the existing
theoretical perspective(s). It is convenient to develop the research project based on a conceptual
framework, related to the subject in question, which makes reference to the explanations given for the
research problem of interest, the most appropriate procedures to answer the research questions, as
well as the strength of the evidence achieved in terms of methodological instrumentation.

The initial plan for the development of a framework that supports the research to be carried out,
includes not only the assumptions from which the research starts, but also shapes the way in which the data
is collected, which in turn determines or establishes the limits of the kinds of analysis that can be used.

Certain techniques are more compatible with some assumptions than with others, which means that
at the time of selecting a series of research methods, a certain theoretical position is necessarily assumed.

The scientific method in general, favors the scope of objective knowledge, has a basic methodology
that uses research logic and research procedures, and is invariable regardless of the kind of data
studied. On the other hand, the researcher can observe, relate and make sense of the events he/she
can remember, imagine, compare, differentiate, integrate, and thereby place them in his/her proper
perspective. And part of other assumptions too, it has the means to create instruments that extend
these capabilities or reduce their restrictions. In a broad sense, scientific theory refers to a series of
logically interrelated propositions or assertions that empirically make sense, as well as the assumptions
the researcher makes.

The conceptual framework is actually a bibliographic investigation that talks about the variables
that will be studied in the research, or the relationship between them, described in similar or previous
studies. It refers to perspectives or approaches used in related studies, its goodness or property and its
relevance to the current study is analyzed.

More specifically, it leads to the establishment of hypotheses, suggests ways of analysis, or new
perspectives to be considered, and at the same time, helps interpret the results of the study [116].

The conceptual framework proposed in this work provides tools to address engineering projects
in an intelligent and sustainable way. The proposed tools are based on the analysis of the state of the
art in the areas of sustainability, life cycle analysis, detection and machine learning.

A conceptual framework that integrates five dimensions is proposed. At the base of the proposed
pyramid will be the applications, data, approaches and tools. At the top of the pyramid is the
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sensorization. As a complement to the proposed conceptual framework, this proposal has been
developed for a specific case (olive oil sector), showing its applicability and usefulness.

5. Conclusions

This paper proposes a conceptual framework applicable to optimization problems under
sustainability criteria in engineering projects, making use of current machine learning techniques.

A systematic literature review has been carried out. From the selected documents, the texts were
analyzed, and the conceptual framework was proposed. A graphic representation is also proposed to
clearly define the variables of the proposed conceptual framework and their relationships.

The proposed conceptual framework consists of five dimensions. At the base are: (1) the
application to which it is intended, (2) the available data, (3) the approach and (4) the tool used. At the
top of the pyramid, (5) the necessary sensing.

The first dimension of the proposed conceptual framework is the application to which the
conceptual framework is applied. A first classification of applications may refer to the sectors in which
they are applied.

Data is crucial for the implementation of machine learning and artificial intelligence methodologies.
Data is necessary to train supervised algorithms and make predictions in unsupervised algorithms.

In the study of the state of the art carried out as part of the process of construction of the proposed
conceptual framework, various work approaches have been shown.

Another very important dimension of the proposed framework is the artificial intelligence and
machine learning tools used.

Throughout this study, the enormous relevance of using sensing when addressing an objective of
intelligent sustainability in engineering projects has emerged. This sensorization is essential to be able
to train models, validate them and generalize them. It is also useful to have intelligent sensors that
allow us to have control of the data in the exploitation process.

This work is part of a broader line of research, in terms of optimization under sustainability criteria.
We hope that the proposed framework will serve as a basis for future research related to this topic.
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Abstract: Local Positioning Systems are collecting high research interest over the last few years.
Its accurate application in high-demanded difficult scenarios has revealed its stability and robustness
for autonomous navigation. In this paper, we develop a new sensor deployment methodology to
guarantee the system availability in case of a sensor failure of a five-node Time Difference of Arrival
(TDOA) localization method. We solve the ambiguity of two possible solutions in the four-sensor
TDOA problem in each combination of four nodes of the system by maximizing the distance between
the two possible solutions in every target possible location. In addition, we perform a Genetic
Algorithm Optimization in order to find an optimized node location with a trade-off between the
system behavior under failure and its normal operating condition by means of the Cramer Rao Lower
Bound derivation in each possible target location. Results show that the optimization considering
sensor failure enhances the average values of the convergence region size and the location accuracy
by 31% and 22%, respectively, in case of some malfunction sensors regarding to the non-failure
optimization, only suffering a reduction in accuracy of less than 5% under normal operating conditions.

Keywords: cramer rao lower bound; localization; LPS; multi-objective optimization; sensor failure;
wireless sensor networks

1. Introduction

Autonomous navigation has meant a challenge for scientific development over the last few years.
The high accuracy required has entailed the interest in Local Positioning Systems (LPS) where the
positioning signal paths are reduced between targets and architecture sensors. This fact significantly
reduces noise and uncertainties by minimizing the global architecture errors with respect to Global
Navigation Satellite Systems (GNSS).

GNSS provide global coverage but the distortion of their signals in their travel affects the stability
and the accuracy of the localization over time. In addition, GNSS navigation is denied in indoor
environments, where Automatic Ground Vehicles (AGVs) mostly operate, as signals deteriorate
crossing large buildings. This causes Non-Line-of-Sight (NLOS) connections between satellites and
targets which makes position determination impractical. The application of also GNSS has limitations
in outdoor environments such as low-altitude flights in Unmanned Aerial Vehicles (UAVs) due to the
higher uncertainty in the vertical coordinate of the global systems. It is a consequence of the similar
altitude of the satellites in their constellations.

These reasons have promoted this new localization concept based on LPS especially for high
accuracy automated navigation [1,2]. LPS require the deployment of architecture sensors in a defined
and known space where the capabilities of the system are maximized. The characteristics of the LPS
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for a defined space rely on the measurement of the physical magnitude used for the determination of
the target location: time [3], power [4], frequency [5], angle [6], phase [7] or combinations of them [8].

Among these systems, the most extended are time-based models due to their reliability, stability,
robustness and easy-to-implement hardware architectures. Time-based positioning has two main
systems that differ in time measurements computed: Time of Arrival (TOA) [9] and Time Difference of
Arrival (TDOA) [10] systems.

TOA systems measure the total time of flight of a positioning signal from an emitter to a receiver.
It requires the synchronization of the clocks of all the system elements (i.e. targets and sensors).
This leads to the generation of a sphere of possible locations in the 3-D space for each received
signal in a different architecture sensor. The intersection of spheres determines the target location.
Mathematical standards show that the unequivocal target location is achieved in TOA systems with at
least four sensors.

TDOA systems compute the relative time between the reception of the positioning signal in
two different architecture sensors. The synchronization of these systems is optional considering
asynchronous TDOA architectures in which the time differences are computed in a single clock of a
coordinator sensor [11] and synchronous TDOA where all architecture sensors must be synchronized.
Time relative measurements lead to hyperboloid surfaces of possible location of targets. A hyperboloid
equation is obtained every two architecture sensors while only (n-1) independent equations can be
processed from n different sensors [12]. The required number of sensors to determine unequivocally
the target location is five sensors for 3-D positioning in these methodologies.

However, the intersection of three different spheres -3 architecture sensors- in TOA systems and
three different hyperboloids -4 architecture sensors- in TDOA systems leads to two different potential
solutions. Nevertheless, these solutions are not able to be discarded from a mathematical point of view.

In one of our previous works [13], we have demonstrated that a reliable unique solution to the
intersection of three hyperboloids or spheres can be obtained through the maximization of the distance
between the two potential solutions in a defined environment by means of Genetic Algorithms (GA).
We achieve this result by applying Taylor-based algorithms [14] from an initial iteration point which
must be close enough to the final solution. Results show that the node deployment has a direct impact
in this finding.

The sensor distribution also has relation with the global accuracy of the LPS. Traditionally,
the Position Dilution of Precision (PDOP) has been used to determine the achievable accuracy of
time-based positioning systems in GNSS [15] by considering satellite location with respect to target
nodes. This methodology considers the homoscedasticity of the satellite signals as they actually
travel similar distances from satellites to target nodes. This consideration is impractical for LPS
since the paths traveled can significantly differ from one architecture sensor to another producing the
heteroscedasticity in the time measurements [16].

This fact promotes the use of Cramer Rao Lower Bound (CRLB) [17,18] derivations to characterize
the White Gaussian Noise (WGN) present in the time measurements. In practice, CRLB determines
the minimum achievable error in positioning systems [19]. We have computed these derivations for
asynchronous and synchronous TDOA positioning methodologies in our recent works [20,21] in order
to define the beauty of a node deployment in terms of accuracy. This has allowed us to perform the
node deployment optimization in TDOA systems by means of GA. The reason of the use of heuristic
techniques relies on the NP-Hard problem solution of the 3D sensor deployment in LPS and it is widely
considered in the literature [22–27].

However, any of the approaches presented considers a possible sensor failure during the node
distribution optimization addressed. This means that in these sensor deployments a sensor fault will
cause the unavailability of TOA architectures with 4 sensors and TDOA architectures with 5 sensors.
However, our finding in [13] has determined that an unequivocal solution for these systems with a
possible sensor failure -3 sensors in TOA and 4 sensors in TDOA- can be achieved under an optimized
node localization. As a consequence, an optimized sensor distribution can guarantee the availability of
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the system in sensor failure conditions through the consideration of a methodology to enhance the
system properties in these situations.

In this paper, we propose for the first time a GA optimization for the 3D node deployment in a
TDOA system with five architecture sensors with failure consideration, maximizing the performance
during regular operation and in any possible sensor malfunction (see Figure 1). For that purpose,
we performed a multi-objective optimization in which we looked for a trade-off between the global
accuracy of the system with five sensors and every combination of four nodes in a defined environment
of an LPS. Additionally, we ensured the unequivocal position determination for every distribution of
four sensors by maximizing the distance between the two possible mathematical solutions of the target
location [11]. Based on [19] a 3D sensor distribution in irregular environments is provided, enabling the
application of this failure-consideration approach to outdoor and indoor scenarios. This methodology
will also ensure the availability of the system with acceptable accuracy in case of a sensor failure in any
of the architecture nodes.

The scenario of the simulations. Node Location 
Environment (NLE) and Target Location 
Environment (TLE) regions are respectively 
shown in orange and purple colors. 

Accuracy

Convergence

Genetic Algorithm Optimization

Failure Conditions with 
random node deployment 

Failure Conditions with 
optimized node deployment 

Figure 1. Graphical Abstract.

The remainder of the paper is organized as follows: the algorithm for the target unequivocal
location determination is presented in Section 2, the CRLB modeling is introduced in Section 3, the GA
and the fitness function are presented in Sections 4 and 5 and Section 6 show the results and conclusions
of the presented paper.

2. Taylor-Based Positioning Algorithm in Time Difference of Arrival (TDOA) Systems

Relative time measurements in TDOA systems lead to hyperboloid equations of possible target
locations. These equations are non-linear so numerical methods are required to solve the intersection
of the hyperboloids. The algorithms used have been classified in two main categories: closed-form
algorithms and iterative methods.

Closed-form algorithms [28,29] provide a direct final solution by solving a linearization of the
hyperboloid equations. Iterative methods perform a gradient descent to achieve the solution through
Taylor-Based linearization. These methods start from an initial position which must be closed enough
to the final solution [30] to iteratively converge to the target location. The convergence of the algorithm
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depends on the initial position -usually the last known position of the target- which promotes a constant
updating of the target location.

The position calculation with four architecture sensors in TDOA systems provides two possible
ambiguous target localizations. The achievement of an unequivocal position cannot be determined
according to mathematical standards. As a consequence, the position determination by means of
iterative methods provides a unique solution that it might not match with the real target location.
Nevertheless, we have shown in [13] that the optimal solution can be achieved by maximizing the
radius of convergence of the initial iteration point which forces the iterative method to converge to the
real solution in a high confidence interval. It has been demonstrated that this fact coincides with the
maximization of the distance between the two possible solutions in LPS. This allows us to solve the 3-D
TDOA problem with 4 nodes through Taylor-Based positioning algorithms with enough confidence
under the optimization proposed.

This finding enables LPS architectures of 5 sensors -minimum number of sensors to supply
unequivocal target location- to provide stable and accurate service in case of sensor failure or temporal
unavailability of one of the architecture nodes.

Taylor-Based algorithms in TDOA systems are linearizations of the equation of the time difference
of arrival:

Ri j = di j = dEi −dEj = c ti j = c
(

ti − t j

)

=

√

(xE − xi)
2 + (yE − yi)

2 + (zE − zi)
2

−

√

(

xE − x j

)2
+

(

yE − y j

)2
+

(

zE − z j

)2

(1)

where Ri j and di j represent the distance difference of the signal travel from the emitter to sensors i and
j, dEi and dEj are total distance from the emitter (E) to sensors i and j, c is the speed of the radioelectric
waves, ti j is the time difference of arrival measured in the architecture sensors, ti and t j is the total
time of flight of the positioning signal from emitter to receivers i and j respectively and (xE , yE , zE),
(xi , yi , zi) and

(

x j , y j , z j

)

are the Cartesian coordinates of the target and the sensors i and j.
Taylor approximation truncated on first order is applied in Equation (1) to linearize the equation

from an initial iteration point (x0 , y0 , z0):
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where Ri j0 is the range difference of arrival in the initial iteration point,
∂Ri j

∂x ,
∂Ri j

∂y
and

∂Ri j

∂z are the partial
derivatives of the range differences measured in the i and j architecture sensors particularized in the
initial iteration point.

The application of this process to sensors k and l to complete the four-sensor 3D TDOA problem
solution in [13] generates the range difference matrix (∆R):
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where H is the partial derivative matrix, usually known as the visibility matrix, and ∆P represents
the coordinate variances in each space direction which is the unknown of the equation. The previous
equation is solved and iterated until no changes in coordinate variances are appreciated by means of
the least squares method as follows:
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3. Cramer Rao Lower Bound (CRLB) Modeling in TDOA Systems

CRLB is an unbiased estimator of the lowest variance of a parameter. Its usage in the localization
field is widespread [31–33] since it allows us to determine the minimum achievable error by the
system analyzed.

It characterizes the WGN present in the time measurements of the time-based positioning systems.
The uncertainties introduced in the measurements depend on the distance traveled by the positioning
signal from the emitter to the architecture sensors in a heteroscedastic noise consideration. Recent
studies [18] developed a matrix form of the CRLB considering heteroscedasticity in time measurements:

FIMmn =
(

∂h(TS)
∂TSm

)T

R−1(TS)
(
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∂TSn

)

+ 1
2 tr

{

R−1(TS)
(
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)

R−1(TS)
(
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where FIM indicates the Fisher Information Matrix, m and n are the sub-indexes of the estimated
parameters in FIM, TS is the target sensor Cartesian coordinates, h(TS) is a vector that contains the
travel of the signal in the TDOA architecture to compute a time measurement:

hTDOAi
= ‖TS−CSi‖ − ‖TS−CS j‖

i = 1, . . . , NCS

j = 1, . . . , NCS

(6)

being CSi and CS j the coordinates of the architecture sensors i and j and NCS the number of sensors
involved in the position determination. R(TS) is the covariance matrix of the time measurements in
the architecture sensors. The covariance matrix is built with a heteroscedastic noise consideration
in the sensors modeled by a Log-normal path loss propagation model [21] obtaining the following
variances:

σTDOAij
2 = c2

B2
(

PT
Pn

)PL(d0)

[

(

dEi
d0

)n
+

(

dEj

d0

)n]

i = 1, . . . , NCS j = 1, . . . , NCS where i , j

(7)

where B is the signal bandwidth, PT is the transmission power, Pn is the mean noise level determined
through the Johnson-Nyquist equation, n is the path loss exponent, d0 is the reference distance from
which the path loss propagation model is applied and PL(d0) is the path-loss in the reference distance.

The inverse of the Fisher Information Matrix (J) provides in its diagonal the uncertainties associated
with each variable to estimate, i.e. the three Cartesian coordinates of the target for a 3D positioning.
The location accuracy is directly evaluated through the Root Mean Squared Error (RMSE), which is
computed based on the trace of the J matrix.

RMSE =
√

J11 + J22 + J33 =
√

σx
2 + σy

2 + σz
2 (8)

This model will be applied in the GA optimization with five sensors and each distribution of
four sensors in any possible target location in the defined scenario in order to compare the beauty of
different node deployments.

4. Genetic Algorithm (GA) Optimization

The strong influence of the sensor placement in the LPS performance enables the maximization of
their capabilities through the optimization of their sensor distribution. This approach is especially
suitable in complex 3D environments, where the most important source of positioning error is promoted
by the sensor distribution.
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In this work, we developed an optimization methodology to locate the positioning sensors of
a five-sensor TDOA system with the consideration of an eventual failure in some of the system
nodes. This procedure must guarantee the convergence of the iterative algorithm with all the possible
combinations of four nodes in every target location under coverage. Furthermore, the achievement of
an optimized node distribution for the normal operating conditions with five system nodes must be
accomplished. This leads to a multi-objective optimization which considers both normal and failure
operating conditions.

In our previous works [21], a GA for optimizing sensor distributions in 3D irregular environments
is presented. The proposed methodology allows a free definition of the optimization region and the
reference surface for locating the sensors of the positioning architecture. In addition, the procedure
is modular, allowing the election of different selection techniques, percentage of elitism, crossover
methodologies, mutation types, and convergence criteria.

After the choice of the optimization method, the next step is the definition of the fitness function.
In this case, a multi-objective optimization is carried out for maximizing the accuracy of the TDOA
architecture when the minimum number of sensors for positioning is available, i.e. when some of the
architecture sensors fail. Accordingly, the methodology proposed in [13] guarantees the attainment of
a unique location in TDOA architectures with 4 sensors by the Taylor-based positioning algorithm
described in Section 2, based on an initial iteration point closed to the target estimation. The region
where this procedure converges to the final solution depends on the geometric properties of the target
and the architecture sensors, i.e. the sensor placement in the environment. Based on this relation,
the regions of convergence can be maximized through the optimization of the sensor distribution [13].

Consequently, the goal of the multi-objective optimization is the combined maximization of
the TDOA system accuracy in 3D environments when the whole architecture is available and when
only four sensors are accessible, limited by the size of the convergence regions that allow the correct
execution of the Taylor-based positioning algorithm. The fulfillment of these objectives guarantees
the robustness of the TDOA architectures in adverse conditions of operation. The fitness function is
detailed hereafter:
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where Comb is the number of groups of four sensors which are obtainable based on the total number
of architecture sensors, NT is the number of analyzed points, RMSEre f is the reference accuracy,
RMSE4sensors is the vector that contains the CRLB evaluation for each point at analysis with each
combination of 4 sensors, Dre f indicates the reference distance for the convergence criteria, D represents
the vector that specifies the convergence evaluation in terms of the distance between the two possible
solutions (combinations of 4 sensors) for each point at study, RMSENcs is the vector that contains
the CRLB analysis for each point at study when all architecture sensors are available, C1, C2, C3 and
C4, are coefficients for calibration of the individual summands of the fitness function, and BLi is the
penalization factor associated with the existence of sensors in banned regions (if they exist).

The implemented fitness function presents two important characteristics: the individual summands
of the function are confined in the interval (0,1], enabling different ponderations for the optimization;
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and the RMSEre f and Dre f magnitudes are adaptive to the problem characteristics, facilitating the
diversification and intensification phases of the GA in complex environments.

5. Results

In this section, the results of the optimization for sensor failure in TDOA architectures are
presented. Initially, a 3D complex scenario was designed for carrying out the optimization, proving
the adaptability of the proposed methodology in any environment. For this purpose, an irregular
scenario of simulation was designed by considering any possible target location and extensive available
zones for positioning the architecture sensors in the environment of simulations. This fact ensures the
versatility of the procedure for its application to indoor and outdoor environments.

In Figure 2, the term TLE represents the Target Location Environment which defines the region
where targets are possible to be located. For this simulation, the TLE region extends from 0.5 to 15 m of
elevation from the base surface, emulating the operating conditions for a positioning system in the
proximity of the ground. TLE region is spatially discretized based on a division of 20 m in x and y
coordinates, and 2 m in z coordinate. This ensures the correct evaluation and continuity of the accuracy
and convergence analysis, and the restriction in the total number of the studied points.

 

𝐶  𝐶 𝐶 𝐶𝐵𝐿
𝑅𝑀𝑆𝐸 𝐷

Figure 2. The scenario of simulations. The reference surface is depicted is grey tones. Node Location
Environment (NLE) and Target Location Environment (TLE) regions are respectively shown in orange
and purple colors. The discretized points of the TLE zone are the points employed for the optimization
of the Time Difference of Arrival (TDOA) architecture performance. In the case of the NLE area,
the points shown are only a representation of the area where every sensor can be located.

The NLE area expresses the Node Location Environment, which indicates all possible sensor
locations. In the case of the NLE region, the height of the sensors is limited in the range of 3 to 10 m
from the base surface, depicting for a typical outdoor LPS implementation. The discretization of the
NLE region depends on the codification of the individuals of the GA, precisely on the longitude of the
chromosomes implemented. In this way, the resolution of the NLE area varies in the three Cartesian
coordinates from 0.5 to 1 m, alluring a fine setting in the optimization of each sensor.

Tables 1 and 2 show the principal parameters of configuration for the positioning system and the
GA characteristics applied for the optimization.
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Table 1. Parameters of configuration for the positioning system operation. Their selection is based on [19,34].

Parameter Value

Transmission power 100 W
Mean noise power –94 dBm

Frequency of emission 1090 MHz
Bandwidth 100 MHz

Path loss exponent 2.05
Antennae gains Unity

Time-Frequency product 1

Table 2. Configuration of the principal elements of the Genetic Algorithm (GA).

GA Selection

Population size 90
Selection technique Tournament 2

% Elitism 5
Crossover technique Single-point

% Mutation 3
Convergence criteria 80% individuals equals

Values presented in Table 1 were chosen in an attempt to stand for a generic positioning technology,
expressed by the typical parameters of transmission power, frequency of emission and bandwidth.
The configuration of the GA shown in Table 2 has been the subject of deep analysis, looking for the
trade-off between the fitness function maximization and convergence speed.

In the following paragraphs and figures, the results after the optimization process are shown
for distributions of 5 sensors. Firstly, in order to highlight the importance of the sensor distribution,
a random sensor placement is evaluated in terms of accuracy and convergence under a sensor failure
in Figures 3 and 4.

 

Figure 3. Accuracy analysis in terms of Cramer Rao Lower Bound (CRLB) in meters for a random
sensor distribution of five sensors, under the assumption of one randomly malfunction sensor. Black
spheres indicate the location of active sensors and red spheres highlights the sensor which is not
available. Red tones in the color bar indicate bad accuracy evaluations, while green tones imply
acceptable accuracy values.
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Figure 4. Convergence radius analysis in meters for a random sensor distribution of 5 sensors, under
the assumption of one randomly malfunction sensor. The convergence radius represents the maximum
radius of the sphere of convergence in which every inside point used as initial iterating point of the
positioning algorithm guarantees the unequivocal position determination by using the four available
sensors. It represents the same operating condition than Figure 2. Red tones in the color bar indicate
bad convergence radius values, while green tones imply acceptable convergence magnitudes.

As it is shown, the performance of this sensor distribution is not acceptable for any positioning
service. The results for the optimized sensor placement with failure consideration, 5 sensors nominal
operating conditions and convergence maximization (Case I) are provided in Figures 5 and 6 when
one of the sensors is not available.

 

Figure 5. Accuracy analysis in terms of CRLB in meters for the optimized distribution of 5 sensors
under possible failure. The condition represented corresponds with the Case I - Sensor Fail 1 of Table 3.
Red tones in the color bar indicate badly accuracy evaluations, while green tones imply acceptable
accuracy values.
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Figure 6. Convergence radius analysis in meters for the optimized distribution of 5 sensors under
possible failure. The condition represented corresponds with the Case I - Sensor Fail 5 of Table 3.
Red tones in the color bar indicate badly convergence radius values, while green tones imply acceptable
convergence magnitudes.

The benefits of the consideration of the sensor failure in the architecture design have been shown
through the differences in accuracy and convergence from the Figures 2–5. However, a comparison
of the performance of the methodology proposed in this paper with a conventional optimized node
distribution in which the failure conditions are not considered is needed to conclude the beauty of the
technique. In Table 3, we set the parameters considered in each optimization considering nominal
operation, failure conditions and convergence (Case I) and only nominal operating conditions (Case II).
Case II match up with the GA optimization that we previously proposed in [21].

Table 3. Definition of the parameters considered for optimization in Case I and Case II.

Parameter Considered Case I Case II

Nominal Operating Conditions
(5 sensors distribution)

✔ ✔

Failure Conditions
(4 sensors distributions)

✔ X

Convergence Maximization ✔ X

In Table 4, a comparison between the optimized sensor distribution for sensor failure (Case I)
and the optimized sensor placement of 5 sensors without malfunction consideration and convergence
maximization (Case II) is supplied. It should be stressed that this last optimization is carried out
through a fitness function with the direct evaluation of the CRLB for 5 sensors and the last term of the
Equation (8).
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Table 4. Comparative between the optimizations of Case I and II.

Sensor
Distributions

Sensor
Fail

CRLB Evaluation TDOA (meters) Convergence Evaluation (meters)

Max Mean Min Max Mean Min

Case I

Sensor 1 62.408 0.651 0.233 300 138.684 35
Sensor 2 133.556 0.875 0.216 240 125.786 40
Sensor 3 117.304 0.627 0.223 280 154.237 40
Sensor 4 191.480 2.005 0.196 300 138.851 35
Sensor 5 188.676 7.425 0.237 220 129.149 4

None 0.795 0.326 0.154 300 140.229 40

Case II

Sensor 1 206.049 1.340 0.225 240 103.711 2
Sensor 2 159.772 1.512 0.149 280 84.650 2
Sensor 3 65.487 1.688 0.169 220 102.037 4
Sensor 4 199.168 0.629 0.182 260 113.604 2
Sensor 5 2340.42 9.674 0.181 240 70.850 2

None 0.872 0.312 0.143 300 128.306 10

Tables 4 and 5 show the importance of the optimization of the sensor distribution under possible
sensor failure. This feature is especially remarkable in the analysis of the convergence radius when
some of the sensors are not available for positioning.

Table 5. Comparative between the optimizations of Case I and II. Values presented show the comparison
in relative terms of the failure consideration distribution regarding the optimization for normal operation
of the system.

Performance Analysis Case I Case II
Sensor Distribution:

Case I vs Case II

Mean CRLB Evaluation
TDOA (meters)

Failure conditions 2.316 2.969 −22.0 %

Non-Failure conditions 0.326 0.312 +4.3 %

Mean Convergence
Evaluation (meters)

Failure conditions 137.341 94.970 +30.9 %

Non-Failure conditions 140.229 128.306 +8.5 %

The results of these tables reveal that the optimization carried out in Case I not only minimizes the
CRLB (i.e. maximum achievable accuracy based on the conditions of operation) when only 4 sensors
are accessible, it also maximizes the region where the Taylor-based positioning algorithm is able to
operate (together with alliterative methods).

Optimizations with failure-consideration (Case I) increase the radius of convergence by 30.9 % in
failure conditions while they also experience a boost of 8.5% in this confidence interval in the normal
operating condition of five sensors availability. This is due to the convergence radius maximization in
the failure-consideration optimization which is not considered in conventional sensor deployment
methodologies. This shows that an increase in this confidence interval in the distributions of four
sensors has also a direct effect in the convergence radius of the five-sensor normal operating distribution
of the failure-consideration optimization.

The beauty of this combined multi-objective optimization is that the accuracy of the four-sensor
combinations in failure conditions has been increased by 22% while the accuracy of the normal operating
five sensor distribution (Case I) has been reduced by less than 5% with regards to conventional node
deployments (Case II) that only consider the five-sensor optimization.

Furthermore, the achievement of higher values of the convergence radius in the failure-consideration
optimization enhances availability and security in failure conditions by solving the ambiguity
of two valid mathematical solutions and by increasing the confidence interval of applying
Taylor-Based positioning algorithms in normal operating conditions with regards to conventional node
deployment methodologies.
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This new optimization procedure considering sensor failures does guarantee the robustness of the
positioning system in complex conditions of operations, and the design of architectures considering
these situations.

6. Discussion

The location of sensors in LPS has been an active topic of research over the last few years [3,13,21–24].
This is a consequence of its direct relation with the accuracy, stability and robustness of wireless local
sensor networks. Conventional approaches to the optimal node distributions have considered the best
location of the sensors for nominal operating conditions.

Nevertheless, in actual implementations of the LPS, some sensors are possibly denied for
positioning due to the presence of obstacles that disturb signals introducing adverse effects such as
multipath or signal deterioration. Furthermore, a possible sensor malfunctioning introducing noise in
the measurements must be considered.

These facts have not been studied in previous sensor distribution optimizations. In this work,
we propose for the first time in the authors’ best knowledge a node deployment methodology that
enhances position determination in case of a sensor failure. Additionally, we apply this process to
the more restrictive TDOA system to unequivocally determine target location, i.e. five-sensor TDOA
deployments. This leads to a sensor-failure configuration in which we first need to solve the position
ambiguity determination in systems with only four nodes according to the finding that we proposed
in [11].

For this purpose, we performed a multi-objective optimization in a defined 3D irregular scenario
in order to extrapolate the results to normal LPS applications. This optimization reduces the CRLB
while it is also maximizing the radius of convergence of the Taylor-Based algorithm that we use for the
target location determination.

Results show the beauty and importance of this new technique as it is able to enhance the
system behavior in failure conditions with regards to only nominal optimizations. This is particularly
remarkable since conventional optimization approaches are only focused in nominal operating
conditions of LPS and they can suffer from temporal unavailability that can motivate important
drawbacks in autonomous navigation.

7. Conclusions

Local Positioning Systems have emerged over the last few years for high-demanded accurate
applications. Among them, time-based positioning architectures become predominant for its robustness,
stability and trade-off between accuracy and complexity.

In this paper, we propose a method to guarantee system availability under sensor failure. This is a
key factor for the real operation of LPS as a consequence of the possible ineffective link between target
and sensors in complex environments and possible sensor malfunctioning.

In order to simulate an actual operation environment, we have defined a 3D irregular scenario
consisting of a five-sensor deployment of a TDOA architecture. This configuration validates the
methodology proposed for terrestrial and aerial applications in indoor and outdoor environments.
In TDOA architectures, an unequivocal target location can be determined with a minimum of five
sensors according to mathematical standards. However, we have proved that the ambiguity in the
position determination with four sensors can be solved by the used of Taylor-Based positioning
algorithms in a convergence region around the true target location which, in practice, corresponds
with the maximization of the two possible solutions distance.

The achievement of this disambiguation can be obtained through an optimized sensor distribution.
The node deployment must also minimize the time measurement uncertainties which are characterized
by means of the CRLB. For this reason, we implement a multi-objective optimization for the combined
maximization of the accuracy and convergence under each possible sensor failure condition. In addition,
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the optimization needs to guarantee the reduction of the uncertainties for the nominal performance
with five sensors.

Results show that the proposed method can attain both accuracy and convergence requirements
under every possible sensor failure condition. The global optimization with five sensors without sensor
failure consideration overcomes the five-sensor deployment optimization with failure consideration in
terms of medium accuracy during nominal operation by less than 5%. In contrast, in circumstances
where some of the sensors are not available and only 4 sensors can be applied in the target position
calculation, the optimization considering sensor failure increases the average values of convergence
region size and accuracy by 30.9% and 22% respectively, regarding the non-failure optimization.
These results show the importance of considering the anomaly cases of sensor failure during the
LPS node distribution optimization in order to guarantee availability and operation quality in
high-demanding accuracy applications.
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The following abbreviations are used in this manuscript:

AGVs Automatic Ground Vehicles
CRLB Cramer Rao Lower Bound
FIM Fisher Information Matrix
GA Genetic Algorithm
GNSS Global Navigation Satellite Systems
LPS Local Positioning Systems
NLOS Non-Line-of-Sight
PDOP Position Dilution of Precision
RMSE Root Mean Square Error
TDOA Time Difference of Arrival
TOA Time of Arrival
TS Target Sensor
UAVs Unmanned Aerial Vehicles
WGN White Gaussian Noise
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Abstract: The accuracy requirements for sensor network positioning have grown over the last few
years due to the high precision demanded in activities related with vehicles and robots. Such systems
involve a wide range of specifications which must be met through positioning devices based on time
measurement. These systems have been traditionally designed with the synchronization of their
sensors in order to compute the position estimation. However, this synchronization introduces an
error in the time determination which can be avoided through the centralization of the measurements
in a single clock in a coordinate sensor. This can be found in typical architectures such as Asynchronous
Time Difference of Arrival (A-TDOA) and Difference-Time Difference of Arrival (D-TDOA) systems.
In this paper, a study of the suitability of these new systems based on a Cramér-Rao Lower Bound
(CRLB) evaluation was performed for the first time under different 3D real environments for multiple
sensor locations. The analysis was carried out through a new heteroscedastic noise variance modelling
with a distance-dependent Log-normal path loss propagation model. Results showed that A-TDOA
provided less uncertainty in the root mean square error (RMSE) in the positioning, while D-TDOA
reduced the standard deviation and increased stability all over the domain.

Keywords: sensor networks; TDOA; asynchronous; Cramér–Rao lower bound; heteroscedasticity

1. Introduction

Over the past few years, positioning systems have experienced a growing importance due to the
wide range of applications they present in numerous civil and military fields. Positioning methods
based on satellite systems, e.g., global navigation satellite systems (GNSS), offer accurate precision
with global coverage but still present accuracy issues for specific crucial tasks such as high-precision
trajectories or indoor navigation. These issues have recently attracted much attention with the advent
of unmanned transportation.

Positioning systems have traditionally been classified into four main groups: Time of Arrival
systems (TOA) [1,2], Time Difference of Arrival systems (TDOA) [3,4], Angle of Arrival systems
(AOA) [5,6], Received Signal Strength Indication systems (RSSI) [7,8], or a combination of them [9,10].
Methods based on time measurement (i.e., TOA and TDOA) have been the main exponents of recent
developments, on account of their robustness, universality, and reliability, in addition to their great
accuracy and relative simplicity.

Time measurements have usually been obtained in two different ways. The most common one
measures time intervals by synchronizing emitter and receiver clocks, which is mandatory in the case
of TOA systems. The other option comes from the synchronization of receivers, and is optional in
TDOA systems. This fact significantly affects the accuracy of the positioning determination process due
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to the appearance of clock instabilities and the introduction of small time-offsets during the process of
synchronization among elements.

Owing to the challenging accuracy requirements to be met in sensor networks, the minimization of
key factors that increase the uncertainty associated with the calculation of the position is an imperative
task. Location systems based on TOA processes present disadvantages in this matter. Their accuracy
may be in the order of 10 cm [11–13], but time errors which can occur during the synchronization
process significantly increase the uncertainties associated with the position calculation [14–16].

Conventional TDOA methods have been traditionally dependent on global synchronization
amongst the receivers, reaching higher accuracy levels requiring less energy than TOA systems.
Nevertheless, synchronization instabilities are still present and the system complexity is higher than
TOA architectures.

Notwithstanding these previous tendencies, a new pattern has been developed over the last few
years, which advocates for the implementation of asynchronous architectures wherein a single clock is
used to measure the time differences of arrival characteristic of TDOA systems. These new systems
could overcome synchronization disadvantages in TDOA systems with less architecture complexity
and higher sensor ubication flexibility, and they are key to this work. The main advantages of these
new methods would include the elimination of the synchronization among receivers and the resulting
error introduced in the measurement process [17,18].

In recent years, two different asynchronous systems have been proposed. Asynchronous TDOA [17]
and difference-time TDOA [18]. These systems display an architecture based on a coordinator sensor
and a collection of worker sensors. The coordinator sensor is in charge of processing the time
measurements. The worker sensors collaborate in the determination of time differences. These new
architectures avoid the necessity of a clock built into every sensor of the system. This fact reduces
the overall costs and the complexity of the system and boosts accuracy by eliminating the interaction
among sensor clocks. All these factors enhance indoor and low-level flight sensor positioning accuracy,
a key factor that is driving the increasing popularity of these methods.

The aim of this article was to develop for the first time, to the extent of our knowledge,
a methodology to select the suitability of these two asynchronous TDOA systems under different
sensor placements in a 3D, real environment. This methodology must consider that vehicle navigation
in local positioning systems (LPS) is highly affected by noisy environments, thus system evaluations
must be performed at a high accuracy level even where time measurements are corrupted by noise.

Cramér–Rao Lower Bound (CRLB) is a commonly used estimator to determine the lowest possible
uncertainty associated with a positioning process in line-of-sight (LOS) [19,20] and non-line-of-sight
(NLOS) [21] conditions. This method models measurement uncertainties through the variance
associated to every sensor range estimation.

Conventional models consider the presence of a constant variance associated to each time
measurement [22]. However, to attain a higher level of accuracy in the results, it is imperative to
introduce the distance between emitter and receiver in the model allowing for heteroscedasticity in
time measurements [23,24]. This phenomenon is especially important in cases with medium and high
signal-to-noise ratios (SNRs) in the receivers. If the SNR is reduced, the positioning pulse detection
becomes significantly hampered, leading to drastic time measurement errors which reduce the accuracy
of the positioning system [25].

Therefore, the hypothesis of heteroscedastic variances needs to be implemented on the basis of a
propagation loss model over the signal path between the emitter and the receivers [26,27], depending on
the positioning methodology and the characteristics of communication amongst every single sensor of
the system.

The remainder of this paper is organized as follows. In Section 2, a comparison of the main
characteristics of asynchronous TDOA architectures studied is developed. Section 3 covers the main
path-loss models used to calculate the SNR. Section 4 includes a study of the Cramér–Rao Lower
Bound, based on a matrix model implemented for each system architecture. Section 5 gathers the
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conclusions obtained from all the studies, along with the election of the best system. Lastly, Section 6
presents the conclusions and completes the article.

2. Asynchronous TDOA Methods

In this section, the asynchronous TDOA methods will be introduced. Neither of these methods
need to synchronize any element of the system, using only one clock to measure the differences in
times of the TDOA system. The notation used throughout the study is the one described hereafter:
TS defines the location of the Target Sensor, Coordinate Sensor (CS) represents the position of the
receiver in charge of the time measurements, Worker Sensors (WS) are the rest of emitters/receivers,
N is the total number of WS, and additionally, a CS must be considered, tSTART and tEND represent the
start and the end of the time measurement process in the CS.

2.1. A-TDOA

In Figure 1, an A-TDOA architecture is presented [17]. It proposes a passive positioning system
based on one single clock in the CS node, using the positioned sensor as signal repeater.

Figure 1. Asynchronous Time Difference of Arrival (A-TDOA) system timing diagram. Example
of architecture operation with n Worker sensors (WS) nodes (n must be at least equal to 4).
Rectangular positioning pulses are emitted from the WS nodes, and when the arrival of the signal to
the Target Sensor (TS) node is produced, signals are instantaneously retransmitted to the Coordinate
Sensor (CS) node. When the process is completed, A-TDOA time measurements are accomplished.

Positioning pulses are emitted by WS nodes, reaching the CS node with successive time differences
which lead to the beginning of the time measurement associated with each WS–CS (tSTARTi

). Conversely,
the signal emitted by each WS node is received by the TS node in charge of sending again these signals
to the Cs node (tENDi

). When the signal is received, the time measurement process comes to an end,
completing the time measurement process of each WS–CS pair. The TDOA measurement in terms of
distance is represented by the following relation.

A− TDOAi = c
(

tENDi
− tSTARTi

)

− ‖WSi −CS‖

i ∈ [1, N]
(1)
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2.2. D-TDOA

The D-TDOA method is based on the combination of a traditional TDOA system and a round trip
time (RTT) method, accomplishing the goal of obtaining the time difference measurements with only
one clock [18], as shown in Figure 2.

Figure 2. Difference-Time Difference of Arrival (D-TDOA) timing diagram. Example of architecture
operation with n WS nodes (with a minimum number of 4). The positioning target pulse is received at
every WS node of the system that retransmits it towards the CS node. D-TDOA time measurements are
completed by a round-trip transmission (RTT) process between each pair of WS–CS nodes.

Positioning pulses are broadcast by the TS node, reaching the CS node at tSTART. This temporal
reference is common to all the time measurements realized by the method. Meanwhile, the TS node
emission is received at the WS nodes, which resend it to the CS node (tENDi

), completing the time
difference measurement of each WS–CS pair of nodes. Lastly, the pulse is emitted from the CS node to
WS nodes with the aim of calculating the processing time on each WS node. The TDOA measurement
in terms of distance is represented by the following relation:

D− TDOAi = c
(

tENDi
− tSTART

)

− ‖WSi − CS‖, i ∈ [1, N] (2)

While A− TDOAi and D− TDOAi hold similar equations, the time measurement recordings and
positioning pulse travels differ significantly from one method to the other. These characteristics are
analyzed in the following sections.

3. Heteroscedastic Noise Model

In this section, a noise variance distance-dependent model is implemented associated to the process
of location in asynchronous TDOAs system, allowing for a better reproducibility of real conditions.

The process starts with the TOA variance range estimate due to the noisy environments. Next,
the TDOA variance range estimate is defined based on time measurement correlation assumptions.
The heteroscedastic noise variance model is completed with the path-loss propagation model
implementation that best fit with the multiple sensor network’s characteristics.

Amongst the main sources of ranging errors of positioning systems based on time measurements,
the most important for TDOA asynchronous techniques is the uncertainty induced by white Gaussian
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noise (WGN) in the propagation channel. This problem has been deeply studied for TOA architectures,
quantifying it with the CRLB [25]:

σi
2 ≥

c2

(2πB)2
·tsB·SNRi

, i = 1, . . . , M (3)

where M is the total number of sensors, σi
2 is the receptor range estimate variance, c is the pulse

propagation velocity, B is the bandwidth, tS is the length of time during which the bandwidth is
occupied, and SNRi is the signal-to-noise ratio for each receiver.

The majority of range estimation architectures consider the product tsB approximately unitary.
This, together with the hypothesis of high levels of SNR at the receivers and efficient estimator,
enables the derivation of the following relation for a TOA variance estimation [23,24].

σi
2 =

c2

B2·SNRi
, i = 1, . . . , M (4)

Based on the TOA variance estimation, the implementation for TDOA systems is made under
some assumptions. He and Dong [17] proposed that the time measurements in asynchronous TDOA
architectures are considered independent. Consequently, the off-diagonal elements of the covariance
matrix associated with the Gaussian noise modelling are null. According to Kaune et al. [19],
the variance associated with a difference distance between two nodes is the sum of the variances for
each node, under the assumption of uncorrelated time measurements.

Hence:
σi j

2 = σi
2 + σ j

2

i = 1, . . . , M

j = 1, . . . , M

(5)

Consequently,

σi j
2 = c2

B2

(

1
SNRi

+ 1
SNR j

)

i = 1, . . . , M

j = 1, . . . , M

(6)

In Equation (6), the SNR associated with each receiver mainly depends on the power emission,
the transmission frequency, and environment. This last aspect is characterized by means of path-loss
propagation models for indoor and outdoor environments. Large-scale models predict the mean signal
strength in LOS environments based on the distance between emitter/receiver and the characteristics
of the signal. Small-scale or fading models characterize the rapid fluctuations of the signal when the
distance of the emitter/receiver is short, in both conditions (LOS and NLOS) [27].

Multiple sensor networks with high location accuracy are used in many applications. However,
in the majority of systems, path loss during operation presents a higher level of dependency on large
distances of the emitter/receiver and LOS propagation.

Consequently, large-scale models seem more appropriate for this analysis. Assuming invariant
power transmission and homogeneity in the operation of receivers, the following relations
are established:

SNRi =
PRi

Pn
=

PT
PLi

Pn
=

PT

Pn
·

1
PLi

i = 1, . . . , N (7)

where PT is transmission power, PRi
is the received power in each receiver, PL is the path loss, and Pn

is the mean noise power, obtained from the Johnson–Nyquist equation:

Pn = kBT0B (8)

135



Sensors 2019, 19, 3024

where kB is the Boltzmann’s constant, T0 is the absolute temperature of the receiver input, and B is the
receiver bandwidth.

Large-scale path loss models have been deeply studied in the last decades for modelling mobile
communications. The vast majority of these methods were built under some of these restrictions:
emitter and receiver heights, transmission frequency, and emitter–receiver distance, among others.
Under these limitations, the modelling of asynchronous TDOA architecture is not possible due to the
emitter/receiver’s characteristics in multiple sensor networks.

Based on the preceding assumptions, the path loss propagation model selected for the simulation
is the Log-normal, which eliminates the restrictions on emitter–receiver geometry.

Log− normal : PLi = PL(d0)

(

di

d0

)n

(9)

The noise model final implementation in the CRLB variance definition is presented below:

σi j
2 = c2

B2
(

PT
Pn

)PL(d0)
[

[

di
d0

]n
+

[

d j

d0

]n]

i = 1, . . . , M

j = 1, . . . , M

(10)

where d0 is the reference distance to the emitter, the basis from which the Log-normal model hypothesis
is valid, PL(d0) is the path loss for this distance, and n is the path loss exponent.

4. CRLB Derivation for A-TDOA and D-TDOA Systems

The prediction of the uncertainty associated with the position calculation process is one of the
most significant accomplishments in the design and development of positioning systems.

From a statistical point of view, CRLB expresses the minimum variance value of any unbiased
estimator of a deterministic parameter. In other words, the CRLB defines the minimum possible
uncertainty associated with an estimation process.

var
(

θ̂
)

≥
1

FIM
=

1

E
[

[

∂
∂x ln f [X;θ]

]2
] (11)

In this equation, θ̂ is the unbiased estimator for the parameter of study, FIM is the Fisher Information
Matrix, E the expectation value of the denominator function, X the parameter measurement vector,
θ is the parameter vector to be estimated, and f (X;θ) is the probability density function of X for the
parameter θ.

Cramér-Rao Lower Bound has proved to be especially suitable in positioning. This is due to its
definition based on a prior knowledge possibility of maximum reachable exactitude in terms of the
architecture geometry, the environment modelling, and the intrinsic characteristics of measurement
instruments. This maximum value reached by the position estimator would be valid as long as it is
unbiased and efficient.

In this section, the CRLB is adapted to A-TDOA and D-TDOA architectures. Additionally,
the noise variance model introduced in Section 3 is implemented in order to estimate the RMSE in the
TS location estimation.

For a TDOA system, time measurements associated with the receivers are modelled by the
addition of WGN. In a real environment, the variance associated with this phenomenon depends on
the distance between emitter and receiver, inducing heteroscedasticity in data management. In this

136



Sensors 2019, 19, 3024

context, Kaune et al. [19] includes a model of the dependent parameter’s variance in the calculation of
the inverse of the Fisher Information Matrix (J).

J =
1

σ2(TS)

(

∂h(TS)

∂TS

)T(
∂h(TS)

∂TS

)

+
1
2

1
σ2(TS)

(

∂σ(TS)

∂TS

)T(
∂σ(TS)

∂TS

)

(12)

That can be expressed in matrix form as:

Jmn =

(

∂h(TS)

∂xm

)T

R−1(TS)

(

∂h(TS)

∂xn

)

+
1
2

tr

(

R−1(TS)

(

∂R(TS)

∂xm

)

R−1(TS)

(

∂R(TS)

∂xn

))

(13)

where sub-indexes m and n refer to the respective row and column of J. The column matrix h(X)

expresses the differences in the Euclidean distances among the TDOA measurements of each pair
of receivers:

hA−TDOAi = ‖TS−WSi‖+ ‖TS−CS‖ − ‖WSi −CS‖

i = 1, . . . , N
(14)

hD−TDOAi = ‖TS−WSi‖+ ‖WSi −CS‖ − ‖TS−CS‖

i = 1, . . . , N
(15)

Finally, R(x) is the covariance matrix of the system, which is characterized by null off-diagonal
elements for both systems, due to the non-correlation among time measurements. The variance
modelling was implemented according to the model explained in Section 3, with the following
definition for the distances between each asynchronous TDOA system.

dA−TDOA i
= ‖TS−WSi‖+ ‖TS−CS‖

dA−TDOA j=1 = ‖WSi −CS‖

i = 1, . . . , N

(16)

dD−TDOA i
= ‖TS−WSi‖+ 2‖WSi −CS‖

dD−TDOA j=1 = ‖TS−CS‖

i = 1, . . . , N

(17)

The uncertainty is evaluated in terms of RMSE, as shown in the following equation
(three-dimensional location), where the sub-indexes refer to the diagonal elements of matrix J:

RMSE =
√

J11 + J22 + J33 (18)

5. Simulation Results

In this section, asynchronous TDOA systems A-TDOA and D-TDOA are compared for sensor
network positioning. Firstly, a set of global communication parameters are defined in Table 1.

Table 1. Architecture parameters for Cramér-Rao Lower Bound (CRLB) study. Communication links
amongst elements of Asynchronous Time Difference of Arrival (A-TDOA) and Difference-Time
Difference of Arrival (D-TDOA) systems are restricted to these principal parameters. They were selected
due to their utilization in similar tracking applications in the aerospace industry [26,27].

Parameter Magnitude

Frequency of emission 1090 MHz
Bandwidth 100 MHz

Transmission power 400 W
Mean noise power −94 dBm
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In addition to these parameters, the comparison among architectures was carried out based on
unity gain antennas in all system transceivers and on the assumption of full-duplex communication
capacity among elements. Furthermore, an assumption of the receive-and-retransmit technique in
transceivers operations and a unity frequency–time product in all the architectures’ communications
was considered.

The results were obtained based on simulations carried out on an irregular surface of 1 km2

(1000 × 1000 m) with an elevation modelled by a normal distribution N(15, 9) cm. The space analysis
was limited to a height above ground level from 1 to 100 m. Under this assumption, the spatial
discretization was 100 m for surface coordinates (Cartesian x and y) and 10 m for coordinate z.

Additionally, the minimum height of sensor nodes (WS and CS) was restricted to 3 m with the
objective of not inducing effects that were not considered by the Log-normal model (specially ground
reflections and multipath). The maximum height was also limited to 13 m, but this restriction was
related to the size of the supports (less than 10 m).

Lastly, a path loss exponent value of 2.1 was selected as highly recommended in sub-urban
environments with medium frequencies [27]. Due to the theoretical approach of the problem, the Free
Space Propagation Model (FSPM) was used to obtain PL(d0).

The comparison among systems (in Table 2) was carried out with five random distributions of
receivers, each one with a number of five sensors. This was the minimum number of nodes for a
unique three-dimensional location in TDOA architectures.

The best distributions for each system are illustrated in the following images, together with the
CRLB evaluation in terms of RMSE at every point of the discretization.

Table 2. Node distributions in meters. Five random node distributions were defined in order to analyze
the accuracy level of A-TDOA and D-TDOA architectures based on their CRLB system definition.
CRLB evaluation does not require a classification of WS and CS nodes.

Distributions x y z

D.1

Sensor 1 249 242 3
Sensor 2 254 759 4
Sensor 3 576 500 3
Sensor 4 811 124 13
Sensor 5 879 819 13

D.2

Sensor 1 72 156 3
Sensor 2 141 854 13
Sensor 3 496 484 3
Sensor 4 810 891 3
Sensor 5 876 133 13

D.3

Sensor 1 78 911 13
Sensor 2 244 241 13
Sensor 3 516 539 3
Sensor 4 624 655 13
Sensor 5 810 891 3

D.4

Sensor 1 191 880 10
Sensor 2 435 527 3
Sensor 3 482 198 9
Sensor 4 758 254 3
Sensor 5 782 788 7

D.5

Sensor 1 148 313 3
Sensor 2 469 621 13
Sensor 3 550 500 3
Sensor 4 750 218 13
Sensor 5 783 944 3
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As it can be seen in Figures 3 and 4, points that are close to the surface or nodes present a higher
RMSE. This phenomenon is due to the relative location between nodes and these discretization points,
that causes an increase of the influence of time measurements uncertainties in total positioning accuracy.

Figure 3. Best distribution of Worker Sensor (WS) and Coordinator Sensor (CS) nodes for the A-TDOA
system. The base surface is presented as the grey hyperplane located at the bottom of the picture.
The nodes are represented by black spheres with their correspondent holder that links them to the base
surface. The CRLB evaluation of the discretization points is displayed according to the right-hand
side legend.

Figure 4. Best distribution of Worker Sensor (WS) and Coordinate Sensor (CS) nodes for the D-TDOA
system. The base surface is presented as the grey hyperplane located at the bottom of the picture.
The nodes are represented by black spheres with their correspondent holder that links them to the
base surface. The CRLB evaluation of discretization points is displayed according to the right-hand
side legend.
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The final simulation results are presented in Table 3.

Table 3. RMSE distribution parameters for the five sensor distribution schemes in Table 2 are presented.
These data were obtained based on the spatial discretization technique shown in Figures 3 and 4.

RMSE (dB) A-TDOA D-TDOA

D.1

Mean −0.5791 2.1446
Min −9.3067 −8.2291
Max 21.4022 19.1978
SD 5.5552 4.6881

D.2

Mean −0.9528 2.3131
Min −8.6153 −7.4459
Max 13.4399 19.3637
SD 4.6718 4.1344

D.3

Mean 0.0682 2.2769
Min −8.9972 −8.0968
Max 13.2448 11.9421
SD 4.9828 3.6965

D.4

Mean 0.2111 2.6452
Min −9.1009 −7.4856
Max 17.3846 18.3655
SD 5.7176 4.5620

D.5

Mean 0.2524 2.2070
Min −9.8805 −8.1964
Max 13.3707 11.8791
SD 5.0180 3.8402

Mean of Means RMSE −0.2000 2.3174
Mean Standard Deviations RMSE 5.1891 4.1842

Based on the results of the simulations, it was shown that the A-TDOA system presented a lower
mean RMSE value in every distribution. The minimum RMSE values in each distribution were obtained
by the A-TDOA method. In the case of maximum RMSE values, the tendency was not obvious. Finally,
it can be observed that the standard deviation in every distribution was lower for the D-TDOA system,
which implies a higher stability.

In terms of architecture complexity, A-TDOA systems require an initial step in the emission
of the positioning pulses of the WS nodes in order to simultaneously start the process. In contrast,
in D-TDOA systems, the first communication link exclusively depends on the target node emission.
Energy consumption is another factor to be evaluated. Due to the lower energy requirements for
amplifying the signal power at the retransmission stage in each node, A-TDOA architectures lead to
better results than D-TDOA.

In summary, the A-TDOA system provides a higher accuracy than the D-TDOA method, but the
latter presents a lower level of variation in the evaluation for sensor location. Although, A-TDOA
architectures present more hardware complexity, they sport less energy consumption due to the
reduction of the signal travel. On the basis of the information gathered, it can be concluded that the
best method for multiple sensor locations is the A-TDOA system.

6. Discussion

The new asynchronous TDOA architectures have led to a major improvement as a consequence of
the reduction of the complexity in sensor networks and the increasing accuracy of time measurements
over the last few years. These methodologies have been experiencing a growing importance in LPS
with particular application in robot indoor navigation and unmanned aerial vehicles (UAVs).

Amongst the asynchronous architectures, A-TDOA and D-TDOA have taken special relevance,
but their novelty assumed that no previous research on the suitability of these systems had been
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accomplished before. This means that these architectures have not been studied in an actual common
environment in order to determine a comparison among their system errors that would allow us to
select the best architecture under different conditions. The error bounds must be calculated through the
Cramér–Rao Lower Bound estimator all over the domain. In this context, CRLB allows to determine
the minimum achievable error of a locating system with independence from the positioning algorithm
used. With this parameter, the determination of the best asynchronous architecture could be done in a
particular context. The extension of the usage of the LPS forces the design of an environment where
CRLB must be derived in a 3D context for the first time.

This derivation includes a path-loss model propagation which depends on the distances between
emitter and receiver of the positioning signal. This leads to heteroscedastic noise variances consideration
that particularly fits with LPS.

The goal of this article has allowed for the development of a new methodology in order to select
the best system in different contexts.

7. Conclusions

High accuracy requirements in modern applications lead to positioning systems where noise
uncertainties must be minimized. New asynchronous positioning architectures have supposed a
revolution where positioning errors have been considerably reduced. In this paper, a methodology to
select the suitability of two asynchronous TDOA systems based on a CRLB evaluation under a 3D,
real environment was accomplished for the first time to the best of our knowledge.

This analysis was performed based on a CRLB comparison where the uncertainties of time
measurements originated by noise were distance dependent. This resulted in heteroscedasticity in the
variance associated with sensor range estimation. This real model allowed us to determine the best
TDOA asynchronous architecture with positioning algorithm independence.

The results showed that the A-TDOA system provided generally less uncertainty in the positioning,
regardless of the node distributions. Nevertheless, the D-TDOA system achieved a better level of
homogenization by reducing the RMSE standard deviation in the domain. On the basis of the
information gathered, and taking into account the CRLB, it can be concluded that the best method for
sensor location is the A-TDOA system.

These aspects are being treated in the current investigation, where the node distribution would be
optimized for CRLB via genetic algorithms, attaining a RMSE minimization at all discretization points
in future works.

Author Contributions: Conceptualization, R.Á., H.P., and J.D.-G.; Formal analysis, M.C.-L.; Investigation, R.Á.
and J.D.-G.; Methodology, R.Á. and M.C.-L.; Resources, J.D.-G. and E.A.; Software, R.Á.; Supervision, J.D.-G.
and M.C.-L.; Validation, M.C.-L.; Visualization, E.A. and L.F.-R.; Writing—original draft, R.Á. and J.D.-G.;
Writing—review and editing, H.P., M.C.-L. and L.F.-R.

Funding: This research was funded by the Spanish Ministry of Economy, Industry and Competitiveness, grant
number DPI2016-79960-C3-2-P.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. D’Amico, A.A.; Mengali, U.; Taponecco, L. TOA Estimation with the IEEE 802.15.4a Standard. IEEE Trans.

Wirel. Commun. 2010, 9, 2238–2247. [CrossRef]
2. Shen, J.; Molisch, A.F.; Salmi, J. Accurate Passive Location Estimation Using TOA Measurements. IEEE Trans.

Wirel. Commun. 2012, 11, 2182–2192. [CrossRef]
3. Ho, K.C.; Lu, X.; Kovavisaruch, L. Source Localization Using TDOA and FDOA Measurements in the

Presence of Receiver Location Errors: Analysis and Solution. IEEE Trans. Signal Process. 2007, 55, 684–696.
[CrossRef]

4. Xu, J.; Ma, M.; Law, C.L. Position Estimation Using UWB TDOA Measurements. In Proceedings of the 2006
IEEE International Conference on Ultra-Wideband, Waltham, MA, USA, 24–27 September 2006.

141



Sensors 2019, 19, 3024

5. Xu, J.; Ma, M.; Law, C.L. AOA Cooperative Position Localization. In Proceedings of the IEEE Globecom
2008-2008 IEEE Global Telecommunications Conference, New Orleans, LA, USA, 30 November 2008.

6. Zhang, W.; Yin, Q.; Chen, H.; Gao, F. Distributed Angle Estimation for Localization in Wireless Sensor
Networks. IEEE Trans. Wirel. Commun. 2013, 12, 527–537. [CrossRef]

7. Wang, G.; Yang, K. A New Approach to Sensor Node Localization Using RSS Measurements in Wireless
Sensor Networks. IEEE Trans. Wirel. Commun. 2011, 10, 1389–1395. [CrossRef]

8. Weiss, A.J. On the Accuracy of a Cellular Location System Based on RSS Measurements. IEEE Trans. Vehicular

Technol. 2003, 52, 1508–1518. [CrossRef]
9. Patwari, N.; Ash, J.N.; Kyperountas, S.; Hero, A.O.; Moses, R.L.; Correal, N.S. Locating the Nodes. IEEE Signal

Process. Mag. 2005, 22, 54–69. [CrossRef]
10. D’Amico, A.A.; Mengali, U.; Taponecco, L. Joint TOA and AOA Estimation for UWB Localization Applications.

IEEE Trans. Wirel. Commun. 2011, 10, 2207–2217.
11. Zou, Z.; Deng, T.; Zou, Q.; Sarmiento, D.; Jonsson, F.; Zheng, L.-R. Energy detection receiver with TOA

estimation enabling positioning in passive UWB-RFID system. In Proceedings of the 2010 IEEE International
Conference on Ultra-Wideband, Nanjing, China, 20–23 September 2010.

12. Badorrey, R.; Hernandez, A.; Choliz, J.; Valdovinos, A.; Alastruey, I. Evaluation of TOA estimation algorithms
in UWB receivers. In Proceedings of the 14th European Wireless Conference, Prague, Czech Republic, 22–25
June 2008.

13. Ye, R.; Redfield, S.; Liu, H. High-precision indoor UWB localization: Technical challenges and method.
In Proceedings of the 2010 IEEE International Conference on Ultra-Wideband, Nanjing, China, 20–23
September 2010.

14. Sundararaman, B.; Buy, U.; Kshemkalyani, A.D. Clock synchronization for wireless sensor networks: A survey.
Ad Hoc Netw. 2005, 3, 281–323. [CrossRef]

15. Sivrikaya, F.; Yener, B. Time synchronization in sensor networks: A survey. IEEE Netw. 2004, 18, 45–50.
[CrossRef]

16. Elson, J.; Estrin, D. Time Synchronization for Wireless Sensor Networks. In Proceedings of the 15th
International Parallel and Distributed Processing Symposium, San Francisco, CA, USA, 1–5 May 2000.

17. He, S.; Dong, X. High-Accuracy Localization Platform Using Asynchronous Time Difference of Arrival
Technology. IEEE Trans. Instrum. Meas. 2017, 66, 1728–1742. [CrossRef]

18. Zhou, J.; Shen, L.; Sun, Z. A New Method of D-TDOA Time Measurement Based on RTT. MATEC Web Conf.

2018, 207, 03018. [CrossRef]
19. Kaune, R.; Hörst, J.; Koch, W. Accuracy Analysis for TDOA Localization in Sensor Networks. In Proceedings

of the 14th International Conference on Information Fusion, Chicago, IL, USA, 5 July 2011.
20. Jia, T.; Buehrer, R.M. A New Cramer-Rao Lower Bound for TOA-based Localization. In Proceedings of the

MILCOM 2008-2008 IEEE Military Communications Conference, San Diego, CA, USA, 16–19 November 2008.
21. Qi, Y.; Kobayashi, H. Cramér-Rao Lower bound for geolocation in non-line-of-sight environment.

In Proceedings of the 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing,
Orlando, FL, USA, 13–17 May 2002.

22. Chang, C.; Shai, A. Estimation Bounds for Localization. In Proceedings of the 2004 First Annual IEEE
Communications Society Conference on Sensor and Ad Hoc Communications and Networks, Santa Clara,
CA, USA, 4–7 October 2004.

23. Huang, B.; Xie, L.; Yang, Z. Analysis of TOA Localization with Heteroscedastic Noises. In Proceedings of the
33rd Chinese Control Conference, Nanjing, China, 28–30 July 2014.

24. Huang, B.; Xie, L.; Yang, Z. TDOA-Based Source Localization with Distance-Dependent Noises. IEEE Trans.

Wirel. Commun. 2015, 14, 468–480. [CrossRef]
25. Lanzisera, S.; Zats, D.; Pister, K.S.J. Radio Frequency Time-of-Flight Distance Measurement for Low-Cost

Wireless Sensor Localization. IEEE Sens. J. 2011, 11, 837–845. [CrossRef]
26. Yaro, A.S.; Sha’ameri, A.Z. Effect of Path Loss Propagation Model on the Position Estimation Accuracy of a

3-Dimensional Minimum Configuration Multilateration System. Int. J. Integr. Eng. 2018, 10, 35–42.

142



Sensors 2019, 19, 3024

27. Rappaport, T.S. Wireless Communications-Principles and Practice; Prentice Hall: Upper Saddle River, NJ,
USA, 2002.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

143





sensors

Article

3D Tdoa Problem Solution with Four Receiving
Nodes

Javier Díez-González 1 , Rubén Álvarez 2, Lidia Sánchez-González 1 ,

Laura Fernández-Robles 1 , Hilde Pérez 1 and Manuel Castejón-Limas 1,*

1 Department of Mechanical, IT and Aerospace Engineering, Universidad de León, 24071 León, Spain
2 Positioning Department, Drotium, Universidad de León, 24071 León, Spain
* Correspondence: mcasl@unileon.es

Received: 8 May 2019; Accepted: 27 June 2019; Published: 29 June 2019

Abstract: Time difference of arrival (TDOA) positioning methods have experienced growing
importance over the last few years due to their multiple applications in local positioning systems
(LPSs). While five sensors are needed to determine an unequivocal three-dimensional position,
systems with four nodes present two different solutions that cannot be discarded according to
mathematical standards. In this paper, a new methodology to solve the 3D TDOA problems in a
sensor network with four beacons is proposed. A confidence interval, which is defined in this paper
as a sphere, is defined to use positioning algorithms with four different nodes. It is proven that the
separation between solutions in the four-beacon TDOA problem allows the transformation of the
problem into an analogous one in which more receivers are implied due to the geometric properties
of the intersection of hyperboloids. The achievement of the distance between solutions needs the
application of genetic algorithms in order to find an optimized sensor distribution. Results show that
positioning algorithms can be used 96.7% of the time with total security in cases where vehicles travel
at less than 25 m/s.

Keywords: TDOA; sensor networks; hyperboloids; node distribution; genetic algorithms

1. Introduction

Positioning is an essential factor for the correct navigation and location of vehicles. Accuracy in
calculating positions has commonly determined the fields where positioning has been applied. High
technological levels have been achieved when uncertainty has been sufficiently reduced. The usage of
localization methods has evolved throughout the last few years from a reference object to precision
applications such as farming, indoor navigation or manufacturing environments.

Positioning systems can be divided into those based on time measurements and those that
measure different properties, such as angle of arrival (AOA) [1,2] or received signal strength indicators
(RSSIs) [3–5]. Among them, time measurement systems are the most used, due to availability, accuracy,
simplicity and robustness. In this category, TOA (time of arrival) systems [6,7] such as GPS, GLONASS
or Galileo, and TDOA (time difference of arrival) systems [8,9] such as LORAN, OMEGA or WAM
(wide area multilateration) [10]—which is highly widespread in aircraft environments—are considered.

TOA systems measure the total time-of-flight of a signal between a transmitter and a receptor.
They require time synchronization between the transmitter and receptor and their accuracy is highly
dependent on clock drift in this synchronization. These time-of-flight measurements lead to equations
of three-dimensional spheres centered on the transmitter, representing possible locations of the vehicle
in the space.

In contrast, TDOA systems measure the relative times between signal arrival for two different
receivers. In this case, synchronization is optional, differentiating asynchronous (A-TDOA) [11] and
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synchronous (S-TDOA) [12] systems, which can lead to a reduction in error levels. In such a scenario,
time difference measurements generate the equations of hyperboloids, whose intersection determine
the position of the vehicle.

A number of n equations can be obtained from n different receivers in TOA systems due to global
time measurements in each receptor. In contrast, relative measurements in TDOA systems must
consider different combinations for the time difference of arrival measurements that originate from
each pair of receivers. These combinations do not allow repetitions in pairs 1-2 or 2-1, mainly due to
the duplicity of results. However, it has been proven that from a set of n different receiving sensors
in a TDOA problem, only a number of (n-1) independent equations can be obtained. In addition,
the biggest limitation in the equations of spheres and hyperboloids is that they are considered to be
non-linear equations. This produces a non-direct resolution of the positioning problem through these
equations, a fact that causes the intersection of spheres or hyperboloids to not have a unique solution
in the space. Two different solutions can therefore be obtained that cannot be distinguished through
mathematical criteria.

According to rigidity theories on positioning systems [13], to completely determine the unequivocal
location of an object in a three-dimensional space a minimum of four receptors are necessary in TOA
systems, with a minimum of five in cases of TDOA systems. This disposition would guarantee one
single solution for the positioning problem. However, global positioning systems such as GPS do
not necessarily require an additional satellite for the calculation of the position, since the distances
between emitter and receptor are so far-off that the sphere equations generated allow the incorrect
solution to be discarded as incoherent or too separate from the previous position of the vehicle.

This problem, apparently solved in global navigation systems, poses a great importance in local
positioning systems (LPSs) [14,15] such as those used in precision applications (e.g., indoor navigation
or aircraft landings in nowadays airports). This is due to the proximity between the two different
solutions in these cases, so that any solution can be discarded with a stable generalized criterion. In this
article, a new criterion is proposed to solve this geometric problem based on the properties of certain
positioning algorithms. TDOA algorithms will be considered due to their great usage in LPSs [16].

In Section 2, the TDOA positioning problem is described. In Section 3, some different algorithms
are presented to solve the TDOA problem in real-time, while in Section 4 fictitious point studies based
on TDOA algorithms are developed to guarantee a four-receiver TDOA solution, and the convergence
sphere is defined. We show that computers have great difficulty processing convergence spheres in
Section 5, and a new parameter to process the convergence radius is proposed in Section 6. Section 7
develops an optimized node localization to solve the 3D TDOA problem. The article concludes
with a presentation and analysis of the results obtained and by extracting conclusions from the
completed work.

2. The TDOA Problem

TDOA systems are based on difference time measurements between the signal arrival to different
nodes or sensors in a network. These measurements can be converted to difference of distances by
multiplying these times by speed emission of the radioelectric waves (c).

This leads in Euclidean Geometry to the next equation:

Ri j = di j = dIi − dI j =

√

(xI − xi)
2 + (yI − yi)

2 + (zI − zi)
2

−

√

(

xI − x j

)2
+

(

yI − y j

)2
+

(

zI − z j

)2
+ h(0, σ) = cti j + h(0, σ)

(1)

where dI j is the distance difference between receivers i and j—which is the result of multiplying the actual
time difference of arrival (ti j) and adding a white noise, h(0, σ), that considers atmospheric instabilities
and time error measurements. This noise is related to signal transmission and measurement of times,
which cannot be controlled by TDOA algorithms and so is not considered in this paper. In addition,
(xI, yI, zI) are space coordinates of the vehicle that are being positioned and (xi, yi, zi),

(

x j, y j, z j

)
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are coordinates of the nodes i and j, respectively, which receive the positioning signal. These equations
correspond with hyperboloids that cannot be solved in an analytic direct process. Thus, numerical
methods must be used to determine the problem.

3. Algorithms for TDOA Problem Resolution

Non-linear equations of hyperboloids must be treated in order to address the TDOA problem
resolution. Generally, two main methodologies have been considered: those based on hyperboloids
intersection properties with closed-form solutions, and those based on numerical methods, which offer
a progressive reduction on the error gradient derivation in successive approximations leading to the
final solution. Although these methods could be considered analogous, they use different properties
and methodologies. However, both of them share the qualification that a univocal TDOA problem
resolution must use at least five different sensors. Hence, from now on, a combined study with a
method for each case is proposed to solve the TDOA problem with only four beacons.

Bucher and Misra [17] proposed a method based on the properties of the intersection of
hyperboloids. They show that hyperboloid intersections can always be contained in a plane.
This process increases the freedom to the problem by one degree, since a number of n receivers
generate a number of (n-1) independent hyperboloid equations and (n-2) independent intersection
planes are obtained using this methodology. That means that to solve the 3D TDOA problem linearly,
where three planes are needed, we still have to use five different receivers. Nevertheless, the fact
that the intersection of two different hyperboloids is contained in a plane makes the process of
obtaining this plane equation independent from the original hyperboloid equations. As a consequence,
the intersection of two planes (four nodes) resulting in a line of possible vehicle localizations can
be verified in any hyperboloid to finally get the two solutions that are achieved in TDOA problems
with four beacons (i, j, k, l). This methodology leads to two different solutions that for LPS cannot be
discarded by any assumable criterion.

The other method would be based on applying a Taylor approximation truncated on first order to
linearize the equations and allow a real-time solution to the problem. In this way, a point with enough
proximity to the final solution (x0, y0, z0) from which a process of sequential iterations will be started
is selected. These steps will finally allow the vehicle localization to be obtained through a matrix where
the range differences are considered as follows:

Ri j = cti j = Ri j0 +
∂Ri j

∂x
∆x +

∂Ri j

∂y
∆y +

∂Ri j

∂z
∆z (2)

where Ri j is the value of the distance difference in the approximation point, and
∂Ri j

∂x ,
∂Ri j

∂y
and

∂Ri j

∂z are
partial derivatives of the range differences, particularized for the values of the approximation point.
Applying this very same process to the other two nodes k and l with reference to the node i, Rik and Ril

can be estimated. This leads to the following matrix system:
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(3)

where ∆R is the range differences matrix, H is the partial derivative matrix (commonly known as
visibility matrix) and P is the position variance matrix. Therefore, we can express the matrix system
as follows:

H∆P = ∆R (4)
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This equation is usually solved through the least squares method [18], as described below:

∆P =
(

HtH
)−1

Ht∆R =





















∆x

∆y

∆z





















(5)

The coordinates of the solution point in the first iteration would be the result of adding all the
approximation coordinates to the increments obtained. After several iterations, the residual error
is reduced, reaching convergence with the real solution once it has become lower than the desired
precision. However, the convergence of this method depends on the initial position chosen as the
start of the first iteration [19]. Regarding the resolution of the TDOA problem, four receiving sensors
do not always guarantee the convergence of the method and, if produced, this can affect any of the
two possible solutions (which prevents us from knowing whether the position calculation is correct).
However, in contrast with the former method, the calculation of the position now guarantees a single
solution instead of two possible answers.

4. Fictitious Point Method

Of all the methods proposed so far, it is not possible to conclude whether the TDOA System can be
applied to LPS systems with four nodes with enough confidence to guarantee the correct calculation of
the position. Nevertheless, it is possible to affirm that successive approximation methods do guarantee
convergence—if produced—towards one of the possible of the solutions.

This means that if there were any way to ensure that the convergence occur toward the correct
solution, the method would allow the problem with to be solved with four sensors. In a scenario
where the process is convergent and highly dependent upon the initial point of the iterations, it is
safe to say that when this initial point is close enough to the solution (i.e., the previous solution of
the vehicle), the convergence should always take place toward the correct solution. To prove this
statement, the behavior of any point located at a plane containing the two possible solutions is going
to be proven for the TDOA problem. The solution has been calculated by applying the successive
approximation method to these initial points, as presented in Figure 1.

 

Figure 1. Plane of convergence containing the two solutions of a four-beacon TDOA problem.

Figure 1 represents the two potential solutions (in yellow) to the positioning problem.
Their surroundings are color-coded (blue and green) in accordance with which solution these neighbors
converge at. Regions in red show an absence of convergence with the successive approximation
method. As it is a 3D positioning system, it is necessary to extrapolate the same reliable zone (for
calculating the position with four nodes) as a 3D space to find the solution to the problem. The resulting
figure would necessarily be a sphere, since the vehicle can move in any direction, with the solution as
the center.
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Figure 2 displays the first instabilities appearing in the surface of the convergence sphere.
This guarantees that, at a maximum radius, all points on the surface of the sphere are convergent
towards the inner (correct) solution.

 

 

Figure 2. Critical convergence sphere: Surface points in green are good initial position estimates that
make the successive approximation method converge at the solution in the center. Points in red fail to
make the approximation method converge. This figure displays the first appearance of such instabilities
when increasing the radius of the sphere from zero to a critical value marked by the appearance of
these defective seeds. The axes represent the 3D environment around the solutions and their units are
adimensional due to the illustrative purpose of the figure.

In this scenario, a configuration with four receiving sensors within the coverage can be defined
as reliable if the distance from the initial point to the solution is inferior to the minimum radius of
convergence for all points of that volume.

5. Convergence Parameter Modification

The convergence radius is calculated from an evaluation of the points from the sphere centered on
the desired solution. In the case that all these points converge towards the inner solution, the value of
the radius of convergence increases until there exists divergence at any point. This gradual process
of incrementing the radius involves a higher number of calculation points for each iteration process,
which cannot be assumed in a reasonable time.

Taking this into account, a different way to determine convergence is proposed in this paper.
The surroundings of the solutions find a region in which convergence is not reached in the fictitious
point method. This region is considered to be the border between the two intervals of convergence
when sequential approximations are used to find the solution. Thus, if the two solutions could be
separated enough, the discontinuity region could be ousted from the solutions, which would increase
the convergence radius.

This problem leads to an association between the convergence radius and the distance between
solutions. To show this, the convergence radius and distance between solutions are calculated in a
representative number of points for the coverage area of a concrete node distribution. For this purpose,
the spatial volume where positioning is going to be used to locate a target is divided into small steps in
the three Cartesian coordinates, in order to evaluate the convergence radius and the distance between
solutions at each point and show the correlation between the parameters.

The correlation between these two factors is shown in Table 1 and reaches a value of 0.999.
This value allows us to conclude that any variation of these two parameters will be strongly related to
the other.
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Table 1. Correlation between radius of convergence and distance between solutions.

Parameter Convergence Radius Solutions Distance

Convergence radius
Pearson Correlation Coefficient (PCC) 1 0.999

S. (bilateral) - 0.000
Samples 33,306 33,306

Solutions distance
Pearson Correlation Coefficient (PCC) 0.999 1

S. (bilateral) 0.000 -
Samples 33,306 33,306

In this sense, the new parameter can be calculated, leading us to a new conclusion: The maximization
of the distances between solutions for every coverage point of a concrete node distribution leads to an
increase of the interval of confidence of the sequential approximation method to solve the four-beacon
TDOA problem.

However, for a determined sensor distribution, the distances between solutions in the four-beacon
TDOA problem are fixed. Hence, in order to maximize this parameter, a search for the optimum node
distribution is needed. This will lead to maximizing the convergence interval of the algorithm.

6. Optimization of the Node Distribution for the Four-Beacon TDOA Problem

The calculation of the distance between solutions allows us to process the radius of convergence
in a reasonable period of time. Due to the geometric properties of the intersection of hyperboloids,
some particularities should be considered when a maximization of this parameter is performed.

A set of points with high distance between solutions values is shown in Figure 3. These points do
not have a direct correlation with the radius of convergence, but they represent less than 5% of the
total points. This is due to a near-tangent condition in the intersection of two different branches of the
hyperboloids. The effect of this condition is the separation of the two solutions.

 

 

 
 

𝑟 = max(𝑑𝑖𝑠𝑡 ) − min(𝑑𝑖𝑠𝑡 )𝑚𝑒𝑎𝑛(𝑑𝑖𝑠𝑡 )  

Figure 3. Outliers of the correlation between radius of convergence and distance between solutions.

A different circumstance occurs when it is observed at a distance between solutions of 0—which
is the tangent case—and does not permit a correlation with the convergence radius in this context.
The separation of the solutions or the existence of only one of them modifies the convergence problem
in a four-beacon TDOA problem. The problem is converted into a different case of convergence where
more receivers are concerned.

However, these points imply a great distortion for the comparison of statistical properties of
the node distributions based on the distance between solutions in the four-beacon TDOA problem.
In order to remove this type of point, a filter is applied before performing an optimization. The filtering
process is run in two different steps:
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(1) elimination of points where the distance between solutions is equal to 0;
(2) introduction of a parameter to remove the outliers where the distance between solutions is

aberrant, without losing the representativeness of the sample values.

This second step is controlled with the parameter r, which measures the correlation between
the mean of the sample values of the distance between solutions and both of their ends as a
dispersion indicator.

r =
max(distsol) −min(distsol)

mean(distsol)
(6)

It is concluded that node distributions with outliers show values of r above 2.5, so that an
elimination of points, such as the filtering process in Figure 4, must be performed until a value of r

smaller than 2.5 is obtained. In this case, the methodology followed is based on standard deviation.
In the first steps of the filter, the standard deviation has high values as a consequence of the outliers.
This circumstance allows us to define the limit of the points discarded as a sum of the media and the
standard deviation.

 

 

Figure 4. Sequential reduction of the r-correlation factor. The outliers are removed with this iteration
process. The remaining distribution (r = 1.92) does not present outliers.

The process is performed iteratively until the r value is reduced. In the final step of the filter,
more than 85% of the sample points are preserved and the representativeness is guaranteed, as is
shown in Figure 5.

Previous studies have shown a clear relationship between the radius converging towards the correct
solution in a four-sensor TDOA problem and a 3D-node distribution. Assuming this hypothesis is right,
a 3D space will be associated with a certain node distribution that optimizes the convergence radius.

This hypothesis was validated by means of optimization techniques, but presents two
characteristics that dissuade resolution techniques based on exact algorithms—large solution space
sizes (related to the required resolution level in sensor location) and an inability to apply recursive
methodologies or separate the optimization into parts. Due to these circumstances, the optimization
procedure is suitable to be performed by means of heuristic algorithms. Furthermore, Tekdas et al. [20]
demonstrated that the node distribution problem is considered as NP-hard and must be solved with
the usage of heuristic techniques.
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Figure 5. Evolution of the fitness function through several generations.

Genetic algorithms represent a robust and flexible approach that allows the possibility of using
non-derivable functions and an appealing trade-off between diversification and intensification in the
solution-searching process of the problem. As an alternative to genetic algorithms, techniques such
as randomized search, proposed by Bergstra and Bengio [21], are also suitable for approaching this
problem. The positioning problem can be seen as an optimization problem where the size of the
convergence spheres plays the role of loss function while the position of the beacons can be considered
as hyperparameters for the underlying positioning algorithms. This paper focuses on reporting the
results obtained by using genetic algorithms.

The starting point for an analysis is the definition of the 3D experimental volume of dimensions,
1000 × 400 × 100 m, described with a spatial discretization of 100 m in x coordinate, 50 m in the y

coordinate and 10 m in the z coordinate. Each of the discretization points represents a real solution to
the 3D TDOA system of study. Additionally, the height of the nodes has been limited to 15 m measured
from the z = 0 plane, similar to the conditions found in a local, terrestrial positioning system.

The genetic algorithm developed for this study is based on binary codification techniques of the
population, tournament-based selection, single-point crossover, 10% elitism and a mutation probability
of 4%. The fitness function has been defined as the arithmetic mean of the distance between solutions
for all points at the discretization, corrected according to parameter r.

The stop criterion of the algorithm has been defined as the instant when the maximum of the
fitness function stops improving at the same time as the solution is reached for at least half of the
individuals of the population. The resolution of the genetic algorithm is shown by means of the fitness
function of the problem, in relation to the number of generations.

The final result of the process can be seen in Figures 6 and 7. Figure 6 shows the evaluation of the
convergence radius for the random distribution of points. The solution obtained after the maximization
process is presented in Figure 7.

It is noteworthy to highlight the continuity presented by the convergence radius in all the domains
and the negative influence they have on areas close to nodes. This is related to the geometry of the
hyperboloids in these regions. In Table 2, a comparison between the distributions of nodes and the
main statistical variables of the set of convergence radii is presented.
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Figure 6. Evaluation of the convergence radius in the coverage area for a random distribution.

 

 

Figure 7. Evaluation of the convergence radius in the coverage area for the optimized distribution.

Table 2. Statistical parameters of the optimized and random distribution.

Convergence Radius Optimized Distribution Random Distribution

Mean (m) 186.03 45.63
Min (m) 10 2
Max (m) 350 150
Std (m) 87.06 30.58

% Points convergence radius > 120 74.10% 1.56%

The results of the analysis lead to the conclusion that the initial hypothesis is correct, and hence
a clear relationship exists between node distribution and the convergence radius of the four-node
3D-TDOA problem for the calculation of the position. Moreover, the whole procedure has been defined
on the basis of genetic algorithms, making it possible to maximize the convergence radius in any
environment, optimizing the product speed time refreshing rate.
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7. Discussion

A new methodology based on convergence properties of TDOA algorithms has been proposed in
order to solve the four-sensor TDOA problem. This approach considers a procedure to maximize the
capabilities of the algorithms in a confidence interval without considering the existence of errors due to
signal transmission, signal processing or the synchronization of the system. For this reason, in future
works it is necessary to consider optimization in a context where a Non-Line-of-Sight (NLOS) scenario
is presented, clock synchronization is considered and other properties related to node distribution are
also contemplated.

However, this paper presents a new perspective that concludes that algorithm properties are
strongly related with node distribution and that the four-node TDOA problem can be solved under
certain conditions with complete security for the first time in local positioning systems. With this
optimization, convergence has also been maximized, which is one of the biggest problems of gradient
descent algorithms in that they are deeply dependent on the initial iteration point [19]. In practice,
this point is the last estimated position. The last position can be far away from the new target
localization if the vehicle is moving at high speed, which can represent a convergence uncertainty.
For this reason, a confidence region around the target localization has been defined to use the gradient
descent algorithm under convergence conditions. The confidence region has been maximized through
the radius of convergence and the calculation of the position has been guaranteed all over the domain
in the optimized distribution, which does not happen in random distribution. This has important
relevance in indoor positioning and precision landings in wide area multilateration, where sensor
location must be considered. The reduction of one receiver guarantees system availability in cases of
sensor failure, and reduces overall costs.

8. Conclusions

In this paper, it has been shown that the TDOA problem can be solved with only four sensors within
a confidence interval defined through the convergence radius. The great computational processing
time needed to calculate this parameter has led to the search for another indicator—the distance
between solutions, which permits a nearly complete explanation of the convergence radius.

This geometric factor must be filtered with the aim of allowing a statistical comparison between
different node distributions. The high number of possible solutions has promoted the utilization
of artificial intelligence through genetic algorithms, which have permitted the improvement of the
convergence radius through optimized node distribution.

A comparison between a random and an optimized distribution shows the suitability of the
methodology proposed to solve the TDOA problem with four sensors. By applying the sequential
approximation algorithm between the two distributions, the confidence level is improved by over
400%. Furthermore, if a refresh rate of the positioning signal is fixed in one second, the algorithm
can be used with four beacons in the optimized distribution 96.7% of the time with total security if
the vehicle has a maximum speed of 25 m/s. In contrast, it can be used only in 31.2% of cases for
random distribution.

The geometric statement of the problem of the intersection of hyperboloids has shown that an
improvement in the space localization of the hyperboloids through node localization optimization
allows the 4-sensor TDOA problem to transform into an analogous problem in which more receivers
are used. This methodology ultimately provides great improvements to the positioning algorithm
properties used throughout this article.
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