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Abstract: Differential models, numerical methods and computer simulations play a fundamental role
in applied sciences. Since most of the differential models inspired by real world applications have no
analytical solutions, the development of numerical methods and efficient simulation algorithms play
a key role in the computation of the solutions to many relevant problems. Moreover, since the model
parameters in mathematical models have interesting scientific interpretations and their values are
often unknown, estimation techniques need to be developed for parameter identification against the
measured data of observed phenomena. In this respect, this Special Issue collects some important
developments in different areas of application.

Keywords: applied mathematics; numerical methods; computational mathematics; differential and
integro-differential models; inverse problems

1. Special Issue Overview

The Special Issue contains 12 contributions covering a fan of methodology and appli-
cations that can be summarized as follows:

1. Numerical methods, simulations and control for particles dynamics [1–4].
2. Modeling and numerical methods for traffic [5,6] and manufacturing problems [7].
3. Inverse problems for biomedical applications [8,9].
4. Theoretical study and numerical solutions for integro-differential equations [10–12].

The main results of the papers are described below.

1.1. Numerical Methods, Simulations and Control for Particles Dynamics

In [1] the authors developed a hybrid PDE–ODE mathematical model mimicking the
mechanisms observed in cancer-on-chip experiments, where tumor cells are treated with
chemotherapy drugs and secrete chemical signals into the environment, attracting multiple
immune cell species. The in silico model proposed here goes towards the construction of
a “digital twin” of the experimental immune cells and allows the reconstruction of the
chemical gradients in the chip environment in order to better understand the complex
mechanisms of immunosurveillance. The development of a trustable simulation algorithm,
able to reproduce the dynamics observed in the chip, requires an efficient tool for the
calibration of the model parameters. In this respect, the present paper represents a first
methodological work to test the feasibility and the soundness of the calibration technique
here proposed, based on a multidimensional spline interpolation technique for the time-
varying velocity field surfaces obtained from cell trajectories.

The authors in [2] studied a relaxation limit of the so-called aggregation equation with
a pointy potential in one-dimensional space. The aggregation equation is today widely used
to model the dynamics of a density of individuals attracting each other through a potential.
When this potential is pointy, solutions are known to blow up in final time. For this reason,
measure-valued solutions have been defined. The convergence of this approximation was
studied and a rigorous estimate of the speed of convergence in one dimension with the
Newtonian potential was obtained; moreover, the numerical discretization of this relaxation
limit by uniformly accurate schemes was investigated.

Axioms 2021, 10, 260. https://doi.org/10.3390/axioms10040260 https://www.mdpi.com/journal/axioms
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In [3] a Mean Field Games model where the dynamics of the agents is given by a
controlled Langevin equation, and the cost is quadratic, was addressed. An appropriate
change of variables transforms the Mean Field Games system into a system of two coupled
kinetic Fokker–Planck equations and an existence result for the latter system, obtaining
consequently a solution for the Mean Field Games system.

In [4] a tailored version of the Cellular Potts model, a grid-based stochastic approach
where cell dynamics are established by a Metropolis algorithm for energy minimization,
was developed. The proposed model allowed for quantitatively analyzing selected cell
migratory determinants (e.g., the cell and nuclear speed and deformation, and forces
acting at the nuclear membrane) in the case of different experimental setups. Most of the
numerical results show a remarkable agreement with the corresponding empirical data.

1.2. Modeling and Numerical Methods for Traffic and Manifacturing Problems

In [5], two models describing the dynamics of heavy and light vehicles on a road
network were introduced, taking into account the interactions between the two classes.
Such models are tailored for two-lane highways where heavy vehicles cannot overtake.
The first model couples two first-order macroscopic LWR models, while the second model
couples a second-order microscopic follow-the-leader model with a first-order macroscopic
LWR model. Numerical results show that both models are able to catch some second-order
(inertial) phenomena such as stop and go waves. Models are calibrated by means of real
data measured by fixed sensors placed along the A4 Italian highway Trieste–Venice and its
branches, provided by Autovie Venete.

The authors of [6] use empirical traffic data collected from three locations in Europe
and the US to reveal a three-phase fundamental diagram with two phases located in the
uncongested regime. Model-based clustering, hypothesis testing and regression analyses
are applied to the speed–flow–occupancy relationship represented in the three-dimensional
space to rigorously validate the three phases and identify their gaps. Accordingly, a three-
phase macroscopic traffic-flow model and a characterization of solutions to the Riemann
problems are proposed. In this work, critical structures in the fundamental diagram that are
typically ignored in first- and higher-order models are identified, which could significantly
impact travel-time estimation on highways.

In [7], the input-to-state stability (ISS) of an equilibrium for a scalar conservation law
with nonlocal velocity and measurement error arising in a highly re-entrant manufacturing
system was studied. A numerical discretization of the scalar conservation law with non-
local velocity and measurement error was introduced and a suitable discrete Lyapunov
function was analyzed to provide ISS of a discrete equilibrium for the proposed numerical
approximation.

1.3. Inverse Problems for Biomedical Applications

In [8] a new framework for optimal design was developed, by introducing new proto-
cols for estimating soft tissue parameters in biaxial experiments. This framework is based
on the information-theoretic measures of mutual information, and conditional mutual
information and their combination is proposed. In particular, the information gain about
the parameters from the experiment as the key criterion to be maximized is considered and
directly used for optimal design. Information gain is computed through k-nearest neighbor
algorithms applied to the joint samples of the parameters and measurements produced
by the forward and observation models. For biaxial experiments, the results show that
low angles have a relatively low information content compared to high angles. The results
also show that a smaller number of angles with suitably chosen combinations can result in
higher information gains when compared to a larger number of angles which are poorly
combined.

The authors of [9] study the problem of functional connectivity by quantifying the
statistical dependencies among time series describing the activity of different neural sources
from the magnetic field recorded with magnetoencephalographic (MEG) exam. This
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problem can be addressed by utilizing connectivity measures whose computation in the
frequency domain often relies on the evaluation of the cross-power spectrum of the neural
time series, estimated by solving the MEG inverse problem. Recent studies have focused on
the optimal determination of the cross-power spectrum in the framework of regularization
theory for ill-posed inverse problems, providing indications that, rather surprisingly, the
regularization process that leads to the optimal estimate of neural activity does not lead to
the optimal estimate of the corresponding functional connectivity. Along these lines, the
present paper utilizes synthetic time series, simulating the neural activity recorded by a
MEG device to show that the regularization of the cross-power spectrum depends on the
spectral complexity of the neural activity.

1.4. Theoretical Study and Numerical Solutions for Integro-Differential Equations

In [10] a prey–predator system with logistic growth of prey and hunting cooperation
of predators is studied. The introduction of fractional time derivatives and the related
persistent memory strongly characterize the model behavior, as many dynamical systems
in the applied sciences are well described by such fractional-order models. Mathematical
analysis and numerical simulations are performed to highlight the characteristics of the
proposed model. The existence, uniqueness and boundedness of solutions is proved;
the stability of the coexistence equilibrium and the occurrence of Hopf bifurcation is
investigated. Some numerical approximations of the solution are finally considered; the
obtained trajectories confirm the theoretical findings.

The work in [11] is devoted to the study of dynamical models, such as the Rothamsted
Carbon (RothC) model, used predict the long-term behavior of soil carbon content for
the achievement of land degradation neutrality as measured in terms of the Soil Organic
Carbon (SOC), a key indicator of land degradation. Indeed, a reduction in the SOC stock of
soil results in degradation and it may also have potential negative effects on soil-derived
ecosystem services. In this paper, continuous and discrete versions of the RothC model
were compared, especially to achieve long-term solutions. The original discrete formulation
of the RothC model was then compared with a novel nonstandard integrator that represents
an alternative to the exponential Rosenbrock–Euler approach in the literature.

The authors in [12] studied the asymptotic behavior of the numerical solution to the
Volterra integral equations. In particular, a technique based on an appropriate splitting
of the kernel is introduced, which allows one to obtain vanishing asymptotic (transient)
behavior in the numerical solution, consistent with the properties of the analytical solution,
without having to operate restrictions on the integration steplength.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.
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Abstract: The present work is motivated by the development of a mathematical model mimicking
the mechanisms observed in lab-on-chip experiments, made to reproduce on microfluidic chips
the in vivo reality. Here we consider the Cancer-on-Chip experiment where tumor cells are treated
with chemotherapy drug and secrete chemical signals in the environment attracting multiple im-
mune cell species. The in silico model here proposed goes towards the construction of a “digital
twin” of the experimental immune cells in the chip environment to better understand the complex
mechanisms of immunosurveillance. To this aim, we develop a tumor-immune microfluidic hybrid
PDE–ODE model to describe the concentration of chemicals in the Cancer-on-Chip environment and
immune cells migration. The development of a trustable simulation algorithm, able to reproduce
the immunocompetent dynamics observed in the chip, requires an efficient tool for the calibration
of the model parameters. In this respect, the present paper represents a first methodological work
to test the feasibility and the soundness of the calibration technique here proposed, based on a
multidimensional spline interpolation technique for the time-varying velocity field surfaces obtained
from cell trajectories.

Keywords: differential equations; mathematical biology; cell migration; microfluidic chip

MSC: 65M06; 92B05; 92C17; 82C22

1. Introduction

Recruitment of immune cells to a tumor is a key parameter in cancer prognosis and
response to therapy and the complex relationship between cellular, noncellular components
and secreted chemotactic factors plays an essential role in directing the migration of both
activating and suppressive immune cell types. In recent years with the development of the
highly multidisciplinary Organ-on-Chip field (OOC) [1,2], microfluidic technologies are
employed as valuable in vitro platform tools to build tumor microenvironments, with mod-
ular degree of complexity and to visualize and quantify immune infiltration in response to
anticancer therapies.

The work that set the stage for Organs-on-Chip (OOC) was published in 2010 [3] and
thereafter OOC constituted a dynamic field of research, and substantial effort has been
devoted to creating realistic mimics of different organs in recent years [4–7].

The coupling with live-cell imaging may enable extraction of single-cell tracking pro-
files which can be processed with advanced mathematical tools. In this context, the present
study is inspired by the modeling of the complex mechanisms behind the cell dynamics
and interactions between immune (ICs) and treated tumor (TCs) cells in microfluidic chips.
In this framework, several studies [1,7,8] were conducted on immunocompetent cancer-on-
chips to assess the effects of therapeutic drugs on TCs and on the possible reactions of the

Axioms 2021, 10, 243. https://doi.org/10.3390/axioms10040243 https://www.mdpi.com/journal/axioms
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immune system. One of the first studies addresses the role of formyl peptide receptor 1/an-
nexin a1 axis in anti-tumor response to anthracycline-based chemotherapy [7]. Timelapse
recordings were performed in a microfluidic platform designed for oncoimmunology [1]
research to assess physical and chemical contacts between malignant and immune popu-
lations. Some of the earliest applications of microfluidic cell culture technology focused
on modeling specific steps in the cancer cascade, including tumor growth [9] and expan-
sion [10], angiogenesis [11–16], progression from early to late stage lesions involving an
epithelial–mesenchymal transition [17,18], tumor cell invasion [19] and metastasis [20].
Although Organs-on-Chip represent an increasing in importance field of research because
it allows experimentalists to have major control on the objects of investigation, resulting in
more accurate measurements, some aspects still remain difficult to understand. In particu-
lar, a quantification of the average chemical gradients present in the chip environment is
difficult to be estimated.

Motivated by these laboratory experiments, we present an in silico mathematical
model to describe ICs migration in the case of an efficient interaction with TCs treated with
chemotherapeutic drug.

The main goal of this work is to build a bridge between experimental data coming
from Cancer-on-Chip experiment given as particles and macroscopic mathematical mod-
els, such as the one proposed in reference [21], in order to gain further insights on the
dynamics and short-range interactions between cells. Indeed, the present works goes
towards the direction of the mean-field limit to unveil the statistical properties of the model.
Recently, one of the authors of the present paper has derived rigorously in Wasserstein’s
type topologies the mean-field limit (and propagation of chaos) to the Vlasov-type equa-
tion, in the framework of generalizations of the kinetic model given by Cucker–Smale
dynamical system, see reference [22]. Here we propose a simulation algorithm based on a
hybrid macroscopic-microscopic chemotaxis model able to reproduce the main features
of phenomena observed in microfluidic chip, such as migration of ICs and short-range
interactions with cancer cells representing the sources of chemical gradients.

Existing methods used in the literature so far were dealing with the description of
particle trajectories and are essentially represented by statistics on cell trajectories, as in
the work by Agliari et al. [23]. Another possibility, already applied in other papers dealing
with particle trajectories, see for instance reference [24], is to compute the distance between
immune cells and tumor cells across time. However, we would like to stress that here our
main concern is to show the feasibility of the proposed approach and to create a connection
with macroscopic modeling of the same problem, in order to see what happens when
we go to the limit (corresponding to the situation in which millions of cells move in the
environment). Our final aim is indeed to be able in the future to simulate the behavior of
immune cells in the tissue of an organ. In this framework, a novel strategy for the estimation
of model parameters to perform the validation against real data and the calibration of the
mathematical model is introduced. Such strategy involves from one hand the analysis of
ICs trajectories coming from experimental data to describe realistically the average speed
and the pathways of immune cells and the creation of a synthetic dataset for evaluating the
effectiveness of the calibration technique for the estimation of model parameters. Moreover,
in order to determine the velocity distribution of ICs, a stochastic component is obtained
analyzing real trajectories of cells falling in the area under examination and then it is added
to the deterministic velocity field.

The modeling of dynamics and interactions in microfluidic chip environment was
already studied in [18,25–27] with particle models and with cellular automata models
in [28]. In [21] a fully macroscopic mathematical (PDE) model was considered, both for
the chemical gradient which is seen as an average field and for the density of immune
cells. With the PDE model we were able to describe long-range interactions in the chip
environment and a first estimate of the chemical gradient driving ICs movement was
obtained in [29].

6
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Here, instead, we are interested in describing efficient short-range interactions between
treated tumor cells and immune cells. As an example of this phenomenon, we considered
the study and the experimental setting in [7], where tumor cells treated with chemotherapy
drug release a chemical stimulus sensed by healthy immune cells, thus promoting their
migration towards the tumor cells. For the construction of the model, we used a discrete in
continuous approach where we coupled a reaction-diffusion partial differential equation
(PDE) describing the evolution of the average substances released by the TCs in the tumor
microenvironment with a particle model, where every IC in the system was considered
to be a single entity and provided with specific properties, as previously done in [30] in a
different experiment. Here the hybrid approach was revealed to be crucial in providing
a proper description of the multiscale phenomenon that with a traditional macroscopic
model would not be possible to fully decipher. In particular, our model describes the
dynamics of each IC by means of ordinary differential equations (ODE) in such a way that
every cell can be followed individually. Since the motion of ICs is driven by chemotaxis,
the migratory activity is regulated by a chemotactic term which allows them to sense
the gradient of the chemicals in the tumor neighborhood and of specific forces such as
adhesion–repulsion which establish between cells.

The calibration of the mathematical model is supported by the development of ad-hoc
parameter estimation procedure based on an interpolation technique for the approximation
of the velocity field of ICs across time, i.e., multidimensional spline method previously
introduced in [31] and described in Section 4.1. Such procedure, applied to synthetic
cell trajectories dataset, provides accurate estimates for the values of unknown model
parameters and demonstrates to be a promising approach for the validation of the proposed
model against real data.

1.1. The Geometry of the Microfluidic Chip and the Related Computational Domain

The immune-oncology chip designed for the experiment consists of three main culture
chambers for plating adherent TCs and floating ICs connected by a bridge of microcapil-
laries allowing chemical and physical contacts. In Figure 1 a picture of the two boxes is
shown. With regards to the dimensions, the capillaries have, respectively, width and length
of 12 μm and 500 μm, while the height is of 10 μm; however, since in the video footage the
experiment is recorded at a fixed height, the third spatial dimension in our framework
is neglected.

Figure 1. Microfluidic chip environment. On the (left): real microphotograph of microfluidic devices
filled with food dye and schematics of the 2D layout with three main culture chambers connected by
arrays of microchannels. On the (right): Timelapse video frame with detected immune cells in the left
and intermediate chambers surrounded, respectively, by red and green circles. Credit: Vacchelli et al.
(2015) edited by AAAS.
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The cross-sectional dimensions of culture chambers are 1 mm (width) × 100 μm
(height). Further details about the chip design are illustrated in [7]. We also underline that
here we are considering a 2D culture in the liquid with dying cancer cells adherent to the
glass slide and mainly static, and immune cells floating.

In the experimental set-up, the timelapse observation area comprises left TCs culture
chamber and central one with loaded ICs. Our goal consists of modeling the migration of
ICs towards the TCs taking into account the different forces acting on the cells. To achieve
such a result, we neglected the migration of ICs in the right chamber and through the
microchannels, and we only focused on motility patterns of infiltrated ICs in the TCs
left chamber.

Moreover, in order to better analyze the short-range dynamics and interactions be-
tween tumor and immune cells, we restricted our study on a subarea of the left chamber
of length and height equal to 200 μm. This area corresponds to the subset [400, 600] ×
[200, 400] μm, and we defined it as Ω = [0, Lx]× [0, Ly]. In Figure 2 we present the setting
of the experiment at time t = 24 h, with a focus on the area under analysis. The main
reason for considering only a portion of the chip is motivated by:

• the reduction of the computational cost in view of the optimization procedure for the
parameter estimation;

• the focus on short-range interactions.

Moreover, Ω contains four treated TCs, and this makes the area a good representa-
tive of cell dynamics, since in the laboratory experiment there are about 60 TCs in the
entire chamber.

Figure 2. Timelapse pre-processed image of microfluidic chip environment at time t = 24 h. (A) Full
chip, in red the domain Ω; (B) Focus on the area Ω.

1.2. Original Contribution of the Present Paper

To describe such complex mechanisms with a multiscale nature, the model here
proposed belongs to the category of hybrid models, involving the coupling between
macroscopic and microscopic models.

As mentioned above, we assume the presence of forces between cells, which are
established due to the chemoattractant and due to the nature of the cells itself. For this
reason, in the current work, we refer to the discrete–continuous model (1)–(2) proposed
in [30] to describe the morphogenesis of the posterior lateral line system in zebrafish.
Such a model includes a classical reaction-diffusion partial differential equation (PDE)
used to describe the evolution of the concentration of chemicals released by TCs in the
tumor milieu, coupled with ordinary differential equations (ODEs) for the inter-cellular
dynamics of ICs, which establishes both due to the presence of the chemoattractant and to
the forces generated between the cells. In particular, the use of a particle model permits
the highlighting of the role of single cells in the space, to analyze short-range interactions
and to attribute specific characteristics to cells behavior that a macroscopic model would
not allow. As mentioned in Section 1.1, for computational reasons and for the datatype at
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our disposal, cell tracks extracted from video recorded at a fixed level on the z-axis, we
neglect the third dimension and consider only the 2D case. However, the third dimension
can be easily taken into account by the model, but we do not expect important changes in
the overall dynamics.

Here, chemical signals are described as an average field by means of a reaction-
diffusion equation

∂t f = DΔ f + S(t, Y, f ) (1)

with a possible source or degradation term given in S term. Equation (1) was endowed
with Robin boundary conditions to state the exchange of chemicals between the internal
and the external environment. The gradient field f influences the evolution of cell positions,
according to a second order equation of the form:

Ẍi = F(t, X, Ẋ, Y, f ,∇ f )− μẊi (2)

where Xi, i = 1, . . ., Ntot,I , is the position vector of the i-th IC, Ntot,I is the total number of
ICs, X = (X1, . . ., XNtot,I ) contains all the positions, and Ẋ = (Ẋ1, . . ., ẊNtot,I ) the velocities.
The vector Y = (Y1, . . ., YNtot,T ), i = 1, . . ., Ntot,T , stands for TCs positions, which are taken
as constants in the problem, since dying TCs do not migrate as time evolves. The function
F includes several effects: from the detection of the chemical signal f (chemotaxis) to
mutual interactions between ICs (adhesion and repulsion) and ICs and TCs (adhesion and
repulsion). All these effects take into account a non-local sensing radius. The term μẊi
represents damping due to cell adhesion to the substrate.

We remark that the use of second order equations to describe the cell motion was
first used in the seminal work [32] in the framework of Newton’s equation of motion
for particles. Indeed, even in this case the acceleration is not so high, this formulation
describes the effects of the presence of an external force causing velocities and direction
changes. Moreover, the friction term for cells immersed in a fluid is also taken into account.
In order to have a more complete model able to represent the randomness characterizing
cell motility, we also introduced a stochastic component in the velocity field in the spirit of
Langevin model, see the review [33] and references therein.

In this context, in order to better reproduce the phenomenon under consideration
such as the presence of chemical stimulus of treated cancer cells, we applied the following
modification respect to the model in [30]:

• we model the presence of tumor cells, and we also take into account the repulsion
forces to avoid overlapping. Eventually, a slight overlay may occur between tumor
and immune cell in the case of close interactions. However, it does not seem to occur
in the video footage;

• a chemical gradient concentrated around sources represented by cancer cells is con-
sidered and diffused in the environment;

• Robin boundary conditions for the inflow of chemoattractant in the area under con-
sideration are applied and adjusted to drive cell migration in a diagonal direction,
as observed experimentally;

• the alignment effect between cells is discarded since in this context is not present;
• a chemotactic sensitivity term—i.e., receptor saturation—is added in the drift term of

the equation of particles motion, with the effect that chemotaxis of cells is reduced in
areas of high chemoattractant concentrations;

• a stochastic component in the particle velocities is added to have more realistic cell
trajectories in terms of randomness.

The equations are solved in a square domain Ω, introduced in Section 1.1, subset of
the chamber where the experiment was performed and the approximation was carried
out using a classical central difference scheme in space and the Crank–Nicolson scheme in
time, although in Appendix A we prefer to present the general form of the scheme based
on the θ-method.

The main novelty of our approach here is mainly represented by:
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• the modeling study on ICs behavior by considering different scenarios, see Section 3;
• the construction of a calibration algorithm to find a trustable estimate of the most

significant parameters of the model to assess the effects of chemical gradients on the
ICs movement, see Section 4.

In particular, such calibration algorithm—based on the mathematical model—is built
to test the possibility of validating the model on real data provided by experimentalists.
The main goal of the present work is indeed the introduction of a robust procedure for
the estimate of model parameters by means of the paths taken by ICs in the chip subarea
under examination. It is worth noting that this is not an easy task, since to succeed in the
model calibration we need to extract a common behavior from the time-varying trajectories
of immune cells located at different points of the examined area. For this reason, in this
first work based on this framework we propose a calibration strategy taking into account
this variability and applying it to a synthetic dataset, in order to assess the effectiveness of
our methodology.

We underline that the synthetic dataset of ICs pathways has been created reproducing
qualitatively the real trajectories extracted from the video footage of the experiment, in order
to have a “realistic” dataset. In more detail, a set of trajectories of cells sharing an average
behavior has been produced by suitably tuning model parameters to have an upper and
lower bound of cell speeds taken from the experimentally observed ones. With these
synthetic trajectories, we have computed ICs velocity field at every observation time as a
surface produced by the model itself, supposing to have a single population of immune
cells thus showing an average behavior. Such velocity field has been then approximated
using a multidimensional spline interpolation technique, described in Section 4.1 to have
smoothing in time and space on the dataset to be compared.

Finally, this average field has been used as our target solution to be used in the
calibration procedure, as described in detail in Section 4.2. The methodology for the error
quantification is based on the minimization of a cost functional depending on the difference
between the target velocity field of cell in the whole domain and the velocity field obtained
for another choice of the model parameters during the optimization procedure performed
with a local search method and we compared them at every time step. In addition to this,
we also studied the introduction of further terms in functionals with the aim of improving
the optimization results and show the soundness of our algorithm representing a starting
point for investigations on experimental data in the next future.

1.3. Main Contents and Plan of the Paper

We introduce a hybrid model composed of a reaction diffusion equation, describing
the time and space evolution of signaling substances released by treated TCs in a subarea
of the main chamber, and of an agent-based model made up of second order differential
equations for each IC. The boundary conditions associated with the partial differential
equation are of Robin type, so that we can have a control on the amount of chemical
exchanged with the surrounding microenvironment. In addition, based on experimental
observation, an ad hoc parameter estimation technique was developed. To summarize
the main contents of the present work, the mathematical issues faced in this study are
identified into:

• the development of a mathematical model describing the behavior of ICs in short-
range interactions in the microfluidic chip environment;

• the development of ad-hoc parameter estimation techniques for time-varying velocity
fields.

The plan of the paper is as follows. In Section 2 we describe the biological framework
that inspired our study, and we introduce the mathematical formulation of biologically
inspired models, and we present the adopted model. Section 3 is devoted to the modeling
study on the scenarios suggested from the observation of the dynamics in the laboratory
experiment performed with the numerical simulation algorithm reported in the Appendix.
Section 4 contains the parameter estimation techniques here developed and the results
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obtained with the calibration algorithm. A sensitivity analysis is also performed and
reported in the Appendix. Finally, in Section 5 we discuss the presented results, and the
future aims of our work.

2. Materials and Methods

2.1. Biological Framework

The OOC technology allow the design and recreation of more sophisticated in vitro
cellular microenvironments under physiological or pathological scenarios; as potential
candidates for better prediction of human responses than animal testing cannot. This suc-
cess is also due thanks to compatibility with a variety of microscopy techniques including
live-cell high-content imaging and to the wide variety of cells and tissues that the chips
can host, see [1].

One of the most challenging scenarios for the application of these devices is repre-
sented by cancer-immune relations due to very complex and not still completely discovered
signaling modalities between ICs and TCs. Some attempts have been presented with the
aim of modeling the effect of drugs on TCs, see for instance [34,35] where the microfluidic
devices helped to control and evaluate the magnitude of cancer responses.

In particular, here we refer to the study in Vacchelli et al. [7], where timelapse imag-
ing of microfluidic co-cultures were performed to investigate the motility patterns and
crosstalk between ICs and TCs in the context of chemotherapy-induced anticancer im-
mune responses.

Setting of the Laboratory Experiments

Details on the in vitro microfluidic experiments, type of cells involved and loading
procedures can be found in [7,36]. Briefly, human breast cancer cells were previously
treated with anthracycline-based chemotherapy and were cultivated in the left chamber.
This treatment triggers the process of immunogenic cell death [37], according to which
TCs release danger signals. The right chamber is loaded with unlabeled human peripheral
blood mononuclear cells (PBMCs) from healthy donors (with normal expression of FPR1).
PBMCs start migrating biased by the detection of chemical signal produced by TCs and
after crossing microchannels enter in contact with dying cancer cells, engaging in stable
interactions leading to TCs killing events.

In the chip, the chosen culture medium is neutral, which means that no exogenous
substance is introduced. Timelapse imaging was performed using a microscope placed
directly inside the CO2 incubator for all the duration of the recordings. Images were
taken every 2 min over a period of 72 h of migration. Immune cells tracks (<400) were
extracted in left chamber (interval time: 24–48 h) using TrackMate plugin(ref) available in
the Fiji/ImageJ software (https://imagej.nih.gov/ij/, accessed on 1 August 2020).

Our aim consists of designing a basic mathematical model able to capture the main
aspects related to the migratory movement of the ICs with respect to TCs. Therefore, we
only focus on the case of efficient interaction between dying cancer cells exposed to ICD
inducers and immune cells from healthy donors. Concurrently, we want to develop an
algorithmic calibration procedure to derive model parameter values as close to empirical
observations as possible.

2.2. Mathematical Framework

In this context, it is important to remark that late years have experienced an increasing
interest in the direction of developing techniques to combine experimental data and mathe-
matical models, in order to produce systems, i.e., in silico models, whose solutions could be
as close as possible to the experimental outcomes. Indeed, the success of informed models
is mainly due to the consistent improvements in computational abilities of the machines
and in imaging techniques that allowed a wider access to data.

The involvement of the immune system in all stages of the tumor life cycle, including
prevention, maintenance and response to therapy is now recognized as central to under-
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standing cancer development from a systemic point of view. The increasing availability
of experimental data and of treatment options, have represented a breeding ground to
construct always more precise models. From a mathematical point of view, equations
of different nature can be considered, depending on the type of analysis to be carried
out. In macroscopic models, consisting of PDEs, any reference to the single constituents,
the cells, are neglected, and macroscopic quantities such as the average cell densities are
taken into consideration, see for instance the classical models [38,39] and their application
to the immunocompetent microfluidic chip experiments in the recent work [21], allowing
the simulation of long-range dynamics of immune cells driven by the chemical gradients
secreted by cancer cells in the environment. The evolution of chemical stimuli in the
tumor microenviroment can be also described by means of ODE models, see for instance
the work [25] consisting of three ODEs that model the dynamics of effector and tumor
cells and the cytokine IL-2, is one of the first to describe tumor-immune cells interactions.
Another model in the same direction is due to Lee et al. [18], where changes in velocity
and directionality of ICs are modeled with a system of ODE considering the combined
effects of the interstitial flow, the tumor mass, the cytokines IL-8 and CCL-2, and the
related receptors. Moreover, ODE models describing cell responses heterogeneity to death
ligand (cytotoxic drugs) observed in laboratory experiments with single-cell techniques is
proposed in [40]. In [28] the immune system is depicted as a network in the framework
of cellular automata, where the nodes are molecules and cells and the arches connecting
them are the influences each node has on others. Another kind of modeling consists of
combining the macro approach expressed by a PDE, with the micro approach expressed by
an ODE.

Hybrid models, developed including the macroscopic and microscopic scales, have
been deeply studied in recent years, see [41–44]. In particular, in [41] a hybrid discrete–
continuous model of metastatic cancer cell migration was developed, while in [45] a hybrid
discrete-continuum approach was applied to model Turing pattern formation. In [43] a 3D
agent-based model is proposed using an off-lattice approach to simulate vasculogenesis.
For a comprehensive literature review of hybrid models sees the book chapter [46].

Here, in the framework of hybrid deterministic PDE–ODE models, we propose a
discrete–continuous approach previously applied in [30], where immune cell motion is
governed by ODE and the diffusion of chemoattractant released by cancer cells in the envi-
ronment is described by PDE. The present work is complementary to the fully macroscopic
approach proposed in [21], since it allows a zooming on immune system dynamics. More-
over, we enriched the equations of cell motion with a Brownian component to reproduce
zigzag pathways of ICs.

The Model

Here we develop a model that can mimic cell migration under the effects of chemicals
released by TCs on immune system dynamics. The considered TCs are experiencing
apoptosis during which they liberate damaged-associated molecular patterns together
with tumor antigens that elicit an immune response. For the sake of simplicity, the alarm
concentrations are not differentiated, and we indicate them by means of the chemoattractant
f , whose evolution is described by a PDE. At the cellular level, the model is discrete and
includes the equation of the motion of each IC. We also underline that since we refer to
experiment of treated cancer cells, according to the experimental setting we do not need to
include TCs migration or duplication in our model. Let us summarize the main ingredients
which compose the model.

For the IC motion we use a second order dynamic equation, which takes into account
the forces acting on the cells that arise from the presence of the chemical signals and from
the mechanical interactions between cells. The effect of cancer is described by a chemotactic
term produced by the gradient of the f . The cell–cell mechanical interactions due to
filopodia, consist of a radial attraction and repulsion depending on the relative positions of
the cells, see [47] for experimental results in this direction. To describe this effect we refer
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to the mechanism introduced in [48]. The action of ICs regarding TCs is described by a
radial repulsion term, depending on cells positions. Finally, we introduce a damping term,
proportional to the velocities, which models cell adhesion to the substrate [49–51].

About the concentration of the chemoattractant, we associate a diffusion equation
including a source term, given by the chemoattractant released by TCs, and a natural
degradation term.

In the current context, the species under examination are TCs and ICs, but we under-
line that the setting can be made more complex with the introduction of a greater number
of cell species and with the presence of an exogenous substance in the environment. Fur-
thermore, in the present framework we are not taking into account the killing activity of ICs
towards TCs as we already did in [21], since we do not have a quantitative data regarding
the killing rate of immune cells in the chip environment. However, in the future also this
feature will be included in the model.

Let Xi be the position of the i-th IC and f (x, t) the total chemoattractant concentration,
the following equations are introduced:{

∂t f = DΔ f + ξF4(Y)− η f (3)

Ẍi = γF1(χ( f )∇ f ) + F2(X,Y) + F3(X)− μẊi (4)

where γ, μ, ξ and η are given constants and Fn(·), n = 1, 2, 3, 4 are suitable functions.

Function F1

The term F1 is the chemotactic term and therefore it is related to the detection of a
chemical signal by i-th cell in its neighborhood and it is taken to be a weighted average
over a ball of radius R̄ and centered in Xi:

F1(g(x, t)) =
1
W
∫

B(Xi ,R̄)
g(x, t)wi(x)dx, (5)

where
B(Xi, R̄) := {x : ||x − Xi|| ≤ R̄},

‖ · ‖ being the Euclidean norm,

wi(x) =

⎧⎪⎨⎪⎩ 2 exp
(
−||x − Xi||2 log 2

R̄2

)
, if ||x − Xi|| ≤ R̄,

0, otherwise,
(6)

is a truncated Gaussian weight function, and

W :=
∫

B(Xi ,R̄)
wi(x)dx,

independently on i. A similar definition holds for the vector quantity F1.
In addition, the function F1 contains the gradient of the chemical substance and a

chemotaxis function χ( f ), representing the chemotactic sensitivity of ICs. Such chemotactic
function, suggested in [52] by Lapidus and Schiller (1976) has the form:

χ( f ) =
k1

(k2 + f )2 , (7)

where k1 represents the cellular drift velocity, while k2 is the receptor dissociation constant,
which indicates how many molecules are necessary to bind the receptors. Such function is
known as receptor saturation function and has the effect of reducing chemotaxis of cells
in areas of high chemoattractant concentrations. In the integral, R̄ will be chosen larger
than the IC radius RI , thus relation (5) describes a chemical signal that is sensed more in
the center of the cell and less at the edge of the cell extensions.
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Function F2

Function F2 includes a repulsion effect among TCs and ICs. In particular, repulsion
occurs at a distance between the centers of two cells less than R1, where R1 is defined as
the sum of the two radii, RI and RT , of the immune and tumor cells, respectively. With this
formulation, repulsion occurs when an IC and a TC start being effectively overlapped. We
assume

F2(X,Y) = ∑
j:Yj∈B(Xi ,R2)\{Xi}

K(Yj − Xi), (8)

where the function K depends on the relative positions Yj − Xi, namely:

K(Yj − Xi) = −ωrepTI

(
1

||Yj − Xi|| −
1

R1

)
Yj − Xi

||Yj − Xi|| , if ||Yj − Xi|| ≤ R1, (9)

where ωrepTI is a constant. The quantity R2 > R1 indicates the radius of the ball centered in
Xi, in which the centers of the tumor cells can fall. Thus, we are considering all the tumor
cells in proximity of the center of an immune cell.

Function F3

Function F3 includes adhesion–repulsion effects between ICs. In particular repulsion
occurs at a distance between the centers of two ICs less than R3 and takes into account the
effects of a possible cell deformation. Conversely, adhesion occurs at a distance greater
than R3 and less than R4 > R3, and it is due to a mechanical interaction between cells via
filopodia. We assume

F3(X) = ∑
j:Xj∈B(Xi ,R4)\{Xi}

K(Xj − Xi), (10)

where the function K depends on the relative positions Xj − Xi, namely:

K(Xj − Xi) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−ωrep

(
1

||Xj − Xi|| −
1

R3

)
Xj − Xi

||Xj − Xi|| , if ||Xj − Xi|| ≤ R3, (11)

ωadh(||Xj − Xi|| − R3)
Xj − Xi

||Xj − Xi|| , if R3 < ||Xj − Xi|| ≤ R4, (12)

where ωrep, ωadh are constants. R3 = 2RI will be chosen, so that the repulsion occurs
when two cells start being effectively overlapped. Please note that function (11) gives a
repulsion which goes as 1/r, r being the distance between the centers of two cells as we
can find in [53,54]. The function (12) is the Hooke’s law of elasticity. The last term in the
first equation is due to the cell adhesion to the substrate (see for example [49–51]).

Friction

The addend μẊi in the equation of the motion is due to cell adhesion to the substrate,
with damping coefficient equals μ.

Function F4

In the diffusion equation, only cancer cells are responsible for the production of the
chemoattractant, so that

F4(Y) =
Ntot,c

∑
j=1

χB(Yj ,RT)
, (13)

where Ntot,c is the total number of cancer cells, and

χB(Yj ,RT)
=

⎧⎪⎨⎪⎩
1, if x ∈ B(Yj, RT),

0, otherwise.

(14)
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In the previous formula RT is the radius of a cancer cell, considering that the source of
chemoattractant is defined by the dimension of a single cell.

Initial Conditions

Initial data for Equation (4) are given by the position and velocity of each IC:

Xi(0) = Xi,0 , Vi(0) = Vi,0.

Moreover, since TCs do not migrate and maintain their initial position Y during the
whole time, the initial data for Equation (3) is provided by the chemoattractant produced
by TCs at time t = 0:

f (x, 0) = F4(Y).

Boundary Conditions

Now, let Ω = [0, Lx] × [0, Ly] our domain, for the chemoattractant we require the
inhomogeneous Robin boundary condition:

D
∂ f
∂n

+ a f = b, on ∂Ω, (15)

where b signals the similarity with the inhomogeneous Neumann boundary condition and
regulates the exchange with the external environment.

The system of Equations (3) and (4) can be now rewritten as:⎧⎪⎪⎨⎪⎪⎩
∂t f = DΔ f + ξ ∑

Ntot,c
j=1 χB(Yj ,RT)

− η f ,

Ẍi =
γ

W
∫

B(Xi ,R̄)
χ( f (x, t))∇ f (x, t)wi(x)dx + ∑j:Yj∈B(Xi ,R2)\{Xi} K(Yj − Xi)

+∑j:Xj∈B(Xi ,R4)\{Xi} K(Xj − Xi)− μVi.

(16)

2.3. Stochastic Model

The model (16) is composed of deterministic equations, but a stochastic version for
Equation (4) can be formulated. In fact, in recent years, several studies have shown that
ICs exhibit an intermittent motion composed of a walking phase and of a zigzag phase.
The walk is characterized by pause steps between the run steps, while during the zigzag,
cells tend to turn away from their last turn directions and prefer to move forward in a
zigzag manner [27,55].

This characteristic walk is here described by Brownian motion [56] as a first approach
to the problem, revealing to be effective in reproducing the randomness of cell trajectories.
The stochastic equation for ICs motion is:

Ẍi = γF1(χ( f )∇ f ) + F2(X,Y) + F3(X)− μ(Ẋi − σψ). (17)

Equation (17) contains the stochastic contribution, where ψ(t) is a Gaussian white
noise, and σ is the standard deviation of ICs trajectories. With this formulation, ICs are
not only subjected to mechanical forces such as adhesion or repulsion, but also to random
factors that might be related to unknown cell mechanisms. Some estimates of parameter σ
based on experimental data are provided in Section 3.1.3.

3. Study on Different Scenarios: Numerical Tests

In this section, we look at some of the different scenarios the model can produce. We
remark that the numerical simulations are performed in MATLAB c©. The computational
time for a simulation on the total number of frames Tf = 681(NΔt = 680) takes about 260 s
on an Intel(R) Core(TM) i7-9750H CPU @ 2.60 GHz 2.59 GHz.
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3.1. Scenarios Representing Relevant Features of ICs Dynamics and Interactions

One of the motivations of the present study is to show the features of the proposed
hybrid model in describing Cancer-on-Chip experiment. To this aim, we explore the differ-
ent dynamics in three significant situations represented by the scenarios here proposed.
During apoptosis TCs release alarm substances, which remain localized in proximity of the
cells, that become attractors for ICs. In absence of an incoming chemical flow through the
boundary, if the immune cells fall in the basin of attractions of the tumor cells, would re-
main trapped in their proximity all the time. From the experiments, however, we observed
that ICs migrate also towards the bottom (where a reservoir of TCs was located) and to
the left side of Ω, due to the presence of other cells in the surrounding microenvironment,
generating a diagonal motion, as illustrated in Figure 2.

To allow ICs migration towards the sides of the domain, we added an incoming
chemical flow through the boundaries, which caused changes in ICs orientation.

Moreover, to have control over the changes in orientation and direction of the migra-
tory activity, it is necessary to find proper parameter values to attain a balance between the
internal chemical concentration due to TCs and the concentration present at the boundary.
For instance, if the chemotactic concentration at the boundary is higher than the internal
concentration, ICs will sense the resulting gradient and move towards the boundary. On the
opposite, ICs will not sense the gradient at the boundary. Thus, a balance between the
internal and the boundary concentrations must be reached to have an IC attracted by the
TCs and by the concentration on the sides.

For the numerical simulations we consider the domain Ω where four TCs are present
(see Figure 2). The numerical positions of the TCs and the initial concentration of the
chemoattractant released by the TCs are shown in Figure 3. We numbered the TCs from 1
to 4 to distinguish them.

Figure 3. TCs locations (left) and TCs chemoattractant (right) at time t = 0. The grid dimensions are
in μm.

In our preliminary study, we also changed the number of TCs and their positions,
with the aim of assessing the effect of their presence and their localization on the overall
dynamics of ICs.

We assume the coefficients a and b in the Robin boundary condition (15) in such a way
to have an incoming flux through the sides y = 0, x = Lx and x = 0.

The laboratory experiment recording immune-cancer cells interaction has an overall
duration of 24 h, but after data analysis we identified the presence of 97 ICs crossing the
area in a time interval of 681 frames, which correspond to 1360 min (22 h 40 min) of video
recording. To provide an idea of how ICs dynamics changes in time, we divided the
time interval in six homogeneous parts, so that we can take a picture of ICs positions
at six different instants Tk for k = 0, . . ., 5 (T0 = 1 frame, T1 = 136 frames (4 h 32 min),
T2 = 272 frames (9 h 4 min), T3 = 408 frames (13 h 36 min), T4 = 544 frames (18 h 8 min),
T5 = 681 frames (22 h 40 min)).

The initial conditions for Equation (4) are assumed as the initial positions and speeds
of the experimental cells.

In the following we consider three different scenarios that describe the interactions
between TCs and ICs in a subarea Ω of the chip. Specifically, we consider:
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1. Deterministic Motion,
2. Deterministic Motion including Cell Death;
3. Stochastic Motion.

The first scenario is assumed to be a prototypal case, where the reciprocal mechanical
forces between cells and the chemotactic stimuli are the only guiding forces of ICs migration,
the second case takes also into account the possible effects of TCs death over ICs motion,
and the third case contemplates the addition of the stochastic component Equation (A11),
which modifies the deterministic IC trajectories.

3.1.1. Scenario 1: Deterministic Motion

In Figure 4 we show the final concentration of the chemoattractant, plotted as a 2D
surface with a focus on the contour lines (left), and at the boundary of the domain and
in correspondence of the centers of the TCs as a function of the longitudinal (center) and
transverse distance (right). Cutting the surface this way, the maximum concentrations
related to each TC are highlighted.

Figure 4. Final Concentration. (Left) Concentration plotted in 2D, with contour lines. (Center) Concentration profiles as
a function of the longitudinal distance. (Right) Concentration profiles as a function of the transverse distance. The grid
dimensions are in μm.

In Figure 5 the time evolution of the migratory activity of ICs at six different times is
depicted. At the initial time, only one IC enters the domain, while at time T1 the number of
ICs increases, and they are directed towards the tumor. As the time grows, most of the ICs
approach the TCs and stay nearby, accumulating around them; while the others, guided by
the inflow of chemical signal, move towards the left-bottom boundaries of the domain.

3.1.2. Scenario 2: Deterministic Motion including Cell Death

The biological experiment inspiring our work is related to the phase of immunogenic
cell death, during which the TCs, previously treated with a drug, release alarm molecules
sensed by the immune system. This latter reacts, attacking the tumor.

In the current scenario we focus on the description of the effects of cell death on the
ICs dynamics. We remark that in this preliminary study, we did not insert a specific term
in the model to describe the death of TCs due to ICs, but we directly turned off some TCs.
Of course, this represents a simplification of what happens in reality, but is here applied
for illustrative purposes. However, in the next future we will include in our modeling the
death of cancer cells as a consequence of killing activity of ICs, similarly to the modeling
proposed in [21].
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Figure 5. ICs dynamics photographed at six consecutive times. ICs meet all TCs and move towards the left and the right
sides of Ω. The grid dimensions are in μm.

Please note that in this simplified setting we let dead TCs physically remain in the
domain, thus the effects of repulsion with ICs are still effective, but they do not release
alarm molecules anymore. This provokes a decrease of the internal concentration due to
the absence of previous sources. In the following, we turn off the third TC during the time
interval [T2, T3], and then we turn off also the fourth TC in the time interval [T3, T4]. Figure 4
shows the level of the initial concentration (interval [T0, T2]), while Figure 6 presents the
evolution of the concentration after cell death. Comparing Figure 6 with Figure 4, we can
observe how the overall concentration decreases after the two cells are killed.

Figure 7 shows the ICs dynamics. At time T2 both the third and the fourth cells are
approached by ICs, while at time T3 ICs start moving away from the third cell, which was
previously killed and not releasing chemicals anymore. Between time T3 and T4 also the
fourth cell is turned off and from time T4 onwards it is not approached anymore. The effect
of cell death of some tumor cells (the cells 3 and 4 depicted in Figure 3) on ICs dynamics is
depicted in Figure 7. Please note that in the present case a different behavior respect to the
one depicted in Figure 5 is observed, since here the accumulation around dead cancer cells
does not occur, as expected.
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Figure 6. Chemoattractant concentration in the time interval [T2, T3] (Top) and at the final time (Bottom). (A1,A2) Con-
centration plotted in 2D, concentration profiles as a function of the longitudinal distance (A2,B2) and transverse (A3,B3)
distance.

Figure 7. ICs dynamics photographed at six consecutive times. Cell 3 dies during the interval [T2, T3], while cell 4 dies
during the interval [T3, T4]. The grid dimensions are in μm.

3.1.3. Scenario 3: Stochastic Motion

Several chemical signals are produced at sites of dying TCs and then diffuse into the
surrounding environment. ICs sense these chemoattractants and move in the direction
where their concentration is greatest, therefore locating the source of the chemoattractants
and their associated targets. If on one hand the deterministic model allows us to control the
direction of motion of the ICs acting of the concentration of chemicals, on the other hand
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the complex migratory activity of ICs is better described by a stochastic model, that takes
into account the variability of cells, over the preset deterministic mechanisms. For this
reason, the features of this last scenario seem to be more suitable to qualitatively describe
the real problem.

Estimates of standard deviations. Here we preliminary determine an appropriate
value for the standard deviation σ in Equation (17). To this end, we consider the trajectory
Pi of the i-th IC, for i = 1, . . ., Ntot,I and its corresponding smoothing Si, obtained with a
moving average (the Matlab c© smooth function), and we compute the variance of each IC
trajectory:

σ2
i =

1
Ti

Ti

∑
k=1

(Pk
i − Sk

i )
2, (18)

where Ti is the number of frames the i-th IC spends on the domain Ω and we obtain the
sequence Σ = {σ2

i }i=1,...,Ntot,I . Successively, we average the values of Σ and divide by 120 s,
which corresponds to the time interval between two consecutive frames:

σ2 =

(
1

Ntot,I

Ntot,I

∑
i=1

σ2
i

)
/120, (19)

obtaining a variance expressed in seconds. As a last step, we apply the square root to
relation (19) and then obtain the standard deviation σ of real trajectories. From the analysis
conducted on the total number of ICs, we observed cells with variances very far from the
average, probably because of the presence of different cell species among the group of
ICs. We remark that the immune cell population is heterogeneous, since it is composed
by T-lymphocites, monocites, dendritic cells; however, a clear distinction among cell
species is not possible currently. For this reason, in order to obtain homogeneous data, we
neglect these cell trajectories in the computation of the standard deviation. Indeed, our
mathematical model aims at describing an average behavior, and therefore the trajectories
whose variance is too far from the average are discarded.

In the presence of more data, we will try to make a classification of cells based on their
pathways (length, stops, tortuosity, etc.). This will be the subject of a future study.

The cleaned standard deviations computed from experimental trajectories are reported
in Table 1.

ICs dynamics. Figure 8 captures ICs at six different times, while Figure 4 shows the
evolution of the chemoattractant. Differences with the deterministic dynamics shown in
Figure 5 can be highlighted. In the stochastic case, ICs are more spread.

The computations for this case are performed with a finer time spacing of Δt = 10 s,
with the aim of better describing by the model the complex mechanisms really happening
to cells at smaller time scales, and then, the plots are taken every 2 min, which is the
timeframe of video recordings.

As an example, in order to evaluate the effects of the stochastic component on the
dynamics and establish a qualitative comparison with the deterministic model, we depict
the trajectories of six randomly selected cells. In Figure 9 we assume the starting point of
a given experimental cell and show the trajectories obtained with the ODE model (blue)
and the SDE model (red), while the corresponding trajectory extracted from the video
footage is plotted in black. As can be observed, the deterministic trajectories are smooth
and tend, in most cases, to stop in correspondence of the TCs, showing that once the
immune cells have fallen in the basin of attraction of the tumor, they tend to be trapped
there. The stochastic trajectories, instead, have a more similar behavior to the real ones,
showing that after some time spent near the tumor, the immune cells move to the boundary.
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Figure 8. Brownian motion. ICs dynamics photographed at six consecutive times. ICs meet all TCs and move towards the
left and the right sides of Ω. The grid dimensions are in μm.

So far the Brownian motion yields satisfactory results as shown in Figure 9, but we do
not exclude in the next future to deal with more homogeneous and richer dataset to better
identify the probability distribution and then apply a general Levý walk.

Figure 9. ICs Dynamics. (Blue) Deterministic Motion. (Red) Brownian Motion. (Black) Experimentally observed motion.
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Table 1. Estimates of physical parameter values.

Parameter Description Units Value Ref.

Ntot,I Number of ICs in Ω during 24 h 97 Experimental Data
Ntot,C Number of TCs in Ω during 24 h 4 Experimental Data
Lx Horizontal size of Ω μm 200 Experimental Data
Ly Vertical size of Ω μm 200 Experimental Data
RI IC radius μm 4 [57]
RT TC radius μm 10 [58,59]
R̄ Detection radius of chemicals μm 7 Biological Assumption
R3 Radius of action of repulsion between ICs μm 8 Biological Assumption
R4 Radius of action of adhesion between ICs μm 10 Biological Assumption
R1 Radius of action of Repulsion between ICs and TCs μm 14 Biological Assumption
D Diffusion Coefficient μm2.s−1 2 × 102 [60]
ξ Growth Rate of f s−1/cell 10−1 [61]
η Consumption Rate of f s−1 10−4 [61]
ωadh Coefficient of Adhesion between ICs s−2 10−7 Biological Assumption
ωrep Coefficient of Repulsion between ICs μm2.s−2 5 × 10−4 Biological Assumption
ωrepTI Coefficient of Repulsion between ICs and TCs μm2.s−2 8.5 × 10−3 Biological Assumption
μ Damping Coefficient s−1 2.1 × 10−3 Biological Assumption
k1 Cellular Drift Velocity mol.μm2.s−1 0.39 [60]
k2 Receptor Dissociation Constant mol.μm−2 5 × 10−6 [60]
a Rate of exchange of the Chemoattractant with the external environment μm.s−1 10 Biological Assumption
γ Coefficient of Chemotactic Effect. Scenarios 1 and 2 μm−1 5 × 10−3 Biological Assumption
b1 Flux condition on y = 0. Scenarios 1 and 2 mol.s−1.μm−1 22 Biological Assumption
b2 Flux condition on x = Lx mol.s−1.μm−1 12 Biological Assumption
b3 Flux condition on y = Ly mol.s−1.μm−1 0 Biological Assumption
b4 Flux condition on y = 0. Scenarios 1 and 2 mol.s−1.μm−1 18 Biological Assumption
σx Standard Deviation of x-trajectories μm.s−1/2. 1.49 × 10−1 Experimental Data
σy Standard Deviation of y-trajectories μm.s−1/2. 1.74 × 10−1 Experimental Data

4. Parameters Estimation on Synthetic Data

In this Section we present the calibration algorithm for the estimation of some model
parameters and the results obtained with it. All the model parameters are reported in
Table 1. We underline that some of them are given from experimentalists since are taken
from the laboratory experiment (size of the cropped area, number of TCs and ICs across
time, standard deviation of cell pathways). Other parameters, such as for instance, the diffu-
sion coefficient of chemoattractant, cellular drift velocity, receptor dissociation constant or
the radii of cells are taken from the literature. For the model parameters whose values still
need to be assigned, we assumed fixed most of them, such as the radii of action between
cells or adhesion/repulsion coefficients among cells, setting them in a phenomenological
way through the observation of their effects on the overall dynamics.

Then, in order to reduce the computational cost of the optimization procedure, we ap-
ply our calibration procedure only to 4 model parameters, i.e., the coefficient of chemotactic
effect γ, and the chemical inflow, respectively, at the left, right and bottom boundaries
b1, b2, b4, since we observed qualitatively a great effect of such parameters on the overall dy-
namics and, as a simplification of the model, we assume b3 = 0. In particular, the coefficient
γ affects the speed of ICs, while b1, b2, b4 affect the directionality of immune cells.

We underline that the parameter estimation procedure here described is applied to
the deterministic version of the model, i.e., (3) and (4). An extension of this procedure to
calibrate the stochastic model (3)–(17) will be included in a future work.

In this methodological study we want to show the feasibility and applicability of such
estimation technique for some significant model parameters of the hybrid model describing
Cancer-on-Chip experiment. Our final goal is indeed not the exact fitting of model param-
eters, but is to show that we are able to qualitatively reproduce the dynamics observed
experimentally, even if the quantification of the chemical gradients in the environment is
currently impossible for biologists in this kind of experiments. In the next future, we will
complement this methodology with macroscopic models deriving from them to be able
to simulate immunocompetent behavior in organs and tissues, where millions of cells are
present. To this aim, we applied the proposed procedure to a synthetic dataset produced
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by the model itself—but strongly inspired by experimental one—to assess the soundness
of this strategy. In the future, we aim at having more data in such a way to apply the
proposed strategy to a real biological dataset.

Data preparation.
To succeed in the calibration of model parameters, we need to extract a common

behavior from the time-varying trajectories of immune cells located at different points
of the observed area. Thus, here we propose a calibration algorithm taking into account
this variability constructing a “realistic” synthetic dataset of ICs pathways that can repro-
duce qualitatively the real trajectories extracted from the video footage of the experiment.
In particular, a set of trajectories of cells sharing an average behavior has been produced
by suitably tuning model parameters to have an upper and lower bound of cell speeds
taken from the experimentally observed ones. Then, ICs velocity field given by 2D surface
is computed by the model itself at every observation time of 2 min (as the video footage
timeframe). It is worth noting that the application of this strategy implies the assumption
to have a single population of immune cells showing an average behavior.

The velocity field is then approximated using a multidimensional spline interpolation
technique, described in Section 4.1 to have smoothing in time and space on the dataset to
be compared.

Main steps of the calibration algorithm.

The calibration algorithm applied to estimate crucial model parameters can be sum-
marized as follows:

• the dataset representing the target solutions of our procedure computed from synthetic
ICs trajectories is obtained by the model with fixed parameters;

• a time-space approximation of the velocity fields is carried out with the spline tech-
nique presented in Section 4.1 and used as target solution of the calibration algorithm;

• perturbed model parameters are used as initial guess of a global search algorithm
minimizing the norm of the difference between the target velocity fields and the
estimated ones, as explained in Section 4.2.

The results obtained with the procedure above are reported in Section 4.3.

4.1. Multidimensional Interpolation

The position and speed of the ICs, variable in time, provide punctual information
about the velocity field in which the ICs are immersed. As a consequence, they can be
considered to be training points for the calibration of an interpolation algorithm, able
to provide information about the full space. Here we are considering time as the third
dimension, being x and y the first two. As the interpolation scheme we are using a
multidimensional spline, described in [31].

Each training point is supposed to influence the value of the interpolating function
over a (limited) portion of the space in proximity of it. The degree of influence of the ith
training point (wi(x, y, t)) is a function of time and space, driven by a compact-support
function radial basis decaying at zero outside the influence area. Then, the interpolated
value is obtained as a weighted sum of the values at the training points:

ṽ(x, y, t) =
n

∑
i=1

wi(x, y, t)h(i)c(i), (20)

where c(i) represents the value of the interpolating function at the ith training point and n
is the total data-points available, corresponding to t1, . . . , tn discrete times. Specifically, we
have two functions ṽ, i.e., ṽx(x, y, t) and ṽy(x, y, t). Moreover, the vector c(i) is different
according to the velocities under exam, with training points corresponding alternatively to
the x- and y-velocities. Since different influence areas may overlap, the value of wi(x, y, t)
needs to be adjusted to have a correct fit. To this aim, we need to solve a linear system
where the n Equations (20) are collocated at the training points, generating an n × n system.
The n coefficients h(i) are computed only once, and then applied in the interpolation
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procedure. In this specific case, we are using a linear function for the influence coefficients
wi(x, y, t).

4.2. The Calibration Algorithm

With Formula (20) we have generated a velocity field ṽ that from now on we indicate
as Ve to point out that the velocity field is produced with the punctual velocities v the
immune cells assume at every time step, coming from experimental data (in this specific
case from synthetic data). Later we have used this field to define an appropriate functional
to be minimized.

To assess the goodness and soundness of our strategy, the analysis which follows is
performed on synthetic data, i.e., numerical data produced by the PDE–ODEs system (3)
and (4). Future work will be directed towards the application of this methodology to the
experimental outcomes.

As a first step we have interpolated immune cell velocities v obtained from synthetic
data to the end of generating a velocity field to use as a target, in correspondence of every
frame. Thus, we have produced Tf = 681 velocity fields Ve

x using the punctual velocities
in x and Tf = 681 velocity fields Ve

y using the velocities in y. In Figure 10 we present an
example of the surfaces resulting from the interpolation at a certain time step. Figure 10A
shows the interpolation of the x-velocities, while Figure 10B shows the interpolation of
the y-velocities. The green points have coordinates (Px, Py, vx) in (A) and (Px, Py, vy) in (B).
For more details about the interpolation technique see Section 4.1.

Figure 10. Interpolated surfaces Ve
x (A) and Ve

y (B) at fixed time. The green points indicate the values
of the velocities in the corresponding positions. (A) Velocities in the x-direction, (B) Velocities in the
y-direction.

Successively, we have launched the optimization algorithm and at every run we have
computed the numerical solutions of the deterministic model with the approximation
scheme described in Appendix A. We have then built a routine in which inserting the
numerical positions we are able to find the corresponding velocities on the surface Ve.
The resulting interpolated velocities Vn are then used to construct the objective function:

JV(θ) =

[
1

Tf

Tf

∑
k=1

(
1

Nk
tot,I

Nk
tot,I

∑
i=1

||Ve,k
i − Vn,k

i (θ)||
||Ve,k

i ||

)]2

. (21)

In (21) we compare at every time step the punctual interpolated velocities with the
punctual target velocities, i.e., the velocities used to generate the field. With θ we indicate
the vector whose dimension corresponds to the parameter values we search.

In addition, we have also included a Tikhonov regularization term in the functional,
as usually done for the regularization of linear inverse problems. In particular, we consider
the following term to be added to the functional to be minimized:

Pλ(θ) = λ2||θ − θ0||2, (22)
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where θ0 are the a priori estimate of target parameter values and θ are the parameter values
we are optimizing. The constant λ is a regularization parameter that helps the algorithm
in the search for optimal values of model parameters by reducing the number of local
minima in the functional, see [62]. Tests for different values of λ showed better results of
the calibration algorithm for λ2 = 0.1. Thus, with relation (22) we want to reduce the error
between the target values and the searched ones.

With functionals (21) and (22) we can define the minimization problem:

min
θ∈Θ

J(θ) = min
θ∈Θ

(JV(θ) + Pλ(θ)), (23)

where Θ is the space to explore to search the unknown parameter values. For completeness,
we introduce another estimator we have used for our simulations, which is based on the
idea of comparing the distances assumed by the tumor and immune cells at every time
step. We indicate with Cj the position of the j-th TC (the temporal indicator k is omitted
since TC positions do not evolve in time). We call dk

i,j the distance between the i-th IC and
the j-th TC at time k:

dk
i,j = ||Pk

i − Cj||, (24)

and then, fixed the i-th IC, we compare the distances dn,k
i,j obtained from the numerical

positions with the distances de,k
i,j obtained from the synthetic positions:

Dk
i =

1
Ntot,c

Ntot,c

∑
j=1

||de,k
i,j − dn,k

i,j ||
||de,k

i,j ||
,

successively, we sum over all ICs:

Dk =
1

Nk
tot,i

Nk
tot,i

∑
i=1

Dk
i ,

and then we sum over all times. To summarize, we have the functional:

JDTI =

[
1

Tf

Tf

∑
k=1

(
1

Nk
tot,i

Ntot,i

∑
j=1

(
1

Ntot,c

Ntot,c

∑
j=1

||de,k
i,j − dn,k

i,j ||
||de,k

i,j ||

))]2

. (25)

In conclusion, to evaluate the error committed by the optimization with respect
to synthetic data, we indicate with θ0 the target value and with θ∗ the corresponding
optimized parameter and we define:

RE =
||θ∗ − θ0||

||θ∗|| × 100, (26)

the approximation error of each parameter.
The minimization of the functionals above is performed with Particle Swarm Opti-

mization (PSO) [63] as search method using the Matlab c© toolbox. For the approximation
of target and computed velocity fields resulting in a 2D varying in time surface we use a
spline multidimensional interpolation described in Section 4.1.

4.3. Results on Parameters Estimation

Tests on the calibration algorithm are performed to assess the goodness and robustness
of the methodology shown in Section 4.2. Please note that the total number of parameters
to be assigned is 14, since the other parameters are given from the experimentalists or
taken from the literature, as reported in Table 1. Of course, it is possible to make a
parameter estimation of all of them. However, in the present work, in order to reduce the
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computational cost, we apply our calibration procedure only to 4 model parameters that
we consider very significant since they strongly affect the dynamics of the ICs, i.e., γ, b1, b2
and b4.

We recall the γ is the coefficient which enhances the effect of the chemotactic function (5),
while bi, for i = 1, 2, 4 are the parameters that control the chemical inflow at the boundaries.
In order to perform the tests, we produced synthetic solutions choosing specific values for
the listed parameters:

γ = 5 · 10−3, b1 = 22, b2 = 12, b4 = 18, (27)

which correspond to those used to create the Scenario 1 (see Section 3.1.1). The synthetic
solutions are used to generate the velocity fields Ve to be used as targets.

To assess our strategy, we start testing one parameter and then adding one more at
time. The range for the parameter variations is chosen by varying the initial guess by a
percentage of ±50%. Specifically, we searched γ in I50% = [3.5 × 10−3, 6.5 × 10−3], b1 in
I50% = [11, 33], b2 in I50% = [6, 18] and b4 in I50% = [9, 27]. We also choose as initial guess a
perturbation of the model parameters by +30%. We tested the algorithm with the following
two different functionals:

J1 = JV + Pλ, (28)

and
J2 = JV + JDTI + Pλ. (29)

Results with the functional J1 are reported in Table 2, while results with J2 are in
Table 3. In each row of Tables 2 and 3 errors obtained with the parameter estimation
algorithm are reported. Please note that errors are reported in increasing order respect
to the number of parameters involved in the parameter estimation procedure, from the
top to the bottom. We can notice that in both cases the errors in parameters estimation
are quite low since their order of magnitude is around 10−3 in the worst case, meaning
the calibration was successful. We also underline that the norm of the total error of the
functional is low, around 10−7, given by the JV component.

Table 2. J1. Deterministic Model Calibration. Parameter γ = 5 × 10−3, parameter b1 = 22, parameter
b4 = 18 and parameter b2 = 12 are varied by +30% and they are optimized in the range ±50%.

Functional
RE % RE % RE % RE % JV Pλ Fval

γ b1 b4 b2

J1

4.114 × 10−4 - - - 2.076 × 10−7 4.231 × 10−17 2.076 × 10−7

2.066 × 10−4 5.249 × 10−4 - - 2.064 × 10−7 1.334 × 10−9 2.078 × 10−7

7.874 × 10−5 2.397 × 10−4 2.283 × 10−4 - 2.064 × 10−7 2.633 × 10−10 2.067 × 10−7

1.353 × 10−3 1.869 × 10−3 5.18 × 10−4 7.41 × 10−4 2.09 × 10−7 1.857 × 10−8 2.275 × 10−7

Table 3. J2. Deterministic Model Calibration. Parameter γ = 5 × 10−3, parameter b1 = 22, parameter
b4 = 18 and parameter b2 = 12 are varied by +30% and they are optimized in the range ±50%.

Functional
RE % RE % RE % RE % JV Pλ Fval

γ b1 b4 b2

J2

2.915 × 10−6 - - - 2.064 × 10−7 2.833 × 10−14 2.134 × 10−21 2.064 × 10−7

2.798 × 10−5 4.558 × 10−4 - - 2.068 × 10−7 2.037 × 10−8 1.006 × 10−9 2.281 × 10−7

2.93 × 10−4 4.335 × 10−4 7.67 × 10−4 - 2.066 × 10−7 6.273 × 10−10 2.816 × 10−9 2.1 × 10−7

1.102 × 10−4 5.503 × 10−4 1.63 × 10−4 2.65 × 10−4 2.064 × 10−7 4.662 × 10−10 1.653 × 10−9 2.085 × 10−7

In conclusion, as a way to quantify the goodness of our reconstruction, we compute
the percentage of cells passing through the cropped area of the chip representing the
computational domain. In particular, we depict with histograms the statistics obtained
from the trajectories reconstructed by the calibrated model and the statistics computed
from the trajectories of the synthetic dataset, i.e., the target solutions of the calibration
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algorithm. The percentage of outgoing cells Nk
o over the number of cells Nk

p present in the
domain Ω, is computed by the formula:

Nk =
Nk

o
Nk

p
× 100, (30)

for each timeframe k = 1, . . . , 680 with a time spacing of 2 min. Then, the optimized
parameters (27) obtained with the calibration procedure described in 4.2 are used as the
model parameters to be given in input to both the ODE model (3) and (4) and the SDE
model (3)–(17) for the computation of the statistics on cell trajectories. More precisely,
we perform this computation for the target case, i.e., the synthetic trajectories obtained
by the PDE–ODEs system (yellow bars in Figure 11). Then, assuming randomly placed
initial positions of ICs, we compute the same statistics for the PDE–ODEs system (red
bars in Figure 11) and for the PDE-SDEs system (blue bars in Figure 11). In particular,
the initial positions Pk

i , for i = 1, . . . , Ntot,I are randomly perturbed in a range of (0, 5]
μm. As can be seen in Figure 11, the statistics of target trajectories (ODE-target) and
reconstructed trajectories (ODE-modified and SDE-modified) are quite similar in terms
order of magnitude. Please note that the ODE-modified shows the ability to reproduce well
also the timing of the exits from the domain, while a slight variability, as expected, can be
observed in the SDE-modified case in terms of time occurrence of exits from the domain.

Figure 11. Percentage of outgoing cells over the number of cells present in the domain. The plot
shows results starting from frame 150, since no relevant information emerged in the previous frames.

5. Conclusions and Future Work

In the present work we have developed a mathematical model to describe the interac-
tions between ICs and treated TCs in microfluidic chip, together with a strategy to estimate
unknown parameter values.

Regarding the modeling part, we have introduced a hybrid model, composed of
a reaction-diffusion equation to describe the evolution of chemicals released by TCs,
coupled with an equation for the motion of each IC, driven by the chemical gradient. The
deterministic system represents a first microscopic model of ICs dynamics in a subarea of
the chip.

First, we qualitatively analyzed the overall dynamics of ICs, varying important pa-
rameters of the system, such as the chemotactic coefficient γ and the boundary parameters.
Indeed, according to their magnitude, the direction of the motion can be controlled and
decided a priori. Then, in order to reproduce some interesting features characterizing cell
behavior, we adjusted suitably the model parameters and we presented three different
scenarios that can occur in the chip:
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• the deterministic scenario, with some ICs attracted by the tumor and others moving
towards to the boundaries of the considered domain;

• the cell death scenario, as a subcase of the previous one, obtained assuming two TCs
have died after their interaction with ICs, causing changes in the internal concentration
of chemicals thus affecting ICs dynamics;

• the stochastic scenario, obtained adding to the equation of the motion a Brownian
walk to mimic the randomness on ICs trajectories.

Regarding the stochastic scenario, it is important to highlight that the Brownian
motion is not the most appropriate to describe ICs movement, but in the future we aim
at substituting it by the Lévy walk. In recent works [64,65], it has indeed emerged that a
heavy-tailed process is more efficient and realistic than Brownian motion. However, in the
present work, the shortage of data at our disposal did not provide us information on the
nature of the different ICs involved in the experiment. To this end, we are working on a
classification strategy in a forthcoming paper to be able to identify the different categories
of ICs and then differentiate the model parameters according to the corresponding cell type.

In addition to the pure modeling part, we have developed a model calibration proce-
dure based on the comparison of the velocity fields related to ICs at every time step.

The calibration procedure with synthetic data revealed to be successful, thus repre-
senting a first step towards the model calibration on experimental data.

Finally, the main achievements of the present work are represented by:

• the development of a simulation algorithm mimicking short-range dynamics of ICs in
the neighborhood of TCs, as observed in Cancer-on-Chip experiment;

• the introduction of an ad-hoc methodology for the calibration of model parameters
based on the time-space approximation of synthetic velocity fields computed from
immune cell trajectories.

Future perspectives.

Our future aim is to extend this framework to validate our model against the exper-
imental velocity fields computed from the real IC trajectories extracted from the video
footage of the experiment.

To face the problem of calibrating the model parameters against real data, we first
must produce an interpolation model able to take into account the non-deterministic nature
of the cell motions. A possible strategy is to produce a stochastic interpolator, able to
determine the expected value and variance of the local speed: the final interpolated value
will be then obtained adding a stochastic part, computed using the interpolated variance
and the same probability density function of the experimental data, to the interpolated
expected value. Using this approach, we have a non-deterministic interpolated value with
the same statistical qualities of the interpolating dataset. Implicitly, we are considering as
deterministic the local values of the expected value and of the variance of our experimental
dataset, and we are also assuming to be able to compute the statistical distribution of
the real data (otherwise, we can adopt a prescribed distribution. i.e., Gaussian). It is
now evident that the comparison cannot be produced on a single path, but we need to
observe the trajectories from a statistical standpoint, i.e., comparing the average path over
many simulations, whose output is now non-deterministic. At the same time, in order
to derive the statistical properties of the real IC trajectories and speed, a large number of
experiments is needed, with a time resolution of the same order of magnitude of the time
scale of the physical phenomenon under investigation. This implies a huge experimental
and numerical effort, one or two order of magnitude larger than the present work.
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Appendix A

In this section we discuss the numerical approximation scheme employed for
Equations (3) coupled with (4) or (17) in the numerical simulations. The methods used in
the numerical simulations employ a 2D finite difference scheme. We consider the spatial
domain Ω = [0, Lx]× [0, Ly] and we introduce a discretization on Lx in N − 1 subinter-

vals of length Δx =
Lx

N − 1
and a discretization on Ly in M − 1 subintervals of length

Δy =
Ly

M − 1
. Then we introduce a Cartesian grid ΩΔ consisting of grid points (xn, ym),

where xn = nΔx, for n = 0, . . ., N − 1 and ym = mΔy, for m = 0, . . ., M − 1. The same can
be done for the time interval [0, T], in this case if Δt is the time step, tk will be the k-th
temporal step, i.e., tk = kΔt, for k = 0, . . ., NΔt. Note that the spatial steps were chosen as
half radius of an IC: Δx = Δy = 2 μm, and the temporal step as the 1/6 of the video footage
timeframe (of 2 min): Δt = 10 s. With the notation uk

n,m we denote the approximation of a
function u(x, y, t) at the grid point (xn, ym, tk).

Moreover, since experimentally it was observed that ICs leave the domain Ω, to man-
age the entrance and exit of cells and avoid numerical instabilities, we added a ghost grid
to Ωd, where the cells lie after having left the main domain. To construct the grid, we
considered the extended x interval [−Lx∗ , Lx + Lx∗ ], with Lx∗ > 0, with nodes xn = nΔx,
for n = −N∗, . . ., 0, . . ., N∗, and the extended y interval [−Ly∗ , Ly + Ly∗ ], with Ly∗ > 0,
with nodes ym = mΔy, for m = −M∗, . . ., 0, . . ., M∗. The equations were solved only on
Ωd.

Appendix A.1. Discretization of the PDE

Regarding the approximation of the parabolic Equation (3). The right hand side is
composed of the diffusion term, the source term, and the stiff degradation term −η f .

To eliminate this last quantity, we perform the classical exponential transformation:

f (x, t) = e−ηtu(x, t), (A1)

which leads to the diffusion equation with source for u(x, t):

∂tu = DΔu + eηtξ
Ntot,c

∑
j=1

χB(Yj ,RT)
. (A2)

For this equation we apply a central difference scheme in space, i.e., the 5-point stencil
for the Laplacian, and the parabolic Crank–Nicolson scheme in time.
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The numerical scheme can be written as:

uk+1
n,m − uk

n,m

Δt
=

D
2

(
D2

xuk+1 + D2
yuk+1

)
+

D
2

(
D2

xuk + D2
yuk
)
+

+
1
2

eη(k+1)Δtξ
Ntot,c

∑
j=1

χ
B(Yk+1

j ,RT)
+

+
1
2

eηkΔtξ
Ntot,c

∑
j=1

χ
B(Yk

j ,RT)
,

(A3)

where the second finite difference D2
xu is defined as the central difference:

D2
xuk =

uk
n−1,m − 2uk

n,m + uk
n+1,m

Δx2

and D2
yu is defined analogously.

Appendix A.2. Boundary Conditions

Using the transformation (A1), the associated boundary conditions are:

D
∂u
∂n

+ au = eηtb, (A4)

that we rewrite as
∂u
∂n

+ pu = q(t), with p =
a
D

and q(t) = eηt b
D

. Moreover, to distinguish
the values of p and q on the different sides of Ω, we number them as follows: p1 and q1 are
assumed on y = 0, p2 and q2 on x = Lx, p3 and q3 on y = Ly and p4 and q4 on x = 0.

For the discretization of the boundary conditions, we use a central finite difference
scheme. On y = 0 and y = Ly, we have:

∂u
∂y

+ psu − qs =
uk

n,m+1 − uk
n,m−1

2Δy
+ rk

s un,m − hk
s , (A5)

with s = 1, 3, while on x = 0 and x = Lx, we have:

∂u
∂x

+ psu − qk
s =

uk
n+1,m − uk

n−1,m

2Δx
+ rk

s un,m − hk
s , (A6)

for s = 2, 4 and k ≥ 0.
The signs of rs and hs depend on the incoming/outgoing flow. For instance on y = 0,

we have r1 = −p1 and h1 = −q1, on y = Ly, we have r3 = p3 and h3 = q3, on x = Lx,
we have r4 = −p4 and h4 = −q4 and on x = 0 we have r2 = p2 and h2 = q2 in order to
have an incoming chemical flux through the boundary. The previous discretizations (A5)
and (A6) are used with the well-known ghost nodes technique [66].

Appendix A.3. Discretization of the ODE

The equation of the motion (4) is reduced to the first order system⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

V̇i =
γ

W
∫

B(Xi ,R̄)
χ( f (x, t))∇ f (x, t)wi(x)dx + ∑

j:Yj∈B(Xi ,R2)\{Xi}
K(Yj − Xi) (A7)

+ ∑
j:Xj∈B(Xi ,R4)\{Xi}

K(Xj − Xi)− μVi,

Ẋi = Vi, (A8)
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for i = 1, . . ., Ntot,I . Equation (A7) is discretized with a one-step IMEX method, putting in
implicit the term containing V̇i and in explicit the other addends, see [67]. Equation (A8)
is solved with the forward Euler method. The two-dimensional integral in (A7) can be
computed by a 2D quadrature formula, which due to the truncated Gaussian weight
function wi(x) given in (6), is reduced to a sum of the discretized integrand functions on
the grid points belonging to the ball B(Xi, R̄). For an integrand function g(x, t) holds:∫

B(Xi ,R̄)
g(x, t)wi(x)dx ≈ ∑

n,ms.t.(xn ,xm)∈B(Xn
i ,R̄)

gk
n,m(wi)

(k)
n,m,

where (wi)
(k) is the weight function centered in Xk, at time step tk. The same holds for the

integral W defined in (5), which is approximated by:

W̃ := ∑
n,ms.t.(xn ,xm)∈B(Xk

i ,R̄)

(wi)
(k)
n,m.

The gradients of Equation (A7) are approximated with the first order difference:

∇g(xn, ym, tk) ≈
( gk

n+1,m − gk
n,m

Δx
,

gk
n,m+1 − gk

n,m

Δy

)
.

Equation (A7) is discretized as follows:

Vk+1
i − Vk

i
Δt

=
γ

W̃ ∑
n,ms.t.(xn ,xm)∈B(Xk

i ,R̄)

χ( f k)(∇n,m f k)(wi)
(k)
n,m

+ ∑
j:Xk

j ∈B(Xk
i ,R2)\{Xk

i }
K(Xk

j − Xk
i )

+ ∑
j:Xk

j ∈B(Yk
i ,R4)\{Yk

i }
K(Yk

j − Xk
i )− μVk+1

i ,

(A9)

and Equation (A8) is discretized as
Xk+1

i − Xk
i

Δt
= Vk+1

i , with Vk+1
i computed before

Equation (A8) is solved.

Appendix A.4. Discretization of the SDE

The stochastic equation of the motion (17) can be decoupled as follows:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

V̇i =
γ

W
∫

B(Xi ,R̄)
χ( f (x, t))∇ f (x, t)wi(x)dx + ∑

j:Yj∈B(Xi ,R2)\{Xi}
K(Yj − Xi) (A10)

+ ∑
j:Xj∈B(Xi ,R4)\{Xi}

K(Xj − Xi)− μVi,

Ẋi = Vi + σψ(t). (A11)

for i = 1, . . ., Ntot,I . The discretization of Equation (A10) coincides with the one for
Equation (A7), while Equation (A11) requires the application of the Euler-Maruyama
method [68].

Equation (A11) can be written in the differential form and use dW(t) = ψ(t)dt where
dW(t) denotes the differential form of the Brownian motion:

dXi(t) = Vidt + σdW(t), (A12)
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where Xi(t) is a one-dimensional Wiener process with drift Vi and diffusion σ. This
equation is discretized with the Euler-Maruyama scheme, which is the stochastic version
of the deterministic Euler scheme. The increments of the Wiener process are defined as:

ΔW = Wk+1 − Wk,

with 0 ≤ k ≤ NΔt − 1. The increment ΔW is a random variable with zero mean and
variance equal to Δt:

ΔW ∼ N (0, Δt),

and with this increment we can construct approximations by drawing normally distributed
numbers from a random generator. We approximate the process (A12) at the discrete time
points tk, 0 ≤ k ≤ NΔt − 1 by

Xk+1
i = Xk

i + Vk+1
i Δt + σΔW, (A13)

where ΔW =
√

ΔtZk, with Zk being standard normal variables with mean 0 and variance 1
for all k.
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Abstract: This work was devoted to the study of a relaxation limit of the so-called aggregation
equation with a pointy potential in one-dimensional space. The aggregation equation is today
widely used to model the dynamics of a density of individuals attracting each other through a
potential. When this potential is pointy, solutions are known to blow up in final time. For this reason,
measure-valued solutions have been defined. In this paper, we investigated an approximation of
such measure-valued solutions thanks to a relaxation limit in the spirit of Jin and Xin. We study the
convergence of this approximation and give a rigorous estimate of the speed of convergence in one
dimension with the Newtonian potential. We also investigated the numerical discretization of this
relaxation limit by uniformly accurate schemes.

Keywords: aggregation equation; relaxation limit; scalar conservation law; finite volume scheme

MSC: 35L65; 65M12; 35D30

1. Introduction

The so-called aggregation equation has been widely used to model the dynamics
of a population of individuals in interaction. Let W : R → R, sufficiently smooth, be
the interaction potential governing the population. Then, in one dimension in space,
the dynamics of the density of individuals, denoted by ρ, is governed by the following
equation, for t > 0 and x ∈ R:

∂tρ + ∂x(a[ρ]ρ) = 0, with a[ρ] = −W ′ ∗ ρ. (1)

Such equations appear in many applications in population dynamics: for instance, to
describe the collective migration of cells by swarming, the motion of bacteria by chemo-
taxis, the crowd motion, the flocking of birds, or fishes school, see, e.g., [1–7]. From a
mathematical point of view, these equations have been widely studied. When the potential
W is not smooth enough, it is known that weak solutions may blow up in finite time [8,9].
Thus, the existence of weak (measure) solutions has been investigated in, e.g., [10,11].

In this paper, we consider a relaxation limit in the spirit of Jin–Xin [12] of the ag-
gregation equation in one space dimension on R. It is now well-established that such
modifications allow regularizing the solutions. For a given c > ‖a‖∞, we introduce
the system:

Axioms 2021, 10, 108. https://doi.org/10.3390/axioms10020108 https://www.mdpi.com/journal/axioms
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∂tρ + ∂xσ = 0, (2a)

∂tσ + c2∂xρ =
1
ε
(a[ρ]ρ − σ) (2b)

a[ρ] = −W ′ ∗ ρ (2c)

This system is complemented by initial data ρ0 and σ0 := a[ρ0]ρ0. It is clear, at least
formally, that when ε → 0, the solution ρ of system (2) converges to the one of the
aggregation equations (1) (and it is actually only true if c > ‖a‖∞). We mention that the
aggregation equation may also be derived thanks to a hydrodynamical limit of kinetic
equations [6,7,13].

The aim of this work was to study the convergence as ε → 0 of the relaxation
system (2) towards the aggregation equation. More precisely, we establish a precise es-
timate of the speed of convergence, and we also illustrate with some numerical simula-
tions. These estimates are obtained only in the case of the Newtonian potential in one
dimension W(x) = 1

2 |x|. Indeed, in this particular case, we may link the aggregation
equation to a scalar conservation law [14,15]. The same link holds for the relaxation system
(2)—denoting:

u(t, x) =
1
2
−
∫ x

−∞
ρ(t, dy), v(t, x) =

1
2
−
∫ x

−∞
σ(t, dy),

where the notation
∫

ρ(t, dy) stands for the integral with respect to the probability measure
ρ(t), then we verify easily that:

u = −W ′ ∗ ρ, ρ = −∂xu,

so that a[ρ] = u. Then, integrating (2), we deduce that (u, v) is a solution to:

∂tu + ∂xvs. = 0 (3a)

∂tvs. + c2∂xu =
1
ε

(1
2

u2 − v
)

, (3b)

which is complemented with the initial data u0 = 1
2 −
∫ x
−∞ ρ0(dy), and v0 = 1

2 −
∫ x
−∞ σ0(dy).

Clearly, as ε → 0, we expect that the solution of the above system converges to the solution
of the following Burgers equation:

∂tu +
1
2

∂xu2 = 0.

Introducing the quantities a = v− cu and b = v+ cu, (3) is equivalent to the diagonalized system:

∂ta − c∂xa =
1
ε

(1
2

( b − a
2c

)2 − a + b
2

)
(4a)

∂tb + c∂xb =
1
ε

(1
2

( b − a
2c

)2 − a + b
2

)
. (4b)

We will adapt the techniques developed in [16] to obtain convergence estimates for our system.
In order to illustrate this convergence result, numerical discretizations of the relaxation

system (2) are investigated. The schemes we propose are such that they are uniform with
respect to ε, that is they satisfy the so-called asymptotic preserving (AP) property [17].
Therefore, such schemes in the limit ε → 0 must be consistent with the aggregation equation.
The numerical simulations of solutions of the aggregation equation for pointy potentials
have been studied by several authors, see, e.g., [11,13,18–22]. In particular, some authors
pay attention to recover the correct behavior of the numerical solutions after the blow-up
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time. To do so, particular attention must be paid to the definition of the product a[ρ]ρ when
ρ is a measure.

In this article, we propose two discretizations of the relaxation system which satisfy
the AP property. In a first approach, we propose a simple splitting algorithm where we
split the transport part and the right hand side in system (2). It results in a numerical
scheme which is very simple to implement and for which we easily verify the AP property.
The second approach relies on a well-balanced discretization in the spirit of [20,23]. This
scheme is more expensive to implement than the first scheme, but its numerical solution
has less diffusion, as it is illustrated by our numerical results.

The outline of the paper is the following. In Section 2, after recalling some useful
notations, we prove our main result: an estimation of the speed of convergence in the
Wasserstein W1 distance with respect to ε of the solutions of the relaxation system (2)
towards the solution of the aggregation Equation (1) in the case W(x) = 1

2 |x|. The numer-
ical discretization is investigated in Section 3. Two numerical schemes verifying the AP
property are proposed. The first scheme is based on a splitting algorithm, whereas the
second scheme relies on a well-balanced discretization. Numerical results and comparisons
are provided in Section 4.

2. Convergence Result

2.1. Notations

Before stating and proving our main results, we first recall some useful notations and
results. Since we are dealing with conservation laws (in which the total mass is conserved),
we will work in some space of probability measures, namely the Wasserstein space of order
p ≥ 1, which is the space of probability measures with a finite order p moment:

Pp(R
N) =

{
μ nonnegative Borel measure, μ(RN) = 1,

∫
|x|pμ(dx) < ∞

}
.

This space is endowed with the Wasserstein distance defined by (see, e.g., [24,25])

Wp(μ, ν) = inf
γ∈Γ(μ,ν)

{∫
|y − x|p γ(dx, dy)

}1/p
, (5)

where Γ(μ, ν) is the set of measures on RN ×RN with marginals μ and ν, meaning that:

Γ(μ, ν) =

{
γ ∈ Pp(R

N×R
N); ∀ ξ ∈ C0(R

N),
∫
R2N

ξ(y0)γ(dy0, dy1) =
∫
RN

ξ(y0)μ(dy0),∫
R2N

ξ(y1)γ(dy0, dy1) =
∫
RN

ξ(y1)ν(dy1)

}
,

with C0(R
N), the set of continuous functions on RN that vanish at infinity. From a simple

minimization argument, we know that in the definition of Wp, the infimum is actually a
minimum. A map that realizes the minimum in the definition (5) of Wp is called an optimal
transport plan, the set of which is denoted by Γ0(μ, ν).

In the one-dimensional framework, we may simplify these definitions. Indeed, any
probability measure μ on the real line R can be described in terms of its cumulative
distribution function Fμ(x) = μ((−∞, x)), which is a right-continuous and non-decreasing
function with Fμ(−∞) = 0 and Fμ(+∞) = 1. Then, we can define the generalized inverse
F−1

μ of Fμ (or monotone rearrangement of μ) by F−1
μ (z) := inf{x ∈ R/Fμ(x) > z}, it is a

right-continuous and non-decreasing function as well, defined on [0, 1]. We have for every
non-negative Borel map ξ: ∫

R

ξ(x)μ(dx) =
∫ 1

0
ξ(F−1

μ (z)) dz.
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In particular, μ ∈ Pp(R) if and only if F−1
μ ∈ Lp(0, 1). Moreover, in the one-dimensional

setting, there exists a unique optimal transport plan realizing the minimum in (5). More
precisely, if μ and ν belong to Pp(R), with monotone rearrangements F−1

μ and F−1
ν , then

Γ0(μ, ν) = {(F−1
μ , F−1

ν )#L(0,1)} where L(0,1) is the restriction of the Lebesgue measure on
(0, 1). Thus, we have the explicit expression of the Wasserstein distance (see [24,26,27]):

Wp(μ, ν) =

(∫ 1

0
|F−1

μ (z)− F−1
ν (z)|p dz

)1/p

, (6)

and the map μ �→ F−1
μ is an isometry between Pp(R) and the convex subset of (essentially)

non-decreasing functions of Lp(0, 1).

2.2. Convergence Estimates

Let us first consider the limit ε → 0 for the system (3). Compactness methods were
used in [28] to get L1

loc convergence in space. However, in order to pass to the aggregation
equation, one may want global L1 convergence, which we prove in the following theorem,
along the lines of Katsoulakis and Tzavaras [16].

Theorem 1. Let u0 ∈ L∞ ∩ BV(R), c > ‖u0‖L∞ and set v0 =
u2

0
2 . There exists a constant C > 0

such that, for any ε > 0, denoting by (uε, vε) the solution to (3) with initial data (u0, v0), the
following estimate holds:

∀T > 0, ‖u(T)− uε(T)‖L1 ≤ CTV(u0)(
√

εT + ε),

where u is the entropy solution to the Burgers equation with initial datum u0.

Proof. Denote (aε, bε) the solution to (4), and G(a, b) = 1
2

(
b−a
2c

)2 − a+b
2 .

So as to obtain entropy inequalities on (aε, bε), we need monotonicity properties on
G. One can check that G(aε, bε) is decreasing with respect to aε and bε if the so-called
subcharacteristic condition |uε| < c holds. Up to a slight modification of the nonlinear term

f (uε) = (uε)2

2 in (3), which does not affect the value of (aε, bε):

f (u) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−‖u0‖u − ‖u0‖2

2
, if u ≤ −‖u0‖,

u2

2
, if − ‖u0‖ ≤ u ≤ ‖u0‖,

‖u0‖u − ‖u0‖2

2
, if ‖u0‖ ≤ u,

the choice c > ‖u0‖L∞ ensures that the subcharacteristic condition and the bound
‖uε(t)‖L∞ ≤ ‖u0‖L∞ holds for all time.

Now, obtaining entropy inequalities on (aε, bε) consists of making a comparison with con-

stant state solutions to (4). Namely, letting m = ‖u0‖L∞

( ‖u0‖L∞
2 − c

)
, M = ‖u0‖L∞

( ‖u0‖L∞
2 + c

)
and h(a) = a + 2c2 − 2c

√
c2 + 2a, we have G(k, h(k)) = 0 for all k ∈ [m, M], and therefore

(k, h(k)) is a solution to (4). Thus, the following system holds:

∂t(aε − k)− c∂x(aε − k) =
1
ε

(
G(aε, bε)− G(k, h(k))

)
, (7a)

∂t(bε − h(k)) + c∂x(bε − h(k)) =
1
ε

(
G(aε, bε)− G(k, h(k))

)
. (7b)
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Multiplying (7a) by sgn(aε − k), (7b) by sgn(bε − h(k)) and summing yields:

∂t

(
|aε − k|+ |bε − h(k)|

)
− c∂x

(
|aε − k| − |bε − h(k)|

)
=

1
ε

(
sgn(aε − k) + sgn(bε − h(k))

)(
G(aε, bε)− G(k, h(k))

)
.

Hence, using the monotonicity of G, we obtain the following entropy inequalities on (aε, bε):

∂t

(
|aε − k|+ |bε − h(k)|

)
− c∂x

(
|aε − k| − |bε − h(k)|

)
≤ 0. (8)

We now turn to proving the entropy inequalities on uε. Straightforward computations yield the
existence of a constant C > 0 such that, for all a, b ∈ [m, M], one has |h(a)− b| ≤ C|G(a, b)|.
We therefore work on the variable wε := h(aε)−aε

2c in the first place. Let κ ∈ [−‖u0‖L∞ , ‖u0‖L∞
]
,

and k ∈ [m, M] such that κ = h(k)−k
2c . We have:

|wε − κ| = 1
2c

(
|h(aε)− h(k)|+ |aε − k|

)
=

1
2c

(
|aε − k|+ |bε − h(k)|+ rε

1

)
, (9)

where rε
1 = |h(aε)− h(k)| − |bε − h(k)| verifies |rε

1| ≤ |h(aε)− bε| ≤ C|G(aε, bε)|. Thus, we
are left to control |G(aε, bε)|. To do so, we formally differentiate this quantity and use (4):

∂t|G(aε, bε)| =
(

∂taε∂aG(aε, bε) + ∂tbε∂bG(aε, bε)
)

sgn(G(aε, bε)),

=
1
ε

(
∂aG(aε, bε) + ∂bG(aε, bε)

)
|G(aε, bε)|

− c sgn(G(aε, bε))
(

∂xaε∂aG(aε, bε) + ∂xbε∂bG(aε, bε)
)

,

≤ 1
ε

sup
[m,M]2

(
∂aG + ∂bG

)
|G(aε, bε)|+ c sup

[m,M]2

(
|∂aG|+ |∂bG|

)(
|∂xaε|+ |∂xbε|

)
.

Integrating in space gives:

d
dt

‖G(aε, bε)‖L1 ≤ − A
ε
‖G(aε, bε)‖L1 + B

(
TV(a0) + TV(b0)

)
,

where A = − sup[m,M]2(∂aG + ∂bG) and B = c sup[m,M]2(|∂aG|+ |∂bG|) are positive con-
stants which do not depend on ε nor on time. A Gronwall lemma then gives:

‖G(aε(t), bε(t))‖L1 ≤ C
(

TV(a0) + TV(b0)
)

ε, (10)

where we still denote C = B/A as a constant independent of time and of ε.

In addition, since, G(a, h(a)) = 0, one has 1
2

(
h(a)−a

2c

)2
= 1

2 (h(a) + a) and therefore:

sgn(wε − κ)

(
(wε)2

2
− κ2

2

)
=

1
2

sgn
(

h(aε)− h(k)− (aε − k)
)(

h(aε) + aε − (h(k) + k)
)

,

=
1
2

(
|h(aε)− h(k)| − |aε − k|

)
,

=
1
2

(
|b − h(k)| − |aε − k|+ rε

2

)
, (11)

with |rε
2| ≤ C|G(aε, bε)|. Differentiating (9) in time and (11) in space, and using (8)

thus yields:

∂t|wε − κ|+ ∂x sgn(wε − κ)

(
(wε)2

2
− κ2

2

)
≤ 1

2c

(
∂trε

1 + c∂xrε
2

)
. (12)
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Then, we estimate ‖u(t)− wε(t)‖L1 using Kuznetsov’s doubling of variables technique
(see, e.g., [29] for scalar conservation laws with viscosity and [30] for a more general
formalism) in order to combine (12) with Kruzkov inequalities on the entropy solution u,
that read:

∂t|u − κ|+ ∂x sgn(u − κ)( f (u)− f (κ)) ≤ 0. (13)

Writing, respectively, (13) at point (s, x) for κ = wε(t, y) and (12) at point (t, y) for κ =
u(s, x), we obtain:

∂s|u(s, x)− wε(t, y)|+ ∂x sgn(u(s, x)− wε(t, y))
(

u(s, x)2

2
− (wε(t, y))2

2

)
≤ 0, (14a)

∂t|wε(t, y)− u(s, x)|+ ∂y sgn(wε(t, y)− u(s, x))
(
(wε(t, y))2

2
− u(s, x)2

2

)
(14b)

≤ 1
2c

(
∂trε

1(t, y) + c∂yrε
2(t, y)

)
.

Now, let ωα(t) = 1
α ω
( t

α

)
and Ωβ(x) = 1

β Ω
(

x
β

)
be two mollyfing kernels. Setting

g(s, t, x, y) = ωα(s − t)Ωβ(x − y) and testing (14a) and (14b) against g(·, t, ·, y)�[0,T] and
g(s, ·, x, ·)�[0,T], respectively, and integrating over [0, T]×R, we obtain on the one hand:∫∫∫∫

∂sg(s, t, x, y)|u(s, x)− wε(t, y)| ds dx dt dy

+
∫∫∫∫

∂xg(s, t, x, y) sgn(u(s, x)− wε(t, y))
(

u(s, x)2

2
− (wε(t, y))2

2

)
ds dx dt dy (15)

−
∫∫∫

g(T, t, x, y)|u(T, x)− wε(t, y)| dx dt dy

+
∫∫∫

g(0, t, x, y)|u(0, x)− wε(t, y)| dx dt dy ≥ 0,

and on the other hand:∫∫∫∫
∂tg(s, t, x, y)|wε(t, y)− u(s, x)| ds dx dt dy

+
∫∫∫∫

∂yg(s, t, x, y) sgn(wε(t, y)− u(s, x))
(
(wε(t, y))2

2
− u(s, x)2

2

)
ds dx dt dy

−
∫∫∫

g(s, T, x, y)|wε(T, y)− u(s, x)| dsdx dy +
∫∫∫

g(s, 0, x, y)|wε(0, y)− u(s, x)| dsdx dy (16)

≥ 1
2c

( ∫∫∫∫
∂tg(s, t, x, y)rε

1(t, y) ds dx dt dy + c
∫∫∫∫

∂yg(s, t, x, y)rε
2(t, y) ds dx dt dy

−
∫∫∫

g(s, T, x, y)rε
1(T, y) ds dx dy +

∫∫∫
g(s, 0, x, y)rε

1(0, y) ds dx dy
)
=: RHS.

Now, since | · | is even, and ∂sg = −∂tg and ∂xg = −∂yg, we deduce by adding (15)
and (16):

−
∫∫∫

g(T, t, x, y)|u(T, x)− wε(t, y)| dx dt dy

+
∫∫∫

g(0, t, x, y)|u(0, x)− wε(t, y)| dx dt dy (17)

−
∫∫∫

g(s, T, x, y)|u(s, x)− wε(T, y)| ds dx dy

+
∫∫∫

g(s, 0, x, y)|u(s, x)− wε(0, y)| ds dx dy ≥ RHS.
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Then, we write:

‖u(T)− wε(T)‖L1 =
∫∫∫

ωα(T − t)Ωβ(x − y)|u(T, y)− wε(T, y)| dx dt dy

+
∫∫∫

ωα(s − T)Ωβ(x − y)|u(T, y)− wε(T, y)| ds dx dy, (18)

=: I1 + I2.

A triangle inequality gives for I1:

I1 ≤
∫∫∫

ωα(T − t)Ωβ(x − y)|u(T, y)− u(T, x)| dx dt dy

+
∫∫∫

ωα(T − t)Ωβ(x − y)|u(T, x)− wε(t, y)| dx dt dy

+
∫∫∫

ωα(T − t)Ωβ(x − y)|wε(t, y)− wε(T, y)| dx dt dy

=: T1 + T2 + T3.

with T1 ≤ Cβ · TV(u0), the second term T2 appearing in (17) and for the last one we write:

T3 ≤
∫
R

Ωβ(x − y)
∫ T

0
ωα(T − t)

∫
R

|wε(t, y)− wε(T, y)| dy dt dx,

and then we use the fact that wε is uniformely Lipschitz in L1(R) with respect to ε. Indeed,
one has ∂twε = ∂taε(h′(aε)−1)

2c with h′(aε)− 1 being uniformely bounded with respect to ε as
aε stays in the compact set [m, M] for all time. In addition, estimating ‖∂taε(t)‖L1 can be
done reusing (4) and (10):

‖∂taε(t)‖L1 ≤ c‖∂xaε(t)‖L1 +
1
ε
‖G(aε(t), bε(t))‖L1 ≤ C(TV(a0) + TV(b0)).

with C > 0 still independent of time and of ε. Hence, ‖∂twε(t)‖L1 ≤ C(TV(a0) + TV(b0))
and T3 ≤ αC(TV(a0) + TV(b0)). All in all, we get for I1:

I1 ≤
∫∫∫

ωα(T − t)Ωβ(x − y)|u(T, x)− wε(t, y)| dx dt dy + Cβ · TV(u0)

+ αC(TV(a0) + TV(b0)).

Moreover, similarly, for I2:

I2 ≤
∫∫∫

ωα(s − T)Ωβ(x − y)|u(s, x)− wε(T, y)| ds dx dy + C(α + β)TV(u0).

Returning to (18), we obtain:

‖u(T)− wε(T)‖L1 ≤
∫∫∫

ωα(t)Ωβ(x − y)|u(0, x)− wε(t, y)| dx dt dy (19)

+
∫∫∫

ωα(s)Ωβ(x − y)|u(s, x)− wε(0, y)| ds dx dy − RHS (20)

+ αC(TV(a0) + TV(b0)) + C(α + β)TV(u0). (21)

However, using a triangle inequality, one can show that:∫∫∫
ωα(t)Ωβ(x − y)|u0(x)− wε(t, y)| dx dt dy ≤ Cβ · TV(u0) + αC(TV(a0) + TV(b0)),

and similarly:∫∫∫
ωα(s)Ωβ(x − y)|u(s, x)− wε(0, y)| ds dx dy ≤ C(α + β)TV(u0).
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We then bound from above the term RHS using inequality ‖rε
i (t)‖L1 ≤ C(TV(a0) + TV(b0))ε

for i = 1, 2: ∣∣∣∣RHS
∣∣∣∣ = 1

2c

∣∣∣∣ 1α
∫∫∫∫

ω′
(

s − t
α

)
Ωβ(x − y)rε

1(t, y) ds dx dt dy

+
c
β

∫∫∫∫
ωα(s − t)Ω′(x − y)rε

2(t, y) ds dx dt dy

−
∫∫∫

ωα(s − T)Ωβ(x − y)rε
1(T, y) ds dx dy

+
∫∫∫

ωα(s)Ωβ(x − y)rε
1(0, y) ds dx dy

∣∣∣∣,
≤ C

(
T
α
+

T
β
+ 1
)
· (TV(a0) + TV(b0))ε.

Finally, we obtain:

‖u(T)− wε(T)‖L1 ≤C
(

T
α
+

T
β
+ 1
)
(TV(a0) + TV(b0))ε

+ C(α + β)TV(u0) + αC(TV(a0) + TV(b0)),

which, after optimizing the values of α and β and noticing that TV(a0), TV(b0) ≤ C ·
TV(u0), gives:

‖u(T)− wε(T)‖L1 ≤ CTV(u0)(
√

εT + ε),

and this inequality, along with |h(a)− b| ≤ C|G(a, b)| and (10) gives in turn the result.

Denoting ρ = −∂xu, the convergence of uε(t) towards u(t) in L1(R) ensures that
ρ(t) is a probability measure. Indeed, since for all ε > 0, ρε = −∂xuε is a non-negative
distribution, so is ρ. The Riesz–Markov theorem then ensures that ρ can be represented
by a non-negative Borel measure. In addition, almost everywhere, for t ≥ 0, uε(t) is
a non-increasing function taking values in [0, 1] and hence converges to a certain limit
when x goes to +∞. The same holds true for the limit function u(t). However, since
uε(t)− u(t) ∈ L1(R), then uε(t, x)− u(t, x) must vanish as x goes to +∞. Therefore, the
total mass of ρ(t) is 1.

Then, passing to the relaxation system (2) for the aggregation Equation (1) can be
done by using (6) with p = 1. As a consequence, Theorem 1 translates as follows for
the aggregation.

Theorem 2. Let ρ0 ∈ P2(R), c > 1/2 and set σ0 = a[ρ0]ρ0. There exists a constant C > 0 such
that, for any ε > 0, denoting (ρε, σε) the solution to (2) with initial data (ρ0, σ0), one has:

∀T > 0, W1(ρ(T), ρε(T)) ≤ C(
√

εT + ε),

where ρ ∈ C([0,+∞),P2(R)) is the unique solution (1) with initial datum ρ0.

3. Numerical Discretization

Hereafter, we denote Δt the time step and we introduce a Cartesian mesh of size Δx.
We denote tn = nΔt for n ∈ N and xj = jΔx for j ∈ Z. In this section, we extend our
framework and consider the aggregation Equation (1) with arbitrary pointy potentials W,
which satisfy the following conditions:

(i) W is even and W(0) = 0;
(ii) W ∈ C1(R \ {0});
(iii) W is λ-convex, i.e., there exists λ ∈ R such that W(x)− λ |x|2

2 is convex;
(iv) W is a∞-lipschitz continuous for some a∞ ≥ 0.
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In this framework, the convergence of ρε towards ρ for a slightly different problem
has also been studied in [7]. Adapting the argument, the convergence still holds provided
the sub-characteristic condition c > a∞ is verified. However, for such general potentials,
the authors were not able to obtain the estimates of the speed of convergence as stated in
Theorem 2.

In this section, we propose some numerical schemes able to capture the limit ε → 0,
thus satisfying the so-called asymptotic preserving (AP) property. We consider two ap-
proaches, the first one based on a splitting algorithm, and the second one based on a
well-balanced discretization.

3.1. A Splitting Algorithm

A first simple approach to discretize the system (2) is to use a splitting method. Such a
method is known to be convergent and easy to implement but introduces numerical diffusion.

Notice that the system (2) rewrites, with μ = σ − cρ, ν = σ + cρ, as

∂tμ − c∂xμ =
1
ε

(
a
[ν − μ

2c

](ν − μ

2c

)
− μ + ν

2

)
(22a)

∂tν + c∂xν =
1
ε

(
a
[ν − μ

2c

](ν − μ

2c

)
− μ + ν

2

)
. (22b)

The idea of the method is to solve in a first step on (tn, tn + Δt) the system:

∂tμ =
1
ε

(
a
[ν − μ

2c

](ν − μ

2c

)
− μ + ν

2

)
∂tν =

1
ε

(
a
[ν − μ

2c

](ν − μ

2c

)
− μ + ν

2

)
,

with initial data (μ(tn), ν(tn)) = (μn, νn). We obtain μ
n+ 1

2
j = μ(tn + Δt, xj) and ν

n+ 1
2

j =

ν(tn + Δt, xj). Notice that this system may be solved explicitly. Indeed, by adding and
subtracting the two equations, we deduce after an integration:

ν
n+ 1

2
j − μ

n+ 1
2

j = νn
j − μn

j (23a)

μ
n+ 1

2
j + ν

n+ 1
2

j = (μn
j + νn

j )e
−Δt/ε + a

[νn − μn

2c

](νn − μn

2c

)
(1 − e−Δt/ε). (23b)

Then, in a second step, we discretize by a classical finite volume upwind scheme the system:

∂tμ − c∂xμ = 0, ∂tν + c∂xν = 0.

That is:

μn+1
j = μ

n+ 1
2

j + c
Δt
Δx

(μ
n+ 1

2
j+1 − μ

n+ 1
2

j ), (24a)

νn+1
j = ν

n+ 1
2

j − c
Δt
Δx

(ν
n+ 1

2
j − ν

n+ 1
2

j−1 ). (24b)

Coming back to the variables ρ and σ, we obtain:

ν
n+ 1

2
j = cρn

j + σn
j e−Δx/ε + an

j ρn
j (1 − e−Δt/ε),

μ
n+ 1

2
j = −cρn

j + σn
j e−Δx/ε + an

j ρn
j (1 − e−Δt/ε),
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with an
j = − ∑

k �=j
W ′(xj − xk)ρ

n
k . Then, the splitting algorithm reads:

ρn+1
j = ρn

j −
1
2

Δt
Δx

(μ
n+ 1

2
j+1 + ν

n+ 1
2

j − μ
n+ 1

2
j − ν

n+ 1
2

j−1 )

= ρn
j −

1
2

Δt
Δx

(
(σn

j+1 − σn
j−1)e

−Δt/ε

+ (1 − e−Δt/ε)(an
j+1ρn

j+1 − an
j−1ρn

j−1)− c(ρn
j+1 − 2ρn

j + ρn
j−1)

)
, (25)

and:

σn+1
j = σ

n+ 1
2

j +
c
2

Δt
Δx

(σn
j+1 − 2σn

j + σn
j−1)e

−Δt/ε

+
c
2

Δt
Δx

(
(an

j+1ρn
j+1 − 2an

j ρn
j + an

j−1ρn
j−1)(1 − e−Δt/ε)− c(ρn

j+1 − ρn
j−1)

)
= σn

j e−Δt/ε + an
j ρn

j (1 − e−Δt/ε) +
c
2

Δt
Δx

(σn
j+1 − 2σn

j + σn
j−1)e

−Δt/ε (26)

+
c
2

Δt
Δx

(
(an

j+1ρn
j+1 − 2an

j ρn
j + an

j−1ρn
j−1)(1 − e−Δt/ε)− c(ρn

j+1 − ρn
j−1)

)
.

Lemma 1. For any ε > 0, if both the CFL condition cΔt
Δx ≤ 1 and the subcharacteristic condition

c ≥ a∞ hold, then the splitting scheme (23) and (24) is L1-stable:

∀n ∈ N, ∑
j∈Z

(
|μn+1

j |+ |νn+1
j |

)
≤ ∑

j∈Z

(
|μn

j |+ |νn
j |
)

.

Proof. We have:

μ
n+ 1

2
j =

1
2

(
e−Δt/ε

(
1 +

an
j

c

)
+ 1 −

an
j

c

)
μn

j −
1 − e−Δt/ε

2

(
1 −

an
j

c

)
νn

j ,

ν
n+ 1

2
j = −1 − e−Δt/ε

2

(
1 +

an
j

c

)
μn

j +
1
2

(
e−Δt/ε

(
1 −

an
j

c

)
+ 1 +

an
j

c

)
νn

j .

Under the condition c ≥ a∞, in the expression of μ
n+ 1

2
j , the coefficient in front of μn

j is

non-negative and the one in front of νn
j is non-positive. Similarly, in ν

n+ 1
2

j , the coefficient of
μn

j is non-positive and the one in front of νn
j is non-negative. Taking the absolute value and

adding up therefore yields: ∣∣∣μn+ 1
2

j

∣∣∣+ ∣∣∣νn+ 1
2

j

∣∣∣ ≤ ∣∣∣μn
j

∣∣∣+ ∣∣∣νn
j

∣∣∣.
It remains to remark that, provided the CFL condition cΔt

Δx ≤ 1 is verified, (24) gives:

∑
j∈Z

(
|μn+1

j |+ |νn+1
j |

)
≤
(

1 − cΔt
Δx

)
∑
j∈Z

(∣∣∣μn+ 1
2

j

∣∣∣+ ∣∣∣νn+ 1
2

j

∣∣∣)
+

cΔt
Δx ∑

j∈Z

∣∣∣μn+ 1
2

j+1

∣∣∣+ cΔt
Δx ∑

j∈Z

∣∣∣νn+ 1
2

j−1

∣∣∣,
≤
(

1 − cΔt
Δx

)
∑
j∈Z

(
|μn

j |+ |νn
j |
)
+

cΔt
Δx ∑

j∈Z

∣∣∣μn+ 1
2

j

∣∣∣+ cΔt
Δx ∑

j∈Z

∣∣∣νn+ 1
2

j

∣∣∣,
≤ ∑

j∈Z

(
|μn

j |+ |νn
j |
)

.
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Note that similar schemes have also been studied in [31] and proved convergent at a
rate of

√
Δx.

Let us now verify the AP property. When ε → 0, we verify that the equation on ρ (25)
converges to the following Rusanov discretization of (1) (see [21] for numerical simulations
using the Rusanov scheme):

ρn+1
j = ρn

j −
1
2

Δt
Δx

(
an

j+1ρn
j+1 − an

j−1ρn
j−1

)
+

cΔt
2Δx

(ρn
j+1 − 2ρn

j + ρn
j−1), (27a)

an
j = − ∑

k �=j
W ′(xj − xk)ρ

n
k . (27b)

This limiting scheme provides a consistent discretization of (1). Indeed, a similar scheme
has been extensively studied in [11] using compactness arguments and the following
convergence result was proven:

Lemma 2. Assume ρ0 ∈ P2(R) and that the stability conditions c Δt
Δx ≤ 1 and c ≥ a∞ are

satisfied. Let T > 0 and suppose we initialize the scheme (27) with ρ0
j =

1
Δx

ρ0(Cj) where

Cj = [xj− 1
2
, xj+ 1

2
). Then, denoting ρΔx the reconstruction given by the scheme (27), that is:

ρΔx(t) = ∑
n∈N

∑
j∈Z

ρn
j �[tn ,tn+1)(t)δxj ,

then ρΔx converges weakly in the sense of measures on [0, T] × R towards the solution ρ of
Equation (1), as Δx goes to 0.

It has been also proven in [32] that the scheme (27) converges at a rate of
√

Δx.

3.2. Well-Balanced Discretization

Although the splitting method provides a simple way to obtain a discretization which
is uniform with respect to the parameter ε, the resulting scheme has strong numerical
diffusion and may not have good large time behavior. Then, well-balanced schemes have
been introduced. A scheme is said to be well-balanced when it conserves equilibria. The
method proposed in this section comes from [20].

Let us assume that, for some n ∈ N, the approximation (μn
j , νn

j )j∈Z of (μ(tn, xj),

ν(tn, xj))j∈Z solution of (22) is known. We construct an approximation at time tn+1 using
a finite volume upwind discretization of (22), with the discretization of the source terms
Hn

μ,j, Hn
ν,j to be prescribed right afterwards:

μn+1
j = μn

j + c
Δt
Δx

(μn
j+1 − μn

j ) +
Δt
ε

Hn
μ,j (28a)

νn+1
j = νn

j − c
Δt
Δx

(νn
j − νn

j−1) +
Δt
ε

Hn
ν,j. (28b)

In order to preserve equilibria, we set :

Hn
μ,j =

1
Δx

∫ xj

xj−1

H(μ, ν) dx, H(μ, ν) = a
[ν − μ

2c

](ν − μ

2c

)
− μ + ν

2
, (29)

where (μ, ν) solve the stationary system with incoming boundary conditions, on (xj−1, xj):
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− c∂xμ =
1
ε

H(μ, ν) (30a)

c∂xν =
1
ε

H(μ, ν) (30b)

μ(xj) = μn
j , ν(xj−1) = νn

j−1. (30c)

In addition, in the same fashion, Hn
ν,j =

1
Δx
∫ xj+1

xj
H(μ̃, ν̃) dx, where (μ̃, ν̃) is the solution of

the stationary system on (xj, xj+1):

− c∂xμ̃ =
1
ε

H(μ̃, ν̃) (31a)

c∂xμ̃ =
1
ε

H(μ̃, ν̃) (31b)

μ̃(xj+1) = μn
j+1, ν̃(xj) = νn

j , (31c)

Reporting Equations (30b) and (31a) into the discretization of the source term, we obtain
Hn

ν,j =
cε
Δx (ν(xj)− νj−1) and Hn

μ,j = − cε
Δx (μ

n
j − μ̃(xj)). Hence, one may rewrite the scheme

(28) as

μn+1
j = μn

j + c
Δt
Δx

(μ̃(xj)− μn
j ) (32a)

νn+1
j = νn

j − c
Δt
Δx

(νn
j − ν(xj)). (32b)

Remark that the stationary system:

− c∂xμ =
1
ε

H(μ, ν), c∂xν =
1
ε

H(μ, ν), (33)

is equivalent to:

∂xσ = 0, c2∂xρ =
1
ε
(a[ρ]ρ − σ). (34)

Therefore, denoting σj+ 1
2
=

μ̃ + ν̃

2
and σj− 1

2
=

μ + ν

2
, which are constant, respectively, on

(xj, xj+1) and (xj−1, xj), one has:

μ̃(xj) = 2σj+ 1
2
− νn

j , ν(xj) = 2σj− 1
2
− μn

j . (35)

Thus, it turns out that the scheme can be rewritten only in terms of the discretized un-
knowns and of σj± 1

2
:

μn+1
j = μn

j − c
Δt
Δx

(μn
j + νn

j ) +
2cΔt
Δx

σj+ 1
2
, (36a)

νn+1
j = νn

j − c
Δt
Δx

(μn
j + νn

j ) +
2cΔt
Δx

σj− 1
2
. (36b)

Or equivalently:

ρn+1
j = ρn

j −
Δt
Δx

(σj+ 1
2
− σj− 1

2
), (37a)

σn+1
j = σn

j − c
Δt
Δx

(2σn
j − σj+ 1

2
− σj− 1

2
). (37b)

However, solving the stationary systems (30) and (31) involves the resolution of a
nonlinear and nonlocal ODE. Instead, we propose an approximation in the spirit of [20].

46



Axioms 2021, 10, 108

We replace the nonlinear term in (30a)–(30b) by an
j− 1

2
· ν−μ

2c , where an
j− 1

2
stands for

a fixed and consistent discretization of a
[

ν−μ
2c

]
on the interval (xj−1, xj), to be specified

afterwards. Similarly, we will replace the nonlinear term in (31a)–(31b) by an
j+ 1

2
· ν̃−μ̃

2c with

an
j+ 1

2
defined accordingly. In the following, we detail the construction for the problem

(30a)–(30b) on (xj−1, xj).
Obviously, the definition of an

j− 1
2

should be taken with care [11,20]. In [32], the authors

showed that, when discretizing the product a[ρ]ρ, if a[ρ] and ρ were not evaluated at the
same point, then the resulting scheme produces the wrong dynamics. To take this into
account, we will split ρ into one contribution coming from the left and one contribution
coming from the right, i.e., we set ρ = ρL + ρR and σ = σL + σR where ρL(Δx) = 0 and
ρR(0) = 0. This implies that ρ(Δx) = ρR(Δx) and ρ(0) = ρL(0).

More precisely, we solve the two following boundary value problem, on (0, Δx):

εc2 d
dx

ρL = an
j− 1

2 ,LρL − σL, ρL(Δx) = 0, (38a)

εc2 d
dx

ρR = an
j− 1

2 ,RρR − σR, ρR(0) = 0, (38b)

We may explicitly solve these linear systems, and since ρL(0) = ρ(0) and ρR(Δx) = ρ(Δx),
we obtain the relations:

σL = ρ(0)κn
j− 1

2 ,L, σR = ρ(Δx)κn
j− 1

2 ,R. (39)

with:

κn
j− 1

2 ,L =
an

j− 1
2 ,L

1 − exp(−an
j− 1

2 ,L
Δx/(εc2))

, κn
j− 1

2 ,R =
an

j− 1
2 ,R

1 − exp(an
j− 1

2 ,R
Δx/(εc2))

. (40)

Notice that we have:

κn
j− 1

2 ,L → (an
j− 1

2 ,L)+, κn
j− 1

2 ,R → −(an
j− 1

2 ,R)−, when ε → 0, (41)

where we denote a+ = max(0, a) ≥ 0 and a− = max(0,−a) ≥ 0—the positive and negative
negative part of a. Using the boundary conditions in (30), we have:

ρ(0) =
νn

j−1 − μ(0)

2c
, ρ(Δx) =

ν(Δx)− μn
j

2c
. (42)

with (39) and the fact that σ = σL + σR is constant on [0, Δx], we obtain the following 2 × 2
system on the unknowns μ(0), ν(Δx):

μn
j + ν(Δx) = μ(0) + νn

j−1, (43a)

μn
j + ν(Δx) =

νn
j−1 − μ(0)

2c
κn

j− 1
2 ,L +

ν(Δx)− μn
j

2c
κn

j− 1
2 ,R (43b)

Solving this system yields:

μ(0) = −νn
j−1

c − κn
j− 1

2 ,R
− κn

j− 1
2 ,L

c − κn
j− 1

2 ,R
+ κn

j− 1
2 ,L

− μn
j

κn
j− 1

2 ,R

c − κn
j− 1

2 ,R
+ κn

j− 1
2 ,L

, (44a)

ν(Δx) = νn
j−1

κn
j− 1

2 ,L

c − κn
j− 1

2 ,R
+ κn

j− 1
2 ,L

− μn
j

c + κn
j− 1

2 ,R
+ κn

j− 1
2 ,L

c − κn
j− 1

2 ,R
+ κn

j− 1
2 ,L

. (44b)
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From which we deduce with (42):

ρn
j− 1

2 ,L := ρ(0) =
1
c

⎛⎝ (c − κn
j− 1

2 ,R
)νn

j−1 + κn
j− 1

2 ,R
μn

j

c + κn
j− 1

2 ,L
− κj− 1

2 ,R

⎞⎠ (45a)

ρn
j− 1

2 ,R := ρ(Δx) =
1
c

⎛⎝κn
j− 1

2 ,L
νn

j−1 − (c + κn
j− 1

2 ,L
)μn

j

c + κn
j− 1

2 ,L
− κj− 1

2 ,R

⎞⎠ (45b)

and with (39):

σj− 1
2

:= σL + σR = ρn
j− 1

2 ,Lκn
j− 1

2 ,L + ρn
j− 1

2 ,Rκn
j− 1

2 ,R =
νn

j−1κn
j− 1

2 ,L
− μn

j κn
j− 1

2 ,R

c − κn
j− 1

2 ,R
+ κn

j− 1
2 ,L

, (46)

(the above quantities are well-defined since κn
j− 1

2 ,L
≥ 0 and κn

j− 1
2 ,R

≤ 0). Injecting into (37),

it gives the following scheme:

μn+1
j =

(
1 − cΔt

Δx

)
μn

j −
cΔt
Δx

c − κn
j+ 1

2 ,R
− κn

j+ 1
2 ,L

c − κn
j+ 1

2 ,R
+ κn

j+ 1
2 ,L

νn
j − 2cΔt

Δx

κn
j+ 1

2 ,R

c − κn
j+ 1

2 ,R
+ κn

j+ 1
2 ,L

μn
j+1, (47a)

νn+1
j =

(
1 − cΔt

Δx

)
νn

j − cΔt
Δx

c + κn
j− 1

2 ,R
+ κn

j− 1
2 ,L

c − κn
j− 1

2 ,R
+ κn

j− 1
2 ,L

μn
j +

2cΔt
Δx

κn
j− 1

2 ,L

c − κn
j− 1

2 ,R
+ κn

j− 1
2 ,L

νn
j−1, (47b)

where the coefficients κn
j− 1

2 ,L/R
are defined in (40). Equivalently, for the variable (ρ, σ), the

scheme reads:

ρn+1
j = ρn

j −
Δt
Δx

⎛⎝νn
j κn

j+ 1
2 ,L

− μn
j+1κn

j+ 1
2 ,R

c − κn
j+ 1

2 ,R
+ κn

j+ 1
2 ,L

−
νn

j−1κn
j− 1

2 ,L
− μn

j κn
j− 1

2 ,R

c − κn
j− 1

2 ,R
+ κn

j− 1
2 ,L

⎞⎠ (48a)

σn+1
j = σn

j − c
Δt
Δx

⎛⎝2σn
j −

νn
j κn

j+ 1
2 ,L

− μn
j+1κn

j+ 1
2 ,R

c − κn
j+ 1

2 ,R
+ κn

j+ 1
2 ,L

−
νn

j−1κn
j− 1

2 ,L
− μn

j κn
j− 1

2 ,R

c − κn
j− 1

2 ,R
+ κn

j− 1
2 ,L

⎞⎠, (48b)

where we recall that μn
j = σn

j − cρn
j and νn

j = σn
j + cρn

j .
It remains to define the velocities an

j− 1
2 ,L/R

used in (38) and in (40). We take:

an
j− 1

2 ,L/R = − ∑
k �=j

W ′(xj − xk)ρ
n
k− 1

2 ,L/R.

However, this discretization implies the resolution of a nonlinear problem, since the
quantities ρn

k− 1
2 ,L/R

depends nonlinearly on an
j− 1

2 ,L/R
.

Then, we implement a fixed point method initialized with an,(0)
j− 1

2 ,L
:= an

j−1 and an,(0)
j− 1

2 ,R
:=

an
j . Solving, on each cell (xj−1, xj), the system of ODEs (38) with these values for the

velocities gives two sequences, (ρ(1)
j− 1

2 ,L
)j∈Z and (ρ

(1)
j− 1

2 ,R
)j∈Z. Then, we assign the next

value of the velocity to an,(1)
j− 1

2 ,L/R
:= − ∑

k �=j
W ′(xj − xk)ρ

(1)
k− 1

2 ,L/R
, which allows us to compute

new values for the left and right densities, (ρ(2)
j− 1

2 ,L
)j∈Z and (ρ

(2)
j− 1

2 ,R
)j∈Z, through (38). We

iterate until W2(ρ
(i)
L , ρ

(i+1)
L ) and W2(ρ

(i)
R , ρ

(i+1)
R ) pass below a certain threshold. Notice that

the velocities an,(i)
j− 1

2 ,L/R
always remain bounded by a∞. In practice, only a few iterations

are needed.
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The resulting scheme is consistent for any ε > 0 and stable under standard stability
conditions, as shown by the following lemmas.

Lemma 3 (L1 stability). Under the CFL condition cΔt
Δx ≤ 1 and the subcharacteristic condition

c ≥ a∞, there holds that the sequence (μn
j , νn

j )j,n defined by the scheme (47), verifies the following
L1 stability property:

∀n ∈ N, ∑
j∈Z

(
|μn+1

j |+ |νn+1
j |

)
≤ ∑

j∈Z

(
|μn

j |+ |νn
j |
)

.

Proof. In each combination of (47), the first coefficient is non-negative under the CFL
condition cΔt

Δx ≤ 1, and so is the last one since κn
j± 1

2 ,L
≥ 0 and κn

j± 1
2 ,R

≤ 0. Moreover,

under the subcharacteristic condition c ≥ a∞, it holds that −c ≤ κj± 1
2 ,R + κj± 1

2 ,R ≤ c
so the remaining coefficient is non-positive. Thus, applying the triangle inequality and
re-indexing the sums appropriately:

∑
j∈Z

(
|μn+1

j |+ |νn+1
j |

)
≤ ∑

j∈Z

(
1 − cΔt

Δx

)
|μn

j |+ ∑
j∈Z

cΔt
Δx

c − κn
j+ 1

2 ,R
− κn

j+ 1
2 ,L

c − κn
j+ 1

2 ,R
+ κn

j+ 1
2 ,L

|νn
j |

− ∑
j∈Z

2cΔt
Δx

κn
j+ 1

2 ,R

c − κn
j+ 1

2 ,R
+ κn

j+ 1
2 ,L

|μn
j+1|+ ∑

j∈Z

(
1 − cΔt

Δx

)
|νn

j |

+ ∑
j∈Z

cΔt
Δx

c + κn
j+ 1

2 ,R
+ κn

j+ 1
2 ,L

c − κn
j+ 1

2 ,R
+ κn

j+ 1
2 ,L

|μn
j+1|+

2cΔt
Δx

κn
j+ 1

2 ,L

c − κn
j+ 1

2 ,R
+ κn

j+ 1
2 ,L

|νn
j |,

≤
(

1 − cΔt
Δx

)
∑
j∈Z

(
|μn

j |+ |νn
j |
)
+

cΔt
Δx ∑

j∈Z
|μn

j+1|+
cΔt
Δx ∑

j∈Z
|νn

j |,

≤ ∑
j∈Z

(
|μn

j |+ |νn
j |
)

.

This concludes the proof.

Lemma 4 (Consistency for smooth solutions). Assume that, for all j ∈ Z, we have an
j− 1

2 ,L/R
=

− ∑
k �=j

W ′(xj − xk)ρk− 1
2 ,L/R. Then, for any ε > 0, the scheme (37) is consistent with (2) provided

that the solutions are smooth enough.

Proof. For j ∈ Z, one has, using the Taylor expansions as Δx → 0:

κn
j− 1

2 ,L

c − κn
j− 1

2 ,R
+ κn

j− 1
2 ,L

=
1
2
− 1

4εc2

(
c −

an
j− 1

2 ,L
+ an

j− 1
2 ,R

2

)
Δx + O(Δx2),

κn
j− 1

2 ,R

c − κn
j− 1

2 ,R
+ κn

j− 1
2 ,L

= −1
2
+

1
4εc2

(
c +

an
j− 1

2 ,L
+ an

j− 1
2 ,R

2

)
Δx + O(Δx2).

Thus:

σj− 1
2
=

σn
j−1 + σn

j

2
+ c

ρn
j−1 − ρn

j

2
− 1

4εc2

((
c −

an
j− 1

2 ,L
+ an

j− 1
2 ,R

2

)
(σn

j−1 + cρn
j−1)

+

(
c +

an
j− 1

2 ,L
+ an

j− 1
2 ,R

2

)
(σn

j − cρn
j )

)
Δx + O(Δx2).

In particular, σj− 1
2

is clearly consistent with σ(tn, xj− 1
2
) as long as the solution (ρ, σ) is

smooth enough to perform standard consistency analysis for finite differences. This shows
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that (37a) is consistent with ∂tρ + ∂xσ = 0. As for the consistency of (37b) with ∂tσ +
c2∂xρ = 1

ε (a[ρ]ρ − σ), we write:

σj+ 1
2
+ σj− 1

2
− 2σn

j =
σn

j+1 − 2σn
j + σn

j−1

2
+ c

ρn
j−1 − ρn

j+1

2
− Δx

4εc2

[
c(σn

j−1 + 2σn
j + σn

j+1)

+
an

j− 1
2 ,L

+ an
j− 1

2 ,R

2
(σn

j − σn
j−1) +

an
j+ 1

2 ,L
+ an

j+ 1
2 ,R

2
(σn

j+1 − σn
j ) + c2(ρn

j−1 − ρn
j+1)

− c

( an
j− 1

2 ,L
+ an

j− 1
2 ,R

2
ρn

j−1 +
an

j− 1
2 ,L

+ an
j− 1

2 ,R
+ an

j+ 1
2 ,L

+ an
j+ 1

2 ,R

2
ρn

j +
an

j+ 1
2 ,L

+ an
j+ 1

2 ,R

2
ρn

j+1

)]
+ O(Δx2).

Using Taylor expansions, we have, for smooth solutions σ(tn, xj+1)− 2σ(tn, xj)+σ(tn, xj−1)

= O(Δx2), ρ(tn, xj−1) − ρ(tn, xj+1) = O(Δx), σ(tn, xj) − σ(tn, xj−1) = O(Δx)
and σ(tn, xj+1)− σ(tn, xj) = O(Δx). Along with the bound |an

j± 1
2 ,L/R

| ≤ a∞, this implies:

σj+ 1
2
+ σj− 1

2
− 2σn

j = c
ρn

j−1 − ρn
j+1

2
− 1

4εc2

[
c(σn

j−1 + 2σn
j + σn

j+1)

− c

( an
j− 1

2 ,L
+ an

j− 1
2 ,R

2
ρn

j−1 +
an

j− 1
2 ,L

+ an
j− 1

2 ,R
+ an

j+ 1
2 ,L

+ an
j+ 1

2 ,R

2
ρn

j

+
an

j+ 1
2 ,L

+ an
j+ 1

2 ,R

2
ρn

j+1

)]
Δx + O(Δx2).

Clearly, c
ρn

j−1−ρn
j+1

2 and c(σn
j−1 + 2σn

j + σn
j+1) are consistent with an accuracy of O(Δx2) and

O(Δx), respectively, with −c∂xρ(tn, xj) and 4cσ(tn, xj). For the remaining terms, let us
recall that, with the notations of (42):

ρj− 1
2 ,L =

νn
j−1 − μ(0)

2c
=

νn
j−1 − σj− 1

2

c
, ρj− 1

2 ,R =
ν(Δx)− μn

j

2c
=

σj− 1
2
− μj

c
.

Hence, ρj− 1
2 ,L + ρj− 1

2 ,R =
νn

j−1 − μn
j

c
=

σn
j−1 − σn

j

c
+ ρn

j−1 + ρn
j . Since σ(tn, xj−1)−σ(tn, xj) =

O(Δx), and assuming that:

an
j− 1

2 ,L/R = − ∑
k �=j

W ′(xj − xk)ρk− 1
2 ,L/R

we deduce that an
j− 1

2 ,L
+ an

j− 1
2 ,R

is consistent with a[ρ(tn)](xj−1)+ a[ρ(tn)](xj) with accuracy

O(Δx). It follows that σj+ 1
2
+ σj− 1

2
− 2σn

j is consistent with −∂xρ(tn, xj)− 1
ε

(
σ(tn, xj)−

a[ρ(tn)](xj)ρ(tn, xj)
)

, again with accuracy O(Δx), and this concludes the proof.

The stability conditions in Lemma 3 are independent on ε, we recover in the limit
ε → 0, using (41), the scheme of [20]:

ρn+1
j = ρn

j −
Δt
Δx

⎛⎝νn
j (an

j+ 1
2 ,L

)+ + μn
j+1(an

j+ 1
2 ,R

)−
c + (an

j+ 1
2 ,R

)− + (an
j+ 1

2 ,L
)+

−
νn

j−1(an
j− 1

2 ,L
)+ + μn

j (an
j− 1

2 ,R
)−

c + (an
j− 1

2 ,R
)− + (an

j− 1
2 ,L

)+

⎞⎠ (49a)

σn+1
j = σn

j − c
Δt
Δx

(
2σn

j −
νn

j (an
j+ 1

2 ,L
)+ + μn

j+1(an
j+ 1

2 ,R
)−

c + (an
j+ 1

2 ,R
)− + (an

j+ 1
2 ,L

)+

−
νn

j−1(an
j− 1

2 ,L
)+ + μn

j (an
j− 1

2 ,R
)−

c + (an
j− 1

2 ,R
)− + (an

j− 1
2 ,L

)+

)
, (49b)
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which is stable under the conditions cΔt
Δx ≤ 1 and c ≥ a∞. Notice that with the notation in

(46), Equation (49a) may be rewritten as

ρn+1
j = ρn

j −
Δt
Δx

(
ρn

j+ 1
2 ,L(an

j+ 1
2 ,L)+ − ρn

j+ 1
2 ,R(an

j+ 1
2 ,R)−

− ρn
j− 1

2 ,L(an
j− 1

2 ,L)
+ + ρn

j− 1
2 ,R(an

j− 1
2 ,R)−

)
.

4. Numerical Experiments

We present some numerical illustrations for the two schemes described in the previous
section. In addition to the potential W(x) = |x|

2 , we also consider the smooth potential
W(x) = x2

2 .
Numerical tests are conducted on the domain [−1, 1] with the inital data ρ0 = 1

2 δ−0.5 +
1
2 δ0.5, σ0 = a[ρ0]ρ0 and both schemes are initialized with:

ρ0
j =

1
Δx

ρ0(Cj), σ0
j =

1
Δx

σ0(Cj).

Figure 1 shows that both schemes recover the correct dynamics in the limit ε → 0: for
the potential W(x) = |x|

2 , one can compute the exact velocity of both Dirac masses for the
aggregation Equation (1) and see that they should be located, respectively, in x = −0.2 and
x = 0.2 in final time T = 1.2.

This test is set up with ε = 10−7, on a Cartesian mesh of [−1, 1] with 1500 cells, c = 1

and the CFL c
Δt
Δx

= 0.9. Both schemes (27) and (49) display the correct velocity for the
Dirac masses, but one can notice that the Rusanov scheme (27) shows more numerical
diffusion. Note that both schemes are written in conservation form, they preserve the total
mass of ρ, which is also verified numerically.

We then investigated the order of convergence when Δx goes to 0 with ε fixed, in
Wasserstein distance W1 (the numerical results are the same for W2).

After performing tests for several values of ε, it appears that the convergence rate does
not depend on the size of ε. Therefore, as an example, we propose simulations in final time
T = 0.5, with the same intial data and stability parameters as above, and with ε = 2 × 10−6

for Figure 2 and with ε = 10−2 for Figure 3:
For a fixed value of ε, both schemes seem to converge with order 1/2 with respect to

Δx for the smooth potential W(x) = x2

2 (see Figure 2) whereas they seem to be of order

1 for the potential W(x) = |x|
2 (see Figure 3). This can be explained as both schemes

possess some numerical diffusion which is somehow counterbalanced by the aggregation
phenomenon in the case of a pointy potential, as already observed in [21]. Due to the
link with the Burgers equation, this superconvergence phenomenon is directly linked to
the results of Després [33], which should be rigorously extended to our case (the mere
extension to the upwind scheme of [11] for the aggregation is not straightforward).
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Figure 1. Dynamics of two Dirac masses for the potential W(x) = |x|
2 in time T = 1.2.

Figure 2. Order of convergence of the splitting scheme and the well-balanced scheme for the smooth
potential W(x) = x2

2 .
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Figure 3. Order of convergence of the splitting scheme and the well-balanced scheme for the pointy
potential W(x) = |x|

2 .

Finally, we also verified the well-balanced property of the scheme (48) by computing
the W1 distance between the approximated solution at time T = 0.5 and the stationary
solution of (2) given by

ρ(t, x) = ρ0(x) :=
1

8εc2

(
1 − tanh2

( x
4εc2

))
.

The test is conducted with ε = 2 × 10−4, with the exact boundary conditions given by
the above formula, and for several values of Δx. As we show in Figure 4, the scheme (48)
preserves well the above equilibrium for any Δx (although we replaced the resolution of
the systems (30) and (31) with linear systems, see (38)), while for the splitting scheme, we
recover the linear convergence towards ρ0 which is, in this case, the exact solution.

Figure 4. Distance to the equilibrium for the splitting scheme and the well-balanced scheme and for
the pointy potential W(x) = |x|

2 .
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Abstract: In this paper, we propose two models describing the dynamics of heavy and light vehicles
on a road network, taking into account the interactions between the two classes. The models are
tailored for two-lane highways where heavy vehicles cannot overtake. This means that heavy vehicles
cannot saturate the whole road space, while light vehicles can. In these conditions, the creeping
phenomenon can appear, i.e., one class of vehicles can proceed even if the other class has reached
the maximal density. The first model we propose couples two first-order macroscopic LWR models,
while the second model couples a second-order microscopic follow-the-leader model with a first-
order macroscopic LWR model. Numerical results show that both models are able to catch some
second-order (inertial) phenomena such as stop and go waves. Models are calibrated by means
of real data measured by fixed sensors placed along the A4 Italian highway Trieste–Venice and its
branches, provided by Autovie Venete S.p.A.
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1. Introduction

In this paper, we deal with macroscopic and multi-scale modeling of traffic flow on a
road network, focusing on multi-class dynamics which couple light and heavy vehicles
(in the following, cars and trucks). The proposed models are characterized by the fact that
cars and trucks interact with each other and that trucks are confined to a part of the road
space (slow lane) and cannot overtake. As a consequence, when trucks saturate the space
and form a queue, cars can still move, although at reduced speed.

1.1. State of the Art

The literature about traffic flow is very large and many different aspects of traffic dy-
namics were described through mathematical models. Let us start from classic approaches:
in a single-lane microscopic (agent-based) framework with N vehicles and no overtaking,
each vehicle k ∈ {1, . . . , N} is singularly identified by its position Xk(t) and its velocity
Vk(t). By assumption, the (k + 1)-th vehicle is always in front of the k-th one. Further,
each vehicle is assumed to adjust its acceleration based on the difference in positions and
velocities between the vehicle itself and the vehicle in front of it. This approach leads to the
following system of ordinary differential equations:{

Ẋk = Vk

V̇k = A(Xk, Xk+1, Vk, Vk+1)
, k = 1, . . . , N − 1 (1)

Axioms 2021, 10, 102. https://doi.org/10.3390/axioms10020102 https://www.mdpi.com/journal/axioms
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where A is a given acceleration function. The first vehicle in the row (k = N), called leader,
has an independent dynamics. Since the whole dynamics is determined by the leader’s
one through a domino effect, these kinds of models are known as follow-the-leader.

Adopting, instead, a macroscopic (fluid dynamics) point of view, we describe the
mass of vehicles by means of their density ρ(x, t) only. The celebrated LWR model [1,2]
is based on the observation that the density ρ evolves in time, ruled by the following
conservation law:

∂tρ + ∂x f (ρ) = 0, x ∈ R, t > 0 (2)

where the function f (ρ), called fundamental diagram, is given and represents the flux of
vehicles as a function of the density itself. The velocity of the vehicles can be recovered
from ρ thanks to the relation

v(ρ) =
f (ρ)

ρ
, (ρ �= 0). (3)

It is important to note that the microscopic model (1) is second-order, i.e., acceleration-
based, while the macroscopic model (2) is first-order, i.e., velocity-based. The difference
is important because velocity-based models, allowing nonphysical instantaneous acceler-
ations, are not able to catch effects caused by inertia, such as stop and go waves. Due to
this difference, it is plain that the model (2) is not the many-particle limit of the model (1).
We refer the interested reader to [3] for a review of various many-particle limits (i.e.,
micro-to-macro correspondences) and the existing multi-scale models.

The first generalization of the models (1) and (2) of our interest is that of road networks.
While managing junctions in microscopic models is relatively easy, doing the same in a
macroscopic setting is more challenging. The reason is that, in general, the conservation
of the mass alone is not sufficient to characterize a unique solution at junctions. We refer
the reader to the book by Garavello and Piccoli [4] for more details about the ill-posedness
of the problem at junctions. Multiple workarounds for such ill-posedness have been
suggested in the literature: (i) maximization of the flux across junctions and introduction
of priorities among the incoming roads [4–6]; (ii) introduction of a buffer to model the
junctions by means of an additional ordinary differential equation coupled with (2) [7–9];
(iii) reformulation of the problem on all possible paths on the network rather than on
roads and junctions. The last approach has both a global formulation [10–12] and a more
manageable local formulation, described in [13], which is the one we will adopt in this
paper. All these approaches allow determining a unique solution for the traffic evolution
on the network, but the solutions might be different.

The second generalization of our interest is that of multi-class dynamics. “Multi-
class” is a very generic term used in the literature to refer to the case in which the road is
populated by different groups of vehicles/drivers, and tracking each group separately is
desired. Again, doing this in a microscopic framework is easy since it is sufficient to label
each vehicle on the basis of the class it belongs to. In the macroscopic setting, instead, we
need to introduce as many density functions as there are classes and then establish the
interactions between classes. This leads to a system of conservation laws of the form

∂tρc + ∂x fc(ρ1, . . . , ρC) = 0, c = 1, . . . , C, x ∈ R, t > 0 (4)

where C is the number of classes, c ∈ {1, . . . , C}, ρc is the density of class c and fc is the
flux of class c which depends on all densities (usually the dependence is on the sum of all
densities ∑c ρc). Multi-class models are used to describe very different situations, such as
the co-presence of vehicles with

• Different driving modes (e.g., autonomous vs. classic);
• Different origins and destinations;
• Different lengths (i.e., space occupied);
• Different velocities/flux functions;
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• Reserved roads or reserved entry/exit lanes.

A complete review of multi-class models is out of the scope of this paper. We refer
to [14–16] and to the recent books [17,18] for an overview of the most used multi-class models.

Before introducing our contributions, let us introduce the creeping or seepage effect [14,19]
which will be useful to describe the features of the proposed models. This term denotes the
situations where the road space is shared by small and large vehicles, and small vehicles
are able to move (at reduced velocity) even if large vehicles have reached the maximal
density. This is in contrast to classical models such as the one proposed by Benzoni-Gavage
and Colombo [20], in which the saturation of a class of vehicles immediately stops all the
other classes. It is useful to note that the creeping phenomenon is typically considered in a
context of disordered traffic, i.e., traffic with no lane discipline: smaller vehicles (e.g., two
wheels) slip into the empty spaces left by large vehicles, similar to motion through porous
media. This is not the case considered here, since we assume a strict lane discipline.

Finally, let us recall some important contributions about the fundamental diagram
and its properties. It is well known that a single function f = f (ρ) is not able, alone, to
describe real data correctly. Indeed, by (3), we deduce that for any given density value ρ,
only one velocity v(ρ) is possible. This is not what happens in reality, where a scattered
fundamental diagram is observed instead, due to the fact that different drivers respond in
a different way to the same traffic conditions. Many papers investigated this phenomenon
from different points of view, trying to explain its features, including instabilities; see,
e.g., [21–31].

1.2. Case Study

In this paper, we consider the Italian motorway A4 Trieste–Venice and its branches
to/from Udine, Pordenone and Gorizia, managed by Autovie Venete S.p.A., see Figure 1.

Figure 1. The Italian motorway A4 Trieste–Venice and its branches to/from Udine, Pordenone and
Gorizia, managed by Autovie Venete S.p.A.

At the time of the present study (2019), the motorway had two lanes per direction,
except for the leftmost segment near Venice (Venice–San Donà). To avoid heterogeneous
conditions, we dropped the three-lane segment of the road to focus exclusively on the parts
with two lanes per direction. In those segments, cars can use both lanes at any time, while
trucks can use only the slow lane and cannot overtake. Due to the large flow of heavy
vehicles, it happens sometimes that a queue of trucks is formed. In this case, cars move
into the fast lane and keep going, although at moderate speed. When traffic conditions
are sustained, the two classes of vehicles interact with each other: on the one hand, trucks
act as moving bottlenecks for cars (cf. [32]), which are forced to slow down due to the
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restricted space; on the other hand, trucks must slow down when cars find it convenient to
occupy part of the slow lane.

1.3. Our Contribution

In this paper, we propose two models for describing multi-class traffic flow on net-
works in which vehicles belonging to different classes share the road space only partially.
More precisely, light vehicles can occupy the whole road, while heavy vehicles can occupy
only a part of it. To align with the case study, we will assume that the road has two lanes in
total and trucks can occupy only the slow one, without overtaking.

1. The first model is purely macroscopic. Both cars and truck are described by two
coupled first-order LWR-based models. Fundamental diagrams are shaped in order
to allow cars to move even in the presence of fully congested trucks. Considering
that the fundamental diagram of each class is influenced by the presence of the
other class, in the case of unstable (rapidly varying) traffic conditions of one class, we
observe a scattered behavior in the fundamental diagram of the other class. Numerical
results will show that this feature allows the model to catch, at least in part, some
second-order (inertial) phenomena in traffic behavior, such as stop and go waves.

2. The second model is multi-scale. Cars are described by a first-order LWR-based
model, while trucks are described by a second-order microscopic follow-the-leader
model. For trucks, we consider the microscopic model used in [3], inspired, in turn,
by a model originally proposed in [33] and specifically designed to reproduce stop
and go waves. The choice of second-order model for trucks is crucial, since inertia
effects are not at all negligible for those vehicles, while they are less important in
car dynamics. Finally, note that, since trucks are confined to only one lane and
cannot overtake, their dynamics perfectly matches the constituting assumptions of
the follow-the-leader model.

Let us finally mention that the idea of coupling first- and second-order models was
already exploited in [3] in a single-class scenario.

Remark 1. Both models distinguish classes, but not lanes. The fact that trucks cannot use the
fast lane while cars can occupy both slow and fast lanes is encapsulated in the choice of the
fundamental diagrams.

2. Dataset

Autovie Venete constantly monitors traffic conditions by means of video cameras,
mobile sensors and fixed sensors. In this paper, we focus on the latest kind of data. Fixed
sensors are located along the motorway, on each lane, and measure the flux and velocity
of all vehicles passing in front of them, also distinguishing the class of vehicles. Data are
aggregated per minute and are stored in a database for later analysis. For light vehicles, we
further aggregated data coming from slow and fast lanes. For heavy vehicles, instead, we
considered the slow lane only. In Figures 2–4, we show some flux and velocity data coming
from some fixed sensors, used to conceive and calibrate the models presented in this paper.
For better readability, flux data are plotted as both raw (as is) and smoothed by a Gaussian
filter. Note that the flux data are always a multiple of 60 since they are evaluated every
minute, but they are expressed in terms of vehicles per hour.
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(a)

(b)

Figure 2. Typical weekly (from Monday to Sunday) flux data on the A4 motorway of (a) light and
(b) heavy vehicles collected on March 2019 near Redipuglia. Smoothed data are plotted in black.
Note the flux drop of cars in the middle of the day and of trucks on the weekend.

(a) (b)

(c) (d)

Figure 3. Typical daily (Thursday) flux and velocity data on the A28 motorway of (a–c) light and
(b–d) heavy vehicles collected in May 2019 near Sesto al Reghena.
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(a) (b)

(c) (d)

Figure 4. Creeping phenomenon registered in May 2019 near Portogruaro: (a) Light vehicles move in
the fast lane even if (b) heavy vehicles queue in the slow lane. (c) Light vehicles’ velocity drops from
∼140 to ∼60 km/h and then to ∼20 km/h while (d) heavy vehicles are completely stopped.

3. Models

In this section, we present the two models. As already stated in the Introduction, the
models are not meant to provide the same results or to be the many-particle limit of the
other. Nevertheless, they share the most important constitutive assumptions, and for this
reason, they are expected to provide the same qualitative results. The most important
common modeling assumption is that the car dynamics is influenced, at any time, by the
presence of trucks, while the truck dynamics is affected by cars only if the density of cars
exceeds a certain threshold, which corresponds to the fact that cars cannot be confined to
the fast lane any longer and must invade the slow lane where trucks live. This assumption
comes from an important piece of evidence: cars tend to avoid being trapped between two
trucks in the slow lane and prefer moving to the fast lane. Doing this, cars move to the side
of trucks (overtaking them if possible) and do not affect their dynamics, unless the density
of cars is so high that they must necessarily occupy the slow lane too.

3.1. Macroscopic Model

We denote by �L and by �H the average length of light vehicles (cars) and heavy
vehicles (trucks), respectively, and we define

β :=
�L

�H
< 1. (5)

We also denote by ρL the density of cars and by ρH the density of trucks. Similarly, we
denote by ρmax

L and ρmax
H the maximal densities for cars and trucks, respectively. They are

defined as
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ρmax
L =

2
�L

and ρmax
H =

1
�H

, (6)

having assumed that there are two available lanes for cars and only one for trucks. Note
that density values are expressed in terms of number of vehicles per unit of space. Consid-
ering that trucks occupy more space than cars, a direct comparison of the two densities
is not meaningful. For this reason, the two classes are typically compared in terms of
occupied space.

The two-class dynamics is physically admissible if the two densities fall in the set

D :=
{
(ρL, ρH) : 0 ≤ ρL ≤ ρmax

L , 0 ≤ ρH ≤ ρmax
H , 0 ≤ ρL +

ρH

β
≤ ρmax

L

}
, (7)

which is well defined if ρmax
L − ρmax

H
β ≥ 0. In the following, in order to cope with the uneven

space occupancy, we assume that the last condition is verified with the strict inequality

ρmax
L − ρmax

H

β
> 0. (8)

We consider the following two-class model for (ρL, ρH) ∈ D:{
∂tρL + ∂x fL(ρL, ρH) = 0

∂tρH + ∂x fH(ρL, ρH) = 0
x ∈ R, t > 0, (9)

where
fL(ρL, ρH) := ρLvL(ρL, ρH), fH(ρL, ρH) := ρHvH(ρL, ρH)

define the two fundamental diagrams and vL, vH are the speed functions for light and
heavy vehicles, respectively. We then have a family of flow–density curves ρL �→ fL(ρL, ρH)
for cars, parameterized by the truck density ρH, and, analogously, a family of flow–density
curves ρH �→ fH(ρL, ρH) for trucks, parameterized by ρL.

We assume that the flux and speed functions satisfy the following properties:

(L1) vL(ρL, ρH) ≥ 0 for all (ρL, ρH) ∈ D and vL(ρL, ρH) = 0 iff ρL = ρ∗L(ρH), where

ρ∗L(ρH) := ρmax
L − ρH/β (10)

is the maximum admissible car density given the truck density ρH;
(L2) vL(ρL, ρH) is a decreasing function with respect to ρL and ρH;
(L3) fL(0, ρH) = 0 and fL(ρ∗L(ρH), ρH) = 0 for all ρH ∈ [0, ρmax

H ];
(L4) fL(ρL, ρH) is concave with respect to ρL for any ρH. We define

σL(ρH) := arg max
ρL

fL(ρL, ρH) (11)

which represents, as usual, the interface between freeflow and congested regimes;
(L5) fL(ρL, ρH) is a decreasing function with respect to ρH for any ρL.

Similarly,

(H1) vH(ρL, ρH) ≥ 0 for all (ρL, ρH) ∈ D and vH(ρL, ρH) = 0 iff ρH = ρ∗H(ρL), where

ρ∗H(ρL) := min{ρmax
H , β(ρmax

L − ρL)} (12)

is the maximum admissible truck density given the car density ρL;
(H2) vH(ρL, ρH) is a decreasing function with respect to ρL and ρH;
(H3) fH(ρL, 0) = 0 and fH(ρL, ρ∗H(ρL)) = 0 for all ρL ∈ [0, ρmax

L ];
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(H4) fH(ρL, ρH) is concave with respect to ρH for any ρL. We define

σH(ρL) := arg max
ρH

fH(ρL, ρH) (13)

which represents, as usual, the interface between freeflow and congested regimes;
(H5) fH(ρL, ρH) is a decreasing function with respect to ρL for any ρH.

To cope with the peculiarities of the dynamics, we consider a phase transition (cf. [34–36])
caused by the presence of two states of the system:

• The partial coupling phase is in place when

(ρL, ρH) ∈ D1 :=
{

0 ≤ ρH ≤ ρmax
H , 0 ≤ ρL ≤ ρmax

L − ρmax
H /β

}
, (14)

see Figure 5.
In this phase, we assume that cars are mainly in the fast lane and do not affect the
truck dynamics. Trucks are then independent from cars.
For trucks, we choose a triangular fundamental diagram with

vH(ρH) = Vmax
H for all ρH ≤ σH, (15)

where Vmax
H is the maximum speed of trucks, see Figure 6b.

Cars do not interfere with trucks but adapt their dynamics to the presence of them.
Moreover, for cars, we choose (a family of) triangular fundamental diagrams, see
Figure 6a. Specifically, we set

vL(ρL, ρH) =

⎧⎪⎪⎨⎪⎪⎩
V∗

L (ρH) if ρL ≤ σL(ρH),

V∗
L (ρH) σL(ρH)

ρ∗L(ρH)− σL(ρH)

(
ρ∗L(ρH)

ρL
− 1
)

if σL(ρH) < ρL ≤ ρmax
L − ρmax

H /β,
(16)

where V∗
L (ρH) is the maximum speed of cars given the truck density. We also define

V∗
L (0) = Vmax

L as the maximum speed of cars in the absence of trucks. Then, V∗
L (ρH) ≥

0 and σL(ρH) ≥ 0 are continuous linear decreasing functions of ρH.
For (ρL, ρH) ∈ D1, the model (9) then becomes{

∂tρL + ∂x fL(ρL, ρH) = 0

∂tρH + ∂x fH(ρH) = 0
(17)

where fL(ρL, ρH) = ρLvL(ρL, ρH) and fH(ρH) = ρHvH(ρH), as described in Figure 6.
• The full coupling phase is in place when (ρL, ρH) ∈ D2 := D\D1, see Figure 5. In this

case, we assume that there are too many cars to find it convenient to be confined to the
fast lane. For this reason, they invade the slow lane, thus influencing the dynamics of
trucks. The two equations in system (9) are then fully coupled.
As before, we choose for both classes a family of triangular fundamental diagrams
which extend, by continuity, those defined in D1, as shown in Figure 7.

We define the transition level as the threshold density of light vehicles which acts as an
interface between the two phases, see Figure 5. In our setting, trucks are confined to one of
the two available lanes, and then the transition level is equal to ρmax

L − ρmax
H /β = ρmax

L /2.
Note also that the fundamental diagrams we use in this work verify all the properties

(L1)–(L5) and (H1)–(H5).
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Figure 5. Domains D1 and D2 of the macroscopic model (9).
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Figure 6. Fundamental diagrams of the macroscopic model in the partial coupling phase, i.e.,
(ρL, ρH) ∈ D1. (a) Light vehicles, (b) heavy vehicles.
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Figure 7. Fundamental diagrams of the macroscopic model in the full coupling phase, i.e.,
(ρL, ρH) ∈ D2. (a) Light vehicles, (b) heavy vehicles.

3.2. Multi-Scale Model

In this section, we describe the multi-scale model. Here, cars are described by a
first-order LWR model of type (2), and trucks are described by a second-order microscopic
follow-the-leader model of type (1). Let us describe the microscopic model first, dropping,
for the moment, the coupling with light vehicles.
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3.2.1. Microscopic Model for Heavy Vehicles

The microscopic model is the one presented in [3], which is, in turn, inspired by the
model originally proposed by Zhao and Zhang in [33].

In the following, we denote by Δk the gap between truck k and truck k + 1 at any
time t:

Δk(t) := Xk+1(t)− Xk(t).

It is plain that this gap is inversely proportional to the density of heavy vehicles.
We define in (1)

A
(
Xk, Xk+1, Vk, Vk+1

)
=

⎧⎨⎩
1

τacc

(
vZZ(Δk)− Vk

)
, if vZZ(Δk) ≥ Vk

1
τdec

(
vZZ(Δk)− Vk

)
, if vZZ(Δk) < Vk

(18)

where the function vZZ represents the equilibrium velocity all drivers tend to and depends
on the gap Δk. Parameters τacc, τdec > 0 are the relaxation times as usual, differentiated for
the acceleration and the deceleration phase. Diversifying the relaxation times appeared to
be crucial to fit real data.

The velocity function vZZ is defined by

vZZ(Δ) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if Δ ≤ Δclose

Vmax
H

Δfar−Δclose
(Δ − Δclose), if Δclose < Δ < Δfar

Vmax
H , if Δ ≥ Δfar

(19)

where Δclose, Δfar, Vmax
H are positive parameters, see Figure 8.

Figure 8. The shape of the velocity function vZZ(Δ) defined in (19).

The plateau in Δ ∈ [0, Δclose] is crucial for correctly reproducing stop and go waves.
Indeed, once the relaxation times τacc, τdec are fixed, the capability of the model to trigger
stop and go waves is ruled precisely by Δclose.

3.2.2. Full Model

First of all, given the parameter δ > 0, we assume that cars located at x are influenced
by a truck iff the distance between the truck and x is less than δ. We denote the number of
trucks falling in the road interval [x − δ, x + δ) at any time t by

Nδ
H(x, t) := #{k : Xk(t) ∈ [x − δ, x + δ)}. (20)

Second, we denote by ρL the density of light vehicles and by vL their velocity. To
couple the dynamics of the two classes, we assume that vL depends on both ρL (as in the
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classical LWR model) and Nδ
H. Following standard assumptions, we assume that vL is

decreasing with respect to both arguments.
Finally, we couple the dynamics of heavy vehicles with those of light vehicles. The

interaction is obtained by introducing the dependence on ρL in the parameters Δclose
and Δfar. More precisely, we introduce the increasing functions Δclose = Δclose(ρL) and
Δfar = Δfar(ρL), and we denote by AC = AC(Xk, Xk+1, Vk, Vk+1, ρL) the coupled acceleration
defined as A in (18) and (19), with the new dependence on ρL.

We are now ready to present the fully coupled multi-scale model which reads as⎧⎪⎪⎪⎨⎪⎪⎪⎩
{

Ẋk = Vk

V̇k = AC(Xk, Xk+1, Vk, Vk+1, ρL)
, k = 1, . . . , N − 1

∂tρL + ∂x

(
ρLvL(ρL, Nδ

H)
)
= 0, x ∈ R, t > 0.

(21)

To be coherent with our modeling assumptions, the functions Δclose and Δfar are con-
stant for car densities below the transition level, i.e., ρL ≤ ρmax

L /2. In this case, the dynamics
of trucks is independent from those of cars. Conversely, for ρL > ρmax

L /2, we assume that
the distances Δclose and Δfar increase linearly with respect to the average number of cars
which are positioned between two trucks. This number can be easily computed considering
the average number of cars in a road segment of length � (equal to ρL�) and the number of
trucks in the same road segment (assuming that all vehicles are uniformly distributed). We
were unable to precisely calibrate the shape of the functions Δclose and Δfar from real data
because it happens rarely that many cars are found between trucks: indeed, trucks tend to
“push” cars into the fast lane rather than reacting to their presence.

3.3. Extension of the Models to General Road Networks

In order to perform a complete simulation on a generic network of highways, some
important generalizations are needed.

3.3.1. Any Number of Lanes

Highways often have more than two lanes. Consider a road with n lanes of which nH

can be occupied by trucks. To allow the creeping phenomenon, we assume that nH < n,
which corresponds to ρmax

L �L − ρmax
H �H > 0 in terms of space occupied, cf. (8).

In the macroscopic approach, the model is easy generalized. Fundamental diagrams
are modified in such a way that trucks start interacting with cars when the density of cars
becomes greater than nH

n ρmax
L .

In the microscopic model, instead, an important modification is needed if nH > 1.
Indeed, in this case, trucks can overtake, and the microscopic model must be able to handle
this. Typically, some new parameters are introduced in order to establish when a truck
decides to overtake and if the truck can actually overtake, considering suitable safety
constraints. From the computational point of view, additional difficulty arises when one
has to find the truck in front of any other truck, since the ordering is lost whenever a truck
overtakes. To make the search for the preceding vehicle computationally feasible, one can
keep track, in a specific list, of all trucks located in each numerical cell and then update the
list whenever a truck leaves or enters the cell.

3.3.2. Junctions

In order to perform a full simulation on a network of highways, both theoretical
and numerical treatments of junctions are needed. Typically, highways do not have
roundabouts, traffic lights or complex junctions; therefore, we can limit ourselves to handle
simple merging (2 incoming roads and 1 outgoing road) and diverging (1 incoming road
and 2 outgoing roads). We adopted the approach detailed in [13], in which the dynamics
reformulated along paths and junctions “disappears”. The price to pay is that the number of
equations is multiplied by the number of possible paths the drivers can follow at junctions.
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In both merging and diverging, we have only two possible paths: for example, in the case
of diverging, one can choose among the first and second outgoing roads, while in merging,
one can decide to come from the first or the second incoming road.

Following this approach in the macroscopic model, the densities of each class of
vehicles are split around every junction, ending up with a system of four conservation
laws (two paths for each of the two classes of vehicles) with a discontinuous flux. After
the junctions, densities are gathered together again, and the two-equation system (9) is
restored.

In the multi-scale model, instead, the path-based approach is applied only for car
dynamics since managing trucks is much simpler. Indeed, in the microscopic model, one
can just move vehicles from one road to another on the basis of their destination, see [37].
Unfortunately, the ordering of trucks is lost every time a change of road takes place. In
order to reduce the computational effort needed for the computation of the preceding truck
of every truck, the same solution proposed in Section 3.3.1 can be applied.

4. Numerical Approximation and Calibration

In this section, we describe how the models introduced above can actually be imple-
mented. First, we briefly recall the numerical methods we have adopted, and then we
describe how we used real data to set the models’ parameters.

4.1. Macroscopic Model

For the numerical approximation of the macroscopic model (9), we employ the exten-
sion of the cell transmission model (CTM) to the heterogeneous multi-class model proposed
in [14]. Let Δx and Δt be the space and time steps, respectively, and let (ρn,i

L , ρn,i
H ) be the traf-

fic densities in the ith cell at the nth time step. The finite volume numerical scheme reads⎧⎪⎪⎨⎪⎪⎩
ρn+1,i

L = ρn,i
L +

Δt
Δx

(
Fn,i−1/2

L −Fn,i+1/2
L

)
ρn+1,i

H = ρn,i
H +

Δt
Δx

(
Fn,i−1/2

H −Fn,i+1/2
H

) (22a)

(22b)

where
Fn,i+1/2

L := min
{

SL(ρ
n,i
L , ρn,i

H ), RL(ρ
n,i+1
L , ρn,i+1

H )
}

, (23)

Fn,i+1/2
H := min

{
SH(ρ

n,i
L , ρn,i

H ), RH(ρ
n,i+1
L , ρn,i+1

H )
}

, (24)

and (SL, RL), (SH, RH) represent the sending and receiving functions of the two vehicle
classes, respectively, defined by

SL(ρL, ρH) :=

{
fL(ρL, ρH), if ρL ≤ σL(ρH),

fL(σL(ρH), ρH), if ρL > σL(ρH),

RL(ρL, ρH) :=

{
fL(σL(ρH), ρH), if ρL ≤ σL(ρH),

fL(ρL, ρH), if ρL > σL(ρH),

(25)

and similarly for (SH, RH).
The numerical grid is chosen as Δx = 100 m and Δt = 2.6 s. The choice of the space step

comes from the fact that the company Autovie Venete finds such granularity convenient for
sharing traffic information to drivers, while the time step is dictated by the CFL condition.

Calibration of the fundamental diagrams was performed by fitting real data. We used
all data measured in 2019 by one fixed sensor located near Cessalto, see Figures 9 and 10.
Note that for high densities, the velocities drop rapidly to zero. Since we have no data
for completely stationary vehicles under the sensor, we are not able to reconstruct data on
high traffic density. For this reason, the maximal densities ρmax

L and ρmax
H are estimated by

simply computing the ratio between the number of available lanes for the class and the
average length of vehicles of that class, see Equation (6).
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(a) (b)

Figure 9. (a) Flux–density and (b) velocity–density relationships for cars with real data superimposed.

(a) (b)

Figure 10. (a) Flux–density and (b) velocity–density relationships for trucks with real data superimposed.

Model parameters are summarized in Table 1. All functions which rule the dependence
of ρ, v, f on the density of the other class are linear.

Table 1. Parameters for the macroscopic model.

Light Vehicles Heavy Vehicles

veh. length + safety dist. (km) 7.5 × 10−3 18 × 10−3

max max density (veh/km) ρ∗L(0) = 267 ρ∗H(0) = 56

min max density (veh/km) ρ∗L(ρmax
H ) = 133 ρ∗H(ρmax

L ) = 0

max max speed (km/h) vL(0, 0) = 130 vH(0, 0) = 90

min max speed (km/h) vL(0, ρmax
H ) = 65 vH(ρmax

L , 0) = 0

max max flux (veh/h) fL(σL(0), 0) = 4200 fH(0, σH(0)) = 1500

min max flux (veh/h) fL(σL(ρmax
H ), ρmax

H ) = 1200 fH(ρmax
L , σH(ρmax

L )) = 0

4.2. Multi-Scale Model

For the numerical approximation of the macroscopic part of the multi-scale model (21),
we again employ scheme (22a), where Nδ

H plays the role of ρH in the obvious manner. The
numerical grid is chosen as Δx = 100 m and Δt = 2 s.

The dependence of the flux on Nδ
H can generate some issues. For example, consider

the case of no trucks and a car density ρ̂L close to ρmax
L . When a truck enters the road,

the maximal density allowed in the cell occupied by the truck drops to ρ∗L(Nδ
H) according

to (10). Now, if ρ∗L(Nδ
H) < ρ̂L, the current density ρ̂L is found not to be compatible with the

new maximal density. Although the entering truck perceives the cars, it is not guaranteed
that the compatibility with the maximal density is respected at any time. To avoid this
problem, trucks must be prevented from entering cells if the new maximal density caused
by the presence of the truck itself is not compatible with current traffic conditions.

For the numerical approximation of the microscopic part, we used a standard Euler
scheme with a time step of δt = 0.1 s. Note that this time step is much smaller than the time
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step Δt used for the Godunov scheme, meaning that the updates of the trucks and cars are
asynchronous.

Regarding the parameters, the macroscopic part of the model is treated as in Section 4.1
(Table 1). For the microscopic model, some parameters are easily calibrated by using real
data and considering physical constraints. For example, Vmax

H was defined as in the
macroscopic model. Δfar was set in order to guarantee that trucks do not collide even in
the event that a truck suddenly brakes with full power until it stops (note that our model
allows, in principle, collisions since deceleration is bounded). Δclose, instead, was set to
a distance which guarantees catching the maximal observed density of trucks. In other
words, when a queue of trucks is formed, the model predicts the correct maximal density.

Parameters τacc and τdec are, instead, more difficult to calibrate since they are not
easily measurable. For those values, we considered a real stop and go wave observed by
the company staff on 12 June 2017, generated by the slowdown of a truck near a bottleneck.
The initial perturbation (slowdown) was amplified and, in a short time, generated a queue
which propagated backwards. We run the microscopic model using real inflow data as left
boundary conditions, and then we fitted the parameters in order to catch the real queue as
measured in the field, see Figure 11.

Figure 11. Simulated trajectories obtained with real inflow data as left boundary conditions (not
all vehicles are plotted for visualization purposes). Horizontal blue lines and vertical black lines
indicate, respectively, the position and the duration of the real queue as measured in the field.

The role of the parameters τacc and τdec is to adjust the points/times of the start and
the end of the queue. We noted a strong sensitivity of the model to those parameters. As a
consequence, it is quite difficult to catch the correct speed of the backward propagation of a
queue when inertia comes into play. We summarize the values of the parameters in Table 2.

Table 2. Parameters for the microscopic model.

δ 50 × 10−3 km

Δclose 25 × 10−3 km

Δfar 50 × 10−3 km

Vmax
H 90 km/h

τdec 2 × 10−4 h

τacc 1.4 × 10−2 h

5. Numerical Results

In this section, we present the numerical results obtained with models (9) and (21).
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5.1. Macroscopic Model

Here, we present three tests which highlight how the macroscopic model reproduces
some interesting phenomena arising from the coupled dynamics of cars and trucks. In
particular, we focus on the creeping phenomenon, the shared occupancy and the stop and
go waves.

5.1.1. Test 1A: Creeping

In this simple test, we observe the creeping phenomenon, see Figure 12. The simulation
starts with a constant density (ρL, ρH) = (10, 13) veh/km all along the road. At the end
of the road (right boundary), trucks are stopped by fixing their density at its maximum
value ρmax

H = 56: a queue of trucks propagates backward from the end of the road, while a
constant flux of cars approaches the beginning of the queue. Once cars reach the trucks’
queue, they have to slow down but do not stop completely. More precisely, the cars’ velocity
drops to 65 km/h. Note that the car density remains under the transition level, and then
the dynamics is in the partial coupling phase all the time. Moreover, cars are always in the
freeflow regime and then move at maximal speed, but the maximal speed changes as a
function of the truck density.

(a) (b)

(c) (d)

Figure 12. Test 1A: (a) Density and (b) velocity of light and heavy vehicles as a function of space at
final time. (c) Density of light and (d) heavy vehicles in space–time.

5.1.2. Test 2A: Cars’ Congestion Affects Truck Dynamics

In this test, we observe the effect of congestion of cars, see Figure 13. The simulation
starts with a constant density (ρL, ρH) = (10, 8) veh/km all along the road. At the end
of the road (right boundary), the density of cars is fixed to 186 veh/km to create the
slowdown. The car density is larger than the transition level, so cars have to invade the
slow lane. Trucks facing the car congestion slow down but do not just occupy the space left
to them by cars; rather, they conquer some extra space, thus decreasing the car density. As a
result, both cars and trucks proceed slowly without stopping, and the initial car congestion
propagates backward with a density lower than the transition level.
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(a) (b)

(c) (d)

Figure 13. Test 2A: (a) Density and (b) velocity of light and heavy vehicles as a function of space at
final time. (c) Density of light and (d) heavy vehicles in space–time.

5.1.3. Test 3A: Stop and Go Wave

In this test, we study the evolution of a small perturbation in the truck density, see
Figure 14. At the initial time, the truck density is constant and equal to 12 veh/km, except
for a small perturbation at the end of the road where the density is equal to 30 veh/km.
The car density instead oscillates just above the transition level. It is plain that a single-class
LWR model for trucks only would flatten the perturbation in a short time. Conversely, in
this case, the coupling with car dynamics causes the perturbation to propagate backward
without vanishing. This second-order-type effect is obtained thanks to the fact that the
fundamental diagram of trucks is continuously modified by the oscillating car density.

(a) (b)

Figure 14. Cont.
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(c) (d)

Figure 14. Test 3A: (a) Density and (b) velocity of light and heavy vehicles as a function of space at
t = Δt (i.e., just after the initial time). (c) Density of light and (d) heavy vehicles in space–time. The
evolution of the initial perturbation in the truck density starting at 9 km is perfectly visible, which
creates, in turn, a perturbation in the car density.

5.2. Multi-Scale Model

Here, we replicate, with the multi-scale model, the first two scenarios already inves-
tigated in Section 5.1. The third scenario was already considered in Figure 11, where the
second-order microscopic model is able to reproduce stop and go waves alone, without the
need to couple car dynamics. Finally, we consider the case of a merge.

5.2.1. Test 1B: Creeping Effect

Similar to Test 1A in Section 5.1.1, here, one truck stops completely and creates a long
queue of trucks behind, which saturates the slow lane. When cars reach the truck queue,
they all move to the fast lane staying at the (new, reduced) maximal velocity of 65 km/h,
see Figure 15.

(a) (b)

Figure 15. Test 1B: (a) Trajectories of trucks in space–time (for visualization purposes, not all trucks
are actually plotted). When the first truck stops, a queue is formed behind. (b) Car density, car
velocity and car maximal density given the number of trucks at final time. Creeping is visible between
7 and 9 km.

5.2.2. Test 2B: Cars’ Congestion Affects Truck Dynamics

Similar to Test 2A in Section 5.1.2, congestion of cars at the end of the road slows down
trucks, see Figure 16. The results are similar to those obtained by the macroscopic model,
but here, trucks stop completely, forming a queue.
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(a) (b)

Figure 16. Test 2B: (a) Trajectories of trucks in space–time (for visualization purposes, not all trucks
are actually plotted). They stop for a while and then accelerate. (b) Car density, car velocity and car
maximal density given the number of trucks at final time.

5.2.3. Test 3B: Merge

In this test, we consider a merge (two incoming roads and one outgoing road). At
time t = 0, the three roads are empty. A constant inflow of trucks (one every 4 s) comes
from the left boundary of both incoming roads, while a constant density of cars (ρL = 32)
is imposed as a Dirichlet left boundary condition on the second incoming road only. The
first incoming road has no cars. When trucks reach the junction and merge, they suddenly
break and rapidly form a queue which propagates backward along both incoming roads,
see Figure 17a,b.

(a) (b) (c)

(d) (e)

Figure 17. Test 3B: (a–c) Trajectories of trucks in space–time on the first incoming road, second
incoming road and outgoing road, respectively (for visualization purposes, not all trucks are actually
plotted). (d,e) Car density on second incoming road and outgoing road, respectively.

Queues are not identical due to the presence of cars along the second incoming road.
One can note that when the trucks downstream of the queue start moving again, their
flux is not maximal: indeed, if the flow were maximum, a queue at the junction would
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immediately reform as it happened in the first place. This is the well-known capacity drop
phenomenon, ruled by τacc, cf. [38]. As a consequence, trucks are able to cross the junction
without spillback. Cars, instead, move at the maximal flux until they encounter the truck
queue. The queue acts as a moving bottleneck and drops the road capacity; therefore, the
car traffic immediately enters the congested state, and the density increases. Downstream,
the density remains in the freeflow state, and cars cross the junction without spillback, see
Figure 17d,e.

6. Conclusions and Future Work

In this paper, we presented two models for two-class traffic flow. Although the models
are tailored for a specific case study, they are sufficiently general to be useful in other
motorways. Moreover, both models can be easily generalized to more than two classes of
vehicles and a different ratio between the number of lanes used by trucks and the number
of lanes used by cars.

We have shown that the models are able to reproduce, both qualitatively and quanti-
tatively, some notable traffic phenomena arising from the interactions of the two classes.
Interestingly, the macroscopic model, although purely first-order, is able to reproduce stop
and go waves thanks to the coupling of the two classes.

After this preliminary analysis, it is possible to sketch some conclusions about the
advantages and drawbacks of the two models: The multi-scale model has a greater potential
since the second-order microscopic part makes it more realistic and then suitable for
quantitative predictions. Nevertheless, the macroscopic model appears to be simpler and
more manageable, thus representing a valid alternative if one wants to avoid tracking all
single vehicles, especially for saving computational time.

In conclusion, we believe that both the proposed models represent the best compro-
mise between accuracy and implementability. In fact, decoupling the dynamics of different
classes excessively simplifies the problem description and does not allow obtaining an
accurate forecast; conversely, moving to second-order macroscopic models or including
multi-lane features in the models notably increases the complexity of the code as well as
the number of parameters to be tuned. These generalizations would allow, in principle,
easily catching inertia-based phenomena in all classes of vehicles and tracking the density
of each class of vehicle in each lane, but, in our opinion, they make that model unfeasible for
practical applications.

In the future, we plan to improve the models including the possibility that they are fed
by both Lagrangian (GPS-like) and Eulerian data coming from mobile and fixed sensors,
respectively, cf. [39]. Moreover, we plan to estimate, in real time, the difference between pre-
dicted and measured densities using the machinery developed in [13], hopefully creating
an algorithm for the auto-calibration of the models in real time.
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Abstract: A new framework for optimal design based on the information-theoretic measures of mu-
tual information, conditional mutual information and their combination is proposed. The framework
is tested on the analysis of protocols—a combination of angles along which strain measurements can
be acquired—in a biaxial experiment of soft tissues for the estimation of hyperelastic constitutive
model parameters. The proposed framework considers the information gain about the parameters
from the experiment as the key criterion to be maximised, which can be directly used for optimal
design. Information gain is computed through k-nearest neighbour algorithms applied to the joint
samples of the parameters and measurements produced by the forward and observation models.
For biaxial experiments, the results show that low angles have a relatively low information content
compared to high angles. The results also show that a smaller number of angles with suitably chosen
combinations can result in higher information gains when compared to a larger number of angles
which are poorly combined. Finally, it is shown that the proposed framework is consistent with
classical approaches, particularly D-optimal design.

Keywords: optimal design; soft tissue mechanics; mutual information; biaxial experiment; inverse
problems; information theory

MSC: 62K05; 94A15; 92C10

1. Introduction

Soft tissues exhibit complex biomechanical behaviour, including nonlinearity, anisotropy
and heterogeneity [1]. Moreover, the tissues also demonstrate inelastic properties, such as
rate-dependence, hysteresis and permanent set. The important link between biomechanics
and their physiological function has motivated a large number of ex-vivo studies aimed at
characterising their biomechanical properties. Given the complex interplay between the
different aspects of their biomechanical properties, the experimental design of ex-vivo soft
tissues is extremely challenging and has been a subject of investigation, and a variety of
experiments have been proposed [2–6].

Since a variety of soft tissues are thin—e.g., blood vessels, heart valves and skin—
biaxial testing is a widely used experimental technique that allows the independent stretch-
ing of the tissue in two orthogonal directions and for the corresponding forces to be
measured [7,8]. Applying different stretches in two directions allows the characterization
of the in-plane anisotropic behavior of a given tissue, while a range of stretches provides us
with its nonlinear elastic response. However, even with this relatively simple set of options,
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the choices of which stretches to apply are unclear. Moreover, it is not obvious upon what
these choices will depend.

A variety of hyperelastic models have been developed to describe the anisotropic
and nonlinear elastic properties of specific soft tissues [4,9–11]. Biaxial experimental data
are commonly fit to these models in order to determine the model parameters. As the
unknown parameters depend on specific models, the choice of experimental setup—the
problem of optimal design—might depend on the choice of model. However, in practice, a
predetermined set of experimental protocols is used.

In the present work, an optimal design problem is defined to find the most suitable
protocol in view of estimating the parameters of the material model. A comprehensive
overview of the optimal design problem can be found in [12,13], and several criteria for
optimal design have been proposed in the literature, often based on the minimisation of the
variance of the parameters and sensitivities [14,15]. In the present work, we investigate a
criterion based on information theoretic quantities, in the spirit of what has been proposed
in [16,17] (from a Bayesian point of view) and [18]. Several works have recently proposed
information-based criteria to better define experimental protocols. In [19], the authors
proposed the maximisation of the mutual information between the parameters and the
observations under the assumption that the model error is a Gaussian process. In [20],
the authors proposed a framework based on mutual information maximisation to deal
with the design of chemistry experiments. The same criterion is proposed in [21]; the
authors maximise the mutual information by using a stochastic gradient ascent method.
An application to system biology is investigated in [22]. In [23], the maximisation of the
information is exploited in order to choose high-fidelity model resolutions in a multi-fidelity
modelling framework.

While mutual information has been used for optimal design in previous studies, the
novelty of this work is in the proposal of a combination of information-theoretic quantities
of both mutual and conditional mutual information. A further novelty is the application of
this framework in the optimal design of soft tissue experiments. Estimating information-
theoretic quantities is in general a challenging problem, and this is especially the case in
high-dimensional settings. In the present work, a model reduction method is coupled
with non-parametric sample-based mutual information estimation in order to provide a
pertinent estimation of the information-theoretic quantities involved in the optimal design
problem and then apply this to the biaxial testing of soft tissues.

The structure of the work is as follows: in Section 2, the model and information-
theoretical aspects of the problem are introduced. In particular, in Section 2.1, we detail the
mathematical model of the biaxial experiments for soft tissues: after having introduced the
notation and the non-linear elasticity model, in Section 2.1.1, we apply it to the biaxial test-
ing experimental setup. In Section 2.1.2, we introduce the experimental protocol definition;
the second part of the section is devoted to the description of the information-theoretic
framework used to solve the optimal design problem. In Section 2.2.1, we introduce the
problem; in Sections 2.2.2 and 2.2.3, the information-theoretic quantities and their numeri-
cal estimation are detailed. We then present the reduce order modeling method used and
how to validate the results obtained by the proposed approach. The section ends with an
overview of the method. The results and the discussion are presented in Section 3, followed
by the conclusion and perspectives on future work.

2. Methods

The methodological aspects are divided into two broad categories: the mathematical
model of the biaxial experiments and the information-theoretic optimal design framework.

2.1. Mathematical Model of the Biaxial Experiments

We begin by defining the notation: a material point at its reference position X ∈ R3

moves to x ∈ R3 after deformation. The elastic behaviour of soft tissues is described using
the hyperelastic strain energy density Ψ, which depends on the deformation gradient

80



Axioms 2021, 10, 79

tensor F = ∇X x. The ratio of the volume after deformation to that before deformation is
given by J = det(F). Soft tissues are commonly regarded as incompressible due to their
high water content; i.e. J is constrained to be unity.

We consider the hyperelastic model proposed by Gasser et al. [24], which defines the
strain energy density as

Ψ =
k1

2k2

[
ek2(κ I1+(1−3κ)I4−1) − 1

]
+ μ(I1 − 3), (1)

where I1 = tr(F�F) is the first invariant of the right Cauchy–Green strain tensor C = F�F

and I4 = M · CM is the fourth invariant representing the stretch along fiber direction M.
The resulting Cauchy stress is given by

σ = 2F · ∂Ψ
∂C

· F� − pI, (2)

where p acts as the Lagrange multiplier to enforce incompressibility and I is the iden-
tity matrix.

For this model, the set of unknown parameters can be written as {k1, k2, κ, μ}, assum-
ing that the fiber direction M is known a priori (based on another experiment; e.g., light
scattering [6]). κ represents the dispersion of collagen fibers, which is usually measured
from optical experiments. Its value lies between 0 (perfectly anisotropic) and 1/3 (per-
fectly isotropic). The value of μ corresponds to the shear modulus of the neo-Hookean
term in (1), which represents the amorphous and non-fibrous extracellular matrix. Its role
in the mechanics of soft tissues is limited to small strains and is largely constant across
different tissues. In this paper, in order to simplify the problem, we assume that κ = 0.1
and μ = 1 kPa are known and fixed. Thus, the aim of an ex-vivo biomechanical experi-
ment is to determine parameters k1 ∈ [5, 100] kPa and k2 ∈ [5, 80] robustly and with high
confidence [25,26]. A commonly used experiment called biaxial testing is described bellow.

2.1.1. Biaxial Experiments for Soft-Tissues

Many of the soft tissue types are planar with a small thickness. In a biaxial experiment,
a square-shaped tissue sample is mounted via clamps or rakes and stretched along two
orthogonal directions aligned with the sample edges (Figure 1a). If these directions are
used as the two coordinate axes and incompressibility is assumed, the stretching results in
a diagonal deformation gradient tensor:

F = diag
[

λ1, λ2,
1

λ1λ2

]
, (3)

where λ1 is the stretch along the first in-plane direction and λ2 is the stretch along the second
in-plane direction. The fiber direction M is generally aligned with the first coordinate axis,
which results in only normal stress components. As no force is applied along the thickness
of the tissue, σ33 = 0 is used to determine the Lagrange multiplier p. Thus, we obtain

σ11 = 2
∂Ψ
∂I1

[
λ2

1 −
1

λ2
1λ2

2

]
+ 2

∂Ψ
∂I4

λ2
1 (4)

σ22 = 2
∂Ψ
∂I1

[
λ2

2 −
1

λ2
1λ2

2

]
. (5)

The applied stresses σ11, σ22 are controlled using load cells. The resulting strains,
defined as e1 := λ1 − 1 and e2 := λ2 − 1, are measured from the marker positions (although
e1 and e2 are not the usual strain measures, we use these as our observations). It is important
to note that a homogeneous stress and strain state is assumed in the middle of the sample
(Figure 1a). Therefore, an implicit assumption is that the material properties and sample
thickness are homogeneous. Moreover, these measurement techniques carry an error
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due to the limitations in measurement tools and/or the deviation from homogeneity,
incompressibliity and material direction.

a) b)

Figure 1. (a) A schematic of a biaxial experimental setup in which a thin planar tissue sample (in
light gray) is mounted via rakes and two orthogonal forces are applied to induce stresses σ11 and σ22,
and the resulting strains are measured by tracking the locations of the markers (in dark gray). (b) The
σ11 − σ22 space, where the applied stresses lie on the dotted line with a finite number of protocol
angles φ used.

2.1.2. Protocol Definition

In practice, there are two approaches to the biaxial experiment: (1) displacement-
controlled, where known stretches are imposed and forces are measured; and (2) force-
controlled, where known forces are applied and stretches are measured. Generally, the
force-controlled approach is used as it is easier to implement. Therefore, in the force-
controlled approach, different values of stresses σ11 and σ22 can be applied.

A single-angle biaxial protocol is defined as a straight line in the σ11-σ22 space
(Figure 1b). That is, the ratio between the two stresses is kept constant while the ap-
plied forces are increased until a maximum value σmax = 200 kPa. Thus, for a chosen angle
φ, we apply

σ11 =

⎧⎨⎩σ if φ ≤ π

4
tan(φ)σ else

(6)

σ22 =

⎧⎨⎩cot(φ)σ if φ ≤ π

4
σ else

, (7)

where σ ∈ [0, σmax]. For σ, 100 linearly spaced observation points between zero and the
maximum stress (σmax = 200 kPa) are used. The resulting strains are calculated by itera-
tively solving Equation (5) for λ1,2 and thereby obtaining e1,2. In practice, a combination of
angles can be successively tested. We refer to this combination as the experimental protocol
that needs to be optimally designed.

For each angle, it is easy to acquire large numbers of points as the sample is continu-
ously stretched. However, to vary between angles, it is essential to restart the experiment at
zero applied force, which further requires the “pre-conditioning” of the sample by cyclically
applying small stretches. This makes it practically difficult to apply an arbitrarily large
number of angles. Therefore, in practice, usually only five angles are tested.

2.2. Information-Theoretic Framework for Optimal Design

The problem of optimal design typically refers to the choice of a design of experiments
such that the design is optimal with respect to a pre-determined statistical criterion. We
propose that the information-theoretic measures naturally define such statistical criteria.
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The central idea is that information gain [27,28] from an experiment or protocol—as quanti-
fied by the information-theoretic quantities of mutual information and conditional mutual
information—can be directly used as a reasonable statistical criterion for optimal design.
These quantities are described next after presenting the framework for optimal design.

2.2.1. Optimal Design Problem

Consider the following general model:

y = M(θ), (8)

where M denotes a forward model that takes θ ∈ Rm and outputs y ∈ Rn. Note that θ
may contain initial and boundary conditions of the model and that y may subsume the
output at many time-points in the case of a dynamic system. Subsequently, consider that
the measurement model is as follows:

z = Hp(y, θ) + ε, (9)

where Hp represents the observation operator, z ∈ Rd represents the measurement vector,
and ε represents the vector of measurement error/noise. Note that the the observation
operator Hp depends on the design of experiments, which specifies which quantities are
measured. Given a set of possible Hp = {H1,H2, · · · ,Hh}, and a statistical criterion
S(Hp) to be maximised, the optimal design is given by

Ĥp = arg max
Hp

S(Hp). (10)

In the case of the biaxial experiments, the model M represents the model for the force
controlled experiment (Sections 2.1.1 and 2.1.2) and Hp essentially denotes the experimental
protocol (see Section 2.1.2) representing the combination of angles—with each representing
a straight line in the σ11–σ22 plane—along which the strain measurements of e1 and e2
are acquired. With the possible variation of each angle between 0 and π/2, the set Φ of
possible angles φ is constructed through a uniform discretisation of the space between 0
and π/2 into α levels; thus,

Φ = {φ0, φ1, · · · , φα}. (11)

The possible set of protocols is then given by any combination of elements in Φ with
the restriction that the number of elements in a protocol must be limited to C. Thus, if
Φ ⊂ Φ is a subset of angles representing a protocol, our set of protocols is given by

Hp =
{

Φ ⊂ Φ | 1 ≤ |Φ| ≤ C}, (12)

where | · | represents the number of elements in the set. In other words, we choose at least
1 and up to C elements from Φ, with the total elements in Hp being

|Hp| =
(

α

1

)
+

(
α

2

)
· · ·+

(
α

C
)

. (13)

2.2.2. Information-Theoretic Quantities for Optimal Design

In the framework of Section 2.2.1, we propose that information-theoretic quantities
of mutual information and conditional mutual information are a natural choice for the
statistical criterion S . Denoting the random variables associated with θ and z as Θ and Z,
respectively, the mutual information (MI) between the parameters Θ and the measurements
Z is defined as [27]

I(Θ; Z) =
∫
XΘ×XZ

pΘ,Z(θ, z)
pΘ,Z(θ, z)

pΘ(θ)pZ(z)
dθdz, (14)
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where pX(x) represents the probability density of a random variable X with a realisa-
tion X = x and support XX. The mutual information I(Θ; Z) quantifies the amount of
information that can be gained on average by one random variable—e.g., Z—knowing
about the other—e.g., Θ. Indeed, with this interpretation, MI is a good candidate for the
statistical criterion S for optimal design. For an individual parameter, Θi, or indeed for any
combination of parameters {Θi, Θj}, the corresponding information gains can be similarly
computed through I(Θi; Z) and I({Θi, Θj}; Z), respectively. Thus, while I(Θi; Z) quan-
tifies the information gain individually for the parameter Θi, the quantity I({Θi, Θj}; Z)
quantifies information gain for the pair {Θi, Θj} jointly. A measure of correlation between
the parameters Θi and Θj is, however, missing and is provided by conditional mutual
information (CMI), defined as

I(Θi; Θj|Z)︸ ︷︷ ︸
I

= I(Θi; {Θj, Z})︸ ︷︷ ︸
II

−I(Θi; Z)︸ ︷︷ ︸
III

. (15)

The CMI I(Θi; Θj|Z) represents the additional information gained about the parame-
ter Θi when both Θj and Z are known (term II) relative to when only the measurements Θi
alone are known (term III). Note that CMI is symmetrical—i.e., I(Θi; Θj|Z) = I(Θj; Θi|Z)—
and can be interpreted as a measure of dependence between the parameters given the
measurements Z. It should also be noted that both MI and CMI are non-negative.

With the above background, many statistical measures can be constructed. For example:

1. The mutual information for any single parameter may be maximised, givingS = I(Θi; Z).
This approach only concerns the posterior of the parameter Θi and ignores all other
parameters;

2. The joint mutual information may be maximised, giving S = I(Θ; Z). In the sense of
classical optimal design, this can be interpreted as D-optimal design. This is because
D-optimal designs minimise the determinant of the inverse Fisher Information Matrix,
and S = I(Θ; Z) measures the information gain in the joint Θ space;

3. The sum of individual parameter mutual information may be be maximised, giving
S = ∑m

i=1 I(Θi; Z). In the sense of classical optimal design, this can be interpreted
as A-optimal design. This is because A-optimal design minimises the trace of the
inverse Fisher Information Matrix, and S = ∑m

i=1 I(Θi; Z) measures the sum of the
information gains for all the parameters;

4. Alternatively, one may seek to maximise individual parameter information gain
while minimising pairwise CMI, thus seeking both small posterior variances and
minimising pairwise correlations between the parameters. In this case, the statistical
criterion is

S =
m

∑
i=1

I(Θi; Z)− τ
m

∑
i=1

m

∑
j=i

I(Θi; Θj|Z), (16)

where τ > 0 is a regularisation parameter. Note that high CMI implies that a large
amount of information can be gained only about a combination of the two parameters
(for instance, their sum or product), but not for each parameter individually. Thus,
we seek to minimise the CMI.

Note that the above list is not exhaustive, and based on the interpretations of MI and
CMI, other criteria may be constructed based on the desired sense of optimality.

2.2.3. Estimating Mutual Information

In general, the forward model in Equation (8) is non-linear, and thus even if the
observation operator is linear (implying linear combinations of the state are measured),
the analytical computation of mutual information is intractable. Thus, the information-
theoretic quantities of MI and CMI must be estimated. A common method is to generate
samples of Θ through the specification of an appropriate prior probability density pΘ(θ).
Denoting these Ns samples as θ(i), i = {1, 2, · · · Ns}, each θ(i) can be propagated through
the forward and observation models of Equations (8) and (9) to produce corresponding
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samples of Z, denoted as z(i). The samples of θ(i) and z(i) can subsequently be used on
non-parametric estimators of MI and CMI. Such non-parametric estimators can broadly be
classified into two categories: kernel density estimators (KDE) [29] and k-nearest neighbour
(kNN) estimators [30,31]. For an overview of such methods, we refer to [32]. While the
estimator proposed by Kraskov et. al. [30] is widely used and performs very well across a
range of scenarios, one of its drawbacks is that it suffers from higher errors when extreme
correlations are present between the variables and/or when the the data are effectively
in a lower-dimensional manifold. Since we are working with models that specify explicit
relationships between the variables through the forward and observation model, this is
likely to be true for the data set of (θ(i), z(i)). Thus, in this study, we employ the local
non-uniformity correction (LNC) proposed in [33], which includes a correction term to
the original estimator by Kraskov et al. [30]. This term accounts for strong dependencies
between the variables through local principle component analysis [33]. The method of [33]
is used for the estimation of all MIs, and CMIs are estimated from the difference of two
MIs; see Equation (15).

2.2.4. Dimensionality Reduction for the Biaxial Experiment

One of the main difficulties in estimating information-theoretic quantities is related
to the data dimension. Non-parametric estimation is particularly challenging whenever
the data are close to manifolds embedded in high-dimensional spaces. This is indeed
the case when a physical model relates parameters and observable quantities. One of the
possible ways to overcome this difficulty, or at least to mitigate it, is (dimension or) model
reduction, which aims at discovering the underlying low-dimensional structure of a set of
data (a comprehensive review of the topic can be found in [34–37]). A large spectrum of
methods has been proposed in the literature. In the present contribution, we adopt a local
reduced-basis method (similar in spirit to the methods proposed in [38,39]). Let the strains
computed by the model be e1,2(σ; φ; k1, k2), where k1 and k2 are the model parameters
(k1, k2) ∈ Ωk ⊂ R2, and σ ∈ Ωσ ⊂ R is the variable defined in Section 2.1.2. Let n ∈ N∗;
thus, we introduce the following approximation:

e1,2 ≈
n

∑
i=1

ηiri(σ, φ)si(k1, k2, φ), (17)

which is well defined by virtue of the Eckart–Young theorem. First, let us observe that a
given protocol consists of a set of known angles Φ. An efficient way to construct the local
reduced basis is therefore to introduce a Proper Orthogonal Decomposition (POD) for each
of the angles φj ∈ Φ. This corresponds to the search for an approximation of the form

e(j)
1,2(σ; φj; k1, k2) ≈

n

∑
i=1

η
(j)
i r(j)

i (σ)s(j)
i (k1, k2), (18)

where 〈r(j)
i , r(j)

k 〉Ωσ
= δik and 〈s(j)

i , s(j)
k 〉Ωk = δik (〈·, ·〉Ωσ ,withΩk

being the standard L2 scalar
product). The error in the approximation is related to the number n of modes retained:

‖e(j)
1,2 −

n

∑
i=1

η
(j)
i r(j)

i (σ)s(j)
i (k1, k2)‖2

L2(Ωσ×Ωk)
=

∞

∑
i=n+1

η
(j)
i

2
(19)

In the present work, a number n = 4 of modes proved to be sufficient in order to
obtain errors smaller than 10−3 in L2 norm in the solution reconstruction. This means that
the set of elements e1,2(σ; φj; k1, k2) was close to the linear subspace spanned by the first

n = 4 modes r(j)
i . Henceforth, instead of considering the discretised e1,2 we consider their

coordinates in the subspace given by

z(j)
1,2|i = 〈e1,2, r(j)

i 〉Ωσ
= η

(j)
i s(j)

i (k1, k2). (20)
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2.2.5. Validation of Results against Existing Methods

Several methods and criteria to define and reach an optimal design of experiments
have been proposed [12]. Among them, D–optimality criterion attempts at maximising the
determinant of the information matrix. In the present case, this is equivalent to minimize
the determinant of the inverse of the average Hessian of the loss function we would
introduce in a classical parameter estimation method. In a noisy setting, and, in particular,
when the noise is Gaussian, this cost function is equivalent to minus the logarithm of the
likelihood function. Let the misfit function be f (θ) and EΘ denote the expectation operator.
The average of the Hessian reads:

H = EΘ[∂
2
θ f |θ∗ ], (21)

where θ∗ is the value of the parameter minimising the loss function.

2.2.6. Overview of Approach for the Biaxial Experiments

In the context of the biaxial experiments, the parameters are k1 and k2, represented as
random variables K1 and K2, respectively. The variability in these parameters is considered
to be uniform (thus imposing a uniform prior distribution) in the following intervals:
k1 ∈ [5, 100] kPa and k2 ∈ [5, 80]. For a single value of angle φ, the measurements are
the strain values e1 and e2 and are measured at 100 points along the line defined by the
angle φ. Here, we consider α = 16 discrete values of possible measurement angles φ
uniformly distributed between, and including, 0◦ and 90◦. For each angle φ, separate
reduced bases of four modes for e1 and e2 are constructed through POD over 400 values
of (K1, K2) sampled uniformly in the aforementioned parametric space. Thus, for any
angle φ, the dimensionality reduction approach projects e1 and e2 measured at 100 points
along the line defined by φ to a basis of 4 + 4 modes. For a given protocol consisting of
multiple angles, the measurement vector z (with a corresponding random variable Z) is
the collection of all the reduced basis representations of e1 and e2 along the angles in the
protocol. Lastly, the maximum number of angles in a protocol is restricted to C = 5, giving
a total of 6884 unique combinations of the α = 16 angles.

For the estimation of MI and CMI, a total of N=10, 000 values of (K1, K2) are uniformly
distributed in the parametric space. For each sample (k(i)1 , k(i)2 ), the numerical model of

the biaxial experiment is run to produce e(i)1 and e(i)2 , which are then projected on to the

reduced basis, giving z(i). The N triplets of (k(i)1 , k(i)2 , z(i)) are subsequently used for the
estimation of MI and CMI through the LNC estimator (see Section 2.2.3). In Equation (16),
we use τ = 1.

3. Results and Discussion

For all the 6884 combinations of angles, three statistical criteria are evaluated: (i) I(K1; Z),
(ii) I(K2; Z) and (iii) I(K1; Z) + I(K2; Z)− I(K1; K2|Z). While the first two criteria aim
to maximise the information gain about K1 and K2 individually, the third criterion aims
to maximise the information gain about K1 and K2 simultaneously while minimising the
information dependence between them. Figures 2–4 show the variation in these three
criteria when grouped by the number of angles in a protocol. In these figures, the values
of information criterion when using two approaches to uniformly discretise the angular
space within protocols are also presented. Observations from these plots are as follows:

1. Generally, all the three information criteria increase with the increasing number of
angles in the protocol. Intuitively, this is expected, as a higher number of angles
implies more measurement data and hence a higher potential for the improved
estimation of the parameters. This observation is true for the maximum information
gain, minimum information gain and the mean information gain;

2. Across all the three criteria, it is observed that the uniform discretisation is not
necessarily reflective of the best protocol for estimating the parameters. In fact, in

86



Axioms 2021, 10, 79

most cases, the performance of uniform discretisation is close to the mean information
gain observed across all the angle combinations;

3. From Figures 2 and 3, it is observed that the angular combinations that maximise
information gain for K1 are not identical—and vary significantly when more than
two angles are simultaneously used—to those that maximise information gain for K2.
This further motivates the use of a criterion that balances information gains in both
the parameters while minimising their interdependence;

4. Figure 4 shows that the best combinations that maximise a balanced criterion, such
as I(K1; Z) + I(K2; Z) − I(K1; K2|Z), are a trade-off between the combinations of
angles that maximise I(K1; Z) and I(K2; Z) individually. For example, when five
angles are considered, the angles that maximise I(K1; Z) are φa = [66, 72, 78, 84, 90]
and those that maximise I(K2; Z) are φb = [30, 36, 42, 48, 54], while the combination
that maximises I(K1; Z) + I(K2; Z)− I(K1; K2|Z) is [30, 36, 48, 78, 90], which has two
angles from φa and three angles from φb. It should be noted that such a trade-off
between maximising individual parameter gains is still significantly different to a
uniform discretisation;

5. Finally, it is observed that the worst combinations are all low angles: [0, 6, 12, 18, 24].
This can be related to the fact that, at low angles, the applied stress is largely aligned
along the stiff fibers of the tissue, thus resulting in lower strain values. Thus, the lower
angles provide a small range of the observations, while the larger angles provide a
larger range (Figure 5a), thereby containing more information about the parameters.
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Figure 2. The variation of information criterion S = I(K1; Z) across the 6884 combinations grouped
by the number of angles in a protocol. The vertical lines represent the variation around the mean
value, which is shown in black circles. Black text shows the combinations that produce maximum
and minimum values of S . The red and blue pointers show S for angle combinations that follow a
uniform discretisation of the angular space between 0 and 90 degrees. Red and blue texts show the
associated angle combinations.

From this point onward, we present results only for the balanced information criterion
S = I(K1; Z) + I(K2; Z)− I(K1; K2|Z). Figure 6 shows the variation in S across all the
combinations (x-axis and in log-scale to capture the spread) grouped by the number of
angles in a protocol and sorted according to the increasing order of S within each such
group. Within each group, observing the minimum and maximum values of S shows that
a better choice of angles can lead to more than a 100% increase in the information gain
compared to a poor choice. Furthermore, this shows that good combinations of a lower
number of angles can lead to higher information gain compared to a higher number of
angles with poor combinations. For example, the maximum S when only one angle is used
is higher than many combinations with two to four angles. This emphasises the utility of
optimal design and the proposed framework.
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Figure 3. The variation of information criterion S = I(K2; Z) across the 6884 combinations grouped
by the number of angles in a protocol. The vertical lines represent the variation around the mean
value, which is shown in black circles. Black text shows the combinations that produce maximum
and minimum values of S . The red and blue pointers show S for angle combinations that follow a
uniform discretisation of the angular space between 0 and 90 degrees. Red and blue texts show the
associated angle combinations.
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Figure 4. The variation of information criterion S = I(K1; Z) + I(K2; Z)− I(K1; K2|Z) across the
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combinations that follow a uniform discretisation of the angular space between 0 and 90 degrees.
Red and blue texts show the associated angle combinations.
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a) b)

Figure 5. Representative observations from the model with k1 = 40 kPa and k2 = 40. (a) The
observations using angles φ = 0 and 90 degrees, with the latter covering a significantly larger range.
(b) The change in observations the angle is changed from 18, 24 to 30 degrees shows a transition in e1

from positive to negative values, indicating a coupling between the two directions. Note that e1 is
shown here in solid lines (left y-axis) and e2 is shown in dashed lines (right y-axis).
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Figure 6. The variation of information criterion S = I(K2; Z) + I(K2; Z)− I(K1; K2|Z) across the
6884 combinations. The vertical red lines show the groupings with respect to the number of angles
in a protocol and S values are sorted in increasing order within each such grouping. The x-axis is
represents the index associated with the protocol and is in logarithmic scale to capture the spread
between one angle in a protocol (16 values) vs five angles in a protocol (4368 values).

Figure 7 shows S for all the 6884 combinations in increasing order of magnitude, and
Figure 8 shows a zoomed plot for the first 150 combinations along with the corresponding
combinations of angles. Observing the index values of 26 (red) and 28 (blue) in Figure 8
shows that even though four combinations are used in the index 26 protocol, it produces a
lower S compared to when only a single angle is used in the index 28 protocol. Furthermore,
since Figure 8 shows the first 150 out of 6884 combinations of Figure 7 (which is sorted
in creasing order of S), all combinations here are relatively low S-producing protocols.
Observing the high density of angles in the region φ < 24◦ is indicative that lower values of
angles—in particular, those less than 24◦—are relatively less informative when compared
to higher values of angles. This behaviour is also apparent in Figure 9, which shows S
values for protocols that use only one angle, and where a sharp jump can be observed when
transitioning from 18◦ to 24◦. This peculiar behaviour may be explained by the physics
of the biaxial experiment. Looking at the resulting strains e1 and e2 of this transition
(Figure 5b), we observe that the e1 changes from positive to negative values. This behavior
captures the important coupling between the two normal stresses and strains and is
also related to the fiber dispersion in our constitutive model (Equation (1), [24]). It is
remarkable and encouraging that the information-theoretic framework captures the physics
of the problem without explicitly considering it in the framework. While for simpler low-
dimensional models, the association between physics and optimal design may be relatively
easy to see, inferring such behaviour is, in general, not trivial for more complex and
higher-dimensional models.

Similarly to Figure 9, the results of the information-theoretic optimal design are
further analysed for a higher number of angles. When two angles are considered, the S
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values in increasing order of magnitude and the corresponding angle combinations are
shown in Figure 10. This figure re-iterates observations made previously: (i) the choice
of combinations significantly affects the information gain, where the best combination
gives approximately 20 nats more information compared to the worst combination; and
(ii) generally speaking, higher angles are more informative compared to lower angles—in
particular, angles below 24◦. While a similar analysis for more than two angle combinations
can be easily performed, the efficient visual representation of such results is cumbersome
and avoided in this manuscript.
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Figure 7. The variation of information criterion S = I(K1; Z) + I(K2; Z)− I(K1; K2|Z) across the
6884 combinations sorted in increasing order of S .
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Figure 8. Zoomed view of the first 150 protocols from Figure 7. The upper panel shows S and the
lower panel shows the angles (by circles) in the corresponding protocol. The red points showcase a
protocol with four measurement angles which yet produces a lower S , implying a poorer protocol,
with respect to the blue points which show a protocol with only one measurement angle.
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To further illustrate the validity of the information-theoretic approach, a comparison
with a classical method (see Section 2.2.5) is presented. For one and two angles in a protocol,
Figure 11 shows a comparison between S and the log of the determinant of the inverse
Fisher Information Matrix, log |H−1|. It is encouraging that a high correspondence between
the two metrics is observed. In particular, increases in S , implying higher information gains,
are accompanied by corresponding decreases in log |H−1|, implying a smaller volume of
the parameter posteriors. A Pearson correlation coefficient of r=−0.76 is observed between
S and log |H−1|, implying a high similarity between the two metrics and validating the
information-theoretic approach in part. We note that, when the number of the parameters
become large, evaluating the Hessian would imply a non-negligible computational cost.
On the contrary, the method used to evaluate the mutual information, as a primarily
Monte Carlo-based estimation, is less severely dependent on the number of parameters.
Furthermore, the computation of derivatives (either numerically or through adjoint based
methods) may be cumbersome for certain types of models. Finally, we note that the effect
of noise on information gain, and hence optimal design, can be easily assessed in the
proposed framework by adding noise to the samples of Z (see Equation (9)).
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Figure 10. Information criterion against the angles when the protocols are restricted to only two
angles. The upper panel shows S and the lower panel shows the angles (with circles) in the
corresponding protocol.
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Figure 11. Information criterion S (in blue) and the log of the determinant of the inverse Fisher
Information Matrix log10 |H−1| (in red) against the angles when the protocols are restricted to a
maximum of two angles. The upper panel shows S and log10 |H−1|, while the lower panel shows
the angles (with circles) in the corresponding protocol.

4. Conclusions

A framework for optimal design based on information-theoretic quantities of mutual
information and conditional mutual information is proposed. The framework treats infor-
mation gain as the central criterion for inverse problems and proposes several information-
theoretic frameworks for a desired sense of optimality. The capabilities of this framework
are tested on the optimal design problem for biaxial experiments, where the effect of the
angle combinations along which the strains are measured is assessed in terms of parameter
estimation through information gain. Without including any physics-based reasoning, and
purely through the information-theoretic measures, it is found that low angles ≤ 24◦ are not
very informative regarding the parameters relative to high angles. These observations are
then found to be consistent based on physics-based reasoning, thereby showing the efficacy
of the proposed framework. Furthermore, it is demonstrated that measurements for a low
total number of angles which are carefully chosen can be more informative compared to the
case when measurements along a high number of poorly chosen angles are acquired, thus
highlighting both the importance of optimal design for biaxial experiments and the utility
of the proposed framework in determining good angle combinations. The application of
the proposed framework to classical optimal design is performed, and it is shown that the
results produced by the new framework are consistent with classical frameworks.

5. Limitations and Future Work

While the proposed framework is shown to perform well on a two-parameter problem,
its performance in higher parameter problems is not assessed. This assessment represents
the primary limitation of this work and an area of future assessment. In particular, the
problems envisaged are largely related to the performance of the MI and CMI estimators
in higher dimensions of both parameters and the measurements. While a dimensionality
reduction approach was adopted in this study to minimise the adverse effects of the latter,
this may not be possible in many forward and inverse problems. Thus, a large area of future
work is related to the development of efficient and robust MI and CMI estimators. Note
that several approaches are being proposed by researchers to solve this problem; see for
example [40–46]. Lastly, a thorough comparison against classical optimal design methods
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(C, E, T and V-optimal designs, etc.) needs to be performed, along with the construction
and analysis of corresponding information-theoretic metrics.
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Abstract: A prey–predator system with logistic growth of prey and hunting cooperation of preda-
tors is studied. The introduction of fractional time derivatives and the related persistent memory
strongly characterize the model behavior, as many dynamical systems in the applied sciences are
well described by such fractional-order models. Mathematical analysis and numerical simulations
are performed to highlight the characteristics of the proposed model. The existence, uniqueness and
boundedness of solutions is proved; the stability of the coexistence equilibrium and the occurrence of
Hopf bifurcation is investigated. Some numerical approximations of the solution are finally consid-
ered; the obtained trajectories confirm the theoretical findings. It is observed that the fractional-order
derivative has a stabilizing effect and can be useful to control the coexistence between species.

Keywords: Caputo fractional derivative; Allee effect; existence and stability; Hopf bifurcation;
implicit schemes
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1. Introduction

Population dynamics are regulated by several factors: availability of resources, pre-
dation, diseases, etc. Among these factors, the interaction between prey and predators is
probably the most studied one in ecology, tracing back to the works of Lotka and Volterra in
the early 20th century. Since then, a number of predator–prey models have been proposed
and studied (see the excellent reviews [1,2]), considering different extensions of the original
one: the realistic assumption that prey populations are limited by food resources and
not just by predation leads to the inclusion of terms representing carrying capacity for
the prey population; the characterization of specific behaviors of the predator population
results in the introduction of several functional responses for them; the complexity and
dishomogeneity in the environment often requires a spatial description [3]. It is well-known
that species diffusing at different rates can generate spatial patterns, observed in several
biological contexts. Such Turing patterns affecting spatial predator–prey models have been
deeply investigated in the literature. In addition, the inclusion of group defense has a
significant impact on the dynamics of the predator–prey system. Of course, this movement
is conditioned by the abundance or scarcity of the other species, so that spatio-temporal
population models can include cross-diffusion terms in addition to self-diffusion ones.

Cooperation is a common behavior in many biological groups and can sensibly affect
the growth rate of populations in an ecological community. Limiting our interest to the
predator–prey dynamics, many mechanisms have been identified, all capable of facilitating
reproduction, breeding, foraging and defense in the prey population. All of them can
induce a demographic Allee effect [4]. In predators, hunting cooperation, among other
interactions, can also result in Allee effects; different intensities of such a cooperative
behavior impact on the survival of both species and modify the stability of the ecological
system (see [5] and references therein).
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Even if the interest on fractional calculus traces back at least to the 1970s (without
considering the seminal suggestions given by Leibniz and Euler more than 300 years ago),
in the last decades there has been an explosion of research activities on its application to
several areas. Fractional order systems are not only an extension of conventional integer-
order systems in mathematics but also have memory and hereditary properties that integer
order systems do not have. In the last decades, there has been a huge interest in such
models, due to their specific feature of describing memory effects in dynamical systems:
many nonlinear models with time fractional derivatives have been considered, not only in
population dynamics [6,7], but also in chemistry and biochemistry, medicine, mechanics,
engineering, finance, psychology (see, among the recent surveys, [8,9]). In some situations,
indeed, fractional-order models, enabling the description of the memory and hereditary
properties inherent in various materials, processes and biological systems, seem more
consistent with the real phenomena than integer-order models. Models with fractional-
order derivatives can take different forms depending on the system considered; among
them, fractional differential equations and fractional partial differential equations are
greatly applied to describe continuous systems, both deterministic and stochastic [10]. In
addition, heterogeneous non-ergodic diffusion processes [11] and the effect of anomalous
diffusion on a population survival have been investigated [12].

The authors considered, in previous studies, some interacting population models
that explored the mentioned characteristics (limited resources, nonlinear growth, fear
effect, cooperative behavior), also in the presence of spatial dishomogeneity [13–17]. In the
above-mentioned research, systems of both ordinary and partial differential equations have
been studied. Precisely, ODE descriptions for the dynamics of an intraguild predator–prey
model [13] and for the spreading of waterborne diseases [15,17] have been considered
and the stability of the model solutions discussed. Furthermore, in order to highlight
how the spatial diffusion can both play an important role in the population evolution and
lead to the formation of spatial patterns, a reaction–diffusion system modeling hunting
cooperation [14] and a predator–prey system with fear and group defense [16] have been
analyzed. In such researches, the effect of spatial diffusion on the stability of the equilibria
has been highlighted and the conditions on the parameters ensuring the formation of
patterns (stripes, spots, mixed, etc.) have been found.

In the present paper, the authors generalize the model introduced in [5], by replacing
the ordinary time derivative with a fractional one so to investigate how the fractional-
in-time derivative impacts the system dynamics. It is worth underlining, for the sake
of completeness, that such a model has been already extended in [14] to include spatio-
temporal dynamics and the related occurrence of Turing patterns. Here, instead, the
authors, to better highlight the fractional derivative impact on the populations dynamics,
take into account the original ODE model and consider the corresponding fractional-in-
time system.

Such a modeling provides challenges and ideas in many other fields of applied
mathematics in which nonlinear mathematical models having a similar structure are con-
sidered [18–22]. After reviewing in Section 2 the main prerequisites on fractional calculus,
the model is formulated in Section 3 and existence and boundedness of solutions is proved.
Section 4 discusses the stability of the coexistence equilibrium, while Section 5 shows some
numerical approximations by different schemes. Section 6 concludes the manuscript.

2. Preliminaries

In this section, we recall the fundamental definitions, concepts and results that we
will use throughout the paper. For further details, we refer the reader to [23–25].

Definition 1. The fractional integral of order θ > 0 for a Lebesgue integrable function f : R+ → R

is defined by

Iθ f (t) =
1

Γ(θ)

∫ t

t0

(t − τ)θ−1 f (τ)dτ
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and the Caputo fractional derivative of order θ ∈ (m − 1, m) of a sufficiently differentiable function
f (t) is defined by

Dθ
t f (t) =

1
Γ(m − θ)

∫ t

t0

(t − τ)m−θ−1 f (m)(τ)dτ ,

where Γ(θ) is the Euler’s Gamma function.
We underline that, under natural conditions on f (t), the Caputo derivative coincides

with the classical derivative whenever θ ∈ N.

Lemma 1. Let x(t) be a continuous function on [t0, ∞) satisfying Dθ x(t) ≤ −Ax(t)+ B, x(t0) =
x0, with 0 < θ < 1 and A, B ∈ R, A > 0, t0 ≥ 0. Then for x(t) it holds true

x(t) ≤
(

x0 − B
A

)
Eθ [−A(t − t0)

θ ] +
B
A

, (1)

where Eθ(·)is the Mittag–Leffler function defined by

Eθ =
∞

∑
k=0

zk

Γ(θk + 1)
. (2)

Lemma 2. Let Dθ x(t) = φ(t, x), with t > t0, be the system with the initial condition x(t0) and
0 < θ ≤ 1, φ : [t0, ∞)× Ω → Rm, Ω ⊆ Rm. If φ(t, x) satisfies the Lipschitz condition with
respect to x, then there exists a unique solution of the above system on [t0, ∞)× Ω.

Lemma 3. Let Dθ
t x = φ(x), with x(t0) = x0 and 0 < θ < 1, be an autonomous nonlinear

fractional-order system. A point x∗ is called an equilibrium point of the system if it satisfies
φ(x∗) = 0. This equilibrium point is locally asymptotically stable if all eigenvalues λi of the

Jacobian matrix J =
∂φ

∂x
evaluated at x∗ satisfy the Matignon conditions | arg(λi)| > θπ

2
.

3. Fractional Model with Caputo Derivative: Statement of the Problem, Boundedness,
Existence and Uniqueness

We present the following fractional-order prey–predator model corresponding to the
non-dimensional model introduced in [5]⎧⎨⎩Dθ

t n = σn
(

1 − n
k

)
− (1 + αp)np,

Dθ
t p = (1 + αp)np − p ,

(3)

where Dθ
t represents the Caputo fractional derivative, given in Definition 1, with 0 < θ < 1

and n, p are the non-dimensional variables corresponding to the prey and predator densities.
All the non-dimensional parameters are positive constant. Precisely, k comprises the
dimensional carrying capacity, the conversion efficiency as well as the per-capita predator
mortality and attack rate, while σ is linked to the per-capita intrinsic growth rate of prey
and per-capita mortality rate of predator and α is linked to the predator cooperation in
hunting rate, the attack rate and the per-capita predator mortality rate. Details on both the
derivation of model and the biological meaning of parameters can be found in [5,14]. To (3)
we append the initial conditions

n(t0) = n0, p(t0) = p0. (4)

3.1. Boundedness

In this subsection, we prove the positivity and boundedness of the solution of the

system (3). Let R2
+ = {x(t) ∈ R2 : x(t) ≥ 0} and x(t) =

(
n(t)
p(t)

)
.
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Theorem 1. The solution of the fractional-order system (3) and (4) is bounded in R2
+. Moreover,

the density of the population remains in a nonnegative region.

Proof. Let us define the function

U(t) = n(t) + p(t) (5)

and ξ be a positive constant. Applying the Caputo fractional derivative on both sides in (5)
and using (3), it follows that

Dθ
t U(t) + ξU(t) = Dθ

t n(t) + Dθ
t p(t) + ξn(t) + ξ p(t)

= σn
(

1 − n
k

)
− p + ξn + ξ p

= −σn2

k
+ (σ + ξ)n + (ξ − 1)p

≤ −σ

k

(
n − k(σ + ξ)

2σ

)2

+
k(σ + ξ)2

2σ

≤ k(σ + ξ)2

2σ
,

where ξ < 1. Using Lemma 1, it follows that

U(t) ≤
(

U(t0)− k(σ + ξ)2

2σξ

)
Eθ [−ξtθ ] +

k(σ + ξ)2

2σξ

≤ U(t0)Eθ [−ξtθ ] +
k(σ + ξ)2

2σξ

[
1 − Eθ [−ξtθ ]

]
.

(6)

Then, for t → ∞ it follows that U(t) ≤ k(σ + ξ)2

2σξ
. Hence, all the solutions to (3)

starting from R2
+ are confined in the following domain A ⊆ R2

+

A = {(n(t), p(t)) ∈ R
2
+ : n(t) + p(t) ≤ k(σ + ξ)2

2σξ
+ ε, ∀ε > 0}

which is positively invariant.

3.2. Existence and Uniqueness

In this subsection, we find the conditions for the existence and uniqueness of the solution
to fractional-order prey–predator model (3) in the region Θ × (t0, T], T < ∞, where

Θ = {(n, p) ∈ R
2 : max(|n|, |p|) ≤ K},

by using the fixed point technique. The existence of K is guaranteed by the boundedness
of the solution. The model can be reformulated in the fractional integral form which gives

n(t)− n(t0) =
1

Γ(θ)

∫ t

t0

(t − τ)θ−1
(

σn(τ)
(

1 − n(τ)
k

)
− (1 + αp(τ))n(τ)p(τ)

)
dτ ,

p(t)− p(t0) =
1

Γ(θ)

∫ t

t0

(t − τ)θ−1((1 + αp(τ))n(τ)p(τ)− p(τ))dτ.
(7)

Denoting by F1 and F2 the following kernels

F1(t, n(t), p(t)) = σn(t)
(

1 − n(t)
k

)
− [1 + αp(t)]n(t)p(t) ,

F2(t, n(t), p(t)) = [1 + αp(t)]n(t)p(t)− p(t) ,
(8)

the following theorem holds.
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Theorem 2. Let M1 = σ + (1 + αK)K + 2
σ

k
K and M2 = |K − 1 + 2αK2|. If 0 < Mi <

1, (i = 1, 2), then the kernels Fi(t, n, p), (i = 1, 2) agree with the contraction and Lipschitz
conditions in the region Θ × (t0, T].

Proof. Let n(t1) = n1 and n(t2) = n2 be two functions for the kernel F1 and p(t1) = p1
and p(t2) = p2 be two functions for the kernel F2. Then we have

‖F1(t, n1, p)− F1(t, n2, p‖

=
∥∥∥σ
(

1 − n1

k

)
n1 − (1 + αp)pn1 − σ

(
1 − n2

k

)
n2 + (1 + αp)pn2

∥∥∥
=
∥∥∥[σ − (1 + αp)p]n1 − [σ − (1 + αp)p]n2 − σ

k
(n2

1 − n2
2)
∥∥∥

=
∥∥∥[σ − (1 + αp)p](n1 − n2)− σ

k
(n1 − n2)(n1 + n2)

∥∥∥
≤
(

σ + (1 + αK)K + 2
σ

k
K
)
‖n1 − n2‖

≤ M1‖n1 − n2‖

(9)

and

‖F2(t, n, p1)− F2(t, n, p2‖

= ‖(1 + αp1)np1 − p1 − (1 + αp2)np2 + p2‖

=
∥∥(n − 1)(p1 − p2) + αn(p2

1 − p2
2)
∥∥

= ‖[(n − 1) + αn(p1 + p2)](p1 − p2)‖

≤ |K − 1 + 2αK2|‖p1 − p2‖

≤ M2‖p1 − p2‖,

(10)

where M1 = σ + (1 + αK)K + 2
σ

k
K and M2 = |K − 1 + 2αK2|. Therefore, the Lipschitz

conditions are satisfied for kernels F1 and F2, and if 0 < Mi < 1, (i = 1, 2) then M1 and M2
are also contractions for F1 and F2, respectively. Assume that the conditions (9) and (10)
hold and let us consider the kernels F1 and F2. Then (7) can be written

n(t) = n(t0) +
1

Γ(θ)

∫ t

t0

(t − τ)θ−1F1(τ, n, p)dτ,

p(t) = p(t0) +
1

Γ(θ)

∫ t

t0

(t − τ)θ−1F2(τ, n, p)dτ.
(11)

The initial conditions and the recurrence form of the model (11) are, respectively

n0(t) = n(t0), p0(t) = p(t0) (12)

and

nm(t) = n(t0) +
1

Γ(θ)

∫ t

t0

(t − τ)θ−1F1(τ, nm−1, p)dτ,

pm(t) = p(t0) +
1

Γ(θ)

∫ t

t0

(t − τ)θ−1F2(τ, n, pm−1)dτ.
(13)

The successive difference between the terms is defined as
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Φ1m(t) = nm(t)− nm−1(t) =
1

Γ(θ)

∫ t

t0

(t − τ)θ−1[F1(τ, nm−1, p)− F1(τ, nm−2, p)]dτ,

Φ2m(t) = pm(t)− pm−1(t) =
1

Γ(θ)

∫ t

t0

(t − τ)θ−1[F2(τ, n, pm−1)− F2(τ, n, pm−2)]dτ,
(14)

where

nm(t) =
m

∑
i=1

Φ1i(t), pm(t) =
m

∑
i=1

Φ2i(t). (15)

Taking the norm of (14), it follows from the conditions (9)–(10) that

‖Φ1m(t)‖ = ‖nm(t)− nm−1(t)‖ ≤ M1

Γ(θ)

∫ t

t0

(t − τ)θ−1
∥∥∥Φ1(m−1)(τ)

∥∥∥dτ,

‖Φ2m(t)‖ = ‖pm(t)− pm−1(t)‖ ≤ M2

Γ(θ)

∫ t

t0

(t − τ)θ−1
∥∥∥Φ2(m−1)(τ)

∥∥∥dτ.
(16)

The following theorem holds.

Theorem 3. Assume that the conditions (9)–(10) hold. If

MiTθ

Γ(θ + 1)
< 1, i = 1, 2 , (17)

then the solution of the fractional model given in (3)–(4) exists and is unique.

Proof. Let us consider n(t), p(t) bounded functions and the kernels F1 and F2 satisfy the
Lipschitz condition. From (15) and (16), it follows that

‖Φ1m(t)‖ ≤ ‖n0(t)‖
{

M1Tθ

Γ(θ + 1)

}m

,

‖Φ2m(t)‖ ≤ ‖p0(t)‖
{

M2Tθ

Γ(θ + 1)

}m

.
(18)

This shows the existence for the solutions. Moreover, in order to prove that (18) are
solutions to (3) and (4), we consider

n(t)− n(t0) = nm(t)− r1m(t),
p(t)− p(t0) = pm(t)− r2m(t),

(19)

where r1m, r2m are the remaining terms. We show that the terms in (19) satisfy ‖r1∞(t)‖ → 0
and ‖r2∞(t)‖ → 0. Now, we consider the conditions

‖r1m(t)‖ ≤
∥∥∥∥ 1

Γ(θ)

∫ t

t0

(t − τ)θ−1|F1(τ, n, p)− F1(τ, nm−1, p)|dτ

∥∥∥∥
≤ 1

Γ(θ)

∫ t

t0

(t − τ)θ−1‖F1(τ, n, p)− F1(τ, nm−1, p)‖dτ

≤ M1Tθ

Γ(θ + 1)
‖n − nm−1‖.

(20)

On using recursive techniques, we get

‖r1m(t)‖ ≤
{

Tθ

Γ(θ + 1)

}m+1

Mm+1
1 .
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For m → ∞, it follows that r1m(t) → 0. In a similar way, we conclude that r2m(t) → 0.
In order to prove the uniqueness of the solution to the model (3) and (4), let us suppose
there exists another solution of the system n̄(t) and p̄(t). Then

‖n(t)− n̄(t)‖ ≤ 1
Γ(θ)

∫ t

t0

(t − τ)θ−1‖F1(τ, n, p)− F1(τ, n̄, p)‖dτ,

‖p(t)− p̄(t)‖ ≤ 1
Γ(θ)

∫ t

t0

(t − τ)θ−1‖F2(τ, n, p)− F2(τ, n, p̄)‖dτ.
(21)

In view of the Lipschitz condition, it follows that

‖n(t)− n̄(t)‖ ≤ M1tθ

Γ(θ + 1)
‖n(t)− n̄(t)‖,

‖p(t)− p̄(t)‖ ≤ M2tθ

Γ(θ + 1)
‖p(t)− p̄(t)‖,

(22)

and hence

‖n(t)− n̄(t)‖
(

1 − M1tθ

Γ(θ + 1)

)
≤ 0,

‖p(t)− p̄(t)‖
(

1 − M2tθ

Γ(θ + 1)

)
≤ 0.

(23)

In view of (17), it follows that ‖n(t)− n̄(t)‖ = 0 and ‖p(t)− p̄(t)‖ = 0.

4. Stability Analysis

The equilibrium points of system (3) are obtained by considering

Dθ
t n(t) = 0, Dθ

t p(t) = 0.

According to [5,14], besides the trivial equilibrium E0 ≡ (0, 0), the system admits the
predator-free equilibrium Eb ≡ (k, 0) and the coexistence equilibrium E∗ = (n∗, p∗) ≡(

1
(1 + αp∗) , p∗

)
where p∗ satisfies α2kp3 + 2αkp2 + k(1 − ασ)p + σ(1 − k) = 0. As shown

in [14], if k > 1, E∗ is unique, while if
−1 +

√
1 + 3σα

ασ
< k ≤ 1 and σ > 1

α there exist two
coexistence equilibria. In all other cases, no coexistence equilibria are admissible.

In the following, we will discuss the stability properties of the coexistence equilibrium
by using the linearization method.

The Jacobian matrix of system (3) evaluated at the equilibrium point E∗ = (n∗, p∗) is
given by

J(E∗) =

⎛⎜⎜⎜⎜⎝
− σ

k(1 + αp∗) −1 + 2αp∗

1 + αp∗

(1 + αp∗)p∗ αp∗

1 + αp∗

⎞⎟⎟⎟⎟⎠. (24)

Now, the characteristic equation of the Jacobian matrix is λ2 − Iλ + A = 0 and the
roots of the characteristic equation are

λ1,2 =
I ±√

I2 − 4A
2

, (25)

where I and A are the trace and determinant of the Jacobian matrix J(E∗) given by

I =
kαp∗ − σ

k(1 + αp∗) ,

A =
p∗

k(1 + αp∗)2 [k(1 + αp∗)2(1 + 2αp∗)− ασ].
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The stability analysis of E∗ will be divided in the following four cases:

(1) If I2 − 4A ≥ 0 and I < 0, then λi(i = 1, 2) are negative real numbers. Hence,

| arg(λi)| = π > θ
π

2
. The coexistence equilibrium is asymptotically stable.

(2) If I2 − 4A ≥ 0 and I ≥ 0 then at least one of λ1, λ2 will be positive. Therefore, at

least one of λi will be such that | arg λi| = 0 < θ
π

2
and hence the coexistence point

is unstable.
(3) When I2 − 4A < 0, then the eigenvalues are a pair of complex conjugate λ1,2 =

I
2
± i

√
4A − I2

2
.

(a) If I > 0 then Re(λ1) = Re(λ2) > 0 and Im(λ1) = −Im(λ2) =

√
4A − I2

2
> 0.

Then, when

√
4A − I2

I
> tan θ

π

2
, the coexistence equilibrium is asymptotically

stable, otherwise it is unstable.
(b) If I < 0, then Re(λ1) = Re(λ2) < 0. Then, | arg(λi)| > π

2
and the equilibrium is

asymptotically stable.

(4) When I = 0 and I2 − 4A = −4A < 0, then Re(λ1) = Re(λ2) = 0. Hence, | arg (λi)| =
π

2
> θ

π

2
. In this case, the equilibrium is asymptotically stable.

A Hopf bifurcation occurs when a pair of complex eigenvalues of the Jacobian matrix
at an equilibrium point exists and the stability of the equilibrium changes from stable to
unstable when a bifurcation parameter crosses a critical value. We can choose the order of
derivation θ to be the bifurcation parameter and by using the following well-known result
we find the conditions for the Hopf bifurcation to appear.

Lemma 4. [26] When bifurcation parameter θ passes through the critical value θ∗ ∈ (0, 1),
fractional-order system (3) undergoes a Hopf bifurcation at the equilibrium point, if the following
conditions hold

1. the corresponding characteristic equation of system (3) has a pair of complex conjugate roots
λ1,2 = γ ± iω with γ > 0;

2. m(θ∗) = θ∗ π

2
− min

1≤i≤2
| arg λi| = 0;

3.
dm(θ)

dθ
|θ=θ∗ �= 0.

We find the conditions for the model (3) tp undergo a Hopf bifurcation at equilibrium
point E∗ ≡ (n∗, p∗) when the order of derivation passes through the critical value θ∗ =

2
π

arctan[

√|I2 − 4A|
I

].

Let us assume that I2 − 4A < 0 and I > 0; let the critical value θ∗ = 2
π

arctan[

√|I2 − 4A|
I

].

Let us define γ =
I
2

and ω =

√|I2 − 4A|
2

. Then, it follows that the eigenvalues are a pair

of complex conjugate λ1,2 = γ ± iω with γ > 0. In addition, let m(θ) = θ
π

2
− min

1≤i≤2
| arg λi|,

then, it follows that

m(θ∗) = θ∗ π

2
− min

1≤i≤2
| arg λi| = θ∗ π

2
− arctan

ω

γ
= arctan ω

γ − arctan ω
γ = 0.

Finally,
dm(θ)

dθ
|θ=θ∗ =

π

2
�= 0.

Therefore, we can conclude that a Hopf bifurcation of (3) will appear at E∗.
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5. Numerical Solution

Even if the interest on fractional calculus traces back at least to the 1970s (without
considering the seminal suggestions given by Leibniz and Euler more than 300 years ago),
in the last decades there has been an explosion of research activities on its application to
several areas. Such a growing interest for fractional-order models had led to the devel-
opment of specific algorithms devoted to the numerical approximation of the solution
to fractional-order differential problems. Several solvers have been proposed in the last
years [27–29], all trying to balance efficiency and accuracy while guaranteeing reliability
of the numerical approximation. It is well-known, indeed, that the persistent memory of
fractional-order operators reflects on the numerical evaluation of the solution: as a natural
consequence, at each new timestep all the past history of the solution is to be considered.
The number of involved steps increases with time, and so does the computational burden.

In a sense, numerical methods for fractional-order differential systems are then natu-
rally multi-step. They generalize some of the ODE methods, but with significant differences
in both complexity and accuracy. We follow here the excellent survey [30] and consider
some of the schemes reported there. The simplest schemes are derived by approximating
the integrand function x(t) = (n(t), p(t)) in (7) by a piecewise polynomial and proceeding
to its exact integration. This leads to “rectangular” (explicit or implicit) product integration
formulas when a zero-order approximation of the integrand function in each subinterval
is assumed, or “trapezoidal” formulas where first-order approximation is chosen. Of
course, implicit formulas are more stable, but they require solving the nonlinear equations
that generally arise. To avoid this additional burden, a predictor–corrector approach can
be useful.

The convergence order of the rectangular formulas is one: the distance between the
numerical approximation and the exact solution in any time point tn decreases linearly
with the timestep, and this result replicates the well-known one for the ODE formula.
Unfortunately, this is not always true for the trapezoidal rule: its convergence order is
limited by the minimum between 1 + θ and 2 [28], so that for 0 < θ < 1 the rate of the cor-
responding ODE method cannot be reached. Similarly, higher order formulas for fractional
systems do not lead to significant improvements in accuracy and convergence rate, and
they are not worthy to be considered. As an alternative to product integration formulas,
Fractional Linear Multistep methods have been proposed to generalize the standard multi-
step methods for ODEs. They are very robust and can reach higher convergence order, but
their convolution weights are not known explicitly in advance and have to be evaluated.
This computation can however be performed very efficiently by FFT derived algorithms.

Numerical approximations of the solution of (3) can then be obtained by applying
several different schemes. Even developed from the same ODE methods, they present
distinguishing characteristics that deserve to be investigated. For this reason, we considered
and compared the following schemes:

• Implicit Rectangular Product Integration rule (PI1)

xn = x0 + hθ
n

∑
i=1

b(θ)n−iF(ti, xi), b(θ)n =
(n + 1)θ − nθ

Γ(θ + 1)
;

• Implicit Trapezoidal Product Integration rule (PI2)

xn = x0 + hθ 1
Γ(θ + 2)

(
ãn

(θ)F(t0, x0) +
n

∑
i=1

a(θ)n−iF(ti, xi)

)
,

with a(θ)0 = 1 and

ãn
(θ) = (n − 1)θ+1 − nθ(n − θ − 1), a(θ)n = (n − 1)θ+1 − 2nθ+1 + (n + 1)θ+1 ;
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• Predictor–Corrector Product Integration rule (PI12)

xP
n = x0 + hθ

n−1

∑
i=0

b(θ)n−i−1F(ti, xi),

xn = x0 + hθ 1
Γ(θ + 2)

(
ãn

(θ)F(t0, x0) +
n−1

∑
i=1

a(θ)n−iF(ti, xi) + a(θ)0 F(tn, xP
n )

)
;

• Fractional Backward Differentiation Formula (FLMM2)

xn = x0 + hθ ∑n
i=0(−1)n−i(−θ

n−i)F(ti, xi), where (−θ
n−i) =

Γ(1−θ)
Γ(n+1)Γ(−θ−n+1) .

All these numerical schemes have been implemented in Matlab routines as given
in [30,31]. For the problem at hand, the performance of these schemes can be evaluated
only qualitatively, due to the lack of an exact (closed form) solution, by comparing their
behavior for decreasing timesteps; however, we refer the reader to the above cited literature
for an exhaustive assessment of their results on several test cases.

5.1. Preliminary Assessment

As a preliminary test, we checked the results of all methods in reproducing trajectories
when θ = 1, because these results can be directly compared with the reference solutions
given by classical ODE solvers. Even if the considered methods are all devised for fractional-
order systems, they are expected to reproduce a good numerical approximation of the
solution also for the integer order case. When the parameter settings (σ = 3, α = 0.3,
k = 5) lead to a stable coexistence equilibrium, all methods are able to reproduce the
expected trajectories: the left panel of Figure 1 shows the convergence of all numerical
approximations of n(t) towards the equilibrium value n∗ ≈ 0.66. On the other hand, when
Hopf instability occurs (σ = 3, α = 10, k = 0.8), the simplest PI1 method shows a sensible
damping of the oscillations around the equilibrium n∗ ≈ 0.188, as shown in the right panel
of the same Figure, while the other methods’ trajectories are practically indistinguishable
from the reference one (as reported in [14]).

Figure 1. Trajectories for the numerical approximations PI1 and PI2 of n(t) solution of system (3)
for θ = 1 in case of a stable equilibrium (left panel) and in the presence of Hopf instability (right

panel). The lowest order approximation PI1 clearly shows damped oscillations, while the trajectories
of the higher order approximations are in excellent agreement with the ones obtained by classical
ODE solvers.

5.2. Stabilizing Effect of the Persistent Memory

As a second test case, we consider a parameter setting for which the corresponding
ODE system shows instability: if we choose as before σ = 3, α = 10, k = 0.8, simply consid-
ering a slightly lower value for θ (θ = 0.9) has a powerful stabilizing effect. As Figure 2
shows, all the numerical approximations agree in a fast damping of the oscillations for both
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the variables. Again, the damping is more evident in the lower order method PI1, while
the other considered schemes agree in accurately reconstructing the system trajectories. To
further analyze the different performance of the considered numerical methods, we present
in the following Figure 3 a detail of the first part of the same trajectories as reconstructed
by any of the numerical schemes for decreasing time steps h1 = 2−4, h2 = 2−5, h3 = 2−6,
h4 = 2−7. The less accurate results of PI1 with respect to the other schemes can be clearly
seen. Of course, lower values for the fractional-order θ result in an even faster damping of
the oscillations in the trajectories, confirming the strong stabilizing effect of the persistent
memory in the model. For the same test case, Figure 4 compares the numerical approxima-
tions by PI2 of the populations’ trajectories for different values of the order θ (0.95, 0.9, 0.85,
0.8), confirming the strong stabilizing effect of the fractional derivative.

Figure 2. Trajectories for all the numerical approximations of the solutions of system (3) in case
θ = 0.9. While the corresponding ODE systems show instability (see the right panel of Figure 1), the
trajectories of the fractional system rapidly stabilizes for both variables (n(t) shown in the left panel,
p(t) in the right one). The lowest order approximation PI1 clearly shows more damped oscillations,
while the higher order approximations are all in excellent agreement.

Figure 3. Details of the initial part of the trajectories shown in the left panel of Figure 2 as re-
constructed by all the numerical methods for decreasing timesteps h1, h2, h3, h4. The lowest order
approximation PI1 clearly shows more damped oscillations, and only for the smallest timestep it
agrees with the other methods, whose results are practically identical.
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Figure 4. Trajectories for the numerical approximations PI2 of the solutions of system (3) for different
θ values (0.95, 0.9, 0.85, 0.8) for both populations (n(t) shown in the left panel, p(t) in the right one).
The stabilizing effect of the fractional operators can be clearly seen.

5.3. Hopf Instability for the Fractional System

As a third example, we show how the instability can still occur for the fractional
system with a suitable choice of the parameters. We start by considering a parameter
setting for which, as stated in Section 4, the conditions for the Hopf instability to appear are
met: we set σ = 3, α = 3.5, k = 5. In this case, it is I > 0 and I2 − 4A < 0. The eigenvalues of
the Jacobian are a couple of complex conjugate numbers with a positive real part so that
for θ > θ∗ = arctan 2/π

√
4A − I2/I ≈ 0.89 the coexistence equilibrium E∗ ≈ (0.27, 0.77)

loses its stability. The following Figure 5 shows the trajectories of (n(t), p(t)) when θ = 0.92
as reconstructed by the more accurate numerical algorithms and the corresponding phase
plan portrait, clearly showing the appearance of a limit cycle.

Figure 5. Numerical approximation PI12 of the solutions of system (3) confirming the Hopf instability
predicted by the theory in case θ = 0.92 with σ = 3, α = 3.5, k = 5. In the left panel, the trajectories
for both variables are reported as functions of time; the right panel shows the limit cycle in the
phase plan.

6. Conclusions

Fractional calculus, implying non-locality and memory effects, allows the description
of numerous phenomena in a wide variety of scientific domains. Fractional-order operators
have been proved to be a very powerful modeling instrument to represent a variety of
processes and biological systems. In this framework, we studied in this paper the dynamic
behavior of a fractional-in-time prey–predator model with hunting cooperation. The
existence and uniqueness of a non-negative solution has been proved and the local stability
of the coexistence equilibrium point has been analyzed by using the linearization technique.
The conditions for the occurrence of a Hopf bifurcation have been found. Finally, numerical
simulations have been presented to confirm by some selected examples how the order of
derivation θ affects the dynamical behavior of prey and predator density. The findings of
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the present study, in our opinion, can provide hints for the investigation of the dynamics
of other processes describing real-world phenomena. As a final consideration, we outline
that several authors investigated pattern formation in the related spatial fractional-order
systems. Recently, Yin and Wen [32] have shown that fractional-derivative systems can
result in persistent spatial patterns even though their ODE counterpart does not induce
any steady pattern. Such mechanisms of pattern formation along with the ones induced by
anomalous diffusion suggest further directions of research in spatial generalizations of the
considered model.
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1. Introduction

The Mean Field Games (MFG in short) theory concerns the study of differential games
with a large number of rational, indistinguishable agents and the characterization of the
corresponding Nash equilibria. In the original model introduced in [1,2], an agent can
typically act on its velocity (or other first order dynamical quantities) via a control variable.
Mean Field Games where agents control the acceleration have been recently proposed
in [3–5].

A prototype of stochastic process involving acceleration is given by the Langevin
diffusion process, which can be formally defined as

Ẍ(t) = −b(X(t)) + σḂ(t), (1)

where Ẍ is the second time derivative of the stochastic process X, B a Brownian motion
and σ a positive parameter. The solution of (1) can be rewritten as a Markov process
(X, V) solving {

Ẋ(t) = V(t),
V̇(t) = −b(X(t)) + σḂ(t).

The probability density function of the previous process satisfies the kinetic Fokker–
Planck equation

∂t p − σ2

2
Δv p − b(x) · Dv p + v · Dx p = 0 in (0, ∞)×R

d ×R
d.

The previous equation, in the case b ≡ 0, was first studied by Kolmogorov [6] who
provided an explicit formula for its fundamental solution. Then considered by Hörman-
der [7] as motivating example for the general theory of the hypoelliptic operators (see
also [8–10]).

Axioms 2021, 10, 68. https://doi.org/10.3390/axioms10020068 https://www.mdpi.com/journal/axioms
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We consider a Mean Field Games model where the dynamics of the single agent is
given by a controlled Langevin diffusion process, i.e.,⎧⎨⎩

Ẋ(s) = V(s), s ≥ t
V̇(s) = −b(X(s)) + α(s) + σḂ(s) s ≥ t
X(t) = x, V(t) = v

(2)

for (t, x, v) ∈ [0, T] × Rd × Rd. In (2), the control law α : [t, T] → Rd, which is a pro-
gressively measurable process with respect to a fixed filtered probability space such that
E[
∫ T

t |α(t)|2dt] < +∞, is chosen to maximize the functional

J(t, x, v; α) = Et,(x,v)

{ ∫ T

t

[
f (X(s), V(s), m(s))− 1

2
|α(s)|2

]
ds

+ uT(X(T), V(T))
}

,

where m(s) is the distribution of the agents at time s. Let u the value function associated
with the previous control problem, i.e.,

u(t, x, v) = sup
α∈At

{J(t, x, v; α)}

where At is the the set of the control laws. Formally, the couple (u, m) satisfies the MFG
system (see Section 4.1 in [3] for more details)⎧⎪⎪⎨⎪⎪⎩

∂tu + σ2

2 Δvu − b(x) · Dvu + v · Dxu + 1
2 |Dvu|2 = − f (x, v, m)

∂tm − σ2

2 Δvm − b(x) · Dvm + v · Dxm + divv(mDvu) = 0

m(0, x, v) = m0(x, v), u(T, x, v) = uT(x, v).

(3)

for (t, x, v) ∈ (0, T)×Rd ×Rd. The first equation is a backward Hamilton–Jacobi–Bellman
equation, degenerate in the x-variable and with a quadratic Hamiltonian in the v variable,
and the second equation is forward kinetic Fokker–Planck equation. In the standard setting,
MFG systems with quadratic Hamiltonians has been extensively considered in literature
both as a reference model for the general theory and also since, thanks to the Hopf-Cole
change of variable, the nonlinear Hamilton-Jacobi-Bellman equation can be transformed
into a linear equation, allowing to use all the tools developed for this type of problem (see
for example [2,11–15]). Recently, a similar procedure has been used for ergodic hypoelliptic
MFG with quadratic cost in [16] and for a flocking model involving kinetic equations in
Section 4.7.3 of [17].

We study (3) by means of a change of variable introduced in [11,14] for the standard
case. By defining the new unknowns φ = eu/σ2

and ψ = me−u/σ2
, the system (3) is

transformed into a system of two kinetic Fokker–Planck equations⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tφ + σ2

2 Δvφ − b(x) · Dvφ + v · Dxφ = − 1
σ2 f (x, v, ψφ)φ

∂tψ − σ2

2 Δvψ − b(x) · Dvψ + v · Dxψ = 1
σ2 f (x, v, ψφ)ψ

ψ(0, x, v) = m0(x,v)
φ(0,x,v) , φ(T, x, v) = e

uT (x,v)
σ2 .

(4)

for (t, x, v) ∈ (0, T)×Rd ×Rd. In the previous problem, the coupling between the two
equations is only in the source terms. Following [14], we prove existence of a weak solution
to (4) by showing the convergence of an iterative scheme defined, starting from ψ(0) ≡ 0,
by solving alternatively the backward problem
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⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tφ

(k+ 1
2 ) + σ2

2 Δvφ(k+ 1
2 ) −b(x) · Dvφ(k+ 1

2 ) + v · Dxφ(k+ 1
2 )

= − 1
σ2 f (ψ(k)φ(k+ 1

2 ))φ(k+ 1
2 )

φ(k+ 1
2 )(T, x, v) = e

uT (x,v)
σ2 ,

(5)

and the forward one⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂tψ

(k+1) − σ2

2 Δvψ(k+1) −b(x) · Dvψ(k+1) + v · Dxψ(k+1)

= 1
σ2 f (ψ(k+1)φ(k+ 1

2 ))ψ(k+1)

ψ(k+1)(0, x, v) = m0(x,v)

φ(k+ 1
2 )(0,x,v)

.

(6)

We show that the resulting sequence (φ(k+ 1
2 ), ψ(k+1)), k ∈ N, monotonically converges

to the solution of (4). Hence, by the inverse change of variable (see again [11,14] for details)

u =
ln(φ)

σ2 , m = φψ, (7)

we obtain a solution of the original problem (3). We have

Theorem 1. The sequence (φ(k+ 1
2 ), ψ(k+1)) defined by (5) and (6) converges in L2([0, T]×Rd ×

Rd) and a.e. to a weak solution (φ, ψ) of (4). Moreover, the couple (u, m) defined by (7) is a weak
solution to (3).

The main difficulty in the study of problems (3) and (4) is due both in the degeneracy
of the second order operator with respect to x and in the unbounded dependence of the
coefficients of the first order terms with respect to v. To overcome the previous difficulties
we rely on the results for linear kinetic Fokker–Planck equations developed in [18]. We
mention that existence of weak solutions for the standard MFG problem, possibly degener-
ate, has been studied in [19], but the results in this paper do not cover the present setting.
The previous iterative procedure also suggests a monotone numerical method for the ap-
proximation of (4), hence for (3). Indeed, by approximating (5) and (6) by finite differences
and solving alternatively the resulting discrete equations, we obtain an approximation of
the sequence (φ(k+ 1

2 ), ψ(k+1)). A corresponding procedure for the standard quadratic MFG
system was studied in [14], where the convergence of the method is proved. We plan to
study the properties of the previous numerical procedure in a future work.

2. Well Posedness of the Kinetic Fokker–Planck System

In this section, we study the existence of a solution to system (4). The proof of the
result follows the strategy implemented in Section 2 of [14] for the case of a standard
MFG system with quadratic Hamiltonian and relies on the results for linear kinetic Fokker–
Planck equations in Appendix A of [18]. We remark the model here studied does not fit
exactly the problem treated in [18] because of the presence of a zero order term in the
Fokker-Planck equation. Hence some technical aspects should be analyzed in more detail,
however the present paper is mainly intended to give some idea on the change of variabile
for the kinetic MGF.

We fix the assumptions we will assume in the whole paper. The vector field b : Rd →
Rd and the coupling cost f : Rd ×Rd ×R → R are assumed to satisfy

b ∈ L∞(Rd),

f ∈ L∞(Rd ×Rd ×R), f ≤ 0 and f (x, v, ·) strictly decreasing.
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Moreover, the diffusion coefficient σ is positive and the initial and terminal data satisfy

m0 ∈ L∞(Rd ×R
d), m0 ≥ 0,

∫∫
m0(x, v)dxdv = 1,

and ∃ R0 > 0 s.t. supp{m0} ⊂ R
d × B(0, R0)

(8)

and
uT ∈ C0(Rd ×R

d) and ∃C0, C1 > 0 s.t. ∀(x, v) ∈ R
d ×R

d

−C0(|v|2 + |x|)− C0 ≤ uT(x, v) ≤ −C1(|v|2 + |x|) + C1.
(9)

Note that (9) implies that euT/σ2 ∈ L∞(Rd × Rd) ∩ L2(Rd × Rd). We denote with
(·, ·) the scalar product in L2([0, T]× Rd × Rd) and with 〈·, ·〉 the pairing between X =
L2([0, T]×Rd

x; H1(Rd
v)) and its dual X ′ = L2([0, T]×Rd

x; H−1(Rd
v)). We define the follow-

ing functional space

Y =
{

g ∈ L2([0, T]×R
d
x, H1(Rd

v)), ∂tg + v · Dxg ∈ L2([0, T]×R
d
x, H−1(Rd

v))
}

and we set Y0 = {g ∈ Y : g ≥ 0}. If g ∈ Y , then it admits (continuous) trace values
g(0, x, v), g(T, x, v) ∈ L2(Rd ×Rd) (see [18, Lemma A.1]) and therefore the initial/terminal
conditions for (4) are well defined in L2 sense. We first prove the well posedness of
problems (5) and (6).

Proposition 2. We have

(i) For any ψ ∈ Y0, there exists a unique solution φ ∈ Y0 to⎧⎨⎩ ∂tφ + σ2

2 Δvφ − b(x) · Dvφ + v · Dxφ = − 1
σ2 f (x, v, ψφ)φ

φ(T, x, v) = e
uT (x,v)

σ2 .
(10)

Moreover, φ ∈ L∞([0, T]×Rd ×Rd) and, for any R > 0, there exist δR ∈ R and ρ > 0
such that

φ(t, x, v) ≥ CR := e
1

σ2 (δR−ρT) ∀t ∈ [0, T], (x, v) ∈ B(0, R) ⊂ R
d ×R

d. (11)

(ii) Let Φ : Y0 → Y0 be the map which associates to ψ the unique solution of (10). Then, if
ψ2 ≤ ψ1, we have Φ(ψ2) ≥ Φ(ψ1).

Proof. We first prove existence of a solution to the nonlinear problem (10) by a fixed point
argument exploiting the results for the corresponding linear problem proved in [18]. Fixed
ψ ∈ Y0, consider the map F = F(ϕ) from L2([0, T]×Rd ×Rd) into itself that associates
with ϕ the weak solution φ ∈ L2([0, T]×Rd ×Rd) of the linear problem⎧⎨⎩ ∂tφ + σ2

2 Δvφ − b(x) · Dvφ + v · Dxφ = − 1
σ2 f (ψϕ)φ

φ(T, x, v) = e
uT (x,v)

σ2 .
(12)

By Prop. A.2 of [18], φ belongs to Y and it coincides with the unique solution of (12)
in this space. Moreover, the following estimate

‖φ‖L2([0,T]×Rd
x ;H1(Rd

v))
+ ‖∂tφ + v · Dxφ‖L2([0,T]×Rd

x ;H−1(Rd
v))

≤ C (13)

holds for some constant C which depends only on ‖euT/σ2‖L2 , ‖ f ‖L∞ and σ. Hence F maps
BC, the closed ball of radius C of L2([0, T]×Rd ×Rd), into itself.

To show that the map F is continuous on BC, consider {ϕn}n∈N, ϕ ∈ L2([0, T]×Rd ×
Rd) such that ‖ϕn − ϕ‖L2 → 0 and set φn = F(ϕn). Then φn ∈ Y , and, by the estimate (13),
we get that, up to a subsequence, there exists φ ∈ Y such that φn → φ, Dvφn → Dvφ
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in L2([0, T] × Rd × Rd), ∂tφn + v · Dxφn → ∂tφn + v · Dxφn in L2([0, T] × Rd
x; H−1(Rd

v)).
Moreover, ϕn → ϕ almost everywhere. By the definition of weak solution to (12), we
have that

〈∂tφn + v · Dxφn, w〉 − σ2

2
(Dvφn, Dvw)− (b · Dvφn, w) = (− 1

σ2 φn f (ϕnψ), w), (14)

for any w ∈ D([0, T]×Rd ×Rd), the space of infinite differentiable functions with compact
support in [0, T]×Rd ×Rd. Employing weak convergence for left hand side of (14) and
the Dominated Convergence Theorem for the right hand one, we get for n → ∞

〈∂tφ + v · Dxφ, w〉 − σ2

2
(Dvφ, Dvw)− (b · Dvφ, w) = (−φ f (ϕψ), w)

for any w ∈ D([0, T] × Rd × Rd). Hence φ = F(ϕ) and F(ϕn) → F(ϕ) for n → ∞ in
L2([0, T]×Rd ×Rd). The compactness of the map F in L2([0, T]×Rd ×Rd) follows by the
compactness of the set of the solutions to (12), see Theorem 1.2 of [20]. We conclude, by
Schauder’s Theorem, that there exists a fixed-point of the map F in L2, hence in Y , and
therefore a solution to the nonlinear parabolic Equation (10).

Observe that, if φ is a solution of (10), then φ̃ = eλtφ is a solution of

∂tφ̃ +
σ2

2
Δvφ̃ − b(x) · Dvφ̃ + v · Dxφ̃ − λφ̃ = − 1

σ2 f (e−λtψφ̃)φ̃ (15)

with the corresponding final condition. In the following, we assume that λ > 0. To show
that φ is non-negative, we will exploit the following property (see Lemma A.3 of [18]):
given φ ∈ Y and defined φ± = max(±φ, 0), then φ± ∈ X and

〈∂tφ + v · Dxφ, φ−〉 = 1
2

(∫∫
|φ(0, x, v)−|2dxdv −

∫∫
|φ(T, x, v)−|2dxdv

)
. (16)

Let φ be a solution of (15), multiply the equation by φ− and integrate. Then, since
φ(T, x, v) is non-negative, by (16) we get

− 1
σ2 (φ f (eλtφψ), φ−) = 〈∂tφ + v · Dxφ, φ−〉−

σ2

2
(Dvφ, Dvφ−)− (b · Dvφ, φ−)− λ(φ, φ−) =

1
2

∫∫
|φ(0, x, v)−|2dxdv +

σ2

2
(Dvφ−, Dvφ−) + λ(φ−, φ−) ≥

λ(φ−, φ−),

where it has been exploited that, by integration by parts, (b · Dvφ, φ−) = 0. Since f ≤ 0
and therefore

−(φ f (eλtφψ), φ−) = (φ− f (eλtφψ), φ−) ≤ 0,

we get (φ−, φ−) ≡ 0, hence φ ≥ 0.
To prove the uniqueness of the solution to (10), consider two solutions φ1, φ2 of (15)

and set φ = φ1 −φ2. Multiplying the equation for φ by φ, integrating and using φ(x, v, T) = 0,
we get

− 1
σ2 ( f (e−λtψφ1)φ1 − f (e−λtψφ2)φ2, φ1 − φ2) = 〈∂tφ + v · Dxφ, φ〉−

σ2

2
(Dvφ, Dvφ)− (b · Dvφ, φ)− λ(φ, φ) =

−1
2

∫∫
|φ(x, v, 0)|2dxdv − σ2

2
(Dvφ, Dvφ)− λ(φ, φ) ≤ −λ(φ1 − φ2, φ1 − φ2)

(17)
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and, by the strict monotonicity of f , we conclude that φ1 = φ2.
To prove that φ is bounded from above, we observe that the function φ(t, x, v) =

eC1+(T−t)‖ f ‖∞/σ2
, where C1 as in (9), is a supersolution of the linear problem (12) for any

ϕ ∈ L2([0, T]×Rd ×Rd), i.e., φ(T, x, v) ≥ euT(x,v)/σ2
and

∂tφ +
σ2

2
Δvφ − b(x) · Dvφ + v · Dxφ ≤ − 1

σ2 f (ψϕ)φ.

By the Maximum Principle (see Prop. A.3 (i) in [18]), we get that φ ≥ φ, where φ is the
solution of (12). Since the previous property holds for any ϕ ∈ L2([0, T]×Rd ×Rd), we
conclude that φ ≥ φ, where φ is the solution of the nonlinear problem (10).

A similar argument show that φ(x, v, t) = e(−C0(|v|2+|x|+1)−ρ(T−t))/σ2
, where C0 as

in (9) and ρ sufficiently large, is a subsolution of (12) for any ϕ ∈ L2([0, T] × Rd × Rd).
Indeed, replacing φ in the equation, we get that the inequality

∂tφ +
σ2

2
Δvφ − b(x) · Dvφ + v · Dxφ =

=
φ

σ2

(
ρ − C0dσ2 + 2C2

0σ2|v|2 + 2C0b(x) · v − C0v · x
|x|
)
≥

− 1
σ2 f (ψϕ)φ

is satisfied for ρ large enough and, moreover, φ ≤ euT(x,v)/σ2
. Hence φ ≤ φ, where φ is the

solution of the nonlinear problem (10), and, from this estimate, we deduce (11).
We finally prove the monotonicity of the map Φ. Set φi = Φ(ψi), i = 1, 2, and consider

the equation satisfied by φ = eλtφ1 − eλtφ2, multiply it by φ
+ and integrate. Performing a

computation similar to (17), we get

− 1
σ2 ( f (φ1ψ1)φ1 − f (φ2ψ2)φ2, φ

+
) ≤ −λ(φ

+, φ
+
).

Since, by monotonicity of f and non-negativity of φi, we have

−( f (φ1ψ1)φ1 − f (φ2ψ2)φ2, φ
+
) = −( f (φ1ψ1)(φ1 − φ2), φ

+
)−

(( f (φ1ψ1)− f (φ2ψ2))φ2, φ
+
) ≥ 0,

we get (φ+, φ
+
) = 0 and therefore φ1 ≤ φ2.

We set
YR = {φ ∈ Y0 : φ ≥ CR ∀(x, v) ∈ B(0, R), t ∈ [0, T]},

where CR is defined as in (11).

Proposition 3. Given R > R0, where R0 as in (8), we have

(i) For any φ ∈ YR, there exists a unique solution ψ ∈ Y0 to⎧⎨⎩ ∂tψ − σ2

2 Δvψ − b(x) · Dvψ + v · Dxψ = 1
σ2 f (x, v, ψφ)ψ

ψ(0, x, v) = m0(x,v)
φ(0,x,v) .

(18)

Moreover

ψ(x, v, t) ≤ ‖m0‖L∞

CR
∀t ∈ [0, T], (x, v) ∈ R

d ×R
d, (19)

where CR as in (11).
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(ii) Let Ψ : YR → Y0 be the map which associates with φ ∈ YR the unique solution of (18). Then,
if φ2 ≤ φ1, we have Ψ(φ2) ≥ Ψ(φ1).

Proof. First observe that, since R > R0, then ψ(0, x, v) is well defined for φ ∈ YR. The proof
of the first part of (i) is very similar to the one of the corresponding result in Proposition 2,
hence we only prove the bound (19). If ψ is a solution of (18), then ψ̃ = e−λtψ is a solution of

∂tψ̃ − σ2

2
Δvψ̃ − b(x) · Dvψ̃ + v · Dxψ + λψ̃ =

1
σ2 f (x, v, eλtψ̃φ)ψ. (20)

Let ψ be a solution of (20), set ψ̄ = ψ − e−λt‖m0‖L∞ /CR and observe that ψ̄(0) ≤ 0.
Multiply the equation for ψ̄ by ψ̄+ and integrate to obtain

(ψ f (eλtψφ), ψ̄+) =

〈∂tψ̄ + v · Dxψ̄, ψ̄+〉+ 1
σ2 (Dvψ̄, Dvψ̄+)− (b(x)Dvψ̄, ψ̄+) + λ(ψ̄, ψ̄+) ≥∫∫
|ψ̄+(x, v, T)|2dxdv + λ(ψ̄+, ψ̄+) ≥ λ(ψ̄+, ψ̄+).

Since ψ ≥ 0 and f ≤ 0, we have

(ψ f (eλtψφ), ψ̄+) ≤ 0

and therefore ψ̄+ ≡ 0. Hence the upper bound (19).
Now we prove (ii). Set ψi = Ψ(φi), i = 1, 2, and ψ̄ = e−λtψ1 − e−λtψ2. Multiply the

equation satisfied by ψ̄ by ψ̄+ and integrate. Since, by monotonicity and negativity of f ,
we have

( f (eλtφ1ψ1)ψ1 − f (eλtφ2ψ2)ψ2, ψ̄+) = ( f (eλtφ1ψ1)(ψ1 − ψ2), ψ̄+)+

(ψ2( f (e−λtφ1ψ1)− f (e−λtφ2ψ2)), ψ̄+) ≤ 0.

Then

0 ≥ 〈∂tψ̄ + v · Dxψ̄, ψ̄+〉+ 1
σ2 (Dvψ̄, Dvψ̄+)− (b(x)Dvψ̄, ψ̄+) + λ(ψ̄, ψ̄+) ≥∫∫
|ψ̄+(x, v, T)|2dxdv + λ(ψ̄+, ψ̄+) ≥ λ(ψ̄+, ψ̄+).

Hence ψ̄+ ≡ 0 and therefore ψ1 ≤ ψ2.

Proof of Theorem 1. Given ψ(0) ≡ 0, consider the sequence (φ(k+ 1
2 ), ψ(k+1)), k ∈ N, de-

fined in (5) and (6). It can rewritten as⎧⎨⎩ φ(k+ 1
2 ) = Φ(ψ(k))

ψ(k+1) = Ψ(φ(k+ 1
2 ))

(21)

where the maps Φ, Ψ are as in Propositions 2 and, respectively 3. Observe that, by (11), we
have φ(k+ 1

2 ) ∈ YR for R > R0 and ψ(k+1) ≥ 0 for any k. Hence the sequence (φ(k+ 1
2 ), ψ(k+1))

is well defined. We first prove by induction the monotonicity of the components of
(φ(k+ 1

2 ), ψ(k+1)). By non-negativity of solutions to (18), we have ψ(1) = Φ(φ( 1
2 )) ≥ 0 and

therefore ψ(1) ≥ ψ(0). Moreover, by the monotonicity of Φ, φ( 3
2 ) = Φ(ψ(1)) ≤ Φ(ψ(0)) = φ( 1

2 ).
Now assume that ψ(k+1) ≥ ψ(k). Then

φ(k+ 3
2 ) = Φ(ψ(k+1)) ≤ Φ(ψ(k)) = φ(k+ 1

2 )
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and
ψ(k+2) = Ψ(φ(k+ 3

2 )) ≥ Ψ(φ(k+ 1
2 )) = ψ(k+1),

therefore the monotonicity of two sequences.
Since φ(k+ 1

2 ) ≥ 0 and, by (19), for k → ∞, the sequence ψ(k+1) ≤ ‖m0‖L∞ /CR,
(φ(k+ 1

2 ), ψ(k+1)) converges a.e. and in L2([0, T] × Rd × Rd) to a couple (φ, ψ). Taking
into account the estimate (13), the a.e. convergence of the two sequences and repeating
an argument similar to the one employed for the continuity of the map F in Proposition 2,
we get that the couple (φ, ψ) satisfies, in weak sense, the first two equations in (4). The
terminal condition for φ is obviously satisfied, while the initial condition for ψ, in L2 sense,
follows by convergence of φ(k+ 1

2 )(0) to φ(0).
We now consider the couple (u, m) given by the change of variable in (7). We first

observe that, by Theorem 1.5 of [10], we have ∂tφ + v · Dxφ, Dvφ, Δvφ ∈ L2([0, T]×Rd ×
Rd) and a corresponding regularity for ψ. Taking into account the boundedness of φ and
the estimate in (11), we have that u, ∂tu+ v · Dxu, Dvu, Δvu ∈ L2

loc([0, T]×Rd ×Rd). Hence
we can write the equation for u in weak form, i.e.,

(∂tu + v · Dxu, w)− σ2

2
(Dvu, Dvw)− (b · Dvu, w) +

1
2
(|Dvu|2, w) = −( f (m), w),

for any w ∈ D([0, T]×Rd ×Rd), with final datum in trace sense. In a similar way, since
m, ∂tm + v · Dxm, Dvm, Δvm ∈ L2

loc([0, T]×Rd ×Rd) and m is locally bounded, we can
rewrite also the equation for m in weak form, i.e.,

(∂tm + v · Dxm, w) +
σ2

2
(Dvm, Dvw)− (b · Dvm, w)− (mDvu, Dw) = 0,

for any w ∈ D([0, T]×Rd ×Rd) with the initial datum in trace sense.
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Abstract: Soil Organic Carbon (SOC) is one of the key indicators of land degradation. SOC positively
affects soil functions with regard to habitats, biological diversity and soil fertility; therefore, a
reduction in the SOC stock of soil results in degradation, and it may also have potential negative
effects on soil-derived ecosystem services. Dynamical models, such as the Rothamsted Carbon
(RothC) model, may predict the long-term behaviour of soil carbon content and may suggest optimal
land use patterns suitable for the achievement of land degradation neutrality as measured in terms of
the SOC indicator. In this paper, we compared continuous and discrete versions of the RothC model,
especially to achieve long-term solutions. The original discrete formulation of the RothC model was
then compared with a novel non-standard integrator that represents an alternative to the exponential
Rosenbrock–Euler approach in the literature.

Keywords: soil organic carbon; RothC; non-standard integrators; Exponential Rosenbrock–Euler

MSC: 34C60; 65L05; 65D30

1. Introduction

The United Nations Convention to Combat Desertification (UNCCD) is an interna-
tional agreement, established in 1994, that links the environment and development with
sustainable land management. The first objective indicated in the UNCCD 2018–2030
Strategic Framework is to improve the conditions of affected ecosystems, combat desertifi-
cation/land degradation and promote sustainable land management [1]. For each country,
the commitment is to achieve no net loss of land-based natural capital by 2030 [2]. No net
loss means that the quantity and quality of land-based natural capital are maintained or
increased, despite the impacts of global environmental change, whether due to human or
natural causes. Land degradation is monitored through the changes of the values of a spe-
cific set of consistently measured indicators from their baseline quantities, conventionally
identified as their initial values. The deviations from the baseline values of these indicators
are the basis for monitoring land degradation.

Soil Organic Carbon (SOC) is one key indicator of land degradation [3]. Monitoring
the SOC stocks and the loss of soil organic carbon due to land use changes is fundamental
for maintaining the physical, chemical and biological quality of soil [4]. Soil organic
carbon positively affects soil functions with regard to habitats, biological diversity, soil
fertility, crop production potential, erosion control and water retention. A high SOC content
improves the processes of soil formation, nutrient storage, water holding capacity and the
absorption of organic or inorganic pollutants. Thus, a reduction of the SOC stock not only
indicates soil degradation, but may also have potential negative effects on soil-derived
ecosystem services.

Starting from the SOC baseline, predictive spatial modelling can simulate the car-
bon dynamics, estimate carbon sequestration under the actual land use and evaluate the
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deviation from the baseline average value of total carbon [5]. Moreover, a dynamical
model may determine the optimal potential land use pattern that is suitable to achieve
land degradation neutrality in terms of SOC indicator values. Well-validated models,
such as Rothamsted Carbon (RothC) [6], CENTURY [7] and MOMOS [8], which take into
account the interactions among the climate, pedology, cropping systems and soil and crop
management, can be used to predict SOC changes under different management practices
and climatic conditions. These models are essentially compartmental, meaning that they
represent soil organic matter as a few discrete compartments (generally two to five) charac-
terized by different chemical characteristics of the soil’s degradation. The decomposition
rates, applied to each compartment, are governed by kinetic and stoichiometric laws and
are mainly ruled by the environmental conditions (e.g., soil moisture level, aeration and
soil temperature). These models are used in a variety of ways and often for long-term
studies. Indeed, being able to compute and predict long-term solutions is extremely valu-
able for various reasons: it gives a synthetic view of the system in the given agro-climatic
conditions; it makes it possible to test if a studied soil has reached equilibrium or not;
and it allows envisioning what would be the consequences of specific events on a given
soil [9]. In this paper, we compared continuous and discrete versions of the RothC model,
especially regarding long-term solutions. Moreover, since the discrete RothC version can
be interpreted as a first-order approximation of the continuous model, we introduced a
non-standard discrete approximation that can be interpreted as a novel discrete model
of soil carbon dynamics. The original discrete formulation of the RothC model was then
compared to the novel non-standard integrator, which represents a different approach with
respect to the Exponential Rosenbrock–Euler (ERE) discretization [10].

2. Rothamsted Carbon Model—Continuous Formulation

The SOC indicator is considered to be the result of the equilibrium between the inputs
and outputs of the soil system. SOC contained in the organic matter is constantly built
up and decomposed and is then released into the atmosphere as CO2 and recaptured
through photosynthesis. Inputs in the soil organic matter decomposition model consist
of two major components: living organisms’ biomass (mainly plant roots and microbial
biomass) and plant and animal residues at various stages of decomposition. Outputs result
from the heterotrophic respiration processes when soil organic carbon is used as an energy
source by soil organisms and returned to the atmosphere as CO2 fluxes. The Rothamsted
Carbon model [6,11] (RothC) is a model of carbon turnover in non-waterlogged soils [12].
Initially developed for arable soils, it was later expanded to grasslands and forests. It takes
into account the effects of temperature, moisture content and soil type. The RothC model
divides the soil carbon into four active compartments and one inactive, characterized by
different chemical decomposition rates of degradability (see Figure 1). The Inert Organic
Matter (IOM) represents the inactive pool, resistant to decomposition, which does not
receive carbon (C) inputs. At each time step, incoming plant residues are split between
easily Decomposable Plant Material (DPM) and Resistant Plant Material (RPM), depending

on the ratio
γ

1 − γ
, which estimates the decomposability of the particular plant material

inputs, which in turn depends on the specific cultivation being considered. The fraction
2 η of the input of Farmyard Manure (FYM), if any, is equally split between the DPM and
RPM compartments; the remaining part 1 − 2 η enters in the system directly as Humified
organic matter (HUM). Both DPM and RPM decompose to form CO2, microbial Biomass
(BIO) and more HUM. The fraction α + β of metabolised C incorporated into the sum of
compartments BIO+HUM is determined by the clay content of the soil, while the remaining
part 1 − α − β is released as CO2 and lost by the system. The BIO+HUM carbon content

is then split into
α

α + β
percent BIO and

β

α + β
percent HUM. Finally, both BIO and HUM

decompose to form more CO2, BIO and HUM.
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Figure 1. Flow diagram of the Rothamsted Carbon (RothC) model. FYM, Farmyard Manure; DPM, Decomposable Plant
Material; RPM, Resistant Plant Material; BIO, microbial Biomass; HUM, Humified organic matter; IOM, Inert Organic Matter.

The four active compartments undergo decomposition as a function of different rate
constants, which correspond to the entries of the vector k = [kdpm, krpm, kbio, khum] and of
the rate modifier ρ(t), which depends on the clay content of the soil, on climatic variables
(rainfall, temperature, open pan evaporation) and land cover.

In real soil systems, processes involved in the RothC model are continuous in time,
and thus, in [10], the author proposed the following continuous formulation:

ċ = ρ(t) A c + b(t), c(t0) = c0 ≥ 0 (1)

where c(t) = [cdpm(t), crpm(t), cbio(t), chum(t)]T and c0 ≥ 0 denotes the vector of the initial
concentrations. The matrix A is given by:

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−kdpm 0 0 0

0 −krpm 0 0

α kdpm α krpm (α − 1) kbio α khum

β kdpm β krpm β kbio (β − 1) khum

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The vector b(t) represents the carbon amount entering the system at time t. It consid-
ers both the input of plant residues g(t) a(g) and the input of FYM f (t) a( f ), so that:

b(t) := g(t) a(g) + f (t) a( f ).

The entries of vectors a(g) := [γ, 1 − γ, 0, 0]T and a( f ) := [η, η, 0, 1 − 2 η]T are the
fraction inputs 0 ≤ γ ≤ 1, 0 ≤ η ≤ 1/2, which sum up to one; the carbon of plant
residues enters the soil only through the DPM and RPM compartments, while the carbon
amount of FYM enters through the DPM, RPM and HUM compartments.

It can be shown that, under the hypothesis 0 < α + β ≤ 1 and ρ(t) > 0, the solution
of the homogeneous part of the RothC system (1) with non-negative initial data verifies the
more general assumptions stated in [13,14] for biochemical systems, which ensure the well-
posedness and positivity of the solution. Comparison theorems guarantee the positivity of
the solution of the complete RothC system when g(t), f (t) are assumed positive.
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Definition 1. We define as the SOC indicator of the continuous RothC model (1) the function
SOC(t) = ciom + cdpm(t) + crpm(t) + cbio(t) + chum(t) for t ≥ t0, where ciom denotes the
constant carbon content in the compartment IOM.

Theorem 1. Let α, β > 0 and δ := 1 − α − β > 0; suppose 0 < g(t) + f (t) ≤ B and ρ(t) are
uniformly bounded from below by a constant μ > 0. The set:

Ω =

{
(cdpm, crpm, cbio, chum) ∈ R4

+ : 0 ≤ (cdpm + crpm + cbio + chum) ≤ B
μ δ kmin

}
with kmin = mini k(i) is positively invariant and globally attractive for Model (1).

Proof. By denoting ω(t) = SOC(t) − ciom, from System (1), and recalling that eT a(g) =
eT a( f ) = 1, we can show that:

ω̇ = eT ċ = ρ(t) eT A c + g eT a(g) + f eT a( f ) = g(t) + f (t) − ρ(t) δ kT c (2)

where e = [1, 1, 1, 1]T . Consequently,

ω̇ ≤ g(t) + f (t) − ρ(t) δ kmin ω ≤ B − μ δ kmin ω

so that:

ω(t) ≤ B
μ δ kmin

−
[

B
μ δ kmin

− ω(t0)

]
e−μ δ kmin (t− t0).

Therefore, if ω(t0) ≤ B
μ δ kmin

, then ω(t) ≤ B
μ δ kmin

, with Ω, resulting in a positively

invariant set for model (1). Moreover, if ω(t0) ≥ B
μ δ kmin

, then limt→∞ ω(t) ≤ B
μ δ kmin

and Ω is globally attractive for Model (1).

Under the hypothesis of Theorem 1, the set:

ΩSOC =

{
SOC ∈ R+, ciom ≤ SOC ≤ ciom +

B
μ δ kmin

}
is globally attractive for the SOC model:

˙SOC = eT ċ = ρ(t) eT A c + g(t) + f (t). (3)

Finally, to complete the understanding of the mathematical features of the RothC
model, we provide the following theorem:

Theorem 2. Suppose g(t) and f (t) are integrable on every finite subinterval of [t0,+∞). If

α + β = 1, then SOC(t) = SOC(t0) +
∫ t

t0

(g(s) + f (s)) ds.

Proof. Under the assumption α + β = 1, the unit vector e ∈ ker(AT). We have ˙SOC =
eT ċ = ρ eT A c + g eT a(g) + f eT a( f ) = g + f .

Long-Term Solutions

When the RothC model is used in real application, the first step is to run the model to
equilibrium to calculate the required carbon inputs needed to match the initial SOC content
measured. Hence, being able to compute and predict the long-term solution are extremely
valuable in order to avoid long-run simulations, which can lead to numerical artefacts if
numerical tools are not properly used [15].

We firstly consider the (unrealistic) case when no CO2 release (i.e., α + β = 1) is con-
sidered.
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Theorem 2 indicates that:

• if there is no external carbon input (g = f = 0), then the SOC indicator is a linear
invariant for the SOC model (3);

• if the carbon input g + f is replaced by its average value ĝ + f̂ , then SOC(t) grows
linearly in time;

• if g(t) and f (t) are integrable on every finite subinterval of [t0,+∞) and the im-
proper integral

∫ +∞
t0

(g(s) + f (s)) ds converges to its value C∞, the indicator SOCR(t)
increases in time tending to the finite amount SOC∗ := SOC(t0) +C∞ (steady-state so-
lution);

• if both g(t) and f (t) are integrable on every finite subinterval of [t0,+∞) and
∫ t

t0
(g(s) +

f (s)) ds is a bounded periodic function of period T, then SOC(t) oscillates indefinitely
with period T (periodic solution).

Theorem 3. Suppose α, β, δ > 0 with α + β < 1 and k(i) > 0, i = 1, . . . 4. For ρ, g, f , not
varying with time, the RothC model admits a unique positive globally stable equilibrium, which has
the following expression:

c∗cont =
1
ρ

[
g γ + f η

kdpm
,

g (1 − γ) + f η

krpm
,
(g + f )α

kbio δ
,

f (1 − α)(1 − 2 η) + β(g + 2 f η)

khum δ

]ᵀ
. (4)

Consequently, the SOC indicator has SOC∗
cont = ciom + eT ccont as the equilibrium, which

satisfies SOC∗
cont ≤ ciom +

f + g
ρ kmin δ

.

Proof. From the assumptions, it follows that 0 < α, β < 1. The eigenvalues of the matrix A
are given by λ1 = −kdpm < 0, λ2 = −krpm < 0, and λ3,4 are the roots of the second0order
polynomial:

λ2 + λ (kbio (1 − α) + khum (1 − β)) + δ kbio khum

with discriminant Δ(λ) = (α − 1)2 k2
bio + (β − 1)2 k2

hum + 2 kbio khum(α(β + 1) + β −
1) > 0. Consequently, from Descartes’ rule of sign, λ3, λ4 < 0. The matrix A turns out to be

negative definite and admits an inverse. It is trivial to check that det(A) = δ
4

∏
i=1

k(i) > 0.

For constant (positive) values of ρ, g, f , the equilibrium is achieved by solving the linear
system ρ A c = −b, i.e.,

c∗cont = −1
ρ

A−1 b, (5)

with:

−A−1 =
1

det(A)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

δ k2,3,4 0 0 0

0 δ k1,3,4 0 0

α k1,2,4 α k1,2,4 (1 − β) k1,2,4 α k1,2,4

β k1,2,3 β k1,2,3 β k1,2,3 (1 − α) k1,2,3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
where we adopted the convention that ki,j,m := k(i) k(j) k(m) with i, j, m ∈ {1, 2, 3, 4}.

Finally, the stability of the equilibrium is guaranteed as A is negative definite.
As concerns the equilibrium of the SOC indicator, first notice that, from (2), it results

that kT c∗cont =
f + g

ρ δ
, then,

SOC∗
cont = ciom + eT c∗cont ≤ ciom +

1
kmin

kT c∗cont = ciom +
f + g

kmin ρ δ
.
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When climatic and agricultural variables are considered, the functions ρ(t), g(t) and
f (t) are chosen to be time varying on a periodical basis, and the system defined by c(t) is
expected to tend toward an oscillatory state as t −→ +∞. If we introduce ξ(t) :=

∫ t
t0

ρ(s) ds
for all t ≥ t0, then the solution of (1) is given by:

c(t) = e ξ(t) A c0 + e ξ(t) A
∫ t

t0

e−ξ(s)A b(s) ds. (6)

The study of the eigenvalues of ξ(t) A enables characterizing the solution behaviour.
We can first observe that if the eigenvalues of A ξ(t) are negative, c(t) as t → +∞ does
not depend on initial conditions c0. Secondly, if there exists a periodic solution c(t) with
period T, then c(t0 + T) = c0, and the following theorem holds:

Theorem 4. Assume that ρ(t), g(t) and f (t) are periodic with period T. If α + β �= 1 and
k(i) �= 0 for all i ∈ [dpm, rpm, bio, hum], then I − e ξ(t0+T) A is not singular. Starting from:

c0 := (I − e ξ(t0+T) A)−1 e ξ(t0+T) A
∫ t0+T

t0

e−ξ(s)Ab(s) ds

the RothC model admits a (unique) periodic solution.

Proof. From the periodicity of ρ(t), it follows that:

ξ(t + T) =
∫ t+T

t0

ρ(s)ds =
∫ t0+T

t0

ρ(s)ds +
∫ t+T

t0+T
ρ(s)ds = ξ(t0 + T) + ξ(t).

By imposing in (6) that c(t0 + T) = c0, it follows that:

c0 = e ξ(t0+T) A
(

c0 +
∫ t0+T

t0

e−ξ(s)Ab(s) ds
)

. (7)

Under the assumed hypothesis, A is not singular, and consequently, the matrix I −
e ξ(t0+T) A has the inverse. Exploiting the periodicity of b(t) inherited by the periodicity of
both g(t) and f (t), we have that:

c(t + T) = e ξ(t+T) A
(

c0 +
∫ t+T

t0

e−ξ(s)A b(s) ds
)

= eξ(t)A eξ(t0+T)A
(

c0 +
∫ t0+T

t0

e−ξ(s)A b(s) ds +
∫ t+T

t0+T
e−ξ(s)A b(s) ds

)
= eξ(t)Ac0 + eξ(t)A eξ(t0+T)A

∫ t

t0

e−ξ(s+T)A b(s) ds

= eξ(t)Ac0 + eξ(t)A
∫ t

t0

e−ξ(s)A b(s) ds

= c(t).

This proves the periodicity of c(t).

The condition α + β < 1 is always true for the RothC model due to the definition of α
and β (see [6]), and thus, the stock of carbon in each compartment tends towards a periodic
solution in large times whatever the input values are.

Although the continuous approach (1) gives a simple explicit solution, the function
of both the input variables and the parameters of the model, in real applications, first-
order discretized versions are applied. We analyse the original discrete formulation of the
RothC model, the Exponential Rosenbrock–Euler (ERE) version and a novel first-order non-
standard procedure, closer to the classical discrete RothC procedure than the ERE model.
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3. Non-Standard RothC Discrete Models

3.1. Original Discrete RothC

By denoting with I the identity matrix and with

Λ =

⎛⎜⎜⎝
0 0 0 0
0 0 0 0
α α α α
β β β β

⎞⎟⎟⎠, D =

⎛⎜⎜⎝
kdpm 0 0 0

0 krpm 0 0
0 0 kbio 0
0 0 0 khum

⎞⎟⎟⎠
the discrete (monthly) formulation of the RothC Version 26.3 [11] in vectorial form is
given by:

cn+1 = (Λ + (I − Λ) e−Δt ρ(tn)D) cn + Δt b(tn) (8)

where cn ≈ c(tn) and the discrete temporal grid tn+1 = t0 + n Δt advances with stepsize
Δt = 1.

Discrete RothC has been applied using data from long-term experiments across several
ecosystems, climate conditions and Land Use (LU) classes. It has been extensively applied
in Europe for SOC modelling, and applications of RothC to a long-term experiment in
semi-arid conditions in Italy can be found in [16,17].

In the case when g(t), f (t) and ρ(t) do not depend on time t, then b = g a(g) + f a( f );
by setting F(Δt) = Λ + (I − Λ) e−Δt ρD, one can demonstrate that, whenever k(i) �= 0,
(I − F(Δt)) has an inverse, and the system yields a steady-state solution.

Theorem 5. The steady-state solution c∗cont in (5) of the continuous model (1) and the steady-state
solution c∗RothC(Δt) of the discrete RothC model (8) satisfy the following relation:

c∗cont = ϕ(−Δt ρ D) c∗RothC(Δt)

where ϕ(z) = z−1(ez − 1).

Proof. Firstly, evaluate I − F(Δt) = (Λ − I) (e−Δt ρ D − I). From c∗RothC = F(Δt) c∗RothC +
Δt b, one can write:

c∗RothC(Δt) = Δt (I − F(Δt))−1 b

= Δt (e−Δt ρ D − I)−1 (Λ − I)−1 b

(9)

From the definition of c∗cont in (5) and by noticing that the matrix A that defines the
continuous problem (1) verifies the relation A = (Λ − I) D, it follows that:

c∗RothC(Δt) = ϕ(−Δt ρ D)−1 c∗cont

As the original discrete RothC model is applied with Δt = 1, we can estimate the
deviation of the equilibrium of the continuous model with respect to the equilibrium
c∗RothC(1) of the original discrete RothC model. Given the matrix norm ‖ · ‖ induced
by a vector norm, as −ρ D is negative definite, it results that ‖ϕ(−ρ D)‖ ≤ ‖ I ‖ = 1
and ‖c∗cont‖ ≤ ‖ϕ(−ρ D) c∗RothC(1)‖ ≤ ‖c∗RothC(1)‖. This indicates that the equilibrium
c∗RothC(1) is, in norm, an overestimation of the theoretical equilibrium c∗cont. The relative
error depends on the stepsize Δt according to:

‖c∗RothC(Δt) − c∗cont‖
‖c∗cont‖

≤ ‖ϕ(−Δt ρ D)−1 − I‖. (10)
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As concerns the equilibrium of the SOC indicator, it results that:

SOC∗
RothC(Δt) = ciom + eT c∗RothC(Δt) = ciom + eT ϕ(−Δt ρ D)−1 c∗cont,

and consequently,

SOC∗
RothC(Δt) − SOC∗

cont = eT
(

ϕ(−Δt ρ D)−1 − I
)

c∗cont = wT(Δt) c∗cont

where:

w(Δt) =

[
1 − ϕ(−Δt ρ kdpm)

ϕ(−Δt ρ kdpm)
,

1 − ϕ(−Δt ρ krpm)

ϕ(−Δt ρ krpm)
,

1 − ϕ(−Δt ρ kbio)

ϕ(−Δt ρ kbio)
,

1 − ϕ(−Δt ρ khum)

ϕ(−Δt ρ khum)

]
(11)

a vector with positive entries that verifies limΔt→0 w(Δt) = 0.
Since the original discrete RothC model is applied with Δt = 1, the deviation of

the SOC∗
cont of the continuous model with respect to the equilibrium SOC∗

RothC(1) of the
original discrete RothC model is given by SOC∗

RothC(1) = SOC∗
cont + wT(1) c∗cont, thus

indicating that the evaluation of soil organic carbon by means of the discrete RothC model
is an overestimation of the theoretical value SOC∗

cont.
Usually, ρ, g and f vary through time, but it can be assumed that they have a periodic

behaviour. Typically, if the agricultural practices are cyclic and if the weather conditions can
be considered periodic, then ρ = ρ(t), g = g(t) and f = f (t) will also behave periodically.
Assuming that the periodicity of these variables is T = NΔt, one looks for a solution of c

such that c0 = cN . Then, we can write:

cn+1 = (Λ + (I − Λ) e−Δt ρ(tn)D) cn + Δt b(tn)

for n = 0, . . . N − 2 and then impose the periodic condition cN = c0:

c0 = (Λ + (I − Λ) e−Δt ρ(tN−1)D) cN−1 + Δt b(tN−1).

Setting Fn := Fn(Δt) := Λ + (I − Λ) e−Δt ρ(tn)D, the above relations can be reformu-
lated as:⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 I 0 . . . 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
0 . . . . . . 0 I
I 0 . . . 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
c0
c1
...
cN−2
cN−1

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

F0 0 . . . . . . 0

0 F1
. . . . . .

...
. . .

. . .
. . .

...
...

. . .
. . . 0

0 . . . . . . 0 FN−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
c0
c1
...
cN−2
cN−1

⎞⎟⎟⎟⎟⎟⎟⎠ + Δt

⎛⎜⎜⎜⎜⎜⎜⎝
b0
b1
...
bN−2
bN−1

⎞⎟⎟⎟⎟⎟⎟⎠
which yields:

⎛⎜⎜⎜⎜⎜⎝
c0
c1
...
cN−2
cN−1

⎞⎟⎟⎟⎟⎟⎠ = −Δt

⎛⎜⎜⎜⎜⎜⎜⎝

F0 −I . . . . . . 0
0 F1 −I . . .
...

. . . . . . . . .
...

...
. . . . . . −I

−I . . . . . . 0 FN−1

⎞⎟⎟⎟⎟⎟⎟⎠

−1⎛⎜⎜⎜⎜⎜⎝
b0
b1
...
bN−2
bN−1

⎞⎟⎟⎟⎟⎟⎠, (12)

where bn := b(tn), for n = 0, . . . , N − 1. Equation (12) provides a vector of dimension
4 × N and a sequence of states cn = [c(dpm)

n , c(rpm)
n , c(bio)

n , c(hum)
n ]T , n = 0, . . . N − 1, which

characterizes the oscillatory state of the carbon stock in each compartment, keeping track
of the temporal variability of the forcing variables over the period.
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3.2. Exponential Rosenbrock–Euler Model

If we regard the stepping procedure in (8), which defines the original discrete RothC
model as a first-order approximation of the solution of the continuous model (1), then
different discrete RothC models can be formulated. As an example, the discretization
of Equation (1) from tn = t0 + n Δt to tn+1 = tn + Δt by means of the exponential
Rosenbrock–Euler model (for non-autonomous systems) [10,18,19] leads to:

cn+1 = eΔt ρ(tn) A cn + Δt ϕ(Δt ρ(tn) A) b(tn)

= cn + Δt ϕ(Δt ρ(tn) A) f(tn; cn)
(13)

where f(t; c) := ρ(t) A c(t) + b(t). Notice that A is negative definite, and for z < 0, it
results in 0 < ϕ(z) < 1. In [10], it was shown that A = (Λ − I) D and:

Fn(Δt) = Λ + (I − Λ) e−Δt D ρ(tn) ≈ e Δt ρ(tn) A, Δt ϕ(Δt ρ(tn) A) = O(diag(Δt)).

Of course, the approximated solutions via the Exponential Rosenbrock–Euler (ERE)
method (13) differ from the values given by the original discrete RothC model (8); the major
consequence is that the constant discrete steady-state solution, which for the ERE method
coincides with the continuous equilibrium c∗cont, does not depend on Δt. As concerns its
stability, given A negative definite, it is enough to notice that the eigenvalues of eΔt ρ(tn) A

are positive, but all less than one.
To find periodic solutions via the ERE method, we can generalize the approach

followed for the discrete original RothC model as follows. Suppose that T = N Δt, and let
us impose that c0 = cN :

cn+1 = eΔtAρ(tn) cn + Δt ϕ(Δt A ρ(tn)) b(tn)

for n = 0, . . . N − 2 and:

c0 = eΔtAρ(tN−1) cN−1 + Δt ϕ(Δt A ρ(tN−1)) b(tN−1)

which yields:⎛⎜⎜⎜⎜⎜⎜⎝
c0
c1
...
cN−2
cN−1

⎞⎟⎟⎟⎟⎟⎟⎠ = −Δt

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

eΔt A ρ(t0) −I . . . . . . 0
0 eΔt A ρ(t1) −I . . .
...

. . .
. . .

. . .
...

...
. . .

. . . −I
−I . . . . . . 0 eΔt A ρ(tN−1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1⎛⎜⎜⎜⎜⎜⎜⎝

b̃0

b̃1
...
b̃N−2

b̃N−1

⎞⎟⎟⎟⎟⎟⎟⎠, (14)

with b̃n := ϕ(Δt ρ(tn) A) bn, for n = 0, . . . , N − 1.
The sequence of states cn, n = 0, . . . N − 1 characterizes the oscillatory state of the

carbon stock in each compartment. Of course, the solution differs from the periodic solution
provided in (12).

3.3. Novel Non-Standard Discrete RothC Model

The ERE procedure described in (13) belongs to the more general class of non-standard
finite difference schemes [14,20]. Different first-order non-standard approximations can be
used, depending on the function of the stepsize used to advance the first-order procedure.
Each of them can be considered as discrete RothC models, alternative to the ERE model.

A discrete model, closer to the original formulation of the RothC model, can be
introduced as follows. Consider the discrete formulation of RothC (8). Simple evaluations
lead to the equivalent expressions:

cn+1 = Fn(Δt) cn + Δt b(tn)

= cn + Δt ϕ(Δt ρ(tn) Ã) ρ(tn) A cn + Δt b(tn)
(15)
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where the eigenvalues of the matrix Ã = −A (I − Λ)−1 = −(I − Λ) D (I − Λ)−1 are the
entries of the vector −k, and the columns of:

(I − Λ)−1 =
1
δ

⎛⎜⎜⎝
δ 0 0 0
0 δ 0 0
α α β − 1 α
β β β α − 1

⎞⎟⎟⎠ (16)

are the corresponding eigenvectors.
A novel Non-Standard (NS) discrete RothC model is given by:

cn+1 = cn + Δtϕ(Δt ρ(tn) Ã) f(cn; tn)

= Fn(Δt) cn + Δt ϕ(Δt ρ(tn) Ã) b(tn)

(17)

Indeed, we can prove that:

Theorem 6. The NS model (17) is a non-standard first-order approximation of the continuous
model (1), i.e.,

Δt ϕ(Δt ρ(tn) Ã) = O(diag(Δt)), for Δt → 0.

Proof. From the definition of the exponential matrix, we have that:

Δtϕ(Δt ρ(tn) Ã) =
1

ρ(tn)
Ã−1

(
eΔt ρ(tn) Ã − I

)
=

1
ρ(tn)

Ã−1
∞

∑
j=1

1
j!

(
Δt ρ(tn) Ã

)j

= diag(Δt) +
Δt2

2
ρ(tn) Ã +

∞

∑
j=2

Δtj+1

(j + 1)!

(
ρ(tn) Ã

)j

It follows that Δtϕ(Δt ρ(tn) Ã) = O(diag(Δt)), for Δt → 0.

By comparing the ERE flow (13) with the above non-standard formulation (17), we
notice that the main difference is in the replacement of the matrix A with the matrix Ã,
which has a simple representation in Jordan form. This simplifies the evaluation of the
matrix function ϕ(Δtρ(tn) Ã) because it can be evaluated on the known eigenvalues −k(i)
and eigenvectors in (16).

Moreover, the comparison of the original discrete formulation of the RothC model
(8) with the novel NS procedure (17) allows us to notice that, different from the ERE
method (13), the decomposition dynamic is now treated in the same way as the original
discrete RothC model. The time updating procedure related to the carbon amount entering
the system at time t + Δt is now evaluated up to a factor given by ϕ(Δt ρ(tn) Ã) , different
from the ERE approximation, which advances evaluating ϕ(Δt ρ(tn) A).

As the ERE method, in the case of constant functions ρ, g, f , the novel method NS has
c∗cont as the steady-state solution.

Theorem 7. Under the hypothesis 0 < α + β < 1, the equilibrium c∗cont of the NS method (17) is
globally stable.
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Proof. It is enough to prove that the eigenvalues of Fn(Δt) = Λ + (I − Λ) e−Δt ρ(tn)D are
in modulus less than one. It is easy to see that two eigenvalues are given by e−Δt ρ(tn) kdpm

and e−Δt ρ(tn) krpm . The others are the eigenvalues of the sub-matrix:

F3,4 =

⎛⎝ α − e−Δt ρ(tn) kbio (α − 1) α − α e−Δt ρ(tn) khum

β − β e−Δt ρ(tn) kbio β − e−Δt ρ(tn) khum (β − 1)

⎞⎠
The eigenvalues lie in the union of the two Gershgorin sets:

K1 =
{

z ∈ C : |z − α + e−Δt ρ(tn) kbio (α − 1)| ≤ |β − β e−Δt ρ(tn) kbio |
}

,

K2 =
{

z ∈ C : |z − α + α e−Δt ρ(tn) khum | ≤ |β − e−Δt ρ(tn) khum (β − 1)|
}

.

Notice that F3,4 has positive entries. Set

M = max(F3,4(1, 1) + F3,4(2, 1), F3,4(1, 2) + F3,4(2, 2)); if z ∈ K1 ∪ K2, then |z| ≤ M.

evaluate:

F3,4(1, 1) + F3,4(2, 1) = (α + β) (1 − e−Δt ρ(tn) kbio ) + e−Δt ρ(tn) kbio < 1

Similarly,

F3,4(1, 2) + F3,4(2, 2) = (α + β) (1 − e−Δt ρ(tn) khum) + e−Δt ρ(tn) khum < 1

Hence it results that the eigenvalue of F3,4 are less than one in modulus.

To search for periodic solutions via the novel non-standard model, we need to solve
the linear system:

−

⎛⎜⎜⎜⎜⎜⎜⎝

F0 −I . . . . . . 0
0 F1 −I . . .
...

. . . . . . . . .
...

...
. . . . . . −I

−I . . . . . . 0 FN−1

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
c0
c1
...
cN−2
cN−1

⎞⎟⎟⎟⎟⎟⎠ = Δt

⎛⎜⎜⎜⎜⎜⎜⎝
b̂0
b̂1
...
b̂N−2
b̂N−1

⎞⎟⎟⎟⎟⎟⎟⎠,

where b̂n := ϕ(Δt ρ(tn) Ã) bn, for n = 0, . . . , N − 1. As already observed, we have the
same coefficient matrix of the system (12), while the knowledge of the explicit Jordan form
of the matrix Ã simplifies the evaluation of the coefficients b̂n.

In the next two sections, we compare the behaviour of the different discrete models
on the evaluation of steady-state and long-term periodic solutions. Firstly, the comparison
is made on a theoretical basis comparing the accuracy of the methods in approximating the
solutions of the continuous model; secondly, we tested both the ERE and the novel non-
standard model with respect to the original discrete RothC model on a classical monthly
time-scale experiment where real measurements were available.

A freely accessible MATLAB routine named NSRothC [21] was implemented to repli-
cate all the simulations presented in the next sections. The package includes two versions.
The first one (contNSRothC) allowed us to run the model with different stepsizes, when
the continuous periodic input functions ρ(t) and b(t) have the particular form presented
in Section 4. In the second version (monNSRothC), the stepsize was fixed to one month,
and the discrete monthly values of input residuals and FYM were required, as well as the
monthly values of weather variables (temperature, rainfall and moisture). As an example,
data from the Hoosfield spring barley experiment [6] were used.
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4. Numerical Tests

Let us compare long-term solutions obtained by using the original discrete RothC
model, the exponential Rosenbrock–Euler method and the novel non-standard first-order
scheme. We set parameters α = 0.1, β = 0.12, γ = 0.59 and η = 0.49. The vector of the
decomposition rates k = [0.8333, 0.0250, 0.0550, 0.0017] and functions ρ(t), g(t) and f (t)
are supposedly expressed on a monthly scale. They vary with the same period T = 12 and
have Gaussian distributions according to:

ρ(t) = aρ +
G(t, μ

(1)
ρ , σ

(1)
ρ )∫ t0+T

t0

G(s, μ
(1)
ρ , σ

(1)
ρ ) ds

b(1)ρ +
G(t, μ

(2)
ρ , σ

(2)
ρ )∫ t0+T

t0

G(s, μ
(2)
ρ , σ

(2)
ρ ) ds

b(2)ρ

g(t) = ag +
G(t, μg, σg)∫ t0+T

t0

G(s, μg, σg) ds
bg, f (t) = a f +

G(t, μ f , σf )∫ t0+T

t0

G(s, μ f , σf ) ds
b f

where G(t, μ, σ) :=
1

σ
√

2 π
e

−
(

t − t0 − μ −
⌊

t − t0

T

⌋
T
)2

2 σ2 for t ≥ t0.

Values aρ = 0.3561, μ
(1)
ρ = T

2 , μ
(2)
ρ = 5 T

6 were set, amplitudes b(1)ρ = 0.9596 and

b(2)ρ = 1.4996 were chosen, while dispersion coefficients were given by σ
(1)
ρ = σ

(2)
ρ =

0.6738. The function ρ(t) in a time-span of three years is shown in Figure 2 on the left.
Values ag = 0, μg = T

2 , bg = 2.7996, σg = 0.9974 define the function g(t), while
values a f = 0, μ f = T

6 , b f = 1.5, σf = 0.1995 define the function f (t). The four
components of the input function b(t) := g(t) a(g) + f (t) a( f ) are depicted in Figure 2, on
the right.
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Figure 2. The function ρ(t) (on the left) and the vectorial function b(t) (on the right) in a three-year
time-span.

4.1. Steady-State Solution

To compare long-time periodic and steady-state solutions, we consider the average
values of ρ(t) and b(t) over one period T:

ρ̂ = aρ +
b(1)ρ

T
+

b(2)ρ

T
= 0.5610,

b̂ =

(
ag +

bg

T

)
a(g) +

(
a f +

b f

T

)
a( f ) = 0.2333 a(g) + 0.125 a( f ) = [0.1989, 0.1569, 0, 0.025]T ,
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and we evaluate the steady-state solution (4) of the continuous RothC model (1):

c∗cont = [0.4254, 11.1867, 1.4887, 61.6253]T . (18)

We recall that both the ERE and the NS method have c∗cont as the steady-state solu-
tion of their discrete flows, and consequently, they provide the value of SOC∗

cont as the
equilibrium for soil organic carbon; differently, the steady-state solution of the discrete
RothC model (9) depends on the chosen stepsize Δt. In Table 1, we report the equilib-
rium solutions c∗RothC(Δt) for decreasing values of the stepsize Δt. When we proceed
with Δt = 1, we obtain the original monthly time-stepping procedure, while Δt = 1/30
represents a daily temporal updating. Notice that, as predicted by the theoretical re-
sults, ‖c∗cont‖2 = 62.6516 ≤ ‖c∗RothC(1)‖2 = 62.695, i.e., the original discrete RothC model
overestimates in norm the theoretical equilibrium value.

The reduction of the temporal stepsize of 1/30 causes approximately the same re-

duction of the absolute errors as
‖c∗cont − c∗RothC(1)‖2

‖c∗cont − c∗RothC(1/30)‖2
= 31.534, with this confirming

the first-order accuracy of the approximation of the steady-state solution. In Figure 3a,

we report the relative errors
‖c∗cont − c∗RothC(Δt)‖2

‖c∗cont‖2
in correspondence of halved stepsizes

starting from Δt = 1 together with their bounds evaluated in (10). In the same figure, we
report the error on the equilibrium value of SOC normalized respect to c∗cont, i.e.,

SOC∗
RothC(Δt)− SOC∗

cont
‖c∗cont‖2

= wT(Δt)
c∗cont

‖c∗cont‖2

where w(Δt) is defined in (11), with respect to the same reduction of the stepsize Δt.

Table 1. Dependence of the steady-state solution of the discrete RothC model on the temporal
stepsize Δt. The values in each compartment converge, with first-order accuracy, to the entries of
c∗cont = [0.4254, 11.1867, 1.4887, 61.6253]T .

Δt 1 1
5

1
10

1
15

1
20

1
25

1
30

c∗RothC

0.5326 0.4456 0.4354 0.4321 0.4304 0.4294 0.4287

11.2653 11.2024 11.1946 11.1919 11.1906 11.1899 11.1893

1.5118 1.4933 1.4910 1.4902 1.4898 1.4896 1.4894

61.6541 61.6311 61.6282 61.6272 61.6267 61.6265 61.6263

4.2. Periodic Solutions

In these experiments, we compared the periodic solutions provided by the three
discrete models, obtained for the functions ρ(t) and b(t) plotted in Figure 2. Differ-
ent from the evaluation of steady-state solutions, the ERE and the novel NS procedure,
as well as the discrete RothC model provide long-term periodic solutions affected by
their own numerical errors, also depending on the chosen stepsize Δt. As shown in
Figure 3b, the RothC discrete model provides the worst performance when compared with
the other procedures in terms of errors with respect to the reference solution. In Figure 4,
we plot the related SOC indicator (1) in a one-period time span obtained with the three
discrete procedures applied with reduced stepsizes Δt = 1, 1/2, 1/4, 1/8. In the same
figure, the reference solution obtained in the long run with the ode45 MATLAB function,
with tolerance set at machine precision, is plotted. Notice that all the methods need to be
applied with a Δt << 1 in order to have an acceptable level of accuracy when compared
to the reference solution. Again, the original discrete RothC model was confirmed as a
less accurate integrator of the continuous model (1) with respect to both the ERE and
NS models.
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Figure 3. (a) Relative errors of c∗RothC (blue) and SOC∗

RothC (orange) with halved stepsizes, starting from Δt = 1. The bounds
on the relative error ‖ϕ(Δt ρ D)−1 − I‖2 in (10) are also plotted in black. The estimated order of convergence is 1.0037 for the
relative error on c∗RothC and 1.0022 for the relative error on SOC. (b) The log-log plot of the norm two errors of the periodic
solutions of discrete RothC, Exponential Rosenbrock–Euler (ERE) and Non-Standard (NS) schemes, with respect to the
reference solution obtained in the long run with the ode45 Matlab code, at Δt = 1/2i, i = 2, . . . , 8. The estimated orders of
convergence are 1.0042, 1.0017 and 1.0018 for the discrete RothC, ERE and NS schemes, respectively.

In our second experiment, we started at t0 = 1 with c0 = c∗cont in (18), and we
proceeded until the final time Tf = t0 + 15 T was reached. We recall that the period
was set at T = 12, and we used the monthly, weekly and daily update by setting Δt = 1,
Δt = 1/4 and Δt = 1/30, respectively. In Figure 5, we report the values of SOC obtained
for the three different procedures. Two main observations have to be made: first, the initial
value c∗cont corresponding to the equilibrium solution with mean values ρ̂ and b̂ was higher
than the attained value of SOC reference value at Tf when ρ(t) and b(t) were not averaged.
This indicates that the temporal oscillations of ρ(t) and b(t) around their mean values
cannot be neglected when evaluating, through the SOC indicator, the achievement of land
degradation neutrality in the fifteen years from 2015–2030. Second, whatever discrete
model is chosen, a qualitative long-term accordance between an approximate value of the
SOC indicator and its theoretical solution needs, at least, a weekly update procedure.
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Figure 4. Periodic dynamics of the SOC indicator in a one-period span: convergence of approximated solutions to the
reference solution (plotted as a continuous red line) obtained with MATLAB ode45 code, by an increasingly reduction of the
stepsize Δt.
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Figure 5. Long-term simulation of the SOC indicator over 15 years with the discrete RothC, ERE and NS methods. Stepsizes
are set as Δt = 1 (1 month), Δt = 1/4 (1 week) and Δt = 1/30 (1 day). The reference solution obtained by ode45 with
tolerance at the machine precision is also plotted.
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5. The Hoosfield Spring Barley Experiment

We illustrate the model and test the three methods using data from the Hoosfield
spring barley experiment, one of the classical long-term experiments carried out at the
Rothamster Experimental Station [22]. The same dataset was used as an example of the
use of the RothC model in [6]. The Hoosfield experiment was conducted from 1852 till
2000. Spring barley has been grown continuously in the whole period, except in the
years 1912, 1933, 1943 and 1967, when the experiment was fallowed to control weeds.
The initial SOC content in the soil at 1852 was measured as 33.8632 t C ha−1, split out in
the soil compartments in the following way: 2.7 t C ha−1 in IOM, 0.1533 t C ha−1 in DPM,
4.4852 t C ha−1 in RMP, 0.6671 t C ha−1 in BIO and 25.8576 t C ha−1 in HUM.

The ρ function was estimated on a monthly basis from the weather dataset in [6],
including average monthly air temperature, monthly open pan evaporation and monthly
rainfall. It was also affected by the percentage of clay in the soil (23.4% in Rothamsted soil)
and by the monthly soil cover factor (covered or fallow). Assuming that the soil was covered
only from April to July for each crop year, the ρ function assumed the values in Table 2.
The other parameters of the model were set as α = 0.10, β = 0.12, γ = 0.59 and η = 0.49.
Moreover, the monthly decomposition rate vector k = [0.8333, 0.0250, 0.0550, 0.0017]
was considered.

Table 2. Monthly values for ρ for the Hoosfield spring barley experiment, estimated from weather data in [6], clay content
of 23.4% and soil cover factors in crop and fallow years.

Jan. Feb. Mar. Apr. May Jun. July Aug. Sep. Oct. Nov. Dec.

ρ(tn)
Crop years 0.3561 0.3723 0.5068 0.4471 0.7473 0.7779 0.2491 0.4151 0.6570 1.1277 0.6092 0.4594

ρ(tn)
Fallow years 0.3561 0.3723 0.5068 0.7451 1.2454 1.2965 0.4151 0.4151 0.6570 1.1277 0.6092 0.4594

Three different scenarios were simulated with the three numerical methods analysed
in Section 3, and the results were compared with direct observations of SOC quantity in
the soil in 1882, 1913, 1946, 1975, 1982 and 1987:

Scenario 1. Unmanured treatment: For this scenario, the annual input of plant residuals
was calculated to be 1.60 t C ha−1 y−1, distributed as in Figure 6, in every year except
in those that were fallow. For these years, a null plant residuals input was considered.
In this scenario, FYM input was zero.

Scenario 2. Farmyard manure: The second treatment included inputs from both plant
residuals and FYM, as scheduled in Figure 7. The annual input of plant residuals
was calculated to be 2.8 t C ha−1 y−1, greater than the one in Scenario 1, due to the
farmyard treatment.

Scenario 3. Mixed treatment, farmyard manure till 1871: In this scenario, farmyard ma-
nure was assured every February till 1871 and nothing thereafter. This caused an
annual plant residual input equal to 2.8 t C ha−1 y−1 from 1852 till 1876 and equal
to 1.60 t C ha−1 y−1 in the following years, except for the fallow ones. Input data are
shown in Figure 8.
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Figure 6. Hoosfield barley experiment. Scenario 1: unmanured treatment.

Figure 7. Hoosfield barley experiment. Scenario 2: farmyard manure annually (two times in 1931).

Figure 8. Hoosfield barley experiment. Scenario 3: farmyard manure 1852–1871 and nothing thereafter.

Figures 9–11 show the modelled data for total soil organic C in the three treatments,
together with the measured data. The modelled results for Scenario 3 when the treatment
considered FYM for only the first twenty years were considerably lower than the measure-
ments; agreement was closer with the other two treatments (Scenarios 1 and 2). To test
the models’ ability to predict the achievement of land degradation neutrality, note that all
the simulations gave results in agreement with measured data, i.e., the loss of neutrality
in 2000 for Scenario 1 and the achievement of neutrality for Scenario 2 with respect to
the initial value in 1852. Measurements indicated the achievement of land degradation
neutrality also for Scenario 3; in this case, however, the three models failed in predicting
for SOC(2000) a value lower than the initial one, i.e., SOC(1852) = 33.80 t C ha−1.
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Figure 9. Hoosfield barley experiment. Scenario 1: unmanured treatment. Organic C in soil data
(red bullets) modelled by the RothC (8), ERE (13) and NS (17) methods in the temporal horizon
[1852, 2000] with Δt = 1. According to Table 3, ERE approximation shows the best performance with
respects to both the statistical indicators RMSE and modelling Efficiency (EF).
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Figure 10. Hoosfield barley experiment. Scenario 2: farmyard manure annually. Organic C in soil
data (red bullets) modelled by the RothC (8), ERE (13) and NS (17) methods in the temporal horizon
[1852, 2000] with Δt = 1. According to Table 3, RothC approximation shows the best performance
with respect to both the statistical indicators RMSE and EF.
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Figure 11. Hoosfield barley experiment. Scenario 3: farmyard manure 1852–1871 and nothing there-
after. Organic C in soil data (red bullets) modelled by the RothC (8), ERE (13) and NS (17) methods in
the temporal horizon [1852, 2000] with Δt = 1. According to Table 3, RothC approximation shows
the best performance with respect to both the statistical indicators RMSE and EF.

To assess the performance of the discrete models and compare measured and simu-
lated valued, as in [16], we used two well-known statistical indices: RMSE (Root Mean
Squared Error) and EF (modelling Efficiency):

RMSE =

√√√√ 1
N

N

∑
i=1

(Oi − Si)
2 EF = 1 −

N

∑
i=1

(Oi − Si)
2

N

∑
i=1

(
Oi − O

)2

where Oi and Si are observed and simulated SOC at the ith value, O is the mean of the
observed data and N is the number of observations. The closer the RMSE is to zero, the
better the simulated solution describes the data. EF can range from −∞ to one, with the
best performance at EF = 1. Negative values of EF indicate that the observed mean is a
better predictor than the model.

136



Axioms 2021, 10, 56

The results of the evaluation of the above indicators related to the three discrete models
applied to approximate Hoosfield barley experiments data for the three different scenarios
are reported in Table 3. The obtained values confirm that Scenario 3 was the worst case,
i.e., the case when simulated data were more different from the measurements. The three
discrete models provided similar values for the simulation of the three different treatments,
and we could not select a method that clearly outperformed the others. However, from
Table 3, we could set the ERE model as the best model for Scenario 1, while the RothC
model provided better results for both Scenarios 2 and 3. Comparing the indicators for all
scenarios with respect to the approximation of the experimental data, the minimum value
of RMSE = 1.1596 was assumed by the ERE model in Scenario 1, while the maximum
value of EF = 0.9609 was assumed by the RothC method in Scenario 2.

Table 3. RMSE and EF statistical indices for evaluating and comparing the performances of the RothC, ERE and novel
non-standard NS models.

Scenario 1 Scenario 2 Scenario 3

RothC ERE NS RothC ERE NS RothC ERE NS

RMSE 1.1665 1.1596 1.1599 3.5406 3.6029 3.5961 4.5772 4.6310 4.6254
EF 0.7318 0.7350 0.7348 0.9609 0.9595 0.9597 0.2564 0.2388 0.2406

6. Conclusions

Soil organic carbon is one of the key indicators of land degradation status. In this
paper, we analysed the RothC model, a simple tool developed for predicting the dynamic
evolution of the content of soil organic carbon under the effect of weather conditions and
land use data. Both the continuous version, based on a linear, non-autonomous differential
system, and the original discrete monthly time-stepping procedure were considered. The
aim of our study was to compare the qualitative analysis of both continuous and discrete
dynamics in approximating steady-state and long-term periodic solutions. We focused
on these aspects since they provide the information concerning the possible achievement
of land degradation neutrality. We found that the steady-state solutions of the original
discrete model were first-order accurate approximations of the steady-state solutions of
the continuous differential model. The accuracy of the approximation represents the
main weakness of the RothC discrete model when considered as a first-order accurate
approximation of its continuous version. We point out that well-established numerical
procedures such as, for example, the Exponential Rosenbrock–Euler (ERE) method, have,
by construction, the same equilibria of the approximating differential system. Conversely,
the discrete RothC model overestimates the steady-state equilibrium of the continuous
flow, so that, in order to obtain the correct estimate with first-order accuracy, we have
to reduce the stepsize of the updating time procedure. This fact may have a negative
effect in real applications. It is necessary to run the RothC model to equilibrium first,
in order to align the initial content of soil organic carbon with the measured one [6].
Nevertheless, the good matching of real data and numerical approximations, together
with the available implementation in the RothC 26.3 open-source interface [6], justifies the
wide use in the literature of the original discrete RothC model and explains the lack of
use of more accurate numerical integrators. For this reason, in this paper, our additional
objective was to propose a novel non-standard first-order procedure, the so-called NS
discrete model, able to approximate the decomposition dynamics in the same way as the
original discrete RothC model. This procedure features the same steady-state solution of
the continuous model and exhibits a computational cost lower than the one required by
the ERE time-stepping procedure. We also provided a simple code that implements both
the original discrete RothC model and the monthly time-stepping NS and ERE models
in a MATLAB environment. That allows the reproduction of our results and facilitates
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future comparisons among all the approaches. The discrete models were firstly tested
on a hypothetical example as first-order accurate numerical integrators, and secondly,
they were tested on the classical Hoosfield barley experiment to evaluate their ability in
reproducing observed data. If we consider the discrete RothC model as a difference scheme,
which approximates the continuous RothC differential system, numerical tests showed its
coarseness with respect to both the ERE and NS procedures. When applied to the Hoosfield
barley experiment, the three discrete models provided very similar results. However, the
evaluation of the statistical error indicators still revealed the discrete RothC model as the
best scheme for approximating real data in both Scenarios 2 and 3, while the ERE model
outperformed the discrete RothC and the novel procedure in Scenario 1. In predicting the
long-term behaviours, which are useful to establish the achievement of land degradation
neutrality, the three discrete models failed in giving results in accordance with theoretical
values in our hypothetical test, as well as with real data in the case of Scenario 3 of the
Hoosfield spring barley experiment. This motivates our future research to consider more
complex SOC dynamics. In particular, we will analyse the MOMOS model [23,24], which
puts the microbial community at the centre of all transformation processes in the cycle of
organic matter, from assimilation by degradation to loss by mineralization. Further analysis
will also consider nonlinear SOC dynamics [25,26] and spatially explicit models described
by partial differential equations [27,28] in order to deal with real domains, as protected
areas, covered by non-homogeneous land use patterns. Finally, using field measurements
and remote sensing information for modelling land degradation will significantly improve
the obtained results [29]. The final aim is to select and provide a robust modelling tool
for evaluating the trends of SOC stocks in the Alta Murgia National Park, where the
achievement of land degradation neutrality is hampered by a combination of anthropic
pressures and climate change [30–32].
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Abstract: The study of functional connectivity from magnetoecenphalographic (MEG) data consists
of quantifying the statistical dependencies among time series describing the activity of different
neural sources from the magnetic field recorded outside the scalp. This problem can be addressed
by utilizing connectivity measures whose computation in the frequency domain often relies on the
evaluation of the cross-power spectrum of the neural time series estimated by solving the MEG inverse
problem. Recent studies have focused on the optimal determination of the cross-power spectrum in
the framework of regularization theory for ill-posed inverse problems, providing indications that,
rather surprisingly, the regularization process that leads to the optimal estimate of the neural activity
does not lead to the optimal estimate of the corresponding functional connectivity. Along these
lines, the present paper utilizes synthetic time series simulating the neural activity recorded by an
MEG device to show that the regularization of the cross-power spectrum is significantly correlated
with the signal-to-noise ratio of the measurements and that, as a consequence, this regularization
correspondingly depends on the spectral complexity of the neural activity.

Keywords: regularization theory; multivariate stochastic processes; cross-power spectrum; magne-
toencephalography; MEG; functional connectivity; spectral complexity

1. Introduction

Magnetoencephalography (MEG) provides high temporal resolution measurements of
the magnetic field associated to neural currents. The MEG device relies on superconducting
sensors, named SQUIDs, organized in a helmet array close and around the scalp. MEG
experimental time series can be used essentially to address two neuroscientific problems,
whose solution requires both an accurate mathematical modelization based on Maxwell’s
equations, and the numerical reduction of such formal models [1].

The first problem is concerned with the dynamical ill-posed inverse problem of
estimating parameters associated with the neural sources inducing the magnetic field
signal [2–8]. The second problem is concerned with the quantification of the interactions
among neural sources located in different cortical areas and intertwined by means of either
anatomical or functional connectivity [9–14].

In particular, the connectivity problem can be addressed by either computing proper
connectivity metrics directly from the experimental time series provided by the MEG
sensors or searching for connections in the source space, i.e., among the neural time series
estimated as solutions of the inversion process. This second approach has the advantages
of reducing the impact of volume conduction and providing results that can be more
easily interpreted in the framework of neuroscientific models [15–17]. Several approaches
for identifying connectivity paths rely on physiological models assuming that the func-
tional communication between different brain areas is regulated by the synchronization of
their activity at specific temporal frequencies [18,19]. This implies that, for these models,
the frequency domain represents the natural computational framework where to perform
the connectivity analysis. This is the reason why, in the present paper, we focus on the
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analysis of the cross-power spectrum, which is the mathematical quantity of reference for
the computation of most frequency-domain connectivity measures [11,20,21]. From an
operational viewpoint, the computation of the cross-power spectrum in the source space
typically relies on a two-step procedure: first the neural activity is estimated by applying
a regularized inversion method on the recorded time series and then the cross-power
spectrum is computed from the Fourier transform of the estimated neural time series [22].

This paper investigates how to optimally select the regularization parameter in the
inversion procedure in order to obtain the best possible estimate of the neural cross-power
spectrum. In fact, we consider the Tikhonov method (better known as Minimum Norm
Estimation (MNE) in the MEG world [2]) as it is one of the most commonly used inverse
methods in connectivity studies [23–25]; we study the interplay between the regularization
parameter providing the reconstructed neural time series minimizing the relative error
in �2-norm, and the one that allows the optimal estimate of the cross-power spectrum
according to the normalized Frobenius norm. The conceptual motivation of this problem
is illustrated in Figure 1, which tentatively sketches the result of recent investigations in
MEG-based connectivity research, i.e., that the regularization parameter leading to the
optimal estimate of the neural activity may not lead to the optimal estimate of the cross-
power spectrum and vice versa. In fact, in [26] the authors used numerical simulations to
compare the parameter that provides the best estimate of the power spectrum with the
one that provides the best estimate of coherence and showed that the latter is in general
two orders of magnitude smaller than the former. More recently, Vallarino et al. [27]
addressed an analogous problem via analytical computations, considering a simplified
model. Specifically, under the assumption that the neural time series are realizations of
white Gaussian processes, the authors proved that the parameter providing the best neural
activity estimate is more than twice as large as the one providing the best estimate of the
cross-power spectrum.

MEG data

λx �
Neural activity

estimation

�
Cross spectrum

estimation

λS �
Neural activity

estimation

�
Cross spectrum

estimation

Figure 1. Schematic representation of the differences between the regularization parameter providing
the best time series estimate (λx) and the one providing the best cross-power spectrum estimate
(λS). The first one provides an optimal reconstruction of the neural activity, but it may not lead to an
optimal estimate of the cross-power spectrum; vice versa, λS provides an optimal reconstruction of
the cross-power spectrum at the expense of a sub-optimal estimate of the time series.

The present paper focuses on an analysis of the impact of spectral complexity of the
actual neural signal on the value of the two regularization parameters. Specifically, we
simulate synthetic MEG signals and discuss how the optimal parameter for the reconstruc-
tion of the cross-power spectrum depends on its signal-to-noise ratio and how this latter
quantity is related to the spectral richness of the neural sources. To this aim, we considered
a simulation setting in which the signal is modeled as a multivariate autoregressive process.

This paper is structured as follows. Section 2 introduces the problem in a formal way.
Section 3 describes how the synthetic data are simulated and analyzed. Section 4 presents
the results of the analysis. Our conclusions are offered in Section 5.
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2. Definition of the Problem

2.1. Forward Model

Let X(t) = (X1(t), . . . , XN(t))� ∈ RN be a multivariate stationary stochastic process
whose realizations x(t) can not be observed and let Y(t) = (Y1(t), . . . , YM(t))� ∈ RM be
the process whose realizations y(t) are used to infer information on x(t). Let Y(t) and X(t)
be related by the following equation

Y(t) = GX(t) + N(t) , (1)

where G ∈ RM×N is the forward matrix and N(t) = (N1(t), . . . , NM(t))� ∈ RM is the
measurement noise, that is here assumed to be a white Gaussian process with zero mean
and covariance matrix α2I, i.e., N(t) ∼ N (0, α2I), independent from X(t).

2.2. Cross-Power Spectrum

We are interested in reconstructing the cross-power spectrum of X(t), which de-
scribes the statistical dependencies between each pair of time series (Xj(t), Xk(t))j,k∈{1,...,N}.
The cross-power spectrum is a one parameter family of N × N matrices SX( f ), whose
(j, k)-th element is defined as

SX
j,k( f ) = lim

T→∞

1
T

E[X̂j( f , T)X̂k( f , T)H ], (2)

where X̂j( f , T) is the Fourier transform of Xj(t) over the interval [0, T], defined as

X̂j( f , T) =
∫ T

0
Xj(t)e−2πi f tdt (3)

and XH is the Hermitian transpose of X [28].
Given a realization x(t) of the process X(t), the cross-power spectrum SX( f ) can

be estimated via the Welch method [29], which consists in partitioning the data in P
overlapping segments multiplied by a window function, {w(t)xp(t)}P

p=1, computing their

discrete Fourier transform x̂p( f ) = 1
L ∑L−1

t=0 xp(t)w(t)e
−2πit f

L and averaging:

Sx( f ) =
L

PW

P

∑
p=1

x̂p( f )x̂p( f )H , f = 0, . . . , L − 1, (4)

where L is the length of each segment and W = 1
L ∑L−1

t=0 w(t)2.
It is often the case that the data reach a high dimension, and visual inspection of the

cross-power spectrum is not doable. In such cases a metric that describes the spectral
properties of the signals would be useful. Here we use the spectral complexity coefficient,
defined as follows.

Definition 1. Given a realization x(t) of the process X(t), and the corresponding cross-power
spectrum Sx( f ), we define the spectral complexity coefficient as the average of the elements of
the upper triangular part of the matrix obtained by computing the squared �2−norm over the
frequencies of Sx

j,k( f ), j, k = 1, . . . , N, that is

c =
2

N(N + 1)

N

∑
j=1

N

∑
k=j

∑
f

∣∣∣Sx
j,k( f )

∣∣∣2. (5)

The spectral complexity coefficient assumes small values if the elements of the cross-
power spectrum are flat, that is when time series do not present any periodic trend and no
dependencies among the pairs of time series are present. On the contrary, it assumes large
values if the elements of the cross-power spectrum are peaked, that is when time series
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present periodic trends and complex relations among them. Finally, we observe that in
Definition 1 only the elements on the upper triangular part of Sx( f ) are considered because
Sx( f ) is Hermitian.

2.3. Two-Step Approach for Cross-Power Spectrum Estimation

Let us now consider a realization of Equation (1). Further than an estimate of the
hidden data x(t), an estimate of the cross-power spectrum can be obtained from y(t). Such
estimate can be achieved through a two-step process [22]:

i. First, a regularized estimate xλ(t) of x(t) is obtained by solving the inverse problem
associated to Equation (1). Here we consider the Tikhonov regularized solution [30]
of the problem which is defined as

xλ(t) = arg min
x(t)

{
‖Gx(t)− y(t)‖2

2 + λ‖x(t)‖2
2

}
; (6)

where λ is a proper regularization parameter and ‖ · ‖2 is the �2-norm.
ii. Then, the corresponding estimate of the cross-power spectrum Sxλ( f ) is computed

from the reconstructed time series using the Welch method, as described in the
previous section.

Remark 1. In many applied fields, Tikhonov regularization with an �2 penalty term has been
outdated by more modern techniques that use sparsity-inducing penalization terms such as �1
or �p with 0 < p < 1. Indeed, also in the M/EEG literature there has been considerable effort
in developing �1 solutions [31,32], and mixed norm solutions [33]; both these approaches have
proved to provide superior performances in terms of localization of neural activity. However, these
newer methods are seldom used in connectivity studies, for good reasons: �1 solutions computed
independently at each time point produce extremely jittering reconstructions, resulting in highly
sparse time courses that are not suitable for computing connectivity metrics. Mixed norms, that
have been developed precisely to overcome this jittering problem, are computationally very expensive,
and this actually prevents their use with the large datasets typically involved in connectivity studies.

When applying the described two-step process, the regularization parameter λ in
Equation (6) has to be set for the computation of xλ(t). Thus, the problem naturally arises
of the choice of such parameter, which can be set in order to optimally reconstruct either
xλ(t) or Sxλ( f ). We define optimality through the minimization of the normalized norm
of the discrepancy between the true and the reconstructed time series and cross-power
spectra as follows.

Definition 2. Given the regularized solution (6) and the cross-power spectrum (4), we define the
optimal regularization parameter for the reconstruction of x(t) as

λ∗
x = arg min

λ
εx(λ) with εx(λ) =

∑t‖xλ(t)− x(t)‖2
2

∑t‖xλ(t)‖2
2 + ∑t‖x(t)‖2

2

; (7)

and the optimal parameter for the reconstruction of Sx( f ) as

λ∗
S = arg min

λ
εS(λ) with εS(λ) =

∑ f ‖Sxλ( f )− Sx( f )‖2
F

∑ f ‖Sxλ( f )‖2
F + ∑ f ‖Sx( f )‖2

F

; (8)

where ‖ · ‖F is the Frobenius norm; εx(λ) and εS(λ) will be called reconstruction errors.

The reconstruction errors range from 0 to 1 and penalize both a too small and a too
large value of λ. In fact, they assume their maximum value when either λ is very high and
thus xλ(t) is negligible with respect to x(t), or when λ is too small and thus, vice versa, x(t)
is negligible with respect to xλ(t). This definition may appear overly complex compared to,

144



Axioms 2021, 10, 35

e.g., a mere �2-norm of the difference; however, in the presence of sparse data where only a
few time series are non-zero, the simple �2-norm would prefer a very high regularization
parameter in order to minimize the error on the null time series, at the expense of the
error on the non-zero ones; our definition aims to cope with this limitation of the �2-norm.
A similar definition has been introduced in [34].

In experimental contexts, where x(t) is not known, the choice of the optimal regular-
ization parameter is crucial. This matter is widely discussed in literature [35–38], and many
criteria have been proposed. Such criteria apply to Equation (1) and can be used to set the
regularization parameter λx. A possibility is to set the regularization parameter as a func-
tion of the signal-to-noise ratio (SNR), which describes the level of the desired signal with
respect to that of the measurement noise; for Equation (1) the SNR is defined as follows.

Definition 3. Consider the linear model (1). We define the signal-to-noise ratio of X(t) related to
such model as

SNRX = 10 log10

(
∑t‖GX(t)‖2

2

∑t‖N(t)‖2
2

)
. (9)

To the best of our knowledge, the choice of the optimal regularization parameter for
the reconstruction of the cross-power spectrum has never been related to the signal-to-noise
ratio. This relation is presented in Section 4; however we first need to relate the cross-power
spectrum of the unknown SX( f ) with that of the data SY( f ).

By computing the cross-power spectrum of both sides of Equation (1) and from the
linearity of the Fourier transform it follows that

SY( f ) = GSX( f )G� + SN( f ), (10)

where the mixed terms SXN( f ) and SNX( f ) are negligible thanks to the independence
between X(t) and N(t). Just like for Equation (1), we can define the signal-to-noise ratio
for Equation (10) as follows.

Definition 4. Consider the linear model (10). We define the signal-to-noise ratio of SX( f ) related
to such model as

SNRS = 10 log10

⎛⎝∑ f
∥∥GSX( f )G�∥∥2

F

∑ f ‖SN( f )‖2
F

⎞⎠. (11)

This definition is in line with the definition of SNRX for the signal, the main difference
being in the use of the Frobenius norm rather than the �2-norm, motivated by the fact that
we are working with matrices rather than vectors.

2.4. Multivariate Autoregressive Models

To model the statistical relationships between the different components of the stochas-
tic process X(t), in this work the latter is assumed to follow a stable multivariate autore-
gressive model of order P [39].

Definition 5. A zero-mean stochastic process X(t) ∈ RN is said to follow a multivariate autore-
gressive (MVAR) model of order P if

X(t) =
P

∑
k=1

A(k)X(t − k) + ε(t) ∀t , (12)

where A(k) ∈ RN×N are fixed coefficient matrices, and ε(t) ∈ RN is a white Gaussian noise
process.

145



Axioms 2021, 10, 35

Moreover, the MVAR model described by Equation (12) is said to be stable if

det(I −
P

∑
k=1

A(k)zk) �= 0 ∀ z ∈ C s.t. |z| ≤ 1, (13)

where I is the identity matrix of size N.

Remark 2. From Equation (12) it can be easily seen that the process X(t) is uniquely determined
by the process ε(t) and by the first P time points, X(0), . . . , X(P − 1). Indeed, consider for example
an MVAR model of order 1 (a similar proof holds for the general case P > 1 and can be found
in [39]); then, for each time point t

X(t) = A(1)X(t − 1) + ε(t)

= A(1)2X(t − 2) + A(1)ε(t − 1) + ε(t)

= A(1)tX(0) +
t−1

∑
k=0

A(1)kε(t − k) .

Such a model satisfies the stability condition defined in Equation (13) if all the eigenvalues
of the coefficient matrix A(1) have a modulus of less then one, the condition that guarantees the
sequence of exponential matrices

{
A(1)k

}
k

is absolutely summable.

According to Equation (12), if the process X(t) follows an MVAR model, then at each
time point the value of X(t) can be derived as a weighted sum of the values of the process
at the previous P time points, X(t − 1), . . . , X(t − P), plus a random perturbation ε(t).
In particular, the (i, j)-th elements of the coefficient matrices, aij(1), . . . , aij(P), describe
how the value of the i-th component of the process depends on the past of the j-th com-
ponent. Different connectivity patterns, with various levels of complexity, can thus be
obtained by tuning the off-diagonal values of the coefficient matrices. Due to their flexibility
and simplicity, MVAR models have been used by various authors in the framework of
MEG functional connectivity estimation as a benchmark for testing and comparing differ-
ent connectivity metrics [21,23,34,40–43]. Other models have been proposed to simulate
different connectivity patterns, such as coherent sinusoidal time series [26], neural mass
models [44,45], or Kuramoto models [46,47]. However a comprehensive comparison of all
possible generative models is beyond the scope of this work.

3. Generation and Analysis Pipeline of the MEG Simulated Data

In this section we describe the numerical simulation that led to the main results of our
study. First we introduce the continuous MEG forward problem and its discretized version,
then we describe how we generated the data and, finally, we describe the inverse model
and how we numerically computed the optimal regularization parameters.

3.1. MEG Forward Model

The MEG forward problem aims at computing the magnetic field produced outside
the head by an electric current that flows inside the brain. The quasi static approximation
of Maxwell’s equations provides the local relationship between the recorded magnetic field
and the neural currents [1,48,49]. The two equations that are of interest here read as

∇× E(r, t) = 0 (14)

∇× B(r, t) = μ0J(r, t); (15)
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where E(r, t) and B(r, t) are the electric and magnetic fields at location r and time t, μ0
is the magnetic permeability in vacuum and J(r, t) is the total electric current that flows
inside the brain. The latter is the sum of two contributions

J(r, t) = Jp(r, t) + Jv(r, t), (16)

Jp(r, t) being the primary current directly related to the brain activity, while Jv(r, t) =
−σ(r)∇V(r, t) is the induced volume current due the non-null conductivity σ(r) of the
brain, V(r, t) being the electric scalar potential.

The manipulation of Maxwell’s Equations leads to the Biot–Savart Equation

B(r, t) = B0(r, t)− μ0

4π

∫
Ω

σ(r′)∇′V(r′, t)× r − r′

|r − r′|3 dv′, (17)

where Ω is the volume occupied by the brain, the first term B0(r, t) = μ0
4π

∫
Ω J(r′, t) r−r′

|r−r′ |3 dv′

is the magnetic field induced by the primary current, whereas the second term is related to
the volume current.

Solving the forward problem requires the computation of these two contributions
knowing the primary current. Although for the first one straightforward numerical in-
tegration is feasible, for the second one it is common to model the head as the union of
nested homogeneous volumes {Ωj}j=1,...,J and to replace volume integration with surface
integration. In this way, the Biot–Savart equation becomes

B(r, t) = B0(r, t) +
μ0

4π ∑
i,j
(σi − σj)

∫
∂Ωi,j

V(r′, t)
r − r′

|r − r′|3 × ni,j(r
′)ds′, (18)

where ∂Ωi,j is the contact surface between regions Ωi and Ωj and ni,j(r
′) is the unit vector

normal to the surface ∂Ωi,j at r′ from region i to region j.
The forward problem can now be solved by computing the second term at the right

hand side of Equation (18) after having computed V(r, t) by solving the equation

∇ · Jp(r, t)−∇ · (σ(r)∇V(r, t)) = 0 , (19)

which follows from Equation (15) by applying the divergence.
For further details on the MEG forward problem, we refer the reader to [1].

3.2. The Leadfield Matrix

Experimental contexts require the discretization of the forward problem. This involves
a discretization of both the volume occupied by the brain and the volume outside the head.

When using a distributed model for the primary current Jp, the brain volume is
uniformly divided in N small parcels. If N is sufficiently big and thus each parcel has
a sufficient small area, the activity in each brain parcel is approximated by a point-like
source, henceforth denoted as dipole. From a mathematical point of view, each dipole is a
vector whose strength and direction represent the intensity and orientation of the primary
current in the corresponding brain area [1].

As for the volume outside the brain, it is natural to discretize it in correspondence of
the MEG sensors. Let us denote the measured magnetic field as y(t) = (y1(t), . . . , yM(t)).
Now, observing that the magnetic field B depends linearly on the primary current Jp,
the magnetic field in correspondence of the sensors of the instrument is

y(t) =
N

∑
k=1

G(rk)qk(t) + n(t), (20)

where rk, k = 1, . . . , N, is the location of the k-th brain parcel, G(rk) ∈ RM×3 is the
corresponding leadfield matrix, and {qk(t)}k=1,...,N are the electric current intensities
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along the three orthogonal direction of the N dipoles within the brain at time t and
n(t) is the measurement noise. The l-th column of G(rk) contains the measurement at a
sensor level when a unit current dipole is placed at location rk and oriented along the l-th
orthogonal direction.

In this work, we assume dipoles to be located only on the brain cortical mantle and
their orientation to be normal to the local cortical surface [50]. In this case, the electric
current intensities are scalar quantities (we refer to them as {qk}k=1,...,N) and the leadfield
matrices are column vectors (we refer to them as {Gk}k=1,...,N).

Let us define
x(t) := (q1(t), . . . , qN(t)) (21)

and
G := [G1, . . . , GN ] ∈ RM×N ; (22)

reassembling Equations (21) and (22) in to Equation (20), we get

y(t) = Gx(t) + n(t), (23)

which can be interpreted as a realization of Equation (1). From now on we refer to G as to
the leadfield matrix.

For the simulation presented in this work, we used the leadfield matrix available
in the sample dataset of MNE Python [51]. We selected magnetometers and set a fixed
orientation. For computational reasons, the available source space, containing 1884 sources,
was uniformly down-sampled to obtain 274 sources. Thus, our model has M = 102 sensors
and N = 274 dipole sources.

3.3. Data Generation

We simulated Nmod = 10 pairs of active sources, (z1(t), z2(t))�, with unidirectional
coupling from the first to the second; their time series follow a multivariate autoregressive
(MVAR) model of order P = 5 [39,43](

z1(t)
z2(t)

)
=

P

∑
k=1

(
a1,1(k) 0
a2,1(k) a2,2(k)

)(
z1(t − k)
z2(t − k)

)
+

(
ε1(t)
ε2(t)

)
, t = P, . . . , T. (24)

The non-zero elements ai,j(k) of the coefficient matrices were drawn from a normal
distribution of zero mean and standard deviation γ, and T = 10,000. We retained only coeffi-
cient matrices providing (i) a stable MVAR model [39] and (ii) pairs of signals (z1(t), z2(t))�
such that the �2-norm of the strongest one was less than three times the �2-norm of the
weakest one. In order to obtain time series with different spectral complexity coefficients
we set γ to Nmod different values randomly drawn in the interval [0.1, 1]. The values of the
spectral complexity coefficient of the Nmod simulated time series are reported in Table 1.
Finally, the resulting time series (z1(t), z2(t))� were normalized by the mean of their stan-
dard deviations over time, so that pairs of time series drawn from different models had
similar magnitude. Figure 2 shows a sample of the the cross-power spectra among the
simulated pairs of time series. The figure shows that for increasing values of the spectral
complexity coefficient the cross-power spectrum of the corresponding time series becomes
more peaked. Each pair of simulated time series was then assigned to Nloc = 20 pairs of
point like sources randomly chosen in the source space, so that the ratio of the norms of
the corresponding columns of the leadfield matrix was close to one, i.e., they had similar
intensity at a sensor level, and their distance was grater than 7 cm. The remaining N − 2
sources were set to have null activity.

Source space activity was then projected to sensor level by multiplying the simulated
source activity by the leadfield matrix and white Gaussian noise was added to obtain
Nsnr = 6 levels of SNRX evenly spaced in the interval [−20 dB, 5 dB].
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Summarizing, we generated Nmod · Nloc · Nsnr = 1200 different sensor level configura-
tions. The green box in Figure 3 shows a visual representation of the simulation pipeline.

Table 1. The table reports the values of the spectral complexity coefficients, cj, associated to each simulated multivariate
autoregressive (MVAR) model, mj, j = 1, . . . , Nmod.

Model 1 2 3 4 5 6 7 8 9 10

Spectral complexity coefficient 1.41 1.96 2.14 3.10 3.44 4.17 4.64 5.67 6.69 8.67

Figure 2. Real and imaginary part of the cross–power spectra of three simulated time series. Higher
values of spectral complexity correspond to more peaked spectra.

MVAR
time–courses
simulation

Assign time–courses
to sources in
the brain

Projection to
sensor level

Add sensor
noise

MEG data

Neural activity
estimation

Cross-power spectrum
estimation

Inverse problem:
λ has to be chosen

Step 1

Compute cross–power spectrum:
keep the same λ

Step 2

Forward problem

Inverse problem

Figure 3. Pipeline of the simulation of the data (green box) and of the estimation of the cross–power
spectrum (blue box).
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3.4. Inverse Model

Source space time series were reconstructed using the Tikhonov method, also known
as the minimum norm estimate (MNE) [2] within the MEG community. For each combi-
nation of source time series, source locations, and SNRX level, we computed the optimal
regularization parameters λ∗

x and λ∗
S by minimizing the reconstruction errors εx(λ) and

εS(λ), defined in Definition 2. The minimization procedure was achieved by using the
Matlab built in function fminsearch that implements an iterative procedure based on the
simplex method developed by Lagarias and colleagues [52]. In more detail, λ∗

x and λ∗
S have

been obtained by applying such procedure to εx(λ) and εS(λ), respectively; in both cases

the starting point of the simplex method was set equal to 10
(
− SNRX

10

)
, which corresponds to

the optimal value of λx in the case of white Gaussian signals [27]. The blue box in Figure 3
describes the inverse procedure to obtain an estimate of the cross-power spectrum and
stresses the role of the regularization parameter in the two-step process.

4. Results

In this section we illustrate the results of our analysis. We begin with the description
of the analytical dependence between SNRX and SNRS, then we highlight how the optimal
parameter for the reconstruction of the cross-power spectrum depends on SNRS and how
this implies that the spectral complexity of the signal is behind such dependence. Finally we
show how the reconstruction error εS(λ) behaves for different values of the regularization
parameters. As a byproduct, this analysis also confirms the results of Vallarino et al. [27] in
the case of a more complex setting.

4.1. Analytical Relation between SNRX and SNRS

From Equations (9) and (11) and reminding that N(t) ∼ N (0, α2I) it follows that

SNRX = 10 log10

(
∑t‖GX(t)‖2

2
MTα2

)
; (25)

and

SNRS = 10 log10

⎛⎝∑ f
∥∥GSX( f )G�∥∥2

F
MNf α2

⎞⎠, (26)

where T is the number of time points and Nf is the number of frequencies used to compute
the cross-power spectrum. Observe that to derive Equation (26) we used the fact that the
cross-power spectrum of a white noise Gaussian process of zero mean and covariance
matrix α2I is SN( f ) = α2I.

By isolating α2 from Equation (25) and substituting in Equation (26) we obtain

SNRS = 10 log10

⎛⎝T2M ∑ f
∥∥GSX( f )G�∥∥2

F

Nf ∑t‖GX(t)‖4
2

⎞⎠+ 2SNRX. (27)

Equation (27) relates the signal-to-noise ratio of X(t) with that of SX( f ). It shows
that, for same levels of SNRX, SNRS changes with the spectral complexity coefficient of
the signals. In fact, the higher the spectral complexity coefficient, the higher the quantity∥∥GSX( f )G�∥∥2

F. Intuitively, this happens because when the signal has a higher spectral
complexity coefficient its cross-power spectrum is more peaked and thus it is stronger
over the cross-power spectrum of the noise with respect to a signal with a lower spectral
complexity coefficient.
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4.2. Dependence of λ∗
S on SNRS

As described in Section 3 we simulated several sensor level configurations, based
on different combinations of spectral complexity coefficients, source locations, and SNRX

levels. For each configuration, we collected the two optimal parameters λ∗
x and λ∗

S and we
investigated their dependence on the signal-to-noise-ratio. In accordance with classical
results from inverse theory [36], we found that λ∗

x depends on the signal-to-noise ratio.
What is novel here is the relation between λ∗

S and both SNRX and SNRS. Indeed, for
increasing SNRX, less regularization is needed, but such dependence varies with the
MVAR models. On the other side, the dependence of λ∗

S on SNRS is neater and does not
depend on the models. Figure 4 shows this result; on the left the regularization parameters
for the cross-power spectrum reconstruction versus SNRX are shown, while on the right the
same parameters are shown with respect to SNRS. For the ease of presentation the figure
shows the parameters related to one source location; while on the left lines corresponding
to different MVAR models have different heights, on the right they overlap.

Figure 4. Optimal regularization parameters for the reconstruction of the cross–power spectrum
(λ∗

S) as a function of SNRX (left) and SNRS (right). Different colors correspond to different MVAR
models. On the left, the lines have different heights, while on the right they overlap, meaning that
the dependence of λ∗

S on SNRS is neater with respect to SNRX.

4.3. λ∗
S < λ∗

x and Dependency from the Spectral Complexity

We also investigated the relation between the two optimal regularization parameters.

Figure 5 shows the ratio λ∗
S

λ∗
X

versus SNRX for the simulated MVAR models. The ratio

between the two parameters is always smaller than 1
2 , meaning that λ∗

S < 1
2 λ∗

x, as it was
analytically proved in a simplified case in [27]. Further to this, the figure shows that
for increasing spectral complexity coefficients this ratio gets smaller. This latter result
is directly related to Equation (27). In fact, for same levels of SNRX, signals with higher
spectral complexity have higher SNRS and, thus, need less regularization.

4.4. The Reconstruction Errors

To show the benefit of using a value of the regularization parameter different from
λ∗

x when estimating the cross-power spectrum, in Figure 6 we plotted the reconstruction
errors εS(λ) as a function of the regularization parameter (normalized by λ∗

x) obtained
when considering two illustrative realizations of the simulated sensor data. Specifically, we
fixed the locations and time courses of the pair of interacting sources and we considered
the corresponding simulated MEG data for two levels of SNRX, namely SNRX = −20 dB
and SNRX = 5 dB. Similar results where obtained when considered the other source con-
figurations.
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Figure 5. Ratio between the optimal parameters ( λ∗
S

λ∗
x

) as a function of SNRX. Different colors
correspond to MVAR model with different spectral complexities. Dashed lines are the mean of
the ratio over the different sources location; solid colors correspond to the standard deviation of
the mean.

Figure 6. Reconstruction error εS(λ) for two simulated data mimicking MEG signals with SNRX =

−20 dB (lowest considered signal–to–noise ratio (SNR), left panel) and SNRX = 5 dB (highest
considered SNR, right panel). In each panel, black and red vertical lines highlight the values of εS(λ)

in correspondence of λ∗
S and λ∗

x , respectively.

As shown by Figure 6, for both the values of SNRX the value of the reconstruction error
significantly decreases when λ∗

S is used instead of λ∗
x . Specifically in this simulation, εS(λ)

drops from 0.99 to 0.96 when SNRX = −20 dB, and from 0.92 to 0.77 when SNRX = 5 dB.
Notably, one may observe that the relative reconstruction errors shown in Figure 6

are rather large, being above 90% in the low-SNR case and remaining above 75% even in
the high-SNR scenario. We point out that this fact is mainly due to the combined effect of
two factors: first, Tikhonov regularization tends to produce reconstructions that are small
but non-zero almost everywhere, as it reduces but does not cancel entirely backprojection
of noise; second, in our simulations the true activity is zero everywhere but in two points.
These two facts inevitably lead to large relative errors that, however, pleasantly decrease
for increasing values of SNRX.
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5. Discussion and Conclusions

In the present work, we investigated the role of the spectral complexity of a time
series, x(t), in the design of an optimal inverse technique for estimating its cross-power
spectrum, Sx( f ), from indirect measurements of the time series itself. Motivated by an
analysis pipeline widely used for estimating brain functional connectivity from MEG data,
we reconstructed the cross-power spectrum in two steps: first, we estimated the unknown
time series by using the Tikhonov method, then, we computed the cross-power spectrum of
the reconstructed time series. In the present work, we used numerical simulations to study
how the spectral complexity of x(t) impacts the value of the regularization parameter that
provides the best reconstruction of the cross-power spectrum.

As a first analytical result, we related SNRX to SNRS, i.e., the signal-to-noise ratio
of the time series and the signal-to-noise ratio of the corresponding cross-power spectra.
The obtained formula suggests that, for a fixed level of SNRX, SNRS depends on the
spectral complexity of x(t): the higher the spectral complexity coefficient the higher SNRS.
Intuitively this happens because a higher value of the spectral complexity coefficient
corresponds to a more peaked cross-power spectrum that will emerge over the cross-power
spectrum of the noise.

To test the effect of this result on the choice of the Tikohonov regularization parameter
in a practical scenario, we simulated a large set of MEG data and applied the described
two-step approach for estimating the cross-power spectrum of the underlying neural
sources. In details, we simulated 1200 synthetic MEG data with varying SNRX generated
by pairs of coupled point-like sources at varying locations and with different spectral
complexities. For each simulated data, we computed the two parameters providing the
best estimates of the time series (λ∗

x) and of the cross-power spectrum (λ∗
S), defined as

the ones minimizing the relative �2 norm of the difference between the true and the
reconstructed time series/cross-power spectrum according to Definition 2. As shown by
Figure 4, the results of our simulations highlighted a high correlation between the values
of λ∗

S and of SNRS.
Eventually, we focused on the relationship between the two parameters λ∗

x and λ∗
S,

whose ratio is shown in Figure 5. The figure points out that this ratio depends on the
spectral complexity of the simulated time series. This fact may be understood in lights
of the previous results, as λ∗

S depends on SNRS that in turns depends on the spectral

complexity coefficient. Additionally, we found that, for all the simulated data, λ∗
S

λ∗
x
< 1

2 ,
in line with the results shown in [27] for a simplified model where the neural time series
were assumed to be white Gaussian processes. Moreover, when the spectral complexity
coefficient increases (c > 5 in our simulations) the ratio between the two parameters
approaches 0.01. This agrees with the results shown in [26] where, by simulating sinusoidal
signals, the authors suggested to use for connectivity estimation a parameter of two orders
of magnitude lower. In fact, our numerical results indicate that the use of λ∗

S results in a
substantially lower reconstruction error on the cross-power spectrum, particularly when
the data have a high SNR.

The present work focuses on the cross-power spectrum as a connectivity metric.
Even though the cross-power spectrum is the starting point for the computation of many
connectivity metrics it would be interesting to directly investigate the behavior of the
Thikonov regularization parameters when using such metrics. Future works will be
devoted to this. It is also worth noticing that the definition of optimality when defining
the regularization parameters is not univocal, since many metrics can be used. A common
example is the area under the curve (AUC), which is the metric that was used in [26].
The use of different metrics would firstly strengthen our results and would also allow a
more straightforward comparison with the results of [26]. Finally, the dependence of λ∗

S on
SNRS suggests that an analysis of such dependence could be considered for the definition
of a rule for choosing λ∗

S in practical scenarios.
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Abstract: Cell migration in highly constrained environments is fundamental in a wide variety of
physiological and pathological phenomena. In particular, it has been experimentally shown that
the migratory capacity of most cell lines depends on their ability to transmigrate through narrow
constrictions, which in turn relies on their deformation capacity. In this respect, the nucleus, which
occupies a large fraction of the cell volume and is substantially stiffer than the surrounding cytoplasm,
imposes a major obstacle. This aspect has also been investigated with the use of microfluidic devices
formed by dozens of arrays of aligned polymeric pillars that limit the available space for cell
movement. Such experimental systems, in particular, in the designs developed by the groups of
Denais and of Davidson, were here reproduced with a tailored version of the Cellular Potts model, a
grid-based stochastic approach where cell dynamics are established by a Metropolis algorithm for
energy minimization. The proposed model allowed quantitatively analyzing selected cell migratory
determinants (e.g., the cell and nuclear speed and deformation, and forces acting at the nuclear
membrane) in the case of different experimental setups. Most of the numerical results show a
remarkable agreement with the corresponding empirical data.

Keywords: Cellular Potts model; cell migration; nucleus deformation; microchannel device

MSC: 34K34; 37N25; 92C17

1. Introduction

The ability of cells to move within different environments is crucial in a diverse array
of processes. For instance, during development, the coordinated movement of cells of
different origin is fundamental for both shaping the growing embryo and organogenesis:
migratory defects at all stages may in fact lead to severe malformations [1]. In mature
organisms, immune cells are mobilized from the bloodstream to enter sites of infection,
and then into the lymph nodes for effector functions [2]. Moreover, the migration of ep-
ithelial cells and fibroblasts is vital for proper wound healing and the repair of basement
membranes and connective tissues. In pathological conditions, cell migration is involved in
chronic inflammatory diseases, such as arteriosclerosis, and in cancer invasion and metas-
tasization [3]. The process of cell migration is finally exploited in biomedical engineering
applications for the regeneration of various tissues, such as cartilage, skin, or peripheral
nerves in vivo or in vitro [4–7].

The migratory efficacy of cells is determined, to a large extent, by their capacity to
squeeze through strictly confined environments. For instance, tissue membranes and
vessel walls, as well as dense regions of structural extracellular matrices (ECMs), rep-
resent physical barriers characterized by significantly small openings and pores [8,9].
Under these conditions, cells can achieve substantial movement by degrading/modifying
their surroundings to create sufficient space, for example, by the secretion of matrix metallo-
proteinases (MMPs) or by squeezing to fit through the available space [10–12]. In the latter
option, the elasticity of the cell becomes an important factor. In this respect, the cytoplasm
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is very flexible and can undergo large deformations. On the other hand, the voluminous
nucleus is much stiffer: it is therefore a hampering factor for cell movement [13–16].

The relation between cell mobility and remodeling ability is efficiently studied with
two experimental systems. On the one hand, cultured cells are stimulated to move in
engineered fibrous scaffolds, which mimic highly confined in vivo connective tissues [17].
On the other hand, they are seeded and allowed to locomote within microfluidic-based
devices, characterized by the presence of constrictions formed by fixed and insoluble
polymeric structures (e.g., extended walls or arrays of pillars) [18–21].

Such a second type of experimental system, in particular, in the design version pro-
posed by Denais and coworkers in [19] and by Davidson and colleagues in [18], was here
reproduced and simulated using an extended Cellular Potts model (CPM, [22–27]). This
is a grid-based Monte Carlo technique that employs a stochastic energy minimization
principle to determine system evolution. The approach proposed in this work is similar
to those proposed in [28–30], which employed a compartmental representation of cells to
analyze selected aspects of their movement within matrix environments. However, it is
characterized by some relevant novelties and features, namely:

• The definition of a Boltzmann law for lattice updates specific for each type of proposed
cell dynamics (e.g., cytosolic extension or retraction, and nucleus deformation);

• An analysis of the forces that act on the nuclear envelope at different stages of individ-
ual locomotion;

• A continuous and close feedback and feedforward between computational and exper-
imental results, in a perspective of a data-driven model refinement.

In this respect, as an outcome, we focused on experimentally addressable characteristics
of cell shape and locomotion (e.g., the velocity and transit time within a constriction, and
nucleus deformation ratio). In particular, we predicted how these quantities were affected
by selected manipulations either of cell properties or of channel layout. In this respect,
we successfully replicated most of the experimental results proposed in the two reference
papers [18,19]. For the sake of completeness, we investigated the rationale underlying the
few discrepancies that emerged between the computational and in vitro outcomes.

The rest of the paper is organized as follows. In Section 2, we clarify the assumptions
on which our approach was based and describe each model component. In this part of the
work, we also introduce and provide an estimation of the model parameters and define
how we quantified and characterized cell movement. The computational findings are then
presented in Section 3, where we separately deal with simulations relative to the channel
layouts proposed in [18,19], respectively. Finally, the proposed results are discussed in the
last Section 4, which also contains some hints for future perspectives.

2. Mathematical Model

The Cellular Potts model (CPM) is a grid-based stochastic approach that realistically
preserves the identity of cell-scale elements and describes their behavior and mutual
interactions in energetic terms and constraints. An extended version of the CPM was
employed here to schematically reproduce cell migratory behavior within the two types of
microfluidic-based devices developed in [18,19]. As shown in Figure 1A, both experimental
systems are composed of dozens of arrays of aligned polymeric pillars, which form a series
of parallel channels. Such structural elements are fixed and represent a constriction for cell
movement because they limit the free space and form bottlenecks: their dimensions and
distributions can be varied to mimic different patterns of spatial limitations. An extended
group of cells, initially disposed just outside the entrance of the channels, then individually
moves up to a chemical gradient, which is established by the diffusion of a molecular factor
from a sink reservoir located on the opposite side of the devices; see, again, Figure 1A.
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Figure 1. (A) Schematic representation of the microfluidic devices proposed in [18,19]. (B) Simulation
domain Ω replicating a representative channel of the migration device employed in [19]. (C) Simula-
tion domain Ω reproducing a representative migratory channel of the migration device employed
in [18]. (D) Portion of a 2D Cellular Potts model (CPM) lattice with a generic lattice site x, its border
∂x, and its first-nearest neighbors x′. (E) The virtual cell is compartmentalized into a central nuclear
cluster, the object Σ1 of type N (in yellow), and in the surrounding cytosolic region, the element Σ2 of
type C (in green). The rigid pillars are reproduced by CPM objects Σσ≥3 of type P (in gray). The rest
of the domain is formed by an extended undifferentiated element Σ0 of type M (in black).

In order to reduce the computational complexity of the problem, a two-dimensional
CPM domain Ω ⊂ R2 is used to reproduce a planar section of a single migratory channel,
taken as representative of each of the two reference devices; see Figure 1B,C. In both cases,
Ω is a regular lattice, formed by identical square grid sites that, with an abuse of notation,
are identified by their center x = (x, y) ∈ R2. Each grid site is assigned a unique index,
i.e., an integer number σ(x) ∈ N, that can be interpreted as a degenerate spin, a name
originally inherited from statistical physics [31,32]. The border of a lattice site x is identified
as ∂x, and one of its neighbors, as x′, while its overall Moore neighborhood is identified as
Ω

′
x, i.e., Ω

′
x = {x′ ∈ Ω : x′ is a neighbor of x}; see Figure 1D. The subdomains of contiguous

sites with identical spin form discrete objects Σσ (e.g., Σσ = {x ∈ Ω : σ(x) = σ}), which
have an associated type τ(Σσ).

A single representative cell is then included in Ω. Following the approach proposed
in [27], the simulated agent, labeled by the integer η = 1, is defined as a compartmentalized
element. It is composed of two subregions, which, in turn, are classical CPM objects Σσ:
the nucleus, a central cluster Σσ=1 of type τ = N, and the surrounding cytosol Σσ=2 of
type τ = C; see Figure 1E. Both cell compartments share, as an additional attribute, the
individual identification number η = 1. In other words, the entire cell is identified by
η = 1, whereas its internal compartments are identified by the pairs (η = 1, σ = 1) (the
nucleus) and (η = 1, σ = 2) (the cytoplasm).

The extracellular environment is then differentiated into a polymeric component,
τ = P, and a medium component, τ = M, as done in [30,33,34]. The polymeric state is
assigned to identify the rigid pillars forming the migratory channel. In particular, each
of them is a disconnected CPM element Σσ, identified by its own identification number
σ ≥ 3 (since σ-values ∈ {1, 2} are used for the intracellular compartments; see above).
The dimensions and positions of such structures are specified later on. The medium-like
state instead identifies the free surface of the microchannel, i.e., where the cell moves
and the chemical substances diffuse: it is conventionally assumed to be a single object
Σσ=0 isotropically distributed throughout the simulation domain, as shown in panel (E) of
Figure 1.

Cell movement results from an iterative and stochastic minimization of a free energy,
defined by a Hamiltonian functional H (whose components are defined below). The em-
ployed algorithm consists of a series of elementary steps of a modified Metropolis method
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for Monte Carlo–Boltzmann dynamics [25,35], which is able to implement the natural
exploratory behavior of biological individuals. Procedurally, at each time step t, called
a Monte Carlo step (MCS, the basic unit of time of the model), a lattice site xso (so for
source) belonging to a cell compartment Σσ(xso) is selected at random and attempts to copy

its spin, σ(xso), into one of its unlike neighbors, xta ∈ Ω
′
xso : xta /∈ Σσ(xso) (ta for target),

also randomly selected. In particular, if σ(xso) = 2 and σ(xta) = 0, the cell is protruding,
i.e., extending its motile membrane structures within the extracellular space, whereas if
σ(xso) = 0 and σ(xta) = 2, the cell is retracting. Finally, if σ(xso) = 1 and σ(xta) = 2
or if σ(xso) = 2 and σ(xta) = 1, the cell is reorganizing, i.e., it is undergoing internal
remodeling. Polymeric pillars are instead fixed and immutable, i.e., they are not allowed to
move or be deformed by the cell. The proposed trial of spin update is finally accepted with
a Boltzmann-like probability function P(σ(xso) → σ(xta)), whose form is slightly changed
here with respect to the general version given in [27]:

P(σ(xso) → σ(xta)) = tanh(T(σ(xso), σ(xta)))min
{

1 , exp
( −ΔH

T(σ(xso), σ(xta))

)}
. (1)

In Equation (1), ΔH is the net difference of the system energy due to the proposed change
of domain configuration, whereas the parameter T(σ(xso), σ(xta)) ∈ R+ is a Boltzmann
temperature that accounts for the trial cell behavior. The retraction/protrusion dynamics
are in fact dictated by the intensity and the frequency of plasma membrane (PM) ruffles,
which, on a molecular level, are determined by polarization/depolarization processes in
the actin cytoskeleton (refer to [36–38] and references therein). Cell internal reorganization
instead depends on the agitation rate for the nuclear cluster. According to the above
considerations, we indeed have

T(σ(xso), σ(xta)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Tτ(σ(xso)), if σ(xso) = 2 and σ(xta) = 0;

Tτ(σ(xta)), if σ(xso) = 0 and σ(xta) = 2;

Tτ(σ(xso)), if σ(xso) = 1 and σ(xta) = 2;

Tτ(σ(xta)), if σ(xso) = 2 and σ(xta) = 1,

(2)

with the stochastic law regulating cell movement that can be finally specified as

P(σ(xso) → σ(xta)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

tanh(TC)min
{

1 , exp
(−ΔH

TC

)}
,

if the cell is protruding or retracting;

tanh(TN)min
{

1 , exp
(−ΔH

TN

)}
,

if the cell is reorganizing.

(3)

In particular, we set a sufficiently high TC > 1 since cells moving in confined environments
are widely shown to have an active fluid-like cytoplasm. A lower TN < 1 < TC is instead
fixed since the nucleus does not have active movement dynamics (i.e., self-propulsion), but
it only displaces passively, i.e., is dragged by the surrounding cytoskeleton elements; see,
also, [39] for a more detailed mechanical explanation.

Remark. The acceptance probability resulting from Equations (2) and (3) differs from
the general version given in [27], and used in [28–30], as a consequence of the fact that the
Boltzmann temperature T depends both on the type of moving cell compartment, as in our
previous papers, and on the characteristics of the target grid element. According to us, this
is a significant improvement of the CPM algorithm. For instance, it allows differentiating
cases of the same cell cytosolic element that tries either to extend in the free extracellular
domain or to occupy the space belonging to the nucleus. In fact, in the former case,
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the possibility of cell morphological updates is biologically determined by the cytoskeletal
agitation rate (i.e., by a determinant of the source site), whereas, in the latter case, it relies
on the resistance to movement exerted by the stiff organelle (i.e., on a determinant of the
target site). The transition probability functions employed in our previous papers did not
allow capturing such aspects.

The Hamiltonian functional establishing the system energy is then given by the sum of
three contributions:

H(t) = Hadhesion(t) + Hshape(t) + Hchemotaxis(t). (4)

Hadhesion is the general extension of Steinberg’s differential adhesion hypothesis
(DAH) [25,40,41]. In particular, it is differentiated in the contributions due to either the
generalized contact tension between the nucleus and the cytoplasm within the cell, or the
effective adhesion between the migrating individual and an extracellular component:

Hadhesion(t) = Hint
adhesion(t) + Hext

adhesion(t) = ∑
(∂x∈∂Σ1)∩
(∂x′∈∂Σ2)

Jint
N,C + ∑

(∂x∈∂Σ2)∩
(∂x′∈∂Σ0)

Jext
C,M + ∑

(∂x∈∂Σ2)∩
(∂x′∈∂Σσ≥3)

Jext
C,P, (5)

where x and x′ are two neighboring sites (i.e., x′ ∈ Ω
′
x) and Σσ(x) and Σσ(x′), two neigh-

boring elements. ∂Σσ is instead intended as the border of Σσ (i.e., ∂Σσ =
⋃

x∈Σσ
∂x).

The coefficients Js ∈ R are the binding forces per unit area and are obviously symmetric
w.r.t. their indices. In particular, Jint

N,C implicitly models the forces exerted by intermediate
actin filaments and microtubules to anchor the nucleus to the cell cytoskeleton. In the
perspective of energy minimization, Jint

N,C < 0 is set to prevent cell fragmentation, as done
in [28–30]. Jext

C,M and Jext
C,P, in principle, evaluate the heterophilic contact interactions between

the cell and the extracellular elements: however, both are here fixed equal to zero. This
choice, successfully employed in [29,39], was made to directly analyze the influence of cell
deformability on the motile behavior. The experimental literature also demonstrates that
most cell lines display a sustained ameboid movement, characterized by a poorly adhesive
mode, when crawling in confined environments [21,42,43].

Hshape models the geometrical attributes of the subcellular compartments, which are
written as nondimensional relative deformations in the following quadratic form:

Hshape(t) = Hsurface(t) + Hperimeter(t) =

∑
σ=1,2

[
κΣσ

(
sΣσ (t)− sΣσ (0)

sΣσ (t)

)2

+ νΣσ

(
pΣσ (t)− pΣσ (0)

pΣσ (t)

)2
]

.
(6)

Such an energy term indeed depends on the actual surface and perimeter of the subcellular
units, i.e., sΣσ (t) and pΣσ (t), respectively, as well as on the corresponding target quantities,
i.e., sΣσ (0) and pΣσ (0), respectively, which are here assumed to be characteristic of the
relaxed/initial individual configuration. κΣσ and νΣσ ∈ R+ represent, instead, mechanical
moduli in units of energy: in particular, κΣσ refer to surface changes of the subcellular
compartments, while νΣσ relate to their deformability/elasticity, i.e., to the ease with which
they are able to remodel, changing their perimeter. Both parameters are here taken to be
constant: however, they may vary in time as a consequence, for example, of intracellular
chemical dynamics, as commented on in the conclusive section of the work.

The fluctuations of the cell surface are kept negligible by setting high constant values
κΣ1 = κN = κΣ2 = κC > 1. This choice was based on the assumptions that the migrating cell
has an adequate amount of nutrients to avoid volume loss and that it does not significantly
grow during movement, as confirmed by experimental images in [18,19]. A low νΣ2 =
νC < 1 then allows the large cytosolic deformations experimentally observed in the
cases of cell movement in confined environments. Empirical evidence also shows that
the nucleus is able (when needed) to undergo morphological reorganization but to a
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lower extent than the surrounding cytosolic compartment. Accordingly, we opted to set
1 > νΣ1 = νN > νΣ2 = νC.

Hchemotaxis reproduces the effect of cell preferential migration towards zones with
higher concentrations of a diffusing chemoattractant, which was constantly used in the
experiments to obtain a sustained cell movement [18,19]. Such an energy contribution
was implemented by a local linear-type relation of the form that was firstly used in [44] to
reproduce Dictyostelium discoideum aggregation and then constantly adopted in most
CPM-based approaches:

ΔHchemotaxis = μ(σ(xso), σ(xta))[ct(xta, t)− ct(xso, t)], (7)

where xso and xta are, respectively, the source and the final lattice site randomly selected
during a trial update in an MCS and ct(x, t) = c(x, t) + ∑x′∈Ω′

x
c(x′, t), where x ∈ {xso, xta}

is a nonlocal measure of the molecular substance sensed by the moving cell site, since
c denotes the chemical concentration; see Equation (9). Finally, μ ∈ R+ represents the
strength of the chemotactic response: in particular, we set

μ(σ(xso), σ(xta)) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
μτ(σ(xso)) = μC, if σ(xso) = 2 and σ(xta) = 0;

μτ(σ(xta)) = μC, if σ(xso) = 0 and σ(xta) = 2;

0, else.

(8)

Equation (8) implies that only cytosolic dynamics are affected by molecular signals. Finally,
the full expression and activity of cell chemical receptors was set by a high μC > 1.

Evolution of the molecular variable. According to the experimental designs in [18,19],
we assume that the virtual molecular substance is released (i.e., produced) at a constant
rate from the top edge of the domain (denoted as ∂Ωprod), homogeneously, and constantly
diffuses and decays, being eventually taken up by the cell. In mathematical terms, we have
the following reaction–diffusion (RD) law:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂c(x, t)
∂t

= DcΔc(x, t)δσ(x),{0}︸ ︷︷ ︸
diffusion

− λcc(x, t)︸ ︷︷ ︸
decay

−min{cmax, χcc(x, t)}δσ(x),{1,2}︸ ︷︷ ︸
cell uptake

in x ∈ Ω;

c(∂x) = cprod at ∂x ∈ ∂Ωprod;

c(∂x) = 0 at ∂x ∈ ∂Ω\∂Ωprod,

(9)

where δx,y = {1, x = y; 0, x �= y} is the Kronecker delta. Equation (9) indeed states that
the chemical substance (i) diffuses only through the domain grid sites not occupied by the
cell or by a rigid pillar, (ii) locally decays everywhere, and (iii) undergoes consumption
only at the domain grid sites occupied by a cell compartment. In particular, cell chemical
absorption follows a piecewise-linear approximation of a Michaelis–Menten law. This
simplification is realistic since cells’ capacity to internalize diffusing substances is limited.
We finally set λc < χc, as the natural decay of a molecule is typically negligible compared
to the cell uptake. We remark that Equation (9) neglects the diffusion of the chemical within
the cell after its uptake: such dynamics would imply the definition of specific coefficients,
i.e., characterizing the diffusion of the substance within each of the two intracellular
compartments. However, the inclusion of this aspect would not have had an impact on
the topic of our study, which was, rather, the dependence of the migratory potential of an
individual on its remodeling ability.
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3. Results

Model parameters and computational details. The characteristic size (lateral edge) of the
domain grid sites is hereafter denoted by |∂x| and was fixed equal to 0.5 μm. The temporal
resolution of the model was, as seen, the MCS, which was constantly set to correspond
to 2 s, as previously done in [28–30]. The PDE for the evolution of the chemical factors
was numerically solved with a finite difference scheme on a grid with the same spatial
resolution as Ω, characterized by 30 diffusion steps per MCS. This temporal scale was
sufficiently small to guarantee the stability of the numerical method.

In all the simulations, the representative motile cell was initially seeded at the bottom
region of the channel, displaying a nonpolarized morphology, with a perimeter and surface
given by pΣi (0), sΣi (0), for i = 1, 2, respectively. In particular, its initially round nucleus lay
in the center of the individual. All the forthcoming computational realizations started with
100 annealed MCSs to have a realistic arrangement of the cell body within the structure.
Such system configuration updates obeyed the following rule:

P(σ(xso) → σ(xta))(t) =

⎧⎨⎩
0, if ΔH > 0;
0.5, if ΔH = 0;
1, if ΔH < 0.

(10)

During such annealed MCSs, chemical kinetics did not occur yet. The entire set of model
parameters, labeled as P , can be divided in two groups:

P = P1 ∪ P2 ={
sΣ1(0), pΣ1(0), sΣ2(0), pΣ2(0), Dc, λc, χc, cmax, cprod, μC

}
∪
{

Jint
N,C, κN, κC, νN, νC, TN, TC

}
.

(11)

P1 is composed of coefficients that directly relate to biological quantities and therefore
depend on the specific experimental system. In this respect, the cell dimensions and
channel measures were derived from images and movies presented in [18,19] (both in
the text and in the Supplementary Material). The kinetic coefficients of the chemicals
used in that work were instead evaluated using data from the literature. In particular,
the maximal cell uptake was calculated as in [33,39]. The chemotactic response μC was
finally established by comparing experimental and numerical cell velocities in open spaces
(i.e., in regions of the channels far from structural constrictions). The parameters belonging
to P2, listed in Table 1, are instead more technical and do not depend on the specific
empirical device. In this respect, they were taken from previous published CPMs dealing
with cell migration within two- and three-dimensional matrix environments. However,
preliminary simulations showed that the behavior of the model proposed in this paper was
fairly robust in large regions of the parameter space around this estimate.

Table 1. Values of the Cellular Potts model (CPM) technical parameters, i.e., those included in the set P2 (see Equation (11)),
which were used for both experimental settings.

CPM Parameter Value Reference(s)

Contact force between the nucleus and the cytosol Jint
N,C = −20 [28–30]

Surface rigidity of the nucleus κN = 10 In the range of values used in [28–30]
Surface rigidity of the cytosol κC = 10 In the range of values used in [28–30]
Stiffness of the nucleus νN = 0.9 [28]
Stiffness of the cytosol νC = 0.5 In the range of values used in [28–30]
Motility of the nucleus TN = 0.5 In the range of values used in [28–30]
Motility of the cytosol TC = 10 In the range of values used in [28–30]

Quantification of the numerical results. The position of the cell η = 1 at any time t was
established by the position of its center of mass xCM

η (t) = (xCM
η (t), yCM

η (t)). Coherently,
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the position of its nucleus was established by the position of its center of mass xCM
Σ1

(t) =
(xCM

Σ1
(t), yCM

Σ1
(t)).

A cell was denoted as invasive if at least one of its membrane sites touched the top
border of the domain. It was denoted as invasive with respect to a constriction if the center
of mass of its nucleus passed the midpoint of that constriction.

The instantaneous directional velocity of the cell at a given location ỹ along the represen-
tative microchannel was defined as vη(yCM

η = ỹ) =
[
ỹ − yCM

η (t̃ − Δt)
]
/Δt, where t̃ is such

that yCM
η (t̃) = ỹ and Δt = 1 MCS (2 s). Similarly, the instantaneous directional velocity of the

nucleus was given by vN(yCM
Σ1

= ỹ) =
[
ỹ − yCM

Σ1
(t̃ − Δt)

]
/Δt.

Morphological changes of the nucleus were quantified by its deformation ratio. This
was given, for any given location ỹ within the representative microchannel, by the ratio
between its geometrical moments of inertia evaluated with respect to the horizontal and
vertical axes that passed through its center of mass, i.e.,

rN(yCM
Σ1

= ỹ) = ixCM
Σ1

(t̃)/iyCM
Σ1

(t̃) = ∑
x=(x,y)∈Σ1

at time t̃

(y − ỹ)2/ ∑
x=(x,y)∈Σ1

at time t̃

(x − xCM
Σ1

(t̃))2, (12)

where t̃ has the same meaning as before. In particular, rN ≈ 1 corresponded to an almost
round shape of the nucleus, whereas rN � 1 (or �1) corresponded to its horizontal (or
vertical) elongation.

The transit time of the cell within a constriction was evaluated as the period of time
from its first to its last contact with one of the two pillars that formed that constriction.

We finally calculated the force acting on any nuclear border site by adapting the
algorithmic procedure described and employed in [45]. In particular, we started with the
consideration that local forces can be related to the negative gradient of the Hamiltonian H,
i.e., F(x) = (Fx(x), Fy(x)) = −∇H = −(∂H/∂x, ∂H/∂y), x ∈ Ω being a generic lattice site.
We then employed a centered approximation to the first partial derivative, also observing
that the nuclear cluster could extend or retract in any of the two principal directions by
a small step |∂x| (the characteristic size of the domain grid elements). As a result, we
obtained that, for each x such that σ(x) = 1,

− Fx(x) ≈
(

HN(Σσ(x) +�xΣσ(x))− HN(Σσ(x) −�xΣσ(x))
)

/(2|∂x|), (13)

where HN includes only the energetic contributions relative to the organelle and �xΣσ(x)

denotes the one-site-large possible variation of its extension along the horizontal axis.
The y-component of the force analogously read as

− Fy(x) ≈
(

HN(Σσ(x) +�yΣσ(x))− HN(Σσ(x) −�yΣσ(x))
)

/(2|∂x|). (14)

3.1. Cell Motion between Structural Elements with Different Geometries

In this section, we specifically focus on cell migration within a channel representative
of the device developed in [19]. In this respect, the simulation lattice Ω was formed by
80 × 400 (respectively, in x and y) sites, which corresponded to an experimental domain of
40 μm × 200 μm. As shown in Figure 1B, it contained only three pairs of pillars. The dis-
tance between the rectangular elements was kept fixed and equal to 15 μm, whereas the
distance between the two pairs of round pillars, hereafter denoted by d, was varied in
the different simulation settings. All the performed simulations lasted 1.8 × 104 MCSs
(≈600 min). The estimate of the model parameters belonging to P1 here refers to breast
cancer cells and to epidermal growth factor (EGF), in accordance with the experimental
materials used in [19] (cf. Table 2). In particular, the cell had an initial nuclear diameter
dN = 14 μm and an overall size equal to 24 μm.
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Table 2. Values of the model parameters whose estimates relate to the experimental system proposed in [19]. They belong
to the set P1 defined in Equation (11).

Cell dimensions Value Reference(s)

Initial surface of the nucleus sΣ1 (0) = 155 μm2 [19]
Initial perimeter of the nucleus pΣ1 (0) = 44 μm [19]
Initial surface of the cytosol sΣ2 (0) = 452 μm2 [19]
Initial perimeter of the cytosol pΣ2 (0) = 116 μm [19]

Device dimensions Value Reference(s)

Horizontal width 40 μm [19]
Vertical length 200 μm [19]
Width between each pair of rectangular structures 15 μm [19]
Width between each pair of round structures d (variable) [19]

Coefficients of EGF kinetics Value Reference(s)

EGF diffusion rate Dc = 16 · 10−7 cm2s−1 [46]
EGF decay rate λc = 1.8 · 10−4 s−1 [47]
EGF production rate cprod = 0.78 h−1 [47]
EGF internalization rate χc = 4.3 · 10−4 s−1 [48]
Maximal EGF internalization cmax = 1.2 · 10−3 μM s−1 Estimated as in [33,39]
Cell chemotactic strength μC = 8 · 103 μM−1 Fitting with empirical measures in [19]

As shown in Figure 2, when the constriction between the round pillars was large
enough (i.e., d ≥ 12 μm, so that d/dN ≥ 0.85), the cell was constantly able to crawl along
the entire structure, guided by the chemical signals. Reductions of d then resulted in
decrements in the cell invasive capacity, which was completely lost when d fell below 4 μm
(i.e., for d/dN < 0.28).

The top panels in Figure 3 show the cell dynamics in the case of complete channel
invasion. First, a long and thin cytoplasmic pseudopodium emerged at the front of the cell,
towards the chemical source, and infiltrated between the first pair of round pillars. Such
a membrane protrusion then dragged the rest of the cell to enter the pore. In particular,
the nucleus adopted a cigar-like shape to overcome the spatial constriction, which was
possible since it had a certain degree of elasticity.

Figure 2. Percentage of invasive cells (i.e., of cells able to touch the upper border of the domain) in
the case of reproduction of the device developed in [19]. Values were calculated over 100 numeri-
cal realizations.
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Figure 3. Simulation image sequences of the cell invading the virtual migratory channel in the
representative cases d = 8 μm (top panels) and d = 4 μm (bottom panels), d being the distance
between each pair of round pillars. We remark that, for d = 8 μm, the cell was able to fully invade the
microfluidic structure in only ∼30% of cases, while for d = 4 μm, this never happened (cf. Figure 2).
We remark that the initial diameter of the nucleus was dN = 14 μm.

When the cell had passed the first pair of round elements, it relaxed, and its nucleus
stabilized in a quasi-spheroidal shape. A constant sustained migration was then maintained
by the individual along the rectangular structures: the space between them did not in fact
require further morphological deformation. Both cell compartments had to finally squeeze
again when the individual approached the second pair of round pillars.

From a modeling perspective, the migratory behavior of the virtual cell was the result
of a sequence of action/reaction mechanisms. First, the exogenous chemical stimulus
caused the border sites of the cell cytosol to locally protrude in the direction of increasing
EGF gradients, with a speed of protrusion that was approximately proportional to the mod-
ulus of the local chemotactic strength μC. Dragged by the leading front, the overall cytosolic
region then moved forward (eventually deforming) and pulled onto the nucleus with the
same force, transmitted by the contact energy Hint

adhesion. However, as a consequence of the
higher rigidity and lower motility (i.e., νN > νC and TN < TC, respectively), the nuclear
cluster took more time to deform and displace than the surrounding compartment and,
therefore, constantly lay at the trailing part of the individual body.

Such a mechanistic explanation is consistent with experimental and modeling observa-
tions presented in [49]. Therein, the authors in fact comment that a cell usually translocates
almost the entire cytosol before effective nuclear transmigration, mainly in the case of
small-enough pores. They also claim that the hourglass shape adopted by the nucleus in
the case of passage within small constrictions is due to the pulling forces exerted by the
frontal actomyosin networks. The pushing from the rear part of the cytoskeleton would
instead result in an inverted bolt shape, which would not allow successful individual
passage within the pore.

As captured in Figure 3 (bottom panels), in the case of small-enough interpillar
distances d, the front end of the cell cytoplasm extended, as usual, between the first pair of
round structures. However, the deformability of the nucleus was no longer sufficient for
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it to pass through such a confined space. The cell therefore remained stuck, being unable
to invade.

These results are indicative of the fact that the presence of the voluminous nucleus
represents a steric hindrance for the entire cell and that the degree of nuclear deformability
determines its capacity to move within confined spaces. Our numerical outcomes are in
remarkable agreement with the experimental evidence provided in the reference work [19].
Denais and coworkers in fact demonstrated that cells of different lineages can pass within
subnuclear constrictions by only temporarily rupturing the integrity of the nuclear envelope
(NE), so that the organelle becomes as fluid as the cytoplasm. Interestingly, the nuclear
membrane can be restored during migration: this is the reason why subsequent NE ruptures
are observed within the same cell.

Cell speed and nucleus deformation have complementary behavior, as shown by their
time evolution plotted in Figure 4 (for three representative values of d). In the case of
complete channel invasion (for d = 8 and 12 μm, i.e., for d/dN ≈ 0.57 and 0.85), the cell
reached and maintained its maximal velocity when crawling between the rectangular
elements, whose spacing required minimal nuclear deformation (i.e., rN ≈ 1). The cell
speed was instead reduced in the proximity of the pairs of round pillars. In particular,
the closer they were to each other, the more time the cell took to pass the constriction (and
then to relax), as a consequence of the necessarily larger nuclear deformations. Finally, in the
case of minimal space between the round structures (for d = 4 μm, i.e., for d/dN ≈ 0.28),
the nuclear deformation quickly went to a maximum threshold, whereas the cell speed
dropped to almost zero (the cell remained stuck).

Figure 4. Quantification of cell migratory behavior in the experimental design employed in [19].
Time evolution of cell instantaneous directional velocity vη (panel (A)) and of nucleus deformation
ratio rN (panel (B)) for three representative values of the distance d between the pairs of round pillars.
In both graphs, each value is the mean over 10 simulations. We have not plotted error bars, to avoid
unnecessary graphical overcomplication. However, the standard deviations were very small (of
the order of 10−2). We also remark that, in the simulation settings employed in this part, the initial
nuclear diameter was dN = 14 μm.

We then turned to analyze the force field at the nuclear boundary at different stages of
cell migration. As shown in Figure 5 (left panel), when the nucleus was squeezing through
a constriction, its side edges were characterized by significant inward stresses. Outward
forces were instead active at the trailing and leading borders, due to the fact that it had to
preserve its surface without perimeter shrinking. As soon as the nucleus had overcome
the midpoint of the constriction, the inward stresses momentarily pointed almost towards
the top edge of the domain, thereby acting as an instantaneous push for cell movement
(see the middle panel in Figure 5). Finally, when the cell crawled within the rectangular
elements, its nucleus was in a rounded relaxed configuration. In particular, its leading edge
was subjected to cytosolic adhesive-based dragging forces, whereas its lateral and trailing
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borders were subjected only to the forces necessary to keep the surface constant while
maximizing the contact with the surrounding cell compartment; see Figure 5 (right panel).

Figure 5. Representative force field at the nuclear boundary at different cell migratory stages.
(Left panel) cell squeezing within a pair of round pillars. (Middle panel) cell overcoming the
midpoint of the constriction. (Right panel) cell moving within the rectangular elements. For graphical
purposes, we have only plotted selected force vectors, which are magnified, with intensity normalized
with respect to the maximal value. Force components are defined in Equations (13) and (14).

Our numerical outcomes are in remarkable agreement with the analysis of the spatial
distribution of nuclear envelope ruptures provided in [49] in the case of breast adenocar-
cinoma cells. Cao and colleagues, in fact, showed that, when a malignant individual is
passing within a small pore, damage mainly occurs at the front and at the back edge of
the nuclear envelope (NE), due to the significant tension. In particular, higher chances of
ruptures characterize the leading border, since it is even more stretched than the trailing
part. These authors also observed that NE buckling is instead located at the side regions of
the organelle, i.e., those subjected to compression. Our results are also in line with those
obtained in [45], where static CPM cells were shown to have inward forces at boundary
convex sites and outward forces at concave border grid elements.

3.2. Cell Movement between Round Pillars with Different Spacing

Focusing on the microfluidic device used in [18], the CPM lattice Ω had 60 × 468
(respectively, in x and y) grid elements that replicated a 30 μm × 234 μm representative
channel. The polymeric pillars located in the structure were round, with a diameter of
either 15 or 30 μm. The space between pairs of smaller elements was kept fixed and equal
to 15 μm, whereas the distances between the three couples of larger pillars were identified
by di (with i = 1, 2, 3) and varied to reproduce different channel designs; see Figure 1C. All
the forthcoming simulations lasted nearly 24 h (4.3 × 104 MCSs), in accordance with the
temporal scale of the corresponding experiments in [18].

The biologically related parameters, i.e., those grouped in P1 in Equation (11), here
refer to human fibroblasts and to platelet-derived growth factor (PDGF), in accordance
with the materials mainly used in [18] (refer, also, to the Supplementary Material). They are
summarized in Table 3. In particular, the cell nucleus had an initial diameter dN = 16 μm
while the extension of the overall individual amounted to 28 μm. We finally remark that the
CPM technical parameters, i.e., those included in the set P2 introduced in Equation (11),
were kept unaltered with respect to the values fixed in the previous section and listed in
Table 1. In particular, we maintained νN = 0.9.
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Table 3. Values of the model parameters whose estimates were specifically designed to reproduce the experimental setup
used in [18]. They belonged to the set P1 introduced in Equation (11).

Cell Dimensions Value Reference(s)

Initial surface of the nucleus sΣ1 (0) = 200 μm2 [18]
Initial perimeter of the nucleus pΣ1 (0) = 50 μm [18]
Initial surface of the cytosol sΣ2 (0) = 416 μm2 [18]
Initial perimeter of the cytosol pΣ2 (0) = 138 μm [18]

Channel Dimensions Value Reference(s)

Horizontal width 30 μm [18]
Vertical length 234 μm [18]
Width between each pair of smaller pillars 15 μm [18]
Widths between the three pairs of larger pillars di, with i = 1, 2, 3 (variable) [18]

Coefficients of PDGF Kinetics Value Reference(s)

PDGF diffusion rate Dc = 1.13 · 10−10 m2s−1 [18] (Supplementary Material)
PDGF decay rate λc = 4 · 10−6 s−1 Fitting with empirical measures in [18]
PDGF production rate cprod = 0.2 h−1 Fitting with empirical measures in [18]
PDGF internalization rate χc = 1 · 10−5 s−1 Fitting with empirical measures in [18]
Maximal PDGF internalization cmax = 5 · 10−4 μM s−1 Estimated as in [33,39]
Cell chemotactic strength μC = 4 · 102 μM−1 Fitting with empirical measures in [18]

We first assessed the effectiveness of chemotactic-driven cell migration in the case
of a channel design characterized by a sequence of constrictions with decreasing widths
(d1 = 5 μm, d2 = 3 μm, and d3 = 2 μm, which resulted in d1/dN ≈ 0.31, d2/dN ≈ 0.18,
and d3/dN ≈ 0.12). Such a domain layout was used hereafter unless explicitly said. As it
is possible to see in Figure 6A, the virtual cell was constantly unable to invade the entire
structure: it in fact overcame the first (largest) constriction only in a few cases. Such nu-
merical results are not surprising if compared with those summarized in Figure 2. In fact,
glioblastoma cells and fibroblasts (used as representative cell lines for the simulations of
this and of the previous section, respectively) have almost the same dimensions (compared
to the spacing between the pairs of rigid pillars), and their characteristic model parame-
ters were kept unchanged. However, this set of numerical outcomes disagrees with the
corresponding empirical evidence. As shown in the Supplementary Figure S4b in [18],
a significant number of experimental cells (i.e., nearly 40%) are able to penetrate the entire
channel, in the case of stable chemical gradients. The underlying reason relies on the fact
that the cell lines used in [18] have a more deformable nucleus than those used in [19] and
simulated in the previous section, as a consequence of their deficiency of lamins A and C.
These molecules are, in fact, the primary components of the nuclear lamina, the dense pro-
tein meshwork underlying the nuclear membrane that has been largely shown to determine
the stiffness of the organelle [19,50–52]. To have a closer replication of the in vitro evidence
in [18], we indeed reduced the rigidity of the nucleus of our virtual cell by decreasing
the corresponding parameter νN, which, however, had to remain larger than νC = 0.5.
As shown in Figure 6B, a remarkable data fitting was obtained when νN ≤ 0.7.

A representative time sequence of a cell able to invade the entire channel, owing to
the increased nuclear elasticity, is then proposed in Figure 7: it clearly shows the enhanced
nuclear squeezing necessary to promote full invasion. A definitive confirmation in this
respect is provided by Figure 8A, which quantifies the nucleus remodeling for different
values of νN. From the same graph, we observe a residual deformation of the organelle
after its passage through a constriction, as also captured in Figure 4B.
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Figure 6. Quantification of chemotactic-driven cell migratory behavior in the case of the experimental
setup used in [18]. (A) Percentage of cells that were able to overcome each constriction for the
default value of the nucleus stiffness, i.e., for νN = 0.9. (B) Percentage of cells that were able to
overcome each constriction upon variations in the nuclear stiffness. Values were calculated over 100
numerical realizations. We remark that, in the simulation settings proposed in this paragraph, the
initial diameter of the nucleus is dN = 16 μm.

Figure 7. Simulation image sequences of cell invasion within a representative migratory channel
characterized by d1 = 5, d2 = 3, and d3 = 2 μm. The virtual individual had an enhanced nuclear
elasticity (i.e., νN = 0.7) that allowed full invasion in approximately 40% of cases (see Figure 6B).
The initial diameter of the cell nucleus was dN = 16 μm.
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Figure 8. Quantification of cell migratory behavior in the case of the experimental setup used
in [18]. (A) Time evolution of the deformation ratio of the nucleus, rN, defined in Equation (12),
for two different values of its elasticity νN. Each value is given as the mean over 10 simulations. We
have not plotted error bars, to avoid unnecessary graphical overcomplication. However, standard
deviations were very small (of the order of 10−2). (B) Percentage of cells that were able to overcome
each constriction upon independent variations either in the nuclear motility TN or in the nuclear
compressibility κN (in the case of νN = 0.9). As usual, values were calculated over 100 numerical
realizations. We again remark that the initial diameter of the cell nucleus was dN = 16 μm.

With a predictive perspective, we then asked if cell migratory behavior could be
promoted by variations of other biophysical determinants of the nucleus. In this respect,
we no longer reduced the rigidity of the organelle (we kept a high νN = 0.9) but indepen-
dently enhanced either its motility or its compressibility (which meant, in this context,
the possibility of reducing its surface) by altering TN or κN, respectively. Some reasonable
parameter constraints (i.e., κN > νN > νC and TC > TN) were, however, maintained.
As shown in Figure 8B, significant increments in cell invasive potential were observed only
for substantial variations of the two coefficients (i.e., of at least one order of magnitude
from their default values employed up to that point and listed in Table 1). However, such
parametric changes led to unrealistic cell dynamics: too high values of TN, in fact, resulted
in implausibly high cell and nuclear velocities, whereas too high values of κN allowed
an unreasonable shrinking of the organelle (that, in a realistic scenario, would cause the
pathological death of the individual).

These results are experimentally confirmed in [18], where the invasive cells were
not observed to undergo significant volumetric changes when passing through small
constrictions. Substantial variations in nuclear shape not accompanied by similar changes
in nuclear volume were also captured in [49] in the case of breast adenocarcinoma cells.
Analogously, in [13], glioma cell lines were shown to transmigrate through narrow locations
in a brain model in vivo, thereby increasing their metastatic potential, by only a significant
squeezing of their nucleus due to a recruitment of nonmuscle myosin II (NMMII). Moreover,
very recently, Irimia and Toner, in [53], demonstrated that the directional persistence of
cancer cells in microsized structures is completely dependent on the steric hindrance
represented by the presence of a rigid and voluminous nucleus.

We further quantified the migration profile of a cell with an enhanced nuclear elasticity
(i.e., with νN = 0.7). As shown in panel (A) of Figure 9, an asymmetry emerged between
the velocity of the overall cell, vη , and the velocity of its organelle, vN. On one hand,
as expected, the cell had a maximal speed when crawling between the pairs of smaller
pillars. Velocity reductions were instead observed when it approached and passed between
the three pairs of larger pillars: in particular, the decrements depended on the width of
the constrictions. On the other hand, the speed of the nucleus (i) was constant in the case
of locomotion within larger spaces, (ii) completely stalled as a constriction impeded its
forward movement, (iii) reached an instantaneous peak once the center of the intracellular
compartment had passed the midpoint of the pore, and (iv) finally decreased back to the
regime value. The underlying rationale, supported by the numerical results summarized
in Figure 5 (middle panel), is the following: once the organelle had passed the midpoint of
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a constriction, the lateral inward compressive forces temporarily aligned in the direction
of cell movement. An instantaneous push then emerged, which allowed the nucleus to
rapidly slip out from the constriction.

We then assessed whether successful passages through subsequent equal constrictions
facilitated cell migration. We indeed compared the transit time within each pore in the
case of a channel characterized by d1 = d2 = d3 = 3 μm (i.e., by d1/dN = d2/dN =
d3/dN ≈ 0.18). Additionally, in this case, we fixed νN = 0.7. As it is possible to see from
Figure 9B (left graph), the virtual cell showed a trend towards faster dynamics in the
case of transmigration between the second and the third pair of large pillars. A possible
explanation relies on the residual deformation that characterized the nucleus after its
passage within a constriction, as previously captured in Figures 5B and 9A.

Figure 9. Quantification of cell migratory behavior in the case of reproduction of the device developed
in [18]. (A) Time evolution of the instantaneous directional velocity of the cell, vη , and of its nucleus,
vN, in the case of enhanced elasticity of the intracellular organelle, given by νN = 0.7. In the graph,
each value is the mean over 10 simulations. We have not plotted error bars, to avoid unnecessary
graphical overcomplication. However, standard deviations were very small (of the order of 10−2).
(B) Transit time, i.e., time needed by the cell to overcome a constriction, in the case of a channel
characterized by three (left) or two (right) equal pores (each 3 μm-wide). In the latter case, the two
constrictions were largely-spaced, as shown in the inset reproducing the employed domain. In both
plots, values were calculated over 100 numerical realizations. We recall that the initial diameter of
the cell nucleus was dN = 16 μm.

To further support this hypothesis, we ran a series of simulations based on a channel
characterized by two 3 μm-wide constrictions that were separated by nearly 120 μm (i.e.,
by a sufficient spacing for the nucleus to relax and recover its original shape; see the
inset in Figure 9B). The rest of the parameter settings were kept unaltered, with νN = 0.7.
As shown in Figure 9B (right graph), the transit time was the same for the passage within
both pores. Such computational outcomes support our prediction but are in partial contrast
with the corresponding experimental evidence. In [18], the authors in fact claim that the
facilitated cell movement observed in the case of subsequent constrictions is not due to
temporary residual nuclear deformations, since a reduction in the transit time was also
captured in the case of spaced-enough pores. They indeed suggest that migrating cells may
undergo long-lasting biochemical adaptations such as, for instance, further degradation
of lamin proteins or reorganization of the cytoskeletal elements to which the nucleus is
anchored. In this respect, Cao and coworkers, in [49], found that (i) the nuclei of lamin
A/C-deficient cells (as those used in [18]) behave as plastic materials undergoing large
irreversible deformation in the case of passages within small pores and that (ii) the nuclei
of malignant cells with expressed and active A/C lamins are instead characterized by the
coexistence of elastic dynamics in their envelopes and of plastic dynamics in their interiors.
Such two competing effects often result in an ellipsoidal configuration of the nucleus after
the exit from a pore, which is then followed by its relaxation towards a more round shape
(as captured by our model).
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4. Discussion

The analysis of the mechanisms underlying cell migration within confined environ-
ments has recently become a major topic in experimental research, due to cell migration’s
recognized importance in physiopathological phenomena and its exploitation for tissue
engineering. In this respect, an increasing number of in vitro models have been developed:
they mainly consist of the use either of matrix scaffolds, which mimic in vivo fibrous
connective tissues, or of micropatterned devices characterized by predefined channel-
like structures.

The resulting evidence has, first, provided insight into selected adhesive and prote-
olytic mechanisms that motile individuals activate to achieve efficient locomotion in narrow
spaces. Furthermore, it has been largely shown that pivotal regulators of cell movement,
and, therefore, potential targets for pharmacological interventions in human diseases, are
represented by the elastic properties of the cell and of its internal organelles. More specifi-
cally, experimental outcomes have revealed the implications of nuclear deformation capac-
ity in the migratory behavior of the overall individual (see, for example, [13–16,20,21,53]).

However, despite the development of such a variety of empirical approaches, little
has been done, to our knowledge, from a theoretical point of view, except for a pair of
chemomechanical approaches [49,54]. We recently tackled this shortcoming by a series of
ad hoc versions of the Cellular Potts model (CPM), which analyzed selected aspects of
single cell locomotion within matrix environments [28–30]. As a common feature of the
proposed approaches, the moving individuals have been represented as physical objects
compartmentalized into the nucleus and cytoplasm, whereas the extracellular domain has
been, in turn, differentiated into a medium and a polymeric component. In particular,
the introduction of distinct subcellular units has been a fundamental aspect for achieving a
detailed description of cell motile behavior within structures of microsized dimensions.

Such models were, here, improved by (i) the use of a tailored Boltzmann transition
probability, able to account for the specific type of cell configuration update (i.e., the
retraction/extension of the cytosol or reorganization of the nuclear cluster), and (ii) the
definition of a procedure to evaluate the force field that acted on the nuclear boundary
during the different phases of cell migration.

The resulting CPM was then employed to reproduce the experimental systems used
in [18,19], which consisted of microfluidic-based devices composed of dozens of arrays of
polymeric pillars with different geometries and dimensions.

Taken together, our results first confirm that mobile cells are able to overcome the
effects of size exclusion in the case of small-enough pores by only a substantially high
deformability of their nucleus, in accordance with a wide range of empirical studies,
e.g., [10,13–16,18,19] and references therein. The proposed numerical outcomes further
reveal that, during the passage within a constriction, (i) inward stresses are active along
the compressed side edges of the organelle and (ii) outward forces act at its leading and
trailing borders. Interestingly, our simulations also showed that, as soon as the nucleus
had overcome the midpoint of a pore, inward forces temporarily aligned with the direction
of cell movement, representing, therefore, an instantaneous push for nuclear locomotion.
This, according to us, is the rationale underlying the peak in the nuclear velocity that was
experimentally captured in [18].

We also observed that passages within successive constrictions were facilitated by
residual nuclear deformation. This result, as commented in the text, is in contrast with
the corresponding empirical evidence in [18]: such a discrepancy may be due to the fact
CPM objects have a full elastic behavior, whereas biological cells can instead undergo
long-lasting biochemical adaptations that impact the deformation capacity of their internal
organelles, an aspect not included in the CPM used here.

Summing up, our computational results are mostly characterized by a remarkable
agreement with their experimental counterparts, representing further complementary
determinations as well. In the case of discrepancy between numerical and empirical
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outcomes, we either adapted our approach in order to tackle the issue or found out a
plausible underlying rationale.

Of course, a more realistic reproduction of the proposed experimental settings would
be obtained by three-dimensional simulations. This computational refinement would allow
having a closer quantitative comparison between in vitro and in silico results, mainly in
terms of observables such as the cell and nuclear speed and time taken by the cell to
squeeze between channel constrictions. In this respect, it is reasonable to hypothesize
that the displacement and the deformation of a 3D cell body would be slower than the
corresponding 2D dynamics. However, the qualitative fitting of our results w.r.t. their
empirical counterparts would not change. In fact, the cells seeded within the microfluidic
devices used in [18,19] did not experience spatial limitations in the direction orthogonal to
the plane of movement, as the rigid pillars (and, therefore, the entire channels) seemed to
be “tall” enough to allow a comfortable arrangement of the cell body in this respect. This
aspect is confirmed by the fact that, in the experimental images and videos, the cells were
constantly adherent to the substrate and subjected only to lateral deformations. For the
sake of completeness, we finally remark that a 3D extension of the model would be straight-
forward: it would only amount to a revision of the parameter estimates, whereas the main
aspects of the proposed approach (i.e., the tailored Boltzmann probability, the terms in the
Hamiltonian and the law regulating the chemical kinetics) would not require any modification.

Despite the limitations typical of the theoretical modeling, it would be biologically
relevant to apply our approach to scenarios not strictly related to experimental assays. First,
our study may contribute to a more detailed understanding of how cancer cells invade
surrounding confined tissues, permeating through the stroma and eventually entering
the vasculature. In fact, these processes mainly involve the ability of single metastatic
malignant cells to squeeze and crawl within confined environments with a limited space
available due to the presence of dense matrices and cell linings.

It would also be interesting to analyze if the relation between nuclear deformability
and cell invasive potential varies, in terms of relevance, in the case of collective migration,
which is typically involved in most in vivo phenomena. In these cases, a differentiation
may in fact occur among individuals within the same ensemble, such as the emergence
of tip and stalk cells during angiogenic processes, which may imply differentiated motile
phenotypes [55,56].

The proposed approach could be finally applied to the design of synthetic implant
materials, i.e., acellular scaffolds with optimal values of pore size that may accelerate cell
in-growth, critical for regenerative treatments [4,5,57].

However, to increase the realism of the future model applications, some mecha-
nisms/processes, here disregarded but that play a major role in establishing cell migratory
ability, should be included, such as (i) matrix digestion and deposition by moving individ-
uals, which alter the surrounding space by opening paths, generating traction, increasing
adhesion, and contact guidance, and (ii) possible pressure-driven displacements of tissue
walls, which result in an adjustment of the geometry of the surrounding environment that
may facilitate individual locomotion [56].

A significant model improvement would finally amount to the inclusion of intracel-
lular chemical pathways, triggered by external stimuli of distinct natures. For instance,
chemotactic substances (e.g., EGF and PDGF) typically activate PM receptors and therefore
initiate downstream cascades that involve the biosynthesis, in the sub-plasma-membrane
regions, of molecular mediators such as PI3K and MAPK [58]. Such molecules in turn in-
duce the production of small GTPases [59], which are able to regulate several cell responses,
including adhesion, migration, and, eventually, proliferation (which is not relevant for
our study). From a modeling perspective, one could first focus on a subgroup of these
endogenous chemicals and describe their interconnected kinetics by a system of PDEs,
solved within the cytosolic compartment of the virtual cell. Constitutive laws should then
be set to establish the dependence of CPM parameters, such as the Boltzmann temperatures
T and the mechanical moduli κ and ν (i.e., those that describe cell properties), on the
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amount and the distribution of the endogenous chemicals included in the picture. We
employed such a strategy to analyze the role of intracellular calcium signals, stimulated by
an exogenous chemoattractant, in the process of vascular formation; see [39,60].

Intracellular pathways can be also activated by mechanical stimuli. In this respect, it
would be relevant to relate lamin dynamics, which, as seen, regulate nuclear deformability,
to the intensity of the stresses to which the nuclear envelope is subjected (that can be
measured in terms of the moduli of the forces Fx and Fy or of the deformation ratio rN).
Coherently, the parameter νN should be defined as a function of the actual amount of
lamins present within the cell.

Molecular inside-out signaling also occurs between moving cells and ECM elements,
which are able to change the activity of intracellular molecular motors such as the already-
cited GTP proteins, thereby mediating cytoskeletal contractility (Rac and Rho) [11].

It is useful to remark that the inclusion of one or more of the above-described intracel-
lular dynamics is facilitated by the compartmentalization approach at the basis of our cell
representation: it in fact allows a proper localization of the endogenous pathways of inter-
est. However, we have to underline that such model refinements would be computationally
expensive (especially in the case of the inclusion of complex-enough chemical cascades).
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Abstract: In this paper, the asymptotic behaviour of the numerical solution to the Volterra integral
equations is studied. In particular, a technique based on an appropriate splitting of the kernel is
introduced, which allows one to obtain vanishing asymptotic (transient) behaviour in the numerical
solution, consistently with the properties of the analytical solution, without having to operate
restrictions on the integration steplength.

Keywords: Volterra integral equations; asymptotic-preserving; numerical stability

1. Introduction

Volterra integral equations (VIEs) of the type

x(t) = g(t) +
∫ t

0
K(t, s)x(s)ds, t ∈ [0,+∞), (1)

and their discrete version,

x(t) = g(t) +
t

∑
s=0

K(t, s)x(s), t = 1, 2, . . . , x(0) given, (2)

are significative mathematical models for representing real-life problems involving feed-
back and control [1,2]. The analysis of their dynamics allows one to describe the phenomena
they represent. In [3], the two equations were analysed in the unifying notation of time
scales, and some results were obtained under linear perturbation of the kernel. Here, we
revise this approach to obtain results on classes of linear discrete equations whose kernel
can be split into a well-behaving part (the unperturbed kernel) plus a term that acts as a
perturbation. The implications for numerical methods are, in general, not straightforward
and pass through some restrictions on the step length. Nevertheless, here, we overcome
this problem and obtain some results on the stability of numerical methods for VIEs.

For Equations (1) and (2), we assume that x(t) = (x1(t), . . . , xd(t))
T ∈ Rd, g(t) =

(g1(t), . . . , gd(t))
T ∈ Rd, and K(t, s) =

(
Kij(t, s)

)
i,j=1,...,d is a d × d matrix.

The paper is organised as follows. In Section 2, we introduce the split kernel for Equa-
tion (2) and, using a new formulation of Theorem 2 in [3], we provide sufficient conditions
for the above-mentioned splitting that imply that the solution vanishes. In Section 3, we
propose a reformulation of the (ρ, σ) methods for (1) as discrete Volterra equations and
exploit the theory developed in the previous section in order to investigate its numerical
stability properties. In Section 4, some applications are described and analysed through
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the tools developed in Sections 2 and 3, for which we obtain new and more general results
on the asymptotic behaviour for the numerical solutions of both linear and nonlinear
equations. In Section 5, some numerical examples are reported.

2. Asymptotics for Discrete Equations

Consider the discrete Volterra Equation (2) with K(t, s) = P(t, s) + Q(t, s), where P
and Q are d × d matrices. Let rQ(t, s) be the resolvent kernel associated with Q(t, s), which
is defined as the solution of the equation:

rQ(t, s) = Q(t, s) +
t

∑
l=s+1

rQ(t, l)Q(l, s). (3)

The following theorem, which we proved in [3], represents the starting point of
our investigation.

Theorem 1. Assume that for Equation (2) with K(t, s) = P(t, s) + Q(t, s), s = 0, . . . , t, it
holds that:

(i) ∑n
s=0 ‖rQ(t, s)‖ ≤ R, t ≥ 0,

(ii) limt→∞ ‖rQ(t, s)‖ = 0, for any fixed s ≥ 0,

(iii) limt→∞ ∑t
s=0 ‖P(t, s)‖ = 0.

Then, if limt→∞ g(t) = 0,
lim
t→∞

x(t) = 0.

This theorem is particularly interesting when the matrix P in the splitting of kernel K
is such that P(t, s) = 0 for s = M + 1, . . . , t − N − 1, with M and N positive constants and
t ≥ N + M + 1. Then, Equation (2) can be rewritten as

x(t) = g(t) +
M

∑
s=0

P(t, s)x(s) +
t

∑
s=0

Q(t, s)x(s) +
t

∑
s=t−N

P(t, s)x(s), (4)

and the following result holds. Here and in the following, the limit of matrices is intended
element-wise.

Theorem 2. Consider Equation (4), and assume that:

(1) limt→∞ P(t, s) = 0, for s = 0, . . . , M, and limt→∞ P(t, t) = 0.

(2) ∑t
s=0 ‖Q(t, s)‖ ≤ α < 1, limt→∞ Q(t, s) = 0, for any fixed s ≥ 0.

If there exists a constant G > 0 such that ‖g(t)‖ ≤ G, then

‖x(t)‖ ≤ X, with X > 0,

and if limt→∞ g(t) = 0, then
lim
t→∞

x(t) = 0.

Proof. Assumption (1) implies (iii) of Theorem 1 and, applying a well-known result (see,
for example, [2] (Section 6) and [4]), for assumption (2), we have that (i) and (ii) hold.

The case limt→∞ P(t, s) = P∞(s) �= 0 and limt→∞ g(t) = g∞ �= 0 can be treated by the
same technique if it is known that ∑t

s=0 Q(t, s) → E∞ �= I, for t → ∞ (I is the d × d identity
matrix). In this case, we have the following corollary.

Corollary 1. Assume that, for Equation (4), there exists M > 0 such that
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(1) limt→∞ P(t, s) = P∞(s), for j = 0, . . . , M, and limt→∞ P(t, t) = 0;

(2) ∑t
s=0 ‖Q(t, s)‖ ≤ α < 1, limt→∞ Q(t, s) = 0, for s = 0, . . . , t;

(3) limt→∞ ∑t
s=0 Q(t, s) = E∞ �= I.

If limt→∞ g(t) = g∞, then

lim
t→∞

x(t) = (I − E∞)−1

(
g∞ +

M

∑
s=0

P∞(s)x(s)

)
.

Proof. Set x∞ = (I − E−1
∞ )
(

g∞ + ∑M
s=0 P∞(s)x(s)

)
. A manipulation of (4) gives

x̄(t) = ḡ(t) +
t

∑
s=0

Q̄(t, s)x̄(s) +
t

∑
s=t−N

P̄(t, s)x̄(s),

with x̄(t) = x(t)− x∞, P̄(t, s) = 0, for s = 0, . . . , M, P̄(t, s) = P(t, s), for s = t − N, . . . , t,
Q̄(t, s) = Q(t, s), and

ḡ(t) = g(t)− g∞ +

(
t

∑
s=0

Q(t, s)− E∞

)
x∞ +

M

∑
s=0

(P(t, s)− P∞(s))x∞ +
t

∑
s=t−N

P(t, s)x∞.

P̄, Q̄, and ḡ play the roles of P, Q, and g in (4). Recalling Theorem 1, all of the assumptions
are satisfied, which implies that limt→+∞ x̄(t) = 0, and then limt→+∞ x(t) = x∞.

3. Background Material on (ρ, σ) Methods

The analysis carried out in the previous section can be effectively applied to (ρ, σ)
methods for the systems of VIEs:

y(t) = f (t) +
∫ t

0
k(t, s)y(s)ds, t ∈ [0,+∞). (5)

Here, we consider the numerical solution to (5) obtained by the (ρ, σ) methods with
Gregory convolution weights (see, for example, [5–7]):

yn = f (tn) + h
n0−1

∑
j=0

wnjk(tn, tj)yj + h
n

∑
j=n0

ωn−jk(tn, tj)yj, (6)

n = n0, n0 + 1, . . . , where yn � y(tn), with tn = nh for n = 0, 1, . . . , h > 0 is the step
size and wnj, ωj are the weights. We assume that the weights are non-negative and that
y0 = f (0), y1 . . . , yn0−1, n0 ≥ 1, are given starting values.

The weights wnj, n = 0, 1, . . . , j = 0, 1, . . . , n0 − 1 are called the starting weights and
satisfy (see [5]):

sup
n≥0

wnj ≤ W < +∞, j = 0, . . . , n0 − 1, and lim
n→∞

wnj = w̄j. (7)

Moreover, we want to underline some properties of the Gregory convolution weights,
ωn (see, for example [5,7]), which will be useful in the subsequent sections:

sup
n

ωn = Ω < +∞, (8)

ωi = 1, for i ≥ n0. (9)

From now on, we assume that h satisfies

det(I − hω0k(tn, tn)) �= 0, (10)
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where I is the identity matrix of size d.
Choose n∗ > n0 and let

P(n, j) =

⎧⎨⎩
0, j = 0, . . . , n0 − 1,
hk(tn, tj), j = n0, . . . , n∗ − 1,
hωn−jk(tn, tj), j = n − n0 + 1, . . . , n,

and

Q(n, j) =
{

0, j = 0, . . . , n∗ − 1, j = n − n0 + 1, . . . , n,
hk(tn, tj), j = n∗, . . . , n − n0.

The (ρ, σ) method (6) can be written, for n = n∗ + n0, n∗ + n0 + 1, . . . , as follows:

yn = g(n) +
n∗−1

∑
j=n0

P(n, j)yj +
n−n0

∑
j=n∗

Q(n, j)yj +
n

∑
j=n−n0+1

P(n, j)yj, (11)

with g(n) = f (tn) + h ∑n0−1
j=0 wnjk(tn, tj)yj. This alternative formulation of the method in

terms of matrices P and Q allows us to analyse its asymptotic properties using the theory
developed in the previous paragraph for Equation (4). So, (11) corresponds to the discrete
Equation (4) with M and N equal to n∗ − 1 and n0 − 1, respectively, and Q(n, j) = 0, for
j = 0, . . . , M.

4. Dynamic Behaviour of Numerical Approximations and Applications

In [8], we carried out an analysis of Volterra equations on time scales that allowed us
to obtain results on the asymptotic behaviour of the analytical solution of (5) and on its
discrete counterpart in hZ, under the assumptions:

sup
t≥t̄

∫ t

t̄
‖k(t, s)‖ds ≤ α < 1, (12)

and

sup
n≥n̄

h
n

∑
j=n̄

‖k(tn, tj)‖ ≤ α < 1, (13)

respectively, where h > 0, tn = nh, n = 0, 1, . . . , and t̄ = n̄h. If ‖k(t, s)‖ is non-increasing
with respect to s, the bound (13) is certainly implied by (12) for those values of the parameter
h such that

sup
n≥n̄

(
h‖k(tn, t̄)‖+

∫ tn

t̄
‖k(tn, s)‖ds

)
≤ α < 1.

This relation, which allows one to establish a connection between the behaviour of
the analytical solution of (5) and of its discrete counterpart in hZ, does not straightfor-
wardly apply to numerical methods due to the presence of the weights wnj and ωj of the
(ρ, σ) methods. This is because the weights can cause the loss of monotonicity, and they
may also be greater than 1; then, (13) is not satisfied. In [8], it was proved that if (12),
supt∈[s,+∞) ‖k(t, s)‖ < +∞, and limt→∞ k(t, s) = 0, ∀s ≥ 0, are satisfied, the analytical
solution y(t) of Equation (5) vanishes at infinity as limt→∞ f (t) = 0. Moreover, in [9], it

was shown that, if sup
t>0

∫ t

0
‖∂k(t, s)/∂s‖ds < +∞, then there exists a positive constant A

such that

h
n

∑
j=n̄

ωn−j‖k(tn, tj)‖ ≤
∫ tn

t̄
‖k(tn, s)‖ds + hA, ∀n ≥ n̄. (14)

The bound (14) assures that, when (12) is satisfied, the numerical solution yn tends to
zero for n → ∞ if the step size h is small enough, consistently with the behaviour of y(t).
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Theorem 2 in Section 2 allows us to remove the restriction on h given by (14). In order
to show this result, which states, in fact, the unconditional stability of the (ρ, σ) methods,
we need the following preparatory lemma.

Lemma 1. Assume that:

(i) limt→+∞ k(t, s) = 0, for any fixed 0 ≤ s ≤ t,

(ii) there exists s̄ ≥ 0 such that ∂‖k(t, s)‖/∂s ≤ 0, for s > s̄,

(iii) there exists t̄ ≥ 0 such that
∫ t

t̄ ‖k(t, s)‖ds ≤ α < 1.

Then, for any h > 0, ∃t∗ > max {s̄, t̄} such that h ∑n
j=n∗ ‖k(tn, tj)‖ ≤ β < 1, where n∗ is

such that n∗h > t∗.

Proof. Let h > 0 be a fixed value of the step size. Assumption (ii) implies that ‖k(t, s)‖ ≤
‖k(t, t̄)‖ for any t̄ ≤ s ≤ t. Moreover, limt→+∞ ‖k(t, t̄)‖ = 0 because of (i); thus, for any
ε > 0, we choose t∗ > max {t̄, s̄} such that

‖k(t, t̄)‖ < ε. (15)

Now, we choose ε such that hε + α ≤ β < 1 and n∗ such that n∗h ≥ t∗. Since, for ii),
‖k(tn, s)‖ is a non-increasing function in s for each s > t∗, we have h ∑n

j=n∗ ‖k(tn, tj)‖ ≤
h‖k(tn, t∗)‖+ ∫ tn

t∗ ‖k(tn, s)‖ds ≤ hε + α ≤ β < 1.

Theorem 3. Assume that all the hypotheses of Lemma 1 hold for the kernel k of Equation (5);
then, for the numerical approximation to its solution y(t) obtained by the (ρ, σ) method (6),
if limt→+∞ f (t) = 0, one has

lim
n→+∞

yn = 0.

Proof. For a fixed h > 0, Lemma 1 provides a value n∗ > n0 for which h ∑n
j=n∗ ‖k(tn, tj)‖ ≤

β < 1, with β positive constant. Referring to the reformulation (11) of the method,
all the assumptions of Theorem 2 are satisfied. Thus, because of property (7) on the
asymptotic behaviour of starting weights and of assumption i) of Lemma 1, g(n) =

f (tn) + h ∑n0−1
j=0 wnjk(tn, tj)yj tends to zero for n → +∞. So, in view of Theorem 2, yn also

vanishes.

Other applications of Theorem 2 are concerned with the equation

y(t) = f (t) +
∫ t

0
k(t − s)(y(s) + G(s, y(s))ds, (16)

which has been the subject of great attention in the literature (see, for example, [10–12]).
Here and in the following, we assume that Equation (16) is scalar (d = 1), the kernel
k = k(t − s) is of convolution type, G(t, y) is a continuous function for t ∈ [0,+∞), and
y ∈ R. A main assumption (see, for example, [13]) that is generally made on the nonlinear
term G is that it represents a small perturbation, that is, there exists a function p(t) > 0
such that

|G(t, y)| ≤ p(t)|y|. (17)

For Equation (16), the (ρ, σ) methods with Gregory convolution weights read, for
n = n0, n0 + 1, . . . ,

yn = f (tn) + h
n0−1

∑
j=0

wnjk(tn − tj)(yj + G(tj, yj)) + h
n

∑
j=n0

ωn−jk(tn − tj)(yj + G(tj, yj)). (18)

In order to describe the asymptotic behaviour of yn, we prove the following theorem.

Theorem 4. Assume that, for Equation (16), the following assumptions hold:
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Hypothesis 1.
∫ +∞

0 |k(t)|dt ≤ α < 1,

Hypothesis 2. ∃t̄ > 0 such that ∀t > t̄, d|k(t)|
dt < 0,

Hypothesis 3. limt→∞ f (t) = 0,

Hypothesis 4. limt→∞ p(t) = 0.

Then, for the numerical solution to (16) obtained with the method (18), one has

lim
n→∞

yn = 0.

Proof. From (17) and (18), with pj = p(tj), j = 0, 1, . . . ,

|yn| ≤ | f (tn)|+ h
n0−1

∑
j=0

wnj|k(tn − tj)|(1 + pj)|yj|+ h
n

∑
j=n0

ωn−j|k(tn − tj)|(1 + pj)|yj|.

Now, consider the equation

ζn = | f (tn)|+ h
n0−1

∑
j=0

wnj|k(tn − tj)|(1 + pj)ζ j + h
n

∑
j=n0

ωn−j|k(tn − tj)|(1 + pj)ζ j.

Since, from (8), ωn are bounded, we have that ∑n
j=n0

ωn−j|k(tn − tj)|pj ≤ Ω ∑n
j=n0

|k(tn −
tj)|pj, which is the convolution product of an l1 (kn) and a vanishing (pn) sequence and,
therefore, tends to zero as n → +∞. Therefore, ∀ε > 0, ∃ν : ∀n > ν, h ∑n

j=n0
ωn−j|k(tn −

tj)|pj < ε. We choose ε > 0 such that α + ε ≤ β < 1 and n̄ such that n̄h ≥ t̄ in assumption
h2). With n∗ ≥ max {ν, n̄}, the equation for ζn can be written in the more convenient form,
(11), for which all the assumptions of Theorem 2 hold. Thus, because of property (7) on
the asymptotic behaviour of starting weights and because of the vanishing behaviour of
the kernel k, g(n) = f (tn) + h ∑n0−1

j=0 wnjk(tn − tj)(1 + pj)yj tends to zero for n → +∞.
Therefore, limn→∞ ζn = 0. This ends the proof because, using the comparison theorem
in [14], |yn| ≤ ζn.

This theorem states that the numerical solution yn of (16) vanishes when the forcing
term f tends to zero for any step size h > 0. The result is, of course, more interesting if we
know that the analytical solution to (16) tends to zero. This can be proved by means of a
result that the authors proved in [8]. To be more specific, the assumptions of Theorem 4
here assure that all the hypotheses of Theorem 9 in [8] are satisfied, thus implying that
limt→∞ y(t) = 0.

The following result, which we prove in the case of scalar equations, represents a
generalisation of Theorem 3.1 in [15], where the numerical stability of the (ρ, σ) methods
up to order 3 was proved under some restriction on the step length h. In this paper,
by applying Theorem 2 to the (ρ, σ) (6), we remove the constraint on the step size, and
extend the investigation to any method in the class of (ρ, σ).

Theorem 5. Assume that, for Equation (5), with d = 1, it holds that:

(i) ∃t̄ > 0 such that ∀s > t̄, ∂
∂t |k(t, s)| ≤ 0,

(ii) |k(t, t)| = ϕ(t) ∈ L1[0,+∞),

(iii) ϕ′(t) ≤ 0,
(∫ +∞

0 |ϕ′(t)|dt ≤ Φ < ∞, and limt→∞ ϕ(t) = 0
)

,

(iv) limt→∞ f (t) = 0.

184



Axioms 2021, 10, 23

Then. for the numerical solution yn, obtained with the (ρ, σ) (6), it holds that

lim
n→∞

yn = 0.
(

lim
n→∞

yn = 0, for
∫ +∞

n̄h
ϕ(t)dt + h

∫ +∞

n̄h
|ϕ′(t)|dt < 1.

)
Proof. Due to hypotheses (i) and (ii), there exists s̄ > t̄ such that

lim
t→∞

|k(t, s)| = 0, for all s > s̄. (19)

Let us fix h > 0. From the assumptions, it is clear that ϕ(t) ≤ ϕmax, with ϕmax > 0. So,
(ii) implies that

∫ +∞
n̄h ϕ(t)dt + hϕ(n̄h) ≤ ∫ +∞

n̄h ϕ(t)dt + hϕmax ≤ α < 1, for some n̄ = n̄(h),
which we choose such that n̄h > s̄. Since, for (iii), ϕ is a non-increasing function, we have

h
n−n0

∑
j=n̄

|k(tn, tj)| ≤ h
n−n0

∑
j=n̄

|k(tj, tj)| = h
n−n0

∑
j=n̄

ϕ(tj) ≤
∫ +∞

n̄h
ϕ(t)dt + hϕ(n̄h) ≤ α < 1. (20)

Then, referring to formulation (11) of the numerical method with n∗ = n̄, we want to
prove that

sup
n

h
n−n0

∑
j=n̄

|Q(n, j)| = sup
n

h
n−n0

∑
j=n̄

ωn−j|kn,j| < 1. (21)

Here, n − j > n0; thus, ωn−j = 1. So, (21) is guaranteed by (20). Furthermore,
in view of (19), it is limn→∞ Q(n, j) = 0, for any fixed j ≥ n̄, and, because of (ii) and (iii),
also limn→∞ P(n, n) = 0. Hence, as all the assumptions of Theorem 2 are accomplished,
limn→∞ yn = 0, without imposing any restriction on the step size h.

If, however, assumption (iii)2, holds instead of (iii)1, the step size h has to be chosen
such that hΦ ≤ β1 < 1 and

∫ +∞
n̄h ϕ(t)dt ≤ β2, with β1 + β2 ≤ α < 1. So, by Lemma 1 in [9],

h
n−n0

∑
j=n̄

|Q(n, j)| ≤
∫ +∞

n̄h
ϕ(t)dt + h

∫ +∞

n̄h
|ϕ′(t)|dt < β2 + β1 ≤ α < 1.

Consider now the following convolution equation:

x(t) = f (t)−
∫ t

0
a(t − s)x(s)ds. (22)

Its solution has the form

x(t) = f (t)−
∫ t

0
R(t − s) f (s)ds,

where the resolvent kernel R is the solution of the equation:

R(t) = a(t)−
∫ t

0
a(t − s)R(s)ds, (23)

t ≥ 0. If the kernel a(t) of Equation (22) is completely monotone, that is, (−1)ja(j)(t) > 0,
j = 0, 1, . . . , t ≥ 0, then (see, e.g., [16]) the resolvent R(t) is also completely monotone.
Furthermore, the analytical solution x(t) and its numerical approximation xn obtained by a
(ρ, σ) method both tend to zero as t → ∞ and n → ∞, respectively, when the forcing term
f (t) tends to zero (see [6]). We point out that if limt→∞ a(t) = 0, then limt→∞ R(t) = 0
as well, as R(t) is the solution of a Volterra Equation (23) where the kernel is completely
monotone and the forcing tends to zero. The significance of completely monotone kernels
in Volterra equations is underlined in [13] (p. 27).
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A nonlinear perturbation to (22) yields

y(t) = g(t)−
∫ t

0
a(t − s)(y(s) + G(s, y(s))ds. (24)

This equation can be written in terms of the unperturbed solution as (see [13]):

y(t) = x(t)−
∫ t

0
R(t − s)G(s, y(s))ds. (25)

Starting from assumption (17) on the nonlinear term G, and from the relation (25), we
want to investigate the asymptotic behaviour of the numerical solution to (24) when it is
known that limn→∞ xn = 0.

Theorem 6. Consider Equation (24), and assume that (17) holds for the function G and that:

1. a(t) is completely monotone and limt→∞ a(t) = 0,

2. p(t) ∈ L1[0,+∞), p′(t) < 0.

If limt→∞ g(t) = 0, then the solution y(t) and the numerical solution yn obtained by the
(ρ, σ) method (6) satisfy

lim
t→∞

y(t) = 0, and lim
n→∞

yn = 0.

Proof. For assumption 1, the solution x(t) of Equation (22) with a completely monotone
kernel satisfies limt→∞ x(t) = 0. This also holds true for its numerical approximation (see,
for example, [6]).

Considering Equation (25), it is

|y(t)| ≤ |x(t)|+
∫ t

0
R(t − s)p(s)|y(s)|ds.

Since R(t) is completely monotone and p(t) is bounded, the solution of the equation

z(t) = |x(t)|+
∫ t

0
R(t − s)p(s)z(s)ds, (26)

satisfies limt→∞ z(t) = 0. By using the comparison theorem (see, for example, [17]), y(t)
also tends to zero. Considering the numerical solution zn of (26), we want to show, by means
of Theorem 5, that limn→∞ zn = 0. Then, yn will also vanish.

This is true because all the assumptions of Theorem 5 are satisfied. Indeed:

(i) |K(t, s)| = R(t, s)p(s), thus, ∂
∂t |K(t, s)| = R′(t − s)p(s) < 0, and limt→∞ K(t, s) =

limt→∞ R(t − s)p(s) = 0; as a matter of fact, as R is the resolvent of a completely
monotone vanishing kernel, it is, in turn, a completely monotone vanishing kernel.

(ii) |k(t, t)| = R(0)p(t) ∈ L1[0,+∞), since assumption 2. holds,

(iii) ϕ′(t) = R(0)p′(t) ≤ 0, since assumption 2. holds,

(iv) limt→∞ x(t) = 0, as pointed out before, as it is the solution of the linear VIE (22), with a
completely monotone kernel and vanishing forcing term.

5. Numerical Examples

In this section, we report some numerical experiments in order to experimentally
prove the theoretical results illustrated in Section 4. For our experiments, we choose
illustrative test equations and we use the (ρ, σ) method (6) with trapezoidal weights.

In our first example, we refer to Equation (5) with the kernel k given by

k(t, s) = 10se−s(t+1), (27)
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and the forcing term f (t) such that the solution y(t) = e−t. Since f (t) tends to zero as t
goes to infinity, all the assumptions of Theorem 3 are satisfied (for example, with t̄ > 3.5),
and thus, both the numerical solution and the continuous one vanish. This is also clear in
Figure 1.
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1
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y
n
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y(t)

Figure 1. Numerical solution to problem (27) compared to the analytical one.

Now, consider Equation (16) with

k(t − s) = (t − s)e−2(t−s), G(t, y) = 2y
e−y2t

(1 + t2)(1 + y2)
, and f (t) = e−t2

. (28)

In Figure 2, we draw the numerical solution obtained with step size h = 0.1, which
clearly vanishes at infinity, according to Theorem 4, since all assumptions are accomplished
with p(t) = 2

1+t2 and t̄ > 1
2 .
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Figure 2. Numerical solution to problem (28) with h = 0.1.

Our third example consists in Equation (5) with

k(t, s) =
1

(1 + 2t − s)2 , (29)
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and f (t) such that the solution y(t) = 1
t+1 . According to Theorem 5, with ϕ(t) = (1 + t)−2,

since f (t) tends to zero, the numerical solution vanishes regardless of the step size h, thus
replicating the asymptotic behaviour of the continuous one. This behaviour is shown in
Figure 3.
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Figure 3. Numerical solution to problem (29) with h = 0.2, compared to the analytical one.

In all our experiments, we used sizes for the meshes that ensure reasonable accuracy in
the numerical solution at finite times. Integration with larger discretisation steps naturally
introduces greater errors on finite time intervals, but the numerical solution maintains the
expected behaviour at infinity. Thus, this confirms the asymptotic-preserving characteristics
of the numerical schemes without restrictions on h. This can be observed, for example,
in Figure 4, again referring to example (29) with h = 1.
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Figure 4. Numerical solution to problem (29) with h = 1, compared to the analytical one.

6. Conclusions

Starting from an idea developed in [3], here, we have introduced a technique for the
analysis of the vanishing behaviour of the numerical solution to VIEs. This new approach,
which is based on suitable splittings of the kernel function, allows one to preserve the
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character of the analytical solution even in the weighted sums that appear in the method,
thus leading to unconditional stability results in many applications of interest.
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Abstract: This paper uses empirical traffic data collected from three locations in Europe and the
US to reveal a three-phase fundamental diagram with two phases located in the uncongested
regime. Model-based clustering, hypothesis testing and regression analyses are applied to the speed–
flow–occupancy relationship represented in the three-dimensional space to rigorously validate the
three phases and identify their gaps. The finding is consistent across the aforementioned different
geographical locations. Accordingly, we propose a three-phase macroscopic traffic flow model and
a characterization of solutions to the Riemann problems. This work identifies critical structures in
the fundamental diagram that are typically ignored in first- and higher-order models and could
significantly impact travel time estimation on highways.
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1. Introduction

In the last seventy years, many traffic flow models have been developed and re-
searched. Two of the most commonly used macroscopic models are the celebrated first-
order Lighthill–Whitham–Richards (LWR) model, [1,2] and the second-order Aw-Rascle–
Zhang model [3,4]. In both cases, the so-called Fundamental Diagram (FD) provides a
closure of the evolution equations, thus allowing a well-posed theory and well-grounded
simulation tools (see [5]). The FD usually refers to the empirically observed flow-occupancy
curve, which in mathematical terms refers to the functional relationship between flow and
density (modeling counterpart of occupancy) or between average speed of vehicles and
density. For macroscopic fluid-dynamic models, there is a rich discussion on FD (see, e.g.,
[5–10]).

In this article, we focus on the FD for single roads by proposing a new approach to
study the fundamental relationship among flow, density and speed. We propose novel
statistical methodologies to analyze traffic data from fixed sensors, focusing on the three-leg
relationships among the flow, density and speed. In particular, rather than considering the
FD as a two-quantity relationship (flow–density or speed–density), we analyze data in the
three-dimensional space represented by flow, density and speed. This allows us to better
exploit the statistical tools, in particular for the analysis of traffic regimes.
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We recall that, in equilibrium regimes, the fundamental relationship f low = density ×
speed dictates that traffic measurement points should lie on a three-dimensional surface
(see, e.g., [11] Figure 4.1). In reality, observed traffic largely deviates from equilibrium
and usually exhibits free and congested phases, with the first corresponding to stable and
regular traffic, while the second reflects delays and congestion. Moreover, in the early
2000s, Kerner [12] introduced a tree-phase traffic theory, based on the distinction among
free flow, synchronized flow and wide-moving jam. The last two phases are associated with
congested traffic.

In this paper, using clustering methodologies, we are able to identify three traffic
regimes, which are distinct in a statistically significant fashion. Interestingly, two regimes
appear in what is commonly referred to as the free flow traffic and the third corresponds to
the congested phase. This analysis does not contradict Kerner’s theory but rather points out
that the static/stationary free-flow condition in the FD could exhibit two distinct phases,
while the distinction of phases in congested traffic (e.g., Kerner’s model) is mainly dynamic.

The second main empirical result of our paper is the clear evidence of the existence of
a gap between the two phases of free flow and the congested one. While the appearance
of such gap is best visualized in the 3D representation of the FD relationships, we use the
classical flow–density relationship to statistically prove the existence of the gap. The main
purpose is to prove the ubiquity (with respect to data collected at different geographical
location and on different road types) of the gap in the classical setting and to enable a
simpler analysis.

Building on the empirical evidence illustrated thus far, we propose a new three-phase
macroscopic model. The LWR model is very popular in the traffic literature due to its simple
mathematical representation. However, it has certain modeling limitations especially when
it comes to describing complex wave structures such as stop and go waves, phantom jam
and capacity drop. To overcome various limitations, Aw-Rascle [3] and independently
Zhang [4] proposed a new model with conservation of a modified momentum. This
so-called Aw-Rascle–Zhang (ARZ) model can be interpreted as part of a general family
called General Second-Order Models (GSOM, see [13]). Such models consist of the usual
conservation of mass and the advective transport of a Lagrangian (or single driver) variable,
which can represent, for instance, the desired speed of drivers. A recently proposed model
of this category is the Collapsed Generalized ARZ model (CGARZ [14]), where the driver
speed depends on the Lagrangian variable only in the congested phase. Another line of
research focuses on models showing two distinct phases, called the phase transition models
[6,8,9].

Our proposed model is a combination of the features offered by the ARZ, CGARZ
and phase transition models. Our three-phase model not only has the characteristics of a
CGARZ model with a gap among phases when analyzed in the flow–density space, but
also exhibits the newly discovered phase when analyzed in the speed–density space. After
showing how our model performs in data fitting, we provide a complete characterization
of the characteristic curves and the solutions of the Riemann problems. The latter are the
building block for solutions to Cauchy problems (see [5]). To sum up, the main novelties
and contributions of our paper are as follows:

• Unlike most studies that focus on traffic data from a single source, we use data from
multiple geographic locations in Europe and the US and analyze the fundamental
relationships among flow, density and speed in the 3D space instead of the commonly
adopted two-variable representation of the FD. In addition, we use a set of statistical
tools including model-based clustering, hypothesis testing and regression to analyze
the traffic data.

• Following the above exercise, we discover three data clusters representing three traffic
regimes, two of which are contained in the free-flow phase and the third corresponds
to the congested phase. Moreover, we are able to detect a statistically significant gap
between the first two regimes and the third one. These findings are validated using
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multiple data sources, and the main features (regimes and gaps) are consistent across
different geographical areas.

• Building on the first two, we propose a new three-phase macroscopic traffic flow
model, which exhibits all the characteristics shown by our data analyses and com-
bines the features of the ARZ, CGARZ and phase transition models. A complete
characterization of solutions of the Riemann problems is provided.

The article is organized as follows. In Section 2, we introduce the datasets, their
statistical analysis and the results obtained. Moreover, we describe the impacts of these
results on traffic modeling. Lastly, in Section 3, we propose a new three-phase macroscopic
model.

2. Data Analysis

In this section, we describe the data analyzed in the paper and then present the
statistical analysis performed.

2.1. Experimental Data

We consider traffic data collected by static sensors (magnetic coils or radars) located
on urban and extra-urban roads and highways. Sensors capture these traffic data regularly
over a period of time. The sensor data provide the following aggregated quantities which
are measured independently over a short time interval (3–10 min).

• Flux (denoted as f ), also known as flow or volume, is the number of vehicles passing
through a fixed location per unit of time.

• Velocity (denoted as v) is the average speed of vehicles per unit of time.
• Occupancy (denoted as o) is the percentage of time that a vehicle covers the sensor

over the unit time of data collection.

Occupancy acts as a surrogate for the true density of traffic, as true density is practically
difficult to capture, although there is some measurement error involved with its calculation.
It is know that density and occupancy are correlated at lower densities, but this does not
extend to higher densities. The data were collected from three different locations: Rome
(Italy), Las Vegas (NV, USA) and Sophia Antipolis (France). The Rome data were provided
by ATAC S.p.a. [15] (the municipal society for traffic monitoring and control of Rome)
and refer to a road in the city of Rome, Viale del Muro Torto, which links the historical
center with the northern area of the city. Data were collected over a period of a week on
three sensors. Each collected quantity (occupancy, flow and speed) was aggregated on
1 min intervals. The data from Las Vegas were collected by the Regional Transportation
Commission of Southern Nevada (RTC), Freeway and Arterial System of Transportation
(FAST) [16]. The data were collected from 50 urban and freeway sensors over a period
of five years and aggregated on 10 min intervals. The data from Sophia Antipolis were
collected by the Départment des Alpes-Maritimes [17] on two extra-urban sensors over
a period of eight months and aggregated over 6 min intervals. For more details on the
data, we refer the reader to Appendix A. Despite the fact that the data were aggregated at
different intervals, the results, as shown below, are consistent. Since we primarily focused
on the three traffic characteristics of flux, velocity and occupancy, we were conveniently
positioned to analyze the data in three dimensions, a novel concept and approach that is
described in the next section.

2.2. Statistical Tools
2.2.1. Cluster Analysis

Cluster analysis is the classification of data with a previously unknown structure and
the partitioning of a dataset into meaningful subsets. Clustering sheds light on hidden or
non-intuitive relationships between those data and their attributes. Each cluster contains a
group of objects that are more closely related to each other than they would be as objects of
other clusters. The concept of distance is thus inherently crucial in the process of cluster analysis,
as clusters are grouped based on the results of this measure. Distance serves as a way to evaluate
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the closeness, as well as dissimilarity, of pairs of observations. There are at least two options
to conduct cluster analysis for this traffic data: model-based clustering (e.g., mixture of
normals) and non-parametric clustering (e.g., k-means). Although k-means is popular
for complex and high-dimensional data, it is generally used for data involving variables
of the same scale (hence, more suitable for data with spherical clusters, e.g., Euclidean
distance in 3D), whereas our data consist of three variables of different scales. For this
reason, model-based clustering has more flexibility in the shape of clusters; for instance,
mixture models [18] can identify clusters in the traffic data that were ellipsoidal.

Empirical evaluations on the distributions of the three traffic variables through
quantile–quantile (Q-Q) plot, Shapiro test and Box–Cox transformation have suggested that
normal distributions are appropriate. Here, we propose the use of a finite mixture model
with G multivariate normals [18]. Specifically, denote data y with independent trivariate
observations (flux, velocity and occupancy) {y1, y2, . . . , yn} the likelihood for a mixture
model with G components is

�(θ1, θ2, . . . , θG; π1, π2, . . . , πG|y) =
n

∏
i=1

G

∑
k=1

πk fk(yi|θk),

where i stands for ith observation, fk(·) and θk are the density function and model parame-
ters of the kth cluster in the mixture and πk is the probability that an observation belongs
to the kth cluster, subject to the simplex constraint {πk ≥ 0; ∑G

k=1 πk = 1}. Such a model
can be fitted by the expectation-maximization (EM) algorithm and is implemented by the
R package ‘mclust’.

2.2.2. Three Phase Traffic

Figure 1 provides a 3D visualization and cluster analysis result on the Rome dataset,
where observations in different clusters are marked by different colors. Previous knowledge
assumed that traffic involves two clusters: free flow and congestion. Free flow corresponds
to steady traffic flow at high speeds (and low densities), while congestion is characterized
by low flux and reduced speeds. From this new 3D visualization of data, we can identify
a third phase, which we call the “free choice phase” , which corresponds to the situation
of a relatively empty road, whereby drivers choose their speed independently without
influence from or interaction with other vehicles.

Figure 1. 3D visualization and cluster analysis results of Rome data suggest the existence of third
phase (red) in addition to the free flow (blue) and congestion (green) phases.

In the free choice phase, the flow of cars is low while the speed is variable. Model
selection procedures (e.g., Bayesian information criterion (BIC) or adjusted BIC) have been
used to select the number of clusters, and the datasets from Rome, Nevada and Sophia
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Antipolis have consistently suggested the existence of the third phase. Such additional
phase is incorporated into the mathematical modeling.

Notice that our three phases are different from those indicated by Kerner [12]. Indeed,
we have two sub-phases in the free phase cluster opposed to Kerner’s model with two
sub-phases in the congestion phase cluster.

2.2.3. Gap Analysis

We developed and applied a rigorous hypothesis testing procedure to the datasets
to formally investigate the presence of phase transitions. Specifically, investigating the
presence of phase transition can be formulated as testing the existence of a “gap region” at
the upper portion of occupancy in the free phase and its proximity to the lower portion of
occupancy in congestion. As shown in Figure A1 (left) in Appendix A, such gap region
can be potentially masked by isolated points in the gap, which could be in fact due to
measurement errors or random variations in flux and occupancy. To reduce the impact
of these isolated points, we propose to take the upper quantile of the free phase (e.g.,
95th percentile, denoted as ρFP) and the lower quantile of the congested phase (e.g., 5th
percentile, denoted as ρC) and formally test for H0 : ρFP ≥ ρC, i.e., there is no gap, against
Ha : ρFP < ρC, i.e., there is a gap. Figure 2 illustrates these two scenarios of H0 and Ha.

Figure 2. Illustration of hypothesis testing procedure for phase transition.

For given pre-specified percentiles qFP and qC (e.g., 95% and 5%), denote ρ̂FP and ρ̂C
as the corresponding quantiles in the two clusters. The existence of phase transition can be
formally tested by a one-sided test based on the Wald statistic

T = min{ρ̂FP − ρ̂C, 0}/
√

var(ρ̂FP − ρ̂C).

The variance var(ρ̂FP − ρ̂C) can be approximated by

var(ρ̂FP − ρ̂C) = var(ρ̂FP) + var(ρ̂C) ≈ qFP(1 − qFP)

nFP{ f (F−1(qFP)}2 +
qC(1 − qC)

nC{ f (F−1(qC)}2 ,

where f (·) and F(·) stand for the estimated distribution function and cumulative distri-
bution function of ρ, respectively, and nFP and nC stand for the number of data points
in the free and congestion phases, respectively. The first equality in the calculation of
variance is due to the independence of ρ̂FP and ρ̂C as they are estimated from different sets
of observations. The approximation is due to a standard result for asymptotic variance of
percentile estimates (see [19]). The complete sets of results for the statistical analysis on the
three datasets can be found in Appendix B.
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3. A Macroscopic Second-Order Model Accounting for the 3 Phases

Following the approach of Colombo et al. [7], Fan et al. [14], we propose a new macro-
scopic model accounting for the three phases derived in the previous sections. In conserva-
tion form, the model can be expressed as

∂tρ + ∂x(ρ v(ρ, y/ρ)) = 0,
∂ty + ∂x(y v(ρ, y/ρ)) = 0,

(1)

where the velocity function is chosen such that

v(ρ, y/ρ) =

⎧⎪⎨⎪⎩
vFC(ρ, y/ρ), if0 < ρ ≤ ρFC,
vFP(ρ), ifρFC < ρ ≤ ρFP,
vC(ρ, y/ρ), ifρC ≤ ρ ≤ ρmax,

(2)

for some 0 < ρFC < ρFP < ρC < ρmax, and it is continuous at ρFC and ρFP. In (1)–(2),
the quantity w = y/ρ ∈ [wmin, wmax] may represent various traffic characteristics, such
as vehicles classes [20], aggressiveness [21], desired spacing [22] or perturbation from
equilibrium [23], which are transported with the traffic stream. We refer to the variable
y = ρw as a total property [14]. The function v defined in (2) must be:

1. Non-negative: v(ρ, w) ≥ 0 for all ρ ∈ [0, ρmax], w ∈ [wmin, wmax];
2. Continuous: vFC(ρFC, w) = vFP(ρFC) and vC(ρFP, w) = vFP(ρFP) for all

w ∈ [wmin, wmax]
3. Vanishing at maximal density: v(ρmax, w) = vC(ρmax, w) = 0 for all w ∈ [wmin, wmax]

4. Non-decreasing with respect to w:
∂v
∂w

(ρ, w) ≥ 0 for ρ ∈ [0, ρmax]

With the above assumptions, the corresponding flux function q(ρ, w) = ρ v(ρ, w)
satisfies q(0, w) = q(ρmax, w) = 0 for all w.

To take into account the possible presence of a gap, as suggested by our analysis,
we fix the value vmax

C ≤ vmin
FP := vFP(ρFP) of the maximal speed in congestion, and let

ρC ∈ [ρFP, ρmax[ be the density value such that

vC(ρC, wmin) = vmax
C .

Defining the velocity function (see Figure 3) as

vg(ρ, w) =

⎧⎪⎨⎪⎩
vFC(ρ, w), if0 < ρ ≤ ρFC,
vFP(ρ), ifρFC < ρ ≤ ρFP,
min

{
vmax

C , vC(ρ, w)
}

, ifρC ≤ ρ ≤ ρmax,

(3)

the corresponding flux function qg(ρ, w) := ρvg(ρ, w) displays the desired gap between
the free-flow and congested phases (see Figure 4).
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Figure 3. An example of speed function.

Figure 4. General (non-concave) fundamental diagram.

3.1. Riemann Solver

To simplify the construction, it is not restrictive to assume that the fundamental
diagram is ρ-differentiable, i.e., we assume that

∂vFC
∂ρ

(ρFC, w) = v′FP(ρFC) for all w ∈ [wmin, wmax]

and
∂vC
∂ρ

(ρFP, w) = v′FP(ρFP) for all w ∈ [wmin, wmax].

System (1) is defined on the invariant domain

Ω = {(ρ, ρw) ∈ [0, ρmax]× [0, ρmaxwmax] : w ∈ [wmin, wmax]}.
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We note that, under the above assumptions on the velocity function v, (ρ, y) ∈ Ω if
and only if w ∈ [wmin, wmax] and v(ρ, y/ρ) ∈ [0, v(0, wmax)]. The eigenvalues are given by

λ1(ρ, y/ρ) = v(ρ, y/ρ) + ρ
∂

∂ρ
v(ρ, y/ρ) and λ2(ρ, y/ρ) = v(ρ, y/ρ), (4)

so the system is strictly hyperbolic for ρ > 0 as long as ∂ v(ρ, y/ρ)/∂ρ �= 0. We note that
the second characteristic field is linearly degenerate, giving origin to contact discontinuity
waves, while the first characteristic field is genuinely non-linear if

∂2q
∂ρ2 (ρ, w) = 2

∂v
∂ρ

(ρ, w) + ρ
∂2v
∂ρ2 (ρ, w) < 0, for ρ ∈ [0, ρmax], (5)

holds. Moreover, the Riemann invariants of the systems are given by w and v. In particular,
the iso-values w = const correspond to waves of the first family (we recall that the system
belongs to Temple class, i.e., shock and rarefaction curves coincide) and the contact discon-
tinuities verify v = const. More precisely, in the strictly concave case (5) the elementary
waves are constructed as follows.

• 1-rarefaction waves. Two points (ρl , ρlwl) and (ρr, ρrwr) are connected by a 1-rarefaction
wave if and only if

wl = wr and λ1(ρl , wl) < λ1(ρr, wr).

• 1-shock waves. Two points (ρl , ρlwl) and (ρr, ρrwr) are connected by a 1-shock wave
if and only if

wl = wr and λ1(ρl , wl) > λ1(ρr, wr).

In this case, the jump discontinuity moves with speed

σ =
ρlv(ρl , wl)− ρmv(ρm, wm)

ρl − ρm
.

• 2-contact discontinuity. Two points (ρl , ρlwl) and (ρr, ρrwr) are connected by a 2-
contact wave if and only if

v(ρl , wl) = v(ρr, wr).

In the general (non-concave) case (see Figure 4), the 1-waves consist of a concatenation
of shocks and rarefactions (see ([24] Section 1)).

Based on the above elementary waves, the solution corresponding to general Riemann
data (ρl , ρlwl), (ρr, ρrwr) can be constructed as follows. Let (ρm, ρmwm) be the intermediate
point defined by

wm = wl , v(ρm, wm) = v(ρr, wr).

Setting vwl (ρ) = v(ρ, wl), ρm is given by

ρm =

{
v−1

wl
(v(ρr, wr)), ifv(ρr, wr) < v(0, wl),

0, otherwise.

In the latter case, a vacuum zone appears between the sector

v(0, wl) t < x < v(ρr, wr) t.

The complete solution is then given by a 1-wave connecting (ρl , ρlwl) and (ρm, ρmwm),
followed by a 2-contact discontinuity between (ρ̃m, ρ̃mwm) and (ρr, ρrwr) (eventually sepa-
rated by a vacuum zone if v(ρr, wr) > v(ρm, wl) and ρm = 0).
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The presence of the gap between vmax
C and vmin

FP does not modify the procedure, since
the definition domain

Ωg =
{
(ρ, ρw) ∈ Ω : v(ρ, w) ∈ [0, vmax

C ] ∪ [vmin
FP , v(0, wmax)]

}
is still invariant. We set Ωg = ΩFP ∪ ΩC with

ΩFP =
{
(ρ, ρw) ∈ Ω : v(ρ, w) ∈ [vmin

FP , v(0, wmax)]
}

,

ΩC = {(ρ, ρw) ∈ Ω : v(ρ, w) ∈ [0, vmax
C ] }.

We can distinguish the following cases:

• If (ρl , ρlwl) and (ρr, ρrwr) belongs both to ΩFP or ΩC, the Riemann solver is defined
as above.

• If (ρl , ρlwl) ∈ ΩC and (ρr, ρrwr) ∈ ΩFP, the intermediate point (ρm, ρmwm) belongs to
ΩFP. Let (ρc, ρcwc) ∈ ∂ΩC the point defined by

wc = wl , v(ρc, wc) = vmax
C .

The solution is composed by 1-waves connecting (ρl , ρlwl) and (ρc, ρcwl), a phase-
transition jump between (ρc, ρcwl) and (ρFP, ρFPwl) moving with speed

σ =
ρcvmax

C − ρFPvmin
FP

ρc − ρFP
,

followed by 1-waves connecting (ρFP, ρFPwl) and (ρm, ρmwm) and eventually a 2-
contact from (ρm, ρmwm) to (ρr, ρrwr).

• If (ρl , ρlwl) ∈ ΩFP and (ρr, ρrwr) ∈ ΩC, the intermediate point (ρm, ρmwm) belongs
to ΩC. Therefore, the solution always contains a 1-wave (shock phase-transition)
from (ρl , ρlwl) to (ρm, ρmwm), followed by a 2-contact discontinuity. Notice that the
solution may also contain an intermediate 1-wave in the congested phase.

4. Numerical Scheme and Simulations

4.1. Numerical Scheme

For simplicity, let us rewrite problem (1) in compact form:

∂tu + ∂xf(u) = 0 u ∈ ΩFC ∪ ΩFP ∪ ΩC (6)

where u = (ρ, y) and

f(u) =

⎧⎨⎩
(ρvFC, yvFC), if0 < ρ ≤ ρFC,
(ρvFP, yvFP), ifρFP < ρ ≤ ρFP,
(ρvC, yvC), ifρC < ρ ≤ ρmax.

Let us fix constant space step Δx and time step Δt and ν = Δt/Δx. Let us define the
mesh interfaces xj+1/2 = jΔx for j ∈ Z and the intermediate times tn = nΔt for n ∈ N. A
piecewise constant approximated solution uν(x, tn) of u is given by

uν(x, tn) = un
j for all x ∈ Cj = [xj−1/2; xj+1/2[, j ∈ Z, n ∈ N.

In this paper, we use the numerical scheme introduced in [25]. This scheme is a
modified Godunov scheme composed of two steps. The first step looks at the evolution
in time of the Cauchy problem, while the second step projects it onto piecewise constant
functions:
Step 1: Evolution in time.
This step consists in solving the Riemann problem at each cell interface xj+1/2 with initial
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data (un
j , un

j+1), obtaining an exact solution uν(x, tn+1−).

Step 2: Projection to time tn+1

Once all Riemann problems at interfaces are solved, Chalons and Goatin [25] proposed a
new averaging procedure. The idea is that, since the solution can contain states in different
phases, the average is not done on the regular mesh cells but on modified non-uniform
cells that contain only values belonging to the same phase. We denote this modified cells
by Cn

j = [xn
j−1/2, xn

j+1/2[. Afterwards, a sampling strategy allows us to recover a piecewise
constant solution on the initial mesh cells Cj.

We define the new interface xn
j+1/2 at time as tn+1

xn
j+1/2 = xj+1/2 + σn

j+1/2 Δt, j ∈ Z (7)

and the new space intervals

Δxn
j = xn

j+1/2 − xn
j−1/2, j ∈ Z,

with σn
j+1/2 = σ(un

j , un
j+1)j∈Z the characteristic speeds of propagation of phase transitions

at interfaces. Then, we average the solution of Step 1 on the cells Cn
j , obtaining a piecewise

constant approximate solution un+1
j on a non-uniform mesh with

un+1
j =

1

Δxn
j

∫ xn
j+1/2

xn
j−1/2

uν(x, tn+1−) dt, j ∈ Z.

The modified Godunov scheme then reads:

un+1
j =

Δx
Δxn

j
un

j −
Δt

Δxn
j
(fn,−(un

j , un
j+1)− fn,+(un

j , un
j−1)) for all j ∈ Z, (8)

with

f
n,±

(un
j , un

j+1) = f(RS(σn,±
j+1/2; un

j , un
j+1))− σn

j+1/2RS(σn,±
j+1/2; un

j , un
j+1), (9)

and RS the solution to the Riemann problem as given in Section 3.1.
We then project the solution onto the original mesh Cj using a well distributed random

sequence (an) ∈ ]0, 1[ as follows:

un+1
j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
un+1

j−1 if an+1 ∈
]
0, Δt

Δx max{σn
j−1/2, 0}

[
,

un+1
j if an+1 ∈

[
Δt
Δx max{σn

j−1/2, 0}, 1 + Δt
Δx min{σn

j+1/2, 0}
[
,

un+1
j+1 if an+1 ∈

[
1 + Δt

Δx min{σn
j+1/2, 0}, 1

[
.

(10)

Following Chalons and Goatin [25], we consider the van der Corput random sequence
defined by

an =
m

∑
k=0

ik2−(k+1),

where n = ∑m
k=0 ik2k, ik = 0, 1, is the binary expansion of n ∈ N.

4.2. Numerical Simulations

We compared our model (1) to the model in [25] in a simulation on a single road on
length 1 with x ∈ [−0.5, 0.5] with an initial data

ρ(x, 0) =
{

0.1 if x ≤ 0
0.6 if x > 0

(11)
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We point out that our model is profoundly different from the phase transition models,
even with gap between phases. The main reason is that the second order model (1) admits
phase transitions, i.e., shock waves connecting phases, but as classical first family waves,
and allows different speeds also in free choice for different values of the variable w. This
is well captured by the simulation in Figure 5. An initial condition with one backward
moving shock is perturbed by a boundary datum presenting oscillations in the w variable.
As a result, for large times, small oscillations are visible on the left (free flow) and large
oscillations are propagated through the shock (congested flow). On the other side, the
phase transition model of Chalons and Goatin [25] is insensitive to such oscillations in the
w variable, as shown in Figure 6.
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Figure 5. Evolution of the density for our model on a single road.
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Figure 6. Evolution of the density for a classical phase transition model on a single road.

5. Conclusions

We analyzed three different datasets collected from different locations in Europe
and the US from fixed sensors. Representing data via a three-dimensional fundamental
diagram, we showed the presence of three traffic phases, two in free flow regime and one
in congested flow regime, and of a statistically significant gap between free and congested
flow. Based on these results, we designed a new second-order macroscopic model that
is capable describing analytically the gap and the three different phases. Moreover, a
characterization of Riemann problem solutions and a numerical example are provided,
illustrating the difference with phase transition models.
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Appendix A. Data Description

Our dataset sources are:
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1. Rome: Three sensors over one week (June 2006) aggregated every 1 min
2. Las Vegas: Fifty sensors over five years (2010–2015) aggregated over every 10 min
3. Sophia Antipolis: Four sensors for eight months (January–August 2014) every 6 min

We use the information collected in Rome as the primary example to illustrate the data
structure. The Rome dataset contains data of each minute of the entire day for one week;
thus, 10,080 observations were collected. Since our primary dataset from Rome consists of
one week of observations, we only analyzed data for one week in the other locations as
well. The datasets from Las Vegas and Sophia Antipolis were used to validate the results
from the Rome data.

Figure A1 illustrates the pairwise plots among the three measured variables based
on the dynamic data collected from a sensor located in the road Viale del Muro Torto in
the city of Rome on a Monday. These plots can provide useful insight on the functional
relationship between these variables in two-dimensional space. For instance, the plot of flux
against occupancy suggests a linear relationship with small variation when occupancy is
less than a threshold (known as the free phase) and much larger variation when occupancy
is larger than the threshold (known as the congestion phase). Furthermore, both flux vs.
speed and flux vs. occupancy plots suggest a possible “gap" between free and congestion phases,
which corresponds to phase transition. These are important features that need to be taken into
consideration in the mathematical modeling. Such pairwise plots are useful to generate data-
driven hypotheses that need to be formally tested statistically and validated across different
datasets.

Figure A1. Pairwise scatterplots of Rome Data in the road Viale del Muro Torto: flux vs. occupancy (left); flux vs. speed
(middle); and occupancy vs. speed (right).

Appendix B. Results of Cluster Analysis

We conducted model-based cluster analyses on three datasets. We found statistically
significant gaps between free and congested phases in all three datasets. We also used
regression analysis to demonstrate the existence of free choice phase in explaining the
variability in observed flux.

Table A1 presents the results from the described gap analysis of the Rome, Nevada and
Sophia datasets. After “trimming” a very small percent of data (e.g., 3%) and considering
(97%, 3%) quantiles of free and congestion phases, the test statistics suggested strong
evidence of a gap (indicating phase transition) in the three datasets.
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Table A1. Results of model-based cluster analysis using Rome, Las Vegas and Sophia Antipolis data.
Phase: estimated phase using cluster analysis. FP, free phase; C, congestion phase. Density, estimated
density value at the percentile.

Dataset Percentile (%) Phase Density Test Statistic p-Value

Rome

97.5 FP 10 0 12.50 C 10
97 FP 9 −1.79 0.0373 C 10
95 FP 9 −3.15 <0.0015 C 11

Las Vegas

97.5 FP 12 −0.91 0.182.50 C 13
97 FP 12 −2.17 0.0153 C 14
95 FP 11 −5.75 <0.0015 C 16

Sophia

97.5 FP 5 −2.82 0.0022.50 C 10
97 FP 5 −6.44 <0.0013 C 12
95 FP 4 −5.79 <0.0015 C 12

Graphical representations of the results are illustrated below. To clarify the color code
for the graphs, the region colored in red corresponds to the Free Choice phase, blue to the
Free Flow phase and green to Congestion. The Free Flow phase in this three cluster model
corresponds to the remainder of the original conception of Free Flow without Free Choice.
The Free Choice and Free Flow phases from the three cluster model are collectively referred
to as the Free Phase from here on.

Figure A2 illustrates the clustering performed by ‘mclust’ of the Rome data on a two-
dimensional level. Pairs plots present the data according to each pair of variables: velocity
and flux, occupancy and flux and velocity and occupancy. This type of plot provides insight
on the shape and characteristics of the data in 2D. For instance, we observed some sort of
gap between Free Phase and Congestion, which can be most easily viewed in the pairs plot
of the variables occupancy and flux. Figure 1 is the three-dimensional representation of
the Rome data, a novel approach to visualizing traffic data. Through this 3D plot of data,
the proposed gap between Free Phase and Congestion is even more noticeable, reinforcing
our observations from the 2D case. Specifying ‘mclust’ to filter through the data for two
or three clusters indicated there is some margin of difference between the original Free
Flow phase in the two cluster model and the Free Phase in the three cluster model; the
latter model is generally neater than the former. The disparity is minimal and perhaps
insignificant, although it is worth noting.
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Figure A2. Pairs plot of clustered Rome data.

Cluster analyses using the Las Vegas and Sophia Antipolis data corroborate the results
obtained with the Rome data. Las Vegas data collected from highway sensors 25 and 99,
which we refer to as Nevada 25 and Nevada 99, respectively, clusters into nine phases
through ‘mclust’. However, we forced R to choose only two and three clusters to match the
original two-phase model of traffic flow proposed by the field and the three-phase model
discovered in this study. The results are reported in Figures A3 and A4. The data and
analyses suggest that the three-cluster model was preferred using Bayesian information
criterion (BIC) for model selection [18].

Figure A3. Pairs plot of clustered Las Vegas data.

205



Axioms 2021, 10, 17

Figure A4. 3D plot of clustered Las Vegas data.

The data from Sophia Antipolis also demonstrate the existence of the Free Choice
phase. These two datasets both have a wide range of observed speeds at low levels of
occupancy, as shown in the pairs plots and 3D plots in Figures A5 and A6.

Figure A5. Pairs plot of clustered Sophia Antipolis data.
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Figure A6. 3D plot of clustered Sophia Antipolis data.

Quantifying the Improved Goodness of Fit Through RSS Comparisons

We conducted further analyses by using residual sum of squares (RSS) values to
compare various models considered in this paper. The RSS value was calculated as the sum
of differences between the observed and fitted values of flux, where the fitted values of flux
were obtained from two or three cluster models with or without speed as an additional
predictor in addition to the occupancy. The RSS is an objective measure of the remaining
variability of the flux that has not been explained by a particular model.

With Rome data, we considered a baseline model with two-phase and occupancy as
the only predictor. In other words, this is a 2D and two-phase model as in the existing
literature. We calculated the RSS value for this model and compared with the RSS values
from more complex models. Specifically, we found that adding speed into the model (i.e., a
3D and two-phase model) explained additionally 1.2% of the variability in observed flux,
on top of the baseline 2D and two-phase model. Furthermore, adding the Free Choice
phase alone (i.e., a 2D and three-phase model) reduced 13.6% of the remaining variability.
Adding both speed and the free choice phase to the model (i.e., a 3D and three-phase
model) further reduced 16.0% of the variability in observed flux, compared to the baseline
model.

The results of these comparisons suggest that the three-cluster model is indeed su-
perior to the two-cluster model and that 3D rendering of the data is appropriate. The
percent change for adjustment of number of clusters as well as dimensions both increases
indicates a clear improvement; the three-cluster model is better than the two-cluster model,
3D analysis of data is more informative than that in 2D and the 3D three-cluster model pro-
vides the more favorable RSS value overall. These results are consistent across our datasets
(see Figures A7–A10 and Tables A2–A6). These results have important implications in
understanding traffic flow. They confirm the utility of analyzing this type of data in three
dimensions and reveal the presence of a third phase.

Table A2. RSS analysis with two clusters with flux and occupancy. β0 is the value of the intercept
and β1 the occupancy.

β0 β1 R2 Adj. R2 RSS

Free Phase 77.71 249.18 0.952 0.952 157,765,974

Congestion 2184.09 −11.00 0.09746 0.09676 283,255,197
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Figure A7. Flux vs. occupancy: RSS analysis.

Table A3. RSS analysis with two clusters with flux, occupancy and speed. β0 is the value of the
intercept, β1 the occupancy, and β2 the speed.

β0 β1 β2 R2 Adj. R2 RSS

Free Phase −248.7 253.88 5.48 0.953 0.953 154,308,365

Congestion 1941.54 −8.11 6.64 0.1032 0.1018 281,448,225

Figure A8. Flux vs. occupancy + speed: RSS analysis.

Table A4. RSS analysis with three clusters with flux and occupancy. β0 is the value of the intercept
and β1 the occupancy.

β0 β1 R2 Adj. R2 RSS

Free Choice 79.56 201.3 0.563 0.5628 14,269,933

Free Flow 187.68 231.36 0.9175 0.9175 126,714,084

Congestion 2302.55 −13.87 0.1618 0.1611 240,324,480
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Figure A9. Flux vs. occupancy: RSS analysis.

Table A5. Residual sum squared analysis with three clusters with flux, occupancy and speed. β0 is
the value of the intercept and β1 the occupancy, β2 the speed.

β0 β1 β2 R2 Adj. R2 RSS

Free Choice −153.88 200.36 4.03 0.6033 0.603 12,951,197

Free Flow −316.91 239.01 8.43 0.9193 0.9192 123,984,911

Congestion 2065.61 −11.05 6.5 0.1676 0.1663 283,641,319

Figure A10. Flux vs. occupancy + speed: RSS analysis.

Table A6. RSS improvement.

% RSS Improvement

2 Clusters 3 Clusters

2D
FP: 13.2% FC: 9.2%

FF: 2.2%
C: 15.8% C: 0.7%

3D
FP: 11.3% FC: -

FF: -
C: 15.2% C: -
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Abstract: In this paper, we study input-to-state stability (ISS) of an equilibrium for a scalar conserva-
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system. By using a suitable Lyapunov function, we prove sufficient and necessary conditions on
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1. Introduction

The nature of modern high-volume production is characterized by a large number of
items passing through many production steps. This type of production system has fluid-
like properties and has been modeled successfully by continuum models [1–5]. In these
models, the product at different production stages and the speed of production are the
quantities of interest.

Specifically, in the manufacturing system of a factory that involves a highly re-entrant
system where products visit machines multiple times, such as the production of semi-
conductor devices, a continuum model has been introduced in [3] that is inspired by the
Lighthill–Whitham traffic model [6]. The dynamics of this model is mathematically given
by hyperbolic partial differential equation of the form

∂tρ(t, x) + λ(W(t))∂xρ(t, x) = 0, t ∈ [0,+∞), x ∈ [0, 1], (1)

where ρ(t, x) is the product density which describes the total mass W(t) at the time t and
the production stage x,

W(t) =
∫ 1

0
ρ(t, x)dx, t ∈ (0,+∞). (2)

Contrary to classical traffic flow models, the differential equation depends on the
nonlocal quantity (2). The function λ(W(t)) is a velocity. In production systems, it is
natural to assume that the velocity function is positive and decreasing as the total mass is
increasing. In the manufacturing system, the initial density of products at production stage
x is taken as the initial data

ρ(0, x) = ρ0(x), x ∈ [0, 1], (3)
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and the influx is used to control the system or stabilize the system at an equilibrium.
Since the velocity is positive, we only require boundary conditions at x = 0, i.e., the influx

ρ(t, 0)λ(W(t)) = U(t), t ∈ [0,+∞). (4)

Under suitable assumptions on λ, ρ0 and U, the existence and uniqueness of a clas-
sical solution of the Cauchy problem for the scalar conservation law Equation (1) with
Equations (3) and (4) is proven in [7–10].

General stabilization problems with boundary controls have been studied in the past
years in [11–22] for hyperbolic systems and recently in [7,10] for scalar conservation laws
with nonlocal velocity. The focus is to derive an asymptotic stability around a given
equilibrium such that solutions to the conservation laws reach the equilibrium state as time
tends to infinity. Such a property is attained by an exponential stability result and presented
for example in ([21], Theorem 2.3) for quasi-linear hyperbolic systems. Further references
also on hyperbolic balance laws other hyperbolic systems may be found in the recent
book [15].

However, when boundary controls are subjected to unknown disturbances, solutions
reaching the given equilibrium point are influenced by the disturbances and a notion
of asymptotic stability is required. The concept of input-to-state stability (ISS) [11,20,23]
has been used to describe asymptotic stability. Concerning an asymptotic behavior of
classical solutions, the Lyapunov method is used to investigate sufficient conditions to
achieve an exponential stability in [16,17] for hyperbolic systems and in [7,10] for scalar
conservation laws with nonlocal velocity. The Lyapunov method is also used for ISS of
(local) hyperbolic systems in [11,20]. For the numerical analysis of asymptotic behavior of
numerical solutions discretized by a first-order finite volume scheme, a discrete Lyapunov
function is used to prove exponential stability results for hyperbolic systems in [24–28]
and for scalar conservation laws with nonlocal velocity in [10], and ISS results for (local)
hyperbolic systems could be established recently in [29,30]. Please note that the previous
given references refer to ISS for hyperbolic systems. However, the theory of ISS has also
been developed for other systems as for example, linear systems, time-delay equations or
parabolic differential equations. A detailed review of those results is beyond the scope
of this presentation and we refer the interested reader to the recent review article [31] for
additional references and a review of the state-of-the-art in this field.

The previously given references refer all to ISS theory for hyperbolic problems.
However, it is worth mentioning that there exists a huge amount of literature on ISS
stability for problems related to other differential equations. We can not review those at
this point but would like to point to some references on ISS theory for infinite-dimensional
problems [32,33] and for linear [34], semi-linear [35] and nonlinear [36] parabolic system
with boundary inputs. A systematic treatment of ISS using (linear) operator theory has
been presented for example in [37] and non-coercive Lyapunov theory for ISS in [38,39].

Our focus in this work is hyperbolic problems. In connection with (hyperbolic) scalar
conservation law with nonlocal velocity, in [10], the authors have studied global feedback
stabilization of the closed-loop system in Equation (1) under the feedback law

U(t)− ρ∗λ(ρ∗) = k
(

ρ(t, 1)λ(W(t))− ρ∗λ(ρ∗)
)

, t ∈ (0,+∞), (5)

where k ∈ [0, 1) is the feedback parameter and ρ∗ ∈ R is a given equilibrium. They gen-
eralize the stabilization results of [7] by using a Lyapunov function. In particular, for a
given equilibrium ρ∗ = 0 and a general velocity function λ ∈ C1([0,+∞); [0,+∞)), the
global stabilization result in L2 for the closed-loop system of Equations (1), (3) and (5) is
generalized to Lp (p ≥ 1). Then, the global stabilization result in L2 for the closed-loop
system of Equations (1), (3) and (5) with a family of velocity functions

λ(s) =
A

B + s
, s ∈ [0,+∞) with A > 0, B > 0, (6)
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is obtained for a given equilibrium ρ∗ > 0. By using a discrete Lyapunov function, they
also established stabilization results for a discrete scalar conservation law with nonlocal
velocity and using a first-order finite volume scheme.

In this paper, we study ISS for the closed-loop system of Equations (1) and (3) under
the feedback law defined by

U(t)− ρ∗λ(ρ∗) = k
(
(ρ(t, 1) + d(t))λ(W(t))− ρ∗λ(ρ∗)

)
, t ∈ (0,+∞), (7)

where d(t) ∈ R is a bounded perturbation in the measurement. In particular, we use an
ISS-Lyapunov function to investigate sufficient and necessary conditions for ISS in L2 for
an equilibrium ρ∗ ≥ 0 and the velocity function defined by Equation (6). The numerical
analysis of sufficient and necessary conditions for ISS is performed by using a discrete
ISS-Lyapunov function for numerical solution obtained by a first-order finite volume
scheme. Moreover, we provide numerical simulations to illustrate theoretical results for
some velocity functions of type Equation (6).

The paper is organized as follows: In Section 2, we present stabilization results of
ISS for a scalar conservation law with nonlocal velocity and measurement error. The nu-
merical discretization of stabilization results of ISS for the scalar conservation law with
nonlocal velocity and measurement error is presented in Section 3. Finally, in Section 4,
we show numerical simulations for the scalar conservation law with nonlocal velocity and
measurement error to illustrate the theoretical results.

2. Asymptotic Stability of a Scalar Conservation Law with Nonlocal Velocity and
Measurement Error

We study ISS of a closed-loop system of scalar conservation laws with nonlocal velocity
and measurement error of the form:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂tρ(t, x) + λ(W(t))∂xρ(t, x) = 0, t ∈ (0,+∞), x ∈ (0, 1),
ρ(0, x) = ρ0(x), x ∈ (0, 1),
U(t)− ρ∗λ(ρ∗) = k((ρ(t, 1) + d(t))λ(W(t))− ρ∗λ(ρ∗)), t ∈ (0,+∞),
ρ(t, 0)λ(W(t)) = U(t), t ∈ [0,+∞),
W(t) =

∫ 1
0 ρ(t, x)dx, t ∈ (0,+∞),

(8)

where ρ(t, x) is the product density, λ(·) ∈ C1([0,+∞), (0,+∞)) is the velocity function,
W(t) is total mass, U(t) is the controller and k ∈ [0, 1) is a non-negative feedback parameter,
ρ∗ ≥ 0 is an equilibrium solution and d(t) ∈ R is a bounded (known) perturbation in the
measurement. A weak solution of the closed-loop system in Equation (8) is defined below.

Definition 1 (Weak solution). Fix T > 0. A function ρ ∈ C0([0, T]; L1(0, 1)) is called a weak
solution to Equation (8) if for every s ∈ (0, T] and every ϕ ∈ C1([0, s]× [0, 1]) satisfying

ϕ(s, x) = 0, ∀x ∈ [0, 1] and ϕ(t, 1) = κϕ(t, 0), ∀t ∈ [0, s],

the following equation holds:∫ s

0

∫ 1

0
ρ(t, x)(∂t ϕ(t, x) + λ(W(t))∂x ϕ(t, x))dxdt

+
∫ s

0
((1 − k)ρ∗λ(ρ∗) + d(t))ϕ(t, 0)dt +

∫ 1

0
ρ(0, x)ϕ(0, x)dx = 0.

Let d ≡ 0, ρ∗ ≥ 0, p ∈ [1,+∞) and k ∈ [0, 1] be given. Then, the existence and
uniqueness of the non-negative weak solution ρ ∈ C0([0,+∞); Lp(0, 1)) and the non-negative
classical solution ρ ∈ C1([0,+∞) × [0, 1]) of the closed-loop system in Equation (8) are
available in [7,10].
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We now analyze ISS for the system Equation (8) with ρ∗ ≥ 0 in the sense of the
following definitions. This is also known as global ISS. Note that ISS Lyapunov functions
can be defined within a very general setting and we refer to ([31], Definition 2.11) for such a
definition. In Definition (3) below, we introduce ISS-Lyapunov functions tailored to system
Equation (8).

Definition 2 (Input-to-state stability (ISS)). Let D > 0. An equilibrium ρ∗ ≥ 0 of the closed-
loop system in Equation (8) is exponential ISS in L2-norm with respect to any disturbance function
d(·) ∈ L∞(0, ∞) such that ‖d‖L∞(0,∞) ≤ D if there exist positive constants γ1, γ2, γ3 independent
of d such that, for every initial condition ρ0(x) ∈ L2(0, 1), the L2-solution to the closed-loop system
in Equation (8) satisfies

‖ρ(t, ·)− ρ∗‖L2 ≤ γ2e−γ1t‖ρ0 − ρ∗‖L2 + γ3‖d(s)‖L∞(0,t), t ∈ [0,+∞). (9)

Hence, the equilibrium ρ∗ is ISS with respect to disturbances d ∈ D := {d(·) ∈
L∞(0, ∞) : ‖d‖L∞ ≤ D}.

Definition 3 (ISS-Lyapunov function). The function L : L2(0, 1) → R+ is said to be an
ISS-Lyapunov function for the closed-loop system in Equation (8) if

(i) there exist positive constants α1 > 0 and α2 > 0 such that for all solutions ρ ∈ C0([0, ∞);
L2(0, 1)) and t ∈ [0,+∞)

α1‖ρ(t, ·)− ρ∗‖2
L2 ≤ L(ρ(t, ·)) ≤ α2‖ρ(t, ·)− ρ∗‖2

L2 , (10)

(ii) there exist positive constants η > 0 and ν > 0 such that for all solutions ρ ∈ C0([0, ∞);
L2(0, 1)) and t ∈ [0,+∞)

d
dt

L(ρ(t, ·)) ≤ −ηL(ρ(t, ·)) + νd2(t).

For a notion of differentiability of L, we also refer for example to ([31], Section 2.2).
To simplify the notation we also introduce the function

L(t) := L(ρ(t, ·)), (11)

where ρ ∈ C0([0, ∞); L2(0, 1)) is the solution to Equation (8).

Theorem 1 (ISS for ρ∗ ≥ 0). Fix any ρ∗ ≥ 0, k ∈ [0, 1), R > 0, D > 0 and any ρ0 ∈ L2(0, 1)
satisfying ρ0 ≥ 0 a.e. in (0, 1). Assume further

‖ρ0(·)− ρ∗‖L2(0,1) ≤ R. (12)

Assume there exists a non-negative almost everywhere weak solution ρ ∈ C0([0,+∞); L2(0, 1))
to the Cauchy problem in Equation (8) where λ is given by Equation (6).

Then, the steady-state ρ∗ of the system in Equation (8) is exponential ISS in L2-norm with
respect to any disturbance function d ∈ {d(·) ∈ L∞(0, ∞) : ‖d‖L∞ ≤ D}.

Before we begin the proof of Theorem 1, we consider the following transformation at
the equilibrium ρ∗,

ρ̃(t, x) := ρ(t, x)− ρ∗, W̃(t) := W(t)− ρ∗, ρ̃0(x) := ρ0(x)− ρ∗,

λ̃W̃(t) := λ(ρ∗ + W̃(t)), Ũ(t) := λ̃W̃(t)ρ̃(t, 0).
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Then, the system in Equation (8) with Equation (6) can be rewritten as follows for
t ∈ (0,+∞): ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tρ̃(t, x) + λ̃W̃(t)∂x ρ̃(t, x) = 0, x ∈ (0, 1),
ρ̃(0, x) = ρ̃0(x), x ∈ (0, 1),
Ũ(t) = kλ̃W̃(t)(ρ̃(t, 1) + d(t)) + (1 − k)ρ∗

(
λ(ρ∗)− λ̃W̃(t)

)
,

λ̃W̃(t) := λ(ρ∗ + W̃(t)),
W̃(t) =

∫ 1
0 ρ̃(t, x)dx ≥ −ρ∗,

λ(s) = A
B+s , with A > 0, B > 0, s ∈ [0,+∞).

(13)

By using the velocity function Equation (6) in Equation (13), we have

ρ∗
(
λ(ρ∗)− λ̃W̃(t)

)
= θλ̃W̃(t)W̃(t), t ∈ [0,+∞), (14)

where

θ :=
ρ∗

B + ρ∗ < 1.

For convenience, until the end of this proof, we omit the symbol “~”. Then, the system
in Equation (13) with Equation (14) can be rewritten in the following form for t ∈ (0,+∞):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tρ(t, x) + λW(t)∂xρ(t, x) = 0, x ∈ (0, 1),
ρ(0, x) = ρ0(x), x ∈ (0, 1),

U(t) = kλW(t)(ρ(t, 1) + d(t)) + (1 − k)θλW(t)W(t) with θ = ρ∗
B+ρ∗ ,

λW(t) := λ(ρ∗ + W(t)),
ρ(t, 0)λW(t) = U(t),
W(t) =

∫ 1
0 ρ(t, x)dx ≥ −ρ∗,

λ(s) = A
B+s , with A > 0, B > 0, s ∈ [0,+∞).

(15)

With the above notation, the assumption in Equation (12) of Theorem 1 reads

‖ρ0‖L2(0,1) ≤ R. (16)

Proof. The following proof of Theorem 1 is an extension of the proof of Theorem 3.2 in [10].
Since C1-functions are dense in L2(0, 1), we can analyze ISS for the system Equation (15)
with non-negative weak solution ρ ∈ C0([0,+∞); L2(0, 1)) as follows: For φ ∈ L2(0, 1), we
first define a candidate ISS-Lyapunov function by

L(φ) =
∫ 1

0
φ2(x)e−βxdx + a

(∫ 1

0
φ(x)dx

)2

.

and then we have according to (11)

L(t) := L(ρ(t, ·)) =
∫ 1

0
ρ2(t, x)e−βxdx + aW2(t), ∀t ∈ [0,+∞), (17)

where β > 0 and a ∈ R are constants. By definition of W and Hölder inequality, we have

W(t)2 =

(∫ 1

0
ρ(t, x)e−

1
2 βxe

1
2 βxdx

)2

≤
∫ 1

0
eβxdx

∫ 1

0
e−βxρ2(t, x)dx. (18)

Hence, if

a > − β

eβ − 1
, (19)
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then L(t) > 0 for all t ≥ 0. We will further assume from now on that a ≤ 0. Furthermore, for
0 < C1 := C1(β) = eβ−1

β we obtain

W2(t) ≤ C1

∫ 1

0
e−βxρ2(t, x)dx (20)

and for C2 := C2(a, β) = C1 + max{a, 1} > 0 we have

L(t) ≤ C2

∫ 1

0
e−βxρ2(t, x)dx. (21)

Since a < 0 we also obtain

(1 + aC1)
∫ 1

0
e−βxρ2(t, x)dx ≤ L(t). (22)

Summarizing, there exist positive constants Ci = Ci(a, β), i ∈ {3, 4} such that for all t ≥ 0

W2(t) ≤ C3

∫ 1

0
ρ2(t, x)e−βxdx ≤ L(t) ≤ C4

∫ 1

0
ρ2(t, x)e−βxdx (23)

and therefore L is equivalent to the L2-norm of ρ. Note that for ρ∗ = 0 we may set a = 0 in
Equation (17). The time derivative of the candidate ISS-Lyapunov function in Equation (17)
is given by:

dL
dt

(t) =
∫ 1

0
2ρ(t, x)ρt(t, x)e−βxdx + 2aW(t)

dW
dt

(t)

=− βλW(t)
∫ 1

0
ρ2(t, x)e−βxdx +

1
λW(t)

(
λ2

W(t)ρ2(t, 0)− λ2
W(t)ρ2(t, 1)e−β

)
+ 2aW(t)(λW(t)ρ(t, 0)− λW(t)ρ(t, 1))

=− βλW(t)
∫ 1

0
ρ2(t, x)e−βxdx + A1(t),

where A1(t) contains all contributions due to the boundary conditions. In the follow-
ing we will analyze and estimate A1. Note that λW(t)ρ(t, 0) = U(t) and U is given by
Equation (15). More precisely, we will use the following estimate for any ε > 0

2aW(t)U(t) = 2aW(t)(kλW(t)(ρ(t, 1) + d(t)) + (1 − k)θλW(t)W(t))

≤ k2d2(t)λW(t)
1
ε
+ εa2W2λW(t) + 2aW(t)(kλW(t)ρ(t, 1) + (1 − k)θλW(t)W(t)),

U2(t) = (kλW(t)(ρ(t, 1) + d(t)) + (1 − k)θλW(t)W(t))2

≤ (1 + ε)(kλW(t)ρ(t, 1) + (1 − k)θλW(t)W(t))2 + k2d2(t)λ2
W(t)(1 +

1
ε
).

In order to simplify the notation of the following computations, we neglect the time
dependence and we define

y := y(t) := λW(t)ρ(t, 1), b1 := b1(t) := (1 +
2
ε
)k2λW(t)d2(t) + εa2W2(t)λW(t).

Then, we have
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A1(t) ≤b1 +
1

λW

(
(1 + ε)(ky + (1 − k)θλWW)2 − y2e−β

)
+ 2aW((k − 1)y + (1 − k)θλW)

=b1 +
(1 + ε)k2 − e−β

λW

(
y + λWW

(
a(k − 1)

(1 + ε)k2 − e−β
− (k − 1)k(1 + ε)θ

(1 + ε)k2 − e−β

))2

+ λWW2
(

θ2(k − 1)2(1 + ε)− 2aθ(k − 1)− (k − 1)2

(1 + ε)k2 − e−β
(a − k(1 + ε)θ)2

)
=b1 +

(1 + ε)k2 − e−β

λW
(. . . )2

− λWW2 (k − 1)2

(1 + ε)k2 − e−β

(
a2 − 2ak(1 + ε)θ + k2(1 + ε)2θ2 +

2aθ((1 + ε)k2 − e−β)

(k − 1)
− θ2(1 + ε)((1 + ε)k2 − e−β)

)
=b1 +

(1 + ε)k2 − e−β

λW
(. . . )2

− λWW2 (k − 1)2

(1 + ε)k2 − e−β

(
a2 − 2aθ

k(1 + ε)− e−β

1 − k
+ θ2(1 + ε)e−β

)
=b1 +

(1 + ε)k2 − e−β

λW
(. . . )2

− λWW2 (k − 1)2

(1 + ε)k2 − e−β

(
a − θ

k(1 + ε)− e−β

1 − k

)2

− λWW2 (k − 1)2

(1 + ε)k2 − e−β

(
θ2(1 + ε)e−β − θ2

(
k(1 + ε)− e−β

1 − k

)2)
.

Even so, it is not necessary that the proof simplifies if ε is chosen depending on β.
We set for

ε := ε(β) = β2. (24)

For any fixed 0 ≤ k < 1 and all 0 < β2 < ε∗ with ε∗ := min{1, 1
2

1−k
k }, we have

(1 + β2)k2 < (1 + β2)k < 1 (25)

and hence for all β < min{√ε∗, β∗} with β∗ := − ln((1 + ε∗)k), we have

e−β > (1 + β2)k > (1 + β2)k2. (26)

Furthermore, consider

a(β) = θ
k(1 + β2)− e−β

1 − k
< 0. (27)

For β → 0, we have limβ→0 a(β) = −θ > −1 and we have limβ→0
β

eβ−1
= 1.

Hence, there exists a β∗∗ > 0 such that for all β ≤ min{β∗, β∗∗} and for a(β) as given by
Equation (27), the inequalities (26), (27) and (19) hold true. Using the inequality (26) and
the particular choice for a(β) and ε(β), we obtain for all β sufficiently small

A1(t) ≤ b1(t) + θ2λWW2 (k − 1)2(1 + β2)e−β − (k(1 + β2)− e−β)2

e−β − (1 + β2)k2 (28)

=

(
1 +

2
β2

)
k2λWd2 + β2a2(β)W2λW + θ2λWW2b2(β, k), (29)

b2(β, k) :=
(k − 1)2(1 + β2)e−β − (k(1 + β2)− e−β)2

e−β − (1 + β2)k2 . (30)
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Using the estimate (20) to bound W2 and using k < 1, we obtain

A1(t) ≤
(

1 +
2
β2

)
k2λWd2 + λWθ2 eβ − 1

β

(
β2 a2(β)

θ2 + b2(β, k)
) ∫ 1

0
e−βxρ2(t, x)dx

≤λW

(
1 +

2
β2

)
d2 + λWθ2b3(β, k)

∫ 1

0
e−βxρ2(t, x)dx,

b3(θ, k) :=
eβ − 1

β

(
β2 a2(β)

θ2 + b2(β, k)
)

.

An elementary computation shows that f (β, k) has the following properties

b3(0, k) = 0 and ∂βb3(0, k) = 1.

Replacing b3 by a second-order Taylor expansion in β at β = 0 therefore yields the estimate

A1(t) ≤
(

1 +
2
β2

)
λWd2 + θ2λW

(
β + O(β2)

) ∫ 1

0
e−βxρ2(t, x)dx. (31)

Now, we proceed with the estimate of d
dtL(t) as

d
dt
L(t) ≤− βλW(t)

∫ 1

0
e−βxρ2(t, x)dx

(
1 − θ2 + O(β)

)
+

(
1 +

2
β2

)
λW(t)d2(t). (32)

Since θ < 1 there exists 0 < β̄ < min{β∗, β∗∗} sufficiently small, such that

0 < 1 − θ2 + O(β). (33)

Using the estimate (22) there is a constant 0 < η := η(k, ρ∗), we obtain

d
dt
L(t) ≤− ηλW(t)L(t) +

(
1 +

2
β̄2

)
λW(t)d2(t). (34)

By definition, we have that 0 ≤ λW(t). Next, we show that λW(t) is bounded from
below by a positive constant. This requires to obtain an upper bound on W(t). The previous
inequality (34) yields the following bound on W2(t) for C5 := C5(β̄) = C1

(1+a)C1
and for

C6 := C6(β̄) =
(

1 + 2
β̄2

)
:

1
C5

W2(t) ≤L(t) ≤ e−η
∫ t

0 λW (s)dsL(0) +
∫ t

0
C6λW(s)d2(s)e−η

∫ t
s λW (r)dr (35)

≤L(0) + C6

η
‖d(t)‖L∞(0,t)

(
1 − e−η

∫ t
0 λW (s)ds

)
. (36)

By assumption ‖ρ0‖2 ≤ R2. By definition we have −ρ∗ ≤ W(t) and therefore

−ρ∗ ≤ W(t) ≤
√

C5R2 +
C5C6

η
‖d(·)‖L∞(0,t). (37)

Due to the definition of λW , it is uniformly bounded from above by σ1 := A
B .

Furthermore, we have that W(t) is bounded from above due to Equation (37) and since d is
bounded. Hence, λW is bounded from below by σ2 = σ2(‖d‖L∞(0,∞), R, β̄). Note that the
L∞ norm of the disturbances are uniformly bounded by the constant D. This yields that for
all t ≥ 0

σ1 ≥ λW(t) ≥ σ2. (38)
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Using the previous estimate for λW in Equation (34) yields the assertion. The decay
rate η∗ of the Lyapunov function is η∗ = ησ2 and ν = σ1C6.

Some remarks are in order.

Remark 1. Note that the rate η = η(ρ∗, k) as a function of k tends to zero as k tends to one, this
can be seen for example in Equation (26) defining the upper bound for β̄. Similarly, if θ → 1, i.e.,
ρ∗ → ∞, we observe that η → 0 due to Equation (33).

The bound on W(t) is required to obtain the exponential decay. Therefore, the final rate
depends on the constant R and we refer to Equation (37) and following for its detailed dependence.
Note that in the case ρ∗ = 0 we may set a = 0 and therefore no bound on W is necessary.

Further, the result holds true for any solution ρ ∈ C0([0, ∞); L2(0, 1)) and hence uniqueness
of solutions is not required. Regarding existence of solutions, it might be possible to extend recent
results [40–42]. However, so far existence results in the case d ≡ 0 exist [10].

Note that the decay rate η will be dependent on the bound of the disturbance as well as on R,
but will be uniform with respect to ρ0 provided that ρ0 fulfills (12).

In ([7], Lemma 3.5) it has been shown that in the case d ≡ 0 and ρ∗ = 0 exponential stability
does not hold if k > 1.

For ρ∗ = 0, Theorem 1 holds true for any velocity function λ(·) ∈ C1([0,+∞), (0,+∞)).
This case is similar to a problem studied in [10]. Therein, a detailed discussion of the case d ≡ 0 has
been presented and we refer in particular to ([10], Theorem 3.1).

3. Numerical Study of Asymptotic Stability of a Scalar Conservation Law with
Nonlocal Velocity and Measurement Error

In the following section, we extend the result to a proper discretization of the contin-
uous dynamics. The following results are based on similar estimates as in the previous
section and it is a minor extension of the proof presented in ([10], Section 4.2). In order to
not repeat the estimates obtained in [10], we will use a similar notation and mostly report
on the changes in estimates due to the additional disturbance d. As seen in the previous
proof in Equation (24), it is possible to chose ε = β2 and we will do so in the following
proof directly. This simplifies the notation and reduces the technicality of the computations.

As in ([10], Section 4.2) we introduce a first-order Upwind discretization of the closed-
loop system in Equation (8). To this end we divide the spatial domain [0, 1] using an
equidistant grid with cell width Δx and J ∈ N cells such that ΔxJ = 1. The cell centers are
denoted by xj = (j − 1

2 )Δx, j ∈ {1, . . . , J} and, the boundary of the domain are x0 and xJ ,
respectively. Moreover, we discretize W(t) by

Wn = Δx
J

∑
j=1

ρn
j , n ∈ {1, 2, . . .}, (39)

with the point wise values of the solution ρn
j = ρ(tn, xj). Further, we define the discrete

values λn by

λn := λ(Wn) =
A

B + Wn , A > 0, B > 0, (40)

where tn = nΔt, n ∈ {0, 1, . . .} denotes the discrete time such that the time step size Δt sat-
isfies a stability condition due to Courant–Friedrichs–Lewy condition (CFL). This condition
states that Δt is chosen such that

0 < rn :=
λnΔt
Δx

≤ 1, ∀n ∈ {0, 1, . . .}. (41)

Since λn ≤ A
B for all n ≥ 0, we can choose a possibly small but fixed Δt such that

the previous condition (41) holds true for all n with fixed Δt and Δx. This choice allows
to take a uniform grid in time. As in the continuous case we have ρ∗ > 0. For the given
initial values �ρ0 = (ρ0

0, ρ0
1, . . . , ρ0

J )
� with ρ0

j ≥ 0, j ∈ {0, . . . , J}, we employ a first–order
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finite volume scheme, given by the explicit Upwind method, to discretize the system in
Equation (8).{

ρn+1
j = (1 − rn)ρn

j + rnρn
j−1, j ∈ {1, . . . , J}, n ∈ {0, 1, . . .},

ρn+1
0 = kρn+1

J + (1 − k) ρ∗λ(ρ∗)
λn+1 + kdn+1, n ∈ {0, 1, . . .}.

(42)

We now define discrete version of ISS and ISS-Lyapunov function as follows:

Definition 4 (Discrete ISS). Let D > 0. An equilibrium ρ∗ ≥ 0 of the discrete closed-loop system
in Equation (42) is ISS in L2-norm with respect to discrete disturbances dn ≤ D, n ∈ {1, 2, . . .} if
there exist positive real constants γ1 > 0, γ2 > 0 and γ3 > 0 such that, for every initial condition
ρ0

j , j ∈ {1, . . . , J}, the solution ρn
j , j ∈ {1, . . . , J}, n ∈ {0, 1, . . .} to the discrete closed-loop system

in Equation (42) satisfies

‖−→ρ n − ρ∗‖L2
Δx

≤ γ2e−γ1tn‖−→ρ 0‖L2
Δx

+ γ3 max
0≤s<n

(|ds|), n ∈ {1, 2, . . .}, (43)

where −→ρ n = (ρn
j )

J
j=1 and

‖−→ρ n‖2
�2 := Δx

J

∑
j=1

(
ρn

j

)2
, n ∈ {0, 1, . . .}.

Definition 5 (Discrete ISS-Lyapunov function). A function L : RJ → R
+
0 is said to be a

discrete ISS-Lyapunov function for the discrete closed-loop system in Equation (42) if

(i) there exist positive constants α1 > 0 and α2 > 0 such that for all n ∈ {0, 1, . . .}

α1‖−→ρ n − ρ∗‖2
�2 ≤ L(−→ρ n) ≤ α2‖−→ρ n − ρ∗‖2

�2 , (44)

(ii) there exist positive constants η > 0 and ν > 0 such that for all n ∈ {0, 1, . . .}

L(−→ρ n+1)− L(−→ρ n)

Δt
≤ −ηL(−→ρ n) + ν(dn)2.

To simplify the notation later on we will define the sequence of discrete values Ln by

Ln := L(−→ρ n), n ∈ {0, 1, . . .} (45)

and where −→ρ n are given as solution to the system in (42).

Theorem 2. (Discrete ISS for ρ∗ ≥ 0) Assume that the CFL condition in Equation (41) holds.
Let D > 0. For every ρ∗ ≥ 0, every k ∈ [0, 1), every R > 0 and for every initial data
�ρ0 = (ρ0

0, ρ0
1, . . . , ρ0

J )
� with ρ0

j ≥ 0, j ∈ {1, . . . , J} and

‖�ρ0 − ρ∗�e‖�2 ≤ R, (46)

where �e =

J+1︷ ︸︸ ︷
(1, . . . , 1)�, the solution �ρn = (ρn

0 , ρn
1 , . . . , ρn

J )
� to the system in Equation (42)

satisfies ρn
j ≥ 0, j ∈ {0, . . . , J}, n ∈ {0, 1, . . .} and the steady-state ρ∗ of the discrete system in

Equation (42) is ISS in L2-norm with respect any discrete disturbance function dn, n ∈ {1, 2, . . .}
such that dn ≤ D.
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In order to analyze the ISS of the discrete system in Equation (42) by the discrete
Lyapunov method, we use the following transformation

ρ̃n
j = ρn

j − ρ∗, W̃n = Δx
J

∑
j=1

ρ̃n
j , λ̃n

W̃
= λ

(
ρ∗ + W̃n

)
, r̃n =

Δt
Δx

λ̃n
W̃

, n ∈ {0, 1, . . .}. (47)

For simplicity, we omit the symbol “~” in Equation (47) and discretize the system in
Equation (15) as follows⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρn+1
j = (1 − rn)ρn

j + rnρn
j−1, j ∈ {1, . . . , J}, n ∈ {0, 1, . . .},

ρn+1
0 = kρn+1

J + (1 − k)θWn+1 + kdn+1 with θ = ρ∗
B+ρ∗ , n ∈ {0, 1, . . .},

rn = Δt
Δx λn

W , n ∈ {0, 1, . . .},
λn

W = λ(ρ∗ + Wn), n ∈ {0, 1, . . .},
Wn = Δx ∑J

j=1 ρn
j ≥ −ρ∗, n ∈ {0, 1, . . .},

λ(s) = A
B+s , s ≥ 0.

(48)

Thus, the assumption in Equation (46) in Theorem 2 is now expressed as

‖�ρ0‖�2 ≤ R. (49)

Note that the proof of Theorem 2 is an extension of the proof of Theorem 4.2 in [10].
Thus, some details of the proof can be found in [10] and we will point to the corresponding
estimates in order to reduce the technicality of the proof.

Proof. As in the continuous case the proof simplifies if ρ∗ = 0. Therefore, we consider in
the forthcoming proof only the more interesting case

ρ∗ > 0. (50)

Since the initial data ρ0
j ≥ 0, j ∈ {0, . . . , J}, by the discrete system in Equation (48) and

the CFL condition in Equation (41), we have ρn
j ≥ 0, j ∈ {0, . . . , J}, n ∈ {0, 1, . . .}.

Consider the following candidate Lyapunov function Equation (17) for any
−→
φ ∈ RJ

L(
−→
φ ) = Δx

J

∑
j=1

(φj)
2e−βxj + a

(
Δx

J

∑
j=1

φj

)2

.

where β > 0. In particular, we set a

a =θ
k − e−β

1 − k
< 0 (51)

and since θ < 1 there exists β∗ sufficiently small such that 0 > a > − β

eβ−1
, see ([10], (3.25),

(3.26)).
According to (45), the values of L at the solution −→ρ n at time tn for n ≥ 0 are given by

Ln =‖�ρn‖2
β + a(Wn)2, (52)

‖�ρn‖2
β :=Δx

J

∑
j=1

(ρn
j )

2e−βxj . (53)

For fixed k ∈ [0, 1), we assume as in [10] there exists a β∗∗ such that for 0 < β < β∗∗

exp(−β) > k > k2 and β < 1 − k, (54)
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holds true and that

0 < Δx < 1. (55)

As a first step, we prove that Ln is equivalent to ‖�ρn‖2
β. This part does not dependent

on the boundary condition ρn+1
0 and is therefore analogous to [10]. In particular, due to

estimate ([10], (4.32), (4.34)) we have for all n ≥ 1

(Wn)2 ≤Δx2
J

∑
j=1

(ρn
j )

2e−βxj
J

∑
j=1

eβxj ≤ Δx(eβ − 1)
1 − e−βΔx ‖�ρn‖2

β (56)

≤(1 + β)2‖�ρn‖2
β ≤ (1 + 3β)‖�ρn‖2

β. (57)

Due to the bounds on a, we obtain the estimate ([10], (4.38)) for all n ≥ 0

‖�ρn‖2
β ≥ Ln ≥‖�ρn‖2

β

(
1 + θ

k − e−β

1 − k
Δx(eβ − 1)
1 − e−βΔx

)
(58)

≥(1 − θ(1 + 3β))‖�ρn‖2
β ≥ 1 − θ

2
‖�ρn‖2

β, (59)

where the last inequality is true provided that

0 < β ≤ min{1, β∗, β∗∗,
1 − θ

6θ
}. (60)

Furthermore, the discrete weighted norm is equivalent to the �2-norm as in ([10],
(4.39)) for all n ≥ 0

e−β‖�ρn‖2
�2 ≤ ‖�ρn‖2

β ≤ ‖�ρn‖�2 . (61)

As a second step, we estimate a finite difference approximation to the temporal
derivative of L.

Ln+1 −Ln

Δt
=

Δx
Δt

J

∑
j=1

[(
ρn+1

j

)2 −
(

ρn
j

)2
]

e−βxj (62)

+
a(Δx)2

Δt

⎡⎣( J

∑
j=1

ρn+1
j

)2

−
(

J

∑
j=1

ρn
j

)2
⎤⎦. (63)

Precisely, as in [10], we use the discrete scheme (48), the CFL condition (41) that
ensures 0 < rj ≤ 1 and the convexity z → z2 to estimate for all i = 1, . . . , J and n ≥ 0

(ρn+1
i )2 = [(1 − rn)ρn

i + rnρn
i−1]

2 ≤ (1 − rn)(ρn
i )

2 + rn(ρn
j )

2. (64)
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Then, we obtain the discrete counterpart to the integration by parts formula

Ln+1 −Ln

Δt
≤λn

W

(
J

∑
j=1

(ρn
j−1)

2e−βxj−1 e−βΔx −
J

∑
j=1

(ρn
j )

2e−βxj

)
(65)

+
a(Δx)2

Δt

⎛⎝( J

∑
j=1

ρn
j − rnρn

J + rnρn
0

)2

−
(

J

∑
j=1

ρn
j

)2
⎞⎠ (66)

=λn
We−βΔx

(
1

Δx
‖�ρn‖2

β − e−β(ρn
J )

2 + (ρn
0 )

2
)
− λn

W
Δx

‖�ρn‖2
β (67)

+
a

Δt

((
Wn − rnΔxρn

J + rnΔxρn
0

)2 − (Wn)2
)

(68)

=
e−βΔx − 1

Δx
λn

W‖�ρ‖2
β + An

1 . (69)

Here, the last line is as in ([10], (4.29)) except that the boundary term ρn
0 that is part of

An
1 includes now the disturbance dn. We split the boundary condition at x = 0 as

ρn
0 = ρn

0 + kdn, ρn
0 := kρn

J + (1 − k)θWn (70)

and obtain

An
1 =λn

We−βΔx
(
(ρn

0 + kdn)2 − e−β(ρn
J )

2
)

(71)

+ aλn
W

(
rnΔx

(
ρn

0 + kdn − ρn
J

)2
+ 2
(

ρn
0 + kdn − ρn

J

)
Wn
)

. (72)

As in the continuous case, we estimate

(ρn
0 + kdn)2 ≤ (1 + β2)(ρn

0 )
2 + (1 +

1
β2 )(kdn)2 (73)

and similarly for the term 2kdnWn and
(

ρn
0 + kdn − ρn

J

)2
, respectively. Hence, we obtain

An
1 ≤An

2 + An
3 + An

4 ,

An
2 :=λn

We−βΔx
(
(ρn

0 )
2 − e−β(ρn

J )
2
)
+ aλn

W

(
rnΔx

(
ρn

0 − ρn
J

)2
+ 2
(

ρn
0 − ρn

J

)
Wn
)

,

An
3 :=β2λn

We−βΔx(ρn
0 )

2 + β2‖a‖λn
WrnΔx

(
ρn

0 − ρn
J

)2
+ β2λn

W(Wn)2,

An
4 :=λn

We−βΔx(1 +
1
β2 )(kdn)2 + ‖a‖λn

WrnΔx(1 +
1
β2 )(kdn)2 +

1
β2 ‖a‖λn

W(kdn)2.

Next, we estimate An
3 and An

4 . Here, we use that a defined by (51), λn
W , are bounded by

‖a‖ ≤ β

eβ − 1
≤ 1, λn

W ≤ A
B

, and rn ≤ 1,

respectively, and that rn, Δx and θ are all bounded by one. Additionally, we have a bound
on (Wn)2 due to (56) and β ≤ 1 by (60) such that

(ρn
0 )

2 ≤ 2
(

ρn
J

)2
+ 2(Wn)2 ≤ (2 + 2(1 + 3))‖�ρn‖2

β, and
(

ρn
0 − ρn

J

)2 ≤ 22‖�ρn‖2
β.

Hence, there exists a constant C > 0 such that An
3 and An

4 are estimated by

An
3 ≤ Cβ2λn

W‖�ρn‖2
β and An

4 ≤ (1 +
3
β2 )λ

n
W(dn)2. (74)
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A crucial estimate is now performed on An
2 . Due to the previous estimates as well as

due to Equation (70) we have that An
2 coincides with ([10], A2) and hence we may use the

same estimates ([10], (4.31), (4.34)) to obtain

An
2 ≤λn

Wθ2(Wn)2
(
(k − e−β)(2 − eβΔx) + e−βΔx(1 − k)

)
≤λn

Wθ2(1 + 3β)‖�ρn‖2
β

(
(k − e−β)(2 − eβΔx) + e−βΔx(1 − k)

)
≤λn

Wθ2(1 + 3β)‖�ρn‖2
β β.

The previous estimates allow to estimate the discrete temporal derivative of L in
Equation (65) for n ≥ 0 :

Ln+1 −Ln

Δt
≤ e−βΔx − 1

Δx
λn

W‖�ρ‖2
β + An

2 + An
3 + An

4

≤
(
(−β +

Δx
2

β2) + θ2(β + 3β2) + Cβ2
)

λn
W‖�ρ‖2

β + (1 +
3
β2 )λ

n
W(dn)2,

≤− β

(
1 − β

2
− θ2(1 + 3β)− Cβ

)
λn

W‖�ρ‖2
β + (1 +

3
β2 )λ

n
W(dn)2,

≤− β
1 − θ2

2
λn

W‖�ρn‖2
β + (1 +

3
β2 )λ

n
W(dn)2.

The last inequality holds true provided that 0 < β is sufficiently small such that
(60) and

β ≤ 1 − θ2

7 + 2C
. (75)

hold true.
Finally, it remains to show that λn

W is bounded from below by a strictly positive
number. This is equivalent to show that Wn is bounded from above and similar to the
continuous analysis. Note that due to ‖�ρn‖2

β ≥ Ln and therefore

Ln+1 −Ln

Δt
≤ −b1λn

WLn + b2(dn)2, (76)

b1 := b1(β) = β
1 − θ2

2
, b2 := b2(β) := 1 +

3
β2 . (77)

Solving recursively (76), we obtain with ∏n
r=n+1(·) = 1

Ln+1 ≤
n

∏
m=0

(1 − Δtb1λm
W)L0 + b2Δt

n

∑
m=0

λm
W(dm)2

n

∏
r=m+1

(1 − b1Δtλr
W) (78)

≤ exp

(
−b1Δt

n

∑
m=0

λm
W

)
L0 + max

0≤s≤n
(ds)2b2Δt

n

∑
m=0

λm
W

n

∏
r=m+1

(1 − b1Δtλr
W). (79)
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The following equalities show that the last term of the previous sum can be bounded
independent of λn

W :

− 1
b1Δt

n

∑
m=0

−b1Δtλm
W

n

∏
r=m+1

(1 − b1Δtλr
W) (80)

=− 1
b1Δt

n

∑
m=0

(1 − b1Δtλm
W − 1)

n

∏
r=m+1

(1 − b1Δtλr
W) (81)

=− 1
b1Δt

n

∑
m=0

(
n

∏
r=m

(1 − b1Δtλr
W)−

n

∏
r=m+1

(1 − b1Δtλr
W)

)
(82)

=− 1
b1Δt

n

∏
r=0

(1 − b1Δtλr
W)− 1 (83)

=
1

b1Δt

(
1 −

n

∏
r=0

(1 − b1Δtλr
W)

)
. (84)

Note that since b1 < 1 and Δt fulfills the CFL condition (41) we have that for all n ≥ 0,

b1Δtλn
W ≤ b1Δx ≤ 1

and therefore 1 − b1Δtλr
W is non–negative. In addition, by definition −ρ∗ ≤ Wn and due

to (59) and (60), we have

(Wn)2 ≤ 4‖�ρn‖2
β ≤ 8

1 − θ
Ln. (85)

Combing the previous estimate, (79) and (84), we obtain

1 − θ

8
(Wn)2 ≤ Ln ≤ exp

(
−b1Δt

n

∑
m=0

λm
W

)
L0 + max

0≤s≤n
(ds)2 b2

b1

(
1 −

n

∏
r=0

(1 − b1Δtλr
W)

)

≤L0 + max
0≤s≤n

(ds)2 b2

b1
≤ ‖�ρ0‖2

β + max
0≤s≤n

(ds)2 2(β2 + 3)
β3(1 − θ2)

.

Since the norm of ‖ρ0‖l2 is bounded according to assumption (49), this shows that Wn

is bounded from above by constant c = c(R, θ, β, ‖d‖�∞). This implies that there exists a
constant 0 > σ2 = σ2(R, ρ∗, θ, β, ‖d‖�∞) such that

σ2 ≤ λn
W ≤ A

B
, ∀n ≥ 0. (86)

Note that the norm ‖d‖�∞ can be bounded by D by assumption.
In the last step we now use the bound on λn

W to obtain the exponential decay of Ln.
Using (86) in estimate (76), we obtain for all n ≥ 0

Ln+1 −Ln

Δt
≤ −β

1 − θ2

2
σ2Ln + (1 +

3
β2 )

A
B
(dn)2 = −ηLn + ν(dn)2, (87)

and η := β 1−θ2

2 σ2 > 0 and ν := (1+ 3
β2 )

A
B . This concludes the proof in the discrete case.

4. Numerical Simulations

In this section, we illustrate the theoretical results in Sections 2 and 3 by providing
numerical computations of ISS of a scalar conservation law with nonlocal velocity and
boundary measurement error. We apply the discretization introduced in the previous
section and we chose A = B = 1 which leads to the velocity function
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λ(W(t)) =
1

1 + W(t)
, with W(t) =

∫ 1

0
ρ(t, x)dx. (88)

As measurement error, we consider

d(t) = 2.4 × 10−3 sin(t), t ∈ (0, ∞). (89)

4.1. Example 1

In this example, we consider the equilibrium solution ρ∗ = 0 and an initial condition
ρ0(x) = 1 + sin(2πx) for x ∈ [0, 1]. In the figures following, we show the decay of the
discrete L2-error ‖�ρn − ρ∗‖�2 of the system Equation (8) for two given CFL conditions 0.5
and 0.9 in Table 1, respectively. Here, CFL=a ≤ 1 is a stronger condition than (41) and it
implies that Δt is such that

λn
W

Δt
Δx

≤ a < 1, n ≥ 0. (90)

A value CFL≤ 1 improves the stability of the scheme at the expense of additional
artificial diffusion of the scheme. Due to the artificial diffusion and the disturbance we
observe only approximately the excepted first-order convergence with respect to Δx of the
Upwind scheme. In Figure 1, the convergence of the solution of the system in Equation (8)
to the equilibrium for different values of k is shown. As expected we observe that as k
increases the rate of decay of the Lyapunov function decreases. Furthermore, we observe
that below the mesh accuracy of Δx = 10−3 no further decay is observed.

Table 1. Comparison of ‖�ρn − ρ∗‖2
�2 for different number of grid points J with ρ∗ = 0, k = 0.3 and

T = 10.

(a) CFL = 0.5.

J ‖�ρn − ρ∗‖�2 order

100 1.9171 e-05 –
200 1.1899 e-05 0.6881 e+00
400 6.9631 e-06 0.7730 e+00
800 3.7638 e-06 0.8875 e+00
1600 1.5902 e-06 1.2430 e+00

(b) CFL = 0.9.

J ‖�ρn − ρ∗‖�2 order

100 1.3831 e-05 –
200 8.1304 e-06 0.7665 e+00
400 4.8604 e-06 0.7423 e+00
800 2.8262 e-06 0.7822 e+00
1600 1.1624 e-06 1.2818 e+00
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Figure 1. Comparison of log-scale of ‖�ρn − ρ∗�e‖L2
Δx

with Courant–Friedrichs–Lewy condition (CFL)
= 0.75 and ρ∗ = 0.

4.2. Example 2

We repeat the previous experiment for a non-zero steady state, i.e., we choose ρ∗ = 1
and as initial condition ρ0(x) = 2 + 2 sin(2πx) x ∈ [0, 1]. We show similar results as above
for the system in Equation (8) which are presented in Table 2 and Figure 2.

Table 2. Comparison of ‖�ρn − ρ∗‖�2 of the solution for number of grids J with ρ∗ = 1, k = 0.3 and
T = 20.

(a) CFL = 0.5.

J ‖�ρn − ρ∗‖�2 order

100 3.0916 e-04 –
200 1.5261 e-04 1.0185 e+00
400 7.2438 e-05 1.0750 e+00
800 3.1425 e-05 1.2048 e+00
1600 1.0567 e-05 1.5723 e+00

(b) CFL = 0.9.

J ‖�ρn − ρ∗‖�2 order

100 2.8645 e-04 –
200 1.4299 e-04 1.0024 e+00
400 6.9982 e-05 1.0309 e+00
800 3.0215 e-05 1.2117 e+00
1600 1.0128 e-05 1.5769 e+00
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Figure 2. Comparison of log-scale of ‖�ρn − ρ∗�e‖�2 with CFL = 0.75 and ρ∗ = 1.

5. Conclusions and Outlook

This paper considered input-to-state stability (ISS) for a scalar conservation law with
nonlocal velocity and boundary measurement error. An ISS-Lyapunov function is em-
ployed to investigate conditions for ISS of an equilibrium for the scalar conservation law
with nonlocal velocity and measurement error. Numerical study of a decay of ISS-Lyapunov
function is analyzed. Finally, numerical simulations illustrate the theoretical results.

Possible extensions might be to consider also ISS with respect to the L2-norm in time
in the continuous and discrete case.

A drawback of Theorem 1 is the fact that the system might not have a solution a priori.
As stated in Remark 1, it might be possible to extend results [40–42] to obtain a continuous
in time and L2-space solution for the presented problem. This is subject of future work.
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