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Thermodynamic phases are the most prominent manifestation of emergent behavior.
Among them, crystals and liquids traditionally epitomize the antagonistic concepts of order
and disorder (i.e., the presence or absence of a symmetry). According to common wisdom,
the competition for stability between solid and liquid reflects the struggle between the
opposite tendencies of energy minimization and entropy maximization, which is regulated
by temperature. It goes without saying that the previous statement is in fact too simplistic,
since in equilibrium the guiding principle is rather the minimization of the thermodynamic
potential (maximization of the Massieu function) appropriate to the given control parame-
ters. For instance, crystallization sometimes occurs with the purpose to maximize entropy
(as for hard spheres under pressure). A further example is provided by superfluid, which
can be one of the phases of minimum energy/enthalpy at zero temperature.

The relevance of the solid/liquid dichotomy for statistical physics cannot simply be
overstated. It was under the pressure of accurately locating the solid–liquid transition in
simple-fluid models that “exact” free-energy methods were initially developed [1,2]. Since
then, variations on these methods have been employed to compute the phase diagram of
many complex fluids, such as liquid crystals [3], cluster crystals [4], and fluids of patchy
particles [5]. Generally speaking, the full control of phase behavior can help in the synthesis
of artificial materials with the desired specifications.

Turning to theory, while the exact determination of the partition function for a
non-trivial system with solid, liquid, and vapor phases will probably never be accom-
plished, there are nevertheless variational treatments of the solid–liquid transition (density
functional theories) that have by now reached a high degree of sophistication (see, e.g.,
Refs. [6,7]). However, a schematic phase diagram with the standard three phases can be
obtained with less effort, see for instance the mean-field analysis of the Potts lattice gas [8].

It is usually thought that (classical) liquid is a unique phase, while crystals are a
multitude. In fact, this is only partially true, since liquids composed of hydrogen-bonded
molecules exhibit a number of so-called water-like “anomalies” that make them different
in many respects from conventional (rare-gas) fluids (see, e.g., [9]). The relationship
between such anomalies and solid polymorphism/polyamorphism is an important topic
of statistical physics. Phase diagrams with many solid polymorphs are the rule for simple
substances (e.g., Na [10]) under huge pressure. Here, exact free-energy methods face
a serious limitation, since the crystalline structures—Bravais and non-Bravais—being
potentially relevant are countless. Metadynamics [11] and evolutionary algorithms [12]
are a possible way out, since they do not involve any assumption on the topology of the
energy landscape.

Condensed-matter physics also features a wide variety of phases with mixed solid
and liquid characteristics. Hexatic fluids [13], liquid-crystal smectics [14], crystalline mem-
branes [15], and quantum supersolids [16] are just a few examples of hybrid states of
aggregation, with others yet to be discovered. In the last few years, a new category of sys-
tems, i.e., self-assembling materials, has fallen under the scrutiny of the statistical-physics
community (see, e.g., [17]). Here, some kind of order at the mesoscopic scale spontaneously
emerges from the interaction between simple microscopic units. For these systems, the
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precise interplay between thermodynamics and kinetics in the onset of aggregates is still
being worked out. As we move forward in the bottom-up investigation of biological matter,
the concerted role of energy and entropy in the formation of structures with hierarchical
order will be made more clear.

This Special Issue collects articles published between April 2020 and May 2021, high-
lighting novel results in the application of statistical thermodynamics to liquids and crystals.

In the first of these articles [18], the focus is on the virial equation of state for mixtures
of hard hyperspheres. While such systems obviously have no counterpart in the real
world, they still represent a useful playground where to explore the effectiveness of
approximations routinely employed in three dimensions. If geometric considerations
play a leading role in the crossover from three to five dimensions, then simple analytic
extensions of approximations that proved successful in lower dimensions would provide
accurate equations of state for hard hyperspheres in the fluid phase. It turns out that the
sole requirement of reproducing the exact second and third virial coefficients yields, in
four and five dimensions, approximate equations of state of overall good quality in the
comparison with computer-simulation data.

Moderately dense particles driven far from equilibrium are much harder to attack
theoretically. In this case, numerical simulation is the only method to assess the accuracy
of fluid dynamic equations. The second article in this Special Issue [19] is an attempt to
investigate turbulent convection using the Boussinesq approximation—accounting for the
variation of density with temperature only in the buoyancy term of the Navier–Stokes
equation. The approach of numerical simulation allows one to analyze both heat and mass
flow under a variety of boundary conditions, with potential applications in oceanography,
geophysics, astrophysics, and industry.

A well-established approach to the entropy of a simple fluid is the so-called mul-
tiparticle correlation expansion (MPCE), expressing the statistical entropy as a sum of
contributions from increasingly large numbers of particles. Upon truncating the MPCE
after the two-body term S2, one has an estimate of the exact entropy that turns out to be
accurate right at the point of transition into a crystal, leading to a freezing criterion [20]
that has had a certain success in the past. After reviewing the history of the entropy MPCE,
Ref. [21] inquires into the possibility of formulating an analogous entropic criterion for
melting, given that a MPCE formally holds also for the entropy of a crystal. However, the
computation of S2 proves to be a formidable task even for a crystal of hard disks, thus
dampening the enthusiasm for any melting criterion based on the numerical evaluation of
the two-body entropy.

Reference [22] investigates pattern formation in a two-dimensional lattice gas system.
Lattice gases allow for an exact thermodynamic analysis at zero temperature, since all
possible ground states can be enumerated and compared with each other in terms of
enthalpy. Such studies can be helpful to design and control the functionalization of
colloidal particles with polymers.

Hard-core bosons are the quantum counterpart of lattice-gas particles. Lattice systems
of bosonic particles provide models where the competition between itinerant and local-
ized quantum states can be examined in full detail. The prototype of all such models is
the celebrated Bose-Hubbard model, describing the behavior of ultracold bosonic atoms
trapped in an optical lattice. Upon increasing the intensity of laser light, the confining
potential gets deeper until a transition occurs from superfluid to Mott insulator (i.e., a
normal cluster solid) [23,24]. The Bose–Hubbard model and its variants provide an ideal
setting for exploring strong-correlation effects in quantum systems, which now are also
studied for bosons on the nodes of a spherical mesh [25,26]. However weird this geometry
may seem, traps located at the vertices of a polyhedron can be fabricated with optical
tweezers and loaded with Rydberg atoms [27]. In particular, a system of bosons in a cubic
mesh [25] offers the opportunity to assess the validity of mean-field theory, as well as to
uncover the manifestations of superfluidity in a small quantum system.
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Spatial correlations between triplets of particles in a fluid or solid are notoriously
difficult to investigate in full extent, owing to heavy CPU-time and memory requirements.
Yet, triplet correlations convey crucial information for any statistical analysis aiming to
go beyond the traditional pairwise approximation. Reference [28] investigates triplet
correlations in a fluid of quantum hard spheres, as well as in two crystalline phases of the
same system. Using path-integral Monte Carlo simulations, the author of [28] delves into
the accuracy of a few closure relations expressing the triplet distribution function in terms
of two-body terms, eventually identifying a combination of closures that performs well in
rather disparate conditions.

The emergency caused by the COVID-19 pandemic has boosted a large amount of
research activities in the last year with the purpose of clarifying the many open questions
that arise in connection with the transmission of the infection. Our Special Issue too
contains an article on the problem [29], about diffusion in the air of liquid nanodroplets
containing the infective agent. Using a molecular theory, the author of [29] derives an
effective Hamiltonian for gas atoms and liquid droplets which accounts for the interaction
and correlation effects induced by the granular structure of the droplets. Similar theoretical
studies may be viewed as complementary to atomistic simulations, which are obviously
much more computationally demanding.

The last article in this Special Issue [30] deals with a numerical investigation of the
self-assembling behavior of a system made up of asymmetric dimers and marbles (“disks”)
confined in a spherical surface, as is realized by, e.g., a mixture of colloidal particles
spread over the surface of an oil droplet. In the model, the formation of disk aggregates is
triggered by a short-range attraction between the disk and one of the monomers. For low
disk compositions, only small clusters are found, while for higher composition values, we
observe the onset of long flexible chains which, at sufficiently high density, give origin to an
intricate network on the sphere. When disks are much larger than dimers, square-ordered
patches are formed instead, similar to the truncated triangular crystals of polystyrene
spheres growing on the inside walls of water droplets [31], and in striking contrast to the
spanning triangular crystal, punctuated by islands of defects, that is promoted by entropy
alone in dense hard disks on a sphere [32].

It is our hope that this Special Issue leaves the reader with the impression that the field
of liquids and crystals is a vivid research area, full of problems still waiting for solution,
and open to surprises.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.
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Abstract: New proposals for the equation of state of four- and five-dimensional hard-hypersphere
mixtures in terms of the equation of state of the corresponding monocomponent hard-hypersphere
fluid are introduced. Such proposals (which are constructed in such a way so as to yield the exact
third virial coefficient) extend, on the one hand, recent similar formulations for hard-disk and
(three-dimensional) hard-sphere mixtures and, on the other hand, two of our previous proposals
also linking the mixture equation of state and the one of the monocomponent fluid but unable to
reproduce the exact third virial coefficient. The old and new proposals are tested by comparison
with published molecular dynamics and Monte Carlo simulation results and their relative merit
is evaluated.

Keywords: equation of state; hard hyperspheres; fluid mixtures

1. Introduction

The interest in studying systems of d-dimensional hard spheres has been present for many decades
and still continues to stimulate intensive research [1–96]. This interest is based on the versatility of
such systems that allows one to gain insight into, among other things, the equilibrium and dynamical
properties of simple fluids, colloids, granular matter, and glasses with which they share similar
phenomenology. For instance, it is well known that all d-dimensional hard-sphere systems undergo
a fluid-solid phase transition which occurs at smaller packing fractions as the spatial dimension is
increased. This implies that mean-field-like descriptions of this transition become mathematically
simpler and more accurate as one increases the number of dimensions. Additionally, in the limit of
infinite dimension one may even derive analytical results for the thermodynamics, structure, and phase
transitions of such hypersphere fluids [1–13]. In particular, the equation of state (EOS) truncated at the
level of the second virial coefficient becomes exact in this limit [8].

While of course real experiments cannot be performed in these systems, they are amenable to
computer simulations and theoretical developments. Many aspects concerning hard hyperspheres
have been already dealt with, such as thermodynamic and structural properties [13–67],
virial coefficients [67–80], and disordered packings [52,81–91] or glassy behavior [12,81,82,92].
Nevertheless, due to the fact that (except in the infinite dimensional case) no exact analytical results
are available, efforts to clarify or reinforce theoretical developments are worth pursuing. In the case of
mixtures of hard hyperspheres this is particularly important since, comparatively speaking, the literature
pertaining to them is not very abundant. To the best of our knowledge, the first paper reporting an
(approximate) EOS for additive binary hard-hypersphere fluid mixtures is the one by González et al. [28],
in which they used the overlap volume approach. What they did was to compute the partial direct
correlation functions through an interpolation between the exact low-density and the Percus–Yevick

Entropy 2020, 22, 469; doi:10.3390/e22040469 www.mdpi.com/journal/entropy5
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high-density behavior of such functions to produce a Carnahan–Starling-like EOS which they subsequently
compared with the (very few then) available simulation data for additive hard-disk mixtures. A few
years later, we [32,48] proposed an ansatz for the contact values of the partial radial distribution functions
complying with some exact limiting conditions to derive an EOS (henceforth denoted with the label “e1”)
of a multicomponent d-dimensional hard-sphere fluid in terms of the one of the single monocomponent
system. To our knowledge, the first simulation results for the structural and thermodynamic properties
of additive hard-hypersphere mixtures were obtained via molecular dynamics (MD) for a few binary
mixtures in four and five spatial dimensions by González-Melchor et al. [36], later confirmed by Monte
Carlo (MC) computations by Bishop and Whitlock [41]. The comparison between such simulation
results and our e1 EOS [32] led to very reasonable agreement. Later, we proposed a closely related EOS
(henceforth denoted with the label “e2”) stemming from additional exact limiting conditions applied to
the contact values of the partial radial distribution functions [37,48]. A limitation of these proposals is that,
except in the three-dimensional case, they are unable to yield the exact third virial coefficient. As shown
below, extensions of these EOS (denoted as “ē1” and “ē2”) complying with the requirement that the third
virial coefficient computed from them is the exact one, may be introduced with little difficulty. More
recently, we have developed yet another approximate EOS (henceforth denoted with the label “sp”) for
d-dimensional hard-sphere fluid mixtures [63,64,93], and newer simulation results for hard hypersphere
mixtures have also been obtained [57–59]. It is the aim of this paper to carry out a comparison between
available simulation data for binary additive four- and five-dimensional hypersphere fluid mixtures and
our theoretical proposals.

The paper is organized as follows. In order to make it self-contained, in Section 2 we provide
a brief outline of the approaches we have followed to link the EOS of a polydisperse d-dimensional
hard-sphere mixture and that of the corresponding monocomponent system. Section 3 presents the
specific cases of four and five spatial dimensions, the choice of the EOS of the monocomponent system
to complete the mapping, and the comparison with the simulation data. We close the paper in Section 4
with a discussion of the results and some concluding remarks.

2. Mappings between the Equation of State of the Polydisperse Mixture and That of the
Monocomponent System

Let us begin by considering a mixture of additive hard spheres in d dimensions with an arbitrary
number s of components. This number s may even be infinite, i.e., the system may also be a
polydisperse mixture with a continuous size distribution. The additive hard core of the interaction
between a sphere of species i and a sphere of species j is σij =

1
2 (σi + σj), where the diameter of a sphere

of species i is σii = σi. Let the number density of the mixture be ρ and the mole fraction of species i be
xi = ρi/ρ, where ρi is the number density of species i. In terms of these quantities, the packing fraction
is given by η = vdρMd, where vd = (π/4)d/2/Γ(1 + d/2) is the volume of a d-dimensional sphere of
unit diameter, Γ(·) is the Gamma function, and Mn ≡ 〈σn〉 = ∑s

i=1 xiσ
n
i denotes the nth moment of

the diameter distribution.
Unfortunately, no exact explicit EOS for a fluid mixture of d-dimensional hard spheres is available.

The (formal) virial expression for such EOS involves only the contact values gij(σ
+
ij ) of the radial

distribution functions gij(r), where r is the distance, namely

Z(η) = 1 +
2d−1

Md
η

s

∑
i,j=1

xixjσ
d
ijgij(σ

+
ij ), (1)

where Z = p/ρkBT is the compressibility factor of the mixture, p being the pressure, kB the Boltzmann
constant, and T the absolute temperature. Hence, a useful way to obtain approximate expressions for
the EOS of the mixture is to propose or derive approximate expressions for the contact values gij(σ

+
ij ).

We have already followed this route and the outcome is briefly described in Sections 2.1 and 2.2.
More details may be found in Ref. [48] and references therein.
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2.1. The e1 Approximation

The basic assumption is that, at a given packing fraction η, the dependence of gij(σ
+
ij ) on the sets

of {σk} and {xk} takes place only through the scaled quantity

zij ≡
σiσj

σij

Md−1
Md

, (2)

which we express as
gij(σ

+
ij ) = G(η, zij), (3)

where the function G(η, z) is universal, i.e., it is a common function for all the pairs (i, j), regardless of
the composition and number of components of the mixture. Next, making use of some consistency
conditions, we have derived two approximate expressions for the EOS of the mixture. The first one,
labeled “e1,” indicating that (i) the contact values gij(σ

+
ij ) used are an extension of the monocomponent

fluid contact value gs ≡ g(σ+) and that (ii) G(η, z) is a linear polynomial in z, leads to an EOS that
exhibits an excellent agreement with simulations in 2, 3, 4, and 5 dimensions, provided that an accurate
gs is used as input [32,36,57,59,67]. This EOS may be written as

Ze1(η) = 1 +
η

1 − η
2d−1(Ω0 − Ω1) + [Zs(η)− 1]Ω1, (4)

where the coefficients Ωm depend only on the composition of the mixture and are defined by

Ωm = 2−(d−m)
Mm

d−1

Mm+1
d

d−m

∑
n=0

(
d − m

n

)
Mn+m Md−n. (5)

It is interesting to point out that from Equation (4) one may write the virial coefficients of the
mixture Bn, defined by

Z(ρ) = 1 +
∞

∑
n=1

Bn+1ρn, (6)

in terms of the (reduced) virial coefficients of the single component fluid bn defined by

Zs(η) = 1 +
∞

∑
n=1

bn+1ηn. (7)

The result is
B̄e1

n = Ω1bn + 2d−1(Ω0 − Ω1), (8)

where B̄n ≡ Bn/(vd Md)
n−1 are reduced virial coefficients. Since b2 = 2d−1, Equation (8) yields the

exact second virial coefficient [63]
B̄2 = 2d−1Ω0. (9)

In general, however, B̄e1
n with n ≥ 3 are only approximate. In particular,

B̄e1
3 = 1 +

(
b3

4
+ 2

)
M1M3

M4
+ 3

M2
2

M4
+

(
3b3

4
− 6

)
M2M2

3
M2

4
, (d = 4), (10a)

B̄e1
3 = 1 +

65
4

M1M4

M5
+ 10

M2M3

M5
+ 45

M2M2
4

M2
5

+
135

4
M2

3 M4

M2
5

, (d = 5). (10b)

In Equation (10a),

b3 = 64

(
4
3
− 3

√
3

2π

)
, (d = 4), (11)

7
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is the reduced third virial coefficient of a monocomponent four-dimensional fluid, while in
Equation (10b) we have taken into account that b3 = 106 if d = 5.

It is interesting to note that, by eliminating Ω0 and Ω1 in favor of B̄2 and B̄e1
3 , Equation (4) can be

rewritten as

Ze1(η) = 1 +
η

1 − η

b3B̄2 − b2B̄e1
3

b3 − b2
+ [Zs(η)− 1]

B̄e1
3 − B̄2

b3 − b2
. (12)

2.2. The e2 Approximation

The second approximation, labeled “e2,” similarly indicates that (i) the resulting contact values
represent an extension of the single component contact value gs and that (ii) G(η, z) is a quadratic
polynomial in z. In this case, one also gets a closed expression for the compressibility factor in terms of
the packing fraction η and the first few moments Mn, n ≤ d. Such an expression is

Ze2(η) = Ze1(η)− (Ω2 − Ω1)

[
Zs(η)

(
1 − 2d−2η

)
− 1 − 2d−2 η

1 − η

]
. (13)

The associated (reduced) virial coefficients are

B̄e2
n = B̄e1

n − (Ω2 − Ω1)
[
bn − 2d−2 (1 + bn−1)

]
. (14)

Again, since b1 = 1 and b2 = 2d−1, the exact second virial coefficient, Equation (9), is recovered
for any dimensionality. Additionally, in the case of spheres (d = 3), b3 = 10 and thus B̄e1

3 = B̄e2
3 =

4Ω0 + 6Ω1, which is the exact result for that dimensionality. In the cases of d = 4 and d = 5, one has

B̄e2
3 = 1 +

(
b3

2
− 7

)
M1M3

M4
+ 3

M2
2

M4
+ (b3 − 15)

M2M2
3

M2
4

+

(
18 − b3

2

)
M4

3

M3
4

, (d = 4), (15a)

B̄e2
3 = 1 +

25
2

M1M4

M5
+ 10

M2M3

M5
+

75
2

M2M2
4

M2
5

+
45
2

M2
3 M4

M2
5

+
45
2

M3M3
4

M3
5

, (d = 5). (15b)

It is also worthwhile noting that Ω1 = Ω2 in the case of disks (d = 2) and thus Ze1(η) = Ze2(η)

for those systems.

2.3. Exact Third Virial Coefficient. Modified Versions of the e1 and e2 Approximations

As said above, both B̄e1
3 and B̄e2

3 differ from the exact third virial coefficient, except in the
three-dimensional case (d = 3). The exact expression is [63]

B̄3 =
1

M2
d

s

∑
i,j,k=1

xixjxkB̂ijk, (16a)

B̂ijk =
d2

3
25d/2−1Γ(d/2)

(
σijσikσjk

)d/2 ∫ ∞

0

dκ

κ1+d/2 Jd/2(κσij)Jd/2(κσik)Jd/2(κσjk), (16b)

where Jn(·) is the Bessel function of the first kind of order n.
For odd dimensionality, it turns out that the composition-independent coefficients B̂ijk have a

polynomial dependence on σi, σj, and σk. As a consequence, the third virial coefficient B̄3 can be
expressed in terms of moments Mn with 1 ≤ n ≤ d. In particular [63],

B̄3 = 1 + 10
M1M4

M5
+ 20

M2M3

M5
+ 25

M2M2
4

M2
5

+ 50
M2

3 M4

M2
5

, (d = 5). (17)
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On the other hand, for even dimensionality the dependence of B̂ijk on σi, σj, and σk is more
complex than polynomial. In particular, for a binary mixture (s = 2) with d = 4 one has

B̂111 = b3σ8
1 , (d = 4), (18a)

B̂112 =σ8
1

16(1 + q)4

3

[
1 − 1

8π
(1 − q)(3 + q)(5 + 2q + q2) arcsin

1
1 + q

−
√

q(2 + q)
24π(1 + q)4 (45 + 138q

+113q2 + 68q3 + 47q4 + 18q5 + 3q6
) ]

, (d = 4), (18b)

where q ≡ σ2/σ1 is the size ratio. The expressions for B̂222 and B̂122 can be obtained from
Equations (18a) and (18b), respectively, by the replacements σ1 → σ2, q → q−1.

Figure 1 displays the size-ratio dependence of the exact second and third virial coefficients
for three representative binary compositions of four- and five-dimensional systems. The degree of
bidispersity of a certain binary mixture can be measured by the distances 1 − B̄2/b2 and 1 − B̄3/b3.
In this sense, Figure 1 shows that, as expected, the degree of bidispersity grows monotonically as the
small-to-big size ratio decreases at a given mole fraction. It also increases as the concentration of the
big spheres decreases at a given size ratio, except if the latter ratio is close enough to unity.

Figure 1. Plot of the ratios B̄2/b2 (dashed lines) and B̄3/b3 (solid lines) vs. the size ratio σ2/σ1 for
binary mixtures with mole fractions x1 = 0.2, 0.5, and 0.8. Panel (a) corresponds to d = 4, while panel
(b) corresponds to d = 5.

To assess the quality of the approximate coefficients (10) and (15), we plot in Figure 2 the ratios
Be1

3 /B3 and Be2
3 /B3 as functions of the size ratio σ2/σ1 for the same three representative binary

compositions as in Figure 1. As we can observe, both the e1 and e2 approximations predict values
for the third virial coefficient in overall good agreement with the exact values, especially as the
concentration of the big spheres increases. The e1 approximation overestimates B3 and generally
performs worse than the e2 approximation, which tends to overestimate (underestimate) B3 if the
concentration of the big spheres is sufficiently small (large). Additionally, the agreement is better in
the four-dimensional case than for five-dimensional hyperspheres. The latter point is relevant because,
as said before, the exact expressions of B3 for d = 4 are relatively involved [see Equations (18) in
the binary case], whereas Be1

3 and Be2
3 are just simple combinations of moments [see Equations (10a)

and (15a)].

9
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Figure 2. Plot of the ratios Be1
3 /B3 (solid lines) and Be2

3 /B3 (dashed lines) vs. the size ratio σ2/σ1 for
binary mixtures with mole fractions x1 = 0.2, 0.5, and 0.8. Panel (a) corresponds to d = 4, while panel
(b) corresponds to d = 5.

The structure of Equation (12) suggests the introduction of a modified version (henceforth labeled
as “ē1”) of the e1 EOS by replacing the approximate third virial coefficient B̄e1

3 by the exact one.
More specifically,

Zē1(η) = Ze1(η) +
B̄3 − B̄e1

3
b3 − b2

[
Zs(η)− 1 − b2

η

1 − η

]
. (19)

Analogously, we introduce the modified version (“ē2”) of the e2 approximation as

Zē2(η) = Ze2(η) +
B̄3 − B̄e2

3
b3 − b2

[
Zs(η)− 1 − b2

η

1 − η

]
. (20)

By construction, both Zē1(η) and Zē2(η) are consistent with the exact second and third virial
coefficients. Moreover, Zē1(η) = Zē2(η) for d = 2, while Zē1(η) = Ze1(η) and Zē2(η) = Ze2(η) for
d = 3.

2.4. The sp Approximation

Additionally, in previous work [63,64,93], we have adopted an approach to relate the EOS of the
polydisperse mixture of d-dimensional hard spheres to the one of the monocomponent fluid which
differs from the e1 and e2 approaches in that it does not make use of Equation (1). This involves
expressing the excess free energy per particle (aex) of a polydisperse mixture of packing fraction η

in terms of the one of the corresponding monocomponent fluid (aex
s ) of an effective packing fraction

ηeff as
aex(η)

kBT
+ ln(1 − η) =

α

λ

[
aex

s (ηeff)

kBT
+ ln(1 − ηeff)

]
. (21)

In Equation (21), ηeff and η are related through

ηeff
1 − ηeff

=
1
λ

η

1 − η
, ηeff =

[
1 + λ

(
η−1 − 1

)]−1
, (22)

while the parameters λ and α are determined by imposing consistency with the (exact) second and
third virial coefficients of the mixture, Equations (9) and (16). More specifically [63,64],

λ =
B̄2 − 1
b2 − 1

b3 − 2b2 + 1
B̄3 − 2B̄2 + 1

, α = λ2 B̄2 − 1
b2 − 1

. (23)

10
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Note that the ratio η/(1 − η) represents a rescaled packing fraction, i.e., the ratio between the
volume occupied by the spheres and the remaining void volume. Thus, according to Equation (22),
the effective monocomponent fluid associated with a given mixture has a rescaled packing
fraction ηeff/(1 − ηeff) that is λ times smaller than that of the mixture. Moreover, in the case of
three-dimensional hard-sphere mixtures, Equations (21)–(23) can be derived in the context of consistent
fundamental-measure theories [63,64,97,98].

Taking into account the thermodynamic relation

Z(η) = 1 + η
∂aex(η)/kBT

∂η
, (24)

the mapping between the compressibility factor of the d-dimensional monocomponent system (Zs)
and the approximate one of the polydisperse mixture that is then obtained from Equation (21) may be
expressed as

ηZsp(η)− η

1 − η
= α

[
ηeffZs(ηeff)− ηeff

1 − ηeff

]
, (25)

where a label “sp”, motivated by the nomenclature already introduced in connection with the “surplus”
pressure ηZ(η)− η/(1 − η) [63], has been added to distinguish this compressibility factor from the
previous approximations.

Equation (25) shares with Equations (19) and (20) the consistency with the exact second and third
virial coefficients. On the other hand, while Zē1(η) and Zē2(η) are related to the monocomponent
compressibility factor Zs(η) evaluated at the same packing fraction η as that of the mixture, Zsp(η) is
related to Zs(ηeff) evaluated at a different (effective) packing fraction ηeff.

Figure 3 shows that λ > 1, while α < 1, except if the mole fraction of the big spheres is large
enough (not shown). According to Equations (22) and (25), this implies that (i) ηeff < η and (ii)
the surplus pressure of the mixture at a packing fraction η is generally smaller than that of the
monocomponent fluid at the equivalent packing fraction ηeff. It is also worthwhile noting that,
in contrast to what happens with B̄2 and B̄3 (see Figure 1), λ has a nonmonotonic dependence on the
size ratio and α also exhibits a nonmonotonic behavior if x1 is small enough.

While we have proved the sp approach to be successful for both hard-disk (d = 2) [64] and
hard-sphere (d = 3) [93] mixtures, one of our goals is to test it for d = 4 and d = 5 as well.

Figure 3. Plot of the coefficients λ (solid lines) and α (dashed lines) [see Equation (23)] vs. the size ratio
σ2/σ1 for binary mixtures with mole fractions x1 = 0.2, 0.5, and 0.8. Panel (a) corresponds to d = 4,
while panel (b) corresponds to d = 5.
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3. Comparison with Computer Simulation Results

In order to obtain explicit numerical results for the different approximations to the EOS of four-
and five-dimensional hard-sphere mixtures, we require an expression for Zs(η). While other choices
are available, we considered here the empirical proposal that works for both dimensionalities by Luban
and Michels (LM) [25], which reads

Zs(η) = 1 + b2η
1 + [b3/b2 − ζ(η)b4/b3] η

1 − ζ(η)(b4/b3)η + [ζ(η)− 1] (b4/b2)η2 , (26)

where ζ(η) = ζ0 + ζ1η/ηcp, ηcp being the crystalline close-packing value. The values of b2, b3, b4, ζ0,
ζ1, and ηcp are given in Table 1.

Table 1. Values of b2–b4, ζ0, ζ1, and ηcp for d = 4 and 5.

d = 4 d = 5

b2 8 16
b3 26

(
4
3 − 3

√
3

2π

)
	 32.406 106

b4 29
(

2 − 27
√

3
4π + 832

45π2

)
	 77.7452 25 315 393

8 008 + 3 888 425
√

2
4 004π − 67 183 425 arccos(1/3)

8 008π 	 311.183
ζ0 1.2973(59) 1.074(16)
ζ1 −0.062(13) 0.163(45)
ηcp

π2

16 	 0.617 π2
√

2
30 	 0.465

In Table 2 we list the systems whose compressibility factor has been obtained from simulation,
either using MD [36] or MC [57,59] methods. The values of the corresponding coefficients B̄2 [see
Equation (9)], B̄3 [see Equations (16)–(18)], λ, and α [see Equation (23)] are also included. We assigned
a three-character label to each system, where the first (capital) letter denotes the size ratio (A–F for
σ2/σ1 = 1

4 , 1
3 , 2

5 , 1
2 , 3

5 , and 3
4 , respectively), the second (lower-case) letter denotes the mole fraction (a,

b, and c for x1 = 0.25, 0.50, and 0.75, respectively), and the digit (4 or 5) denotes the dimensionality.

12
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Table 2. Binary mixtures of four- and five-dimensional hard spheres studied through simulations (Monte
Carlo—MC or molecular dynamics—MD) and the values of their coefficients B̄2 [see Equation (9)], B̄3

[see Equations (16)–(18)], λ, and α [see Equation (23)].

d Label σ2/σ1 x1 Simulation Method B̄2 B̄3 λ α

4 Aa4 1/4 0.25 MD 1 3.85618 12.2253 1.28824 0.677138
Ab4 1/4 0.50 MD 1 5.21595 18.8828 1.10923 0.741033
Ac4 1/4 0.75 MD 1 6.60436 25.6326 1.03810 0.862800
Ba4 1/3 0.25 MD 1 4.42857 14.4931 1.28470 0.808392
Bb4 1/3 0.50 MD 1 5.56098 20.2530 1.11943 0.816497
Bc4 1/3 0.75 MD 1 6.77049 26.2935 1.04334 0.897356
Cb4 2/5 0.50 MC 2 5.87285 21.5939 1.11692 0.868418
Da4 1/2 0.25 MD 1 5.82895 20.8444 1.17876 0.958523
Db4 1/2 0.50 MD 1 and MC 2 6.38235 23.9444 1.09883 0.928396
Dc4 1/2 0.75 MD 1 7.15816 28.0333 1.04047 0.952376
Eb4 3/5 0.50 MC 2 6.90085 26.5045 1.07078 0.966532
Fa4 3/4 0.25 MD 1 7.55661 29.9061 1.03231 0.998173
Fb4 3/4 0.50 MD 1 7.56231 29.9832 1.02894 0.992515
Fc4 3/4 0.75 MD 1 7.73940 30.9790 1.01561 0.993060

5 Aa5 1/4 0.25 MD 1 6.30550 32.9426 1.24358 0.546995
Ab5 1/4 0.50 MD 1 9.52439 57.2455 1.08739 0.671954
Ac5 1/4 0.75 MD 1 12.7601 81.6145 1.02988 0.831562
Ba5 1/3 0.25 MD 1 7.21951 37.7995 1.27656 0.675687
Bb5 1/3 0.50 MD 1 10.0984 60.3097 1.10651 0.742645
Bc5 1/3 0.75 MD 1 13.0411 83.1175 1.03739 0.863898
Cb5 2/5 0.50 MC 3,4 10.6565 63.6666 1.11369 0.798464
Da5 1/2 0.25 MD 1 9.89286 55.1378 1.22316 0.886983
Db5 1/2 0.50 MD 1 and MC 3,5 11.6818 70.5615 1.10812 0.874437
Dc5 1/2 0.75 MD 1 13.7964 88.0120 1.04172 0.925768
Fa5 3/4 0.25 MD 1 14.5176 92.4875 1.04866 0.990981
Fb5 3/4 0.50 MD 1 14.6327 93.8346 1.03957 0.982162
Fc5 3/4 0.75 MD 1 15.2162 99.1168 1.02005 0.986104

1 Ref. [36], 2 Ref. [57], 3 Ref. [59], 4 x1 = 971
1944 = 0.499486, 5 x1 = 973

1944 = 0.500514.

If, as before, the degree of bidispersity is measured by 1 − B̄2/b2 and 1 − B̄3/b3, we can observe
the following ordering of decreasing bidispersity in the four-dimensional systems: Aa, Ba, Ab, Bb, Da,
Cb, Db, Ac, Bc, Eb, Dc, Fa, Fb, and Fc. The same ordering applies in the case of the five-dimensional
systems, except that, apart from the absence of the system Eb, the sequence {Ab, Bb, Da} is replaced by
either {Ab, Da, Bb} or by {Da, Ab, Bb} if either 1 − B̄2/b2 or 1 − B̄3/b3 are used, respectively.

It should be stressed that the proposals implied by Equations (4), (13), (19), (20), and (25) may be
interpreted in two directions. On the one hand, if Zs is known as a function of the packing fraction,
then one can readily compute the compressibility factor of the mixture for any packing fraction and
composition [ηeff and η being related through Equation (22) in the case of Zsp]; this is the standard
view. On the other hand, if simulation data for the EOS of the mixture are available for different
densities, size ratios, and mole fractions, Equations (4), (13), (19), (20), and (25) can be used to infer the
compressibility factor of the monocomponent fluid. This is particularly important in the high-density
region, where obtaining data from simulation may be accessible in the case of mixtures but either
difficult or not feasible in the case of the monocomponent fluid, as happens in the metastable fluid
branch [64,93].

In principle, simulation data for different mixtures would yield different inferred functions
Zs(η). Thus, without having to use an externally imposed monocomponent EOS, the degree of
collapse of the mapping from mixture compressibility factors onto a common function Zs(η) is an
efficient way of assessing the performance of Equations (4), (13), (19), (20), and (25). As shown in
Figure 4, the usefulness of those mappings is confirmed by the nice collapse obtained for all the
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points corresponding to the mixtures described in Table 2. The inferred data associated with Zē2 are
almost identical to those associated with Ze2 and thus they are omitted in Figure 4. Figure 4 also
shows that the inferred curves are very close to the LM (monocomponent) EOS, Equation (26), what
validates its choice as an accurate function Zs(η) in what follows. Notwithstanding this, one can
observe in the high-density regime that the values inferred from simulation data via Ze1 and Zē1 tend
to underestimate the LM curve for both d = 4 and d = 5, while the values inferred via Ze2 tend to
overestimate it for d = 5. Overall, one can say that the best agreement with the LM EOS is obtained by
using Ze2 and Zsp for d = 4 and d = 5, respectively.

Now we turn to a more a direct comparison between the simulation data and the approximate
EOS for mixtures. As expected from the indirect representation of Figure 4, we observed a very
good agreement (not shown) between the simulation data for the systems displayed in Table 2 and
the theoretical predictions obtained from Equations (4), (13), (19), (20), and (25), supplemented by
Equation (26).

In order to perform a more stringent assessment of the five theoretical EOS, we chose Ze1(η) as a
reference theory and focused on the percentage deviation 100[Z(η)/Ze1(η)− 1] from it. The results are
displayed in Figures 5 and 6 for d = 4 and Figures 7 and 8 for d = 5. Those figures reinforce the view
that all our theoretical proposals are rather accurate: the errors in Ze1 were typically smaller than 1%
and they are even smaller in the other approximate EOS. Note that we have not put error bars in the
MD data since they were unfortunately not reported in Reference [36]. We must also mention that the
MD data were generally more scattered than the MC ones. Moreover, certain (small) discrepancies
between MC and MD points can be observed in Figure 6c, MC data generally lying below MD data.
The same feature is also present (although somewhat less apparent) in Figure 8c. This may be due
to larger finite-size effects in the MD simulations than in the MC simulations: the MD simulations
used 648 hyperspheres for d = 4 and 512 or 1024 hyperspheres for d = 5, while the MC simulations
used 10,000 hyperspheres for d = 4 and 3888 or 7776 for d = 5. In any case, since the MC data were
statistically precise, the discrepancy might be eliminated by the inclusion of the (unknown) error bars
in the MD results. It is also worth pointing out that the representation of Figures 5–8 is much more
demanding than a conventional representation of Z vs. η for each mixture or even the representation
of Figure 4.

Figure 4. Plot of the monocomponent compressibility factor Zs(η), as inferred from simulation data
for the mixtures described in Table 2, according to the theories (from bottom to top) e1, e2, ē1, and sp
(the three latter have been shifted vertically for better clarity). The solid lines represent the Luban and
Michels (LM) equation of state (EOS), Equation (26). Panel (a) corresponds to d = 4, while panel (b)
corresponds to d = 5.
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Figure 5. Plot of the relative deviations 100[Z(η)/Ze1(η)− 1] from the theoretical EOS Ze1(η) for the
four-dimensional mixtures Aa4–Bc4 (see Table 2). Thick (red) dashed lines: e1; thick (red) solid lines:
ē1; thin (blue) dashed lines: e2; thin (blue) solid lines: ē2; dash-dotted (black) lines: sp; filled (black)
circles: MD.

Figure 6. Cont.
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Figure 6. Plot of the relative deviations 100[Z(η)/Ze1(η)− 1] from the theoretical EOS Ze1(η) for the
four-dimensional mixtures Cb4–Fc4 (see Table 2). Thick (red) dashed lines: e1; thick (red) solid lines:
ē1; thin (blue) dashed lines: e2; thin (blue) solid lines: ē2; dash-dotted (black) lines: sp; filled (black)
circles: MD; open (red) triangles with error bars in panels (a), (c), and (e): MC.

Figure 7. Plot of the relative deviations 100[Z(η)/Ze1(η)− 1] from the theoretical EOS Ze1(η) for the
five-dimensional mixtures Aa5–Bc5 (see Table 2). Thick (red) dashed lines: e1; thick (red) solid lines:
ē1; thin (blue) dashed lines: e2; thin (blue) solid lines: ē2; dash-dotted (black) lines: sp; filled (black)
circles: MD.
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Figure 8. Plot of the relative deviations 100[Z(η)/Ze1(η)− 1] from the theoretical EOS Ze1(η) for the
five-dimensional mixtures Cb5–Fc5 (see Table 2). Thick (red) dashed lines: e1; thick (red) solid lines: ē1;
thin (blue) dashed lines: e2; thin (blue) solid lines: ē2; dash-dotted (black) lines: sp; filled (black) circles:
MD; open (red) triangles with error bars in panels (a) and (c): MC.

4. Discussion and Concluding Remarks

In this paper we have carried out a thorough comparison between our theoretical proposals for the
EOS of a multicomponent d-dimensional mixture of hard hyperspheres and the available simulation
results for binary mixtures of both four- and five-dimensional hard hyperspheres. It should be stressed
that in this comparison we have restricted ourselves to the liquid branch. Let us now summarize the
outcome of the different theories for the compressibility factor.

First, we note that Zē2(η) ≈ Ze2(η) < Zsp(η) < Zē1(η) < Ze1(η). The fact that Zē2(η) ≈ Ze2(η)

is a consequence of the small deviations of Be2
3 from the exact third virial coefficient (see Figure 2).

Thus, there does not seem to be any practical advantage in choosing Zē2 instead of Ze2, especially if
d = 4 [where the exact B3 has a rather involved expression, see Equations (18)]. If one restricts oneself
to the comparison between those approximate EOS that do not yield the exact B3, namely Ze1 and Ze2,
we find that Ze2 performs generally better. On the other hand, if approximations requiring the exact
B3 as input are considered, namely Zē1, Zē2, and Zsp, the conclusion is that Zsp generally outperforms
the other two.

The comparison with the simulation data confirms that the good agreement between the results
of Ze1(η) that had been found earlier in connection with both MD [36] and MC [57,59] simulation data
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are even improved by the other approximate theories. In fact, in both the four- and five-dimensional
cases, the best agreement with the MD results is generally obtained from Zē1 and Zsp. On the other
hand, for the four-dimensional case, the best agreement with the MC results corresponds to Zē2 ≈ Ze2,
while that for the five-dimensional case corresponds to Zsp.

Finally, it must be pointed out that it seems that overall Zsp exhibits the best global behavior.
However, more accurate simulation data would be needed to confirm this conclusion. It should also
be stressed that the performance of the analyzed approximate EOS for fluid mixtures might be affected
by the reliability of the (monocomponent) LM EOS. In any event, one may reasonably argue that the
mapping between the compressibility factor of the mixture and the one of the monocomponent system
with an effective packing fraction [see Equations (22) and (25)] that had already been tested in two- [64]
and three-dimensional [93] mixtures is confirmed as an excellent approach also for higher dimensions.
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Abstract: Time evolution features of kinetic and thermal entropy generation rates in turbulent
Rayleigh-Bénard (RB) convection with mixed insulating and conducting boundary conditions at
Ra = 109 are numerically investigated using the lattice Boltzmann method. The state of flow gradually
develops from laminar flow to full turbulent thermal convection motion, and further evolves from full
turbulent thermal convection to dissipation flow in the process of turbulent energy transfer. It was
seen that the viscous, thermal, and total entropy generation rates gradually increase in wide range
of t/τ < 32 with temporal evolution. However, the viscous, thermal, and total entropy generation
rates evidently decrease at time t/τ = 64 compared to that of early time. The probability density
function distributions, spatial-temporal features of the viscous, thermal, and total entropy generation
rates in the closed system provide significant physical insight into the process of the energy injection,
the kinetic energy, the kinetic energy transfer, the thermal energy transfer, the viscous dissipated
flow and thermal dissipation.

Keywords: entropy generation rate; thermal plume; mixed boundary conditions; heat transfer

1. Introduction

The Rayleigh–Bénard (RB) convection is one of most classical natural convections [1–5],
which widely occur in a range of natural and industrial applications [1,2], such as in the Earth’s core
and mantle, atmosphere, oceans and stars, nuclear reactors, crystallization processes, solar heating
devices and so on. The RB convection has been extensively investigated by several experiments in the
last few decades [6,7], mostly in slender cells of aspect ratio smaller than or equal to unity in order to
reach the largest possible Rayleigh numbers (Ra) or to reveal the detailed characteristic mechanisms of
turbulent viscous dynamic and heat transport near the walls or central domains [3,4]. The detailed
dynamical and statistical insights of the included turbulent transport and their coherent structures also
have been increasingly studied in detail by direct numerical simulations (DNS) [8,9].

It is well known that when the DNS of involving no parametrization of subgrid-scale is carried
out, all the dynamically important scales are resolved to faithfully represent the flow. Bailon et al. [10]
and Schell et al. [11] reported the derived resolution criteria, thus starting the pioneering work [10,11];
subsequent refinements of this criterion were studied [12,13] and the fine boundary layer dynamics
resolution were the main focus [14]. It is only recently that the focus of DNS investigations was
presented by the bulk of the research in a convection cell with detailed discussions of the scaling
statistics and properties of the dissipation fields [15].

Entropy 2020, 22, 672; doi:10.3390/e22060672 www.mdpi.com/journal/entropy23
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In order to understand the global flow and heat transport loss mechanisms in detail, we will
present the detailed statistical characteristic mechanisms of the velocity and temperature gradient
fields, in particular the related viscous and thermal local entropy generation rates. The viscous and
thermal local entropy generation rates as a criterion are used to provide insight into the local viscous
and thermal flow loss in the flow field [16–30]. The viscous and thermal components of the local
entropy generation rate are derived in the two-dimensional Cartesian space [30]. Their expressions are
as follows, respectively [20,28].

·
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where μ is the dynamics viscosity of fluid, k denotes the thermal conductivity, θ is the temperature,
u represents the x-direction velocity and v is the y-direction velocity, respectively. The total entropy
generation rate is the summation of the viscous and thermal entropy generation rates, its expression is
as follows [22]: .

S =
.

Su +
.

Sθ (3)

The Bejan number (Be) is regarded as an effective approach to judge the importance of heat transfer
irreversibility in the domain [23]. Rejane et al. proposed the contribution of heat transfer entropy
generation on over all entropy generation by using the Be [27]. The Be is defined by the following
equation [29]:

Be =

.
Sθ

.
S

(4)

The range of Be is from 0 to 1. When Be is equal to 0, the irreversibility is dominated by fluid
friction. Correspondingly, the irreversibility is dominated by heat transfer when the Be is equal to
1. The irreversibility due to heat transfer dominates in the flow when the Be is greater than 1/2.
Correspondingly, Be < 1/2 implies that the irreversibilities due to the viscous effects dominate the
processes. Meanwhile, it is also noted that the heat transfer and fluid friction entropy generation are
equal in Be = 0.5 [27].

A wide variety of thermal plumes caused by the buoyancy in turbulent RB convection with mixed
insulating and conducting boundary conditions play dominant role in the heat transfer. Once time
evolution of the heat transfer has been described and understood in classical turbulent RB convection,
the time evolution features of kinetic and thermal entropy generation rates in turbulent RB convection
with mixed insulating and conducting boundary conditions still be further expanded. How does the
mixed insulating and conducting boundary conditions reduce or improve the time evolution features
of entropy generation rate? The mixed insulating and conducting boundary conditions considerably
affect the time evolution characteristics of thermal plumes and entropy generation rate.

Based on above discussions, our work mainly focuses on the effect of the mixed insulating
and conducting boundary conditions on the time evolution features of thermal plumes, the viscous,
thermal and total entropy generation rates. The physical insight features of kinetic and thermal entropy
generation rates with time evolution are discussed in in turbulent RB convection with the mixed
insulating and conducting boundary conditions, which mainly tried to understand the dynamics of
fluid. The remainder of this paper is divided into the following parts. In Section 2, the thermal fluid
dynamics equations and numerical method will be briefly depicted. In Section 3, the detailed results of
numerical simulation and some discussions are presented. Finally, some conclusions are addressed.
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2. Convection Diffusion Equation and Numerical Method

In this section, the convection diffusion equation of thermal fluid, and numerical method of
solving them are represented, respectively.

2.1. Convection Diffusion Equation of Thermal Fluid

The convection diffusion equation of thermal fluid is the classical Oberbeck-Boussinesq
equations [2,3], and their expressions can be given as follows [6,8].

∂ρ

∂t
+ ∇·(ρu) = 0 (5)

∂(ρu)

∂t
+ u·∇(ρu) = −∇p + ∇·(2ρνS) − gβΔθ (6)

∂θ
∂t

+ u·∇θ = κ∇2θ (7)

in which ρ is the fluid density, u represents the macroscopic velocity, ν is the kinematic viscosity, p is
the pressure of fluid, κ denotes the diffusivity, β is the thermal diffusion coefficient, g is the force of
gravity, Δθ represents the difference of temperature and θ denotes macroscopic temperature of fluid.

A large number of numerical methods are widely used to solve the classical Oberbeck-Boussinesq
equations [31–36]. The finite element methods [36], finite difference method [34] and the finite volume
method [35] are traditional macroscopic methods for Computational Fluid Dynamics (CFD) calculation.
The lattice Boltzmann method (LBM) is a computational fluid dynamics method based on mesoscopic
simulation scale [37–41]. Compared with other traditional CFD calculation methods, this method has
mesoscopic model characteristics between a micromolecular dynamics model and a macrocontinuous
model. LBM also has the advantage of a simple description of fluid interaction, and is easier to
set a complex boundary, reach a parallel calculation, and implement a program, etc. [42]. LBM has
been widely considered as an effective method to describe fluid motion and deal with engineering
problems [43,44]. In the subsection, double distribution LBM for will be introduced.

2.2. Numerical Method for Convection Diffusion Equation of Thermal Fluid

In the present paper, the double distributions of LBM are implemented to study the convection
diffusion equation of thermal fluid, respectively [38,39]. A lattice Boltzmann equation is implemented
to simulate the fluid flow field. Its expression is as follows [42]:

fi(x + ciΔt, t + Δt) = fi(x, t) + ( f eq
i (x, t)) − fi(x, t))/τν + Fi (8)

where fi(x, t) denotes the density distribution functions at (x, t), ci represents the discrete velocity.
Fi is the discrete force term, f eq

i (x, t) is the equilibrium function of density distribution, and τν denotes
the relaxation time. The equilibrium function for the density is given as:

f eq
i = ρwi[1 +

ci·u
c2

s
+

(ci·u)2

c2
s
− u2

2c2
s
] (9)

where wi denotes the weight coefficient [42]. The kinematic viscosity ν is computed by the
following equation

ν =
2τν − 1

6
(Δx)2

Δt
(10)

The lattice Boltzmann equation for the temperature field is given by the following equation

gi(x + ciΔt, t + Δt) = gi(x, t) + (geq
i (x, t)) − gi(x, t))/τθ (11)
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where gi(x, t) is the temperature distribution function at (x, t), τθ denotes the relaxation times
for temperature evolution equation. geq

i is the equilibrium function for temperature distribution.
Its expression is given as [40]:

geq
i = θwi[1 +

ci·u
c2

s
+

(ci·u)2

c2
s
− u2

2c2
s
] (12)

The diffusivity κ is as follows:

κ =
2τθ − 1

6
(Δx)2

Δt
(13)

The density, macroscopic velocity, and temperature are as follows:

ρ =
8∑

i=0

fi, ρu =
8∑

i=0

ci fi, θ =
8∑

i=0

gi (14)

The Chapman–Enskog expansions of Equations (8) and (11) are used to derive the classical
Oberbeck-Boussinesq equations [42]. A macroscopic length scale (x1 = εx) and two macroscopic time
scales (t1 = εt, t2 = εt) are implemented in the Chapman–Enskog expansion. Two time scales ∂t = ε∂t1 +

ε2∂t2 and one spatial scale ∂x = ε∂α are used for the Frisch, Hasslacher, and Pomeau (FHP) model [38].
The classical Oberbeck-Boussinesq equations can be derived by executing the streaming step and using
the above Chapman-Enskog expansion [42].

Figure 1 shows the computational model of geometrical schematic. As shown in Figure 1,
the inhomogeneities heat plates are restricted only in the bottom condition (y = 0), and are made
of alternating regions of either the isothermal boundary condition, θ = θdown, where the discrete
black region denotes heat source, or adiabatic boundary condition, ∂yθ = 0. The upper boundary
keeps a constant temperature, θ = θup. In this physical model, the ratio of width of dividing height,
ξ = H/L, and another two nondimensionless parameters are implemented to define the geometrical
configuration of the discrete heat source; the ratio of single heat source is defined as λ = l/L, and the total
ratio of discrete heat source area, η = nl/L, in which n denotes the heat source number and l represents
the single heat-source length. When η is equal to 1, the model becomes the classical RB convection.
The above several nondimensionless parameters are implemented to obtain a better understanding of
heat transfer transport in turbulent Rayleigh-Bénard convection with mixed insulating and conducting
boundary conditions.

Figure 1. Computational geometry and boundary conditions in the two-dimensional space.

The Rayleigh number is one of the most important dimensionless parameter in RB convection.
Its expression is as follows:

Ra = βΔθgH3/νκ (15)
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The Nusselt number is one of the most important dimensionless parameter in RB convection to
reflect the performance of heat transfer system. It is obtained by:

Nu = 1 +
〈
uyθ

〉
/κΔθH (16)

where Δθ is the temperature difference between the top boundary and the bottom boundary, H denotes
the channel height, uy is the y-velocity, and 〈·〉 represents the average value of entire domain.

The boundary conditions play a key role in the computational stability and accuracy. The periodic
boundary condition and approach of nonequilibrium extrapolation are carried out in this paper.
Their ideas will be introduced, respectively. The idea of the periodic boundary condition approach is
as follows [42]:

fi(x, t) = fi(x + L, t) (17)

gi(x, t) = gi(x + L, t) (18)

in which the vector L represents length of the flow pattern. The approach of nonequilibrium
extrapolation is as follows [42]:

fi(xb, t) = f eq
i (ρw, uw) + ( fi(x f , t) − f eq

i (ρ f , u f )) (19)

gi(xb, t) = geq
i (ρw, uw) + (gi(x f , t) − geq

i (ρ f , u f )) (20)

in which the nonequilibrium contribution can be derived from the fluid node x f next to xb along the
boundary normal vector. During propagation, the unknown incoming populations can be obtained by
leaving the domain at the opposite side.

As illustrated in Figure 1, the inhomogeneities heat plates are implemented in all numerical
simulations. For Ra = 109, 4000 × 2000 lattices in two-dimensional space are implemented to study
the temperature fields, viscous, thermal and total entropy generation rates. The parameter λ is equal
to 1/9, η is equal to 5/9, the nonequilibrium extrapolation is applied at the top and bottom boundary
conditions, the periodic boundary condition is used at left and right boundaries, and the Prandtl
number (Pr = /κ) is equal to 1. The dimensionless temperature of discrete heat source equals to 300 in
Figure 1, and the dimensionless initial temperature of the fluid is 299.

3. Results and Discussions

The analysis of temperature field, flow streamlines, and various entropy generation rates will be
discussed with spatial-temporal evolution in this section, respectively.

3.1. Analysis of Flow and Temperature Field

Figure 2 describes the isotherms’ temperature distributions with time evolution at t/τ = 8, t/τ = 16,
t/τ = 32, and t/τ = 64. Here, τ (τ =

√
H/βgΔθ) is the characteristic time of the computing system.

As described in Figure 2, it can be seen that a few thermal plumes ascend in the region of dimensionless
bottom boundary (0.5), two big thermal plumes descend in the region of dimensionless top boundary
(1.5) at time t/τ = 8, and the large-scale thermal plumes descend in the region of dimensionless top
boundary (0.5) and ascend in the region of dimensionless bottom boundary (1.5) at time t/τ = 16.
According to the development phenomenon of thermal plumes at times t/τ = 8 and t/τ = 16, the thermal
convective motion of the whole field is still in the initial stage of turbulent development. It was seen that
with time evolution, a large-scale thermal plume ascends, strikes on the top plate, and in-volutes several
thermal plumes to both sides in the left half of the system, and two large-scale thermal plumes descend
at t/τ = 32. These thermal plumes interact and strike on the top and bottom plates with time evolution,
a number of small-scale thermal plumes appear at t/τ = 32, which demonstrates that the physical
system of thermal convection gradually evolves from the large-scale to small-scale thermal plumes
with time evolution [3]. In the process of energy cascade of turbulent thermal convection, the energy
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of the first large vortex comes from the thermal buoyancy of the outside world, which produces the
second small vortex. After the small vortex loses its stability, it produces a smaller vortex process [5].
At t/τ = 64, some smallest plumes can be coagulated into the big plumes, several big plumes reappear
with time evolution again. The above phenomenon of temperature distributions with time evolution is
consistent with the previous studies [11].

 

(a)                                              (b) 

(c)                                              (d) 

Figure 2. Temperature distributions (isotherms) with time evolution in the two-dimensional RB
convection (a) t/τ = 8 (b) t/τ = 16, (c) t/τ = 32, and (d) t/τ = 64.

To further demonstrate the above thermal convection flow phenomenon of the whole field,
the streamlines of the thermal convection flow at four same time evolution steps are shown in Figure 3.
As illustrated in Figure 3, one can clearly see that two large vortexes occur in the central region of the
whole field due to the injection of energy at the early characteristic time; two small vortexes appear at
dimensionless bottom boundary (0.5) and dimensionless top boundary (1.5) at time t/τ = 8 respectively.
In addition, two small vortexes ascend in the region of the dimensionless bottom boundary (0.5),
two small vortexes descend in the region of dimensionless top boundary (1.5). At time t/τ = 16,
two large vortexes in central region of the whole field become unstable, and more small vortexes appear
in the dimensionless top and bottom boundaries (0.5 and 1.5). It was seen that at time t/τ = 32, the early
large vortexes evolve into a large number of small scale vortexes, and a large number of small scale
vortexes generate due to energy transfer process in the whole field. However, many small vortexes
disappear in main flow field, and two relatively big vortexes reappear t/τ = 64. The above phenomenon
demonstrates that several large vortexes interact and develop to a large number of small vortexes and
a few small vortexes dissipate and big vortexes reappear with temporal evolution, which qualitatively
depicts that the state of flow gradually develops from laminar flow to full turbulent thermal convection
motion, and further evolve from full turbulent thermal convection to dissipation flow in the process of
turbulent energy transfer.
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(a) (b) 

 

(c) (d) 

Figure 3. Streamlines of the thermal convection flow with time evolution in the two-dimensional RB
convection (a) t/τ = 8 (b) t/τ = 16, (c) t/τ = 32, and (d) t/τ = 64.

3.2. Analysis of Entropy Generation Rate

The isotherms temperature distributions and streamlines with time evolution are represented in
the above section and several analyses of the entropy generation rate will be discussed in the following
section. Figure 4 describes the viscous entropy generation rate at times t/τ = 8, t/τ = 16, t/τ = 32,
and t/τ = 64. As shown in Figure 4, it is clearly seen that the high viscous entropy generation rate
mainly appears in the intersectional region between the main flow and the top and bottom boundaries
and in the intersectional region between big vortexes at times t/τ = 8 and t/τ = 16. It was seen that
the high viscous entropy generation rate mainly appears in the high shear region between main flow
region and vortex, the low viscous entropy generation rate occurs near the central region of various
vortex, which indicates that the viscous flow loss mainly occurs in the high shear region. Meanwhile,
at time step t/τ = 32, the viscous entropy generation rate evidently increases with temporal evolution.
Nevertheless, the viscous entropy generation rate evidently decreases at time t/τ = 64 compared to
that of t/τ = 32, which indicates that the whole mainstream field has already entered the state of
turbulent dissipation.

Figure 5 illustrates the thermal entropy generation rate at times t/τ= 8, t/τ= 16, t/τ= 32, and t/τ= 64.
Plotted in Figure 5, it is obviously observed that at times t/τ = 8 and t/τ = 16, the high distribution
value of thermal entropy generation rate mainly dominates in the high gradient fields of temperature,
especially near the top and bottom boundaries compared with the corresponding temperature fields
in Figure 2. The low distribution value of thermal entropy generation rate mainly occurs in the
homogenetic temperature fields. It is seen that with spatial-temporal evolution, the high distribution
value of thermal entropy generation rate gradually increases due to the interaction and strike of
these thermal plumes at time t/τ = 32, which indicates that the order degree of thermal movement
gradually tends to be disordered in the whole closed system. However, the plume scale of thermal
entropy generation rate gradually decreases at time t/τ = 64 compared to that of t/τ = 32, which further
demonstrates that a great deal of large scale turbulent structures interact and develop into a large

29



Entropy 2020, 22, 672

number of small scale turbulent structures; the thermal dissipation also appears with time evolution in
the closed system.

  

(a) (b) 

 

(c) (d) 

Figure 4. Viscous entropy generation rate with time evolution in the two-dimensional RB convection
(a) t/τ = 8 (b) t/τ = 16, (c) t/τ = 32, and (d) t/τ = 64 (Units: J/(K·s)).

  

(a) (b) 

 

(c) (d) 

Figure 5. Thermal entropy generation rate with time evolution in the two-dimensional RB convection
(a) t/τ = 8 (b) t/τ = 16, (c) t/τ = 32, and (d) t/τ = 64 (Units: J/(K·s)).
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Figure 6 describes the total entropy generation rate at times t/τ = 8, t/τ = 16, t/τ = 32, and t/τ = 64.
As described in Figure 6, it can be seen that the high distribution value of total entropy generation
rate mainly dominates in the largest temperature velocity gradient compared with the corresponding
temperature fields in Figure 2. The low total entropy generation rate mainly clusters in the region of
the homogenetic temperature fields. The distribution size trend of total entropy generation rate is
well consistent with that of thermal entropy generation rate in the corresponding time step. In the
spatial evolution, the shape of high entropy generation rate congeals into a large number of varied
plumes, which indicates that the role of thermal entropy generation rate gradually improves with
time evolution in the heat transfer irreversibility. It can be clearly seen that with time evolution,
a great deal of large scale plumes interact and develop to a large number of small scale plumes in the
closed system, and the value of total entropy generation rate increases, which indicates that the order
degree of energy dissipation in the whole closed system gradually tends to be disordered and increase.
The viscous, thermal and total entropy generation rates with evolution can promote the idea that the
type of mixed bottom boundary condition and thermal configuration can be extensively applied in
a wide variety of practical engineering applications, such as the solar thermal absorber plate or the
electronic existing plates.

  

(a) (b) 

 

(c) (d) 

Figure 6. Total entropy generation rate with time evolution in the two-dimensional RB convection
(a) t/τ = 8 (b) t/τ = 16, (c) t/τ = 32, and (d) t/τ = 64 (Units: J/(K·s)).

3.3. Quantitative Analysis of Entropy Generation Rate with Time Evolution

The probability density function (PDF) is used to reveal the distribution aggregation situation of
physics variable. Wei et al. [24] argued that the PDFs of Su, Sθ and S with increase of Prandtl number,
the tails of high entropy generation rates can fit well into the curve of the log-normal coordinate and
the departure and the distribution of log-normality, gradually becoming more robust with the decrease
of Prandtl number. In this paper, an exponential expression is implemented for PDF. Its exponential
expression is as follows [24]:

p(Y) =
C√
Y

exp(−mYα) (21)
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in which m, α and C represent the fitted parameters, and Y = X − Xmp with X = Su/(Su) rms, Sθ/(Sθ) rms,
S/(S) rms and Xmp being the abscissa of the most probable amplitude. The best fit of Equation (21) to the
data yields m = 0.86 and α = 0.72 for Su, m = 1.15 and α = 0.69 for Sθ and m = 1.06 and α = 0.72 for S.

To highlight the distribution aggregation differences of
·

Su,
·

Sθ and
.
S with time evolution, the PDFs

of
·

Su,
·

Sθ and
·

S0 are plotted, respectively, where
·

Su,
·

Sθ and
·

S0 represent the value distributions of Su,

Sθ and S in the whole region. Figure 7 describes the PDFs’ distributions of
·

Su at four times t/τ = 8,

t/τ = 16, t/τ = 32 and t/τ = 64. As described in Figure 7, we can see that the high value of
·

Su decreases

in a range of
·

Su > 10 with time evolution. This is mainly due to the fact that the flow characteristic
velocity of the large-scale flow in early characteristic time at t/τ= 8 is relatively large, the large-scale
flow is broken into more small-scale flows, the viscosity entropy rate decreases in high value with time
evolution, and the viscosity entropy generation rate of the small-scale flow is smaller than that of the
large-scale flow.

Figure 7. PDF distributions of viscous entropy generation rate in the two-dimensional RB convection
and at four times t/τ = 8, t/τ = 16, t/τ = 32, and t/τ = 64.

Figure 8 shows the PDF distributions of thermal entropy generation rate at four times t/τ = 8,

t/τ = 16, t/τ = 32, and t/τ = 64. Plotted in Figure 8, it is clearly obtained that the high values of
·

Sθ keeps

almost the same in a wide range of
·

Su > 100 with time evolution, the low and middle values of
·

Sθ
keep light difference in a wide range of

·
Su < 100 with time evolution. Figure 9 illustrates the PDF

distributions of total entropy generation rate
·

S0 at four times t/τ = 8, t/τ = 16, t/τ = 32, and t/τ = 64.

As illustrated in Figure 9, it can be seen that the high values of
·

S0 keep almost the same with
·

Sθ,
which indicates that the thermal entropy generation rate has a dominant position in the total entropy
generation rate with time evolution.

To further reveal the distribution differences of Su, Sθ and S with time evolution, the average

value of
·

Su,
·

Sθ and
·

S0 are plotted in the whole region, respectively.
_·

Su,
_·

Sθ, and
_·

S0 denote the average

value of
·

Su,
·

Sθ and
·

S0 in the whole region. Figure 10 shows the time evolution of average viscous
entropy generation rate from t/τ = 0 to t/τ = 100 in the whole field. Plotted in Figure 10, it is clearly

observed that the average value of
_·

Su alternately increases, three peaks successively appear from the
time step of t/τ = 0 to t/τ = 32 with time evolution. One strong peak appears at the time step of t/τ = 32,

however, the average value of
_·

Su gradually decreases from the time step of t/τ = 32 to t/τ = 64, and the

average value of
_·

Su gradually increases in a range of t/τ > 64. This is mainly due to the fact that the
largest length-scales eddy is produced owing to the injection of energy at an early characteristic time;
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the decrease of flow eddies and the geometric eddy size is associated with the characteristic time scales
(t/τ < 32). However, with time evolution, the large-scale flow is broken into more small-scale flows in
a range of t/τ from 32 to 64; the viscosity entropy rate decreases in high value with time evolution,
and the viscosity entropy generation rate of the small-scale flow is smaller than that of the large-scale
flow. In a range of t/τ > 64, some of the smallest eddies can be distorted in this distortion process,
which further indicates that the kinetic energy may be dissipated from the dissipation of the smallest
eddies owing to the effect of viscous flow.

Figure 8. PDF distributions of thermal entropy generation rate in the two-dimensional RB convection
and at four times t/τ = 8, t/τ = 16, t/τ = 32, and t/τ = 64.

Figure 9. PDF distributions of total entropy generation rate in the two-dimensional RB convection and
at four times t/τ = 8, t/τ = 16, t/τ = 32, and t/τ = 64.

Figure 11 illustrates the time evolution of average thermal entropy generation rate from t/τ = 0

to t/τ = 100 in the whole field. As illustrated in Figure 11, one can clearly see that at first
_·

Sθ is very
large due to the extremely thin boundary layer. As time goes by, the boundary layer thickness rapidly

increases to the normal level, and
_·

Sθ decreases rapidly. After the initial period, the average value of

the temperature generation rate
_·

Sθ alternately increases, several peaks periodically appear from the
time step of t/τ = 0 to t/τ = 32 with time evolution. One strong peak appears at the time step of t/τ = 32,

however, the average value of
_·

Sθ periodically decreases from the time step of t/τ = 32 to t/τ = 64.

The average value of
_·

Sθ periodically and lightly increases in a range of t/τ > 64. This is mainly due to
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the fact that the large scale plumes produce owing to the injection of energy at the early characteristic
time, the decrease of thermal plumes size is associated with the characteristic time-scales (t/τ < 32).
Nevertheless, with time evolution, the large-scale plumes are broken into more small-scale plumes
in a range of t/τ from 32 to 64, the thermal entropy rate decreases in high value with time evolution,
and the thermal entropy generation rate of the small-scale plumes is smaller than that of the large-scale
plumes. In a range of t/τ > 64, some of the smallest plumes can be coagulated into the big plumes.

Figure 10. Time evolution of average viscous entropy generation rate in the whole two-dimensional field.

Figure 11. Time evolution of average thermal entropy generation rate in the whole
two-dimensional field.

Figure 12 shows the time evolution of average total entropy generation rate from t/τ = 0 to t/τ = 100

in the whole field. As shown in Figure 12, one can clearly see that at first
_·

S0 is very large due to the
extremely thin boundary layer. With time evolution, it is clearly seen that the boundary layer thickness

rapidly increases to the normal level, and
_·

S0 decreases rapidly. Plotted in Figure 12, it can be seen

that the high values of
·

S0 remain almost the same with
·

Sθ with time evolution, which indicates that
the thermal entropy generation rate plays a dominated role in the heat transfer irreversibility—the
viscous entropy generation can be neglected time evolution. The above phenomenon is well consistent
with the importance of heat transfer irreversibility in the previous studies [23–25]. Wei et al. [24]
studied the effect of changing the Prandtl number on the entropy generation rate in two-dimensional
RB convection, and argued that the thermal entropy generation rate has a dominant role in the heat
transfer irreversibility—the viscous entropy generation can be neglected with the increasing Prandtl
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number. Mohamed et al. [45–47] studied a new analytical solution of a longitudinal fin with variable
heat generation and thermal conductivity in the mixed convection Falkner-Skan flow of nanofluids
with variable thermal conductivity.

Figure 12. Time evolution of average total entropy generation rate in the whole two-dimensional field.

4. Conclusions

In this paper, the time evolution features of entropy generation rate in turbulent
Rayleigh-Bénard convection are investigated in mixed insulating and conducting boundary conditions.
Several conclusions are given as follows.

The physical system of thermal convection gradually evolves from the large-scale to small-scale
thermal plumes—some of the smallest plumes can be coagulated into the big plumes and several
big plumes reappear in the time evolution. The state of flow gradually develops from laminar flow
to turbulent thermal convection motion, and further evolves from turbulent thermal convection to
dissipation flow in the process of turbulent energy transfer.

The viscous, thermal, and total entropy generation rates evidently increase in wide range of
t/τ < 32 with temporal evolution. Nevertheless, the viscous, thermal, and total entropy generation
rates evidently decreases at time t/τ = 64 compared to that of t/τ = 32.

The high value of
·

Su decreases in a range of
·

Su > 10 with time evolution. It is revealed that the
flow characteristic velocity of the large-scale flow in early characteristic time at t/τ = 8 is relatively
large: the large-scale flow is broken into more small-scale flows, the viscosity entropy rate decreases in
high value with time evolution, and the viscosity entropy generation rate of the small-scale flow is
smaller than that of the large-scale flow.

It was seen that the largest length-scale eddy produces owing to the injection of energy at the
early characteristic time, the decrease of flow eddies and geometric eddy size are associated with the
characteristic time-scales (t/τ < 32). However, the large-scale flow is broken into more small-scale
flows in a range of t/τ from 32 to 64, the viscosity entropy rate decreases in high value with time
evolution, and the viscosity entropy generation rate of the small-scale flow is smaller than that of the
large-scale flow. In a range of t/τ > 64, some of the smallest eddies can be distorted in this distortion

process. The average value of
_·

Sθ alternately increases from the time step of t/τ = 0 to t/τ = 32, however,

the average value of
_·

Sθ periodically decreases from the time step of t/τ = 32 to t/τ = 64. Interestingly,

the average value of
_·

Sθ periodically and lightly increases in a range of t/τ > 64.
The above studies further demonstrate the process of the energy injection, the kinetic energy,

the kinetic energy transfer, the thermal energy transfer, the viscous dissipated flow and thermal
dissipation. In practical engineering, the type of mixed-bottom boundary condition and thermal
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configuration can be extensively applied in a wide variety of equipment, such as the solar thermal
absorber plate or the electronic existing plates.
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Abstract: As first shown by H. S. Green in 1952, the entropy of a classical fluid of identical particles
can be written as a sum of many-particle contributions, each of them being a distinctive functional of
all spatial distribution functions up to a given order. By revisiting the combinatorial derivation of the
entropy formula, we argue that a similar correlation expansion holds for the entropy of a crystalline
system. We discuss how one- and two-body entropies scale with the size of the crystal, and provide
fresh numerical data to check the expectation, grounded in theoretical arguments, that both entropies
are extensive quantities.

Keywords: entropy multiparticle correlation expansion; one- and two-body density functions;
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1. Introduction

The entropy multiparticle correlation expansion (MPCE) is an elegant statistical-mechanical
formula that entails the possibility of reconstructing the total entropy of a many-particle system term
by term, including at each step of summation the integrated contribution from spatial correlations
between a specified number of particles.

The original derivation of the entropy MPCE is found in a book by H. S. Green (1952) [1].
Green’s expansion applies for the canonical ensemble (CE). In 1958, Nettleton and M. S. Green derived
an apparently different expansion valid in the grand-canonical ensemble (GCE) [2]. It took the ingenuity
of Baranyai and Evans to realize, in 1989, that the CE expansion can indeed be reshuffled in such a
way as to become formally equivalent to the GCE expansion [3].

A decisive step forward was eventually taken by Schlijper [4] and An [5], who have highlighted
the similarity of the entropy formula to a cumulant expansion, and the close relationship with the
cluster variation method (see, e.g., [6]). Other papers wherein in various ways the combinatorial
content of the entropy MPCE is emphasized are references [7–10].

Since the very beginning it has been clear that the successive terms in the entropy expansion for a
homogeneous fluid are not all of equal importance. In particular, the contributions from correlations
between more than two particles are only sizable at moderate and higher densities. However, while the
two-body entropy is easily accessed in a simulation, computing the higher-order entropy terms is a
prohibitive task (see, however, reference [11]). Hence, the only viable method to compute the total
entropy in a simulation remains thermodynamic integration (see e.g., [12]). The practical interest for
the entropy expansion has thus shifted towards the residual multiparticle entropy (RMPE), defined as
the difference between excess entropy and two-body entropy. The RMPE is a measure of the impact
of non-pair multiparticle correlations on the entropy of the fluid. For hard spheres, Giaquinta and
Giunta have observed that the RMPE changes sign from negative to positive very close to freezing [13].
At low densities the RMPE is negative, reflecting a global reduction (largely driven by two-body
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correlations) of the phase space available to the system as compared to the ideal gas. The change of
sign of the RMPE close to freezing indicates that fluid particles, which at high enough densities are
forced by more stringent packing constraints, start exploring, this time in a cooperative way, a different
structural condition on a local scale, preluding to crystallization on a global scale. Since the original
observation in [13], a clear correspondence between the RMPE zero and the ultimate threshold for
spatial homogeneity in the system has been found in many simple and complex fluids [14–24], thereby
leading to the belief that the vanishing of the RMPE is a signature of an impending structural or
thermodynamic transition of the system from a less ordered to a more spatially organized condition
(freezing is just an example of many). Albeit empirical, this entropic criterion is a valid alternative to
the far more demanding exact free-energy methods when a rough estimate of the transition point is
deemed sufficient. For a simple discussion of the interplay between entropy and ordering, the reader
is referred to reference [25]; see instead references [26,27] for general considerations about the entropy
of disordered solids.

A pertinent question to ask is, what happens to the RMPE on the solid side of the phase boundary,
considering that an entropy expansion also holds for the crystal? This is precisely the problem
addressed in this paper. Can the scope of the entropic criterion be extended in such a way that it also
applies for melting? As it turns out, we can offer no definite answer to this question, since theory
alone does not go far enough and we ran into a serious computational bottleneck: while the formulae
are clear and the numerical procedure is straightforward, it is extremely hard to obtain reliable data
for the two-body entropy of a three-dimensional crystal. We have only carried out a limited test on
a triangular crystal of hard disks, but our results are affected by finite-size artifacts that make them
inconclusive. Nevertheless, a few firm points have been established: (1) the approximate entropy
expressions obtained by truncating the MPCE at a given order can all be derived from an explicit
functional of the correlation functions up to that order; (2) the one-body entropy for a crystal is an
extensive quantity (the same is held to be true for the two-body entropy, but our arguments are not
sufficient for a proof); (3) the peaks present in the crystal one-body density have a nearly Gaussian
shape; (4) we have also clarified the role of lattice symmetries in dictating the structure of the two-body
density, which is explicitly determined at zero temperature.

This paper is organized as follows. In Section 2 we resume the formalism of the entropy
expansion for homogeneous fluids and provide the basic tools needed for its extension to crystals.
Then, in Section 3 we exploit the symmetries of one- and two-body density functions to predict the
scaling of one- and two-body entropies with the size of the crystal. The final Section 4 is reserved to
concluding remarks.

2. Derivation of the Entropy MPCE

In this Section, we collect a number of well-established results on the entropy MPCE, with the only
purpose of setting the language and notation for the rest of the paper. First, we recall the derivation
of the entropy formula for a one-component system of classical particles in the canonical ensemble.
Such an ensemble choice is by no means restrictive, since, as we show next, it is always possible to
take advantage of the sum rules obeyed by the canonical correlation functions to arrange the entropy
MPCE in an ensemble-invariant form. Then, in the following Section we present an application of the
formalism to crystals.

The canonical partition function of a system of N classical particles of mass m at temperature T is
ZN = Zid

N Zexc
N , where the ideal and excess parts are given by

Zid
N =

1
N!

(
V
Λ3

)N
and Zexc

N =
1

VN

∫
d3R1 · · ·d3RN e−βU(RN) . (1)

In Equation (1), V is the system volume, β = 1/(kBT), Λ = h/
√

2πmkBT is the thermal wavelength,
and U(RN) is an arbitrary potential energy. As the particles are identical, for each n = 1, 2, . . . , N
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the cumulative sum of all n-body terms in U is invariant under permutations of particle coordinates
(we can also say that U is SN-invariant, SN being the symmetric group of the permutations on
N symbols). The CE average of a function f of coordinates reads

〈
f (RN)

〉
≡ 1

VN

∫
d3R1 · · ·d3RN f (RN)πcan(R

N) with πcan(R
N) =

e−βU(RN)

Zexc
N

, (2)

where πcan(RN) is the configurational part of the canonical density function. Finally, the excess entropy
Sexc

N ≡ SN − Sid
N reads

Sexc
N
kB

= − 1
VN

∫
d3R1 · · ·d3RN πcan(R

N) ln πcan(R
N) = −

〈
ln πcan(R

N)
〉

. (3)

We define a set of marginal density functions (MDFs) by

P(N)(RN) = πcan(R
N) ;

P(n)(Rn) =
1

VN−n

∫
d3Rn+1 · · ·d3RN πcan(R

N) (n = 1, . . . , N − 1) . (4)

Owing to SN-invariance of πcan, it makes no difference which vector radii are integrated out in
Equation (4); hence, P(n)(rn) is Sn-invariant (for example, P(2)(r, r′) = P(2)(r′, r)). The following
properties are obvious:

1
Vn

∫
d3R1 · · ·d3Rn P(n)(Rn) = 1 and

1
V

∫
d3Rn+1 P(n+1)(Rn+1) = P(n)(Rn) . (5)

Then, the n-body density functions (DFs), for n = 1, . . . , N, can be expressed as

ρ(n)(rn) ≡
〈

∑′
i1...in

δ3(Ri1 − r1) · · · δ3(Rin − rn)

〉
=

N!
(N − n)!

P(n)(rn)

Vn , (6)

where the sum in (6) is carried out over all n-tuples of distinct particles (for example, the sum for
n = 2 contains N(N − 1) terms). We note that P(1) = 1 and ρ(1) = N/V ≡ ρ if no one-body term
is present in U, i.e., if no external potential acts on the particles (then U is translationally invariant).
P(1)(r)/V is the probability density of finding a particle in r; hence, ρ(1)(r) = NP(1)(r)/V is the
number density at r. Similarly, P(2)(r, r′)/V2 is the probability density of finding one particle in r

and another particle in r′; hence, ρ(2)(r, r′) = N(N − 1)P(2)(r, r′)/V2 is the density of the number of
particle pairs at (r, r′). As r′ increasingly departs from r, the positions of two particles become less and
less correlated, until P(2)(r, r′) = P(1)(r)P(1)(r′) at infinite distance. We stress that this cluster property
holds in full generality, even for a broken-symmetry phase.

The n-body reduced density functions, for n = 2, . . . , N, read

g(n)(rn) ≡ ρ(n)(rn)

ρ(1)(r1) · · · ρ(1)(rn)
=

(
1 − 1

N

)
· · ·
(

1 − n − 1
N

)
Q(n)(rn)

with Q(n)(rn) =
P(n)(rn)

P(1)(r1) · · · P(1)(rn)
. (7)

These functions fulfill the property

1
V

∫
d3Rn+1 P(1)(Rn+1)g(n+1)(Rn+1) =

(
1 − n

N

)
g(n)(Rn) , (8)

which also holds for n = 1 if we define g(1) ≡ 1. For a homogeneous fluid, g(2)(r, r′) = g(|r − r′|).
From now on, we adopt the shorthand notation P12...n = P(n)(Rn) and Q12...n = Q(n)(Rn). Moreover,
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any integral of the kind V−n ∫ d3R1 · · ·d3Rn (· · · ) is hereafter denoted as
∫
(· · · ). For example,

Equations (3) and (4) indicate that Sexc
N /kB = − ∫ P12...N ln P12...N .

To build up the CE expansion term by term, our strategy is to consider a progressively larger
number of particles. For a one-particle system, the excess entropy in units of the Boltzmann constant
is Sexc

1 /kB = − ∫ P1 ln P1, leading to a first-order approximation to the excess entropy of a N-particle

system in the form Sexc
N /kB ≈ S(1)

N /kB ≡ −N
∫

P1 ln P1 (that is, each particle contributes to the entropy

independently of the other particles). For a two-particle system, the excess entropy is S(1)
2 plus a

remainder kBR2, given by:

R2 ≡ Sexc
2 − S(1)

2
kB

= −
∫

P12 ln P12 + 2
∫

P1 ln P1 = −
∫

P12 ln Q12 . (9)

Equation (9) suggests a second-order approximation for Sexc
N , where each distinct pair of particles

contributes the same two-body residual term to the entropy:

S(2)
N

kB
= −N

∫
P1 ln P1 −

(
N
2

) ∫
P12 ln Q12 . (10)

Notice that Equation (10) is exact for N = 2, i.e., S(2)
2 = Sexc

2 . Similarly, for a three-particle system the

excess entropy is S(2)
3 plus a remainder kBR3:

R3 ≡ Sexc
3 − S(2)

3
kB

= −
∫

P123 ln P123 + 3
∫

P1 ln P1 +

(
3
2

) ∫
P12 ln Q12

= −
∫

P123 ln Q123 +

(
3
2

) ∫
P12 ln Q12 . (11)

Hence, a third-order approximation follows for Sexc
N in the form

S(3)
N

kB
= −N

∫
P1 ln P1 −

(
N
2

) ∫
P12 ln Q12 −

(
N
3

) [∫
P123 ln Q123 −

(
3
2

) ∫
P12 ln Q12

]
. (12)

Again, S(3)
3 = Sexc

3 . Equation (12) reproduces the first three terms in the rhs of Equation (5.9) of
reference [8], and one may legitimately expect that the further terms in the entropy expansion are
similarly obtained by arguing for N = 4, 5, . . . like we did for N = 1, 2, 3 (see the proof in [8]).

The general entropy formula finally reads:

Sexc
N
kB

= −
∫

P12...N ln P12...N = −N
∫

P1 ln P1 −
∫

P12...N ln Q12...N

= −N
∫

P1 ln P1 −
N

∑
n=2

(
N
n

) n

∑
a=2

(−1)n−a
(

n
a

) ∫
P1...a ln Q1...a . (13)

This equation is trivially correct since, for any finite sequence {ca} of numbers,

cN =
N

∑
n=2

(
N
n

) n

∑
a=2

(−1)n−a
(

n
a

)
ca . (14)
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To prove (14), it is sufficient to observe that, for each fixed k = 2, . . . , N, the coefficient of ck in the
above sum is

N

∑
n=k

(−1)n−k
(

N
n

)(
n
k

)
=

N−k

∑
n=0

(−1)n
(

N
n + k

)(
n + k

k

)
=

(
N
k

) N−k

∑
n=0

(−1)n
(

N − k
n

)

=

{
0, for 2 ≤ k < N
1, for k = N .

(15)

A more compact entropy formula is

Sexc
N
kB

= −
N

∑
n=1

(
N
n

) n

∑
a=1

(−1)n−a
(

n
a

) ∫
P1...a ln P1...a , (16)

which follows from

cN =
N

∑
n=1

(
N
n

) n

∑
a=1

(−1)n−a
(

n
a

)
ca . (17)

The entropy expansion, (13) or (16), is only valid in the CE. Eliminating Q1...a in favor of g1...a
by Equation (7), an overall constant comes out of the integral in Equation (13), namely,

N

∑
n=2

(
N
n

) n

∑
a=2

(−1)n−a
(

n
a

)
ln

(N − 1) · · · (N − a + 1)
Na−1 , (18)

which, by Equation (15), equals ln
(

N!/NN); this term exactly cancels an identical term present in the
ideal-gas entropy. In the end, a modified entropy MPCE emerges:

SN
kB

= N
[

3
2
− ln(ρΛ3)

]
− N

∫
P1 ln P1 −

N

∑
n=2

(
N
n

) n

∑
a=2

(−1)n−a
(

n
a

) ∫
P1...a ln g1...a . (19)

Notice that the first term in the rhs differs by N from the ideal-gas entropy expression in the
thermodynamic limit. In order that Equation (19) conforms to the GCE entropy expansion, for each n a
suitable fluctuation integral of value −N/[n(n − 1)] should be summed to (and subtracted from) the
n-th term in the expansion. For example, using Equations (7) and (8) the second-order term in (13) can
be rewritten as

−
(

N
2

) ∫ d3r1d3r2

V2 P12 ln
P12

P1P2
=

(
N
2

)
ln

N − 1
N

−
(

N
2

) ∫ d3r1d3r2

V2 P1P2g12 ln g12

=

(
N
2

)
ln

N − 1
N

+
N
2
− 1

2
ρ2
∫

d3r1d3r2 P1P2 (g12 ln g12 − g12 + 1) . (20)

Overall, the extra constants appearing in each term of the entropy formula (for example, the quantity
N/2 in Equation (20)) add to N. By absorbing such a N in the first term of (19) we recover the
ideal-gas entropy in the thermodynamic limit, and the CE expansion becomes formally identical to the
grand-canonical MPCE [9].

In Appendix A we present another derivation of the entropy formula in the CE, which is closer
in spirit to the one given by H. S. Green. In parallel, we show that the approximation obtained by
truncating the MPCE at a given order can be derived from a modified P12...N distribution, which is an
explicit functional of the spatial correlation functions up to that order.

3. The First Few Terms in the Expansion of Crystal Entropy

The entropy expansion in the CE is formally identical for a fluid system and a crystal, since the
origin of (13) is purely combinatorial. However, the DFs of the two phases are radically different:
most notably, while P1 = 1 and ρ(1) = ρ for a homogeneous fluid, the one-body density is spatially
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structured for a crystal—at least once the degeneracy due to translations and point-group operations
has been lifted; we stress that P1 �= 1 only provided that a specific determination of the crystal is
taken, since otherwise P1 = 1 also in the "delocalized" crystalline phase. In practice, in order to fix a
crystal in space we should imagine to apply a suitable symmetry-breaking external potential, whose
strength is sent to zero after statistical averages have been carried out (in line with Bogoliubov’s advice
to interpret statistical averages of broken-symmetry phases as quasiaverages [28], which amounts
to sending the strength of the symmetry-breaking potential to zero only after the thermodynamic
limit has been taken). A way to accomplish this task is to constrain the position of just one particle.
When periodic boundary conditions are applied, keeping one particle fixed will be enough to break the
continuous symmetries of free space. As N grows, the effect of the external potential becomes weaker
and weaker, since it does not scale with the size of the system.

3.1. One-Body Entropy

A reasonable form of one-body density for a three-dimensional Bravais crystal without defects is
the Tarazona ansatz [29]:

ρ(1)(r) =
( α

π

)3/2
∑
R

e−α(r−R)2
= ρ ∑

G

e−
G2
4α eiG·r , (21)

where α > 0 is a temperature-dependent parameter, the R’s are direct-lattice vectors, and the G’s
are reciprocal-lattice vectors (recall that G · R = 2πm with m ∈ Z and

∫
V d3r exp{i(G + G′) · r} =

VδG′ ,−G). Equation (21) is a rather generic form of crystal density, which recently we have also applied
in a different context [30]. More generally, the one-body density appropriate to a perfect crystal must
obey ρ(1)(r + R) = ρ(1)(r) for all R, and is thus necessarily of the form

ρ(1)(r) = ∑
G

ũGeiG·r with ũ∗
G = ũ−G . (22)

Since
∫

V d3r ρ(1)(r) = N, it soon follows ũ0 = ρ. Calling C a primitive cell and v0 its volume,
ũG = v−1

0
∫
C d3r ρ(1)(r) exp{−iG · r} → 0 as G → ∞ (by the Riemann–Lebesgue lemma). In real space,

a legitimate ρ(1)(r) function is ∑R φ(r−R) with
∫

d3r φ(r) = 1 (integration bounds are left unspecified
when the integral is over a macroscopic V). In the zero-temperature/infinite-density limit, particles sit
at the lattice sites and the one-body density then becomes

ρ(1)(r) = ∑
R

δ3(r − R) . (23)

Equation (23) is also recovered from Equation (21) in the α → ∞ limit.
For a crystalline solid, the one-body entropy, that is, the first term in the expansion of excess

entropy, is (in units of kB):

S1 ≡ −N
V

∫
d3r1 P1 ln P1 = −

∫
d3r1 ρ(1)(r1) ln

ρ(1)(r1)

ρ
. (24)

One may wonder whether the integral in (24) is O(N) in the infinite-size limit. The answer is affirmative,
and a simple argument goes as follows. Let ρ(1)(r) be ∑R φ(r − R); if φ(r) is strongly localized near
r = 0, then ρ(1)(r) 	 φ(r) in the cell around R = 0 and S1 	 −N

∫
C d3r φ(r) ln {φ(r)/ρ} = O(N).

Actually, we can provide a rigorous proof that S1 is negative-semidefinite and its absolute value does
not grow faster than N. Using ln x ≤ x − 1 for x > 0 and x ln x ≥ x − 1 for any x ≥ 0, we obtain

0 = ρ
∫

d3r1

(
ρ1

ρ
− 1

)
≤
∫

d3r1 ρ1 ln
ρ1

ρ
≤
∫

d3r1 ρ1

(
ρ1

ρ
− 1

)
= ρ−1

∫
d3r1 ρ2

1 − N . (25)
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To estimate
∫

d3r1 ρ2
1 we employ the one-body density in (21), which is sufficiently generic for

our purposes:

ρ−1
∫

d3r
(

ρ(1)(r)
)2

= ρ ∑
G,G′

e−
(

G2
4α + G′2

4α

) ∫
d3r ei(G+G′)·r = N ∑

G

e−
G2
2α (26)

(the above result is nothing but Parseval’s theorem as applied to (21)). The sum in the rhs of
Equation (26) is the three-dimensional analog of a Jacobi theta function (see, e.g., [31]), whose value
is O(1) for α > 0. Therefore, it follows from Equations (25) and (26) that the one-body entropy is at
most O(N).

3.2. Two-Body Entropy

We now move to the problem of evaluating the two-body entropy S2 for a crystal. For a
homogeneous fluid, S2 is an extensive quantity which, in kB units, is equal to

fluid : S2 = −2πρN
∫ ∞

0
dr r2 (g(r) ln g(r)− g(r) + 1) . (27)

For a crystal, we have from Equation (20) that

S2 = −1
2

ρ2
∫

d3r1d3r2 P1P2 (g12 ln g12 − g12 + 1) . (28)

As x ln x ≥ x − 1 for x > 0, S2 is usually negative and zero exclusively for g12 = 1. In terms of density
functions, S2 is written as

S2 = −1
2

∫
d3r1d3r2

(
ρ(2)(r1, r2) ln

ρ(2)(r1, r2)

ρ(1)(r1)ρ(1)(r2)
− ρ(2)(r1, r2) + ρ(1)(r1)ρ

(1)(r2)

)
. (29)

We show below that Equation (29) can be expressed as a radial integral, i.e., in a way similar to the
two-body entropy for a fluid.

We can assign a radial structure to crystals by appealing to a couple of functions introduced
in [32], namely

ρ2 g̃(r) =
∫ d3r1

V

∫ d2Ω
4π

ρ(2)(r1, r1 + r) (30)

and

ρ2 g̃0(r) =
∫ d3r1

V

∫ d2Ω
4π

ρ(1)(r1)ρ
(1)(r1 + r) , (31)

where the inner integrals are over the direction of r. For a homogeneous fluid, g̃(r) = g(r) and g̃0(r) = 1.
The authors of reference [32] have sketched the profile of g̃(r) and g̃0(r) for a crystal; both functions
show narrow peaks at neighbor positions in the lattice, with an extra peak at zero distance for g̃0(r),
and the oscillations persist till large distances. The following sum rules hold (cf. Equation (8) for
n = 1):

4π
∫

dr r2ρg̃(r) =
1
ρ

4π
∫ d3r1

V
ρ(1)(r1)

∫ d3r2

4π

ρ(2)(r1, r2)

ρ(1)(r1)︸ ︷︷ ︸
N−1
4π

= N − 1 (32)

and

4π
∫

dr r2ρg̃0(r) =
1
ρ

4π
∫ d3r1

V
ρ(1)(r1)

∫ d3r2

4π
ρ(1)(r2)︸ ︷︷ ︸

N
4π

= N . (33)
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When the latter two formulae are rewritten as

4πρ
∫

dr r2(g̃(r)− 1) = −1 and 4πρ
∫

dr r2(g̃0(r)− 1) = 0 , (34)

it becomes apparent that both g̃(r) and g̃0(r) decay to 1 at infinity. Similarly, we define:

ρ2h̃(r) =
∫ d3r1

V

∫ d2Ω
4π

ρ(2)(r1, r1 + r) ln
ρ(2)(r1, r1 + r)

ρ(1)(r1)ρ(1)(r1 + r)
, (35)

which obviously vanishes at infinity. While h̃(r) = g(r) ln g(r) for a homogeneous fluid, we expect
that h̃(r) �= g̃(r) ln g̃(r) in the crystal. Putting Equations (30)–(35) together, we arrive at

crystal : S2 = −2πρN
∫ ∞

0
dr r2

(
h̃(r)− g̃(r) + g̃0(r)

)
= −2πρN

∫ ∞

0
dr r2h̃(r)− N

2
. (36)

Even though the integrand vanishes at infinity, S2 = O(N) only if the envelope of h̃(r) decays faster
than r−3 (r−2 in two dimensions). A slower decay may be sufficient if S2 is computed through the first
integral in (36). For a spherically-symmetric interaction potential, the excess energy (i.e., the canonical
average of the total potential energy U) can also be written as a radial integral:

〈U〉 =
1
2

∫
d3r1d3r2 ρ(2)(r1, r2)u(|r2 − r1|)

=
1
2

∫ ∞

0
dr r2u(r)

∫
d3r1

∫
d2Ω ρ(2)(r1, r1 + r) = 2πρN

∫ ∞

0
dr r2u(r)g̃(r) . (37)

For the one-body density in (21), g̃0(r) can be obtained in closed form. First we have:

∫ d2Ω
4π

ρ(1)(r1 + r) = ρ ∑
G

e−
G2
4α eiG·r1

sin(Gr)
Gr

. (38)

Then, multiplying by ρ(1)(r1) = ρ ∑G′ e−
G′2
4α eiG′ ·r1 and finally integrating over r1 we arrive at

g̃0(r) = 1 + ∑
G �=0

e−
G2
2α

sin(Gr)
Gr

. (39)

We see that the large-distance decay of g̃0(r) is usually slow, and the same will occur for g̃(r) since
g̃(r) 	 g̃0(r) for large r. In two dimensions, the one-body density and g̃0 functions respectively read:

ρ(1)(r) =
α

π ∑
R

e−α(r−R)2
= ρ ∑

G

e−
G2
4α eiG·r and g̃0(r) = 1 + ∑

G �=0
e−

G2
2α J0(Gr) , (40)

where J0 is a Bessel function of the first kind. Since the envelope of J0 maxima decays as r−1/2 at infinity,
we see that the asymptotic vanishing of g̃0 is slower in two dimensions than in three.

Equation (39) has a definite limit for α → ∞, corresponding to zero temperature. Indeed, using
Poisson summation formula and the expression of Dirac’s delta in spherical coordinates, we obtain:

ρg̃0(r) = ρ

(
1 + ∑

G �=0

sin(Gr)
Gr

)
= ρ

∫ d2Ω
4π ∑

G

eiG·r = δ3(r) +
∫ d2Ω

4π ∑
R �=0

δ3(r − R)

= δ3(r) + ∑
R �=0

1
4π

∫ 2π

0
dφ

∫ π

0
dθ sin θ

1
r2 sin θ

δ(r − R)δ(θ − θR)δ(φ − φR)

= δ3(r) + ∑
R �=0

1
4πR2 δ(r − R) . (41)

46



Entropy 2020, 22, 1024

Hence, g̃0(r) reduces to a sum of delta functions centered at lattice distances (including the origin).
The latter result is actually general. Inserting Equation (23) in (31), we obtain:

ρg̃0(r) =
1
ρ

∫ d3r1
V

∫ d2Ω
4π ∑

R

δ3(r1 − R)∑
R′

δ3(r1 + r − R′)

=
1
ρ

∫ d3r1
V

∫ d2Ω
4π

{
∑
R

δ3(r1 − R)δ3(r1 + r − R) + ∑
R �=R′

δ3(r1 − R)δ3(r1 + r − R′)
}

=
1
ρ

∫ d3r1
V

∫ d2Ω
4π

{
∑
R

δ3(r1 − R)δ3(r) + ∑
R �=R′

δ3(r1 − R)δ3(r1 + r − R′)
}

=
1
ρ ∑

R

δ3(r)
∫ d3r1

V
δ3(r1 − R) +

1
ρ ∑

R �=R′

∫ d3r1
V

δ3(r1 − R)
δ(r − |r1 − R′ |)

4π|r1 − R′ |2

= δ3(r) + ∑
R �=0

1
4πR2 δ(r − R) , (42)

q.e.d. At zero temperature, ρg̃(r) is given by the same sum of delta-function terms as in (42), but for
the first term, δ3(r), which is missing—see Equation (92) below.

We add a final comment on possible alternative formulations of g̃(r) for a crystal. One choice is to
replace (30) with

option B : ρg̃(r) =
∫ d3r1

V

∫ d2Ω
4π

ρ(2)(r1, r1 + r)

ρ(1)(r1)
. (43)

Apparently, this is a good definition since (see Equation (8))

4π
∫

dr r2ρg̃(r) = 4π
∫ d3r1

V︸ ︷︷ ︸
1

∫ d3r2

4π

ρ(2)(r1, r2)

ρ(1)(r1)︸ ︷︷ ︸
N−1
4π

= N − 1 . (44)

However, with this g̃(r) we cannot write S2 as a radial integral—hence, option B is discarded altogether.
Another possibility is

option C : g̃(r) =
∫ d3r1

V

∫ d2Ω
4π

ρ(2)(r1, r1 + r)

ρ(1)(r1)ρ(1)(r1 + r)
, (45)

but this option is useless too, since

4π
∫

dr r2ρg̃(r) = ρ
∫

d3r1
1
V

∫
d3r2 g(2)(r1, r2) = ? (46)

(observe that the inner integral is different from the one appearing in Equation (8)).

3.3. Symmetries of the Two-Body Density

A general property of the two-body density for a crystal is the CE sum rule∫
d3r2 ρ(2)(r1, r2) = (N − 1)ρ(1)(r1) . (47)

Other constraints follow from the translational symmetry of local crystal properties. As for the
one-body density, fulfilling ρ(1)(r1 + R) = ρ(1)(r1) for every R, we must have that

ρ(2)(r1, r2) = ρ(2)(r1 + R, r2 + R) , (48)

in turn implying
g(2)(r1, r2) = g(2)(r1 + R, r2 + R) . (49)
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Now observe [33] that (i) any function of r1 and r2 can also be viewed as a function of (r1 + r2)/2
and r2 − r1; (ii) under a R-translation, only the former variable is affected, not the relative separation.
Hence, the most general function consistent with (49) is:

g(2)(r1, r2) = ∑
G

ṽG(r2 − r1)eiG· r1+r2
2 , (50)

where
g(2)(r1, r2) ∈ R =⇒ ṽ∗G(r2 − r1) = ṽ−G(r2 − r1) (51)

and
g(2)(r1, r2) = g(2)(r2, r1) =⇒ ṽG(r2 − r1) = ṽG(r1 − r2) . (52)

In order that limr→∞ g(2)(r1, r1 + r) = 1 it is sufficient that

lim
r→∞

ṽ0(r) = 1 and lim
r→∞

ṽG(r) = 0 for G �= 0 . (53)

We may reasonably expect that the most relevant term in the expansion (50) is indeed the G = 0 one
(also notice that ṽG → 0 as G → ∞ by the Riemann–Lebesgue lemma).

Equation (50) is still insufficient to establish the scaling of two-body entropy with the size of the
crystal. Some general results can be obtained under the (strong) assumption that ṽG(r) = 0 for any
G �= 0. If we change the notation from ṽ0 to G(r) ≡ 1 +H(r) (which, by Equations (51) and (52), is a
real and even function), then a necessary condition for H is:∫

d3r2 ρ(1)(r2)H(r2 − r1) = −1 for any r1 where ρ(1)(r1) �= 0 . (54)

The rationale behind Equation (54) is particularly transparent near T = 0, where the peaks of the
one-body density are extremely narrow. As argued below (see Equation (67) ff.), H as a function
of r2 is roughly −1 in the primitive cell C centered in r1 ≈ R1, R1 denoting the only lattice site
contained in C and roughly zero outside C. Since the integral of ρ(1) over C equals 1, Equation (54) will
immediately follow.

Now writing H(r) as a Fourier integral,

H(r) =
∫ d3k

(2π)3 H̃(k)eik·r , (55)

and using (21) as one-body density, Equation (54) yields

ρ ∑
G

e−
G2
4α H̃(G)e−iG·r1 = −1 , (56)

which can only hold for arbitrary r1 if

H̃(G) = −1
ρ

δG,0 . (57)

Next, from Equation (30) we obtain:

ρ2 g̃(r) = ρ2 g̃0(r) +
∫ d3r1

V
ρ(1)(r1)

∫ d2Ω
4π

ρ(1)(r1 + r)H(r) . (58)

For the one-body density in (21), the inner integral becomes:

∫ d2Ω
4π

ρ(1)(r1 + r)H(r) = ρ ∑
G

e−
G2
4α IG(r)e−iG·r1 (59)
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with

IG(r) =
∫ d2Ω

4π
H(r)e−iG·r =

∫ d3k
(2π)3 H̃(k)

sin (|k − G|r)
|k − G|r . (60)

It is evident that IG(r) vanishes at infinity. Upon inserting (59) in (58), we finally obtain:

g̃(r) = g̃0(r) + ∑
G

e−
G2
2α IG(r) . (61)

As r increases, the second term gradually vanishes and the large-distance oscillations of g̃(r) then
exactly match those of g̃0(r). As a countercheck, let us compute the integral of ρg̃(r)− ρg̃0(r) over the
macroscopic system volume (which, by Equations (32) and (33), should be −1):

4π
∫

dr r2ρ(g̃(r)− g̃0(r)) = ρ ∑
G

e−
G2
2α · 4π

∫
dr r2 IG(r)

= ρ ∑
G

e−
G2
2α

∫ d3k
(2π)3 H̃(k) · 4π

∫
dr r2 sin (|k − G|r)

|k − G|r

= ρ ∑
G

e−
G2
2α

∫ d3k
(2π)3 H̃(k)

∫
d3r ei(k−G)·r︸ ︷︷ ︸

(2π)3δ3(k−G)

= ρ ∑
G

e−
G2
2α H̃(G)︸ ︷︷ ︸

−(1/ρ)δG,0

= −1 . (62)

Under the assumption that

ρ(2)(r1, r1 + r) = ρ(1)(r1)ρ
(1)(r1 + r)G(r) , (63)

the entropy expansion for a crystal reads

S
kB

= −
∫

d3r1 ρ(1)(r1) ln
ρ(1)(r1)

ρ

−1
2

∫
d3r1 ρ(1)(r1)

∫
d3r ρ(1)(r1 + r) [G(r) lnG(r)− G(r) + 1] + . . . (64)

Providing that it vanishes sufficiently rapidly at infinity, the function

K(r) = G(r) lnG(r)− G(r) + 1 (65)

can be written as a Fourier integral, and using (21) as one-body density, the two-body entropy becomes

S2 = −1
2

ρ2 ∑
G,G′

e−
G2+G′2

4α

∫
d3r1 ei(G+G′)·r1︸ ︷︷ ︸

VδG′ ,−G

∫
d3r K(r)eiG′ ·r = −1

2
Nρ ∑

G

e−
G2
2α K̃(G) , (66)

which is clearly O(N).

3.4. Two-Body Density at T = 0

In the zero-temperature limit, particles will be sitting at lattice sites, and the two-body density
then becomes (see Equation (23)):

ρ(2)(r1, r2) = ∑′
R,R′

δ3(r1 − R)δ3(r2 − R′) = ρ(1)(r1)ρ
(1)(r2) (1 − 1C(r2 − r1)) , (67)
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which is of the form (63). In Equation (67), 1C(r) is the indicator function of a Wigner–Seitz cell C
centered at the origin (i.e., 1C(r) = 1 if r ∈ C and 1C(r) = 0 otherwise). While the factor ρ(1)(r1)ρ

(1)(r2)

forces particles to be located at lattice sites, the only role of the G in (67) is to prevent the possibility of
double site occupancy. However, a G function with this property is not unique; the one provided in
(67) has the advantage of exactly complying with condition (57) (see below). Equation (67) indicates
that the pair-correlation structure of a low-temperature solid is very different from the structure of a
dense fluid close to freezing.

For

H(r) = −1C(r) =
{

−1, for r ∈ C
0, otherwise

(68)

the Fourier transform reads:

H̃(k) =
∫

d3r H(r)e−ik·r = −
∫
C

d3r e−ik·r . (69)

Now observe that f (r) = 1 is trivially periodic, and can thus be expanded in plane waves as
1 = ∑G f̃GeiG·r, with f̃G = δG,0. On the other hand,

f̃G =
1
v0

∫
C

d3r f (r)e−iG·r = ρ
∫
C

d3r e−iG·r . (70)

Comparing Equations (69) and (70), we conclude that

H̃(G) = −1
ρ

δG,0 . (71)

For H(r) = −1C(r) the function IG(r) at Equation (60) equals − sin(Gr)/(Gr) for r < rm and 0
for r > rM, where rm (rM) is the radius of the largest (smallest) sphere inscribed in (circumscribed to)
C. It then follows from Equation (61) that g̃(r) = 0 for r < rm, while g̃(r) = g̃0(r) for r > rM (for a
triangular crystal with spacing a we have rm = a/2 and rM = a/

√
3, both comprised between the first,

0, and the second, a, lattice distance). T = 0, where g̃0(r) consists of infinitely narrow peaks centered
at lattice distances; this implies that g̃(r) = g̃0(r) everywhere but at the origin, where g̃(r) = 0 while
g̃0(r) is non-zero.

3.5. Scaling of Two-Body Entropy with N

We henceforth discuss in fully general terms how the two-body entropy scales with N for a
crystal, avoiding to make any simplifying hypothesis on the structure of g(2)(r1, r2). Using an obvious
short-hand notation, the two-body entropy reads

S2 = −1
2

∫
d1 d2

(
ρ12 ln

ρ12

ρ1ρ2
− ρ12 + ρ1ρ2

)
= −1

2

∫
d1 d2 ρ1ρ2 (g12 ln g12 − g12 + 1) . (72)

As we already know, S2 ≤ 0. From the inequality ln x ≤ x − 1, valid for all x > 0, we derive
−x ln x ≥ x − x2 for x ≥ 0, and then obtain:

S2 =
1
2

∫
d1 d2 ρ1ρ2 (−g12 ln g12 + g12 − 1) ≥ −1

2

∫
d1 d2 ρ1ρ2 (g12 − 1)2 . (73)

Clearly, estimating the size of the lower bound in Equation (73) is a much simpler problem than
working with S2 itself.

Taking h12 ≡ g12 − 1, it is evident that h12 shares all symmetries of g12. Hence, we can write:

h12 = ∑
G

h̃G(r1 − r2)eiG· r1+r2
2 with h̃∗G(r) = h̃−G(r) and h̃G(r) = h̃G(−r) . (74)
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Observe that the h̃G(r) functions are nothing but Fourier coefficients, once the h function has been
expressed in terms of S = (r1 + r2)/2 and r = r1 − r2:

h̃G(r) =
1
v0

∫
C

d3S h(S + r/2, S − r/2)e−iG·S . (75)

By the Riemann–Lebesgue lemma, h̃G(r) → 0 as G → ∞ (for arbitrary r). Moreover, h̃G(r) → 0 for
r → ∞ (for arbitrary G) since ρ12 → ρ1ρ2 for |r1 − r2| → ∞. Similarly, for k12 ≡ h2

12 we have that

k12 = ∑
G

k̃G(r1 − r2)eiG· r1+r2
2 with k̃G(r) = ∑

G′
h̃G−G′(r)h̃G′(r) . (76)

Now observe that, for ρ(1)(r) = ∑G ũGeiG·r,

ρ(1)(r)ρ(1)(r′) = ∑
G

(
∑
G′

ũG−G′ ũG′ ei(2G′−G)· r−r′
2

)
︸ ︷︷ ︸

ṽ∞
G(r−r′)

eiG· r+r′
2 . (77)

Using the above equation, and changing the integration variables from r1 and r2 to S and r, we obtain:

−1
2

∫
d1 d2 ρ1ρ2 (g12 − 1)2 = −1

2

∫
d3S d3r ∑

G

ṽ∞
G(r)eiG·S ∑

G′
k̃G′(r)eiG′ ·S

= −1
2 ∑

G,G′

∫
d3S ei(G+G′)·S︸ ︷︷ ︸

VδG′ ,−G

∫
d3r ṽ∞

G(r)k̃G′(r)︸ ︷︷ ︸
iG,G′

= −1
2

V ∑
G

iG,−G , (78)

where

iG,−G = ∑
G′

ũG−G′ ũG′
∫

d3r

(
∑
G′′

h̃−G−G′′(r)h̃G′′(r)

)
ei(2G′−G)· r

2 . (79)

In the special case h̃G = H(r)δG,0, we have h12 = h̃0 = H(r1 − r2) and k̃G(r) = H(r)2δG,0. Then,
from Equation (77) we derive

∑
G

iG,−G = i0,0 =
∫

d3r ṽ∞
0 (r)k̃0(r) = ∑

G

|ũG|2 H̃2(G) . (80)

An independent computation of the integral leads to the same result:

−1
2

∫
d1 d2 ρ1ρ2 (g12 − 1)2 = −1

2

∫
d3r ρ(1)(r)

∫
d3r′ ρ(1)(r + r′)︸ ︷︷ ︸

∑G ũ∗
Ge−iG·(r+r′)

H2(r′)

= −1
2 ∑

G

ũ∗
G

∫
d3r ρ(1)(r)e−iG·r︸ ︷︷ ︸

VũG

∫
d3r′ H2(r′)e−iG·r′︸ ︷︷ ︸

H̃2(G)

= −1
2

V ∑
G

|ũG|2 H̃2(G) , (81)

which should be compared with Equation (66). For H(r) = −1C(r) and ũG = ρ exp{−G2/(4α)},
we readily obtain S2 = −N/2 from both Equations (66) and (78), meaning that in this case the
two-body entropy coincides with its lower bound in Equation (73).
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The quantity (80) is clearly O(1), since the summand is rapidly converging to zero; this implies
that the two-body entropy of a crystal is, at least for h̃G = H(r)δG,0, bounded from below by a O(N)

quantity. In the most general case, where Equations (78) and (79), rather, apply, we can only observe
the following. As G grows in size, for any fixed G′ and G′′ both ũG−G′ ũG′ and h̃−G−G′′(r)h̃G′′(r) get
smaller, suggesting that iG,−G will decrease too. However, this is not enough to conclude that ∑G iG,−G

is O(1), and the only way to settle the problem is numerical.

3.6. Numerical Evaluation of the Structure Functions

The utility of (36) clearly relies on the possibility of determining the integrand in simulation with
sufficient accuracy. First we see how the one-body entropy, Equation (24), is computed. We start
dividing V into a large number M = V/vc of identical cubes of volume vc, chosen to be small enough
that a cube contains the center of at most one particle. Let cα = 0, 1 (with α = 1, . . . , M) be the
occupancy of the αth cube in a given system configuration and 〈cα〉 its canonical average as computed
in a long Monte Carlo simulation of the weakly constrained crystal (to fix the center of mass of the
crystal in space it is sufficient to keep one particle fixed; then, periodic boundary conditions will
contribute to keep crystalline axes also fixed in the course of simulation). Given this setup, the local
density at r1 (a point inside the αth cube) can be estimated as

ρ(1)(r1) ≈ 〈cα〉
vc

, (82)

and the integral in (24) becomes

∫
d3r1 ρ(1)(r1) ln

ρ(1)(r1)

ρ
≈

M

∑
α=1

〈cα〉 ln
〈cα〉
ρvc

(83)

(notice that ρvc = N/M � 1; we need vc → 0 and an infinitely long simulation to make (82) an exact
relation). Similarly, if r2 falls within the βth cube, then

ρ(2)(r1, r2) ≈
〈
cαcβ

〉
v2

c
(84)

and from Equation (30) we derive

g̃(r) ≈ 1
ρ2V

M

∑
α=1

vc
1

Nγ
∑

|γ|=r

〈cαcα+γ〉
v2

c
=

1
ρ2V

〈
M

∑
α=1

vc
1

Nγ
∑

|γ|=r

cαcα+γ

v2
c

〉

=
1

Mρ2v2
c

〈
M

∑
α=1

δcα ,1
1

Nγ
∑

|γ|=r
cα+γ

〉
. (85)

In the above formula Nγ 	 4πr2Δr/vc is the number of cubes whose center lies at a distance r from
α (to within a certain tolerance Δr � r), and the inner sum is carried out over those cubes only.
Since ρvcNγ = 4πr2Δrρ and Mρvc = N, an equivalent formula for g̃(r) is

g̃(r) ≈
〈

1
N

N

∑
i=1

Ni(r ± Δr/2)
4πr2Δrρ

〉
, (86)

denoting Ni(r ± Δr/2) the number of particles found at a distance between r − Δr/2 and r + Δr/2
from the ith particle in the given configuration. Equation (86) closely reflects the method of computing
the radial distribution function in a CE simulation (see, e.g., equation (11) in reference [34]).
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The function g̃(r) admits yet another expression, which further strengthens its resemblance to the
g(r) of a liquid (as reported e.g., in [35]). It follows from Equations (30) and (6) that

ρ2 g̃(r) =
1
V

∫ d2Ω
4π

〈
∑′
ij

∫
d3r1 δ3(r1 − Ri)δ

3(r1 + r − Rj)

〉
. (87)

Note that, for any sufficiently smooth function f (r),∫
d3r f (r)

∫
d3r1 δ3(r1 − Ri)δ

3(r1 + r − Rj) =
∫

d3r1 δ3(r1 − Ri)
∫

d3r f (r)δ3(r1 + r − Rj)

=
∫

d3r1 δ3(r1 − Ri) f (Rj − r1) = f (Rj − Ri) (88)

and ∫
d3r f (r)

∫
d3r1 δ3(r1 − Ri)δ

3(Ri + r − Rj) =
∫

d3r1 δ3(r1 − Ri)
∫

d3r f (r)δ3(Ri + r − Rj)

= f (Rj − Ri)
∫

d3r1 δ3(r1 − Ri)︸ ︷︷ ︸
1

= f (Rj − Ri) , (89)

we are allowed to replace δ3(r1 − Ri)δ
3(r1 + r − Rj) with δ3(r1 − Ri)δ

3(Ri + r − Rj) in Equation (87),
and thus obtain

ρ2 g̃(r) =
1
V

∫ d2Ω
4π

〈
∑′
ij

δ3(Ri + r − Rj)
∫

d3r1 δ3(r1 − Ri)︸ ︷︷ ︸
1

〉
=

1
V

∫ d2Ω
4π

〈
∑′
ij

δ3(Ri + r − Rj)

〉
,

(90)
which finally leads to

ρg̃(r) =
∫ d2Ω

4π

〈
1
N ∑

i
∑
j �=i

δ3(Ri + r − Rj)

〉
. (91)

At zero temperature, we can neglect the average and simply write

ρg̃(r) =
∫ d2Ω

4π

1
N ∑

i
∑
j �=i

δ3(Ri + r − Rj) =
∫ d2Ω

4π ∑
R �=0

δ3(r − R) = ∑
R �=0

1
4πR2 δ(r − R) , (92)

where in the last step we have followed the same path leading to Equation (41).
We can similarly proceed for the functions at Equations (31) and (35), which can be computed by

the following formulae:

g̃0(r) ≈ 1
ρ2V

M

∑
α=1

vc
1

Nγ
∑

|γ|=r

〈cα〉
vc

〈cα+γ〉
vc

=
1

Mρ2v2
c

M

∑
α=1

〈cα〉 1
Nγ

∑
|γ|=r

〈cα+γ〉 (93)

and

h̃(r) ≈ 1
Mρ2v2

c

M

∑
α=1

1
Nγ

∑
|γ|=r

〈cαcα+γ〉 ln
〈cαcα+γ〉
〈cα〉 〈cα+γ〉 . (94)

While g̃(r) is the statistical average of an estimator whose histogram can be updated in the course of the
simulation (see Equation (86)), g̃0(r) can only be estimated at the end of simulation, once 〈cα〉 has been
evaluated for every α with effort comparable to that made for the one-body entropy. Much more costly
is the calculation of h̃(r), which should also be performed at the end of simulation after evaluating
〈cαcβ〉 for every α and β.
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Using translational lattice symmetry, the radial distribution functions and h̃(r) of a crystal can
also be written as:

ρg̃(r) =
∫
C

d3r1

∫ d2Ω
4π

ρ(2)(r1, r1 + r) ; ρg̃0(r) =
∫
C

d3r1

∫ d2Ω
4π

ρ(1)(r1)ρ
(1)(r1 + r) ;

ρh̃(r) =
∫
C

d3r1

∫ d2Ω
4π

ρ(2)(r1, r1 + r) ln
ρ(2)(r1, r1 + r)

ρ(1)(r1)ρ(1)(r1 + r)
, (95)

leading to simplifying Equations (85), (93), and (94) into

g̃(r) =

〈
M/N

∑
α=1

δcα ,1
∑|γ|=r cα+γ

4πr2Δrρ

〉
; g̃0(r) =

M/N

∑
α=1

〈cα〉
∑|γ|=r 〈cα+γ〉

4πr2Δrρ
;

h̃(r) =
M/N

∑
α=1

1
4πr2Δrρ ∑

|γ|=r
〈cαcα+γ〉 ln

〈cαcα+γ〉
〈cα〉 〈cα+γ〉 . (96)

In the above formulae, the α index only runs over the cubes contained in a Wigner–Seitz/Voronoi cell
of the lattice, while the β sum is still carried out over all cubes in the simulation box.

3.7. Numerical Tests

We first examine the shape of the structure functions g̃(r) and g̃0(r) for hard spheres, choosing
a r resolution of Δr = 0.05 (in units of the particle diameter σ). We take a system of N = 4000
particles arranged in a fcc lattice with packing fraction η = 0.600 (recall that the melting value is
approximately 0.545). Periodic conditions are applied at the system boundary. In order to constrain
the crystal in space, we keep one particle fixed during the simulation. As for g̃0(r), we employ the
Tarazona ansatz for α = 95 (see Equation (39)), a value providing the best fit to the one-body density
drawn from simulation.

We use the standard Metropolis Monte Carlo (MC) algorithm, constantly adjusting the maximum
shift of a particle during equilibration until the fraction of accepted moves becomes close to 50%
(then, the maximum shift is no longer changed). We produce 50,000 MC cycles in the equilibration run,
whereas CE averages are computed over a total of further 2 × 105 cycles. Our results are plotted in
Figure 1. While at short distances g̃(r) and g̃0(r) are rather different, as r increases the oscillations of
the two functions become closer and closer in amplitude.
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Figure 1. We show a comparison between g̃(r) for a fcc crystal of hard spheres (η = 0.600) and the
g̃0(r) function given in Equation (39), where the value of α (95) has been chosen such that the Tarazona
ansatz (21) fits at best the one-body density drawn from simulation.
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To obtain the one-body density with sufficient accuracy, we use a grid of about 50 points along each
space direction in the unit cell. However, this grid resolution is too high for allowing the computation
of h̃(r), as the memory requirements for processing the

〈
cαcβ

〉
data are very huge. On the other hand,

a coarser grid is incompatible with the Δr chosen.
To get closer to achieving our goal, i.e., to ascertain the N dependence of the two-body entropy

for a crystal, we consider a two-dimensional system—hard disks. For this system, the transformation
from fluid to solid occurs in two stages, via an intermediate hexatic fluid phase [36] (the transition
from isotropic to hexatic fluid is first-order, whereas the hexatic-solid transition is continuous and
occurs at η = 0.700). We consider a system of N = 1152 hard disks, arranged in a triangular crystal
with packing fraction η = 0.800, and a mesh consisting of about 80 points along each direction
in the unit cell. Even though translational correlations are only quasi-long-ranged in an infinite
two-dimensional crystal, when one of the particles is kept artificially fixed this specificity is lost and the
(finite) two-dimensional crystal is made fully similar to a three-dimensional crystal. Observe also that
an infinite two-dimensional crystal shares at least the same breaking of rotational symmetry typical of
an infinite three-dimensional crystal.

As before, we first look at the structure functions drawn from simulation, g̃(r) and g̃0(r).
Our results are plotted in Figure 2, together with the g̃0(r) function of Equation (40) for α = 75.
For this α the matching between the two g̃0 functions is nearly perfect, indicating that the peaks of
the one-body density are (to a high level of accuracy) Gaussian in shape. For η = 0.800 we find
S1/N = −2.156.
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Figure 2. Structure functions g̃(r) and g̃0(r) for a triangular crystal of hard disks (η = 0.800). We report
data for two sizes, N = 288 and N = 1152. For comparison, we also plot the g̃0(r) function in
Equation (40) for α = 75. As is clear, the Tarazona ansatz represents an excellent model for the
one-body density of the weakly-constrained hard-disk crystal.

In Figure 3, we show our main result, h̃(r), for η = 0.800 and two different crystal sizes, N = 288
and 1152. We point out that, in order to obtain these data, we had to run a separate simulation for
each r, as the memory usage is rather extreme. To be sure, we have computed the g̃0 values in an
independent way, i.e., using the same program loop written for h̃(r), eventually finding the same
results as in Figure 2. Looking at Figure 3, we see that h̃(r) shows a series of peaks at neighbor positions
and in the valleys within, taking preferentially positive values (meaning that its oscillations are not
centered around zero). However, the damping of large-distance oscillations is too gradual to allow
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us to assess the nature of the asymptotic decay of h̃(r) and then compute S2. We must attempt a few
explanations for this behavior of h̃(r): On one hand, the decay of h̃(r) may really be slow (at least in
two dimensions), but S2 would nonetheless be extensive, which implies a large S2/N value. It may as
well be that constraining the crystal in space by hinging the position of one particle has a strong effect
on the speed of h̃ decay, which only a finite-size scaling of data can relieve. Indeed, when going from
N = 288 to N = 1152 the values of h̃ are slightly shifted downwards.
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Figure 3. The function h̃(r) for hard disks (η = 0.800). As in Figure 2, data for two sizes are shown,
namely, N = 288 and N = 1152. It appears that the oscillations of h̃(r) decay very slowly, which
implies slow convergence of the integrand in Equation (36) to zero.

In summary, we have not reached any clear demonstration of S2 extensivity in a crystal. This task
has proved to be very hard to settle numerically. Our hope is that, based on our preparatory work,
other authors with more powerful computational resources at their disposal can push the numerical
analysis forward and eventually come up with a definite solution of the problem.

4. Conclusions

In this paper, we inquired into the possibility of extending the zero-RMPE criterion, a popular
one-phase criterion of freezing for simple fluids, to also cover the melting of a solid. After revisiting the
derivation of the entropy MPCE in the canonical ensemble, we argued that the formula applies for a
crystal too. We exploited lattice symmetries to constrain the structures of one- and two-body densities,
so as to gain as much information as possible on the first few terms in the entropy expansion. While this
was enough to prove that the crystal one-body entropy is an extensive quantity, the information
obtained was not sufficient to hold the same for the two-body entropy, whose scaling with the size
of the crystal remains elusive. We thus attempted to clarify the question numerically, but we faced
an insurmountable obstacle in the computational and memory limitations. To alleviate the problem,
we turned towards a two-dimensional case, namely, hard disks, but with poor results: the structure
function that must be integrated over distances to obtain the two-body entropy is weakly convergent
to zero. In the near future, we plan to check whether the situation is more favorable for a different
two-dimensional interaction, either endowed with an attractive tail (e.g., the Lennard-Jones potential)
or provided with a soft core (for example, a Gaussian repulsion).
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Appendix A. Truncating the Entropy Expansion

We hereafter give an interpretation of the successive estimates of Sexc
N /kB = −〈ln P1...N〉 obtained

by stopping the expansion (13) at a given order of correlations. We show that each truncated entropy
expansion can be arranged in the form −〈ln P�

1...N〉, where P�
1...N is a functional of all the MDFs

up to n-th order, for n = 1, 2, . . . , N (however, without claiming that P�
1...N represents a proper,

i.e., normalized distribution). Our method resembles the one originally devised by H. S. Green to
express the canonical entropy of a N-particle fluid in terms of correlation functions [1]. While H. S.
Green correctly inferred the first three terms in the expansion, he did not provide a general recipe to
obtain the further terms recursively.

For N = 1 there is only one MDF, P1 ≡ P(1)(r1), in terms of which a fully symmetric
approximation to P1...N can be constructed:

1st − order approximation : P�
1...N =

N

∏
i

Pi . (A1)

Notice that −〈ln P�
1...N〉 = S(1)

N /kB.
To obtain a better approximation we consider a system of two particles. Since

P12 = P1P2 × P12

P1P2
, (A2)

we see that P12 is the product of the 1st-order approximation (A1) times a correction factor
P12/(P1P2) = Q12. Assuming that in a N-particle system each distinct pair of particles contributes the
same factor to P�

1...N , we arrive at the

2nd − order approximation : P�
1...N =

N

∏
i

Pi

N

∏
i<j

Qij . (A3)

The number of factors in the second product is N(N − 1)/2. For this P�
1...N we obtain

− 〈ln P�
1...N〉 = −N

∫
P1 ln P1 −

(
N
2

) ∫
P12 ln Q12 = S(2)

N /kB . (A4)

Moving to N = 3, we observe that

P123 = P1P2P3Q12Q13Q23 × Q123

Q12Q13Q23
, (A5)

which is the second-order approximation to P�
123 times a correction factor. In the event that each distinct

triplet of particles contributes the same factor to P�
1...N , we obtain the

3rd − order approximation : P�
1...N =

N

∏
i

Pi

N

∏
i<j

Qij

N

∏
i<j<k

Qijk

QijQikQjk
. (A6)
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Notice that a different expression for the latter ratio is

Qijk

QijQikQjk
=

Pijk
PijPik Pjk
Pi PjPk

. (A7)

The number of factors in the third product is N(N − 1)(N − 2)/6. For this P�
1...N , the approximate

entropy is

− 〈ln P�
1...N〉 = −N

∫
P1 ln P1 −

(
N
2

) ∫
P12 ln Q12 −

(
N
3

) [∫
P123 ln Q123 −

(
3
2

) ∫
P12 ln Q12

]
=

S(3)
N

kB
. (A8)

We can similarly proceed to derive higher-order approximations. The 4-body MDF of a system of
N = 4 particles is trivially decomposed as

P1234 = P1P2P3P4Q12Q13Q14Q23Q24Q34
Q123

Q12Q13Q23

Q124

Q12Q14Q24

Q134

Q13Q14Q34

Q234

Q23Q24Q34

× Q1234

Q12Q13Q14Q23Q24Q34
Q123

Q12Q13Q23

Q124
Q12Q14Q24

Q134
Q13Q14Q34

Q234
Q23Q24Q34

= P1P2P3P4Q12Q13Q14Q23Q24Q34
Q123

Q12Q13Q23

Q124

Q12Q14Q24

Q134

Q13Q14Q34

Q234

Q23Q24Q34

× Q1234
Q123Q124Q134Q234

Q12Q13Q14Q23Q24Q34

, (A9)

whence the

4th − order approximation : P�
1...N =

N

∏
i

Pi

N

∏
i<j

Qij

N

∏
i<j<k

Qijk

QijQikQjk

N

∏
i<j<k<l

Qijkl
QijkQijl Qikl Qjkl

QijQikQil QjkQjl Qkl

. (A10)

Notice that a different expression for the latter ratio is

Qijkl
QijkQijl Qikl Qjkl

QijQikQil QjkQjl Qkl

=
Pijkl

Pijk Pijl Pikl Pjkl
Pij Pik Pil Pjk Pjl Pkl

Pi Pj Pk Pl

. (A11)

For this P�
1...N we obtain

−〈ln P�
1...N〉 = −N

∫
P1 ln P1 −

(
N
2

) ∫
P12 ln Q12 −

(
N
3

) [∫
P123 ln Q123 −

(
3
2

) ∫
P12 ln Q12

]
−

(
N
4

) [∫
P1234 ln Q1234 −

(
4
3

) ∫
P123 ln Q123 +

(
4
2

) ∫
P12 ln Q12

]
= S(4)

N /kB . (A12)

Eventually, with the last Nth-order approximation we recover the exact distribution,
namely, P�

1...N = P1...N , and the full entropy. Notice that, except for n = 1 and N, the nth-order
functional P�

1...N is not normalized.
We now provide a formalization of the procedure sketched above. For each value of n and each

grouping In = {i1, i2, . . . in} of n particle indices, we write P(In) ≡ Pi1...in as a product of positive
cumulant factors to be determined recursively, that is

P(In) = ∏
S1⊂In

C(S1) · · · ∏
Sn−1⊂In

C(Sn−1)× C(In) , (A13)
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where ∏Sk⊂In indicates the product over all k-tuples of distinct entries from In—there are (n
k)

factors in the product ∏Sk⊂In . As shown before, C({i}) = Pi, C({i, j}) = Pij/(PiPj), C({i, j, k}) =

PijkPiPjPk/(PijPikPjk), and so on. Taking the logarithm of (A13) we obtain:

ln P(In) = ln C(In) + ∑
Sn−1⊂In

ln C(Sn−1) + . . . + ∑
S1⊂In

ln C(S1) , (A14)

which can be solved with respect to cumulants by the Möbius inversion formula (see, e.g., Equations (3)
and (4) of reference [5]):

ln C(In) = ln P(In)− ∑
Sn−1⊂In

ln P(Sn−1) + . . . + (−1)n−1 ∑
S1⊂In

ln P(S1) , (A15)

which is in turn equivalent to writing

C(In) =
P(In)

∏Sn−1⊂In P(Sn−1)

...
∏S1⊂In P(S1)

. (A16)

Equations (A7) and (A11) are just particular cases of the above formula, respectively for n = 3 and
n = 4. Once the cumulants have been determined, the functional P∗

1...N of M-th order (for M = 1, . . . , N)
can be written, by an obvious change of notation, as

P∗
1...N =

N

∏
i

Ci

N

∏
i<j

Cij · · ·
N

∏
i1<...<iM

Ci1...iM , (A17)

leading to

− 〈ln P∗
1...N〉 = −N

∫
P1 ln C1 −

(
N
2

) ∫
P12 ln C12 − . . . −

(
N
M

) ∫
P12...M ln C12...M . (A18)

In view of Equation (A16), the above quantity is nothing but S(M)
N .
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Abstract: A triangular lattice model for pattern formation by core-shell particles at fluid interfaces is
introduced and studied for the particle to core diameter ratio equal to 3. Repulsion for overlapping
shells and attraction at larger distances due to capillary forces are assumed. Ground states and
thermodynamic properties are determined analytically and by Monte Carlo simulations for soft
outer- and stiffer inner shells, with different decay rates of the interparticle repulsion. We find that
thermodynamic properties are qualitatively the same for slow and for fast decay of the repulsive
potential, but the ordered phases are stable for temperature ranges, depending strongly on the shape
of the repulsive potential. More importantly, there are two types of patterns formed for fixed chemical
potential—one for a slow and another one for a fast decay of the repulsion at small distances. In the
first case, two different patterns—for example clusters or stripes—occur with the same probability
for some range of the chemical potential. For a fixed concentration, an interface is formed between
two ordered phases with the closest concentration, and the surface tension takes the same value for
all stable interfaces. In the case of degeneracy, a stable interface cannot be formed for one out of four
combinations of the coexisting phases, because of a larger surface tension. Our results show that
by tuning the architecture of a thick polymeric shell, many different patterns can be obtained for a
sufficiently low temperature.

Keywords: core-shell particles; liquid interfaces; triangular lattice; thermodynamics; ground states;
structure; line tension; phase coexistence; competing interaction; fluctuations

1. Introduction

Metal or semiconducting nanoparticles find numerous applications in catalysis, optics,
biomedicine, environmental science, and so forth. In order to prevent the charge-neutral nanoparticles
from aggregation, recently, various types of core-shell nanoparticles (CSNPs) have been produced [1,2].
In the CSNPs, the hard, typically metal or semiconducting nanoparticle with a diameter ranging from
a few tens to a few hundreds of nanometers is covered by a soft polymeric shell. The polymeric
chains can interpenetrate, and the distance between the particles can become smaller than the shell
diameter at some energetic cost. This energetic cost, or the softness of the shells, can be controlled in
particular by the crosslinking of the polymeric chains. The shell-to-core diameter ratio in the majority
of the experiments varies from about 1.1 to about 4 [2–5]. Since the shell thickness can be controlled
independently of the core diameter, and the effective interactions between the CSNPs depend on
the thickness and the architecture of the shells, the desired effective interactions can be obtained by
choosing different protocols for the synthesis.
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Properties of the CSNPs have been intensively studied not only in the bulk, but also at the fluid
interfaces [1–12]. It turned out that while in the bulk, the effective interaction consists of the hard core
followed by the soft repulsive shoulder; at fluid interfaces, strong capillary attraction can be present for
separations larger than the shell diameter, in addition to the above mentioned repulsive interactions at
shorter distances [2–4].

Experimental results show that the CSNPs at fluid interfaces can form interesting patterns,
depending on the properties of the particles and on the fraction of the interface area covered by
them [2–4]. For a small area fraction, highly ordered arrays of hexagonally packed particles are
typically observed. Compression may lead to the sudden formation of particle clusters [1]. The surface
pressure–area isotherms can have a characteristic shape of alternating segments with a very large and
quite small slope, and the large compressibility signals structural changes [2,3]. The origin of these
patterns and of the structural changes, their nature, and dependence on the properties of the CSNPs are
not fully understood yet. The theory of CSNPs, that at fluid interfaces, they repel each other at short
separations and attract each other at large separations, is much less developed than the experimental
studies [13–15]. This is in contrast to theoretical and simulation studies of patterns formed by particles
with soft repulsive potentials [16].

Because there are many factors controlling the core-and-shell diameter and the architecture of
the shell, there is a need for a simplified, coarse-grained theory that could predict general trends in
pattern formation for various ranges, strengths, and shapes of the effective potential. In Ref. [13],
a one-dimensional (1D) lattice model with repulsion between nearest neighbors and attraction between
second or third neighbors was solved exactly. The obtained isotherms consist of alternating segments
with very large and quite small slopes, as in experiments. The steep parts of the isotherms are
associated with periodic patterns. The number of the steps, however, is larger in the case of
third-neighbor attraction (i.e., thicker shell), and depends on the strengths of the repulsive and
attractive parts of the potential. There are no phase transitions in the thermodynamic sense in 1D, but
the correlation function shows oscillatory decay with the correlation length that for a strong attraction
can be very large (104 times the core diameter). These results show a strong dependence of the structure
and mechanical properties of the monolayers of the CSNPs on the range, shape, and strength of the
effective interactions and agree with the experimental observation of the more complex behavior of
the CSNPs with thick shells. However, any 1D model cannot answer the question if different patterns
correspond to different phases, and obviously only 1D patterns can be examined.

Particles with a size equal to or larger than a few tens of nanometers are practically irreversibly
adsorbed at the interface, but can move freely in the interface area [2]. For this reason, the particles
trapped at the interface can be modeled as a two-dimensional system. Since closely packed CSNPs
form a hexagonal pattern, triangular lattice models with the lattice constant a equal to the diameter of
the hard core (or the distance of the closest approach of the particles upon compression) are appropriate
and convenient generic models for CSNPs at fluid interfaces. In Ref. [15], lattice models for CSNPs
with thin and thick shells were introduced and studied. Following Ref. [16], we assumed that the
shell-to-core ratio separating the thin and thick shells is

√
3. According to this criterion, the shell is

thin when the shells of the second neighbors of closely-packed particle-cores do not overlap, otherwise
it is thick.

For thin shells, nearest-neighbor repulsion and second neighbor attraction between particle cores
occupying sites of the triangular lattice were assumed. The shell-to-core ratio in this model is

√
3.

We have found four phases in this model—very dilute gas, hexagonal lattice of closely packed shells,
hexagonal lattice of vacancies, and closely packed cores. We have calculated the surface tension
between coexisting phases for different orientations of the interface and found that the particles at
the stable interfaces corresponding to the smallest surface tension lie on straight lines. The interface
lines meet at the angles 60o or 120o. When the fixed area fraction of the CSNPs is smaller than the area
fraction of the hexagonal phase, large voids with a hexagonal shape are formed. The results are in
good agreement with the experiment in Reference [2–4].
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In order to study the effect of the shell thickness, in the second model, we assume that the
inner shell is covered by a much softer outer shell, and the nearest-neighbor repulsion is followed
by vanishing interactions for the second, third, and fourth neighbors and by attraction between the
fifth neighbors. The shell-to-core ratio in this model is equal to 3, as in the experiments of Refs. [1,3].
Six more phases, including honeycomb lattices of particles or vacancies and periodically ordered
rough clusters were found, but these additional phases were stable only at the coexistence with the
phases found for the thin-shell model. For the fixed area fraction of the particles, two phases with the
closest area fraction to the mean one, and the interface between them, were present at low temperature.
For increasing T, islands of different phases in the sea of the hexagonally packed shells were observed
in the course of simulations for the area fraction exceeding the value at the close packing of the shells.
Such complex patterns, somewhat similar to the patterns observed in experiments [2–4], occur because
of the metastability of several ordered phases and large interface fluctuations in 2D.

The results of Reference [15] concern CSNPs with composite shells with a stiff inner shell and
very soft outer shell. In this work, we focus on the question of the role of the shape of the repulsive
shoulder, associated with the architecture of the crosslinked polymeric chains. We assume first-
and second-neighbor repulsion, and fifth-neighbor attraction, and consider different second- to
first-neighbor repulsion ratios. The model is introduced in Section 2. The ground state of an open
system and of the system with a fixed number of particles is determined in Sections 3.1 and 3.2,
respectively. We find the same patterns as in Ref. [15] for weak second-neighbor repulsion, but
the patterns absent for thin shells are present for some intervals of the chemical potential. For the
second-to-first neighbor repulsion ratio larger than 1/3, the stable patterns are completely different.
Moreover, for some ranges of the chemical potential, the ground state is degenerated, and two quite
different patterns are stable. In Section 4, thermodynamic properties obtained for T > 0 by Monte
Carlo simulations are described. We present the chemical potential, compressibility, and specific heat
as functions of the concentration. Section 5 contains our conclusions.

2. The Model

The system that models the core-shall particles on a surface is described in Ref. [15].
The thermodynamic Hamiltonian of the system is:

H∗ = 1
2

kmax

∑
k=1

zk

∑
ki=1

M

∑
i=1

J∗k n̂in̂ki
− μ∗ M

∑
i=1

n̂i, (1)

where ki numerates the sites of the k-th coordination sphere around the site i, zk is the coordination
number, J∗k is the interaction constant for the k-th coordination sphere, n̂i is the occupation number
(0 or 1), and μ∗ is the chemical potential. The particles can occupy sites of a triangular lattice containing
M = L × L lattice sites.

The lattice parameter a is equal to the diameter of the hard core of the particles. It is supposed
that the particles repel each other with the intensity J∗1 = J1 J (J1 = 1), if the particles occupy the
nearest neighbor sites, and feel weaker repulsion on the next nearest sites with the intensity J∗2 = J2 J.
The intermediate third and fourth neighbors do not interact (J3 = J4 = 0), while the fifth neighbors
attract each other with the energy J∗5 = −J5 J. Thus, J2 and J5 are the dimensionless interaction energies
(J2 = J∗2 /J, J5 = −J∗5 /J, and J has units of energy). The dimensionless chemical potential μ = μ∗/J
and dimensionless temperature T = kBT∗/J will be used as well. In the terminology of Reference [15],
it is model II with an additional repulsive interaction of the second neighbors.

The interaction potential as a function of the distance between the particle cores is shown in
Figure 1. As is demonstrated below, the variation of the second and fifth neighbor interactions
can lead to different symmetry-breaking (heterostructural) transitions in the system; it was recently
attained using the augmented potential [17]. Compared to conventional interaction potentials that are
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determined a priori, the augmented potentials adjust the effective interactions on the basis of the local
environment of each particle and efficiently capture multi-body effects at a local level.

Figure 1. The interaction potential as a function of the distance between the particle centers in units of
the first-neighbor repulsion J. The symbols denote the interaction between the cores occupying the
lattice sites, and the line is to guide the eye. The shown interactions J2 = J5 = 1/3 correspond to a
crossover between different patterns formed by the particles, as described in Section 3.1.

In accordance with the range of the interparticle interactions (up to the fifth neighbors), the unit
cell contains nine (3 × 3) lattice sites. In this case, the fifth neighbors (that correspond to the largest
interaction range) belong to the nearest unit cells and the distance between them determines the
translation vector that preserves the symmetry of the system. The subsequent calculation (Section 3)
and simulation (Section 4) shows that such a choice accounts for all possible ordered states of the
system. For describing the ordered states, the lattice is decomposed in nine sublattices (Figure 2).

e1e2e3

1 2 3
4 5 6
7 8 9

Figure 2. The system of unit cells with particles belonging to nine sublattices and the lattice vectors
ei, i = 1, 2, 3. The particles 1 and 2 or 1 and 4 are the nearest neighbors, the particles 1 and 5 or 2 and 7
are the next nearest neighbors, the particles 1 and 3 or 1 and 7 are the third neighbors, the particles
1 and 6 are the fourth neighbors. The particles with the same texture in nearest unit cells with the
separation 3a are the fifth neighbors.

3. The Ground States

3.1. The Ground States of Open Systems

In the system with repulsive interactions of the first and second neighbors and attraction of the fifth
neighbors, the ground states with ten concentrations n/9, n = 0, 1, ..., 9 with a different distribution
of the particles over the unit cell are possible. At zero temperature, the stable configurations are
determined by the minima of the dimensionless thermodynamic Hamiltonian per lattice site

ω = H∗/MJ (2)

because the entropy does not contribute to the thermodynamic functions.
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In the vacuum state ω0 = 0. In the c = 1/9 phase, each particle has six neighbors of the fifth order.
Calculating the system energy, each interacting bond is taken into account twice. Thus,

ω1/9 = (−3J5 − μ)/9. (3)

For c = 2/9, two possibilities exist for the distribution of two particles over the unit cell (Figure 3).
The calculated potentials are as follows:

(a) ω2/9 = (3J2 − 6J5 − 2μ)/9,

(c) ω2/9 = (1 − 6J5 − 2μ)/9.
(4)

the 1 in Equation (4)c, originates from the nearest neighbor interaction for this configuration.

Figure 3. The possible distributions of particles over the unit cell for the concentrations c = n/9 with
2 ≤ n ≤ 4. For the concentrations with 5 ≤ n ≤ 7, the particles and vacancies have to be interchanged.
For the concentrations with n = 1 or 8, the particle or vacancy can occupy any lattice site of the unit
cell. There are several equivalent distributions of particles over the unit cell for the concentrations with
2 ≤ n ≤ 4 or vacancies for the concentrations with 5 ≤ n ≤ 7.

For larger concentrations, we can write the expressions corresponding to the columns a–c in
Figure 3

(a) ω3/9 = (9J2 − 9J5 − 3μ)/9,

(b) ω3/9 = (2 + 3J2 − 9J5 − 3μ)/9,

(c) ω3/9 = (3 − 9J5 − 3μ)/9,

(5)

(a) ω4/9 = (3 + 9J2 − 12J5 − 4μ)/9,

(b) ω4/9 = (4 + 6J2 − 12J5 − 4μ)/9,

(c) ω4/9 = (5 + 3J2 − 12J5 − 4μ)/9.

(6)

For the concentration c = n/9 with n ≥ 5, the distribution of the vacancies in the unit cell is the
same as the distribution of the particles for c = (9 − n)/9. In the dense state (n = 9, c = 1), all the
lattice sites are filled by the particles. The ω for these states can be calculated as

ωn/9 = ω1−n/9 + (2n − 9)[3(1 + J2 − J5)− μ]/9, 5 ≤ n ≤ 9 (7)

for each particular distribution of the particles/vacancies over the unit cell.
Comparing the r.h.s. of Equations (4)–(6), we can see that at J2 < 1/3 the system states shown in

the column (a) of Figure 3 are more stable, while at J2 > 1/3, the system states shown in the column (c)
are preferable. The system states of the column (b) could occur if additional interactions of the third
and/or fourth neighbors were taken into account.

Thus, the presence of the interaction between the second neighbors eliminates the phase
degeneration observed in the system without it [15] and results in additional stable phases in certain
regions of the chemical potential.
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To make further analysis more transparent, we consider the case J5 = J2 ≡ J2,5. There exists
the crossover value of the interaction parameter J2,5 = 1/3, which separates the possible states of
the system. Let us consider particular values of the interaction parameter, below and above the
crossover, J2,5 = 1/4 < 1/3 and J2,5 = 1/2 > 1/3, that correspond to the slower and faster decay of
the interaction potential for short separations as compared with V(r), shown in Figure 1, respectively.

In Figure 4, the grand thermodynamic potentials per lattice site, Equations (3)–(7), are shown
as functions of the chemical potential at J2,5 = 1/4. The stable states correspond to the lowest value
of ω for given μ, i.e., to the lowest line segments between the intersection points. These segments
determine the chemical potential intervals corresponding to particular concentrations of the particles.
Each intersection point corresponds to the coexistence of two phases with the closest concentrations.
The stable system states and the corresponding chemical potential intervals are shown in Figure 5.
The phase diagram of the system at J2,5 < 1/3 is shown in Figure 6.

−2 −1 0 1 2 3 4 5 6 7 8

μ

−4

−3

−2

−1

0

1

ω
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9
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9

ω2
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ω3
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Figure 4. The dimensionless thermodynamic Hamiltonian per lattice site versus the chemical potential
for the concentrations c = n/9, n = 0, 1, 2, ...9 at J2,5 = 1/4.

μ

vacuum c = 1
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9 dense
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Figure 5. Cartoons of the distribution of particles over the lattice sites and the corresponding chemical
potential intervals for the system with J2,5 = 1/4.
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Figure 6. The phase diagram of the system. The vertical lines show the chemical potential intervals for
the system states at J2,5 = 1/4, J2,5 = 1/3 and J2,5 = 1/2.

The phase coexistence lines between the phases with the concentrations (n − 1)/9 and n/9 can be
represented by the expression

μk,l = 3k + 3(l − 1)J2,5, k = 0, 1, 2; l = 0, 1, 2,

n = 1 + 3k + l.
(8)

The phase diagram of the system for the larger interaction parameter, J2,5 > 1/3, is shown in
Figure 6 as well. In this case, the phase coexistence lines between the phases with concentrations
(n − 1)/9 and n/9 obey the expression

μk,l = k + 2l + 3(l − 1)J2,5, k = 0, 1, 2; l = 0, 1, 2,

n = 1 + k + 3l.
(9)

The dependence of the potential ω on the chemical potential at J2,5 > 1/3 is shown in Figure 7.
The stable states correspond to the lowest line segments between the intersection points, which indicate
the chemical potential values for the phase coexistence.
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Figure 7. The dimensionless thermodynamic Hamiltonian per lattice site versus the chemical potential
for the concentrations c = n/9, n = 0, 1, 2, ..., 9 at J2,5 = 1/2.

The structure of the stable phases at J2,5 > 1/3 is shown in Figure 8. At the concentrations 3/9,
4/9, 5/9, and 6/9, the degenerated ground states exist. E.g., either triangles of the nearest neighbors or
stripes parallel to the lattice vectors can exist with equal probabilities at c = 3/9. Ordered rhombuses
or stripes with additional particles attached to them can occur at the concentration c = 4/9.

−1.5 −0.5 0.5 2 3 4 5.5 6.5 7.5 μ
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Figure 8. Cartoons of the distribution of particles over the lattice sites and the corresponding chemical
potential intervals for the system with J2,5 > 1/3.

At the crossover value of the parameter J2,5 = 1/3, all the system states for the concentration
between 2/9 and 7/9 are degenerated. The ωn/9 functions of the chemical potential μ according to
Equations (3)–(7) coincide for all possible system states for a given value of n. Any distribution of
particles shown in columns a) and c) of Figure 3 can occur at this value of the parameter J2,5 on the line
segments between the intersection points at μ = n − 2 for the coexisting phases c = (n − 1)/9 and
c = n/9, n = 1, 2, ..., 9.

3.2. The Ground States for Fixed Number of Particles

In systems with a fixed number of particles, an arbitrary mean concentration can be considered.
At c �= n/9, two phases separated by an interface line coexist. Like in the previous case [15],
the interface lines can be parallel or perpendicular to the lattice vectors ei, i = 1, 2, 3 (Figure 3).
We have verified that the interface lines parallel to the lattice vectors are preferable because their line
tensions are smaller.

On the coexistence line between vacuum and the c = 1/9 phase, each particle of the latter phase
loses two interacting bonds with the fifth neighbors in the vacuum phase. The distance between
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particles along the interface is equal 3a, where a is the nearest neighbor distance. Thus, the line tension
is equal to σ = J2,5/3a. At the interface line perpendicular to the lattice vectors ei, each particle in
the first row loses three interacting bonds and in the second row one interacting bond. The distance
between particles along the interface line is equal to 3a

√
3. The line tension is 2J2,5/3a

√
3 > J2,5/3a.

Thus, the interface lines between the coexisting phases c = 0 and c = 1/9 are parallel to the lattice
vectors. The same conclusion, σ = J2,5/3a, follows for the interface line between the phases c = 1/9
and c = 2/9 in both cases J2,5 < 1/3 and J2,5 > 1/3. Figure 9 demonstrates that one of the particles in
the near interface unit cell of the c = 2/9 phase has six neighbors of the fifth order, while the other
one has four such neighbors. The minimum of the line tension is assumed when one of the particles
of the c = 2/9 phase in the unit cell has two fifth neighbors and no first and second neighbors in the
phase c = 1/9. We finally note that the interface is twofold degenerated for the case of J2,5 > 1/3 at
the concentrations 3/9 ≤ c ≤ 6/9 (see Figure 8).

Figure 9. Cartoon of the interface between the c = 1/9 and 2/9 phases for the system at J2,5 < 1/3.

As an example of a structure in a system with a fixed number of particles, the simulation snapshot
for the system of 37 particles on the lattice of 36×36 lattice sites (the concentration c = 0.029) is shown
in Figure 10. In the ideal case of T = 0, the particles have to form a regular hexagon. However,
the simulation was done at a quite low but nonzero temperature T = 0.1. As a result, the coexistence
of the rarefied gas phase (the vacuum state with a few evaporated particles as defects) and the phase
with c = 1/9 is obtained. The interface lines are parallel to the lattice vectors in agreement with the
analytical calculation for T = 0.

Figure 10. The snapshot of the system of 37 particles on the lattice of 36 × 36 lattice sites (c 	 0.029)
after 9 000 Monte Carlo simulation steps (MCS) at J2,5 = 1/2. The interface lines are parallel to the
lattice vectors ei.
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At J2,5 < 1/3, the system states for a subsequent concentration can be produced from the previous
one by adding a particle in the unit cell. At the interface line, this particle has no counterparts in the
lower concentration phase, losing two interacting bonds with the fifth neighbors and the line tension is
equal σ = J2,5/3a for all the coexisting phases with concentrations (n − 1)/9 and n/9 for n = 1, 2, ..., 9.

The situation at J2,5 > 1/3 is more complicated. The neighboring system states in the upper
row in Figure 3 differ from each other by one particle in the unit cell and the line tension for all the
interfaces parallel to the lattice vectors is equal to J2,5/3a. The system state for the c = 3/9 phase in
the lower row can coexist with the c = 2/9 phase, because this state differs from the previous phase by
one particle as well. Thus, the degeneracy of the phase coexistence between the phases c = 2/9 and
c = 3/9 is observed.

However, the c = 4/9 phase in the lower row in Figure 3 can coexist with the c = 3/9 phase of
the upper row, but not with that of the lower row, because they differ by positions of more than one
particle. Thus, three combinations of coexisting phases exist at the mean concentration 3/9 < c < 4/9.
The same situation exists for the coexistence of the c = 4/9 and c = 5/9 phases. The states of the
upper row can coexist between themselves as well as with the cross phases of the lower row. However,
these phases in the lower row cannot form a stable interface between themselves. There are no
counterparts for two particles in the more concentrated phase as well as for one particle of the less
concentrated phase. The line tension in this case is three times larger. Three combinations of coexisting
phases separated by a stable interface exist at the mean concentration 4/9 < c < 5/9 as well.

The system states are symmetric with respect to μ = 3 or c = 0.5 and the particle-vacancy
interchange [18]. The phase coexistence at larger chemical potentials and concentrations are symmetric
to their lower values.

4. Thermodynamics of the System at T > 0

At low dimensionless temperatures T = kBT∗/J (where T∗ is the absolute temperature and kB
the Boltzmann constant), the ordered states found in the ground state remain present in the system,
while the ordering is destroyed gradually with the temperature increase, due to thermal fluctuations.
In this section, the Monte Carlo (MC) simulation results for μ(c) isotherms, isothermal compressibility,
and specific heat are presented for the system at two values of the interaction parameter J2,5 = 1/4
and J2,5 = 1/2 below and above the crossover value J2,5 = 1/3. The Metropolis importance sampling
simulations were performed with the chemical potential step Δμ = 0.02 for the system of 96 × 96
lattice sites with periodic boundary conditions. one thousand Monte Carlo simulation steps (MCS)
were used for equilibration. The subsequent 10 000 MCS were used for calculating the average values.

The isotherms displaying the concentration dependence on the chemical potential at J2,5 = 1/2
demonstrate typical behavior at low temperatures T = 0.1, 0.2, and 0.3 (Figure 11). The wide empty
horizontal segments in the μ(c) plots indicate forbidden regions of concentrations. These two-phase
segments are separated by very steep parts of the μ(c) plots, where μ increases rapidly for very
narrow range of c, centered at n/9. These intervals of c separating the horizontal segments expand
with increasing temperature. The concentration intervals around n/9, n = 0, 1, ..., 9 correspond to
the ordered patterns discussed in the previous section in the case of the grand canonical ensemble.
At larger temperature T = 0.5, the horizontal regions in the μ(c) plot almost disappear. Thus, the critical
temperature can be estimated as Tcr 	 0.6. The concentration increases continuously as a function of
the chemical potential at this temperature. The repulsion interaction between the second neighbors
not only removes the degeneracy of the system states at the concentrations 1/3 and 2/3, but also
significantly reduces the critical temperature, which is around 1.1 when the second neighbors do not
interact [15].
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Figure 11. The chemical potential as a function of the concentration at J2,5 = 0.5 and several
temperatures. The isotherms are shifted in the vertical direction by 3 from each other for clarity.
The isotherm at T = 0.1 is not shifted.

The structure of stable phases resembles the ground state configurations. In Figures 12–14 the
snapshots of the system at the concentration close to 4/9 are shown as examples. At the interaction
parameter J2,5 > 1/2 above its critical value 1/3, the system is degenerated and in different runs the
final state Figures 13 and 14 corresponds to the possible ground state configurations given in Figure 8
with a few defects, due to thermal fluctuations.

Figure 12. Snapshot of the system at T = 0.2, μ = 2.6, J2,5 = 1/4 after 8 000 MCS. The extra particle
(defect) is shown in red. This structure corresponds to the ground state configuration shown in Figure 5.
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Figure 13. Snapshot of the system at T = 0.3, μ = 2.6, J2,5 = 1/2 after 8 000 MCS. The additional
vacancies (defects) are shown in yellow. This structure corresponds to the ground state configuration
shown in the bottom row of Figure 8.

Figure 14. Snapshot of the system at T = 0.3, μ = 2.6, J2,5 = 1/2 after 8 000 MCS. The extra particles
and additional vacancies (defects) are shown in red and yellow, respectively. This structure corresponds
to the ground state configuration shown in the upper row of Figure 8.

The phase transitions can be more clearly revealed by considering fluctuations (Figure 15).
The inverse value of the thermodynamic factor χT = c(∂(βμ)/∂c)T is proportional to the
concentration fluctuations

χ−1
T =

〈(N − 〈N〉)2〉
〈N〉 (10)

that in turn is proportional to the isothermal compressibility κT = (∂c/∂p)T/c, χ−1
T = cTκT , where the

angular brackets 〈...〉 denote averaging over the grand canonical ensemble, N is the number of particles
in the system, c = 〈N〉/M is the mean lattice concentration,and p is the pressure.

At the lowest temperatures, T = 0.1 and T = 0.2, the concentration fluctuations of each phase
exist in narrow concentration regions. At the temperature T = 0.4, the minima of the concentration
fluctuations are well distinguishable. They are attained at the most ordered system states with
concentrations equal to a multiple 1/9. At T = 0.5, the concentration fluctuations span almost over the
entire concentration range (0,1), indicating the approach to the critical temperature.
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Figure 15. The inverse thermodynamic factor as a function of the concentration at J2,5 = 0.5 and several
temperatures. The curves are shifted in the vertical direction by 33n from the lowest one for clarity.

Similar behavior is observed for the dimensionless specific heat (Figure 16), which is proportional
to the energy fluctuations

cV =
1

kB〈N〉
(

∂E∗

∂T∗

)
μ

=
〈(E − 〈E〉)2〉

〈N〉T2 , (11)

where E = E∗/J is the dimensionless system energy (see the first term on the RHS in Equation (1)), and

〈E〉 = 1
2

〈 5

∑
k=1

zk

∑
ki=1

M

∑
i=1

Jkn̂in̂ki

〉
. (12)
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Figure 16. The dimensionless specific heat as a function of the concentration at J2,5 = 0.5 and several
temperatures. The curves are shifted in the vertical direction by 33n from the lowest one for clarity.
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As an example, the fine structure of the concentration and energy fluctuations is shown in
Figure 17 and simulated with the reduced chemical potential step. The minima of these characteristics
are close to the concentration c = 1/3 of the most ordered system state.
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c
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101

c μ

a) b)

Figure 17. The fine structure of the inverse thermodynamic factor (a) and dimensionless specific heat
(b) at T = 0.3 and J2,5 = 0.5 simulated with the reduced chemical potential step Δμ = 0.002. The scatter
of the results characterizes the precision of the simulation.

Structural peculiarities of the system can be tracked by considering the order parameters.
The occupancy of particular sublattices (Figure 2) represents nine such order parameters. At the
lowest temperatures, T = 0.1 and 0.2, the succession of the order parameters is in fact represented by
the step functions rising from 0 to 1 when the concentration attains the value equal to a multiple of
1/9. The order parameters become smoother when the temperature increases.

For the interaction parameter below its critical value 1/3, in particular for J2,5 = 1/4, the chemical
potential isotherms look like in the previous case (Figure 18), but the critical temperature is even lower,
around 0.4. At low temperatures, the inverse thermodynamic factor and the specific heat, as well as
the order parameters, have the same prominent features at the concentrations around a multiple of 1/9.
The rapid changes of the above quantities for c ≈ n/9 are smoothed out with the temperature increase.
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Figure 18. The chemical potential as a function of the concentration at J2,5 = 0.25 and several
temperatures. The isotherms are shifted in the vertical direction by 3 from each other for clarity.
The isotherm at T = 0.1 is not shifted.
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Despite very similar thermodynamic properties of the systems with the interaction parameter J2,5

above and below its crossover value J2,5 = 1/3, the structural characteristics are completely different
above and below the crossover. The particle distribution over the lattice sites corresponds to the
structures of Figure 5 or Figure 8 in the former and in the latter case, respectively. Due to thermal
fluctuations at non-zero temperatures, the structures contain defects, which are particles on the sites
that do not belonging to the ideal configurations or vacant sites on these configurations. The number
of defects increases with the temperature increase, and the concentration range corresponding to the
ordered phases increases as well.

5. Conclusions

We considered pattern formation by particles with hard cores covered by thick polymeric shells
on a fluid interface. The structure of the shell can be designed in experimental studies, and it
determines the effective repulsion between the particles. For this reason, the aim of our study was the
determination of the effect of the shape of the repulsive potential on the patterns formed by the particles.
We focused on the question how the rate at which the repulsion decreases with the distance influences
the pattern formation. We considered a triangular lattice model with the lattice sites occupied by
the particle cores. The nearest and next nearest neighbors repel each other, due to the overlapping
polymeric shells, while the fifth neighbors attract each other because of the capillary forces.

The second neighbor repulsion in addition to the nearest and fifth neighbor interaction results in
the significant enrichment of the ground state structures. Alongside with the concentrations equal to a
multiple of 1/3, the states with the concentrations equal to a multiple of 1/9 are present for certain
intervals of the chemical potential.

Importantly, the patterns formed for the concentration c = n/9, n = 2, ..., 7, are completely
different for the repulsion that shows a fast and a slow decrease with the interparticle separation (see
Figures 5 and 8 for the first and the second case, respectively). In the second case, two quite different
patterns can occur with the same probability for given μ. The crossover value of the second-neighbor
repulsion (equal to the fifth neighbor attraction) separating the two types of patterns is J2,5 = 1/3.
Our model is suitable for thick composite shells, with a stiff inner part and soft outer part. The results
show that by modifying the thickness and the structure of the stiff inner part, we can obtain completely
different patterns on an interface.

In systems with a fixed number of particles, the energetically preferable interface lines are parallel
to the lattice vectors for all stable interfaces. We have shown that in the case of the degenerated ground
states, two types of patterns with lower density can coexist with two patterns with higher density,
giving together four pairs of coexisting patterns. A stable interface, however, cannot be formed for one
of these pairs.

At non-zero but not too large temperatures, the system passes through the structures
corresponding to the ground states with thermally initiated defects. At low temperatures, the stable
states exist in very narrow concentration intervals close to the concentrations equal to a multiple of
1/9. The concentration intervals enlarge with the temperature increase. At temperatures slightly above
the critical one, the concentration versus chemical potential isotherms become continuous. The critical
temperature depends strongly on the shape of the interaction potential too. In the case of J2,5 = 1/2,
i.e., when the intensity of the second neighbor repulsion is equal to the fifth neighbor attraction and
twice as low as the first neighbor repulsion, the critical temperature is almost two times lower than in
the system with vanishing interaction between the second neighbors [15]. The critical temperature
decreases with decreasing interaction between the second and the fifth neighbors.

The fluctuations of the number of particles and energy are maximal at the concentrations
corresponding to the phase transition points, and minimal in the most ordered states at concentrations
close to a multiple of 1/9. The order parameters determined as the mean concentrations on the
sublattices demonstrate fast increase from 0 to 1, while the mean system concentration crosses a value
equal to a multiple of 1/9.
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Quantitative comparison of the predictions of our model with experimental results is not
possible yet. Due to the sensitive dependence of the patterns formed by the particles on the interfaces
on the details of the effective interactions, it is necessary to precisely design and control the crosslinking
architecture of the polymeric shell, in order to obtain the desired shape of the effective interactions
in experiment. On the theoretical side, it would be necessary to compute the pressure–area fraction
isotherms that are measured in experiments. On the qualitative level, however, our predictions for the
chemical potential—area fraction isotherms can be compared with the experimental pressure–area
fraction isotherms for the CSNPs with the shell-to-core size ratio ∼ 3, since the chemical potential and
the pressure play similar roles. Indeed, steps in the isotherms are clearly seen in Ref. [3], in qualitative
agreement with our results. Moreover, structural evolution for increasing area fraction, in particular
the formation of clusters, and the orientation of the interface between coexisting phases in our theory
and in experiment are similar.

To summarize, we stress that our model indicates that by careful construction of the polymeric
shell, one should be able to obtain core-shell nanoparticles forming a variety of different patterns on
an interface.
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Abstract: Here, the zero-temperature phase behavior of bosonic particles living on the nodes of
a regular spherical mesh (“Platonic mesh”) and interacting through an extended Bose-Hubbard
Hamiltonian has been studied. Only the hard-core version of the model for two instances of Platonic
mesh is considered here. Using the mean-field decoupling approximation, it is shown that the
system may exist in various ground states, which can be regarded as analogs of gas, solid, supersolid,
and superfluid. For one mesh, by comparing the theoretical results with the outcome of numerical
diagonalization, I manage to uncover the signatures of diagonal and off-diagonal spatial orders in a
finite quantum system.

Keywords: ultracold quantum gases; quantum phase transitions; decoupling approximation;
spherical boundary conditions

1. Introduction

Gases of ultracold bosonic atoms loaded in an optical lattice provide the unique opportunity to
study quantum many-body effects under controlled conditions [1,2]. To a very good approximation,
the atoms can be described by a Bose–Hubbard (BH) Hamiltonian [3] whose parameters can be tuned
by laser light [4,5]. By changing the configuration of the lasers, many lattice geometries can be explored,
making optical lattices a powerful and versatile tool.

In a system at zero temperature (T = 0), thermal fluctuations are frozen out and quantum
fluctuations prevail. These microscopic fluctuations can induce phase transitions in the ground state of
a many-body system, driven by a non-thermal control parameter, such as chemical potential, magnetic
field, or chemical composition. As a concrete example, consider a dilute gas of bosons at temperatures
low enough that a Bose-Einstein condensate is formed. The condensate is described by a wave function
consisting of every particle in the same state spread over the entire volume of the system, and typically
exhibits superfluidity. An interesting situation appears when the condensate is subject to a lattice
potential in which particles can move from one lattice site to the next only by tunneling. If the lattice
potential is increased smoothly, the system remains in the condensed phase as long as the repulsion
between atoms is small compared to the tunnel coupling (assuming, by the way, that the range of the
repulsion is much smaller than the lattice spacing). In this regime, where the tunneling term dominates
the Hamiltonian, a delocalized wave function still minimizes the total energy of the many-body
system. When the strength of the repulsion becomes large compared to the tunnel coupling, the total
energy is made minimum when each lattice site is occupied by the same number of atoms; as a result,
phase coherence is lost and the system becomes insulating. The addition of a longer-range repulsion
will make the phase behavior richer, with the possibility of a non-superfluid density wave and a
supersolid ground state where crystalline order coexists with superfluid behavior (see, e.g., Ref. [6]).
Experimentally, a way to prepare ultracold gases of long-range interacting bosons is to use atoms (such
as chromium [7] or dysprosium [8]) and molecules having a large magnetic or electric dipole moment.
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The usual BH model predicts a T = 0 phase transition from a superfluid phase to a Mott insulator
phase as the ratio of the hopping matrix element between adjacent sites (t, in absolute terms) to
the on-site interaction (U) is reduced. The overall number density of particles is controlled via
a chemical-potential parameter μ. As μ grows at fixed t and U, the lattice becomes increasingly
filled with particles, but this can only occur outside the Mott regions since the insulator phase
is incompressible [3]. The BH model has been studied in many lattice geometries and with
several techniques (mean-field theory [9–11], perturbation theory [12–16], and quantum Monte Carlo
simulation [17,18], to name but the most commonly employed). When a further repulsion V is
introduced between nearest-neighbor atoms (“extended BH model”), new phases may arise, in primis
a supersolid phase [19–27]. Another variant of the BH model is hard-core bosons, where site occupancy
is restricted to zero or one, corresponding to taking the U → ∞ limit [6,28–32].

I hereafter present the results of yet another investigation of the extended BH model, now choosing
a finite graph as hosting space for bosons. Even though clearcut phase transitions (i.e., thermodynamic
singularities) cannot occur in a few-particle system, a convenient choice of boundary conditions may
alleviate the difference with an infinite system, making the study of a finite quantum system valuable
anyway. A practical solution is to use spherical boundary conditions (SBCs), which have often been
exploited in the past to discourage long-range triangular ordering at high density [33–38]. On the
other hand, SBCs make it possible to observe novel forms of ordering, viz. into regular polyhedral
structures, that are simply unknown to Euclidean space—see Refs. [39–41]. An added value of a
spherical mesh of points is the possibility to vary the site coordination while keeping the overall
geometry strictly two-dimensional. Bosons confined in spherical (bubble) traps have been produced
experimentally [42,43] and are going to be studied soon under microgravity conditions [44,45]. In the
present study, the extended BH model is considered on a finite mesh of points homogeneously
distributed on the unit sphere, i.e., coincident with the vertices of a regular polyhedron inscribed in
the sphere (we may call it a Platonic mesh). Despite consisting of a finite number of nodes, a regular
spherical mesh shares an important feature in common with an ordinary lattice, namely all sites are
equivalent; for this reason, the phase behavior of particles living on a Platonic mesh would not deviate
much from that of an infinite system (this intuition will be checked in a particular case).

The plan of this paper is the following. After introducing the models in Section 2, the choice of the
underlying mesh is discussed in detail, giving priority to those regular grids where a subset of nodes
form a mesh that is also regular. Then, in Section 3, a mean-field (MF) analysis of the ground state is
carried out for all the models considered; in one case, the indications of theory are validated against
the results of exact diagonalization (Section 4). From this comparison, we find the artifacts of the MF
approximation as applied to a finite system. Finally, some concluding remarks are given in Section 5.

2. Particle Models on a Spherical Mesh

2.1. Classical Models

To illustrate the main idea, let it initially be considered a system of classical point particles defined
on the sites of a cubic mesh stretched over the surface of the unit sphere. Each of the eight nodes of the
mesh has three nearest neighbors (NN, at chord distance r = 2/

√
3) and three next-nearest neighbors

(NNN, at chord distance 2
√

2/3). For simplicity, assume that the occupancy ni of site i can only be 0 or
1 (i = 1, . . . , 8). Finally, choose the system Hamiltonian to be H[n] = V ∑〈i,j〉 ninj with V > 0 (each NN
pair in the sum is counted only once). The grand potential Ω(T, μ) of this system is

Ω = −β−1 ln Ξ with Ξ = ∑
{n}

e−β(H[n]−μ ∑i ni) , (1)

where β is the inverse temperature. At T = 0, the formula is simpler:
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Ω = min
{n}

(
H[n]− μ ∑

i
ni

)
. (2)

Any of the points of absolute minimum in (2) represent the actual equilibrium state of the system for
that μ. For particles living in a continuous space, minimization of H − μN is carried out among a
selection of crystalline states that are thought to be relevant based on symmetry considerations (see,
e.g., Ref. [46]). In the present case, where the total number of microstates is small (28 = 256), the T = 0
grand potential can be determined exactly for each μ by a scrutiny of all possible energies. While the
mesh is empty for μ < 0 and completely filled with particles for μ > 3V, in the interval from 0 to
3V only half of the nodes are occupied, and these fall at the vertices of a regular tetrahedron. This
twofold-degenerate state with checkerboard order can be viewed as the finite-size counterpart of a
crystalline phase.

The rationale behind the choice of a cubic mesh is now clear: by introducing a repulsion between
occupied NN sites, we promote the occurrence of a Platonic “crystal”, i.e., the regular tetrahedron (“CT
model”, see Figure 1 left). There is only one other possibility to obtain a non-frustrated crystal-like
state at T = 0, which is using a regular dodecahedral mesh. We shall see that (i) by discouraging
the occupancy of NN sites, a cubic “crystal” is stabilized for sufficiently small μ > 0 (“DC model”,
Figure 1 center); (ii) if the repulsion is extended to embrace NNN sites too, then a tetrahedral “crystal”
is stabilized in a range of positive μ values (“DT model”, Figure 1 right).

Figure 1. The two regular meshes considered in this work (the circumscribed sphere is not shown).
The dots (some are hidden) are the sites/nodes of the mesh; their number is 8 for the cubic mesh and
20 for the regular dodecahedral mesh. (Left) Cubic mesh with a regular tetrahedron inside (CT model).
(Center) Regular dodecahedral mesh with a cube inside (DC model) . (Right) Regular dodecahedral
mesh with a regular tetrahedron inside (DT model).

For a system of classical hard-core particles defined on a regular dodecahedral mesh, the total
number of microstates is 220 = 1,048,576. By direct inspection, we see that the minimum-Ω “phase” for
the DC model is the empty mesh for μ < 0, a cube for 0 < μ < 3V/2 (a fivefold-degenerate state, since
there are 5 ways to form a cube with the vertices of a regular dodecahedron), and the complement of a
cube (“co-cube” in the following) for 3V/2 < μ < 3V; finally, for μ > 3V the mesh is completely filled.
For the DT model, the mesh is empty for μ < 0, filled with particles located at the vertices of a regular
tetrahedron for 0 < μ < 3V/2 (a tenfold degenerate state), and completely filled for μ > 9V. For μ

between 3V/2 and 9V, a different ground state exists for each even number of occupied sites in the
range 6 to 16, none of which corresponds to a simple geometric arrangement.

I have plotted in Figure 2 the evolution with temperature of a few properties of the CT and DC
models. In addition to the grand potential Ω, the figure shows the total number of occupied sites
(N), the total energy (E), and the order parameters for tetrahedral (St) and cubic order (Sc). The latter
quantities are defined so as to discriminate the Platonic “phase” from the other T = 0 states. A proper
order parameter should be insensitive to the orientation of the polyhedron, hence it can only depend
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on the relative angles between the vertices vector radii departing from the sphere center: for a regular
tetrahedron all these angles are equal to α = arccos{−1/3} (with sin α = 2

√
2/3), while they are

π − α, α, and π for a cube. With the idea to penalize configurations that do not match the wanted
structure, my choice of the OPs is the following:

St =

⎧⎨⎩ 1 − kt ∑i<j

(
cos θij +

1
3

)2
, N = 4

0 , N �= 4
(3)

and

Sc =

⎧⎨⎩ 1 − kc ∑i<j sin θij

(
sin θij − 2

3

√
2
)2

, N = 8

0 , N �= 8 ,
(4)

where the constants kt and kc are chosen, following the advice in Ref. [47], so that S vanishes for a
random distribution of angles:

kt =
3
8

and kc =
36
7

(
59π − 128

√
2
)−1

. (5)

Looking at Figure 2, it is clear that the only singularities are found at T = 0 (the system is finite) while
all cusps and jumps are smoothened for T > 0.

a) CT model b) DC model
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Figure 2. Thermal averages for the CT model (a) and the DC model (b), plotted as a function of μ for
four values of T in units of V/kB, where kB is Boltzmann’s constant (see legend in the top left panel).
(Top left): Grand potential. (Top right): Total number of occupied sites. (Bottom left): Total energy.
(Bottom right): Order parameter (see text).

It is worth considering how the T = 0 phase diagram of the CT and DC models gets modified
when the occupancy of a node is allowed to take any value. For simplicity, as relevant T = 0
states only the “cluster crystals” [48–50] originated from the previously identified ground states are
considered. Call U > 0 the on-site energy and V the NN repulsion. The grand Hamiltonian now
reads H[n] = U/2 ∑i ni(ni − 1) + V ∑〈i,j〉 ninj − μ ∑i ni. For the CT model, the grand potential of a

tetrahedral “cluster crystal” with n particles per site is Ω(4)
n = 2n(n − 1)U − 4nμ, while the grand

potential of the “cluster crystal” with n particles per site is Ω(8)
n = 4n(n − 1)U + 12n2V − 8nμ. For a

given μ, the most stable “phase” corresponds to the minimum Ω. Up to μ = 0 the stable “phase” is
still the empty mesh. As μ grows further, the site occupancy increases monotonically within each of
the families Ω(4)

n and Ω(8)
n , but the exact sequence of stable “phases” depends on U/V. I show three

cases in Figure 3. For U = 5V (right panel), the behavior for small μ > 0 recalls that found in the
hard-core limit; however, as μ grows, each site becomes increasingly populated, and a whole sequence
of cluster states is found. The opposite occurs for U = 2V (left panel), where only the cluster states
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with checkerboard order are stabilized for μ > 0. A curious situation occurs for U = 3V, where the
competition between different cluster states becomes so stringent that “crystals” of the two families
coexist at regular intervals along the μ axis (center panel).

U = 2V U = 3V U = 5V

Figure 3. CT model with multiple occupancy allowed. The grand potential Ω (in V units) is plotted as

a function of μ for two families of “cluster crystals”, Ω(4)
n (blue) and Ω(8)

n (red), and for three values of
U/V. Red and blue numbers are values of n.

As a matter of fact, hybrid ground states with features intermediate between those of the
tetrahedral and cubic cluster states may also occur. For example, I have checked for U = 5V that a
microstate with two overlapping particles at the vertices of one tetrahedron and one particle at the
vertices of the other tetrahedron is the most stable ground state in the μ interval from 8V to 11V.

Moving to the DC model, we have three different families of “cluster phases”: the cubic family
with grand potential Ω(8)

n = 4n(n − 1)U − 8nμ; the co-cubic family with grand potential Ω(12)
n =

6n(n − 1)U + 6n2V − 12nμ; and the family of those cluster states where every site is filled with the
same number of particles, with grand potential Ω(20)

n = 10n(n− 1)U + 30n2V − 20nμ. Without delving
into details, the phase behavior as a function of U is similar to the CT model, with multiple coexistence
between all three types of cluster crystals now occurring for U = 2V.

2.2. Quantum Models

The previous analysis has served to set the stage for the forthcoming study of the extended BH
model on a regular spherical mesh; only the quantum versions of the CT and DC models (denoted
QCT and QDC, respectively) are considered below.

The system is defined by the following grand Hamiltonian:

H = −t ∑
〈i,j〉

(
a†

i aj + a†
j ai

)
+

U
2 ∑

i
ni(ni − 1) + V ∑

〈i,j〉
ninj − μ ∑

i
ni . (6)

In the present investigation, H describes a system of bosons on a spherical mesh of M sites, ai, a†
i are

bosonic field operators (i = 1, . . . , M), and ni = a†
i ai is a number operator. Moreover, t ≥ 0 is the

hopping amplitude between NN sites, U > 0 is the on-site repulsion, and V > 0 is the strength of the
NN repulsion. In the hard-core limit U → ∞, the site occupancy is restricted to zero or one and the U
term in (6) vanishes; it is only this limit that is treated hereafter.

In the BH model on a standard lattice, at T = 0 we observe an insulator–superfluid transition with
increasing t for every positive μ. The addition of V may stabilize (depending on the lattice) a density
wave at low t, as well as a supersolid phase at the boundary between the insulator and superfluid
phases. These features are also present in the hard-core limit, as reported, e.g., in Refs. [30,32].
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3. MF Investigation

MF theory is the method of choice when a new many-body problem is attacked; it has been
frequently applied for continuous quantum systems as well, as an effective means to identify the
ground states and quantum transitions between them (cf. Refs. [51–53]). Various versions of MF theory
exist in discrete space; here the so-called decoupling approximation [11,29,32] is employed, which
gives the advantage of a fully analytic treatment of the problem. Clearly, the accuracy of MF theory
would be questionable when applied for a finite quantum system, even one lacking a boundary surface.
This will make urgent an assessment of MF theory against exact results, which however is delayed
until the next Section.

In the decoupling approximation, the two-site terms in the Hamiltonian (6) are linearized so
that the eigenvalue problem becomes effectively one-site. This is accomplished by first writing the
exact identity

a†
i aj = a†

i
〈

aj
〉
+
〈

a†
i

〉
aj −

〈
a†

i

〉 〈
aj
〉
+ δa†

i δaj (7)

with δai = ai − 〈ai〉 (for i = 1, . . . , M), and then neglecting the last term. Similarly,

ninj ≈ ni
〈
nj
〉
+ 〈ni〉 nj − 〈ni〉

〈
nj
〉

. (8)

The averages 〈ai〉 ≡ φi and 〈ni〉 ≡ ρi (either ground-state averages or thermal averages) are to be
determined self-consistently; φi and ρi (with 0 ≤ ρi ≤ 1) represent the superfluid order parameter and
the local density for site i, respectively. For hard-core bosons, we readily obtain H ≈ HMF with

HMF = −t ∑
i

(
Fia†

i + F∗
i ai − Fiφ

∗
i

)
+

V
2 ∑

i
(2Rini − Riρi)− μ ∑

i
ni . (9)

In Equation (9), Fi = ∑j∈NNi
φj and Ri = ∑j∈NNi

ρj are sums over the nearest neighbors of the i-th site.
For a bipartite mesh, sites are either of type A or B, hence the unknown parameters are four, namely
φA, φB, ρA, ρB. The simplification is obvious: rather than working on a Fock space of dimensionality 2M,
for a bipartite mesh the basis states are just four, namely |0, 0〉 , |0, 1〉 , |1, 0〉, and |1, 1〉, corresponding
to the possible occupancies of a pair of A and B sites.

3.1. QCT Model

For the QCT model, the mesh is bipartite and formed by two tetrahedral sub-meshes with four
points each. A point of grid A has three neighbors, all belonging to grid B, and vice versa. Hence,

FA = 3φB , FB = 3φA , RA = 3ρB , and RB = 3ρA . (10)

Using a subscript A (B) for operators relative to a single A (B) site, the MF Hamiltonian reads:

HMF = E0 − 12t
(

φBa†
A + φ∗

BaA + φAa†
B + φ∗

AaB

)
+ 4(3VρB − μ)nA + 4(3VρA − μ)nB (11)

with
E0 = 12t(φAφ∗

B + φ∗
AφB)− 12VρAρB . (12)

On the 4-vector basis B = {|0, 0〉 , |0, 1〉 , |1, 0〉 , |1, 1〉}, the Hamiltonian (11) is represented by a 4 × 4
Hermitian matrix:

HMF =

⎛⎜⎜⎜⎝
E0 −12tφ∗

A −12tφ∗
B 0

−12tφA E0 + 4(3VρA − μ) 0 −12tφ∗
B

−12tφB 0 E0 + 4(3VρB − μ) −12tφ∗
A

0 −12tφB −12tφA E0 + 12V(ρA + ρB)− 8μ

⎞⎟⎟⎟⎠ . (13)
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Non-superfluid phases have φA = φB = 0. In this case, the matrix becomes diagonal, meaning that the
basis vectors are all (grand-)energy eigenstates. From the self-consistency equations ρA = 〈nA〉 and
ρB = 〈nB〉, it readily follows that ρA = ρB = 0 for |0, 0〉 (empty mesh), ρA = 0 and ρB = 1 for |0, 1〉
(tetrahedral-B “crystal”), ρA = 1 and ρB = 0 for |1, 0〉 (tetrahedral-A “crystal”), and ρA = ρB = 1 for
|1, 1〉 (fully occupied mesh). The eigenvalue gives the grand potential Ω, which is zero for the empty
mesh, −4μ for the twofold-degenerate tetrahedral “crystal”, and 12V − 8μ for the filled mesh. These
grand potentials are exactly the same as in the CT model.

Superfluid and supersolid “phases” have non-zero, possibly distinct, complex values of φA and
φB. For sure, φA and φB have equal phases since only the magnitude of the order parameter can
be spatially modulated; hence, the arbitrary phase can be taken as zero. Without loss of generality,
we may assume φA and φB to be positive quantities. We shall see in the next section that the exact
eigenstates of H for t > 0 do not distinguish between A and B; hence, our search can be restricted to
homogeneous (superfluid) solutions: φA = φB = φ and ρA = ρB = ρ. We are thus led to the following
characteristic equation (with E0 = 24tφ2 − 12Vρ2):∣∣∣∣∣∣∣∣∣

E0 − λ −12tφ −12tφ 0
−12tφ E0 + 4(3Vρ − μ)− λ 0 −12tφ
−12tφ 0 E0 + 4(3Vρ − μ)− λ −12tφ

0 −12tφ −12tφ E0 + 8(3Vρ − μ)− λ

∣∣∣∣∣∣∣∣∣ = 0 . (14)

Doing the simplifications, we arrive at

(λ − b)2
[
(λ − a)(λ − 2b + a)− 4u2

]
= 0 (15)

with a = E0, b = E0 + 4(3Vρ − μ), and u = −12tφ. The minimum root of (15) is

E = b −
√
(a − b)2 + 4u2 = 4

(
6tφ2 − 3Vρ2 + 3Vρ − μ −

√
(3Vρ − μ)2 + 36t2φ2

)
. (16)

A real eigenvector of E is

|ψE〉 = E − 2b + a
2u

|0, 0〉+ |0, 1〉+ |1, 0〉+ E − a
2u

|1, 1〉 , (17)

or, in explicit terms,

|ψE〉 =
(

3Vρ − μ +
√
(3Vρ − μ)2 + 36t2φ2

6tφ
, 1, 1,

−(3Vρ − μ) +
√
(3Vρ − μ)2 + 36t2φ2

6tφ

)
. (18)

Now imposing the conditions

ρA,B =
〈ψE|nA,B|ψE〉

〈ψE|ψE〉 and φA,B =
〈ψE|aA,B|ψE〉

〈ψE|ψE〉 , (19)

we arrive at the two coupled equations

1 − 2ρ =
3Vρ − μ√

(3Vρ − μ)2 + 36t2φ2
and 1 =

3t√
(3Vρ − μ)2 + 36t2φ2

, (20)

which are easily solved to give

ρ =
μ + 3t

3V + 6t
and φ =

√
(μ + 3t)(3V + 3t − μ)

3V + 6t
. (21)

85



Entropy 2020, 22, 1289

The above φ solution only exists provided that −3t < μ < 3V + 3t, which is a necessary condition
for the existence of the superfluid. Plugging these ρ and φ in Equation (16), we finally obtain the
superfluid grand potential:

ΩSF = −4(μ + 3t)2

3V + 6t
. (22)

This outcome can also be obtained from the general relation (see Equations (6)–(8))

〈HMF〉 = −2t ∑
〈i,j〉

φ∗
i φj + V ∑

〈i,j〉
ρiρj − μ ∑

i
ρi . (23)

For the superfluid, we have φi = φ and ρi = ρ, with φ and ρ given by Equation (21); hence,

〈HMF〉 = 4
(
−6tφ2 + 3Vρ2 − 2μρ

)
= −4(μ + 3t)2

3V + 6t
. (24)

By comparing the grand potentials of all the “phases”, we arrive at the ground-state diagram
in Figure 4. Along the straight lines μ = −3t and μ = 3V + 3t, separating the superfluid from the
insulator “phases” at small and large μ, the μ derivative of the grand potential (=− 〈N〉) is continuous.
Instead, along the line

μ =
3V
2

± 3
2

√
V2 − 4t2 , (25)

separating the “crystalline” lobe from the superfluid, the average number of occupied sites shows
a jump discontinuity. Only at the lobe vertex (V/2, 3V/2) the tetrahedral-superfluid transition
is continuous. We will see in Section 4 to what extent the indications of MF theory are accurate,
considering that the cubic mesh consists of 8 sites only.
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Figure 4. Phase diagram of the QCT model according to the decoupling approximation (see text).
The blue dashed lines are second-order transition lines, while the red full line is a first-order line (only
at the lobe vertex the transition is continuous).
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3.2. QDC Model

The decoupling approximation for the QDC model works similarly as for the QCT model. Again,
the starting point is Equation (9) and the mesh is partitioned into a cube (A, 8 sites) and a co-cube (B,
12 sites). We have:

FA = 3φB , FB = 2φA + φB , RA = 3ρB , and RB = 2ρA + ρB . (26)

The MF Hamiltonian then reads:

HMF = E0 − 24t(φBa†
A + φ∗

BaA)− 12t
(
(2φA + φB)a†

B + (2φ∗
A + φ∗

B)aB

)
+ 4(6VρB − 2μ)nA + 4(6VρA + 3VρB − 3μ)nB (27)

with
E0 = 24t(φAφ∗

B + φ∗
AφB) + 12t|φB|2 − 24VρAρB − 6Vρ2

B . (28)

On the B basis, the Hamiltonian (27) is represented by the matrix:

HMF =

⎛⎜⎜⎜⎝
E0 −12t(2φ∗

A + φ∗
B) −24tφ∗

B 0
−12t(2φA + φB) E0 + 4(6VρA + 3VρB − 3μ) 0 −24tφ∗

B
−24tφB 0 E0 + 4(6VρB − 2μ) −12t(2φ∗

A + φ∗
B)

0 −24tφB −12t(2φA + φB) E0 + 4(6VρA + 9VρB − 5μ)

⎞⎟⎟⎟⎠ . (29)

For phases with φA = φB = 0, the matrix is diagonal and, like in the QCT model, the basis vectors
are all (grand-)energy eigenstates. From the self-consistency conditions ρA = 〈nA〉 and ρB = 〈nB〉 it
follows that ρA = ρB = 0 for |0, 0〉 (empty mesh), ρA = 0 and ρB = 1 for |0, 1〉 (co-cubic “crystal”),
ρA = 1 and ρB = 0 for |1, 0〉 (cubic “crystal”), and ρA = ρB = 1 for |1, 1〉 (filled mesh). The grand
potential Ω is zero for the vacuum, −8μ for the cubic “crystal”, 6V − 12μ for the co-cubic “crystal”,
and 30V − 20μ for the filled mesh. These values are the same as for the DC model, hence the same
sequence of “phases” as a function of μ is observed in the QDC model for t = 0.

Moving to phases with φA, φB �= 0, I first consider the possibility of a superfluid (φA = φB = φ > 0
and ρA = ρB = ρ). In this case, the characteristic equation takes the form:∣∣∣∣∣∣∣∣∣

a − λ u v 0
u b − λ 0 v
v 0 c − λ u
0 v u d − λ

∣∣∣∣∣∣∣∣∣ = 0 (30)

with E0 = 60tφ2 − 30Vρ2, a = E0, b = E0 + 12(3Vρ − μ), c = E0 + 8(3Vρ − μ), d = E0 + 20(3Vρ −
μ), u = −36tφ, v = −24tφ. Observing that a + d = b + c ≡ s, the minimum eigenvalue of HMF turns
out to be (see Appendix A):

E =
1
2

(
s −

√
(a − b)2 + 4u2 −

√
(a + b − s)2 + 4v2

)
= 10

(
6tφ2 − 3Vρ2 + 3Vρ − μ −

√
(3Vρ − μ)2 + 36t2φ2

)
. (31)

Notice that this energy is exactly 5/2 times that of the QCT model (see Equation (16)).
Using p = (b − c)/2 = (d − a)/10 = 2(3Vρ − μ) and q = u/3 = v/2 = −12tφ, the coordinates

(x, y, z, w) of an eigenvector |ψE〉 of E satisfy the following linear system:
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⎧⎪⎪⎪⎨⎪⎪⎪⎩
−5px + 3qy + 2qz = −5

√
p2 + q2 x

3qx + py + 2qw = −5
√

p2 + q2 y
2qx − pz + 3qw = −5

√
p2 + q2 z

2qy + 3qz + 5pw = −5
√

p2 + q2 w ,

(32)

implying that |ψE〉 is also an eigenvector of the simpler matrix⎛⎜⎜⎜⎝
−5p 3q 2q 0
3q p 0 2q
2q 0 −p 3q
0 2q 3q 5p

⎞⎟⎟⎟⎠ (33)

with eigenvalue −5
√

p2 + q2. For t > 0, one such vector is

|ψE〉 =
(
− p +

√
p2 + q2

q
, 1, 1,

p −√p2 + q2

q

)
, (34)

or

|ψE〉 =
(

3Vρ − μ +
√
(3Vρ − μ)2 + 36t2φ2

6tφ
, 1, 1,

−(3Vρ − μ) +
√
(3Vρ − μ)2 + 36t2φ2

6tφ

)
. (35)

This is identical to the state (18) describing the superfluid in the QCT model. The reason of this
equivalence is that, in both cubic and dodecahedral meshes, every site has three neighbors; hence, in
the superfluid, the quantities FA, FB, RA, RB are the same. No surprise, then, if also the expressions of ρ

and φ turn out to be equal for the two models (the consistency equations are identical). As already
commented, the energy of the QDC superfluid is instead a factor 5/2 larger (in absolute terms) than in
the QCT model:

ΩSF = −10(μ + 3t)2

3V + 6t
. (36)

The main novelty with respect to the QCT model is the existence of a stable supersolid “phase” in
the QDC model. To seek for MF solutions having the character of a supersolid, I have first derived the
exact equations for the MF parameters ρA, ρB, φA, φB, without a priori assuming them to be equal in
pairs (this is done in Appendix B). Then, I have solved these equations numerically so as to find the
region where the supersolid is more stable than the other phases. This task is made simpler by noting
that, thanks to a symmetry property of the equations, from a supersolid solution with μ > 3V/2 it
is possible to obtain another solution with μ < 3V/2. Indeed, it easily follows from Equation (A15)
that, if (ρA, ρB, φA, φB) is a solution for a certain μ, then (1− ρA, 1− ρB, φA, φB) is a solution for 3V − μ.
Moreover, for μ = 3V/2 the two solutions share the same grand potential. It turns out that the
(t, μ) region where the supersolid is stable is symmetric about the μ = 3V/2 axis, lying across the
boundary between the solid “phases” and the superfluid (see Figure 5). To all evidence, the boundary
between the supersolid and the superfluid lies at t = 1/3. In fact, the supersolid consists of two
distinct “phases”, SS1 below μ = 3V/2 (where ρB < 1/2 < ρA) and SS2 above μ = 3V/2 (where
ρA < 1/2 < ρB), with φA < φB < 1/2 in both. In SS1, cubic sites are more occupied, on average, than
co-cubic sites, whereas the opposite occurs in SS2. The two supersolids coexist for μ = 3V/2, for all t
in the range 0.25 to 1/3. Hard-core bosons on the triangular lattice have a similar phase diagram [32],
but in that case the supersolid extends down to t = 0 and the solid lobes do not overlap each other.

The full T = 0 phase diagram of the QDC model according to the decoupling approximation is
reported in Figure 5. Along the straight lines μ = −3t and μ = 3V + 3t, the μ derivative of the grand
potential is continuous. Instead, along the curves
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μ =
−3t + 6V ± 6

√
V2 − Vt − 6t2

5
and μ =

3t + 9V ± 6
√

V2 − Vt − 6t2

5
, (37)

which respectively separate the cubic and co-cubic regions from the superfluid region, the total
number of particles jumps discontinuously. Only at the lobe vertices (V/3, V) and (V/3, 2V) the two
“crystal”—superfluid transitions are continuous. The line μ = 3V/2 separating the two “crystalline”
regions ends at the point (3V/10, 3V/2) where the two boundary curves (37) cross each other. However,
this triple point is only metastable since, in the whole region bounded by the blue circuit of Figure 5,
the stable phase is actually supersolid.

EMPTY

FILLED

μ
/V

t/V

-1

 0

 1

 2

 3

 4

 0  0.1  0.2  0.3  0.4

CUBIC

CO-CUBIC

SUPERFLUID

SS2

SS1

Figure 5. Phase diagram of the QDC model according to the decoupling approximation (see text).
The blue dashed lines are second-order transition lines, while red full lines are first-order lines (only at
the lobe vertices the transition is continuous). Inside the blue circuit, the stable phase is supersolid (SS1
below μ = 3V/2; SS2 above μ = 3V/2). The full lines through the data points (open black squares) are
a guide for the eye.

4. Assessment of MF Theory

Let us again reconsider the QCT model at T = 0. Due to the relatively small dimensionality of
its Hilbert space (=256), the model can be solved numerically, determining (among others) the exact
ground state |g〉 and its eigenvalue (i.e., the grand potential) as a function of t and μ. This is obtained
by representing the grand Hamiltonian H on the Fock basis {|x1, x2, . . . , x8〉} (with xi = 0 or 1 for all i)
and diagonalizing the ensuing matrix. An extensive mapping of a few quantum averages enables us
to clarify the nature of the “phases” present.

As usual, the sites of the mesh are classified according to what tetrahedral sub-mesh, A or B,
they belong to. Then, I compute the average occupancies of A and B sites (corresponding to the
MF parameters ρA and ρB, respectively), the average values of aA and aB (corresponding to the MF
parameters φA and φB, respectively), and the superfluid density ρSF (see, e.g., Ref. [13,22]). In the
present case, the latter quantity reads:
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ρSF ≡ 1
8

〈
g
∣∣∣ã†

0 ã0

∣∣∣ g
〉
=

1
64

8

∑
i,j=1

〈
g
∣∣∣a†

i aj

∣∣∣ g
〉
=

1
8

8

∑
j=1

〈
g
∣∣∣a†

1aj

∣∣∣ g
〉

, (38)

where ã0 = (1/
√

8)∑8
i=1 ai is the zero-momentum field operator. Notice that, in a large lattice of M

sites,
〈

ã†
0 ã0

〉
= N0 is the average number of condensate particles, hence ρSF = N0/M is indeed the

condensate density.
As far as the occupancies are concerned, exact diagonalization shows that they are always equal

for an A and a B site, with the only exception of t = 0 and 0 < μ < 3V where the occupancies are as in
MF theory (i.e., either 〈nA〉 = 1 and 〈nB〉 = 0 or vice versa). In particular, for t > 0 the equivalence
〈nA〉 = 〈nB〉 holds in the whole (t, μ) region pertaining, according to MF theory, to the tetrahedral
“phase”. Hence, no spontaneous symmetry breaking does really occur in the QCT model, except for
t = 0. Indeed, for t > 0 the Fourier coefficients of |g〉 relative to any pair of Fock states equal by A-B
inversion are the same. I show in Figure 6 the average site occupancy in the whole space of parameters.
We see that the (t, μ) plane is divided in zones where the site occupancy, which overall grows with
μ, takes the same constant value. The possible values are k/8, for k = 0, 1, . . . , 8. This outcome is not
entirely unexpected considering that the Hamiltonian commutes with the N operator, implying that
the ground state (which is non-degenerate for t > 0) should also be an eigenstate of N. Like in MF
theory, the occupancy is zero below μ = −3t and 1 above μ = 3V + 3t; in a whole region around
μ = 3V/2 the occupancy is 0.5 for all t, with no abrupt transition from “crystal” to superfluid values.
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1

0.875
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0.625
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0.125

0

μ
/V

t/V

Figure 6. Exact average site occupancy in the QCT model (full symmetry occurs between the A and B
sub-meshes). The plotted numbers are the occupancies in the whole regions delimited by the colored
lines. These values reflect a perfect particle–hole symmetry around μ = 3V/2. The MF boundary
between the tetrahedral and superfluid “phases” is also shown for comparison (dashed line).

Another difference with MF theory concerns the ground-state averages of aA and aB: these are
identically zero for all t and μ values, which may seem in stark contrast to the behavior of the MF
parameter φ. In fact, it is not these averages that should be monitored in an exact treatment but rather
the ρSF quantity defined at Equation (38). In the top panel of Figure 7, I have reported the ρSF values
computed along a few iso-t lines; each jump discontinuity of ρSF occurs in coincidence with one of the
site occupancy. For comparison, in the bottom panel of Figure 7, I show the MF values of φ2 along the
same lines. We see a clear correlation between the two behaviors, which demonstrates the existence of
signatures of superfluidity in a finite quantum system. However, intriguing differences also exist: (i)
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first observe that ρSF = 0.125 in the filled mesh, which is an oddity for a perfectly insulating state. In
fact, 0.125 is 1/M for M = 8, suggesting that this is an artifact of the finite system size. (ii) Another
finite-size effect is the non-zero values of ρSF in the purported tetrahedral region. However, ρSF is here
sufficiently small so that its peaks in the μ gaps between the tetrahedral and insulator regions remain
well visible—in MF theory these gaps fall in the superfluid region.
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Figure 7. Superfluid density in the QCT model: comparison between exact diagonalization (top panel)
and decoupling approximation (bottom panel). The superfluid density is plotted as a function of μ for
a number of t values in units of V, increasing from bottom to top (see legends).

Finally, in Figure 8, I plot the QCT grand potential as a function of μ for a number of t values in
the range 0 to 0.5. In the MF curves, cusp singularities are associated with the crossing of first-order
transition lines. We see that MF theory systematically overestimates exact values, the more so the
larger t is.
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Figure 8. Grand potential of the QCT model as a function of μ, for a number of t values (from top to
bottom, t = 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5). MF data (thick full lines) are compared with exact values
(full dots). To improve figure readability, the dots are joined by thin straight-line segments and the data
are displaced vertically by 1 with respect to one another, starting from t = 0.1.

5. Conclusions

I have worked out the zero-temperature phase diagram of two systems of hard-core bosons
defined on the nodes of a regular spherical mesh. The interaction is of Bose–Hubbard type, with a
further repulsion between neighboring particles. Choosing a suitable mesh, bosons are pushed to
form a Platonic “crystal” in a range of chemical potentials. In the QCT model, the mesh is cubic and a
tetrahedral “crystal” is formed; in the QDC model, the mesh is dodecahedral and a cubic “crystal” is
formed instead.

Using a mean-field approximation, I have obtained fully analytic results for the thermodynamic
properties of the two models. In addition to a number of insulating phases, both systems also
exhibit a superfluid ground state. In the QDC model, triple coexistence between two solids and
the superfluid is superseded by the occurrence of a more stable supersolid phase. Clearly, while
the predictions of mean-field theory are generally accurate for an infinite Bose–Hubbard system,
deviations will unavoidably be observed in a small system, where no true singularity can occur.
However, discrepancies are probably less strong for bosons on a regular spherical mesh, which has
equivalent sites and is devoid of natural boundaries.

To check this expectation for the QCT model, I have diagonalized its Hamiltonian exactly, finding
the ground state and a number of ground-state averages. Overall, the exact T = 0 behavior of the finite
system does not depart much from theory, though obviously phase-transition lines are now reduced
to simple crossovers; however, clear marks of superfluidity have been detected in the same region
of parameters where MF theory predicts it to occur. In conclusion, I hope that the present work may
stimulate research aimed at the realization of a new experimental platform for ultracold bosons that is
akin to a regular spherical mesh.
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Appendix A. On the Solutions to an Algebraic Equation

In this Appendix, I show how to determine the eigenvalues of a matrix like (29), namely the four
real solutions λ to the characteristic Equation (30) with a + d = b + c ≡ s.

Upon doing the algebra, the characteristic equation turns out to be:
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(λ − a)(λ − b)(λ − s + a)(λ − s + b)− u2 [(λ − a)(λ − b) + (λ − s + a)(λ − s + b)]

−v2 [(λ − a)(λ − s + b) + (λ − s + a)(λ − b)] + (u2 − v2)2 = 0 . (A1)

Let us now reshuffle the lhs of (A1) term by term:

(i) (λ − a)(λ − b)(λ − s + a)(λ − s + b)
= 1

16
[
(2λ − s)2 − (2a − s)2] [(2λ − s)2 − (2b − s)2]

= 1
16
{
(2λ − s)4 − [(2a − s)2 + (2b − s)2] (2λ − s)2 + (2a − s)2(2b − s)2}

= 1
16

{
(2λ − s)4 − 2

[
(a − b)2 + (a + b − s)2] (2λ − s)2 +

[
(a − b)2 − (a + b − s)2]2

}
;

(A2)

(ii)− u2 [(λ − a)(λ − b) + (λ − s + a)(λ − s + b)] = − 1
2 u2 [(2λ − s)2 + (a + b − s)2 − (a − b)2] ; (A3)

(iii)− v2 [(λ − a)(λ − s + b) + (λ − s + a)(λ − b)] = − 1
2 v2 [(2λ − s)2 + (a − b)2 − (a + b − s)2] . (A4)

Plugging Equations (A2)–(A4) in (A1), the latter equation becomes:

(2λ − s)4 − 2
[
(a − b)2 + (a + b − s)2 + 4(u2 + v2)

]
(2λ − s)2 +

[
(a − b)2 − (a + b − s)2

]2

+8(u2 − v2)
[
(a − b)2 − (a + b − s)2

]
+ 16(u2 − v2)2 = 0 (A5)

or equivalently

(2λ − s)4 − 2
[
(a − b)2 + (a + b − s)2 + 4(u2 + v2)

]
(2λ − s)2

+
[
(a − b)2 − (a + b − s)2 + 4(u2 − v2)

]2
= 0 . (A6)

Upon defining the two quantities X = (a − b)2 + 4u2 and Y = (a + b − s)2 + 4v2, the lhs of
Equation (A6) can be factorized as follows:

(2λ − s)4 − 2(X + Y)(2λ − s)2 + (X − Y)2

=
[
(2λ − s)2 − (X + Y)

]2 − 4XY

=
[
(2λ − s)2 − X − Y + 2

√
X
√

Y
] [

(2λ − s)2 − X − Y − 2
√

X
√

Y
]

=

[
(2λ − s)2 −

(√
X −

√
Y
)2
] [

(2λ − s)2 −
(√

X +
√

Y
)2
]

. (A7)

Hence, two independent second-order equations are obtained from (A6):

(2λ − s)2 =
(√

X −
√

Y
)2

and (2λ − s)2 =
(√

X +
√

Y
)2

, (A8)

whose solutions are the searched eigenvalues:

λ1 =
1
2

(
s −

√
X +

√
Y
)

; λ2 =
1
2

(
s +

√
X −

√
Y
)

;

λ3 =
1
2

(
s −

√
X −

√
Y
)

; λ4 =
1
2

(
s +

√
X +

√
Y
)

. (A9)

The minimum eigenvalue is solution no. 3 above.

Appendix B. Self-Consistency Conditions in the QDC Model

I here derive the general equations obeyed by MF parameters in the QDC model. These are
obtained by first determining the leading eigenvector of the matrix representing the MF grand
Hamiltonian on B. Then, the self-consistency conditions are written in the same way as Equation (19).
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The MF Hamiltonian is Equation (29) with real φA and φB. Therefore, the eigenvalue equation is as
in (30), with a = E0 = 48tφAφB + 12tφ2

B − 24VρAρB − 6Vρ2
B, b = E0 + 12(2VρA + VρB − μ), c = E0 +

8(3VρB − μ), and d = E0 + 4(6VρA + 9VρB − 5μ); moreover, u = −12t(2φA + φB) and v = −24tφB.
The minimum eigenvalue is like in the first line of Equation (31), but its explicit form in terms of MF
parameters is now

E = E0 + 2(6VρA + 9VρB − 5μ)

−6
√
(2VρA + VρB − μ)2 + 4t2(2φA + φB)2 − 4

√
(3VρB − μ)2 + 36t2φ2

B . (A10)

Using the latter formula, the linear system for the coordinates (x, y, z, w) of an eigenvector |ψE〉 of E
are: ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−(p1 + p2)x + q1y + q2z = −
(√

p2
1 + q2

1 +
√

p2
2 + q2

2

)
x

q1x + (p1 − p2)y + q2w = −
(√

p2
1 + q2

1 +
√

p2
2 + q2

2

)
y

q2x − (p1 − p2)z + q1w = −
(√

p2
1 + q2

1 +
√

p2
2 + q2

2

)
z

q2y + q1z + (p1 + p2)w = −
(√

p2
1 + q2

1 +
√

p2
2 + q2

2

)
w

(A11)

with

p1 = 3(2VρA + VρB − μ) ; q1 = −6t(2φA + φB) ;

p2 = 2(3VρB − μ) ; q2 = −12tφB . (A12)

Therefore, |ψE〉 is also an eigenvector of a matrix simpler than the original one, with eigenvalue

−
√

p2
1 + q2

1 −
√

p2
2 + q2

2. When q1, q2 �= 0, one such vector is:

|ψE〉 =
⎛⎝ p1 +

√
p2

1 + q2
1

q1

p2 +
√

p2
2 + q2

2

q2
,−

p2 +
√

p2
2 + q2

2

q2
,−

p1 +
√

p2
1 + q2

1

q1
, 1

⎞⎠ . (A13)

Now we are ready to impose self-consistency, which eventually leads to:

ρA =
1
2
− p2

2
√

p2
2 + q2

2

; ρB =
1
2
− p1

2
√

p2
1 + q2

1

; φA = − q2

2
√

p2
2 + q2

2

; φB = − q1

2
√

p2
1 + q2

1

, (A14)

or explicitly:

1 − 2ρA =
3VρB − μ√

(3VρB − μ)2 + 36t2φ2
B

; 1 − 2ρB =
2VρA + VρB − μ√

(2VρA + VρB − μ)2 + 4t2(2φA + φB)2
;

φA =
3tφB√

(3VρB − μ)2 + 36t2φ2
B

; φB =
t(2φA + φB)√

(2VρA + VρB − μ)2 + 4t2(2φA + φB)2
. (A15)

Probably, the simpler method to solve these four coupled non-linear equations in four unknowns is
to minimize a suitable non-negative function constructed in such a way as to vanish when the (A15)
are all fulfilled. This is easy to do numerically with a computer. By this method, I have drawn the
supersolid boundaries in Figure 5.
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Abstract: Path integral Monte Carlo and closure computations are utilized to study real space triplet
correlations in the quantum hard-sphere system. The conditions cover from the normal fluid phase to
the solid phases face-centered cubic (FCC) and cI16 (de Broglie wavelengths 0.2 ≤ λ∗B < 2, densities
0.1 ≤ ρ∗N ≤ 0.925). The focus is on the equilateral and isosceles features of the path-integral centroid
and instantaneous structures. Complementary calculations of the associated pair structures are also
carried out to strengthen structural identifications and facilitate closure evaluations. The three closures
employed are Kirkwood superposition, Jackson–Feenberg convolution, and their average (AV3).
A large quantity of new data are reported, and conclusions are drawn regarding (i) the remarkable
performance of AV3 for the centroid and instantaneous correlations, (ii) the correspondences between
the fluid and FCC salient features on the coexistence line, and (iii) the most conspicuous differences
between FCC and cI16 at the pair and the triplet levels at moderately high densities (ρ∗N = 0.9, 0.925).
This research is expected to provide low-temperature insights useful for the future related studies of
properties of real systems (e.g., helium, alkali metals, and general colloidal systems).

Keywords: quantum triplets; path integral Monte Carlo; closures; quantum hard spheres; fluid–solid
transition; FCC solid; cI16 solid

1. Introduction

The study of equilibrium triplet structures in 3D N-particle systems with quantum behavior
remains a pending task in condensed matter research at low temperatures. Apart from a number of early
developments focused mainly on the proposal and indirect testing of the so-called closures [1–11] or on
the use of alternative order parameters [12], just a few computational works based on Feynman’s path
integrals (PI) [13] can be found in the recent literature on this field [14–18]. Not much is known about the
behavior of quantum triplets, hence the interest in undertaking this task. This is not only a logical step
further in current statistical mechanics, allowing one to formulate thermodynamic properties beyond
the pairwise approach [19], but also it is central to outstanding condensed matter properties. Among
the latter, one can mention the following: phonon–phonon interactions in helium-II [4], the N-particle
interpretation of fluid entropies [20–22], multiple scattering [23], theories of phase transitions [24,25],
and glassy dynamics [26–28]. Although the whole PI quantum triplet task is computationally daunting
at the present time, one can always seek to identify the main triplet features that may serve as a guide
for the necessary future work on this topic.

The triplet topic encompasses both real-space {r}–triplets and reciprocal (Fourier)-space {k}–triplets.
Nevertheless, there is no direct experimental determination of triplet functions [29,30]. Thus, one must
resort to theoretical computations for extracting this sort of information, which makes these
computations the only “experimental” method of solving the triplet problem. In the quantum
case, a rigorous framework for triplets is given by PI, albeit the computations are truly exacting [14–18].

Entropy 2020, 22, 1338; doi:10.3390/e22121338 www.mdpi.com/journal/entropy99
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In this regard, and leaving aside exchange interactions for simplicity, one notes that just the quantum
thermal delocalization of the particles is sufficient to bring about a much higher complexity in the
quantum study than that present in the classical domain. This helps to understand the key role in this
topic that was played by closures, which represent fluid triplet correlation functions g3(r, s, u) utilizing
pair information g2(r), thus involving affordable computations. Noticeable among the closures for the
fluid triplets g3(r, s, u) are the early Kirkwood superposition KS3 [1,3], and the key Jackson–Feenberg
convolution JF3 [4,24], although other forms with even a wider scope are available (e.g., triplet direct
correlation functions c3(r, s, u)) [5,24,29]. Despite the fact that closures are approximations to the
actual fluid triplet functions, they are still highly valuable in that they may provide insightful physical
pictures of the underlying structure of the triplet correlations. Therefore, even nowadays, closures
should not be disregarded without giving them the opportunity to prove their worth as interpretative
tools in the quantum domain [17,18].

The PI formalism is perfectly suited for performing path integral Monte Carlo (PIMC) and molecular
dynamics (PIMD) computer simulations of quantum N-particle systems at nonzero temperatures [31–55].
With due attention to the special characteristics of quantum averages [33,38,44–47], the latter PI
simulations can follow classical-like procedures [56–60]. To illustrate this situation, it is sufficient to
recall the most basic PI description in the canonical ensemble (N, V, T) of an actual quantum monatomic
system in which exchange interactions can be neglected. Such an actual system is represented by
a PI model composed of N necklaces with P beads apiece, the whole set of N × P beads obeying a
classical-like partition function [31–33]. It is important to note that P is an integer number, P > 1, which
is to be optimized to obtain statistical convergence for the properties. (The actual quantum system is
retrieved in the Trotter’s limit P→∞ [61], while the classical limit is P = 1). Special techniques are
available to improve the P description and reduce computations (e.g., pair actions and higher-order
propagators [33–35,37,38] combined with algorithms for moving the beads) [33,41,47,62,63]. In this
connection, depending on the technique selected, there may or may not exist equivalence between
all the beads in the model sample, which is a fact that turns out to be crucial for the study of
structures [33,35,38,47]. Thus, one speaks in this context of the structurally significant (equivalent
among themselves) beads; their number, say X, takes the convenient values P or P/2.

The PI applicability covers from quantum diffraction effects (PIMC and PIMD for atomic and
molecular fluids and solids [64–69]) to bosonic quantum exchange (PIMC) [33,36,41,43]. PIMC and
PIMD are said to be “exact” in that they produce results with controllable statistical errors. These results
have been proven to be in excellent agreement with experimental data [33,41,42,48]. In addition to
this, PIMC approaches to fermionic exchange can also be devised [70], although the “sign problem”
precludes the related PIMC applications from being definitive. These facts, together with the PI
flexibility, make PIMC and PIMD most powerful tools in quantum condensed matter research.

By focusing attention on quantum monatomic systems at equilibrium, with diffraction
effects dominating their behavior, it is worthwhile to specify the three general categories of
physically significant structures [31,33,38,39,47] that are revealed by PI: (a) instantaneous; (b) total
thermalized-continuous linear response; and (c) centroids (centroid = proper center-of-mass of a
PI necklace) [38,47]. For each of these categories, three points must be highlighted [47]. First,
a given category is associated with the linear response from the system to a distinct weak external
field: the instantaneous case is associated with a δ−localizing field (e.g., as in elastic neutron
scattering), this usually being the category linked to “the structure” of a quantum system; the total
thermalized-continuous linear response with, for example, a continuous field; and the centroids with
specifically a constant-strength field. Second, a given category can be formulated in a two-fold way
(real space and Fourier space), which extends over the corresponding n-body functions (gn correlation
functions and S(n) static structure factors). Third, a given category is defined by special forms of the
averages over the NX bead positions. These averages scale with X in different forms: the instantaneous
with X, the total thermalized-continuous linear response with Xn, and the centroids with X0 = 1.
In stark contrast, the classical system only shows one category of a physically significant structure [56].
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Therefore, it is easy to understand the much higher complexity and computational cost of the quantum
problem when treated in depth.

The aim of the present article is to expand the study of the PI triplet features in many-body
quantum systems [14–18]. The system selected is that composed of quantum hard spheres (QHS system
hereafter). Hard spheres are known to be a very useful reference. They have been used to model
classical and quantum systems, ranging from helium [33,36,66,67,71–73] to complex colloids [74,75],
and under very different conditions (i.e., fluid, boson superfluid, superlattices, solids, and suspensions).
This work concentrates on the real space instantaneous and centroid triplets, leaving aside the
total thermalized-continuous linear response case to keep the related computations affordable [17].
As stressed earlier, in understanding triplets through closures, a thorough consideration of the
pair structures is needed. This benefits the triplet-closure computations and the analysis of the
correspondences between the salient pair and triplet features (in different phases or within the same
phase). Therefore, the necessary attention is also paid to the pair prerequisite.

The exact computational method chosen is PIMC, which avoids the PIMD difficulties linked to
the discontinuity of the hard-sphere potential, and it is complemented with the closures: KS3, JF3,
and their average AV3 = (KS3 + JF3)/2. A wide range of QHS fluid and solid conditions, within
the purely diffraction regime, is studied: reduced de Broglie wavelengths 0.2 ≤ λ∗B < 2 and reduced

number densities 0.1 ≤ ρ∗N ≤ 0.925, where λ∗B = h/(2πMkBTσ2)
1/2, ρ∗N = Nσ3/V, σ and M being the

hard-sphere diameter and mass, respectively. The specific {r}-space targets pursued are the following:

(i) Analyzing in detail the potential usefulness of AV3 for quantum fluid triplet studies. This is
prompted by the encouraging results obtained in [17] for liquid para-hydrogen and liquid neon.

(ii) Gaining triplet structural insights from the comparison, in the short–medium range of distances,
between the coexisting fluid and FCC (face-centered cubic) solid [66,67].

(iii) Comparing the salient triplet features of the cubic solids FCC and cI16 at moderately high
densities, (ρ∗N = 0.925, λ∗B = 0.2) and (ρ∗N = 0.9, λ∗B = 0.8). The so-called cI16 lattice is a distorted
superstructure of the body-centered cubic (BCC) lattice [76,77]. (Hard-sphere BCC lattices are
known to be mechanically unstable in both classical and quantum applications [78,79]). One also
notes that cI16 phases have been reported for Li and Na at very high pressures [76,77], hence the
interest of this point.

(iv) In connection with (iii), there is the question of establishing a clear identification of the QHS
bcc-qIII phases, observed in [67,78], as genuine cI16 phases. (The bcc-qIII phases arise from the
PIMC evolution of initially perfect BCC lattices). The cI16 lattice has been identified recently
for classical hard spheres in the insightful simulation work reported in [80], and the patterns of
the related results suggest that bcc-qIII is in fact cI16. Proof of this is given in this article, which
adds more value to the QHS system for modeling quantum solid–solid changes of phase [67]
and enhances the meaning of the related triplet calculations.

It is hoped that the reported “experimental” results will form a useful basis for comparison when
extensive studies of triplets in real quantum systems are undertaken. The outline of this article is as
follows. Section 2 contains the theoretical background. Section 3 describes the relevant computational
details. Section 4 gives the results and their discussion, and Section 5 collates the main conclusions of
this work.
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2. Theory

2.1. Path Integral Monte Carlo (PIMC)

The canonical partition function Z(N, V, T) of a quantum monatomic system (number density
ρN = N/V), under conditions where exchange interactions can be neglected, can be approximated by
the accurate PI formula (Tr = trace) [31–33]

Z = Tr
{
exp(−βHN)

}
�

1
N!

(
MP

2πβ�2

)3NP/2 ∫ ∏N

j=1

∏P

t=1
drt

j × exp[−βWNP], (1)

where HN is the Hamiltonian, assumed normally to be composed of one- and two-particle terms,
M is the particle mass, β = 1/kBT, P is the discretization in beads of the necklace representing and
actual particle j, rt

j denotes the real space coordinates of bead t (t = 1, 2, . . . , P) belonging to necklace j,
and WNP is the “effective potential” ruling the whole set of N×P beads (hereafter all of them equivalent:
X = P). In what follows, the optimal P will be assumed. In addition, it is worthwhile to note that
(a) consecutive beads, t and t + 1, in a necklace are separated by β�/P in Euclidean imaginary time β�;
(b) then, a given bead labeled t is associated with the imaginary time β�t/P; and (c) the cyclic property
t + 1 = P + 1 ≡ 1 is satisfied.

In the case of the QHS system, an appropriate choice for WNP is based on Cao–Berne’s CBHSP
pair action [35], and it can be written as [14,78]

WCBHSP
NP = WF

1 + WCB
2 + WHS

2 , (2)

WF
1 =

MP
2β2�2

∑N

j=1

∑P∗
t=1

(
rt

j − rt+1
j

)2
, (3a)

WCB
2 = −β−1ln

∏
j<m

∏P∗
t=1

⎧⎪⎪⎨⎪⎪⎩1− σ
(
rt

jm+rt+1
jm −σ

)
rt

jmrt+1
jm

× exp

⎡⎢⎢⎢⎢⎢⎣−
MP

(
rt

jm−σ
)(

rt+1
jm −σ

)
2β�2

(
1 + cos

(
rt

jm, rt+1
jm

))⎤⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭, (3b)

WHS
2 = P−1

∑
j<m

P∑
t=1

ωHS(rt
jm) =

⎧⎪⎪⎨⎪⎪⎩
∞ i f rt

jm =
∣∣∣∣rt

j − rt
m

∣∣∣∣ < σ
0 i f rt

jm > σ

⎫⎪⎪⎬⎪⎪⎭. (3c)

In Equation (3a), one recognizes the superposition of the free-particle behaviors [13]. Equation (3b)
shows Cao–Berne’s correction, where the adjacent-bead effects are to be noted. Equation (3c) is the
expression of the singular hard-sphere potential extended over all the pairs of necklaces, which interact
in an equal “t–time” bead-to-bead fashion (ET). The symbols P∗ in the sum and product above mark
the t−cyclic property already mentioned. For the specific thermodynamic property formulas that can
be derived from CBHSP, the reader is referred to [67,78]. At this point, it is important to give the
definition of the CBHSP centroid of a given necklace j

RCM, j = P−1
∑P

t=1
rt

j. (4)

This quantity plays an important role in PI theoretical developments [13,47], in particular in
(a) the appealing centroid approaches to quantum dynamics [81–85]; (b) the exact formulation
of the equation of state of quantum fluids [39,86]; and (c) the characterization of quantum solid
phases [67].

A key feature of the QHS system is that its state points can be uniquely characterized by giving two
parameters, namely the reduced number density ρ∗N and the reduced de Broglie thermal wavelength
λ∗B. This fact was early realized at the level of semiclassical treatments based on �–expansions (see,
for instance, [87–90]). Within PI, the same fact is just a property contained in the mathematical structure
of the QHS partition function, regardless of the particular proper form that WNP may take (see [47]
for a discussion of QHS propagators). Accordingly, the QHS system properties can be expressed in
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reduced units, thereby being independent of the actual parameters M, σ, T, and ρN employed [66,67].
Therefore, for example, internal energies E can be given as E∗ = E/RT, and pressures p can be given as
p∗ = pMσ5/�2. For the pressure, an indication to guide the interested reader will suffice: when using
different sets of parameters to define the state points 1 and 2, if

(
ρ∗N,λ∗B

)
1
=

(
ρ∗N,λ∗B

)
2
, then necessarily

(PV/RT)1 = (PV/RT)2, and also p∗1 = p∗2.

The same general type of argument applies to the real space structures gn
(
q1, q2, . . . , qn

)
, for which,

when reporting QHS system results, it is most useful to do it using interparticle distances in reduced
form: r∗12 =

∣∣∣q1 − q2

∣∣∣/σ. In order not to burden the notation, the formulation of the structural concepts
below will utilize the distances and related quantities in their non-reduced forms, as in Equations (1)
to (4).

Another technical point seems worth placing here. It is related to the three- (and higher-order)
particle contributions to the quantum Hamiltonian HN of the system, which may yield more complete
and elaborate forms for the propagators and WNP. While this is a question that can be tackled in
various ways when continuous interparticle potentials are involved [91–93], to this author’s knowledge,
no QHS system PI actions beyond the pair level are available, and such an extension remains intractable
for now. Nevertheless, because of the strong similarity between helium atoms and quantum hard
spheres, the related effects on the QHS system can be expected to become significant at very high
solid-phase densities (and sufficiently low temperatures) [33]. Furthermore, owing to the QHS infinite
repulsion at the hard core, Equation (3c), the wave functions of the QHS system must vanish for
interparticle distances r ≤ σ (i.e., there can be no tunneling); hence, quantum hard spheres repel one
another before “classical contact” can occur [89,90]. (Within PI, this means that the related forbidden
region brought about by Equation (3c) arises only for the “equal-time” bead gn correlations). Therefore,
given the lack of any attraction, the “preemptive” QHS repulsions can be expected to cause a strong
impediment to the coming together of triplets of quantum hard spheres. Using the quantum diffraction
parameter γ = ρ∗Nλ

∗3
B , the latter triplet effects should not play any significant role unless γ becomes

truly high. The largest value of γ in this work is � 2.8, which is compatible with the QHS pair modeling
of normal fluid and solid helium-4 [66]. Therefore, the pair-level CBHSP approach can be deemed
adequate to compute structures under the fluid and solid conditions investigated in this work.

2.2. PI Triplet Structures

Within PI-CBHSP, the centroid (CM3) and the instantaneous (ET3) three-point number densities
can be cast as the ensemble averages [17]

ρ
(3)
CM3

(
q1, q2, q3

)
= 〈

∑
j�l�m� j

δ
(
RCM, j − q1

)
δ

(
RCM,l − q2

)
δ

(
RCM,m − q3

)
〉, (5)

ρ
(3)
ET3

(
q1, q2, q3

)
= P−1〈

∑P

t=1

∑
j�l�m� j

δ
(
rt

j − q1

)
δ

(
rt

l − q2

)
δ

(
rt

m − q3

)
〉, (6)

where one notices that (i) the multi-index summations run over the whole set of permutations of
N particles taken three at a time; (ii) the instantaneous case contains a further P average involving
“equal-time” beads in different necklaces; and (iii) these definitions are completely general, since they
depend on the position vectors of the representative set of three particles and can be applied to
the statistical description of monatomic systems, which are either fluid or solid. Due to the high
computational cost, no attempt is made in this work at calculating total thermalized-continuous linear
response triplets [14,17].

For homogeneous and isotropic fluids, one finds simpler formulas [17]

ρ
(3)
CM3

(
q1, q2, q3

)
= ρ3

N gCM3
(
q1 − q3, q2 − q3

)
= ρ3

N gCM3(r12, s13, u23), (7)

ρ
(3)
ET3

(
q1, q2, q3

)
= ρ3

N gET3
(
q1 − q3, q2 − q3

)
= ρ3

N gET3(r12, s13, u23), (8)
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where the triplet correlation functions gCM3 and gET3 depend only on the three generic interparticle
distances: r12 =

∣∣∣q1 − q2

∣∣∣, s13 =
∣∣∣q1 − q3

∣∣∣, and u23 =
∣∣∣q2 − q3

∣∣∣. This exact reduction from nine to three
independent variables makes the intricate triplet problem more accessible for the study of monatomic
fluid state points [14–17].

Rigorously speaking, the related exact framework for a monatomic solid is contained in
Equations (5) and (6). Nevertheless, affordable approximations to this even more costly problem
can be obtained by applying Equations (7) and (8). Actually, such an approach is consistent with
the same idea, already exploited successfully, at the pair level in the study of regular solid phases,
since the gCM2(r) and gET2(r) pair radial functions retain many significant traits of the underlying
solid structure [66,67,80]. Furthermore, as a first step, the use of Equations (7) and (8) facilitates the
comparison of the global salient triplet features appearing in different solid phases.

The functions defined in Equations (7) and (8) must satisfy several properties [4,6,7,57,58]. The most
relevant to this work are:

(1) Symmetry

g3
(
q1, q2, q3

)
= g3

(
q2, q3, q1

)
= . . . ; ET3 and CM3. (9a)

(2) QHS instantaneous behavior at close distances

lim|q j−qm |→σ+
gET3(r, s, u) = 0. (9b)

(3) Asymptotic behavior in fluids

lim
r→∞g3(r, r, r) = 1; ET3 and CM3, (9c)

lim
s→∞g3(r, s, s) = g2(r); ET3/ET2 and CM3/CM2. (9d)

Equation (9a) follows from Equations (7) and (8). Equation (9b) for the instantaneous case arises
from the singular character of the hard-sphere potential Equation (3c). For centroids, a behavior similar
to Equation (9b) is expected to occur, albeit the limiting distance may be different from σ. Finally,
Equations (9c) and (9d) follow from the weakening of particle correlations in fluids when considering
increasing distances, and both are very useful to check the inner consistency of the related calculations.

2.3. Additional Pair Structural Quantities

To supplement the PIMC triplet calculations in the canonical ensemble, the following quantities
can also be computed:

(a) The pair radial functions for the centroid (CM2) and the instantaneous (ET2) correlations, in both
the fluid and the solid phases [47]. Their PI ensemble averages can be cast as

ρ2
N gCM2(r12) = 〈

∑
j�m
δ

(
RCM, j − q1

)
δ

(
RCM,m − q2

)
〉, (10)

ρ2
N gET2(r12) = P−1〈

∑P

t=1

∑
j�m
δ

(
rt

j − q1

)
δ

(
rt

m − q2

)
〉, (11)

where r12 =
∣∣∣q1 − q2

∣∣∣.
(b) The pair static structure factors S(2)

CM(k) and S(2)
ET (k) associated with the foregoing pair radial

structures in the fluid phase [47]

S(2)
CM(k) = 1 + ρN

∫
dr12 exp(ik·r12)hCM2(r12) =

(
1− ρNc(2)CM(k)

)−1
, (12)
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S(2)
ET (k) = 1 + ρN

∫
dr12 exp(ik·r12)hET2(r12) �

(
1− ρNc(2)ET (k)

)−1
, (13)

where h2 = g2 − 1 stands for the corresponding pair total correlation function, and c(2)(k) stands
for the corresponding pair direct correlation function in Fourier space (k = |k|). These structure
factors can be fixed with great accuracy, at a very low cost and for every k ≥ 0 wave number [48],
via the Ornstein–Zernike framework [94–96] developed by this author [47,86,97,98]. Apart from
their intrinsic usefulness, they are decisive in achieving a number of significant improvements in
the study of fluids with quantum behavior [39,47–49]. In particular, S(2)

CM(k) and S(2)
ET (k) can be

utilized for (i) extending the ranges of the simulated gCM2(r12) and gET2(r12) [47], which serves to
perform triplet closure computations; and (ii) gaining insight into their associated triplet structure
factors S(3)

CM(k1, k2) and S(3)
ET (k1, k2) [17,18].

(c) In simulation work using cubic boxes, the PI sample size is composed of NS necklaces, each
with P beads, enclosed in a volume VS = L3. To characterize solid phases, one can employ the
normalized-to-unity solid-phase configurational structure factors at the centroid and instantaneous
pair levels [67,99,100]. They can be written as

S(C)
CM2(k) = N−2

S

∣∣∣∣∣
∑NS

j=1
exp

(
ik·RCM, j

)∣∣∣∣∣
2
, (14)

S(C)
ET2(k) =

(
N2

SP
)−1 ∑P

t=1

∣∣∣∣∣
∑NS

j=1
exp

(
ik·rt

j

)∣∣∣∣∣
2
, (15)

and are taken at their maximal values arising from the simulation runs [67,78]. In these simulation
conditions, the wave vectors k to be analyzed must be commensurate with the box, which means
k = 2πL−1

(
kx, ky, kz

)
, where the components

(
kx, ky, kz

)
take integer values [56]. In connection

with this, notice that cubic-based perfect lattices can be associated with sets of three commensurate
wave vectors, {kw}n = {k1, k2, k3}n, which are maximal in that:

(i) For the perfect FCC and BCC lattices, one can single out sets {kw}n such that they reach the

maximum value, S(C)
2 (kw) = S(C)

2 (kmax) = 1, (w = 1, 2, 3). For a perfect cI16 lattice, which is not

so highly regular, one obtains S(C)
2 (kw) = S(C)

2 (kmax) < 1, (w = 1, 2, 3), as will be shown later on.

(ii) The following result holds ∣∣∣k1·(k2 × k3)
∣∣∣ = (2π)3NS/VS. (16)

Therefore, comparison of the above standard perfect-lattice results with those arising from the
simulated cubic solid phase allows one to identify its type and relative order. Obviously, the values of
the simulated configurational structure factors are lower than the perfect reference values; they appear
associated with each of the three maximal wave vectors and are close to one another, but, as a rule, they
are not equal: one of them can be singled out as the maximum, whereas the other two remain slightly
below [67,78]. As a guide for quantum work [99], the following centroid estimates are worth quoting:
0.4 � S(C)

CM2(kmax) for partially crystalline solids, while typically S(C)
CM2(kmax) < 0.2 for fluid phases.

(Amorphous phase maximal values for S(C)
CM2(kmax) should be between the two foregoing limits).

It is important to stress that although somewhat expensive to calculate, the quantities S(C)
CM2(kmax)

and S(C)
ET2(kmax) are global for the simulation sample. Therefore, in this context, these quantities seem

more complete than local-order parameters (e.g., the rotationally invariant Ql) [67,80,101].
Before going any further, it is convenient to consider the general issue of the simulation sample

size NS for the solid phases, thus allowing one to introduce cI16 basic details. The conditions for
FCC and BCC are well-known, and for NS > 100, one finds: (i) NS(FCC) = 4n3, with n = 3, 4, 5, . . .;
and (ii) NS(BCC) = 2n3, with n = 4, 5, 6, . . .. However, the case of cI16 is not so standard. cI16 is a
distortion of BCC and is characterized by the so-called fractional displacement parameter, which is usually
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denoted by x [76,77], so as to have the particles occupying the 16c Wyckoff site (x, x, x) of the space
group I43d. This means that its body-centered unit cell does contain 16 particles. Consequently, there
are some extra restrictions that may make the NS(cI16) values different from those of BCC. Thus, again
for NS > 100, one finds (iii) NS(cI16) = 16n3, with n = 2, 3, 4, . . .. The reader is referred to [76,77,80]
for specific details.

2.4. Closures for Fluid Triplets

The two basic closures analyzed in this work are Kirkwood superposition KS3 and
Jackson–Feenberg convolution JF3. Both can be applied to the fluid centroid (CM3) and instantaneous
(ET3) triplet correlations. Their expressions can be written as follows [1,4]:

gKS3(r12, s13, u23) = g2(r12)g2(s13)g2(u23), (17)

gJF3(r12, s13, u23) = gKS3(r12, s13, u23) − h2(r12)h2(s13)h2(u23) + ρN

∫
dq4h2(v14)h2(v24)h2(v34), (18)

where vj4 =
∣∣∣∣q j − q4

∣∣∣∣, h2 = g2 − 1, and g2 = gCM2 or gET2. Although explicitly stated in Equation (18),
it is important to remark that JF3 lacks the triplet-product term h2(r12)h2(s13)h2(u23), which should
appear in an h2−expansion. This absence has deep consequences as will be shown in this article.
An easy and direct way to recover such contribution (half of it), while at the same time keeping the
convolution integral (half of it) contained in Equation (18), is via the average closure AV3 that reads as

gAV3(r12, s13, u23) =
1
2

(
gKS3(r12, s13, u23) + gJF3(r12, s13, u23)

)
. (19)

As regards the properties of these closures, suffice it to say that (i) KS3, JF3, and AV3, satisfy Equations
(9a), (9c), and (9d); and (ii) only KS3, as induced by its construction, satisfies Equation (9b), which
is a special case of the general triplet behavior g3 → 0 when two particles approach closely each
other [14–17].

3. Computational Details

The main target of this work is the determination of QHS equilateral and isosceles triplet
correlations (centroid and instantaneous), namely the types of functions g3(r, r, r) (or gEQ

3 for brevity
when necessary) and g3(r, s, s). For the sake of interpretation, they are complemented with the
additional structural properties discussed in Section 2.3. The state points studied are shown in Table 1.
They span a wide range of conditions, from the normal fluid phase to the distinct solid phases FCC and
cI16. Special attention is paid to the two sides of the fluid–FCC coexistence line, as determined in [67](
λ∗B ≤ 0.8

)
and [66]

(
λ∗B > 0.8

)
. Moreover, the study is extended to (i) fluid state points under very strong

diffraction effects
(
λ∗B ≈ 2

)
, with a view to establishing a meaningful correlation of triplet structures

when going toward the change of phase by increasing ρ∗N at constant temperature, and (ii) the lattices
FCC and cI16 at (ρ∗N = 0.925, λ∗B = 0.2) and (ρ∗N = 0.9, λ∗B = 0.8), which are conditions that are
significantly far from the very high-density regions.

Table 1. Fluid and solid-state points of the hard-sphere system studied. Reduced densities ρ*
N, reduced

de Broglie wavelengths λ*
B, path integral Monte Carlo (PIMC) sample size NS × P.

I.1. PHASE TRANSITION 1

FLUID PHASE FCC PHASE

λ*
B ρ*

N NS×P ρ*
N NS×P

0.2 0.789 864 × 12 0.863 864 × 12

0.4 0.672 864 × 12 0.731 864 × 12
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Table 1. Cont.

I.1. PHASE TRANSITION 1

FLUID PHASE FCC PHASE

λ*
B ρ*

N NS×P ρ*
N NS×P

0.6 0.589 864 × 12 0.635 864 × 12

0.8 0.533 864 × 12
864 × 24 0.573 864 × 12

864 ×18

1.2543 0.442 864 × 24 0.465 864 × 24

1.9832 0.348 864 × 30
864 × 40 0.360 864 × 30

I.2. FLUID PHASE

1.9832 0.1 864 × 30 ——— ———

1.9832 0.3 864 × 30 ——— ———

I.3 SOLID PHASES

cI16 PHASE FCC PHASE

0.2 0.925 1024 × 12
1024 × 24 0.925 864 × 12

864 × 24

0.8 0.900
1024 × 12
1024 × 24
1024 ×36

0.900
864 × 12
864 × 24
864 ×36

1 Phase transition de Broglie wavelengths and densities fixed in [66,67].

3.1. PIMC Calculations

The PIMC simulation procedures utilized can be found elsewhere [14–17,67,78], although for
completeness, the basic lines follow below.

The necklace normal mode algorithm [62,63] is used to generate the collective P movements
of a given necklace, with a Metropolis acceptance ratio of 50%. (As in previous works, the actual
hard-sphere parameters are M = 28.0134 amu and σ = 3.5 Å; 1 Å = 10−10 m). The necklace sample
sizes NS are 864 for the fluid and the FCC solid phases, and 1024 for the cI16 solid phases. The quantum
P convergence for the results is studied as shown below (12 ≤ P ≤ 40). One kpass is defined as a set of
103NS × P attempted bead moves, and one Mpass is then 103 kpasses. After equilibration, most of the
simulation runs are arranged into 40 blocks for the g2 calculations and 30 blocks for the g3 calculations.
The respective block sizes are (i) 92.6 kpasses for the fluid simulations; (ii) 92.6 kpasses for the FCC
simulations; and (iii) 78.125 kpasses for the cI16 simulations. Therefore, the run lengths associated
with the g2 and g3 calculations are in between 2.34 Mpasses and 3.7 Mpasses. (The extra simulations
using P = 36 and 40 have lengths of about 1 Mpass). Block subaverages for g2 and g3 are obtained
by gathering statistics every 5000 (g2)/7000–8000 (g3) configurations generated. The configurational
structure factors given by Equations (14) and (15) are analyzed four times per block, at equally spaced
intervals, by recording the ten largest values for the final assessment. To do so, triplets of integers(
kx, ky, kz

)
are monitored in the mesh 25 ≤ k2

x + k2
y + k2

z ≤ 200, with the components in −10 ≤ kν ≤ 10
(symmetry properties allow one to reduce the calculations). Given that the information provided by
the correlation functions, complemented with that arising from the structure factors, is more than
sufficient to characterize the current solid structural results, the Ql order parameters [101] are not
evaluated, thereby alleviating the considerable computational effort involved in this work.

The pair and triplet sructures g2 and g3 are fixed in the established ways using histograms.
The case of g2 is straightforward and well-known [56], and the simulations are utilized as the reduced
width of the bins Δ

∗
= 1/35 (or σ/35 =0.1 Å). However, the case of g3 includes a good number of
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subtleties [57,58]. The detailed description of the related procedure can be found in [14]. For the current
purposes, suffice it to say that for a triplet of distances (R, S, U), the basic g3 expression is given by

g3(R, S, U) =
(ΔnT)

Nρ2
N(ΔV)RSU

; ET3 and CM3 (20)

where (ΔnT) is the number of times mutual distance triplets lie within the ranges R − Δ < r12 ≤ R,
S− Δ < s13 ≤ S, and U − Δ < u23 ≤ U, and (ΔV)RSU stands for the appropriate volume element [58].
Once again, in these calculations, Δ

∗
= 1/35. The histogramming of triplets extends up to distances

r12, s13, and u23, which are < L/4. Statistical errors (one-standard deviation) for the average structures
computed with PIMC are fixed with the corresponding block subaverages. For example, for the first
peaks heights of g2 and g3, the errors remain below 1% for most of the present calculations. In this
connection, Table 2 gives some representative g3 results (mean first peaks (FP)) in the close vicinities
of the absolute maxima of the structure indicated, together with the associated errors. (More on
this in the Supplementary Materials). Note that the P convergence is influenced by both λ∗B and ρ∗N.
For the fluid and FCC state points on the coexistence line, under the most extreme quantum conditions
studied herein (λ∗B = 1.9832, γ � 2.7− 2.8), P = 30 is sufficient to produce practical convergences in
the centroid and in the instantaneous functions. For the solid state points at densities ρ∗N = 0.9, 0.925,
it is worthwhile to note that there is a slowing down of this convergence with decreasing temperatures
(λ∗B = 0.2→ 0.8) , which becomes more noticeable (a) for the triplet centroid quantities and (b) for the
cI16 lattice, its openness playing a significant role in the fixing of the final particle distributions.

Table 2. Selected PIMC convergence features. Centroid (CM3) and instantaneous (ET3) first peaks (FP)
in the close vicinities of the equilateral absolute maxima. Number in parentheses are one-standard
deviation affecting the last digit(s) 1.

λ*
B ρ*

N NS×P r*
FP−CM3 gEQ

CM3
r*

FP−ET3 gEQ
ET3

FLUID PHASE (fluid–FCC coexistence line)

1.9832 0.348 864 × 30
864 ×40 1.5 19.7 (5)

19.9 (5) 1.4714 4.51 (2)
4.53 (3)

FCC PHASE (fluid–FCC coexistence line)

0.8 0.573 864 × 12
864 × 18 1.3 55.6 (4)

56.3 (5) 1.3 15.4 (0)
15.4 (0)

FCC PHASE

0.2 0.925 864 × 12
864 × 24 1.1 160.1 (7)

160.0 (15) 1.1286 93.4 (2)
93.1 (3)

0.8 0.9
864 × 12
864 × 24
864 × 36

1.1571
2339 (7)
3028 (16)
3177 (24)

1.1571
112.2 (1)
114.7 (2)
114.1 (2)

cI16 PHASE

0.8 0.9
1024 × 12
1024 × 24
1024 × 36

1.1571
1469 (11)
1233 (10)
1334 (14)

1.1286
158.0 (2)
96.7 (2)
97.8 (3)

1 19.7(5) ≡ 19.7± 0.5; 160.0 (15) ≡ 160.0± 1.5; 2339(7) ≡ 2339± 7.

3.2. Closure Calculations

The current calculations at the actual fluid state points on the coexistence line use the new PIMC
information obtained with sample sizes larger than those employed in [49]. (The new and the former
results are in excellent agreement). The JF3 convolution integrals involve the h2 extension to longer
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distances fixed with the fluid S(2)
CM(k) and S(2)

ET (k). The convolutions can be obtained by employing a
well-known expansion in Legendre polynomials Pn [10,24]

∫
dq4h2(υ14)h2(υ24)h2(υ34) �

∑nmax

n=0
π(2n + 1)Pn(cosφ)In(h2, Pn), (21a)

In(h2, Pn) =

∫ ymax

0
dy y2h2(y) fn(y, s13) fn(y, u23), (21b)

fn(y, z) =
∫ +1

−1
dx Pn(x)h2

( √
y2 + z2 − 2xyz

)
, (21c)

where φ is the angle between s13 and u23. The final JF3 results reported in Section 4 employ
(a) nmax = 30 for the Legendre expansion; (b) ymax = 20σ = 70 Å (i.e., y∗max = 20) as the maximum
distance for h2 data; and (c) trapezoidal quadratures with discretizations consisting of 2000 points for
the y integrations and 1000 points for the x integrations. The latter parameters are sufficient to yield
JF3 and AV3 results that can be compared with PIMC in a meaningful way. To grasp this point, some
results at the highest-density fluid state point

(
ρ∗N = 0.789, λ∗B = 0.2

)
will suffice. The JF3 centroid

(CM3) and instantaneous (ET3) results in the close vicinities r∗FP (first peaks FP) of their respective
equilateral (EQ) absolute maxima, (rFP = 3.85 Å, or r∗FP = 1.1), behave as follows. (i) nmax = 10,
ymax = 50 Å (y∗max ≈ 14.3), using 1000-point y integration, plus 500-point x integration leads to:
gEQ

CM3 = 42.930, gEQ
ET3 = 27.183. (ii) nmax = 10, ymax = 70 Å (y∗max = 20), using 2000-point y integration

plus 1000-point x integration leads to gEQ
CM3 = 42.931, gEQ

ET3 = 27.183. (iii) nmax = 30, ymax = 70 Å

(y∗max = 20), using 2000-point y integration plus 1000-point x integration, lead to: gEQ
CM3 = 42.932,

gEQ
ET3 = 27.185.

4. Results and Discussion

The results reported in this section are complemented with data in the Supplementary Materials.

4.1. The Pair Level Structures

Figure 1 shows representative pair radial correlation functions, centroid, and instantaneous,
along the fluid–FCC solid coexistence (see also the Supplementary Materials for more information).
The fluid functions (Figure 1a,b) display clear fluid-like features. Analogously, the FCC solid functions
(Figure 1c,d) display the expected traits of FCC lattices. General comments on these pair radial
functions are (i) the higher order in the solid functions that does not disappear with increasing
distances; (ii) the outward shift and smoothing of the features with increasing quantum effects (on the
coexistence line analyzed, one has 0.006 < γ < 2.81); and (iii) the proximity between the locations of
the fluid and solid first maxima (also between the dominant second-maximum regions), revealing that
the system is ready to effect the change of phase. It is also interesting to note in passing that on the
fluid side, the absolute maxima of the pair structures show dependences upon γ that can be fitted in
the form g2(Max) = aγ−b, the associated linear correlation coefficients rcorr. being reasonably good:
(a) for the centroid functions, a � 3.0042, b � 0.0687, rcorr. = −0.9982; and (b) for the instantaneous
functions, a � 1.8863, b � 0.1233, rcorr. = −0.9999. Furthermore, the concordance at the pair level
between the results in the {r} and the {k} spaces is excellent. The fluid radial functions are fully
consistent in particular with the configurational maximal values arising from Equations (14) and (15):
the fluid phase maximal values obtained remain S(C)

2 < 0.1. Moreover, Table 3 contains the observed

variations in the maximal values of S(C)
2 corresponding to the FCC centroid and instantaneous cases.

For the current calculations, a representative FCC-set of maximal wave vectors can be defined by their
k-integer components:

{
(−6, 6, 6), (−6, 6,−6,), (6, 6, 6)

}
.
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Figure 1. PIMC pair radial correlation functions along the quantum hard spheres (QHS) fluid–FCC
(face-centered cubic) solid coexistence line (six state points in Table 1). The arrangement should be
clear according to the (ρ∗N, λ∗B) values shown. (a) Fluid centroid functions. (b) Fluid instantaneous
functions. (c) FCC centroid functions. (d) FCC instantaneous functions. The vertical line at r∗ = 1 in
(b,d) marks the position of the hard core.

Table 3. Solid phase variations in the maximal values of the centroid (CM2) Equation (14)
and instantaneous (ET2) Equation (15) configurational structure factors at the pair level fixed with PIMC.

FCC PHASE on the Coexistence Line

λ*
B ρ*

N NS×P S(C)
CM2

(kmax) S(C)
ET2

(kmax)

0.2 0.863 864 × 12 0.803–0.764 0.786–0.748

0.4 0.731 864 × 12 0.791–0.751 0.738–0.702

0.6 0.635 864 × 12 0.778–0.738 0.686–0.649

0.8 0.573 864 × 12 0.784–0.752 0.643–0.613

1.2543 0.465 864 × 24 0.771–0.732 0.532–0.503

1.9832 0.360 864 × 30 0.743–0.691 0.393–0.356

FCC PHASE

0.2 0.925 864 × 12
864 × 24

0.886–0.866
0.883–0.865

0.867–0.849
0.864–0.847

0.8 0.9
864 × 12
864 × 24
864 × 36

0.986–0.984
0.989–0.987
0.989–0.988

0.898–0.894
0.902–0.898
0.901–0.900

cI16 PHASE

0.2 0.925 1024 × 12
1024 × 24

0.726–0.698
0.732–0.705

0.710–0.682
0.717–0.689

0.8 0.9
1024 × 12
1024 × 24
1024 × 36

0.793–0.784
0.781–0.774
0.777–0.771

0.741–0.732
0.712–0.705
0.708–0.702
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Figure 2 shows the pair radial correlation functions, centroid and instantaneous, of the FCC and
cI16 state points at the moderately high densities ρ∗N = 0.9, 0.925. There is a sharp contrast between the
FCC and cI16 structures, since the usual coordination shells existing in the highly regular FCC lattice
are absent from cI16. The most characteristic trait of cI16 is, perhaps, the presence of a convoluted
inner structure, with two conspicuous big dips, for distances below r∗ ≈ 2.5. The FCC solid structures
(Figure 2a,c) are the “compression” (at constant temperature) of the corresponding FCC structures
on the coexistence line. The current cI16 results (Figure 2b,c) agree feature for feature with the pair
structures displayed by the bcc-qIII phases in [67]. (Differences between the first peaks are due to the
B-spline smoothing carried out in Figure 9 of [67]; see the Suppplementary Material for non-smoothed
data). This deserves to be highlighted, since the PIMC-QHS origins of both types of structures are not
related: the former bcc-qIII phases arose from the evolution of initially perfect BCC lattices (NS = 432),
while the present (delocalized) cI16 phases are just the results obtained from the evolution of initially
perfect cI16 lattices (NS = 1024). To complete the foregoing information, Table 3 also contains the
variations in the maximal values of the respective cI16-configurational S(C)

2 structure factors. They are
consistent with the behavior reported in [67]. For the current calculations, a representative cI16-set of
maximal wave vectors can be defined by their k-integer components

{
(−8, 8, 0), (0, 8,−8,), (8, 8, 0)

}
.

Figure 2. PIMC pair radial correlation functions in the region of moderately high densities for the
cubic-based QHS solid phases FCC and cI16. No smoothing of the simulation results has been carried
out. The vertical line at r∗ = 1 in (a–c), marks the position of the hard core.

There is still the further question related to the characterization of cI16 phases via the fractional
displacement parameter x. In the quantum case, the delocalization makes this task a three-fold one,
since there are three types of distinct structures. Given the current scope, only the centroid and
instantaneous x estimates are determined in this work. A convenient way is through the tabulation for

perfect cI16 lattices of
(
x, S(C)

2 (kmax)
)
, which can be computationally fixed by varying x. Thus, for the
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interval 0.025 ≤ x ≤ 0.038, using Δx = 0.001, the related parabolic least-squares fitting (better than just
linear) leads to

S(C)
2 (kmax) = 1.0931− 8.269x− 108.75x2; CM2 and ET2, (22)

which guarantees absolute errors of orders ≤ 10−4 in the estimated values of the reference maximal
structure factors (for higher precision, the reader is referred to the tabulation in the Supplementary
Materials). Note that the higher the x is, the lower the S(C)

2 (kmax) becomes, as expected. In this
regard, note that for x = 0, which is out of the above interval, one must retrieve the perfect BCC
limit S(C)

2 (kmax) = 1. Consideration of the actual calculated values of the maximal S(C)
CM2(kmax)

and S(C)
ET2(kmax) in Table 3 yields the cI16 variations: (i) at (ρ∗N = 0.925, λ∗B = 0.2; P = 12),

0.0314 ≤ x ≤ 0.0332 for CM2, and 0.0325 ≤ x ≤ 0.0343 for ET2; and (ii) at (ρ∗N = 0.9, λ∗B = 0.8; P = 24),
0.0277 ≤ x ≤ 0.0282 for CM2, and 0.0323 ≤ x ≤ 0.0328 for ET2. These values show the expected
behavior: (a) they are larger for the instantaneous structures; (b) they are consistent with cI16 values
reported in the literature [76,77,80]; and (c) the CM2–ET2 differences increase with the quantum
effects. Another point to consider here is related to the fact that samples of classical hard spheres
can be “squeezed” more than samples of quantum hard spheres, because of the latter’s “preemptive”
repulsions. This means that via low temperatures, one can expect QHS–cI16 phases to appear for lower
densities than in the classical hard-sphere system

(
ρ∗N ≥ 1.1

)
[80], which is indeed the case.

4.2. Triplets in the Fluid Phase

Figures 3–5 show the main features of the fluid triplet correlations analyzed in this work. Several
general trends can be easily identified in Figure 3, which collects results at two state points along the
lowest isotherm λ∗B = 1.9832. First, as occurred on the pair level, the centroid CM3 features are far
more pronounced than those of the instantaneous ET3 case. Second, and associated with the equilateral
data, one notes that the first maximum and the first minimum positions of a given g3(r∗, r∗, r∗) occur in
the close vicinities of the corresponding first maximum and first minimum of the associated g2(r∗)
shown in Figure 1. Third, although the closures KS3 and JF3 fail to reproduce the exact PIMC behavior,
their average AV3 shows a remarkable performance for both the centroid and the instantaneous
correlations. Fourth, as the density increases along isotherms, and when going toward longer distances,
AV3 loses predictive power to fit the profiles of the isosceles correlations g3(r∗, s∗, s∗). In relation to this,
see Figure 3d, where s∗ = s∗M is such that g3

(
s∗M, s∗M, s∗M

)
� absolute equilateral maximum.

Finer equilateral facts follow. (i) Figure 3a,b displays explicitly, at state point
(ρ∗N = 0.1,λ∗B = 1.9832), the equilateral asymptotic behavior g3(r∗, r∗, r∗)→ 1 with increasing
r∗ for the PIMC centroid and instantaneous correlations. (ii) Figure 3c illustrates the isosceles
asymptotic behavior g3(r∗, s∗, s∗)→ g2(r∗) , when the two s∗ distances increase. (iii) As seen,
the short-range behavior of AV3 is non-correct (due to that of JF3), whereas KS3 behaves properly.
(iv) At constant temperature, there is a sharpening and shifting inwards of the structures with
increasing density. For example, at λ∗B = 1.9832 in the vicinities

(
r∗FP

)
of the equilateral first

maxima, the gEQ
3 = g3(r∗, r∗, r∗) behave as follows: (1) ρ∗N = 0.1,

(
r∗FP = 1.9, gEQ

CM3 = 2.16
)

and
(
r∗FP = 2, gEQ

ET3 = 1.41
)
; (2) ρ∗N = 0.3,

(
r∗FP = 1.5571, gEQ

CM3 = 12.65
)

and
(
r∗FP = 1.5429, gEQ

ET3 = 3.54
)
;

and (3) ρ∗N = 0.348,
(
r∗FP = 1.5, gEQ

CM3 = 19.74
)

and
(
r∗FP = 1.4714, gEQ

ET3 = 4.51
)
. An analogous behavior

can be observed at the pair level. (Use σ = 3.5 Å and rounding-off to two decimal places to
transform the foregoing r∗ into the actual r of the (M, σ) system utilized in the current calculations, e.g.,
r∗ = 1, 5571→ r∗ = 5.5 Å).
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Figure 3. Typical behaviors of the centroid and instantaneous triplet correlations in the QH fluid
at two representative state points. KS3 = Kirkwood superposition, Equation (17); AV3 = average
closure, Equation (19); PIMC = path integral Monte Carlo. (a) Centroid equilateral; (b) instantaneous
equilateral; (c) instantaneous isosceles, with pair g2(r∗) asymptotic values shown (increasing s∗) at three
selected r∗ (close to the pair first maximum fp, close to the pair first minimum fv, and with 0 being
a pair close-range distance); (d) r∗ profiles of the heights in the close vicinity of the first maxima of
the instantaneous isosceles correlations (s∗M = distance in the close vicinity of where the absolute
equilateral maximum appears). The vertical line at r∗ = 1 in (b–d) marks the position of the hard core.

Figure 4. Typical forms of the centroid and the instantaneous equilateral correlations in the QHS fluid
at three representative state points on the fluid–FCC coexistence line. Acronyms for methods as in
Figure 3. (a) Fluid centroid functions. (b) Fluid instantaneous functions. The vertical line at r∗ = 1 in
(b) marks the position of the hard core.
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Figure 5. Typical behaviors of the centroid and instantaneous isosceles correlations in the QHS fluid at
two representative state points on the fluid–FCC coexistence line. Acronyms for methods as in Figure 3.
Results at three especial r∗ distances of the equilateral correlations very close to the respective: first
maximum (FP), first minimum (FV), and second maximum (SP). (a) Upper plots shifted by +20 and
+40. (b) Upper plots shifted by +10 and +20. (c) Upper plots shifted by +5 and +10. (d) Upper plots
shifted by +2 and +4. The vertical line at r∗ = 1 in (b,d) marks the position of the hard core.

Figure 4 shows the equilateral correlations at three representative state points on the fluid side of
the coexistence line. The aforementioned trends of KS3 and AV3, as compared to PIMC, appear again
for both types of correlations CM3 (Figure 4a) and ET3 (Figure 4b). In going from higher to lower
densities/temperatures on the fluid side, one observes that the larger the quantum effects, the flatter
the structural triplet features become.

Table 4 contains the absolute maxima, fixed with quadratic interpolations of the adequate PIMC
data, of the fluid equilateral correlations. (See the Supplementary Materials for more related numerical
data). Once more, in an attempt to connect the foregoing maximum behaviors with the quantum
parameter γ, one notes that simple empirical decay fittings gEQ

3 (Max) = aγ−b can be found for the
centroid and for the instantaneous cases, their associated linear correlation coefficients rcorr. being
reasonably good. Thus, one finds for the centroid case a � 23.6702, b � 0.1877, rcorr. = −0.9959
and for the instantaneous case a � 6.437, b � 0.3449, rcorr. = −0.9999. This general pattern is to be
regarded as a reflection of the very same observed at the pair level. Three additional points are
worthwhile to mention: (i) the quality of this type of fitting remains comparable if one tries the
modification gEQ

3 (Max) = aγ−b + c; (ii) exponential decays, e.g., gEQ
3 (Max) = aexp(−bγ), give poor

fittings; and (iii) the potential energy discontinuity at r∗ = 1 precludes one from retrieving the classical
limit at λ∗B = 0. Although there is no apparent physical basis for the empirical γ pattern found, this
line of thought might be well worth exploring in future work.
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Table 4. Absolute maxima of the PIMC equilateral correlations gEQ
3 = g3(r∗, r∗, r∗) on the fluid and

the FCC sides of the QHS coexistence line. Discretizations at λ∗B = 0.8 and 1.9832: P = 12 and 30,

respectively. r∗ = r/σ. Four decimals shown in gEQ
3 to avoid rounding-off errors.

FLUID–CENTROID– FCC–CENTROID–

λ*
B ρ*

N r*
Max gEQ

CM3
ρ*

N r*
Max gEQ

CM3

0.2 0.789 1.1029 63.1089 0.863 1.1097 87.4597

0.4 0.672 1.1690 42.9419 0.731 1.1867 66.8718

0.6 0.589 1.2313 32.7749 0.635 1.2504 56.1959

0.8 0.533 1.2841 29.4898 0.573 1.3042 55.7136

1.2543 0.442 1.3841 25.1954 0.465 1.4051 48.7081

1.9832 0.348 1.5096 19.8989 0.360 1.5360 40.1005

FLUID–INSTANTANEOUS– FCC–INSTANTANEOUS–

λ*
B ρ*

N r*
Max gEQ

ET3
ρ*

N r*
Max gEQ

ET3

0.2 0.789 1.1101 36.7840 0.863 1.1255 55.7274

0.4 0.672 1.1832 19.2805 0.731 1.1990 31.3301

0.6 0.589 1.2419 12.9259 0.635 1.2584 20.1514

0.8 0.533 1.2890 10.0773 0.573 1.3029 15.4292

1.2543 0.442 1.3752 6.8439 0.465 1.3880 9.1774

1.9832 0.348 1.4820 4.5227 0.360 1.4947 5.4411

Figure 5 contains a quick description of the isosceles correlations g3(r∗, s∗, s∗) at two representative
fluid state points, for the centroids CM3 in panels (a)–(c) and for the instantaneous ET3 in panels
(b)–(d). Three especial r∗ distances are selected from the g3(r∗, r∗, r∗) information obtained at each state
point, namely r∗FP, r∗FV , and r∗SP, which are positions in the close vicinities of the equilateral maxima and
minima: first maximum (FP), first minimum (FV), and second maximum (SP), respectively. Apart from
the expected AV3 unphysical behavior for r∗ ≤ 1, the good overall performance of AV3 is certainly
surprising. Two weak points are to be remarked. First, the AV3 (and KS3) behavior for low s∗ distances,
1 < s∗ < 1.5, when r∗ increases: for example, at r∗SP where the closure maxima are overestimated.
(This is directly related to the AV3 trend displayed by the upper profile plot in Figure 3d). Second,
Figure 6 shows a detailed image of the isosceles deterioration of the PIMC–AV3 agreement with
increasing densities, the worse results for centroids being a consequence of this key fact (centroids
mimic a fluid at a higher density than the actual one).

Figure 6. QHS fluid centroid (CM3) and instantaneous (ET3) r∗ profiles of the heights in the
close vicinities of the first peaks of the isosceles correlations at two selected state points on the
fluid–FCC coexistence line. (a) Fluid functions at (ρ∗N = 0.789, λ∗B = 0.2). (b) Fluid functions at
(ρ∗N = 0.533, λ∗B = 0.8). s∗M = distance in the close vicinity of the absolute maximum of the equilateral
correlations. Acronyms for methods as in Figure 3. The vertical line at r∗ = 1 marks the position of the
hard core.
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4.3. FCC triplets on the Fluid–Solid Coexistence Line

Table 4 and Figures 7 and 8 show selected results for the PIMC equilateral and isosceles correlations
of FCC state points on the solid side of the fluid–FCC coexistence line, within the approximations
obtainable from Equations (7) and (8). For visualization purposes, the associated PIMC fluid results
are also incorporated into these figures.

Figure 7. Comparison between PIMC equilateral structures on both sides of the fluid–FCC coexistence
line at selected state points. (a) Centroid functions. (b) Instantaneous functions. The vertical line at
r∗ = 1 in (b) marks the position of the hard core.

Figure 8. Comparison of PIMC isosceles triplet structures on both sides of the fluid–FCC coexistence
line at selected state points and r∗FP and r∗SP slices. These r∗ are very close to the first (FP) and second (SP)
maxima of the corresponding equilateral structures. (a) Centroid functions atλ∗B = 0.2. (b) Instantaneous
functions at λ∗B = 0.2. (c) Centroid functions at λ∗B = 1.9832. (d) Instantaneous functions at λ∗B = 1.9832.
The vertical line at r∗ = 1 in (b,d) marks the position of the hard core.
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A general idea can be obtained by observing Table 4. The fluid and solid absolute maximum
positions are close to one another, and the structures are shifted outwards with increasing quantum
effects. Moreover, higher g3 values appear on the solid side (e.g., at λ∗B = 0.2, ≈ +39% for CM3,
and≈ +51% for ET3). This trend is far more pronounced for the centroid correlations, the ratio increasing
monotonically with λ∗B (e.g., at λ∗B = 1.9832, ≈ +102% for CM3). However, for the instantaneous ET3
correlations, such a ratio is not monotonic; it goes through a maximum (at λ∗B = 0.4, ≈ +62%) and then
falls monotonically (at λ∗B = 1.9832, ≈ +20%). These behaviors can be ascribed to the two effects
present on the coexistence line. On the one hand, there is the decreasing density, which contributes to
diminishing the structural features. On the other hand, there is the increasing delocalization with λ∗B,
which makes PI structures become more and more smeared out, the instantaneous case being always
much more sensitive to this. As regards the question of finding a γ−fitting of the solid equilateral
absolute maxima, the situation is less clear than on the fluid side (γ is slightly higher on the solid
side). Although one can obtain reasonable dependences gEQ

3 (Max) = aγ−b (rcorr. < −0.991), on closer
inspection, these fittings cannot cope with the apparent inflection in 0.13 < γ < 0.3 (or in 0.6 < λ∗B < 0.8)

for centroids gEQ
CM3(Max), nor with the large discrepancies for low γ between the original and the

estimated instantaneous values gEQ
ET3(Max).

In Figure 7, one observes that the equilateral FCC and fluid g3(r∗, r∗, r∗) patterns are qualitatively
similar within the first maximum regions. It is also noticeable that the FCC state points develop
easily identifiable peak structures with increasing distances (r∗ � 2). The main two maxima of the FCC
equilateral triplets can be put into direct correspondence with the main two maxima obtained at the
FCC pair level (Figure 1), since they appear located close to one another.

The FCC g3(r∗, r∗, r∗) display deep first valleys, almost at the zero-ground level, appearing for both
the centroid and the instantaneous structures, e.g., for centroids and ρ∗N = 0.573, the region in Figure 7
located in 1.6 � r∗ � 2.1. In general, this feature is far more pronounced in the centroid structures than
in the instantaneous structures and is consistently shifted outwards with increasing quantum effects.
If comparison with Figure 1c,d is made, one notes that this triplet region corresponds to the FCC pair
region where the smallest maximum shows up. (Such region fades away with increasing quantum effects
in the instantaneous case, Figure 1d). To get a feeling of the depth of these valleys, it seems worthwhile
to quote some significant results: (a) at

(
ρ∗N = 0.863,λ∗B = 0.2

)
, within the range 1.4143 ≤ r∗ ≤ 1.8143,

the equilateral centroid and instantaneous values remain gEQ
CM3 � 0.07 and gEQ

ET3 � 0.09, respectively;

(b) at
(
ρ∗N = 0.573,λ∗B = 0.8

)
, within the range 1.6143 ≤ r∗ ≤ 2.0714, the equilateral centroid values

remain gEQ
CM3 � 0.1, whereas the equilateral instantaneous values reach the same upper bound

gEQ
ET3 � 0.1 within the narrower range 1.6714 ≤ r∗ ≤ 1.9571; and (c) at

(
ρ∗N = 0.360,λ∗B = 1.9832

)
, within

the range 1.9 ≤ r∗ ≤ 2.3571, the equilateral centroid values remain gEQ
CM3 � 0.08, whereas the equilateral

instantaneous values gEQ
ET3 do not go below 0.15 within their related first valley. (See the Supplementary

Materials for more data on the coexistence line).
In addition, Figure 8 contains typical isosceles g3(r∗, s∗, s∗) behaviors of the fluid and the FCC

solid at the lowest (λ∗B = 0.2) and the highest (λ∗B = 1.9832) de Broglie wavelengths. These graphs
display significant r∗−slices (i.e., at r∗FP and r∗SP) of the tabulated functions in the close vicinities of the
corresponding first (FP) and second (SP) maxima of the equilateral correlations. The parallels between
the triplets of the solid and fluid phases coexisting at equilibrium are manifest once more.

4.4. Triplets in the FCC and cI16 Denser Solid Structures

Figure 9 and Table 5 contain equilateral PIMC results for the FCC and cI16 state points in the
region of moderately high densities (ρ∗N = 0.9, 0.925). The centroid CM3 and the instantaneous ET3
correlation results, with P = 12 for both lattices at (ρ∗N = 0.925, λ∗B = 0.2), are P converged (Table 2).
At (ρ∗N = 0.9, λ∗B = 0.8), convergence for the instantaneous correlations with P = 36 is guaranteed
(practical convergence already occurs with P = 24), whereas for the centroid correlations, there is still
room for further improvement. Nevertheless, the centroid results obtained with P = 36 are expected to
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capture well the related global features. This contrasts with the more rapid P convergence for centroids
at the pair level.

Figure 9. PIMC results for the FCC and cI16 equilateral structures in the region of moderately high
densities ρ∗N . The graphs are split horizontally into two parts to avoid the flat g3 range of distances and
show the secondary maximum regions on a visible scale. (a) Centroid functions in the short-distance
range. (b) Centroid functions in the medium-distance range. (c) Instantaneous functions in the
short-distance range. (d) Instantaneous functions in the medium-distance range. The vertical line at
r∗ = 1 in (c) marks the position of the hard core.

Table 5. Average salient features of the cI16 and FCC equilateral centroid (CM3) and instantaneous
(ET3) correlations gEQ

3 = g3(r∗, r∗, r∗). PIMC results in the close vicinities of the maxima and minima.
Maxima: first FP, second SP, third TP, fourth F4P. Minima: first FV, second SV, third TV.

(ρ*
N=0.925, λ*

B=0.2)

cI16−(r*,gEQ
3

)−PIMC−P=12 FCC−(r*,gEQ
3

)−PIMC−P=12

CM3 ET3 CM3 ET3

FP (1.1, 146.80) (1.1, 79.46) (1.1, 160.07) (1.1286, 93.38)

FV (1.4714, 0) (1.4714, 4 × 10−5) (1.5571, 0) (1.5571, 0)

SP (1.7571, 2.52) (1.7571, 2.25) (1.9857, 13.53) (1.9857, 10.80)

SV (1.8143, 1.87) (1.8143, 2.02) (2.1571, 0.31) (2.1571, 0.51)

TP (1.9, 2.91) (1.9, 2.61) (2.3, 7.82) (2.3, 6.42)

TV (2.0429, 0.51) (2.0429, 0.75)

F4P (2.1857, 6.40) (2.1857, 5.86)
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Table 5. Cont.

(ρ*
N=0.9,λ*

B=0.8)

cI16-(r*,gEQ
3

)−PIMC-P=36 FCC-(r*,gEQ
3

)−PIMC-P=36

CM3 ET3 CM3 ET3

FP (1.1571, 1334) (1.1286, 97.82) (1.1571, 3177) (1.1571, 114.08)

FV (1.4429, 0) (1.4571, 0) (1.5857, 0) (1.5857, 0)

SP (1.7571, 83.72) (1.7571, 4) (2.0143, 425.91) (2.0143, 18.70)

SV (1.8714, 0) (1.8429, 0.92) (2.1429, 0) (2.1714, 0.245)

TP (1.9571, 72.32) (1.9571, 3.12) (2.3286, 260.89) (2.3286, 11.90)

TV (2.1, 0) (2.0714, 0.43)

F4P 1 (2.3, 0.44) (2.2143, 5.68)
1 There is a cI16 small bump at r∗ = 2.2143, gEQ

CM3 = 0.01 (P = 12), 0.18 (P = 24), 0.14 (P = 36).

In Figure 9, the equilateral correlations of the FCC and cI16 state points at (ρ∗N = 0.925, λ∗B = 0.2)
are considered within r∗ < 2.5. Three well-defined features can be seen in each case, and they can be
put into correspondence with the results obtained at the related distances on the pair level (Figure 2).
Thus, three separated maxima arise from the triplet FCC calculations (as occurred on the coexistence
line). However, four maxima arise from the triplet cI16 calculations, with the second and third forming
an overlapping structure. This reminds one of the characteristic shallow split showing up past the first
maximum in the g2(r∗) of amorphous systems [99]. Moreover, the FCC features are more pronounced
than those of cI16, as was to be expected. In addition, for 1.5 < r∗ < 2.5, cI16 and FCC are somewhat
complementary regarding the positions of their peaks. One observes the clear quantitative differences
between the centroid CM3 and the instantaneous ET3 results. The patterns of the salient features
shown in Table 5 for the two density–temperature conditions are fully consistent with each other and
with the underlying pair information (Figure 2).

A closer inspection of the equilateral flat regions between the first and the second maxima
may be worth carrying out. The following results correspond to the discretizations: (i) P = 24 at
(ρ∗N = 0.925, λ∗B = 0.2), although P = 12 results are not significantly different; and (ii) P = 36 at
(ρ∗N = 0.9, λ∗B = 0.8).

(a) As regards the FCC results, these regions are related to those found on the coexistence line,
but now the behavior is much more extreme: the zero-ground level is effectively reached.
At (ρ∗N = 0.925,λ∗B = 0.2), centroid values gEQ

CM3 ≡ 0 are obtained within 1.4714 ≤ r∗ ≤ 1.6429,

while instantaneous values gEQ
ET3 ≡ 0 are within 1.5286 ≤ r∗ ≤ 1.5857. Moreover, at

(ρ∗N = 0.9,λ∗B = 0.8), centroid values gEQ
CM3 ≡ 0 are obtained within 1.2714 ≤ r∗ ≤ 1.9,

while instantaneous values gEQ
ET3 ≡ 0 are within 1.4714 ≤ r∗ ≤ 1.7.

(b) The situation of cI16 is less severe, although with increasing quantum effects, some of the previous

traits also arise. Thus, at (ρ∗N = 0.925, λ∗B = 0.2), centroid values remain gEQ
CM3 � 0.04 within

1.3286 ≤ r∗ ≤ 1.5857, with gEQ
CM3 ≡ 0 only for 1.44 ≤ r∗ ≤ 1.47, while the instantaneous values

are above zero in that latter region (0 < gEQ
ET3 � 0.08). At (ρ∗N = 0.9, λ∗B = 0.8), centroid values

gEQ
CM3 ≡ 0 appear within 1.2429 ≤ r∗ ≤ 1.6429, while instantaneous values gEQ

ET3 ≡ 0 do only for
1.44 ≤ r∗ ≤ 1.47.

The solid triplet flat regions arise from the combination of the role of the QHS interactions and the
unavailability of space due to the variations in ρ∗N and λ∗B. As a result, the solid equilateral structures
analyzed turn out to be simpler than their pair radial counterparts (Figure 2), which is especially true
of the cI16 lattice. Use of this fact might find application to characterizing irregular solid structures
and/or monitoring their formation. (See the Supplementary Materials for more information on these
structures). Another observation is related to the order shown by these two lattices. FCC appears as
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more ordered than cI16, which is clear from the respective regularities in their pair and triplet correlation
functions and also from the maximal configurational structure factors (Table 3). Therefore, under the
same (ρ∗N,λ∗B) conditions, FCC entropies (and free energies) [67] must be lower than those of cI16,
the determination of these properties being possible via the Einstein crystal quantum technique [66,67].

5. Conclusions

This article has analyzed several real space triplet correlation issues in the PI–QHS system under
conditions in which quantum exchange can be neglected. Triplet PI centroid and instantaneous
correlations (equilateral and isosceles) in significant fluid and FCC–solid-state points have been
studied. Furthermore, the positive identification of the formerly denoted bcc–qIII solid phases [67,78]
with proper quantum cI16 solid phases has been achieved by utilizing information at the pair level
(radial structures and maximal structure factor values). Triplet calculations have also been carried out
at two cI16 state points. The results lead to the following conclusions.

(1) Fluid phase and the use of closures.

(a) The centroid results display far more structured triplet functions than the instantaneous
results. These structures tend to be shifted outwards with increasing λ∗B (delocalization)
and inwards with increasing ρ∗N (localization).

(b) From the comparison between PIMC and the closure results, one concludes that the role of
pair correlations in shaping triplet structures is more relevant in the quantum domain than
previously thought. The combined use of KS3 (for short range) plus AV3 = (KS3+JF3)/2
(beyond short range), although not exact, is found to be a useful and simple choice to
understand the related main {r} triplet features, either centroid or instantaneous, of fluids
with quantum diffraction effects.

(c) The AV3 success appears to be linked with the fact that this closure adopts the form of a
“complete” h2 expansion truncated to first order in the density, which includes explicitly
the triple-h2 product absent from JF3. Given that along isotherms, AV3 deteriorates with
increasing distances as the fluid–solid coexistence is approached, improvements on AV3
may be of interest and should incorporate at least second-order density terms in the
h2 expansion.

(d) The foregoing finding extends the previous results obtained in [17] for liquid para-hydrogen
and liquid neon, since the current study has involved a purely repulsive interparticle
potential. Therefore, applications of an improved AV3 (supplemented with KS3 as said
above) might be expected to provide reliable pictures of what is behind triplet correlations
in fluid helium over a wide range of conditions [4,15].

(2) The fluid–FCC solid coexistence line.

(a) There is a close correspondence between the positions of the main structural features
at short range of both phases at equilibrium, not only at the pair level but also at the
triplet level. Such a phase correspondence between triplet positions appears in both the
equilateral and the isosceles correlations. These are clear signs of the system readiness to
undergo the phase transition.

(b) The triplet features are far more pronounced on the solid side. In addition, the centroid
features are always sharper than those of their instantaneous counterparts (e.g., more elevated
peak regions and lower valley regions for centroids).

(3) On the fluid side, the absolute maxima of the pair and the triplet-equilateral correlations, centroid
and instantaneous, appear to follow empirical behaviors that depend on the quantum parameter
γ = ρ∗Nλ

∗3
B in the general form gEQ

3 (Max) = aγ−b. For systems in which repulsive particle
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interactions dominate, this might be a further structural signature of the fluid phase on the
quantum crystallization line [17,18,49], and it deserves further examination.

(4) FCC and cI16 solid phases.

(a) FCC state points show a significantly higher order than their cI16 counterparts, at the
same density–temperature conditions, which can be ascribed to the openness of the cI16
lattice. This is observed for the two structures, centroid and instantaneous, in all the forms

computed
(
g2, g3, S(C)

2

)
. Roughly speaking, at a given state point, using the maximal

values of the configurational structure factors, one finds that S(C)
CM2(FCC)/S(C)

CM2(cI16) ≈
S(C)

ET2(FCC)/S(C)
ET2(cI16). FCC entropies must certainly be lower than their cI16 counterparts,

and it is tempting to explore the relationships between the solid entropy and the values of
the quantum structure factors in future work.

(b) Within the short–medium range of distances (i.e., 1 < r∗ < 2.5) the equilateral functions
adopt shapes simpler than the pair radial functions. This effect turns out to be much
more remarkable for cI16 state points, which show quite a convoluted peak/valley
behavior. Accordingly, for the purposes of monitoring the onset of crystallization
and/or characterizing irregular solid phases in general, triplet centroid information
may advantageously complement the usual pair level information.

(c) PIMC calculations of solid centroid triplet structures converge slowly with increasing
quantum effects, which contrasts with the more rapid convergence of the centroid
pair calculations. This fact should be kept in mind when studying centroid triplets in
high-density solid phases at low temperatures.

(5) Finally, one must dwell a little more on the (mechanically stable) QHS–cI16 phase that, as is
shown in this work and [67], arises for lower densities than in the classical case. Once the
question of its appearance from the PIMC evolution of perfect BCC lattices has been settled, there
are no symmetry problems related to the calculations of cI16 free energies [67]. The selection
of an appropriate reference system (Einstein crystal [66,67]) can be well defined now [80],
and the way to computational studies of stability is open. Although there is every reason for
believing that, as in the classical case [80], quantum–cI16 is metastable with respect to FCC
(or to HCP = hexagonal close-packed) at low temperatures, due to the cI16 higher energies
and pressures [67], the assessment of such behavior seems highly valuable. In this connection,
one notes the potential QHS-cI16 relations to (i) the high-pressure solid–solid transitions in
alkali metals at low temperatures and (ii) the special responses to external fields that these solid
structures, which are less tight than FCC (or HCP), might exhibit.

There is work in progress to tackle the issues raised above and to identify some essential facts
associated with quantum condensed matter triplets in the real and the Fourier spaces.

Supplementary Materials: The following are available online at http://www.mdpi.com/1099-4300/22/12/1338/s1.
SupMat2_Entropy.zip. File1: LMS_SupMat_20S_X1.pdf, contents: PIMC-g2(r) for bcc–qIII and cI16, PIMC
convergence, Structure factors values for perfect cI16 lattices, PIMC salient features on the fluid–FCC coexistence line,
complete set of fluid pair radial functions (Figure), cI16 and FCC isosceles correlations, comparison between FCC and
cI16 equilateral results (Figure). Triplet functions at (ρ∗N = 0.672, λ∗B = 0.4): File2: LMS_SupMat_20S_zgcm3_l4.r672
(centroids), and File3: LMS_SupMat_20S_zget3_l4.r672 (instantaneous).
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Abstract: Studies of the coronavirus SARS-CoV-2 spread mechanisms indicate that the main mecha-
nism is associated with the spread in the atmosphere of micro- and nanodroplets of liquid with an
active agent. However, the molecular theory of aerosols of microdroplets in gases remains poorly
developed. In this work, the energy properties of aerosol nanodroplets of simple liquids suspended
in a gas were studied within the framework of molecular theory. The three components of the
effective aerosol Hamiltonian were investigated: (1) the interaction energy of an individual atom
with a liquid nanodroplet; (2) the surface energy of liquid nanodroplet; and (3) the interaction energy
of two liquid nanodroplets. The size dependence of all contributions was investigated. The pairwise
interparticle interactions and pairwise interparticle correlations were accounted for to study the
nanodroplet properties using the Fowler approximation. In this paper, the problem of the adhesion
energy calculation of a molecular complex and a liquid nanodroplet is discussed. The derived
effective Hamiltonian is generic and can be used for the cases of multicomponent nano-aerosols and
to account for particle size distributions.

Keywords: nanodroplet aerosols; the effective Hamiltonian; surface energy; atom–nanodroplet
interaction energy; interaction energy of two nanodroplets; size dependence; adhesion energy of a
molecular complex and a liquid nanodroplet

1. Introduction

The rapid spread of coronavirus SARS-CoV-2 has become an investigation subject for
numerous scientists. The existing data exposed the ability of a virus to be transmitted in
an airborne manner as dispersed droplets that contain the infective agent [1–6]. Airborne
transmission is defined by the World Health Organization (WHO) as the spread of invective
agents through suspended droplets in the air, which stay infective for long periods of time
and may travel long distances [7].

An important physical aspect in the problem of virus spread is the interaction of
nanoparticles (virions) and nanodroplets with molecular structures of different media. For
these types of problems, an important characteristic is the size dependence of energetic
properties of nanodroplets and nanoparticles at interactions with different media struc-
tures. The calculations of the adhesion energy of nanoparticles to the different structures, in
addition to the calculations of energetic characteristics for aerosol nanodroplets, require an
application of statistical physics methods. An investigation of equilibrium and nonequilib-
rium properties of droplets and aerosols with liquid nanodroplets can be performed within
the framework of classical statistical mechanics. The nanodroplets may reveal implicit
collective properties and self-organization into structures at a macroscopic level [8]. The
behavior of an isolated nanodroplet can be simulated by means of molecular dynamics [9].

The typical complications in the theoretical analysis of nanosystems are conditioned by
the necessity to account for the surface terms for all of its equilibrium and nonequilibrium
properties. At nanometer scales, an abrupt change of all system characteristics takes place
near the surface. The intermolecular forces act at similar scales.
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The contemporary state of theoretical studies of the structure and properties of liquid
nanodroplets within the framework of molecular–kinetic theory has been summarized in
the works [10–12]. A statistical approach to the study of volumetric properties of equilib-
rium and nonequilibrium homogeneous systems shows the importance of accounting for
the paired interparticle interactions and correlations, which contain determinative terms
in all properties [13–16]. For inhomogeneous liquids in statistical theory, it is important
to take into account the one-particle distribution functions and the effective one-particle
potentials, which are determined by paired interparticle interactions and correlations.
The contribution of the one-particle effects to the properties of inhomogeneous systems
corresponds to the accounting of surface terms.

The current study, using the correlation theory of inhomogeneous liquids, investigated
the equilibrium properties of nanodroplets as components of aerosol systems. Thus, there
was a need to use approximations that allowed a reasonable comparison of theoretical and
experimental results to be made. The properties of aerosol systems were determined by
their interacting components, i.e., nanodroplets and gas. There exist many phenomena at
the molecular level that lack explanation. Under these conditions, it is difficult to predict
the behavior of nano-objects and their assemblies, or to control these nanosystems. For the
investigated aerosol systems, a fundamental role is played by the energy characteristics
of the separate nanodroplets, their interaction energies with the surrounding gas, and the
paired interactions of nanodroplets. Investigation of the pointed energy characteristics is a
major focus of the current article.

2. The Calculation of the Molecule Interaction Energy with Liquid Nanodroplet

Formulation and resolution of the problems related to the interaction of isolated
atoms and molecules with the heterogeneity of the condensed system (surface, new phase
origins, phase transition fronts) are essential in constructing a microscopic theory of first-
order phase transitions, in addition to a microscopic theory of equilibrium and kinetic
properties of the surface and interphase boundaries. A review of the current state of
the problems of atom interactions with an inhomogeneous environment can be found
in [10–12,17]. However, the problems of size dependencies of the interaction energy of
atoms and nanosized condensed systems, with accounting for interatomic correlations,
remain unsolved.

In statistical mechanics of condensed matter, as a rule, the potential interaction energy
of two atoms or two molecules is assumed to be known. An approximation of pair addi-
tive potentials is widely used to describe the energies of interatomic interactions [10–16].
Among the most used potentials of interatomic interaction, Lennard–Jones potential and its
generalizations, Morse potential, hard-sphere potential, and soft-sphere potential should
be noted [10–16].

Calculation of the interaction energy of macroscopic bodies with different geometries
in continual approximation, including accounting for van der Waals forces, is described
in [11,12]. The calculations of atom interaction energy with an object outside the framework
of continual approximation, when it is necessary to account for the repulsion of atoms
and pair correlation in its position, have attracted significant interest. For an interaction of
isolated atoms with solid objects, the continual approximation is correct and accounts for
the repulsion of an atom from the solid body atoms (without accounting for an atomistic
structure of the solid body and the possibility of atoms penetrating into the body). However,
in the case of atom–liquid interaction, this approach is insufficient. In the equilibrium
system of liquid–vapor, an interchange of atoms between both phases takes place, and
the equilibrium is dynamic. To take account of an interchange between two phases, it
is necessary to equally account for a discrete structure of both the vapor and liquid. A
mathematical technique to describe this process should be similar for both phases.

A wide overview of the literature regarding the interaction of atoms and macroscopic
bodies [11] points to a range of unsolved problems, which are essential for understanding
the processes in the nanoscale systems. A topical problem is the calculation of the inter-
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action energy of atoms with droplets and the solid bodies of nanoscale size, including
accounting for the surface curvature and repulsive effects, and corresponding correlations
in their positions.

The goal of the current section is to present the model calculations of the interac-
tion energy between the atoms and nanodroplets of a simple liquid. The foundation of
these calculations is based on the expression for the energy of an inhomogeneous liquid
within the framework of the distribution function method of groups of particles, which
takes into account all paired interatomic interactions and correlations. The paired inter-
atomic interactions were described using the Lennard–Jones potential. The structure of the
droplets was modeled using a Fowler approximation (the step profile of atoms’ density
in the droplets) [18,19]. The calculations are performed for the cases in which the atom is
located outside, inside, and on the surface of the droplet. For the geometry dispositions
of the atom and droplet, which require accounting for the paired interatomic correlations,
pair distribution functions within the framework of thermodynamic perturbation theory
were used.

The potential energy of an inhomogeneous system of a pair of interacting particles,
located in a volume V, can be written as [10,19]:

E =
1
2

n2
0

∫
V

d3r1

∫
V

d3r2F2(r1, r2)Φ(r1, r2) (1)

where Φ(r1, r2) is an interaction energy of the pair of atoms; is a pair distribution function
of atoms inside an inhomogeneous liquid in a canonical Gibbs ensemble; and n0 is the
density of the number of particles. Formula (1) takes into account all paired interparticle
interactions and correlations for the energy of the inhomogeneous liquid. The interaction
energy of the volume element dV of the liquid with the remainder of the liquid can be
written as:

Eel−liq = n2
0dV1

∫
V

d3r2F2(r1, r2)Φ(r1, r2) (2)

By choosing the volume element from the condition dV1n0 = 1, we obtain an expres-
sion for the interaction energy of an isolated atom with an inhomogeneous liquid. For the
model calculations, a central symmetry potential of paired interaction of the atoms was
used, and the following approximation for the pair distribution function inside the droplet:

F2(r1, r2) ∼= F(0)
2 (|r1 − r2|)Θ(a − r1)Θ(a − r2), (3)

where F(0)
2 (|r1 − r2|) is a pair distribution function of atoms in homogeneous liquid; Θ(x)

is the Heaviside step-function; a is the radius of the droplet.
Figure 1 shows a droplet and atom at the point A. The radius vector R1 indicates

the location of the atom, interacting with the droplet, and radius vector R2 indicates the
location of the volume element. By introducing new integration variables via relation
R2 − R1 ≡ R12 and using spherical coordinates for integration (Figure 1), we obtain the
following expression for the atom–droplet interaction:

Ea−d(R1, a) = n0

∞∫
0

dRR2
π∫
0

sin ΘdΘ
2π∫
0

dϕΦ(R)F(0)
2 (R)×

×Θ
(

a − (R2
1 + R2 + 2R1R cos Θ

)1/2
)

.
(4)
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Figure 1. Geometry of atom and droplet location.

After integration over spherical variables, the expression for the atom–droplet interac-
tion energy takes the form:

Ea−d(R1, a) = πn0
R1

Θ(R1 − a)
R+a∫

R−a
dRRΦ(R)F(0)

2 (R)×
×[a2 − R2

1 − R2 + 2RR1
] (5)

where R1 is the distance from the atom to the center of the droplet. The obtained expression
is valid for the distances R1 ≥ a. From (5), we can see that the atom–droplet interaction
potential is dependent on the geometrical size of the droplet and the thermodynamic pa-
rameters, such as density of the number of atoms and temperature. Formally, Ea−d(R1, a) is
a function of the potential of the paired interparticle interaction and pair distribution func-
tion of the atoms. The derived Expression (5) takes into account the kinematic conditions
of the atoms’ arrangement outside the droplet.

If the atom is located at the surface of the droplet, then R1 = a and the interaction
energy expression takes the form:

Ea−d(a, a) =
πn0

a

2a∫
0

dRRF(0)
2 (R)Φ(R)(2aR − R2). (6)

In this case, from (6), it is clearly seen that the atom–droplet interaction energy takes finite
values, unlike in the case of continual approximations, in which no body structure is taken
into account and density is assumed to be constant [11,12]. In the continual approximations,
the atom energy at the surface of the droplet tends to infinity due to the repulsive forces
acting on the atom from the droplet.

For the case in which the atom is located inside the droplet, similar calculations allow
the interaction energy of the atom and droplet to be obtained:

Ea−d(R1, a) = 4πn0Θ(a − R1)
a−R1∫

0
dRR2Φ(R)F(0)

2 (R)+

+πn0
R1

Θ(a − R1)
a+R1∫

a−R1

dRRΦ(R)F(0)
2 (R)

[
a2 − (R − R1)

2
] (7)

If we choose in Expression (7), then we obtain Expression (6).
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If the atom is located at the center of the droplet, then its interaction energy with the
droplet will have the form:

Ea−d(0, a) = 4πn0

a∫
0

dRR2Φ(R)F(0)
2 (R). (8)

In a boundary case, when the droplet radius approaches infinity, from (8), the expression
for the atom interaction energy with unbounded liquid can be obtained:

Ea = 4πn0

∞∫
0

dRR2Φ(R)F(0)
2 (R). (9)

Expressions (8) and (9) have an explicit geometrical meaning.
The expression for the interaction energy of the atom with a semi-bounded liquid in

the case of arbitrary distances from the atom to the surface, when it is important that the
pair atom–atom correlations in the semi-bounded liquid are accounted for, can be derived
from Expression (5) by means of transition a → ∞, R1 − a = d = const :

Ea− f (d) = 2πn0

∞∫
d

dRF(0)
2 (R)Φ(R)R(R − d) (10)

where d is a distance from the atom to the surface.
The interaction energy of an atom that is located on a flat surface of a semi-bounded

liquid in the case of the Fowler approximation will take a form of a particular case of (10):

Ea− f (0) = 2πn0

∞∫
0

dRR2F(0)
2 (R)Φ(R). (11)

In contrast to the results of continual approximation, the interaction energy (11) is limited.
In Expressions (4)–(11) for the interaction energy, the divergence of the corresponding
integrals in the accounting for the paired interatomic correlations is absent.

Let us consider a boundary case of atom interaction energy with a nanodroplet of
liquid in a continual approximation. In the case of distances R1 − a � σ, where σ is
a characteristic length for the pair distribution function, we can assume F(0)

2
∼= 1 and

integrate using the explicit expression for the atom’s paired interaction potential. Thus, in
the case of Lennard–Jones potential:

Φ(R) = 4ε

[( σ

R

)12 −
( σ

R

)6
]

(12)

with the parameters σ and ε, we obtain:

Ea−d(a, R1) =
4πn0εσ6

R1

{
(R2

1−a2)σ6

10

[
1

(R1+a)10 − 1
(R1−a)10

]
+

+ 1
8 σ6

[
1

(R1+a)8 − 1
(R1−a)8

]
− 2

9 R1σ6
[

1
(R1+a)9 − 1

(R1−a)9

]
+

+
(a2−R2

1)
4

[
1

(R1+a)4 − 1
(R1−a)4

]
− 1

2

[
1

(R1+a)2 − 1
(R1−a)2

]
+

+ 2
3 R1

[
1

(R1+a)3 − 1
(R1−a)3

]}
.

(13)
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The interaction energy of an atom with the semi-infinite liquid in the boundary case a → ∞
can be written as:

Ea− f (d) =
4π

9
n0σ3ε

{
1
5

(σ

d

)9 − 3
2

(σ

d

)3
}

, (14)

where d is the distance between the atom and a flat surface. In the general case, the potential
interaction parameters of an atom with a droplet and an atom with semi-infinite liquid are
functions of density and temperature of the liquid.

From Expression (14), we can obtain the position of the first zero d0 of the potential
and the value of the potential minimum \dmin:

d0 =
σ
6
√

3
, dmin = σ. (15)

The depth of the potential well in which the atom near the flat surface moves will take
the form:

U = −8πn0σ3

9
ε. (16)

The interaction energy of an atom with a semi-infinite liquid at long distances from the
surface is the inverse proportional cube of the distance to the surface and has the follow-
ing asymptote:

Ea− f
∼= −πn0C

6
1
d3 , (17)

where C = 4εσ6 is a constant in the Van der Waals potential. Asymptotic behavior:

Ea− f ∼ 1
d3 (18)

is obtained within the framework of macroscopic Van der Waals interaction theory (without
accounting for delay effects) [20].

The numerical calculations were performed for the normal 4He at a temperature
T = 2.2K and a density ρ = 147 kg/m3, which corresponds to the density of the number
of particles n = 22.1266 nm−3. Parameters of the Lennard–Jones potential were chosen
to be σ = 2.576Å, ε = 10.22K [13]. The pair distribution function was modeled by means
of the distribution function obtained within the framework of the Barker–Henderson
thermodynamic perturbation theory [10,16].

Figure 2 shows the results of calculations in continual approximation using Formula (13)
for the interaction energy of an atom with a droplet of liquid helium for different values of
droplet radius (curves 1–3) and a semi-bounded liquid (curve 4). The interaction energy of
the pair of atoms, which is described by the Lennard–Jones potential (curve 5), is also shown.
The calculations show that the position of the minimum of the interaction energy of an atom
with droplets and semi-bounded liquids is significantly shifted to the shorter distances in
comparison to the interatomic potential Φ(R). The depth of the potential well increases with
the growth of the droplet radius and reaches saturation for the flat interface of the liquid.
At a given density of the liquid, the depth of the potential well, even in the case of atom
interaction with the flat interface, is less than in the case of atom–atom interaction. In the
case of continual approximation, the interaction energy of the atom with its surroundings
approaches infinity when an atom approaches a surface, i.e., the atom cannot reach the
surface of the liquid. This result is not satisfactory for a liquid; however, to a certain level, it is
acceptable for the modeling of atom interaction with a solid body, and it is used in absorption
problems. The main disadvantage of the continuum approximation is complete neglect of
the discrete surrounding structure effects and correlations between separate atoms with the
surrounding atoms.
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Figure 2. The results of model calculations of the energy of the interaction of atoms and nanodroplets
of 4He with different radiuses.

The calculation results of the interaction energy of an atom with a droplet in the
framework of correlation theory in the case when the atom is located on the surface of the
droplet are shown in Figure 3. From Figure 3, we can see that at droplet radius vales around
[20 − 30σ], the energy Ea−d(a, a), as a function of the radius, approaches the asymptotic
value. In contrast to the continuum model, accounting for the interatomic correlations of
the atom on the surface of the droplet demonstrates finite negative values of the energy,
which corresponds to the attraction of the atom to the droplet.

Figure 3. Results of calculations of the interaction energy of an atom with a droplet of 4He when the
atom is located on the surface of the droplet.

Figure 4 shows the calculation results of the interaction energy of an atom with a
droplet as a function of the droplet radius Ea−d(0, a), for the case when atom is located in
the center of the droplet. From the graph in Figure 4, it is seen that at radius values of the
order 10σ, the interaction energy of the atom with droplet Ea−d(0, a) reaches its asymptotic
values for the unbounded liquid; however, it remains finite.
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Figure 4. The interaction energy of the atom with a droplet as a function of the droplet radius for the
case when the atom is located in the center of the droplet.

Figure 5 shows the calculation results of the atom interaction energy with a liquid
helium droplet, including accounting for the correlation effects at variable radius values
and arbitrary distances from the atom to the center of the droplet. As can be seen from the
graph, the interaction energy of an atom with a droplet exhibits a saturation effect. This
effect can be seen in the following circumstances. (1) The droplet radius values are of the
order of 4σ, and the number of atoms in the droplet is around 101. A one-atom potential
is formed, which covers most of the droplet and corresponds to the asymptotic value for
the unbounded liquid. (2) The thickness of the near-surface layer, where the interaction
energy varies from its value inside the droplet to the asymptotic value outside the droplet,
quickly reaches the values of the order 6σ at radius growth. These results indicate that
a majority of atoms inside the droplet with a radius a > 10σ are under the influence of
self-consistent potential, which is similar to that of the homogeneous unbounded liquid,
and the gradient of this potential is located at the near-surface layer of the thickness 6σ.
As a result, at radius growth, the thickness of the atom density profile of the near-surface
layer quickly reaches values corresponding to the flat surface.

 

Figure 5. The interaction energy of the atom with the droplet of liquid 4He, accounting for correlation
effects with variable droplet radius values.

For comparison, Figure 6 shows the dependences of the interaction energies of an
atom and 4He nanodroplet of radius 2σ in the continual model and taking into account the
correlation effects. The two curves practically coincide only for large distances R > 2.8σ.
At smaller distances, there is a significant difference and in the boundary case R → 2σ + 0
in the continual model Ea − d (R, a) → ∞ .
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Figure 6. Comparison of the energies of interaction of an atom with a droplet of 4He with radius
a = 2σ in the continual model and taking into account correlation effects.

3. Microscopic Theory of Nanodroplet Surface Energy in Fowler Approximation

Let us consider a simple liquid in a volume V, which is described by the Hamiltonian:

H =
N

∑
i=1

P2
i

2M
+

1
2

N

∑
i �=j=1

Φ
(∣∣Ri − Rj

∣∣), (19)

where Pi, M are the impulse and mass of an atom, respectively; Φ
(∣∣Ri − Rj

∣∣) is the central–
symmetric potential of interatomic interaction; and N is the number of atoms. After an
averaging within the framework of the distribution function method of groups of parti-
cles [10,13–16,19], for the energy of liquid, we obtain:

E = 〈H〉 = Ek + Ep = 3
2 NkBT+

+N(N−1)
2V2

∫
V

d3R1
∫
V

d3R2F2(|R1 − R2|)Φ(|R1 − R2|) (20)

where V is the system volume and kB is the Boltzman constant.
We can divide the volume of the system into two parts V = V1 + V2, where V1 is the

volume of the droplet and V2\ is the volume of the liquid around the droplet. Then, the
potential energy of the liquid can be written as follows:

Ep =
n2

0
2

∫
V1+V2

d3R1
∫

V1+V2

d3R2F2(|R1 − R2|)Φ(|R1 − R2|) =

=
n2

0
2

∫
V1

d3R1
∫
V1

d3R2F2(|R1 − R2|)Φ(|R1 − R2|)+

+2 n2
0

2

∫
V1

d3R1
∫
V2

d3R2F2(|R1 − R2|)Φ(|R1 − R2|)+

+
n2

0
2

∫
V2

d3R1
∫
V2

d3R2F2(|R1 − R2|)Φ(|R1 − R2|),

(21)

where the first term is the bulk component of the droplet energy, the second term is the
interaction energy of molecules inside the droplet with the molecules located outside, and
the third term is the molecules’ interaction energy in the liquid with the spherical pore. The
first and the third terms are proportional to the volumes of the liquid droplet and liquid
with the pore, correspondingly, and the second term is proportional to the surface area of
the droplet.
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Let us split the system into the droplet of radius a and the remainder of the volume
(liquid with a pore of radius a). The potential energy E′ of the separated system is written:

E′ = n2
0

2

∫
V1

d3R1
∫
V1

d3R2F2(|R1 − R2|)Φ(|R1 − R2|)+

+
n2

0
2

∫
V2

d3R1
∫
V2

d3R2F2(|R1 − R2|)Φ(|R1 − R2|),
(22)

where the first term is the energy of the droplet, and the second term is the energy of the
liquid with a pore. The potential energy of the system separation is E′ − Ep. The energy
of the system separation is proportional to the surface area of the sphere. The specific
separation energy per unit of the formed surface S = 4πa2 can be written as:

σ =
1
2
(
E′ − Ep

)
= −n2

0
2

∫
V1

d3R1

∫
V2

d3R2F2(|R1 − R2|)Φ(|R1 − R2|). (23)

The specific separation energy (23) corresponds to the previously derived surface
energy of the droplet and pore in Fowler’s approximation [16,19]. Fowler’s approximation
corresponds to the “step” form of the molecules’ density profiles on the boundary of the
droplet and pore inside the liquid, with pair distribution functions similar to that of the
homogeneous liquid.

The surface energy of the droplet can be defined as the difference between the total
energy of the droplet and the energy of the homogeneous phase in the volume correspond-
ing to the volume of the droplet divided by the surface area of the droplet. This definition
is equivalent to distinguishing the volumetric and surface parts in the total energy of
the droplet. For the model calculations, the pair distribution function was approximated
as follows:

F2(R1, R2) ∼= Θ(a − R1)Θ(a − R2)F(0)
2 (|R1 − R2|), (24)

where F(0)
2 (|R1 − R2|) is the pair distribution function of atoms in a homogeneous liq-

uid; and a is the droplet radius. Approximation (24) is similar to the Kirkwood–Buff
approximation for a semi-bounded liquid with a flat interface [16,19,21].

The received expressions for the droplet energy, pore energy, and separation energy of
a liquid into a droplet and a liquid with pore can be integrated in spherical coordinates.
Thus, using Approximation (24), the energy of the liquid droplet can be written as:

Edrop =
3
2

NkBT +
4
3

πa3ε + σS, (25)

where

ε = 2πn2
0

∞∫
0

dRR2F(0)
2 (R)Φ(R) (26)

is the bulk density of the potential energy of a liquid; n0 is the density of the number of
particles in a homogeneous liquid; and S is the surface area of the droplet.

The surface energy of the droplet is defined as:

σ = σ0 + Δσ, (27)

where

σ0 = −πn2
0

2

∞∫
0

dRR3F(0)
2 (R)Φ(R) (28)
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is the surface energy of the flat interface of the liquid in Fowler’s approximation [16,19,21,22].

Δσ =
πn2

0
2

∞∫
2a

dRR3Φ(R)F(0)
2 (R) + πn2

0
24a2

2a∫
0

dRR5Φ(R)F(0)
2 (R)−

−πn2
0

2 · 4πa
3

∞∫
2a

dRR2Φ(R)F(0)
2 (R)

(29)

is an additional term for the surface energy of the droplet due to the surface curvature. In
the boundary case of the large droplet radius values lim

a→∞
σ = σ0, this corresponds to the

surface energy of the liquid with a flat interface. For small values of the droplet radius,
lim
a→0

σ = 0.

The model calculations of the size dependence of the surface energy of the droplet σ(a)
were performed for simple liquids using the Lennard–Jones potential and pair distribution
function, which were obtained within the framework of the Wicks–Chandler–Anderson
(WCA) thermodynamic perturbation theory [16,22–24]. Figure 7 shows the calculation results
for the dependence σ(a) of argon at the melting point. The atoms’ pair distribution function
was calculated according to the WCA procedure. The Lennard–Jones parameters were

chosen as ε = 124K, σ = 3.418
0
A, and the droplet radius was depicted in terms of Bohr radius

aB. The asymptotic value of the surface energy at a → ∞ is equal σ0 = 27.04 erg/cm2.

 

Figure 7. The size dependence of the surface energy σ(a) for the Ar droplet.

Model calculations of the dimensional dependence of the surface energy of gases
He, Kr, Xe are presented in Figures 8–10. The parameters of Lennard–Jones potentials
are taken from a monograph [13]. Model calculations for all elements are performed
for temperatures and densities corresponding to triple points. Note the similarity of the
dimensional dependences of σ(a) for the selected group of elements. The surface energy
shows a strong dependence for nanosized droplets. With an increase in size, the surface
energy of nanodroplet approaches the value of the surface energy of a flat surface σ0.
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Figure 8. The size dependence of the surface energy σ(a) for the He droplet.

 
Figure 9. The size dependence of the surface energy σ(a) for the Kr droplet.

 
Figure 10. The size dependence of the surface energy σ(a) for the Xe droplet.

When a droplet of liquid is located in a gas, then for the surface energy of the boundary
of the droplet–gas interface, we use a representation in which the surface energy of the gas
phase is described as the surface energy of a gas with a pore. We assume that the density of
the number of particles in liquid is n0, and in gas, it is n1. The pair distribution functions of
particles in a homogeneous liquid and gas are F20 and F21, respectively. Then, the surface
energy of the spherical liquid–gas interface, σl−g, is reduced in comparison to the surface
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energy of the liquid droplet in vacuum to a value that is equal to the surface energy of the
pore with a vacuum in the gas

σl−g = σ0l − σ0g +
πn2

0
2

[
∞∫

2a
dRR3F(0)

20 (R)Φ(R)−

− 4a
3

∞∫
2a

dRR2F(0)
20 (R)Φ(R) + 1

12a2

2a∫
0

dRR5Φ(R)F(0)
20 (R)

]
−

+
πn2

1
2

[
∞∫

2a
dRR3F(0)

21 (R)Φ(R)− 4a
3

∞∫
2a

dRR2F(0)
21 (R)Φ(R)+

+ 1
12a2

2a∫
0

dRR5F(0)
21 (R)Φ(R)

]
(30)

where

σol = −πn2
0

2

∞∫
0

dRR3F(0)
20 (R)Φ(R) (31)

is the surface energy of the flat liquid–vacuum interface; and

σog = −πn2
1

2

∞∫
0

dRR3F(0)
21 (R)Φ(R) (32)

is the surface energy of the flat gas–vacuum interface.
In the boundary case of gas density growth, n1 → n0 , the surface energy of the

spherical liquid–gas interface approaches zero, σl−g → 0 . In the boundary case when
a → ∞ , we obtain lim

a→∞
σl−g = σ0l − σ0g.

In this section, within the framework of the correlation theory of inhomogeneous
liquids, the general expressions for the bulk and surface terms in the droplet energy as
a function of the radius were obtained. Using the Fowler approximation, we were able
to reduce all of the terms to the single integrals, which significantly simplified the model
calculations of the size dependence. The size dependence of the surface energy was
calculated for spherical droplets of the simple dielectric liquids as a function of the radius
in Fowler’s approximations. In the boundary case of the large radius of the droplet, the
surface energy approaches the value for the flat surface. The strong size dependence of the
droplet surface energy is observed at nanometer scales of the droplet radius. When the
droplet radius a < 15aB, a significant decrease in the surface energy is observed.

The derived approach is used to calculate the surface energy of two-phase system
of nanodroplet–gas, including accounting for the paired interparticle interactions and
correlations. In the vicinity of the mixing point of liquid and gas, the surface energy of
the nanodroplet in gas approaches zero. The size dependence of the nanodroplet surface
energy in gas is similar to the size dependence of the nanodroplet in vacuum.

4. The Correlation Theory of Interaction Energy between Two Nanodroplets and Two
Nano-Pores in Liquid

The contemporary state of development in molecular–kinetic representations of the
interaction of macroscopic bodies by means of intermolecular forces is described in the
monograph [11]. In [11], the expressions for the interaction energy of the bodies with
different geometry were derived, and these used the attractive potential of intermolecular
interaction. This potential corresponds to the Van der Waals potential, and the repulsive
intermolecular forces and the interparticle correlations in these calculations are not taken
into account. Thus, the obtained results in [11] for the interaction energies of macroscopic
bodies correspond to the asymptotic values for large distances. Taking into account the
short-range intermolecular forces requires a theory that also takes into consideration the
intermolecular correlations. This approach can be implemented within the framework
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of the statistical theory of multiparticle systems [10,13–16]. The kinetics of air dispersal
and cavitation systems requires knowledge of the energy of the interaction processes of
nanodroplets and nanopores as well as that in their ensembles with the surrounding phase.

In the current section, we established the theory of the interaction energy for two
droplets of a simple liquid within the framework of the distribution function method of the
groups of particles. The derived expressions for the interaction energy of two nanodroplets
take into account paired interparticle interactions and correlations, and they are applicable
for the arbitrary distances between nanodroplets or nanopores.

We postulate in a homogeneous liquid that occupies a volume V a presence of two
pores of volumes V1 and V2. The volume of the liquid without the volume of two pores we
denote V′. The potential energy of the liquid with two pores can be written:

E =
1
2

n2
0

∫
V′

d3r1

∫
V′

d3r2Φ(|r1 − r2|)F2(|r1 − r2|), (33)

where Φ(|r1 − r2|) is the potential energy of interaction of two atoms; F2(|r1 − r2|) is the
pair distribution function of atoms in a homogeneous liquid; and n0 = N/V is the density
of the number of particles in a homogeneous liquid.

From the energy in (33), we can separate the part that corresponds to the energy of a
homogeneous liquid in a volume V:

E = 1
2 n2

0

(∫
V′

d3r1 +
∫
V1

d3r1 +
∫
V2

d3r1 −
∫
V1

d3r1 −
∫
V2

d3r1

)
×

×
(∫

V′
d3r2 +

∫
V1

d3r2 +
∫
V2

d3r2 −
∫
V1

d3r2 −
∫
V2

d3r2

)
Φ(|r1 − r2|)F2(|r1 − r2|) =

= 1
2 n2

0

(∫
V

d3r1 −
∫
V1

d3r1 −
∫
V2

d3r1

)(∫
V

d3r2 −
∫
V1

d3r2 −
∫
V2

d3r2

)
×

×Φ(|r1 − r2|)F2(|r1 − r2|).

(34)

The energy Expression (34) contains nine terms whose physical meaning we clarify in the
following. The first term is the potential energy of a homogeneous liquid in a volume V:

1
2

n2
0

∫
V

d3r1

∫
V

d3r2Φ(|r1 − r2|)F2(|r1 − r2|) = εV. (35)

This energy (35) can be represented as the product of the bulk density of the potential
energy ε and the volume of the system V. The sum of the contributions from (34):

− 1
2 n2

0
∫
V

d3r1
∫
V1

d3r2Φ(|r1 − r2|)F2(|r1 − r2|)+
+ 1

2 n2
0
∫
V1

d3r1
∫
V1

d3r2Φ(|r1 − r2|)F2(|r1 − r2|) =

= − 1
2 n2

0

(∫
V

d3r1 −
∫
V1

d3r1

)∫
V1

d3r2Φ(|r1 − r2|)F2(|r1 − r2|) = −σ1S1,

(36)

corresponds to the potential energy of atoms’ interaction inside the volume V1 with the
atoms surrounding the first pore volume V − V1, which is proportional to the surface area
of the first pore S1 and the surface energy of the first pore σ1.
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The next sum of the two contributions in (34) can be written as:

− 1
2 n2

0
∫
V

d3r1
∫
V2

d3r2Φ(|r1 − r2|)F2(|r1 − r2|)+
+ 1

2 n2
0
∫
V2

d3r1
∫
V2

d3r2Φ(|r1 − r2|)F2(|r1 − r2|) =

= − 1
2 n2

0

(∫
V

d3r1 −
∫
V2

d3r1

)∫
V2

d3r2Φ(|r1 − r2|)F2(|r1 − r2|) = −σ2S2,

(37)

which corresponds to the potential interaction energy of atoms inside the volume V2 and
atoms surrounding the second pore volume V −V2. This term is proportional to the surface
area of the second pore S2 and to the surface energy of the second pore σ2.

The sum of the following two terms:

+ 1
2 n2

0
∫
V1

d3r1
∫
V2

d3r2Φ(|r1 − r2|)F2(|r1 − r2|)+
+ 1

2 n2
0
∫
V2

d3r1
∫
V1

d3r2Φ(|r1 − r2|)F2(|r1 − r2|) (38)

corresponds to the duplicated interaction energy of two droplets with volumes V1 and V2.
For the sum of the contributions in (34), which are not accounted for in

Expressions (36)–(38), we denote ΔE and write in the form:

ΔE = − 1
2 n2

0
∫
V1

d3r1
∫
V

d3r2Φ(|r1 − r2|)F2(|r1 − r2|)+
+ 1

2 n2
0
∫
V1

d3r1
∫
V2

d3r2Φ(|r1 − r2|)F2(|r1 − r2|)+
− 1

2 n2
0
∫
V2

d3r1
∫
V

d3r2Φ(|r1 − r2|)F2(|r1 − r2|)+
+ 1

2 n2
0
∫
V2

d3r1
∫
V1

d3r2Φ(|r1 − r2|)F2(|r1 − r2|) =

= − 1
2 n2

0
∫
V1

d3r1

(∫
V

d3r2 −
∫
V2

d3r2

)
Φ(|r1 − r2|)F2(|r1 − r2|)−

− 1
2 n2

0
∫
V2

d3r1

(∫
V

d3r2 −
∫
V1

d3r2

)
Φ(|r1 − r2|)F2(|r1 − r2|) =

= − 1
2 n2

0
∫
V1

d3r1
∫

V−V2

d3r2Φ(|r1 − r2|)F2(|r1 − r2|)−
− 1

2 n2
0
∫
V2

d3r1
∫

V−V1

d3r2Φ(|r1 − r2|)F2(|r1 − r2|).

(39)

Simplifying (39)

ΔE = − 1
2 n2

0
∫
V1

d3r1

( ∫
V−V1−V2

d3r2 +
∫
V1

d3r2

)
Φ(|r1 − r2|)F2(|r1 − r2|)−

− 1
2 n2

0
∫
V2

d3r1

( ∫
V−V1−V2

d3r2 +
∫
V2

d3r2

)
Φ(|r1 − r2|)F2(|r1 − r2|),

(40)

we get
ΔE = − 1

2 n2
0
∫
V1

d3r1
∫
V1

d3r2Φ(|r1 − r2|)F2(|r1 − r2|)−
− 1

2 n2
0
∫
V1

d3r1
∫

V−V1−V2

d3r2Φ(|r1 − r2|)F2(|r1 − r2|)−
− 1

2 n2
0
∫
V2

d3r1
∫
V2

d3r2Φ(|r1 − r2|)F2(|r1 − r2|)−
− 1

2 n2
0

∫
V−V2−V1

d3r1
∫
V2

d3r2Φ(|r1 − r2|)F2(|r1 − r2|).

(41)
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The first term in Expression (41) corresponds to the potential energy of liquid in the volume
V1 and contains the bulk contribution −εV1. Similarly, the third term in (41) contains a bulk
part −εV2 of the potential energy of a liquid in a volume V2. Thus, (41) takes the form:

ΔE = −ε · V1 − ε · V2−
− 1

2 n2
0
∫
V1

d3r1
∫

V−V1−V2

d3r2Φ(|r1 − r2|)F2(|r1 − r2|)−
− 1

2 n2
0

∫
V−V2−V1

d3r1
∫
V2

d3r2Φ(|r1 − r2|)F2(|r1 − r2|).
(42)

The potential energy of the first and second droplets is E1drop = ε · V1 + σ1 · S1 and
E2drop = ε · V2 + σ2 · S2, respectively.

Then, the potential energy of the liquid with two pores (33) will take the form:

E = 1
2 n2

0
∫
V′

d3r1
∫
V′

d3r2Φ(|r1 − r2|)F2(|r1 − r2|) =
= ε · V + σ1 · S1 + σ2 · S2 − E1drop − E2drop + E1 + E2,

(43)

where:
E1 = −1

2
n2

0

∫
V1

d3r1

∫
V−V1−V2

d3r2Φ(|r1 − r2|)F2(|r1 − r2|), (44)

E2 = −1
2

n2
0

∫
V−V2−V1

d3r1

∫
V2

d3r2Φ(|r1 − r2|)F2(|r1 − r2|). (45)

The energy expressions of (44) and (45) can be rewritten as:

E1 = − 1
2 n2

0
∫
V1

d3r1
∫

V−V1

d3r2Φ(|r1 − r2|)F2(|r1 − r2|)+
+ 1

2 n2
0
∫
V1

d3r1
∫
V2

d3r2Φ(|r1 − r2|)F2(|r1 − r2|) =
= −σ1 · S1 +

1
2 n2

0
∫
V1

d3r1
∫
V2

d3r2Φ(|r1 − r2|)F2(|r1 − r2|).
(46)

E2 = − 1
2 n2

0
∫

V−V2

d3r1
∫
V2

d3r2Φ(|r1 − r2|)F2(|r1 − r2|)+
+ 1

2 n2
0
∫
V1

d3r1
∫
V2

d3r2Φ(|r1 − r2|)F2(|r1 − r2|) =
= −σ2 · S2 +

1
2 n2

0
∫
V1

d3r1
∫
V2

d3r2Φ(|r1 − r2|)F2(|r1 − r2|).
(47)

where the second terms in (46) and (47) correspond to the potential interaction energy of
two droplets or two pores:

Edrop−drop = Epore−pore =
1
2

n2
0

∫
V1

d3r1

∫
V2

d3r2Φ(|r1 − r2|)F2(|r1 − r2|). (48)

Substituting Expressions (46)–(48) into (43):

E = ε · V + σ1 · S1 + σ2 · S2 − E1drop − E2drop−
−σ1 · S1 − σ2 · S2 + Edrop−drop + Epore−pore =

= ε · V − E1drop − E2drop + Edrop−drop + Epore−pore,
(49)

we receive the expression for the potential energy of homogeneous liquid in a volume V

ε · V = E + E1drop + E2drop − Edrop−drop − Epore−pore. (50)

The terms in Expression (50) have the following meaning: the left part of (50) is the
potential energy of a homogeneous liquid, which takes into account all interactions; the
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right side of (50) contains a sum that includes contributions related to the “separation” from
a homogeneous liquid of two droplets with a free interface and free interface of the pores.

To derive the interaction energy of two nanodroplets Edrop−drop and the interaction
energy of two nanopores Epore−pore (48), we first consider the interaction energy of a volume
element that contains n0d3r1 atoms, with a droplet of radius a:

Eel−drop(R1) = n2
0dV

∫
V

d3r2F2(|R1 − r2|)Φ(|R1 − r2|) (51)

where V is a droplet volume; and F2(|R1 − r2|) is a pair distribution function of atoms in a
homogeneous liquid.

We assume that the droplet is centered in the reference coordinate system and the
volume element is located along the OZ axis at distance R1 > a. In a spherical coordinate
system, Expression (51), similar to (5), takes the form:

Eel−drop(R1, a) = πn0dV1
R1

Θ(R1 − a)
R1+a∫

R1−a
dRRΦ(R)F(0)

2 (R)×
×[a2 − R2

1 − R2 + 2RR1
]
.

(52)

Let us assume that the center of the second droplet with radius b is located along OZ at
a point with coordinate d Then, the interaction energy of these two droplets with center
distances d > a + b, using (52), can be written as:

Edrop−drop(a, b, d) =
∫

dV1Eel−drop(R1, a). (53)

Integrating over spherical variables (53) will take the form:

Edrop−drop(a, b, d) = π2n2
0

2d

d+b∫
d−b

dR1

[
b2 − (d − R1)

2
]
×

R1+a∫
R1−a

dRRF2(R)Φ(R)
[

a2 − (R1 − R)2
]
.

(54)

The Expression (54) allows calculating a component of the interaction force between two
nanodroplets along the OZ direction

Fz(a, b, d) = − ∂

∂d
Edrop−drop(a, b, d). (55)

A continuous density distribution is assumed in the boundary case of a continuum
model, and it is not accounted for in the discreet structure of the media. The expressions
derived above for the interaction energy of two nanodroplets and two nanopores can
be easily reduced to the continuum case by neglecting the correlations and assuming
F2(R) = 1. Using the Lennard–Jones potential for the interaction energy of atoms, and
integrating Expression (54) over R, we obtain:

Edrop−drop(a, b, d) = 2π2n2
0εσ6

d

d+b∫
d−b

dR1

[
b2 − (d − R1)

2
]
×{−(a2σ6/10

)(
(R1 + a)−10 − (R1 − a)−10

)
+
(
a2/4

)(
(R1 + a)−4 − (R1 − a)−4

)
+

+
(

R2
1σ6/10

)(
(R1 + a)−10 − (R1 − a)−10

)
− (2R1σ6/9

)(
(R1 + a)−9 − (R1 − a)−9

)
+

+
(
σ6/8

)(
(R1 + a)−8 − (R1 − a)−8

)
− (R2

1/4
)(

(R1 + a)−4 − (R1 − a)−4
)
−

−(1/2)
(
(R1 + a)−2 − (R1 − a)−2

)
+ (2R1/3)

(
(R1 + a)−3 − (R1 − a)−3

)}
.

(56)
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Formula (56) can be simplified by integration over R1

Edrop−drop(a, b, d) = 2π2n2
0εσ6

d
(
b2 − d2)×{

σ6a
40 f+8 + 11

630 σ6 f−7 − a2

12 f−3 − a2

12 f+3 + a
3 f−2 + a

3 f+2 + 1
12 f−1

}
+

+4π2n2
0εσ6

{
− σ6a3

20 f−9 + 31
360 a2σ6 f−8 + 1

90 σ6a3 f+9 − 1
360 aσ6 f+7 −

− 1
2160 σ6 f−6 − 1

24 a3 f+3 − 1
12 a2 f−2 + 1

12 a f−1 − 1
12 ln

∣∣∣ aδ
γβ

∣∣∣}−
− 2π2n2

0εσ6

d

{
− σ6a3

360 f+8 + σ6a2

168 f−7 − σ6a
360 f+6 − 41σ6

1800 f−5 −
− a3

4 f+2 + 55a2

36 f−1
}

.

(57)

where we denoted:

f±1 = α−1 − β−1 ± γ−1 ± δ−1, f±2 = α−2 − β−2 ± γ−2 ± δ−2,
f±3 = α−3 − β−3 ± γ−3 ± δ−3, f±5 = α−5 − β−5 ± γ−5 ± δ−5,
f±6 = α−6 − β−6 ± γ−6 ± δ−6, f±7 = α−7 − β−7 ± γ−7 ± δ−7,
f±8 = α−8 − β−8 ± γ−8 ± δ−8, f±9 = α−9 − β−9 ± γ−9 ± δ−9,
α = d + b + a, β = d − b + a, γ = d + b − a, δ = d − b − a.

(58)

The result in (57) corresponds to the continuum approximation for the interaction
energy of two droplets of liquid with parameters Edrop−drop(a, b, d). It accounts for attractive
and repulsive parts of molecule interactions and neglects correlation effects.

The absorption problems in equilibrium liquid–vapor systems require knowledge of
the nanodroplet interaction energy with the flat liquid interface. Using Expression (54)
for the interaction energy of two droplets, we can investigate the boundary case of the
droplet–semi-bounded liquid interaction.

These boundary case calculations of the droplet interaction energy with the semi-bounded
liquid can be performed assuming that the distance between droplet centers d → ∞ and
droplet radius b → ∞ , and d − b = const. We denote distance d − b = D, which in our
boundary case corresponds to the distance from the center of the droplet with radius a to the
interface of semi-bounded liquid. The calculation of the limit lim

d → ∞, b → ∞
d − b = D

Edrop−drop(a, b, d) is

not dependent on the internal integral in (54). Thus:

lim
d → ∞, b → ∞

d − b = D

1
d
[b2 − (d − R1)

2] = 2R1 − 2D. (59)

Using the result in (58), the interaction energy of the droplet of radius a with a semi-
bounded liquid at a distance D will take the form:

Edrop−semi(a, b, d) = π2n2
0

∞∫
D

dR1(R1 − D)×

×
R1+a∫

R1−a
dRRF2(R)Φ(R)

[
a2 − (R1 − R)2

]
.

(60)

The derived Expression (60) takes into account the paired interparticle interactions by
means of potential Φ(R) and the paired interparticle correlations by means of F2(R).
From (59), we can derive an explicit expression for the interaction energy of the nanodroplet
with a semi-bounded liquid in continuum approximation.

Figure 11 shows the results of numerical calculations of the interaction energy of two
4He nanodroplets with the same radii a = 2σ as a function of the distance between the
centers of the droplets 4σ < a < 5σ in accordance with the Formula (54). The interaction
energy of nanodroplets is negative and rapidly decreases with increasing distance between
the centers of the droplets.
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Figure 11. Dependence of the interaction energy of two 4He nanodroplets with radii a = 2σ.

5. The Effective Hamiltonian of Aerosols with Liquid Nanodroplets

We use the derived results to build the effective Hamiltonians of nanodispersed two-
phase liquid–gas systems. Our approach accounts for the effects of the paired interparticle
interactions and correlations in calculations of the molecules’ interaction energies with
droplets, pairs of droplets, and the surface energy of the droplets.

Let us assume the existence of an aerosol of nanodroplets of different sizes in the gas
phase. For simplicity, we assume that this two-phase system consists of atoms (molecules)
of the same kind and has temperature T. Based on the results derived in the previous
sections, the effective Hamiltonian of this system He f f , including accounting for the paired
interparticle interactions and correlations, can be written as:

He f f =
3
2 NkBT + K + ε l

Nd
∑

j=1
Vj+εg

(
V −

Nd
∑

j=1
Vj

)
+

Nd
∑

j=1
σjSj+

+
NG
∑

i=1

Nd
∑

j=1
Ea−d

(
Rij, aj

)
+ 1

2

Nd
∑

k=1

Nd
∑

m=1
Edrop−drop(ak, bm, dkm)

(61)

where 3
2 NkBT is the kinetic energy of all molecules of aerosol; N is the total number of

molecules in gas and droplets; K is the kinetic energy of the translational and rotational
motion of all droplets; ε l , εg are the bulk energy densities of droplets and gas (30); V is the
volume of the system; Vj is the volume of the j-th droplet; Nd is the number of droplets; NG
is the number of molecules of the gas phase; σj, Sj is the surface energy and the surface area
of the jth droplet, respectively (27); Ea−d

(
Rij, aj

)
is the interaction energy between the i-th

gas molecule and the j-th droplet (5), aj is the radius of the j-th droplet; Rij is the distance
between the i-th gas molecule and the center of the j-th droplet; and Edrop−drop(ak, bm, dkm)
is the interaction energy of two droplets with radiuses ak and bm, and a center distance
dkm > ak + bm (50).

The expression for the effective Hamiltonian of an aerosol (61) can be generalized
for the case of multicomponent mixtures with atoms (molecules) of different kinds. For-
mula (61) is derived for the set of independent variables: temperature, number of atoms
(molecules) in a system in total and in gas phase, size of droplets, and density of the number
of atoms in liquid and gas. In real experiments with macroscopic aerosol systems, statistical
datasets exist that describe the dispersion of droplet sizes and the possible disposition in
external fields. Knowledge of these statistical datasets is necessary for the averaging of (61)
and calculation of aerosol energy.

The prediction of aerosol behavior requires knowledge of droplets’ size evolution,
their concentration, the collisions results with possible coagulation, and accounting for the
condensation and evaporation effects on and from the droplets’ surface. The time evolution
of the droplet’s size distribution is described by the generalized integral–differential dy-
namic equation, which takes into account the balance of the number of atoms (molecules)
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of gas and the number of droplets, which may vary due to condensation, evaporation, and
the coagulation of droplets [25–28].

The condensation phenomena, in addition to evaporation from the droplet’s surface,
play an essential role in many technological processes. An overview of the existing ap-
proaches to the description of the evaporation and condensation phenomena is provided in
work [29]. The majority of research papers use the equations of macroscopic mechanics of
continuum media and thermodynamics. However, the framework of these approaches does
not allow the formulation and establishment of the boundary conditions in the droplet’s
near-surface area, where the application of the macroscopic equations of thermodynamics,
heat transfer, and diffusion is problematic [29]. The microscopic approach developed in
the current paper allows, at the molecular level, accounting for the interaction energies
of atoms (molecules) with a liquid droplet, and it takes into account paired interparticle
interactions and correlations with an arbitrary atom (molecule) disposition relative to the
droplet. The derived expressions for Ea−d

(
Rij, aj

)
allow research on the intermolecular

forces that act on a separate particle at an arbitrary position. They also allow the develop-
ment of the statistical theory of equilibrium evaporation and condensation processes for
arbitrary temperatures and densities of liquid and gas in multicomponent systems with
droplets of an arbitrary size. In the problems of the adhesion of liquid droplets with other
molecular structures, the interaction energy Ea−d

(
Rij, aj

)
plays an essential role and serves

as a basis for further calculations.
The atom (molecule) work function from the droplet can be described as:

Aa−d = Ea−d(∞, a)− Ea−d(0, a). (62)

Expression (62) can be used in adhesion problems of atoms (molecules) with droplets and
thermodynamics of aerosols. The sign of the atom work function of a droplet is dependent
on thermodynamic conditions and may be negative. At condition Aa−d > 0, condensation
processes mostly take place, whereas at thermodynamic conditions when Aa−d < 0, the
evaporation effects are active. The case Aa−d = 0 corresponds to the dynamic equilibrium
of the evaporation and condensation processes.

In molecular biology problems, the adhesion of large molecules (viruses) to the surface
of cells and the adhesion of cells to each other play an essential role [30]. Current progress in
the physics, chemistry, and experimental techniques with nanodroplets, cells, and viruses
allows measurement of the adhesion forces of nanodroplets and viruses (virions) [30,31].
However, contemporary research on the energy and adhesion forces of nano-objects consists
of only phenomenological developments. In this phenomenological state, the development
of the molecular structures’ adhesion problems and nanodroplets of liquid, or the flat liquid
interface, are important for the spread of viruses in aerosols. Within the framework of the
approach developed in the current article, we can write the expression for the interaction
energy of the multi-atom molecule, consisting of Nstr atoms, with a liquid droplet of radius
aj, as follows:

Edrop−str =
Nstr

∑
i=1

Ea−d
(

Rij, aj
)
, (63)

where Rij is the distance between the i-th atom of the structure and the j-th droplet.
Discussion about the adhesion mechanism of cells and viruses is long standing. The

main question is whether the adhesion occurs at the direct contact of two objects or by
means of intermediate molecular structures [30,31]. The same question concerns the
mechanism of adhesion of two nanodroplets. The adhesion energy of two droplets with
radiuses a1, a2 , which are in contact with each other, corresponds to the interaction energy
Edrop−drop(a1, a2, d), where d is the center distance between droplets.
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The energy of indirect interaction of two nanodroplets with radiuses a1, a2 over a
molecular structure with Nstr atoms can be written:

Eind
drop−drop(a1, a2, d) =

2

∑
k=1

Nstr

∑
i=1

Ea−d
(

Ril , aj
)
. (64)

Formula (64) for the energy of the indirect interaction corresponds to the adhesion energy
for the system of three bodies, and it can be defined as a separation work for all three
components of the system to infinite distances. The boundary cases of Formula (64) describe
the energy of indirect interaction of two half-spaces over the molecular structure between
them. It is also important to note that all derived interaction energy Expressions (61)–(64)
explicitly account for all paired interparticle interactions and correlations.

The collisions of droplets play an important role in the aerosol coagulation phenom-
ena. The interaction energy of two droplets contains the direct interaction component
Edrop−drop(a1, a2, d) and the component of indirect interaction Eind

drop−drop(a1, a2, d) with the
surroundings (atoms, molecules, molecular structures). For nanodroplet coagulation prob-
lems, one has to take into account both components. For the problems of cell and virus
adhesion calculations, the comparison of direct and indirect interactions is required.

6. Discussion

The widely used continuum model of condensed systems has a limited application in
the description of atoms’ interactions with condensed bodies [11,12]. The model neglects
the discrete atomic structure of condensed bodies, interatomic correlations, and the ability
of atoms to penetrate the condensed bodies. This is clearly visible with an example of
interaction of separate atoms with droplets of liquids (Figure 6). The neglect of interatomic
correlations leads to an unsatisfactory description of the physics of processes that are
responsible for the dynamic equilibrium of the liquid–gas system.

When calculating the surface properties of condensed systems that are different in
nature, the Fowler approximation is essential, because it correctly takes into account the
basic surface contributions to different thermodynamic quantities. Corrections to this
approximation, due to the difference between the real density profile in the near-surface
layer and the stepped layer, are of an additive nature when calculating thermodynamic
functions. Going beyond the Fowler model in our problem will not change the main results
and conclusions of the work. Slight changes in the energy dependence of the interaction
between the atom and the nanodroplet can be expected in the near-surface region.

For condensed systems, a characteristic property is the same order of magnitude of
the average kinetic and potential energies of atoms and molecules. For nano-objects, due to
the large proportion of particles present in the near-surface layer, interatomic correlations
can be of great importance for the formation of a self-consistent potential, which ensures
the stability of the object in relation to the decay of constituent atoms or molecules. The
processes of nucleation, and the mechanisms of growth and evolution of nanostructures
under conditions of microscopic instability, are an integral part of the physics of phase
transitions of the first kind. From the point of view of kinetics, the processes of nucleation
of nano-objects take place with the participation of each individual atom, which evolves in
the field of other atoms. The evolution of a single atom depends on the self-consistent field
formed by other atoms and correlations with neighboring atoms. Stability of processes and
their direction are also important for the growth or decay of nano-objects. The microscopic
nature of the mono-atomic mechanisms of growth or decay of nanostructures, when the
curvature of the surface of the new nanophase is significant, has been insufficiently studied.
The solution of kinetic problems of this type is possible by means of theoretical calculations
of the atom’s interaction energy with the inhomogeneous environment at a nanometer
scale. A proper description of the multiscale processes of nanostructure growth also
requires knowledge of the energy balance of the entire nanostructure, which requires
energy calculations of highly heterogeneous nanoscale systems.
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The distribution functions method of groups of atoms allows the equilibrium prop-
erties of the liquid–gas interface to be expressed in terms of potentials of interatomic
interactions and distribution functions of atoms. Among the most important thermody-
namic functions are the surface energy and surface tension of flat and curved surfaces.
When calculating the surface properties of the liquid–gas interface, the use of the Fowler
approximation [18,19] for unary and binary atom distribution functions allows us to make
estimates of surface contributions with considerable accuracy [10,16,19,22]. Corrections
to the Fowler approximation strongly depend on the approximation methods for the
non-central part of the pair distribution function and on the choice of the atomic density
profile [10,16,19,22]. The main efforts in modern statistical physics relating to two-phase
liquid–gas systems are aimed at calculating the atom’s density profile near the phase
interface and calculating its surface energy and surface tension.

In the current work, within the framework of the distribution function method of the
group of particles and Fowler’s approximation, we derive the expressions for the atom
interaction energy with a nanodroplet of simple liquid. The derived formulation is applied
for the calculations of the nanodroplets of liquid helium. The developed approach has
similarities with the functional density method (FDM) [32–36]; however, it additionally
takes into account the energies of the paired interparticle correlations, which are problem-
atic in FDM. The analysis of different approaches for the accounting of pair correlation
energies in the FDM in application to liquid helium is described in paper [36]. Assembling
the expression for the energy of pair correlations only by means of the atom’s paired
interaction energy and local densities of the number of atoms requires the introduction
of the non-physical “screening” concept of Lennard–Jones potential at small distances, to
avoid the divergence problem of the corresponding integrals [36]. In fact, it is necessary to
introduce additional parameters that cannot be determined within the density functional
method itself. As a result, extra designations for Lennard–Jones potential are introduced
in different versions of FDM at short distances in an attempt to converge the integrals
corresponding to the indirect accounting for the short-range paired interatomic correlations.
The distribution function method used above for groups of particles avoids the necessity
of expanding the studied quantities into gradient series.

The model calculations performed above for the size dependence of the atoms’ inter-
action with a nanodroplet of helium indicates a significant influence of the saturation effect
of the single atomic energy inside the droplet. The short range of interatomic interactions
results in the rapid achievement of the asymptotic value of the atoms’ energy at the center
of the droplet during the growth of the droplet size. The formation of the bulk properties
of helium nanodroplets occurs at radii in the order of 4σ and the number atoms of around
101. It should be noted that the pair distribution function of atoms in liquids at distances
4σ is almost equal to one, which corresponds to the absence of correlations in the spatial
positions of the pair of atoms. Therefore, it is possible to reach conclusions about the
relationship between the radii of liquid nanodroplets, at which the volumetric properties
of the liquid are formed, and the characteristic distances at which the paired interatomic
correlation in liquids is lost. This conclusion also easy to see in Figure 5, from which it
follows that most atoms in droplets of the specified size have the same one-atomic potential
as in a homogeneous liquid. The saturation effect is also observed for the thickness of the
near-surface region, in which the monoatomic potential changes its value from its “bulk”
value to zero outside the droplet. The depth of the potential well, in which the atom moves
inside the helium droplet, for the droplets with radii of the order a > 4σ, has a magnitude
5ε ≈ 50K, which significantly exceeds the thermal energy of the atoms (T = 2.2K).

The kinetic energy of helium atoms contains the classical thermal contribution and the
quantum contribution. Calculations of the kinetic energy of helium atoms in a wide range
of densities and temperatures using the Monte Carlo quantum method [35,36] indicate the
importance of accounting for the quantum contributions. At the selected temperature and
density of liquid helium, the kinetic energy, according to the results in [36], is of the order
15K, which means that the main contribution to the kinetic energy is made by quantum
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effects. A comparison of the kinetic energy with the depth of the potential well shows that
the atoms are localized in the droplet and that helium nanodroplets tend to be resistant to
spontaneous decay due to thermal fluctuations and the emission of individual atoms.

7. Conclusions

In this paper, in the framework of the correlation theory of inhomogeneous liquids,
general expressions are obtained for the volume and surface contributions to the energy
of a droplet as a function of its radius. In Fowler’s approximation, all contributions
are expressed in the form of one-time integrals, which significantly simplifies the model
calculations of the dimensional dependence. The dimensional dependence of the surface
energy of spherical droplets of simple dielectric liquids as a function of the radius in the
Fowler approximation is calculated. In the extreme case of large values of the radius of a
droplet, its surface energy approaches its value for a flat surface. The strong dimensional
dependence of the surface energy of the droplet is observed in the region of nanometer
droplet size. The developed approach is applied to the calculation of the surface energy of a
two-phase system of liquid nanodroplet–gas phase, taking into account paired interparticle
interactions and correlations. The dimensional dependence of the surface energy of a
nanodroplet in a gas is similar to the dimensional dependence of a nanodroplet in a vacuum.

This paper shows the possibility of taking into account paired interparticle interactions
and correlation effects when calculating the interaction energy of pairs of droplets of
arbitrary size. The energy of the interaction of two droplets in the Fowler approximation
is written as a double integral. An explicit expression for the interaction energy of two
droplets in the continuum approximation is obtained, which allows us to investigate
the importance of taking into account the effects of paired intermolecular correlations in
comparison with continuum models. As a boundary case, the expression for the energy
of interaction of a droplet and a semi-bounded liquid is obtained, taking into account the
effects of paired interparticle correlations.

On the basis of the constructed theory, the properties of nanometer air dispersal
systems with arbitrary droplet dispersion and for arbitrary multicomponent mixtures of
liquids can be calculated. By means of the effective Hamiltonian of the aerosol of liquid
droplets (61), it is possible to investigate in more detail the kinetic problems of evaporation
and condensation on the surfaces of droplets and the lifetime of nanodroplets during
their evaporation.

Within the framework of the developed approach, it is possible to study the interaction
of liquid nanodroplets with foreign molecular structures (e.g., virions), coagulation of
molecular structure and nanodroplets, and evaporation and condensation processes on
droplets, provided that the molecular structure is present inside the droplet. These issues
are all currently unresolved. The important theoretically unresolved issues are the evolution
processes of evaporation and condensation on a nanodroplet that is in contact with different
media (wood, plastic, metal), and the lifetime of the droplet with a molecular structure
inside different surfaces. The answers to these questions are important in the problems
related to the spread of viruses.
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Abstract: We study self-assembly on a spherical surface of a model for a binary mixture of amphiphilic
dimers in the presence of guest particles via Monte Carlo (MC) computer simulation. All particles
had a hard core, but one monomer of the dimer also interacted with the guest particle by means of
a short-range attractive potential. We observed the formation of aggregates of various shapes as a
function of the composition of the mixture and of the size of guest particles. Our MC simulations are
a further step towards a microscopic understanding of experiments on colloidal aggregation over
curved surfaces, such as oil droplets.

Keywords: molecular self-assembly; amphiphilic aggregates; spherical boundary conditions

1. Introduction

Colloidal particles dispersed in a fluid medium are widely considered to be an ideal
system where self-assembly can be explored, since they can be resolved and tracked in
real time using optical microscopy [1]. The aggregation of colloidal particles is often the
outcome of steric stabilization by electrostatic repulsion, which is achieved by modifying
the salt concentration or by adding chemicals as stabilizing agents, as in the case of gold
colloids [2] or silica and polystyrene particles [3,4]. The morphology of colloidal aggregates
depends on the prevailing aggregation mechanisms and on particle shape [1], and is
typically observed in ramified or compact clusters of fractal dimensionality [5], in a number
of crystalline and amorphous solids [6], and in mesophases [7–9], which are partially
ordered phases that are intermediate between liquids and crystals (e.g., cluster fluids,
liquid crystals, and quasicrystals). Colloidal nanocrystals are even able to self-assemble in
crystalline superlattices with an intricate structure [10].

In the last few decades, many researchers focused on the self-assembly of colloidal
particles at an interface, which may serve as a scaffold or template for particle aggregation.
Assembly at air–liquid and liquid–liquid interfaces is driven by a complex interplay of
entropic and enthalpic forces [11]. The ability of oil–water interfaces to trap micron-sized
particles has been known for over a century [12,13], and the strong binding of colloidal
particles to fluid interfaces (the binding energy is even thousand times stronger than
the thermal energy) is also evidenced by the stabilization of foams and emulsions against
decomposition [14,15]. The self-assembly of colloidal particles on a flat surface can only rely
on the control of interparticle interactions at the interface [16–20]. However, thanks to recent
progress in microfluidics, it is possible to modify the interfacial geometry to trap colloidal
particles, thus extending the initial range of applications of colloidal self-assembly. Indeed,
curved phases of matter are found in a large number of systems, including biological
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entities such as cells and viral capsids, and the competition between the tendency to
self-assemble and the geometric frustration originated by the curved interface can lead to
novel structures, which are simply impossible to obtain over flat interfaces [21]). Recently,
spherical boundary conditions have begun to also be employed in the realm of ultracold
quantum particles, where “phases” with polyhedral symmetry are expected [22], and
Bose–Einstein condensation has peculiarities that are experimentally well within reach [23].

Concrete realizations of spherical crystals are found in the emulsions of two immiscible
fluids, such as oil and water, which are stabilized against droplet coalescence by coating
the interface of one of the fluids with small colloidal particles [24]. A nontrivial issue is
overcoming the strong binding of colloidal particles to the (liquid–liquid) interface and
allowing them to diffuse quickly enough, i.e., like in a true fluid, to facilitate self-assembly
over the substrate. Recently, that was achieved by very efficient functionalization with
complementary DNA strands of both the surface of oil droplets (which was stabilized
with sodium dodecyl sulphate (SDS), i.e., a micelle-forming surfactant) and the surface
of colloidal particles [25]. Fluidlike diffusion was reached by allowing colloidal particles
to anchor on rafts of polylysine-g[3.5]-polyethylene glycol-biotin (PLL-PEG-bio), which
are free to slide on the surfactant. Upon increasing the concentration of SDS, the colloidal
particles attached to the surface were observed to undergo aggregation as a result of the
depletion effect driven by the excluded area of the surfactant micelles [25].

Spherical droplets were also coated with polystyrene latex particles [26] to form
aggregates with a rigid shell, called colloidosomes in analogy to liposomes [27]. Structures
resulting from the encapsulation of colloidal particles [28] are potential candidates for the
delivery of drugs and vaccines, and may be used as vehicles for the slow release of cosmetic
and food supplements.

In general, the self-assembly of colloidal particles on a spherical surface is an im-
portant paradigm to understand the structuring of membrane cells, which exhibit stable
domains. The distribution and composition of these domains over the cell surface deter-
mines the interaction energy between different cells, ultimately driving the organization
of the crowded environment inside biological organisms, where a huge number of cells is
present [29].

Recently, we studied in 3D space [30] and on a plane [31] an implicit-solvent descrip-
tion of the dispersion of two colloidal species, namely, an amphiphilic dimer and a guest
spherical/circular particle, where the smaller monomer in the dimer was solvophobic and
had a strong affinity for the guest particle. In this paper, we consider the same system
embedded in a spherical surface. By establishing bonds with two nearby curved disks, the
smaller monomer provides the glue that keeps the disks together, which is the mechanism
by which disks can form aggregates. However, once an aggregate of disks is covered with
dimers, further growth of the aggregate is obstructed by the steric hindrance of the coating
shell. Since the dimer–disk attraction is of limited range, mostly zero (“micelles”)- and
one-dimensional aggregates (“chains”) are expected to form for a moderately low number
of disks, while two-dimensional self-assembled structures (i.e., stratified lamellae) could
occur under equimolar conditions.

The paper is organized as follows. In Section 2, we describe the model and employed
method. In Section 3, we present and discuss our results. Lastly, we report our conclusions
in Section 4.

2. Model and Method

The investigated model is the curved-surface analog of the same mixture of dimers
and spherical guest particles that was studied in [30–32]. A dimer consists of two tangent
hard calottes (i.e., disks following the surface of the sphere) with curved diameters σ1 and
σ2 = 3σ1, whereas guest particles are represented as hard calottes of size σ3 (below, we
generically refer to these particles as “disks”). In addition to the impenetrability of all
particle cores, we added an attraction between the small monomer and the disk, modeled
as a square-well potential of depth ε; the width of the well was set to be equal to σ1. In the
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following, σ2 (i.e., the diameter of the large monomer) and ε are taken as units of length and
energy. Lastly, N1 = N2 and N3 are the number of dimers and disks, respectively; hence,
N = N1 + N3 is the total number of particles and χ = N3/N is the (disk) composition.

Most data were collected for a fixed number N3 = 400 of disks with diameter σ3 = σ2
and varying composition. Number density was ρ∗ ≡ (N/A)σ2

2 = 0.05 (with A being the
area of the spherical surface), but we also performed a few simulations for ρ∗ = 0.25 to
probe the regime of moderately high curvatures. We analyzed the system behavior for a
number of compositions: χ = 20%, 33%, 50%, and 80%. Once N and χ are set, the number
of dimers follows accordingly (sphere radius R is uniquely determined from N and ρ∗). We
also examined how self-assembly changes when the disk diameter is increased up to 5σ2.

Simulations were carried out using the standard Metropolis algorithm in the canonical
ensemble. Typically, a few hundred million Monte Carlo (MC) cycles are performed, one
cycle consisting of N trial moves. Both translational and rotational moves are carried
out for dimers. In performing a translational move, the midpoint of the arc joining the
monomer centers is randomly shifted on the sphere, while keeping the direction of the
subtended chord fixed in the embedding three-dimensional space. In a rotational move, it
is the midpoint of the arc between the monomers that is fixed, while the chord is rotated at
random. The maximal random shift and rotation were adjusted during the equilibration
run, so as to keep the ratio of accepted to total number of moves close to 50%. The schedule
of each move was designed so that the detailed balance held exactly. Particles are initially
distributed at random on the sphere (using a variant of the Box–Muller algorithm [33]).
Then, the system is quenched to T∗ ≡ kBT = 0.15 or 0.10 and subsequently relaxed until
some stationary condition is established. We checked that a slow cooling of the system,
starting at each temperature from the last configuration produced at a slightly higher
temperature, did not make any substantial difference in the structural properties of the
steady state, because simulated systems are overall dilute.

A property signalling how far the system is away from equilibrium is the total potential
energy U: an energy fluctuating around a fixed value for long is the hallmark of (meta)stable
equilibrium. In ε units, U gives the total number of 1–3 contacts in the current system
configuration. Hence, a stationary value of U indicates that aggregates eventually reached
a nearly stable structure. Typically, 108 cycles suffice for reaching a stationary state of
low density. This is clearly illustrated in Figure 1, showing the energy evolution as a
function of Monte Carlo cycles for T∗ = 0.10, ρ∗ = 0.05, and a number of compositions.
Once equilibrium (or whichever steady state) is reasonably attained, we gain insight
into the nature of aggregates mainly by visual inspection. We also computed the radial
distribution function (RDF) of disks, g33(r) in a rather long production run of 107 cycles
(we checked that statistical errors on the RDFs were indeed negligible). For the sake of
comparison, similar studies of 2D binary mixtures at considerably higher total density were
executed for one order of magnitude fewer MC steps [34]. Even in a strongly heterogeneous
system where mesoscopic structures were present, g33(r) bears valuable information on
the arrangement of disks in the close neighborhood of a reference disk. Two disks form a
bound pair when their distance is not larger than rmin = σ3 + 3σ1 [31]: this is the maximal
distance at which two disks can still be in contact with the same small monomer (exactly
placed in the middle). For σ3 = σ2, this implies that a disk forms bonds with all its first and
second neighbors, identified as such through the RDF profile.
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Figure 1. Energy evolution as a function of Monte Carlo time for σ3 = σ2, T∗ = 0.10, ρ∗ = 0.05, and
various disk compositions (from top to bottom, χ = 20%, 33%, 50%, and 80%).

3. Results

We first comment on the simulation results for a mixture of disks and large monomers
having the same size (Section 3.1). We consider systems of both low density (ρ∗ = 0.05)
and moderate density (ρ∗ = 0.25). Next, we examine what changes when dimers are much
smaller than the disks (Section 3.2). By visual inspection, we could easily ascertain the
nature of the structures present in the stationary configurations of the low-temperature system.

3.1. Same Size of Dimers and Disks

We initially set the density to be equal to ρ∗ = 0.05, and disk size to σ3 = σ2. For T∗ = 0.15,
the equilibrated system is a fluid of small globular clusters for all disk compositions; see
examples in Figure 2. Only for values of χ lower than about 10% did dimers form a
well-definite coating shell around disks. Thermal fluctuations for T∗ = 0.15 are still too
important to allow for the formation of more elaborate structures.

Figure 2. Typical configuration of mixture for σ3 = σ2 and ρ∗ = 0.05 after a long run at T∗ = 0.15.
Snapshots refer to a system of composition (left) χ = 33% and (right) χ = 50%.

Things changed radically for T∗ = 0.10, where the nature of aggregates was more
varied. For χ = 20% or lower, we invariably observed small groups of disks surrounded by
dimers (Figure 3, top-left panel); for higher compositions up to 50%, aggregates were more
elongated and wormlike (see top-right and bottom-left in Figure 3). A closer look at such
“worms”, which are obviously the 2D analog of lamellae, revealed that they were assembled
from a repeating unit, like a polymer chain. For still higher χ, the mean size of aggregates
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returned to being small again, since the number of gluing dimers was insufficient for all
disks, and many disks then remained unbound (Figure 3, bottom-right panel). Therefore,
aggregates only achieved large sizes when the number of disks roughly matched that
of dimers.

Figure 3. Typical configuration of mixture for σ3 = σ2 and ρ∗ = 0.05 after a long run at T∗ = 0.10.
Snapshots were taken at different compositions: (from top left to bottom right) χ = 20%, 33%, 50%,
and χ = 80%.

The dynamics of aggregation in the present model is easy to explain. Initially, when
the system was still disordered, the aggregation of disks proceeded very fast through the
formation of bonds between disks and dimers. As an aggregate grows in size, however, its
surface becomes increasingly rich in large monomers, which are inert particles; eventually,
an aggregate stops growing when its disks and small monomers all lie buried under the
surface. While local adjustments of the structure still occur at a high rate, the merging of
two disconnected aggregates (or the breaking of a long chain) is highly suppressed and only
takes place on much longer time scales. The existence of two regimes of aggregate growth
(fast and slow), corresponding to a transition from diffusion-limited to reaction-limited
aggregation [3], is reflected in the crossover of U from an exponential to a subexponential
decay (as evidenced in Figure 1).

For T∗ = 0.10, the mechanism underlying the structure of aggregates is mainly energy
minimization, whereas entropy considerations play a minor role. However, entropy is
decisive in shaping the large-scale distribution of aggregates on the sphere, inasmuch as
their structure maintains a certain flexibility (see more below). The relative size of particles
and the range of 1–3 attraction are also clearly important. It is the short-range character
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of the attraction that is responsible for the essentially one-dimensional geometry of the
larger aggregates.

Particularly interesting are the systems with χ = 33% and χ = 50%, which are shown
enlarged in Figure 4. Here, most of the aggregates are flexible worms, i.e., chainlike
aggregates with a small bending modulus. The geometry of the worm backbone is dictated
by the necessity to keep the energy as small as possible at the given composition: this
was accomplished by a straight chain of disks for χ = 33% (Figure 4, left panel) and by a
zig-zag chain for χ = 50% (Figure 4, right panel). Both chain morphologies allowed for
disks to bind all dimers, so that, in the long run, no free particles would be left in the box.
Occasionally, a worm bent to the point that a closed loop appears—see the example on the
left in Figure 4.

Figure 4. Typical configurations of mixture for σ3 = σ2 after “only” 3 × 107 MC cycles. Snapshots
were taken for T∗ = 0.10 and ρ∗ = 0.05, and refer to (left) χ = 33% and (right) χ = 50%.

Figure 5 shows the collected RDFs for various compositions at low temperature
(T∗ = 0.10). A large g33 value at contact is the most distinct signature of the existence
of aggregates of disks. The short-distance structure in g33 was richer for intermediate χ
values, where the physiognomy of aggregates is better defined. The rather pronounced
second-neighbor peak at χ = 50% was the result of the zig-zag structure of the chain
backbone at this composition. Regarding g13(r), its short-distance profile was sharper
for the lowest compositions, where the number of dimers that were in close contact with
the same sphere was higher (see inset of right panel). A high third-neighbor peak for
intermediate compositions is the signature of the existence of extended aggregates of
dimers and guest disks consisting of a periodically repeating unit.

As density increases, the nature of self-assembly becomes slightly different. We
studied mixtures for ρ∗ = 0.25 while still keeping σ3 = σ2 and the temperature fixed at
0.10 (see Figure 6). When the composition was low, the aggregates were slightly elongated
capsules (see top-left panel of Figure 3), like at small density. For χ = 33%, aggregates were
definitely chainlike (Figure 6, top-right panel), but due to a more crowded environment,
they were joined together in an intricate manner, giving rise to a spanning cluster (i.e.,
a connected gel-like network encompassing all particles in the system). The onset of an
extended network is a remarkable outcome, considering that this structure emerged from
very basic interaction rules in a binary system of disks and dimers. At the composition
of 50%, large monomers were more effective in screening a chain from other aggregates,
and chains then grew much longer. As a result, a chain may wrap a few times around
the sphere before merging into another chain (see bottom-left panel of Figure 6). This is
similar to what was observed in a one-component system of particles interacting through
a short-range attractive, long-range repulsive (SALR) potential [35]. The latter system
was stripe-forming at low temperature; hence, when the particles were constrained to a
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spherical surface, a stripe may wrap around the sphere, as indeed observed. Lastly, at
still higher compositions of disks, the size of aggregates was again reduced since there
were few disks to bind all dimers, and their environment was too crowded to allow for
aggregates to grow long in the early stages of equilibration.

Figure 5. Mixture of dimers and disks with σ3 = σ2 after 108 MC cycles for T∗ = 0.10 and ρ∗ = 0.05. (left) g33(r); (right)
g13(r); (inset) short-range structure of RDFs. The color code is the same for both panels (see left-panel inset).

Figure 6. Typical configuration of mixture for σ3 = σ2 and ρ∗ = 0.25 after a long run carried out at T∗ = 0.10. Snapshots
were taken at different compositions: (from top left to bottom right) χ = 20%, 33%, 50%, and χ = 80%.
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While a further, moderate increase in density at fixed N ≈ 1000 would not change
much in the above results, in a huge-density mixture, the formation of self-organized
aggregates could encounter much difficulty due to increased relaxation time and surface
overcrowding.

3.2. Increasing Disk Size

When the size of disks became sufficiently large, four at least, the large monomers
failed to adequately screen the attraction between two disk aggregates, and, at low tem-
perature, we observed the formation of a condensate over the sphere in agreement with
what was found for the system absorbed on a flat interface [31]. This is clearly seen in the
snapshots reported in Figure 7, which correspond to a typical late-time configuration of
the system for T∗ = 0.10, ρ∗ = 0.05, and χ = 20%. For σ3/σ2 = 5, disks mostly occurred in
the form of a square-symmetric polycrystalline structure, held together by dimers inter-
spersed between the disks (we counted an average of four dimers in each square center, in
accordance with the overall disk composition). The prevalent square order of the system
was transparent in the profile of g33(r), where the second and third peaks fall at distances
that are in a ratio of

√
2 and 2, respectively, with the location of the first peak. Figure 7

evidently shows that the size of patches with a clear square motif was nonetheless limited,
and the reason for this is twofold. First, this may have been the result of an incomplete
equilibration; relaxation to equilibrium (coarsening) is slower for a crystallizing system in
which many particles are hosted in a single cell. As a result, the spontaneous elimination of
crystalline defects takes much longer than it would in a one-component crystal of spherical
particles. Even though the onset of crystalline order is favored on a sphere by the lowering
of the nucleation barrier [36], this effect was seemingly small at the probed densities where
the curvature of the sphere was also small. On the other hand, perfect square order is
inherently frustrated on the sphere, and this placed an upper threshold on the size of the
ordered patches (this would still be consistent with the existence of a superstructure of
patches, akin to the icosahedral superstructure found in dense systems of hard disks on a
sphere [37], but we have no evidence for that).

The regular structure observed in Figure 7 finds a correspondence in the crystalline
order of DNA-hybridized polystyrene colloids on the surface of oil droplets, as shown in
the fluorescence micrographs of [25]. At variance with these triangular-ordered crystalline
patches, however, our system is unique in providing a square-symmetric scaffold for the
absorption of foreign particles on a spherical substrate.

Figure 7. Typical configuration of mixture for (left) σ3/σ2 = 4 and (right) σ3/σ2 = 5 after a long run at T∗ = 0.10. System
density was ρ∗ = 0.05 and disk composition was χ = 20%. Disks were gathered together in patches similar to tectonic plates
floating on Earth’s mantle. Prevailing structural motif was a square of disks with gluing dimers in the middle interstice.
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4. Conclusions

We performed Monte Carlo (MC) computer simulations on a sphere of a binary
mixture of asymmetric dimers of tangent hard disks and guest particles at low temperature.
Guest particles were curved hard disks interacting with the smaller monomer of the
dimer through an attractive square-well potential, of which the range was the same as
the monomer diameter. We analyzed the effect of changing the density of the mixture
(while keeping the system very sparse), the composition, and the size of guest particles,
ranging from the size of the larger monomer in a dimer to five times larger than that.
Despite the simplicity of the model, its self-assembly behavior was quite rich. Indeed, we
observed the formation of various metastable aggregates with a prevailing one-dimensional
geometry (i.e., chainlike aggregates with a small bending modulus, including a gel-like
network), only driven by the short-range attraction, while the large-scale distribution of
aggregates could be understood in terms of entropic considerations. For a large guest
particle, the small monomer–guest particle attraction could only hardly be screened by
the large monomer, thus favoring the formation of thick condensates. These condensates
appeared as a square-symmetric polycrystal, which is a nontrivial feature of the model,
considering that the perfect square lattice is inherently frustrated on the sphere. Our
results indicate the possibility of building a square-symmetric scaffold for the absorption
of external particles on a curved surface.
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35. Pȩkalski, J.; Ciach, A. Orientational ordering of lamellar structures on closed surfaces. J. Chem. Phys. 2018, 148, 174902. [CrossRef]

[PubMed]
36. Gomez, L.R.; Garcia, N.A.; Vitelli, V.; Lorenzana, J.; Vega, D.A. Phase nucleation in curved space. Nat. Commun. 2015, 6, 6856.

[CrossRef] [PubMed]
37. Prestipino, S.; Ferrario, M.; Giaquinta, P.V. Statistical geometry of hard particles on a sphere: analysis of defects at high density.

Phys. A 1993, 201, 649–665.

162



MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

Tel. +41 61 683 77 34
Fax +41 61 302 89 18

www.mdpi.com

Entropy Editorial Office
E-mail: entropy@mdpi.com

www.mdpi.com/journal/entropy





MDPI  

St. Alban-Anlage 66 

4052 Basel 

Switzerland

Tel: +41 61 683 77 34 

Fax: +41 61 302 89 18

www.mdpi.com ISBN 978-3-0365-1552-6 


	2cover.pdf
	Statistical Mechanics and.PDF
	Blank Page

	2cover

